Group Title: CFREC-Apopka research report - Central Florida Research and Education Center-Apopka ; RH-92-19
Title: Response of detached leatherleaf fern fronds to silver nitrate pulses
Full Citation
Permanent Link:
 Material Information
Title: Response of detached leatherleaf fern fronds to silver nitrate pulses
Series Title: CFREC-Apopka research report
Physical Description: 4 p. : ; 28 cm.
Language: English
Creator: Henny, R. J
Fooshee, W. C ( William C. ), 1951-
Central Florida Research and Education Center--Apopka
Publisher: University of Florida, IFAS, Central Florida Research and Education Center-Apopka
Place of Publication: Apopka FL
Publication Date: 1992
Subject: Leatherleaf fern -- Postharvest physiology -- Florida   ( lcsh )
Plants -- Effect of nitrates on -- Florida   ( lcsh )
Nitrates -- Physiological effect -- Florida   ( lcsh )
Genre: government publication (state, provincial, terriorial, dependent)   ( marcgt )
bibliography   ( marcgt )
non-fiction   ( marcgt )
Bibliography: Includes bibliographical references (p. 3).
Statement of Responsibility: R.J. Henny and W.C. Fooshee.
General Note: Caption title.
 Record Information
Bibliographic ID: UF00065844
Volume ID: VID00001
Source Institution: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: oclc - 70255033

Full Text


The publications in this collection do
not reflect current scientific knowledge
or recommendations. These texts
represent the historic publishing
record of the Institute for Food and
Agricultural Sciences and should be
used only to trace the historic work of
the Institute and its staff. Current IFAS
research may be found on the
Electronic Data Information Source

site maintained by the Florida
Cooperative Extension Service.

Copyright 2005, Board of Trustees, University
of Florida

q Response of Detached Leatherleaf Fern Fronds to Silver Nitrate Pulses

R.J. Henny and W.C. Fooshee' L i
CT 30 1994
University of Florida, IFAS 7LP 30
Central Florida Research and Education Center Aoka Flor
CFREC-Apopka Research Report, RH-_ 0s o

Postharvest wilt of detached leatherleaf fern fronds involves both reduced water uptake
by the stipe, and excessive water loss by the pinnae, which leads to frond desiccation. Wilting
fronds show a loss of fresh weight that may drop to one third of their original harvest weight
1, 4). Fronds in the early stages of wilt, but not yet having reached the permanent wilting point,
can be rehydrated by cutting off a 1 cm (0.4 inch) segment of the stipe base (4). Rehydrated
fronds averaged a 32% increase in fresh weight during the first 24 hour period following
recutting while fronds allowed to reach the permanent wilting point (i.e. physiologically dead)
could not be revived. These results indicate that blockage of water flow in the lower stipe
contributes to wilt. However, in 'studies using a scanning electron microscope to examine the
cut end of the stipe, no physical blockage of the xylem vessels was found (6, 7).

The role of stipe blockage in wilt has been brought into question by published results
showing that chemically enhanced solution uptake in detached fronds is not correlated to
increased vase life (7). In fact, postharvest treatments involving holding solutions with pH of
2.0 or 3.0, 800 ppm 8-hydroxyquinoline citrate, 200 ppm citric acid or chemical pulses that
increase water uptake were inversely related to vase life. The only exception was a 15 minute
pulse with 800 ppm 8-hydroxyquinoline citrate that increased water uptake and also resulted in
a longer vase life (7). Daily recutting of the stipe also increased water uptake and vase life but
did not involve chemical additives (4, 5).

A similar postharvest wilt problem has been reported with detached maidenhair fern
fronds that survived an average of only 2-3 days in deionized water (2). Studies of wilt in
maidenhair fern established that a short vase life was due to inhibition of water flow through the
rachis (2). Adding 25 ppm silver nitrate to the holding solution increased average vase life of
maidenhair fronds from 2 to 14 days.

In contrast, pulsing solutions containing silver did not increase vase life of leatherleaf
fern (8). Silver nitrate was not among the silver-containing compounds tested, therefore the
following experiments were conducted to evaluate pulsing with silver nitrate solutions and
subsequent effects on postharvest water uptake and vase life of leatherleaf fern.

'Professor, Environmental Horticulture and Senior Biologist, Central Florida Research and
Education Center Apopka, 2807 Binion Road, Apopka, FL 32703, respectively.

Materials and Methods

On March 25, 1991 dark green, mature fronds of similar size were harvested from fern
growing in ground beds at CFREC-Apopka in a polypropylene shadehouse with 73% light
exclusion. Fronds were taken to an air-conditioned interior room maintained at 80 2 F with
12 hours of light (100 foot-candles intensity at frond height) from fluorescent lights. The stipes
were cut with a new single edge razor blade to 15 cm (6 inches) in length and placed into
beakers containing deionized water (DI) until treatment with silver nitrate solutions.

Treatments consisted of pulsing fronds in silver nitrate at three concentrations (25, 50 or
100 ppm) for three intervals (20, 40 or 60 minutes). In addition, an untreated control was
maintained in DI. After pulsing, individual fronds were weighed and placed into 100 ml
graduated cylinders containing approximately 90 ml DI. The final volume was then adjusted to
100 ml with the frond in place. Data consisted of recording total water uptake for 14 days the
length of the experiment. Water volume was adjusted to 100 ml each day that data were taken.
Wilt or yellowing was recorded daily. The experimental design was randomized block with each
treatment replicated 10 times for a total of 100 fronds in the test. This experiment was repeated
on May 6, 1991.

Results and Discussion

In these experiments, fronds pulsed with silver nitrate at different rates and durations
showed no significant difference in postharvest vase life (Tables 1 & 2). However, the treated
fronds used greater amounts of water than untreated controls. In both experiments water uptake
by treated fronds was close to double that for controls over the 14 days. In experiment 1, a 100
ppm pulse for 60 min resulted in 98% greater uptake than control while in experiment 2 the
maximum uptake followed a 25 ppm pulse for 40 min and was 124% greater than untreated.
This is the second report in which vase life of chemically treated leatherleaf fern fronds was not
reduced while water uptake was increased.

These results concur with conclusions that increased water flow through detached
leatherleaf fern fronds is not essential for prolonged vase-life since fronds that used twice as
much water as controls did not have a greater average vase life. In the second experiment, no
wilt was observed and shortened vase life was due to yellowing of the fronds. It is possible that
the large increase in water uptake in response to pulsing with silver nitrate accelerated natural
frond senescence.

Stamps and Nell (8) tested four different silver-containing compounds on leatherleaf fern
but none of them had any effect on vase life even though they increased holding solution uptake.
Fujino and Reid (2, 3) in their study on maidenhair fern, initially selected silver nitrate and
tested it in conjunction with several other compounds with bactericidal properties because it was
theorized that blockage may have been due to bacteria in the holding solution or within the
rachis itself. Because none of the other bactericides increased maidenhair fern vase life, the
authors concluded that the blockage was a physiological response to wounding and not bacteria.
A physiological response to wounding would implicate the presence of ethylene; however, an
experiment using ethylene inhibitors on leatherleaf fern failed to increase vase life (8). Such

information makes it difficult to explain the actual mode of action of silver nitrate in these two

Literature Cited

1. Conover, C.A., R.T. Poole and L.L. Loadholtz. 1979. Update on leatherleaf fern wilt.
ARC-Apopka Research Report RH-79-1.

2. Fujino, D.W. and M.S. Reid. 1983. Factors affecting the vase life of fronds of maidenhair
fern. Scientia Horticulturae 21:181-188.

3. Fujino, D.W., M.S. Reid and H.C. Kohl. 1983. The water relations of maidenhair fronds
treated with silver nitrate. Scientia Horticulturae 19:349-355.

4. Henny, R.J. 1982. Reversing postharvest wilt of leatherleaf fern. ARC-Apopka Research
Report RH-82-23.

5. Henny, R.J. and W.C. Fooshee. 1984. Daily recutting of stipe affects postharvest vase-life,
water uptake and fresh weight change of leatherleaf fern fronds. AREC-Apopka
Research Report RH-84-25.

6. Nell, T.A., J.E. Barrett and R.H. Stamps. 1983. Water relations and frond curl of cut
leatherleaf fern. J. Amer. Soc. Hort. Sci. 108(4):516-519.

7. Stamps, R.H. and T.A. Nell. 1983. Storage, pulsing, holding solutions and holding
solution pH affect solution uptake, weight change and vase life of cut leatherleaf fern
fronds. Proc. Fla. State Hort. Soc. 96:304-306.

8. Stamps, R.H. and T.A. Nell. 1986. Pre- and postharvest treatment of cut leatherleaf fern
fronds with floral preservatives. Proc. Fla. State Hort. Soc. 99:260-263.

Table 1. The effect of silver nitrate (AgNO3) pulses on water uptake and vase life of detached
fronds of leatherleaf fern. Experiment 1.

AgNO3 Pulse total water Mean vase life
cone Duration uptake (days)z
(ppm) (min) (ml)
0 0 61.3 10.7
20 58.8 10.4

25 40 85.7 12.3
60 73.2 10.2
20 68.2 12.5

50 40 105.1 13.3
60 107.8 14.0
20 69.6 10.2

100 40 92.7 12.3
60 121.3 13.3
cone. linear ** NS
duration linear ** NS

zMaximum value possible was 14 days.

YNS = nonsignificant and ** = significant at 1% level. There were no significant interactions.

University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs