• TABLE OF CONTENTS
HIDE
 Front Cover
 Front Matter
 Copyright
 Main
 Main
 Main














Title: Lankesteriana
ALL VOLUMES CITATION PDF VIEWER THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00098723/00007
 Material Information
Title: Lankesteriana la revista científica del Jardín Botánico Lankester, Universidad de Costa Rica
Physical Description: v. : ill. (some col.) ; 25 cm.
Language: English
Creator: Jardín Botánico Lankester
Publisher: Jardi´n Bota´nico Lankester, Universidad de Costa Rica
Jardín Botánico Lankester, Universidad de Costa Rica
Place of Publication: Cartago Costa Rica
Cartago Costa Rica
Publication Date: May 2003
Frequency: three times a year[2002-]
irregular[ former 2001]
three times a year
regular
 Subjects
Subject: Botany -- Periodicals -- Costa Rica   ( lcsh )
Epiphytes -- Periodicals -- Costa Rica   ( lcsh )
Orchids -- Periodicals -- Costa Rica   ( lcsh )
Plantkunde   ( gtt )
Botanische tuinen   ( gtt )
Genre: periodical   ( marcgt )
Spatial Coverage: Costa Rica
 Notes
Language: In English and Spanish.
Dates or Sequential Designation: No. 1 (mayo 2001)-
Numbering Peculiarities: Issues for May 2001-Oct. 2003 designated no.1-8; issues for Apr. 2004- designated vol. 4, no. 1-
General Note: Latest issue consulted: Vol. 4, no. 1 (abr. 2004).
General Note: International journal on orchidology.
 Record Information
Bibliographic ID: UF00098723
Volume ID: VID00007
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: oclc - 48491453
lccn - 2001240973
issn - 1409-3871

Downloads

This item has the following downloads:

00005-2003 ( PDF )


Table of Contents
    Front Cover
        Front Cover
    Front Matter
        Front Matter
    Copyright
        Copyright
    Main
        Page ii
        Page iii
        Page iv
    Main
        Page 1
    Main
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
        Page 169
        Page 170
        Page 171
        Page 172
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
        Page 179
        Page 180
        Page 181
Full Text
ISSN 1409-3871



LANI ESTERIANA

No. 7 MAYO 2003

1" Congress Internacional de Orquideologia Neotropical
Is International Conference on Neotropical Orchidology

Manejo de Datos e Informaci6n / Information and Data Management
CAXI XANATH. Base de datos de la Colecci6n de Orquideas
del Jardin Botanico Clavijero
PHILIP J. BREWSTER & MARICRUZ PEREDO NAVA 3
AMO-DATA en la taxonomia y en el manejo de colecciones
ERIC HAGSATER & LUIS M. SANCHEZ SALDANA 5
Hacia un catalogo actualizado de las Orchidaceae de Cuba
ERNESTO MUJICA BENITEZ 7
The endemic orchid genera of the Antilles
MARK A. NIR 9
Costa Rican Orchidaceae types (CROTYPES) digital imaging documentation
at AMES, Harvard University
FRANCO PUPULIN & GUSTAVO A. ROMERO-GONZALEZ 11
When is a species extinct? Quantitative inference of threat and extinction
from herbarium data
DAVID L. ROBERTS & GREG MCINERNY 17
El Centro de Documentaci6n del Jardin Botanico Lankester
WALTER SCHUG 21
El genero Epidendrum en San Pedro de Carpish, Huanuco, Peru
DELSY M. TRUJILLO CHAVEZ 25

Avances en Filogenia de Orquideas / Advances in Orchid Phylogeny
Sistemitica, filogenia y biogeografia de Myrmecophila (Orchidaceae)
GERMAN CARNEVALI, JOSt LUIS TAPIA, NORRIS H. WILLIAMS & W. MARK WITTHEN 29
continfia en las pdginas intemas


LA REVISTA CIENTIFICA DEL JARDIN BOTANICO LANKESTER
UNIVERSIDAD DE COSTA RICA




















I-'l0lKETF I NA~
I PILI I '.JA~S A1L{ 1 IT I1, I I '3C: I 1,) I I -L
LII HNCii III- HLANKEEIIF


Fundaci6n
Lankester











LANKESTERIANA
LA REVISTA CIENTIFICA DEL JARDIN BOTANICO LANKESTER
UNIVERSIDAD DE COSTA RICA





Copyright 2003 Jardin Botanico Lankester, Universidad de Costa Rica
Fecha efectiva de publicaci6n / Effective publication date: 16 de mayo del 2003


Diagramaci6n: Jardin Botanico Lankester
Imprenta: Litografia Ediciones Sanabria S.A.
Tiraje: 750 copias


Impreso en Costa Rica / Printed in Costa Rica


R Lankesteriana / La revista cientifica del Jardin Botdnico
Lankester, Universidad de Costa Rica. No. 1
(2001)-- -- San Jos6, Costa Rica: Editorial
Universidad de Costa Rica, 2001--
V.

ISSN-1409-3871

1. Botdnica Publicaciones peri6dicas, 2. Publicaciones
peri6dicas costarricenses


0







ii LANKESTERIANA N 7

Orchids smarter than scientists: an approach to Oncidiinae (Orchidaceae) taxonomy
STIG DALSTROM 33
Guarianthe, a generic name for the "Cauh'ya" skinneri complex
ROBERT L. DRESSLER & WESLEY E. HIGGINS 37
Prosthechea: a chemical discontinuity in Laeliinae
WESLEY E. HIGGINS 39
Phylogeny and evolution
WALTER A. MARIN 43
Phylogeny of the Heterotaxis Lindley complex (Maxillariinae): evolution of the
vegetative architecture and pollination syndromes
ISIDRO OJEDA, GERMAN CARNEVALI, NORRIS H. WILLIAMS & W. MARK WHITTEN 45
Phylogenetics of the Subtribe Pleurothallidinae (Epidendreae:
Orchidaceae) based on combined evidence from DNA sequences
ALEC M. PRIDGEON & MARK W. CHASE 49
Anilisis fenetico de caracteres anat6mico-foliares de Trichocentrum y generos relaciona-
dos (Orchidaceae, Oncidiinae)
ESTHELA SANDOVAL, TERESA TERRAZAS & ALEJANDRO VALLEJO 51
Anatomia vegetativa de Mexipedium xerophyticum (Soto, Salazar & Hagsater)
V.A. Albert & M.W. Chase y generos relacionados (Orchidaceae, Cypripedioideae)
ESTHELA SANDOVAL, TERESA TERRAZAS, GERARDO SALAZAR, ALEJANDRO VALLEJO
& BARBARA ESTRADA 54
Toward a phylogeny of Maxillariinae orchids: multidisciplinary studies with
emphasis on Brazilian species
RODRIGO B. SINGER & SAMANTHA KOEHLER 57
Molecular phylogenetics and generic concepts in the Maxillarieae (Orchidaceae)
NORRIS H. WILLIAMS & W. MARK WHITTEN 61

Estudios de poblaciones / Population Studies
El area fotosintktica como indicador de la producci6n de flores en Lepanthes sanguine
MARIA M. AGOSTO PEDROZA & RAYMOND L. TREMBLAY 65
Efecto de remoci6n y relocalizaci6n de Lepanthes eltoroensis Stimson, despues de
un huracan
RAFAEL J. BENITEZ JOUBERT & RAYMOND L. TREMBLAY 67
Phenotypic selection in Lepanthes rupestris Stimson
SOL TAINA CINTRON BERDECIA & RAYMOND L. TREMBLAY 70
Reproductive potential, growth rate and light environment in Lepanthes
rupestris Stimson
DENNY S. FERNANDEZ, RAYMOND L. TREMBLAY, EVENEIDA RODRIGUEZ & LIZ NELIA LOPEZ 73
Irregular flowering regimes in orchids
PAVEL KINDLMANN 77







Mayo 2003 LANKESTERIANA iii


Breeding systems, gene flow and level of genetic differentiation in plant populations
OSCAR J. ROCHA 81
The genetic structure of orchid populations and its evolutionary importance
RAYMOND L. TREMBLAY & JAMES D. ACKERMAN 87


Biologia de la Polinizaci6n / Pollination Biology
Resupination
JOSEPH ARDITTI 95
Polinizaci6n de orquideas en Guatemala: los polinizadores, el estado natural de
sus poblaciones y las implicaciones para las species polinizadas
MARGARET DIX & MICHAEL DIX 97
Rhynchostele bictoniensis: cambios en abundancia y exito de polinizaci6n entire
1992 y 2002
MICHAEL Dix & MARGARET DIX 98
Why are there so many orchid species?
CALAWAY H. DODSON 99
La subtribu Stanhopeinae: sus notables mecanismos de polinizaci6n, la quimica de
sus aromas florales e implicaciones en sistemitica y taxonomia
GONTER GERLACH 104
Effects of flower age on pollination success in Lepanthes sanguine
EDWIN GUEVARA RAMOS, MARIA M. AGOSTO PEDROZA & RAYMOND L. TREMBLAY 107
Floral mimicry in Oncidioid orchids
MARTYN POWELL, FRANCO PUPULIN, JORGE WARNER, MARK W. CHASE & VINCENT SAVOLAINEN 109
Orchid pollination: recent developments from Brazil
RODRIGO B. SINGER 111

Educaci6n para la Conservaci6n / Education for Conservation

Orquideas del Valle Escondido
JORGE ARTURO CAMPOS 117
Neotropical orchid eco-tourism: educational experience of an orchid neophyte at
the Bosque de Paz Biological Preserve, Central Volcanic Range, Costa Rica
STEPHEN H. KIRBY 121
Conservation through education
MARILYN H.S. LIGHT 125
Catalogo preliminary de las Orchidaceae de la Zona Protectora Cerros de la
Carpintera, Costa Rica
CARLOS OSSENBACH S., MARIO OSSENBACH S. & FRANCO PUPULIN 127
Conservaci6n de orquideas en Guatemala: la experiencia de un colegio
RAQUEL JIMENEZ DE PINTO 133







LANKESTERIANA


Orchids at Writhlington School, orchid conservation in the community
SIMON PUGH-JONES 135

Germinaci6n y Propagaci6n / Germination and Propagation

Seed characteristics and asymbiotic germination of Galeandra batemanii Rolfe
and G. greenwoodiana Warford
MARILYN H.S. LIGHT & MICHAEL MACCONAILL 141
Variaci6n en germinaci6n simbi6tica entire semillas de Tolumnia variegata y entire
hongos micorrizicos
J. TUPAC OTERO, PAUL BAYMAN & JAMES D. ACKERMAN 145
Mycorrhizal fungi of Vanilla: root colonization patterns and fungal identification
ANDREA PORRAS ALFARO & PAUL BAYMAN 147
Micropropagaci6n y conservaci6n de orquideas mexicanas en el Jardin Botanico
Clavijero
VICTOR MANUEL SALAZAR ROJAS & MARTIN MATA ROSAS 151
Mycorrhizal fungi of endangered orchid species in Kolli, a part of Eastern Ghat's,
South India
S. SENTHILKUMAR 155

Historia de la Orquideologia / History of Orchidology

El botanico y artist Rafael Lucas Rodriguez (1915-1981); resefia de su vida y su obra
CARLOS 0. MORALES 159
La aventura europea del Epidendrum radicans
CARLOS OSSENBACH S. 165
Tres en uno, ,o son mis? Historia de Epidendrum dichotomum Lindl., non Presl
GUSTAVO A. ROMERO-GONZALEZ & GERMAN CARNEVALI FERNANDEZ-CONCHA 169
Nuevas perspectives de investigaci6n de la familiar Orchidaceae en Costa Rica
RAFAEL ANGEL VALVERDE ARIAS & ADOLFO QUESADA CHANTO 173
La investigaci6n en el Jardin Botanico Lankester
JORGE WARNER 175


Patologia de Orquideas / Orchid Pal, 1, gy

Estudio de la pudrici6n negra de las orquideas causada por Phytophthora sp. en colec-
ciones del Valle Central de Costa Rica
CLAUDIO CARDENAS BRICE&O 179

Detecci6n de tres species de Potyvirus en orquideas nativas en un vivero del
Valle Central de Costa Rica
B. ORTIZ-ARIAS, L. MOREIRA, A.V. MACAYA-LIZANO & C. RIVERA 181















1' CONGRESS INTERNATIONAL DE ORQUIDEOLOGiA NEOTROPICAL
1' INTERNATIONAL CONFERENCE ON NEOTROPICAL ORCHIDOLOGY


Sesi6n / Session

MANEJO DE DATOS E INFORMATION

INFORMATION AND DATA MANAGEMENT








LANKESTERIANA 7: 3-4. 2003.


"CAXI XANATH"
BASE DE DATOS DE LA COLECCION DE ORQUIDEAS
DEL JARDIN BOTANICO CLAVIJERO


PHILIP J. BREWSTER & MARICRUZ PEREDO NAVA

Institute de Ecologia, A.C., Xalapa, Veracruz, Mexico


La importancia de documentary las colecciones de
plants en los jardines botinicos es esencial para
realizar studios sobre ellas. De los 51 jardines
botinicos de Mexico, el Jardin Botinico Clavijero
(JBC), es el unico ubicado en Bosque Mes6filo de
Montafia (BMM). La ventaja de contar con una base
de datos de la colecci6n del jardin botinico facility la
investigaci6n, educaci6n y conservaci6n. Se present
CAXIXANATH (Flor negra en lengua totonaca de
Vanilla planifolia), una base de datos disefiada en
Access 2000 que almacena informaci6n de ejem-
plares vivos depositados en la Colecci6n de
Orquideas del JBC. Actualmente CAXIXANATH con-
tiene cerca de 1300 registros (ca. 140 species) de 18
Estados de la Repfblica, e incluye informnaci6n cura-
torial, geogrifica, taxon6mica, referencias bibliogrifi-
cas, imagenes, t6cnicas empleadas y studios de culti-
vo, ademis de actuar como una guia de identificaci6n
enfocada a las species de BMM de la region. Tal
informaci6n servir6 para la publicaci6n de un libro y
CD-ROM.

Antecedentes. La colecci6n de orquideas del JBC es
una de las mis importantes de los jardines botinicos
de Mexico. Eso se debe principalmente al tamafio de
la colecci6n y a que la mayor parte de sus ejemplos
son colectas locales del BMM, uno de los habitats de
mayor riqueza pero dentro de los mis amenazados del
pais. En 61 se encuentra una alta concentraci6n de
diversidad de orquideas. El hecho de que el JBC es el
unico jardin botinico de Mexico ubicado en BMM
con, tal vez la inica colecci6n documentada de
orquideas de la region, destaca su importancia actual
y future potential.

Problemaitica. Reconociendo la diversidad de
species en la colecci6n, se detect cierta problemiti-
ca en la falta de conocimiento de detalles horticolas,
ya que el almacenamiento de los registros en una base


de datos ya existente, estaba limitada s6lo a los datos
de colecta. Otro de los problems ha sido la falta de
actualizaci6n de informaci6n en la base de datos, lo
que provoca que exista una gran inconsistencia entire
los registros y el estado actual de la colecci6n; identi-
ficaci6n, ubicaci6n, p6rdida de material.

Base de datos CAXI XANATH. Es por esto que nace
CAXI XANATH, una base de datos disefiada para
administrar informaci6n sobre la colecci6n de
orquideas. En su primera fase se dirige mas a quienes
tienen mayor contact e interns en la colecci6n, por
ejemplo los jardineros del jardin botinico y el public
en general. Almacena tanto datos de colecta como
informaci6n horticola, por ejemplo la aplicaci6n de
sustratos, riego y fertilizantes y control de luz, tem-
peratura y humedad, ademis de la identificaci6n de
plagas y enfennrmedades y su control.
Para lograr la identificaci6n correct de cada
especie, se cuenta con una caracteristica vital en la
base de datos que es la presentaci6n de imagenes de
cada registro de la colecci6n y la informaci6n taxo-
n6mica, de distribuci6n y habitat que le corresponde.
Se emplean tres niveles taxon6micos (genero,
especie, infraespecie) incluyendo tambien sinonimia
y nombres vernaculares. Se basa en la clasificaci6n de
Dressler (1993) y sigue las abreviaciones de autores
de Brummitt & Powell (1992).
Como informaci6n adicional, se pretend conservar
referencia bibliogrifica de la descripci6n de las
species, asi como referencia a la bibliografia parti-
cular.
Otros detalles que incluye son notas sobre la apli-
caci6n de metodos de polinizaci6n y la fenologia.

Estructura. El model de base de datos CAXI
XANATH utiliza datos relacionales. Esti constituido
por 26 tablas relacionales, las cuales fueron creadas a
partir del manejador de bases de datos Access 2000.








LANKESTERIANA


Cuadro 1. Registros incluidos en la base de datos, con
su procedencia geografica y ecol6gica.

Pais Nimero registros

Mexico (18 Estados) 1281
Otros paises 20


Tipo de Vegetaci6n Nimero registros

No definida 788
Bosque mes6filo de montafia 197
Bosque tropical perennifolio 135
Bosque de Quercus 115
Bosque tropical caducifolio 26
Bosque de coniferas 21
Bosque tropical subcaducifolio 15
Pastizal 3
Palmar 1


La incorporaci6n y actualizaci6n de informaci6n se
realize a traves de sencillos formularios de capture.
Los datos almacenados en las tablas pueden ser
extraidos con consultas y visualizados en informes o
formularios. Los datos pueden ser exportados a for-
matos como Excel, Lotus, Paradox, Dbase, documen-
tos html, archives de texto, archives en format RTF,
SQL, entire otros.


Cuadro 2. Registros del Estado de Veracruz.


Veracruz


Nfmero registros


Generos 85
Especies 193

Actualmente la base de datos alberga un poco mis
de 1300 registros (ca. 140 species) de 18 Estados de
la Repfiblica, distribuidos de la manera indicada en el
Cuadro 1.
En Mexico, es el estado de Veracruz el mis repre-
sentativo, ya que contamos con 1051 registros
(Cuadro 2).

Conclusion. Para contribuir en el cumplimiento de
los objetivos de la misi6n del JBC (investigaci6n,
educaci6n y conservaci6n), la base de datos de la
colecci6n de orquideas tendril un papel inicial impor-
tante en el uso de su informaci6n por parte del per-
sonal del jardin (informaci6n complete) y del pfblico
en general (informaci6n restringida); esto uiltimo se
pretend presentar en forma de un manual, CD-ROM
y pigina web.
Como parte del seguimiento a este proyecto se con-
tinuar6 con el process de alimentaci6n a la base de
datos con informaci6n t&cnica que servir6 de apoyo a
la comunidad cientifica.


Philip J. Brewster realize studios de horticulture en Merrist Wood Agricultural College, Inglaterra. Del 1985
a 1996 trabaj6 como horticultor botinico en los Royal Botanic Gardens, Kew, donde estuvo encargado de
varias colecciones vivas en el departamento de plants tropicales. Durante ese tiempo realize expediciones a
Espafia (principalmente Islas Canarias) y Colombia. Desde 1996 colabora en el Jardin Botanico Clavijero
del Instituto de Ecologia, Mexico, como responsible de las areas pfiblicas. A partir del 2000 es encargado de
la colecci6n de orquideas, participando en cursos y talleres como miembro de la Asociaci6n de
Orquideologia de Mexico.








LANKESTERIANA 7: 5-6. 2003.


AMO-DATA EN LA TAXONOMIA Y EN EL MANEJO DE COLECCIONES


ERIC HAGSATER' & LUIs M. SANCHEZ-SALDAINA

Herbario AMO, Apartado Postal 53-123, 11320, Mexico, D.F.
'Autor para correspondencia: eric@internet.com.mx


AMO-DATA es un sistema de bancos de datos, rela-
cionados todos ellos entire si, para el manejo de colec-
ciones botinicas y taxonomia. Reinen informaci6n
de families, g6neros, species, localidades, tipos de
vegetaci6n y nomenclatorial, entire otros; en si, toda la
informaci6n necesaria para los trabajos de tipo taxo-
n6mico de la familiar Orchidaceae.
En sus inicios, AMO-DATA fue disefiada en el
Herbario AMO por Eric Higsater y Kerry Walter en
el manejador de bases de datos Revelation, entire los
afios 1984-1985. Contaba con cuatro bancos de infor-
maci6n: el de g6neros, el de paises, el de colectas y el
banco de ejemplares de herbario, los cuales pre-
tendian cubrir la mayor cantidad de informaci6n posi-
ble de cada uno de los registros, basados en las eti-
quetas de colecta.
Posteriormente se inici6 el desarrollo de un banco
de datos nomenclatorial para la familiar Orchidaceae,
con la idea de incluir todos los nombres disponibles
para la familiar, esto con la finalidad de obtener lista-
dos de los taxa con su sinonimia, ademis del manejo
de la bibliografia basica.
Finalmente en colaboraci6n de la Universidad
Aut6noma Metropolitana Iztapalapa, se concrete
una base de datos mis complete, desarrollada en el
program commercial Advanced Revelation, el cual es
un manejador de bases de datos de tipo relacional con
campos de longitud variable, los cuales se ajustan
automiticamente a la cantidad de informaci6n que
contenga cada registro, ademis cuenta con campos de
valor muiltiple, los cuales nos permiten tener various
valores (nombres) en el mismo campo, y present
campos simb61licos, los cuales permiten tener una
mayor versatilidad en el manejo de la informaci6n de
los diferentes registros.

Actualmente AMO-DATA cuenta con 27 bancos de
informaci6n todos ellos interrelacionados entire si.
Dentro de ellos destaca el banco COLECTAS, que con-


siste fundamentalmente de una libreta de colectas
electr6nica, en la cual se almacena toda la informa-
ci6n recabada durante los viajes de recolecci6n en el
campo, por los diferentes colectores de la Instituci6n
y el banco de ESPECIMENES, basado en las etiquetas
de los ejemplares de herbario, y que almacena toda la
informaci6n contenida en &stas, permitiendo ademis
capturar informaci6n de colecciones anexas al
herbario como son: la diapoteca, flores preservadas
en alcohol, ilustraciones y otras.

El banco denominado BIBLIOGRAFiA, contiene la
informaci6n referente a los articulos en los que se
described species nuevas, o bien, aquellos trabajos
en los que se efectfian cambios nomenclatoriales o
taxon6micos, permitiendo con &sto tener la referencia
bibliogrifica complete y detallada. Finalmente en el
banco TAXA, se capturan todos los nombres vilida-
mente publicados y aceptados, basindose principal-
mente en las descripciones originales, monografias,
revisiones taxon6micas, etc. Este banco cuenta con la
infonnrmaci6n de los sin6nimos taxon6micos y nomen-
clatoriales para cada uno de los nombres aceptados.

Todos y cada uno de los bancos que forman AMo-
DATA, dan como resultado una poderosa herramienta
que ayuda a los trabajos floristicos y/o taxon6micos a
obtener la informaci6n de manera fficil y ordenada. El
procesamiento de todo el material mediante el uso del
banco de COLECTAS es menos tedioso y con menos
errors en el etiquetado del material, debido a que la
informaci6n se teclea una sola vez y posteriormente
se transfiere al banco de ESPECIMENES. A partir de
este banco se obtienen las etiquetas de herbario con
sus respectivos duplicados, ademis de llevar un con-
trol precise de lo que pasa con las plants colectadas.

En lo que respect a la revision e identificaci6n de
todo el material botinico que se esti estudiando, esta
tarea se vuelve relativamente sencilla al utilizar con-








LANKESTERIANA


juntamente los bancos ESPECIMENES y TAXA, debido a
que de una manera ripida se obtiene cualquier infor-
maci6n disponible en las etiquetas de herbario, por
ejemplo: todos los nombres que ha recibido un ejem-
plar de herbario y qui6n los asign6, el collector y su
numero de colecta, datos de ecologia y distribuci6n
local y/o regional de una especie, si se trata de material
tipo o no, s61lo por mencionar algunos.
Mediante el uso de estos bancos es facil localizar
duplicados de una misma colecta depositados en
diferentes instituciones, lo que nos permit identificar
automiticamente todos los duplicados con la revision
de un solo ejemplar. Ademis, nos facility la loca-
lizaci6n de material tipo no anotado como tal en las
instituciones, basindonos en la informaci6n
disponible en la publicaci6n original.
El poner en blanco y negro los resultados de nues-


tro studio, que es la uiltima etapa de nuestro trabajo,
se vuelve relativamente simple, ya que mediante una
series de listados, podemos obtener en cualquier orden
resultados tales como: listados floristicos locales y/o
regionales; listado del material revisado, incluyendo
la instituci6n en que se encuentra depositado; lista de
nombres aceptados con sus sin6nimos nomenclato-
riales y taxon6micos; cita bibliogrifica de cada uno
de los nombres utilizados en nuestro studio, datos
acerca de material tipo, etc.
Finalmente, con los 120 mil registros con los que
cuenta AMO-DATA actualmente se han publicado 6
volimenes de los Icones Orchidacearum, gran part
de la revista Orquidea (M6x.), entire otras. Ademis, la
informaci6n con que cuenta AMO-DATA, esti
disponible a todos aquellos estudiosos que esten
interesados en este t6pico.


Eric Higsater. Fundador de la Asociaci6n Mexicana de Orquideologia en 1969, Fundador y Director del
Herbario AMO desde 1976. Es miembro y fundador de importantes Asociaciones y Fundaciones tanto de
Mexico como del extranjero. Especialista en el g6nero Epidendrum L. (Orchidaceae), con mis de 130 articu-
los publicados, principalmente en la taxonomia de orquideas y en la conservaci6n de las orquideas en el
Neotr6pico. Editor de la revista Orquidea (Mex.) y de los Icones Orchidacearum, entire otras publicaciones.
Ha disefiado y desarrollado AMo-DATA. Miembro desde 1994 del comit6 t&cnico de la REMIB (Red Mundial
de Informaci6n sobre Biodiversidad), red interinstitucional que compare informaci6n biol6gica. Esti consti-
tuida por nodos, formados por los centros de investigaci6n que albergan las colecciones cientificas.

Luis SAnchez. Curador del Herbario AMO desde 1995 y responsible del manejo y funcionamiento de AMO-
DATA. Colaborador de Eric Higsater en el studio del g6nero Epidendrum L. (Orchidaceae) en el
Neotr6pico. Ha participado en diversos proyectos tanto de Mexico como del extranjero. Coeditor de los
Icones Orchidacearum desde 1997.








LANKESTERIANA7: 7-8. 2003.


HACIA UN CATALOG ACTUALIZADO
DE LAS ORCHIDACEAE DE CUBA


ERNESTO MUJICA BENITEZ

Jardin Botinico Orquideario Soroa, Universidad de Pinar del Rio
Apdo. Postal No. 5. Candelaria, Pinar del Rio. Cuba. emujica@vrect.upr.edu.cu


Desde el siglo pasado las species de orquideas que
habitan el territorio cubano han estado en el punto de
mira de los estudiosos del tema por ser la isla de
Cuba la mayor de las Antillas. Sin embargo, es hasta
el afio 1938 cuando se public el primer studio sobre
las orquideas de esta isla por parte de Julian Acufia
Gal&, prestigioso botinico cubano (Acufia Gal&
1938). Posteriormente, en 1946, el Hermano Le6n
public en su libro "Flora de Cuba" un nuevo
tratamiento y listado (Sauget 1946). Un largo period
de tiempo sigui6 a esta publicaci6n y s61lo 38 afios
despues, en 1984, la Dra. Helga Dietrich, de la
Universidad de Jena en Alemania, public un check-
list de acuerdo a los studios realizados por ella en
Cuba (Dietrich 1984). A fines del afio 1998, despues
de un intense trabajo, fue confeccionado por un grupo
de autores del Orquideario Soroa, Cuba, el uiltimo lis-
tado official de g6neros y species de orquideas regis-
tradas en Cuba, el cual sali6 publicado a principios
del afio 2000 formando parte del libro "Los Generos
de Orquideas Cubanas" (Muijica et al. 2000).
Debido al dinamismo que tienen los studios
orquideol6gicos en el mundo y principalmente en
Mesoam&rica, son muchos los cambios nomenclato-
riales y segregaciones que se han realizado despues
de tres afios, por lo que ya se hace necesaria una
nueva revision de la familiar para Cuba.
El objetivo del present trabajo es la creaci6n de un
catilogo actualizado, teniendo en cuenta los nuevos
registros, tendencies y resultados de los studios
taxon6micos actuales, llevados a cabo por impor-
tantes especialistas nacionales y extranjeros que
durante afios han dedicado sus esfuerzos a esta tarea.

Para ello se revisaron en su totalidad los ejemplares
depositados en el Herbario del Instituto Superior
Pedag6gico de Pinar del Rio (HPPR) (Mfijica 2003),
los del Herbario Johannes Bisse (HAJB), del Jardin
Botinico Nacional y los depositados en el Herbario


del Instituto de Ecologia y Sistemitica (HAC), que
contiene las colecciones de los antiguos Herbario
Sauvalle, Herbario de la Estaci6n Agron6mica de
Santiago de Las Vegas y los del Herbario del Colegio
de La Salle. Igualmente se han tenido en cuenta los
ejemplares depositados en el Herbario del
Orquideario Soroa, aunque &ste no esti actualmente
registrado.

En los casos de species que se encuentran en Cuba
y no tienen testigo en ninguin herbario national se ha
confiado en algunos autores y en informaciones
obtenidas de algunos herbarios extranjeros que no
han podido ser visitados. S61o se han hecho excep-
ciones en los casos de species citadas que carecen de
testigos en herbarios nacionales o extranjeros pero
que han sido o estin siendo cultivadas en estos
moments en el Orquideario Soroa. Estas estin
debidamente comprobadas por el autor despues de
ver los ejemplares, fotos y dibujos de los mismos, y
asi se hace constar en el listado.
Como podri comprobarse, se han utilizado tambien
datos e informes que aparecen tanto en antiguas
bibliografias como en las mis actuales, tratindose de
llegar en todo moment a criterios que correspondan
lo mis fielmente possible a las tendencies que hoy se
observan en el campo de la orquideologia en
Mesoam&rica. Evidentemente se ha tratado de adoptar
la nomenclatura mis reciente en la designaci6n de los
taxa. Como todos saben, los studios de anflisis
molecular han traido como consecuencia en algunos
grupos la segregaci6n de muchas de sus species
hacia otros g6neros. En algunos casos estos cambios
ya han sido aceptados en el listado en preparaci6n,
mientras que en otros el autor prefiere sefialar estos
nuevos cambios como sinonimos en espera de que los
studios con cada grupo concluyan, principalmente
en los grandes, y poder ofrecer una realidad mis com-
pleta de cada uno de ellos en el future.








LANKESTERIANA


Igualmente se realizan una series de comentarios en
aquellos casos de cambios nomenclatoriales, adi-
ciones o eliminaciones de g6neros y species regis-
tradas para el pais y se sefialan las species end6micas
en Cuba. El autor, en algunos casos, consider proba-
ble la presencia en territorio cubano de otras species
que actualmente carecen de un registro confiable, por
lo que aparecen en un listado de species de possible
presencia en Cuba. Igualmente se brinda un pequefio
listado de species que han sido observadas en algu-
nas ocasiones y sobre las cuales el autor muestra
series dudas.
Por iltimo, el autor desea con el present trabajo,
lograr que sirva de referencia actualizada para aque-
llos que dia a dia se esfuerzan por estudiar y conser-
var las species de esta familiar de plants en el pais y
la region.

AGRADECIMIENTOS
Son muchas las personas que deben ser mencionadas y
muy poco el espacio. En primer lugar al amigo Franco
Pupulin del Jardin Botinico Lankester y principal gestor
de esta idea junto a Carlos Ossenbach y su esposa Pilar
Casasa, quienes desde San Jose de Costa Rica y al frente
de la Fundaci6n Lankester han colaborado desinteresada-
mente para la divulgaci6n de este trabajo. A Eric HAgsater,


Helga Dietrich, Le6n Ibarra, Robert Dressier, Carlyle A.
Luer y James Ackerman por la paciencia mostrada y la
ayuda brindada a la hora de responder a mis dudas. A los
colegas del Orquideario Soroa, Rolando P&rez Marquez y
Jose L. Bocourt y los t&cnicos por su apoyo en todo
moment, a Aleli Morales, Curadora de la colecci6n de la
secci6n Orchidaceae del HAJB, al Dr. Armando Urquiola
y Teresa Garcia del HPPR y Juan Llamacho del HAC por
las facilidades otorgadas para la revision de esos herbarios.



LITERATURE CITADA
Acufia Gal6, J. 1938. CatAlogo descriptivo de las orquideas
cubanas. Bol. Est. Agron. Santiago de Las Vegas 60.
Dietrich, H. 1984. Vorliufiges Gattungs- und Arten-
Verzeichnis Kubanischer Orchidaceae. Wiss. Zeitschr.
Friedrich- Schiller-Univ. Jena.
Muijica Benitez. E., 2003. Notas acerca de la colecci6n de
Orchidaceae del Herbario del Instituto Superior
Pedag6gico de Pinar del Rio (HPPR), Cuba.
Lankesteriana 6: 9-16.
Mtijica Benitez. E., R. P&rez Marquez, J. Lazaro Bocourt
Vigil, P.J. L6pez Trabanco y T.M. Ramos Calder6n.
2000. Generos de Orquideas Cubanas. Editorial F&1ix
Varela, La Habana. 208 p.
Sauget, J.S. (Hno. Le6n). 1946. Familia 2. Orquideas. In
Flora de Cuba. Vol. I. Gimnospermas. Monocotile-
d6neas. Contr. Occ. Mus. Hist. Nat. Col. La Salle 1 (8):
341-404.


Ernesto Miijica Benitez es Licenciado en Educaci6n, convertido en estudioso de las orquideas de forma auto-
didacta. Labora en el Orquideario Soroa desde hace 10 afios, donde es Jefe de Colecciones y se dedica prin-
cipalmente a los studios fenol6gicos de las species de orquideas cubanas, ademas de incursionar en otras
Areas de investigaci6n. Ha participado e impartido conferencias y charlas sobre diversos temas en Argentina
y Chile, ademis de haber visitado tambien Paraguay, Brasil y Costa Rica en funciones de trabajo.
Actualmente esta realizando sus studios de doctorado sobre el estado de conservaci6n de species endemi-
cas de la peninsula de Guanahacabibes, de acuerdo a los resultados de los niveles de producci6n de frutos de
las mismas.








LANKESTERIANA7: 9-10. 2003.


THE ENDEMIC ORCHID GENERA OF THE ANTILLES


MARK A. NIR

Research Associate
Department of Systematics, The New York Botanical Garden
Bronx, NY 10458, U.S.A. klapi@aol.com


In the Antillean Archipelago there are more than
600 species of orchids in about 120 genera. Of them
about 90 species belong to 14 endemic genera. The
Antillean genera are purely a Greater Antilles phe-
nomenon. Only three species extend into Florida and
three into the Lesser Antilles (Tablel).

The epidendroid phylade (van den Bergh et al.
2000) shows the three alliances that concern us here,
the Neocogniauxia-Dilomilis clade, the Domingoa
clade and the Broughtonia clade. As predicted by
Dressler in 1981, the paper shows quite convincingly
both the relationship of the Neocogniauxia-Dilomilis
clade to the Pleurothallids and its relationship to the
progenitors of the Laeliinae. Except for Dilomilis
montana, the members of this group are rare and
highly endangered. The position of the monospecific
genus Tomzanonia Nir remains unresolved. Since at
present there are apparently no closely related species

Table 1. The Antillanean Orchid Genera. Number of
species in each genus (One species each: F Florida,
L.A. Lesser Antilles). Modified from Nir, Orchidaceae
Antillanae, 2000.


Antillanorchis
Basiphyllaea
Braasiella
Broughtonia
Dendrophylax
Dilomilis
Domingoa
Fuertesiella
Neocogniauxia
Psychilis
Quisqueya
Tetramicra
Tomzanonia
Tolumnia


L.A.

F, L.A.


on the mainland, these may be considered palaeo-
endemics.
In the Domingoa-Nageliella-Homalopetalum
clade, the van den Bergh & al. paper fully confirms
Dressler's (1964) transfer of the Mexican Ponera-
Scaphyglottis-Hartwegia kienastii to Domingoa,
which until then consisted of Domingoa nodosa and
Domingoa haematochila from Hispaniola and Mona,
thus reducing the number of purely Antillanean gen-
era.
The Broughtonia clade, consisting of the genera
Basiphyllaea, Tetramicra, Quisqueya, Psychilis and
Broughtonia, was also predicted by Dressler (1981).
At the time there was one Tetramicra with pseudob-
ulbs, while recently the epiphytic Tetramicra
malpighiarum was described (Hernandez & Diaz
2000). At least two new species of Tetramicra
remain to be published. Laeliopsis and Cattleyopsis
have already been previously included in
Broughtonia (e.g. Diaz 1996, Nir 2000).
Molecular data on Basiphyllaea have not yet been
published. Since the publication of Orchidaceae
Antillanae (Nir 2000), two additional species were
described (Diaz et al. 2001, Ackerman 2001) and two
more transferred from Bletia.

The publication of the paper by Carlsward et al.
(2002) fully justifies the reunification of the genera
Polyrrhiza and Polyradicion with Dendrophylax as
proposed by Nir (2000), while several species need to
be transferred from Campylocentrum to
Dendrophylax, most notably the monospecific genus
Harrisella. The paper also demonstrated the noncon-
specificity of the Caribbean Campylocentrum
jamaicense with the mainland Campylocentrum
micranthum. The New World Angraecinae now com-
prise two genera as proposed by Nir (2000), forming
a neotropical clade, sister to the Old World
Angraecinae.








LANKESTERIANA


The monophylesis of the entirely Caribbean
Tolumnia clade was shown by Williams et al. (2001).
A cladogram by Williams and Whitten (2001) fully
justifies the incorporation of the segregates
Hispaniella, Jamaicella, Olgasis (Nir 1994),
Gudrunia (Nir 2000), and Braasiella (Ackerman
2001) into Tolumnia Braem.



LITERATURE CITED
Ackerman, J.D. 2001. Notes on the Caribbean Orchid
Flora III. Lindleyana 16: 13-16.
Ackerman, J.D. 1997. The Orchid flora of the Caribbean.
Lindleyana 12: 149-152.
Carlsward, B.S. et al. 2002. Molecular phylogenetics of
Neotropical leafless Angraecinae (Orchidaceae):
Reevaluation of generic concepts. Int. J. Plant Sci. 164:
43-51.
Diaz Dumas, M.A. 1996. Revision de los generos anti-
llanos Broughtonia R. Brown, Cattleyopsis Lemaire y


Laeliopsis Lindley (Orchidaceae). Rev. Jardin Bot. Nac.
7:9-16.
Diaz Dumas, M.A et al. 2001. Taxonomic changes in
Cuban Orchids: Basiphyllaea. Harvard Pap. Bot. 5: 487-
488.
Dresser, R. L. 1964. Nomenclatural notes on the
Orchidaceae 2. Taxon 13: 245-247.
Dresser, R. L. 1981.The Orchids: Natural History and
Classification. Harvard University Press, Cambridge,
Mass.
Hernandez, J. A & M. A Diaz. 2000. A New Species of
Tetramicra (Orchidaceae). Harvard Pap. Bot. 5: 189-
192.
Nir, M. A. 1994. Taxonomic changes in Caribbean
Orchids. Lindleyana 9:147-151.
Nir, M. A. 2000. Orchidaceae Antillanae. Dag Media.
Van den Bergh, C. et al. 2000. A Phylogenetic analysis of
Laeliinae. Lindleyana 15: 96-114.
Williams, N. H et al. 2001. Molecular Systematics of the
Oncidiinae. Lindleyana 16:113-139.
Williams, N. H. & W. M. Whitten. 2001. Checking an
orchid hybrid background. Orchids 70: 1056-1061.


