• TABLE OF CONTENTS
HIDE
 Title Page
 Title Page
 Acknowledgement
 Table of Contents
 Abstract
 Introduction
 Methods
 Results
 Quantification and simulation of...
 Discussion
 A
 B
 C
 D
 Reference
 Biographical sketch
 Signatures
 Copyright






Title: Water, wetlands, and wood storks in southwest Florida
CITATION THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00084175/00001
 Material Information
Title: Water, wetlands, and wood storks in southwest Florida
Physical Description: ix, 406 leaves : ill. ; 28 cm.
Language: English
Creator: Browder, Joan Arrington ( Dissertant )
Snedaker, Samuel C. ( Reviewer )
Johnston, David W. ( Reviewer )
Bayley, Suzanne E. ( Reviewer )
Huber, Wayne C. ( Reviewer )
Odum, Howard T. ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 1976
Copyright Date: 1976
 Subjects
Subjects / Keywords: Wood stork   ( lcsh )
Environmental Engineering Sciences thesis Ph. D
Wetlands -- Florida   ( lcsh )
Ecological surveys -- Wetland ecology -- Florida   ( lcsh )
Ecology -- Florida   ( lcsh )
Dissertations, Academic -- Environmental Engineering Sciences -- UF
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
 Notes
Abstract: Energy circuit models were used to study an oscillating ecosystem, the seasonally expanding and contracting wetlands of southwest Florida. Analog and digital computers were used to simulate the effects of the natural rainfall pattern and of drainage on seasonal expansion and contraction of water area, production and concentration of fish, and feeding and reproduction of the Wood Stork (Mycteria americana). Information for quantification of the models was obtained from aerial surveys of storks nesting at Corkscrew Swamp Sanctuary, quantitative sampling of fish and invertebrates in a pond and marsh, measurement of wetlands area on infrared aerial photographs, topographic field surveys, and a literature search and field observation on demographic parameters of populations. There are approximately 30,000 ponds ranging in size from less than an acre to more than 100 acres in Lee, Hendry, and Collier counties. Freshwater wetlands once comprised 53% of the total area. Drainage, which has accelerated in the past 15 years, has reduced wetlands area by more than 60%, diminishing the capacity of the area to store water from wet years. Regional-scale depth-area, area-volume, and depth-volume curves were developed to relate the intensity and timing of rain to the seasonally changing area of surface water. Classical hydrologic equations were combined with the regional curves to produce a water model simulating seasonal and long-term water storage and runoff. Patterns of land area covered by water from the water model were used to drive three models relating water patterns to fish and storks. Seasonal oscillation of water area increases the efficiency of the flow of energy from prey to predator and allows a system to support more top consumer than would otherwise be possible. Concentration of the fish production of the wetlands of southwest Florida is increased approximately 25 times by the sun’s energy, acting seasonally through evaporation and the transpiration of plants to shrink water area. This extra concentration factor in the food chain give a very high “energy quality value to the Wood Stork, which may serve as an indicator of the productivity of wetlands of the region. Drainage and a downward trend in rainfall for the past 15 years have stressed ecosystems causing a decline in wading birds. Simulations suggest that drainage more than decline in rainfall was responsible for the decrease in storks. Wood Storks have shown resiliency in adapting to the drained conditions, finding new feeding areas such as the marshes at Lake Okeechobee. Plans to raise lake regulation levels will eliminate half this area. Because of the topography of southwest Florida, present drainage has greatly decreased the area flooded but only slightly decreased the range of fluctuation. Therefore, a wetlands ecosystem dependent on oscillation continues to operate. If, however, the mean water level is further lowered, the fluctuation of water area may be drastically reduced and the ecosystem seriously disrupted.
Thesis: Thesis--University of Florida.
Bibliography: Bibliography: leaves 399-405.
Statement of Responsibility: by Joan Arrington Browder.
General Note: Typescript.
General Note: Vita.
 Record Information
Bibliographic ID: UF00084175
Volume ID: VID00001
Source Institution: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 000179215
oclc - 03157178
notis - AAU5731

Table of Contents
    Title Page
        i
    Title Page
        Page ii
    Acknowledgement
        Page iii
        Page iv
    Table of Contents
        Page v
        Page vi
    Abstract
        Page vii
        Page viii
        Page ix
    Introduction
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
    Methods
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
    Results
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
        Page 169
        Page 170
        Page 171
        Page 172
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
        Page 179
        Page 180
        Page 181
        Page 182
        Page 183
        Page 184
        Page 185
        Page 186
        Page 187
        Page 188
        Page 189
        Page 190
        Page 191
        Page 192
        Page 193
        Page 194
        Page 195
        Page 196
        Page 197
        Page 198
        Page 199
        Page 200
        Page 201
        Page 202
        Page 203
        Page 204
        Page 205
        Page 206
        Page 207
        Page 208
        Page 209
        Page 210
        Page 211
        Page 212
        Page 213
        Page 214
        Page 215
        Page 216
        Page 217
        Page 218
        Page 219
        Page 220
        Page 221
        Page 222
        Page 223
        Page 224
        Page 225
        Page 226
        Page 227
        Page 228
        Page 229
        Page 230
        Page 231
        Page 232
        Page 233
        Page 234
        Page 235
        Page 236
        Page 237
        Page 238
        Page 239
        Page 240
        Page 241
        Page 242
        Page 243
        Page 244
        Page 245
        Page 246
        Page 247
        Page 248
        Page 249
    Quantification and simulation of models
        Page 250
        Page 251
        Page 252
        Page 253
        Page 254
        Page 255
        Page 256
        Page 257
        Page 258
        Page 259
        Page 260
        Page 261
        Page 262
        Page 263
        Page 264
        Page 265
        Page 266
        Page 267
        Page 268
        Page 269
        Page 270
        Page 271
        Page 272
        Page 273
        Page 274
        Page 275
        Page 276
        Page 277
        Page 278
        Page 279
        Page 280
        Page 281
        Page 282
        Page 283
        Page 284
        Page 285
        Page 286
        Page 287
        Page 288
        Page 289
        Page 290
        Page 291
        Page 292
        Page 293
        Page 294
        Page 295
        Page 296
        Page 297
        Page 298
        Page 299
        Page 300
        Page 301
        Page 302
        Page 303
        Page 304
        Page 305
        Page 306
        Page 307
        Page 308
        Page 309
        Page 310
        Page 311
        Page 312
        Page 313
        Page 314
        Page 315
        Page 316
        Page 317
        Page 318
        Page 319
    Discussion
        Page 320
        Page 321
        Page 322
        Page 323
        Page 324
        Page 325
        Page 326
        Page 327
        Page 328
        Page 329
        Page 330
        Page 331
        Page 332
        Page 333
        Page 334
        Page 335
        Page 336
        Page 337
        Page 338
        Page 339
        Page 340
        Page 341
        Page 342
        Page 343
        Page 344
        Page 345
        Page 346
        Page 347
        Page 348
    A
        Page 349
        Page 350
        Page 351
        Page 352
        Page 353
        Page 354
        Page 355
        Page 356
        Page 357
        Page 358
        Page 359
        Page 360
    B
        Page 361
        Page 362
        Page 363
        Page 364
        Page 365
        Page 366
        Page 367
    C
        Page 368
        Page 369
        Page 370
        Page 371
        Page 372
        Page 373
        Page 374
        Page 375
        Page 376
        Page 377
        Page 378
        Page 379
        Page 380
        Page 381
        Page 382
        Page 383
        Page 384
        Page 385
    D
        Page 386
        Page 387
        Page 388
        Page 389
        Page 390
        Page 391
        Page 392
        Page 393
        Page 394
        Page 395
        Page 396
        Page 397
        Page 398
    Reference
        Page 399
        Page 400
        Page 401
        Page 402
        Page 403
        Page 404
        Page 405
    Biographical sketch
        Page 406
    Signatures
        Page 407
        Page 408
    Copyright
        Copyright
University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - Version 2.9.9 - mvs