• TABLE OF CONTENTS
HIDE
 Front Cover
 Title Page
 Acknowledgement
 Table of Contents
 List of Tables
 List of Figures
 Abstract
 Introduction
 Field and lab studies of the IRL...
 Literature review
 Model development
 Model calibration
 Model applications to Indian River...
 Conclusions and recommendation...
 Appendix A: Turbulence closure...
 Appendix B: Derivation of the advection-diffusion...
 Appendix C: Numerical solutions...
 Appendix D: 1-D wave-current boundary...
 Appendix E: Particle erosion simulator...
 References
 Biographical sketch






Group Title: Technical report – University of Florida. Coastal and Oceanographic Engineering Program ; 129
Title: Modeling suspended sediment transport under combined wave current actions in Indian River Lagoon
CITATION PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00075316/00001
 Material Information
Title: Modeling suspended sediment transport under combined wave current actions in Indian River Lagoon
Physical Description: xii, 234 leaves : ill. ; 29 cm.
Language: English
Creator: Sun, Detong, 1965- ( Dissertant )
Sheng, Y. P. ( Thesis advisor )
Dean, Robert G. ( Reviewer )
Mehta, Ashish J. ( Reviewer )
Thieke, Robert J. ( Reviewer )
Reddy, Dr. ( Reviewer )
Motz, Dr. ( Reviewer )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2001
Copyright Date: 2001
 Subjects
Subjects / Keywords: Coastal and Oceanographic Engineering thesis, Ph.D   ( lcsh )
Dissertations, Academic -- Coastal and Oceanographic Engineering -- UF   ( lcsh )
Genre: bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )
Spatial Coverage: United States--Florida--Indian River Lagoon
 Notes
Abstract: Aquatic systems that have received nutrient loads for long periods of time accumulate nutrients in bottom sediments. These sediments become a potential source of nutrients to the overlying water column. Sediment bound nutrients can then be released through mineralization of organic matter, followed by resuspension and diffusion of nutrients into the water column. Sediment transport processes are one of the controlling factors in these sediment-nutrient cycles. Accurate understanding of the sediment transport processes is, therefore, very important for water quality studies in the aquatic systems. The Indian River Lagoon (IRL) is a unique estuary of national significance providing home to more than 4300 kinds of plants and animals. However, in recent years, increased population along the shoreline of the IRL and its surroundings has stained its natural resources. The stress caused by the population growth and associated activities have increased total suspended solids (TSS) and nutrient loadings into the lagoon, which have led to poor water quality. In this study, sediment samples have been collected and analyzed in laboratory to obtain sediment parameters such as size distributions, settling velocities, critical shear stresses and erosion rate constants. Four episodic events were conducted during 1997 to 2000 to study sediment resuspension n the IRL, during which waves, currents, water levels, TSS and water quality data were collected. Twelve synoptic events were conducted between April 1997 and May 1998, during with TSS, salinity, and other water quality data were collected at 45 stations. Results of the episodic experiments showed that significant sediment resuspension occurred during these events. To quantitatively study suspended sediment transport in the IRL, a two-group suspended sediment transport model has been developed, in which suspended sediments were categorized into two size groups: a fine group with sediment size less that 62 microns and a coarse group with sediment size larger than 62 microns. Coupled with the CH3D hydrodynamic model, originally developed by Sheng (1986, 1989( and the SMB wave model, the sediment transport model is successfully calibrated with field data. Applications of the model of the IRL successfully simulated the episodic and synoptic events. Results showed that: (1) Resuspension and deposition processes were realistically formulated in the wave model with sufficient accuracy. (2) The internal loadings (sediments resuspended from the bottom) were dominant during the episodic events while for longer term (1 year or longer) the external loadings (sediments from river run-offs and other external sources) were more important. (3) Waves played a very important role in sediment resuspension in the IRL.
Thesis: Thesis (Ph.D.)--University of Florida, 2001.
Bibliography: Includes bibliographical references (leaves 221-233).
Statement of Responsibility: by Detong Sun.
General Note: Printout.
General Note: Vita.
Funding: Technical report (Universtiy of Florida. Coastal and Oceanographic Engineering Dept.) :
 Record Information
Bibliographic ID: UF00075316
Volume ID: VID00001
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved, Board of Trustees of the University of Florida
Resource Identifier: aleph - 002789914
oclc - 49241355
notis - ANR8097

Table of Contents
    Front Cover
        Front Cover
    Title Page
        Title Page
    Acknowledgement
        Acknowledgement
    Table of Contents
        Table of Contents 1
        Table of Contents 2
        Table of Contents 3
    List of Tables
        List of Tables
    List of Figures
        List of Figures 1
        List of Figures 2
        List of Figures 3
        List of Figures 4
    Abstract
        Abstract 1
        Abstract 2
    Introduction
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
    Field and lab studies of the IRL sediments
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
    Literature review
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
    Model development
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
    Model calibration
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
    Model applications to Indian River Lagoon
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
        Page 169
        Page 170
        Page 171
        Page 172
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
        Page 179
        Page 180
        Page 181
        Page 182
        Page 183
        Page 184
        Page 185
        Page 186
        Page 187
        Page 188
    Conclusions and recommendations
        Page 189
        Page 190
        Page 191
        Page 192
    Appendix A: Turbulence closure model
        Page 193
        Page 194
        Page 195
        Page 196
    Appendix B: Derivation of the advection-diffusion equation
        Page 197
        Page 198
        Page 199
        Page 200
    Appendix C: Numerical solutions to the sediment transport model
        Page 201
        Page 202
        Page 203
        Page 204
    Appendix D: 1-D wave-current boundary layer model
        Page 205
        Page 206
        Page 207
        Page 208
        Page 209
        Page 210
        Page 211
        Page 212
        Page 213
        Page 214
        Page 215
    Appendix E: Particle erosion simulator test
        Page 216
        Page 217
        Page 218
        Page 219
        Page 220
    References
        Page 221
        Page 222
        Page 223
        Page 224
        Page 225
        Page 226
        Page 227
        Page 228
        Page 229
        Page 230
        Page 231
        Page 232
        Page 233
    Biographical sketch
        Page 234
University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - Version 2.9.9 - mvs