Mark A. Nir was born 1935 in Slovakia. He is a graduate of the Rupin Agricultural College, and studied biology
and medicine in Austria and Israel. Associate Professor Emeritus of Medicine (Dermatology), NY College of
Medicine; Research Associate, Department of Systematics, The New York Botanical Garden.








LANKESTERIANA7: 11-16. 2003.


COSTA RICAN ORCHIDACEAE TYPES (CROTYPES) DIGITAL
IMAGING DOCUMENTATION AT AMES, HARVARD UNIVERSITY


FRANCO PUPULIN' & GUSTAVO A. ROMERO-GONZALEZ2

Jardin Botinico Lankester, Universidad de Costa Rica
Research Associate, Marie Selby Botanical Gardens
P.O. Box 1031-7050 Cartago, Costa Rica, AC. fpupulin@cariari.ucr.ac.cr
2Orchid Herbarium of Akes Ames, Harvard University Herbaria, Harvard University, U.S.A.


Botanical collections in developed countries are not
always restricted to their native plants. Many herbaria
in those countries also host large collections from
tropical and subtropical floras as the result of floristic
projects carried out by leading European and North
American botanical institutions in the past three cen-
turies. Access to these research collections and data
resources has been historically a significant impedi-
ment for scientists working in tropical countries,
where, paradoxically, a better documentation system
is needed for the identification, comparison, and man-
agement of the much more diverse floras and faunas.
Recent conventions on sustainable use of biodiversity
(see http://www.biodiv.org) stress the importance of
research and training contributing to biodiversity con-
servation, as well as the value of the interchange of
relevant information aimed to maintain valuable plant
resources and to make them widely available
(Barthlott 2001). An effective electronic information
system has been acknowledged as an important tool to
provide dissemination of the information sources rep-
resented by biological collections kept in developed
countries, including botanical collections. Images of
herbarium specimens, in the form of photographs,
slides, xerox copies, etc., with a special emphasis on
nomenclatural types, have long been used as comple-
mentary materials for taxonomic studies, or as an
alternative to the loan of important material. Early
examples of extensive image collections are the pho-
tographs of European type specimens taken by J.
Francis Macbride in the 1930's, now partially avail-
able from the web site of the Field Museum in
Chicago (2003), the digitizing of Linnean types by the
Swedish Museum of Natural History, 2 11''' ., 1 and the
data capture of types of all vascular plants held in


Dutch herbaria, carried out by the Leiden National
Herbarium (2003). More recent type databases include
the large Swartz herbarium (within the Regnellian
herbarium at the Swedish Museum of Natural History)
(Swedish Museum of Natural History 2003b), a col-
lection comprising approximately 6000 specimens of
phanerogams and ferns, mainly from the West Indies,
loans from which are not allowed (Leiden Nationaal
Herbarium 2003); the collections of specimens of
Erythroxylum borrowed by the late Timothy Plowman
at the Field Museum; the University of Florida
Herbarium collections catalog and type specimens
web sites, including plant species of Florida, including
those potentially poisonous, and the UF Herbarium
type specimens (Florida Museum of Natural History
2003); the collection of types of Costa Rican Instituto
Nacional de Biodiversidad (2003); the Compositae
types digital imaging project to be completed by the
Munich public herbarium; and the Missouri Botanical
Garden (2003) project aimed to create a database of
plant images linked to associated database records as a
repository for scientifically identified plant images.
For a more complete survey of type database Internet
addresses, see Davies et al. (2002).
Orchidaceae form one of the largest families of
flowering plants, with an estimated 25,000 species
(Dressler 1993). They are found in a great variety of
habitats in all continents except Antarctica, but their
diversity is greater in the tropical regions of the world.
In the Neotropics, species of Orchidaceae constitute a
significant part of most ecosystems and often consti-
tute the most diverse component of the forest canopy.
Costa Rica possesses 1360 orchid species, of which
267 are regarded as endemics (Pupulin 2002). This
figure accounts for the highest diversity in








LANKESTERIANA


Mesoamerica and, in comparison with the reduced
size of the country, for one of the richest orchid floras
over the planet. The overall relevance of the family
from both ecological and economical perspectives,
makes any knowledge about the Orchidaceae of para-
mount importance for analysis of biodiversity, as well
as for environmental evaluation and research. In these,
and related fields, access to nomenclatural types is of
great importance. Nomenclatural types are the speci-
mens selected to serve as a reference point when a
plant species is first described and named; they are
permanently linked to the plant name and allow
species to be identified without ambiguities (ICBN
2000). These specimens are extremely important to
botanists when attempting to determine the correct
application of a name, and provide a common basis
for even the most advanced research techniques.
The origins of the Orchid Herbarium of Oakes
Ames can be traced back to the establishment of the
Ames Botanical Laboratory in 1899. Oakes Ames
conceived his herbarium primarily as a working tool,
and it became a depository of much and varied infor-
mation on orchid species in addition to the storage of
dried specimens. It Included original descriptions,
photographs, drawings, life-size copies of type-speci-
mens, published-plates and other references useful for
identification purposes. He also amassed a compre-
hensive library on the family. Ames donated his
Orchid Herbarium and Library to Harvard in 1938,
together with a sizable endowment. The Orchid
Herbarium of Oakes Ames is an integral part of the
Harvard University Herbaria and currently contains
about 131,000 specimens and it is accompanied by a
library of about 5,000 books, reprints, and journals. In
addition, a collection of 3,000 flowers in glycerine,
4,000 pickled specimens, and hundreds of line draw-
ings supplement dried specimens in the main collec-
tion. This herbarium is exceptionally rich in types,
resulting from an active exchange program maintained
throughout the years by the staff of the herbarium.
With nearly 800 sheets, the AMES herbarium is per-
haps the richest repository of Costa Rican
Orchidaceae types in the world. From a preliminary
survey, 23% are holotypes or holotype fragments,
11% are isotypes or isotype fragments, 52% are draw-
ings of types (many of them to be selected as lecto-


types), 6% are types according to the literature but
their category has not been established, and 3% are
possible types.
The main objective of The CROTYPES project is to
digitize all the Costa Rican orchid types at AMES. It
will be supported by two researchers, a
Database/Network administrator, and two research
assistants for a period of approximately one year.
Specific activities will include the photographic and
digital acquisition of images (including post produc-
tion manipulation) and the library-based research for
evaluation and collation of bibliographical documenta-
tion. Images will be acquired at AMES using an
Epson 1640XL scanner and a Hasselblad 503ELX
Camera equipped with 150mm f/4 Tessar Zeiss and
80mm f/2.8 Planar Zeiss lenses mounted on bellow,
recorded on both Kodak E-64 120 slide film and
Kodak 160 120 negative film. Photographic proce-
dures will follow, in general, those recommended by
Rochester Institute of Technology (2000) for archiving
of type specimens. Slides and/or negatives will be suc-
cessively scanned at Universidad de Costa Rica with a
film scanner Nikon Super Coolscan 8000 ED (optical
resolution of 4000 DPI [ppi], dynamic range 4.2),
specifically designed for acquisition of 135 and medi-
um format films. Computer support at AMES is cur-
rently a computer system based on a single Intel 2.4
Ghz Pentium 4 Xeon'T chip, with 120 gigabytes of
storage and 1024 megabytes of RAM. At the
Universidad de Costa Rica, computer support is cur-
rently a Macintosh (PowerMac G4) computer system
with 17 gigabytes of storage and 800 megabytes of
RAM.
On average, four images will be recorded per type
sheet: the entire sheets of specimens (Fig. 1, 2),
macro images of taxonomically important structures
(mostly the flower) (Fig. 3A), and the original
labels) (Fig. 3B, 4B). A measurement scale will be
included in the images as a reference. Entire sheet
specimens (11.5 x 17.5 in) will be scanned at 450 DPI
(ppi), and generated file sizes will be around 39
megabytes (Fig. 1, 2). One or more close-ups will be
scanned (ca. 4 x 4 in) up to 1200 DPI (ppi), with gen-
erated file sizes around 22 megabytes (Fig. 3A, 4A).
Slides and negatives will be taken on medium format
film (2 1/4 x 2 1/4 in) and successively scanned at








PUPULIN & ROMERO Crotypes


IEhmEhhhIhI


30490



piCopcja $mai


HERBARIUM OF OAKES AMES
FLORA OF COSTA RICA
ORCHIDACEAE





COLEED BY .L- NO.


Figure 1. Habenaria lankesteri Ames. Holotype. Reproduced with kind permission by the Director, Harvard University
Herbaria, Harvard University.


3000 DPI (ppi) or 4000 DPI (ppi), generating files of
about 39 Mb and 60 Mb respectively.
Digital images will be initially recorded as TIFF
files with color depth at 24/16 millions of colors.
Images will be matched with a 1.8 gamma monitor


and relative colorimetrics for rendering profiles.
Intermediate processing and post-production manipu-
lation of digital herbarium images (to improve sharp-
ening and to apply brightness/contrast filters) will be
achieved with Adobe Photoshop 7.0.


Mayo 2003






LANKESTERIANA


if'


/I
\.'
5


K:<1


J
~


a


/
I U


'I


uupr


HERBARIUM OF nO AMES
FLORA o0 COSTA RIcA
ORCHDacAE
" ^-------------


Figure 2. Habenaria lankesteri Ames. Drawing of holotype. Reproduced with kind permission by the Director,
Harvard University Herbaria, Harvard University.


The slide and negative collections will be preserved
employing accepted preservation practices. The digital
images will be preserved as part of the ongoing com-
mitment of both institutions to the maintenance and
accessibility of their many collections and databases.


The status of types not yet determined will be
checked in the pertinent literature and, when avail-
able, in modem revisions. Information not included
on the sheet labels (i.e., author, collector, locality)
will also be verified in the literature. Species names


Iftirn








PUPULIN & ROMERO Crotypes


\: \ I


HERBARIUM OF OAKES AMES
FLORA OF COSTA RICA
ORCHIDACEAE





COLLECTED BY C., f- NO.

Figure 3. Habenaria lankesteri Ames. Holotype. A.
Detail of flowers. B. Label. Reproduced with kind permis-
sion by the Director, Harvard University Herbaria,
Harvard University.

will be checked through the International Plant
Names Index (IPNI, product of a collaboration
between The Royal Botanic Gardens, Kew, The
Harvard University Herbaria, and the Australian
National Herbarium) and other literature sources.
Author abbreviations, name of collectors, and litera-
ture citation will follow currently accepted communi-
ty standards (Brummit & Powell 1992, Lawrence et
al. 1968, Stafleu & Cowan 1976-1988, Stafleu &
Mennega 1992-2000; see also http://www.huh.
harvard. edu/databases/index.html).
Ultimately, images will be made available on the
Internet via the Harvard University Herbaria speci-


HERBARIUM OF OAKES AMES
FLORA OF COSTA RICA
ORCHIDACEAE


COLLECTED BY H. ,-.-. wNO. t y

Figure 4. Habenaria lankesteri Ames. Drawing of holo-
type. A. Detail of drawing. B. Label. Reproduced with
kind permission by the Director, Harvard University
Herbaria, Harvard University.
men database system:http://brimsa.huh.harvard.edu/
cms-wb/specimen index.html
The following is sample of this database, using
Acer heptalobum Diels as an example: http://
brimsa.huh.harvard.edu/cms-wb/specimens.jsp?bar-
code=50431
Each type will have a unique URL (Uniform
Resource Locator) maintained by the Harvard
University Herbaria, and mirrored at the University of
Costa Rica; other web-based databases can simply
establish links to all or a partial set of the types. This
approach has several advantages, the main one being
that all changes made in the database need only be


/-/ ..P,- .


Mayo 2003








LANKESTERIANA


made once. Partial sets of the data set, including
images, will be made available using inexpensive
storage media (CDs) for free to institutions not hav-
ing the computer infrastructure to view the data and
images on the Internet.


LITERATURE CITED
Barthlott, W. 2001. Biodiversity and collections. BIOLOG
Status Seminar 2001. Bonn, Germany.
Brummit, R.K. and C.E. Powell (eds.). 1992. Authors of
Plant Names. Royal Botanic Gardens, Kew.
Davies, A.M.R., P. Bodensteiner, A. Pillukat and J. Grau.
2002. INFOCOMP the Compositae Types digital
imaging project in Munich. Sendtnera 8: 9-20.
Dresser, R.L. 1993. Phylogeny and classification of the
orchid family. Dioscorides Press.
Field Musueum of Natural History. 2003. http://www.
fmnh.org/research_collections/botany (February).
Florida Museum of Natural History, University of Florida.
2003. http://www.flmnh.ul.edu./natsci/ herbarium/types
(February).
Institute Nacional de Biodiversidad. 2003. http://www.
inbio.ac.cr/tipos/herbario (February).
International Code of Botanical Nomenclature (St. Louis


Code). 2000. Regnum Veg. 138. K6nigstein.
Lawrence, G.H.M., D.F.G. Bucheim, G.S. Daniels and H.
Dolezal (eds.). 1968. Botanico-Periodico-Huntianum.
Pittsburgh.
Leiden Nationaal Herbarium. 2003. http://nhncml.leideu-
niv.nl/#types I I.....- i.
Missouri Botanical Garden. 2003. http://www.mobot.org
(February).
Pupulin, F. 2002. CatAlogo revisado y actualizado de las
Orchidaceae de Costa Rica. Lankesteriana 4: 1-88.
Rochester Institute of Technology. 2000. Procedures and
recommendations for photographing and archiving
types specimens of the New York Botanical Garden.
Prepared by the Biomedical Photographic
Communications Department, School of Photographic
Art and Sciences.
Stafleu, F.A. and R.S. Cowan. 1976-1988. Taxonomic
Literature, 2nd ed. Vol. 1-7: A-Z. Utrecht.
Stafleu, F.A. and E.A. Mennega. 1992-2000. Taxonomic
Literature. Supplement 1-6: A-E. K6nigstein.
Swedish Musueum of Natural History. 2003a.
http://www.linnaeus.nrm.se/botany (February).
Swedish Museum of Natural History. 2003b.
http://www.nrm.se/fbo/hist/swartz/swartz.html.en.
(February).


Franco Pupulin is a professor of the Universidad de Costa Rica, where he works as a researcher at Jardin
Botanico Lankester. He is particularly interested in the systematics and evolution of advanced orchid groups,
mainly in the subtribes Oncidiinae and Zygopetalinae. He is also working to several floristic projects in the
Mesoamerican region, and is an approved AOS taxonomic authority.

Gustavo A. Romero-GonzAlez is Keeper of the Orchid Herbarium of Oakes Ames and Editor of Harvard Papers
in Botany, and he ,unI-Ir:i'. conducts monographic and floristic work on the Orchidaceae in northern South
America as well as research on the biological basis for the long-term management of Neotropical non-timber
forest products (including orchids, of course!).








LANKESTERIANA7: 17-20. 2003.


WHEN IS A SPECIES EXTINCT?
QUANTITATIVE INFERENCE OF THREAT AND EXTINCTION FROM
HERBARIUM DATA


DAVID L. ROBERTS' & GREG J. MCINERNY2

'Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K. (E-mail d.roberts@rbgkew.org.uk)
2School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, U.K.


We are now entering a time of immense environ-
mental upheaval were, increasingly, experts are
required to provide conservation assessments.
Quantitative assessment of trends in range and abun-
dance is costly, requiring extensive field studies over
a long period of time (Burgman et al. 2000).
Unfortunately, many species are only known through
a few 'chance' sightings or a handful of specimens
and extinction may be even harder to ascertain
(Solow & Roberts, in press).

Organizations such as CITES and the World
Conservation Union have considered a species to be
extinct when it has not been observed for 50 years
(Reed 1996). As a criterion, its usefulness was depen-
dent on the characteristics of the species in question.
For example, not observing a species of insect, with a
short generation time, would clearly not be compara-
ble with not seeing a turtle for 50 years, which spends
extended periods at sea. Revision of the categories
resulted in species being classified 'extinct' when
exhaustive surveys failed to produce any observations
over a time period appropriate to the species' life his-
tory and throughout its known historical range (IUCN
2001).

Quantitative inference of threat and extinction.
Using a record of sightings, Solow (1993a, 1993b)
demonstrated two methods to test the hypothesis of
extinction on the basis of the period without sighting
and the previous sighting record. The indices produce
probabilistic inference of extinction in the absence of
biological information (Solow & Helser 2000), as lit-
tle is known of so many species, and extinctions are
rarely observed directly (Solow & Helser 2000,
Solow & Roberts, in press). Similar methods have
been presented which also look at the behaviour of


the most recent sightings in the record (Solow &
Roberts, in press) and can reduce the effect of periods
where little collection effort has occurred (McCarthy
1998). Examination of these indices has been carried
out with sighting data recorded for species of varying
taxa (see Burgman 1995, McCarthy 1998, Burgman
et al. 2000, Roberts & Wilcock, in press). Evaluation
against recognized conservation classifications sug-
gested that the indices can infer threat and aid in the
prioritisation of species for conservation attention
(McCarthy 1998). Specimen-based records provide
information on the distribution of taxa through time
and space (Ponder et al. 2001), of which there is a
wealth held in the taxonomic collections and libraries
of herbaria and museums. Methods such as these
potentially have wide application as indicators of
threat.
Lists of threatened species often form the primary
source of information in the allocation of limited
resources (Burgman 2002). Here we present a number
of quantitative methods for rapidly assessing threat
and extinction based on herbarium data.

Solow Equation. Using the time of the last sighting
(tn) the Solow equation gives the probability that n
observations occurred within the period 0 < t < tn,
given that sightings are equally likely to occur within
the period T (Solow 1993a) (Fig. 1). Therefore higher
probability values (>a) infer that extinction has not
occurred as the lack of sightings at the end of the
record could happen by chance. Low probabilities
( ings are unlikely to have occurred in the time period 0
< t < t. given the magnitude of T and/or n.

p (1;)f








LANKESTERIANA


Solow Equation for a declining population. The
Solow equation (1993a) is suitable for small popula-
tions that are predisposed to rapid extinction, as the
sightings are assumed to follow a stationary Poisson
process (Solow 1993b). However, in a declining pop-
ulation sightings are less likely to occur towards the
end of the period because sightings will reduce as the
population declines. Assuming that the sightings fol-
low a Poisson process with decreasing rate function
Solow developed the following equation (Solow
1993b).

p = Fs(t )/Fs(T)

where
n
S = ti



and the function Fs (t) is given by

[s/t] n
F(- =-1 (1 /))-1



Solow / Roberts Equation.The Solow/Roberts non-
parametric test (Solow & Roberts, in press) does not
require a complete sighting record, as the number of
sightings (n) is not required for its calculation (Solow
& Roberts, in press). Using t., T and t.;- (the second
to last sighting) the equation generates the probability
that another sighting will occur (Fig. 2). However, the
equation for a declining population does not make
any assumption that the sightings follow a Poisson
process.


In -1




Collection effort. Collection effort is clearly not a
uniform process and therefore it is important to elimi-
nate inaccuracies arising from trends in collection
effort through herbarium practices and access to
sites (i.e. wars, CITES and government permits,
funding, remote location, etc). Instead of using time
as a measure of the period between sightings collec-


o
Fig. 1. The Solow equation evaluates the probability
that n observations occurred before the last sighting during
the period T.

T

1V 1 t,,




t 1
















O Fig. 3. The Partial Solow equation generates probabili-
ties based on the collection effort producing n sightings
gien the total effort within the en hole period.


tion effort can be used (Fig. 3). McCarthy (1998)
modified the Solow equation to incorporate an
index of collection effort for each year (ei) (Partial
Solow equation). Collection effort can be calculated
as the proportion of the total species observed in
each time unit (McCarthy, pers. comm. 2002),
assuming all species have an equal chance of being
observed at any time in the locality. If collection
effort does not vary over the period (0 to T), then
the equation reduces to the Solow equation
(McCarthy, 1998).








ROBERTS & MCINERNY When is a species extinct?


Partial Solow Equation.


e






This method can also be applied to the Solow /
Roberts equation.

Start Dates. In the case of say annual bird counts, it
is possible to select a start date for the period T, how-
ever in many cases this is rarely possible. By using
the first sighting as the start date the number of sight-
ings, n, reduces to n-1, limiting the number of species
with calculable probabilities.

Inferring decline. Increasing magnitude of p-val-
ues implies decreasing levels of threat (McCarthy
1998). If species were collected randomly and were
not in decline, then one would expect that the dis-
tribution would be uniform, for example species
that are presumed extinct would have the lowest p-
values (McCarthy 1998). If 50 species were exam-
ined, by chance we would expect 5 species to have
p-values below 0.1, 10 species below 0.2 and so
on.

Testing the tests. Error rates can be calculated as the
actual proportion of extant species inferred as extinct
(p< a) for all sighting records and indices (McCarthy
1998).
Power of the indices is calculated as the proportion
of species correctly identified as extinct (McCarthy
1998).
IUCN categories of threat, where available, can be
used as a source of information for the 'true' status of
a species by which the equations can be evaluated
using the Spearman's rank correlation (McCarthy
1998).

An illustrated example. The record of Aeranthes
arachnites (Thou.) Lindl. from Mauritius, Indian
Ocean, contains n = 5 collections during the 20th
century 1960, 1962, 1964, 1968 and 1973. If the
beginning of the observation period is taken to be
the time of the first collection in 1960, n is reduced


by 1, and T = 40 (i.e. from 1960 to 2000), the p-
value based on the assumption of a constant collect-
ing rate is 0.012. The smallness of this p-value is
due to the apparent decline in the collecting rate
over the observation period. If, instead, we assume
that the collecting rate declines exponentially, then
the p-value is 0.306, reflecting the expected increas-
ing difficulty in locating the species. While the col-
lection record gives some evidence of such a
decline, it is not possible to determine from so small
a record whether the exponential model is reason-
able. However, if we make no assumption of the rate
of decline then p = 0.15625. This would therefore
suggest that the species is still present on Mauritius.
Based on 16 months of field work in Mauritius, this
species still exists.


LITERATURE CITED
Burgman, M.A., R.C. Grimson and S. Ferson. 1995.
Inferring threat from scientific collections. Conserv.
Biol. 9: 923-928.
Burgman, M.A. 2002. Turner Review No. 5: Are listed
threatened plant species actually at risk? Austral. J. Bot.
50: 1-13.
Burgman, M.A., B.R. Maslin, D. Andrewartha, M.R.
Keatley, C. Boek and M. McCarthy. 2000. Inferring
threat from scientific collections: power tests and an
application to Western Australian Acacia species. In S.
Ferson and M.A. Burgman (eds.),Quantitative Methods
for Conservation Biology. Springer-Verlag New York,
Inc. p. 7-26.
IUCN 2001. IUCN Red List Categories: Version 3.1.
Prepared by the IUCN Species Survival Commission.
IUCN, Gland, Switzerland and Cambridge, UK.
McCarthy, M.A. 1998. Identifying declining and threat-
ened species with museum data. Biol. Conserv. 83: 9-17.
Ponder, W.F., G.A. Carter, P. Flemons and R.R. Chapman.
2001. Evaluation of museum collection data for use in
biodiversity assessment. Conserv. Biol. 15: 648-657.
Reed, J.M. 1996. Using statistical probability to increase
confidence of inferring species extinction. Conserv.
Biol. 10: 1283-1285.
Roberts, D.L. and C.C. Wilcock. in press. Fragmentation
of tropical rainforests and its effect on orchid survival.
Proceedings of the 17th World Orchid Conference.
Solow, A.R. 1993a. Inferring extinction from sighting
data. Ecology 74: 962-964.
Solow, A.R. 1993b. Inferring extinction in a declining
population. J. Mathem. Biol. 32: 79-82.


Mayo 2003








LANKESTERIANA


Solow, A.R. and T. Helser. 2000. Detecting extinction in
sighting data. In S. Ferson and M.A. Burgman (eds.),
Quantitative Methods for Conservation Biology.


Springer-Verlag New York, Inc. p. 1-6.
Solow, A. and D.L. Roberts. in press. A nonparametric test
for extinction based on a sighting record. Ecology.


David Roberts was educated at the Universities of Aberystwyth, Wales and Aberdeen, Scotland, where he
received his doctoral on the "Reproductive Biology and Conservation of the Orchids of Mauritius". He has had
field experience in Mauritius, La Reunion, Rodrigues, Borneo, and the Chatham Islands. Cin'cii,-. David is an
orchid taxonomist at the Royal Botanic Gardens, Kew, where he has a particular interest in the orchids of tropi-
cal Africa, islands of the western Indian Ocean and alternative uses of herbarium data particularly relating to
conservation biology.








LANKESTERIANA7: 21-24. 2003.


EL CENTRO DE DOCUMENTATION DEL
JARDIN BOTANICO LANKESTER


WALTER SCHUG

Jardin Botinico Lankester, Universidad de Costa Rica
Direcci6n de correo: Apdo. 922-1011 Y, San Jose, Costa Rica, A.C. walterschug@racsa.co.cr


Obtener informaciones en un pais neotropical como
Costa Rica puede resultar dificil. Es por esto que se
vio la necesidad de tener la mayor cantidad de infor-
maci6n en un solo lugar.
Asi, hace 18 meses se comenz6 a desarrollar este
proyecto para reunir todas esas informaciones en una
sola base de datos. La distribuci6n de la informaci6n
sera por medio de Internet; asi los interesados podrin
accesar la informaci6n ofrecida a cualquier hora del
dia, en cualquier lugar del mundo.
Desde un principio la construcci6n de la base de
datos fue planificada para various idiomas.
Actualmente la base esti disponible en ingles, alemin
y espafiol como lenguajes del manejo del sistema,
pero de igual manera se pueden integrar a ella otros
idiomas.
Se presentan various libros y revistas de consult que
no estin traducidos a los tres idiomas, sino solamente
en su version original. Todos los datos en la base
estin conectados entire si, para facilitar la respuesta de
preguntas, preparaci6n de informes o listados que
sean necesarios para un determinado uso.
La consistencia de esta base de datos esti dada por
la forma de almacenamiento de los datos, lo que es
muy important para su mantenimiento y la obten-
ci6n de resultados precisos.

Informaciones tkcnicas del proyecto. Desde un ini-
cio, se mantuvo la idea de usar programs libres
(Free/Open Software), ademis que fuera un sistema
cliente/servidor para mfiltiples usuarios y funcionan-
do por Internet. Por tanto, se eligieron products
para:

1. La base de datos (Database Backend),
2. La presentaci6n (Presentation layer),
3. El lenguaje de programaci6n (Programming
Language).


1. En este moment hay cuatro bases de datos libres
para el uso professional (en orden alfabetico):
Firebird, MySQL, PostgeSQL y SAP DB. Todos
estos programs estin desde hace afios en el mer-
cado (Firebird antes como product commercial ,
son estables y se usan en muchos proyectos en
todo el mundo. Por razones que aqui se explican
brevemente se decidi6 usar la base de datos
MySQL. Es ripida, tiene puertos (Ports) para
muchos sistemas operatives (Operating Systems),
y un gran nuimero de API's (Application
Programming Interfaces).

2. La presentaci6n debe ser por medio de un Browser
(e.g. Internet Explorere), que tiene muchas venta-
jas: no hay que instalar programs adicionales en
la computadora client (Client PC), el uso del
Centro de Documentaci6n es accessible via Internet
y no hay que aprender a usar nuevos programs.
Para obtener las ventajas de una presentaci6n por
este medio se necesita, ademis de los tres produc-
tos de la lista de arriba, un Servidor de Internet.
Para este fin se eligi6 el Apache Web Server, tam-
bien Free/Open Software.

3. Despues de decidir sobre los puntos uno y dos, se
eligi6 el lenguaje PHP, que tiene acceso nativo a la
base de datos y esti muy bien integrado en el
Servidor Apache.

La combinaci6n de los programs para el Servidor
elegido permit usar una gran variedad de Sistemas
Operativos como Windows NT, 2000, XP, Linux
(todas las distribuciones grandes), Unix (IBM. HP,
Sun, Silicon Graphics), BSD's (Free-, Open-, y Net).
El client puede ser cualquier computadora que tiene
un browser que soporta HTML 4.01(XHTML 1.1) y
CSS 2.0.
Hasta marzo 2003, se conocen y trabajan las si-










22 LANKESTERIANA N 7



Datel Bearbelten Anslcht Favorlten Extras 7
I Zuruck - [2 I 1 CS5uchen lFavoiten 4verlauf 61 1 h
Adresse http:l/localhostIProdlmenu_species.phpidioma=en J 7 Wechselnzu Links








Mesoamerican Documentationcenter for Epyphitic Plants






Genus

AB CDEFGHIJKLMNOPr RS TUVWXYZ







2002, Walter Schug M walterschug(i racsa co cr



Ig| F[ In Lokales Intranet
iastart|| |gf $.nVl.$Bot*nical Garden Lank... *E 4&tp 20:37





AdrBoS Bl http:1localhostJProdJmenu_ species_lphpidioma=en8Jetter=L J Wch ,lnu LJnks
------------- ----------.I-


M L otinfro m ?a i ener




Species of the Family Orchidaceae





Lacaena Laeha Laehopsis Lankesterella LemboeJossum
Leochilus Lepanthes Lepanthopss Leptorcis Leptothu
Leucohyle Lieophula Limodorum Lians Lockharha
Lophians Lycaste






2002, Walter Schug walterschug(aacsa co cr



2 __ Lokale frae-_I
amt|Hi[a ] a 0 ras 4 # I nIrfani..w I|jBanr -dea-nLk. 28 :


Figura 1. Pantallas para la selecci6n de g6neros en el program.









SCHUG Documentaci6n en el Jardin Botinico Lankester


Datel Bearbeltan Anslcht Favorltan Extras '
4 =Zuruck -4 0 uchen I iFavoriten 3Verlauf I F 6 n
Adresse IJ http://localhost/Prod/literature/species/Lepantheslarachnion/taxa_nov_en.htm e &Wechselau ULn *"

Lepanthes arachnion Luer & Dressier, sp. nov.
7 Carlyle A Luer Orquideologia, Revista de la Sociedad Colombiana de Orquideologia, Vol 16, No 3, p
S 6-9, 20-22, 1986


Etymology: From the Greek arachnion "a little spider", in allusion to the appearance of the flower
Species haec L calodictyon Hook affairs, sed folus obovatis mtegris nonrethculatis, lobis petalorum longifilamentosis, labello cordato lobis basalbus acutis columnan
amplectentibus differ
Subgenus
Plant small to medium in size, epiphytic, caespitose, roots slender Ramicauls very slender, suberect, 2-4 cm long, enclosed by 4-6 tightly fitting, microscopically scabrous-
cilihate, lepanthform sheaths Leaf spreading, pendent, conaceous, satiny bronze-green, suffused with purple beneath, obovate, obtuse to rounded, entire, 15-26 mm long,
15-28 mm wide, the base shallowly cordate, subsessile Inflorescence a congested, successively flowered raceme up to 6 mm long, borne on top of the leaf by a filiform
peduncle 5-7 mm long, floral bracts munculate, I mm long, pedicels I mm long, ovary 2 5 mm long, sepals translucent gray-pink, glabrous, reflexed, the dorsal sepal
obovate, 3 5 mm long, 2 mm wide, the apex obtusely acuminate, the base free, the lateral sepals similar, 3 75 mm long, 1 5 mm wide, connate 0 5 mm, petals red, ciliate,
the blade oblong, obbque, 2 mm long, 1 mm wide, the apez unevenly broadly bilobed, the lower lobe longer, the base with filiform appendages, the upper 2 5 mm long,
erect, the lower 3 5 mm long, descending, lip red-purple, cordate, 2 mm long, 1 75 mm wide, the apex broadly bilobed, shortly ciliate, the basal lobes narrowly acute,
embracing the column, the base connate to the column above the base, column slender, 2 mm long, the anther dorsal, the stigma subapical
PANAMA.
Bocas del Toer: epiphytc m wet forest between Fortuna and Chmqu. GOiade, alt 350 m, 17 feb 1985, C Luer, J Luer, R L Dressl & K Dresser 10615 (Holotype MO)
Bocas del Ter: alt 100 n, 17 feb 1985, C Ler, J Luer, L Dressier & Dessler 10602 (MO)
This species is closely allied to the reticulate-leaved South Ame- rican L calodictyon and the preceding L pantomrma It grow intermixed with the latter on the same
branches of the same tree However, the two are easily distinguished even if out of flower The leaves of L aac.hnson are widest above the middle, obtuse or rounded at the
apes, and shallowly cordate at the base The flowers are smaller and differently colored, and the petals and hp are ciliate, the basal lobes of the lip acute (Photographs by
Kerry Dressier)


4 FertIg
Fig arta J 2 6$ Sipl dn ua e4 c antesarahLepnthe &rachnion-...

Figura 2. Pantalla principal de una especie, Lepanthes arachnion Luer & Dressier.


guientes versions: MySQL 4.0.12, Apache 2.0.44,
PHP 4.3.0 bajo Windows 2000 Professional Service
Pack 3.


Partes importantes de la base de datos.
a. LITERATURA en various niveles: series, unidad,
articulo, parte de articulos. Como ejemplo: para
nivel uno sera la revista Lankesteriana en general,
para nivel dos Lankesteriana No. 7, para nivel tres
el articulo especifico de Lankesteriana No.7, para
nivel cuatro la descripci6n de una especie en el
articulo. Todas las parties deberian encontrarse
como Archivos PDF en la base, para leerlos online
o con la opci6n de bajar el archivo a la miquina
local para tener la informaci6n a mano. Hay una
pAgina inicial para el nivel dos que es el
libro/revista, con un resume del libro/revista, el
nfimero de piginas, los autores, la fecha de la pu-
blicaci6n, la tabla de contenidos y la posibilidad de
leer/bajar el libro complete o en parties (articulos,
nuevas descripciones de plantss. Se puede buscar
informaci6n de literature por autores, nombres de


I I J Lokales Intranet
|E3 JRA 20:37


libros/revistas, especies/generos publicados en el
libro o revista o cualquier otro dato guardado en la
base.

b. AUTORES todas las informaciones sobre autores,
como sus nombres, apellidos, abreviatura del nom-
bre (segfin IPNI), su fecha de nacimiento, fecha de
muerte, etc.

c. CUADERNOS DE CAMPO Hay posibilidad de manejar
muchos datos, incluyendo la informaci6n sobre
material en herbarios (tipos, fotos, dibujos, nombre
del herbario, nuimero del esp&cimen, etc.) Las infor-
maciones son accesibles horizontal y verticalmente.
Ejemplo: Buscar todos los nuimeros de Franco
Pupulin relacionados con plants del genero
Lepanthes (= vertical). La version horizontal sera:
mostrar todos los nuimeros de los cuadernos de
campo de todas las personas relacionadas con plants
del g6nero Lepanthes. Seri possible tambien mostrar
algo como todas las colectas de Franco Pupulin entire
1500 y 1650 m entire 1.1.1995 y 31.12.1997. Esto
demuestra la flexibilidad del sistema.


Mayo 2003









LANKESTERIANA


j mcpth .................................... ... L- & -I "Fq


i &
Sa&-_
Li L----


.eropaniumj v~I), 10o 9 It 1/ J_7 id the preceding L pantomrma It grow intermixed with the latter on the same
The leaves of L arachmon are widest above the middle, obtuse or rounded at the
ease ine towers are smaller ana atrrerenny colored, and the petals and lp are ciliate, the basallobes of the lip acute (Photographs by


FFlI Lokales Intranet
FiSgara M3 tI am a d C & d io d fnVl | EaLpanthsaarachnon MI... Iepanthes arachnion L... *Qo L20:38

Figura 3. Ventana amplificada del tipo de Lepanthes arachnion Luer & Dressier.


d. MANEJO DE SINONIMOS.
e. TrPos pigina especial para los tipos nomenclatori-
ales, con la publicaci6n de la descripci6n original (pro-
tologo), fotos del tipo, fotos de la limina del herbario,
nombre de los herbarios con material, referencia a los
cuadernos de campo con datos de la recolecta,
nuevas combinaciones relatives al taxon, etc.

f. CAMBIOS TAXONOMICOS lista de los cambios
taxon6micos de una especie historica).

g. ACCESO A OTRAS BASES DE DATOS datos de otras
bases de datos (IPNI, Index Herbarium, etc.).
h. GEOGRAFiA informaciones geogrAficas, paises,
provincias, cantones, distritos con datos de alturas,
zonas de vida, etc. Asi, en el futuro existe la opci6n
de insertar los datos de la base automiticamente en
mapas.

h. TAXA es el element central de la base. Todos los


elements mencionados arriba y muchos mas estan
conectados con los taxa. Los taxa se guardian segfin
la nomenclatura botinica, desde la familiar hasta la
subforma implementada. Cada nombre puede ser
i.o .iip.i.i.d. por su etimologia y un texto breve para
comentarios. Luego se encuentra el estado de los
taxa, la lista de sin6nimo(s), su basi6nimo, nom.
illeg. etc., con la referencia bibliogrifica relative a la
publicaci6n de nuevas combinaciones. Todos los
taxa estin relacionados con la literature original, el
tipo de publicaci6n, su descripci6n, el sistema de
clasificaci6n, etc. La figure 1 muestra c6mo selec-
cionar g6neros en el program, la figure 2 muestra
la pantalla principal de una especie, en este caso
Lepanthes arachnion Luer & Dressler. En la figure
3 se ve la ventana del tipo de Lepanthes arachnion
amplificada. Cada foto en las paginas se puede
ampliar con un simple 'clic' en la fotografia.


Walter Schug naci6 en Alemania en 1966. Es Bachiller en Ciencias, graduado en la Universidad de Ciencias
Aplicadas de Karlsruhe, donde estudi6 computaci6n y economic. Desde el 2000 vive en Costa Rica.


Jj ewechseln zu Links"



deologia, Vol 16, No 3, p


Lower
bis petalorum longifilamentosis, labello cordato lobis basahbus acutis columnan



suberect, 2-4 cm long, enclosed by 4-6 tightly fitting, microscopically scabrous-
iffused with purple beneath, obovate, obtuse to rounded, entire, 15-26 mm long,
essively flowered racemne up to 6 mm long, borne on top of the leaf by a fihform
2 5 omm long, sepals translucent gray-pink, glabrous, reflexed, the dorsal sepal
I sepals similar, 3 75 mm long, 1 5 mm wide, connate 0 5 mm, petals red, ciliate,
e lower lobe longer, the base with filiform appendages, the upper 2 5 mm long,
n wide, the apex broadly bilbed, shortly ciliate, the basal lobes narrowly acute,
nm long, the anther dorsal, the stigma subapical


1935, C Lur, J Luer, R L Dreser & K Dressler 10615 (Holotype MO)
0)


I nolotype, n


apes, ana siarowly
Kerry Dressier)


"rn M Tp Tn








LANKESTERIANA 7:25-26. 2003.


