• TABLE OF CONTENTS
HIDE
 Copyright
 Main














Group Title: Bulletin University of Florida. Agricultural Experiment Station
Title: chemical composition of irrigation water used in Florida citrus groves
CITATION THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00027141/00001
 Material Information
Title: chemical composition of irrigation water used in Florida citrus groves
Physical Description: Book
Creator: Wander, I. W.
Publisher: University of Florida Agricultural Experiment Station
Publication Date: 1951
Copyright Date: 1951
 Record Information
Bibliographic ID: UF00027141
Volume ID: VID00001
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aen6392 - LTUF
18265252 - OCLC
000925736 - AlephBibNum

Table of Contents
    Copyright
        Historic note
    Main
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
Full Text





HISTORIC NOTE



The publications in this collection do
not reflect current scientific knowledge
or recommendations. These texts
represent the historic publishing
record of the Institute for Food and
Agricultural Sciences and should be
used only to trace the historic work of
the Institute and its staff. Current IFAS
research may be found on the
Electronic Data Information Source
(EDIS)

site maintained by the Florida
Cooperative Extension Service.






Copyright 2005, Board of Trustees, University
of Florida







Bulletin 480 AG 271951 July 1951


UNIVERSITY OF FLORIDA
AGRICULTURAL EXPERIMENT STATIONS
WILLARD M. FIFIELD, Director
GAINESVILLE, FLORIDA
(A Contribution from the Citrus Experiment Station)









The Chemical Composition of Irrigation

Water Used in Florida Citrus Groves

By I. W. WANDER and H. J. REITZ



















Single copies free to Florida residents on request to
AGRICULTURAL EXPERIMENT STATION
GAINESVILLE, FLORIDA









BOARD OF CONTROL EDITORIAL

Frank M. Harris, Chairman, St. Petersburg J. Francis Cooper, M.S.A., Editor 3
N. B. Jordan, Quincy Clyde Beale, A.B.J., Associate Editor
Hollis Rinehart, Miami L. Odell Griffith, B.A.J., Asst. Editor3
Eli H. Fink, Jacksonville J. N. Joiner, B.S.A., Assistant Editor 3 4
George J. White, Sr., Mount Dora
W. F. Powers, Secretary, Tallahassee ENTOMOLOGY

EXECUTIVE STAFF A. N. Tissot, Ph.D., Entomologist
J. Hillis Miller, Ph.D., President L. C. Kuitert, Ph.D., Associate
J. Wayne Reitz, Ph.D., Provost for Agr.3 H. E. Bratley, M.S.A., Assistant
Willard M. Fifield, M.S., Director F. A. Robinson, M.S., Asst. Apiculturist
J. R. Beckenbach, Ph.D., Asso. Director
L. O. Gratz, Ph.D., Asst. Dir., Research HOME ECONOMICS
Geo. F. Baughman, M.S., Business Mgr.3
Rogers L. Bartley, B.S., Admin. Mgr.3 Ouida D. Abbott, Ph.D., Home Econ.1
Claranelle Alderman, Accountant3 R. B. French, Ph.D., Biochemist

MAIN STATION, GAINESVILLE HORTICULTURE
G. H. Blackmon, M.S.A., Horticulturist 1
AGRICULTURAL ECONOMICS F. S. Jamison, Ph.D., Horticulturist
H. G. Hamilton, Ph.D., Agr. Economist 1 Albert P. Lorz, Ph.D., Horticulturist
R. E. L. Greene, Ph.D., Agr. Economist R. K. Showalter, M.S., Asso. Hort.
M. A. Brooker, Ph.D., Agr. Economist R. A. Dennison, Ph.D., Asso. Hort.
Zach Savage, M.S.A., Associate R. H. Sharpe, M.S., Asso. Horticulturist
A. H. Spurlock, M.S.A., Associate V. F. Nettles, Ph.D., Asso. Horticulturist
D. E. Alleger, M.S., Associate F. S. Lagasse, Ph.D., Asso. Hort.2
I. L. Brooke, M.S.A., Associate4 R. D. Dickey, M.S.A., Asso. Hort.
M. R. Godwin, Ph.D., Associate L. H. Halsey, M.S.A., Asst. Hort.
H. W. Little, M.S., Assistant C. D. Hall, Ph.D., Asst. Horticulturist
Tallmadge Bergen, B.S., Assistant S. E. McFadden, Ph.I., Asst. Hort.
D. C. Kimmel, Ph.D., Assistant Austin Griffiths, Jr., B.S., Asst. Hort.
A. L. Larson, Ph.D., Agr. Economist S. E. McFadden, Jr., Ph.D., Asst. Hort.
Orlando, Florida (Cooperative USDA) LIBRARY
G. Norman Rose, B.S., Asso. Agr. Economist
J. C. Townsend, Jr., B.S.A., Agr. Ida Keeling Cresap, Librarian
Statistician 2
J. B. Owens, B.S.A., Agr. Statistician PLANT PATHOLOGY

AGRICULTURAL ENGINEERING W. B. Tisdale, Ph.D., Plant Pathologist 3
Phares Decker, Ph.D., Plant Pathologist
Frazier Rogers, M.S.A., Agr. Engineer 1 a Erdman West, M.S., Mycologist and Botanist
J. M. Johnson, B.S.A.E., Agr. Eng.3 Robert W. Earhart, Ph.D., Plant Path.2
J. M. Myers, B.S., Asso. Agr. Engineer Howard N. Miller, Ph.D., Asso. Plant Path.
R. E. Choate, B.S.A.E., Asso. Agr. Enr.' Lillian E. Arnold, M.S., Asst. Botanist
A. M. Pettis, B.S.A.E., Asst. Agr. Eng.2 C. W. Anderson, Ph.D., Asst. Plant Path.

AGRONOMY
AGRONOMY POULTRY HUSBANDRY
Fred H. Hull, Ph.D., Agronomist
G. B. Killinger, Ph.D., Agronomist3 N. R. Mehrhof, M.Agr., Poultry Hush.1
H. C. Harris, Ph.D., Agronomist J. C. Driggers, Ph.D., Asso. Poultry Hush.
R. W. Bledsoe, Ph.D., Agronomist
W. A. Carver, Ph.D., Associate
Darrel D. Morey, Ph.D., Associate SOILS
Fred A. Clark, B.S., Assistant F. B. Smith, Ph.D., Microbiologist'1
Myron C. Grennell, B.S.A.E., Assistant Gaylord M. Volk, Ph.D., Soils Chemist
E. S. Horner, Ph.D., Assistant J. R. Henderson, M.S.A., Soil Technologist
A. T. Wallace, Ph.D., Assistant J. R. Neller, Ph.D., Soils Chemist
D. E. McCloud, Ph.D., Assistant Nathan Gammon, Jr., Ph.D., Soils Chemist
R. A. Carrigan, Ph.D., Biochemist
ANIMAL HUSBANDRY AND NUTRITION Ralph G. Leighty, B.S., Asst. Soil Surveyor :
T. J. Cunha, Ph.D., An. Husb.h" G. D. Thornton, Ph.D., Asso. Microbiologist 3 4
R. S. Glasscock, Ph.D., An. Husb.' Charles F. Eno, Ph.D., Asst. Soils Micro-
G. K. Davis, Ph.D., Animal Nutritionist3 biologist
R. L. Shirley, Ph.D., Biochemist' H. W. Winsor, B.S.A., Assistant Chemist
J. E. Pace, M.S., Asst. An. Husb.' R. E. Caldwell, M.S.A., Asst. Chemist'*"
S. John Folks, M.S., Asst. An. Hush.4 V. W. Carlisle, B.S., Asst. Soil Surveyor
Katherine Boney, B.S., Asst. Chem. James H. Walker, M.S.A., Asst. Soil
A. M. Pearson, Ph.D., Asso. An. Husb.3 Surveyor
John D. Feaster. Ph.D., Asst. An. Nutri. S. N. Edson, M.S., Asst. Microbiologist'
H. D. Wallace, Ph.D.. Asst. An. Husb.' William K. Robertson, Ph.D., Asst. Chemist
M. Koger. Ph.D., An. Husbandman O. E. Cruz, B.S.A., Asst. Soil Surveyor
W. G. Blue, Ph.D., Asst. Biochemist
DAIRY SCIENCE VETERINARY SCIENCE
E. L. Fouts, Ph.D., Dairy Tech.1
R. B. Becker, Ph.D., Dairy Husb.' D. A. Sanders, D.V.M., Veterinarian
S. P. Marshall, Ph.D., Asso. Dairy Hush.3 M. W. Emmel, D.V.M., Veterinarian 3
W. A. Krienke, M.S., Asso. in Dairy Mfs.3 C. F. Simpson, D.V.M., Asso. Veterinarian
P. T. Dix Arnold, M.S.A., Asst. Dairy Husb.2 L. E. Swanson, D.V.M., Parasitologist
Leon Mull, Ph.D., Asso. Dairy Tech. Glenn Van Ness, D.V.M., Asso. Poultry
H. Wilkowske, Ph.D., Asst. Dairy Tech. Pathologist
James M, Wing, M.S., Asst. Dairy Husb. G. E. Batte, D.V.M., Asso. Parasitologist










BRANCH STATIONS SUB-TROPICAL STATION, HOMESTEAD
Geo. D. Ruehle, Ph.D., Vice-Dir. in Charge
D. 0. Wolfenbarger, Ph.D., Entomologist
NORTH FLORIDA STATION, QUINCY Francis B. Lincoln, Ph.D., Horticulturist
J. D. Warner, M.S., Vice-Director in Charge Robert A. Conover, Ph.D., Plant Path.
R. R. Kincaid, Ph.D., Plant Pathologist John L. Malcolm, Ph.D., Asso. Soils Chemist
L. G. Thompson, Ph.D., Soils Chemist R. W. Harkness, Ph.D., Asst. Chemist
W. C. Rhoads, M.S., Entomologist R. Bruce Sedin, Ph.D., Asst. Hort.
W. H. Chapman, M.S., Asso. Agronomist
Frank S. Baker, Jr., B.S., Asst. An. Husb. WEST CENTRAL FLORIDA STATION,
BROOKSVILLE
Mobile Unit, Monticello William Jackson, B.S.A., Animal Husband-
R. W. Wallace, B.S., Associate Agronomist man in Charge 2

Mobile Unit, Marianna RANGE CATTLE STATION, ONA
R. W. Lipscomb, M.S., Associate Agronomist W. G. Kirk, Ph.D., Vice-Director in Charge
E. M. Hodges, Ph.D.. Agronomist
Mobile Unit, Pensacola D. W. Jones, M.S., Asst. Soil Technologist
R. L. Smith, M.S., Associate Agronomist CENTRAL FLORIDA STATION, SANFORD

Mobile Unit, Chipley R. W. Ruprecht, Ph.D., Vice-Dir. in Charge
J. W. Wilson, Sc.D., Entomologist
J. B. White, B.S.A., Associate Agronomist P. J. Westgate, Ph.D., Asso. Hort.
Ben. F. Whitner, Jr., B.S.A., Asst. Hort.
CITRUS STATION, LAKE ALFRED Geo. Swank, Jr., Ph.D., Asst. Plant Path.
A. F. Camp, Ph.D., Vice-Director in Charge
W. L. Thompson, B.S., Entomologist WEST FLORIDA STATION, JAY
. Suit, Ph.D., Plant Pathologist C. E. Hutton, Ph.D., Vice-Director in Charge
E. P. Ducharme, Ph.D., Asso. Plant Path.
C. R. Stearns, Jr., B.S.A., Asso. Chemist H. W. Lundy, B.S.A., Associate Agronomist
J. W. Sites, Ph.D., Horticulturist
H. O. Sterling, B.S., Asst. Horticulturist SUWANNEE VALLEY STATION,
H. J. Reitz, Ph.D., Horticulturist LIVE OAK
Francine Fisher, M.S., Asst. Plant Path. G. E. Ritchey, M.S., Agronomist in Charge
I. W. Wander, Ph.D., Soils Chemist
J. W. Kesterson, M.S., Asso. Chemist
R. Hendrickson, B.S., Asst. Chemist GULF COAST STATION, BRADENTON
Ivan Stewart, Ph.D., Asst. Biochemist E. L. Spencer, Ph.D., Soils Chemist in Charge
D. S. Prosser, Jr., B.S., Asst. Horticulturist E. G. Kelsheimer, Ph.D., Entomologist
R. W. Olsen, B.S., Biochemist David G. Kelbert, Asso. Horticulturist
F. W. Wenzel, Jr, Ph.D., Chemist Robert 0. Magic, Ph.D., Plant Pathologist
Alvin H. Rouse, M.S., Asso. Chemist Robert O. Magie, Ph.D., Plant Pathologist
Alvin H. Rouse, M.S., Asso. Chemist
H. W. Ford, Ph.D., Asst. Horticulturist J. M. Walter, Ph.D., Plant Pathologist
L. W. Faville, Ph.D., Asst. Bacteriologist Donald S. Burgis, M.S.A., Asst. Hort.
L. C. Knorr, Ph.D., Asso. Histologist C, M. Geraldson, Ph.D., Asst. Hort.
R. M. Pratt, Ph.D., Asso. Ent.-Pathologist W. G. Cowperthwaite, Ph.D., Asst. Hort.
W. A. Simanton, Ph.D., Entomologist
E. J. Deszyck, Ph.D., Asso. Horticulturist
C. D. Leonard, Ph.D., Asso. Horticulturist F LA O ATO
I. Stewart, M.S., Asst. Biochemist FIELD LABORATORIES
W. T. Long, M.S., Asst. Horticulturist Watermelon, Grape, Paature-Leesburg
C. C. Helms, Jr., B.S., Asst. Agronomist

EVERGLADES STATION, BELLE GLADE Strawberry-Plant City
R. V. Allison, Ph.D., Vice-Director in Charge A. N. Brooks, Ph.D., Plant Pathologist
Thomas Bregger, Ph.D., Sugar Physiologist
J. W. Randolph, M.S., Agricultural Engr.
W. T. Forsee, Jr., Ph.D., Chemist Vegetables-Hastings
R. W. Kidder, M.S., Asso. Animal Husb. A. H. Eddins, Ph.D., Plant Path. in Charge
T. C. Erwin, Assistant Chemist E. N. McCubbin, Ph.D., Horticulturist
C. C. Seale, Asso. Agronomist
N. C. Hayslip, B.S.A., Asso. Entomologist
E. A. Wolf, M.S., Asst. Horticulturist Pecans-Monticello
W. H. Thames, M.S., Asst. Entomologist A. M. Phillips, B.S., Asso. Entomologist
W. N, Stoner, Ph.D., Asst. Plant Path. John R. Large, M.S., Asso. Plant Path.
W. A. Hills, M.S., Asso. Horticulturist
W. G. Genung, B.S.A., Asat. Entomologist
Frank V. Stevenson, M.S., Asso. Plant Path. Frost Forecasting-Lakeland
R. H. Webster, Ph.D., Asst. Agronomist Warren O. Johnson, B.S., Meteorologist
Robert J. Allen, Ph.D., Asst. Agronomist
V. E. Green, Ph.D., Asst. Agronomist i Head of Department
J. F. Darby, M.S.A., Asst. Plant Path. 2 In cooperation with U. S.
H. L. Chapman, M.S.A., Asst. An. Hush. 3 Ccoperative, other divisions, U. of F.
Thos. G. Bowery. Ph.D., Asst. Entomologist On leave.























Contents
Page
INTRODUCTION ......-...........-......---........ ................ 5


COLLECTION OF SAMPLES .........-.....--...............----------.--- .......----.... 6


METHODS OF ANALYSIS ---. ---------- ........ ...-------------- ---.-- ..-....-- .--- 6


RELATIONSHIP OF SPECIFIC CONDUCTANCE AND TOTAL
DISSOLVED SOLIDS .-......... .........------------ --..---- -------- ----- ........... 7


AVERAGE CHEMICAL COMPOSITION OF WATER FROM NINE
FLORIDA COUNTIES ................ ---..-- .. ...-- ----...-- ---- ....... ..------... 8


TREND IN MINERAL CONCENTRATION OF EAST COAST WELLS .......---......--.... 12


OTHER ELEMENTS FOUND IN WATER ......-..----....--.................---- ..... 13


SUMMARY ...-----------............. . -----------.. -- -..--.. .. .............. ............ ... 13


LITERATURE CITED ........-...--- ..-................... .------ ... ............ 14


APPENDIX .... ....... .--- ..-- .... .------- -.... -------------- ................... --..- 15










The Chemical Composition of Irrigation
Water Used in Florida Citrus Groves

By I. W. WANDER and H. J. REITZ 1

Introduction
A knowledge of the chemical composition or mineral content
of irrigation water is of great importance to growers because of
the known detrimental effects to plants of highly mineralized
water. Although water from various sources has been used
for irrigating citrus in Florida for many years, little is known
of the actual chemical composition of much of the water which
is used. A report (9)2 made 50 years ago indicated damage to
citrus when irrigated with artesian well water. A more recent
report (15) indicated that many wells in several East Coast
districts were increasing in salt content, thus increasing the
possibility of damage when their water is used on groves. Simi-
lar increases in saltiness have been experienced with municipal
water supplies for several coastal cities (8, 11).
SIn those citrus areas where irrigation is a necessity due to
arid climate, accumulations of salts occur in the soil because
there is little or no loss through leaching by rainfall. The citrus
growing areas of Florida receive annually 50 to 60 inches of
rain (4) and, therefore, accumulations of salts are not likely
to occur from year to year. Leaching of applied salts is also
aided by-the f tat ostof th'ebils-on which citrus is grown
in Florida are of a very sandy,4porous nature. Since these soils
contain practically no clay having exchange capacity, additions
of sodium from salt water does not destroy their structure and
impede leaching, as often happens in many regions using irri-
gation.
Because of relatively high rainfall and soils of low clay con-
tent the use of irrigation water on citrus in Florida presents a
problem different from, that found in many other citrus grow-
ing areas. In fact, water containing larger amounts of salts
can be used under the climatic and soil conditions of Florida
than could be used if the climate were drier and the soils heavier.
This was pointed out in work done by Yourt (16), using known
concentrations of sodium chloride solutions on citrus seedlings
1Soils Chemist and Horticulturist, respectively, Citrus Experiment
Station, Lake Alfred, Florida.
SItalic figures in parentheses refer to Literature Cited.







6 Florida Agricultural Experiment Stations

growing in pots in the greenhouse. He concluded that relatively
high concentrations of sodium chloride alone were not detri-
mental to growth.
Previous analyses of irrigation waters (15) involved only the
determination of the chloride content and a calculation to the
equivalent amount of sodium chloride. Some preliminary work
with water samples taken in 1949 showed that amounts of
sodium found were not sufficient to account for all the chlorides
present, thus indicating the presence of other minerals, such
as calcium and magnesium chlorides. This is to be expected
because the mineral composition of the water will be determined
by the minerals dissolved from the rock and mineral deposits
through which it passes plus that contributed from any infiltra-
tion by sea water. Several reports (5, 11) have listed the chemi-
cal constituents found in water from different Florida localities.
Most of these analyses are for municipal water supplies and
relatively less information is available giving data related to
irrigation supplies.
Thus, for several reasons, a more complete picture of the
composition of water used for irrigation was, felt desirable in
order to evaluate more correctly such water.,Jt is the purpose
pf this bulletin to list the composition of waters from widely
/different localities which are used for irrigating or for mixing
'prays for citrus. \

Collection of Samples
Clean quart mason jars fitted with a jar rubber and glass
top were used to transport water samples to the laboratory for
analysis. An effort was made to obtain samples from wells
which were in use, since it is known that a lower mineral con-
tent is often found in wells which have not been used for several
weeks or months. After the well has been in use for several
hours the mineral content becomes relatively stable.

Methods of Analysis
Methods of analysis used were of a type primarily fitted to
water analysis. Several of the methods are relatively recent
developments and will be mentioned briefly.
pH measurements were made, using a glass electrode.
Specific conductance was measured in mhos x 10 at 250C.
This measurement is directly related to total dissolved solids
in the water.








The Chemical Composition of Irrigation Water 7

Calcium was determined by titrating an aliquot of the water
with versene (disodium dihydrogen ethylenediamine tetracetate
dihydrate), using ammonium purpurate indicator (2, 6).
Magnesium was measured by titrating a portion of the water
with versene, using errochrome black T indicator which gives
a value for the total magnesium and calcium present. By sub-
tracting the amount of calcium previously found, the magnesium
concentration can be obtained (2).
Sodium was estimated through the use of a flame photometer
(1, 13).
Chloride concentration was found by titration with mercuric
nitrate, using diphenylcarbazone bromophenol blue mixed indi-
cator (3).
Sulfate content was measured by precipitation under con-
trolled conditions with barium chloride and reading the resultant
turbidity with a photoelectric colorimeter (12).
Carbonates and bicarbonates were estimated by titration with
standard sulfuric acid using phenolphthalein indicator for the
carbonate endpoint and methyl purple for the bicarbonate end-
point (7).
A qualitative analysis of several of the wells containing the
largest amount of dissolved solids was made by a spectrographic
procedure.

Relationship of Specific Conductance and Total
Dissolved Solids
Twenty-four water samples representing the East Coast, West
Coast and Central Florida were evaporated to dryness and the
resulting salts were weighed. The total dissolved solids in
parts per million thus determined were compared to specific
conductance values obtained with a conductivity meter (Fig. 1).
The relationship was found to be directly porportional and if
the specific conductance in mihos x 10- at 25 ismultiplied
by 7 the concentration of soluble salts is obtained directly in
parts _er million. This relationship is the same as found in
other areas of the United States where water analyses are made
(14). Since the specific conductance of a water sample is very
easily obtained (comparable to the time required for a soil pH
determination) it can be seen that such a measurement is of
great value in rapidly evaluating a water source. It is probably
the best single index for deciding the advisability of using water
for irrigation in Florida.








8 Florida Agricultural Experiment Stations


1300 -
S1200 -
N 1100- /

1000-
900-
0
x 800-
') 700-
0
"600-
S500
'- 400-
300-
D 200
100 -
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
PPM TOTAL DISSOLVED SOLIDS
Fig. 1.-Relationship between parts per million total dissolved solids and
conductivity measurements of irrigation water.

Average Chemical Composition of Water from Nine
Florida Counties
Maximum, minimum and average amounts of the various
elements determined, along with pH, total dissolved solids and
calculated amount of sodium chloride in water from several
localities, are given in Table 1. The sodium chloride content
is given simply for a basis of comparison with previously pub-
lished figures (15, 16). As previously mentioned, it does not
represent a true picture, however, since all the chlorides found
cannot be assumed to be sodium chloride.
From an examination of Table 1 it can be seen that individual
wells within the same locality vary considerably in mineral con-
tent. This is to be expected because all wells are not at the
same depth and consequently tap different water strata. This
great variability stresses the need for careful consideration of
local conditions and if a new well is to be drilled a geologist
familiar with local conditions should be consulted. Further
study of,this table reveals the great variation between localities
in water composition.
For example, on the mainland of Brevard County there was
on the average 1,283 ppm of chloride ion and 107 ppm of sulfate





TABLE 1.-MAXIMUM, MINIMUM AND AVERAGE COMPOSITION OF WATER FROM INDEX WELLS IN
NINE FLORIDA COUNTIES IN 1950.

Locality No. pH Parts per Million
Samples I T.D.S.** Na Ca Mg C1 SO, S COs I HCO NaC1
Brevard Co. Max. 8.40 15000 4800 514 635 7745 1200 14 135 12768
Islands Min. 7.50 763 110 62 27 225 34 0 7 371
57 Aver. 8.20* 3106 688 170 108 1432 203 8 105 2349 Y
Brevard Co. I Max. 8.40 7217 2100 269 223 3872 230 16 156 6383 c
Mainland Min. 7.65 1484 269 76 39 605 0 0 7 997
10 Aver. 7.95 2580 624 132 87 1283 107 5 94 2116
Indian River Co. Max. 8.40 1442 260 96 68 527 230 16 159 870
Min. 7.30 833 124 47 46 225 38 6 99 371 .
38 Aver. 7.79 1099 179 64 57 _371 106 12 133 607
St. Lucie Co. Max. 8.30 3570 869 116 110 1494 384 25 299 2463
Min, 7.30 714 90 37 23 151 48 6 90 249
55 Aver. 7.81 1528 295 72 59 538 138 13 137 887
Pinellas Co. Max. 8.40 2280 590 246 67 1626 120 19 228 2681 3
Min. 6.98 168 0 22 2 18 0 0 10 30
21 Aver. 7.54 887 129 70 25 296 30 9 143 488
Manatee Co. Max. 7.85 I 2430 360 289 116 822 590 19 164 1356 S
Min. 7.35 441 0 60 28 18 137 0 35 30
26 Aver. 7.60 1043 58 151 66 162 387 6 129 272
Sarasota Co. Max. 8.20 2280 245 463 152 520 1526 16 170 857
Min. 7.35 644 24 78 50 30 295 0 84 50
14 Aver. 7.54 1314 60 255 96 202 836 5 121 333
Charlotte Co. Max. 8.60 5240 1180 241 195 2109 1 771 16 145 3477 a
Min. 7.20 1010 158 67 45 302 48 0 48 499 .
11 Aver. 7.67 2485 468 150 93 975 302 6 100 1607 o
Lee Co. Max. 7.80 2580 530 130 101 974 379 16 180 1605
Min. 7.30 1554 270 71 61 457 240 0 96 754
9 Aver. 7.59 2185 411 102 87 774 305 11 145 1276
Polk Co. Wells Max. 7.65 221 8.1 37.2 7.1 9.6 2.4 0 144 16 6
Min. 7.40 168 5.5 29.2 5.6 6.2 2.4 0 108 10
2 Aver. 7.52 194 6.8 33.2 6.4 7.9 2.4 0 0 126 13
Polk Co. Lakes Max. 7.20 98 9.0 6.4 5.3 18.8 31.2 0 22.6 31
Min. 6.55 35 5.1 1.4 2.6 9.6 16.8 0 3.1 16
9 Aver. 6.93 69 7 4 3 14 23 0 13 23
*Arithmetic mean of individual values.
** Total dissolved solids calculated from conductivity.








10 Florida Agricultural Experiment Stations

ion, whereas in Sarasota County there was only 202 ppm of
chloride ion, as compared to 836 ppm of sulfate. In one case
the water was primarily chloride and in the other primarily
sulfate. The relatively large differences in composition of waters
from several areas of the state are easily apparent when chemi-
cally equivalent amounts of the various constituents are pre-
sented graphically, as in Fig. 2. Further inspection shows the
much higher mineral concentration in water from both coastal
regions as compared to deep wells in the inland district of Polk
County. As might be expected, the lowest concentration of salts
is found in the lakes of the central region of the state.



50- E BICARBONATE
"4 MAGNESIUM CARBONATE
CALCIUM L SULPHATE
a SODIUM ,.-'CHLORIDE
-J
j 502

"W 802 605
a. 30

I-
z 258









Fig. 2.-Relative amounts of nations (metals) and anions (nonmetals) 78
920
> 906









resultant addition of salt when added to the soil as irrigation
is iven in Table 2. This table ives the ounds of various salts
> ,0 4 ZH- 0
Sz 00 0 0 0 0

uJ Uj z X W -r _J o
Ir 0 -: 0 0

Fig. 2.-Relative amounts of cations (metals) and anions (nonmetals)
found in average wells in nine Florida counties. The number above each
bar graph refers to the sample number in the appendix.

Another way of expressing the mineral content of water and
resultant addition of salt when added to the soil as irrigation
is given in Table 2. This table gives the pounds of various salts
















TABLE 2.-POUNDS OF SALTS CONTAINED IN ONE ACRE-INCH 0 WATER FROM AVERAGE WELLS IN SEVERAL FLORIDA LOCALITIES.

Pounds per Acre-Inch
Locality Source 1 [1
r NaCl INasSO MgCI2 CaCI IMgSO CaSO4 CaCO, Mg(HCO:,), Ca(HCO,,), Total

Brevard County Islands Wells 395.9 | 95.7 20.0 65.1 3.1 31.5 611.3 0
Brevard County Mainland Wells 359.1 77.2 23.7 34.2 1.9 27.5 523.6
Indian River County Wells 103.0 28.9 27.4 3.1 4.5 40.0 206.9 g-
St. Lucie County Wells 169.7 25.3 34.2 5.7 4.9 41.3 281.1
Pinellas County Wells 74.3 22.2 8.5 9.7 3.4 34.7 152.8 ,
Manatee County Wells 33.4 22.1 46.0 72.0 2.3 38.7 214.5 -4
Sarasota County Wells 34.5 33.3 65.5 194.1 1.6 329.0
Charlotte County Wells 269.3 77.1 6.8 89.3 2.3 27.7 472.5
Lee County Wells 236.5 I 42.7 43.6 48.5 4.2 29.0 404.5
Polk County Wells 2.9 0.8 8.5 28.3 40.5
Polk County Lakes 4.0 1.1 2.1 3.7 10.7



m-_








12 Florida Agricultural Experiment Stations

added to an acre of soil when that acre is irrigated with one
inch of water containing the average mineral composition for
the particular locality in question. If for example, an irriga-
tion of two acre-inches was applied, using water of the highest
mineral content found in Manatee County, there would have
been added to that acre 414 pounds of sodium chloride, 162.8
pounds of magnesium chloride, 50.6 pounds of magnesium sul-
fate, 307.4 pounds of calcium sulfate, 14.2 pounds of calcium
carbonate and 62 pounds of calcium bicarbonate, or a total of
1,021 pounds of these various salts. When it is realized how
much material can be added through irrigation the importance
of not letting a grove get dry after irrigation is readily under-
stood. If 1,000 pounds of soluble salts were evenly distributed
through the first two feet of an acre of the average sandy soil by
an irrigation, the soil would contain 125 ppm ,of soluble salts.
However, the average sandy soil will hold only 5 percent water,
so that the soil solution at field capacity will contain 2,500 ppm
soluble salts. If the soil moisture drops to 1 percent the soil
solution will contain 12,500 ppm soluble salts, which is high
enough to injure most plants. Once irrigation is started with
water containing considerable soluble salts the soil should never
be permitted to become low in moisture, at least until after a
good leaching rain.

Trend in Mineral Concentration of East Coast Wells
The change in the mineral content of water from wells in
several East Coast areas during the period 1942 to 1950 is
TABLE 3.-CHANGES IN SALT CONCENTRATION (CALCULATED AS P.P.M.
NACL FROM CL CONTENT) IN INDEX WELLS IN THE INDIAN RIVER AREA.

57 Wells Sampled from 88 Wells Sampled
Locality 1942 to 1950 from 1944 to 1950
INo. I | No.
Wellsl 1942 1944 1947 | 1950 Wells 1944 1947 1950
Brevard Mainland .... 1 1235 1320 1360 1587 3 1263 1250 1370
Courtenay ........... .. 3 5712 6227 6080
Merritt-Indianola ... 12 2123 2105 2120 2162 19 2134 2155 2170
Georgiania-Footman 6 1668 1765 1657 1771 6 1765 1657 1771
Lotus ......................... 6 1331 1472 1540 1533 10 1481 1527 1494
Tropic ........--..---... 2 875 1138 1080 1058 3 1068 1047 1029
Oslo .......-..... --.... 4 465 486 488 502 4 486 488 502
N. W. Vero Beach ... 7 539 614 641 592 11 611 625 609
S. W. Vero Beach .... 10 598 646 655 592 13 630 650 604
Ft. Pierce Farms ... 4 683 750 720 673 8 703 669 658
Ft. Pierce Vicinity 3 576 627 613 629 6 633 632 620
White City .--.......--- 2 1003 1015 1010 967 2 1015 1010 967
_____________ ______________ I I __








The Chemical Composition of Irrigation Water 13

recorded in Table 3. Analysis of 57 wells from 11 areas
during the period 1942 to 1950 showed that wells from 8 of
the 11 areas had increased slightly in sodium chloride content
as calculated from the total chlorides present. When a larger
number of samples were examined from 12 areas during the
period from 1944 to 1950 (88 wells) 6 of the 12 areas showed
a slight increase while the other 6 areas showed a slight de-
crease. In all cases the increase or decrease was small and the
trend was related to a definite region. The results indicate that
any change taking place is slow, at least in the region of the
East Coast that was sampled.
Other Elements Found in Water
One of the objectives of this investigation was to determine
what other elements might be present in addition to the usual
constituents. Examination by spectrographic means of residues
from 16 wells showing the highest concentration of soluble
salts revealed considerable amounts of strontium present in all
samples. A quantitative analysis of one sample showed approxi-
mately 30 ppm strontium present. Strontium is known to be
toxic to some plants (10) but its effects on citrus are not known.
Experiments have been started to estimate the effect of this
element on citrus. No barium, potassium or lithium was present
in the samples examined, although these elements are often
present in natural waters.
Summary
1. Total amount of soluble salts present in an irrigation water
is probably the best single index to use in evaluating the water.
2. Climatic conditions and soil types in Florida permit the
use of water containing larger amounts of soluble salts than is
ordinarily considered safe.
3. It is essential that, when irrigating with a high mineral"
content water, the soil moisture be maintained as high as
practical.
4. Individual wells in the same area vary considerably in
soluble salt concentration and different areas vary as to the
type of soluble salts present.
5. Strontium was found in the water from wells on both the
East and West Coasts of Florida but its effect on citrus is not
known.
6. The increase in saltiness of wells on the East Coast is
slow and is confined to certain districts.








14 Florida Agricultural Experiment Stations


Literature Cited
1. BERRY, J. W., D. G. CHAPPELL and R. B. BARNES. Improved method
of flame photometry. Ind. Eng. Chem., Anal. Ed., 18: 19-24. 1946.
2. BETZ, J. D., and C. A. NOLL. Total hardness in water by direct colori-
metric titration. Jour. Amer. Water Works Asso., 42: 49-56. 1950.
3. CLARKE, F. E. Determination of chloride in water. Anal. Chem., 22:
553-555. 1950.
4. Climate and Man. USDA Yearbook of Agriculture., pp. 809-818. 1941.

5. COLLINS, W. D., and C. S. HOWARD. Chemical character of waters of
Florida. Dept. of the Interior. Water Supply Paper. 596-G. 1927.
6. DIEHL, H., C. A. GOETZ and C. HACH. The versenate titration for total
hardness. Jour. Amer. Water Works Asso., 42: 40-48. 1950.
7. Official and Tentative Methods of Analysis. A.O.A.C., p. 640, 6th Ed.
1945.
8. PARKER, G. G. Salt water encroachment in Southern Florida. Jour.
Amer. Water Works Asso., 37: 526-542. 1945.
9. ROBINSON, M. R. Report on fertilizers and irrigation. Proc. Fla.
State Hort. Soc., 13: 140-145. 1900.
10. SCHARRER, K., and W. SCHROPP. The effects of strontium and barium
ions upon the growth of some plants. Bodenkunde u. Pflanzenernahr.
3: 369-385. 1937. (C. A. 31, 7941.)
11. STRINGFIELD, V. T. Ground water resources of Sarasota County, Flor-
ida. Twenty-third, twenty-fourth annual report. Fla. State Geo-
logical Survey, p. 176. 1930-32.
12. TREON, J. F., and W. E. CRUTCHFIELD, JR. Rapid turbidimetric method
for determination of sulfates. Ind. Eng. Chem., Anal. Ed., 14:
119-121. 1942.
13. WEST, P. W., P. FOLSE and D. MONTGOMERY. Application of flame
spectrophotometry to water analysis. Anal. Chem., 22: 667-670.
1950.
14. WILCOX, L. V. Explanation and interpretation of analysis of irriga-
tion water. USDA Circular 784. May 1948.
15. YOUNG, T. W., and V. C. JAMISON. Saltiness in irrigation wells. Proc.
Fla. State Hort. Soc., 57: 18-23. 1944.
16. YOUNG, T. W. Florida Agricultural Experiment Station. Annual
Report, p. 288-292. 1949.





Appendix

CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES.

Sam-i Sample Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO3 CO, HCO. NaCl**
_Solids*
BREVARD COUNTY

50 May 10 Oak Hill ............................. Well 180 7.70 2051 380 134 47 870 36 3 156 1435
70 May 10 Turnbull .............................. Well 123 7.90 2051 380 137 51 926 0 3 94 1526
73 May 10 Turnbull .........-.................--... Well 7.80 7217 2100 269 223 3872 230 3 83 6383
71 May 10 Mims ......................... ......... Well 7.90 1673 380 78 39 682 29 6 116 1125
74 May 10 Mims ----......-..---...--....-....... Well 8.40 2037 630 92 75 1247 96 5 150 2056
64 May 10 Cocoa ................................... W ell 8.15 3227 651 171 95 1457 192 9 92 2405
17 May 10 Bonaventure .-.................- Well 7.65 1974 370 76 73 963 55 0 7 1587
61 May 10 Bonaventure ...................... Well 8.15 2416 789 131 121 1549 192 16 32 2554
48 May 10 Pineda ...............-........ .... Well 7.85 1673 269 133 69 660 96 3 99 1088
76 May 10 1 Valkaria ..................-.......... Well 483 8.00 1484 290 94 74 605 144 6 107 997
44 May 9 Courtenay ... ................... Well 137 8.10 3801 789 194 122 1910 120 13 121 3149
69 May 9 Courtenay ....................-....... Well 8.20 7217 1649 237 247 3596 288 6 96 5928
33 May 9 Courtenay ........................... -Well 8.25 3192 668 185 98 1409 216 11 112 2323
65 May 9 Courtenay ........................... Well 7.70 7217 1849 267 228 3596 360 8 115 5928
67 May 9 Courtenay .......-.................... Well 210(?) 7.80 5467 1348 237 163 2637 360 5 116 4347
63 May 9 Courtenay .......................... Well 170 8.15 4935 1099 231 148 2327 288 9 115 3836
43 May 9 Courtenay ..-..-..-------............ Well 725 7.70 15000 4800 514 635 7745 1200 14 121 12768
66 May 9 Courtenay ...-........-.....-..... Well 225(?) 7.90 3605 695 194 112 1663 192 8 102 2742
62 May 9 Courtenay ............................ Well 7.90 3801 849 200 120 1778 216 9 118 2931
55 May 9 Courtenay ....................... Well 225(?) 8.15 9114 1999 292 259 4259 528 3 100 7021
56 May 9 Indianola-Merritt ............. Well 250(?) 8.40 3227 619 173 105 1512 192 8 99 2493
2 May 9 Indianola-Merritt ............ Well 685 7.80 1 2583 529 169 94 1095 168 3 97 1805
26 May 9 Indianola-Merritt .-.........-- Well 8.25 2282 409 147 78 944 144 6 105 1556
57 May 9 Indianola-Merritt ........... Well 8.00 3038 520 173 99 1379 216 6 97 2273
31 May 9 Indianola-Merritt .............. Well 8.20 2807 520 157 87 1265 168 8 84 2086
15 May 9 Indianola-Merritt .............. Well 8.10 2961 580 163 97 1228 182 8 112 2025
3 May 9 Indianola-Merritt ............. Well 7.80 3115 695 171 99 1361 192 8 116 2244
32 May 9 Indianola-Merritt .............. Well I 8.20 3192 685 169 96 1398 168 11 112 2305
35 May 9 Indianola-Merritt .......-... Well I 310 1 8.20 I 3115 610 173 95 1342 216 9 100 2212
14 May 9 Indianola-Merritt .............. Well I 7.85 3115 630 167 103 1361 216 6 96 2244
Calculated from specific conductance.
** Calculated from chloride analysis.







CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES-(Continued).

Sam- Sample Parts per Million
pie I Date Location Source Depth pH I Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO, CO, HCO. NaC1
S_ Solids
53 May 9 Indianola-Merritt .............. Well 270 8.10 2807 541 157 87 1265 230 5 84 2086
33 May 9 Indianola-Merritt .............. Well 8.25 3192 668 185 98 1409 216 11 112 2323
4 May 9 Indianola-Merritt ............ Well 8.05 3192 685 173 97 1420 182 9 112 2341
5 May 9 Indianola-Merritt .............. Well 8.00 3192 745 181 102 1409 216 13 127 2323
6 May 9 Indianola-Merritt .-....-....... Well 7.75 3115 644 165 104 1361 192 9 102 2244
7 May 9 Indianola-Merritt ............. Well 8.00 3115 600 169 97 1342 216 8 108 2212
1 May 9 Indianola-Merritt ......-....... Well 7.85 2807 610 163 93 1210 216 6 96 1995
34 May 9 Indianola-Merritt ...........-- Well 8.20 3269 665 171 99 1457 216 9 110 2402
36 May 9 Indianola-Merritt ............. Well 8.20 2583 469 157 80 1095 144 11 108 1805
75 May 9 Indianola-Merritt ............. Well 8.20 2807 619 161 83 1287 230 6 86 2122
11 May 9 Indianola-Merritt ............ Well 8.00 2807 529 157 92 1210 182 9 115 1995
52 May 9 Indianola-Merritt .............- Well 160 7.90 2660 499 163 87 1210 144 13 112 1995
8 May 9 Indianola-Merritt .....--....-- Well 8.30 3801 810 187 126 1700 240 11 110 2803
9 May 9 Indianola-Merritt ...-..-....... Well 8.00 2870 630 139 98 1398 192 2 68 2305
25 May 9 Georgiana-Footman .......... Well 142 8.20 2352 465 140 80 963 120 8 91 1587
27 May 9 Georgiana-Footman .......... Well 255 8.25 2660 499 149 85 1114 168 3 84 1837
28 May 9 Georgiana-Footman .......... Well 131 8.35 2128 380 135 73 870 144 5 89 1435
30 May 9 Georgiana-Footman .......... Well 144 8.20 2506 469 151 82 1095 144 11 110 1805
29 May 9 Georgiana-Footman .......... Well 8.30 2737 520 157 88 1210 144 11 118 1995
13 May 9 Georgiana-Footman .......... Well 8.35 2737 570 155 92 1191 168 9 116 1964
12 May 9 Lotus ................................... Well 8.10 2807 649 163 92 1228 182 6 121 2025
37 May 9 Lotus ........-....-................-- .. Well 7.80 2128 370 145 70 889 154 13 102 1465
17 May 9 Lotus ... ........ .................... Well 7.65 1974 370 76 73 963 55 0 7 1587
18 May 9 Lotus ................................. Well 7.90 2051 361 135 77 870 154 3 86 1435
38 May 9 Lotus .................................. Well 7.85 1974 281 139 75 834 168 6 97 1374
39 May 9 Lotus ....-......-- ..-................. Well 7.75 2051 359 133 72 870 120 8 97 1435
40 May 9 Lotus ................................... Well 8.00 2051 359 139 70 889 120 3 92 1465
19 May 9 Lotus .........------- ................... Well 8.20 2051 361 130 82 852 144 9 108 1404
20 May 9 Lotus ........................-- ...... Well 7.50 2128 371 210 27 834 204 6 84 1374
21 May 9 Lotus -.--........................ I Well 8.20 2051 361 132 81 834 120 5 89 1374
72 May 9 Tropic ...---......-- ..-.........----- Well 8.10 1596 290 131 63 642 120 13 118 1058
23 May 9 Tropic .....---..-..-...-..............-. Well 8.25 1673 281 128 63 642 120 6 96 1058
24 May 9 Tropic ........--------......--.......... Well 8.25 1673 281 120 64 642 120 5 96 1058
41 May 9 Tropic ---.....----.................... IWell 8.25 1484 200 122 55 583 120 3 92 962
60 May 9 Grantt -................-.............. Well 8.05 763 110 62 43 225 34 11 140 371
58 May 9 Grantt .-.......-...--....-- ..--........ Well 8.00 1176 184 82 57 454 34 11 131 748
59 May 9 Grantt .. ........................ Well 8.25 1022 184 73 54 376 84 8 135 620
"t On island east of Grant.





CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES--(Continued).

Sam- Sample_ P arts per Million ___
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO, CO, HCO3 NaC1
S ___ Solids
INDIAN RIVER COUNTY

113 May 10 Oslo ............. ............... Well 8.25 1134 190 56 46 369 86 16 141 608
108 May 10 Oslo ................................... Well 8.00 1141 209 51 59 376 120 13 150 620
109 May 10 Oslo .............................. Well 7.90 833 136 49 47 225 72 13 159 371
110 May 10 Oslo .................................. Well 7.70 952 145 51 54 247 57 13 150 407
120 May 10 Northwest of Vero Beach.. Well 7.75 910 136 49 57 266 38 14 145 438
121 May 10 Northwest of Vero Beach.. Well 8.00 875 136 53 47 266 60 16 148 438
130 May 10 Northwest of Vero Beach. Well 7.60 1442 239 88 63 527 230 8 105 870
116 May 10 Northwest of Vero Beach.. Well 7.70 952 136 65 48 491 48 14 137 809
104 May 10 Northwest of Vero Beach.. Well 7.60 1176 200 69 62 417 72 9 131 687
105 May 10 Northwest of Vero Beach.. Well 7.80 1176 221 71 62 435 72 11 135 717
139 May 10 Northwest of Vero Beach. Well 8.40 1218 200 65 68 417 144 13 137 687
140 May 10 Northwest of Vero Beach.. Well 7.85 1176 196 69 61 376 168 6 115 620
128 May 10 Northwest of Vero Beach_ Well 770 7.75 1134 200 71 54 398 192 8 121 657
106 May 10 Northwest of Vero Beach. Well 7.80 987 166 51 58 321 58 13 150 529
118 May 10 Northwest of Vero Beach.. Well 7.80 952 136 47 58 284 62 9 135 468
119 May 10 Northwest of Vero Beach.. Well 7.80 952 136 49 49 284 58 16 154 468
133 May 10 Northwest of Vero Beach.. Well 7.90 1253 200 69 59 417 192 9 99 687
126 May 10 Northwest of Vero Beach. Well 720 7.75 1134 196 67 60 376 58 13 137 620
107 May 10 Northwest of Vero Beach.. Well 7.80 1407 170 96 68 527 120 16 124 870
136 May 10 Northwest of Vero Beach.. Well 7.95 987 136 53 55 284 173 13 159 468
131 May 10 Northwest of Vero Beach. Well 7.90 1064 170 63 59 339 144 14 139 559
117 May 10 Southwest of Vero Beach.. Well 7.90 1071 184 78 51 376 62 16 143 620
135 May 10 Southwest of Vero Beach.. Well 8.10 1365 260 65 59 472 192 9 99 778
125 May 10 Southwest of Vero Beach.. Well 550 7.85 1134 154 57 60 376 77 16 139 620
137 May 10 Southwest of Vero Beach.. Well 7.90 1253 239 78 58 435 192 9 110 717
138 May 10 Southwest of Vero Beach. Well 7.90 987 136 63 47 302 144 9 123 499
112 May 10 Southwest of Vero Beach. Well 7.80 952 124 53 52 284 58 13 142 468
124 May 10 Southwest of Vero Beach.. Well 7.80 1064 184 51 60 339 58 16 145 559
111 May 10 Southwest of Vero Beach.. Well 7.80 987 184 55 52 302 58 13 151 499
115 May 10 Southwest of Vero Beach. Well 7.70 1022 145 57 53 321 58 13 150 529
122 May 10 Southwest of Vero Beach.. Well 7.65 1134 170 70 57 397 84 13 151 655
123 May 10 Southwest of Vero Beach.. Well 7.55 1141 175 67 56 397 103 10 157 655
103 May 10 Southwest of Vero Beach.- Well 7.30 1141 187 62 53 378 120 13 154 624
132 May 10 Southwest of Vero Beach.. Well 7.50 1141 172 73 55 388 84 11 154 639






CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIEs-(Continued).

Sam- Sample _____Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg C1 SO, COs HCO, NaCI
Solids
129 May 10 Southwest of Vero Beach.. Well 7.70 1134 200 69 66 398 216 9 118 657
102 May 10 Southwest of Vero Beach.. Well 7.60 1218 230 67 66. 454 96 8 121 748
101 May 10 Southwest of Vero Beach.. Well 7.60 910 170 59 55 284 144 13 145 468
114 May 10 Southwest of Vero Beach.. Well 7.70 1288 230 88 56 454 72 8 124 748
ST. LUCIE COUNTY
204 May 8 Ft. Pierce Farms ........... Well 7.80 1253 228 64 50 381 197 25 141 629
217 May 8 Ft. Pierce Farms ............. Well 8.15 1176 230 63 54 358 180 16 162 590
218 May 8 Ft. Pierce Farms ............. Well 7.90 1176 281 53 48 302 192 13 164 499
222 May 8 Ft. Pierce Farms ............ Well 7.90 1176 260 45 41 284 247 19 182 468
215 May 8 Ft. Pierce Farms ............ Well 600(?) 7.90 1365 269 88 68 472 134 16 147 778
208 May 8 Ft. Pierce Farms ........... Well 7.70 1176 196 78 58 376 125 11 143 620
209 May 8 Ft. Pierce Farms ........... Well I 8.10 1253 226 53 59 458 108 13 90 756
210 May 8 Ft. Pierce Farms ......... Well 8.05 1253 239 82 63 417 125 16 143 687
127 May 8 Ft. Pierce Farms ........... Well 700 7.30 1218 187 78 56 416 101 10 151 686
212 May 8 Ft. Pierce .......-............. Well 600 7.45 1064 165 60 44 303 121 10 167 499
205 May 8 Ft. Pierce ..................... Well 920 7.70 1027 195 44 48 407 60 13 109 671
230 May 8 Ft. Pierce .................... Well 7.80 1519 320 73 60 527 134 8 118 870
232 May 8 Ft. Pierce ...................... Well 7.90 1064 230 51 45 284 168 20 164 468
235 May 8 Ft. Pierce ....................... Well 7.70 1253 260 47 49 421 144 16 93 694
202 May 8 Ft. Pierce ..................... Well 650(?) 7.65 1022 206 37 39 283 149 14 299 467
201 May 8 Ft. Pierce ..................-.. Well 962 8.05 1407 230 76 62 454 154 6 127 748
213 May 8 Ft. Pierce ........................... Well 680(?) 7.85 1442 269 82 54 491 150 22 121 809
214 May 8 Ft. Pierce ........................ Well 7.80 1176 230 65 56 321 134 17 153 529
206 May 8 White City .................... Well 7.60 1750 340 73 57 605 220 9 137 997
207 May 8 White City .................... Well 700 7.80 1673 329 67 67 568 235 16 150 936
229 May 8 White City .................... Well 830 8.00 2807 699 69 79 1040 384 22 180 1715
203 May 8 Header Canal-Orange Ave. Well 1100(?) 7.65 1673 320 43 63 623 134 8 113 1028
251 May 8 Header Canal-Orange Ave. Well 7.75 2205 409 114 83 907 192 17 127 1496
252 May 8 Header Canal-Orange Ave. Well 7.75 1974 380 116 68 775 192 16 127 1277
253 May 8 Header Canal-Orange Ave. Well 7.65 1820 350 110 74 719 149 16 134 1186
254 May 8 Header Canal-Orange Ave. Well 7.70 1253 184 71 49 398 149 17 153 657
227 May 8 Header Canal-Orange Ave. Well 7.90 910 200 57 45 243 125 13 142 401
226 May 8 Header Canal-Orange Ave. Well 7.80 819 184 51 38 188 120 9 127 310
219 May 8 Header Canal-Orange Ave. Well 900 8.20 1064 166 55 49 339 108 6 105 559
255 May 8 Header Canal-Orange Ave. Well 7.60 1631 170 96 63 587 192 8 96 967





CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES- (Continued).

Sam- Sample Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO, CO HCO, NaC1
Solids

256 May 8 Header Canal-Orange Ave. Well 7.70 1141 260 67 49 358 134 8 163 590
257 May 8 Header Canal-Orange Ave. Well 7.80 714 90 69 23 151 108 8 126 249
258 May 8 Header Canal-Orange Ave. I Well 8.10 1519 260 78 61 527 149 11 131 870
238 May 8 Okeechobee Road .............. Well 7.70 1407 269 78 55 509 113' 8 116 839
239 May 8 Okeechobee Road ........ Well 7.80 1897 380 90 72 738 134 6 108 1216
240 May 8 Okeechobee Road ........... Well 7.90 1673 290 71 66 586 125 9 99 967
241 May 8 Okeechobee Road ........ Well 8.30 1141 221 53 28 398 48 9 124 657
242 May 8 Okeechobee Road ............ Well 7.70 2352 460 104 81 926 168 6 108 1526
243 May 8 Okeechobee Road .........-. Well 7.50 2352 430 98 83 907 192 6 102 1496
244 May 8 Okeechobee Road .......... Well 7.70 1820 340 88 66 701 161 9 107 1155
245 May 8 Okeechobee Road ........... Well 7.65 1820 340 84 67 682 161 13 134 1125
246 May 8 Okeechobee Road .......... Well 7.80 1330 260 57 55 435 149 16 148 717
247 May 8 Okeechobee Road ...... .. Well 7.75 1330 239 65 54 454 161 11 127 748
248 May 8 Okeechobee Road ............ Well 800 7.80 1253 221 61 47 376 161 19 150 620
249 May 8 Okeechobee Road ..........-. I Well 7.75 987 170 53 37 266 161 16 161 438
250 May 8 Okeechobee Road --..... ------ Well 7.70 2205 380 114 80 834 180 13 129 1374
231 May 8 Okeechobee Road ............ Well 900 8.15 1407 345 37 56 553 113 11 107 912
223 May 8 Okeechobee Road .......------. Well 7.80 1897 400 92 72 738 161 8 131 1216
216 May 8 Okeechobee Road ......-...-- Well 700 8.10 1974 380 96 76 756 161 13 121 1246
234 May 8 Okeechobee Road .......-- .... Well 800 7.60 1519 290 82 60 720 125 16 109 1186
224 May 8 Okeechobee Road .....-.....- I Well 8.20 1407 281 63 58 435 180 13 156 717
211 May 8 Okeechobee Road ...--....... Well 1000(?) 7.65 2128 400 108 48 794 192 13 131 1307
221 May 8 Viking ................................ Well 7.45 945 150 52 43 246 120 16 164 406
225 May 8 Stuart ........-........................ Well 8.20 3570 869 82 110 1494 300 16 160 2463
236 May 8 Ft. Pierce Beach ............... Well 7.70 2660 520 82 95 1058 211 17 132 1745
PINELLAS COUNTY

312 May 24 Dunedin ................. ........... Well 217 7.60 385 37 36 10 55 12 6 164 91
311 May 24 Dunedin ............................... Well 289 7.40 350 20 38 10 30 0 6 199 49
310 May 24 Dunedin ...........................--- .. Well 269 7.50 455 42 41 12 78 12 16 173 128
313 May 24 Palm Harbor .................-.... Well 199 7.80 1410 280 82 28 531 77 6 93 875
314 May 24 Palm Harbor ......-............-- Well 285 7.75 574 86 61 11 151 48 6 106 249
315 May 24 Palm Harbor ........-............. Well 110 7.80 532 70 67 9 122 60 10 115 201
316 May 24 Palm Harbor .-.........-.......... Well 300 7.70 1376 285 80 32 509 96 6 99 839
317 May 24 Palm Harbor ................... Well 7.60 2280 475 108 55 926 120 3 99 1526







CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES- (Continued).

Sam-i Sample Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO4 CO. HCO3 NaCI
_Solids
301 May 24 Largo --.............................. Well 8.40 470 39 53 21 93 12 19 176 153
309 May 24 Largo .............................-..... Well 343 7.30 1140 140 108 32 417 38 6 145 687
319 June 19 Largo .................--- ................ Well 201 7.90 217 0 39 7 18 0 6 132 30
318 June 19 Largo ..............--- ..-.....--- ..-- Well 7.60 588 45 68 20 133 0 19 173 219
302 May 24 Indian Rocks ...-..-..--......... Well 265 6.98 3420 590 246 67 1626 38 3 151 2681
303 May 24 Indian Rocks .-- -....--------. Well 286 7.10 1670 230 104 54 634 12 3 154 1045
304 May 24 Indian Rocks ...-..-........... Well 271 7.20 392 20 41 26 37 48 13 157 61
305 May 24 Indian Rocks .-....--...... I Well 290 7.35 392 25 32 26 30 7 19 228 49
306 May 24 Indian Rocks .....-.....-........ Well 7.35 1060 105 84 35 162 12 13 183 267
320 May 26 Safety Harbor ............... Well 169 7.80 910 155 59 18 269 48 10 138 444
307 May 24 Seminole ....-...------------..-..- Well 320 7.30 645 42 68 25 155 12 16 215 255
308 May 24 Seminole ........-----------....--. Well 240 7.90 168 20 26 5 184 7 6 84 304
321 May 26 St. Petersburg ................. Well 34 7.00 182 10 22 2 52 0 0 10 85
HILLSBOROUGH COUNTY

400 June 19 Chaoman .......................... Lake 17.50 77 20 6 0.4 10 0 0 7 16
CHARLOTTE COUNTY

500 June 9 Shell Creek ........-................ Well .425(?) 7.50 1975 345 133 77 733 221 8 90 1208
501 June 9 Shell Creek ......................... Well 425(?) 7.70 2280 392 159 82 822 771 6 112 1356
502 June 9 Shell Creek .......-......-...-....... Well 7.50 2390 455 169 91 911 312 6 112 1502
503 June 9 I Shell Creek .........................- Well 912 7.20 2205 370 144 81 815 252 3 84 1344
504 June 9 Shell Creek .......................- Well 575(?) 7.30 1975 368 124 75 819 204 2 77 1350
505 June 9 Shell Creek -................-...... Well 611 7.60 1673 265 116 69 575 235 13 141 948
506 June 9 Alligator Creek .--......-...... Well 550(?) 7.35 2810 515 182 105 1143 259 3 87 1884
507 June 9 Alligator Creek ..-..-.........--- Well 8.15 1010 158 67 45 302 48 16 145 499
508 June 9 Alligator Creek .....-.....------- Well 800(?) 8.60 2740 530 131 94 1154 206 0 48 1903
509 June 9 Alligator Creek ..-.............. Well 7.75 3040 570 187 113 1342 312 6 115 2212
510 June 9 Charlotte Beach ................. Well 7.70 5240 1180 241 195 2109 504 6 87 3477
LEE COUNTY
606 June 8 Pine Island .--...---............. Well 7.50 2430 495 94 90 907 312 13 154 1496
607 June 8 Pine Island .-.....-....-........... Well I 7.60 2580 530 91 95 974 271 10 170 1605
600 June 8 Ft. Myers ............................ I Well 650 7.65 2430 448 115 97 907 240 10 135 1496
601 June 8 Ft. Myers ........................... Well 800 7.60 I 2430 425 130 101 885 307 13 145 1459






CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES--(Continued).

Sam- Sample Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg C1 SO CO8 HCO NaC1
Solids

602 June 8 Ft. Myers ........................ Well 800 7.80 1554 270 82 70 457 264 16 180 754
603 June 8 Tice ............................... Well 850 7.65 2350 430 131 93 878 324 10 122 1447
604 June 8 Tice .................................... Well 800 7.70 1670 335 71 61 483 379 15 167 796
605 June 8 Buckingham ................... Well 700 7.55 2205 400 109 85 767 348 10 135 1265
608 June 8 Salvista ............................. Well 670 7.30 2020 362 97 89 708 305 0 96 1167
MANATEE COUNTY

716 June 15 Piney Point ..................... Well 7.60 833 25 114 53 85 228 10 112 140
717 June 15 Piney Point ....................... Well 7.65 644 15 96 43 48 137 10 145 79
715 June 15 Rubonia ........................ Well 7.50 1175 82 167 74 180 432 8 79 297
718 June 15 Rubonia ......................... Well 800 7.70 1100 95 149 66 181 480 10 157 298
712 June 15 Palmetto ...... ................... Well 600(?) 7.50 1140 40 207 81 94 497 19 122 156
713 June 15 Palmetto ......................... Well 7.65 1365 78 206 94 221 420 13 138 365
714 June 15 Palmetto .............................. Well 7.50 1020 28 171 71 81 420 6 148 134
719 June 15 Ellenton .............................. Well 7.45 890 19 156 64 33 528 3 135 55
725 June 15 Ellenton ......................... Well 7.50 987 28 180 68 44 583 0 128 73
720 June 15 Terra Ceia Junction ......... Well 7.55 833 19 134 56 30 463 8 141 49
721 June 15 Terra Ceia Junction .......... Well 7.80 686 19 102 52 22 384 3 115 37
722 June 15 Terra Ceia Junction .......... Well 7.50 777 19 135 56 30 451 2 135 49
723 June 15 Parrish ................................. Well 7.85 441 9 61 28 30 127 10 145 49
724 June 15 Parrish ................................ Well 7.75 497 12 60 35 18 178 3 145 30
700 June 14 South Bradenton ............. Well 600 + 7.60 1060 21 187 68 81 590 6 132 134
701 June 14 South Bradenton .............. Well 800 7.70 833 0 141 54 479 432 0 125 790
703 June 14 South Bradenton ............. Well 7.75 1230 70 189 72 203 516 2 122 334
702 June 14 Tallevast ......................... Well 823 7.60 910 23 141 62 81 463 0 145 134
704 June 14 Palma Sola Bay ........... Creek 7.55 1155 90 186 39 262 137 16 206 432
706 June 14 Palma Sola Bay ............ Creek 7.25 1100 80 178 34 236 125 19 206 389
705 June 14 Palma Sola Bay ............... Well 7.60 2430 360 242 116 822 480 0 35 1356
707 June 14 Palma Sola Bay ........... Well 7.35 2280 260 289 103 634 473 16 109 1046
708 June 14 Palma Sola Bay ............ Well 750(?) 7.45 987 35 117 66 140 199 6 138 231
709 June 14 Palma Sola Bay ................ Well 400(?) 7.70 987 20 150 78 78 398 3 141 128
710 June 14 Palma Sola Bay ............ Well 7.40 1100 65 137 69 181 252 3 164 298
711 June 14 Palma Sola Bay .............. Well 600 7.75 833 45 89 56 96 156 0 135 158









CHEMICAL ANALYSIS OF IRRIGATION WATERS FROM 55 FLORIDA LOCALITIES- (Continued).

Sam- Sample Parts per Million
pie Date Location Source Depth pH Total
No. 1950 Feet Dissolved Na Ca Mg Cl SO4 COs HCO. NaC1
Solids
SARASOTA COUNTY

800 June 14 East Sarasota ................... Well 643 7.50 833 25 134 61 30 480 2 138 49
801 June 14 East Sarasota ................... Well 686 7.40 1150 28 266 97 44 713 6 145 73
802 June 14 East Sarasota .................... Well 684 7.35 1520 59 311 125 118 1152 2 132 195
803 June 14 East Sarasota ................... Well 561 7.45 910 39 158 66 63 480 13 160 103
805 June 5 East Sarasota ............ Well 800 8.10 875 38 135 72 37 504 2 93 61
806 June 15 East Sarasota .........-.. Well 700(?) 7.40 2280 245 307 120 520 984 0 132 857
807 June 15 East Sarasota .............-. Well 7.60 798 28 118 58 516 425 2 96 857
808 June 15 East Sarasota ................... Well 7.45 798 24 119 52 479 403 3 141 790
809 June 15 East Sarasota ................. Well 8.20 644 40 81 52 369 336 3 96 608
810 June 15 East Sarasota ................. Creek 7.45 798 42 126 50 81 360 13 138 134
804 June 14 Bee Ridge ..........--......-..... Well 600 7.50 686 35 78 50 37 295 3 170 61
811 June 15 Nakomis ...................-- ...- Well 700 7.40 2130 95 491 50 188 1503 6 106 310
812 June 15 Nakomis .................-..-.... Well 600 7.35 1975 72 449 152 166 1464 3 112 274
813 June 15 Nakomis .................-..-- -.... Well 400(?) 7.55 1820 45 463 149 100 1526 16 84 164
814 June 15 Osprey ........................... .... Well 350 7.40 1975 70 455 151 155 1440 10 90 255

POLK COUNTY

900 Aug. 11 Lake Hartridge ................. Lake 6.55 70 5.1 2.4 2.7 18.8 16.8 0 3.1 31
901 Aug. 11 Lake Haines .......--.......-....... Lake 6.90 70 5.7 6.4 3.0 18.8 31.2 0 15.9 31
902 Aug. 11 Lake Hamilton ...........-....... Lake 7.20 70 5.7 6.4 2.6 18.8 19.2 0 15.9 31
903 Aug. 11 Lake Star .......................... Lake 7.00 35 5.1 1.4 3.8 9.6 19.2 0 9.8 16
904 Aug. 11 Lake Eloise ....................... Lake 6.95 84 5.7 3.2 3.2 18.8 21.6 0 12.8 31
905 Aug. 11 Lake Mirror ....................... Lake 7.10 98 7.7 6.4 5.3 18.8 31.2 0 22.6 31
906 Aug. 11 Lake Arianna ...................-- Lake 7.15 70 6.6 3.2 4.0 13.9 23.0 0 17.5 23
907 Aug. 11 Lake Alfred ..................... Lake 6.80 70 8.6 3.2 3.2 18.8 24.0 0 9.8 31
910 Aug. 11 Lake Idlewild ...................... Lake 6.75 56 9.0 3.2 3.2 9.6 26.4 0 9.8 16
908 Aug. 11 Experiment Station "40".. Well 7.65 221 5.5 29.2 5.6 9.6 2.4 0 107.5 16
920 Aug. 11 Experiment Station "40".. Well 7.40 168 8.1 37.2 7.1 6.2 2.4 0 144 10





University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs