Regional and statewide trends in Florida's spring and well groundwater quality (1991-2003) ( FGS: Bulletin 69 )

MISSING IMAGE

Material Information

Title:
Regional and statewide trends in Florida's spring and well groundwater quality (1991-2003) ( FGS: Bulletin 69 )
Physical Description:
Book
Language:
English
Creator:
Copeland, Rick
Doran, Neal A.
White, Aaron J.
Upchurch, Sam B.
Publisher:
Florida Geological Survey
Place of Publication:
Tallahassee, FL

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:

The author dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law and all related or neighboring legal rights he or she had in the work, to the extent allowable by law.
System ID:
UF00095137:00001


This item has the following downloads:


Table of Contents
    Front Cover
        Front Cover 1
        Front Cover 2
    Title Page
        Page i
        Page ii
    Table of Contents
        Page iv
        Page v
        Page vi
        Page vii
        Page viii
        Page ix
        Page x
    Introduction
        Page 1
    Preface
        Page iii
    Executive summary
        Page xi
        Page xii
        Page xiii
        Page xiv
        Page xv
        Page xvi
        Page xvii
        Page xviii
        Page xix
        Page xx
        Page xxi
        Page xxii
    Florida's springs
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
    Overview of the hydrogeology of Florida's groundwater
        Page 7
        Page 8
    Quality of groundwater and spring water
        Page 9
        Page 10
        Page 11
    Spring selection process
        Page 12
    Well selection process
        Page 13
        Page 14
        Page 15
    Methods
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
    Analytes and indicators
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
    Data
        Page 27
        Page 28
        Page 29
    Information goals and data analysis protocols
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
    Results
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
    Discussion
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
        Page 169
        Page 170
    References
        Page 171
        Page 172
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
    Appendices
        Page 179
        Page 180
        Page 181
        Page 182
        Page 183
        Page 184
        Page 185
        Page 186
        Page 187
        Page 188
        Page 189
        Page 190
        Page 191
        Page 192
        Page 193
        Page 194
        Page 195
        Page 196
        Page 197
        Page 198
        Page 199
        Page 200
        Page 201
        Page 202
        Page 203
        Page 204
        Page 205
        Page 206
        Page 207
        Page 208
        Page 209
        Page 210
        Page 211
        Page 212
        Page 213
        Page 214
        Page 215
        Page 216
        Page 217
        Page 218
        Page 219
        Page 220
        Page 221
        Page 222
        Page 223
        Page 224
        Page 225
        Page 226
        Page 227
        Page 228
        Page 229
        Page 230
        Page 231
        Page 232
        Page 233
        Page 234
        Page 235
        Page 236
        Page 237
        Page 238
        Page 239
        Page 240
        Page 241
        Page 242
        Page 243
        Page 244
        Page 245
        Page 246
        Page 247
        Page 248
        Page 249
        Page 250
        Page 251
        Page 252
        Page 253
        Page 254
        Page 255
        Page 256
        Page 257
        Page 258
        Page 259
        Page 260
        Page 261
        Page 262
        Page 263
        Page 264
        Page 265
        Page 266
        Page 267
        Page 268
        Page 269
        Page 270
        Page 271
        Page 272
        Page 273
        Page 274
        Page 275
        Page 276
        Page 277
        Page 278
        Page 279
        Page 280
        Page 281
        Page 282
        Page 283
        Page 284
        Page 285
        Page 286
        Page 287
        Page 288
        Page 289
        Page 290
        Page 291
        Page 292
        Page 293
        Page 294
        Page 295
        Page 296
        Page 297
        Page 298
        Page 299
        Page 300
        Page 301
        Page 302
        Page 303
        Page 304
        Page 305
        Page 306
        Page 307
        Page 308
        Page 309
        Page 310
        Page 311
        Page 312
        Page 313
        Page 314
        Page 315
        Page 316
        Page 317
        Page 318
        Page 319
        Page 320
        Page 321
        Page 322
        Page 323
        Page 324
        Page 325
        Page 326
        Page 327
        Page 328
        Page 329
        Page 330
        Page 331
        Page 332
        Page 333
        Page 334
        Page 335
        Page 336
        Page 337
        Page 338
        Page 339
        Page 340
        Page 341
        Page 342
        Page 343
        Page 344
        Page 345
        Page 346
        Page 347
        Page 348
        Page 349
        Page 350
        Page 351
        Page 352
        Page 353
        Page 354
        Page 355
        Page 356
        Page 357
        Page 358
        Page 359
        Page 360
        Page 361
        Page 362
        Page 363
        Page 364
        Page 365
        Page 366
        Page 367
        Page 368
        Page 369
        Page 370
        Page 371
        Page 372
        Page 373
        Page 374
        Page 375
        Page 376
        Page 377
        Page 378
        Page 379
        Page 380
        Page 381
        Page 382
        Page 383
        Page 384
        Page 385
        Page 386
        Page 387
        Page 388
        Page 389
        Page 390
        Page 391
        Page 392
        Page 393
Full Text





STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION
Herschel T. Vinyard Jr., Secretary


LAND AND RECREATION
Erma Slager, Acting Deputy Secretary

FLORIDA GEOLOGICAL SURVEY
Jonathan D. Arthur, State Geologist and Director


Bulletin No. 69 (Revised)




REGIONAL AND STATEWIDE TRENDS IN FLORIDA'S SPRING
AND WELL GROUNDWATER QUALITY (1991-2003)



By

Rick Copeland, Neal A. Doran, Aaron J. White, and Sam B. Upchurch


Published for the

FLORIDA GEOLOGICAL SURVEY
Tallahassee, Florida
2011







FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION
Herschel T. Vinyard Jr., Secretary


LAND AND RECREATION
Erma Slager, Acting Deputy Secretary


OFFICE OF THE FLORIDA GEOLOGICAL SURVEY
Jonathan D. Arthur, State Geologist and Director


ADMINISTRATIVE AND GEOLOGICAL DATA MANAGEMENT SECTION
Jacqueline M. Lloyd, Assistant State Geologist


Traci Billingsley, Business Manager
Doug Calman, Librarian Specialist
Brian Clark, Environmental Specialist
Jan DeLaney, Environmental Supervisor


Kerry Pond*, Archivist
Sara Sayers, Secretary Specialist
Carolyn Stringer, Operations Manager
Keith Wood*, Computer Programmer Analyst


GEOLOGICAL INVESTIGATIONS SECTION
Harley Means, Assistant State Geologist


Kevin Burdette*, Geologist
Seth Bassett*, Environmental Specialist
Ken Campbell, Professional Geologist
Bob Cleveland, Engineer Specialist
Adel Dabous*, Environmental Specialist
Andrew Flor*, Geologist
Rick Green, Professional Geologist
Eric Harrington, Engineering Technician
Ron Hoenstine, Professional Geologist
Jesse Hurd, Laboratory Technician
Clint Kromhout, Professional Geologist


Michelle Ladle*, Geologist
David Paul, Professional Geologist
Dan Phelps, Professional Geologist
Frank Rupert, Professional Geologist
Guy Richardson, Engineering Technician
Andy Smith, Professional Geologist
Wade Stringer, Engineering Specialist
Eric Thomas, Engineering Technician
Farman Ullah*, Geologist
Christopher Williams, Professional Geologist


HYDROGEOLOGY SECTION
Rodney DeHan, Environmental Administrator


Alan Baker*, Professional Geologist
Scott Barrett Dyer*, Environmental Specialist
Katy Etheridge*, Laboratory Technician
Cindy Fischler, Professional Geologist


Tom Greenhalgh, Professional Geologist
Paul Hansard, Environmental Consultant
Chantel lacoviello*, Environmental Specialist
Stewart Norton*, Environmental Specialist


* Temporary or student employee









STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION
Herschel T. Vinyard Jr., Secretary



LAND AND RECREATION
Erma Slager, Acting Deputy Secretary




FLORIDA GEOLOGICAL SURVEY
Jonathan D. Arthur, State Geologist and Director




Bulletin No. 69 (Revised)




REGIONAL AND STATEWIDE TRENDS IN FLORIDA'S SPRING
AND WELL GROUNDWATER QUALITY (1991-2003)




By

Rick Copeland, Neal A. Doran, Aaron J. White, and Sam B. Upchurch


Published for the

FLORIDA GEOLOGICAL SURVEY
Tallahassee, Florida
2011





















































Printed for the
Florida Geological Survey


Tallahassee
2011

ISSN 0271-7832


ii











TABLE OF CONTENTS

Executive sum m ary ........................................ xi
B ack g roun d ............................................................................................... x i
A approach ................................................................................................. xii
R esu lts an d C on clu sion s .................................................................................... ....................... ......... ...... x iii
S p rin g s ................................................................................................................................... ......... . . . x iii
W ells.............................................................................................................................. . .. . ......... xv
C concerns ............. . .......................... ......... . .................................................. xvi
Rock-matrix and saline indicators: Saltwater encroachment.................................. xvi
N u trien ts ....... ......................................................................................................................... ............... x v iii
M o n ito rin g ................................................................................................................................... .. ....... ...... x v iii
R ecom m en d action s ...................................................................................................................... ............... x ix
R ecom m en nation Syn op sis......................................................................................................... ............... xx i
Research ............................................. ............ ............... xxi
Monitoring ...... ........................... ................ ...... ................. xxi
Introduction ................................ ................. ....................... 1
A ckn ow ledg em en ts ........... .......................................................................................................................................... 2
Florida's springs .......................................................................................................................................................................... 2
Classification of springs .................................. ........................................3
O offshore Springs.................. .........................................................5
Spring recharge basins................... .....................................................................6
Overview of the hydrogeology of Florida's groundwater ......................................................... 7
Quality of groundwater and spring water ...................................................................... 9
Natural factors affecting groundwater and spring-water quality...................................................9
Differences in spring- and well-water quality ........................................ .......... 10
Indicators of groundwater and spring-water quality problems..................... ........... ..........10
Spring selection process .................. ...............................................................12
Well selection process ...... ......................... .................................13
M methods ........................................ 16
D definition of trends............................................. ................. 17
Problems with trends ...................... ............................... ........... .. .......18
"Remaining the same" Possibility of missed trends .................. ........................................................ 18
Outliers ............................................................................................................................................................................ 19
Detection levels ...... ......................... .................................19
Sparse data...................................................................................................................................................................... 21
Analytes and indicators .................................................................... ......... 22
Sam ple collection and laboratory analyses ..................................................................................................... 23
A nalytes used in this study ................ .................................................................25
G rouping of analytes ................ .................................................................25
Description of analyte groups ......................................................................................26
F field analytes........................................................................................................................... . .. ......... 26
Rock-matrix analytes ............................................................................................... ..........26
Saline or saltwater analytes....................................27
N u trient an alytes ............................................................................2 7
Other analytes .......................................27
D a ta ........................................................................................................................................................................... 2 7
D ata sources.. . . . ............................................................ .................................................. ............... 2 8
D ata v verification ............................. .................................................2 8
Data preparation .........................................28
T im e seq u en c es............................... ...................................................................2 9
D ata used for analyses and explanation of appendices ................................................................................... 29
Information goals and data analysis protocols.................................................30
Inform action introduction.................................................................... 30
O verview of statistical analyses procedures ................................................................................................... 30











D descriptive statistics ...................................................... .... ............ ............ 30
Kruskal-Wallis, Mann-Whitney, and Wilcoxon rank sum tests.......................................... ...............31
Deseasonalized data.................. ...................33
Mann-Kendall test .........................................34
Season al K en dall test.................. ..................................................................................... ................... 34
Sen slope...... ............................................................... 34
Sig n test...... . . ........... ........................................................................................................ ..........35
Caveats and assumptions............................................................. 35
R results ..................................................................................... . ........... 36
Springs...........................................................................................36
Northwest Florida Water Management District................................................36
Rock and saline analytes, nutrients, and flow............. .........................................................36
Suwannee River Water Management District .................................. ......................40
Rock-m atrix and saline analytes ............................................................. 41
Flow ................................................................ 46
N utrient analytes..................... ...... ......................... ............... ......... ..........51
St. Johns R iver W after M anagem ent D district ............................................................................................. 54
Rock-m atrix and saline analytes ............................................................. 55
N utrient an alytes................ .......................................................59
South est Florida W after M anagem ent ..................................................................................................... 59
R ock-m atrix and saline analytes ..............................................................59
Flow ................................................................ 66
N utrient analytes........................................................................................................................ .........66
Field analytes........................................................... ..................... 67
W ells...... ...................... .................................... ............... 67
Northwest Florida Water Management District..................................... ......... 71
W after lev els an d pH ...............................................................................7 1
Suw annee R iver W after M anagem ent D district ........................................................................................... 74
W after lev els an d p H ............................................................................................................ ........... 7 4
St. Johns River Water Management District ............... ......................................................76
Southwest Florida Water Management District......................................... 79
South Florida Water Management District..................................... ......... 81
D istrictw ide spring trends........................................................................................... 81
Districtwide spring trends in the Suwannee River Water Management District ................ .. ............86
Districtwide spring trends in the St. Johns River Water Management District ................... ............... 86
Districtwide spring trends in the Southwest Florida Water management District ................... ................86
Statewide spring trends............................................................... 100
Constrained version of statewide trends ......................................... ................. 101
Independence of springs and w ells .................................... ....................... 102
Districtwide well-water trends.............................................. 103
Evidence of districtwide well water-quality trends Northwest Florida Water Management District.......... 104
Evidence of districtwide well water-quality trends Suwannee River Water Management District............. 108
Evidence of districtwide well water-quality trends St. Johns River Water Management District ........ ... 110
Evidence of districtwide well water-quality trends Southwest Florida Water Management District......... 113
Evidence of districtwide well water-quality trends South Florida Water Management District............. 117
State ide w ell w ater-quality trends....................................................... ............................. ................. 120
Comparison of strong statewide trends for groundwater and spring water................................... 120
Constrained version of statewide trends .............................................................. 121
D discussion .................................... .................... .. ........................................................................... 122
Major cause of statewide trends: Drought and consequential saltwater encroachment ................................... 123
D rou g h t............................................................................................... ...... ....... ................. 12 6
Rock-matrix and saline indicator evidence in spring-water quality............................. ............ 128
Rock-matrix and saline indicator evidence in well-water quality ............................................................ 128
Regional to sub-regional evidence of saltwater encroachment ................................... 130
G roun dw after w ith draw als.................................................................................................... ....................... 133
G round after sum m ary ............ ..................................................................... 134



V










M miscellaneous and im portant issues ............................................. ......................................................... 134
Falling well-water levels a districtwide and statewide problem in wells......................... ..............1.34
Nitrogen and phosphorous nutrients Regional and local problem in springs................................137
Nitrogen in the Northwest Florida Water Management District.......................... ....... ............... 137
Nitrogen in the Suwannee River Water Management District................................... ................. 139
Nitrogen in the St. Johns River and Southwest Florida Water Management Districts ................................148
M arion C county ......... .............................................................. ................ 148
R rainbow Springs G group .............................................................. .................................. . ........... 148
C itrus C county ............. . ........ ......................................................................................... ............... 149
K ing's B ay Springs Group ...................................................................................... ....................... 149
H om osassa Spring s G group ..................................................................................... ........................ 149
C hassahow itzka Springs G roup .................................................................................. ....................149
H ernando C county ..........................................................................149
W eeki W achee Springs G group ................................................................................ .......................150
Boat Springs, Bobhill, and Magnolia Springs ........... .... ... ........ .. .... .............. 150
Hillsborough County... ... ... ... ...... ............. .. .................... ... ..........150
Lithia Spring and B uckhorn Spring................................................................................................ 150
Summ ary of the nitrate problem in spring water .................................................. .............................. 150
Phosphorus in spring water by water management district................................................. 150
Suwannee River W ater M anagem ent .............................................................. 151
St. Johns River and Southwest Florida Water Management Districts ....................................................161
Comparison of coastal to inland and tidal to non-tidal springs.......................... ...... ............... 162
Global factors influencing Florida's ground ater........................................................ ......................... 164
Global long-term cycles: Atlantic mutidecadal oscillation.....................................................................164
Global short-term cycles: El Nio and La Nifia ..................................... ..........................................166
A c id r a in ................................................................................ .................................................. . .................... 1 6 8
Implications of future low rainfall and increasing state water demands.................... .. ............... 168
Implications regarding long-term sustainability ................................................................... .................... 169
R e fe re n c e s ......................................................................................................................................1 7 1
Appendices (Note: Appendices B2,C,E,H,I,J,K,L,and M may also be found at:
http://publicfiles. dep. state, fl. us/FGS/FGS Publications/B/B69Appendices/ )
Appendix A Relationships among spring flows, rock, and salinity indicator concentration for
selected springs....................... ............. ................ ...... ................. 179
Appendix B Glossary of terms and possible causes of trends .................. .......... ...................... 183
A appendix B l G lossary .............................. ...................................... ............................. .......... . .......... 183
Appendix B2 Interpretations of the origins of temporal trends in Florida's groundwater.......................191
Appendix C Well construction and location data ................................................................................... 196
Appendix D Spring locations................................................. ......... 197
Appendix E Statistics............................... .................................. ..........1....... 99
Appendix El Statistical m ethodologies.............................................................................................. ...... 199
Appendix E2 Macro codes for the Mann-Kendall tests and Sen slope..............................................206
A p p en d ix F A n aly tes ............................................................................................ .....................................2 0 9
A appendix F A nalyte descriptions ....................................................... ................................................209
Appendix F2- Analyte list with STORET codes........................................................................216
Appendix G Data quality assurance (QA) officer contact information .................................. ...............219
A ppendix H D ata from springs and w ells.................................................... .............................................. 220
A appendix I D descriptive statistics .................................................................................. .............................22 1
Appendix J- Seasonality results .....................................................................................................................326
Appendix K M ann-Kendall and Sen slope results................................................. .............................. 346
A appendix L D istrictw ide m aps .................................................................................. ................................347
Appendix L1 Northwest Florida Water Management District springs................................................. 349
Appendix L2 Northwest Florida Water Management District wells ....................................... .......350
Appendix L3 Suwannee River Water Management District springs...................................... ......354
Appendix L4 Suwannee River Water Management District wells........................................................359
Appendix L5 St. Johns River Water Management District springs............................................................364
Appendix L6 St. Johns River Water Management District wells.......................................................368
Appendix L7 Southwest Florida Water Management District springs................................................. 372



vi










Appendix L8 Southwest Florida Water Management District wells ............................... ............... 377
Appendix L9 South Florida Water Management District Wells........................................................... 382
A appendix M R rainfall and tem perature data.............................................................. ............................... 386
Appendix N Atmospheric deposition station information ........................................ .......................... 393


Figures

Figure 1. Schematics of freshwater/saltwater transition zone and possible mechanism for saltwater
in tru sio n ................................................................................................................................... x v ii
Figure 2. Inverse relationship of flow to rock and saline indicator concentrations ............................. xx
Figure 3. Locations of Florida's springs ............................................................................................... 4
Figure 4. O offshore springs .................................................................................................................... 6
Figure 5. Median nitrate concentrations in 13 selected first-magnitude springs ......................................
Figure 6. Location of springs analyzed in this report........................................................................ 14
Figure 7. Location of Temporal Variability Network (TVN) wells.................................... .......... ... 15
Figure 8. Illustration of three options for water-quality trends........................................................... 18
Figure 9. Exam ple of a spurious trend ............................................................................................... 20
Figure 10. Example of sporadic, unsystematic, and incomplete sampling ............................................. 22
Figure 11. Monthly water temperatures plotted over the 1992 calendar year for an imaginary well ........31
Figure 12. Example illustration of seasonality with a six-year cycle................................... ........... .. 32
Figure 13. Location of Wakulla Spring within the NWFWMD ......................................... ........... ... 37
Figure 14. Increasing rock analytes at Wakulla Spring ......................................................................... 38
Figure 15. Decreasing nitrates and water levels at Wakulla Spring ................................... ............. 39
Figure 16. Location of springs within the SRWMD ......................................................................... 40
Figure 17. Increasing rock analytes at Fanning and Gilchrist Blue Springs........................................... 42
Figure 18. Increasing rock analytes at Suwannee Blue and Troy Springs............................................. 43
Figure 19. Increasing rock analytes at Manatee and Hart Springs...................................... ........... 44
Figure 20. Increasing rock analytes at Poe and Lafayette Blue Springs ............................................. 45
Figure 21. Decreasing flow at Fanning and Hart Springs............................................................... 47
Figure 22. Decreasing flow at Rock Bluff and Hornsby Springs ....................................................... 48
Figure 23. Decreasing flow at Poe and Ruth/Little Sulfur Springs..................................... .......... .... 49
Figure 24. Decreasing flow at Troy and Telford Springs ............................................................... 50
Figure 25. D decreasing nitrates at Poe Spring ...................................................................................... 52
Figure 26. Increasing nutrient analytes at Poe and Lafayette Blue Springs....................................... 53
Figure 27. Location of springs within the SJRWMD ............................................................................. 54
Figure 28. Increasing rock analytes at Palm Springs ........................................................................ 56
Figure 29. Increasing rock analytes at Sanlando Springs ............................................................... 57
Figure 30. Increasing rock analytes at Wekiwa Spring............................................. ........................ 58
Figure 31. Decreasing phosphate concentrations at Palm and Starbuck Springs.................................... 60
Figure 32. Location of springs within the SWFWMD............................................................................ 61
Figure 33. Increasing saline analytes at Rainbow and Bubbling Springs............................................. 63
Figure 34. Increasing saline analytes for Hunter and Trotter Main Springs.................................. 64
Figure 35. Increasing saline analytes for Weeki Wachee and Bobhill Springs .................................... 65
Figure 36. Decreasing flow at Homosassa No. 1 Spring ............................................................... 67
Figure 37. Long-term flow trends at two SWFWMD springs .............................................................. 68
Figure 38. Increasing nitrates at Hunter and Magnolia Springs........................................ ........... ..... 69
Figure 39. Increasing nutrient analytes at Weeki Wachee and Boyette Springs..................................... 70
Figure 40. Location of wells within the NWFWMD........................................................................ 71
Figure 41. Decreasing pH and water levels in NWFWMD wells (#91 and #129) .................................72
Figure 42. Decreasing pH and water levels in NWFWMD wells (#131 and #312)................................ 73










Figure 43. Location of wells within the SRWMD ............................................................................ 74
Figure 44. Decreasing pH and water levels in SRWMD wells (#1943 and #2465) ............................... 75
Figure 45. Decreasing pH and water levels in SRWMD wells (#2585 and #2675) ............................... 76
Figure 46. Location of wells within the SJRWMD................................................................................. 77
Figure 47. Temperature and specific conductance in SJRWMD wells (#1417 and #1763)................... 78
Figure 48. Temperature and specific conductance in SJRWMD well (#1762) ...................................... 79
Figure 49. Location of wells within the SWFWMD......................................................................... 80
Figure 50. Decreasing pH and water levels in SWFWMD wells (#996 and #1087) ............................ 82
Figure 51. Decreasing pH and water levels in SWFWMD well (#707) ................................................. 83
Figure 52. Location of wells within the SFWMD............................................................................. 84
Figure 53. Decreasing pH and water levels in SFWMD wells (#6490 and #3398).............................. 85
Figure 54. Weighted mean temperature and rainfall data in Florida (1991-2003)................................ 125
Figure 55. Relative position of rock-matrix and saline analytes in the Upper Floridan aquifer system. 126
Figure 56. Fresh groundwater wedge before and during a drought...................................................... 127
Figure 57. Water level and pH relationships for a well with a falling water table ............................... 129
Figure 58. Weighted mean annual rainfall during Sequence A ............................................................ 131
Figure 59. Exam ple of aliasing ......................................................................................................... 136
Figure 60. Nitrate concentrations in Wakulla Spring between 1972 and 2005..................................... 137
Figure 61. Flow adjustment for nitrate in Troy Spring ......................................................................... 140
Figure 62. Flow adjustment for TKN in Troy Spring ............................................................................. 141
Figure 63. Flow adjustment for nitrate in Hornsby Spring ................................................................... 142
Figure 64. TKN versus time and log of TKN versus log of flow in Hornsby Spring ........................... 143
Figure 65. Flow adjustment for nitrate in Fanning Spring.................................................................... 145
Figure 66. Flow adjustment for TKN in Fanning Spring ...................................................................... 146
Figure 67. Flow adjustment for phosphorus in Troy Spring................................................................. 152
Figure 68. Flow adjustment for phosphate in Troy Spring ................................................................... 153
Figure 69. Flow adjustment for phosphorus in Ruth/Little Sulfur Springs........................................... 154
Figure 70. Flow adjustment for phosphate in Ruth/Little Sulfur Springs............................................. 155
Figure 71. Flow adjustment for phosphorus in Fanning Spring.............................................................. 156
Figure 72. Flow adjustment for phosphate in Fanning Spring................................................................ 157
Figure 73. Flow adjustment for phosphorus in Little River Spring ...................................................... 158
Figure 74. Flow adjustment for phosphate in Little River Spring ........................................................ 159
Figure 75. Flow adjustment for a phosphate in Hornsby Spring .......................................................... 160
Figure 76. Atlantic Multidecadal Oscillation and Florida spring flow ................................................. 165
Figure 77. Sea surface temperature, La Nifia, and El Nifio..................................................................... 167
Figure 78. Average monthly pH from seven atmospheric rain stations (1991-2003)........................... 169
Figure Al. Juniper Springs alkalinity versus flow............................................................................... 179
Figure A2. Wakulla Spring sodium versus stage ................................................................................ 180
Figure A3. Alapaha River Rise Fanning sodium versus flow............................................................ 180
Figure A4. Fanning Spring sodium versus flow .................................................................................. 181
Figure A5. Poe Spring sodium versus flow .................................................................................. 181
Figure A6. Homosassa No. 3 Spring sodium versus flow ................................................................. 182
Figure A7. Chassahowitzka No. 1 Spring sodium versus flow.......................................................... 182


Tables
T able 1. Spring M magnitude .................................................................................................................. 3
Table 2. Florida's spring classification system .................................................................................... 5
Table 3. A nalyte and indicator list..................................................................................................... 23
Table 4. Analytes and indicators displaying trends ...................................... ................................... 24
Table 5. Analyte Groups........................................................................... ....... .. ........... 26










Table 6. Example of descriptive statistics table.................................................... ........................... 31
Table 7. Suwannee River Water Management District spring names and abbreviations .................... 41
Table 8. St. Johns River Water Management District spring names and abbreviations ...................... 55
Table 9. Southwest Florida Water Management District spring names and abbreviations ................. 62
Table 10. Spring trends in the SRWMD (plus Wakulla Spring), Sequence A (1991-2003)................. 87
Table 11. SRWMD (plus Wakulla Spring) districtwide trends based on sign tests, Sequence A ............ 87
Table 12. Spring trends in the SRWMD (plus Wakulla Spring), Sequence B (1991-1997)................... 88
Table 13. Spring trends in the SRWMD, (plus Wakulla Spring) Sequence C (1998-2003)................. 89
Table 14. SRWMD (plus Wakulla Spring) districtwide trends based on sign tests, Sequence C........... 89
Table 15. Spring trends in the SJRWMD, Sequence A (1991-2003)................................... ............ 90
Table 16. SJRWMD districtwide trends based on sign test, Sequence A........................................... 90
Table 17. Spring Trends in the SJRWMD, Sequence B (1991-1997)................................... ........... 91
Table 18. Spring Trends in the SJRWMD, Sequence C (1998-2003)................................... ........... 92
Table 19. SJRWMD districtwide trends based on sign tests, Sequence C............................................ 92
Table 20. Spring Trends in the SWFWMD, Sequence A (1991-2003) .................................................. 93
Table 20. Spring Trends in the SWFWMD, Sequence A (1991-2003) (continued)............................. 94
Table 21. SWFWMD districtwide trends based on sign tests, Sequence A............................................ 94
Table 22. Spring Trends in the SWFWMD, Sequence B (1991-1997).............................. ............... 95
Table 22. Spring Trends in the SWFWMD, Sequence B (1991-1997) (continued)............................... 96
Table 23. SWFWMD districtwide trends based on sign tests, Sequence B......................................... 96
Table 24. Spring Trends in the SWFWMD, Sequence C (1998-2003).............................. ............... 97
Table 24. Spring Trends in the SWFWMD, Sequence C (1998-2003) (continued)............................... 98
Table 25. SWFWMD districtwide trends based on sign tests, Sequence C............................................ 98
Table 26. Spring flow from three stations in the SWFWMD ............................................ ............... 99
Table 27. Statewide spring trend summary by WMD and time sequence............................................. 99
Table 28. Statewide trends based on sign tests for 57 springs, Sequence A (1991-2003).................... 100
Table 29. Statewide trends based on sign tests for 57 springs, Sequence B (1991-1997).................... 100
Table 30. Statewide trends based on sign tests for 57 springs, Sequence C (1998-2003).................... 101
Table 31. Statewide trends in at least two WMDs, Sequence A (1991-2003)...................................... 101
Table 32. Statewide trends in at least two WMDs, Sequence C (1998-2003)...................................... 102
Table 33. Selected statewide analyte results, Sequence A (1991-2003)................................................. 103
Table 34. Well trends in the NWFWMD, Sequence A (1991-2003).................................................... 105
Table 35. Potential NWFWMD districtwide trends, Sequence A ........................................................ 105
Table 36. Well trends in the NWFWMD, Sequence B (1991-1997).................................................... 106
Table 37. Potential NWFWMD districtwide trends, Sequence B......................................................... 106
Table 38. Well trends in the NWFWMD, Sequence C (1998-2003).................................................... 107
Table 39. Potential NWFWMD districtwide trends, Sequence C......................................................... 107
Table 40. Well trends in the SRWMD, Sequence A (1991-2003).......................................................... 108
Table 41. Potential SRWMD districtwide trends, Sequence A ............................................................ 108
Table 42. Well trends in the SRWMD, Sequence B (1991-1997)........................................................ 109
Table 43. Potential SRWMD districtwide trends, Sequence B............................................................. 109
Table 44. Well trends in the SRWMD, Sequence C (1998-2003)........................................................ 110
Table 45. Potential SRWMD districtwide trends, Sequence C............................................................. 110
Table 46. Well trends in the SJRWMD, Sequence A (1991-2003)......................................................111
Table 47. Potential SJRWMD districtwide trends, Sequence A..................................... ........... ..... 111
Table 48. Well trends in the SJRWMD, Sequence B (1991-1997) ...................................................... 112
Table 49. Potential SJRWMD districtwide trends, Sequence B ........................................................... 112
Table 50. Well trends in the SJRWMD, Sequence C (1998-2003) ...................................................... 113
Table 51. Potential SJRWMD districtwide trends, Sequence C........................................................... 113
Table 52. Well trends in the SWFWMD, Sequence A (1991-2003)...................................................... 114
Table 53. Potential SWFWMD districtwide trends, Sequence A......................................................... 114










Table 54. Well trends in the SWFWMD, Sequence B (1991-1997)....................................................... 115
Table 55. Potential SWFWMD districtwide trends, Sequence B ......................................................... 115
Table 56. Well trends in the SWFWMD, Sequence C (1998-2003)...................................................... 116
Table 57. Potential SWFWMD districtwide trends, Sequence C ......................................................... 116
Table 58. Well trends in the SFWMD, Sequence A (1991-2003) ........................................................ 117
Table 59. Well trends in the SFWMD, Sequence B (1991-1997) ........................................................ 118
Table 60. Well trends in the SFWMD, Sequence C (1998-2003)........................................................ 119
Table 61. Potential SFWMD districtwide trends, Sequence C............................................................. 119
Table 62. Statewide trends based on sign tests: Sequences A, B, and C .............................................. 120
Table 63. Statewide spring-water quality summary for rock and saline indicators .............................. 121
Table 64. Statewide trends for at least three WMDs: Sequences A, B, and C for combined
ground ater resources ............................................................................................................ 122
Table 65. Constrained statewide spring and groundwater-quality summary ........................................ 123
Table 66. Summarized annual weather data in Florida (1991-2003).................................................... 124
Table 67. Annual weather data, four WMDs compared to the SWFWD (1991-2003)......................... 131
Table 68. Summarized rainfall, Sequence C minus Sequence B .......................................................... 132
Table 69. Relationships among concentration and loading of nitrate and TKN versus
time and flow in selected springs in the SRWMD.................................................................. 147
Table 70. Inland and Coastal Springs within the SRWMD and the SWFWMD.................................. 162
Table 71. Comparison of coastal and inland springs for upward trends during Sequence C,
excluding springs within the SJRW M D .................................................................................. 163
Table 72. Comparison of tidal and non-tidal springs for upward trends during Sequence C
in the SW FW M D ............................................................................................................ 164






BULLETIN NO. 69


REGIONAL AND STATEWIDE TRENDS IN FLORIDA'S SPRING
AND WELL GROUNDWATER QUALITY (1991-2003)
by
Rick Copeland (PG #126), Neal A. Doran,
Aaron J. White, Sam B. Upchurch



INTRODUCTION

Florida is blessed with some of the most spectacular springs in the world. There are
estimated to be over 700 springs in the state. People have been attracted to our springs since
before Florida became a state. From a scientific perspective, some of Florida's springs have
been sampled for over a century. The FGS published its first Springs of Florida bulletin
(Ferguson et al., 1947), which documented the chemical and flow data of the major springs. The
bulletin was revised in 1977 (Rosenau et al., 1977) and a new bulletin was generated in 2004
(Scott et al., 2004). In each revision, additional chemical data were presented. Unfortunately, as
beautiful as the springs are, not all is well. As Florida's population continues to grow, water-use
and land-use changes are reflected in our spring water. The quantity and quality of spring water
are both changing, and at least some of the changes are directly related to human activities.

Since the 1940s Florida's population has grown from about two million to about 18
million in 2000. This means that Florida has increased its population by a rate of about 600
people per day for those 60 years. In fact, between the years 2000 and 2005, the net rate of
increase has been over 700 people per day (U.S. Census Bureau, 2006). In the year 2000,
Floridians withdrew 3.14 billion gallons of groundwater daily (Marella and Berndt, 2005).
Marella and Berndt (2005) indicated that agriculture and public supply accounted for over 82
percent oft he groundwater use. Based on these data, each person used over 150 gallons per day
of groundwater. It is not surprising that an extensive increase in water use has followed
Florida's population growth. Neither is it surprising that there has been a noticeable decline in
the discharge of many of Florida's springs and that the intensive land-use changes have been
followed by a noted deteriorations in spring-water quality. Scott et al. (2004) mentioned that one
of the most notable deteriorations has been the increase in nutrient concentrations in spring
water. While nutrients such as nitrogen and phosphorous are required by aquatic organisms for
growth and reproduction, when the concentrations are found to be higher than natural levels,
problems can arise. Since the 1970s, concentrations of nitrate, a soluble form of nitrogen, have
been found to be increasing in a number of Florida springs (Florida Springs Task Force, 2000).

Over the past several decades, flows in Florida's springs are declining and water quality
is degrading. The primary chemicals of concern are nutrients, including soluble forms of
nitrogen and phosphorus.

In order to improve and protect our springs, the Florida Springs Task Force (2000) made
a series of recommendations to the Governor of Florida. One was that Florida should implement
spring monitoring programs in order to detect and document long-term trends in water quality.
In addition, it was recommended that the state should conduct research in order to determine the









PREFACE


FLORIDA GEOLOGICAL SURVEY

Tallahassee, Florida
2011


The Florida Geological Survey (FGS), is publishing as its Bulletin No. 69 (Revised),
Regional and Statewide Trends in Florida's Spring and Well Groundwater Quality (1991-2003)
(Revised), authored by Rick Copeland, Neal A. Doran, Aaron J. White, and Sam B. Upchurch.

After the publication of the original publication, several minor errors were discovered.
Most errors were found in the statistical tables. This bulletin summarizes the results of a multi-
year cooperative investigation on spring and groundwater quality between the Florida
Department of Environmental Protection's FGS and the Bureau of Watershed Management,
Division of Environmental Assessment and Restoration. The data presented will be useful to
scientists, planners, and citizens in understanding the quality of Florida's groundwater resources.




Jonathan D. Arthur, Ph.D., P.G.
State Geologist and Director
Florida Geological Survey









EXECUTIVE SUMMARY


Background

Over the past several decades, it has been observed that the flows in Florida's springs are
declining and water quality is degrading. The primary chemical concern is considered to be
increased nutrients, including soluble forms of nitrogen and phosphorus. The sources are
predominantly from animal waste, human waste, and from the synthetic fertilizers used on lawns,
golf courses, or for agricultural activities.

In recognition of these issues, the Secretary of the Florida Department of Environmental
Protection (FDEP) directed the formation of the Florida Springs Task Force in 1999. The multi-
agency task force consisted of 16 scientists, planners, and citizens who were concerned about the
"environmental health" of Florida's springs. By 2000 the task force made a series of
recommendations to protect and restore Florida's springs. They are outlined in detail in Florida's
Springs: Strategies for Protection and Restoration (Florida Springs Task Force, 2000). Two of
the recommendations were to:

(1) Implement springs monitoring programs to detect and document long-term
trends in water quantity and quality

(2) Conduct research that will allow cause-and-effect relationships to be
established between land use and water management activities.

The purpose of monitoring is to both support research efforts and to confirm the effectiveness of
spring protection efforts. As a direct result of the first recommendation, the Florida Geological
Survey (FGS) took the lead in implementing a spring monitoring program. By 2004 it published
the latest Springs ofFlorida bulletin-a descriptive overview of Florida's springs.

The main purposes of this document are to: (1) determine trends in groundwater where
sufficient data are available; (2) establish prototype methods for evaluating and reporting trends
for future applications; and (3) enhance the efforts of determining cause-and-effect relationships
between anthropogenic activities and the resulting spring-water quality and quantity on regional
(water management district-wide) and statewide scales. The reason for the latter is that many
other publications have addressed the causes of trends on an individual spring basis. If we
attempted to develop an exhaustive list of possible causes of trends for each spring, it could take
many years to accomplish. We decided to emphasize regional and statewide scales. An endeavor
of this nature has never been attempted. If regional or statewide trends were found, the causes
and possible solutions to those causes may become the highest priority water management issues.

In order to fully comprehend the implications of trends in springs, a thorough
understanding of the behavior of groundwater in wells is also necessary. In 1983, the FDEP
began a statewide groundwater quality monitoring network (Florida Statutes 403.063). Scott et
al. (1991) stated that the purpose of the network was to detect or predict contamination of
Florida's groundwater resources. Currently, several thousand wells are included in the network.
However, a subset of the wells are conducive to trend analysis (the Temporal Variability









Network, or simply the TV Network). Since the FGS was asked to evaluate data for trends from
springs, it followed to simultaneously do the same for groundwater from TV Network wells.

Approach

The FGS spring monitoring program commenced operations in 2001. For many of the
springs, previous samples had never been collected, so long-term trend analyses were not
possible. However, the FGS contacted each of the four northern water management districts
(WMDs), the U.S. Geological Survey (USGS), and programs within the FDEP to request copies
of their historical spring-water quality and quantity data. The entities each graciously delivered
data to the FGS for analyses. It should be noted that the South Florida Water Management
District (SFWMD) had insufficient data for trend analyses.

The FGS obtained sufficient data, meeting preset criteria, from 58 springs and 46 wells
for the period January 1991 through December 2003. For reference, the study was divided into
three time sequences. Sequence A represents the entire length of the study (1991-2003).
Sequence B represents the January 1, 1991 December 31, 1997 time frame, while Sequence C
represents January 1, 1998 December 31, 2003. The two shorter sequences were used to assist
in identifying and evaluating shorter-term trends. As it turns out, Sequence B coincided with
relatively normal rainfall, whereas Sequence C covered a time that Florida experienced an
extended drought.

The analytes (constituents of interest) for this report can be broken down into five
groups: (1) nutrients, (2) saline (or salt-water), (3) rock-matrix (or rock), (4) field, and (5) other.
Of these, the three major groups are nutrients, saline, and rock-matrix. Nutrients are compounds
that are essential for the growth of living organisms. Unfortunately, high concentrations in
spring-water can adversely affect the biota in spring runs. Saline analytes are related to salts.
The most significant sources of salt are from the ocean or deep groundwater in Florida's
aquifers. High concentrations of saline compounds (e.g. sodium or chloride) can restrict the
usage of water. Rock-matrix analytes have their sources in the aquifer material (e.g. limestones
and dolostones). They occur naturally and, unless they occur in extremely high concentrations,
are generally not harmful to our environment. The field and other analyte groups consist of
miscellaneous constituents that are useful in explaining trends in other analytes.

Think of a trend as a direction of movement (Berube and Boyer, 1985). Although there
are many secondary questions that pertain to trends, trend analysis can be broken down to one
fundamental, primary question, "over time, are conditions changing (getting better or getting
worse), or are they remaining the same?" One can think in terms of concentrations of water
quality (measured by analytes) or water quantity (measured by flow or water levels). Subjective
descriptions-such as better, worse, and remaining the same-are based on objective changes
over time, or trends.

Throughout this report the term significant refers to statistical significance. Some of the
trends reflect very important changes in water quality, whereas some only represent relatively
minor changes in water quality that are not indicative of impending problems. If, during our
analyses, a trend was discovered, it was based on statistical significance. That is, within a









predefined probability, we do not expect the trend to occur randomly. Since not all of the
audience of this report is familiar with the statistical procedures employed, we decided to
simplify the procedures to the extent practical. For this reason, most analyses were restricted to
linear trends, using nonparametric techniques. Data were checked for seasonality, and if found,
were deseasonalized prior to trend analyses using a method recommended by the U.S
Environmental Protection Agency (EPA, 1989). Trend analyses were conducted using the
Mann-Kendall test, while the rates of change over time were determined using the Sen slope
(Gilbert, 1987).

Results and Conclusions

The most important conclusion to be derived from this report is that Florida springs truly
represent the "canary in the coal mine" with respect to assessing regional groundwater quality in
Florida. As will be summarized, springs are apparently much better at indicating over-all change
in a groundwater flow system than wells.

Monitoring wells only allow for the sampling of a discrete portion of the water in an
aquifer. They limit detection to a particular depth interval and a relatively limited spatial extent.
Karstic aquifers are especially limited in this respect as fractures and cavernous conduits may
direct water flow around or below the location of a monitoring well. On the other hand, the
quality of water discharging from a spring is an integral of the water quality of the total flow
system within a springshed. This water is derived from deep and shallow flow systems and
conduit and diffuse flow. Furthermore, the water quality, and flow, data are weighted according
to the relative importance of the flow systems and chemical sources within the springshed. As a
result, springs appear to be much better at detecting regional changes in a springshed water
quality than do wells. This conclusion is supported by the fact that water-quality trends were
much more obvious in spring data than in well data.

Springs

Of the analyte groups, rock-matrix and saline analytes had the greatest frequency of
trends. Both analyte groups showed strong negative correlations with spring flow. For example,
as spring flow decreased saline and rock-matrix analyte concentrations increased. The
relationship was observed throughout the state. The greatest increases in the concentrations of
rock-matrix and saline analytes occurred during a drought that occurred between late 1998 and
mid 2002.

There are several probable explanations and all can be a result of the drought. First,
during the drought there was less rainfall, and consequently there was less surface-water flow.
In karst terrains, much surface-water flows directly to groundwater through sinking streams
(swallets). Typically, this rapidly recharged groundwater is transmitted in well-developed
subsurface conduits. Thus, there is very little contact time with the aquifer matrix before it
discharges from springs, and it tends to have lower concentrations of rock-matrix analytes.
During a drought, there is a decrease in the proportion of freshly recharged "surface water." This,
at least partially explains the correlation between decreased spring discharge and increased
concentrations of rock analytes.










A second probable explanation is related to the removal of older, saline-rich and usually
more mineralized water from storage, often in the deeper portions of the Florida's aquifer
systems. Beneath the state of Florida lies a "lens" of fresh water, which is replenished by
rainfall. Freshly recharged water is flushed through Florida's karstic (sinkholes, caves, springs
etc.) aquifers relatively quickly to springs. In contrast, the deeper water is older (Upchurch,
1992; and Katz, 2004). Because it has been in contact with the aquifer matrix for a relatively
long period of time, the aquifer water has had a longer time to "pick up" dissolved matrix
material constituents such as calcium and magnesium, especially in the Floridan aquifer system.
With longer residence times, the older water tends to have higher concentrations of rock-matrix
material.

A third explanation is similar to the second. Older, mineralized residual saltwater, was
never fully flushed from the rock interstices in some portions of Florida (Johnson and Bush,
1986). With less rainfall during the drought, the water levels in the aquifers were lowered, and
the size of the freshwater "lens" decreased. With decreasing freshwater potentials (e.g., water
levels) the deeper and older connate water can find its way upward toward aquifer discharge
points, such as springs. Thus, during the drought, increased concentrations in rock-matrix and
saline analytes were observed, along with decreases in spring discharges. The trends were
statewide in scale. The magnitude of scale was the most surprising and most significant finding
of the study.

After the driest portion of the drought (2002), Florida's hydrologic conditions began to
recover and the concentrations of both types of analytes began to decrease, as rainfall, recharge,
and spring flow began to increase. The inverse relationship between spring-water discharge, and
both rock-matrix and saline analyte concentrations, was also observed in a study by Katz (2004).
In addition, Katz also found a positive correlation between concentrations of rock and saline
analytes and spring-water age.

Nutrients in groundwater discharging from springs were one of the most important
concerns of the Springs Task Force. Evaluation of trends in this report revealed that nutrient
trends in springs had an uneven, or patchwork, distribution across the state. That is, both
increasing and decreasing nutrient trends were common and were observed throughout Florida.
This suggests that the trends were often related to local land-use and water-use activities. As
such, most nutrient concentrations observed in springs are localized and should be analyzed in
relation to the corresponding springshed.

Nitrogen and phosphorus comprised the most frequent nutrient exhibiting trends.
Nitrogen in the form of nitrate (nitrate plus nitrite as N) had the greatest frequency of increasing
(degrading) trends. However, some springs actually had decreasing nitrate trends. Phosphorus,
as total phosphorus and orthophosphate, had both increasing and decreasing trends, depending on
the springshed.

Note that decreasing nutrient trends are not necessarily good news. During the drought,
an important observation was that some nitrate concentrations had positive correlations with
spring flow. One possible explanation is that nitrogen can be stored in the soils of Florida's
springsheds (Bruland et al., 2008). During the drought, soils may have stored the nitrogen









originating from fertilizer applications and the nitrogen did not find its way to the groundwater
regime. When rainfall conditions return to normal, the soils will release the nitrogen and
concentrations in spring water will eventually increase. On a similar note, decreases in
phosphorus in some areas may likewise not be a reflection of improved management. It is
possible that the upward migration of older water, with different chemistry, reduced the
phosphorus concentrations in many springs. If so, reduction of phosphorus could simply be a by-
product of mixing with deeper, higher pH water-not an improvement in water quality. This
mechanism is discussed by Hem (1985) and by Odum (1953). They indicated that the solubility
of phosphorous can be controlled by pH. Dissolved phosphorous is generally more abundant in
lower pH (more acidic) water. Conversely, higher pH (more basic) water contributes to the
precipitation of phosphate and lowers the concentration of dissolved phosphorous in
groundwater.

Wells

Within Florida's aquifers, the flow paths of spring-water can potentially be from both
deep and shallow sources. Conversely, wells typically are drilled to a specific depth in an
aquifer. Consequently, flow paths of well water are from a much narrower thickness of the
aquifer, relative to spring water flow paths. Although there are exceptions, most of the 46 wells
used in this study generally tap only the shallower portions of the aquifers. The wells tend to be
less than 30 m (100 feet) deep. Because of the shallower depth, the older, deeper, and more
mineralized deeper aquifer water had a lower probability of being observed in the shallow wells.
Thus, rock-matrix and saline trends were not seen as frequently in wells as in springs.
Nevertheless, decreasing trends in water levels within wells were common. In addition, pH-a
field analyte-had a positive correlation with water levels; as water levels in wells decreased, so
did pH.

A possible explanation for this positive correlation is as follows. Well intake zones for
most wells in Florida are generally set at specified depths below the lowest predicted aquifer
water levels. This is done in order to guarantee water to the well during drought conditions.
During dry times the upper surface of the saturated zone is lowered downward toward the
uppermost point of the intake zone. For the aquifers tapped by the 46 shallow wells used in this
study, most recharge is from water, typically rainfall, penetrating the land surface and moving
downward through the soil to the groundwater regime. Rainfall has a lower pH than most
aquifer water. The pH is lowered further as rainwater picks up carbonic acid as it moves
downward through Florida's soils (Freeze and Cherry, 1979; and Upchurch, 1992). Therefore,
as the water table (or the potentiometric surface in confined aquifers) drops, generally the
younger, freshly recharged water with lower pH has an increasing probability of entering well
intake zones. As such, the lowering of the water table is a potential cause for decreasing trends
in pH values across the state during the drought. A detailed description of this hypothesis, along
with other related hypotheses, is discussed in the body of this report.

Another field analyte that displayed a trend was well water temperature. Between 1991
and 2003, its temperature typically increased; the reason is believed to be an increase in air
temperature. Air temperature increased across Florida (Southeast Regional Climate Center,
2006). Since the wells used in this report tend to be shallow, it is believed that well water readily









responded to air temperature changes. On the other hand, the sources of spring water are from
shallow and deep portions of our aquifers. Deeper water tends not to respond to changes in air
temperature. Thus, spring water displayed fewer temperature trends than did well water.

Concerns

Rock-Matrix and Saline Indicators: Saltwater Encroachment

Saltwater encroachment is the displacement of fresh groundwater by the advance of
saltwater due to its greater density (Neuendorf et al., 2005). It can occur during a drought when
recharge declines and the freshwater "lens" shrinks in size. Over geologic time, it can occur with
sea-level rise. It can also occur when excessive groundwater pumping causes the advancement
of saltwater. Freeze and Cherry (1979) use the term saltwater intrusion as the migration of
saltwater into freshwater aquifers under the influence of groundwater development (pumping).
For this paper, we use the term intrusion to indicate a man-induced process and use the term
encroachment to make no distinction between natural and man-made causes.

Figure 1 (top) displays the unconfined, surficial aquifer system. The saltwater/freshwater
interface is represented by a transition zone. During a drought, the water table lowers, the
transition zone migrates inland and the thickness of the freshwater zone ("lens") decreases in
size.

In his work in northeastern Florida, Spechler (2001) mentioned several possible
mechanisms that can drive encroachment and intrusion. During the drought, they included: (1)
the movement of "un-flushed" pockets of relict seawater within the Floridan aquifer system, (2)
the landward movement of the freshwater/saltwater interface, (3) regional upcoming of saltwater
below pumped wells, and (4) the upward leakage of saltwater from deeper, saline water-bearing
zones through confining units. The latter can occur where the units are thin or are breached by
joints, fractures, collapse features, or other structural anomalies. Examples are displayed in
Figure 1 (bottom).

During the 1999-2002 drought, the flows in many springs decreased, and one spring
(Hornsby Spring) stopped flowing altogether for a period of time. In addition to the decreased
rainfall, there was an increased demand for groundwater (Verdi et al., 2006). The drought and
the subsequent lowering of aquifer water levels resulted in decreasing spring flows throughout
the state. The increased demand for groundwater during the drought exacerbated the problem in
some of the springs. The increasing trends in rock-matrix analytes during the drought is an
indication of a reduction in size of the fresh water "lens" underlying the state and an indication
of saltwater encroachment. Because the concentrations of saline analytes increased almost
everywhere in the state during the drought, it is an indication that encroachment occurred on a
statewide scale.






























i _,. ....... ;.i:. ._ ',T w %.-. .
----' -' %1y;*^ ^t ^ 0.1.%
.... -*,...--... ;.- ......' .
...*. 2 r,$ . .#Xt*',,.. ;**...*., ;,. :j ..i '.^
l..:....- ,. ... intermediate u. ,i n ..u.n. .. ..-. ..
,, ~. . ........,; . ..:.; ,....: : .. ..: .. '..
". : . :-. ,.-.- -, -. ; :.. ii`. ,


Modified from Cooper (1964)


UPPER pFLORO'NA





- --\ LOWE




UNDIFFERENTIATED CONFINING.UIIT


Modified from Spechler (2001)


Brackish water
- Saltwater
SI Freshwater


----- Direction of ground-water flow


Figure 1. Schematics of freshwater/saltwater transition zone and possible mechanisms
for saltwater/freshwater intrusion. Note Cooper (top) represents the saltwater/freshwater in-
terface in the surficial aquifer system as a transition zone, whereas Spechler (bottom) depicts it
as a sharp boundary.


xvii


Not to scale


Not to scale


EXPLANATION









The 1998-2002 drought was one of the worst historical droughts to affect Florida (Verdi
et al, 2006). Except for south Florida, during the drought the deficit rainfall ranged from about
10 inches in southwest Florida to almost 40 inches in northwest Florida. In order to make up for
the drought, groundwater pumping increased, largely for irrigation (Verdi et al., 2006). Because
an increase in groundwater pumping occurred during one of worst droughts, it is likely that
human-induced saline intrusion took place and contributed to the increase in saline and rock-
matrix analyte trends. On a statewide scale, the extent and severity of the intrusion is difficult to
quantify. However, within the northern portion of the SWFWMD, a water budget and a regional
groundwater flow model indicated that the increase [0.3 cm/yr (+0.1 in/yr)] in groundwater
withdrawals was less than 2.0% of the decline in recharge due to the decrease [18.3 cm/yr (7.2
in/yr)] in rainfall (Ron Basso, Southwest Florida Water Management District, personal
communications). Nevertheless, intrusion should be a concern. If another drought of this
magnitude occurs, depending on the amount of increased pumping, it could potentially have
adverse effects on the long-term sustainability of Florida's groundwater resources.

Nutrients

The Florida Springs Task Force (2000) indicated that Florida's springs face serious
threats due to rapid and continuing population growth. The state's increasing population has
resulted in extensive land-use changes, increased demand for freshwater, and an increased use of
fertilizers. As rainfall seeps through the soils, and moves the nutrients into Florida's underlying
aquifers, it creates localized degradation in Florida's groundwater resources. A report regarding
FDEP's Springs Initiative Program efforts (Florida Department of Environmental Protection, and
Florida Department of Community Affairs, 2002) noted that nitrates have increased since the
1970s. It also noted that over the past 30 years many of Florida's springs experienced an
increase in nuisance algae and invasive exotic aquatic plants. These plants tend to thrive on
excess nutrients and decrease dissolved oxygen levels in spring runs.

Analyses for the 1991-2003 time frame indicated that trends in nutrient concentrations in
Florida's spring-water increased in some springs, while they decreased in others. It is
encouraging to note that there are some decreasing trends. The fact that nutrients (especially
nitrate) tended to increase is an indication that some land-use management practices warrants
reevaluation. But as noted previously, the relationship of these apparent decreasing trends may
be related to diminishing spring flow.

Monitoring

The current study revealed an inverse relationship between rock and saline indicators and
spring flow. The relationship was observed across the state (Figure 2). Note that changes in
spring-water quality often lag behind changes in spring flow. For detail, the smaller charts
depicted in Figure 2 have been enlarged and can be found in Appendix A.

Historically, the WMDs and the USGS have monitored spring-water quality and
discharge. With the commencement of the Springs Initiative, FDEP joined in the monitoring
efforts. Considerable efforts were made to eliminate inconsistencies in monitoring activities.
Unfortunately, at the beginning of the study, the efforts were not always successful. Specifically,
the WMDs, USGS, and FDEP did not always monitor the same analytes, use the same laboratory


xviii









analytical methods, or collect flow data on the same date as chemical and biological data were
collected. In addition, they often sampled at different frequencies. All these inconsistencies
made statewide comparisons very difficult. The results of this investigation demonstrate that
statewide monitoring must continue. For this reason, it is hoped that, in the future, the state can
find ways to minimize monitoring inconsistencies.

Recommendations

One of the most surprising and most significant observations of this study was that rock-
matrix and saline analytes were increasing almost everywhere in Florida's springs, especially
during the drought of Sequence C (1998-2003). Saltwater encroachment is a hugely significant
issue. Saltwater can restrict water use and negatively affect freshwater ecology, and can
adversely affect the long-term term sustainability of Florida's water resources. The relationships
among rainfall, recharge, groundwater withdrawals, groundwater quality and levels, plus spring-
water flows warrant further research, as does the effects of global climate change.

The concentrations of at least one nutrient (nitrate) in numerous springs have been
excessively increasing since the 1970s (Florida Department of Environmental Protection and
Florida Department of Community Affairs, 2002). One of the most visible changes in spring-
water quality has been the increase in nuisance algae and invasive exotic aquatic plants. What is
the relationship between the increases in nutrients and the nuisance plants? Further research is
needed. In addition, land-use management practice modifications are needed in order to reverse
the increasing trends. It is beyond the scope of this study to elaborate on the management
strategies. For a detailed discussion of many of the available strategies, an excellent reference is:
Protecting Florida's Springs Land Use Planning Strategies and Best Management Practices
(Florida Department of Environmental Protection and Florida Department of Community
Affairs, 2002).

Spring-water quality is sensitive to changes in spring flow and to aquifer water levels.
Springs represent excellent natural sampling locations for monitoring saline encroachment. It is
recommended that, to the extent practical, springs should be incorporated into a statewide
saltwater encroachment monitoring network. The results of the spring monitoring could then
potentially be used to supplement well monitoring networks that are often used for saltwater
encroachment purposes.

Although the monitoring of springs and wells is critical for the sustainability of Florida's
water resources, not all analytes of concern are sampled. Synthetic organic, other supplementary
analytes supplementalss), as well as biological indicators, should be included on the monitoring
lists. It should be understood that supplementals are expensive to collect and analyze, and for
these reasons, they can only be sampled on a low frequency basis. It should also be noted that
supplemental monitoring is often determined by site-specific issues. For example, pesticides
may only be detected at certain times of the year or in certain locales, determined by land use
conditions. Supplementals such as pesticides, synthetic organic compounds, and trace metals
should occasionally be sampled.

























Poe Spring


L1 I1


A ^ 1


Homnassa No. 3 Chasmowitza No. 1
i-nuu~nr /
-I ?I J '* ..



SCALE
0 50 100 200 Miles
II I' I 'I Saine/Rock Indicator
0 75 150 300 km Flow/Stage




Figure 2. Inverse relationship of flow to rock and salinity indicator concentrations. Darker
lines represent water levels (whether by stage or spring flow); lighter lines represent saline or
rock-matrix indicators (sodium or alkalinity). Time axes vary. The graphs indicate reciprocity
between decreases in water levels and increases of salinity, regardless of location in the state.
Florida's spring-water chemistry shows a high sensitivity to changes in flow(See Appendix A
for enlarged versions of inset charts).









It is critical that evaluations of spring water and groundwater be clearly disseminated to
the public as efficiently as practical. One efficient method is the use of indices. Stock exchange
indices have been used in the financial community for many years. Groundwater quantity
indices are used by the Edwards Aquifer Authority in Texas. As an example, the authority use
real-time water levels in the Bexar County Index well as an index (indicator) for the entire
county. During dry times, as water levels fall, water restriction measures may be invoked by the
authority. When water levels rise, the restrictions are lifted (Edwards Aquifer Authority, 2006).
There are several potential indices that could be developed for use in Florida. If one or more
indices were developed, they have the potential to become very useful in informing the public
about the status of our springs. However, in order to be viable, buy-in by both the public and
scientific communities are essential. Hopefully, indices will be adopted in the future.

It is essential that technical reports regarding the results of analyses be generated
frequently and in a relatively short time frame. It is acknowledged that it takes a considerable
amount of time for an initial report to be generated. However, after the initial report, the lag time
between sample collection and report generation should reduce considerably. In addition,
subsequent reports using similar interpretative methods could employ computer programs to
create "boiler plate" reports as quickly as analytical data are received from a laboratory.

Standardized spring and well sampling throughout the state is a critical need. If
standardization is achieved, analyses of trends in the future will be much easier to conduct. This
in turn will make the resulting interpretations more comprehensive, and the dissemination of the
interpretive results will be more meaningful to the public. Specific aspects of the standardization
effort include: core and supplemental water-quality analytes and indicators, data reporting,
sampling and laboratory quality assurance, data management, data analysis, and assessment
reporting,

Recommendation Synopsis

Research

Determine the relationships between increases in nutrients and nuisance plants/algae

Determine the best land-use management practice needed in order to reverse increasing
nutrient trends

Improve our understanding of the relationships among: (1) rainfall, (2) recharge, (3)
groundwater withdrawals, (4) groundwater quality and levels, and (5) spring-water
quality and discharge

Develop a "spring environmental health" report card.


Monitoring

Recognize the importance of springs in saltwater encroachment monitoring and
incorporate spring monitoring into that effort










* Add supplemental analytes to spring monitoring lists on a periodic basis

* Develop spring water-quality and quantity interpretative reports on a regular basis

* Adopt area-wide randomized spring sampling on a periodic basis in order to produce a
synoptic report of all springs in Florida

* Continue to use the Florida Water Resource Monitoring Council to increase monitoring
efficiency. Topics for discussion should include:

core and supplemental water quality analytes and indicators
possible development of a "spring environmental health" index
possible implementation of the random sampling of springs
sampling and laboratory quality assurance
data management
data analysis
assessment reporting


xxii






FLORIDA GEOLOGICAL SURVEY


cause-and-effect relationship between land-use and water-management activities, and the
resulting changes in spring-water quality and quantity.

As a result of the Florida Spring Task Force's first recommendation, the FGS was asked
to evaluate historical spring data in order to detect and document trends in spring-water quality
and quantity. This document reports the findings of analyses for trends in springs, using data
from the Springs Initiative of FDEP, the WMDs, and the USGS spring sampling programs.


ACKNOWLEDGEMENT S

The authors wish to acknowledge a number of individuals and to thank them for their
assistance. From the Florida Department of Environmental Protection, Division of
Environmental Assessment and Restoration, Bureau of Watershed Management, we would like
to thank Gail Sloane and Jay Silvanima for supplying the authors with data from the TV Network
and their miscellaneous assistance on numerous occasions. Laura Morse assisted in supplying
quality assurance information. Debra Harrington, Rick Hicks, Gary Maddox, Jay Silvanima,
Chris Sedlacek and Paul Hansard (now with the Colorado School of Mines) supplied numerous
editorial comments during the course of the project. From the FGS, we would like to thank
Doug Calman, Rick Green, Tom Greenhalgh, Harley Means, Frank Rupert, Tom Scott, and
especially Ellen McCarron, for their many helpful editorial comments.

We would also like to acknowledge the efforts of numerous people from the water
management districts who supplied us with spring data and constructive comments regarding the
document. In particular the authors would like to thank Kris Barrios, Angela Chelette, Tony
Countryman, Kevin De Fosset, Tom Pratt, and Nick Wooten, from the Northwest Florida Water
Management District (NWFWMD); Ron Ceryak and David Hornsby of the Suwannee River
Water Management District (SRWMD); and Ron Basso, Eric DeHaven, David DeWitt, Joe
Haber, Robert Peterson, and Roberta Starks from the SWFWMD.

We would like to thank Brian Katz and Stuart Tomlinson of the USGS. Both individuals
supplied data and other information that was invaluable to the project. We would like to thank
Dr. Xu-Feng Niu of the Florida State University, Department of Statistics, for contributing to the
section regarding statistical methodologies and to Rich Smith, a graphic designer, who assisted
with making many of the figures.


FLORIDA'S SPRINGS

Scott et al. (2004) presented an excellent overview of Florida's springs. Although they
did not specifically evaluate trends, the authors described hundreds of Florida's springs,
including a description of their water quality. In doing so they described many aspects that
control the water quality and quantity of groundwater. With this in mind, their work can be
considered a precursor to the present trend analysis document. With the authors' permission,
much of the following introduction from the sections labeled "Florida's Springs" to "Differences
in Spring and Well Water Quality" are paraphrased from their work, "Springs of Florida."






BULLETIN NO. 69


Many terms relating to hydrogeology and springs may be unfamiliar to the reader. For this
reason a glossary of terms is found in Appendix Bi. In addition, Appendix B2 elaborates on the
sources of the analytes discussed in this report, along with the probable causes for the trends
observed.

Spring-water discharge comes primarily from the Floridan aquifer system, which is also
the state's principle source of groundwater. The springs provide a "window" into the aquifer,
allowing for a measure of the health of the aquifer. Chemical and biological constituents that
enter the aquifer through recharge processes may negatively affect the water quality in aquifers,
as well as the flora and fauna of springs and spring runs. The declines in water quality can be
directly attributed to Florida's increased population and changing land-use patterns (Florida
Springs Task Force, 2000).

Classification of Springs

Springs are most often classified on the amount of flow or discharge of water. The flow-
based classification listed in Table 1 is taken from Meinzer (1927) (Table 1). One discharge
measurement is all that is required to place a spring into one of eight magnitude categories.
However, it should be understood that each spring exhibits a variable discharge, depending upon
rainfall, recharge and groundwater withdrawals within their recharge areas. This can result in a
spring being classified as a first magnitude spring at one point in time and a second magnitude at
another. In the past, a spring assigned a magnitude when it was first described and continued
with that magnitude designation even though the discharge may have changed considerably over
time. To alleviate this confusion, the FGS (Copeland, 2003) adopted a system using the
historical median of the flow measurements to classify a spring's magnitude. Using the new
system along with the Meinzer system, a spring's magnitude is now based on the median value
of all annual median discharge measurements for the period of record. Of the over 700 springs
inventoried by the FGS, there are 33 first-magnitude springs, 191 second-magnitude, and 151
third-magnitude springs. Most are located in the northern portion of the state (Figure 3).

Table 1. Spring Magnitude.
Discharge
Magnitude Metric Units English Units
1 > 2.832 cms > 100 cfs (> 64.6 mgd)
2 > 0.283 to2.832cms > 10 to100 cfs (> 6.46 to 64.6 mgd)
3 > 0.028 to 0.283 cms > 1 to 10 cfs (> 0.646 to 6.46 mgd)
4 > 0.0063 to 0.028 cms > 100 gpm to 1 cfs (> 100 to 448gpm)
5 > 0.631 to6.308 1ps 10 to 100 gpm
6 > 0.063 to 0.631 lps > 1 to 10 gpm
7 > 0.473 to 3.785 1pm > 1 pint/minto 1 gpm
8 < 0.473 1pm < 1 pint/min
cms = cubic meters per second Ips = liters per second
cfs = cubic feet per second pint/min = pints per minute
mgd = million gallons per day 1pm = liters per minute
gpm = gallons per minute






FLORIDA GEOLOGICAL SURVEY


* 462 FGS Visited Springs
O Springs from all Databases
Water


0 25 50 Miles N

0 50 100 Kilometers
.7 .' "


Figure 3. Locations of Florida's springs (From Scott et al., 2004).


A second spring classification system is also in use. The Florida Spring Classification
System (Copeland, 2003) (Table 2) is based on an assumption that karst activities have
influenced almost all springs in Florida. Under this system, all springs in Florida can be
classified into one of four categories, based on the spring's point of discharge. Is the point of
discharge a vent or is it a seep and is the point of discharge located onshore or offshore? Since all
springs are either vents or seeps, the classification can be simplified into the following
categories.

A spring vent is defined as an opening that concentrates groundwater discharge to the
Earth's surface, including the bottom of the ocean. The opening is significantly larger than the
average pore space of the surrounding aquifer matrix. A vent is occasionally considered to be a
cave, and groundwater flow from this type of vent is typically turbulent. On the other hand, a
spring seep is composed of one or more small openings in which water discharges diffusely (or
"oozes") from the groundwater environment. The diffuse discharge originates from the
intergranular pore spaces in the aquifer matrix. Flow from seeps is typically laminar.






BULLETIN NO. 69


Offshore Springs

Springs occur both onshore and offshore in Florida. Currently, little is known about the
offshore, or submarine springs, with the exception of the Spring Creek Group-the largest spring
group in Florida, averaging more than one billion gallons of water discharged per day (maximum
flow estimated at more than two billion gallons of water per day [Rosenau et al., 1977; Lane,
2001]). Offshore or submarine springs (Figure 4) are known to exist off Florida's Atlantic and
Gulf of Mexico coastlines. These springs are most common in the offshore portion of Florida
from Crystal Beach Spring (Figure 4, Spring No. 7) to Bear Creek Spring (Figure 4, Spring No.
1). Offshore springs have also been identified off the northeastern and southwestern parts of the
Florida and the western panhandle (Rosenau et al., 1977) (Figure 4). Water-quality data from
some of these springs indicate that, at best, the water is brackish. There are anecdotal reports of
"fresh water" flowing from Florida's offshore springs.


Table 2. Florida's Spring Classification System. (From Copeland, 2003)
SPRINGS
Onshore Offshore
Vent Onshore Vent Offshore Vent
Examples Examples
Karst spring Offshore karst spring
Resurgence (River Rise) Unnamed offshore vent
Estavelle (intermittent resurgence or Offshore estavelle vent
exsurgence)
Subaqueous riverine vent
Subaqueous lacustrine vent
Sand boil
Seep Onshore Seep Offshore Seep
Examples Examples
Subareal riverine seep Unnamed offshore seep
Subaqueous lacustrine seep Offshore estavelle seep







FLORIDA GEOLOGICAL SURVEY


SUBMARINE SPRINGS 7
1. Bear Creek Spring
2. Cedar Island Spring
3. Cedar Island Springs
4. Choctawhatchee Springs
5. Crays Rise
6. Crescent Beach
7. Crystal Beach Spring
8. Freshwater Cave
9. Mud Hole
10. Ocean Hole Spring SCALE
11. Ray Hole Spring
12. Red Snapper Sink 0 80 kms
13. Spring Creek Springs Group
14. Tarpon Springs 0 50 Miles
15. Jewfish Hole
16. Unnamed Spring No. 4



Figure 4. Offshore Springs (From Rosenau et al., 1977).


Spring Recharge Basins


In addition to the awareness of increasing trends in contaminants such as nitrate over the
past several years (Figure 5), there has also been an increased awareness on the drainage basins
that supply water to Florida's groundwater and springs. The amount of water and the nature and
concentrations of chemical constituents that discharge from springs are functions of the geology,
hydrology, weather conditions and land uses within the spring recharge basin. This type of basin,
often referred to as a springshed, consists of those areas within groundwater and surfacewater
basins that contribute to the discharge of the spring (Dehan, 2002; Copeland, 2003). The
springshed consists of all areas where water can be shown to contribute to the groundwater flow
system that discharges from the spring of interest. Karst systems frequently include sinking
streams that transmit surface water directly to the aquifer; the recharge basin may include surface
water drainage basins that bring water into the spring drainage from outside of the groundwater
basin.






BULLETIN NO. 69


Median Nitrate Concentrations in 13
Selected Springs in Florida

1.0
9 0.9
S0.8
0.7 -
z 0.6
0.5
0 0.4-
0
z 0.3-
O 0.2 -
z 0.1 -
0.0 -
I I
1970 1980 1990 2000
Year

Figure 5. Median nitrate concentrations in 13 selected first-mag-
nitude springs. Springs are Alexander, Chassahowitzka Main,
Fanning, Ichetucknee, Jackson Blue, Madison Blue, Manatee,
Rainbow, Silver, Silver Glen, Volusia Blue, Wakulla, and Wacissa #2
(From Scott et al., 2004).


OVERVIEW OF THE HYDROGEOLOGY OF FLORIDA'S GROTUNDWNATER

Florida enjoys a humid, subtropical climate throughout much of the state (Henry, 1998).
Rainfall, in the region of the major springs (Figure 1), ranges from 127 cm (50 inches) to over
152 cm (60 inches) per year. As a result of the climate and the geologic framework of the state,
Florida has an abundant supply of fresh groundwater. Scott (2001) estimated that more than 8.3
billion cubic meters [2.2 quadrillion (2.2 x 1012) gallons] of freshwater are contained within
Florida's aquifers. However, only a very small percentage of freshwater is available as a
renewable resource for human consumption.

The Florida peninsula is the exposed portion of the broad Florida Platform. The Florida
Platform, as measured at the 200 meter (more than 600 ft) below sea level contour, is more than
483 km (300 miles) wide. It extends more than 240 km (150 miles) westward under the Gulf of
Mexico, and more than 113 km (70 miles) under the Atlantic Ocean. The present day Florida
peninsula is less than one half of the total platform.

The Florida Platform is composed of a thick sequence of variably permeable carbonate
sediments, limestone and dolostone, lying on older igneous, metamorphic and sedimentary rocks.
The Cenozoic carbonate sediments may exceed 1,220 m (4,000 ft) thick. A sequence of sand, silt
and clay with variable amounts of limestone and shell overlie the carbonate sequence (see Scott
et al, 1991 and Scott, 1992b for discussion of the Cenozoic sediment sequence and the geologic






FLORIDA GEOLOGICAL SURVEY


structure of the platform). In portions of the west-central and north-central peninsula and in the
central panhandle, the carbonate rocks, predominantly limestone, occur at or very near the
surface. Away from these areas, the overlying sand, silt and clay sequences become thicker. As
the rocks sediments compacted and were subjected to other geologic forces, fractures formed.
These fractures allowed water to move more freely through the sediments and provided the
template for the development of Florida's many cave systems.

There are three major aquifer systems in Florida, the Floridan, the intermediate and the
surficial aquifer systems (Southeastern Geological Society, 1986; Scott et al., 1991). The
Floridan aquifer system (FAS) occurs within a thick sequence of permeable carbonate sediments
(see Miller, 1986 and Berndt et al., 1998 for discussion of the FAS). In some areas, it is overlain
by the intermediate aquifer system (IAS) and the intermediate confining unit (ICU) which
consists of carbonates, sand, silt and clay. The surficial aquifer system (SAS) overlies the IAS
(or the FAS where the IAS is absent), and is composed of sand, shell and some carbonate. The
vast majority of Florida's springs result from discharge from the Upper Floridan aquifer system
(UFAS), a subdivision of the FAS as discussed by Miller (1986).

Typical natural recharge to the FAS originates as rainwater. As the acidic rainwater
percolates downward to the FAS, it is made slightly more acidic by carbon dioxide from the
atmosphere and organic acids in the soil. Once in the FAS, the groundwater dissolves portions
of the limestone and enlarges naturally occurring fractures. The dissolution enhances the
permeability of the sediments and forms cavities and caverns. Sinkholes are formed by the
collapse of overlying sediments into the cavities. Occasionally, the collapse of the roof of a cave
creates an opening to the land surface. See Lane (1986) for a description of sinkhole types
common in Florida.

Recharge to the FAS occurs over approximately 55 percent of the state (Bemdt et al.,
1998). Recharge rates vary from less than 2.54 cm (one inch) per year to more than 25.4 cm (10
inches) per year. Water entering the upper portion of the FAS eventually discharges from a
spring. The water has variable residence times. Katz et al. (2001) and Katz (2004) found that
water flowing from larger springs had a mean groundwater residence time of more than 20 years
and may reflect the mixing of older and younger waters.

Florida's springs occur primarily in the northern two-thirds of the peninsula and the
central panhandle where carbonate rocks are at or near the land surface. Most of these springs
produce water from the UFAS which consists of sediments that range in age from Late Eocene
(approximately 36 38 million years old [my]) to mid-Oligocene (approximately 33 my).
Miocene to Pleistocene sediments (24 my to 10,000 years) often are exposed in the springs.

The geomorphology of the state, coupled with the geologic framework, controls the
distribution of springs. The springs occur in areas where karst features (for example, sinkholes
and caves) are common, the potentiometric surface of the FAS is high enough and the surface
elevations are low enough to allow groundwater to flow at the surface. Springs generally occur
in lowlands near rivers and streams. There are a number of springs known to flow from vents
within river channels and many more are thought to exist. Homsby and Ceryak (1998) identified
many newly recognized springs in the channels of the Suwannee and Santa Fe Rivers. Springs






BULLETIN NO. 69


that have yet to be described have been found within the Apalachicola River between Gadsden
and Jackson Counties (H. Means, Florida Geological Survey, personal communication, 2004).

Weather and climatic events affect the appearance of spring water. For example, during
periods of higher than normal precipitation, such as hurricanes, some springs may reverse flow.
When this occurs, stream water flows into the aquifers. During these times, spring water often
has a dark appearance because of the presence of tannins from surfacewater sources. Once
stream levels drop enough, the dark waters again reverse flow. When this occurs, discharge
becomes much clearer. Dryer periods also affect the appearance of springs. For example, during
1998 2002, Florida experienced a major drought with a rainfall deficit in places totaling more
than 127 cm (50 in) (Verdi et al., 2006). The resulting reduction in recharge from the drought,
along with the normal withdrawals, caused a lowering of the potentiometric surface in the FAS.
Many first magnitude springs experienced a significant flow reduction. Some springs ceased
flowing completely. The appearance of the springs also changed as river and lake levels
declined reducing the size of the spring-water body and exposing sediments along the banks.


QUALITY OF GROUNDWATER AND SPRING WATER

Natural Factors Affecting Groundwater and Spring-Water Quality

Most of the Florida land mass is a peninsula that is surrounded by saltwater. Relict
saltwater also underlies the entire state. The reason for this is that the Florida Platform consists
of carbonate rocks that were deposited in a shallow ocean. At the time of deposition, saltwater
existed in their intergranular pore spaces. Gradually over geologic time, sea level was lowered
relative to its position when the carbonate sediments were deposited. Through compaction and
down warping of sediments on both sides of the Platform, a series of complex fracture patterns
developed. The patterns are often reflected at land surface and have actually influenced the
pathways of many of Florida's streams.

Over geologic time, as sea level lowered, the central portion of the Florida Platform was
exposed to the atmosphere. As rainfall percolated downward it eventually replaced the upper
portion of saltwater in the developing aquifers with a freshwater "lens." Today, the irregularly
shaped "lens" is generally thickest in the central portion of the state, where it is over 610 m
(2,000 ft) thick (Klein, 1975). It becomes narrow toward Florida's coastline. The base of the
"lens" is typically a transitional rather than a sharp boundary. Groundwater in the deeper portion
of the "lens", and along the coasts, is mixed with saltwater and has relatively high concentrations
of saline indicators such as sodium (Na), chloride (Cl), and sulfate (SO4).

Water discharging from Florida's aquifer systems and springs has its primary source from
rainfall. Much of the rainfall reaching land surface flows overland to surfacewater bodies,
evaporates, or is transpired by plants. However, a portion of the rainfall percolates downward
through the sediments, or enters sinkholes, where it recharges the aquifers. During its travel
downward from land surface to the water table, and during residence within Florida's aquifer
systems, many factors affect the water chemistry.






FLORIDA GEOLOGICAL SURVEY


A long residence time may allow sufficient time for chemical reactions between the water
and the aquifer rock. As such, water chemistry reflects the composition of the aquifer rock.
Typical residence times range from less than several days (in secondary produced caverns and
sinkholes) to centuries (Hanshaw et al., 1965).

A second factor affecting groundwater chemistry is flow path, which is the length and
depth of the path that the groundwater follows as it flows through an aquifer (Upchurch, 1992).
In general, shallow, short flow paths (which are characteristic of the SAS) result in shorter
residence times for chemical reactions to take place. Consequently, the total dissolved solid
(TDS) content is less than in longer flow-path systems. If the flow path is long (on the order of
tens of kilometers), such as commonly occurs in the FAS, reactions between rock and water
become more probable and the TDS content of the water would be greater as a result of
continued rock-water chemical reactions. Because of the residence time and the flow paths of the
groundwater within an aquifer, the quality of spring water is typically reflective of the
interactions of the major rock types in the aquifer and the groundwater itself.

A third factor which is of particular interest is intergranular porosity (pores through
which water passes between the individual rock matrix grains). Even though Florida's aquifers
have large, secondary cavernous pores spaces, most of the pores tend to be small (Upchurch,
1992). Fortunately, whenever the pores are very small, they act as filters for microbes, small
organic substances, and clay minerals. In general, this results in naturally filtered groundwater
that is very pure and desirable for both drinking water and recreation. Unfortunately, some
pollutants are not always removed and our aquifers can become contaminated.

Differences in Spring- and Well-Water Quality

The processes controlling the water quality in wells is very similar to those controlling
spring-water quality with at least one major difference. Wells are often drilled to production
zones as close to land surface as is economical. This is the situation for the wells used in this
study, which are for the most part monitoring wells. Monitoring wells tend be shallow (median
depth 80 feet (24 m) (Appendix C). Most water in these shallow wells represents young,
recently recharged water. On the other hand, because springs are major discharge points, spring-
water can be considered to be an integrator of water from the entire springshed. Spring water is
a mixture of young, shallow, freshly recharged water and older water from the deeper portions of
the aquifer. For this reason, spring water tends to be older than the relatively shallow water
found in the monitoring wells used in this study.

Indicators of Groundwater and Spring-Water Quality Problems

Spring water, while it resides in the aquifer, is considered to be groundwater. However,
once spring water exits from the spring onto the earth's surface, it is considered to be surface
water. Because of this change, the question arises whether regulators should apply groundwater
or surfacewater quality standards to the water. Primary and secondary standards with maximum
contaminant limits (MCLs) may exist for an analyte while the water is considered groundwater,
but differ for surface water; or vice versa. Drinking water standards are protective of human






BULLETIN NO. 69


health while surface water criteria are protective of aquatic biota. Although several analytes fall
into this category, Nitrate (NO3 + NO2 as N), and hereafter abbreviated NO3, is a good example.
Based on drinking water criteria, nitrate has a groundwater threshold value of 10 mg/L (Florida
Department of Environmental Protection, 1994). However, no numeric nitrate criteria exist for
surface water, other than Class I surface water which is used for drinking water. The FDEP is
currently developing criteria for spring water. Until legal numeric criteria are established for
nitrates, it should be understood that any reference to threshold values in the following text
simply infers potential water-quality problems.

One of the more disturbing aspects about Florida's groundwater quality has been the
documented steady increase of nitrate over the past several decades (Jones et al., 1996;
Champion and DeWitt, 2000; Means et al., 2003). An example is displayed in Figure 5 (From
Scott et al., 2004). It shows that nitrate concentrations have a greater than 19-fold increase in
nitrate concentrations in 13 selected first-magnitude springs (Alexander, Chassahowitzka Main,
Fanning, Ichetucknee Main, Jackson Blue, Madison Blue, Manatee, Rainbow Group composite,
Silver Main, Silver Glen, Volusia Blue, Wakulla, and Wacissa #2 Springs) between the 1970s
and 2000.

The natural background nitrate concentrations in Florida groundwater are less than 0.05
mg/L (Upchurch, 1992). During the 2001-2002 time frame, the FGS sampled 125 spring vents.
Of the 125 spring vents sampled, none had nitrate concentrations exceeding the 10 mg/L
threshold for Class I surface and drinking water. Fifty-two of the spring vents sampled had
nitrate concentrations exceeding 0.50 mg/L (42 percent) and 30 (24 percent) had concentrations
greater than 1.00 mg/L. Thus, over 40 percent of the sampled springs had at least a ten-fold
increase in nitrate concentrations above background and approximately one quarter of them had
at least a 20-fold increase. The elevated nitrate concentrations may adversely affect the aquatic
ecosystem in springs and spring runs. Further research is still needed and is currently being
sponsored by the Springs Initiative Program. The FDEP is aware of the nitrate issues and has
worked with other governmental agencies to develop a series of steps to reduce nitrate
concentrations in groundwater and springs in the middle Suwannee River Basin where many of
Florida's springs are located (Copeland et al., 2000). The FDEP Bureau of Watershed
Management and the Florida Department of Community Affairs are active in coordinating the
development of spring protection measures.

Another groundwater quality concern is the influence of saline water. Several springs
have concentrations of chloride (Cl; a saline indicator) exceeding the 250 mg/L threshold for
drinking water. Springs with this type of water tend to be located along Florida's coast and along
the St. Johns River. The ultimate source of the saline indicators is from naturally occurring saline
water within the FAS (Klein, 1975), or from sea water near Florida's coasts. When the
concentrations of saline indicators are increasing, it may be the result of: (1) natural
circumstances such as drought, (2) the consequent upcoming of groundwater within the FAS, or
(3) lateral intrusion of salt water due to increased groundwater pumping.

Enterococcus and total coliform bacteria represent a third concern. It is generally
believed that these bacteria originate in fecal matter from warm-blooded animals (Jelinkova
and Rotta, 1978). Total coliform concentrations in several springs has exceeded the






FLORIDA GEOLOGICAL SURVEY


drinking water standard of four colonies per 100 ml (Florida Department of Environmental
Protection, 1994). However, it has been determined that these bacteria can complete their normal
life-cycle outside of warm-blooded animals, especially in environments found in parts of Florida
(Fujioka and Byappanahalli, 2004), thus the concentrations of fecal coliform may not necessarily
represent a direct link to warm-blooded animal pathogens. Further research is needed before
definitive conclusions can be made regarding the source of fecal bacteria. Another concern is
concentrations of enterococcus and fecal coliform bacteria with regards to swimming. The
Florida Department of Health has set beach swimming standards and advisory thresholds for
both organisms. To date, exceedances of the standards and thresholds in springs have not been a
problem. Nevertheless, many residents swim in spring runs and these bacteria are a concern.


SPRING SELECTION PROCESS

Very little spring-water quality sampling, mostly by the USGS, occurred until the 1940s.
In 1947, the FGS published its first edition of "Springs of Florida" (Ferguson et al., 1947) which
documented the water quality in the major springs of Florida. The document was revised in 1977
and many previously undocumented springs were sampled (Rosenau et al., 1977). It should also
be noted that during the 1970s, the three northern water management districts were formed.
They were the NWFWMD, the SRWMD, and the (Saint Johns River Water Management District
(SJRWMD). Within a few years, these WMDs, along with the USGS and the already established
SWFWMD, occasionally collected spring-water quality samples. By the 1990s, the NWFWMD,
SRWMD, SJRWMD, and SWFWMD had established periodic to regular sampling, often with
the assistance of the USGS, of springs within their jurisdiction.

Partially due to the sampling efforts of the WMDs, in the 1990s it became apparent that
the water quality in some of Florida's springs was deteriorating. For this reason, in 1999 the
Secretary of the Florida Department of Environmental Protection directed the formation of a
multi-agency Florida Springs Task Force to provide recommendations for the protection and
restoration of Florida's springs. In late 2000 the Task Force made recommendations for the
preservation and restoration of Florida's springs to the Secretary, and in 2001 the Florida
Legislature passed the Florida Springs Initiative. The Initiative authorized funds for FDEP to
begin investigating the status of Florida springs and develop strategies for protecting them. As a
result of the Initiative, the four WMDs, FDEP, and the FGS have cooperated to monitor Florida's
springs.

The Springs Initiative has been responsible for the collection of spring-water quality
since 2001. Beginning with that year, much of the data used in this report were obtained from
Springs Initiative-sponsored samples. Methods of evaluating the data used in this report can be
used in the future to analyze the spring data currently being generated as a result of the Springs
Initiative. In the meantime, data of spring-water quality collected as part of WMD spring
sampling programs were used for this interpretative report.

The FGS requested spring data from each of the four northern WMDs in order to analyze
spring-water quality and quantity for trends. The districts delivered available data to the FGS in
2002 and 2003. It was soon discovered the WMDs had only sporadically sampled their springs






BULLETIN NO. 69


through the 1980s. However, beginning in the early 1990s each district had begun to sample
springs in a semi-consistent manner. Even though data do exist for many springs, only 58
springs (Figure 6) were ultimately included in the analysis; one from the NWFWMD, 14 from
the SRWMD, 15 from the SJRWMD, and 28 from the SWFWMD. Selection was determined
based on the consistency of the data. As a working definition, we considered consistency to be
the longest string of data in terms of time, along with the greatest number of analytes. We also
wanted the largest number of springs to be included that met our concept of consistency. With
these criteria in mind we determined that the time period from January 1991 through December
2003 represented the time in which the most consistent data existed for the greatest number of
springs. We realize that there are several springs that have decades of data. We also realize that
since commencement of the Springs Initiative, many springs now have data, but the time
sequences are short. As a result, our data interpretations are valid only for the 1991-2003 time
frame.

A discussion of analytes evaluated and frequencies of sampling will be discussed later.
Figure 6 displays the location of the included springs in the analyses. A list of the names of
springs, along with location information, can be found in Appendix D.


WELL SELECTION PROCESS

In 1983, the Florida Legislature passed the Water Quality Assurance Act (Florida
Statutes, 1983, Chapter 403.063). As a result, FDEP, with the assistance of the five water
management districts, plus several counties (Alachua, Broward, Collier, Lee, Miami-Dade, and
Palm Beach) established extensive groundwater monitoring networks. The purpose was to
document both ambient groundwater quality conditions (Background Network) and to detect
changes in Florida's groundwater quality resulting from the effects of various land uses and
potential sources of contamination (Very Intense Study Area Network [Scott et al., 1991]). Both
networks were in operation until 2000. A major subdivision of the Background Network was the
Temporal Variability (TV) Network. The TV Network consists of a series of strategically-
located Background Network wells scattered throughout the state. They are sampled on a
monthly to quarterly frequency.

Beginning in 1996, FDEP began a major redesign of its water resource monitoring
efforts. The purpose of the redesign was to characterize the environmental conditions of
Florida's water resources and to determine if those conditions are changing over time. The
revised network (The Status Network) became operational in early 2000. A detailed description
of the Status Network is presented by Copeland et al. (1999). Throughout the redesign process,
the TV Network only had minor modifications. The stated purpose of the redesigned network is
to evaluate temporal variability of Florida's groundwater quality and to determine whether
concentrations of the sampled analytes are increasing or decreasing over time. The TV Network
consists of 46 wells (Figure 7); 25 wells monitor confined groundwater and 21 wells monitor
unconfined groundwater. The wells tap each major aquifer system and are scattered throughout
each of Florida's five WMDs. As can be seen in Figure 7, some of the well locations represent







FLORIDA GEOLOGICAL SURVEY


N




S


Legend
Springs
SNWFWMD
S SFWMD
SSJRWMD
SRWMD
S SWFWMD









Miles
0 30 60 90

Kilometers
0 70 140 210


V


I

2LI


Figure 6. Location of springs analyzed in this report. (A list of the spring names can be found in
Appendix C.)






BULLETIN NO. 69


Legend
Wells
NWFWMD
SFWMD
M SJRWMD
- SRWMD
I SWFWMD


4 '

~i~I


Miles
0 50 100 150
Kilometers
0 75 150 225


Figure 7. Location of Temporal Variability Network (TVN) wells. (A list of well identifiers can
be found in Appendix D.)






FLORIDA GEOLOGICAL SURVEY


clusters of wells. Wells that monitor confined ground water are sampled quarterly (thought to
have less temporal variability), whereas wells that monitor unconfined groundwater are sampled
monthly.

With respect to the WMDs, the NWFWMD has eight wells, the SRWMD has 10 wells,
the SJRWMD has nine wells, the SWFWMD has 11 wells, and the SFWMD has eight wells in
the TV Network that had significant data for analyses. A list of well names can be found in
Appendix C, along with well construction data.


METHODS

This report uses a relatively simple methodology to determine the condition of spring and
groundwater quality. Most analyses boil down to the single straightforward question, "are
conditions getting better, getting worse, or remaining the same?" Though this report is based
upon several statistical procedures, all address this single question.

With this simple objective in mind, additional elaboration is required to expand upon the
connection with actual statistical tests and methods. First, since "better" and "worse" are
subjective and qualitative questions, an approach that will quantify them is needed. Thus, a
somewhat more objective and quantitative form of the above question becomes, "for the 1991-
2003 period of record, are the indicators decreasing, increasing, or remaining the same?" This
frames the question of quality in the terms of changing quantities between two end-points (i.e.,
the start and finish of a time period of interest); changes in quantities, such as flow and loading,
can be objectively tested in a variety of ways.

In order to test quantities, the last remaining questions are: (1) which quantities and, (2)
over what period of time? These further conditions must be defined. The first question is which
quantities? For this report, as many indicators as possible were tested. This allowed the authors
to ask questions of the largest possible scale; limiting the number of indicators only limits the
possible number of observations and maximizing the number of observations allows the most
comprehensive view of changes that might be of concern. Second, for the quantities examined an
increase or decrease in concentration must be addressed over a time frame. Therefore, in order to
maximize the effectiveness of the analysis, the longest possible time series was chosen for as
many springs as possible. In summary, the choice was for the longest possible time frame for
data with the highest quality, for as many indicators possible, and for as many springs as
possible. Laboratory and collection methodologies have varied over the last several decades in
the state of Florida. Variations include not only differences among WMDs, but even use of
different laboratories by the same district, changes within laboratories, incomplete sampling
intervals due to varying purposes and other reasons. Because of this, the earliest starting point for
which data quality could be uniformly assumed to be high (in this case 1991) was chosen; this
created the longest possible time series for analysis (1991-2003) for as many springs as possible.

Regarding the second question, for this report, we chose trend analysis to evaluate a
given time series (between 1991 and 2003) for linear trends. Note that Urquhart and Kincaid
(1999) mentioned that trends may deviate from strict linearity. Nevertheless, they mentioned






BULLETIN NO. 69


that if a trend is present, a linear trend will be present, regardless of the type of mathematical
structure of the trend, e.g. cyclic, episodic, or a stair-step look.

For this report, we were not only interested in detecting the presence of a trend we were
also interested in a statistical method that was relatively insensitive to missing sampling points
(e.g., gaps in data series), outliers, and, data that seldom had normal (Gaussian) distributions.
Based upon these reasons, our choice for analysis was the non-parametric, Mann-Kendall (MK)
test for trends. Discussions of the MK test and other statistical procedures used in the study,
including the corresponding assumptions, are found in Appendix E.

Our last clarification involves interpretation of trends; not all increases are bad nor are all
decreases good. For example, a decrease in nitrate is desirable and is considered to be good. On
the other hand, a long-term decrease in flow is not desirable, since it may indicate an overuse of
the resource. Thus, it can be considered to be bad. Another example, an increase or decrease in
pH may not be considered to be good (if it is extreme), since this analyte is best defined by an
optimal middle range; being far outside that range on either side is bad. The point is that change,
in one direction or another, can be tested and the result has implications regarding the
improvement or degradation of the system in question.

Definition of Trends

Natural systems in general undergo two main types of change: cyclic and linear (A and B,
top of Figure 8). Cyclic change is common in nature. Two common examples of cyclic changes
include diurnal and seasonal changes. Natural changes can also be linear, moving conditions
from one state to another without returning to the original state. The focus of this report is to
document linear trends in water quality and quantity. It is also assumed that trends in certain
analytes are most likely anthropogenic, rather than natural in origin. In this case, three possible
linear trend scenarios can be tested. In each case, a chemical component of a groundwater system
(whether spring or well) can be plotted as a concentration against time (Figure 8, bottom). The
first scenario (on the left) is that the system is increasing in concentration for a particular analyte
(for which the symbol, "+", will be used in this report). One case could be phosphorus. Over a
period of interest, change of concentration can be tested at a specific level of confidence (e.g., at
a 95 percent confidence level, or an a level of 0.05). This means that by the end of the time
period, the concentration was high enough to warrant the designation of being higher than
expected by chance fluctuation alone. Such values are marked as being highly unlikely to have
occurred unless notable changes to the system were introduced. In the opposite case (on the
right), the concentration could have decreased significantly (represented by "-"). Such a trend
suggests a substantial change to the physical environment and would therefore be recorded. The
third scenario (middle chart) is that neither case was observed. As will be detailed below, this is
not a positive statement affirming uniform conditions for the system in question; rather it is a
general category for all conditions not classified within the former two situations. This is a
default option and it is likely that a number of valid trends that could escape detection and be
included in this scenario.






FLORIDA GEOLOGICAL SURVEY


/


3 observations for trends:
Increasing Trend (+) Unable to confirm


Decreasing Trend (-)


Time


Figure 8. Illustration of three options for water-quality trends. Trends can either increase (+), decrease (-), or
otherwise cannot be confirmed. Depending on the analyte, the interpretation is that the system is getting better,
getting worse, or remaining the same. Taking the example of phosphorus, if the trend is increasing, the situation is
getting worse. If the trend is decreasing, it is getting better. Finally, if neither, nothing can be confirmed. All
analyses in this report are assigned to one of these three observations.

Problems with Trends

Trend analyses were largely straightforward and posed few problems. Visual analysis of
time series plots showed that the majority of significant trends were based on a large amount of
data that indeed demonstrated an obvious tendency. However, several exceptions arose and their
handling is addressed in the following sections.

"Remaining the Same" Possibility of Missed Trends

The last case scenario in the phrase "getting better, getting worse or remaining the same"
leaves a question as to the identity of the last category. Note that the last observation-
"...remaining the same"-cannot be addressed statistically. It is, therefore, considered the
alternative case to the situation of an increasing or decreasing trend. Because of this
"...remaining the same" amounts to a catch-all for all remaining observations (i.e., trends that
neither increased nor decreased). Though simple in principle, a clarification should be stated.
Within this last category remains interesting, important, and valuable information-cycles,
interesting structure, nonlinear trends, or other phenomena. More problematic, it is likely the
analyses conducted here "missed" a number of trends (due to the strict confidence limit).


A. Cycle
4-2
2

2 -4
-4 V
0 5 10 15 20 25
Time (years)


B. Trend
30
0 2 ..........-------- ............. ..

o10 -------......... .------- .......-----....---
0
0 5 10 15 20 25
Time (years)


Variable






BULLETIN NO. 69


However, it is important to state once again that the purpose for this study was neither to find all
the trends possible, nor to find the largest number of trends; rather, the purpose was to identify
all the trends that could be confidently, statistically labeled as such. Other studies employing
greater power (i.e., ability to detect more trends) could, and probably should, be conducted. But
since this is the first such statewide analysis of water-quality trends, the goal was to minimize the
number of false trends-while maximizing the number of true trends-in order to get the best
picture of where the clearest problems exist.

Outliers

Statisticians often encounter data that lies outside of an expected range of values. The
reasons for this may include data transmission errors, failed laboratory analyses, contaminated
samples, and sometimes accurate data recording unusual situations-causes are not always
visible to analysts. This report was no exception. Technically, there are really only two ways of
dealing with such data. One is to set arbitrary guidelines in advance and handle the data in
accordance. This may include removing outliers that occur above or below a certain accepted
range, e.g. adjust the data. The other approach is to include all outliers in the dataset and
analyze the data regardless. The rationale is that well-maintained data sometimes records outliers
but, with sufficient data, the effects will be minimal. This report chose the latter option and
included all data in all analyses-none were discarded. Their presence was accounted for and
accommodated in several ways. The first was simply by the choice of analysis. Nonparametric
statistics are relatively insensitive to the influence of extreme data points (outliers).

A large number of "bad" data points can still influence even a nonparametric analysis.
Cross-checking results and examining raw data can assist with this judgment. In order to
compare and check the influence of outlying data, every nonparametric statistical trend test [the
Mann-Kendall (MK) will be discussed later] result was checked against a linear regression
parametricc test) of the same data. Further, both analyses were conducted with different
statistical packages: Minitab (Minitab, 2003) for MK and S-PLUS (S-PLUS, 2003) for cross
checking regression analyses. Visual examination of each individual time series was conducted
to corroborate the results of the statistical tests; suspicious data sets were re-analyzed.
Inspections revealed that in the vast majority of cases, reported statistical trends were composed
of time series that showed clear visual trends. Comparison of MK results to linear regressions
(though parametric) showed surprising similarity. Not only did the non-parametric MK results
closely match the parametric analyses, but both were surprisingly unaffected by outliers; thus
providing strong confirmation that both the data was of high quality and that it gave robust
signals.

Detection Levels

Though the data used in these analyses were the best available in terms of quality
assurance, other factors had to be considered. The analysis of outliers demonstrated that
consistency of data handling, laboratory reporting, and subsequent quality assurance was good.
Yet an additional issue surfaced in the plotted time series: the effect of laboratory detection
limits. For statistical purposes, if a sample's concentration was below the laboratory's method
detection limit, it was considered to be the detection limit. For example, where improvements in







FLORIDA GEOLOGICAL SURVEY


laboratory methodologies over time lowered the minimum detection value for several analytes,
trend analyses detected significant downward trends where no such trend existed. Indeed, a
number of time series plots revealed that a number of trends-statistically significant by MK
tests-were actually the artifact of such "stair step" patterns trending down over time (Figure 9).

All data series, therefore, were checked visually for such spurious results. Those data
series found exhibiting such results were removed from consideration in the final analyses.
These were assigned the designation "DL" (detection level) in result tables (e.g., "plus-minus"
charts which will be discussed later); trends created by detection level artifacts were removed
from further analysis.





Well 1943: Example of Detection Limits


0.20-




0.15-


E
LI_


U.UU I I I I I I
2/12/1990 11/8/1992 8/5/1995 5/1/1998 1125/2001 10/22/2003
Date





Figure 9. Example of a spurious trend. Detection limit changes can
generate the appearance of false trends. All time series for all analytes
were visually checked for aberrant results since visual inspection was
was necessary to identify artifacts.


EnEEE EEEEEEn






BULLETIN NO. 69


Sparse Data

The quantity and consistency of existing data varied widely depending on sampling
agency, analyte, and location of springs or wells. Given the amount of data used for the time
series studied herein, a distinction should be made concerning how the quantity of data affected
its quality. First, all reported analyses had sufficient data for time series analysis. Sufficient data
constituted a minimum of 10 points for the entire series. Many software packages would not
generate statistical results without a minimum set of points-which was often 10 values. At the
same time, there is a difference between what constitutes a sufficient amount of data and how
that (sufficient) quantity is structured through time. The former issue concerns whether an
analysis could be conducted while the latter has implications for the reliability of the
interpretation. On one end of the spectrum, some locations only had 10 values, while at the other
some had in excess of 100 values. As it turns out, considering both springs and wells, the
median number of data for the 1991-2003, Sequence A, time frame was 38.

Long-term, consistent data collection is an ideal situation for analysis. However, most
data sets were between the extremes of a lot or too little. Much of the data used here can be
described by the term "sparse data" which we use to mean there are not very many data points in
the time sequence but there were a minimum of ten. Often the spring data were collected for
some other purpose than for time-series analysis having little structure at all. This results in
"messy data." Messy or disorderly data includes missing values, outliers, transcription errors, or
extreme and skewed results. Simply stated, a high proportion of time sequences have varying
amounts of missing data. The missing data hinders reliable data interpretation. One example of
"messy data" is nitrate concentrations at Wakulla Spring (Figure 10). An example is as follows.
Suppose a large number of data points exist at the beginning of the time series, nothing in the
middle, and one point at the opposite end of the series. Also, suppose a trend is detected. The
problem with such a trend is that although it is statistically valid, it may be entirely dependent
upon the single point at the one end of the series. If such a trend is labeled valid, then poor
judgment was used. The best interpretation for a trend exists when there is an abundance of
points sampled consistently for the longest period of time.

Time gaps in data series were the most common problem. In a number of cases data
collected early in the time series were followed by one or more data collection gaps of varying
temporal duration. Such trends are dependent upon the connection of two (occasionally more)
clusters of data. Though the trends may be valid, they are not ideal; this example underscores the
necessity for sampling agencies to implement consistent collection plans over the long term.
Though the data can often be used, its utility can be challenged, or considered suspect. The
reason is that the value of any individual data point is a function of the number and reliability of
nearby data points to which it can be compared over the long term. Data that are sparse,
inconsistently collected, or have large time gaps are substantially less valuable than a consistent,







FLORIDA GEOLOGICAL SURVEY


Wakulla Spring Time Sequence A (1991-2003)


1.1 *

1.0



0 0.8 -
0
Z
S0.7-

0.6

0.5-

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Date
Figure 10. Example of sporadic, unsystematic, and incomplete sampling.
Only seven points were collected in the final eightyears of this Wakulla Spring
study. Sparse, inconsistent sampling after 1994 meant the trend seen here was
dependent on relatively few points collected in 2000. Though the trend is statis-
tically valid, this is an excellent illustration of the need for consistentlong-
term data collection. Ironically, though budget issues are often responsible for
gaps in sampling, note that missing data greatly reduces the value of points
remaining. Note no data were obtained after 2001 even though Sequence A
continued through 2003.

well-documented time series. Sparse data collection was a significant issue in several notable
springs. For example the trend for nitrate at Wakulla Spring for Sequence A included a six-year
"gap" (1994-2000) during which there was only one sample collected. Although the statistical
conclusion that nitrate concentrations at Wakulla were decreasing is valid (to be discussed later),
with the lack of data during the 1994-2000 time frame, some may doubt the interpretation of a
decreasing trend.

Incomplete data sets existed for many analytes and indicators. Time series for some
analytes (e.g., iron) only had a handful of points over the 13 years. For such very small sets,
trend analysis was meaningless and these were excluded from analysis.


ANALYTES AND INDICATORS

A total of 48 chemical constituents and indicators, with a period of record 1991-2003,
were analyzed for this study. A list of analytes and their corresponding STORET codes can be
found in Appendix F. Data were obtained from several different sources. The state water
management districts offered the most information, followed by FDEP and the USGS. Each
agency used their respective sampling and analysis procedures under whatever guidelines that
were being followed for that particular period of time. This complicated the statistical analyses.
However, identification of useful data led to a field of 48 different analytes of water quality with






BULLETIN NO. 69


a temporal span of 13 years. Table 3 lists, in alphabetical order by column, all of the analytes
examined in this study.


Table 3. Analyte and Indicator List.
Analyte/Indicator
Color Depth to Groundwater Total Chloride
Dissolved Alkalinity Dissolved Phosphorus Total Dissolved Solids
Dissolved Calcium Dissolved Phosphate Total Fluoride
Dissolved Chloride Dissolved Sulfate Total Kjeldahl Nitrogen
Dissolved Fluoride Dissolved Strontium Total Magnesium
Dissolved Iron Enterococci Bacteria Total Nitrate
Dissolved Potassium Fecal Coliform Total Nitrate Nitrite
Dissolved Magnesium Mean Daily Flow Total Organic Carbon
Dissolved Manganese pH Total Phosphorus
Dissolved Sodium Residuals Total Phosphate
Specific Conductance,
Dissolved Ammonia Field Total Potassium
Specific Conductivity,
Dissolved Nitrate Lab Total Strontium
Dissolved Nitrate,
Nitrogen Temperature Total Sulfate
Dissolved Nitrate Nitrite Total Alkalinity Turbidity (Hatch Meter)
Dissolved Organic Carbon Total Bicarbonate Turbidity, Field Sampling
Water Level (feet relative to mean sea
Dissolved Oxygen Total Calcium level)


Sample Collection and Laboratory Analyses

Because many different agencies and laboratories were used to collect and analyze
groundwater samples, unwanted variability was potentially introduced that affected the trend
analyses. At a minimum, potential variability was introduced by: (1) different sampling
personnel, techniques and equipment, (2) sample transport from the field to the laboratory, (3)
environmental and laboratory contamination, (4) concurrent use of several analytical
laboratories, and (5) varying methods of reporting results.

For additional information on the analytes, including abbreviations and units for those 27
analytes that had detectable trends, see Table 4. Spring and well water samples were collected






FLORIDA GEOLOGICAL SURVEY


Table 4. Analytes and Indicators Displaying Trends
Analyte Abbreviation Unit of Measure
Alkalinity Alk mg/L
Ammonia/Ammonium NH3 or NH4 mg/L
Calcium Ca mg/L
Chloride Cl mg/L
Discharge or flow cfs or cubic feet per second
(ft3/sec); one cfs = 0.028 cubic
meters per second
Dissolved Oxygen DO mg/L
Fluoride F mg/L
Iron Fe gg/L and mg/L
Magnesium Mg mg/L
Nitrate as N NO3 or NO3 + NO2 mg/L
Nitrogen (total) N mg/L
Orthophosphate as P PO4 mg/L
pH
Potassium K mg/L
Sodium Na mg/L
Specific Conductance SC gS/cm at 25 C
Stage feet above datum

Strontium Sr glg/L
Sulfate SO4 mg/L
Temperature (of water) Temp C
Total Dissolved Solids TDS mg/L
Total Kjeldahl Nitrogen TKN mg/L
Total Organic Carbon TOC mg/L
Total Phosphorus P mg/L
Total Suspended Solids TSS mg/L
Turbidity Turb NTU (Current)*
JTU (Historic)
Water Level/Stage WL(msl) feet above mean level (1988)
*JTU and NTU are approximately equivalent, though not identical
msl = mean sea level (National Geodetic Vertical Datum, 1988)


by several agencies and a private company for the SRWMD. Regarding springs, the agencies
include the SRWMD (plus its subcontractor), the SJRWMD, the SWFWMD, and the USGS. For
wells, samples were collected by the NWFWMD, the SRWMD and its subcontractor, the






BULLETIN NO. 69


SJRWMD, the SWFWMD, the SFWMD, and the FDEP. In addition, multiple analytical
laboratories were used to process the samples.

For the 1991-2003 time sequence, spring sampling and analyses faced all of the potential
aforementioned problems. During the same time period, especially during the early days of the
operation of the TV Network, well monitoring encountered many of the same problems that
spring monitoring encountered. The TV Network is operated by the FDEP and by the mid
1990s, the FDEP reduced a considerable portion of unwanted variability by adopting a policy of
using a standardized sampling protocol, a standardized method of sample transport, a single
analytical laboratory, and a standard set of analytical methods and reporting protocols. It is
hoped that one day, spring monitoring throughout Florida will also adopt similar protocols that
will reduce variability.

In spite of the potential variability, not all is negative. For all water samples and data used
in this report, each corresponding sampling agency and/or analytical laboratory has an
individually-approved quality assurance/quality control (QA/QC) plan on file with FDEP.
Regarding QA/QC, the contact for each WMD, FDEP, and the USGS are found in Appendix G.

It should be noted that by 2001, in an effort to achieve standardization, the FDEP adopted
a recommended method for spring-water quality sampling. An overview of the protocols is
found in Scott et al. (2004). The TV Network is managed by the Watershed Monitoring Section
(WMS) of the FDEP. It recently produced an overview of its well water sampling protocols
(Florida Department of Environmental Protection, 2003).


Analytes used in this study

Multiple agencies collected water-quality samples for this publication; however one
agency may have sampled one analyte, while another agency sampled a similar analyte that was
closely related to the first. This was quite common for the analytes nitrate, ammonia, phosphate,
phosphorus, magnesium, sodium, potassium and chloride. Most often, the difference was
between the collection of the dissolved (filtered sample) and total (unfiltered sample) form of the
analyte. It would be preferable if sufficient data in both the dissolved and total forms of these
analytes were available. Unfortunately, it was not always the case. It was decided to combine
the total and dissolved forms because of the importance placed on nutrients in order to obtain a
time series with a sufficient number of data values. We do not recommend this procedure in the
future because it would be better to use one or both of the forms in conducting statistical
analyses. In the recommendations section (discussed later) we recommend a more consistent set
of analytes be used in the future. Nevertheless, for this study, we occasionally used a combined
surrogate form of nitrate, ammonia, phosphate, phosphorus, magnesium, sodium, potassium and
chloride. We did this solely for the purpose of obtaining a sufficient amount of data necessary
for data analyses.

Grouping of Analytes

For convenience, and in an effort to better understand groundwater quality trends, the
analytes (or indicators) were divided into several groups. They are: (1) Field, (2) Rock-matrix






FLORIDA GEOLOGICAL SURVEY


or Rock, (3) Saline or Saltwater, (4) Nutrient, and (5) Other analytes. However, because of
occasional chemical complexities, many analytes are grouped into more than one category.
Table 5 lists them by group. Note that analytes in the table only refer to those that displayed
trends. A detailed description of each analyte is found in Appendix F.


Table 5. Analyte Groups
Rock-Matrix Saline or
Field (Rock)* saltwater Nutrient Other
Discharge Alk Ca Ca and Mg TSS


DO Ca Cl
pH F K
SC Fe Na
Temp
K SC
WL(msl) or Mg SO4
Stage
P04 and P TDS
SC WL(msl) or
Stage
SO4
Sr


Turb
TOC


I NI J


*Light gray indicates common rock and saline-related indicators while dark gray shows common nutrient analytes.


Descriptions of Analyte Groups

Each analyte represents a measure or variable that can be used to assist in judging the
overall health of Florida's groundwater. Field analytes such as discharge, water level, and flow
describe quantity, but they can also greatly affect quality. The rock analytes suggest upcoming of
water from deep within Florida's aquifers. The saline analytes suggest intrusion or upcoming of
water from the deep portions of our aquifers, and the nutrient analytes are those that stimulate
biological growth or are present as a direct result of biological activity.

Field Analytes

Field analytes represent a grouping for convenience. Measurements of field analytes
were conducted prior to collecting samples for laboratory analyses. The analytes in this group
that were used for trend analyses include: discharge (or flow), dissolved oxygen (DO), pH,
specific conductance (SC), water temperature (Temp), and water level [water level relative to
mean sea level (msl) based on the North American Vertical Datum (NGVD) of 1988)].

Rock-Matrix Analytes

Rock-matrix analytes are those indicative of the rocks making up an aquifer. Because of
natural rock weathering, water that has had a long residence time in an aquifer system has a






BULLETIN NO. 69


greater probability of having a high concentration of dissolved rock matrix material. Rock
indicators include: alkalinity (Alk), calcium (Ca), magnesium (Mg), plus to a lesser extent,
fluoride (F), iron (Fe), pH, potassium (K), strontium (Sr), sulfate (SO4), phosphorous (P),
orthophosphate (P04) and SC. Since phosphate and phosphorus are often found in the mineral
fluorapatite, these two analytes are also included in the rock-matrix group.

Saline or Saltwater Analytes

Saline analytes are those associated with salts within either connate water or seawater.
Connate waters are those waters trapped within the sediments at the time of their deposition.
Since the original sediments were deposited in a marine environment, the pore spaces contain
very old saltwater. Saline analytes are obviously also found in the seawater located along
Florida's coasts. The major difference is the age of water. High concentrations of saline
analytes are often an indication of horizontal saltwater encroachment. However, they can also be
an indication of encroachment of highly mineralized water from the deeper portion of Florida's
aquifers, below the fresh-water "lens". The encroachment can be caused by the depletion of the
less dense fresh-water "lens" during a very dry period (e.g. a drought), or by the upcoming of
connate water during periods of heavy groundwater withdrawals. Pumping of groundwater
increased during dry periods and this process exacerbated the apparent intrusion process. Saline
analytes include: calcium, chloride, potassium, sodium (Na), specific conductance, sulfate, total
dissolved solids (TDS), plus water level (MSL) and stage.

Nutrient Analytes

Nutrients represent naturally occurring compounds or elements that are essential for the
growth of living organisms. However, if found in high concentrations, over-enrichment of
nutrients eutrophicationn) in a body of surface water can lead to an overgrowth of plant life
(including algae) and possibly a loss of dissolved oxygen. For this report, nutrient analytes
include: organic carbon, phosphate, phosphorus, a series of nitrogen related species, and to a
lesser extent, Mg, Ca, K, and sulfur in the form of sulfate. The nitrogen related species include
nitrogen, ammonia, total kjeldahl nitrogen, nitrate, and nitrite.

Other Analytes

Analytes in the "other" category do not fit in any of the other four categories. They
represent a miscellaneous group. For trend analyses, the analytes included in this group are
suspended solids, and turbidity.


DATA

The original data were from several sources. The data used for the trends analyses
discussed in this document are in Appendix H.






FLORIDA GEOLOGICAL SURVEY


Data Sources

The majority of the water-quality data from the springs were collected and analyzed by
the water management districts. The data for wells were obtained from the FDEP Watershed
Monitoring Section.


Data Verification

The analysis of the data was verified several times with processes including internal and
external reviews in addition to repeat analyses by each author. The internal review consisted of
audits performed by two of the authors (N. Doran and A. White). These audits included hand-
eye verification of every analysis figure for accuracy. Repeat calculations were performed and
compared with the first value made using new values calculated from the original data. When
errors were found, the data were recalculated by at least two of the co-authors and then replaced.

The external verification was conducted through multiple meetings with WMD staff.
During these meetings many of the actual samplers and initial compilers of the data were present.
Two rounds of discussion took place; once before this document was compiled and again as it
neared completion. These meetings lasted for several hours and many comments were made on
procedures and verification policies. Each concern was subsequently addressed and is exhibited
in the subsequent sections of this document.

Data Preparation

Preparing the data for analysis included addressing the problems of seasonality, missing
values, duplicate data, censored data and detection limits. The data variation caused by seasonal
cycles increases the difficulty of detecting long-term trends. This problem can be alleviated by
removing the cycles before applying tests or by using tests unaffected by the cycles (Gilbert,
1987).

Missing values (i.e., samples that were never collected) cause their own special
difficulties for analysis. For example, suppose 12 monthly water samples were scheduled to be
collected from a selected well in a given year. Suppose that for a variety of reasons, only 10
were actually collected. Thus, the well had two missing values for each indicator sampled.
Unless otherwise stated for the statistical analyses, missing values were treated as if they were
never collected. For example, if only 10 samples were collected, then descriptive statistics were
based on 10, instead of 12 samples.

Duplicate data resulted from two samples collected from the same spring or well
consecutively. The two samples were then labeled as representing two different sampling
events and sent to a laboratory for analyses for the same set of analytes. The purpose of
duplicates is to evaluate the internal precision of a laboratory. For statistical analyses, it was
decided that the primary sample, collected first in the time sequence, would be used. The second
duplicate sample was only used for quality assurance evaluations.






BULLETIN NO. 69


The minimum detection level for analytes from analytical laboratories can cause
environmental data to be censored. That is, the distributions are truncated at their lower ends
near the laboratory detection level. As stated earlier, for statistical analyses, all data reported as
"Below Detection Level (BDL)" were arbitrarily set at the detection level. In addition, it should
be noted that for a given analyte, over the period of record, the laboratory detection levels
changed, giving multiple detection limits.


Time Sequences

Data for analyses were segmented into three time sequences: Sequence A (1991-2003),
Sequence B (1991-1997), and Sequence C (1998-2003). The first sequence spanned the entire
sampling period, January 1, 1991 to December 31, 2003. The two smaller time sequences were
used to assist in identifying and evaluating shorter-term trends (five to six years).

Within the time sequences, each analyte needed to have a minimum of 10 data points in
order for any statistics to be performed. In addition to the minimum number of 10 data points, it
was arbitrarily decided that for Sequence A at least three data points from Sequence B and at
least three data points from Sequence C needed to be present. If Sequence A lacked this
additional criterion, then no analyses were performed on the sequence. As an example, suppose
a spring had 15 data points, 12 in Sequence C and three in Sequence B. An analysis for trend
was conducted for Sequence A, and C, but not B. If a spring only has 14 data points, 12 in
Segment C and two in Segment B, then no analyses was performed for Sequence A nor
Sequence B. However, the statistical analysis was conducted for Sequence C. A question
arises, are only three data points sufficient to represent the time Sequence B or C within
Sequence A? It certainly is not desirable and is an example of "messy" data. This situation was
considered to be sufficient for trend analyses because this study represented the first statewide
analyses for trends. Fortunately, this was not a common situation and, hopefully in the future,
available data will be less "messy."

Data Used for Analyses and Explanation of Appendices

All data presented in this report represent a collaborative effort among the five water
management districts, the U.S. Geological Survey and the Florida Geological Survey for spring
data, plus Alachua, Palm Beach, Broward, Miami-Dade, Lee, and Collier Counties for well data.
This is significant since each sampling agency has its own agenda resulting in different reasons
for the collection of a particular analyte.

Resultant data for both springs and wells can be found in Appendix H. The appendix
contains the actual concentrations for the analytes measured. The state is broken down into three
regions, Northwest, Central, and South Florida. Within each regional folder, the data are placed
in their respective WMD. Missing data were noted with an asterisk. In the folder, the results of
the MK analyses along with the corresponding n (number of data points) and the Sen Slope (SS)
for each spring and well (to be discussed later) can also be found. The format is similar to that
within the data folder. Finally, plus/minus charts (to be discussed later) are also included.






FLORIDA GEOLOGICAL SURVEY


The data in the statistical analysis folder are temporal data. A numerical value of -9999
was included to maintain the order of the spread sheet. A value of -9999 can either mean that
data are missing or it can mean that there are an insufficient number of samples to perform the
statistical analyses (procedures to be discussed later).

The remaining data were placed in tables. The tables contain the following information:
(1) the identification (ID) that names the spring (or well), (2) its location in latitude and
longitude, (3) the time sequence, (4) the dates for which samples were obtained, (5) a p-value for
significant increase, (6) a p-value for significant decrease, (6) the total number of samples within
the sequence, (7) the calculated SSs, and (8) the trend results. With regards to the results, the
tables indicate whether there was a significant increase (UP), decrease (DOWN), or no evidence
of trend. Throughout this report an upward trend will be designated with either an up arrow (t)
or a plus sign (+). A downward trend will either be designated with a down arrow (1) or a
negative sign (-).


INFORMATION GOALS AND DATA ANALYSIS PROTOCOLS

Information Introduction

The purpose of data analyses was to document water-quality trends in Florida's springs
and wells for the period 1991 2003. Prior to evaluation, a list of information goals was
developed. The goals were then turned into specific questions for which statistical procedures
could be used in an attempt to answer them. The questions are listed below and are followed by a
discussion of the statistical procedures used in this report. A more detailed discussion of all
statistical procedures used in this report can be found in Appendix E. 1 and E2. Minitab Release
14 (Minitab, 2003) and S-PLUS 6.2 Professional Edition (S-PLUS, 2003) were used for all
analyses. The six questions were:

1. What were the statistical distributions for each of the sampled analytes?
2. For Sequence A (the longest time sequence), for each analyte, and for each
spring or well, was seasonality present?
3. For each sequence, for each analyte, and for each spring or well, were
linear time series trends present?
4. If trends were present, what were their slopes?
5. For springs or wells with detectable trends, were they spatially related?
6. If evidence was found to indicate that the degrading trends were man-induced,
what are plausible solutions and recommendations?


Overview of Statistical Analyses Procedures

Descriptive Statistics

Descriptive statistics were produced for each analyte at each spring and well (station) for
the longest time sequence. The descriptions can be found in Appendix I. For each sampled
station for Sequence A, the tables list the analyte (or indicator), the measurement unit, the







BULLETIN NO. 69


number of samples collected, the number of samples with concentrations below the laboratory
detection level (BDL), the minimum value, the first, second and third quartiles, and the
maximum value. The first, second and third quartiles (Ql, Q2, and Q3) correspond to the 25th,
50th (median), and 75th percentile respectively. An example of the descriptive statistics is
presented in Table 6. For a given analyte, the reported minimum concentration value in the table
often reflected the minimum detection level reported by the analytical laboratory.

Table 6. Example of Descriptive Statistics Table
(Sequence A; January, 1991 December, 2003)
Analyte Meas. Num. Num. Min Q1 Median Q3 Max.
Unit Samp. BDLs Value Value Value Value Value
NO3 mg/L 30 7 0.05 0.09 1.00 2.00 10.30
PO4 mg/L 29 4 0.05 0.10 0.10 0.15 1.30



Kruskal-Wallis, Mann-Whitney, and Wilcoxon Rank Sum Tests

Seasonality can be thought of as periodic fluctuations or cycles. As an example, Figure
11 displays monthly water temperatures for an imaginary well during the 1992 calendar year.
Not surprisingly the temperature is highest during the summer and lowest during the winter
months, indicating that for temperature there exists a one year cycle.


Figure 11. Monthly water temperatures plotted over the 1992 calendar
year for an imaginary well.

Cycles are not restricted to calendar years. They can occur over virtually any length of
time. Figure 12 displays an example of a cycle longer than one year. In the example, the
concentration of an imaginary analyte has a six year cycle or season. Depending on the variable
of interest, it may or may not have been influenced by cycles whose frequencies are longer than
13 years; Sequence A was 13 years in length (1991-2003). It is difficult to make that


Monthly Water Temperatures
(Calendar Year 1992)
22.6-

22.5-

22.4-

' 22.3-

S22.2-

22.1-

22.0-

21.9-
1/1/1992 3/1/1992 5/1/1992 7/1/1992 9/1/1992 11/1/1992 1/1/1993
Date






FLORIDA GEOLOGICAL SURVEY


determination of the cycle's influence on the analyte. With this in mind, the authors were
concerned with the influence of shorter term cycles on Sequence A. Since ground-water samples
were collected on a quarterly and monthly basis while springs were sampled either on a quarterly
or quasi-quarterly fashion, it was decided to determine if cycles in those frequencies were
present in the data.





6
4
2
0

S-2

o -4
-6 I I I I
0 5 10 15 20 25
T im e (years)


Figure 12. Example illustration of seasonality with a six-year cyde.


For each spring or well for Sequence A, the presence of seasonality for each sampled
analyte was determined using a Kruskal-Wallis (KW) test (Hollander and Wolfe, 1973; Gilbert,
1987). Quarterly and monthly seasonality tests were conducted because stations were generally
sampled quarterly and occasionally monthly. It should be noted that monthly seasonality tests
could only be conducted if samples were collected on a monthly or quasi-monthly basis. For the
most part, monthly samples were only collected for 24 of the 46 wells and only for field analytes.
On the other hand, quarterly samples were obtained on the remaining wells and quasi-quarterly
samples were collected on most of the springs. The quasi-quarterly sampling by the WMDs and
the arbitrary seasonal breakdown was as follows: (1) December February, (2) March May, (3)
June August, and (4) September November. It should be noted that as we conducted the
analyses for trends, we found that, based on the four arbitrary seasons, most analytes did not
display significant seasonality. We recognize that in the future, with the acquisition of additional
data and with additional trend analyses, a better breakdown may be discovered. Nevertheless,
for this analysis exercise, the KW test was used to compare the distribution of two or more
populations (seasons) by indirectly comparing their median values during each season as defined
by this study. If we had defined only two seasons, the KW test is equivalent to a Mann-Whitney
(MW) test (Conover, 1999). Both tests are discussed in greater detail in Appendix E. It should
also be noted that the results of the MW test are identical to another very similar test; the
Wilcoxon rank sum test (WT) (Conover, 1999). The WT test was occasionally used during this






BULLETIN NO. 69


study because some of the statistical software used included the WT test rather than the MW test.
Conover (1999) discusses the WT test in detail. Results of the WT test are identical with those of
the MW test.

Consider a situation in which one wants to determine if two populations have the same
statistical distributions for a given season and samples are therefore obtained for each season.
For the MW test, the null hypothesis is that the median of the two populations are the same while
the alternate hypothesis is that they are not. The two samples are combined into a single ordered
sample from smallest to highest. Each observation is then assigned a rank without regard to
which sample it originally came from. The sum of the ranks assigned to those values from one
of the populations is then generated. If the rank sum of the corresponding population is very
small (or very large), there is an indication that the values from one population tends to be
smaller (or larger) than the values from the other. If so, the distributions of the two populations
are not equal. If the rank sums of the two populations are not equal, neither are their medians.

Returning to the KW test, it compares the distribution of more than two populations (e.g.,
seasons). For this report, each test was two-sided. The null hypothesis is that the median
concentration of an analyte sampled in any season is equal to the median of the remaining
seasons. The alternate hypothesis is that the median concentration for at least one season is not
equal to the others. Under the latter scenario, it is assumed that seasonality does exist. For
quarterly data, tests were conducted assuming that each quarter was a season. For monthly data
sets, tests were conducted assuming that each month was a season. The level of significance was
preset to a = 0.05.

For example, 38 temperature samples were collected at Weeki Wachee Main Spring for
time Sequence A. However, data were not available for the period 1991 through most of 1993.
Data were available for the 1993-2001 time frame. All samples were sampled on a quarterly
basis; nine in each of seasons (1), (2), and (4), plus ten in season (3). The KW test compared the
median values for each of the four seasons and, based on the test, it was concluded that the
median of at least one season did not equal the other medians. Thus, it was concluded that
quarterly seasonality does exist for the spring with respect to temperature. Since monthly data
were not available, no conclusion could be made regarding monthly seasonality. Results for
these analyses are found in Appendix J.

Deseasonalized Data

If seasonal cycles were present in the data, the data were deseasonalized using a method
presented by Intelligent Decision Technologies (1998). Although most measurements of central
tendency used in this report pertain to the medians, means were used (Sen, 1968) in the
deseasonalization transformation equation (Intelligent Decisions Technologies, 1998). The Sen
method subtracts the mean of the corresponding season from each datum and then adds the
overall average (mean) of the sequence back to the original datum. For example, suppose 10
years of quarterly data were collected at a site for chloride. Suppose the overall mean of the data
for the 10 year period was 1.0 unit while the mean of the winter quarter was 0.2 mg/L. Now
suppose a concentration for a particular winter quarter sample was 1.2 mg/L. In mg/L, the
corresponding transformed, deseasonalized datum becomes:






FLORIDA GEOLOGICAL SURVEY


x = (original) [seasonal (winter) mean] + (overall mean) = (transformed x)
x = 1.2 mg/L 0.2 mg/L + 1.0 mg/L = 2.0 mg/L.

Mann-Kendall Test

Gilbert (1987) stated that the Mann-Kendall (MK) test can be viewed as a nonparametric
test for zero slope of the linear regression of time-ordered data versus time. Given that it is a
nonparametric technique, it does not depend on an assumption of a particular underlying
distribution. The test identifies correlations in data through temporally ranking the data and then
determining the number of times the concentration goes up or down relative to the previous time
step. It only uses the relative magnitudes of the data rather than their measured values.

Data reported as trace or below the minimum detection level (MDL) were used by
assigning a common value that was smaller than, or equal to, the smallest measured value in the
data set. For this report, below detection level (BDL), was assigned an arbitrary value equal to
the detection level (DL).

Once the seasonality tests were completed (results found in Appendix J), each analyte
was tested for a linear trend using the MK test (a = 0.05) for each time sequence. A macro
program was used for the analysis while working within Minitab [Appendix E. 1)]. However, if
data were insufficient (n < 10), the MK test was not conducted. For this exercise, we always
used a one-sided test. The reason was that we had a preconceived idea as to whether or not a
downward (or upward) trend was an indication that conditions were getting worse (or better).
The results of the MK tests are found in Appendix K.

Seasonal Kendall Test

A common test used in the analyses of time series is the Seasonal Kendall (SK) test
(Gilbert, 1987). It is an adoption of the MK test, and can be used if there is seasonality in the
data. The SK test is the technique of choice. Unfortunately, it has a set of requirements that
were not obtainable. Miller et al. (2004) mentioned that the test requires that the percentage of
censored data (e.g. data reported as BDL) be no more than about five percent. In addition,
Miller stated that there should only be one censoring level. This latter requirement was not
obtainable because our data were obtained from agencies operating independently of each other.
The agencies used multiple laboratories with multiple detection levels, which amounted to
multiple censoring levels. Thus, the SK test was not used in this investigation. In the future, as
better and more consistent data are obtained, the SK test is the recommended test.

Sen Slope

If a trend was found to exist for either non-seasonal or seasonal data, its corresponding
slope was determined using a Sen Slope (SS) estimator (Sen, 1968; and Gilbert, 1987). The
estimator measured the median difference between successive concentration observations over
the time series. The SS was used only to measure the magnitude of the slope. It was not used as
a hypothesis test. Results are found in Appendix K.






BULLETIN NO. 69


Sign Test

For each analyte exhibiting a trend, a map showing the location of the corresponding
station was created. In addition to statistical evaluations, visual estimates were made as to
whether clusters of corresponding upward or downward trends existed. Associations with depth,
land use, and other relationships were evaluated. The last statistical procedure used was the sign
test (Sullivan, 2004). The sign test is a relatively simple procedure to conduct. It was used to
determine if a significant number of stations demonstrated upward or downward trends over a
geographical region. Note that one spring in the SWFWMD was not used in the analyses. The
reason will be discussed later.

As an example, suppose during Sequence A, 29 of the 57 springs displayed an upward
trend for nitrate. Can it be concluded that there exists an upward statewide trend? What if 40 (or
45) of the springs demonstrated upward trends? If one thinks of the causes of trends in
individual stations as being random processes, we could expect about half of the springs to have
upward trends, while about half should have downward trends. On the other hand, if a large
proportion of the springs had upward trends, we might be suspicious that one or more
phenomena were affecting springs and causing the upward trends over a region. Finally, if an
extremely large proportion of the springs demonstrated upward trends, we would become even
more confident that the phenomena were affecting the upward concentrations over a region.

For the sign test, one assigns a (+) value if there is an upward trend and a (-) value if
there is a downward trend. Sullivan (2004) stated that zeros add nothing to the test and therefore
should be eliminated from further analysis. Thus, all springs demonstrating no trend were
assigned a value of zero (0) and were eliminated from further analyses. The test simply
compares the proportion of + values to the values. For this exercise, a was preset to 0.05 for
the level of significance for these evaluations.

Caveats and Assumptions

It should be noted that this study was not set up as a designed experiment. We took
existing data and attempted to evaluate them. As a consequence, there were many less-than-
perfect situations that we needed to address in order to conduct the statistical analyses related to
this project. Whenever one takes existing data which were originally collected with a variety of
goals in mind and attempts to evaluate them with a new set of objectives, problems should be
expected. For example, R.A Fisher, a statistician sometimes referred to as the "Father of
Modern Statistics" (Sullivan, 2004), once stated, "To call in the statistician after the experiment
is done may be no more than asking him to perform a postmortem examination: he may be able
to say what the experiment died of" This quote is appropriate for our study. We faced many
unpleasant situations with regard to the data analyses.

One of the major sources of problems pertained to the assumptions of the statistical
procedures (see Appendix E). Generally these tests assumptions are: (1) the measurements are
mutually independent, (2) the observations are random, (3) the populations are continuous, and
(4) the scales or measurements are at least ordinal. For the sign test, the assumptions are slightly






FLORIDA GEOLOGICAL SURVEY


different: (1) the stations are mutually independent, (2) the measurement scale is at least ordinal,
and (3) if the probable outcome of a sign is (+) or (-), for one station, the same is true for all
other stations. With the exception of the independence issue, the assumptions were valid. The
issue of dependency will be addressed during the discussion of the results of the study.

RESULTS

The trend results of every spring and well for each analyte can be found in Appendix K.
What follows is a set of examples from selected springs and wells. Our purpose is to give the
reader a generalized idea about the behavior of analytes during the study period. Although some
discussion regarding the causes of trends at an individual spring will be discussed, the emphasis
of this report is on regional and statewide trends. A discussion regarding the possible sources of
the analytes and the most probably causes of trends can be found in Upchurch (1992) and
Appendix B2. The trend results are divided into both springs and wells by water management
district. There were no springs analyzed in the SFWMD. Thus springs were geographically
divided into the NWFWMD, SRWMD, SJRWMD, and SWFWMD. A note is needed regarding
the relationship between time-series figures and Sequences. If sufficient data were available,
time series analyses were generated for each Sequences A, B, and C. However, if data were
missing for the front or back end of the Sequence, the corresponding figures still cover the entire
sequence. As an example, the first series discussed is for magnesium in Wakulla Spring during
Sequence A (1991-2003). Unfortunately, no data exists for the last two years of the sequence.
Nevertheless, the figure displays the entire sequence. This is true for all time series discussed.

Springs

Northwest Florida Water Management District

In the NWFWMD, only Wakulla Spring (Figure 13) had sufficient data for analyses for
this study. Wakulla was sampled through a piece of tubing placed into a major conduit of the
spring. Thus, the samples are considered spring-water samples. However, for years, the FDEP
has, for administrative purposes, considered the tubing to be a well (Well 67 in the Temporal
Variability Network). Since FDEP considers the station to be a well and the fact that the tubing
taps a spring vent, the station for this report was analyzed both as a spring and a well. Stage data
were collected at the spring vent, and stage was used in lieu of water levels.

Rock and Saline Analytes, Nutrients, and Flow

Rock-matrix analytes included cations such as calcium and magnesium. Wakulla Spring
shows an increase in dissolved magnesium over time Sequence A (1991-2003). Increases in
magnesium and specific conductance (SC) are illustrated in Figure 14. The time series for
magnesium at Wakulla, like many analytes, showed inconsistent sampling over the period of
record. In this case the time period from 1994 to 2000 contained only one point. For the
given data, the MK






BULLETIN NO. 69


Wakulla




Legend t ;
Springs
NWFWMD
SRWMD



Miles N
10 20 40 60
Kilometers W E
15 30 60 90 S

Figure 13. Location of Wakulla Spring within the NWFWMD.

test confirmed an increasing trend (p < 0.05). For almost every time-series figure, the median
value of the second half of the sequence was compared to median of the first half, using the
Wilcoxon rank sum test (WT). This enabled us to not only determine the slope of the trend, but
to also better evaluate magnitude of change during the time series. There was a significant
change over the period of record (p < 0.05). Whether by analysis of trends, or comparison of two
halves of the time sequence, the latter half of the study revealed elevated values of dissolved
magnesium. The missing data from the intervening years in the magnesium time series (Figure
14, top) appear to be accounted for in the time series for SC (Figure 14, bottom). Wakulla Spring
showed a clear increase in SC over time. The probable causes for the increases in magnesium
and SC, will be discussed later on a districtwide and statewide perspective.

Figure 15 (top) displays a trend for nitrate-nitrite concentrations in Wakulla Spring for
the 1991-2003 time frame. The time series shows noticeable data gaps from 1995 to 2000 and
again during 2001-2003. In the Wakulla Basin, Chelette et al. (2002) indicated that there are
several significant sources of nutrients. These include effluent from a large spray field, fertilizer
application, and numerous onsite waste disposal treatment sites (OSTDS) within the basin, and
up-gradient of the spring. Fortunately, it appears, since 1991, the concentration of nitrate has
significantly decreased. Nitrate in the form of dissolved nitrate-nitrite declined (Figure 15, top).








FLORIDA GEOLOGICAL SURVEY







Wakulla Spring Time Sequence A (1991-2003)


105


10.0


S9.5-


i 9.0


85


8.0


7.5


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


MK p-value = 0.0002 nB=15 nc=6
WT p-value = 0.0112 SS= 0.0750


300 -






0
250


;"

200
200 -


Wakulla Spring Time Sequence A (1991-2003)





* U.
*
*~ ~ a a'- ^ y
fa WL^ ^ a ar.

*a *
ME^


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Date
MK p-value <0.0001 ns = 52 nc=53
WT p-value <0.0001 SS =0.52587


Figure 14. Increasing rock analytes at Wakulla Spring. Magnesium
(top) and specific conductance (SC) (bottom) have upward trends
(p < 0.05). Tests include MK for time series trends, (WT) on sequences
B and C (first and second half of study), plus SS calculations on the
rates of changes.


j jr( Tlljl I I /rtl I~ Il/llj I rl /








BULLETIN NO. 69




Wakulla Spring Time Sequence A (1991-2003)


1.1 -


1.0


Sa-
3 0.9

Co
o 0.8
0
z
5 0.7-


0.6-


0.5


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Date
MK p-value = 0.024 ne = 15 nc = 6
WT p-value= 0.035 SS= -0.01


Wakulla Spring Time Sequence A (1991-2003)


U M
199* .



1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


MK p-value =0.0005 nE= 52 nc=53
WT p-value =0.0412 SS -0.0063


Figure 15. Decreasing nitrates and water levels at Wakulla Spring.
Dissolved nitrate (top) and water levels (bottom) had significant trends.
Tests (p = 0.05) included MK and WT. WT compare medians of the
first and second halves of the study. (1.0 m = 3.3 ft)


U U




U

U'


U


a






FLORIDA GEOLOGICAL SURVEY


MK and WT tests indicate that whether by trend analysis or comparison of the first and second
half of the time sequences, concentrations of nitrogen decreased. Loper et al. (2005) suggested
that the decreasing nitrate concentrations were due to lowered concentrations of effluent from a
large spray field located within 16 km (10 mi) of the spring. Figure 15 (bottom) illustrates a
significant drop in stage level.

Suwannee River Water Management District

Figure 16 displays the locations of the 15 springs located in the Suwannee River Water
Management District (SRWMD) used in this report. The spring names and the abbreviations are
found in Table 7.


Figure 16. Location of springs within the SR\MID.






BULLETIN NO. 69


Table 7. Suwannee River Water Mana ement District Spring Names and Abbreviations.
Spring Abbreviation Spring Abbreviation
Alapaha Rise ALR Poe Spring POE
Gilchrist Blue Spring GIL Blue Ruth/Little Sulfur Springs RLS
Fanning Spring FAN Rock Bluff Spring RKB
Hart Spring HAR Royal Spring ROY
Hornsby Spring HOR Suwannee Blue Spring SBL
Lafayette Blue Spring LBS Telford Spring TEL
Little River Spring LRS Troy Spring TRY
Manatee Spring MAN

Many of the springs are located along the Suwannee River, along a section of the river
which is roughly perpendicular to the coast, at least in its lower stretch. Numerous trends were
noted along an approximate south to north, or lower to upper, river direction. (Specific results are
found in Appendix K).

Rock-Matrix and Saline Analytes

Calcium, magnesium, and sodium increased strongly in the SRWMD over Sequence A.
Increases were particularly strong in the latter half of the study (Sequence C). Increasing trends
were dominant for several analytes. Magnesium and sodium had significant increases in eight of
14 springs with no decreases. Calcium increased in nine springs. Examples of increases in the
rock indicators are shown in Figures 17-20. Figures 17 and 18 illustrate trends in calcium for
four springs over Sequence A while Figures 19 and 20 demonstrate patterns for magnesium for
four springs over Sequence A or C, depending on the spring.

Note that for many of the time-series figures that compared two stations, the vertical
scales do not coincide. By keeping the vertical scales constant, occasionally the variability of
one graph became so small that you could not see it. In the end, we decided it was better to use
inconsistent vertical and to emphasize variability over time.

Changes in calcium in springs for the lower Suwannee River are similar to changes in
springs farther north. Fanning Spring (FAN) and Gilchrist Blue Spring (GIL Blue) illustrate two
of the nine springs that exhibited an increase in calcium (Figure 17). In addition to calcium,
FAN showed significant increases in other rock-matrix and saline indicators including alkalinity,
chloride, potassium, magnesium, sodium, and specific conductance. The time series plot in
Figure 17 shows a gradual increase in calcium from 60 mg/L in 1995 to approximately 80 mg/L
in 2003; the gradual increase had a low variance around the best fit line. When data for
sequences B and C were compared, Sequence C data had clearly higher medians (WT test p-
value, <0.0001, illustrated by box plots in inset figure in bottom corer). Like FAN, for
Sequence A, calcium concentrations in GIL Blue increased. The initial concentration was about
50 mg/L and ended with 65 mg/L; both springs increased in concentration by approximately 20
mg/L. GIL Blue also had many other analytes with upward trends that mirrored FAN: alkalinity,
chloride, magnesium, sodium, and specific conductance. Springs farther north (Figure 18) had
similar looking trends to those springs located farther south (Figure 17), although the overall
trends in other analytes were different. Suwannee Blue Spring (SBL) and Troy Spring (TRY)
together had increases in only







FLORIDA GEOLOGICAL SURVEY



Fanning Springs Time Sequence A (1991-2003)


5/22/1997


10/11/1999
Date


3/1/2002


MKp-value =0.0005 nA= 10 n = 40
WTp-value<0.0001 SS =0.2694


Gilchrist Blue Spring Time Sequence A (1991-2003)










* -^. *
*
U mmmm




U




mm U


1993 1994 1995
MK p-value =0.0005
WT p-value =0.0563


1996 1997 1998 1999 2000 2001 2002
SS= 0.2694 Date
nA =8 nB =33


Figure 17. Increasing rock analytes at Fanning and Gilchrist Blue
Springs. Fanning (top) and Gilchrist Blue Springs (bottom) had
significant increases in calcium. Tests (p < 0.05) included MK for
for trend, WT on Sequences B and C, plus SS calculations on the rate
of change. Beginning and ending sampling dates for the two springs
are not the same.


a


S40-



20-


01--
1/1/1995


7/21/2004


65-


60-


-55-


50-


45-


40-








BULLETIN NO. 69




Suwannee Blue Spring Time Sequence A (1991-2003)


401
4/1/1997

MK p-value
WT p-value


s


50



40


12/4/1998 8/8/2000 4/12/2002
:0.0001 SS= 0.2565 Date
:0.0001 nA = 23 nB= 24


Troy Spring Time Sequence A (1991-2003)


U




P U


EUr ^ *- SE

m*

*

*
t


8/5/1995 5/1/1998
:0.0001 SS= 0.1782 Date
0.0006 nA= 18n =42


1/25/2001 10/22/2003


Figure 18. Increasing rock analytes at Suwannee Blue and Troy Springs.
Suwannee Blue (top) and Troy Spring (bottom) had significant increases in
calcium. Tests (p < 0.05) included MK for trend, WT on Sequences B and C,
plus SS calculations on the rate of change. Beginning and ending sampling
dates for the two springs are not the same.


12/16/2003


11/8/1992
MK p-value
WT p-value









FLORIDA GEOLOGICAL SURVEY




Manatee Spring Time Sequence A (1991-2003)


10/1/1997


2/2/2000


6/5/2002


MKp-value<0.0001 SS= 0.0351 Date
WTp-value<0.0001 n =22 n2=22






Hart Springs Time Sequence C (1998-2003)


0.3
5/1/1996
MK p-value
WT p-value:


4/12/1998 3/24/2000
=0.0017 SS= 0.066667 Date
=0.006 n1=9 n2=9


3/5/2002


2/15/2004


Figure 19. Increasing rock analytes at Manatee and Hart Springs.
Manatee (top) and Hart Springs (bottom) had significant increases in
magnesium. Tests (p < 0.05) included MK for trend, WT on the first (1)
half and the second (2) half of both time series. Beginning and ending
sampling date for springs are not the same.


*
* ^

.^ ^ m
.^-'" *
^ **
-^-"'"'
^^^ ^' *
m^-^^


6/1/1995


10/6/2004


E 5.0

51-
I

4.5-




4.0-


N.


U U


I I I I I I








BULLETIN NO. 69




Poe Spring Time Sequence C (1998-2003)


2
6/26/1997

MK p-value
WT p-value


4/2/1999 1/7/2001 10/15/2002 7/22/2004
Date
:0.0001 SS= 0.0830
:0.0001 nt=22 n2=22


Lafayette Blue Spring Time Sequence A (1991-2003)


9/11/1997


MK p-value <0.0001 SS = 0.0745
WT p-value =0.0082 nt=22 n2=22


10/13/1999
Date


11/13/2001


12/16/2003


Figure 20. Increasing rock analytes at Poe and Lafayette Blue Springs.
Poe (top) and Lafayette Blue Spring (bottom) had significant increases in
magnesium. Tests (p < 0.05) included MK for trend, WT on the first and
second half of both series, and SS calculation on rate of change. Beginning
and ending sampling dates for the springs are not the same.


I-
16



14 -




1-



10-



8-


U U

U .
U~


8/11/1995






FLORIDA GEOLOGICAL SURVEY


calcium, magnesium and sodium. Unlike FAN and GIL Blue, SBL and TRY exhibited no linked
trends in alkalinity, chloride, potassium, or specific conductance.

Toward the south, Manatee (MAN) and Hart (HAR) (Figure 19) began the time series
with approximately four mg/L of magnesium; by the conclusion of the series, they were at six to
seven mg/L. Further north, Poe Spring (Poe) (Figure 20) began at about four mg/L in 1998 and
rose to about 10 mg/L in late 2002. Lafayette Blue Springs (LBS) (Figure 20)( began at about
eight mg/L in 1998 and rose to about 14 mg/L in 2001.

Flow

The SRWMD consistently collected flow or discharge data at specific spring vents during
the same day that they collected water samples from their springs. However, the SRWMD did
not begin collecting discharge data until the 1997-1998 time frame.

During Sequence C, for the SRWMD, flow rates decreased significantly in 12 of 16
springs. There was not an increase in flow rate in any of the springs during the same time
sequence. In addition, the degree of decrease in flow was sometimes severe. Figures 21-24
illustrate the trends for eight springs starting at the lower end of the Suwannee River and moving
inland and northward.

Springs at the lowest end of the Suwannee River included Fanning (FAN) and Hart
(HAR) Springs (Figure 21). Both springs show substantial drops in flow levels. By the end of the
period of record, flow was reduced to approximately half the levels seen at the beginning of the
time series. FAN's highest recorded flows were near 120 cubic feet per second (cfs), but ended
near 50 cfs. HAR's highest recorded flow was approximately 90 cfs and fell to near 40 cfs at the
end fo the time series.

Upstream from these springs are Rock Bluff (RKB) on the Suwannee and Hornsby
(HOR) Springs on the Santa Fe River (Figure 22). Both displayed even sharper declines in flow.
Rock Bluff went from a high of 50 cfs to under 20; flow was reduced to zero cfs briefly in 2001.
Hornsby showed an even stronger decline: over 200 cfs was measured in 1998 and the flow
reduced to zero cfs during a period starting in early 2000. This was followed by a small recovery
of flow rate in 2003.

Poe Spring, on the Santa Fe River, and Little River Sulfur Spring (LRS) on the middle
Suwannee region had strong declines in flow rate (Figure 23 (Sequence A; but mostly C)). Poe
Spring recorded discharges of 60 to 80 cfs near the beginning of the time series but declined to
near 20 cfs by the end. LRS began the time series with a flow rate near 90 cfs and ended near
20. Decline in flow at LRS closely followed a regression line fit to the date (Figure 23, bottom).

Troy (TRY) and Telford (TEL) Springs both had downward trends in flow. Though flow
at Troy was approximately three times higher than Telford (Figure 24; Sequence A, but mostly
C)), there was a slight increase in flow in mid-1998 followed by a decrease for both springs in
early 2000, and then another slight increase in flow occurred in late 2001. Overall, both springs
seem to show that flow was reduced by at least half, with LRS indicating a reduction in flow by a
third at the end of the time series.







BULLETIN NO. 69


Fanning Springs Time Sequence C (1998-2003)


1/1/1997 5/10/1998 9/16/1999 1/22/2001
MK p-value <0.0001 SS =0.2773 Date
WTp-value=0.0002 n=11 n2= 11

Hart Springs Time Sequence C (1998-2003)


06//1
6/12/1996


5/13/1998 4/12/2000 3/13/2002


6/1/2002


2/11/2004


MKp-value <0.0001 SS =-3.2411
WTp-value =0.0012 n1=9 n2=9




Figure 21. Decreasing flow at Fanning and Hart Springs. Between 1998
and 2001 Fanning (top) and Hart Springs (bottom) had significant de-
creases in flow. Tests (p <0.05) included MK for trend, WT, plus an
SS calculation on rate of change. Over the period of record, flow at both
springs was reduced significantly. Beginning and ending sampling dates are
not the same. [One cfs equals 0.028 cubic meters per second (cms).]








FLORIDA GEOLOGICAL SURVEY



Rock Bluff Springs Time Sequence C (1998-2003)


1/1/1997 10/2/1998
MKp-value <0.0001 SS =1.0039
WT p-value =0.0001 nl=14 n2=14


7/2/2000 4/2/2002
Date


Hornsby Spring Time Sequence C (1998-2003)











*+


11/5/1998


9/8/2000


7/13/2002


MKp-value =0.0003 SS=-3.4692 Date
WTp-value=0.0006 n= 17 n= 17


Figure 22. Decreasing flow at Rock Bluff and Hornsby Springs. Rock
Bluff (top) and Homsby Springs (bottom) had significant decreases in flow.
Tests (p < 0.05) included MK for trend, WT, plus an SS calculation. For both
Rock Bluff and Homsby, flow reduced dramatically. Homsby Springs flow
stopped for a period after late 2000. Beginning and ending sampling dates are
not the same. (One cfs = 0.028 cms)


1/1/2004


300




200

if


100




0-


1/1/1997


5/16/2004








BULLETIN NO. 69



Poe Spring Sequence A (1991- 2003)


11/26/1998


MK p-value <0.0009 SS =-0.925
WTp-value=0.0065 n =22n2=22


10/20/2000
nr'o


Little River Spring Sequence A (1991- 2003)


1/1/1997 8/9/1998 3/17/2000 10123/2001
MK p-value <0.0001 SS -2.1420 Date
WTp-value=0.0039 n1=15 n2= 16


6/112003


Figure 23. Decreasing flow at Poe and Little River Springs. Poe (top)
and Little River Springs (bottom) had significant decreases in flow. Tests
(p < 0.05) included MK for trend, WT, plus an SS calculation on rate of
change. For both Poe and Little River flow reduced to about one third by
the end of the series. Beginning and ending sampling dates are not the same.
(One cfs = 0.028 cms)


80-





so-





40


U U
U


111/11997


9/14/2002


8/9/2004


Date








FLORIDA GEOLOGICAL SURVEY



Troy Spring Time Sequence A (1991-2003)


1/1/1997

MK p-value
WT p-value


8/9/1998 3/17/2000 10/23/2001

<0.0001 SS=0.1782 Date
=0.0221 n= 13 n2=13


Telford Spring Time Sequence A (1991-2003)


8/1/1998


MK p-value <0.0001
WT p-value =0.1547 SS =-0.6674
nt=15 n2=15


3/1/2000
Date


9/30/2001


Figure 24. Decreasing flow at Troy and Telford Springs. Troy (top) and
Telford Springs (bottom) had significant decreases in flow. Tests (p < 0.05)
included MK for trend, WT, plus an SS calculation on rate of change. Over
the period of record, flow at both Troy and Telford was reduced by half. Be-
ginning and ending sampling dates are not the same. (One cfs = 0.028 cms)


6/1/2003


U
UI

U

S a
U U .
U U U


10 -
1/1/1997


5/1/2003






BULLETIN NO. 69


Nutrient Analytes

For the study period, nutrients in the SRWMD had more complex patterns than the
patterns of either the salinity indicators or flow. While some nutrient trends were very strong,
others were not as clear. During Sequence A, o fthe 15 springs in the SRWMD, TKN increased
significantly in nine springs (with no decreasing trends). Nitrate appeared to decrease (downward
trend in six springs, while it increased in three springs). At the same time, other nutrients-
phosphorus and phosphate specifically-appeared to increase. For phosphorus, there were five
springs with increasing trends and only one spring indicating a decrease; for phosphate there
were four springs with increasing trends and only one spring with a decreasing trend.

The FDEP has a maximum nitrate standard of 10 mg/L for groundwater and Class I
surface water before considering the water impaired. Both water standards are directed toward
maintaining drinking water quality (Florida Department of Environmental Protection, 1994).
Currently, there is not a numeric standard that is directed toward changes and concentrations of
biota in surface water. However, FDEP has established a non-legal threshold for nitrate and
phosphorus for surface water (Florida Department of Environmental Protection, 2004). The
thresholds were based on a statewide evaluation of chlorophyll concentrations in lakes. The
groundwater-surface water relational assessment (SRA) limit is 0.45 mg/L for nitrate.
Groundwater nitrate concentrations exceeding the 0.45 mg/L limit suggest that there is a
potential for adverse affects on aquatic organisms in the spring runs. Technically, the threshold
level applies only to surface water and there is a need to establish a groundwater to surface water
interaction for the threshold to be relevant. Since springs represent an interaction between
groundwater and surface water, we used the threshold level for comparative purposes. Figures
25 and 26 represent examples of changes in nutrients in springs of the SRWMD. Figure 25 is
an example of a decreasing nitrate trend. Nitrate significantly decreased from 1998-2003 for Poe
Spring. For comparative purposes the SRA was chosen as a fixed reference and is the gray line in
Figure 25. Poe Spring exceeded the SRA recommendations prior to 1999, but then declined to
levels below the SRA. Possible reasons for the decline in nitrate in the Suwannee Basin will be
discussed later.

While nitrate often decreased in the SRWMD, TKN rose significantly. Phosphorus also
exhibited some increasing concentrations. Total phosphorus at Poe Spring (Figure 26) almost
doubled from 1999 to 2003. Phosphorus and phosphate both increased at several springs. An
even greater number of upward trends, however, were seen for TKN. Figure 26 (bottom) shows
an increase in TKN at Lafayette Blue Spring over the study period. The plot also illustrates
some of the differences between nutrient and saline trends. While saline and rock-matrix analyte
plots give evidence of clear increases, trend lines for nutrient plots were sometimes less well
defined and potentially not as strong. Figure 26 shows a significant upward trend for total
phosphorus (MK test, p < 0.05) though the p-value of 0.0443 does not indicate such a strong
increasing trend; data for the first and second half of the time sequence were not significantly
different (WT p-value = 0.3633). The potential causes of nutrient and other trends will be
discussed later.








FLORIDA GEOLOGICAL SURVEY











Poe Spring Time Sequence C (1998-2003)


7/1/1997 4/1/1998 1//1199910/1/19997/1/2000 411/2001 111/200210/1/20027/1/2003
Date
MKp-value <0.0001 SS =-0.0090
WTp-value <0.0001 ni= 22 n2= 23

Figure 25. Decreasing nitrates at Poe Spring. The horizontal line represents
The FDEP's SRA limit for total nitrate (0.45 mg/L). Levels exceeded recommended
SRA limit prior to late 1999 but since then were significantly lower.


1.2





S0.8


o
z
i1--
0.4





0.0








BULLETIN NO. 69






Poe Spring Time Sequence C (1998-2003)


5/1/1997


1/30/1999


10/30/2000


7/31/2002


5/1/2004


MKp-value <0.0001 SS = 0.0007
WTp-value= 0.0001 n= 22 n2 = 23


Lafayette Blue Spring Time Sequence A (1991-2003)

















M 0.
M




^^^^==
m^ -'"'


111/1995


6/18/1997


12/5/1999


5/22/2002


11/7/2004


MK p-value = 0.0443 SS= 0.0012
WTp-value= 0.3633 nB= 6 nc= 41

Figure 26. Increasing nutrient analytes at Poe and Lafayette Blue Springs.
Poe (top) and Lafayette Blue (bottom) illustrate two increasing nutrients in
the SRWMD: one for phosphorus and the other for TKN. Poe shows a clear
increase in phosphorus while TKN at Lafayette Blue illustrates one of the many
increasing TKN trends in SRWMD springs. Beginning and ending sampling
dates for these springs are not the same.


0.14



0.12-



0 0.10-


I-
0.08



0.06



0.04-


mmm
U




U
*U
U<^'
U U


*U


r m
**
m m -$


0.4-




0.3-




E 0.2-
z
I-



0.1-




0.0-






FLORIDA GEOLOGICAL SURVEY


St. Johns River Water Management District

The springs located in the St. Johns River Water Management District (SJRWMD) and
used in this report are found in Figure 27. Spring names and abbreviations are found in Table 8.


Figure 27. Location of Springs within the SJRWMD.






BULLETIN NO. 69


Table 8. St. Johns River Water Management District Spring Names and Abbreviations
Spring Abbreviation Spring Abbreviation
Alexander Spring Alexander Salt Springs Salt
Apopka Spring Apopka Sanlando Springs Sanlando
Fern Hammock Springs Fern Silver Glen Springs Silver G
Juniper Springs Juniper Starbuck Spring Starbuck
Miami Spring Miami Sweetwater Spring Sweetwater
Palm Spring Palm Volusia Blue Spring Vol Blue
Ponce De Leon Spring PDL Wekiwa Spring Wekiwa
Rock Spring Rock

Calcium, strontium, fluoride, and pH increased in a significant number of springs over
time Sequence A, while phosphate levels decreased. With respect to individual springs, Miami,
Palm, Sanlando, and Wekiwa Springs had at least eight analytes with increasing trends over
Sequence A, while Volusia Blue Spring (Vol Blue) and Sweetwater Spring decreased in at least
eight analytes over the same time sequence. Alexander, Salt, and Silver Glen (Silver G) Springs
each had six or fewer analytes showing any trend (positive or negative). Sequence B had no
districtwide trends. During Sequence C fluoride and pH increased in a large number of springs
while flow decreased at many locations.


Rock-Matrix and Saline Analytes

Increasing trends were associated with the following rock-matrix analytes: strontium,
calcium, pH and fluoride increased over Sequence A. Nine springs had significant increases in
calcium and pH while one spring had a decreasing trend for theses analytes. Both fluoride and
strontium increased in 10 springs. Strontium decreased in one, whereas fluoride decreased in
none. No trends were observed in Sequence B. Within Sequence C, upward trends were
observed for fluoride and pH, while flow decreased. Thus, major changes for the SJRWMD, like
other districts, occurred during 1998 to 2003 (Sequence C).

Figures 28-30 depict increases in two rock-matrix analytes for three springs in Seminole
and Orange Counties. Not depicted are Starbuck, Rock, and Apopka, which showed the same
pattern. Alkalinity and strontium suggest changing chemistries. Both analytes increased in
Palm, Sanlando, and Wekiwa Springs. All plots show trends closely fitting an increasing best-fit
line. Starting at about 116 mg/L for alkalinity, Palm Springs increases to about 126 mg/L.
Sanlando Springs begins at about 130 mg/L and increases to approximately 150 mg/L.
Strontium at Sanlando Springs began around 60 tg/L and ended over 90 with little variation in
the upward trend. Wekiwa Spring started at a higher level (near 100 gg/L) and ended the time
series at about 140 jtg/L. Wekiwa Spring is also unique in showing an apparently quick increase
in concentration between 1993 and 1995. Palm Springs differed from the other two springs in
having strontium concentrations at the start of the study three to four times higher than the other
two springs.








FLORIDA GEOLOGICAL SURVEY




Palm Springs Time Sequence A (1991-2003)






U











U


1118/1992 8/5/1995 5/1/1998
MK p-value = 0.0141 SS= 0.1291 Date
WTp-value= 0.0209 inb=7 n =21


1/25/2001 10/22/2003


Palm Springs Time Sequence A (1991-2003)




*
*


11/8/1992 8/5/1995 511/1998
MK p-value= 0.0029 SS= 1.2289 Date
WTp-value=0.0081 nb=6 n,=20


1/25/2001 10/22/2003


Figure 28. Increasing rock analytes at Palm Springs. Alkalinity (top)
and strontium (bottom) increased significantly over Sequence A. Tests
(p < 0.05) included MK for trend, WT on sequences B and C, plus an SS
calculation. Beginning and ending dates for the springs were not the same.


1241


I
S120
I-
118-


116-


114-


-



290




250-


I))) I








BULLETIN NO. 69




Sanlando Springs Time Sequence A (1991-2003)


146



141



A 136


I-
131



126



121


11/8/1992 8/5/1995

MK p-value= 0.0010 SS= 0.417
WTp-value=0.0032 nb=6 ni =21


5/1/1998 1/25/2001 10/22/2003
Date


Sanlando Springs Time Sequence A (1991-2003)


90 -





3 80


t-


70-





60-


1118/1992 8/5/1995 5/1/1998 1/25/2001 10/22/2003
Date
MK p-value < 0.0001 SS = 0.625
WT p-value = 0.0009 nb = 6 n, = 20


Figure 29. Increasing rock analytes at Sanlando Springs. Alkalinity (top)
and strontium (bottom) increased significantly over Sequence A. Tests
(p < 0.05) included MK for trend, WT on sequences B and C, plus an SS
calculation on rate ofchange. Beginning and ending sampling dates for these
springs were not the same.


*"
==
ge


- 5


I


*H


* *







FLORIDA GEOLOGICAL SURVEY




Wekiwa Spring Sequence A (1991-2003)





120-

















1 212/1990 11/8/1992 8/5/1995 5/1/1998 1/25/2001 10122/2003

MK p-value <0.0001 SS 0.3568 Date
WT p-value<0.0001 nb=21 n,=21

Wekiwa Spring Time Sequence A (1991-2003)




180-


160 -


140 *


120


100


80
2/12/1990 11/8/1992 8/5/1995 5/1/1998 1/25/2001 10/22/2003
MK p-value< 0.0001 SS= 0.368 Date
WTp-value<0.0001 nb=17 n,=21


Figure30. Increasing rock analytes at Wekiwa Spring. Alkalinity (top)
and strontium (bottom) increased significantly over SequenceA. Tests
(p < 0.05) included MK for trend, WT on sequences B and C, plus an SS
calculation. Beginning dates for these springs were not the same.
80 ------- l --------------------i --









calculation. Beginning dates for these springs were not the same.






BULLETIN NO. 69


Nutrient Analytes

For the study period, there were fewer nutrients trends in the SJRWMD than in other
WMDs. For example, both phosphorus and TKN demonstrated few to no changes (no increases
or decreases for phosphorus, no increases and two decreases for TKN). Nitrate showed no clear
trend direction. For example, in the seven springs showing trends for nitrate, three increased and
four decreased. With respect to nutrients, only phosphate showed consistent trends across the
district. Eleven springs decreased in phosphate while no springs increased.

Figure 31 shows two phosphate trends, which also are considered to be Rock-matrix
analytes. Phosphate levels for both Palm and Starbuck Springs fell by nearly half of the initial
concentrations. Phosphate at Palm Springs (top figure) began the time series at approximately
0.15 mg/L and dropped to about 0.09 in 2002. Values from the end of the time series, 2002 to
2003, suggest a rise in concentrations. Starbuck levels began near 0.17 mg/L and fell to about
0.12 mg/L. Similar to Palm Springs, Starbuck appears to record a rise in concentrations near the
end of the time series in 2003.


Southwest Florida Water Management District

Figure 32 shows the locations of the springs in the SWFWMD. Table 9 displays the
corresponding spring abbreviations.

Note that after our analyses, the SWFWMD notified the authors and told us that they now
question the validity of using Boyette Spring data. They now believe it receives a significant
portion of its water from a nearby sinkhole (< 1 kilometer away) and much of the receiving water
is dairy waste (Morrison, 2000). Since the individual spring analyses were already completed,
we decided to keep the spring in the analyses. However, because of the point-source dairy
contamination, Boyette Spring data were removed from districtwide and statewide analyses.
Also, the SWFWMD was the only WMD to analyze for bicarbonate, rather than alkalinity.

The SWFWMD springs had strong trends in rock-matrix, saline and nutrient indicators.
Similar to the SRWMD, rock-matrix and saline indicators rose significantly. Unlike the
SRWMD, nutrient indicators showed different types of trends. Differences in behavior of
nutrients between the SRWMD and SWFWMD suggest regional differences exist between these
two areas. Similarities in rock-matrix and saline trends between the SRWMD and SWFWMD
suggest these trends extend beyond district boundaries. Some springs showed more changing
chemistries than others. Betty Jay, Boyette, and Tarpon Hole Springs had many analytes with
increasing trends. Buckhorn Main and Hidden River No. 2 Spring had a number of decreasing
trends. Those showing no trends among the analytes studied during time Sequence B included
Boat, Bobhill, Rainbow Swamp No. 3, and Wilson Head Springs.

Rock-Matrix and Saline Analytes

Strong increases in both rock-matrix and saline analytes were evident in springs in the
SWFWMD during time Sequence A. Analytes with increasing trends include bicarbonate,








FLORIDA GEOLOGICAL SURVEY





Palm Springs Time Sequence A (1995-2003)


1995 1996 1997 1998 1999 2000 2001 2002 2003
Date
MK p-value < 0.0220 SS = -0.0013
WTp-value< 0.0081 nb = 6 nc =19


Starbuck Spring Time Sequence A (1991-2003)


0.19




0.17


0.15
2" 0.15 -




0.13




0.11
11/8/1992
MK p-value
WT p-value


8/5/1995 5/1/1998 1/25/2001 10/22/2003
0.0096 SS =-0.0013 Date
0.0218 nb 6 n =20


Figure 31. Decreasing phosphate concentrations at Palm and Starbuck
Springs. Palm (top) and Starbuck Springs (bottom) illustrate the most
sharply decreasing nutrient (phosphate) in the district. Both springs show
substantial reductions since the beginning of the time series, with a potential
increase at the end of the series. Note samples were not collected until 1995.


0.18


0.16


> 0.14


" 0.12


0.10


0.08


U I


% "E







BULLETIN NO. 69


Figure 32. Location of springs within the SWFWMD.






FLORIDA GEOLOGICAL SURVEY


Table 9. Southwest Florida Water Management District Spring Names and Abbreviations
Spring Abbreviation Spring Abbreviation
Betty Jay Spring Betty Jay Hunters Spring Hunters
Boat Spring Boat Lithia Main Spring Lithia Main
Bobhill Spring Bobhill Magnolia Spring Magnolia
Boyette Spring Boyette Pump House Spring Pump House
Bubbling Spring Bubbling Rainbow No. 1 Spring Rainbow No. 1
Buckhor Main Spring Buckhorn Main Rainbow No. 4 Spring Rainbow No. 4
Catfish Spring Catfish Rainbow No. 6 Spring Rainbow No. 6
Chassahowitzka Chassahowitzka Rainbow Bridge Seep Rainbow Bridge
No. 1 Spring No. 1 Seep
Chassahowitzka Chassahowitzka Rainbow Swamp Rainbow
Main Spring Main Spring No. 3 Swamp No. 3
Hidden River Hidden River Salt Spring Salt
Head Spring Head
Hidden River Hidden River Tarpon Hole Spring Tarpon Hole
No. 2 Spring No. 2
Homosassa Homosassa Trotter Main Spring Trotter Main
No. 1 Spring No. 1
Homosassa Homosassa Weeki Wachee Main Weeki Wachee
No. 2 Spring No. 2 Spring Main
Homosassa Homosassa Wilson Head Spring Wilson Head
No. 3 Spring No. 3

calcium, chloride, potassium, magnesium, sodium, conductivity, sulfate, strontium, and total
dissolved solids. Of these, increases strongly attributable to rock chemistries were bicarbonate
and strontium. Regarding salinity, rises in sodium, chloride, and total dissolved solids were
observed. Analytes in common to both groups included calcium, potassium, magnesium, specific
conductance, and sulfate (which showed strong increases). Similar to other districts, Sequence B
had very few trends. The majority of the influence for these increases occurred during time
Sequence C.

Chloride increased in 18 springs. Figures 33-35 depict the chloride trends from several
springs in the northern SWFWMD along the Gulf Coast.

Springs occur from north to south along the Gulf Coast. Figure 33 includes two springs
from southern Marion County, one of the northernmost counties in SWFWMD. These springs,
Rainbow No. 6 and Bubbling Springs, increased in chloride concentrations, both springs show a
steady increase during the years of Sequence A. Both springs began with 3.0-4.0 mg/L of
chloride and ended the time series with approximately 5.0-6.0 mg/L.

For a couple of springs just to the south in Citrus County, the increase in chloride was
more dramatic (Figure 34). Hunters Spring (top) began the time series with approximately 50
mg/L of chloride. Values rose quickly at one point, more than doubling, and then declined.
Trotter Main (bottom) showed a similar pattern, though with sharper changes. Trotter Main had
values of approximately 50 mg/L near the start, as did Hunters, but then increased to nearly 250









BULLETIN NO. 69






Rainbow No. 6 Spring Time Sequence A (1991-2003)


3.0 1


1995 1996 1997 1998 1999 2000 2001 2002 2003
MK p-value = 0.0002 SS = 0.0321 Date
WTp-value< 0.0001 b = 16 n= 23



Bubbling Spring Time Sequence A (1991-2003)


6.5 -



6.0 -



0)5.5 -



5.0


1994 1995 1996 1997 1998

MKp-value= 0.0002 SS = 0.0417
WTp-value= 0.0014 nb 13 nc=23


1999 2000 2001 2002 2003
Date


Figure 33. Increasing saline analytes at Rainbow and Bubbling Springs.
Rainbow No. 6 (top) and Bubbling Springs (bottom) had significant increases
in chloride. Tests (p < 0.05) included MK for trend, WT on sequences B and
C, plus an SS calculation on rate of change. Beginning and ending dates for
these springs are not the same.


*






* ^- m " a .^
U





*
5U





U
U

U


.. *.


*


'' '' '' '' '' '' '' '' '' '''


4.0 1


*








FLORIDA GEOLOGICAL SURVEY





Hunter Spring Time Sequence A (1991-2003)


110-



90-


C)
E
S70



50-



30-



10


MK p-value = 0.0005 SS= 1.5802
WT p-value = 0.0033 nb = 12 nc= 20


Trotter Main Spring Time Sequence A (1991-2003)




U

U


U



U*
*

*
"/
^^^-"*'"'

*m 5 My^'
*m. a" ^
^^ ^ "


1995 1996 1997
MK p-value< 0.0001 SS
WT p-value = 0.0009 nb
23


1998 1999 2000 2001
0.1133 Date
15 n,=


Figure 34. Increasing saline analytes for Hunters and Trotter Main
Springs. Hunter (top) and Trotter Main Springs (bottom) had significant
increases in chloride. Tests (p < 0.05) included MK for trend, WT on
sequences B and C, plus an SS calculation on rate of change. Beginning
and ending dates for these springs are not the same.


1995 1996 1997 1998 1999 2000 2001
Date


U






S.*





*


2002 2003


250-



200-



IO-
150


6
100-



50-


2002 2003








BULLETIN NO. 69







Weeki Wachee Sequence A (1991-2003)


7





6
*








5 -


1995 1996 1997 1998 1999 2000 2001 2002 2003
Date

MK p-value< 0.0001 SS = 0.0457
WT p-value <0.0032 nb 15 n-= 23


Bobhill Spring Time Sequence A (1991-2003)


17


15 -


13

011



9


7


5


1995 1996 1997 1998 1999 2000 2001 2002 2003


MKp-value< 0.0001 SS 0.1133
WTp-value<0.0009 nb=14 n,=19


Date


Figure 35. Increasing saline analytes for Weeki Wachee and Bobhill Springs.
Weeki Wachee (top) and Bobhill Springs (bottom) had significant increases in
chloride. Tests (p <0.05) included MK for trend, WT on sequences B and C,
plus an SS calculation on rate of change.






FLORIDA GEOLOGICAL SURVEY


mg/L at one point-a five-fold increase. Figure 35 depicts chloride concentrations at Weeki
Wachee and Bobhill Springs. Weeki Wachee began the time series with only about 6.0 mg/L of
chloride and ended with a concentration of about 8.0 mg/L. Bobhill Spring began about 5.0 mg/L
and ended with about a 9.0 mg/L chloride concentration.

Flow

Flow data were available for only three gaging stations within the SWFWMD. While
there were inadequate data to make statistical conclusions for the SWFWMD, data from the
three' stations suggested possible declines similar to the SRWMD. Homosassa No. 1 flow levels
declined for the years 1996-2003 (Figure 36). Longer-term trends are depicted in Figure 37,
which further illustrates declines in flow. Since the 1960s, average yearly flow for Rainbow
Springs has declined (dark gray line indicates a timeline for Sequence A). WT tests between the
first and second half of the data series show a difference between the two data series. However,
for data representing time Sequence A, results do not indicate a significant difference. This
suggests that trends on the scale of this study (i.e., 13 years) may sometimes be missed in spite of
being part of a larger change (e.g. 40 years of data).

Long-term flow in Weeki Wachee Springs flow data (Figure 37, bottom) has an equally
interesting pattern. Although no regression is displayed, flow data going back to 1904 displays a
rise until the 1960s, followed by a decline until the present. Gray lines illustrate the time line for
Sequence A and that for post-1960. The range in flow during this time appears to be two-fold
(100 to 250 cfs). Such a pattern may reveal that short-period trends may be part of longer-term
cycles for groundwater; implications of this will be addressed later.

Nutrient Analytes

For Sequence A, nitrate increased strongly (19 springs with upward trends, only one
down), while ammonia, phosphate, phosphorus, TKN, and total organic carbon showed little
indication of trends. Since TKN, phosphorus, and total organic carbon decreased somewhat
(though not significantly) it seems to indicate that nitrate-nitrogen alone showed the strongest
increase for SWFWMD. All other analytes showed little change or even evidence of a slight
decline. Also unlike patterns seen in the rock and saline indicators, nitrate increased during both
sequences B and C. This is in contrast with the rock analytes which showed strongest activity
during Sequence C.

Figure 38 and 39 illustrate nutrient trends and their variability for SWFWMD. Hunter and
Magnolia Springs (Figure 38), illustrate clear increases in nitrate over Sequence A. Nitrate
increases occurred regardless of initial concentrations at the beginning of the time series. For
example, Hunter Spring (top) had a consistent increase from a low initial value (about 0.25
mg/L) to just under the SRA threshold of 0.45 mg/L. Hunter remained under the SRA value for
the time period. Magnolia Spring showed a rate of increase similar to Hunter (SS = 0.0046 and
0.0042, respectively). However, Magnolia began the time series with a higher starting value
(about 0.35 mg/L). The trend for Magnolia crossed over the SRA threshold (Figure 38, bottom,
gray line marks SRA value). Similarly Weeki Wachee (Figure 39, top), began the time series







BULLETIN NO. 69


with a value near 0.45 mg/L and increased to 0.8 mg/L by the end of the time sequence. All three
springs had similar rates of change yet differed in their initial concentrations of nitrate.
Homosassa No. 1 Spring Flow


0
80-


60-



40-


1/21996 1/2/1998 12/2000
Date
LRp-value < 0.0001
n =2879 WTp-value < 0.0001


1/2/2002 12/2004


Figure 36. Decreasing flow at Homosassa No. 1 Spring. Flow rates
declined significantly from 1996 to 2003. (One cfs = 0.028 cms)

Overall, TKN showed little activity (one trend up, four down for Sequence A). Figure 39
(bottom) shows a trend in TKN for Boyette Spring. It started with relatively low initial values
and was followed with a rapid increase in 1998. Values went from near 0.5 mg/L to over 3.0
mg/L in short period of time.

Field Analytes


Only two Field analytes demonstrated decreasing trends over Sequence A, pH and
temperature. The analyte pH decreased in 10 springs, while temperature decreased in eight. The
trends for pH largely occurred in Sequence C.

Wells

The wells used for this study are a subdivision of FDEP's Background Network. The
subdivision is referred to as the Temporal Variability (TV) Network. Although independent of
springs, it was believed that evaluating trends in wells would shed insight as to the chemical
behavior of Florida's groundwater. The TV Network subdivides wells into whether they are
confined or unconfined. Because of the small number of confined and unconfined wells per
WMD, for districtwide and statewide analyses, the wells were also combined into one pool (All).


I


I I I 1 I I I I I I








FLORIDA GEOLOGICAL SURVEY



Decreasing trends in water levels and pH were often observed. Because of the drought, the
lowering of water levels was predictable. However, the decrease in pH was unexpected.
Plausible reasons for the declines will be discussed later.

Rainbow Springs Average Flow (1965-2003)


900-



800



S700



600
600-


500


1970


Um


1990 2000
Year


Weeki Wachee Flow (1904-2003)



Eu


: 0
I. .mm 1


I n m0
m.. f .

* .,* .- n .



S ... I_"' .



r U

.U,
1


1960s to Present



1991-2003
Present study
time line


3/30/1905


8/15/1932


1/1/1960


5/19/1987


Date


Figure 37. Long-term flow trends at two SWFWMD springs. Rainbow (top) and Weeki
Wachee Springs (bottom) show historic changes. For Rainbow, points represent average
flow per year. Although no regression line on the graph, Weeki Wachee data since 1904
(bottom) showed a rise until about 1960 followed by a subsequent fall. Dark gray lines repre-
sent time line for Sequence A. (One cfs = 0.028 cms)


1980


1991-2003
Present
study time
line


250




S200
[T


150 -


I I I I I I I I


~

~
a
a a







BULLETIN NO. 69





Hunter Spring Time Sequence A (1991-2003)


O 0.30
z



0.25



0.20


2/12/1990
MK p-value
WT p-value =


11/8/1992 8/5/1995 5/1/1998 1/25/2001 10/22/2003
0.0001 SS = 0.0046 Date
0.0001 nb =12 n,= 20


Magnolia Spring Time Sequence A (1991-2003)


1995 1996 1997 1998 1999 2000 2001 2002 2003
MK p-value < 0.0001 SS = 0.0042 Date
WT p-value = 0.0001 nb= 13 n = 23


Figure 38. Increasing nitrates at Hunters and Magnolia Springs. Hunters
(top) and Magnolia Springs (bottom) illustrate the most actively increasing
nutrient trend in the district (nitrate). Hunters' increase remained below the
the SRA (0.45 mg/L). Magnolia Spring's increase in nitrate began below
the SRA and ends above it; thus it crosses a recommended limit. Beginning
and ending dates for these springs were not the same.


U U








FLORIDA GEOLOGICAL SURVEY




Weeki Wachee Time Sequence A (1991-2003)








*










.

SRAValue =0 45mg/L
*


8/5/1995
MK p-value < 0.0001 SS= 0.0055
WTp-value =0.0111 n = 15 n1=


5/1/1998
Date
23


Boyette Spring Time Sequence A (1991-2003)


2/12/1990


11/8/1992


8/5/1995
Date


MK p-value= 0.0005 SS= 0.0100
WT p-value= 0.0002 nb= 27 n= 22


Figure 39. Increasing nutrient analytes at Weeki Wachee and Boyette
Springs. Weeki Wachee (top) shows a clear increase in nitrate in Sequence
A. Most of the time series for Sequence A included values above 0.45 mg/L.
Boyette (bottom) illustrates an unusual trend in TKN. TKN values sometimes
rose suddenly over a very short period of time in 1998. SWFWMD staff indicat-
ed the source of the TKN was probably from a nearby dairy waste lagoon.
Beginning and ending dates for these springs were not the same.


0.5-
z


0.5-



0.4


1/25/2001


10/22/2003


S m m m mm
-~ ~ **


5/1/1998






BULLETIN NO. 69


Northwest Florida Water Management District

Northwest Florida wells (Figure 40) showed a lowering of water levels for Sequence A
(six of eight wells were down, with no increasing trends). Temperature increased in five wells,
while the analyte sodium and sulfate increased in four wells. No wells demonstrated downward
trends for temperature, sodium, and sulfate. The analyte pH decreased in four wells.






131 312 f






Legend
N Wells
NWFWMD
SRWMD



Miles N
0 20 40 60
Kilometers
0 30 60 90 s

Figure 40. Location of wells within the N\\ F\\ NID.


Changes in sequences B and C reflected those in Sequence A. For Sequence B water
level fell (six of eight wells had decreasing levels, while none increased). Several wells also
showed increases in sodium (increased in four wells, decreased in none) and conductivity
(increased in five wells, decreased in none).

Unlike springs, where the main influences on the chemistries occurred during Sequence
C, the only notable analyte in well data demonstrating a change was pH. The analyte decreased
in six of eight wells studied (and increased in none).

Water Levels and pH

Figures 4 land 42 illustrate several of these trends. The association of water level and pH
suggest a relationship between the two analytes and will be discussed later. A drop in water
levels occurred in both unconfined and confined wells. Confined aquifer Well 312 (Figure 42)
showed a 5 m (15 ft) decline over the period of record.









FLORIDA GEOLOGICAL SURVEY





Well 91 Time Sequence A: pH and WL


-- WL 16


4 ..911


'" ''-* i
.j& ,rJ


6-
6 A a

- a A AA







3-



2
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


Date

MKp-value= 0.0010 nb =80 n,= 66
WT p-value = 0.0028 SS =-0.0016


U *' *
Eu. U


-11
uW
E,


Water Level
MK p-value < 0.0001 nb =81 n= 54
WT p-value < 0.0001 SS = -0.0161


Well 129 Time Sequence A: pH and WL
-- PH
pH
a u WL



A r. A A





S. *. .

i I I I I I I
**








1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Date


PH
MK p-value =0.0158 nb= 53 n,= 36
WTp-value =0.0001 SS= -0.0012


12



10



- 8



6



-4


Water Level
MKp-value<0.0001 nb = 53 n= 24
WT p-value < 0.0001 SS = -0.0466


Figure 41. Decreasing pH and water levels in NWFWMD wells (#91 and
#129). Tests (p < 0.05) included MK for trend, WT on sequences B and
C, plus an SS calculation on rate of change.


6.2-











5.4





5.0


-- --


~EII ~L I


16































4.5-


BULLETIN NO. 69





Well 131 Time Sequence A: pH and WL


S. --- WL 20


aa 19






SE15
SA 17










-14


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


PH
MK p-value
WT p-value


Date
Date Water Level
0.0001 nb =53 n= 66 MKp-value < 0.0001 nb = 52 n = 55
=0.0004 SS = -0.0030 WTp-value< 0.0001 SS = -0.0187


Well 312 Time Sequence A: WL


70-



65-



" 60-



55-



50-


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Date Water Level
MK p-value < 0.0001 nb =81 n= 35
WT p-value < 0.0001 SS = -0.0893




Figure 42. Decreasing pH and water levels in NWFWMD wells (#131
and #312). Tests (p < 0.05) included MK for trend, WT on sequences B
and C, plus an SS calculation on rate of change. Water level is in feet
above mean seal level. (One m = 0.3048 ft)


| WL















^a
A
a

A
&- w







P
6


-' 7'^
^ "

'h^


~


P






FLORIDA GEOLOGICAL SURVEY


Suwannee River Water Management District

The locations of the SRWMD TV wells are displayed in Figure 43. Decreasing water
level trends were observed in the SRWMD. Temperature rose in Sequence C (seven increased
and none decreased). Trends in Sequence A suggested the same pattern as in northwest Florida:
declines in water level and pH.


Figure 43. Location of wells within the SRWMD.

Water Levels and pH


Over the period of record, water level and pH trends looked similar to other districts. As
two examples (Figure 44) of unconfined wells (Wells 1943 and 2465), a drop in water level
appeared to be accompanied by a decrease in pH. Note that Well 2465 had rapidly declining
water levels but a relatively slower change in pH. The water level decreased approximately 5 m
(15 feet) by the end of the study. Confined groundwater showed similar patterns. Figure 45
shows water level and pH falling simultaneously for wells 2585 and 2675. In Well 2585, the
water level drop is a minimum of 3 m (15 ft); some points in the early time series have
substantially higher water level values [18 m (60 ft)] and suggest the difference was even greater.
By far the most extreme water level difference was recorded was Well 2675. From a high point
of 27 m (90 ft) msl in 1994, water levels fell to approximately 9 m (30 ft) by 2003. This is
nearly 18 m (60 ft) difference is due to its location near the Alapaha River. Local karst features
create differences in water levels in response to rainfall. Like other wells in the district, Well
2675 experienced a decline in pH.









BULLETIN NO. 69


Well 1943: pH and WL


- --- pH
WL

20


-U .


U



.-' A
MI

4 AA.I .


12/31/1993


4/1/1997
Date


7/1/2000


10/1


12


10


/2003


pH Water Level
MK p-value = 0.0405 n= 44 n = 45 MK p-value = 0.0499 n = 43 n = 39
WT p-value = 0.3388 SS = -0.0011 WT p-value = 0.0051 SS=-0.0114


Well 2465 Time Sequence A: pH and WL

pH
S- WL


1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
fpH Date Water Level
MK p-value = 0.0013 nb = 68 n,= 64 MK p-value <0.0001 n = 56 n= 59
WT p-value = 0.0001 SS = -0.0009 WT p-value < 0.0001 SS = -0.0944





Figure 44. Decreasing pH and water levels in SR\\ MD wells (#1943
and #2465). Both wells are unconfined. Tests (p < 0.05) included MK for
trend, WT on sequences B and C, plus an SS calculation on rate of change.
The beginning sampling dates for wells are not the same. (One m = 0.3048 ft.)


10/1/1990


A








FLORIDA GEOLOGICAL SURVEY







Well 2585 Time Sequence A: pH and WL


6.6


6.1
2/12/1990 6/27/1991 11/8/1992 3/23/

lH nb = 72 nc= 35
MK p-value = 0. 0491
WT D-value = 0.0011 SS= -0.0009


1994 8/5/1995 12/17/1996 5/1/1998
Date
Water Level n = 64 n, = 34
MK p-value < 0.0001
WT D-value = 0.0142 SS = -0.1066


Well 2675 Time Sequence A: pH and WL


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
eIl Date Water Level
MK p-value <0.0001 nb = 73 n= 63 MK p-value = 0.0043 nr 39 n. =31
WTlp-value=0.0002 SS=-0.0016 WT p-valu <0.0001 SS -0.0656



Figure 45. Decreasing pH and water levels in SRWMID wells (#2585
and #2675). Both wells are confined. Tests (p <0.05) included NlK for
trend, WT on Sequences B and C, plus SS calculations. Note beginning
sampling dates for wells are not the same. (One m = 0.3048 ft.)


St. Johns River Water Management District


Figure 46 displays the location of TV Network wells in the SJRWMD. The trends for the
wells shown in Figure 46 in the SJRWMD were slightly different from both the NWF\\F W ID and


pH





*. -
S .... .


pH





; '
WL





, mm




Full Text



DATE TEMP 3TAGEMSI DO TURB ALKTOT NH3NTOT TIME CONDF TOTDEPM
6/10/02 22.3 0.75 0.2 0.15 156 0.02 *
7/2/02 0.63 0.3 0.1 168 0.02 *
8/19/02 0.59 0.4 0.1 165 0.02 *
9/5/02 0.46 0.3 0.05 168 0.02 *
10/30/02 21.5 0.42 0.3 0.05 166 0.056 *
11/20/02 22.5 0.31 0.3 0.2 175 0.037 1255 432 1
12/2/02 22.4 0.42 0.9 0.2 168 0.037 1339 425 1.1
1/7/03 21.9 0.48 0.2 0.1 163 0.051 1531 426 1.1
2/24/03 22 1.32 0.4 0.4 163 0.037 1648 429 0.5
4/8/03 22.4 2.49 0.5 2.2 153 0.042 1010 430 1
5/13/03 22 2.25 0.3 1.2 162 0.037 1605 400 1
6/10/03 21.4 0.98 0.1 0.6 161 0.037 831 398 1
7/14/03 22.2 0.88 0.3 0.2 164 0.037 1650 401 1
8/26/03 22.2 1.19 0.4 0.2 165 0.04 1700 401 1.1
9/3/03 22.3 2.4 0.3 0.4 171 0.037 1557 405 1.2
10/16/03 1.81 0.3 0.2 169 0.037 1630 384 1.2
11/25/03 0.94 0.4 0.94 173 0.037 *
12/1/03 0.62 0.4 0.65 171 0.04 *
0.6 0.3 0.14 168 0.04 *







COLLECTION_DATE oPO4 TOC TDS DtoH20 Turb Color Turb(f) Ca Mg Na K
4/1/1997 ***********
4/29/1997 ***********
5/30/1997 ** **
7/1/1997 ***********
7/28/1997 ***********
8/20/1997 ***********
9/23/1997* *
10/22/1997 ***********
12/11/1997 ***********
12/31/1997 ***********
2/6/1998* *
2/26/1998 ***********
3/30/1998 ***********
4/27/1998 ***********
5/26/1998* *
6/24/1998 ***********
8/3/1998 ***********
8/31/1998 ** ** ***
9/28/1998* *
11/3/1998 ***********
11/30/1998 ***********
1/4/1999 ***********
1/28/1999* *
3/1/1999 ***********
4/27/2000 0.033 1 165 0 0.05 5 42.2 10 5.4 0.57
6/1/2000 0.032 1 178 0.1 5 42.5 10.1 5.2 0.55
6/27/2000 0.029 1 165 0.05 10 43 10.5 5.5 0.58
7/24/2000 0.025 1 164 0 0.05 15 41.8 10.1 5 0.55
8/28/2000 0.028 1 130 0.05 5 41.8 10.3 5.3 0.57
9/25/2000 0.028 3.3 161 0 0.4 30 40.8 9 5 0.51
10/30/2000 ***********
11/27/2000 *
12/26/2000 ***********
1/22/2001 ***********
2/26/2001 ** ** *****
3/26/2001 ***********
4/30/2001 ***********
5/21/2001 ***********
6/25/2001* *
7/25/2001 ***********
8/27/2001 ***********
9/27/2001 *******







Sequence A
Location Sequence Dates D_NO3_Ha_up D_NO3 Ha down D_NO3_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D_NO3_Haup D_NO3 Ha down D_NO3_n
1943 C 1/98-6/03 -9999 -9999 -9999
2003 C 1/98-6/03 -9999 -9999 -9999
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 -9999 -9999 -9999
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 -9999 -9999 -9999
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 -9999 -9999 -9999










Appendix L 5-St. Johns Water Management District Springs


Miles
0 10 20 30

Kilometers
0 20 40 60


Legend
Springs
| SFWMD
SJRWMD
SRWMD
SSWFWMD


Juniper


7 Fern
Silver G Fm
SAlexander


Apopka


N



S


Im r Vol Blue

SMiami

S Starbuck

Sanlando













Figure L48. SJRWMD springs.


L18







SWFWMD
Location Sequence Dates D_PO4_Sen_slope UP/DOWN
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 0 No evidence of trend
Boyette B 1/91-12/99 -0.0006667 DOWN
Chassal B 1/91-12/100 0 No evidence of trend
ChassaM B 1/91-12/101 0 No evidence of trend
Homosl B 1/91-12/104 0 No evidence of trend
Homos2 B 1/91-12/105 0 No evidence of trend
Homos3 B 1/91-12/106 No evidence of trend
HidRiv2T B 1/91-12/102 -0.0005556 No evidence of trend
HidRivH B 1/91-12/103 No evidence of trend
huntersspr B 1/91-12/107 -0.0010833 DOWN
lithiamain B 1/91-12/108 0 No evidence of trend
magnolspr B 1/91-12/109 0 No evidence of trend
pumphous B 1/91-12/110 0 No evidence of trend
rainbow B 1/91-12/111 -0.0005 No evidence of trend
rainbow B 1/91-12/112 0.0005 No evidence of trend
rainbow B 1/91-12/113 0.0000417 No evidence of trend
mboBseep B 1/91-12/115 0 No evidence of trend
saltspr B 1/91-12/116 0 No evidence of trend
SWBettyJay B 1/91-12/117 0 No evidence of trend
SWBoat B 1/91-12/118 0 No evidence of trend
SWBublng B 1/91-12/119 0.0002679 No evidence of trend
SWBuckhm B 1/91-12/120 0.0005 No evidence of trend
SWCatfish B 1/91-12/121 -0.0007009 No evidence of trend
tarponholespr B 1/91-12/122 -0.00025 No evidence of trend
trottermain B 1/91-12/123 -0.0001429 No evidence of trend
weekwachmain B 1/91-12/124 0 No evidence of trend
Springs A Up 0
Springs A Down 2

Location Sequence Dates D_P04_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 -0.0025 No evidence of trend
737 C 1/98-6/03 -9999 -9999







SWFWMD
Location Sequence Dates DP04 Ha down DP04_n
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.3905 12
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.05875 11
7935 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.5 18
Boyette C 1/98-6/05 0.88556 41
Chassal C 1/98-6/06 0.14341 23
ChassaM C 1/98-6/07 0.03427 23
Homosl C 1/98-6/10 0.40438 23
Homos2 C 1/98-6/11 0.45163 21
Homos3 C 1/98-6/12 0.13102 23
HidRivH C 1/98-6/09 0.11053 23
HidRiv2T C 1/98-6/08 0.41124 24
huntersspr C 1/98-6/13 0.14097 20
lithiamain C 1/98-6/14 0.55279 23
magnolspr C 1/98-6/15 0.06889 22
pumphous C 1/98-6/16 0.2598 11
rainbow C 1/98-6/17 0.30522 22
rainbow C 1/98-6/18 0.33721 19
rainbow C 1/98-6/19 0.24033 22
SWBettyJay C 1/98-6/23 0.05603 23
SWBublng C 1/98-6/25 0.33544 22
SWBuckhm C 1/98-6/26 0.15006 23
SWCatfish C 1/98-6/27 0.39268 10
tarponholespr C 1/98-6/28 0.18388 23
trottermain C 1/98-6/29 0.08418 23
weekwachmain C 1/98-6/30 0.02328 23
wilsonheadspr C 1/98-6/31 0.14037 17
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates D_N03_Ha_up
2793 A 1/91-6/03 -9999
2872 A 1/91-6/03 -9999
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D_N03_Ha_up
2793 B 1/91-12/97 -9999
2872 B 1/91-12/97 -9999
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates D_N03_Ha_up
2793 C 1/98-6/03 -9999
2872 C 1/98-6/03 -9999
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 -9999
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 -9999
6490 C 1/98-6/03 -9999
Wells A Up
Wells A Down







Sequence A
Location Sequence Dates D K Ha_up D K Ha down D K n
1943 A 1/91-6/03 1 0 31
2003 A 1/91-6/03 0.00079 0.99921 31
2193 A 1/91-6/03 -9999 -9999 -9999
2259 A 1/91-6/03 0.99998 0.00002 25
2404 A 1/91-6/03 0.99961 0.00039 23
2465 A 1/91-6/03 0.99167 0.00833 29
2585 A 1/91-6/03 0.99697 0.00303 18
2675 A 1/91-6/03 0.07644 0.92356 27
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 -9999 -9999 -9999
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D K Ha_up D K Ha down D K n
1943 B 1/91-12/97 0.9377 0.0623 19
2003 B 1/91-12/97 0.97176 0.02824 18
2193 B 1/91-12/97 0.92056 0.07944 17
2259 B 1/91-12/97 0.97974 0.02026 19
2404 B 1/91-12/97 0.98032 0.01968 19
2465 B 1/91-12/97 0.99734 0.00266 16
2585 B 1/91-12/97 0.99138 0.00862 14
2675 B 1/91-12/97 0.7339 0.2661 17







Sequence A
Location Sequence Dates T_N03_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999 -9999
Apopka B 1/91-12/97 -9999 -9999
Fern Springs B 1/91-12/97 -9999 -9999
Juniper Springs B 1/91-12/97 -9999 -9999
Miami Springs B 1/91-12/97 -9999 -9999
Palm Springs B 1/91-12/97 -9999 -9999
PDL B 1/91-12/97 -9999.0000 -9999
Rock Springs B 1/91-12/97 -9999 -9999
Salt Spring B 1/91-12/125 -9999 -9999
Sanlando Springs B 1/91-12/97 -9999 -9999
Silver Glen Springs B 1/91-12/97 -9999 -9999
Starbuck Spring B 1/91-12/97 -9999 -9999
Sweetwater Spring B 1/91-12/97 -9999 -9999
Volusia Springs B 1/91-12/97 -9999 -9999
Wekiva B 1/91-12/125 -9999 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates T_N03_Sen_slope UP/DOWN
1417 C 1/98-6/03 -9999 -9999
1420 C 1/98-6/03 -9999 -9999
1674 C 1/98-6/03 -9999 -9999
1762 C 1/98-6/03 -9999 -9999
1763 C 1/98-6/03 -9999 -9999
1764 C 1/98-6/03 -9999 -9999
1779 C 1/98-6/03 -9999 -9999
1780 C 1/98-6/03 -9999 -9999
1781 C 1/98-6/03 -9999 -9999
1931 C 1/98-6/03 -9999 -9999
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999 -9999
Apopka C 1/98-6/03 -9999 -9999
Fern Springs C 1/98-6/03 -9999 -9999
Juniper Springs C 1/98-6/03 0.0006333 No evidence of trend
Miami Springs C 1/98-6/03 0.03375 UP
Palm Springs C 1/98-6/03 -9999 -9999
PDL C 1/98-6/03 -0.0208333 DOWN
Rock Springs C 1/98-6/03 -9999 -9999







SAMP_DATE D-P04 TOC D-Ca D-Mg D-Na D-K D-CI D-S04 D-F TDS T-N D-N03 D-Fe D-Sr
10/5/93 0.01 0.5 24 3.7 2.4 0.4 3.4 5.3 0.09 96 30 *
2/21/94 0.03 1.59 23 3.5 2.4 0.1 2.9 4.7 0.07 92 30 *
4/11/94 0.05 0.5 25 3 2 0.05 3.6 7.5 0.08 85 0.86 30 *
7/18/94 0.03 0.5 22 3.3 2.3 0.05 3 5.7 0.11 77 0.74 30 *
10/31/94 0.037 0.5 28 3.7 2.5 0.05 4.1 4.4 0.119 95 0.9 30 *
3/29/95 0.026 0.5 28 4 2.5 0.05 3.5 4.3 0.089 90 1.021 30 *
7/20/95 0.045 0.5 31 4.6 2.6 0.05 3.2 4 0.1 104 1.088 30 *
10/30/95 0.036 0.5 24 3.7 2.3 0.05 4 4.8 0.09 89 1.248 30 *
7/22/96 0.012 0.5 25.27 3.53 2 0.1 3.3 4.5 0.125 94 1.2 71 90
10/21/96 0.026 0.5 21 3.4 2.4 0.05 3.5 4.4 0.071 86 1.17 30 50
2/3/97 0.027 0.5 19 3.3 2.2 0.1 2.7 3.8 0.11 111 0.711 30 50
4/14/97 0.035 0.5 19 3.3 2.3 0.05 3.6 4.3 0.13 73 0.844 30 50
6/30/97 0.023 0.3 21.7 3.38 2.22 0.097 3.64 4.81 0.114 87 0.885 30 50
10/1/97 0.024 0.35 17.5 2.96 1.94 0.07 3.13 4.68 0.066 75 0.533 30 50
1/20/98 0.036 0.3 23.3 3.54 2.4 0.08 3.48 4.43 0.901 107 1.1 0.952 30 50
4/9/98 0.064 0.3 20.4 3.12 2.22 0.1 3.96 4.77 0.02 79 0.88 0.865 30 50
7/8/98 0.025 0.3 22.7 3.15 2.06 0.05 4.99 5.28 0.67 110 1.5 1.14 30 50
10/14/98 0.09 19.8 3.07 2.07 0.1 3.3 3.99 106 30 50
1/12/99 0.013 0.03 19.3 3.24 2.09 0.05 3.4 4.26 0.05 82 1 0.854 30 50
4/21/99 0.019 0.34 23.3 3.76 2.41 0.05 4 4.59 0.05 88 1 1.04 30 50
7/21/99 0.032 1.5 25.3 3.92 2.25 0.04 3.92 4.59 0.02 85 2.2 1.7 30 210
10/13/99 0.033 0.3 25.4 3.81 2.36 0.08 3.38 4.25 0.09 90 1.5 1.09 25 210
1/19/00 0.025 0.3 26.1 3.93 2.45 0.06 3.33 4.27 90 1.05 25 210
4/13/00 0.027 0.3 26.7 3.77 2.59 0.14 3.44 4.33 91 1.62 1.27 25 *
7/25/00 0.03 0.3 27.3 3.67 2.06 0.18 4.82 4.95 0.1 105 1.6 1.229 25 210
10/17/00 0.034 0.3 21 3.59 2.46 0.1 4.6 4.85 0.1 77 1.1 1.11 25 210
1/17/01 0.038 0.3 23.1 3.67 2.34 0.11 3.95 4.49 0.1 96 1.1 1.1 25 210
3/22/01 0.035 0.76 24.5 3.76 2.59 0.036 4.02 4.56 0.11 112 1.6 1.92 25 210
7/11/01 0.031 0.3 26.4 3.9 2.59 0.13 4.33 4.59 0.18 106 1.4 1.21 25 210
10/23/01 0.034 1 23.5 3.7 2.49 0.11 4.3 4.8 0.1 100 1.2677 1.183 35 210
1/23/02 0.026 0.3 21.93 3.56 2.44 0.15 4.09 4.48 0.09 92 1.1 1 25 210
4/15/02 0.029 0.3 23.7 3.76 2.58 0.12 4.23 4.6 0.11 96 1.23 1.215 25 210
7/24/02 0.027 0.4 25 3.86 2.58 0.3 4.29 4.61 0.08 100 1.33 1.2641 30 250
10/9/02 0.027 0.3 23.5 3.7 2.51 0.25 5.41 6.18 0.094 88 1.42 1.262 30 250
1/14/03 0.013 0.3 20.9 3.62 2.62 0.358 5.02 5.54 -99.9 99 1.34 1.19 30 309
4/15/03 0.013 0.3 24 3.47 2.67 0.25 3.94 5.31 -99.9 92 1.18 0.968 30 250
7/17/03 0.04 0.3 20.7 3.39 2.32 0.42 3.8 4.47 -99.9 91 1.17 1.07 42.3 250









STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION
Michael W. Sole, Secretary




LAND AND RECREATION
Robert G. Ballard, Deputy Secretary




FLORIDA GEOLOGICAL SURVEY
Jonathan D. Arthur, State Geologist and Director





Bulletin No. 69





REGIONAL AND STATEWIDE TRENDS IN FLORIDA'S SPRING
AND WELL GROUNDWATER QUALITY (1991-2003)




By

Rick Copeland, Neal A. Doran, Aaron J. White, and Sam B. Upchurch


Published for the

FLORIDA GEOLOGICAL SURVEY
Tallahassee, Florida
2009







DATE SEASON_NO. Month Temp Fe-D Mn-D Alk DO Fcol Entero pH TSS NH3
2/6/95 4 2 23.4 3 1 186 7.03 0.01
2/5/98 4 2 23.6 10 173 7.32 7* 0.01
10/12/99 3 10 23.6* 5.85 6.89 *
11/8/99 3 11 23.5 4.86 6.84 *
12/10/99 4 12 23.1 5.67 6.75 *
1/4/00 4 1 23.1 6.07 6.92 *
2/2/00 4 2 22.8 6.19 6.88 *
2/29/00 4 3 23.2 6.37 6.96 *
4/3/00 1 4 23.4 6.21 6.94 *
5/2/00 1 5 23.3 6* 7.04 *
6/2/00 2 6 23.5 6.17 6.96 *
7/5/00 2 7 23.4 5.99 7.01 *
8/2/00 2 8 23.5 4.04 7.17 *
8/28/00 2 9 23.4 5.12 7.06 *
10/10/00 3 10 23.38 179 6.32 2 1 7.07 4 0.016
11/6/00 3 11 23.43* 181 6.32 1 1 7.11 4 0.015
12/4/00 4 12 23.41 180 5.12 30 30 7.23 4 0.025
1/8/01 4 1 23.95 190 6.25 1 1 7.25 4 0.012
2/5/01 4 2 23.73 190 5.82 1 1 7.25 4 0.01
3/7/01 1 3 23.26 137 3.98 42 53 7.39 12 0.022
4/4/01 1 4 23.77 159 3.63 1 1 7.26 7 0.025
4/30/01 1 5 23.79 177 3.72 1 1 7.19 4 0.035
6/18/01 2 6 23.59 143 1.24 60 52 7.44 4 0.11
7/24/01 2 7 23.98 80 0.42 2000 50 7.58 47 0.15
8/28/01 2 8 24.03 101 1.06 2 60 7.29 6 0.29
9/19/01 3 9 24.49 127 1.33 1 1 7.15 4 0.2
10/23/01 3 10 23.89* 2.68 6.84 *
11/27/01 3 11 23.78 2.11 7.2 *
12/20/01 4 12 23.69 0.99 7.36 *
1/24/02 4 1 23.82 0.69 7.37 *
2/19/02 4 2 23.33 1.19 7.57 *
3/20/02 1 3 23.45 1.16 7.38 *
4/25/02 1 4 24.24 0.56 7.22 *
5/30/02 1 5 23.54 0.89 7.01 *
6/25/02 2 6 23.5 0.72 7.35 *
7/19/02 2 7 23.83 0.58 7.5 *
8/20/02 2 8 23.98 0.47 7.47 *
9/25/02 3 9 24.07 0.37 7.24 *
11/19/02 3 11 23.5 0.35 7.58 *
12/17/02 4 12 23.62 0.87 7.28 *
1/23/03 4 1 23.56 1.29 7.48 *
2/19/03 4 2 23.45 1.28 7.51 *
3/18/03 1 3 23.67 2.25 7.19 *
4/29/03 1 4 23.81 0.41 6.86 *
5/29/03 1 5 24.2 1.41 6.89 *
6/24/03 2 6 24.24 2.24 6.63 *







DATE Cond(field) D-CI D-S04 D-F
1/9/91 82 6.6 19 0.43
2/12/91 82 *
2/12/91 80 6.9 19 0.2
3/4/91 735 *
4/4/91 6.7 0.2
4/5/91 78 22 *
5/2/91 94 *
6/10/91 80 *
7/8/91 83 6.8 18 0.1
7/31/91 87 *
9/5/91 77 *
10/8/91 80 5.9 17 0.1
11/5/91 78* *
12/5/91 792 *
1/8/92 82 6.8 17 0.1
1/31/92 ** **
2/26/92 83.2 *
3/31/92 780 6.3 18 0.1
5/4/92 77.25 *
6/3/92 70 *
7/8/92 72.9 5.7 18 0.1
7/31/92 78.4 *
9/2/92 784 *
10/7/92 80 5.6 17 0.1
10/31/92 77.76 *
11/30/92 77 *
12/28/92 78 4.7 17 0.1
2/1/93 76 *
3/5/93 82 *
3/29/93 75.1 5.4 16 0.1
5/6/93 77 *
6/4/93 74.5 *
7/6/93 72.1 4.9 17 0.1
7/28/93 85 *
9/9/93 73 *
10/4/93 71.7 4.8 16 0.1
11/5/93 71.2* *
12/2/93 72 *
1/4/94 71 4.7 16 0.1
1/31/94 88 *
3/3/94 77.4 *
4/12/94 74.4 5.4 15 0.1










Descriptive Statistics for FAN from June, 1995 to July 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
KTOT mg/1 50.0 0.4 1.8 2.0 2.3 2.8
NATOT mg/1 50.0 2.9 3.8 4.2 4.7 6.3
MGTOT mg/1 50.0 4.1 4.9 5.4 5.7 7.0
CATOT mg/1 50.0 43.9 70.1 75.2 81.3 90.7
CLTOT mg/1 50.0 4.3 8.0 8.5 9.0 12.7
FTOT mg/1 50.0 0.0 0.1 0.1 0.1 0.2
SO4TOT mg/1 50.0 14.0 18.3 19.3 20.0 24.5
TKN mg/1 49.0 0.0 0.0 0.0 0.1 0.9
NOXNTOT mg/1 50.0 2.4 3.5 3.8 4.1 4.6
PTOT mg/1 50.0 0.0 0.1 0.1 0.1 0.2
OPO4DISS mg/1 50.0 0.0 0.1 0.1 0.1 0.1
COLITOT #/100ML 7.0 *
COLIFEC #100ML 7.0 *
FLOWCFS CFS 22.0 45.1 64.1 76.4 91.4 115.5
TOC mg/1 49.0 0.0 1.0 3.9 8.5 35.6
DOC mg/1 40.0 0.2 2.0 5.7 7.9 20.5
CONDL uS/cm 50.0 429.0 446.0 456.0 461.8 467.0
PHF s.u. 50.0 7.0 7.1 7.2 7.3 7.4
TEMP Deg C 50.0 21.9 22.2 22.3 22.4 22.8
*Less than 10
samples
NA No samples







BULLETIN NO. 69


Table 34. Well Trends in the NWFWMD, Sequence A (1991-2003).
(+ = T trend, blank = no evidence of trend, = J trend)
Unconfined GW Confined Both
Well Number Well Number Uncon Con (All)
Analyte 67*1 91 129 131 245 313 243 312 + + -
Ak + + + 2 1 1 0 3 1
Ca + + + 3 0 0 0 3 0
C1 + + 2 0 0 0 2 0
DO + 1 3 0 1 1 4
F -DL -DL -DL 0 0 0 0 0 0
Fe 0 0 0 0 0 0
K 0 1 0 0 0 1
Mg + + + 3 0 0 0 3 0
Na + + + + 4 0 0 0 4 0
NH3 0 0 0 0 0 0
N032 -DL + -DL 1 1 0 0 1 1
PO4 0 1 0 0 0 1
pH 0 4 0 0 0 4
SC-f + + + + 3 2 1 0 4 2
so4 + + + + 4 0 0 0 4 0
TDS 1 0 0 0 1 0
Temp + + + + + 4 0 1 0 5 0
TOC 0 0 0 0 0 0
Trb-1__ 0 2 0 0 0 2
WL(msl) -- 0 5 0 1 0 6
Well 67* taps conduit of Wakulla Spring.
N03*12 = N03 + N02 as N (Dissolved).
DL = Trend influenced by changes in laboratory detection level; not due to environmental change.

Well Number WMD Well ID
67 Wakulla Spring Well
91 Charles Donahue
129 Weller Ave MPZ
131 Weller Ave Shallow
243 Blountstown Floridan
245 Blountstown Surficial
312 USGS 422A NR Greenhead
313 USGS 422B NR Greenhead

Table 35. Potential NWFWMD Districtwide Trends, Sequence A. (Note small sample size.)
Confined
Analyte or Direction Comments
Unconfined
Na Unconfined Up Lowering WL may be cause of slight increase in saline
analytes.
pH Unconfined Down Lowering WL may be cause of decreased pH
S04 Unconfined Up Lowering WL may be cause of slight increase in saline
analytes.
Temp All Up Increase in air temperature
WL(msl) All Down Decrease in rainfall.







Sequence A
Location Sequence Dates TDSHa_up TDS Ha down TDS_n

Alexander Springs B 1/91-12/97 0.40 0.60 17.00
Apopka B 1/91-12/97 0.62225 0.37775 11
Fern Springs B 1/91-12/97 0.82 0.18 18.00
Juniper Springs B 1/91-12/97 0.98 0.02 19.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 0.03 0.97 18.00
Rock Springs B 1/91-12/97 0.98 0.02 22.00
Salt Spring B 1/91-12/125 0.00 1.00 19.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 0.97 0.03 18.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 1.00 0.00 19.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 0.31 0.69 23.00
Springs up
Springs down

Sequence C
Location Sequence Dates TDSHa_up TDS Ha down TDS_n
1417 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1420 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1763 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1764 C 1/98-6/03 0.53 0.47 11.00
1779 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1780 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1781 C 1/98-6/03 0.32 0.68 11.00
1931 C 1/98-6/03 0.90782 0.09218 11
Wells up
Wells down

Alexander Springs C 1/98-6/03 0.13 0.87 16.00
Apopka C 1/98-6/03 0.46707 0.53293 17
Fern Springs C 1/98-6/03 0.08 0.92 17.00
Juniper Springs C 1/98-6/03 0.42 0.58 20.00
Miami Springs C 1/98-6/03 0.23 0.77 20.00
Palm Springs C 1/98-6/03 0.64 0.36 20.00
PDL C 1/98-6/03 0.17 0.83 20.00
Rock Springs C 1/98-6/03 0.86 0.14 18.00







Sequence A
Location Sequence Dates pH_Sen_slope UP/DOWN
1943 A 1/91-6/03 -0.0010526 DOWN
2003 A 1/91-6/03 0.0020588 UP
2193 A 1/91-6/03 -9999 DOWN
2259 A 1/91-6/03 -0.0014286 DOWN
2404 A 1/91-6/03 -0.0017778 DOWN
2465 A 1/91-6/03 -0.0009091 DOWN
2585 A 1/91-6/03 -0.0009091 DOWN
2675 A 1/91-6/03 -0.0016196 DOWN
Wells A Up 1
Wells A Down 7

BLU (Gilchrist) A 1/91-6/33 0.0045308 UP
FAN A 1/91-6/34 0.0015789 No evidence of trend
HAR A 1/91-6/35 0.01 UP
HOR A 1/91-6/36 0.0011848 No evidence of trend
LBS A 1/91-6/37 0 No evidence of trend
LRS A 1/91-6/38 0.00375 UP
MAN A 1/91-6/39 0.0006897 No evidence of trend
RLS A 1/91-6/42 0.0025581 No evidence of trend
RKB A 1/91-6/41 0.0019338 No evidence of trend
ROY A 1/91-6/43 -0.002 No evidence of trend
SBL A 1/91-6/44 0.0018433 No evidence of trend
TEL A 1/91-6/45 0.0018958 UP
TRY A 1/91-6/46 0.0029412 UP
Springs A Up 5
Springs A Down 0

Sequence B
Location Sequence Dates pH_Sen_slope UP/DOWN
1943 B 1/91-12/97 -0.00151 No evidence of trend
2003 B 1/91-12/97 -0.0063158 DOWN
2193 B 1/91-12/97 -0.0001818 No evidence of trend
2259 B 1/91-12/97 -0.0009524 DOWN
2404 B 1/91-12/97 -0.0004545 No evidence of trend
2465 B 1/91-12/97 -0.0007317 No evidence of trend
2585 B 1/91-12/97 0.0010471 No evidence of trend
2675 B 1/91-12/97 -0.0016667 DOWN






FLORIDA GEOLOGICAL SURVEY


Table 4. Analytes and Indicators Displaying Trends
Analyte Abbreviation Unit of Measure
Alkalinity Alk mg/L
Ammonia/Ammonium NH3 or NH4 mg/L
Calcium Ca mg/L
Chloride C1 mg/L
Discharge or flow cfs or cubic feet per second
(ft3/sec); one cfs = 0.028 cubic
meters per second
Dissolved Oxygen DO mg/L
Fluoride F mg/L
Iron Fe tg/L and mg/L
Magnesium Mg mg/L
Nitrate as N NO3 or NO3 + NO2 mg/L
Nitrogen (total) N mg/L
Orthophosphate as P PO4 mg/L
pH
Potassium K mg/L
Sodium Na mg/L
Specific Conductance SC atS/cm at 25 C
Stage feet above datum

Strontium Sr mg/L
Sulfate SO4 mg/L
Temperature (of water) Temp C
Total Dissolved Solids TDS mg/L
Total Kjeldahl Nitrogen TKN mg/L
Total Organic Carbon TOC mg/L
Total Phosphorus P mg/L
Total Suspended Solids TSS mg/L
Turbidity Turb NTU (Current)*
JTU (Historic)
Water Level/Stage WL(msl) feet above mean level (1988)
*JTU and NTU are approximately equivalent, though not identical
msl = mean sea level (National Geodetic Vertical Datum, 1988)


by several agencies and a private company for the SRWMD. Regarding springs, the agencies
include the SRWMD (plus its subcontractor), the SJRWMD, the SWFWMD, and the USGS. For
wells, samples were collected by the NWFWMD, the SRWMD and its subcontractor, the







Date N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) Turb Color Turb-F Ca Mg
9/8/98 1.2 0.022 0.026 1 47.82 0.45 5 37.3 4.31
10/15/99 *** 41.54 ****
11/15/99 *** 41.58 ****
1/4/00 41.23 *
2/3/00** 40.72 *
4/5/00 39.77 *
7/7/00 ************
10/10/00 1.2 0.028 0.026 1 137 42 0.25 5 37.7 4.5
1/8/01 1.2 0.03 0.026 1 94 39 0.8 5 37.4 4.4
4/5/01 1.1 0.029 0.025 1 152 36 0.11 5 36.8 4.3
10/22/01 *** 36 ****
10/28/01* 34.8* 1.95* *
1/25/02 *** 36 ****
4/25/02* 35 0.1* *
7/19/02 ******35* 0.75 *
1/21/03 ******35.1 0.84 *
4/29/03 ******38.9 1.13 *







Sequence A
Location Sequence Dates DN03 N Sen_slope UP/DOWN
1943 A 1/91-6/03 -9999 -9999
2003 A 1/91-6/03 -9999 -9999
2193 A 1/91-6/03 -9999 -9999
2259 A 1/91-6/03 -9999 -9999
2404 A 1/91-6/03 -9999 -9999
2465 A 1/91-6/03 -9999 -9999
2585 A 1/91-6/03 -9999 -9999
2675 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

BLU (Gilchrist) A 1/91-6/33 -9999 -9999
FAN A 1/91-6/34 -9999 -9999
HAR A 1/91-6/35 -9999 -9999
HOR A 1/91-6/36 -9999 -9999
LBS A 1/91-6/37 -9999 -9999
LRS A 1/91-6/38 -9999 -9999
MAN A 1/91-6/39 -9999 -9999
RLS A 1/91-6/42 -9999 -9999
RKB A 1/91-6/41 -9999 -9999
ROY A 1/91-6/43 -9999 -9999
SBL A 1/91-6/44 -9999 -9999
TEL A 1/91-6/45 -9999 -9999
TRY A 1/91-6/46 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DN03 N Sen_slope UP/DOWN
1943 B 1/91-12/97 -9999 -9999
2003 B 1/91-12/97 -9999 -9999
2193 B 1/91-12/97 -9999 -9999
2259 B 1/91-12/97 -9999 -9999
2404 B 1/91-12/97 -9999 -9999
2465 B 1/91-12/97 -9999 -9999
2585 B 1/91-12/97 -9999 -9999
2675 B 1/91-12/97 -9999 -9999







DATE DeSnDO Fcol Entero pH D-Alk Resid D-NH3 D-N03 D-N03(N) D-NO3NO; D-P D-P04 TOC
10/31/97 0.58805 5.05 ** *****
11/21/97 0.65805* 4.99* *
12/31/97 0.11194* 5.04* *
2/5/98 0.18194* 5.48 ** *****
3/9/98 -0.02695* 4.87* *
3/27/98 -0.07695* 5.31* *
5/8/98 5.23305 5.06 ** *****
5/27/98 0.25305 4.43 ** *****
7/1/98* 4.92 ********
7/31/98 0.44567* 5.14 *
8/26/98 0.76567* 7.36* *
9/30/98 0.59805* 4.94 *
10/29/98 0.60805* 5.2* *
12/7/98* 5.03* *
1/4/99* 5.13* *
2/1/99 0.29194* 5.04* *
3/2/99 0.47305* 4.75 *
3/30/99 0.13305* 5.07* *
5/11/99 0.23305* 4.86* *
6/9/99 0.43567 4.83 ** *****
6/21/99 0.63567 4.77 0.053 0.008 0.019 0.017 5.1
8/3/99 0.36567* 4.89 *
9/8/99 0.65805* 4.94* *
11/1/99 0.45805 5 4 0.063 0.004 0.028 0.021 5
12/6/99 0.36194 1 1 4.9 4 0.055 0.01 0.017 0.013 4.6
1/6/00 0.22194 1 1 4.76 4 0.071 0.004 0.015 0.009 4
1/31/00 0.59194 1 1 4.95 4 0.058 0.006 0.014 0.013 2.1
3/9/00 0.25305 1 1 4.99 4 0.055 0.008 0.011 0.004 2
4/3/00 2.04305 1 1 5.19 4 0.034 0.02 0.022 0.018 2.4
5/4/00 1 1 4.62 5 0.066 0.004 0.011 0.01 2.7
6/6/00 0.34567 2 4 4.86 6 0.053 0.004 0.013 0.009 2.5
7/5/00 0.44567 1 1 4.76 4 0.051 0.74 0.023 0.013 4.7
8/7/00 0.53567 1 1 5.18 4 0.043 5.7 0.021 0.017 6.4
9/5/00 0.65805 1 1 5.19 4 0.064 1.1 0.014 0.015 4.8
10/9/00 0.38805 5.11 ** *****
11/1/00 0.50805 5.44 ** *****
12/5/00 1.93194* 5.06* *
1/3/01 0.32194* 4.98 *
2/1/01 1.07194* 4.8* *
3/5/01 1.22305 5.09 ** *****
4/2/01 0.22305* 4.95 *
5/1/01 0.28305* 4.87* *






BULLETIN NO. 69


Median Nitrate Concentrations in 13
Selected Springs in Florida

1.0-
S0.9 -
C 0.8 -
0.7-
z 0.6 -
0.5
0 0.4- /
z 0.3 -
+ /
O 0.2 -
z 0.1 -
0.0 -
1970 1980 1990 2000
Year

Figure 5. Median nitrate concentrations in 13 selected first-mag-
nitude springs. Springs are Alexander, Chassahowitzka Main,
Fanning, Ichetucknee, Jackson Blue, Madison Blue, Manatee,
Rainbow, Silver, Silver Glen, Volusia Blue, Wakulla, and Wacissa #2
(From Scott et al., 2004).


OVERVIEW OF THE HYDROGEOLOGY OF FLORIDA'S GROUNDWATER

Florida enjoys a humid, subtropical climate throughout much of the state (Henry, 1998).
Rainfall, in the region of the major springs (Figure 1), ranges from 127 cm (50 inches) to over
152 cm (60 inches) per year. As a result of the climate and the geologic framework of the state,
Florida has an abundant supply of fresh groundwater. Scott (2001) estimated that more than 8.3
billion cubic meters [2.2 quadrillion (2.2 x 1012) gallons] of freshwater are contained within
Florida's aquifers. However, only a very small percentage of freshwater is available as a
renewable resource for human consumption.

The Florida peninsula is the exposed portion of the broad Florida Platform. The Florida
Platform, as measured at the 200 meter (more than 600 ft) below sea level contour, is more than
483 km (300 miles) wide. It extends more than 240 km (150 miles) westward under the Gulf of
Mexico, and more than 113 km (70 miles) under the Atlantic Ocean. The present day Florida
peninsula is less than one half of the total platform.

The Florida Platform is composed of a thick sequence of variably permeable carbonate
sediments, limestone and dolostone, lying on older igneous, metamorphic and sedimentary rocks.
The Cenozoic carbonate sediments may exceed 1,220 m (4,000 ft) thick. A sequence of sand, silt
and clay with variable amounts of limestone and shell overlie the carbonate sequence (see Scott
et al, 1991 and Scott, 1992b for discussion of the Cenozoic sediment sequence and the geologic







FLORIDA GEOLOGICAL SURVEY


Statewide Spring Trends


It should be pointed out that bicarbonate was sampled only by the SWFWMD. However,
the other WMDs sampled alkalinity. The two species are considered to have sufficient
similarities to be considered one analyte (bicarbonate/alkalinity species) for the sign test
exercises. Tables 28-30 show analytes with statewide trends for each time sequence.

For Sequence A (Table 28), analytes showing upward statewide trends were alkalinity,
calcium, chloride, fluoride, magnesium, nitrate, potassium, specific conductance, sulfate,
strontium, and total dissolved solids. Flow was the only analyte with a downward trend. For
Sequence B (Table 29), the sign tests revealed that nitrate had an upward trend, while
phosphorus, and phosphate showed decreasing trends.

For Sequence C (Table 30), the sign tests indicated that alkalinity, calcium, chloride,
fluoride, magnesium, nitrate, potassium, specific conductance, sulfate, strontium, and total
dissolved solids, and total kjeldahl nitrogen each had upward trends, while flow and total organic
carbon demonstrated downward trends. Except for flow, the analytes with statewide trends were
the same in Sequence C as they were in Sequence A. No statewide trend determination for flow
for Sequence B could be made because of insufficient data.


Table 28. Statewide Trends Based on Sign Tests for 57 Springs, Sequence A (1991-2003).
Analyte + Trend Direction P-Value
Alk 29 0 Up <0.001
Ca 31 2 Up <0.001
Cl 28 5 Up <0.001
F 16 0 Up <0.001
Flow 3 14 Down 0.006
K 20 4 Up 0.001
Mg 32 2 Up <0.001
Na 30 4 Up <0.001
NO3 25 11 Up 0.014
SC* 24 8 LUP 0.004
SO4 27 8 Up 0.001
Sr 27 1 Up <0.001
TDS 18 2 Up <0.001
*Specific conductivity SWFWMD and SJRWMD measured specific conductivity (field); SRWMD
measured specific conductivity (lab).


Table 29. Statewide Trends Based on Sign Tests for 57 Springs, Sequence B (1991-1997).
Analyte + Trend Direction P-Value
NO3 10 1 Up 0.006
P 0 11 Down <0.001
P04 0 10 Down 0.001






FLORIDA GEOLOGICAL SURVEY


limestone (Modified from SDII Global Corporation, 2002).

cover-collapse sinkhole A sinkhole formed by cover materials (sand, clay, etc.) traveling into a void in
the underlying limestone (Modified from SDII Global Corporation, 2002).

cover-subsidence sinkhole A collapse sinkhole that forms when the upper surface of the limestone is
dissolved away, and the cover materials slowly subside to occupy the space once occupied by
limestone. Voids may not be well developed in cover-subsidence sinkholes because of the
continued downward movement of cover materials. See also solution sinkhole and sag
depressions (SDII Global Corporation, 2002).

diffuse flow Groundwater flow conditions that are generally slow-moving, may be laminar (Reynolds
number much less than 1.0), has uniform discharge, and a slow response to storms (Modified
from Field, 1999).

discharge The rate of flow at a given instant in terms of volume per unit of time (Modified from
Neudendorfet al., 2005). It is synonymous with flux.

doline A bowl- or funnel-shaped hollow in limestone topography, ranging in diameter from few
meters to a kilometer, and in depth up to several hundred meters (Modified from Monroe, 1970).
A doline is synonymous with sinkhole.

dolostone A sedimentary rock composed predominantly of the mineral dolomite (Ca,Mg(C03)2). While
soluble, dolostone is less likely to contain well-developed karst features than limestone (Modified
from SDII Global Corporation, 2002).

duricrust A deposit of precipitated minerals, mainly calcite, formed in the soil or near-surface layers in
arid or semi-arid zones at the horizon where ascendant capillary water evaporates and salts held
in solution are deposited. In Florida, seasonal rainfall and intense evaporation may form similar
semi-concreted soils within the epikarst (Modified from Field, 1999).

epikarst 1. The zone of weathering that penetrates the upper surface of a limestone stratum.
Weathering of limestone results in development of rubble, fine-grained, carbonate-rich silt, clay,
and karren (including pinnacles and valleys in the limestone rock surface) (Modified from SDII
Global Corporation, 2002). 2. An intensely dissolved zone consisting of an intricate network of
intersecting roofless, dissolution-widened fissures, cavities, and tubes dissolved into the
uppermost part of the carbonate bedrock.

The dissolution features in the epikarst zone are organized to move infiltrating water laterally to
down-gradient seeps and springs or to collector structures such as shafts that conduct the water
farther into the subsurface (Huntoon, 1995).

estavelle 1. A spring that reverses flow because of relative changes in the elevation of groundwater
potentials and stream stage (SDII Global Corporation, 2002). 2. An intermittent spring
resurgence or exsurgence, active only in wet seasons (Modified from Field, 1999). Generally, an
estavelle is located near streams or rivers. When the water level of the stream is high (e.g. during
flood stage), surface water directly recharges the aquifer.

exsurgence A spring or seep in karstic terrane not clearly connected with swallets (orponors) at a
higher level (Field, 1999).







Sequence A
Location Sequence Dates Temp_Sen_slope UP/DOWN
Wells A Up 0
Wells A Down 3

BLU (Gilchrist) B 1/91-12/127 -9999 -9999
FAN B 1/91-12/128 0 No evidence of trend
HOR B 1/91-12/130 0 No evidence of trend
LRS B 1/91-12/132 0 No evidence of trend
RKB B 1/91-12/135 0.0563492 UP
ROY B 1/91-12/137 0.0148352 UP
TEL B 1/91-12/139 0.036039 UP
TRY B 1/91-6/04 0.0357143 UP
Springs A Up 4
Springs A Down 1

Sequence B
Location Sequence Dates Temp_Senslope UP/DOWN
1943 C 1/98-6/03 -0.0159655 No evidence of trend
2003 C 1/98-6/03 0.0119438 UP
2193 C 1/98-6/03 0.0038667 No evidence of trend
2259 C 1/98-6/03 0.0337171 UP
2353 C 1/98-6/03 0.0033333 No evidence of trend
2404 C 1/98-6/03 0.014175 UP
2465 C 1/98-6/03 0.0099628 UP
2585 C 1/98-6/03 0.0294889 UP
2675 C 1/98-6/03 0.0166981 UP
Wells A Up 6
Wells A Down 0

ALR C 1/98-6/32 0.169643 UP
BLU (Gilchrist) C 1/98-6/33 0 No evidence of trend
FAN C 1/98-6/34 0.003125 UP
HAR C 1/98-6/35 0.0090909 No evidence of trend
HOR C 1/98-6/36 0.0041241 No evidence of trend
LBS C 1/98-6/37 0.0041667 No evidence of trend
LRS C 1/98-6/38 0 No evidence of trend
MAN C 1/98-6/39 0.004878 UP
POE C 1/98-6/40 0.0028554 No evidence of trend







FK_STATI PK_SAMPI DATE TIME MONTH SEASON SEASON_ Temp D-Fe D-Mn D-Alk DO Fcol Entero
91 NWFM940 9/30/94 1106 9 Fall 3 21.1 ** ***
91 NWFQ941 10/27/94 1335 10 Fall 3 21.3 7 110 6.48* *
91 NWFM941 11/18/94 1225 11 Fall 3 21.4 7.68 *
91 NWFM941 12/20/94 1050 12 Winter 4 21.3 8.32 *
91 NWFQ950 1/9/95 1048 1 Winter 4 21.2 6.72 *
91 NWFM950 3/6/95 1303 3 Spring 1 21.1 6.85 *
91 NWFM950 3/24/95 1358 3 Spring 1 21 6.95 *
91 NWFQ950 4/25/95 1400 4 Spring 1 20.6 7.18 *
91 NWFM950 5/30/95 1114 5 Spring 1 20.6 6.64 *
91 NWFM950 6/26/95 1151 6 Summer 2 20.5 7.46 *
91 NWFQ950 7/18/95 1310 7 Summer 2 20.8 6.6 *
91 NWFM950 8/21/95 1128 8 Summer 2 21 7.19 *
91 NWFM951 10/24/95 1405 10 Fall 3 21.6 7.21 *
91 NWFM951 11/27/95 1117 11 Fall 3 21.6 6.75 *
91 NWFM951 12/18/95 1254 12 Winter 4 21.6 6.87 *
91 NWFM960 1/29/96 1306 1 Winter 4 21.4 1.57 *
91 NWFM960 2/26/96 1311 2 Winter 4 21 1.42 *
91 NWFM960 4/2/96 1327 4 Spring 1 20.7 1.33 *
91 NWFM960 4/26/96 1102 4 Spring 1 20.2 3.38 *
91 NWFM960 5/21/96 1417 5 Spring 1 20.1 4.49 *
91 NWFM960 7/1/96 1302 7 Summer 2 20.6 3.6 *
91 NWFM960 7/29/96 1256 7 Summer 2 20.7 1.69 *
91 NWFM960 8/28/96 1126 8 Summer 2 20.8 6.36 *
91 NWFM960 9/24/96 1323 9 Fall 3 21.1 1.43 *
91 NWFM961 10/21/96 1335 10 Fall 3 21.2 6.03 *
91 NWFM961 11/18/96 1324 11 Fall 3 21.2 6.99 *
91 NWFM961 12/16/96 1135 12 Winter 4 21.1 5.61 *
91 NWFM970 1/27/97 1222 1 Winter 4 21 1.96 *
91 NWFM970 2/24/97 1354 2 Winter 4 20.3 2.76 *
91 NWFV970: 3/18/97 1625 3 Spring 1 20.2 6 2 158 3.39* *
91 NWFM970 4/29/97 1217 4 Spring 1 20.2 4.56 *
91 NWFM970 5/30/97 1049 5 Spring 1 20.1 6.69 *
91 NWFM970 6/30/97 1253 6 Summer 2 20.3 5.39 *
91 NWFM970 7/28/97 1322 7 Summer 2 20.4 3.72 *
91 NWFM970 8/20/97 1339 8 Summer 2 20.6 3.41 *
91 NWFM970 9/23/97 1229 9 Fall 3 21.3 3.85 *
91 NWFM971 10/22/97 1422 10 Fall 3 21.6 3.43 *
91 NWFM971 12/11/97 1409 12 Winter 4 21.4 5.45 *
91 NWFM971 12/31/97 1243 12 Winter 4 21.3 1.23 *
91 NWFM980 1/26/98 1357 1 Winter 4 21.2 1.55 *
91 NWFM980 2/26/98 1223 2 Winter 4 20.9* 1.9 *
91 NWFM980 3/30/98 1311 3 Spring 1 20.3 2.91 *







Sequence A
Location Sequence Dates Fcol_Ha_up Fcol Ha down Fcol_n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







Sequence A
Location Sequence Dates DP04_Sen_slope DP04
Salt Spring C 1/98-6/31 -9999.00 -9999
Sanlando Springs C 1/98-6/03 -9999.00 -9999
Silver Glen Springs C 1/98-6/03 -9999.00 -9999
Starbuck Spring C 1/98-6/03 -9999.00 -9999
Sweetwater Spring C 1/98-6/03 -9999.00 -9999
Volusia Springs C 1/98-6/03 -9999.00 -9999
Wekiva C 1/98-6/31 -9999.00 -9999
Springs up 0
Springs down 0







FLORIDA GEOLOGICAL SURVEY


Spring Trends in the SJRWMD, Sequence C (1998-2003).
/- "= trn CI nf Tnrlrn nftr.nA = I trfn= \


tIIICtV LIUJ^ m^IISIL VJ tmIILIS v- . L.'IIS]_
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +
Alk + + + + 4 0
Ca + + + 3 1
Cl + + + + + + 6 4
F + + + + + + + 7 0
Flw 0 8
K + 1 0
Mg + 1 1
Na + + 2 1
NO3* + 1 1
P 0 3
PO4
pH+ + + + + + + + + + 10 0
SCfld + 1 1
SO4 + + _+ -3 3
TKN _0 2
Temp + + + + 4 0
TDS 0 2
Sr + + + 3 1
Analytes are total rather than dissolved except for Apopka Spring.
*N03 = Depending on spring, nitrate could be in the form of: (1) D N03 + N02 (as N), (2) D N03 (as N) or T N03 (as N)
combined; (3) T N03 + N02 (as N) combined, or (4) T N03 (as N)
DL = Influenced by changing laboratory method detection level.

1. Alexander Spring 9. Rock Springs
2. Apopka Spring 10. Sanlando Springs
3. Volusia Blue Spring 11. Salt Springs
4. Fern Hammock Springs 12. Silver Glen Springs
5. Juniper Springs 13. Starbuck Spring
6. Miami Spring 14. Sweetwater Springs
7. Palm Springs 15. Wekiwa Spring
8. Ponce de Leon Spring


Table 19. SJRWMD Districtwide Trends Based on Sign Tests, Se uence C.
Analyte + -Trend Direction P-Value
Flow 0 8 Down 0.008
pH 0 10 Up 0.001
F 7 0 Up 0.008


Table 18.







Sequence A
Location Sequence Dates DN03 N Sen_slope UP/DOWN
RLS C 1/98-6/42 -9999 -9999
RKB C 1/98-6/41 -9999 -9999
SBL C 1/98-6/44 -9999 -9999
TEL C 1/98-6/45 -9999 -9999
TRY C 1/91-12/98 -9999 -9999
Springs A Up 0
Springs A Down 0







Date Ca Mg Na K SC-F CI S04 F
11/1/99 ***196 *
12/6/99 ***222 *
1/5/00 ***201 *
1/31/00 ***214* *
3/9/00 .* ***199* *
4/6/00* *192* *
5/3/00 .* ***186* *
6/6/00* *186* *
7/5/00 ***216* *
8/7/00* *184* *
9/8/00 ***181 *
10/9/00* *193* *
11/1/00 ***198* *
12/5/00* *197* *
1/3/01 ***203 *
2/1/01 ***205 *
3/5/01 193* *
4/2/01 194* *
5/1/01 ***202.1 *
6/6/01 194* *
7/2/01 177* *
8/6/01 191 *
9/7/01 191 *
10/2/01 202 *
11/1/01 175* *
12/3/01 186* *
1/2/02* *192* *
2/6/02* *193* *
3/7/02* *195* *
3/28/02 ***199 *
4/30/02 ***209 *
6/5/02* *198* *
7/15/02 ***192 *
8/6/02 ***220 *
9/2/02 ***202 *
10/1/02 26.3 1.1 3 0.82 148 1.9 15 0.13
11/4/02 25.8 1.1 3.1 0.79 147 1.7 15 0.13
12/2/02 28.1 1.1 3.2 0.77 161 1.9 16 0.11
1/7/03 27.2 1.1 3.4 0.76 169 2.4 17 0.12
2/6/03 27.5 1.1 3.2 0.85 162 1.9 16 0.12
3/5/03 25.1 1.1 2.9 0.85 149 1.8 15 0.11
4/2/03 26.6 1.1 3 0.8 160 1.8 16 0.13
4/30/03 27.1 1.2 2.95 0.84 161 1.6 15 0.12
6/4/03 27.7 1.1 2.87 0.79 158 1.9 17 0.12







BULLETIN NO. 69


Tablel3. Spring Trends in the SRWMD (plus Wakulla Spring), Sequence C (1998-2003).
(+= trend, 0 = no evidence of trend, -= I trend)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +
Alk + + 2 2
Ca + + + + + + + + + + + 11 0
Cl + + + + + + 6 2
DO + + 2 8
F + + + + 5 0
Flw* -0 9
K + + + + + + + 7 1
Mg + + + + + + + + + + + + + 13 0
Na + + + + + + + + + + 12 0
NH3 +D + +D + +D +D +D +D +D +D +D +D +D 2 0
NO3** + + 2 9
P + + + + + + + + + 9 0
PO4 + + + + + + + 7 1
pH + + + 3 2
SC-lb + + + + + + + 7 4
SO4 + + + + + + 6 3
TKN + + + +D + + + + + +D + + +D 10 0
Temp + + + + 4 0
TOC 1 9
Trb + + + + + 5 0
All analytes total unless otherwise stated
* Inferred from stage data.
**N03 N03 + N02 as N (total)
D = DL = Influenced by changing laboratory method detection level.


1. Wakulla Spring (NWFWMD)
2. Manatee Spring
3. Fanning Spring
4. Hart Spring
5. Rock Bluff Spring
6. Little River Spring
7. Ruth/Little Sulfur Springs
8. Troy Spring


9. Suwannee Blue Spring
10. Royal Spring
11. Telford Spring
12. Lafayette Blue Spring
13. Alapaha River Rise
14. Gilchrist Blue Spring
15. Poe Spring
16. Hornsby Spring


Table 14. SRWMD (plus Wakulla Spring) Districtwide Trends based on sign tests, Sequence C.
Analyte + -Trend Direction P-Value
Flow 0 9 Down 0.002
Ca 11 0 Up <0.001
Mg 13 0 Up <0.001
Na 12 0 Up <0.001
p 9 0 Up 0.002
TKN 10 0 Up 0.001
TOC 1 9 Down 0.003







COLDATE 31649 pH 4255 TSS NH3 618 620 N03 P P04 TOC TDS DtoH20
8/6/01 6.94 *********4.55
9/7/01 6.82 *********3.24
10/2/01 7 ***** 3.44
11/1/01 6.89* 4.36
12/3/01 7.14 *********4.94
1/2/02 7.07 *********5.02
2/6/02 6.92* 4.83
3/7/02 6.89 *********4.04
3/28/02 6.92 *********4.99
4/30/02 6.96 *********6.76
6/5/02 6.69 *********7.88
7/15/02 6.87 *********3.53
8/6/02 6.9 *********3.18
9/2/02 6.87 3.1
10/1/02 1 6.81 6 0.23 0.007 0.22 0.19 5.3 327 3.48
11/4/02 1 6.88 4 0.24 0.004 0.24 0.22 5.5 319 3.62
12/2/02 1 6.68 4 0.23 0.004 0.22 0.2 5.2 334 4.39
1/7/03 1 6.69 5 0.23 0.004 0.23 0.18 5 331 3.32
2/6/03 1 6.85 5 0.27 0.013 0.22 0.2 5.5 330 3.28
3/5/03 1 6.69 5 0.23 0.02 0.22 0.21 5.8 330 2.7
4/2/03 1 6.71 4 0.22 0.004 0.24 0.18 5.5 327 3.74
4/30/03 1 6.85 4 0.22 0.006 0.22 0.15 5.3 333 3.64
6/4/03 1 6.79 4 0.24 0.006 0.23 0.18 5.3 330 4.82









The Mann-Whitney (M-W) test procedure can be performed as follows:
1) Combine the observations in the two seasons and order them from the
least to the largest
nz
2) Let r, be the rank of Y, in the joint sample. Set W,= r';,, i.e., W, is the
t=l
rank sum of the observations in season i.


3) One-Sided Upper-Tail Test. To test H0: A = 0 versus Ha: A > 0 at the
significance level a, reject Ho if W, > w, where the critical value w, can
be found in Table A.6 of Hollander and Wolfe (1999).

4) One-Sided Lower-Tail Test. To test Ho: A = 0 versus Ha: A < 0 at the
significance level a, reject Ho if W,

5) Two-Sided Test. To test Ho: A =0 versus H: A 0 at the
significance level a, reject Ho if W, > w O2 or W, < n (n +n +1)- w2 .


6) Large-Sample Approximation. When n > 10 and n > 10, define


S- [n(n, +n, + 1)]
W = + -1)]112. (A2)
[n, (n, + +1)]1/2


The distribution of the statistic W* can be approximated by the standard normal
distribution N(0, 1). For the one-sided upper-tail test at the significance level a, reject
Ho if W, > z,. For the one-sided lower-tail test at the significance level a, reject Ho if
W, < z,. For the two-sided test, reject Ho if I W, > z/2 .


Both M-W test and K-W test are nonparametric tests (also called distribution-free
tests) that are applicable to different families of distributions such as normal, log-normal,
and other continuous distributions. It should be pointed out that nonparametric tests still
require independent observations. In other words, for a given season i, the observations
{ Y, t = 1, ... n eed to be independent for the tests to be valid.


Test for Trends


Mann-Kendall (M-K) Test--For each analyte and each given season, the existence of
linear upward or downward trends in the data will be determined by the Mann-Kendall







SWFWMD
Location Sequence Dates Color_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates Color_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999







Sequence A
Location Sequence Dates DCaSen_slope UP/DOWN
2793 A 1/91-6/03 -0.7 DOWN
2872 A 1/91-6/03 0 No evidence of trend
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 0.06875 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 1

Sequence B
Location Sequence Dates DCaSen_slope UP/DOWN
2793 B 1/91-12/97 -0.871212 DOWN
2872 B 1/91-12/97 1.66667 No evidence of trend
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -0.333333 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 1

Sequence C
Location Sequence Dates DCaSen_slope UP/DOWN
2793 C 1/98-6/03 0 No evidence of trend
2872 C 1/98-6/03 0.286364 No evidence of trend
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -0.0555556 No evidence of trend
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -0.002 No evidence of trend
6490 C 1/98-6/03 0 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 0







SWFWMD
Location Sequence Dates D K Ha_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.99954
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.00022
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.00023
Boyette C 1/98-6/05 0.72837
Chassal C 1/98-6/06 0.01731
ChassaM C 1/98-6/07 0.06604
Homosl C 1/98-6/10 0.12244
Homos2 C 1/98-6/11 0.06948
Homos3 C 1/98-6/12 0.06279
HidRivH C 1/98-6/09 0.00069
HidRiv2T C 1/98-6/08 0.00049
huntersspr C 1/98-6/13 0.01259
lithiamain C 1/98-6/14 0.00026
magnolspr C 1/98-6/15 0.3362
pumphous C 1/98-6/16 0.03085
rainbow C 1/98-6/17 0.00008
rainbow C 1/98-6/18 0.00002
rainbow C 1/98-6/19 0.00004
SWBettyJay C 1/98-6/23 0.35579
SWBublng C 1/98-6/25 0.00005
SWBuckhm C 1/98-6/26 0.79394
SWCatfish C 1/98-6/27 0.10525
tarponholespr C 1/98-6/28 0.01326
trottermain C 1/98-6/29 0.00755
weekwachmain C 1/98-6/30 0.00006
wilsonheadspr C 1/98-6/31 0.00914
Springs A Up
Springs A Down








DATE COLIFEC FLOWCFS TOC DeSnTOC DOC CONDL DeSnCON PHF TEMP Stage DO TURB ALKTOT NH3TOT
3/12/02 0.6 -4.9587 0.4 460 458.253 7.22 22.5 3.12 1.7 0.2 175 0.02
4/3/02 2 0.4 -5.1587 0.4 458 456.253 7.18 22.3 1.8 0.1 184 0.02
6/20/02 1 0.3 2.6907 0.3 447 452.634 7.22 22.4 3.2 2.1 0.1 185 0.02
7/11/2002 3.2 2.1 0.1 185 0.02
8/26/2002 2.78 1.8 0.05 181 0.02
9/9/2002 1.92 1.8 0.05 184 0.02
12/2/2002 2.44 3.8 0.2 195 0.066
1/13/2003 3.95 1.7 0.1 202 0.037
2/6/2003 2.3 1.8 0.1 194 0.016
5/12/2003 6.2 1.2 0.8 190 0.037
6/2/2003 4.78 1.6 0.2 196 0.037
7/7/2003 5.8 1.8 0.2 154 0.17

Fanning







Date SEASON_NO. Month Temp Fe-D Alk DO Fcol Entero pH TSS NH3 NO3-D
7/18/94 2 7 24.6 240 240 7.03 *
8/24/94 2 8 26.1* 6.94* *
9/23/94 3 9 26.1 ****7.01 *
10/27/94 3 10 24.7 280 290* 6.87* *
11/22/94 3 11 26.7 ****6.56* *
12/20/94 4 12 24.6* 7.08* *
1/23/95 4 1 24.4 ****7.07 0.12 *
2/24/95 4 2 24.6 ****6.9 *
3/23/95 1 3 24.7 ****6.75* *
4/20/95 1 4 24.4* 6.87 0.13*
5/31/95 1 5 25 ****6.96 *
6/28/95 2 6 25.6 ****7.2 *
7/19/95 2 7 23.9 ** *** 7.2 0.11 *
8/28/95 2 8 25.6* 6.92* *
9/20/95 3 9 25.1 ****6.97 *
10/31/95 3 10 24.3 ****7.12 *
11/28/95 3 11 24.2 ****7.04* *
10/3/96 3 10 24.38 80 234 0.21 6.78 0.047 *
4/13/99 1 4 24.29 170 260 0.26 6.79 0.1 *
10/31/00 3 10 23.98 0.36 6.85 *
11/30/00 3 11 24.03 0.37 6.78 *
12/21/00 4 12 23.99 0.49 6.97* *
1/25/01 4 1 24.03 0.79 6.72 *
2/23/01 4 2 23.96 0.47 7.05 *
3/23/01 1 3 24.06 0.79 7.03 *
4/26/01 1 4 23.99 0.36* 7* *
5/25/01 1 5 24* 0.97 6.86 *
6/22/01 2 6 24.02* 0.41 6.9* *
7/26/01 2 7 24.1 0.63 6.81 *
8/23/01 2 8 24.35 1.01 6.49* *
9/26/01 3 9 24.35 0.71 6.83 *
10/30/01 3 10 24.2 282 0 1 1 6.88 4 0.11 *
11/28/01 3 11 24.28 283 0.4 1 1 6.72 4 0.12 *
12/18/01 4 12 24.3 283 0.58 1 1 6.81 4 0.11 *
1/28/02 4 1 24.26 278 0 1 1 6.78 4 0.081 *
2/27/02 4 2 24.18 279 1.14 1 1 6.9 5 0.09 *
3/26/02 1 3 24.27 294 0.68 1 1 6.89 4 0.1 *
4/29/02 1 4 24.24 279 1.67 1 1 6.58 4 0.13 *
5/29/02 1 5 24.2 284 0.88 1 2 6.84 4 0.1 *
6/25/02 2 6 24.28 277 0.36 1 52 6.49 4 0.12 *
7/22/02 2 7 24.26 274 0.24 1 1 6.81 4 0.12 *
8/21/02 2 8 24.28 277 0.82 1 1 6.84 4 0.11 *









St. Johns River Water Management District Springs


Descriptive Statistics for Alexander for the Period April, 1956 to March, 2000
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 76.0 22.0 23.0 23.4 24.0 26.0
SCl uS/cm 32.0 815.0 1038.0 1134.5 1163.0 1430.0
SCf uS/cm 47.0 813.0 1024.0 1096.0 1156.0 1650.0
pH s.u. 50.0 6.9 7.5 7.8 7.8 8.2
T-Alk mg/1 40.0 73.0 78.0 80.2 81.0 115.0
D-N03 mg/1 2.0 *
T-N03 mg/1 3.0 *
D-N03N02 mg/1 33.0 0.0 0.0 0.1 0.1 0.1
T-N03N02 mg/1 1.0 *
T-P mg/1 3.0 *
D-P mg/1 0.0 NA NA NA NA NA
TOC mg/1 4.0 *
Ca mg/1 27.0 32.0 42.0 45.0 48.0 50.0
T-Ca mg/1 22.0 41.0 43.0 45.0 46.0 48.8
Mg mg/1 27.0 14.0 17.8 20.0 21.0 24.9
T-Mg mg/1 24.0 19.0 19.8 20.3 21.3 22.0
T-Na mg/1 24.0 114.7 127.5 135.1 138.0 153.4
Na mg/1 27.0 100.0 122.5 131.0 140.0 162.0
K mg/1 26.0 2.0 3.5 3.9 4.3 7.5
T-K mg/1 24.0 3.2 3.7 4.0 4.2 4.6
TKN mg/1 46.0 169.0 228.6 244.8 262.5 333.0
T-S04 mg/1 43.0 51.0 66.0 63.0 69.0 81.9
F mg/1 21.0 0.1 0.1 0.1 0.1 0.5
T-F mg/1 22.0 0.1 0.1 0.1 0.1 0.3
Si mg/1 9.0* *
Si(SI03 as Si) mg/1 32.0 3.0 4.0 4.1 4.6 12.0
T-Fe ug/1 3.0 *
D-Fe ug/1 4.0 *
D-Sr ug/1 23.0 365.0 665.5 741.0 752.0 949.0
T-Sr ug/1 24.0 408.0 711.8 739.5 773.5 894.0
TDS mg/1 39.0 502.0 551.0 578.0 610.0 698.0
T-P04 mg/1 22.0 0.0 0.0 0.0 0.1 0.1
*Less than 10 samples
NA No samples
D = Dissolved, T = total








COLLECTION_DATE Fcol Entero pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS

1/14/91 5.71 0.02 0.14 12 *

4/1/91 5.73 ***0.61 ** **

7/8/91 5.55 ***0.02 ** **

10/7/91 5.33 ***0.02 ** **

12/11/91 5.48 ***0.02 ** **

1/9/92 5.83 ***0.02 ** **

4/15/92 5.57 0.02 ** **

7/8/92 5.83 ***0.02 ** **

10/7/92 5.67 ***0.02 ** **

1/7/93 5.68 ***0.02 ** **

4/6/93 5.38 ***0.02 ** **

7/8/93 5.4 ***0.02 ** **

10/6/93 5.44 ***0.04 ** **

1/4/94 5.58 ***0.02 ** **

4/5/94 5.47 ***0.02 ** **

7/7/94 5.42 ***0.02 ** **

1/3/95 5.52 0.86 0.03 ** **

4/3/95 5.45 0.83 0.02 ** **

7/10/95 5.39 0.82 1.2 ****

10/2/95 5.54* *

12/19/95 5.16 *

1/9/96 5.21* *

2/19/96 5.04 ********

3/20/96 5.29* *

4/2/96 5.17 ********

5/14/96 5.27 ** *****

6/18/96 4.82 ** ****

7/2/96 4.97 ** *****

8/15/96 4.77 ** ****

9/18/96 4.8 ********

10/2/96 4.86 ** *****







COLLECTION_DATE Turb-F Ca Mg Na K SC-F CI S04 F
1/15/91 ****168 *
4/2/91 ****172 *
7/9/91 ****190 *
10/8/91 ****161 *
3/4/92 21 1.7 9.7 3.1 168 11 2.3 0.1
11/7/95 26 2.1 8.5 1.9 191 10 2.8 0.2
6/2/98 28.8 2.04 7.8 1.82 213 11 3.5 0.1
3/14/00 ****191 *
5/22/00 ****131 *
6/26/00 ****131 *
7/24/00 ****129 *
8/28/00 ****122 *
9/25/00 ****117 *
10/23/00 ****109 *
11/27/00 11.8 1.3 7.6 1.4 120 11 1.9 0.1
12/18/00 10.9 1.2 7.3 1.3 111 11 1.9 0.05
1/29/01 12.2 1.4 7.9 1.5 119 10 1.8 0.036
2/26/01 10.1 1.2 7.6 1.3 107 9.6 1.6 0.069
3/26/01 10.1 1.2 7.3 1.3 109 10 1.7 0.065
4/25/01 9 1.1 7.4 1.3 106 10 1.7 0.068
5/21/01 10.8 1.1 7.6 1.3 106 10 1.7 0.046
6/27/01 9.9 1.1 7.2 1.3 105 11 1.6 0.066
7/23/01 9 1.1 7.4 1.3 100 10 1.6 0.059
8/27/01 9.9 1.1 7.5 1.3 112 10 1.8 0.072
9/24/01 9.4 1.1 7.5 1.3 99 11 1.8 0.063
10/25/01 ****98 *
11/26/01 ****107 *
12/19/01 ****93* *
1/24/02 ****104 *
2/19/02 ****116 *
3/26/02 0.16 104 *
4/23/02 0.44 106 *
5/22/02 0.02 ***110 *
6/26/02 0.62 103 *
7/23/02 0.64 ***99 *
8/19/02* 98 *
9/23/02 0.54 107 *
10/21/02 0.24 102 *
11/18/02 0.6 ***95 *
12/16/02 0.43 0.089 *
1/30/03 0.4 ***103 *
2/20/03 0.28 ***95 *
3/24/03 0.85 ***110 *
4/23/03 1.6 106* *
5/27/03 0.25 ***120 *
6/23/03 0.43* 118 *











Descriptive Stats. for Chassahowitzka No. 1; Oct., 1993 to July, 2003
(Discharge data from March, 1997 to Dec., 2003)
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 38 20.4 23.2 23.4 23.5 24.8
SCf uS/cm 38 497.0 658.8 893.5 1396.5 2510.0
pH s.u. 38 6.7 7.5 7.6 7.6 8.1
Bicarb mg/1 36 139.0 143.0 146.0 151.8 162.0
D-NO3 mg/1 37 0.1 0.4 0.5 0.5 0.5
T-NO3 mg/1 NA NA NA NA NA NA
TKN mg/1 21 0.0 0.1 0.1 0.2 0.6
D-NO3NO2 mg/1 38 0.1 0.5 0.5 0.5 0.5
T-P mg/1 38 0.0 0.0 0.0 0.0 0.3
D-PO4 mg/1 38 0.0 0.0 0.0 0.0 0.0
T-NH3 mg/1 37 0.0 0.0 0.0 0.0 0.1
T-N mg/1 22 0.3 0.5 0.6 0.6 0.9
TOC mg/1 38 0.0 0.0 0.0 0.5 2.2
Ca mg/1 37 48.8 51.0 54.6 60.4 73.6
Mg mg/1 38 11.3 15.2 19.2 28.4 53.5
Na mg/1 38 34.0 56.9 95.9 166.3 368.0
K mg/1 38 1.2 2.3 3.2 6.6 13.4
D-SO4 mg/1 38 12.8 20.6 31.5 48.0 98.5
F mg/1 36 0.1 0.1 0.1 0.2 0.6
Cl mg/1 38 60.0 108.3 175.5 310.0 653.0
D-Fe ug/1 38 25.0 25.0 30.0 30.0 63.0
D-Sr ug/1 28 50.0 50.0 210.0 257.5 437.0
TDS mg/1 38 259.0 361.3 475.0 720.8 1320.0
Discharge CFS 70 34.0 48.8 56.0 65.3 80.0
*Less than 10 samples
NA No samples







COLLECTIONDATE Entero pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20
9/2/97 6.99* 24.52
10/9/97 6.91* 24.83
10/31/97 6.94* 24.27
12/12/97 6.96 ********23.67
1/5/98 6.95* 23.39
2/5/98 7.16 0.29 0.004 0.43 0.43 7.7 23.54
3/18/98 6.92 ********23.52
4/3/98 6.95 ********23.89
5/1/98 6.87* 25.1
5/29/98 6.85* 26.29
7/6/98 6.87* 26.89
8/7/98 6.86 ********24.51
9/9/98 6.87* 24.25
3/15/00 6.99* 26.92
5/23/00 6.96* 27.2
7/25/00 6.78 ********27.3
10/23/00 7.02* 24.3
1/29/01 6.9* 25.1
4/25/01 6.95* 25.4
7/24/01 6.96 ********24.5
10/24/01 1 6.85 4 0.27 0.004 0.44 0.47 6.1 382 24.7
1/23/02 1 6.9 4 0.24 0.004 0.44 0.47 6.7 383 24.2
4/23/02 1 6.83 4 0.26 0.004 0.45 0.46 6.6 381 25.85
7/23/02 1 6.67 4 0.26 0.004 0.44 0.44 6.5 384 25.28
10/22/02 6.85* 24.42
1/30/03 6.91* 24.42
4/23/03 6.93* 24.62







SAMP_DATE D-P04 TOC D-Ca D-Mg D-Na D-K D-CI D-S04 D-F TDS T-N D-N03 D-Fe D-Sr
10/7/93 0.02 1.7 19 2.9 2 0.3 3.1 6.1 0.05 85 30 *
2/21/94 0.03 0.5 20 3.3 2.3 0.1 3.1 4.3 0.06 81 30 *
4/11/94 0.03 0.5 21 3 2 0.1 3.1 5.6 0.05 64 0.46 22 *
7/18/94 0.03 0.5 19 3.1 2.1 0.05 2.7 5 0.08 77 0.47 80 *
10/31/94 0.03 0.5 19 3.3 2 0.05 3.3 4 0.08 75 0.464 30 *
12/8/94 0.04 0.5 19 3.1 2 0.05 3.2 3.8 0.06 64 0.45 30 *
3/29/95 0.023 0.5 21 3.4 2.1 0.05 3 3.8 0.06 74 0.565 30 *
7/20/95 0.037 0.5 18 3.6 2.3 0.05 2.6 3.7 0.06 72 0.518 30 *
10/30/95 0.023 0.5 18 3.1 2 0.05 3.4 4 0.06 76 0.44 30 *
2/1/96 0.036 0.5 18 2.9 2.1 0.05 3.4 4.3 0.05 74.9 30 *
4/11/96 0.027 0.5 19 3 2.1 0.05 3.2 4.1 0.07 86.9 0.496 30 50
7/22/96 0.016 0.85 19.56 2.98 1.7 0.1 2.8 4.3 0.092 89 0.491 60 50
10/21/96 0.052 0.5 17 3.1 2.1 0.05 2.9 4 0.062 72 0.534 30 50
2/3/97 0.023 0.5 17 3 2.1 0.2 2.4 3.4 0.06 60 0.466 45 50
4/14/97 0.037 0.5 15 3 2 0.05 3.1 3.9 0.119 62 0.491 30 50
6/30/97 0.021 0.3 17.4 3 1.99 0.095 3.09 4.22 0.114 76 0.525 30 50
10/1/97 0.023 0.3 16.5 2.82 1.98 0.08 3.09 4.22 0.069 67 0.544 30 50
1/20/98 0.027 0.3 18 3.09 2.08 0.06 2.97 4.07 0.048 92 0.66 0.5 30 50
4/9/98 0.066 0.55 17.7 2.88 1.93 0.09 3.56 4.31 0.07 82 0.54 0.487 30 50
7/8/98 0.023 0.38 18.6 2.84 1.99 0.09 3.45 7.68 0.17 111 0.83 0.597 30 50
10/14/98* 0.3 16 2.77 1.82 0.17 2.74 4.15 86* 30 50
1/12/99 0.013 0.3 17.5 3.1 2.01 0.06 3.07 4.11 0.05 89 0.68 0.576 30 50
1/19/00 0.027 0.3 21.1 3.37 2.12 0.1 2.78 3.82 80 0.709 25 210
1/17/01 0.034 0.3 17.5 3.2 2.05 0.09 3.38 3.93 0.07 81 0.75 0.709 25 210
1/23/02 0.026 0.3 18.76 3.3 2.28 0.12 3.59 4.07 0.07 86 0.8 0.8 25 210
1/14/03 0.019 0.3 17.8 3.33 2.41 0.335 3.65 5.13 -99.9 93 0.79 0.814 30 262






BULLETIN NO. 69


greater probability of having a high concentration of dissolved rock matrix material. Rock
indicators include: alkalinity (Alk), calcium (Ca), magnesium (Mg), plus to a lesser extent,
fluoride (F), iron (Fe), pH, potassium (K), strontium (Sr), sulfate (S04), and SC. Since
phosphate and phosphorus are often found in the mineral fluorapatite, the latter two analytes are
also included in the rock-matrix group.

Saline or Saltwater Analytes

Saline analytes are those associated with salts within either connate water or seawater.
Connate waters are those waters trapped within the sediments at the time of their deposition.
Since the original sediments were deposited in a marine environment, the pore spaces contain
very old saltwater. Saline analytes are obviously also found in the seawater located along
Florida's coasts. The major difference is the age of water. High concentrations of saline
analytes are often an indication of horizontal saltwater encroachment. However, they can also be
an indication of encroachment of highly mineralized water from the deeper portion of Florida's
aquifers, below the fresh-water "lens". The encroachment can be caused by the depletion of the
less dense fresh-water "lens" during a very dry period (e.g. a drought), or by the upcoming of
connate water during periods of heavy groundwater withdrawals. Pumping of groundwater
increased during dry periods and this process exacerbated the apparent intrusion process. Saline
analytes include: calcium, chloride, potassium, sodium (Na), specific conductance, sulfate, and
total dissolved solids (TDS).

Nutrient Analytes

Nutrients represent naturally occurring compounds or elements that are essential for the
growth of living organisms. However, if found in high concentrations, over-enrichment of
nutrients eutrophicationn) in a body of surface water can lead to an overgrowth of plant life
(including algae) and possibly a loss of dissolved oxygen. For this report, nutrient analytes
include: organic carbon, phosphate, phosphorus, a series of nitrogen related species, and to a
lesser extent, Mg, Ca, K, and sulfur in the form of sulfate. The nitrogen related species include
nitrogen, ammonia, total kjeldahl nitrogen, nitrate, and nitrite.

Other Analytes

Analytes in the "other" category do not fit in any of the other four categories. They
represent a miscellaneous group. For trend analyses, the analytes included in this group are
suspended solids, and turbidity.


DATA

The original data were from several sources. The data used for the trends analyses
discussed in this document are in Appendix H (online).







SAMP DATE D-Na D-K D-CI D-SO4 D-F D-Fe D-Sr TDS Month SEASON SeasonNo DischDate CFS
10/11/93 167 6.8 307 49 0.11 30 717 10 Fall 3 *
7/21/94 130 4.4 227 36 0.15 30 580 7 Summer 2 *
10/25/94 57 2 105 20 0.13 36 356 10 Fall 3 *
1/17/95 70 2.4 127 24 0.112 30 373 1 Winter 4 *
4/6/95 74 2.6 125 25 0.126 30 387 Spring 1 *
7/26/95 94 3 179 29 0.12 30 468 7 Summer 2 *
10/23/95 39 1.3 69 16 0.14 48 281 10 Fall 3 *
2/8/96 34 1.3 60 14 0.13 33 270 2 Winter 4 *
4/16/96 49 1.8 85 17 0.13 30 50 349 4 Spring 1 *
7/17/96 64.6 2.6 119 22 0.167 30 170 408 7 Summer 2 *
10/16/96 66 2.5 114 20 0.112 30 50 371 10 Fall 3 *
1/28/97 98 3.3 191 34 0.14 63 50 503 1 Winter 4 *
4/8/97 171 6.4 340 55 0.194 32 300 752 4 Spring 1 4/8/97 43
7/9/97 265 8.9 467 69.6 0.14 30 50 978 7 Summer 2 7/9/97 41
10/14/97 209 7.47 342 56.5 0.154 34.3 50 798 10 Fall 3 10/14/97 46
1/29/98 47.2 1.63 86.3 17.8 0.108 30 50 296 1 Winter 4 1/29/98 73
4/13/98 43.7 1.55 79.8 17.5 0.15 30 50 283 4 Spring 1 4/13/98 74
7/15/98 43.5 1.45 77 15.6 0.6 30 50 292 7 Summer 2 7/15/98 62
10/20/98 34.2 1.15 62.3 12.8 0.12 30 50 259 10 Fall 3 10/20/98 75
1/21/99 56.4 2.22 109 20.8 0.11 30 50 354 1 Winter 4 1/21/99 66
4/26/99 88.8 2.65 172 28.6 0.16 30 50 458 4 Spring 1 4/26/99 *
7/26/99 86.5 2.96 162 28.5 0.12 30 210 459 7 Summer 2 7/26/99 57
10/11/99 86.1 3.19 158 27.3 0.125 25 250 462 10 Fall 3 10/11/99
1/13/00 153 5.87 275 46.9 25 210 664 1 Winter 4 1/13/00 55
4/19/00 287 10.7 523 79.4 25 1121 4 Spring 1 4/19/00 49
7/18/00 368 13.4 653 98.5 0.14 25 210 1320 7 Summer 2 7/18/00 *
10/23/00 127 6.48 230 42.2 0.13 25 370 583 10 Fall 3 10/23/00 63
1/11/01 166 7.7 319 47.6 0.14 25 240 732 1 Winter 4 1/12/01 49
4/23/01 211 8.1 384 57.3 0.17 25 230 849 4 Spring 1 4/23/01 46
7/25/01 317 12.4 585 80.8 0.19 25 370 1208 7 Summer 2 7/25/01 52
10/15/01 126 5.09 226 40 0.17 35 588 10 Fall 3 10/15/01 67
1/29/02 121.46 4.78 214.56 36.3 0.14 25 210 550 1 Winter 4 1/29/02 54
4/9/02 166 6.39 290 46.1 0.12 25 360 716 4 Spring 1 4/9/02 50
7/22/02 215 8.99 381 58.8 0.12 30 250 896 7 Summer 2 4/10/02 52
10/7/02 97.8 3.6 172 36.7 0.13 30 260 482 10 Fall 3 10/7/02 62
1/15/03 56.1 2.32 106 25.9 -99.9 30 437 363 1 Winter 4 1/15/03 69
4/14/03 143 5.5 247 38 -99.9 30 380 632 4 Spring 1 4/14/03 65
7/24/03 77.7 3.15 132 24.8 -99.9 30 250 431 7 Summer 2 7/24/03 77







FK STATI PKSAMPLE COLLECTION_DATE COLLECT MONTH SEASON SEASONTemp Fe-D Mn-D Alk DO Fcol Entero
1781 SJRQ9101-12 1/15/91 1642 1 Winter 4 20.7 1.15 *
1781 SJRQ9104-11 4/2/91 1430 4 Spring 1 20.6 1.7 *
1781 SJRQ9107-9 7/9/91 1530 7 Summer 2 22.9 ** ***
1781 SJRQ9110-9 10/8/91 1419 10 Fall 3 20.6 ** ***
1781 SJRB9203-5 3/4/92 1015 3 Spring 1 22.6 10 68 *
1781 SJRB9511-12 11/7/95 834 11 Fall 3 20.4 25 10 75 *
1781 SJRB9806-8 6/2/98 1149 6 Summer 2 23.4 25 85 5.19 *
1781 NEDM0003-6 3/14/00 2010 3 Spring 1 21.03 0.57 *
1781 NEDM0005-6 5/22/00 1823 5 Spring 1 21.18 0.8 *
1781 NEDM0006-2 6/26/00 1448 6 Summer 2 21.31 0.21 *
1781 NEDM0007-6 7/24/00 1534 7 Summer 2 21.38 0.55 *
1781 NEDM0008-2 8/28/00 1318 8 Summer 2 21.4 0.6 *
1781 NEDM0009-2 9/25/00 1342 9 Fall 3 21.43 0.75 *
1781 NEDM0010-7 10/23/00 1010 10 Fall 3 21.14 0.86 *
1781 SJRM0011-3 11/27/00 1248 11 Fall 3 21.09 34 8.4 1 1
1781 SJRM0012-3 12/18/00 1355 12 Winter 4 20.98 35 0.66 1 1
1781 SJRM0101-1 1/29/01 1225 1 Winter 4 21.25 34 0.93 1 1
1781 SJRM0102-1 2/26/01 1340 2 Winter 4 21.29 34 0.83 1 1
1781 SJRM0103-1 3/26/01 1529 3 Spring 1 21.13 33 0.98 1 1
1781 SJRM0104-6 4/25/01 1220 4 Spring 1 20.98 29 0.92 1 1
1781 SJUA0104-29 5/21/01 1605 5 Spring 1 21.57 32 0.46 1 1
1781 SJRM0106-4 6/27/01 1910 6 Summer 2 21.31 33 0.5 1 1
1781 SJRM0107-1 7/23/01 1450 7 Summer 2 21.39 29 0.5 1 1
1781 SJRM0108-1 8/27/01 1450 8 Summer 2 21.33 32 0.55 1 1
1781 SJRM0109-1 9/24/01 1300 9 Fall 3 21.25 31 0.64 1 1
1781 SJRM0110-9 10/25/01 1119 10 Fall 3 21.23 0.71 *
1781 SJRM0111-1 11/26/01 1150 11 Fall 3 21.19 0.68 *
1781 SJRM0112-1 12/19/01 1335 12 Winter 4 21.02* 0.71 *
1781 SJRM0201-4 1/24/02 600 1 Winter 4 21.09 0.86 *
1781 SJRM0202-3 2/19/02 1154 2 Winter 4 21.08 0.78 *
1781 SJRM0203-3 3/26/02 1253 3 Spring 1 21.3 0.74 *
1781 SJRM0204-1 4/23/02 1105 4 Spring 1 21.24 0.71 *
1781 SJRM0205-3 5/22/02 1225 5 Spring 1 21.3 0.73 *
1781 SJRM0206-3 6/26/02 1215 6 Summer 2 21.47 0.84 *
1781 SJRM0207-1 7/23/02 924 7 Summer 2 21.27 1.04 *
1781 SJRM0208-1 8/19/02 1031 8 Summer 2 21.42 0.76 *
1781 SJRM0209-1 9/23/02 911 9 Fall 3 21.28 0.78 *
1781 SJRM0210-1 10/21/02 1356 10 Fall 3 21.27 0.87 *
1781 SJRM0211-1 11/18/02 11 Fall 3 21.02 0.75 *
1781 SJRM0212-1 12/16/02 12 Winter 4 21 0.74 *
1781 SJRM0301-8 1/30/03 1614 1 Winter 4 21.27 1.03 *
1781 SJRM0302-3 2/20/03 1654 2 Winter 4 21.29 0.84 *
1781 SJRM0303-1 3/24/03 1326 3 Spring 1 21.26 0.98 *
1781 SJRM0304-6 4/23/03 1720 4 Spring 1 21.35 1.36 *
1781 SJRM0305-1 5/27/03 1132 5 Spring 1 21.37 0.84 *
1781 SJRM0306-1 6/23/03 1504 6 Summer 2 21.46 0.94 *







Date TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) Turb Color
12/18/02* 32* *
1/21/03* 31.9* *
2/19/03* 31.9* *
3/20/03* 31.84* *
4/30/03* 32* *
5/28/03* 32.4* *
6/26/03* 33.8* *







SWFWMD
Location Sequence Dates DCaSen_slope UP/DOWN
736 B 1/91-12/97 0.86875 No evidence of trend
737 B 1/91-12/97 -0.025 DOWN
996 B 1/91-12/97 -0.04 No evidence of trend
997 B 1/91-12/97 -0.3 No evidence of trend
1087 B 1/91-12/97 0 No evidence of trend
Wells A Up 0
Wells A Down 1

Bobhill B 1/91-12/98 -0.222222 No evidence of trend
Boyette B 1/91-12/99 0 No evidence of trend
Chassal B 1/91-12/100 -0.125 No evidence of trend
ChassaM B 1/91-12/101 1 No evidence of trend
Homosl B 1/91-12/104 -0.0714286 No evidence of trend
Homos2 B 1/91-12/105 -0.777778 No evidence of trend
Homos3 B 1/91-12/106 0 No evidence of trend
HidRiv2T B 1/91-12/102 -1.16667 No evidence of trend
HidRivH B 1/91-12/103 -0.625 No evidence of trend
huntersspr B 1/91-12/107 0 No evidence of trend
lithiamain B 1/91-12/108 0 No evidence of trend
magnolspr B 1/91-12/109 0 No evidence of trend
pumphous B 1/91-12/110 -0.25 No evidence of trend
rainbow B 1/91-12/111 -0.5 DOWN
rainbow B 1/91-12/112 -0.428571 DOWN
rainbow B 1/91-12/113 -0.185 No evidence of trend
mboBseep B 1/91-12/115 -0.21131 DOWN
saltspr B 1/91-12/116 -1.41667 No evidence of trend
SWBettyJay B 1/91-12/117 0 No evidence of trend
SWBoat B 1/91-12/118 0.27013 No evidence of trend
SWBublng B 1/91-12/119 -0.483333 DOWN
SWBuckhm B 1/91-12/120 -0.585714 No evidence of trend
SWCatfish B 1/91-12/121 0.112179 No evidence of trend
tarponholespr B 1/91-12/122 0 No evidence of trend
trottermain B 1/91-12/123 -0.166667 No evidence of trend
weekwachmain B 1/91-12/124 0 No evidence of trend
Springs A Up 0
Springs A Down 4

Location Sequence Dates D CaSen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.6 No evidence of trend
737 C 1/98-6/03 -9999 -9999









EXECUTIVE SUMMARY


Background

Over the past several decades, it has been observed that the flows in Florida's springs are
declining and water quality is degrading. The primary chemical concern is considered to be
increased nutrients, including soluble forms of nitrogen and phosphorus. The sources are
predominantly from animal waste, human waste, and from the synthetic fertilizers used on lawns,
golf courses, or for agricultural activities.

In recognition of these issues, the Secretary of the Florida Department of Environmental
Protection (FDEP) directed the formation of the Florida Springs Task Force in 1999. The multi-
agency task force consisted of 16 scientists, planners, and citizens who were concerned about the
"environmental health" of Florida's springs. By 2000 the task force made a series of
recommendations to protect and restore Florida's springs. They are outlined in detail in Florida's
Springs: Strategies for Protection and Restoration (Florida Springs Task Force, 2000). Two of
the recommendations were to:

(1) Implement springs monitoring programs to detect and document long-term
trends in water quantity and quality

(2) Conduct research that will allow cause-and-effect relationships to be
established between land use and water management activities.

The purpose of monitoring is to both support research efforts and to confirm the effectiveness of
spring protection efforts. As a direct result of the first recommendation, the Florida Geological
Survey (FGS) took the lead in implementing a spring monitoring program. By 2004 it published
the latest Springs ofFlorida bulletin-a descriptive overview of Florida's springs.

The main purposes of this document are to: (1) determine trends where sufficient data are
available; (2) establish prototype methods for evaluating and reporting trends for future
applications; and (3) enhance the efforts of determining cause-and-effect relationships between
anthropogenic activities and the resulting spring-water quality and quantity on regional (water
management district-wide) and statewide scales. The reason for the latter is that many other
publications have addressed the causes of trends on an individual spring basis. If we attempted
to develop an exhaustive list of possible causes of trends for each spring, it could take many
years to accomplish. We decided to emphasize regional and statewide scales. An endeavor of
this nature has never been attempted. If regional or statewide trends were found, the causes and
possible solutions to those causes may become the highest priority water management issues.

In order to fully comprehend the implications of trends in springs, a thorough
understanding of the behavior of groundwater in wells is also necessary. In 1983, the FDEP
began a statewide groundwater quality monitoring network (Florida Statutes 403.063). Scott et
al. (1991) stated that the purpose of the network was to detect or predict contamination of
Florida's groundwater resources. Currently, several thousand wells are included in the network.
However, a subset of the wells are conducive to trend analysis (the Temporal Variability







Sequence A
Location Sequence Dates D Sr Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 0.666667 No evidence of trend
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 13.00 UP
Rock Springs B 1/91-12/97 6.52 UP
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 8.44 No evidence of trend
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 2
Springs down 0

Sequence C
Location Sequence Dates D Sr Sen_slope UP/DOWN
1417 C 1/98-6/03 -9999.00 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 -9999.00 -9999
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 -9999.00 -9999
1931 C 1/98-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 0.126667 No evidence of trend
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







Sequence A
Location Sequence Dates Alk_29801_Ha up Alk_29801 Ha down Alk_29801_n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT SO4TOT TKN NOXNTOT
92103601 TRY010C1 13-Nov-92 11/13/92 11 Fall 3 0.5 2.3 6.2 54.1 5.8 8.9 0.1 1.69
92113851 TRY010C1 11-Dec-92 12/11/92 12 Winter 4 0.8 3.1 4.9 36.3 6.9 10 0.4 0.85
93051755 TRY010C1 1-Jun-93 6/1/93 6 Summer 2 0.9 3.1 6.4 58.7 5.7 10.9 0.25 1.66
93063056 TRY010C1 13-Jul-93 7/13/93 7 Summer 2 0.5 2.6 6.4 57.6 5.7 11.6 0.1 1.76
93073260 TRY010C1 3-Aug-93 8/3/93 8 Summer 2 0.6 1.8 5.2 44.9 5.9 14.9 0.1 1.95
93083670 TRY010C1 2-Sep-93 9/2/93 9 Fall 3 0.6 2.4 6.2 54.8 5.6 11 0.1 1.94
94050667 TRY010C1 10-Jun-94 6/10/94 6 Summer 2 0.6 2.5 6.4 52.9 6.3 11.9 0.1 1.52
94081184 TRY010C1 16-Sep-94 9/16/94 9 Fall 3 0.7 2.4 6.3 50.6 5.9 0.1 10.8 0.1 1.49
95050932 TRY010C1 16-Jun-95 6/16/95 6 Summer 2 1 2.8 0 0.1 5.5 0.09 10 0.03 1.85
95061074 TRY010C1 5-Jul-95 7/5/95 7 Summer 2 0.2 2 7.3 46.4 3.8 0.08 10 0.05 1.17
95071235 TRY010C1 18-Aug-95 8/18/95 8 Summer 2 1 3.5 7.3 49.6 2 0.08 9 0.02 1.71
95081392 TRY010C1 8-Sep-95 9/8/95 9 Fall 3 0.8 3.8 7 48 5 0.09 11 0.17 1.86
96050674 TRY010C1 19-Jun-96 6/19/96 6 Summer 2 1 3.4 7.2 50.1 3 0.11 10 0.06 1.53
96060922 TRY010C1 25-Jul-96 7/25/96 7 Summer 2 0.5 3.6 8.4 51.8 4 0.15 12 0.02 1.77
96071094 TRY010C1 19-Aug-96 8/19/96 8 Summer 2 0.8 3 7.2 52.4 4.9 0.12 10 0.09 1.79
97061197 TRY01OC1 23-Jun-97 6/23/97 6 Summer 2 0.5 2.6 6.3 60.7 9 0.1 14 0.04 2.65
97061303 TRY010C1 15-Jul-97 7/15/97 7 Summer 2 0.4 2.3 6.1 55.8 5 0.19 14 0.04 2.68
97081635 TRY01 OC1 16-Sep-97 9/16/97 9 Fall 3 0.2 2.6 5.9 52.1 4 0.1 10.3 0.04 2.42
98051177 TRY01 OC1 15-Jun-98 6/15/98 6 Summer 2 0.9 2.7 6 55 6 0.03 11.2 0.06 2.79
98061484 TRY01 OC1 21-Jul-98 7/21/98 7 Summer 2 1.2 2.7 5.9 55.3 7 0.11 13 0.06 2.8
98071698 TRY010C1 24-Aug-98 8/24/98 8 Summer 2 0.9 2.5 5.8 53.2 5 0.11 10.6 0.04 2.77
98112511 TRY010C1 21-Dec-98 12/21/98 12 Winter 4 0.9 2.5 6.1 53.5 6 0.1 10 0.07 2.4
99023184 TRY01 OC1 18-Mar-99 3/18/99 3 Spring 1 0.6 2.4 5.9 55.1 5 0.09 10 0.04 1.78
99033527 TRY01OC1 22-Apr-99 4/22/99 4 Spring 1 0.7 2.3 6.2 55.1 5 0.09 11 0.04 2.29
99053794 TRY01 OC1 10-Jun-99 6/10/99 6 Summer 2 0.7 2.4 5.9 53.8 6 0.11 11 0.05 1.87
99074236 TRY010C1 19-Aug-99 8/19/99 8 Summer 2 0.6 2.1 5.5 49 5 0.08 12 0.07 1.8
99084454 TRY01 OC1 22-Sep-99 9/22/99 9 Fall 3 0.6 2.4 5.8 49.9 6 0.11 12 0.04 1.96
99094646 TRY01 OC1 14-Oct-99 10/14/99 10 Fall 3 0.6 2.4 6.2 6.2 0.08 12 0.06 1.87
99104786 TRY01 OC1 15-Nov-99 11/15/99 11 Fall 3 0.9 2.3 5.8 50 5.2 0.18 12 0.08 1.72
99114971 TRY010C1 14-Dec-99 12/14/99 12 Winter 4 0.6 2.5 6.1 52.5 5.8 0.15 11 0.04 1.64
99125353 TRY01OC1 13-Jan-00 1/13/00 1 Winter 4 0.6 2.8 7 61.4 5.3 0.14 11 0.07 1.56
15480 TRY01 OC1 16-Feb-00 2/16/00 2 Winter 4 0.6 2.6 6.6 57.1 6.4 0.14 10.6 0.05 1.42
25738 TRY01 OC1 14-Mar-00 3/14/00 3 Spring 1 0.6 2.6 6.6 56.4 5.8 0.16 12 0.05 1.42
20035985 TRY01 OC1 18-Apr-00 4/18/00 4 Spring 1 0.5 2.5 6.5 57.2 5.1 0.11 12 0.04 1.41
20046060 TRY01OC1 3-May-00 5/3/00 5 Spring 1 0.4 2.5 6.4 56 5.1 0.15 11 0.04 1.27
20056224 TRY01OC1 13-Jun-00 6/13/00 6 Summer 2 0.6 3.9 6.8 58.5 5.9 0.09 11 0.06 1.38
20066507 TRY01OC1 17-Jul-00 7/17/00 7 Summer 2 0.5 2.6 6.5 57 5.9 0.08 12 0.05 1.4
20076722 TRY01 OC1 2-Aug-00 8/2/00 8 Summer 2 0.6 2.7 6.7 58.3 5.8 0.09 11.5 0.05 1.4
20097167 TRY01OC1 17-Oct-00 10/17/00 10 Fall 3 0.8 2.9 6.8 59.6 5.8 0.05 13 0.05 2.2
2010029 TRY01 OC1 24-Oct-00 10/24/00 10 Fall 3 ** 2.05






FLORIDA GEOLOGICAL SURVEY


Statewide Well Water-quality Trends

Table 62 shows analytes with statewide trends for each time sequence for unconfined,
confined, and all (combined) groundwater resources.


Table 62. Statewide Groundwater Trends Based on Sign Tests: Sequences A, B, and C.

Sequence A (1991 2003)
Groundwater Resource
Unconfined GW Confined GW All
WL(msl) p-val= 0.019 WL(msl) I p-val= 0.004
Turb p-val = 0.004 Turb I p-val= 0.002
Ca I p-val= 0.035
pH I p-val = 0.04 pH { p-val = <0.001
Temp 1 p-val = 0.035 Temp 1 p-val = 0.036


Sequence B (1991 1997)
Groundwater Resource
Unconfined GW Confined GW All
None pH J p-val = 0.031 pH J p-val = 0.039


Sequence C (1998 2003)
Groundwater Resource
Unconfined GW Confined GW All
None None pH I p-val= 0.011
Temp 1 p-val = 0.041


For Sequence A, Table 62 reveals that temperature had an upward trend statewide for
unconfined and combined groundwater. For unconfined groundwater, turbidity and water levels
had downward trends while pH trended downward in confined groundwater. For combined
groundwater, calcium, temperature, turbidity, water levels and pH had downward trends. By
defining strong trends as those with p-values of less than 0.02, pH and water levels had strong
downward trends for combined groundwater. During Sequence B, pH had downward trends in
confined and in the combined groundwater resources. During Sequence C, pH had a strong
downward trend in the combined groundwater resources. Temperature had an upward trend.

Comparison of Strong Statewide Trends for Groundwater and Spring Water

Whereas well water (Table 62) displays strong trends in calcium and several field
analytes, Table 63 indicates that rock and saline indicators show strong (p-value <0.02) statewide
trends for springs. In Table 63, during Sequence A, flow had a significantly decreasing trend and
the following rock-matrix indicators had upward trends: alkalinity, calcium, chloride, fluoride,
potassium, magnesium, sodium, specific conductance, strontium, sulfate, and total dissolved
solids. No rock-matrix or saline indicator had a significant trend during Sequence B. Trends
during Sequence C were the same as those in Sequence A with one exception. Whereas total







SAMP DATE D-F D-Fe D-Sr TDS CFS
11/1/93 0.06 60 3502 *
10/26/94 0.157 165 3390 *
1/19/95 0.119 127 2888 *
4/5/95 0.128 125 3266 *
7/25/95 0.11 75 2769 *
10/24/95 0.14 179 3066 94
2/5/96 0.13 174 3594 *
4/17/96 0.13 182 1300 3299 108
7/16/96 0.161 113 560 3060 96
10/14/96 0.118 105 1400 2655 105
1/30/97 0.14 164 500 3146 101
4/10/97 0.18 94 500 2900 90
7/7/97 0.16 30 341 2808 79
10/6/97 0.151 87.6 50 3130 93
1/13/98 0.12 108 1250 3146 105
4/13/98 0.002 240 50 5934 117
7/14/98 0.45 250 50 2873 96
10/19/98 0.05 240 50 2930 100
1/19/99 0.05 130 50 3020 100
4/28/99 0.05 50 50 3309 78
7/28/99 0.14 90 1040 2282 83
10/13/99 0.14 60 870 3180 84
1/12/00 50 1210 3300 98
4/17/00 25 3774 75
7/17/00 0.15 30 210 3778 64
10/25/00 0.15 110 1450 3608 90
1/9/01 0.16 70 920 4860 81
4/25/01 0.18 40 1160 3938 76
10/16/01 0.15 130 1410 3600 89
1/30/02 0.15 110 1360 3702 86
4/11/02 0.14 50 1490 3450 79
10/7/02 0.14 60 1130 3070 85
1/13/03 100 2630 3022 115
4/15/03 134 1840 3390 101
7/24/03 131 1010 3130 105












Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value

10 Temp Deg C 61 23.5 24.7 24.9 25.7 28.3
1046 D-Fe microg/1 4 *
1056 D-Mn microg/1 2 *
29801 Bicarb mg/1 8 *
299 DO mg/1 13 0.0 0.2 0.3 0.4 1.7
31616 Fcol #/100ml 4 *
31649 Entero #/100 ml 3 *
406 H ph units 61 6.4 7.2 7.3 7.4 7.7

4255 D-Alk mg/1
530 Resid mg/1 4 *
608 D-NH3 mg/1 7 *
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 8 *
666 D-P mg/1 8 *
671 D-PO4 mg/1 6 *
680 TOC mg/1 6 *
70300 TDS mg/1 4 *
72109 DtoH20 Ft 61 4.2 7.4 8.5 9.4 10.9
76 Turb Turb units 8 *
81 Color Pt-Co 5 *
82078 Turb(field) Turb units 5 *
915 D-Ca mg/1 8 *
925 D-Mg mg/1 8 *
930 D-Na mg/1 8 *
935 D-K mg/1 8 *
94 Cond(field) micromhos/cm 61 0.0 0.0 0.0 0.7 8.2
941 D-C1 mg/1 8 *
946 D-SO4 mg/1 8 *
950 D-F mg/1 8* *


*Less than 10 samples
NA No samples


nP~rrintivP ~t~ti~tir~ fnr 2873


n~tP~r r)rtnhpr~l991 tn Anril~ 2CIC13







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT SO4TOT TKN
92103588 HOR010C1 11-Nov-92 11/11/92 11 Fall 3 0.8 6.1 7.3 59.2 12.5 23.4 0.1
92113837 HOR010C1 9-Dec-92 12/9/92 12 Winter 4 1.2 7.2 7.8 59.7 12.2 44.2 0.1
93051804 HOR010C1 9-Jun-93 6/9/93 6 Summer 2 1 7.9 7.8 61.3 12.3 45.7 0.13
93063073 HOR010C1 15-Jul-93 7/15/93 7 Summer 2 0.5 2.8 5.4 57.6 5.4 11 0.1
93073309 HOR010C1 11-Aug-93 8/11/93 8 Summer 2 0.8 7 7.5 56.5 14.8 45.7 0.19
93083694 HOR010C1 8-Sep-93 9/8/93 9 Fall 3 0.9 7.8 8.2 61.4 14.9 43.9 0.3
94050669 HOR010C1 10-Jun-94 6/10/94 6 Summer 2 1 7.9 8.5 60.7 14.6 45.3 0.1
94060965 HOR010C1 13-Jul-94 7/13/94 7 Summer 2 1.1 8.4 9.7 64 13.8 49.5 0.24
94071072 HOR010C1 17-Aug-94 8/17/94 8 Summer 2 0.7 7.3 9.3 63.2 14.3 59 0.21
94081172 HOR010C1 14-Sep-94 9/14/94 9 Fall 3 1.1 7.6 9 60.4 14.2 54.8 0.1
95050922 HOR010C1 15-Jun-95 6/15/95 6 Summer 2 1.2 8.8 10.7 43.4 11.4 0.19 57 0.07
95061094 HOR010C1 5-Jul-95 7/5/95 7 Summer 2 1.2 9.5 10.4 62 11.9 0.16 55 0.05
95071219 HOR010C1 16-Aug-95 8/16/95 8 Summer 2 1 9.5 12.8 61.9 12 0.22 63 0.02
95081373 HOR010C1 13-Sep-95 9/13/95 9 Fall 3 1.3 9.8 11 66.3 62 0.2 73 0.21
96050683 HOR010C1 20-Jun-96 6/20/96 6 Summer 2 1.5 10.1 10.2 59.2 13 0.22 45 0.05
96060920 HOR010C1 25-Jul-96 7/25/96 7 Summer 2 1 10.2 11 60.1 10 0.15 46 0.16
96071109 HOR010C1 21-Aug-96 8/21/96 8 Summer 2 1.1 10.1 9.2 57.6 10.1 0.22 36 0.11
97051099 HOR010C1 19-Jun-97 6/19/97 6 Summer 2 0.5 8 9 66.8 14 0.19 47 0.05
97061322 HOR010C1 21-Jul-97 7/21/97 7 Summer 2 0.4 7.7 7.9 60.3 10 0.23 44 0.04
97071497 HOR010C1 20-Aug-97 8/20/97 8 Summer 2 0.3 7.7 9.5 67.3 8 0.23 53 0.04
98040906 HOR010C1 27-Apr-98 4/27/98 4 Spring 1 0.6 7 6.1 58.6 15 0.2 32.5 0.06
98051109 HOR010C1 2-Jun-98 6/2/98 6 Summer 2 0.3 6.2 5 53.2 11 0.11 32.2 0.18
98061499 HOR010C1 28-Jul-98 7/28/98 7 Summer 2 0.7 6.8 6.1 55 4 0.14 38.2 0.04
98112522 HOR010C1 22-Dec-98 12/22/98 12 Winter 4 0.7 7.1 5.9 57.4 5 0.14 35 0.1
99023172 HOR010C1 22-Mar-99 3/22/99 3 Spring 1 1.5 7.5 6.8 54.2 6 0.17 36 0.06
99033515 HOR010C1 19-Apr-99 4/19/99 4 Spring 1 0.7 4.7 4.5 57.5 10 0.13 10 0.06
99053797 HOR010C1 21-Jun-99 6/21/99 6 Summer 2 1 7.7 6.8 57.2 12 0.16 37 0.12
99074161 HOR010C1 2-Aug-99 8/2/99 8 Summer 2 0.9 8.3 7.2 59.4 14 0.19 36 0.09
99084342 HOR010C1 1-Sep-99 9/1/99 9 Fall 3 0.9 8.9 7.3 61.1 15 0.13 38 0.17
99094561 HOR010C1 20-Oct-99 10/20/99 10 Fall 3 0.9 7.5 7.5 55.1 12.3 0.2 40.5 0.08
99104789 HOR010C1 17-Nov-99 11/17/99 11 Fall 3 1.1 7.8 6.6 52.6 16.7 0.24 38.5 0.11
99114950 HOR010C1 8-Dec-99 12/8/99 12 Winter 4 0.9 8.9 7.9 63.8 15.4 0.24 38 0.11
99125308 HOR010C1 4-Jan-00 1/4/00 1 Winter 4 0.9 9.1 8.1 64.4 11 0.22 38.5 0.08
15468 HOR010C1 21-Feb-00 2/21/00 2 Winter 4 1 9.3 8.7 67.7 14.6 0.23 40 0.08
25615 HOR010C1 2-Mar-00 3/2/00 3 Spring 1 1 9.2 8.8 70.9 16.2 0.22 40 0.06
20035902 HOR010C1 5-Apr-00 4/5/00 4 Spring 1 0.9 9.2 8.8 66.9 15 0.15 47 0.04
20046081 HOR010C1 9-May-00 5/9/00 5 Spring 1 0.9 8.8 8.9 69.1 15.1 0.19 47 0.04
20056205 HOR010C1 8-Jun-00 6/8/00 6 Summer 2 1 9.3 9.4 68.7 15.5 0.2 46.7 0.09
20066452 HOR010C1 11-Jul-00 7/11/00 7 Summer 2 0.2 8.4 9.1 65.5 14.9 0.2 46.7 0.06
20076658 HOR010C1 7-Aug-00 8/7/00 8 Summer 2 1 8.7 9.7 69.6 14.7 0.21 51 0.07
20086930 HOR010C1 12-Sep-00 9/12/00 9 Fall 3 0.9 8.6 9.8 73.2 15 0.08 48.3 0.07
20097100 HOR010C1 2-Oct-00 10/2/00 10 Fall 3 0.9 8.6 10.1 70.2 12.8 0.22 60 0.04







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT SO4TOT TKN NOXNTO PTOT
21017892 MAN010C1 21-Feb-01 2/21/01 2 Winter 4 0.3 3.9 6.1 83.8 7.3 0.1 32 0.12 1.36 0.031
21028012 MAN010C1 15-Mar-01 3/15/01 3 Spring 1 0.8 3.7 6 83.8 7.7 0.1 32.5 17.8 1.54 0.046
21028011 MAN010C1 15-Mar-01 3/15/01 3 Spring 1 0.8 3.9 6.3 88 8.4 0.1 30.5 11.4 1.53 0.046
21038223 MAN010C1 11-Apr-01 4/11/01 4 Spring 1 0.8 3.8 6 83.1 7.5 0.05 31 0.04 1.46 0.075
21048324 MAN010C1 10-May-01 5/10/01 5 Spring 1 0.8 4.1 6.4 87 7.8 0.1 32.5 0.05 1.24 0.037
21058454 MAN010C1 19-Jun-01 6/19/01 6 Summer 2 0.8 3.9 5.8 83.6 7.4 0.09 27.5 0.04 1.18 0.034
21068667 MAN010C1 17-Jul-01 7/17/01 7 Summer 2 0.9 4 6.6 85.7 8.4 0.09 32.5 0.95 1.56 0.027
21078827 MAN010C1 14-Aug-01 8/14/01 8 Summer 2 0.8 4.7 7.1 90.9 9.6 0.1 42.5 0.04 1.82 0.021
21088915 MAN010C1 10-Sep-01 9/10/01 9 Fall 3 1 4.7 6.4 84.1 8.1 0.09 36 0.05 1.99 0.02
21099228 MAN010C1 25-Oct-01 10/25/01 10 Fall 3 1 4.1 6.4 86.6 7.6 0.09 28.6 0.04 1.82 0.06
21109306 MAN010C1 8-Nov-01 11/8/01 11 Fall 3 1.5 5.2 7.3 95.8 8.6 0.06 27.7 0.04 1.78 0.06
21119497 MAN010C1 6-Dec-01 12/6/01 12 Winter 4 1.1 5 6.5 83.8 7.6 0.08 31.1 0.09 1.63 0.026
21129717 MAN010C1 16-Jan-02 1/16/02 1 Winter 4 0.8 3.5 5.6 70.9 7.4 0.09 30 0.05 1.58 0.026
22019862 MAN010C1 11-Feb-02 2/11/02 2 Winter 4 1 4.1 7.3 96.9 7.4 0.09 32.9 0.05 1.58 0.027
22020022 MAN010C1 11-Mar-02 3/11/02 3 Spring 1 0.9 4 7.2 89.5 7.2 0.09 36.3 0.04 1.54 0.023
22030245 MAN010C1 11-Apr-02 4/11/02 4 Spring 1 0.7 3.7 6.6 88.1 7 0.1 32.8 0.26 1.3 0.038
22050535 MAN010C1 20-Jun-02 6/20/02 6 Summer 2 0.8 3.6 5.9 76.6 7.4 0.15 30.9 0.07 1.47 0.031
MAN010C1 7/15/02 7 2* ** **
MAN010C1 8/12/02 8 2* ** **
MAN010C1 9/9/02 9 3* ** **
MAN010C1 10/28/02 10 3 1.1 4.3 6.6 83.7 11.7 0.39 35 0.3 1.78 0.05
MAN010C1 11/11/02 11 3 1.1 3.2 6.1 78.9 8.5 0.12 33.9 0.2 1.7 0.06
MAN010C1 12/2/02 12 4 1.1 4.2 7.1 85.8 11.1 0.19 14.2 0.2 1.52 0.04
MAN010C1 1/14/03 1 4 1.2 4.2 7 85.8 10.5 0.21 49.8 0.2 1.62 0.05
MAN010C1 2/13/03 2 4 1.1 4.7 7.1 87 9.7 0.14 46.2 0.1 1.8 0.06
MAN010C1 3/13/03 3 1 1.1 4.3 6.2 80 8.9 0.12 35.4 0.5 1.62 0.06
MAN010C1 5/12/03 5 1 0.9 3.9 6.5 80.4 8.7 0.13 39.2 0.2 1.46 0.06
MAN010C1 6/2/03 6 2 1 4.1 6.6 85 8.7 0.09 34.4 0.2 1.67 0.06
MAN010C1 7/8/03 7 2 1 4 6.5 83.2 8.7 0.2 34.7 0.2 1.6 0.04
MAN010C1 8/4/03 8 2 1.1 4.2 6.7 85.7 8.6 0.1 41.9 0.36 1.88 0.051
MAN010C1 9/10/03 9 3 1.1 4 7 88.1 8.6 0.09 41.6 0.3 1.64 0.045
MAN010C1 10/13/03 10 3* ** **
MAN010C1 11/10/03 11 3* ** **
MAN010C1 12/1/03 12 4* ** **
Manatee







SAMP_DATE D-NO3NO T-P D-P04 TOC D-Ca D-Mg D-Na D-K D-CI D-S04 D-F D-Fe D-Sr TDS
10/21/93 0.38 0.01 0.01 0.67 47 14 66 2.2 125 21 0.1 30 346
7/25/94 0.42 0.02 0.02 1.98 44 13 60 2 112 19 0.12 30 343
10/26/94 0.385 0.028 0.033 1.03 43 11 44 1.2 83 15 0.113 30 285
1/19/95 0.327 0.04 0.031 1.89 46 11 48 1.4 83 15 0.082 30 295
4/5/95 0.376 0.019 0.01 0.5 47 12 49 1.5 84 17 0.088 30 333
7/25/95 0.376 0.022 0.022 0.81 41 9.9 45 1.2 82 13 0.08 30 287
10/24/95 0.406 0.019 0.016 1.23 44 10 36 1.1 64 13 0.1 30 251
2/5/96 0.373 0.028 0.019 1.03 40 8.8 33 1 59 12 0.09 66 254
4/17/96 0.387 0.019 0.016 0.5 44 10 36 1.2 58 12 0.09 30 50 254
7/16/96 0.376 0.01 0.015 1.44 51.55 9.88 30.8 1.1 54 11 0.12 30 80 258
10/14/96 0.415 0.063 0.035 1.08 40 9.5 29 1 53 11 0.098 30 300 236
1/30/97 0.424 0.019 0.024 0.5 39 9.9 34 1.2 56 11 30 50 264
4/10/97 0.437 0.048 0.026 0.5 39 11 42 1.4 75 14 0.147 30 50 273
7/7/97 0.45 0.019 0.018 0.48 44.9 13.1 61.2 1.9 117 25.5 0.19 30 50 359
10/6/97 0.426 0.012 0.015 0.77 48 14.6 79.3 2.17 145 25.5 0.137 30 50 401
1/13/98 0.363 0.021 0.022 2.21 45.4 11.5 51 1.36 95.4 16.8 30 50 315
4/13/98 0.366 0.03 0.017 1.75 42.1 9.38 33.2 0.96 61.5 12.1 30 50 234
7/14/98 0.415 0.011 0.014 0.89 41.5 8.78 31.4 1.28 56.2 14.8 30 50 220
10/19/98 0.41 0.017 0.013 1.04 39.2 8.65 27.5 1.17 50.3 9.56 0.09 30 50 213
1/19/99 0.466 0.022 0.023 0.61 40.4 8.71 26.9 0.78 49.4 11 0.07 30 50 214
1/12/00 0.487 0.026 0.017 0.3 46.2 11.5 41.1 1.26 73.9 14.1 25 210 269
4/17/00 0.518 0.024 0.014 0.3 48.2 13.8 64.2 1.95 121 21.5 25 331
1/9/01 0.494 0.029 0.022 0.53 50.3 18.1 96.8 3.93 194 29 0.1 25 210 457
1/30/02 0.519 0.019 0.014 0.4 50.06 19.21 116.69 4.02 206.06 32.45 0.11 30 210 506
1/13/03 0.491 0.019 0.014 1 48.4 17 91.7 3.21 184 29.1 -99.9 30 429
7/24/03 0.358 0.019 0.015 3.9 47 14.1 55 2.25 93.9 15.3 -99.9 30 250










Date T-N03 D-N03N02 T-N03N02 T-P D-P TOC Ca T-Ca Mg T-Mg T-Na Na K T-K TKN T-S04
1/3/91 1.45 0.5 29* 9.3 5 1.2* 9 19
7/10/91 1.47* ** *27* 8.5 3 1.1* 7 21
1/7/92* 1.8 ** *29* 87* 5 1.2* 9 15
7/7/92* 1.55* 30 28 9.4 9 5 5 1.2 1.2 8 20
1/19/93* 1.49** 1.6 30 28 9.1 9.7 5 5 1.1 1.1 11 21
5/20/93* ** *30* 8.9* 4.9 1.1 8.3 19
7/20/93* 1.81 ** *29 31.9 8.65 8.89 7.81 4.71 1.1 1.8 24 20
1/12/94* 1.57 ** 27 26 8.2 8.3 5 5 1.1 1.2 8 15
7/13/94* 1.46 ** 29 30 8.8 9.3 5 5 1.4 1.3 8 20
11/22/94* 1.42* ** *32 30 9.8 9.4 5 5 1.6 1.5 13 20
1/9/95 1.49 *32 30 9.2 8.9 5 5 1.3 1.4 5 20
3/22/95 *31 30 8.1 8 4 5 1.7 1.6 7 19
5/25/95 ** *32* 8* 5.1 1.2 8.2 20
6/6/95 ********
7/12/95* 1.55* 27* 8.5 5 1.8 7 19
11/2/95****
11/15/95* 1.46* *** 29* 9 6 1.2 9 22
1/17/96 1.55* *** 30 8.8 6 1.4 8 20
3/21/96 1.62* *** 30 9.2 5 1.6 8 18
6/11/96 ****
7/10/96 1.57* *** 29 8.5 5 1.3 9 22
7/11/96 *
11/13/96 1.58* 29* 8.6 5 1.4 8 21
1/15/97 1.51* *** 29 8.6 5 1.3 8 24
3/12/97 1.446* *** 28 9.2 5 1.3 8 20
4/21/97********** 7.9 18
7/22/97 1.347* 28 9.6 5 ** 1.3 8.737 19.008
11/11/97 1.413 *** 28.97 8.81 5.42 ** 1.555 8.493 19.063
1/21/98 1.222* 29.17 8.95 5.38 ** 1.445 10.487 22.353
3/27/98* 37.42 11.03 9.08 1.853 13.829 18.003
7/15/98 1.581* 31.04 9.33 4.473 ** 1.209 8.946 17.284
11/16/98 1.561 *30.24 9.08 4.948 1.293 7.649 17.87
1/14/99 1.536* *** 30.61 9.75 5.53 *8.832 18.853
3/17/99 1.461* *** 30.64 9.26 4.975 1.098 8.563 17.798
5/19/99
7/14/99* 1.382 ** 31.33 9.48 5.03 1.155 8.2 19.5
8/16/99* *1.4 0.08 0.08***
11/16/99* 1.443 ** 31.92* 9.51 4.733 1.054 11.224 18.793
3/15/00* 1.51 *** 31.23 9.68 5.43 1.443 7.762 17.155
1/17/01 ****
2/27/01 ****
3/6/01 *
5/15/01*
7/10/01
9/17/01 ****
11/13/01 ****
7/16/02
1/23/03
3/27/03 **
6/25/03 **
8/12/03* *
11/18/03* *







Sequence A
Location Sequence Dates DN03 N Ha_up D_N03 N Ha down D_N03 N n
1943 A 1/91-6/03 -9999 -9999 -9999
2003 A 1/91-6/03 -9999 -9999 -9999
2193 A 1/91-6/03 -9999 -9999 -9999
2259 A 1/91-6/03 -9999 -9999 -9999
2404 A 1/91-6/03 -9999 -9999 -9999
2465 A 1/91-6/03 -9999 -9999 -9999
2585 A 1/91-6/03 -9999 -9999 -9999
2675 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 -9999 -9999 -9999
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates DN03 N Ha_up DN03 N Ha down DN03 N n
1943 B 1/91-12/97 -9999 -9999 -9999
2003 B 1/91-12/97 -9999 -9999 -9999
2193 B 1/91-12/97 -9999 -9999 -9999
2259 B 1/91-12/97 -9999 -9999 -9999
2404 B 1/91-12/97 -9999 -9999 -9999
2465 B 1/91-12/97 -9999 -9999 -9999
2585 B 1/91-12/97 -9999 -9999 -9999
2675 B 1/91-12/97 -9999 -9999 -9999







Date TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) Turb Color Turb-F
1/3/95 0.31 0.02 ***85.84 *
4/6/95 0.31 0.02 ***86.9* *
7/11/95 **** 85.4* **
10/11/95 **** 85.3* **
11/8/95 84.38 *
12/4/95 ********84.94 *
1/4/96 **** 84.77 ***
3/6/96* 85* *
4/3/96 ******** 86* *
5/2/96* 86.1* *
6/3/96 ******** 85* *
7/2/96* 85.37* *
8/6/96 86.52* *
9/5/96 86.33* *
10/1/96* 85.83* *
11/12/96 0.27 0.013 0.45 0.42 8.7* 86.3 23* *
12/4/96 ******** 86.3 ***
1/7/97* *** 86.46* *
2/6/97* 86.83* *
4/4/97* 86.34 *
5/8/97 86.39 *
6/2/97* 86.45***
7/2/97** 85.71* *
8/6/97* 86.51* *
9/5/97* *** 85.5* *
9/30/97 ******** 85.1* *
11/5/97 ******** 85.4* **
12/3/97 ********85.89 *
1/8/98 88.07 *
3/4/98* 87.35 *
4/20/98 ********86.63 *
5/8/98 ******** 85.9* *
6/4/98* 84.45* *
7/2/98 **** 83.75 ***
8/6/98* 85.64* *
9/1/98* 84.55* *
10/6/98 ********87.17 *
11/5/98 **** 86.16 ***
1/5/99 84.91 *
2/3/99 85.83* *
3/4/99* 85.46* *
4/6/99* 84.82* *
5/6/99 83.59* *






FLORIDA GEOLOGICAL SURVEY


St. Johns River Water Management District

The springs located in the St. Johns River Water Management District (SJRWMD) and
used in this report are found in Figure 27. Spring names and abbreviations are found in Table 8.


Figure 27. Location of Springs within the SJRWMD.







Sequence A
Location Sequence Dates D Ca Ha down D Ca n
2793 A 1/91-6/03 0.00006 27
2872 A 1/91-6/03 0.36737 28
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 0.76175 28
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D Ca Ha down D Ca n
2793 B 1/91-12/97 0.00677 17
2872 B 1/91-12/97 0.91606 15
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 0.22403 18
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates D Ca Ha down D Ca n
2793 C 1/98-6/03 0.57233 10
2872 C 1/98-6/03 0.68977 13
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.355 13
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0.18006 13
6490 C 1/98-6/03 0.5 10
Wells A Up
Wells A Down






BULLETIN NO. 69


Northwest Florida Water Management District

Northwest Florida wells (Figure 40) showed a lowering of water levels for Sequence A
(six of eight wells were down, with no increasing trends). Other analytes that had trends were as
follows. The analyte pH decreased in four wells, while none of the eight increased. Sodium and
sulfate increased (four increased in eight wells, none decreased).


Figure 40. Location of wells within the NWFWMD.


Changes in sequences B and C reflected those in Sequence A. For Sequence B water
level fell (six of eight wells had decreasing levels, while none increased). Several wells also
showed increases in sodium (increased in four wells, decreased in none) and conductivity
(increased in five wells, decreased in none).

Unlike springs, where the main influences on the chemistries occurred during Sequence
C, the only notable analyte in well data demonstrating a change was pH. The analyte decreased
in six of eight wells studied (and increased in none).

Water Levels and pH

Figures 41and 42 illustrate several of these trends. The association of water level and pH
suggest a relationship between the two analytes and will be discussed later. A drop in water
levels occurred in both unconfined and confined wells. Confined aquifer Well 312 (Figure 42)
showed a 5 m (15 ft) decline over the period of record.






FLORIDA GEOLOGICAL SURVEY


13 years; Sequence A was 13 years in length (1991-2003). It is difficult to make that
determination of the cycle's influence on the analyte. With this in mind, the authors were
concerned with the influence of shorter term cycles on Sequence A. Since water samples were
collected on a quarterly and monthly basis while springs were sampled either on a quarterly or
quasi-quarterly fashion, it was decided to determine if cycles in those frequencies were present in
the data.





6


2
0

S-2
0 -4
6 1 1 1 1-
0 5 10 15 20 25
T im e (y ears)


Figure 12. Example illustration of seasonality with a six-year cycle.


For each spring or well for Sequence A, the presence of seasonality for each sampled
analyte was determined using a Kruskal-Wallis (KW) test (Hollander and Wolfe, 1973; Gilbert,
1987). Quarterly and monthly seasonality tests were conducted because stations were generally
sampled quarterly and occasionally monthly. It should be noted that monthly seasonality tests
could only be conducted if samples were collected on a monthly or quasi-monthly basis. For the
most part, monthly samples were only collected for 24 of the 46 wells and only for field analytes.
On the other hand, quarterly samples were obtained on the remaining wells and quasi-quarterly
samples were collected on most of the springs. The quasi-quarterly sampling by the WMDs and
the arbitrary seasonal breakdown was as follows: (1) December February, (2) March May, (3)
June August, and (4) September November. It should be noted that as we conducted the
analyses for trends, we found that, based on the four arbitrary seasons, most analytes did not
display significant seasonality. We recognize that in the future, with the acquisition of additional
data and with additional trend analyses, a better breakdown may be discovered. Nevertheless,
for this analysis exercise, the KW test was used to compare the distribution of two or more
populations (seasons) by indirectly comparing their median values during each season as defined
by this study. If we had defined only two seasons, the KW test is equivalent to a Mann-Whitney
(MW) test (Conover, 1999). Both tests are discussed in greater detail in Appendix E. It should
also be noted that the results of the MW test are identical to another very similar test; the







Date SEASON Temp DeSnTeml Fe-D Mn-D Alk DO Fcol Entero pH TSS NH3 NO3-D
10/19/99 3 26.2 26.2096 0.82 7.25 *
11/18/99 3 26.01 26.0196 0.22 7.26 *
12/15/99 4 26.15 26.0465 0.21 7.36 *
1/24/00 4 26.04 25.9365 0.25 7.36 *
2/24/00 4 26.23 26.1265 0.11 7.4 *
3/22/00 1 26.13 25.9554 0.1 7.42* *
4/24/00 1 26.04 25.8654 0.16* 7.33* *
5/25/00 1 25.66 25.4854 0.25 7.21 *
6/26/00 2 25.42 25.7536 0.23 7.34 *
7/27/00 2 24.81 25.1436 0.31 7.3* *
8/24/00 2 24.65 24.9836 0.09* 7.13* *
9/19/00 3 24.78 24.7896 0.36 7.33 *
10/27/00 3 25.15 25.1596 0.24 7.24* *
11/28/00 3 25.4 25.4096 0.18* 7.37 *
12/21/00 4 25.52 25.4165 0.24 7.35 *
1/23/01 4 25.5 25.3965 0.39 7.23 *
2/21/01 4 25.78 25.6765 0.2 7.32* *
3/21/01 1 25.81 25.6354 0.37* 7.17* *
4/26/01 1 25.82 25.6454 0.09 7.35 *
5/24/01 1 25.8 25.6254 0.1 7.36 *
6/21/01 2 25.26 25.5936 3.54 7.31 *
7/25/01 2 25.3 25.6336 0.36 7.35 *
8/28/01 2 25.58 25.9136 0.32 7.04 *
9/26/01 3 25.58 25.5896 0.56 7.23 *
10/29/01 3 25.56 25.5696 0.22 7.25* *
11/27/01 3 25.69 25.6996 0.34 7.28 *
12/20/01 4 25.47 25.3665 0.19 7.31 *
1/28/02 4 25.82 25.7165 0.25 7.32 *
2/25/02 4 25.73 25.6265 0.16 7.14* *
3/21/02 1 25.99 25.8154 0.28 7.22 *
4/18/02 1 25.85 25.6754 0.33 7.23 *
5/23/02 1 25.79 25.6154 0.34 6.99 *
6/20/02 2 25.5 25.8336 0.37 7.17* *
7/18/02 2 25.22 25.5536 0.35 6.76 *
8/27/02 2 24.92 25.2536 0.23 7.07 *
9/26/02 3 25.11 25.1196 0.41 6.98* *
10/22/02 3 26.17 26.1796 180 0.3 1 1 6.76 4 0.34 *
11/19/02 3 25.95 25.9596 178 0.22 1 1 7.41 4 0.28 *
12/18/02 4 25.97 25.8665 177 0.28 1 1 7.31 4 0.28 *
1/28/03 4 25.25 25.1465 170 0.44 1 1 7.31 4 0.25 *
2/19/03 4 25.21 25.1065 171 0.35 1 1 7.06 4 0.21 *
3/18/03 1 25.03 24.8554 174 0.37 1 1 7.01 4 0.22 *
4/22/03 1 25.45 25.2754 173 0.18 1 1 7.19 4 0.23 *
5/20/03 1 26.04 25.8654 176 0.33 1 1 7.14 4 0.23 *
6/18/03 2 26.1 26.4336 176 0.15 1 1 7.19 4 0.24 *











Descritive Statistics for 243 Dates: June, 1986 to April, U003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 19 20.9 22.2 22.3 22.4 1418.0
1046 D-Fe microg/1 3 *
1056 D-Mn microg/1 1 *
29801 Bicarb mg/1 6 *
299 DO mg/1 18 0.0 0.1 0.1 0.1 2.3
31616 Fcol #/100 ml 5 *
31649 Entero #/100 ml 4 *
406 pH ph units 19 7.5 7.8 7.9 8.0 8.1
4255 D-Alk mg/1 0 NA NA NA NA NA
530 Resid mg/1 4 *
608 D-NH3 mg/1 5 *
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-N3(N) mg/1 1 *
D-
631 NO3NO2 mg/1 6 *
666 D-P mg/1 7 *
671 D-PO4 mg/1 5 *
680 TOC mg/1 7 *
70300 TDS mg/1 5 *
72109 DtoH20 Ft 1 *
76 Turb Turb units 6 *
81 Color Pt-Co 5 *
82078 Turb(field) Turb units 3 *
915 D-Ca mg/1 7 *
925 D-Mg mg/1 7 *
930 D-Na mg/1 7 *
935 D-K mg/1 7 *
94 Cond(field) micromhos/cm 19 212.0 241.0 243.0 244.5 431.0
941 D-C1 mg/1 6 *
946 D-SO4 mg/1 6 *
950 D-F mg/1 6 *


*Less than 10 samples
NA No samples


- - ' --


. .. . - . ..- -







STATION SAMPDATE Temp Cond(field) pH Bicarb T-N D-TKN T-NH3 D-NO3 D-NO3NO T-P D-PO4 TOC
BOYETTE SPI 4/26/91 23.5 600 6.28 150 0.23 0.01 10 10 0.09 0.09 5.2
BOYETTE SPI 7/1/91 24 600 6.59 0.24 0.01 13 13 0.14 0.11 *
BOYETTE SPI 7/24/91 25 600 6.53 123 0.24 0.01 12 12 0.23 0.13 2.8
BOYETTE SPI 9/23/91 25 6.14 0.22 0.01 11 0.16 2
BOYETTE SPI 10/22/91 25 600 6.52 140.22 0.24 0.02 11 11 0.15 0.13 1.7
BOYETTE SPI 12/2/91 24 600 6.53 0.25 0.01 14 14 0.12 0.12 *
BOYETTE SPI 12/30/91 23 600 6.48 0.21 0.02 11 11 0.11 0.11 *
BOYETTE SPI 1/28/92 24 600 6.41 139.4 0.22 0.01 11 11 0.42 0.12 4.4
BOYETTE SPI 2/19/92 24.5 600 6.42 0.3 0.01 11 11 0.2 0.11 *
BOYETTE SPI 3/26/92 24 550 6.56 0.27 0.01 12 12 0.14 0.11 *
BOYETTE SPI 4/28/92 23 550 6.38 0.27 0.01 11 11 0.12 0.1 *
BOYETTE SPI 5/26/92 24.5 550 6.49 0.26 0.01 12 12 0.16 0.11 *
BOYETTE SPI 6/25/92 24.5 600 6.4 0.14 0.01 13 13 0.66 0.1 *
BOYETTE SPI 7/29/92 24 600 6.45 0.24 0.01 12 12 0.17 0.1 *
BOYETTE SPI 7/19/94 24.4 608 6.56 145 0.05 13.26 13.27 0.56 0.1 3.2
BOYETTE SPI 10/24/94 23.8 576 6.66 144 0.924 0.01 12.869 12.871 0.872 0.115 2.12
BOYETTE SPI 1/31/95 18.8 585 6.74 139 0.43 0.02 15.7 15.7 0.18 0.11 1.88
BOYETTE SPI 4/10/95 23.9 584 6.58 132 0.05 0.01 14.074 14.076 0.11 0.096 1.76
BOYETTE SPI 7/25/95 24.1 614 6.56 134 0.05 0.07 15.6 15.6 0.133 0.108 1.66
BOYETTE SPI 10/19/95 24.4 597 6.65 153 0.252 0.02 17.886 17.888 0.138 0.089 1.79
BOYETTE SPI 2/1/96 23.6 598 6.59 136 1.324 0.046 16.84 0.105 0.108 1.35
BOYETTE SPI 4/11/96 23.4 598 6.58 137 0.157 0.023 16.651 16.652 0.118 0.119 1.9
BOYETTE SPI 7/11/96 24.3 600 6.65 144 0.134 0.046 16.2 16.2 0.114 0.11 1.97
BOYETTE SPI 10/10/96 23.9 616 6.42 145 0.286 0.01 16.7 16.7 0.157 0.133 1.8
BOYETTE SPI 1/22/97 23.4 613 6.57 133 0.01 16.516 16.52 0.1 0.095 1.88
BOYETTE SPI 4/14/97 23.4 629 6.48 125 0.5 0.01 18.6 18.6 0.087 0.079 0.97
BOYETTE SPI 7/1/97 24.2 626 6.49 137 0.19 0.01 16.7 16.7 0.098 0.091 2
BOYETTE SPI 10/13/97 24.4 616 6.57 137 0.05 0.01 14.1 14.1 0.321 0.102 2.22
BOYETTE SPI 1/12/98 23.4 578 6.63 140 13.5 0.05 0.01 14 14 0.115 0.115 1.82
BOYETTE SPI 2/12/98 23.4 579 6.75 136 13.2 0.3 0.01 12.9 12.9 0.107 0.105 2.09
BOYETTE SPI 2/26/98 23.5 575 6.6 134 13 1.5 0.01 11.5 11.5 0.117 0.11 1.46
BOYETTE SPI 3/4/98 23.1 460 6.56 132 12 0.5 0.01 11.5 11.5 0.103 0.113 1.45
BOYETTE SPI 3/12/98 23 563 6.64 134 13 2.1 0.01 10.9 10.9 0.208 0.114 0.88
BOYETTE SPI 3/24/98 23.4 549 6.7 130 14 0.3 0.01 13.7 13.7 0.109 0.111 1.26
BOYETTE SPI 3/30/98 24.3 550 6.75 134 13 0.7 0.01 12.3 12.3 0.543 0.106 1.19
BOYETTE SPI 4/7/98 24 545 6.71 130 14 2.5 0.01 11.5 11.5 0.149 0.111 1.73
BOYETTE SPI 4/14/98 23.7 544 6.57 128 13 1.58 0.024 11.4 11.4 0.113 0.112 1.63
BOYETTE SPI 4/21/98 23.7 539 6.55 124 13 0.9 0.01 12.1 12.1 0.122 0.101 1.5
BOYETTE SPI 4/29/98 24 540 6.64 128 13.5 0.3 0.01 13.2 13.2 0.097 0.106 1.4
BOYETTE SPI 5/6/98 23.8 540 6.63 124 14 0.2 0.01 13.8 13.8 0.584 0.101 1.6
BOYETTE SPI 5/13/98 24 540 6.64 124 13 0.18 0.02 12.8 12.8 0.136 0.099 1.47
BOYETTE SPI 5/20/98 23.8 547 6.58 124 13 1.1 0.01 11.9 11.9 0.11 0.102 1.9
BOYETTE SPI 5/27/98 23.4 537 6.63 120 16 0.5 0.01 15.5 15.5 0.107 0.09 1.65
BOYETTE SPF 6/3/98 24 538 6.53 124 11 2.74 0.01 8.26 8.26 0.158 0.092 1.82








COLLECTION_DATE DtoH20 WL(MSL) DeSNWL(MSL) Turb Color Turb-F Ca Mg Na K SC-F
1/14/91 19.94 45.7 45.348 5.1 30.5 2.9 13.2 1.3 246
4/1/91 17.59 48.05 48.2988 20 2.5 13 1 203
7/8/91 ** *** 20 3.1 14 1.6 223
10/7/91 ** *** 17 2.5 13 1.4 197
12/11/91 16.91 48.73 48.378 20 17 3.2 15 1.6 206
1/9/92 16.87 48.77 48.418 19 3.4 14 1.7 224
4/15/92 17.24 48.4 48.6488 16 3.1 14 1.7 202
7/8/92 17.98 47.66 48.0045 23 3.8 14 2 233
10/7/92 15.52 50.12 49.8304 14 3.3 14 1.7 195
1/7/93 16.38 49.26 48.908 15 3.2 13 1.4 189
4/6/93 16.06 49.58 49.8288 13 3.2 12 1.3 181
7/8/93 18.16 47.48 47.8245 12 2.7 13 1.2 171
10/6/93 19.24 46.4 46.1104* 10 2.2 12 1.1 165
1/4/94 15.92 49.72 49.368 12 2.4 13 1.3 168
4/5/94 16.96 48.68 48.9288 11 2.3 12 1.2 163
7/7/94 16.58 49.06 49.4045 9.9 2.1 11 1.2 159
1/3/95 15.87 49.77 49.418 12 2.2 12 1.3 162
4/3/95 16.21 49.43 49.6788 14 2.3 13 1.3 178
7/10/95 17.55 48.09 48.4345 14 2.5 15 1.4 179
10/2/95 15.22 50.42 50.1304 180
12/19/95 16.1 49.54 49.188 167
1/9/96 16.26 49.38 49.028 152
2/19/96 16.89 48.75 48.398 151
3/20/96 15.96 49.68 49.9288 157
4/2/96 15.94 49.7 49.9488 149
5/14/96 17.46 48.18 48.4288 144
6/18/96 17.54 48.1 48.4445 143
7/2/96 16.04 49.6 49.9445 134
8/15/96 17.18 48.46 48.8045 134
9/18/96 16.81 48.83 48.5404 138
10/2/96 16.98 48.66 48.3704 ** *** 131






FLORIDA GEOLOGICAL SURVEY


time for TKN. However, there is a slightly negative relationship between the log of TKN
compared to the log of flow (bottom). Hornsby Spring had the sharpest decrease in flow of all
SRWMD springs and actually stopped flowing during portions of the study period.

Figures 61-64 suggest that reduced spring flow was responsible for apparent decreases in
nitrate concentrations and increases in TKN concentrations. Because in all cases, whether nitrate
concentration is increasing, decreasing, or showing no trend, nitrate concentrations closely
follow flow amounts in the springs. This flow-dependent behavior is one plausible explanation of
the decreasing nitrate trends in the Suwannee District; nitrate concentrations may have fallen in
some springs simply as a function of reduced flow.

One clear observation revealed by flow adjustments is how the two forms of nitrogen
differ for the SRWMD. TKN showed a clearly different pattern than nitrate-nitrogen. For Troy
Spring (Figure 61, top) nitrate loading decreased over time. However, as a function of flow,
nitrate correlated positively with flow (Figure 61, bottom). On the other hand, TKN slightly
increased over time (Figure 62, top), but had an inverse relationship with flow (Figure 62,
bottom). Hornsby Spring was similar to Troy Spring. Nitrate loading (Figure 63, top) decreased
over time and it correlated positively correlated with flow (Figure 63, bottom). TKN concen-
trations increased over time (Figure 64, top), but TKN had an insignificant correlation with flow
(Figurer 64, bottom). As with the other two springs, nitrate loading at Fanning Spring (Figure
65, top) decreased during the drought, and nitrate concentrations were correlated positively with
flow (Figure 65, bottom). With regard to TKN, its loading increased over time (Figure 66, top),
and TKN was inversely correlated with flow (Figure 66, bottom).

Table 69 summarizes nutrient relationships for several springs in the SRWMD. The table
contains summary data for Troy, Hornsby, and Fanning Springs (already discussed), plus Little
River, Telford, and Ruth/Little Sulfur (RLS) Springs. For each of these selected springs, the
table contrasts the relationships among concentration, loading, time, and flow for both nitrate and
TKN.
At the bottom of the table is a summary. Nitrate concentrations and nitrate loading
generally decreased over time. Nitrate concentrations were positively related to flow. As flow
decreased during the drought, nitrate concentrations generally decreased. Since nitrate
concentrations are dependent on flow, as rainfall returns to normal, nitrate concentrations may
begin to increase, because of the increased spring flow.

TKN behaved differently. TKN concentrations generally increased over time, while
TKN loading generally decreased. TKN concentrations were inversely (negatively) related to
flow. As flow decreased during the drought, TKN concentrations generally increased.

These results raised questions concerning the different sources and chemical behaviors of
both forms of nitrogen. It is clear that nitrate closely followed the flow amounts-at least for
these selected springs in the Suwannee District. However, TKN shows an almost inverse
relationship with flow. Since TKN is a combination of both NH3 and organic nitrogen, a
possible explanation is that the sources of the organic nitrogen in TKN were from either highly
organic water originating from swamps or from agriculture and/or waste water sources.







DATE TSS NH3 N03N02 P P04 TOC TDS DtoH20 Turb Color Ca Mg Na
2/27/91 0.02 0.048 12 12 0.5 0.6 3.2
4/23/91 0.05 ******0.5 0.54 3.4
7/30/91 0.02 ******0.6 0.6 3.2
10/24/91 0.02 ** **** 0.7 0.6 3.2
1/28/92 0.02 ******0.7 0.6 3.3
3/4/92 0.02 0.03 7.88 0.96 0.4 0.5 3.2
7/21/92 0.02 ******0.4 0.6 3.5
7/21/92 0.02 ** **** 0.4 0.6 3.5
10/13/92 0.02 ******0.4 0.6 3.3
1/13/93 0.02 ******0.4 0.54 3.5
4/14/93 0.02 -8.12 0.4 0.58 3.6
7/22/93 0.02 ******0.4 0.65 3.5
10/14/93 0.02 ******0.4 0.67 3.4
1/13/94 0.02 ******0.5 0.63 3.4
4/20/94 0.02 ******0.5 0.69 3.6
7/20/94 0.02 ******0.5 0.68 3.4
10/26/94 0.2 ******0.5 0.72 3.5
12/7/94 0.06 0.02 0.03 2.4 1 0.7 3.5
1/10/95 0.06 0.03 ** *****
3/2/95* *
3/23/95*** ***
4/27/95 0.07 0.02* *
5/31/95 ************
6/28/95* *
7/19/95 0.07 0.02* *
8/22/95* *
9/29/95*** ***
10/31/95* *
11/29/95*** ***
12/27/95* *
1/25/96*** ***
2/28/96* *
3/28/96*** ***
4/30/96* *
5/23/96*** ***
7/2/96* *
7/30/96*** ***
8/29/96* *
9/25/96*** ***
10/23/96* *
11/19/96*** ***
12/17/96*** ***







SWFWMD
Location Sequence Dates DN03N02 Ha down DN03N02_n
736 B 1/91-12/97 0.04006 19
737 B 1/91-12/97 0.00178 27
996 B 1/91-12/97 0.72989 21
997 B 1/91-12/97 0.22271 22
1087 B 1/91-12/97 0.59413 22
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.87521 14
Boyette B 1/91-12/99 1 28
Chassal B 1/91-12/100 0.5 15
ChassaM B 1/91-12/101 0.8831 15
Homosl B 1/91-12/104 0.98771 14
Homos2 B 1/91-12/105 0.99779 14
Homos3 B 1/91-12/106 0.90556 14
HidRiv2T B 1/91-12/102 0.83779 14
HidRivH B 1/91-12/103 0.90556 14
huntersspr B 1/91-12/107 0.99922 12
lithiamain B 1/91-12/108 0.05594 20
magnolspr B 1/91-12/109 0.99577 13
pumphous B 1/91-12/110 0.99027 15
rainbow B 1/91-12/111 0.36585 12
rainbow B 1/91-12/112 0.89227 15
rainbow B 1/91-12/113 0.90089 15
mboBseep B 1/91-12/115 0.91759 15
saltspr B 1/91-12/116 0.88252 15
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 0.9364 13
SWBublng B 1/91-12/119 0.87814 12
SWBuckhm B 1/91-12/120 0.99571 20
SWCatfish B 1/91-12/121 0.5 17
tarponholespr B 1/91-12/122 0.39413 18
trottermain B 1/91-12/123 0.98859 15
weekwachmain B 1/91-12/124 0.98528 15
Springs A Up
Springs A Down

Location Sequence Dates DN03N02 Ha down DN03N02_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.5 14
737 C 1/98-6/03 -9999 -9999










nnn~~r;f~ifcfp C~+n;n Fir 2AOAL


Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 45 22.6 22.8 22.9 23.0 23.3
1046 D-Fe microg/1 1 *
1056 D-Mn microg/1 0 NA NA NA NA NA
29801 Bicarb mg/1 13 1.0 2.0 2.0 2.0 3.1
299 DO mg/1 45 0.0 0.2 0.3 0.4 3.4
31616 Fcol #/100 ml 12 1.0 1.0 1.0 1.0 1.0
31649 Entero #/100 ml 12 1.0 1.0 1.0 2.3 10.0
406 pH ph units 45 4.0 4.7 4.8 4.8 4.9
4255 D-Alk mg/1 0 NA NA NA NA NA
530 Resid mg/1 12 4.0 4.0 4.0 4.0 5.0
608 D-NH3 mg/1 13 0.0 0.0 0.0 0.0 0.1
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 13 0.0 0.0 0.0 0.0 0.0
666 D-P mg/1 13 0.0 0.0 0.0 0.0 0.0
671 D-PO4 mg/1 13 0.0 0.0 0.0 0.0 0.0
680 TOC mg/1 13 1.0 1.5 2.1 3.9 6.9
70300 TDS mg/1 12 28.0 36.8 39.0 42.8 60.0
72109 DtoH20 Ft 45 4.4 6.0 7.6 9.5 11.5
76 Turb Turb units 13 0.1 0.1 0.1 0.1 19.0
81 Color Pt-Co 13 5.0 5.0 5.0 15.0 75.0
82078 Turb(field) Turb units 14 0.0 0.0 0.0 0.0 0.2
915 D-Ca mg/1 13 0.1 0.1 0.1 0.1 0.3
925 D-Mg mg/1 13 0.9 0.9 1.0 1.0 1.1
930 D-Na mg/1 13 8.5 8.7 8.9 9.0 10.0
935 D-K mg/1 13 0.2 0.2 0.2 0.3 0.4
94 Cond(field) micromhos/cm 45 57.0 62.0 66.0 67.0 670.0
941 D-Cl mg/1 13 14.0 15.0 15.0 15.0 17.0
946 D-SO4 mg/1 13 0.2 0.2 0.2 0.2 0.4
950 D-F mg/1 13 0.1 0.1 0.1 0.1 0.1


*Less than 10 samples
NA No samples


nn+nn~ n/rnr~h 1000+n Tl.nn 3(L(LZ







SWFWMD
Location Sequence Dates Entero_Ha_up
707 A 1/91-6/03 -9999
736 A 1/91-6/03 -9999
737 A 1/91-6/03 -9999
775 A 1/91-6/03 -9999
996 A 1/91-6/03 -9999
997 A 1/91-6/03 -9999
1087 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999
Boyette A 1/91-6/05 -9999
Chassal A 1/91-6/06 -9999
ChassaM A 1/91-6/07 -9999
Homosl A 1/91-6/10 -9999
Homos2 A 1/91-6/11 -9999
Homos3 A 1/91-6/12 -9999
HidRivH A 1/91-6/09 -9999
HidRiv2T A 1/91-6/08 -9999
hunterspr A 1/91-6/13 -9999
lithiamain A 1/91-6/14 -9999
magnolspr A 1/91-6/15 -9999
pumphous A 1/91-6/16 -9999
rainbow A 1/91-6/17 -9999
rainbow A 1/91-6/18 -9999
rainbow A 1/91-6/19 -9999
rainswamp3 A 1/91-6/20 -9999
mboBseep A 1/91-6/21 -9999
saltspr A 1/91-6/22 -9999
SWBettyJay A 1/91-6/23 -9999
SWBoat A 1/91-6/24 -9999
SWBublng A 1/91-6/25 -9999
SWBuckhm A 1/91-6/26 -9999
SWCatfish A 1/91-6/27 -9999
tarponholespr A 1/91-6/28 -9999
trottermain A 1/91-6/29 -9999
weekwachmain A 1/91-6/30 -9999
Springs A Up
Springs A Down

Location Sequence Dates Entero_Ha_up
707 B 1/91-12/97 -9999







Sequence A
Location Sequence Dates DN03_Ha_up DN03 Ha down D_N03_n
RLS C 1/98-6/42 -9999 -9999 -9999
RKB C 1/98-6/41 -9999 -9999 -9999
SBL C 1/98-6/44 -9999 -9999 -9999
TEL C 1/98-6/45 -9999 -9999 -9999
TRY C 1/91-12/98 -9999 -9999 -9999
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates Temp_Ha_up Temp_Ha_down Temp_n
RLS C 1/98-6/42 0.38696 0.61304 44
RKB C 1/98-6/41 0.13885 0.86115 43
SBL C 1/98-6/44 0.01066 0.98934 44
TEL C 1/98-6/45 0.42051 0.57949 42
TRY C 1/91-12/98 0.24661 0.75339 43
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates pH_Ha_up
2793 A 1/91-6/03 0.00007
2872 A 1/91-6/03 1
2873 A 1/91-6/03 0.98775
6490 A 1/91-6/03 1
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates pH_Ha_up
2793 B 1/91-12/97 0.0001
2872 B 1/91-12/97 0.73819
2873 B 1/91-12/97 0.60222
6490 B 1/91-12/97 0.88123
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates pH_Ha_up
2793 C 1/98-6/03 0.51771
2872 C 1/98-6/03 0.99908
2873 C 1/98-6/03 0.93475
3108 C 1/98-6/03 0.98506
3109 C 1/98-6/03 0.95316
3398 C 1/98-6/03 0.99988
3433 C 1/98-6/03 0.01998
3490 C 1/98-6/03 0.7052
6490 C 1/98-6/03 1
Wells A Up
Wells A Down







Sequence A
Location Sequence Dates DtoH20_Sen_slope UP/DOWN
1943 A 1/91-6/03 0.0030952 No evidence of trend
2003 A 1/91-6/03 0.145974 UP
2193 A 1/91-6/03 0.68 UP
2259 A 1/91-6/03 0.260536 UP
2404 A 1/91-6/03 0.03375 No evidence of trend
2465 A 1/91-6/03 0.171429 UP
2585 A 1/91-6/03 0.504722 UP
2675 A 1/91-6/03 0.207427 UP
Wells A Up 6
Wells A Down 0

BLU (Gilchrist) A 1/91-6/33 -9999 -9999
FAN A 1/91-6/34 -9999 -9999
HAR A 1/91-6/35 -9999 -9999
HOR A 1/91-6/36 -9999 -9999
LBS A 1/91-6/37 -9999 -9999
LRS A 1/91-6/38 -9999 -9999
MAN A 1/91-6/39 -9999 -9999
RLS A 1/91-6/42 -9999 -9999
RKB A 1/91-6/41 0.21 UP
ROY A 1/91-6/43 -9999 -9999
SBL A 1/91-6/44 -9999 -9999
TEL A 1/91-6/45 -9999 -9999
TRY A 1/91-6/46 -9999 -9999
Springs A Up 1
Springs A Down 0

Sequence B
Location Sequence Dates DtoH20_Sen_slope UP/DOWN
1943 B 1/91-12/97 0.314226 UP
2003 B 1/91-12/97 -0.174868 DOWN
2193 B 1/91-12/97 0.68 UP
2259 B 1/91-12/97 0.218125 UP
2404 B 1/91-12/97 1.03 UP
2465 B 1/91-12/97 -0.293125 DOWN
2585 B 1/91-12/97 0.833627 UP
2675 B 1/91-12/97 -1.03954 DOWN







Date SEASONNO. Month Temp DeSnTemp Fe-D Mn-D Alk DO DeSnDO Fcol Entero pH
1/9/91 4 1 19.1 19.1686 37 60 7.26
2/7/91 4 2 19.5 19.5686 ******7.22
3/7/91 1 3 19.9 20.0682 ******7.19
4/3/91 1 4 20.1 20.2682 620 180 7.16
4/30/91 1 5 20.1 20.2682 7.19
6/4/91 2 6 20.5 20.4603 7.05
7/3/91 2 7 20.7 20.6603 40 158 7.19
8/7/91 2 8 20.3 20.2603 7.31
9/4/91 3 9 20.6 20.3311 ******7.24
10/2/91 3 10 20.6 20.3311 170* 164* 7.15
11/5/91 3 11 20.5 20.2311 ******7.12
12/3/91 4 12 20.6 20.6686 7.13
1/7/92 4 1 20.5 20.5686 10 199 7.13
2/5/92 4 2 19.9 19.9686 ******7.13
3/3/92 1 3 20.9 21.0682 7.04
3/31/92 1 4 20.3 20.4682 5 175 7.23
5/5/92 1 5 20 20.1682 7.26
6/2/92 2 6 19.7 19.6603 ******7.12
7/7/92 2 7 20.3 20.2603 13 136 7.19
8/4/92 2 8 20.2 20.1603* 7.13
9/1/92 3 9 20.5 20.2311 7.17
10/13/92 3 10 21.5 21.2311 7.18
11/3/92 3 11 21.5 21.2311 7.22
12/1/92 4 12 20.5 20.5686 7.28
1/5/93 4 1 21.1 21.1686 38 130 7.34
2/2/93 4 2 20 20.0686 7.4
3/2/93 1 3 20.5 20.6682 7.36
3/11/93 1 3 20.4 20.5682 33 160 7.35
3/30/93 1 4 20.6 20.7682 19 150 7.24
5/4/93 1 5 20.4 20.5682 7.25
6/2/93 2 6 20.3 20.2603 7.18
6/29/93 2 7 20.3 20.2603 8 170 7.17
8/3/93 2 8 21.5 21.4603 ******7.13
8/31/93 2 9 20.3 20.2603 7.09
10/5/93 3 10 20 19.7311 11 180 7.01
11/2/93 3 11 19.7 19.4311 7.18
12/7/93 4 12 19.9 19.9686 ******7.16
1/4/94 4 1 19.6 19.6686 10 170 7.11
2/1/94 4 2 19.2 19.2686 7.25
3/2/94 1 3 19.5 19.6682 ******7.13
4/6/94 1 4 19.5 19.6682 6 170 ** ***
5/3/94 1 5 19.3 19.4682 7.06
5/31/94 1 6 19.4 19.5682 ** **** 7.2
7/6/94 2 7 19.2 19.1603 9* 160* 7.2







Sequence A
Location Sequence Dates D_Fe_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates D_Fe_Sen_slope UP/DOWN
1417 C 1/98-6/03 -9999.00 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 -9999.00 -9999
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 -9999.00 -9999
1931 C 1/98-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999



























s

Legend







Miles


Projected CO0,diat System: F-'



springs.
V
--


0 510 20 30
Krimetemr

Projected Coordinate System:

Figure L78. Dissolved iron trends in SWFWMD
springs.


Miles
0 510 20 30
Kiometer,
0 1020 40 60
Projected Coordinate System: F

Figure L80. Nitrate trends in SWFWMD springs.


Projected Coordinate System: F gloL

Figure L9. Magnesium trends in SWFWMD
springs.


Projected Coordinate System: F r ,

Figure L81. pH trends in SWFWMD springs.


L28







STATION SAMPDATE MONTH SEASON SEASON Temp Cond(field) pH Bicarb D-TKN T-NH3 )-NO3NO2 T-P D-PO4
MAGNOLIA SPRING 10/24/94 10 Fall 3 25.5 493 7.74 96 0.08 0.01 0.364 0.014 0.01
MAGNOLIA SPRING 1/16/95 1 Winter 4 23.4 436 7.79 104 0.07 0.01 0.339 0.013 0.022
MAGNOLIA SPRING 4/4/95 4 Spring 1 24.6 447 7.77 104 0.341 0.01 0.372 0.011 0.01
MAGNOLIA SPRING 7/27/95 7 Summer 2 24.4 539 7.75 104 0.061 0.01 0.36 0.014 0.015
MAGNOLIA SPRING 10/26/95 10 Fall 3 25.7 532 7.74 107 1.24 0.01 0.402 0.01 0.01
MAGNOLIA SPRING 2/7/96 2 Winter 4 24.1 357 7.74 108 1.632 0.01 0.374 0.018 0.02
MAGNOLIA SPRING 4/18/96 4 Spring 1 24.2 344 7.79 106 0.15 0.05 0.377 0.01 0.01
MAGNOLIA SPRING 7/18/96 7 Summer 2 24.6 378 7.75 108 0.05 0.03 0.405 0.01 0.01
MAGNOLIA SPRING 10/15/96 10 Fall 3 23.9 398 7.76 106 0.276 0.104 0.372 0.044 0.049
MAGNOLIA SPRING 1/30/97 1 Winter 4 23.5 420 8.05 105 0.01 0.396 0.01 0.012
MAGNOLIA SPRING 4/10/97 4 Spring 1 23.9 471 7.71 107 0.05 0.01 0.415 0.02 0.017
MAGNOLIA SPRING 7/8/97 7 Summer 2 24.4 526 7.59 107 0.08 0.01 0.415 0.01 0.01
MAGNOLIA SPRING 10/7/97 10 Fall 3 25.4 632 7.78 105 0.147 0.01 0.393 0.01 0.01
MAGNOLIA SPRING 1/15/98 1 Winter 4 23.4 425 0.106 0.01 0.424 0.01 0.01
MAGNOLIA SPRING 4/16/98 4 Spring 1 23.9 351 7.77 104 0.06 0.013 0.407 0.025 0.016
MAGNOLIA SPRING 7/15/98 7 Summer 2 24 381 7.49 103 0.075 0.01 0.395 0.09 0.011
MAGNOLIA SPRING 10/21/98 10 Fall 3 24.3 379 7.81 105 0.01 0.473 0.01 0.01
MAGNOLIA SPRING 1/21/99 1 Winter 4 23.8 318 7.7 101 0.01 0.418 0.029 0.014
MAGNOLIA SPRING 4/29/99 4 Spring 1 23.8 403 7.69 106 0.01 0.377 0.01 0.01
MAGNOLIA SPRING 7/28/99 7 Summer 2 24.6 467 7.64 105 0.01 0.348 0.012 0.012
MAGNOLIA SPRING 10/13/99 10 Fall 3 24 571 7.71 104 0.01 0.498 0.013 *
MAGNOLIA SPRING 1/13/00 1 Winter 4 23.4 547 7.87 105 0.037 0.474 0.01 0.01
MAGNOLIA SPRING 4/20/00 4 Spring 1 23.6 426 7.7 105 0.01 0.457 0.015 0.01
MAGNOLIA SPRING 7/20/00 7 Summer 2 24.6 476 7.72 102 0.01 0.455 0.012 0.013
MAGNOLIA SPRING 10/26/00 10 Fall 3 23.8 392 7.66 100 0.01 0.498 0.016 0.016
MAGNOLIA SPRING 1/25/01 1 Winter 4 23.1 385 7.76 107 0.01 0.42 0.01 0.01
MAGNOLIA SPRING 4/26/01 4 Spring 1 23.5 390 7.78 122 0.01 0.433 0.012 0.016
MAGNOLIA SPRING 7/25/01 7 Summer 2 24.3 619 7.78 114 0.422 0.017 0.01
MAGNOLIA SPRING 10/18/01 10 Fall 3 23.6 570 7.88 107 0.0132 0.4796 0.01 0.01
MAGNOLIA SPRING 1/17/02 1 Winter 4 23.4 502 7.8 114 0.028 0.499 0.01 0.01
MAGNOLIA SPRING 4/9/02 4 Spring 1 24.2 429 7.71 109 0.02 0.496 0.015 0.01
MAGNOLIA SPRING 7/8/02 7 Summer 2 24.1 432 7.72 114 0.012 0.503 0.01 0.011
MAGNOLIA SPRING 10/9/02 10 Fall 3 24.6 381 7.67 118 0.012 0.01 0.524 0.017 0.01
MAGNOLIA SPRING Jan-03 1 Winter 4 23.4 331 7.56 113 0.012 0.01 0.496 0.010 0.01
MAGNOLIA SPRING 4/2/03 4 Spring 1 23.7 325 7.72 113 0.012 0.01 0.471 0.011 0.01
MAGNOLIA SPRING 7/9/03 7 Summer 2 24.3 327 7.59 113 0.005 0.01 0.497 0.010 0.01










FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION
Michael W. Sole, Secretary


LAND AND RECREATION
Robert G. Ballard, Deputy Secretary


OFFICE OF THE FLORIDA GEOLOGICAL SURVEY
Jonathan D. Arthur, State Geologist and Director


ADMINISTRATIVE AND GEOLOGICAL DATA MANAGEMENT SECTION
Jacqueline M. Lloyd, Assistant State Geologist


Traci Billingsley, Business Manager
Paulette Bond, Professional Geologist
Doug Calman, Librarian Specialist
Brian Clark, Environmental Specialist
Jan DeLaney, Environmental Supervisor
Jeff Erb, Systems Programmer


Leslie Knight, Administrative Assistant
Frank Rupert, Professional Geologist
Ginger Shirah, Secretary Specialist
Carolyn Stringer, Management Analyst
Keith Wood, Computer Programmer
Analyst


GEOLOGICAL INVESTIGATIONS SECTION
Rick Copeland, Assistant State Geologist


Drew Butler, Laboratory Technician
Ken Campbell, Professional Geologist
Bob Cleveland, Engineer Specialist
Adel Dabous, Environmental Specialist
Cindy Fischler, Professional Geologist
Rick Green, Professional Geologist
Paul Hansard, Environmental Consultant
Eric Harrington, Engineering Technician
Laura Hester, Laboratory Technician
Ron Hoenstine, Professional Geologist Supervisor


Jesse Hurd, Laboratory Technician
Michelle Ladle, Laboratory Technician
Mike Nash, Laboratory Technician
Stuart Norton, Environmental Specialist
David Paul, Professional Geologist
Dan Phelps, Professional Geologist
Guy Richardson, Engineering Technician
Wade Stringer, Engineering Specialist
Christopher Williams, Geologist


HYDROGEOLOGY SECTION
Harley Means, Professional Geologist


James Bobrycki, Environmental Specialist
John Carroll, Environmental Specialist
Caitlin Cerame, Environmental Specialist
Richard Deadman, Environmental Specialist
Lisa Fulton, Environmental Specialist
Josue Gallegos, Geologist
Tom Greenhalgh, Professional Geologist
Clint Kromhout, Professional Geologist


Patrick Madden, Laboratory Technician
James McClean, Government Analyst
Kunle Olumide, Environmental Consultant
Amber Raynsford, Environmental Specialist
Melinda Spall, Environmental Specialist
Eric Thomas, Environmental Specialist
Alexandra Walrath, Geographical Informa-
tion System Technician


STRATEGIC PROJECTS
Rodney DeHan, Environmental Manager


Scott Barrett Dyer, Environmental Specialist







Date D-Fe D-Mn Bicarb DO Fcol pH D-Alk D-NH3 D-NO3NO2 D-P D-PO4 TOC
5/4/94 7.22 *
6/1/94 7.52 *
6/29/94 890 180* 7.17* 0.02* *
6/29/94 870 180* 0.02* *
8/1/94 7.33 *
8/29/94 7.31 *
10/4/94 870* 180* 7.2* 0.02* *
11/3/94 ** 7.11 ******
12/2/94* 7.26* *
1/4/95* 7.21 0.13 0.02* *
1/30/95 7.54 ** ***
3/2/95 ** 7.24 ******
3/31/95 ** 7.23 0.12 0.02* *
4/28/95 7.26 *
5/30/95 7.2*** ***
7/6/95 7.24 0.13 0.02 *
7/28/95* 7.17* *
9/1/95 7.16 *
10/3/95* 7.24* *
10/30/95 ****7.34 ** ***
12/4/95* 0.11 6.94* *
12/27/95* 0.08* 7.27* *
2/6/96 ** 7.23 ******
2/27/96* 7.26* *
3/27/96 7.07 *
4/23/96 7.21 ** *
5/22/96* 7.19* *
6/18/96 696 13 168 0.35 7.28 0.085 0.041 0.039 0.04 1.8
7/17/96* 7.27* *
8/13/96* 7.3* *
9/18/96* 0.07* 7.29* *
10/9/96 0.34* 7.08 ** ***
12/6/96* 4.67 7.22* *
1/16/97 7.29 *
2/5/97* 7.1* *
3/12/97 0.12* 7.19 ** ***
4/8/97* 7.17* *
5/2/97 0.04* *
6/3/97 1.42 7.23* *
7/17/97 0* 7.25 ** ***
8/1/97 0.08 7.09 *
8/29/97 0.05 7.34* *







Sequence A
Location Sequence Dates DO_Sen_slope UP/DOWN
Wells A Up 3
Wells A Down 0

BLU (Gilchrist) B 1/91-12/127 0 No evidence of trend
FAN B 1/91-12/128 -9999 No evidence of trend
HOR B 1/91-12/130 0 No evidence of trend
LRS B 1/91-12/132 0.0348485 No evidence of trend
RKB B 1/91-12/135 0.0142857 No evidence of trend
ROY B 1/91-12/137 0.025 No evidence of trend
TEL B 1/91-12/139 0 No evidence of trend
TRY B 1/91-6/04 -0.0125 No evidence of trend
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DOSenslope UP/DOWN
1943 C 1/98-6/03 0.06 UP
2003 C 1/98-6/03 -0.152817 DOWN
2193 C 1/98-6/03 -0.0071008 DOWN
2259 C 1/98-6/03 0.0187478 UP
2353 C 1/98-6/03 0.103333 UP
2404 C 1/98-6/03 -0.0026316 No evidence of trend
2465 C 1/98-6/03 0.0158392 UP
2585 C 1/98-6/03 -0.0033333 No evidence of trend
2675 C 1/98-6/03 0.0056506 No evidence of trend
Wells A Up 4
Wells A Down 2

ALR C 1/98-6/32 0 No evidence of trend
BLU (Gilchrist) C 1/98-6/33 -0.0090909 No evidence of trend
FAN C 1/98-6/34 -0.0083333 DOWN
HAR C 1/98-6/35 -0.0818182 DOWN
HOR C 1/98-6/36 0.0064516 No evidence of trend
LBS C 1/98-6/37 -0.0038586 DOWN
LRS C 1/98-6/38 -0.0263158 DOWN
MAN C 1/98-6/39 0.0388889 UP
POE C 1/98-6/40 0 No evidence of trend







Sequence A
Location Sequence Dates D CaSen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 0.233333 No evidence of trend
Fern Springs B 1/91-12/97 -0.17 No evidence of trend
Juniper Springs B 1/91-12/97 0.25 UP
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 0.17 No evidence of trend
Rock Springs B 1/91-12/97 0.29 UP
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 0.33 No evidence of trend
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -0.86 No evidence of trend
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 2
Springs down 0

Sequence C
Location Sequence Dates D CaSen_slope UP/DOWN
1417 C 1/98-6/03 -0.07 No evidence of trend
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 0.06 No evidence of trend
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 -0.31 DOWN
1931 C 1/98-6/03 0 No evidence of trend
Wells up 0
Wells down 1

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 0.0305357 No evidence of trend
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







COLLECTIONDATE oPO4 TOC TDS DtoH20 Turb Color Turb(f) Ca Mg Na K
10/6/2001 ***********
11/21/2001 *
12/17/2001 ** ****
1/21/2002 ***********
2/19/2002 ***********
3/18/2002 ***********
4/22/2002 ** *
5/28/2002 ***********
6/25/2002 ***********
7/30/2002 ** ******
8/26/2002 ** *
9/23/2002 **0 0 **
10/17/2002 0 0 ***
11/21/2002 0 0 *
12/17/2002 0 0 *
1/17/2003 0 0 ***
2/20/2003*** 0 0****
3/24/2003 0 0.39 *
4/28/2003 0 0.18 *
5/23/2003 0 0.14 *
6/23/2003 0 0.44 ** **


1 i i i i + i 1 1 1










Date NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20 DeSnDtoH Turb Color
6/28/95* *6.31 7.1454 *
7/27/95* *6.4 7.2354 *
8/28/95* *4.26 5.0954 *
9/20/95* *6.64 7.2814 *
10/31/95* *7.28 7.9214 *
11/28/95 *******8.42 9.0614 *
10/3/96 0.28 0.039 0.004 0.004 3.5 9.02 9.6614 1.9 *
4/22/99 0.33 0.011 0.008 0.011 5.8 10.13 8.9581 0.85 5
10/31/00* *8.11 8.7514* *
1/25/01 *******9.74 9.3217* *
4/26/01 *******10.93 9.7581 *
7/26/01 *******4.15 4.9854* *
10/30/01 0.31 0.004 0.015 0.007 3.3 1400 6.93 7.5714 0.35 5
1/30/02 0.31 0.004 0.005 0.008 2.8 1390 8.56 8.1417 0.5 5
4/29/02 0.36 0.02 0.006 0.006 3.7 1390 9.6 8.4281 0.45 5
7/22/02 0.33 0.004 0.004 0.006 3.1 1420 7.82 8.6554 0.35 5
10/23/02* *6.67 7.3114* *
1/29/03* *8.03 7.6117* *
4/23/03 *******9.25 8.0781 *







Spring Date Month(txt) Month(nu) SeasonNi Source Temp DesnTemp SCl SCf pH T-Alk
* 06/14/1994 8 2* *
Blue Springs nr Orange City 06/24/1994 6 8 2 USGS 24 23.8398 2170 *
* 08/17/1994 9 3* *
Blue Springs nr Orange City 08/18/1994 8 10 3 SJR 23.1 22.9398 2396 7.32 *
* 09/30/1994 12 4* *
* 10/31/1994 2 4* *
12/06/1994 4 1* *
* 02/01/1995 6 2* *
* 04/12/1995 8 2* *
* 06/13/1995 10 3* *
08/04/1995 10 3* *
* 10/02/1995 10 3* *
* 10/13/1995 12 4* *
* 10/31/1995 12 4* *
12/01/1995 2 4* *
* 12/08/1995 2 4* *
* 02/09/1996 4 1* *
* 02/28/1996 4 1* *
04/22/1996 5 1* *
* 04/24/1996 6 2* *
Blue Springs nr Orange City 05/02/1996 5 8 2 SJR 22.76 22.7781 1162 7.12 127
* 06/14/1996 10 3* *
08/13/1996 12 4* *
* 10/04/1996 1 4* *
* 12/03/1996 4 1* *
* 01/27/1997 5 1* *
04/22/1997 9 3* *
* 05/23/1997 10 3* *
* 09/08/1997 1 4* *
* 10/31/1997 3 1* *
01/12/1998 4 1* *
03/03/1998 6 2* *
Blue Springs nr Orange City 04/23/1998 8 2 ** ***
Blue Springs nr Orange City 06/16/1998 6 9 3 USGS 23.1 22.9398 1480 6.87 *
Blue Springs nr Orange City 08/07/1998 8 12 4 USGS 23 22.8398 1020 7.6 *
Blue Springs nr Orange City 09/28/1998 9 1 4 USGS 23 23.0648 1438 6.78 *
Blue Springs nr Orange City 12/04/1998 12 3 1 USGS 23 23.1076 1483 7.4 *
Blue Springs nr Orange City 01/22/1999 1 5 1 USGS 23 23.1076 1610 7.53 *
Blue Springs nr Orange City 03/18/1999 3 7 2 USGS 23.3 23.3181 1660 7.27 *
Blue Springs nr Orange City 05/18/1999 5 9 3 USGS 22.8 22.8181 1050 7.5 *
* 07/07/1999 11 3* *
Blue Springs nr Orange City 09/01/1999 9 4 1 USGS 23 23.0648 1760 6.96 *







Sequence A
Location Sequence Dates DN03N02_Sen_slo| UP/DOWN
1943 A 1/91-6/03 -0.0002308 DOWN
2003 A 1/91-6/03 -0.1 DOWN
2193 A 1/91-6/03 0 DOWN
2259 A 1/91-6/03 -0.0042481 DOWN
2404 A 1/91-6/03 0 DOWN
2465 A 1/91-6/03 -0.0578947 DOWN
2585 A 1/91-6/03 -0.0038095 No evidence of trend
2675 A 1/91-6/03 0.0042366 UP
Wells A Up 1
Wells A Down 6

BLU (Gilchrist) A 1/91-6/33 -9999 -9999
FAN A 1/91-6/34 -9999 -9999
HAR A 1/91-6/35 -9999 -9999
HOR A 1/91-6/36 -9999 -9999
LBS A 1/91-6/37 -9999 -9999
LRS A 1/91-6/38 -9999 -9999
MAN A 1/91-6/39 -9999 -9999
RLS A 1/91-6/42 -9999 -9999
RKB A 1/91-6/41 -9999 -9999
ROY A 1/91-6/43 -9999 -9999
SBL A 1/91-6/44 -9999 -9999
TEL A 1/91-6/45 -9999 -9999
TRY A 1/91-6/46 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DN03N02_Sen_slo UP/DOWN
1943 B 1/91-12/97 0 DOWN
2003 B 1/91-12/97 -0.0285714 DOWN
2193 B 1/91-12/97 0 DOWN
2259 B 1/91-12/97 -0.005 DOWN
2404 B 1/91-12/97 0 DOWN
2465 B 1/91-12/97 -0.0333333 DOWN
2585 B 1/91-12/97 -0.0046429 No evidence of trend
2675 B 1/91-12/97 0.0018182 No evidence of trend







FKSTATI Date SEASON_ Temp DeSnTemp Fe-D Mn-D Alk DO Fcol Entero pH TSS
1931 9/8/97 3 22.7 22.7374 8 7.63 *
1931 10/14/97 3 22.47 22.5074 8.07 7.91 *
1931 11/13/97 3 22.6 22.6374 7.1 7.8 *
1931 12/17/97 4 22.4 22.6979 7 7.94 *
1931 1/27/98 4 22.5 22.7979 7.5 7.61 *
1931 2/23/98 4 22.5 22.7979 7.2 7.17 *
1931 3/23/98 1 22.4 22.2549 7 7.53 *
1931 5/26/98 1 22.63 22.4849 8.66 7.91 *
1931 6/29/98 2 22.69 22.5033 8.34 7.91 *
1931 7/27/98 2 22.64 22.4533 7.99 7.99 *
1931 8/18/98 2 22.6 22.4133 8.13 7.96 *
1931 9/2/98 3 22.55 22.5874 7.82 7.99 *
1931 10/20/98 3 22.58 22.6174 8.44 7.98 *
1931 11/24/98 3 22.54 22.5774 8.03 7.93 *
1931 12/23/98 4 22.51 22.8079 7.98 ** *
1931 1/19/99 4 22.55 22.8479 8.41 7.98 *
1931 2/22/99 4 22.46 22.7579 8.18 7.94 *
1931 3/29/99 1 22.44 22.2949 8.2 7.9 *
1931 4/29/99 1 22.66 22.5149 8.05 7.89 *
1931 5/25/99 1 22.7 22.5549 8.23 7.97 *
1931 6/24/99 2 22.71 22.5233 7.99 7.72 *
1931 7/28/99 2 22.75 22.5633 8.01 7.78 *
1931 8/23/99 2 22.72 22.5333 8.08 7.71 *
1931 9/16/99 3 22.7 22.7374 8.53 7.71 *
1931 10/27/99 3 22.63 22.6674 69 7.82 1 1 7.83 4
1931 11/24/99 3 22.6 22.6374 *8.21 ** 7.47 *
1931 12/20/99 4 22.56 22.8579 75 7.87 1 1 7.8 4
1931 1/25/00 4 22.54 22.8379 73 8.11 1 1 7.91 4
1931 2/17/00 4 22.73 23.0279 72 8.11 1 2 7.7 4
1931 3/21/00 1 22.68 22.5349 73 8.09 1 1 7.88 4
1931 4/27/00 1 22.7 22.5549 71 8.3 1 1 7.85 4
1931 5/25/00 1 22.84 22.6949 74 8.09 1 1 7.81 4
1931 6/22/00 2 22.82 22.6333 72 7.9 1 1 7.83 4
1931 7/24/00 2 22.71 22.5233 57 7.94 1 1 7.79 4
1931 8/28/00 2 22.7 22.5133 72 8.24 1 1 7.91 4
1931 9/26/00 3 22.7 22.7374 76 8.26 1 1 7.81 4
1931 10/24/00 3 22.67 22.7074 8.3 7.91 *
1931 11/20/00 3 22.6 22.6374 8.01 7.77 *
1931 12/19/00 4 16.21 16.5079 7.57 7.99 *
1931 1/25/01 4 21.83 22.1279 7.52 8.05 *
1931 1/25/01 4 21.78 22.0779 7.51 8.05 *
1931 2/22/01 4 22.67 22.9679 7.85 7.84 *







Sequence A
Location Sequence Dates D_NO3NO2_Ha_up D_NO3NO2_Hadowr D_NO3NO2_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D_NO3NO2_Ha_up D_NO3NO2_Hadowr D_N3NO2_n
1943 C 1/98-6/03 0.22172 0.77828 12
2003 C 1/98-6/03 0.99995 0.00005 13
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.02424 0.97576 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.70425 0.29575 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 -9999 -9999 -9999
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 -9999 -9999 -9999







Sequence A
Location Sequence Dates D Mn Ha down D Mn n
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 -9999 -9999
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D Mn Ha down D Mn n
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates D Mn Ha down D Mn n
2793 C 1/98-6/03 -9999 -9999
2872 C 1/98-6/03 -9999 -9999
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -9999 -9999
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -9999 -9999
6490 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down









Well Data


Seasonality Results: Wells, Northwest Florida Water Management District
Col,
Well ID Name Temp Fe, Diss Alk DO Fec
WAKULLA SPRING
67 WELL <0.05 >.05 >.05 >.05 NA
91 CHARLES DONAHUE <0.05 >.05 <0.05 >.05 >.05
WELLER AVE
131 SHALLOW <.05 >.05 >.05 >.05 NA
129 WELLER AVE MPZ >.05 >.05 >.05 >.05 NA
USGS 422B NR
313 GREENHD <0.05 >.05 >.05 >.05 >.05
USGS 422A NR
312 GREENHD <0.05 >.05 >.05 >.05 >.05
BLOUNTSTOWN
245 SURFICIA <0.05 NA >.05 >.05 >.05
BLOUNTSTOWN
243 FLORIDAN <0.05 NA >.05 >.05 >.05

Seasonality Results: Wells, NWFWMD cont.
pH, Amm, Nitrate + Ortho-P,
Well ID Entero Field TSS Dis Nitrite P, Diss Diss
67 NA >.05 NA >.05 >.05 >.05 >.05
91 >.05 >.05 >.05 >.05 <.05 >.05 >.05
131 NA >.05 NA >.05 >.05 >.05 >.05
129 NA >.05 NA >.05 >.05 NA >.05
313 NA >.05 NA >.05 >.05 >.05 >.05
312 >.05 >.05 >.05 >.05 >.05 >.05 >.05
245 NA >.05 >.05 >.05 >.05 >.05 >.05
243 NA >.05 >.05 >.05 >.05 >.05 >.05

Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
Diss = Dissolved







SWFWMD
Location Sequence Dates D_N03NO2_Sen_s lope UP/DOWN
707 A 1/91-6/03 0 DOWN
736 A 1/91-6/03 -0.0015 DOWN
737 A 1/91-6/03 0 DOWN
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -0.0006667 No evidence of trend
997 A 1/91-6/03 0 DOWN
1087 A 1/91-6/03 0 DOWN
Wells A Up 0
Wells A Down 5

Bobhill A 1/91-6/04 0.002387 No evidence of trend
Boyette A 1/91-6/05 -0.0532639 DOWN
Chassal A 1/91-6/06 0.001 UP
ChassaM A 1/91-6/07 0.0013333 UP
Homosl A 1/91-6/10 0.0030438 UP
Homos2 A 1/91-6/11 0.0033125 UP
Homos3 A 1/91-6/12 0.003474 UP
HidRivH A 1/91-6/09 0.0055 UP
HidRiv2T A 1/91-6/08 0.00525 UP
hunterspr A 1/91-6/13 0.0045903 UP
lithiamain A 1/91-6/14 -0.0074706 No evidence of trend
magnolspr A 1/91-6/15 0.0041786 UP
pumphous A 1/91-6/16 0.005 UP
rainbow A 1/91-6/17 0.01 UP
rainbow A 1/91-6/18 0.0035 No evidence of trend
rainbow A 1/91-6/19 0.0042039 UP
rainswamp3 A 1/91-6/20 0.0010556 No evidence of trend
mboBseep A 1/91-6/21 0.0094 UP
saltspr A 1/91-6/22 0.0042288 UP
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 0.004 UP
SWBublng A 1/91-6/25 0 No evidence of trend
SWBuckhm A 1/91-6/26 0.01475 UP
SWCatfish A 1/91-6/27 0.0005 No evidence of trend
tarponholespr A 1/91-6/28 0.0009393 UP
trottermain A 1/91-6/29 0.004 UP
weekwachmain A 1/91-6/30 0.0055 UP
Springs A Up 19
Springs A Down 1

Location Sequence Dates DN03N02_Sen_slope UP/DOWN
707 B 1/91-12/97 0 No evidence of trend







STATION SAMP_DATE Season Temp Cond(field) pH Bicarb T-N D-TKN T-NH3 D-N3 )-N03NO2
TARPON HOLE SPRING 2/11/91 4 23 1450 7.75 114.8 0.05 0.01 0.15 0.15
TARPON HOLE SPRING 4/30/91 1 23.5 1500 7.66 110 0.05 0.01 0.15 0.15
TARPON HOLE SPRING 7/29/91 2 24 1200 7.76 90.2 0.05 0.01 0.18 0.18
TARPON HOLE SPRING 10/23/91 3 24 1200 7.49 109.88 0.05 0.01 0.15 0.15
TARPON HOLE SPRING 8/3/92 2 23.5 2000 7.84 117 *
TARPON HOLE SPRING 4/12/93 1 25.4 1820 7.66 0.18 0.19
TARPON HOLE SPRING 7/20/94 2 23.9 1416 7.75 114 0.05 0.06 0.16 0.17
TARPON HOLE SPRING 1/23/95 4 23.1 1193 7.74 107 0.07 0.01 0.15 0.15
TARPON HOLE SPRING 4/3/95 1 23.6 1552 7.36 109 0.476 0.01 0.149 0.149
TARPON HOLE SPRING 7/27/95 2 24 1577 7.56 108 0.05 0.01 0.144 0.144
TARPON HOLE SPRING 10/25/95 3 24.1 1675 7.63 112 0.05 0.01 0.169 0.169
TARPON HOLE SPRING 2/6/96 4 23.4 1450 7.67 112 0.965 0.025 0.189
TARPON HOLE SPRING 4/18/96 1 23.5 1287 7.75 114 0.537 0.01 0.16 0.161
TARPON HOLE SPRING 7/17/96 2 24 1348 7.71 112 0.429 0.01 0.165 0.165
TARPON HOLE SPRING 10/17/96 3 23.8 2110 7.66 108 0.14 0.01 0.153 0.153
TARPON HOLE SPRING 1/29/97 4 23.8 1781 7.67 111 0.01 0.138 0.142
TARPON HOLE SPRING 4/9/97 1 23.7 1957 7.63 117 0.17 0.01 0.15 0.15
TARPON HOLE SPRING 7/8/97 2 23.5 3010 7.53 121 0.05 0.014 0.166 0.166
TARPON HOLE SPRING 10/7/97 3 23.7 2970 7.57 119 0.18 0.015 0.165 0.165
TARPON HOLE SPRING 1/15/98 4 23.4 1435 7.53 115 0.28 0.11 0.01 0.17 0.17
TARPON HOLE SPRING 4/14/98 1 23.6 980 7.65 110 0.36 0.211 0.01 0.149 0.149
TARPON HOLE SPRING 7/13/98 2 23.9 1007 7.7 106 0.23 0.05 0.013 0.17 0.17
TARPON HOLE SPRING 10/20/98 3 23.9 1107 7.36 105 0.32 0.01 0.158 0.158
TARPON HOLE SPRING 1/20/99 4 23.7 1447 7.66 107 0.3 0.01 0.161 0.161
TARPON HOLE SPRING 4/29/99 1 23.4 2050 7.58 117 0.18 0.01 0.161 0.163
TARPON HOLE SPRING 7/28/99 2 24.2 1502 7.78 110 0.21 0.01 0.129 0.132
TARPON HOLE SPRING 10/12/99 3 23.9 1957 7.65 108 0.19 0.01 0.159 0.159
TARPON HOLE SPRING 1/12/00 4 23.6 2080 7.63 115 0.01 0.019 0.019
TARPON HOLE SPRING 4/18/00 1 23.3 4030 7.58 125 0.23 0.01 0.188 0.188
TARPON HOLE SPRING 7/19/00 2 23.5 6360 7.46 134 0.46 0.01 0.216 0.22
TARPON HOLE SPRING 10/25/00 3 23.5 1727 7.71 110 0.42 0.01 0.179 0.179
TARPON HOLE SPRING 1/10/01 4 23 2472 7.91 116 0.36 0.01 0.195 0.195
TARPON HOLE SPRING 4/26/01 1 23.9 3206 7.58 135 0.37 0.01 0.171 0.171
TARPON HOLE SPRING 7/24/01 2 23.8 6490 7.52 145 0.19 0.183 0.183
TARPON HOLE SPRING 10/17/01 3 22.9 2130 7.72 119 0.2395 0.014 0.1807 0.1807
TARPON HOLE SPRING 1/28/02 4 23.3 2620 7.66 131 0.22 0.045 0.188 0.188
TARPON HOLE SPRING 4/16/02 1 23.6 2780 7.62 127 0.21 0.012 0.193 0.193
TARPON HOLE SPRING 7/23/02 2 23.8 5240 7.54 142 0.5 0.014 0.2111 0.2111
TARPON HOLE SPRING 10/8/02 3 24.22 3104 7.47 138 0.300 0.012 0.006 0.211 0.211
TARPON HOLE SPRING 1/16/03 4 23.24 2057 7.56 125 0.221 0.019 0.006 0.183 0.183
TARPON HOLE SPRING 4/16/03 1 23.69 1895 7.50 128 0.202 0.012 0.006 0.185 0.185
TARPON HOLE SPRING 7/15/03 2 24.18 1374 7.39 118 0.214 0.006 0.006 0.176 0.182







SWFWMD
Location Sequence Dates D_NH3_Ha_up
707 A 1/91-6/03 0.77282
736 A 1/91-6/03 -9999
737 A 1/91-6/03 -9999
775 A 1/91-6/03 -9999
996 A 1/91-6/03 0.9654
997 A 1/91-6/03 -9999
1087 A 1/91-6/03 0.93621
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999
Boyette A 1/91-6/05 -9999
Chassal A 1/91-6/06 -9999
ChassaM A 1/91-6/07 -9999
Homosl A 1/91-6/10 -9999
Homos2 A 1/91-6/11 -9999
Homos3 A 1/91-6/12 -9999
HidRivH A 1/91-6/09 -9999
HidRiv2T A 1/91-6/08 -9999
hunterspr A 1/91-6/13 -9999
lithiamain A 1/91-6/14 -9999
magnolspr A 1/91-6/15 -9999
pumphous A 1/91-6/16 -9999
rainbow A 1/91-6/17 -9999
rainbow A 1/91-6/18 -9999
rainbow A 1/91-6/19 -9999
rainswamp3 A 1/91-6/20 -9999
mboBseep A 1/91-6/21 -9999
saltspr A 1/91-6/22 -9999
SWBettyJay A 1/91-6/23 -9999
SWBoat A 1/91-6/24 -9999
SWBublng A 1/91-6/25 -9999
SWBuckhm A 1/91-6/26 -9999
SWCatfish A 1/91-6/27 -9999
tarponholespr A 1/91-6/28 -9999
trottermain A 1/91-6/29 -9999
weekwachmain A 1/91-6/30 -9999
Springs A Up
Springs A Down

Location Sequence Dates D_NH3_Ha_up
707 B 1/91-12/97 -9999







Date Na DeSnD-Na K SC-F CI S04 F
8/21/98 580 *
9/8/98 14.4 16.8106 3.07 644 25 45 0.22
10/22/98 576 *
11/17/98 560 *
12/24/98 565* *
1/29/99 580* *
2/24/99 574 *
3/18/99 622 *
4/21/99 590* *
5/18/99* 650* *
6/30/99 612 *
7/28/99 605 *
8/19/99 598* *
9/8/99* 595* *
10/29/99* 580* *
11/30/99 572 *
12/29/99 575* *
1/21/00 576* *
2/25/00 576 *
3/23/00 590 *
4/28/00 575* *
5/26/00 652* *
6/29/00 645 *
7/31/00 636 *
8/31/00 624* *
9/28/00 622* *
10/19/00 691 *
11/29/00 627 *
12/28/00 658* *
1/26/01 676* *
2/26/01 634 *
3/26/01 636 *
4/23/01 690* *
5/31/01* *
6/27/01* 562* *
7/26/01 642 *
8/24/01 652* *
9/28/01 674* *
11/2/01 652 *
11/30/01 661 *
12/24/01 658* *
1/24/02* 716* *







DATE TDS DtoH20 WL(MSL) DeSnDtoH20 DeSnWL(msl) Turb Color Turb(field) D-Ca D-Mg D-Na D-K
10/31/97 6.74 46.56 7.4849 47.8151 ** ***
11/21/97 6.14 47.16 6.8849 48.4151 *
12/31/97 4.95 48.35 4.6824 50.6176 ** ***
2/5/98 5.11 48.19 4.8424 50.4576 *
3/9/98 5.2 48.1 4.6933 50.6067 ****
3/27/98 5.92 47.38 5.4133 49.8867 *
5/8/98 8.4 44.9 7.8933 47.4067 ** ***
5/27/98 9.05 44.25 8.5433 46.7567 *
7/1/98 9.82 43.48 9.9811 45.3189 ** ***
7/31/98 7.04 46.26 7.2011 48.0989 *
8/26/98 6.58 46.72 6.7411 48.5589 ** ***
9/30/98 5.4 47.9 6.1449 49.1551 5.57 *
10/29/98 7.55 45.75 8.2949 47.0051 ** ***
12/7/98 8.62 44.68 8.3524 46.9476 *
1/4/99 8.47 44.83 8.2024 47.0976 ** ***
2/1/99 7.98 45.32 7.7124 47.5876 *
3/2/99 8.72 44.58 8.2133 47.0867 5.44 ** **
3/30/99 9.05 44.25 8.5433 46.7567 3.4 *
5/11/99 9.91 43.39 9.4033 45.8967 ** ***
6/9/99 9.61 43.69 9.7711 45.5289 *
6/21/99 8.19 45.11 8.3511 46.9489 19 100 2.78 3.65 1.46 3.4 0.646
8/3/99 8.26 45.04 8.4211 46.8789 1.51 *
9/8/99 7.17 46.13 7.9149 47.3851 1.35 ** **
11/1/99 29 8 45.3 8.7449 46.5551 1.9 10 2.7 1.5 3.7 0.62
12/6/99 38 8.55 44.75 8.2824 47.0176 1 5 1.5 2.6 1.6 3.7 0.56
1/6/00 40 8.89 44.41 8.6224 46.6776 1.6 5 6.65 2.2 1.6 4.1 0.54
1/31/00 27 9.75 43.55 9.4824 45.8176 1.2 5 0.29 2.2 1.6 4.1 0.56
3/9/00 49 9.48 43.82 8.9733 46.3267 1.7 15 2.74 2.3 1.7 4 0.54
4/3/00 46 10 43.3 9.4933 45.8067 1.7 15 2.5 1.8 3.4 0.57
5/4/00 46 10.81 42.49 10.3033 44.9967 3.7 20 1.7 1.8 3.8 0.53
6/6/00 46 11.77 41.53 11.9311 43.3689 2.9 20 0.51 1.7 1.8 3.7 0.48
7/5/00 51 7.61 45.69 7.7711 47.5289 1.8 15 3.84 3 2.2 3.8 0.42
8/7/00 96 6.88 46.42 7.0411 48.2589 0.9 30 12.7 2.6 3.1 0.41
9/5/00 84 6.81 46.49 7.5549 47.7451 0.95 30 2.02 7 1.8 3.3 0.48
10/9/00 7.4 45.9 8.1449 47.1551 ** ***
11/1/00 8.64 44.66 9.3849 45.9151 4.55 *
12/5/00 9.39 43.91 9.1224 46.1776 4.35 ** **
1/3/01 9.81 43.49 9.5424 45.7576 *
2/1/01 10.06 43.24 9.7924 45.5076 4.18 ** **
3/5/01 10.01 43.29 9.5033 45.7967 2.66 *
4/2/01 8.43 44.87 7.9233 47.3767 ** ***
5/1/01 11.34 41.96 10.8333 44.4667 1.38 ** **







SWFWMD
Location Sequence Dates Temp_Sen_slope UP/DOWN
707 A 1/91-6/03 0.0041364 UP
736 A 1/91-6/03 0.0061308 UP
737 A 1/91-6/03 0.0047619 UP
775 A 1/91-6/03 -0.0478571 DOWN
996 A 1/91-6/03 -0.00125 No evidence of trend
997 A 1/91-6/03 0.0021133 UP
1087 A 1/91-6/03 0.0064083 UP
Wells A Up 5
Wells A Down 1

Bobhill A 1/91-6/04 -0.0174752 DOWN
Boyette A 1/91-6/05 0 No evidence of trend
Chassal A 1/91-6/06 -0.0125 DOWN
ChassaM A 1/91-6/07 -0.0125 DOWN
Homosl A 1/91-6/10 0 No evidence of trend
Homos2 A 1/91-6/11 -0.0034818 No evidence of trend
Homos3 A 1/91-6/12 0.0041036 No evidence of trend
HidRivH A 1/91-6/09 -0.0085787 No evidence of trend
HidRiv2T A 1/91-6/08 -0.0076923 DOWN
hunterspr A 1/91-6/13 -0.0228123 DOWN
lithiamain A 1/91-6/14 0.0073981 No evidence of trend
magnolspr A 1/91-6/15 -0.02068 DOWN
pumphous A 1/91-6/16 0.0216919 No evidence of trend
rainbow A 1/91-6/17 -0.0064574 No evidence of trend
rainbow A 1/91-6/18 -0.0083574 DOWN
rainbow A 1/91-6/19 -0.01 DOWN
rainswamp3 A 1/91-6/20 0.0023762 No evidence of trend
mboBseep A 1/91-6/21 -0.0033333 No evidence of trend
saltspr A 1/91-6/22 0 No evidence of trend
SWBettyJay A 1/91-6/23 -0.0080444 No evidence of trend
SWBoat A 1/91-6/24 -0.0117381 No evidence of trend
SWBublng A 1/91-6/25 -0.0047494 No evidence of trend
SWBuckhm A 1/91-6/26 0.01 No evidence of trend
SWCatfish A 1/91-6/27 -0.0116369 No evidence of trend
tarponholespr A 1/91-6/28 -0.0002609 No evidence of trend
trottermain A 1/91-6/29 0 No evidence of trend
weekwachmain A 1/91-6/30 0.0017778 No evidence of trend
Springs A Up 0
Springs A Down 8

Location Sequence Dates Temp_Sen_slope UP/DOWN
707 B 1/91-12/97 0.0104783 UP














Appendix B2. Origins of Temporal Trends in Florida's Groundwater
Interpretation When There Is A Pattern of
Analyte Origin in Groundwater Increasing Trends Decreasing Trends
1. The proportion of conduit flow is decreasing and diffuse
The primary natural source of alkalinity is dissolution of flow is decr
rock materials. In limestone aquifers, the reaction of recharging flow is increasing
1 clite in te l 2. Relative contribution of water held in storage in the .
water with calcite in the limestone is: of 1. Conduit flow is becoming more important than diffuse flow
AkliyAk0+O + CaCO Ca+2 + HCO- aquifer is increasing because of longer residence times .
H20 + C2O + CaCO3 Ca+2 + HCO3e. e is i i e e f e e t 2. Relative contribution of water held in storage in the aquifer is decreasing
Alkalinity (Alk) and more opportunity to react with the host aquifer because of increased rapid recharge
because of increased rapid recharge
S 3. A connection with the surface that allowed rapid .
Where saline water encroachment is not a problem, HCO3 is c n ih te s e tt a e r 3. A new, more acidic water source has been introduced
recharge may be less efficient
the primary source of alkalinity and the dominant anion in l eicn
riar sr 4. A new, more alkaline water source has been added to the
Florida springs. flow system
flow system
Ammonia/ammonium is generally not detectable in natural
groundwater. Small quantities may be present near decaying 1. Increased use of or change in formulation of fertilizers 1. Decreased use of or change in formulation of fertilizers
organic in a chemically reducing environment. Where these 2. New sources of waste disposal in springshed 2. Reduction in the sources of waste disposal in springshed
analytes are reported, the sources are typically fertilizer, animal 3. Changes in waste management in springshed (new septic 3. Changes in waste management in springshed (septic tanks, landfills,
Ammonia/Ammonium wastes, or industrial effluent. Many fertilizers contain tanks, landfills, feedlots, etc.) feedlots, etc.)
(NH3/NH4) ammonium either as ammonium nitrate, urea, or some other 4. Increase in drainage of wetlands or natural sources of 4. Decrease in drainage of wetlands or natural sources of chemically reduced
ammonium compound. Animal wastes (human and other) also chemically reduced nitrogen nitrogen
contain ammonium and urea [(NH2)2CO]. In animal wastes and 5. Decrease in the reduction/oxidation potential of the 5. Increase in the reduction/oxidation potential of the groundwater that
some fertilizers, much of the ammonia degasses into the groundwater that causes an increase in nitrate reduction causes an increase in nitrification (ammonia/ammonium oxidation)
atmosphere rather than entering the groundwater system.
The primary natural source of calcium in groundwater is 1. The proportion of conduit flow is less and there is more
dissolution of rock materials. In limestone aquifers, the reaction diffuse flow
of recharging water with calcite in the limestone is: 2. Relative contribution of water held in storage in the
H0 + C02+ CaC03 Ca +2 + HC0- 1. The proportion of conduit flow is increasing and there is less diffuse flow
HO2 + CO2 + CaCO3 <= Ca+2 + HCO3-. aquifer is increasing because of longer residence times r
2. Relative contribution of water held in storage in the aquifer is decreasing
Deep groundwater flow systems in the Floridan aquifer may and more opportunity to react with the host aquifer eae coiution o water eld in store in te auier is
because of shorter residence times and less opportunity to react with the
Calcium (Ca) skim along the top of the gypsum/anhydrite-rich strata of the 3. A connection with the surface that allowed rapid host auf
Middle Confining Unit of the Floridan. Here, calcium is derived recharge may be less efficient (a swallet has closed or .
S .13. A connection with the surface that allowed rapid recharge may have
from dissolution of gypsum (CaSO4.2H20) and/or anhydrite become blocked) r r r r
S. developed or become more efficient (a swallet opened up)
(CaSO4). 4. A new, calcium-rich water source has been added to the developed or become more efficient (a wallet opened up)
Near the coasts and where saline water encroachment is a flow system, either within the springshed or by
problem, the saline water is a source of Ca2+ as well. encroachment of saline water
Chloride is normally present in low concentrations in natural
Florida groundwater systems. There are four important sources: 1. Saline water encroachment is occurring, either by lateral
1. Saline water encroachment is occurring, either by lateral 1
(1) low concentrations in rainwater as a result of entrainment of 1. Saline water intrusion is declining, probably because pumping stresses are
( lov.owcoc onr rn e rs eutf r ainmmovement of sea water or connate water or by up-coningrisen
Chloride (CI) marine aerosols, (2) mixing with seawater near Florida coasts, (3) of water fromreduced or aquifer potentials have risen
Chlonde (Cl) of water from below .
dissolution of gypsum and/or anhydrite at the base of the upper. 2. A source of chloride has been eliminated or reduced in the springshed
., 3 2. A new source of chloride has been added to the .
Floridan aquifer, and (4) connate water trapped within the upper (landfill, industry, etc.)
i .i springshed (landfill, industry, etc.)
Floridan aquifer. The latter is an important issue within the St. springshed (landfill, industry, etc.)
Johns River corridor.
1. Increase in recharge rates (more rainfall and increases in .
Increase in recharge rates (more rainfall and increases in Decrease in recharge rates (less rainfall and declines in elevation of the
Spring discharge is an artifact of the recharge rate of sources elevation of the potentiometric surface)
Discharge or flow water, hydraulic gradient, spring elevation relative to aquifer 2. Reduction of stage in the receiving water (allows for potentiometric surface)
2. Increase of stage in the receiving water (retards flow from the spring)
potentials, and spring vent geometry. increased drainage of the aquifer) Increase in t re in aer
3. Reduction in 3. Increase in pumping stress on aquifer
3. Reduction in pumping stress on aquifer







Sequence A
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
Salt Spring C 1/98-6/31 -9999 -9999 -9999
Sanlando Springs C 1/98-6/03 -9999 -9999 -9999
Silver Glen Springs C 1/98-6/03 -9999 -9999 -9999
Starbuck Spring C 1/98-6/03 0.81365 0.18635 12
Sweetwater Spring C 1/98-6/03 -9999 -9999 -9999
Volusia Springs C 1/98-6/03 0.93658 0.06342 10
Wekiva C 1/98-6/31 0.88 0.12 19.00
Springs up
Springs down







Sequence A
Location Sequence Dates TOC_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates TOC_Sen_slope UP/DOWN
1417 C 1/98-6/03 -0.10 No evidence of trend
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 0.00 No evidence of trend
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 0.00 No evidence of trend
1931 C 1/98-6/03 0 No evidence of trend
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999






FLORIDA GEOLOGICAL SURVEY


Without respect to this knowledge, this study was broken into time sequences that
reflected the timing of the events: Sequence B (1991-1997) ended with El Nifio and Sequence C
(1998-2003) began with La Nifia. Analysis of hundreds of individual time series bridging these
time sequences revealed that 1998 was a visible break-point in the data, analogous in geology to
a stratigraphic "marker bed." This means that data from various springs and wells could
sometimes be referred to common visible time series "excursions" around that approximate
period of time. This raises the possibility that, although Florida was under the influence of a
longer-term decline in water quantity (Figure 77), the consequence of these shorter-duration
perturbations were more strongly felt.

Brief but substantial excursions in analyte values whether upward or downward -
probably contribute a greater influence on the overall trend lines than do more subtle, long-term
influences. Thus, excursions in 1997-1998 and drought are likely the cause behind most of the
trends in this report. Earlier years of the study included a weak La Nifia (1994-1995). This was
followed by a very strong El Nifio, occurring in 1997. Immediately following this was a strong
La Nifia (cold) event in 1998. These extreme years were followed a severe statewide (and
national) drought in 2000.

Acid Rain

One possible explanation for the decrease in well-water pH over the study period was
acid rain. Acid rain is often the product of sulfur, carbon, or nitrogen oxides that result from
industry, burning coal, or combustion of other materials. During the investigation, it was
suggested that lower well-water pH values simply reflected increasing airborne chemical
pollutants in Florida's precipitation. If this were true a time series of pH values in Florida rainfall
should show a decreasing trend. Figure 78 reveals that this was not the case. The figure plots
the mean monthly rainfall pH values for seven rainfall stations from around Florida (Appendix
M). The rainfall means showed no significant trends over time, though standard deviation
decreased slightly. The drought resulted in less rainfall. This should result in a reduction in the
pH standard deviation, not an increase.

Implications of Future Low Rainfall and Increasing State Water Demands

The AMO cycle seen in Figure 76 is approximately a 60-year cycle with 30 years of
increased rainfall followed by 30 years of decreased rainfall. Since little is known about these
cycles, the accurate modeling of future rainfall changes is not currently possible. At the same
time, with a state that is growing so rapidly in population as Florida, water demand increases are
inevitable. Regardless of current lack of ability to understand larger-scale driving factors in water
quantity, the influence on statewide water resources created by AMO/PDO and El Nifio/La Nifia
may soon prove to be important.

For the sake of illustration, a simple scenario can be posited. If one can assume a cycle is
60-years long (something which cannot be predicted in advance) and one can assume that the
increase began in 2004, this would mean a welcomed 30-year increase in rainfall. At the current
rate of growth of more than 700 people per day, an increased volume of water would relieve state
water needs and possibly reduce or reverse increasing concentrations of both rock and saline-
indicators in spring water. However, once the cycle reached its high point, a decline in rainfall







COLDATE 31649 pH 4255 TSS NH3 618 620 N03 P P04 TOC TDS DtoH20
5/31/94 6.91* 7.91
7/7/94 6.96* 0.02* 3.44
7/28/94 6.86* 3.58
8/29/94 6.91* 2.19
10/5/94 6.92* 0.02* 2.21
11/4/94 6.86* 2.83
12/2/94 6.13* 2.74
1/4/95 6.85 0.27 0.02* 2.8
1/30/95 7.17* 2.7
3/2/95 6.95* 2.86
3/31/95 6.9 0.26 0.02* 3.33
4/28/95 6.86* 3.68
5/30/95 6.82* 5.37
7/6/95 6.89 0.27 0.02 4.43
7/28/95 6.8* 2
9/1/95 6.89* 1.97
10/3/95 6.9* 2.33
10/30/95 6.9* 2.5
11/30/95 6.86* 3.3
1/5/96 6.87* 2.31
2/2/96 6.92* 3
3/1/96 6.85* 3
3/27/96 6.88* 2
5/2/96 6.89* 2.55
5/29/96 7.06* 3.91
6/28/96 6.84* 2.94
7/23/96 6.95* 1.9
8/30/96 6.88* 4.08
9/27/96 6.89* 3.69
10/29/96 6.86* 3.87
12/2/96 6.87* 4.5
12/30/96 6.87* 3.76
2/6/97 6.9 0.22 0.026 0.14 0.11 6.5 4
4/2/97 6.87* 5.55
5/2/97 6.84* 4.27
6/3/97 6.85* 6.26
6/30/97 6.81* 6.53
8/1/97 6.87* 4.87
8/29/97 6.93* 5.43
9/30/97 6.84* 3.6
10/31/97 6.88* 4.25
11/21/97 6.86* 3.02







Sequence A
Location Sequence Dates DtoH20_Ha_up DtoH20 Ha down DtoH20_n
1943 A 1/91-6/03 0.39603 0.60397 70
2003 A 1/91-6/03 0 1 68
2193 A 1/91-6/03 0.01107 0.98893 38
2259 A 1/91-6/03 0 1 49
2404 A 1/91-6/03 0.05321 0.94679 50
2465 A 1/91-6/03 0 1 66
2585 A 1/91-6/03 0 1 46
2675 A 1/91-6/03 0.00425 0.99575 70
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 0.00222 0.99778 26
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates DtoH20_Haup DtoH20 Ha down DtoH20_n
1943 B 1/91-12/97 0 1 37
2003 B 1/91-12/97 0.99999 0.00001 36
2193 B 1/91-12/97 0.01107 0.98893 38
2259 B 1/91-12/97 0.00009 0.99991 38
2404 B 1/91-12/97 0 1 38
2465 B 1/91-12/97 0.95991 0.04009 34
2585 B 1/91-12/97 0 1 37
2675 B 1/91-12/97 0.9995 0.0005 39







Sequence A
Location Sequence Dates TOC_Sen_slope UP/DOWN
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 -9999 -9999
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0

Sequence B
Location Sequence Dates TOC_Sen_slope UP/DOWN
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0

Sequence C
Location Sequence Dates TOC_Sen_slope UP/DOWN
2793 C 1/98-6/03 -0.142857 No evidence of trend
2872 C 1/98-6/03 -0.005 No evidence of trend
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -0.25 DOWN
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -0.152778 No evidence of trend
6490 C 1/98-6/03 0 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 1







STATION SAMP_DATE Temp Cond(field) pH Bicarb TKN T-NH3 D-NO3NO2 T-P D-PO4
WEEKI WACHEE MAIN SPRING 10/20/93 23.9 306 7.71 0.05 0.02 0.4 0.04 0.01
WEEKI WACHEE MAIN SPRING 7/26/94 24.3 303 7.93 139 0.23 0.01 0.52 0.01 0.01
WEEKI WACHEE MAIN SPRING 10/25/94 23.8 296 7.39 135 0.25 0.01 0.51 0.02 0.014
WEEKI WACHEE MAIN SPRING 1/18/95 23.4 300 136 0.12 0.01 0.466 0.05 0.05
WEEKI WACHEE MAIN SPRING 3/30/95 23.5 304 7.69 137 0.063 0.01 0.474 0.01 0.01
WEEKI WACHEE MAIN SPRING 7/24/95 24.1 302 7.76 138 0.37 0.01 0.482 0.011 0.016
WEEKI WACHEE MAIN SPRING 10/23/95 24.5 300 7.74 135 0.081 0.09 0.793 0.01 0.01
WEEKI WACHEE MAIN SPRING 2/5/96 20.2 300 7.55 136 2.197 0.043 0.539 0.447 0.01
WEEKI WACHEE MAIN SPRING 4/15/96 24 300 7.66 135 0.378 0.01 0.577 0.027 0.01
WEEKI WACHEE MAIN SPRING 7/15/96 23.8 303 7.64 138 0.546 0.01 0.57 0.01 0.01
WEEKI WACHEE MAIN SPRING 10/15/96 23.8 302 7.23 136 0.465 0.045 0.447 0.053 0.055
WEEKI WACHEE MAIN SPRING 1/27/97 24 300 7.69 135 0.224 0.01 0.546 0.018 0.01
WEEKI WACHEE MAIN SPRING 4/7/97 23.3 308 7.69 135 0.05 0.01 0.561 0.01 0.01
WEEKI WACHEE MAIN SPRING 7/7/97 24.9 309 7.39 137 0.05 0.01 0.569 0.01 0.01
WEEKI WACHEE MAIN SPRING 10/8/97 24 310 7.59 139 0.116 0.01 0.584 0.01 0.01
WEEKI WACHEE MAIN SPRING 1/12/98 23.3 309 7.6 133 0.331 0.01 0.619 0.196 0.012
WEEKI WACHEE MAIN SPRING 4/16/98 24 307 7.48 130 0.425 0.05 0.625 0.021 0.02
WEEKI WACHEE MAIN SPRING 7/15/98 23.9 311 7.42 132 0.05 0.01 0.55 0.161 0.013
WEEKI WACHEE MAIN SPRING 10/22/98 23.8 306 7.58 131 0.01 0.677 0.01 0.01
WEEKI WACHEE MAIN SPRING 1/18/99 23.7 307 7.54 133 0.014 0.589 0.01 0.01
WEEKI WACHEE MAIN SPRING 4/22/99 23.9 309 7.43 134 0.01 0.529 0.016 0.01
WEEKI WACHEE MAIN SPRING 7/29/99 24.5 314 7.52 138 0.01 0.445 0.011 0.01
WEEKI WACHEE MAIN SPRING 10/11/99 24.1 316 7.65 142 0.01 0.544 0.015 0.012
WEEKI WACHEE MAIN SPRING 1/11/00 23.2 320 7.61 141 0.01 0.551 0.03 0.01
WEEKI WACHEE MAIN SPRING 4/19/00 23.9 322 7.58 143 0.012 0.574 0.017 0.01
WEEKI WACHEE MAIN SPRING 7/17/00 24.4 321 7.49 137 0.01 0.544 0.011 0.011
WEEKI WACHEE MAIN SPRING 10/24/00 23.7 318 7.62 135 0.01 0.476 0.01 0.017
WEEKI WACHEE MAIN SPRING 1/24/01 23.3 321.5 7.72 144 0.01 0.516 0.01 0.01
WEEKI WACHEE MAIN SPRING 4/24/01 24.3 323 7.41 155 0.01 0.579 0.01 0.023
WEEKI WACHEE MAIN SPRING 7/26/01 24.4 326 7.58 150 0.571 0.018 0.01
WEEKI WACHEE MAIN SPRING 10/18/01 23.7 320 7.68 137 0.0172 0.66 0.01 0.01
WEEKI WACHEE MAIN SPRING 1/30/02 23.9 323 7.66 152 0.03 0.603 0.01 0.01
WEEKI WACHEE MAIN SPRING 4/8/02 24.2 323 7.68 145 0.01 0.642 0.01 0.01
WEEKI WACHEE MAIN SPRING 7/16/02 24.3 321 7.61 150 0.023 0.634 0.01 0.01
WEEKI WACHEE MAIN SPRING 10/7/02 24.10 318 7.6 151 0.019 0.006 0.724 0.01 0.01
WEEKI WACHEE MAIN SPRING 1/13/03 22.74 323 7.4 150 0.012 0.006 0.761 0.01 0.01
WEEKI WACHEE MAIN SPRING 4/14/03 23.73 314 7.5 148 0.012 0.006 0.751 0.01 0.01
WEEKI WACHEE MAIN SPRING 7/16/03 23.94 315 7.5 142 0.005 0.006 0.836 0.01 0.01







SWFWMD
Location Sequence Dates DtoH20_Ha_up
775 C 1/98-6/03 0.97612
996 C 1/98-6/03 0.58713
997 C 1/98-6/03 0.37216
1087 C 1/98-6/03 0.88138
1100 C 1/98-6/03 0.99975
7934 C 1/98-6/03 0.9979
7935 C 1/98-6/03 0.98125
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999
Boyette C 1/98-6/05 -9999
Chassal C 1/98-6/06 -9999
ChassaM C 1/98-6/07 -9999
Homosl C 1/98-6/10 -9999
Homos2 C 1/98-6/11 -9999
Homos3 C 1/98-6/12 -9999
HidRivH C 1/98-6/09 -9999
HidRiv2T C 1/98-6/08 -9999
huntersspr C 1/98-6/13 -9999
lithiamain C 1/98-6/14 -9999
magnolspr C 1/98-6/15 -9999
pumphous C 1/98-6/16 -9999
rainbow C 1/98-6/17 -9999
rainbow C 1/98-6/18 -9999
rainbow C 1/98-6/19 -9999
SWBettyJay C 1/98-6/23 -9999
SWBublng C 1/98-6/25 -9999
SWBuckhm C 1/98-6/26 -9999
SWCatfish C 1/98-6/27 -9999
tarponholespr C 1/98-6/28 -9999
trottermain C 1/98-6/29 -9999
weekwachmain C 1/98-6/30 -9999
wilsonheadspr C 1/98-6/31 -9999
Springs A Up
Springs A Down







SWFWMD
Location Sequence Dates TOC_Sen_slope UP/DOWN
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 0 No evidence of trend
Boyette B 1/91-12/99 -0.05 No evidence of trend
Chassal B 1/91-12/100 0 No evidence of trend
ChassaM B 1/91-12/101 0 No evidence of trend
Homosl B 1/91-12/104 0 No evidence of trend
Homos2 B 1/91-12/105 0 No evidence of trend
Homos3 B 1/91-12/106 0 No evidence of trend
HidRiv2T B 1/91-12/102 0 No evidence of trend
HidRivH B 1/91-12/103 0 No evidence of trend
huntersspr B 1/91-12/107 0 No evidence of trend
lithiamain B 1/91-12/108 -0.0107143 No evidence of trend
magnolspr B 1/91-12/109 0 No evidence of trend
pumphous B 1/91-12/110 -0.0425 DOWN
rainbow B 1/91-12/111 0 DOWN
rainbow B 1/91-12/112 0 DOWN
rainbow B 1/91-12/113 0 DOWN
mboBseep B 1/91-12/115 0 DOWN
saltspr B 1/91-12/116 0 No evidence of trend
SWBettyJay B 1/91-12/117 -0.200429 No evidence of trend
SWBoat B 1/91-12/118 0 No evidence of trend
SWBublng B 1/91-12/119 0 No evidence of trend
SWBuckhm B 1/91-12/120 -0.031 DOWN
SWCatfish B 1/91-12/121 0 DOWN
tarponholespr B 1/91-12/122 0 No evidence of trend
trottermain B 1/91-12/123 0 No evidence of trend
weekwachmain B 1/91-12/124 0 No evidence of trend
Springs A Up 0
Springs A Down 7

Location Sequence Dates TOC_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.0285714 No evidence of trend
737 C 1/98-6/03 -9999 -9999










Mean Annual Rainfall Data


Finricrl W~ft~r Ml~n~nF~mFnt fi~qrictf q MIFn r~infRII (nmc~init~tinn) nfl~t (inlvr)


WMfln mp~nnq nF~r time! .F~ciuFnc


Year NWFWMD SRWMD SJRWMD SWFWMD SFWMD Mean A Mean B Mean C
1991 71.3 70.6 58.9 47.8 59.9 59.0 59.0 54.8
1992 63.6 54.4 50.2 51.1 52.5 53.4 53.4 46.6
1993 54.2 48.1 42.7 44.7 54.2 48.3 48.3 39.5
1994 80.9 63.2 60.9 54.1 61.7 61.4 61.4 50.7
1995 62.4 49.5 51.6 58.7 57.2 55.9 55.9 54.1
1996 65.3 61.8 50.1 46.0 44.4 50.2 50.2 56.1
1997 66.8 58.2 53.4 60.3 52.5 56.9 56.9
1998 67.7 62.2 47.6 56.3 52.7 54.8
1999 48.4 44.8 44.3 44.2 51.0 46.6
2000 40.1 42.3 38.0 38.1 40.6 39.5
2001 52.6 44.5 51.0 52.4 51.3 50.7
2002 57.5 50.6 55.6 58.9 47.8 54.1_
2003 66.7 58.8 50.4 60.7 50.5 56.1_


Rainfall per
Sequence Mean
A 52.8
B 55.0
C 50.3


Number of
WMD Stations Weight
NWFWMD 9 0.101
SRWMD 11 0.124
SJRWMD 22 0.247
SWFWMD 25 0.281
SFWMD 22 0.247
Total 89







Sequence A
Location Sequence Dates TN03N02_Ha_up T_NO3NO2 Ha down TN03N02_n

Alexander Springs B 1/91-12/97 -9999 -9999 -9999
Apopka B 1/91-12/97 -9999 -9999 -9999
Fern Springs B 1/91-12/97 -9999 -9999 -9999
Juniper Springs B 1/91-12/97 -9999 -9999 -9999
Miami Springs B 1/91-12/97 -9999 -9999 -9999
Palm Springs B 1/91-12/97 -9999 -9999 -9999
PDL B 1/91-12/97 -9999.0000 -9999.0000 -9999.0000
Rock Springs B 1/91-12/97 -9999 -9999 -9999
Salt Spring B 1/91-12/125 0.48796 0.51204 21
Sanlando Springs B 1/91-12/97 -9999 -9999 -9999
Silver Glen Springs B 1/91-12/97 -9999 -9999 -9999
Starbuck Spring B 1/91-12/97 -9999 -9999 -9999
Sweetwater Spring B 1/91-12/97 -9999 -9999 -9999
Volusia Springs B 1/91-12/97 -9999 -9999 -9999
Wekiva B 1/91-12/125 -9999 -9999 -9999
Springs up
Springs down

Sequence C
Location Sequence Dates TN03N02_Ha_up T_NO3NO2 Ha down TN03N02_n
1417 C 1/98-6/03 -9999 -9999 -9999
1420 C 1/98-6/03 -9999 -9999 -9999
1674 C 1/98-6/03 -9999 -9999 -9999
1762 C 1/98-6/03 -9999 -9999 -9999
1763 C 1/98-6/03 -9999 -9999 -9999
1764 C 1/98-6/03 -9999 -9999 -9999
1779 C 1/98-6/03 -9999 -9999 -9999
1780 C 1/98-6/03 -9999 -9999 -9999
1781 C 1/98-6/03 -9999 -9999 -9999
1931 C 1/98-6/03 -9999 -9999 -9999
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999 -9999 -9999
Apopka C 1/98-6/03 0.99869 0.00131 19
Fern Springs C 1/98-6/03 -9999 -9999 -9999
Juniper Springs C 1/98-6/03 -9999 -9999 -9999
Miami Springs C 1/98-6/03 -9999 -9999 -9999
Palm Springs C 1/98-6/03 0.01875 0.98125 14
PDL C 1/98-6/03 -9999.0000 -9999.0000 -9999.0000
Rock Springs C 1/98-6/03 -9999 -9999 -9999







Sequence A
Location Sequence Dates DP04_Ha_up D_P04 Ha down DP04_n
1417 A 1/91-6/03 0.21 0.79 13.00
1420 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1674 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1762 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1763 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1764 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1779 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1780 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1781 A 1/91-6/03 -9999 -9999 -9999
1931 A 1/91-6/03 -9999 -9999 -9999
Wells up
Wells down

Alexander Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Apopka A 1/91-6/03 -9999.00 -9999.00 -9999.00
Fern Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Miami Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Palm Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
PDL A 1/91-6/03 -9999.00 -9999.00 -9999.00
Rock Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Salt Spring A 1/91-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring A 1/91-6/03 -9999.00 -9999.00 -9999.00
Sweetwater A 1/91-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wekiva A 1/91-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence B
Location Sequence Dates DP04_Ha_up D_P04 Ha down DP04_n
1417 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1420 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1674 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1762 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1763 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1764 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1931 B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wells up
Wells down







Sequence A
Location Sequence Dates D_N03N02_Sen_slope UP/DOWN
Salt Spring C 1/98-6/31 -9999 -9999
Sanlando Springs C 1/98-6/03 -9999 -9999
Silver Glen Springs C 1/98-6/03 -9999 -9999
Starbuck Spring C 1/98-6/03 -0.0074261 No evidence of trend
Sweetwater Spring C 1/98-6/03 -9999 -9999
Volusia Springs C 1/98-6/03 -0.0144444 No evidence of trend
Wekiva C 1/98-6/31 -0.01 No evidence of trend
Springs up 0
Springs down 0







Sequence A
Location Sequence Dates D K Sen_slope UP/DOWN
RLS C 1/98-6/42 -9999 -9999
RKB C 1/98-6/41 -9999 -9999
SBL C 1/98-6/44 -9999 -9999
TEL C 1/98-6/45 -9999 -9999
TRY C 1/91-12/98 -9999 -9999
Springs A Up 0
Springs A Down 0_







SWFWMD
Location Sequence Dates TDS_Sen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 4.5 UP
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 1 No evidence of trend
7935 C 1/98-6/03 -9999 -9999
Wells A Up 1
Wells A Down 0


Bobhill C 1/98-6/04 2.5 UP
Boyette C 1/98-6/05 0.0909091 No evidence of trend
Chassal C 1/98-6/06 16.4 UP
ChassaM C 1/98-6/07 50.2 No evidence of trend
Homosl C 1/98-6/10 26.1818 No evidence of trend
Homos2 C 1/98-6/11 12.2914 No evidence of trend
Homos3 C 1/98-6/12 25.4444 No evidence of trend
HidRivH C 1/98-6/09 21.6 No evidence of trend
HidRiv2T C 1/98-6/08 22.9881 No evidence of trend
huntersspr C 1/98-6/13 5 UP
lithiamain C 1/98-6/14 0.5 No evidence of trend
magnolspr C 1/98-6/15 0.0833333 No evidence of trend
pumphous C 1/98-6/16 19.4 No evidence of trend
rainbow C 1/98-6/17 0.142857 No evidence of trend
rainbow C 1/98-6/18 1 UP
rainbow C 1/98-6/19 1.14286 UP
SWBettyJay C 1/98-6/23 0.4 No evidence of trend
SWBublng C 1/98-6/25 1 UP
SWBuckhm C 1/98-6/26 1 UP
SWCatfish C 1/98-6/27 11 UP
tarponholespr C 1/98-6/28 37.25 UP
trottermain C 1/98-6/29 11.9091 UP
weekwachmain C 1/98-6/30 0.75 No evidence of trend
wilsonheadspr C 1/98-6/31 0.444444 No evidence of trend
Springs A Up 10
Springs A Down 0







Sequence A
Location Sequence Dates D Sr Sen_slope UP/DOWN
1417 A 1/91-6/03 -9999.00 -9999
1420 A 1/91-6/03 -9999.00 -9999
1674 A 1/91-6/03 -9999.00 -9999
1762 A 1/91-6/03 -9999.00 -9999
1763 A 1/91-6/03 -9999.00 -9999
1764 A 1/91-6/03 -9999.00 -9999
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 -9999.00 -9999
1931 A 1/91-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 0.2 UP
Fern Springs A 1/91-6/03 -9999.00 -9999
Juniper Springs A 1/91-6/03 -9999.00 -9999
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 6.81 UP
Rock Springs A 1/91-6/03 6.52273 UP
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 15.57 UP
Starbuck Spring A 1/91-6/03 -0.666667 No evidence of trend
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 UP
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 5
Springs down 0

Sequence B
Location Sequence Dates D Sr Sen_slope UP/DOWN
1417 B 1/91-12/97 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 0







FK_STATI, PK_SAMPI DATE COLLECT MONTH SEASON SEASON_ Temp D-Fe D-Mn Bicarb DO Fcol
313 NWFM970 2/26/97 1445 2 Winter 4 19.3 0.31 *
313 NWFM970 4/1/97 1748 4 Spring 1 19 0.33 *
313 NWFM970 4/29/97 1921 4 Spring 1 19 0.3 *
313 NWFM970 5/22/97 1609 5 Spring 1 19.4 10100 55 29.7 0.31 *
313 NWFM970 6/25/97 1903 6 Summer 2 19.8 0.22 *
313 NWFM970 7/29/97 1516 7 Summer 2 20.6 0.17 *
313 NWFM970 8/25/97 1514 8 Summer 2 21.2 0.19 *
313 NWFM970 9/24/97 1512 9 Fall 3 21.5 0.12 *
313 NWFM971 10/20/97 1508 10 Fall 3 21.6 0.31 *
313 NWFM971 12/15/97 1512 12 Winter 4 20.9 0.21 *
313 NWFM971 12/29/97 1434 12 Winter 4 20.6 0.56 *
313 NWFM980 2/5/98 1625 2 Winter 4 19.7 0.16 *
313 NWFM980 2/25/98 1710 2 Winter 4 19.3 0.24 *
313 NWFM980 3/31/98 1543 3 Spring 1 19 0.33 *
313 NWFM980 4/28/98 1519 4 Spring 1 19 0.51 *
313 NWFM980 5/27/98 1454 5 Spring 1 19.4 0.51 *
313 NWFM980 6/22/98 1614 6 Summer 2 18.2 0.43 *
313 NWFM980 8/4/98 1615 8 Summer 2 18 0.25 *
313 NWFM980 8/26/98 1933 8 Summer 2 21.1 0.48 *
313 NWFM980 10/1/98 1604 10 Fall 3 21.7 0.45 *
313 NWFM981 10/28/98 1818 10 Fall 3 21.8 0.62 *
313 NWFM981 11/25/98 1527 11 Fall 3 21.7 0.47 *
313 NWFM981 12/30/98 1552 12 Winter 4 21.6 0.39 *
313 NWFM990 1/27/99 1550 1 Winter 4 21 0.35 *
313 NWFM990 2/24/99 1645 2 Winter 4 20.4 0.31 *
313 NWFM990 3/29/99 1740 3 Spring 1 20 0.33 *
313 NWFM990 4/27/99 1549 4 Spring 1 20 0.21 *
313 NWFM990 5/25/99 1648 5 Spring 1 20.2 0.31 *
313 NWFM990 6/29/99 1618 6 Summer 2 20.6 0.15 *
313 NWFM990 7/27/99 1741 7 Summer 2 21.1 0.17 *
313 NWFM990 8/30/99 1654 8 Summer 2 21.5 0.13 *
313 NWFM990 9/28/99 1615 9 Fall 3 21.8 0.21 *
313 NWFM991 10/26/99 1821 10 Fall 3 21.8 0.36 *
313 NWFM991 11/30/99 1500 11 Fall 3 20.6 3.87 *
313 NWFM991 12/28/99 1418 12 Winter 4 21.2 0.18 *
313 NWFM000 1/25/00 1702 1 Winter 4 20.4 0.12 *
313 NWFM000 2/29/00 1601 2 Winter 4 20 0.23 *
313 NWFM000 3/29/00 1508 3 Spring 1 19.7* 0*
313 NWFMOOO 4/25/00 1722 4 Spring 1 19.5 0.19 *
313 NWFM000 5/31/00 1640 5 Spring 1 20.1 0.27 *
313 NWFM000 6/29/00 1734 6 Summer 2 20.5 0.23 *
313 NWFM000 7/25/00 1502 7 Summer 2 21 0.12 *







Sequence A
Location Sequence Dates D Mn_Ha_up DMn Ha down D Mn n
1417 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1420 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1674 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1762 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1763 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1764 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1779 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1780 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1781 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1931 A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wells up
Wells down

Alexander Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Apopka A 1/91-6/03 -9999.00 -9999.00 -9999.00
Fern Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Miami Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Palm Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
PDL A 1/91-6/03 -9999.00 -9999.00 -9999.00
Rock Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Salt Spring A 1/91-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring A 1/91-6/03 -9999.00 -9999.00 -9999.00
Sweetwater A 1/91-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wekiva A 1/91-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence B
Location Sequence Dates D Mn_Ha_up DMn Ha down D Mn n
1417 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1420 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1674 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1762 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1763 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1764 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1931 B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wells up
Wells down









BULLETIN NO. 69








Weeki Wachee Sequence A (1991-2003)


1995 1996 1997 1998 1999 2000 2001 2002 2003
Date

MK p-value <0.0001 SS 0.0457
WTp-value<0.0032 nb 15 nc= 23



Bobhill Spring Time Sequence A (1991-2003)


17



15



13
-J
'C)
11 -
0


9-



7-



5-


1995 1996 1997 1998 1999 2000

MKp-value <0.0001 SS 0.1133 Date
WT p-value < 0.0009 nb =14 n = 19


2001 2002 2003


Figure 35. Increasing saline analytes for Weeki Wachee and Bobhill Springs.
Weeki Wachee (top) and Bobhill Springs (bottom) had significant increases in
chloride. Tests (p < 0.05) included MK for trend, WT on sequences B and C,
plus an SS calculation on rate of change.


. *.


















BULLETIN NO. 69


into Florida's groundwater from the weathering of gypsum and anhydrite found at the base of the
Floridan aquifer system. If calcium concentrations are found to be increasing, in conjunction
with sulfate, it can be an indication that the older and deeper water from the base of the fresh-
water "lens" is finding its way into the shallower portions of Florida's groundwater systems. If
this occurs, there is the potential that increases in the concentration of other salt water indicators
will follow.

Chloride (Cl) Chloride is the most abundant constituent in seawater. Groundwater and spring-
water that are tidally influenced may have high chloride concentrations. Other sources for Cl in
Florida are from rainfall via marine aerosols from the ocean, and as a by-product of waste.
Chloride is chemically conservative and reacts very little with groundwater.

Potassium K is primarily derived from sea water. However, it can be introduced into
groundwater via fertilizers. Other sources are from drilling fluids in newly installed wells and
from clay minerals.

Sodium In Florida, sodium (Na) in groundwater has several sources. The major source is the
mixing of seawater with fresh water. Two other, but relatively minor, sources are marine
aerosols and the weathering of sodium-bearing minerals like feldspars and clays. Thus, to a very
minor degree, sodium can also be considered a rock analyte. However, for this report is
considered a saline analyte. Both dissolved sodium (D-Na) and total sodium (T-Na) were
sampled. The species D-Na was preferred for trend analyses.

Specific Conductivity Because it is a measure of electrical conductance, and because highly
mineralized water has high SC values, it is a good indicator of saline conditions.

Sulfate Because of its source (gypsum and anhydrite), SO4 is considered to be a rock indicator.
However, as previously stated, sulfate can be released into Florida's groundwater from the
weathering of gypsum and anhydrite found at the base of the Floridan aquifer system and,
because seawater is also an important source of sulfate in coastal areas, sulfate is an excellent
salt water indicator.

Total Dissolved Solids (TDS) TDS are primarily derived from the dissolution of carbonate
rocks in Florida's aquifers. They also originate from saline and connate marine water.

Nutrient Analytes

These analytes represent compounds or elements that are essential for the growth of
living organisms and occur naturally. However, if found in high concentrations, they can cause
the over-enriching of a body of surface water eutrophicationn), leading to an overgrowth of plant
life (including algae) and possibly a loss of dissolved oxygen. For this report, nutrient analytes
include phosphate, phosphorus, a series of nitrogen related species, and to a lesser extent, Mg,
Ca, K, and sulfur (in the form of sulfate). The nitrogen related species include nitrogen,
ammonia, total kjeldahl nitrogen, nitrate, and nitrite.







Sequence A
Location Sequence Dates Turb_Sen_slope UP/DOWN
2793 A 1/91-6/03 0 No evidence of trend
2872 A 1/91-6/03 -0.0296703 DOWN
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -0.0161364 DOWN
Wells A Up UP 0
Wells A Down DOWN 2

Sequence B
Location Sequence Dates Turb_Sen_slope UP/DOWN
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0

Sequence C
Location Sequence Dates Turb_Sen_slope UP/DOWN
2793 C 1/98-6/03 0 No evidence of trend
2872 C 1/98-6/03 -0.1 DOWN
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -0.560606 DOWN
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0 No evidence of trend
6490 C 1/98-6/03 -0.0083333 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 2







Date SEASON_NO. Month Temp Fe-D Alk DO Fcol Entero pH TSS NH3 NO3-D
2/26/91 4 2 25.1 ****7.11 *
3/19/91 1 3 25.1 ****7.05* *
4/30/91 1 4 25 280 ** *****
5/30/91 1 5 24.5 ****7.1* *
6/18/91 2 6 25.4* *
7/31/91 2 7 25.5 280 240* 6.96* *
8/13/91 2 8 26 ****7.07* *
9/23/91 3 9 24.8 ****6.93* *
10/22/91 3 10 26.3 190 287* 7.06* *
11/26/91 3 11 24 ****6.73* *
12/13/91 4 12 25.4 ****7.05* *
1/27/92 4 1 21 60 293* 6.97* *
2/21/92 4 2 24.7 ****7.12* *
3/16/92 1 3 24.7 ****6.91* *
4/22/92 1 4 25.1 200 295 7.09 *
5/7/92 1 5 24.6 ****6.82* *
6/17/92 2 6 25.6 ****7.01 *
7/22/92 2 7 25.6 220 258* 7* *
8/26/92 2 8 27.6 ****6.77* *
9/25/92 3 9 26.9 ****6.83* *
10/21/92 3 10 24.7 110 263* 6.95* *
11/24/92 3 11 26.7 ****7.07* *
12/17/92 4 12 24.9 ****7.1 *
1/25/93 4 1 24.4 3 280* 7.01 *
2/19/93 4 2 24.6 ****6.72* *
3/29/93 1 3 24.7 ****6.62* *
4/28/93 1 4 24.4 120 290 6.84 *
6/1/93 2 5 25.3 ****6.93 *
6/23/93 2 6 24.9 ****6.67* *
7/30/93 2 7 25.1 ****6.71 *
8/25/93 2 8 25.1 ****6.98 *
9/29/93 3 9 25.4 ****6.96 *
10/11/93 3 10 25.3 260 300* 7.02 0.12 *
11/29/93 3 11 24.1 6.86* *
12/13/93 4 12 24.4 ****6.72 *
12/30/93 4 12 24.4 ****6.72 *
1/27/94 4 1 24.5 170 290* 6.76 *
2/28/94 4 2 24.4* 6.96* *
3/29/94 1 3 23.9 ****7.2 *
4/20/94 1 4 24.9 400 280 6.71 *
5/25/94 1 5 24.5 ****6.97* *
6/28/94 2 6 26.8 ****7.05* *







COLLECTION_DATE Entero pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20
1/15/91 7.61 79.34
4/2/91 7.75* 75.56
7/9/91 7.63* *** *
10/8/91 7.39 ** *****
3/4/92 7.86 0.02 0.02 75.36
11/7/95 7.62 0.1 0.02 0.02 75.38
6/2/98 7.82 0.075 0.027 0.005 0.004 1 72.27
3/14/00 7.77 ********78.35
5/22/00 7.49* 79.7
7/24/00 7.42 81.2
10/23/00 7.68* 80.2
1/29/01 1 7.66 4 0.084 0.004 0.004 0.004 1.1 181 79.9
2/26/01 1 7.65 4 0.091 0.004 0.004 0.004 1 166 79.73
4/25/01 1 7.59 4 0.094 0.004 0.004 0.004 1 216 79.6
7/23/01 1 7.64 4 0.1 0.004 0.008 0.006 1 179 80.6
10/25/01 7.52 ********79.8
1/24/02 7.62* 79.7
4/23/02 7.69* 79.4
7/23/02 7.52* 81.77
10/21/02 7.46 ********80.87
1/3/03 7.62* 78.1
4/23/03 7.61* 73.91







Sequence A
Location Sequence Dates Color Ha down Color n
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 -9999 -9999
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates Color Ha down Color n
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates Color Ha down Color n
2793 C 1/98-6/03 0.07329 10
2872 C 1/98-6/03 0.5 13
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.00515 13
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0.7809 13
6490 C 1/98-6/03 0.08187 10
Wells A Up
Wells A Down











Sen Slope (S-S) Sen's nonparametric estimator of slope is based on the Mann-Kendall
approach and is intended to identify the slope of data regardless of seasonal influences.
The first step is to calculate the number of slope estimates (N) for the time series, where
N = [(n)(n-1)/2], and n = the number of observations in the series. Each slope estimate is
determined by:


Q xjL-x (A5)
j-i

where xj and xi are the values of data collected at times i and j, and j > i. In other words,
the difference in the numerator of equation A5 reflects the change in condition of a
sample collected at time j as compared to an earlier sample collected at time i. If the time
intervals are equal, then the denominator of equation A5 becomes a constant and equation
A5 results in the differences calculated for the Mann-Kendall test.

The median of the ranked series is determined as follows:
Sen=s estimator = median slope,

= Q(N+ 1)/2 if N is odd,

= 2 (QN/2 + Q(N+2)/2) ifN is even.

A two-sided test for confidence on the slope is determined using the table of the
cumulative normal distribution. At an a = 0.10, the Z1-,/2 is 1.64. This value from the
table is compared to

Ca = z_- 2[VAR(S) ]5,

where

VAR(S) [n(n 1)(2n + 5)
18
(A6)
p=1,q tp(tp (2 t + 5)].



The value of n is the number of samples in the time series, q is the number of ties, and tp
is the number data in the pth group (the number of multiple samples in group p).

For the example, n = 5 samples, q, the number of tied groups = 0, and tp, the number of
ties in the th group = 0.







SWFWMD
Location Sequence Dates Turb_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -0.0833333 DOWN
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -0.1 No evidence of trend
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -0.380952 No evidence of trend
Wells A Up 0
Wells A Down 1

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates Turb_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999







SWFWMD
Location Sequence Dates DP04 Ha down DP04_n
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 0.5 11
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.35401 32
Boyette A 1/91-6/05 0.65457 68
Chassal A 1/91-6/06 0.68081 38
ChassaM A 1/91-6/07 0.20616 38
Homosl A 1/91-6/10 0.23167 37
Homos2 A 1/91-6/11 0.57945 35
Homos3 A 1/91-6/12 0.24057 37
HidRivH A 1/91-6/09 0.2273 37
HidRiv2T A 1/91-6/08 0.13625 38
hunterspr A 1/91-6/13 0.11446 32
lithiamain A 1/91-6/14 0.95882 44
magnolspr A 1/91-6/15 0.04243 35
pumphous A 1/91-6/16 0.07502 26
rainbow A 1/91-6/17 0.36132 36
rainbow A 1/91-6/18 0.48913 36
rainbow A 1/91-6/19 0.40556 38
rainswamp3 A 1/91-6/20 0.26305 16
mboBseep A 1/91-6/21 0.1918 25
saltspr A 1/91-6/22 0.21761 24
SWBettyJay A 1/91-6/23 0.2903 35
SWBoat A 1/91-6/24 0.1709 21
SWBublng A 1/91-6/25 0.69082 35
SWBuckhm A 1/91-6/26 0.93942 44
SWCatfish A 1/91-6/27 0.06592 27
tarponholespr A 1/91-6/28 0.91613 41
trottermain A 1/91-6/29 0.21352 38
weekwachmain A 1/91-6/30 0.11547 38
Springs A Up
Springs A Down

Location Sequence Dates DP04 Ha down DP04_n
707 B 1/91-12/97 -9999 -9999







Sequence A
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
1417 A 1/91-6/03 -9999 -9999 -9999
1420 A 1/91-6/03 -9999 -9999 -9999
1674 A 1/91-6/03 -9999 -9999 -9999
1762 A 1/91-6/03 -9999 -9999 -9999
1763 A 1/91-6/03 -9999 -9999 -9999
1764 A 1/91-6/03 -9999 -9999 -9999
1779 A 1/91-6/03 -9999 -9999 -9999
1780 A 1/91-6/03 -9999 -9999 -9999
1781 A 1/91-6/03 -9999 -9999 -9999
1931 A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wells up
Wells down

Alexander Springs A 1/91-6/03 0.83 0.17 35.00
Apopka A 1/91-6/03 -9999 -9999 -9999
Fern Springs A 1/91-6/03 0.08693 0.91307 38
Juniper Springs A 1/91-6/03 0.55247 0.44753 29
Miami Springs A 1/91-6/03 0.63415 0.36585 12
Palm Springs A 1/91-6/03 0.43813 0.56187 11
PDL A 1/91-6/03 0.17404 0.82596 27
Rock Springs A 1/91-6/03 0.9042 0.0958 28
Salt Spring A 1/91-6/31 -9999 -9999 -9999
Sanlando Springs A 1/91-6/03 0.78186 0.21814 11
Silver Glen Springs A 1/91-6/03 0.82783 0.17217 27
Starbuck Spring A 1/91-6/03 -9999 -9999 -9999
Sweetwater A 1/91-6/03 0.99086 0.00914 28
Volusia Springs A 1/91-6/03 0.14188 0.85812 17
Wekiva A 1/91-6/31 1.00 0.00 40.00
Springs up
Springs down

Sequence B
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
1417 B 1/91-12/97 -9999.00 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wells up
Wells down










Conductance (field)


Figure L49. Calcium trends in SJRWMD Springs. Figure L50. Conductance (field) trends in
SJRWMD springs.


Figure L51. Flow trends in SJRWMD springs.


Figure L52. Magnesium trends in SJRWMD
springs.


L19







SWFWMD
Location Sequence Dates D Na Ha down DNa_n
707 A 1/91-6/03 0.90616 24
736 A 1/91-6/03 0.7576 33
737 A 1/91-6/03 0.77759 32
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 0.00002 30
997 A 1/91-6/03 0.00949 23
1087 A 1/91-6/03 0.99911 28
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.99994 33
Boyette A 1/91-6/05 0 59
Chassal A 1/91-6/06 0.97119 38
ChassaM A 1/91-6/07 0.89569 38
Homosl A 1/91-6/10 0.99999 37
Homos2 A 1/91-6/11 0.9302 35
Homos3 A 1/91-6/12 0.97587 36
HidRivH A 1/91-6/09 0.99978 37
HidRiv2T A 1/91-6/08 0.9999 38
hunterspr A 1/91-6/13 0.99897 32
lithiamain A 1/91-6/14 0.90216 40
magnolspr A 1/91-6/15 0.12343 36
pumphous A 1/91-6/16 0.61279 26
rainbow A 1/91-6/17 0.99624 37
rainbow A 1/91-6/18 0.99952 39
rainbow A 1/91-6/19 1 39
rainswamp3 A 1/91-6/20 0.99662 16
mboBseep A 1/91-6/21 0.46436 26
saltspr A 1/91-6/22 0.43108 24
SWBettyJay A 1/91-6/23 0.76568 35
SWBoat A 1/91-6/24 0.77485 21
SWBublng A 1/91-6/25 0.99999 35
SWBuckhm A 1/91-6/26 0.00038 40
SWCatfish A 1/91-6/27 0.95119 26
tarponholespr A 1/91-6/28 0.99972 41
trottermain A 1/91-6/29 0.99809 38
weekwachmain A 1/91-6/30 1 38
Springs A Up
Springs A Down

Location Sequence Dates D Na Ha down D Nan
707 B 1/91-12/97 0.32336 19












Descriptive Statistics for Wilson Head Spring Dates: April 1993- July 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 18 21.5 22.853 23.15 23.5 24.22
Cond(field) uS/cm 18 336 374.75 378 381 393
pH s.u. 18 7.07 7.2725 7.365 7.46 7.71
Bicarb mg/l 18 160 163 168 180 187
D-TKN mg/1 4 0.005 0.00675 0.012 0.012 0.012
T-NH3 mg/1 17 0.006 0.008 0.01 0.0195 0.038
D-N03N02 mg/l 18 0.61 0.6888 0.819 0.9733 1.3
T-P mg/1 18 0.034 0.04025 0.043 0.04775 0.083
D-P04 mg/1 17 0.034 0.036 0.039 0.0435 0.06
TOC mg/l 18 0.244 0.3 0.3 0.443 1.91
D-Ca mg/l 18 69.3 71.55 75.15 76.613 83.2
D-Mg mg/1 18 1.6 2.035 2.13 2.1875 2.29
D-Na mg/1 18 2.87 3.13 3.17 3.2425 3.36
D-K mg/1 18 0.08 0.36 0.41 0.46 0.66
D-CI mg/1 18 5.83 6.16 6.34 6.6225 7.12
D-S04 mg/1 18 11.9 12.075 12.45 12.808 13.7
D-F mg/1 13 0.012 0.05 0.051 0.065 0.12
TDS mg/l 18 207 216 220.5 226.5 251
T-N mg/l 17 0.602 0.787 0.9 1.035 1.4
D-N03 mg/1 17 0.61 0.715 0.84 0.9805 1.3
D-Fe 1 g/1 18 25 25 25 30 46.1
*Less than 10 samples
NA No samples






FLORIDA GEOLOGICAL SURVEY


Scott (2001) also indicated that once the removal of water exceeds the recharge, "mining" of the
groundwater occurs. At that point, Florida's groundwater is no longer sustainable.

With Florida's growing population, what are reasonable solutions? Scott and Schmidt
(2000) mentioned that mineralized water can be converted to fresh water through reverse
osmosis (RO) processes and surface water can be used to supplement groundwater supplies.
However, they pointed out that both potential solutions present their own set of problems and
they proposed a set of subsequent questions:

Does the inclusion of these waters in the sustainable supply create a
false sense of security?
Should aquifer storage and recovery (ASR) water be a portion of the
sustainable water supply?
Should growth management and environmental stability rely on RO
and ASR waters?
Is it wise to allow growth management and environmental decisions to
be based on expensive alternative water supplies or is that simply
avoiding the "natural" limitations?

These are very serious questions that the citizens of Florida will face in the very near
future. Analyses from this report suggest that salt-water encroachment may already be occurring
and as our population continues to grow, we are more susceptible than ever to droughts. We need
to commence addressing these issues now. If the AMO theory is correct, we may be fortunate
and have a 30-year "wet" period in store for us. If so, we may have additional time to address
the sustainability issue. If it is incorrect, we need to address the issue now.






Sequence A
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
67 (and Spring) A 1/91-6/03 1 0 105
91 A 1/91-6/03 0.99904 0.00096 146
129 A 1/91-6/03 0.98421 0.01579 89
131 A 1/91-6/03 1 0 119
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 0.34896 0.65104 49
312 A 1/91-6/03 0.85419 0.14581 118
313 A 1/91-6/03 0.77098 0.22902 119
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
67 (and Spring) B 1/91-12/97 0.55962 0.44038 52
91 B 1/91-12/97 0.0322 0.9678 80
129 B 1/91-12/97 0.44805 0.55195 53
131 B 1/91-12/97 0.57911 0.42089 53
312 B 1/91-12/97 0.29834 0.70166 82
313 B 1/91-12/97 0.20362 0.79638 53
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
67 (and Spring) c 1/98-6/03 0.99757 0.00243 53
91 C 1/98-6/03 0.99999 0.00001 66
129 C 1/98-6/03 0.98392 0.01608 36
131 C 1/98-6/03 1 0 66
243 C 1/98-6/03 0.98138 0.01862 16
245 C 1/98-6/03 0.22317 0.77683 47
312 C 1/98-6/03 0.98441 0.01559 36
313 C 1/98-6/03 0.69478 0.30522 66
Wells C Up
Wells C Down







Date D-Sr T-Sr TDS T-P04 D-CI FlowDate FLOW-CFS DeSnFlow STAGE FEET Source
06/14/1994 ****06/14/1994 121.4 129.191 SJR
06/24/1994 580 06/24/1994 140 147.791 2.76 USGS
08/17/1994 ***590 08/17/1994 134 141.791 3.36 USGS
08/18/1994 08/18/1994 120 127.791 SJR
09/30/1994 ****09/30/1994 151 156.967 USGS
10/31/1994 10/31/1994 143 148.967 SJR
12/06/1994 ****12/06/1994 212 200.69 5.75 USGS
02/01/1995 02/01/1995 174 162.69 3.2 USGS
04/12/1995 ****04/12/1995 153 151.47 4.38 USGS
06/13/1995 ****06/13/1995 157 164.791 5.18 USGS
08/04/1995 ****08/04/1995 116 123.791 4.09 USGS
10/02/1995 10/02/1995 131 136.967 5.06 USGS
10/13/1995 10/13/1995 136 141.967 5.22 USGS
10/31/1995 10/31/1995 159 164.967 5.55 USGS
12/01/1995 12/01/1995 155 143.69 SJR
12/08/1995 12/08/1995 166 154.69 4.03 USGS
02/09/1996 ****02/09/1996 161.4 150.09 SJR
02/28/1996 02/28/1996 176 164.69 1.79 USGS
04/22/1996 ****04/22/1996 144 142.47 3.55 USGS
04/24/1996 04/24/1996 160 158.47 3.35 USGS
05/02/1996 737 667 0.063 278 05/02/1996 160 158.47 2.82 USGS
06/14/1996 06/14/1996 167 174.791 1.88 USGS
08/13/1996 ****08/13/1996 152 159.791 1.78 USGS
10/04/1996 10/04/1996 151 156.967 2.73 USGS
12/03/1996 ****12/03/1996 171 159.69 2.51 USGS
01/27/1997 01/27/1997 173 161.69 1.86 USGS
04/22/1997 ****04/22/1997 151 149.47 1.99 USGS
05/23/1997 ****05/23/1997 162 160.47 1.55 USGS
09/08/1997 ****09/08/1997 153 158.967 3.4 USGS
10/31/1997 10/31/1997 152 157.967 2.46 USGS
01/12/1998 01/12/1998 145 133.69 1.88 USGS
03/03/1998 03/03/1998 165 163.47 5.5 USGS
04/23/1998 ****04/23/1998 183 181.47 3.38 USGS
06/16/1998 790* 773 0.06 320 06/16/1998 182 189.791 1.03 USGS
08/07/1998 640 576 0.07 210 08/07/1998 163 170.791 1.78 USGS
09/28/1998 800* 742 0.07 320 09/28/1998 146 151.967 3.08 USGS
12/04/1998 850 880 0.07 380 12/04/1998 164 152.69 1.8 USGS
01/22/1999 850* 855 0.07 360 01/22/1999 166 154.69 1.51 USGS
03/18/1999 870 906 0.07 400 03/18/1999 163 161.47 1.58 USGS
05/18/1999 578 240 05/18/1999 132 130.47 1.78 USGS
07/07/1999 ****07/07/1999 139 146.791 1.65 USGS
09/01/1999 930 986 0.08 420 09/01/1999 120 125.967 2.09 USGS







Date TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH20 Turb
3/3/99 41.08* *
4/7/99* 37.34* *
5/4/99 34.08 *
6/2/99 32.16 *
7/7/99 32.82* *
8/4/99* 34.21* *
8/31/99 33.06* *
10/15/99* 33.15* *
11/10/99 *********33.05 *
12/9/99 *********32.65 *
1/5/00* ****** 32.65* *
2/3/00 33.48 *
3/3/00 39.3* *
4/4/00* **
5/1/00********** ** *
6/1/00* **
7/7/00********** ** *
8/7/00* **
8/30/00* *** ** *
10/9/00 80.7 42.24 75.3963 *
11/6/00 ********88.5 34.44 83.1963 *
12/4/00 ********87.5 35.44 84.825 *
1/8/01 ********84.7 38.24 82.025 *
2/5/01 ********83.4 39.54 80.725 *
3/7/01 ********85.3 37.64 89.5214 *
4/5/01 ********60.3 62.64 64.5214 *
4/30/01 ********80.7 42.24 84.9214 *
6/19/01 69.9 53.04 72.2911 *
7/26/01 ********81.8 41.14 84.1911 *
8/29/01 ********85.3 37.64 87.6911 *
9/19/01 87.2 35.74 81.8963 *
10/28/01 4 0.01 0.028 0.11 0.1 2.5 234 91.9 31.04 86.5963 0.75
11/19/01 4 0.01 2.1 0.1 0.098 6.6 277 86.55 36.39 81.2463 0.5
12/19/01 90.4 32.54 87.725 *
1/25/02 ********89.1 33.84 86.425 *
2/18/02 ********88.9 34.04 86.225 *
3/21/02 80.5 42.44 84.7214 *
4/26/02 85.8 37.14 90.0214 *
5/31/02 89.7 33.24 93.9214 *
6/24/02 ********90.2 32.74 92.5911 *
7/19/02 90.2 32.74 92.5911 *
8/20/02 ********90.45 32.49 92.8411 *
9/25/02 ********89.9 33.04 84.5963 *
12/18/02 4 0.01 0.5 0.1 0.1 5.9 201 84.2 38.74 81.525 0.3







SWFWMD
Location Sequence Dates TOC Ha down TOC_n
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.5 12
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.02566 11
7935 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.66313 19
Boyette C 1/98-6/05 0.9884 41
Chassal C 1/98-6/06 0.27647 23
ChassaM C 1/98-6/07 0.25346 23
Homosl C 1/98-6/10 0.13778 23
Homos2 C 1/98-6/11 0.14343 21
Homos3 C 1/98-6/12 0.02947 23
HidRivH C 1/98-6/09 0.35159 23
HidRiv2T C 1/98-6/08 0.01598 24
huntersspr C 1/98-6/13 0.64928 20
lithiamain C 1/98-6/14 0.2341 23
magnolspr C 1/98-6/15 0.01844 23
pumphous C 1/98-6/16 0.19518 11
rainbow C 1/98-6/17 0.76345 23
rainbow C 1/98-6/18 0.7032 21
rainbow C 1/98-6/19 0.5 23
SWBettyJay C 1/98-6/23 0.22965 23
SWBublng C 1/98-6/25 0.29774 23
SWBuckhm C 1/98-6/26 0.04882 23
SWCatfish C 1/98-6/27 0.28887 10
tarponholespr C 1/98-6/28 0.69662 23
trottermain C 1/98-6/29 0.25579 23
weekwachmain C 1/98-6/30 0.99303 23
wilsonheadspr C 1/98-6/31 0.07625 18
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates Turb_Sen_slope UP/DOWN
RLS C 1/98-6/42 0.0033333 UP
RKB C 1/98-6/41 0 No evidence of trend
SBL C 1/98-6/44 0.02 UP
TEL C 1/98-6/45 0.002 No evidence of trend
TRY C 1/91-12/98 0 No evidence of trend
Springs A Up 6
Springs A Down 0







Sequence A
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
Wells A Up 0
Wells A Down 0

BLU (Gilchrist) B 1/91-12/127 -9999 -9999
FAN B 1/91-12/128 -9999 -9999
HOR B 1/91-12/130 -9999 -9999
LRS B 1/91-12/132 -9999 -9999
RKB B 1/91-12/135 -9999 -9999
ROY B 1/91-12/137 -9999 -9999
TEL B 1/91-12/139 -9999 -9999
TRY B 1/91-6/04 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DMnSenslope UP/DOWN
1943 C 1/98-6/03 -9999 -9999
2003 C 1/98-6/03 -9999 -9999
2193 C 1/98-6/03 -9999 -9999
2259 C 1/98-6/03 -9999 -9999
2353 C 1/98-6/03 -9999 -9999
2404 C 1/98-6/03 -9999 -9999
2465 C 1/98-6/03 -9999 -9999
2585 C 1/98-6/03 -9999 -9999
2675 C 1/98-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

ALR C 1/98-6/32 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999
FAN C 1/98-6/34 -9999 -9999
HAR C 1/98-6/35 -9999 -9999
HOR C 1/98-6/36 -9999 -9999
LBS C 1/98-6/37 -9999 -9999
LRS C 1/98-6/38 -9999 -9999
MAN C 1/98-6/39 -9999 -9999
POE C 1/98-6/40 -9999 -9999







SWFWMD
Location Sequence Dates Turbfield Ha down Turbfield_n
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 0.24929 16
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates Turbfield Ha down Turbfield_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 0.47266 12
736 C 1/98-6/03 0.06055 42
737 C 1/98-6/03 0.38635 17







Sequence A
Location Sequence Dates D_NaHa_up
2793 A 1/91-6/03 0.17919
2872 A 1/91-6/03 0.99067
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 0.99974
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates DNaHa_up
2793 B 1/91-12/97 0.95101
2872 B 1/91-12/97 0.99478
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 0.85777
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates DNaHa_up
2793 C 1/98-6/03 0.0046
2872 C 1/98-6/03 0.73468
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 0.16405
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 0.82296
6490 C 1/98-6/03 0.35917
Wells A Up
Wells A Down







SWFWMD
Location Sequence Dates DCaSen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.01875 No evidence of trend
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.0645833 No evidence of trend
7935 C 1/98-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0


Bobhill C 1/98-6/04 0.363636 No evidence of trend
Boyette C 1/98-6/05 -0.0220779 No evidence of trend
Chassal C 1/98-6/06 0.289474 UP
ChassaM C 1/98-6/07 0.218182 No evidence of trend
Homosl C 1/98-6/10 0.0764706 No evidence of trend
Homos2 C 1/98-6/11 0.0316667 No evidence of trend
Homos3 C 1/98-6/12 0.2125 No evidence of trend
HidRivH C 1/98-6/09 0.992 UP
HidRiv2T C 1/98-6/08 1.40799 UP
huntersspr C 1/98-6/13 -0.0742857 No evidence of trend
lithiamain C 1/98-6/14 -0.0166667 No evidence of trend
magnolspr C 1/98-6/15 0.146154 No evidence of trend
pumphous C 1/98-6/16 0.7875 UP
rainbow C 1/98-6/17 0.0333333 No evidence of trend
rainbow C 1/98-6/18 0.284615 UP
rainbow C 1/98-6/19 0.3 UP
SWBettyJay C 1/98-6/23 0.155 No evidence of trend
SWBublng C 1/98-6/25 0.3 UP
SWBuckhm C 1/98-6/26 0.07 No evidence of trend
SWCatfish C 1/98-6/27 0.116 No evidence of trend
tarponholespr C 1/98-6/28 0.630769 UP
trottermain C 1/98-6/29 0.244545 UP
weekwachmain C 1/98-6/30 0.116667 No evidence of trend
wilsonheadspr C 1/98-6/31 0.04 No evidence of trend
Springs A Up 9
Springs A Down 0







SWFWMD
Location Sequence Dates DO_Sen_slope UP/DOWN
736 B 1/91-12/97 -0.015 No evidence of trend
737 B 1/91-12/97 0.0004167 No evidence of trend
996 B 1/91-12/97 -0.0016297 No evidence of trend
997 B 1/91-12/97 -0.0032051 No evidence of trend
1087 B 1/91-12/97 -0.0061111 No evidence of trend
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates DO_Sen_slope UP/DOWN
615 C 1/98-6/03 0 No evidence of trend
707 C 1/98-6/03 -0.0055556 DOWN
736 C 1/98-6/03 0 No evidence of trend
737 C 1/98-6/03 0.0005556 No evidence of trend







Sequence A
Location Sequence Dates D P Ha_up D P Ha down D P n
RLS C 1/98-6/42 -9999 -9999 -9999
RKB C 1/98-6/41 -9999 -9999 -9999
SBL C 1/98-6/44 -9999 -9999 -9999
TEL C 1/98-6/45 -9999 -9999 -9999
TRY C 1/91-12/98 -9999 -9999 -9999
Springs A Up
Springs A Down






BULLETIN NO. 69


Olson, N. K., 1972, Hard rock phosphate in Florida: in Puri H. ed., Proceedings, Seventh Forum
on Geology of Industrial Minerals: Florida Geological Survey Special Publication 17,
228 p.

Pankratz, A., 1991, Forecasting with dynamic regression models: New York, John Wiley & Sons
Inc., 562 p.

Poucher, S., and Copeland, R., 2006, Speleological and karst glossary of Florida and the
Caribbean: Gainesville, University Press of Florida, 196 p.

Rosenau, J. C., Faulkner, G. L., Hendry, C. W., Jr., and Hull, R. W., 1977, Springs of Florida:
Florida Geological Survey Bulletin 31 (Revised), 461 p.

S-PLUS, 2003, S-PLUS 6 for windows, Seattle, Insightful Corporation.

Scott, T. M., 1992a, Chapter III-Hydrostratigraphy, in Maddox, G. L., Lloyd, J. M., Scott, T.
M., Upchurch, S. B., and Copeland, R., eds., Florida's Groundwater Quality Monitoring
Program, background geochemistry: Florida Geological Survey Special Publication 34, p.
6-11.

1992b, A geological overview of Florida: Florida Geological Survey Open File
Report 50, 78 p.

2001, Water sustainability in Florida--Research, policy and geologist's
responsibilities: Geological Society of America Abstracts with Programs, v. 33, no. 6, p.
A-200.

Scott, T. M., Lloyd, J. M., and Maddox, G. L., eds., 1991, Florida's Groundwater Quality
Monitoring Program--Hydrogeological Framework: Florida Geological Survey Special
Publication 32, 97 p.

Scott, T. M., Means, G. H., Meegan, R. P., Means, R. C., Upchurch, S. B., Copeland, R. E.,
Jones, J., Roberts, T., and Willet, A., 2004, Springs of Florida: Florida Geological Survey
Bulletin 66, 377p.

SDII Global Corporation, 2002, Glossary of terms: Tampa, SDII Global Corporation, 9 p.

Sen, P. K., 1968, Estimates of the regression coefficient based on Kendall's tau: Journal of the
American Statistical Association, v. 63, p. 1379-1389.

Southeast Regional Climate Center, 2006, Historical climate summaries for Florida:
http://www.sercc.com/index.html, (January, 2006).

Southeastern Geological Society, 1986, Hydrogeological units of Florida: Florida Geological
Survey Special Publication 28, 8 p.









Descriptive Statistics for Starbuck from July, 1944 to May, 2000
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 71.0 23.0 24.0 24.0 24.1 26.5
SCl uS/cm 12.0 333.0 349.0 356.5 359.0 380.0
SCf uS/cm 17.0 257.0 298.0 331.0 350.0 376.0
pH s.u. 21.0 6.4 7.2 7.3 7.4 8.0
T-Alk mg/1 16.0 98.0 116.0 119.5 122.8 125.0
D-N03 mg/1 1.0 *
T-N03 mg/1 2.0 *
D-N03N02 mg/1 12.0 0.3 0.3 0.4 0.5 0.7
T-N03N02 mg/1 1.0 *
T-P mg/1 3.0 *
D-P mg/1 1.0 *
TOC mg/1 0.0 NA NA NA NA NA
Ca mg/1 7.0* *
T-Ca mg/1 11.0 35.0 39.2 40.4 42.7 43.9
Mg mg/1 7.0 *
T-Mg mg/1 11.0 10.7 11.0 11.6 12.2 12.6
T-Na mg/1 11.0 11.0 12.0 12.0 12.5 13.0
Na mg/1 7.0* *
K mg/1 7.0 *
T-K mg/1 11.0 1.2 1.3 1.4 1.5 1.9
TKN mg/1 18.0 12.0 18.2 19.6 20.5 21.0
T-S04 mg/1 19.0 12.0 20.3 23.0 24.0 28.0
F mg/1 6.0 *
T-F mg/1 12.0 0.2 0.2 0.2 0.2 0.2
Si mg/1 6.0* *
Si(SIO3 as Si) mg/1 11.0 4.0 4.2 4.4 4.6 8.0
T-Fe ug/1 1.0 *
D-Fe ug/1 2.0 *
D-Sr ug/1 6.0 *
T-Sr ug/1 11.0 233.0 293.0 305.3 308.9 335.5
TDS mg/1 15.0 148.0 179.0 192.0 203.0 213.0
T-P04 mg/1 13.0 0.1 0.2 0.2 0.2 0.2
*Less than 10 samples
NA No samples










Mean Annual Rainfall Data


Finricrl W~ft~r Ml~n~nF~mFnt fi~qrictf q MIFn r~infRII (nmc~init~tinn) nfl~t (inlvr)


WMfln mp~nnq nF~r time! .F~ciuFnc


Year NWFWMD SRWMD SJRWMD SWFWMD SFWMD Mean A Mean B Mean C
1991 71.3 70.6 58.9 47.8 59.9 59.0 59.0 54.8
1992 63.6 54.4 50.2 51.1 52.5 53.4 53.4 46.6
1993 54.2 48.1 42.7 44.7 54.2 48.3 48.3 39.5
1994 80.9 63.2 60.9 54.1 61.7 61.4 61.4 50.7
1995 62.4 49.5 51.6 58.7 57.2 55.9 55.9 54.1
1996 65.3 61.8 50.1 46.0 44.4 50.2 50.2 56.1
1997 66.8 58.2 53.4 60.3 52.5 56.9 56.9
1998 67.7 62.2 47.6 56.3 52.7 54.8
1999 48.4 44.8 44.3 44.2 51.0 46.6
2000 40.1 42.3 38.0 38.1 40.6 39.5
2001 52.6 44.5 51.0 52.4 51.3 50.7
2002 57.5 50.6 55.6 58.9 47.8 54.1_
2003 66.7 58.8 50.4 60.7 50.5 56.1_


Rainfall per
Sequence Mean
A 52.8
B 55.0
C 50.3


Number of
WMD Stations Weight
NWFWMD 9 0.101
SRWMD 11 0.124
SJRWMD 22 0.247
SWFWMD 25 0.281
SFWMD 22 0.247
Total 89







SWFWMD
Location Sequence Dates D_NH3_Sen_slope UP/DOWN
707 A 1/91-6/03 -0.0016667 No evidence of trend
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -0.0014083 DOWN
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -0.0018182 No evidence of trend
Wells A Up 0
Wells A Down 1

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates D_NH3_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999







COLLECTIONDATE WL(MSL) Turb Color Turb-F Ca Mg Na K SC-F Cl S04 F
1/22/91 18.01 0.5 87.1 73.3 696 21.2 4130 1400 160 0.37
4/9/91 18.75* 81 70 640 21 4170 1100 5.6 0.2
8/5/91 80 62 550 21.2 3670 1060 160 0.1
10/15/91 86 70 650 24 4190 1200 180 0.2
1/14/92 17.26* 89 74 640 240 4200 1200 180 0.1
4/7/92 16.46* 82 68 650 25 4220 1400 36 0.2
7/15/92 16.38* 86 72 650 24 4260 1200 180 0.1
10/13/92 18.6* 92 74 650 24 4090 1200 180 0.2
1/13/93 19.11 80 70 650 22 4180 1150 180 0.2
4/14/93 19.21 86 72 650 22 4240 1180 180 0.1
7/13/93 16.96* 86 71 650 22 4130 1200 180 0.1
9/1/93 16.89 1.1 82 70 660 23 4260 1190 190 0.1
10/12/93 17.87* 82 71 550 22 4270 1160 180 0.2
1/11/94 17.6* 88 71 640 23 4180 1150 180 0.1
4/12/94 16.78 90 75 680 24 4280 1200 180 0.2
7/12/94 18.04* 87 73 680 23 4200 1190 180 0.2
10/12/94 20.5* 80 68 650 23 4210 1200 190 0.2
9/9/96 18.88 0.2 85.8 72.3 658 21.7 4210 1100 180 0.18
8/3/99 15.9 2 15 88.4 73.3 642 20.9 4028 1200 190 0.16
2/24/00 16.85 ******4066 *
3/15/00 14.64* 4227* *
4/25/00 15.1* 4174* *
5/23/00 13.48* 4129* *
7/25/00 14.35 ******4137 *
10/20/00 18.39* 4104* *
10/24/00 15.54 4171 *
1/30/01 14.19 ******4229 *
4/26/01 13.77 ******4266 *
7/26/01 16.72 ******4233 *
10/24/01 17.94 ******4138 *
1/30/02 17.03 ******4146 *
4/24/02 15.43* 0* *4157 *
7/23/02 17.46* 4094* *
10/22/02 18.15 0.05 5 0.22 87.3 71.6 659 21.2 4163 1200 180 0.18
1/28/03 18.92 0.05 5 0.24 88.8 75.1 685 22 4180 1200 180 0.17
4/22/03 18.43 0.1 5 0.48 89.1 75.4 663 21.7 4053 1200 170 0.17







DATE ALKTOT NH3NTOT TIME TOTDEPM CONDF
8/11/95 32761 0.000144 *
9/18/95 34969 0.000676 *
6/6/96 0.000036 *
7/22/96 0.000001 *
8/8/96 0.000001 *
7/16/97 36100 0.0004* *
6/17/98 32041 0.0004* *
7/20/98 33489 0.0004 *
8/18/98 36100 0.0004* *
12/16/98 35721 0.0004* *
3/17/99 36100 0.0004* *
4/20/99 38025 0.0004 *
6/9/99 40000 0.0004 *
8/12/99 35344 0.0004* *
9/21/99 36864 0.0004* *
10/18/99 38809 0.0004* *
11/15/99 37636 0.0004* *
12/15/99 38416 0.0004* *
1/11/00 43681 0.0004* *
2/21/00 38416 0.0004* *
3/14/00 38416 0.0004* *
4/6/00 39204 0.0004 *
5/3/00 40000 0.0004 *
6/13/00 36864 0.0004* *
7/17/00 34225 0.0004 *
8/2/00 39204 0.0004 *
10/12/00 36864 0.0004* *
11/2/00 36864 0.0004* *
12/18/00 38025 0.0004* *
1/9/01 40000 0.0004* *
2/22/01 39601 0.0004 *
5/17/01 34969 0.0004 *
7/19/01 37636 0.0004* *
8/28/01 35344 0.0004 *
9/12/01 34969 0.0004* *
10/24/01 38809 0.0004* *
11/5/01 39601 0.0004* *
12/17/01 30276 0.0004* *
1/10/02 43681 0.0004* *
2/21/02 38809 0.0004* *
4/10/02 29241 0.0004* *
6/13/02 33489 0.0004* *







Sequence A
Location Sequence Dates DO_Ha_up DO Ha down DO_n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates DO_Ha_up DO Ha down DO_n
1417 C 1/98-6/03 0.01 0.99 43.00
1420 C 1/98-6/03 0.04 0.96 18.00
1674 C 1/98-6/03 0.80828 0.19172 46
1762 C 1/98-6/03 0.87 0.13 23.00
1763 C 1/98-6/03 0.79 0.21 23.00
1764 C 1/98-6/03 0.66 0.34 48.00
1779 C 1/98-6/03 0.10 0.90 16.00
1780 C 1/98-6/03 0.04 0.96 16.00
1781 C 1/98-6/03 0.01 0.99 40.00
1931 C 1/98-6/03 0.03184 0.96816 66
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







Sequence A
Location Sequence Dates TurbSen_slope Turb_
Salt Spring C 1/98-6/31 -9999.00 -9999
Sanlando Springs C 1/98-6/03 -9999.00 -9999
Silver Glen Springs C 1/98-6/03 -9999.00 -9999
Starbuck Spring C 1/98-6/03 -9999.00 -9999
Sweetwater Spring C 1/98-6/03 -9999.00 -9999
Volusia Springs C 1/98-6/03 -9999.00 -9999
Wekiva C 1/98-6/31 -9999.00 -9999
Springs up 0
Springs down 0






FLORIDA GEOLOGICAL SURVEY


or Rock, (3) Saline or Saltwater, (4) Nutrient, and (5) Other analytes. However, because of
occasional chemical complexities, many analytes are grouped into more than one category.
Table 5 lists them by group. Note that analytes in the table only refer to those that displayed
trends. A detailed description of each analyte is found in Appendix F.


Table 5. Analyte Groups
Rock-Matrix Saline or
Field (Rock)* saltwater Nutrient Other
Discharge Alk Ca Ca and Mg TSS


DO Ca C1
pH F K
SC Fe Na
Temp
K SC
WL(msl) or Mg SO4
Stage
PO4 and P TDS
SC WL(msl) or
_Stage
SO4


Turb
TOC


*Light gray indicates common rock and saline-related indicators while dark gray shows common nutrient analytes.


Descriptions of Analyte Groups

Each analyte represents a measure or variable that can be used to assist in judging the
overall health of Florida's groundwater. Field analytes such as discharge, water level, and flow
describe quantity, but they can also greatly affect quality. The rock analytes suggest upcoming of
water from deep within Florida's aquifers. The saline analytes suggest intrusion or upcoming of
water from the deep portions of our aquifers, and the nutrient analytes are those that stimulate
biological growth or are present as a direct result of biological activity.

Field Analytes

Field analytes represent a grouping for convenience. Measurements of field analytes
were conducted prior to collecting samples for laboratory analyses. The analytes in this group
that were used for trend analyses include: discharge (or flow), dissolved oxygen (DO), pH,
specific conductance (SC), water temperature (Temp), and water level [water level relative to
mean sea level (msl) based on the North American Vertical Datum (NGVD) of 1988)].

Rock-Matrix Analytes

Rock-matrix analytes are those indicative of the rocks making up an aquifer. Because of
natural rock weathering, water that has had a long residence time in an aquifer system has a


I O,










BULLETIN NO. 69







RLS Flow-Adjusted Phosphate


12/17/1996 5/1/1998


10-10


9/13/1999
Date


1/25/2001


6/9/2002


2 3 4 5 6 7 1000 2 3 4 5 6 7 1010 2 3


Log Flow (cfs)


Figure 70. Flow adjustment for phosphate in Ruth/Little Sulfur Springs.

Flow-adjusted phosphate declines over time (top). The log of phosphate has

has possible negative relationship to the log of flow (bottom).


U.



U U
.
U
U

U
U


10-1 00-
9

8

7

6


5


U
U
U
U
U
U U *iE *
Eu
U U U
U
U
U
U


I I I I


III







Date NH3 N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) MoRainDate MoRain(CrossCity) CumRDprt
10/15/99 *****42.71 9/1/98 11.78 12.84
11/9/99 *****42.52 10/1/98 4.38 12.62
1/5/00 *****41.99 11/1/98 12.75 20.77
2/3/00 *****41.65 12/1/98 10.30 26.47
4/4/00 43.72 1/1/99 12.28 34.15
7/7/00 ******2/1/99 8.70 38.25
10/9/00 35.70 3/1/99 2.60 36.25
4/5/01 33.10 4/1/99 13.93 45.58
7/27/01 37.10 5/1/99 6.17 47.15
10/22/01 38.60 6/1/99 8.09 50.64
1/29/02 39.50 7/1/99 9.03 55.07
5/3/02 *****37.90 8/1/99 7.87 58.34
10/28/02 0.035 0.2 0.14 0.13 1.8 158 39.30 9/1/99 2.49 56.23
1/21/03 0.041 0.23 0.13 0.12 1.7 167 35.60 10/1/99 2.93 54.56
4/30/03 0.08 0.26 0.18 0.17 21 178 24.00 11/1/99 7.63 57.59
12/1/99 6.66 59.65
1/1/00 2.58 57.63
2/1/00 7.09 60.12
3/1/00 2.29 57.81
4/1/00 17.13 70.34
5/1/00 4.12 69.86
6/1/00 15.18 80.44
7/1/00 7.33 83.17
8/1/00 6.05 84.62
9/1/00 3.33 83.35
10/1/00 1.69 80.44
11/1/00 8.24 84.08
12/1/00 6.09 85.57
1/1/01 5.81 86.78
2/1/01 2.37 84.55
3/1/01 7.15 87.10
4/1/01 4.58 87.08
5/1/01 2.90 85.38
6/1/01 1.02 81.80
7/1/01 0.21 77.41
8/1/01 0.00 72.81
9/1/01 3.96 72.17
10/1/01 2.57 70.14
11/1/01 0.11 65.65
12/1/01 2.95 64.00
1/1/02 2.24 61.64
2/1/02 0.42 57.46
3/1/02 3.49 56.35
4/1/02 0.63 52.38
5/1/02 4.15 51.93
6/1/02 0.57 47.90









BULLETIN NO. 69


Well 1943: pH and WL


-a-- pH
WL

20


U.. -.


*** U" U
* U _
,, "" ",," ".n,.
U U *u
U n
A A A A
^ A
oz I, o I ,

S" A A A A A

a S A A AA A '
^ : -"- -
A 4A A AA AA
A OA -AA


101/1990


12/31/1993


4/1/1997
Date


7/1/2000


12


110

10/1/2003


EH Water Level
MK p-value = 0.0405 nb 44 n = 45 MK p-value = 0.0499 nb 43 n = 39
WT p-value = 0.3388 SS = -0.0011 WT p-value= 0.0051 SS = -0.0114


Well 2465 Time Sequence A: pH and WL

-- WpH
-----


-50





45
















30


1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
pH Date Water Level
MK p-value = 0.0013 nb = 68 n = 64 MKp-value<0.0001 nb=56n,=59
WT p-value = 0.0001 SS = -0.0009 WT p-value <0.0001 SS = -0.0944






Figure 44. Decreasing pH and water levels in SRWMD wells (#1943
and #2465). Both wells are confined. Tests (p < 0.05) included MK for trend,
WT on sequences B and C, plus an SS calculation on rate of change. Note the
beginning sampling dates for wells are not the same. (One m = 0.3048 ft.)


8.0




7.5




7.0




6.5




6.0







DATE SC-F CI S04 F WL(msl)
1/19/99 19 2.4 0.42 0.1 78.25
10/28/99 18 ** **
12/1/99 18 76.71
12/27/99 18 76.87
1/27/00 18 0.2 0.2 0.1 77.03
2/28/00 18 76.22
3/28/00 17 75.86
4/26/00 17 77.11
5/30/00 20.8 75.72
6/28/00 20 73.5
7/27/00 18 72.32
8/29/00 18 71.52
9/26/00 18 70.94
10/23/00 20.2 2.4 0.34 0.1 71.77
11/28/00 20.4 12 1.7 0.1 71.4
12/27/00 22 2.3 0.41 0.015 71.14
1/23/01 21 2.5 0.36 0.015 71.45
2/27/01 40 2.3 0.2 0.02 71.82
3/27/01 17 2.4 0.5 0.02 71.63
5/2/01 24 2.3 0.37 0.02 76.4
5/22/01 22 2.5 0.36 0.02 75.26
7/2/01 23 2.6 0.72 0.022 74.02
7/2/01 23 2.5 0.72 0.02 *
7/26/01 26 2.2 0.91 0.025 77.6
8/28/01 23 2.3 0.49 0.025 76.9
9/24/01 22 2.5 0.65 0.025 77.3
10/31/01 22 77.15
11/26/01 22 75.87
12/21/01 21 75.37
1/23/02 23 74.3
2/22/02 22 74.17
3/20/02 42 74.89
4/26/02 21 75.04
5/31/02 23 76.96
6/25/02 23 74.44
7/29/02 22 73.61
8/29/02 21 73.08
9/23/02 26 76.27
10/23/02 22 77.7
11/20/02 20 78.56
12/18/02 22 79.61
1/15/03 21 78.73
2/20/03 20 78.66
3/25/03 18 78.4
4/28/03 20 79.37
5/21/03 21 78.39
6/25/03 21 77.13







Date TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) Turb Color Turb-F
6/4/99* 82.73* *
7/9/99 86.65* *
8/4/99* 85.65* *
9/2/99 ********84.33 *
10/13/99* 84.88* *
11/9/99 **** 84.78 ***
1/5/00 84.79* *
1/31/00 ******** 82.5* *
4/6/00* 82.98* *
10/12/00* 84.39* *
1/8/01 ******** 82.76* *
4/4/01 *** 85* *
7/25/01* 84* *
10/22/01 ********82.65 *
1/29/02 8 0.29 0.022 0.47 0.5 7.9 223 83.62 18 40 *
3/4/02 8 0.28 0.004 0.46 0.47 7.8 222 83.9 16 60 *
4/22/02 8 0.29 0.004 0.49 0.46 8 222 82.29 23 40 0.07
7/25/02 7 0.29 0.004 0.49 0.41 8.1 235 82.29 19 100 2.17
10/29/02 ********83.9* 1.64
1/23/03 ********84.9 0.32
4/29/03 ********85.8 0.76







Sequence A
Location Sequence Dates Color_Sen_slope UP/DOWN
Wells A Up 0
Wells A Down 0

BLU (Gilchrist) B 1/91-12/127 -9999 -9999
FAN B 1/91-12/128 -9999 -9999
HOR B 1/91-12/130 -9999 -9999
LRS B 1/91-12/132 -9999 -9999
RKB B 1/91-12/135 -9999 -9999
ROY B 1/91-12/137 -9999 -9999
TEL B 1/91-12/139 -9999 -9999
TRY B 1/91-6/04 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates ColorSenslope UP/DOWN
1943 C 1/98-6/03 0 No evidence of trend
2003 C 1/98-6/03 0 No evidence of trend
2193 C 1/98-6/03 -9999 -9999
2259 C 1/98-6/03 -9999 -9999
2353 C 1/98-6/03 -9999 -9999
2404 C 1/98-6/03 -9999 -9999
2465 C 1/98-6/03 0 No evidence of trend
2585 C 1/98-6/03 -9999 -9999
2675 C 1/98-6/03 0 No evidence of trend
Wells A Up 0
Wells A Down 0

ALR C 1/98-6/32 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999
FAN C 1/98-6/34 -9999 -9999
HAR C 1/98-6/35 -9999 -9999
HOR C 1/98-6/36 -9999 -9999
LBS C 1/98-6/37 -9999 -9999
LRS C 1/98-6/38 -9999 -9999
MAN C 1/98-6/39 -9999 -9999
POE C 1/98-6/40 -9999 -9999







DATE pH TSS NH3 D-N03-N T-N03-N D-N03N02 P oPO4 TOC TDS DtoH20 Turb Color
4/2/97 5.62 ***********
4/30/97 5.66*** **
5/29/97 5.61* ** *
6/26/97 5.57* **
7/30/97 5.58 ***********
8/26/97 5.57 ***********
9/25/97 5.6 ***********
10/16/97 5.72 0.16 0.043 0.022 0.018 2.5 1.4 10
12/2/97 5.5 ***********
12/30/97 6.37* **** *
2/4/98 5.54***** *******
2/24/98 5.31* ** *
3/27/98 5.31* **
4/29/98 5.62 ***********
5/28/98 5.43* **
6/22/98 5.71 ***********
8/5/98 5.48 ** ******
8/26/98 5.65*** **
9/29/98 5.6*** **
10/29/98 5.56* **
11/24/98 5.59 ***********
12/29/98 5.5*** **
1/26/99 5.63*** **
2/25/99 5.71**** *
3/30/99 5.83 ***********
4/28/99 5.65* **
5/26/99 5.57 ***********
6/30/99 5.81 ***********
7/28/99 5.54* **
8/25/99 5.61 ***********
9/29/99 5.6 ***********
10/27/99 5.48*** **
1/26/00 5.48* 17.4* *
4/26/00 5.6 18.84 *
7/26/00 5.65 ********22.1 *
10/25/00 5.51 20.6 *
1/25/01 5.45 17.55 *
5/1/01 5.12 19.3 *
7/27/01 5.18 21.15 *
10/25/01 5.14 19.22 *
1/22/02 5.58 18.5 *
4/24/02 5.54 18.43 *
7/24/02 5.31 ********22.51 *
10/29/02 5.33 18 *
1/16/03 5.37 4 0.16 0.004 0.019 0.019 3 54 16.9 0.45 5
4/23/03 5.13 5 0.16 0.018 0.02 0.015 3.4 61 17.97 1.5 15







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT SO4TOT TKN NOXNTOI PTOT OPO4DIS:
96050677 RLS010C1 19-Jun-96 6/19/96 6 Summer 2 7 0.15 2.83 0.037 0.036
96060924 RLS010C1 25-Jul-96 7/25/96 7 Summer 2 3 0.14 3.73 0.035 0.032
96071097 RLS010C1 19-Aug-96 8/19/96 8 Summer 2 3 0.17 3.9 0.032 0.029
97061201 RLS010C1 24-Jun-97 6/24/97 6 Summer 2 10 5.4 0.036 0.015
98051181 RLS010C1 15-Jun-98 6/15/98 6 Summer 2 2 3.6 4.5 61 8 0.03 14.5 0.07 5.02 0.031 0.028
98061476 RLS010C1 16-Jul-98 7/16/98 7 Summer 2 2.1 3.7 4.9 60.2 5 0.09 11.5 0.04 5.45 0.048 0.036
98071699 RLS010C1 24-Aug-98 8/24/98 8 Summer 2 2.4 3.8 5.3 62.5 7 0.1 15.5 0.04 5.2 0.076 0.035
98112510 RLS010C1 21-Dec-98 12/21/98 12 Winter 4 2.3 4.4 5.2 65.4 7 0.07 14 0.15 5.49 0.035 0.034
99023183 RLS010C1 18-Mar-99 3/18/99 3 Spring 1 1.6 3.5 5.7 61.6 8 0.08 13 0.12 3.16 0.029 0.025
99033526 RLS010C1 21-Apr-99 4/21/99 4 Spring 1 0.4 2.1 9.8 46.6 5 0.12 19 0.07 2.38 0.048 0.047
99053793 RLS010C1 10-Jun-99 6/10/99 6 Summer 2 1.8 3.5 6 60.5 8 0.13 13 0.14 2.6 0.036 0.034
99074272 RLS010C1 19-Aug-99 8/19/99 8 Summer 2 1.6 3.1 5.8 58.5 7 0.06 11 0.14 1.89 0.044 0.052
99084455 RLS010C1 22-Sep-99 9/22/99 9 Fall 3 1.5 3.2 5.6 53.8 8 0.09 12 0.15 1.62 0.053 0.039
99094647 RLS010C1 14-Oct-99 10/14/99 10 Fall 3 1.5 3.2 6 6.7 0.07 11.5 0.21 2.17 0.03 0.026
99104783 RLS010C1 15-Nov-99 11/15/99 11 Fall 3 1.7 3.3 5.7 56.1 6.9 0.16 10.8 0.29 2.1 0.038 0.035
99114970 RLS010C1 14-Dec-99 12/14/99 12 Winter 4 1.6 3.6 6.3 61.1 7 0.13 11 0.07 2.03 0.043 0.039
99125348 RLS010C1 13-Jan-00 1/13/00 1 Winter 4 1.6 3.9 6.9 67.3 6.8 0.14 11 0.19 1.91 0.047 0.037
15479 RLS010C1 16-Feb-00 2/16/00 2 Winter 4 1.6 3.9 7 66.9 8.6 0.12 10.9 0.15 1.59 0.039 0.033
25733 RLS010C1 14-Mar-00 3/14/00 3 Spring 1 1.6 4.4 7 65.6 7.5 0.14 11 0.16 1.47 0.034 0.032
20035984 RLS010C1 18-Apr-00 4/18/00 4 Spring 1 1.4 3.6 7.2 64.9 6.6 0.09 9.5 0.21 1.1 0.034 0.028
20046057 RLS010C1 3-May-00 5/3/00 5 Spring 1 1.4 3.5 6.8 62.2 6.8 0.13 11 0.14 1.39 0.038 0.035
20056225 RLS010C1 13-Jun-00 6/13/00 6 Summer 2 1.6 5 7.1 65.6 7.7 0.07 11 0.18 1.79 0.038 0.034
20066502 RLS010C1 17-Jul-00 7/17/00 7 Summer 2 1.2 3.6 7 62.8 7.3 0.06 11.5 0.2 1.57 0.035 0.031
20076803 RLS010C1 21-Jul-00 7/21/00 7 Summer 2 1.51 *
20076721 RLS010C1 2-Aug-00 8/2/00 8 Summer 2 1.9 4 6.8 64.9 8.2 0.07 13 0.13 3 0.038 0.032
20097168 RLS010C1 17-Oct-00 10/17/00 10 Fall 3 2.3 4.1 6.1 68.1 7.9 0.04 13.8 0.1 5.7 0.032 0.032
20107209 RLS010C1 2-Nov-00 11/2/00 11 Fall 3 2.4 4.1 6.4 68.6 8 0.08 13.8 0.19 5.5 0.035 0.034
20117391 RLS010C1 11-Dec-00 12/11/00 12 Winter 4 2.6 4.4 6.7 68.5 9.6 0.02 15 0.18 4.95 0.037 0.036
20127768 RLS010C1 9-Jan-01 1/9/01 1 Winter 4 2 4.2 6.9 65.4 7.8 0.07 13.5 0.2 3.75 0.038 0.035
21017880 RLS010C1 19-Feb-01 2/19/01 2 Winter 4 1.6 4.4 7.3 66.5 7.3 0.02 12.3 0.23 3 0.047 0.039
21027996 RLS010C1 14-Mar-01 3/14/01 3 Spring 1 2.1 4.4 7.3 68.3 8 0.08 14 0.14 2.75 0.038 0.034
21048289 RLS010C1 17-May-01 5/17/01 5 Spring 1 1.8 3.9 6 61.3 11.2 0.07 17 0.14 2.35 0.037 0.035
21058447 RLS010C1 13-Jun-01 6/13/01 6 Summer 2 2 4 6.6 63.9 27.6 0.06 14.5 0.28 2.85 0.041 0.04
21068678 RLS010C1 18-Jul-01 7/18/01 7 Summer 2 1.8 4 6.8 69.2 8.1 0.11 12.5 0.09 2.5 0.043 0.043
20010126 RLS010C1 27-Jul-01 7/27/01 7 Summer 2 2.4 *
21078756 RLS010C1 28-Aug-01 8/28/01 8 Summer 2 2.5 3.9 7.2 68.5 8.5 0.1 14.5 0.11 5.75 0.034 0.031
21088924 RLS010C1 12-Sep-01 9/12/01 9 Fall 3 2.8 5.5 7.3 71.8 8.5 0.09 20.5 0.22 5.7 0.034 0.03
21099237 RLS010C1 30-Oct-01 10/30/01 10 Fall 3 3.1 5.8 7.3 71.4 8.4 0.06 12.1 0.12 5.53 0.13 0.039
21109280 RLS010C1 5-Nov-01 11/5/01 11 Fall 3 3.1 5.1 8.5 79.5 10.9 0.04 12.4 0.13 5.1 0.05 0.039
21119492 RLS010C1 18-Dec-01 12/18/01 12 Winter 4 2.4 4.1 6.6 62.7 8 0.04 11.4 0.1 3.9 0.045 0.04
21129704 RLS010C1 14-Jan-02 1/14/02 1 Winter 4 2.1 2.9 5.9 56 7.7 0.08 11.2 0.18 3.4 0.04 0.04
22019851 RLS010C1 20-Feb-02 2/20/02 2 Winter 4 2.4 4.3 7.3 68.4 7.3 0.09 10.8 0.17 2.56 0.042 0.038
22030254 RLS010C1 9-Apr-02 4/9/02 4 Spring 1 2.8 5.1 8 78.9 7.1 0.08 12.3 0.29 3.92 0.06 0.052
RLS010C1 5/16/02 5 ** *
22050483 RLS010C1 12-Jun-02 6/12/02 6 Summer 2 3.3 5.1 7.3 63 8.7 0.13 12.7 0.32 4.9 0.041 0.036
_RLS010C1 __8/6/02 8 *







SWFWMD
Location Sequence Dates TOC Ha down TOC_n
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.5 14
Boyette B 1/91-12/99 0.06163 19
Chassal B 1/91-12/100 0.05451 15
ChassaM B 1/91-12/101 0.1304 15
Homosl B 1/91-12/104 0.59646 14
Homos2 B 1/91-12/105 0.5 14
Homos3 B 1/91-12/106 0.11106 14
HidRiv2T B 1/91-12/102 0.13592 14
HidRivH B 1/91-12/103 0.14954 14
huntersspr B 1/91-12/107 0.38603 12
lithiamain B 1/91-12/108 0.06153 17
magnolspr B 1/91-12/109 0.53336 13
pumphous B 1/91-12/110 0.04919 15
rainbow B 1/91-12/111 0.00849 14
rainbow B 1/91-12/112 0.01288 17
rainbow B 1/91-12/113 0.0115 16
mboBseep B 1/91-12/115 0.02203 17
saltspr B 1/91-12/116 0.67785 15
SWBettyJay B 1/91-12/117 0.07493 12
SWBoat B 1/91-12/118 0.5 13
SWBublng B 1/91-12/119 0.08722 13
SWBuckhm B 1/91-12/120 0.00133 17
SWCatfish B 1/91-12/121 0.01835 16
tarponholespr B 1/91-12/122 0.20504 18
trottermain B 1/91-12/123 0.06131 14
weekwachmain B 1/91-12/124 0.52369 15
Springs A Up
Springs A Down

Location Sequence Dates TOC_Hadown TOC_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.64943 14
737 C 1/98-6/03 -9999 -9999







Sequence A
Location Sequence Dates TDS_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 0.23 No evidence of trend
Apopka B 1/91-12/97 -1.072 No evidence of trend
Fern Springs B 1/91-12/97 -0.60 No evidence of trend
Juniper Springs B 1/91-12/97 -1.20 DOWN
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 4.20 UP
Rock Springs B 1/91-12/97 -0.69 DOWN
Salt Spring B 1/91-12/125 83.33 UP
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -5.56 DOWN
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -12.00 DOWN
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 0.17 No evidence of trend
Springs up 2
Springs down 4

Sequence C
Location Sequence Dates TDS_Sen_slope UP/DOWN
1417 C 1/98-6/03 0.25 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 0.00 No evidence of trend
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 0.17 No evidence of trend
1931 C 1/98-6/03 -1.6 No evidence of trend
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 2.53 No evidence of trend
Apopka C 1/98-6/03 0.001625 No evidence of trend
Fern Springs C 1/98-6/03 0.83 No evidence of trend
Juniper Springs C 1/98-6/03 0.00 No evidence of trend
Miami Springs C 1/98-6/03 0.33 No evidence of trend
Palm Springs C 1/98-6/03 -0.21 No evidence of trend
PDL C 1/98-6/03 6.64 No evidence of trend
Rock Springs C 1/98-6/03 -0.50 No evidence of trend







SWFWMD
Location Sequence Dates DtoH20_Sen_slope UP/DOWN
707 A 1/91-6/03 0.0592345 UP
736 A 1/91-6/03 0.0033691 No evidence of trend
737 A 1/91-6/03 0.0007143 No evidence of trend
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 0.0039703 UP
997 A 1/91-6/03 -0.000931 No evidence of trend
1087 A 1/91-6/03 0.0095521 UP
Wells A Up 3
Wells A Down 0

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates DtoH20_Sen_slope UP/DOWN
707 B 1/91-12/97 0.0477793 UP







Sequence A
Location Sequence Dates D Na Ha_up D Na Ha down D Na n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D Na Haup D Na Ha down D Na n
1943 C 1/98-6/03 0.9955 0.0045 12
2003 C 1/98-6/03 0.99719 0.00281 13
2193 C 1/98-6/03 -9999 -9999.00 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.11191 0.88809 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.85843 0.14157 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 -9999 -9999 -9999
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 -9999 -9999 -9999







SWFWMD
Location Sequence Dates pH_Sen_slope UP/DOWN
736 B 1/91-12/97 -0.0008621 No evidence of trend
737 B 1/91-12/97 -0.0009836 DOWN
996 B 1/91-12/97 0 No evidence of trend
997 B 1/91-12/97 0.0001923 No evidence of trend
1087 B 1/91-12/97 -0.0002222 No evidence of trend
Wells A Up 0
Wells A Down 2

Bobhill B 1/91-12/98 0 No evidence of trend
Boyette B 1/91-12/99 0.0042481 UP
Chassal B 1/91-12/100 0 No evidence of trend
ChassaM B 1/91-12/101 0 No evidence of trend
Homosl B 1/91-12/104 0.0008333 No evidence of trend
Homos2 B 1/91-12/105 -0.0018182 No evidence of trend
Homos3 B 1/91-12/106 -0.0044444 No evidence of trend
HidRiv2T B 1/91-12/102 -0.0111111 No evidence of trend
HidRivH B 1/91-12/103 -0.0158333 No evidence of trend
huntersspr B 1/91-12/107 -0.00625 No evidence of trend
lithiamain B 1/91-12/108 0.004 No evidence of trend
magnolspr B 1/91-12/109 -0.0004545 No evidence of trend
pumphous B 1/91-12/110 0.0009091 No evidence of trend
rainbow B 1/91-12/111 0.035 No evidence of trend
rainbow B 1/91-12/112 -0.0066667 No evidence of trend
rainbow B 1/91-12/113 -0.00875 No evidence of trend
mboBseep B 1/91-12/115 -0.01 DOWN
saltspr B 1/91-12/116 0 No evidence of trend
SWBettyJay B 1/91-12/117 0.0122917 No evidence of trend
SWBoat B 1/91-12/118 -0.005 No evidence of trend
SWBublng B 1/91-12/119 -0.00775 No evidence of trend
SWBuckhm B 1/91-12/120 0.0048333 No evidence of trend
SWCatfish B 1/91-12/121 -0.0033036 No evidence of trend
tarponholespr B 1/91-12/122 -0.0069231 No evidence of trend
trottermain B 1/91-12/123 0.01 UP
weekwachmain B 1/91-12/124 -0.0116667 DOWN
Springs A Up 2
Springs A Down 2

Location Sequence Dates pH_Sen_slope UP/DOWN
615 C 1/98-6/03 -0.0082576 DOWN
707 C 1/98-6/03 0.0008333 No evidence of trend
736 C 1/98-6/03 0.0003167 No evidence of trend
737 C 1/98-6/03 0 No evidence of trend














































Figure L109. Nitrate trends in SFWMD wells.


Figure Ll10. pH trends in SFWMD wells.


Legend
SNWFMD
SFmWD
SJRFWMD
SSRW IMD




0610 20 30
Kioinsars
0 1530 60 90
Projected Coordinate System: FDEP Albers HARN

Figure L111. Potassium trends in SFWMD wells.


Figure L112. Sodium trends in SFWMD wells.


L38







Sequence A
Location Sequence Dates D_Mn_Ha_up
2793 A 1/91-6/03 -9999
2872 A 1/91-6/03 -9999
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates DMn_Ha_up
2793 B 1/91-12/97 -9999
2872 B 1/91-12/97 -9999
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates DMn_Ha_up
2793 C 1/98-6/03 -9999
2872 C 1/98-6/03 -9999
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 -9999
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 -9999
6490 C 1/98-6/03 -9999
Wells A Up
Wells A Down









The 1998-2002 drought was one of the worst historical droughts to affect Florida (Verdi
et al, 2006). Except for south Florida, during the drought the deficit rainfall ranged from about
10 inches in southwest Florida to almost 40 inches in northwest Florida. In order to make up for
the drought, groundwater pumping increased, largely for irrigation (Verdi et al., 2006). Because
an increase in groundwater pumping occurred during one of worst droughts, it is likely that
human-induced saline intrusion took place and contributed to the increase in saline and rock-
matrix analyte trends. On a statewide scale, the extent and severity of the intrusion is difficult to
quantify. However, within the northern portion of the SWFWMD, a water budget and a regional
groundwater flow model indicated that the increase [0.3 cm/yr (+0.1 in/yr)] in groundwater
withdrawals was less than 2.0% of the decline in recharge due to the decrease [18.3 cm/yr (7.2
in/yr)] in rainfall (Ron Basso, Southwest Florida Water Management District, personal
communications). Nevertheless, intrusion should be a concern. If another drought of this
magnitude occurs, depending on the amount of increased pumping, it could potentially have
adverse affects on the long-term sustainability of Florida's groundwater resources.

Nutrients

The Florida Springs Task Force (2000) indicated that Florida's springs face serious
threats due to rapid and continuing population growth. The state's increasing population has
resulted in extensive land-use changes, increased demand for freshwater, and an increased use of
fertilizers. As rainfall seeps through the soils, and moves the nutrients into Florida's underlying
aquifers, it creates localized degradation in Florida's groundwater resources. A report regarding
FDEP's Springs Initiative Program efforts (Florida Department of Environmental Protection, and
Florida Department of Community Affairs, 2002) noted that nitrates have increased since the
1970s. It also noted that over the past 30 years many of Florida's springs experienced an
increase in nuisance algae and invasive exotic aquatic plants. These plants tend to thrive on
excess nutrients and decrease dissolved oxygen levels in spring runs.

Analyses for the 1991-2003 time frame indicated that trends in nutrient concentrations in
Florida's spring-water increased in some springs, while they decreased in others. It is
encouraging to note that there are some decreasing trends. The fact that nutrients (especially
nitrate) tended to increase is an indication that some land-use management practices warrants
reevaluation. But as noted previously, the relationship of these apparent decreasing trends may
be related to diminishing spring flow.

Monitoring

The current study revealed an inverse relationship between rock and saline indicators and
spring flow. The relationship was observed across the state (Figure 2). Note that changes in
spring-water quality often lag behind changes in spring flow. For detail, the smaller charts
depicted in Figure 2 have been enlarged and can be found in Appendix A.

Historically, the WMDs and the USGS have monitored spring-water quality and
discharge. With the commencement of the Springs Initiative, FDEP joined in the monitoring
efforts. Considerable efforts were made to eliminate inconsistencies in monitoring activities.
Unfortunately, at the beginning of the study, the efforts were not always successful. Specifically,
the WMDs, USGS, and FDEP did not always monitor the same analytes, use the same laboratory


xviii







FK_STATI, Date MONTH SEASON_ Temp DeSnTemp DtoH20 WL(MSL) DeSnDtoH20 DeSnWL(msl) D-SO4 DeSnSO4(D)
997 1/9/91 1 4 24 24.3034 9.92 44.06 9.5874 44.3926 7.6 7.23022
997 2/12/91 2 4 24.5 24.8034 9.27 44.71 8.9374 45.0426 5.2 4.83022
997 3/4/91 3 1 23.5 23.6076 9.75 44.23 9.2651 44.7149 *
997 4/5/91 4 1 24 24.1076 8.87 45.11 8.3851 45.5949 5 4.80641
997 5/2/91 5 1 24 24.1076 8.55 45.43 8.0651 45.9149 *
997 6/10/91 6 2 24 23.6895 8.54 45.44 8.7391 45.2409 *
997 7/8/91 7 2 25 24.6895 8.13 45.85 8.3291 45.6509 2.2 2.11752
997 7/31/91 7 2 25 24.6895 6.3 47.68 6.4991 47.4809 *
997 9/5/91 9 3 25 24.8996 7.74 46.24 8.4832 45.4968 *
997 10/8/91 10 3 25 24.8996 8.9 45.08 9.6432 44.3368 1.8 2.92308
997 11/5/91 11 3 26 25.8996 9.56 44.42 10.3032 43.6768 *
997 12/5/91 12 4 25 25.3034 9.52 44.46 9.1874 44.7926 *
997 1/8/92 1 4 24 24.3034 9.92 44.06 9.5874 44.3926 2.6 2.23022
997 1/31/92 1 4 24.5 24.8034 9.74 44.24 9.4074 44.5726 *
997 2/28/92 2 4 24 24.3034 9 44.98 8.6674 45.3126 *
997 3/31/92 3 1 24 24.1076 9.49 44.49 9.0051 44.9749 2.8 2.60641
997 5/4/92 5 1 24.5 24.6076 9.54 44.44 9.0551 44.9249 *
997 6/3/92 6 2 25 24.6895 10.47 43.51 10.6691 43.3109 *
997 6/8/92 6 2 25 24.6895 8.62 45.36 8.8191 45.1609 *
997 7/8/92 7 2 25 24.6895 2.9 2.81752
997 7/31/92 7 2 25 24.6895 9 44.98 9.1991 44.7809 *
997 9/2/92 9 3 25 24.8996 7.66 46.32 8.4032 45.5768 *
997 10/7/92 10 3 24.5 24.3996 7.2 46.78 7.9432 46.0368 2.5 3.62308
997 10/31/92 10 3 25.5 25.3996 7.13 46.85 7.8732 46.1068 *
997 11/30/92 11 3 23.6 23.4996 8.63 45.35 9.3732 44.6068 *
997 12/28/92 12 4 24.4 24.7034 9.21 44.77 8.8774 45.1026 2.7 2.33022
997 2/1/93 2 4 24 24.3034 8.65 45.33 8.3174 45.6626 *
997 3/5/93 3 1 24 24.1076 7.55 46.43 7.0651 46.9149 *
997 3/29/93 3 1 25.2 25.3076 8.41 45.57 7.9251 46.0549 2.7 2.50641
997 5/6/93 5 1 25.2 25.3076 9.2 44.78 8.7151 45.2649 *
997 6/4/93 6 2 8.87 45.11 9.0691 44.9109 *
997 6/6/93 6 2 25.1 24.7895 *
997 7/6/93 7 2 25.8 25.4895 8.68 45.3 8.8791 45.1009 3.1 3.01752
997 8/5/93 8 2 25.2 24.8895 9.4 44.58 9.5991 44.3809 *
997 9/9/93 9 3 24.9 24.7996 7.68 46.3 8.4232 45.5568 *
997 10/4/93 10 3 24.6 24.4996 9.15 44.83 9.8932 44.0868 3 4.12308
997 11/5/93 11 3 24.9 24.7996 8.94 45.04 9.6832 44.2968 *
997 12/2/93 12 4 25.1 25.4034 9.53 44.45 9.1974 44.7826 *
997 1/4/94 1 4 23.7 24.0034 9.42 44.56 9.0874 44.8926 3 2.63022
997 1/31/94 1 4 23.8 24.1034 8.59 45.39 8.2574 45.7226 *
997 3/3/94 3 1 23.3 23.4076 9 44.98 8.5151 45.4649 *
997 4/12/94 4 1 25 25.1076 10.09 43.89 9.6051 44.3749 3.8 3.60641







SWFWMD
Location Sequence Dates Color_Sen_slope UP/DOWN
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates Color_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0 No evidence of trend
737 C 1/98-6/03 -9999 -9999







SAMP_DATE jT-P
4/25/91 ,
7/1/91
10/22/91
1/28/921
4/28/92
-------7/29/92 -----
4/13/93
7/19/94
10/24/94
1/31/95
4/10/95
7/25/95
10/19/95
2/1/96
4/11/96
7/11/96
10/10/96
1/22/97
4/14/97
7/1/97
10/1/97
1/12/98
4/9/98
7/8/98
---------------- 7-/-8/98----I--------
10/13/981
1/11/99
4/20/99
7/19/99
10/14/99
1/10/00 *
4/18/00
7/18/00
10/12/00,
1/8/01
4/16/01
7/10/01
10/9/01
1/14/02
4/18/02
7/9/02
10/8/02
1/7/03
4/3/03
7/14/03


D-P04 iTOC


0.07
0.16
0.05
0.05
0.05
0.04
0.03
0.02
0.035
0.05
0.042
0.042
0.049
0.047
0.09
0.042

0.368
0.029
0.032
0.038
1.11
0.128
0.029
0.042
0.035
0.041
0.038
0.05

0.181
0.192
0.045
0.042
0.045
0.039
0.045
0.044
0.04
0.041
0.07
0.039
0.044
0.038


0.05
0.07 *
0.02
0.03'
0.03 *
0.03 *
0.03 *
0.02,
0.032
0.04'
0.036
0.047
0.025
0.049
0.045,
0 047,
0.087
0.354
0.023'
0.033'
0.029
0.051
0.071
0.037
0.042
0.033
0.038
0.041
0.04
0.085
0.036
0.044
0.061
0.0511
0.056
0.041
0.041
0 041,
0.037
0.051
0.034
0.037
0.042
0.035


D-Ca D-Mg D-Na
3.2- 441 11


1.35
1.18
0.5
0.5
0.5
0.5
0.5
0.57
0.97
0.5
0.5
0.5
0.41
0.3

0.52
0.42
0.25
0.53
0.95
1.7
0.64
0.3
0.3
0.3
0.74
0.3
0.3
0.3
0.3
0.3
0.3
0.244
0.4
0.5
0.3
0.3
I0-:3-
0.4


75
82
79
60
61
67
58
64
75.84
60
60
57
59.8
61.5
60.8
60.4
61.6
58.3
58.6
62.4
61.5
63.8
65.5
65.3
67.7
60.6
64.3
61.9
62.7
57.8
61.55
63
66.2
61.6
60.1
63.4
61


22
27
21
12
11
12
10
12
12.59
12
12
11
11.5
11.5
11.6
11.3
10.6
10.4
11.3
11.8
12.4
12
12.6
11.5
12.8
11.8
11.8
11.6
11.6
11.6
11.85


11.7
11.9

12.9
12


D-K D-CI D-S04 D-F
421 2.3l 64 741 0.24


0.25
0.21


87
132
86
16
15
19
16
16
16.2
16
14
13
14.6
14.8
17.6
17.4
15.6
16
15.6
12.9
14.1
15.3
18
13.2
14.9
14.9
13
13.2





14.7
15.6
15
16.1
16


3
4.6
3.3
0.6
0.61
0.7
0.5
0.7
0.8
0.7
0.6
0.6A
0.694,
0.64
0.72
0.72
0.54
1.05
0.64
0.34
0. 3
0.69'
0.76
0.66
0.83
0.84,
0.65
0.67
0 78_
0.87
0.73
0.7
1. 16
0.69
0.978,
0.91
1.11!


154
225
153
32
29
35
34
31
31
34
29
24
34.8
29.1
34.3
35.9

31.5

30.8
27.2
28.7
31
34.7
26.2
28.2
28.6
26.1
26.1
25.1
31.1
29.1
25.6
27.3
29.8
31.2
30.1
30.5


121,
137
114'
67
66
68'
68
65,
66
77
68
62'
76.7
67.5
67.9
65
61.3
61.2
64.1
62.1
65
65.8
70.3 *
64.2 *
66.6
64.7,
61.8
63.1
62.8 *
60.51
61.5
60.7
65.4
62.7
65.2 *
58 9 *
65.1 *


0.26
0.27
0.22
0.2
0.18
0.2
0.2
0.2
0.243
0.198
0.2
0.269
0.245
0.215
0.19
0.13
0.64
0.15
0.18
0.18
0.12
0.21


0.28
0.31
0.21
0.2

0.209
0.21
0.21
0.21
0.21


Buckhorn _ _ _ _ _ _


D-Fe

*


D-Sr
406*


30 *
30 *
30 *
30 *
30 *
30 *
30 *
30
30
30
33
30
30
38.3
30
30
30
30
30
30
30
25
30
25 *
25
25
25
25
25
50
25
25
30
30
30
30
43.2


1000
660
1200
400
400
350
950
860
1010
50
50
50
50
210
940
960

210
890
680
580
690
810
630
780
790
860
1140
1030
926







Date SEASON_NO. Month Temp DeSnTemp Fe-D Mn-D Alk DO Fcol Entero pH
6/4/99 2 6 19.7 19.6094 0.1 7.04
7/9/99 2 7 19.7 19.6094 0.36 6.7
8/4/99 2 8 19.8 19.7094 0.48 6.71
9/2/99 3 9 19.8 19.7644 0.1 6.75
10/13/99 3 10 19.6 19.5644* 0.17* 6.68
11/9/99 3 11 19.5 19.4644* 0.36 6.47
1/5/00 4 1 19.3 19.3709 0.77 6.58
1/31/00 4 2 19.2 19.2709* 0.17* 6.74
4/6/00 1 4 19.3 19.3495 0.3 6.88
10/12/00 3 10 19.9 19.8644* 2.4* 7
1/8/01 4 1 19.69 19.7609 0.08* 7.13
4/4/01 1 4 19.68 19.7295 0.48 7.02
7/25/01 2 7 19.83 19.7394 0.07 6.93
10/22/01 3 10 19.74 19.7044* 0.11 6.85
1/29/02 4 1 19.77 19.8409 210 0.41 1 1 6.98
3/4/02 1 3 19.74 19.7895 212 0.11 1 1 7.07
4/22/02 1 4 19.89 19.9395 209 0.12 1 1 6.8
7/25/02 2 7 20.09 19.9994 209 1.22 1 1 6.23
10/29/02 3 10 19.95 19.9144 0.35 6.8
1/23/03 4 1 19.66 19.7309 0.42 7.1
4/29/03 1 4 20.04 20.0895 0.29 6.77










Appendix L6-St. Johns Water Management District Wells


Miles
0 5 10 20 30
Kiiuineters
,10 20 40 60


Figure 60. SJRWMD wells.


L22







Sequence A
Location Sequence Dates Turbfield_Ha_up Turbfield Ha down Turbfield_n
RLS C 1/98-6/42 -9999 -9999 -9999
RKB C 1/98-6/41 -9999 -9999 -9999
SBL C 1/98-6/44 -9999 -9999 -9999
TEL C 1/98-6/45 -9999 -9999 -9999
TRY C 1/91-12/98 -9999 -9999 -9999
Springs A Up
Springs A Down












4
a+ tI,(t)+ ,. (A10)
1=1


Similarly, we may test different hypotheses on the slopes {/f, i= 1, 2, 3, 4 }.


Transformations Notice that in model (A8), the random errors E,'s are assumed to be
uncorrelated, normally distributed, and with constant variance, which implies that the
observations { Y, t = 1, *, n } are 1) normally distributed and 2) with constant variance
"2. If one of the two assumptions is invalid, transformations should be performed on Y,
to improve normality or to stabilize the variance.


When { Y, t = 1, n } are positive numbers, the most popular transformation
family is the Box-Cox power transformation family { Y, -3 < < _3 } where A= 0
corresponding to the logarithm transformation. In practice, an appropriate transformation
for Y is usually chosen from the class {At = 2, -1.5, -1, 0.5, 0, 0.5,1.0,1.5, 2}. The
logarithm and the square-root transformations are the most popular transformations
chosen in data analysis.


Missing data and censored data--Missing data will cause some problems in time series
analysis. Here are two ad hoc ways to impute missing data in a time series:


1) Suppose that Y is missing, we may impute Y, by Y* = 1
2
2) Another way is to impute Y by the sample mean of the same season. For
example, if the time t is a spring quarter, Y, can be imputed by the sample
mean of the spring quarter observations in the series. The same way can be
applied to monthly data.

In water quality data analysis, censored data are usually caused by the minimum
detection limit (MDL) of analytical laboratories. A popular way is to impute censored
data by MDL/2 or to simply use MDL.







Date SC-F CI S04 F
11/1/99 68.8* *
12/7/99 60.8 *
1/4/00 63 *
1/28/00 71.1 *
3/9/00 95 *
4/7/00 102* *
5/5/00 96 *
6/6/00 98 *
7/6/00 91 *
8/7/00 67.1 *
9/8/00 67 *
10/10/00 67.9 7.2 8.7 0.1
11/1/00 69 6.4 12 0.015
12/6/00 70.2 6.2 12 0.015
1/3/01 62.1 5.7 10 0.015
2/1/01 55.1 5.6 7.5 0.015
3/6/01 57 5.7 8.4 0.02
4/3/01 66 6.3 10 0.02
5/1/01 73.5 ** *
6/4/01 64.1 5.1 11 0.02
7/2/01 79.1 5.4 15 0.02
8/7/01 83 5.5 18 0.025
9/6/01 69.9 5.5 12 *
10/3/01 71 *
11/1/01 72* *
12/4/01 75 *
1/2/02 78 *
2/7/02 73 *
3/7/02 69 *
3/28/02 68 *
4/30/02 70 *
6/7/02 62.7 *
7/12/02 58 *
8/7/02 61 *
9/4/02 82 *
10/1/02 82 *
11/4/02 75* *
12/2/02 74 *
1/2/03 68 *
2/6/03 70 *
3/6/03 71 *
4/1/03 67 *
4/30/03 56 *
6/2/03 46 *










Descriptive Statistics for LRS from August, 1994 to December, 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
KTOT mg/1 48.0 0.1 0.5 0.5 0.7 0.9
NATOT mg/1 48.0 1.3 2.3 2.5 2.8 4.2
MGTOT mg/1 48.0 6.0 6.5 7.0 7.8 12.2
CATOT mg/1 48.0 49.6 55.6 58.5 61.6 96.6
CLTOT mg/1 48.0 0.0 5.3 5.8 6.0 9.0
FTOT mg/1 47.0 0.0 0.1 0.1 0.1 0.2
SO4TOT mg/1 48.0 14.0 17.5 19.2 22.0 27.0
TKN mg/1 48.0 0.0 0.0 0.0 0.1 0.2
NOXNTOT mg/1 51.0 0.9 1.1 1.2 1.3 1.7
PTOT mg/1 48.0 0.0 0.0 0.0 0.0 0.1
OPO4DISS mg/1 48.0 0.0 0.2 0.0 0.0 0.0
COLITOT #/100ML *
COLIFEC #100ML *
FLOWCFS CFS 28.0 25.4 46.8 55.8 72.0 143.0
TOC mg/1 46.0 0.0 1.2 2.7 7.0 19.9
DOC mg/1 36.0 0.2 1.8 3.9 6.7 14.1
CONDL uS/cm 49.0 348.0 368.0 373.0 376.0 398.0
PHF s.u. 49.0 6.9 7.3 7.3 7.5 7.7
TEMP Deg C 48.0 21.4 21.7 21.8 21.8 22.0
*Less than 10
samples
NA No samples







SWFWMD
Location Sequence Dates Turb_field_Sen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.147 UP
997 C 1/98-6/03 0.0157273 No evidence of trend
1087 C 1/98-6/03 0.004 No evidence of trend
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 -0.06 DOWN
7935 C 1/98-6/03 -0.08 No evidence of trend
Wells A Up 1
Wells A Down 1


Bobhill C 1/98-6/04 -9999 -9999
Boyette C 1/98-6/05 -9999 -9999
Chassal C 1/98-6/06 -9999 -9999
ChassaM C 1/98-6/07 -9999 -9999
Homosl C 1/98-6/10 -9999 -9999
Homos2 C 1/98-6/11 -9999 -9999
Homos3 C 1/98-6/12 -9999 -9999
HidRivH C 1/98-6/09 -9999 -9999
HidRiv2T C 1/98-6/08 -9999 -9999
huntersspr C 1/98-6/13 -9999 -9999
lithiamain C 1/98-6/14 -9999 -9999
magnolspr C 1/98-6/15 -9999 -9999
pumphous C 1/98-6/16 -9999 -9999
rainbow C 1/98-6/17 -9999 -9999
rainbow C 1/98-6/18 -9999 -9999
rainbow C 1/98-6/19 -9999 -9999
SWBettyJay C 1/98-6/23 -9999 -9999
SWBublng C 1/98-6/25 -9999 -9999
SWBuckhm C 1/98-6/26 -9999 -9999
SWCatfish C 1/98-6/27 -9999 -9999
tarponholespr C 1/98-6/28 -9999 -9999
trottermain C 1/98-6/29 -9999 -9999
weekwachmain C 1/98-6/30 -9999 -9999
wilsonheadspr C 1/98-6/31 -9999 -9999
Springs A Up 0
Springs A Down 0







COLLECTIONDATE pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20 WL(MSL)
1/14/91 7.53 0.02 0.11 1 30.26 38.03
3/1/91 ** 0.05 *****
4/1/91 7.47 30.86 37.43
7/8/91 7.46 0.02 ** ***
10/7/91 7.21* **0.02 ** ***
12/11/91 7.47* *0.02 28.07 40.22
1/9/92 7.44 0.02 28.1 40.19
4/15/92 7.48* *0.03 30.64 37.65
7/8/92 7.51 0.02 30.25 38.04
10/7/92 7.54* *0.02 27.94 40.35
1/7/93 7.56 0.02 27.47 40.82
4/6/93 7.45 0.02 26.91 41.38
7/8/93 7.52 0.02 31.32 36.97
10/6/93 7.59* *0.02 30.55 37.74
1/4/94 7.62 0.02 28.29 40
4/5/94 7.52 0.02 30.52 37.77
7/7/94 7.43 0.02 29.85 38.44
10/11/94 7.37* *0.02 27.37 40.92
6/8/95 7.6 0.15 0.02 0.13 30.33 37.96
12/19/95 7.28 ********26.96 41.33
1/9/96 7.31 27.62 40.67
2/19/96 7.27 ********28.53 39.76
3/20/96 7.25 28.3 39.99
4/2/96 7.23 28.28 40.01
5/14/96 7.24 ********31.28 37.01
6/18/96 7.42 ********30.47 37.82
7/2/96 7.32 29.73 38.56
8/15/96 7.3* 30.2 38.09
9/18/96 7.41 ********29.94 38.35
10/2/96 7.4 30.02 38.27
11/14/96 7.4* 29.34 38.95
12/16/96 7.4 28.58 39.71
1/9/97 7.37 28.46 39.83
2/11/97 7.34 ********28.7 39.59
3/12/97 7.44 30.82 37.47
4/7/97 7.45 ********31.18 37.11
5/9/97 7.45 30.73 37.56
6/6/97 7.46 29.88 38.41
7/3/97 7.43 ********29.6 38.69
8/13/97 7.37 29.21 39.08
9/2/97 7.44 29.31 38.98
10/9/97 7.37 ********29.96 38.33







Sequence A
Location Sequence Dates pH_Sen_slope UP/DOWN
Wells A Up 0
Wells A Down 3

BLU (Gilchrist) B 1/91-12/127 -9999 -9999
FAN B 1/91-12/128 -0.01125 No evidence of trend
HOR B 1/91-12/130 -0.0115625 No evidence of trend
LRS B 1/91-12/132 -0.0080159 No evidence of trend
RKB B 1/91-12/135 -0.0272917 DOWN
ROY B 1/91-12/137 -0.0157778 No evidence of trend
TEL B 1/91-12/139 -9999 -9999
TRY B 1/91-6/04 0.00375 No evidence of trend
Springs A Up 0
Springs A Down 2

Sequence B
Location Sequence Dates pH_Sen_slope UP/DOWN
1943 C 1/98-6/03 -0.002254 No evidence of trend
2003 C 1/98-6/03 0.0121717 UP
2193 C 1/98-6/03 -0.0121429 DOWN
2259 C 1/98-6/03 0.0020526 No evidence of trend
2353 C 1/98-6/03 0.0080159 No evidence of trend
2404 C 1/98-6/03 -0.0017914 No evidence of trend
2465 C 1/98-6/03 -0.0012348 No evidence of trend
2585 C 1/98-6/03 0.006 UP
2675 C 1/98-6/03 -0.0014286 No evidence of trend
Wells A Up 2
Wells A Down 1

ALR C 1/98-6/32 -0.01 DOWN
BLU (Gilchrist) C 1/98-6/33 0.0013961 No evidence of trend
FAN C 1/98-6/34 0.0013333 No evidence of trend
HAR C 1/98-6/35 0.009 UP
HOR C 1/98-6/36 0.002229 No evidence of trend
LBS C 1/98-6/37 0.0005322 No evidence of trend
LRS C 1/98-6/38 0.0045 UP
MAN C 1/98-6/39 0.0006897 No evidence of trend
POE C 1/98-6/40 0.0026139 UP











Descriptive Statistics for 1779 Dates: Se tember, 1989 to April, 2003
Code Analyte Measure Num. Min. Q1 Median Q3 Max.
d units Samples Value Value Value Value Value
10 Temp Deg C 27 21.8 22.3 22.5 22.7 24.8
1046 D-Fe microg/1 8 *
1056 D-Mn microg/1 6 *
29801 Bicarb mg/1 7* *
299 DO mg/1 21 0.0 0.1 0.3 0.4 1.8
31616 Fcol #/100 ml 4* *
31649 Entero #/100 ml 4* *
406 pH ph units 27 7.4 7.6 7.6 7.7 8.0
4255 D-Alk mg/1

530 Resid mg/1 4 *
608 D-NH3 mg/1 6 *
618 D-NO3 mg/1 4 *
620 D- mg/1 0 NA NA NA NA NA
NO3 (N)
631 D- mg/1 12 0.0 0.0 0.0 0.0 1.6
NO3NO2
666 D-P mg/1 7* *
671 D-PO4 mg/1 10 0.0 0.0 0.0 0.0 0.1
680 TOC mg/1 10 1.0 1.0 1.2 7.2 21.0
70300 TDS mg/1 9 *
72109 DtoH20 Ft 24 72.3 76.9 79.7 80.0 81.8
76 Turb Turb 7 *
units
81 Color Pt-Co 5 *
82078 Turb(fiel Turb 5 *
d) units
915 D-Ca mg/1 12 32.0 33.9 34.9 35.1 39.6
925 D-Mg mg/1 12 13.6 14.4 15.2 15.9 17.2
930 D-Na mg/1 12 7.8 8.0 8.3 8.4 9.1
935 D-K mg/1 12 1.2 1.3 1.7 2.9 6.3
94 Cond(fiel micromh 27 31.9 317.0 320.0 324.0 329.0
d) os/cm
941 D-Cl mg/1 12 5.0 6.0 6.3 8.5 12.0
946 D-SO4 mg/1 12 1.0 1.0 1.9 2.0 2.3
950 D-F mg/1 12 0.3 0.4 0.5 0.5 0.5


*Less than 10
samples
NA No samples


' ' "'^


'^^^ '










Descriptive Statistics for TRY from November, 1992 to December, 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
KTOT mg/1 56.0 0.1 0.6 0.7 0.8 1.2
NATOT mg/1 56.0 1.7 2.4 2.7 0.8 1.2
MGTOT mg/1 56.0 0.0 6.1 6.5 6.8 8.9
CATOT mg/1 55.0 0.1 51.4 55.1 58.3 74.2
CLTOT mg/1 56.0 2.0 5.1 5.7 6.0 12.2
FTOT mg/1 49.0 0.0 0.1 0.1 0.1 0.2
SO4TOT mg/1 56.0 8.5 10.4 11.0 12.0 14.9
TKN mg/1 56.0 0.0 0.0 0.1 0.1 0.4
NOXNTOT mg/1 59.0 0.9 1.5 1.7 2.0 2.8
PTOT mg/1 56.0 0.0 0.0 0.0 0.0 0.1
OPO4DISS mg/1 56.0 0.0 0.0 0.0 0.0 0.1
COLITOT #/100ML 16.0 10.0 10.0 10.0 100.0 660.0
COLIFEC #100ML 16.0 1.0 1.0 1.0 3.5 470.0
FLOWCFS CFS 26.0 65.1 87.6 102.6 112.5 165.0
TOC mg/1 48.0 0.0 1.4 3.0 7.3 14.9
DOC mg/1 37.0 0.6 2.6 5.9 7.7 14.0
CONDL uS/cm 57.0 219.0 350.0 356.0 363.0 379.0
PHF s.u. 57.0 6.9 7.3 7.4 7.5 7.8
TEMP Deg C 56.0 16.1 21.3 21.3 21.4 21.8
*Less than 10
samples
NA No samples







SWFWMD
Location Sequence Dates D_PO4_Sen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 -0.0000909 No evidence of trend
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 -0.0003333 No evidence of trend
7935 C 1/98-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0


Bobhill C 1/98-6/04 0 No evidence of trend
Boyette C 1/98-6/05 0.0001818 No evidence of trend
Chassal C 1/98-6/06 -0.0002 No evidence of trend
ChassaM C 1/98-6/07 -0.0004286 DOWN
Homosl C 1/98-6/10 0 No evidence of trend
Homos2 C 1/98-6/11 0 No evidence of trend
Homos3 C 1/98-6/12 -0.00015 No evidence of trend
HidRivH C 1/98-6/09 -0.0001429 No evidence of trend
HidRiv2T C 1/98-6/08 0 No evidence of trend
huntersspr C 1/98-6/13 -0.0003333 No evidence of trend
lithiamain C 1/98-6/14 0 No evidence of trend
magnolspr C 1/98-6/15 0 No evidence of trend
pumphous C 1/98-6/16 -0.0002222 No evidence of trend
rainbow C 1/98-6/17 -0.0002 No evidence of trend
rainbow C 1/98-6/18 -0.0001146 No evidence of trend
rainbow C 1/98-6/19 -0.0001667 No evidence of trend
SWBettyJay C 1/98-6/23 -0.0001667 No evidence of trend
SWBublng C 1/98-6/25 -0.000125 No evidence of trend
SWBuckhm C 1/98-6/26 -0.0002857 No evidence of trend
SWCatfish C 1/98-6/27 -0.0002 No evidence of trend
tarponholespr C 1/98-6/28 -0.0001667 No evidence of trend
trottermain C 1/98-6/29 -0.00025 No evidence of trend
weekwachmain C 1/98-6/30 0 DOWN
wilsonheadspr C 1/98-6/31 -0.0002792 No evidence of trend
Springs A Up 0
Springs A Down 2








FLORIDA GEOLOGICAL SURVEY



Fanning Springs Time Sequence A (1991-2003)





.00 M.N Mi
- ,,,.,


r -


40

2 4 -

20 -


0 -
1/1/1995


5/22/1997


10/11/1999
Date


3/1/2002


MK p-value =0.0005 nA= 10 nB= 40
WT p-value <0.0001 SS =0.2694


Gilchrist Blue Spring Time Sequence A (1991-2003)







*.


1993 1994 1995
MK p-value =0.0005
WT p-value =0.0563


1996 1997 1998 1999 2000 2001 2002
SS 0.2694 Date
nA 8 nB 33


Figure 17. Increasing rock analytes at Fanning and Gilchrist Blue
Springs. Fanning (top) and Gilchrist Blue Springs (bottom) had
significant increases in calcium. Tests (p < 0.05) included MK for
for trend, WT on Sequences B and C, plus SS calculations on the rate
of change. Beginning and ending sampling dates for the two springs
are not the same.


7/21/2004


I I I I I I







Date SEASON_NO. Month Temp Alk DeSnTemp Fe-D Mn-D DeSnAlk DO Fcol Entero pH
5/22/91 1 5 22.4 22.3789 3 7.47
6/3/91 2 6 22.7 22.5686 *****7.48
7/2/91 2 7 22.9 150 22.7686 10 152.155 7.48
8/6/91 2 8 22.8 22.6686 7.47
9/3/91 3 9 22.3 22.3779 *****7.42
10/3/91 3 12 22.2 149 22.2779 10 152.221 7.57
11/4/91 3 11 21.6 21.6779 7.43
12/3/91 4 12 22.3 22.4105 7.49
1/6/92 4 1 21.9 157 22.0105 10 155.155 7.43
2/4/92 4 2 22.2 22.3105 7.47
3/2/92 1 3 22.7 22.6789 7.42
3/30/92 1 4 22.2 146 22.1789 5 142.946 7.48
5/4/92 1 5 22.5 22.4789 7.42
6/1/92 2 6 22.5 22.3686 *****7.45
7/7/92 2 7 22.9 154 22.7686 5 156.155 7.43
8/3/92 2 8 22.6 22.4686 *****7.42
8/13/92 2 8 22.2 155 22.0686 5 157.155 7.5
8/31/92 2 9 22.5 22.3686 *****7.48
10/8/92 3 10 22.5 22.5779 *****7.48
11/3/92 3 11 22.4 22.4779 7.51
11/30/92 3 12 21.9 21.9779 7.51
1/4/93 4 1 22.4 150 22.5105 7* 148.155* 7.55
2/1/93 4 2 22.2 22.3105 7.56
3/1/93 1 3 22.1 22.0789 7.54
3/29/93 1 4 22.6 160 22.5789 3 156.946 7.42
5/3/93 1 5 22.1 22.0789 7.48
6/1/93 2 6 23 22.8686 *****7.48
6/28/93 2 7 22.7 150 22.5686 3 152.155 7.51
8/2/93 2 8 22.9 22.7686 7.43
8/30/93 2 9 22.7 22.5686 *****7.45
10/4/93 3 10 22.8 150 22.8779 3 153.221 7.38
11/1/93 3 11 21.7 21.7779 *****7.44
12/6/93 4 12 22.8 22.9105 *****7.46
1/3/94 4 1 22.7 150 22.8105 3* 148.155* 7.43
3/1/94 1 3 22.7 22.6789 *****7.35
4/5/94 1 4 22.8 160 22.7789 3 156.946 ** **
5/2/94 1 5 22.7 22.6789 7.27
5/31/94 1 6 23 22.9789 7.46
7/5/94 2 7 22.9 150 22.7686 3 152.155 7.28
10/6/94 3 10 22.4 150 22.4779 6 153.221 7.35
1/4/95 4 1 22.3 22.4105 7.39
4/5/95 1 4 22.2 22.1789 7.34







SWFWMD
Location Sequence Dates DtoH20_Sen_slope UP/DOWN
736 B 1/91-12/97 0.0023404 No evidence of trend
737 B 1/91-12/97 0.0002819 No evidence of trend
996 B 1/91-12/97 -0.0075316 DOWN
997 B 1/91-12/97 -0.0069516 DOWN
1087 B 1/91-12/97 -0.0067992 No evidence of trend
Wells A Up 1
Wells A Down 2

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates DtoH20_Sen_slope UP/DOWN
615 C 1/98-6/03 0 No evidence of trend
707 C 1/98-6/03 0.142863 No evidence of trend
736 C 1/98-6/03 -0.0010124 No evidence of trend
737 C 1/98-6/03 0.0414677 No evidence of trend







FK_STATI PK_SAMPI DATE COLLECTIMONTH SEASON SEASON Temp DeSnTemp D-Fe D-Mn Bicarb DO
996 SWFM940 5/4/94 0 5 Spring 1 25 26.45 ***
996 SWFM940 6/1/94 0 6 Summer 2 24.8 23.72 *
996 SWFQ940 6/29/94 840 6 Summer 2 25.2 24.12 300 1.5 *
996 SWFM940 8/1/94 0 8 Summer 2 26 24.92 *
996 SWFM940 8/29/94 0 8 Summer 2 26.4 25.32 ***
996 SWFQ941 10/4/94 815 10 Fall 3 26.4 24.68 210 4.3 *
996 SWFM941 11/3/94 0 11 Fall 3 26.7 24.98 ** **
996 SWFM941 12/2/94 0 12 Winter 4 25.8 26.82 *
996 SWFQ950 1/4/95 1215 1 Winter 4 24.2 25.22 ** **
996 SWFM950 1/30/95 1148 1 Winter 4 23.1 24.12 *
996 SWFM950 3/2/95 1317 3 Spring 1 22.1 23.55 ***
996 SWFQ950, 3/31/95 1315 3 Spring 1 23.8 25.25 *
996 SWFM950 4/28/95 1252 4 Spring 1 22.9 24.35 ***
996 SWFM950 5/30/95 1239 5 Spring 1 26.1 27.55 *
996 SWFQ950 7/6/95 1215 7 Summer 2 26.1 25.02 ***
996 SWFM950 7/28/95 0 7 Summer 2 26.8 25.72 *
996 SWFM950 9/1/95 0 9 Fall 3 27.1 25.38 ***
996 SWFM951 10/3/95 1143 10 Fall 3 26.9 25.18* *
996 SWFM951 10/30/95 0 10 Fall 3 26.4 24.68 ***
996 SWFM951 12/4/95 0 12 Winter 4 24.3 25.32 0.75
996 SWFM960 12/27/95 923 12 Winter 4 23.1 24.12 0.55
996 SWFM960 2/6/96 1201 2 Winter 4 21.5 22.52 *
996 SWFM960 2/27/96 1056 2 Winter 4 22.8 23.82 ***
996 SWFM960 3/27/96 1132 3 Spring 1 23.2 24.65 *
996 SWFM960 4/23/96 1113 4 Spring 1 22.6 24.05 ***
996 SWFM960 5/22/96 1010 5 Spring 1 23.7 25.15 *
996 SWFV960( 6/18/96 1000 6 Summer 2 23.9 22.82 162 1 1 0.22
996 SWFM960 7/17/96 1429 7 Summer 2 27.3 26.22 *
996 SWFM960 8/13/96 1425 8 Summer 2 27.1 26.02 0.15
996 SWFM961 9/18/96 1100 9 Fall 3 29.2 27.48 0.2
996 SWFM961 10/9/96 1514 10 Fall 3 26.7 24.98 0.42
996 SWFM961: 12/6/96 945 12 Winter 4 25 26.02 0.74
996 SWFM970 1/16/97 1029 1 Winter 4 23.6 24.62 ** **
996 SWFM970: 2/5/97 943 2 Winter 4 23.1 24.12 *
996 SWFM970 3/12/97 1423 3 Spring 1 24 25.45 0.61
996 SWFM970 4/8/97 1053 4 Spring 1 23.1 24.55 *
996 SWFM970 5/2/97 1322 5 Spring 1 24.3 25.75 0.28
996 SWFM970 6/3/97 0 6 Summer 2 24.7 23.62 0.28
996 SWFM970 7/17/97 0 7 Summer 2 25.8 24.72 0
996 SWFM970 8/1/97 0 8 Summer 2 26.1 25.02 0.52
996 SWFM970 8/29/97 1307 8 Summer 2 26.7 25.62 0.15
996 SWFM971 10/8/97 1115 10 Fall 3 27 25.28 1.05







Date Resid D-NH3 D-N03 D-N03(N) D-N03N02 D-P D-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH20
2/5/98 ********29.92 36.08 30.0333
3/2/98 30.53 35.47 24.7464
3/27/98 33.72 32.28 27.9364
5/6/98 49.02 16.98 43.2364
5/25/98 ********56.51 9.49 50.7264
7/1/98 50.19 15.81 50.7912
8/5/98 ********44.21 21.79 44.8112
8/26/98 0.29 0.11 0.012 0.011 1.8* 41.68 24.32 42.2812
9/30/98 ********36.67 29.33 42.552
10/29/98* *** *****
12/2/98* 42.11 23.89 42.2233
1/4/99 42.82 23.18 42.9333
2/2/99 41.57 24.43 41.6833
2/17/99* 48.11 17.89 48.2233
3/31/99 ********58.21 7.79 52.4264
5/10/99 63.17 2.83 57.3864
6/8/99 53.19 12.81 53.7912
7/6/99 41.85 24.15 42.4512
8/2/99 ********38.35 27.65 38.9512
9/1/99 ********36.25 29.75 42.132
1/4/00 45.1 20.9 45.2133
4/7/00 ********59.75 6.25 53.9664
7/6/00 52.77 13.23 53.3712
10/10/00 4 0.28 0.004 0.006 0.007 1.7 778 40.84 25.16 46.722
1/3/01 4 0.26 0.004 0.004 0.004 1.3 753 56.34 9.66 56.4533
4/3/01 4 0.26 0.004 0.004 0.004 1.5 779 55.85 10.15 50.0664
7/2/01 4 0.29 0.004 0.004 0.004 28 795 49.34 16.66 49.9412
10/3/01 ********35.95 30.05 41.832
1/3/02 48.71 17.29 48.8233
3/28/02 56.63 9.37 50.8464
7/12/02 ********42.61 23.39 43.2112
10/1/02 35.99 30.01 41.872
1/2/03 ********33.45 32.55 33.5633
4/1/03 41.35 24.65 35.5664







SWFWMD
Location Sequence Dates Alk_29801_Ha up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.73809
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.0446
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.02694
Boyette C 1/98-6/05 0.5802
Chassal C 1/98-6/06 0.0023
ChassaM C 1/98-6/07 0.01061
Homosl C 1/98-6/10 0.00115
Homos2 C 1/98-6/11 0.00536
Homos3 C 1/98-6/12 0.00031
HidRivH C 1/98-6/09 0.00021
HidRiv2T C 1/98-6/08 0.00006
huntersspr C 1/98-6/13 0.00815
lithiamain C 1/98-6/14 0.00095
magnolspr C 1/98-6/15 0.00073
pumphous C 1/98-6/16 0.10506
rainbow C 1/98-6/17 0.01731
rainbow C 1/98-6/18 0
rainbow C 1/98-6/19 0.0002
SWBettyJay C 1/98-6/23 0.00025
SWBublng C 1/98-6/25 0.00001
SWBuckhm C 1/98-6/26 0.00499
SWCatfish C 1/98-6/27 0.39381
tarponholespr C 1/98-6/28 0.00047
trottermain C 1/98-6/29 0.00405
weekwachmain C 1/98-6/30 0.00004
wilsonheadspr C 1/98-6/31 0.00047
Springs A Up
Springs A Down







FKSTATI PKSAMPICOLLECTIONDATE COLLECT MONTH SEASON SEASON NO. Temp Fe-D Mn-D Alk DO Fcol
1420 SJRQ9101 1/22/91 1500 1 Winter 4 21.6 9 9 *
1420 SJRQ9104 4/9/91 1400 4 Spring 1 22.6 50 *
1420 SJRQ9107 8/5/91 1020 8 Summer 2 23.9 45 12.9 115 *
1420 SJRQ9110 10/15/91 1412 10 Fall 3 22.5 10 119* *
1420 SJRQ9201 1/14/92 940 1 Winter 4 22 10 120 *
1420 SJRQ9204 4/7/92 952 4 Spring 1 22.1 20 121 *
1420 SJRQ9207 7/15/92 1027 7 Summer 2 23.3 5 120 *
1420 SJRQ9210 10/13/92 947 10 Fall 3 22.4 5 121 *
1420 SJRQ9301 1/13/93 1317 1 Winter 4 22.4 3 120 *
1420 SJRQ9304 4/14/93 931 4 Spring 1 22.1 25 120 *
1420 SJRQ9307 7/13/93 1645 7 Summer 2 23 3 120 *
1420 SJRB9309 9/1/93 1443 9 Fall 3 24.4 5 11 120* *
1420 SJRQ9310 10/12/93 928 10 Fall 3 22.4 13 120 *
1420 SJRQ9401 1/11/94 1515 1 Winter 4 22.1 34 120* *
1420 SJRQ9404 4/12/94 1623 4 Spring 1 22.4 6 120 *
1420 SJRQ9407 7/12/94 1520 7 Summer 2 24.2 3 120 *
1420 SJRQ9410 10/12/94 1445 10 Fall 3 22.8 7 121 *
1420 SJRB9609 9/9/96 1446 9 Fall 3 24.4 8 12 124 0.17 *
1420 SJRB9908 8/3/99 956 8 Summer 2 25.4 7 117 0.09 *
1420 CEDM000; 2/24/00 1914 2 Winter 4 22.78 0.04 *
1420 CEDM000 3/15/00 1110 3 Spring 1 22.8 0.12 *
1420 CEDM000O 4/25/00 1457 4 Spring 1 22.88 0*
1420 CEDM000 5/23/00 1637 5 Spring 1 22.99 0 *
1420 CEDM000 7/25/00 1733 7 Summer 2 22.85 0*
1420 CEDM001( 10/20/00 1105 10 Fall 3 23 0.08 *
1420 CEDM001( 10/24/00 1119 10 Fall 3 22.93 0.21 *
1420 SJRM0101 1/30/01 1024 1 Winter 4 22.26 0.34 *
1420 SJRM0104 4/26/01 1143 4 Spring 1 22.36 0.43 *
1420 SJRM0107 7/26/01 1045 7 Summer 2 22.54 0.06 *
1420 SJRM0110 10/24/01 1151 10 Fall 3 22.52 0.15 *
1420 SJRM0201 1/30/02 1216 1 Winter 4 22.5 0.42 *
1420 SJRMO204 4/24/02 1731 4 Spring 1 22.51 0.07 *
1420 SJRM0207 7/23/02 1537 7 Summer 2 22.99 0.15 *
1420 SJRM0210 10/22/02 1805 10 Fall 3 22.53 126 0.12 1
1420 SJRM0301 1/28/03 1910 1 Winter 4 22.8 124 0.19 1
1420 SJRMO304 4/22/03 1050 4 Spring 1 22.46 125 0.14 1










Seasonality Results: Wells, St. Johns Water Management District
W Fe, Col,
Well ID Name Temp Diss Alk DO Fec Entero
1420 S-0038 <.05 >.05 >.05 >.05 NA NA
1417 S-0045 >.05 >.05 >.05 >.05 >.05 NA
1781 BA0056 <0.05 >.05 >.05 >.05 NA NA
1780 BA0055 >.05 >.05 >.05 >.05 NA NA
1779 BA0054 >.05 >.05 >.05 >.05 NA NA
1764 SJ0032 <0.05 >.05 >.05 >.05 >.05 >.05
1763 SJ0030 >.05 <0.05 >.05 >.05 >.05 NA
1762 SJ0029 <0.05 >.05 >.05 >.05 >.05 NA
Alachua County
1931 R18T11SEC3101 <0.05 NA NA >.05 NA NA
1674 R22T10SEC2001 <.05 >.05 >.05 >.05 NA >.05

Seasonality Results: Wells, SJWMD
Nitrate
Well pH, Amm, + Ortho-
ID Field TSS Dis Nitrite P, Diss P, Diss TOC TDS
1420 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1417 >.05 >.05 >.05 >.05 >.05 <0.05 >.05 >.05
1781 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1780 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1779 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1764 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1763 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
1762 >.05 NA >.05 >.05 >.05 >.05 >.05 >.05
Alachua County
1931 >.05 NA NA NA NA NA NA NA
1674 <0.05 NA >.05 >.05 >.05 >.05 <.05 >.05


Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
Diss = Dissolved











Descriptive Statistics for Rock from February, 1931 to March, 2000
Num. Min. Q1 Median Q3 Max.
Analyte Measured units Samples Value Value Value Value Value
Temp DegC 151.0 21.5 23.5 23.8 24.0 28.5
SCl uS/cm 31.0 224.0 248.0 255.0 260.5 300.0
SCf uS/cm 73.0 210.0 230.0 248.0 256.0 356.0
pH s.u. 70.0 6.4 7.3 7.5 7.7 8.2
T-Alk mg/1 56.0 66.0 85.0 87.9 89.0 117.3
D-N03 mg/1 8.0 *
T-N03 mg/1 1.0 *
D-N03N02 mg/1 32.0 1.2 1.5 1.5 1.6 1.8
T-N03N02 mg/1 1.0 *
T-P mg/1 1.0 *
D-P mg/1 1.0 *
TOC mg/1 3.0 *
Ca mg/1 43.0 24.0 28.0 29.0 30.0 35.0
T-Ca mg/1 27.0 26.0 29.0 30.0 30.6 47.4
Mg mg/1 44.0 7.1 8.1 8.5 9.0 11.6
T-Mg mg/1 33.0 8.0 8.8 9.1 9.4 11.0
T-Na mg/1 27.0 4.0 5.0 5.0 5.4 9.1
Na mg/1 44.0 1.9 4.6 5.0 5.0 6.0
K mg/1 42.0 0.3 0.7 1.0 1.2 2.5
T-K mg/1 26.0 1.1 1.2 1.3 1.5 1.9
TKN mg/1 64.0 5.0 7.5 8.0 9.0 24.0
T-S04 mg/1 64.0 15.0 17.0 18.0 20.0 24.0
F mg/1 38.0 0.0 0.2 0.2 0.3 0.3
T-F mg/1 33.0 1.2 1.4 1.5 1.5 1.6
Si mg/1 26.0 1.5 9.0 9.5 9.9 11.0
Si(SI03 as Si) mg/1 36.0 4.0 4.0 4.9 5.0 14.0
T-Fe ug/1 3.0 *
D-Fe ug/1 10.0 0.0 0.0 1.5 17.5 30.0
D-Sr ug/1 28.0 35.0 127.8 169.0 192.3 350.0
T-Sr ug/1 26.0 122.0 155.3 168.7 172.8 185.0
TDS mg/1 55.0 118.0 134.5 143.0 148.0 289.0
T-P04 mg/1 20.0 0.1 0.1 0.1 0.1 0.1
*Less than 10 samples
NA No samples











Descri tive Statistics for 707 Dates: October, 1985 to April, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 135 25.6 29.0 29.9 30.1 31.5
1046 D-Fe microg/1 27 3.0 22.5 39.0 68.0 260.0
1056 D-Mn microg/1 11 1.0 1.0 1.9 10.0 25.0
29801 Bicarb mg/1 22 130.0 136.0 138.5 140.0 142.0
299 DO mg/1 29 0.0 0.1 0.1 0.1 1.0
31616 Fcol #/100 ml 5 *
31649 Entero #/100 ml 4 *
406 pH ph units 137 6.7 7.4 7.4 7.5 8.0
4255 D-Alk mg/ 9 *
530 Resid mg/1 4 *
608 D-NH3 mg/1 10 0.3 0.3 0.3 0.3 0.3
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 34 0.0 0.0 0.0 0.0 0.3
666 D-P mg/ 8 *
671 D-PO4 mg/1 13 0.0 0.0 0.0 0.1 0.2
680 TOC mg/1 13 1.0 1.0 1.5 1.8 28.0
70300 TDS mg/1 12 746.0 764.3 778.5 801.3 845.0
72109 DtoH20 Ft 136 29.9 36.8 41.4 48.2 63.2
76 Turb Turb units 9 *
81 Color Pt-Co 5 *
82078 Turb(field) Turb units 12 0.1 0.3 0.6 1.3 10.8
915 D-Ca mg/1 31 94.0 107.0 110.0 110.5 145.0
925 D-Mg mg/1 31 50.0 58.7 61.0 63.2 66.0
930 D-Na mg/1 31 11.0 11.9 12.0 12.2 16.1
935 D-K mg/1 31 2.3 3.4 3.6 3.8 4.9
94 Cond(field) micromhos/cm 138 818.0 1018.0 1034.0 1047.0 1095.0
941 D-Cl mg/1 34 2.0 15.0 16.0 16.0 21.0
946 D-SO4 mg/1 34 150.0 400.0 420.0 430.0 470.0
950 D-F mg/1 31 0.9 1.0 1.0 1.1 1.6


*Less than 10 samples
NA No samples


' ' "


'^^' '







SWFWMD
Location Sequence Dates DMn_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -4 DOWN
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 1

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates DMn_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999











Seasonality Results: Wells, NWFWMD cont.
Depth
to Turb
Well ID TOC TDS Water Turbidity Color (field) Ca, Diss
67>.05 >.05 NA >.05 NA <0.05 >.05
91 >.05 .05 >.05 >.05 >.05 <0.05 <0.05
131 >.05 >.05 >.05 >.05 >.05 >.05 >.05
129 >.05 >.05 <.05 NA NA NA >.05
313 >.05 >.05 >.05 >.05 >.05 >.05 >.05
312>.05 >.05 >.05 >.05 >.05 NA >.05
245 >.05 >.05 >.05 >.05 >.05 >.05 <.05
243 >.05 >.05 >.05 >.05 NA NA >.05


Seasonality Results: Wells, NWFWMD cont.
Specific
Well ID Mg, Diss Na, Diss K, Diss Cond Cl, Diss S04, Diss F, Diss
67>.05 >.05 >.05 >.05 >.05 >.05 >.05
91>.05 <0.05 >.05 0.05 >.05 >.05 >.05
131>.05 >.05 >.05 >.05 >.05 >.05 >.05
129>.05 >.05 >.05 >.05 >.05 >.05 >.05
313>.05 >.05 >.05 >.05 >.05 >.05 >.05
312>.05 >.05 >.05 >.05 >.05 >.05 >.05
245>.05 >.05 >.05 >.05 >.05 <.05 >.05
243 >.05 >.05 >.05 >.05 >.05 >.05 >.05

Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
Diss = Dissolved







FKSTATI PKSAMPI DATE COLTIME MONTH SEASON SEASONNO. Temp 1046 1056 Alk DO Fcol
243 NWFB990: 7/21/99 1801 7 Summer 2 22.4 19 106 0.09 *
243 NWFM991 10/28/99 1604 10 Fall 3 22.2 0.3 *
243 NWFM000 1/27/00 1614 1 Winter 4 21.9 0.34 *
243 NWFMOOO 4/26/00 2022 4 Spring 1 22.2 0.34 *
243 NWFM000 7/27/00 1436 7 Summer 2 22.5 0.09 *
243 NWFM001 10/23/00 1422 10 Fall 3 22.5 112 0.1 50
243 NWFM010 1/23/01 1642 1 Winter 4 20.9 120 2.34 1
243 NWFM010 5/2/01 1010 5 Spring 1 22.2 114 0.1 1
243 NWFM010 7/26/01 1321 7 Summer 2 22.4 116 0.08 1
243 NWFM011 10/31/01 1447 10 Fall 3 22.3 0.1 *
243 NWFM020 1/23/02 1524 1 Winter 4 22.27 0.07 *
243 NWFM020 4/26/02 1514 4 Spring 1 22.6 0.12 *
243 NWFM020 7/29/02 1524 7 Summer 2 22.32 0.04 *
243 NWFM021 10/23/02 1144 10 Fall 3 22.33 0.03 *
243 NWFM030 1/15/03 1240 1 Winter 4 22.1 0.13 *
243 NWFMO30 4/29/03 1422 4 Spring 1 22.22 0.03 *




































0 5 10 20 30
Klometer
0 510 20 30
rejectedd Coordinate System: FDEPAlbers HA


KMometers
0510 20 30
rejectedd Coordinate System: FOEP Albers HA


Figure L35. Alkalinity trends in SRWMD wells.


Figure L36. Calcium trends in SRWMD wells.


Conductance


(field)


Miles
0 5 10 20 30 7 7
Klomieter
0 510 2030 30
rejectedd Coordinate System: FDEPAlbers HA


Dissolved Oxygen


Miles
0 5 10 20 30
Klom et ers
0 510 20 30
rejectedd Coordinate System: FDEPAlbers HAl


Figure L37. Conductance (field) trends in SRWMD
SRWMD wells.


Figure L38. Dissolved oxygen trends in
SRWMD wells.


L14






BULLETIN NO. 69


Ferguson, G. E., Lingham, C. W., Love, S. K., and Vernon, R. 0., 1947, Springs of Florida:
Florida Geological Survey Bulletin 31, 196 p.

Field, M. S., 1999, A lexicon of cave and karst terminology with special reference to
environmental karst hydrology: Washington, D.C., Environmental Protection Agency,
Office of Research and Development, U S EPA/600/R-99/006, 195p.

Florida Department of Environmental Protection, 1994, Groundwater guidance concentrations:
Tallahassee, Florida Department of Environmental Protection, Division of Water
Facilities, Bureau of Drinking Water and Groundwater Resources, 53 p.

,2003, Watershed Monitoring Section Status and Temporal Variability Monitoring
Networks Sampling Manual, December 2003:
http://www.dep.state.fl.us/water/monitoring/docs/SamplingManual.pdf (January, 2004)

2004, Integrated water quality assessment for Florida: 2004 305(b) Report and
303(d) List Update: http://dep.state.fl.us/water/docs/2004_Integrated report.pdf (June
2005)

2008, Learning from the drought, Annual status report on regional water supply
planning, Florida Department of Environmental Protection report, 16 p.

Florida Department of Environmental Protection and Florida Department of Community Affairs,
2002, Protecting Florida's springs--land use planning strategies and best management
practices: Tallahassee, Florida Department of Environmental Protection, 124 p.

Florida, Statutes, 1983, Chapter 403.063: Water quality assurance act.

Florida Administrative Code, 1996, Rule 62-22.200(3).

Florida Springs Task Force, 2000, Florida's springs: Strategies for protection and restoration:
Tallahassee, Florida Department of Environmental Protection, 63 p.

Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Englewoods Cliffs, Prentice-Hall, 604 p.

Fujioka, R. S., and Byappanahalli, M. N., 2004, Proceedings and report--Tropical water quality
indicator workshop, August 2003: Manoa, University of Hawaii at Manoa Water
Resources Research Center, Special Report SR-2004-01.

Gilbert, R., 1987, Statistical Methods for Environmental Pollution Monitoring: Agincourt, Van
Nostrand Reinhold, 313 p.

Hanshaw, B. B., Back, W., and Rubin, M., 1965, Radiocarbon determinations for estimating
groundwater flow velocities in central Florida: Science, v. 148, p. 494-495.







Sequence A
Location Sequence Dates TOC_Ha_up TOC Ha down TOC_n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







Sequence A
Location Sequence Dates D Ca Ha_up D Ca Ha down D Ca n
RLS C 1/98-6/42 -9999 -9999 -9999
RKB C 1/98-6/41 -9999 -9999 -9999
SBL C 1/98-6/44 -9999 -9999 -9999
TEL C 1/98-6/45 -9999 -9999 -9999
TRY C 1/91-12/98 -9999 -9999 -9999
Springs A Up
Springs A Down







SWFWMD
Location Sequence Dates Turb_Ha_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.79526
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.5
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999
Boyette C 1/98-6/05 -9999
Chassal C 1/98-6/06 -9999
ChassaM C 1/98-6/07 -9999
Homosl C 1/98-6/10 -9999
Homos2 C 1/98-6/11 -9999
Homos3 C 1/98-6/12 -9999
HidRivH C 1/98-6/09 -9999
HidRiv2T C 1/98-6/08 -9999
huntersspr C 1/98-6/13 -9999
lithiamain C 1/98-6/14 -9999
magnolspr C 1/98-6/15 -9999
pumphous C 1/98-6/16 -9999
rainbow C 1/98-6/17 -9999
rainbow C 1/98-6/18 -9999
rainbow C 1/98-6/19 -9999
SWBettyJay C 1/98-6/23 -9999
SWBublng C 1/98-6/25 -9999
SWBuckhm C 1/98-6/26 -9999
SWCatfish C 1/98-6/27 -9999
tarponholespr C 1/98-6/28 -9999
trottermain C 1/98-6/29 -9999
weekwachmain C 1/98-6/30 -9999
wilsonheadspr C 1/98-6/31 -9999
Springs A Up
Springs A Down







Date D-NH3 D-N03 D-N03(N) D-NO3NO;D-P D-P04 TOC TDS DtoH20 WL(MSL) DeSnWL(msl) Turb
7/6/94 0.02 5.63 86.37 86.5066 *
8/1/94 8.51 83.49 83.6266 *
9/1/94 *******5.47 86.53 85.8757 *
9/29/94 0.04 4 88 87.3457 *
11/1/94 *******4.17 87.83 87.1757 *
12/2/94 5.8717 86.1283 86.2928 *
1/3/95 *******5.72 86.28 86.4445 *
1/30/95 5.62 86.38 86.5445 *
3/3/95 ** **** 6 86 86.2645 *
3/31/95 *******6.6 85.4 85.6645 *
5/1/95 6.35 85.65 85.9145 *
5/31/95 8.2 83.8 84.0645 *
6/30/95 *******6.01 85.99 86.1266 *
8/9/95 0.14 0.05 0.1 5.53 86.47 86.6066 43
9/5/95 *******4.44 87.56 86.9057 *
10/3/95 ** **** 5 87 86.3457 *
11/6/95 *******5.27 86.73 86.0757 *
11/27/95 6.6 85.4 84.7457 *
1/5/96 4.65 87.35 87.5145 *
2/2/96 6.14 85.86 86.0245 *
3/1/96 *******6.78 85.22 85.4845 *
3/29/96 5.55 86.45 86.7145 *
4/1/96 *******8.92 83.08 83.3445 *
5/2/96 7.26 84.74 85.0045 *
5/31/96 4.75 87.25 87.5145 *
6/28/96 3.9 88.1 88.2366 *
7/23/96 *******5.86 86.14 86.2766 *
8/30/96 8.12 83.88 84.0166 *
9/27/96 *******7.95 84.05 83.3957 *
10/31/96 7.62 84.38 83.7257 *
12/6/96 8.39 83.61 83.7745 *
12/30/96 8.66 83.34 83.5045 *
2/3/97 *******8.5 83.5 83.6645 *
3/3/97 6.12 85.88 86.1445 *
5/1/97 7.17 84.83 85.0945 *
6/4/97 8.34 83.66 83.7966 *
7/1/97 *******8.79 83.21 83.3466 *
8/4/97 5.9 86.1 86.2366 *
8/29/97 *******5.58 86.42 86.5566 *
9/29/97 4.4 87.6 86.9457 *
10/31/97 6.97 85.03 84.3757 *
11/21/97 *******5.15 86.85 86.1957 *







DATE COLITOT COLIFEC FLOWCFS TOC DOC CONDL PHF TEMP DO TURB ALKTOT NH3NTOT STAGEMSL TIME CONDF
9/25/97 *** *314 6.78 21.4 0.3 0.04 ** *
5/19/98 81 1 800.43 10.4 11.1 197 7.13 20.6 0.9 15 76 0.02 38.7 *
6/8/98 499.9 6.3 6 252 7.11 21.2 0.2 2 100 0.02 34.92 *
7/27/98 348.96 8.5 9 268 7.33 21.7 0.2 0.75 70 0.02 33.5 *
12/22/98 368.39 10.5 7.1 288 7 19.9 0.3 0.75 107 0.02 33.11 *
3/15/99 ** 578.64 12.6 10.3 198 7.31 17 2.5 3.8 69.5 0.02 34.47 *
4/13/99 455.08 10 9.5 230 7.27 20 0.3 1.2 88 0.02 33.05 *
6/9/99 ** 267.88 17.5 15.6 317 7.33 20.6 0.3 0.85 118 0.04 31.59 **
11/8/99 291 10 9.6 312 7.48 20.9 0.4 0.55 111 0.02 31.84 *
6/20/00 ** 247 19.7 12.6 312 7.27 21.2 0.3 0.71 108 0.08 31.26 **
8/23/00 253 11.7 10.1 283 7.46 22.6 0.2 0.75 101 0.05 31.36 *
6/18/01 616 24.7 19 126 7.06 22.5 0.6 3.6 41.6 0.02 37.85 *
8/22/01 594 22.5 21.3 218 7.21 23.4 0.1 1.5 78 0.02 34.53 *
11/26/01 1450 1030 273 8.3 8.3 299 7.05 20.1 0.3 2 109 0.02 31.53 *
6/18/02 100 2 232 4 4.4 296 7.05 21.2 0.1 0.6 110 0.048 31.18 *
8/27/02 0.1 1.2 106 0.02 31.38 *
11/25/02 ** 487 24.4 22.6 144 7.16 17.3 2.9 4.8 37.4 0.037 34.74 1156 144
6/18/03 ** 473 22.4 21.1 175 7.01 22.5 0.2 2.8 58.8 0.085 38.59 1214 175
8/19/03 656 24.8 23.8 7 24 0.3 3.15 44.8 0.037 41.72 1055 135







Date Turb-F Ca Mg Na K SC-F CI S04 F
2/8/99 120 82.1 397 14 2992 820 260 0.68
10/18/99* 2980* *
11/30/99* 3105 *
12/20/99* 3235 *
1/25/00* 3190* *
2/21/00* 3250* *
5/15/00* 3262 *
7/17/00 ****3117 *
10/17/00 122 77 386 13.9 3136 820 260 0.75
1/16/01 123 76.7 391 14.5 3541 770 300 0.69
4/18/01 120 74.2 380 13.8 3360 840 250 0.69
7/17/01 122 74.6 374 13.4 3303 810 240 0.67
10/18/01 ****3972 *
1/15/02* 3402* *
4/16/02 0* 3344 *
7/23/02 0* *3298 *
10/23/02 0.62 ***3158 *
1/29/03 0* *3080 *
4/23/03 0.33* 3133* *







SWFWMD
Location Sequence Dates D_N03NO2_Sen_s lope UP/DOWN
736 B 1/91-12/97 -0.0015 DOWN
737 B 1/91-12/97 0 DOWN
996 B 1/91-12/97 0.00075 No evidence of trend
997 B 1/91-12/97 0 No evidence of trend
1087 B 1/91-12/97 0 No evidence of trend
Wells A Up 0
Wells A Down 2

Bobhill B 1/91-12/98 0.0101 No evidence of trend
Boyette B 1/91-12/99 0.264286 UP
Chassal B 1/91-12/100 0 No evidence of trend
ChassaM B 1/91-12/101 0.0016667 No evidence of trend
Homosl B 1/91-12/104 0.0035714 UP
Homos2 B 1/91-12/105 0.004 UP
Homos3 B 1/91-12/106 0.0026667 No evidence of trend
HidRiv2T B 1/91-12/102 0.0069 No evidence of trend
HidRivH B 1/91-12/103 0.006 No evidence of trend
huntersspr B 1/91-12/107 0.01 UP
lithiamain B 1/91-12/108 -0.01975 No evidence of trend
magnolspr B 1/91-12/109 0.0046753 UP
pumphous B 1/91-12/110 0.00475 UP
rainbow B 1/91-12/111 -0.0063571 No evidence of trend
rainbow B 1/91-12/112 0.008 No evidence of trend
rainbow B 1/91-12/113 0.0086 No evidence of trend
mboBseep B 1/91-12/115 0.0038571 No evidence of trend
saltspr B 1/91-12/116 0.0026364 No evidence of trend
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 0.004 No evidence of trend
SWBublng B 1/91-12/119 0.018425 No evidence of trend
SWBuckhm B 1/91-12/120 0.0611859 UP
SWCatfish B 1/91-12/121 0 No evidence of trend
tarponholespr B 1/91-12/122 0 No evidence of trend
trottermain B 1/91-12/123 0.0053333 UP
weekwachmain B 1/91-12/124 0.0081429 UP
Springs A Up 9
Springs A Down 0

Location Sequence Dates DN03N02_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0 No evidence of trend
737 C 1/98-6/03 -9999 -9999






FLORIDA GEOLOGICAL SURVEY


limestone A sedimentary rock primarily composed of the mineral calcite (CaCO3). Limestone is soluble
and often develops karst features when weathered (Modified from SDII Global rp., 2002).

magnitude See Spring magnitude.

nonartesian A condition in which the upper surface of the zone of saturation forms a water
table under atmospheric pressure. The term is synonymous with unconfined (Field, 1999).

offshore spring The point of discharge of the spring is seaward of the mean low-tide level (Copeland,
2003).

onshore spring The point of discharge of the spring is landward of the mean low-tide level (Copeland,
2003).

overflow stream A stream valley that is down gradient of a swallow hole, swallet, or blind valley and
that carries water only when the recharge capacity of the swallow hole is exceeded. In Florida, the
term is sometimes used to identify an overflow, or paleo-overflow, stream valley (Modified from
SDII Global Corporation, 2002).

paleokarst This term describes either an ancient karst terrane or the presence of features associated
with an ancient karst terrane. The term is used to describe old sinkholes and other karst features
that are no longer actively forming. In west-central Florida, the term is used to refer to sinkholes
that formed decades to millions of years ago and are no longer active (Modified from SDII Global
Corporation, 2002).

paleosinkhole An ancient sinkhole that is no longer active. See relict sinkhole and alluvial sinkhole
(SDII Global Corporation, 2002).

photolineament A natural linear feature on the land surface that has been identified from areal
photographs or other images. Photolineaments are identified by alignments within or between
lakes and wetlands, sinkholes, stream segments, soils, and vegetation patterns. Photolineaments
are also known as photolinears. Note that photolinears may or may not represent geologic
features, so the term is not synonymous with fracture trace. See fracture trace (Modified from
SDII Global Corporation, 2002).

pipe In karst terminology, it is a semi-circular conduit through which water and soil can pass. Pipes are
often nearly vertical and they have steep (nearly vertical) sides (SDII Global Corporation, 2002).

polje A large flat-bottom sinkhole complex formed by the coalescence of several smaller sinkholes.
Poljes are flat-bottomed because of subsequent sedimentation, usually in a lake. Payne's Prairie
in Alachua County is an example (Modified from SDII Global Corporation, 2002).

ponor Hole in the bottom or side of a closed depression through which water passes to or from an
underground channel (Field, 1999). It is synonymous with swallow hole.

traveling Raveling is the process by which water transports soil particles downward into cavities in the
underlying strata. Because sand is typically damp and the grains are angular, in Florida they do
not easily ravel without moving water.

Because of their cohesiveness, clay-rich strata are more difficult to ravel than sandy soils (SDII
Global Corporation, 2002).









Southwest Florida Water Management District


Descri tive Statistics for 615 Dates: January, 2U00 to April, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 16 26.7 27.3 27.5 27.6 28.0
1046 D-Fe microg/1 2 *
1056 D-Mn microg/1 1 *
29801 Bicarb mg/1 6 *
299 DO mg/1 15
31616 Fcol #/100ml 4 *
31649 Entero #/100 ml 4 *
406 pH ph units 16
4255 D-Alk mg/1 0 NA NA NA NA NA
530 Resid mg/1 4 *
608 D-NH3 mg/1 6 *
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 6 *
666 D-P mg/1 6 *
671 D-PO4 mg/1 5 *
680 TOC mg/1 5 *
70300 TDS mg/1 4 *
72109 DtoH20 Ft 0 NA NA NA NA NA
76 Turb Turb units 6 *
81 Color Pt-Co 5 *
82078 Turb(field) Turb units 9 *
915 D-Ca mg/1 6 *
925 D-Mg mg/1 6 *
930 D-Na mg/1 6 *
935 D-K mg/1 6 *
94 Cond(field) micromhos/cm 16 1101.0 1132.8 1140.0 1144.0 1161.0
941 D-Cl mg/1 6 *
946 D-SO4 mg/1 6 *
950 D-F mg/1 6 *


*Less than 10 samples
NA No samples


. .. . ..^ ^ .







Sequence A
Location Sequence Dates D CaSen_slope UP/DOWN
1417 A 1/91-6/03 -0.51 DOWN
1420 A 1/91-6/03 0.17 No evidence of trend
1674 A 1/91-6/03 -0.09 DOWN
1762 A 1/91-6/03 -0.40 DOWN
1763 A 1/91-6/03 0.00 No evidence of trend
1764 A 1/91-6/03 -0.52 DOWN
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 -9999.00 No evidence of trend
1931 A 1/91-6/03 -0.116667 No evidence of trend
Wells up 0
Wells down 4

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 0.0991 UP
Fern Springs A 1/91-6/03 -0.17 No evidence of trend
Juniper Springs A 1/91-6/03 0.25 UP
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 0.17 No evidence of trend
Rock Springs A 1/91-6/03 0.29 UP
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 0.33 No evidence of trend
Starbuck Spring A 1/91-6/03 -9999.00 -9999
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 -9999.00 -9999
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 3
Springs down 0

Sequence B
Location Sequence Dates D CaSen_slope UP/DOWN
1417 B 1/91-12/97 -0.75 DOWN
1420 B 1/91-12/97 0.00 No evidence of trend
1674 B 1/91-12/97 -0.10 DOWN
1762 B 1/91-12/97 -0.14 No evidence of trend
1763 B 1/91-12/97 0.00 No evidence of trend
1764 B 1/91-12/97 -0.63 DOWN
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 3









Spring data files are listed by spring name. For example, Catfish Spring in the
SWFWMD is found under Central Florida, SW springs, Catfish Spring.xls. Well data
files are labeled by well number and are followed by a letter. The number corresponds to
the well number. The letter corresponds to the time sequence (i.e. A, B, or C). For
example, for the NWFWMD well 91, the data file is found Northwest, NW wells,
91A.xls.








README FILE for Appendix K


Location = Location of sampling site
Sequence = Time Sequence (A, B, or C)
Dates = Beginning and ending dates of sequence.
Lat = Latitude
Long = Longitude
Type = Sampling type (Well or Spring)
Haup = Probability of null hypothesis (evidence for upward trend)
Hadown = Probability of null hypothesis (evidence for downward trend)
Sen_slope = Sen slope
n = Number of observations in sequence
Up/DOW = Discusses evidence of an upward or downward trend













Appendix B2. Origins of Temporal Trends in Florida's Groundwater
Interpretation When There Is A Pattern of
Analyte Origin in Groundwater Increasing Trends Decreasing Trends
Dissolved oxygen content in spring water is a function of (1)
oxygen content of the recharge water, (2) water temp. (the lower 1. Increase in surfacewater component of spring flow, inc e
1. Decrease in surfacewater component of spring flow, increase in
the temperature, the higher the oxygen solubility), (3) presence of increase in conduit flow relative to diffuse flow importance of diffuse flow relative to conduit flow
^. importance of diffuse flow relative to conduit flow
Dissolved Oxygen (DO) biota that consume oxygen in the soils and aquifer along the flow 2. Decrease in ambient water temperature 2. Increase in ambient water temperature
2. Increase in ambient water temperature
path, (4) presence of organic and mineral matter that can be 3. Change in sample location relative to sources of water i i i
3. Change in sample location relative to sources of water aeration
oxidized along the flow path, (5) residence time of the water in aeration
the aquifer, and (6) spring vent dynamics and rate of flow.
The primary source of fluoride in Florida spring water is 1. Increase in flow component derived from contact with 1. Decrease in flow component derived from contact with the Hawthorn
dissolution of carbonate fluorapatite [Ca5(PO4,CO3)3F], the the Hawthorn Group Group
Fluoride (F) dominant phosphate mineral in the Miocene Hawthorn Group. 2. Increase in waste sources, including human and animal 2. Waste management improvement, including human and animal wastes
Minor fluoride concentrations may be associated with saline wastes, especially landfills and septic tanks 3. Decreased industrial activity or better chemical management in
water encroachment. 3. Increased industrial activity in springshed springshed
1. Changes in water chemistry resulting in increased
Iron is a widespread component in Florida rocks, including reduction/oxidation potential in water (dissolution of
limestone, dolostone, and siliciclastic strata of the Hawthorn pyrite and freeing of ferric iron). This is often caused by 1 C i i i i i i/i
S. 1. Changes in water chemistry resulting in increased reduction/oxidation
Group. When included within the rock mass, the iron is often injection of non-native water into the host aquifer. i i w iii o i i i .
Potential in water (precipitation of ferric hydroxide in water).
present in a reduced form as pyrite [FeS2]. Upon weathering and 2. Increase in sources in springshed, including waste
2. Decrease in sources in springshed, including waste disposal, disposal of
in a mildly reducing system, the iron remains reduced in the disposal, disposal of waste iron in sinkholes, runoff from i s
i am \rT2+ dss .r i .o in j .nf fo waste iron in sinkholes, runoff from metallic sources
Iron (Fe) ferrous state (Fe2 ) and it can travel with the groundwater. In a metallic sources e n n runoff frm m lic
. . 3 3. Decreased use of iron-rich agricultural and horticultural plant and animal
chemically oxidizing system, the iron is oxidized to Fe 3at which 3. Increased use of iron-rich agricultural and horticultural p t ad
time it typically precipitates as ferric hydroxide (Fe(OH)). plant and animal supplements nesns e tns e etnet s te
4. Changes in sample location, sample collection methods, or time of
In springs, the moderately reducing water results in 4. Changes in sample location, sample collection methods, in. l .
sampling that could change iron availability and oxidation state
discharge of ferrous iron. Oxidation and precipitation often occur or time of sampling that could change iron because of
after the iron has entered the spring run. reduction/oxidation potentials or other physical
conditions of sample.
In Florida, magnesium is found in dolomite [CaMg(CO3)2]
and in several of the important clay minerals of the Hawthorn
Group, such as palygorskite [(Mg,Al)5(Si,Al)8020(OH)2.8H20]
and montmorillonite [(Na,Ca)o 33(Al,Mg)2Si410o(OH)2.nH2O]. 1. Up-coning or lateral migration of saline water
Upon weathering, these and other magnesian clay minerals 2. Increased proportion of flow that is diffuse in dolomitic 1. Relaxation of up-coning or lateral migration of saline water, usually as a
Magnesium (Mg) release magnesium to the groundwater. rocks result of reductions in pumping stresses in aquifer or increased potentials
Saltwater encroachment is another source of magnesium in 3. Increased use of magnesium-rich soil supplements 2. Reduced proportion of flow that is diffuse in origin in dolomitic rocks
Florida groundwater. 4. Development of a quarry up-gradient that could increase 3. Decreased use of magnesium-rich soil supplements
When the magnesium coexists with fluoride derived from the availability of highly soluble rock dust
weathering of carbonate fluorapatite, it can be assumed that the
magnesium is from Hawthorn clays. If chloride is correlated to
the magnesium, saline water is a probable source.
1. Increase use of nitrate-based fertilizers (turf mangmt., 1. Decrease in use of nitrate-based fertilizers, especially of rapid-release.
There are no significant natural sources of nitrate (N03) in row crops, golf courses and other sources have been 2. Decrease in the rate of nitrification of reduced forms of nitrogen by
groundwater in Florida. Small amounts may be derived from identified as sources of nitrate increases in Fla. Springs) raising of the water table, reduction of nutrients that promote growth of
trte plu Ntt naturally occurring organic by nitrification, but most nitrate 2. Increase in the rate of nitrification of reduced forms of nitrification microbes in soil
Nitrate plus Nitrite as N (NO3 + n
NO2 as N) comes from anthropogenic activities, such as use of fertilizers, nitrogen (e.g. NO2) by lowering of the water table, 3. Decrease of nitrate-rich surface water runoff to storm-water facilities,
waste disposal, and industrial applications. In recent years, addition of nutrients that promote growth of nitrification swallets, drainage wells, etc. (can result from better storm water
nitrate has increased in rainfall as a result of atmospheric microbes in soil management and use of pre-treatment in storm-water infiltration basins)
emissions and airborne dust related to human activities. 3. Increased surfacewater runoff to swallets, drainage 4. Increase recharge and aquifer flow dynamics result in dilution and
wells, etc. dispersion of nitrate in aquifer system







Sequence A
Location Sequence Dates Entero_Ha_up
2793 A 1/91-6/03 -9999
2872 A 1/91-6/03 -9999
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates Entero_Ha_up
2793 B 1/91-12/97 -9999
2872 B 1/91-12/97 -9999
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates Entero_Ha_up
2793 C 1/98-6/03 -9999
2872 C 1/98-6/03 0.19644
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 0.5
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 0.5
6490 C 1/98-6/03 -9999
Wells A Up
Wells A Down






FLORIDA GEOLOGICAL SURVEY


Southwest Florida Water Management District, 2004, Florida River Flow Patterns and the
Atlantic Multidecadal Oscillation: Brooksville, Ecological Evaluation Section, draft
Report, 80 p.

Southwest Florida Water Management District, 2005, District water management plan, Public
Input: Brooksville, draft report, March 2005, Appendix C, Definitions, p. C1-C6, 76 p.

Spechler, R.M., 2001, The relation between structure and saltwater intrusion in the Floridan
aquifer system, northeastern Florida: in Kuniansky, E.L. U.S. Geological Survey Karst
Interest Group Proceedings, Water-Resources Investigations Report 01- 4011, p. 25-29.

Sullivan, M., 2004, Statistics--Informed decisions using data: Upper Saddle River, Prentice
Hall/Pearson Education, 823 p.

Sutton, R. T., and Hodson, L. R., 2005, Atlantic Ocean forcing of North American and European
summer climate: Science, v. 309, p. 115-118.

Toth, D. J., 1999, Water quality and isotope concentrations from selected springs in Florida:
Geological Society of America Abstracts with Programs, v. 31, no. 7, p. 374.

Toth, D. J., and Fortich, C., 2002, Nitrate concentrations in the Wekiwa groundwater basin with
emphasis on Wekiwa Springs: Palatka, St. Johns River Water Management District
Technical Publication SJ2002-2, 76 p.

Tsay, R. S., 2002, Analysis of Financial Time Series: New York, John Wiley & Sons, 450 p.

U. S. Census Bureau, 2006, State and County Quickfacts Florida Quickfacts:
http://quickfacts.census.gov/qfd/states/12000.html (December, 2006).

U.S. Environmental Protection Agency, 1989, Statistical analysis of groundwater monitoring
data at RCRA facilities, interim final guidance: Washington, U.S. Environmental
Protection Agency, Office of Solid Waste Management Division, 352 p.

Upchurch, S. B., 1992, Quality of water in Florida's aquifer systems, in Maddox, G. L., Lloyd, J.
M., Scott, T. M., Upchurch, S. B., and Copeland, R., eds., Florida's groundwater quality
monitoring program--Background hydrogeochemistry: Florida Geological Survey Special
Publication 34, p. 12-63.

Urquhart, N. S., and Kincaid, T. M., 1999, Designs for detecting trend from repeated survey of
ecological resources: Journal of Agricultural, Biological, and Environmental Statistics, v.
4, p. 404-414.

Verdi, R.J., Tomlinson, S.A., and Marella, R.L., 2006, The drought of 1998-2002: Impacts on
Florida's hydrology and landscape: U.S. Geological Survey Circular 1295, 34 p.

Wolfe, S. H., 1990, An ecological characterization of the Florida Springs Coast: Pithlachascotee
to Waccasassa Rivers: Tallahassee, Florida Fish and Wildlife Service Biological Report
90-21, 334 p.






FLORIDA GEOLOGICAL SURVEY


Appendix F2 (Continued)
Complete Analyte Descri tions continued
Analytes STORET Analyte Units Description
Abbreviated ID
Number
TKN 623 Total mg/L NITROGEN, KJELDAHL,
Kjeldahl DISSOLVED (MG/L AS N)
Nitrogen
T-Mg 927 Total mg/L MAGNESIUM, TOTAL
Magnesium (MG/L AS MG)
T-Na 929 Total mg/L SODIUM, TOTAL (MG/L AS
Sodium NA)
T-NO3 615 Total Nitrate mg/L NITRITE NITROGEN,
TOTAL (MG/L AS N)
T-NO3NO2 630 Total Nitrate mg/L NITRITE PLUS NITRATE,
Nitrite TOTAL 1 DET. (MG/L AS N)
TOC 680 Total mg/L CARBON, TOTAL
Organic ORGANIC (MG/L AS C)
Carbon
T-P 665 Total mg/L PHOSPHORUS, TOTAL
Phosphorus (MG/L AS P)
T-PO4 650 Total mg/L PHOSPHATE, TOTAL (MG/L
Phosphate AS PO4)
T-SO4 945 Total Sulfate mg/L SULFATE, TOTAL (MG/L
AS SO4)
T-Sr 1082 Total atg/L STRONTIUM, TOTAL (UG/L
Strontium AS SR)
Turb 76 Turbidity HACH TURBIDITY, HACH
(Hatch FTU TURBIDIMETER
Meter) (FORMAZIN TURB UNIT)
Turb(field) 82078 Field NTU TURBIDITY, FIELD
Sampling of NEPHELOMETRIC
Turbidity TURBIDITY UNITS, NTU
WL 82545 Water Level ft WATER LEVEL RELATIVE
(from sea TO MEAN SEA LEVEL
level) (FEET)







Sequence A
Location Sequence Dates DN03_Sen_slope UP/DOWN
1417 A 1/91-6/03 -9999.00 -9999
1420 A 1/91-6/03 -9999.00 -9999
1674 A 1/91-6/03 -9999.00 -9999
1762 A 1/91-6/03 -9999.00 -9999
1763 A 1/91-6/03 -9999.00 -9999
1764 A 1/91-6/03 0.00 No evidence of trend
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 -9999.00 -9999
1931 A 1/91-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 -9999 -9999
Fern Springs A 1/91-6/03 -9999.00 -9999
Juniper Springs A 1/91-6/03 -9999.00 -9999
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 -9999.00 -9999
Rock Springs A 1/91-6/03 -9999.00 -9999
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 -9999.00 -9999
Starbuck Spring A 1/91-6/03 -9999.00 -9999
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 -9999.00 -9999
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 0
Springs down 0

Sequence B
Location Sequence Dates DN03_Sen_slope UP/DOWN
1417 B 1/91-12/97 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 0











Seasonality Results: Wells, South Florida Water Management District
W Fe,
Well ID Name Temp Diss Alk DO Col, Fec Entero
6490 27-3 <0.05 >.05 >.05 <0.05 NA NA
3490 KISSPARK <0.05 NA >.05 >.05 NA <0.05
3433 POF-0008 <0.05 >.05 NA >.05 NA NA
3398 PBS-S44 <0.05 NA >.05 >.05 NA NA
3109 L-02202 <0.05 NA >.05 >.05 NA NA
3108 L-02200 <0.05 NA >.05 >.05 NA >.05
2873 C-00973 <0.05 NA >.05 >.05 NA NA
2872 C-00972 >.05 >.05 >.05 >.05 NA >.05
2793 G-2364 <0.05 >.05 >.05 >.05 NA >.05

Seasonality Results: Wells, SFWMD
Nitrate
Well pH, + Ortho-
ID Field TSS Amm, Dis Nitrite P, Diss P, Diss TOC
6490 >.05 NA >.05 >.05 >.05 >.05 >.05
3490 >.05 >.05 >.05 <0.05 >.05 >.05 >.05
3433 >.05 NA >.05 NA NA >.05 >.05
3398 >.05 NA >.05 >.05 >.05 >.05 >.05
3109 <0.05 >.05 >.05 >.05 >.05 >.05 >.05
3108 >.05 NA >.05 >.05 >.05 >.05 >.05
2873 >.05 NA >.05 >.05 >.05 >.05 >.05
2872 >.05 >.05 >.05 >.05 >.05 >.05 >.05
2793 >.05 NA >.05 >.05 >.05 >.05 >.05


Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
Diss = Dissolved







FK_STATI, PK_SAMPI DATE COLLECT MONTH SEASON SEASON_ Temp Fe Mg Alk DO Fcol
312 NWFM980 3/31/98 1513 3 Spring 1 20.9 0.39 *
312 NWFM980 4/28/98 1452 4 Spring 1 20.9 0.2 *
312 NWFM980 5/27/98 1424 5 Spring 1 21 0.27 *
312 NWFM980 6/22/98 1549 6 Summer 2 19.2 0.26 *
312 NWFM980 8/4/98 1536 8 Summer 2 18.4 0.38 *
312 NWFM980 8/26/98 1902 8 Summer 2 21.1 0.41 *
312 NWFM980 10/1/98 1526 10 Fall 3 21.1 0.35 *
312 NWFM981 10/28/98 1747 10 Fall 3 20.9 0.39 *
312 NWFM981 11/25/98 1557 11 Fall 3 20.9 0.48 *
312 NWFM981 12/30/98 1524 12 Winter 4 21 0.31 *
312 NWFM990 1/27/99 1514 1 Winter 4 21.1 0.36 *
312 NWFM990 2/24/99 1603 2 Winter 4 21 0.24 *
312 NWFM990 3/29/99 1702 3 Spring 1 21 0.1 *
312 NWFM990 4/27/99 1510 4 Spring 1 21.1 0.17 *
312 NWFM990 5/25/99 1611 5 Spring 1 21.2 0.17 *
312 NWFM990 6/29/99 1532 6 Summer 2 21.1 0.19 *
312 NWFM990 7/27/99 1707 7 Summer 2 21 0.1 *
312 NWFM990 8/30/99 1611 8 Summer 2 21.2 0.17 *
312 NWFM990 9/28/99 1522 9 Fall 3 21.1 0.25 *
312 NWFM991 10/26/99 1752 10 Fall 3 20.9 0.23 *
312 NWFM000 1/25/00 1631 1 Winter 4 20.6 0.29 *
312 NWFMOOO 4/25/00 1644 4 Spring 1 21 0.16 *
312 NWFM000 7/25/00 1437 7 Summer 2 21.1 0.04 *
312 NWFM001 10/24/00 1325 10 Fall 3 21.1 0.1 *
312 NWFM010 1/24/01 1527 1 Winter 4 19.8 1.36 *
312 NWFM010 5/1/01 1556 5 Spring 1 22.2 0.13 *
312 NWFM010 7/26/01 1641 7 Summer 2 21.3 0.67 *
312 NWFM011 10/23/01 1449 10 Fall 3 21.1 97 0.08 1
312 NWFM020 1/22/02 1554 1 Winter 4 20.93 96 0.05 1
312 NWFMO20 4/25/02 1425 4 Spring 1 21.15* 0.05 1
312 NWFM020 7/25/02 1558 7 Summer 2 21.13 96 0.01 18
312 NWFM021 10/23/02 1609 10 Fall 3 21 75 0.03 1
312 NWFM030 1/17/03 955 1 Winter 4 20.97 0.13 *
312 NWFMO30 4/22/03 1445 4 Spring 1 23.4 0.04 *







SWFWMD
Location Sequence Dates DP_Sen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 -0.0004273 No evidence of trend
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.0001623 No evidence of trend
7935 C 1/98-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0


Bobhill C 1/98-6/04 -9999 -9999
Boyette C 1/98-6/05 -9999 -9999
Chassal C 1/98-6/06 -9999 -9999
ChassaM C 1/98-6/07 -9999 -9999
Homosl C 1/98-6/10 -9999 -9999
Homos2 C 1/98-6/11 -9999 -9999
Homos3 C 1/98-6/12 -9999 -9999
HidRivH C 1/98-6/09 No evidence of trend
HidRiv2T C 1/98-6/08 No evidence of trend
huntersspr C 1/98-6/13 -9999 -9999
lithiamain C 1/98-6/14 -9999 -9999
magnolspr C 1/98-6/15 -9999 -9999
pumphous C 1/98-6/16 -9999 -9999
rainbow C 1/98-6/17 -9999 -9999
rainbow C 1/98-6/18 -9999 -9999
rainbow C 1/98-6/19 -9999 -9999
SWBettyJay C 1/98-6/23 -9999 -9999
SWBublng C 1/98-6/25 -9999 -9999
SWBuckhm C 1/98-6/26 -9999 -9999
SWCatfish C 1/98-6/27 -9999 -9999
tarponholespr C 1/98-6/28 No evidence of trend
trottermain C 1/98-6/29 -9999 -9999
weekwachmain C 1/98-6/30 -9999 -9999
wilsonheadspr C 1/98-6/31 -9999 -9999
Springs A Up 0
Springs A Down 0






FLORIDA GEOLOGICAL SURVEY


concentrations of a number of analytes including chloride, nitrogen, phosphorus, organic carbon,
coliform bacteria, sodium, and potassium (Elder et al., 1985). Depending on the analyte and the
percent of organic material present, soil and underlying rock matrices can absorb much of the
material introduced. Spray-field monitoring wells have documented changes in both chloride
and nitrate-nitrogen concentrations. Chloride has been noted to increase from 3 to 15 mg/L while
nitrate-nitrogen climbed from 0.5 to 4 mg/L in nearby wells (Elder et al., 1985). The association
of combined increases in nitrate and chloride has also been reported in other parts of the country
(e.g. Ogallala Aquifer, Texas; Hudak, 2002). Wekiwa Springs in the SJRWMD appear to have a
similar wastewater input problems. Septic tank are sometimes referred to as on site waste
disposal systems (OSWDS). Their leachate plus lawn fertilization seem to be the most likely
source of the nitrogen (Toth and Fortich, 2002).

Studies of Leon and Wakulla Counties have documented six main nitrogen sources were
identified: atmospheric deposition, wastewater treatment facilities, OSWDSs, commercial
fertilizers, livestock and sinking streams (Chelette et al., 2002). Of these sources, there are both
inorganic and organic sources of nitrogen, either of which could be introduced in dissolved or
particulate form. Forms of nitrogen can be classified as either dissolved inorganic, particulate
inorganic, dissolved organic, and particulate inorganic. The exact contribution of each of these
forms is difficult to establish. Actual amounts of nitrogen contributed from these sources have
been documented with varying accuracy. WWTF contributions are well established, whereas
data from OSWDS are more difficult to acquire. Regardless of the exact contribution, the overall
contribution of WWTF and OSWDS comprise the majority of nitrogen inputs into the
environment. They deliver, respectively, 550 and 800-2,400 kg-N/ha-yr (Chelette et al., 2002).
Though atmospheric deposition of nitrogen is substantial, it is dispersed over wider areas and
comprises approximately 4-5 kg-N/ha-yr (total of wet and dry deposition combined).

Based on Chelette et al. (2002), much of the nitrogen fertilizers applied to the landscape
is sequestered or returned to the atmosphere; only a fraction becomes part of groundwater.
Nitrogen is a highly reactive element and its chemical pathways are difficult to establish. It can
be sequestered in vegetation, lake-bottom sediments, the subsurface, or it can return to the
atmosphere. In spite of the small proportion of nitrogen actually entering groundwater, total
nitrate discharging from Wakulla Spring at least doubled over the last 25 years.

Agricultural sources have been documented through isotopes and water ages. Many
springs have complex flow paths with older and younger flow paths converging within springs.
Isotopic studies indicate a variety of water ages in northern Florida springs. Nitrate
concentrations are negatively correlated to age of spring water and the nitrate originates from
varying proportions of inorganic (fertilizers) and organic-N (animal wastes) sources (Katz et al.,
1999b; Toth, 1999). Close correlation of nitrate trends in some Florida counties to county-wide
fertilizer sales underscores this relationship (Chelette et al., 2002; Katz et al., 1999b).

Another factor in localization is underlying geology and soil. Even within agricultural
areas nutrients may show up in groundwater in greater or less proportion based on underlying
geology, soil conditions, and preferential flow paths within aquifers. One study in Florida
illustrates this for nitrate in surface water and groundwater. In the northwestern portion of the
state the Dothan soils are plenthitic (iron hardpan) with a shallow perched water table (Day,







Date NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20 WL(MSL)( Turb Color Turb-F
9/8/97* *37.94 47.57 0.84
10/14/97* *39 46.51 1.03
11/13/97 39.28 46.23 0.4
12/17/97* *37.58 47.93 1.51
1/27/98 33.43 52.08 0.69
2/23/98* *31.98 53.53* 1.12
3/23/98 *******33.97 51.54 0.53
5/26/98 30.26 55.25 0.48
6/29/98 *******32.01 53.5 0.39
7/27/98* *33.05 52.46 0.9
8/18/98* *33.11 52.4* 1.24
9/2/98 *******32.6 52.91 1.24
10/20/98* *28.75 56.76 0.84
11/24/98 *******28.55 56.96 1.27
12/23/98* *32.03 53.48 0.65
1/19/99 *******33.14 52.37 1.06
2/22/99 *******34.03 51.48* 1.03
3/29/99 *******35.09 50.42 0.21
4/29/99* *36.15 49.36* 1.09
5/25/99 *******37.02 48.49 1.37
6/24/99* *37.89 47.62 1.16
7/28/99 *******38.21 47.3 1.21
8/23/99 *******38.49 47.02 1.66
9/16/99 38.78 46.73 1.24
10/27/99 0.01 0.42 0.022 0.013 1 86 39.03 46.48 1.5 10 0.98
11/24/99 *******39.56 45.95 1.61
12/20/99 0.01 0.45 0.018 0.01 1 99 39.84 45.67 0.4 5 0.3
1/25/00 0.01 0.41 0.018 0.012 1 91 40.51 45 0.5 5 1.63
2/17/00 0.01 0.48 0.017 0.013 1 80 40.96 44.55 0.25 5 2.42
3/21/00 0.01 0.47 0.01 0.015 1 87 41.49 44.02 0.35 5 *
4/27/00 0.01 0.72 0.01 0.013 1 81 42.19 43.32 0.25 5 0.92
5/25/00 0.011 0.75 0.013 0.011 1 91 42.79 42.72 0.2 5 0.83
6/22/00 0.015 0.073 0.013 0.015 1 93 43.4 42.11 0.05 10 0.44
7/24/00 0.01 0.7 0.013 0.017 1 84 43.7 41.81 0.45 15 0.92
8/28/00 0.01 0.68 0.005 0.013 1 60 43.6 41.91 0.25 10 0.99
9/26/00 0.025 0.61 0.008 0.015 1.3 74 43.2 42.31 0.15 5 41
10/24/00 *******42.6 42.91 0.61
11/20/00 *******42.85 42.66 0.46
12/19/00* *43.4 42.11 0.52
1/25/01 *******44 41.51 *
1/25/01 *******44 41.51 *
2/22/01 *******44.4 41.11 *







Date DeSnDtoH20 DeSnCond(field)
9/6/01 7.2758 251.727
10/2/01 5.5958 299.727
11/1/01 5.7658 129.727
12/4/01 6.7367 254.437
1/2/02 6.7567 126.437
2/7/02 7.1267 116.437
3/7/02 5.7173 142.775
4/2/02 6.5073 179.775
4/29/02 7.7373 250.775
5/21/02 8.0373 252.775
6/5/02 8.8022 231.704
7/15/02 3.3222 317.704
8/7/02 6.4722 299.704
9/4/02 6.8958 112.727
10/1/02 7.7458 139.727
11/4/02 8.3558 114.727
12/2/02 6.0867 215.437
1/2/03 3.8767 319.437
2/6/03 6.1267 317.437
3/6/03 6.4973 226.775
4/3/03 5.8373 212.775
4/30/03 5.7973 204.775
6/2/03 5.9822 272.704







BULLETIN NO. 69


Reynolds Monthly SST (C)
La Nina Conditions December 1998


0O"N

40N
4D"N

20"N






60S



40N

40"N


0o

200S

40S

600S


60N

40"N

2D"N

200

20"'

40S


Normal Conditions December 1993


El Nino Conditions December 1997


60S



Figure 77. Sea surface temperature, La Nifia, and
El Nifio. Sea surface temperatures for La Nifia, normal, and El
Nino conditions in the Equatorial Pacific (top, center, and bottom
respectively). Note strong difference between 1997 (bottom) and
1998 (top). Cooler and warmer water are indicated by light and
dark, respectively. The years 1997-1998 were the divide between
Time Sequence B (1991-1997) and Time Sequence C (1998-2003)
[From National Oceanic and Atmospheric Administration (2006a)].


I ---








FLORIDA GEOLOGICAL SURVEY





Well 1417 Time Sequence A: Temperature and Specific Conductance
--- Temp
-- SC
S o 45
a 0 450


U o


.a
t U jSn
U,


0


EC
C


400
C

o

3500)





300


23.5 -

CD

0

23.0



E
I
22,5






22.0


Temp
MK p-value < 0.0001 nb = 18 n=43
WT p-value = 0.0001 SS = 0.0122


Date Specific Conductivity
MK p-value < 0.0001 nb= 18 = 43
WT p-value = 0.0027 SS = -1.000


Well 1763 Time Sequence A: Temperature and Specific Conductance


630





610 _











570





550


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


TemlD uade
MK p-value = 0.0044 nb 46 n,= 26
WT p-value= 0.6739 SS= 0.0059


Specific Conductivity
MKp-value=0.0014 nb,=46 n=23
WT p-value<0,0001 SS=-0.1111


Figure 47. Temperature and specific conductance in SJRWMD wells (#1417
and #1763). Tests (p < 0.05) included MK for trend, WT on sequences B and C,
plus an SS calculation on rate of change.


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003


24 -




o 23-




22-


E
21




20
I-





20 -


I--- Tenp
* *-- SC


m 0





00 00 0 0 C ) 0 -0
500 0 0D 0 M
00 0 0 a
0 a oo a o0 o

C 0 0 o
0 0 0

a
O O DU






Sequence A
Location Sequence Dates DCa Ha_up D Ca Ha down
67 (and Spring) A 1/91-6/03 0.00174 0.99826
91 A 1/91-6/03 0.33538 0.66462
129 A 1/91-6/03 -9999 -9999
131 A 1/91-6/03 0.03782 0.96218
243 A 1/91-6/03 -9999 -9999
245 A 1/91-6/03 -9999 -9999
312 A 1/91-6/03 0.54545 0.45455
313 A 1/91-6/03 0.01197 0.98803
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D Ca Ha_up D Ca Ha down
67 (and Spring) B 1/91-12/97 0.00842 0.99158
91 B 1/91-12/97 0.32432 0.67568
129 B 1/91-12/97 0.84419 0.15581
131 B 1/91-12/97 0.25112 0.74888
312 B 1/91-12/97 0.35177 0.64823
313 B 1/91-12/97 0.00223 0.99777
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates DCa Ha_up D Ca Ha down
67 (and Spring) c 1/98-6/03 -9999 -9999
91 C 1/98-6/03 -9999 -9999
129 C 1/98-6/03 -9999 -9999
131 C 1/98-6/03 -9999 -9999
243 C 1/98-6/03 -9999 -9999
245 C 1/98-6/03 0.00321 0.99679
312 C 1/98-6/03 -9999 -9999
313 C 1/98-6/03 0 1
Wells C Up
Wells C Down







SWFWMD
Location Sequence Dates D Na Ha down DNa_n
736 B 1/91-12/97 0.06565 19
737 B 1/91-12/97 0.54171 24
996 B 1/91-12/97 0.18935 18
997 B 1/91-12/97 0.0056 19
1087 B 1/91-12/97 0.86721 19
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.52282 14
Boyette B 1/91-12/99 0.40832 18
Chassal B 1/91-12/100 0.86186 15
ChassaM B 1/91-12/101 0.89227 15
Homosl B 1/91-12/104 0.58667 14
Homos2 B 1/91-12/105 0.05026 14
Homos3 B 1/91-12/106 0.70852 13
HidRiv2T B 1/91-12/102 0.0399 14
HidRivH B 1/91-12/103 0.0399 14
huntersspr B 1/91-12/107 0.24593 12
lithiamain B 1/91-12/108 0.45057 17
magnolspr B 1/91-12/109 0.78614 13
pumphous B 1/91-12/110 0.12723 15
rainbow B 1/91-12/111 0.07441 14
rainbow B 1/91-12/112 0.07472 17
rainbow B 1/91-12/113 0.40986 16
mboBseep B 1/91-12/115 0.11231 17
saltspr B 1/91-12/116 0.31035 15
SWBettyJay B 1/91-12/117 0.98608 12
SWBoat B 1/91-12/118 0.52432 13
SWBublng B 1/91-12/119 0.55618 12
SWBuckhm B 1/91-12/120 0.00033 17
SWCatfish B 1/91-12/121 0.75188 16
tarponholespr B 1/91-12/122 0.98145 18
trottermain B 1/91-12/123 0.13755 15
weekwachmain B 1/91-12/124 0.95803 15
Springs A Up
Springs A Down

Location Sequence Dates D Na Ha down D Nan
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.238 14
737 C 1/98-6/03 -9999 -9999







SWFWMD
Location Sequence Dates D P Ha down D_P_n
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates D_P_Hadown D_P_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.21704 14
737 C 1/98-6/03 -9999 -9999







SWFWMD
Location Sequence Dates D_Mg_Sen_slope UP/DOWN
736 B 1/91-12/97 -0.0142857 No evidence of trend
737 B 1/91-12/97 0.003381 UP
996 B 1/91-12/97 -0.05125 DOWN
997 B 1/91-12/97 -0.0333333 DOWN
1087 B 1/91-12/97 0 No evidence of trend
Wells A Up 2
Wells A Down 2

Bobhill B 1/91-12/98 0 No evidence of trend
Boyette B 1/91-12/99 0.0111111 No evidence of trend
Chassal B 1/91-12/100 0.444444 No evidence of trend
ChassaM B 1/91-12/101 3.13333 UP
Homosl B 1/91-12/104 0.325 No evidence of trend
Homos2 B 1/91-12/105 -1 No evidence of trend
Homos3 B 1/91-12/106 0.333333 No evidence of trend
HidRiv2T B 1/91-12/102 -1.25 No evidence of trend
HidRivH B 1/91-12/103 -0.75 No evidence of trend
huntersspr B 1/91-12/107 -0.0675 No evidence of trend
lithiamain B 1/91-12/108 0 No evidence of trend
magnolspr B 1/91-12/109 0.0236806 No evidence of trend
pumphous B 1/91-12/110 -0.0692308 No evidence of trend
rainbow B 1/91-12/111 -0.0363636 No evidence of trend
rainbow B 1/91-12/112 -0.0279221 DOWN
rainbow B 1/91-12/113 -0.0082906 No evidence of trend
mboBseep B 1/91-12/115 -0.0119643 No evidence of trend
saltspr B 1/91-12/116 -1.5 No evidence of trend
SWBettyJay B 1/91-12/117 1.195 UP
SWBoat B 1/91-12/118 0.07 No evidence of trend
SWBublng B 1/91-12/119 -0.0439394 DOWN
SWBuckhm B 1/91-12/120 -0.26125 DOWN
SWCatfish B 1/91-12/121 0.0148352 No evidence of trend
tarponholespr B 1/91-12/122 0.4 No evidence of trend
trottermain B 1/91-12/123 -0.06 No evidence of trend
weekwachmain B 1/91-12/124 -0.0066667 No evidence of trend
Springs A Up 2
Springs A Down 3

Location Sequence Dates DMg_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.0675 No evidence of trend
737 C 1/98-6/03 -9999 -9999







Sequence A
Location Sequence Dates Alk_29801_Sen_slope UP/DOWN
2793 A 1/91-6/03 0.75 No evidence of trend
2872 A 1/91-6/03 -0.2 No evidence of trend
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -0.222222 DOWN
Wells A Up UP 0
Wells A Down DOWN 1

Sequence B
Location Sequence Dates Alk_29801_Sen_slope UP/DOWN
2793 B 1/91-12/97 -2.57143 DOWN
2872 B 1/91-12/97 -0.3 No evidence of trend
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -0.320513 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 1

Sequence C
Location Sequence Dates Alk_29801_Sen_slope UP/DOWN
2793 C 1/98-6/03 2 UP
2872 C 1/98-6/03 -0.190909 No evidence of trend
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 1.85417 UP
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0 No evidence of trend
6490 C 1/98-6/03 0.333333 No evidence of trend
Wells A Up UP 2
Wells A Down DOWN 0







Sequence A
Location Sequence Dates DP04_Ha_up D_P04 Ha down DP04_n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







SWFWMD
Location Sequence Dates D_NaHa_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.81747
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.86695
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.00016
Boyette C 1/98-6/05 1
Chassal C 1/98-6/06 0.03034
ChassaM C 1/98-6/07 0.06604
Homosl C 1/98-6/10 0.06604
Homos2 C 1/98-6/11 0.07351
Homos3 C 1/98-6/12 0.09333
HidRivH C 1/98-6/09 0.00109
HidRiv2T C 1/98-6/08 0.00049
huntersspr C 1/98-6/13 0.0278
lithiamain C 1/98-6/14 0.52107
magnolspr C 1/98-6/15 0.72829
pumphous C 1/98-6/16 0.05974
rainbow C 1/98-6/17 0.00068
rainbow C 1/98-6/18 0.00004
rainbow C 1/98-6/19 0.00001
SWBettyJay C 1/98-6/23 0.41633
SWBublng C 1/98-6/25 0
SWBuckhm C 1/98-6/26 0.71985
SWCatfish C 1/98-6/27 0.03682
tarponholespr C 1/98-6/28 0.01006
trottermain C 1/98-6/29 0.0013
weekwachmain C 1/98-6/30 0
wilsonheadspr C 1/98-6/31 0.0009
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates Turb_field_Sen_slope UP/DOWN
1417 A 1/91-6/03 0.03 No evidence of trend
1420 A 1/91-6/03 -9999.00 -9999
1674 A 1/91-6/03 -9999.00 -9999
1762 A 1/91-6/03 -9999.00 -9999
1763 A 1/91-6/03 -9999.00 -9999
1764 A 1/91-6/03 -9999.00 -9999
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 0.02 No evidence of trend
1931 A 1/91-6/03 -0.0058824 No evidence of trend
Wells up 0
Wells down 0

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 -9999.00 -9999
Fern Springs A 1/91-6/03 -9999.00 -9999
Juniper Springs A 1/91-6/03 -9999.00 -9999
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 -9999.00 -9999
Rock Springs A 1/91-6/03 -9999.00 -9999
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 -9999.00 -9999
Starbuck Spring A 1/91-6/03 -9999.00 -9999
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 -9999.00 -9999
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 0
Springs down 0

Sequence B
Location Sequence Dates Turb_field_Sen_slope UP/DOWN
1417 B 1/91-12/97 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 0







Sequence A
Location Sequence Dates NITRATE*_Sen_slope UP/DOWN
Salt Spring C 1/98-6/31 0.00 No evidence of trend
Sanlando Springs C 1/98-6/03 0.01 No evidence of trend
Silver Glen Springs C 1/98-6/03 0.00 No evidence of trend
Starbuck Spring C 1/98-6/03 -0.0017 No evidence of trend
Sweetwater Spring C 1/98-6/03 0.00 No evidence of trend
Volusia Springs C 1/98-6/03 0.0105 No evidence of trend
Wekiva C 1/98-6/31 -0.01 No evidence of trend
Springs up 1
Springs down 1







Sequence A
Location Sequence Dates Entero_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates Entero_Sen_slope UP/DOWN
1417 C 1/98-6/03 -9999.00 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 0.00 No evidence of trend
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 0.00 No evidence of trend
1931 C 1/98-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







Date Ca Mg Na K SC-F CI S04 F
4/2/01 ***158 *
4/30/01 160 *
5/30/01 158 *
6/27/01 ***159 *
7/31/01 158 *
8/27/01 ***157 *
9/24/01 ***157 *
10/26/01 ***163 *
11/29/01 ***168 *
12/19/01 160 *
1/29/02 ***163 *
2/21/02 ***163 *
3/18/02 165 *
4/25/02 ***163 *
5/30/02 164 *
6/27/02 ***166 *
7/25/02 ***165 *
8/23/02 ***163 *
9/25/02 ***167 *
10/31/02 ***168 *
11/27/02 ***163 *
12/31/02 169 *
1/30/03 ***166 *
2/24/03 ***167 *
3/26/03 ***166 *
3/30/03 ***168 *
5/27/03 ***158 *
6/25/03 *169 *







DATE TEMP STAGEMSL DO TURB ALKTOT NH3NTOT CONDF TOTDEPM
6/23/97 22* *****1
7/22/97 21.6 ** ***
8/19/97 21.7 ** ***
9/17/97 21.6 ** ***
6/16/98 21.6 ** ***
7/29/98 21.5 ** ***
8/19/98 21.5 ** ***
12/16/98 21.4 ** ***
3/22/99 21.6 ** ***
4/20/99 21.6 ** ***
6/9/99 21.6 ** ***
8/4/99 21.6 ** ***
9/23/99 21.5 ** ***
10/18/99 21.7 ** ***
11/15/99 21.6 ** ****
12/15/99 21.4 ** ***
1/11/00 21.4 ** ****
2/21/00 21.6 ** ***
3/14/00 21.7 ** ***
4/17/00 21.7 ** ***
5/3/00 21.7 ** ***
6/14/00 21.7 ** ***
7/17/00 21.9 ** ***
7/21/00 ** ****
8/3/00 21.9 ** ***
9/14/00 22* *
10/12/00 21.7 ** ***
10/24/00 ** ****
11/2/00 21.8* *
12/19/00 21.6 ** ***
1/9/01 21.6 ** ***
2/22/01 21.7 ** ***
3/14/01 21.5 ** ***
5/17/01 21.4 ** ***
6/13/01 21.9 ** ***
7/18/01 21.9 ** ***
8/27/01 22.1 ** ****
9/11/01 21.9* *
10/24/01 21.7 ** ***
11/5/01 21.6 ** ****
12/17/01 21.6 ** ***
1/14/02 21.6* ****







SWFWMD
Location Sequence Dates Temp_Ha_down Temp_n
707 A 1/91-6/03 0.98148 113
736 A 1/91-6/03 0.99995 147
737 A 1/91-6/03 1 143
775 A 1/91-6/03 0.02444 18
996 A 1/91-6/03 0.25465 150
997 A 1/91-6/03 0.98365 120
1087 A 1/91-6/03 0.99999 146
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.03137 33
Boyette A 1/91-6/05 0.59223 69
Chassal A 1/91-6/06 0.00204 38
ChassaM A 1/91-6/07 0.02482 38
Homosl A 1/91-6/10 0.5 37
Homos2 A 1/91-6/11 0.22983 35
Homos3 A 1/91-6/12 0.83375 37
HidRivH A 1/91-6/09 0.14281 37
HidRiv2T A 1/91-6/08 0.02939 38
hunterspr A 1/91-6/13 0.01368 32
lithiamain A 1/91-6/14 0.84682 44
magnolspr A 1/91-6/15 0.002 36
pumphous A 1/91-6/16 0.91758 26
rainbow A 1/91-6/17 0.08855 37
rainbow A 1/91-6/18 0.01333 39
rainbow A 1/91-6/19 0.01557 39
rainswamp3 A 1/91-6/20 0.6905 16
mboBseep A 1/91-6/21 0.25357 26
saltspr A 1/91-6/22 0.48014 24
SWBettyJay A 1/91-6/23 0.24309 35
SWBoat A 1/91-6/24 0.10176 21
SWBublng A 1/91-6/25 0.16645 36
SWBuckhm A 1/91-6/26 0.92171 44
SWCatfish A 1/91-6/27 0.23256 27
tarponholespr A 1/91-6/28 0.4099 42
trottermain A 1/91-6/29 0.5401 38
weekwachmain A 1/91-6/30 0.71445 38
Springs A Up
Springs A Down

Location Sequence Dates Temp_Ha_down Temp_n
707 B 1/91-12/97 0.99933 79







Date N03-T N03N02 P o-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH Turb Color Turb-F
2/26/91 *****9.01 6.27 8.6106 *
3/19/91 9.23 6.05 8.364 *
4/30/91 0.1 8.64 6.64 7.774 *
5/30/91 *****8.43 6.85 7.564 *
6/18/91 6.87 8.41 7.6528 *
7/31/91 0.33* 5.83 9.45 6.6128 *
8/13/91 6.61 8.67 7.3928 *
9/23/91 *****7.82 7.46 8.3186 *
10/22/91 0.02 0.01 9.16 6.12 9.6586 1 *
11/26/91 9.51 5.77 10.0086 *
12/13/91 *****9.63 5.65 9.2306 *
1/27/92 0.02* 10.25 5.03 9.8506* *
2/21/92 *****10.58 4.7 10.1806 *
3/16/92 *****10.53 4.75 9.664* *
4/22/92 0.02* *10.14 5.14 9.274* *
5/7/92 *****10.42 4.86 9.554* *
6/17/92 ** *** 10.44 4.84 11.2228 *
7/22/92 0.81* 9.06 6.22 9.8428 *
8/26/92 6.8 8.48 7.5828 *
9/25/92 7.6 7.68 8.0986 *
10/21/92 0.24 8.86 6.42 9.3586 *
11/24/92* 9.44 5.84 9.9386* *
12/17/92 *****9.9 5.38 9.5006 *
1/25/93 0.42* 5.35 9.93 4.9506 *
2/19/93 *****9.32 5.96 8.9206 *
3/29/93 9.14 6.14 8.274 *
4/28/93 0.02 9.74 5.54 8.874 *
6/1/93 10.55 4.73 11.3328 *
6/23/93 10.23 5.05 11.0128 *
7/30/93 9.62 5.66 10.4028 *
8/25/93 9.9 5.38 10.6828 *
9/29/93 9.35 5.93 9.8486 *
10/11/93 0.13 0.02 9.08 6.2 9.5786 1 *
11/29/93* 9.46 5.82 9.9586* *
12/13/93 9.99 5.29 9.5906 *
12/30/93 9.99 5.29 9.5906 *
1/27/94 0.02 10.35 4.93 9.9506 *
2/28/94 *****6.12 9.16 5.7206* *
3/29/94 6.62 8.66 5.754 *
4/20/94 0.09* 6.65 8.63 5.784 *
5/25/94 6.59 8.69 5.724 *
6/28/94 7.2 8.08 7.9828 *







Sequence A
Location Sequence Dates TYPE Temp_Ha_up
2793 A 1/91-6/03 Well 0.00185
2872 A 1/91-6/03 Well 1
2873 A 1/91-6/03 Well 0.85362
6490 A 1/91-6/03 Well 1
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates TYPE Temp_Ha_up
2793 B 1/91-12/97 Well 0.00327
2872 B 1/91-12/97 Well 0.96728
2873 B 1/91-12/97 Well 0.57863
6490 B 1/91-12/97 Well 0.99691
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates TYPE Temp_Ha_up
2793 C 1/98-6/03 Well 0.99513
2872 C 1/98-6/03 Well 0.00002
2873 C 1/98-6/03 Well 0.26857
3108 C 1/98-6/03 Well 0.90238
3109 C 1/98-6/03 Well 0.88723
3398 C 1/98-6/03 Well 0.88366
3433 C 1/98-6/03 Well 0.39523
3490 C 1/98-6/03 Well 0.99736
6490 C 1/98-6/03 Well 0.11811
Wells A Up
Wells A Down







Sequence A
Location Sequence Dates D Fe Ha_up D Fe Ha down D Fe n
1943 A 1/91-6/03 -9999 -9999 -9999
2003 A 1/91-6/03 -9999 -9999 -9999
2193 A 1/91-6/03 -9999 -9999 -9999
2259 A 1/91-6/03 -9999 -9999 -9999
2404 A 1/91-6/03 -9999 -9999 -9999
2465 A 1/91-6/03 -9999 -9999 -9999
2585 A 1/91-6/03 -9999 -9999 -9999
2675 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 -9999 -9999 -9999
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D Fe Ha_up D Fe Ha down D Fe n
1943 B 1/91-12/97 0.88217 0.11783 19
2003 B 1/91-12/97 0.77692 0.22308 18
2193 B 1/91-12/97 0.05885 0.94115 17
2259 B 1/91-12/97 0.9988 0.0012 18
2404 B 1/91-12/97 0.19868 0.80132 18
2465 B 1/91-12/97 0.98588 0.01412 16
2585 B 1/91-12/97 0.52432 0.47568 13
2675 B 1/91-12/97 0.97133 0.02867 17







Date TDS Turb Color Turb(field) D-Ca D-Mg D-Na D-K Cond(field) D-CI D-F
5/4/94 ******* 381* *
6/1/94* 389* *
6/29/94 67 2.2 5.8 0.5 384 12 0.1
6/29/94 68 2.3 5.6 0.48 12 0.1
8/1/94* 383* *
8/29/94 384* *
10/4/94* 69 2.5 6.3 0.48 382 11 0.1
11/3/94 **** 386 **
12/2/94* 386* *
1/4/95* 381 10*
1/30/95* 379* *
3/2/95 **** 383 **
3/31/95* 384 10*
4/28/95 381* *
5/30/95 ** 386 *
7/6/95 *******382 10*
7/28/95 383* *
9/1/95* 382* *
10/3/95* 385* *
10/30/95 *******382 *
12/4/95* 382* *
12/27/95* 385* *
2/6/96 ******* 382* *
2/27/96 383* *
3/27/96 378* *
4/23/96 379* *
5/22/96* 381* *
6/18/96 2.3* 73.9 2.88 6.53 0.5 389 9.1 0.13
7/17/96* 383* *
8/13/96* 383* *
9/18/96* 385* *
10/9/96 *******380 *
12/6/96* 379* *
1/16/97 ******* 379* *
2/5/97 ******* 381 *
3/12/97 374 *
4/8/97 379* *
5/2/97 ******* 382* *
6/3/97 ******* 381 *
7/17/97 *******379 *
8/1/97* 383* *
8/29/97 383* *






Sequence A
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down D_N03N02_n
67 (and Spring) A 1/91-6/03 0.97562 0.02438 21
91 A 1/91-6/03 0.30984 0.69016 33
129 A 1/91-6/03 0.71383 0.28617 25
131 A 1/91-6/03 0.9992 0.0008 28
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 -9999 -9999 -9999
312 A 1/91-6/03 0.98286 0.01714 25
313 A 1/91-6/03 0 1 29
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
67 (and Spring) B 1/91-12/97 0.61767 0.38233 15
91 B 1/91-12/97 0.08664 0.91336 21
129 B 1/91-12/97 0.15703 0.84297 23
131 B 1/91-12/97 0.67888 0.32112 22
312 B 1/91-12/97 0.81303 0.18697 20
313 B 1/91-12/97 0.16565 0.83435 14
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
67 (and Spring) C 1/98-6/03 -9999 -9999 -9999
91 C 1/98-6/03 -9999 -9999 -9999
129 C 1/98-6/03 -9999 -9999 -9999
131 C 1/98-6/03 -9999 -9999 -9999
243 C 1/98-6/03 -9999 -9999 -9999
245 C 1/98-6/03 0.72484 0.27516 15
312 C 1/98-6/03 -9999 -9999 -9999
313 C 1/98-6/03 0.0001 0.9999 15
Wells C Up
Wells C Down







SWFWMD
Location Sequence Dates D_CaHa_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.47254
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.07074
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.05356
Boyette C 1/98-6/05 0.73911
Chassal C 1/98-6/06 0.04549
ChassaM C 1/98-6/07 0.1846
Homosl C 1/98-6/10 0.41633
Homos2 C 1/98-6/11 0.38129
Homos3 C 1/98-6/12 0.16415
HidRivH C 1/98-6/09 0.02533
HidRiv2T C 1/98-6/08 0.00531
huntersspr C 1/98-6/13 0.7527
lithiamain C 1/98-6/14 0.59397
magnolspr C 1/98-6/15 0.15779
pumphous C 1/98-6/16 0.04338
rainbow C 1/98-6/17 0.31714
rainbow C 1/98-6/18 0.00086
rainbow C 1/98-6/19 0.01517
SWBettyJay C 1/98-6/23 0.29855
SWBublng C 1/98-6/25 0.00129
SWBuckhm C 1/98-6/26 0.20639
SWCatfish C 1/98-6/27 0.42901
tarponholespr C 1/98-6/28 0.02861
trottermain C 1/98-6/29 0.00805
weekwachmain C 1/98-6/30 0.1335
wilsonheadspr C 1/98-6/31 0.40998
Springs A Up
Springs A Down







COLLECTION_DATE DeSnWL(MSL) Turb Color Turb-F Ca Mg Na K SC-F CI S04 F
10/31/97 39.3091 736 *
12/12/97 38.2 ******691 *
1/5/98 38.84 739 *
2/5/98 40.1 0.2 10 78.1 39.6 17.1 4.54 743 20 220 1
3/18/98 42.3567 ******745 *
4/3/98 41.1767 ******741 *
5/1/98 38.4167 ******745 *
5/29/98 36.6767 743 *
7/6/98 35.399 740 *
8/7/98 37.389 745 *
9/9/98 37.7191 747 *
3/15/00 36.0567 ******697 *
5/23/00 33.5667 732 *
7/25/00 34.619 ******726 *
10/23/00 36.6591 ******717 *
1/29/01 33.82 730 *
4/25/01 33.6667 725 *
7/24/01 36.319 ******726 *
10/24/01 32.1591 0.55 5 66.7 41.2 17.9 3.1 700 17 220 1
1/23/02 36.72 0.3 5 67.4 40.5 17.3 3 708 18 220 1
4/23/02 35.8067 0.8 5 1.2 65 41.4 18.2 3.2 712 19 220 1.1
7/23/02 36.519 1 5 1.61 69.1 42.4 18.8 3.3 719 18 220 1.2
10/22/02 37.1591 1.23 724 *
1/30/03 38.38 0.6 726 *
4/23/03 39.4167 4.65 682 *







SAMP DATE D-S04 D-F D-Fe D-Sr TDS SAMP DATE DischDate CFS
11/1/93 45 0.11 60 857 11/1/93 *
10/26/94 66 0.136 30 895 10/26/94 *
1/19/95 39 0.098 30 562 1/19/95 *
4/5/95 63 0.108 30 822 4/5/95 *
7/25/95 62 0.1 30 841 7/25/95 *
10/24/95 58 0.12 30 750 10/24/95 10/24/95 94
2/5/96 33 0.1 49 482 2/5/96 2/5/96 *
4/17/96 36 0.1 53 300 516 4/17/96 4/17/96 108
7/16/96 45 0.14 33 210 653 7/16/96 7/16/96 96
10/14/96 33 0.103 30 400 495 10/14/96 10/14/96 105
1/30/97 56 0.12 36 50 816 1/30/97 1/30/97 101
4/10/97 55 0.165 30 50 822 4/10/97 4/10/97 90
7/7/97 87.1 0.14 30 57 1092 7/7/97 7/7/97 79
10/6/97 98.8 0.136 30 50 1250 10/6/97 10/6/97 93
1/13/98 54.1 0.094 30 50 718 1/13/98 1/13/98 105
4/13/98 30.8 0.002 30 50 444 4/13/98 4/13/98 117
7/14/98 39.8 1.36 30 50 587 7/14/98 7/14/98 96
10/19/98 45.7 0.11 30 50 655 10/19/98 10/19/98 100
1/19/99 49.2 0.1 30 50 635 1/19/99 1/9/99 100
4/28/99 72.1 0.19 30 50 944 4/28/99 4/28/99 78
7/28/99 93.8 0.2 30 370 832 7/28/99 7/28/99 83
10/13/99 64.9 0.12 25 340 882 10/13/99 10/13/99 84
1/12/00 71.4 25 450 952 1/12/00 1/12/00 98
4/17/00 115 25 1451 4/17/00 4/17/00 75
7/17/00 121 0.12 25 210 1618 7/17/00 7/17/00 64
10/25/00 108 0.13 25 600 1383 10/25/00 10/25/00 90
1/9/01 111 0.14 30 210 1573 1/9/01 1/19/01 81
4/25/01 109 0.14 25 400 1532 4/25/01 4/25/01 76
7/23/01 111 0.14 25 490 1562 7/23/01 7/23/01 69
10/16/01 72 0.12 50 210 1020 10/16/01 10/16/01 89
1/30/02 80.66 0.12 25 300 1111 1/30/02 1/30/02 86
4/11/02 94.6 0.12 25 570 1320 4/11/02 4/11/02 79
7/22/02 91.2 0.11 30 250 1260 7/22/02 7/22/02 79
10/7/02 118 0.12 30 520 1214 10/7/02 10/7/02 85
1/13/03 54.1 30 511 689 1/13/03 1/13/03 115
4/15/03 48.6 17.4 390 749 4/15/03 4/15/03 101
7/24/03 38.2 30 250 600 7/24/03 7/24/03 105







Sequence A
Location Sequence Dates D Ca Ha_up D Ca Ha down D Ca n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D Ca Haup D Ca Ha down D Ca n
1943 C 1/98-6/03 0.99441 0.00559 12
2003 C 1/98-6/03 0.99698 0.00302 13
2193 C 1/98-6/03 -9999 -9999.00 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.95025 0.04975 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.81445 0.18555 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 -9999 -9999 -9999
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 -9999 -9999 -9999







SWFWMD
Location Sequence Dates Alk_29801_Ha up
707 A 1/91-6/03 0.02139
736 A 1/91-6/03 0.73393
737 A 1/91-6/03 -9999
775 A 1/91-6/03 -9999
996 A 1/91-6/03 0.42518
997 A 1/91-6/03 0.99999
1087 A 1/91-6/03 0.00023
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.0311
Boyette A 1/91-6/05 0.99981
Chassal A 1/91-6/06 0.02621
ChassaM A 1/91-6/07 0.00058
Homosl A 1/91-6/10 0.00064
Homos2 A 1/91-6/11 0.01176
Homos3 A 1/91-6/12 0.00132
HidRivH A 1/91-6/09 0.03884
HidRiv2T A 1/91-6/08 0.03018
hunterspr A 1/91-6/13 0.00315
lithiamain A 1/91-6/14 0.01788
magnolspr A 1/91-6/15 0.00241
pumphous A 1/91-6/16 0.64653
rainbow A 1/91-6/17 0.19903
rainbow A 1/91-6/18 0.00002
rainbow A 1/91-6/19 0.0001
rainswamp3 A 1/91-6/20 0.00011
mboBseep A 1/91-6/21 0.6547
saltspr A 1/91-6/22 0.17513
SWBettyJay A 1/91-6/23 0.01615
SWBoat A 1/91-6/24 0.63077
SWBublng A 1/91-6/25 0.00039
SWBuckhm A 1/91-6/26 0.03876
SWCatfish A 1/91-6/27 0.10764
tarponholespr A 1/91-6/28 0.00006
trottermain A 1/91-6/29 0.25516
weekwachmain A 1/91-6/30 0.00047
Springs A Up
Springs A Down

Location Sequence Dates Alk_29801_Ha up
707 B 1/91-12/97 0.009







Sequence A
Location Sequence Dates Fcol_Ha_up Fcol Ha down Fcol_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates Fcol_Ha_up Fcol Ha down Fcol_n
1943 C 1/98-6/03 0.5 0.5 12
2003 C 1/98-6/03 0.30258 0.69742 12
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.5 0.5 12
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 0.0191 0.9809 14
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 0.08863 0.91137 10







DATE pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS Turb Color Turb-F
1/4/00 7.36* 1.77
4/7/00 7.31* *
7/6/00 7.35* 0.32
10/10/00 7.34 4 0.52 0.004 0.004 0.005 4.5 262 0.15 5*
1/3/01 7.36 4 0.53 0.004 0.005 0.004 4.9 253 0.1 10 17.3
4/3/01 7.33 5 0.53 0.004 0.004 0.004 5.4 274 1 5 *
7/2/01 7.3 4 0.53 0.004 0.004 0.004 4.8 266 0.65 5 1.29
10/3/01 7.52 ***********
1/2/02 8.34* 0.97
3/28/02 7.43* 0.47
7/12/02 7.39* 0.62
10/1/02 7.43 **********0.54
1/2/03 7.37* 0.66
4/1/03 7.27* 1.22







Sequence A
Location Sequence Dates DNaSen_slope UP/DOWN
RLS C 1/98-6/42 -9999 -9999
RKB C 1/98-6/41 -9999 -9999
SBL C 1/98-6/44 -9999 -9999
TEL C 1/98-6/45 -9999 -9999
TRY C 1/91-12/98 -9999 -9999
Springs A Up 0
Springs A Down 0_









BULLETIN NO. 69





Fanning: Flow-Adjusted Nitrogen


5/1/1998


6/5/1999
Date


7/9/2000


5 6 7 8 9 102

Flow (cfs)


Figure 65. Flow adjustment for nitrate in Fanning Spring. Flow
adjusted nitrate-nitrite shows a sharp rise followed by a decline over
time (top). The log of nitrate-nitrite plotted against log of flow
(bottom) shows a positive relationshiship.











145


2500 -



E
- 2000 -
H-
z
0
z
m 1500

0
LL.


1000


. .


500 ,
3/27/1997


8/13/2001


. .







COLLECTIONDATE WL(MSL) Turb Color Turb-F Ca Mg Na K SC-F Cl S04 F
9/2/97 43.77* 607* *
10/9/97 43.46* 613* *
10/31/97 44.02* 610* *
12/12/97 44.62 ******570 *
1/5/98 44.9* 611 *
2/5/98 44.75 0.2 20 115 3.19 13.1 0.86 617 19 0.38 0.1
3/18/98 44.77 ******622 *
4/3/98 44.4 ******615 *
5/1/98 43.19* 615* *
5/29/98 42* 616* *
7/6/98 41.4* 612* *
8/7/98 43.78 ******615 *
9/9/98 44.04 620 *
3/15/00 41.37 608 *
5/23/00 41.09* 61.3* *
7/25/00 40.99 ******606 *
10/23/00 43.99* 605* *
1/29/01 43.19* 611* *
4/25/01 42.89* 610* *
7/24/01 43.79 ******608 *
10/24/01 43.59 0.25 5 111 3.2 13.4 0.8 588 17 0.39 0.094
1/23/02 44.09 0.3 5* 110 3.2 13.1 0.78 606 18 0.2 0.086
4/23/02 42.44 0.15 5 0.02 111 3.2 13.4 0.81 603 19 0.2 0.1
7/23/02 43.01 0.15 5 1.38 117 3.3 13.9 0.83 605 18 0.2 0.11
10/22/02 43.87 0.43 ***609 *
1/30/03 43.87 0.38 ***6.14 *
4/23/03 43.67* 0.74 ***581* *









Appendix L4-Suwannee River Water Management District Wells


Miles
0 10 20 30


Kilometers -
0 10 20 30
Projected Coordinate System: FDEPAIbers HA


Figure34. SRWMD wells.


L13







Sequence A
Location Sequence Dates pH_Ha_down pH_n
2793 A 1/91-6/03 0.99993 143
2872 A 1/91-6/03 0 92
2873 A 1/91-6/03 0.01225 61
6490 A 1/91-6/03 0 146
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates pH_Ha_down pH_n
2793 B 1/91-12/97 0.9999 77
2872 B 1/91-12/97 0.26181 58
2873 B 1/91-12/97 0.39778 49
6490 B 1/91-12/97 0.11877 80
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates pH_Ha_down pH_n
2793 C 1/98-6/03 0.48229 66
2872 C 1/98-6/03 0.00092 34
2873 C 1/98-6/03 0.06525 12
3108 C 1/98-6/03 0.01494 19
3109 C 1/98-6/03 0.04684 46
3398 C 1/98-6/03 0.00012 45
3433 C 1/98-6/03 0.98002 18
3490 C 1/98-6/03 0.2948 45
6490 C 1/98-6/03 0 66
Wells A Up
Wells A Down







Sequence A
Location Sequence Dates TOC_Ha_up TOC Ha down TOC_n
1417 A 1/91-6/03 1.00 0.00 13.00
1420 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1674 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1762 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1763 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1764 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1779 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1780 A 1/91-6/03 -9999.00 -9999.00 -9999.00
1781 A 1/91-6/03 -9999 -9999 -9999
1931 A 1/91-6/03 -9999 -9999 -9999
Wells up
Wells down

Alexander Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Apopka A 1/91-6/03 -9999.00 -9999.00 -9999.00
Fern Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Miami Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Palm Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
PDL A 1/91-6/03 -9999.00 -9999.00 -9999.00
Rock Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Salt Spring A 1/91-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring A 1/91-6/03 -9999.00 -9999.00 -9999.00
Sweetwater A 1/91-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wekiva A 1/91-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence B
Location Sequence Dates TOC_Ha_up TOC Ha down TOC_n
1417 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1420 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1674 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1762 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1763 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1764 B 1/91-12/97 -9999.00 -9999.00 -9999.00
1931 B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wells up
Wells down







Date TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH20 Turb
10/3/94 0.06 46.02 *
1/3/95 0.01 0.07 ****47.12 *
4/4/95 0.01 0.05 ****54.3 *
7/11/95 *********35.93 *
10/11/95 34.54 *
11/8/95 *********33.72 *
12/1/95 *********33.51 *
1/3/96 33.65* *
3/4/96 0.035 0.35 0.1 0.091 9.6 37 0.6
4/2/96 ********* 57* *
5/1/96 41.86* *
6/3/96 36.15* *
7/1/96* 33.929* *
8/6/96 33.83* *
9/3/96* 34.56* *
10/2/96 33.66* *
11/5/96* 39.11* *
12/3/96 *********35.47 *
1/8/97 ***** 38.78* *
2/4/97 53.79 *
3/31/97 *********48.15 *
5/7/97 44.72 *
6/3/97 39.75 *
7/1/97 38.88 *
8/5/97 48.46 *
9/3/97 38.25* *
10/1/97* 33.81* *
11/4/97 *********54.98 *
12/2/97 *********58.86 *
1/7/98* ****** 68.61* *
2/4/98 68.11 *
3/3/98 68.67* *
4/17/98 58.66* *
5/11/98 48.3* *
6/2/98 ********* 41.12* *
6/30/98 35.79* *
8/4/98* 35.51* *
9/4/98 35.47 *
10/8/98 56.84 *
11/4/98 ********* 40.9* *
12/2/98* 36* *
1/5/99 35.52* *
2/4/99* 42.05* *
3/2/99 0.01 0.097 0.11 0.1 3.8 41.14* 1







Date SEASON_NO. Mo Temp DeSnTemp Fe-D Mn-D Alk DO Fcol Entero pH TSS
6/28/95 2 6 26.2 25.6309 7.35 *
7/27/95 2 7 26.2 25.6309 7.22 *
8/28/95 2 8 26 25.4309 7.36 *
9/20/95 3 9 24.8 24.824 7.47 *
10/31/95 3 10 24.5 24.524 *****7.39 *
11/28/95 3 11 24.6 24.624* 7.48 *
10/3/96 3 10 24.54 24.564 22 1 280 0.27 7.18 *
4/22/99 1 4 24.95 25.0862 2.5 286 0.65 7.16 *
10/31/00 3 10 24.76 24.784 0.36 7.25 *
1/25/01 4 1 24.72 25.1547 0.52 7.43 *
4/26/01 1 4 24.65 24.7862 0.19 7.67 *
7/26/01 2 7 24.7 24.1309 0.3 7.02 *
10/30/01 3 10 24.7 24.724 297 0 1 1 7.18 4
1/30/02 4 1 24.69 25.1247 291 1.69 1 1 7.2 4
4/29/02 1 4 24.8 24.9362 293 0 1 1 6.44 4
7/22/02 2 7 24.85 24.2809 294 0.26 1 1 7.13 4
10/23/02 3 10 25.69 25.714 0.3 6.96 *
1/29/03 4 1 24.75 25.1847 0.35 7.2 *
4/23/03 1 4 24.92 25.0562 0.17 6.93 *







SWFWMD
Location Sequence Dates DMn_Sen_slope UP/DOWN
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates DMn_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 -9999 -9999
737 C 1/98-6/03 -9999 -9999







Sequence A
Location Sequence Dates DtoH20_Ha_up DtoH20 Ha down DtoH20_n
1417 A 1/91-6/03 0.94 0.06 60.00
1420 A 1/91-6/03 1.00 0.00 34.00
1674 A 1/91-6/03 0.24 0.76 128.00
1762 A 1/91-6/03 0.00 1.00 64.00
1763 A 1/91-6/03 0.11 0.89 67.00
1764 A 1/91-6/03 0.34 0.66 91.00
1779 A 1/91-6/03 0.11 0.89 20.00
1780 A 1/91-6/03 0.55 0.45 20.00
1781 A 1/91-6/03 0.97 0.00 44.00
1931 A 1/91-6/03 -9999 -9999 -9999
Wells up
Wells down

Alexander Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Apopka A 1/91-6/03 -9999.00 -9999.00 -9999.00
Fern Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Miami Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Palm Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
PDL A 1/91-6/03 -9999.00 -9999.00 -9999.00
Rock Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Salt Spring A 1/91-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring A 1/91-6/03 -9999.00 -9999.00 -9999.00
Sweetwater A 1/91-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs A 1/91-6/03 -9999.00 -9999.00 -9999.00
Wekiva A 1/91-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence B
Location Sequence Dates DtoH20_Ha_up DtoH20 Ha down DtoH20_n
1417 B 1/91-12/97 0.82 0.18 18.00
1420 B 1/91-12/97 0.78 0.22 16.00
1674 B 1/91-12/97 0.48 0.52 80.00
1762 B 1/91-12/97 0.42 0.58 41.00
1763 B 1/91-12/97 0.92 0.08 44.00
1764 B 1/91-12/97 0.99 0.01 43.00
1931 B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wells up
Wells down







BULLETIN NO. 69


For Sequence A (Table 46), for combined groundwater, alkalinity, calcium, pH, and
specific conductance displayed evidence for downward trends while temperature displayed
evidence of an upward trend (Table 47). For Sequence B (Table 48), the only evidence for a
potential trend (Table 49) was pH (combined, downward). For Sequence C (Table 50), the only
evidence for trends was in the combined category. Dissolved oxygen had evidence for an
upward trend while pH and specific conductance displayed evidence of downward trends (Table
51).

Table 46. Well Trends in the SJRWMD, Sequence A (1991-1998).
(+ = T trend, blank = no evidence of trend, = t trend)
Unconfmied GW Confined GW Both
Well Number Well Number Uncon Con (All)
Analyte 1417 1764 1781 1420 1674 1762 1763 1779 1780 + + +
Alk + 0 3 1 2 1 5
Ca 0 3 0 2 0 5
Cl 0 1 0 2 0 3
DO + 1 0 1 0 2 0
F -DL -DL -DL -DL 0 0 0 0 0 0
Fe 0 0 0 1 0 1
K -Dr ---Dr 0 1 0 1 0 2
Mg + + + 1 2 2 0 3 2
Na 0 3 1 0 1 3
NH3 + + 1 1 1 0 2 1
NO3* -DL -DL -DL -DL 0 1 0 1 0 2
P04 0 1 0 0 0 1
pH -DL 0 1 0 3 0 4
SC 0 3 0 2 0 5
SO4 + + + 2 1 1 2 3 3
TDS_ 0 0 0 0 0 0
Temp + +_ + + 2 0 4 1 6 1
TOC -Dr 0 0 0 0 0 0
Turblab) -0 1 0 0 0 1
WL(msl) + _1 0 0 1 1 1
N03* = N03 + N02 as N (dissolved).
DL = Reason for trend is due to a lowering of the laboratory detection level; not due to environmental change.
Dr = Drilling fluids may be cause of relatively high concentrations during early period of time segment.



Well Number WMD Well ID

1417 S-0045
1420 S-0038
1674 R22T10SEC2001
1762 SJ0029
1763 SJ0030
1764 SJ0032
1779 BA0054
1780 BA0055
1781 BA0056

Table 47. Potential SJRWMD Districtwide Trends, Sequence A.
Analyte Confined or Direction Comments
Unconfined
Alk All Down Generally as WL rose, Alk decreased; Alk low in recharge water.
Ca All Down Generally as WL rose, Ca decreased; Ca low in recharge water.
pHl All Down Generally as pH decreased.; pH is low in recharge water
SC All Down Generally as WL rose, SC decreased; SC low in recharge water.
Temp All Up Air temperature increase.











Descriptive Statistics for 997 Dates: February, 1989 to April, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value

10 Temp Deg C 144 23.3 24.0 24.8 25.1 26.0
1046 D-Fe microg/1 28 0.3 699.0 750.0 771.3 890.0
1056 D-Mn microg/1 11 3.0 10.0 13.0 14.5 21.0
29801 Bicarb mg/1 20 168.0 179.3 180.0 187.0 222.0
299 DO mg/1 46 0.0 0.1 0.1 0.2 4.7
31616 Fcol #/100 ml 3 *
31649 Entero #/100 ml 3 *
406 pH ph units 141 6.2 7.2 7.2 7.3 8.6
4255 D-Alk mg/1 10 110.0 179.3 183.0 190.0 200.0
530 Resid mg/1 3 *
608 D-NH3 mg/1 10 0.0 0.1 0.1 0.1 0.1
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 34 0.0 0.0 0.0 0.0 0.1
666 D-P mg/1 5 *
671 D-PO4 mg/1 14 0.0 0.0 0.0 0.1 0.1
680 TOC mg/1 14 0.3 1.0 1.5 2.0 4.6
70300 TDS mg/1 11 204.0 218.5 222.0 227.0 232.0
72109 DtoH20 Ft 141 5.8 8.2 8.9 9.4 11.1
76 Turb Turb units 7 *
81 Color Pt-Co 4 *
82078 Turb(field) Turb units 13 0.2 0.2 0.5 1.0 1.1
915 D-Ca mg/1 31 56.0 67.0 70.0 73.5 79.0
925 D-Mg mg/1 31 0.1 2.5 2.8 2.9 7.7
930 D-Na mg/1 31 5.6 6.1 6.3 6.5 16.5
935 D-K mg/1 31 0.4 0.5 0.7 0.9 1.6
94 Cond(field) micromhos/cm 142 24.7 372.5 381.0 384.0 405.0
941 D-C1 mg/1 34 9.1 11.0 11.0 12.0 13.0
946 D-SO4 mg/1 34 1.8 2.7 3.2 5.0 7.6
950 D-F mg/1 30 0.1 0.1 0.1 0.2 0.8


*Less than 10 samples
NA No samples







Date Turb-F Ca Mg Na K SC-F CI S04 F
12/18/02 0.17 ***354 *
1/21/03 0.1 412 *
2/19/03* 367 *
3/20/03 0.47 386 *
4/30/03 0.73 407 *
5/28/03 0.37 378 *
6/26/03 0.39 *354 *







Sequence A
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 -9999 -9999
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0

Sequence B
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0

Sequence C
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
2793 C 1/98-6/03 -9999 -9999
2872 C 1/98-6/03 -9999 -9999
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -9999 -9999
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -9999 -9999
6490 C 1/98-6/03 -9999 -9999
Wells A Up UP 0
Wells A Down DOWN 0







SPRING SAMP_DATE Temp SC-field pH BicarbAlk T-N D-TKN T-NH3 D-N03 D-NO3NO:T-P D-P04 TOC D-Ca D-Mg
Chassal 10/11/93 24.8 1570 7.53 0.17 0.01 0.42 0.42 0.03 0.01 0.5 63 29
Chassa 7/21/94 23.5 1066 7.61 147 0.17 0.01 0.5 0.5 0.01 0.01 0.61 58 24
Chassa 10/25/94 23.7 662 7.35 146 0.05 0.01 0.454 0.458 0.037 0.021 0.5 51 15
Chassal 1/17/95 23.4 750 7.6 141 0.05 0.01 0.444 0.444 0.022 0.036 0.5 53 17
Chassal 4/6/95 23.8 755 7.56 140 0.05 0.01 0.465 0.465 0.014 0.01 0.5 55 16
Chassal 7/26/95 23.7 915 7.6 147 0.05 0.04 0.386 0.389 0.01 0.01 0.5 17
Chassal 10/23/95 23.3 548 7.65 145 0.05 0.01 0.492 0.494 0.023 0.012 0.5 52 13
Chassal 2/8/96 23.5 497 7.6 142 0.58 0.03 0.492 0.022 0.029 0.5 50 12
Chassal 4/16/96 22.9 594 7.63 144 0.416 0.01 0.479 0.479 0.023 0.023 0.5 51 14
Chassal 7/17/96 23.9 702 7.55 146 0.441 0.019 0.492 0.493 0.01 0.01 0.5 63.47 16.48
Chassal 10/16/96 24.2 714 7.67 148 0.12 0.01 0.458 0.458 0.018 0.01 0.5 50 16
Chassal 1/28/97 23.5 936 7.61 153 0.01 0.479 0.479 0.03 0.022 0.52 50 19
Chassal 4/8/97 23.2 1395 7.58 145 0.13 0.01 0.481 0.481 0.039 0.015 0.5 53 28
Chassal 7/9/97 23.5 1864 7.54 153 0.14 0.01 0.472 0.472 0.01 0.013 0.3 60.4 36.4
Chassal 10/14/97 23.3 1569 7.54 149 0.387 0.01 0.173 0.173 0.017 0.017 0.42 61.1 32.1
Chassal 1/29/98 23.4 599 7.55 147 0.6 0.134 0.01 0.466 0.466 0.023 0.024 0.3 48.8 13.3
Chassal 4/13/98 23.2 582 6.73 139 0.54 0.05 0.01 0.511 0.511 0.025 0.02 0.3 49.4 12.7
Chassal 7/15/98 23.5 565 7.61 143 0.53 0.05 0.01 0.509 0.509 0.3 0.017 0.31 51.3 12.2
Chassal 10/20/98 23.5 526 7.56 141 0.69 0.01 0.426 0.426 0.013 0.01 0.67 49.1 11.3
Chassal 1/21/99 23.5 649 7.61 139 0.63 0.01 0.488 0.488 0.035 0.015 0.29 49.6 14.6
Chassal 4/26/99 23.4 875 7.63 143 0.33 0.01 0.11 0.111 0.015 0.019 0.44 54 20.3
Chassal 7/26/99 23.4 851 7.77 146 0.65 0.01 0.464 0.467 0.024 0.017 2.2 54.6 19.1
Chassal 10/11/99 23.3 845 7.6 143 0.57 0.01 0.465 0.465 0.018 0.021 0.3 55.4 19
Chassal 1/13/00 23.4 1260 7.56 145 0.01 0.497 0.497 0.028 0.018 0.3 57.7 26.6
Chassal 4/19/00 23.6 2060 7.34 148 0.86 0.01 0.515 0.515 0.038 0.01 0.3 70.1 43.7
Chassal 7/18/00 23.2 2510 7.49 144 0.66 0.01 0.496 0.512 0.022 0.021 0.3 73.6 53.5
Chassal 10/23/00 23.2 1110 7.53 141 0.58 0.01 0.397 0.397 0.022 0.028 0.3 56 25
Chassal 1/11/01 23.2 1401 7.57 143 0.6 0.01 0.488 0.488 0.019 0.024 0.3 65.2 29.9
Chassal 4/23/01 24.4 1608 7.57 159 0.48 0.01 0.482 0.482 0.019 0.021 0.3 68.2 32.7
Chassal 7/25/01 23.5 2290 7.47 0.51 0.433 0.433 0.027 0.018 0.3 72.6 44.7
Chassal 10/15/01 23.2 1080 7.71 142 0.5105 0.011 0.4758 0.5 0.018 0.021 1 53.7 23.7
Chassal 1/29/02 23.2 1069 7.6 159 0.5 0.027 0.526 0.526 0.018 0.01 0.3 54.84 23.09
Chassal 4/9/02 23.3 1318 7.52 152 0.5 0.024 0.508 0.508 0.019 0.014 0.3 60.4 27.9
Chassal 7/22/02 20.4 1627 8.08 158 0.49 0.12 0.4879 0.4879 0.015 0.016 0.244 56.4 34
Chassal 10/7/02 24 912 7.56 162 0.5 0.012 0.006 0.499 0.499 0.017 0.021 0.3 54.3 19.3
Chassal 1/15/03 23.17 681 7.57 156 0.569 0.012 0.006 0.502 0.502 0.016 0.012 0.3 50.4 15.2
Chassal 4/14/03 23.45 629 7.49 152 0.44 0.012 0.006 0.437 0.437 0.026 0.011 0.3 55.2 28.2
Chassal 7/24/03 22.48 787 7.53 151 0.697 0.005 0.006 0.516 0.516 0.015 0.013 0.5 53.8 18.9


I I I I I I I I I I I I I I







Sequence A
Location Sequence Dates DNaSen_slope UP/DOWN
2793 A 1/91-6/03 0.0461538 No evidence of trend
2872 A 1/91-6/03 -0.0353571 DOWN
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -0.406203 DOWN
Wells A Up UP 0
Wells A Down DOWN 2

Sequence B
Location Sequence Dates DNaSen_slope UP/DOWN
2793 B 1/91-12/97 -0.148945 DOWN
2872 B 1/91-12/97 -0.125 DOWN
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -0.2 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 2

Sequence C
Location Sequence Dates DNaSen_slope UP/DOWN
2793 C 1/98-6/03 0.665175 UP
2872 C 1/98-6/03 -0.00625 No evidence of trend
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.170833 No evidence of trend
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -0.025 No evidence of trend
6490 C 1/98-6/03 0.0857143 No evidence of trend
Wells A Up UP 1
Wells A Down DOWN 0







COLLECTION_DATE Mg Na K SC-F CI S04 F SampDate DtoH20 WL(MSL) MPElev WLWell
6/25/02 335 6/25/02 4.29 13.97
7/23/02 322 7/23/02 12.22 6.04
8/19/02 309 8/19/02 11 7.26
9/23/02 302 9/23/02 10.25 8.01
10/22/02 0.8 7.6 0.64 324 12 5.7 0.084 10/22/02 11.95 6.31
11/18/02 0.86 7.8 0.64 326 13 5.6 0.075 11/18/02 11.2 7.06
12/17/02 0.87 8.1 0.66 311 14 5.7 0.069 12/17/02 10.4 7.86
1/28/03 0.87 8 0.63 334 14 5.7 0.1 1/28/03 10.2 8.06
2/17/03 0.86 7.9 0.63 336 15 5.8 0.12 2/17/03 10.2 8.06
3/26/03 0.85 7.8 0.62 340 15 5.6 0.083 3/26/03 9.9 8.36
4/22/03 0.9 7.83 0.63 345 16 5.5 0.08 4/22/03 10.7 7.56
5/27/03 0.86 7.7 0.59 342 16 5.7 0.079 5/27/03 11.48 6.78
6/24/03 0.86 7.68 0.59 336 17 5.7 0.082 6/24/03 10.8 7.46






2


README for Appendix H: Spring and Well Data


Table Al. Diagram for Finding Corresponding Spring and Well Data.











M miscellaneous and im portant issues ...................................................................... .......................................134
Falling well-water levels a districtwide and statewide problem in wells............................................. 134
Nitrogen and phosphorous nutrients Regional and local problem in springs.................................... 137
Nitrogen in the Northwest Florida Water Management District............................................... 137
Nitrogen in the Suwannee River Water Management District................................... ................. 139
Nitrogen in the St. Johns River and Southwest Florida Water Management Districts ................................ 148
Marion County ........... ............................................ 148
R rainbow Springs G roup.............................................................. ............................................... 148
C itru s C ou nty ............... ................................................................................................ ................... 14 9
K ing 's B ay Springs G group ....................................................................................... ......................149
H om osassa Springs G group ....................................................................................... ......................149
C hassahow itzka Springs G roup.................................................................................. ....................149
H ernando C county ..................... . ..............................................................................................................149
W eeki W achee Springs G group ................................................................................ .......................150
Boat Springs, Bobhill, and M agnolia Springs................................ .......................... .. 150
Hillsborough County.................................. ............ .. .................. ......... 150
Lithia Spring and B uckhorn Spring................................................................................................ 150
Summary of the nitrate problem in spring water .................................................. ................................ 150
Phosphorus in spring water by water management district............................... ... ................. 150
Suwannee River W after M management ........................................ .......... ............ .................151
St. Johns River and Southwest Florida Water Management Districts ............................................... 161
Comparison of coastal to inland and tidal to non-tidal springs.................. .................... 162
Global factors influencing Florida's groundwater ......................................... 164
Global long-term cycles: Atlantic mutidecadal oscillation................................................. ................. 164
Global short-term cycles: El Nifio and La Nifia ................................................. ................................. 166
A cid rain ...... ........ .... ....... ................... ...... ................... ............. .. .. . ............ 168
Implications of future low rainfall and increasing state water demands .............................. ................. 168
Implications regarding long-term sustainability ..................................................... ............................... 169
R eferen ces ................................... .. .......... .................. .. .... ... .................................. .................17 1
(Appendix Online references can be found at hup \ \ .\ .uflib.ufl.edu/ufdc/?b=UF00095137)
Appendix A Relationships among spring flows, rock, and salinity indicator concentration for
selected springs ........................... ........... ........................ .............179
Appendix B Glossary of terms and possible causes of trends ................................. 183
A pp endix B 1 G lo ssary .................................................................................................. ....................... 183
Appendix B2 Interpretations of the origins of temporal trends in Florida's groundwater..................Online
Appendix C Well construction and location data....................................................Online
A appendix D Spring locations................................................................................ .....................................191
Appendix E Statistics....................................... ..........................................................Online
Appendix El Statistical methodologies............................................................................ ..................Online
Appendix E2 Macro codes for the Mann-Kendall tests and Sen slope........................................Online
A pp endix F A naly tes ........................................................................................... ...................................... 193
A appendix F A nalyte descriptions ...................................................... .................................................193
Appendix F2 Analyte list with STORET codes....................................................... ..............................200
Appendix G Data quality assurance (QA) officer contact information ..................................................203
Appendix H D ata from springs and w ells..............................................................................................Online
Appendix I Descriptive statistics ...............................................................................................Online
Appendix J Seasonality results ............ .............................................. .......................................... .............Online
Appendix K Mann-Kendall and Sen slope results.......... .................................................Online
Appendix L Districtwide maps.................................................................................................................Online
Appendix L1 Northwest Florida Water Management District springs ........................................Online
Appendix L2 Northwest Florida Water Management District wells .... ................................. Online
Appendix L3 Suwannee River Water Management District springs............................................Online
Appendix L4 Suwannee River Water Management District wells ..................................................Online
Appendix L5 St. Johns River Water Management District springs................................................Online
Appendix L6 St. Johns River Water Management District wells ................................... Online
Appendix L7 Southwest Florida Water Management District springs........................................Online



vi







FK_STATI PK_SAMPI DATE COLTIME MONTH SEASON SEASON_ Temp Fe DO Fcol Entero pH
131 NWFM000 8/30/00 1005 8 Summer 2 22.1 3.1 4.04
131 NWFM000 9/27/00 1059 9 Fall 3 22.9 0.3 4.81
131 NWFM001 10/25/00 1144 10 Fall 3 23.1 0.14 4.33
131 NWFM001 11/22/00 1515 11 Fall 3 21.7 0.13 5.51
131 NWFM001 12/28/00 1714 12 Winter 4 20.7 0.6 4.33
131 NWFM010 1/25/01 1104 1 Winter 4 22.2 0.06 4.7
131 NWFM010 2/28/01 1854 2 Winter 4 21 0.14 4.45
131 NWFM010 3/28/01 1827 3 Spring 1 19.2 0.61 4.05
131 NWFM010 5/1/01 1102 5 Spring 1 21.2 1.08 4.26
131 NWFM010 5/25/01 1424 5 Spring 1 21.9 0.11 4.33
131 NWFM010 6/26/01 1446 6 Summer 2 21.8 0.1 4.01
131 NWFM010 7/24/01 1621 7 Summer 2 22 0.1 4.28
131 NWFM010 8/29/01 1631 8 Summer 2 21.9 0.11 4.23
131 NWFM010 9/26/01 1508 9 Fall 3 21.8 0.21 4.28
131 NWFM011 10/25/01 1130 10 Fall 3 21.8 0.06 4.16
131 NWFM011 11/19/01 1708 11 Fall 3 21.8 0.31 3.86
131 NWFM011 12/18/01 1256 12 Winter 4 21.76 0.28 4.71
131 NWFM020 1/22/02 1958 1 Winter 4 21.73 0.15 4.66
131 NWFM020 2/20/02 1531 2 Winter 4 21.73 1.82 4.65
131 NWFM020 3/19/02 1340 3 Spring 1 21.75 1.66 4.64
131 NWFM020 4/24/02 1528 4 Spring 1 21.76 0.16 4.43
131 NWFM020 5/29/02 1501 5 Spring 1 21.76 0.04 4.5
131 NWFM020 6/26/02 1552 6 Summer 2 21.84 0.1 4.42
131 NWFM020 7/24/02 1651 7 Summer 2 21.76 0.05 4.41
131 NWFM020 8/28/02 1411 8 Summer 2 21.86 0.09 4.24
131 NWFM020 9/24/02 1430 9 Fall 3 21.63 0.14 4.4
131 NWFM021 10/29/02 1436 10 Fall 3 22.07 0.09 4.51
131 NWFM021 11/25/02 1432 11 Fall 3 22.13 0.06 4.57
131 NWFM021 12/19/02 1349 12 Winter 4 21.86 0.14 4.34
131 NWFM030 1/16/03 1440 1 Winter 4 21.7 0.43 1 1 4.62
131 NWFM030 2/18/03 1607 2 Winter 4 21.36 0.18 1 1 4.62
131 NWFM030 3/18/03 1637 3 Spring 1 21.52 0.25 1 1 4.58
131 NWFMO30 4/23/03 1219 4 Spring 1 21.55 0.15 1 1 4.5
131 NWFM030 5/27/03 1731 5 Spring 1 22.05 0.15 1 1 4.36
131 NWFM030 6/24/03 1451 6 Summer 2 21.71 0.11 1 1 4.48










Descript. Stats. for Chassahowitzka Main; Oct., 1993 to July, 2003
(Discharge from March, 1997 to Dec., 2003)
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 38 22.6 23.3 23.5 23.8 24.4
SCf uS/cm 38 588.0 1132.0 2325.0 3395.0 6390.0
pH s.u. 38 7.2 7.4 7.5 7.6 7.8
Bicarb mg/1 37 132.0 140.0 143.0 149.5 191.0
D-N03 mg/1 37 0.0 0.4 0.4 0.5 0.5
T-N03 mg/1 NA NA NA NA NA NA
TKN mg/1 21 0.0 0.1 0.1 0.2 1.8
D-NO3NO2 mg/1 38 0.0 0.4 0.4 0.5 0.5
T-P mg/1 38 0.0 0.0 0.0 0.1 1.1
D-P04 mg/1 38 0.0 0.0 0.0 0.0 0.1
T-NH3 mg/1 37 0.0 0.0 0.0 0.0 1.2
T-N mg/1 21 0.3 0.5 0.5 0.6 2.4
TOC mg/1 38 0.2 0.3 0.5 0.5 4.1
Ca mg/1 38 49.1 53.2 63.8 73.8 101.0
Mg mg/1 38 12.7 21.9 45.5 68.8 130.0
Na mg/1 38 47.7 119.3 313.5 498.3 1030.0
K mg/1 38 2.2 4.6 12.0 20.6 38.7
D-S04 mg/1 38 15.8 36.8 86.7 145.3 261.0
F mg/1 33 0.1 0.1 0.1 0.2 0.2
Cl mg/1 38 82.3 213.8 590.1 929.8 1870.0
D-Fe ug/1 38 25.0 30.0 30.0 40.5 60.0
D-Sr ug/1 29 50.0 50.0 380.0 685.0 1400.0
TDS mg/1 38 293.0 539.0 1209.0 1865.0 3560.0
Discharge CFS 70 34.0 48.8 56.0 65.3 80.0
*Less than 10 samples
NA No samples







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT SO4TOT TKN
20107273 HOR010C1 13-Nov-00 11/13/00 11 Fall 3 1 11.8 10.3 69.1 12 0.14 59 0.04
20117358 HOR010C1 11-Dec-00 12/11/00 12 Winter 4 1 8.9 7.6 71.8 13.5 0.18 44.5 0.08
20127743 HOR010C1 2-Jan-01 1/2/01 1 Winter 4 1.2 8.1 9.3 64.3 12.7 0.21 60 0.07
21017875 HOR010C1 21-Feb-01 2/21/01 2 Winter 4 0.9 9.4 10.9 72.2 11.9 0.19 62.5 0.19
21027960 HOR010C1 5-Mar-01 3/5/01 3 Spring 1 0.8 9 10.7 71.7 11.2 0.21 58.8 0.04
21038161 HOR010C1 11-Apr-01 4/11/01 4 Spring 1 1 9.1 10.9 72.3 12.1 0.18 68.5 0.17
21048317 HOR010C1 3-May-01 5/3/01 5 Spring 1 1.3 9.3 11.4 76.1 11.5 0.23 65 0.06
21058471 HOR010C1 13-Jun-01 6/13/01 6 Summer 2 1.5 9.1 10.9 74.2 12.1 0.2 72 0.77
21068638 HOR010C1 10-Jul-01 7/10/01 7 Summer 2 1 9.2 10.7 69.6 9 0.19 50 0.35
21088901 HOR010C1 10-Sep-01 9/10/01 9 Fall 3 0.9 9.3 11.5 73.6 12.5 0.22 66 0.09
21099157 HOR010C1 16-Oct-01 10/16/01 10 Fall 3 1 9.8 11.5 70.8 13.2 0.25 84.7 0.08
21109346 HOR010C1 13-Nov-01 11/13/01 11 Fall 3 1 8.5 10.2 63.8 12.1 0.27 64.7 0.06
21119457 HOR010C1 11-Dec-01 12/11/01 12 Winter 4 0.9 9.1 11.5 75.8 12.7 0.23 67.6 0.07
21129671 HOR010C1 7-Jan-02 1/7/02 1 Winter 4 1 9.2 11.8 74.9 11.9 0.23 64.4 0.05
22019848 HOR010C1 18-Feb-02 2/18/02 2 Winter 4 1.1 10.8 15.4 98.3 11.7 0.19 83.7 0.05
22029965 HOR010C1 4-Mar-02 3/4/02 3 Spring 1 0.9 9 12.7 74.5 13.2 0.25 90.3 0.04
22030175 HOR010C1 1-Apr-02 4/1/02 4 Spring 1 1 10 14.9 87.2 14 0.26 108 0.24
22050444 HOR010C1 3-Jun-02 6/3/02 6 Summer 2 1.1 10.2 13.9 79.6 13.2 0.28 81.2 0.13
HOR010C1 10/16/02 10 Fall 3 1.8 19.8 9.8 52.5 5.5 0.2 4.4 1.4
HOR010C1 11/20/02 10 Fall 3 1.3 12.2 13.6 83.9 18.3 0.36 115 0.5
HOR010C1 4/10/03 4 Spring 1 1.3 8.2 10.4 66.1 13 0.26 0.5
HOR010C1 5/19/03 5 Spring 1 1.1 8.1 9.3 62.3 12.6 0.31 58.3 0.5
HOR010C1 6/12/03 6 Summer 2 1 8.7 9.9 65.3 9.2 0.2 44.9 0.4
HOR010C1 7/15/03 7 Summer 2 1.1 8.1 10.5 65.7 13.2 0.29 76.5 0.5
HOR010C1 8/18/03 8 Summer 2 0.9 8.6 11.7 71.2 13.8 0.22 84.5 0.6
HOR010C1 9/15/03 9 Fall 3 1.2 9 11.5 71.4 12.9 0.22 75.7 0.81







SAMPDATE D-NO3NO T-P D-P04 TOC D-Ca D-Mg D-Na D-K D-CI D-S04 D-F D-Fe D-Sr TDS
4/29/91 0.22 0.03 0.03 0.5 27 7.2 21 0.69 34 18 0.07 20 174
7/29/91 0.22 0.03 0.02 0.5 28 8.1 16 0.61 26 18 0.08 156
10/23/91 0.24 0.05 0.03 0.5 28 6.7 17 0.6 29 16 0.07 20 178
4/12/93 0.24 0.03 0.03* ** **
7/20/94 0.22 0.02 0.02 1.98 32 7.7 20 0.6 32 18 0.09 30 178
1/23/95 0.2 0.04 0.04 0.5 33 8.2 21 0.6 37 17 0.06 30 168
4/3/95 0.244 0.029 0.022 0.5 31 7.6 19 0.6 34 18 0.078 30 175
7/27/95 0.251 0.05 0.026 0.5 28 7.1 22 0.7 40 19 0.06 30 166
10/25/95 0.253 0.023 0.014 0.5 32 8.9 29 1 53 20 0.08 30 191
2/6/96 0.245 0.01 0.013 0.5 31 7.8 23 0.8 42 19 0.07 29 181
4/18/96 0.224 0.031 0.025 0.38 31 7.8 19 0.8 33 17 0.08 294 50 176
7/18/96 0.217 0.01 0.01 0.5 33.6 7.86 16.2 0.6 32 17 0.11 30 80 173
10/17/96 0.222 0.053 0.034 0.5 36 18 113 4 208 39 0.082 30 50 488
1/29/97 0.228 0.023 0.013 0.5 29 7.7 21 0.6 36 17 0.09 30 50 182
4/9/97 0.218 0.022 0.028 0.5 27 7.4 19 0.7 37 18 0.215 30 50 174
7/9/97 0.244 0.015 0.017 0.3 29.4 7.3 17.4 0.633 32 17.7 0.09 30 50 157
10/7/97 0.219 0.018 0.019 0.42 30.6 7.76 21.6 0.64 37.1 18.4 0.092 30 50 180
1/15/98 0.22 0.022 0.024 0.3 32.2 8.8 28.3 0.87 50.6 18.6 0.056 30 50 204
4/14/98 0.219 0.038 0.019 0.34 29.8 7.88 25.3 0.82 45.9 20.2 0.002 30 50 185
7/13/98 0.238 0.012 0.018 0.3 30 6.61 16.2 0.75 29.4 14.6 1.23 30 50 145
10/20/98 0.244 0.019 0.013 0.49 29.6 7.93 19.1 0.66 32.6 15.8 0.18 30 50 154
1/20/99 0.237 0.042 0.028 0.12 29 7.3 16.1 0.57 29.9 17.2 0.05 30 50 146
1/12/00 0.242 0.027 0.023 0.3 32.5 7.79 16.4 0.52 28.4 25 210 177
1/10/01 0.26 0.028 0.029 0.3 28.8 8.85 29.2 1.08 51 19.1 0.08 25 700 209
1/28/02 0.248 0.024 0.019 0.3 30.58 9.28 31.74 1.15 55.22 21.12 0.08 25 210 208
1/16/03 0.243 0.019 0.016 0.3 31.2 9.9 35.5 1.46 69.6 23.5 30 381 249
7/15/03 0.24 0.015 0.019 0.3 32.1 10.7 44 1.8 78.8 23.8 42.4 250 260







Sequence A
Location Sequence Dates D P Ha down D P n
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 0.90862 16
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D P Ha down D P n
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates D P Ha down D P n
2793 C 1/98-6/03 0.3918 10
2872 C 1/98-6/03 0.991 13
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.98679 13
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0.90823 13
6490 C 1/98-6/03 0.13963 10
Wells A Up
Wells A Down







Sequence A
Location Sequence Dates D P Ha_up D P Ha down D P n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







Sequence A
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n

Alexander Springs B 1/91-12/97 0.34 0.66 17.00
Apopka B 1/91-12/97 -9999 -9999 -9999
Fern Springs B 1/91-12/97 0.48604 0.51396 19
Juniper Springs B 1/91-12/97 0.70 0.30 20.00
Miami Springs B 1/91-12/97 -9999 -9999 -9999
Palm Springs B 1/91-12/97 -9999 -9999 -9999
PDL B 1/91-12/97 0.33836 0.66164 18
Rock Springs B 1/91-12/97 0.81032 0.18968 20
Salt Spring B 1/91-12/125 -9999 -9999 -9999
Sanlando Springs B 1/91-12/97 -9999 -9999 -9999
Silver Glen Springs B 1/91-12/97 0.98 0.02 18.00
Starbuck Spring B 1/91-12/97 -9999 -9999 -9999
Sweetwater Spring B 1/91-12/97 0.86293 0.13707 21
Volusia Springs B 1/91-12/97 -9999 -9999 -9999
Wekiva B 1/91-12/125 0.93 0.07 21.00
Springs up
Springs down

Sequence C
Location Sequence Dates DN03N02_Ha_up D_NO3NO2 Ha down DN03N02_n
1417 C 1/98-6/03 -9999 -9999 -9999
1420 C 1/98-6/03 -9999 -9999 -9999
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 -9999 -9999 -9999
1763 C 1/98-6/03 -9999 -9999 -9999
1764 C 1/98-6/03 -9999 -9999 -9999
1779 C 1/98-6/03 -9999 -9999 -9999
1780 C 1/98-6/03 -9999 -9999 -9999
1781 C 1/98-6/03 -9999 -9999 -9999
1931 C 1/98-6/03 -9999 -9999 -9999
Wells up
Wells down

Alexander Springs C 1/98-6/03 0.53 0.47 18.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 0.22928 0.77072 19
Juniper Springs C 1/98-6/03 -9999 -9999 -9999
Miami Springs C 1/98-6/03 -9999 -9999 -9999
Palm Springs C 1/98-6/03 -9999 -9999 -9999
PDL C 1/98-6/03 -9999 -9999 -9999
Rock Springs C 1/98-6/03 -9999 -9999 -9999






Sequence A
Location Sequence Dates D_NO3_Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 -9999 -9999
91 A 1/91-6/03 -9999 -9999
129 A 1/91-6/03 -9999 -9999
131 A 1/91-6/03 -9999 -9999
243 A 1/91-6/03 -9999 -9999
245 A 1/91-6/03 -9999 -9999
312 A 1/91-6/03 -9999 -9999
313 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Sequence B
Location Sequence Dates D_NO3_Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 -9999 -9999
91 B 1/91-12/97 -9999 -9999
129 B 1/91-12/97 -9999 -9999
131 B 1/91-12/97 -9999 -9999
312 B 1/91-12/97 -9999 -9999
313 B 1/91-12/97 -9999 -9999
Wells B Up 0
Wells B Down 0

Sequence C
Location Sequence Dates D_NO3_Sen_slope UP/DOWN
67 (and Spring) c 1/98-6/03 -9999 -9999
91 C 1/98-6/03 -9999 -9999
129 C 1/98-6/03 -9999 -9999
131 C 1/98-6/03 -9999 -9999
243 C 1/98-6/03 -9999 -9999
245 C 1/98-6/03 -9999 -9999
312 C 1/98-6/03 -9999 -9999
313 C 1/98-6/03 -9999 -9999
Wells C Up 0
Wells C Down 0






BULLETIN NO. 69


reflected in the number of downward trends for specific conductance (one increased, five
decreased).

Like wells in the northern part of the state, water levels and pH often decreased
significantly in a number of places in the SWFWMD. Figure 50 illustrates declining water levels
and pH for two SWFWMD unconfined groundwater wells. Water level decreased at Well 996.
At the same time, WT tests did not affirm differences between Sequence B and C water levels.
The decreasing water level-trend was probably caused by the drought which occurred during
Sequence C (low points are visible after the year 2000), but recovered after 2001. Thus, the
overall reduction in water levels was relatively small, when viewed from Sequence A
(insignificant difference in the WT test). In contrast, Well 1087 had a significant reduction in
water level and in pH.

Well 707 (confined; Figure 51), along with wells 996 and 1087 (unconfined),
demonstrated declining water levels that matched trends toward the three previously discussed
WMDs. As with the other WMDs, a decrease in pH appeared to accompany the fall in water
levels. The pH levels in Sequences B and C in Well 707 indicated the lack of verifiable
difference between the time sequences (WT test) although a MK test detected a significant
downward slope for pH. On the other hand, significant declines in water levels were observed.
As with the unconfined groundwater, confined Well 707 showed a reduction in water level
during the drought in 2000. The similarities in water-level changes in the SWFWMD and in the
northern WMDs for springs and wells, suggested a statewide cause rather than only local
influences.

South Florida Water Management District

Figure 52 displays the location of the wells in the SFWMD. A small number of trends
were present for a variety of analytes but nothing to suggested strong district-wide changes. The
only possible exception was pH. For time Sequence C, of nine wells six registered trends-one
increased and five decreased for pH. Examples of decreasing pH levels can be seen in two
unconfined groundwater wells: 6490 and 3398 (Figure 53). The figure also demonstrates that
water levels decreased in Well 6490. Relatively higher water levels at the start of the study may
account for much of the change (Figure 53, top). The connection between pH and water level
will be explored later. However, pH trends around the state were dominantly toward lower
values. South Florida was no exception.

Districtwide Spring Trends

Previously, the discussion has been restricted to defining trends for specific analytes at
individual stations (springs or wells). Maps depicting all of the trends for each analyte for each
spring or well by water management district can be found in Appendix L (Online).

Evaluating individual trends is essential for this study. However, looking at trends from
another scale can often be enlightening. For example, were there districtwide or statewide areal
trends present? The sign test was the major tool used for the analyses.








































Liles
0 510 20 30
Kionoeters
Z--ell
0510 20 30
rejectedd Coordinate System: FOEP Albers HA


Figure L39. Magnesium trends in SRWMD wells.


Figure L40. Nitrate trends in SRWMD wells.


Legend
SNWFmMD


a SFVM. se








rojectd Coordinate System FDEPAIbers HAl
'rojected Coordlinate System: FDEPAlbeis HAI


Legend
IW NWfW4MD







0 5 10 20 30 "
S #gn 'lncrea N'aI,
V SgncnfDearahus)
Miles

0510 20 30
Kilometed Coordinate Syste: F PAers
0510 20 30
'rojecbd Coordinate System: FDEPAIbers A


Figure L41 Phosphate trends in SRWMD wells.


Figure L42. pH trends in SRWMD wells.


L15







SWFWMD
Location Sequence Dates Turb Ha down Turb_n
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 0.00839 18
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 0.17325 15
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 0.26329 12
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates Turb_Ha_down Turb_n
707 B 1/91-12/97 -9999 -9999







DATE Turb-f Ca Mg Na K SC-f CI S04 F WL(msl)
2/27/91 3.2 1.5 6.2 2.1 71 9.6 5 0.2 11.89
4/23/91 2.8 1.4 6.4 1.4 71 9.2 5 0.2 11.75
7/30/91 3 1.4 6.3 2.3 760 8.3 0.2 0.1 11.3
10/28/91 3.3 1.5 6.3 2.3 69 8.6 0.2 0.1 10.48
1/28/92 3.2 1.5 6.3 2.3 71 9.7 0.2 0.1 11.24
3/4/92 2.7 1.3 6.4 2.4 74.4 8.5 0.2 0.1 11.59
4/9/92 2.6 1.5 6.5 2.5 72 8.9 0.2 0.1 11.11
7/21/92 3 1.6 6.4 2.5 69 9 0.2 0.1 9.55
10/13/92 2.7 1.4 6.1 2.4 70 9.4 0.2 0.1 10.55
1/13/93 2.7 1.3 6.3 2 69 8.8 0.2 0.1 12.46
4/14/93 2.7 1.4 6.4 2.1 70 9.8 0.4 0.1 11.92
7/22/93 2.9 1.5 6.4 2 72 6.4 0.2 0.1 9.19
10/14/93 2.7 1.4 6.4 2.3 72 9 0.2 0.1 8.8
1/13/94 2.8 1.4 6.2 2.1 71 8.7 0.2 0.1 10.73
4/20/94 2.7 1.4 6.5 2.1 72 9 0.2 0.1 10.21
7/20/94 2.9 1.5 6.4 2 71 8.7 0.2 0.1 11.27
10/26/94 3 1.5 6.3 2 72 8.9 0.2 0.1 11.97
10/26/94 3 1.5 6.3 2 8.9 0.2 0.1 *
12/7/94 3.2 1.5 6.3 2 72 9 0.2 0.1 12.21
1/10/95 71 9 0.2 12.19
3/3/95 ****71* ** 12.25
3/23/95 ****71* ** 12.5
4/27/95 71 8.9 0.2 12.54
5/31/95 72 11.46
6/28/95 ****73 9.98
7/19/95 73 8.7 0.2 10.01
8/22/95 72 11.52
9/29/95 72 10.63
10/31/95 ****71* 11.88
11/29/95 ****71* 12.98
12/27/95 ****71* 11.28
1/25/96 ****71* 11.81
2/28/96 ****71* 10.59
3/28/96 ****71* 10.53
4/30/96 ****71* 11.69
5/23/96 ****73 9.56
7/2/96 ****73 8.82
7/30/96 ****72 8.33
8/29/96 ****73 8.1
9/25/96 ****66 9.42
10/23/96 65 9.72
11/19/96 69 9.22
12/17/96 52 10.53
2/25/97* 71 10.05







SWFWMD
Location Sequence Dates Color_Ha_up
707 A 1/91-6/03 -9999
736 A 1/91-6/03 -9999
737 A 1/91-6/03 -9999
775 A 1/91-6/03 -9999
996 A 1/91-6/03 -9999
997 A 1/91-6/03 -9999
1087 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999
Boyette A 1/91-6/05 -9999
Chassal A 1/91-6/06 -9999
ChassaM A 1/91-6/07 -9999
Homosl A 1/91-6/10 -9999
Homos2 A 1/91-6/11 -9999
Homos3 A 1/91-6/12 -9999
HidRivH A 1/91-6/09 -9999
HidRiv2T A 1/91-6/08 -9999
hunterspr A 1/91-6/13 -9999
lithiamain A 1/91-6/14 -9999
magnolspr A 1/91-6/15 -9999
pumphous A 1/91-6/16 -9999
rainbow A 1/91-6/17 -9999
rainbow A 1/91-6/18 -9999
rainbow A 1/91-6/19 -9999
rainswamp3 A 1/91-6/20 -9999
mboBseep A 1/91-6/21 -9999
saltspr A 1/91-6/22 -9999
SWBettyJay A 1/91-6/23 -9999
SWBoat A 1/91-6/24 -9999
SWBublng A 1/91-6/25 -9999
SWBuckhm A 1/91-6/26 -9999
SWCatfish A 1/91-6/27 -9999
tarponholespr A 1/91-6/28 -9999
trottermain A 1/91-6/29 -9999
weekwachmain A 1/91-6/30 -9999
Springs A Up
Springs A Down

Location Sequence Dates Color_Ha_up
707 B 1/91-12/97 -9999












Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value

10 Temp Deg C 51 23.4 24.5 25.2 26.3 28.8
1046 D-Fe microg/1 6 *
1056 D-Mn microg/1 3 *
29801 Bicarb mg/1 13 266.0 287.0 290.0 298.0 305.0
299 DO mg/1 47 0.1 0.1 0.2 0.4 1.8
31616 Fcol #/100 ml 12 1.0 1.0 1.0 1.0 1.0
31649 Entero #/100 ml 12 1.0 1.0 1.0 1.0 1.0
406 H ph units 47 6.3 6.6 6.7 6.8 6.9

4255 D-Alk mg/1
530 Resid mg/1 12 4.0 4.8 6.0 9.8 14.0
608 D-NH3 mg/1 14 0.2 0.3 0.5 0.5 0.6
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-N3(N) mg/1 4 *
D-
631 NO3NO2 mg/1 14 0.0 0.0 0.0 0.0 0.0
666 D-P mg/1 14 0.0 0.0 0.1 0.1 0.1
671 D-PO4 mg/1 17 0.0 0.0 0.0 0.1 0.1
680 TOC mg/1 15 21.0 23.0 24.0 26.0 100.0
70300 TDS mg/1 16 397.0 418.8 432.0 460.0 508.0
72109 DtoH20 Ft 47 3.4 5.7 6.5 7.3 9.4
76 Turb Turb units 14 2.3 4.0 4.9 7.6 40.0
81 Color Pt-Co 13 75.0 120.0 150.0 200.0 300.0
82078 Turb(field) Turb units 15 0.0 0.0 1.7 3.2 4.2
915 D-Ca mg/1 14 99.1 108.0 110.0 111.0 120.0
925 D-Mg mg/1 14 10.0 10.8 10.9 11.1 12.0
930 D-Na mg/1 18 15.6 17.7 18.7 20.0 21.9
935 D-K mg/1 14 1.4 1.5 1.6 1.6 1.7
94 Cond(field) micromhos/cm 51 0.0 626.0 651.0 698.0 856.0
941 D-Cl mg/1 14 21.0 35.8 42.0 43.8 48.0
946 D-SO4 mg/1 14 0.2 2.1 3.0 4.8 5.5
950 D-F mg/1 14 0.2 0.2 0.2 0.2 0.2


*Less than 10 samples
NA No samples


nP~rrintivP ~t~ti~tir~ fnr 31C19


n~tP~r Anril~ 1985 tn .TllnP~ 2CIC13






FLORIDA GEOLOGICAL SURVEY


Childress, C. J. O., and Bathala, N., 1998, Water-quality Trends for streams and reservoirs in the
research triangle area of North Carolina, 1983-95: U.S. Geological Survey Water-
Resources Investigations Report 97-4061, 18 p.

Cleveland, W. S., and Devlin, S., 1988, Locally weighted regression analysis by local fitting:
Journal of the American Statistical Association, v. 83, p. 596-640.

Clouser, R. L., 2006, Issues at the rural-urban fringe: will Florida be prepared for 2030?:
http://edis.ifas.ufl.edu/FE661 (January, 2003).

Conover, W. J., 1999, Practical nonparametric statistics: New York, John Wiley and Sons, 584 p.

Cooper, H. H., 1964, A hypothesis concerning the dynamic balance of fresh water and salt water
in a coastal aquifer: U.S. Geological Survey Water Paper 1613-C, 12 p.

Copeland, R. E. ed., 2003, Florida spring classification system and spring glossary: Florida
Geological Survey Special Publication 52, 17 p.

Copeland, R., Upchurch, S., Summers, K., Janicki, P., Hansard, P., Paulic, P., Maddox, G.,
Silvanima, J., and Craig, P., 1999, Overview of the Florida Department of Environmental
Protection's integrated water resource monitoring efforts and the design plan of the Status
Network: Tallahassee, Florida Department of Environmental Protection, Ambient
Monitoring Section, 41 p.

Copeland, R., Hornsby, D., and Smith, D., 2000, Monitoring the effects of implementing best
management practices in a rural watershed in north-central Florida, in Conference
Proceedings of the National Water Monitoring Conference--Monitoring for the
Millennium, Austin, p. 89-100.

Day, C. D., 1997, Nitrate concentrations in soils and shallow groundwater near an agricultural
field in Santa Rosa County, Florida [Master's thesis]: Hattiesburg, University of Southern
Mississippi, 124 p.

DeHan, R. S., 2002, Workshop to develop blue prints for the management and protection of
Florida springs--Proceedings, Ocala, FL., May 8-9, 2002, Florida Geological Survey
Special Publication 51, Compact Disk.

Driscoll, F. G., 1996, Groundwater and wells: St. Paul, Johnson Division, 2nd ed., 1089 p.

Edwards aquifer authority, 2007, Water levels and spring flow rates, J17 index well live update:
http://edwardsaquifer.org/pages/J17RealTime.asp (January, 2007).

Elder, J. F., Hunn, J. D., and Calhoun, C. W., 1985, Wastewater application by spray irrigation
on a field southeast of Tallahassee, Florida; effects on groundwater quality and quantity,
1980-82: U.S. Geological Survey Water-Resources Investigations 854-4006, 41 p.






Sequence A
Location Sequence Dates D_Mg_n D_Mg_Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 21 0.075 UP
91 A 1/91-6/03 31 0.0923077 UP
129 A 1/91-6/03 -9999 -9999 -9999
131 A 1/91-6/03 25 0.014 UP
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 17 0.0033333 No evidence of trend
312 A 1/91-6/03 22 0 No evidence of trend
313 A 1/91-6/03 26 0.0025 No evidence of trend
Wells A Up 3
Wells A Down 0

Sequence B
Location Sequence Dates D_Mg_n D_Mg_Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 15 0.0576923 UP
91 B 1/91-12/97 19 0.0285714 No evidence of trend
129 B 1/91-12/97 20 0 No evidence of trend
131 B 1/91-12/97 19 0.0090909 UP
312 B 1/91-12/97 17 0 No evidence of trend
313 B 1/91-12/97 11 0.015 UP
Wells B Up 3
Wells B Down 0

Sequence C
Location Sequence Dates D_Mg_n D_Mg_Sen_slope UP/DOWN
67 (and Spring) c 1/98-6/03 -9999 -9999 -9999
91 C 1/98-6/03 12 0.0719643 No evidence of trend
129 C 1/98-6/03 -9999 -9999 -9999
131 C 1/98-6/03 -9999 -9999 -9999
243 C 1/98-6/03 -9999 -9999 -9999
245 C 1/98-6/03 15 0.005 UP
312 C 1/98-6/03 -9999 -9999 -9999
313 C 1/98-6/03 15 0.01 UP
Wells C Up 2
Wells C Down 0










Date T-Na T-K T-S04 T-F T-Sr TDS T-P04 T-CI DischDate FLOW-CFS
7/13/99 141 3.935 68.2 0.1245 784 628 0.047 261.00 7/13/99 100.36
11/16/99 153.4 4.049 72.033 0.1357 835 0.045 278.40 11/16/99 110.06
3/20/00 146.3 4.28 69.341 0.1272 790 614 0.05 263.00 3/20/00 91.8
1/17/01 143.54 4.315 71.661 0.1205 814 624 0.036 262.20 1/17/01 89.4
3/1/01 144.75 4.398 71.4 0.1286 804.66 637 0.019 272.20 3/1/01 80
7/3/01 150.85 3.585 60.053 0.1356 823.49 0.037 271.00 7/5/01 91.5
11/1/01 120.51 3.939 63.037 0.1336 701.05 496 0.042 227.70
1/22/02 131.53 4.168 64.575 0.1396 730.46 0.038 238.30
3/22/02 139.13 4.224 67.281 0.123 780.33 610 0.034 250.20
7/12/02 139.97 3.9 69 0.1439 782.09 581 0.049 258.90
11/15/02 140 3.9 68 0.1 770 631 0.04 260.00
1/23/03 140 3.9 67 0.1 770 630 0.03 260.00
6/27/03 130 3.7 68 0.1 750 646 0.05 250.00







Sequence A
Location Sequence Dates DMn_Sen_slope UP/DOWN
1417 A 1/91-6/03 -9999.00 -9999
1420 A 1/91-6/03 -9999.00 -9999
1674 A 1/91-6/03 -9999.00 -9999
1762 A 1/91-6/03 -9999.00 -9999
1763 A 1/91-6/03 -9999.00 -9999
1764 A 1/91-6/03 -9999.00 -9999
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 -9999.00 -9999
1931 A 1/91-6/03 -9999.00 -9999
Wells up 0
Wells down 0

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 -9999.00 -9999
Fern Springs A 1/91-6/03 -9999.00 -9999
Juniper Springs A 1/91-6/03 -9999.00 -9999
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 -9999.00 -9999
Rock Springs A 1/91-6/03 -9999.00 -9999
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 -9999.00 -9999
Starbuck Spring A 1/91-6/03 -9999.00 -9999
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 -9999.00 -9999
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 0
Springs down 0

Sequence B
Location Sequence Dates DMn_Sen_slope UP/DOWN
1417 B 1/91-12/97 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 0







SWFWMD
Location Sequence Dates Lat Long
775 C 1/98-6/03 27.58323805 -82.54609964
996 C 1/98-6/03 28.09673652 -82.52290027
997 C 1/98-6/03 28.09676875 -82.52291611
1087 C 1/98-6/03 28.46166861 -81.982155
1100 C 1/98-6/03 28.51018793 -82.18188895
7934 C 1/98-6/03 27.31484078 -82.17755696
7935 C 1/98-6/03 27.31483161 -82.17755585
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 28.43471056 -82.64110417
Boyette C 1/98-6/05 27.85366778 -81.27403
Chassal C 1/98-6/06 28.70927828 -82.57119332
ChassaM C 1/98-6/07 28.70862058 -82.57231179
Homosl C 1/98-6/10 28.79194978 -82.5845955
Homos2 C 1/98-6/11 28.79194415 -82.58462264
Homos3 C 1/98-6/12 28.79194025 -82.58459074
HidRivH C 1/98-6/09 28.76871028 -82.58324694
HidRiv2T C 1/98-6/08 28.76861389 -82.58434278
huntersspr C 1/98-6/13 28.88703415 -82.58848103
lithiamain C 1/98-6/14 27.86126566 -82.2275428
magnolspr C 1/98-6/15 28.42778223 -82.64903431
pumphous C 1/98-6/16 28.78937814 -82.58436523
rainbow C 1/98-6/17 29.09435573 -82.43282744
rainbow C 1/98-6/18 29.09378879 -82.43251985
rainbow C 1/98-6/19 29.08471107 -82.42390821
SWBettyJay C 1/98-6/23 28.69038722 -82.59150306
SWBublng C 1/98-6/25 29.09311936 -82.43020202
SWBuckhm C 1/98-6/26 27.88438441 -82.29892808
SWCatfish C 1/98-6/27 28.89059825 -82.59501498
tarponholespr C 1/98-6/28 28.87448637 -82.59083161
trottermain C 1/98-6/29 28.78935915 -82.5824632
weekwachmain C 1/98-6/30 28.51083145 -82.56943774
wilsonheadspr C 1/98-6/31 28.97192189 -82.31660917
Springs A Up
Springs A Down
































Legend I

SFOD

F SWMD
I SVVDV


7 asM fsprw.(sIn,
Miles
0 510 20 30
Klometers
0 10 20 40 60
Projected Coordinate System: F

Figure L82. Phosphate trends in SWFWMD.
springs.


s

Legend i

SSFMOID

MSRMD


--
7 Sqsc ttosrea (Sprrip)
Miles
0 510 20 30
Kilometers
0 1020 40 00
Projccted Coordinate System: F

Figure L84. Sodium trends in SWFWMD springs.


S





Miles






0 510 20 30
Kiomers
Legend 1020 40







Projectd Coordinate System: F

Figure L83. Potassium trends in SWFWMD
springs.


Projected Coordinate System: F3

Figure L85. Temperature trends in SWFWMD
springs.


L29











Descri tive Statistics for 737 Dates: December, 1987 to June, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 143 22.0 24.0 24.6 25.0 26.5
1046 D-Fe microg/1 28 479.0 762.5 815.0 900.0 1000.0
1056 D-Mn microg/1 11 14.0 29.0 32.0 48.5 100.0
29801 Bicarb mg/1 23 1.0 4.5 5.0 5.6 6.9
299 DO mg/1 43 0.0 0.1 0.1 0.2 2.4
31616 Fcol #/100 ml 4 *
31649 Entero #/100 ml 4 *
406 pH ph units 142 4.6 5.2 5.2 5.3 5.7
4255 D-Alk mg/ 9 *
530 Resid mg/1 5 *
608 D-NH3 mg/1 9 *
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 34 0.0 0.0 0.0 0.0 0.6
666 D-P mg/1 7 *
671 D-PO4 mg/1 13 0.1 0.1 0.1 0.2 0.2
680 TOC mg/1 13 1.0 1.0 1.4 1.6 3.0
70300 TDS mg/1 12 23.0 29.0 37.0 42.0 65.0
72109 DtoH20 Ft 142 3.8 5.4 6.4 7.7 9.1
76 Turb Turb units 8 *
81 Color Pt-Co 5 *
82078 Turb(field) Turb units 17 0.4 0.7 0.8 1.0 18.3
915 D-Ca mg/1 32 0.6 0.9 0.9 1.4 4.0
925 D-Mg mg/1 32 0.5 0.5 0.5 0.6 3.0
930 D-Na mg/1 32 3.6 4.1 4.1 4.2 7.9
935 D-K mg/1 32 1.0 1.3 1.3 1.5 1.7
94 Cond(field) micromhos/cm 142 30.6 39.7 40.0 41.0 131.0
941 D-Cl mg/1 34 5.0 6.0 6.4 6.6 7.3
946 D-SO4 mg/1 34 0.2 0.4 0.5 0.9 5.4
950 D-F mg/1 32 0.0 0.1 0.1 0.1 0.2


*Less than 10 samples
NA No samples


' ' ~


'^^' '






FLORIDA GEOLOGICAL SURVEY


Comparison of Coastal to Inland and Tidal to Non-Tidal Springs

Most trends observed in this study were for rock-matrix and saline analytes and most
were caused by the drought. By closely examining the trends displayed in this report, it became
obvious that the magnitude of change for springs located near the coast during the drought was
greater than for inland springs. However, did coastal springs have proportionally more increasing
trends than did inland springs? Did tidal springs have proportionally more increasing trends than
did non-tidal springs?

An inspection of Figures 13, 16, 27, and 32 reveals that for some spring, it is easy to
determine as to whether they are inland or not. Others are not so easy to identify. For example,
in the SJRWMD, almost all springs in this report are located very near the St. Johns River, which
parallels the coast (Figure 27). For this reason, SRJWMD springs were not used in this
evaluation. Wakulla Spring in the NWFWMD (Figure 13) is located near the coast and was
easily categorized as being a coastal spring. For the SRWMD, the Suwannee River flows
roughly perpendicular to the coast (Figure 16). Based on this observation, the authors
categorized the first seven springs, beginning at the mouth of the Suwannee River as being
coastal. All other SRWMD springs were placed into the inland category. Staff at the
SWFWMD categorized their springs for us. The spring categorizations for both WMDs are
found in Table 70.

Table 70. Inland and Coastal Springs within the SRWMD and the SWFWMD
SRWMD (including Wakulla Spring) SWFWMD
Coastal Inland Coastal Inland
Springs Springs Springs Springs
MAN ALR Betty Jay Bobhill
FAN LBS Boat Boyette
HAR TEL Chassahowitzka No. 1 Bubbling
RKB SBL Chassahowitzka Main Buckhorn
LRS ROY Hidden River Head Catfish
RLS GIL Blue Hidden River No. 2 Lithia
TRY POE Homosassa No.1 Rainbow No. 1
Wakulla (NWFWMD) HOR Homosassa No.2 Rainbow No. 4
Homosassa No.3 Rainbow No. 6
Hunters Rainbow Swamp No. 3
Magnolia Rainbow Bridge Seep
Pump House Weeki Wachee Main
Salt Wilson Head
Tarpon Hole
Trotter Main

Once the springs were categorized, a two-sample proportion test (Sullivan, 2004) was
used to determine whether the proportion of springs with upward trends was the same for both
coastal and inland springs. Data from Sequence C were used. Each test was conducted for each
of the rock-matrix and the saline indicators at a significance level of 0.05. The null hypothesis







Sequence A
Location Sequence Dates D_N03 NSen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates D_N03 NSen_slope UP/DOWN
1417 C 1/98-6/03 -9999.00 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 -9999.00 -9999
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 -9999.00 -9999
1931 C 1/98-6/03
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







SWFWMD
Location Sequence Dates DtoH20 Ha down DtoH20_n
775 C 1/98-6/03 0.02388 15
996 C 1/98-6/03 0.41287 64
997 C 1/98-6/03 0.62784 34
1087 C 1/98-6/03 0.11862 64
1100 C 1/98-6/03 0.00025 44
7934 C 1/98-6/03 0.0021 44
7935 C 1/98-6/03 0.01875 14
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999 -9999
Boyette C 1/98-6/05 -9999 -9999
Chassal C 1/98-6/06 -9999 -9999
ChassaM C 1/98-6/07 -9999 -9999
Homosl C 1/98-6/10 -9999 -9999
Homos2 C 1/98-6/11 -9999 -9999
Homos3 C 1/98-6/12 -9999 -9999
HidRivH C 1/98-6/09 -9999 -9999
HidRiv2T C 1/98-6/08 -9999 -9999
huntersspr C 1/98-6/13 -9999 -9999
lithiamain C 1/98-6/14 -9999 -9999
magnolspr C 1/98-6/15 -9999 -9999
pumphous C 1/98-6/16 -9999 -9999
rainbow C 1/98-6/17 -9999 -9999
rainbow C 1/98-6/18 -9999 -9999
rainbow C 1/98-6/19 -9999 -9999
SWBettyJay C 1/98-6/23 -9999 -9999
SWBublng C 1/98-6/25 -9999 -9999
SWBuckhm C 1/98-6/26 -9999 -9999
SWCatfish C 1/98-6/27 -9999 -9999
tarponholespr C 1/98-6/28 -9999 -9999
trottermain C 1/98-6/29 -9999 -9999
weekwachmain C 1/98-6/30 -9999 -9999
wilsonheadspr C 1/98-6/31 -9999 -9999
Springs A Up
Springs A Down







SAMP DATE T-N D-TKN T-NH3 T-N03 D-N03 T-P D-P04 TOC D-Ca D-Mg D-Na
1/17/95 0.236 0.01 0.196 0.197 0.028 0.048 8 56 11 17
4/5/95 0.05 0.01 0.287 0.287 0.011 0.01 0.95 60 15 47
7/31/95 0.05 0.03 0.3 0.303 0.031 0.021 0.96 60 19 94
10/23/95 0.923 0.01 0.226 0.227 0.013 0.01 8.96 63 12 20
2/7/96 2.967 0.01 0.238 0.025 0.01 4.53 57 10 14
4/22/96 0.479 0.011 0.289 0.289 0.013 0.013 1.59 59 12 21
7/17/96 0.936 0.034 0.24 0.243 0.01 0.01 8.23 71.7 11.81 17
10/15/96 0.78 0.02 0.28 0.28 0.046 0.043 3.23 58 13 28
1/27/97 0.074 0.01 0.293 0.293 0.032 0.016 0.74 58 18 67
4/22/97 0.67 0.01 0.334 0.334 0.039 0.01 0.66 62 28 164
7/8/97 0.05 0.01 0.347 0.347 0.01 0.014 0.65 60.1 22.3 110
10/15/97 0.037 0.01 0.343 0.343 0.012 0.014 3.04 54 27.5 166
1/14/98 0.46 0.253 0.01 0.207 0.207 0.021 0.024 8.18 56.3 10.5 14.4
4/13/98 0.4 0.172 0.01 0.228 0.228 0.027 0.015 5.86 56.3 10.6 14.6
7/22/98 0.6 0.406 0.01 0.194 0.194 0.02 0.012 10.4 60.8 10.6 21
10/21/98 0.56 0.01 0.212 0.212 0.01 0.01 7.5 56.4 11.4 15.5
1/18/99 0.41 0.017 0.32 0.32 0.017 0.02 0.95 56 12.3 23.1
4/27/99 0.45 0.01 0.38 0.381 0.011 0.01 1.1 64.2 30.1 162
7/29/99 0.27 0.01 0.257 0.26 0.017 0.018 3.9 63 19 74.5
10/11/99 0.34 0.01 0.327 0.327 0.017 0.017 0.86 62.5 15.6 44.3
1/11/00 0.032 0.311 0.311 0.104 0.02 0.73 62.9 20.5 90.7
4/20/00 0.46 0.01 0.36 0.36 0.014 0.011 0.3 63.4 21.6 101
7/17/00 0.48 0.01 0.338 0.338 0.022 0.018 1.39 74 40.1 247
10/24/00 0.52 0.01 0.293 0.293 0.019 0.025 0.78 65 28.2 155
1/23/01 0.44 0.01 0.323 0.323 0.02 0.02 0.64 60.7 19.3 72.6
4/23/01 0.48 0.01 0.365 0.365 0.018 0.02 0.3 77.9 38.6 248
7/25/01 0.73 0.124 0.212 0.212 0.028 0.023 11.8 64.8 13.1 29.6
10/18/01 0.3882 0.017 0.333 0.333 0.016 0.01 0.5 61.6 18.1 71.9
1/16/02 0.511 0.029 0.386 0.388 0.01 0.014 0.4 61.97 17.69 62.66
4/8/02 0.35 0.01 0.37 0.37 0.015 0.01 0.6 67.4 28.3 160
7/8/02 0.81 0.01 0.255 0.255 0.015 0.016 27 69.7 14.1 28
10/9/02 0.550 0.015 0.01 0.365 0.365 0.027 0.012 2.0 60.7 16.1 55.7
1/14/03 0.418 0.012 0.01 0.284 0.284 0.020 0.010 3.9 55.7 11.6 15.3
4/2/03 0.561 0.012 0.01 0.228 0.228 0.014 0.010 7.0 59.4 12.1 14.5
7/9/03 0.526 0.005 0.01 0.262 0.262 0.010 0.010 6.8 56.1 11.5 17.0










APPENDIX E2. MACRO CODES FOR MANN-KEDALL AND SEN SLOPE


Macro Codes for Mann-Kendall Analysis

macro

mk x

column x diffs y freqs wp S VarS Z p temp
constant ij k m nx nxl ny yl y2 xname labi lab2

mreset
notitle
brief 0
noecho
kkname xname x
kkset labl Ho: No trend in"
kkcat lab 1 xname lab2
let nx = n(x)
if nx It 10
brief 2
Note
note *** Error *** The number of observations in the data set must
note be greater than or equal to 10 for the Normal
note Approximation method to produce valid results.
note
note *** Macro Exiting ***
note
note
goto 100
endif
let nxl = nx-1
let m = 1
do i = 1:nxl
let k = i + 1
do j = k:nx
let diffs(m) = x(j)-x(i)
let m = m+1
enddo
enddo
tally x;
store y wp.
sign diffs y
tally y;
store y freqs.
let ny = n(y)
ifny = 1
ify = -1
let S = -l*freqs
elseify = 0






FLORIDA GEOLOGICAL SURVEY


A long residence time may allow sufficient time for chemical reactions between the water
and the aquifer rock. As such, water chemistry reflects the composition of the aquifer rock.
Typical residence times range from less than several days (in secondary produced caverns and
sinkholes) to centuries (Hanshaw et al., 1965).

A second factor affecting groundwater chemistry is flow path, which is the length and
depth of the path that the groundwater follows as it flows through an aquifer (Upchurch, 1992).
In general, shallow, short flow paths (which are characteristic of the SAS) result in shorter
residence times for chemical reactions to take place. Consequently, the total dissolved solid
(TDS) content is less than in longer flow-path systems. If the flow path is long (on the order of
tens of kilometers), such as commonly occurs in the FAS, reactions between rock and water
become more probable and the TDS content of the water would be greater as a result of
continued rock-water chemical reactions. Because of the residence time and the flow paths of the
groundwater within an aquifer, the quality of spring water is typically reflective of the
interactions of the major rock types in the aquifer and the groundwater itself.

A third factor which is of particular interest is intergranular porosity (pores through
which water passes between the individual rock matrix grains). Even though Florida's aquifers
have large, secondary cavernous pores spaces, most of the pores tend to be small (Upchurch,
1992). Fortunately, whenever the pores are very small, they act as filters for microbes, small
organic substances, and clay minerals. In general, this results in naturally filtered groundwater
that is very pure and desirable for both drinking water and recreation. Unfortunately, some
pollutants not always removed and our aquifers can become contaminated.

Differences in Spring- and Well-Water Quality

The processes controlling the water quality in wells is very similar to those controlling
spring-water quality with at least one major difference. Wells are often drilled to production
zones as close to land surface as is economical. This is the situation for the wells used in this
study, which are for the most part monitoring wells. Monitoring wells tend be shallow (median
depth z 80 feet (24 m) (Appendix C, online). Most water in these shallow wells represents
young, recently recharged water. On the other hand, because springs are major discharge points,
spring-water can be considered to be an integrator of water from the entire springshed. Spring
water is a mixture of young, shallow, freshly recharged water and older water from the deeper
portions of the aquifer. For this reason, spring water tends to be older than the relatively shallow
water found in the monitoring wells used in this study.

Indicators of Groundwater and Spring-Water Quality Problems

Spring water, while it resides in the aquifer, is considered to be groundwater. However,
once spring water exits from the spring onto the earth's surface, it is considered to be surface
water. Because of this change, the question arises whether regulators should apply groundwater
or surfacewater quality standards to the water. Primary and secondary standards with maximum
contaminant limits (MCLs) may exist for an analyte while the water is considered groundwater,
but differ for surface water; or vice versa. Drinking water standards are protective of human








FLORIDA GEOLOGICAL SURVEY




Rock Bluff Springs Time Sequence C (1998-2003)


1/1/1997
MK p-value
WT p-value


10/2/1998 7/2/2000 4/2/2002
:0.0001 SS =-1.0039 Date
0.0001 nl =14 n-214


Hornsby Spring Time Sequence C (1998-2003)


1/1/1997


11/5/1998


9/8/2000


7/13/2002


MK p-value 0.0003 SS=-3.4692 Date
WTp-value 0.0006 nl= 17 n2 17


Figure 22. Decreasing flow at Rock Bluff and Hornsby Springs. Rock
Bluff (top) and Hornsby Springs (bottom) had significant decreases in flow.
Tests (p < 0.05) included MK for trend, WT, plus an SS calculation. For both
Rock Bluff and Hornsby, flow reduced dramatically. Hornsby Springs flow
stopped for a period after late 2000. Beginning and ending sampling dates are
not the same. (One cfs = 0.028 cms)


1/1/2004


300




200

0
LL


100




0-


5/16/2004







II







Sequence A
Location Sequence Dates D P Ha_up D P Ha down D P n
1943 A 1/91-6/03 -9999 -9999 -9999
2003 A 1/91-6/03 -9999 -9999 -9999
2193 A 1/91-6/03 -9999 -9999 -9999
2259 A 1/91-6/03 -9999 -9999 -9999
2404 A 1/91-6/03 -9999 -9999 -9999
2465 A 1/91-6/03 -9999 -9999 -9999
2585 A 1/91-6/03 -9999 -9999 -9999
2675 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 -9999 -9999 -9999
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D P Ha_up D P Ha down D P n
1943 B 1/91-12/97 -9999 -9999 -9999
2003 B 1/91-12/97 -9999 -9999 -9999
2193 B 1/91-12/97 -9999 -9999 -9999
2259 B 1/91-12/97 -9999 -9999 -9999
2404 B 1/91-12/97 -9999 -9999 -9999
2465 B 1/91-12/97 -9999 -9999 -9999
2585 B 1/91-12/97 -9999 -9999 -9999
2675 B 1/91-12/97 -9999 -9999 -9999







Date P o-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH Turb Color Turb-F Ca Mg
1/15/91 0.1 14 2.72 3.2 2.63033 12 134 3
2/27/91 2.39 3.53 2.30033 ** **
3/27/91 2.78 3.14 2.57832 ** **
4/25/91 2.26 3.66 2.05832 115 2.6
5/21/91 2.45 3.47 2.24832 ** **
6/24/91 1.87 4.05 2.13443 ** **
7/25/91 2.1 3.82 2.36443 130 2.9
8/26/91 1.6 4.32 1.86443* *
9/16/91 2 3.92 2.0506 ** ***
10/17/91 1.63 4.29 1.6806 ** **
11/4/91 0.02* 2.44 3.48 2.4906 3.8 120 2.8
11/25/91 2.45 3.47 2.5006 ***
12/23/91 2.43 3.49 2.34033 ** **
1/29/92 2.35 3.57 2.26033 120 2.8
2/27/92 ***1.96 3.96 1.87033 ** **
3/27/92* *2.22 3.7 2.01832 ** ***
4/30/92 ***2.51 3.41 2.30832 130 2.9
5/29/92 2.88 3.04 2.67832 *
6/29/92* *1 4.92 1.26443 ** ***
7/29/92 2.03 3.89 2.29443 130 2.9
8/31/92 ***2.11 3.81 2.37443 ** ***
9/25/92* *1.9 4.02 1.9506* *
10/29/92* *2.13 3.79 2.1806* *
11/3/92* 2.14 3.78 2.1906* 120 2.8
11/30/92* *
12/23/92 *
1/27/93 120 2.6
2/25/93 ***********
3/31/93 ***********
4/26/93* 120 2.6
5/19/93******** *
6/29/93 *** *******
7/26/93* 120 2.9
8/23/93 ***********
9/27/93 *** *******
10/20/93* 120 2.5
11/30/93 2.15 3.77 2.2006 ** **
12/29/93 2.1 3.82 2.01033 *
1/31/94 1.96 3.96 1.87033 120 2.5
2/25/94* *2 3.92 1.91033* *
3/31/94 ***2.1 3.82 1.89832 ** ***
5/2/94 1.66 4.26 1.45832 120 2.6







COL._DATE Entero pH D-Alk Resid D-NH3 D-N03 D-N03(N) D-N03N02 D-P D-P04 TOC TDS
1/4/00 7.34 *********
4/6/00 7.36 *
7/7/00 7.33* *
10/11/00* 7.25 *********
1/3/01 7.35 *********
4/3/01 7.33 ** ******
7/2/01 7.31 ** *****
10/2/01 1 7.34 4 0.33 0.004 0.008 0.01 1.8 797
1/2/02 1 7.3 4 0.34 0.004 0.004 0.007 1.5 789
4/2/02 1 7.35 4 0.35 0.02 0.004 0.004 2.3 789
7/15/02 1 7.29 4 0.32 0.004 0.005 0.008 2 776
10/15/02 7.29 ** *****
1/2/03* 7.27 *********
4/1/03* 7.25**********







Date T-Na Na K T-K TKN T-S04 F T-F Si Si(S103 as T-Fe D-Fe
01/22/1991 324 11.7 150 92 0.1 5 *
02/11/1991 ***580 ** ****
04/02/1991* **
04/08/1991* 670* *
05/23/1991 ** 700 ******
06/12/1991* *
08/09/1991* **
08/19/1991 70 10.2 508 77 0.09 4* *
08/26/1991************
10/01/1991************
10/09/1991* ** 490* **
12/10/1991* *360 ** ****
12/16/1991************
01/24/1992 380 *
02/20/1992 218 218 8.9 9 404 65 0.08 4* *
03/17/1992 ***420 ** ****
04/09/1992 *
05/07/1992*** 470 ****
06/08/1992 ***
07/02/1992* 560 **
08/19/1992 292 285 10.4 10 542 80 0.09 4 **
08/27/1992 *
10/21/1992* 580 *
12/14/1992 ***420 ** ****
02/03/1993 232 231 8.4 7.8 443 67 0.07 4 **
02/08/1993 ** 450 ******
04/09/1993* 473* **
04/21/1993 ***********
06/02/1993************
06/08/1993 *
07/23/1993* 395 *
08/03/1993 214 219 8.3 7.8 416 63 0.08 4* *
09/17/1993 ***424 ** ****
10/14/1993* *
11/23/1993* 505 *
12/16/1993 ***********
01/19/1994 ***555 *
02/16/1994* *
02/17/1994 310 316 11.4 10.2 531 94* 4**
03/04/1994 ***610 *
04/12/1994* *
05/06/1994*** 530* *****







BULLETIN NO. 69


Table 24. Spring Trends in the SWFWMD, Sequence C (1998-2003).
(+ = T trend, blank = no evidence of trend, = 1 trend)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bicarb* + + + + + + + + + + +
Ca + + + +
Cl + + + + +
F + + +
Flw
K + + + + +
M9 + + + + + + + +
Na + + + + + +
NH3
NO32 + + + + + + +
P*3 +
PO4
pH
SC-fld + + + + +
SO4 + + + + +
Sr + + + + + + + + + + +
TDS + + + + +
Temp +
TKN
T-N +
TOC +_
Fe +


Bicarb*'
NO3*2
Fe*3
D =DL


Only WMD to sample bicarbonate was SWFWMD
= NO3+NO2 as N
Only WMD to sample D-Fe was SWFWMD
Influenced by changing laboratory method detection level.


1. Betty Jay Spring
2. Boat Spring
3. Bobhill Spring
4. Boyette Spring
5. Bubbling Spring
6. Buckhom Main Spring
7. Catfish Spring


8. Chassahowitzka Main Spring
9. Chassahowitzka No. 1. Spring
10. Hidden River Head Spring
11. Hidden River No. 2 Spring
12. Homosassa No. 1 Spring
13. Homosassa No. 2 Spring
14. Homosassa No. 3 Spring










Date TKN T-S04 DsnT-S04 T-F Si(S103 as S D-Sr TDS DsnTDS T-P04 CI FlowDate Flow-cfs
2/8/95 12 8 7.8268 0.07 5 48 164 168.423 0.031 2/8/92 31
8/28/95 12 10 9.9403 4 58 153 150.683 12.00 7/18/97 23.8
11/21/95 11 8 7.9793 4 59 187 185.266 0.035 12.00 9/17/97 30.85
2/21/96 11 10 9.8268 4 60 140 144.423 0.031 11.00 11/13/97 30.08
5/28/96 11 8 8.1512 4 60 131 131.41 0.032 12.00 12/17/97 27.98
8/21/96 12 8 7.9403 4 58 136 133.683 0.034 11.00 1/6/98 30.74
11/19/96 12 8 7.9793 4 58 124 122.266 0.03 12.00 2/18/98 34.55
3/4/97 12 10 10.1512 5 85 144 144.41 0.031 12.00 3/20/98 36.49
5/13/97 11 9 9.1512 4.75 63 155 155.41 0.029 12.00 4/29/98 34.68
8/19/97 12.085 9.146 9.0863 4.89 154 151.683 0.026 11.00 7/21/98 30.65
11/13/97 11.444 9.047 9.0263 4.96 59.7 155 153.266 0.026 12.09 7/23/98 26.27
2/18/98 11.33 9.769 9.5958 4.91 60.6 0.028 11.44 8/24/98 31
5/13/98 12 7.43 7.5812 5.03 59.7 151 151.41 0.028 11.33 1/25/99 29.76
8/18/98 10.902 9.659 9.5993 4.77 62.2 0.027 12.00 5/4/99 26.28
11/18/98 10.801 10.819 10.7983 5.26 61.6 140 138.266 0.029 10.90 6/16/99 27.4
2/17/99 11.492 9.521 9.3478 4.82 60.3 146 150.423 0.032 10.80 10/9/99 22.44
5/12/99 12.8 9.9 10.0512 5.12 62.5 133 133.41 0.028 11.49
8/11/99 11.067 9.076 9.0163 4.94 63.5 128 125.683 0.025 *
11/18/99 11.295 9.362 9.3413 59.8 0.029 11.07
3/8/00 10.862 9.163 9.3142 4.87 76 144 144.41 0.032 11.30
5/17/00 11.297 9.574 9.7252 4.79 63.9 171 171.41 0.039 10.86
3/21/01 9.53 9.6812 0.074 4.818 61.58 137 137.41 0.02 11.3
6/19/01 9.571 9.5113 0.0745 4.841 65.19 155 152.683 0.019 11.65
9/18/01 9.86 9.8393 5.235 134 132.266 0.026 12.4
12/20/01 9.72 9.5468 0.0812 60.91 167 171.423 0.0225 11.5
3/20/02 9.322 9.4732 0.0732 5.375 62.63 150 150.41 0.02 10.88
6/20/02 9.54 9.4803 0.0712 5.0845 61.15 155 152.683 0.0255 11.21
9/18/02 10.082 10.0613 0.0718 4.951 64.41 144.5 142.766 11.71
1/2/03 9.765 9.5918 4.897 89.3 93.723 0.033 11.41
3/19/03 10 10.1512 5.011 62 140 140.41 0.02 12
7/29/03 9.8 9.7403 4.593 155 152.683 0.025 12







Date Turb-F Ca Mg Na K SC-F CI S04 F WL(MSL)
6/28/95* 2441 8.17
7/27/95* 1953* 8.08
8/28/95* 1936 10.22
9/20/95* 2309 7.84
10/31/95 ****2444 7.2
11/28/95 ****2495 6.06
10/3/96 146 28.3 335 8.76 2600 590 110 0.28 5.46
4/22/99 154 27.9 344 9.45 2462 600 120 0.3 4.35
10/31/00 ****2568 6.37
1/25/01 ****2550 4.74
4/26/01 ****2518 3.55
7/26/01 ****2580 10.33
10/30/01 148 28 331 8.9 2566 590 120 0.25 7.55
1/30/02 147 27.4 325 8.8 2540 590 120 0.29 5.92
4/29/02 0 147 27.3 322 8.5 2529 610 120 0.28 4.88
7/22/02 0 161 28.8 330 9.1 2529 580 110 0.3 6.66
10/23/02 8.17 ***2593 7.81
1/29/03 0* *2381 6.45
4/23/03 0.65 2559 5.23






FLORIDA GEOLOGICAL SURVEY


Appendix F2. Analyte List with STORET Codes
Analytes STORET Analyte Units Description
Abbreviated ID
Number
Bicarb 29801 Bicarbonate Mg/L ALKALINITY,WATR,DISS.,FIX
END PT,LAB,AS CACO3, MG/L
Color 81 Color PT-CO COLOR,APPARENT(UNFILTER
ED SAMPLE) PLAT-COB UNITS
Cond(field) 94 Specific MICRO SPECIFIC
Conductanc MHO CONDUCTANCE,FIELD
e, Field (UMHOS/CM @ 250 C)
D-Alk 4255 Dissolved mg/L BICARBONATE
Alkalinity ALKALINITY(CAC03),DISSOLV
ED,WATER
D-Ca 915 Dissolved mg/L CALCIUM, DISSOLVED (MG/L
Calcium AS CA)
D-Cl 941 Dissolved mg/L CHLORIDE, DISSOLVED IN
Chloride WATER
D-F 950 Dissolved mg/L FLUORIDE, DISSOLVED (MG/L
Fluoride AS F)
D-Fe 1046 Dissolved mg/L IRON, DISSOLVED (UG/L AS
Iron FE)
D-K 935 Dissolved mg/L POTASSIUM, DISSOLVED
Potassium (MG/L AS K)
D-Mg 925 Dissolved mg/L MAGNESIUM, DISSOLVED
Magnesium (MG/L AS MG)
D-Mn 1056 Dissolved mg/L MANGANESE, DISSOLVED
Manganese (UG/L AS MN)
D-Na 930 Dissolved mg/L SODIUM, DISSOLVED (MG/L
Sodium AS NA)
D-NH3 608 Dissolved mg/L NITROGEN, AMMONIA,
Ammonia DISSOLVED (MG/L AS N)
D-NO3 618 Dissolved mg/L NITRATE NITROGEN,
Nitrate DISSOLVED (MG/L AS N)
D-NO3(N) 620 Dissolved mg/L NITRATE NITROGEN, TOTAL
Nitrate, (MG/L AS N)
Nitrogen
D-NO3NO2 631 Dissolved mg/L NITRITE PLUS NITRATE, DISS.
Nitrate 1 DET. (MG/L AS N)
Nitrite
DO 299 Dissolved mg/L OXYGEN, DISSOLVED,
Oxygen ANALYSIS BY PROBE






BULLETIN NO. 69


Figure 46. Location of wells within the SJRWMD.


the SRWMD. There were fewer wells with decreasing waters levels in the SJRWMD. However,
decreases in pH were similar to the other WMDs. The greatest proportion of decrease was in
specific conductance. During Sequence A, zero increased while five decreased. During
Sequence B one increased and five decreased, and during Sequence C, two increased while five
decreased. Along with specific conductance, rock analytes such as calcium and alkalinity
showed decreases for Sequence A. A number of wells showing an increase in temperature, both
in Sequences A (seven increased, one decreased) and Sequence C (five increased, two
decreased). In Sequence C, increases in temperature and dissolved oxygen were notable. This
occurred while pH was decreasing (none increased, four wells decreased). Water
level had an unclear direction (four wells increased and only one decreased). Unlike other
districts, pH decreased in many wells while water level tended to increase during Sequence C.

Rise in temperature was often seen alongside a drop in specific conductance. Figure 47
shows both unconfined and confined groundwater (wells 1417 and 1763, respectively). Figure 48







SWFWMD
Location Sequence Dates D_NH3_Ha_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.77574
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.96372
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999
Boyette C 1/98-6/05 -9999
Chassal C 1/98-6/06 -9999
ChassaM C 1/98-6/07 -9999
Homosl C 1/98-6/10 -9999
Homos2 C 1/98-6/11 -9999
Homos3 C 1/98-6/12 -9999
HidRivH C 1/98-6/09 -9999
HidRiv2T C 1/98-6/08 -9999
huntersspr C 1/98-6/13 -9999
lithiamain C 1/98-6/14 -9999
magnolspr C 1/98-6/15 -9999
pumphous C 1/98-6/16 -9999
rainbow C 1/98-6/17 -9999
rainbow C 1/98-6/18 -9999
rainbow C 1/98-6/19 -9999
SWBettyJay C 1/98-6/23 -9999
SWBublng C 1/98-6/25 -9999
SWBuckhm C 1/98-6/26 -9999
SWCatfish C 1/98-6/27 -9999
tarponholespr C 1/98-6/28 -9999
trottermain C 1/98-6/29 -9999
weekwachmain C 1/98-6/30 -9999
wilsonheadspr C 1/98-6/31 -9999
Springs A Up
Springs A Down










Mean Annual Temperature Data


Florida Water Management Districts Mean Temperature Data


WMD means per time sequence


Year NWFWMD SRWMD SJRWMD SWFWMD SFWMD Mean A Mean B Mean C
1991 68.7 69.5 71.8 73.5 75.5 72.7 72.7 73.3
1992 66.8 67.3 69.9 72.2 74.4 71.2 71.2 71.8
1993 67.0 67.7 69.8 72.2 75.0 71.4 71.4 71.2
1994 67.5 68.5 71.4 73.6 76.0 72.6 72.6 71.7
1995 67.1 68.1 70.6 72.6 75.1 71.8 71.8 72.1
1996 66.1 67.1 69.5 71.5 74.4 70.8 70.8 72.0
1997 67.0 68.4 70.9 73.0 75.6 72.1 72.1 *
1998 69.2 70.5 72.6 73.8 76.1 73.3 *
1999 68.0 68.7 70.9 72.4 74.6 71.8 **
2000 65.6 67.5 70.0 71.8 74.9 71.2 **
2001 67.1 68.0 70.8 72.3 74.9 71.7 **
2002 67.7 68.6 70.7 72.7 75.8 72.1 **
2003 67.5 68.4 70.7 72.6 75.4 72.0 **


Temperature
per Sequence Mean
A 71.9
B 71.8
C 72.0


Number of
WMD Stations Weight
NWFWMD 9 0.107
SRWMD 9 0.107
SJRWMD 21 0.25
SWFWMD 20 0.238
SFWMD 25 0.298







DATE Na K SC-F CI S04 F DeSnTemp DeSnAlk DeSnEnter DeSnNH3 DeSnCa
1/16/91 3 0.1 375 4.1 4.9 0.36 23.091 70.0959
2/7/91 3 0.1 371 4.7 5.7 0.2 23.191 72.6959
3/12/91 2.9 0.2 357 3 6.3 0.2 22.9793 72.8948
4/10/91 2.8 1 344 4 5 0.2 24.3793 160.857 68.1948
5/16/91 336 22.2793 ** **
6/5/91 335* ** 23.0815 ** **
7/9/91 3 0.5 359 4.2 3.8 0.2 23.1815 189.143 82.7751
8/27/91 342* ** 23.3815 ** **
10/17/91 3 0.4 351 3.6 4 0.1 23.7585 174.229 76.3723
11/7/91 371 22.7585 ** **
12/9/91 389* ** 24.091 ** **
1/9/92 3.5 0.4 386 3.6 2.8 0.1 22.791 169.762 73.1959
2/6/92 401 20.691 ** **
2/12/92 3.1 0.4 388 3.8 2.7 0.3 23.591 167.762 67.1959
3/3/92 391 23.4793 ** **
4/8/92 3.3 0.3 373 4.7 2.3 0.2 23.4793 180.857 74.1948
5/15/92 374 22.8793 ** **
6/5/92 375* ** 23.2815 ** **
7/14/92 3 0.4 374 3.6 2.5 0.1 23.3815 200.143 84.7751
8/6/92 387* 24.3815 ** **
9/11/92 367 22.9585 ** **
10/21/92 345 23.0585 ** **
11/9/92 352 22.7585 ** **
12/7/92 350* 23.291 ** **
1/20/93 3 0.11 367 3 3.4 0.1 22.891 172.762* 71.1959
2/4/93 366* ** 23.191 ** **
3/2/93 367* ** 22.7793 ** **
3/29/93 3.1 0.12 367 3.1 3.8 0.1 23.1793 180.857 77.1948
5/3/93 354 22.6793 ** **
6/1/93 *358* ** 23.0815 ** **
6/28/93 3 0.1 375 3.3 3.9 0.1 23.5815 201.143 87.7751
8/2/93 368* ** 23.6815 ** **
8/31/93 362* ** 22.8815 ** **
10/4/93 3.3 0.14 367 3.5 3.8 0.1 23.2585 180.229 77.3723
11/1/93 347 22.7585 ** **
12/6/93 363* ** 23.091 ** **
1/3/94 3.2 0.1 371 3.5 2.4 0.1 23.091 172.762 70.1959
1/31/94 380 23.091 ** **
2/28/94 384* ** 23.291 ** **
4/5/94 3.1 0.15 357 4.1 4.1 0.2 23.1793 180.857 77.1948
5/2/94 362* ** 22.9793 ** **
5/31/94 360 23.9793 ** **
7/5/94 2.9 0.1 365 4 3.5 0.1 23.6815 201.143 84.7751







Sequence A
Location Sequence Dates Fcol Ha down Fcol n
2793 A 1/91-6/03 -9999 -9999
2872 A 1/91-6/03 -9999 -9999
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates Fcol Ha down Fcol n
2793 B 1/91-12/97 -9999 -9999
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates Fcol Ha down Fcol n
2793 C 1/98-6/03 -9999 -9999
2872 C 1/98-6/03 0.5 12
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.5 12
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0.5 12
6490 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down







Date Turb-F Ca Mg Na K SC-F CI S04 F
5/22/91 41.6 16.7 2.1 0.5 325 5.9 6.7 0.26
6/3/91 324 *
7/2/91 42 17 2.4 0.5 338 5.6 6.1 0.3
8/6/91 ****332 *
9/3/91 334 *
10/3/91 41 17 2 0.5 336 5 6 0.2
11/4/91 ****340 *
12/3/91 346 *
1/6/92 43 17 2.2 0.5 351 5.7 6.2 0.2
2/4/92 ****351 *
3/2/92 ****328 *
3/30/92 40 17 2.1 0.5 326 4.6 6 0.2
5/4/92 ****327 *
6/1/92 343 *
7/7/92 46 18 2.2 0.5 341 5.7 6.2 0.2
8/3/92 ** 347 ** *
8/13/92 42 17 2.1 0.4 349 5.6 5.7 0.3
8/31/92 343 *
10/8/92 ****344 *
11/3/92 345 *
11/30/92 346 *
1/4/93 39 16 2.2 0.5 342 4.6 6 0.3
2/1/93 339 *
3/1/93 346 *
3/29/93 42 18 2.1 0.18 350 4.8 5.6 0.2
5/3/93 342 *
6/1/93 338 *
6/28/93 40 16 2.1 0.14 342 5.3 6.5 0.2
8/2/93 ****346 *
8/30/93 346 *
10/4/93 42 18 2.2 0.1 350 5.3 6.4 0.3
11/1/93 351 *
12/6/93 ****346 *
1/3/94 42 18 2.1 0.15 347 5.4 6.5 0.3
3/1/94 ** 347 ** *
4/5/94 44 18 2.4 0.17 348 4.7 6.8 0.2
5/2/94 ****351 *
5/31/94 340 *
7/5/94 39 16 2.2 0.15 342 5 6.2 0.3
10/6/94 41 17 2.2 0.16 335 5.4 6.3 0.3
1/4/95 ****315 5.6 5.9*
4/5/95 333 4.7 6 *







Sequence A
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
Salt Spring C 1/98-6/31 0.04 0.96 20.00
Sanlando Springs C 1/98-6/03 0.00 1.00 19.00
Silver Glen Springs C 1/98-6/03 0.01 0.99 22.00
Starbuck Spring C 1/98-6/03 0.00 1.00 19.00
Sweetwater Spring C 1/98-6/03 0.04 0.96 21.00
Volusia Springs C 1/98-6/03 0.17 0.83 18.00
Wekiva C 1/98-6/31 0.01 0.99 21.00
Springs up
Springs down











Descriptive Statistics for Buckhorn Sprig. from July, 1994 to Jan., 2002
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 44 21.2 24.1 24.5 24.9 29.7
SCf uS/cm 44 436.2 469.5 478.5 508.3 1241.0
pH s.u. 44 7.2 7.4 7.5 7.5 7.6
Bicarb mg/1 40 100.0 114.2 117.0 120.8 131.0
D-N03 mg/1 42 0.8 1.3 2.0 2.2 3.7
T-N03 mg/1 NA NA NA NA NA NA
TKN mg/1 27 0.0 0.0 0.2 .03 1.4
D-N03N02 mg/1 43 0.8 1.4 2.0 2.2 3.7
T-P mg/1 43 0.0 0.0 0.0 0.0 1.1
D-P04 mg/1 44 0.0 0.0 0.0 0.0 0.4
T-NH3 mg/1 43 0.0 0.0 0.0 0.0 0.1
T-N mg/1 21 1.8 1.9 2.2 2.7 2.8
TOC mg/1 40 0.2 0.3 0.5 0.6 3.2
Ca mg/1 40 44.0 60.0 61.6 65.4 82.0
Mg mg/1 40 10.0 11.5 11.8 12.4 27.0
Na mg/1 40 12.9 14.6 15.6 17.1 132.0
K mg/1 40 0.3 0.6 0.7 1.0 4.6
D-S04 mg/1 40 58.9 62.7 65.3 68.0 137.0
F mg/1 34 0.1 0.2 0.2 0.2 0.6
Cl mg/1 40 24.0 28.6 31.0 34.6 225.0
D-Fe ug/1 40 20.0 25.0 30.0 30.0 50.0
D-Sr ug/1 29 50.0 375.0 780.0 945.0 1200.0
TDS mg/1 40 257.0 276.3 284.5 300.5 685.0
*Less than 10 samples
NA No samples







Sequence A
Location Sequence Dates D Mn_Ha_up D Mn Ha down D Mn n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates D Mn_Ha_up DMn Ha down D Mn n
1417 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1420 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1763 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1764 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1779 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1780 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1781 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1931 C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







Date SEASON_NO. Month Temp D-Fe D-Mn Bicarb DO Fcol Entero pH D-Alk Resid
9/6/01 3 9 26.3 0.09* 6.31 *
10/2/01 3 10 27.1 137 0.23 1 1 6.33 4
11/1/01 3 11 25.6 54 0.2 1 1 5.89 4
12/4/01 4 12 25.6 95 0.23 1 1 6.26 4
1/2/02 4 1 23.9 33 0.14 1 1 5.67 4
2/7/02 4 2 23.9* 29 0.17 1 1 5.56 4
3/7/02 1 3 23.5 29 0.18 1 1 5.61 4
4/2/02 1 4 23.8* 45 0.14 1 1 5.75 4
4/29/02 1 4 24.6 71 0.27 1 1 5.94 4
5/21/02 1 5 24.9* 77 0.13 1 1 6.02 4
6/5/02 2 6 25.4 82 0.28 1 1 5.96 4
7/15/02 2 7 26.3 133 0.7 1 1 6.3 4
8/7/02 2 8 26.4 117 0.23 1 1 6.18 4
9/4/02 3 9 26.5* 47 0.17 1 1 5.8 4
10/1/02 3 10 27.53 *****5.86 *
11/4/02 3 11 27.9 0.25 5.71 *
12/2/02 4 12 26.5 0.11 5.94 *
1/2/03 4 1 23.79 0.86* 6.31 *
2/6/03 4 2 24.09 0.19* 6.18 *
3/6/03 1 3 24.7 0.37* 5.87 *
4/3/03 1 4 24.38 0.19* 5.71 *
4/30/03 1 5 23.45 0.15 5.79 *
6/2/03 2 6 25* 0.22* 6.15 *







Date SEASON_NO. Month Temp D-Fe D-Mn Bicarb DO Fcol Entero pH D-Alk Resid
11/21/97 3 12 24.7 0.09 5.07 *
12/31/97 4 1 24.6 0.11 5.18 *
2/2/98 4 2 24.7 0.11 5.31 *
2/28/98 4 3 24.4 0.08 5.24 *
3/27/98 1 4 24.4 0.05 4.93 *
4/23/98 1 5 24.7 726 4.1 0.09* 5.19* *
5/25/98 1 6 25.3 0.05 5.38 *
7/1/98 2 7 25* 0.11 5.16 *
7/31/98 2 8 24.9 0.14 5.31 *
8/25/98 2 9 24.5 0.24 5.1 *
9/29/98 3 10 25.2 0.11 5.18 *
10/29/98 3 11 24.8 0.13 5.11 *
12/2/98 4 12 24.5 0.06 5.21 *
1/4/99 4 1 24.1 *****5.14 *
2/1/99 4 2 24.9 0.09 5.14 *
3/1/99 1 3 24.4 0.12 5.2* *
3/31/99 1 4 24.5 0.15 5.22 *
5/11/99 1 5 24.3 5.06 *
6/7/99 2 6 25.2 *****5.05 *
7/6/99 2 7 24.7 0.2 5.24 *
8/3/99 2 8 24.6 0.11 5.15 *
9/8/99 3 9 24.6 0.13 5.06 *
1/4/00 4 1 23.7 0.5 5.21 *
4/5/00 1 4 24.6 0.22 5.5 *
7/7/00 2 7 24.2 0.19 5.2* *
10/11/00 3 10 24.7 0.09 4.78 *
1/3/01 4 1 24 0.16 5.16 *
3/6/01 1 3 24.9 2.37 5.58 *
4/3/01 1 4 25* 0.12 5.2 *
7/2/01 2 7 25.4 0.15 5.2* *
10/2/01 3 10 24.9* 5.8 0.08 1 1 5.2 4
1/2/02 4 1 24 5.3 0.01 1 1 5.08 4
4/2/02 1 4 24.4* 6 0.08 1 1 5.19* 4
7/15/02 2 7 24.5* 6.2 0.06 1 1 5.2 4
10/1/02 3 10 25.09 *****5.25 *
1/2/03 4 1 24.18 0.12 5.21 *
4/3/03 1 4 24.48 0.11 4.77 *







Sequence A
Location Sequence Dates Temp_Sen_slope UP/DOWN
1417 A 1/91-6/03 0.01 UP
1420 A 1/91-6/03 0.00 No evidence of trend
1674 A 1/91-6/03 0.00 DOWN
1762 A 1/91-6/03 0.02 UP
1763 A 1/91-6/03 0.01 UP
1764 A 1/91-6/03 0.0059648 UP
1779 A 1/91-6/03 0.03 UP
1780 A 1/91-6/03 0.02 UP
1781 A 1/91-6/03 0.00 No evidence of trend
1931 A 1/91-6/03 0.0057783 UP
Wells up 6
Wells down 1

Alexander Springs A 1/91-6/03 0.01 No evidence of trend
Apopka A 1/91-6/03 0.014525 No evidence of trend
Fern Springs A 1/91-6/03 -0.01 No evidence of trend
Juniper Springs A 1/91-6/03 0.00 No evidence of trend
Miami Springs A 1/91-6/03 0.00 No evidence of trend
Palm Springs A 1/91-6/03 0.01 No evidence of trend
PDL A 1/91-6/03 0.00 No evidence of trend
Rock Springs A 1/91-6/03 -0.0021633 No evidence of trend
Salt Spring A 1/91-6/31 0.01 UP
Sanlando Springs A 1/91-6/03 0.01 No evidence of trend
Silver Glen Springs A 1/91-6/03 0.00 No evidence of trend
Starbuck Spring A 1/91-6/03 0.01 No evidence of trend
Sweetwater A 1/91-6/03 0.00 No evidence of trend
Volusia Springs A 1/91-6/03 0.00 No evidence of trend
Wekiva A 1/91-6/31 0.00 UP
Springs up 2
Springs down 0

Sequence B
Location Sequence Dates Temp_Sen_slope UP/DOWN
1417 B 1/91-12/97 0.02 No evidence of trend
1420 B 1/91-12/97 0.03 No evidence of trend
1674 B 1/91-12/97 0.00 DOWN
1762 B 1/91-12/97 0.02 UP
1763 B 1/91-12/97 0.03 UP
1764 B 1/91-12/97 0.01 No evidence of trend
1931 B 1/91-12/97 0.0071244 UP
Wells up 2
Wells down 1







Sequence A
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
RLS C 1/98-6/42 0.07119 0.92881 44
RKB C 1/98-6/41 0.06567 0.93433 43
SBL C 1/98-6/44 0.71149 0.28851 45
TEL C 1/98-6/45 0.09478 0.90522 42
TRY C 1/91-12/98 0.24225 0.75775 44
Springs A Up
Springs A Down







STATION SAMPDATE MONTH SEASON SEASONNO Temp DeSnTemr Cond(field) pH Bicarb T-N
HIDDEN RIVER #2 SPRIN( 7/26/94 7 Summer 2 24.8 24.5368 2740 7.92 123 *
HIDDEN RIVER #2 SPRIN( 10/27/94 10 Fall 3 23.3 23.3813 3030 7.65 125 *
HIDDEN RIVER #2 SPRIN( 1/23/95 1 Winter 4 22.8 23.1702 2390 7.73 121 *
HIDDEN RIVER #2 SPRIN( 3/30/95 3 Spring 1 23.5 23.3702 2250 7.73 123 *
HIDDEN RIVER #2 SPRIN( 7/24/95 7 Summer 2 23.4 23.1368 2510 7.81 118 *
HIDDEN RIVER #2 SPRIN( 10/17/95 10 Fall 3 23.5 23.5813 2720 7.71 119 *
HIDDEN RIVER #2 SPRIN( 1/31/96 1 Winter 4 23.3 23.6702 2040 120 *
HIDDEN RIVER #2 SPRIN( 4/15/96 4 Spring 1 24.1 23.9702 1710 7.79 120 *
HIDDEN RIVER #2 SPRIN( 7/11/96 7 Summer 2 23.3 23.0368 1577 7.53 124 *
HIDDEN RIVER #2 SPRIN( 10/28/96 10 Fall 3 23.6 23.6813 1466 7.82 126 *
HIDDEN RIVER #2 SPRIN( 1/23/97 1 Winter 4 22.9 23.2702 1566 7.81 119 *
HIDDEN RIVER #2 SPRIN( 4/9/97 4 Spring 1 23.6 23.4702 1946 7.66 119 *
HIDDEN RIVER #2 SPRIN( 7/7/97 7 Summer 2 23.7 23.4368 2050 7.59 115 *
HIDDEN RIVER #2 SPRIN( 10/15/97 10 Fall 3 23.6 23.6813 2420 7.59 119 *
HIDDEN RIVER #2 SPRIN( 1/22/98 1 Winter 4 23.3 23.6702 3260 7.67 122 0.6
HIDDEN RIVER #2 SPRIN( 4/15/98 4 Spring 1 23 22.8702 2770 7.63 122 1.2
HIDDEN RIVER #2 SPRIN( 7/14/98 7 Summer 2 23.8 23.5368 2150 7.81 123 0.74
HIDDEN RIVER #2 SPRIN( 10/22/98 10 Fall 3 23.4 23.4813 1958 7.75 113 0.73
HIDDEN RIVER #2 SPRIN( 1/19/99 1 Winter 4 23.3 23.6702 1682 7.79 111 0.73
HIDDEN RIVER #2 SPRIN( 4/26/99 4 Spring 1 24.2 24.0702 1766 7.52 113 0.45
HIDDEN RIVER #2 SPRIN( 7/29/99 7 Summer 2 23.6 23.3368 2090 7.66 114 0.7
HIDDEN RIVER #2 SPRIN( 10/12/99 10 Fall 3 23.4 23.4813 2750 7.67 115 0.76
HIDDEN RIVER #2 SPRIN( 1/11/00 1 Winter 4 23.1 23.4702 2380 7.82 117 *
HIDDEN RIVER #2 SPRIN( 4/18/00 4 Spring 1 23.3 23.1702 2300 7.8 118 1.32
HIDDEN RIVER #2 SPRIN( 7/20/00 7 Summer 2 23.9 23.6368 3240 7.64 116 0.86
HIDDEN RIVER #2 SPRIN( 10/26/00 10 Fall 3 23.2 23.2813 3930 7.58 115 0.76
HIDDEN RIVER #2 SPRIN( 1/8/01 1 Winter 4 22.8 23.1702 3460 7.59 119 0.74
HIDDEN RIVER #2 SPRIN( 4/23/01 4 Spring 1 23.5 23.3702 2500 7.64 133 0.7
HIDDEN RIVER #2 SPRIN( 7/18/01 7 Summer 2 23.5 23.2368 3710 7.51 130 0.92
HIDDEN RIVER #2 SPRIN( 7/23/01 7 Summer 2 23.5 23.2368 6500 7.49 122 0.51
HIDDEN RIVER #2 SPRIN( 10/17/01 10 Fall 3 23.1 23.1813 4800 7.63 121 0.6345
HIDDEN RIVER #2 SPRIN( 1/31/02 1 Winter 4 23.1 23.4702 4280 7.56 138 0.68
HIDDEN RIVER #2 SPRIN( 4/10/02 4 Spring 1 23.5 23.3702 3650 7.61 132 0.73
HIDDEN RIVER #2 SPRIN( 7/10/02 7 Summer 2 23.8 23.5368 4000 7.64 134 0.59
HIDDEN RIVER #2 SPRIN( 10/16/02 10 Fall 3 23.1 23.1813 4570 7.55 143 0.63
HIDDEN RIVER #2 SPRIN( 1/16/03 1 Winter 4 23 23.3702 3962 7.43 138 0.721
HIDDEN RIVER #2 SPRIN( 4/14/03 4 Spring 1 23.4 23.2702 3518 7.51 137 0.758
HIDDEN RIVER #2 SPRIN( 7/24/03 7 Summer 2 23.4 23.1368 3598 7.55 134 0.811







STATION SAMP_DATE MONTH SEASON SEASON_ Temp Cond(field) pH Bicarb D-TKN T-NH3 D-NO3NO T-P D-PO4
HUNTERS SPRING 2/11/91 2 Winter 4 24 370 8.1 80.36 0.05 0.01 0.22 0.04 0.03
HUNTERS SPRING 4/29/91 4 Spring 1 23.5 380 7.8 80 0.05 0.01 0.24 0.03 0.03
HUNTERS SPRING 7/29/91 7 Summer 2 24 320 8.17 65.6 0.05 0.01 0.28 0.03 0.03
HUNTERS SPRING 10/24/91 10 Fall 3 24.5 270 7.83 80.36 0.05 0.02 0.26 0.04 0.02
HUNTERS SPRING 7/20/94 7 Summer 2 25.4 363 8.11 82 0.05 0.06 0.29 0.02 0.02
HUNTERS SPRING 1/23/95 1 Winter 4 23.1 316 8.05 79 0.05 0.01 0.28 0.04 0.04
HUNTERS SPRING 4/3/95 4 Spring 1 23.7 361 8.01 79 0.05 0.01 0.296 0.027 0.024
HUNTERS SPRING 7/27/95 7 Summer 2 24.5 344 8.02 80 0.195 0.01 0.31 0.054 0.027
HUNTERS SPRING 10/25/95 10 Fall 3 25 298 8.06 79 0.05 0.02 0.354 0.02 0.01
HUNTERS SPRING 2/6/96 2 Winter 4 22.3 304 8.02 80 1.726 0.054 0.332 0.01 0.017
HUNTERS SPRING 1/29/97 1 Winter 4 23.8 331 8.06 79 0.368 0.01 0.311 0.029 0.013
HUNTERS SPRING 4/9/97 4 Spring 1 24.1 442 7.95 81 0.05 0.01 0.299 0.036 0.027
HUNTERS SPRING 1/15/98 1 Winter 4 23.2 342 8.02 83 0.05 0.01 0.345 0.025 0.023
HUNTERS SPRING 1/20/99 1 Winter 4 23.8 283 8.01 75 0.005 0.337 0.039 0.027
HUNTERS SPRING 4/29/99 4 Spring 1 23.8 339 8 80 0.01 0.345 0.02 0.016
HUNTERS SPRING 7/28/99 7 Summer 2 24.5 332 8.19 78.2 0.01 0.289 0.024 0.025
HUNTERS SPRING 10/12/99 10 Fall 3 24 376 8.02 77.7 0.01 0.361 0.026 0.026
HUNTERS SPRING 1/12/00 1 Winter 4 23.4 370 8.05 79.4 0.01 0.222 0.027 0.024
HUNTERS SPRING 4/18/00 4 Spring 1 23.6 457 7.97 81.1 0.01 0.355 0.066 0.021
HUNTERS SPRING 7/19/00 7 Summer 2 23.9 540 7.93 81.2 0.01 0.411 0.023 0.025
HUNTERS SPRING 10/25/00 10 Fall 3 23.8 450 8 77 0.01 0.391 0.027 0.032
HUNTERS SPRING 1/10/01 1 Winter 4 23.3 468 8.32 78.2 0.01 0.367 0.027 0.028
HUNTERS SPRING 4/26/01 4 Spring 1 23.8 517 7.99 91.9 0.01 0.359 0.026 0.031
HUNTERS SPRING 7/24/01 7 Summer 2 23.8 634 7.95 90 0.378 0.031 0.026
HUNTERS SPRING 10/17/01 10 Fall 3 23 541 8.02 81 0.01 0.39 0.024 0.028
HUNTERS SPRING 1/28/02 1 Winter 4 23.5 472.8 7.94 87.2 0.04 0.38 0.023 0.018
HUNTERS SPRING 4/16/02 4 Spring 1 24.3 466 8.02 83.9 0.01 0.386 0.021 0.018
HUNTERS SPRING 7/23/02 7 Summer 2 23.4 605 7.98 89.7 0.01 0.40 0.021 0.022
HUNTERS SPRING 10/8/02 10 Fall 3 24.16 488 7.88 89.3 0.012 0.006 0.409 0.032 0.019
HUNTERS SPRING 1/16/03 1 Winter 4 23.12 433 7.91 84.4 0.019 0.006 0.371 0.022 0.017
HUNTERS SPRING 4/16/03 4 Spring 1 23.53 428 7.81 89.2 0.012 0.006 0.354 0.022 0.025
HUNTERS SPRING 7/15/03 7 Summer 2 23.55 344 7.96 81.5 0.005 0.006 0.362 0.017 0.018







SWFWMD
Location Sequence Dates Turb_Sen_slope UP/DOWN
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates Turb_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 -0.0833333 DOWN
737 C 1/98-6/03 -9999 -9999











SWFWMD Annual Precipitation Data (in/yr) cont.
Year Mt Lake Parrish Ft Green Bradento Wauchula Avon Park DeSotoCit Arcadia Myakka PuntaGorda Mean
1991 49.1 43.8 53.1 39.7 53.1 50.8 53.4 36.6 32.9 48.3 47.8
1992 45.1 63.9 57.7 65.4 54.2 46.6 50.7 59.9 58.7 53.8 51.1
1993 43.0 54.9 54.0 49.3 54.1 47.0 56.3 28.6 56.6 44.9 44.7
1994 58.0 64.5 65.9 54.0 40.1 58.7 53.7 46.2 56.8 48.7 54.1
1995 55.3 65.4 57.9 62.2 53.2 60.7 51.5 56.9 82.3 81.1 58.7
1996 53.1 40.4 42.4 50.8 43.9 40.7 35.0 31.4 45.5 50.2 46.0
1997 50.8 63.7 67.5 78.3 57.1 65.2 59.9 59.3 70.5 57.5 60.3
1998 38.0 57.1 64.8 54.8 66.1 59.4 59.1 52.7 76.5 52.1 56.3
1999 39.1 41.7 45.1 49.6 40.3 52.7 57.9 43.2 59.9 51.4 44.2
2000 29.5 30.1 45.9 44.0 29.6 26.1 32.9 45.0 45.2 38.7 38.1
2001 56.7 61.5 55.1 55.4 49.5 63.0 41.0 48.9 59.0 48.4 52.4
2002 59.1 51.3 71.7 0.0 53.3 57.6 69.2 60.1 51.4 53.1 58.9
2003 55.9 85.8 78.1 52.3 50.9 66.2 52.1 56.1 75.8 62.9 60.7

SWFWMD Annual Temperature Data ( F) cont.
Year Parrish Ft Green Bradenton Wauchula Avon Park Arcadia Myakka PuntaGorda Mean
1991 72.8 72.8 74.5 74.1 73.2 74.7 74.1 75.2 73.5
1992 72.1 72.1 73.1 72.7 71.4 72.7 73.6 73.9 72.3
1993 71.2 71.2 72.9 72.7 70.8 73.1 73.7 74.1 72.1
1994 72.2 72.2 74.4 73.5 73.3 74.9 74.4 75.3 73.6
1995 71.0 71.0 73.3 75.6 71.9 71.8 73.8 74.0 72.6
1996 71.1 71.1 71.8 70.7 71.2 71.2 73.3 73.2 71.5
1997 73.2 73.2 73.4 72.2 72.6 73.2 74.9 74.8 73.1
1998 74.4 74.4 74.1 73.0 73.6 73.9 75.6 75.5 73.9
1999 72.6 72.6 72.8 71.7 72.4 74.4 74.4 74.1 72.5
2000 72.6 72.6 72.0 70.9 71.7 71.7 72.5 73.9 71.9
2001 72.9 72.9 73.2 71.4 72.4 72.2 72.5 74.1 72.4
2002 70.7 70.7 NA 71.4 73.8 72.3 73.0 74.8 72.5
2003 73.0 73.0 77.3 71.8 73.1 72.4 72.7 74.7 72.9











Descriptive Statistics for Juniper from November, 1908 to March, 2000
Num. Min. Q1 Median Q3 Max.
Analyte Measured units Samples Value Value Value Value Value
Temp Deg C 64.0 20.0 21.5 21.9 22.0 25.1
SCl uS/cm 31.0 100.0 110.0 116.0 119.0 183.0
SCf uS/cm 43.0 105.0 116.0 118.0 122.5 159.0
pH s.u. 55.0 5.8 7.7 8.1 8.4 8.8
T-Alk mg/1 45.0 21.0 43.2 44.0 45.0 63.0
D-N03 mg/1 4.0 *
T-N03 mg/1 1.0 *
D-N03N02 mg/1 33.0 0.1 0.1 0.1 0.1 0.1
T-N03N02 mg/1 1.0 *
T-P mg/1 1.0 *
D-P mg/1 1.0 *
TOC mg/1 2.0 *
Ca mg/1 30.0 9.0 12.0 13.0 13.8 20.0
T-Ca mg/1 27.0 8.0 12.0 12.0 13.0 14.3
Mg mg/1 28.0 3.9 4.4 4.5 4.9 5.7
T-Mg mg/1 27.0 3.8 4.1 4.4 4.6 5.1
T-Na mg/1 27.0 2.0 2.6 3.0 3.0 4.0
Na mg/1 28.0 1.6 2.7 3.0 0.3 9.0
K mg/1 20.0 0.2 0.3 0.4 0.4 0.9
T-K mg/1 1.0 *
TKN mg/1 44.0 3.5 4.0 4.8 5.0 13.0
T-S04 mg/1 44.0 4.0 6.0 6.1 8.0 42.0
F mg/1 16.0 0.1 0.1 0.1 0.1 0.2
T-F mg/1 26.0 0.1 0.1 0.1 0.1 0.1
Si mg/1 11.0 5.0 8.5 8.8 9.2 10.0
Si(SI03 as Si) mg/1 35.0 3.9 4.0 4.8 5.0 13.0
T-Fe ug/1 4.0 *
D-Fe ug/1 1.0 *
D-Sr ug/1 16.0 33.0 58.0 67.5 80.0 120.0
T-Sr ug/1 26.0 45.0 69.8 78.2 81.0 107.0
TDS mg/1 39.0 33.0 61.5 68.0 75.0 94.0
T-P04 mg/1 22.0 0.0 0.0 0.0 0.0 0.1
*Less than 10
samples
NA No samples







Date NH3 N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) MoRainDate MoRain(CrossCity) CumRDprt
1/10/91 0.22 0.16 1 1/1/91 8.67 4.07
2/7/91 ******2/1/91 6.22 5.69
3/7/91 ******3/1/91 4.24 5.33
4/3/91 0.05 4/1/91 6.99 7.72
4/30/91 *****62.44 5/1/91 4.24 7.36
6/4/91 59.16 6/1/91 2.65 5.41
7/2/91 0.53 56.13 7/1/91 2.78 3.59
8/7/91 *****68.07 8/1/91 5.22 4.21
9/4/91 69.21 9/1/91 5.94 5.55
10/3/91 1.5 58.23 10/1/91 3.34 4.29
11/5/91 *****52.54 11/1/91 1.01 0.70
12/3/91 *****49.79 12/1/91 1.57 -2.33
1/7/92 0.65 47.51 1/1/92 1.88 -5.05
2/4/92 48.24 2/1/92 1.20 -8.45
3/3/92 *****52.43 3/1/92 3.56 -9.49
3/31/92 0.1 52.62 4/1/92 3.97 -10.12
5/5/92 50.20 5/1/92 1.33 -13.39
6/2/92 47.68 6/1/92 1.26 -16.73
7/7/92 0.52 46.88 7/1/92 1.88 -19.45
8/3/92 *****46.08 8/1/92 2.38 -21.67
8/31/92 46.98 9/1/92 12.79 -13.48
10/13/92 45.87 10/1/92 2.21 -15.87
11/3/92 *****45.39 11/1/92 1.36 -19.11
11/30/92 *****45.45 12/1/92 0.00 -23.71
1/5/93 0.4 1/1/93 1.23 -27.08
2/2/93 2/1/93 4.62 -27.06
3/2/93 50.81 3/1/93 15.45 -16.21
3/29/93 0.25 4/1/93 3.45 -17.36
5/3/93 50.29 5/1/93 4.45 -17.51
6/1/93 47.17 6/1/93 3.22 -18.89
6/15/93 *****46.17 7/1/93 1.59 -21.90
6/28/93 0.71 8/1/93 8.91 -17.59
8/2/93 44.32 9/1/93 2.53 -19.66
8/31/93 43.57 10/1/93 6.32 -17.94
10/4/93 0.43* *42.91 11/1/93 1.44 -21.10
11/1/93 42.40 12/1/93 2.14 -23.56
12/6/93 42.53 1/1/94 7.34 -20.82
1/31/94 *****43.98 2/1/94 4.46 -20.96
3/1/94 48.06 3/1/94 7.03 -18.53
4/5/94 0.24 52.36 4/1/94 8.23 -14.90
5/2/94 53.62 5/1/94 0.79 -18.71
5/31/94 *****52.49 6/1/94 2.60 -20.71
10/6/94 0.03 52.44 7/1/94 4.02 -21.29
1/3/95 0.05 0.72 46.22 8/1/94 2.67 -23.22
4/4/95 0.04 0.36 43.66 9/1/94 4.64 -23.18
7/11/95 *43.16 10/1/94 10.90 -16.88







Sequence A
Location Sequence Dates D_P_Sen_slope UP/DOWN
1417 A 1/91-6/03 -9999 -9999
1420 A 1/91-6/03 -9999.00 -9999
1674 A 1/91-6/03 -9999.00 -9999
1762 A 1/91-6/03 -9999.00 -9999
1763 A 1/91-6/03 -9999.00 -9999
1764 A 1/91-6/03 -9999 -9999
1779 A 1/91-6/03 -9999.00 -9999
1780 A 1/91-6/03 -9999.00 -9999
1781 A 1/91-6/03 -9999 -9999
1931 A 1/91-6/03 -0.0016667 DOWN
Wells up 0
Wells down 0

Alexander Springs A 1/91-6/03 -9999.00 -9999
Apopka A 1/91-6/03 -9999.00 -9999
Fern Springs A 1/91-6/03 -9999.00 -9999
Juniper Springs A 1/91-6/03 -9999.00 -9999
Miami Springs A 1/91-6/03 -9999.00 -9999
Palm Springs A 1/91-6/03 -9999.00 -9999
PDL A 1/91-6/03 -9999.00 -9999
Rock Springs A 1/91-6/03 -9999.00 -9999
Salt Spring A 1/91-6/31 -9999.00 -9999
Sanlando Springs A 1/91-6/03 -9999.00 -9999
Silver Glen Springs A 1/91-6/03 -9999.00 -9999
Starbuck Spring A 1/91-6/03 -9999.00 -9999
Sweetwater A 1/91-6/03 -9999.00 -9999
Volusia Springs A 1/91-6/03 -9999.00 -9999
Wekiva A 1/91-6/31 -9999.00 -9999
Springs up 0
Springs down 0

Sequence B
Location Sequence Dates D_P_Sen_slope UP/DOWN
1417 B 1/91-12/97 -9999.00 -9999
1420 B 1/91-12/97 -9999.00 -9999
1674 B 1/91-12/97 -9999.00 -9999
1762 B 1/91-12/97 -9999.00 -9999
1763 B 1/91-12/97 -9999.00 -9999
1764 B 1/91-12/97 -9999.00 -9999
1931 B 1/91-12/97 -9999.00 -9999
Wells up 0
Wells down 0






Sequence A
Location Sequence Dates D Na n D Na Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 21 0.0222222 UP
91 A 1/91-6/03 31 0.01875 UP
129 A 1/91-6/03 -9999 -9999 -9999
131 A 1/91-6/03 25 0.03 UP
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 17 0 No evidence of trend
312 A 1/91-6/03 22 0 No evidence of trend
313 A 1/91-6/03 26 0.0222222 UP
Wells A Up 4
Wells A Down 0

Sequence B
Location Sequence Dates D Na n D Na Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 15 0.025 UP
91 B 1/91-12/97 19 0.0431818 UP
129 B 1/91-12/97 20 0 No evidence of trend
131 B 1/91-12/97 19 0.0142857 UP
312 B 1/91-12/97 17 0 No evidence of trend
313 B 1/91-12/97 11 0.05 UP
Wells B Up 4
Wells B Down 0

Sequence C
Location Sequence Dates D Na n D Na Sen_slope UP/DOWN
67 (and Spring) c 1/98-6/03 -9999 -9999 -9999
91 C 1/98-6/03 -9999 -9999 -9999
129 C 1/98-6/03 -9999 -9999 -9999
131 C 1/98-6/03 -9999 -9999 -9999
243 C 1/98-6/03 -9999 -9999 -9999
245 C 1/98-6/03 15 0 No evidence of trend
312 C 1/98-6/03 -9999 -9999 -9999
313 C 1/98-6/03 15 0.0642857 UP
Wells C Up 1
Wells C Down 0







SWFWMD
Location Sequence Dates D K Ha down D_K_n
736 B 1/91-12/97 0.71828 19
737 B 1/91-12/97 0.01153 24
996 B 1/91-12/97 0.0013 18
997 B 1/91-12/97 0.00016 19
1087 B 1/91-12/97 0.00114 19
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.72227 14
Boyette B 1/91-12/99 0.99902 18
Chassal B 1/91-12/100 0.8831 15
ChassaM B 1/91-12/101 0.92463 15
Homosl B 1/91-12/104 0.79767 14
Homos2 B 1/91-12/105 0.17493 14
Homos3 B 1/91-12/106 0.58727 14
HidRiv2T B 1/91-12/102 0.00902 14
HidRivH B 1/91-12/103 0.01403 14
huntersspr B 1/91-12/107 0.06845 12
lithiamain B 1/91-12/108 0.5 17
magnolspr B 1/91-12/109 0.68822 13
pumphous B 1/91-12/110 0.29037 15
rainbow B 1/91-12/111 0.47549 14
rainbow B 1/91-12/112 0.58947 17
rainbow B 1/91-12/113 0.62304 16
mboBseep B 1/91-12/115 0.37216 17
saltspr B 1/91-12/116 0.29287 15
SWBettyJay B 1/91-12/117 0.98851 12
SWBoat B 1/91-12/118 0.74892 13
SWBublng B 1/91-12/119 0.78921 12
SWBuckhm B 1/91-12/120 0.0152 17
SWCatfish B 1/91-12/121 0.79857 16
tarponholespr B 1/91-12/122 0.88759 18
trottermain B 1/91-12/123 0.19385 15
weekwachmain B 1/91-12/124 0.91011 15
Springs A Up
Springs A Down

Location Sequence Dates D K Ha down D K n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.74503 14
737 C 1/98-6/03 -9999 -9999











Seasonality Results: Wells, SFWMD
Well Depth to
ID TDS Water Turbidity Color Turb(field) Ca, Diss
6490 >.05 <.05 >.05 >.05 >.05 >.05
3490 >.05 >.05 >.05 >.05 >.05 >.05
3433 >.05 >.05 NA NA NA NA
3398 >.05 <.05 >.05 >.05 >.05 >.05
3109 >.05 <.05 >.05 >.05 >.05 >.05
3108 >.05 <.05 >.05 NA >.05 >.05
2873 >.05 <.05 >.05 NA >.05 >.05
2872 >.05 <.05 >.05 >.05 >.05 >.05
2793 >.05 <.05 >.05 >.05 >.05 >.05



Seasonality Results: Wells, SFWMD
Mg, Na, Specific Cl, S04,
Well ID Diss Diss K, Diss Cond Diss Diss F, Diss
6490 <.05 >.05 <0.0505 .05 >.05 <0.05 >.05
3490 >.05 >.05 >.05 >.05 >.05 <.05 NA
3433 >.05 NA NA >.05 NA NA NA
3398 >.05 >.05 >.05 <.05 >.05 >.05 >.05
3109 >.05 >.05 >.05 >.05 >.05 >.05 >.05
3108 >.05 >.05 >.05 >.05 >.05 >.05 >.05
2873 >.05 >.05 >.05 >.05 >.05 >.05 >.05
2872 >.05 >.05 >.05 >.05 >.05 >.05 >.05
2793 >.05 <.05 >.05 >.05 >.05 >.05 >.05


Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
Diss = Dissolved






FLORIDA GEOLOGICAL SURVEY


suppose a concentration for a particular winter quarter sample was 1.2 mg/L. In mg/L, the
corresponding transformed, deseasonalized datum becomes:

x = (original) [seasonal (winter) mean] + (overall mean) = (transformed x)
x = 1.2 mg/L 0.2 mg/L + 1.0 mg/L = 2.0 mg/L.

Mann-Kendall Test

Gilbert (1987) stated that the Mann-Kendall (MK) test can be viewed as a nonparametric
test for zero slope of the linear regression of time-ordered data versus time. Given that it is a
nonparametric technique, it does not depend on an assumption of a particular underlying
distribution. The test identifies correlations in data through temporally ranking the data and then
determining the number of times the concentration goes up or down relative to the previous time
step. It only uses the relative magnitudes of the data rather than their measured values.

Data reported as trace or below the minimum detection level (MDL) were used by
assigning a common value that was smaller than, or equal to, the smallest measured value in the
data set. For this report, below detection level (BDL), was assigned an arbitrary value equal to
the detection level (DL).

Once the seasonality tests were completed (results found in Appendix J), each analyte
was tested for a linear trend using the MK test (a = 0.05) for each time sequence. A macro
program was used for the analysis while working within Minitab [Appendix E.1 (Online)].
However, if data were insufficient (n < 10), the MK test was not conducted. For this exercise,
we always used a one-sided test. The reason was that we had a preconceived idea as to whether
or not a downward (or upward) trend was an indication that conditions were getting worse (or
better). The results of the MK tests are found in Appendix K (online).

Seasonal Kendall Test

A common test used in the analyses of time series is the Seasonal Kendall (SK) test
(Gilbert, 1987). It is an adoption of the MK test, and can be used if there is seasonality in the
data. The SK test is the technique of choice. Unfortunately, it has a set of requirements that
were not obtainable. Miller et al. (2004) mentioned that the test requires that the percentage of
censored data (e.g. data reported as BDL) be no more than about five percent. In addition,
Miller stated that there should only be one censoring level. This latter requirement was not
obtainable because our data were obtained from agencies operating independently of each other.
The agencies used multiple laboratories with multiple detection levels, which amounted to
multiple censoring levels. Thus, the SK test was not used in this investigation. In the future, as
better and more consistent data are obtained, the SK test is the recommended test.

Sen Slope

If a trend was found to exist for either non-seasonal or seasonal data, its corresponding
slope was determined using a Sen Slope (SS) estimator (Sen, 1968; and Gilbert, 1987). The
estimator measured the median difference between successive concentration observations over







DATE ALKTOT NH3NTOT TIME TOTDEPM CONDF
6/13/02 38025 0.0004 *
7/16/02 37636 0.0004* *
8/29/02 36481 0.0004 *
9/3/02 37636 0.0004 *
10/29/02 44100 0.001369 1442401 38.44 178084
11/5/02 43681 0.001369 1343281 38.44 178084
12/3/02 35721 0.002916 2088025 60.84 164025
2/18/03 40804 0.001369 1982464 52.5625 150544
5/20/03 37249 0.001936 1809025 46.24 156816
10/14/03 39204 0.001369* *
11/4/03 41209 0.0016* *
12/16/03 42849 0.0016* *







SWFWMD
Location Sequence Dates D_N03_N_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates D_N03_N_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999

































s

Legend

SSFYMD
M SJRWMo






Miles
0 5 10 20 30
Kilometrs
0 10 20 40 4O
Projected Coordinate System: F

Figure L74. Alkalinity trends in SWFWMD
springs.


Miles
0 510 20 30
Kiometers
0 1020 40 60
Projected Coordinate System: F

Figure L76. Calcium trends in SWFWMD springs.


s

Legend
[ NVVFYMD
SFAMD
MSRY MD
M SRVWMD


A SW -(so "I

Miles
0 510 20 30
Kiometers
0 1020 40 0O
Projeced Coordinate System: F

Figure L75. Ammonia trends in SWFWMD
springs.


0 510 20 30

01020 40 60
Projected Coordinate System: F

Figure L77. Conductivity (field) trends in
SWFWMD Wells.


L27










Seasonality Results: SWFWMD cont.
D- D-
Name N03 N03N02 T-P D-P04 TOC D-Ca D-Mg D-Na
Bobhill >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Boyette >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Chassahowitzka 1 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Chassahowitzka M >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Hidden River No2 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Hidden River H >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Homosassa No 1 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
HomosassaNo 2 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Homosassa No 3 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Hunters >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Lithia Main >.05 >.05 >.05 >.05 >.05 >.05 >.05 <.05
Magnolia >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Pump House >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Rainbow No 1 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Rainbow No 4 >.05 >.05 >.05 <.05 >.05 >.05 >.05 >.05
Rainbow No 6 >.05 >.05 >.05 <.05 >.05 >.05 >.05 >.05
Rainbow Swamp No 3 >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Rainbow Bridge Seep >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Salt >.05 >.05 >.05 >.05 >.05 <.05 <.05 <.05
Betty Jay >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Boyette >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Buckhorn >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Catfish >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Tarpon Hole >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Trotter Main >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Weeki Wachee Main >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Wilson Head >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Boat >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05
Bubbling >.05 >.05 >.05 >.05 >.05 >.05 >.05 >.05


Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
D = Dissolved
T = Total







SWFWMD
Location Sequence Dates D_N03N02_Ha_up
736 B 1/91-12/97 0.95994
737 B 1/91-12/97 0.99822
996 B 1/91-12/97 0.27011
997 B 1/91-12/97 0.77729
1087 B 1/91-12/97 0.40587
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.12479
Boyette B 1/91-12/99 0
Chassal B 1/91-12/100 0.5
ChassaM B 1/91-12/101 0.1169
Homosl B 1/91-12/104 0.01229
Homos2 B 1/91-12/105 0.00221
Homos3 B 1/91-12/106 0.09444
HidRiv2T B 1/91-12/102 0.16221
HidRivH B 1/91-12/103 0.09444
huntersspr B 1/91-12/107 0.00078
lithiamain B 1/91-12/108 0.94406
magnolspr B 1/91-12/109 0.00423
pumphous B 1/91-12/110 0.00973
rainbow B 1/91-12/111 0.63415
rainbow B 1/91-12/112 0.10773
rainbow B 1/91-12/113 0.09911
mboBseep B 1/91-12/115 0.08241
saltspr B 1/91-12/116 0.11748
SWBettyJay B 1/91-12/117 -9999
SWBoat B 1/91-12/118 0.0636
SWBublng B 1/91-12/119 0.12186
SWBuckhm B 1/91-12/120 0.00429
SWCatfish B 1/91-12/121 0.5
tarponholespr B 1/91-12/122 0.60587
trottermain B 1/91-12/123 0.01141
weekwachmain B 1/91-12/124 0.01472
Springs A Up
Springs A Down

Location Sequence Dates D_N03N02_Ha_up
615 C 1/98-6/03 -9999
707 C 1/98-6/03 -9999
736 C 1/98-6/03 0.5
737 C 1/98-6/03 -9999







DATE K SC-F CI S04 F WL(msl)
8/30/00 22.1 14.35
9/27/00 46 17.42
10/25/00 49.1 16.78
11/22/00 49.3 18.19
12/28/00 55 17.66
1/25/01 49 17.85
2/28/01 50 17.46
3/28/01 53 17.86
5/1/01 56* 17.2
5/25/01 50 16.21
6/26/01 48 16.58
7/24/01 50 15.91
8/29/01 49 17.45
9/26/01 49 16.95
10/25/01 49 16.82
11/19/01 49 16.09
12/18/01 48 16.48
1/22/02 49* 17.21
2/20/02 49* 17.37
3/19/02 50 17.46
4/24/02 48* 17.35
5/29/02 49 16.37
6/26/02 49* 15.85
7/24/02 49 16.75
8/28/02 49* 17.63
9/24/02 49 16.78
10/29/02 49* 18.34
11/25/02 49* 18.41
12/19/02 48 17.79
1/16/03 0.17 49 7 5 0.1 17.64
2/18/03 0.16 47 6.9 4.7 0.05 17.59
3/18/03 0.17 48 7 4.9 0.065 18.5
4/23/03 0.17 48 6.4 4.5 0.05 17.47
5/27/03 0.17 47 6.7 4.7 0.05 17.03
6/24/03 0.15 48 6.6 4.7 0.05 18.21

































Legend
= NVWFWMU
SSFVIMD
SJRVWD
m-


A Snndart Inrrpa (WNlls)
T fgnkrran D -asV (WPI1s)

Miles
0 510 20 30
Kilometers
0 10 20 40 60
Projected Coordinate System: F

Figure 103. Water level in trends in SWFWMD wells.


L35







SWFWMD
Location Sequence Dates D K Ha down D_K_n
707 A 1/91-6/03 0.04829 24
736 A 1/91-6/03 0.97876 33
737 A 1/91-6/03 0.30782 32
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 0 30
997 A 1/91-6/03 0 23
1087 A 1/91-6/03 0 28
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.99308 33
Boyette A 1/91-6/05 0.00008 59
Chassal A 1/91-6/06 0.99033 38
ChassaM A 1/91-6/07 0.93903 38
Homosl A 1/91-6/10 0.99998 37
Homos2 A 1/91-6/11 0.9938 35
Homos3 A 1/91-6/12 0.99688 37
HidRivH A 1/91-6/09 0.99978 37
HidRiv2T A 1/91-6/08 0.99991 38
hunterspr A 1/91-6/13 0.99936 32
lithiamain A 1/91-6/14 0.99996 40
magnolspr A 1/91-6/15 0.35645 36
pumphous A 1/91-6/16 0.85057 26
rainbow A 1/91-6/17 0.99989 37
rainbow A 1/91-6/18 0.99959 39
rainbow A 1/91-6/19 0.99862 39
rainswamp3 A 1/91-6/20 0.99578 15
mboBseep A 1/91-6/21 0.9709 26
saltspr A 1/91-6/22 0.42133 24
SWBettyJay A 1/91-6/23 0.92631 35
SWBoat A 1/91-6/24 0.9129 21
SWBublng A 1/91-6/25 0.99999 35
SWBuckhm A 1/91-6/26 0.57404 40
SWCatfish A 1/91-6/27 0.97835 26
tarponholespr A 1/91-6/28 0.99974 41
trottermain A 1/91-6/29 0.99826 38
weekwachmain A 1/91-6/30 0.99999 38
Springs A Up
Springs A Down

Location Sequence Dates D K Ha down DK n
707 B 1/91-12/97 0.296 19







DATE PTOT OPO4DIS COLITOT COLIFEC FLOWCF TOC DOC CONDL PHF TEMP STAGEMSL DO TURB ALKTOT NH3NTOT TOTDEPM CONDF
6/10/94 0.022 0.019 367 7.33 21.6 1.6 0.4 164 0.04 *
9/16/94 0.027 0.018 2 373 7.28 21.7 1.4 0.4 161 0.01 *
6/16/95 0.024 0.002 1.5 372 7.24 21.9 1.7 0.09 156 0.001 *
7/5/95 0.022 0.022 0.4 372 7.25 21.9 1.8 0.1 159 0.012 *
8/18/95 0.052 0.045 0.4 375 7.54 21.8 1.6 0.11 155 0.01 *
9/8/95 0.043 0.033 0.4 368 7.6 21.8 1.6 0.09 155 0.01 *
6/19/96 0.022 0.02 0.4 370 7.05 21.7 1.3 0.68 156 0.002 *
7/25/96 0.027 0.019 0 373 7.28 21.8 1.5 0.01 156 0.001 *
8/19/96 0.019 0.016* 5 368 7.57 21.8 1.6 0.1 176 0.001 *
6/10/97 0.015 0.016* 88.17 1.1 371 7.25 21.8 2 0.15 166 0.02 **
7/15/97 0.02 0.019 100 1 76.11 1.2 376 7.28 21.8 2 0.1 161 0.02 *
9/16/97 0.016 0.023 1.4 386 6.86 21.8 2 0.15 166 0.02 *
6/15/98 0.02 0.016 10 1 143 2.1 1.9 398 7.15 21.5 3 0.35 170 0.02 *
7/21/98 0.024 0.016 10 1 97.11 1.9 1.9 396 7.32 21.6 2.5 0.4 171 0.2 *
8/19/98 0.024 0.018 250 10 84.27 2.9 1.8 396 7.37 21.6 2.4 0.15 175 0.02 *
12/21/98 0.02 0.018 100 1 84.92 7.9 7.7 389 7.06 21.6 2.4 0.1 166 0.02 *
3/18/99 0.016 0.008 10 1 79.35 10.1 8.3 383 7.49 21.7 2.2 0.1 166 0.02 *
4/22/99 0.02 0.018 10 1 70.64 19.9 14.1 377 7.42 21.7 2 0.15 164 0.02 *
6/10/99 0.02 0.018 10 1 9.3 5.3 376 7.48 21.8 2 0.1 168 0.02 *
8/19/99 0.028 0.012 63.91 9.9 386 7.35 21.8 1.8 0.15 161 0.02 *
9/22/99 0.024 0.031 56.99 5.8 3.4 375 7.34 21.8 1.7 0.15 158 0.02 *
10/14/99 0.023 0.02 59.5 9.9 8.1 374 7.15 21.9 1.8 0.1 164 0.02 *
11/15/99 0.023 0.02 8.4 7.5 369 7.5 21.8 1.9 0.08 156 0.02 *
12/14/99 0.023 0.02 50.4 3.2 3.3 371 7.31 21.8 1.7 0.08 156 0.02 *
1/13/00 0.028 0.022 6.4 6.7 364 7.25 21.7 1.6 0.13 169 0.02 *
2/16/00 0.023 0.019 48 9.7 5.5 365 7.43 21.8 1 2.3 0.13 157 0.02 *
3/14/00 0.023 0.017 7.2 5.9 373 7.22 21.8 2.2 0.12 164 0.02 *
4/18/00 0.023 0.019 44.6 5 5.7 359 7.36 21.8 -1.5 1.5 0.14 150 0.02 *
5/3/00* *-0.09 1.5 0.13 157 0.02 *
6/13/00* *0.77 1.4 0.08 153 0.02 *
7/17/00 0.027 0.023 8.6 8.3 362 7.23 21.8 1.18 1.4 0.16 148 0.02 *
7/21/00* ** 35.14* ** ** ***
8/2/00 0.023 0.019* 36.9 7.9 1.4 363 7.33 21.8 1.19 1.3 0.24 150 0.02 *
10/17/00 0.022 0.021 65.2 1.2 5.4 383 7.32 21.4 -1.37 1.9 0.2 155 0.02 *
10/24/00* ** 63.7 374 7.47 3** ***
11/2/00 0.022 0.021 2.8 6.3 386 7.34 21.9 0.6 1.8 0.25 158 0.02 *
12/11/00 0.021 0.013 47.4 7.8 3.2 376 7.4 21.8 0.6 1.5 0.15 154 0.02 *
1/9/01 0.021 0.021 5.1 3.7 367 7.67 21.7 -0.84 1.5 0.1 158 0.02 *
2/19/01 0.024 0.022 51.8 13.3 13.3 373 7.3 22 -0.9 1.5 0.45 158 0.02 *
3/14/01 0.023 0.019 1.9 6.7 356 7.23 22 -1.98 2 0.4 156 0.02 *
5/17/01 0.024 0.02 6.1 4 368 7.03 21.5 0.05 0.9 0.35 155 0.02 *
6/13/01 0.024 0.025 45 1.9 1.3 372 7.5 21.7 0.5 1 0.4 158 0.02 *
7/19/01 0.023 0.025 49.1 1.9 1.6 369 7.29 21.8 -1.8 1.2 0.35 158 0.02 *
7/27/01 ** ** ***
8/28/01 0.02 0.017 61.2 1.3 1 380 7.38 21.8 -0.69 1.4 0.25 158 0.02 *
9/12/01 0.014 0.02 54.6 1 1 382 7.34 21.8 -0.13 1.3 0.5 157 0.02 *
10/30/01 0.06 0.018 410 5 38.8 3.8 1.8 376 7.58 21.8 0.55 1.1 0.15 160 0.02 *
11/5/01 0.05 0.023 10 2 2.5 2.6 374 7.45 21.8 0.55 1.2 0.1 156 0.02 *







SWFWMD
Location Sequence Dates DCaSen_slope UP/DOWN
707 A 1/91-6/03 0 No evidence of trend
736 A 1/91-6/03 0.0208333 No evidence of trend
737 A 1/91-6/03 -0.0375 DOWN
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -0.0222222 No evidence of trend
997 A 1/91-6/03 -0.2375 DOWN
1087 A 1/91-6/03 -0.0816667 DOWN
Wells A Up 0
Wells A Down 3

Bobhill A 1/91-6/04 0.183333 UP
Boyette A 1/91-6/05 -0.131034 DOWN
Chassal A 1/91-6/06 0.106559 No evidence of trend
ChassaM A 1/91-6/07 0.25 No evidence of trend
Homosl A 1/91-6/10 0.459341 UP
Homos2 A 1/91-6/11 0.17037 No evidence of trend
Homos3 A 1/91-6/12 0.217949 UP
HidRivH A 1/91-6/09 0.741071 UP
HidRiv2T A 1/91-6/08 0.866667 UP
hunterspr A 1/91-6/13 0.0594118 No evidence of trend
lithiamain A 1/91-6/14 0.03675 No evidence of trend
magnolspr A 1/91-6/15 0.123897 UP
pumphous A 1/91-6/16 0.122222 No evidence of trend
rainbow A 1/91-6/17 -0.0032963 No evidence of trend
rainbow A 1/91-6/18 0.0875 UP
rainbow A 1/91-6/19 0.166667 UP
rainswamp3 A 1/91-6/20 0.0539904 No evidence of trend
mboBseep A 1/91-6/21 -0.08 DOWN
saltspr A 1/91-6/22 -0.175658 No evidence of trend
SWBettyJay A 1/91-6/23 0.14375 No evidence of trend
SWBoat A 1/91-6/24 0.2 No evidence of trend
SWBublng A 1/91-6/25 0.129583 UP
SWBuckhm A 1/91-6/26 -0.0215839 No evidence of trend
SWCatfish A 1/91-6/27 0.0526316 No evidence of trend
tarponholespr A 1/91-6/28 0.310545 UP
trottermain A 1/91-6/29 0.128571 UP
weekwachmain A 1/91-6/30 0.104 UP
Springs A Up 12
Springs A Down 2

Location Sequence Dates D Ca_Sen_slope UP/DOWN
707 B 1/91-12/97 0 No evidence of trend







SWFWMD
Location Sequence Dates Entero Ha down Entero_n
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates Entero_Ha_down Entero_n
707 B 1/91-12/97 -9999 -9999







Spring Date Month(txt) Month(nu) SeasonNi Source Temp DesnTemp SCl SCf pH T-Alk
Blue Springs nr Orange City 01/22/1991 1 1 4 SJR 22.7 22.8076 2281 2281 7.47 133
Blue Springs nr Orange City 02/11/1991 2 2 4 USGS 23.2 23.3076 2440 *
* 04/02/1991 4 1* *
Blue Springs nr Orange City 04/08/1991 4 4 1 USGS 23 23.0181 2610 *
Blue Springs nr Orange City 05/23/1991 5 5 1 USGS 23 23.0181 2610 *
* 06/12/1991 6 2* *
08/09/1991 8 2* *
Blue Springs nr Orange City 08/19/1991 8 8 2 SJR 23 22.8398 2170 2170 7.37 141
* 08/26/1991 10 3* *
* 10/01/1991 10 3* *
Blue Springs nr Orange City 10/09/1991 10 12 4 USGS 23.1 23.1648 1930 *
Blue Springs nr Orange City 12/10/1991 12 12 4 USGS 23 23.1076 1530 *
* 12/16/1991 1 4* *
Blue Springs nr Orange City 01/24/1992 1 2 4 USGS 22.8 22.9076 1630 *
Blue Springs nr Orange City 02/20/1992 2 3 1 SJR 22.9 23.0076 1735 7.35 129
Blue Springs nr Orange City 03/17/1992 3 4 1 USGS 23 23.0181 1800 *
* 04/09/1992 5 1* *
Blue Springs nr Orange City 05/07/1992 5 6 2 USGS 22.7 22.7181 1860 *
* 06/08/1992 7 2* *
Blue Springs nr Orange City 07/02/1992 7 8 2 USGS 23.2 23.0398 1870 *
Blue Springs nr Orange City 08/19/1992 8 8 2 SJR 23 22.8398 2200 2200 7.22 145
* 08/27/1992 10 3* *
Blue Springs nr Orange City 10/21/1992 10 12 4 USGS 23 23.0648 2220 *
Blue Springs nr Orange City 12/14/1992 12 2 4 USGS 22.9 23.0076 1790 *
Blue Springs nr Orange City 02/03/1993 2 2 4 SJR 22.9 23.0076 1815 1815 7.36 137
Blue Springs nr Orange City 02/08/1993 2 4 1 USGS 22.8 22.9076 1860 *
Blue Springs nr Orange City 04/09/1993 4 4 1 USGS 22.8 22.8181 1860 *
* 04/21/1993 6 2* *
Blue Springs nr Orange City 06/02/1993 6 6 2 USGS 23 22.8398 1590 *
* 06/08/1993 7 2* *
Blue Springs nr Orange City 07/23/1993 7 8 2 USGS 22.9 22.7398 1620 *
Blue Springs nr Orange City 08/03/1993 8 9 3 SJR 23 22.8398 1712 1712 7.27 130
Blue Springs nr Orange City 09/17/1993 9 10 3 USGS 23 23.0648 1750 *
* 10/14/1993 11 3* *
Blue Springs nr Orange City 11/23/1993 11 12 4 USGS 22.8 22.8648 1990 *
* 12/16/1993 1 4* *
Blue Springs nr Orange City 01/19/1994 1 2 4 USGS 22.8 22.9076 2180 *
* 02/16/1994 3 1* *
Blue Springs nr Orange City 02/17/1994 2 4 1 SJR 22.9 23.0076 2320 2320 7.35 *
Blue Springs nr Orange City 03/04/1994 3 5 1 USGS 23 23.0181 2300 *
* 04/12/1994 6 2* *
Blue Springs nr Orange City 05/06/1994 5 6 2 USGS 24 24.0181 2110 *







SWFWMD
Location Sequence Dates D Na Ha down DNa_n
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.18253 12
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.13305 12
7935 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.99984 19
Boyette C 1/98-6/05 0 41
Chassal C 1/98-6/06 0.96966 23
ChassaM C 1/98-6/07 0.93396 23
Homosl C 1/98-6/10 0.93396 23
Homos2 C 1/98-6/11 0.92649 21
Homos3 C 1/98-6/12 0.90667 23
HidRivH C 1/98-6/09 0.99891 23
HidRiv2T C 1/98-6/08 0.99951 24
huntersspr C 1/98-6/13 0.9722 20
lithiamain C 1/98-6/14 0.47893 23
magnolspr C 1/98-6/15 0.27171 23
pumphous C 1/98-6/16 0.94026 11
rainbow C 1/98-6/17 0.99932 23
rainbow C 1/98-6/18 0.99996 22
rainbow C 1/98-6/19 0.99999 23
SWBettyJay C 1/98-6/23 0.58367 23
SWBublng C 1/98-6/25 1 23
SWBuckhm C 1/98-6/26 0.28015 23
SWCatfish C 1/98-6/27 0.96318 10
tarponholespr C 1/98-6/28 0.98994 23
trottermain C 1/98-6/29 0.9987 23
weekwachmain C 1/98-6/30 1 23
wilsonheadspr C 1/98-6/31 0.9991 18
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates D_Mg_Sen_slope UP/DOWN
2793 A 1/91-6/03 -0.0052632 No evidence of trend
2872 A 1/91-6/03 -0.0100251 DOWN
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 0.0217346 No evidence of trend
Wells A Up UP 0
Wells A Down DOWN 1

Sequence B
Location Sequence Dates D_Mg_Sen_slope UP/DOWN
2793 B 1/91-12/97 -0.03875 DOWN
2872 B 1/91-12/97 -0.0030769 No evidence of trend
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 0.0937147 UP
Wells A Up UP 1
Wells A Down DOWN 1

Sequence C
Location Sequence Dates D_Mg_Sen_slope UP/DOWN
2793 C 1/98-6/03 0.01 No evidence of trend
2872 C 1/98-6/03 0 No evidence of trend
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 -0.0222222 No evidence of trend
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 -0.0040972 No evidence of trend
6490 C 1/98-6/03 -0.101057 DOWN
Wells A Up UP 0
Wells A Down DOWN 1






BULLETIN NO. 69


Table 8. St. Johns River Water Management District Spring Names and Abbreviations
Spring Abbreviation Spring Abbreviation
Alexander Spring Alexander Salt Springs Salt
Apopka Spring Apopka Sanlando Springs Sanlando
Fern Hammock Springs Fern Silver Glen Springs Silver G
Juniper Springs Juniper Starbuck Spring Starbuck
Miami Spring Miami Sweetwater Spring Sweetwater
Palm Spring Palm Volusia Blue Spring Vol Blue
Ponce De Leon Spring PDL Wekiwa Spring Wekiwa
Rock Spring Rock

The SJRWMD only had a few trends in comparison to the other WMDs. Calcium,
strontium, fluoride, and pH increased in a significant number of springs over time Sequence A,
while phosphate levels decreased. With respect to individual springs, Miami, Palm, Sanlando,
and Wekiwa Springs had at least eight analytes with increasing trends over Sequence A, while
Volusia Blue Spring (Vol Blue) and Sweetwater Spring decreased in at least eight analytes over
the same time sequence. Alexander and Silver Glen (Silver G) Springs each had seven or fewer
analytes showing any trend (positive or negative). Sequence B had no districtwide trends.
During Sequence C fluoride and pH increased in a large number of springs while flow decreased
at many locations.


Rock-Matrix and Saline Analytes

Increasing trends were associated with rock-matrix analytes. Strontium, calcium, pH and
fluoride increased over Sequence A. Nine springs had significant increases in calcium and pH
while one spring had a decreasing trend for theses analytes. Both fluoride and strontium
increased in 10 springs and decreased in one. Within Sequence A, only Sequence C showed
trends for fluoride, pH and flow. Thus, major changes for the SJRWMD, like other districts,
occurred during 1998 to 2003.

Figures 28-30 depict increases in rock-matrix analytes for three springs in Seminole and
Orange Counties. Alkalinity and strontium suggest changing chemistries. Both analytes
increased in Palm, Sanlando, and Wekiwa Springs. All plots show trends closely fitting an
increasing best-fit line. Starting at about 116 mg/L for alkalinity, Palm Springs increases to about
126 mg/L. Sanlando Springs begins at about 130 mg/L and increases to approximately 150 mg/L.
Strontium at Sanlando Springs began around 60 tg/L and ended over 90 with little variation in
the upward trend. Wekiwa Spring started at a higher level (near 100 tg/L) and ended the time
series at about 140 ug/L. Wekiwa Spring is also unique in showing an apparently quick increase
in concentration between 1993 and 1995. Palm Springs differed from the other two springs in
having strontium concentrations at the start of the study three to four times higher than the other
two springs.







SWFWMD
Location Sequence Dates D_P04_Ha_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 0.6095
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 0.94125
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 0.5
Boyette C 1/98-6/05 0.11444
Chassal C 1/98-6/06 0.85659
ChassaM C 1/98-6/07 0.96573
Homosl C 1/98-6/10 0.59562
Homos2 C 1/98-6/11 0.54837
Homos3 C 1/98-6/12 0.86898
HidRivH C 1/98-6/09 0.88947
HidRiv2T C 1/98-6/08 0.58876
huntersspr C 1/98-6/13 0.85903
lithiamain C 1/98-6/14 0.44721
magnolspr C 1/98-6/15 0.93111
pumphous C 1/98-6/16 0.7402
rainbow C 1/98-6/17 0.69478
rainbow C 1/98-6/18 0.66279
rainbow C 1/98-6/19 0.75967
SWBettyJay C 1/98-6/23 0.94397
SWBublng C 1/98-6/25 0.66456
SWBuckhm C 1/98-6/26 0.84994
SWCatfish C 1/98-6/27 0.60732
tarponholespr C 1/98-6/28 0.81612
trottermain C 1/98-6/29 0.91582
weekwachmain C 1/98-6/30 0.97672
wilsonheadspr C 1/98-6/31 0.85963
Springs A Up
Springs A Down








FLORIDA GEOLOGICAL SURVEY





Rainbow Springs Average Flow (1965-2003)



*
* *

*










In In

U10
^^^^^ ^


90C




80C




5 70C
_o
LL



60C




50C













250





S200

0
LL


150





100


3/30/1905


8/15/1932


1/1/1960
Date


I -




I -




I -




I -




I -


5/19/1987


Figure 37. Long-term flow trends at two SWFWMD springs. Rainbow (top) and Weeki
Wachee Springs (bottom) show historic changes. For Rainbow, points represent average
flow per year. Although no regression line on the graph, Weeki Wachee data since 1904
(bottom) showed a rise until about 1960 followed by a subsequent fall. Dark gray lines repre-
sent time line for Sequence A. (One cfs = 0.028 cms)


1991-2003
Present
study time
line
























1960s to Present



1991-2003
Present study
time line


1960 1970 1980 1990 2000
Year

Weeki Wachee Flow (1904-2003)






I *I




I ..* .. .
,.,,"* ,,,.

U *j I Li -
U -. .'.m. ..

'L ".




U
0 In:
In I







Date Na DeSnD-Na K SC-F CI S04 F
5/26/94 655 *
6/21/94 *656* *
7/26/94 17 17.7563 0.93 640 32 46 0.2
8/30/94 606 *
9/30/94 595* *
10/12/94 17 19.4106 1.6 567 34 32 0.2
11/28/94 509 *
1/31/95 558 34 30 *
2/8/95 18 17.8713 1.2 562 35 30 0.3
4/24/95 595 30 36 *
7/31/95 559 28 32 *
10/31/95 550 *
1/8/96 515* *
1/29/96 536* *
2/26/96 540 *
3/27/96 564 *
4/24/96 583* *
5/29/96 590* *
7/29/96 569 *
8/28/96 560 *
9/26/96 580* *
10/31/96 588* *
11/25/96 560 *
12/27/96 580 *
2/3/97 568* *
2/28/97 578* *
3/28/97 575 *
4/25/97 589 *
5/29/97 576* *
6/27/97 550* *
7/31/97 550 *
8/29/97 558 *
10/31/97 550* *
11/21/97 580* *
12/30/97 552 *
1/29/98 ** ****
2/27/98 556* *
3/29/98 570* *
4/16/98 580 *
5/27/98 621 *
6/30/98 590* *
7/20/98* 590* *











Descriptive Statistics for 2585 Dates: October, 1987 to A ril, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 127 19.7 21.3 21.6 21.9 25.3
1046 D-Fe microg/1 20 0.0 124.0 234.0 427.5 1800.0
1056 D-Mn microg/1 8 *
29801 Bicarb mg/1 16 60.0 119.0 138.0 140.0 152.0
299 DO mg/1 59 0.0 0.1 0.2 0.3 0.9
31616 Fcol #/100ml 4 *
31649 Entero #/100 ml 3 *
406 pH ph units 126 6.6 7.2 7.4 7.5 9.0

4255 D-Alk mg/1
530 Resid mg/1 3 *
608 D-NH3 mg/1 7 *
618 D-NO3 mg/1 4 *
620 D-NO3(N) mg/1 2 *
D-
631 NO3NO2 mg/1 21 0.0 0.2 0.3 0.5 1.5
666 D-P mg/1 5 *
671 D-PO4 mg/1 11 0.1 0.1 0.1 0.1 0.2
680 TOC mg/1 13 1.0 1.7 2.7 4.0 21.0
70300 TDS mg/1 10 130.0 150.5 159.0 160.0 178.0
72109 DtoH20 Ft 65 11.3 31.9 35.7 38.9 52.2
76 Turb Turb units 6 *
81 Color Pt-Co 4 *
82078 Turb(field) Turb units 4 *
915 D-Ca mg/1 23 29.0 36.0 38.3 41.0 51.0
925 D-Mg mg/1 24 3.9 9.5 11.0 12.0 13.2
930 D-Na mg/1 23 2.3 2.5 2.7 2.9 4.4
935 D-K mg/1 23 0.3 0.3 0.5 0.9 2.6
94 Cond(field) micromhos/cm 127 0.3 259.5 283.0 295.0 422.0
941 D-Cl mg/1 26 1.8 4.3 4.7 5.5 7.1
946 D-SO4 mg/1 25 3.1 5.8 7.5 8.9 12.0
950 D-F mg/1 23 0.1 0.1 0.2 0.2 0.4


*Less than 10 samples
NA No samples


' ' ''^'


'^^' '







Sequence A
Location Sequence Dates Entero_Ha_up Entero Ha down Entero_n
1943 A 1/91-6/03 -9999 -9999 -9999
2003 A 1/91-6/03 -9999 -9999 -9999
2193 A 1/91-6/03 -9999 -9999 -9999
2259 A 1/91-6/03 -9999 -9999 -9999
2404 A 1/91-6/03 -9999 -9999 -9999
2465 A 1/91-6/03 -9999 -9999 -9999
2585 A 1/91-6/03 -9999 -9999 -9999
2675 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 -9999 -9999 -9999
FAN A 1/91-6/34 -9999 -9999 -9999
HAR A 1/91-6/35 -9999 -9999 -9999
HOR A 1/91-6/36 -9999 -9999 -9999
LBS A 1/91-6/37 -9999 -9999 -9999
LRS A 1/91-6/38 -9999 -9999 -9999
MAN A 1/91-6/39 -9999 -9999 -9999
RLS A 1/91-6/42 -9999 -9999 -9999
RKB A 1/91-6/41 -9999 -9999 -9999
ROY A 1/91-6/43 -9999 -9999 -9999
SBL A 1/91-6/44 -9999 -9999 -9999
TEL A 1/91-6/45 -9999 -9999 -9999
TRY A 1/91-6/46 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates EnteroHaup Entero Ha down Entero_n
1943 B 1/91-12/97 -9999 -9999 -9999
2003 B 1/91-12/97 -9999 -9999 -9999
2193 B 1/91-12/97 -9999 -9999 -9999
2259 B 1/91-12/97 -9999 -9999 -9999
2404 B 1/91-12/97 -9999 -9999 -9999
2465 B 1/91-12/97 -9999 -9999 -9999
2585 B 1/91-12/97 -9999 -9999 -9999
2675 B 1/91-12/97 -9999 -9999 -9999






Sequence A
Location Sequence Dates Resid_Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 -9999 -9999
91 A 1/91-6/03 -9999 -9999
129 A 1/91-6/03 -9999 -9999
131 A 1/91-6/03 -9999 -9999
243 A 1/91-6/03 -9999 -9999
245 A 1/91-6/03 -9999 -9999
312 A 1/91-6/03 -9999 -9999
313 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Sequence B
Location Sequence Dates Resid_Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 -9999 -9999
91 B 1/91-12/97 -9999 -9999
129 B 1/91-12/97 -9999 -9999
131 B 1/91-12/97 -9999 -9999
312 B 1/91-12/97 -9999 -9999
313 B 1/91-12/97 -9999 -9999
Wells B Up 0
Wells B Down 0

Sequence C
Location Sequence Dates Resid_Sen_slope UP/DOWN
67 (and Spring) c 1/98-6/03 -9999 -9999
91 C 1/98-6/03 0 No evidence of trend
129 C 1/98-6/03 -9999 -9999
131 C 1/98-6/03 -9999 -9999
243 C 1/98-6/03 -9999 -9999
245 C 1/98-6/03 0 No evidence of trend
312 C 1/98-6/03 -9999 -9999
313 C 1/98-6/03 0 No evidence of trend
Wells C Up 0
Wells C Down 0







Sequence A
Location Sequence Dates TurbSen_slope Turb

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates Turb_Sen_slope UP/DOWN
1417 C 1/98-6/03 0.00 No evidence of trend
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 0.32 UP
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 0.00 No evidence of trend
1931 C 1/98-6/03 -0.04375 DOWN
Wells up 1
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







Sequence A
Location Sequence Dates DO Ha down DO n
2793 A 1/91-6/03 0.99943 108
2872 A 1/91-6/03 0.63347 35
2873 A 1/91-6/03 0.17916 13
6490 A 1/91-6/03 0.01184 138
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates DO Ha down DO n
2793 B 1/91-12/97 0.9591 42
2872 B 1/91-12/97 -9999 -9999
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 0.14239 72
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates DO Ha down DO n
2793 C 1/98-6/03 0.87257 66
2872 C 1/98-6/03 0.48816 34
2873 C 1/98-6/03 0.12075 12
3108 C 1/98-6/03 0.58323 19
3109 C 1/98-6/03 0.90546 46
3398 C 1/98-6/03 0.94027 45
3433 C 1/98-6/03 0.0435 18
3490 C 1/98-6/03 0.46878 45
6490 C 1/98-6/03 0.93026 66
Wells A Up
Wells A Down







Date D-Mg D-Na D-K Cond(field) D-CI D-S04 D-F DeSnTemr DtoH20 WL(MSL) DeSnDtoH20 DeSnWL(msl)
1/2/91 0.6 3.9 1.3 41 6.9 2 0.23 24.3088 8.32 83.68 8.28502 83.715
2/11/91 41 23.8088 7.52 84.48 7.48502 84.515
3/5/91 36 23.0839 5.99 86.01 5.63689 86.3631
4/2/91 0.54 4.3 1.6 41 5 5 0.2 23.5839 6.57 85.43 6.21689 85.7831
4/26/91 40 24.0839 6.11 85.89 5.75689 86.2431
6/13/91 41 24.2901 6.58 85.42 6.19846 85.8015
7/2/91 0.5 4.2 1.7 51 6.4 0.5 0.1 24.7901 4.47 87.53 4.08846 87.9115
7/29/91 40 23.7901 4.13 87.87 3.74846 88.2515
9/3/91 40 24.7957 5.17 86.83 6.06873 85.9313
9/30/91 0.5 4 1.5 40 6.3 0.4 0.1 25.7957 4.5 87.5 5.39873 86.6013
10/31/91 39 24.7957 6.24 85.76 7.13873 84.8613
12/2/91 35 25.3088 6.85 85.15 6.81502 85.185
1/2/92 0.5 4 1.6 40 7 0.4 0.1 23.3088 7.31 84.69 7.27502 84.725
1/29/92 40 24.3088 7.56 84.44 7.52502 84.475
2/19/92 0.5 4.3 1.6 7.3 0.7 0.1 *
4/7/92 0.5 4 1.6 30.57 6.8 0.4 0.1 24.0839 7.42 84.58 7.06689 84.9331
5/5/92 40.4 24.5839 8.01 83.99 7.65689 84.3431
6/9/92 40 24.7901 9 83 8.61846 83.3815
7/6/92 0.5 4.2 1.6 42 6.5 0.6 0.1 24.7901 8.96 83.04 8.57846 83.4215
8/6/92 40 24.7901 6.4 85.6 6.01846 85.9815
9/3/92 40.76 23.7957 5.69 86.31 6.58873 85.4113
10/5/92 0.5 4.2 1.6 40 6.8 0.5 0.1 24.7957 4.58 87.42 5.47873 86.5213
10/29/92 40.3 24.0957 6.54 85.46 7.43873 84.5613
12/1/92 43 24.3088 5.44 86.56 5.40502 86.595
12/29/92 0.49 4.1 1.5 41 6.3 0.5 0.1 23.8088 6.5 85.5 6.46502 85.535
2/4/93 40.4 24.0088 5.42 86.58 5.38502 86.615
3/2/93 40.5 24.1839 5.11 86.89 4.75689 87.2431
4/8/93 0.52 4.1 1.2 41 6.2 0.6 0.1 24.5839 4.4 87.6 4.04689 87.9531
5/4/93 40 24.7839 6.32 85.68 5.96689 86.0331
6/1/93 40 24.0901 6.7 85.3 6.31846 85.6815
7/8/93 0.54 4.1 1.2 41.2 5.5 0.5 0.1 24.2901 7.2 84.8 6.81846 85.1815
8/2/93 41 24.8901 8.57 83.43 8.18846 83.8115
8/31/93 40.1 24.7901 8.24 83.76 7.85846 84.1415
9/29/93 0.5 4.2 1.2 41 5.6 0.5 0.1 24.7957 8 84 8.89873 83.1013
11/2/93 46.3 24.2957 7.15 84.85 8.04873 83.9513
12/1/93 39.8 25.4088 8 84 7.96502 84.035
1/4/94 0.54 4.1 1.3 41.3 5.2 0.5 0.1 24.3088 7.79 84.21 7.75502 84.245
1/31/94 41.2 24.6088 7.57 84.43 7.53502 84.465
2/28/94 40.7 25.1088 7.79 84.21 7.75502 84.245
4/7/94 0.54 4.1 1.2 40.6 5.6 0.5 0.1 24.7839 5.96 86.04 5.60689 86.3931
5/3/94 32.6 24.6839 8.29 83.71 7.93689 84.0631
6/3/94 40.7 24.6901 8.9 83.1 8.51846 83.4815







Sequence A
Location Sequence Dates D Sr Ha_up DSr Ha down D Sr n
Salt Spring C 1/98-6/31 -9999.00 -9999.00 -9999.00
Sanlando Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Silver Glen Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Starbuck Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Sweetwater Spring C 1/98-6/03 -9999.00 -9999.00 -9999.00
Volusia Springs C 1/98-6/03 0.00182 0.99818 11
Wekiva C 1/98-6/31 -9999.00 -9999.00 -9999.00
Springs up
Springs down







SWFWMD
Location Sequence Dates D Fe Ha down DFe_n
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 0.99958 28
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 0.90928 32
Boyette A 1/91-6/05 0.12973 58
Chassal A 1/91-6/06 0.00188 38
ChassaM A 1/91-6/07 0.16281 38
Homosl A 1/91-6/10 0.83725 37
Homos2 A 1/91-6/11 0.0735 35
Homos3 A 1/91-6/12 0.00029 37
HidRivH A 1/91-6/09 0.00379 37
HidRiv2T A 1/91-6/08 0.00998 38
hunterspr A 1/91-6/13 0.74313 31
lithiamain A 1/91-6/14 0.15631 39
magnolspr A 1/91-6/15 0.01825 36
pumphous A 1/91-6/16 0.01997 26
rainbow A 1/91-6/17 0.0283 37
rainbow A 1/91-6/18 0.0422 39
rainbow A 1/91-6/19 0.04146 39
rainswamp3 A 1/91-6/20 0.12288 16
mboBseep A 1/91-6/21 0.1411 26
saltspr A 1/91-6/22 0.07785 24
SWBettyJay A 1/91-6/23 0.17966 35
SWBoat A 1/91-6/24 0.00139 20
SWBublng A 1/91-6/25 0.08152 36
SWBuckhm A 1/91-6/26 0.18992 40
SWCatfish A 1/91-6/27 0.66498 25
tarponholespr A 1/91-6/28 0.07665 39
trottermain A 1/91-6/29 0.00167 38
weekwachmain A 1/91-6/30 0.10789 38
Springs A Up
Springs A Down

Location Sequence Dates DFe Ha down D Fen
707 B 1/91-12/97 0.94293 19







Date N03-D N03-T N03N02 P o-P04 TOC DeSnTOC TDS DtoH20 WL(MSL) Turb Color Turb-F
1/15/91 0.44 1.9 1 2.03077 14.56 88.64 0.34 *
2/20/91 *******12.44 90.76 *
3/18/91 0.47* 1 1.98077 92 8.84 94.36 2.2 *
4/16/91 0.45* 7.15 96.05* *
5/28/91 *******9.04 94.16 *
6/5/91 *******6.5 96.7 *
7/11/91 0.44* 7.77 95.43 ** *
8/26/91 *******4.95 98.25 *
9/11/91 *******6.55 96.65 *
10/28/91 0.43* *8.58 94.62 *
11/19/91 *******9.55 93.65 *
12/11/91 10.13 93.07* *
1/14/92 0.42 10.95 92.25 *
1/14/92* 0.43 *********
2/19/92* 9.11 94.09* *
3/16/92 *******7.25 95.95* *
4/20/92 0.44* 9.12 94.08* *
5/12/92 **** 10 93.2* **
6/9/92 *******10.33 92.87* *
7/13/92 0.44* 9.43 93.77 ** *
8/20/92 *******9.85 93.35 *
9/22/92 *******9.38 93.82 *
10/19/92 0.47* *7.25 95.95 *
11/18/92 *******8.96 94.24* *
12/22/92 *******9.62 93.58* *
1/11/93* 9.4 93.8* *
1/12/93* 0.45 *********
2/18/93* ** 7.71 95.49* *
3/17/93 *******5.62 97.58* *
4/13/93* 0.43* 6.26 96.94* *
5/24/93 *******9.34 93.86* *
6/22/93 *******10.65 92.55* *
7/27/93 0.42* 11.4 91.8* *
8/25/93 *******12.63 90.57* *
9/20/93 *******12.55 90.65 *
10/21/93 0.41 14.06 89.14* *
11/9/93 *******10.08 93.12* *
12/15/93 *******10.93 92.27* *
1/11/94 **** 9.1 94.1 ***
2/7/94* ** 5.78 97.42* *
3/9/94 *******7.07 96.13* *
4/13/94 0.8 8.77 94.43* *
5/5/94 *******9.67 93.53* *
6/16/94 *******10.09 93.11* *
7/14/94 0.52 5.6 97.6* *







Sequence A
Location Sequence Dates Temp_Ha_up Temp_Ha_down Temp_n

Alexander Springs B 1/91-12/97 0.11 0.89 29.00
Apopka B 1/91-12/97 0.5 0.5 11
Fern Springs B 1/91-12/97 0.69 0.31 20.00
Juniper Springs B 1/91-12/97 0.31 0.69 20.00
Miami Springs B 1/91-12/97 0.50 0.50 11.00
Palm Springs B 1/91-12/97 0.22 0.78 12.00
PDL B 1/91-12/97 0.86 0.14 18.00
Rock Springs B 1/91-12/97 0.85 0.15 28.00
Salt Spring B 1/91-12/125 0.17 0.83 21.00
Sanlando Springs B 1/91-12/97 0.19 0.81 11.00
Silver Glen Springs B 1/91-12/97 0.02 0.98 23.00
Starbuck Spring B 1/91-12/97 0.89 0.11 11.00
Sweetwater Spring B 1/91-12/97 0.83 0.17 24.00
Volusia Springs B 1/91-12/97 0.68 0.32 30.00
Wekiva B 1/91-12/125 0.84 0.16 30.00
Springs up
Springs down

Sequence C
Location Sequence Dates Temp_Ha_up Temp_Ha_down Temp_n
1417 C 1/98-6/03 0.00 1.00 43.00
1420 C 1/98-6/03 0.94 0.06 18.00
1674 C 1/98-6/03 0.99009 0.00991 46
1762 C 1/98-6/03 0.00 1.00 23.00
1763 C 1/98-6/03 0.02 0.98 23.00
1764 C 1/98-6/03 0.01 0.99 48.00
1779 C 1/98-6/03 0.38 0.62 16.00
1780 C 1/98-6/03 0.54 0.46 16.00
1781 C 1/98-6/03 0.08 0.92 40.00
1931 C 1/98-6/03 0.00033 0.99967 66
Wells up
Wells down

Alexander Springs C 1/98-6/03 0.07 0.93 18.00
Apopka C 1/98-6/03 0.15726 0.84274 20
Fern Springs C 1/98-6/03 0.08 0.92 20.00
Juniper Springs C 1/98-6/03 0.17 0.83 24.00
Miami Springs C 1/98-6/03 0.10 0.90 22.00
Palm Springs C 1/98-6/03 0.02 0.98 21.00
PDL C 1/98-6/03 0.35 0.65 22.00
Rock Springs C 1/98-6/03 0.62 0.38 11.00







Sequence A
Location Sequence Dates TOCHa_up TOC Ha down TOC_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 0.23291 0.76709 10
HOR B 1/91-12/130 0.07234 0.92766 10
LRS B 1/91-12/132 0.5 0.5 11
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 0.70969 0.29031 12
TEL B 1/91-12/139 0.5 0.5 11
TRY B 1/91-6/04 0.5 0.5 11
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates TOC_Ha_up TOC Ha down TOC_n
1943 C 1/98-6/03 0.38475 0.61525 12
2003 C 1/98-6/03 0.04718 0.95282 13
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.89955 0.10045 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.70425 0.29575 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 0.01602 0.98398 17
BLU (Gilchrist) C 1/98-6/33 0.97917 0.02083 33
FAN C 1/98-6/34 0.99249 0.00751 39
HAR C 1/98-6/35 0.85024 0.14976 17
HOR C 1/98-6/36 0.86406 0.13594 46
LBS C 1/98-6/37 0.99517 0.00483 40
LRS C 1/98-6/38 0.99971 0.00029 40
MAN C 1/98-6/39 0.99999 0.00001 50
POE C 1/98-6/40 0.99998 0.00002 50






BULLETIN NO. 69


Many terms relating to hydrogeology and springs may be unfamiliar to the reader. For this
reason a glossary of terms is found in Appendix B1. In addition, Appendix B2 (online at
http://www.uflib.ufl.edu/ufdc/?b=UF00095137) elaborates on the sources of the analytes
discussed in this report, along with the probable causes for the trends observed. Other
appendices (C, E, F2,H, I, J, K, L, and M) can also be found at the online site.

Spring-water discharge comes primarily from the Floridan aquifer system, which is also
the state's principle source of groundwater. The springs provide a "window" into the aquifer,
allowing for a measure of the health of the aquifer. Chemical and biological constituents that
enter the aquifer through recharge processes may negatively affect the water quality in aquifers,
as well as the flora and fauna of springs and spring runs. The declines in water quality can be
directly attributed to Florida's increased population and changing land-use patterns (Florida
Springs Task Force, 2000).

Classification of Springs

Springs are most often classified on the amount of flow or discharge of water. The flow-
based classification listed in Table 1 is taken from Meinzer (1927) (Table 1). One discharge
measurement is all that is required to place a spring into one of eight magnitude categories.
However, it should be understood that each spring exhibits a variable discharge, depending upon
rainfall, recharge and groundwater withdrawals within their recharge areas. This can result in a
spring being classified as a first magnitude spring at one point in time and a second magnitude at
another. In the past, a spring assigned a magnitude when it was first described and continued
with that magnitude designation even though the discharge may have changed considerably over
time. To alleviate this confusion, the FGS (Copeland, 2003) adopted a system using the
historical median of the flow measurements to classify a spring's magnitude. Using the new
system along with the Meinzer system, a spring's magnitude is now based on the median value
of all annual median discharge measurements for the period of record. Of the over 700 springs
inventoried by the FGS, there are 33 first-magnitude springs, 191 second-magnitude, and 151
third-magnitude springs. Most are located in the northern portion of the state (Figure 3).

Table 1. Spring Magnitude.
Discharge
Magnitude Metric Units English Units
1 > 2.832 cms > 100 cfs (> 64.6 mgd)
2 > 0.283 to 2.832 cms > 10 to100 cfs (> 6.46 to 64.6 mgd)
3 > 0.028 to 0.283 cms > 1 to 10 cfs (> 0.646 to 6.46 mgd)
4 > 0.0063 to 0.028 cms > 100 gpm to 1 cfs (> 100 to 448gpm)
5 >0.631 to6.3081ps > 10 to 100 gpm
6 > 0.063 to 0.631 lps > 1 to 10 gpm
7 > 0.473 to 3.785 1pm > 1 pint/min to 1 gpm
8 < 0.473 1pm < 1 pint/min
cms = cubic meters per second Ips = liters per second
cfs = cubic feet per second pint/min = pints per minute
mgd = million gallons per day 1pm = liters per minute
gpm = gallons per minute






Sequence A
Location Sequence Dates Temp_Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 0.0052661 No evidence of trend
91 A 1/91-6/03 0.0012962 UP
129 A 1/91-6/03 0.0045898 UP
131 A 1/91-6/03 0.0046864 UP
243 A 1/91-6/03 0.0009091 No evidence of trend
245 A 1/91-6/03 -0.006389 No evidence of trend
312 A 1/91-6/03 0.004936 UP
313 A 1/91-6/03 0.0056338 UP
Wells A Up 5
Wells A Down 0

Sequence B
Location Sequence Dates Temp_Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 -0.0046616 No evidence of trend
91 B 1/91-12/97 -0.0006788 No evidence of trend
129 B 1/91-12/97 0.0097197 UP
131 B 1/91-12/97 0 No evidence of trend
312 B 1/91-12/97 0.0045455 UP
313 B 1/91-12/97 0.0001335 No evidence of trend
Wells B Up 2
Wells B Down 0

Sequence C
Location Sequence Dates Temp_Sen_slope UP/DOWN
67 (and Spring) C 1/98-6/03 -0.0108831 No evidence of trend
91 C 1/98-6/03 -0.0053848 DOWN
129 C 1/98-6/03 0.019581 UP
131 C 1/98-6/03 0.00471 UP
243 C 1/98-6/03 0.0060417 No evidence of trend
245 C 1/98-6/03 -0.0008969 No evidence of trend
312 C 1/98-6/03 0.018452 UP
313 C 1/98-6/03 0.0053647 No evidence of trend
Wells C Up 3
Wells C Down 1







SWFWMD
Location Sequence Dates DMg_Hadown D_Mg_n
736 B 1/91-12/97 0.3495 19
737 B 1/91-12/97 0.99956 24
996 B 1/91-12/97 0.00019 18
997 B 1/91-12/97 0.00543 19
1087 B 1/91-12/97 0.07483 19
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.45533 14
Boyette B 1/91-12/99 0.82484 18
Chassal B 1/91-12/100 0.81406 15
ChassaM B 1/91-12/101 0.95856 15
Homosl B 1/91-12/104 0.64943 14
Homos2 B 1/91-12/105 0.11352 14
Homos3 B 1/91-12/106 0.78083 14
HidRiv2T B 1/91-12/102 0.05592 14
HidRivH B 1/91-12/103 0.09311 14
huntersspr B 1/91-12/107 0.24593 12
lithiamain B 1/91-12/108 0.56639 17
magnolspr B 1/91-12/109 0.57288 13
pumphous B 1/91-12/110 0.25854 15
rainbow B 1/91-12/111 0.07504 14
rainbow B 1/91-12/112 0.04028 17
rainbow B 1/91-12/113 0.23175 16
mboBseep B 1/91-12/115 0.08196 17
saltspr B 1/91-12/116 0.34609 15
SWBettyJay B 1/91-12/117 0.9804 12
SWBoat B 1/91-12/118 0.59705 13
SWBublng B 1/91-12/119 0.03788 13
SWBuckhm B 1/91-12/120 0.02669 17
SWCatfish B 1/91-12/121 0.62392 16
tarponholespr B 1/91-12/122 0.77673 18
trottermain B 1/91-12/123 0.40217 15
weekwachmain B 1/91-12/124 0.44077 15
Springs A Up
Springs A Down

Location Sequence Dates D_Mg_Ha_down D_Mg_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.89703 14
737 C 1/98-6/03 -9999 -9999







FLORIDA GEOLOGICAL SURVEY


Table 15. Spring Trends in the SJRWMD, Sequence A (1991-2003).
(+ = T trend, 0 = no evidence of trend, = I trend)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +
Alk + + + + + + 6 1
Ca + + + + + + + + + 9 1
Cl + + + + + 5 3
F + + + + + + + + + + 10 0
Flw + + + 3 3
K 0 1
Mg + + + + + + + 7 2
Na + + + + + 5 3
N03* + + + -- 3 4
P 0 0
P04 -- --DL -- 0 11
pH + + + + + + + + 9 1
SCfld --- + 1 6
SO4 + + + + + + + + 8 5
TKN 0 2
Temp + + 2 0
TDS + + + + 4 2
Sr + + + + + + + + + + 10 1
Analytes are total rather than dissolved except for Apopka Spring. SC-fld = Specific Conductance field
*N03 = Depending on spring, nitrate could be in the form of: (1) D N03 + N02 (as N), (2) D N03 (as N) or T N03 (as N)
combined; (3) T N03 + N02 (as N) combined, or (4) T N03 (as N)
DL = Influenced by changing laboratory method detection level.


1. Alexander Spring
2. Apopka Spring
3. Volusia Blue Spring
4. Fern Hammock Springs
5. Juniper Springs
6. Miami Spring
7. Palm Springs
8. Ponce de Leon Spring


9. Rock Springs
10. Sanlando Springs
11. Salt Springs
12. Silver Glen Springs
13. Starbuck Spring
14. Sweetwater Spring
15. Wekiwa Spring


Table 16. SJRWMD Districtwide Trends Based on Sign Tests, Sequence A.
Analyte + Trend Direction P-Value
Ca 9 1 Up 0.011
F 10 0 Up 0.001
P04 0 11 Down <0.001
pH 9 1 Up 0.011
Sr 10 1 Up 0.001










nnn~~r;f~ifcfp C~+n;n Fir 31O2


kLUI OLItO II U t. U UeIIl, Luz A Luz a
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 122 21.1 21.8 21.9 22.1 23.1
1046 D-Fe microg/1 24 1.3 1200.0 1200.0 1200.0 1300.0
1056 D-Mn microg/1 8 *
29801 Bicarb mg/1 17 160.0 163.0 167.0 170.0 170.0
299 DO mg/1 57 0.1 0.2 0.4 0.5 1.9
31616 Fcol #/100 ml 0 NA NA NA NA NA
31649 Entero #/100 ml 0 NA NA NA NA NA
406 pH ph units 121 6.2 6.9 7.0 7.1 639.0

4255 D-Alk mg/1
530 Resid mg/1 0 NA NA NA NA NA
608 D-NH3 mg/1 5 *
618 D-NO3 mg/1 4 *
620 D-N3(N) mg/1 1 *
D-
631 NO3NO2 mg/1 21 0.0 0.0 0.0 0.0 0.1
666 D-P mg/1 3 *
671 D-PO4 mg/1 8 *
680 TOC mg/1 9 *
70300 TDS mg/1 8 *
72109 DtoH20 Ft 55 19.2 28.4 29.5 32.4 139.9
76 Turb Turb units 4 *
81 Color Pt-Co 1 *
82078 Turb(field) Turb units 0 NA NA NA NA NA
915 D-Ca mg/1 24 31.0 34.0 36.0 37.0 37.4
925 D-Mg mg/1 24 15.0 18.0 18.0 19.0 19.2
930 D-Na mg/1 24 4.0 4.3 4.5 4.5 4.7
935 D-K mg/1 24 1.0 1.1 1.2 1.3 1.6
94 Cond(field) micromhos/cm 122 29.0 325.0 334.0 335.0 365.0
941 D-Cl mg/1 25 1.2 7.0 7.3 7.7 8.5
946 D-SO4 mg/1 25 0.2 0.2 0.2 4.3 17.0
950 D-F mg/1 23 0.2 0.2 0.2 0.2 0.4


*Less than 10 samples
NA No samples


nn+nn. Tl.nn 10(10+n Allrrlln+ 3(L(LZ








DATE OPO4DISS COLITOT COLIFEC FLOWCFS TOC DOC CONDL PHF TEMP STAGEMSL DO TURB ALKTOT NH3NTOT TOTDEPM TIME CONDF
9/12/02 *8.45 5.4 0.1 153 0.02* *
10/30/02 0.027 24.6 0.8 0.8 7.43 22.3 5.5 0.2 496 0.037 1 1528 340
11/20/02 0.03 ** 0.8 2.5 7.62 22.8 5.7 0.2 159 0.037 1 1426 332
12/10/02 0.026 40.3 0.8 3.3 7.59 22.1 7.92 4.8 0.2 160 0.037 1 921 313
1/14/03 0.028 1 1 1.1 2.3 7.57 22.3 8.42 4.7 0.5 173 0.037 0.95 1600 335
2/24/03 0.03 ** 3.5 7.62 22.6 9.5 5.1 0.2 167 0.047 0.75 1542 349
3/10/03 0.026 1.8 2.7 7.37 22.5 11.28 3 0.1 166 0.094 7 1554 359
4/9/03 0.025 340 230 76.7 0.8 1.9 7.42 22.4 9.81 4.9 0.4 163 0.037 0.7 1615 338
5/22/03 8.48 4.1 0.1 161 0.076 0.5 1040 337
6/23/03 0.119 61.8 1.7 0.8 7.51 21.8 9.34 5.5 0.4 163 0.043 1.2 1133 342
7/1/03 0.031 1.8 2 *7.27 22.3 9.5 4.2 0.2 164 0.04 1 946 344
8/25/03 0.033 74 0.8 0.8 7.45 22.5 9.4 4 0.38 158 0.037 1.2 933 342
9/8/03 0.036 2.7 3.1 7.6 22.8 5.1 0.1 158 0.043 1.1 1510 322
10/9/03 8.42 6.7 0.15 169 0.037* *
11/24/03 *7.94 4.7 0.26 156 0.04* *
12/18/03 ** 5.5 0.15 165 0.04* *
33 8 8 23 33 32 24 36 36 35 45 42 42 42 12 12 12
41 8 8 26 39 32 32 44 44 35 64 61 61 61 12 12 12







Date SEASONNO. Month Temp DeSnTemp Fe-D Mn-D Alk DeSnAlk DO Fcol Entero pH TSS
10/11/95 3 10 21.6 21.4692 7.44 *
11/7/95 3 11 21.7 21.5692 7.48 *
12/1/95 4 12 21.6 21.9487 ***0.7 7.48 *
1/3/96 4 1 20.9 21.2487 ***0.08 7.44 *
3/5/96 1 3 22 21.9706 ** ** 0* 7 *
4/2/96 1 4 22 21.9706 ** ** 0* 7*
5/1/96 1 5 21.8 21.7706 0.15 7.36 *
5/9/96 1 5 22 21.9706 261 39 137 156.65 0 7 *
6/4/96 2 6 21.9 21.7346 ***0.13 7.32*
7/1/96 2 7 21.8 21.6346 0.17 7.36 *
8/6/96 2 8 22.3 22.1346 0.25 7.43 *
9/3/96 3 9 22.8 22.6692 ***0.44 7.24 *
10/2/96 3 10 22.2 22.0692 0.06 7.44 *
11/5/96 3 11 21.7 21.5692 0.06 7.4 *
12/5/96 4 12 21.5 21.8487 0.04 7.47 *
1/10/97 4 1 21.2 21.5487 0.04 7.42 *
2/7/97 4 2 20.3 20.6487 ***0.66 6.58 *
4/2/97 1 4 21.4 21.3706 0.11 7.51 *
5/7/97 1 5 25.3 25.2706 ***0.33 7.8 *
6/3/97 2 6 21.5 21.3346 0.19 7.68 *
7/1/97 2 7 21.6 21.4346 ***0.24 7.42 *
8/5/97 2 8 19.7 19.5346 0.1 7.11 *
9/3/97 3 9 21.2 21.0692 0.05 7.42 *
10/2/97 3 10 21.5 21.3692 ***0.28 7.08*
11/4/97 3 11 21.5 21.3692 ***0.2 7.57 *
12/2/97 4 12 21.3 21.6487 ***0.13 7.55 *
1/7/98 4 1 21.4 21.7487 ***0.33 7.01 *
2/4/98 4 2 19.9 20.2487 0.89 7.01 *
3/2/98 1 3 20 19.9706 ***0.88 7.03 *
5/11/98 1 5 20.7 20.6706 ***0.27 7.15 *
6/2/98 2 6 21.3 21.1346 ***0.47 7.18 *
6/30/98 2 7 21.1 20.9346 ***0.37 9.03 *
8/4/98 2 8 21.1 20.9346 0.31 7.41 *
9/4/98 3 9 21.1 20.9692 0.26 7.38 *
10/8/98 3 10 21.2 21.0692 0.08 7.05 *
11/17/98 3 11 21.3 21.1692 228 152 147.05 0.27 7.21 *
12/2/98 4 12 20.9 21.2487 0.26 7.23 *
1/5/99 4 1 20.8 21.1487 ***0.21 7.15 *
2/4/99 4 2 21.1 21.4487 0.1 7.07 *
3/3/99 1 3 21.3 21.2706 ***0.11 7.36 *
4/7/99 1 4 21.4 21.3706 ***0.1 7.26 *
5/4/99 1 5 21.3 21.2706 0.1 7.34 *
6/2/99 2 6 21.3 21.1346 0.1 7.31 *
7/7/99 2 7 21.3 21.1346 0.09 7.2 *
8/2/99 2 8 21.6 21.4346 0.08 7.1 *
9/1/99 3 9 21.4 21.2692 ** 0.09 7.17 *








COLLECTION DATE CI SO4 F
11/14/96 *
12/16/96 *
1/9/97 *
2/11/97 *
3/12/97 *
4/7/97 *
5/9/97 *
6/6/97 *
7/3/97 *
8/13/97 *
9/2/97 *
10/9/97 *
10/31/97 *
12/12/97 *
1/5/98 *
2/5/98 14 12 0.1
3/18/98 *
4/3/98 *
5/1/98 *
5/29/98 *
7/6/98 *
8/7/98 *
9/9/98 *
3/15/00 *
5/23/00 *
6/27/00 *
7/25/00 *
8/28/00 *
9/25/00 *
10/23/00 *
11/27/00 *








COLLECTION_DATE DtoH20 WL(MSL) DeSNWL(MSL) Turb Color Turb-F Ca Mg Na K SC-F
11/14/96 16.61 49.03 48.7404 131
12/16/96 16.24 49.4 49.048 126
1/9/97 16.47 49.17 48.818 131
2/11/97 16.32 49.32 48.968 124
3/12/97 17.07 48.57 48.8188 123
4/7/97 17.05 48.59 48.8388 126
5/9/97 16.25 49.39 49.6388 126
6/6/97 15.56 50.08 50.4245 131
7/3/97 15.67 49.97 50.3145 123
8/13/97 15.84 49.8 50.1445 130
9/2/97 16.84 48.8 48.5104 137
10/9/97 17.1 48.54 48.2504 133
10/31/97 16.31 49.33 49.0404 133
12/12/97 15.75 49.89 49.538 134
1/5/98 15.65 49.99 49.638 125
2/5/98 15.76 49.88 49.528 1.5 50 7.12 1.48 11.1 1.1 122
3/18/98 15.93 49.71 49.9588 137
4/3/98 16.34 49.3 49.5488 125
5/1/98 17.23 48.41 48.6588 125
5/29/98 18.29 47.35 47.5988 154
7/6/98 18.91 46.73 47.0745 132
8/7/98 16.49 49.15 49.4945 138
9/9/98 16.39 49.25 48.9604 140
3/15/00 18.2 47.44 47.6888 143
5/23/00 19.4 46.24 46.4888 134
6/27/00 20.1 45.54 45.8845 135
7/25/00 19.2 46.44 46.7845 133
8/28/00 18.8 46.84 47.1845 145
9/25/00 15.8 49.84 49.5504 144
10/23/00 16.1 49.54 49.2504 134
11/27/00 16.5 49.14 48.8504 ** *** 144







SWFWMD
Location Sequence Dates D_Mn_Ha_up
775 C 1/98-6/03 -9999
996 C 1/98-6/03 -9999
997 C 1/98-6/03 -9999
1087 C 1/98-6/03 -9999
1100 C 1/98-6/03 -9999
7934 C 1/98-6/03 -9999
7935 C 1/98-6/03 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999
Boyette C 1/98-6/05 -9999
Chassal C 1/98-6/06 -9999
ChassaM C 1/98-6/07 -9999
Homosl C 1/98-6/10 -9999
Homos2 C 1/98-6/11 -9999
Homos3 C 1/98-6/12 -9999
HidRivH C 1/98-6/09 -9999
HidRiv2T C 1/98-6/08 -9999
huntersspr C 1/98-6/13 -9999
lithiamain C 1/98-6/14 -9999
magnolspr C 1/98-6/15 -9999
pumphous C 1/98-6/16 -9999
rainbow C 1/98-6/17 -9999
rainbow C 1/98-6/18 -9999
rainbow C 1/98-6/19 -9999
SWBettyJay C 1/98-6/23 -9999
SWBublng C 1/98-6/25 -9999
SWBuckhm C 1/98-6/26 -9999
SWCatfish C 1/98-6/27 -9999
tarponholespr C 1/98-6/28 -9999
trottermain C 1/98-6/29 -9999
weekwachmain C 1/98-6/30 -9999
wilsonheadspr C 1/98-6/31 -9999
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates D Sr Sen_slope UP/DOWN
Salt Spring C 1/98-6/31 -9999.00 -9999
Sanlando Springs C 1/98-6/03 -9999.00 -9999
Silver Glen Springs C 1/98-6/03 -9999.00 -9999
Starbuck Spring C 1/98-6/03 -9999.00 -9999
Sweetwater Spring C 1/98-6/03 -9999.00 -9999
Volusia Springs C 1/98-6/03 23.3333 UP
Wekiva C 1/98-6/31 -9999.00 -9999
Springs up 1
Springs down 0







DATE N03-D N03-T N03N02 P o-P04 TOC TDS WL(MSL) Turb Color Turb-F Ca
8/17/94 0.02 0.02 20.32 0.75 94
10/4/94 0.02 15.85 95
5/12/97 0.013 0.004 0.005 1 14.59 2.7 102
10/13/99 ******12.14 ** **
11/9/99 *** 11.58 ***
12/8/99** 10.3* *
1/4/00 11.43* *
2/4/00 *** 11.97 ***
3/1/00******* ****
4/3/00 11.14* *
5/2/00 *** *...****
5/31/00 ***** *****
7/6/00 ****** ****
8/3/00 ****** ****
8/29/00 ****** ****
10/9/00 14.27* *
11/6/00 *** 12.63****
12/4/00 *** 12.43****
1/8/01 *** 12.1****
2/5/01 11.23* *
3/7/01 *** 12.02 ***
4/4/01 *** 13.43****
4/30/01 12.43 ** **
6/18/01 *** 11.85****
7/25/01 14.43 ** **
8/28/01 *** 14.18****
9/19/01 ******13.94* *
10/23/01 0.015 0.013 0.012 1 288 12.68 0.25 5 95.4
11/27/01 0.015 0.005 0.008 1.3 277 11.88 0.05 5 95.7
12/20/01 0.017 0.005 0.006 1 274 11.73 0.05 5 93.9
1/24/02 0.017 0.004 0.006 1.2 267 12.47 0.05 5 89.1
2/19/02 0.014 0.006 0.006 1 257 11.71 0.15 5 87.7
3/20/02 0.011 0.005 0.004 1.2 237 13.41 0.2 5 79
4/25/02 0.02 0.004 0.004 1.3 248 11.98 0.05 5 0.46 86.2
5/28/02 0.022 0.12 0.004 1 258 11.07 0.05 5 0.05 87.2
6/25/02 0.017 0.01 0.008 1 244 10.36 0.1 5 1.11 93.1
7/17/02 0.02 0.006 0.012 1.2 257 11.63 0.15 5 91.6
8/20/02 0.016 0.011 0.005 1.1 221 11.93 0.05 5 78.8
9/25/02 0.016 0.004 0.006 1.2 210 12.73 0.05 5 0.81 71.5
10/29/02 ** **** 13* 0.42 *
11/19/02 ******14.52 0.1 *
12/17/02* 14.23* 0.48 *







Date D-N03 T-N03 D-N03N02 DNO3NO2+TNO3 T-NO3NO; T-P D-P TOC Ca T-Ca Mg T-Mg
01/22/1991 0.169 0.169 1.36 87 38.7 *
02/11/1991* ** ******
04/02/1991 **** *******
04/08/1991 **** *******
05/23/1991* *** *******
06/12/1991* ** ******
08/09/1991* *** *******
08/19/1991 0.26 0.26* 72 34.8 *
08/26/1991* ** ******
10/01/1991* ** ******
10/09/1991* *** *******
12/10/1991 **** *******
12/16/1991* ** ******
01/24/1992* *** *******
02/20/1992 0.394 0.394* 63 41 27.8 26.8
03/17/1992**** ********
04/09/1992**** ********
05/07/1992 **** *******
06/08/1992* ** ** *****
07/02/1992 **** *******
08/19/1992 0.174 0.174* 70 68 37.6 34.1
08/27/1992**** ********
10/21/1992* *******
12/14/1992* *** *******
02/03/1993 0.297 0.297 60 66 28.5 30.2
02/08/1993 ************
04/09/1993* *** *******
04/21/1993* *** ** ****
06/02/1993 ************
06/08/1993**** ********
07/23/1993* *******
08/03/1993* 67 62 27.4 26.9
09/17/1993 ************
10/14/1993* *** *******
11/23/1993* *******
12/16/1993* *** ** ****
01/19/1994**** ********
02/16/1994* *** *******
02/17/1994 0.151 0.151* 69 65 36.8 34.7
03/04/1994**** ********
04/12/1994*** *******
05/06/1994 **** *******











Descriptive Statistics for Boat Sprig. from July, 1994 to Jan., 2002
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 21 22.3 22.9 23.5 24.4 25.3
SCf uS/cm 21 378.0 597.0 854.0 1110.0 1304.0
pH s.u. 20 7.2 7.5 7.6 7.6 7.9
Bicarb mg/1 21 101.0 116.0 118.0 121.5 128.0
D-N03 mg/1 20 0.3 0.3 0.4 0.4 0.5
T-N03 mg/1 NA NA NA NA NA NA
TKN mg/1 21 0.0 0.0 0.0 0.0 0.2
D-N03N02 mg/121 21 0.3 0.3 0.4 0.4 0.5
T-P mg/1 21 0.0 0.0 0.0 0.0 0.1
D-P04 mg/1 21 0.0 0.0 0.0 0.0 0.0
T-NH3 mg/1 21 0.0 0.0 0.0 0.0 0.2
T-N mg/1 7 *
TOC mg/1 21 0.3 0.4 0.5 0.7 0.9
Ca mg/1 21 43.0 47.0 50.4 52.8 58.1
Mg mg/1 21 5.4 8.4 14.4 21.6 39.0
Na mg/1 21 21.0 47.1 99.1 160.5 304.0
K mg/1 21 0.9 1.8 3.8 6.0 12.5
D-S04 mg/1 21 12.0 19.1 31.7 45.7 77.2
F mg/1 20 0.0 0.1 0.1 0.1 0.1
Cl mg/1 21 37.0 80.8 179.0 297.0 550.0
D-Fe ug/1 20 25.0 30.0 30.0 30.0 72.0
D-Sr ug/1 15 50.0 50.0 50.0 350.0 530.0
TDS mg/1 21 209.0 285.5 450.0 657.0 1139.0
*Less than 10 samples
NA No samples







SWFWMD
Location Sequence Dates Fcol Ha down Fcol_n
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 0.63614 10
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.14275 12
7935 C 1/98-6/03 -9999 -9999
Wells A Up
Wells A Down


Bobhill C 1/98-6/04 -9999 -9999
Boyette C 1/98-6/05 -9999 -9999
Chassal C 1/98-6/06 -9999 -9999
ChassaM C 1/98-6/07 -9999 -9999
Homosl C 1/98-6/10 -9999 -9999
Homos2 C 1/98-6/11 -9999 -9999
Homos3 C 1/98-6/12 -9999 -9999
HidRivH C 1/98-6/09 -9999 -9999
HidRiv2T C 1/98-6/08 -9999 -9999
huntersspr C 1/98-6/13 -9999 -9999
lithiamain C 1/98-6/14 -9999 -9999
magnolspr C 1/98-6/15 -9999 -9999
pumphous C 1/98-6/16 -9999 -9999
rainbow C 1/98-6/17 -9999 -9999
rainbow C 1/98-6/18 -9999 -9999
rainbow C 1/98-6/19 -9999 -9999
SWBettyJay C 1/98-6/23 -9999 -9999
SWBublng C 1/98-6/25 -9999 -9999
SWBuckhm C 1/98-6/26 -9999 -9999
SWCatfish C 1/98-6/27 -9999 -9999
tarponholespr C 1/98-6/28 -9999 -9999
trottermain C 1/98-6/29 -9999 -9999
weekwachmain C 1/98-6/30 -9999 -9999
wilsonheadspr C 1/98-6/31 -9999 -9999
Springs A Up
Springs A Down







Date Ca Mg Na K SC-F CI S04 F
1/14/91 60.2 20.2 3.2 0.4 395 6.3 2 0.44
2/6/91 61.1 20.4 3.3 0.5 397 5.6 5 0.27
3/7/91 60.3 20.2 3.3 0.5 396 1 5 0.28
4/8/91 54 18 2.9 1 394 6.5 5 0.3
5/13/91 ***396 *
6/3/91 395 *
7/3/91 59 19 3.3 0.8 389 5.6 0.2 0.3
8/19/91 ***410* *
10/15/91 60 20 3.1 0.7 402 5.6 0.2 0.3
11/6/91 ***413* *
12/5/91 ***410* *
1/6/92 58 19 3.3 0.8 293 5.7 0.5 0.3
2/4/92 ***404 *
3/5/92 411 *
4/1/92 55 19 3.2 0.8 336 5.8 0.2 0.3
5/11/92 ***399 *
6/2/92 __* 401 *
7/6/92 59 20 3.3 0.8 402 5.8 0.2 0.3
8/3/92 397 *
9/3/92 402 *
10/14/92 ***393 *
11/5/92 405 *
12/3/92 ***394 *
1/12/93 51 18 3.4 0.44 398 5.3 0.2 0.3
1/29/93 ***397* *
3/5/93 382 *
4/1/93 54 19 3.2 0.43 394 5.3 0.2 0.3
5/6/93 ***378 *
6/4/93 ***389 *
7/1/93 61 20 3.3 0.44 381 5.6 0.2 0.3
8/4/93 ***383 *
9/2/93 ***387* *
10/7/93 56 20 3.2 0.43 374 6.1 0.2 0.4
11/18/93 53 18 3.3 0.44 406 5.9 0.2 0.3
12/9/93 ***385* *
1/6/94 59 20 3.1 0.44 383 5.8 0.2 0.3
2/2/94 ***382 *
3/7/94 370 *
4/12/94 59 20 3.3 0.43 372 5.4 0.2 0.3
5/5/94 379 *
6/6/94 ***376* *
7/12/94 57 19 3.2 0.42 387 5.9 0.2 0.3
10/12/94 3.2 0.41 404 5.8 0.2 0.3







Sequence A
Location Sequence Dates Color_Ha_up
2793 A 1/91-6/03 -9999
2872 A 1/91-6/03 -9999
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates Color_Ha_up
2793 B 1/91-12/97 -9999
2872 B 1/91-12/97 -9999
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates Color_Ha_up
2793 C 1/98-6/03 0.92671
2872 C 1/98-6/03 0.5
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 0.99485
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 0.2191
6490 C 1/98-6/03 0.91813
Wells A Up
Wells A Down







COLLECTION_DATE pH TSS NH3 N03-D N03-T N03N02 P o-P04 TOC TDS Turb Color Turb-F Ca
6/25/02 7.16 0.66 *
7/23/02 7.12 1.1 *
8/19/02 7.23*************
9/23/02 7.23 *********** 0.82*
10/22/02 7.22 8 0.18 0.004 0.24 0.23 4.7 178 14 100 0.89 53.2
11/18/02 7.4 6 0.17 0.016 0.24 0.23 4.6 174 15 80 0.92 56.3
12/17/02 7.4 9 0.16 0.011 0.23 0.22 4.4 200 13 80 1.91 57.8
1/28/03 7.37 6 0.18 0.006 0.24 0.22 4 195 20 100 3.34 55.7
2/17/03 7.38 7 0.16 0.016 0.22 0.21 4.7 199 17 100 1.74 55.8
3/26/03 7.3 4 0.16 0.009 0.17 0.18 4.6 188 16 80 4.73 56
4/22/03 7.04 4 0.17 0.004 0.2 0.19 4.7 193 15 100 2.34 57.4
5/27/03 6.93 4 0.16 0.01 0.21 0.2 3.9 185 15 100 0.7 56.4
6/24/03 6.59 4 0.18 0.018 0.2 0.2 4.4 197 16 100 0.66 55.8







Sequence A
Location Sequence Dates Turb_Ha_up Turb Ha down Turb_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 0.99947 0.00053 19
FAN B 1/91-12/128 0.03854 0.96146 10
HOR B 1/91-12/130 0.99658 0.00342 20
LRS B 1/91-12/132 0.58278 0.41722 12
RKB B 1/91-12/135 0.99883 0.00117 18
ROY B 1/91-12/137 0.9988 0.0012 20
TEL B 1/91-12/139 0.96495 0.03505 17
TRY B 1/91-6/04 0.98718 0.01282 18
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates Turb_Ha_up Turb Ha down Turb_n
1943 C 1/98-6/03 0.70579 0.29421 12
2003 C 1/98-6/03 0.00358 0.99642 13
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.14542 0.85458 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.76286 0.23714 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 0.33784 0.66216 18
BLU (Gilchrist) C 1/98-6/33 0.00556 0.99444 42
FAN C 1/98-6/34 0.05432 0.94568 44
HAR C 1/98-6/35 0.11286 0.88714 19
HOR C 1/98-6/36 0 1 48
LBS C 1/98-6/37 0.1567 0.8433 48
LRS C 1/98-6/38 0.04374 0.95626 50
MAN C 1/98-6/39 0.63443 0.36557 22
POE C 1/98-6/40 0.00038 0.99962 59






BULLETIN NO. 69


Average Meteoric pH
Average From Seven Statewide Stations











4.6 -


4.4

2/12/1990 11/8/1992 8/5/1995 5/1/1998 1/25/2001 10/22/2003
Date
Figure 78. Average monthly pH from seven atmospheric rain stations
(1991- 2003).


will follow for the next 30 years. The concern is that Florida would no longer have its current 18
million residents, but millions more. By 2010, it is estimated that the population will be over 19
million and, by 2030, it will be 29 million (Clouser, 2006; McGovern, 2004). Once rainfall
declines begin, the amount of recharge will be less, and because of Florida's increased
population, the demand for groundwater will increase. Florida's springs can be expected to have
substantially lower amounts of flow, and, unless appropriate, long-term sustainability measures
are incorporated into public policy, the quality of spring water will decline.

Implications Regarding Long-Term Sustainability

Alley et al. (1999) stated that groundwater sustainability is the development and use of
groundwater in a manner that can be maintained for an indefinite time without causing
unacceptable environmental, economic or social consequences. Scott (2001) estimated that more
than two quadrillion gallons of potable groundwater exist within Florida's aquifer. They also
believed that in order to determine the outlook for sustaining Florida's groundwater resources,
four questions needed to be addressed:

What is the level of infrastructure development and population growth
that is supportable by the state's water resources?
Should mineralized waters be considered as part of a sustainable water
supply?
How much impact on the environment is acceptable?
4 How do we balance ecological sustainability with human needs and
economic growth?
economic growth?







Sequence A
Location Sequence Dates D_NO3_Sen_slope UP/DOWN
1943 A 1/91-6/03 -9999 -9999
2003 A 1/91-6/03 -9999 -9999
2193 A 1/91-6/03 -9999 -9999
2259 A 1/91-6/03 -9999 -9999
2404 A 1/91-6/03 -9999 -9999
2465 A 1/91-6/03 -9999 -9999
2585 A 1/91-6/03 -9999 -9999
2675 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

BLU (Gilchrist) A 1/91-6/33 -9999 -9999
FAN A 1/91-6/34 -9999 -9999
HAR A 1/91-6/35 -9999 -9999
HOR A 1/91-6/36 -9999 -9999
LBS A 1/91-6/37 -9999 -9999
LRS A 1/91-6/38 -9999 -9999
MAN A 1/91-6/39 -9999 -9999
RLS A 1/91-6/42 -9999 -9999
RKB A 1/91-6/41 -9999 -9999
ROY A 1/91-6/43 -9999 -9999
SBL A 1/91-6/44 -9999 -9999
TEL A 1/91-6/45 -9999 -9999
TRY A 1/91-6/46 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DN03_Sen_slope UP/DOWN
1943 B 1/91-12/97 -9999 -9999
2003 B 1/91-12/97 -9999 -9999
2193 B 1/91-12/97 -9999 -9999
2259 B 1/91-12/97 -9999 -9999
2404 B 1/91-12/97 -9999 -9999
2465 B 1/91-12/97 -9999 -9999
2585 B 1/91-12/97 -9999 -9999
2675 B 1/91-12/97 -9999 -9999







SWFWMD
Location Sequence Dates Resid_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up 0
Springs A Down 0

Location Sequence Dates Resid_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999







Sequence A
Location Sequence Dates Color_Sen_slope UP/DOWN
Salt Spring C 1/98-6/31 -9999.00 -9999
Sanlando Springs C 1/98-6/03 -9999.00 -9999
Silver Glen Springs C 1/98-6/03 -9999.00 -9999
Starbuck Spring C 1/98-6/03 -9999.00 -9999
Sweetwater Spring C 1/98-6/03 -9999.00 -9999
Volusia Springs C 1/98-6/03 -9999.00 -9999
Wekiva C 1/98-6/31 -9999.00 -9999
Springs up 0
Springs down 0







Sequence A
Location Sequence Dates WLHa_up WL Ha down WL_n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates WLHa_up WL Ha down WL_n
1417 C 1/98-6/03 0.00004 0.99996 43
1420 C 1/98-6/03 0.01152 0.98848 18
1674 C 1/98-6/03 0.992 0.008 48
1762 C 1/98-6/03 0.93721 0.06279 23
1763 C 1/98-6/03 0.71376 0.28624 22
1764 C 1/98-6/03 0.26983 0.73017 48
1779 C 1/98-6/03 0.5 0.5 16
1780 C 1/98-6/03 0.02919 0.97081 16
1781 C 1/98-6/03 0.00001 0.99999 40
1931 C 1/98-6/03 1 0 66
Wells up
Wells down
WLHa_up WLHadown WL_n
Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







Date Resid D-NH3 D-N03 D-N03(N) D-N03N02 D-P D-P04 TOC TDS DtoH20 WL(MSL) DeSnDtoH20
1/3/91 0.079 0.14 1 45.81 20.19 45.9233
2/4/91 ********41.24 24.76 41.3533
3/7/91 ********45.9 20.1 40.1164
4/9/91 0.29* 44.02 21.98 38.2364
5/3/91 ********44.31 21.69 38.5264
6/11/91 ********39.03 26.97 39.6312
7/3/91 0.02 35.65 30.35 36.2512
7/30/91 ********32.73 33.27 33.3312
9/4/91 32.83 33.17 38.712
10/1/91 0.02* 36.11 29.89 41.992
11/1/91 39.53 26.47 45.412
12/6/91 45.74 20.26 45.8533
1/7/92 0.02* *48.05 17.95 48.1633
1/30/92 ********51.66 14.34 51.7733
4/6/92 ***0.13* *47.2 18.8 41.4164
5/8/92 49.36 16.64 43.5764
6/2/92 0.03 0.02* *
7/7/92 ** 0.02* 40.95 25.05 41.5512
8/5/92 ********35.84 30.16 36.4412
8/27/92 33.85 32.15 34.4512
10/6/92* 0.02* *
10/28/92 35.58 30.42 41.462
12/7/92 39.95 26.05 40.0633
1/4/93 0.02* 42.53 23.47 42.6433
2/5/93 ********36.9 29.1 37.0133
3/9/93 39.1 26.9 33.3164
4/6/93 0.02 37.8 28.2 32.0164
5/11/93 42.76 23.24 36.9764
6/3/93 ********48.16 17.84 48.7612
7/14/93 0.02* 38.89 27.11 39.4912
8/3/93 ********36.78 29.22 37.3812
9/2/93 36.87 29.13 42.752
10/6/93 0.02* *37.9 28.1 43.782
11/8/93 0.28 0.02 0.03 35.62 30.38 41.502
11/30/93 36.93 29.07 42.812
1/10/94 0.02* 39.53 26.47 39.6433
2/7/94 40.89 25.11 41.0033
3/1/94 44.55 21.45 38.7664
4/6/94 0.02 49.94 16.06 44.1564
5/3/94* 48.8 17.2 43.0164
6/6/94 ********50.37 15.63 50.9712
7/11/94 **0.02 *38.7 27.3 39.3012







Sequence A
Location Sequence Dates DN03N02_Ha_up D_N03N02_Hadowr DN03N02_n
RLS C 1/98-6/42 -9999 -9999 -9999
RKB C 1/98-6/41 -9999 -9999 -9999
SBL C 1/98-6/44 -9999 -9999 -9999
TEL C 1/98-6/45 -9999 -9999 -9999
TRY C 1/91-12/98 -9999 -9999 -9999
Springs A Up
Springs A Down







SAMP_DATE D-TKN T-NH3 D-N03 D-NO3NO: T-P D-P04 TOC D-Ca D-Mg D-Na D-K D-CI
7/26/94 0.11 0.01 0.62 0.62 0.03 0.02 0.59 63 51 392 13 725
10/27/94 0.05 0.01 0.525 0.528 0.038 0.036 0.5 64 53 460 15 810
1/23/95 1.779 0.01 0.457 0.459 0.044 0.041 0.5 59 46 346 12 625
3/30/95 0.05 0.03 0.48 0.48 0.031 0.026 0.5 55 42 331 12 589
7/24/95 0.215 0.01 0.521 0.523 0.027 0.028 0.5 63 53 413 14 677
10/17/95 0.05 0.01 0.509 0.509 0.024 0.015 0.5 69 55 435 17 711
1/31/96 0.05 0.09 0.613 0.026 0.029 0.5 50 41 296 11 500
4/15/96 0.406 0.184 0.578 0.578 0.138 0.028 0.52 46 36 248 9.8 388
7/11/96 0.133 0.01 0.499 0.499 0.035 0.038 1.59 52 30.67 193 8.2 319
10/28/96 0.05 0.016 0.587 0.587 0.08 0.071 0.53 43 30 201 7.7 358
1/23/97 0.01 0.421 0.425 0.024 0.029 0.5 46 32 216 7.8 361
4/9/97 0.26 0.01 0.597 0.597 0.035 0.019 0.5 47 38 262 9.8 483
7/7/97 0.05 0.01 0.607 0.607 0.017 0.012 0.3 56.3 41.1 282 9.59 504
10/15/97 0.271 0.01 0.619 0.619 0.021 0.023 0.38 71 50 352 11 592
1/22/98 0.026 0.01 0.574 0.574 0.021 0.029 0.33 76.5 60.5 462 12.9 853
4/15/98 0.645 0.01 0.555 0.555 0.036 0.026 0.34 62.6 48.2 411 14.5 743
7/14/98 0.111 0.022 0.607 0.607 0.14 0.019 0.44 54.6 39.3 305 11.9 558
10/22/98 0.01 0.724 0.724 0.017 0.02 0.51 47.8 37.8 278 12 473
1/19/99 0.014 0.654 0.654 0.026 0.027 0.46 44.2 33 232 10.4 409
4/26/99 0.01 0.628 0.629 0.022 0.025 1.07 48.2 37.4 248 11.1 442
7/29/99 0.01 0.576 0.581 0.08 0.032 1.6 55.1 43 271 10.8 533
10/12/99 0.01 0.641 0.641 0.024 0.023 0.3 67.4 55.5 391 13.2 750
1/11/00 0.01 0.692 0.692 0.026 0.027 0.3 62.3 48.4 340 12.3 638
4/18/00 0.01 0.662 0.662 0.022 0.02 0.3 64.1 47.6 327 10.9 614
7/20/00 0.01 0.671 0.672 0.026 0.026 0.3 88.3 71.1 479 13.4 871
10/26/00 0.01 0.643 0.643 0.029 0.032 0.3 97.6 79.5 585 21.9 1099
1/8/01 0.015 0.631 0.631 0.026 0.028 0.3 53.2 68.4 476 18 929
4/23/01 0.01 0.644 0.644 0.023 0.027 0.3 80.9 48.6 353 11.1 668
7/18/01 0.666 0.666 0.037 0.032 0.3 83.8 74 539 17.1 1040
7/23/01 0.427 0.427 0.024 0.016 0.8 84.1 114 915 35.4 1680
10/17/01 0.01 0.6223 0.6223 0.025 0.021 0.5 94.5 95.4 764 22.9 1350
1/31/02 0.01 0.697 0.697 0.024 0.018 0.4 87.79 82.18 666.21 23.44 1185.06
4/10/02 0.023 0.694 0.694 0.026 0.022 0.3 76.9 70.1 552 20.7 1010
7/10/02 0.03 0.657 0.657 0.021 0.021 0.244 84.6 82.1 615 23.4 1150
10/16/02 0.012 0.006 0.772 0.772 0.035 0.028 0.3 93.3 84.8 661 23.8 1290
1/16/03 0.012 0.006 0.707 0.707 0.023 0.02 0.3 79.9 76.1 624 20.1 1120
4/14/03 0.012 0.006 0.719 0.719 0.024 0.025 0.3 70.6 74.7 514 19.3 1000
7/24/03 0.005 0.01 0.692 0.702 0.033 0.029 0.3 72.2 69.9 534 20.8 960







Spring SAMP_DATE Month SEASON Temp Cond(field) pH Bicarb T-N D-TKN T-NH3 D-NO3 D-NO3NO:
Bobhill 7/26/94 7 Summer 25.5 297 7.27 132 0.05 0.01 0.77 0.77
Bobhill 10/25/94 10 Fall 25.1 276 7.65 110 0.36 0.01 0.573 0.576
Bobhill 1/18/95 1 Winter 23.2 272 7.57 117 0.05 0.19 0.54 0.54
Bobhill 3/30/95 3 Spring 24.1 260 7.68 111 0.096 0.01 0.574 0.576
Bobhill 7/24/95 7 Summer 24.8 270 7.46 114 0.274 0.04 0.513 0.519
Bobhill 10/27/95 10 Fall 24.3 277 7.59 114 0.35 0.02 0.792 0.793
Bobhill 1/31/96 1 Winter 24.1 259 7.6 101 0.05 0.023 0.563
Bobhill 4/16/96 4 Spring 24.4 266 7.7 114 0.306 0.014 0.534 0.535
Bobhill 7/18/96 7 Summer 26.7 261 7.6 114 0.392 0.038 0.701 0.703
Bobhill 10/14/96 10 Fall 24.6 263 7.52 113 0.23 0.016 0.682 0.683
Bobhill 1/27/97 1 Winter 22.8 262 7.65 113 0.514 0.01 0.578 0.578
Bobhill 4/7/97 4 Spring 23.8 263 7.68 111 0.05 0.012 0.677 0.677
Bobhill 7/8/97 7 Summer 25.4 283 7.38 121 0.05 0.01 0.887 0.887
Bobhill 10/7/97 10 Fall 25.2 291 7.44 123 0.246 0.022 0.732 0.732
Bobhill 1/15/98 1 Winter 23.1 341 158 0.63 0.071 0.177 0.382 0.382
Bobhill 4/16/98 4 Spring 24.3 256 7.53 106 0.94 0.396 0.023 0.521 0.521
Bobhill 7/15/98 7 Summer 24.6 275 7.19 115 0.7 0.067 0.025 0.608 0.608
Bobhill 10/21/98 10 Fall 25.4 265 7.67 107 0.79 0.01 0.718 0.718
Bobhill 1/21/99 1 Winter 24.1 263 7.68 113 0.6 0.015 0.57 0.57
Bobhill 4/29/99 4 Spring 24.3 261 7.61 81 0.72 0.01 0.53 0.534
Bobhill 7/28/99 7 Summer 25 276 7.45 115 0.53 0.017 0.492 0.499
Bobhill 10/13/99 10 Fall 24.2 271 7.55 111 0.73 0.01 0.621 0.621
Bobhill 1/13/00 1 Winter 22 265 7.81 111 0.01 0.609 0.609
Bobhill 7/20/00 7 Summer 24.9 311 7.29 130 1.2 0.106 0.735 0.743
Bobhill 10/26/00 10 Fall 24.3 271 7.62 106 0.9 0.014 0.74 0.74
Bobhill 7/25/01 7 Summer 24.8 383 7.1 169 0.81 0.239 0.239
Bobhill 10/18/01 10 Fall 23.1 283 7.67 118 0.9505 0.3301 0.5923 0.5923
Bobhill 4/9/02 4 Spring 25.3 324 7.63 123 1.07 0.036 0.94 0.94
Bobhill 7/8/02 7 Summer 25 322 7.34 142 1.09 0.138 0.889 0.895
Bobhill 10/9/02 10 Fall 24.56 329 7.22 213 0.86 0.105 0.006 0.488 0.488
Bobhill 1/20/03 1 Winter 22.91 289 7.45 125 0.804 0.032 0.007 0.718 0.725
Bobhill 4/2/03 4 Spring 23.71 285 7.62 124 0.773 0.031 0.006 0.633 0.639
Bobhill 7/9/03 7 Summer 24.96 290 7.37 121 0.907 0.027 0.006 0.84 0.84







Sequence A
Location Sequence Dates Turb_Ha_up Turb Ha down Turb_n
RLS C 1/98-6/42 0.02286 0.97714 51
RKB C 1/98-6/41 0.19177 0.80823 50
SBL C 1/98-6/44 0.01514 0.98486 15
TEL C 1/98-6/45 0.06643 0.93357 48
TRY C 1/91-12/98 0.2435 0.7565 50
Springs A Up
Springs A Down







Sequence A
Location Sequence Dates DtoH20_Ha_up DtoH20 Ha down DtoH20_n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates DtoH20_Ha_up DtoH20 Ha down DtoH20_n
1417 C 1/98-6/03 1.00 0.00 43.00
1420 C 1/98-6/03 0.99 0.01 18.00
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 0.08 0.92 23.00
1763 C 1/98-6/03 0.13 0.87 23.00
1764 C 1/98-6/03 0.79 0.21 48.00
1779 C 1/98-6/03 0.50 0.50 16.00
1780 C 1/98-6/03 0.97 0.03 16.00
1781 C 1/98-6/03 1.00 0.00 40.00
1931 C 1/98-6/03 -9999.00 -9999.00 -9999.00
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







STATION SAMP_DATE MONTH SEASON SEASON_ Temp Cond(field pH Bicarb T-N D-TKN T-NH3 D-NO3
PUMPHOUSES 10/21/93 10 Fall 3 24.1 668 7.73 0.15 0.01 0.38
PUMPHOUSE S 7/25/94 7 Summer 2 23.5 657 7.65 116 0.08 0.01 0.42
PUMPHOUSE S 10/26/94 10 Fall 3 24.1 560 7.68 119 0.05 0.01 0.381
PUMPHOUSE S 1/19/95 1 Winter 4 21 508 7.51 120 0.349 0.01 0.327
PUMPHOUSE S 4/5/95 4 Spring 1 22.3 554 7.76 118 0.05 0.01 0.376
PUMPHOUSE S 7/25/95 7 Summer 2 24.5 527 7.63 116 0.165 0.01 0.375
PUMPHOUSES 10/24/95 10 Fall 3 23.1 361 7.56 119 0.05 0.01 0.406
PUMPHOUSE S 2/5/96 2 Winter 4 19.9 456 7.73 120 0.25 0.01 *
PUMPHOUSE S 4/17/96 4 Spring 1 21.7 459 7.69 124 0.395 0.01 0.386
PUMPHOUSE S 7/16/96 7 Summer 2 23.8 424 7.6 122 0.05 0.165 0.374
PUMPHOUSE S 10/14/96 10 Fall 3 22.9 419 7.64 119 0.076 0.01 0.414
PUMPHOUSE S 1/30/97 1 Winter 4 21.2 468 7.75 117 0.072 0.01 0.424
PUMPHOUSE S 4/10/97 4 Spring 1 22.8 514 7.69 119 0.05 0.035 0.437
PUMPHOUSE S 7/7/97 7 Summer 2 23.6 661 7.69 117 0.05 0.01 0.45
PUMPHOUSE S 10/6/97 10 Fall 3 23.5 777 7.68 115 0.254 0.01 0.426
PUMPHOUSE S 1/13/98 1 Winter 4 21.8 589 7.55 121 0.71 0.347 0.01 0.363
PUMPHOUSE S 4/13/98 4 Spring 1 21.6 458 7.45 118 0.61 0.244 0.01 0.366
PUMPHOUSES 7/14/98 7 Summer 2 24.1 436 7.61 111 0.48 0.065 0.01 0.415
PUMPHOUSE S 10/19/98 10 Fall 3 23.3 422 7.52 114 0.53 0.01 0.41
PUMPHOUSES 1/19/99 1 Winter 4 22.1 408 7.63 115 0.46 0.018 0.466
PUMPHOUSE S 1/12/00 1 Winter 4 22.7 507 7.78 116 0.012 0.487
PUMPHOUSE S 4/17/00 4 Spring 1 22.9 658 7.76 116 1.3 0.01 0.518
PUMPHOUSE S 1/9/01 1 Winter 4 21.5 920 7.71 114 0.49 0.01 0.494
PUMPHOUSE S 1/30/02 1 Winter 4 23.1 984 7.8 129 0.53 0.018 0.519
PUMPHOUSE S 1/13/03 1 Winter 4 21.72 924 7.49 134 0.552 0.012 0.006 0.491
PUMPHOUSE S 7/24/03 7 Summer 2 23.67 2930 7.62 128 0.522 0.005 0.007 0.351







SWFWMD
Location Sequence Dates Alk_29801_Ha up
736 B 1/91-12/97 0.48204
737 B 1/91-12/97 0.58392
996 B 1/91-12/97 0.74146
997 B 1/91-12/97 0.99983
1087 B 1/91-12/97 0.25688
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.4557
Boyette B 1/91-12/99 0.82915
Chassal B 1/91-12/100 0.039
ChassaM B 1/91-12/101 0.05886
Homosl B 1/91-12/104 0.40222
Homos2 B 1/91-12/105 0.19278
Homos3 B 1/91-12/106 0.20916
HidRiv2T B 1/91-12/102 0.94038
HidRivH B 1/91-12/103 0.91447
huntersspr B 1/91-12/107 0.52823
lithiamain B 1/91-12/108 0.03263
magnolspr B 1/91-12/109 0.05287
pumphous B 1/91-12/110 0.65177
rainbow B 1/91-12/111 0.83595
rainbow B 1/91-12/112 0.53713
rainbow B 1/91-12/113 0.05003
mboBseep B 1/91-12/115 0.53598
saltspr B 1/91-12/116 0.14384
SWBettyJay B 1/91-12/117 0.5
SWBoat B 1/91-12/118 0.45092
SWBublng B 1/91-12/119 0.07929
SWBuckhm B 1/91-12/120 0.02549
SWCatfish B 1/91-12/121 0.10241
tarponholespr B 1/91-12/122 0.06395
trottermain B 1/91-12/123 0.8308
weekwachmain B 1/91-12/124 0.5
Springs A Up
Springs A Down

Location Sequence Dates Alk_29801_Ha up
615 C 1/98-6/03 -9999
707 C 1/98-6/03 -9999
736 C 1/98-6/03 0.43468
737 C 1/98-6/03 -9999







Date Ca Mg Na K SC-F Cl S04 DeSn-S04 F
3/10/99 0.26 1.09 10 0.353 71 16 0.44 0.369808 0.1
10/25/99 0.096 1 9.2 0.29 66 17 0.2 0.232308 0.1
11/22/99 0.088 0.98 8.9 0.26 66 15 0.2 0.232308 0.1
12/21/99 0.094 0.95 8.8 0.24 64 15 0.2 0.228974 0.1
1/26/00 0.069 0.94 8.6 0.22 67 14 0.21 0.238974 0.1
2/24/00 0.085 0.92 8.9 0.23 68 15 0.2 0.228974 0.1
3/22/00 0.08 0.93 8.5 0.23 68 15 0.2 0.129808 0.1
4/20/00 0.16 0.95 8.7 0.25 67 15 0.28 0.209808 0.1
5/15/00 0.068 0.99 9 0.23 67 16 0.29 0.219808 0.1
6/15/00 0.081 0.97 8.8 0.23 68 15 0.2 0.232308 0.1
7/10/00 0.064 0.96 8.9 0.24 670 15 0.2 0.232308 0.1
8/15/00 0.1 0.93 8.6 0.22 67 15 0.2 0.232308 0.1
9/12/00 0.13 0.96 9 0.23 67 15 0.2 0.232308 0.1
10/16/00 ** ** 67* *
11/13/00 ** ** 67 ** **
12/15/00 ** ** 67 ** **
1/8/01 ***66* *
2/12/01 ** ** 67 ** **
3/12/01 68 ** **
4/16/01 68 ** **
5/14/01 ** ** 67 ** **
6/14/01 ** ** 67 ** **
7/18/01 ** ** 67* *
8/13/01 ***66* *
9/13/01 ***66* *
10/17/01 ***65* *
11/13/01 ***66 ** **
12/11/01 ***66 ** **
1/14/02 65 ** **
2/11/02 64 ** **
3/15/02 ***64* *
4/15/02 ***64 ** **
5/13/02 ***63* *
6/10/02 62 ** **
7/15/02 ***62 ** **
8/12/02 61 ** **
9/12/02 61 ** **
10/14/02 ** ** 60 ** **
12/17/02 ** ** 60 ** **
1/13/03 ***59 ** **
2/10/03 ***59 ** **
3/10/03 ***59* *
4/14/03 58 ** **
5/12/03 58 ** **
6/9/03* *57* *







Sequence A
Location Sequence Dates Fcol_Ha_up
2793 A 1/91-6/03 -9999
2872 A 1/91-6/03 -9999
2873 A 1/91-6/03 -9999
6490 A 1/91-6/03 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates Fcol_Ha_up
2793 B 1/91-12/97 -9999
2872 B 1/91-12/97 -9999
2873 B 1/91-12/97 -9999
6490 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates Fcol_Ha_up
2793 C 1/98-6/03 -9999
2872 C 1/98-6/03 0.5
2873 C 1/98-6/03 -9999
3108 C 1/98-6/03 -9999
3109 C 1/98-6/03 0.5
3398 C 1/98-6/03 -9999
3433 C 1/98-6/03 -9999
3490 C 1/98-6/03 0.5
6490 C 1/98-6/03 -9999
Wells A Up
Wells A Down







FKSTATI PKSAMPICOLLECTIONDAI COLLECT MONTH SEASON SEASON_ Temp Fe-D Mn-D Alk DO Fcol
1763 SJRM9709 9/2/97 1353 9 Fall 3 23.5 0.23 *
1763 SJRM9710 10/9/97 1111 10 Fall 3 23.4 0.08 *
1763 SJRM9711 10/31/97 1256 10 Fall 3 22.9 0.19 *
1763 SJRM9712 12/12/97 1307 12 Winter 4 22.6 0.07 *
1763 SJRM9801 1/5/98 1308 1 Winter 4 23 0.13 *
1763 SJRB9802 2/5/98 1038 2 Winter 4 20.2 64 315 0.51 *
1763 SJRM9803 3/18/98 937 3 Spring 1 22.9 0.16 *
1763 SJRM9804 4/3/98 1305 4 Spring 1 23.1 0.25 *
1763 SJRM9805 5/1/98 1307 5 Spring 1 22.2 0.44 *
1763 SJRM9806 5/29/98 1233 5 Spring 1 22.1 0.99 *
1763 SJRM9807 7/6/98 1252 7 Summer 2 22.1 0.59 *
1763 SJRM9808 8/7/98 1255 8 Summer 2 22.2 0.76 *
1763 SJRM9809 9/9/98 1247 9 Fall 3 22.2 0.22 *
1763 NEDM000: 3/15/00 1717 3 Spring 1 22.27 0.1 *
1763 NEDM000 5/23/00 1105 5 Spring 1 22.17 0.14 *
1763 NEDM000 7/25/00 1202 7 Summer 2 22.3 0*
1763 NEDM001( 10/23/00 1641 10 Fall 3 22.25 0.18 *
1763 SJRM0101 1/29/01 1735 1 Winter 4 22.25 0.19 *
1763 SJRM0104 4/25/01 1950 4 Spring 1 22.21 0.37 *
1763 SJRM0107 7/24/01 1109 7 Summer 2 22.29 0.07 *
1763 SJRM0110 10/24/01 1905 10 Fall 3 22.37 302 0.12 1
1763 SJRM0201 1/23/02 1512 1 Winter 4 22.3 304 0.25 1
1763 SJRMO204 4/23/02 1830 4 Spring 1 22.37 302 0.17 1
1763 SJRM0207 7/23/02 1650 7 Summer 2 22.43 302 0.77 1
1763 SJRM0210 10/22/02 1033 10 Fall 3 22.4 0.25 *
1763 SJRM0301 1/30/03 1057 1 Winter 4 22.45 0.041 *
1763 SJRMO304 4/23/03 1128 4 Spring 1 22.29 0.22 *







Date K SC-F CI S04 F
1/8/91 0.4 358 1 13 0.24
2/7/91 360 *
3/7/91 355 *
4/2/91 1 356 3 8.7 0.2
4/2/91 1 1.5 7.8 0.2
4/29/91 364 ** *
5/29/91 0.5 351 3.7 8.4 0.25
6/3/91 348 ** *
7/2/91 0.8 345 3.8 9.3 0.1
8/6/91 354 *
9/3/91 357 *
10/7/91 0.7 355 3.8 9.8 0.1
11/4/91 350 *
12/2/91 349 *
1/6/92 0.7 346 4 10 0.1
2/4/92 348 *
3/2/92 347 *
3/30/92 0.7 346 5 10 0.1
5/4/92 351 *
6/1/92 353 *
7/7/92 0.8 352 4.2 10 0.1
8/3/92 355 ** *
8/17/92 0.7 355 3.9 8.4 0.1
8/31/92 350 *
10/8/92 354 *
11/3/92 358* *
11/30/92 361 *
1/4/93 1.2 362 3.3 8.8 0.1
2/1/93 354 *
3/1/93 362 *
3/29/93 0.42 360 3.4 8.7 0.1
5/3/93 356 *
6/1/93 352 *
6/28/93 0.35 351 3.3 8.4 0.1
8/2/93 359 *
9/1/93 350 *
10/4/93 0.4 355 3.4 8.8 0.1
11/5/93 352 *
12/6/93 363 *
1/3/94 0.44 346 3.4 8 0.1
3/1/94 367 ** *
4/5/94 0.42 365 3.6 8.8 0.1
5/2/94 365* *







Sequence A
Location Sequence Dates D_PO4_Ha_up D_PO4 Ha down D_PO4_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 0.74242 0.25758 20
LRS B 1/91-12/132 0.5 0.5 12
RKB B 1/91-12/135 0.98865 0.01135 17
ROY B 1/91-12/137 0.65238 0.34762 20
TEL B 1/91-12/139 0.98412 0.01588 17
TRY B 1/91-6/04 0.95627 0.04373 18
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates D_PO4_Haup D_PO4 Ha down D_PO4_n
1943 C 1/98-6/03 0.80292 0.19708 12
2003 C 1/98-6/03 0.5 0.5 13
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.70923 0.29077 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.1533 0.8467 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 0.24151 0.75849 17
BLU (Gilchrist) C 1/98-6/33 0.12659 0.87341 33
FAN C 1/98-6/34 0.00192 0.99808 40
HAR C 1/98-6/35 0.42448 0.57552 18
HOR C 1/98-6/36 0.99154 0.00846 47
LBS C 1/98-6/37 0.88256 0.11744 41
LRS C 1/98-6/38 0.00002 0.99998 41
MAN C 1/98-6/39 0.90628 0.09372 50
POE C 1/98-6/40 0.00027 0.99973 52







SWFWMD
Location Sequence Dates Resid Ha down Resid_n
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up
Wells A Down

Bobhill A 1/91-6/04 -9999 -9999
Boyette A 1/91-6/05 -9999 -9999
Chassal A 1/91-6/06 -9999 -9999
ChassaM A 1/91-6/07 -9999 -9999
Homosl A 1/91-6/10 -9999 -9999
Homos2 A 1/91-6/11 -9999 -9999
Homos3 A 1/91-6/12 -9999 -9999
HidRivH A 1/91-6/09 -9999 -9999
HidRiv2T A 1/91-6/08 -9999 -9999
hunterspr A 1/91-6/13 -9999 -9999
lithiamain A 1/91-6/14 -9999 -9999
magnolspr A 1/91-6/15 -9999 -9999
pumphous A 1/91-6/16 -9999 -9999
rainbow A 1/91-6/17 -9999 -9999
rainbow A 1/91-6/18 -9999 -9999
rainbow A 1/91-6/19 -9999 -9999
rainswamp3 A 1/91-6/20 -9999 -9999
mboBseep A 1/91-6/21 -9999 -9999
saltspr A 1/91-6/22 -9999 -9999
SWBettyJay A 1/91-6/23 -9999 -9999
SWBoat A 1/91-6/24 -9999 -9999
SWBublng A 1/91-6/25 -9999 -9999
SWBuckhm A 1/91-6/26 -9999 -9999
SWCatfish A 1/91-6/27 -9999 -9999
tarponholespr A 1/91-6/28 -9999 -9999
trottermain A 1/91-6/29 -9999 -9999
weekwachmain A 1/91-6/30 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates ResidHadown Resid_n
707 B 1/91-12/97 -9999 -9999







SWFWMD
Location Sequence Dates DN03 N Ha down DN03 N n
736 B 1/91-12/97 -9999 -9999
737 B 1/91-12/97 -9999 -9999
996 B 1/91-12/97 -9999 -9999
997 B 1/91-12/97 -9999 -9999
1087 B 1/91-12/97 -9999 -9999
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 -9999 -9999
Boyette B 1/91-12/99 -9999 -9999
Chassal B 1/91-12/100 -9999 -9999
ChassaM B 1/91-12/101 -9999 -9999
Homosl B 1/91-12/104 -9999 -9999
Homos2 B 1/91-12/105 -9999 -9999
Homos3 B 1/91-12/106 -9999 -9999
HidRiv2T B 1/91-12/102 -9999 -9999
HidRivH B 1/91-12/103 -9999 -9999
huntersspr B 1/91-12/107 -9999 -9999
lithiamain B 1/91-12/108 -9999 -9999
magnolspr B 1/91-12/109 -9999 -9999
pumphous B 1/91-12/110 -9999 -9999
rainbow B 1/91-12/111 -9999 -9999
rainbow B 1/91-12/112 -9999 -9999
rainbow B 1/91-12/113 -9999 -9999
mboBseep B 1/91-12/115 -9999 -9999
saltspr B 1/91-12/116 -9999 -9999
SWBettyJay B 1/91-12/117 -9999 -9999
SWBoat B 1/91-12/118 -9999 -9999
SWBublng B 1/91-12/119 -9999 -9999
SWBuckhm B 1/91-12/120 -9999 -9999
SWCatfish B 1/91-12/121 -9999 -9999
tarponholespr B 1/91-12/122 -9999 -9999
trottermain B 1/91-12/123 -9999 -9999
weekwachmain B 1/91-12/124 -9999 -9999
Springs A Up
Springs A Down

Location Sequence Dates DN03 N Ha down DN03 N n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 -9999 -9999
737 C 1/98-6/03 -9999 -9999







SWFWMD
Location Sequence Dates D_N03_Sen_slope UP/DOWN
707 A 1/91-6/03 -9999 -9999
736 A 1/91-6/03 -9999 -9999
737 A 1/91-6/03 -9999 -9999
775 A 1/91-6/03 -9999 -9999
996 A 1/91-6/03 -9999 -9999
997 A 1/91-6/03 -9999 -9999
1087 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Bobhill A 1/91-6/04 0.0022624 No evidence of trend
Boyette A 1/91-6/05 -0.0572222 DOWN
Chassal A 1/91-6/06 0.0011225 UP
ChassaM A 1/91-6/07 0.0015375 UP
Homosl A 1/91-6/10 0.0031429 UP
Homos2 A 1/91-6/11 0.00339 UP
Homos3 A 1/91-6/12 0.0035179 UP
HidRivH A 1/91-6/09 0.0058636 UP
HidRiv2T A 1/91-6/08 0.0054773 UP
hunterspr A 1/91-6/13 0.00485 UP
lithiamain A 1/91-6/14 -0.0070909 No evidence of trend
magnolspr A 1/91-6/15 0.0042815 UP
pumphous A 1/91-6/16 0.0052679 UP
rainbow A 1/91-6/17 0.01 UP
rainbow A 1/91-6/18 0.0030231 No evidence of trend
rainbow A 1/91-6/19 0.0044513 UP
rainswamp3 A 1/91-6/20 0.0012111 No evidence of trend
mboBseep A 1/91-6/21 0.0102 UP
saltspr A 1/91-6/22 0.00475 UP
SWBettyJay A 1/91-6/23 0.0018 UP
SWBoat A 1/91-6/24 0.0045857 UP
SWBublng A 1/91-6/25 0 No evidence of trend
SWBuckhm A 1/91-6/26 0.015 UP
SWCatfish A 1/91-6/27 0.0006 No evidence of trend
tarponholespr A 1/91-6/28 0.001 UP
trottermain A 1/91-6/29 0.003675 UP
weekwachmain A 1/91-6/30 0.0053875 UP
Springs A Up 20
Springs A Down 1

Location Sequence Dates DN03_Sen_slope UP/DOWN
707 B 1/91-12/97 -9999 -9999








FLORIDA GEOLOGICAL SURVEY



Troy Spring Time Sequence A (1991-2003)


1/1/1997

MK p-value
WT p-value


8/9/1998 3/17/2000 10/23/2001

:0.0001 SS=0.1782 Date
0.0221 n= 13 n2=13


Telford Spring Time Sequence A (1991-2003)


8/1/1998


MK p-value <0.0001
WT p-value =0.1547 SS =-0.6674
nl=15 n2=15


3/1/2000
Date


9/30/2001


Figure 24. Decreasing flow at Troy and Telford Springs. Troy (top) and
Telford Springs (bottom) had significant decreases in flow. Tests (p < 0.05)
included MK for trend, WT, plus an SS calculation on rate of change. Over
the period of record, flow at both Troy and Telford was reduced by half. Be-
ginning and ending sampling dates are not the same. (One cfs = 0.028 cms)


6/1/2003





_



i


10 -
1/1/1997


5/1/2003







Date Na DeSnD-Na K SC-F CI S04 F
1/15/91 21.5 21.3713 0.6 749 43 59 0.41
2/27/91 726* *
3/27/91 737 *
4/25/91 24 21.1963 1.8 756 51 59 0.2
5/21/91 730* *
6/24/91 730* *
7/25/91 19 19.7563 1.3 727 38 59 0.2
8/26/91 722 *
9/16/91 709* *
10/17/91 675* *
11/4/91 17 19.4106 1.3 674 35 57 0.2
11/25/91 677 *
12/23/91 664* *
1/29/92 17 16.8713 1 693 35 59 0.2
2/27/92 695 *
3/27/92 708 *
4/30/92 18 15.1963 1 715 35 63 0.2
5/29/92 694* *
6/29/92 709 *
7/29/92 17 17.7563 1.3 711 38 60 0.2
8/31/92 677* *
9/25/92 692* *
10/29/92 689 *
11/3/92 18 20.4106 1.4 685 37 58 0.2
11/30/92 684* *
12/23/92 700* *
1/27/93 19 18.8713 1.4 697 35 55 0.2
2/25/93 697 *
3/31/93 681 *
4/26/93 18 15.1963 0.86 666 35 55 0.2
5/19/93 669 *
6/29/93 692 *
7/26/93 18 18.7563 1.3 682 35 56 0.2
8/23/93 680* *
9/27/93 707 *
10/20/93 18 20.4106 1.3 615 35 40 0.2
11/30/93 595* *
12/29/93 632* *
1/31/94 18 17.8713 1 640 33 45 0.2
2/25/94 644 *
3/31/94 662* *
5/2/94 16 13.1963 1.4 653 31 47 0.2







COL_DATE WL(MSL) Turb Color 82078 Ca Mg Na K SC-F CI S04 F
12/31/97 96.42* *592 *
2/2/98 96 ******602 *
3/2/98 96.42* 599 *
3/27/98 96.14 ******598 *
5/8/98 94.45 ******593 *
5/27/98 92.89 ******599 *
7/1/98 91.14 ******591 *
7/30/98 94.09 ******588 *
8/27/98 95.27 ******603 *
9/28/98 96.39 0.76* **591 *
10/29/98 94.75* *593 *
12/7/98 94.46* *591 *
1/4/99 93.93 ******592 *
2/1/99 94.11 596 *
3/2/99 93.55 0.51* **592 *
3/30/99 89.99 1.56* **597 *
5/11/99 91.57 ******592 *
6/9/99 90.51 ******594 *
7/6/99 93.91 ******596 *
8/3/99 92.71 0.19* **591 *
9/8/99 91.73 0.61 588 *
11/1/99 92.92 ******587 *
12/6/99 92.79 0.19* **589 *
1/5/00 91.54* 0.21* **587 *
1/28/00 91.83* 0.31 593 *
3/9/00 90.59 0.38* **591 *
4/5/00 90.27 ******600 *
5/3/00 89.48 ******591 *
6/6/00 88.26 0.17* **591 *
7/7/00 91.15* 7.34* **588 *
8/7/00 93.54 ******592 *
9/8/00 93.14 0.53* **587 *
10/9/00 94.13 ******591 *
11/1/00 92.3* 0.95* **582 *
12/5/00 92.14 1.12* **590 *
1/3/01 91.02 ******593 *
2/1/01 91.92* 0.45* **590 *
3/5/01 91.13* 0.39* **580 *
4/2/01 93.61 0.39* **594 *
5/1/01 91.45* 0.22* **594 *
6/1/01 90.87 0.25* **590 *
7/2/01 92.1 ******550* *






Sequence A
Location Sequence Dates DOHa_up DO Ha down DO_n
67 (and Spring) A 1/91-6/03 1 0 93
91 A 1/91-6/03 0.77322 0.22678 135
129 A 1/91-6/03 0.98523 0.01477 62
131 A 1/91-6/03 1 0 93
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 -9999 -9999 -9999
312 A 1/91-6/03 0.99999 0.00001 77
313 A 1/91-6/03 0.00153 0.99847 93
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates DOHa_up DO Ha down DO_n
67 (and Spring) B 1/91-12/97 0.99999 0.00001 40
91 B 1/91-12/97 0.06195 0.93805 69
129 B 1/91-12/97 0.97865 0.02135 27
131 B 1/91-12/97 0.9528 0.0472 27
312 B 1/91-12/97 0.99964 0.00036 41
313 B 1/91-12/97 0.81552 0.18448 27
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates DOHa_up DO Ha down DO_n
67 (and Spring) c 1/98-6/03 0.9891 0.0109 53
91 C 1/98-6/03 0.99267 0.00733 66
129 C 1/98-6/03 0.94274 0.05726 35
131 C 1/98-6/03 0.99998 0.00002 66
243 C 1/98-6/03 0.97436 0.02564 16
245 C 1/98-6/03 0.00088 0.99912 47
312 C 1/98-6/03 0.99996 0.00004 36
313 C 1/98-6/03 0.00486 0.99514 66
Wells C Up
Wells C Down









FLORIDA GEOLOGICAL SURVEY





Hunter Spring Time Sequence A (1991-2003)


110-



o-
90



70

C-

50



30


1995 1996 1997


1998 1999 2000 2001
Date


2002 2003


MK p-value = 0.0005 SS = 1.5802
WTp-value =0.0033 nb= 12 n,= 20


Trotter Main Spring Time Sequence A (1991-2003)


250




200



-J
)150
E

a


1995 1996 1997
MKp-value 0.0001 SS
WTp-value 0.0009 inb
23


1998 1999 2000 2001
0.1133 Date
15 nc=


Figure 34. Increasing saline analytes for Hunters and Trotter Main
Springs. Hunter (top) and Trotter Main Springs (bottom) had significant
increases in chloride. Tests (p <0.05) included MK for trend, WT on
sequences B and C, plus an SS calculation on rate of change. Beginning
and ending dates for these springs are not the same.


U

U


2002 2003




















Date SEASON_NO. Month Temp Fe-D Alk DO Fcol Entero pH TSS NH3 NO3-D
9/23/02 3 9 24.4 280 2.23 1 1 6.87 4 0.12 *
10/23/02 3 10 24.67 0.27 6.57 *
11/18/02 3 11 24.29* 0.53 6.36 *
12/17/02 4 12 24.55* 0.69* 6.8* *
1/29/03 4 1 24.29 0.62 6.74 *
2/20/03 4 2 24.59 0.38 6.69* *
3/19/03 1 3 24.41 0.22 6.66 *
4/23/03 1 4 24.23 0.17 6.73 *
5/21/03 1 5 24.5 0.5 6.54* *
6/19/03 2 6 24.21 0.5* 6.64* *







Sequence A
Location Sequence Dates
2793 A 1/91-6/03
2872 A 1/91-6/03
2873 A 1/91-6/03
6490 A 1/91-6/03
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates
2793 B 1/91-12/97
2872 B 1/91-12/97
2873 B 1/91-12/97
6490 B 1/91-12/97
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates
2793 C 1/98-6/03
2872 C 1/98-6/03
2873 C 1/98-6/03
3108 C 1/98-6/03
3109 C 1/98-6/03
3398 C 1/98-6/03
3433 C 1/98-6/03
3490 C 1/98-6/03
6490 C 1/98-6/03
Wells A Up
Wells A Down







Date TKN T-S04 T-F T-Sr TDS T-P04 DtoH20 CFS(atwq) FlowDate CFS FlowDate CFS
1/8/91 1120 336 2597 15.8 73.9 1/8/91 73.9 11/11/98 89.98
5/23/91 15.1 77 3/13/91 65.62 1/12/99 98.55
7/9/91 1290 2570 13.35 64.26 4/30/91 76.99 3/16/99 97.71
7/29/91 ** 61.22 5/23/91 77 5/19/99 88
1/8/92 1360 332 2690 13.12 87.81 7/9/91 64.26 7/12/99 84.06
7/8/92 1410 350 2630 2740 13.51 71.45 9/5/91 61.22 9/28/99 61.4
1/18/93 1360 340 2670 2560 71.36 9/27/91 73 11/29/99 66.9
7/15/93 1860 2790 13.53 70.31 11/21/91 96.59 1/19/00 85.5
1/20/94 1462 377 0.09 2970 3200 13.3 74.8 1/7/92 87.81 3/22/00 68.2
7/6/94 1460 358 0.08 3560 0.014 12.58 83 3/3/92 80.33 5/19/00 82.7
1/9/95 1610 356 3370 3360 0.016 69.9 5/11/92 83.89 6/13/00 79.53
3/20/95 1750 394 0.08 2990 3460 0.016 69.4 5/22/92 68 7/18/00 70.61
7/11/95 1750 383 0.09 3030 3610 0.014 78.1 7/8/92 71.45 9/25/00 73
11/14/95 1890 386 0.09 3620 3820 * 9/17/92 70.5 11/13/00 70.3
1/18/96 2090 338 0.09 3330 3710 0.012 86.2 11/3/92 67.69 1/17/01 75.3
3/19/96 1700 399 0.1 3440 3430 0.021 79.4 1/18/93 71.36 3/7/01 62.9
5/6/96 2130 511 0.09 4170 0.014 * 3/9/93 83.87
7/10/96 2070 462 0.1 3830 4160 86.29 5/20/93 85.87
11/18/96 1826 398 0.1 3280 3580 10.75 92.14 7/15/93 70.31
1/13/97 1860 433 0.1 3250 3780 0.012 86 9/7/93 78.41
3/11/97 1960 432 0.09 3760 3900 94.9 9/24/93 77
7/21/97 2381.07 413.128 0.09 3300 3400 ** 11/2/93 61.2
11/5/97 1813 403.218 0.09 3492 3290 82.65 1/24/94 74.8
1/6/98 1800 410 3770 ** 3/7/94 82.4
1/14/98 2090.54 432 0.1 3602 3420 0.013 77.58 5/2/94 81.7
3/11/98 2428.97 464.892 0.09 3725 3960 0.013 76.5 5/27/94 81
5/20/98 96.6 7/6/94 83
7/17/98 2279 457.403 0.1 4303 4020 78.38 9/20/94 65.9
11/11/98 1979.31 418.056 0.1051 3372 3420 89.98 1/11/95 69.9
1/12/99 454.425 0.1077 3416 3840 0.012 98.55 3/20/95 69.4
3/16/99 1916.76 407.882 0.1071 3534 3520 97.71 5/23/95 75
5/19/99 88 7/11/95 78.1
7/12/99 1750 416 0.1005 3480 3710 0.019 84.06 9/22/95 70
11/29/99 1220.5 312.408 0.0969 2870 0.012 12.72 66.9 1/18/96 86.2
3/22/00 1532.4 392.838 0.1015 3180 2950 17.32 68.2 3/19/96 79.4
5/19/00 1200 320 2570 14.9 82.7 4/30/96 83
1/17/01 388.952 0.1 3203.984 2940 0.034 15.8 62.9 7/10/96 86.29
2/27/01 386.58 0.1054 3226.439 2920 0.013 16.1 9/30/96 92
3/7/01 345.024 0.105 3045.857 2650 16.2 11/13/96 92.14
7/3/01 345.91 0.1045 2883.102 0.017 15.1 1/13/97 86
11/1/01 447.903 0.1148 3614.808 3310 0.012 12.7 3/11/97 94.9
1/22/02 460.297 0.1084 3722.582 0.016 13.3 5/21/97 81
3/18/02 448 0.1049 3704.547 3200 0.013 18.26 9/23/97 71
7/12/02 338.262 0.1083 2966.966 2720 0.079 12.22 11/5/97 82.65
10/24/02 450 0.1 3840 3950 0.01 11.95 1/14/98 77.58
11/15/02 410 0.1 3590 3850 0.01 11.2 3/11/98 76.5
3/21/03 400 3290 3220 0.01 10.4 5/20/98 96.6
6/27/03 420 3620 4140 0.01 10.8 7/17/98 78.38







SAMP_DATE D-TKN T-NH3 D-N03 -N03NO2 T-P D-P04 TOC D-Ca D-Mg D-Na D-K D-CI
11/1/93 0.11 0.01 0.24 0.24 0.03 0.01 1.51 69 73 555 24 1007
10/26/94 0.05 0.01 0.423 0.428 0.033 0.029 0.5 57 72 590 21 1060
1/19/95 0.323 0.01 0.413 0.413 0.042 0.04 0.5 55 59 434 15 735
4/5/95 0.05 0.02 0.418 0.418 0.024 0.011 0.5 58 61 524 17 898
7/25/95 0.05 0.06 0.431 0.432 0.024 0.022 0.72 55 55 452 16 834
10/24/95 0.05 0.01 0.435 0.436 0.01 0.01 0.5 63 70 540 21 1020
2/5/96 0.05 0.01 0.407 0.016 0.024 1.06 61 67 468 18 831
4/17/96 0.05 0.011 0.45 0.455 0.021 0.012 0.5 57 62 462 18 820
7/16/96 0.262 0.01 0.419 0.421 0.01 0.01 0.5 123 60.95 442 18 832
10/14/96 0.316 0.01 0.451 0.459 0.068 0.067 0.52 51 49 377 14 692
1/30/97 0.012 0.405 0.417 0.01 0.014 0.5 54 63 494 18 792
4/10/97 0.16 0.04 0.443 0.443 0.038 0.033 0.5 54 67 509 19 978
7/7/97 0.05 0.01 0.461 0.461 0.013 0.01 1.1 62.5 72.5 580 21.8 1161
10/6/97 0.251 0.013 0.436 0.436 0.01 0.01 0.68 65.9 78.9 633 24.2 1168
1/13/98 0.292 0.01 0.448 0.448 0.019 0.018 0.531 62.1 71.2 557 20.7 1006
4/13/98 0.209 0.01 0.431 0.431 0.035 0.01 0.73 58.3 66.5 540 19.9 1002
7/14/98 0.154 0.01 0.416 0.416 0.119 0.01 0.4 63.1 66.8 512 19.5 930
10/19/98 0.01 0.437 0.439 0.014 0.01 0.62 65.4 79.4 571 25.2 1040
1/19/99 0.027 0.258 0.258 0.018 0.019 0.36 65.5 77.2 601 23.9 1140
4/28/99 0.01 0.394 0.399 0.013 0.01 1.2 81.4 112 760 27.1 1400
7/28/99 0.01 0.396 0.4 0.021 0.021 2.1 69.1 90.7 640 25 1260
10/13/99 0.01 0.479 0.479 0.015 0.016 0.84 69.3 83.8 642 23.7 1210
1/12/00 0.062 0.463 0.463 0.026 0.013 0.3 81.3 103 798 30.2 1440
4/17/00 0.01 0.45 0.45 0.018 0.02 0.54 85.2 117 959 34.3 1770
7/17/00 0.01 0.474 0.482 0.013 0.022 0.3 84.1 131 1020 37.7 1770
10/25/00 0.02 0.516 0.516 0.025 0.025 1.13 83.4 108 845 37.7 1462
1/9/01 0.022 0.414 0.414 0.019 0.019 1.23 94.4 141 1100 48.5 2074
4/25/01 0.016 0.469 0.469 0.02 0.021 0.3 83 124 990 39.5 1840
7/23/01 0.434 0.434 0.019 0.015 0.8 88.3 126 1020 39.5 1920
10/16/01 0.02 0.485 0.51 0.028 0.018 1 70 105 814 32.3 1500
1/30/02 0.034 0.478 0.478 0.033 0.01 1 75.65 107.79 911.88 35.8 1600.66
4/11/02 0.036 0.495 0.495 0.105 0.011 0.6 69.5 98.8 810 30.9 1390
7/22/02 0.018 0.5263 0.5263 0.284 0.01 0.6 58 86.1 674 27.7 1200
10/7/02 0.018 0.006 0.533 0.533 0.065 0.013 0.4 64.4 85.6 699 27.4 1220
1/13/03 0.012 0.006 0.535 0.535 0.03 0.013 0.3 63.6 80.1 644 22.8 1145
4/15/03 0.015 0.006 0.528 0.528 0.043 0.01 0.5 67.4 99.3 706 27.3 1250
7/24/03 0.011 0.006 0.508 0.508 0.018 0.017 0.3 56.3 59.2 419 16.5 766






BULLETIN NO. 69


APPENDIX B. GLOSSARY OF TERMS AND POSSIBLE CAUSES OF TRENDS

APPENDIX B1. GLOSSARY
(Modified from Poucher and Copeland, 2006)

alluvial sinkhole An alluvial sinkhole is an ancient or relict sinkhole (paleosinkhole) that has been
filled with soil and/or sediment. It may or may not have a surficial expression. See also
paleosinkhole and relict sinkhole (SDII Global Corporation, 2002).

artesian A modifier that describes a condition in which the potentiometric surface is above the
elevation of the top of the aquifer (Modified from Field, 1999). It is synonymous with confined.

aquifer A body of soil, sediment, or rock that is saturated with water and sufficiently permeable to
allow production of water from wells (SDII Global Corporation, 2002).

blind valley A stream valley that terminates abruptly at a sinkhole, swallow hole, or swallet (where the
stream disappears underground) (SDII Global Corporation, 2002).

caliche See duricrust.

cave A natural underground opening or series of openings and passages large enough to be entered by
an adult person (Modified from Monroe, 1970).

cavern A cave or conduit system with larger than average size that has been created by the dissolution
of limestone or other soluble rock (SDII Global Corporation, 2002).

cavernous porosity A pore system having large, cavernous openings; the lower size limit, for field
analysis, is practically set at approximately the smallest opening that an adult person may enter
(Field, 1999).

"chimney" sink A cover-collapse sinkhole that forms near a vertical shaft or "chimney", typically
developing where bedrock is near land surface. These features are common in the Gainesville
area of Florida (Modified from SDII Global Corporation, 2002).

collapse sinkhole A type of sinkhole formed by collapse of the cover materials (soil, sediment, or rock)
into an underground void created by the dissolution of limestone or dolostone. See rock- collapse
sinkhole and cover-collapse sinkhole (SDII Global Corporation, 2002).

conduit; karst conduit Large dissolutional voids, including enlarged fissures and tabular tunnels. In
some usage, it is restricted to voids that are water-filled. Conduits may include all voids greater
than 10 mm (one cm) in diameter, but another classification scheme places them between
arbitrary limits of 100 mm to 10 m. Whichever value is accepted in a particular context, smaller
voids are commonly termed subconduits (Field, 1999).

conduit flow; karst conduit flow Undergroundwater flow within conduits. Conduit flow is generally
turbulent, but can also be laminar (Field, 1999).

confined See artesian.

cover Materials consisting of soil, sediment, or rock that overlies the soluble rock (limestone, dolostone
etc.) in a karst terrane. In Florida, the cover includes the sand and clay deposits that overlie the







Date D-NH3 D-N03 D-N03(N) D-NO3NO;D-P D-P04 TOC TDS DtoH20 WL(MSL) DeSnWL(msl) Turb
12/31/97 4.37 87.63 87.7945 *
2/2/98 5.07 86.93 87.0945 *
2/28/98 4.97 87.03 87.1945 *
3/27/98* 5.17 86.83 87.0945 *
4/23/98 0.098 0.015 0.17 0.15 8.4 6.17 85.83 86.0945 9.5
5/25/98 8.22 83.78 84.0445 *
7/1/98 *******8.06 83.94 84.0766 *
7/31/98 7.69 84.31 84.4466 *
8/26/98 5.32 86.68 86.8166 *
9/29/98 *******4.17 87.83 87.1757 *
10/29/98 6.07 85.93 85.2757 *
12/2/98 6.75 85.25 85.4145 *
1/4/99 *******6.21 85.79 85.9545 *
2/1/99 6.16 85.84 86.0045 *
3/1/99 7.19 84.81 85.0745 *
3/31/99* 7.81 84.19 84.4545 *
5/11/99 8.85 83.15 83.4145 *
6/7/99 8.13 83.87 84.0066 *
7/6/99 *******5.1 86.9 87.0366 *
8/3/99 *******6.37 85.63 85.7666 *
9/8/99 *******7.25 84.75 84.0957 *
11/1/99 *******6.16 85.84 85.1857 *
12/7/99 8.43 83.57 83.7345 *
1/4/00 7.17 84.83 84.9945 *
1/28/00 *******6.79 85.21 85.3745 *
3/13/00 8.01 83.99 84.2545 *
4/5/00 8.16 83.84 84.1045 *
5/4/00 8.46 83.54 83.8045 *
6/6/00 *******10.44 81.56 81.6966 *
7/7/00 9.41 82.59 82.7266 *
8/7/00 *******7.2 84.8 84.9366 *
9/8/00 6.73 85.27 84.6157 *
10/11/00 6.77 85.23 84.5757 *
11/3/00 8.08 83.92 83.2657 *
12/6/00 8.73 83.27 83.4345 *
1/3/01 8.15 83.85 84.0145 *
2/1/01 *******8.34 83.66 83.8245 *
4/3/01 *******6.55 85.45 85.7145 *
5/1/01 *******8.34 83.66 83.9245 *
6/4/01 7.44 84.56 84.6966 *
7/2/01 7.15 84.85 84.9866 *
8/7/01 3.79 88.21 88.3466 *











Descriptive Statistics for 7935 Dates: January, 2U00 to April, 2003
Measured Num. Min. Q1 Median Q3 Max.
Code Analyte units Samples Value Value Value Value Value
10 Temp Deg C 14 24.7 25.0 25.4 25.8 26.7
1046 D-Fe microg/1 0 NA NA NA NA NA
1056 D-Mn microg/1 0 NA NA NA NA NA
29801 Bicarb mg/1 4 *
299 DO mg/1 13 0.0 0.1 0.1 0.1 0.3
31616 Fcol #/100 ml 4 *
31649 Entero #/100 ml 4 *
406 pH ph units 14 7.3 7.3 7.4 7.4 8.3
4255 D-Alk mg/1 0 NA NA NA NA NA
530 Resid mg/1 4 *
608 D-NH3 mg/1 4 *
618 D-NO3 mg/1 0 NA NA NA NA NA
620 D-NO3(N) mg/1 0 NA NA NA NA NA
D-
631 NO3NO2 mg/1 4 *
666 D-P mg/1 4 *
671 D-PO4 mg/1 4 *
680 TOC mg/1 4 *
70300 TDS mg/1 4 *
72109 DtoH20 Ft 14 0.0 0.0 0.0 0.0 0.0
76 Turb Turb units 4 *
81 Color Pt-Co 4 *
82078 Turb(field) Turb units 10 0.3 0.6 0.8 1.3 17.3
915 D-Ca mg/1 4 *
925 D-Mg mg/1 4 *
930 D-Na mg/1 4 *
935 D-K mg/1 4 *
94 Cond(field) micromhos/cm 4 *
941 D-C1 mg/1 4 *
946 D-SO4 mg/1 4 *
950 D-F mg/1 4 *


*Less than 10 samples
NA No samples


- - ' ----


. .. . - . ..- -









1) Combine the observations in the seasons and order them from the least to the
largest

n!
2) Let r, be the rank of Y, in the joint sample. Set R, = r' and = R /n,,
t=l
i.e., R, is the rank sum of the observations in season i and R, is the average
rank for these same observations.

4
3) Let N= [ n,. The Kruskal-Wallis (K-W) statistic H is then defined as



H 12 +1 N+ 12 R, 3(N + 1), (Al)
N(N + 1) 1 2 N(N +l) n,


4) For testing the null hypothesis at the a level of significance, reject H, if
H > ha where the critical value h, can be found in Table A.12 of Hollander
and Wolfe (1973).

5) Large-Sample Approximation. For comparing four populations (k=4), Table
A.12 of Hollander and Wolfe (1973) provides critical values forl < n <_4.
When n, > 5, for i = 1, 2, 3, 4, the distribution of statistic H can be
approximated by a chi-square distribution with 3 degrees of freedom under the
null hypothesis. The test thus can be performed by rejecting H, if H> 3 ;
otherwise do not reject H0.


Mann-Whitney (M-W) test (or Wilcoxon Rank Sum test)-For testing seasonality of
a water quality analyte, one can first perform the Kruskal-Wallis (K-W) test. If the null
hypothesis {f(x) F(x r), for i = 1, 2, 3, 4} is not rejected, we may conclude that
there is no seasonality in the data. If the null hypothesis is rejected, we need to figure out
measurements in which two seasons have different distributions (different means).


For comparing any two populations, the Mann-Whitney (M-W) test can be
employed. For example, suppose that we want to compare measurements of a water
quality analyte from two different seasons, {ft, t = 1, n, } and { Y,, t = 1, - n }. The
null hypothesis in this comparison is H,: F,(x) F (x) and the alternative hypothesis is
H,: F7(x)- F(x A) or equivalently Y, = Y, + A where Ais the location shift or the
difference between the two season.







Sequence A
Location Sequence Dates DNH3_Ha_up DNH3 Ha down D_NH3_n
Wells A Up
Wells A Down

BLU (Gilchrist) B 1/91-12/127 -9999 -9999 -9999
FAN B 1/91-12/128 -9999 -9999 -9999
HOR B 1/91-12/130 -9999 -9999 -9999
LRS B 1/91-12/132 -9999 -9999 -9999
RKB B 1/91-12/135 -9999 -9999 -9999
ROY B 1/91-12/137 -9999 -9999 -9999
TEL B 1/91-12/139 -9999 -9999 -9999
TRY B 1/91-6/04 -9999 -9999 -9999
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates DNH3_Haup DNH3 Ha down DNH3_n
1943 C 1/98-6/03 0.2063 0.7937 12
2003 C 1/98-6/03 0.13562 0.86438 13
2193 C 1/98-6/03 -9999 -9999 -9999
2259 C 1/98-6/03 -9999 -9999 -9999
2353 C 1/98-6/03 -9999 -9999 -9999
2404 C 1/98-6/03 -9999 -9999 -9999
2465 C 1/98-6/03 0.07079 0.92921 13
2585 C 1/98-6/03 -9999 -9999 -9999
2675 C 1/98-6/03 0.15018 0.84982 10
Wells A Up
Wells A Down

ALR C 1/98-6/32 -9999 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999 -9999
FAN C 1/98-6/34 -9999 -9999 -9999
HAR C 1/98-6/35 -9999 -9999 -9999
HOR C 1/98-6/36 -9999 -9999 -9999
LBS C 1/98-6/37 -9999 -9999 -9999
LRS C 1/98-6/38 -9999 -9999 -9999
MAN C 1/98-6/39 -9999 -9999 -9999
POE C 1/98-6/40 -9999 -9999 -9999










Descriptive Statistics for TEL from November, 1992 to December, 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
KTOT mg/1 55.0 0.0 0.3 0.4 0.5 0.9
NATOT mg/1 55.0 2.4 2.9 3.1 3.6 6.3
MGTOT mg/1 55.0 7.0 16.0 16.6 18.0 28.7
CATOT mg/1 55.0 38.0 54.2 57.4 60.9 119.0
CLTOT mg/1 55.0 1.0 5.3 6.0 6.4 9.0
FTOT mg/1 52.0 0.1 0.2 0.2 0.2 0.3
SO4TOT mg/1 55.0 13.4 40.4 42.7 45.8 53.0
TKN mg/1 54.0 0.0 0.0 0.1 0.1 0.4
NOXNTOT mg/1 57.0 0.5 2.0 2.2 2.5 3.3
PTOT mg/1 55.0 0.0 0.0 0.0 0.1 0.1
OPO4DISS mg/1 55.0 0.0 0.0 0.0 0.0 0.1
COLITOT #/100ML 7.0 *
COLIFEC #100ML 7.0 *
FLOWCFS CFS 31.0 18.1 24.3 28.9 36.9 51.0
TOC mg/1 47.0 0.0 1.4 3.9 9.2 13.6
DOC mg/1 37.0 0.4 2.0 6.3 8.1 12.1
CONDL uS/cm 56.0 375.0 440.0 445.5 457.0 477.0
PHF s.u. 56.0 6.8 7.1 7.2 7.3 7.4
TEMP Deg C 55.0 15.0 21.1 21.3 21.5 21.9
*Less than 10
samples
NA No samples







SWFWMD
Location Sequence Dates Alk_29801 Ha down Alk_29801_n
736 B 1/91-12/97 0.51796 16
737 B 1/91-12/97 0.41608 23
996 B 1/91-12/97 0.25854 15
997 B 1/91-12/97 0.00017 15
1087 B 1/91-12/97 0.74312 17
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.5443 14
Boyette B 1/91-12/99 0.17085 18
Chassal B 1/91-12/100 0.961 14
ChassaM B 1/91-12/101 0.94114 14
Homosl B 1/91-12/104 0.59778 13
Homos2 B 1/91-12/105 0.80722 13
Homos3 B 1/91-12/106 0.79084 13
HidRiv2T B 1/91-12/102 0.05962 14
HidRivH B 1/91-12/103 0.08553 13
huntersspr B 1/91-12/107 0.47177 12
lithiamain B 1/91-12/108 0.96737 17
magnolspr B 1/91-12/109 0.94713 13
pumphous B 1/91-12/110 0.34823 14
rainbow B 1/91-12/111 0.16405 13
rainbow B 1/91-12/112 0.46287 16
rainbow B 1/91-12/113 0.94997 15
mboBseep B 1/91-12/115 0.46402 16
saltspr B 1/91-12/116 0.85616 14
SWBettyJay B 1/91-12/117 0.5 12
SWBoat B 1/91-12/118 0.54908 13
SWBublng B 1/91-12/119 0.92071 11
SWBuckhm B 1/91-12/120 0.97451 17
SWCatfish B 1/91-12/121 0.89759 16
tarponholespr B 1/91-12/122 0.93605 18
trottermain B 1/91-12/123 0.1692 14
weekwachmain B 1/91-12/124 0.5 14
Springs A Up
Springs A Down

Location Sequence Dates Alk_29801 Ha down Alk_29801_n
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 0.56532 14
737 C 1/98-6/03 -9999 -9999







Sequence A
Location Sequence Dates D P Ha_up D P Ha down D P n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates D P Ha_up D P Ha down D P n
1417 C 1/98-6/03 1.00 0.00 10.00
1420 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1763 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1764 C 1/98-6/03 0.53 0.47 12.00
1779 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1780 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1781 C 1/98-6/03 0.93 0.07 12.00
1931 C 1/98-6/03 0.99722 0.00278 11
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







Sequence A
Location Sequence Dates Fcol_Sen_slope UP/DOWN
RLS C 1/98-6/42 -9999 -9999
RKB C 1/98-6/41 -9999 -9999
SBL C 1/98-6/44 0 No evidence of trend
TEL C 1/98-6/45 -9999 -9999
TRY C 1/91-12/98 0.166667 UP
Springs A Up 2
Springs A Down 0







Sequence A
Location Sequence Dates DP04_Ha_up D_P04 Ha down DP04_n

Alexander Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Apopka B 1/91-12/97 -9999.00 -9999.00 -9999.00
Fern Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Juniper Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Miami Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Palm Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
PDL B 1/91-12/97 -9999.00 -9999.00 -9999.00
Rock Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Salt Spring B 1/91-12/125 -9999.00 -9999.00 -9999.00
Sanlando Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Silver Glen Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Starbuck Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Sweetwater Spring B 1/91-12/97 -9999.00 -9999.00 -9999.00
Volusia Springs B 1/91-12/97 -9999.00 -9999.00 -9999.00
Wekiva B 1/91-12/125 -9999.00 -9999.00 -9999.00
Springs up
Springs down

Sequence C
Location Sequence Dates DP04_Ha_up D_P04 Ha down DP04_n
1417 C 1/98-6/03 0.39 0.61 10.00
1420 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1674 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1762 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1763 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1764 C 1/98-6/03 0.89 0.11 12.00
1779 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1780 C 1/98-6/03 -9999.00 -9999.00 -9999.00
1781 C 1/98-6/03 1.00 0.00 12.00
1931 C 1/98-6/03 0.0446 0.9554 11
Wells up
Wells down

Alexander Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Apopka C 1/98-6/03 -9999.00 -9999.00 -9999.00
Fern Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Juniper Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Miami Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
Palm Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00
PDL C 1/98-6/03 -9999.00 -9999.00 -9999.00
Rock Springs C 1/98-6/03 -9999.00 -9999.00 -9999.00







Sequence A
Location Sequence Dates Resid_Sen_slope UP/DOWN
RLS C 1/98-6/42 -9999 -9999
RKB C 1/98-6/41 -9999 -9999
SBL C 1/98-6/44 -9999 -9999
TEL C 1/98-6/45 -9999 -9999
TRY C 1/91-12/98 -9999 -9999
Springs A Up 0
Springs A Down 0







DATE COLITOT COLIFEC FLOWCFS TOC DOC CONDL PHF TEMP STAGEMSL DO TURB ALKTOT NH3NTOT TIME TOTDEPM
6/12/96 10 10 432 6.87 22.2 1.8 0.001 *
7/24/96 10 10* 437 7 22.1 1.7* 0.001 *
8/19/96 10 10 441 7.34 22.1 1.8 0.001 *
6/26/97 ** 432 7.11 22.1 1.6* 0.02* *
3 3 0 0 0 4 4 4 0 4 0 0 4 00
6/11/98 90 1.9 1.7 419 7.1 22 2.3 0.25 191 0.02* *
7/28/98 88.39 1.9 1.9 435 7.21 22.1 7.05 2.2 0.25 190 0.02 *
8/17/98 81.02 1.9 2.1 436 7.18 22.1 7.04 2.2 0.2 198 0.02* *
12/17/98 84.96 6.4 10.5 441 7 22 2.1 0.15 193 0.02* *
3/16/99 ** 71.63 11.3 11.2 435 7.07 22.1 7.05 2 0.15 191 0.03* *
4/15/99 64.61 9 5.5 446 7.23 22.2 6.75 1.9 0.15 200 0.02 *
6/17/99 61.67 15 13.6 448 7.18 22.2 5.5 1.7 0.2 195 0.02 *
8/3/99 54.63 7.7 452 7.04 22.1 5.68 1.5 0.15 194 0.02 *
9/27/99 51.54 6 5.5 449 7.18 22.2 5.76 1.5 0.1 198 0.02* *
11/17/99 55.5 8.3 7.9 456 7.39 22 5.18 1.5 0.08 194 0.02 *
6/8/00 46.8 19.2 16.7 465 7.16 22.3 4.64 1.7 0.27 194 0.02* *
11/14/00 46.1 1.4 1.3 447 7.13 22.2 5.38 2.1 0.1 200 0.02 *
6/12/01 19.1 3.4 1.6 429 7.19 21.9 5.66 0.4 0.2 183 0.02 *
8/22/01 45.9 5.5 1.8 436 7.23 22.2 6.16 0.6 0.35 182 0.02 *
11/20/01 1 3 44.4 1.9 3.1 450 7.16 22.1 5.2 1.2 0.35 199 0.02 *
6/20/02 90 1 32.5 0.4 0.4 432 7.19 22.4 4.68 1 0.2 188 0.02 *
8/8/02 5.27 2.4 0.4 196 0.037* *
11/20/02 40.8 0.8 0.8 415 7.29 22.3 5.27 2.4 0.4 196 0.037 1550 1.2
6/2/03 66.3 2.1 0.8 384 7.33 21.9 8.15 0.6 0.2 178 0.037 1437 1.1
5 5 18 17 18 22 22 22 17 23 19 19 23 2 2







SAMP_DATE D-N03 D-NO3NO; T-P D-P04 TOC D-Ca D-Mg D-Na D-K D-CI D-S04 D-F
7/27/94 0.38 0.38 0.01 0.01 0.5 48 22 172 5.9 333 44 0.09
10/24/94 0.32 0.32 0.016 0.01 0.5 50 18 127 4.9 226 37 0.08
1/16/95 0.309 0.309 0.014 0.018 0.68 49 10 61 2.2 107 23 0.054
7/27/95 0.331 0.331 0.017 0.015 0.92 45 7.1 37 1.4 65 16 0.06
10/26/95 0.331 0.332 0.01 0.01 0.88 57 23 168 6 460 51 0.09
2/7/96 0.398 0.023 0.021 0.57 44 5.4 22 1 37 12 0.06
4/18/96 0.346 0.348 0.012 0.01 0.78 47 5.9 23 0.9 39 13 0.06
7/18/96 0.365 0.365 0.01 0.011 0.5 58.14 5.54 21 1.3 41 12 0.081
10/16/96 0.35 0.35 0.039 0.022 0.63 52 18 129 5 207 34 0.063
1/30/97 0.362 0.366 0.01 0.01 0.58 43 9 51 2 86 19 0.08
4/10/97 0.343 0.343 0.027 0.023 0.62 47 18 135 5.5 227 37 0.083
7/8/97 0.363 0.363 0.01 0.01 0.3 50.8 18.7 133 5.52 238 39.7 0.13
10/7/97 0.372 0.372 0.01 0.01 0.81 53.2 21.1 157 6.34 303 47.4 0.085
1/15/98 0.371 0.371 0.01 0.01 0.491 50.5 14.4 99.1 3.65 179 31.7 0.069
4/16/98 0.363 0.363 0.044 0.014 0.45 43.6 7.84 43.1 1.66 75.6 19.2 0.002
7/15/98 0.377 0.377 0.1 0.011 0.58 49.6 9.18 59.3 2.3 98.3 20.4 0.1
10/21/98 0.337 0.337 0.01 0.01 0.3 58 39 304 12.5 550 77.2 0.05
1/21/99 0.368 0.368 0.03 0.016 0.49 54 22.1 164 6.64 305 51 0.08
1/13/00 0.435 0.435 0.015 0.01 0.3 51.8 23.2 165 6.68 291 49.9 *
1/25/01 0.412 0.412 0.015 0.007 0.3 52.4 12 66.3 3.84 120 23.5 0.08
1/17/02 0.473 0.473 0.01 0.01 0.3 50.35 13.34 82.73 3.53 139.07 25.64 0.08







Sequence A
Location Sequence Dates D_Mg_Ha_down D_Mg_n
2793 A 1/91-6/03 0.10953 27
2872 A 1/91-6/03 0.03255 28
2873 A 1/91-6/03 -9999 -9999
6490 A 1/91-6/03 0.93853 28
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D_Mg_Ha_down D_Mg_n
2793 B 1/91-12/97 0.00076 17
2872 B 1/91-12/97 0.38233 15
2873 B 1/91-12/97 -9999 -9999
6490 B 1/91-12/97 0.9999 18
Wells A Up
Wells A Down

Sequence C
Location Sequence Dates D_Mg_Ha_down D_Mg_n
2793 C 1/98-6/03 0.74274 10
2872 C 1/98-6/03 0.5 13
2873 C 1/98-6/03 -9999 -9999
3108 C 1/98-6/03 -9999 -9999
3109 C 1/98-6/03 0.08387 13
3398 C 1/98-6/03 -9999 -9999
3433 C 1/98-6/03 -9999 -9999
3490 C 1/98-6/03 0.1099 13
6490 C 1/98-6/03 0.0046 10
Wells A Up
Wells A Down






Sequence A
Location Sequence Dates TDSHa_up TDS Ha down TDS_n
67 (and Spring) A 1/91-6/03 -9999 -9999 -9999
91 A 1/91-6/03 -9999 -9999 -9999
129 A 1/91-6/03 -9999 -9999 -9999
131 A 1/91-6/03 -9999 -9999 -9999
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 -9999 -9999 -9999
312 A 1/91-6/03 -9999 -9999 -9999
313 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates TDS_Ha_up TDS Ha down TDS_n
67 (and Spring) B 1/91-12/97 -9999 -9999 -9999
91 B 1/91-12/97 -9999 -9999 -9999
129 B 1/91-12/97 -9999 -9999 -9999
131 B 1/91-12/97 -9999 -9999 -9999
312 B 1/91-12/97 -9999 -9999 -9999
313 B 1/91-12/97 -9999 -9999 -9999
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates TDS_Ha_up TDS Ha down TDS_n
67 (and Spring) C 1/98-6/03 -9999 -9999 -9999
91 C 1/98-6/03 0.22426 0.77574 12
129 C 1/98-6/03 -9999 -9999 -9999
131 C 1/98-6/03 -9999 -9999 -9999
243 C 1/98-6/03 -9999 -9999 -9999
245 C 1/98-6/03 0.4486 0.5514 14
312 C 1/98-6/03 -9999 -9999 -9999
313 C 1/98-6/03 0.00645 0.99355 15
Wells C Up
Wells C Down







SWFWMD
Location Sequence Dates D_K_Sen_slope UP/DOWN
775 C 1/98-6/03 -9999 -9999
996 C 1/98-6/03 -0.02 DOWN
997 C 1/98-6/03 -9999 -9999
1087 C 1/98-6/03 -9999 -9999
1100 C 1/98-6/03 -9999 -9999
7934 C 1/98-6/03 0.0553571 UP
7935 C 1/98-6/03 -9999 -9999
Wells A Up 1
Wells A Down 1


Bobhill C 1/98-6/04 0.0273333 UP
Boyette C 1/98-6/05 -0.0137037 No evidence of trend
Chassal C 1/98-6/06 0.215333 UP
ChassaM C 1/98-6/07 0.66 No evidence of trend
Homosl C 1/98-6/10 0.316667 No evidence of trend
Homos2 C 1/98-6/11 0.219551 No evidence of trend
Homos3 C 1/98-6/12 0.336667 No evidence of trend
HidRivH C 1/98-6/09 0.484615 UP
HidRiv2T C 1/98-6/08 15.9753 UP
huntersspr C 1/98-6/13 0.07 UP
lithiamain C 1/98-6/14 0.0154545 UP
magnolspr C 1/98-6/15 0.0075 No evidence of trend
pumphous C 1/98-6/16 0.198 UP
rainbow C 1/98-6/17 0.01 UP
rainbow C 1/98-6/18 0.0116667 UP
rainbow C 1/98-6/19 0.013125 UP
SWBettyJay C 1/98-6/23 0.0187368 No evidence of trend
SWBublng C 1/98-6/25 0.012 UP
SWBuckhm C 1/98-6/26 0.0135714 No evidence of trend
SWCatfish C 1/98-6/27 0.0825 No evidence of trend
tarponholespr C 1/98-6/28 0.58 UP
trottermain C 1/98-6/29 0.106429 UP
weekwachmain C 1/98-6/30 0.011 UP
wilsonheadspr C 1/98-6/31 0.015 UP
Springs A Up 15
Springs A Down 0










Seasonality Results: SRWMD cont.
FLOW
Name TKN NOXNTOT PTOT OPO4DISS COLITOT COLI-FEC CFS
Alapaha River Rise >.05 >.05 >.05 <.05 NA NA >.05
Gilchrist Blue
Spring <.05 >.05 >.05 >.05 >.05 >.05 >.05
Fanning Spring >.05 >.05 >.05 <.05 >.05 >.05 >.05
Hart Spring >.05 >.05 >.05 >.05 NA NA >.05
Hornsby Spring >.05 >.05 >.05 >.05 NA NA >.05
Lafayette Blue
Spring >.05 >.05 >.05 >.05 >.05 >.05 >.05
Little River Spring >.05 >.05 >.05 >.05 >.05 >.05 >.05
Manatee Spring >.05 <.05 >.05 >.05 <.05 <.05 <.05
Poe Spring >.05 >.05 >.05 >.05 >.05 >.05 >.05
Rock Bluff Spring >.05 >.05 >.05 <.05 >.05 >.05 >.05
Ruth/Little Sulfur
Springs >.05 >.05 >.05 >.05 >.05 >.05 >.05
Royal Spring >.05 >.05 >.05 >.05 NA NA NA
Suwannee Blue
Spring >.05 <.05 >.05 >.05 >.05 >.05 >.05
Telford Spring >.05 >.05 >.05 >.05 >.05 >.05 >.05
Troy Spring <.05 <.05 >.05 <.05 >.05 <.05 >.05


Failure to reject null (>0.05) also includes some data where analyses were
inconclusive; data highlighted in yellow were the only tests conclusively
rejecting null
<0.05 Significant at less than .05
NA Results not available due to lack of data
TOT = Total
FEC = Fecal








FK STATION PK SAMPLE COLLECTION DATE COLLECTIC MONTH SEASON SEASON_N Temp Fe-D Mn-D Alk DO
1764 SJRM0012-2 12/18/00 1550 12 Winter 4 22.23 0.18
1764 SJRM0101-6 1/29/01 1650 1 Winter 4 22.3 0.53
1764 SJRM0102-2 2/26/01 1843 2 Winter 4 22.43 0.4
1764 SJRM0103-2 3/26/01 1933 3 Spring 1 22.26 1.01
1764 SJRM0104-2 4/25/01 1903 4 Spring 1 22.33 0.58
1764 SJRM0106-2 5/28/01 1531 5 Spring 1 22.34 0.11
1764 SJRM0105-3 5/31/01 1240 5 Spring 1 22.56 0.09
1764 SJRM0107-5 7/24/01 1015 7 Summer 2 22.39 0.17
1764 SJRM0108-2 8/27/01 1830 8 Summer 2 22.42 0.09
1764 SJRM0109-2 9/24/01 1735 9 Fall 3 22.34 0.11
1764 SJRM0110-3 10/24/01 1707 10 Fall 3 22.55 14 0.19
1764 SJRM0111-2 11/26/01 1409 11 Fall 3 22.45 13 0.32
1764 SJRM0112-2 12/19/01 1614 12 Winter 4 22.22 14 0.25
1764 SJRM0201-1 1/23/02 1350 1 Winter 4 22.61 13 0.47
1764 SJRM0202-2 2/19/02 908 2 Winter 4 22.27 11 0.27
1764 SJRM0203-2 3/26/02 1006 3 Spring 1 22.53 12 0.17
1764 SJRM0204-4 4/23/02 1740 4 Spring 1 22.67 0.06
1764 SJRM0205-2 5/22/02 945 5 Spring 1 22.73 14 0.21
1764 SJRM0206-2 6/26/02 930 6 Summer 2 22.54 15 0.28
1764 SJRM0207-6 7/23/02 1550 7 Summer 2 22.64 13 0.75
1764 SJRM0208-2 8/19/02 1245 8 Summer 2 22.85 12 0.37
1764 SJRM0209-2 9/23/02 1230 9 Fall 3 22.74 15 0.26
1764 SJRM0210-4 10/22/02 937 10 Fall 3 22.42 0.19
1764 SJRM0211-3 11/18/02 11 Fall 3 22.32 0.26
1764 SJRM0212-2 12/16/02 12 Winter 4 22.39 0.26
1764 SJRM0301-5 1/30/03 1013 1 Winter 4 22.52 0.75
1764 SJRM0302-2 2/20/03 1433 2 Winter 4 22.71 0.29
1764 SJRM0303-2 3/24/03 1729 3 Spring 1 22.56 0.16
1764 SJRM0304-3 4/23/03 1001 4 Spring 1 22.3 0.26
1764 SJRM0305-2 5/27/03 1458 5 Spring 1 23.58 0.15
1764 SJRM0306-2 6/23/03 1731 6 Summer 2 22.78 0.33








FLORIDA GEOLOGICAL SURVEY





RLS Flow-Adjusted Phosphorus


12/17/1996


5/1/1998


9/13/1999
Date


1/25/2001


6/9/2002


10-10 2 3 4 5 67 1000 2 3 4 5 6 7 1010 2 3

Log Flow (cfs)


Figure 69. Flow adjustment for phosphorus in Ruth/Little Sulfur Springs.
Phosphorus (top) shows slight decline over time. The log of phosphorus (bottom)
has a slightly negative relationship to the log of flow (bottom).


. .


10-10
9

8

7

6


5


U

U


U
U U







DATE S04 F DeSnD-Fe DeSnTemp
11/30/98 21.0742
1/6/99 21.8224
2/1/99 21.6224
3/3/99 21.1238
4/5/99 21.7238
5/3/99 21.6238
6/1/99 21.6818
7/8/99 21.5818
8/4/99 0.29 0.24 1287.22 21.7818
8/30/99* 21.7818
10/15/99 21.7742
11/15/99 21.7742
12/13/99 22.0224
1/6/00 21.8224
2/2/00 21.6224
2/29/00 21.8224
4/5/00 21.5238
5/3/00* 21.8238
6/2/00 21.6818
7/5/00 21.7818
8/31/00 21.7818






Sequence A
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
67 (and Spring) A 1/91-6/03 -9999 -9999
91 A 1/91-6/03 -9999 -9999
129 A 1/91-6/03 -9999 -9999
131 A 1/91-6/03 -9999 -9999
243 A 1/91-6/03 -9999 -9999
245 A 1/91-6/03 -9999 -9999
312 A 1/91-6/03 -9999 -9999
313 A 1/91-6/03 -9999 -9999
Wells A Up 0
Wells A Down 0

Sequence B
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
67 (and Spring) B 1/91-12/97 -9999 -9999
91 B 1/91-12/97 -9999 -9999
129 B 1/91-12/97 -9999 -9999
131 B 1/91-12/97 -9999 -9999
312 B 1/91-12/97 -9999 -9999
313 B 1/91-12/97 -9999 -9999
Wells B Up 0
Wells B Down 0

Sequence C
Location Sequence Dates D_Mn_Sen_slope UP/DOWN
67 (and Spring) c 1/98-6/03 -9999 -9999
91 C 1/98-6/03 -9999 -9999
129 C 1/98-6/03 -9999 -9999
131 C 1/98-6/03 -9999 -9999
243 C 1/98-6/03 -9999 -9999
245 C 1/98-6/03 -9999 -9999
312 C 1/98-6/03 -9999 -9999
313 C 1/98-6/03 -9999 -9999
Wells C Up 0
Wells C Down 0







BULLETIN NO. 69


Table 38. Well Trends in the NWFWMD, Sequence C (1998-2003).
(+ = T trend, blank = no evidence of trend, = J trend)
Unconfined GW Confined Both
Well Number Well Number Uncon Con (All)
Analyte 67*1 91 129 131 245 313 243 312 + + + -
AlkR 0 1 0 0 0 1
Ca + + 2 0 0 0 2 0
ci + 1 0 0 0 1 0
DO + + 2 3 0 2 2 5
F + 1 0 0 0 1 0
Fe 0 0 0 0 0 0
K + 1 1 0 0 1 1
Mg + + 2 0 0 0 2 0
Na + 1 0 0 0 1 0
NH3 0 1 0 0 0 1
NO032 + 1 0 0 0 1 0
P04 -0 1 0 0 0 1
pH -- 0 4 0 2 0 6
SC-f + + + 2 1 1 0 3 1
so4 + 1 0 0 0 1 0
TDS + 1 0 0 0 1 0
Temp + + + 2 1 1 0 3 1
TOC 0 1 0 0 0 1
Trb-1 + + + 3 0 0 0 3 0
WL(msl) -+ + 2 3 1 1 2 4
Well 67*' taps conduit of Wakulla Spring.
N03*2 N03 + N02 as N (Dissolved).
DL = Trend influenced by changes in laboratory detection level; not due to environmental change.


Well Number WMD Well ID
67 Wakulla Spring Well
91 Charles Donahue
129 Weller Ave MPZ
131 Weller Ave Shallow
243 Blountstown Floridan
245 Blountstown Surficial
312 USGS 422A NR Greenhead
313 USGS 422B NR Greenhead

Table 39. Potential NWFMD Districtwide Trends, Sequence C. (Note small sample size.)
Confined or
Analyte Unconfined Direction Comments
Possibly higher mixture of younger recharge water near well screen
pH All Down during low water level times.







Date SEASON_NO. Month Temp DeSnTemp Fe-D Mn-D Alk DO pH TSS NH3 NO3NO2
8/21/98 2 8 28 27.6887 0.34 6.8 *
9/8/98 3 9 26.4 26.1441 303 228 0.44 6.86 0.72 0.027
10/22/98 3 10 26.9 26.6441 0.34 6.97 *
11/17/98 3 11 27.5 27.2441 0.3 6.86 *
12/24/98 4 12 26.9 27.3614 0.34 6.9 *
1/29/99 4 1 26.7 27.1614 0.4 6.98 *
2/24/99 4 2 26.9 27.3614 0.3 6.9 *
3/18/99 1 3 25.8 25.8668 0.35 6.94 *
4/21/99 1 4 26.6 26.6668 0.32 6.9 *
5/18/99 1 5 26.8 26.8668 0.4 6.8* *
6/30/99 2 6 26.1 25.7887 0.32 6.8 *
7/28/99 2 7 25.3 24.9887 0.4 6.83 *
8/19/99 2 8 25.8 25.4887 0.38 6.7 *
9/8/99 3 9 26.9 26.6441 0.38 6.66 *
10/29/99 3 10 25.78 25.5241 0.4 6.88 *
11/30/99 3 11 26.6 26.3441 0.72 6.94* *
12/29/99 4 12 26.67 27.1314 0.39 6.9 *
1/21/00 4 1 25.6 26.0614 0.38 6.89 *
2/25/00 4 2 26.9 27.3614 0.35 6.93 *
3/23/00 1 3 26.8 26.8668 0.34 6.8 *
4/28/00 1 4 26.61 26.6768 0.3 6.94 *
5/26/00 1 5 27.77 27.8368 0.63 6.87 *
6/29/00 2 6 26.67 26.3587 0.4 6.97 *
7/31/00 2 7 28.4 28.0887 0.34 6.85 *
8/31/00 2 8 25.96 25.6487 0.38 6.66 *
9/28/00 3 9 28.14 27.8841 0.35 6.7* *
10/19/00 3 10 26.55 26.2941 0.34 6.92 *
11/29/00 3 11 25.86 25.6041 0.35 7.01 *
12/28/00 4 12 25.75 26.2114* 0.4 6.85 *
1/26/01 4 1 25.74 26.2014 0.39 6.9* *
2/26/01 4 2 27.07 27.5314 0.41 7.04 *
3/26/01 1 3 26.62 26.6868 0.43 6.98 *
4/23/01 1 4 26.01 26.0768 0.39 6.56 *
5/31/01 1 5 26.02 26.0868 0.42 6.88 *
6/27/01 2 6 25.87 25.5587 0.45 6.97 *
7/26/01 2 7 27.78 27.4687 0.38 6.99 *
8/24/01 2 8 26.07 25.7587 0.48 7.03 *
9/28/01 3 9 26.55 26.2941 0.4 6.92 *
11/2/01 3 10 26.07 25.8141 0.48 7.03 *
11/30/01 3 11 27.69 27.4341 0.41 6.99 *
12/24/01 4 12 26 26.4614 0.36 6.91 *
1/24/02 4 1 26.23 26.6914 0.45 6.82 *










Descriptive Stats. for Hidden River Head Sprig.; July, 1994 to July, 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 37 22.1 23.2 23.4 23.6 25.0
SCf uS/cm 37 1024.0 1369.0 1960.0 2630.0 3900.0
pH s.u. 36 7.5 7.6 7.7 7.7 8.0
Bicarb mg/1 36 108.0 117.0 119.5 127.8 141.0
D-N03 mg/1 35 0.5 0.6 0.6 0.7 0.8
T-N03 mg/1 NA NA NA NA NA NA
TKN mg/1 20 0.0 0.0 0.1 0.2 1.1
D-N03N02 mg/1 37 0.5 0.6 0.6 0.7 1.7
T-P mg/1 37 0.0 0.0 0.0 0.0 0.1
D-P04 mg/1 37 0.0 0.0 0.0 0.0 0.1
T-NH3 mg/1 36 0.0 0.0 0.0 0.0 0.2
T-N mg/1 22 0.5 0.7 0.8 0.8 1.1
TOC mg/1 37 0.2 0.3 0.4 0.5 1.7
Ca mg/1 37 37.1 47.0 57.7 70.1 96.1
Mg mg/1 37 21.0 26.4 35.2 54.9 75.3
Na mg/1 37 127.0 174.5 254.0 377.5 551.0
K mg/1 37 1.8 6.7 8.6 14.0 19.0
D-S04 mg/1 37 37.0 50.5 74.0 106.5 155.0
F mg/1 32 0.0 0.1 0.1 0.1 0.2
Cl mg/1 37 221.0 321.5 475.0 703.0 1070.0
D-Fe ug/1 37 25.0 25.0 30.0 30.0 70.0
D-Sr ug/1 NA NA NA NA NA NA
TDS mg/1 37 338.0 616.5 836.0 1273.5 2113.0
NA No samples
*Less than 10 samples







Sequence A
Location Sequence Dates pH_Ha_up pH_Ha_down pH_n
1943 A 1/91-6/03 0.95949 0.04051 89
2003 A 1/91-6/03 0.04275 0.95725 88
2193 A 1/91-6/03 1 0 104
2259 A 1/91-6/03 1 0 110
2404 A 1/91-6/03 0.99836 0.00164 106
2465 A 1/91-6/03 0.9987 0.0013 132
2585 A 1/91-6/03 0.95091 0.04909 107
2675 A 1/91-6/03 0.99999 0.00001 136
Wells A Up
Wells A Down

BLU (Gilchrist) A 1/91-6/33 0.01632 0.98368 44
FAN A 1/91-6/34 0.10758 0.89242 50
HAR A 1/91-6/35 0.00945 0.99055 22
HOR A 1/91-6/36 0.06909 0.93091 68
LBS A 1/91-6/37 0.46708 0.53292 47
LRS A 1/91-6/38 0.00763 0.99237 54
MAN A 1/91-6/39 0.22418 0.77582 57
RLS A 1/91-6/42 0.05002 0.94998 48
RKB A 1/91-6/41 0.12011 0.87989 60
ROY A 1/91-6/43 0.63868 0.36132 27
SBL A 1/91-6/44 0.23183 0.76817 49
TEL A 1/91-6/45 0.0316 0.9684 59
TRY A 1/91-6/46 0.00858 0.99142 62
Springs A Up
Springs A Down

Sequence B
Location Sequence Dates pH_Ha_up pH Ha down pH_n
1943 B 1/91-12/97 0.85851 0.14149 44
2003 B 1/91-12/97 0.9845 0.0155 43
2193 B 1/91-12/97 0.66589 0.33411 72
2259 B 1/91-12/97 0.96826 0.03174 73
2404 B 1/91-12/97 0.70473 0.29527 70
2465 B 1/91-12/97 0.89459 0.10541 68
2585 B 1/91-12/97 0.11853 0.88147 72
2675 B 1/91-12/97 0.98069 0.01931 72






Sequence A
Location Sequence Dates DOWN LABEL UP/DOWN
67 (and Spring) A 1/91-6/03 FALSE No evidence of trend No evidence of trend
91 A 1/91-6/03 FALSE No evidence of trend No evidence of trend
129 A 1/91-6/03 TRUE No evidence of trend -9999
131 A 1/91-6/03 TRUE DOWN DOWN
243 A 1/91-6/03 TRUE No evidence of trend -9999
245 A 1/91-6/03 TRUE No evidence of trend -9999
312 A 1/91-6/03 FALSE No evidence of trend No evidence of trend
313 A 1/91-6/03 FALSE No evidence of trend No evidence of trend
Wells A Up 0
Wells A Down 1

Sequence B
Location Sequence Dates DOWN LABEL UP/DOWN
67 (and Spring) B 1/91-12/97 TRUE DOWN DOWN
91 B 1/91-12/97 TRUE DOWN DOWN
129 B 1/91-12/97 FALSE No evidence of trend No evidence of trend
131 B 1/91-12/97 TRUE DOWN DOWN
312 B 1/91-12/97 FALSE No evidence of trend No evidence of trend
313 B 1/91-12/97 FALSE No evidence of trend No evidence of trend
Wells B Up 0
Wells B Down 3

Sequence C
Location Sequence Dates DOWN LABEL MIS DATA
67 (and Spring) C 1/98-6/03 TRUE No evidence of trend -9999
91 C 1/98-6/03 TRUE DOWN DOWN
129 C 1/98-6/03 TRUE No evidence of trend -9999
131 C 1/98-6/03 TRUE No evidence of trend -9999
243 C 1/98-6/03 TRUE No evidence of trend -9999
245 C 1/98-6/03 FALSE No evidence of trend No evidence of trend
312 C 1/98-6/03 TRUE No evidence of trend -9999
313 C 1/98-6/03 FALSE UP UP
Wells C Up 1
Wells C Down 1







Spring SampDate Year Day Date Month(txt) Month(nu) Season Season No Source Temp
Sanlando Springs 19930524 1993 24 5/24/93 05 5 Spring 1 USGS 24
Sanlando Springs 19930929 1993 29 9/29/93 09 9 Fall 3 SJR 24.4
Sanlando Springs 19950525 1995 25 5/25/95 05 5 Spring 1 USGS 24.5
Sanlando Springs 19950620 1995 20 6/20/95 06 6 Summer 2 SJR 23.7
Sanlando Springs 19950906 1995 06 9/6/95 09 9 Fall 3 SJR 24.26
Sanlando Springs 19960517 1996 17 5/17/96 05 5 Spring 1 SJR 24.2
Sanlando Springs 19960612 1996 12 6/12/96 06 6 Summer 2 USGS 24
Sanlando Springs 19960917 1996 17 9/17/96 09 9 Fall 3 SJR 24.93
Sanlando Springs 19970417 1997 17 4/17/97 04 4 Spring 1 USGS 24.5
Sanlando Springs 19970514 1997 14 5/14/97 05 5 Spring 1 SJR 24.62
Sanlando Springs 19970910 1997 10 9/10/97 09 9 Fall 3 SJR 24.2
Sanlando Springs 19980520 1998 20 5/20/98 05 5 Spring 1 SJR 24.13
Sanlando Springs 19980909 1998 09 9/9/98 09 9 Fall 3 SJR 24
Sanlando Springs 19990518 1999 18 5/18/99 05 5 Spring 1 SJR 24.22
Sanlando Springs 19990908 1999 08 9/8/99 09 9 Fall 3 SJR 24.31
Sanlando Springs 20000517 2000 17 5/17/00 05 5 Sprin 1 SJR 24.08
Sanlando Springs 1/16/01 1 1 Winter 4 24.18
Sanlando Springs 2/26/01 2 2 Winter 4 21.45
Sanlando Springs 3/6/01 3 3 Spring 1 23.62
Sanlando Springs 5/15/01 5 5 Spring 1 24.27
Sanlando Springs 7/10/01 7 7 Summer 2 24.21
Sanlando Springs 9/17/01 9 9 Fall 3 24.38
Sanlando Springs 11/13/01 11 11 Fall 3 24
Sanlando Springs 1/29/02 1 1 Winter 4 24.2
Sanlando Springs 3/19/02 3 3 Spring 1 24.6
Sanlando Springs 7/16/02 7 7 Summer 2 25.8
Sanlando Springs 11/14/02 11 11 Fall 3_
Sanlando Springs 1/23/03 1 1 Winter 4 23.3
Sanlando Springs 3/27/03 3 3 Spring 1 24.6
Sanlando Springs 6/25/03 6 6 Summer 2 25.6
Sanlando Springs 8/12/03 8 8 Summer 2 24.9
Sanlando Springs 11/18/03 11 11 Fall 3 24.3






BULLETIN NO. 69


Citrus County

Citrus County has several spring groups: King's Bay, Homosassa, and Chassahowitzka
Springs Groups. Springs included Chassahowitzka No. 1, Chassahowitzka Main, Hidden River
Head, Hidden River No. 2, Homosassa Numbers 1-3, Hunter, Pumphouse, and Trotter Main
Springs.

King's Bay Springs Group

The King's Bay Springs Group is the second largest system in Florida. Tarpon Hole and
Hunter Springs are part of this group. Freshwater springs were located on the east side of the bay
while springs with brackish water were found in the central and western portions. As of 2001,
flow in the springs was only 75 percent of the historical average (Champion and Starks, 2001).

Water quality in the King's Bay Springs Group is tidally influenced. TDS and chloride
concentrations change with tides. This suggests that, even at low tide, the springs are strongly
influenced by the coastal transition zone. Most nitrate input was from inorganic sources, most
likely inorganic fertilizers applied to golf courses and residential properties near the springs.
Thus, the nitrates are indicative of a local flow system (Jones and Upchurch, 1994).

Homosassa Springs Group

The Homosassa Springs Group, in western Citrus County, had several springs with
upward nitrate trends: Homosassa, Trotter Main, Pumphouse, and Hidden River Head. Like the
King's Bay Group, the Homosassa Springs Group shows an influence from the coastal transition
zone (Jones et al., 1997). Like the King's Bay Springs Group, Homosassa Springs Group nitrates
were derived primarily from inorganic sources of nitrate-inorganic fertilizers applied to
residential and golf course turf grass near the springs. Again, the nitrates represent a local flow
system.

Chassahowitzka Springs Group

Like the King's Bay and Homosassa Groups, Chassahowitzka Springs Group varies
between fresh and brackish and is tidally influenced. TDS and chloride concentrations varied
greatly, showing a coastal transition zone influence even at low tide (Jones et al., 1997). Nitrate
concentrations were generally below 0.6 mg/L but varied among individual springs in the group.
Mixing of coastal transition zone waters and variations in Floridan aquifer system nitrate
concentrations were sources of variations. Most nitrate was derived from inorganic sources, such
as inorganic fertilizers applied to residential and golf course grass near the springs (Jones et al.,
1997).

Hernando County

Hernando County included two spring groups: Weeki Wachee and Aripeka Springs
Groups. Springs included Boat, Magnolia, Salt, and Weeki Wachee.







Sequence A
Location Sequence Dates D_NH3_Sen_slope UP/DOWN
Wells A Up 0
Wells A Down 0

BLU (Gilchrist) B 1/91-12/127 -9999 -9999
FAN B 1/91-12/128 -9999 -9999
HOR B 1/91-12/130 -9999 -9999
LRS B 1/91-12/132 -9999 -9999
RKB B 1/91-12/135 -9999 -9999
ROY B 1/91-12/137 -9999 -9999
TEL B 1/91-12/139 -9999 -9999
TRY B 1/91-6/04 -9999 -9999
Springs A Up 0
Springs A Down 0

Sequence B
Location Sequence Dates DNH3_Sen_slope MIS DATA UP/DOWN
1943 C 1/98-6/03 0 No evidence of trend
2003 C 1/98-6/03 0.0043443 No evidence of trend
2193 C 1/98-6/03 -9999 -9999
2259 C 1/98-6/03 -9999 -9999
2353 C 1/98-6/03 -9999 -9999
2404 C 1/98-6/03 -9999 -9999
2465 C 1/98-6/03 0 No evidence of trend
2585 C 1/98-6/03 -9999 -9999
2675 C 1/98-6/03 0 No evidence of trend
Wells A Up 0
Wells A Down 0

ALR C 1/98-6/32 -9999 -9999
BLU (Gilchrist) C 1/98-6/33 -9999 -9999
FAN C 1/98-6/34 -9999 -9999
HAR C 1/98-6/35 -9999 -9999
HOR C 1/98-6/36 -9999 -9999
LBS C 1/98-6/37 -9999 -9999
LRS C 1/98-6/38 -9999 -9999
MAN C 1/98-6/39 -9999 -9999
POE C 1/98-6/40 -9999 -9999







SWFWMD
Location Sequence Dates D_N03_Ha_up
736 B 1/91-12/97 -9999
737 B 1/91-12/97 -9999
996 B 1/91-12/97 -9999
997 B 1/91-12/97 -9999
1087 B 1/91-12/97 -9999
Wells A Up
Wells A Down

Bobhill B 1/91-12/98 0.12319
Boyette B 1/91-12/99 0
Chassal B 1/91-12/100 0.45628
ChassaM B 1/91-12/101 0.11352
Homosl B 1/91-12/104 0.01199
Homos2 B 1/91-12/105 0.00302
Homos3 B 1/91-12/106 0.10006
HidRiv2T B 1/91-12/102 0.12319
HidRivH B 1/91-12/103 0.01676
huntersspr B 1/91-12/107 0.00193
lithiamain B 1/91-12/108 0.96556
magnolspr B 1/91-12/109 0.0054
pumphous B 1/91-12/110 0.01074
rainbow B 1/91-12/111 0.63415
rainbow B 1/91-12/112 0.14877
rainbow B 1/91-12/113 0.11422
mboBseep B 1/91-12/115 0.05592
saltspr B 1/91-12/116 0.09444
SWBettyJay B 1/91-12/117 0.00374
SWBoat B 1/91-12/118 0.03696
SWBublng B 1/91-12/119 0.12186
SWBuckhm B 1/91-12/120 0.00481
SWCatfish B 1/91-12/121 0.5
tarponholespr B 1/91-12/122 0.55476
trottermain B 1/91-12/123 0.03843
weekwachmain B 1/91-12/124 0.02437
Springs A Up
Springs A Down

Location Sequence Dates D_N03_Ha_up
615 C 1/98-6/03 -9999
707 C 1/98-6/03 -9999
736 C 1/98-6/03 -9999
737 C 1/98-6/03 -9999







DATE Cond(field) D-CI D-S04 D-F
5/4/94 103 *
6/1/94 72.2 *
6/29/94 70 5.7 15 0.1
8/1/94 80.1 *
8/29/94 95 *
10/4/94 85 5.7 15 0.1
11/3/94 75.9* *
12/2/94 73 *
1/4/95 70 5.8 14 *
1/30/95 89 *
3/2/95 70.8 *
3/31/95 75 5.4 14 *
4/28/95 70 *
5/30/95 74 *
7/6/95 77 6.1 15 *
7/28/95 83 *
9/1/95 82 *
10/3/95 74 *
10/30/95 83 *
12/4/95 74 *
12/27/95 72 *
2/6/96 70.7 *
2/27/96 71 *
3/27/96 70.5 *
4/23/96 69.9 *
5/22/96 70 *
6/18/96 66 4.4 15 0.1
7/17/96 73 *
8/13/96 121 *
9/18/96 69.7 *
10/9/96 66.6 *
12/6/96 67.6 *
1/16/97 70 *
2/5/97 68 *
3/12/97 67.5 *
4/8/97 67.5 *
5/2/97 51.8* *
6/3/97 66.3 *
7/17/97 64.5 *
8/1/97 70 *
8/29/97 70 *
10/8/97 100 *






Sequence A
Location Sequence Dates D P Ha_up D P Ha down D P n
67 (and Spring) A 1/91-6/03 -9999 -9999 -9999
91 A 1/91-6/03 -9999 -9999 -9999
129 A 1/91-6/03 -9999 -9999 -9999
131 A 1/91-6/03 -9999 -9999 -9999
243 A 1/91-6/03 -9999 -9999 -9999
245 A 1/91-6/03 -9999 -9999 -9999
312 A 1/91-6/03 -9999 -9999 -9999
313 A 1/91-6/03 -9999 -9999 -9999
Wells A Up
Wells A Down

Sequence B
Location Sequence Dates D P Ha_up D P Ha down D P n
67 (and Spring) B 1/91-12/97 -9999 -9999 -9999
91 B 1/91-12/97 -9999 -9999 -9999
129 B 1/91-12/97 -9999 -9999 -9999
131 B 1/91-12/97 -9999 -9999 -9999
312 B 1/91-12/97 -9999 -9999 -9999
313 B 1/91-12/97 -9999 -9999 -9999
Wells B Up
Wells B Down

Sequence C
Location Sequence Dates D P Ha_up D P Ha down D P n
67 (and Spring) c 1/98-6/03 -9999 -9999 -9999
91 C 1/98-6/03 0.99982 0.00018 12
129 C 1/98-6/03 -9999 -9999 -9999
131 C 1/98-6/03 -9999 -9999 -9999
243 C 1/98-6/03 -9999 -9999 -9999
245 C 1/98-6/03 0.40592 0.59408 15
312 C 1/98-6/03 -9999 -9999 -9999
313 C 1/98-6/03 0.88192 0.11808 15
Wells C Up
Wells C Down







FIELDID STATID DATSAMP DATE MONTH SEASON SEASON KTOT NATOT MGTOT CATOT CLTOT FTOT
98040907 POE010C1 27-Apr-98 4/27/98 4 Spring 1 0.5 5.1 5.2 65.8 9 0.17
98051110 POE010C1 2-Jun-98 6/2/98 6 Summer 2 0.1 4.2 4.3 58.7 10 0.07
98061498 POE010C1 22-Jul-98 7/22/98 7 Summer 2 0.5 4.5 4.5 58.4 9 0.14
98112523 POE010C1 15-Dec-98 12/15/98 12 Winter 4 0.5 4.4 4.9 68.7 8 0.12
99033516 POE010C1 19-Apr-99 4/19/99 4 Spring 1 1 7.2 5.5 48.7 6 0.18
99053798 POE010C1 21-Jun-99 6/21/99 6 Summer 2 0.6 5.1 4.6 59.3 9 0.09
99064032 POE010C1 8-Jul-99 7/8/99 7 Summer 2 0.5 4.5 4.3 56.5 9 0.23
99074167 POE010C1 3-Aug-99 8/3/99 8 Summer 2 0.6 5.9 5.2 61.4 9 0.14
99084349 POE010C1 22-Sep-99 9/22/99 9 Fall 3 0.5 5.4 4.6 55.7 12 0.14
99094642 POE010C1 19-Oct-99 10/19/99 10 Fall 3 0.6 5.6 4.9 55.8 10.6 0.15
99104791 POE010C1 16-Nov-99 11/16/99 11 Fall 3 0.8 5.9 4.6 57.4 9.5 0.18
99114999 POE010C1 15-Dec-99 12/15/99 12 Winter 4 0.6 6.5 5.1 63.8 9.5 0.17
99125373 POE010C1 13-Jan-00 1/13/00 1 Winter 4 0.6 7.2 5.7 71 10.1 0.16
15487 POE010C1 15-Feb-00 2/15/00 2 Winter 4 0.5 6.6 5.2 63.3 12.3 0.17
25730 POE010C1 8-Mar-00 3/8/00 3 Spring 1 0.6 7 5.4 66.8 9.8 0.17
20035979 POE010C1 13-Apr-00 4/13/00 4 Spring 1 0.6 7.1 5.5 66.9 10.5 0.14
20046130 POE010C1 15-May-00 5/15/00 5 Spring 1 0.6 7.3 5.7 69.2 10.4 0.16
20056375 POE010C1 22-May-00 5/22/00 5 Spring 1 ** *
20056213 POE010C1 12-Jun-00 6/12/00 6 Summer 2 0.7 9.7 6 70.3 13.6 0.12
20066499 POE010C1 18-Jul-00 7/18/00 7 Summer 2 0.3 7.6 5.9 68.7 7.1 0.11
20076719 POE010C1 3-Aug-00 8/3/00 8 Summer 2 0.7 7.8 6 69.2 13.7 0.12
20086921 POE010C1 12-Sep-00 9/12/00 9 Fall 3 0.7 8 6 71.3 15 0.02
20097163 POE010C1 11-Oct-00 10/11/00 10 Fall 3 0.7 8.1 5.9 66.9 12.1 0.13
20107275 POE010C1 6-Nov-00 11/6/00 11 Fall 3 1 7.9 5.8 63.5 13.1 0.13
20117397 POE010C1 18-Dec-00 12/18/00 12 Winter 4 1.2 7.9 5.7 61.6 13.2 0.15
20127792 POE010C1 3-Jan-01 1/3/01 1 Winter 4 0.7 8.3 6 63.9 14.6 0.13
21017893 POE010C1 21-Feb-01 2/21/01 2 Winter 4 0.4 9.8 7 72.4 12.6 0.13
21027979 POE010C1 12-Mar-01 3/12/01 3 Spring 1 0.8 9.2 6.9 71.8 13.2 0.16
21038224 POE010C1 11-Apr-01 4/11/01 4 Spring 1 0.8 9.2 6.6 68.4 13.3 0.1
21048333 POE010C1 14-May-01 5/14/01 5 Spring 1 0.8 9.5 6.8 69.3 13.2 0.14
21058432 POE010C1 11-Jun-01 6/11/01 6 Summer 2 0.9 9.7 7 71.9 12.9 0.14
21068658 POE010C1 12-Jul-01 7/12/01 7 Summer 2 0.8 8.7 6.5 65.8 13.6 0.14
21078749 POE010C1 14-Aug-01 8/14/01 8 Summer 2 0.4 9.4 7.6 73.6 13.1 0.16
21088954 POE010C1 13-Sep-01 9/13/01 9 Fall 3 1 12.7 7.8 71.7 16.4 0.18
21099232 POE010C1 25-Oct-01 10/25/01 10 Fall 3 0.9 10 7.7 71.1 15.4 0.16
21109348 POE010C1 14-Nov-01 11/14/01 11 Fall 3 1 9.9 7.9 69.7 14.4 0.2
21119500 POE010C1 11-Dec-01 12/11/01 12 Winter 4 0.8 9 7.3 69.3 15.1 0.14
21129721 POE010C1 15-Jan-02 1/15/02 1 Winter 4 1.2 11.8 6.3 61.5 13.3 0.15
22019863 POE010C1 19-Feb-02 2/19/02 2 Winter 4 1 9.9 8 76.3 13.8 0.15
22029998 POE010C1 13-Mar-02 3/13/02 3 Spring 1 0.8 8.4 7.4 71.8 14.1 0.16
22030249 POE010C1 2-Apr-02 4/2/02 4 Spring 1 1 9.8 7.4 67.5 14.5 0.19
POE010C1 5/13/02 1*** *







SWFWMD
Location Sequence Dates D_Fe_Sen_slope UP/DOWN
736 B 1/91-12/97 -50.6667 No evidence of trend
737 B 1/91-12/97 7.81746 No evidence of trend
996 B 1/91-12/97 -4.57143 No evidence of trend
997 B 1/91-12/97 4.09091 No evidence of trend
1087 B 1/91-12/97 5 UP
Wells A Up 1
Wells A Down 0

Bobhill B 1/91-12/98 0.589286 No evidence of trend
Boyette B 1/91-12/99 0 UP
Chassal B 1/91-12/100 0 No evidence of trend
ChassaM B 1/91-12/101 0 No evidence of trend
Homosl B 1/91-12/104 -1.75714 No evidence of trend
Homos2 B 1/91-12/105 -3.33333 No evidence of trend
Homos3 B 1/91-12/106 0 No evidence of trend
HidRiv2T B 1/91-12/102 0 No evidence of trend
HidRivH B 1/91-12/103 0 No evidence of trend
huntersspr B 1/91-12/107 1.11111 UP
lithiamain B 1/91-12/108 0 No evidence of trend
magnolspr B 1/91-12/109 0 No evidence of trend
pumphous B 1/91-12/110 0 No evidence of trend
rainbow B 1/91-12/111 0 No evidence of trend
rainbow B 1/91-12/112 0 No evidence of trend
rainbow B 1/91-12/113 0 No evidence of trend
mboBseep B 1/91-12/115 0 No evidence of trend
saltspr B 1/91-12/116 0.666667 No evidence of trend
SWBettyJay B 1/91-12/117 -0.554545 No evidence of trend
SWBoat B 1/91-12/118 0 No evidence of trend
SWBublng B 1/91-12/119 0 No evidence of trend
SWBuckhm B 1/91-12/120 0 UP
SWCatfish B 1/91-12/121 0 UP
tarponholespr B 1/91-12/122 1 No evidence of trend
trottermain B 1/91-12/123 0 No evidence of trend
weekwachmain B 1/91-12/124 0 No evidence of trend
Springs A Up 4
Springs A Down 0

Location Sequence Dates D_Fe_Sen_slope UP/DOWN
615 C 1/98-6/03 -9999 -9999
707 C 1/98-6/03 -9999 -9999
736 C 1/98-6/03 -9999 -9999
737 C 1/98-6/03 -9999 -9999







Sequence A
Location Sequence Dates TDSHa_up TDS Ha down TDS_n
Salt Spring C 1/98-6/31 0.78 0.22 20.00
Sanlando Springs C 1/98-6/03 0.29 0.71 20.00
Silver Glen Springs C 1/98-6/03 0.45 0.55 18.00
Starbuck Spring C 1/98-6/03 0.18 0.82 20.00
Sweetwater Spring C 1/98-6/03 0.98 0.02 19.00
Volusia Springs C 1/98-6/03 0.61 0.39 17.00
Wekiva C 1/98-6/31 0.10 0.90 18.00
Springs up
Springs down












Descriptive Stats. for Homosassa 2 from November, 1993 to July, 2003
Measured Num. Min. Q1 Median Q3 Max.
Analyte units Samples Value Value Value Value Value
Temp Deg C 35 20.4 23.2 23.4 23.7 24.3
SCf uS/cm 35 4850 5568.5 5900 6290 8690
pH s.u. 35 6.5 7.6 7.6 7.6 7.8
Bicarb mg/1 34 89 109 111 115 130
D-N03 mg/1 34 0.2 0.4 0.4 0.5 0.5
T-N03 mg/1 NA NA NA NA NA NA
T-P mg/1 35 0.0 0.0 0.0 0.0 1.7
D-N03N02 mg/1 35 0.2 0.4 0.4 0.5 0.5
TKN mg/1 20 0.0 0.1 0.1 0.3 0.5
D-P04 mg/1 35 0.0 0.0 0.0 0.0 0.1
T-NH3 mg/1 35 0.0 0.0 0.0 0.0 0.1
T-N mg/1 20 0.5 0.5 0.6 0.6 1.0
TOC mg/1 35 0.3 0.5 0.7 1.0 2.3
Ca mg/1 35 69 76.8 80.1 88.4 141
Mg mg/1 35 95 109 114 129 172
Na mg/1 35 767 889.5 942 1007 1440
K mg/1 35 24 33.2 35 39.1 60.7
D-S04 mg/1 35 193 223.5 243 269 382
F mg/1 30 0.0 0.1 0.1 0.2 0.5
Cl mg/1 35 1418 1610 1680 1834 2583
D-Fe ug/1 35 25 60 108 132.5 250
D-Sr ug/1 27 50 275.5 1010 1330 2630
TDS mg/1 35 2282 3021 3180 3548 5934
*Less than 10 samples
NA No samples







Date TDS Turb Color Turb(field) D-Ca D-Mg D-Na D-K Cond(field) D-CI D-F
1/9/91 1.8 76.9 3.1 6.5 0.7 367 13 0.29
2/12/91 4 78.4 3.1 6.7 0.7 360 13 0.2
3/4/91 **** 355 **
4/5/91 68 2.8 6.3 1 342 13 0.2
5/2/91 ******* 398* *
6/10/91 338* *
7/8/91 73 2.9 6.7 1 400 11 0.1
7/31/91 400 *
9/5/91 ******* 350* *
10/8/91* 72 2.8 6.6 0.8 313 11 0.1
11/5/91 *******377 *
12/5/91 **** 400 **
1/8/92 ***72 0.1 6.4 0.9 388 11 0.1
1/31/92 ******* 374* *
2/28/92* 397.41 *
3/31/92 73 2.8 6.4 0.9 377.03 12 0.1
5/4/92 24.745* *
6/3/92 ******* 390* *
6/8/92 ******* 360* *
7/8/92 79 2.9 6.1 0.9 360 12 0.1
7/31/92 360* *
9/2/92 ******* 355* *
10/7/92* 65 2.5 6.5 0.8 362.9 11 0.1
10/31/92 *******346.5 *
11/30/92 ******* 350* *
12/28/92 ** 67 2.5 6.4 0.76 391 11 0.1
2/1/93 **** 394 **
3/5/93 **** 384 **
3/29/93 70 2.6 6.1 0.52 385 11 0.1
5/6/93 ******* 384* *
6/4/93 ******* 388* *
6/6/93* ***
7/6/93* 72 2.6 6.1 0.5 405 11 0.1
8/5/93 ******* 391* *
9/9/93 391* *
10/4/93 68 2.4 6 0.51 385 11 0.1
11/5/93 ******* 385* *
12/2/93* 382* *
1/4/94 70 2.6 6.2 0.48 385 11 *
1/31/94 386 *
3/3/94 ******* 386* *
4/12/94 70 2.5 6.2 0.47 382 11 0.1







Sequence A
Location Sequence Dates DN03_Sen_slope UP/DOWN

Alexander Springs B 1/91-12/97 -9999.00 -9999
Apopka B 1/91-12/97 -9999.00 -9999
Fern Springs B 1/91-12/97 -9999.00 -9999
Juniper Springs B 1/91-12/97 -9999.00 -9999
Miami Springs B 1/91-12/97 -9999.00 -9999
Palm Springs B 1/91-12/97 -9999.00 -9999
PDL B 1/91-12/97 -9999.00 -9999
Rock Springs B 1/91-12/97 -9999.00 -9999
Salt Spring B 1/91-12/125 -9999.00 -9999
Sanlando Springs B 1/91-12/97 -9999.00 -9999
Silver Glen Springs B 1/91-12/97 -9999.00 -9999
Starbuck Spring B 1/91-12/97 -9999.00 -9999
Sweetwater Spring B 1/91-12/97 -9999.00 -9999
Volusia Springs B 1/91-12/97 -9999.00 -9999
Wekiva B 1/91-12/125 -9999.00 -9999
Springs up 0
Springs down 0

Sequence C
Location Sequence Dates DN03_Sen_slope UP/DOWN
1417 C 1/98-6/03 -9999.00 -9999
1420 C 1/98-6/03 -9999.00 -9999
1674 C 1/98-6/03 -9999.00 -9999
1762 C 1/98-6/03 -9999.00 -9999
1763 C 1/98-6/03 -9999.00 -9999
1764 C 1/98-6/03 -9999.00 -9999
1779 C 1/98-6/03 -9999.00 -9999
1780 C 1/98-6/03 -9999.00 -9999
1781 C 1/98-6/03 -9999.00 -9999
1931 C 1/98-6/03
Wells up 0
Wells down 0

Alexander Springs C 1/98-6/03 -9999.00 -9999
Apopka C 1/98-6/03 -9999.00 -9999
Fern Springs C 1/98-6/03 -9999.00 -9999
Juniper Springs C 1/98-6/03 -9999.00 -9999
Miami Springs C 1/98-6/03 -9999.00 -9999
Palm Springs C 1/98-6/03 -9999.00 -9999
PDL C 1/98-6/03 -9999.00 -9999
Rock Springs C 1/98-6/03 -9999.00 -9999







STATION SAMP_DAT MONTH SEASON SEASON_ Temp Cond(field) pH Bicarb D-TKN T-NH3 D-NO3NO T-P
RAINBOW #6 10/5/93 10 Fall 3 24 308 7.93 0.02
RAINBOW #6 2/21/94 2 Winter 4 23.8 308 7.54 107 0.01 0.72 *
RAINBOW #6 4/11/94 4 Spring 1 23.8 310 7.73 111 1.23 0.01 0.84 0.06
RAINBOW #6 7/18/94 7 Summer 2 23.6 310 117 0.16 0.02 0.83 0.01
RAINBOW #6 10/31/94 10 Fall 3 24 308 96 0.06 0.01 0.779 0.075
RAINBOW #6 3/29/95 3 Spring 1 24 312 7.7 110 0.05 0.03 0.864 0.033
RAINBOW#6 7/20/95 7 Summer 2 24.4 318 7.79 108 0.05 0.01 0.913 0.034
RAINBOW #6 10/30/95 10 Fall 3 23.4 319 7.7 110 0.37 0.01 0.681 0.015
RAINBOW #6 2/1/96 2 Winter 4 23.6 315 7.73 108 0.601 0.039 0.873 0.033
RAINBOW #6 4/11/96 4 Spring 1 23.6 319 7.65 114 0.369 0.01 1.132 0.022
RAINBOW #6 7/22/96 7 Summer 2 24.3 317 116 0.113 0.037 1.23 0.01
RAINBOW #6 10/21/96 10 Fall 3 23.6 299 7.71 110 0.09 0.1 2.03 0.041
RAINBOW #6 2/3/97 2 Winter 4 23.4 319 7.72 109 0.232 0.01 0.824 0.036
RAINBOW #6 4/16/97 4 Spring 1 23.3 323 7.51 111 0.24 0.01 0.805 0.181
RAINBOW#6 6/30/97 6 Summer 2 23.9 326 7.64 123 0.05 0.01 0.853 0.024
RAINBOW#6 10/1/97 10 Fall 3 24.1 330 7.7 115 0.05 0.01 0.855 0.029
RAINBOW#6 1/20/98 1 Winter 4 23.1 325 7.76 114 0.086 0.01 0.844 0.043
RAINBOW #6 4/9/98 4 Spring 1 23.8 279 7.62 104 0.1 0.01 0.9 0.132
RAINBOW#6 7/8/98 7 Summer 2 23.8 314 7.72 106 0.152 0.01 0.948 0.021
RAINBOW #6 10/14/98 10 Fall 3 23.7 316 7.5 105 ** **
RAINBOW #6 1/12/99 1 Winter 4 23 314 7.62 105 0.01 0.845 0.03
RAINBOW #6 4/21/99 4 Spring 1 23.5 316 7.