EL GENERO EPIDENDRUMEN SAN PEDRO DE CARPISH,
HUANUCO, PERU


DELSY M. TRUJILLO CHAVEZ

Investigadora Asociada del Museo de Historia Natural Universidad Ricardo Palma (URP)
Jir6n Ricardo Flores # 355 -A. La Victoria, Lima. Peri. thcii.,,, ihn. i ,n iii ,.-.li ,T, i ,tn., ,ii i.,.1


Entre las principles publicaciones realizadas sobre
la familiar Orchidaceae en el Pern, sobresalen aqullas
publicadas por los investigadores Charles
Schweinfurth y David Bennett Jr. y coautores
(Bennett & Christenson 1993, 1995, 1998, 2001,
Dodson & Bennett 1989, Schweinfurth 1959, 1970).
Seguin estos studios, en el departamento de Huinuco
se han registrado 83 species del g6nero Epidendrum,
de las cuales el 24% (20 species) provinieron de
colectas realizadas en la zona conocida como
Carpish, incluyendo aqullas que tomaron como
punto de referencia esta zona.
La zona conocida como Carpish, politicamente se
encuentra ubicada en la provincia y departamento de
Huinuco y comprende las localidades denominadas
Carpish de Mayobamba y San Pedro de Carpish. Esta
uiltima se localiza entire los kil6metros 452 y 464 de la
carretera Huinuco-Tingo Maria y seguin la clasifi-
caci6n de zonas de vida de Holdridge, present las
caracteristicas correspondientes al bosque pluvial-
Montano Bajo Tropical (bp-MBT), ubicindose altitu-
dinalmente entire 2100 y 3014 m.s.n.m.
El present trabajo pretend verificar la presencia de
las species de la familiar Orchidaceae, entire ellas las
del g6nero Epidendrum, previamente colectadas y
descritas en la localidad de San Pedro de Carpish,
debido a que en los uiltimos cinco afios esta localidad
viene siendo afectada por la deforestaci6n product de
la intensificaci6n y expansion de las actividades agri-
colas y la extracci6n de plants para el comercio ile-
gal, el cual se ha incrementado significativamente.
Asimismo, permitir6 realizar una colecta de manera
mis exhaustive, que genere mayor informaci6n de las
species presents en esta zona. Segin lo observado
en los trabajos anteriormente citados, por lo general
las muestras han sido colectadas en las mirgenes de la


carretera y se han efectuado en forma muy esporidica,
debiendose principalmente a la topografia accidentada
que es caracteristica de esta zona y a la presencia, casi
perenne, de densas neblinas, por lo cual es considera-
do segfin el Mapa Forestal del Peri, como un Bosque
de Neblina.
El present studio busca cubrir la totalidad del
area de la localidad, por lo que desde el mes de agos-
to del 2002 se vienen realizando actividades que con-
templan salidas de campo mensuales para efectuar las
colectas en tres zonas principles reconocidas por los
pobladores como: la "Cumbre de Carpish", la "Ruta
Paty" Zonaa de mayor deforestaci6n) y el limited con
"Mirador".
Product de estos trabajos, hasta la fecha se han
identificado en la localidad de San Pedro de Carpish
siete species correspondientes al 35% del total de
species anteriormente descritas por C. Schweinfurth
y D. Bennett, las cuales correspondent a: Epidendrum
macrostachyum Lindl., Epidendrum mesomicron
Lindl., Epidendrum miradoranum Dodson &
Bennett., Epidendrum nocturnum Jacq., Epidendrum
excisum Lindl., Epidendrum funkii Rchb.f. y
Epidendrum weberbauerianum Kraenzl.; y tres
species descritas previamente, seguin los mismos
autores, en otros departamentos del Peri, pero no en
Huinuco, siendo &stas: Epidendrum odontospathum
Rchb.f., Epidendrum platoon Schltr. y Epidendrum
pleurobotrys Schltr., faltando auin por identificar
algunas muestras.


LITERATURE CITADA
Bennett, D.E., Jr. & E.A. Christenson. 1993. Icones
Orchidacearum Peruvianum. Part 1. pl. 040-055.
Bennett, D.E., Jr. & E.A. Christenson. 1995. Icones
Orchidacearum Peruvianum. Part. 2. pl. 238-254.








LANKESTERIANA


Bennett, D.E., Jr. and E.A. Christenson. 1998. Icones
Orchidacearum Peruvianum. Part 3. pl. 444-474.
Bennett, D.E., Jr. and E.A. Christenson. 2001. Icones
Orchidacearum Peruvianum. Part 4. pl. 633-658.
Dodson, C.H. & D.E. Bennett, Jr. 1989. Orchids of Peru.


Icones Plantarum Tropicarum. Serie II, Fasc. 1: pl. 56-72.
Schweinfurth, C. 1959. Orchids of Peru. Fieldiana, Bot.
30 (2): 390-531.
Schweinfurth, C. 1970. First Supplement to the Orchids of
Peru. Fieldiana, Bot. 33: 33-46.


Delsy Mariela Trujillo Chivez es Licenciada en Biologia, graduada de la Universidad Ricardo Palma, y
posee una Maestria en Microbiologia de la Universidad Nacional Mayor de San Marcos (UNMSM). Es
Investigadora asociada del Museo de Historia Natural y colaboradora del Instituto de Etnobiologia de la
Universidad Ricardo Palma. Actualmente se encuentra realizando el Inventario de Orquideas de la Localidad
de San Pedro de Carpish en el Departamento de Huinuco.


















I'1 CONGRESS INTERNATIONAL DE ORQUIDEOLOGiA NEOTROPICAL
1 INTERNATIONAL CONFERENCE ON NEOTROPICAL ORCHIDOLOGY


Sesi6n / Session

AVANCES EN FILOGENIA DE ORQUIDEAS

ADVANCES IN ORCHID PHYLOGENY








LANKESTERIANA7: 29-32. 2003.


SISTEMATICA, FILOGENIA Y BIOGEOGRAFIA DE MYRMECOPHILA
(ORCHIDACEAE)


GERMAN CARNEVALI', JOSt LuIS TAPIA', NORRIS H. WILLIAMS2 & W. MARK WRITTEN2

Herbario CICY, Centro de Investigaci6n Cientifica de Yucatan, Mexico
2 Florida Museum of Natural History. Gainesville FL 32611-7800. U.S.A.


El g6nero Myrmecophila Rolfe ha sido tradicional-
mente incluido dentro de un concept amplio de
Schomburgkia Lindl. Sin embargo, recientes recons-
trucciones filogen&ticas basadas en secuencias de
ADN indican que el grupo es basal dentro del com-
plejo de taxa alrededor de Cattleya Lindl. s.l. y s6lo
lejanamente relacionado con las verdaderas
Schomburgkia (las que estin relacionadas con Laelia
Lindl., un g6nero restringido a elevaciones por enci-
ma de 1000 m en Mexico central). Las "semejanzas"
entire Schomburgkia s.s. y Myrmecophila (e.g., los
miembros del perianto ondulados, las inflorescencias
con largos pedunculos y los ocho polinios) son el
resultado de convergencia o de retenci6n de carac-
teres plesiom6rficos. La distinci6n entire ambos gru-
pos ha sido reconocida desde hace much tiempo,
pero a nivel seccional (e.g., Schlechter 1913, Foldats
1979). En 1917, Rolfe por primera vez sugiere tratar
el grupo como un g6nero aparte pero su propuesta no
fue seguida por los autores posteriores (e.g., Williams
1946, Ames & Correll 1953). Mis recientemente,
Kennedy (1979) hizo una propuesta convincente para
la resurrecci6n del g6nero, que ha sido aceptada por
la mayoria de los orquide61logos que trabajan en el
area de distribuci6n del grupo (e.g. Dresser 1993,
McLeish et al. 1995, Espejo-Sema & L6pez-Ferrari
1997, Carnevali, Tapia-Mufioz & Ramirez 2001,
Camevali et al. 2001).
Un analisis cladistico de todas las Laeliinae usando
secuencias de ADN (van den Berg et al. 2000), iden-
tifica claramente a Myrmecophila como el grupo her-
mano del clado que incluye a los g6neros del
antiguamente llamado complejo Cattleya. En otras
palabras, se trata de un grupo basal que hizo diver-
gencia temprana de los ancestros que originaron a los
g6neros Brassavola R.Br., Rhyncholaelia Schltr.,
Cattleya, Sophronitis Lindl. y los miembros


brasilefios del g6nero Laelia tal como se los ha cir-
cunscrito hasta hace poco. Por ello, no esti rela-
cionado con las verdaderas Laelias, tipificadas por
Laelia grandiflora (Llave & Lex. ) Lindl. [= Laelia
speciosa (H.B.K.) Schltr.)] ni con Schomburgkia
(tipificadas por Schomburgkia crispa Lindl.), grupos
que no pertenecen a este clado de taxa alrededor de
Cattleya.
Myrmecophila es ficilmente reconocible entire otras
Laeliinae por sus plants relativamente grandes con
pseudobulbos homoblisticos (de various entrenudos no
diferenciados), huecos, portando (1-)2-3(-4) hojas en
los entrenudos apicales y con inflorescencias larga-
mente pedunculadas con flores vistosas que tipica-
mente poseen s6palos y p6talos ondulados. Las plan-
tas, usualmente epifitas (raramente lit6fitas o subter-
restres), viven siempre asociadas con hormigas que
forman colonies que habitan el interior de los
pseudobulbos huecos. Se sabe que estas hormigas
protegen tanto a la orquidea como a los forofitos de la
herbivoria (Dejean et al. 1995).
Un studio sistemitico del g6nero permit recono-
cer ocho species y un hibrido natural. Las species y
sus distribuciones se presentan en la Tabla 1. Las
species se distribuyen naturalmente desde la costa
caribe de Venezuela, donde crece una especie
endemica, M. humboldtii, hasta el sureste de Mexico
donde se encuentra un centro de diversidad. Hay
species disyuntas en los estados mexicanos del
Pacifico (NI~ i.,c.j Colima, Jalisco y Nayarit)
donde crece Myrmecophila galeottiana y las ver-
tientes pacificas en Nicaragua, Honduras y El
Salvador, donde crece la muy distintiva especie
Myrmecophila *i.... n Hay una especie disyunta
en las Islas Caiman, M. thompsoniana. Por filtimo,
hemos reconocido un hibrido natural entire
Myrmecophila christinae y M. brysiana, M. x lagu-








LANKESTERIANA


Tabla 1. Especies de Myrmecophila reconocidas en este studio y sus distribuciones. Abreviaciones. B Belice; CR -
Costa Rica; ES El Salvador; G Guatemala; H Honduras; N Nicaragua; M Mexico; g Costa del Golfo de
Mexico, p costa del Pacifico.

SPECIES DISTRIBUTION


M. brysiana (Lem.) G.C. Kenn.
M. christinae Carnevali & G6mez-Juirez
M. galeottiana (A. Rich.) Rolfe
M.. -..-. ..... Carnevali, Tapia-Mufioz & I. Ramirez
M. humboldtii (Rchb. f.) Rolfe
M. thompsoniana (Rchb. f.) Rolfe
M. tibicinis (Batem.) Rolfe
M. wendlandii (Rchb. f.) G.C. Kenn.
M. x lagunae-guerrerae Camevali, Ibarra.Gonzalez & Tapia-Mufioz

nae-guerrerae. Las species del g6nero son ficil- Se realize;
mente reconocibles por combinaciones de caracteres morfol6gic(
florales y vegetativos y tienen distribuciones geogr6- anilisis con
ficas y ecol6gicas coherentes. Los patrons de co- los program
loraci6n floral resultaron critics en la delimitaci6n caci6n de hl
especifica, asi como la morfologia labelar y la estruc- el algoritm
tura de la inflorescencia. Auin quedan problems por racteres mu
ser esclarecidos en relaci6n a cuantos taxa se encuen- el apoyo ee
tran dentro de la circunscripci6n actual de M. realize un
brysiana y si se deben reconocer taxa subespecificos todos los an
en las Myrmecophilas de las Islas Caiman (Dressler monofiletic
& Camevali 2000). senso de to
Una vez respondida la pregunta de cuintas species nado) resul
constituyen el g6nero y cuales son sus limits, nos del recono
planteamos preguntas sobre las relaciones entire las informative
species. Por otra parte, la evoluci6n de caracteres do identific
morfol6gicos selectos result de interns (numero de CI = 71, RI
entrenudos de los pseudobulbos, ramificaci6n de la moleculares
inflorescencias, textura floral, asi como las distribu- sinapom6rfi
ciones de los diversos grupos). El uinico
Para ello, seleccionamos dos taxa como grupos Myrmecoph
externos, Encyclia cordigera (H.B.K.) Dressler y del g6nero.
Schomburgkia splendid Schltr. y como grupo inter- clados, uno
no incluimos todos los taxa descritos del g6nero (con tiana y M. -
la excepci6n del hibrido natural). Los arboles y el otro qu
obtenidos fueron enraizados con E. cordigera como el "Clado A
grupo mis extemo. especie de
Un total de 46 caracteres morfol6gicos, ocho carac- resto. Dentr
teres de anatomia foliar y secuencias de ADN (ITS 1 M. grandij
y 2) fueron usados en la reconstrucci6n de las rela- sinapomorf
ciones filogeneticas. can los pseu


CR, H, N, G, B, M (g)
G, B, M (g)
M (p)
M (g)
Venezuela
Islas Caiman
CR, H, N, G, B, M (g)
N, H, G, ES
M (g)


aron analisis separados de los caracteres
)s y de las secuencias de ADN. Luego, un
nbinado fue llavado a cabo con el uso de
mas Winclada y Nona. Para la identifi-
is topologias mis parsimoniosas se utiliz6
o del Ratchet con 200 iteraciones y 5 ca-
estreados en cada iteraci6n. Para evaluar
stadistico de los clados reconocidos, se
nalisis de Jacknife con 1000 replicas. En
ilisis, Myrmecophila result ser un grupo
o. Las topologias de los arboles de con-
dos los anilisis (morfologia, ITS y combi-
taron consistentemente similares. Luego
cimiento y descarte de los caracteres no
s filogen6ticamente, el anilisis combina-
6 un solo arbol mas parsimonioso (L= 97,
1 = 73; Figura 1). Veinticuatro caracteres
resultaron ser informativos, 10 de ellos
cos para el g6nero Myrmecophila.
arbol obtenido (Figura 1) identifica a
ila humboldtii como el miembro mis basal
Esta especie es el grupo hermano de dos
compuesto de dos species (M. galeot-
S, .... ,,, i,, aqui llamado "Clado Pacifico"
e incluye al resto del g6nero, aqui llamado
tlaintico". Dentro del Clado Atlintico, la
las Islas Caiman es el tax6n hermano del
o de este Clado Atlintico, M. christinae y
lora son species hermanas. Entre las
ias morfol6gicas de Myrmecophila desta-
dobulbos homoblisticos, huecos.








CARNEVALI et al. Sistematica, filogenia y biogeografia de Myrmecophyla


E.cordigera 24


- S. splendid H280


M. humboldtii N486


I M. galeottiana N483


M. wendlandii N490


M. thompsoniana GCay N497
--M. 503
-M. brysiana n503


M. tibicinis Palenque N487


M. grandiflora N481


M. christinae paliz 485

Figura 1. Unico arbol mas parsimonioso hallado en el analisis combinado (morfologia, anatomia e ITS 1 & 2).
Numeros arriba de las ramas representan valores de Jacknife y los niumeros por debajo indican los valores de apoyo en el
analisis de Bremer. Nudos con flechas indican clados que colapsan en el arbol de Jacknife.


El Clado Pacifico tiene como sinapomorfias que lo
apoyan la floraci6n despues de la estaci6n lluviosa y
la column no ensanchada hacia el Apice. El Clado
Atlintico esta apoyado por las siguientes sinapomor-
fias: perianto glabro, nectario globular y pseudobul-
bos maduros de 5-7 entrenudos. Por otro lado, el
clado formado por M. christinae (distribuida en
Belice, Peten de Guatemala y Peninsula de YucatAn)
y M. grandiflora (Mexico vertiente del Golfo en
Oaxaca, Veracruz, Tamaulipas y Queretaro), un par
de species vicariantes, esta apoyado por las inflores-
cencias usualmente simples, el labelo muy abierto en
posici6n natural, las anteras much mas anchas que
largas y la posesi6n de un reborde conspicuo en el
Apice de las anteras.
La topologia del cladograma obtenido sugiere que
el g6nero pudo haber tenido una distribuci6n mas
amplia que se extendia desde el norte de Sur


Am&rica, toda Centro Am&rica (ambas costas) y las
Antillas y que hoy en dia esta representado por
species relictas en la region Pacifica, en las Antillas
y en Venezuela. El g6nero parece estar sufriendo una
evoluci6n active en la Costa del Golfo de M&xico y
en el Caribe, donde crecen las cuatro species mas
derivadas (el llamado complejo de Myrmecophila
tibicinis), todas cercanamente relacionadas y con dis-
tribuciones vicariantes o especializaciones ecol6gicas
cuando coexisten parapitricamente.


LITERATURE CITADA
Ames, 0. & D.S. Correll. 1953. Laelia. In Orchids of
Guatemala and Belize. Dover Publications, New York.
p. 414-415.
Camevali, G., J.L. Tapia-Mufioz, R. Jimenez-Machorro, L.
Sanchez-Saldafia, L. Ibarra-Gonz6lez, I. M. Ramirez &
M P. G6mez-Ju6rez. 2001. Notes on the flora of the


Mayo 2003








LANKESTERIANA


Yucatan Peninsula II: A synopsis of the orchid flora of
the Mexican Yucatan Peninsula and a tentative checklist
of the Orchidaceae of the Yucatan Peninsula Biotic
Province. Harvard Pap. Bot. 5: 383-466.
Carnevali, G., J.L. Tapia-Mufioz, & I. M. Ramirez, 2001.
The status of Schomburgkia tibicinis var. ....... I .....
Lindl. (Orchidaceae) and a key to the Mexican species
of Myrmecophila. Harvard Pap. Bot. 6: 245-251
Dejean, A., I. Olmsted & R. R. Snelling. 1995. Tree-epi-
phyte-ant relationships in the low inundated forests of
Sian Ka'an Biosphere Reserve, Quintana Roo, Mexico.
Biotropica 27(1): 57-70
Dresser, R.L. 1993. Field Guide to the Orchids of Costa Rica
and Panama. Cornell University Press, Ithaca & Londres.
Dresser, R.L. & G. Carnevali. 2000. Myrmecophila
thompsoniana, the Wild Banana Orchid of the Cayman
Islands. Orchid Digest 64(1): 25-30.
Espejo-Serna, A. & A.R. L6pez-Ferrari. 1997.
Orchidaceae II. Part 8 of Las Monocotiled6neas
Mexicanas: Una Sinopsis Floristica. Consejo Nacional


de la Flora de Mexico, Mexico, D. F.
Foldats, E. 1970. Schomburgkia Lindley. In Flora de
Venezuela 15(3), Orchidaceae. Institute Botanico,
Caracas, Venezuela. pp. 455-468.
Kennedy, G.C. 1979. The genera Schomburgkia and
Myrmecophila. Orch. Dig. 43(6): 205-211.
McLeish, I., N.R. Pearce & B. R. Adams. 1995. Native
Orchids of Belize. Balkema, Rotterdam, Netherlands.
Rolfe, R.A. 1917. Schomburgkia superbiens Lindl. Orch.
Rev. 25: 49. 1917.
Schlechter, R. 1913. Die Gattung Schomburgkia Lindl.
Orchis 7: 38-43.
van den Berg, C., W.E. Higgins, R.L. Dresser, W.M.
Whitten, M.A. Soto Arenas, A. Culham & M. W. Chase.
2000. A phylogenetic analysis of Laeliinae
(Orchidaceae) based on sequence data from internal
transcribed spacers (ITS) of nuclear ribosomal DNA.
Lindleyana 15: 96-114.
Williams, L.O. 1946. The validity of the genus
Schomburgkia. Darwiniana 5: 74-77.


German Carnevali obtuvo su licenciatura en biologia en la Universidad Central de Venezuela; Maestria y
Doctorado en la Universidad de Missouri-St. Louis, asociado con el Missouri Botanical Garden. Sus intereses
son la sistematica y filogenia de various grupos de Orchidaceae Neotropicales, principalmente los g6neros
Myrmecophila, Schomburgkia, Encyclia, Lophiaris, Cohniella y la subtribu Maxillariinae en general.
Simultaneamente, tiene intereses en la floristica de las Orchidaceae de la Peninsula de Yucatan, America
Central, las Guyanas, la Amazonia y Venezuela.

Jose Luis Tapia Mufioz obtuvo su licenciatura en la Universidad Veracruzana (Xalapa, Veracruz, M&xico).
Desde 1998 ha trabajado en el Herbario CICY del Centro de Investigaci6n Cientifica de YucatAn, donde
colabora con las investigaciones de GermAn Camevali. Sus intereses son la floristica de la Peninsula de
YucatAn y la sistemitica de varias families, especialmente Convolvulaceae, Orchidaceae y Asteraceae.
Trabajando con las Orchidaceae, sus intereses primordiales son el g6nero Myrmecophila, el complejo
Trichocentrum-Lophiaris-Cohniella y las Orchidaceae de la Provincia Bi6tica Peninsula de YucatAn.

Norris H. Williams, Ph.D., es Curador de Plantas Vasculares en la Universidad de Florida, Herbario del
Museo de Historia Natural de Florida, y ha trabajado en aromas florales, biologia de la polinizaci6n, y en la
sistemitica y evoluci6n de las orquideas. En la actualidad dedica la mayoria de su tiempo al studio de la sis-
temitica molecular de las Orchidaceae neotropicales.

W. Mark Whitten, Ph.D., es Senior Biologist en el Herbario de la Universidad de Florida y ha trabajado con
fragancias florales y biologia de la polinizaci6n, asi como en sistemitica y evoluci6n de las orquideas.
Tambien Whitten estA actualmente dedicando sus actividades de investigaci6n al studio de la sistemitica
molecular de las orquideas del Neotr6pico.








LANKESTERIANA7: 33-36. 2003.


ORCHIDS SMARTER THAN SCIENTISTS AN APPROACH
TO ONCIDIINAE (ORCHIDACEAE) TAXONOMY


STIG DALSTROM

Research Associate, Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, FL 34236, U.S.A.
sdalstrom@selby.org


When initiating a project in plant taxonomy it is
necessary to carefully examine the type specimen for
each taxon that has been described. Just as important,
however, is to explore the natural habitats of the
plants because that is where the dynamics occur,
which is the logical source for the necessary data. It is
in nature where we best can develop an understanding
of what a "species" really is and its role in the envi-
ronment. Another fact to remember is that a previous-
ly described "species" does not necessarily constitute
a good natural species. Specific and generic concepts
can differ drastically between scientists even regard-
ing the same group of plants (e.g., Dalstr6m 2001b
versus Christenson 2002).

It appears generally accepted that the primary basis
of evolution in all organisms is mutation. Through
minor and frequent mutations an isolated population
that does not exchange genetic information with other
populations can keep even initially insignificant
genetic changes inside their own group. Over many
new generations of plants they will eventually have
time to amplify the changes and become distinct.
Another possible source of new taxa is through natur-
al hybridization where the offspring become so dras-
tically different from the parents that they will not
cross-pollinate with any of them. The hybrids there-
fore "need" to find a new pollinator or develop some
other isolating barrier to ensure a separate evolution-
ary path. It has been possible to identify many natural
hybrids in Odontoglossum Kunth that were originally
described as species by crossing the suspected parent
species under artificial conditions (Rolfe 1893). Some
species are more promiscuous than others and one of
the worst is Odontoglossum crispum Lindl. Over one
hundred "varieties" [color forms] have been named
(Bockemiihl 1989), which demonstrates the incredi-
ble variability and popularity of this species alone.


Many of the color forms are probably the results of
cross-pollination with other species.

I define a species as a group of plants that look
alike regarding taxonomically important features and
which produce offspring with the same important fea-
tures as the parents. I distinguish a species by one or
more unique important features, or a unique combina-
tion of features, which constitutes the species profile.
A species profile generally, but not exclusively, con-
sists of features that are associated with the pollina-
tion apparatus (column and lip relation in Oncidiinae)
while a genus profile can consist of many other fea-
tures as well, such as vegetative or anatomical differ-
ences. A genus is a selected group of species, which
share a unique combination of features that distin-
guish them from plants in other genera. A subtribe is
a group of selected genera, which share some unique
features, or combination of features that make them
different from other subtribes, etc.

I consider the pollination of the flower the most sig-
nificant part of the speciation process. Therefore, we
need to study the design of the pollination apparatus
to distinguish the various species. Some visual and
obvious characteristics of the flower morphology,
such as a larger or smaller callus on the lip, variation
in color, etc., are obvious features and may initially
seem important. They can also be the result of
changes in the environment, however, such as cooler
temperatures, brighter light or dryer air, which affect
the general health of the plant. Plants in the subtribe
Oncidiinae demonstrate a notorious ability to change
the flower appearance due to an environmental
impact (stress). Naturally, the size and age of a plant
also matters. I call this ability a plant's natural plas-
ticity, which is different from a plant's natural vari-
ability. Compared with humans one could say that








LANKESTERIANA


"plasticity" represents our habit of making different
faces depending on our mood, as opposed to how dif-
ferent individuals appear in length, nose shape or hair
color, regardless of the mood (= variability). In
Odontoglossum many of the traditional distinguishing
features between species are "cosmetic" due to vari-
ability and plasticity and do not really tell us much
about the species profile. Some species descriptions
are also based on cultivated and stressed plants,
which can produce flowers with deviating shapes.
Obviously, different species of the same genus may
also have strikingly different plant habits and anato-
my in addition to floral differences. In Odontoglos-
sum, however, the species are so vegetatively similar
that they look pretty much the same without flowers.
They may differ in mature size and shape but a young
plant of a large species looks very much like a large
plant of a small species.

Most species of Odontoglossum were described
during the nineteenth century by taxonomists with
very little or no natural experience of the plants or
their habitats, which led to descriptions based on very
limited knowledge. As a metaphor we can use the
Andes hidden in mist. As the mist evaporates the
individual peaks begin to emerge. This is how orchid
species often are perceived, as isolated and distinct
entities separated by shape, size or color. As the mist
continues to evaporate the peaks connect via interme-
diate ridges and eventually turn into one continuous
mountain range. Orchid species that originally appear
distinct often become connected when more plant
material is examined from intermediate localities.
Many Odontoglossum species are not distinct entities
but rather belong to a complex of similar taxa. In
some cases the members of a complex have satisfac-
tory profiles to justify a specific status. In other cases,
they connect with each other by intermediate forms.
If the complex is too blurry I prefer to treat the entire
complex as a superspecies, which refers to a level
slightly "above" a more traditional species concept. A
superspecies consists of subspecies, which refers to a
level slightly "below" species, and are geographically
restricted populations of plants with a shared sub-pro-
file that differs from other subspecies. A subspecies is
morphologically relatively consistent within the pop-
ulation and does not generally mix with other sub-


species of the same superspecies. In my vocabulary,
the term "variety" refers to individual plants that
share some deviating features, such as a lack of pig-
ment, with individual plants in other populations,
which has little taxonomic significance.
Traditionally, the flower shape has dominated the
basis for Oncidiinae taxonomy. The angle between
the column and the lip has played a major role in how
we classify plants on a generic level, while features
such as plant shape and habit, micro-morphology of
the pollinarium and plant anatomy have been largely
ignored. Vegetatively different plants have ended up
in the same genus because they have flowers with a
similar angle between the lip and the column. One of
the problems with this approach is that the angle is
not a definite feature, but rather a gliding scale from
the lip and column being parallel, to 180 apart, or
more. Both the lip and the column also show a great
diversity and irregularity in shape and size, which
makes it difficult to measure the angle in a consistent
way. It is actually rather strange that so much atten-
tion has been paid to a few floral features when the
vegetative parts of the plants can show a great differ-
entiation in shape and habit. On a specific level, how-
ever, it seems logical to assume that the most impor-
tant aspect of a plant's life is the reproduction phase.
Therefore, the pollination strategy and dynamics must
be intimately involved with a species evolution and
identity. Consequently, the taxonomically important
features are those that concern the pollination appara-
tus (column and lip relation in Odontoglossum),
which need to be rather stable.

There seem to exist two antagonistic "forces" in
nature, which concern the reproduction of flowering
plants. One force encourages morphological stability
to enable a species to develop some kind of consistent
inter-action with a particular pollinator. The reason
why cross-pollination (the exchange of pollen
between two separate individual plants, or clones) is
preferable to self-pollination is that the exchange of
genetic information increases variability. This, in
turn, allows a wider adaptation to possible changes in
the environment. If the flowers kept changing contin-
uously, however, the result would be a genetic and
morphological chaos, and a probable extinction due
to a lack of fitting pollinators. The extreme conse-








DALSTROM An approach to Oncidiinae taxonomy


quence of a too stable morphology, on the other hand,
would result in an inability to adapt to changes in the
environment and to new pollinators, which inevitably
also would lead to extinction. A balance between
genetic stability and variability through mutations,
natural hybridization and plasticity, seems to be the
successful choice. It is simple to discern a successful
strategy versus an unsuccessful one in Odontoglos-
sum because the plants either exist commonly or not,
and the majority of Odontoglossum species display a
great variability. It seems logical that plants with a
variable gene-code have a higher survival rate in an
unstable environment, than do plants with a more
fixed genetic constitution. The Andean region of
South America provides a constantly changing envi-
ronment due to volcanic eruptions, earthquakes, land-
slides and floods, and more recently, man's occur-
rence on the stage. In a longer perspective, fluctuation
in temperature has caused periods of glaciations as
well. Consequently, a variable habitat would also
favor a rapid and diverse speciation, which seems to
be the case in the Andes.

The flowers of Odontoglossum are considered
rewardless. They do not offer any kind of obvious
reward, such as nectar or oil for the pollinator.
Theoretically, a pollinator may visit a seemingly
rewardless flower for some other rewarding reasons,
such as absorbing a scent or possibly to deposit eggs
on the flower, which in turn may feed the larvae. No
such observations are documented, however. In order
to encourage the pollinator to re-visit a rewardless
flower the plant has to develop a deceit pollination
strategy, and this seems to be done with the help of
variable and plastic features, or cosmetics. Examples
of cosmetics are coloration patterns, variation in the
callus size and shape, width of sepals and petals, and
possibly a variation in odors (e.g. the different parts
of the flower of Odontoglossum hallii Lindl. have dif-
ferent smells). A certain degree of natural hybridiza-
tion also seems favorable to an increased variability
as long as the pollination strategy is not broken up
and becomes chaotic. In conclusion, we have certain
features, which vary not only between different indi-
vidual plants but also between individual flowers on
the same raceme and are assumed to be deceptive.
They convince the pollinator to make yet another try


in its quest for whatever reward it is searching for.
Cosmetic features are here called taxonomically
unimportant and are unreliable for distinguishing
species. Features, such as the pollination apparatus,
that "design" the flower to accommodate particular
pollinators are taxonomically important features.
These cannot change too much because it would lead
to a morphological chaos with consequent pollination
problems. Unfortunately, what works to fool pollina-
tors also fools scientists. Only by visiting many popu-
lations and studying large quantities of plants can we
see through this deception and discern natural
species.

When we fully understand the evolutionary dynam-
ics in a small group of plants, such as
Odontoglossum, we discover a valuable key to the
understanding of how other organisms evolve on
Earth as well. Repetitive speciation patterns on many
levels in plants have lead to the development of
superficially similar flowers based on similar pollina-
tion strategies. Using the flower morphology exclu-
sively for taxonomic treatments may seem convenient
and user-friendly but can be misleading and confus-
ing at the same time because it does not necessarily
relate to the natural relationship between species and
genera. In contrast, with the recent development of
DNA sequence analysis we have found another key to
the classification of troublesome plants. Although
still at an experimental, initial stage of its develop-
ment, it is now possible to learn about the genetic
relationships of the plants. This can be very useful in
some cases, such as the delineation and separation of
Cyrtochilum from allied genera (Dalstr6m 2001a).
Unfortunately it also creates a new dimension of
problems when we realize that morphologically dif-
ferent looking plants can be closely related, and
viceversa, thus breaking up traditional classification
and creating a very unpractical system. In other
words, with a classification system based solely on
DNA analysis, you may have to know the plant
before you can identify it, because there are no reli-
able and visible indications where it belongs.

LITERATURE CITED
Bockemiihl, L. 1989. Odontoglossum, a Monograph and
Iconograph. Briicke-Verlag Kurt Schmersow,
Hildesheim. Germany.


Mayo 2003








LANKESTERIANA


Christenson, E. A. 2002. Cochlioda A taxonomic treat-
ment of this New World genus. Orchids 2(110-121).
Dalstr6m, S. 2001a. A synopsis of the genus Cyrtochilum
(Orchidaceae; Oncidiinae): Taxonomic reevaluation and
new combinations. Lindleyana 16(2): 56-80.


Dalstr6m, S. 2001b. New species and combinations in the
Oncidiinae (Orchidaceae) and a synopsis of the
Cochlioda clade. Selbyana 22(2): 135-145.
Rolfe, R. A. 1893. Hybrid Odontoglossums. Orch. Rev.
1(5): 142.


Stig Dalstrim is a free-lance botanical artist, and Research Associate of the Marie Selby Botanical Gardens,
Sarasota, Florida, US. He specializes in Oncidiinae taxonomy, particularly the Andean species of Cochlioda,
Cyrtochilum, Oncidium and Odontoglosum.








LANKESTERIANA7: 37-38. 2003.


GUARIANTHE, A GENERIC NAME FOR THE
"CATTLEYA" SKINNERI COMPLEX


ROBERT L. DRESSLER' & WESLEY E. HIGGINS2

'Missouri Botanical Garden; Florida Museum of Natural History; Marie Selby Botanical Gardens
Mailing address: 21305 NW 86th Ave., Micanopy, Florida 32667, U.S.A. rdressl@nersp.nerdc.ufl.edu
2Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, FL 34236-7726, U.S.A. whiggins@selby.org


Molecular systematics, the comparison of DNA
sequences, has brought a continuing revolution to
plant taxonomy. In most cases, the results are intu-
itively reasonable, even when they demand changing
long-known names. The analysis of the Laeliinae, by
van den Berg et al. (2000) has confirmed some clear
relationships, showing, for example, that
Schomburgkia is quite distinct from Myrmecophila
but very close to Laelia anceps. Among other things,
this study has shown that C,.r.'. as we have known
it, is not clearly delimited. One of the clearest segre-
gates is the largely Central American "Cattleya" skin-
neri complex (van den Berg 2000). With the removal
of this group from C.,. rl. most of the remaining
species form a natural group, with some South
American misfits, all quite unlike the skinneri com-
plex. As it is now clear that C. skinneri and its close
allies are out of place in C,.".1 ,, the present paper
proposes a new generic name for this complex,
Guarianthe, based on Guaria, a Costa Rican word for
orchid, and the Greek anthe, or flower. Guaria, by
itself, might be confused with the Meliaceous
Guarea.

According to the molecular analysis by van den
Berg et al. (2000), the sister group of the C. skinneri
alliance is Rhyncholaelia. There is no bootstrap sup-
port for combining these two groups, and, indeed, the
bootstrap support for C. skinneri, C. patinii and C.
aurantiaca as a group is minimal. Guarianthe is
quite distinct from Rhyncholaelia in most features.
Guarianthe has a racemose inflorescence, the pollinia
are four, and the cuniculus type nectary is quite small,
while the inflorescence of Rhyncholaelia is sessile
and one-flowered, the pollinia are eight, and there is a
very prominent nectary separating the ovary from the
rest of the flower, so the fruit is long-beaked.


Though Cattleya bowringiana is not placed within
the C. skinneri alliance in the molecular analysis,
there is also no bootstrap support to exclude it from
the clade. We treat C. bowringiana as a member of
Guarianthe because of the strong agreement in all
structural features. Further analysis may falsify this
conclusion, but, in the meantime, we may call C.
bowringiana a Guarianthe.

There is a special problem involving the hybrid
swarm between C. aurantiaca and C. skinneri. Plants
from this hybrid swarm have been described as new,
including Cattleya decker Klotzsch, C. guatemalen-
sis Moore, C. pachecoi Ames & Correll, C. skinneri
var. parviflora Hook., and apparently Cattleya lae-
lioides Lemaire (Withner 1999). Withner suggests
that the name C. x guatemalensis should be conserved
for the members of this hybrid swarm (1999), so we
refrain from publishing any new combination based
on the hybrid swarm. Both Rolfe (1900) and Withner
(1999) hold that C. decker is the oldest name for C.
patinii, a species widespread in northern South
America. The available evidence suggests, however,
that C. decker was based on a hybrid backcross to C.
skinneri (Dressler 1998).

Guarianthe Dressler & W.E. Higgins, gen. nov.

Plantae pseudobulbis claviformibus, bifoliatis,
inflorescentia racemosa terminalis, labello columnam
parvam involves.

Epiphytic, pseudobulbs clavate, bifoliate; inflores-
cence terminal, racemose, from a prominent sheath;
sepals and petals similar, lip infundibuliform, sur-
rounding the column; column clavate, 10-12 mm
long; anther incumbent, pollinia 4, with caudicles.
Type species: Cattleya skinneri Bateman.








LANKESTERIANA


Guarianthe aurantiaca (Bateman ex Lindl.) Dressier
& W.E. Higgins, comb. nov.
Basionym: Epidendrum aurantiacum Bateman ex
Lindl., Edward's Bot. Reg. 24: misc. p. 8. 1838.

Guarianthe bowringiana (Veitch) Dressier & W.E.
Higgins, comb. nov.
Basionym: Cattleya bowringiana Veitch, Gard.
Chron. 2: 683. 1885.

Guarianthe skinneri (Bateman) Dressier & W.E.
Higgins, comb. nov.
Basionym: Cattleya skinneri Bateman, Orchid.
Mex. Guat. t. 13. 1838.

Guarianthepatinii (Cogn.) Dressier & W.E. Higgins,
comb. nov.
Basionym: Cattleya patinii Cogn. Dict. Icon.
Orchid. 2: t. 25. 1900.


LITERATURE CITED
van den Berg, C. 2000. Molecular phylogenetics of Tribe
Epidendreae with emphasis on Subtribe Laeliinae
(Orchidaceae). Ph.D. thesis, Department of Botany,
University of Reading.
van den Berg, C., W.E. Higgins, R. L. Dressier, W.M.
Whitten, M.A. Soto Arenas, A. Culham, & M.W.
Chase. 2000. A phylogenetic analysis of Laeliinae
(Orchidaceae) based on sequence data from internal
transcribed spacers (ITS) of nuclear ribosomal DNA.
Lindleyana 15: 96-114.
Dresser, R.L. 1998. The neotypification of Cattleya deck-
eri. Lindleyana 13: 219-220.
Rolfe, R. A. 1900. Cattleya decker. Orchid Rev. 8: 261-
263.
Withner, C.L. 1999. Cattleya x guatemalensis. Its history,
close relatives, and problems relating to its identity.
Orch. Dig. 63: 53-61.


Robert L. Dressier naci6 en el centro de los EE.UU., en la Sierra de Ozark, en 1927, y sali6 a la civilizaci6n
(California) a la edad de 10 afios. Desde sus afios formativos, sentia much interns en el campo y en la natu-
raleza. En la universidad, la combinaci6n de una profesora mediocre de zoologia y un professor excelente de
botinica le gui6 definitivamente hacia la botanica. Recibi6 el Doctorado en Biologia de Harvard en 1957, y
trabaj6 en el Jardin Botanico de Missouri de 1957 a 1963, cuando fue al Instituto Smithsoniano de
Investigaciones Tropicales. Vivi6 algo mAs de 20 afios en PanamA, estudiando la clasificaci6n y la ecologia
de orquideas, especialmente su polinizaci6n natural. Ahora vive en el note de Florida, asociado con el Jardin
Botinico de Missouri y el Herbario de la Universidad de Florida. Ha escrito various libros y numerosos
articulos. Ahora esta trabajando en el proyecto Flora Mesoamericana.

Wesley E. Higgins is currently the Head of Systematics and Jessie B. Cox Chair in Tropical Botany at Marie
Selby Botanical Gardens in Sarasota, Florida. He is also a Courtesy Curator at the Florida Museum of
Natural History. Dr. Higgins is a member of the International Scientific Committee of LANKESTERIANA and is
on the Editorial Board for SELBYANA. He has previous experience at Royal Botanic Gardens, Kew, and
Missouri Botanical Garden. Dr. Higgins graduated magna cum laude from the University of Florida, earning
a Ph.D. in Horticulture Science with a minor in Botany. Although his research is in the holomorphology of
Encyclia sensu lato, he is better known for its segregated genera such as Prosthechea, Oestlundia,
Microepidendrum, and Dinema. He is an accredited American Orchid Society judge and an approved AOS
taxonomic authority.








LANKESTERIANA7: 39-41. 2003.


PROSTHECHEA: A CHEMICAL DISCONTINUITY IN LAELIINAE


WESLEY E. HIGGINS

Head of Systematics, Marie Selby Botanical Gardens
811 South Palm Avenue, Sarasota, FL 34236-7726, U.S.A. whiggins@selby.org


The chemistry of Prosthechea differs from other
members of the subtribe. Williams (1979) was the
first to report the unusual chemical properties of
Prosthechea. Pabst (1981) observed that flowers pre-
served in alcohol had a strange mottled appearance.
He used this characteristic in his attempt to reestab-
lish Anacheilium. Ferreira et al. (1986) studied the
chemical composition of the flavonoid crystals found
in the flowers. Higgins (2000) expanded the search
for these crystals in the examination of the holomor-
phology of Prosthechea. The unique chemistry of the
genus has important ecological and taxonomic signif-
icance.

The genus Prosthechea was described by Knowles
and Westcott in 1838. The derivation of the name
Prosthechea is from the Greek prostheke in reference
to the appendage of tissue (midtooth) on the back of
the column in P. glauca. This genus of about 100
species has a widespread natural distribution in the
Neotropics from Florida (USA) and Mexico southward
through tropical South America. Species in this genus
are epiphytic or lithophytic herbs and prefer a wet
habitat, damp woodlands including swamps, and wet
forests from sea level to 2600 meters. The pseudobulbs
are fusiform and often flattened. One to five thin leaves
surmount each pseudobulb. The inflorescence is
scapose or sessile, often with a prominent spathe. The
flowers are usually non-resupinate. The labellum is
adnate to approximately one half of the column and the
callus is typically a thickened pad. The column is usu-
ally gibbous, lacking wings; the midtooth, usually
large, is erect at apex of column and often covered by a
fleshy knob-like, obtuse or truncate appendage which
is ligulate (a thin flap of tissue above the anther cap),
deltoid, subquadrate, or subflabellate, and sometimes
fimbriate; the anther cap is not appressed by the mid-
tooth; lateral teeth are separated from the midtooth by
deep narrow sinuses; the rostellum is individed but not


cleft. Seed capsule is three-winged or sharply three-
angled, the suture covered by a strap of tissue that lifts
upon dehiscence. Large druse-type glycoside crystals
are usually present throughout the plant. The published
chromosome counts of Prosthechea are 2N = 40
(Kamemoto & Randolph 1949).

The interaction of a flower with its pollinator is one
of the methods of reproductive isolation between
species. Floral traits that confer pollinator specificity
include shape, fragrance, pigment, and nectar. Most
Prosthechea attract wasps, which are active during
the day although the bright red-orange colored P.
vitellina may be bird pollinated. Self-pollination has
been reported in Prosthechea. In P. boothiana var.
erythronioides and P. cochleata var. triandra the col-
umn has a structural modification of two additional
anthers that allows the pollen tubes to bypass the ros-
tellum resulting in self-pollination. An interesting
observation is that although self-pollinating forms
occur over the range of the two species, only the self-
pollinating forms are found in Florida. This suggests
that the pollinators are not present in Florida.

The floral pigments are molecules that absorb some
of the wavelengths and reflect others. There are many
different kinds of these molecules and they occur in
complex mixtures. The group of compounds found in
plants known as flavonoids include flavones,
flavonols, anthocyanins, and related compounds. The
yellow pigments flavones in the leaf of P. fragrans
are 6-hydroxy-C-glycosides (Williams 1979).
Flavones are also found in flowers of the brightly col-
ored species such as P. vitellina. Other flavonoids
found in Prosthechea cochleata and P. prismato-
carpa floral pigments are cyanidin and peonidin-
based aili,, ,n.,. (Arditti & Fisch 1977).

Secondary chemistry (such as the presence of gly-
coside crystals) attributes important ecological con-








LANKESTERIANA


cepts to floral biology. At least 4000 flavonoids are
known, and they are common in all higher plants.
These glycosides can accumulate in the vacuoles.
Druse-type glucoside crystals can be observed in the
vacuoles of Prosthechea. Flowers of Prosthechea
precipitate glycoside crystals when fixed in ethanol
that can be observed in the glass specimen jar (Pabst,
Moutinho et al. 1981). This secondary chemistry
character of glucoside crystals, flavonoid aglycone
structure and linked carbohydrate sidechain of glu-
corhamnose, is easily observed by preserving flowers
in ethanol with 5% sodium hydroxide (Ferreira,
Parente et al. 1986). These crystals fluoresce under
ultraviolet light, probably adding to the visibility of
flowers for insect pollinators in a dense forest. The
presence of crystals in the flower can also be detected
by a sandy feel when cutting the column of a flower
with a razor blade.

Fragrances secreted by the osmophores play an
important role in flower pollinator interactions. The
unique combinations of volatile molecules create dif-
ferences in the fragrance spectrum of different
species. The components of four Prosthechea fra-
grances have been published (Kaiser 1993).

* Prosthechea baculus Aromatic spicy-floral scent
consisting of aromatic esters, phenols, vanilline,
and indole complemented by a distinctive herba-
ceous and straw-like note that is largely attributable
to oxoisophorone accompanied by its dihydro
derivative and the corresponding epoxy diketone.
* Prosthechea citrina unique pleasant floral and
hesperidic scent interaction of ipsdienol and isp-
dienone together with neral and geranial, numerous
olfactory important compounds such as myrcene,
citronellal, methyl geranate, methyl (Z)-4-
decenoate, geraniol and farnesal.
* Prosthechea fragrans aromatic-floral accord bal-
anced by a multifaceted scent reminiscent of pas-
sion fruit and mango triggered by interaction of
ocimene, b-ionone and two isomers of edulane,
plus a range of aliphatic esters, and a contrasting
astringent note reminiscent of tea roses produced
by 3.5-dimethoxy toluene.
* Prosthechea glumacea unmistakable very sweet
aromatic-floral effect based on linalool and its high


anis aldehyde contrasted by a melon-like green
note attributable to (Z,Z)-3,6-nonadienol.

Prosthechea capsules release several million seeds
(Arditti 1992) by opening a suture along the midline
of each carpel during dehiscence (Pridgeon, Cribb et
al. 1999). The mechanism of opening is different in
Prosthechea; the suture is covered by a strap of tis-
sue, which lifts to open the suture for seed disbursal
(Higgins 2000). The seed consist of a tiny embryo
and a net-like testa. The embryo usually lacks a
cotyledon and endosperm. Rudimentary cotyledons
have been observed in P. vitellina. The Prosthechea
seed are elongate to 500-1000 |pm long and are of the
Epidendrum type (Barthlott 1976).

Withner's (1998) Euchile has glaucous leaves, a lip
that encircles the column, a nectary at the base of the
column, and three large truncate teeth on the column.
The column structure of Euchile also differs in that
the midtooth is not ligulate (Higgins 1999). Higgins
(1997) placed E. mariae and E. citrina in
Prosthechea. A phylogeny based on holomorphology
also places Euchile sister to the other Prosthechea
species (Higgins 2000).

In addition to being important ecological traits, the
chemistry of Prosthechea provides reliable taxonom-
ic characters. The presence of druse-type glucoside
crystals is consistence within the genus and these
crystals are not found in sister taxa. Holomorphology
is the total collection of characters or the complete
description of an organism including morphological,
anatomical, chemical, and molecular characteristics.
Taxonomic decisions based on holomorphology pro-
vide the most useful and predictive classification
schemes.


LITERATURE CITED
Arditti, J. 1992. Fundamentals of Orchid Biology. New
York, John Wiley & Sons.
Arditti, J. and M.H. Fisch. 1977. Anthocyanins of the
Orchidaceae: Distribution heredity, functions, synthesis,
and localization. In J. Arditti (ed.), Orchid Biology:
Reviews and Perspectives. Ithaca, Cornell University
Press. 1: 117-155.
Barthlott, W. 1976. Morphologie der Samen von
Orchideen im Hinblick auf taxonomische und funk-
tionelle Aspekte. Proceedings of the 8th World Orchid








HIGGINS Prosthechea


Conference, Frankfurt, Deutsche Orchideen
Gesellschaft.
Ferreira, V.F., J.P. Parente, et al. 1986. Chemical
Discontinuity in Laeliinae Bentham. Biochemical
Systematics and Ecology 14(2): 199-202.
Higgins, W.E. 1997. A Reconsideration of the Genus
Prosthechea (Orchidaceae). Phytologia 82(5): 370-383.
Higgins, W.E. 1999. The genus Prosthechea: An old name
resurrected. Orchids 68(11): 1114-1125.
Higgins, W.E. 2000. Intergeneric and Intrageneric
Phylogenetic Relationships of Encyclia (Orchidaceae)
Based upon Holomorphology. Horticultural Sciences.
Gainesville, The University of Florida: 297.
Kaiser, R. 1993. The Scent of Orchids, Olfactory and
chemical investigations. Amsterdam: Elsevier.


Kamemoto, H. and L.F. Randolph. 1949. Chromosomes of
the Cattleya tribe. Amer. Orch. Soc. Bull., 18: 366-369.
Pabst, G.F., J.L. Moutinho, et al. 1981. An attempt to
establish the correct statement for genus Anacheilium
Hoffmgg. and revision of the genus Hormidium Lindl.
ex Heynh. Bradea 3(23): 173-186.
Pridgeon, A.M., P.J. Cribb, et al. (eds.) 1999. General
Introduction, Apostasioideae, Cypripedioideae. Genera
Orchidacearum. Oxford, Oxford University Press.
Williams, C.A. 1979. The leaf flavonoids of the
Orchidaceae. Phytochemistry 18: 803-810.
Withner, C. L. 1998. Brassavola, Encyclia, and other gen-
era of Mexico and Central America. The Cattleyas and
their Relatives. Timber Press, Portland, Oregon.


Wesley E. Higgins is currently the Head of Systematics and Jessie B. Cox Chair in Tropical Botany at Marie
Selby Botanical Gardens in Sarasota, Florida. He is also a Courtesy Curator at the Florida Museum of
Natural History. Dr. Higgins is a member of the International Scientific Committee of LANKESTERIANA and is
on the Editorial Board for SELBYANA. He has previous experience at Royal Botanic Gardens, Kew, and
Missouri Botanical Garden. Dr. Higgins graduated magna cum laude from the University of Florida, earning
a Ph.D. in Horticulture Science with a minor in Botany. Although his research is in the holomorphology of
Encyclia sensu lato, he is better known for its segregated genera such as Prosthechea, Oestlundia,
Microepidendrum, and Dinema. He is an accredited American Orchid Society judge and an approved AOS
taxonomic authority.


Mayo 2003











LANKESTERIANA 7: 43-44. 2003.


PHYLOGENY AND EVOLUTION


WALTER A. MARIN

Escuela de Biologia, Universidad de Costa Rica
wmarin@biologia.ucr.ac.cr


A particular human drive is to arrange things into
categories, look for patterns and allocate labels.
Since ancient times, humans have applied this to life
itself. Today we use the Linnaeus' system of classifi-
cation, first published in 1735, which classifies living
organisms by grouping them with the most similar
visible characteristics into groups. This kind of
scheme is called taxonomy. The system is based on
groups nested within groups of increasingly general
scope. So several species can belong to the same
genus, several genera to the same family, and so on
through order, class, phylum, and kingdom. Phenetic
classification is an extension of the Linnean
approach. According to the Phenetic method, species
are grouped together with other species that they most
closely resemble phenotipically.
The publication of Darwin's On the Origin of
Species in 1859 led to a new approach to classifica-
tion that attempted to unravel the evolutionary history
of species. The closest species in this scheme are not
necessarily those that show more resemblance, but
those which share the most recent common ancestry.
The development of cladistic techniques, combined
with the usage of computers to analyze large quanti-
ties of data, have produced new insights into the his-
tory of life. Cladistic classification determines the
evolutionary relationships between organisms by ana-
lyzing certain kinds of characteristics, or traits. In the
course of evolution, a novel, heritable trait will
emerge in some organism. That trait will be passed on
to its descendants. Two organisms that share such a
new, or derived, trait or group of traits are therefore
more closely related to each other than to organisms
that lack those traits. By treating recently evolved
characteristics differently from ancestral characteris-
tics, this technique emphasizes evolutionary relation-
ships over structural or morphological similarities.
Cladistics is now accepted as the best method avail-


able for phylogenetic analysis. It provides an explicit
and testable hypothesis of organismal relationships.
The basic idea behind cladistics is that members of a
group share a common evolutionary history, and are
closely related, more so to members of the same
group than to other organisms. These groups are rec-
ognized by sharing unique features which were not
present in distant ancestors.
Cladistic analysis has become synonymous with
phylogenetic systematics. A clade, a monophyletic
taxon or evolutionary branch, is a group of organisms
which includes the most recent common ancestor of
all of its members and all of the descendants of that
most recent common ancestor. The name clade
derives from the Greek word "klados", meaning
branch or twig. A taxon is monophyletic if a single
ancestor gave rise to all species in that taxon and to
no species in any other taxon. On the other hand a
taxon is polyphyletic if its members are derived from
two or more ancestral forms not common to all mem-
bers, in this case the group does not include the most
recent common ancestor of those organisms; the
ancestor does not possess the character shared by
members of the group.
Cladistic analysis uses a concept called outgroup
comparison to recognize primitive characters for all
members of a group of interest and to establish a
starting point for a phylogenetic tree. An outgroup is
a species or group of species. All members of the
study group are compared as a group to the outgroup.
Characters common to both the outgroup and the
study group are likely to have been present in a com-
mon ancestor and are therefore shared primitive char-
acters.
An important assumption of Cladistics is that char-
acteristics of organisms change over time. It is only
when traits change that it is possible to recognize dif-
ferent lineages or groups as well as the direction in








LANKESTERIANA


which characters change, and the relative frequency
with which they change. It is also possible to compare
the descendants of a single ancestor to look at pat-
terns of origin and extinction in these groups, or to
look at relative size and diversity of the groups.
Cladistics is today the most commonly used method
to classify organisms because it recognizes and
employs evolutionary theory.
In recent years, DNA sequencing methods have
become an useful tool for determining evolutionary
relationships The DNA present in the cells of all liv-
ing organisms provide a distinctive genetic profile of
the species. By comparing the similarity of DNA
between two species, scientists can determine how
closely they are related. These molecular similarities
reveal the relationships among organisms. The study
of ancestral relations among species, often illustrated
with a "tree of life" branching diagram, is also known
as a phylogenetic tree.
In any species, usually there will be several vari-
ants, or alleles, of each gene. The alleles of a specific
gene are related to each other new alleles arise from
older ones mostly by mutation. Molecular biologists
can work out these relationships and draw up family
trees that show which alleles are most closely related.
When new species evolve from this ancestral popula-
tion, some of the alleles may be lost through genetic
drift or natural selection
The studies of molecular phylogeny have provided
new ways for measuring how closely or distantly relat-
ed different species are on the evolutionary tree. These
molecular tools have greatly aided evolutionary biolo-
gists in tracing ancestor-descendant relationships,
which show how later organisms developed from earli-
er ones, among various organisms on the tree of life.
The study of Fossils is mostly based on the analysis
of morphological features that can be misled by incom-
plete evidence. The molecular techniques on the other
hand detect differences in genes between organisms,
which provide another kind of evidence to help deter-
mine how closely related they are. This allows the


researchers to represent evolutionary relationships on a
phylogenetic tree by the extent to which the organisms'
gene sequences differ from each other. In fact, the
genome, or entire set of genes, of an organism contains
a record of the organism's evolutionary history.
The combination of information from analysis of
fossils with DNA studies, allows researchers to draw
evolutionary trees showing where and approximately
when the species branched off from common ances-
tors. These diagrams, known as phylogenetic trees, or
cladograms, are hypotheses that represent the best
estimate of the true evolutionary relationships, based
on existing evidence. They are constantly revised as
new data become available
While molecular analysis has become a standard
method of tracing evolutionary relationships, it also
has limitations, and sometimes it can yield wrong
answers. When genetic measurements and evidence
from fossils conflict, scientists recognize that no one
technique is always correct.
The best results obtained in evolutionary studies
often come from combining analyses of the compara-
tive morphology of different species with molecular
techniques. The coupling of these approaches permit
evolutionary biologists to build a more accurate pic-
ture of life's history.



BIBLIOGRAPHY
Dodson, E.O. and P. Dodson. 1985. Evolution: Process
and Product. Prindle, Weber & Schmidt Publishers.
Boston.
Freeman, S and J. C. Herron. 2001. Evolutionary Analysis.
Prentice-Hall Inc. New Jersey.
Kenrick, P. and P.R. Crane. 1997. The origin and early
diversification of Land Plants: A cladistic study. The
Smithsonian Institution Press. Washington.
Mayr, E. 2001. What evolution is. Basic Books (Perseus
Books Group). New York.
Niklas, K.J. 1997. The evolutionary biology of plants. The
University of Chicago Press. Chicago
Wilson, A.C. 1985. The molecular basis of Evolution.
Scientific American 253:164-173.


Walter A. Marin, Ph.D (Physiological Plant Pathology, University of London) is Professor of Plant Anatomy
and Plant Physiology at the Escuela de Biologia, Universidad de Costa Rica. Currently conducting research
on morphological study of organogenesis of maize in vitro and effect of water stress and fungal infection on
growth and survival of seedlings of woody species.








LANKESTERIANA 7: 45-47. 2003.


PHYLOGENY OF THE HETEROTAXIS LINDLEY COMPLEX
(MAXILLARIINAE): EVOLUTION OF THE VEGETATIVE
ARCHITECTURE AND POLLINATION SYNDROMES


ISIDRO OJEDA', GERMAN CARNEVALI', NORRIS H. WILLIAMS2 & W. MARK WRITTEN2

1 Herbarium CICY, Centro de Investigaci6n Cientifica de Yucatan, A. C.
Calle 43. No. 130. Col. Chuburna de Hidalgo, 97200 Merida, Yucatan, Mexico.
2 Herbarium, Florida Museum of Natural History, University of Florida
385 Dickinson Hall, P.O. Box 117800 Gainesville, Florida 32611-7800, U.S.A.


Heterotaxis Lindl. comprises about 11 primarily
epiphytic species ranging from the southeastern
U.S.A. (Florida) and the Greater Antilles to Brazil,
with most of the species occurring in Central and
South America. This complex is characterized by a
sympodial growth habit, with short rhizomes, lateral-
ly compressed oblong pseudobulbs (unifoliate), and
subtended by various leaf-bearing sheaths.
Exceptions are Maxillaria equitans (Schltr.) Garay
and Maxillaria valenzuelana (Sw.) Nash, which
exhibit a pseudomonopodial growth without pseudob-
ulbs. The one-flowered inflorescence emerges from
the leaf axils; the flowers are distinctly fleshy, a char-
acter shared with the Ornithidium complex, and col-
ors varying from yellow to orange, with some species
showing purple lips with calli varying in size and tex-
ture. The column exhibit an arcuate shape with the lip
articulated to its base.
Lindley described Heterotaxis in 1826 based on a
species known today as Maxillaria crassifolia
(Lindl.) Rchb. f., and although in 1830 the same
author described a new genus (Dicrypta Lindl.) based
on the same species, this complex of species must be
referred by priority under the first generic name,
Heterotaxis.
The name Heterotaxis has been used to design a
complex of species within Maxillaria Ruiz & Pav.,
and most authors considered it as a synonymous of
this genus in their floristic treatments; however, some
of them have pointed out that this complex represents
a group of species at generic level.
Several studies based on morphology, anatomy, and
DNA sequences have showed that Maxillaria repre-


sents a para or polyphyletic genus, and that some
groups of species, commonly considered within
Maxillaria, should be reevaluated and recognized at
the generic level.
Heterotaxis represents one of these groups, and pre-
vious studies using DNA sequences (ITS 1 & 2) situ-
ated this complex of species in a basal position in the
phylogeny of Maxillaria s.l.
Our major goals in the present work were: 1) to
determinate if Heterotaxis represents a monophyletic
group, 2) to establish the phylogenetic relationships
among species considered within this complex, and 3)
to study the evolution of the vegetative architecture
and pollination syndromes.
We considered an in-group of 18 species, represent-
ing 12 described species in Heterotaxis and two new
species plus four representative species of
Ornithidium Salisb. complex. Outgroups species
(Lycaste cruenta, Xylobium zarumense, Cryptocen-
trum latifolium, and Maxillaria bicallosa) were
selected according to a previous approach to the phy-
logeny of Maxillaria and related genera based on
DNA sequences of ITS 1 & 2.
A total of 58 morphological characters (morpholo-
gy, and gross leaf anatomy) and DNA sequences of
ITS 1 & 2 were used in the reconstruction of phyloge-
netic relationships.
We conducted separate analyses of morphology and
DNA sequences, and a combined analysis using the
Winclada and Nona programs.
In separate analyses of both data, morphology and
DNA sequences, Heterotaxis represents a mono-
phyletic group provided three species, Maxillaria








LANKESTERIANA


A
MORHOLOGY
(vegetative, floral and gross anatomy)


Lycaste cruenta
- Xylobium zarumense

M. bicallosa
S99 M proboscidea Maxili
6 M. cymbidiodes and
M nasuta

99- M adendrobium
10 M coccinea Orni
88 - M conduplicata
3 M. fulgens
MM. discolor
SM. villosa Heter,
75 M maleolens
E L M. violaceopunctata
2 M schultesii
--- M crassifolia
S MM superflua
--M santanae
M. fritzii
.-| M equitans
M valenzuelana


B
MOLECULAR
(ITS 1 & 2)


lar
re



thi



otaJ


Lycaste cruenta
Xylobium zarumense
Cryptocentrum i.,, -
M. bicallosa

a nasuta M proboscidea 68
latives M cymbidiodes 2
M nasuta
M. adendrobium
dium M coccinea 72 17
M conduplicat 2
M. fulgens -
M valenzuelana
xis s.s. M equitans 91
M crassifoli 5
M superflua
M. maleolens
M. violaceopunctata
M villosa
M discolor


Figure 1. Consensus trees of the phylogenetic relationships of Heterotaxis complex, A based on morphological char-
acters (morphology and gross foliar anatomy), and B DNA sequences of internal transcribed spacers (ITS 1 & 2).
Numbers above branches represent jacknife values, and numbers below branches Bremer support values. Nodes with
arrows represent collapsed clades in the jacknife tree.


nasuta, M. i ,i;i..J. and M. proboscidea are
excluded from this complex (Fig. 1).
A total of 20 most parsimonious tree (L = 106, CI =
0.85, RI = 0.92) were found in the analysis based on
morphology; this evidence supports the position of
Heterotaxis s. s. (excluding M. nasuta, M. cymbid-
iodes, and M. proboscidea) as a sister clade of
Ornithidium.
Heterotaxis s.s. was supported by three synapomor-
phies, the pedicel of the flower is wider than the rest
of the internodes of the peduncle, the column is articu-
lated to the pedicel in an angle of 45, and finally, the
presence of a sub-apical mucron in sepals and petals.
Two major clades were found within Heterotaxis s.s.;
the Violaceopunctata clade contains only species with
a sympodial growth habit and those species with larg-
er size; this clade is supported by two synapomor-
phies, the labellum of these species is markedly 3-
lobed in shape, and anatomically, these species share


the presence of a pattern of 4-7 vascular bundles in the
mesophyll repeated modularly, quite different from
the rest of Heterotaxis species which present a modu-
lar pattern of three vascular bundles. The
Violaceopunctata clade contains those species which
are, due to similar size and growth habit, commonly
confused with the species of M. nasuta and relatives.
The Crassifolia clade contains species with sympo-
dial and the two species with a pseudomonopodial
growth habit. This clade is supported by two sinapo-
morphies, blades of leaves are partially fused at the
base (close to the articulation of the sheath), and a Y
shape of sheaths in a transversal cross section. The
position of Maxillaria schultesii is uncertain, and
although in the consensus tree it is situated in
Crassifolia clade, its position is not resolved in the
jacknife tree (Fig. 1).
Maxillaria nasuta clade and relatives are supported
by the next morphological synapomorphies: the shin-








OJEDA et al. Phylogeny of Heterotaxis


ing surface (as varnished) and lacking of ridges of
pseudobulb in dried material, this characteristic is
quite different form the pseudobulb surface of
Heterotaxis s.s., which exhibit ridged and opaque sur-
face. The size of the peduncle (of five internodes) of
the inflorescence is longer (2 times) than size of the
pseudobulb, and finally, the column shows a papil-
lose surface in the dorsal portion.
A single most parsimonious tree was found in the
analysis based on DNA sequences (L = 279, CI =
0.75, RI = 0.76), this data support the presence of
three clades, M. nasuta and relatives, Heterotaxis s.s.,
and Ornithidium. However, the relationships among
these clades are not resolved (Fig. 1). Sequences of
ITS 1 & 2 also support the presence of the
Violaceopuntata clade, and the pseudomonopodial
plants are situated in a basal position within
Heterotaxis clade, closely related to the species of
the Crassifolia clade.
The total evidence analysis supports the position of
Heterotaxis s.s. as a sister clade of Ornithidium, and
the presence of the two previous clades, Crassifolia
and Violaceopunctata, found with the morphological
characters. According to this result, the sympodial


growth habit observed in most of the species in
Heterotaxis s.s., and in the M. nasuta clade is ple-
siomorphic. The pseudomonopodial growth habit of M.
valenzuelana and M. equitans is derived within
Heterotaxis. All studied species of Ornithidium show a
growth habit as the observed in Heterotaxis, and the
most plesiomorphic growth habit found in this analysis
is that observed in M. coccinea, which a production of
repeated sympodiums with elongated rhizomes.
The floral characteristics of the Heterotaxis species
suggest a pollination syndrome by wasps which col-
lect pseudopollen or wax. This pollination syndrome
has been reported in other groups of Maxillaria, and
according to the present results, this pollination syn-
drome is plesiomorphic and has evolved several times
within Maxillaria. The floral characteristics of
Ornithidium, such as fused lip forming a cup, long
peduncles of flower, nectar production, and bright red
to yellow colors suggest a pollination syndrome by
hummingbirds. According to the total evidence this
pollination syndrome is derived in the Heterotaxis -
Ornithidium clade, and this floral modification is
associated with the great variation in vegetative archi-
tecture observed in this complex of species.


Isidro Ojeda Alay6n estudi6 Licenciatura en Biologia en la Universidad Aut6noma de Yucatan (UADY) entire
1994-99. Comenz6 a estudiar la maestria en Ecologia en el Centro de Investigaci6n Cientifica de Yucatan
(CICY) entire 2001-03. En su tesis estudi6 la filogenia y la evoluci6n de un complejo de species dentro del
g6nero Maxillaria. Sus intereses en la investigaci6n son: filogenia, sistemitica, taxonomia y distribuci6n de las
orquideas del Neotr6pico. Le interest de igual manera el uso de la informaci6n molecular y anat6mica en la
reconstrucci6n filogenetica, y el studio de la evoluci6n de habitos vegetativos y de estrategias de polinizaci6n.

Germain Carnevali, Ph.D., obtuvo su licenciatura en biologia en la Universidad Central de Venezuela; Maestria y
Doctorado en la Universidad de Missouri-St. Louis, asociado con el Missouri Botanical Garden. Sus intereses
son la sistemitica y la filogenia de various grupos de las Orchidaceae Neotropicales, principalmente los g6neros
Myrmecophila, Schomburgkia, Encyclia, Lophiaris, Cohniella y la subtribu Maxillariinae en general.
Simultaneamente, tiene intereses en la floristica de las Orchidaceae de la Peninsula de Yucatan, America
Central, las Guianas, la Amazonia y Venezuela.

Norris H. Williams, Ph.D., es Curador de Plantas Vasculares en la Universidad de Florida, Herbario del Museo de
Historia Natural de Florida, y ha trabajado en aromas florales, biologia de la polinizaci6n y en la sistemitica y
evoluci6n de las orquideas. En la actualidad dedica la mayoria de su tiempo al studio de la sistemitica molecu-
lar de las Orchidaceae neotropicales.

W. Mark Whitten, Ph.D., es Senior Biologist del Herbario de la Universidad de Florida y ha trabajado en aromas
florales, biologia de la polinizaci6n y en sistemitica y evoluci6n de las orquideas. Sus studios recientes se
concentran en la sistemitica molecular de las orquideas del Neotr6pico.


Mayo 2003











LANKESTERIANA7: 49-50. 2003.


PHYLOGENETICS OF THE SUBTRIBE PLEUROTHALLIDINAE
(EPIDENDREAE: ORCHIDACEAE) BASED ON COMBINED EVIDENCE
FROM DNA SEQUENCES


ALEC M. PRIDGEON & MARK W. CHASE

Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK


Subtribe Pleurothallidinae (Epidendreae: Orchida-
ceae) comprises an estimated 4000 Neotropical
species in about 30 genera (Luer 1986), accounting
for 15-20% of the species in the entire family. The
vast majority are dipteran-, deceit-pollinated epi-
phytes with sympodial growth, unifoliate non-
pseudobulbous stems or "i i.. conduplicate
leaves, velamentous roots, and an articulation
between the pedicel and ovary. Genera have been cir-
cumscribed on the basis of number of pollinia eight,
six, four or two although there can be either eight or
six in Brachionidium Lindl. (Luer 1986) and two or
four (one large pair and one small pair) in
Myoxanthus Poepp. & Endl. and Lepanthes Sw.
(Stenzel 2000).

To evaluate the monophyly of subtribe Pleurothal-
lidinae (Epidendreae: Orchidaceae) and the compo-
nent genera and to reveal evolutionary relationships
and trends, we sequenced the nuclear ribosomal DNA
internal transcribed spacers (ITS 1 and ITS2) and 5.8S
gene for 185 taxa (Pridgeon, Solano & Chase 2001),
later increased to 187 taxa (Pridgeon & Chase 2001).
Dilomilis montana, Neocogniauxia hexaptera,
Arpophyllum giganteum, and Isochilus amparoanus
were used as outgroups. All but seven of the 32 sub-
genera of the megagenus Pleurothallis are represent-
ed by one or more taxa; those subgenera not repre-
sented are monospecific or comprise only a few
species. As a result, the overall morphological diver-
sity was sampled to minimize spurious attractions, a
strategy recommended for large study groups in par-
ticular (Hillis 1998).

To resolve internal nodes in the ITS topology and
offer additional evidence from another genome, we
also sequenced the plastid gene matK and the trnL
intron with the trnL-F intergenic spacer (hereafter
simply trnL-F) for a representative subset of the taxa


in the ITS study (Pridgeon, Solano & Chase 2001,
Pridgeon & Chase 2001). Sequences of rbcL (Chase
et al. 1994, Kores et al. 1997, Cameron et al. 1999,
van den Berg 2000), matK (Ryan et al. 2000, van den
Berg 2000, Kores et al. 2001; Whitten, Williams &
Chase 2000), and trnL-F (van den Berg 2000, Kores
et al. 2001, Whitten, Williams & Chase 2000) have
been useful in evaluating higher-level relationships in
Orchidaceae by virtue of the relatively conservative
evolution of the plastid genome.

Finally, we combined the plastid data with the cor-
responding ITS sequences for a separate analysis of
58 representative taxa to assess congruence among
the separate and combined data sets (Pridgeon,
Solano & Chase 2001, Pridgeon & Chase 2001). In
this way we were able to compare topologies of DNA
regions with different functional constraints (e.g.,
coding vs. noncoding, nuclear vs. plastid, concerted
evolution in ribosomal ITS sequences) before com-
bining them to limit spurious results in the separate
analyses (Johnson & Soltis 1998, Soltis, Soltis and
Chase 1999, Wiens 1998).

There is strong support in most analyses (Pridgeon,
Solano & Chase 2001, Pridgeon & Chase 2001) for
the monophyly of Pleurothallidinae and, as in other
analyses (van den Berg et al. 2000), for inclusion of
Dilomilis and Neocognauxia in Pleurothallidinae.
Taking into account the highly supported molecular
evidence from multiple DNA regions, the shared
number of pollinia in some taxa (eight) and leaf
anatomy, the ancestral reed-stem condition in other
clades of Epidendroideae (van den Berg 2000), and
evolutionary remnants thereof in present-day
Pleurothallidinae, we proposed (Pridgeon & Chase,
2001) that Pleurothallidinae be expanded to include
Dilomilis, Neocogniauxia, and presumably the mono-
specific Tomzanonia, thereby forming a more natural








LANKESTERIANA


unit. Furthermore, recognition of a new subtribe com-
prising only three genera that are collectively sister to
Pleurothallidinae would result in unnecessary taxo-
nomic inflation.

Although most genera in the several clades identi-
fied in the analyses are monophyletic, all data sets are
highly congruent in revealing the polyphyly of
Pleurothallis and its constituent subgenera as present-
ly understood, falling into seven clades with generally
strong bootstrap support (Pridgeon, Solano & Chase,
2001, Pridgeon & Chase, 2001). The high degree of
homoplasy in anatomical/morphological characters,
especially floral characters, limits their usefulness in
phylogenetic reconstruction of the subtribe.

LITERATURE CITED
Cameron, K.M., M.W. Chase, W.M. Whitten, P.J. Kores,
D.C. Jarrell, V.A. Albert, T. Yukawa, H.G. Hills and
D.H. Goldman. 1999. A phylogenetic analysis of the
Orchidaceae: evidence from rbcL nucleotide sequences.
Amer. J. Bot. 86: 208-224.
Chase, M.W., K.M. Cameron, H.G. Hills and D. Jarrell.
1994. DNA sequences and phylogenetics of the
Orchidaceae and other lilioid monocots. In A. M.
Pridgeon (ed.), Proceedings of the 14th World Orchid
Conference, 61-73. HMSO, Edinburgh, UK.
Hillis, D.M. 1998. Taxonomic sampling, phylogenetic accu-
racy, and investigator bias. Syst. Biol. 47: 3-8.
Johnson, L.A. and D.E. Soltis. 1995. Phylogenetic infer-
ence in Saxifragaceae sensu strict and Gilia
(Polemoniaceae) using matK sequences. Ann. Missouri
Bot. Gard. 82: 149-175.
Kores, P.J., K.M. Cameron, M. Molvray and M.W. Chase.
1997. The phylogenetic relationships of Orchidoideae
and Spiranthoideae (Orchidaceae) as inferred from rbcL
plastid sequences. Lindleyana 12: 1-11.


Kores, P.J., M. Molvray, S.D. Hopper, P.H. Weston, A.P.
Brown, K.M. Cameron and M.W. Chase. 2001. A phylo-
genetic analysis of Diurideae (Orchidaceae) based on
plastid DNA sequence data. Amer. J. Bot. 88: 1903-
1914.
Luer, C.A. 1986. Icones Pleurothallidinarum 1.
Systematics of the Pleurothallidinae (Orchidaceae).
Monogr. Syst. Bot. Missouri Bot. Gard. 15.
Pridgeon, A.M., R. Solano and M.W. Chase. 2001.
Phylogenetic relationships in Pleurothallidinae
(Orchidaceae): combined evidence from nuclear and
plastid DNA sequences. Amer. J. Bot. 88: 2286-2308.
Pridgeon, A.M. and M.W. Chase. 2001. A phylogenetic
reclassification of Pleurothallidinae (Orchidaceae).
Lindleyana 16: 235-271.
Ryan, A., W.M. Whitten, M.A. T. Johnson and M.W.
Chase. 2000. A phylogenetic assessment of Lycaste and
Anguloa (Orchidaceae: Maxillarieae). Lindleyana 15:
33-45.
Soltis, P.S., D.E. Soltis and M.W. Chase. 1999.
Angiosperm phylogeny inferred from multiple genes as
a tool for comparative biology. Nature 402: 402-404.
Stenzel, H. 2000. Pollen morphology of the subtribe
Pleurothallidinae Lindl. (Orchidaceae). Grana 39: 108-
125.
van den Berg, C. 2000. Molecular phylogenetics of tribe
Epidendreae with emphasis on subtribe Laeliinae
(Orchidaceae). Ph.D. thesis, University of Reading, UK.
van den Berg, C., W.E. Higgins, R.L. Dresser, W.M.
Whitten, M.A. Soto Arenas, A. Culham and M.W.
Chase. 2000. A phylogenetic analysis of Laeliinae
(Orchidaceae) based on sequence data from nuclear tran-
scribed spacers (ITS) of ribosomal DNA. Lindleyana 15:
96-114.
Whitten, W.M., N.H. Williams and M.W. Chase. 2000.
Subtribal and generic relationships of Maxillarieae
(Orchidaceae) with emphasis on Stanhopeinae: com-
bined molecular evidence. Amer. J. Bot. 87: 1842-1856.
Wiens, J.J. 1998. Combining data sets with different phy-
logenetic histories. Syst. Biol. 47: 568-581.


Alec M. Pridgeon was born in 1950 in Dallas, Texas, USA and received his Ph.D. in biology from Florida
State University, specializing in anatomy and systematics of orchids. He is presently Sainsbury Orchid
Fellow at the Royal Botanic Gardens, Kew, where he specializes in molecular phylogenetics and co-edits
and contributes to Genera Orchidacearum, a comprehensive multi-volume monograph of the orchid family.
Volumes 1-3 of Genera Orchidacearum have already been published by Oxford University Press, and
Volume 4 is in preparation.

Mark W. Chase was born in 1951 and received his Ph.D. in systematic botany from the University of
Michigan. His research interests include systematics and evolution of angiosperms, in particular
Orchidaceae. He is currently Head of the Molecular Systematics Section at the Royal Botanic Gardens, Kew,
and co-edits and contributes to Genera Orchidacearum.








LANKESTERIANA7: 51-53. 2003.


ANALYSIS FENETICO DE CARACTERES ANATOMICO-FOLIARES
DE TRICHOCENTRUMY GENEROUS RELACIONADOS
(ORCHIDACEAE, ONCIDIINAE)


ESTHELA SANDOVAL''3, TERESA TERRAZAS2 y ALEJANDRO VALLEJO'

"Instituto de Biologia, Universidad Nacional Aut6noma de Mexico
A.P. 70-614. C.P. 04510. Coyoacin, D.F. Mexico
2Programa de Botinica, Colegio de Postgraduados, Montecillos, 56230 Estado de Mexico, Mexico
3Autora para correspondencia: esz@ibiologia.unam.mx, winchi@colpos.colpos.mx


La subtribu Oncidiinae es un grupo de los mis
diversos en las Orchidaceae en t6rminos de su diver-
sidad floral, biologia de polinizaci6n, nuimero cro-
mos6mico y morfologia vegetativa. La subtribu tiene
mis de 1700 species distribuidas en cerca de 75
g6neros comuinmente reconocidos (Dressier 1993,
Williams et al. 2001). Varios g6neros clisicamente
definidos son ampliamente reconocidos como
polifileticos. La subtribu Oncidiinae, al igual que
Maxillariinae y Zygopetalinae, tiene una variedad de
sistemas de polinizaci6n y las clasificaciones basadas
en la morfologia floral estin en desacuerdo con las
filogenias moleculares, probablemente debido a con-
vergencias de los caracteres florales relacionados con
la polinizaci6n. Dentro de la subtribu Oncidiinae,
Oncidium es el g6nero mis rico en species y el mis
polim6rfico. Entre sus species se encuentra un grupo
muy distintivo, anteriormente conocido como "orejas
de burro", ubicado originalmente en 0. secci6n
Plurituberculata y otro llamado "colas de rata" ubica-
do en 0. secci6n Cebolletae (Garay & Stacy 1974).
Los miembros de estas secciones han sido clasifica-
dos en diferentes linajes dentro de Oncidiinae
(Williams & Dressler 1973, Chase, 1987, Chase &
Palmer 1989, 1992, K6niger 1997, William et al.
2001). Mis recientemente Williams et al. (2001)
basados en evidencias moleculares plantean la hip6te-
sis de que Oncidiinae incluye nueve clados. Uno de
ellos abarca las species de Oncidium secciones
Plurituberculata y Cebolletae, dos species de
Cyrtochilum y Trichocentrum sensu strict, confor-
mando el clado Trichocentrum. Este es uno de los
clados basales dentro de la propuesta de relaciones
filogeneticas de Williams et al. (2001) para la sub-


tribu Oncidiinae. Se ha demostrado que la anatomia
foliar contribute a distinguir y soportar clados dentro
de la subtribu, asi como grupos dentro del clado
Trichocentrum (Sandoval-Zapotitla & Terrazas
2001).

El present trabajo tiene como objetivo conocer la
similitud de los caracteres anat6mico-foliares de las
species del clado Trichocentrum y g6neros rela-
cionados mediante anilisis fen6tico y de ordenaci6n,
asi como identificar los caracteres foliares diagn6sti-
cos para distinguir entire species y g6neros.

La selecci6n de species para este trabajo se hizo a
partir de la revision de los trabajos de Chase y Palmer
(1989, 1992) y de Williams et al. (2201). Como part
del clado Trichocentrum se incluy6 a Trichocentrum
albiflorum (G. Salazar 5123), T. ascendens (R.
Jimenez 857), T. bicallosum (M.A. Soto 3236), T.
cavendishianum (G. Salazar 4707, R. Jimenez 964),
T. cebolleta (E. Perez 286), T. flavovirens (Leleu I
85), T. hoegei (M.A. Soto s.n.), T. luridum (R.
Jimenez s/n), T. microchilum (M.A. Soto s.n., E.
Hdgsater 4286), T. splendidum (s.n.), T. stramineum
(J. Garcia 668). Como g6neros relacionados se
incluy6 a Cuitlauzina pendula (M.A. Soto 4365),
Oncidium ampliatum (C. Lamas s.n.), 0. pulvinatum
(E. Hdgsater 11794), Osmoglossum dubium (Leleu
s.n.), Palumbina candida (M.A. Soto 3299),
Psychopsis papilio (s.n.), Rossioglossum grande (G.
Salazar s.n.), Trichopilia tortilis (M.A. Soto 4822) y
Maxillaria cucullata (M.A. Soto 5179), &sta iltima de
la subtribu Maxillariinae. Los caracteres cualitativos
y cuantitativos de los tejidos d&rmico, fundamental y
vascular de la hoja de cada especie correspondent a los








LANKESTERIANA


descritos por Sandoval-Zapotitla & Terrazas (2001)
para el clado Trichocentrum.

En el anilisis fen6tico se incluyeron 22 taxa (T.
cavendishianum y T. microchilum con dos repeti-
ciones) y 92 caracteres y se llev6 a cabo con el pro-
grama NTSYS 2.02i (Rohlf 1993). El anilisis de con-
glomerados fue calculado usando el Coeficiente de
Correlaci6n Momento-Producto de Pearson (CORR)
(Sneath y Sokal 1973) debido a que el 74% de los
caracteres es multiestado. Se sigui6 el m6todo
secuencial, aglomerativo, jerirquico y anidado
(SAHN), empleando la media aritmetica ponderada
(UPGMA), para general el fenograma. El anilisis de
ordenaci6n se realize mediante anilisis de compo-
nentes principles (ACP), usando una matriz de co-
rrelaci6n entire caracteres.

Los resultados de los analisis de conglomerados y
de ordenaci6n fueron consistentes entire si respect a
la agrupaci6n de los taxa. En ambos anilisis se identi-
ficaron dos grandes grupos. El grupo I subdividido
en: subgrupo "A" con Trichocentrum bicallosum, T.
cavendishianum, T. flavovirens, T. luridum, T.
microchilum, T. splendidum y T. stramineum; sub-
grupo "B" con T. ascendens y T cebolleta; subgrupo
"C" con Trichocentrum albiflorum, T. hoegei y
Trichopilia tortilis. El grupo II subdividido en: sub-
grupo "A" con Cuitlauzina pendula, Oncidium
ampliatum, Osmoglossum dubium, Palumbina candi-
da y Maxillaria cucullata; subgrupo "B" con
Oncidium pulvinatum, Psychopsis papilio y
Rossioglossum grande. El analisis de components
principles mostr6 que 25 caracteres tienen el mayor
valor de contribuci6n en los tres primeros compo-
nentes, de los cuales 14 son cuantitativos y 11 son
cualitativos. Los 14 caracteres cuantitativos fueron
evaluados mediante analisis de varianza para conocer
si existian diferencias estadisticamente significativas
entire los taxa.

Por otro lado, se encontr6 que del total de carac-
teres analizados, 21 caracteres son diagn6sticos para
los grupos resultantes; de ellos 15 son cuantitativos y
seis cualitativos. Por tanto, un total de 46 caracteres
resultaron tener significado taxon6mico para los taxa
en studio. Dichos caracteres estin relacionados con
la forma de la hoja, las papilas, las caracteristicas de


las c61ulas de la epidermis adaxial, el tipo de rebordes
de las c61ulas de la epidermis abaxial, la hipodermis
adaxial y el mes6filo, las caracteristicas de las c61ulas
con engrosamientos, las c61ulas buliformes, los haces
vasculares, los haces de fibras no vasculares y del haz
vascular central; asi como la presencia de estegmatas
y de espacios a6reos en la region basal. En t&rminos
de sus caracteres anat6mico-foliares, el clado
Trichocentrum (sensu Williams et al. 2001, o clado
Lophiaris, sensu Chase y Palmer 1992) es variable.
Sin embargo, los caracteres anat6mico-foliares de las
species de los subgrupos I"A", I"B" y I"C", consi-
deradas como parte del clado Trichocentrum, son mas
similares; tienen hojas distintivas con un mes6filo
grueso, grandes c61ulas con engrosamientos secunda-
rios espiralados en el mes6filo, sin hipodermis ni
c61ulas buliformes y una baja proporci6n de haces
vasculares en la zona central. Por otro lado, las
species del grupo II se caracterizan por tener hojas
con un mes6filo delgado, hipodermis adaxial, c61ulas
buliformes adaxiales y una alta proporci6n de haces
vasculares en la zona central. Sin embargo, 0.
ampliatum, 0. pulvinatum, Palumbina candida,
Psychopsis papilio y Rossioglossum grande, original-
mente integrantes del clado Lophiaris (sensu Chase y
Palmer 1992), tienen caracteristicas anat6mico-
foliares mas similares entire ellas, pero diferentes a las
de las species del grupo I. De esta comparaci6n se
concluye que los caracteres anat6micos ahora presen-
tados estin en acuerdo con la filogenia molecular
propuesta por Williams et al. (2001), ya que apoyan
las relaciones filogen6ticas de algunos miembros de
la subtribu Oncidiinae y del clado Trichocentrum. Se
detectaron caracteres que pueden considerarse diag-
n6sticos para grupos de species que deberin confir-
marse al estudiar un mayor nitmero de species de
Trichocentrum y g6neros relacionados.

LITERATURE CITADA
Chase, M.W. 1987. Systematic implications of pollinarium
morphology in Oncidium Sw., Odontoglossum Kunth,
and allied genera (Orchidaceae). Lindleyana 2: 8-28.
Chase, M.W. & J.D. Palmer. 1989. Chloroplast DNA sys-
tematics of the lilioid monocots: feasibility, resources,
and an example from the Orchidaceae. Amer. J. Bot. 76:
1720-1730.
Chase, M.W. & J.D. Palmer. 1992. Floral morphology and
chromosome number in subtribe Oncidiinae








SANDOVAL, TERRAZAS & VALLEJO Trichocentrum y g6neros relacionados


(Orchidaceae): evolutionary insights from a phylogenet-
ic analysis of chloroplast DNA restrictions site variation.
Pages 324-339 in P.S. Soltis, D.E. Soltis, and J.J. Doyle
(eds.), Molecular Systematics of Plants. Chapman and
Hall, New York.
Dresser, R.L. 1993. Phylogeny and Classification of the
Orchid Family. Dioscorides Press, Portland, Oregon.
Garay, L.A. & J.E. Stacy. 1974. Synopsis of the genus
Oncidium. Bradea 1: 393-424.
K6niger, W. 1997. Stilifblium a new name for the section
Cebolletae of the genus Oncidium as a new genus in
Subtribe Oncidiinae. Arcula 7:186-190.
Rohlf, F. J. 1993. NTSYS. Numerical taxonomy and mul-
tivariate analysis system. version 1.80. New York.


Sandoval-Zapotitla & T. Terrazas. 2001. Leaf anatomy of
16 taxa of the Trichocentrum clade (Orchidaceae:
Oncidiinae). Lindleyana 16(2): 81-93.
Sneath, P. H. A. & R. R. Sokal. 1973. Numerical taxono-
my. The principles and practice of numerical classifica-
tion. W. H. Freeman and Co. San Francisco, California.
Williams, N.H. & R.L. Dresser. 1973. Oncidium species
described by Jacquin and the typification of Oncidium.
Taxon 22: 221-227.
Williams, N.H. et al. 2001. Molecular systematics of the
Oncidiinae based on evidence from four DNA sequence
regions: expanded circumscriptions of Cyrtochilum,
Erycina, Otoglossum, and Trichocentrum and a new
genus (Orchidaceae).


Esthela Sandoval recibi6 su Licenciatura en 1985 y su Maestria en 1999, en la Facultad de Ciencias, UNAM.
Desde 1982 estudia la anatomia vegetativa de g6neros de Arecaceae, Amaranthaceae, Cactaceae y
Orchidaceae. A partir de 1982 es academica del Instituto de Biologia de la UNAM y desde 1989 es respon-
sable del Laboratorio de Apoyo a la Investigaci6n del Jardin Botinico. Ha impartido diversos cursos y cite-
dras en la Facultad de Ciencias de la UNAM, publicado trabajos anat6micos y se encuentra preparando un
libro sobre TUcnicas Histol6gicas. Ella vive en la Ciudad de M&xico con su esposo Alejandro y su hija Tania
Gabriela.


Mayo 2003








LANKESTERIANA 7: 54-56. 2003.


ANATOMIA VEGETATIVA DE MEXIPEDIUMXEROPHYTICUM (SOTO,
SALAZAR & HAGSATER) V. A. ALBERT & M. W. CHASE Y GENEROUS
RELACIONADOS (ORCHIDACEAE, CYPRIPEDIOIDEAE)


ESTHELA SANDOVAL''3, TERESA TERRAZAS2, GERARDO SALAZAR',
ALEJANDRO VALLEJO' & BARBARA ESTRADA'

"Instituto de Biologia, Universidad Nacional Aut6noma de Mexico
A.P. 70-614. C.P. 04510. Coyoacan, D.F. Mexico
'Programa de Botanica, Colegio de Postgraduados, Montecillos, 56230 Estado de Mexico, Mexico
'Autor para correspondencia: esz@ibiologia.unam.mx


La subfamilia Cypripedioideae incluye los g6neros
Cypripedium, Selenipedium, Phragmipedium,
Paphiopedilum y Mexipedium (Albert 1994). Este
uiltimo recien identificado como g6nero monoespeci-
fico, xerofitico, de hibito rupicola y endemico de
Oaxaca, Mexico (Albert y Chase 1992). Numerosos
trabajos con diversos enfoques, se han publicado
sobre la anatomia vegetativa descriptive y sistemitica
de los primeros cuatro g6neros (Albert 1994, Arditti
1992, Atwood y Williams 1978, 1979; Lawton et al.
1992, Pridgeon 1981, 1986, 1987; Pridgeon et al.
1983, Rosso 1966, Williams 1979). Sin embargo, la
anatomia de Mexipedium xerophyticum no habia sido
elaborada.

El present studio tiene la finalidad de presentar la
descripci6n anat6mica de los 6rganos vegetativos
maduros de Mexipedium ..- -7, ,;'. if, dar una inter-
pretaci6n ecol6gica de algunos caracteres anat6micos
y compararlos con los datos anat6micos previamente
presentados para los otros g6neros de la misma subfa-
milia. Se fijaron muestras de hoja, estol6n y raiz de
M. xerophyticum (G. Salazar 3740) en una soluci6n
de Formol-Alcohol-Acido ac&tico-Agua, para proce-
sarlas seguin las t&cnicas histol6gicas convencionales
de inclusion en parafina. Se analizaron 43 caracteres
cualitativos y cuantitativos de los tejidos dermico,
fundamental y vascular de cada 6rgano. Las observa-
ciones y fotomicrografias se realizaron en un fotomi-
croscopio Axioskop-Carl Zeiss, las medicines rea-
lizadas se tomaron con un ocular micrometrico adap-
tado al microscopio. Las imfgenes obtenidas fueron
digitalizadas y posteriormente editadas con el progra-


ma Paint Shop Pro 7.5. Los detalles de velamen y
exodermis de la raiz fueron observados en microsco-
pio electr6nico de barrido.

La descripci6n anat6mica de esta especie incluye
caracteres cualitativos, los valores cuantitativos regis-
trados representan la media aritmetica de 20
mediciones en cada caricter. Estos resultados fueron
comparados con los datos de otros autores para el
resto de los g6neros de Cypripedioideae.

Los caracteres anat6micos distintivos de
Mexipedium xerophyticum son: a nivel de la hoja,
celulas de la epidermis abaxial no diferenciadas en
costales e intercostales, una vena central inconspicua
y ausencia de celulas endodermales en la vaina de
esclerenquima de los haces vasculares; a nivel de la
raiz la presencia de tilosomas de tipo esponjoso. La
mayoria de los caracteres anat6micos de M. xero-
phyticum se interpretan como xerom6rficos, lo que le
permit resistir ambientes con alto estres hidrico fi-
siol6gico o ambiental. Estos caracteres xerom6rficos
son: posicion erecta de la hoja, tamafio reducido de la
hoja, textura coriacea, presencia de pequefias escamas
y places cerosas asi como una cuticula gruesa,
estomas s61lo en superficie abaxial y semihundidos,
abundantes pero pequefios, con rebordes cuticulares
externos a manera de collar cuticular formando una
camara aislante por encima del estoma. Se ha estable-
cido que estas cavidades hiperestomiticas reduce la
transpiraci6n al incrementar la via a lo largo de la
cual el vapor de agua debe difundir para dejar las
hojas y atrapar el aire hiumedo estancado fuera del








SANDOVAL et al. Anatomia vegetativa de Mexipedium xerophyticum


poro estomitico. El desarrollo de estos rebordes
cuticulares parecen predominar en habitats secos
(Sinclair 1987). Grandes celulas epid&rmicas adaxi-
ales con paredes engrosadas, especializadas para el
almacenamiento de agua, y una cuticula gruesa tam-
bien son adaptaciones a condiciones xericas (Arditti
1992).

En la raiz, como caracteres xerom6rficos, tenemos:
abundantes tricomas; velamen con un elevado
nuimero de estratos, numerosas perforaciones entire
sus paredes propiciando que el transport del agua
hacia los tejidos intemos sea mis eficiente y permi-
tiendo el paso libre al aire, agua o nutrients a traves
del tejido. Tilosomas de tipo esponjoso, exodermis y
endodermis con celulas de paredes muy engrosadas,
fuertemente lignificadas y una medula parenquimiti-
ca son otros caracteres que permiten la adaptaci6n de
las species a ambientes secos.

Mexipedium xerophyticum crece a nivel del suelo,
donde la incidencia de luz suele ser escasa y difusa.
La presencia de micropapilas como omamentaciones
epid&rmicas permit una mejor captaci6n de luz por
diferentes angulos oblicuos; las hojas estin erguidas,
por lo que la mayor captaci6n de luz se lleva a cabo
en la superficie abaxial y es aqui donde se observ6
un mejor desarrollo de micropapilas. Las celulas
parenquimiticas del extreme abaxial del mes6filo
son las que tienen mayor nuimero de cloroplastos.
Estos dos caracteres parecen ser una ventaja adaptati-
va para una mayor y mis eficiente actividad fotosin-
t6tica. Esta posici6n de las hojas se debe al desarrollo
de estructuras que permiten un soporte mecdnico adi-
cional, al mismo tiempo resistir fuertes vientos a los
que esti expuesta la plant. Esto es possible mediante
el desarrollo de paredes anticlinales gruesas en las
celulas epid&rmicas, un nuimero relativamente alto de
haces vasculares por milimetro, y cada haz con una
vaina de esclerenquima en ambos polos. Ademis de
la resistencia mecdnica, el mayor nimero de haces
permit un mayor y mis eficiente transport hidrico
en la plant, necesario para responder a cortos perio-
dos de disponibilidad de agua. La presencia de abun-
dantes cristales de oxalato de calcio en el mes6filo de
la hoja y en la medula del estol6n se debe a que
Mexipedium xerophyticum es una plant que crece en


suelos rocosos con alto contenido de carbonatos y
calizas.

Albert y Pettersson (1994) mencionan que las simi-
litudes moleculares y morfol6gicas entire
Paphiopedilum sensu strict, Phragmipedium y
Mexipedium son mis prominentes que sus diferen-
cias. A partir del analisis anat6mico, se puede afirmar
que estas mismas relaciones de similitud son encon-
tradas entire los tres g6neros. Los caracteres compar-
tidos por estos tres g6neros son: hojas gruesas, ver-
naci6n conduplicada, venas laterales inconspicuas,
celulas epid&rmicas adaxiales no diferenciadas como
costales e intercostales, celulas epid&rmicas con
paredes anticlinales rectas, celulas epidermicas con
paredes tangenciales externas gruesas, grandes celu-
las en epidermis adaxial, hojas hipostomiticas, pres-
encia de micropapilas en la epidermis abaxial de
alguna de sus species, menor proporci6n de mes6fi-
lo en la hoja, raiz camosa, velamen de tipo Calanthe,
mis de cuatro estratos en el velamen, presencia de
hongos filamentosos en el velamen; ninguin con-
tenido evidence en las celulas del c6rtex y de 8 a 17
arcos en el tejido vascular de la raiz. Ademis
Mexipedium compare con Phragmipedium la pres-
encia de una cuticula gruesa, ausencia de tricomas y
la presencia de tilosomas aunque tambien estin pre-
sentes en Paphiopedilum fairrieanum. Mexipedium
compare con Selenipedium la ausencia de hojas tese-
ladas, presencia de un s6lo estrato en la endodermis
de la raiz y c6lulas de la endodermis con
engrosamientos del tipo U. Mexipedium compare
con Cypripedium la ausencia de hojas teseladas y la
presencia de celulas del periciclo con paredes del-
gadas excepto en C. irapeanum).


LITERATURE CITADA
Albert, V. A. 1994. Cladistic relationships of the slipper
orchids (Cypripedioideae:Orchidaceae) from congruent
morphological and molecular data. Lindleyana 9: 115-
132.
Albert, V. A. & M. W. Chase. 1992. Mexipedium: a new
genus of slipper orchid (Cypripediuoideae:
Orchidaceae). Lindleyana 7: 172-176.
Albert, V. A. & B. Pettersson. 1994. Expansion of genus
Paphiopedilum Pfitzer to include all conduplicate-
leaved slipper orchids (Cypripedioideae: Orchidaceae).
Lindleyana 9: 133-139.


Mayo 2003









LANKESTERIANA


Arditti, J. 1992. Anatomy. In: J. Arditti (ed.).
Fundamentals of Orchid Biology. J. Wiley and Sons,
Inc. New York. 691 pp.
Atwood, J. T. & N. H. Williams, F. L. S. 1978. The utility
of epidermal cell features in Phragmipedium and
Paphiopedilum (Orchidaceae) for determining sterile
specimens. Selbyana 2: 356 366.
Atwood, J. T. & N. H. Williams, F. L. S. 1979. Surface
features of the adaxial epidermis in the conduplicate-
leaved Cypripedioideae (Orchidaceae). J. Linn. Soc.
(Bot.) 78: 141-256.
Lawton, J. R., E. F. Hennessy & T. A. Hedge. 1992.
Morphology and ultrastructure of the leaf of three
species of Paphiopedilum (Orchidaceae). Lindleyana 7:
199-205.
Ledoux, M. 1996. The diminutive Phragmipedium xero-
phyticum. Orchid Digest. 60: 122-128.
Pridgeon, A. M. 1981. Absorbing trichomes in the
Pleurothallidinae (Orchidaceae). Amer. J. Bot. 68: 64-71.
Pridgeon, A. M. 1986. Anatomical adaptations in
Orchidaceae. Lindleyana 1: 90- 101.


Pridgeon, A. M. 1987. The velamen and exodermis of
orchid roots. In: J. Arditti (ed.). Orchid Biology:
Reviews and Perspectives IV. Comstock Publishing
Associates. Cornell University Press. Ithaca, New York.
139-192.
Pridgeon, A.M., W.L. Stern & D.H. Benzing. 1983.
Tilosomes in roots of Orchidaceae: Morphology and
systematic ocurrence. Amer. J. Bot 70: 1365-1377.
Rosso, S.W. 1966. The vegetative anatomy of the
Cypripedioideae (Orchidaceae). J. Linn.. Soc. (Bot.) 59:
309-341.
Sinclair, R. 1987. Water relations in Orchids. In: J. Arditti
(ed.), Orchid Biology: Reviews and Perspectives V.
Comstock Publ. Assoc. Cornell University Press. Ithaca,
New York. 63-119.
Soto, M.A., G.A. Salazar & E. Hagsater. 1990.
Phragmipedium xerophyticum, una nueva especie del
sureste de Mexico. Orquidea (Mex.) 12:1-10.
Williams, N. H. 1979. Subsidiary-cells in the Orchidaceae:
their general distribution with special reference to devel-
opment in the Oncidieae. J. Linn. Soc. (Bot.) 78: 41- 66.


Esthela Sandoval recibi6 su Licenciatura en 1985 y su Maestria en 1999, en la Facultad de Ciencias, UNAM.
Desde 1982 estudia la anatomia vegetativa de g6neros de Arecaceae, Amaranthaceae, Cactaceae y
Orchidaceae. A partir de 1982 es academica del Instituto de Biologia de la UNAM y desde 1989 es respon-
sable del Laboratorio de Apoyo a la Investigaci6n del Jardin Botinico. Ha impartido diversos cursos y cite-
dras en la Facultad de Ciencias de la UNAM, publicado trabajos anat6micos y se encuentra preparando un
libro sobre T&cnicas Histol6gicas. Ella vive en la Ciudad de M&xico con su esposo Alejandro y su hija Tania
Gabriela.








LANKESTERIANA7: 57-60. 2003.


TOWARD A PHYLOGENY OF MAXILLARIINAE ORCHIDS:
MULTIDISCIPLINARY STUDIES
WITH EMPHASIS ON BRAZILIAN SPECIES


RODRIGO B. SINGER & SAMANTHA KOEHLER

Departamento de Botinica, I.B., Universidade Estadual de Campinas
Campinas, SP, Brazil, 13083-970. rbsingerl@yahoo.com


It has been demonstrated that the neotropical sub-
tribe Maxillariinae comprises a well-supported mono-
phyletic orchid group, according to cladistic analyses
of nuclear and chloroplast DNA regions (Whitten et
al. 2000). The results presented by Whitten et al.
(2000) brought to light significant changes concern-
ing the delimitation of the subtribe Maxillariinae.
First, in order to avoid the description of an additional
subtribe within the Maxillarieae to place the genus
Xylobium Lindl., orchids formerly assigned to the
subtribes Lycastinae and Bifrenariinae (Dressler
1993), including Xylobium, were merged into a
broader Maxillariinae. This taxonomic decision is
also supported by floral and vegetative characters.
Second, it has been demonstrated that Maxillaria
Ruiz & Pav., by far the largest genus in the subtribe,
is polyphyletic, since species of Cryptocentrum
Benth., Chrysocycnis Linden & Rchb.f., Mormolyca
Fenzl and Trigonidium Lindl. appeared nested within
Maxillaria (M. Whitten and N. Williams, pers.
comm.). Once again, this seems to be a very reason-
able finding, since Maxillaria as currently accepted
comprises plants with extremely dissimilar vegetative
architectures.
In order to contribute with the reevaluation of the
generic boundaries within the subtribe Maxillariinae
(sensu Whitten), a team of Brazilian researchers,
including molecular and field biologists as well as
chemists has been brought together in a multidiscipli-
nary project. Our goals are (1) to conduct morpholog-
ical studies of vegetative and flower features of repre-
sentative species; (2) to determine the chemical struc-
ture of flower rewards and fragrances of representa-
tive species; (3) to perform pollination and breeding
system studies with representative species and; (4) to
perform sequencing of multiple DNA regions (nrITS,


trnL-F, matK, atpb) of Brazilian Maxillariinae species
with emphasis on Brazilian endemic groups, in col-
laboration with W.M. Whitten and N.H. Williams
(Florida Museum of Natural History, University of
Florida, U.S.A.). Here we present a brief account of
the results of morphological studies, with emphasis
on variability of flower features, especially pollinari-
um morphology, among different alliances of
Brazilian Maxillariinae species. Infrageneric classifi-
cation into alliances follows Pabst & Dungs (1977).

Acquisition of specimens. The existence of two large
living orchid collections in the state of Sao Paulo,
located at the "Instituto de Botinica de Sao Paulo"
and at the "Escola Superior de Agronomia Luiz de
Queiroz" has allowed the collection of samples for
DNA studies as well as of fresh flowers for morpho-
logical studies. The cultivation of plants also makes
possible the observation and comparison of the vege-
tative architecture of different species. Another
advantage of such complete living collections is the
possibility to conduct breeding system studies as well
as to observe eventual pollinators, as many bee
species occur in the area of the collections. Voucher
materials of the individuals sampled are being
deposited at the SP and UEC herbaria.

Morphological features. Vegetative features are
known to present large variation within the
Maxillariinae. Plants may or may not bear pseudob-
ulbs and the rhizome, when present, may be long and
apparent or extremely short. The number of leaves
may vary from one to three in Brazilian species.
Flower features are quite conservative. The lip is
articulated (rarely fused) to the base of the column.
The anther is incumbent and holds a pollinarium with
four pollinia. The pollinarium always bears a well-







58 LANKESTERIANA N 7



















11mm
IN V


,^ I








D IIn

















5mm

Figure 1. Examples of studied taxa of Maxillariinae. A-C. Maxillaria picta Hook. A. Flower in lateral view. B.
Column, with lip hinged at its base. C. Pollinarium. D-F. Maxillaria parviflora (Poepp. & Endl.) Garay. D. Flower in lat-
eral view. E. Lip and column in lateral view. F. Pollinarium. G-I. Trigonidium obtusum Lindl. G. Flower in lateral view.
H. Column with lip hinged at its base. I. Pollinarium.








SINGER & KOEHLER Phylogeny of Maxillariinaes


developed viscidium. Pollinium stalks (namely, tegu-
lar stipes) may or not be present.
Some vegetative and flower features appeared to be
highly conservative within the Maxillaria alliances
studied. Interestingly, these morphological conserva-
tive alliances appeared as monophyletic groups
according to preliminary molecular data (M. Whitten,
pers. comm.). The 'Maxillaria picta' alliance compris-
es species whose pseudobulbs are always bifoliate.
Besides, flowers of this orchid assemblage are gener-
ally rewardless and present pollinaria devoid of
stipes. The 'Maxillaria madida' alliance possesses a
different and remarkable situation. Whereas vegeta-
tive features, such as the number and width of the
leaves and length of the rhizome, are quite variable,
the flowers present an extremely similar morphology.
Up to this moment, species from this alliance have
shown to be rewardless, the flowers being yellowish,
brownish or vinaceous and displaying a shining,
smooth labellum. Pollinarium structure is also very
conservative within this alliance, with most species
bearing a semilunar, often thickened viscidium,
attached to large tegular stipes.

Moreover, both the 'Maxillaria discolor' and the
'Maxillaria valenzuelana' alliances present rewarding
flowers (with trichomes, wax-like or resin-like com-
pounds) and very similar pollinarium structure, since
most species show a semilunar viscidium and large
tegular stipes. Preliminary molecular data suggest
these alliances are close related (M. Whitten, pers.
comm.). They include species either with unifoliate
pseudobulbs or without pseudobulbs, as Maxillaria
valenzuelana (A. Rich.) Nash and M. equitans
(Schltr.) Garay, respectively. Similar vegetative shifts
(unifoliate pseudobulbs to pseudobulbless plants)
have already been verified in well-supported mono-
phyletic groups of Oncidiinae, namely the Notylia-
Macroclinium and Erycina-Psygmorchis complexes
(Williams et al. 2001). The loss of the pseudobulb in
Maxillariinae may represent a heterochronic shift
with retention of seedling morphological features
(neoteny), as already suggested for Oncidiinae (Chase
1986).

Reproductive biology. Field observations by R.B.
Singer indicate that Hymenoptera, especially
Meliponinae bees, are the main pollinators of


Brazilian Maxillariinae. Flower, and particularly, the
pollinarium structure are well suited for this kind of
pollinators. The well-developed semilunar viscidium
embraces the scutellum of the Hymenopteran pollina-
tor when the insect retreats the flower. Such pollinari-
um deposition is ecologically significant, since the
scutellum is a difficult place for the insects to clean.
Noteworthy, Maxillaria species that present round,
pad-like viscidia, such as Maxillaria parviflora
(Poepp. & Endl.) Garay, have pollinaria deposition on
the face of their pollinators. To date, we have record-
ed bumble-bee and Euglossine pollination in
Bifrenaria harrisoniae (Hook.) Rchb.f., ant and bee
(Meliponini) pollination in M. parviflora, and
Meliponinae and wasp pollination in several species
of the 'Maxillaria picta' alliance. Pollination through
pseudocopulation mediated by Plebeia (Meliponinae)
drones was recently confirmed in Trigonidium
obtusum Lindl. (Singer 2002). We also have found
nectar in M. rigida Barb. Rodr. and M. parviflora.

In the past, flower features have been widely used
in orchid taxonomy. However, it seems that vegeta-
tive features are less subject to homoplasy in the
subtribe Maxillariinae and we should pay more
attention to these characters in phylogenetic studies.
A good example of this is the old concept of
Oncidium Sw. Until a few years ago, Oncidium was
a vegetative diverse genus with more than 400
species, composed of plants with more or less simi-
lar flowers (predominantly yellow, with some brown
spotting, quite often bearing complex elaiophores).
Williams et al. (2001) have demonstrated that the
genus Oncidium, as formerly circumscribed, repre-
sents a polyphyletic assemblage of plants defined by
its morphologically similar flowers which are attrac-
tive to similar pollinators (mostly oil-gathering bees
of family Apidae). Instead, "Oncidium-like" flowers
have arisen several times in subtribe Oncidiinae
(Williams et al. 2001).


ACKNOWLEDGEMENTS. Both authors acknowledge their
advisor, Maria do Carmo E. Amaral, from the Botany
Department of Universidade Estadual de Campinas, Brazil.
This contribution was made possible through grants con-
ferred by FAPESP (Fundagio ao Amparo A Pesquisa do
Estado de Sio Paulo, processes 01/08958-1 and 02/02161-
7) for both authors.


Mayo 2003








LANKESTERIANA


LITERATURE CITED
Chase, M.W. 1986. A reappraisal of the Oncidioid
Orchids. Syst. Bot. 11 (3): 477-491.
Dressier, R.L. 1993. Phylogeny and classification of the
orchid family. Dioscorides Press, Oregon.
Pabst, G. & F. Dungs. 1977. Orchidaceae Brasilienses Vol.
2. Hildesheim, Brucke.
Singer, R.B. 2002. The pollination mechanism in
Trigonidium obtusum Lindl. (Orchidaceae:
Maxillariinae): sexual mimicry and trap-flowers. Ann.
Bot. London 89 (2): 157-163.


Whitten, W.M., N.H. Williams & M.W. Chase. 2000.
Subtribal and generic relationship of Maxillarieae
(Orchidaceae) with emphasis on Stanhopeinae: com-
bined molecular evidence. Amer. J. Bot. 87 (12): 1842-
1856.
Williams, N.H., M.W. Chase, T. Fulcher & W.M. Whitten.
2001. Molecular Systematics of the Oncidiinae based on
evidence from four DNA sequence regions: expanded
circumscriptions of Cyrtochylum, Erycina, Otoglossum
and Trichocentrum and a new genus (Orchidaceae).
Lindleyana 16(3): 113-139.


Rodrigo Singer is a post-doctoral researcher at the Department of Botany of Universidade Estadual de Campinas
(Unicamp), SAio Paulo, Brazil. Rodrigo has extensive field experience in Southeastern Brazil as well as with
breeding systems and pollination biology studies of several Brazilian orchid groups. His current research activi-
ties involve phylogenetic, morphological, breeding systems and pollination biology studies of orchids from the
subtribe Maxillariinae.

Samantha Koehler is a graduate student at the same institution. She recently completed a phylogenetic study of
Bifrenaria. Her dissertation involves phylogeny, systematics and diversification of the Brazilian Maxillaria
madida complex.








LANKESTERIANA7: 61-62. 2003.


MOLECULAR PHYLOGENETICS AND GENERIC CONCEPTS
IN THE MAXILLARIEAE (ORCHIDACEAE)


NORRIS H. WILLIAMS' & W. MARK WRITTEN

University of Florida, Florida Museum of Natural History. Gainesville FL 32611-7800. USA.
orchid@flmnh.ufl.edu whitten@flmnh.ufl.edu
'Author for correspondence


Tribe Maxillarieae account for approximately 10%
(>2800 species) of Orchidaceae and are a major com-
ponent of the Neotropical epiphytic flora. Pollination
systems include 1) male euglossine-bee fragrance
rewards in four subtribes, 2) oil reward systems and
mimicry in some groups, 3) nectar rewards in a wide
range of taxa, and 4) pseudocopulation in some
Maxillariinae and some Oncidiinae. Generic and sub-
tribal limits have been chaotic. Current, ongoing tax-
onomic treatments offer little hope of stability unless
the revisions are based upon well-sampled molecular
and morphological cladograms. Several classically
defined genera are widely recognized as being poly-
phyletic. Our delimitations of subtribes and genera in
these advanced Neotropical groups are based on well
supported cladograms from combined analyses of
nuclear (ITS) and plastid (matK, trnL-F intron-spacer,
and the atpB-rbcL intergenic spacer) sequences.

We recognize subtribes Coeliopsidinae, Maxillarii-
nae, Oncidiinae, Stanhopeinae, Zygopetalinae, and a
monotypic Eriopsidinae sister to these other subtribes.
Subtribes Coeliopsidinae and Stanhopeinae are polli-
nated exclusively by male euglossine bees utilizing
many different sites for pollinarium placement; the
molecular phylogeny agrees closely with traditional
generic limits based on morphology. Maxillariinae,
Oncidiinae, and Zygopetalinae have a variety of polli-
nation systems and classifications based on floral mor-
phology disagree with molecular phylogenies, proba-
bly because of convergence to pollination-related flo-
ral characters. Oncidiinae are one of the most diverse
groups in the Orchidaceae in terms of floral diversity
and pollination biology, chromosomal numbers, and
vegetative morphology. The subtribe has more than
1,000 species (possibly as many as 1,800 species) dis-
tributed in over 75 currently recognized genera.


In the Oncidiinae we have sequenced 545 species
representing 84 generic concepts for one sequence
(ITS) and 240 species for two additional sequences
(matK and trnL). We have also sequenced 114 taxa for
the atpB-rbcL intergenic spacer. We investigated the
usefulness of elongation factor 1-alpha as a potentially
useful region for species level questions, but it appears
to be a gene family and while it might be useful in
understanding intrageneric relationships, it proved to
be not useful at the generic level. The external tran-
scribed spacers of Tolumnia and Erycina were ampli-
fied with 26S and 18S primers, followed by cloning of
the PCR products and sequencing with the 18S primer
(reverse). Technically, the sequences are good, but the
variation is too great for alignment at the interspecific
level. ETS may be useful at intraspecific levels in
Tolumnia, but more work is needed.
The formerly recognized subtribes Lockhartiinae,
Pachyphyllinae, Ornithocephaline, and Telipogoninae
are all embedded in the Oncidiinae and form a well
supported clade.
We have done combined analyses of a four region
matrix for the Oncidium/Odontoglossum complex,
and find that by using all four regions combined the
support and resolution is greatly increased.
The results confirm the non-monophyletic nature of
Oncidium and suggest ( .. "... .. . Cochlioda,
Collarestuartense, Mexicoa, Miltonioides, Odonto-
glossum, Sigmatostalix, Solenidiopsis, and Symphy-
glossum could be merged into Oncidium. However,
more extensive work on ITS in this group shows sev-
eral clades in the Oncidium/Odontoglossum group:

1. a broad Oncidium, including Miltonioides,
Mexicoa, Sigmatostalix, one species of Odonto-
glossum, and the majority of Oncidium species
sampled so far;








LANKESTERIANA


2. the Oncidium obryzatum (correctly Oncidium.
klotzschianum Rchb.f.) group of three species;
3. Cochlioda, Solenidiopsis and closely related
species of the Odontoglossum multistellare group
(= Collarestuartense);
4. two broad Odontoglossum groups of species
groups, including Symphyglossum and the majori-
ty of Odontoglossum species sampled so far;
5. a one species clade of Odontoglossum povedanum;
6. a two species clade of an undescribed species from
Panama (provisionally called Oncidium
zelenkoanum) and Oncidium obryzatoides;
7. a clade of the Oncidium fuscatum alliance of six
species of Oncidium (= Chamaeleorchis Senghas
& Liickel);
8. a clade of the Oncidium cheirophorum/Oncidium
ornithorrhynchum group of species;
9. the clade of the Oncidium heteranthum group of
species; and
10.Oncidium excavatum, an anomalous species in
many respects.

The combined plastid and nuclear data show the
best resolution into recognizable groups, although
even this demonstrates the necessity of completing
the data matrix and filling in missing clades from the
larger 545 taxon ITS only matrix. At this stage we
foresee the following possibilities: a core Oncidium
(including Mexicoa and Miltonioides); Sigmatostalix;
a new genus for the Oncidium zelenkoanum clade;


recognizing Collarestuartense for the Odontoglossum
multistellare clade; a core of two groups in
Odontoglossum (including Symphyglossum); the
Oncidium fuscatum clade (( ......... ..... -,. a new
genus for the Oncidium cheirophorum clade; a new
genus for the Oncidium heteranthum group; and
probably a monotypic genus for Oncidium
excavatum.
Based on well supported cladograms, we have
made numerous taxonomic changes: 1) the 'mule-ear'
(Lophiaris) and 'rat-tail' (Cohniella) oncidiums were
transferred into Trichocentrum; 2) Psygmorchis and
Oncidium crista-galli were transferred to Erycina; 3)
Oncidium section Serpentia was transferred to
Otoglossum; 4) Oncidium sect. Cucullata was trans-
ferred to Caucaea; 5) Cyrtochilum was redefined to
include Dasyglossum, Neodryas, Rusbyella, and
Trigonochilum and is distinct from the core group of
Oncidium; 6) Anneliesia was included in Miltonia; 7)
Tolumnia includes Braasiella, Gudrunia, Hispaniella,
and Olgasis. On the basis of molecular data for four
sequence regions we have segregated three new gen-
era from Oncidium: ( ..... Cyrtochiloides, and
Zelenkoa for species previously included in
Oncidium.

With the results we have to date, we feel more com-
fortable segregating several clades as distinct genera,
rather than lumping everything into Oncidium. We
feel that this approach will be accepted by the public
and other workers rather than other possible courses
of action.


Norris H. Williams, Ph.D., is Curator of Vascular Plants at the University of Florida, Florida Museum of
Natural History Herbarium, and has worked on floral fragrances, pollination biology, and the systematics
and evolution of orchids. He is currently spending most of his time on studies of the molecular systematics
of Neotropical Orchidaceae.

W. Mark Whitten, Ph.D., is Senior Biologist at the University of Florida Herbarium and has worked on floral
fragrances, pollination biology, and systematics and evolution of orchids. He is also currently spending most
of his time on studies of the molecular systematics of Neotropical Orchidaceae.


















1' CONGRESS INTERNATIONAL DE ORQUIDEOLOGiA NEOTROPICAL
1 INTERNATIONAL CONFERENCE ON NEOTROPICAL ORCHIDOLOGY


Sesi6n / Session

STUDIOS DE POBLACIONES

POPULATION STUDIES








LANKESTERIANA7: 65-66. 2003.


EL AREA FOTOSINTETICA COMO INDICADOR DE LA PRODUCTION
DE FLORES EN LEPANTHES SANGUINEA


MARIA M. AGOSTO PEDROZA & RAYMOND L. TREMBLAY'

Universidad de Puerto Rico Humacao, Departamento de Biologia 100 carr. 908, Humacao, Puerto Rico 00791.
'Autor para correspondencia: ni m.,.i., ihp. f IIp! cd,,


En general, la reproducci6n en las orquideas estai
limitada por el acceso a los polinizadores;
(Tremblay, Ackerman, Zimmerman & Calvo, en
revision); no obstante, la reproducci6n en la mayoria
de las plants esti limitada por el acceso a recursos.
Hay algunos ejemplos de limitaci6n por recursos en
orquideas; asi en la orquidea Myrmecophila tibicinis
las plants que son "fertilizadas" por desechos de
hormigas realizan un mayor esfuerzo reproductive
(Rico-Gray et al.,1989). Ademis, Mattila (2000)
observ6 que la producci6n de frutos en Platanthera
bifolia esti limitada por el acceso al agua. Pero, en
general, cuando se observa limitaci6n por recursos
en orquideas el efecto no es inmediato, sino a largo
plazo (miultiples afios). El efecto de reducir los
recursos a las plants es una reducci6n en produc-
ci6n de frutos, flores y crecimiento en los afios sub-
siguientes, no de inmediato (Montalvo & Ackerman
1987, Zimmerman & Aide 1989, Calvo 1990, Snow
& Whigham 1989, Primack & Hall 1990). El acceso
a luz para fotosintesis podria ser uno de los factors
limitantes para la reproducci6n en orquideas. El area
fotosintetica puede ser un factor important en la
determinaci6n de la presencia de flores en una plan-
ta. En este trabajo determinamos el area fotosinteti-
ca en treinta plants de la orquidea Lepanthes san-
guinea y evaluamos su relaci6n con el esfuerzo
reproductive.

Para esta investigaci6n se utilizaron treinta plants
de Lepanthes sanguine Hook. Esta se encuentra
distribuida desde la Sierra de Cayey hasta las
Montafias de Luquillo en Puerto Rico (Ackerman
1995). Las plants se estudiaron ex situ creciendo en
invernaderos, donde las temperatures varian entire 21
y 27 C y la humedad entire 70% y 95%.
El area fotosintetica se midi6 con un papel milime-
trado (mm2) en forma de transparencia. A cada plant
se le sum6 el area fotosintetica de todas las hojas para


obtener el area fotosintetica total. Por medio de esto
pudimos comparar el area fotosintetica de las hojas
con la producci6n total de flores de cada plant, para
determinar si existe una correlaci6n. Las hojas con
evidencia de inflorescencias (verdes o secas) se con-
sideraron como hojas con flores. Para determinar si
hay diferencia en el area fotosintetica entire hojas con
flores y hojas sin flores se utiliz6 una prueba de t- no
pareada (Zar 1999). En esta prueba, el area fotosin-
t6tica total fue convertida a logaritmo del area para
reducir la heterocedasticidad y normalizar los datos.
Se hizo una regresi6n lineal para comprobar si hay
una correlaci6n entire el nuimero de hojas con flores y
el area total de hojas.

El irea fotosintetica estfi directamante relacionada
con la producci6n de flores. El area minima de hojas
con flores es 60.0 mm2. Los resultados muestran un
area promedio de 2.569 mm2 para las hojas con flo-
res y de 1.897 mm2 para las hojas sin flores. El area
fotosintetica de las hojas con flores es en promedio
35% mayor que el area de las hojas que no produce
flores (t-no pareada, p < 0.0001).


0.

0 _0


0I I I
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Log (area total de hojas)

Figura 1. Correlaci6n entire el area fotosint6tica y el
nfimero de flores producidas en Lepanthes sanguine,
y - 0.939 + 0.425x; r2 0.30; p< 0.002 .








LANKESTERIANA


La regresi6n lineal muestra una correlaci6n significa-
tiva y positive entire el Area fotosintetica total de la
plant y el Area fotosint6tica con flores (S'=0.967, gl =
1, P < 0.002). La regresi6n lineal explica solamente
parte de la varianza (rV= 0.30). Segun estas pruebas, el
Area fotosint6tica parece estar directamente relacionada
con la presencia de flores y es un buen indicador del
esfuerzo reproductive de la orquidea.
En general, la estructura mis important para la pro-
ductividad de una plant son las hojas (Ticha 1985). El
Area fotosintetica parece ser un buen indicador de la
presencia de flores de L. sanguine. Stephenson (1981)
encontr6 que las plants con hojas grandes tienen una
superficie fotosint6tica mayor y, por tanto, tienen una
gran capacidad de relocalizar energia para la reproduc-
ci6n. En esta investigaci6n pudimos constatar que las
plants con mayor Area fotosintetica tenian mayor
numero de flores. Algunas plants tienen mas hojas por
Area fotosint6tica que otras; esto puede deberse a difer-
encias estacionales (Kindlmann & BalounovA 1999),
estres ambiental (Primack et al. 1994) o a diferencias
geneticas. Si el Area fotosintetica es menor, esto podria
causar un efecto en la calidad de las flores y menor
duraci6n de vida de hojas o plants (Primack et al.
1994). 0 sea, la disponibilidad de recursos, en este
caso la luz para fotosintetizar y el tamafio de Area que
la recibe, es uno de los factors que indican que la
reproducci6n esta limitada por recursos. En otras
species de Lepanthes la producci6n de frutos y la
remoci6n de polinios en poblaciones naturales esta
directamente correlacionada con la producci6n de flo-
res (ver FernAndez et al. 2003). Esto significa que el
tamafio de la hojas no es el finico factor indicador de la
presencia de flores o de producci6n de frutos, ya que
puede haber otros factors o recursos que afectan la
presencia de flores en Lepanthes sanguine, como son
nitr6geno y fosfato, dos elements limitantes en el
crecimiento de las plants.


LITERATURE CITADA
Ackerman, J.D. 1995. Orchids of Puerto Rico and the


Virgin Islands. The New York Botanical Garden,
Bronx, New York.
Calvo, R.N. 1990. Inflorescence size and fruit distribu-
tion among individuals of three orchid species. Amer.
J. Bot. 77: 1378-1381.
Fernandez, D. S., R. L. Tremblay, J. D. Ackerman, E.
Rodriguez & L.-N. L6pez. 2003. Reproductive poten-
tial, growth rate and light environment in Lepanthes
rupestris Stimson. Lankesteriana 7: 73-76.
Kindlmann, P. & Z. Balounova. 1999. Energy partition-
ing in terrestrial orchids a model for assessing their
performance. Ecol. Model. 119: 167-176.
Mattila, E. 2000. The effect of water stress and pollen
availability on reproductive success of Platanthers
bifolia (Orchidaceae). Avhandlinger utgitt av Det
Norske Videnskaps-Akademi i Oslo. I. Matematisk-
Naturvidenskapelig Klasse 39: 83-90.
Montalvo, A.M. & J.D. Ackerman. 1987. Limitation to
fruit production in lonopsis utricularioides. Biotropica
19: 24-31.
Primack, R.B. & P. Hall 1990. Cost of reproduction in
the Pink Lady's slipper orchid: a four year experimen-
tal study. Amer. Nat. 136: 638-656.
Primack, R. B., S.L. Miao & K. R. Becker. 1994. Cost
of reproduction in the Pink Lady's slipper orchid
(Cypripedium acaule): defoliation, increased fruit pro-
duction and fire. Amer. J. Bot. 81: 1083-1090.
Rico-Gray, V., J.T. Barber, L.B. Thien, E.G. Ellgaard &
J.J. Toney. 1989. An unusual animal-plant interaction:
feeding of Schomburgkia tibicinis (Orchidaceae) by
ants. Amer. J. Bot. 76: 603-608.
Snow, A.A. & D.F. Whigham. 1989. Cost of flower and
fruit production in Tipularia discolor. Ecology 70:
1286-1293.
Stephenson, A.G. 1981. Flower and fruit abortion: proxi-
mate causes and ultimate functions. Ann. Rev. Ecol.
Syst. 12: 253-279.
Ticha, I. 1985. Ontogeny of leaf morphology and anato-
my. In Z. Sestak (ed.), Photosynthesis during leaf
development. W. Junk, Dordrecht. pp. 11-15.
Zar, J. 1999. Biostatistical Analysis. Prentice Hall, Inc.
4th edition, New Jersey.
Zimmerman, J.K. & T.M. Aide. 1989. Patterns of fruit
production in a neotropical orchid: pollinator vs.
resource limitation. Amer. J. Bot. 76: 67-73.


Maria M. Agosto Pedroza es estudiante de quinto afio de Bachillerato en Biologia con concentraci6n en
Manejo de Vida Silvestre, de la Universidad de Puerto Rico en Humacao. Esta es su primera experiencia en
investigaci6n. Sus aspiraciones futuras son continuar studios graduados en biologia, especificamente en el
area de conservaci6n.








LANKESTERIANA7: 67-69. 2003.


EFECTO DE REMOCION Y RELOCALIZACION DE LEPANTHES
ELTOROENSIS STIMSON, DESPUES DE UN HURACAN


RAFAEL J. BENITEZ JOUBERT & RAYMOND L. TREMBLAY'

Universidad de Puerto Rico Humacao, Departamento de Biologia 100 carr. 908, Humacao, Puerto Rico 00791
'Autor para correspondencia: i ,. m..i., hpl f Iip! CJ-I


La creaci6n de un plan de manejo efectivo es de
suma importancia para una especie amenazada de
extinci6n. El huracin Georges (18 de septiembre de
1998) caus6 grandes cambios en la vegetaci6n de la
Sierra de Luquillo, Puerto Rico, a su pasaje por la
isla. La orquidea Lepanthes eltoroensis se encuentra
amenazada de extinci6n y esti incluida en la lista fe-
deral de species en peligro de extinci6n desde el 29
de noviembre de 1991. Uno de los efectos ambien-
tales y estocasticos mas sobresalientes de este bosque
tropical son los huracanes, que causan defoliaci6n y
mortandad de gran numero de arboles (Walker 1991).
Despu6s del huracin Georges, el servicio forestal
deseaba reabrir las veredas, pero se encontr6 con un
gran nuimero de plants de L. eltoroensis creciendo
sobre los arboles caidos atravesando los senderos.
Aprovechamos esta oportunidad para evaluar el efec-
to de remoci6n y relocalizaci6n de plants como una
estrategia para el manejo de esta especie en peligro de
extinci6n, para mejorar su supervivencia despu6s de
huracanes futures. El objetivo de la investigaci6n es
disminuir el efecto de la perturbaci6n y maximizar la
supervivencia y el exito reproductive de la orquidea.
Las preguntas principles incluyen: ,Es viable la
relocalizaci6n de L. eltoroensis a otros arboles? ,Cuil
es el mejor lugar para trasplantarlas, arboles ocupados
por orquideas o arboles no ocupados? En otras pala-
bras, ,se pueden establecer nuevas poblaciones?

Lepanthes eltoroensis es una pequefia plant epifita
que crece sobre varias species de arboles y palmas.
La taza de reproducci6n de esta especie de Lepanthes
es muy baja (Tremblay 1996, Tremblay & Ackerman
2001), lo cual podria hacer dificil el manejo de la
misma. La orquidea esti limitada al Bosque Nacional
del Caribe conocido localmente como el Yunque, en
la Sierra de Luquillo al este de Puerto Rico. La
orquidea se encuentra en la asociaci6n de vegetaci6n
de bosque enano que esti localizada lanicamente en
las zonas de elevaci6n maxima del bosque (700-1000


m). El area de studio son las cercanias del Pico El
Toro y del Cerro Cacique, en el Bosque Nacional del
Caribe. Las poblaciones muestreadas se encuentran a
ambos lados a lo largo de aproximadamente 5 km de
las veredas de Tradewinds y del Cerro El Toro.

Se comenz6 en junio del 2000 con la remoci6n de
las plants que se encontraban creciendo sobre los
arboles caidos en ambas veredas. Las plants fueron
relocalizadas y marcadas con un numero unico. De
cada arbol caido se tom6 50% de las plants y 6stas
fueron relocalizadas sobre arboles que tenian una
poblaci6n de L. eltoroensis, el otro 50% fue relocali-
zado sobre arboles que no tuvieran plants, pero cerca
de un arbol ocupado. Cada plant fue marcada y
clasificada por el tratamiento al cual era sometida.
Ademis se identificaron sin manipulaci6n todas las
plants encontradas en los arboles ya ocupados. En
consecuencia, tenemos un disefio experimental no
balanceado con tres tratamientos, un grupo control
plantss no removidas y arboles ocupados) y dos gru-
pos experimentales plantss removidas y reloca-
lizadas sobre arboles ocupados, plants removidas y
relocalizadas sobre arboles no ocupados).

Se realizaron muestreos mensuales durante los
primeros cinco meses, luego se realizaron cada 6
meses, hasta completar dos afios de muestreo. Aqui se
presentan los anilisis del efecto de crecimiento de los
dos primeros afios en los tres tratamientos.
Comparamos el crecimiento poblacional entire el
primer muestreo y un afio despu6s, y luego entire el
primero y el segundo afio.

Las plants fueron clasificadas en tres etapas
dependiendo de su desarrollo: 1) plintulas: plants
pequefias que no presentaban peciolos, 2) juveniles:
plants que presentaban al menos una membrana le-
pantiforme en el peciolo, sin ningun tipo de inflores-
cencia active o inactive, y 3) adults: plants bien
desarrolladas que mostraban al menos una inflores-








LANKESTERIANA


cencia active o inactive. Los datos recopilados fueron
organizados mediante el uso del program Stat View
4.5. y Excel 2001. Mediante este program se
realizaron los anilisis estadisticos generals.

Se utiliz6 el metodo de anilisis de matrices pobla-
cionales de Lefkovitch de etapas de vida para deter-
minar si las poblaciones son estables. Se utiliz6 el
program Ramas Ecolab 2.0 para destacar el creci-
miento poblacional intrinseco, la elasticidad y la
longevidad de las etapas de vida (Akgakaya et al.
1999). El valor instantineo de crecimiento pobla-
cional, k (lambda), que se obtiene por el anilisis de
matriz de Lefkovitch, se interpreta de la siguiente
manera: cuando k es igual a 1.0 la poblaci6n es
stable, cuando k es mayor o menor que 1.0 la
poblaci6n esti creciendo o decreciendo, respectiva-
mente. Se asume que el valor de crecimiento de lamb-
da es determinante y que el efecto estocfstico
demogrifico, ambiental y temporal es minino. El
anilisis de elasticidad es para determinar cuil de los
parimetros demogrificos tiene un efecto mayor sobre
el crecimiento poblacional. Este analisis puede ayu-
dar a determinar una estrategia de manejo del orga-
nismo. La proporci6n de supervivencia, el cambio de
etapas y el esfuerzo reproductive estan incluidos en el
modelo. El esfuerzo reproductive (producci6n de fru-
tos) fue calculado dividiendo el numero de frutos pro-
ducidos cada afio entire el numero de plants adults
en el afio en curso. Se utiliz6 el mismo valor repro-
ductivo para todas las poblaciones. Se observ6 que la
supervivencia y el esfuerzo reproductive estin mis
correlacionados con la etapa de desarrollo de la plant
que con su edad (Tremblay 2000, Tremblay &
Hutchings 2003).

Se muestre6 un total de 23 poblaciones, con 326
plants en tres grupos: 209 de control plantss no
manipuladas); 51 removidas y trasladadas a arboles
ocupados; 66 removidas y trasladadas a arboles no
ocupados. Un total de 14 poblaciones corresponde a
arboles ya ocupados con plants, donde las orquideas
fueron relocalizadas, y 9 poblaciones a irboles que no
estaban ocupados por la orquidea.

El valor reproductive de las plants del primer afio
es la mitad del valor del segundo afio (nuimero de
reclutas = plantulas / nuimero de adults) (7/196 =
0.0357 y 12/141 = 0.0851). El valor reproductive es
obtenido de forma indirecta, dado que no se atribuye


la producci6n de plantulas a alguna plant adulta en
especifico (Caswell 2001).

En el primer afio, en las plants que no fueron
removidas se obtuvo una k = 0.8942 (IC 95%; 0.8237
- 0.9647); en el segundo afio se obtuvo una k =
0.9773 (IC 95%; 0.9158 1.0388). En el grupo con-
trol se observ6 un aumento en la raz6n de crecimiento
y supervivencia. Estos datos demuestran que las
poblaciones de esta plant se encuentran en disminu-
ci6n a raz6n de 10.5% en el primer afio y de 2.27% en
el segundo afio. En consecuencia, hay un cambio
ambiental positive entire el primer afio y el segundo
que no se debe a la manipulaci6n de las orquideas.

En cambio, en el tratamiento de plants removidas
y relocalizadas en arboles ocupados se obtuvo una k=
0.6899 (IC 95%; 0.5173-0.8625) en el primer afio y
una k = 0.9232 (IC 95%; 0.6569-1.1895) en el segun-
do afio. En este tratamiento se observ6 una disminu-
ci6n de 31% en el primer afio y de 7.7% en el segun-
do afio. Finalmente, para las plants que fueron relo-
calizadas en arboles que no tenian las orquideas cre-
ciendo, en el primer afio se obtuvo una k = 0.8407
(IC 95%; 0.7180-0.9634) y en el segundo afio una k =
0.9177 (IC 95%; 0.7761-1.0593). Esto sugiere que las
poblaci6n de orquideas relocalizadas en arboles no
ocupados tienen una reducci6n poblacional annual de
16% en el primer afio y de 8% en el segundo afio.

En los tres tratamientos el valor mayor del intervalo
de confianza de lambda supera el 1.0 en el segundo
afio, mostrando que el crecimiento poblacional podria
ser stable. Esto es contrario a los resultados
obtenidos en el primer afio, cuando el rango del inter-
valo de confianza fue menor que uno y, en conse-
cuencia, se demuestra que la p6rdida de plants en los
tres tratamientos esti disminuyendo.

La esperanza de vida varia para plantulas, juveniles
y adults. En general, la vida de las plantulas es de un
afio, independientemente del tratamiento o del perio-
do de muestreo. Los juveniles duran entire 1 y 6 afios,
y los adults entire 3 y 15 afios, dependiendo del tiem-
po y del grupo experimental. En consecuencia, la
esperanza de vida de una plant es de 5 a 20 afios, con
un promedio cerca de 10 afios.

El crecimiento de las poblaciones es muy sensible a
los valores de probabilidad de supervivencia de los
adults, segfin el analisis de elasticidad. Por esto, es









Mayo 2003 BENiTEZ JOUBERT & TREMBLAY Remoci6n y relocalizaci6n de Lepanthes eltoroensis


primordial que se investigue cuAles son los factors
ambientales que afectan la supervivencia y la repro-
ducci6n de los adults.

Claramente se observa que tanto en el grupo de
control como en ambos tratamientos experimentales,
las poblaciones aparentan estar alcanzando la estabili-
dad luego de haber sufrido la perturbaci6n del
huracin Georges. El mejoramiento en la superviven-
cia y la estabilidad poblacional en el segundo afio esta
probablemente asociado con crecimiento del dosel y
el aumento de humedad.

Comparando el crecimiento poblacional de los dos
tratamientos con el del control es claro que la mani-
pulaci6n de las orquideas es negative en el primer
afio, pero despues de dos afios se observa un creci-
miento poblacional stable y similar al control,
sugiriendo que la relocalizaci6n de estas plants es
viable como mecanismo para aumentar el tamafio
poblacional despues de un huracin. Las plants que
se quedan sobre Arboles caidos en medio de las
veredas tienen poca probabilidad de sobrevivir. Este
experiment se inici6 dos afios despues del huracin,
cuando las plants todavia vivas sobre los Arboles cai-
dos en las veredas eran mayormente adults grandes o
se encontraban en la parte ventral de los Arboles, no
expuestas al sol ni al viento, pero parecian sufrir de
escasez de agua por tener las hojas secas.

Con este experiment se demuestra que el estable-
cimiento de nuevas poblaciones es una estrategia
viable para la conservaci6n de esta orquidea. En mAs
de un Arbol donde se localiz6 la orquidea se obser-
varon nuevas plAntulas. tstas pueden provenir de la
producci6n de frutos de las plants presents o de


inmigrantes. La dispersi6n de las pequefias semillas
en general es poco exitosa aun en sitios muy cercanos
(Tremblay & Ackerman 2001, Tremblay, Kapan &
Ackerman-Mdlendez, datos sin publicar). En trabajos
futures serh necesario determinar cuhl es el efecto
director de un huracin y determinar cuales son los
parametros ecol6gicos (ambiente luminico, humedad,
presencia de musgos) que afectan la supervivencia de
esta orquidea.



LITERATURE CITADA
Ak9akaya, H.R., M.A. Burgman & L.R. Ginzburg. 1999.
Applied Population Ecology: Principles and Computer
Exercises using Ramas Ecolab 2,0. Sinauer Associates,
Inc. Publishers, Sunderland, Massachussets.
Caswell,H. 2001. Matrix Population Models: Construction,
Analysis, and Interpretation, 2nd Ed. Sinauer
Associates, Inc., Sunderland, Massachussets.
Tremblay, R.L. 1996. Sex in small population and evolu-
tionary processes. Ph.D. University of Puerto Rico, Rio
Piedras Campus. p. 136.
Tremblay, R.L. 2000. Plant longevity in four species of
Lepanthes (Pleurothallidinae: Orchidaceae). Lindleyana
15: 257-266
Tremblay, R.L. & J.D. Ackerman. 2001. Gene flow and
effective population size in Lepanthes (Orchidaceae): a
case for genetic drift. Biol. J. Linnean Soc. 72: 47-62.
Tremblay, R.L. & M.J. Hutchings. 2003. Population
dynamics in orchid conservation: A review of analyti-
cal methods, based on the rare species Lepanthes
eltoroensis. In K.W. Dixon, S.P. Kell, R.L. Barrett and
P.J. Cribb (eds). Orchid Conservation. Natural History
publications, Kota Kinabalu, Sabah, Malaysia.
Walker, R.L. 1991. Tree damage and recovery from
Hurricane Hugo in Luquillo Experimental Forest,
Puerto Rico. Biotropica 23: 379-385.


Rafael J. Benitez Joubert cursa studios en la Universidad de Puerto Rico en Humacao, en el Departamento de
Biologia. Su campo de preparaci6n es la biologia con concentraci6n en Manejo de Vida Silvestre. Su vida como
estudiante de las ciencias naturales ha sido variada y rica en experiencias que le han ayudado en su formaci6n
como future cientifico. Tambi6n pudo participar en el desarrollo de la propuesta de investigaci6n para la
realizaci6n de un inventario de las species de camarones de los rios del Bosque Estatal de Los Tres Picachos,
en el pueblo de Jayuya. Trabaj6 como int6rprete ambiental para el Fideicomiso de Conservaci6n de Puerto Rico.
Cada una de estas experiencias lo han ayudado a consolidar su formaci6n como cientifico. Como planes futures
espera continuar con la ardua e interminable tarea que es la educaci6n en ciencias naturales.








LANKESTERIANA7: 70-72. 2003.


PHENOTYPIC SELECTION IN LEPANTHES RUPESTRIS STIMSON


SOL TAINA CINTRON BERDECIA & RAYMOND L. TREMBLAY'

University of Puerto Rico at Humacao Potal station CUH, Department of Biology
100 carr. 908, Humacao, Puerto Rico 00791
'Author for correspondence: i '.i m......i,, i I I.,p c-,in,


Natural selection is defined as a process in which
a population has: variation among individuals, a
strong relationship between a character and repro-
ductive success (fitness differences) and character
heritability (Endler 1986). Phenotypic selection on
the phenotypes was estimated using regression tech-
niques and expressed as the selection coefficients
(Arnold & Lande 1983). We assume that character
differences and phenotypic selection is heritable.
The coefficients provide an estimate of direct selec-
tion and indirect selection acting through correlated
characters, the linear (directional) or non-linear (dis-
rupted and stabilizing) analysis and can be
expressed in standard deviations units which can be
compared within species and populations
(O'Connell & Johnston 1998). The genus Lepanthes
Sw. is an epiphytic or lithophyte taxon often limited
to very small patchily distributed populations
(Tremblay 1997a). This genus is distributed from
the south of Mexico and the Antilles through the
Andes and Bolivia, where a large proportions of the
species are local endemics and distributed within
very small geographical areas.
Lepanthes rupestris is a common lithophyte along
rivers of the northwestern slopes of the Luquillo
Mountains (Tremblay 1997). Plants have a thin
stem, segmented lepanthiform sheaths and a solitary,
heart-shaped leaf that bears one or two 5 mm flow-
ers at a time in a sequential inflorescence. The sepa-
ls are yellow and the petals creamy yellow with two
thin, vertical, crimson stripes at the margins
(Morales 1977). The middle lobe of the lip is dis-
tinct, short, blunt, pubescent, and seems forked
when looked at from the side (Stimson 1969).
Seven populations were sampled from two river
basins, Quebrada Sonadora and Quebrada Grande in
the Caribbean National Forest. All populations were


visited monthly beginning in July or August 1994
except population one which began in March 1993,
all sampling ended in January 1996. Consequently
the seven populations were sampled for 34, 19, 18,
19, 19, 19, and 18 months, respectively. Flowers
were preserved in a solution of 70% ethanol, 37%
formalin and propionic acid in a 90: 5: 5 ratio and
morphological characters were measured with
Olympus dissecting microscope fitted with a 0.1mm
micrometer. To measure phenotypic selection, we
measured female and male fitness through the pro-
duction of the total fruit and pollinia removed of
each plant of the seven populations.
Twelve morphological traits were measured on
220 individuals to determinate the morphological
variance among individuals; these include length of
the column, flower size, width of dorsal sepal,
length and width of posterior petal lobe, length and
width of anterior petal lobe, length and width of
front lip, lip mid lobe length, anther cap opening and
the distance between sepals.
To estimate the total strength of selection on a
character, indirectly and directly through correlated
characters we used coefficients from univariate
regression (one character). When expressed in units
of standard deviation, univariate regression coeffi-
cients are equivalent to selection differentials
(Lande & Arnold 1983). Directional (P3') and non-
linear (y') selection differentials and gradients were
estimated using the following regression model:

n n a n
w= a + ;+j y, + +2+
2 i i=1 >

where w is the relative standardized fitness measure,
a is a constant, z' is the standardize trait value, and
e is error. Directional differentials and gradients








Mayo 2003 CINTRON BERDECIA & TREMBLAY Phenotypic selection in Lepanthes rupestris


were obtained using the first two terms on the right
side of the equation, whereas nonlinear coefficients
where obtained using the full model (Lande & Arnold
1983). Previous to the regression analysis every
absolute female and male success was divide by the
population average to calculate the standardized fit-
ness, w, (O'Connell & Johnston 1998). Traits values
before selection were standardized to zero mean and
unit standard deviation. These values were squared
and entered into the regression model, yielding. All
regression coefficients were expressed in units of
change in relative fitness per standard deviation, as
indicated by the prime symbol, thus facilitating com-
parison of the selection among traits and between the
populations (Lande & Arnold 1983).

In percent term distribution of reproductive suc-
cess in all populations the individuals are distributed
along the extreme intervals (Table 1) We obtained
13.2 % of the individuals with zero pollinia removed
and zero fruit produced and a substantial amount of
the individuals had a high male (4+) and female fit-
ness (3+) of 17.3%.
Morphological variation is significantly different
among measured characters. The largest amount of
variation among characters is observed in anther cap
opening, lip mid lobe length, distance between sepals,
front lip width and width of anterior petal lobe.

Phenotypic selection. Fitness based on female and
male reproductive success suggests that the length
of the column had a positive directional coefficient
with r2 = 4%, p = 0.004 and r2 = 3%, p = 0.015


Table 1. Distribution of male and female fitness in
Lepanthes rupestris as percentage of the total observa-
tions (number of plants).


Male Female
Fitness Fitness

0 1 2 3+ Total
0 13.2 (29) 3.6 (8) 0.9 (2) 1.4 (3) 19.1
1 9.1 (20) 10 (4.5) 3.2 (7) 2.3 (5) 19.1
2 6.4(14) 4.1 (9) 1.4(3) 6.0(13) 17.7
3 5.4 (12) 2.3 (5) 3.6 (8) 6.4 (14) 17.7
4+ 3.6 (8) 2.3 (5) 3.2 (7) 17.3 (38) 26.4
Total 37.7 16.8 12.3 33.2 220


respectively. Moreover the female fitness of the
length of front lip had a positive directional selection
coefficient with r2 = 4%, p = 0.006. No significant
directional, disruptive and stabilizing selection was
detected in any other morphological character.
Phenotypic selection in Lepanthes rupestris was
absent in almost all measured characters and when
observed was of low intensity. The length of the col-
umn had a positive directional phenotypic selection
for female and male fitness, and the length of the
front lip had evidence for positive directional selec-
tion through the female fitness variable only. This
phenomenon may occur because the potential pheno-
typic selection could be imposed by biotic agents
such as the still undescribed pollinator (G6mez 1993).
In a study of natural selection on floral traits in two
species of Lobelia a positive directional selection
with multivariate analysis on two floral characters
was found. Those characters influence the pollen
receipt proficiency of the pollinators (Johnston 1991).

We suggest that some biotic agents like pollinators
influence the phenotypic selection on the length of
the column and the length of front lip in L. rupestris.
The most probable pollinator of Lepanthes are small
dipterans, such as Drosophila (Tremblay 1997a) or
fungus gnats (Blanco & Barboza 2001).



Table 2. Mean (SD) and coefficient of variation of mea-
sured morphological characters of Lepanthes rupestris
(W width, L length, post posterior, ant anterior).

Traits Species level variation
n Mean SD %CV


L of column
Flower size
W of sepal dorsal
L post lobe petal
W post lobe petal
L ant lobe petal
W ant lobe petal
Front lip length
Front lip width
Mid lobe length
Anther cap opening
Distance b/w sepals


41.47
82.37
34.38
46.75
30.84
34.13
16.76
46.71
15.95
5.87
13.56
58.44


4.60
8.17
4.62
5.60
4.35
4.92
3.98
5.49
3.90
2.01
5.01
11.85








LANKESTERIANA


Pollinator limitation may limit reproductive suc-
cess in this orchid and consequently selection may
be temporal, stochastic and or local depending on
the availability of the pollinator (Tremblay,
Ackerman, Zimmerman & Calvo, unpublished).
Resource limitation on female reproduction (fruit
and seed production) could also limit selection
(Campbell 1989). However orchids are usually pol-
linator limited and not resource limited (Tremblay,
Ackerman, Zimmerman & Calvo, unpublished). We
found a positive directional female selection for the
length of the column and the front lip and we can
infer that this parts of the flowers may play an
important role in the pollinator-plant interaction.

An alternative factor that deserves careful thought
is sample size and population structure of the present
experiment. For selection to be dominant in a popula-
tion it must be large enough to discount the effect of
genetic drift. Our present analysis includes the sum of
seven populations, consequently analysis of selection
on floral characters at the individual population may
suggest different patterns. Selection will occur at the
species or the population level depending on the
amount of gene flow among populations. If gene flow
among populations is low, <1 per generation, then
evolution will occur at the population level, if it is
larger then 2 migrants per generation, then selection
will be at the multi-populational level. Present
allozyme analysis of gene flow estimate in Lepanthes
rupestris suggests that individual populations may be
acting as individual evolutionary units (Tremblay &
Ackerman 2002, Tremblay, Ackerman, Zimmerman
& Calvo, unpublished). Consequently future work
will evaluate selection at the population level.


LITERATURE CITED

Blanco, M. & G. Barboza. 2001, Polinizacidn en
Lepanthes: un nuevo caso de pseudocopulaci6n en las
orquideas. San Jose, 2do Seminario Mesoamericano de
Orquideologia y Conservaci6n. Program de
Conferencias: Resfimenes. San Jose, 23-26 de mayo
2001. p. 13.
Campbell, D.R. 1989. Components of phenotypic selec-
tion: pollen export and flower corolla width in
Ipomosis aggregate. Evolution 45: 1458 1467.
Endler, J.A. 1986. Natural Selection in the Wild,
Princeton, USA: Princeton University Press.
Gdmez, J.M. 1993. Phenotipic selection on flowering
synchrony in a high mountain plant, Hormathophyla
spinosa (Cruciferae), J. Ecol. 81: 605 613.
Johnston, M.O. 1991. Natural selection in two species of
Lobelia with different pollinators. Evolution 45: 1468 -
1479.
Lande, R. & S.J. Arnold 1983. The measurements of
selection on correlated characters, Evolution 37: 1210
-1226.
Luer, C.A. 1996. Lepanthes subgenus of Ecuador. Icones
Pleurothallidinarum 14: 1 12.
Morales, W.R. 1977. The endemic orchid species of
Puerto Rico. Amer. Orch. Soc. Bull. 46: 727 730.
O'Connell, L.M. & M.O. Johnston. 1998. Male and
female pollination success in a deceptive orchid, a
selection study. Evolution 79: 1246 1260.
Stimson, W.R. 1969. A revision of Puerto Rican species
Lepanthes (Orchidaceae). Brittonia 21: 332 345.
Tremblay, R.L. 1997a. Distribution and dispersion pat-
terns of individuals in nine species of Lepanthes
(Orchidaceae). Biotropica 29: 38 45.
Tremblay, R.L. 1997b. Morphological variance among
populations of three tropical orchids with restricted
gene flow. Plant Sp. Biol. 12: 85 96.
Tremblay, R.L. 2000. Plant longevity in four species of
Lepanthes (Pleurothallidinae; Orchidaceae). Lindle-
yana 15: 257 -266.


Sol Taina Cintr6n Berdecia es estudiante de Bachillerato en Biologia del Programa de Manejo de Vida
Silvestre en la Universidad de Puerto Rico en Humacao. Actualmente cursa su cuarto afio de studios. En
agosto de 2002 comenzo su primera experiencia en investigaci6n. Tiene como proyecto el tema de la ecologia
evolutiva de la orquidea Lepanthes rupestris con el Dr. Raymond Tremblay. Ella ha presentado conferencias
como NCUR en Utah, el Coloquio Nacional de la Mujer y el Simposio de Fauna y Flora del Caribe en la
UPR-Humacao. Aspira a lograr un doctorado en una diciplina relacionada con el manejo de vida silvestre y
ser profesora de dicha diciplina en Puerto Rico.








LANKESTERIANA7: 73-76. 2003.


REPRODUCTIVE POTENTIAL, GROWTH RATE AND LIGHT
ENVIRONMENT IN LEPANTHES RUPESTRIS STIMSON

DENNY S. FERNANDEZ''3, RAYMOND L. TREMBLAY', JAMES D. ACKERMAN2,
EVENEIDA RODRIGUEZ' & LIZ NELIA LOPEZ'

'Department of Biology, 100 Carr. 908. University of Puerto Rico Humacao
Humacao, Puerto Rico, 00791-4300, U.S.A.
2Department of Biology, PO Box 23360, University of Puerto Rico Rio Piedras
San Juan, Puerto Rico, 00931-3360, U.S.A.
'Author for correspondence: d fernandez@webmail.uprh.edu


Reproductive success in orchids can be pollinator or
resource limited (Ackerman & Montalvo 1990).
However, orchids are generally pollinator limited
(Neiland & Wilcock 1998), while some species have
shown to be resource limited as a function of lifetime
reproductive success (Whigham & O'Neill 1991,
Melendez-Ackerman et al. 2000). Large individuals
within a species usually have more flowers, and flower
production is frequently correlated with male (pollinar-
ia removal) and female (fruit) reproductive success
(Schemske 1980; Montalvo & Ackerman 1987;
Arag6n & Ackerman 2001, Kull 2002, Schmidt & Zotz
2002). Plant size can affect flower production and
accordingly potential reproductive success (Schaffer
1974, Samson & Werk 1986, Kull 2002).
Consequently, environmental conditions that modify
plant size will likely influence reproductive effort and
success. Even though reproductive success in orchids
is primarily pollinator limited, individuals with more
flowers have a higher probability of male or female
reproductive success (Schemske 1980). This pattern
may suggest that pollinators focus on inflorescence
size (Montalvo & Ackerman 1987; Rodriguez Robles
et al. 1992, Arag6n & Ackerman 2001, but see Sabat
& Ackerman 1996). Zotz (2000) found that the num-
ber of fruits produced (r2 = 0.74) and total fruit mass (r2
= 0.72) were positively correlated with plant size in the
facultatively self-pollinated Dimerandra emarginata
(G. Meyer) Hoehne. Moreover, Zotz (2000) found that
the smallest plants invested less than 1% of the annual
proportion of the biomass to reproduction while the
larger plants invested in the range of 12% to reproduc-
tion. However, flower production does not necessarily
respond linearly to light availability; of the few exam-
ples available, Cypripedium calceolus is light sensitive,
and the relationship between percent flowering shoots


and light penetration coefficient is a quadratic function
(Kull 2002). Growth rate in plants is frequently
site/year dependent and local conditions can ultimately
influence reproductive potential (Schmidt & Zotz
2002). The present information on growth rates of
orchids in natural environments and controlled condi-
tions is scarce (Zotz 1999, Schmidt & Zotz 2002,
Zimmerman & Aide 1989). Schmidt & Zotz (2002)
showed that growth rates in Aspasia principissa
Rchb.f. was different among in situ and greenhouse
grown plants, but more or less similar among years.
The Neotropical genus Lepanthes is a large group of
epiphytic and lithophytic orchids growing in a variety
of environmental habitats, from complete exposure to
very low understory light. For this study we proposed
to investigate: 1) the effect of total leaf area on flower
production in a controlled setting, 2) the relationship
between total flower production and reproductive suc-
cess in the field, 3) the light environment of the popu-
lations, and 4) the effect of light quantity on growth
rates of the individuals in natural populations of
Lepanthes rupestris.

Plant species. We evaluated the reproductive poten-
tial, growth, and the photosynthetic radiation niche
requirement of the epiphytic and lithophytic orchid L.
rupestris, an endemic of Puerto Rico. The species is
mainly limited to the Caribbean National Forest in the
subtropical moist forest (Ewel & Whitmore 1973)
and is common along rivers on boulders, palms and
trees in a riparian environment. The species is hyper-
dispersed, with many small populations and few large
populations (median, mean and s.e. 23; 45.4 5.2
individuals per populations) and these are separated
by variable distances, but most frequently nearby
(mean and s.e. 4.8 1.3 m., Tremblay 1997).








