Citation
The influence of heat treatment, neutron irradiation and deformation on the martensitic transformations in metastable B1-brass

Material Information

Title:
The influence of heat treatment, neutron irradiation and deformation on the martensitic transformations in metastable B1-brass
Uncontrolled:
Martensitic transformations in metastable B1-brass
Creator:
Koger, John Wayne, 1940-
Publication Date:
Language:
English
Physical Description:
xiii, 149 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Alloys ( jstor )
Cooling ( jstor )
Electrical resistivity ( jstor )
Electron micrographs ( jstor )
Irradiation ( jstor )
Magnification ( jstor )
Martensite ( jstor )
Martensitic transformation ( jstor )
Room temperature ( jstor )
Zinc ( jstor )
Brass -- Metallography ( lcsh )
Dissertations, Academic -- Metallurgical and Materials Engineering -- UF
Metallurgical and Materials Engineering thesis Ph. D
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis - University of Florida.
Bibliography:
Bibliography: leaves 146-148.
General Note:
Manuscript copy.
General Note:
Vita.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000559166 ( ALEPH )
13440990 ( OCLC )
ACY4614 ( NOTIS )

Downloads

This item has the following downloads:


Full Text













THE INFLUENCE OF HEAT TREATMENT,
NEUTRON IRRADIATION AND
DEFORMATION ON THE
MARTENSITIC TRANSFORMATIONS
IN METASTABLE 3 -BRASS






By
JOHN WAYNE KOGER











A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY









UNIVERSITY OF FLORIDA
December, 1967















ACKNOWLEDGMENTS


The author wishes to express his sincere appreciation to his

committee chairman, Dr. R. E. Hummel, who contributed much valuable

aid and time in fruitful discussions during the course of the research.

Appreciation is also extended to Dr. J. J. Hren for his help in

the interpretation of the electron micrographs and to Drs. F. N. Rhines,

R. G. Blake, and J. B. Conklin, Jr. for serving as members of the au-

thor's committee.

Thanks are given to Mr. E. J. Jenkins for the preparation of elec-

tron microscopy samples and to Mr. V. Pashupathi for help in perform-

ing experiments.

The author would like to thank Dr. J. Stanley of the Oak Ridge

National Laboratory for his assistance in the irradiation procedures.

The author is grateful to the Graduate School of the University

of Florida and the National Aeronautics and Space Administration for

providing his financial support.

The author is indebted to the United States Atomic Energy Com-

mission which supported this investigation under Contract No. AT-(40-1)-

3395.

Last but not least, the author would like to express his everlast-

ing gratitude to his wife, Rosemary, whose love, understanding and sac-

rifices made the completion of this work pos,















TABLE OF CONTENTS


Page

ACKNOWLEDGMENTS. ... .. ii

LIST OF TABLES . vi

LIST OF FIGURES. . vii

ABSTRACT ... . xii

Chapter

I. INTRODUCTION . 1

II. SURVEY OF PREVIOUS WORK. . 4

2.1 Historical Information. ... .. .. 4

2.2 General Features of Martensite Transformations. ... 5

2.3 The Phases Involved in the Martensitic Trans-
formation of 31-Brass .... .. .. 6

2.4 The Order-Disorder Transformation 8

2.5 The Massive Transformation. ... .. .. 8

2.6 Martensite Formed by Cooling a1-Brass .. 10

2.7 The Characteristic Temperatures of the Martensitic
Transformation. ... 10

2.8 The Kinetics of the Transformation and Growth of
the Martensite Phase. . 11

2.9 The Crystallography of the Martensite Phase Formed
by Cooling. . ... 12

2.10 Deformation .... 13

2.11 Theoretical Considerations. ... 15

2.12 Electron Microscopy ... 16

2.13 Heat Treatment of Quenched 81-Brass ... 16









Chapter

2.14 Radiation Damage . .

III. EXPERIMENTAL METHODS . .

3.1 Sample Preparation .

3.2 Quantitative Analysis .

3.3 Cryostat and Temperature Control .

3.4 Resistance Measurements .

3.5 Metallography . .

3.6 Irradiation and Safety Precautions .

3.7 X-Ray Diffraction . .

3.8 Electron Microscopy .. .

IV. RESULTS . .

4.1 The Basic Transformation .

4.2 Thermal Cycling . .

4.3 Effect of a-Phase on the Martensitic Transformation

4.4 Plastic Deformation .

4.5 Electron Microscopy Observations .

4.6 Transformations at Elevated Temperatures .

4.7 Neutron Irradiation .

V. DISCUSSION . .

5.1 The Temperatures of the Martensitic Transformation.

5.2 Retained Martensite .

5.3 Untransformable Phases .

.5.4 Plastic Deformation .

5.5 Electron Microscopy .

5.6 a,-Brass Martensite Structures. .. .

5.7 Neutron Irradiation .

iv


Page

17

21

21

23

24

26

26

28

28

29

33

33

38

46

55

73

99

107

116

116

119

122

123

128

129

130










Chapter Page

VI. CONCLUSIONS. . ... ..... 133

Appendix

I. THEORIES OF MARTENSITIC TRANSFORMATIONS. ... 135

A.1 Crystallography . ... .135

A.2 Thermodynamics.. .. ... 137

A.3 Kinetics and Growth .. .138

II. APPLICATIONS OF RESISTANCE MEASUREMENTS FOR THE
STUDY OF TRANSFORMATIONS IN METALS ... 142

REFERENCES .. ..... 146

BIOGRAPHICAL SKETCH. . ... 149















LIST OF TABLES

Table Page

1. Summary of neutron irradiation effects on martensitic
transformations .... ... 20

2. Resistivity of the various phases. ... 35

3. Visual observations on B1-brass after various degrees
of rolling at room temperature ... 67

4. Percent martensite present at various temperatures (1) 82

5. Percent martensite present at various temperatures (2) 82

6. Influence of fast neutron bombardment on M -temperature. 113
S















LIST OF FIGURES


Figure Page

1. Cu-Zn binary system. . 7

2. Shape of the sample for resistance measurements. ... 22

3. The cryogenic unit .... ... 25

4. Circuit for resistance measurements. ... 27

5. Cold unit for the Phillips x-ray diffractometer. ... 30

6. Dimpling unit for preparation of transmission electron
microscopy samples. . .. 31

7. Relative resistivity versus temperature of 01-brass
(38.8 wt. percent zinc). ... 34

8. Transformation curves. . ... 37

9. Relative resistivity versus temperature of 01-brass
(38.8 wt. percent zinc) containing retained martensite 40

10. Optical micrograph of 01-brass (38.8 wt. percent zinc)
after cycling to low temperatures (room temperature,
magnification 250x). . ... 41

11. Transmission electron micrographs of 01-brass martensite
(38.8 wt. percent zinc). ... 43

12. Retained martensite in percent at room temperature
versus M -temperature. . 44
s
13. Relative resistivity versus temperature of 01-brass
(38.8 wt. percent zinc). ... 45

14. Relative resistivity versus temperature of B1-brass
(38.8 wt. percent zinc). ... 48

15. Percent transformation versus temperature. ... 49

16. Parts of transformation curves with various amounts of
A- and B-phases (calculated) ... 51

17. Parts of transformation curves with various amounts of
A- and B-phases (calculated) .. 53

vii









18. H versus percent P1-phase. ... 54

19. Relative resistivity versus temperature for 81-brass
(38.8 wt. percent zinc) at five different degrees of
deformation. . ... ..... 58

20. Shift of Ms(AMs ) versus deformation. ... 59

21. Shift of M(AM) versus deformation. ... 59

22. 6 and H (percent a1-phase present) versus percent
deformation. . ... ..... 60

23. Optical micrographs of deformed 81-brass (38.8 wt.
percent zinc). . .. ..... 62

24. Optical micrographs of deformed a1-brass (38.8 wt.
percent zinc). . .. ..... 63

25. Optical micrographs of deformed 81-brass (38.8 wt.
percent zinc). . .. ..... 64

26. Optical micrographs of deformed 81-brass (38.8 wt.
percent zinc). . .. ..... 65

27. Optical micrographs of deformed 81-brass (38.8 wt.
percent zinc). . .. ..... 66

28. Transmission electron micrographs of 81-brass (38.8
wt. percent zinc) deformed in tension. ... 69

29. Specific resistivity (in p2CM) versus temperature for
a1-brass (38.8 wt. percent zinc) at two different de-
grees of deformation .... .70

30. Percent transformation versus temperature. ... 71

31. Area of hysteresis loop of percent transformation
curve versus deformation .. .. 72

32. Transmission electron micrographs of 81-brass (38.8 wt.
percent zinc) where martensite formed during thinning. 74

33. Transmission electron micrographs of 81-brass (38.8 wt.
percent zinc) showing striated region which makes up the
martensite formed during thinning. ... 75

34. Transmission electron micrograph of $8-brass (38.8 wt.
percent zinc) in cold stage showing growth of martensite
at various temperatures below M -temperature .. 77

35. Transmission electron micrographs of B1-brass (38.8 wt.
percent zinc) in cold stage showing growth of martensite
at various temperatures below M -temperature ...... 78
viii


Page


Figure










Figure Page

36. Volume percent martensite versus AT from the
M -temperature .... ..... 79

37. Transmission electron micrographs of i1-brass (38.8
wt. percent zinc) in cold stage showing growth of
four needles of martensite .... .80

38. Transmission electron micrographs of 81-brass (38.8 wt.
percent zinc) in cold stage showing growth of four
needles of martensite. . ... 81

39. Transmission electron micrographs of a1-brass (38.8 wt.
percent zinc) in cold stage with large martensite
needle still growing .... .83

40. Transmission electron micrographs of B1-brass (38.8 wt.
percent zinc) in cold stage. ... 84

41. Transmission electron micrographs of Bi-brass (38.8 wt.
percent zinc) in cold stage showing the martensite
needle disappearing. . .. 85

42. Transmission electron micrographs of Bl-brass (38.8 wt.
percent zinc) in cold stage showing the martensite
needle almost gone .... 86

43. Transmission electron micrograph of B1-brass (38.8 wt.
percent zinc) in cold stage with martensite needle gone. 87

44. Transmission electron micrograph of 81-brass martensite
(38.8 wt. percent zinc) in cold stage. ... 88

45. Transmission electron micrograph of 81-brass martensite
(38.8 wt. percent zinc) in cold stage showing striations
at the center of a plate .... .89

46. Transmission electron micrograph of a1-brass martensite
(38.8 wt. percent zinc) in cold stage with the boundary
between two plates .... 90

47. Transmission electron micrograph of 81-brass martensite
(38.8 wt. percent zinc) in cold stage with plate left of
center much wider at the top than at the bottom. .. .... 91

48. Transmission electron micrograph of 81-brass martensite
(38.8 wt. percent zinc) in cold stage showing inner struc-
ture . 92

49. Transmission electron micrograph of Bl-brass martensite
(38.8 wt. percent zinc) in cold stage with a boundary
containing dislocation .... .93












50. Transmission electron micrograph of B1-brass martensite
(38.8 wt. percent zinc) in cold stage. ... 94

51. Transmission electron micrograph of a1-brass martensite
plates (38.8 wt. percent zinc) in cold stage ...... 95

52. Transmission electron micrograph of Bl-brass martensite
(38.8 wt. percent zinc) in cold stage. ... 96

53. Transmission electron micrograph of B1-brass martensite
(38.8 wt. percent zinc) in cold stage with dislocations
at boundaries. ... ..... 97

54. Transmission electron micrograph of Bl-brass and martensite
(38.8 wt. percent zinc) in cold stage. ... 98

55. Electron micrograph of replica of B1-brass martensite
(38.8 wt. percent zinc) showing the surface distortion .. 100

56. Transmission electron micrographs of B1-brass (38.8 wt.
percent zinc) showing slip traces with dislocations and
stacking faults. . ... .. 101

57. Transmission electron micrograph of Bl-brass (38.8 wt.
percent zinc) showing tangles of dislocations. ... 102

58. Transmission electron micrograph of B1-brass (38.8 wt.
percent zinc) showing dislocation line-up. ... 103

59. Transmission electron micrograph of B1-brass (38.8 wt.
percent zinc) showing pilu-ups of dislocations .. .104

60. Relative resistivity of B1-brass (38.8 wt. percent
zinc) versus five minute annealing temperatures. ... 105

61. Percent resistance change of Bl-brass (38.8 wt. percent
zinc) versus time in minutes at various temperatures 106

62. Relative resistivity of B1-brass (38.8 wt. percent zinc)
versus temperature before and after heating. .. .108

63. Relative resistivity of Bl-brass (39.4 wt. percent zinc)
versus temperature before and after irradiation. ... .109

64. AM versus integrated neutron flux .. 111

65. AM versus integrated neutron flux (logarithmic scale) 112
66. Transformation curves. .. .. 115
66. Transformation curves. .............. ............ 115


Page


Figure









Figure


Page


67. Superposition of a percent transformation curve with
three different temperature coefficients of resistivity
(a) . 118

68. Retained martensite at room temperature in percent
versus shift of M (AM ). .. .. ..... .... .120
s s
69. Optical micrograph of B1-brass (38.3 wt. percent zinc)
showing BI- (light), martensite, and a- (dark) phase 124

70. Optical micrograph of B1-brass (38.3 wt. percent zinc)
showing 8i- (light), martensite, and a- (dark) phase 125

71. Optical micrograph of B1-brass (38.3 wt. percent zinc)
showing B1- (light), martensite, and a- (dark) phase 126









Abstract of Dissertation Presented to the Graduate Council
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

THE INFLUENCE OF HEAT TREATMENT, NEUTRON IRRADIATION,
AND DEFORMATION ON THE MARTENSITIC TRANSFORMATIONS
IN METASTABLE 81-BRASS

By

John Wayne Koger

December, 1967

Chairman: Dr. R. E. Hummel
Major Department: Metallurgical and Materials Engineering

A study was made on the martensitic transformations in meta-

stable 81-Cu-Zn (with 38.3 to 39.4 wt. percent zinc) to determine

the effect of repeated thermal cycling, deformation, annealing, bom-

bardment with fast neutrons, and the presence of untransformable

phases on these transformations. The main tool used to monitor the

transformations was the measurement of electrical resistance which

was complemented by optical and electron microscopy and x-ray dif-

fraction analysis.

The principal characteristics of the transformation on cooling,

determined from resistance measurements, were found to be the M -tem-
s
perature, the temperature coefficient of electrical resistivity of

the phases, the area of the hysteresis loop of the (percent) trans-

formation curve, and the rate of transformation.

The M -temperature was found to change according to the treat-
s
ment given the sample. Elastic deformation and the presence of re-

tained martensite would raise the M The M -temperature was lowered
s s
after plastic deformation and neutron irradiation but was not affected

by heat treatments up to 1350C.


xii









Retained martensite formed during the first thermal cycle was

found to be present at room temperature in samples which had an M -
s
temperature above -330C. The amount of retained martensite increased

with increasing M -temperature. The shift of M between two cycles
s S
is a linear function of retained martensite. The retained martensite

was observed to grow above the previously found M -temperature.
S
Untransformable phases, such as a and deformation-martensite,

acted as obstacles to the formation of low-temperature martensite.

As the amount of these phases increased, the area of the hysteresis

loop of the transformation curve increased; the maximum rate of trans-

formation decreased; and the temperature range of transformation was

spread over a wider range, thus increasing the amount of energy needed

to complete the transformation. In samples which were irradiated with

fast neutrons no such increase in the area of the hysteresis loop was

detected, showing that the irradiation induced defects are only small

disturbances.

Using cold-stage electron microscopy it was observed that mar-

tensite formed immediately after a heavy bending movement of the foils.

Differences in the growth mechanism during cooling and heating were

found.


xiii















CHAPTER I


INTRODUCTION


The fact that many alloys and metals undergo a martensitic trans-

formation has been of great interest for a long time. This interest

has stemmed mainly from the shear-like nature of the transformation

and the sometimes enhanced properties of the transformed phase, such

as the increased hardness of the steel martensites.

A relatively new and effective means of influencing a state of

matter that could be used for studying the nature of phase transfor-

mations is neutron irradiation. It is usually of interest as a method

of introducing various kinds of defects and producing certain changes

in the properties of metals and alloys. However, the irradiation may

alter the state of an initial phase and cause some change in its sta-

bility and thus affect the kinetics of subsequent phase transforma-

tions. The strictly regular directed shift of atoms in a martensitic

transformation is extremely sensitive to any disturbance of the lattice

structure in the original parent phase.

Investigations of the effect of irradiation on the martensitic

transformation have been done on alloyed steels which were complex

in both behavior and composition, and the results were not adequate

to give a complete picture of the processes which cause changes in

the transformation. Therefore, it was felt that further irradiation

work was needed on another martensite system which is nonferrous and

would have less variables. The Cu-Zn system was chosen.

1









Quenched Bl-phase Cu-Zn alloys with compositions from 37 to 43 wt.

percent zinc undergo a martensitic transformation when the samples are

cooled to sub-zero temperatures. The occurrence of the transformation

at relatively low temperatures would insure that imperfections introduced

by room-temperature irradiation would not anneal out. Cu-Zn alloys have

a relatively low residual radioactivity after neutron bombardment. (The

only isotope with a long half life is the Zn65 with T/2 = 245 days.)

The previous studies of the martensitic transformation of B1-brass

have concerned the composition dependence of the martensitic-start tem-

perature, the crystal structure of the martensite phase, the observation

of the transformation by optical microscopy, and some effects of deforma-

tion on the transformation.

The purpose of this research was to determine the influence of

heat treatment, neutron irradiation, and deformation on the martensitic

transformations of B1-brass and to investigate whether neutron irradia-

tion causes the same effects as cold-working 81-brass, or produces ef-

fects similar to those found for steels and iron alloys. The trans-

formation was monitored by high precision electrical resistance measure-

ments. Optical and electron microscopy were also used to supplement

the resistivity data.

In the course of the investigation, it was found that very little

was known about the characteristic properties of the transformation and

the parameters which were landmarks of the transformation. Studies there-

fore were made on the effect of repeated thermal cycling. It was neces-

sary to know how the characteristics of the transformation would be af-

fected if the samples were transformed several times so that any effect

due to irradiation would be separated from the cycling effect. The effect









of an added non-transformable phase on the transformation was studied.

Due to the mode of quenching, a-phase could always be present along

with the B1-transformable phase. This study was also helpful in the

interpretation of results gained by deformation. Since it had been

noticed in experiments concerning radiation damage that deformation

caused the same effects as neutron irradiation, the influence of de-

formation on the martensitic transformation was investigated. These

preliminary studies provided a better basis for the interpretation

of property changes which occurred due to neutron bombardment of al-

loys with martensitic transformations.

The results of this investigation will provide an understanding

of the effect of many controlled variables on the martensitic trans-

formation in $1-brass, will allow an understanding of the basic trans-

formation, and will provide knowledge of the effect of neutron ir-

radiation on martensitic transformations.















CHAPTER II


SURVEY OF PREVIOUS WORK


This chapter will provide a summary of the types of studies made

on 81-brass and its martensitic transformations. The previous investi-

gations concerning the effect of irradiation on martensitic transfor-

mations are also given. Appendix I gives more details about martensitic

transformations and discusses ferrous alloy martensitic transformations

where similar studies were not made on 81-brass.


2.1 Historical Information

Martensite, originally considered just a hard constituent in steel,

was named in honor of A. Martens, a German metallurgist, as proposed by

Osmond in 1895.

In 1946 Troiano and Greninger (1) suggested that the diffusion-

less reactions found in the non-ferrous alloys are similar to the mar-

tensite reaction in steel and that these transformations should be

referred to as martensitic.

Pure metals and alloys found to have a martensitic transformation

are:

Na Cu-Si Fe Re-Mg Li-Mg U-Cr
Li Cu-Zn-Ga Fe-Ni Ti Cr-Mn NH NO3
Zr Ag-Cd Fe-Mn In-Ti Ar BaTiO3
Cu-Zn Ag-Sn Fe-C In-Ta Ar-N2 KNbO3
Cu-Sn Ag-Sb Fe-Ni-Mn In-Cd Ir-Cd V3Si
Cu-Al Au-Zn Fe-Ni-C Ti-Mh Co Au-Cu-Zn
Cu-Mn Au-Cd Fe-Cr-Ni Ti-Ni Co-Ni Cu-Ni-Al
Cu-Ga Au-Mn Fe-Ti TI-Mo Al-bronze

and other ternaries involving the above systems.









The previous list is possibly not complete but does contain most of

the systems where information has been published. Almost all of the

references for the studies of these systems can be found in the sur-

veys given by Christian (2) and Barrett and Massalski (3).


2.2 General Features of Martensite Transformations

Phase transformations in metallic systems are usually considered

to be either nucleation-and-growth transformations or martensitic

transformations. The nucleation-and-growth processes are considered

to be isothermal transformations in that the transformation can take

place at constant temperature with thermal activation and diffusion

playing the important parts.

In general, the characteristics of the martensitic transformations

have been that it is diffusionless (interchange of atoms over a dis-

tance less than the interatomic spacing); it is athermal (transforma-

tion occurring with changing temperature and transformation stops when

temperature change is halted); the transforming region undergoes a

change in shape; there is a definite orientation relationship between

the product and parent phase; and the transformation is aided by cold-

work. Because of exceptions to many of the above characteristics,

"martensitic" now usually refers to diffusionless transformations

having macroscopic shear or a shape distortion.

The following items are also observed in martensitic transforma-

tions. The interchange of atoms takes place through the propagation

of a semi-coherent interface. It is assumed that this interface must

be composed of dislocations whose movement permits the martensitic

product to form rapidly at any temperature. The martensite plates

in many alloys contain a fine structure of slip bands or twins as a









direct result of this transformation mechanism. In alloys which are

ordered, the martensite phase has been found to be ordered. The a-

mount of transformation is characteristic of temperature, provided

other variables such as grain size are held constant. There is no

dependence on cooling rate for the transformation. Martensitic re-

actions are reversible in the sense that an initial atomic configura-

tion can be repeatedly obtained. Thermodynamically, the transforma-

tion is not reversible as seen by the hysteresis loop and the energy

dissipation. It is assumed that the plates which form on cooling

have the same size and shape and appear in the same regions of the

original crystal.


2.3 The Phases Involved in the Martensitic Transformation of 61-Brass

Figure 1 shows a portion of the Cu-Zn phase diagram. The symbols

used to designate the various phases concerned with the martensitic

transformation in 1B-brass have been given by several authors.

B Disordered body centered cubic B-brass

BI Ordered body centered cubic B-brass

8" Martensite formed by cooling (4,5)

a Face centered cubic a-brass

ia Martensite formed on deformation (6)

a Massively transformed brass (3)

The above were those phases involved in this investigation. The fol-

lowing phases are those mentioned in other studies:

a' Quenched martensite-face centered tetragonal (4,5)

a" Quenched martensite with unknown structure (4,5)

a2 Transition phase between B and al (6)

B' Bainite structure (4,5)
















WEIGHT PER CENT ZIC0


6004


X

700


800.



-I A


30 40 80
ATOMIC PER CENT ZINO
---w


Figure 1. Cu-Zn binary system.









Bl Transition lattice between 8' and a'(7)

B"'- Theoretical martensite phase beyond 0"(8)


2.4 The Order-Disorder Transformation

Above 4540C to 4680C, the 8-phase in Cu-Zn is disordered body

centered cubic. Below these temperatures it is ordered body centered

cubic and has the cesium chloride structure. As is well known, the

ordering is found to occur so rapidly that even rapid quenching cannot

suppress the ordering.

The order-disorder transformation is indicated in phase diagrams

by a single line running from 4540C to 4680C in the 8-phase region.

Work has indicated that perhaps 0 and 81 fields are separated by a

normal two-phase field (8+a1) (9).


2.5 The Massive Transformation

In order to obtain the transformable (i.e., metastable) 81-phase,

the alloy must be quenched from the 8-region. The composition of the

alloy before quenching is very important since not all 01-alloys trans-

form to cooling martensite and because of the massive transformation.

Phillips (10) first reported that Cu-Zn, containing between 37.0

and 39.0 wt. percent zinc, when quenched from the 8 region would give

a uniform a structure. As there has been a question on the location

of the boundary between the a and a+a region, Phillips proposed that

the single phase a region lies below 39.0 wt. percent zinc and that

the above mentioned boundary is a straight line at the 39.0 wt. per-

cent zinc composition. This transformation from B to a was seen to

occur with great speed during cooling.

The structures obtained when low zinc content B-brass was quenched

in different manners has been discussed by Schimmel (11). The alloy










was 37.8 wt. percent zinc, rest copper, which is B-phase from 850C to

8950C and a below 550C. On quenching from 8500C, there was a consid-

erable quantity of finely precipitated a disseminated through the 8

crystals with a little massive a along the grain boundaries. On quench-

ing from 890C there were large 8 crystals with a feather-like a along

the grain boundaries. With a more drastic quench, there was a more

general precipitate of a particles with actually more a present than

before. With an extremely rapid quench, the structure became all a.

The explanation of these structures was that with cooling at a moderate

rate, the transformation from 8 to a must take place by diffusion, and

the time will not be long enough for this. If the 8-phase is cooled

rapidly below 550C, no diffusion is required for the transformation,

and it required scarcely any time with only the structure change of

8 a.

The above-mentioned transformation in 81-brass was recognized as

a massive transformation by Hull and Garwood (12).

A study of alloys that exhibit the massive transformation by

Massalski (13) reaffirmed that alloys in the low zinc range of 81-

brass transformed into a face-centered cubic phase on quenching.

This structure obtained by the massive transformation was regarded

as a supersaturated extension of the equilibrium a phase. For a
0
quenched alloy of 37.95 wt. percent zinc, a was found to be 3.700 A.

Recent work on massive transformations (3) showed that the grow-

ing crystals of the massive phase cross the prior grain boundaries of

the parent phase. While the final product of the massive transfor-

mation is usually the equilibrium phase, corresponding to a lower

temperature, the actual reaction may well occur at much higher









temperatures from which slow cooling would produce a two-phase mixture.

The massive transformations require certain critical conditions of

supersaturation and quenching rates. Probably the kinetics of the mas-

sive transformation would be intermediate between that of an equilibrium

reaction and that of a possible martensitic transformation.


2.6 Martensite Formed by Cooling B1-Brass

Martensite is formed when alloys of Bl-brass with 37 to 43 wt. per-

cent zinc are cooled to sub-zero temperatures.

The first mention of this type of transformation in B-brass was

made by Kaminski and Kurdjumov (14) in 1936 but was not recognized as

a martensitic transformation until later. In 1938 Greninger and Moora-

dian (15) also noted this transformation on cooling but did not observe

a critical temperature for the transformation. Bassi and Str6m (4),

Massalski and Barrett (16), and Pops and Massalski (17) found that al-

loys of Bl-brass with more than 43 wt. percent zinc do not transform

to martensite on cooling.


2.7 The Characteristic Temperatures of the Martensitic Transformation

The temperature at which martensitic nuclei start growing (18) has

been designated as Ms. In some iron-nickel alloys a large amount of

martensite will form at one time in a burst. When a burst-type mar-

tensite occurs after the Ms-temperature, a temperature MB is designated

as the martensite burst temperature (19). MF is the temperature at

which the transformation is complete. As is the temperature at which

the parent phase starts re-forming on heating, and A is the tempera-

ture at which the parent phase has completely re-formed.

Titchener and Bever (20) studied the temperature range of the

martensitic transformation as a function of composition in 81-brass.










The compositions of the samples used were from 38.54 to 40.04 wt. per-

cent zinc. It was shown that the M -temperature decreased with decreas-

ing copper content. M -temperature of the samples ranged from about

-200C to -1300C. Electrical resistivity measurements were used,and M

was defined to be that temperature at which the resistivity-temperature

curve on cooling deviated from a straight line. Because of a lack of

accuracy, the temperature of minimum resistivity was taken for M The
s
plot of M -temperature versus zinc content had a somewhat different

slope than the slope of a similar curve given by Kurdjumov (5).

Pops and Massalski (17) proposed that there were two stages in the

transformation. A thermo-elastic phase (appeared and disappeared as

cooled and reheated) formed initially at the M -temperature. On further
s
cooling, an additional martensitic phase formed in rapid bursts at the

lower temperature MB. The M -temperature was considered to be the tem-

perature at which the first evidence of martensite was optically seen.

This temperature could not be observed from their resistivity data.

The M -temperature, as obtained from the optical microscopy, was said

to be equivalent to the minimum temperature of the resistivity-tem-

perature curve. Pops and Massalski also concluded that the M -temper-

atures found by Titchener and Bever were actually MB-temperatures.


2.8 The Kinetics of the Transformation and Growth of the Martensite
Phase

The martensitic transformation of $1-brass is athermal; that is,

the transformation only proceeds with a lowering of the temperature.

The time at a certain temperature or during cooling has no effect on

the fraction transformed.

Hull and Garwood (12) and Pops and Massalski (17) observed the

growth of the martensite in detail using cold-stage optical microscopy.









First seen were thin "needles" which grew in the lengthwise direction

and then thickened slowly. The plates did not reach their final size

at once but did definitely grow when the temperature was lowered.


2.9 The Crystallography of the Martensite Phase Formed by Cooling

Kaminski and Kurdjumov (14) and Greninger and Mooradian (15) de-

termined in early work that the structure of the martensite was near

that of a face centered tetragonal lattice.

Using B1-brass containing approximately 39.0 wt. percent zinc,

Garwood and Hull (21) employed a Laue x-ray method to determine the

lattice orientation relationship between the martensite and the parent

phase. The values obtained were seen to be the same as exist in the

martensite transformation in the Cu-Al system. When the measured

shear was applied to a theoretical unit cell of the 8 lattice, a body-

centered triclinic lattice was produced, which did not agree with ex-

perimental results. Garwood and Hull assumed that the lattice of the

martensite phase would be close-packed because of the identification

of a prominent basal plane in each martensite plate. They felt that

in view of the diffusionless nature of the transformation at sub-zero

temperatures that the ordered structure which is not suppressed by

quenching would be retained in the martensite product. In other alloy

systems there are faults in the stacking sequence of the martensite

phase after the transformation (22). These faults may also be present

in this system. Distortions of these types are mainly responsible for

the complexity of the x-ray spectra reported for the low-temperature

martensite.

Jolley and Hull (23) determined from x-ray and electron diffrac-

tion data that the martensite obtained on cooling a 81-brass sample









containing approximately 39.0 wt. percent zinc had an orthorhombic

crystal structure. Using these and other data, they applied the

Wechsler, Lieberman, and Read theory. The calculated habit plane

compared favorably to the experimentally determined habit plane.

In a very detailed crystallographic study with x-ray measurements

at low temperatures, Kunze (7) showed a monoclinic (also called body-

centered pseudorhombic) transition lattice (8') between parent and mar-

tensitic phase (W"). The superlattice cell of the martensite phase B"

was said to be triclinic face-centered on one face (pseudomonoclinic).

About 25 percent of this transition lattice was always present with

the martensite at liquid nitrogen temperature.


2.10 Deformation

Greninger and Mooradian (15) noticed "markings" in deformed B1-

brass containing 39.22 wt. percent zinc and determined the crystal-

lographic directions to which these markings were parallel. X-ray

work on hammered powder samples showed some lines corresponding to

a face-centered tetragonal structure.

Reynolds and Bever (24) elastically compressed a B1-brass sample

containing approximately 39.98 wt. percent zinc and therefore induced

plates of deformation martensite. After the stress was released, the

plates disappeared. When samples were stressed and unstressed in suc-

cessive cycles, the plates appeared in the same locations. They also

cooled a specimen which had residual strain-induced martensite plates.

As thh specimen was cooled below room temperature, some of the plates

increased in size, and others were formed. The thermally induced and

strain-induced plates had a similar metallographic appearance. It was

concluded that strain-induced martensite was mechanically reversible

with considerably hysteresis and that elastic stresses were operative









in this reversal. Suoninen, Genevray, and Bever (25) investigated the

effect of elastic stress on the transformation. It was shown that the

M -temperature increased with increasing stress. Also, an alloy con-
s
training approximately 39.5 wt. percent zinc was partially transformed

by cooling it under stress. The stress was released, and the marten-

site disappeared. After further cooling, the martensite started form-

ing as usual. This was considered to be consistent with the concept

of "thermo-elastic" martensite first considered by Kurdjumov (5) and

confirmed by Kurdjumov and Khandras (26).

Massalski and Barrett (16) studied the effect of cold work on the

transformation in B1-brass alloys with compositions from 39.73 to 51.80

wt. percent zinc. Alloys which would not transform on cooling; i.e.,

above 43 wt. percent zinc, were seen to transform on cold work. All

the alloys did transform on cold work even though in some cases low

temperatures were required. A temperature, MD, has been defined by

McReynolds (27), as was previously done in an Fe-Ni alloy, as being

the temperature above which no martensite will be formed on deforma-

tion. The M- temperatures were determined for some of the high zinc

content alloys, and a plot was made of MD-temperature versus zinc con-

tent. The structure of the deformation martensite was found to be

face-centered cubic with stacking faults for the lower percent zinc

alloys and hexagonal close packed for the higher percent zinc alloys.

The face-centered cubic structure had parameters that could be extra-

polated from the a-phase region assuming line shifts from the stacking

faults. For alloys with compositions above 45.59 wt. percent zinc,

the transformation product reverted to the parent phase after a few

weeks. Thus, B1-brass with 37.0 to 42.0 wt. percent zinc is metastable









with regard to cooling and deformation and B1-brass with above 42.0

wt. percent zinc is metastable with regard to deformation. Massalski

and Barrett assumed that in the latter case only the disordered 8-

phase was metastable. Therefore, the cold work disordered the alloy

and the low temperatures caused the transformation.

Hornbogen, SegmUller, and Wassermann (6) studied the transforma-

tion during deformation using elastic and plastic tensile stresses.

It was seen with the use of x-ray measurements that after 10-15 per-

cent deformation the Bl-brass (composition between 39.5 and 39.8 wt.

percent zinc) would transform to a tetragonal phase a,. This phase

was described as an ordered a-brass of the Cu-Au type. A transition

phase a2 was seen between the a1- and al-phases. At higher degrees of

deformation the al-phase would transform into a disordered supersat-

urated a-brass.

Investigations from the Southern Research Institute (28) also

found martensite in Muntz metal (59.98 wt. percent copper and 38.71

wt. percent zinc) which had been rolled to 53 percent reduction at

240C and to 28 percent reduction at -1960C. The studies were made

using optical photomicrographs and were performed to improve the

strength.


2.11 Theoretical Considerations

Kunze (8) considered the theory of elasticity and the contribu-

tion of the Fermi energy to the transformation. The Fermi energy,

which'controls the stability of the 81-lattice at room temperature,

was also said to carry the principal weight in controlling the steps

of the low temperature transformations. This kas shown from the









calculations of the Brillouin zones of the low temperature phases.

It was predicted from these electron theoretical considerations that

the martensite may possibly undergo a further transformation at low

temperatures. This transformation from 6" ~ "'would be a close

packing of (110) atomic planes. He assumed that the first step

(shearing), 81 + 1', of the low temperature transformation corresponded

to the first step in the martensitic transformation by plastic deforma-

tion (1 -* ac) and quenching (,1 a') and that the unknown structure

a2 between Bl and al is identical to that of the transition lattice

8'. The martensitic transformation by deformation proceeds by other

mechanisms than the low temperature transformation after the first

transformation step.


2.12 Electron Microscopy

Hull (29) observed in thin foils of S1-brass, containing approxi-

mately 39.0 wt. percent zinc, martensite which apparently occurred

during the preparation of the foils in thin regions at the edges of

the specimens. Orientation relationships were determined, and it was

seen that the interface between the martensitic phase and parent phase

did not follow any particular habit plane. This has been seen in other

alloy systems which undergo a martensitic transformation.


2.13 Heat Treatment of Quenched B1-Brass

In 1924 Homerberg and Shaw (30) determined strength characteristics

of 81-brass at various temperatures during reheating after quenching.

Later, Hansen (31) determined that heating the quenched 81-brass above

1500C caused a rise in resistivity of about 10 percent. Changes in

resistivity and hardness were correlated with composition, temperature,

and time changes.










Garwood (32) studied the isothermal decomposition of 81-brass

samples containing 41.3 wt. percent zinc at temperatures from 170C

to 4700C. A bainitic transformation was assumed to occur at temper-

atures between 1700C and 2250C. The structure of this phase was not

determined. Above 225C thea-and 8-phases (evidenced by x-ray dif-

fraction) occurred as expected.

Bassi and Strom (4) heat-treated a 81-brass sample of 40.5 wt.

percent zinc for 73 hours at 150C and also detected a new phase but

could not determine its structure.

Hornbogen (33) aged quenched 81-brass containing about 40 wt.

percent zinc between 2000C ad 3000C. Precipitation occurred which was

connected with an increase in hardness. The final transformation to

a-brass was accompanied by a decrease in hardness. Two tetragonal

intermediate phases were found before the transformation was complete.

Hornbogen and Warlimont (34), using the electron microscope,

studied the mechanism of the isothermal transformation of quenched

8-brass and proposed a generalized definition of the bainite trans-

formation. The bainite transformation is between the martensitic

and nucleation-and-growth transformations. Lattice defects in great

density are created which allow a segregation of the atoms, and they

act as nucleation sites. The transformation, itself, occurs like

martensite by a shear process.


2.14 Radiation Damage

Little work has been done on the effect of radiation on the mat-

tensitic transformation. Zakharov and Maksimova (35) studied the ef-

fect of neutron irradiation on the martensitic transformation of










hi-carbon alloy steels and Fe-Ni-Mn alloys. The samples were irra-

diated at ambient reactor temperature (4 = 5 x 1016 and 1017n/cm2)

and the course of the transformation was followed with magnetic meas-

urements. In the steels which contained carbon, the irradiation

raised the transformation start temperature 150C. This was considered

an activating effect. (Porter and Dienes assumed that this was due to

precipitation of austenite.) The "activating effect" was decreased

after larger irradiation times and was removed after aging the speci-

mens at temperatures below 1000C. Also, more martensite was formed

at a given temperature than before. In the Fe-Ni-Mn alloys, which

contained hardly any carbon, the reverse effect was obtained. The

stability of the austenite was increased, the martensitic start tem-

perature was lowered, and the amount of transformation was decreased.

It was concluded from these results that during irradiation there is

a simultaneous development of structural changes which affect the

austenite stability in opposite directions. Therefore, the obser-

vation of opposing effects depends on the total neutron flux and the

properties of the alloy. In the early stages of damage, transforma-

tion is favored. Later, there are structural changes which have the

opposite effect.

Porter and Dienes (36) investigated the effect of neutron irra-

diation on the martensitic transformation in Fe-Ni alloys. They

found that the M was lowered for doses above 2.5 x 1017 nvt at 1000C.
S
They observed no change in the kinetics. This effect was thought to

be associated with an increase in the critical shear stress of the

matrix material. For samples which were partially transformed to

martensite, neutron irradiation lowered the M point and partially
s









recovered the plastic deformation produced by the prior transformation.

This strain recovery was thought to be due to the annealing of shallowly

trapped damage by enhanced diffusion and by the mutual annihilation of

point defects.

Weiss-Hollerwager (37) studied the effect of neutron irradiation

on the martensitic transformation of a chrome steel which contained

1.26 percent carbon. For doses of 1017 and 5 x 1017n/cm2, 5 percent

more martensite than before was found at the end of the transformation.

During irradiation with doses of 1018n/cm2, 25 percent martensite was

found. Cooling created only about 10 percent more martensite.

A summary of the past work that concerns irradiation effects on

the martensitic transformation is given in Table 1.






TABLE 1. Summary of neutron irradiation effects on martensitic transformations.


Ms IRRADIATION EFFECTS
AUTHOR and YEAR MATERIAL
UNIRRADIATED (INT. FLUX IN NEUTRJCM2)


AILZAKHAROV 8 0.48% C 0=5.1016: Ms+50C ------ -60
%M
O.P MAKSIMOVA 7.7 % Mn IO1C 10% more end-mortensite s.o16 '

(1957) 2.2 % Cu u -20t
Balance Fe 0
-22q (TOO -100 0

B.WEISS- I. 26% C 0=10. and 5.10: ..
-50
HOLLERWOGER 0.36% Mn 5-- 5C Ms=+10*C and ca.+ 35 C unirr.

(1960) 0.42%Si 5% more end- mortensite iO8
5.40 %Cr = 101:22% martensite at "
Balance Fe room temp. and 20% less .10

end-martensite T*C -150 -too -50 0

A.I. ZAKHAROV 8 0.02 % C ~1017: Ms=-60*C 20
O.P.MAKSIMOVA 22.4%Ni -39C 3 % less end-martensite o 7-1 10
(1957) 3.48 %Mn
Balance Fe (T C)-100 00

L.F. PORTER 8 26.37% Ni +2.60C ,* 1.6.1018 Ms=-12"C 7t 10
G.J. DIENES 0.018 %C (Variation between T
'*e*o'-7 IR e
(1959) 0.197% Mn +11.2 and +2.6*C) I
.4
0.045 %Si

Balance Fe TC -32-20 -10 0















CHAPTER III


EXPERIMENTAL METHODS


3.1 Sample Preparation

81-brass samples containing between 38.3 and 39.4 wt percent zinc

were prepared. These compositions were selected in order that the

temperatures of the transformation would be in a range practical for

the experimental apparatus.

The purity of the samples was very important. Unstable impurities

which might precipitate or dissolve during the various temperature

changes could affect the characteristics of the martensitic transforma-

tion, and some impurities when irradiated could give unwanted products

with long radiation half-lives.

The alloys were made from 99.999 percent copper rods obtained from

A. D. Mackay, Inc. and 99.9999 percent zinc pellets supplied by United

Mineral and Chemical Corporation. The copper and zinc were melted in

an evacuated vycor tube using an induction furnace. The melted alloy

was shaken manually and quenched in water to eliminate segregation.

The outside layer was removed on a lathe after which the alloys were

worked, re-incapsulated,and homogenized for 300 hours at 800C. Then

the alloys were rolled into long strips of about O.lmm thickness. Al-

loys'containing the higher percentages of zinc had to have an inter-

mediate heat-treat before being rolled to the final size. The samples

were cut into the shape shown in Figure 2 and heat-treated in a quartz





















< 70mm




10mm
_______________________________________: --- -i


Shape of the sample for resistance measurements.


Figure 2.









tube. The tube was first repeatedly evacuated and flushed with argon

with the samples at the cold end of the tube. With the argon atmos-

phere present, the samples were moved into the hot end of the tube,

heated at 8700C for five minutes, and quenched into previously boiled

water of 20C. The quench yielded the metastable ordered Bl-phase.

Scraps of brass around the samples were used to prevent de-zincing.

About 15 samples in a pack were heat treated together. The com-

position of some samples was such that the "massive transformation"

to the supersaturated a-phase occurred. Because the samples had to

fall about two feet before being quenched, some were cooled slightly.

This lowered the quenching temperature of these samples into the a+B

region where some a precipitated out. Because of these procedures,

various amounts of a-phase were present along with the 81-phase.


3.2 Quantitative Analysis

The amount of a and B1-phase present in the samples was obtained

after the final quench using x-ray diffraction, resistivity measure-

ments, and optical microscopy. In the x-ray method, the amounts were

determined by comparing the integrated intensities of two of the main

peaks of each of the phases. This method was non-destructive and very

convenient for this work. Since the electrical resistivity of a two-

phase material is a linear function of the volume fractions of the

two phases present, the amount of each phase could also be determined

by knowing the resistivity of the sample and the individual resistivi-

ties of the two phases. The third method of determining the amounts

of the phases present was by quantitative metallography. All three

methods yielded, within the error limit, the same ratio of a and









B1-phase. Chemical analysis was provided by V. Horrigan of the Ana-

conda American Brass Company. The zinc content of the samples varied

less than 0.06 percent.


3.3 Cryostat and Temperature Control

Two units could be used for the temperature bath. In the tem-

perature range between +10C and -160C, which covers almost every

M -temperature in these experiments, isopentane was employed as the

cooling medium. Isopentane could not be used much above +10C be-

cause of its high vapor pressure and below -1600C because of high

viscosity. The isopentane, which was held in a one-gallon metal Dewar

flask, was cooled by liquid nitrogen pumped under pressure (provided

by an argon tank and regulator) through a 15-foot copper tubing coil

immersed in the flask. The flow was regulated by a Linde temperature

controller using two thermistors in the cooling bath. The tempera-

ture was found to be constant within 20C. The bath was continuously

circulated by means of a magnetic stirrer. An electric immersion heat-

ing coil was built into the Dewar flask for use when heating was needed.

For alloys with an M -temperature near 00C, the samples were ini-
s
tially placed in a water bath whose temperature could be maintained

between +20C and +980C. As cooling was desired, the water was allowed

to circulate through an ice bath. The amount of cooling was regulated

by a heating device which worked at the temperature specified by a

controller.

The temperature of the samples was taken during each resistivity

measurement with a copper-constantan thermocouple and a Leeds and

Northrup potentiometer with temperature calibration.

A schematic of the cryogenic unit is given in Figure 3.














Controller --- -
_________________ .


Compressed
Gas .--=


Liquid N2


Thermostat


Dewar


N2


Specimen


Immersion
Heater


Magnetic Stirrer


Figure 3. The cryogenic unit.









3.4 Resistance Measurements

The resistance measurements were obtained using a Leeds and

Northrup K-3 potentiometer to measure the voltage drop across the

potential leads of the sample. A one-amp direct current was made

to flow through the sample. The current was regulated by a vari-

able resistor of 12 ohms and monitored across the potential leads

of a 0.001 ohm standard resistor by an auxilliary input of the K-3

potentiometer. Three 12-volt batteries in parallel were used as a

current source, thus affording a more nearly constant current than

only one battery. The resistance measurements were found to be re-

producible at a given temperature within 0.03 percent. The circuit

diagram is shown in Figure 4.

Three sample holders of micarta were used so up to three samples

could be measured at one time. Tests were made on the reproducibility

of the resistance of samples removed from the sample holders, turned

over, and replaced in the sample holders. The change in resistance

was again within 0.03 percent.

A Starrett micrometer was used to measure the dimensions of

the samples in order to obtain resistivity data from resistance meas-

urements.


3.5 Metallography

For metallography work, the specimens were polished by standard

techniques through Linde B and diamond paste. The specimens were

etched for a few seconds in a solution of 25 mL of ammonium hydroxide,

35 ml.of water, and 1 ml. of hydrogen peroxide. a-phase, B1-phase,

and martensite could be differentiated as they all gave different






12V-


Figure 4. Circuit for resistance measurements.









appearances after etching. A Bausch and Lomb metallograph was used

for the optical microscopy.

For a quick examination of samples to determine if the Bl-phase

was present, a macroetch of equal parts HNO3 and water was used. The

81-phase appeared as small crystallites which were very distinguish-

able from the larger unetched grains of a-phase.


3.6 Irradiation and Safety Precautions

The samples were irradiated in the Oak Ridge National Laboratory's

Bulk Shielding Reactor with integrated fluxes between 5 x 1016 and

5 x 1018n/cm2, E > 1 mev. The samples were under helium atmosphere

with a pressure of one atmosphere and the temperature was 510C.

The irradiated samples, when not being used, were kept in an

enclosed lead container with a wall thickness of 1 inch. With all the

irradiated samples in this lead container, a Geiger counter at a dis-

tance of 12 inches showed a radiation level not beyond the cosmic

radiation level. A wall of 2-inch lead brick and a bottom plate of

1-inch steelwere placed around the cryostat during measurements. A

Geiger counter showed no increased radiation level outside this wall.


3.7 X-Ray Diffraction

A Norelco diffractometer with a high-intensity copper tube was

used for the x-ray work. Modifications were made to the radiation

shield so the samples for these experiments could be handled without

bending and so cold-stage work could be done.

Dry nitrogen from a tank forced liquid nitrogen into the elongated

radiation shield, whose window was closed from the atmosphere by mylar.

After cooling started, any areas which could let air in became frosted









and were sealed. Thus, no icing took place on the sample as a nitro-

gen atmosphere was formed. Figure 5 shows this unit.


3.8 Electron Microscopy

The same material which was used in the resistance studies served

as stock material for the transmission electron microscopy.

The first sample preparation step was the "dimpling" of small

disks. The dimpling technique consisted of allowing a thin stream

(jet) of liquid electrolyte (50 percent orthophosphoric acid) to im-

pinge on the disk and produce a concave surface. Initially, a disk

would be thinned until a hole appeared. Then a smaller amount of elec-

trolyte would be used to produce the dimple in the other samples. The

jet producer and container for the electrolyte were made of glass and

contained a platinum wire which constituted the cathode. The speci-

men was the anode (Figure 6).

After dimpling, the sample was electro-polished until the very

first small hole appeared. For this, the sample was held with plat-

inum-tipped tweezers between two point electrodes. There was a po-

tential difference between the tweezers and the electrodes. The elec-

trolyte was again 50 percent orthophosphoric acid which was cooled

below room temperature with acetone and dry ice to slow down the re-

action. During this final polish the sample was periodically removed,

washed with alcohol, and examined for a small hole with the aid of a

light placed behind the specimen. The area around the first hole was

usually thin enough for transmission work. If the sample was polished

very long after the first hole appeared, all the thin area was de-

stroyed. The yield of useable samples was very small. If a satis-

factory sample was obtained, care had to be taken to wash the sample


well with alcohol to prevent contamination.











Radiation Shielding


-Sample
I--Barrel


e

Exhaust


Counter
Liquid
N2


Dry
N2


Figure 5. Cold unit for the Phillips x-ray diffractometer.
























glass
container


+


"dimpled" sample


Figure 6.


Dimpling unit for preparation of
transmission electron microscopy samples.





32


A cold stage built for the Phillips 200 Electron Microscope by

Ladd Research was used in this work. The unit consisted of a sample

holder, dewar, and thermocouple. After insertion of the sample in the

microscope, liquid nitrogen was added to the dewar and the cooling

would begin. The temperature was monitored by a built-in copper-con-

stantan thermocouple. The speed of cooling could be adjusted by the

amount of liquid notrogen added and by a built-in heating unit.















CHAPTER IV


RESULTS


4.1 The Basic Transformation

The main features of the martensite transformation curve of BI-

brass, as monitored by electrical resistance measurements at changing

temperatures, are discussed in order to determine the characteristics

of the transformation.

Figure 7 shows relative resistance or relative resistivity (set

equal to 1 at 0C) vs. temperature. (This will be referred to as the

resistivity-temperature curve in the future.) The relative resistance

decreases with constant slope as the temperature is lowered. At a

certain temperature, the curve deviates from a straight line. This is

the starting point of the transformation (Ms). Since the slope changes

very gradually at this inflection point, the M -temperature can only

be determined to within an accuracy of 1fC. At a lower temperature,

the resistivity-temperature curve shows a resistivity minimum which

is designated as M. At the temperature MF, the transformation is

finished, after which the resistivity-temperature curve again becomes

a straight line. On heating the sample, the curve again deviates from

a straight line. This is the A -temperature, lower than the M -tem-
s s
perature, where the parent phase starts forming. The transformation

is completed at a temperature AF after which the resistivity-temper-

ature curve is a straight line.





34















1.05
_ Mr




I.0





.95


M. t


.90 M

S -10 -20 -30 -40 -50 -60 -70 -80 -90 T (0)
I I I I I i i I i I I I


Figure 7. Relative resistivity versus temperature of B1-brass (38.8 wt.
percent zinc).









To find the amount of martensite formed at a given temperature

and the degree of hysteresis after cooling and heating, a plot of

percent transformation vs. temperature was made from the resistance

data (Figure 8a). This curve was constructed by taking the ratio

of the difference in resistivity between the straight line or extra-

polated straight line portion of the curves for the parent phase and

the martensite phase at a given temperature to the difference in

resistivity between the curve and the straight line or extrapolated

straight line of the curve for the parent phase at the same tempera-

ture;
p-p
percent martensite = (100) (see Appendix II).
M 81

The rate of transformation-temperature curve, which is equivalent to

the amount of martensite formed per degree, was constructed from the

derivative of the data of the percent transformation-temperature curve.

The martensite phase formed by cooling had a higher specific

resistivity (p) and a greater temperature coefficient (6) than the a1-

phase. Table 2 gives the resistivities and temperature coefficients

of all the phases studied in this work.


TABLE 2. Resistivity of the various phases.


Phase p at 0OC (p-ohm-cm) e(1/deg)


81 5.3 .0128

8" (cooling martensite) 6.9 .0179

a 6.8 .0116

al (deformation martensite) 7.4 .0133






























Figure 8. Transformation curves.

a. Percent transformation versus temperature.

b. Percent transformation per degree versus
temperature. (Calculated from Figure 7.)










z

S5-
0



LL.


10 -



wM
o
0

t00



90-


80


w
S70-


Li 60 -
o/
0
U-
Z 50
c-


-20 -30 -40 -50 -60


0 -10


-70 -80 --90









The reason for using the resistance measurements to monitor the

martensitic transformation of Bl-brass was that the resistivity of

the martensite in 81-brass is much higher than the resistivity of

the parent phase and resistance can accurately and easily be measured.

Thus, very small amounts of transformation could be detected. (More

details are given in Appendix II.)

All factors such as long-range order, short-range order, anti-

phase boundaries, and lattice defects which cause changes in resis-

tivity were not changed during cooling.

Local stresses set up by the formation of martensite plates might

be expected to increase the resistance of both the martensite and the

surrounding parent phase and thus influence the resistivity-temperature

curve. The amount of the increase in resistance should not be greater

than would be caused by extensive cold work. This increase is usually

not more than one percent for most alloys. Experiments were made that

showed that the samples of 81-brass had to be bent enough to create

a permanent crease in the metal to cause a 0.5 percent change in re-

sistance. It is assumed that the transformation strains would never

be this great. Therefore, the stresses accompanying the transforma-

tion introduce no serious error.


4.2 Thermal Cycling

The M -temperature and other characteristics of the martensitic
s
transformation were found not to be reproducible when samples of a

certain composition were repeatedly cooled to the temperature of com-

plete martensite formation and heated to room temperature.

These effects were attributed to retained'martensite which was

substantiated from the following observations:









1. After one full cycle, the resistivity curve obtained from

heating the sample (later referred to as heating curve) does

not meet the resistivity curve obtained from cooling the

sample (later referred to as cooling curve) in the linear

region around 0OC; i.e., the specific resistivity (p) of the

sample is higher after cycling (Figure 9). Since the martensite

phase has a higher specific resistivity, the increase of p at

0C is thought to mean that some martensite is retained at

that temperature.

2. The slope of the linear portion of the resistivity vs. tem-

perature curve (the temperature coefficient 8) at temperatures

below MF is larger than e at temperatures above Ms. This is

indicated in Figure 9, where a line parallel to the linear

portion at temperatures below MF is drawn on the cooling curve

near OOC. This line is labeled martensitee." Figure 9 also

shows that 8 from the heating curve at temperatures above AF

is larger than 0 from the cooling curve in the same temperature

range. Since a larger 6 implies the presence of martensite, it

is deduced that the observed larger 6 at temperatures above A ,

obtained after cooling and heating, implies retained martensite.

3. Metallographic evidence of martensite plates was found at

room temperature after a full cycle and was interpreted to

mean that some martensite was retained (Figure 10). The needles

could not be detected in all sections examined and this was

attributed to the fact that the amount of retained martensite

is small and to the possibility that the martensite plates

which were retained have a size below that of the resolution

of the optical microscope.


















































-20 -30 -40 -50 -60
I I 1 I 1 I I I I I


-80 -90 -100
I I I I I


TEMPERATURE (C)




Figure 9. Relative resistivity versus temperature of B1-brass (38.8
wt. percent zinc) containing retained martensite.


- 1IO






-1.05


- .96


- .90


-10
I




























































Figure 10. Optical micrograph of B$-brass (38.8 wt. percent zinc)
after cycling to low temperatures (room temperature,
magnification 250 x) .










4. Retained martensite was also observed in transmission-electron

micrographs made from a sample which had been cooled below M"

and heated back to room temperature in a cold stage (Figure 11).

No attempt was made to compare the amounts of retained mar-

tensite observed by optical and electron microscopy because of

the difference in behavior of thin films and bulk samples.

5. A third cycle reproduced the second cycle almost perfectly.

This means that after the second cycle no additional retained

martensite is left at temperatures above AF.

The amount of retained martensite at 0OC was computed by taking

the ratio of the difference between the resistivity curves before and

after cooling to the difference between the parent phase resistivity

curve and the extrapolated straight line portion of the martensite

phase resistivity curve. The amount of retained martensite calculated

by this method was found to be dependent upon the Ms-temperature. At

M -temperatures lower than about -330C no martensite is retained at O0C.
s
With increasing M -temperature, the amount of retained martensite in-

creases. Figure 12 shows that up to 5 percent of the total amount of

martensite can be retained at 0OC.

When the same sample is cooled a second time, Ms is shifted to a

higher temperature (Figure 13). No change is noted in Ms on the third

cycle.

In summary, some martensite, formed when B1-brass is cooled to

sub-zero temperatures, is retained at room temperature. This marten-

site is stable and only occurs in samples with high Ms-temperatures.

After the first cycle the samples which contained martensite had in-

creased M -temperatures.
s









































*


w.


Figure 11.


Transmission electron micrographs of 81-brass martensite
(38.8 wt. percent zinc). Magnification 14000x.


a. During cooling.


b. Retained.


r

d



rt
C1






44














z
S4-











-o1 -20 -30 -40 M8 [C]


























Figure 12. Retained martensite in percent at room temperature
versus M -temperature.
s


I


























































TEMPERATURE (C)


Figure 13.


Relative resistivity versus temperature of 81-brass
(38.8 wt. percent zinc).









4.3 Effect of a-Phase on the Martensitic Transformation

In the course of this investigation it was found that the resis-

tivity-temperature curves of a group of samples which had the same

composition and heat treatment were not the same (Figure 14). Optical

microscopy, x-ray diffraction, and resistivity measurements showed the

presence of varying quantities of a-phase, which was first observed

by Phillips (10).

From the quantitative analysis it was seen that the sample of

Figure 14a was about 100 percent B1-phase, and the sample of Figure 14b

contained about 54 percent 01-phase. Five main differences of these

curves were observed.

1. The difference between M and M was greater in Figure 14b than
s
in Figure 14a.

2. There is a considerable variation in M between the curves in
s
Figure 14a and Figure 14b.

3. At OC the resistivity difference between the parent phase and

the martensite phase (pM-p ) is about twice as large in Figure
M PI
14a as in Figure 14b (pM at O0C was obtained by extrapolation).

pM-P 1 is called H and may also be taken as the amount of 81-

phase present.

4. The degree of hysteresis (defined as the temperature difference

between the means of maximum and minimum resistance of cooling

and heating (15)) is about 50 percent larger in the curve of

Figure 14b than in the curve of Figure 14a.

5. The slope of the straight-line portion of the curve above the

M -temperature is larger in Figure 14a than in Figure 14b.

Percent transformation-temperature curves (Figure 15) and rate of

transformation-temperature curves were constructed as described earlier.





























Figure 14. Relative resistivity versus temperature of 81-brass
(38.8 wt. percent zinc).

a. 100 percent Bl-phase in sample.

b. 54 percent 81-phase in sample.





48


















(A)






t




(B)








I I I I I I I
-10 -20 -30 -40 -50 -60 -70 -80 -90
TEMPERATURE (C)



















































--- TEMPERATURE (C)

100% 0, PHASE


D)


0 -20 -40 -60 -80-100-120-140
C-- TEMPERATURE (C)

54% 0, PHASE


Percent transformation versus temperature.
a. 100 percent B1-phase.
b. 54 percent Sl-phase.
Percent transformation per degree versus t
c. 100 percent a1-phase.
d. 54 percent 81-phase.
(Calculated from Figure 14)


temperature.


Figure 15.









The area of the hysteresis loop increased, the maximum rate of trans-

formation per degree decreased, and the temperature range of transforma-

tion (Ms-M_) increased as the amount of a-phase in the samples increased.

Theoretical resistivity-temperature curves were made to determine

the effect of the presence of the a-phase.

The resistivity-temperature curve of a-brass was found to be a

straight line with a slope less than that of the linear part of the

01-brass transformation curve at temperatures above M These measure-
s
ments were made to assure that no transformation of any type occurred

in the a-brass at temperatures in the range used in these experiments.

Using the actual resistivity-temperature curves of a sample of

100 percent a-phase and a sample of 100 percent $1-phase, curves with

different amounts of 81 and a were constructed. The proportion of the

resistivity of each of the two phases was taken at a given temperature

(using the assumed amounts of each phase), added together, and plotted

(Figure 16).

The following features were noted from the theoretical curves:

1. The M -temperature was not influenced by the mathematical

addition of a-phase to 81-phase.

2. Additions of a-phase to BS-phase increased the temperature

difference between M and M.
s
3. With increased additions of a-phase the resistivity difference

H at O0C decreased.

4. At a critical amount of a-phase (around 15 percent) no minimum

resistivity was observed.

5. The slope of the straight line portion of the curves above the

M -temperature approached the slope of the curve of the a-phase
as the amount of a-phase in the samples was increased.
as the amount of a-phase in the samples was increased.



















I
I
I


-LO5


L .95




S.90



.90


50% B








25 % B


9%B
5 %B
W


S 10 -00 -30 -40 -50 -60 -70
I I I l I I I I I I I I T ( C)


Figure 16.


Parts of transformation curves with various amounts of A- and
B-phases (calculated). 6 of A smaller than 0 of B.


-0-I


tAI


---


m









No changes are noted in the percent transformation-temperature

curves or rate of transformation-temperature curves since all the

theoretical curves were mathematically constructed from the 100 per-

cent B1-phase transformation curve.

To describe, in general, the behavior of an added non-transform-

able phase, another curve was constructed assuming that the non-trans-

formable phase had a greater slope than the linear portion of the 100

percent B1-brass transformation curve above the M -temperature (Figure

17). The same features as listed above were noted.

The resistivity difference (H), taken from the theoretical curves,

plotted versus percent B1-phase present (Figure 18) was used to de-

termine the amount of B1-phase present from experimental resistivity-

temperature curves.

Any changes seen in both the theoretical and experimental resis-

tivity curves are geometrical effects due to the added a-phase. The

increased difference in M and M with increasing amounts of a-phase
s
and the very similar shapes of the curves including the changes in H

and the slope are examples.

The M -temperature of samples originally the same composition which

contain equal amounts of a-phase after heat treatment may not be the

same because of one or all of the ways the a-phase can be formed.

1. If a sample has a composition in the range where the massive

transformation occurs, the quenched samples will contain dif-

ferent amounts of a-phase due to the quenching speed. The

M -temperature of these samples will probably be a function

of the amount of a-phase present.

2. When several samples are quenched together, some may lose more

zinc than others. The loss of zinc will change the composition





































































Figure 17.


Parts of transformation curves with various amounts of
A- and -B-phases (calculated). 6 of A larger than 6
of B.
















100

90

80

70-


L B 6o

a-
. 40



20
Io
10-


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30


H


Figure 18. H versus percent 81-phase.









and thus change the M -temperature.

3. The a-phase may also be formed if the sample is cooled into

the a+B region and quenched. Samples treated in this manner

will contain different compositions of the 81-phase and dif-

ferent amounts of the a-phase, both of which will change the

M s-temperature.

Thus, with one or a combination of the three occurrences, the true

effect of the a-phase on the M s-temperature is "masked."

Therefore, the changes due to the actual physical presence of

the a-phase are seen in the experimental percent transformation-tem-

perature curves of samples containing different amounts of a-phase.

The area of the hysteresis loop increased, the maximum rate of trans-

formation per degree decreased,and the temperature range of transforma-

tioned widened as the amount of a-phase in the samples increased.


4.4 Plastic Deformation

Bl-brass samples were deformed to learn more about transformation

caused by deformation and how plastic deformation influences the char-

acteristic points when the sample undergoes the martensitic transforma-

tion on cooling. These experiments were also done in view of the fact

that very often neutron irradiation and plastic deformation cause simi-

lar effects to metals.

After a pre-deformation run, i.e., a measurement of resistance from

room temperature to a temperature of complete transformation and back to

room temperature, the samples were deformed a small amount and run again.

The samples would then be deformed many times, with runs made in between

each deformation. The deformation was by rolling and was measured by










the percent reduction in thickness. From the resistance-temperature

curves the changes in the characteristics of the curves could be noted.

Figure 19 presents five different resistivity-temperature curves

corresponding to the transformation from the 81 to B" phase after dif-

ferent degrees of reduction in thickness on the same sample. The fol-

lowing observations were made from these curves.

1. With increasing degree of deformation the M -temperatures are

shifted to lower temperatures. This shift amounts to some 350,

compared to the undeformed state. This is also indicated in

Figure 20 where AM (the shift of M compared to the undeformed
s s
state) is plotted versus the degree of deformation. AM in-
s
creases rapidly to about 16 percent reduction. For higher

deformations the further increase of AM was about negligible.
s
2. With increasing degree of deformation the temperature of mini-

mum resistivity (M) is also shifted to lower temperatures.

This shift is about 60*C, compared to the undeformed state.

In Figure 21, AM is plotted as a function of deformation. It

is seen that AM increases rapidly until about 16 percent de-

formation then it levels off.

3. The temperature coefficient of resistivity, e, i.e., the slope

of the straight-line portions of the resistivity-temperature

curves at temperatures above Ms,is seen to be a function of

deformation as it decreases with increasing amount of deforma-

tion. Three different slopes, corresponding to three degrees

of deformation are drawn in Figure 19 on the curve of 15.3 per-

cent deformation. In Figure 22 e is plotted as a function of

deformation. A rapid change in e is observed up to deformations
































Figure 19. Relative resistivity versus temperature for $1-brass
(38.8 wt. percent zinc) at five different degrees of
deformation.










































































0 -20 -40 ,-60 -80 -100 -120

-- TEMPERATURE (C0)


C,,




LiL
U

C,)






















40

230

20

10

0
0
Co


Figure 20.


Shift of M (AM ) versus deformation.
s s


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

% DEFORMATION

Figure 21. Shift of M(AM) versus deformation.


2 4 6 8 10 12 14 16 18 20 22 24 26 28

% DEFORMATION


I 1 a I I a a a


M


.e


















23

22




20

PI9

0,8


0 2 4 6 8


10 12 14 16

% DEFORMATION


18 20 22 24 26


Figure 22. 6 and H (percent B1-phase present) versus percent deforma-
tion.


-. No



+\+
+

. I I I I a a I a


100

90

80

70

60

50

40










of 12 or 13 percent. With higher degrees of deformation 6 is

almost constant.

4. A further characteristic property of the transformation curve

is the resistivity difference between the cooling curve and

the extrapolated linear portion of the heating curve at 00C.

This quantity was denoted previously as H and was taken as a

measure of the amount of the 01-phase present (Figure 18). H

(the percent B1-phase present after deformation) is seen to

decrease with increasing amounts of deformation (Figure 22).

At small deformations, H decreases rapidly up to 12 to 16

percent deformation after which it decreases only gradually.

5. With increasing degree of deformation, A is shifted to lower
s

temperatures. AA plotted versus deformation would be similar

to the AM vs. deformation curve. The A -temperature, after
s s
deformation, is shifted 330C, compared to the undeformed state.

The five above mentioned properties all point to a common behavior.

At the beginning of deformation they change rapidly, but after a criti-

cal degree of deformation (12 to 16 percent) they almost become constant.

It had been mentioned by other investigators (24) that when de-

formed, B1-brass would transform to martensite. In this research, this

martensite is called deformation-martensite. The proof of the presence

of deformation-martensite in this work is given by optical micrographs,

electron microscopy, resistivity measurements, and x-ray diffraction.

A series of a1-brass samples with 38.8 weight percent zinc which

were plastically deformed by cold-rolling and investigated with optical

microscopy are shown in Figures 23-27 and the results are listed in

Table 3. At deformations of 3 percent and larger, the martensite needles can



























































Figure 23. Optical micrographs of deformed 81-brass (Q8.8 wt. percent
zinc). Magnification 560x.

a. 1 percent deformation.

b. 2 percent deformation (needles are deformation-martensite
from cutting).


























































Figure 24. Optical micrographs of deformed 81-brass (8.8 wt. percent
zinc). Magnification 560x.

a. 3 percent deformation.

b. 6.5 percent deformation.


























































Figure 25.


Optical micrographs of deformed S1-brass (38.8 wt. percent
zinc). Magnification 560x.

a. 13.4 percent deformation.

b. 17.0 percent deformation.





























































Figure 26.


Optical micrographs of deformed B1-brass (38.8 wt. percent
zinc). Magnification 560x.

a. 23.2 percent deformation.

b. 35.5 percent deformation.




























































Figure 27.


Optical micrographs of deformed 81-brass (48.8 wt. percent
zinc). Magnification 560x. 43.8 percent reformation.






67


TABLE 3. Visual observations on 81-brass after various
degrees of rolling at room temperature.



Degree of deformation in percent Observations
.. Observations
(reduction in thickness)


1 Only 81-phase and a little a-
phase.

2 Only 81-phase and a little a-
phase. Needles shown are those
of deformation-martensite formed
when the sample was cut.

3 Isolated needles of martensite.

6.5 Martensite needles seen in almost
all areas, some untransformed
left. Grain boundaries are still
visible.

13.4 Thick needles in all areas.

17 Deformed thick needles.

23.2
35.5 } No individual needles are seen
43.8 anymore.









be seen. For deformations above 13.4 percent, the martensite needles

begin to be deformed.

Figure 28 shows electron micrographs of B -brass that had been

pulled in tension and then prepared for the electron microscope. The

plates seen are those of deformation-martensite.

In Figure 29 the absolute resistivity-temperature curves of the

transformation of a sample, undeformed and 13 percent deformed, are

given. The resistivity change after deformation is shown. This sample

contained 21 percent a-phase (calculated as mentioned earlier) and 79

percent transformable 1B-phase. The 13 percent deformation transformed

a portion of the 81-phase to deformation-martensite so that after de-

formation, the sample contained 41 percent deformation-martensite, 38

percent $1-phase, and 21 percent a-phase. It can be seen also from

this plot that the temperature coefficient of resistivity of the de-

formation martensite is lower than that of both the cooling martensite

and the parent $1-phase.

The percent transformation versus temperature curves were constructed

for the deformed samples as described in section 4.1 (Figure 30). These

curves, drawn for cooling and heating, form a hysteresis loop. The first

derivative of the above data for the cooling curve was taken to obtain

the rate of transformation per degree and was plotted versus the temper-

ature.

The area of the hysteresis loop was seen to increase as the amount

of deformation increased (Figure 31). Also, the maximum rate of trans-

formation per degree on cooling decreased and the temp rature range of

transformation was spread as the amount of deformation increased.

The investigations described in this section showed that five char-

acteristic properties of the transformation curve changed rapidly up to



























































Figure 28. Transmission electron micrographs of 81-brass (38.8 wt.
percent zinc) deformed in tension. Magnification 8200<.













































TEMPERATURE (*C)


Figure 29.


Specific resistivity (in pQCM) versus temperature for s1-brass (38.8
wt. percent zinc) at two different degrees of deformation.















60
o 60
o 40
30
30
p,


20 0 -20 -40 -60 -80 -100 -120
TEMPERATURE
0% DEFORMATION


Figure 30.
a,
b.

C.
d.


2.0 [


20 0 -20 -40 -60 -86 -100 -120 -140
TEMPERATURE
15.3% DEFORMATION


Percent transformation versus temperature.
0 percent deformation.
15.3 percent deformation.
Percent transformation per degree versus temperature.
0 percent deformation.
15.3 percent deformation.
(Calculated from Figure 19)


> 0 -20 -40 -60 -80 -100 -120 -140


d)


_j __ i


i


50
40













w 20-


15-



t
< 10 -


< 5 -



O 2 4 6 8 10 12 14
/o Plastic Deformation


Figure 31. Area of hysteresis loop of percent transformation curve versus
deformation.


16










about 15 percent deformation and remained constant at higher deforma-

tions. The hysteresis loop was widened, the maximum speed of transforma-

tion decreased, and the temperature range of transformation was spread

over a greater range when the samples were deformed. These property

changes were due to the formation of deformation-martensite which was

seen in optical and electron micrographs.


4.5 Electron Microscopy Observations

Although some of the observations of the martensitic transforma-

tion which were made by using the electron microscope have been mentioned

earlier, it is believed that a separate section would be beneficial.

It was seen in these investigations and in studies by Hull (29)

that after preparation of some B1-brass samples for transmission elec-

tron microscopy, martensite needles appeared near the edge of the

foils at the very thin regions (Figures 32 and 33). This martensite

was interpreted to be deformation-martensite as the structure was face-

centered cubic (as determined from electron diffraction) which is the

same as that of highly deformed Bl-brass. This phenomenon did not

occur in each sample but in enough to make their appearance signifi-

cant. This martensite (deformation-martensite) did not grow when the

foil was cooled and transformed in the electron microscope. The most

distinctive features of the martensite are the striations within the

needles.

In evaluating the absolute temperatures obtained with a thermo-

couple, it must be noted that the electron beam will heat up a portion

of the sample and it is not really known if the temperature recorded










-i

(4


*1 ,


Figure 32.


Transmission electron micrographs of $1-brass (38.8 wt.
percent zinc) where martensite formed during thinning.


a. Magnification 12600x.
b. Magnification 17000x.


V


5:


























































Figure 33. Transmission electron micrographs of B1-brass (38.8 wt..
percent zinc) showing striated region which makes, up the
martensite formed during thinning.

a. Magnification 25200x.


b. Magnification 58900x.









is that of the part of the foil being examined. However, the tempera-

ture differences should be accurate.

As the prepared foils were cooled in the electron microscope and

just before any of the cooling martensite was seen, there was a great

movement of the contours of the foil, somewhat of an undulating motion

believed to be due to a bending of the foil. Immediately after this

the first martensite was seen. If the cooling was fast, the martensite

plates "exploded" into view and grew until stopped by a barrier. With

slow controlled cooling, the plates were seen as thin lines growing

first in length then in thickness when further cooled.

Figure 34a shows the first evidence of a martensite plate at sub-

zero temperatures. A thin line was first seen. (This foil was very

dirty because of problems with the vacuum system of the electron micro-

scope.) The black dot is an impurity used as a landmark. As the tem-

perature was lowered, the amount of martensite increased. Figures 34

and 35 show the plates at various stages of the transformation. A

second needle and the thickening and joining of the two needles is

easily seen. The percent of martensite seen in the same section of

each picture is measured by the area of the martensite compared to the

area of the section and is givenin Table 4 and Figure 36.

Figures 37 and 38 show the growth of martensite in another area.

Table 5 gives the temperature difference and amount of martensite seen

in a common area of each of the pictures. These pictures were made at

the temperatures of the greatest martensite growth. The inner striated

structure can be seen in these needles. The inner structure, in most

cases, was seen to form after the needle was formed.
I

























'3d


'I


Figure 34.


c d


Transmission electron micrographs of 81-brass
percent zinc) in cold stage showing growth of
at various temperatures below M -temperature.
tion 8200x.


(38.8 wt.
martensite
Magnifica-


a. M -temperature AT = 0.
s


b. AT = 50C

c. AT = 70C

d. AT = 80C


2.9 vol. percent martensite.

9.6 vol. percent martensite.

16.7 vol. percent martensite.









t---


Figure 35.


c d


Transmission electron micrographs of 81-brass
percent zinc) in cold stage showing growth of
at various temperatures below M -temperature.
tion 8200x. s


(38.8 wt.
martensite
Magnifica-


a. AT = 10C

b. AT = 120C

c. AT = 150C

d. AT = 180C


39.5 vol. percent martensJte.

64.0 vol. percent martensite.








































(CT--)


Figure 36.


Volume percent martensite versus AT from
the M -temperature.
s




-L-


80




























a

























b

Figure 37. Transmission electron micrographs of B1-brass (38.8 wt.
percent zinc) in cold stage showing growth of four needles
of martensite. Magnification 8200x.

a. AT = 0 37.5 vol. percent martensite.


b. AT = 3"C 59.4 vol. percent martensite.

























































b


Figure 38. Transmission electron micrographs of $1-brass
percent zinc) in cold stage showing growthlof
of martensite. Magnification 8200x.


a. AT = 5C

b. AT = 60C


(38.8 wt.
four needles


77.1 vol. percent martensite

85.0 vol. percent martensite.









TABLE 4. Percent martensite present at various temperatures (1).



Figure AT(OC) Vol. percent martensite


34 5 2.9
7 9.6
8 16.7
35 10 39.5
12 64.0
15
18






TABLE 5. Percent martensite present at various temperatures (2).



Figure AT(OC) Vol. percent martensite


37 0 37.5
3 59.4
38 5 77.1
6 85.0



When the foils were heated from temperatures of complete marten-

site formation, the martensite disappeared. The striated bands across

the needles first disappeared, starting at one end of the needle and

going to the other. There was no change in the width (Figures 39-43).

Thus, there were differences in the way the needles grew and disap-

peared.

Figures 44-54 show foils at various temperatures during the mar-

tensite formation. These pictures and the ones above of 81-brass mar-

tensite formed in the electron microscope using a cold stage were

probably the first of their kind. Many different areas of the foils

are shown. The inner structure of the needles and their boundaries

are particularly interesting.






























































Figure 39. Transmission electron micrographs of 81-brass (38.8 wt.
percent zinc) in cold stage with large martensite needle
still growing. Magnification 8200x.

a. T.


b. T 60C.




























































Figure 40.


Transmission electron
percent zinc) in cold
unification 8200x.


micrographs of B1-br ss (38.8 wt.
stage. Heating the ample. Mag-


a. T + 460C.

b. T + 580C.





























































Figure 41. Transmission
percent zinc)
disappearing.


electron micrographs of 81-b ass (38.8 wt.
in cold stage showing the ma tensite needle
Magnification 8200x.


a. T + 47C.

b. T + 810C.





























































Figure 42.


Transmission electron micrographs of a1-bi
percent zinc) in cold stage showing the mu
almost gone. Magnification 8200x.


a. T + 890C.

b. T + 1020C.


ass (38.8 wt.
.rtensite needle





























































Figure 43.


Transmission electron micrograph of 81-brass (38.8 wt.
percent zinc) in cold stage with martensite needle gone.
Magnification 8200x. T + 108C.




Full Text

PAGE 1

7+( ,1)/8(1&( 2) +($7 75($70(17 1(87521 ,55$',$7,21 $1' '()250$7,21 21 7+( 0$57(16,7,& 75$16)250$7,216 ,1 0(7$67$%/( %5$66 %\ -2+1 :$<1( 52*(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$ 'HFHPEHU

PAGE 2

$&.12:/('*0(176 7KH DXWKRU ZLVKHV WR H[SUHVV KLV VLQFHUH DSSUHFLDWLRQ WR KLV FRPPLWWHH FKDLUPDQ 'U 5 ( +XPPHO ZKR FRQWULEXWHG PXFK YDOXDEOH DLG DQG WLPH LQ IUXLWIXO GLVFXVVLRQV GXULQJ WKH FRXUVH RI WKH UHVHDUFK $SSUHFLDWLRQ LV DOVR H[WHQGHG WR 'U +UHQ IRU KLV KHOS LQ WKH LQWHUSUHWDWLRQ RI WKH HOHFWURQ PLFURJUDSKV DQG WR 'UV ) 1 5KLQHV 5 %ODNH DQG % &RQNOLQ -U IRU VHUYLQJ DV PHPEHUV RI WKH DXn WKRUnV FRPPLWWHH 7KDQNV DUH JLYHQ WR 0U ( -HQNLQV IRU WKH SUHSDUDWLRQ RI HOHFn WURQ PLFURVFRS\ VDPSOHV DQG WR 0U 9 3DVKXSDWKL IRU KHOS LQ SHUIRUPn LQJ H[SHULPHQWV 7KH DXWKRU ZRXOG OLNH WR WKDQN 'U 6WDQOH\ RI WKH 2DN 5LGJH 1DWLRQDO /DERUDWRU\ IRU KLV DVVLVWDQFH LQ WKH LUUDGLDWLRQ SURFHGXUHV 7KH DXWKRU LV JUDWHIXO WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD DQG WKH 1DWLRQDO $HURQDXWLFV DQG 6SDFH $GPLQLVWUDWLRQ IRU SURYLGLQJ KLV ILQDQFLDO VXSSRUW 7KH DXWKRU LV LQGHEWHG WR WKH 8QLWHG 6WDWHV $WRPLF (QHUJ\ &RPn PLVVLRQ ZKLFK VXSSRUWHG WKLV LQYHVWLJDWLRQ XQGHU &RQWUDFW 1R $7f /DVW EXW QRW OHDVW WKH DXWKRU ZRXOG OLNH WR H[SUHVV KLV HYHUODVWn LQJ JUDWLWXGH WR KLV ZLIH 5RVHPDU\ ZKRVH ORYH XQGHUVWDQGLQJ DQG VDFn ULILFHV PDGH WKH FRPSOHWLRQ RI WKLV ZRUN SRV LL

PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLL $%675$&7 [LL &KDSWHU ,1752'8&7,21 ,, 6859(< 2) 35(9,286 :25. f +LVWRULFDO ,QIRUPDWLRQ *HQHUDO )HDWXUHV RI 0DUWHQVLWH 7UDQVIRUPDWLRQV 7KH 3KDVHV ,QYROYHG LQ WKH 0DUWHQVLWLF 7UDQVn IRUPDWLRQ RI L%UDVV 7KH 2UGHU'LVRUGHU 7UDQVIRUPDWLRQ 7KH 0DVVLYH 7UDQVIRUPDWLRQ 0DUWHQVLWH )RUPHG E\ &RROLQJ L%UDVV 7KH &KDUDFWHULVWLF 7HPSHUDWXUHV RI WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ 7KH .LQHWLFV RI WKH 7UDQVIRUPDWLRQ DQG *URZWK RI WKH 0DUWHQVLWH 3KDVH 7KH &U\VWDOORJUDSK\ RI WKH 0DUWHQVLWH 3KDVH )RUPHG E\ &RROLQJ 'HIRUPDWLRQ 7KHRUHWLFDO &RQVLGHUDWLRQV (OHFWURQ 0LFURVFRS\ +HDW 7UHDWPHQW RI 4XHQFKHG %L %UDVV LLL

PAGE 4

&KDSWHU 3DJH 5DGLDWLRQ 'DPDJH ,,, (;3(5,0(17$/ 0(7+2'6 6DPSOH 3UHSDUDWLRQ 4XDQWLWDWLYH $QDO\VLV &U\RVWDW DQG 7HPSHUDWXUH &RQWURO 5HVLVWDQFH 0HDVXUHPHQWV 0HWDOORJUDSK\ ,UUDGLDWLRQ DQG 6DIHW\ 3UHFDXWLRQV ;5D\ 'LIIUDFWLRQ (OHFWURQ 0LFURVFRS\ ,9 5(68/76 7KH %DVLF 7UDQVIRUPDWLRQ 7KHUPDO &\FOLQJ (IIHFW RI T3KDVH RQ WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ 3ODVWLF 'HIRUPDWLRQ (OHFWURQ 0LFURVFRS\ 2EVHUYDWLRQV 7UDQVIRUPDWLRQV DW (OHYDWHG 7HPSHUDWXUHV 1HXWURQ ,UUDGLDWLRQ 9 ',6&866,21 7KH 7HPSHUDWXUHV RI WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ 5HWDLQHG 0DUWHQVLWH 8QWUDQVIRUPDEOH 3KDVHV 3ODVWLF 'HIRUPDWLRQ (OHFWURQ 0LFURVFRS\ L%UDVV 0DUWHQVLWH 6WUXFWXUHV 1HXWURQ ,UUDGLDWLRQ LY

PAGE 5

&KDSWHU 3DJH 9, &21&/86,216 $SSHQGL[ 7+(25,(6 2) 0$57(16,7,& 75$16)250$7,216 $O &U\VWDOORJUDSK\ $ 7KHUPRG\QDPLFV f $ .LQHWLFV DQG *URZWK ,, $33/,&$7,216 2) 5(6,67$1&( 0($685(0(176 )25 7+( 678'< 2) 75$16)250$7,216 ,1 0(7$/6 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH 3DJH 6XPPDU\ RI QHXWURQ LUUDGLDWLRQ HIIHFWV RQ PDUWHQVLWLF WUDQVIRUPDWLRQV 5HVLVWLYLW\ RI WKH YDULRXV SKDVHV 9LVXDO REVHUYDWLRQV RQ JAEUDVV DIWHU YDULRXV GHJUHHV RI UROOLQJ DW URRP WHPSHUDWXUH 3HUFHQW PDUWHQVLWH SUHVHQW DW YDULRXV WHPSHUDWXUHV f 3HUFHQW PDUWHQVLWH SUHVHQW DW YDULRXV WHPSHUDWXUHV f ,QIOXHQFH RI IDVW QHXWURQ ERPEDUGPHQW RQ 0 WHPSHUDWXUH YL

PAGE 7

/,67 2) ),*85(6 )LJXUH 3DJH &X=Q ELQDU\ V\VWHP 6KDSH RI WKH VDPSOH IRU UHVLVWDQFH PHDVXUHPHQWV 7KH FU\RJHQLF XQLW &LUFXLW IRU UHVLVWDQFH PHDVXUHPHQWV &ROG XQLW IRU WKH 3KLOOLSV [UD\ GLIIUDFWRPHWHU 'LPSOLQJ XQLW IRU SUHSDUDWLRQ RI WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ VDPSOHV 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI %AEUDVV ZW SHUFHQW ]LQFf 7UDQVIRUPDWLRQ FXUYHV 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI %LEUDVV ZW SHUFHQW ]LQFf FRQWDLQLQJ UHWDLQHG PDUWHQVLWH 2SWLFDO PLFURJUDSK RI %LaEUDVV ZW SHUFHQW ]LQFf DIWHU F\FOLQJ WR ORZ WHPSHUDWXUHV URRP WHPSHUDWXUH PDJQLILFDWLRQ rf 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI %LEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf 5HWDLQHG PDUWHQVLWH LQ SHUFHQW DW URRP WHPSHUDWXUH YHUVXV 0JWHPSHUDWXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI 6LEUDVV ZW SHUFHQW ]LQFf 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI %LEUDVV ZW SHUFHQW ]LQFf 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH 3DUWV RI WUDQVIRUPDWLRQ FXUYHV ZLWK YDULRXV DPRXQWV RI $ DQG %SKDVHV FDOFXODWHGf 3DUWV RI WUDQVIRUPDWLRQ FXUYHV ZLWK YDULRXV DPRXQWV RI $ DQG %SKDVHV FDOFXODWHGf YLL

PAGE 8

)LJXUH 3DJH + YHUVXV SHUFHQW ASKDVH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH IRU JAEUDVV ZW SHUFHQW ]LQFf DW ILYH GLIIHUHQW GHJUHHV RI GHIRUPDWLRQ 6KLIW RI 0 $0 f YHUVXV GHIRUPDWLRQ V V 6KLIW RI 0$0f YHUVXV GHIRUPDWLRQ DQG + SHUFHQW JMSKDVH SUHVHQWf YHUVXV SHUFHQW GHIRUPDWLRQ 2SWLFDO PLFURJUDSKV RI GHIRUPHG JMEUDVV ZW SHUFHQW ]LQFf 2SWLFDO PLFURJUDSKV RI GHIRUPHG JMEUDVV ZW SHUFHQW ]LQFf 2SWLFDO PLFURJUDSKV RI GHIRUPHG JAEUDVV ZW SHUFHQW ]LQFf 2SWLFDO PLFURJUDSKV RI GHIRUPHG JMEUDVV ZW SHUFHQW ]LQFf 2SWLFDO PLFURJUDSKV RI GHIRUPHG JAEUDVV ZW SHUFHQW ]LQFf 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JMEUDVV ZW SHUFHQW ]LQFf GHIRUPHG LQ WHQVLRQ 6SHFLILF UHVLVWLYLW\ LQ SA&0f YHUVXV WHPSHUDWXUH IRU JAEUDVV ZW SHUFHQW ]LQFf DW WZR GLIIHUHQW GHn JUHHV RI GHIRUPDWLRQ 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH $UHD RI K\VWHUHVLV ORRS RI SHUFHQW WUDQVIRUPDWLRQ FXUYH YHUVXV GHIRUPDWLRQ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI `EUDVV ZW SHUFHQW ]LQFf ZKHUH PDUWHQVLWH IRUPHG GXULQJ WKLQQLQJ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ VWULDWHG UHJLRQ ZKLFK PDNHV XS WKH PDUWHQVLWH IRUPHG GXULQJ WKLQQLQJ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI PDUWHQVLWH DW YDULRXV WHPSHUDWXUHV EHORZ 0JWHPSHUDWXUH r 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI PDUWHQVLWH DW YDULRXV WHPSHUDWXUHV EHORZ 0JWHPSHUDWXUH YLLL

PAGE 9

3DJH )LJXUH 9ROXPH SHUFHQW PDUWHQVLWH YHUVXV $7 IURP WKH 0JWHPSHUDWXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI IRXU QHHGOHV RI PDUWHQVLWH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI IRXU QHHGOHV RI PDUWHQVLWH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK ODUJH PDUWHQVLWH QHHGOH VWLOO JURZLQJ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ WKH PDUWHQVLWH QHHGOH GLVDSSHDULQJ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ WKH PDUWHQVLWH QHHGOH DOPRVW JRQH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK PDUWHQVLWH QHHGOH JRQH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ VWULDWLRQV DW WKH FHQWHU RI D SODWH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK WKH ERXQGDU\ EHWZHHQ WZR SODWHV 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK SODWH OHIW RI FHQWHU PXFK ZLGHU DW WKH WRS WKDQ DW WKH ERWWRP 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ LQQHU VWUXFn WXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI cEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK D ERXQGDU\ FRQWDLQLQJ GLVORFDWLRQ L[

PAGE 10

)LJXUH 3DJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI EUDVV PDUWHQVLWH SODWHV ZW SHUFHQW ]LQFf LQ FROG VWDJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI c`EUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK GLVORFDWLRQV DW ERXQGDULHV 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV DQG PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH (OHFWURQ PLFURJUDSK RI UHSOLFD RI JMEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf VKRZLQJ WKH VXUIDFH GLVWRUWLRQ 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ VOLS WUDFHV ZLWK GLVORFDWLRQV DQG VWDFNLQJ IDXOWV 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ WDQJOHV RI GLVORFDWLRQV 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ GLVORFDWLRQ OLQHXS 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ SLOXXSV RI GLVORFDWLRQV 5HODWLYH UHVLVWLYLW\ RI JMEUDVV ZW SHUFHQW ]LQFf YHUVXV ILYH PLQXWH DQQHDOLQJ WHPSHUDWXUHV 3HUFHQW UHVLVWDQFH FKDQJH RI JLEUDVV ZW SHUFHQW ]LQFf YHUVXV WLPH LQ PLQXWHV DW YDULRXV WHPSHUDWXUHV 5HODWLYH UHVLVWLYLW\ RI JMEUDVV ZW SHUFHQW ]LQFf YHUVXV WHPSHUDWXUH EHIRUH DQG DIWHU KHDWLQJ 5HODWLYH UHVLVWLYLW\ RI JMEUDVV ZW SHUFHQW ]LQFf YHUVXV WHPSHUDWXUH EHIRUH DQG DIWHU LUUDGLDWLRQ $0J YHUVXV LQWHJUDWHG QHXWURQ IOX[ ,OO $0J YHUVXV LQWHJUDWHG QHXWURQ IOX[ ORJDULWKPLF VFDOHf 7UDQVIRUPDWLRQ FXUYHV [

PAGE 11

)LJXUH 3DJH 6XSHUSRVLWLRQ RI D SHUFHQW WUDQVIRUPDWLRQ FXUYH ZLWK WKUHH GLIIHUHQW WHPSHUDWXUH FRHIILFLHQWV RI UHVLVWLYLW\ f 5HWDLQHG PDUWHQVLWH DW URRP WHPSHUDWXUH LQ SHUFHQW YHUVXV VKLIW RI 0 $0 f V V 2SWLFDO PLFURJUDSK RI 6MEUDVV ZW SHUFHQW ]LQFf VKRZLQJ M OLJKWf PDUWHQVLWH DQG D GDUNf SKDVH 2SWLFDO PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ JM OLJKWf PDUWHQVLWH DQG D GDUNf SKDVH 2SWLFDO PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf VKRZLQJ La OLJKWf PDUWHQVLWH DQG D GDUNf SKDVH [L

PAGE 12

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( ,1)/8(1&( 2) +($7 75($70(17 1(87521 ,55$',$7,21 $1' '()250$7,21 21 7+( 0$57(16,7,& 75$16)250$7,216 ,1 0(7$67$%/( JM%5$66 %\ -RKQ :D\QH 5RJHU 'HFHPEHU &KDLUPDQ 'U 5 ( +XPPHO 0DMRU 'HSDUWPHQW 0HWDOOXUJLFDO DQG 0DWHULDOV (QJLQHHULQJ $ VWXG\ ZDV PDGH RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQV LQ PHWDn VWDEOH %M&X=Q ZLWK WR ZW SHUFHQW ]LQFf WR GHWHUPLQH WKH HIIHFW RI UHSHDWHG WKHUPDO F\FOLQJ GHIRUPDWLRQ DQQHDOLQJ ERPn EDUGPHQW ZLWK IDVW QHXWURQV DQG WKH SUHVHQFH RI XQWUDQVIRUPDEOH SKDVHV RQ WKHVH WUDQVIRUPDWLRQV 7KH PDLQ WRRO XVHG WR PRQLWRU WKH WUDQVIRUPDWLRQV ZDV WKH PHDVXUHPHQW RI HOHFWULFDO UHVLVWDQFH ZKLFK ZDV FRPSOHPHQWHG E\ RSWLFDO DQG HOHFWURQ PLFURVFRS\ DQG [UD\ GLIn IUDFWLRQ DQDO\VLV 7KH SULQFLSDO FKDUDFWHULVWLFV RI WKH WUDQVIRUPDWLRQ RQ FRROLQJ GHWHUPLQHG IURP UHVLVWDQFH PHDVXUHPHQWV ZHUH IRXQG WR EH WKH 0 WHP V SHUDWXUH WKH WHPSHUDWXUH FRHIILFLHQW RI HOHFWULFDO UHVLVWLYLW\ RI WKH SKDVHV WKH DUHD RI WKH K\VWHUHVLV ORRS RI WKH SHUFHQWf WUDQVn IRUPDWLRQ FXUYH DQG WKH UDWH RI WUDQVIRUPDWLRQ 7KH 0 WHPSHUDWXUH ZDV IRXQG WR FKDQJH DFFRUGLQJ WR WKH WUHDW V PHQW JLYHQ WKH VDPSOH (ODVWLF GHIRUPDWLRQ DQG WKH SUHVHQFH RI UHn WDLQHG PDUWHQVLWH ZRXOG UDLVH WKH 0 7KH 0 WHPSHUDWXUH ZDV ORZHUHG V V DIWHU SODVWLF GHIRUPDWLRQ DQG QHXWURQ LUUDGLDWLRQ EXW ZDV QRW DIIHFWHG E\ KHDW WUHDWPHQWV XS WR r& [LL

PAGE 13

5HWDLQHG PDUWHQVLWH IRUPHG GXULQJ WKH ILUVW WKHUPDO F\FOH ZDV IRXQG WR EH SUHVHQW DW URRP WHPSHUDWXUH LQ VDPSOHV ZKLFK KDG DQ 0 WHPSHUDWXUH DERYH r& 7KH DPRXQW RI UHWDLQHG PDUWHQVLWH LQFUHDVHG ZLWK LQFUHDVLQJ 0AWHPSHUDWXUH 7KH VKLIW RI 0J EHWZHHQ WZR F\FOHV LV D OLQHDU IXQFWLRQ RI UHWDLQHG PDUWHQVLWH 7KH UHWDLQHG PDUWHQVLWH ZDV REVHUYHG WR JURZ DERYH WKH SUHYLRXVO\ IRXQG ,AWHPSHUDWXUH 8QWUDQVIRUPDEOH SKDVHV VXFK DV D DQG GHIRUPDWLRQPDUWHQVLWH DFWHG DV REVWDFOHV WR WKH IRUPDWLRQ RI ORZWHPSHUDWXUH PDUWHQVLWH $V WKH DPRXQW RI WKHVH SKDVHV LQFUHDVHG WKH DUHD RI WKH K\VWHUHVLV ORRS RI WKH WUDQVIRUPDWLRQ FXUYH LQFUHDVHG WKH PD[LPXP UDWH RI WUDQVn IRUPDWLRQ GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDWLRQ ZDV VSUHDG RYHU D ZLGHU UDQJH WKXV LQFUHDVLQJ WKH DPRXQW RI HQHUJ\ QHHGHG WR FRPSOHWH WKH WUDQVIRUPDWLRQ ,Q VDPSOHV ZKLFK ZHUH LUUDGLDWHG ZLWK IDVW QHXWURQV QR VXFK LQFUHDVH LQ WKH DUHD RI WKH K\VWHUHVLV ORRS ZDV GHWHFWHG VKRZLQJ WKDW WKH LUUDGLDWLRQ LQGXFHG GHIHFWV DUH RQO\ VPDOO GLVWXUEDQFHV 8VLQJ FROGVWDJH HOHFWURQ PLFURVFRS\ LW ZDV REVHUYHG WKDW PDUn WHQVLWH IRUPHG LPPHGLDWHO\ DIWHU D KHDY\ EHQGLQJ PRYHPHQW RI WKH IRLOV 'LIIHUHQFHV LQ WKH JURZWK PHFKDQLVP GXULQJ FRROLQJ DQG KHDWLQJ ZHUH IRXQG [LLL

PAGE 14

&+$37(5 ,1752'8&7,21 7KH IDFW WKDW PDQ\ DOOR\V DQG PHWDOV XQGHUJR D PDUWHQVLWLF WUDQVn IRUPDWLRQ KDV EHHQ RI JUHDW LQWHUHVW IRU D ORQJ WLPH 7KLV LQWHUHVW KDV VWHPPHG PDLQO\ IURP WKH VKHDUOLNH QDWXUH RI WKH WUDQVIRUPDWLRQ DQG WKH VRPHWLPHV HQKDQFHG SURSHUWLHV RI WKH WUDQVIRUPHG SKDVH VXFK DV WKH LQFUHDVHG KDUGQHVV RI WKH VWHHO PDUWHQVLWHV $ UHODWLYHO\ QHZ DQG HIIHFWLYH PHDQV RI LQIOXHQFLQJ D VWDWH RI PDWWHU WKDW FRXOG EH XVHG IRU VWXG\LQJ WKH QDWXUH RI SKDVH WUDQVIRUn PDWLRQV LV QHXWURQ LUUDGLDWLRQ ,W LV XVXDOO\ RI LQWHUHVW DV D PHWKRG RI LQWURGXFLQJ YDULRXV NLQGV RI GHIHFWV DQG SURGXFLQJ FHUWDLQ FKDQJHV LQ WKH SURSHUWLHV RI PHWDOV DQG DOOR\V +RZHYHU WKH LUUDGLDWLRQ PD\ DOWHU WKH VWDWH RI DQ LQLWLDO SKDVH DQG FDXVH VRPH FKDQJH LQ LWV VWDn ELOLW\ DQG WKXV DIIHFW WKH NLQHWLFV RI VXEVHTXHQW SKDVH WUDQVIRUPDn WLRQV 7KH VWULFWO\ UHJXODU GLUHFWHG VKLIW RI DWRPV LQ D PDUWHQVLWLF WUDQVIRUPDWLRQ LV H[WUHPHO\ VHQVLWLYH WR DQ\ GLVWXUEDQFH RI WKH ODWWLFH VWUXFWXUH LQ WKH RULJLQDO SDUHQW SKDVH ,QYHVWLJDWLRQV RI WKH HIIHFW RI LUUDGLDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ KDYH EHHQ GRQH RQ DOOR\HG VWHHOV ZKLFK ZHUH FRPSOH[ LQ ERWK EHKDYLRU DQG FRPSRVLWLRQ DQG WKH UHVXOWV ZHUH QRW DGHTXDWH WR JLYH D FRPSOHWH SLFWXUH RI WKH SURFHVVHV ZKLFK FDXVH FKDQJHV LQ WKH WUDQVIRUPDWLRQ 7KHUHIRUH LW ZDV IHOW WKDW IXUWKHU LUUDGLDWLRQ ZRUN ZDV QHHGHG RQ DQRWKHU PDUWHQVLWH V\VWHP ZKLFK LV QRQIHUURXV DQG ZRXOG KDYH OHVV YDULDEOHV 7KH &X=Q V\VWHP ZDV FKRVHQ

PAGE 15

4XHQFKHG ASKDVH &X=Q DOOR\V ZLWK FRPSRVLWLRQV IURP WR ZW SHUFHQW ]LQF XQGHUJR D PDUWHQVLWLF WUDQVIRUPDWLRQ ZKHQ WKH VDPSOHV DUH FRROHG WR VXE]HUR WHPSHUDWXUHV 7KH RFFXUUHQFH RI WKH WUDQVIRUPDWLRQ DW UHODWLYHO\ ORZ WHPSHUDWXUHV ZRXOG LQVXUH WKDW LPSHUIHFWLRQV LQWURGXFHG E\ URRPWHPSHUDWXUH LUUDGLDWLRQ ZRXOG QRW DQQHDO RXW &X=Q DOOR\V KDYH D UHODWLYHO\ ORZ UHVLGXDO UDGLRDFWLYLW\ DIWHU QHXWURQ ERPEDUGPHQW 7KH RQO\ LVRWRSH ZLWK D ORQJ KDOI OLIH LV WKH =Q ZLWK 7 GD\Vf 7KH SUHYLRXV VWXGLHV RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RI LaEUDVV KDYH FRQFHUQHG WKH FRPSRVLWLRQ GHSHQGHQFH RI WKH PDUWHQVLWLFVWDUW WHPn SHUDWXUH WKH FU\VWDO VWUXFWXUH RI WKH PDUWHQVLWH SKDVH WKH REVHUYDWLRQ RI WKH WUDQVIRUPDWLRQ E\ RSWLFDO PLFURVFRS\ DQG VRPH HIIHFWV RI GHIRUPDn WLRQ RQ WKH WUDQVIRUPDWLRQ 7KH SXUSRVH RI WKLV UHVHDUFK ZDV WR GHWHUPLQH WKH LQIOXHQFH RI KHDW WUHDWPHQW QHXWURQ LUUDGLDWLRQ DQG GHIRUPDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQV RI EUDVV DQG WR LQYHVWLJDWH ZKHWKHU QHXWURQ LUUDGLDn WLRQ FDXVHV WKH VDPH HIIHFWV DV FROGZRUNLQJ LEUDVV RU SURGXFHV HIn IHFWV VLPLODU WR WKRVH IRXQG IRU VWHHOV DQG LURQ DOOR\V 7KH WUDQVn IRUPDWLRQ ZDV PRQLWRUHG E\ KLJK SUHFLVLRQ HOHFWULFDO UHVLVWDQFH PHDVXUHn PHQWV 2SWLFDO DQG HOHFWURQ PLFURVFRS\ ZHUH DOVR XVHG WR VXSSOHPHQW WKH UHVLVWLYLW\ GDWD ,Q WKH FRXUVH RI WKH LQYHVWLJDWLRQ LW ZDV IRXQG WKDW YHU\ OLWWOH ZDV NQRZQ DERXW WKH FKDUDFWHULVWLF SURSHUWLHV RI WKH WUDQVIRUPDWLRQ DQG WKH SDUDPHWHUV ZKLFK ZHUH ODQGPDUNV RI WKH WUDQVIRUPDWLRQ 6WXGLHV WKHUHn IRUH ZHUH PDGH RQ WKH HIIHFW RI UHSHDWHG WKHUPDO F\FOLQJ ,W ZDV QHFHVn VDU\ WR NQRZ KRZ WKH FKDUDFWHULVWLFV RI WKH WUDQVIRUPDWLRQ ZRXOG EH DIn IHFWHG LI WKH VDPSOHV ZHUH WUDQVIRUPHG VHYHUDO WLPHV VR WKDW DQ\ HIIHFW GXH WR LUUDGLDWLRQ ZRXOG EH VHSDUDWHG IURP WKH F\FOLQJ HIIHFW 7KH HIIHFW

PAGE 16

RI DQ DGGHG QRQWUDQVIRUPDEOH SKDVH RQ WKH WUDQVIRUPDWLRQ ZDV VWXGLHG 'XH WR WKH PRGH RI TXHQFKLQJ DSKDVH FRXOG DOZD\V EH SUHVHQW DORQJ ZLWK WKH %LWUDQVIRUPDEOH SKDVH 7KLV VWXG\ ZDV DOVR KHOSIXO LQ WKH LQWHUSUHWDWLRQ RI UHVXOWV JDLQHG E\ GHIRUPDWLRQ 6LQFH LW KDG EHHQ QRWLFHG LQ H[SHULPHQWV FRQFHUQLQJ UDGLDWLRQ GDPDJH WKDW GHIRUPDWLRQ FDXVHG WKH VDPH HIIHFWV DV QHXWURQ LUUDGLDWLRQ WKH LQIOXHQFH RI GHn IRUPDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ ZDV LQYHVWLJDWHG 7KHVH SUHOLPLQDU\ VWXGLHV SURYLGHG D EHWWHU EDVLV IRU WKH LQWHUSUHWDWLRQ RI SURSHUW\ FKDQJHV ZKLFK RFFXUUHG GXH WR QHXWURQ ERPEDUGPHQW RI DOn OR\V ZLWK PDUWHQVLWLF WUDQVIRUPDWLRQV 7KH UHVXOWV RI WKLV LQYHVWLJDWLRQ ZLOO SURYLGH DQ XQGHUVWDQGLQJ RI WKH HIIHFW RI PDQ\ FRQWUROOHG YDULDEOHV RQ WKH PDUWHQVLWLF WUDQVn IRUPDWLRQ LQ IAEUDVV ZLOO DOORZ DQ XQGHUVWDQGLQJ RI WKH EDVLF WUDQVn IRUPDWLRQ DQG ZLOO SURYLGH NQRZOHGJH RI WKH HIIHFW RI QHXWURQ LUn UDGLDWLRQ RQ PDUWHQVLWLF WUDQVIRUPDWLRQV

PAGE 17

&+$37(5 ,, 6859(< 2) 35(9,286 :25. 7KLV FKDSWHU ZLOO SURYLGH D VXPPDU\ RI WKH W\SHV RI VWXGLHV PDGH RQ %LEUDVV DQG LWV PDUWHQVLWLF WUDQVIRUPDWLRQV 7KH SUHYLRXV LQYHVWLn JDWLRQV FRQFHUQLQJ WKH HIIHFW RI LUUDGLDWLRQ RQ PDUWHQVLWLF WUDQVIRUn PDWLRQV DUH DOVR JLYHQ $SSHQGL[ JLYHV PRUH GHWDLOV DERXW PDUWHQVLWLF WUDQVIRUPDWLRQV DQG GLVFXVVHV IHUURXV DOOR\ PDUWHQVLWLF WUDQVIRUPDWLRQV ZKHUH VLPLODU VWXGLHV ZHUH QRW PDGH RQ LaEUDVV +LVWRULFDO ,QIRUPDWLRQ 0DUWHQVLWH RULJLQDOO\ FRQVLGHUHG MXVW D KDUG FRQVWLWXHQW LQ VWHHO ZDV QDPHG LQ KRQRU RI $ 0DUWHQV D *HUPDQ PHWDOOXUJLVW DV SURSRVHG E\ 2VPRQG LQ ,Q 7URLDQR DQG *UHQLQJHU f VXJJHVWHG WKDW WKH GLIIXVLRQn OHVV UHDFWLRQV IRXQG LQ WKH QRQIHUURXV DOOR\V DUH VLPLODU WR WKH PDUn WHQVLWH UHDFWLRQ LQ VWHHO DQG WKDW WKHVH WUDQVIRUPDWLRQV VKRXOG EH UHIHUUHG WR DV PDUWHQVLWLF 3XUH PHWDOV DQG DOOR\V IRXQG WR KDYH D PDUWHQVLWLF WUDQVIRUPDWLRQ DUH 1D &X6L )H 5H0J /L0J 8&U /L &X=Q*D )H1L 7L &U0Q 1+ 12 =U $J&G )H0Q ,Q7L $U %D7L &X=Q $J6Q )H& ,Q7D $U1 .1E &X6Q $J6E )H1L0Q ,Q&G ,U&G 96L &X$O $X=Q )H1L& 7L0Q &R $X&X=Q &X0Q $X&G )H&U1L 7L1L &R1L &X1L$O &X*D $X0Q )H7L 7L0R $OEURQ]H DQG RWKHU WHUQDULHV LQYROYLQJ WKH DERYH V\VWHPV

PAGE 18

7KH SUHYLRXV OLVW LV SRVVLEO\ QRW FRPSOHWH EXW GRHV FRQWDLQ PRVW RI WKH V\VWHPV ZKHUH LQIRUPDWLRQ KDV EHHQ SXEOLVKHG $OPRVW DOO RI WKH UHIHUHQFHV IRU WKH VWXGLHV RI WKHVH V\VWHPV FDQ EH IRXQG LQ WKH VXUn YH\V JLYHQ E\ &KULVWLDQ f DQG %DUUHWW DQG 0DVVDOVNL f *HQHUDO )HDWXUHV RI 0DUWHQVLWH 7UDQVIRUPDWLRQV 3KDVH WUDQVIRUPDWLRQV LQ PHWDOOLF V\VWHPV DUH XVXDOO\ FRQVLGHUHG WR EH HLWKHU QXFOHDWLRQDQGJURZWK WUDQVIRUPDWLRQV RU PDUWHQVLWLF WUDQVIRUPDWLRQV 7KH QXFOHDWLRQDQGJURZWK SURFHVVHV DUH FRQVLGHUHG WR EH LVRWKHUPDO WUDQVIRUPDWLRQV LQ WKDW WKH WUDQVIRUPDWLRQ FDQ WDNH SODFH DW FRQVWDQW WHPSHUDWXUH ZLWK WKHUPDO DFWLYDWLRQ DQG GLIIXVLRQ SOD\LQJ WKH LPSRUWDQW SDUWV ,Q JHQHUDO WKH FKDUDFWHULVWLFV RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQV KDYH EHHQ WKDW LW LV GLIIXVLRQOHVV LQWHUFKDQJH RI DWRPV RYHU D GLVn WDQFH OHVV WKDQ WKH LQWHUDWRPLF VSDFLQJf LW LV DWKHUPDO WUDQVIRUPDn WLRQ RFFXUULQJ ZLWK FKDQJLQJ WHPSHUDWXUH DQG WUDQVIRUPDWLRQ VWRSV ZKHQ WHPSHUDWXUH FKDQJH LV KDOWHGf WKH WUDQVIRUPLQJ UHJLRQ XQGHUJRHV D FKDQJH LQ VKDSH WKHUH LV D GHILQLWH RULHQWDWLRQ UHODWLRQVKLS EHWZHHQ WKH SURGXFW DQG SDUHQW SKDVH DQG WKH WUDQVIRUPDWLRQ LV DLGHG E\ FROG ZRUN %HFDXVH RI H[FHSWLRQV WR PDQ\ RI WKH DERYH FKDUDFWHULVWLFV PDUWHQVLWLF QRZ XVXDOO\ UHIHUV WR GLIIXVLRQOHVV WUDQVIRUPDWLRQV KDYLQJ PDFURVFRSLF VKHDU RU D VKDSH GLVWRUWLRQ 7KH IROORZLQJ LWHPV DUH DOVR REVHUYHG LQ PDUWHQVLWLF WUDQVIRUPDn WLRQV 7KH LQWHUFKDQJH RI DWRPV WDNHV SODFH WKURXJK WKH SURSDJDWLRQ RI D VHPLFRKHUHQW LQWHUIDFH ,W LV DVVXPHG WKDW WKLV LQWHUIDFH PXVW EH FRPSRVHG RI GLVORFDWLRQV ZKRVH PRYHPHQW SHUPLWV WKH PDUWHQVLWLF SURGXFW WR IRUP UDSLGO\ DW DQ\ WHPSHUDWXUH 7KH PDUWHQVLWH SODWHV LQ PDQ\ DOOR\V FRQWDLQ D ILQH VWUXFWXUH RI VOLS EDQGV RU WZLQV DV D

PAGE 19

GLUHFW UHVXOW RI WKLV WUDQVIRUPDWLRQ PHFKDQLVP ,Q DOOR\V ZKLFK DUH RUGHUHG WKH PDUWHQVLWH SKDVH KDV EHHQ IRXQG WR EH RUGHUHG 7KH D PRXQW RI WUDQVIRUPDWLRQ LV FKDUDFWHULVWLF RI WHPSHUDWXUH SURYLGHG RWKHU YDULDEOHV VXFK DV JUDLQ VL]H DUH KHOG FRQVWDQW 7KHUH LV QR GHSHQGHQFH RQ FRROLQJ UDWH IRU WKH WUDQVIRUPDWLRQ 0DUWHQVLWLF UHn DFWLRQV DUH UHYHUVLEOH LQ WKH VHQVH WKDW DQ LQLWLDO DWRPLF FRQILJXUDn WLRQ FDQ EH UHSHDWHGO\ REWDLQHG 7KHUPRG\QDPLFDOO\ WKH WUDQVIRUPDn WLRQ LV QRW UHYHUVLEOH DV VHHQ E\ WKH K\VWHUHVLV ORRS DQG WKH HQHUJ\ GLVVLSDWLRQ ,W LV DVVXPHG WKDW WKH SODWHV ZKLFK IRUP RQ FRROLQJ KDYH WKH VDPH VL]H DQG VKDSH DQG DSSHDU LQ WKH VDPH UHJLRQV RI WKH RULJLQDO FU\VWDO 7KH 3KDVHV ,QYROYHG LQ WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ RI %L%UDVV )LJXUH VKRZV D SRUWLRQ RI WKH &X=Q SKDVH GLDJUDP 7KH V\PEROV XVHG WR GHVLJQDWH WKH YDULRXV SKDVHV FRQFHUQHG ZLWK WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ AEUDVV KDYH EHHQ JLYHQ E\ VHYHUDO DXWKRUV 'LVRUGHUHG ERG\ FHQWHUHG FXELF EUDVV L 2UGHUHG ERG\ FHQWHUHG FXELF EUDVV 0DUWHQVLWH IRUPHG E\ FRROLQJ f D )DFH FHQWHUHG FXELF DEUDVV DM 0DUWHQVLWH IRUPHG RQ GHIRUPDWLRQ f DP 0DVVLYHO\ WUDQVIRUPHG EUDVV f 7KH DERYH ZHUH WKRVH SKDVHV LQYROYHG LQ WKLV LQYHVWLJDWLRQ 7KH IROn ORZLQJ SKDVHV DUH WKRVH PHQWLRQHG LQ RWKHU VWXGLHV Dn 4XHQFKHG PDUWHQVLWHIDFH FHQWHUHG WHWUDJRQDO f D 4XHQFKHG PDUWHQVLWH ZLWK XQNQRZQ VWUXFWXUH f D 7UDQVLWLRQ SKDVH EHWZHHQ L DQG f n %DLQLWH VWUXFWXUH f

PAGE 20

WHPSHUDWXUD f F 52 f§f§ :(,*+7 3(5 &(17 ,+& ‘! )LJXUH &X=Q ELQDU\ V\VWHP

PAGE 21

L 7UDQVLWLRQ ODWWLFH EHWZHHQ ? DQG f n 7KHRUHWLFDO PDUWHQVLWH SKDVH EH\RQG f 7KH 2UGHU'LVRUGHU 7UDQVIRUPDWLRQ $ERYH r& WR r& WKH SKDVH LQ &X=Q LV GLVRUGHUHG ERG\ FHQWHUHG FXELF %HORZ WKHVH WHPSHUDWXUHV LW LV RUGHUHG ERG\ FHQWHUHG FXELF DQG KDV WKH FHVLXP FKORULGH VWUXFWXUH $V LV ZHOO NQRZQ WKH RUGHULQJ LV IRXQG WR RFFXU VR UDSLGO\ WKDW HYHQ UDSLG TXHQFKLQJ FDQQRW VXSSUHVV WKH RUGHULQJ 7KH RUGHUGLVRUGHU WUDQVIRUPDWLRQ LV LQGLFDWHG LQ SKDVH GLDJUDPV E\ D VLQJOH OLQH UXQQLQJ IURP r& WR r& LQ WKH SKDVH UHJLRQ :RUN KDV LQGLFDWHG WKDW SHUKDSV DQG L ILHOGV DUH VHSDUDWHG E\ D QRUPDO WZRSKDVH ILHOG Lf f 7KH 0DVVLYH 7UDQVIRUPDWLRQ ,Q RUGHU WR REWDLQ WKH WUDQVIRUPDEOH LH PHWDVWDEOHf LBSKDVH WKH DOOR\ PXVW EH TXHQFKHG IURP WKH JUHJLRQ 7KH FRPSRVLWLRQ RI WKH DOOR\ EHIRUH TXHQFKLQJ LV YHU\ LPSRUWDQW VLQFH QRW DOO JADOOR\V WUDQVn IRUP WR FRROLQJ PDUWHQVLWH DQG EHFDXVH RI WKH PDVVLYH WUDQVIRUPDWLRQ 3KLOOLSV f ILUVW UHSRUWHG WKDW &X=Q FRQWDLQLQJ EHWZHHQ DQG ZW SHUFHQW ]LQF ZKHQ TXHQFKHG IURP WKH UHJLRQ ZRXOG JLYH D XQLIRUP D VWUXFWXUH $V WKHUH KDV EHHQ D TXHVWLRQ RQ WKH ORFDWLRQ RI WKH ERXQGDU\ EHWZHHQ WKH D DQG D UHJLRQ 3KLOOLSV SURSRVHG WKDW WKH VLQJOH SKDVH D UHJLRQ OLHV EHORZ ZW SHUFHQW ]LQF DQG WKDW WKH DERYH PHQWLRQHG ERXQGDU\ LV D VWUDLJKW OLQH DW WKH ZW SHUn FHQW ]LQF FRPSRVLWLRQ 7KLV WUDQVIRUPDWLRQ IURP WR D ZDV VHHQ WR RFFXU ZLWK JUHDW VSHHG GXULQJ FRROLQJ 7KH VWUXFWXUHV REWDLQHG ZKHQ ORZ ]LQF FRQWHQW EUDVV ZDV TXHQFKHG LQ GLIIHUHQW PDQQHUV KDV EHHQ GLVFXVVHG E\ 6FKLPPHO f 7KH DOOR\

PAGE 22

ZDV ZW SHUFHQW ]LQF UHVW FRSSHU ZKLFK LV SKDVH IURP r& WR r& DQG D EHORZ r& 2Q TXHQFKLQJ IURP r& WKHUH ZDV D FRQVLGn HUDEOH TXDQWLW\ RI ILQHO\ SUHFLSLWDWHG D GLVVHPLQDWHG WKURXJK WKH FU\VWDOV ZLWK D OLWWOH PDVVLYH D DORQJ WKH JUDLQ ERXQGDULHV 2Q TXHQFK LQJ IURP r& WKHUH ZHUH ODUJH FU\VWDOV ZLWK D IHDWKHUOLNH D DORQJ WKH JUDLQ ERXQGDULHV :LWK D PRUH GUDVWLF TXHQFK WKHUH ZDV D PRUH JHQHUDO SUHFLSLWDWH RI D SDUWLFOHV ZLWK DFWXDOO\ PRUH D SUHVHQW WKDQ EHIRUH :LWK DQ H[WUHPHO\ UDSLG TXHQFK WKH VWUXFWXUH EHFDPH DOO D 7KH H[SODQDWLRQ RI WKHVH VWUXFWXUHV ZDV WKDW ZLWK FRROLQJ DW D PRGHUDWH UDWH WKH WUDQVIRUPDWLRQ IURP WR D PXVW WDNH SODFH E\ GLIIXVLRQ DQG WKH WLPH ZLOO QRW EH ORQJ HQRXJK IRU WKLV ,I WKH SKDVH LV FRROHG UDSLGO\ EHORZ r& QR GLIIXVLRQ LV UHTXLUHG IRU WKH WUDQVIRUPDWLRQ DQG LW UHTXLUHG VFDUFHO\ DQ\ WLPH ZLWK RQO\ WKH VWUXFWXUH FKDQJH RI r‘ D 7KH DERYHPHQWLRQHG WUDQVIRUPDWLRQ LQ LEUDVV ZDV UHFRJQL]HG DV D PDVVLYH WUDQVIRUPDWLRQ E\ +XOO DQG *DUZRRG f $ VWXG\ RI DOOR\V WKDW H[KLELW WKH PDVVLYH WUDQVIRUPDWLRQ E\ 0DVVDOVNL f UHDIILUPHG WKDW DOOR\V LQ WKH ORZ ]LQF UDQJH RI @ EUDVV WUDQVIRUPHG LQWR D IDFHFHQWHUHG FXELF SKDVH RQ TXHQFKLQJ 7KLV VWUXFWXUH REWDLQHG E\ WKH PDVVLYH WUDQVIRUPDWLRQ ZDV UHJDUGHG DV D VXSHUVDWXUDWHG H[WHQVLRQ RI WKH HTXLOLEULXP D SKDVH )RU D 2 TXHQFKHG DOOR\ RI ZW SHUFHQW ]LQF D ZDV IRXQG WR EH $ 5HFHQW ZRUN RQ PDVVLYH WUDQVIRUPDWLRQV f VKRZHG WKDW WKH JURZn LQJ FU\VWDOV RI WKH PDVVLYH SKDVH FURVV WKH SULRU JUDLQ ERXQGDULHV RI WKH SDUHQW SKDVH :KLOH WKH ILQDO SURGXFW RI WKH PDVVLYH WUDQVIRUn PDWLRQ LV XVXDOO\ WKH HTXLOLEULXP SKDVH FRUUHVSRQGLQJ WR D ORZHU WHPSHUDWXUH WKH DFWXDO UHDFWLRQ PD\ ZHOO RFFXU DW PXFK KLJKHU

PAGE 23

WHPSHUDWXUHV IURP ZKLFK VORZ FRROLQJ ZRXOG SURGXFH D WZRSKDVH PL[WXUH 7KH PDVVLYH WUDQVIRUPDWLRQV UHTXLUH FHUWDLQ FULWLFDO FRQGLWLRQV RI VXSHUVDWXUDWLRQ DQG TXHQFKLQJ UDWHV 3UREDEO\ WKH NLQHWLFV RI WKH PDVn VLYH WUDQVIRUPDWLRQ ZRXOG EH LQWHUPHGLDWH EHWZHHQ WKDW RI DQ HTXLOLEULXP UHDFWLRQ DQG WKDW RI D SRVVLEOH PDUWHQVLWLF WUDQVIRUPDWLRQ 0DUWHQVLWH )RUPHG E\ &RROLQJ %L%UDVV 0DUWHQVLWH LV IRUPHG ZKHQ DOOR\V RI %LaEUDVV ZLWK WR ZW SHUn FHQW ]LQF DUH FRROHG WR VXE]HUR WHPSHUDWXUHV 7KH ILUVW PHQWLRQ RI WKLV W\SH RI WUDQVIRUPDWLRQ LQ %EUDVV ZDV PDGH E\ .DPLQVNL DQG .XUGMXPRY f LQ EXW ZDV QRW UHFRJQL]HG DV D PDUWHQVLWLF WUDQVIRUPDWLRQ XQWLO ODWHU ,Q *UHQLQJHU DQG 0RRUD GLDQ f DOVR QRWHG WKLV WUDQVIRUPDWLRQ RQ FRROLQJ EXW GLG QRW REVHUYH D FULWLFDO WHPSHUDWXUH IRU WKH WUDQVIRUPDWLRQ %DVVL DQG 6WURP f 0DVVDOVNL DQG %DUUHWW f DQG 3RSV DQG 0DVVDOVNL f IRXQG WKDW DOn OR\V RI %LaEUDVV ZLWK PRUH WKDQ ZW SHUFHQW ]LQF GR QRW WUDQVIRUP WR PDUWHQVLWH RQ FRROLQJ 7KH &KDUDFWHULVWLF 7HPSHUDWXUHV RI WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ 7KH WHPSHUDWXUH DW ZKLFK PDUWHQVLWLF QXFOHL VWDUW JURZLQJ f KDV EHHQ GHVLJQDWHG DV 0J ,Q VRPH LURQQLFNHO DOOR\V D ODUJH DPRXQW RI PDUWHQVLWH ZLOO IRUP DW RQH WLPH LQ D EXUVW :KHQ D EXUVWW\SH PDUn WHQVLWH RFFXUV DIWHU WKH 0AWHPSHUDWXUH D WHPSHUDWXUH 0A LV GHVLJQDWHG DV WKH PDUWHQVLWH EXUVW WHPSHUDWXUH f 0A LV WKH WHPSHUDWXUH DW ZKLFK WKH WUDQVIRUPDWLRQ LV FRPSOHWH $J LV WKH WHPSHUDWXUH DW ZKLFK WKH SDUHQW SKDVH VWDUWV UHIRUPLQJ RQ KHDWLQJ DQG $A LV WKH WHPSHUDn WXUH DW ZKLFK WKH SDUHQW SKDVH KDV FRPSOHWHO\ UHf§IRUPHG 7LWFKHQHU DQG %HYHU f VWXGLHG WKH WHPSHUDWXUH UDQJH RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ DV D IXQFWLRQ RI FRPSRVLWLRQ LQ %AEUDVV

PAGE 24

7KH FRPSRVLWLRQV RI WKH VDPSOHV XVHG ZHUH IURP WR ZW SHUn FHQW ]LQF ,W ZDV VKRZQ WKDW WKH 0AWHPSHUDWXUH GHFUHDVHG ZLWK GHFUHDVn LQJ FRSSHU FRQWHQW 0VaWHPSHUDWXUH RI WKH VDPSOHV UDQJHG IURP DERXW r& WR r& (OHFWULFDO UHVLVWLYLW\ PHDVXUHPHQWV ZHUH XVHGDQG 0J ZDV GHILQHG WR EH WKDW WHPSHUDWXUH DW ZKLFK WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH RQ FRROLQJ GHYLDWHG IURP D VWUDLJKW OLQH %HFDXVH RI D ODFN RI DFFXUDF\ WKH WHPSHUDWXUH RI PLQLPXP UHVLVWLYLW\ ZDV WDNHQ IRU 0 7KH V SORW RI 0JWHPSHUDWXUH YHUVXV ]LQF FRQWHQW KDG D VRPHZKDW GLIIHUHQW VORSH WKDQ WKH VORSH RI D VLPLODU FXUYH JLYHQ E\ .XUGMXPRY f 3RSV DQG 0DVVDOVNL f SURSRVHG WKDW WKHUH ZHUH WZR VWDJHV LQ WKH WUDQVIRUPDWLRQ $ WKHUPRHODVWLF SKDVH DSSHDUHG DQG GLVDSSHDUHG DV FRROHG DQG UHKHDWHGf IRUPHG LQLWLDOO\ DW WKH 0 WHPSHUDWXUH 2Q IXUWKHU V FRROLQJ DQ DGGLWLRQDO PDUWHQVLWLF SKDVH IRUPHG LQ UDSLG EXUVWV DW WKH ORZHU WHPSHUDWXUH 0J 7KH 0JWHPSHUDWXUH ZDV FRQVLGHUHG WR EH WKH WHPn SHUDWXUH DW ZKLFK WKH ILUVW HYLGHQFH RI PDUWHQVLWH ZDV RSWLFDOO\ VHHQ 7KLV WHPSHUDWXUH FRXOG QRW EH REVHUYHG IURP WKHLU UHVLVWLYLW\ GDWD 7KH 0JWHPSHUDWXUH DV REWDLQHG IURP WKH RSWLFDO PLFURVFRS\ ZDV VDLG WR EH HTXLYDOHQW WR WKH PLQLPXP WHPSHUDWXUH RI WKH UHVLVWLYLW\WHPn SHUDWXUH FXUYH 3RSV DQG 0DVVDOVNL DOVR FRQFOXGHG WKDW WKH 0JWHPSHU DWXUHV IRXQG E\ 7LWFKHQHU DQG %HYHU ZHUH DFWXDOO\ 0AWHPSHUDWXUHV 7KH .LQHWLFV RI WKH 7UDQVIRUPDWLRQ DQG *URZWK RI WKH 0DUWHQVLWH 3KDVH 7KH PDUWHQVLWLF WUDQVIRUPDWLRQ RI AEUDVV LV DWKHUPDO WKDW LV WKH WUDQVIRUPDWLRQ RQO\ SURFHHGV ZLWK D ORZHULQJ RI WKH WHPSHUDWXUH 7KH WLPH DW D FHUWDLQ WHPSHUDWXUH RU GXULQJ FRROLQJ KDV QR HIIHFW RQ WKH IUDFWLRQ WUDQVIRUPHG +XOO DQG *DUZRRG f DQG 3RSV DQG 0DVVDOVNL f REVHUYHG WKH JURZWK RI WKH PDUWHQVLWH LQ GHWDLO XVLQJ FROGVWDJH RSWLFDO PLFURVFRS\

PAGE 25

)LUVW VHHQ ZHUH WKLQ QHHGOHV ZKLFK JUHZ LQ WKH OHQJWKZLVH GLUHFWLRQ DQG WKHQ WKLFNHQHG VORZO\ 7KH SODWHV GLG QRW UHDFK WKHLU ILQDO VL]H DW RQFH EXW GLG GHILQLWHO\ JURZ ZKHQ WKH WHPSHUDWXUH ZDV ORZHUHG 7KH &U\VWDOORJUDSK\ RI WKH 0DUWHQVLWH 3KDVH )RUPHG E\ &RROLQJ .DPLQVNL DQG .XUGMXPRY f DQG *UHQLQJHU DQG 0RRUDGLDQ f GHn WHUPLQHG LQ HDUO\ ZRUN WKDW WKH VWUXFWXUH RI WKH PDUWHQVLWH ZDV QHDU WKDW RI D IDFH FHQWHUHG WHWUDJRQDO ODWWLFH 8VLQJ JMEUDVV FRQWDLQLQJ DSSUR[LPDWHO\ ZW SHUFHQW ]LQF *DUZRRG DQG +XOO f HPSOR\HG D /DXH [UD\ PHWKRG WR GHWHUPLQH WKH ODWWLFH RULHQWDWLRQ UHODWLRQVKLS EHWZHHQ WKH PDUWHQVLWH DQG WKH SDUHQW SKDVH 7KH YDOXHV REWDLQHG ZHUH VHHQ WR EH WKH VDPH DV H[LVW LQ WKH PDUWHQVLWH WUDQVIRUPDWLRQ LQ WKH &X$O V\VWHP :KHQ WKH PHDVXUHG VKHDU ZDV DSSOLHG WR D WKHRUHWLFDO XQLW FHOO RI WKH J ODWWLFH D ERG\ FHQWHUHG WULFOLQLF ODWWLFH ZDV SURGXFHG ZKLFK GLG QRW DJUHH ZLWK H[n SHULPHQWDO UHVXOWV *DUZRRG DQG +XOO DVVXPHG WKDW WKH ODWWLFH RI WKH PDUWHQVLWH SKDVH ZRXOG EH FORVHSDFNHG EHFDXVH RI WKH LGHQWLILFDWLRQ RI D SURPLQHQW EDVDO SODQH LQ HDFK PDUWHQVLWH SODWH 7KH\ IHOW WKDW LQ YLHZ RI WKH GLIIXVLRQOHVV QDWXUH RI WKH WUDQVIRUPDWLRQ DW VXE]HUR WHPSHUDWXUHV WKDW WKH RUGHUHG VWUXFWXUH ZKLFK LV QRW VXSSUHVVHG E\ TXHQFKLQJ ZRXOG EH UHWDLQHG LQ WKH PDUWHQVLWH SURGXFW ,Q RWKHU DOOR\ V\VWHPV WKHUH DUH IDXOWV LQ WKH VWDFNLQJ VHTXHQFH RI WKH PDUWHQVLWH SKDVH DIWHU WKH WUDQVIRUPDWLRQ f 7KHVH IDXOWV PD\ DOVR EH SUHVHQW LQ WKLV V\VWHP 'LVWRUWLRQV RI WKHVH W\SHV DUH PDLQO\ UHVSRQVLEOH IRU WKH FRPSOH[LW\ RI WKH [UD\ VSHFWUD UHSRUWHG IRU WKH ORZWHPSHUDWXUH PDUWHQVLWH -ROOH\ DQG +XOO f GHWHUPLQHG IURP [UD\ DQG HOHFWURQ GLIIUDFn WLRQ GDWD WKDW WKH PDUWHQVLWH REWDLQHG RQ FRROLQJ D JMEUDVV VDPSOH

PAGE 26

FRQWDLQLQJ DSSUR[LPDWHO\ ZW SHUFHQW ]LQF KDG DQ RUWKRUKRPELF FU\VWDO VWUXFWXUH 8VLQJ WKHVH DQG RWKHU GDWD WKH\ DSSOLHG WKH :HFKVOHU /LHEHUPDQ DQG 5HDG WKHRU\ 7KH FDOFXODWHG KDELW SODQH FRPSDUHG IDYRUDEO\ WR WKH H[SHULPHQWDOO\ GHWHUPLQHG KDELW SODQH ,Q D YHU\ GHWDLOHG FU\VWDOORJUDSKLF VWXG\ ZLWK [UD\ PHDVXUHPHQWV DW ORZ WHPSHUDWXUHV .XQ]H f VKRZHG D PRQRFOLQLF DOVR FDOOHG ERG\ FHQWHUHG SVHXGRUKRPELFf WUDQVLWLRQ ODWWLFH ^f EHWZHHQ SDUHQW DQG PDUn WHQVLWLF SKDVH f 7KH VXSHUODWWLFH FHOO RI WKH PDUWHQVLWH SKDVH ZDV VDLG WR EH WULFOLQLF IDFHFHQWHUHG RQ RQH IDFH SVHXGRPRQRFOLQLFf $ERXW SHUFHQW RI WKLV WUDQVLWLRQ ODWWLFH ZDV DOZD\V SUHVHQW ZLWK WKH PDUWHQVLWH DW OLTXLG QLWURJHQ WHPSHUDWXUH 'HIRUPDWLRQ *UHQLQJHU DQG 0RRUDGLDQ f QRWLFHG PDUNLQJV LQ GHIRUPHG EUDVV FRQWDLQLQJ ZW SHUFHQW ]LQF DQG GHWHUPLQHG WKH FU\VWDOn ORJUDSKLF GLUHFWLRQV WR ZKLFK WKHVH PDUNLQJV ZHUH SDUDOOHO ;UD\ ZRUN RQ KDPPHUHG SRZGHU VDPSOHV VKRZHG VRPH OLQHV FRUUHVSRQGLQJ WR D IDFHFHQWHUHG WHWUDJRQDO VWUXFWXUH 5H\QROGV DQG %HYHU f HODVWLFDOO\ FRPSUHVVHG D LEUDVV VDPSOH FRQWDLQLQJ DSSUR[LPDWHO\ ZW SHUFHQW ]LQF DQG WKHUHIRUH LQGXFHG SODWHV RI GHIRUPDWLRQ PDUWHQVLWH $IWHU WKH VWUHVV ZDV UHOHDVHG WKH SODWHV GLVDSSHDUHG :KHQ VDPSOHV ZHUH VWUHVVHG DQG XQVWUHVVHG LQ VXFn FHVVLYH F\FOHV WKH SODWHV DSSHDUHG LQ WKH VDPH ORFDWLRQV 7KH\ DOVR FRROHG D VSHFLPHQ ZKLFK KDG UHVLGXDO VWUDLQLQGXFHG PDUWHQVLWH SODWHV $V WKH VSHFLPHQ ZDV FRROHG EHORZ URRP WHPSHUDWXUH VRPH RI WKH SODWHV LQFUHDVHG LQ VL]H DQG RWKHUV ZHUH IRUPHG 7KH WKHUPDOO\ LQGXFHG DQG VWUDLQLQGXFHG SODWHV KDG D VLPLODU PHWDOORJUDSKLF DSSHDUDQFH ,W ZDV FRQFOXGHG WKDW VWUDLQLQGXFHG PDUWHQVLWH ZDV PHFKDQLFDOO\ UHYHUVLEOH ZLWK FRQVLGHUDEO\ K\VWHUHVLV DQG WKDW HODVWLF VWUHVVHV ZHUH RSHUDWLYH

PAGE 27

LQ WKLV UHYHUVDO 6XRQLQHQ *HQHYUD\ DQG %HYHU f LQYHVWLJDWHG WKH HIIHFW RI HODVWLF VWUHVV RQ WKH WUDQVIRUPDWLRQ ,W ZDV VKRZQ WKDW WKH 0VaWHPSHUDWXUH LQFUHDVHG ZLWK LQFUHDVLQJ VWUHVV $OVR DQ DOOR\ FRQn WDLQLQJ DSSUR[LPDWHO\ ZW SHUFHQW ]LQF ZDV SDUWLDOO\ WUDQVIRUPHG E\ FRROLQJ LW XQGHU VWUHVV 7KH VWUHVV ZDV UHOHDVHG DQG WKH PDUWHQn VLWH GLVDSSHDUHG $IWHU IXUWKHU FRROLQJ WKH PDUWHQVLWH VWDUWHG IRUPn LQJ DV XVXDO 7KLV ZDV FRQVLGHUHG WR EH FRQVLVWHQW ZLWK WKH FRQFHSW RI WKHUPRHODVWLF PDUWHQVLWH ILUVW FRQVLGHUHG E\ .XUGMXPRY f DQG FRQILUPHG E\ .XUGMXPRY DQG .KDQGUDV f 0DVVDOVNL DQG %DUUHWW f VWXGLHG WKH HIIHFW RI FROG ZRUN RQ WKH WUDQVIRUPDWLRQ LQ JMEUDVV DOOR\V ZLWK FRPSRVLWLRQV IURP WR ZW SHUFHQW ]LQF $OOR\V ZKLFK ZRXOG QRW WUDQVIRUP RQ FRROLQJ LH DERYH ZW SHUFHQW ]LQF ZHUH VHHQ WR WUDQVIRUP RQ FROG ZRUN $OO WKH DOOR\V GLG WUDQVIRUP RQ FROG ZRUN HYHQ WKRXJK LQ VRPH FDVHV ORZ WHPSHUDWXUHV ZHUH UHTXLUHG $ WHPSHUDWXUH 0A KDV EHHQ GHILQHG E\ 0F5H\QROGV f DV ZDV SUHYLRXVO\ GRQH LQ DQ )H1L DOOR\ DV EHLQJ WKH WHPSHUDWXUH DERYH ZKLFK QR PDUWHQVLWH ZLOO EH IRUPHG RQ GHIRUPDn WLRQ 7KH 0SWHPSHUDWXUHV ZHUH GHWHUPLQHG IRU VRPH RI WKH KLJK ]LQF FRQWHQW DOOR\V DQG D SORW ZDV PDGH RI 0AWHPSHUDWXUH YHUVXV ]LQF FRQn WHQW 7KH VWUXFWXUH RI WKH GHIRUPDWLRQ PDUWHQVLWH ZDV IRXQG WR EH IDFHFHQWHUHG FXELF ZLWK VWDFNLQJ IDXOWV IRU WKH ORZHU SHUFHQW ]LQF DOOR\V DQG KH[DJRQDO FORVH SDFNHG IRU WKH KLJKHU SHUFHQW ]LQF DOOR\V 7KH IDFHFHQWHUHG FXELF VWUXFWXUH KDG SDUDPHWHUV WKDW FRXOG EH H[WUDn SRODWHG IURP WKH DSKDVH UHJLRQ DVVXPLQJ OLQH VKLIWV IURP WKH VWDFNLQJ IDXOWV )RU DOOR\V ZLWK FRPSRVLWLRQV DERYH ZW SHUFHQW ]LQF WKH WUDQVIRUPDWLRQ SURGXFW UHYHUWHG WR WKH SDUHQW SKDVH DIWHU D IHZ ZHHNV 7KXV JAEUDVV ZLWK WR ZW SHUFHQW ]LQF LV PHWDVWDEOH

PAGE 28

ZLWK UHJDUG WR FRROLQJ DQG GHIRUPDWLRQ DQG MEUDVV ZLWK DERYH ZW SHUFHQW ]LQF LV PHWDVWDEOH ZLWK UHJDUG WR GHIRUPDWLRQ 0DVVDOVNL DQG %DUUHWW DVVXPHG WKDW LQ WKH ODWWHU FDVH RQO\ WKH GLVRUGHUHG SKDVH ZDV PHWDVWDEOH 7KHUHIRUH WKH FROG ZRUN GLVRUGHUHG WKH DOOR\ DQG WKH ORZ WHPSHUDWXUHV FDXVHG WKH WUDQVIRUPDWLRQ +RUQERJHQ 6HJPLLOOHU DQG :DVVHUPDQQ f VWXGLHG WKH WUDQVIRUPDn WLRQ GXULQJ GHIRUPDWLRQ XVLQJ HODVWLF DQG SODVWLF WHQVLOH VWUHVVHV ,W ZDV VHHQ ZLWK WKH XVH RI [UD\ PHDVXUHPHQWV WKDW DIWHU SHUn FHQW GHIRUPDWLRQ WKH LaEUDVV FRPSRVLWLRQ EHWZHHQ DQG ZW SHUFHQW ]LQFf ZRXOG WUDQVIRUP WR D WHWUDJRQDO SKDVH 7KLV SKDVH ZDV GHVFULEHG DV DQ RUGHUHG DEUDVV RI WKH &X$X W\SH $ WUDQVLWLRQ SKDVH D ZDV VHHQ EHWZHHQ WKH La DQG DASKDVHV $W KLJKHU GHJUHHV RI GHIRUPDWLRQ WKH DLSKDVH ZRXOG WUDQVIRUP LQWR D GLVRUGHUHG VXSHUVDWn XUDWHG DEUDVV ,QYHVWLJDWLRQV IURP WKH 6RXWKHUQ 5HVHDUFK ,QVWLWXWH f DOVR IRXQG PDUWHQVLWH LQ 0XQW] PHWDO ZW SHUFHQW FRSSHU DQG ZW SHUFHQW ]LQFf ZKLFK KDG EHHQ UROOHG WR SHUFHQW UHGXFWLRQ DW r& DQG WR SHUFHQW UHGXFWLRQ DW r& 7KH VWXGLHV ZHUH PDGH XVLQJ RSWLFDO SKRWRPLFURJUDSKV DQG ZHUH SHUIRUPHG WR LPSURYH WKH VWUHQJWK 7KHRUHWLFDO &RQVLGHUDWLRQV .XQ]H f FRQVLGHUHG WKH WKHRU\ RI HODVWLFLW\ DQG WKH FRQWULEXn WLRQ RI WKH )HUPL HQHUJ\ WR WKH WUDQVIRUPDWLRQ 7KH )HUPL HQHUJ\ ZKLFKnFRQWUROV WKH VWDELOLW\ RI WKH ODWWLFH DW URRP WHPSHUDWXUH ZDV DOVR VDLG WR FDUU\ WKH SULQFLSDO ZHLJKW LQ FRQWUROOLQJ WKH VWHSV RI WKH ORZ WHPSHUDWXUH WUDQVIRUPDWLRQV 7KLV ZDV VKRZQ IURP WKH

PAGE 29

FDOFXODWLRQV RI WKH %ULOORXLQ ]RQHV RI WKH ORZ WHPSHUDWXUH SKDVHV ,W ZDV SUHGLFWHG IURP WKHVH HOHFWURQ WKHRUHWLFDO FRQVLGHUDWLRQV WKDW WKH PDUWHQVLWH PD\ SRVVLEO\ XQGHUJR D IXUWKHU WUDQVIRUPDWLRQ DW ORZ WHPSHUDWXUHV 7KLV WUDQVIRUPDWLRQ IURP % %n ZRXOG EH D FORVH SDFNLQJ RI f DWRPLF SODQHV +H DVVXPHG WKDW WKH ILUVW VWHS VKHDULQJf %L %M RI WKH ORZ WHPSHUDWXUH WUDQVIRUPDWLRQ FRUUHVSRQGHG WR WKH ILUVW VWHS LQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ E\ SODVWLF GHIRUPDn WLRQ %L f DQG TXHQFKLQJ %L Dnf DQG WKDW WKH XQNQRZQ VWUXFWXUH EHWZHHQ %L DQG LV LGHQWLFDO WR WKDW RI WKH WUDQVLWLRQ ODWWLFH %M 7KH PDUWHQVLWLF WUDQVIRUPDWLRQ E\ GHIRUPDWLRQ SURFHHGV E\ RWKHU PHFKDQLVPV WKDQ WKH ORZ WHPSHUDWXUH WUDQVIRUPDWLRQ DIWHU WKH ILUVW WUDQVIRUPDWLRQ VWHS (OHFWURQ 0LFURVFRS\ +XOO f REVHUYHG LQ WKLQ IRLOV RI %LEUDVV FRQWDLQLQJ DSSUR[Ln PDWHO\ ZW SHUFHQW ]LQF PDUWHQVLWH ZKLFK DSSDUHQWO\ RFFXUUHG GXULQJ WKH SUHSDUDWLRQ RI WKH IRLOV LQ WKLQ UHJLRQV DW WKH HGJHV RI WKH VSHFLPHQV 2ULHQWDWLRQ UHODWLRQVKLSV ZHUH GHWHUPLQHG DQG LW ZDV VHHQ WKDW WKH LQWHUIDFH EHWZHHQ WKH PDUWHQVLWLF SKDVH DQG SDUHQW SKDVH GLG QRW IROORZ DQ\ SDUWLFXODU KDELW SODQH 7KLV KDV EHHQ VHHQ LQ RWKHU DOOR\ V\VWHPV ZKLFK XQGHUJR D PDUWHQVLWLF WUDQVIRUPDWLRQ +HDW 7UHDWPHQW RI 4XHQFKHG %L%UDVV ,Q +RPHUEHUJ DQG 6KDZ f GHWHUPLQHG VWUHQJWK FKDUDFWHULVWLFV RI %LEUDVV DW YDULRXV WHPSHUDWXUHV GXULQJ UHKHDWLQJ DIWHU TXHQFKLQJ /DWHU +DQVHQ f GHWHUPLQHG WKDW KHDWLQJ WKH TXHQFKHG %LaEUDVV DERYH r& FDXVHG D ULVH LQ UHVLVWLYLW\ RI DERXW SHUFHQW &KDQJHV LQ UHVLVWLYLW\ DQG KDUGQHVV ZHUH FRUUHODWHG ZLWK FRPSRVLWLRQ WHPSHUDWXUH DQG WLPH FKDQJHV

PAGE 30

*DUZRRG f VWXGLHG WKH LVRWKHUPDO GHFRPSRVLWLRQ RI JMEUDVV VDPSOHV FRQWDLQLQJ ZW SHUFHQW ]LQF DW WHPSHUDWXUHV IURP r& WR r& $ EDLQLWLF WUDQVIRUPDWLRQ ZDV DVVXPHG WR RFFXU DW WHPSHUn DWXUHV EHWZHHQ r& DQG r& 7KH VWUXFWXUH RI WKLV SKDVH ZDV QRW GHWHUPLQHG $ERYH r& WKHDDQG JSKDVHV HYLGHQFHG E\ [UD\ GLIn IUDFWLRQf RFFXUUHG DV H[SHFWHG %DVVL DQG 6WUW6P f KHDWWUHDWHG D JAEUDVV VDPSOH RI ZW SHUFHQW ]LQF IRU KRXUV DW r& DQG DOVR GHWHFWHG D QHZ SKDVH EXW FRXOG QRW GHWHUPLQH LWV VWUXFWXUH +RUQERJHQ f DJHG TXHQFKHG JAEUDVV FRQWDLQLQJ DERXW ZW SHUFHQW ]LQF EHWZHHQ r& DLG r& 3UHFLSLWDWLRQ RFFXUUHG ZKLFK ZDV FRQQHFWHG ZLWK DQ LQFUHDVH LQ KDUGQHVV 7KH ILQDO WUDQVIRUPDWLRQ WR DEUDVV ZDV DFFRPSDQLHG E\ D GHFUHDVH LQ KDUGQHVV 7ZR WHWUDJRQDO LQWHUPHGLDWH SKDVHV ZHUH IRXQG EHIRUH WKH WUDQVIRUPDWLRQ ZDV FRPSOHWH +RUQERJHQ DQG :DUOLPRQW f XVLQJ WKH HOHFWURQ PLFURVFRSH VWXGLHG WKH PHFKDQLVP RI WKH LVRWKHUPDO WUDQVIRUPDWLRQ RI TXHQFKHG JEUDVV DQG SURSRVHG D JHQHUDOL]HG GHILQLWLRQ RI WKH EDLQLWH WUDQVn IRUPDWLRQ 7KH EDLQLWH WUDQVIRUPDWLRQ LV EHWZHHQ WKH PDUWHQVLWLF DQG QXFOHDWLRQDQGJURZWK WUDQVIRUPDWLRQV /DWWLFH GHIHFWV LQ JUHDW GHQVLW\ DUH FUHDWHG ZKLFK DOORZ D VHJUHJDWLRQ RI WKH DWRPV DQG WKH\ DFW DV QXFOHDWLRQ VLWHV 7KH WUDQVIRUPDWLRQ LWVHOI RFFXUV OLNH PDUWHQVLWH E\ D VKHDU SURFHVV 5DGLDWLRQ 'DPDJH /LWWOH ZRUN KDV EHHQ GRQH RQ WKH HIIHFW RI UDGLDWLRQ RQ WKH PDW WHQVLWLF WUDQVIRUPDWLRQ =DNKDURY DQG 0DNVLPRYD f VWXGLHG WKH HIn IHFW RI QHXWURQ LUUDGLDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RI

PAGE 31

KOFDUERQ DOOR\ VWHHOV DQG )H1L0Q DOOR\V 7KH VDPSOHV ZHUH LUUDn GLDWHG DW DPELHQW UHDFWRU WHPSHUDWXUH M! [ DQG QFPf DQG WKH FRXUVH RI WKH WUDQVIRUPDWLRQ ZDV IROORZHG ZLWK PDJQHWLF PHDVn XUHPHQWV ,Q WKH VWHHOV ZKLFK FRQWDLQHG FDUERQ WKH LUUDGLDWLRQ UDLVHG WKH WUDQVIRUPDWLRQ VWDUW WHPSHUDWXUH r& 7KLV ZDV FRQVLGHUHG DQ DFWLYDWLQJ HIIHFW 3RUWHU DQG 'LHQHV DVVXPHG WKDW WKLV ZDV GXH WR SUHFLSLWDWLRQ RI DXVWHQLWHf 7KH DFWLYDWLQJ HIIHFW ZDV GHFUHDVHG DIWHU ODUJHU LUUDGLDWLRQ WLPHV DQG ZDV UHPRYHG DIWHU DJLQJ WKH VSHFLn PHQV DW WHPSHUDWXUHV EHORZ r& $OVR PRUH PDUWHQVLWH ZDV IRUPHG DW D JLYHQ WHPSHUDWXUH WKDQ EHIRUH ,Q WKH )H1L0Q DOOR\V ZKLFK FRQWDLQHG KDUGO\ DQ\ FDUERQ WKH UHYHUVH HIIHFW ZDV REWDLQHG 7KH VWDELOLW\ RI WKH DXVWHQLWH ZDV LQFUHDVHG WKH PDUWHQVLWLF VWDUW WHPn SHUDWXUH ZDV ORZHUHG DQG WKH DPRXQW RI WUDQVIRUPDWLRQ ZDV GHFUHDVHG ,W ZDV FRQFOXGHG IURP WKHVH UHVXOWV WKDW GXULQJ LUUDGLDWLRQ WKHUH LV D VLPXOWDQHRXV GHYHORSPHQW RI VWUXFWXUDO FKDQJHV ZKLFK DIIHFW WKH DXVWHQLWH VWDELOLW\ LQ RSSRVLWH GLUHFWLRQV 7KHUHIRUH WKH REVHUn YDWLRQ RI RSSRVLQJ HIIHFWV GHSHQGV RQ WKH WRWDO QHXWURQ IOX[ DQG WKH SURSHUWLHV RI WKH DOOR\ ,Q WKH HDUO\ VWDJHV RI GDPDJH WUDQVIRUPDn WLRQ LV IDYRUHG /DWHU WKHUH DUH VWUXFWXUDO FKDQJHV ZKLFK KDYH WKH RSSRVLWH HIIHFW 3RUWHU DQG 'LHQHV f LQYHVWLJDWHG WKH HIIHFW RI QHXWURQ LUUDn GLDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ )H1L DOOR\V 7KH\ IRXQG WKDW WKH 0 ZDV ORZHUHG IRU GRVHV DERYH [ QYW DW r& V 7KH\ REVHUYHG QR FKDQJH LQ WKH NLQHWLFV 7KLV HIIHFW ZDV WKRXJKW WR EH DVVRFLDWHG ZLWK DQ LQFUHDVH LQ WKH FULWLFDO VKHDU VWUHVV RI WKH PDWUL[ PDWHULDO )RU VDPSOHV ZKLFK ZHUH SDUWLDOO\ WUDQVIRUPHG WR PDUWHQVLWH QHXWURQ LUUDGLDWLRQ ORZHUHG WKH 0 SRLQW DQG SDUWLDOO\ V

PAGE 32

UHFRYHUHG WKH SODVWLF GHIRUPDWLRQ SURGXFHG E\ WKH SULRU WUDQVIRUPDWLRQ 7KLV VWUDLQ UHFRYHU\ ZDV WKRXJKW WR EH GXH WR WKH DQQHDOLQJ RI VKDOORZO\ WUDSSHG GDPDJH E\ HQKDQFHG GLIIXVLRQ DQG E\ WKH PXWXDO DQQLKLODWLRQ RI SRLQW GHIHFWV :HLVV+ROOHUZRJHU f VWXGLHG WKH HIIHFW RI QHXWURQ LUUDGLDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RI D FKURPH VWHHO ZKLFK FRQWDLQHG SHUFHQW FDUERQ )RU GRVHV RI DQG [ QFP SHUFHQW PRUH PDUWHQVLWH WKDQ EHIRUH ZDV IRXQG DW WKH HQG RI WKH WUDQVIRUPDWLRQ 'XULQJ LUUDGLDWLRQ ZLWK GRVHV RI QFP SHUFHQW PDUWHQVLWH ZDV IRXQG &RROLQJ FUHDWHG RQO\ DERXW SHUFHQW PRUH PDUWHQVLWH $ VXPPDU\ RI WKH SDVW ZRUN WKDW FRQFHUQV LUUDGLDWLRQ HIIHFWV RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LV JLYHQ LQ 7DEOH

PAGE 33

7$%/( 6XPPDU\ RI QHXWURQ LUUDGLDWLRQ HIIHFWV RQ PDUWHQVLWLF WUDQVIRUPDWLRQV

PAGE 34

&+$37(5 ,,, (;3(5,0(17$/ 0(7+2'6 6DPSOH 3UHSDUDWLRQ %OEUDVV VDPSOHV FRQWDLQLQJ EHWZHHQ DQG ZW SHUFHQW ]LQF ZHUH SUHSDUHG 7KHVH FRPSRVLWLRQV ZHUH VHOHFWHG LQ RUGHU WKDW WKH WHPSHUDWXUHV RI WKH WUDQVIRUPDWLRQ ZRXOG EH LQ D UDQJH SUDFWLFDO IRU WKH H[SHULPHQWDO DSSDUDWXV 7KH SXULW\ RI WKH VDPSOHV ZDV YHU\ LPSRUWDQW 8QVWDEOH LPSXULWLHV ZKLFK PLJKW SUHFLSLWDWH RU GLVVROYH GXULQJ WKH YDULRXV WHPSHUDWXUH FKDQJHV FRXOG DIIHFW WKH FKDUDFWHULVWLFV RI WKH PDUWHQVLWLF WUDQVIRUPDn WLRQ DQG VRPH LPSXULWLHV ZKHQ LUUDGLDWHG FRXOG JLYH XQZDQWHG SURGXFWV ZLWK ORQJ UDGLDWLRQ KDOIOLYHV 7KH DOOR\V ZHUH PDGH IURP SHUFHQW FRSSHU URGV REWDLQHG IURP $ 0DFND\ ,QF DQG SHUFHQW ]LQF SHOOHWV VXSSOLHG E\ 8QLWHG 0LQHUDO DQG &KHPLFDO &RUSRUDWLRQ 7KH FRSSHU DQG ]LQF ZHUH PHOWHG LQ DQ HYDFXDWHG Y\FRU WXEH XVLQJ DQ LQGXFWLRQ IXUQDFH 7KH PHOWHG DOOR\ ZDV VKDNHQ PDQXDOO\ DQG TXHQFKHG LQ ZDWHU WR HOLPLQDWH VHJUHJDWLRQ 7KH RXWVLGH OD\HU ZDV UHPRYHG RQ D ODWKH DIWHU ZKLFK WKH DOOR\V ZHUH ZRUNHG UHLQFDSVXODWHG DQG KRPRJHQL]HG IRU KRXUV DW r& 7KHQ WKH DOOR\V ZHUH UROOHG LQWR ORQJ VWULSV RI DERXW PP WKLFNQHVV $On OR\V fFRQWDLQLQJ WKH KLJKHU SHUFHQWDJHV RI ]LQF KDG WR KDYH DQ LQWHUn PHGLDWH KHDWWUHDW EHIRUH EHLQJ UROOHG WR WKH ILQDO VL]H 7KH VDPSOHV ZHUH FXW LQWR WKH VKDSH VKRZQ LQ )LJXUH DQG KHDWWUHDWHG LQ D TXDUW]

PAGE 35

PP aU PP )LJXUH 6KDSH RI WKH VDPSOH IRU UHVLVWDQFH PHDVXUHPHQWV KR K2

PAGE 36

WXEH 7KH WXEH ZDV ILUVW UHSHDWHGO\ HYDFXDWHG DQG IOXVKHG ZLWK DUJRQ ZLWK WKH VDPSOHV DW WKH FROG HQG RI WKH WXEH :LWK WKH DUJRQ DWPRVn SKHUH SUHVHQW WKH VDPSOHV ZHUH PRYHG LQWR WKH KRW HQG RI WKH WXEH KHDWHG DW r& IRU ILYH PLQXWHV DQG TXHQFKHG LQWR SUHYLRXVO\ ERLOHG ZDWHU RI r& 7KH TXHQFK \LHOGHG WKH PHWDVWDEOH RUGHUHG JASKDVH 6FUDSV RI EUDVV DURXQG WKH VDPSOHV ZHUH XVHG WR SUHYHQW GH]LQFLQJ $ERXW VDPSOHV LQ D SDFN ZHUH KHDW WUHDWHG WRJHWKHU 7KH FRPn SRVLWLRQ RI VRPH VDPSOHV ZDV VXFK WKDW WKH PDVVLYH WUDQVIRUPDWLRQ WR WKH VXSHUVDWXUDWHG DSKDVH RFFXUUHG %HFDXVH WKH VDPSOHV KDG WR IDOO DERXW WZR IHHW EHIRUH EHLQJ TXHQFKHG VRPH ZHUH FRROHG VOLJKWO\ 7KLV ORZHUHG WKH TXHQFKLQJ WHPSHUDWXUH RI WKHVH VDPSOHV LQWR WKH DJ UHJLRQ ZKHUH VRPH D SUHFLSLWDWHG RXW %HFDXVH RI WKHVH SURFHGXUHV YDULRXV DPRXQWV RI DSKDVH ZHUH SUHVHQW DORQJ ZLWK WKH JASKDVH 4XDQWLWDWLYH $QDO\VLV 7KH DPRXQW RI D DQG JASnQDVH SUHVHQW LQ WKH VDPSOHV ZDV REWDLQHG DIWHU WKH ILQDO TXHQFK XVLQJ [UD\ GLIIUDFWLRQ UHVLVWLYLW\ PHDVXUHn PHQWV DQG RSWLFDO PLFURVFRS\ ,Q WKH [UD\ PHWKRG WKH DPRXQWV ZHUH GHWHUPLQHG E\ FRPSDULQJ WKH LQWHJUDWHG LQWHQVLWLHV RI WZR RI WKH PDLQ SHDNV RI HDFK RI WKH SKDVHV 7KLV PHWKRG ZDV QRQGHVWUXFWLYH DQG YHU\ FRQYHQLHQW IRU WKLV ZRUN 6LQFH WKH HOHFWULFDO UHVLVWLYLW\ RI D WZR SKDVH PDWHULDO LV D OLQHDU IXQFWLRQ RI WKH YROXPH IUDFWLRQV RI WKH WZR SKDVHV SUHVHQW WKH DPRXQW RI HDFK SKDVH FRXOG DOVR EH GHWHUPLQHG E\ NQRZLQJ WKH UHVLVWLYLW\ RI WKH VDPSOH DQG WKH LQGLYLGXDO UHVLVWLYLn WLHV fRI WKH WZR SKDVHV 7KH WKLUG PHWKRG RI GHWHUPLQLQJ WKH DPRXQWV RI WKH SKDVHV SUHVHQW ZDV E\ TXDQWLWDWLYH PHWDOORJUDSK\ $OO WKUHH PHWKRGV \LHOGHG ZLWKLQ WKH HUURU OLPLW WKH VDPH UDWLR RI D DQG

PAGE 37

%MSKDVH &KHPLFDO DQDO\VLV ZDV SURYLGHG E\ 9 +RUULJDQ RI WKH $QDn FRQGD $PHULFDQ %UDVV &RPSDQ\ 7KH ]LQF FRQWHQW RI WKH VDPSOHV YDULHG OHVV WKDQ SHUFHQW &U\RVWDW DQG 7HPSHUDWXUH &RQWURO 7ZR XQLWV FRXOG EH XVHG IRU WKH WHPSHUDWXUH EDWK ,Q WKH WHPn SHUDWXUH UDQJH EHWZHHQ r& DQG r& ZKLFK FRYHUV DOPRVW HYHU\ 0AWHPSHUDWXUH LQ WKHVH H[SHULPHQWV LVRSHQWDQH ZDV HPSOR\HG DV WKH FRROLQJ PHGLXP ,VRSHQWDQH FRXOG QRW EH XVHG PXFK DERYH r& EHn FDXVH RI LWV KLJK YDSRU SUHVVXUH DQG EHORZ r& EHFDXVH RI KLJK YLVFRVLW\ 7KH LVRSHQWDQH ZKLFK ZDV KHOG LQ D RQHJDOORQ PHWDO 'HZDU IODVN ZDV FRROHG E\ OLTXLG QLWURJHQ SXPSHG XQGHU SUHVVXUH SURYLGHG E\ DQ DUJRQ WDQN DQG UHJXODWRUf WKURXJK D IRRW FRSSHU WXELQJ FRLO LPPHUVHG LQ WKH IODVN 7KH IORZ ZDV UHJXODWHG E\ D /LQGH WHPSHUDWXUH FRQWUROOHU XVLQJ WZR WKHUPLVWRUV LQ WKH FRROLQJ EDWK 7KH WHPSHUDn WXUH ZDV IRXQG WR EH FRQVWDQW ZLWKLQ sr& 7KH EDWK ZDV FRQWLQXRXVO\ FLUFXODWHG E\ PHDQV RI D PDJQHWLF VWLUUHU $Q HOHFWULF LPPHUVLRQ KHDWn LQJ FRLO ZDV EXLOW LQWR WKH 'HZDU IODVN IRU XVH ZKHQ KHDWLQJ ZDV QHHGHG )RU DOOR\V ZLWK DQ 0AWHPSHUDWXUH QHDU r& WKH VDPSOHV ZHUH LQLn WLDOO\ SODFHG LQ D ZDWHU EDWK ZKRVH WHPSHUDWXUH FRXOG EH PDLQWDLQHG EHWZHHQ r& DQG r& $V FRROLQJ ZDV GHVLUHG WKH ZDWHU ZDV DOORZHG WR FLUFXODWH WKURXJK DQ LFH EDWK 7KH DPRXQW RI FRROLQJ ZDV UHJXODWHG E\ D KHDWLQJ GHYLFH ZKLFK ZRUNHG DW WKH WHPSHUDWXUH VSHFLILHG E\ D FRQWUROOHU 7KH WHPSHUDWXUH RI WKH VDPSOHV ZDV WDNHQ GXULQJ HDFK UHVLVWLYLW\ PHDVXUHPHQW ZLWK D FRSSHUFRQVWDQWDQ WKHUPRFRXSOH DQG D /HHGV DQG 1RUWKUXS SRWHQWLRPHWHU ZLWK WHPSHUDWXUH FDOLEUDWLRQ $ VFKHPDWLF RI WKH FU\RJHQLF XQLW LV JLYHQ LQ )LJXUH

