Front Cover
 Title Page
 Table of Contents
 List of Figures
 List of Tables
 List of symbols
 Problem statement and solution...
 Problem solution
 Experimental set-up and proced...
 Conclusions and future work
 Appendix A: Velocity potential...
 Appendix B: Dimensional analys...
 Appendix C: Example solution
 Appendix D: Experimental data reduction...

Group Title: UFL/COEL (University of Florida. Coastal and Oceanographic Engineering Laboratory) ; 91/007
Title: Structure-induced sediment scour potential near a rectangular structure due to waves
Full Citation
Permanent Link: http://ufdc.ufl.edu/UF00078621/00001
 Material Information
Title: Structure-induced sediment scour potential near a rectangular structure due to waves
Series Title: UFLCOEL
Physical Description: xvi, 120 leaves : ill. ; 28 cm.
Language: English
Creator: Karunamuni, Anura J., 1954- ( Dissertant )
Sheppard, D. Max ( Thesis advisor )
University of Florida -- Coastal and Oceanographic Engineering Dept
Publisher: Coastal & Oceanographic Engineering Dept., University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 1991
Copyright Date: 1991
Subjects / Keywords: Sediment transport   ( lcsh )
Scour (Hydraulic engineering)   ( lcsh )
Water waves   ( lcsh )
Coastal and Oceanographic Engineering thesis M.S   ( local )
Dissertations, Academic -- Coastal and Oceanographic Engineering -- UF   ( local )
Genre: government publication (state, provincial, terriorial, dependent)   ( marcgt )
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )
Abstract: The problem of structure-induced sediment scour has been a subject of increasing importance in numerous branches of civil engineering. The problem considered here is the potential for sediment scour in the vicinity of a rectangular, partially submerged fixed structure separated from the bottom by a gap and exposed to two-dimensional monochromatic waves. A potential flow solution for the flow field in the vicinity of the structure is obtained using linear wave theory. In order to simplify the solution method, the flow field is divided into three regions; flow upstream of the structure, flow below the structure and flow downstream of the structure. A dimensional analysis of the problem was carried out in order to obtain the pertinent dimensionless groups. The solution procedure includes solving Laplace’s equation and applying the standard bottom and free surface boundary conditions together with the continuity of pressure and velocity conditions at the interregional boundaries. Satisfaction of the boundary conditions results in a system of simultaneous algebraic equations with complex coefficients. This set of equations is solved numerically. Wave reflection and transmission coefficients were computed as part of this work and compared with the results of other theoretical studies. The ratio of maximum bottom velocities under the structure to the maximum velocity under the incident wave was computer for a range of structure parameters and wave conditions. Laboratory experiments were conducted where incident, reflected and transmitted wave heights along with flow velocities beneath he structure were measured and the results compared with the theoretically predicted values. The results give an indication of the sediment scour potential as a function of the structure and wave parameters.
Thesis: Thesis (M.S.)--University of Florida, 1991.
Bibliography: Includes bibliographical references (leaf 89).
Statement of Responsibility: by Anura J. Karunamuni.
General Note: "UFL/COEL-91/007."
Funding: This publication is being made available as part of the report series written by the faculty, staff, and students of the Coastal and Oceanographic Program of the Department of Civil and Coastal Engineering.
 Record Information
Bibliographic ID: UF00078621
Volume ID: VID00001
Source Institution: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: oclc - 24654452

Table of Contents
    Front Cover
        Front Cover
    Title Page
        Page i
        Page ii
        Page iii
    Table of Contents
        Page iv
        Page v
        Page vi
    List of Figures
        Page vii
        Page viii
        Page ix
    List of Tables
        Page x
    List of symbols
        Page xi
        Page xii
        Page xiii
        Page xiv
        Page xv
        Page xvi
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
    Problem statement and solution method
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
    Problem solution
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
    Experimental set-up and procedure
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
    Conclusions and future work
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
    Appendix A: Velocity potentials
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
    Appendix B: Dimensional analysis
        Page 102
        Page 103
        Page 104
        Page 105
    Appendix C: Example solution
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
    Appendix D: Experimental data reduction technique
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - Version 2.9.9 - mvs