LANKESTERIANA


Laboratory experiment; Leaf area and flower pro-
duction. Two hypotheses were tested with this experi-
ment: can total leaf area and number of leaves per
individual predict the long-term flower production?
Fourteen individuals of L. rupestris were grown in a
Wardian case (Orchidarium Inc.) for eight months
under growth lights for 14 hours/day. Environmental
conditions were held constant with a mean tempera-
ture of 23 C and a 95% relative humidity. Plants were
watered when necessary (every two to four days) with
distilled water and fertilized every two weeks with a
20-20-20 solution (P-K-N: half a teaspoon per liter;
Tropical Fertilizer Corp., Puerto Rico). Data were col-
lected weekly, and all flower production was counted.
Total leaf area (A) produced was calculated using a
caliper to measure the width and length of each leaf
and applying the following formula: A = 1.51 + 0.57b,
where b = length x width. Leaf area was pooled for
each individual. Linear and quadratic regressions were
used to test the relationship between number of leaves
and leaf area with flower production (StatView, Inc.,
Abacus Concept Inc., California.). Analysis where
performed on the square root of number of flowers
and leaf number and on the log transformed leaf area
to reduce heterocedasticity.
Field observation I: Flower production. Male and
female reproductive success in a population of 98
individuals of Lepanthes rupestris at Quebrada
Grande, Luquillo Mountains, was monitored from
July 1993 for a total of 21 months. Plants were sur-
veyed every month; flowers have a survivorship of
approximately 1.5 weeks while fruits last about 1.5
months on the plant. Consequently approximately 1/3
of all flowers produced were observed for pollinia
removal while all fruits during the period were noted.
The relationship between flower production and polli-
naria removal and fruit set was analyzed using
Spearman Rank correlation (StatView.)
Field observation II: Diversity of the light envi-
ronment and its effect on leaf area production.
How variable is the light environment between pop-
ulations, and how is the temporal distribution of the
photosynthetic radiation during the day of the differ-
ent populations? We tested whether or not variable
light environment measured as the daily total radia-
tion affected the production and growth of leaves in
individual populations. This field study was con-
ducted at El Verde Field Station in the Luquillo
Mountains, a few km from Quebrada Grande. The


populations under study were along Quebrada
Sonadora. Twelve sites with one or more popula-
tions of L. rupestris were located for this study. The
sites represent the range of light environments
where the orchids are found and these were classi-
fied according to the canopy cover, closed (canopy
cover above 90 %), medium (between 60 and 90 %),
and open (below 60 %). We assume that light was
equal for all plants at an individual site. The light
environment of each population was measured as
photon flux density (PFD 400-700 nm, gmol pho-
tons m2 s' ). The photon flux density is the compo-
nent of the solar spectrum which is most related to
photosynthetic activity. We measured PFD with pre-
viously calibrated GaAsP photodiodes (G1118,
Hamamatsu, Japan); the sensors were connected to a
data logger (CR-10, Campbell Scientific, Utah) pro-
grammed to take measurements every second, and to
total and store data every five minutes, between 6:00
and 18:00 hours of solar time. With the data we cal-
culated instantaneous average values of PFD every
five minutes and total daily values (mol m2). We
measured the changes in leaf area that occurred
between June 2001 and August 2001. Eleven plants
from each of the 12 sites were selected. We expect-
ed that too little light would result in poor growth
while growth rate should improve and attain a
plateau or maximum with increased light.
Consequently, we could not assume a specific reac-
tion model of light quantity and growth (linear, qua-
dratic) so we used a non-parametric analysis to
study the selection response of light quantity and
growth rates. We used the cubic spline technique to
graph the reaction response function and its variance
(Schluter & Nychka 1994).

RESULTS
Flower production and reproductive success. The
total flowers produced by individual plants in the
field varied from 4 to 269, (mean and s.d. = 63.6
59.8), while the number of pollinaria removal varied
from 0 to 23 (mean and s.d. = 3.03 4.01) and the
number of fruits varied from 0 to 13 (mean and s.d. =
1.93 2.52). In all cases variation in reproductive
potential among individuals was large. Male repro-
ductive success was positively correlated with flower
production (simple linear regression, F1,97 = 83.50, p
< 0.0001. r2 = 0.46: Fig. 2). While the number of
flowers produced was also positively correlated with
female reproductive success it explained more of the








FERNANDEZ et al. Reproductive potential in Lepanthes rupestris


variation than male reproductive success (simple
linear regression, F1, = 142.65, p < 0.0001. r2 =
0.60).

Correlation between leaf area and flower produc-
tion. Flower production is positively and linearly cor-
related with the leaf area of individuals in the labora-
tory (linear regression F,11= 24.91, p < 0.001, r2 =
0.69; square root of number of flowers = -7.436 +
4.409 logarithm of leaf area). The quadratic equa-
tion explained more of the variance, r2 = 0.80, but was
not significant (t-value = -2.126, p = 0.060).

Correlation between leaf number and flower pro-
duction. Flower production is directly correlated
with the number of leaves per individual (linear
regression F1,11= 7.017, p = 0.022, r2 = 0.39; square
root of number of flowers = 0.687 + 1.937 square
root of number of leaves). The quadratic equation
explained more of the variance, r2 = 0.58, than the
linear equation but was not significant (t-value =
-2.141, p = 0.058).

Description of total PFD received by differing
light cover of Lepanthes rupestris population. The
amount of light received by populations of Lepanthes
is expected to vary as a result of canopy cover over
the population. The amount of light was significantly
different among the three site types. Open canopy
populations received more than twice the amount of
light as compared to medium covered populations
(6.77 2.41 mol m2 and 2.89 0.58 mol m2, mean
and s.e.), while closed canopy barely received any
light (0.303 0.063 mean and s.e.). Furthermore the
amount of light was significantly higher in the after-
noon (mean and s.d.. AM: 1.21 1.21 mol m2; PM:
2.62 3.74 mol m2); however, no interaction was
observed between canopy cover and time of day.

Light quantity and growth rates. The cubic spline
analysis of correlation between amount of light and
growth rate was non-linear and suggested that
increasing growth rates occurred at irradiation rang-
ing from 1 to 5 mol m2 day while higher total daily
PFD resulted in reduced growth rates. The data points
are scattered below and above the best non-paramet-
ric fitness line suggesting that other environmental
variables are likely to influence growth. The squig-
gled pattern observed was similar when the analyses
were done with the rock and tree populations sepa-
rately.


DISCUSSION AND CONCLUSIONS
Field observations showed that an increase in
flower production promotes a higher reproductive
potential, with both male and female reproductive
success correlated with flower production. Flower
production measured as inflorescence size has shown
to positively correlate with reproductive potential in a
number of orchids, such as higher fruit set in
Brassavola nodosa (Schemske 1980), Lepanthes
-,.. ," (Calvo 1990), Calopogon tuberosus
(Firmage & Cole 1988), lonopsis utricularioides
(Montalvo & Ackerman 1997) and Aspasia principis-
sa (Zimmerman & Aide 1989). However some
species of orchids have failed to show an increase in
fruit set with increased flower production, v.g.
Psychilis krugii (Ackerman 1989) and Epidendrum
exasperatum (Calvo 1990). Inflorescences of
Lepanthes are long lived and most of the time only
one or rarely two flowers are open, this different
strategy of flowering (sequential vs. synchronous) has
been shown to improve male and female reproductive
success in Psychilis monensis (S. Arag6n, unpub-
lished).
As in most plants, plant size distribution was not
normally distributed but skewed towards small plants
(Weiner & Solbrig 1984, Gregg 1991, Leeson,
Haynes & Wells 1991). We would thus expect that
flower production be skewed towards few flowers per
plant. The controlled conditions experiment showed
that the flower production of L. rupestris is positively
related with the area of the photosynthetic tissue, that
is, with the amount of leaf area and the number of
leaves, which are also correlated among them.
Lepanthes rupestris shows a large variation in flower
production per individual, thus the factors that control
plant size will also limit the flower production.
What limits plant size in natural environment is still
poorly studied in orchid in general. An interesting
example is shown in Catasetum viridiflavum where
plant size is dependent on availability of resources
and light environment. Plants fully exposed to light
are more likely to be large and female, while plants
found in the shade are small and produce male flow-
ers; however, plants in a resource rich environment
with limited amount of light could be large and
female (Zimmerman 1990, 1991). The range of the
photosynthetic light environment where L. rupestris
is found is very broad in terms of the daily totals, and
the distribution of PFD through the day is not uni-


Mayo 2003








LANKESTERIANA


form due to the topography and aspect of the area.
Lepanthes rupestris needs low values of daily total
PFD to attain maximum growth in terms of leaf area
production. The negative effect on growth of daily
total PFD values above 9 moles m' could result from
a combination of water stress due to dessication of the
microenvironment, and chronic photoinhibition.
In conclusion, reproductive success in L. rupestris
is directly related with flower production and flower
production is directly related to plant size, but the
relationship between vegetative growth and the pho-
tosynthetic light environment is less evident, proba-
bly because it is mediated by other factors that affect
orchid physiology, especially carbon gain.

LITERATURE CITED
Ackerman, J.D. 1989. Limitations to sexual reproduction in
Encyclia -... (Orchidaceae). Syst. Bot. 14: 101-109.
Arag6n, S. & J.D. Ackerman. 2001. Density effects on the
reproductive success and herbivory of Malaxis massonii
(Ridley) Kuntze. Lindleyana 16: 3-12.
Calvo, R.N. 1990. Inflorescence size and fruit distribution
among individuals of three orchid species. Amer. J. Bot.
77: 1378-1381.
Firmage, D.H. & F. R. Cole. 1988. Reproductive success
and inflorescence size of Calopogon tuberosus
(Orchidaceae). Amer. J. Bot. 75: 1371-1377.
Gregg, K.B. 1991. Reproductive strategy of Cleistes diva-
ricata (Orchidaceae). Amer. J. Bot. 78: 350-360.
Kull, T. 2002. Population dynamics of North Temperate
Orchids. In: J. Arditti (ed.), Orchid Biology: Reviews
and Perspectives, VIII. Kluwer Academic Publishers,
Dordrecht, The Netherlands.
Leeson, K., C. Haynes & T.C.E. Wells. 1991. Studies of
the phenology and dry matter allocation of Dactylorhiza
fuchsii. In: Wells, T. C. E. & J. H. Willems (eds.),
Population Ecology of Terrestrial Orchids. SPB
Academic Publishing, The Hague. p. 125-138.
Melendez-Ackerman, E.J., J.D. Ackerman & J.A.
Rodriguez-Robles. 2000. Reproduction in an orchid is
resource limited over its lifetime. Biotropica 32: 282-
290.
Montalvo, A.M. & J.D. Ackerman. 1987. Limitations to
fruit production in lonopsis utricularioides. Biotropica
19: 24-31.


Neiland, M.R. & C.C. Wilcock. 1998. Fruit set, nectar
reward, and rarity in the Orchidaceae. Amer. J. Bot. 85:
1657-1671.
Sabat, A.M. & J.D. Ackerman. 1996. Fruit set in a decep-
tive orchid: The effect of flowering phenology, display
size, and local floral abundance. Amer. J. Bot. 83:
1181-1186.
Samson, D.A. & K.S. Werk. 1986. Size-dependent effects
in the analysis of reproductive effort in plants. Amer.
Nat. 127: 667-680.
Schaffer, W.M. 1974. Optimal reproductive effort in fluc-
tuating environment. Amer. Nat. 108: 783-790.
Schemske, D. W. 1980. Evolution of floral display in the
orchid Brassavola nodosa. Evolution 34: 489-493.
Schluter, D. and D. Nychka. 1994. Exploring fitness sur-
faces. Amer. Nat. 143: 597-616.
Schmidt, G. & G. Zotz. 2002. Inherently slow growth in
two Caribbean epiphytic species: a demographic
approach. J. Veg. Sci. 13: 527-534
Tremblay, R.L. 1997. Distribution and dispersion pattern
of individuals in nine species of Lepanthes
(Orchidaceae). Biotropica 29: 38-45.
Weiner J. & 0. T Solbrig. 1984. The meaning and mea-
surement of size hierarchies in plant populations.
Oecologia (Berlin) 61: 1237-1241.
Whigham, D. F. & J. O'Neill. 1991. The dynamics of
flowering and fruit production in two eastern North
American terrestrial orchids, Tipularia discolor and
Liparis lilifolia. In T.C.E. Wells and J.H. Willems
(eds.), Population ecology of terrestrial orchids. SPB
Academic Publishing, The Hague, pp. 89-101.
Zimmerman, J.K. 1990. Role of pseudobulbs in growth
and flowering of Catasetum viridiflavum (Orchidaceae).
Amer. J. Bot. 533-542.
Zimmerman, J.K. 1991. Ecological correlates of labile sex
expression in the orchid Catasetum viridiflavum.
Ecology 72: 597-608.
Zimmerman, J.K & T.M. Aide. 1989. Patterns of fruit pro-
duction in a neotropical orchid: pollinator vs. resource
limitation. Amer. J. Bot. 76: 67-73.
Zotz, G. 1999. What are backshoots good for? Seasonal
changes in mineral, carbohydrate and water content of
different organs of the epiphytic orchid, Dimerandra
emarginata. Ann. Bot. 84: 791-798.
Zotz, G. 2000. Size dependence in the reproductive alloca-
tion of Dimerandra emarginata, an epiphytic orchid.
Ecotropica 6: 95-98.


Denny S. FernAindez is an Associate Professor of Biology at University of Puerto Rico in Humacao, Puerto Rico.
He obtained a B. S. degree in Biology from Sim6n Bolivar University in Caracas, Venezuela; a M. Sc. in
Agronomy from Central University of Venezuela in Maracay, and a Ph. D. in Biology from University of Puerto
Rico in Rio Piedras, Puerto Rico. His main research areas are plant ecophysiology, microenvironment and stress
physiology, he has special interest in spatial patterns analysis and modeling of terrestrial ecosystems. At present
his investigations include the study of mangrove communities, dry forests, and epiphytic (and lithophytic) species.








LANKESTERIANA7: 77-80. 2003.


IRREGULAR FLOWERING REGIMES IN ORCHIDS

PAVEL KINDLMANN

Faculty of Biological Sciences, University of South Bohemia, Branisovska 31
370 05 Ceske Budejovice, Czech Republic, and
CNRS, UMR ECOBIO, Universit& de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France


Many orchids are characterized by their so-called
irregular flowering regime, which is an irregular
sequence of flowering, dormant and sterile stages
during the life of one individual (Curtis & Green
1953, Tamm 1956, 1972, 1991, Wells 1967, 1981,
1994, Hutchings 1987, Firmage & Cole 1988, Inghe
& Tamm 1988, Wells & Cox 1991, Willems & Bik
1991, Whigham & O'Neill 1991, Jones 1998,
Hutchings et al. 1998, Willems & Melser 1998,
Kindlmann 1999, Kindlmann & BalounovA 1999a,
2001, Kindlmann et al. 2002). Here I would like to
review alternative hypotheses that aim to explain this
phenomenon.

Stochasticity. The transition probabilities from one
stage in a particular year to another stage the next
year (e.g., flowering one year dormant the next year
etc.) lead to matrix models (Gregg 1991, Waite &
Hutchings 1991). Being stochastic, they by defini-
tion lead to a seemingly "chaotic" behaviour. Can
there, however, be predicted anything more than a
probability of flowering, being sterile or dormant, if
there are other predictable patterns in orchid behav-
iour?

Possible artefacts of data collection. A plant that
initiated an inflorescence might subsequently, but
before the observation has been done, have been
grazed completely and thus considered as being
absent. As shown in Kindlmann & BalounovA
(1999a), however, there is almost no difference
between the results for one and multiple observations
per year. Thus, for observations of transitions
between individual life stages one observation per
year would suffice.

Inghe's hypothesis. Inghe (1990) tried to explain
irregular flowering patterns by means of computer
simulations of difference equations. Assuming a


deterministic (exponential or logistic) growth of the
vegetative dry weight and a deterministic relationship
between vegetative and reproductive dry weight, he
concluded that the irregular flowering patterns within
one plant might be partly explained by the chaotic
behaviour of the corresponding difference equations.
Kindlmann (1999) has shown that the irregular flow-
ering pattern in Epipactis albensis cannot be
explained by Inghe's (1990) hypothesis. Shoot height
in sterile plants is always small, but sterility or dor-
mancy cannot be predicted from shoot height and
number of flowers in the preceding year.

Stochasticity of the environment. The decision on
whether the plant will flower, be sterile or remain dor-
mant, is made early in the season or late in the preced-
ing season (Leeson et al. 1991). Reserve size is one
factor in this decision and microhabitat environmental
conditions at this time are probably the other. The lat-
ter assumption cannot be applied to global environ-
mental conditions, as it would lead to the same strate-
gy in different plants with the same history and this is
not supported by empirical data. There is no reason for
not believing that evolution shaped the plant strategies
in the direction of optimisation of their energy budget.
Therefore, optimum energy-partitioning models (e.g.,
Kindlmann & BalounovA 1999b), should be able to
explain the irregular flowering pattern.
It is well known and strongly supported by Tamm
(1972) and others that there are certain "orchid years"
in which most of them flower, while in other years,
almost no plants flower. Wells et al. (1998) have
shown that weather is a major factor causing whole
populations not to flower.

Grazing. Whigham (1990) has reported a negative
effect of defoliation on the belowground corms.
Kindlmann & BalounovA (1999a), however, claim








LANKESTERIANA


that in most cases grazing does not seem to account
for the "not explained" cases in populations of
Dactylorhiza majalis.
This discrepancy may be explained as follows:
Defoliation, which imitates insect feeding, leaf dis-
eases etc., lowers assimilation and therefore the size
of overwintering storage organs (next year tuber),
which may then become of subcritical size and cause
sterility the next year. Grazing by large mammals like
deer, however, is not selective and in most cases both
leaves and inflorescence are grazed. Thus, although in
this case assimilation is lowered, too, the plant
"saves" energy by not spending it on costly reproduc-
tion and in many cases the resulting storage size is
not affected. It would be nice to test this hypothesis
experimentally.
The effect of grazing on orchid populations also
probably depends on its timing and intensity: Wells
(pers. comm.) reports that grazing by large mammals
(e.g., sheep, cattle) can have a devastating effect on
orchid populations and can have a major effect on
flowering. Grazing by rabbits both destroys the habi-
tat and also results in severe defoliation of certain
species (Wells, pers. comm.). On the other hand, a
good sheep grazing management can maintain thriv-
ing orchid populations for years and cause them to
significantly increase in numbers, as is the case of the
populations in South Limburg (Willems, 1989,
Willems and Lahtinen 1997). Therefore, the effect of
grazing is ambiguous and would deserve further stud-
ies.

Cost of reproduction. The negative effect of a large
investment into reproduction that leads to sterility or
dormancy the next year has been reported by
Whigham & O'Neill (1991). However, there might be
a difference with respect to this between deceptive
orchid species (species which do not produce any
nectar, therefore "deceit" the pollinators and rely on
naive ones, which pollinate them by mistake) and
rewarding ones (nectar producing, offering reward to
pollinators) for the following reason:
The reproductive success (RS) of rewarding species
is mostly close to 100%, thus more importantly -
variation in RS is low. Thus evolution might have
adjusted the dependence of the number of flowers
produced on storage size. As a consequence, storage


size is not significantly affected by the small variation
in RS and once attained the above-critical size for
flowering, this size will be kept for years.
In deceptive species, on the other hand, variation in
RS is extreme (JersikovA & Kindlmann 1998) and
therefore evolution had to adjust the dependence of
the number of flowers produced on storage size with
respect to the expectation of some average RS. Thus
the size of overwintering storage organs strongly
depends on RS in the preceding season, which -
because of deceptivity varies dramatically. In plants
which happened to have an above-average RS in
some season it may happen that storage which was of
above-critical size the previous year becomes sub-
critical the next year.

Habitat deterioration. Kindlmann & BalounovA
(1999a) suggested that the observed irregular flower-
ing regimes should be typical for sites with declining
populations either because of unsuitable habitat,
deteriorating management or for unsuitable weather
conditions in a particular year.
If correct, the hypothesis that irregular flowering
regimes are characteristic for sites with temporarily or
steadily declining populations and not usually present
in prosperous ones could account for the controversy
between predictions of theoretical models and empiri-
cal observations, at least in some species. If both cli-
matic and habitat conditions are good, irregular flow-
ering should not be the case. If either of these condi-
tions gets worse, transitions from flowering to sterili-
ty or absence may become more frequent and lead
eventually to extinction of the population.

Conclusions. The irregular flowering patterns in
orchids are neither an artefact of the way the data
were collected, nor a result of chaotic behaviour of
mathematical equations. The literature reviewed here
shows that they are caused by a complex of biotic and
abiotic factors, which can act both ways and it
depends on the site and species, which one is the
most important. These factors include: 1) weather; 2)
grazing by mammals, by insects and underground
grazing of storage organs; 3) leaf diseases; 4) cost of
reproduction in species, in which reproductive suc-
cess varies substantially; 5) habitat management and
6) habitat deterioration.









KINDLMANN Irregular flowering regimes


ACKNOWLEDGEMENTS
This research was supported by the grants No. MSM
123100004 of the Czech Ministry of Education and
K6005114 of the Czech Academy of Sciences.


LITERATURE CITED
Curtis, J.T. and H. Green. 1953. Population changes in
some native orchids of southern Wisconsin, especially in
the University of Wisconsin Arboretum. Orchid Journal
2: 152-155.
Firmage, D.H. and F.R. Cole. 1988. Reproductive success
and inflorescence size of Calopogon tuberosus
(Orchidaceae) Am. J. Bot. 75: 1371-1377.
Gregg, K.B. 1991. Variation in behaviour of four popula-
tions of the orchid Cleistes divaricata, an assessment
using transition matrix models. In: Wells, T.C.E. and
J.H. Willems (eds.), Population ecology of terrestrial
orchids. SPB Acad. Publ. bv, The Hague, pp. 139-159.
Hutchings, M.J. 1987. The population biology of the early
spider orchid, Ophrys sphegodes Mill. I. A Demogra-
phic study from 1975 to 1984. J. Ecol. 75: 711-727.
Hutchings, M.J., A. Mendoza and W. Havers. (1998)
Demographic properties of an outlier population of
Orchis militaris L. (Orchidaceae) in England. Bot. J.
Linn. Soc. 126: 95-107.
Inghe, 0. 1990. Computer simulations of flowering
rhythms in perennials is there a new area to explore in
the quests for chaos? J. Theor. Biol. 147: 449-469.
Inghe, 0. and C.O. Tamm. 1988. Survival and flowering
of perennial herbs. V. Patterns of flowering. Oikos 51:
203-219.
Jersakova, J. and P. Kindlmann. 1998. Patterns of pollina-
tor-generated fruit set in Orchis morio (Orchidaceae).
Folia Geobot. 33: 377-390
Jones, P.S. 1998. Aspects of the population biology of
Liparis loeselii (L.) Rich. var. ovata Ridd.ex Godfery
(Orchidaceae) in the dune slacks of South Wales, UK.
Bot. J. Linn. Soc. 126: 123-139.
Kindlmann, P. 1999. Are orchid life histories really irregu-
lar? The case of Epipactis albensis. Oikos 85: 265-270.
Kindlmann P. and Z. Balounova. 1999a. Flowering
regimes of terrestrial orchids: chaos or regularity? J.
Veg. Sci. 10: 269-273.
Kindlmann P. and Z. Balounova. 1999b. Energy partition-
ing in terrestrial orchids a model for assessing their
performance. Ecol. Modelling 119: 167-176.
Kindlmann, P. and Z. Balounova. 2001. Irregular flower-
ing patterns in terrestrial orchids: theories vs. empirical
data. Web Ecol. 2: 75-82.
Kindlmann P., J.H. Willems and D.F. Whigham (eds.).
2002. Trends and fluctuations and underlying mecha-
nisms in terrestrial orchid populations. Backhuys, The
Netherlands.
Leeson, E., Haynes, C., Wells, T.C.E. 1991. Studies of the
phenology and dry matter allocation of Dactylorhiza


fuchsii. In: Wells, T.C.E. and J.H. Willems (eds.),
Population ecology of terrestrial orchids. SPB Acad.
Publ. bv, The Hague, pp. 125-138.
Tamm, C.O. 1956. Further observations on the survival
and flowering of some perennial herbs. Oikos 7: 274-
292.
Tamm, C.O. 1972. Survival and flowering of some peren-
nial herbs. II. The behaviour of some orchids on perma-
nent plots. Oikos 23: 23-28.
Tamm, C.O. 1991. Behaviour of some orchid populations
in a changing environment: Observations on permanent
plots, 1943-1990. In: Wells, T.C.E. and J.H. Willems
(eds.), Population Ecology of Terrestrial Orchids. SBP
Academic Publishing, The Hague, pp. 1-13.
Waite, S. and M.J. Hutchings. 1991. The effects of differ-
ent management regimes on the population dynamics of
Ophrys sphegodes: analysis and description using matrix
models. In: Wells, T.C.E. and J.H. Willems (eds.),
Population ecology of terrestrial orchids. SPB Acad.
Publ. bv, The Hague, pp. 161-175.
Wells, T.C.E. 1967. Changes in a population of Spiranthes
spiralis (L.) Chevall. at Knocking Hoe National Nature
Reserve, Bedfordshire, 1962-65. J. Ecol. 55: 83-99.
Wells, T.C.E. 1981. Population ecology of terrestrial
orchids. In: Synge, H. (ed.), The biological aspects of
rare plant conservation, Huntingdon, England, pp. 281-
295.
Wells, T.C. E. 1994. Population ecology of British terres-
trial orchids. In: Pridgeon, A. M. (ed.) Proceedings of
the 14th World Orchid Conference, HMSO, Edinburgh,
UK, pp. 170-175.
Wells, T.C.E., Cox, R. 1991. Demographic and biological
studies on Ophrys apifera: some results from a 10 year
study. In: Wells, T.C.E. and J.H. Willems (eds.),
Population ecology of terrestrial orchids. SPB Acad.
Publ. bv, The Hague, pp. 47-61.
Wells, T.C.E., P. Rothery, R. Cox and S. Bamford. 1998.
Flowering dynamics of Orchis morio L. and Herminium
monorchis (L.) R.Br. at two sites in eastern England.
Bot. J. Linn. Soc. 126: 39-48.
Whigham, D.F. 1990. The effect of experimental defolia-
tion on the growth and reproduction of a woodland
orchid, Tipularia discolor. Can. J. Bot. 68: 1812-1816.
Whigham, D.F., O'Neill, J. 1991. The dynamics of flower-
ing and fruit production in two eastern North American
terrestrial orchids, Tipularia discolor and Liparis lilifo-
lia. In: Wells, T.C.E. and J.H. Willems (eds.),
Population ecology of terrestrial orchids. SPB Acad.
Publ. bv, The Hague, pp. 89-101.
Willems, J.H. 1989. Population dynamics of Spiranthes
spiralis in South-Limburg, The Netherlands. Mem. Soc.
Roy. Bot. Belg. 11: 115-121.
Willems, J.H. and L. Bik. 1991. Long-term dynamics in a
population of Orchis simia in the Netherlands. In: Wells,
T.C.E. and J.H. Willems (eds.), Population Ecology of


Mayo 2003









LANKESTERIANA


Terrestrial Orchids, pp. 33-45 SBP Academic
Publishing, The Hague, The Netherlands.
Willems J.H. and M.L. Lahtinen. 1997. Impact of pollina-
tion and resource limitation on seed production in a bor-
der population of Spiranthes spiralis (Orchidaceae).


Acta Bot. Neerl. 46: 365-375.
Willems, J.H., Melser, C. 1998. Population dynamics and
life-history of Coeloglossum viride (L.) Hartm.: an
endangered orchid species in The Netherlands. Bot. J.
Linn. Soc. 126: 83-93.


Prof. Pavel Kindlmann works on modeling of population dynamics and of pollination strategies of terrestrial
orchids.








IANKESTERIANA7: 81-86. 2003.


BREEDING SYSTEMS, GENE FLOW AND LEVEL OF GENETIC
DIFFERENTIATION IN PLANT POPULATIONS


OSCAR J. ROCHA

Escuela de Biologia, Universidad de Costa Rica
Ciudad Universitaria "Rodrigo Facio", San Pedro, San Jose, Costa Rica


Genetic variation and its distribution among plant
populations are primarily determined by their breed-
ing system and the level of gene flow among them
(Bawa et al. 1985, Bawa et al. 1990, Rocha &
Aguilar 2001b). It is well known that mating systems
influence the amount, as well as the distribution of
the genetic variation within and among populations
(Wright 1921, Stebbins 1950, 1957, Hamrick et al.
1991). The net result of the operation of the various
breeding systems is the regulation of the outcrossing
rates, which may vary among populations and among
geographical regions (Bateman 1956, Grant 1958,
Rocha & Aguilar 2001a). Therefore, the study of
plant breeding systems, and their effect on the genetic
structure of populations is of fundamental importance
for the study of plant evolution and population genet-
ics (Richards 1986).
Plants show extensive variation in their sexual
expression (Willson 1983, Richards 1986). The vast
majority of flowering plants are hermaphrodites; i.e.,
they bear both male and female functional parts in the
same flower, and are capable of contributing genes to
the next generation through both functions. Other
forms of sex expression, such as monoecy and dioe-
cy, are also common in plants. Monoecious plants
also bear both male and female functional parts, but
they are borne on different flowers. In a broad sense,
monoecious plants are also hermaphrodites. In con-
trast, only one sex function is present in dioecious
plants. Other forms of sex expression result from the
combination of different the sex types on flowers of
the same individual.
The reproductive biology of tropical forest plants
has been studied by several authors (Bawa & Hadley
1990). Bawa et al. (1985) studied the sexual systems
of tropical rain forest trees in Costa Rica. They
reported that most trees are hermaphrodites and found


no significant difference between canopy and sub-
canopy habitats in the distribution of the various sex-
ual systems (Table 1). More recently, Kress & Beach
(1994) examined the sexual systems in 507 species
from the lowland rain forest of La Selva, Costa Rica.
They reported that 70% of species were hermaphro-
dites, 12.4% were monoecious, and 17.4% were dioe-
cious (Table 2). Similarly, in the premontane rain for-
est of Costa Rica, most of the 501 species examined
are hermaphrodites (69.7%). Only about 11% of the
species are dioecious and 9% are monoecious
(Ferrufino & Rocha, unpublished) (Fig. 1). Among
trees, the proportion of species with different sexual
systems found in the premontane forest is similar to
that described by Bawa et al. (1985) and Kress &
Beach (1994) in the lowland rain forest; 64.1% are
hermaphrodites, 9.6% are monoecious and 18.6% are
dioecious.
The relationship between sexual systems and breed-
ing systems is not always clear (Table 3).
Hermaphroditic plants may be capable of selling; but
many species exhibit mechanisms to avoid self-fertil-
ization. Reducing the level of selfing, in turn,
enhances the movement of genes within and between
populations (Willson 1983, Richards 1986). For
example, in some species, plants change from one sex
to the other once or more during their lifetime.
Typically, plants initiate sexual reproduction produc-
ing only male flowers, and later stop producing male
flowers and begin to produce only female flowers.
This phenomenon is known as sequential hermaphro-
ditism, and occurs when the fitness gain of each sexu-
al role changes with age or size of the individual.
Self-incompatibility systems are mechanisms to
avoid self-fertilization (Nettancourt 1977). These
mechanisms usually ensure obligate outbreeding, and
result from failure of self-pollen to adhere to, or ger-








LANKESTERIANA


Table 1: Floral sexuality and canopy position in 333 lowland tropical rain forest tree from Costa Rica (Taken from
Bawa et al. 1985).


Flower sexuality


% species in
Canopy


Sub-canopy


% species overall


Hermaphroditic (N=218)
Monoecious (N=38)
Dioecious (N-77)


Table 2: Sexual systems of flowering plants in the lowland rainforest at La Selva, Costa Rica (taken from Kress &
Beach 1994).

Forest stratum
Understory Sub-canopy Canopy All strata

N % N % N % N %

Hermaphroditic 168 74.7 124 67.4 64 65.3 356 70.2
Monoecious 35 15.5 18 9.8 10 10.2 63 12.4
Dioecious 22 9.8 42 22.8 24 24.5 88 17.4
Total species 225 100 184 100 98 100 507 100


minate on the stigma, or the failure of self-pollen to
penetrate the stigma, or to grow down the style
(Richards 1986). Two major mechanisms of self-
incompatibility systems have been studied in detail,
and they operate before fertilization: gametophytic
(GSI) and sporophytic (SSI) self-incompatibility.
Gametophytic self-incompatibility results from the
expression of genes in the haploid male gametophyte,
the pollen grain. In sporophytic self-incompatibility,
pollen failure is determined by the expression of
genes in the diploid sporophytic producer of pollen.
Bawa et al. (1985) showed that 24 out of 28 lowland

Sexual systems

5 6 78 9
4 1 m Hermaphrodites
2 m monoecious
3 O dioecious
4 o andromonoecious
5 o gynomonoecious
2 6 m gynodloecious
7 m polygamous
8 E polygamomonoecious
9 m polygamodloecious



Figure 1: Percentage of species by sexual system in a
premontane rain forest of Costa Rica.


rain forest species subjected to controlled pollination
showed the presence of self-incompatibility. More
recently, Kress & Beach (1994) showed that 16 out of
19 canopy and sub-canopy taxa (84.2%) in the low-
land rain forest of La Selva are self-incompatible.
They also showed that 13 out of 38 understory taxa
(34.2%) are self-incompatible.
The amount of selling also depends on the degree
of separation that occurs between male and female
parts in time (dichogamy) and space (herkogamy)
within the flowers. Sometimes, flowers are function-
ally male after anthesis, and later shift to be function-
ally female (protandry). In such species, the rate of
selling is explained by the amount of time occurring
between anther dehiscence and the start of stigma
receptivity within the flower (Schoen 1982a, 1982b).
In contrast, in other species flowers are functionally
female after anthesis, and later shift to be functionally
male (protogyny). The rate of selfing may also be
determined by the distance between the male and the
female parts within the flower. For example, in many
species of orchids the pollinium release occurs before
the stigmatic cavity is receptive (protandry). In addi-
tion, the stigmatic cavity is usually hidden with
respect to the pollinia in such a way that within
flower pollination is impossible (herkogamy).








ROCHA Genetic J.itt, c ii..... in plant populations


Table 3: Relationship between sexual systems and breeding systems (modified from Richards 1986, and Willson 1982).
CX- male-female, C=female only, X- male only

Sexual system Distribution of sex parts Breeding system

Within a flower Within a plant

Hermaphrodites CX CX From full selfing to full outcrossing
Monoecy C or X CX Enhances outcrossing
Dioecy C or X C or X Enforces outcrossing
Gynomonoecy CX or C CX Enhances outcrossing, but allows selling
Gynodioecy CX, C or X CX orC Enhances outcrossing
Andromonoecy CX or X CX Enhances outcrossing, but allows selling
Androdioecy CX, C or X CX or X Not enough information
Polygamy CX or C or X CX, or C or X Enhances outcrossing, allows some
geitonogamy and some autogamy


Overall, there is little information available about
these mechanisms in tropical plants.
The majority of tropical rain forest species investi-
gated so far appeared to be outcrossers with extensive
gene flow (Ashton 1969, Bawa et al. 1985, Hamrick
& Murawski 1991, Hamrick et al. 1991, Hall et al.
1994a, Hallet al. 1996, Doligez & Joly 1997).
Isozyme studies conducted to determine the mating
system of these species further support the predomi-
nance of outcrossing among tropical rain forest trees
(0' Malley & Bawa 1987, O'Malley et al. 1988,
Doliguez & Joly 1997, Nason & Hamrick 1997,
James et al. 1998). Doliguez & Joly (1997) and
Nason & Hamrick (1997) reviewed the outcrossing
rates reported for 28 and 36 species of tropical forest
trees in natural populations, respectively. They found
that most of these species have estimates of outcross-
ing rates higher than 0.80. Therefore, the outcrossing
rates could be used to explain the levels of genetic
variation and differentiation between populations.
Few studies have examined the variation in the out-
crossing rates of tropical plants (Murawski &
Hamrick 1990, 1991, 1992, Escalante et al. 1994,
Pascarella 1997, James et al. 1998, Rocha & Aguilar
2001a). For example, it has been reported that the
outcrossing rate did not vary significantly among
wild and cultivated populations of Phaseolus coc-
cineus in Mexico (Escalante et al. 1994). However,
the same study also revealed great variation in the


outcrossing rates among families within each popula-
tion. In contrast, Pascarella (1997) showed that out-
crossing rates varied significantly among four popula-
tions of the tropical shrub Ardisia escallonioides in
south Florida. He also showed that outcrossing rates
were not correlated with the number of flowering
plants within a population. His finding contrasted
with those of Murawski & Hamrick (1991) who
reported a significant decrease in the outcrossing
rates of Cavanillesia platanifolia as the density of
flowering trees declined.
Spatial and temporal variation in the outcrossing
rates of tropical rain forest trees has been examined
by Murawski & Hamrick (1991, 1992), Hallet al.
(1994), Hall et al. (1996) and Murawski et al. (1994).
For example, it has been reported that the outcrossing
rates of two populations of Cavanillesia platanifolia
in Panama were different (Murawski & Hamrick
1992). In addition, this species also showed signifi-
cant variation in the outcrossing rates in two consecu-
tive years in the population on Barro Colorado Island
(Murawski & Hamrick 1991). They found that the
outcrossing rate was directly correlated to the density
of flowering trees (Murawski & Hamrick 1991,
1992). In contrast, Hall et al. (1994b) did not find dif-
ferences in the outcrossing rates among nine popula-
tions of Carapa guianensis in Costa Rica. They con-
cluded that the high population density and synchro-
nous flowering contributed to the high outcrossing


Mayo 2003








LANKESTERIANA


rates. The difference between these two studies could
be due to the fact that one species (C. platanifolia) is
self-compatible while C. guianensis is self-incompati-
ble (J.L. Hamrick, pers. comm.). Because of that, the
later would be expected to have much less flexibility
in the amount of outcrossing/selfing.
In another study, Hall et al. (1996) reported that
outcrossing rates for Pithecellobium elegans did not
differ across two consecutive years, while the pro-
portion of flowering trees was significantly different
between years. Similar findings were also obtained
for .'.... trapezifolia in Sri Lanka, in two consecu-
tive years the estimates of outcrossing rates only var-
ied from 54 to 62 % (Murawski et al. 1994). The
authors argued that the variation in outcrossing rates
among individual trees suggested that the rate of
self-incompatibility in this species is also variable.
Rocha & Aguilar (200 l1a, 200 1b) showed little varia-
tion in the outcrossing rate of Enterolobium cyclo-
carpum in Costa Rica. However, they also showed
significant variation in the mean number of trees that
father the seed crop in trees from different popula-
tions, and from one year to the next within a given
population.
The genetic structure of tropical plants has been
examined using genetic markers (Buckley et al.
1983; Hamrick & Loveless 1989, Hamrick 1993).
Most of these studies revealed that trees and shrubs
usually have high levels of genetic variation, most
of which is within populations, and subsequently
there is little genetic differentiation within popula-
tions (Heywood & Fleming 1986, Murawski &
Hamrick 1990, 1991, P&rez-Nasser et al. 1991,
Hamrick 1993, Chase et al. 1995). For example,
there is little genetic differentiation between five
populations of Enterolobium cyclocarpum, the gua-
nacaste tree, where only 3.9% of the genetic varia-
tion was found between populations (Rocha & Lobo
1996). Rocha & Aguilar (2001a, 2001b) have
shown that guanacaste tree is a predominantly out-
crossing species with extensive gene flow. In con-
trast, Hall et al. (1994a) examined the distribution
of the genetic variation for Pentachlethra macrolo-
ba in Costa Rica. They reported that genetic differ-
entiation between populations accounted for 21.9%
of the total genetic variation. Similar findings were


obtained by Moran et al. (1989a, 1989b) for three
tropical species of Acacia from natural riverine for-
est and open savannas in Australia and New
Guinea. They found also found low levels of genet-
ic diversity and high levels of population differenti-
ation.
Maquet et al. (1996) studied the genetic structure
in wild populations of the short lived perennial pre-
dominantly inbreeder lima bean, Phaseolus lunatus.
They found that a significant proportion of the
genetic variation is found between populations of
this vine. They argue that such level of genetic dif-
ferentiation between populations is due to the high
rates of self-fertilization and biparental inbreeding
that result in low rates of gene flow. Similarly,
Murillo & Rocha (1999) studied the levels of genet-
ic differentiation between 17 populations of Alnus
acuminata, a monoecious wind pollinated tree
species, in Costa Rica and Panama. They found lev-
els of population differentiation that ranged between
0.14 and 0.28, and found some evidence of isolation
by distance and weak gene flow between popula-
tions from different geographical regions. In addi-
tion, the same authors also found that this is a pre-
dominantly outcrossing species; but their data
revealed that most of the seed crop of each tree is
sired by one or two pollen donor trees (Murillo &
Rocha, unpubl.).
In summary, sexual systems have an important
role in determining the rate of outcrossing. Self-
compatibility in hermaphrodite flowers may have
been originally advantageous to assure reproduction.
When reproductive assurance improved, outcrossing
may have become selectively advantageous, and led
to the evolution of different sexual systems. In addi-
tion, new features, such as dichogamy, herkogamy,
and self-incompatibility system, which promote out-
crossing may have also been favored by natural
selection. Selection for genetic recombination may
be strong in environments where biotic interaction
with competitors, pathogens, parasites and predators
are intense (Bawa et al. 1985). Overall, an increase
in the level of outcrossing increases genetic diversi-
ty, and it might also enhance gene flow counteract-
ing genetic differentiation between populations
(Hartl 1980).