PAGE 38

)LJXUH 7KH FU\RJHQLF XQLW /Q

PAGE 39

5HVLVWDQFH 0HDVXUHPHQWV 7KH UHVLVWDQFH PHDVXUHPHQWV ZHUH REWDLQHG XVLQJ D /HHGV DQG 1RUWKUXS SRWHQWLRPHWHU WR PHDVXUH WKH YROWDJH GURS DFURVV WKH SRWHQWLDO OHDGV RI WKH VDPSOH $ RQHDPS GLUHFW FXUUHQW ZDV PDGH WR IORZ WKURXJK WKH VDPSOH 7KH FXUUHQW ZDV UHJXODWHG E\ D YDULn DEOH UHVLVWRU RI RKPV DQG PRQLWRUHG DFURVV WKH SRWHQWLDO OHDGV RI D RKP VWDQGDUG UHVLVWRU E\ DQ DX[LOOLDU\ LQSXW RI WKH SRWHQWLRPHWHU 7KUHH YROW EDWWHULHV LQ SDUDOOHO ZHUH XVHG DV D FXUUHQW VRXUFH WKXV DIIRUGLQJ D PRUH QHDUO\ FRQVWDQW FXUUHQW WKDQ RQO\ RQH EDWWHU\ 7KH UHVLVWDQFH PHDVXUHPHQWV ZHUH IRXQG WR EH UHn SURGXFLEOH DW D JLYHQ WHPSHUDWXUH ZLWKLQ SHUFHQW 7KH FLUFXLW GLDJUDP LV VKRZQ LQ )LJXUH 7KUHH VDPSOH KROGHUV RI PLFDUWD ZHUH XVHG VR XS WR WKUHH VDPSOHV FRXOG EH PHDVXUHG DW RQH WLPH 7HVWV ZHUH PDGH RQ WKH UHSURGXFLELOLW\ RI WKH UHVLVWDQFH RI VDPSOHV UHPRYHG IURP WKH VDPSOH KROGHUV WXUQHG RYHU DQG UHSODFHG LQ WKH VDPSOH KROGHUV 7KH FKDQJH LQ UHVLVWDQFH ZDV DJDLQ ZLWKLQ SHUFHQW $ 6WDUUHWW PLFURPHWHU ZDV XVHG WR PHDVXUH WKH GLPHQVLRQV RI WKH VDPSOHV LQ RUGHU WR REWDLQ UHVLVWLYLW\ GDWD IURP UHVLVWDQFH PHDVn XUHPHQWV 0HWDOORJUDSK\ )RU PHWDOORJUDSK\ ZRUN WKH VSHFLPHQV ZHUH SROLVKHG E\ VWDQGDUG WHFKQLTXHV WKURXJK /LQGH % DQG GLDPRQG SDVWH 7KH VSHFLPHQV ZHUH HWFKHG IRU D IHZ VHFRQGV LQ D VROXWLRQ RI P/ RI DPPRQLXP K\GUR[LGH PO RI ZDWHU DQG PO RI K\GURJHQ SHUR[LGH DSKDVH %LSKDVH DQG PDUWHQVLWH FRXOG EH GLIIHUHQWLDWHG DV WKH\ DOO JDYH GLIIHUHQW

PAGE 40

9 )LJXUH &LUFXLW IRU UHVLVWDQFH PHDVXUHPHQWV

PAGE 41

DSSHDUDQFHV DIWHU HWFKLQJ $ %DXVFK DQG /RPE PHWDOORJUDSK ZDV XVHG IRU WKH RSWLFDO PLFURVFRS\ )RU D TXLFN H[DPLQDWLRQ RI VDPSOHV WR GHWHUPLQH LI WKH %ASKDVH ZDV SUHVHQW D PDFURHWFK RI HTXDO SDUWV +12 DQG ZDWHU ZDV XVHG 7KH LaSKDVH DSSHDUHG DV VPDOO FU\VWDOOLWHV ZKLFK ZHUH YHU\ GLVWLQJXLVKn DEOH IURP WKH ODUJHU XQHWFKHG JUDLQV RI DSKDVH ,UUDGLDWLRQ DQG 6DIHW\ 3UHFDXWLRQV 7KH VDPSOHV ZHUH LUUDGLDWHG LQ WKH 2DN 5LGJH 1DWLRQDO /DERUDWRU\nV %XON 6KLHOGLQJ 5HDFWRU ZLWK LQWHJUDWHG IOX[HV EHWZHHQ r DQG [ QFP ( PHY 7KH VDPSOHV ZHUH XQGHU KHOLXP DWPRVSKHUH ZLWK D SUHVVXUH RI RQH DWPRVSKHUH DQG WKH WHPSHUDWXUH ZDV r& 7KH LUUDGLDWHG VDPSOHV ZKHQ QRW EHLQJ XVHG ZHUH NHSW LQ DQ HQFORVHG OHDG FRQWDLQHU ZLWK D ZDOO WKLFNQHVV RI LQFK :LWK DOO WKH LUUDGLDWHG VDPSOHV LQ WKLV OHDG FRQWDLQHU D *HLJHU FRXQWHU DW D GLVn WDQFH RI LQFKHV VKRZHG D UDGLDWLRQ OHYHO QRW EH\RQG WKH FRVPLF UDGLDWLRQ OHYHO $ ZDOO RI LQFK OHDG EULFN DQG D ERWWRP SODWH RI LQFK VWHHO ZHUH SODFHG DURXQG WKH FU\RVWDW GXULQJ PHDVXUHPHQWV $ *HLJHU FRXQWHU VKRZHG QR LQFUHDVHG UDGLDWLRQ OHYHO RXWVLGH WKLV ZDOO ;5D\ 'LIIUDFWLRQ $ 1RUHOFR GLIIUDFWRPHWHU ZLWK D KLJKLQWHQVLW\ FRSSHU WXEH ZDV XVHG IRU WKH [UD\ ZRUN 0RGLILFDWLRQV ZHUH PDGH WR WKH UDGLDWLRQ VKLHOG VR WKH VDPSOHV IRU WKHVH H[SHULPHQWV FRXOG EH KDQGOHG ZLWKRXW EHQGLQJ DQG VR FROGVWDJH ZRUN FRXOG EH GRQH 'U\ QLWURJHQ IURP D WDQN IRUFHG OLTXLG QLWURJHQ LQWR WKH HORQJDWHG UDGLDWLRQ VKLHOG ZKRVH ZLQGRZ ZDV FORVHG IURP WKH DWPRVSKHUH E\ P\ODU $IWHU FRROLQJ VWDUWHG DQ\ DUHDV ZKLFK FRXOG OHW DLU LQ EHFDPH IURVWHG

PAGE 42

DQG YLHUH VHDOHG 7KXV QR LFLQJ WRRN SODFH RQ WKH VDPSOH DV D QLWURn JHQ DWPRVSKHUH ZDV IRUPHG )LJXUH VKRZV WKLV XQLW (OHFWURQ 0LFURVFRS\ 7KH VDPH PDWHULDO ZKLFK ZDV XVHG LQ WKH UHVLVWDQFH VWXGLHV VHUYHG DV VWRFN PDWHULDO IRU WKH WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ 7KH ILUVW VDPSOH SUHSDUDWLRQ VWHS ZDV WKH GLPSOLQJ RI VPDOO GLVNV 7KH GLPSOLQJ WHFKQLTXH FRQVLVWHG RI DOORZLQJ D WKLQ VWUHDP MHWf RI OLTXLG HOHFWURO\WH SHUFHQW RUWKRSKRVSKRULF DFLGf WR LPn SLQJH RQ WKH GLVN DQG SURGXFH D FRQFDYH VXUIDFH ,QLWLDOO\ D GLVN ZRXOG EH WKLQQHG XQWLO D KROH DSSHDUHG 7KHQ D VPDOOHU DPRXQW RI HOHFn WURO\WH ZRXOG EH XVHG WR SURGXFH WKH GLPSOH LQ WKH RWKHU VDPSOHV 7KH MHW SURGXFHU DQG FRQWDLQHU IRU WKH HOHFWURO\WH ZHUH PDGH RI JODVV DQG FRQWDLQHG D SODWLQXP ZLUH ZKLFK FRQVWLWXWHG WKH FDWKRGH 7KH VSHFLn PHQ ZDV WKH DQRGH )LJXUH f $IWHU GLPSOLQJ WKH VDPSOH ZDV HOHFWURSROLVKHG XQWLO WKH YHU\ ILUVW VPDOO KROH DSSHDUHG )RU WKLV WKH VDPSOH ZDV KHOG ZLWK SODWn LQXPWLSSHG WZHH]HUV EHWZHHQ WZR SRLQW HOHFWURGHV 7KHUH ZDV D SRn WHQWLDO GLIIHUHQFH EHWZHHQ WKH WZHH]HUV DQG WKH HOHFWURGHV 7KH HOHFn WURO\WH ZDV DJDLQ SHUFHQW RUWKRSKRVSKRULF DFLG ZKLFK ZDV FRROHG EHORZ URRP WHPSHUDWXUH ZLWK DFHWRQH DQG GU\ LFH WR VORZ GRZQ WKH UHn DFWLRQ 'XULQJ WKLV ILQDO SROLVK WKH VDPSOH ZDV SHULRGLFDOO\ UHPRYHG ZDVKHG ZLWK DOFRKRO DQG H[DPLQHG IRU D VPDOO KROH ZLWK WKH DLG RI D OLJKW SODFHG EHKLQG WKH VSHFLPHQ 7KH DUHD DURXQG WKH ILUVW KROH ZDV XVXDOO\ WKLQ HQRXJK IRU WUDQVPLVVLRQ ZRUN ,I WKH VDPSOH ZDV SROLVKHG YHU\ ORQJ DIWHU WKH ILUVW KROH DSSHDUHG DOO WKH WKLQ DUHD ZDV GHn VWUR\HG 7KH \LHOG RI XVHDEOH VDPSOHV ZDV YHU\ VPDOO ,I D VDWLVn IDFWRU\ VDPSOH ZDV REWDLQHG FDUH KDG WR EH WDNHQ WR ZDVK WKH VDPSOH ZHOO ZLWK DOFRKRO WR SUHYHQW FRQWDPLQDWLRQ

PAGE 43

5DGLDWLRQ 6KLHOGLQJ )LJXUH &ROG XQLW IRU WKH 3KLOOLSV [UD\ GLIIUDFWRPHWHU

PAGE 44

HFWURO\WH JODVV FRQWDLQHU PSOHG VDPSOH )LJXUH 'LPSOLQJ XQLW IRU SUHSDUDWLRQ RI WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ VDPSOHV

PAGE 45

$ FROG VWDJH EXLOW IRU WKH 3KLOOLSV (OHFWURQ 0LFURVFRSH E\ /DGG 5HVHDUFK ZDV XVHG LQ WKLV ZRUN 7KH XQLW FRQVLVWHG RI D VDPSOH KROGHU GHZDU DQG WKHUPRFRXSOH $IWHU LQVHUWLRQ RI WKH VDPSOH LQ WKH PLFURVFRSH OLTXLG QLWURJHQ ZDV DGGHG WR WKH GHZDU DQG WKH FRROLQJ ZRXOG EHJLQ 7KH WHPSHUDWXUH ZDV PRQLWRUHG E\ D EXLOWLQ FRSSHUFRQ VWDQWDQ WKHUPRFRXSOH 7KH VSHHG RI FRROLQJ FRXOG EH DGMXVWHG E\ WKH DPRXQW RI OLTXLG QRWURJHQ DGGHG DQG E\ D EXLOWLQ KHDWLQJ XQLW

PAGE 46

&+$37(5 ,9 5(68/76 7KH %DVLF 7UDQVIRUPDWLRQ 7KH PDLQ IHDWXUHV RI WKH PDUWHQVLWH WUDQVIRUPDWLRQ FXUYH RI EUDVV DV PRQLWRUHG E\ HOHFWULFDO UHVLVWDQFH PHDVXUHPHQWV DW FKDQJLQJ WHPSHUDWXUHV DUH GLVFXVVHG LQ RUGHU WR GHWHUPLQH WKH FKDUDFWHULVWLFV RI WKH WUDQVIRUPDWLRQ )LJXUH VKRZV UHODWLYH UHVLVWDQFH RU UHODWLYH UHVLVWLYLW\ VHW HTXDO WR DW r&f YV WHPSHUDWXUH 7KLV ZLOO EH UHIHUUHG WR DV WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH LQ WKH IXWXUHf 7KH UHODWLYH UHVLVWDQFH GHFUHDVHV ZLWK FRQVWDQW VORSH DV WKH WHPSHUDWXUH LV ORZHUHG $W D FHUWDLQ WHPSHUDWXUH WKH FXUYH GHYLDWHV IURP D VWUDLJKW OLQH 7KLV LV WKH VWDUWLQJ SRLQW RI WKH WUDQVIRUPDWLRQ 0Jf 6LQFH WKH VORSH FKDQJHV YHU\ JUDGXDOO\ DW WKLV LQIOHFWLRQ SRLQW WKH 0 WHPSHUDWXUH FDQ RQO\ V EH GHWHUPLQHG WR ZLWKLQ DQ DFFXUDF\ RI sr& $W D ORZHU WHPSHUDWXUH WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH VKRZV D UHVLVWLYLW\ PLQLPXP ZKLFK LV GHVLJQDWHG DV 0 $W WKH WHPSHUDWXUH 0 WKH WUDQVIRUPDWLRQ LV U ILQLVKHG DIWHU ZKLFK WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH DJDLQ EHFRPHV D VWUDLJKW OLQH 2Q KHDWLQJ WKH VDPSOH WKH FXUYH DJDLQ GHYLDWHV IURP D VWUDLJKW OLQH 7KLV LV WKH $ WHPSHUDWXUH ORZHU WKDQ WKH 0 WHUQ V V SHUDWXUH ZKHUH WKH SDUHQW SKDVH VWDUWV IRUPLQJ 7KH WUDQVIRUPDWLRQ LV FRPSOHWHG DW D WHPSHUDWXUH $f DIWHU ZKLFK WKH UHVLVWLYLW\WHPSHU U DWXUH FXUYH LV D VWUDLJKW OLQH

PAGE 47

)LJXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI LaEUDVV ZW SHUFHQW ]LQFf

PAGE 48

7R ILQG WKH DPRXQW RI PDUWHQVLWH IRUPHG DW D JLYHQ WHPSHUDWXUH DQG WKH GHJUHH RI K\VWHUHVLV DIWHU FRROLQJ DQG KHDWLQJ D SORW RI SHUFHQW WUDQVIRUPDWLRQ YV WHPSHUDWXUH ZDV PDGH IURP WKH UHVLVWDQFH GDWD )LJXUH Df 7KLV FXUYH ZDV FRQVWUXFWHG E\ WDNLQJ WKH UDWLR RI WKH GLIIHUHQFH LQ UHVLVWLYLW\ EHWZHHQ WKH VWUDLJKW OLQH RU H[WUDn SRODWHG VWUDLJKW OLQH SRUWLRQ RI WKH FXUYHV IRU WKH SDUHQW SKDVH DQG WKH PDUWHQVLWH SKDVH DW D JLYHQ WHPSHUDWXUH WR WKH GLIIHUHQFH LQ UHVLVWLYLW\ EHWZHHQ WKH FXUYH DQG WKH VWUDLJKW OLQH RU H[WUDSRODWHG VWUDLJKW OLQH RI WKH FXUYH IRU WKH SDUHQW SKDVH DW WKH VDPH WHPSHUDn WXUH SS%L SHUFHQW PDUWHQVLWH f VHH $SSHQGL[ ,,f 30a 7KH UDWH RI WUDQVIRUPDWLRQWHPSHUDWXUH FXUYH ZKLFK LV HTXLYDOHQW WR WKH DPRXQW RI PDUWHQVLWH IRUPHG SHU GHJUHH ZDV FRQVWUXFWHG IURP WKH GHULYDWLYH RI WKH GDWD RI WKH SHUFHQW WUDQVIRUPDWLRQWHPSHUDWXUH FXUYH 7KH PDUWHQVLWH SKDVH IRUPHG E\ FRROLQJ KDG D KLJKHU VSHFLILF UHVLVWLYLW\ Sf DQG D JUHDWHU WHPSHUDWXUH FRHIILFLHQW f WKDQ WKH %Ln SKDVH 7DEOH JLYHV WKH UHVLVWLYLWLHV DQG WHPSHUDWXUH FRHIILFLHQWV RI DOO WKH SKDVHV VWXGLHG LQ WKLV ZRUN 7$%/( 5HVLVWLYLW\ RI WKH YDULRXV SKDVHV 3KDVH S DW r& \RKPFPf GHJf %L FRROLQJ PDUWHQVLWHf D m GHIRUPDWLRQ PDUWHQVLWHf

PAGE 49

)LJXUH 7UDQVIRUPDWLRQ FXUYHV D 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH E 3HUFHQW WUDQVIRUPDWLRQ SHU GHJUHH YHUVXV WHPSHUDWXUH &DOFXODWHG IURP )LJXUH f

PAGE 50

&2 R r 75$16)25?$721& 2 2 2 2 f§ 2L FR

PAGE 51

7KH UHDVRQ IRU XVLQJ WKH UHVLVWDQFH PHDVXUHPHQWV WR PRQLWRU WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RI EUDVV ZDV WKDW WKH UHVLVWLYLW\ RI WKH PDUWHQVLWH LQ EUDVV LV PXFK KLJKHU WKDQ WKH UHVLVWLYLW\ RI WKH SDUHQW SKDVH DQG UHVLVWDQFH FDQ DFFXUDWHO\ DQG HDVLO\ EH PHDVXUHG 7KXV YHU\ VPDOO DPRXQWV RI WUDQVIRUPDWLRQ FRXOG EH GHWHFWHG 0RUH GHWDLOV DUH JLYHQ LQ $SSHQGL[ ,,f $OO IDFWRUV VXFK DV ORQJUDQJH RUGHU VKRUWUDQJH RUGHU DQWLn SKDVH ERXQGDULHV DQG ODWWLFH GHIHFWV ZKLFK FDXVH FKDQJHV LQ UHVLVn WLYLW\ ZHUH QRW FKDQJHG GXULQJ FRROLQJ /RFDO VWUHVVHV VHW XS E\ WKH IRUPDWLRQ RI PDUWHQVLWH SODWHV PLJKW EH H[SHFWHG WR LQFUHDVH WKH UHVLVWDQFH RI ERWK WKH PDUWHQVLWH DQG WKH VXUURXQGLQJ SDUHQW SKDVH DQG WKXV LQIOXHQFH WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH 7KH DPRXQW RI WKH LQFUHDVH LQ UHVLVWDQFH VKRXOG QRW EH JUHDWHU WKDQ ZRXOG EH FDXVHG E\ H[WHQVLYH FROG ZRUN 7KLV LQFUHDVH LV XVXDOO\ QRW PRUH WKDQ RQH SHUFHQW IRU PRVW DOOR\V ([SHULPHQWV ZHUH PDGH WKDW VKRZHG WKDW WKH VDPSOHV RI JAEUDVV KDG WR EH EHQW HQRXJK WR FUHDWH D SHUPDQHQW FUHDVH LQ WKH PHWDO WR FDXVH D SHUFHQW FKDQJH LQ UHn VLVWDQFH ,W LV DVVXPHG WKDW WKH WUDQVIRUPDWLRQ VWUDLQV ZRXOG QHYHU EH WKLV JUHDW 7KHUHIRUH WKH VWUHVVHV DFFRPSDQ\LQJ WKH WUDQVIRUPDn WLRQ LQWURGXFH QR VHULRXV HUURU 7KHUPDO &\FOLQJ 7KH 0JWHPSHUDWXUH DQG RWKHU FKDUDFWHULVWLFV RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ ZHUH IRXQG QRW WR EH UHSURGXFLEOH ZKHQ VDPSOHV RI D FHUWDLQ FRPSRVLWLRQ ZHUH UHSHDWHGO\ FRROHG WR WKH WHPSHUDWXUH RI FRPn SOHWH PDUWHQVLWH IRUPDWLRQ DQG KHDWHG WR URRP WHPSHUDWXUH 7KHVH HIIHFWV ZHUH DWWULEXWHG WR UHWDLQHGfPDUWHQVLWH ZKLFK ZDV VXEVWDQWLDWHG IURP WKH IROORZLQJ REVHUYDWLRQV

PAGE 52

$IWHU RQH IXOO F\FOH WKH UHVLVWLYLW\ FXUYH REWDLQHG IURP KHDWLQJ WKH VDPSOH ODWHU UHIHUUHG WR DV KHDWLQJ FXUYHf GRHV QRW PHHW WKH UHVLVWLYLW\ FXUYH REWDLQHG IURP FRROLQJ WKH VDPSOH ODWHU UHIHUUHG WR DV FRROLQJ FXUYHf LQ WKH OLQHDU UHJLRQ DURXQG r& LH WKH VSHFLILF UHVLVWLYLW\ Sf RI WKH VDPSOH LV KLJKHU DIWHU F\FOLQJ )LJXUH f 6LQFH WKH PDUWHQVLWH SKDVH KDV D KLJKHU VSHFLILF UHVLVWLYLW\ WKH LQFUHDVH RI S DW r& LV WKRXJKW WR PHDQ WKDW VRPH PDUWHQVLWH LV UHWDLQHG DW WKDW WHPSHUDWXUH 7KH VORSH RI WKH OLQHDU SRUWLRQ RI WKH UHVLVWLYLW\ YV WHPn SHUDWXUH FXUYH WKH WHPSHUDWXUH FRHIILFLHQW f DW WHPSHUDWXUHV EHORZ 0S LV ODUJHU WKDQ DW WHPSHUDWXUHV DERYH 0J 7KLV LV LQGLFDWHG LQ )LJXUH ZKHUH D OLQH SDUDOOHO WR WKH OLQHDU SRUWLRQ DW WHPSHUDWXUHV EHORZ 0 LV GUDZQ RQ WKH FRROLQJ FXUYH QHDU r& 7KLV OLQH LV ODEHOHG PDUWHQVLWH )LJXUH DOVR VKRZV WKDW IURP WKH KHDWLQJ FXUYH DW WHPSHUDWXUHV DERYH $ U LV ODUJHU WKDQ IURP WKH FRROLQJ FXUYH LQ WKH VDPH WHPSHUDWXUH UDQJH 6LQFH D ODUJHU LPSOLHV WKH SUHVHQFH RI PDUWHQVLWH LW LV GHGXFHG WKDW WKH REVHUYHG ODUJHU DW WHPSHUDWXUHV DERYH $S REWDLQHG DIWHU FRROLQJ DQG KHDWLQJ LPSOLHV UHWDLQHG PDUWHQVLWH 0HWDOORJUDSKLF HYLGHQFH RI PDUWHQVLWH SODWHV ZDV IRXQG DW URRP WHPSHUDWXUH DIWHU D IXOO F\FOH DQG ZDV LQWHUSUHWHG WR PHDQ WKDW VRPH PDUWHQVLWH ZDV UHWDLQHG )LJXUH f 7KH QHHGOHV FRXOG QRW EH GHWHFWHG LQ DOO VHFWLRQV H[DPLQHG DQG WKLV ZDV DWWULEXWHG WR WKH IDFW WKDW WKH DPRXQW RI UHWDLQHG PDUWHQVLWH LV VPDOO DQG WR WKH SRVVLELOLW\ WKDW WKH PDUWHQVLWH SODWHV ZKLFK ZHUH UHWDLQHG KDYH D VL]H EHORZ WKDW RI WKH UHVROXWLRQ RI WKH RSWLFDO PLFURVFRSH

PAGE 53

63(&,),& (/(&75,& 5(6,67,9,7< 6V 7(03(5$785( r&f )LJXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI LaEUDVV ZW SHUFHQW ]LQFf FRQWDLQLQJ UHWDLQHG PDUWHQVLWH

PAGE 54

)LJXUH 2SWLFDO PLFURJUDSK RI 6AEUDVV ZW SHUFHQW ]LQFf DIWHU F\FOLQJ WR ORZ WHPSHUDWXUHV URRP WHPSHUDWXUH PDJQLILFDWLRQ [f f

PAGE 55

5HWDLQHG PDUWHQVLWH ZDV DOVR REVHUYHG LQ WUDQVPLVVLRQHOHFWURQ PLFURJUDSKV PDGH IURP D VDPSOH ZKLFK KDG EHHQ FRROHG EHORZ DQG KHDWHG EDFN WR URRP WHPSHUDWXUH LQ D FROG VWDJH )LJXUH f 1R DWWHPSW ZDV PDGH WR FRPSDUH WKH DPRXQWV RI UHWDLQHG PDUn WHQVLWH REVHUYHG E\ RSWLFDO DQG HOHFWURQ PLFURVFRS\ EHFDXVH RI WKH GLIIHUHQFH LQ EHKDYLRU RI WKLQ ILOPV DQG EXON VDPSOHV $ WKLUG F\FOH UHSURGXFHG WKH VHFRQG F\FOH DOPRVW SHUIHFWO\ 7KLV PHDQV WKDW DIWHU WKH VHFRQG F\FOH QR DGGLWLRQDO UHWDLQHG PDUWHQVLWH LV OHIW DW WHPSHUDWXUHV DERYH $A 7KH DPRXQW RI UHWDLQHG PDUWHQVLWH DW r& ZDV FRPSXWHG E\ WDNLQJ WKH UDWLR RI WKH GLIIHUHQFH EHWZHHQ WKH UHVLVWLYLW\ FXUYHV EHIRUH DQG DIWHU FRROLQJ WR WKH GLIIHUHQFH EHWZHHQ WKH SDUHQW SKDVH UHVLVWLYLW\ FXUYH DQG WKH H[WUDSRODWHG VWUDLJKW OLQH SRUWLRQ RI WKH PDUWHQVLWH SKDVH UHVLVWLYLW\ FXUYH 7KH DPRXQW RI UHWDLQHG PDUWHQVLWH FDOFXODWHG E\ WKLV PHWKRG ZDV IRXQG WR EH GHSHQGHQW XSRQ WKH 0 WHPSHUDWXUH $W V 0VaWHPSHUDWXUHV ORZHU WKDQ DERXW r& QR PDUWHQVLWH LV UHWDLQHG DW r& :LWK LQFUHDVLQJ 0JWHPSHUDWXUH WKH DPRXQW RI UHWDLQHG PDUWHQVLWH LQn FUHDVHV )LJXUH VKRZV WKDW XS WR SHUFHQW RI WKH WRWDO DPRXQW RI PDUWHQVLWH FDQ EH UHWDLQHG DW r& :KHQ WKH VDPH VDPSOH LV FRROHG D VHFRQG WLPH 0J LV VKLIWHG WR D KLJKHU WHPSHUDWXUH )LJXUH f 1R FKDQJH LV QRWHG LQ 0 RQ WKH WKLUG V F\FOH ,Q VXPPDU\ VRPH PDUWHQVLWH IRUPHG ZKHQ LaEUDVV LV FRROHG WR VXE]HUR WHPSHUDWXUHV LV UHWDLQHG DW URRP WHPSHUDWXUH 7KLV PDUWHQn VLWH LV VWDEOH DQG RQO\ RFFXUV LQ VDPSOHV ZLWK KLJK 0 WHPSHUDWXUHV V $IWHU WKH ILUVW F\FOH WKH VDPSOHV ZKLFK FRQWDLQHG PDUWHQVLWH KDG LQn FUHDVHG 0JWHPSHUDWXUHV

PAGE 56

7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI 6AEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ r D 'XULQJ FRROLQJ E 5HWDLQHG )LJXUH

PAGE 57

5(7$,1(' 0$57(16,7( bf )LJXUH 5HWDLQHG PDUWHQVLWH LQ SHUFHQW DW URRP WHPSHUDWXUH YHUVXV 0VaWHPSHUDWXUH

PAGE 58

63(&,),& (/(&75,& 5(6,67,9,7< 6 7(03(5$785( &&f )LJXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI AEUDVV ZW SHUFHQW ]LQFf

PAGE 59

(IIHFW RI FW3KDVH RQ WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ ,Q WKH FRXUVH RI WKLV LQYHVWLJDWLRQ LW ZDV IRXQG WKDW WKH UHVLVn WLYLW\WHPSHUDWXUH FXUYHV RI D JURXS RI VDPSOHV ZKLFK KDG WKH VDPH FRPSRVLWLRQ DQG KHDW WUHDWPHQW ZHUH QRW WKH VDPH )LJXUH f 2SWLFDO PLFURVFRS\ [UD\ GLIIUDFWLRQ DQG UHVLVWLYLW\ PHDVXUHPHQWV VKRZHG WKH SUHVHQFH RI YDU\LQJ TXDQWLWLHV RI DSKDVH ZKLFK ZDV ILUVW REVHUYHG E\ 3KLOOLSV f )URP WKH TXDQWLWDWLYH DQDO\VLV LW ZDV VHHQ WKDW WKH VDPSOH RI )LJXUH D ZDV DERXW SHUFHQW JASKDVH DQG WKH VDPSOH RI )LJXUH E FRQWDLQHG DERXW SHUFHQW LaSKDVH )LYH PDLQ GLIIHUHQFHV RI WKHVH FXUYHV ZHUH REVHUYHG 7KH GLIIHUHQFH EHWZHHQ 0 DQG 0 ZDV JUHDWHU LQ )LJXUH E WKDQ V LQ )LJXUH D 7KHUH LV D FRQVLGHUDEOH YDULDWLRQ LQ 0 EHWZHHQ WKH FXUYHV LQ )LJXUH D DQG )LJXUH E $W r& WKH UHVLVWLYLW\ GLIIHUHQFH EHWZHHQ WKH SDUHQW SKDVH DQG WKH PDUWHQVLWH SKDVH S SQ f LV DERXW WZLFH DV ODUJH LQ )LJXUH 0 3L D DV LQ )LJXUH E SA DW r& ZDV REWDLQHG E\ H[WUDSRODWLRQf S S LV FDOOHG + DQG PD\ DOVR EH WDNHQ DV WKH DPRXQW RI La 0 3L SKDVH SUHVHQW 7KH GHJUHH RI K\VWHUHVLV GHILQHG DV WKH WHPSHUDWXUH GLIIHUHQFH EHWZHHQ WKH PHDQV RI PD[LPXP DQG PLQLPXP UHVLVWDQFH RI FRROLQJ DQG KHDWLQJ ff LV DERXW SHUFHQW ODUJHU LQ WKH FXUYH RI )LJXUH E WKDQ LQ WKH FXUYH RI )LJXUH D 7KH VORSH RI WKH VWUDLJKWOLQH SRUWLRQ RI WKH FXUYH DERYH WKH 0 WHPSHUDWXUH LV ODUJHU LQ )LJXUH D WKDQ LQ )LJXUH E V 3HUFHQW WUDQVIRUPDWLRQWHPSHUDWXUH FXUYHV )LJXUH f DQG UDWH RI WUDQVIRUPDWLRQWHPSHUDWXUH FXUYHV ZHUH FRQVWUXFWHG DV GHVFULEHG HDUOLHU

PAGE 60

)LJXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH RI LaEUDVV ZW SHUFHQW ]LQFf D SHUFHQW LaSKDVH LQ VDPSOH E SHUFHQW JASKDVH LQ VDPSOH

PAGE 61

7(03(5$785( r&f (/(&75,&$/ 5(6,67,9,7<

PAGE 62

b 75$16)250$7,21 r& b 75$16)250$7,21 )LJXUH 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH D SHUFHQW cSKDVH W E SHUFHQW cSKDVH 3HUFHQW WUDQVIRUPDWLRQ SHU GHJUHH YHUVXV WHPSHUDWXUH F SHUFHQW cSKDVH G SHUFHQW cSKDVH &DOFXODWHG IURP )LJXUH f

PAGE 63

7KH DUHD RI WKH K\VWHUHVLV ORRS LQFUHDVHG WKH PD[LPXP UDWH RI WUDQVn IRUPDWLRQ SHU GHJUHH GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDn WLRQ 0A0Af LQFUHDVHG DV WKH DPRXQW RI DSKDVH LQ WKH VDPSOHV LQFUHDVHG 7KHRUHWLFDO UHVLVWLYLW\WHPSHUDWXUH FXUYHV ZHUH PDGH WR GHWHUPLQH WKH HIIHFW RI WKH SUHVHQFH RI WKH DSKDVH 7KH UHVLVWLYLW\WHPSHUDWXUH FXUYH RI DEUDVV ZDV IRXQG WR EH D VWUDLJKW OLQH ZLWK D VORSH OHVV WKDQ WKDW RI WKH OLQHDU SDUW RI WKH OaEUDVV WUDQVIRUPDWLRQ FXUYH DW WHPSHUDWXUHV DERYH 0J 7KHVH PHDVXUHn PHQWV ZHUH PDGH WR DVVXUH WKDW QR WUDQVIRUPDWLRQ RI DQ\ W\SH RFFXUUHG LQ WKH DEUDVV DW WHPSHUDWXUHV LQ WKH UDQJH XVHG LQ WKHVH H[SHULPHQWV 8VLQJ WKH DFWXDO UHVLVWLYLW\WHPSHUDWXUH FXUYHV RI D VDPSOH RI SHUFHQW DSKDVH DQG D VDPSOH RI SHUFHQW LSKDVH FXUYHV ZLWK GLIIHUHQW DPRXQWV RI L DQG D ZHUH FRQVWUXFWHG 7KH SURSRUWLRQ RI WKH UHVLVWLYLW\ RI HDFK RI WKH WZR SKDVHV ZDV WDNHQ DW D JLYHQ WHPSHUDWXUH XVLQJ WKH DVVXPHG DPRXQWV RI HDFK SKDVHf DGGHG WRJHWKHU DQG SORWWHG )LJXUH f 7KH IROORZLQJ IHDWXUHV ZHUH QRWHG IURP WKH WKHRUHWLFDO FXUYHV 7KH 0VaWHPSHUDWXUH ZDV QRW LQIOXHQFHG E\ WKH PDWKHPDWLFDO DGGLWLRQ RI DSKDVH WR LaSKDVH $GGLWLRQV RI DSKDVH WR LaSKDVH LQFUHDVHG WKH WHPSHUDWXUH GLIIHUHQFH EHWZHHQ 0 DQG 0 V :LWK LQFUHDVHG DGGLWLRQV RI DSKDVH WKH UHVLVWLYLW\ GLIIHUHQFH + DW r& GHFUHDVHG $W D FULWLFDO DPRXQW RI DSKDVH DURXQG SHUFHQWf QR PLQLPXP UHVLVWLYLW\ ZDV REVHUYHG 7KH VORSH RI WKH VWUDLJKW OLQH SRUWLRQ RI WKH FXUYHV DERYH WKH 0 WHPSHUDWXUH DSSURDFKHG WKH VORSH RI WKH FXUYH RI WKH DSKDVH V DV WKH DPRXQW RI DSKDVH LQ WKH VDPSOHV ZDV LQFUHDVHG

PAGE 64

)LJXUH 3DUWV RI WUDQVIRUPDWLRQ FXUYHV ZLWK YDULRXV DPRXQWV RI $ DQG %SKDVHV FDOFXODWHGf RI $ VPDOOHU WKDQ RI %

PAGE 65

1R FKDQJHV DUH QRWHG LQ WKH SHUFHQW WUDQVIRUPDWLRQWHPSHUDWXUH FXUYHV RU UDWH RI WUDQVIRUPDWLRQWHPSHUDWXUH FXUYHV VLQFH DOO WKH WKHRUHWLFDO FXUYHV ZHUH PDWKHPDWLFDOO\ FRQVWUXFWHG IURP WKH SHUn FHQW %LSKDVH WUDQVIRUPDWLRQ FXUYH 7R GHVFULEH LQ JHQHUDO WKH EHKDYLRU RI DQ DGGHG QRQWUDQVIRUP DEOH SKDVH DQRWKHU FXUYH ZDV FRQVWUXFWHG DVVXPLQJ WKDW WKH QRQWUDQV IRUPDEOH SKDVH KDG D JUHDWHU VORSH WKDQ WKH OLQHDU SRUWLRQ RI WKH SHUFHQW %MEUDVV WUDQVIRUPDWLRQ FXUYH DERYH WKH 0 WHPSHUDWXUH )LJXUH V f 7KH VDPH IHDWXUHV DV OLVWHG DERYH ZHUH QRWHG 7KH UHVLVWLYLW\ GLIIHUHQFH +f WDNHQ IURP WKH WKHRUHWLFDO FXUYHV SORWWHG YHUVXV SHUFHQW LaSKDVH SUHVHQW )LJXUH f ZDV XVHG WR GHn WHUPLQH WKH DPRXQW RI %LaSKDVH SUHVHQW IURP H[SHULPHQWDO UHVLVWLYLW\ WHPSHUDWXUH FXUYHV $Q\ FKDQJHV VHHQ LQ ERWK WKH WKHRUHWLFDO DQG H[SHULPHQWDO UHVLVn WLYLW\ FXUYHV DUH JHRPHWULFDO HIIHFWV GXH WR WKH DGGHG DSKDVH 7KH LQFUHDVHG GLIIHUHQFH LQ 0J DQG 0 ZLWK LQFUHDVLQJ DPRXQWV RI DSKDVH DQG WKH YHU\ VLPLODU VKDSHV RI WKH FXUYHV LQFOXGLQJ WKH FKDQJHV LQ + DQG WKH VORSH DUH H[DPSOHV 7KH 0 WHPSHUDWXUH RI VDPSOHV RULJLQDOO\ WKH VDPH FRPSRVLWLRQ ZKLFK V FRQWDLQ HTXDO DPRXQWV RI DSKDVH DIWHU KHDW WUHDWPHQW PD\ QRW EH WKH VDPH EHFDXVH RI RQH RU DOO RI WKH ZD\V WKH DSKDVH FDQ EH IRUPHG ,I D VDPSOH KDV D FRPSRVLWLRQ LQ WKH UDQJH ZKHUH WKH PDVVLYH WUDQVIRUPDWLRQ RFFXUV WKH TXHQFKHG VDPSOHV ZLOO FRQWDLQ GLIn IHUHQW DPRXQWV RI DSKDVH GXH WR WKH TXHQFKLQJ VSHHG 7KH 0VaWHPSHUDWXUH RI WKHVH VDPSOHV ZLOO SUREDEO\ EH D IXQFWLRQ RI WKH DPRXQW RI DSKDVH SUHVHQW :KHQ VHYHUDO VDPSOHV DUH TXHQFKHG WRJHWKHU VRPH PD\ ORVH PRUH ]LQF WKDQ RWKHUV 7KH ORVV RI ]LQF ZLOO FKDQJH WKH FRPSRVLWLRQ

PAGE 66

)LJXUH 3DUWV RI WUDQVIRUPDWLRQ FXUYHV ZLWK YDULRXV DPRXQWV RI $ DQG n%SKDVHV FDOFXODWHGf RI $ ODUJHU WKDQ RI %

PAGE 67

+ )LJXUH + YHUVXV SHUFHQW %LSKDVH

PAGE 68

DQG WKXV FKDQJH WKH 0VWHPSHUDWXUH 7KH RWSKDVH PD\ DOVR EH IRUPHG LI WKH VDPSOH LV FRROHG LQWR WKH D% UHJLRQ DQG TXHQFKHG 6DPSOHV WUHDWHG LQ WKLV PDQQHU ZLOO FRQWDLQ GLIIHUHQW FRPSRVLWLRQV RI WKH %ASKDVH DQG GLIn IHUHQW DPRXQWV RI WKH DSKDVH ERWK RI ZKLFK ZLOO FKDQJH WKH 0VaWHPSHUDWXUH 7KXV ZLWK RQH RU D FRPELQDWLRQ RI WKH WKUHH RFFXUUHQFHV WKH WUXH HIIHFW RI WKH DSKDVH RQ WKH 0VaWHPSHUDWXUH LV PDVNHG 7KHUHIRUH WKH FKDQJHV GXH WR WKH DFWXDO SK\VLFDO SUHVHQFH RI WKH DSKDVH DUH VHHQ LQ WKH H[SHULPHQWDO SHUFHQW WUDQVIRUPDWLRQWHP SHUDWXUH FXUYHV RI VDPSOHV FRQWDLQLQJ GLIIHUHQW DPRXQWV RI DSKDVH 7KH DUHD RI WKH K\VWHUHVLV ORRS LQFUHDVHG WKH PD[LPXP UDWH RI WUDQVn IRUPDWLRQ SHU GHJUHH GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPD WLRQHG ZLGHQHG DV WKH DPRXQW RI DSKDVH LQ WKH VDPSOHV LQFUHDVHG 3ODVWLF 'HIRUPDWLRQ %MEUDVV VDPSOHV ZHUH GHIRUPHG WR OHDUQ PRUH DERXW WUDQVIRUPDWLRQ FDXVHG E\ GHIRUPDWLRQ DQG KRZ SODVWLF GHIRUPDWLRQ LQIOXHQFHV WKH FKDUn DFWHULVWLF SRLQWV ZKHQ WKH VDPSOH XQGHUJRHV WKH PDUWHQVLWLF WUDQVIRUPDn WLRQ RQ FRROLQJ 7KHVH H[SHULPHQWV ZHUH DOVR GRQH LQ YLHZ RI WKH IDFW WKDW YHU\ RIWHQ QHXWURQ LUUDGLDWLRQ DQG SODVWLF GHIRUPDWLRQ FDXVH VLPLn ODU HIIHFWV WR PHWDOV $IWHU D SUHGHIRUPDWLRQ UXQ LH D PHDVXUHPHQW RI UHVLVWDQFH IURP URRP WHPSHUDWXUH WR D WHPSHUDWXUH RI FRPSOHWH WUDQVIRUPDWLRQ DQG EDFN WR URRP WHPSHUDWXUH WKH VDPSOHV ZHUH GHIRUPHG D VPDOO DPRXQW DQG UXQ HJDLQ 7KH VDPSOHV ZRXOG WKHQ EH GHIRUPHG PDQ\ WLPHV ZLWK UXQV PDGH LQ EHWZHHQ HDFK GHIRUPDWLRQ 7KH GHIRUPDWLRQ ZDV E\ UROOLQJ DQG ZDV PHDVXUHG E\

PAGE 69

WKH SHUFHQW UHGXFWLRQ LQ WKLFNQHVV )URP WKH UHVLVWDQFHWHPSHUDWXUH FXUYHV WKH FKDQJHV LQ WKH FKDUDFWHULVWLFV RI WKH FXUYHV FRXOG EH QRWHG )LJXUH SUHVHQWV ILYH GLIIHUHQW UHVLVWLYLW\WHPSHUDWXUH FXUYHV FRUUHVSRQGLQJ WR WKH WUDQVIRUPDWLRQ IURP WKH WR SKDVH DIWHU GLIn IHUHQW GHJUHHV RI UHGXFWLRQ LQ WKLFNQHVV RQ WKH VDPH VDPSOH 7KH IROn ORZLQJ REVHUYDWLRQV ZHUH PDGH IURP WKHVH FXUYHV :LWK LQFUHDVLQJ GHJUHH RI GHIRUPDWLRQ WKH 0 WHPSHUDWXUHV DUH V VKLIWHG WR ORZHU WHPSHUDWXUHV 7KLV VKLIW DPRXQWV WR VRPH r FRPSDUHG WR WKH XQGHIRUPHG VWDWH 7KLV LV DOVR LQGLFDWHG LQ )LJXUH ZKHUH $0 WKH VKLIW RI 0 FRPSDUHG WR WKH XQGHIRUPHG V V VWDWHf LV SORWWHG YHUVXV WKH GHJUHH RI GHIRUPDWLRQ $0J LQn FUHDVHV UDSLGO\ WR DERXW SHUFHQW UHGXFWLRQ )RU KLJKHU GHIRUPDWLRQV WKH IXUWKHU LQFUHDVH RI $0J ZDV DERXW QHJOLJLEOH :LWK LQFUHDVLQJ GHJUHH RI GHIRUPDWLRQ WKH WHPSHUDWXUH RI PLQLn PXP UHVLVWLYLW\ 0f LV DOVR VKLIWHG WR ORZHU WHPSHUDWXUHV 7KLV VKLIW LV DERXW r& FRPSDUHG WR WKH XQGHIRUPHG VWDWH ,Q )LJXUH $0 LV SORWWHG DV D IXQFWLRQ RI GHIRUPDWLRQ ,W LV VHHQ WKDW $0 LQFUHDVHV UDSLGO\ XQWLO DERXW SHUFHQW GHn IRUPDWLRQ WKHQ LW OHYHOV RII 7KH WHPSHUDWXUH FRHIILFLHQW RI UHVLVWLYLW\ LH WKH VORSH RI WKH VWUDLJKWOLQH SRUWLRQV RI WKH UHVLVWLYLW\WHPSHUDWXUH FXUYHV DW WHPSHUDWXUHV DERYH 0ALV VHHQ WR EH D IXQFWLRQ RI GHIRUPDWLRQ DV LW GHFUHDVHV ZLWK LQFUHDVLQJ DPRXQW RI GHIRUPDn WLRQ 7KUHH GLIIHUHQW VORSHV FRUUHVSRQGLQJ WR WKUHH GHJUHHV RI GHIRUPDWLRQ DUH GUDZQ LQ )LJXUH RQ WKH FXUYH RI SHUn FHQW GHIRUPDWLRQ ,Q )LJXUH LV SORWWHG DV D IXQFWLRQ RI GHIRUPDWLRQ $ UDSLG FKDQJH LQ LV REVHUYHG XS WR GHIRUPDWLRQV

PAGE 70

)LJXUH 5HODWLYH UHVLVWLYLW\ YHUVXV WHPSHUDWXUH IRU %MEUDVV ZW SHUFHQW ]LQFf DW ILYH GLIIHUHQW GHJUHHV RI GHIRUPDWLRQ

PAGE 71

63(&,),& 5(6,67,9,7<

PAGE 72

)LJXUH 6KLIW RI 0V$0Jf YHUVXV GHIRUPDWLRQ )LJXUH 6KLIW RI 0$0f YHUVXV GHIRUP£WLRQ

PAGE 73

)LJXUH DQG + SHUFHQW JASKDVH SUHVHQWf YHUVXV SHUFHQW GHIRUPD

PAGE 74

RI RU SHUFHQW :LWK KLJKHU GHJUHHV RI GHIRUPDWLRQ LV DOPRVW FRQVWDQW $ IXUWKHU FKDUDFWHULVWLF SURSHUW\ RI WKH WUDQVIRUPDWLRQ FXUYH LV WKH UHVLVWLYLW\ GLIIHUHQFH EHWZHHQ WKH FRROLQJ FXUYH DQG WKH H[WUDSRODWHG OLQHDU SRUWLRQ RI WKH KHDWLQJ FXUYH DW r& 7KLV TXDQWLW\ ZDV GHQRWHG SUHYLRXVO\ DV + DQG ZDV WDNHQ DV D PHDVXUH RI WKH DPRXQW RI WKH JASKDVH SUHVHQW )LJXUH f + WKH SHUFHQW JASKDVH SUHVHQW DIWHU GHIRUPDWLRQf LV VHHQ WR GHFUHDVH ZLWK LQFUHDVLQJ DPRXQWV RI GHIRUPDWLRQ )LJXUH f $W VPDOO GHIRUPDWLRQV + GHFUHDVHV UDSLGO\ XS WR WR SHUFHQW GHIRUPDWLRQ DIWHU ZKLFK LW GHFUHDVHV RQO\ JUDGXDOO\ :LWK LQFUHDVLQJ GHJUHH RI GHIRUPDWLRQ $J LV VKLIWHG WR ORZHU WHPSHUDWXUHV $$J SORWWHG YHUVXV GHIRUPDWLRQ ZRXOG EH VLPLODU WR WKH $0J YV GHIRUPDWLRQ FXUYH 7KH $VaWHPSHUDWXUH DIWHU GHIRUPDWLRQ LV VKLIWHG r& FRPSDUHG WR WKH XQGHIRUPHG VWDWH 7KH ILYH DERYH PHQWLRQHG SURSHUWLHV DOO SRLQW WR D FRPPRQ EHKDYLRU $W WKH EHJLQQLQJ RI GHIRUPDWLRQ WKH\ FKDQJH UDSLGO\ EXW DIWHU D FULWLn FDO GHJUHH RI GHIRUPDWLRQ WR SHUFHQWf WKH\ DOPRVW EHFRPH FRQVWDQW ,W KDG EHHQ PHQWLRQHG E\ RWKHU LQYHVWLJDWRUV f WKDW ZKHQ GHn IRUPHG JAEUDVV ZRXOG WUDQVIRUP WR PDUWHQVLWH ,Q WKLV UHVHDUFK WKLV PDUWHQVLWH LV FDOOHG GHIRUPDWLRQPDUWHQVLWH 7KH SURRI RI WKH SUHVHQFH RI GHIRUPDWLRQPDUWHQVLWH LQ WKLV ZRUN LV JLYHQ E\ RSWLFDO PLFURJUDSKV HOHFWURQ PLFURVFRS\ UHVLVWLYLW\ PHDVXUHPHQWV DQG [UD\ GLIIUDFWLRQ $ VHULHV RI JAEUDVV VDPSOHV ZLWK ZHLJKW SHUFHQW ]LQF ZKLFK ZHUH SODVWLFDOO\ GHIRUPHG E\ FROGUROOLQJ DQG LQYHVWLJDWHG ZLWK RSWLFDO PLFURVFRS\ DUH VKRZQ LQ )LJXUHV DQG WKH SHVXOWV DUH OLVWHG LQ 7DEOH $W GHIRUPDWLRQV RI SHUFHQW DQG ODUJHU WKH PDUWHQVLWH QHHGOHV FDQ

PAGE 75

E )LJXUH 2SWLFDO PLFURJUDSKV RI GHIRUPHG 6LEUDVV ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ r D SHUFHQW GHIRUPDWLRQ E SHUFHQW GHIRUPDWLRQ QHHGOHV DUH GHIRUPDWLRQPDUWHQVLWH IURP FXWWLQJf

PAGE 76

)LJXUH 2SWLFDO PLFURJUDSKV RI GHIRUPHG JAEUDVV ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ r D E SHUFHQW GHIRUPDWLRQ SHUFHQW GHIRUPDWLRQ

PAGE 77

)LJXUH 2SWLFDO PLFURJUDSKV RI GHIRUPHG JMEUDVV ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ [ D SHUFHQW GHIRUPDWLRQ E SHUFHQW GHIRUPDWLRQ

PAGE 78

, )LJXUH 2SWLFDO PLFURJUDSKV RI GHIRUPHG JMEUDVV ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ [ D SHUFHQW GHIRUPDWLRQ E SHUFHQW GHIRUPDWLRQ

PAGE 79

)LJXUH 2SWLFDO PLFURJUDSKV RI GHIRUPHG JAEUDVV ZW SHUFHQW ]LQFf 0DJQLILFDWLRQ [ SHUFHQW GHIRUPDWLRQ

PAGE 80

7$%/( 9LVXDO REVHUYDWLRQV RQ %LaEUDVV DIWHU YDULRXV GHJUHHV RI UROOLQJ DW URRP WHPSHUDWXUH 'HJUHH RI GHIRUPDWLRQ LQ SHUFHQW UHGXFWLRQ LQ WKLFNQHVVf 2EVHUYDWLRQV 2QO\ SKDVH SKDVH DQG D OLWWOH D 2QO\ %LSKDVH DQG D OLWWOH D SKDVH 1HHGOHV VKRZQ DUH WKRVH RI GHIRUPDWLRQPDUWHQVLWH IRUPHG ZKHQ WKH VDPSOH ZDV FXW ,VRODWHG QHHGO HV RI PDUWHQVLWH 0DUWHQVLWH QHHGOHV VHHQ LQ DOPRVW DOO DUHDV VRPH XQWUDQVIRUPHG OHIW *UDLQ ERXQGDULHV DUH VWLOO YLVLEOH $ 7KLFN QHHGOHV LQ DOO DUHDV 'HIRUPHG WKLFN QHHGOHV ` 1R LQGLYLGXDO DQ\PRUH QHHGOHV DUH VHHQ

PAGE 81

EH VHHQ )RU GHIRUPDWLRQV DERYH SHUFHQW WKH PDUWHQVLWH QHHGOHV EHJLQ WR EH GHIRUPHG )LJXUH VKRZV HOHFWURQ PLFURJUDSKV RI L EUDVV WKDW KDG EHHQ SXOOHG LQ WHQVLRQ DQG WKHQ SUHSDUHG IRU WKH HOHFWURQ PLFURVFRSH 7KH SODWHV VHHQ DUH WKRVH RI GHIRUPDWLRQPDUWHQVLWH ,Q )LJXUH WKH DEVROXWH UHVLVWLYLW\WHPSHUDWXUH FXUYHV RI WKH WUDQVIRUPDWLRQ RI D VDPSOH XQGHIRUPHG DQG SHUFHQW GHIRUPHG DUH JLYHQ 7KH UHVLVWLYLW\ FKDQJH DIWHU GHIRUPDWLRQ LV VKRZQ 7KLV VDPSOH FRQWDLQHG SHUFHQW DSKDVH FDOFXODWHG DV PHQWLRQHG HDUOLHUf DQG SHUFHQW WUDQVIRUPDEOH %MSKDVH 7KH SHUFHQW GHIRUPDWLRQ WUDQVIRUPHG D SRUWLRQ RI WKH %ASKDVH WR GHIRUPDWLRQPDUWHQVLWH VR WKDW DIWHU GHn IRUPDWLRQ WKH VDPSOH FRQWDLQHG SHUFHQW GHIRUPDWLRQPDUWHQVLWH SHUFHQW ASKDVH DQG SHUFHQW DSKDVH ,W FDQ EH VHHQ DOVR IURP WKLV SORW WKDW WKH WHPSHUDWXUH FRHIILFLHQW RI UHVLVWLYLW\ RI WKH GHn IRUPDWLRQ PDUWHQVLWH LV ORZHU WKDQ WKDW RI ERWK WKH FRROLQJ PDUWHQVLWH nDQG WKH SDUHQW %LSKDVH 7KH SHUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH FXUYHV ZHUH FRQVWUXFWHG IRU WKH GHIRUPHG VDPSOHV DV GHVFULEHG LQ VHFWLRQ )LJXUH f 7KHVH FXUYHV GUDZQ IRU FRROLQJ DQG KHDWLQJ IRUP D K\VWHUHVLV ORRS 7KH ILUVW GHULYDWLYH RI WKH DERYH GDWD IRU WKH FRROLQJ FXUYH ZDV WDNHQ WR REWDLQ WKH UDWH RI WUDQVIRUPDWLRQ SHU GHJUHH DQG ZDV SORWWHG YHUVXV WKH WHPSHUn DWXUH 7KH DUHD RI WKH K\VWHUHVLV ORRS ZDV VHHQ WR LQFUHDVH DV WKH DPRXQW RI GHIRUPDWLRQ LQFUHDVHG )LJXUH f $OVR WKH PD[LPXP UDWH RI WUDQVn IRUPDWLRQ SHU GHJUHH RQ FRROLQJ GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDWLRQ ZDV VSUHDG DV WKH DPRXQW RI GHIRUPDWLRQ LQFUHDVHG 7KH LQYHVWLJDWLRQV GHVFULEHG LQ WKLV VHFWLRQ VKRZHG WKDW ILYH FKDUn DFWHULVWLF SURSHUWLHV RI WKH WUDQVIRUPDWLRQ FXUYH FKDQJHG UDSLGO\ XS WR

PAGE 82

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI LaEUDVV ZW SHUFHQW ]LQFf GHIRUPHG LQ WHQVLRQ 0DJQLILFDWLRQ 2

PAGE 83

63(&,),& (/(&75,& 5(6,67-9,7< LIW&0f )LJXUH 6SHFLILF UHVLVWLYLW\ LQ SIW&0f YHUVXV WHPSHUDWXUH IRU 6LEUDVV ZW SHUFHQW ]LQFf DW WZR GLIIHUHQW GHJUHHV RI GHIRUPDWLRQ

PAGE 84

b 75$16)20$7,21 f& b 75$16)250$7,21 7(03(5$785( 7(03(5$785( b '()250$7,21 9 '()250$7,21 )LJXUH D E F G 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH SHUFHQW GHIRUPDWLRQ SHUFHQW GHIRUPDWLRQ 3HUFHQW WUDQVIRUPDWLRQ SHU GHJUHH YHUVXV WHPSHUDWXUH SHUFHQW GHIRUPDWLRQ SHUFHQW GHIRUPDWLRQ &DOFXODWHG IURP )LJXUH f

PAGE 85

4O f§ f§, , , L } } rR 3ODVWLF 'HIRUPDWLRQ L )LJXUH $UHD RI K\VWHUHVLV ORRS RI SHUFHQW WUDQVIRUPDWLRQ FXUYH YHUVXV GHIRUPDWLRQ KR

PAGE 86

DERXW SHUFHQW GHIRUPDWLRQ DQG UHPDLQHG FRQVWDQW DW KLJKHU GHIRUPDn WLRQV 7KH K\VWHUHVLV ORRS ZDV ZLGHQHG WKH PD[LPXP VSHHG RI WUDQVIRUPDn WLRQ GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDWLRQ ZDV VSUHDG RYHU D JUHDWHU UDQJH ZKHQ WKH VDPSOHV ZHUH GHIRUPHG 7KHVH SURSHUW\ FKDQJHV ZHUH GXH WR WKH IRUPDWLRQ RI GHIRUPDWLRQPDUWHQVLWH ZKLFK ZDV VHHQ LQ RSWLFDO DQG HOHFWURQ PLFURJUDSKV (OHFWURQ 0LFURVFRS\ 2EVHUYDWLRQV $OWKRXJK VRPH RI WKH REVHUYDWLRQV RI WKH PDUWHQVLWLF WUDQVIRUPDn WLRQ ZKLFK ZHUH PDGH E\ XVLQJ WKH HOHFWURQ PLFURVFRSH KDYH EHHQ PHQWLRQHG HDUOLHU LW LV EHOLHYHG WKDW D VHSDUDWH VHFWLRQ ZRXOG EH EHQHILFLDO ,W ZDV VHHQ LQ WKHVH LQYHVWLJDWLRQV DQG LQ VWXGLHV E\ +XOO f WKDW DIWHU SUHSDUDWLRQ RI VRPH JAEUDVV VDPSOHV IRU WUDQVPLVVLRQ HOHFn WURQ PLFURVFRS\ PDUWHQVLWH QHHGOHV DSSHDUHG QHDU WKH HGJH RI WKH IRLOV DW WKH YHU\ WKLQ UHJLRQV )LJXUHV DQG f 7KLV PDUWHQVLWH ZDV LQWHUSUHWHG WR EH GHIRUPDWLRQPDUWHQVLWH DV WKH VWUXFWXUH ZDV IDFH FHQWHUHG FXELF DV GHWHUPLQHG IURP HOHFWURQ GLIIUDFWLRQf ZKLFK LV WKH VDPH DV WKDW RI KLJKO\ GHIRUPHG JAEUDVV 7KLV SKHQRPHQRQ GLG QRW RFFXU LQ HDFK VDPSOH EXW LQ HQRXJK WR PDNH WKHLU DSSHDUDQFH VLJQLILn FDQW 7KLV PDUWHQVLWH GHIRUPDWLRQPDUWHQVLWHf GLG QRW JURZ ZKHQ WKH IRLO ZDV FRROHG DQG WUDQVIRUPHG LQ WKH HOHFWURQ PLFURVFRSH 7KH PRVW GLVWLQFWLYH IHDWXUHV RI WKH PDUWHQVLWH DUH WKH VWULDWLRQV ZLWKLQ WKH QHHGOHV ,Q HYDOXDWLQJ WKH DEVROXWH WHPSHUDWXUHV REWDLQHG ZLWK D WKHUPRn FRXSOH LW PXVW EH QRWHG WKDW WKH HOHFWURQ EHDP ZLOO KHDW XS D SRUWLRQ RI WKH VDPSOH DQG LW LV QRW UHDOO\ NQRZQ LI WKH WHPSHUDWXUH UHFRUGHG

PAGE 87

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf ZKHUH PDUWHQVLWH IRUPHG GXULQJ WKLQQLQJ D 0DJQLILFDWLRQ r E 0DJQLILFDWLRQ r

PAGE 88

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI %AEUDVV ZWr SHUFHQW ]LQFf VKRZLQJ VWULDWHG UHJLRQ ZKLFK PDNHV XS WKH PDUWHQVLWH IRUPHG GXULQJ WKLQQLQJ D 0DJQLILFDWLRQ r E 0DJQLILFDWLRQ r

PAGE 89

LV WKDW RI WKH SDUW RI WKH IRLO EHLQJ H[DPLQHG +RZHYHU WKH WHPSHUDn WXUH GLIIHUHQFHV VKRXOG EH DFFXUDWH $V WKH SUHSDUHG IRLOV ZHUH FRROHG LQ WKH HOHFWURQ PLFURVFRSH DQG MXVW EHIRUH DQ\ RI WKH FRROLQJ PDUWHQVLWH ZDV VHHQ WKHUH Y"DV D JUHDW PRYHPHQW RI WKH FRQWRXUV RI WKH IRLO VRPHZKDW RI DQ XQGXODWLQJ PRWLRQ EHOLHYHG WR EH GXH WR D EHQGLQJ RI WKH IRLO ,PPHGLDWHO\ DIWHU WKLV WKH ILUVW PDUWHQVLWH ZDV VHHQ ,I WKH FRROLQJ ZDV IDVW WKH PDUWHQVLWH SODWHV H[SORGHG LQWR YLHZ DQG JUHZ XQWLO VWRSSHG E\ D EDUULHU :LWK VORZ FRQWUROOHG FRROLQJ WKH SODWHV ZHUH VHHQ DV WKLQ OLQHV JURZLQJ ILUVW LQ OHQJWK WKHQ LQ WKLFNQHVV ZKHQ IXUWKHU FRROHG )LJXUH D VKRZV WKH ILUVW HYLGHQFH RI D PDUWHQVLWH SODWH DW VXEn ]HUR WHPSHUDWXUHV $ WKLQ OLQH ZDV ILUVW VHHQ 7KLV IRLO ZDV YHU\ GLUW\ EHFDXVH RI SUREOHPV ZLWK WKH YDFXXP V\VWHP RI WKH HOHFWURQ PLFURn VFRSHf 7KH EODFN GRW LV DQ LPSXULW\ XVHG DV D ODQGPDUN $V WKH WHPn SHUDWXUH ZDV ORZHUHG WKH DPRXQW RI PDUWHQVLWH LQFUHDVHG )LJXUHV DQG VKRZ WKH SODWHV DW YDULRXV VWDJHV RI WKH WUDQVIRUPDWLRQ $ VHFRQG QHHGOH DQG WKH WKLFNHQLQJ DQG MRLQLQJ RI WKH WZR QHHGOHV LV HDVLO\ VHHQ 7KH SHUFHQW RI PDUWHQVLWH VHHQ LQ WKH VDPH VHFWLRQ RI HDFK SLFWXUH LV PHDVXUHG E\ WKH DUHD RI WKH PDUWHQVLWH FRPSDUHG WR WKH DUHD RI WKH VHFWLRQ DQG LV JLYHQ LQ 7DEOH DQG )LJXUH )LJXUHV DQG VKRZ WKH JURZWK RI PDUWHQVLWH LQ DQRWKHU DUHD 7DEOH JLYHV WKH WHPSHUDWXUH GLIIHUHQFH DQG DPRXQW RI PDUWHQVLWH VHHQ LQ D FRPPRQ DUHD RI HDFK RI WKH SLFWXUHV 7KHVH SLFWXUHV ZHUH PDGH DW WKH WHPSHUDWXUHV RI WKH JUHDWHVW PDUWHQVLWH JURZWK 7KH LQQHU VWULDWHG VWUXFWXUH FDQ EH VHHQ LQ WKHVH QHHGOHV 7KH LQQHU VWUXFWXUH LQ PRVW FDVHV ZDV VHHQ WR IRUP DIWHU WKH QHHGOH ZDV IRUPHG

PAGE 90

cWHn /I eU A f 0£WH r rf‘ ‘ N m }? A W }A )LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI %LEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI PDUWHQVLWH DW YDULRXV WHPSHUDWXUHV EHORZ 0 WHPSHUDWXUH 0DJQLILFDn WLRQ r 6 D 0JWHPSHUDWXUH $7 E $7 r& YRO SHUFHQW PDUWHQVLWH F R R U ,, + YRO SHUFHQW PDUWHQVLWH G $7 r& YRO SHUFHQW PDUWHQVLWH

PAGE 91

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI %MAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI PDUWHQVLWH DW YDULRXV WHPSHUDWXUHV EHORZ 0 WHPSHUDWXUH 0DJQLILFD V WLRQ r D $7 r& YRO E $7 r& YRO F $7 r& G $7 r&

PAGE 92

$ )LJXUH 9ROXPH SHUFHQW PDUWHQVLWH YHUVXV $7 IURP WKH 0VaWHPSHUDWXUH

PAGE 93

E )LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI IRXU QHHGOHV RI PDUWHQVLWH 0DJQLILFDWLRQ r D $7 YRO SHUFHQW PDUWHQVLWH E $7 r& YRO SHUFHQW PDUWHQVLWH

PAGE 94

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ JURZWK RI IRXU QHHGOHV RI PDUWHQVLWH 0DJQLILFDWLRQ [ D $7 r& E $7 r& YRO SHUFHQW PDUWHQVLWH YRO SHUFHQW PDUWHQVLWH

PAGE 95

7$%/( 3HUFHQW PDUWHQVLWH SUHVHQW DW YDULRXV WHPSHUDWXUHV f )LJXUH $7r&f 9RO SHUFHQW PDUWHQVLWH 7$%/( 3HUFHQW PDUWHQVLWH SUHVHQW DW YDULRXV WHPSHUDWXUHV f )LJXUH $7r&f 9RO SHUFHQW PDUWHQVLWH :KHQ WKH IRLOV ZHUH KHDWHG IURP WHPSHUDWXUHV RI FRPSOHWH PDUWHQn VLWH IRUPDWLRQ WKH PDUWHQVLWH GLVDSSHDUHG 7KH VWULDWHG EDQGV DFURVV WKH QHHGOHV ILUVW GLVDSSHDUHG VWDUWLQJ DW RQH HQG RI WKH QHHGOH DQG JRLQJ WR WKH RWKHU 7KHUH ZDV QR FKDQJH LQ WKH ZLGWK )LJXUHV f 7KXV WKHUH ZHUH GLIIHUHQFHV LQ WKH ZD\ WKH QHHGOHV JUHZ DQG GLVDSn SHDUHG )LJXUHV VKRZ IRLOV DW YDULRXV WHPSHUDWXUHV GXULQJ WKH PDUn WHQVLWH IRUPDWLRQ 7KHVH SLFWXUHV DQG WKH RQHV DERYH RI AEUDVV PDUn WHQVLWH IRUPHG LQ WKH HOHFWURQ PLFURVFRSH XVLQJ D FROG VWDJH ZHUH SUREDEO\ WKH ILUVW RI WKHLU NLQG 0DQ\ GLIIHUHQW DUHDV RI WKH IRLOV DUH VKRZQ 7KH LQQHU VWUXFWXUH RI WKH QHHGOHV DQG WKHLU ERXQGDULHV DUH SDUWLFXODUO\ LQWHUHVWLQJ

PAGE 96

, / UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI EUDVV ZW HUFHQW ]LQFf LQ FROG VWDJH ZLWK ODUJH PDUWHQVLWH QHHGOH WLOO JURZLQJ 0DJQLILFDWLRQ r )LJXUH

PAGE 97

E )LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH +HDWLQJ WKH VDPSOH 0DJn QLILFDWLRQ r D 7 r& E 7 r&

PAGE 98

)LJXUH 7UDQVPLVVLRQ SHUFHQW ]LQFf GLVDSSHDULQJ HOHFWURQ PLFURJUDSKV RI JMEUDVV ZW LQ FROG VWDJH VKRZLQJ WKH PDUWHQVLWH QHHGOH 0DJQLILFDWLRQ [ D 7 r& E 7 r&

PAGE 99

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI 6AEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ WKH PDUWHQVLWH QHHGOH DOPRVW JRQH 0DJQLILFDWLRQ [ D 7 r& E 7 r&

PAGE 100

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK PDUWHQVLWH QHHGOH JRQH 0DJQLILFDWLRQ r 7 r&

PAGE 101

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI AEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ [

PAGE 102

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI LaEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ VWULDWLRQV DW WKH FHQWHU RI D SODWH 7HPSHUDWXUH RI FRPSOHWH PDUn WHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ [

PAGE 103

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI %LEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK WKH ERXQGDU\ EHWZHHQ WZR SODWHV 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ r

PAGE 104

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI %LEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK SODWH OHIW RI FHQWHU PXFK ZLGHU DW WKH WRS WKDQ DW WKH ERWWRP $QRWKHU SODWH VWRSSHG LWV JURZWK 7HPSHUDWXUH RI FRPSOHWH PDUn WHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ r

PAGE 105

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH VKRZLQJ LQQHU VWUXF WXUH 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJ QLILFDWLRQ r

PAGE 106

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK D ERXQGDU\ FRQWDLQLQJ GLVORFDWLRQV 7HPSHUDWXUH RI FRPSOHWH PDUn WHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ r

PAGE 107

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI 6MEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ r

PAGE 108

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI LaEUDVV PDUWHQVLWH SODWHV ZW SHUFHQW ]LQFf LQ FROG VWDJH 7HPSHUn DWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ r

PAGE 109

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI JAEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ 0DJQLILFDWLRQ [

PAGE 110

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI %AEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH ZLWK GLVORFDWLRQV DW ERXQGDULHV 7HPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDn WLRQ 0DJQLILFDWLRQ [

PAGE 111

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI %LEUDVV DQG PDUn WHQVLWH ZW SHUFHQW ]LQFf LQ FROG VWDJH 7HPSHUDWXUH EHORZ URRP WHPSHUDWXUH 0DJQLILFDWLRQ r

PAGE 112

)LJXUH LV D UHSOLFD RI PDUWHQVLWH QHHGOHV ZKLFK VKRZV WKH VKDSH GLVWRUWLRQ RFFXUULQJ GXULQJ WUDQVIRUPDWLRQ :KLOH LQ WKH HOHFWURQ PLFURVFRSH IRLOV RI AEUDVV ZHUH SXOOHG LQ WHQVLRQ E\ XVLQJ D VSHFLDO WHQVLOH VSHFLPHQ KROGHU 6LQFH GHIRUPDn WLRQ FDXVHV D PDUWHQVLWLF WUDQVIRUPDWLRQ LQ AEUDVV LW ZDV IHOW WKDW LW ZRXOG EH YHU\ LQWHUHVWLQJ WR VHH LI WKLV WUDQVIRUPDWLRQ FRXOG EH REVHUYHG (DUOLHU SLFWXUHV )LJXUH f ZHUH VKRUQ RI VDPSOHV ZKLFK ZHUH SODVWLFDOO\ IRUPHG LQ WHQVLRQ DQG WKHQ SUHSDUHG IRU HOHFWURQ PLn FURVFRS\ 7KH GHIRUPDWLRQPDUWHQVLWH ZDV UHDGLO\ VHHQ ,Q WKH VDPSOHV ZKLFK ZHUH GHIRUPHG LQ WKH PLFURVFRSH GLVORFDWLRQV ZHUH VHHQ WR SLOH XS DQG OLQH XS 6OLS WUDFHV DQG ZKDW DSSHDUHG WR EH VWDFNLQJ IDXOWV ZHUH DOVR PXFK LQ HYLGHQFH )LJXUHV f 1R PDUWHQVLWH DV XVXDOO\ UHFRJQL]HG ZDV VHHQ 7UDQVIRUPDWLRQV DW (OHYDWHG 7HPSHUDWXUHV %HFDXVH WKH LUUDGLDWLRQ RI WKH `EUDVV VDPSOHV RFFXUV DW WHPn SHUDWXUHV DERYH URRP WHPSHUDWXUH r&r&f WKH HIIHFW RI DQQHDOLQJ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ ZDV VWXGLHG JMEUDVV VDPSOHV ZHUH KHDWHG DW HOHYDWHG WHPSHUDWXUHV IRU ILYH PLQXWHV TXHQFKHG LQ ZDWHU DW URRP WHPSHUDWXUH DQG WKH UHVLVWDQFH PHDVXUHG DW URRP WHPSHUDWXUH 1R FKDQJH LQ UHVLVWDQFH ZDV QRWHG XQWLO DERXW r& )URP WKLV WHPSHUDWXUH XS WR DERXW r& WKH UHVLVWDQFH LQFUHDVHG OLQHDUO\ SHUFHQW $ERYH r& WKHUH ZDV QR IXUWKHU FKDQJH LQ WKH UHVLVWDQFH )LJXUH f &RQVWDQW WHPSHUDWXUH DQQHDOLQJ VKRZHG WKDW WKHVH FKDQJHV ZHUH WLPH GHSHQGHQW )LJXUH f 7KHVH UHVLVWDQFH FKDQJHV GXH WR D SUHFLSLWDWLRQ DUH SUHOLPLQDU\ WR ODUJHU FKDQJHV ZKLFK WDNH SODFH DW KLJKHU WHPSHUDWXUHV DSSUR[LPDWHO\ r&f GXULQJ WKH EDLQLWH WUDQVIRUPDWLRQ

PAGE 113

)LJXUH (OHFWURQ PLFURJUDSK RI UHSOLFD RI 6AEUDVV PDUWHQVLWH ZW SHUFHQW ]LQFf VKRZLQJ WKH VXUIDFH GLVWRUWLRQ 0DJQLILFDn WLRQ O2222[

PAGE 114

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSKV RI LaEUDVV ZW SHUFHQW ]LQFf VKRZLQJ VOLS WUDFHV ZLWK GLVORFDWLRQV DQG VWDFNLQJ IDXOWV 6DPSOHV SXOOHG LQ WHQVLRQ LQ WKH PLFURn VFRSH 0DJQLILFDWLRQ r

PAGE 115

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI 6MEUDVV ZW SHUFHQW ]LQFf VKRZLQJ WDQJOHV RI GLVORFDWLRQV 6DPSOH SXOOHG LQ WHQVLRQ LQ WKH PLFURVFRSH 0DJQLILFDWLRQ [

PAGE 116

)LJXUH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI %LEUDVV ZW SHUFHQW ]LQFf VKRZLQJ GLVORFDWLRQ OLQHXS 6DPSOH SXOOHG LQ WHQVLRQ LQ WKH PLFURVFRSH 0DJQLILFDWLRQ r

PAGE 117

)LJXUrH 7UDQVPLVVLRQ HOHFWURQ PLFURJUDSK RI LaEUDVV ZW SHUFHQW ]LQFf VKRZLQJ SLOHXSV RI GLVORFDWLRQV 6DPSOHV SXOOHG LQ WHQVLRQ LQ WKH PLFURVFRSH D 0DJQLILFDWLRQ r E 0DJQLILFDWLRQ r

PAGE 118

$QQHDOLQJ 7HPSHUDWXUH r&f )LJXUH 5HODWLYH UHVLVWLYLW\ RI %LEUDVV ZW YHUVXV ILYH PLQXWH DQQHDOLQJ WHPSHUDWXUHV SHUFHQW ]LQFf

PAGE 119

)LJXUH 3HUFHQW UHVLVWDQFH FKDQJH RI %LEUDVV ZW SHUFHQW ]LQFf YHUVXV WLPH LQ PLQXWHV DW YDULRXV WHPSHUDWXUHV

PAGE 120

6DPSOHV ZKLFK KDG EHHQ KHDWWUHDWHG ZHUH WUDQVIRUPHG WR PDUWHQVLWH E\ FRROLQJ WR GHWHUPLQH ZKDW HIIHFWV WKH KHDW WUHDWPHQW KDG RQ WKH PDUn WHQVLWLF WUDQVIRUPDWLRQ ,W ZDV VHHQ IURP WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH )LJXUH f WKDW D KHDW WUHDWPHQW RI r& IRU KRXUV LQFUHDVHG WKH UHVLVWDQFH SHUFHQWf DQG WKH WHPSHUDWXUH FRHIILFLHQW RI UHVLVn WLYLW\ RI WKH SDUHQW SKDVH $W DERXW r& ZKHQ WKH VDPSOH ZDV EHLQJ KHDWHG IURP WKH WHPSHUDWXUH RI FRPSOHWH PDUWHQVLWH IRUPDWLRQ WKH UHn VLVWDQFH EHFDPH FRQVWDQW $W r& WKH UHVLVWDQFHWHPSHUDWXUH FXUYH DJDLQ WRRN LWV XVXDO VKDSH $W URRP WHPSHUDWXUH WKH UHVLVWDQFH ZDV WKH VDPH DV EHIRUH KHDW WUHDWPHQW 1R FKDQJH ZDV VHHQ LQ WKH 0 WHUQ V SHUDWXUH GXH WR WKH KHDW WUHDWPHQW $ KHDW WUHDWPHQW RI r& IRU KRXUV WR WKH VDPH VDPSOH LQFUHDVHG WKH UHVLVWDQFH RI WKH SDUHQW SKDVH SHUFHQW DQG WKH VDPSOH GLG QRW XQGHUJR WKH PDUWHQVLWLF WUDQVIRUPDWLRQ GXULQJ VXEVHTXHQW FRROLQJ 'XULQJ WKH ORZHU WHPSHUDWXUH KHDW WUHDWPHQW D SUHFLSLWDWLRQ WRRN SODFH ZKLFK LQFUHDVHG WKH UHVLVWDQFH 7KH SUHFLSLWDWH ZDV XQVWDEOH DQG DW DERXW r& GLVDSSHDUHG $W r& WKH EDLQLWH WUDQVIRUPDWLRQ VWDUWHG DQG WKH ASKDVH ZDV WUDQVIRUPHG WKXV QR PDUWHQVLWH WUDQVIRUPDn WLRQ FRXOG EH REVHUYHG 1HXWURQ ,UUDGLDWLRQ 7KH FKDUDFWHULVWLFV RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RI IAEUDVV ZLWK ZW SHUFHQW ]LQF DIWHU IDVW QHXWURQ ERPEDUGPHQW ZHUH LQn YHVWLJDWHG E\ UHVLVWDQFHWHPSHUDWXUH PHDVXUHPHQWV EHIRUH DQG DIWHU LUn UDGLDWLRQ 3HUFHQW WUDQVIRUPDWLRQ DQG UDWH RI WUDQVIRUPDWLRQ FXUYHV ZHUH DOVR FRQVWUXFWHG )URP UHVLVWLYLW\WHPSHUDWXUH FXUYHV )LJXUH f LW ZDV VHHQ WKDW WKH 0VaWHPSHUDWXUH ZDV VKLIWHG WR ORZHU WHPSHUDWXUHV DIWHU QHXWURQ

PAGE 121

‘ROWf mf§ 7HPSHUDWXUH r&f )LJXUH 5HODWLYH UHVLVWLYLW\ RI JMEUDVV ZW SHUFHQW ]LQFf YHUVXV WHPSHUDWXUH EHIRUH DQG DIWHU KHDWLQJ

PAGE 123

LUUDGLDWLRQ WKH FKDQJH EHLQJ JUHDWHU DV WKH LQWHJUDWHG IOX[ LQFUHDVHG 7KLV LV LQGLFDWHG LQ )LJXUHV DQG ZKHUH $0J WKH VKLIW RI 0J FRPn SDUHG WR WKH XQLUUDGLDWHG VWDWHf LV SORWWHG YHUVXV WKH LQWHJUDWHG IOX[ QRUPDO VFDOH DQG ORJDULWKPLF VFDOHf $0J DSSHDUV WR OHYHO RII DW WKH KLJKHVW GRVH OHYHO [ QFPf 7DEOH JLYHV WKH DFWXDO 0JWHPSHUDWXUHV DQG GRVHV 7KHUH ZDV QR DSSUHFLDEOH FKDQJH LQ WKH DUHD RI WKH K\VWHUHVLV ORRS RI WKH SHUFHQW WUDQVIRUPDWLRQWHPSHUDWXUH FXUYH RQ LUUDGLDWLRQ )LJXUH f )URP WKH UDWH RI WUDQVIRUPDWLRQWHPSHUDWXUH FXUYH )LJXUH f LW ZDV VHHQ WKDW WKH LUUDGLDWHG VDPSOHV KDG D ODUJHU PD[LPXP UDWH RI WUDQVn IRUPDWLRQ WKDQ WKH XQLUUDGLDWHG VDPSOH DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDWLRQ DIWHU LUUDGLDWLRQ ZDV VPDOOHU 1R FKDQJH ZDV QRWHG RQ D VHFRQG UXQ DIWHU LUUDGLDWLRQ 7KH 0 DQG 0WHPSHUDWXUHV DUH WKH VDPH DV RQ WKH ILUVW UXQ DIWHU LUUDGLDWLRQ 6DPSOHV RI ORZHU ]LQF FRQWHQW ZW SHUFHQWf DSSHDUHG WR KDYH DQ LQFUHDVH LQ 0JWHPSHUDWXUH EHWZHHQ WKH ILUVW DQG VHFRQG UXQV DIWHU LUUDGLDWLRQ 2Q WKH ILUVW UXQ DIWHU LUUDGLDWLRQ WKH 0 ZDV ORZHUHG V RQ WKH VHFRQG UXQ WKH 0 ZDV LQFUHDVHG WR LWV YDOXH SUHYLRXV WR LUUDGLD V WLRQ 7KLV LQFUHDVH KRZHYHU ZDV IRXQG WR EH GXH WR UHWDLQHG PDUWHQn VLWH

PAGE 124

,OO )LJXUH $0 YHUVXV LQWHJUDWHG QHXWURQ IOX[

PAGE 125

$06r&f

PAGE 126

7$%/( ,QIOXHQFH RI IDVW QHXWURQ ERPEDUGPHQW RQ 0AWHPSHUDWXUH A 3]f AFPn 0 r&f 67 0 r&f V B B $0Vr&f $YHUDJH $0Vr&f L LL [ L LQ ;8 f ] [ L ‘ r f [ [ ` F s f Bf [ Q f 8m = M

PAGE 127

)LJXUH 7UDQVIRUPDWLRQ FXUYHV D 3HUFHQW WUDQVIRUPDWLRQ YHUVXV WHPSHUDWXUH EHIRUH DQG DIWHU LUUDGLDWLRQ E 3HUFHQW WUDQVIRUPDWLRQ SHU GHJUHH YHUVXV WHPSHUDWXUH EHIRUH DQG DIWHU LUUDGLDWLRQ &DOFXODWHG IURP )LJXUH f

PAGE 129

&+$37(5 9 ',6&866,21 7KH 7HPSHUDWXUHV RI WKH 0DUWHQVLWLF 7UDQVIRUPDWLRQ 7LWFKHQHU DQG %HYHU f GHILQHG WKH 0AWHPSHUDWXUH DV WKDW WHPSHUDWXUH DW ZKLFK WKH UHVLVWLYLW\ GHYLDWHV IURP D VWUDLJKW OLQH EXW EHFDXVH RI WKH QDWXUH RI WKHLU PHDVXUHPHQWV WKH\ XVHG WKH WHPn SHUDWXUH RI PLQLPXP UHVLVWLYLW\ WR GHWHUPLQH 3RSV DQG 0DVVDO VNL f XVLQJ RSWLFDO PLFURVFRS\ LQYHVWLJDWHG WKH WHPSHUDWXUH DW ZKLFK WKH PDUWHQVLWH ZDV ILUVW IRUPHG DQG IRXQG LQ WKH FRXUVH RI WKHLU H[SHULPHQWV D ORZHU WHPSHUDWXUH DW ZKLFK WKH\ VDLG D VHFRQG W\SH RI PDUWHQVLWH IRUPHG LQ ODUJH EXUVWV SRVVLEO\ VLPLODU WR WKH EXUVW SKHQRPHQRQ IRXQG LQ )H1L DOOR\V 7KH\ FDOOHG WKLV WHPSHUDWXUH 0J ZKLFK WKH\ DVVXPHG WR EH WKH WHPSHUDWXUH RI PLQLPXP UHVLVWLYLW\ 7KH 0JWHPSHUDWXUHV RI 3RSV DQG 0DVVDOVNL FRUUHVSRQGHG WR WKH 0VaWHP SHUDWXUHV RI 7LWFKHQHU DQG %HYHU 7KH SHUFHQW WUDQVIRUPDWLRQ WHPSHUDWXUH FXUYH )LJXUH Df GHPRQn VWUDWHV WKDW WKH WHPSHUDWXUH RI PLQLPXP UHVLVWLYLW\ KDV QR SDUWLFXODU VLJQLILFDQFH 7KH SRLQW RU SRLQWV RI PRVW WUDQVIRUPDWLRQ SHU GHJUHH DUH VHHQ LQ )LJXUH E DQG WKHVH WHPSHUDWXUHV DUH EHORZ WKH WHPSHUDn WXUH RI PLQLPXP UHVLVWLYLW\ 7KH WHPSHUDWXUHV QHDU WKH SRLQW RI PRVW WUDQVIRUPDWLRQ SHU GHJUHH FRXOG EH HTXLYDOHQW WR D WHPSHUDWXUH RI EXUVWLQJ DOWKRXJK EXUVWLQJ ZKLFK RULJLQDWHG LQ )H1L DOOR\V RFFXUV LQ D PXFK VPDOOHU WHPSHUDWXUH VSDQ LI QRW LVRWKHUPDOO\

PAGE 130

%RNURV DQG 3DUNHU f LQYHVWLJDWHG EXUVWLQJ LQ )H1L DOOR\V LQ ZKLFK WKH EXUVW RFFXUUHG DW WKH EHJLQQLQJ RI WKH WUDQVIRUPDWLRQ DQG WKH UHVLVWLYLW\ FKDQJHG D ODUJH DPRXQW LPPHGLDWHO\ DQG DOPRVW GLVFRQWLQXRXVO\ 7KHUHIRUH WKH ODUJH DPRXQW RI DWKHUPDO WUDQVIRUn PDWLRQ RI %LEUDVV VKRXOG SUREDEO\ QRW EH FRQVLGHUHG EXUVWLQJ LQ RUGHU WR UHPDLQ FRQVLVWHQW ZLWK WKH DERYH RULJLQDO JHQHUDO GHILQLWLRQ ,W LV DOVR TXHVWLRQDEOH WKDW WKH EXUVWLQJ LI DQ\ RFFXUV DW WKH WHPSHUDWXUH RI PLQLPXP UHVLVWLYLW\ 0f 7KHRUHWLFDO UHVLVWLYLW\ WHPSHUDWXUH FXUYHV FDQ EH GUDZQ WR VKRZ WKDW WKH WHPSHUDWXUH RI PLQn LPXP UHVLVWLYLW\ LV GHSHQGHQW RQ WKH WHPSHUDWXUH FRHIILFLHQW RI UHn VLVWLYLW\ f RI WKH SDUHQW SKDVH DQG LV WKH UHVXOW RI WKH JHRPHWU\ RI WKH SHUFHQWWUDQVIRUPDWLRQ FXUYH DQG WKH WHPSHUDWXUH FRHIILFLHQW RI UHVLVWLYLW\ f RI WKH DOOR\ ,W LV LPSRUWDQW WR UHPHPEHU LQ WKLV DQDO\VLV WKDW WKH UHVLVWLYLW\WHPSHUDWXUH FXUYH RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LV PHUHO\ D VXSHUSRVLWLRQ RI WKH WHPSHUDWXUH FRHIn ILFLHQW RI UHVLVWLYLW\ DQG WKH SHUFHQW WUDQVIRUPDWLRQ FXUYH 7KUHH GLIIHUHQW nV DUH FKRVHQ LQ )LJXUH E 7KH VDPSOHV DUH DVVXPHG WR KDYH WKH SHUFHQW WUDQVIRUPDWLRQ FXUYH JLYHQ LQ )LJXUH D DQG DOO DUH DVVXPHG WR WUDQVIRUP WR WKH VDPH SKDVH 7KH VWUDLJKW OLQHV LQ WKH UHVLVWLYLW\WHPSHUDWXUH GLDJUDP ZHUH VXSHULPSRVHG RQ WKH SHUFHQW WUDQVIRUPDWLRQ FXUYH )LJXUH Ff ,W LV QRWHG WKDW DV LQFUHDVHV 0 LV VKLIWHG WR ORZHU WHPSHUDWXUHV ZLWK 0J RI FRXUVH FRQVWDQW 7KLV LOOXVWUDWHV WKDW WKH WHPSHUDWXUH RI PLQLPXP UHVLVWLYLW\ RI WKH UHVLVn WLYLW\WHPSHUDWXUH FXUYH RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ %LEUDVV LV PHUHO\ D QDWXUDO FRQVHTXHQFH ZKLFK PD\ KDSSHQ DQ\ WLPH UHVLVWLYLW\ JRHV IURP D VWUDLJKW OLQH RI QHJDWLYH VORSH WR DQRWKHU VWUDLJKW OLQH RI QHJDWLYH VORSH ZLWK KLJKHU UHVLVWLYLW\ 7KHUHIRUH WKH WHPSHUDWXUH

PAGE 131

(/(&75,&$/ 5(6,67,9,7< )LJXUH 6XSHUSRVLWLRQ RI D SHUFHQW WUDQVIRUPDWLRQ FXUYH ZLWK WKUHH GLIIHUHQW WHPSHUDWXUH FRHIILFLHQWV RI UHVLVn WLYLW\ f

PAGE 132

RI PLQLPXP UHVLVWLYLW\ KDV QR SK\VLFDO VLJQLILFDQFH LQ WKLV ZRUN DQG LV RQO\ D WHPSHUDWXUH ZKHUH D FHUWDLQ DPRXQW RI WUDQVIRUPDWLRQ KDV RFFXUUHG 7KLV DPRXQW RI WUDQVIRUPDWLRQ WKDW KDV RFFXUUHG DW WKH PLQn LPXP WHPSHUDWXUH ZLOO YDU\ IURP VDPSOH WR VDPSOH 7KH 0JWHPSHUDWXUH KRZHYHU RU EHJLQQLQJ RI WKH WUDQVIRUPDWLRQ FDQ EH HDVLO\ GHWHUPLQHG H[SHULPHQWDOO\ ZLWK UHVLVWDQFH PHDVXUHPHQWV DQG LV FRQVLGHUHG D WUXH ODQGPDUN 5HWDLQHG 0DUWHQVLWH 7KHVH LQYHVWLJDWLRQV UHYHDOHG WKDW ZKHQHYHU DQ LQFUHDVH LQ VSHn FLILF UHVLVWLYLW\ Sf DQG LQ WKH WHPSHUDWXUH FRHIILFLHQW f ZDV REn VHUYHG DIWHU FRROLQJ DQG UHKHDWLQJ PDUWHQVLWH ZDV UHWDLQHG DW URRP WHPSHUDWXUH -ROOH\ DQG +XOO f UHSRUWHG UHWDLQHG PDUWHQVLWH LQ JAEUDVV 7KLV ZDV VHHQ ZLWK WKH HOHFWURQ PLFURVFRS\ RI IRLOV ZKLFK ZHUH WKHUPDO F\FOHG DQG DIWHUZDUGV SROLVKHG IRU H[DPLQDWLRQ +RZHYHU LW LV SRVVLEOH WKDW WKH PDUWHQVLWH ZDV LQWURGXFHG E\ WKH SROLVKLQJ DQG WKHUHIRUH LV GHIRUPDWLRQPDUWHQVLWH $ GHILQLWH VKLIW RI 0J WR KLJKHU WHPSHUDWXUHV ZDV VHHQ ZKHQ VDPSOHV ZKLFK FRQWDLQHG UHWDLQHG PDUWHQVLWH ZHUH WUDQVIRUPHG :LWK LQFUHDVLQJ DPRXQWV RI UHWDLQHG PDUWHQVLWH WKHUH ZDV IRXQG D JUHDWHU VKLIW RI 0J ,Q )LJXUH WKH DPRXQW RI UHWDLQHG PDUWHQVLWH LQ SHUFHQW FDOFXODWHG DV GHVFULEHG HDUOLHU IURP UHVLVWLYLW\WHPSHUDWXUH FXUYHV LV SORWWHG YHUVXV WKH VKLIW RI 0J GXULQJ D VHFRQG F\FOH :LWKLQ WKH HUURU OLPLW D OLQHDU UHODWLRQ EHWZHHQ UHWDLQHG PDUWHQVLWH DQG $0 FDQ EH REVHUYHG V 7KH VORSH RI WKLV OLQH LV SHUFHQW UHWDLQHG PDUWHQVLWH SHU GHJUHH VKLIW RI 0 7KHUHIRUH LW LV OLNHO\ WKDW UHWDLQHG PDUWHQVLWH LV WKH V FDXVH RI WKH VKLIW RI WKH VWDUW RI WKH WUDQVIRUPDWLRQ WR D KLJKHU

PAGE 133

5(7$,1(' 0$57(16,7(bf )LJXUH 5HWDLQHG PDUWHQVLWH DW URRP WHPSHUDWXUH LQ SHUFHQW YHUVXV VKLIW RI 0 $0 f V V

PAGE 134

7 WHPSHUDWXUH ,W ZDV VHHQ LQ WKH HOHFWURQ PLFURVFRSH WKDW ZKHQ WKH VDPSOH ZDV FRROHG WKH QHHGOHV RI UHWDLQHG PDUWHQVLWH JUHZ EHIRUH QHZ QHHGOHV ZHUH QXFOHDWHG 7KLV ZRXOG DOVR HOLPLQDWH DQ\ VXJJHVWLRQ WKDW WKH UHWDLQHG PDUWHQVLWH ZDV GHIRUPDWLRQPDUWHQVLWH IRUPHG IURP WUDQVn IRUPDWLRQ VWUHVVHV VLQFH GHIRUPDWLRQPDUWHQVLWH GRHV QRW JURZ ZKHQ WKH VDPSOH LV FRROHG $OVR WKH SUHVHQFH RI GHIRUPDWLRQPDUWHQVLWH ORZHUV WKH 0 WHPSHUDWXUH ZKLOH WKH UHWDLQHG PDUWHQVLWH UDLVHV WKH 0 WHPSHU V V DWXUH 6LPLODU FKDQJHV LQ WKH 0 DQG $JWHPSHUDWXUHV ZHUH REVHUYHG E\ &KDQJ DQG 5HDG f LQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ $J&G ZKHUH $ ZDV VKLIWHG WR ORZHU WHPSHUDWXUHV GXULQJ UHSHDWHG F\FOLQJ ,Q WKH V DERYH FDVH DQG LQ WKLV JcEUDVV ZRUN WKH WUDQVIRUPDWLRQ VWDUWHG HDUn OLHU LQ WKH VHFRQG UXQ +RZHYHU ZRUN GRQH E\ 1HOVRQ DQG $OWVWHWWHU f RQ WKH DOORWURSLF WUDQVIRUPDWLRQ LQ FREDOW LQGLFDWHG WKDW UHSHDWHG F\n FOLQJ FDXVHG D ORZHULQJ RI WKH 0 DQG D UDLVLQJ RI WKH $ LH MXVW V V WKH RSSRVLWH HIIHFW 7KLV ZDV GXH WR WUDQVIRUPDWLRQ VWUDLQV DQG D UHn GLVWULEXWLRQ RI GLVORFDWLRQV $Q LQYHVWLJDWLRQ RQ WKH J $J&G PDUn WHQVLWLF WUDQVIRUPDWLRQ E\ 0DVVRQ DQG %DUUHWW f VKRZHG WKDW DIWHU PDQ\ F\FOHV WKH WUDQVIRUPDWLRQ EHFDPH PRUH GLIILFXOW WR LQLWLDWH DQG WKH WHPSHUDWXUH RI DSSHDUDQFH RI WKH PDUWHQVLWH SKDVH ZDV DSSDUHQWO\ GHSUHVVHG 7KLV ZDV DVVXPHG WR EH GXH WR FROG ZRUN FDXVHG E\ WKH WUDQVn IRUPDWLRQ 7KHUH ZDV QR PHQWLRQ RI UHWDLQHG PDUWHQVLWH LQ WKH DERYH VDPSOHV 1R GHIRUPDWLRQ HIIHFW GXH WR WKHUPDO F\FOLQJ ZDV HYHU VHHQ LQ JMEUDVV DQG WKHUHIRUH WKH UHWDLQHG PDUWHQVLWH GRHV DSSHDU WR EH UHVSRQVLEOH IRU WKH XSZDUG VKLIW RI WKH 0AWHPSHUDWXUH

PAGE 135

8QWUDQVIRUPDEOH 3KDVHV /LNH WKH PHFKDQLFDO K\VWHUHVLV RI D VWUHVVVWUDLQ FXUYH ZKHUH WKH DUHD RI WKH K\VWHUHVLV ORRS JLYHV WKH HQHUJ\ GLVVLSDWHG GXULQJ RQH F\n FOH RI VWUHVVLQJ WKH DUHD RI WKH WHPSHUDWXUHK\VWHUHVLV ORRS RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ FXUYH LV YHU\ OLNHO\ UHODWHG WR WKH HQHUJ\ GLVVLSDWHG GXULQJ WKH FRROLQJ DQG KHDWLQJ F\FOH RI WKH WUDQVIRUPDWLRQ -DVZRQ f KDV VXJJHVWHG WKDW WKLV PD\ EH GXH WR WKH GLVVLSDWLRQ RI NLQHWLF HQHUJ\ GXULQJ WKH SURSDJDWLRQ RI D GLVORFDWLRQ +HQFH LW LV SRVVLEOH WKDW ZKHQ WKH DPRXQW RI DSKDVH DQG WKHUHIRUH WKH DUHD RI WKH K\VWHUHVLV ORRS DUH LQFUHDVHG LQ D VDPSOH WKH DPRXQW RI HQHUJ\ GLVn VLSDWHG GXULQJ WKH WUDQVIRUPDWLRQ LV DOVR LQFUHDVHG EHFDXVH RI WKH SUREn OHP RI PRYLQJ WKH GLVORFDWLRQ LQWHUIDFH ZKHQ REVWDFOHV DUH SUHVHQW 0DUWHQVLWH XVXDOO\ JURZV FRPSOHWHO\ DFURVV D JUDLQ WKXV D ODUJH DPRXQW LV WUDQVIRUPHG LQ D VPDOO WHPSHUDWXUH UDQJH 7KH IDVW JURZWK RI WKH PDUWHQVLWH LV FRQVLGHUHG WR EH GXH WR DQ DXWRFDWDO\WLF HIIHFW DV WKH IRUPDWLRQ RI ODUJH QHHGOHV FDXVHV WKH IRUPDWLRQ RI RWKHUV ,Q IHUURXV DOOR\V WKH DPRXQW RI PDUWHQVLWH WUDQVIRUPHG LQ D EXUVW ZDV IRXQG WR EH GHFUHDVHG E\ GHFUHDVLQJ WKH JUDLQ VL]H f ,Q JHQn HUDO WKH PRYLQJ WUDQVIRUPDWLRQ LQWHUIDFH LV VWRSSHG ZKHQ LW HQFRXQWHUV D JUDLQ ERXQGDU\ D SUHYLRXVO\ IRUPHG PDUWHQVLWH SODWH RU DQRWKHU ODWn WLFH GLVWXUEDQFH WKDW VHUYHV DV D EDUULHU f ,W LV VXJJHVWHG WKDW WKH SUHVHQFH RI DSKDVH HIIHFWLYHO\ UHGXFHV WKH JUDLQ VL]H RI %L DQG SURYLGHV D EDUULHU DJDLQVW WKH PDUWHQVLWLF WUDQVIRUPDWLRQ +HQFH WKH DSKDVH FDXVHV VPDOOHU PDUWHQVLWH SODWHV DQG OHVV JURZWK LQ D JLYHQ WHPSHUDWXUH UDQJH 7KXV DGGLWLRQDO HQHUJ\ PXVW EH SURYLGHG IRU WKH QXFOHDWLRQ RI QHZ SODWHV RI PDUWHQVLWH 7KLV LV VHHQ IURP WKH LQFUHDVH LQ DUHD RI WKH K\VWHUHVLV ORRS WKH VPDOOHU

PAGE 136

UDWHV RI WUDQVIRUPDWLRQ DQG WKH LQFUHDVH RI WHPSHUDWXUH UDQJH UHn TXLUHG IRU WUDQVIRUPDWLRQ )LJXUHV WKURXJK VKRZ PDUWHQVLWH QHHGOHV ZLWK %ASKDVH LQ WKH EDFNJURXQG OLJKW DUHDf DQG SDWFKHV RI DSKDVH GDUN DQG EODFN WZLQQHG PDWHULDOf 3ODVWLF 'HIRUPDWLRQ %\ FRPSDULQJ WKH WKHRUHWLFDO FXUYHV RI )LJXUH ZLWK H[SHULPHQWDO UHVLVWLYLW\WHPSHUDWXUH FXUYHV DIWHU GHIRUPDWLRQ )LJXUH f LW FDQ EH GHGXFHG WKDW GHIRUPDWLRQPDUWHQVLWH PD\ DFW GXULQJ WKH IRUPDWLRQ RI ORZ WHPSHUDWXUH PDUWHQVLWH DV DQ XQWUDQVIRUPDEOH SKDVH 7KH IROORZLQJ DUH REVHUYHG LQ WKH WKHRUHWLFDO FXUYHV $V WKH DPRXQW RI XQWUDQVIRUPDEOH SKDVH LQFUHDVHV + GHFUHDVHV WKH WHPSHUDWXUH FRHIILFLHQW RI %L WHPn SHUDWXUH DERYH 0 f DSSURDFKHV RI WKH XQWUDQVIRUPDEOH SKDVH DQG WKH GLIIHUHQFH 0 f§0 LV LQFUHDVHG 7KH H[SHULPHQWDO UHVLVWLYLW\WHPSHUDWXUH FXUYHV RI WKH GHIRUPHG VDPSOHV KDYH WKH VDPH JHQHUDO DSSHDUDQFH DV WKH WKHRUHWLFDO FXUYHV DQG WKH VDPH DERYH IHDWXUHV DUH REVHUYHG 7KHUHIRUH LW LV VXUPLVHG WKDW WKH PDUWHQVLWH IRUPHG RQ GHIRUPDWLRQ DFWV OLNH D SKDVH DV DQ DGGHG XQWUDQVIRUPDEOH SKDVH 'HIRUPDWLRQ WUDQVIRUPV SDUW RI WKH WUDQVIRUPDEOH %LSKDVH WR GHIRUPDWLRQPDUWHQVLWH f ZKLOH VXEVHn TXHQW FRROLQJ WUDQVIRUPV WKH UHPDLQLQJ %L WR FRROLQJ PDUWHQVLWH %f $V GHIRUPDWLRQ LQFUHDVHV PRUH LV IRUPHG KRZHYHU DW WR SHUFHQW GHIRUPDWLRQ WKLV WUDQVIRUPDWLRQ VHHPV WR EH UHWDUGHG $OVR DV VHHQ ZKHQ DSKDVH ZDV SUHVHQW LW DSSHDUV WKDW WKH SUHVHQFH RI WKH GHIRUPDn WLRQPDUWHQVLWH LQFUHDVHG WKH DPRXQW RI HQHUJ\ QHHGHG WR FRPSOHWH WKH WUDQVIRUPDWLRQ 7KLV HIIHFW LQFUHDVHG DV WKH DPRXQW RI GHIRUPDWLRQPDUn WHQVLWH LQFUHDVHG 7KH DERYH OHDGV WR WKH DVVXPSWLRQ WKDW WKH GHIRUPDWLRQPDUWHQVLWH KLQGHUV WKH WUDQVIRUPDWLRQ RI WKH UHPDLQLQJ %LSKDVH WR FRROLQJPDUn WHQVLWH &ROG VWDJH HOHFWURQ PLFURVFRS\ VWXGLHV FRQILUPHG WKHVH

PAGE 137

)LJXUH 2SWLFDO PLFURJUDSK RI %LEUDVV ZW SHUFHQW ]LQFf VKRZLQJ La OLJKWf PDUWHQVLWH DQG DGDUNf SKDVH 7HPSHUDWXUH EHORZ r& 0DJQLILFDWLRQ [

PAGE 138

)LJXUH 2SWLFDO PLFURJUDSK RI LaEUDVV ZW VKRZLQJ OLJKWf PDUWHQVLWH DQG D 7HPSHUDWXUH EHORZ r& 0DJQLILFDWLRQ [

PAGE 139

)LJXUH 2SWLFDO PLFURJUDSK RI %MEUDVV ZW SHUFHQW ]LQFf VKRZLQJ U OLJKWf PDUWHQVLWH DQG D GDUNf SKDVH 7HPSHUDWXUH EHORZ r& 0DJQLILFDWLRQ A

PAGE 140

REVHUYDWLRQV ,Q XQGHIRUPHG %LaEUDVV WKH PDUWHQVLWH SODWHV JURZ H[SORVLYHO\ RYHU D ORQJ GLVWDQFH DW D FHUWDLQ WHPSHUDWXUH ,I XQ WUDQVIRUPDEOH PDWHULDO IRU H[DPSOH GHIRUPDWLRQPDUWHQVLWH LV GLVn VHPLQDWHG WKURXJK WKH SDUHQWSKDVH WKH PDUWHQVLWH SODWHV JURZ RQO\ WR WKH SKDVHERXQGDU\ RI WKH XQWUDQVIRUPDEOH SKDVH $IWHU WKLV JURZWK VWRSV IXUWKHU FRROLQJ LV UHTXLUHG XQWLO DGGLWLRQDO QXFOHDWLRQ EHJLQV 7KHQ WKH WUDQVIRUPDWLRQ ZLOO FRQWLQXH 7KH YHU\ VOLJKW FKDQJH RI WKH FKDUDFWHULVWLF SURSHUWLHV DW GHIRUn PDWLRQV DERYH SHUFHQW PHDQV WKDW YHU\ OLWWOH WUDQVIRUPDWLRQ RFFXUV WKHUH 7KHUH LV VWLOO TXLWH D ELW RI SDUHQW SKDVH SUHVHQW DURXQG SHUFHQWf EXW DSSDUHQWO\ WKH ODUJH DPRXQW RI SUHVHQW LV GHIRUPHG DQG GRHV QRW DOORZ WKH %LaSKDVH WR EH GHIRUPHG DQG WKXV WUDQVIRUPHG 7KH ORZHULQJ RI WKH 0J GXH WR SODVWLF GHIRUPDWLRQ FDQ EH H[SODLQHG XVLQJ 'HKOLQJHUnV f WKHRU\ RI SUHIRUPHG QXFOHL $FFRUGLQJ WR 'HK OLQJHU VRPH QXFOHL RI WKH PDUWHQVLWLF SKDVH DUH DOUHDG\ SUHVHQW DERYH 0 6RPH RI WKHP KDYH D FKHPLFDO HQHUJ\ ZKLFK DOORZV WKHP WR JURZ E\ DGGLQJ RQO\ D OLWWOH HQHUJ\ LH E\ ORZHULQJ WKH WHPSHUDWXUH RQO\ D IHZ GHJUHHV 2WKHUV QHHG PRUH HQHUJ\ DQG WKHUHIRUH D ORZHU WHPSHUn DWXUH WR JURZ ,W LV DVVXPHG WKDW GHIRUPDWLRQ WUDQVIRUPV WKRVH QXFOHL WR GHIRUPDWLRQPDUWHQVLWH ZKLFK QHHG WKH VPDOOHVW DGGLWLRQDO HQHUJ\ IRU WKHLU JURZWK OHDYLQJ WKRVH QXFOHL ZKLFK QHHG PRUH HQHUJ\ IRU WKHLU JURZWK WKXV VKLIWLQJ WKH WR ORZHU WHPSHUDWXUHV ,W LV FRQFOXGHG IURP WKH UHVXOWV RI WKLV ZRUN WKDW DQ\ %LSKDVH WKDWLV GHIRUPHG LV WUDQVIRUPHG WR GHIRUPDWLRQPDUWHQVLWH :KHQ %Ln SKDVH ZDV GHIRUPHG RQO\ HODVWLFDOO\ WKH PDUWHQVLWH QHHGOHV ZHUH VHHQ EXW WKH\ GLVDSSHDUHG ZKHQ WKH VWUHVV ZDV UHOHDVHG f ,W ZDV DOVR VHHQ LQ VWXGLHV RQ DQ )H1L DOOR\ f WKDW WKH WUDQVIRUPDWLRQ RFFXUUHG

PAGE 141

VLPXOWDQHRXVO\ ZLWK WKH GHIRUPDWLRQ 7KH JASKDVH GRHV QRW DSSHDU GHn IRUPHG DW ORZ GHJUHHV RI GHIRUPDWLRQ XS WR DERXW SHUFHQWf HYHQ ZKHQ GHIRUPDWLRQPDUWHQVLWH LV SUHVHQW +RUQERJHQ 6HJPLLOOHU DQG :DVVHUPDQQ f UHSRUWHG WKDW WKH\ FRXOG QRW SURYH WKH H[LVWHQFH RI GHIRUPDWLRQPDUWHQVLWH DW GHIRUPDWLRQV VPDOOHU WKDQ WR SHUFHQW LQ SRO\FU\VWDOOLQH JAEUDVV ZLWK [UD\ PHWKRGV 7KHUHIRUH WKH\ FRQFOXGHG WKDW IRU GHIRUPDWLRQV VPDOOHU WKDQ DERXW WR SHUFHQW RQO\ SODVWLF GHIRUPDWLRQ RI WKH JASKDVH RFFXUUHG 7KH UHVLVWLYLW\ PHDVXUHPHQWV DQG RSWLFDO PLFURVFRS\ REVHUYDWLRQV UHSRUWHG HDUOLHU FRQWUDGLFW WKH DERYH VWDWHPHQW ,W LV RIWHQ QRWHG LQ [UD\ GLIIUDFWLRQ ZRUN WKDW ZKHQ WZR SKDVHV DUH SUHVHQW RQH ZRXOG EH GLIILFXOW WR GHWHFW XQOHVV WKHUH LV DW OHDVW SHUFHQW RI LW SUHVn HQW 7KLV FRXOG EH WKH UHDVRQ WKDW +RUQERJHQ 6HJPLLOOHU DQG :DVVHU PDQQ FRXOG QRW GHWHFW WKH GHIRUPDWLRQPDUWHQVLWH DW VPDOO GHJUHHV RI GHIRUPDWLRQ 7KLV DJDLQ VKRZV WKDW UHVLVWLYLW\ PHDVXUHPHQWV SURYLGH YDOXHV WDNHQ IURP WKURXJKRXW WKH VDPSOH DQG FDQ WKHUHIRUH EH XVHG WR GHWHFW HYHQ VPDOO DPRXQWV RI RWKHU SKDVHV (OHFWURQ 0LFURVFRS\ $ GHIRUPDWLRQ ZKLFK OHDYHV WKH FU\VWDO VWUXFWXUH XQDOWHUHG PXVW DFFRPSDQ\ WKH VWUDLQ ZKLFK EULQJV DERXW WKH FKDQJH LQ VWUXFWXUH 7KLV DGGLWLRQDO GHIRUPDWLRQ PD\ EH VOLS RU WZLQQLQJ DQG PDQ\ PDUWHQVLWH SODWHV DUH VHHQ WR FRQVLVW RI PDQ\ ILQH WZLQV (YHQ XVLQJ WKH WKHRU\ RI WKH LQYDULDQW SODQH VWUDLQ LW PXVW DJDLQ EH FRQFOXGHG WKDW DQ DGGLWLRQDO VWUDLQ RU GHIRUPDWLRQ PXVW DFFRPSDQ\ WKH KRPRJHQHRXV VWUDLQ ZKLFK FRQYHUWV WKH SDUHQW SKDVH LQWR WKH SURGXFW SKDVH EHFDXVH WKLV KRPRJHQHRXV VWUDLQ FDQQRW OHDYH DQ\ SODQHV XQGLVWRUWHG

PAGE 142

7KLV FDQ EH VOLS RU WZLQQLQJ FDQ IROORZ WKH FKDQJH LQ VWUXFWXUH DQG WKHUHIRUH FDQ RFFXU LQ WKH SURGXFW SKDVH ,W ZDV VHHQ LQ WKLV ZRUN E\ XVLQJ WKH FROGVWDJH XQLW RI WKH HOHFWURQ PLFURVFRSH WKDW WKHnKHHGOHVIRUPHG ZKHQ WKH VDPSOH ZDV FRROHG GLG WZLQ VRPH WLPH DIWHU WKHLU IRUPDWLRQ :KHQ WKH VDPSOH ZDV KHDWHG WKH WZLQV GLVDSSHDUHG DW WKH VDPH WLPH WKDW WKH QHHGOH LWVHOI GLVDSn SHDUHG 7KH QHHGOH GLVDSSHDUHG LQ D GLIIHUHQW VHTXHQFH WKDQ ZKLFK LW KDG DSSHDUHG GLVDSSHDULQJ OHQJWKZLVH ZLWK QR GHFUHDVH LQ ZLGWK 1HHGOHV ZKLFK ZHUH UHWDLQHG DW URRP WHPSHUDWXUH DQG DERYH GLG JHW VPDOOHU LQ ZLGWK EHIRUH JHWWLQJ VPDOOHU LQ WKHLU ORQJ GLPHQVLRQ 7KHUH LV DOZD\V PXFK GLVFXVVLRQ DV WR ZKDW WKH LQQHU VWULDWHG VWUXFWXUH RI WKH PDUWHQVLWH PLJKW EH ,Q IHUURXV DOOR\V f WZLQV ZHUH IRXQG ZLWKLQ WKH QHHGOHV DQG LQ WKH &X$O f V\VWHP VWDFNLQJ IDXOWV ZHUH REVHUYHG ,Q WKLV ZRUN GLIIUDFWLRQ SDWWHUQV IURP D VLQJOH PDUWHQVLWH QHHGOH VKRZHG WZLQ VSRWV 'DUN ILHOG PLFURJUDSKV REWDLQHG E\ SODFLQJ WKH DSHUWXUH RYHU RQH RI WKH VWURQJ GLIIUDFWLRQ GRWV IURP WKH WZLQV VKRZHG D UHYHUVDO RI FRQWUDVW )URP WKHVH REVHUYDWLRQV LW ZDV FRQFOXGHG WKDW WKH %LaEUDVV PDUWHQVLWH QHHGOHV KDG D WZLQQHG LQQHU VWUXFWXUH $V ZDV HDUOLHU PHQWLRQHG GHIRUPDWLRQPDUWHQVLWH DV XVXDOO\ UHFRJQL]HG ZDV QRW VHHQ LQ WKH IRLOV WKDW ZHUH SXOOHG LQ WHQVLRQ LQ WKH HOHFWURQ PLFURVFRSH ,W ZDV SRVVLEOH KRZHYHU WKDW WKH VWUXFWXUHV VHHQ ZHUH ILUVW VWDJHV RI GHIRUPDWLRQPDUWHQVLWH 7KH W\SH RI GHIRUPDn WLRQ XQGHUJRQH E\ WKH YHU\ WKLQ IRLOV LV VWLOO TXHVWLRQDEOH 6L%UDVV 0DUWHQVLWH 6WUXFWXUHV 7KHUH KDV EHHQ VRPH GLVFXVVLRQ DERXW WKH WZR GLIIHUHQW W\SHV RI PDUWHQVLWH WKDW IRUP RQ GHIRUPDWLRQ DQG FRROLQJ UHVSHFWLYHO\ ,W ZDV

PAGE 143

VHHQ WKDW DIWHU D ODUJH DPRXQW RI GHIRUPDWLRQ WKH FU\VWDO VWUXFWXUH RI WKH GHIRUPDWLRQPDUWHQVLWH LV IDFHFHQWHUHG FXELF f )URP WKLV ZRUN DQG RWKHUV LW ZDV VHHQ WKDW WKH ORZ WHPSHUDWXUH PDUWHQVLWH %f KDV D VWUXFWXUH QHDU RUWKRUKRPELF 7KH H[DFW VWUXFWXUH KDV QRW EHHQ REWDLQHG EHFDXVH LW DSSHDUV WKDW LW LV KHDYLO\ IDXOWHG DQG LW LV QRW SRVVLEOH WR DFFRXQW IRU DOO WKH OLQHV ,W ZRXOG VHHP RQ ILUVW FRQVLGHUDWLRQV WKDW VLQFH ERWK PDUWHQVLWHV E\ GHILQLWLRQ DUH IRUPHG E\ WKH VDPH PHFKDQLVP HYHQ WKRXJK WKH PHWKRG LV GLIIHUHQW WKDW WKHLU ILQDO VWUXFWXUH VKRXOG EH WKH VDPH 3RVVLEOH UHDVRQV WKDW WKLV LV QRW VR KDYH EHHQ JLYHQ E\ 0DVVRQ f DQG ZLOO EH GLVFXVVHG KHUH $ SKDVH KDYLQJ D IDFH FHQWHUHG FXELF VWUXFWXUH ZRXOG KDYH D ORZHU HQHUJ\ WKDQ D SKDVH KDYLQJ DQ RUWKRUKRPELF VWUXFWXUH DQG ZRXOG EH FRQVLGHUHG WR EH WKH HTXLOLEULXP SKDVH :KHQ WKH VDPSOH LV FRROHG WKH ODUJH DFFRPRGDn WLRQ VWUDLQV WKDW DFFRPSDQ\ WKH IRUPDWLRQ RI PDUWHQVLWH SUHPDWXUHO\ KDOW WKH DWRPLF PRYHPHQWV DW WKH RUWKRUKRPELF FRQILJXUDWLRQ 'HIRUPDn WLRQ RYHUFRPHV WKLV DQG WKH IDFHFHQWHUHG FXELF VWUXFWXUH LV UHDOL]HG ,Q D V\VWHP VLPLODU WR JAEUDVV $X&G WKH VDPSOHV ZHUH FRROHG WR OLTXLG +H WHPSHUDWXUH EXW WKH HTXLOLEULXP SKDVH IRUPHG E\ GHIRUPDn WLRQ ZDV QHYHU REWDLQHG 7KH FRROLQJ QHYHU SURYLGHG WKH QHFHVVDU\ HQHUJ\ WR RYHUFRPH WKHVH VWUDLQV 1HXWURQ ,UUDGLDWLRQ ,Q WKH SUHFHGLQJ VHFWLRQV WKH PHFKDQLVPV RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ ZHUH LQWHUSUHWHG LQ WZR VWHSV )LUVWO\ WKH 0A WHPSUDWXUH ZDV DVVRFLDWHG ZLWK WKH PLFURVFRSLF JURZWK RI WKH SUH IRUPHG QXFOHL 7KHUHIRUH VRFLDWHG ZLWK EHWWHU RU ZRUVH JURZLQJ FRQGLWLRQV RI WKRVH QXFOHL 6HFRQGO\ WKH PDFURVFRSLF IRUPDWLRQ RI WKH PDUWHQVLWLF SKDVH FDQ EH

PAGE 144

IROORZHG ZLWK WKH WUDQVIRUPDWLRQ FXUYH 7KH DUHD RI WKH K\VWHUHVLV ORRS LV D PHDVXUH RI WKH DPRXQW DQG NLQG RI REVWDFOHV ZKLFK KDPSHU WKH IRUPDWLRQ RI PDUWHQVLWH ,W LV ZRUWKZKLOH WR VWDWH WKDW WKH QHXWURQ LUUDGLDWLRQ GRHV QRW LQIOXHQFH WKLV VHFRQG SDUW EXW KDV D SURQRXQFHG HIIHFW RQ WKH 0VaWHPSHUDWXUH 7R H[SODLQ WKH ORZHULQJ RI WKH 0AWHPSHUDWXUH DQG WKH ODUJHU PD[LPXP UDWH RI WUDQVIRUPDWLRQ RI WKH VDPSOH DIWHU LUUDGLDWLRQ WZR SRVVLEOH PHFKDQLVPV DUH GLVFXVVHG $ PRGHO VLPLODU WR WKDW SURSRVHG E\ &RWWUHOO DQG %LOE\ f PD\ EH XVHG ,Q D PHWDO VXFK DV FRSSHU LUUDGLDWLRQ E\ QHXWURQV QHDU RU DERYH URRP WHPSHUDWXUH LV H[SHFWHG WR \LHOG YDFDQFLHV 1R HYLGHQFH KDV EHHQ JLYHQ WKDW VKRZV WKDW GLVORFDWLRQV DUH LQWURGXFHG E\ LUUDn GLDWLRQ +RZHYHU GLVORFDWLRQV DFW DV VLQNV IRU YDFDQFLHV ZKLFK SLQ WKH GLVORFDWLRQV 9DFDQF\ FOXVWHUV LQ WKH UHJLRQ RI WKH GLVn ORFDWLRQ IRUP DQ DWPRVSKHUH SLQQLQJ DQG FKDQJLQJ WKH FRQILJXUDWLRQ RI WKH GLVORFDWLRQ 7KH GLVORFDWLRQ QXFOHL PXVW EH EURNHQ IURP WKLV WDQJOH IRU WKH JURZWK RI WKH PDUWHQVLWH (QHUJ\ LH ORZHULQJ RI WKH 0VaWHPSHUDWXUH LV UHTXLUHG +RZHYHU RQFH WKH GLVORFDWLRQ KDV EURNHQ WKURXJK WKH YDFDQF\FOXVWHU DWPRVSKHUH DQG WKH JURZWK KDV EHn JXQ WKHQ WKH VWUHVV RU HQHUJ\f UHTXLUHG WR FRQWLQXH WKH PRWLRQ ZLOO EH UHGXFHG ,Q WKH PDUWHQVLWH FDVH WKLV FRXOG H[SODLQ WKH LQFUHDVHG PD[LPXP UDWH RI WUDQVIRUPDWLRQ IRU WKH LUUDGLDWHG VDPSOH $QRWKHU SRVVLEOH H[SODQDWLRQ IRU WKH ORZHULQJ RI WKH 0 WHPSHU DWXUH LV WKH DVVXPSWLRQ WKDW WKH QHXWURQ LUUDGLDWLRQ GHVWUR\V WKH PDUWHQVLWH QXFOHL f E\ DGGLQJ NQRFNRQ DWRPV WR WKH GLVORFDWLRQV WKHUHIRUH FKDQJLQJ WKH GLVORFDWLRQ DUUD\ ZKLFK IRUPV D QXFOHXV $ ORZHULQJ RI HQHUJ\ LH D ORZHULQJ RI 0JWHPSHUDWXUH LV UHTXLUHG

PAGE 145

WR SURYLGH WKH HQHUJ\ WR PDNH VHFRQGDU\ QXFOHL FDSDEOH RI JURZWK $ VHFRQGDU\ QXFOHXV GRHV QRW KDYH DV IDYRUDEOH D GLVORFDWLRQ DUUD\ DV D SULPDU\ QXFOHXV DQG WKHUHIRUH QHHGV PRUH HQHUJ\ RU ORZHU WHPn SHUDWXUH IRU JURZWKf 7KH ODFN RI ZLGHQLQJ QR FKDQJH LQ DUHDf RI WKH WHPSHUDWXUH K\VWHUHVLV ORRS RI WKH LUUDGLDWHG VDPSOH PHDQW WKDW QR ODUJH REVWD W ‘ FOHV VXFK DV QRQWUDQVIRUPDEOH SKDVHV KDG EHHQ LQWURGXFHG 7KH ODUJHU WHPSHUDWXUH UDQJH RI WKH WUDQVIRUPDWLRQ IRU XQLU UDGLDWHG VDPSOHV LV RQO\ GXH WR WKH ORZHU AWHPSHUDWXUH DV WKH VHFRQG VWHS RI WKH WUDQVIRUPDWLRQ IRUPDWLRQ RI PDUWHQVLWHf LV WKH VDPH LQ WKH LUUDGLDWHG DQG XQLUUDGLDWHG FDVH

PAGE 146

&+$37(5 9, &21&/86,216 )URP WKLV UHVHDUFK LW ZDV FRQFOXGHG 7KH SULQFLSDO FKDUDFWHULVWLFV RI WKH WUDQVIRUPDWLRQ RQ FRROLQJ GHWHUPLQHG IURP UHVLVWDQFH PHDVXUHPHQWV ZHUH IRXQG WR EH WKH 0 WHP V SHUDWXUH WKH WHPSHUDWXUH FRHIILFLHQW RI HOHFWULFDO UHVLVWLYLW\ RI WKH SKDVHV WKH DUHD RI WKH K\VWHUHVLV ORRS RI WKH SHUFHQWf WUDQVIRUPDWLRQ FXUYH DQG WKH UDWH RI WUDQVIRUPDWLRQ 7KH 0VaWHPSHUDWXUH ZDV IRXQG WR FKDQJH DFFRUGLQJ WR WKH WUHDWn PHQW JLYHQ WKH VDPSOH (ODVWLF GHIRUPDWLRQ DQG WKH SUHVHQFH RI UHWDLQHG PDUWHQVLWH ZRXOG UDLVH WKH 0 7KH 0JWHPSHUDWXUH ZDV ORZHUHG DIWHU SODVWLF GHIRUPDWLRQ DQG QHXWURQ LUUDGLDWLRQ EXW ZDV QRW DIIHFWHG E\ KHDW WUHDWPHQWV XS WR r& 5HWDLQHG PDUWHQVLWH IRUPHG GXULQJ WKH ILUVW WKHUPDO F\FOH ZDV IRXQG WR EH SUHVHQW DW URRP WHPSHUDWXUH LQ VDPSOHV ZKLFK KDG DQ 0 WHP SHUDWXUH DERYH r& 7KH DPRXQW RI UHWDLQHG PDUWHQVLWH LQFUHDVHG ZLWK LQFUHDVLQJ 0JWHPSHUDWXUH 7KH VKLIW RI 0J EHWZHHQ WZR F\FOHV LV D OLQHDU IXQFWLRQ RI UHWDLQHG PDUWHQVLWH 7KH UHWDLQHG PDUWHQVLWH ZDV REVHUYHG WR JURZ DERYH WKH SUHYLRXVO\ IRXQG 0AWHPSHUDWXUH 8QWUDQVIRUPDEOH SKDVHV VXFK DV D DQG GHIRUPDWLRQPDUWHQVLWH DFWHG DV REVWDFOHV WR WKH IRUPDWLRQ RI ORZWHPSHUDWXUH PDUWHQVLWH $V WKH DPRXQW RI WKHVH SKDVHV LQFUHDVHG WKH DUHD RI WKH K\VWHUHVLV ORRS RI WKH WUDQVIRUPDWLRQ FXUYH LQFUHDVHG WKH PD[LPXP UDWH RI

PAGE 147

WUDQVIRUPDWLRQ GHFUHDVHG DQG WKH WHPSHUDWXUH UDQJH RI WUDQVIRUPDWLRQ ZDV VSUHDG RYHU D ZLGHU UDQJH WKXV LQFUHDVLQJ WKH DPRXQW RI HQHUJ\ QHHGHG WR FRPSOHWH WKH WUDQVIRUPDWLRQ ,Q VDPSOHV ZKLFK ZHUH LUUDGLn DWHG ZLWK IDVW QHXWURQV QR VXFK LQFUHDVH LQ WKH DUHD RI WKH K\VWHUHVLV ORRS ZDV GHWHFWHG VKRZLQJ WKDW WKH LUUDGLDWLRQ LQGXFHG GHIHFWV DUH RQO\ VPDOO GLVWXUEDQFHV 8VLQJ FROGVWDJH HOHFWURQ PLFURVFRS\ LW ZDV REVHUYHG WKDW PDUn WHQVLWH IRUPHG LPPHGLDWHO\ DIWHU D KHDY\ EHQGLQJ PRYHPHQW RI WKH IRLOV 'LIIHUHQFHV LQ WKH JURZWK PHFKDQLVP GXULQJ FRROLQJ DQG KHDWLQJ ZHUH IRXQG

PAGE 148

$33(1',; 7+(25,(6 2( 0$57(16,7,& 75$16)250$7,216 $ &U\VWDOORJUDSK\ &RQVLGHUDWLRQ RI H[SHULPHQWDO GDWD HQFRXUDJHG WKH GHYHORSPHQW RI WKHRULHV RI PDUWHQVLWH FU\VWDOORJUDSK\ WR H[SODLQ IRU DQ\ SDUWLFXODU WUDQVIRUPDWLRQ WKH RULHQWDWLRQ UHODWLRQVKLS WKH KDELW SODQH WKH VKDSH GHIRUPDWLRQ DQG WKH QDWXUH RI WKH ILQH VWUXFWXUH ZLWKLQ WKH PDUWHQn VLWH SODWHV 7KH ILUVW LQYHVWLJDWLRQV LQYROYLQJ WKH FU\VWDOORJUDSK\ RI PDUn WHQVLWLF WUDQVIRUPDWLRQV LQYROYHG IHUURXV DOOR\V ,W ZDV LQLWLDOO\ VHHQ WKDW LW ZDV LPSRVVLEOH IRU D KRPRJHQHRXV VKHDU WR WUDQVIRUP WKH IDFHFHQWHUHG FXELF DXVWHQLWH WR WKH ERG\FHQWHUHG WHWUDJRQDO PDUWHQn VLWH 7KHRULHV ZHUH JLYHQ WR GHVFULEH WKH DFWXDO SURFHVV :HFKVOHU /LHEHUPDQ DQG 5HDG f DQG %RZOHV DQG 0DF.HQ]LH f XVLQJ GLIIHUHQW PHWKRGV WKHQ IRUPXODWHG WKH PDWKHPDWLFDO PDFURVFRSLF WKHRU\ RI WKH FU\VWDOORJUDSK\ RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ 7KH SULQFLSDO SRLQWV RI WKHVH WKHRULHV DUH DV IROORZV 7KH WKUHH EDVLF GHIRUPDWLRQV LQYROYHG DUH D %DLQ GLVWRUWLRQ D VKHDU GHIRUPDWLRQ DQG D URWDWLRQ RI WKH WUDQVIRUPHG ODWWLFH ,W ZDV ILUVW DVVXPHG WKDW WKH PDFURVFRSLF VKDSH FKDQJH LV DQ LQYDULDQW SODQH VWUDLQ 7KLV DVVXPSn WLRQ LQFOXGHG WKDW WKH KDELW SODQH WKH LQWHUIDFH EHWZHHQ WKH SURGXFW DQG SDUHQW SKDVH LV XQGLVWRUWHG DQG WKLV ODFN RI GLVWRUWLRQ PLQLPL]HG WKH HODVWLF HQHUJ\ 7KLV LQYDULDQW SODQH VWUDLQ LQYROYHG D KRPRJHQHRXV

PAGE 149

VKHDU LQ WKH KDELW SODQH DQG D GLODWLRQ QRUPDO WR WKH KDELW SODQH 7KH QH[W FRQVLGHUDWLRQ ZDV ZKLFK RYHUDOO VWUDLQ FRXOG FKDQJH RQH ODWn WLFH WR DQRWKHU 7KLV ZDV WKH %DLQ GLVWRUWLRQ RU PRUH JHQHUDO WKH ODWWLFH FRUUHVSRQGHQFH ZKHUH D VPDOO FRUUHVSRQGHQFH VWUDLQ LV SLFNHG WR JLYH WKH VPDOOHVW RYHUDOO VWUDLQ %DLQ f XVHG WKLV GLVWRUWLRQ DV D PHFKDQLVP IRU WKH WUDQVIRUPDWLRQ RI D IDFHFHQWHUHG FXELF ODWWLFH WR D ERG\FHQWHUHG FXELF ODWWLFH EXW LW GLG QRW \LHOG DQ XQGLVWRUWHG SODQH WKDW FRXOG EH DVVRFLDWHG ZLWK WKH KDELW SODQH 7KH WZR DERYH IHDWXUHV WKH LQYDULDQW SODQH VWUDLQ DQG WKH %DLQ GLVWRUWLRQ ZHUH YLHZHG DV DVVXPSWLRQV EXW ZHUH MXVWLILHG E\ WKH FRQVLGHUDWLRQV RI PLQLn PL]LQJ WKH WRWDO VWUDLQ HQHUJ\ $ VHFRQG VKHDU ZDV LQWURGXFHG WR LQn VXUH WKDW WKH ODWWLFH FRUUHVSRQGHQFH EH DGDSWHG VR DV WR JLYH DQ LQn YDULDQW SODQH VWUDLQ DV WKH PDFURVFRSLF VKDSH FKDQJH 7KLV GHIRUPDn WLRQ VKHDU FDQ HLWKHU EH D VOLS VKHDU RU WZLQQLQJ VKHDU EXW LQ HLWKHU FDVH WKH ODWWLFH ZDV OHIW LQYDULDQW DQG WKH VKHDU ZDV FDOOHG D ODWn WLFH LQYDULDQW VKHDU %HVLGHV WKH FRQGLWLRQ RI WKH XQGLVWRUWHG KDELW SODQH WKHUH ZDV WKH UHTXLUHPHQW WKDW WKH KDELW SODQH EH OHIW XQURn WDWHG VR D URWDWLRQ RI WKH WUDQVIRUPHG ODWWLFH ZDV UHTXLUHG ,Q DFWXDO SUDFWLFH DQG LQ RUGHU WR XVH WKH DERYH PHWKRG WKH ODWWLFH SDUDPHWHUV RI WKH SDUHQW DQG SURGXFW SKDVHV PXVW EH NQRZQ DORQJ ZLWK DQ DVVXPHG FRUUHVSRQGHQFH DQG DQ DVVXPHG SODQH DQG GLUHFn WLRQ IRU WKH ODWWLFH LQYDULDQW VKHDU )URP WKLV LQIRUPDWLRQ WKH KDELW SODQH WKH RULHQWDWLRQ UHODWLRQVKLS WKH DPRXQW RI ODWWLFH LQYDULDQW VKHDU DQG WKH PDJQLWXGH DQG GLUHFWLRQ RI WKH VKDSH GHIRUPDWLRQ FDQ EH FDOFXODWHG 7KLV W\SH WKHRU\ KDV EHHQ DSSOLHG ZLWK JUHDW VXFFHVV WR IHUURXV DOOR\V ,Q7O f DQG $X&G f 7KHVH WKHRULHV DUH SKHQRPn HQRORJLFDO DQG DUH FRQFHUQHG RQO\ ZLWK WKH LQLWLDO DQG ILQDO VWDWHV QRW ZLWK WKH SDWK DQG WKH NLQHWLFV RI WKH WUDQVIRUPDWLRQ

PAGE 150

$ 7KHUPRG\QDPLFV $Q H[FHOOHQW UHYLHZ RQ WKH WKHUPRG\QDPLFV DQG WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ IHUURXV DOOR\V LV JLYHQ E\ .DXIPDQ DQG &RKHQ f 1R FRUUHVSRQGLQJ WKHUPRG\QDPLF GDWD KDV EHHQ JLYHQ IRU WKH PDUWHQn VLWLF WUDQVIRUPDWLRQ LQ %cEUDVV 'HKOLQJHU f JLYHV D WKHUPRG\QDPLF GLVFXVVLRQ RI WKH PDUWHQVLWLF WUDQVIRUPDWLRQ $FFRUGLQJ WR 'HKOLQJHU WKH PDUWHQVLWLF WUDQVIRUPDn WLRQ VWDUWV DW D WHPSHUDWXUH ZKHUH WKH VRFDOOHG SHUIRUPHG QXFOHL DUH JURZLQJ 7KLV LGHD LQYROYHV WKH DVVXPSWLRQ WKDW DW D WHPSHUDWXUH D ERYH 0J QXFOHL DUH DOUHDG\ LQ D VWDEOH RU PHWDVWDEOH FRQGLWLRQ 'HKn OLQJHU H[SODLQV WKLV ZLWK WKH DLG RI D GLVWRUWLRQ HQHUJ\ FXUYH ZKLFK VKRZV ZLWK LQFUHDVLQJ VL]HV RI QXFOHL Q D VWHHS PD[LPXP RI IUHH HQHUJ\ WKHQ D ZHOO DQG WKHQ D OLQH RI LQFUHDVLQJ FRQVWDQW VORSH FKHPn LFDO IUHH HQHUJ\f 'XH WR GLVORFDWLRQ DUUD\V ZKLFK DUH LQ WKH PDWUL[ GXH WR TXHQFKLQJ RU RWKHU WUHDWPHQWV WKH QXFOHL DUH DOUHDG\ SUHVHQW DERYH 0 7KHVH QXFOHL KDYH DQ HQHUJ\ DQG VL]H ZKLFK LV HTXLYDOHQW V WR D SRLQW ZLWKLQ WKH ZHOO /RZHULQJ WKH WHPSHUDWXUH RU D VWUHVV GHn FUHDVHV WKH FKHPLFDO IUHH HQHUJ\ XQWLO DW WKH PDUWHQVLWH WHPSHUDWXUH WKH QXFOHL EHJLQ WR JURZ E\ WKHPVHOYHV IUHH HQHUJ\ $W ORZHU WHPSHUDWXUHV XQIDYRUDEOH QXFOHL VHFRQGDU\ QXFOHLf EHFRPH FDSDEOH RI JURZLQJ

PAGE 151

,W KDV EHHQ VHHQ LQ IHUURXV DOOR\V WKDW WKH 0AWHPSHUDWXUH LV ORZHU WKDQ WKH $AWHPSHUDWXUH ,W LV DVVXPHG WKDW WKLV PHDQV WKDW XQGHUFRROLQJ DQG VXSHUKHDWLQJ DUH LQYROYHG LQ WKH WUDQVIRUPDWLRQ ,Q OaEUDVV WKH 0 WHPSHUDWXUH LV KLJKHU WKDQ WKH $ WHPSHUDWXUH ,W LV V V DVVXPHG IRU WKLV FDVH WKDW SHUKDSV VWRUHG HQHUJ\ IURP WKH FRROLQJ SDUW RI WKH WUDQVIRUPDWLRQ EHFRPHV DYDLODEOH WR KHOS WKH WUDQVIRUPDWLRQ RQ KHDWLQJ f 7KHUHIRUH WKH $J LV WKH ORZHU WHPSHUDWXUH $ .LQHWLFV DQG *URZWK $V PHQWLRQHG HDUOLHU WKH DWKHUPDO QDWXUH RI WKH PDUWHQVLWLF WUDQVn IRUPDWLRQ VXFK DV RFFXUV LQ LEUDVV LV QR ORQJHU D JRRG JHQHUDO GHn VFULSWLRQ ([FHSWLRQV DUH IRXQG LQ IHUURXV DOOR\V :KHQ D FHUWDLQ )H1L DOOR\ f LV EHLQJ WUDQVIRUPHG DQG LV KHOG DW D WHPSHUDWXUH EHn ORZ WKH 0J IRU VRPH WLPH WKH UHVXPSWLRQ RI WUDQVIRUPDWLRQ XSRQ IXUWKHU FRROLQJ LV GHSUHVVHG WR ORZHU WHPSHUDWXUHV 7KLV LV FDOOHG WKHUPDO VWDELOL]DWLRQ 7KH WLPH DW WHPSHUDWXUH GHFUHDVHV WKH IUDFWLRQ WUDQVn IRUPHG XSRQ FRROLQJ DQG WKH WUDQVIRUPDWLRQ LV QR ORQJHU FODVVHG DV DWKHUPDO ,W KDV EHHQ VHHQ WKDW VWDELOL]DWLRQ FDQ EH HOLPLQDWHG ZKHQ WKH FDUERQ DQG QLWURJHQ ZHUH UHGXFHG WR D VXIILFLHQWO\ ORZ OHYHO LQ VWHHOV 3HUKDSV WKH ODFN RI LQWHUVWLWLDO DWRPV LQ WKH LEUDVV HOLPn LQDWHV D VLPLODU EHKDYLRU $QRWKHU H[FHSWLRQ WR WKH DWKHUPDO NLQHWLFV LV WKH EXUVW SKHQRPn HQRQ WKH IRUPDWLRQ RI D ODUJH DPRXQW RI PDUWHQVLWH DW RQH WLPH 0D FKOLQ DQG &RKHQ f ILUVW LQWURGXFHG DV WKH WHPSHUDWXUH DW ZKLFK WKH PDUWHQVLWH IRUPHG ZLWK D EXUVW )RU PDQ\ RI WKH IHUURXV DOOR\V WKH EXUVWLQJ LV DFFRPSDQLHG E\ DQ DXGLEOH FOLFN ,W KDV DOVR EHHQ IRXQG WKDW WKH DPRXQW WUDQVIRUPHG E\ D VLQJOH EXUVW FDQ EH GHFUHDVHG E\ GHFUHDVLQJ WKH JUDLQ VL]H

PAGE 152

7KH EXUVW IRUPDWLRQ RI WKH PDUWHQVLWH LV FDXVHG E\ LQWHUQDO DFn FRPPRGDWLRQ VWUHVVHV ZKLFK DUH FDXVHG E\ SUHYLRXVO\ IRUPHG PDUWHQVLWH 7KLV LV D VLPLODU HIIHFW WR WKDW FDXVHG E\ H[WHUQDO VWUHVVHV 7KLV LV DQ DXWRFDWDO\WLF HIIHFW ZKHUH WKHUH LV D VXGGHQ YHU\ UDSLG WUDQVIRPD WLRQ RI D ODUJH YROXPH IUDFWLRQ RI WKH VSHFLPHQ 7KH VWUHVVHV SURGXFHG E\ RQH SODWH DVVLVW LQ WKH DFWLYDWLRQ RI WKH QXFOHXV RI DQRWKHU SODWH 7KH ZKROH JURXS IRUPV D SDUWLDOO\ VHOIDFFRPPRGDWLQJ V\VWHP 2WKHU H[FHSWLRQV WR DWKHUPDO EHKDYLRU DUH FDVHV ZKHUH WKH PDUWHQn VLWLF WUDQVIRUPDWLRQ FRQWLQXHV ZLWK WLPH DW D JLYHQ WHPSHUDWXUH %RWK LVRWKHUPDO DQG DWKHUPDO FRPSRQHQWV DQG MXVW LVRWKHUPDO FRPSRQHQWV KDYH EHHQ IRXQG IRU JLYHQ IHUURXV DOOR\V 7KHUH DUH PDMRU GLIIHUHQFHV LQ WKH JURZWK RI WKH PDUWHQVLWH LQ VRPH IHUURXV DOOR\V DQG LQ %AEUDVV ,Q IHUURXV DOOR\V WKH WUDQVIRUPDn WLRQ RFFXUV E\ WKH VXFFHVVLYH IRUPDWLRQ RI QHZ SODWHV ZLWK HDFK RQH VKRRWLQJ RXW VXGGHQO\ WR LWV ILQDO VL]H 7KH FRXUVH RI WKH WUDQVIRUn PDWLRQ LV GHSHQGHQW XSRQ WKH UDWH RI QXFOHDWLRQ DQG VL]H RI WKH IXOO\ JURZQ SODWHV 7KH KHDWLQJ SURFHVV DOVR HQWDLOV QXFOHDWLRQ 7KHVH DUH WKH FKDUDFWHULVWLFV RI WKH JURZWK RI D V\VWHP ZKRVH UHDFWLRQ LV LVRWKHUn PDO /DWHU LQYHVWLJDWLRQV KDYH VKRZQ WKDW SHUKDSV VRPH WKLFNHQLQJ RI WKH SODWHV WDNHV SODFH ODWHU EXW PRVW RI WKH LQWHUQDO VWUXFWXUHV GRHV IRUP UDSLGO\ f :KHQ FRROHG cEUDVV PDUWHQVLWH SODWHV DUH JHQHUDWHGEXW WKH\ GR QRW UHDFK WKHLU ILQDO VL]H DW RQFH $V WKH WHPSHUDWXUH GHFUHDVHV WKHUH DUH IXUWKHU LQFUHDVHV LQ OHQJWK DQG WKLFNQHVV XQWLO FROOLVLRQ RU MDPPLQJ WDNHV SODFH 7KHVH UHDFWLRQV VWDUW ZLWK OLWWOH LI DQ\ VXSHUn FRROLQJ 7KH JURZWK RI D PDUWHQVLWH SODWH PD\ EH VWRSSHG DW D JLYHQ WHPSHUDWXUH EHFDXVH RI WKH OLPLWHG GULYLQJ IRUFH DYDLODEOH DQG WKH

PAGE 153

WKHUPRHODVWLF EDODQFH LV REWDLQHG $V WKH WHPSHUDWXUH IDOOV WKH HQKDQFHG GULYLQJ IRUFH DOORZV JURZWK WR SURFHHG DQG FDXVHV DGGLWLRQDO QXFOHDWLRQ 7KLV SURJUHVVLYH SURSDJDWLRQ LV D UDSLG SURFHVV ZKLFK LV DWKHUPDO ,Q WKH UHYHUVH WUDQVIRUPDWLRQ ZKLFK UHTXLUHV QR VXSHUKHDWn LQJ WKH PDUWHQVLWH GLVDSSHDUV LQ UHYHUVH RUGHU RI LWV IRUPDWLRQ 0DQ\ WKHRUHWLFDO FRQVLGHUDWLRQV KDYH EHHQ RIIHUHG WR H[SODLQ WKH NLQHWLFV RI WKH WUDQVIRUPDWLRQ 2QH WKHRU\ RIIHUHG E\ .QDSS DQG 'HK OLQJHU f DQG H[WHQGHG E\ .DXIPDQ DQG &RKHQ f FRQVLGHUV HPEU\RV ZKLFK DUH ODWHU DFWLYDWHG LQWR PDUWHQVLWH 7KH\ SURSRVH DQ REODWH VSKHURLG RI PDUWHQVLWH ZLWK DQ DUUD\ RI VFUHZ GLVORFDWLRQ ORRSV PDNLQJ XS WKH LQWHUIDFH PXFK OLNH DQ HPEU\R SURSRVHG E\ )UDQN f $ GLVn WULEXWLRQ RI VL]HV RI WKH HPEU\R LV DOVR SURSRVHG 7KH GULYLQJ IRUFH PXVW EH JUHDWHU WKDQ WKH UHVWUDLQLQJ IRUFH VR WKDW WKH GULYLQJ IRUFH PD\ DFW DV D VWUHVV DQG PD\ PRYH WKH GLVORFDWLRQ LQWHUIDFH RXW 7KH UHVWUDLQLQJ IRUFH LV VDLG WR EH WKH VXP RI WKH VWUDLQ HQHUJ\ DQG VXUn IDFH HQHUJ\ SHU XQLW YROXPH 7KLV UHVWUDLQLQJ IRUFH IDOOV RII ZLWK VL]H DQG WKH ODUJHVW HPEU\RV VPDOOHVW UHVWUDLQLQJ IRUFHf WUDQVIRUP DW WKH KLJKHVW WHPSHUDWXUH VPDOOHVW GULYLQJ IRUFHf RU 0 2Q IXUWKHU FRROLQJ WKH UHDFWLRQ FRQWLQXHV DV VPDOOHU HPEU\RV DUH SURSDJDWHG 7KH PDUWHQVLWH HPEU\RV DUH FRQVLGHUHG WR EH GLVORFDWLRQ DUUD\V LQ WKH SDUHQW SKDVH ZKLFK ZRXOG DOZD\V EH WKHUH GHVSLWH H[WHQVLYH DQQHDOLQJ RU RWKHU WUHDWPHQWV 7KLV LV D JRRG PRGHO IRU DWKHUPDO NLQHWLFV 7KHVH WKHRULHV DUH SKHQRPHQRORJLFDO UDWKHU WKDQ PHFKDQLVWLF $ PHFKDQLVWLF WKHRU\ ILUVW SURSRVHG E\ -DVZRQ f DQG UHFHQWO\ SURSRVHG E\ 'DVK DQG %URZQ f RIIHUV FHUWDLQ FULWLFDO FRQGLWLRQV IRU WKH IRUPDWLRQ RI PDUWHQVLWH &HUWDLQ GLVORFDWLRQV DUH VSOLW WR JLYH SDUWLDOV ZLWK VWDFNLQJ IDXOWV LQ EHWZHHQ 7KHVH VWDFNLQJ IDXOWV

PAGE 154

DUH FRQVLGHUHG DV VRPHZKDW OLNH WKH PDUWHQVLWH ,W LV VXJJHVWHG WKDW WKHVH EXLOG XS WR IRUP WKH PDUWHQVLWH SODWH ,W ZDV VDLG WKDW WKH GULYLQJ IRUFH LV OLNH D FKHPLFDO VWUHVV ZKLFK LV ODUJH HQRXJK WR FUHDWH WKH QHFHVVDU\ GLVORFDWLRQV 7KLV KDSSHQV DW WKH SRLQW ZKLFK GHILQHV 0A $OO WKH VDPSOH GRHV QRW WUDQVIRUP FRPSOHWHO\ DW WKLV SRLQW EHFDXVH RI LQWHUQDO VWUHVVHV ZKLFK DUH EXLOW XS E\ WKH WUDQVIRUPDWLRQ DQG ZKLFK DFW LQ RSSRVLWLRQ WR WKH FKHPLFDO VWUHVV 'DVK DQG %URZQ DOVR LQFOXGH DUJXPHQWV IRU DQ LVRWKHUPDO FRPSRQHQW EXW FDQQRW H[SODLQ D FRPSOHWHO\ LVRWKHUPDO UHDFWLRQ

PAGE 155

$33(1',; ,, $33/,&$7,216 2) 5(6,67$1&( 0($685(0(176 )25 7+( 678'< 2) 75$16)250$7,216 ,1 0(7$/6 $Q H[DPSOH LV JLYHQ WR VKRZ ZK\ WKH UHVLVWLYLW\ RI D WZRSKDVH PDWHULDO LV D OLQHDU IXQFWLRQ RI WKH YROXPH IUDFWLRQV RI WKH WZR SKDVHV &RQVLGHU D UDQGRP WZRSKDVH D%f PL[WXUH LV WKH YROXPH IUDFWLRQ RI D SUHVHQW DQG 9 WKH YROXPH IUDFWLRQ RI % 7KH UHVLVWDQFH S RI D URG RI WKLV WZRSKDVH DOOR\ RI FURVVVHFWLRQ $ DQG OHQJWK O LV } 3$ 9 $ 9 LV WKH YROWDJH DFURVV WKH URG DQG WKH FXUUHQW IORZLQJ WKURXJK WKH URG &RQVLGHU WKH URG WR EH GLYLGHG LQWR D EXQGOH RI 1 SDUDOOHO ILn EHUV RI OHQJWK ZLWK VPDOO FURVVVHFWLRQ /HW WKH FURVVVHFWLRQ RI $ HDFK ILEHU EH f§ 7KH ILEHU FDQ WKHQ KDYH D FHUWDLQ YROXPH RI D LQ 1 VHULHV ZLWK D FHUWDLQ YROXPH RI % 7KH OHQJWK RI % ILEHU SUHVHQW LV 9Je DQG D ILEHU 94L 7KH UHVLVWDQFH RI WKH WZR LQ VHOULHV LV JLYHQ E\ r 3m9 SH9 fI DQ DQ f 7KH URG FRQVLVWV RI 1 VPDOO ILEHUV LQ SDUDOOHO 1 $ 9 5 K5 UNB fI n :H9 6LPSOLI\LQJ JLYHV 3 S 9 349B D D %

PAGE 156

7KH IROORZLQJ LV DQRWKHU ZD\ WR GLVFXVV WKH FRQWULEXWLRQV RI D DQG WR WKH RYHUDOO UHVLVWDQFH DQG ZDV ILUVW SUHVHQWHG E\ 0F5H\QROGV f IRU PDUWHQVLWH ,W LV NQRZQ WKDW WKH UHVLVWDQFH RI D PL[WXUH RI PDUWHQVLWH DQG PDWUL[ PDWHULDO GHSHQGV RQ WKH DPRXQW DQG WKH GLVWULEXWLRQ RI WKH PDUn WHQVLWH SODWHV $ WKHRUHWLFDO FLUFXLW LV DVVXPHG ZKHUH HDFK PDUWHQVLn WLF JUDLQ LV UHSUHVHQWHG E\ D UHVLVWRU ,W FDQ EH DVVXPHG WKDW WKH PDUWHQVLWH UHVLVWRUV DUH LQ VHULHV RU SDUDOOHO ZLWK WKH UHVLVWRUV RI WKH SDUHQW SKDVH 7KLV ZRXOG OHDG WR WKH IROORZLQJ UHODWLRQV DFFRUGn LQJ WR ZKHWKHU WKH PDUWHQVLWH LV LQ SDUDOOHO RU LQ VHULHV ZLWK WKH PDn WUL[ 3a3O SHUFHQW PDUWHQVLWH VHULHVf 3 0B3 % L 33 SHUFHQW PDUWHQVLWH %L 0 30 SO SDUDOOHOf ZKHUH S UHVLVWLYLW\ RI WKH PL[WXUH S UHVLVWLYLW\ RI SHUFHQW LSKDVH S UHVLVWLYLW\ RI SHUFHQW PDUWHQVLWH 7KH PDUWHQVLWH LV NQRZQ WR EH GLVWULEXWHG DV UDQGRPO\ RULHQWHG VPDOO SODWHV WKURXJKRXW WKH PDWUL[ ,W ZDV FRQVLGHUHG D VXIILFLHQWO\ FORVH DSSUR[LPDWLRQ WR DVVXPH WKDW WKH PDUWHQVLWH IRUPV LQ WKLQ SDUDOOHO SODWHV DW GHJUHHV WR WKH GLUHFWLRQ RI FXUUHQW IORZ DQG H[WHQGLQJ FRPSOHWHO\ DFURVV WKH VDPSOH :LWK VXFK D GLVWULEXWLRQ 5 \ 5 5 f ,W FRXOG EH VKRZQ E\ DSSO\LQJ WKH DERYH HTXD VHULHV SDUDOOHO WLRQV WR LaEUDVV UHVLVWLYLW\ YDOXHV WKDW WKH PD[LPXP GHYLDWLRQ DVn VXPLQJ DOO UHVLVWRUV HLWKHU LQ SDUDOOHO RU LQnVHULHV ZDV DERXW SHUFHQW ,I RQH DVVXPHV D UDQGRP GLVWULEXWLRQ ZKLFK OHDGV WR WKH

PAGE 157

DYHUDJH UHVLVWDQFH 5 f§ 5 5 f WKH GHYLDWLRQ LV ] VVULHV SVUH;-/H[ VPDOOHU WKDQ SHUFHQW 0DUWHQVLWH UHDFWLRQV KDYH EHHQ PRQLWRUHG LQ PDQ\ GLIIHUHQW ZD\V ,QFOXGHG DPRQJ WKHVH DUH PDJQHWLF PHDVXUHPHQWV LURQEDVH DOOR\Vf f SHDN KHLJKW FKDQJHV IURP [UA PHDVXUHPHQWV f GLPHQVLRQDO FKDQJHV f DQG UHVLVWDQFH PHDVXUHPHQWV 7KH DPRXQW RI ZRUN ZKLFK KDV EHHQ GRQH E\ UHVLVWDQFH PHDVXUHPHQWV RQ GLIIXVLRQOHVV WUDQVIRUPDWLRQV LV FRQVLGHUDEO\ OHVV WKDQ WKDW GRQH RQ SUHFLSLWDWLRQ SURFHVVHV RU RUGHUGLVRUGHU UHDFWLRQV +RZHYHU LQ PDQ\ UHVSHFWV WKH UHVXOWV REWDLQHG IURP PDUWHQVLWH WUDQVIRUPDWLRQV KDYH EHHQ PXFK PRUH FRQFOXVLYH DQG VLJQLILFDQW 0F5H\QROGV f ILUVW GHPRQVWUDWHG WKH DSSOLFDELOLW\ RI UHVLVWLYLW\ WR REVHUYDWLRQV LQ PDUWHQVLWLF WUDQVIRUPDWLRQV LQ YDULRXV VWHHOV 5Hn VLVWLYLW\ PHDVXUHPHQWV ZHUH XVHG WR VKRZ WKDW WKH 0AWHPSHUDWXUH ZDV LQGHSHQGHQW RI FRROLQJ UDWH RYHU WKH LQYHVWLJDWHG UDQJH /DWHU UHVLVn WLYLW\ ZRUN E\ 0F5H\QROGV f RQ VWHHO DOOR\V VKRZHG WKDW HODVWLF GHn IRUPDWLRQ KDG QR HIIHFW RQ WKH 0JWHPSHUDWXUH EXW WKDW SODVWLF GHIRUPDn WLRQ FDXVHG WKH WUDQVIRUPDWLRQ WR RFFXU DW WHPSHUDWXUHV DERYH 0J XS WR D OLPLWLQJ WHPSHUDWXUH 0A 7KH GLUHFW HIIHFW RI FROG ZRUN RQ WKH UHn VLVWLYLW\ ZDV VHHQ WR EH QHJOLJLEOH LQ WKHVH PHDVXUHPHQWV DQG WKH WUDQVIRUPDWLRQ RFFXUUHG VLPXOWDQHRXVO\ ZLWK WKH GHIRUPDWLRQ 0DFKOLQ DQG &RKHQ XVHG UHVLVWDQFH PHDVXUHPHQWV LQ LQYHVWLJDWLQJ WKH EXUVW W\SH RI WUDQVIRUPDWLRQ RFFXUULQJ LQ )H1L DOOR\V SHUn FHQW QLFNHOf f DQG LQ H[SHULPHQWV RQ WKH LVRWKHUPDO WUDQVIRUPDn WLRQ LQ )H1L DOOR\V SHUFHQW QLFNHOf f 7KH LVRWKHUPDO WUDQVn IRUPDWLRQ LQ )H&G1L DOOR\V ZDV VWXGLHG E\ .XOLQ DQG 6SHLFK f

PAGE 158

)RUVWHU DQG 6FKHLO f XVLQJ UHVLVWDQFH PHDVXUHPHQWV ILUVW HVWLPDWHG WKH WLPH RI IRUPDWLRQ RI LQGLYLGXDO SODWHV WR EH VPDOOHU WKDQ VHF EXW %XQVKDK DQG 0HKO f LQ ODWHU ZRUN ZLWK PXFK PRUH VHQVLWLYH DSSDUDWXV REWDLQHG WKH YDOXH RI [ VHF ZKLFK YDULHG ZLWK WKH VL]H RI WKH SODWH &KDQJ DQG 5HDG f XVHG UHVLVWDQFH PHDVXUHPHQWV WR LQYHVWLJDWH WKH HIIHFW RI ODWWLFH LPSHUIHFWLRQV RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ RFFXUULQJ LQ $X&G DOOR\V 7LWFKHQHU DQG %HYHU f 3RSV DQG 0DVVDOVNL f DQG 6XRQLQHQ *HQHYUD\ DQG %HYHU f KDYH XVHG UHVLVWDQFH PHDVXUHPHQWV LQ VWXG\LQJ WKH PDUWHQVLWLF WUDQVIRUPDWLRQ LQ %MEUDVV

PAGE 159

5()(5(1&(6 $ 7URLDQR DQG $ *UHQLQJHU 0HWDO 3URJ B f : &KULVWLDQ 7KH 7KHRU\ RI 7UDQVIRUPDWLRQV LQ 0HWDOV DQG $OOR\V 3HUJDPRQ 3UHVV /RQGRQ f & 6 %DUUHWW DQG 7 % 0DVVDOVNL 6WUXFWXUH RI 0HWDOV 0F*UDZ +LOO 1HZ
PAGE 160

5 *DUZRRG DQG +XOO $FWD 0HW A f & 6 %DUUHWW 3KDVH 7UDQVIRUPDWLRQV LQ 6ROLGV :LOH\ 1HZ
PAGE 161

3 5 6ZDQQ DQG + :DUOLPRQW $FWD 0HW f % 0DVVRQ 7UDQV 0HW 6RF $,0( f $ + &RWWUHOO DQG % $ %LOE\ 3URF 5R\ 6RF $ f 5 ( +XPPHO = 0HWDOONGH f 0 6 :HFKVOHU 6 /LHEHUPDQ DQG 7 $ 5HDG 7UDQV $,0( f 6 %RZOHV DQG 0DFNHQ]LH $FWD 0HW f ( & %DLQ 7UDQV $,0( A f = 6 %DVLQVNL DQG : &KULVWLDQ $FWD 0HW B f : 0DFNHQ]LH DQG 6 %RZOHV $FWD 0HW B f / .DXIPDQ DQG 0 &RKHQ 3URJUHVV LQ 0HWDO 3K\VLFV 3HUJDPRQ 3UHVV /RQGRQ f / .DXIPDQ DQG 0 &RKHQ 7UDQV $,0( f 5 / 3DWWHUVRQ DQG & 0 :D\PDQ $FWD 0HW B f + .QDSS DQG 8 'HKOLQJHU $FWD 0HW B f ) & )UDQN $FWD 0HW f 6 'DVK DQG 1 %URZQ $FWD 0HW $ f $ : 0F5H\QROGV $SSO 3K\V f 0 : %XUNDUW DQG 7 $ 5HDG 7UDQV $,0( f ( 0DFKOLQ DQG 0 &RKHQ 7UDQV $,0( f 6 $ .XOLQ DQG 5 6SHLFK 7UDQV $,0( f ) )EUVWHU DQG ( 6FKHLO = 0HWDOONGH M f ) )RUVWHU DQG ( 6FKHLO = 0HWDOONGH f 5 ) %XQVKDK DQG 5 ) 0HKO 7UDQV $,0( f

PAGE 162

%,2*5$3+,&$/ 6.(7&+ -RKQ :D\QH .RJHU ZDV ERUQ $XJXVW DW )ORUHQFH $ODEDPD ,Q -XQH KH ZDV JUDGXDWHG IURP &RIIHH +LJK 6FKRRO )ORUHQFH $ODn EDPD +H DWWHQGHG )ORUHQFH 6WDWH &ROOHJH IRU RQH \HDU DQG HQWHUHG WKH *HRUJLD ,QVWLWXWH RI 7HFKQRORJ\ $WODQWD *HRUJLDLQ -XQH ,Q -XQH KH UHFHLYHG WKH GHJUHH RI %DFKHORU RI &KHPLFDO (QJLQHHULQJ &RRSHUDWLYH 3ODQ DQG LQ WKH GHJUHH RI 0DVWHU RI 6FLHQFH LQ 0HWDOn OXUJ\ ,Q 0D\ KH HQWHUHG WKH 8QLYHUVLW\ RI )ORULGD DQG EHJDQ ZRUN WRZDUG WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ DQG ZDV VXSSRUWHG E\ D 1DWLRQDO $HURQDXWLFV DQG 6SDFH $GPLQLVWUDWLRQ 7UDLQHHVKLS -RKQ :D\QH .RJHU LV PDUULHG WR WKH IRUPHU 5RVHPDU\ +DPSWRQ RI /DZUHQFHEXUJ 7HQQHVVHH DQG LV WKH IDWKHU RI RQH FKLOG .DUHQ +H LV D PHPEHU RI WKH $PHULFDQ ,QVWLWXWH RI 0LQLQJ 0HWDOOXUJLFDO DQG 3HWURn OHXP (QJLQHHUV WKH $PHULFDQ 6RFLHW\ IRU 0HWDOV $OSKD 6LJPD 0X 6LJPD ;L DQG 7KHWD ;L 6RFLDO )UDWHUQLW\

PAGE 163

7KLV GLVVHUWDWLRQ ZDV SUHSDUHG XQGHU WKH GLUHFWLRQ RI WKH FKDLUn PDQ RI WKH FDQGLGDWHnV VXSHUYLVRU\ FRPPLWWHH DQG KDV EHHQ DSSURYHG E\ DOO PHPEHUV RI WKDW FRPPLWWHH ,W ZDV VXEPLWWHG WR WKH 'HDQ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DSSURYHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO 6XSHUYLVRU\ &RPPLWWHH &KDLUPDQ

PAGE 164

,) /LEUDULHV 'LJLWDO 'LVVHUWDWLRQ 3URMHFW DROULFK ,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $87+25 5RJHU -RKQ 7,7/( 7KH LQIOXHQFH RI KHDW WUHDWPHQW QHXWURQ LUUDGLDWLRQ DQG GHIRUPDWLRQ RQ WKH PDUWHQVLWLF WUDQVIRUPDWLRQV LQ PHWDVWDEOH %EUDVV UHFRUG QXPEHU f 38%/,&$7,21 '$7( L -R0 O?R &M I A DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW 6LJQDWXUH RI &RS\ULJKW +ROGHU L&T WHF 8 >1c 3ULQWHG RU 7\SHG 1DPH RI &RS\ULJKW +ROGHU/LFHQVHH 3HUVRQDO LQIRUPDWLRQ EOXUUHG