• TABLE OF CONTENTS
HIDE
 Title Page
 Dedication
 Copyright
 Acknowledgement
 Table of Contents
 List of Tables
 List of Figures
 Abstract
 Introduction
 Previous investigations
 Experimental procedure
 Experimental results
 Discussion
 Conclusions
 Bibliography
 Biographical sketch






Group Title: analysis of the stress-strain behavior of several grades of polycrystalline titanium and zirconium with reference to dynamic strain aging and deeformation twinning between 77 and 1000° K
Title: An Analysis of the stress-strain behavior of several grades of polycrystalline titanium and zirconium with reference to dynamic strain aging and deeformation twinning between 77 and 1000° K
CITATION PDF VIEWER THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00098373/00001
 Material Information
Title: An Analysis of the stress-strain behavior of several grades of polycrystalline titanium and zirconium with reference to dynamic strain aging and deeformation twinning between 77 and 1000° K
Physical Description: xvii, 181 leaves. : illus. ; 28 cm.
Language: English
Creator: Garde, Anand Madhav, 1945- ( Dissertant )
Reed-Hill, R. E. ( Thesis advisor )
DeHoff, Robert T. ( Reviewer )
Hartley, C. S. ( Reviewer )
Varma, A. K. ( Reviewer )
Chen, Wayne H. ( Degree grantor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 1973
Copyright Date: 1973
 Subjects
Subjects / Keywords: Strains and stresses   ( lcsh )
Titanium   ( lcsh )
Zirconium   ( lcsh )
Dislocations in metals   ( lcsh )
Materials Science and Engineering thesis Ph. D
Dissertations, Academic -- Materials Science and Engineering -- UF
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
theses   ( marcgt )
 Notes
Abstract: Constant strain rate tensile tests were conducted on several grades of polycrystalline titanium and zirconium over the temperature range 77 to 1000°K. With the help of a computer, the data were analysed by both the Crussard-Jaoul method and a modified method based on the Swift equation. Though both the methods reveal similar deformation stages, each method has advantages under specific conditions. While the results of the Crussard-Jaoul analysis are independent of the flow stress level, they are significantly affected by the prestrain and manufacturing history of the metal. The converse is true in the case of the modified method. The basic zirconium stress-strain curve when deformation primarily occurs by slip, as in longitudinal specimens at high temperatures, conforms to a single stage behavior. Whenever mechanical twinning or kinking occurs, additional deformation stages are introduced. On the other hand. titanium shows a two stage behavior above the "blue brittle" temperature. This difference in the deformation stage behavior can explain the difference in high temperature uniform elongations of titanium and zirconium. The linear work hardening rate and high uniform elongations in titanium and zirconium at low temperatures are closely related to deformation twinning. Impurities suppress deformation twinning in these metals, the effect being stronger in zirconium than in titanium. The twin volume fraction measurements of the twinned structures reveal that a constant work hardening stage is associated with a high rate of build up of the twin volume fraction. A closer examination of these structures with the help of quantitative microscopic parameters implies that geometric hardening is probably mainly responsible for the effect of twinning on the work hardening behavior of titanium and zirconium at low temperatures. At high temperatures (500-800°K) titanium exhibits significant dynamic strain aging effects. The DSA phenomena in zirconium, however, are very weak. These results indicate that while the impurity atoms interact strongly with the dislocations in titanium, this interaction is weak in zirconium. Considering the major known manifestations of dynamic strain aging, the DSA effects in titanium are comparable to those in steels. The strain rate sensitivity data, obtained from differential strain rate tests, shed light on several features of deformation of titanium and zirconium. First, they imply that the low temperature rate controlling thermally activated deformation mechanism is probably overcoming of the interstitial barrier atoms. They also indicate that below room temperature, where deformation occurs both by slip and twinning, titanium and zirconium obey the Cottrell-Stokes law. The temperature variations of the strain rate sensitivity and the work hardening rate parameter indicate that the deformation behavior of pure zirconium and pure titanium approach the characteristics of a fee metal. The effects of 77°K prestrain and prestraining in the dynamic strain aging interval on the room temperature properties of titanium were investigated. Work softening was not observed in either case. However, only the 77°K prestrain introduced significant strengthening at room temperature.
Thesis: Thesis--University of Florida.
Bibliography: Bibliography: leaves 173-180.
General Note: Typescript.
General Note: Vita.
 Record Information
Bibliographic ID: UF00098373
Volume ID: VID00001
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: alephbibnum - 000585252
oclc - 14205761
notis - ADB3885

Downloads

This item has the following downloads:

analysisofstress00gardrich ( PDF )


Table of Contents
    Title Page
        Page i
    Dedication
        Page ii
    Copyright
        Page iii
    Acknowledgement
        Page iv
    Table of Contents
        Page v
        Page vi
    List of Tables
        Page vii
    List of Figures
        Page viii
        Page ix
        Page x
        Page xi
        Page xii
        Page xiii
        Page xiv
    Abstract
        Page xv
        Page xvi
        Page xvii
    Introduction
        Page 1
        Page 2
        Page 3
    Previous investigations
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
    Experimental procedure
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
    Experimental results
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
    Discussion
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
    Conclusions
        Page 169
        Page 170
        Page 171
        Page 172
    Bibliography
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
        Page 179
        Page 180
    Biographical sketch
        Page 181
        Page 182
        Page 183
University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - Version 2.9.9 - mvs