ROCHA Genetic Ji tt c-iii r..... in plant populations


LITERATURE CITED

Ashton, P.S. 1969. Speciation among tropical forest trees:
some deductions in the light of recent evidence. Biol. J.
Linn. Soc. 1:155-196.
Bawa, K.S., D.R. Perry & J.H. Beach. 1985. Reproductive
biology of tropical lowland rain forest trees. I. Sexual
systems and incompatibility mechanisms. Amer. J. Bot.
72: 331-345.
Bawa, K.S., P.S. Ashton & S.M. Nor. 1990. Reproductive
ecology of tropical plants: management issues. In K.S.
Bawa & M. Hadley (eds.), Reproductive ecology of
tropical plants. The Parthenon Publ. Group, Carnforth,
Great Britain. p. 3-162.
Bawa, K.S. & M. Hadley (eds.). 1990. Reproductive ecol-
ogy of tropical plants. The Parthenon Publ. Group,
Carnforth, Great Britain.
Bateman, A.J. 1956. Cryptic self-incompatibility in the
wall-flower: Cheiranthus cheiri L. Heredity 10: 257-
261.
Buckley, D.P., D.M. O'Malley, V. Apsit, G.T. Prance &
K.S. Bawa. 1988. Genetics of Brazil nut (Bertholletia
excelsa Humb. & Bonpl.: Lecythidaceae). 1. Genetic
variation in natural populations. Theor. Appl. Genetics
76:923-928.
Chase M.R, D.H. Boshier, & K.S. Bawa. 1995. Population
genetics of Cordia alliodora (Boraginaceae), a neotropi-
cal tree. 1.Genetic variation in natural populations.
Amer. J. Bot. 82: 468-475.
Doliguez, A. & H.I. Joly. 1997. Mating system of Carapa
procera (Meliaceae) in French Guiana tropical forest.
Amer. J. Bot. 84: 461-470.
Escalante, A.M., G. Coello, L.E. Eguiarte & D. Pifiero.
1994. Genetic structure and mating systems in wild and
cultivated populations of Phaseolus coccineus and P.
vulgaris (Fabaceae). Amer. J. Bot. 81: 1096- 1103.
Grant, V. 1958. The regulation of recombination in plants.
Cold Spring Harbor Symposium in Quantitative Biology
23: 337-363.
Hall, P., M.R. Chase & K.S. Bawa. 1994a. Low genetic
variation but high population differentiation in a com-
mon tropical forest tree species. Conserv. Biol. 8:471-
482.
Hall P., L.C. Orrell & K.S. Bawa. 1994b. Genetic diversi-
ty and mating system in a tropical tree, Carapa guianen-
sis (Meliaceae). Amer. J. Bot. 81: 1104-1111.
Hamrick, & M.D. Loveless. 1989. The genetic structure of
tropical tree populations: associations with reproductive
biology. In J.H. Bock & Y.B. Linhart (eds.), The evolu-
tionary ecology.
Hamrick, J.L., M.J.W. Godt, D.A. Murawski & M.D.
Loveless. 1991. Correlation between species traits and
allozyme diversity: implications for conservation biolo-
gy. In D.A. Falk & K.E. Holsinger (eds.), Genetics and
conservation of rare plants. Oxford University Press,
New York, pp. 75-86.


Hamrick, J.L., & D. Murawski. 1991. Levels of allozyme
diversity in populations of uncommon Neotropical tree
species. J. Trop. Ecol. 7: 395-399.
Heywood, J.L. & T.H. Fleming. 1986. Patterns of
allozyme variation in three Neotropical species of Piper.
Biotropica 18: 208-399.
Hartl, D. 1980. Principles of population genetics. Sinauer
Assoc., Massachussetts.
James, T., S. Vege, P. Aldrich & J.L. Hamrick. 1998.
Mating systems of three dry forest tree species.
Biotropica 30: 587-594.
Kress, W. J. & J.H. Beach. 1994. Flowering plants reproduc-
tive systems. In L.A. McDade, K.S. Bawa, H.A.
Hespenheide & G.S. Hartshorn (eds.), La Selva: ecology
and natural history of a neotropical rain forest. p. 161-182.
Maquet, A., Zoro Bi Irie, O.J. Rocha & J.P. Baudoin.
1996. Case studies on breeding systems and its conse-
quences for germplasm conservation. 1. Isozyme diver-
sity in wild lima bean population in central Costa Rica.
Gen. Resources Crop Evol. 43: 309-318.
Moran C.F., 0. Mouna & J.C. Bell. 1989a. Acacia
mangium: a tropical forest tree of the coastal lowlands
with low levels of genetic diversity. Evolution 43: 231-
235.
Moran, C.F., 0. Mouna & J.C. Bell. 1989b. Breeding sys-
tems and genetic diversity in Acacia auriculiformis and
A. crassicarpa. Biotropica 21: 250-256.
Murawski, D.A. and J.L. Hamrick. 1990. The breeding
structure of tropical tree populations. Pl. Sp. Biol. 5:
157-167.
Murawski, D.A. & J.L. Hamrick. 1991. The effects of the
density of flowering individuals on the mating systems
of nine tropical tree species. Heredity 67: 167-174.
Murawski, D.A. & J.L. Hamrick. 1992. The mating system
of Cavanillesia platanifolia under extremes of flower-
ing-tree density: a test of predictions. Biotropica 24: 99-
101.
Murawski, D.A., B. Dayanandan & K.S. Bawa. 1994.
Outcrossing rates of two endemic Shorea species from
Sri Lankan tropical rain forests. Biotropica 26: 23-29.
Nettancourt, D. de, 1977. Incompatibility in angiosperms.
Springer-Verlag, Berlin.
Murillo, 0 & O.J. Rocha. 1999. Gene flow and geograph-
ical variation in natural populations of Alnus acuminata
ssp. arguta (Fagales: Betulaceae) in Costa Rica and
Panama. Rev. Biol. Trop. 47: 739-753.
Nason, J.D. & J.L. Hamrick. 1997. Reproductive and
genetic consequences of forest fragmentation: two case
studies of neotropical canopy trees. J. Heredity 88: 264-
276.
O'Malley, D.M. & K.S. Bawa. 1987. Mating systems of a
tropical rain forest tree species. Amer. J. Bot. 82: 501-
506.
O'Malley, D.M., D.P. Buckley, G.T. Prance & K.S. Bawa.
1988. Genetics of Brazil nut (Bertholletia excelsa
Humb. & Bonpl.: Lecythidaceae) 2. Mating system.


Mayo 2003








LANKESTERIANA


Theor. Appl. Genetics 76: 929-932.
Pascarella, J.B. 1997. The mating system of the tropical
understory shrub Ardisia escalloniodes ( 1' .......i..... I
Amer. J. Bot. 84: 456-460.
Perez-Nasser, N., L.E. Eguiarte & D. Pifiero. 1993.
Mating systems and genetic structure of the distylous
tropical tree Psychotria faxlucens (Rubiaceae). Amer. J.
Bot. 80: 45-52.
Richards A.J. 1986. Plant breeding systems. 2nd Ed.
Chapman & Hall, Cambridge, Great Britain.
Rocha, O.J. & J.A. Lobo. 1996. Genetic variation and dif-
ferentiation among five populations of the Guanacaste
tree (Enterolobium cyclocarpum Jacq.) in Costa Rica.
Int. J. Pl. Sc. 157: 234-239.
Rocha, O.J. & G. Aguilar. 2001b. Variation in the breed-
ing behavior of the dry forest tree Enterolobium cyclo-
carpum Jacq. (Guanacaste) in Costa Rica: a comparison
between trees left in pastures and trees in continuous


forest. Amer. J. Bot. 88: 1600-1606.
Rocha, O.J. & G. Aguilar. 2001a. Reproductive biology of
the dry forest tree Enterolobium cyclocarpum Jacq.
(Guanacaste) in Costa Rica: a comparison between trees
left in pastures and trees in continuous forest. Amer. J.
Bot. 88: 1607-1614.
Schoen, D.J. 1982a. The breeding system of Gilia
achilleifolia: variation in floral characteristics and out-
crossing rate. Evolution 36: 352-360.
Schoen, D.J. 1982b. Genetic variation and breeding sys-
tems of Gilia achilleifolia. Evolution 36: 361-370.
Stebbins, G.L. 1950. Variation and evolution in plants.
Columbia University Press, New York,USA.
Stebbins, G.L. 1957. Self fertilization and plant variability
in higher plants. Amer. Natur. 91: 337-354.
Willson, M.F. 1983. Plant reproductive ecology. John
Wiley and Sons, USA.
Wright, S. 1921. Systems of mating. Genetics 6:111-178.


Oscar J. Rocha is a population biologist interested in a diverse range of topics related to conservation of bio-
logical diversity in the Neotropics. Particularly, he is interested in the reproductive biology of tropical plants
and the impact of man-made disturbances, such as habitat fragmentation and degradation, and overexploita-
tion, on breeding systems and genetic diversity. He is currently a professor of Biology at the Escuela de
Biologia, Universidad de Costa Rica.








LANKESTERIANA7: 87-92. 2003.


THE GENETIC STRUCTURE OF ORCHID POPULATIONS
AND ITS EVOLUTIONARY IMPORTANCE


RAYMOND L. TREMBLAY'' & JAMES D. ACKERMAN2

'University of Puerto Rico Humacao, Department of Biology, Humacao, Puerto Rico, 00791, U.S.A.
2University of Puerto Rico Rio Piedras, Department of Biology
P.O. Box 23360, San Juan, Puerto Rico, 00931-3360, U.S.A.
'Author for correspondence: 'i i, m......1, ip f IIpi c-,.i


Evolution through either natural selection or genetic
drift is dependent on variation at the genetic and mor-
phological levels. Processes that influence the genetic
structure of populations include mating systems,
effective population size, mutation rates and gene flow
among populations. We investigated the patterns of
population genetic structure of orchids and evaluated
if evolutionary processes are more likely at the indi-
vidual population level than at the
multipopulation/species level. We hypothesized that
because orchid populations are frequently small and
reproductive success is often skewed, we should
observe many orchids with high population genetic
substructure suggesting limited gene flow among pop-
ulations. If limited gene flow among populations is a
common pattern in orchids, then it may well be an
important component that affects the likelihood of
genetic drift and selection at the local population level.
Such changes may lead to differentiation and evolu-
tionary diversification.
A main component in evolutionary processes is the
necessary condition of isolation. The amount of gene
flow among local populations will determine whether
or not individual populations (demes) can evolve inde-
pendently which may lead to cladogenesis. Usually
one migrant per generation is sufficient to prevent
populations from evolving independently from other
populations when effective population sizes are large.
Theoretically, if the gene flow rate, Nm (the effective
number of migrants per generation; N = effective pop-
ulation size, m = migration rate), is larger than two
individuals per generation, then it is sufficient to pre-
vent local adaptation while gene flow less than one
per generation will likely result in population differen-
tiation by selection or genetic drift (Merrell 1981,
Roughgarden 1996). If Nm lies between one and two,
there will be considerable variation in gene frequen-
cies among populations (Merrell 1981). Consequently,


populations will have similar genetic structure as if
mating were panmictic (Nm >2). Alternatively, if gene
flow is low (Nm < 1), populations will have different
genetic structures that may result in evolutionary
change through either adaptation to the local environ-
ments via natural selection or through random effects
such as genetic drift.
Direct observation of gene flow can be viewed by
the use of mark and recapture studies (for mobile
organisms, or stained pollen) or tracking marker alle-
les (paternity analysis) over a short number of genera-
tions. Few orchid studies have attempted to directly
observe gene flow and thus far only staining or micro-
tagging pollinaria have been used (Peakall 1989,
Nilsson et al 1992, Folsom 1994, Tremblay 1994,
Salguero-Faria & Ackerman 1999). All these studies
examined gene flow only within populations.
Indirect methods for detecting gene flow are
obtained from allele frequencies and are an estimate of
the average long-term effect of genetic differentiation
by genetic drift. The alleles are assumed to be neutral
so that genetic differentiation based on these markers
would be a consequence of drift rather than natural
selection. Bohomak (1999) concluded that simple
population genetic statistics are robust for inferring
gene flow among groups of individuals.
The most common approach is the degree of popula-
tion differentiation at the genetic level using Wright's
F estimates on data obtained through protein elec-
trophoresis or various PCR type approaches. The F
statistics separate the amount of genetic variation
which can be attributed to inbreeding among closely
related individuals in a population: FIS is the inbreed-
ing coefficient within individuals; FIT is the result of
non random mating within a population and the effect
of population subdivision; and a third statistic, FST, is
the fixation index due to random genetic drift and the
lack of panmixia among populations (Wright 1978).









LANKESTERIANA


Table 1. Estimates of gene flow in orchids. Nm(W) gene flow estimates based on Wright's statistics; Gst coeff-
cient of genic differentiation among populations. Nm calculated by the present authors from Gst or Fst using formula on
p. 320 of Hartl & Clark (1989). 2 Recalculated using previous formula, original Nm value 3.70. 3 Calculated from RAPD
markers. 4 Calculated from cpDNA. No genetic differentiation found among populations. 6 Calculated according to Weir
and Cockerham's statistics. Estimated using RAPD's and AMOVA.


Species


Calypso bulbosa (L.) Oakes
Caladenia tentaculata Tate
Cephalanthera damasonium (Mill.) Druce
Cephalanthera longifolia (L.) Fritsch
Cephalanthera rubra (L.) Rich.
Cymbidium. .... -. Rchb. f.
Cypripedium acaule Ait.
Cypripedium calceolus L.
Cypripedium candidum Muhl. ex Willd.
Cypripediumfasciculatum Kellogg ex S. Watson
Cypripedium kentuckiense C. F. Reed
Cypripedium parviflorum Salisb.
var. pubescens (Willd.) 0. W. Knight
Southern populations
Northern populations
var. makasin (Farw.) Sheviak
var parviflorum
species level
Cypripedium reginae Walter
Dactylorhiza romana (Sebastiani) So6
Dactylorhiza sambucina (L.) So6
Epidendrum conopseum R. Br.
Epipactis helleborine (L.) Crantz
European populations


North American


Epipactis youngiana Richards & Porter
Eulophia sinensis Miq.

Gooyera procera Ker-Gawl.

Gymnadenia conopsea (L.) R. Br.
Gymnadenia conopsea (L.) R. Br. conopsea
Gymnadenia conopsea (L.) R. Br.
subsp densiflora (Wahl) E.G. Camus & A. Camus
Lepanthes caritensis Tremblay & Ackerman

Lepanthes rupestris Stimson
Lepanthes rubripetala Stimson
Lepanthes eltoroensis Stimson
Lepanthes sanguine Hook.


References


Nm(W) Gst


Alexandersson & Agren 2000
Peakall & Beattie 1996
Scacchi, De Angelis & Corbo 1991
Scacchi, De Angelis & Corbo 1991
Scacchi, De Angelis & Corbo 1991
Chung & Chung 1999
Case 1994
Case 1993, 1994
Case 1994
Aagaard, Harrod & Shea 1999
Case et al. 1998

Case et al. 1998
Wallace & Case 2000





Case 1994
Bullini et al. 2001
Bullini et al. 2001
Bush, Kutz & Anderton 1999
Scacchi, Lanzara & De Angelis 1987
Squirrell et al., 2001

Hollingsworth & Dickson 1997



Harris & Abbott 1997
Sun & Wong 2001

Wong & Sun 1999

Scacchi & De Angelis 1990
Soliva & Widmer 1999

Soliva & Widmer 1999
Carromero, Tremblay & Ackerman
(unpublished)
Tremblay & Ackerman 2001
Tremblay & Ackerman 2001
Tremblay & Ackerman 2001
Carromero, Tremblay & Ackerman
(unpublished)


3.20
7.10'
--5
2.15'
0.76'
2.30
1.27'
1.631
3.371
6.00
1.121

1.281
0.94
1.57
1.00
1.43
0.83
0.471
3.321
1.311
1.433
7.31
1.001
0.2414

2.53'
0.791
2.431

0.1331
0.2211
0.39713
0.2801
2.96


0.072
0.0346
--5
0.104
0.247
0.098
0.164
0.196
0.069
0.04
0.182

0.163
0.209
0.137
0.199
0.149
0.232
0.349
0.07
0.16
0.149
0.033
0.200
0.5064
0.0904
0.240

0.093
0.0
0.6533
0.523
0.3863
0.471
0.078


0.39 0.391
1.30 0.167


0.170
0.270
0.220
0.144









TREMBLAY & ACKERMAN Genetic structure of orchid populations


Species


Lepanthes woodburyana Stimson

.. .rhellicani Teppner & Klein
Orchis laxiflora Lam.

Orchis longicornu Poir.
Orchis mascula (L.) L.
Orchis morio L.

Orchis papilionacea L.
Orchis palustris Jacq.
Orchis pauciflora Ten.
Orchis provincialis Balb.
Orchis purpurea Huds.
Orchis tridentata Scop.
Paphiopedilum micranthum T. Tang & F. T. Wang
Platanthera leucopaea (Nutt.) Lindl.

Pterostylis aff. alata (Labill.) Rchb.f.
Pterosylis angusta A.S. George
Pterosylis aspera D. L. Jones & M. A. Clem.
Pterostylis -. .. R. Br.
Pterostylis hamiltonii Nicholls
Pterosylis ..... E. Coleman
Pterostylis scabra Lindl.
Spiranthes diluvialis Sheviak
Spiranthes sinensis (Pers.) Ames
Spiranthes hongkongensis S. H. Hu & Barretto
Tipularia discolor (Pursh) Nutt.
Tolumnia variegata (Sw.) Braem
Vanilla claviculata (W. Wright) Sw.
Vanilla barbellata Rchb. f.
Zeuxine ,'ra ili' Blume

Zeuxine strateumatica Schltr.


References


Carromero, Tremblay & Ackerman
(unpublished)
Hedren, Klein & Teppner 2000
Scacchi, De Angelis & Lanzara 1990
Arduino et al. 1996
Corrias et al. 1991
Scacchi, De Angelis & Lanzara 1990
Scacchi, De Angelis & Lanzara 1990
Rossi et al. 1992
Scacchi, De Angelis & Lanzara, 1990
Arduino et al. 1996
Scacchi, De Angelis & Lanzara 1990
Scacchi, De Angelis & Lanzara 1990
Scacchi, De Angelis & Lanzara 1990
Scacchi, De Angelis & Lanzara 1990
Li, Luo & Ge 2002
Wallace 2002

Sharma et al. 2001
Sharma et al. 2001
Sharma et al. 2001
Sharma, Clements & Jones 2000
Sharma et al. 2001
Sharma et al. 2001
Sharma et al. 2001
Arft & Ranker 1998
Sun 1996
Sun 1996
Smith, Hunter & Hunter 2002
Ackerman & Ward 1999
Nielsen & Siegismund 1999
Nielsen & Siegismund 1999
Sun & Wong 2001

Sun & Wong 2001


Nm(W) Gst

7.5 0.032


1.381
2.85'
1.97'
12.252
2.761
3.66'
4.75'
6.33'
0.311
6.001
10.621
5.701
6.161
0.061
0.081
0.711
0.811
1.301
1.011
1.42
0.861
1.101
0.831
5.44
1.19
5
0.357
2.50
1.33
1.78
0.5001
0.2141
0.021'


0.153
0.08
0.116
0.02
0.083
0.064
0.05
0.038
0.448
0.040
0.023
0.042
0.039
0.7977
0.754
0.26'
0.235
0.161
0.198
0.15
0.225
0.186
0.232
0.044
0.174
5
0.415
0.09
0.158
0.123
0.333
0.539'
0.924'


Consequently, if we make the assumption that the
genetic markers sampled are neutral or nearly neutral
and that the observed level of FST is a measure of the
current gene flow among populations (rather than a
historical remnant), then we can evaluate the likelihood
that populations are effectively isolated. The scale of
FST is from 0 (no population subdivision) to 1.0 (com-
plete genetic differentiation among populations).
We gathered population genetic data for 58 species
of terrestrial and epiphytic orchids from temperate
and tropical species. The data are biased toward ter-
restrial/temperate species (N = 44). We found only


three studies of terrestrial/tropical species and ten epi-
phytic/tropical. There is also a bias toward certain
taxa: Orchis, Cypripedium, Pterostylis and Lepanthes
account for nearly half (30) of the 61 records (Table
1), 10 species of Orchis, 7 species each of
Cypripedium and Pterostylis, 6 species of Lepanthes,
3 species of Spiranthes, Epipactis, Cephalanthera
and Gymnadenia, 2 species of Dactylorhiza,
Epipactis, Vanilla and Zeuxine, and one species each
of Caladenia, Calypso, Cymbidium, Epidendrum,
Eulophia, Goodyera, Nigritella, Paphiopedilum,
Platanthera, Tipularia, and Tolumnia.


Mayo 2003








LANKESTERIANA


5-
Nm

4-


3


r 1


*c o -c r z -c Z co c^ -c c^ w -c w r -c w ci -c -c -c L

0- M 3 E3^ [ ^ iJ L 3 l.. ; ^ -
-J Z 0
I _j CD 0C IW


Figure 1: Distribution of mean (s.e.) gene flow (Nm) among genera of Orchids. Bars without error bars of single data
points.


Gene flow among populations varies among species
ranging from a high of 12 effective migrants per gen-
eration in Orchis longicornu (Corrias et al. 1991) to
lows of less then 0.2 in Zeuxine strateumatica (Sun &
Wong 2001). Assembling the species in groups based
on their estimates of gene flow, we note that 18
species have less then one migrant per generation,
while 19 species have more than two migrants per
generation, and 17 of the species have a migration
rates between one and two. No genetic differentiation
was found among populations for Cephalanthera
damasonium (Scacchi, De Angelis & Corbo 1991)
and Spiranthes hongkongensis (Sun 1996).
Consequently these two species are excluded from
further analysis.
Orchis species typically have high estimates of
gene flow among populations (Scacchi, De Angelis &
Lanzara 1990, Corrias et al. 1991, Rossi et al. 1992)
whereas Lepanthes and Pterostylis species have much
lower gene flow estimates (Tremblay & Ackerman
200 1,1.,nji.,, Clements & Jones 2000; ,NI.,I ., et al.


2001). However even within a genus variation in
gene flow can be extensive (Table 1).
Are there phylogenetic associations with gene
flow? The data for Orchis (mean Nm = 5.7),
Lepanthes (mean Nm = 2.1) and Pterostylis (mean
Nm = 1.0) are suggestive, but much more extensive
sampling is needed for both temperate and tropical
species. Curiously, Lepanthes and Orchis have very
different population genetic parameters yet both are
species-rich genera and are likely in a state of evolu-
tionary flux. It seems to us that orchids have taken
more than one expressway to diversification. For the
group of species which has more than 2 migrants per
generation local populations will not evolve indepen-
dently, but as a group, consequently local morpholog-
ical and genetic differences among groups will be
wiped out, and populations will become homoge-
neous if gene flow continues at the level. When gene
flow is high, selection studies from different popula-
tions should be evaluated together (Fig. 1).
For populations that have less than one migrant per








TREMBLAY & ACKERMAN Genetic structure of orchid populations


generation, local populations can evolve independent-
ly, and evolutionary studies should be done at the
local level. In small populations, we may expect
genetic drift to be present and selection coefficients
should be high to counteract the effects of drift.
For species with intermediate gene flow it is proba-
bly wise to evaluate evolutionary processes at the local
and multi-population/species level. We expect variance
in migration rates to be large because of the skewed
reproductive success among individuals, time periods
and populations. Consequently, the outcome of the
evolutionary process will likely depend on the amount
and variation of the migration events and consistency
in migration rates in time. If variance in gene flow
through space and time is small, then the genetic dif-
ferentiation will be more or less stable. But, for exam-
ple, if variance in gene flow is high, with some periods
having high gene flow followed by little or no gene
flow for an extended period of time, it is possible that
through natural selection and genetic drift local popula-
tions might differentiate sufficiently for cladogenesis
during the period of reduced immigration.
Species with less than one migrant per population
are basically unique evolutionary units evolving inde-
pendently from other local populations. In popula-
tions with large Ne (> 50), it is likely that natural
selection will dominate evolutionary processes while
if Ne is small (< 50) genetic drift and selection can
both be responsible for evolution. Consequently for
these species, local adaptation to specific environ-
mental conditions is possible.
This survey of population genetics studies of
orchids shows that multiple evolutionary processes
have likely been responsible for the remarkable diver-
sification in orchids.

LITERATURE CITED
Aagaard J.E., R.J. Harrod & K.L. Shea. 1999. Genetic vari-
ation among populations of the rare clustered lady-slip-
per orchid (Cypripedium jasciculatum) from Washington
State, USA. Nat. Areas J. 19: 234-238
Ackerman J.D. & S. Ward. 1999. Genetic variation in a
widespread epiphytic orchid: where is the evolutionary
potential? Syst. Bot. 24: 282-291.
Alexandersson, R. & J. Agren. 2000. Genetic structure of
the nonrewarding bumblebee pollinated Calypso bul-
bosa. Heredity 85: 401-409
Arduino, P., F. Verra, R. Cianchi, W. Rossi, B. Corrias, &
L. Bullini. 1996. Genetic variation and natural
hybridization between Orchis laxiflora and Orchis
palustris (Orchidaceae). Pl. Syst. Evol. 202: 87-109.


Arft, A.M. & T.A. Ranker. 1998. Allopolyploid origin and
population genetics of the rare orchid Spiranthes diluvi-
alis. Am. J. Bot. 85: 110-122.
Bohomak, A.J. 1999. Dispersal, gene flow, and population
structure. Quart. Rev. Biol. 74: 21-45.
Bullini, L., R. Cianchi, P. Arduino, L. De Bonis, M. C.
Mosco, A. Verdi, D. Porretta, B. Corrias & W. Rossi.
2001. Molecular evidence for allopolyploid speciation
and a single origin of the western Mediterranean orchid
Dactylorhiza insularis (Orchidaceae). Biol. J. Lin. Soc.
72: 193-201.
Bush, S.T., W.E. Kutz & J.M. Anderton. 1999. RAPD
variation in temperate populations of epiphytic orchid
Epidendrum conopseum and the epiphytic fern
Pleopeltis polypodioides. Selbyana 20: 120-124.
Case, M.A. 1993. High levels of allozyme variation within
Cypripedium calceolus (Orchidaceae) and low levels of
divergence among its varieties. Syst. Bot. 18: 663-677.
Case, M.A. 1994. Extensive variation in the levels of
genetic diversity and degree of relatedness among five
species of Cypripedium (Orchidaceae). Amer. J. Bot. 81:
175-184.
Case, M.A., H.T. Mlodozeniec, L.E. Wallace & T.W.
\\ ,.d' 1998. Conservation genetics and taxonomic sta-
tus of the rare Kentucky Lady's slipper: Cypripedium
kentuckiense (Orchidaceae). Amer. J. Bot. 85: 1779-
1779.
Chung, M.Y. & M.G. Chung. 1999. Allozyme diversity
and population structure in Korean populations of
Cymbidium goeringii (Orchidaceae). J. Pl. Res. 112:
139-144.
Corrias, B., W. Rossi, P. Arduino, R. Cianchi & L. Bullini.
1991. Orchis longicornu Poiret in Sardinia: genetic,
morphological and chronological data. Webbia 45: 71-
101.
Folsom, J.P. 1994. Pollination of a fragrant orchid. Orch.
Dig. 58: 83-99.
Harris, S.A. & R. J. Abbott. 1997. Isozyme analysis of the
reported origin of a new hybrid orchid species, Epipactis
youngiana (Young's helleborine), in the British Isles.
Heredity 79: 402-407.
Hedren, M., E. Klein & H. Teppner. 2000. Evolution of
polyploids in the European orchid genus .. .
Evidence from allozyme data. Phyton 40: 239-275.
Hollingsworth, P.M. & J.H. Dickson. 1997. Genetic varia-
tion in rural and urban populations of Epipactis helle-
borine (L.) Crantz. (Orchidaceae) in Britain. Bot. J.
Linn. Soc. 123: 321-331.
Li, A, Y., B. Luo & S. Ge. 2002. A preliminary study on
conservation genetics of an endangered orchid
(Paphiopedilumn micranthum) from Southwestern China.
Bioch. Gen. 40: 195-201.
Merrell, D.J. 1981. Ecological Genetics. University of
Minnesota Press, Minneapolis, Minnesota.
Nielsen, L.R. & H.R. Siegismund. 2000. Interspecific dif-
ferentiation and hybridization in Vanilla species
(Orchidaceae). Heredity 83: 560-567.


Mayo 2003









LANKESTERIANA


Nilsson, L.A., E. Rabakonandrianina & B. Pettersson.
1992. Exact tracking of pollen transfer and mating in
plants. Nature 360: 666-667.
Peakall, R. 1989. A new technique for monitoring pollen
flow in orchids. Oecologia 79: 361-365.
Peakall, R. & A. J. Beattie. 1996. Ecological and genetic
consequences of pollination by sexual deception in the
orchid Caladenia tentaculata. Ecology 50: 2207-2220.
Rossi, W., B. Corrias, P. Arduino, R. Cianchi & L. Bullini
L. 1992. Gene variation and gene flow in Orchis morio
(Orchidaceae) from Italy. Pl. Syst. Evol. 179: 43-58.
Roughgarden, J. 1996. Theory of population genetics and
evolutionary ecology: An Introduction. Prentice Hall,
Upper Saddle River, NJ, USA.
Salguero-Faria, J.A. & J.D. Ackerman. 1999. A nectar
reward: is more better? Biotropica 31: 303-311.
Scacchi, R., G. De Angelis & R.M. Corbo. 1991. Effect of
the breeding system ion the genetic structure in
Cephalanthera spp. (Orchidaceae). Pl. Syst. Evol. 176:
53-61.
Scacchi, R., G. De Angelis & P. Lanzara. 1990. Allozyme
variation among and within eleven Orchis species (fam.
Orchidaceae), with special reference to hybridizing apti-
tude. Genetica 81: 143-150.
Scacchi, R. and G. De Angelis. 1990. Isoenzyme polymor-
phisms in Gymnaedenia [sic] conopsea and its infer-
ences for systematics within this species. Bioch. Syst.
Ecol. 17: 25-33.
Scacchi, R., P. Lanzara & G. De Angelis. 1987. Study of
electrophoretic variability in Epipactis heleborine (L.)
Crantz, E. palustris (L.) Crantz and E. microphylla
(Ehrh.) Swartz (fam. Orchidaceae). Genetica 72: 217-
224.
Sharma, I.K., M.A. Clements & D.L. Jones. 2000.
Observations of high genetic variability in the endan-
gered Australian terrestrial orchid Pterostylis - .. R.
Br. (Orchidaceae). Bioch. Syst. Ecol. 28: 651-663.
Sharma, I.K., D.L. Jones, A.G. Young & C.J. French.
2001. Genetic diversity and phylogenetic relatedness
among six endemic Pterostylis species (Orchidaceae;
series Grandiflorae) of Western Australia, as revealed by
allozyme polymorphisms. Bioch. Syst. Ecol. 29: 697-
710.


Smith, J.L., K.L. Hunter & R.B. Hunter. 2002. Genetic
variation in the terrestrial orchid Tipularia discolor.
Southeastern Nat. 1: 17-26
Soliva, M. & A. Widmer A. 1999. Genetic and floral
divergence among sympatric populations of
Gymnadenia conopsea s.I. (Orchidaceae) with different
flowering phenology. Int. J. Pl. Sci. 160: 897-905.
Squirrell, J., P.M. Hollingsworth, R.M. Bateman, J.H.
Dickson, M.H.S. Light, M. MacConaill & M.C. Tebbitt.
2001. Partitioning and diversity of nuclear and organelle
markers in native and introduced populations of
Epipactis helleborine (Orchidaceae). Amer. J. Bot. 88:
1409-1418.
Sun, M. 1996. Effects of Population size, mating system,
and evolution origin on genetic diversity in Spiranthes
sinensis and S. hongkongensis. Cons. Biol. 10: 785-795.
Sun, M. & K.C. Wong. 2001. Genetic structure of three
orchid species with contrasting breeding system using
RAPD and allozyme markers. Amer. J. Bot. 88: 2180-
2188.
Tremblay, R.L. 1994. Frequency and consequences of
multi-parental pollinations in a population of
Cypripedium calceolus L. var. pubescens (Orchidaceae).
Lindleyana 9: 161-167.
Tremblay, R.L & J.D. Ackerman. 2001. Gene flow and
effective population size in Lepanthes (Orchidaceae): a
case for genetic drift. Biol. J. Linn. Soc. 72: 47-62.
Wallace, L.A. 2002. Examining the effects of fragmenta-
tion on genetic variation in Platanthera leucophaea
(Orchidaceae): Inferences from allozyme and random
amplified polymorphic DNA markers. Pl. Sp. Biol 17:
37-39.
Wallace, L.A. & M. A. Case. 2000. Contrasting diversity
between Northern and Southern populations of
Cypripedium parviflorum (Orchidaceae): Implications
for Pleistocene refugia and taxonomic boundaries. Syst.
Bot. 25: 281-296.
Wong, K.C. & M. Sun. 1999. Reproductive biology and
conservation genetics of Goodyera procera
(Orchidaceae). Amer. J. Bot. 86: 1406-1413.
Wright, S. 1978. Evolution and the genetics of popula-
tions. Vol. 4. Variability within and among natural pop-
ulations. Chicago, The University of Chicago Press.


Raymond L. Tremblay is an associate professor at the University of Puerto Rico in Humacao and graduate facul-
ty at UPR- Rio Piedras. He obtained his B.Sc. with Honours at Carleton University, Ottawa, Canada in 1990 and
his Ph.D. at the University of Puerto Rico in Rio Piedras in 1996. He is presently the chairman of the In situ
Orchid Conservation Committee of the Orchid Specialist Group. He is interested in evolutionary and conserva-
tion biology of small populations. Presently his interest revolves in determining the life history characters that
limit population growth rate in orchids and evaluating probability of extinction of small orchid populations.

James D. Ackerman, Ph.D., is Senior Professor of Biology at the University of Puerto Rico, Rio Piedras. He
is an orchidologist, studying pollination an systematics.


















1' CONGRESS INTERNATIONAL DE ORQUIDEOLOGiA NEOTROPICAL
Is INTERNATIONAL CONFERENCE ON NEOTROPICAL ORCHIDOLOGY


Sesi6n / Session

BIOLOGIA DE LA POLINIZACION

POLLINATION BIOLOGY








LANKESTERIANA7: 95-96. 2003.


RESUPINATION


JOSEPH ARDITTI

Professor Emeritus
Department of Developmental and Cell Biology, University of California
Irvine, CA 92697-2300, U. S. A.


In the great majority of orchids buds are positioned
with the labella uppermost and the gynostemia below
them. However, flowers are borne with gynostemia
above the labella which are lowermost. This reversal
of positions occurs as a result of a process called
resupination which takes place as buds open. In most
species the buds turn only to the extent necessary to
place the labellum lowermost which is usually 180,
but depending on the position of the inflorescence the
turning can be more or less than that. Some species
do not resupinate at all and their flowers are often
described as being bome upside down. And, the buds
of a few species turn 3600 ending up as they started,
with the labella uppermost.
The earliest illustrations of resupination were made
around 1550 by the Swiss naturalist Conrad Gesner
(1516-1565), but his Opera Botanica which contains
them was not published until 1751. Georgius
Everhardus Rumphius (1627-1702) was the second to
illustrate the process in his drawing of an Ambonese
orchid. His Herbarium Amboinense was published in
1741 (i. e., 10 years before Opera Botanica which
means that the second illustrations to be made were
published before the first). A drawing by Marcello
Malpighi (1628-1694) of an orchid he refers to as
Palma Christi shows spiral grooves which are indica-
tive of resupination on the ovary. This is the third or
perhaps second illustration of the process to be made,
but it was the very first to be published (1675).
What may well be the first illustrations of resupina-
tion by American orchids were prepared ca. 1760 by
the artists of an expedition to New Grenada led by
Jose Celestino Mutis (1732-1808). Publication of
these illustrations started in 1963 (for reviews see
Ernst & Arditti 1994; Wehner, Zierau & Arditti,
2002).
Resupination usually occurs just prior to or shortly
after anthesis. Once flowers are fully open, they can
no longer resupinate. However, the flowers of some


species deresupinate following pollination. Another
interesting characteristic of resupination is that in
some species and hybrids the buds alternate in
resupinating clock (CL)- and counter clock (CO)-
wise. In other orchids the flowers may resupinate in
one direction (CL or CO) only.
Surgical experiments by Noes Soediono (owner of
Flora Sari Orchids in Jakarta, Indonesia), the late Dr.
Leslie P. Nyman (my postdoctoral fellow at the time)
and myself showed that removal of gynostemium
tips, pollinia or stigmas prevent or inhibit resupina-
tion. Since orchid pollinia contain large amounts of
indoleacetic acid (IAA) these experiments suggested
that resupination may be controlled by auxin. This
possibility was explored by Professor Helen Nair
(Botany Department, University of Malaya, now
retired) and myself (while on sabbatical leave with
her). We found that resupination of Aranda Kooi
Choo buds whose gynostemia were excised can be
restored by applications of IAA and naphthale-
neacetic acid (NAA). The synthetic cytokinin benzy-
ladenine (BA) can also reestablish resupination to
some extent, but it probably acts through its auxin
sparing effect. These findings suggested that
resupination is a gravitropic phenomenon which con-
forms to the Cholodny-Went hypothesis.
Confirmation of this assumption on the role of auxin
was obtained by Prof. Nair and myself in experiments
with auxin transport inhibitors, an antiauxin and a
calcium chelator (for a review see Ernst & Arditti,
1994).
Darwin suggested that resupination facilitates polli-
nation because "the labellum assumes the position of
a lower petal, so that insects can easily visit the
flower." Perhaps, but according to the literature
Euglossa cordata pollinates both resupinate and non
resupinate flowers. Another possibility is that
resupination positions flowers in a manner which
exposes them to light in a way that emphasizes pat-




University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs