• TABLE OF CONTENTS
HIDE
 Title Page
 Table of Contents
 List of Figures
 List of Tables
 Summary
 Introduction
 Materials and methods
 Results
 Conclusions
 References
 Acknowledgement
 Appendix
 Title Page
 Table of Contents
 Introduction and overview
 Raw data
 Quality assurance/quality control...
 Reproducibility studies
 Appendix






Title: Spatial and temporal distribution of mercury in Everglades and Okefenokee wetland sediments
CITATION THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00017055/00001
 Material Information
Title: Spatial and temporal distribution of mercury in Everglades and Okefenokee wetland sediments final project report, April 1, 1991-June 30, 1993
Physical Description: 2 v. : ill., maps ; 28 cm.
Language: English
Creator: Delfino, Joseph J.
Crisman, Thomas L.
South Florida Water Management District (Fla.)
Geological Survey (U.S.)
Florida -- Dept. of Environmental Regulation
Publisher: Dept. of Environmental Engineering Sciences, University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 1993
 Subjects
Subject: Mercury -- Toxicology -- Florida -- Everglades   ( lcsh )
Mercury -- Toxicology -- Okefenokee Swamp (Ga. and Fla.)   ( lcsh )
Water -- Pollution -- Florida -- Everglades   ( lcsh )
Water -- Pollution -- Okefenokee Swamp (Ga. and Fla.)   ( lcsh )
Everglades (Fla.)   ( lcsh )
Okefenokee (Ga. and Fla.)   ( lcsh )
Genre: bibliography   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
non-fiction   ( marcgt )
 Notes
Bibliography: Includes bibliographical references (v. 1, p. 120-140).
General Note: "June 30, 1993."
General Note: "Jointly funded by South Florida Water Management District, contract number: C91-2237; U.S. Geological Survey, grant number: 14-08-0001-G-2012; Florida Department of Environmental Regulation: contract number: WM415."
Statement of Responsibility: Joseph J. Delfino and Thomas L. Crisman, principal investigators ... et al.
 Record Information
Bibliographic ID: UF00017055
Volume ID: VID00001
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: ltqf - AAA9717
notis - AJQ7907
alephbibnum - 001833787
oclc - 28483413

Table of Contents
    Title Page
        Page A-i
    Table of Contents
        Page A-ii
    List of Figures
        Page A-iii
    List of Tables
        Page A-iv
    Summary
        Page A-1
        Page A-2
    Introduction
        Page A-3
        Page A-4
        Page A-5
        Page A-6
    Materials and methods
        Page A-7
        Page A-8
        Page A-9
        Page A-10
        Page A-11
        Page A-12
        Page A-13
        Page A-14
        Page A-15
        Page A-16
    Results
        Page A-17
        Page A-18
        Page A-19
        Page A-20
        Page A-21
        Page A-22
        Page A-23
        Page A-24
        Page A-25
        Page A-26
        Page A-27
        Page A-28
        Page A-29
        Page A-30
        Page A-31
        Page A-32
        Page A-33
        Page A-34
        Page A-35
        Page A-36
        Page A-37
        Page A-38
        Page A-39
        Page A-40
        Page A-41
        Page A-42
        Page A-43
        Page A-44
        Page A-45
        Page A-46
        Page A-47
        Page A-48
        Page A-49
        Page A-50
        Page A-51
        Page A-52
        Page A-53
        Page A-54
        Page A-55
        Page A-56
        Page A-57
        Page A-58
        Page A-59
        Page A-60
        Page A-61
        Page A-62
        Page A-63
        Page A-64
        Page A-65
        Page A-66
        Page A-67
        Page A-68
        Page A-69
        Page A-70
        Page A-71
        Page A-72
        Page A-73
        Page A-74
        Page A-75
        Page A-76
        Page A-77
        Page A-78
        Page A-79
        Page A-80
        Page A-81
        Page A-82
        Page A-83
        Page A-84
        Page A-85
        Page A-86
        Page A-87
        Page A-88
        Page A-89
        Page A-90
        Page A-91
        Page A-92
        Page A-93
        Page A-94
        Page A-95
        Page A-96
        Page A-97
        Page A-98
        Page A-99
        Page A-100
    Conclusions
        Page A-101
        Page A-102
    References
        Page A-103
        Page A-104
        Page A-105
        Page A-106
        Page A-107
        Page A-108
        Page A-109
    Acknowledgement
        Page A-110
    Appendix
        Page A-111
        Page A-112
        Page A-113
        Page A-114
        Page A-115
        Page A-116
        Page A-117
        Page A-118
        Page A-119
        Page A-120
        Page A-121
        Page A-122
        Page A-123
        Page A-124
        Page A-125
        Page A-126
        Page A-127
        Page A-128
        Page A-129
        Page A-130
        Page A-131
        Page A-132
        Page A-133
        Page A-134
        Page A-135
        Page A-136
        Page A-137
        Page A-138
        Page A-139
        Page A-140
    Title Page
        Page B-i
        Page B-ii
    Table of Contents
        Page B-iii
    Introduction and overview
        Page B-1
        Page B-2
        Page B-3
        Page B-4
    Raw data
        Page B-5
        Page B-6
        Page B-7
        Page B-8
        Page B-9
        Page B-10
        Page B-11
        Page B-12
        Page B-13
        Page B-14
        Page B-15
        Page B-16
        Page B-17
        Page B-18
        Page B-19
        Page B-20
        Page B-21
        Page B-22
        Page B-23
        Page B-24
        Page B-25
        Page B-26
        Page B-27
        Page B-28
        Page B-29
        Page B-30
        Page B-31
        Page B-32
        Page B-33
        Page B-34
        Page B-35
        Page B-36
        Page B-37
        Page B-38
        Page B-39
        Page B-40
        Page B-41
        Page B-42
        Page B-43
        Page B-44
        Page B-45
        Page B-46
        Page B-47
        Page B-48
        Page B-49
        Page B-50
        Page B-51
        Page B-52
        Page B-53
        Page B-54
        Page B-55
        Page B-56
        Page B-57
        Page B-58
        Page B-59
        Page B-60
        Page B-61
        Page B-62
        Page B-63
        Page B-64
        Page B-65
        Page B-66
        Page B-67
        Page B-68
        Page B-69
        Page B-70
        Page B-71
        Page B-72
        Page B-73
        Page B-74
        Page B-75
        Page B-76
        Page B-77
        Page B-78
        Page B-79
        Page B-80
        Page B-81
        Page B-82
        Page B-83
        Page B-84
        Page B-85
        Page B-86
        Page B-87
        Page B-88
        Page B-89
        Page B-90
        Page B-91
        Page B-92
        Page B-93
        Page B-94
        Page B-95
        Page B-96
        Page B-97
        Page B-98
        Page B-99
        Page B-100
        Page B-101
        Page B-102
        Page B-103
        Page B-104
        Page B-105
        Page B-106
        Page B-107
        Page B-108
        Page B-109
        Page B-110
        Page B-111
        Page B-112
        Page B-113
        Page B-114
        Page B-115
        Page B-116
        Page B-117
        Page B-118
        Page B-119
        Page B-120
        Page B-121
        Page B-122
        Page B-123
        Page B-124
        Page B-125
        Page B-126
        Page B-127
        Page B-128
        Page B-129
        Page B-130
        Page B-131
        Page B-132
        Page B-133
        Page B-134
        Page B-135
        Page B-136
        Page B-137
        Page B-137-1
        Page B-137-2
        Page B-137-3
        Page B-137-4
        Page B-137-5
        Page B-137-6
        Page B-137-7
        Page B-137-8
        Page B-137-9
        Page B-137-10
        Page B-137-11
        Page B-137-12
        Page B-137-13
        Page B-137-14
        Page B-137-15
        Page B-137-16
        Page B-137-17
        Page B-137-18
        Page B-137-19
        Page B-137-20
        Page B-137-21
        Page B-137-22
        Page B-137-23
        Page B-137-24
        Page B-137-25
        Page B-137-26
        Page B-137-27
        Page B-137-28
        Page B-137-29
        Page B-137-30
        Page B-137-31
        Page B-137-32
        Page B-137-33
        Page B-137-34
        Page B-137-35
        Page B-137-36
        Page B-137-37
        Page B-137-38
        Page B-137-39
        Page B-137-40
        Page B-137-41
        Page B-137-42
        Page B-137-43
        Page B-137-44
        Page B-137-45
        Page B-137-46
        Page B-137-47
        Page B-137-48
        Page B-137-49
        Page B-137-50
        Page B-137-51
        Page B-137-52
        Page B-137-53
        Page B-137-54
        Page B-137-55
        Page B-137-56
        Page B-137-57
        Page B-137-58
        Page B-137-59
        Page B-137-60
        Page B-137-61
        Page B-137-62
        Page B-137-63
        Page B-137-64
        Page B-137-65
        Page B-137-66
        Page B-137-67
        Page B-137-68
        Page B-137-69
        Page B-137-70
        Page B-137-71
        Page B-137-72
        Page B-137-73
        Page B-137-74
        Page B-137-75
        Page B-137-76
        Page B-138
    Quality assurance/quality control trends
        Page B-139
        Page B-140
        Page B-141
        Page B-142
        Page B-143
        Page B-144
        Page B-145
        Page B-146
        Page B-147
        Page B-148
        Page B-149
        Page B-150
        Page B-151
        Page B-152
        Page B-153
        Page B-154
        Page B-155
        Page B-156
        Page B-157
        Page B-158
        Page B-159
        Page B-160
        Page B-161
        Page B-162
        Page B-163
        Page B-164
        Page B-165
        Page B-166
        Page B-167
        Page B-168
        Page B-169
        Page B-170
        Page B-171
        Page B-172
        Page B-173
        Page B-174
        Page B-175
        Page B-176
        Page B-177
        Page B-178
        Page B-179
        Page B-180
        Page B-181
        Page B-182
        Page B-183
        Page B-184
        Page B-185
        Page B-186
        Page B-187
        Page B-188
        Page B-189
        Page B-190
    Reproducibility studies
        Page B-191
        Page B-192
        Page B-193
        Page B-194
        Page B-195
        Page B-196
        Page B-197
        Page B-198
        Page B-199
        Page B-200
        Page B-201
        Page B-202
    Appendix
        Page B-203
        Page B-204
        Page B-205
        Page B-206
        Page B-207
Full Text




SPATIAL AND TEMPORAL DISTRIBUTION OF MERCURY IN
EVERGLADES AND OKEFENOKEE WETLAND SEDIMENTS

Final Project Report
April 1, 1991-June 30,1993

VOLUME 1

Jointly Funded by

South Florida Water Management District
Contract Number: C91-2237

U.S. Geological Survey
Grant Number: 14-08-0001-G-2012

Florida Department of Environmental Regulation
Contract Number: WM415


Joseph J. Delfino, Ph.D.
Thomas L. Crisman, Ph.D.
Principal Investigators

Johan F. Gottgens, Ph.D.
Post Doctoral Associate

Brian E. Rood, M.S.
Project Coordinator
Graduate Research Assistant

Celia D. A. Earle
Graduate Research Assistant


Department of Environmental Engineering Sciences
University of Florida
Gainesville, FL 32611


June 30, 1993


L







TABLE OF CONTENTS


Summary 1

I. Introduction 3
A. Background 3
B. Present Study 4

II. Materials and Methods 7
A. Site Selection 7
B. Field Sampling 7
C. Total Mercury 11
D. Organic Mercury 11
E. Percent Solids 12
F. Bulk Density 12
G. Radio-isotope Analyses 13
H. Carbon 14
1. Total Carbon 14
2. Inorganic Carbon 15
3. Organic Carbon 15
I. Additional Trace Metals 15

III. Results 17
A. Water Quality 17
B. Sediment Geochronology 17
1. Sediment Dating Acceptance Criteria 20
2. Sediment Mercury Geochronology 56
3. Error Analysis of Sediment Dating 77
C. Sediment Mercury Concentrations 84
1. Comparison of Recent and Historic Mercury 84
Concentrations
2. Post-Depositional Mobility of Mercury 88
3. Error Analysis of Mercury Determinations 89
4. Spatial Distribution of Mercury in the Everglades 90
5. Mercury Speciation 93
6. Relationships Between Mercury Concentration 95
and Selected Water and Sediment Parameters
a. Mercury-Sediment Carbon Relationships 95
b. Mercury-Water Conductivity Relationship 96
D. Supplementary Sediment Metals Determinations 96

IV. Conclusions 101

V. References 103

VI. Acknowledgements 110

VII. Appendix 111








LIST OF FIGURES


Figure Description

1 Geographic distribution of wetland study sites
2 Sample locations in the Florida Everglades
3 Sample locations in the Okefenokee Swamp
4 Sample locations in the Savannas Marsh
5A Cumulative residual unsupported 210Pb (pCi cm2) for all cores
analyzed radiochemically
5B 2'0Pb determined age of the core sections with peak activity of
"3Cs for dated sediment cores for each area


Water Conservation Area 1
Water Conservation Area 1
Water Conservation Area 1
Water Conservation Area 1
Water Conservation Area 1
Water Conservation Area 2
Water Conservation Area 2
Water Conservation Area 2
Water Conservation Area 3
Water Conservation Area 3
Water Conservation Area 3


- Core 1:
- Core 35:
- Core 37:
- Core 38:
- Core 40:
- Core 25:
- Core 26:
- Core 29:
- Core 13:
- Core 15:
- Core 19:


Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology
Geochronology


17 Taylor Slough Core 1, Core 2: Geochronology
18 Everglades National Park Core 7: Geochronology
19 Everglades National Park Core 9: Geochronology
20 Everglades National Park Core 11: Geochronology
21 Everglades National Park Core 12: Geochronology
22 Savannas State Reserve Core 48: Geochronology
23 Savannas State Reserve Core 49: Geochronology
24 Water Conservation Area 1 Core 1: Counting Errors
25 Everglades National Park Core 11: Counting Errors
26 Savannas State Reserve Core 49: Counting Errors
27 Water Conservation Area 1 Core 1: Monte Carlo Simulations
28 Everglades National Park Core 11: Monte Carlo Simulations
29 Savannas State Reserve Core 49: Monte Carlo Simulations
30 Spatial distribution of mercury concentrations in recent
(0-4 cm) sediment
31 Spatial distribution of mercury concentration in historic
(1900) sediment


Page No.

5
8
9
10
54

54

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
78
79
80
81
82
83
91

92







LIST OF TABLES


Table Description Page No.

1 Instrument settings for metal analyses using a Perkin Elmer 16
Model 5000 Atomic Absorption Spectrophotometer
2 Detection limits for metals determination using a Perkin Model 16
5000 Atomic Absorption Spectrophotometer (Flame Atomizer)
3 Water quality data associated with wetland sediment sample sites 18
4.1 Sediment and Mercury Analyses Water Conservation Area 1 21
4.2 Sediment and Mercury Analyses Water Conservation Area 2 27
4.3 Sediment and Mercury Analyses Water Conservation Area 3 30
4.4 Sediment and Mercury Analyses Everglades National Park 36
4.5 Sediment and Mercury Analyses Stormwater Treatment Area 43
4.6 Sediment and Mercury Analyses Savannas 44
4.7 Sediment and Mercury Analyses Okefenokee Swamp 46
5.1 Metal Analyses Water Conservation Area 1 47
5.2 Metal Analyses Water Conservation Area 2 50
5.3 Metal Analyses Water Conservation Area 3 51
5.4 Metal Analyses Everglades National Park 52
6 Recent and historic average sediment accumulation rates in cores 75
7 Recent and historic average mercury accumulation rates in cores 75
8 Comparison of total mercury concentrations in recent (0-4 cm) and 85
historic (1900) sediment
9 Comparison of mercury enrichment factors (EF) in sediment core 87
profiles
10 Comparison of trace metal concentrations in Florida Everglades 97
sediment with concentrations reported for other systems
11 The occurrence of detectable analyte in recent and pre-development 98
(1900) sediment from marl and organic sediment
12 Enrichment factors of trace metals in Everglades sediment cores 100








Summary


This study was initiated after preliminary findings were made of mercury
contamination in fish in Florida's freshwaters (Hand and Friedemann, 1990). The highest
mercury concentrations in fish were found in the Everglades and Savannas State Reserve,
as well as the Suwannee and Santa Fe rivers, which receive hydrologic inputs from the
Okefenokee Swamp. The goals of this study were to: 1) determine historical baseline
concentrations of mercury in Everglades and Okefenokee sediments, 2) determine post-
development changes in sedimentary mercury accumulation, and 3) identify the spatial
distribution of mercury throughout the Everglades.

Field sampling was performed between January, 1992 and February, 1993.
Sediment cores were retrieved and water quality measurements were taken at a variety
of sample locations (wet/dry, freshwater/saline, impacted/unimpacted). Sediment cores
were analyzed for mercury (total and extractable organic), percent solids, and bulk
density. Selected cores were analyzed for carbon (total and organic), and additional
metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn), and were chronologically analyzed (dated) by
radio-isotope analysis for 210Pb and '"Cs.

The average mercury concentration in surface sediment (0-4 cm) was 121 ng/g
(n=51, 17-411 ng/g). Mercury concentrations in surface sediment were an average of
2.5 times (0.2-10.6, n =51) higher than those deeper (11-17 cm) in the profile. The largest
increases were measured in Water Conservation Areas (WCA) 1 and 2 (3.7 times higher
for both). Surface sediments from the Okefenokee Swamp sites showed the smallest
relative increase in mercury concentration (1.4). Concentration data, however, are
vulnerable to variations in the sedimentation rates of other components in the profile. This
problem of co-variance among different sedimentary components was avoided by
measuring accumulation rates rather than concentrations of mercury, based on the results
of radio-isotope dating.

We used an acetone extraction procedure, followed by a back-extraction into
sodium thiosulfate to measure organic mercury in the sediment matrix. Extractable
organic mercury averaged 52% of the total mercury, although the variability was high (6-
100%). Some trends were identified. In light of the low methylmercury values reported
in other studies (Andren and Harris, 1973; Evans et al., 1984; Mikac and Picer, 1985;
Revis et al., 1990; Sakamoto et a., 1992), it appears likely that other chemical species,
in addition to methylmercury, were extracted. These additional species likely include low
molecular weight organomercurials (i.e. dimethyl-, ethyl-, phenyl-mercury), and inorganic
and organic mercury absorbed to, or completed with, organic matter. Different workers
report a wide range of concentrations for extractablee mercury" dependent on the
extraction procedure used.

Post-1985 mercury accumulation rate averaged 53 ug m'yr' (23-141 gpg m2yr').
Our study demonstrated an increase in mercury accumulation rate of 6.4 (1.6-19.1, n = 18)
for the 90 years since the turn of the century. Again, the largest increase occurred in
cores taken from WCA-1 and WCA-2 (7.8 and 8.7 times higher, respectively). Cores from








the Savannas State Reserve showed the smallest increase (3.4) in accumulation rate. Our
findings were similar to the trends reported for lakes in Minnesota, Wisconsin, and
Sweden. This agreement is significant, perhaps indicating a global process that leads to
similar accumulation rates over widely varying geographic regions. We provide here the
first data on accumulation of mercury in subtropical wetland systems, and propose the
feasibility of radiochemical dating of wetland cores. Matching radiochemically derived
dates with independent age markers is needed.

Mercury accumulation rates start to increase at about 1940, due perhaps to mid-
century alteration of the hydrologic structure of the Everglades and increased agricultural
and urban development to the north and east. A previous mercury emissions survey
showed that worldwide releases of mercury to the environment increased 145% between
1940 and 1950 (KBN Engineering, 1992). We cannot presently identify, however, any
direct causal relationship between changes in mercury accumulation rate and regional
human activities.








I. Introduction


I A. Background

A statewide survey of mercury concentrations in sportfish was implemented after
preliminary indications appeared of mercury contamination in Florida freshwater fish
(Hand and Friedemann, 1990). The survey revealed mercury concentrations in fish in the
Everglades (Water Conservation Areas 1 and 2) and Savannas State Reserve that
exceeded acceptable levels for human consumption. Numerous lakes, rivers, and
wetlands yielded fish with mercury concentrations sufficient to warrant limited
consumption advisories. This survey identified the magnitude of contamination of fish in
the state. However, it did not address issues regarding the origin, transport, and
availability of mercury in these habitats.

Concurrent studies of wildlife suggested that mercury is transported through the
Everglades food web and that the viability of the endangered Florida panther has been
diminished due to mercury bioaccumulation (Roelke et al., 1991). The risk to other animal
populations from mercury biomagnification has not yet been identified. The potential for
perturbations of ecosystem structure and function seems apparent.

Recent increases of mercury accumulation rate were reported for north temperate
lake systems in Sweden, Wisconsin, and Minnesota (Meger, 1986; Wiener t al., 1990;
Undqvist et al., 1991; Swain t al., 1992). Atmospheric deposition accounted for
increased.mercury accumulation rates in recent sediment (Meger, 1986). Some studies
have linked a 1.5% annual increase of atmospheric mercury concentrations (1977-1990)
(Slemr and Langer, 1992) to an estimated 2% increase in mercury deposition rates in
Wisconsin and Minnesota (Swain et al., 1992). These studies suggested that mercury
deposited on the surface and watershed of remote lake systems originated from regional
or global sources (Swain et al., 1992).

It is estimated that about 95 percent of atmospheric mercury occurs in the gaseous
elemental form, with an atmospheric residence time of 0.7-2.0 years (Nater and Grigal,
1992). Approximately five percent of atmospheric mercury is associated with particulates
(Fitzgerald et al., 1991) which can readily be deposited as dryfall or scavenged from the
atmosphere during rain episodes (Fitzgerald, 1986). Anthropogenic emissions of
elemental mercury enter the global atmospheric cycle and may be distributed far from
their source; however, particulate phase mercury from emission sources may establish
regional concentration gradients in nearby soil (Nater and Grigal, 1992).

Flooded peat soils readily accumulate trace metals by adsorption and sulfide
precipitation (Lodenius et al., 1987; Norton et a., 1990). Perturbations of the natural
hydroperiod may facilitate the release of historically accumulated mercury because of
changes in the physical properties of peat soils. Oxidation and deep cracking of dried
agricultural land may release mercury and facilitate its transport to wetland soils in runoff
(Del Debbio, 1991). Urban emissions of mercury from cement production, medical and
municipal waste incineration, fossil fuel combustion, and the burning of crop material may








contribute to atmospheric emissions and eventual deposition of mercury (Crockett and
Kinnison, 1977; Fukuzaki et al., 1986; Sengar t al., 1989; KBN Engineering, 1992).

I. B. Present Study

The Everglades, Savannas State Reserve, and the Suwannee and Santa Fe rivers
(receiving waters of the Okefenokee Swamp) exhibited elevated fish mercury
concentrations (Hand and Friedemann, 1990). These aquatic systems are unique Florida
habitats, and there is concern that mercury contamination poses a serious ecological, as
well as human health, hazard. Our study examines mercury abundance and distribution
in sediment from these systems (Figure 1).

The Everglades is "perhaps the most recognized wetland in the world, its notoriety
derived from the wealth of its biotic heritage as well as the magnitude of factors that
threaten its resources (Gunderson and Loftus, 1993)". It is a dynamic subtropical aquatic
system (5600 km2), subject to hydrologic variability, fire, and human related activities
(Blake, 1980). The Everglades are considered oligotrophic based on dominant plant
communities and ambient nutrient concentrations, and are characterized by peat soils to
the north and marl sediment to the south. Sawgrass (Cladium jamaicense) marshes
dominate large expanses of this system. The region is spotted with intermittent wet
prairies, tree islands and shallow ponds. During the past century, extensive draining of
this wetland for agriculture and diversion of water to coastal urban centers has altered its
natural hydroperiod. Regions south of Lake Okeechobee were drained for agriculture,
and canal systems were constructed to control water movement. At the present time,
some areas of the remaining Everglades are subject to prolonged dry periods while other
locations are inundated for extended periods (SFWMD, 1992).

The Okefenokee Swamp, in southeastern Georgia and northern Florida, is the
second largest wetland in the United States (1750 km2). The flat, sandy watershed of the
Okefenokee is small (1200 kmi) and siltation is negligible (Casagrande and Erchull, 1976).
As a result, precipitation serves as the predominant hydrologic input and filling of the
wetland basin is minimal. The Okefenokee consists of an "array of diverse habitats"
including lakes, wet prairies with floating peat mats (Sphagnum spp.), and Taxodium spp.
swamps that are integrated hydrologically to form one unit ecosystem. This swamp has
organic-rich soils underlain by a relatively pure white quartz sand (Casagrande and
Erchull, 1976). The relatively pristine condition of the Okefenokee Swamp permits it to
"serve as a control for comparison with other ecosystems that continue to be heavily
influenced by human activities" (Rykiel, 1984).

The Savannas State Reserve is a dynamic, linear wetland system (20 km x 2 km)
just west of the Indian River Ridge in St. Lucie and Martin counties. It is a strip of
marshlands, ponds, lakes, and islands, perched -4 m above mean sea level, and
characterized by rich inundated muck soils overlying relict sand dune on hardpan. The
marsh is dominated by broomsedge (Andropoaon virginicus), water lily (Nvmphaea
odorata), and spatterdock (Nuphar luteum) while the surrounding watershed is a pine
(Pinus elliotti) and saw palmetto (Serranoa reopens) habitat (Jurgens, 1981). This region

































Savannas


Everglades


Figure 1. Geographic distribution of wetland study sites








is considered to be "highly susceptible to damage by pollution or over enrichment of its
water" (Davis, 1990) due to its size and to encroaching development.

Our study of Everglades and Okefenokee Swamp sediment was initiated in 1991
to:

1) determine the spatial distribution of mercury throughout these systems,
2) identify historical baseline concentrations of mercury,
3) identify post-development changes in sedimentary mercury accumulation,
4) identify mercury-organic associations in wetland sediment, and
5) provide a foundation of information to serve as a basis for informed
planning and implementation of future research and management
activities.

The Savannas State Reserve site was incorporated into this study after the highest
statewide fish mercury concentrations were discovered in this system. The study arose
from concern that regional anthropogenic activities were causing elevated -mercury
concentrations in fish. An evaluation of spatial and temporal changes in sedimentary
mercury may elucidate the factors governing mercury accumulation and distribution in
these wetland systems.









II. Materials and Methods


II. A. Site Selection

The sampling sites were carefully selected to encompass a spectrum of conditions
of hydroperiod, sediment type, and human impact (agriculture, urbanization). These sites
were selected over a broad range of site conditions in an attempt to: 1) determine natural
baseline mercury content and accumulation; 2) identify human-related changes in mercury
content, accumulation, and transport; and 3) characterize associations between mercury
accumulation/distribution and selected physicochemical parameters. The sampling
strategy included sample sites in seven major hydrologic regions described as: Water
Conservation Areas 1, 2, and 3 (WCA), the Stormwater Treatment Areas (STA) within the
Everglades Agricultural Area (EAA), and the Everglades National Park (ENP)(Figure 2)';
the Okefenokee Swamp (OKE)(Figure 3); and Savannas State Reserve (SAV)(Figure 4).
Sampling sites were also selected to optimize sampling of transitional areas. In regions
with significant water level variability, sediment cores were retrieved from the wet areas
rather than the dry areas in close proximity to them. Sediment cores were collected when
possible, and soil grab samples were collected in the few cases (especially in dry areas),
that a sediment core could not be obtained.

II. B. Field Sampling

Transport to sampling sites in the Water Conservation Areas, Everglades National
Park, and the Everglades Agricultural Area was provided by the South Florida Water
Management District using an airboat or a pontoon-equipped helicopter. The sites
accessed by helicopter, identified in latitude/longitude coordinates, were converted from
Global Positioning System (GPS) coordinates measured using on-board equipment.
Sample locations in the Savannas State Reserve (SAV) and the Okefenokee Swamp
(OKE) were accessed by foot, or by canoe. Sample coordinates (latitude/longitude) for
these locations were determined using quadrangle maps.

Temperature, conductivity, and dissolved oxygen were measured in situ using YSI
(Yellow Springs Instruments) portable field meters and pH was measured using a Fisher
Scientific Accumet portable pH meter. Sediment cores were obtained using thick-walled
polyvinyl chloride (PVC) tubing (7.5 cm diameter, 80 to 100 cm length). Core barrels
were inserted slowly into the sediment matrix to minimize compaction. Once inserted, the
top of the core barrel was capped with a large rubber stopper. The core barrel was
maneuvered from side to side and then pulled from the substrate. The bottom of the core
was then sealed with a large rubber stopper and the top stopper was removed to fill the
top of the core barrel with water to reduce any movement of the sediment. The top
rubber stopper was then replaced and both stoppers were taped securely with duct tape.
Cores were transported upright to the base camp for extrusion. All field data were
recorded in field notebooks.

* Figure 2 sites identified with labels A,B,and D" correspond to sediment cores:
ENP:TS1/ENP:TS2 (A), WCA3:1/WCA3:2 (B), and WCA3:C123 (D), respectively.
























81*30' 81*00*
I I


80'30' 8000'
I I


26'30'- 37
Stormwater Treatment Areas 40
STA: 43.44.45.46.47 27
(5 sampling sites) I 2







2530
19 18 8








25600'-







13Figure 2. Sample locations in the Florida Everglades
12 t 3

20 Miles a A

32 Kilometers 5





25'00' 1














Figure 2. Sample locations in the Florida Everglades


I _






















82" 22'30" 820 15'00"


OKE:56
OKE:57
QKE:58


Suwannee
River


Figure 3. Sample locations in the Okefenokee Swamp


310 00'00"










300 45'00"


820 07'30"


82 30'00"



















80'30' 80'25' 80'20' 80'15'
I I I I


2730'-


SAV:50
Midway Rd

2725'
SAV:54

SAV:53
SAV:55

2720'--
SAV:49

Walton Rd SAV:48


2715' -


SR 707A








Figure 4. Sample locations in the Savannas Marsh









For extrusion of the sediment, core tubes were attached to a vertical galvanized
pipe. A piston was inserted into the bottom of the core barrel. The core barrel was
lowered while the piston was held stationary and two centimeter sections of sediment
were removed, sequentially, from the top of the core barrel. The core extrusion was
continued until the entire core was sectioned from the surface to deeper strata. Core
sections were transferred to. previously labelled Whirlpak bags. Sample bag labels
included the sample identification number, date of sampling, and the initials of personnel
involved with core extrusion. All soil/sediment samples were stored in the dark at 4oC
in an insulated chest during field operation and transported to the laboratory. Samples
were then placed in a freezer until sample analysis was initiated.

II. C. Total Mercury

Total mercury was determined using the digestion procedure described in EPA
method 7471 for the determination of mercury in soil and sediment followed by cold vapor
atomic absorption spectrophotometry (U.S.E.P.A., 1986). Two grams of wet sample were
mixed in the Whirlpak sample bag, using an acid rinsed teflon-coated spatula, and
weighed (to 0.0001 g) into a 10 mL plastic beaker cup on a Mettler AE-160 analytical
balance. The sample was transferred quantitatively to an acid-rinsed 300 mL BOD bottle
with a 10 mL deionized water rinse. The digestion involved addition of 2.5 mL of
concentrated nitric acid and 5 mL of concentrated sulfuric acid. The sample was heated
at 95oC for two minutes, then 15 mL of potassium permanganate (50 g/L), and 8 mL of
ammonium peroxydisulfate (50 g/L) were added to the digestion mixture. The sample
was then heated at 95*C for one hour. An additional 15 mL of potassium permanganate
solution was added to the digestion mixture if the permanganate color disappeared within
fifteen minutes of the initial addition. Upon completion of digestion, samples were cooled
and decolorized by the addition of 6 mL of hydroxylamine hydrochloride solution (120 g
hydroxylamine sulfate, and 120 g sodium chloride per liter of deionized water).

Each digested sediment sample was transferred to a plastic reaction vessel fitted
for a Perkin Elmer MHS-10 cold vapor unit. Stannous chloride solution (80 g/1000 mL)
was added continuously (10 mL per minute) to the digestate in the reaction vessel. The
sample was continuously purged with high purity nitrogen gas. Elemental mercury was
evolved from the digestate and swept with the nitrogen purge-gas into an open ended
quartz tube (1 cm diameter) with a 16 cm cell path length. The mercury was quantified
by cold vapor atomic absorption spectrophotometry using a Perkin Elmer model 5000
Atomic Absorption Spectrophotometer (. =253.6 nm, SBW=0.7 nm) with a mercury
hollow cathode lamp (1=6 mA). Lght absorption was measured as peak height. The
standard calibration curve working range (0 to 50 ng Hg) gave an absorbance range from
0.003 to 0.035 absorbance units. The detection limit for mercury analysis was 10 ng/g.

II. D. Organic Mercury

Initially, modifications of the Horvat et al. (1988) and Sakamoto et al. (1992)
methods were to be used to determine organic mercury in sediments. Both of these
methods yielded unsatisfactory results, and an alternative method was developed to








determine extractable organic mercury in sediments. In this method, the methylmercury
chloride standard was prepared in water, following the approach of Sullivan and Delfino
(1982). This alternative method involved 2 grams of wet sediment added to a 50 ml
centrifuge tube along with 20 ml acetone (Fisher Scientific Optima grade). The centrifuge
tube was stoppered, shaken by hand for two minutes and then centrifuged in an
International Equipment Company (IEC) clinical centrifuge for two minutes at 3000 rpm.
The acetone layer was transferred quantitatively to a 125 ml separatory funnel. It is
important to note at this point that the acetone changed from colorless to a deep yellow
or brown color after the first extraction of sediment. This indicated that the acetone was
in fact extracting organic matter from the sediment. After removal of the first volume of
acetone, the extraction was repeated with another 20 ml of acetone until the extract
became colorless to pale yellow. This indicated that the available organic matter in the
sediment was extracted.

At this point, 20 ml of 0.1 M sodium thiosulfate were added to the combined
acetone mixture in the separatory funnel. The separatory funnel was then shaken and
swirled for two minutes to insure that there was enough interfacial area for the organic
mercury in the acetone to partition into the sodium thiosulfate phase. The solution was
then drained into a round-bottom flask and a rotary evaporator (B0chi R110) was used
to evaporate the acetone. After all of the acetone was removed, the aqueous sodium
thiosulfate phase was transferred to a BOD bottle where the organic mercury was
determined by the EPA Total Mercury Method 7471 (U.S.E.P.A., 1986). This organic
mercury method yielded recoveries ranging from about 80% to 98%, based on a
methylmercury reference standard.

11. E. Percent Solids

The method for percent solids involved weighing known volumes of wet sediment
onto aluminum tare dishes. Wet sediment was partially packed into a 25 cm3 glass
syringe modified to function as a piston chamber. The procedure involved obtaining the
initial weight of an empty weighing dish, transferring a known volume of wet sediment to
the aluminum dish, and weighing. The sample was dried in an oven for 24 hours at
104oC, removed, and placed into a desiccator for approximately 1 hour. The dried
sample was then weighed. The wet and dry sample weights were corrected for the
weight of the empty dish. Percent solids were then calculated as the percent of dry mass
to total wet mass.

II. F. Bulk Density

The measurement used to determine bulk density was the same as that used to
determine percent solids. The dry bulk density of the sample was calculated as the dry
sediment mass per 10 cm3 and the data are presented in units of g cm3.








I. G. Radio-Isotope Analysis


To calculate age/depth relationships in sediment cores, the activity of unsupported
2'Pb was estimated by determining total and supported 210Pb activity. Supported 21'Pb
results from, and is maintained by, radioactive decay of 22Ra (half-life 1622 years) in the
sediments. Unsupported 2'1Pb is formed by decay of 'Ra to IRn (half-life 3.8 days),
which escapes to the atmosphere, decays to 2"'Pb, and enters the lake via precipitation.
Subtracting supported 2'"Pb from the total measured activity of 210Pb in sediment samples
yields the unsupported 2'0Pb activity, that will decrease with depth in the sediments
because of radioactive decay. The age of a sediment layer may then be calculated from
its activity of unsupported 210Pb. Because the half-life of 2'1Pb is only 22.3 years, this
dating technique is restricted to about a 150-year time span.

Activities of 210Pb and '37Cs were measured by direct y-assay using two intrinsic-
germanium well-detectors (Princeton Gamma Tech). This type of detector counts over
a large range of y-energies and can be used for simultaneous measurement of supported
and unsupported 2Pb (Gaggeler et a., 1976), as well as '3Cs which may be used as an
additional age-marker (Ritchie et a., 1973). Lead shielding (10.1 cm thick) was used to
reduce natural background radiation at the germanium detector. Samples for isotope
analysis were dried at 950C for 24 hours, pulverized by mortar and pestle, weighed, and
placed in small low-density polypropylene tubes (capacity 4 ml). The volume of the
samples and standard were matched to insure the same counting efficiencies for both.
Core sections were combined (up to 2 cm) to obtain an adequate sample volume.
Sample tubes were sealed with plastic cement and left for a minimum of 14 days to
equilibrate radon (mRn) with radium (mRa). Counting times varied from 7 to 26 hours
depending on sample weight; small samples needed longer counting times to minimize
uncertainty. For each region of interest, counts were corrected for Compton scattering
by subtracting the below-the-peak area from the total counts. This area was determined
by a linear fit through three channel contents (e.g. counts) on either side of the region of
interest. Blanks were counted for every two samples to determine background from
ambient radiation. Standards (Department of Energy, New Brunswick Laboratories: U-Th
standards) were run with the same frequency to track efficiency (counts. y") and to
calculate a 2Ra conversion factor (pCi counts"' s"'). Sample spectra were analyzed for
activity in the 46.5 keV ('Pb) and 662 keV ('3Cs) peaks. Activities at 295 keV (24Pb), 352
keV (2"Pb), and 609 keV (2'1Bi) representing uranium series peaks were used to compute
supported levels of 210Pb. Calculation of 210Pb dates followed the constant rate of supply
(CRS) model (Goldberg, 1963) which is able to quantify changing sediment accumulation
rates. This model appears applicable to Florida aquatic systems, particularly because
210Pb residuals match both the known atmospheric flux of this isotope as well as the
residuals of nearby cores (Binford and Brenner, 1986; Gottgens, 1992). These residuals
are defined as the total inventory of unsupported 2'"Pb (pCi cm2) in the core from the
surface to the depth at which its activity has decayed to background levels. Such a
constant rate of 210Pb fallout is likely, due to the high efficiency at which 21'Pb is scavenged
from the atmosphere and from the water column by wet precipitation or particulate matter
(Turekian et al., 1977; Robbins, 1978). This provides evidence favoring the assumption
of the CRS dating model that an increase in the rate of delivery of bulk sediments will not








supply more 210Pb. Finally, a constant rate of 210Pb fallout will result in different
unsupported 210Pb activities at the sediment-water interface in core locations with differing
rates of net sediment accumulation. This has been confirmed by paleolimnological
investigations in aquatic systems throughout Florida (Binford and Brenner, 1986).

Uncertainty analyses were based on both the random variation of counting errors
associated with radioactive decay and the nature of the CRS model. Errors controlled by
external forces such as inaccuracies of stratigraphic sampling and determination of bulk
density were not considered.

Radiation emitted in nuclear decay is subject to statistical fluctuation. This
unavoidable source of uncertainty is often a predominant source of imprecision (Knoll,
1979). Because the recorded counts in nuclear counting experiments follow a Poisson
distribution, the predicted standard deviations were estimated as the square root of the
mean number of counts. The amount of 2'0Pb (total, supported, and unsupported) and
'"Cs was expressed as activity (pCi/g) one standard deviation (i.e. 68.3% confidence
limits), which is standard practice in expressing uncertainty in nuclear measurements
(Wang et a., 1975; Binford, 1990). Counting errors in the calculation of net isotope-
activities were propagated using first-order analysis.

Monte Carlo simulation (Palisade Corp., 1990) was used to estimate error
associated with the calculation of age and sedimentation rate following the CRS model.
The probability density function for simulated 210Pb activities was approximated by a
normal distribution with the mean equal to the measured activity and a range equal to the
counting error.

II. H. Carbon

II. H.1. Total Carbon

Total carbon was analyzed using a Coulometer (Coulometrics, Inc., Model 5011)
combined with a Total Carbon Combustion Apparatus (Coulometrics, Inc., Model 5020).
Total carbon measurements were made by weighing approximately 5 mg of air dried
sediment into a platinum boat. The platinum boat containing the sediment sample was
placed into a combustion chamber that operated at 9500C. The combustion chamber
and coulometer were purged with oxygen for about 30 seconds to remove any CO2
introduced during sample set-up. The sample remained in the combustion chamber until
a stable measurement was obtained, which was typically 5 minutes. The CO2 evolved
during combustion passed through a series of scrubbers to remove interfering gases
before entering the coulometric cell where it was titrated. Carbon dioxide entering the cell
altered the pH of the cell solution causing the indicator to become clear. A light source
passed through the cell to a detector and transmittance was measured through the cell.
The amount of current required to reach the endpoint was electronically integrated. The
result of the analysis was recorded in micrograms of carbon and the percent of total
carbon in the sample was calculated.









II. H.2. Inorganic Carbon


Inorganic carbon was analyzed using the same Coulometer (Coulometrics, Inc.,
Model 5011) as above, combined with a Carbonate Carbon Apparatus (Coulometrics,
Inc., Model 5030). Dry sediment (10 to 20 mg) was transferred to a porcelain boat. The
porcelain boat was placed in a glass tube attached to the carbonate carbon apparatus.
The system was purged with air for approximately 30 seconds to remove any CO2 that
might have entered during sample set-up. The glass tube was then placed on a heating
element and approximately 3 mL of 2 N perchloric acid was added to the sample. The
evolved CO2 passed through a scrubber before entering the coulometric cell (Huffman,
1977; Lee and Macalady, 1989). The titration procedure was the same as that for the
total carbon procedure described above. The result of the analysis was recorded in
micrograms of carbon and the percent of inorganic carbon in the sample was calculated.

II H.3. Organic Carbon

Organic carbon was determined as the difference between the total and inorganic
carbon values.


II. I. Additional Trace Metals

Analyses for chromium (Cr), lead (Pb), nickel (Ni), cadmium (Cd), zinc (Zn), copper
(Cu), and iron (Fe) were performed on 0.5 1 gram dried sediment aliquots using the
digestion procedure described in EPA Method 3050 (U.S.E.P.A., 1986). Ten mL of 1:1
nitric acid (HNO,) were added to the sediment in a beaker and covered with a watch
glass. This mixture was heated to 95 C and refluxed for 10 to 15 minutes without boiling.
The sample was cooled and 5 ml of concentrated HNO, was added. The watch glass
was replaced and the solution was refluxed again for 30 minutes. This last step was
repeated to ensure complete oxidation. Using a watch glass, the solution was then
evaporated to 5 ml without boiling, while maintaining a covering of solution over the
bottom of the beaker. Two ml of deionized (DI) water and 3 ml of 30% hydrogen
peroxide (H20) were added to the cooled solution. The beaker was again covered with
a watch glass and was returned to the hot plate for warming and to start the peroxide
reaction. Hydrogen peroxide was continually added in 1 ml aliquots, with warming, until
the effervescence became minimal or until the general sample appearance was
unchanged. Not more than 10 ml of 30% H202 were added to minimize acid dilution and
digestate volume. Next, 5 ml of concentrated hydrochloric acid (HCI) and 10 ml of DI
water were added to the solution, covered and returned to the hot plate to reflux for an
additional 15 minutes without boiling. After cooling, the solution was filtered through
Whatman no. 41 filter paper to remove any particulates in the digestate. The filtrate was
then diluted to 100 ml with DI water. The diluted sample has an approximate acid
concentration of 5.0% (v/v) HCI and 5.0% (v/v) HNO,. Finally, the analysis for the metal
was performed by flame atomic absorption spectrophotometry (FAAS) with an
air/acetylene flame.


1









Metals were quantified using a Perkin Elmer model 5000 Atomic Absorption
Spectrophotometer with appropriate hollow cathode lamps. Instrument settings
(Table 1) and detection limits (Table 2) were determined:


Table 1. Instrument settings for metal analyses using a
Perkin Elmer model 5000 Atomic Absorption
Spectrophotometer

Element Wavelength Slit-band width
(X, nm) (nm)

Cr 357.9 0.7
Pb 283.3 0.7
Ni 232.0 0.2
Cd 228.8 0.7
Zn 213.9 0.7
Cu 324.7 0.7
Fe 248.3 0.2


Table 2. Detection limits for metals determination using
a Perkin Elmer Model 5000 Atomic Absorption
Spectrophotometer (Flame Atomizer)


Analyte


Detection Limit
(mg/Kg dry weight)








III. Results


Il. A. Water Quality

Sample site coordinates (latitude/longitude) and associated water quality
parameters (depth, temperature, conductivity, dissolved oxygen, and pH) are presented
in Table 3. These data demonstrate the variability of water quality and quantity
throughout the Everglades region. Water depth at Everglades sites (ENP, WCA1, WCA2,
WCA3, and STA) ranged from 0 to 0.6 meters. Water depth at the Savannas sites (SAV)
ranged from 0.1 to 1.4 meters. Okefenokee sites (OKE) were on a floating Sphagnum
mat (approximately 0.5 m thick) with approximately 0.5 meter of underlying water.

Conductivity of overlying water ranged from 49 to 37000 /imhos/cm for the
Everglades. Average conductivities for WCA1, WCA2 and WCA3 were 257, 1257, and
625 pmhos/cm, respectively, while those for the ENP are regionally variable, with a
measured range from 465 to 37000 Amhos/cm. Water at the periphery of WCA1 is
supplied to some degree by agricultural runoff and therefore has higher conductivities
(230 to 850 gmhos/cm), while most of the water in the center of WCA1 is derived from
precipitation (49 to 98 jumhos/cm). The conductivities of water at OKE and SAV sample
sites also indicate the predominance of precipitation to the regional hydrology (OKE, 42
to 121 Amhos/cm; SAV, 54 to 74 mmhos/cm, respectively).

High conductivity water in Everglades National Park (ENP) is typically related to
estuarine mixing while .high conductivity water at Water Conservation Area (WCA)
sampling sites is typically an indicator of hydrologic inputs from the Everglades
Agricultural Area (EAA). Low conductivity of surface water in the center of WCA1 has
been used to demonstrate that the primary hydrologic source is from precipitation
(Richardson t al., 1990; SFWMD, 1992).

Conductivity, temperature, dissolved oxygen, pH and water depth measurements
give an indication of the site conditions on the sampling date. They may not be
representative, however, of the long-term water quality and hydroperiod. As such, their
value for quantitative interpretation of long-term field conditions may be limited. The data
may be used to link the database of this study with long term water quality measurements
of other studies in the same area.

IIl. B. Sediment Geochronoloav

Results of paleolimnological analyses may be presented in units of concentration
or as rates of accumulation. Concentration, expressed as a relative measure of sediment
composition (e.g. mg g"'), is the conventional way of expressing sediment stratigraphy
(Shapiro et a., 1971; Pennington, 1973; Griffiths and Edmondson, 1975). Such data,
however, are vulnerable to variations in sedimentation of other components in the profile.
These variations may result in dilution of the target analyte. This problem can be
eliminated by using either ratios of components in the sediment matrix or by calculating










Table 3: Water quality data associated with wetland sediment sample sites

Sample ID# Latitude Longitude Depth Temp. [DO] Cond. pH
(m) (*C) (mg/L) (umhos/cm)

ENP :01 254303 804311 0.10 24.5 6.4 465 8.0
ENP :02 254121 803809 0.10 26.0 2.8 780 7.6
ENP :03 253101 803802 0.00 N/A N/A N/A N/A
ENP :04 253647 804129 0.10 26.0 5.9 500 7.9
ENP :05A 252004 804450 0.00 N/A N/A N/A N/A
ENP :05B 252004 804450 0.00 N/A N/A N/A N/A
ENP :05C 252004 804450 0.00 N/A N/A N/A N/A
ENP :05D 252004 804450 0.00 N/A N/A N/A N/A
ENP :05E 252004 804450 0.00 N/A N/A N/A N/A
ENP :05F 252004 804450 0.00 N/A N/A N/A N/A
ENP :06 251457 803608 trace 30.0 1.0 8200 7.7
ENP :07 251705 803805 0.05 27.0 2.0 500 7.6
ENP :08A 252754 805114 0.00 N/A N/A N/A N/A
ENP :08B 252754 805114 0.00 N/A N/A N/A N/A
ENP :09 253625 811014 0.03 21.8 1.0 37000 7.2
ENP: 10 253201 810011 trace 25.0 4.3 23000 7.1
ENP:11 253119 804741 0.10 26.0 3.5 1000 7.4
ENP :12 253632 805632 0.13 26.0 5.0 625 7.4
WCA3:13 255024 804944 0.45 27.0 6.8 325 7.8
WCA3:14 254959 804156 0.45 26.0 5.6 405 7.4
WCA3:15 254953 803305 0.15 28.5 8.5 700 7.8
WCA3:16 255707 802905 0.15 25.5 2.4 750 7.5
WCA3:17 255702 804151 0.45 26.0 4.2 480 7.4
WCA3:18 260400 803805 0.30 21.5 1.5 460 7.4
WCA3:19 260401 804804 0.30 21.5 3.8 500 7.2
WCA3:20 261802 804754 0.00 N/A N/A N/A N/A
WCA3:21 261014 804457 0.05 ND ND ND ND
WCA3:22 260914 804201 0.30 23.0 2.4 650 7.5
WCA3:23 261756 803652 0.10 25.0 7.9 900 6.0
WCA3:24 261002 803302 0.15 25.0 3.0 800 7.2
WCA2:25 261041 802156 0.15 25.0 2.0 900 7.1
WCA2:26A 261800 802056 0.15 25.0 6.3 1350 7.3
WCA2:26B 261800 802056 0.15 25.0 6.3 1350 7.3
WCA2:27 262555 802652 0.10 15.5 7.2 1200 7.5
WCA2:28 261901 802658 0.15 17.0 2.7 1325 7.4
WCA2:29 262149 802058 0.05 16.0 1.9 1350 7.8
WCA2:30 262034 802030 0.30 17.0 1.8 1250 7.3
WCA2:31 261954 802105 0.15 17.5 1.5 1425 7.3
WCA3:32 260147 802855 0.45 19.5 2.3 800 7.3
WCA3:33 255923 803053 0.60 19.8 2.7 700 7.3

N/A corresponds to sites with no overlying water
ND corresponds to data not determined










Table 3 (cont'd): Water quality data associated with wetland sediment sample sites

Sample ID# Latitude Longitude Depth Temp. [DO] Cond. pH
(m) (C) (mg/L) (umhos/cm)

WCA3:34 255739 803219 0.45 20.5 2.5 650 7.3
WCA1:35 264005 802141 0.30 26.5 0.5 850 6.7
WCA1:36 263449 802047 0.20 29.5 2.7 90 7.0
WCA1:37 262924 801939 0.55 30.5 2.1 82 6.6
WCA1:38 262806 802441 0.55 30.0 1.8 442 6.7
WCA1:39 263200 802447 0.10 30.0 3.0 230 7.1
WCAI:40 262258 801657 0.25 31.0 1.6 49 7.5
WCA1:41 262719 801452 0.30 30.5 1.3 98 7.4
WCA1:42 263304 801543 0.35 34.2 1.8 218 7.6
STA :43 263919 802510 0.30 35.0 1.2 530 7.5
STA :44 263736 802526 0.00 N/A N/A N/A N/A
STA :45 263854 802440 0.10 32.0 2.3 500 8.5
STA :46 263842 802537 0.30 34.0 0.5 560 7.5
STA :47 263927 802436 0.00 N/A N/A N/A N/A
SAV :48 271630 801500 1.4 20.2 6.2 114 ND
SAV :49 271645 801530 1.1 22.4 7.6 121 ND
SAV :50 272115 801830 0.00 N/A N/A N/A N/A
SAV :53 272000 801750 1.0 18.0 ND 42 ND
SAV :54 272015 801730 1.0 18.0 ND 72 ND
SAV :55 271945 801700 0.1 17.8 ND 78 ND
OKE :56 304235 821000 0.5 17.0 2.4 74 ND
OKE :57 304235 821000 0.5 17.2 5.3 68 ND
OKE :58 304235 821000 0.5 19.0 7.2 54 ND

N/A corresponds to sites with no overlying water
ND corresponds to data not determined







accumulation rates. The latter are normalized to time thus avoiding the problem of co-
variance among different sedimentary components.

Compilations of all data for sediment cores retrieved from the Everglades,
Okefenokee Swamp, and Savannas State Reserve appear in Tables 4.1-4.7 and 5.1-5.4.
Blank cells in these tables occur so that all data could be presented in a consistent
tabular format. Thus, for those samples where no data appear, no data were required.
The tables include total and organic mercury, solids, bulk density, total and organic
carbon, cadmium, copper, chromium, iron, lead, nickel, and zinc. The database also
includes aspects of sediment geochronology based on 210Pb dating (i.e. sediment
accumulation rate, mercury accumulation rate, and age/depth relationships). Total
mercury, percent solids, bulk density, and water quality were measured for all sample
sites. Sediment geochronology, organic mercury, total and organic carbon, and
additional metals were analyzed for selected samples.

The specifications of this project required 125 determinations of the above-
mentioned supplementary analytes. Over one thousand samples (from 64 sediment
cores) were analyzed for the base analytes (total mercury, etc.), while 175 samples were
analyzed for supplementary analytes (organic mercury, etc.).

Ill. B.1. Sediment Dating Accetance Criteria

Radiochemical techniques are routinely used to date lake sediment profiles. Few
attempts have been made, however, to apply these methods in wetland soils. Diagenesis
in wetland deposits is poorly understood and the correlation between depth and time-of-
deposit may be affected by compaction, decomposition, and vertical migration of the
element for which sedimentation rates are computed. Compaction may be accounted for
by calculating material deposition in units of mass (grams) rather than depth (cm) over
time. Decomposition of organic matter may increase the concentration of the analyte of
concern (e.g. '"Pb, mercury, and others). Because of the nature of the CRS model,
however, core sections with such concentrated 21Pb (C) will have proportionally lower
deposition rates for bulk sediment (r) and, thus, for the analyte of concern (its
concentration multiplied by the bulk sedimentation rate). This follows from the CRS-
calculation for sedimentation rate according to

kA
r = (1)
C



where A = the residual 210Pb beneath the sediment horizon of interest (pCi cm')
k = '"Pb radioactive decay constant (yr"), and
C = unsupported 21"Pb activity in the sediment horizon of interest (pCi g1').












Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1
Solids Bulk Total Inorg. Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210
Sample I.D. Date g/g g/cm^3 % % % pCi/g
WCAI:01:00-02 06/18/92 0.018 0.015 39.3 1.8 37.5 1.97
WCAI:01:02-04 06/18/92 0.033 0.023 40.2 4.02
WCAI:01:04-06 06/18/92 0.069 0.042 43.3 6.32
WCAI:01:06-08 06/18/92 0.076 0.080 44.1 0.9 43.2 5.33
WCAI:01:08-10 06/18/92 0.063 0.064 40.4 9.08
WCAI:01:10-12 06/18/92 0.052 0.044 44.7 9.82
WCAI:01:12-14 06/18/92 0.046 0.042 45.5 0.2 45.3 11.51
WCA1:01:14-16 06/18/92 0.097 0.118 40.7 6.97
WCAI:01:16-18 06/18/92 0.084 0.085 41.2 8.73
WCAI:01:18-20 06/18/92 0.088 0.060 43.4 5.64
WCAI:01:20-22 06/18/92 0.103 0.078 4.86
WCAI:01:22-24 06/18/92 0.121 0.111 5.69
WCAI:01:24-26 06/18/92 0.161 0.139 43.8 7.00
WCA1:01:26-28 06/18/92 0.131 0.123 4.69
WCAI:01:28-30 06/18/92 0.103 0.102 2.42
WCAI:01:30-32 06/18/92 0.092 0.070 50.9 1.69
WCAI:01:32-34 06/18/92 0.077 0.079 1.19
WCA1:01:34-36 06/18/92 0.083 0.072 0.69
WCA1:01:36-38 06/18/92 0.086 0.061 49.9
WCAI:01:38-40 06/18/92 0.094 0.063
WCA1:01:40-42 06/18/92 0.087 0.074
WCAI:01:42-44 06/18/92 0.078 0.069 54.3
WCAI:01:44-46 06/18/92 0.092 0.081 0.33
WCA1:01:46-48 06/18/92 0.083 0.071
WCAI:01:48-50 06/18/92 0.108 0.074 50.9 0.0 50.9
WCAI:01:50-52 06/18/92 0.083 0.076
WCAI:01:52-54 06/18/92 0.110 0.081
WCAI:01:54-56 06/18/92 0.094 0.085 53.3
WCAI:01:56-58 06/18/92 0.111 0.090
WCAI:01:58-60 06/18/92 0.096 0.085
WCAI:01:60-62 06/18/92 0.102 0.201 50.1 0.0 50.1
WCA1:01:62-64 06/18/92 0.105 0.105
WCAI:01:64-66 06/18/92 0.112 0.095
WCAI:01:66-68 06/18/92 0.093 0.083 52.7
WCA1:01:68-70 06/18/92 0.110 0.092
WCAI:01:70-72 06/18/92 0.102 0.091
WCAI:01:72-74 06/18/92 0.109 0.209
WCAI:01:74-76 06/18/92 0.112 0.101 49.4
WCAI:01:76-78 06/18/92 0.104 0.089
WCAI:01:78-80 06/18/92 0.093 0.080 54.6 0.0 54.6
WCA1:01:80-82 06/18/92 0.093 0.094


Cs-137
pCi/g
0.18
0.16
0.13
0.19
0.20
0.37
0.28
1.43
1.02
1.40
5.10
5.68
5.04
2.64
1.10
0.51
0.08
0.11


0.10


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g
1992 0.232 77
1992 0.115 49
1991 0.072 29
1990 0.083 73
1988 0.046 57
1985 0.039 57
1983 0.031 79
1980 0.046 59
1975 0.031 39
1969 0.040 42
1965 0.042 43
1961 0.032 55
1953 0.020 56
1935 0.017 61
1916 0.018 62
1902 0.017 63
1892 0.017 49
1881 0.021 27
1873 0.019 45
1866 0.017 25
1858 0.015 27
1846 0.012 BDL
13
BDL
12
BDL
20
BDL
29
BDL
21
6
27
BDL
24
BDL
49
19
26
83
65











Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1


Solids Bulk
Sampling dry wt Density


Total Inorg. Organic deposition Total Organic
Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury


Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm"2-yr ng/g ng/g
WCAI:01:82-84 06/18/92 0.080 0.068 85
WCA1:01:84-86 06/18/92 0.095 0.075 50.5 35
WCA1:01:86-88 06/18/92 0.097 0.078 47
WCAI:01:88-90 06/18/92 0.094 0.094 43
WCAI:01:90-92 06/18/92 0.083 0.068 52.6 44
WCAI:01:92-94 06/18/92 0.082 0.077 60
WCA1:01:94-96 06/18/92 0.087 0.080 63
WCAI:01:96-98 06/18/92 0.084 0.072 54.4 0.0 54.4 93
WCAI:01:98-100 06/18/92 0.105 0.089 30
WCAI:01:100-102 06/18/92 0.104 0.094 39
WCAI:01:102-103 06/18/92 0.113 0.068 52.3 32
WCAl:35:00-02 07/15/92 0.150 0.150 47.2 0.0 47.2 9.13 1.47 1992 0.056 90 65
WCA1:35:02-04 07/15/92 0.163 0.168 47.3 0.0 47.3 12.95 3.28 1986 0.033 131 36
WCAI:35:04-06 07/15/92 0.145 0.145 47.0 9.57 11.20 1974 0.031 116 14
WCAI:35:06-08 07/15/92 0.131 0.126 46.9 8.01 10.87 1963 0.026 154 21
WCA1:35:08-10 07/15/92 0.128 0.136 49.5 0.0 49.5 5.55 7.36 1952 0.026 174 24
WCAI:35:10-12 07/15/92 0.136 0.137 47.7 4.78 3.71 1940 0.021 115 36
WCAI:35:12-14 07/15/92 0.129 0.126 50.0 1.99 3.55 1924 0.031 105 26
WCAI:35:14-16 07/15/92 0.127 0.125 50.4 0.0 50.4 0.76 1.72 1914 0.060 93 28
WCAI:35:16-18 07/15/92 0.123 0.109 51.1 0.0 51.1 1.12 0.69 1910 0.035 76 31
WCAI:35:18-20 07/15/92 0.140 0.124 49.7 0.0 49.7 1.30 0.06 1902 0.024 191 78
WCAI:35:20-22 07/15/92 0.137 0.114 0.65 0.05 1887 0.030 90 19
WCAI:35:22-24 07/15/92 0.132 0.133 0.82 0.80 1876 0.017 80 19
WCA1:35:24-26 07/15/92 0.132 0.119 51.0 0.39 0.66 1855 0.019 57 18
WCAI:35:26-28 07/15/92 0.129 0.114 0.50 0.08 1836 0.008 58 38
WCA1:35:28-30 07/15/92 0.119 0.108 63 23
WCAI:35:30-32 07/15/92 0.115 0.112 52.3 0.0 52.3 45 43
WCAI:35:32-34 07/15/92 0.105 0.106 34 34
WCAI:35:34-36 07/15/92 0.125 0.120 28 13
WCA1:36:00-02 07/15/92 0.051 0.049 39.8 0.0 39.8 203
WCAI:36:02-04 07/15/92 0.063 0.062 41.9 0.0 41.9 277
WCA1:36:04-06 07/15/92 0.050 0.051 43.8 0.0 43.8 212
WCAI:36:06-08 07/15/92 0.051 0.050 45.3 205
WCAI:36:08-10 07/15/92 0.056 0.056 47.5 169
WCAI:36:10-12 07/15/92 0.065 0.065 48.7 116
WCAI:36:12-14 07/15/92 0.061 0.062 47.9 76
WCAI:36:14-16 07/15/92 0.062 0.061 48.6 90
WCAI:36:16-18 07/15/92 0.069 0.069 48.2 0.0 48.2 96
WCAI:36:18-20 07/15/92 0.073 0.070 47.8 63
WCAI:36:20-22 07/15/92 0.069 0.068 57
WCAI:36:22-24 07/15/92 0.068 0.069 36












Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1


Solids Bulk
Sampling dry wt Density
Date /ae Q/cm^3


Total
Carbon
%


Inorg. Organic deposition Total Organic
Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
% % pCi/g pCi/g year g/cm^2-yr ng/g ng/g


WCAI:30:24-2L
WCAI:36:26-28
WCAI:36:28-30
WCAI:36:30-32
WCAI:36:32-34
WCA1:36:34-36
WCAI:36:36-38
WCAI:36:38-40
WCAI:36:40-42
WCAI:36:42-44
WCAI:36:44-46
WCA1:36:46-48
WCAI:36:48-50
WCAI:36:50-52
WCAl:37:00-02
WCA1:37:02-04
WCAI:37:04-06
WCAI:37:06-08
WCA1:37:08-10
WCAI:37:10-12
WCAl:37:12-14
WCAI:37:14-16
WCAI:37:16-18
WCA1:37:18-20
WCAI:37:20-22
WCAI:37:22-24
WCAI:37:24-26
WCAI:37:26-28
WCAI:37:28-30
WCAI:37:30-32
WCAI:37:32-34
WCAI:37:34-36
WCAI:37:36-38
WCAI:37:38-40
WCA1:37:40-42
WCA1:37:42-44
WCA1:37:44-46
WCAI:37:46-48
WCA1:37:48-50
WCAI:37:50-52
WCAI:37:52-54


U0II3/9Z U.U06 U.U00
07/15/92 0.075 0.073
07/15/92 0.067 0.065
07/15/92 0.068 0.067
07/15/92 0.067 0.064
07/15/92 0.059 0.057
07/15/92 0.063 0.061
07/15/92 0.075 0.075
07/15/92 0.069 0.068
07/15/92 0.082 0.081
07/15/92 0.081 0.080
07/15/92 0.067 0.064
07/15/92 0.087 0.088
07/15/92 0.101 0.100
07/15/92 0.009 0.009
07/15/92 0.011 0.011
07/15/92 0.008 0.008
07/15/92 0.016 0.016
07/15/92 0.058 0.056
07/15/92 0.076 0.075
07/15/92 0.069 0.067
07/15/92 0.063 0.062
07/15/92 0.072 0.072
07/15/92 0.068 0.069
07/15/92 0.072 0.070
07/15/92 0.078 0.077
07/15/92 0.067 0.068
07/15/92 0.078 0.076
07/15/92 0.081 0.081
07/15/92 0.085 0.084
07/15/92 0.079 0.080
07/15/92 0.093 0.089
07/15/92 0.086 0.083
07/15/92 0.086 0.083
07/15/92 NA NA
07/15/92 0.083 0.080
07/15/92 NA NA
07/15/92 NA NA
07/15/92 0.090 0.093
07/15/92 0.094 0.091
07/15/92 0.100 0.100


47.6
50.3
49.4



49.7
42.2
42.6
43.4
43.0
45.4
45.7
46.9
46.7
47.4
47.5


0.0 49.7


0.0
0.0
0.0



0.0


19.29
19.29
43.4 18.36
43.0 21.03
45.4 18.36
20.38
6.69
5.61
47.4 3.90
2.22
2.58
2.13
1.46
0.43
0.73
1.35
0.37


Samnle I.D.


an,'


4.18
4.18
4.55
5.27
5.88
7.08
4.45
4.46
3.34
2.19
1.83
1.49
0.92
1.10
0.24
0.88
0.63


1YYZ
1991
1990
1989
1986
1978
1959
1950
1942
1932
1926
1916
1903
1892
1887
1876
1825


0.017
0.017
0.017
0.014
0.015
0.011
0.018
0.016
0.018
0.023
0.016
0.015
0.014
0.034
0.017
0.007
0.005


.....e I D -


Rnn











Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1
Solids Bulk Total Inorg. Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210


deposition Total Organic
Cs-137 period rate Mercury Mercury


Sample I.D. Date g/g g/cm^3 % % % pCi/g pcilg year g/cm 2-yr nagg ng g
WCAI:37:54-56 07/15192 0.105 0.099 50.0 0.0 49.9 BDL
WCAI:37:56-57 07/15192 0.108 0.103 15
WCAl:38:00-02 07/15/92 0.093 0.070 9.23 1.14 1992 0.063 324 93
WCAl:38:02-04 07/15/92 0.087 0.085 43.1 13.84 1.11 1990 0.039 317 161
WCAI:38:04-06 07/15/92 0.095 0.095 16.30 1.15 1985 0.028 339 43
WCAI:38:06-08 07/15/92 0.065 0.065 19.69 0.95 1977 0.019 381 198
WCAI:38:08-10 07/15/92 0.111 0.112 12.29 6.40 1970 0.023 198 31
WCAI:38:10-12 07/15/92 0.087 0.085 12.64 6.74 1958 0.016 184 147
WCAI:38:12-14 07/15/92 0.086 0.086 10.19 5.16 1945 0.013 213 44
WCAI:38:14-16 07/15/92 0.082 0.083 6.04 2.56 1929 0.013 109 67
WCAI:38:16-18 07/15/92 0.077 0.077 5.57 1.63 1913 0.009 186 106
WCAI:38:18-20 07/15/92 0.078 0.078 2.69 1.90 1888 0.008 97 61
WCAI:38:20-22 07/15/92 0.073 0.072 49.3 1.74 1.01 1860 0.005 86 60
WCAI:38:22-24 07/15/92 0.080 0.079 0.34 0.84 1804 0.005 95 75
WCA1:38:24-26 07/15/92 0.071 0.069 128 38
WCAI:38:26-28 07/15/92 0.074 0.075 65 69
WCA1:38:28-30 07/15/92 0.078 0.075 63 48
WCA1:38:30-32 07/15/92 0.073 0.072 66 28
WCAI:38:32-34 07/15/92 0.072 0.071 67 53
WCA1:38:34-36 07/15/92 0.074 0.071 50.4 48 28
WCA1:38:36-38 07/15/92 0.081 0.078 27 12
WCAI:38:38-40 07/15/92 0.081 0.079 43 37
WCAI:38:40-42 07/15/92 0.090 0.091 44 43
WCA1:38:42-44 07/15/92 0.104 0.104 97 55
WCAI:38:44-46 07/15/92 0.115 0.109 78 50
WCAI:38:46-47 07/15/92 0.113 0.110 90 37
............ .......... ,.X.6 A ,


WCAI :39:0H-02
WCAI:39:02-04
WCA1:39:04-06
WCAl:39:06-08
WCAI:39:08-10
WCA1:39:10-12
WCAI:39:12-14
WCA1:39:12-14
WCAI :39:14-16
WCAl:39:16-18
WCAI:39:18-20
WCA1:39:20-22
WCAI:39:22-24
WCAI:39:24-26
WCAI:39:26-28


07/15/92 U.V086 0.08
07/15/92 0.086 0.085
07/15/92 0.084 0.085
07/15/92 0.085 0.086
07/15/92 0.084 0.085
07/15/92 0.079 0.080
07/15/92 0.078 0.079
07/15/92 0.086 0.085
07/15/92 0.078 0.078
07/15/92 0.079 0.079
07/15/92 0.079 0.079
07/15/92 0.079 0.077
07/15/92 0.079 0.080
07/15/92 0.073 0.076
07/15/92 0.084 0.085












Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1
Solids Bulk Total Inorg. Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm"2-yr ng/g ng/g
WCAI:39:28-30 07/15/92 0.083 0.084 81
WCAl:39:30-32 07/15/92 0.089 0.089 69
WCAI:39:32-34 07/15/92 0.098 0.099 62
WCA1:39:34-36 07/15/92 0.104 0.107 74
WCAl:39:36-37 07/15/92 0.100 0.100 83
WCAI:40:00-02 07/15192 0.025 0.025 12.36 7.30 1992 0.029 413
WCA1:40:02-04 07/15/92 0.052 0.050 51.4 11.60 4.92 1990 0.029 159
WCAI:40:04-06 07/15/92 0.104 0.104 9.93 5.35 1986 0.030 134
WCAI:40:06-08 07/15/92 0.083 0.084 11.54 6.01 1979 0.020 167
WCAI:40:08-10 07/15/92 0.088 0.089 14.12 5.93 1969 0.013 119
WCAI:40:10-12 07/15/92 0.098 0.098 5.76 4.22 1951 0.017 120
WCAl:40:12-14 07/15/92 0.096 0.098 3.79 2.89 1937 0.017 46
WCAI:40:14-16 07/15/92 0.077 0.079 3.23 1.64 1923 0.013 47
WCAI:40:16-18 07/15/92 0.071 0.071 2.59 1.63 1908 0.010 62
WCAI:40:18-20 07/15/92 0.079 0.078 50.9 1.95 NA 1889 0.008 54
WCAI:40:20-22 07/15/92 0.083 0.085 0.98 1.01 1855 0.005 31
WCAI:40:22-24 07/15/92 0.084 0.088 0.00 19
WCAI:40:24-26 07/15/92 0.076 0.077 33
WCAI:40:26-28 07/15/92 0.076 0.078 34
WCAI:40:28-30 07/15/92 0.068 0.070 38
WCAI:40:30-32 07/15/92 0.068 0.070 24
WCA1:40:32-34 07/15/92 0.073 0.072 35
WCAI:40:34-36 07/15/92 0.068 0.067 37
WCAI:40:36-38 07/15/92 0.063 0.064 50.4 26
WCAI:40:38-40 07/15/92 0.065 0.066 11
WCA1:40:40-42 07/15/92 0.071 0.074 23
WCA1:40:42-44 07/15/92 0.085 0.087 19
WCA1:40:44-46 07/15/92 0.098 0.102 17
WCAI:41:00-02 07/15/92 0.013 0.013 3179
WCAI:41:02-04 07/15/92 0.033 0.034 135
WCAI:41:04-06 07/15/92 0.102 0.103 178
WCAI:41:06-08 07/15/92 0.087 0.087 137
WCAI:41:08-10 07/15/92 0.066 0.067 197
WCAI:41:10-12 07/15/92 0.075 0.077 137
WCAI:41:12-14 07/15/92 0.069 0.072 78
WCAl:41:14-16 07/15/92 0.065 0.066 67
WCAI:41:16-18 07/15/92 0.067 0.071 51
WCAI:41:18-20 07/15/92 0.074 0.076 47
WCA1:41:20-22 07/15/92 0.080 0.083 180
WCAI:41:22-24 07/15/92 0.082 0.084 77
WCAI:41:24-26 07/15/92 0.083 0.085 30











Table 4.1 Sediment and Mercury Analyses Water Conservation Area 1


Sample I.D.


WCAI:41:2ZB-
WCA1:41:28-30
WCAI:41:30-32
WCAI:41:32-34
WCAI:41:34-36
WCAI:42:00-02
WCAI:42:02-04
WCAI:42:04-06
WCAI:42:06-08
WCA1:42:08-10
WCAI:42:10-12
WCAI:42:12-14
WCAI:42:14-16
WCAl:42:16-18
WCA1:42:18-20
WCAI:42:20-22
WCAI:42:22-24
WCAI:42:24-26
WCA1:42:26-28
WCAI:42:28-30
WCAI:42:30-32
WCAI:42:32-34
WCAI:42:34-36
WCAI:42:36-38
WCAI:42:38-40
WCAI:42:40-42


Sampling
Date
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92
07/15/92


Solids Bulk Total Inorg. Organic
dry wt Density Carbon Carbon Carbon Pb-210 Cs-137
g/g glcmA3 % % % pCi/g pCi/g
0.077 0.082
0.094 0.097
0.086 0.090
0.089 0.091
0.095 0.097
0.088 0.091
0.087 0.089
0.085 0.089
0.075 0.077
0.072 0.074
0.093 0.095
0.084 0.087
0.091 0.095
0.063 0.066
0.057 0.059
0.072 0.073
0.070 0.071
0.065 0.068
0.063 0.065
0.076 0.079
0.070 0.074
0.064 0.066
0.086 0.086
0.091 0.095
0.118 0.122
0.101 0.102


deposition Total Organic
period rate Mercury Mercury


year g/cm^2-yr


BDL, below detection limit
NA, analysis not available


--------


ng/g
-31
16
17
26
5
137
276
171
138
113
68
64
70
51
39
32
61
51
20
58
47
51
27
25
28
23











Table 4.2 Sediment and Mercury Analyses Water Conservation Area 2


Sample I.D.
WCA2:25:00-02
WCA2:25:02-04
WCA2:25:04-06
WCA2:25:06-08
WCA2:25:08-10
WCA2:25:10-12
WCA2:25:12-14
WCA2:25:14-16
WCA2:25:16-18
WCA2:25:18-20
WCA2:25:20-22
WCA2:25:22-24
WCA2:25:24-26
WCA2:25:26-28
WCA2:25:28-30
WCA2:25:30-32
WCA2:25:32-34


Solids Bulk
Sampling dry wt Density
Date g/g g/cm'3


UII11/Z
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92


U.U1
0.010
0.014
0.049
0.106
0.145
0.137
0.121
0.134
0.134
0.142
0.164
0.116
0.100
0.109
0.171
0.115


U.U I
0.010
0.014
0.049
0.109
0.147
0.145
0.128
0.143
0.135
0.145
0.180
0.121
0.105
0.109
0.174
0.118


Total Inorg. Organic
Carbon Carbon Carbon Pb-210


Cs-137


% % % pCi/g pCi/g


1I.1 I
13.76
11.06
17.22
20.29
11.45
6.74'
2.79
3.11
3.19
0.00
0.73
0.00


deposition Total Organic
period rate Mercury Mercury
year g/cm'2-yr ng/g ng/g


S1WZ
1991
1991
1990
1986
1972
1954
1937
1927
1908


U.UJV
0.033
0.041
0.026
0.019
0.022
0.022
0.030
0.020
0.011


1862 0.011


WCA2:25:34-36 03/11/92 0.126 0.133 40
WCA2:26A:00-02 03/11/92 0.048 0.050 34.1 3.4 30.8 11.72 1.57 1992 0.029 157 31
WCA2:26A:02-04 03/11/92 0.237 0.249 37.1 9.23 1.97 1988 0.033 78 25
WCA2:26A:04-06 03/11/92 0.146 0.146 43.5 6.09 1.38 1968 0.026 67 25
WCA2:26A:06-08 03/11/92 0.112 0.116 46.0 0.1 46.0 1.32 0.50 1954 0.079 47 27
WCA2:26A:08-10 03/11/92 0.109 0.116 47.0 0.0 47.0 1.29 0.34 1951 0.073 48 43
WCA2:26A:10-12 03/11/92 0.141 0.144 46.3 1.82 0.01 1948 0.047 95 41
WCA2:26A: 12-14 03/11/92 0.183 0.189 47.4 2.25 0.36 1941 0.031 29 19
WCA2:26A: 14-16 03/11/92 0.179 0.190 40.9 1.21 0.26 1925 0.035 17 BDL
WCA2:26A:16-18 03/11/92 0.151 0.166 35.0 0.0 35.0 1.04 BDL 1912 0.027 13 BDL
WCA2:26A: 18-20 03/11/92 0.168 0.169 47.7 0.0 47.7 0.87 BDL 1896 0.020 25 19
WCA2:26A:20-22 03/11/92 0.175 0.185 0.70 0.09 1872 0.012 31 25
WCA2:26A:22-24 03/11/92 0.172 0.206 41.5 0.0 41.5 30 20
WCA2:26B:00-02 03/11/92 0.013 0.014 -)7 77


WCA2:26B:02-04
WCA2:26B:04-06
WCA2:26B:06-08
WCA2:26B:08-10
WCA2:26B:10-12
WCA2:26B: 12-14
WCA2:26B: 14-16
WCA2:26B:16-18
WCA2:26B: 18-20
WCA2:26B:20-22


03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03111/92
03/11/92
03/11/92


0.045
0.237
0.115
0.127
0.136
0.147
0.170
0.125
0.259
0.170


0.047
0.259
0.112
0.132
0.143
0.157
0.170
0.129
0.295
0.182


^""'"^ --'- --'- -'- -" --- ----


"'


" AA











Table 4.2 Sediment and Mercury Analyses Water Conservation Area 2


Sample I.D.


WCA2:27:U2-04
WCA2:27:04-06
WCA2:27:06-08
WCA2:27:08-10
WCA2:27:10-12
WCA2:27:12-14
WCA2:27:14-16
WCA2:27:16-18
WCA2:27:18-20
WCA2:27:20-22
WCA2:27:22-24
WCA2:27:24-26
WCA2:27:26-28
WCA2:27:28-30
WCA2:27:30-32
WCA2:27:32-34
WCA2:27:34-36


N) WCA2:28:00-02
0WCA2:28:02-04
WCA2:28:04-06
WCA2:28:06-08
WCA2:28:08-10
WCA2:28:10-12
WCA2:28:12-14
WCA2:28:14-16
WCA2:28:16-18
WCA2:28:18-20
WCA2:28:20-22
WCA2:28:22-24
WCA2:28:24-26
WCA2:28:26-28
WCA2:28:28-31
WCA2:29:00-02
WCA2:29:02-04
WCA2:29:04-06
WCA2:29:06-08
WCA2:29:08-10
WCA2:29:10-12
WCA2:29:12-14
WCA2:29:14-16
WCA2:29:16-18


Solids Bulk Total Inorg. Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm'2-yr ng/g nglg


03/12/92 U.174 U.109
03/12/92 0.157 0.167
03/12/92 0.121 0.125
03/12/92 0.135 0.143
03/12/92 0.124 0.125
03/12/92 0.142 0.149
03/12/92 0.158 0.159
03/12/92 0.123 0.127
03/12/92 0.117 0.115
03/12/92 0.117 0.119
03/12/92 0.126 0.124
03/12/92 0.109 0.109
03/12/92 0.133 0.140
03/12/92 0.118 0.117
03/12/92 0.148 0.147
03/12/92 0.148 0.143
03/12/92 0.131 0.130


03/12/92 0.139 0.140
03/12/92 0.118 0.120
03/12/92 0.105 0.106
03/12/92 0.090 0.091
03/12/92 0.080 0.082
03/12/92 0.095 0.098
03/12/92 0.104 0.107
03/12/92 0.108 0.112
03/12/92 0.101 0.099
03/12/92 0.098 0.103
03/12/92 0.104 0.106
03/12/92 0.115 0.119
03/12/92 0.113 0.112
03/12/92 0.117 0.118
03/12/92 0.122 0.118


03/12/92 0.072 0.077
03/12/92 0.094 0.094
03/12/92 0.067 0.070
03/12/92 0.122 0.135
03/12/92 0.108 0.111
03/12/92 0.065 0.070
03/12/92 0.049 0.043
03/12/92 0.105 0.110
03/12/92 0.082 0.090


77


44.0
45.5
46.3
45.4
47.8
47.8
48.3
47.7


0.8 43.8 4.08
4.08
0.7 45.7 5.47


0 7A Pj~jL u.ueu I'.


4.73
47.7 4.73
48.3 4.29


1992
1990
1987
1985
1978
1973
1969
1967
1960


U.Uoa
0.075
0.052
0.047
0.045
0.038
0.037
0.035
0.035


i4
56 29
79 44
83 59
59 56
145 37
109 21
42 25
33 21


- rR


. . . . .. .. . A A 4


-~--


An 7A


-- -


h f











Table 4.2 Sediment and Mercury Analyses Water Conservation Area 2


Solids Bulk
Sampling dry wt Density


Total Inorg. Organic deposition Total
Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury


Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm'2-yr ng/g ng/g
WCA2:29:18-20 03/12/92 0.073 0.089 46.6 3.40 1.66 1954 0.029 156 51
WCA2:29:20-22 03/12/92 0.075 0.072 NA 2.64 7.85 1947 0.031 101 23
WCA2:29:22-24 03/12/92 0.198 0.199 NA 2.64 7.85 1942 0.026 49 33
WCA2:29:24-26 03/12/92 0.146 0.152 45.6 0.0 45.6 0.85 2.99 1922 0.043 48 49
WCA2:29:26-28 03/12/92 0.213 0.202 NA 0.53 1.74 1914 0.054 NA BDL
WCA2:29:28-30 03/12/92 0.138 0.131 NA 0.67 1.74 1905 0.033 45 61
WCA2:29:30-32 03/12/92 0.158 0.155 48.3 0.60 0.32 1896 0.027 43 33
WCA2:29:32-34 03/12/92 0.101 0.103 NA 0.53 0.01 1882 0.020 20 30
WCA2:29:34-36 03/12/92 0.176 0.187 NA 0.53 0.01 1870 0.014 22 24
WCA2:29:36-38 03/12/92 0.140 0.138 50.3 0.0 50.3 0.12 0.28 15 13
WCA2:29:38-40 03/12/92 0.112 0.112 NA BDL 30 18
WCA2:29:40-42 03/12/92 0.150 0.150 44.5 0.0 44.6 BDL
WCA2:30:00-02 03/12/92 0.138 0.143 45.3 0.4 44.9 66 43
WCA2:30:02-04 03/12/92 0.026 0.023 46.6 0.2 46.4 358 218
WCA2:30:04-06 03/12/92 0.046 0.045 46.7 0.4 46.4 172
WCA2:30:06-08 03/12/92 0.026 0.025 44.1 0.1 44.0 313
WCA2:30:08-10 03/12/92 0.084 0.089 48.2 120 76
WCA2:30:10-12 03/12/92 0.098 0.097 45.7 82
WCA2:30:12-14 03/12/92 0.098 0.098 47.9 0.0 47.8 95
WCA2:30:14-16 03/12/92 0.127 0.142 46.7 0.0 46.7 55
WCA2:30:16-18 03/12/92 0.090 0.095 48.1 0.0 48.1 75 28
WCA2:30:18-20 03/12/92 0.133 0.133 49.1 59 40
WCA2:30:20-22 03/12/92 0.136 0.134 49.5 50 36
WCA2:30:22-24 03/12/92 0.064 0.067 34
WCA2:30:24-26 03/12/92 0.122 0.120 17
WCA2:30:26-28 03/12/92 0.132 0.123 26
WCA2:30:28-30 03/12/92 0.119 0.126 50.8 27 23
WCA2:30:30-32 03/12/92 0.122 0.129 27 20
WCA2:30:32-34 03/12/92 0.111 0.116 60
WCA2:30:34-36 03/12/92 0.167 0.169 52.4 0.0 52.4 20 22
BDL. below detection limit
NA, analysis not available


Organic
Mercury











Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Sample I.D.


WCA3:01:00-02
WCA3:01:02-04
WCA3:01:04-06
WCA3:01:06-08
WCA3:01:08-10
WCA3:01:10-12
WCA3:01:12-14
WCA3:01:14-16
WCA3:01:16-18
WCA3:01:18-20
WCA3:01:20-22
WCA3:01:22-24
WCA3:01:24-26
WCA3:01:26-28
WCA3:01:28-30
WCA3:02:00-02
WCA3:02:02-04
WCA3:02:04-06
WCA3:02:06-08
WCA3:02:08-10
WCA3:02:10-12
WCA3:02:12-14
WCA3:02:14-16
WCA3:02:16-18
WCA3:02:18-20
WCA3:02:20-22
WCA3:02:22-24
WCA3:02:24-26
WCA3:02:26-28
WCA3:02:28-30
WCA3:02:30-32
WCA3:02:32-34
WCA3:02:34-35
WCA3:13:00-02


Sampling
Date
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
01/21/92
03/10/92


WCA3:13:02-04 03/10/92
WCA3:13:04-06 03/10/92
WCA3:13:06-08 03/10/92
WCA3:13:08-10 03/10/92
WCA3:13:10-12 03/10/92
WCA3:13:12-14 03/10/92
WCA3:13:14-16 03/10/92


Solids Bulk
dry wt Density
g/g g/cmA3


0.035
0.077
0.111
0.111
0.108
0.101
0.106
0.110
0.107
0.095
0.109
0.143
0.157
0.137
0.112
0.035
0.084
0.101
0.109
0.096
0.095
0.088
0.097
0.097
0.105
0.115
0.154
0.141
0.167
0.148
0.106
0.102
0.171
0.173
0.176
0.153
0.125
0.137
0.125
0.124
0.143


Total Inorg. Organic
Carbon Carbon Carbon Pb-210 Cs-137
% % % pCi/g pCilg


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g


0.036 Aul
0.074 79
0.113 109
0.100 11I
0.111 89
0.096 85
0.092 66
0.097 49
0.086 26
0.082 38
0.108 40
0.150 31
0.161 44
0.149 64
0.154 32


0.028
0.073
0.107
0.091
0.082
0.083
0.080
0.085
0.086
0.101
0.117
0.142
0.126
0.167
0.147
0.114
0.107
0.120
0.175
0.186
0.159
0.126
0.136
0.128
0.126
0.144


15.22 2.16
32.3 11.22 3.88
11.41 5.03
4.14 1.22
2.93 1.33
1.98 1.24
0.95 1.24
1.27 0.20


1992
1980
1966
1946
1936
1926
1918
1913


0.035
0.033
0.021
0.031
0.032
0.035
0.056
0.036


u'A


--











Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Sample I.D.
WCA3:13:16-18
WCA3:13:18-20
WCA3:13:20-22
WCA3:13:22-24
WCA3:14:00-02
WCA3:14:02-04
WCA3:14:04-06
WCA3:14:06-08
WCA3:14:08-10
WCA3:14:10-12
WCA3:14:12-14
WCA3:14:14-16
WCA3:14:16-18
WCA3:14:18-20
WCA3:14:20-22
WCA3:14:22-24
WCA3:14:24-26
WCA3:14:26-28
WCA3:14:28-30
WCA3:14:30-32


Solids Bulk
Sampling dry wt Density
Date g/g g/cm^3
03/10/92 0.173 0.179
03/10/92 0.245 0.263
03/10/92 0.199 0.208
03/10/92 0.220 0.239
03/10/92 0.036 0.033
03/10/92 0.087 0.088
03/10/92 0.118 0.125
03/10/92 0.044 0.046
03/10/92 0.095 0.097
03/10/92 0.117 0.106
03/10/92 0.114 0.115
03/10/92 0.130 0.124
03/10/92 0.145 0.147
03/10/92 0.105 0.104
03/10/92 0.099 0.097
03/10/92 0.204 0.216
03/10/92 0.236 0.266
03/10/92 0.297 0.346
03/10/92 0.358 0.462
03/10/92 0.298 0.359


Total
Carbon
%
31.8

27.7


Inorg. Organic deposition Total Organic
Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
% % pCi/g pCi/g year g/cm^2-yr ng/g ng/g
1.53 0.13 1904 0.022 31
1.06 0.01 1882 0.016 30
32


44.2 0.0 44.1 347


44.2
48.5
49.0


0.0 45.5

0.0 47.3


9.5 7.8


172 89
67 BDL
95 15
83 BDL
61 BDL
16 BDL
BDL BDL
BDL
BDL
BDL


WCA3:14:32-34 03/10/92 0.369 0.440 16.8 10.2 6.6 BDL
WCA3:15:00-02 03/10/92 0.035 0.030 20.90 1.73 1992 0.032 66
WCA3:15:02-04 03/10/92 0.093 0.084 39.6 21.89 1.88 1990 0.029 87
WCA3:15:04-06 03/10/92 0.103 0.095 40.0 20.26 2.95 1984 0.026 221
WCA3:15:06-08 03/10/92 0.150 0.136 21.01 5.73 1975 0.019 137
WCA3:15:08-10 03/10/92 0.176 0.164 10.22 5.64 1956 0.022 81
WCA3:15:10-12 03/10/92 0.193 0.181 51.7 4.70 2.77 1936 0.025 57
WCA3:15:12-14 03/10/92 0.174 0.160 3.20 1.90 1916 0.020 95
WCA3:15:14-16 03/10/92 0.153 0.140 3.06 0.85 1893 0.010 40
WCA3:15:16-18 03/10/92 0.165 0.152 0.28 0.45 1830 0.015 BDL
WCA3:15:18-20 03/10/92 0.132 0.120 0.22 0.007 18
WCA3:15:20-22 03/10/92 0.162 0.150 14
WCA3:15:22-24 03/10/92 0.140 0.127 BDL
WCA3:15:24-26 03/10/92 0.150 0.136 34
WCA3:16:00-02 03/10/92 0.018 0.018 239
WCA3:16:02-04 03/10/92 0.173 0.181 32.1 99
WCA3:16:04-06 03/10/92 0.056 0.057 306
WCA3:16:06-08 03/10/92 0.188 0.198 92
WCA3:16:08-10 03/10/92 0.168 0.170 57
WCA3:16:10-12 03/10/92 0.217 0.228 65
WCA3:16:12-14 03/10/92 0.237 0.244 49


I


I










Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Solids Bulk


Total


Inorg. Organic


deposition Total Organic


Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm^2-yr ng/g ng/g
WCA3:16:14-16 03/10/92 0.210 0.212 48.9 87
WCA3:16:16-18 03/10/92 0.215 0.217 16
WCA3:16:18-20 03/10/92 .0.197 0.202 12
WCA3:16:20-22 03/10/92 0.166 0.172 52.4 24
WCA3:16:22-24 03/10/92 0.190 0.195 33
WCA3:17:00-02 03/10/92 0.082 0.082 44.7 0.0 44.7 402
WCA3:17:02-04 03/10/92 0.158 0.172 41.7 294 BDL
WCA3:17:04-06 03/10/92 0.120 0.128 46.3 0.0 46.3 303
WCA3:17:06-08 03/10/92 0.165 0.166 44.2 128
WCA3:17:08-10 03/10/92 0.099 0.105 209
WCA3:17:10-12 03/10/92 0.158 0.168 46.5 0.0 46.5 122 14
WCA3:17:12-14 03/10/92 0.135 0.137 45.3 113 16
WCA3:17:14-16 03/10/92 0.122 0.125 50.0 106 29
WCA3:17:16-18 03/10/92 0.145 0.150 45.9 0.0 45.9 59 BDL
WCA3:18:00-02 03/11/92 0.015 0.014 38.3 0.0 38.3 566
WCA3:18:02-04 03/11/92 0.118 0.117 42.4 0.0 42.4 131
WCA3:18:04-06 03/11/92 0.157 0.169 42.2 0.0 42.2 304 130
WCA3:18:06-08 03/11/92 0.224 0.233 44.3 0.0 44.3 228 25
WCA3:18:08-10 03/11/92 0.170 0.183 49.8 0.0 49.8 225 27
WCA3:18:10-12 03/11/92 0.172 0.178 45.8 121 52
WCA3:18:12-14 03/11/92 0.131 0.130 49.9 84 56
WCA3:18:14-16 03/11/92 0.135 0.143 48.0 80 72
WCA3:18:16-18 03/11/92 0.150 0.135 49.1 0.0 49.1 42 35
WCA3:18:18-20 03/11/92 0.139 0.137 49.0 0.0 49.0 69 21
WCA3:18:20-22 03/11/92 0.112 0.114 57
WCA3:18:22-24 03/11/92 0.089 0.092 45
WCA3:18:24-26 03/11/92 0.105 0.105 48.7 0.0 48.7 62 13
WCA3:18:26-28 03/11/92 0.107 0.106 49
WCA3:18:28-30 03/11/92 0.098 0.098 145
WCA3:18:30-32 03/11/92 0.097 0.099 45.9 0.0 45.9 121 85
WCA3:18:32-34 03/11/92 0.125 0.125 103
WCA3:18:34-36 03/11/92 0.123 0.118 90
WCA3:18:36-38 03/11/92 0.107 0.102 115
WCA3:18:38-40 03/11/92 0.108 0.106 47.8 80 19
WCA3:18:40-42 03/11/92 0.113 0.113 85
WCA3:18:42-44 03/11/92 0.101 0.098 47.0 0.0 47.0 52 19
WCA3:18:44-46 03/11/92 0.125 0.122 70
WCA3:18:46-48 03/11/92 0.097 0.094 18
WCA3:18:48-50 03/11/92 0.120 0.119 52
WCA3:18:50-52 03/11/92 0.139 0.140 61
WCA3:18:52-53 03/11/92 0.144 0.144 52












Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Sample I.D.


WCA3:19:00-02
WCA3:19:02-04
WCA3:19:04-06
WCA3:19:06-08
WCA3:19:08-10
WCA3:19:10-12
WCA3:19:12-14
WCA3:19:14-16
WCA3:19:16-18
WCA3:19:18-20
WCA3:19:20-22
WCA3:19:22-24
WCA3:19:24-26
WCA3:19:26-28
WCA3:19:28-30
WCA3:19:30-32
WCA3:20A:02-04
WCA3:20B:02-04
WCA3:20C:02-04
WCA3:20C:06-08
WCA3:20D:02-04
WCA3:20D:06-08
WCA3:21:00-02
WCA3:21:02-04
WCA3:21:04-06
WCA3:21:06-08
WCA3:21:08-10
WCA3:21:10-12
WCA3:22:00-02
WCA3:22:02-04
WCA3:22:04-06
WCA3:22:06-08
WCA3:22:08-10
WCA3:22:10-12
WCA3:22:12-14
WCA3:22:14-16
WCA3:22:16-18
WCA3:22:18-20
WCA3:22:20-22
WCA3:23A:02-04
WCA3:23B:02-04


Solids Bulk Total Inorg. Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137
Date g/g g/cm^3 % % % pCi/g pCi/g
03/11/92 0.043 0.043 1.54 0.60
03/11/92 0.165 0.171 3.52 0.93
03/11/92 0.176 0.191 6.32 3.29
03/11/92 0.167 0.176 10.36 5.90
03/11/92 0.166 0.176 10.54 7.78
03/11/92 0.117 0.119 5.83 7.17
03/11/92 0.112 0.118 1.06 5.74
03/11/92 0.097 0.094 0.30 2.83
03/11/92 0.110 0.114 0.00 1.18
03/11/92 0.111 0.115
03/11/92 0.128 0.129
03/11/92 0.104 0.105
03/11/92 0.106 0.109
03/11/92 0.140 0.137
03/11/92 0.184 0.190
03/11/92 0.162 0.165
03/11/92 0.379 0.447
03/11/92 0.601 0.943
03/11/92 0.622 0.648
03/11/92 0.635 0.874
03/11/92 0.756 1.149
03/11/92 0.638 0.740
03/11/92 0.169 0.175
03/11/92 0.239 0.251
03/11/92 0.270 0.302
03/11/92 0.386 0.468
03/11/92 0.537 0.735
03/11/92 0.485 0.648
03/11/92 0.030 0.028
03/11/92 0.116 0.110
03/11/92 0.182 0.193
03/11/92 0.178 0.183
03/11/92 0.156 0.158
03/11/92 0.189 0.201
03/11/92 0.318 0.380
03/11/92 0.291 0.335
03/11/92 0.249 0.265
03/11/92 0.261 0.289
03/11/92 0.341 0.408
03/11/92 0.427 0.533
03/11/92 0.425 0.529


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g
1992 0.259 40
1992 0.112 25
1988 0.056 57
1981 0.027 194
1964 0.016 152
1927 0.009 142
1872 0.009 105
1818 0.006 92
62
36
32
30
28
28
38


45
13
BDL
20
BDL
BDL
10
,'r'


1/.
58
62
33
18
BDL
27
87
124
74
107
47
17
27
27
50
22
89
12


----











Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Sample I.D.
WCA3:23C:02-04
WCA3:23D:06-08
WCA3:23E:02-04
WCA3:24:00-02
WCA3:24:02-04
WCA3:24:04-06
WCA3:24:06-08
WCA3:24:08-10
WCA3:24:10-12
WCA3:24:12-14
WCA3:24:14-16
WCA3:24:16-18
WCA3:24:18-20
WCA3:24:20-22
WCA3:24:22-24
WCA3:24:24-26
WCA3:24:26-28
WCA3:24:28-30
WCA3:24:30-32
WCA3:32:00-02
WCA3:32:02-04
WCA3:32:04-06
WCA3:32:06-08
WCA3:32:08-10
WCA3:32:10-12
WCA3:32:12-14
WCA3:32:14-16
WCA3:32:16-18
WCA3:32:18-20
WCA3:33:00-02
WCA3:33:02-04
WCA3:33:04-06
WCA3:33:06-08
WCA3:33:08-10
WCA3:33:10-12
WCA3:33:12-14
WCA3:33:14-16
WCA3:33:16-18
WCA3:33:18-20
WCA3:33:20-22
WCA3:33:22-24


Sampling
Date
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/11/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92
03/12/92


Solids Bulk Total Inorg. Organic
dry wt Density Carbon Carbon Carbon Pb-210 Cs-137
g/g g/cm^3 % % % pCi/g pCi/g
0.278 0.306
0.352 0.411
0.369 0.447
0.018 0.017
0.163 0.160 42.0
0.118 0.120
0.109 0.105
0.124 0.127
0.126 0.132
0.128 0.128
0.141 0.144
0.146 0.146 47.0
0.112 0.113
0.114 0.113
0.113 0.111
0.119 0.118
0.116 0.112
0.125 0.125 49.8
0.131 0.129
0.162 2.453
0.187 2.696
0.297 2.857
0.271 2.552
0.315 2.895
0.320 2.900
0.298 2.715
0.282 2.530
0.287 2.553
0.276 2.443
0.195 1.685
0.275 2.575
0.282 2.647
0.314 3.081
0.335 3.256
0.315 2.843
0.265 2.323
0.256 2.231
0.257 2.256
0.247 2.228
0.242 2.155
0.232 2.075


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g
13
14
16
331
92
117
66
58
83
74
89
103
85
103
65
34
26
42
47
BDL
12
19
34
18
42
27
28
28
21
BDL
BDL
BDL
15
27
33
39
63
45
47
BDL
BDL












Table 4.3 Sediment and Mercury Analyses Water Conservation Area 3


Sampling
Sample I.D. Date
WCA3:33:24-26 03/12/92
WCA3:33:26-28 03/12/92
WCA3:33:28-31 03/12/92
WCA3:C123:00-02 01/21/92
WCA3:C123:02-04 01/21/92
WCA3:C123:04-06 01/21/92
WCA3:C123:06-08 01/21/92
WCA3:C123:08-10 01/21/92
WCA3:C123:10-12 01/21/92
WCA3:C123:12-14 01/21/92
WCA3:C123:14-16 01/21/92
WCA3:C123:16-18 01/21/92
WCA3:C123:18-20 01/21/92
WCA3:C123:20-22 01/21/92
WCA3:C123:22-24 01/21/92
WCA3:C123:24-26 01/21/92
WCA3:C123:26-28 01/21/92
WCA3:C123:28-30 01/21/92
WCA3:C123:30-34 01/21/92
WCA3:C123:34-38 01/21/92
WCA3:C123:38-42 01/21/92
WCA3:C123:42-46 01/21/92
WCA3:C123:46-50 01/21/92
WCA3:C123:50-54 01/21/92
WCA3:C123:54-58 01/21/92
WCA3:C123:58-62 01/21/92
WCA3:C123:62-66 01/21/92
WCA3:C123:66-70 01/21/92
WCA3:C123:70-74 01/21/92


Solids Bulk Total Inorg. Organic
dry wt Density Carbon Carbon Carbon Pb-210 Cs-137
g/g g/cm^3 % % % pCi/g pCi/g


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr nglg ng/g


--M


I Al


BDL, below detection limit
NA, analysis not available


0.232
0.234
0.219
0.035
0.040
0.045
0.078
0.108
0.118
0.105
0.145
0.123
0.166
0.168
0.181
0.177
0.184
0.372
0.382
0.399
0.376
0.407
0.430
0.401
0.393
0.410
0.412
0.366
0.374


L


2.035
2.053
1.931
0.035
0.041
0.044
0.077
0.105
0.110
0.116
0.155
0.130
0.172
0.166
0.182
0.191
0.219
0.413
0.973
1.000
0.845
1.118
1.070
0.941
0.969
0.982
0.894
0.981
1.050


---


- -----------









Table 4.4 Sediment and Mercury Analyses Everglades National Park


Sample I.D.


ENP:01A:00-07
ENP:01A:07-14
ENP:OIB:00-09
ENP:01B:09-15
ENP:02:0(-02
ENP:02:02-04
ENP:02:04-06
ENP:02:06-08
ENP:02:08-10
ENP:02:10-12
ENP:02:12-14
ENP:02:14-16
ENP:02:16-18
ENP:02:18-20
ENP:02:20-22
ENP:02:22-24
ENP:02:24-26
ENP:02:26-28
ENP:02:28-30
ENP:02:30-32
ENP:02:32-34
ENP:02:34-36
ENP:02:36-38
ENP:02:38-40
ENP:02:40-42
ENP:02:42-44
ENP:02:44-46
ENP:02:46-48
ENP:02:48-50
ENP:02:50-52
ENP:03A:00-03
ENP:03B:00-03
ENP:04A:00-08
ENP:04A:08-16
ENP:04B:00-08
ENP:04B:08-16
ENP:04B:16-24
ENP:05:00-02
ENP:05:02-04
ENP:05:04-06
ENP:05:06-08


Total Inorganic Organic
Carbon Carbon Carbon Pb-210 Cs-137
% % % pCi/lg pCilg


deposition Total Organic
period rate Mercury Mercury


year g/cm^2-yr


--


ng/g


-J ELI >2


Solids Bulk
Sampling dry wt Density
Date g/g g/cm*3
03109/92 0.277 0.401
03/09/92 0.440 0.689
03109/92 0.298 0.449
03/09/92 0.410 0.630
03109/92 0.198 0.200
03/09/92 0.174 0.186
03/09/92 0.145 0.154
03/09/92 0.131 0.126
03/09/92 0.150 0.146
03/09/92 0.130 0.129
03/09/92 0.115 0.112
03/09/92 0.124 0.126
03/09/92 0.137 0.137
03/09/92 0.125 0.124
03/09/92 0.140 0.138
03/09/92 0.266 0.316
03/09/92 0.329 0.349
03/09/92 0.380 0.465
03/09/92 0.324 0.367
03/09/92 0.151 0.146
03/09/92 0.146 0.141
03/09/92 0.136 0.132
03/09/92 0.137 0.136
03/09/92 0.128 0.121
03/09/92 0.164 0.165
03/09/92 .0.255 0.277
03/09/92 0.296 0.318
03/09/92 0.312 0.348
03/09/92 0.188 0.192
03/09/92 0.155 0.154
03/09/92 0.662 0.647
03/09/92 0.615 0.769
03/09/92 0.339 0.391
03/09/92 0.422 0.482
03/09/92 0.351 0.368
03/09/92 0.472 0.527
03/09/92 0.511 0.610
03/09/92 0.181 0.182
03/09/92 0.240 0.241
03/09/92 0.226 0.229
03/09/92 0.253 0.265


ng/g
14.6
37.8
-24.3
25.1
110
85
101
105
65
82
75
61
99
94
61
17
11
BDL
II
37
38
49
48
28
22
10
BDL
BDL
30
50
43
43










Table 4.4 Sediment and Mercury Analyses Everglades National Park


Sample I.D.


tJNr:U3:UI-1U
ENP:05:10-12
ENP:05:12-14
ENP:05:14-16
ENP:05:16-18
ENP:05:18-20
ENP:05:20-22
ENP:05:22-25
ENP:06:00-02
ENP:06:02-04
ENP:06:04-06
ENP:06:06-08
ENP:06:08-10
ENP:06:10-12
ENP:06:12-14
ENP:06:14-16
ENP:06:16-18
ENP:06:18-20
ENP:06:20-22
ENP:06:22-24
ENP:06:24-26
ENP:06:26-28
ENP:06:28-30
ENP:06:30-32
ENP:06:32-34
ENP:06:34-36
ENP:06:36-38
ENP:06:38-40
ENP:06:40-42
ENP:06:42-44
ENP:06:44-46
ENP:06:46-48
ENP:06:48-50
ENP:06:50-52
ENP:06:52-54
ENP:06:54-56
ENP:06:56-58
ENP:06:58-60
ENP:06:60-62
ENP:07:00-02
ENP:07:02-04


Solids Bulk
Sampling dry wt Density
Date g/g g/cm*3


Total Inorganic Organic
Carbon Carbon Carbon Pb-210 Cs-137
% % % pCi/k pCi/g


UJIUW/W
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g


U.Z30 U.214
0.259 0.276
0.277 0.307
0.271 0.304
0.271 0.304
0.279 0.314
0.324 0.385
0.337 0.401
0.279 0.324
0.298 0.334
0.346 0.418
0.328 0.394
0.367 0.447
0.348 0.418
0.320 0.389
0.338 0.389
0.285 0.345
0.308 0.378
0.312 0.387
0.343 0.376
0.158 0.160
0.153 0.146
0.193 0.186
0.193 0.206
0.254 0.273
0.289 0.273
0.153 0.176
0.321 0.403
0.410 0.518
0.473 0.581
0.408 0.521
0.452 0.589
0.485 0.637
0.473 0.652
0.525 0.736
0.559 0.779
0.548 0.761
0.530 0.740
0.551 0.761
0.046 0.143
0.179 0.292


IU1
93
82
81
85
72
65
59
17
19
25
20
NA
NA
17
16
15
14
11
19
50
36
38
28
10
15
24
14
BDL
10
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
10


O.U0 I.2


3.19 U.72 1992 U.U.9
5.19 0.72 1988 0.070


----


^^'^









Table 4.4 Sediment and Mercury Analyses Everglades National Park


Solids Bulk
Sampling dry wt Density
Date g/g g/cm*3


Total Inorganic Organic deposition Total Organic
Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
% % % pCi/g pCi/g year g/cm^2-yr ng/g ng/g


t.NP:U/:U4-UO
ENP:07:06-08
ENP:07:08-10
ENP:07:10-12
ENP:07:12-14
ENP:07:14-16
ENP:07:16-18
ENP:07:18-20
ENP:07:20-22
ENP:07:22-24
ENP:07:24-26
ENP:07:26-28
ENP:07:28-30
ENP:07:30-32
ENP:07:32-34
ENP:07:34-36
ENP:07:36-38
ENP:07:38-40
ENP:07:40-42
ENP:07:42-44
ENP:07:44-46
ENP:07:46-48
ENP:07:48-50
ENP:07:50-52
ENP:07:52-54
ENP:07:54-56
ENP:07:56-58
ENP:07:58-60
ENP:07:60-61
ENP:08A:00-02
ENP:08A:04-06
ENP:08A:06-08
ENP:08A:08-10
ENP:08A: 10-12
ENP:08A:12-14
ENP:08A: 16-18
ENP:08A: 18-20
ENP:08A:20-22
ENP:08A:22-24
ENP:08A:24-26
ENP:08A:26-28


1. .1
22.6
25.0
22.8
28.4
32.0
31.8
34.5


4.26
2.11
1.21
0.48
0.20
0.15
0.48
0.14


U.UIJ
0.045
0.050
0.044
0.054
0.084
0.088
0.022
0.020


* '^ ^ ^ "^ '^"^


UJ03/W92 0.217 0.343
03/09/92 0.198 0.318
03/09/92 0.267 0.398
03/09/92 0.250 0.370
03/09/92 NA NA
03/09/92 0.181 0.292
03/09/92 0.193 0.304
03/09/92 0.149 0.252
03/09/92 0.217 0.328
03/09/92 0.247 0.367
03/09/92 0.269 0.394
03/09/92 0.390 0.566
03/09/92 0.362 0.529
03/09/92 0.383 0.576
03/09/92 0.367 0.530
03/09/92 0.445 0.668
03/09/92 0.405 0.593
03/09/92 0.386 0.582
03/09/92 0.377 0.533
03/09/92 0.423 0.621
03/09/92 0.420 0.641
03/09/92 0.488 0.726
03/09/92 0.405 0.595
03/09/92 0.418 0.606
03/09/92 0.461 0.713
03/09/92 0.474 0.737
03/09/92 0.481 0.714
03/09/92 0.472 0.699
03/09/92 0.437 0.654
03/09/92 0.155 0.148
03/09/92 0.148 0.142
03/09/92 0.164 0.159
03/09/92 0.169 0.165
03/09/92 0.150 0.146
03/09/92 0.168 0.164
03/09/92 0.135 0.130
03/09/92 0.149 0.146
03/09/92 0.152 0.143
03/09/92 0.124 0.116
03/09/92 0.130 0.124
03/09/92 0.110 0.105


Sample I.D.


'" '' "' ^" '" """ """


35 28
43 12
31 32
35 33
NA 76
48 20
29 17
45 32
30 BDL
19 BDL
32 BDL
14 BDL
18 BDL
12 BDL
10 BDL
10 BDL
16 12
22 21
31 25
12 15
23 11
BDL BDL


10 BDL
15.8 10.4 5.3 10 BDL
12 BDL
10 BDL
17.4 20 BDL


--










Table 4.4 Sediment and Mercury Analyses Everglades National Park


Sample I.D.


ENP:OSA:30-32
ENP:08A:32-34
ENP:08A:34-36
ENP:08A:36-39
ENP:08B:00-02
ENP:08B:04-06
ENP:08B:06-08
ENP:08B:08-10
ENP:08B:10-12
ENP:08B:12-14
ENP:08B: 16-18
ENP:08B: 18-20
ENP:08B:20-22
ENP:08B:22-24
ENP:08B:24-26
ENP:08B:26-28
ENP:08B:30-32
ENP:08B:32-34
ENP:09:00-02
ENP:09:02-04
ENP:09:04-06
ENP:09:06-08
ENP:09:08-10
ENP:09:10-12
ENP:09:12-14
ENP:09:14-16
ENP:09:16-18
ENP:09:18-20
ENP:09:20-22
ENP:09:22-24
ENP:09:24-26
ENP:09:26-28
ENP:09:28-30
ENP:09:30-32
ENP:09:32-34
ENP:09:34-36
ENP:09:36-38
ENP:09:38-40
ENP:09:40-42
ENP:09:42-44
ENP:09:44-46


Solids Bulk
Sampling dry wt Density
Date g/g g/cm^3
03/09/92 0.151 0.143
03/09/92 0.174 0.165
03/09/92 0.150 0.144
03/09/92 0.165 0.160
03/09/92 0.126 0.134
03/09/92 0.095 0.098
03/09/92 0.113 0.125
03/09/92 0.144 0.141
03/09/92 0.139 0.136
03/09/92 0.132 0.126
03/09/92 0.144 0.137
03/09/92 0.140 0.138
03/09/92 0.164 0.160
03/09/92 0.145 0.140
03/09/92 0.118 0.116
03/09/92 0.136 0.129
03/09/92 0.136 0.125
03/09/92 0.150 0.140
03/10/92 0.156 0.157
03/10/92 0.165 0.161
03/10/92 0.149 0.146
03/10/92 0.146 0.146
03/10/92 0.163 0.160
03/10/92 0.149 0.144
03/10/92 0.137 0.132
03/10/92 0.173 0.162
03/10/92 0.144 0.136
03/10/92 0.167 0.158
03/10/92 0.160 0.153
03/10/92 0.176 0.165
03/10/92 0.137 0.137
03/10/92 0.136 0.130
03/10/92 0.121 0.116
03/10/92 0.130 0.117
03/10/92 0.143 0.149
03/10/92 0.128 0.131
03/10/92 0.138 0.146
03/10/92 0.158 0.153
03/10/92 0.153 0.141
03/10/92 0.114 0.116
03/10/92 0.131 0.124


Total Inorganic Organic deposition Total Organic
Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
% % % pCi/g pCi/g year g/cm^2-yr ng/g ng/g


10.23
10.79
8.97
9.49
9.20
7.82
5.27
1.62
1.83
1.22
0.44


1992
1986
1979
1972
1963
1948
1930
1909
1896
1874
1831


U.uoz
0.049
0.047
0.036
0.028
0.021
0.017
0.030
0.017
0.013
0.010


81
125
108
120
118
97
52
115
87
85
86
79
56
BDL
13
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


,,


----


-~ -- --- '^^^ ^^'^









Table 4.4 Sediment and Mercury Analyses Everglades National Park
Solids Bulk Total Inorganic Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm^2-yr ng/g ng/g
ENP:09:46-48 03/10/92 0.127 0.104- BDL
ENP: 10:00-02 03/10/92 0.088 0.095 49
ENP: 10:02-04 03/10/92 0.103 0.109 42
ENP:10:04-06 03/10/92 0.107 0.116 41
ENP: 10:06-08 03/10/92 0.115 0.122 28
ENP:10:08-10 03/10/92 0.114 0.121 38
ENP:10:10-12 03/10/92 0.103 0.109 42
ENP: 10:12-14 03/10/92 0.108 0.119 30
ENP:10:14-16 03/10/92 0.127 0.142 25
ENP: 10:16-18 03/10/92 0.145 0.157 22
ENP: 10:18-20 03/10/92 0.161 0.176 34
ENP: 10:20-22 03/10/92 0.148 0.155 51
ENP: 10:22-24 03/10/92 0.128 0.124 34
ENP: 10:24-26 03/10/92 0.214 0.254 30
ENP: 10:26-28 03/10/92 0.262 0.301 29
ENP: 10:28-30 03/10/92 0.188 0.208 17
ENP:10:30-32 03/10/92 0.161 0.166 60
ENP: 10:32-34 03/10/92 0.164 0.169 59
ENP: 10:34-36 03/10/92 0.157 0.172 48
ENP:10:36-38 03/10/92 0.182 0.187 53
ENP:10:38-40 03/10/92 0.399 0.486 BDL
ENP:11:00-02 03/10/92 0.347 0.214 10.60 1.82 1992 0.060 38
ENP:11:02-04 03/10/92 0.354 0.218 43.2 11.80 2.67 1984 0.042 40
ENP:11:04-06 03/10/92 0.347 0.213 12.60 2.64 1971 0.027 31
ENP:11:06-08 03/10/92 0.299 0.176 7.51 3.70 1949 0.023 25
ENP:11:08-10 03/10/92 0.317 0.183 3.57 2.26 1928 0.025 30
ENP: 11:10-12 03/10/92 0.242 0.127 2.74 2.59 1908 0.017 40
ENP:11:12-14 03/10/92 0.230 0.122 1.42 1.28 1888 0.018 23
ENP:11:14-16 03/10/92 0.222 0.133 48.6 1.04 0.47 1871 0.014 29
ENP:11:16-18 03/10/92 0.265 0.160 0.60 0.51 1842 0.010 32
ENP:11:18-20 03/10/92 0.270 0.161 28
ENP:11:20-22 03/10/92 0.265 0.154 28
ENP: 11:22-24 03/10/92 0.251 0.143 30
ENP:11:24-26 03/10/92 0.278 0.159 19
ENP:11:26-28 03/10/92 0.268 0.162 57
ENP:11:28-30 03/10/92 0.298 0.198 31.3 70
ENP:11:30-32 03/10/92 0.393 0.341 33
ENP:12:00-02 03/10/92 0.024 0.023 10.62 1.07 1992 0.048 170
ENP:12:02-04 03/10/92 0.125 0.123 41.9 12.34 1.65 1991 0.040 86
ENP:12:04-06 03/10/92 0.090 0.086 13.70 2.38 1984 0.029 95
ENP: 12:06-08 03/10/92 0.104 0.102 13.71 3.59 1978 0.023 94











Table 4.4 Sediment and Mercury Analyses Everglades National Park


Sample I.D.


ENP: 12:08-10
ENP: 12:10-12
ENP:12:12-14
ENP: 12:14-16
ENP: 12:16-18
ENP: 12:18-20
ENP: 12:20-22
ENP: 12:22-24
ENP: 12:24-26
ENP: 12:26-28
ENP: 12:28-30
ENP: 12:30-32
ENP: 12:32-34
ENP:TS :00-02
ENP:TSI:02-04
ENP:TS 1:04-06
ENP:TS 1:06-08
ENP:TSI:08-10
ENP:TSI:10-12
ENP:TSI:12-14
ENP:TS 1:14-16
ENP:TS1:16-18
ENP:TSI:18-20
ENP:TS 1:20-22
ENP:TS :22-24
ENP:TS 1:24-26
ENP:TS 1:26-28
ENP:TS 1:28-30
ENP:TS1:30-32
ENP:TS2:00-02
ENP:TS2:02-04
ENP:TS2:04-06
ENP:TS2:06-08


Solids Bulk Total Inorganic Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210
Date g/g g/cm*3 % % % pCilg
03/10/92 0.128 0.129 42.1 8.47
03/10/92 0.126 0.126 11.88
03/10/92 0.119 0.120 1.68
03/10/92 0.109 0.111 3.02
03/10/92 0.109 0.111 2.49
03/10/92 0.204 0.221 1.68
03/10/92 0.302 0.336 0.00
03/10/92 0.241 0.262
03/10/92 0.319 0.359
03/10/92 0.362 0.438
03/10/92 0.482 0.609
03/10/92 0.431 0.559
03/10/92 0.528 0.733
01/07/92 0.220 0.118 23.9 6.2 17.7 10.84
01/07/92 0.305 0.151 20.9 7.5 13.3 7.73
01/07/92 0.272 0.177 21.1 7.7 13.4 9.38
01/07/92 0.341 0.371 19.2 5.02
01/07/92 0.406 0.471 17.4 3.16
01/07/92 0.435 0.542 16.7 9.4 7.3 1.81
01/07/92 0.402 0.491 17.0 1.49
01/07/92 0.357 0.454 18.2 6.1 12.0 1.19
01/07/92 0.379 0.443 16.7 0.85
01/07/92 0.499 0.561 14.1 9.2 4.9 0.50
01/07/92 0.552 0.766 0.25
01/07/92 0.553 0.764 0.00
01/07/92 0.548 0.693 12.6
01/07/92 0.628 0.938
01/07/92 0.602 0.833
01/07/92 0.604 0.771 11.9 8.3 3.6
01/07/92 0.241 0.122 22.0 7.5 14.5 8.38
01/07/92 0.373 0.274 17.8 9.3 8.5 6.97
01/07/92 0.388 0.336 16.2 10.0 6.2 4.40
01/07/92 0.429 0.447 15.7 2.42


ENP:TS2:08-10 .01/07/92 0.425 0.410
ENP:TS2:10-12 01/07/92 0.433 0.413
ENP:TS2:12-14 01/07/92 0.439 0.424
ENP:TS2:14-16 01/07/92 0.439 0.442
ENP:TS2:16-18 01/07/92 0.435 0.454
ENP:TS2:18-20 01/07/92 0.409 0.423
ENP:TS2:20-22 01/07/92 0.447 0.503
ENP:TS2:22-24 01/07/92 0.405 0.472


2.06
0.96
0.85
9.5 6.3 1.29
0.77
8.8 7.2 0.90
1.14
0.41


Cs-137
pCi/g
3.26
5.45
0.70
0.37
0.60
0.63
0.05


deposition Total Organic
period rate Mercury Mercury
year g/cm^2-yr ng/g ng/g
1967 0.028 68
1956 0.014 41
1930 0.044 35
1924 0.020 18
1911 0.016 18
1893 0.014 15
BDL
BDL
BDL
BDL
BDL
10
12


1988
1984
1976
1965
1953
1940
1927
1911
1892
1863


0.56
0.65
0.44
0.46
0.30
0.00
0.14
BDL
0.20
BDL
0.06
BDL


u.uO I


U.u01
0.075
0.054
0.080
0.090
0.107
0.089
0.073
0.062
0.059
0.048


0.069
0.074
0.090
0.125
0.114
0.190
0.186
0.105
0.130
0.087
0.048
0.046


'"


^ "'


i


""""








Table 4.4 Sediment and Mercury Analyses Everglades National Park
Solids Bulk Total Inorganic Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm^2-yr ng/g ng/g
ENP:TS2:24-26 01/07/92 0.432 0.503 13.3 13.2 0.1 0.22 BDL 1850 0.031 29
ENP:TS2:26-28 01/07/92 0.470 0.625 0.00 BDL 31
ENP:TS2:28-30 01/07/92 0.518 0.590 0.12 24
ENP:TS2:30-32 01/07/92 0.540 0.790 13.3 9.1 4.2 0.07 23
BDL, below detection limit
NA, analysis not available











Table 4.5 Sediment and Mercury Analyses Stormwater Treatment Area


Sample I.D.
STAX43:00-02
STA:43:02-04
STA:43:04-06
STA:43:06-08
STA:44:GRAB
STA:45:00-02
STA:45:02-04
STA:45:04-06
STA:45:06-08
STA:45:08-10
STA:45:10-12
STA:45:12-14
STA:45:14-17
STA:46:00-02
STA:46:02-04
STA:46:04-06
STA:46:06-08
STA:46:08-10
STA:46:10-12
STA:46:12-14
STA:46:14-16
STA:46:16-18
STA:46:18-20
STA:47:A
STA:47:B
STA:47:C
STA:47:D
STA:47:E


deposition Total Organic
period rate Mercury Mercury
year g/cm'2-yr ng/g ng/g
47
55
59
58
70
A-7


BDL. below detection limit
NA, analysis not available


Solids Bulk Total Inorg. Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137
Date g/g g/cm^3 % % % pCi/g pCi/g
07/15/92 0.189 0.203
07/15/92 0.228 0.248
07/15/92 0.212 0.230
07/15/92 0.251 0.272
07/15/92 0.304 0.269
07115/92 0.149 0.161
07/15/92 0.209 0.224
07/15/92 0.228 0.250
07/15/92 0.210 0.228
07/15/92 0.195 0.204
07/15/92 0.139 0.146
07/15/92 0.156 0.165
07/15/92 0.120 0.129
07/15/92 0.145 0.151
07/15/92 0.171 0.178
07/15/92 0.229 0.248
07/15/92 0.244 0.275
07/15/92 0.235 0.254
07/15/92 0.235 0.254
07/15/92 0.237 0.263
07/15/92 0.245 0.263
07/15/92 0.269 0.294
07/15/92 0.245 0.272
07/15/92 0.294 0.262
07/15192 0.294 0.287
07/15/92 0.268 0.264
07/15/92 0.270 0.252
07/15/92 0.201 0.222


-I


,,


BDL, be, low detection limit
NA, analysis not available









Table 4.6 Sediment and Mercury Analyses Savannas
Solids Bulk Total Inorg. Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm3 % % % pCi/g pCilg year g/cm'2-yr ng/g ng/g
SAV:48:00-01 01/19/93 0.130 0.129 17.05 5.97 1992 0.029 118 67
SAV:48:01-02 01/19/93 0.179 0.194 13.47 2.56 1987 0.032 128 58
SAV:48:02-03 01/19/93 0.175 0.180 11.03 2.55 1980 0.031 87 41
SAV:48:03-04 01/19/93 0.182 0.181 10.14 2.21 1974 0.028 137
SAV:48:04-05 01/19/93 0.183 0.185 7.19 1.99 1967 0.032 109
SAV:48:05-06 01/19/93 0.224 0.233 3.26 1.10 1960 0.057 88 32
SAV:48:06-08 01119/93 0.242 0.271 3.63 0.81 1956 0.045 70 36
SAV:48:08-10 01/19/93 0.376 0.447 0.95 0.22 1941 0.106 28 BDL
SAV:48:10-12 01/19/93 0.296 0.324 1.37 0.26 1931 0.054 30
SAV:48:12-14 01/19/93 0.287 0.313 2.02 0.70 1916 0.023 42
SAV:48:14-16 01/19/93 0.296 0.329 0.37 0.68 1858 0.020 45 24
SAV:48:16-18 01/19/93 0.489 0.642 16 BDL
SAV:48:18-20 01/19/93 0.621 0.920 15
SAV:48:20-22 01/19/93 0.697 1.082 9 BDL
SAV:49:00-01 01/19/93 0.132 0.138 19.14 6.52 1992 0.022 T15 56
SAV:49:01-02 01/19/93 0.204 0.215 12.75 4.97 1985 0.027 139 54
SAV:49:02-03 01/19/93 0.223 0.234 9.85 2.78 1976 0.026 154 33
SAV:49:03-04 01/19/93 0.282 0.321 5.36 1.07 1965 0.034 85
SAV:49:04-05 01/19/93 0.212 0.223 2.73 1.64 1954 0.047 113
SAV:49:05-06 01/19/93 0.162 0.164 2.61 1.04 1948 0.042 113
SAV:49:06-07 01/19/93 0.166 0.168 3.20 1.63 1944 0.030 120
SAV:49:07-08 01/19/93 0.164 0.163 1.80 1.25 1938 0.044 85
SAV:49:08-09 01/19/93 0.152 0.151 2.80 1.53 1934 0.025 110
SAV:49:09-11 01/19/93 0.132 0.130 2.19 1.18 1927 0.026 83 20
SAV:49:11-12 01/19/93 0.156 0.158 2.09 0.96 1915 0.018 52
SAV:49:12-14 01/19/93 0.144 0.141 1.81 0.75 1905 0.015 66 43
SAV:49:14-16 01/19/93 0.125 0.128 1.52 0.19 1878 0.008 65
SAV:49:16-18 01/19/93 0.170 0.168 73
SAV:49:18-20 01/19/93 0.350 0.380 43
SAV:49:20-22 01/19/93 0.373 0.435 25
SAV:49:22-24 01/19/93 0.333 0.375 51 22
SAV:49:24-25 01/19/93 0.382 0.413 52 19
SAV:50:GRAB 01/27/93 0.240 0.094 52
SAV:53:0-02 012793 0.133 0.137 68 20
SAV:53:02-04 01/27/93 0.326 0.373 53 19
SAV:53:04-06 01/27/93 0.360 0.417 50 14
SAV:53:06-08 01/27/93 0.356 0.405 53
SAV:53:08-10 01/27/93 0.391 0.469 55 13
SAV:53:10-12 01/27/93 0.512 0.685 30 BDL
SAV:53:12-14 01/27/93 0.587 0.863 27
SAV:53:14-16 01/27/93 0.630 0.934 25 BDL









Table 4.6 Sediment and Mercury Analyses Savannas
Solids Bulk Total Inorg. Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCi/g pCi/g year g/cm'2-yr ng/g ng/g
SAV:53:16-18 01/27/93 0.670 1.046 18 BDL
SAV:53:18-20 01/27/93 0.723 1.230 14
SAV:53:20-22 01/27/93 0.745 1.297 11
SAV:53:22-24 01/27/93 0.750 1.313 13 BDL
SAV:53:24-25 01/27/93 0.749 1.317 15
SAV:54:00-04 01/27/93 0.809 0.638 5 BDL
SAV:54:04-08 01/27/93 0.787 0.841 3 BDL
SAV:54:08-12 01/27/93 0.824 0.748 2 BDL
BDL, below detection limit
NA, analysis not available









Table 4.7 Sediment and Mercury Analyses Okefenokee Swamp
Solids Bulk Total Inorg. Organic deposition Total Organic
Sampling dry wt Density Carbon Carbon Carbon Pb-210 Cs-137 period rate Mercury Mercury
Sample I.D. Date g/g g/cm^3 % % % pCilg pCi/g year g/cm^2-yr ng/g ng/g
OKE:56:00-02 02/15/93 0.050 0.049 154 45
OKE:56:02-04 02/15/93 0.060 0.061 124 37
OKE:56:04-06 02/15/93 0.069 0.070 93 32
OKE:56:06-08 02/15/93 0.068 0.068 108 33
OKE:56:08-10 02/15/93 0.061 0.062 82 17
OKE:56:10-12 02/15/93 0.071 0.070 68 15
OKE:56:12-14 02/15/93 0.067 0.066 57 16
OKE:56:14-16 02/15/93 0.065 0.062 74 34
OKE:56:16-18 02/15/93 0.060 0.058 85 18
OKE:56:18-20 02/15/93 0.091 0.091 42 12
OKE:56:20-22 02/15/93 0.083 0.084 30 13
OKE:57:00-02 02/15/93 0.091 0.090 80 40
OKE:57:02-04 02/15/93 0.088 0.089 112 26
OKE:57:04-06 02/15/93 0.076 0.075 94 21
OKE:57:06-08 02/15/93 0.077 0.077 96
OKE:57:08-10 02115/93 0.083 0.084 77
OKE:57:10-12 02/15/93 0.086 0.086 74
OKE:57:12-14 02/15/93 0.087 0.086 74 10
OKE:57:14-16 02/15/93 0.090 0.087 82 10
OKE:57:16-18 02/15/93 0.088 0.085 80
OKE:57:18-20 02/15/93 0.092 0.090 70
OKE:57:20-22 02/15/93 0.098 0.096 64 BDL
OKE:57:22-24 02/15/93 0.099 0.097 62 BDL
OKE:58:00-02 02115193 0.049 0.047 103 102
OKE:58:02-04 02/15/93 0.064 0.068 82 78
OKE:58:04-06 02/15/93 0.090 0.099 126 40
OKE:58:06-08 02/15/93 0.107 0.107 82
OKE:58:08-10 02/15/93 0.094 0.098 78
OKE:58:10-12 02/15/93 0.108 0.111 59 BDL
OKE:58: 12-14 02/15/93 0.095 0.095 53 BDL
OKE:58:14-16 02/15/93 0.090 0.091 57
OKE:58:16-18 02/15/93 0:082 0.083 77 11
OKE:58:18-20 02/15/93 0.102 0.106 61 BDL
BDL, below detection limit
NA, analysis not available











Table 5.1 Metal Analyses Water Conservation Area 1


Sampling
Sample I.D. Date
WCAl1:01:00-02 06/18/92
WCAI:01:02-04 06/18/92
WCA1:01:04-06 06/18/92
WCA1:01:06-08 06/18/92
WCAI:01:08-10 06/18/92
WCA:-01:10-12 06/18/92
WCA1:01:12-14 06/18/92
WCA1:01:14-16 06/18/92
WCA1:01:16-18 06/18/92
WCAI:01:18-20 06/18/92
WCAI:01:20-22 06/18/92
WCAI:01:22-24 06/18/92
WCA1:01:24-26 06/18/92
WCA1:01:26-28 06/18/92
WCA1:01:28-30 06/18/92
WCA1:01:30-32 06/18/92
WCAI:01:32-34 06/18/92
WCA1:01:34-36 06/18/92
WCAI:01:36-38 06/18/92
WCAI:01:38-40 06/18/92
WCAI:01:40-42 06/18/92
WCA1:01:42-44 06/18/92
WCAI:01:44-46 06/18/92
WCAI:01:46-48 06/18/92
WCAI:01:48-50 06/18/92
WCA1:01:50-52 06/18/92
WCA1:01:52-54 06/18/92
WCAI:01:54-56 06/18/92
WCA1:01:56-58 06/18/92
WCA1:01:58-60 06/18/92
WCA1:01:60-62 06/18/92
WCA1:01:62-64 06/18/92
WCA1:01:64-66 06/18/92
WCAI:01:66-68 06/18/92
WCAI:01:68-70 06/18/92
WCA1:01:70-72 06/18/92
WCAI:01:72-74 06/18/92
WCAI:01:74-76 06/18/92
WCA1:01:76-78 06/18/92
WCAI:01:78-80 06/18/92
WCA1:01:80-82 06/18/92
WCA1:01:82-84 06/18/92
WCA1:01:84-86 06/18/92
WCA1:01:86-88 06/18/92
WCA1:01:88-90 06/18/92
WCAI:01:90-92 06/18/92
WCA1:01:92-94 06/18/92
WCA1:01:94-96 06/18/92
WCA1:01:96-98 06/18/92
WCAI:01:98-100 06/18/92
WCAI:01:100-102 06/18/92
WCA1:01:102-103 06/18/92
WCA1:35:00-02 07/15/92
WCA1:35:02-04 07/15/92
WCA1:35:04-06 07/15/92
WCAI:35:06-08 07/15/92
WCA1:35:08-10 07/15/92
WCA1:35:10-12 07/15/92


Cd
mg/kg
3
3
3
3
3
BDL
BDL
BDL
BDL
BDL


BDL


Cr
mg/kg
6
BDL
BDL
BDL"
BDL
BDL
BDL
BDL
BDL
BDL


BDL


BDL BDL


Cu
mg/kg
23
16
23
21
18
21
18
20
26
16


7


5


5


BDL BDL 8


BDL BDL BDL


BDL BDL 13


BDL BDL BDL


BDL BDL BDL


3 BDL BDL


BDL BDL


BDL BDL


BDL
BDL
2
BDL
BDL
BDL
BDL


BDL
BDL
BDL
BDL
BDL
BDL
BDL


Fe
mg/kg
2400
1550
1550
1550
2010
2020
2470
2240
3400
3400


Ni
mg/kg
BDL
7
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


Pb
mg/kg
30
44
34
34
44
44
44
39
44
35


Zn
mg/kg

35
24
16
17
20
19
19
21
12


2010 BDL


2010 BDL


500 BDL


437 BDL


487 BDL BDL


542 BDL BDL


778 BDL BDL


836 BDL BDL BDL


933 BDL








679 BDL


16 BDL


850 BDL BDL


BDL 807 BDL
26 2910 BDL
25 2840 BDL
16 2890 BDL
11 2400 BDL
10 2000 BDL
12 2000 BDL


E


~


~


~


~


~


~










Table 5.1 Metal Analyses Water Conservation Area 1


WCA1:37:02-04 07/15/92
WCA1:37:04-06 07/15/92
WCA1:37:06-08 07/15/92
WCAI:37:08-10 07/15/92
WCA1:37:10-12 07/15/92
WCAI:37:12-14 07/15/92
WCAI:37:14-16 07/15/92
WCA1:37:16-18 07/15/92
WCA1:37:18-20 07/15/92
WCA1:37:20-22 07/15/92
WCA1:37:22-24 07/15/92
WCA1:37:24-26 07/15/92
WCA1:37:26-28 07/15/92
WCA1:37:28-30 07/15/92
WCA1:37:30-32 07/15/92
WCA1:37:32-34 07/15/92
WCAI:37:34-36 07/15/92
WCA1:37:36-38 07/15/92
WCA1:37:38-40 07/15/92


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


8
13
13
11
7
5
BDL
5


BDL BDL


BDL BDL


BDL BDL BDL


2890
1430
1270
1200
975
1080
1350
2410


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


5 1310 BDL


1930 BDL


2430 BDL


34
61
52
77
20
25
BDL
BDL


16 5


Sampling Cd Cr Cu Fe Ni Pb Zn
Sample I.D. Date mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
WCAI:35:12-14 07/15/92 BDL BDL 10 1430 BDL 16 7
WCAI:35:14-16 07/15/92 BDL BDL 10 1230 BDL BDL 5
WCAI:35:16-18 07/15/92 BDL BDL 5 1110 BDL BDL 5
WCA1:35:18-20 07/15/92 BDL BDL 7 1290 BDL BDL 4
WCA1:35:20-22 07/15/92
WCA1:35:22-24 07/15/92
WCA1:35:24-26 07/15/92 BDL BDL 7 1300 BDL BDL 2
WCA1:35:26-28 07/15/92
WCA1:35:28-30 07/15/92
WCA1:35:30-32 07/15/92 BDL BDL BDL 1390 BDL BDL 1
WCA1:35:32-34 07/15/92
WCA1:35:34-36 07/15/92
WCAI:36:00-02 07/15/92 BDL 7 15 2470 BDL 89 43
WCA1:36:02-04 07/15/92 BDL BDL 16 1370 BDL 80 40
WCA1:36:04-06 07/15/92 BDL BDL 10 1100 BDL 62 29
WCA1:36:06-08 07/15/92 BDL BDL 15 1180 BDL 53 31
WCA1:36:08-10 07/15/92 BDL BDL BDL 1060 BDL 25 13
WCAI:36:10-12 07/15/92 BDL BDL BDL 1060 BDL 16 7
WCAI:36:12-14 07/15/92 BDL BDL BDL 1070 BDL BDL 7
WCAI:36:14-16 07/15/92 BDL BDL 12 1040 BDL BDL 5
WCA1:36:16-18 07/15/92 BDL BDL BDL 1060 BDL BDL 2
WCAI:36:18-20 07/15/92 BDL BDL BDL 1000 BDL BDL BDL
WCA1:36:20-22 07/15/92
WCA1:36:22-24 07/15/92
WCA1:36:24-26 07/15/92
WCA1:36:26-28 07/15/92 BDL BDL BDL 785 BDL BDL BDL
WCA1:36:28-30 07/15/92
WCA1:36:30-32 07/15/92
WCA1:36:32-34 07/15/92 BDL BDL BDL 704 BDL BDL BDL
WCAI:36:34-36 07/15/92
WCA1:36:36-38 07/15/92
WCA1:36:38-40 07/15/92 BDL BDL BDL 982 BDL BDL 2
WCAI:36:40-42 07/15/92 BDL BDL BDL 1030 BDL BDL 6
WCA1:36:42-44 07/15/92 BDL BDL 5 1180 BDL BDL 2
WCA1:36:44-46 07/15/92
WCA1:36:46-48 07/15/92
WCA1:36:48-50 07/15/92
WCAI:36:50-52 07/15/92 BDL BDL BDL 1400 BDL BDL 6
WUAI::7 7YL.-A n/711 IM










Table 5.1 Metal Analyses Water Conservation Area 1


Sampling


Cd Cr Cu Fe Ni Pb Zn


Sample I.D. Date mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
WCAI:37:40-42 07/15/92
WCA1:37:42-44 07/15/92 BDL BDL BDL 1970 BDL BDL 2
WCA1:37:44-46 07/15/92
WCA1:37:46-48 07/15/92
WCAI:37:48-50 07/15/92 BDL BDL 5 1440 BDL BDL 3
WCAI:37:50-52 07/15/92
WCAI:37:52-54 07/15/92
WCA1:37:54-56 07/15/92 BDL BDL BDL 2920 BDL BDL BDL
WCA1:37:56-57 07/15/92
BDL, below detection limit
NA, analysis not available










Table 5.2 Metal Analyses Water Conservation Area 2


Sample I.D.


Sampling
Date


WCA2:26A:00-02 03/11/92
WCA2:26A:02-04 03/11/92
WCA2:26A:04-06 03/11/92
WCA2:26A:06-08 03/11/92
WCA2:26A:08-10 03/11/92
WCA2:26A:10-12 03/11/92
WCA2:26A: 12-14 03/11/92
WCA2:26A: 14-16 03/11/92
WCA2:26A: 16-18 03/11/92
WCA2:26A: 18-20 03/11/92
WCA2:26A:20-22 03/11/92
WCA2:26A:22-23 03/11/92
WCA2:29:00-02 03/12/92
WCA2:29:02-04 03/12/92
WCA2:29:04-06 03/12/92
WCA2:29:06-08 03/12/92
WCA2:29:08-10 03/12/92
WCA2:29:10-12 03/12/92
WCA2:29:12-14 03/12/92
WCA2:29:14-16 03/12/92
WCA2:29:16-18 03/12/92
WCA2:29:18-20 03/12/92
WCA2:29:20-22 03/12/92
WCA2:29:22-24 03/12/92
WCA2:29:24-26 03/12/92
WCA2:29:26-28 03/12/92
WCA2:29:28-30 03/12/92
WCA2:29:30-32 03/12/92
WCA2:29:32-34 03/42/92
WCA2:29:34-36 03/12/92
WCA2:29:36-38 03/12/92
WCA2:29:38-40 03/12/92
WCA2:29:40-41 03/12/92
WCA2:30:00-02 03/12/92
WCA2:30:02-04 03/12/92
WCA2:30:04-06 03/12/92
WCA2:30:06-08 03/12/92
WCA2:30:08-10 03/12/92
WCA2:30:10-12 03/12/92
WCA2:30:12-14 03/12/92
WCA2:30:14-16 03/12/92
WCA2:30:16-18 03/12/92
WCA2:30:18-20 03/12/92
WCA2:30:20-22 03/12/92
WCA2:30:22-24 03/12/92
WCA2:30:24-26 03/12/92
WCA2:30:26-28 03/12/92
WCA2:30:28-30 03/12/92
WCA2:30:30-32 03/12/92
WCA2:30:32-34 03/12/92
WCA2:30:34-36 03/12/92


Cd
mg/kg

2
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


Cr
mg/kg
BDL
7
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL

BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


Cu
mg/kg

11
I1
10
BDL
BDL
BDL
5
BDL
BDL
BDL

BDL
BDL
24
23
27
28
23
28
20
34
36


BDL BDL


Fe
mg/kg
2920
3140
3780
3390
3840
3840
2920
2910
2900
2900

3160
2370
2390
1910
2380
1060
2810
3300
2370
3340
3700


Ni
mg/kg
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL

BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


8 3260 BDL


Pb
mg/kg
62
62
34
16
BDL
16
16
BDL
BDL
16

BDL
33
25
33
24
25
33
43
33
43
33


Zn
mg/kg
17
19
12
12
2
2
1
2
BDL
2

8
33
24
26
26
26
29
26
21
33
22


BDL


4580 BDL


BDL BDL BDL 4560 BDL BDL


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


4220

2760
2110
1780
2460
2450
2440
2450
2020
2010
2000


BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL


BDL
35
35
27
23
25
25
25
16
16
16
BDL


BDL BDL BDL 2460 BDL BDL


BDL BDL


2950 BDL


BDL, below detection limit
NA, analysis not available


--


---










Table 5.3 Metal Analyses Water Conservation Area 3


Sampling
Sample I.D. Date
WCA3:14:00-02 03/10/92
WCA3:14:02-04 03/10/92
WCA3:14:04-06 03/10/92
WCA3:14:06-08 03/10/92
WCA3:14:08-10 03/10/92
WCA3:14:10-12 03/10/92
WCA3:14:12-14 03/10/92
WCA3:14:14-16 03/10/92
WCA3:14:16-18 03/10/92
WCA3:14:18-20 03/10/92
WCA3:14:20-22 03/10/92
WCA3:14:22-24 03/10/92
WCA3:14:24-26 03/10/92
WCA3:14:26-28 03/10/92
WCA3:14:28-30 03/10/92
WCA3:14:30-32 03/10/92


Cd
mg/kg
BDL
BDL
BDL
BDL
BDL
BDL
BDL


Cr
mg/kg
BDL
5
BDL
5
BDL
BDL
BDL


Cu
mg/kg
12
14
5
BDL
18
8
BDL


Fe
mg/kg
7910
6420
6600
6680
6560
7130
6120


Ni
mg/kg
5
BDL
BDL
BDL
BDL
BDL
BDL


BDL BDL BDL 10100 BDL
BDL BDL 10 11700 BDL


5 9


7 4290

7 3145


Pb
mg/kg
45
55
62
26
25
16
43


Zn
mg/kg
69
45
18
30
17
6
9


25 4
25 4


10 43 11

19 52 4


WCA3:14:32-34 03/10/92 5 7 8 2950 17 62 5
WCA3 17:00-02 03/10/92 BDL BDL 8 10900 BDL 60 31
WCA3:17:02-04 03/10/92 BDL BDL 8 8310 BDL 70 26
WCA3:17:04-06 03/10/92 BDL BDL 10 8410 BDL 71 26
WCA3:17:06-08 03/10/92 BDL BDL 7 BDL BDL 42 8
WCA3:17:08-10 03/10/92
WCA3:17:10-12 03/10/92 BDL BDL 7 7070 BDL 16 8
WCA3:17:12-14 03/10/92 BDL BDL 5 6810 BDL 16 6
WCA3:17:14-16 03/10/92 BDL BDL 5 8000 BDL 16 6
WCA3:17:16-18 03/10/92 BDL BDL 7 8350 BDL 16 7
WCA3:18:00-02 03/11/92
WCA3:18:02-04 03/11/92
WCA3:18:04-06 03/11/92 BDL BDL 8 5740 BDL 72 34
WCA3:18:06-08 03/11/92 BDL BDL 8 6580 BDL 71 33
WCA3:18:08-10 03/11/92 BDL BDL 7 6950 BDL 34 16
WCA3:18:10-12 03/11/92 BDL BDL 5 6520 BDL 16 10
WCA3:18:12-14 03/11/92 BDL BDL 8 4700 BDL BDL 13
WCA3:18:14-16 03/11/92 BDL BDL 7 6180 BDL 44 15
WCA3:18:16-18 03/11/92 BDL BDL 7 5690 BDL 16 11
WCA3:18:18-20 03/11/92 BDL BDL 5 5150 BDL BDL 7
WCA3:18:20-22 03/11/92
WCA3:18:22-24 03/11/92
WCA3:18:24-26 03/11/92 BDL BDL 5 6190 BDL BDL 6
WCA3:18:26-28 03/11/92
WCA3:18:28-30 03/11/92
WCA3:18:30-32 03/11/92 BDL BDL 7 6540 BDL 16 8
WCA3:18:32-34 03/11/92
WCA3:18:34-36 03/11/92
WCA3:18:36-38 03/11/92
WCA3:18:38-40 03/11/92 BDL BDL 5 8010 BDL BDL 4
WCA3:18:40-42 03/11/92
WCA3:18:42-44 03/11/92 BDL 7 5 8520 BDL 16 3
WCA3:18:4446 03/11/92
WCA3:18:46-48 03/11/92
WCA3:18:48-50 03/11/92
WCA3:18:50-52 03/11/92
WCA3:18:52-53 03/11/92
BDL. below detection limit
NA. analysis not available


--


--










Table 5.4 Metal Analyses Everglades National Park


Sample I.D.
ENP:07:02-02
ENP:07:02-04
ENP:07:04-06
ENP:07:06-08
ENP:07:08-10
ENP:07:10-12
ENP:07:12-14
ENP:07:14-16
ENP:07:16-18
ENP:07:18-20
ENP:07:20-22
ENP:07:22-24
ENP:07:24-26
ENP:07:26-28
ENP:07:28-30
ENP:07:30-32
ENP:07:32-34
ENP:07:34-36
ENP:07:36-38
ENP:07:38-40
ENP:07:40-42
ENP:07:42-44
ENP:07:44-46
ENP:07:46-48
ENP:07:48-50
ENP:07:50-52
ENP:07:52-54
ENP:07:54-56
ENP:07:56-58
ENP:07:58-60
ENP:07:60-61
ENP:TS 1:00-02
ENP:TS 1:02-04
ENP:TS 1:04-06
ENP:TS 1:06-08
ENP:TS 1:08-10
ENP:TSI:10-12
ENP:TS1:12-14
ENP:TS 1:14-16
ENP:TS I:16-18
ENP:TS 1:18-20
ENP:TS 1:20-22
ENP:TS 1:22-24
ENP:TS 1:24-26
ENP:TS1:26-28
ENP:TS1:28-30
ENP:TSI:30-32
ENP:TS2:(0-02
ENP:TS2:02-04
ENP:TS2:04-06
ENP:TS2:06-08
ENP:TS2:08-10
ENP:TS2:10-12
ENP:TS2:12-14
ENP:TS2:14-16
ENP:TS2:16-18
ENP:TS2:18-20
ENP:TS2:20-22


--


Cd
mg/kg

4
4
4
4
4
4
3
4
4


Cr
me/ka


IU


Cu
me/ka


iU


Fe
mg/kg
21800

4810
6100
6990
6030
6530
7500
17200
10200


Sampling
Date
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92
03/09/92

01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01107/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92
01/07/92


Ni
mg/kg
10

11
10
10
13
10
10
7
7


Pb
mg/kg
53

62
61
52
52
52
43
44
52


Zn
mg/kg
24

4
4
4
1
2
BDL
23
6


11 62


10 62 13


10 61 BDL


14 70


10 70


3390
7010
6510
5950
7100
5830
5660
10500
19800
28400
11100


4 49 10 19300


20 61


19900
6140
3840
2910
4260
1090
5600
5190
5220
6610
8880


--


--


,,


--


5 12 10 7590


4 12 10 2940


4 12 8 9710


5 12 13 4730





5 12 10 3350


1. ~-


.I










Table 5.4 Metal Analyses Everglades National Park


Sampling


Cd Cr Cu Fe Ni Pb Zn


Sample I.D. Date mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
ENP:TS2:22-24 01/07/92
ENP:TS2:24-26 01/07/92 4 39 13 13000 11 53 3
ENP:TS2:26-28 01/07/92
ENP:TS2:28-30 01/07/92
ENP:TS2:30-32 01/07/92 4 44 12 16200 BDL 61 13
BDL, below detection limit
NA. analysis not available






Vertical migration of the analyte of concern is addressed elsewhere in this report (Section
III.C.2.).

The potential for temporal variability in the depositional environment in a wetland
permits only a coarse level of resolution in the age/depth profile. Burning of dry, organic
wetland sediment in our sample areas, for example, may cause a loss of "'Pb from the
profile to the atmosphere (fly-ash). This reduces the cumulative residual 210Pb, i.e. the
amount of this isotope (pCi cm') in the core from the surface to the depth at which its
concentration has decayed to background level. Such reduction makes age/depth
determinations less accurate. Confidence in the dated profiles is enhanced when
cumulative residual 2"Pb corresponds among cores from the same area despite
differences in sediment accumulation rates.

The cores analyzed from this 5600 km2 area showed an average 2"Pb residual of
15.5 pCi cm- (sd = 3.5, n = 20). The range of residuals corresponded to 2'"Pb fallout
rates between 0.33 and 0.67 pCi cm1y', which was well within the normal range of 21"Pb
fallout of 0.2-0.9 pCi cm2'y (Appleby and Oldfield, 1983). Seven cores with fallout rates
outside this range were excluded from the analysis (Figure 5A). These profiles may have
been disturbed over time by removal or addition of material (producing a lower or a
higher cumulative residual 2'0Pb, respectively).

Additional support for age/depth relationships may come from matching peak-37Cs
activity in the profile with a 2'Pb-determined age of 1963 (Krishnaswami and Lal, 1978).
These peaks (or the onset of '"Cs activity in the absence of a distinct peak) occurred in
the profiles (n = 18) at an average 210Pb-determined age of 1962, although the range of
age-values was considerable (1942-1978) (Figure 5B). This may suggest post-
depositional mobility of '37Cs (up or down in the core). An additional two cores (WCA1-
36; WCA3-17) were excluded from consideration because their assigned dates to peak
'"Cs activities fell outside this range (Figure 5B).



Figure 5A. Cumulative residual unsupported "lPb (pCi cm=) for all cores
analyzed radiochemically. Cores with fallout rates outside the range 0.33-
0.67 pCi cm2 yr' were not included in the computation of material
accumulation rates. Fallout of 210Pb is the product of the 2*Pb residual and
the radioactive decay constant for 2"Pb. Core identifications are placed
within the bars.

Figure 5B. 20Pb determined age of the core section with peak activity of
'"Cs (*) for dated sediment cores from Water Conservation Areas 1,2, and
3; Everglades National Park; and Savannas State Reserve. Open data
points (o) represent profiles in which the onset of '3Cs activity was used as
a marker horizon in the absence of a distinct '"Cs peak.






Figure 5A


210Pb Fallout Rate (pCi cm-2yr-1)


oo 0 CN I- Mo 0 0-4 0
co I I I I I I I I
oO 0 cN D oO O 00

Cumulative Residual 210pb (pCi/cm2)


Figure 5B


WCA 1 WCA 2 WCA 3 ENP SAV


o




1.
0)




Q,
4o
c



0


2000

1980

1960

1940

1920

1900-

1880-







III.B.2. Sediment Mercury Geochronology


The geochronology of cores that satisfied the above described sediment dating
acceptance criteria are presented in Figures 6 through 23. Recent (post-1985) and
historic (approximately 1900) average sediment accumulation rates for each sample
region are given in Table 6.

The mercury accumulation rate is calculated as the product of the sediment
accumulation rate and the total mercury concentration at each depth interval of the
sediment profile. Turn of the century and recent (post-1985) mercury accumulation rates
for dated cores are averaged by sample region (Table 7).

Mercury accumulation rates around the turn of the century ranged from 2 to 29 Mg
m'2 y' for all cores. Post-1985 mercury accumulation rates were an average of 6.3
(1.6-19.1) times higher. Temporal changes in average mercury accumulation rates
progressed geographically from a 3.4 times increase in SAV (post-1985/1900) to a 7.8
and a 8.7 times increase in WCA1 and WCA2 (Table 7). This trend of higher ratios to the
north (WCA1,WCA2) with smaller ratios to the south (WCA3,ENP) suggests at least three
possible explanations:

1) some northern source of mercury in overland sheetflow;

2) non-uniform atmospheric deposition of mercury with more deposition in
northern regions; or

3) non-uniform, post-depositional mobility of mercury in soils (i.e. varying
retention of mercury in different soil types) with mercury retention decreasing
spatially from WCA1 south to ENP.

Agricultural practices in the Everglades Agricultural Area have increased erosion
and of oxidation of organic soils (Blake, 1980). Historically, mercurial fungicides were
used in this region to enhance agricultural production. Many agricultural practices (i.e.
drying-flooding, oxidation, erosion, and the application of mercurial fungicides) can
facilitate the transport of mercury (Lodenius gt i., 1987) from agricultural land to
surrounding areas. However, there is no basis, from existing data, to quantify the relative
contribution of agricultural practices in the EAA to mercury accumulation in the Everglades
system. The Florida Mercury Technical Advisory Committee has suggested the
implementation of a study to quantify ambient mercury (and methylmercury)
concentrations in surface water discharges from agricultural lands in south Florida
(Lambou et al., 1991).

