Task force report on livestock in mixed farming systems

Material Information

Task force report on livestock in mixed farming systems
Farming Systems Support Project
Place of Publication:
Gainesville Florida
Farming Systems Support Project, University of Florida
Publication Date:
Physical Description:
47 p. : ; 28 cm.


Subjects / Keywords:
Livestock -- Developing countries ( lcsh )
Agricultural systems -- Developing countries ( lcsh )
non-fiction ( marcgt )


Electronic resources created as part of a prototype UF Institutional Repository and Faculty Papers project by the University of Florida.
Statement of Responsibility:
prepared for University of Florida, Management Entity, Farming Systems Support Project.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
The University of Florida George A. Smathers Libraries respect the intellectual property rights of others and do not claim any copyright interest in this item. This item may be protected by copyright but is made available here under a claim of fair use (17 U.S.C. §107) for non-profit research and educational purposes. Users of this work have responsibility for determining copyright status prior to reusing, publishing or reproducing this item for purposes other than what is allowed by fair use or other copyright exemptions. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. The Smathers Libraries would like to learn more about this item and invite individuals or organizations to contact Digital Services ( with any additional information they can provide.
Resource Identifier:
001066849 ( ALEPH )
22202586 ( OCLC )
AFF1005 ( NOTIS )

Full Text


Farming Systems Support Project

International Programs
Institute of Food and
Agricultural Sciences
University of Florida
Gainesville, Florida 32611

Office of Agriculture and
Office of Multisectoral Development
Bureau for Science and Technology
Agency for International Development
Washington, D.C. 20523





Prepared for:
University of Florida, Management Entity
Farming Systems Support Project

February 1984


INTRODUCTION . . . .. . . .
List of participants . . . . . .

Definition of livestock . . .. . ..

Food . . . . .
Non-food contributions . . .
Linkages of crops and animals . .

Importance of livestock to food production

Disciplines . . . .
Training . . . . .
Orientation . . . .

Approaches . . . .
Project management . . .
Extension . . . . .
Institutionalization . . .
Policy recommendations . . .
Public policies toward agriculture .
Specific policies toward institutional
Case studies and models . . .
Case studies . . . .
Models .. . . . .

TRAINING . . . . .
U.S. nationals . . . .
Host country nationals . . .




.* .
. .
. .

. .
. .
. .



APPENDIX Program associates with signed MOA support entities with
interest or experience in livestock (as of 11/23/83) . .

. 1

. 3

. 3

. .. 3
. 4

S. 11

S. 12
. 12
. 13
. 13

. 13
. 14

. 19
. 21
. 22
. 24

. 22
. 26
. 26
. 29

. 31

. 31
. 31

. 32

. 34

. 34

. 37

. 45




The Livestock Task Force (TF) on Mixed Farming Systems was charged

with developing recommendations for the Farming Systems Support Project

(FSSP). In preparing these, the TF considered appropriate strategies,

research methodologies, communication network development, and training

needs relative to the livestock component of farming systems. The TF

saw the livestock dimension of Farming Systems Research and Extension

(FSR&E) as being extremely important because most farming systems include

an animal component. Also, this area has received less attention than

crops and has, in general, been neglected in relation to its potential

contribution to the total family enterprise. Moreover, the TF recog-

nized the need for a larger cadre of experienced and trained practitioners

who can deal with the complexities of crop/animal relationships and the

multiple objectives of mixed farm operations.

The Task Force defined its scope of work to include a definition of

livestock; their roles or importance in integrated farming systems; the

role of disciplines, training, and orientation of specialists in FSR&E;

methodologies relating to approaches, project management, extension, insti-

tutionalization, policy, models, and case studies; training needs; and

recommendations to FSSP management for future action. Additionally, the

report contains a bibliography of farming systems studies dealing with

livestock and related topics and the identification of collaborating

institutions and program associates within the FSSP network. The TF

limited its scope of reference to livestock in crop/animal systems and

did not address completely the pastoral systems per se, though reference

is made to the agro-pastoral interface which characterizes some systems,

especially in Africa.

The TF held its first meeting with interested personnel from the Agency

for International Development in Washington, D.C., on June 29, 1983. Over

thirty individuals participated in a day-long discussion, which resulted

in identifying the issues and needs relative to livestock in farming systems,

clarifying the definition of livestock as far as this project is concerned,

and suggesting strategies and approaches for dealing with the interrelation-

ships of crop/animal systems. Subsequently, the TF conferred with several

members of the American Society of Animal Science during its annual meeting

in late July at Washington State University, where a portion of the program

dealt with livestock development in the Third World. In early August, some

members of the TF capitalized on the opportunity to interact with animal and

social scientists attending a conference at the University of Florida on

"Overcoming Constraints to Livestock Production in Sub-Saharan Africa."

Representatives from a number of universities, the International Livestock

Center for Africa (ILCA), FSSP, Winrock International, and AID participated

in discussions with the TF. The TF had access to the FSSP Task Force report

on Family Systems and Household.

Following the conference at KSU on "The Role of Animals in the Farming

System: Production, Products, Process," the TF completed the first draft

of its report. A second and final draft was submitted to the University

of Florida in February, 1984.

1. List of Participants

Task Force:

James W. Oxley, Chairman
Robert E. McDowell
John D. Wheat
James B. Henson
A. John DeBoer

Other participants during vari

Larry Abel
Wendell Morse
Carol Stengel
Phil Warren
Hank Fitzhugh
Howard Olson
John Trail
Trevor Wilson
Jim Simpson
Peter Hildebrand
Chris Andrew
Don Ferguson

Colorado State University
Cornell University
Kansas State University
Washington State University
Winrock International

ous meetings of the TF:

AID,* Washington
AID,* Washington
AID,* Washington
AID,* Washington
Winrock International
Southern Illinois University
ILCA/Addis Ababa
University of Florida

2. Definition of Livestock

For this report, the term livestock includes both ruminants and non-

ruminants, including poultry. The definition implies the use of animals

for food as well as for non-food purposes, such as traction, transport,

fuel, and fertilizer.


Livestock play an equal or more important role than crops in some

production systems; while in others, crops dominate. The ability of livestock

to make use of resources, such as crop residues, forage, and browse that

are not otherwise directly utilizable by humans into usable products, can

be an asset toward improving the efficiency of crop/livestock systems on

low resource farms. They are also used to lessen risk and as a hedge

against inflation.

*Acknowledgement is accorded a number of other AID employees who parti-
cipated in the general session of the initial meeting of the Task Force
in Washington, D.C.

1. Food

The world population of ruminant species of animals, such as buffalo,

camels, cattle, goats, sheep, alpaca, deer, and antelope, that make some

contributions of food and non-food uses to humans is nearly 3 billion. In

addition, .62 billion pigs and 5.7 billion poultry are kept for food pro-

duction. Species lesser in number, like the horse, kangaroo, rabbit,

capybara, guinea fowl, pigeon, and duck, each contribute more than .5 million

kg of animal protein per year. These figures are exclusive of fish and

other marine life.

Although more attention has been given to meeting the world's food

needs through cereal grains than animal products, the contributions from

animals haveincreased steadily at a rate of 1.2 to 1.8% per annum. As

incomes increase slightly in developing countries, there is a dispropor-

tionately larger increase in demand for meat and other livestock products

compared to food grains and other staple foods. Presently, animal products

contribute over 56 million MT of edible protein and over one billion Mcal

of energy per annum to world food supplies. Milk and milk products are the

largest sources of both protein and energy,'followed by beef and fish.

The total protein from animal products globally is nearly equivalent to

that from corn and wheat and more than half that from all cereals. The

energy value is nearly equal to that from wheat and exceeds that from

paddy rice.

By western standards, the consumption of livestock products in develop-

ing countries is low (milk less than .3 liter per day and meat 10-20 kg per

year). Nevertheless, these sources of protein are vital to human survival.
For example, consumption of .3 liter of milk, 25 g of meat or one egg per day

enables people to consume .7 to 1.4 kg of cereals or tubers. When plant

protein such as cowpeas is used, the intake of cereals or tubers must be

reduced 30-40% to maintain adequate protein consumption. Thus, the avail-

ability of animal products permits cropping for highest production from

land variable in fertility and rainfall.

2. Non-Food Contributions

Throughout the developing countries animals perform a number of social,

ritual, and economic functions (Table 1).

Table 1

Classification: of Contributions of Livestock to Human Welfare








Pest Control


Inedible Products


Some Contributions

milk, meat, eggs, prepared products

wool, hair

agriculture, cartage, packing, herding, power
irrigation pumps, threshing grains, passenger

fertilizer, fuel, methane gas, construction,
feed, (recycled)

capital, grains

grazing, seed distribution

fallow between crops, plants in waterways

exhibition, fighting, hunting, racing, status
symbol, religious, barter, ceremonial

horns, hooves, bones for processing into feed
supplements and other products

ready source of cash for daily needs and
production inputs

Source: McDowell, 1980 (with modification)

The relative importance of these contributions varies according to ethnic

group, country and ecological conditions. In Africa, for example, the

estimated annual value of production from livestock is $10 billion, with

50 percent attributed to offtake such as meat, milk, fiber and skins, and

50 percent from services or other benefits such as manure, traction,

transport, and barter.

Animals increasingly important part of the labor pool in land

preparation and related endeavors. Approximately 200 million animals

generate 100 million horsepower of energy from animal traction per day.

India uses 70 million bullocks, 8 million buffalo, one million camels, and

one million horses for land preparation, cartage, packing, threshing of

grains, and power for irrigation. Nearly 70% of the farms in Thailand

and the Philippines use animals in preparation of lands for crops. Sub-

Saharan Africa presently has nearly 15 million draft animals with numbers

expanding rapidly. Overall, the use of draft animals for traction is on

the increase in almost all developing countries and is contributing sig-

nificantly to expanding agricultural production and reducing the drudgery

of hand labor, especially as costs of other sources of power have sub-

stantially increased in recent years.

The majority of farmers in developing countries depend on manure

to improve soil fertility. On small farms where cultivation is by hand,

farmers prefer manure to chemical fertilizers because it improves soil

structure. Crop farmers frequently depend on pastoral herders to graze

their livestock at night on land destined for cropping.

More than 200 million MT of manure are used annually as fuel.

Currently, India is the largest user with over 80 million MT of buffalo

Sand cattle manure. In several countries, the sale of dung cakes for fuel

to urban centers provides more than half the total cash income per family.

Manure serves other useful purposes, such as fertilizer for fish

ponds, plastering walls or floors of houses, an adhesive for building

blocks, the making of poultices for wound healing, and the production of

methane gas. The latter has wide potential, but has met with limited

application thus far.

In addition to their value for food and traction, animals play an

important role in recreation, religion, and social custom. Cock fighting

and fighting between male buffalo or rams are popular. Livestock,

especially goats, poultry and sheep, are widely used for celebrations

of births, marriages, or religious occasions.

Horns, hooves, skins, and hair are employed in cottage industries;

and fat trimmed from carcasses may be used as cooking fuel or in making


As compared to land, livestock are relatively easy to obtain and

can be converted into cash. Such conversion is reversible, whereas the

loss of land through sale is apt to be irreversible." Animals increase

in value through time. This means they have the equivalent of an interest-

earning capability which makes them a substitute for cash savings.

Animals also provide opportunities for landless families to secure

both employment and income.

3. Linkages of Crops anr Animals

The production systems which involve crops and animals are numerous.

In some systems, crops are the dominant feature and means of income and/or

generation of subsistence requirements, while in others livestock dominate

with cropping components playing a minor role.

Ten major small holder crop/livestock systems have been identified

in both Africa and Asia and four in Latin America (McDowell and Hildebrand,

1980). Most of these systems are designed for intensive use of scarce

resources. For these 24 systems, 40-90% of the feed for livestock comes

from crop residues, spoiled fruits, tubers or vegetables, and brans from

the preparation of grains for human consumption. In many of these systems

there is a strong tie between crops selected and the suitability of their

residues for use by animals. A major reason for poor acceptance of improved

varieties of cereal grains by low resource farmers has been the lowering

of quantity of crop residues and a rather marked reduction in nutritional

value for livestock due to plant lignification. In some instances the

dominant crop and its residues are a major factor in the selection of animal

species for the system. An example is the higher density of swine and

buffalo in paddy rice areas, buffalo being the best for utilizing rice straw,

and swine for the use of rice bran. In essence, the nutrient flow through

crop/livestock systems is vital to the operation of limited resource agri-

culture; hence, crop/animal .relationships are critical to its efficiency.
Figure 1 illustrates the close integration of crops and livestock on

small farms in the highlands of Ethiopia. The crops provide food, some

construction materials' cash income, and feed for livestock. The livestock

provide traction for land preparation; transport from field to household

and to villages; manure for dung.cakes to serve as household fuel, direct

application to crops, or adding to residual crop materials for composting;

food in the form of milk or meat; income from sales of animals or products;

and wool for family needs or production of goods for sale.
In low rainfall areas, food security is extremely important;-hence,

a high dependence on animals (95%) as illustrated from Mali in Table 2.

As rainfall increases (Agropastoral Systems), dependence on animals as a

food source may decline; but contribution of other services, such as traction



Figure 1. Crop/livestock farm in highlands of Ethiopia, permanent cropping, high-level integration of crops and livestock (Dash lines crops or
animals to market shows high reliance on home use crops and livestock). Adapted from McDowell and Hildebrand 1980.

Table 2. Major characteristics of livestock production systems in Mali.
System Pastoral Agropastoral
Flood plain Rainfed Irrigated Rainfed cash/
Subsystem Dryland grazing & millet rice subsistence
Pure cropping cropping cropping cropping cropping

Contribution of
livestock (% grobs

Rainfall (mm)

Importance of

Linkage with

Current carrying


nil to

very weak

very low



some cultivation,
manure exchanged
for.stubble grazing


200 (floodplain)

can be quite

cultivates or
arranges to-
produce crops

high/very high

400-800 500 (irrigation)





cultivates own crops: work oxen important
and consumes crop residues





Market production


40% barter,

high with
no fixed base

50-60% 45-50%
sale milk/animals sale animals/grain

high with
fixed base

high wet season
fixed base

sale animals

60% 60%
(sells rice) (cash crops)

low, short distances during cropping
season, permanent base

*Total livestock units

Source: Adopted from Wilson, 1982.






and fertilization, may rise. In these systems there is a strong linkage

between pastoralists and agriculturalists. There is a barter system of

milk from pastoral herds for grains. Agropastoralists make their crop

residues available to herders in exchange for manure.

4. Importance of Livestock to Food Production

In Africa, changes in livestock numbers and in cereal output indicate

a significant correlation between the two. Production figures show that

each additional animal entering the cattle population is associated with an

additional .25 ha of cropland and approximately 200 kg of incremental grain

output per year as well as about 30 kg of meat and 38 liters of milk per

year. These observations for Africa are evident elsewhere. In India's

northwest states where very significant increases in wheat and rice have

occurred, there have been corresponding increases in milk output. The

reason for the association of livestock production and food grain output

are related to several factors. One of these is capital. On low resource

farms cash flow is limited, leaving little or no money to invest in fertilizer,

better seed, pesticides, or irrigation. In the absence or resistance to the

use of credit, increases in food grain production can come about only by

finding money to purchase inputs for crop production. More frequently,

this is achieved through increased income from the sale of livestock or

livestock products.

Another reason for the complimentary relationship between livestock and

crop production is the role of animals in providing traction. Recent evidence

from Africa shows a marked increase in the crop area cultivated per family as

bullock numbers increase. Considerable research has now been initiated to

try to improve efficiency in the utilization of animals for traction. This

includes improved nutrition, better equipment, and more efficient harnesses

for the animals.

If one accepts the fact that there is an important association between

increased food grain and livestock production, the time has come to con-

sider the technical alternatives. This will require efforts to structure

technology that will be useful as a part of existing systems or can be

used as effective changes for modifications. Even so, for us to capitalize

on this association will require a much closer integration among disciplines

directing attention to farming systems.


1. Disciplines

The emphasis on a FSR/E approach in no way diminishes the need for

well-trained scientists working under the traditional disciplines in

animal science, veterinary medicine, crop sciences, and social sciences.

The use of FSR/E for crop-animal system research does imply, however,

that a) these scientists need to respond to the findings of the FSR/E

descriptive and diagnostic stages in the formulation of their research

programs and b) their scientific results must be passed on to the subject

matter specialists within the context of how this research is of relevance

to the specific farming system in question. Thus, both the inputs into,

and the outputs from, the traditional disciplinary research program must

be modified. Diagram 1 represents this:

Diagram 1

Traditional or
classic approach
Current trends or > Disciplinary -- Reporting of scientific
fads within discipline Research papers to professional
Specialists peers
FSR/E approach > Animal, plant, Reporting of applied
Priority problems v urinary and results to subject
identifiedatia aences matter specialists
farm level social sciences for direct applica-
tions to FSR/E team

2. Training

The training and retraining needs are most acute for the members of

the FSR team and the subject matter specialists. The needs for disciplinary

specialists and problem-solving specialists are more in the area of orienta-

tion rather than in retraining. Another area which the TF recommends that

high priority be placed is on the role and function of communication

specialists within the overall program.

Effective research on crop/livestock systems requires a very high

degree of communication, cooperation, and coordination between plant, animal,

and social scientists; between disciplines; between researchers and farmers;

between farmers, subject matter specialists, and researchers; and between

subject matter specialists and problem-solving specialists. Scientists

tend not to be particularly skilled at working out these communication

needs; and the role of experienced, skilled communication specialists

would be crucial in both the design and implementation of the FSR/E

approach to mixed crop/livestock systems.

3. Orientation

Orientation is-high priority for disciplinary specialists and problem-

solving specialists. This is best done by specific courses showing the

steps involved in FSR/E approach, use of case studies to show flows of

information, and the role of specific disciplines.


Documentation which sets out the conceptual, methodological, and

disciplinary aspects of a FSR project applied to animals, delineating the

entire research and on-farm testing process is very limited. Most reports

referring to methodological and conceptual issues are not put in the con-

text of actual research project and do not grapple with actual problems

of survey design, data processing, research planning and interpretation of

research results. Furthermore, much of our documentation dealing with

research projects fails to provide the background leading to the initiation

of research.

This section is concerned with some of the approaches being employed

in livestock/crop oriented FSR projects and discussions of methods of

incorporating contributions of livestock into farming systems studies.

Bernsten, et al. (1983) enumerates and discusses the typology of livestock

systems and lists current farming systems activities with major livestock

components underway by various organizations.

1. Approaches

Even though a livestock component has been included in a number of

FSR programs (Bernsten et al, 1983), those with the most definitive pro-

jects will be used to illustrate the approaches employed: The International

Livestock Centre for Africa (ILCA) with headquarters in Addis Ababa,

Ethiopia; Winrock International, Morrilton, Arkansas; and the Centro Tropical

de Investicacion y Ensenanaza (CATIE), headquartered at Turrialba, Costa


Following some preliminary experimentation, all three organizations

have adopted the approach recommended for FSR by Norman (1982) in that

investigations are conducted in four successive stages: 1) descriptive

(diagnostic), 2) design, 3) testing, and 4) extension. Multidisciplinary

teams are usually employed with the basic team consisting of an economist,

a sociologist or anthropologist, an animal scientist, and agronomist. On

occasion other disciplines may be included, such as a range management

specialist, a veterinarian, or a human nutritionist. Insofar as possible,

the teams remain intact throughout the four stages in order to validate

results as fully as possible. The objectives set for each stage are

illustrated in Table 3.

Table 3

Stages of Farming Systems Research Employed by ILCA
in Pastoral Systems Research

1. Descriptive and Diagnostic

2. Design
research managed and

3. Testing
research managed,
producer executed;-
producer managed,
producer executed

4. Extension

Natural, livestock and human resources:
production systems constraints, in
order of priority; research require-
ments; assessment of chances of
overcoming constraints

Component research; design of improve-
ments through on-station experimenta-
tion or from existing knowledge

Researcher and producer management
of improvements; producer acceptance
of improvements

Evaluation of technical and socio-
-economic impact of improvements

Source: ILCA 1983

The objective of the descriptive stage is to identify constraints to

achieving farmer goals and objectives. The process commences with an

understanding of the total farming system, including crops and trees as

well as assessment of the role and performance of the animals. Constraints

to animal production are defined as opportunities for potential change--

albeit at the region, family, farm, or enterprise level--which could

substantially improve its productivity as defined by farmers. This

stage of FSR is accomplished by applying in a sequential manner rapid

appraisal methods, single-visit surveys, monitoring typical farms with

farm records and case studies.

The design stage involves a systematic process of identifying,

evaluating (on paper) and fitting technologies to the existing system that

results in a conceptual model of proposed alternatives. A careful blend of

inputs and ideas for this task are derived from the current technology and

suggestions of farmers and the conduct of component research on an institu-

tionally controlled area and on farms. Usually a high priority by farmers

is more and better quality feed for animals which readily involves evaluation

of cropping programs.

Testing of alternatives is carried out by introducing changes within

the farmer's system in two phases: 1) research managed, producer executed

trials; and 2) producer managed, producer executed trials. Between phase

1 and 2, the farmer's management, reactions, and degree of satisfaction

usually result in refinements of the original design. Due to the biological

nature and socio-economic aspects of animal systems, the testing stage

has major implications for the number of replications, the type of

changes to be considered, the time frame required for the system to

make the transition and for observing some impact, particularly for

cattle systems.

Since traditional station methodologies frequently do not integrate

and test new technology adequately for small-farm practices, new testing

on-station methodologies needs to be developed. To accomplish this, it

may be necessary to establish units representative of farmer units on

experiment stations with the participation of farmers and farmer advisors.

This methodology is being explored by ILCA in conjunction with on-farm

testing in Ethiopia and shows.much promise for FSR with a livestock

component (Gryseels and Anderson, 1983).

The extension stage is to accomplish two major functions: 1) influence

administrators or policy makers of domestic institutions and to train

extension agents and others concerned with program implementation; and

2) to participate in area-specific development programs using previously

demonstrated alternatives. The three institutions are participating

effectively in 1), but their policies on phase 2) are unclear. Neither

CATIE nor ILCA have a mandate for direct technology transfer to farmers.

The same generally holds for Winrock's projects to this time. Since the

programs of the three organizations are still working principally in stages

1-3 and phase 1 of stage 4, the extent of involvement or policy on partici-

pation in extension has not become a major issue.

Experience will no doubt lead to adjustments in methodology for FSR by

ILCA, CATIE, Winrock, and others; but it is gratifying that largely through

independent actions the three organizations have arrived at similar objectives

and methodologies. Since the projects place heavy emphasis on cropping,

closer study of the methodology and the results from CATIE, Winrock, and

ILCA may be one solution to the current dilemma of the incorporation of

livestock into FSR programs.

The present program of the Animal Production Department of CATIE

focuses on cattle, swine, and goat production systems. Winrock has dealt

almost exclusively with sheep and goats. ILCA is concerned with camels,

cattle, goats, and sheep in both pastoral and agro-pastoral systems.

Experiences to date at CATIE, including some description of methodology,

are reported by Avila (1984), Avila,.et al. (1982), and CATIE (1978).

A report by Bernsten (1982) gave a framework for, approaches to FSR Ey

Winrock International. The recent paper by DeBoer, et al. (1983) on a

dual-purpose goat research project in western Kenya is reasonably complete,

but the work has not yet progressed to the stage where specific methodologies

have been worked out for the various components to the point that a definite

process for technology transfer is defined. In addition to Winrock's

involvement with documentation of mixed farming systems (Winrock, 1982) in

general and for sheep and goats (Winrock 1983a), it has been involved in

several studies of the potential for livestock improvement under mixed farm

systems employing further testing of methodology (DeBoer 1983a, Soedjana,

et al. 1983, Winrock 1980).

These studies have revealed the importance of research teams to

systematically sort through the multiple roles served by animals and the

intricate relationship between crops and livestock and focus their research

on a limited number of topics which show good promise of having the greatest

impact on farmers' welfare. Winrock's approach to an effective FSR program

stresses the need to adopt suitable methodology and networks to help in

identifying "on the shelf" items of technology appropriate for each


ILCA, too, has a number of reports: a) characterizing the systems

approach, e.g. Stewart (1983); b) with emphasis on findings from stage 1

(Table 3), e.g. Nicholson (1983), ILCA (1978), ILCA (1981), Von Kaufmann

(1983), and several reports dealing with stages 2 and 3, e.g. Wilson

(1982 and 1983), de Leeuw and Peacock (1982), Konandreas, et al. (1983).

Among the more advanced studies on FSR with animal emphasis is ILCA

Bulletin No. 16 (1983). It describes recommended methodology for stages

1, 2, and 3 and gives results based on experience in five countries

(Ethiopia, Kenya, Mali, Niger, and Nigeria). In this report the use of

low-flying aircraft surveillance in FSR is described.

ILCA has conducted several workshops on FSR and conducts training

courses annually for Africa Nationals.

The prospects for emphasis on a livestock component in FSR are rising.

Several U.S. universities, as well as institutions in Europe, are moving in

this direction. The Task Force suggests tthat the FSSP program can serve an

important role by monitoring approaches employed in order that more effective

evaluation analyses can be made.

2. Project Management

Effective project management in the field is one of the essential

ingredients to insure integration of livestock into cropping systems. In

this context, management covers a spectrum of activities and qualities

including, among others, an effective team leader with both administrative

and programmatic skills who also has an appreciation of FSR/E; organization

of project activities to promote continual interaction by all disciplines

in the team; and orientation and training of team members, both host-country

and U.S., who do not have a background in FSR/E.

Both U.S. and host-country scientists must have a general background

and understanding of FSR/E and be willing to address a research and

development approach that involves such a systems orientation. Failure to

incorporate scientists with such a background and interest will insure lack

of wholehearted support and ultimately impact negatively on the success of

the project. If the group does-not have an FSR/E background, then orienta-

tion activities need to be carried out. Even if the team has a background

in FSR/E, it will be necessary to come to an agreement on the specific

approach to be taken, which will require adaptation of FSR/E theory to the

existing environment. Project leadership must insure that these matters

are addressed. (See the section on the role of disciplines, training, and


In order to address the multiplicity of issues associated with both

crop and livestock production in the systems approach, there should be at

least one social scientist, plant scientist, and animal scientist on each

team. As an example, when conducting a diagnostic survey, these three

general disciplinary areas should be represented in order to have a holistic

view incorporated into the survey. There must also be mechanisms for these

individuals to continue to interact, along with the other members of the

team, in addressing issues relevant to the program/project. In this regard,

there should be a formal mechanism through which the scientists representing

all of the disciplines can interact, discuss, review, monitor, and evaluate

the ongoing efforts by the team. Proposed activities should be discussed

by the group as a whole to insure that all aspects are properly addressed

and to allow true interdisciplinary input. Periodic reports should be

given to the group by the individual scientist or groups of scientists in

order to keep everyone up-to-date on the progress and to insure input from

all the disciplines. Seminars, research progress reports, etc., are some of

these mechanisms. The management of the team must insure that the necessary

.environment and mechanisms are in place to foster these interactions.

In order for the above to occur in the most effective way, the project

must have good leadership that has an understanding and an interest in

incorporating the FSR/E approach involving both crops and livestock. It is

sometimes difficult to have project leadership that has a background in

both crops and livestock, but the individual in charge must have an apprecia-

tion of both in order for them to be appropriately addressed in all aspects

of the project undertaking. The Team Leader must have an understanding

of team building, must have the respect of the team members, based upon

both administrative and programmatic skills and must provide the impetus. and

support for the host country as well as U.S. staff in order to create an

optimal climate for the conduct of the activities. Project management must

also provide the team with the necessary infrastructural and other support

requirements in order for the team to be able to carry out their activities.

Especially important is the provision of transportation and fuel and the

maintenance of.vehicles, buildings, and equipment.

In terms of project management relating to the existing administrative

and support structures in the host country, it is the usual case that crop

activities and livestock activities are based in separate divisions of the

Ministry of Agriculture. Therefore, the team should make an effort to

incorporate individuals from the relevant existing institutional organiza-

tions in such a way that they feel "ownership" of the project and will

participate in both the short- and long-term activities.

The project, especially an FSR/E project, must be continually monitored

and must change based upon evolving information and ideas that are de-

veloped over time. The experiences gained should provide guidance to

change the project to make it more effective. Project management is para-

mount in insuring that such occurs.

3. Extension

For livestock to be successfully incorporated into FSR/E, it is impera-

tive that there be a linkage among the institutions responsible for crops

research, livestock research, and the institute responsible for extension

programs. This likely will not be easily accomplished since within existing

organizations, livestock, range, crop, and extension leaders generally are in

different ministries and frequently do not interact. Therefore, efforts must

be made to bring these different components together and minimize institutional

obstacles to the effective formation of research teams.

Once the linkage exists, extension personnel will likely serve in

three major roles. First, in cooperation with the research specialist,

they would convey research findings and needs from local cooperating

farmers to the research station for testing under a wider variety of

conditions. The second major role would be relaying experiment station

results to the local farmers; and the third should be taking results of

on-farm and experiment station research to other farmers in the region.

Extension responsibilities to farmers can be carried out through

personal visits, seminars, short courses, or field days, such as those

held by ILCA in demonstrating the technology of using wooden plows,

harness and yoke modified for a single ox used for crop production (Gryseels

and Anderson, 1983).

Unless there is active and early extension involvement in FSR/E, the

project will fail.

4. Institutionalization

The effective incorporation of livestock into mixed farming systems

will depend upon the institutionalization of the FSR/E approach within the

existing host country organizations. This is frequently difficult due to

the fact that there is a lack of understanding and appreciation of the

concept and implementation of FSR/E. As already mentioned, livestock and

crop activities are generally administered through different divisions of

the Ministry of Agriculture or even different ministries. This separation

frequently establishes an environment of competition for limited resources,

rather than support for the activities, which results in the livestock and

crop-oriented scientists and organizations actually working against each

other rather than being mutually supportive. Because of this separation,

the career structure for host-country scientists is usually oriented along

discipline or commodity lines. Recognition and advancement in rank by the

host country scientists is usually determined by a peer system which is

commodity or discipline oriented. This results in a lack of understanding

of FSR/E activities and a lack of a reward system for individuals who are

directing their efforts into integrated crop-livestock production. Because

of this, it is important that the activities of the individual host-country

scientist be such that when they carry out FSR/E activities, they are also

able to produce publications and other means of recognition within their dis-

cipline. Ultimately, it is hoped that the existing organizations and peer

scientists will recognize FSR/E as a scientific thrust for which rewards are

justified and given. Failure to address these problems will result in host-

country scientists who will not wholeheartedly support the FSR/E approach.

As indicated above, most research institutions in developing countries,

as well as in the U.S. are oriented along disciplinary and commodity lines.

This means that a farming systems approach is unusual, is frequently new,

and will not be accepted immediately by the host country institutions and

scientists. It is frequently the case that a specific FSR/E project will

have more resources at its disposal over the short term as compared to

other projects financed by the host country. This may result in an

atmosphere of antagonism or defensiveness among host-country scientists.

In order to overcome this and other problems, an approach to institutional-

izing FSR/E must be based upon interaction, mutual understanding of the

activities and involvement of FSR team scientists with those oriented to

discipline and commodity activities. One approach is to utilize farming

systems as an on-the-ground testing area for feedback to the discipline

or commodity groups. Another approach is for the FSR/E group to serve as

an on-the-ground implementor for the findings of the discipline or commodity

group--in short, to define and implement mutual benefits from FSR/E,

commodity, and discipline-related activities as they are mutually supportive.

This requires leadership and understanding, especially on the part of the

FSR/E scientists, of the necessity and sensitivity of defining and

implementing bridging mechanisms that will benefit not only the systems

activities, but the.commodity and discipline ones as well. (See section

on the role of disciplines, training, and orientation.)

5. Policy Recommendations

Two sets of policy recommendations can be distinguished: a) public

policy toward agriculture in general and b) specific policies toward the

institutional framework under which farming systems research and develop-

ment programs are carried out.

a. Public Policies Toward Agriculture. It is commonly recognized

that economic policies in developing countries discriminate against the

agricultural sector, particularly the smallholder component. Therefore,

FSR/E programs must operate under conditions where the client group faces

difficult economic conditions. The perceived risk of trying a largely

unproven practice generated through the FSR/E program is often too great

or the complementary inputs needed to obtain full benefit from the tech-

nology cannot be afforded. This is particularly true for livestock,

since the animals) may represent the largest single non-land asset

controlled by the farmer. Where draft power is important, the loss of

the'use of an animal for even a few weeks may be disastrous.
Another facet which is-seldom recognized is that the major economic

policies which influence the economic status of the smallholder sector

are seldom formulated or implemented by the Ministry of Agriculture or
Ministry of Livestock. General economic policies such as exchange rates,

money supply, interest rates, taxation, tariff rates, import quotas,

export quotas, export taxes, and rationing of foreign exchange are under

the control of Ministries of Finance, Economic Planning, or Foreign Trade

plus Central Banks. The influence of smallholders is felt even

these agencies than at Ministries dealing with agriculture and livestock.

The economic planners and decision makers must be made more aware of the

national consequences of continuing neglect of the smallholder sector

and the agricultural sector in general.

b. Specific Policies Toward Institutional Structures. The pervasive

problem is separation of research functions by disciplines and commodities.

While this is appropriate for many types of effective research, strict

adherence to these lines of authority when a program is trying to improve

the flow of technology to farms creates problems. The FSR/E approach

constantly labors under bureaucratically imposed constraints. There are

short-run and long-run recommendations related to these problems:

(1) Short-run: The approach should be to create effective

programs that will illustrate the benefits of the FSR/E approach

and will ultimately bring about long-term changes in the bureau-

cracy. Short-term programs can proceed on the basis of informal

groups of scientists, usually requiring donor support, but with

a common interest in applying their disciplinary knowledge

to small farm problems within the framework of the FSR/E

approach. Other short-term programs have been carried out in

conjunction with the International Agricultural Research

Centers (IARCs) and by universities. The latter often operate

under a less restrictive structure than the research agencies

of Ministries.

.(2) Long-run: The challenge is to bring about effective reor-
ganization of research, extension, and development groups within

Ministries to effectively blend their overlapping functions into

FSR/E programs. This requires one group to assume overall control

of these efforts and sufficient budgetary flexibility to form groups

to work on specific farming systems with clearly stated objectives.

There also need to be linkages to local government agencies to

insure support at the implementation levels. (See section on


6. Case Studies and Models

Case studies can be important to the FSR concept in several ways,

such as:

i. identifying key elements needed for success in a FSR project

ii. documenting lessons learned from FSR projects

iii. developing and testing materials for the training of practitioners

iv. developing guidelines for the conduct of research on farms

v. developing-ways for using evaluation analyses and supporting
data to communicate to administrators results and perspectives
for FSR

vi. broadening the outlook for those lacking experience in FSR with
an animal component; studies from livestock/crop farm FSR can
be an especially useful tool in the FSSP.

a. Case Studies. Although case studies can have wide application in

FSR, the Livestock Task Force proposes that the initial focus be to develop

better means of communication with key personnel in order to have greater

impact from research in farming systems.

Administrators need to know what the farming systems approach is and

where it fits into the profile of agriculture for their country; finally,

they will need information on what administrative arrangements are required

to implement the approach. We must assume that these administrators will

take a national or at least a regional perspective and that they will weigh

the advantages and disadvantages of investment and organization focused on

smallholders in comparison to other forms of agriculture. In the past, the

claims of smallholders have generally been ignored in favor of commercial

and export agriculture; but on the assumption that the situation is changing,

a case must be made in terms that administrators understand, and the case

must not be overstated.

Practitioners refer to the relatively few research workers in govern-

ment ministries, experiment stations, and in the colleges of agriculture,

along with extension workers, who are able to view smallholder systems

in a holistic fashion and to understand their dynamics with a view to

implementing specific innovations. Their efforts will be influenced

from decisions made by senior administrators. If these decisions are

favorable, the practitioners must be trained to apply the approach in a

true multidisciplinary manner.

Administrators and practitioners are central to farming systems for.

several reasons. Integrated farming systems research will simply not move

unless they support it. Second, even if they are favorable, they must

integrate FSR into their programs and policies. A third, and probably

the most important, is that case studies can be used on groups representing

various disciplines as a "neutral focus" for discussions on how they might

develop closer collaboration. Normally when either administrators or

scientists representing various disciplines get together, there is a

tendency to promote the importance of individual disciplines leading to

competitiveness rather than objective discussions. Assuming this is a

general problem, we must find modes of communication that will stimulate

active participation in discussions and lead to multiple linkages among-

policy groups.

To best serve the above-mentioned audiences, the utilization of case

studies will be required at all levels. It is proposed that the FSSP give

priority to the selection of one or more institutions to take the lead in

preparation of several case studies.

An example of a case study of FSR/E approach applied to livestock

improvement has been recently documented (Sambrani, et al. 1982). This

particular research/extension program was carried out as a collaborative

effort between the Small Ruminant Collaborative Research Support Program

(SR-CRSP), the Research Institute for Animal Production, and the Directorate

General of Livestock Services in West Java, Indonesia. The objective was

to establish reasons for the low productivity of intensive small ruminant

production systems and to derive specific packages of technology that were

feasible under the constraints of these mixed farming systems. Following the

initial agro-ecosystem characterization, the group focused on three of the

predominant systems found--upland cropping systems with sheep, lowland

cropping systems with sheep and goats, and plantation-based systems, also

with both species. Because of the seasonal factors involved and the long

production cycles involved, the diagnostic stage extended over 18 months.

Full-time field assistants were placed in the village to collect information

on animal performance, forage production and quality, and socioeconomic

factors impinging upon small ruminant production decision making. Much of

this work was linked to the central laboratory in Bogor.

Gradually, a pattern began to emerge. First, the lambing/kidding

interval was excessively long. Litter sizes and lamb/kid survivability

were good. Growth rates of individuals were highly variable, even within

pens. The composition of feed offered varied a great deal between seasons,

but overall quantities and quality of feed offered did not show large

variation between farm and between season. Small ruminants were basically

a means of converting excess farm labor into a saleable product. Finally,

animals were generally held as a form of savings and not sold at the

optimum economic age.

The research team initially did not consider animal health as a

serious constraint given the full confinement system under which the

animals were kept most of the year. However, the high variability of weight

gains observed indicated that parasite load should be considered. Thus, a

fourth institution, the Research Institute for Animal Health, was asked to

assist. Their research confirmed that routine parasite control would be

needed as part of an improvement program.

The packages that are being developed focus on three very specific

areas: reduction of lambing/kidding interval, improvement of the protein

proportion of the diet on a year-round basis, and a routine animal health

treatment focusing on internal parasites. These are being discussed with

farmers at a series of monthly meetings, where discussions are lead by a

scientist from a specific discipline. Feedback from the farmers about

specific problems that may arise has been excellent. Problems such as a

shortage of good quality rams/bucks and lack of farmer access to these

animals have been discussed as well as farmer problems in detecting heat

in the ewes/does. High protein trees and shrubs are being planted and

evaluated by the farmers. Control groups for the parasite treatment

program are being set up. All this work is being closely monitored by

the farmers in conjunction with the village-based staff of the research


A series of 30 working papers describing all aspects of this program

are available from Winrock International.

b. Models. Further justification for focusing on the communication

aspects is that researchers in different organizations have often identified

sets of variables which go beyond the usual farm management models of the

previous decade. Often several of the variables are incidental to the

focus of the research. This is especially true where there is a strong

focus on animal science technology. The technology may be sound, but

usually it has undergone only limited testing on farms; hence, a high

dependence on inputs of other disciplines, particularly economics, is

warranted to assist in the projection of the economic feasibility of the

proposed innovation (Gutierrez, 1983). This would entail development of

models for either analysis of data or for projecting the results of apply-

ing technology to small farm situations. Models for projected application

could become a part of a case study or could be used as another means for

communication on the projected contribution of livestock to various farming


In situations where experiment stations have several disciplines working

together, small computers could be a very effective means of developing

desirable interactions among staff. For example, if after the preliminary

analysis of the data, individual scientists were to gather around a computer,

projections on the influence of variables could be tested promptly. This

would enable the group to interact in a much more precise fashion than

in the general discussions. Experience in the past has shown that tech-

nicians representing various disciplines will discuss mutual problems and

the possibilities of closer linkages, but unfortunately this does not get

much beyond the dialogue stage. Objective use of computers would enable

much sharper focus on the potential contributions of the various disciplines

to a projected change.

Numerous field locations overseas are acquiring small computers.

Programs to assist in evaluating data gathered by multidisciplinary teams

is a high priority need. Another worthy role for the FSSP is to catalog

computer programs which can be useful in processing FSR data. ILCA, for

example, views programs for small computers as an urgent need to bring

national organizations of Africa into active FSR.


1. U.S. Nationals

Training received by U.S. personnel should include an integrated,

holistic view of livestock production as well as information relating to

farming systems. This training must reflect an appreciation and hopefully

experience in a systems approach to research. The leaders must recognize

that problems facing livestock-crop interactions are multi-dimensional,

and this must be taken into account if educational institutions are to

provide relevant training.

Case studies and models for projected applications of FSR/E can be

used separately or jointly as means of training those interested in the

contribution of livestock to various farming systems.

Short courses, seminars, symposiums and other special meetings can be

held at U.S. universities through strengthening and program support grants

-allowing an exchange of knowledge and experiences. Slide-tape modules are

additional aids valuable to training in FSR/E.

These training modules should include at least the following subjects

and types of information and are equally applicable to U.S. as well as

host country nationals:

a. Introduction--Background to animal agriculture. Source: Fitzhugh,
et al.--Role of Ruminants in Support of Man (1978).

b. Roles and functions of animals. Several sources: McDowell (1978);
Fitzhugh, et al. (1978); Winrock (1982); and others.

c. Mixed farming systems. Sources: McDowell and Hildebrand (1980),
Winrock (1982), various publications by Hart, Bernsten, and
others (including ILCA).

d. Conceptualization of research problems dealing with mixed farming
systems. Sources: Some of those cited in (b) above. Work at
ILCA is also relevant here.

e. Conduct of research. Sources: The Kenya dual purpose goat paper
(DeBoer, et al., 1983) and Bernsten's (1982) illustrations of the
parallels between crops and livestock. The ILCA work also
represents a fairly complete package that could be worked into
a module.

f. Research methodologies, especially regarding field testing.
Source: several case studies of ILCA, Winrock, and CATIE.

g. Extension programs. A module to develop extension procedures
to deal specifically with livestock in mixed farm systems.

h. Maintenance of adequate nutrition for livestock, including a
year-round feed supply, effective use of crop residues, etc.

i. Basic livestock management.

j. Improved animal health, including internal and external parasites.

k. Animal traction, including animal care, harness, appropriate
implements, and selection and breeding for stronger animals.
Source: Gryseels and Anderson (1983).

1. Selecting for increased meat, milk, and/or fiber production.

m. Marketing of livestock and crops.

The Task Force can provide further suggestions for assistance on the

above proposed topics for training modules. Also, the pool of program

associates of the FSSP network is another available resource for this task.

2. Host Country Nationals

The training received by developing country scientists in the U.S.,

and in the western world generally, is a mirror image of the western educa-

tional system and orientation, with limited emphasis on the systems approach.

In the case of the crop and livestock disciplines, the integration of the two

within the subject matter presented at universities is generally limited or

lacking. Therefore, both the host country as well as U.S. individuals who

are being trained, generally have had an education that has lacked incorpora-

tion of a systems concept. Instead, the training has tended to be quite

specialized, focusing on small areas of research, especially for the Ph.D.

Because of the above, individuals who plan to participate in projects

on livestock in mixed farming systems should be provided access to courses,

seminars, workshops, and other training endeavors that will allow them to

become familiar with the FS process. Selected U.S. universities and

International Agricultural Research Centers are important and relevant

resources for such training. The training should include on-the-ground

experience in conducting surveys, in defining domains, etc., so that the

individuals have an understanding of not only the theoretical, but the

practical application to actual situations. In addition, the research

undertaken should be relevant to the host country and should emphasize.the

combination of both crops and livestock in the systems context.

Whenever possible, research should be conducted in the home country

of the trainee. Special courses more relevant to developing country

environments and situations should be utilized. An opportunity for the

trainee to interact with a functional FSR/E group that incorporates both

crops and livestock should be provided. (See previous section for suggested

training modules.)

In addition to formal degree and non-degree training in the developed

countries, in-country (and regional) workshops, seminars, and conferences

on FSR/E are extremely beneficial for project staff, both scientific and

support. Such activities can also serve as important mechanisms to inform

host-country commodity and discipline-oriented scientists and organizations

about FSR/E and the potential benefits from the integration of crops and

livestock in a systems approach. The FSSP can make significant contri-

butions to many of the above-listed types of training on a need and

demand basis.


Communication is essential and should be aimed at acquainting all

people involved with the potential opportunities and responsibilities of

including livestock in FSR/E. Those included in the in-country communica-

tion network are government leaders, -including those in the different

ministries, research personnel and extension specialists, and the

cooperating farmer or farm family. (See FSSP Task Force Report on Family

Systems and Household.) A network of institutions such as USAID, univer-

sities, ministries, private foundations, and IARCs, should be established

to encourage a closer link among the people interested in and working

with livestock in FSR/E projects.

In a broad sense, all activities included in extension as well as

the other aspects of this task force report pertain to communication.

Consequently, the importance of proper and thorough communication must be

at the forefront in all planning and implementation stages of.FSR/E. The

FSSP has a special role it can play in the communication dimension of

farming system research and development.


The Livestock Task Force strongly draws attention to the fact that

animals form an integral and essential part of limited resource farming

systems in most of the developing countries and that efforts should

be made by FSSP to create awareness of the importance of their integration

among training institutions, the IARCs, and government agencies. To

that end several recommendations are proposed:

1. That FSSP entertain proposals from one or more universities or
institutions, preferably within the FSSP network to develop a
series of training modules, as suggested in the section on
training. Modules with slides, tapes, or movies should be
produced or at least narrated by AV personnel with expertise
in this area.

2. That case studies be considered as a means of training and of
improving communications and developing policy guidelines.

3. That case studies be developed from those projects that are
successful in institutionalizing the FSR/E approach within the
existing host country organizations.

4. That FSSP entertain proposals from one or more universities
or institutions to'develop guidelines for the preparation of
case studies to serve the needs of the program.

5. That the FSSP entertain proposals from one or more universities
or institutions, preferably within the FSSP network to develop
a handbook or set of guidelines on the conceptual, methodological,
and disciplinary aspects of FSR/E involving livestock. Materials
and information from case studies training modules and other
sources can serve as basis for the handbook for use among
trainers, planners, evaluators, administrators, and practitioners.

6. That FSSP encourage FSR projects to include a livestock
component where it is evident that animals play a role in the
farming system.

7. That the FSR/E design and implementation teams be composed of
at least a plant, animal, and social scientist.

8. That individuals qualified to become degree candidates be
brought to U.S. universities for schooling. These would be-
come the long-term directors of the projects.

9. That individuals who are not degree candidates be brought to
the U.S. for brief visits to observe and study some systems-
type, crop-livestock operations in the U.S. or sent to appropriate
IARCs or other institutions or agencies.

10. That FSSP encourage universities involved in development projects
to offer at least one FSR/E course and that the course make
reference to livestock in mixed farming systems.

11. That in Africa, research and/or extension personnel be trained
in their own working area or sent to ILCA, IITA, or other
IARCs to participate in short courses or internship programs.

12. That short courses and special training and orientation meetings
be held at local research stations and village centers in
developing countries where the FSR/E program is to be conducted.
Slide-tape modules developed by FSSP should be used by leaders
with FSR/E experience during these training sessions.


13. That the extension component be incorporated at the design state
of FSR/E projects.

14. That FSSP sponsor a workshop on research methodologies related
to livestock in mixed farming systems.

15. That one of the objectives of the FSSP network be to monitor
approaches in FSR and circulate at least annually a bibliography
on methodologies employed with the objective of more effective
evaluation analyses.

16. That FSSP appoint a task force if and when appropriate to develop
recommendations on those farming systems which include water
fowl and/or fish.



AID. 1980.

The workshop on pastoralism and
Program Evaluation Report No. 4.

African livestock development.
Washington, D.C.

Anderson, F. M. and J. C. Trail. 1978.
production systems: Application of
production model to Botswana. ILCA
Addis Ababa, Ethiopia.

Mathematical modeling of livestock
Texas A&M University beef cattle
Systems Study No. 1, ILCA,

Anonymous. 1982. Proceedings of third international conference on goat
production and disease. Dairy Goat Publishing Co., Scottsdale,

Avila, M. 1984. CATIE's experiences in farming systems research with
emphasis on livestock. (in press)

Avila, M., D. W. Deaton, R. Ruiz, R. Solano, H. Vargas, Y. L. Villegas.
1982. Desarrallo, prueba y transferencia de prototipos de production
bovina en el. CATIE, Turrialba, Costa Rica.

Bernsten, R., H. Fitzhugh, and H. Knipscheer. 1983. Livestock in farming
systems research. Proc. Third Annual Farming Systems Symp., Kansas
State University, Manhattan.

Bernsten, R. H. 1982. Analytical approaches to farming systems research
with emphasis on animal production. In: Livestock in Asia: Issues
and Policies. Jeffrey C. Fine & Ralph G. Latimore (Eds.). IDRC,
Ottawa, Ont., pp. 180-185.

Bernsten, R. H., A. Rochim, H. Malian, and I. Baza. 1980.
for constructing an agroeconomic profile of a cropping
Bogor, Indonesia. Central Research Institute for Food
appendices 65.

A methodology
systems site.
Crops, 5 p.,

Brumby, P. J. 1979. The dairy situation in India. Indian Dairyman 357-364.

CATIE. 1978. Sistemas de production de leche y care para pequenos
productores usando presiduos de cosecha. Informe de progress. CATIE,
Turrialba, Costa Rica.

CIAT. 1975. Potential
Series CE-No. 10.
Cali, Colombia.

to increase beef production in tropical America.
Centro Internacional- de Agricultura Tropical,

Cossins, N. J. 1981. A new approach to the Ethiopian rangelands develop-
ment project. Annual Report to Project. ILCA, Addis Ababa, Ethiopia.

Cossins, N. J. and B. Yemerou. 1974. Still sleep the highlands: A study
of farm and livestock systems in the central highlands of Ethiopia.
LMB, Addis Ababa, Ethiopia.

DeBoer, A. J. (Ed.). 1983a. Ruminant livestock in intensive agricultural
areas of Sichnan Province, China: Current status and development
prospects. Report of Joint Study Team on Livestock Development
Prospects in Sichnan Province, China. Winrock International,
Morrilton, Arkansas.

DeBoer, A.

John. 1983b. Design of alternative crop-livestock systems for
farmers. Paper presented to Workshop on Crop-Livestock Research,
Cropping System Network meeting, IRRI, Los Banos, Philippines,
25-28, 1983.

DeBoer, A. J., H. A. Fitzhugh, R. D. Hart, M. W. Sands, and M. 0. Job.
1983. Production of meat and milk from goats in mixed farming systems
in the high potential tropics. Paper presented to Conference on
Overcoming Constraints to Livestock Development in sub-Saharan
Africa. University of Florida, Gainesville, August 3-6, 1983.

DeBoer, A. John. 1982. Livestock
In Fine, Jeffrey C. and Ralph
Issues and Policies. Ottawa,

development: The Asian experience.
G. Latimore (Eds.). Livestock in Asia:
Ont., IDRC, pp. 13-26.

de Leeuw, and C. P. Peacock. 1982. The productivity of small ruminants
in the Maasai pastoral system Kajiado District, Kenya. ILCA,
Kenya Working Document. ILCA, Nairobi, Kenya.

Delgado, C. L. and J. McIntire. 1982. Constraints on oxen cultivation
in the Sahel. American Journal of Agricultural Economics 64:188.

Delgado, C. L. 1979. Livestock versus foodgrain production in southeast
Upper Volta: A resource allocation analysis. CRED, University of
Michigan, Ann Arbor.

Delgado, C.
in the

L. 1977. Economic interactions between peasants and herders
West African Savannah: A case study from.Tenkodogo, Upper
CRED, University of Michigan, Ann Arbor.

de Montgolfier-Koueric, C. and A. Vlauonou. 1981. Trends
for livestock and crop production in tropical Africa.
Ababa, Ethiopia.

and prospects
ILCA, Addis

Doppler, W. 1980. The economics of pasture improvement and beef production
in semi-humid West Africa. GTZ, Eschborn.

Doran, M. W., A. R. C. Low, and R. L. Kemp. 1979. Cattle as a store of
wealth in Swaziland: Implications for livestock development and
over-grazing in Eastern and Southern Africa. Am. J. Agri. Econ.

Edwards, D. 1961. An economic study of small farms in Jamaica.
MacLelore and Co., Ltd., Glasgow.


Eicher, C. K. and D. C. Baker. 1982. Research
in sub-Saharan Africa: A critical survey.
No. 1, Michigan State Univ., East Lansing.

on agricultural development
MSU Int'l Dev. Paper

Falvey, L. 1977. Ruminants in the highlands of Northern Thailand: An
agrosociological study. Australian Dev. Assistance Bur., Canberra.

Ferguson, D. S. 1983. An appropriate agricultural research and development
system for complex environments--The case of CORICOM. USDA/OICD/ITA.
Washington, D.C.

Ferguson, D. S. and T. T. Poleman. 1974. Modernizing African animal
production: The Uganda Tick Control Project. Cornell Int'l Agri.
Mimeo No. 42. Cornell University, Ithaca, New York.

Fine, J-.-C' and R. G. Latimore. 1982. Livestock in Asia: Issues and
policies. Int'l Dev. Res. Centre, Ottawa, Canada.

Fitzhugh, H. A. 1982. On-farm research involving animal components of
farming systems. Paper presented at the Reunion de Groupos de
Trabajo en Sistemas de Produccion Animal. Pucallpa, Peru. 27 January.
Morrilton, Arkansas, U.S.A. Winrock International Livestock Research
and Training Center, p. 16.

Fitzhugh, H. A. and G. E. Bradford. 1982. Hair sheep of Western Africa
and the Americas: A genetic resource of the tropics. Westview Press,
Boulder, Colorado.

Fitzhugh, H. A., R. D. Hart, R. A. Moreno, P. 0. Osuji, M. E. Ruiz, and
L. Singh (Eds.). 1982. Proceedings of a workshop: Research on
crop-animal systems. CATIE, CARDI, and Winrock International
participating institutions. Workshop held at CATIE, Turrialba,
Costa Rica, April 4-7, 1982. Winrock International Livestock
Research and Training Center, Morrilton, Arkansas.

Fitzhugh, H. A., H. J. Hodgson, 0. J. Scoville, T. D. Nguyen, and T. C.
Byerly. 1978. The role of ruminants in support of man. Winrock
International Livestock Research and Training Center, Morrilton,

Goe, M, R. and R. E. McDowell. 1980. Animal traction: Guidelines for
utilization. Cornell Int'l Agri. Mimeo No. 81, Cornell University,
Ithaca, New York.

Gryseels, G. and F. Anderson. 1983. Farming systems research in ILCA's
Highlands Programme. ILCA, Mimeo. Report, Addis Ababa, Ethiopia.

Gutierrez, A. N. F. 1983. Sheep and goat production systems in Sertao
Region of Northeast Brazil: A characterization and linear programming
analysis. Unpublished Ph.D. thesis. Purdue University.

Haaland, R. 1979. Man's role in the changing habitat of Mema under the
old kingdom of Ghana. ILCA Working Document No. 2, ILCA, Addis
Ababa, Ethiopia.

Hall, H. T. B. 1977. Diseases and parasites of livestock in the'tropics.
Longman, New York.

Hart, Robert D. 1983. Using the concept of agroecosystem determinants
to link technology transfer and technology generation to form a
farming system research and extension process. Presented at a
seminar on: The Role of Crops and Animals in Farming Systems.
University of Missouri. Colombia, Missouri. May 19-20, 1983.

Hart, R. D., H. A. Fitzhugh, and N. F. Guttierrez. 1982. Crop-animal
production system research at Winrock International. In: H. A.
Fitzhugh, R. D. Hart, R. A. Moreno, P. 0. Osuji, M. E. Ruiz,'and
L. Singh (Eds.) Proceedings 6f a workshop: Research on Crop-
Animal Systems. CATIE, CARDI, and Winrock International, participating
institutions. Workshop held at CATIE, Turrialba, Costa Rica, April 4-7,
1982. Winrock International Research and Training Center, Morrilton,

Haywood, M. 1980. Changes in land use and vegetation in the ILCA/Mali
Sudano-Sahelian project zone. ILCA Working Document No. 3, ILCA,
Addis Ababa, Ethiopia.

Herman, L. 1983. The livestock and meat marketing system in Upper Volta:
An evaluation of economic efficiency. CRED monograph No. 4,
University of Michigan, Ann Arbor.

ILCA. 1983. Pastoral research systems research. ILCA Bul.,No. 16,
Int'l Livestock Centre for Africa, Addis Ababa, Ethiopia.

ILCA, 1983. ILCA Annual Report 1982: A year in the service of African
livestock improvement. ILCA, Addis Ababa, Ethiopia.

ILCA. 1983. Tcheffa Valley study: When the grass is greener, bringing
the answers closer to home. JEPSS Res. Report No. 1. ILCA, Addis
Ababa, Ethiopia.

ILCA. 1982. A report on family sizes, domestic economics, livestock
composite and progeny histories of the Afar production unit network.
JEPSS Discussion Paper No. 1. ILCA, Addis Ababa, Ethiopia.

ILCA. 1981. Animal traction in sub-Saharan Africa. ILCA Bul. No. 14.
ILCA, Addis Ababa, Ethiopia.

ILCA. 1981. Systems research in the arid zones of Mali: Initial results.
Systems Study No. 5, Addis Ababa, Ethiopia.

ILCA. 1979. Trypanotolerant livestock in West and Central Africa: Vol. 2,
Country Studies. ILCA monograph No. 2, Addis Ababa, Ethiopia.

ILCA. 1979. Trypanotolerant livestock in West and Central Africa: Vol. 1,
General Study. ILCA monograph No. .2. Addis Ababa, Ethiopia.

ILCA. 1979. Small ruminant production in the tropics. Int'l. Liv. Centre
for Africa Systems Study No. 3, ILCA, Addis Ababa, Ethiopia.

ILCA. 1978. Animal production systems in the high potential highlands
of tropical Africa. ILCA/HL/116. Addis Ababa, Ethiopia.

ILCA. 1977. Evaluation and comparisons of productivities of indigenous
cattle in Africa. ILCA, Addis Ababa, Ethiopia.

ILCA. 1977. East African pastoralism: Anthropological perspectives and
development needs. Conf. Proc., ILCA, Addis Ababa, Ethiopia.

IRRI. 1983. Crop-livestock workshop summary report. Asian farming
systems network. The International Rice Research Institute, Los
Banos, pp. 4.

Jahnke, H. E. 1982. Livestock production systems and livestock development
in tropical Africa. Kieler Wissenschaftsverlag Vauk, Kiel, Federal
Republic of Germany.

King, J. M., A. R. Sayers, C. P. Peacock, and E. Kontrohr. 1982.
Maasai herd and flock structure in relation to household livestock
wealth and group ranch development. ILCA Working Document No. 27,
ILCA, Addis Ababa, Ethiopia.

Konandreas, P. A., F. M. Anderson, and J. C. M. Trail. 1983. Economic
trade-offs between milk and meat production under various supplementa-
tion levels in Botswana. ILCA Research Report No. 10. Addis Ababa,

Konandreas, P. A. and F. M. Anderson. 1982. Cattle herd dynamics: An
integer and stochastic model for evaluating production alternatives.
ILCA Res. Report No. 2, ILCA, Addis Ababa, Ethiopia.

McCammon-Feldman, B., P. J. Van Soest, P. Horvath, and R. E. McDowell.
1981. Feeding strategy of the goat. Cornell Int'T Agri. Mimeo.
No. 88, Cornell University, Ithaca, New York.

McDowell, R. E. 1983. Strategy for improving beef and dairy cattle in
the tropics. Cornell Int'l. Agri. Mimeo No. 100. Cornell University,
Ithaca, New York.

McDowell, R. E. 1983. The need to know about animals. In: A series of
papers on world food issues. Ed. M. Drosdoft. Center for Analysis
of World Food Issues, Program in Int'l Agri., Cornell University,
Ithaca, New York.

McDowell, R. E. 1981. Limitations for dairy production in developing
countries. J. Dairy Sci. 64:2463-75.

McDowell, R. E. 1980. The role of animals in developing countries. In:
Animals, feed, food and people. R. L. Baldwin ed., AAAS Selected
Symp. No. 42, Westview Press, Boulder, Colorado.

McDowell, R. E. 1977. Ruminant products: More than meat and milk.
Winrock Report, Wintock Int'l., Morrilton, Arkansas.

McDowell, R. E., and L. Bove. 1977. The goat as a producer of meat.
Cornell Int'l Agri. Mimeo. No. 56, Cornell University, Ithaca, New

McDowell, R. E. and P. E. Hildebrand. 1980. Integrated crop and animal
production: Making the most of resources available on small farms
in developing countries. Working Paper, Rock. Found., New York,
New York.

McDowell, R. E., D. G. Sissler, E. C. Schermerhorn, J. D. Reed, and R. P.
Bauer. 1983. Game or cattle for meat production on Kenya rangelands?
Cornell Int'l Agri. Mimeo No. 101. Cornell University, Ithaca,
New York.

Milligan, K. 1983. An aerial reconnaissance of livestock and human
populations in relation to land use and ecological conditions in the
SORDU project area of Southern Ethiopia. JEPSS Res. Report No. 5,
ILCA, Addis Ababa, Ethiopia.

Nat'l Dairy Dev. Board. 1980. Breeding and feeding for milk production
in Operation Flood II. National Dairy Dev. Board, Anand, India.

Nicholson, M. 1983. Calf growth, milk offtake, and estimated lactation
yields of Borana cattle in the southern rangelands of Ethiopia.
JEPSS Res. Report No. 6. ILCA, Addis Ababa, Ethiopia.

Norman, D. 1982. Institutionalizing the farming systems approach to
research. Paper presented at the African -Review of Agricultural and
Rural Development Officers' Workshop, Ibadan, Nigeria. US/AID,

Oxby, C. 1981. Group ranches in Africa. Overseas Development Institute,
London, United Kingdom.

Pratt, D. and M. D. Gwynne. 1977. Rangeland management and ecology in
East Africa. Hodder & Stoughton, London.

Primov, G. 1983. Alpaca meat production and exchange in southern Peru.
Small Ruminant Collaborative Research Support Prog., Technical Series
No. 31, University of Missouri, Columbia.

Rouse, J. E. 1977. The Criollo: Spanish cattle in the Americas.
.University of Oklahoma Press, Norman.

Ruthenberg, H. 1980. Farming systems in the tropics. 3rd. ed. Clarendon
Press, Oxford.

Sambrani, M., A. P. Siregar, R. G. Petheram, and H. C. Knipscheer. 1982.
-An introduction to livestock farming systems research for rural
development in Indonesia,Working Paper No. 20, SR-CRSP, Indonesia.

Sanford, S. 1983. Management of pastoral development in the Third World.
Overseas Dev. Inst., London.

Sands, M. and R. E. McDowell. 1978. The potential of the goat for milk
production in the tropics. Cornell Int'l Agri. Mimeo. No. 60.
Cornell University, Ithaca, New York.

Shaner, W. W., P.
research and

F. Philipp, and W. R. Schmehl. 1982. Farming systems
development. Westview Press, Boulder, Colorado.

Soedjana, T. D., A. J. DeBoer, and H. C. Knipscheer. 1983. Potential
uses of commercial technologies for sheep and goat smallholders in
Indonesia. Small Ruminant Collaborative Res. Support Program
Technical Rpt. Series, Winrock International, Morrilton, Arkansas.

Stewart, R. 1983. Livestock systems research at ILCA. Expert consultation
Rpt., ILCA, Addis Ababa, Ethiopia.

Swift, J. 1979. West.African pastoral production systems. CRED Working
Paper, University of Michigan, Ann Arbor.

Trail, J. C., and K. E.
of their potential
ILCA Monograph No.

Gregory. 1981.
contribution to
3, Addis Ababa,

Sahiwal cattle: An evaluation
milk and beef production in Africa.

Von Kaufmann, R. 1983. Design and testing procedures in livestock systems
research: An agro-pastoral example. Workshop: Production Systems
Research for Range Livestock Development, ILCA, Addis Ababa, Ethiopia,
March, 1983.

Williamson, G. and W. J. A. Payne. 1978. An introduction to animal
husbandry in the tropics. 3rd ed. Longman, New York.

Wi1son, R. T. 1983. Goats and sheep in the traditional livestock pro-
duction systems in semi-arid Northern Africa: Their importance,
productivity, and constraints on production. Workshop: Overcoming
constraints to livestock development in sub-Saharan Africa. University
of Florida, Gainesville, August 3-6.

Wilson,'R. T. 1982. Livestock production in Central Mali.
No. 15. ILCA, Addis Ababa, Ethiopia.


Wilson, R. T. and
zones arides
de recherche

P. N. de Leeuw. 1983. Recherches sur Res systems des
du Mali: Resultats preliminaries. CIPEA (ILCA) Rapport
No. t, ILCA, Addis Ababa, Ethiopia.

Winrock International. 1983a. Assessment of the current status
potential role of sheep and goats in developing countries.
prepared for Agricultural and Rural Development Department,
Bank. Winrock International, Morrilton, Arkansas.


Winrock International. 1983b. Bibliography of international literature
on goats. Winrock International, Morrilton, Arkansas.

Winrock International. 1982. Draft position paper on livestock program
priorities and strategy. Paper prepared for U.S. Agency for Inter-
national Development. Winrock International, Morrilton, Arkansas.


Winrock International. 1980. Potential for on-farm feed production and
utilization by the Egyptian small farm sector. A consultant report
on the project improved utilization of feed resources for the
Egyptian Livestock Sector: Report prepared for the Catholic Relief
Services, Cairo, Egypt, and United States Agency for International
Development, Cairo, Egypt. Winrock International, Morrilton, Arkansas.

Winrock International. 1977. Potential of the world's forages for
ruminant animal production. Winrock International, Morrilton, Arkansas.

Winrock International. 1977. The role of sheep and goats in agricultural
development: A state of the arts study. Winrock International,
Morrilton, Arkansas.

World Bank. 1981. Accelerated development in sub-Saharan Africa: An
agenda for action. The World Bank, Washin'gton, D.C.


1. Bera

2. Berr

3. Brac

4. Byir

5. Corr

6. Coy,

7. Crat

8. Cuar

9. Dear







(Including Animal Science, Veterinary Medicine,
Animal Breeding and Animal Systems) as of 11/23/83

Geographical Areas
MOA (With Years
ram Associate Entity Area of Expertise Therein in Parenthesis)

n, George ISU Vet Microb & Asia (3+); Africa (10+)
Preventive Med

listen, Richard WI Ag Economics Asia (3); Africa (2+);
Latin America (?)

:kelsberg, Paul 0. ISU Animal Science Asia (.1);
Near East (.1)

rgton, Evert WI Range Sci/ Unknown

nelius, Steve UMN Animal Science/ Unknown
Vet Med

Charles MSU Vet Med Africa (2)

)o, Bo UMN Animal Science/ Asia (.25)
Vet Med

iy, Robin CSU Agronomy (Forages) Africa (5)
Latin America (3)

ns, Robert MSU Animal Science Africa (?); Asia (?);
Latin America (?);
total of 6 years

oer, Alvin J. WI Ag Economics Asia (3+); Africa
Latin America

zhugh, Henry A. WI Animal Breeding Latin America,
Caribbean, Africa
(Total.2 years)

dman, Bill SIU Animal Industriesf Unknown

sen, Jorgen VPI Vet Med Unknown

t, Robert D. WI Agronomy/Crop Latin America (6);
Ecology Africa (?)

nson, Harold UMC Animal Systems Unknown

Program Associate

16. King, Thomas B.

17. Koch, Berl A.

18. Kornegay, E. T.

19. Marsh, Will

20. McCarthy, F.

21. McDowell, R. E.

22. Mitchell, George

23. Morris, Roger

24. Olson, Howard

25. Oxley, James W.

26. Perry, Brian

27. Schillhorn Van Vern,

28. Sollod, Albert

29. Sutherland, Thomas M.

30. Thawley, D. G.

31. Vandepopuliere, Joe.

32. Vogt, Dale

33. Ward, Gerald M.

34. Wheat, John D.

35. Wilson, Kim J.

Entity Area of Expertise

PSU Animal Sci/Admini-

KSU Animal Nutrition

VPI Animal Science

UMN Animal Health Econ-

VPI Animal Science

CU Animal Science

UOK Animal Science/

UMN Vet Med/

SIU Animal Industries

CSU Animal Science/

VPI Vet Medicine

MSU Vet Medicine

DAI Vet Med/

CSU Animal Breeding

UMC Animal Systems

UMC Animal Systems

UMC Animal Systems

CSU Animal Science

KSU Animal Breeding/

MSU Animal Science

Geographical Areas
(With Years
Therein in Parenthesis)

Latin America (?)

Africa (4); Asia (2)




Asia (9); Latin
America; Africa

Near East (?)

Africa, Asia,
Latin America,
Near East


Asia (2), Africa


Africa (8)

Africa (?)

Africa (2)




Asia, Near East

Africa (2+); Latin
America (.25); Asia (.2)

Latin America, Asia
(Total 3 years)

Geographical Areas
MOA (With Years
Program Associate Entity Area of Expertise Therein in Parenthesis)

36. Wilson, Terry PSU Vet Med/ Latin America (6)
Vet Pathology

37. Yazman, James WI Animal Science Latin America, Asia

MOA Entities


1. DAI = Development Alternatives, Inc.
2. IADS = Int'l Agricultural Development Service
3. RTI = Research Triangle Institute
4. WI + Winrock International


1. CSU = Colorado State University
2. ISU = Iowa State University
3. KSU = Kansas State University
4. MSU = Michigan State University
5. PSU = Penn State University
6. SIU = Southern Illinois University
7. UOK = University of Kentucky
8. UMN = University of Minnesota
9. UMC = University of Missouri
10. VPI = Virginia Polytechnic Institute
11. CU = Cornell University