Presently, there is little information regarding the deposition of mercury in Florida.
A mercury emissions survey identified four primary anthropogenic mercury emission
sources in 1990 (KBN Engineering, 1992). These four sources included MSW (municipal
solid waste) combustion (14.6%), medical waste incineration (14.0%), paint application
(11.1%), and the electrical utilities industry (10.7%). Natural processes contributed 38.9%













0

-10

-20

-30

-40

-50


Total Hg (ng/g)
.0 25 50 75 100
2000

1970

1940 i

1910

1880

1850 .
--- Detection limit

57


Figure 6

Water Conservatic
Unsup.210pb (pCi/g) 137Cs (
0 3 6 9 12 0 2
0

-10

-20

,. -30 3

-40

J -50

Depth in Core (cm)
-45 -30 -15 0
2000 -

c 1970 -

o 1940

1910
0

S1880

1850


)n Area 1 Core 01
(pCi/g) Bulk Density (g/cm3)
4 6 8 0.00 0.06 0.12 0.18


-10 *

S-20

-30

-40

-50

Sed.Rt. (g cm-2y-1)
0.00 0.05 0.10
2000 -
0
0.24
1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y-1)
0 25 50 75 100
2000 .
0
181

1970

1940

1910

1880

1850 -








Water
pp.210pb (pCi/g)
3 6 9 12 15


Figure 7

Conservati
C37Cs
0 3 6


Unsu
0
0

-5

'- 10
-10

o -15
c
5 -20
a.
S-25

-30


Total Hg (ng/g)
0 50 100150200
2000

1970 -

1940 -

1910 '

1880 ,

1850 '
--- Detection limit


.

/ -5

S- O-10

S* -15

-20

-25

-30

Depth in Core (cm)
-30 -20 -10 0
2000

c 1970
0

o 1940
o.

2 1910
0
1880

1850


on Area 1 Core 35
(pCi/g) Bulk Density (g/cm3)
9 12 15 0.0 0.1 0.2


-5 (

-10

-15

-20

-25

-30

Sed.Rt. (g cm-2y-1)
0.00 0.03 0.06 0.09
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y-1)
0 20 40 60 80
2000-

1970

1940

1910

1880

1850






Figure 8


Water Conservation Area 1


Unsupp.210Pb (pCi/g)
0 10 20
0


ES-10

0
8 -20
S-
-30


-40


0


-10


-20


-30


-40' *


137Cs (pCi/g)
0 3 6 9


/

*


- Core 37
Bulk Dens;ty (g/cm3)
0.00 0.05 0.10
0

-10 ,


-20


-30


-40


Depth in Core (cm)


-35
2000 r-


1970

1940

1910

1880

1850


-20 -5


Total Hg (ng/g)
0 400 800
2000 -- .


Sed.Rt. (g cm-2y-1)


0.00
2000 r-


1970

1940

1910

1880

1850


0.03 0.06


Tot.Hg Acc.Rt. (ug m-2y-1)
0 100 200
2000

1970

1940

1910

1880

1850


--- Detection limit


1970

1940

1910

1880

1850








Water
Unsupp 210Pb (pCi/g)
0 5 10 15 20
0

-5

-10

-15


-20 *

-25


Figure 9

Conservation
137Cs
0 2 Z
0

-5 c

-10

-15

-20 */

-25


Depth ;n Core (cm)
-20-15-10-5 0
2000

1970 -

1940

1910

1880

1850 '

Total Hg (ng/g)
0 150 300
2000

1970

1940 -'

1910

1880 /

1850
--- Detection limit

60


Area 1 Core 38
(pC/a9) Bulk Censity (q/cm3)
4 6 8 0.0 0.1 0.2
0

-5

-10

-15 -

-20 -

-25

Sed.Rt. (g cm-2y-1)
0.00 0.03 0.06
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y-1)
0 100 200
2000

1970

1940

1910

1880

1850






Figure 10

Water Conservation Area 1 Core 40
Unsupp.210Pb (pCi/g) 137Cs (pCi/g) Bulk Density (g/cm3)
0 4 8 12 16 0 2 4 6 8 0.00 0.05 0.10 0.15
0 ---- 0

-5 -5 \ -5

--10 -10 / -10

. -15 -15 -15

S-20 -20 -20
r'-,

-25 -- -- -25 - -25

Depth in Core (cm) Sed.Rt. (g cm-2y-1)
-20-15-10 -5 0 0.00 0.02 0.04
2000 2000

c 1970 1970
.o
S1940 1940

S1910 1910
0

1880 1880

1850 ''' 1850

Total Hg (ng/g) Tot.Hg Acc.Rt. (ug m-2y-1)
0 200 400 0 50 100
2000 2000

c 1970 1970

o 1940 : 7 1940

0 1910 1910

1880 1880

1850 -' 1850 *
--- Detection limit

61






Figure 11


Water Conservation Area 2 Core 25
Unsupp ciOpb (pCI/g) 137Cs (pCi/9 B8ulk Censity (q/,-3)
0 6 12 15 24 0 2 4 6 0.0 0.1 0.2
0 0 0o

E -5 -5 -5

S-10 -10 -10 .
o /" /
S-15 -15 /. -15 \
5 *
o -20 -20 -20

-25 -25 -25

Depth in Core (cm) Sed.Rt. (g cm-2y-1)
-25 -15 -5 0.00 0.02 0.04
2000 .- 2000

c 1970 1970
o

o 1940 1940
a
0 1910 / 1910
18-0
S1880 1880

1850 --1850

Total Hg (ng/g) Tot.Hg Acc.Rt. (ug m-2y-1)
0 200 400 600 0 50 100150200
2000 --- 2000

c1970 f 1970

o 1940 1940

z 1910 1910

S1880 1880

1850 *1850
--- Detection limit
62






Figure 12

Water Conservation Area 2 Core 26
Unsupp.210Pb (pCi/g) 137Cs (pCi/g) Bulk Density (g/cm3)
0 3 6 9 12 0 1 2 3 0.0 0.1 0.2 0.3
0 0 0

-5 -5 f. -5
\
0 -10 -10 -10

c -15 -15 -15 .
-C
S-20 -20 -20

-25 -25 -- -25

Depth in Core (cm) Sed.Rt. (g cm-2y-1)
-20-15-10-5 0 0.00 0.04 0.08
2000 2000

c 1970 1970 (
.2
8 1940 1940 (
a/

1910 1910

1880 1880

1850 -- -1850

Total Hg (ng/g) Tot.Hg. Acc.Rt. (ug m-2 -1)
0 50 100150200 0 20 40 60
2000 -- 2000
( (
c 1970 1970

1940 1940
Q
1910 1910
o \
>- 1880 4 1880

1850 ----1850
--- Detection limit

63






Figure 13

Water Conservatio
Unsup.210Pb (pCi/g) 37Cs (
0 2 4 6 8 0 2 4


-10


-20


-30


-10


-20


-30


-40


n Area 2 Core 29
pCi/g) Bulk Density (g/cm3)
6 8 10 0.0 0.1 0.2 0.3
0


-10 -


-20


-30


-40

Sed.Rt. (g cm-2y-1)
0.00 0.03 0.06
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y-1)
0 20 40 60
2000

1970

1940

1910

1880

1850


, -40 L

Depth in Core (cm)
-35 -25 -15 -5
2000

1970

1940

1910

1880

1850

Total Hg (ng/g)
0 50 100150200
2000

1970

1940 "


I
1910 \

1880 -

1850
--- Detection limit

64






Figure 14

Water Conservation Area 3 Core 13


Unsupp.210Pb (pCi/g)
0 4 8 12 16


-5


-10


-15


-20


137Cs (pCi/q)
0 2 4 6



-5


-10 *


-15


-20


-1


-1


Bulk Density (q/cm3)
0.0 0.1 0.2 0.3
0





0


15


(n-1


Depth in Core (cm)
-20-15-10 -5
2000, --- -


1970

1940

1910

1880

1850


2000

1970

1940

1910

1880

1850


Total Hg (ng/g)
0 50 100150200


I


I .



I



--- Detection limit


Sed.Rt. (g cm-2y1)
0.00 0.03 0.06
2000

1970 -


1940


1850' ---

Tot.Hg Acc.Rt. (ug m-2-1)
0 20 40 60
2000 ----


1970 I


1940

1910

1880

1850


2,


1910

1880


i






Figure 15
Water Conservation Area 3


- Core 15


Unsupp.210Pb (pCi/g)


0 5 10 15 20






-/
./.


) ---


-5


1C


-15


-- (


137Cs (pCi/g,
0 2 4 6 8





f./)


/

it, -- -


Bulk Density 'g/cm3)
0.0 0.1 0.2
0

-5 -


-10


-15


-20 --


/


0~'


Depth in Core (cm)
-20-15-10-5 0
2000, ----


1970

1940

1910

1880

1850


2000

1970

1940

1910

1880

1850


Total Hg (ng/g)
60 120180240


Sed.Rt. (g cm-2y-1)
0.00 0.02 0.04
2000

1970 I

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y-1)
0 20 40 60
2000

1970 -

1940

1910

1880

1850


--- Detection limit


-10


-15


-2C


0v






Figure 16

Water Conservation Area 3 -
Unsupp.210Pb (pCi/g) 137Cs (pCi/g)
0 3 6 9 12 0 3 6 9 12


-5


-10


-15


-5


-10


-15


-20


Core 19
Bulk Density (g/cm3)
0.0 0.1 0.2
0
0 .-- ..... --.-.. -


-5 1


-10


-15


, -20

Sed.Rt. (g cm-2y-1)
0.0 0.1 0.2 0.3
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2 -1)
0 30 60 90
2000

1970

1940

1910

1880

1850 '


-20 L-

Depth in Core (cm)
-20-15-10-5 0
2000

1970

1940

1910

1880

1850 -

Total Hg (ng/g)
0 50 100150200
2000

1970 J

1940

1910 /

1880

1850 *
--- Detection limit

67


I




Figure 17

Everglades National Park
Taylor Slough: Core 1(- ), Core 2 (- ......- )
Unsup.210Pb (pCi/g) 137Cs (pCi/g) Bulk Density (g/cm3)
0 3 6 9 12 0.0 0.5 1.0 1.5 0.0 0.3 0.6 0.9
O O ----

-5 -5 -5 -

10 -10 / -10 -10

.~ -15 -15 -15

S-20 -20 -20
9

-25 -25 -25

Depth in Core (cm) Sed.Rt. (g cm-2y-1)
-25 -15 -5 0.0 0.1 0.2
2000 2000

c 1970 1970
..... ...........
0 1940 / 1940
.......... .** .. *"..o.......

S1910 / 1910
0

> 1880 1880

1850 1850

Total Hg (ng/g) Tot.Hg Acc.Rt. (ug m-2y-1)
0 25 50 75 100 0 20 40 60 80
2000 2000

c 1970 1970

o 1940 1940
-0 )
5 1910 1910 \

>- 1880 1880

1850 1850 .
--- Detection limit

68






Figure 18


Everglades National Park -
Unsup.210Pb (pCi/g) 137Cs (pC;/9)
0 2 4 6 8 0.0 0.5 1.0 1.5 2.0
n


I -. I J -I -


-5


-10


-15


-20


Depth in Core (cm)
-20-15-10 -5 0
2000

1970

1'940

1910

1880-

1850 '


2000

1970

1940

1910

188C

185C


Total Hg (ng/g)
0 30 60 90 120






I


Core 7
Bulk Density (g/cm5)
0.0 0.2 0.4


0


E -5
U

o -10
c
S-15
0


--- Detection limit

69


-20


J


I


-5 /


-10 )


-15


-20

Sed.Rt. (g cm-2y-1)
0.00 0.05 0.10
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2y1)
0 30 60 90
2000

1970

1940

1910

1880

1850






Figure 19

Everglades Nation

Unsupp.210Pb (pCi/,g) 137Cs
0 3 6 9 12 0.0 0.5 1
0


S-5 /


-10
, 7-,
5 *-15


-20


Depth in Core (cm)
-20-15-10-5 0
2000

1970

1940

1910

1880

1850

Total Hg (ng/g)
0 50 100150200
2000, .

1970 '

1940 )

1910

1880 V

1850 '
--- Detection limit
70


ol Park -


Core 09


-5

I C
-10


-1!


-2C


(pCi/q) Bulk Oensity (J/cmr3)
.0 1.5 2.0 0.0 0.1 0.2
0
--- 0 -..--- -.-


-5


-10


-15 /


-20

Sed.Rt. (g cm-2y-1)
0.00 0.03 0.06
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m-2 -1)
0 20 40 60
2000

1970

1940

1910

1880

1850







Figure 20

Everglades National Pork Core 11

Unsupp.210Pb (pCi/g) 137Cs (pCi/g) Bull
0 4 8 12 0 2 4 0.0
0 0 O


-5 -5


S-10 -10


S/ -15 [ -15


S-


Depth in Core (cm)
-20-15-10-5 0
2000

1970

1940

1910

1880

1850

Total Hg (ng/g)
0 50 100150200
2000

1970 |

1940

1910

1880

1850 -'


k Density (g/cm3)
0.1 0.2 0.3





.



\


-10





-r


--- Detection limit
71


-5


1 -20 '

Sed.Rt. (g cm-2y-1)
0.00 0.03 0.06
2000

1970

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m 2y-1)
0 20 40 60
2000

1970

1940

1910

1880

1850 *


0


I f _- -


I






Figure 21


Everglades Nctionc Park


Unsupp 2 10pb (pC;/q)
0 4 8 12


-5


-10


-15


-20


0 2 4 6 8
0


-5 N


-10


-15 \
I20
-20 ,


- Core 12
Bulk Censrty (g/cm3)


-1


0.0 0.1 0.2 0.3



.5





15

0n
->r\ ___"__ j -- '


Depth in Core (cm)
-20-15-10-5 0
2000 i----


1970

1940

1910

1880

1850


Total Hg (ng/g)
0 50 100150200
2000

1970 /
I-
1940 j

1910

1880

1850
--- Detection limit


Sed.Rt. (g cm-2y 1)


0.00
2000 r-


1970

1940

1910

1880


1850


Tot.Hg Acc.Rt. (ug m-2- 1)
0 30 60 90
2000-

1970

1940

1910

1880

1850 '


-t.l


0.03 0.06






Figure 22


Savannas State Reserve
Unsupp. 210pb (pCi/g) 137Cs (pCi/g)


0 5 10 15 20


-5


-10


-15


-20


0 2 4 6 8
0


-5


-10


-15


-20 *


-Core 48
Bulk Density (g/cm3)


0.0
0


-5
-5 -


-10


-15


-20


0.2 0.4


2000

1970

1940

1910

1880

1850


Depth in Core (cm)
15 -10 -5 0


Total Hg (ng/g)
0 50 100 150
2000 ,, --


1970

1940

1910

1880

1850


Sed.Rt. (g cm-2y-1)
0.00 0.05 0.10
2000 ----- -


1970

1940


1910

1880


1850' --

Tot.Hg Acc.Rt. (ug m-2y-1)
0 20 40 60
2000

1970

1940

1910

1880

1850


--- Detection limit









Savannas
Unsupp. 210pb (pCi/g)
0 5 10 15 20
0


.5O


0I

1
5 -


0 *


Figure 23

State Reserv
137Cs (pCi/g)
0 2 4 6 8
0


-5 -


-10 /
/

-15 -


-20 -i i i


- Core 49
Bulk Density (g/cm3)
0.0 0.2 0.4
O0 I


-5


-10


-15


-2 i-


-1


-1


-z


Sed.Rt. (g cm-2y-1)
0.00 0.05 0.10
2000

1970 -

1940

1910

1880

1850

Tot.Hg Acc.Rt. (ug m 2y- 1)
0 20 40 60
2000

1970

1940

1910

1880

1850


Depth in Core (cm)
-15 -10 -5 0
2000

1970 -

1940

1910

1880

1850

Totol Hg (ng/g)
0 50 100 150
2000

1970

1940 '

1910 \

1880 1

1850 ,
--- Detection limit

74


-v









Table 6. Recent and historic average sediment accumulation rates in cores retrieved from
Water Conservation Areas 1, 2, and 3, Everglades National Park, and Savannas State
Reserve. Numbers in parentheses indicate the range of values found.

Sample Number of Average Sediment Accumulation Rate (g cmy1')
Region Cores 1900 Post-1985

WCA1 5 0.018 (0.009-0.030) 0.047 (0.016-0.099)
WCA2 3 0.021 (0.011-0.030) 0.042 (0.031-0.064)
WCA3 3 0.015 (0.009-0.023) 0.069 (0.029-0.143)
ENP 5 0.033 (0.015-0.054) 0.060 (0.044-0.075)
SAV 2 0.019 (0.016-0.023) 0.027 (0.024-0.030)


Table 7. Recent and historic average mercury accumulation rates in cores retrieved from
Water Conservation Areas 1, 2, and 3, Everglades National Park, and Savannas State
Reserve. Numbers in parentheses indicate the range of values found.

Average Mercury Accumulation
Sample Number of Rate (jg m-y') Ratio'
Region Cores 1900 Post-1985 Post-1985/1900

WCA1 5 14 (5-29) 79 (45-141) 7.8 (1.6-13.3)
WCA2 3 8 (4-12) 59 (35-95) 8.7 (3.9-13.9)
WCA3 3 10 (7-11) 39 (28-55) 4.0 (3.0-4.9)
ENP 5 14 (2-28) 40 (23-57) 5.9 (1.6-19.1)
SAV 2 10 (10) 34 (31-37) 3.4 (3.0-3.8)

11 The ratio given represents the average of the ratios for the different cores in each area, rather than the
ratio of the average for each area.






of the total 1990 mercury emissions in Florida. The mercury emissions survey, while
identifying mercury point source emissions of concern in Florida, was not intended to
identify the relative contributions of these sources to mercury deposition in the state. An
atmospheric deposition study was identified as a research/monitoring priority by the
Florida Mercury Technical Advisory Committee (Lambou et al., 1991) and is presently
underway. The study, to determine the variability of mercury deposition at a number of
locations in peninsular Florida, will provide valuable information regarding statewide
mercury deposition patterns.

A difference in retention of mercury between organic and marl sediments (i.e. rich
in calcium carbonate) may influence the mercury concentration in these different soil
types. The three Water Conservation Areas (WCA1-WCA3) have organic-rich sediment,
with a total organic carbon content (g/g) between 40 and 50%. Sediment in ENP
represents an array of marl and organic deposits, with a total organic carbon content of
10-20%. As a result, post-depositional migration of mercury would cause the above-
mentioned accumulation rate ratios for the WCA's to be distinctly different from the
accumulation rate ratio for ENP. Further discussion of post-depositional mobility of
mercury is found in Section III.C.2.

Mercury accumulation rates appear to increase gradually between 1900 and 1940.
Twelve of the eighteen mercury accumulation profiles also exhibit recent increases
beginning in the 1970's and 1980's (Figures 6-23).

Some sites show increased mercury accumulation during the last two decades with
constant sediment accumulation rtes (WCA1:37, WCA2:26, ENP:07) or with uniform
mercury concentration (WCA1:01, WCA2:29, WCA3:19, ENP:09, ENP:11). This illustrates
the inherent problems associated with making inferences about mercury deposition using
mercury concentration profiles alone.








l. B3. Error Analysis of Sediment Dating


Errors associated with the statistical fluctuations of nuclear decay and with the
application of this uncertainty in the CRS dating model were determined for three different
sites (WCA1:01, ENP:11, and SAV:49). Uncertainty for all other sites was assumed to be
of similar magnitude.

"Error bars" (one standard deviation on either side of the data point) for activity of
radiochemicals are shown in Figures 24-26. Because the predicted standard deviation
for random processes such as gamma disintegrations equals the square root of the mean
count, samples with a high count have a small standard deviation (as per cent of that
mean). Standard deviations generally ranged from 3-6% of the mean for the higher
activity deposits to 6-30% for deeper core sections. Errors in the activity of unsupported
2'0Pb were larger (generally 3-12% and 12-54%, respectively), because they are computed
as the difference of two uncertain activities.

Dating uncertainty increased with age of the sediment (Figures 27-29). Monte
Carlo simulations (Palisade Corp., 1990) were used to calculate 500 different 2'0Pb profiles
with the same number of dates and sedimentation rates for every core section. Ninety-
five per cent confidence intervals ranged from 1 year in deposits laid down 10 years
before present, 2 years at 20 years, 3 years at 40 years, 5-10 years at 90 years,
and 10-25 years at 120 years before present. These ranges corresponded with error
estimates reported by Binford (1990) for Florida lake cores analyzed with alpha
spectrometry. Large dating errors in the bottom sections of the cores made 21'Pb-dates
unreliable for sediments older than 120 years. The activity of 210Pb in these old sediments
is low due to its half-life of 22.3 years. Such low mean net-counts for 2'0Pb result in large
standard deviations (as per cent of that mean). The large age-range for the bottom
sections of ENP:11 (Figure 28) resulted mainly from a conscious attempt to count
samples quickly. Longer counting times reduce error.

Monte Carlo confidence intervals (95%), expressed as a per cent of the mean, for
the rate of sedimentation also increased with the age of the sediment. The ranges were
7-10% in sediments 10 years of age, 9-12% at 40 years, 15-52% at 90 years, and
30-90% at 120 years old. Confidence intervals for sedimentation rates in older deposits
were as high as 168%. The top sections of core WCA1:01 produced a wider range of
sedimentation rates ( 16-20%) compared with other cores ( 5-7%). Sedimentation rates
were calculated as a function of the activity of unsupported 21Pb. Because the low mean
net-counts for 2'0Pb in the top sections of WCA1:01 resulted in a high standard deviations
(as per cent of that mean), rate calculations based on that low 2'0Pb activity showed more
uncertainty. The sedimentation rate at the top of the core was 0.24 0.04 g cm2y'.





Figure 24

Activity (pCi/g)


12


4 6


Water Conservation Area


- Core 1


-5


-15


-25


-35


U

0

0~
C


c


0..
Q


-45


-5


-15


-25


-35


0

L.
0
0

.J
0.
Q


-45





Figure 25


Activity (pCi/


12


1 2 3 4


Everglades National Park Core


E


0
0
C
-c
-,
0U
':1


-5


-10


-15


-20

0


E


O<
0


-c
-,


-5


-10


-15


-20


11






Figure 26


Activity (pCi/g)

10 15


4 6


Savannas


State Reserve


- Core 49


20


E
O


-

c"
a


-c
at-


-5




-10


-15

0


0
0
C
4-c


-5




-10


-15





Figure 27


Depth in Core (cm)


-45
2000 r-


-35


-25


-15


Sedimentation Rate (g cm-2y-


0.1


0.0
2000 r-


1970
1940
1910
1880


0.2


0.1 0.2 0.3


S1850
. 1820' I


Water Conservation Area


1 -Core


-5


1970

1940

1910

1880

1850

1820


0.0


0.3


c
0




OL
u,
o
0-
Y-
0

>-


1990



1980



1970



1960


I 1 -






Figure 28


Depth in Core (cm)


-20
2000 r-


-15


-10


Sedimentation


Rote (g cm-2y-1


0.00
?nnn


1970

1940

1910

1880


1850

1820


Everglades National Park -


-5


c
0

0

0
4-
0
0
>-.


1970

1940

1910

1880

1850

1820


0.02


0.04


0.06


0.08


c
0
(I,
0


0
0
I
<>-


-4-4


I


I
/


I


Core 11




Figure 29


Depth in Core (cm)
-10 -5


Sedimentation Rate (g cm-2y 1


0.00
2000


0.02


Savannas State Reserve Core 49


15


-
2000

1970


1940

1910

1880


1850


0.04


0.06


1970

1940

1910

1880

1850


'I'



I

I


_ __







II. ,C Sediment Mercury Concentrations


I. C.1. Comparison of Recent and Historic Mercury Concentrations

Recent (post-1985) and pre-development (1900) mercury concentrations were
compared to show relative changes in mercury abundance (Table 8). Recent mercury
concentrations were calculated as the weighted average (i.e. normalized for variations in
percent solids) of the top four centimeters of sediment. The weighted average mercury
concentration corrects for depth-specific changes in bulk density. The 1900 stratum was
determined, for all cres in a region. The 1900 stratum is defined as those core sections
that encompass the "1900" period identified in dated cores from that region. The
weighted average mercury concentrations were determined for that stratum from each
core. For example, dated profiles from three cores in WCA3 suggested that sediment
accumulated around 1900 was between 11 and 17 centimeters beneath the sediment
surface. Therefore, the 1900 stratum for all cores from WCA3 was determined as the
weighted average concentration for the core intervals between 11 and 17 centimeters.

Fifty one cores were used to compare recent and pre-development (1900) mercury
concentrations (Table 8). Enrichment factors were also determined for cores retrieved
from the Stormwater Treatment Areas (STAs) of the EAA. Forty four of these cores
showed increased mercury concentrations in surface sediment. Four of the six sites with
lower mercury concentrations in surface sediment are in close proximity to canals
(ENP:01, WCA3:32, WCA3:33, and WCA3:34)(Figure 2), while the remaining cores exhibit
dramatic increases in sediment accumulation rate in recent years (WCA1:01,
WCA3:19)(Figures 6 and 16). The average mercury concentration in surface sediment
(0-4 cm) was 121 ng/g (n=51, 10-479 ng/g). The average concentration in deeper
(1900) sediment was 56 ng/g (10-135 ng/g). The average difference between surface
and deep sediment was 66 ng/g for all cores (Table 8). Surface sediment had an
average of 2.4 (0.2-10.6) times more mercury than deep sediment.

Sediment enrichment factors (EF) have been used by other researchers to relate
present metal concentrations to historic background concentrations (Meger, 1986; Rada
et j., 1987; Henning e al., 1989). The enrichment factor is calculated as the change in
metal concentration divided by the background level.


Enrichment Factor (EF) = ([Hg], [Hg],,,,und)/[Hg]wkgnd

The average enrichment factor for all sites was 1.4 (-0.8-9.6)(n= 51), i.e. a 150% overall
average increase in mercury concentrations since the turn of the century. The enrichment
factors determined for the Everglades, Okefenokee, and Savannas State Reserve
wetlands are compared to previous lake studies (Table 9).








Table 8: Comparison of total mercury concentrations in recent (0-4 cm) and historic (1900) sediment


Core ID# [Hg] [Hg] [Hg] Enrichment
(ng/g) (ng/g) (ng/g) Factor
TOP BOTTOM TOP-BOTTOM (TOP-BOT)/BOT
(0-4 cm) (1900)
ENP: 01 20 32 -12 -0.4
ENP: 02 98 79 19 0.2
ENP: 04 38 28 10 0.4
ENP: 05 87 83 4 0.0
ENP: 06 84 16 68 4.3
ENP: 07 65 38 27 0.7
ENP: 08 140 89 51 0.6
ENP: 09 74 49 25 0.5
ENP: 10 45 25 20 0.8
ENP: 11 39 31 8 0.3
ENP: 12 99 24 75 3.1
ENP:TSI 52 46 6 0.1
ENP:TS2 35 27 8 0.3
WCA3:13 77 28 49 1.8
WCA3:14 263 96 167 1.7
WCA3:15 81 49 32 0.7
WCA3:16 112 54 58 1.1
WCA3:17 329 100 229 2.3
WCA3:18 177 85 92 1.1
WCA3:19 28 101 -73 -0.7
WCA3:20 17 10 7 0.7
WCA3:21 64 19 45 2.4
WCA3:22 75 27 48 1.8
WCA3:24 115 88 27 0.3
WCA3:01 86 57 29 0.5
WCA3:02 87 24 63 2.6
WCA3:32 11 28 -17 -0.6
WCA3:33 10 44 -34 -0.8
WCA3:34 28 63 -35 -0.6
WCA3:C123 120 60 60 1.0
WCA2:25 390 42 348 8.3
WCA2:26 154 36 118 3.3
WCA2:27 138 41 97 2.4
WCA2:28 71 50 21 0.4
WCA2:29 64 73 -9 -0.1
WCA2:30 112 38 74 1.9
WCA1:35 111 98 13 0.1
WCA1:36 244 63 181 2.9
WCA1:37 479 45 434 9.6
WCA1:38 320 116 204 1.8
WCA :39 411 111 300 2.7









Table 8: Comparison of total mercury concentrations in recent (0-4 cm) and historic (1900) sediment


Core ID# [Hgl [Hg] [Hg] Enrichment
(ng/g) (ng/g) (ng/g) Factor
TOP BOTTOM TOP-BOTTOM (TOP-BOT)/BOT
(0-4 cm) (1900)
WCAI:40 244 41 203 5.0
WCAl:41 147 135 12 0.1
WCA1:42 183 46 137 3.0
WCA1:01 45 76 -31 -0.4
STA: 43-47 58 55 3 0.1
SAV: 48 118 34 84 2.5
SAV: 49 120 64 56 0.9
SAV: 53 57 27 30 1.1
OKE: 56 108 70 38 0.5
OKE: 57 96 78 18 0.2
OKE: 58 91 71 20 0.3

AVERAGE (OKE) 98 73 25 0.4
AVERAGE (SAV) 98 42 57 1.5
AVERAGE (STA) 58 55 3 0.1
AVERAGE (WCAI) 243 81 161 2.7
AVERAGE (WCA2) 155 47 108 2.7
AVERAGE (WCA3) 99 55 44 0.9
AVERAGE (ENP) 67. 44 24 0.8
AVERAGE (all cores) 121 56 66 1.4







Table 9. Comparison of mercury enrichment factors (EF) in sediment core profiles

Enrichment Factor Number Location Reference
Range of Cores

0.8 2.8 Wisconsin lakes Rada et al. (1987)

1.9 2.5 3 Minnesota lakes Meger (1986)
0.8 4.5 5 Minnesota lakes Henning t al. (1989)

-0.8 9.6 45 Everglades This Study
0.9 2.5 3 Savannas This Study
0.2 0.5 3 Okefenokee This Study

1.4 51 Average This Study

The average EF for the Everglades, Okefenokee, and Savannas falls within the
ranges identified in previous aquatic system studies. Variability of the EF in these
wetlands likely results from spatial variation in soil and habitat type, hydrologic variability
found in wetlands, and the large number of cores taken (n=45). However, the similarity
between EF's for these wetlands and lakes suggest similarities in: 1) trends of mercury
accumulation to these systems, and/or 2) the physicochemical processes affecting
mercury in lake and wetland sediments.

The enrichment factor is confounded by varying sediment accumulation over time
(Henning et al., 1989). In some cases, temporal increases in sediment accumulation may
indicate mercury depletion in surface sediment. Accordingly, the enrichment factor
cannot assess changes in mercury input. However, the EF can characterize temporal
changes in mercury abundance at the sediment-water interface, where it is most available
for biotransformation.

Identification of the bioavailable component of sediment mercury is still poorly
understood. Selective extraction procedures have been suggested as a surrogate for the
direct determination of bioavailable mercury (Duddridge and Wainwright, 1991). These
selective extraction procedures suggest that less than ten percent of the total metal
concentrations are solubilized by extractants used to predict plant uptake from soils. The
bioavailability of mercury is directly related to the total organic material content of
sediment (Langston, 1982). Bioavailability, determined by comparison of tissue residues
with mercury:organic ratios in sediment, is greater in organic-deplete sediment with low
mercury concentrations than in organic-rich sediment with high mercury concentrations.
An earlier study of mercury in Everglades sediment suggested that mercury was.strongly
associated with organic matter and sulfide complexes (Lindberg and Harriss, 1974).
Since average mercury concentrations have increased 150% in the past 100 years, the
bioavailable mercury fraction has likely increased since the turn of the century. However,
the confounding effect of increased bulk sediment accumulation on the bioavailability of
mercury must be considered.







Il. C.2. Post-Depositional Mobility of Mercury


Forty four sediment cores showed elevated mercury concentrations in surface
layers (Table 8). Numerous studies suggested that mercury does not migrate readily in
sediment (Rogers and MacFarlane, 1978; Wallace t al., 1982; Lodenius et a., 1987;
Henning et al., 1989; Lodenius, 1990; Winfrey and Rudd, 1990; Schuster, 1991; Barrow
and Cox, 1992a; Barrow and Cox, 1992b; Bryan and Langston, 1992; Gobiel and Cossa,
1993 in press).

Henning t a. (1989) attempted to identify post-depositional mobility of mercury in
a 14 month core incubation study. Spiked sediment (1200 ng Hg2+/g) was transferred
quantitatively into sediment core tubes or was transferred as the top 2 centimeters into
unspiked cores. Cores were incubated, in the dark, under aerobic and anaerobic
conditions. No evidence of mercury transport was observed in the sediment, even with
extensive tunneling by benthic organisms. No detectable mercury was found in sediment
porewater after the incubation period.

Core studies of mercury concentrations in sediment and interstitial waters in the
Laurentian Trough of the lower St. Lawrence Estuary demonstrated that interstitial water
of Laurentian Trough sediments is enriched in mercury relative to the overlying bottom
water (Gobiel and Cossa, 1993 in press). Although mercury concentrations in porewater
were higher than those found in overlying water, these researchers concluded that
"redistribution of remobilized mercury subsequent to deposition could not explain more
than a small proportion of the 100-400% variations with depth of the mercury
concentrations in the sediment observed at all stations". Further, they concluded that
sediment mercury concentration profiles in the Laurentian Trough primarily reflected the
temporal changes in mercury input.

Most of the mercury in soils was adsorbed on sites with high binding energy,
primarily strongly bonded to humic matter (Lodenius, 1990). Retention by organic matter
was much more important than mineral retention. Mineral soils more readily released
mercury with increasing salinity, or decreasing pH (Barrow and Cox, 1992a), than organic-
rich soils (Barrow and Cox, 1992b).

Lodenius et a. (1987) demonstrated that mercury desorption from peat soils was
not affected by changing salinity, fertilization, or sterilization. However, they showed that
complete drying and wetting of peat soils alters the physical properties of the soil. Deep
cracking of dried peat soils facilitated a mechanism by which mercury can be released
from the soil matrix into overlying water in particulate form.

Rogers and McFarlane (1978) showed that 20% of mercury applied to soil is
volatilized rapidly, but the remaining 80% was sequestered by the soil and rendered
unavailable to microbial activity. The high affinity of mercury for sulfide accounted for the
strong binding of mercury to soil organic matter and to the stability of HgS (Schuster,
1991). This affinity of mercury for sulfidic compounds caused mercury to be particularly
immobile in organic-rich sediment and, consequently, less available to biota. The physical







fractionation of soil organic matter (dissolved vs. adsorbed) determined the behavior and
distribution of mercury in soils (Schuster, 1991).

The affinity of mercury for organic matter was the most important factor governing
its chemical speciation, transport, and toxicity in Controlled Experimental Ecosystems
(CEEs)(Wallace et al., 1982). Mercury was readily scavenged by particulate organic
matter and was rapidly removed from CEEs by particulate settling. This process was also
identified by Winfrey and Rudd (1990) in their study of the factors affecting mercury
methylation in low pH lakes.

Winfrey and Rudd (1990) spiked Little Rock Lake sediment with radio-labeled
mercury in laboratory experiments. Less than 1% of mercury, spiked to lake sediment,
was lost as methylmercury. This observation was further supported when Winfrey and
Rudd (1990) demonstrated that 0.36% and 0.09% of radiolabeled mercury was methylated
at ambient pH's of 5.1 and 6.1, respectively. They also showed that 0.84% of
radiolabeled mercury was methylated in anoxic sediment. Loss of 1% of the total mercury
in surface sediment through methylation was not sufficient to alter apparent sediment
mercury concentration profiles.

Mercury concentration profiles were examined in surface sediment (0-10 cm) of
dated Everglades sediment (Figures 6-21). Eight of the sixteen core profiles showed
distinct increases in mercury near the surface, while five cores suggested no
concentration change and three showed distinct decreases in concentration. There is no
recurrent trend in mercury concentration profiles that would suggest post-depositional
mobility of mercury in our wetland cores. However, mercury concentration profiles,
compared with sediment accumulation rate profiles, suggested that mercury may be
diluted by dramatic increases in sediment accumulation. Enrichment of mercury in
surface sediment was likely due to recent accumulation and not from migration in the core
profile. Further study of the physicochemical behavior of mercury in Everglades sediment
to delineate such processes is warranted.


ilL Q3 Error Analysis of Mercury Determinations

Replicate measurements of total mercury were determined routinely to identify the
error associated with mercury determinations. Duplicate measurements were made for
at least one sample per set of analyses (see Volume 2). The typical variability was 6
ng/g (0 to 18 ng/g; n=42) for duplicate mercury measurements performed on the
same day. Further, a holding time study was implemented to demonstrate the viability
of freezing samples during storage. Results of this holding time study are described
elsewhere (see Volume 2), however, the data from this study were used to describe the
typical variability of replicate mercury determinations made on non-consecutive days (6-54
days apart). These data suggest a typical range of 17 ng/g (mean; n =80) for sediment
mercury concentrations. Intra-sample variations in percent solids does not appear to
influence reproducibility, but sample mixing and daily variations in instrument calibration
does influence reproducibility of mercury determinations.







11, C.4. Spatial Distribution of Mercury in the Everglades

Surface mercury concentrations were highest in Water Conservation Areas 1 and
2 (WCA1, WCA2)(Figure 30). All WCA1 sites yielded mercury concentrations exceeding
100 ng/g (111 411 ng/g). Four of the six sites in WCA2 exceeded 100 ng/g (112 390
ng/g), while five of fifteen sites in WCA3 exceeded 100 ng/g (112 329 ng/g). One core
(ENP:08) of twelve in ENP had a level of 140 ng/g.

Eighteen of 45 sites throughout the Everglades showed surface concentrations
greater than 100 ng/g. Within the subgroup of 18 sites exceeding 100 ng/g, seven sites
were over 200 ng/g, and four sites were over 300 ng/g. Historic (1900) mercury
concentrations throughout the Everglades exceeded 100 ng/g at only five sites (3 WCA1
sites, 2 WCA3 sites)(Figure 31).

While the highest mercury concentrations were identified in WCA1, and the
southern regions of WCA2 and WCA3, there is some question of the spatial heterogeneity
of mercury in Everglades sediment. Mercury concentrations were compared for duplicate
cores, taken 1 to 2 meters apart, at three sites (ENP:TS1,2; ENP:08a,b; WCA2:26a,b).
The mean variability between corresponding samples was 12 ng/g (1 to 68, n=39).

Organic-rich sediment from the Water Conservation Areas exhibited higher overall
mercury concentrations than the mineral sediment in the southeast Everglades National
Park (see Section IIl.C.6.a). Some organic sediment in the WCA's have low mercury
concentrations similar to those of mineral sediment, however, these locations were dry
during our sampling period, and are in regions of the Everglades that experience frequent,
extended periods of drying. Repeated drying and flooding have been identified as the
primary mechanism for leaching mercury from peat soil (Lodenius gt al., 1987). The sites
exhibiting low mercury concentrations in organic sediment correspond to regions where
present-day conditions are considerably more variable and typically drier than pre-
development conditions (SFWMD, 1992). The northern region of WCA3 (sites 20-24) and
the northeast region of ENP (1-4) have an average surface concentration (0-4 cm) of 66
(17-98) ng/g.

The spatial distribution of mercury in pre-development (1900) sediment suggested
that the highest concentrations of mercury occurred in WCA1 and the western half of
WCA3, with the maximum concentrations not exceeding 135 ng/g. It must be noted,
however, that some of the lowest mercury concentrations occurred in the western half of
WCA3 (the dry regions to the north). The recent (post-1985) mercury spatial distribution
indicated that mercury concentrations were elevated as compared to pre-development
(1900) sediment in 38 of 45 Everglades sites. Although each sampling region (ENP,
WCA1, WCA2, and WCA3) exhibited sites with recent mercury concentrations exceeding
100 ng/g, no ENP site exceeded 140 ng/g in recent sediment. Sites exceeding 150
ng/g in recent sediment included sites throughout WCA1, southern WCA2, and
southwestern WCA3. Macro-scale and micro-scale heterogeneity may influence the
apparent mercury spatial distribution.

















80o 30' 80000.


260 30' -70
average mercury concentration 2 14
for all STA sites i138 624
17 32 15
"4 7 115 90
75
28 177








25 30' 20 Miles|
25 00' -







329gure 30. Spatial distribution of mercury concentration in recent (0-4 cm) sediment.12
77 26 81

20 98

99 39 42
45 140
250 30' 20 Miles 44

32 Kilometers 87 84





250 00' -












Figure 30. Spatial distribution of mercury concentration in recent (0-4 cm) sediment.


81 30'


81o00'


















81030,


260 30'- s
average mercury concentration 4 1
for all STA sites 73
50 38
10



26000'
100 54
28 9 49

32 79
28
49


2530' 20 Miles 31
32 Kilometers






250 00'













Figure 31. Spatial distribution of mercury concentration in historic (1900) sediment.


80 00o








Further study should consider: 1) the extent of macro- and micro-scale
heterogeneity, 2) methods to minimize sample compaction during coring, and 3) analytical
sensitivity of mercury determinations due to date-specific variations in instrument
calibrations. Compaction of sediment cores during sampling does not influence core
dating or the determination of sediment and mercury accumulation rates on dated cores,
however, as discussed previously, numerous factors may influence the outcome of
mercury and other analyte concentrations during sampling and analysis.


Ill. C5 Mercury Speciation

Sediment organic mercury was defined, with an operational definition, as that
component of total mercury that was extracted by acetone and subsequently back-
extracted into an aqueous sodium thiosulfate phase. We employed the term, sediment
organic mercury (or acetone-extractable mercury) because a detailed compound
speciation was not realized. Sediment organic mercury is comprised of low molecular
weight organomercurials (i.e. methyl-, dimethyl-, ethyl-, or phenyl-mercury), and inorganic
and organic mercury that are adsorbed to or completed with high molecular weight
organic compounds or organic matter.

Selected samples from the Everglades cores were analyzed for "acetone-
extractable" mercury (No. of cores = 16, n = 196). "Acetone-extractable" mercury
comprised an average of 52% (6% to 100%) of the total mercury in the samples analyzed.
Some depth-specific trends were observed. "Acetone extractable" mercury decreased
with depth in 8 cores (WCA3:18, WCA2:30, SAV:48, SAV:49, SAV:53, OKE:56, OKE:57,
OKE:58), and followed no distinct trend with depth in 8 cores (WCA1:35, WCA1:38,
WCA2:26A, WCA2:26B, WCA2:29, WCA3:14, WCA3:17, and ENP:07). Overall, "acetone
extractable" mercury concentrations were 55 ng/g (10-131 ng/g, n = 31) in recent
sediment and were 28 ng/g (10-91 ng/g, n = 52) in deep sediment. A more detailed
presentation of the extraction method and a discussion of "acetone-extractable" mercury
trends will be included in a master's thesis to be completed in 1993.

Sediment organic mercury and methylmercury have been determined, in other
studies, using a variety of techniques. Sediment organomercurials (i.e. methylmercury)
have been quantified using high performance liquid chromatography (HPLC) with
ultraviolet detection (Hempelet al., 1992), gas chromatographic (GC) techniques (Andren
and Harriss, 1973; Horvat gt al., 1990), furnace atomic absorption spectrophotometry
(Evans et a., 1984), and cold vapor atomic fluorescence spectrophotometry (CVAFS)
(Bloom, 1989). Compound speciation requires the identification of some analytically
reproducible parameter unique to that compound (i.e. peak retention time, or a confirmed
mass spectrum). While many analytical methods for methylmercury provide positive
identification of the target analyte, techniques for the determination of sediment organic
mercury quantify the cumulative abundance of compounds with some common physico-
chemical characteristics. Sediment organic mercury has been quantified after a
chloroform extraction with a subsequent back extraction into an aqueous sodium
thiosulfate phase (Sakamoto et al., 1992). Evans et i. (1984) described a selective







extraction procedure to distinguish between the water soluble, exchangeable cation
fraction, fulvic and humic, and organic and sulfidic fractions of sediment mercury.
Another sequential extraction procedure was described to selectively identify total and
elemental mercury, mercury sulfides, and methylmercury (Revis et al., 1990). Each
analytical method for sediment organic mercury assumes that the extraction procedure
selectively isolates only those compounds with a common physico-chemical attribute.

The extent of contamination by mercurial fungicides and industrial waste can be
characterized by determining the abundance of specific organomercurials in the
environment. The concentration of methylmercury can be used to identify the amount of
mercury that has been methylated and retained in the sediment matrix. Methylmercury
abundance, however, does not correspond directly to the component of bioavailable
mercury, because, like Hg2=, monomethylmercury may be readily precipitated by sulfides
and organic sulfhydryl moieties, or may be readily adsorbed to organic matter, and
subsequently buried in sediment and isolated from biological processes (Lodenius et al.,
1987; Barrow and Cox, 1992; Schuster, 1991). Elevated methylmercury concentrations
in deep sediment layers was attributed to the stability of methylmercury in anaerobic
conditions and a very slow release of methylmercury to upper strata (Mikac and Picer,
1985). Since mercuric ion (Hg=2) also forms strong associations with organic matter, the
component of the total mercury that is bound to organic material (organic and inorganic
forms) is probably retained in sediment and rendered unavailable (or minimally available)
for bioaccumulation. The interpretive values of methylmercury and organic mercury
abundance in sediment profiles are not comparable although numerous studies identify
methylmercury as organic mercury (Mikac and Picer, 1985; Andren and Harriss, 1973;
Revis et al., 1990). This tendency has resulted from the early identification of
methylmercury as the chief component and primary toxic agent in fish tissue (Mitra, 1986).

Empirical relationships between sediment mercury concentrations, methylation and
demethylation, and bioaccumulation may: 1) identify the mechanism by which mercury
is removed from sediment and accumulated in the food chain; and 2) quantify the relative
contribution of sediment mercury to the total budget of mercury accumulation in biota.
Further study of ecological and biological transformations of mercury is warranted.

The sediment organic mercury ("acetone-extractable" mercury) determination is
constrained, as with many sediment analyte speciation schemes, by the operational
definition (and underlying assumptions) established for the method. As such, the validity
of the method must be supported by an evaluation of the method's efficacy to separate
known compounds (i.e. methylmercuric chloride/mercuric chloride mixtures), along with
comparative studies with previously identified methods.

It must be restated that the determination of sediment organic mercury ("acetone-
extractable" mercury) is by no means provided as a surrogate of the determination of
methylmercury. Indeed, much of the available literature suggests that the strong binding
capacity of organic matter serves to sequester mercury, and effectively isolate mercury
from biological processes occurring in the sediment and interstitial waters (Wallace, 1982;
Schuster, 1991; Wilken, 1992). While the abundance of monomethylmercury in sediment







has been identified to be a minor component (-1%) of the total sediment mercury levels
(Wallace et al., 1982; Winfrey and Rudd, 1990), the total organic mercury concentration
range (ng/g) in our Everglades sediment, may be detected using cold vapor atomic
absorption spectrophotometry (CVAAS) technology.

The determination of methylmercury in sediment must employ methods that
provide 1) sub-nanogram detection limits and, 2) the potential for compound-specific
confirmation. Future studies of methylmercury in Everglades sediment must consider that
the abundance of methylmercury in sediment should not necessarily be interpreted as the
bioavailable component of mercury in sediment. Rather, a mechanistic evaluation of 1)
microbial rates of methylation/demethylation, 2) rates of evasion to overlying waters, and
3) rates of assimilation by organisms at different trophic levels, is essential to identify the
bioavailability of mercury in wetland sediment.


Il. C.. Relationships Between Mercury Concentration and
Selected Water and Sediment Parameters

Ill. C.6.a. Mercury-Carbon Relationship in Sediment

Sediment cores retrieved from WCA1, WCA2, and WCA3 are rich in organic peat
soil while those retrieved from the Taylor Slough hydrologic basin of Everglades National
Park are comprised of predominantly marl sediments. The mean mercury concentration
for marl sediment (33 8 ng g"', n = 36), although not statistically different from that of
the organic-rich sediment, was generally less than that for organic-rich sediment (80
45 ng g', n = 99). Even though organic sediments have a stronger mercury binding
capacity than mineral sediment (Schuster, 1991), we found only a weak relationship
between mercury concentration and percent total organic carbon (r2 = 0.23, n = 57).

All total carbon determinations were compared to their corresponding total mercury
concentration. Mercury concentrations in organic-rich sediment (total carbon > 30%)
varied more widely than in marl sediment (total carbon < 30%). Mercury concentrations
in organic-rich sediment encompassed a larger range (10 to 808 ng g-') than marl
sediment (10 to 110 ng g"), and spanned the entire mercury concentration range found
in marl sediment. The average concentration of mercury in organic sediment exceeded
that of marl sediment. This may be attributed to the stronger mercury binding capacity
of organic sediments (Barrow and Cox, 1992a,b). Mercury concentrations in organic
sediments are likely determined by the quantity of mercury input, coupled with regional
productivity and hydrology (sediment accumulation), while mercury concentrations in marl
sediment are probably also influenced by mercury binding capacity.

Mercury content in soils is determined by 1) sedimentation rate, 2) mercury input,
and 3) physico-chemical sorption characteristics. As a result, mercury concentrations in
marl sediments may result from 1) the quantity of mercury input to a sediment volume
and 2) the ability of mercury to be retained in the sediment. Further studies of
atmospheric mercury deposition and of mercury sorption to representative wetland







sediment types would elucidate the mercury geochemistry of this system.

II. C6.b. Mercury (sediment)-Conductivity (water) Relationship

Mercury adsorption to soil and sediment is strongly influenced by chloride
concentration (Lodenius, 1990; Schuster, 1991). Soil mercury sorption is not influenced
by pH increases from 4 to 6 in the absence of chloride, however, in the presence of
chloride, mercury sorption increased along a pH range from 4 to 6, with a subsequent
decrease at pH>6 (Barrow and Cox, 1992). Natural concentrations of chloride found in
precipitation (ca. 20 MM) and lake water (ca. 200 MM) do not appear to be sufficient to
facilitate desorption of mercury from soils (Lodenius et al., 1987).

The conductivities (/mhos/cm) of overlying water in this study were based on
single-event determinations. These data were compared to the total mercury
concentrations of surficial sediment (0-4 cm). Conductivity was used as a surrogate for
chloride concentration. The correlation between mercury concentration and conductivity
is weak (r2=0.15, n=36) suggesting that there is little influence of the ambient
conductivities on mercury concentrations in Everglades sediment. However, conductivity
measurements performed during single-event sampling may not be representative of the
average conductivities found at these sites. A compilation of historic water quality
information or a comprehensive long-term water quality monitoring program in all regions
of the Everglades would provide a better representation of site characteristics.


Il . Supplementary Sediment Metals Concentrations

Seven supplementary metals were determined in selected core sections (No. of
cores =13, n= 176). Cadmium, chromium, copper, iron, nickel, lead, and zinc were
determined in order to identify ambient concentrations and temporal changes in
abundance of these metals. Enrichment of certain metals may give an indication of the
sources) of metals to the Everglades system.

Metal concentrations were typically above their analytical detection limits for core
sections from the ENP marl sediment. Four metals (cadmium, chromium, copper, and
nickel) were below their analytical detection limits for most sections from the organic
sediment of the Water Conservation Areas. Lead was detected in recent sediment from
all cores. Lead was detected throughout the marl sediment core profiles but was not
detected in deep organic sediment. Iron and zinc were detectable in all cores at all
depths.

Metals concentrations (Cd, Cu, Cr, Fe, Ni, Pb, and Zn) of Everglades sediment
from this study were compared to those found in a variety of aquatic systems, worldwide,
and to surface sediment concentrations determined by the South Florida Water
Management District (Table 10). These metal concentrations fall within the range of the
other systems presented and the ranges determined in this study agree quite well with
previously determined surface sediment concentrations from the Everglades.




University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs