• TABLE OF CONTENTS
HIDE
 Front Cover
 Table of Contents
 Abstract
 Introduction
 Methods
 Estuarine ecosystems
 Discussion
 Conclusion
 Acknowledgement
 Reference
 Appendix A. Summary of data from...














Title: Record of metabolism of estuarine ecosystems at Crystal River, Florida, 1977-1980
CITATION DOWNLOADS THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00017053/00001
 Material Information
Title: Record of metabolism of estuarine ecosystems at Crystal River, Florida, 1977-1980
Physical Description: Book
Creator: Montague, Clay L.
 Record Information
Bibliographic ID: UF00017053
Volume ID: VID00001
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aaa9715 - LTQF

Downloads
Table of Contents
    Front Cover
        Page i
    Table of Contents
        Page ii
    Abstract
        Page iii
    Introduction
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
    Methods
        Page 9
        Page 10
        Page 11
        Page 12
    Estuarine ecosystems
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
    Discussion
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
    Conclusion
        Page 58
        Page 59
    Acknowledgement
        Page 60
    Reference
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
    Appendix A. Summary of data from the discharge and control bays
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
Full Text






RECORD OF METABOLISM OF ESTUARINE ECOSYSTEMS
AT CRYSTAL RIVER, FLORIDA
1977-1980



Clay L. Montague, John W. Caldwell,
and Robert L. Knight






WITH CONTRIBUTIONS BY

K. A. Benkert, A. M. Watson, W. F. Coggins,
J. J. Kosik, and K. E. Limburg




H. T. ODUM, PRINICPAL INVESTIGATOR


FINAL ANNUAL


REPORT TO THE FLORIDA POWER CORPORATION
CONTRACT #QEA-000045


March 1981







SYSTEM ECOLOGY AND ENERGY ANALYSIS GROUP
Department of Environmental Engineering Sciences
University of Florida
Gainesville, Florida
32611


H. T. Odum
Principal Investigator


Clay L ontague
Proj t Coordinator


"/















CONTENTS



ABSTRACT............................................................. iii

INTRODUCTION.......................................................... 1

METHODS.................................................................9

RESULTS............... ...... ... ....................... ....... ......... 13

DISCUSSION....................................................38

CONCLUSIONS.........................................................58

ACKNOWLEDGMENTS.................................................... 60

REFERENCES CITED............................................ ........ 61

APPENDIX A..... ........................................... ....... 67





























ii














ABSTRACT


Four years of metabolism studies for estuarine and salt marsh ecosys-

tems receiving thermal discharges from three generating units near Crystal

River, Florida, are presented. Power generation significantly increased

temperature, turbidity, and salinity of inshore bay ecosystems. System

metabolism of the Inner Discharge Bay was significantly reduced compared

to control sites, while the metabolism of the Middle Discharge Bay was

stimulated compared to its control. Plankton metabolism was not signifi-

cantly altered in the discharge estuary compared to the control site.

Threshold water temperature for metabolism inhibition in the Crystal River

estuary was approximately 320C. Seasonal patterns of stimulation or

inhibition were observed for both estuarine and salt marsh ecosystems

apparently in response to temperature. Total metabolism of discharge salt

marsh systems was significantly reduced by power plant output compared to

control marshes. No long-term recovery of estuarine metabolism was noted

during this 4-year study; however, Juncus and Spartina marshes exposed to

thermal addition underwent morphological adaptations including smaller

stalk size and greater stalk density.














INTRODUCTION


Electric power generation requires the disposal of large quantities

of waste heat to the environment (typically 60-80% of the heat content of

the fuel is lost [Bregman 1969]). Of the various options for disposal of

this heat, once-through cooling using estuarine water is often used on the

west coast of Florida. This process may result in major changes in estu-

arine water circulation, annual and diurnal temperature regimes, and estu-

arine water chemistry. Short-term acute effects of such heat disposal are

often variable, such as stimulation or reduction in photosynthesis, en-

hancement or decline of fish populations, and changes in species composi-

tion.

In addition to the use of short-term measurements of acute effects

for decision making, it is also necessary to protect against long-term

community changes resulting from chronic stressful conditions. Biological

adaptations by selection of tolerant organisms may occur. On the other

hand, the multiple effects of power production may take several years to

manifest themselves. Documentation of the long-term response of ecosys-

tems to power plant operation is necessary if regulations are to adequate-

ly take account of biological complexity.

A difficulty exists for the researcher who wishes to study these

chronic changes of ecosystem condition by studying populations of indi-

cator species in that the particular organisms chosen for study may disap-

pear from the system when exposed to new environmental stresses. One









alternative is to monitor system-level parameters such as trophic-level

standing stocks and overall energy flux (McKellar and Smith 1981). These

parameters can be measurable under any new configuration that the biologi-

cal system may take and are also comparable between different systems.

One such system parameter that integrates biological variability is

ecosystem metabolism or gross biological energy flow. Ecosystem metabo-

lism can be estimated by measuring system gross primary production based

on changes in dissolved oxygen (DO) in aquatic systems and carbon dioxide

changes in terrestrial ecosystems. Ecosystem metabolism has additional

importance derived from the observation that this parameter typically

increases during successional maturation of biological systems and

responds very closely to changes in external energy sources. Thus the

sinusoidal pattern of solar input is closely tracked by the rhythm of eco-

system metabolism in healthy ecosystems, and stressful events result in

sharp decreases in energy fixation.

As one component of an Environmental Technical Specifications (ETS)

study required to document changes resulting from a third generating unit

at Crystal River, Florida, this report summarizes nearly 4 years of eco-

system metabolism measurements of estuarine and salt marsh ecosystems

receiving thermal effluent. Three questions about the environmental

effects of the power plants are investigated: 1. What are the system-level

effects on the estuarine and salt marsh ecosystems of the combined power

plant output? 2. What are the additional effects of a third power unit on

the Crystal River estuary and salt marsh? and 3. Have any clear long-term

adaptations taken place in the structure or functioning of these coastal

ecosystems?









Study Site

The Florida Power Corporation has three electric-power generating

units on-line and is in the process of building two additional units near

the Gulf of Mexico at Crystal River, Florida. Two coal-fired units, Units

1 and 2, with a combined capacity of 964 megawatts (MW), came on-line in

1966 and 1969, respectively. These two units require approximately 2415

m3.min-1 (638,000 gpm) of cooling water. This water is drawn from

offshore via a 12.5-km intake canal and is discharged inshore via a 3.8-km

discharge canal.

A third unit with 855 MW capacity and fired by nuclear power, came

on-line in 1977 using once-through cooling via the same intake and dis-

charge canals. This unit pumps an additional 2574 m3.min-1 (680,000 gpm)

of estuarine water for cooling purposes.

The Crystal River power plants are approximately 5 km north of the

Crystal River and about 6 km south of the Cross Florida Barge Canal and

the Withlacoochee River (Fig. 1). The coastline in this area has low

wave energies and a drowned karst topography. Tidal marshes are dominated

by black needlerush, Juncus roemerianus, with a narrow band of smooth

cordgrass, Spartina alterniflora, fronting the Juncus on the seaward side.

Numerous oyster bars occur roughly parallel to the coastline extending 3

to 4 km seaward.

Under natural conditions with freshwater inflow from the Crystal and

Withlacoochee rivers, the inshore estuarine bays near the plant are char-

acteristically less saline than the more thoroughly mixed offshore bays

(Carder et al. 1973). Submerged vegetation is characteristically a mix-

ture of macroalgae and seagrasses such as Halodule wrightii, Ruppia mari-









































Figure 1. The Crystal River power plants in relation to the major features of
the regional coastline.






5


tima, and Syringodium filiforme. Primary productivity of the water column

is dominated by phytoplankton. Complex consumer food chains include many

species of zooplankton, marine invertebrates, fishes, marine mammals, and

birds. Rainfall during the study period averaged 136 cm per year with

more than half falling during June, July, and August (NOAA 1977-1980).

Six estuarine bays and two salt marsh sites were routinely monitored

during this 4-year study (see Fig. 2). Since the estuarine bays are

divided by oyster bars, location of sampling areas was simplified. The

Inner Discharge Bay (Bay A) is situated such that it was the first natural

estuarine area to receive thermal effluent from the discharge canal. The

Inner Control Bay (Bay E) is located south of the intake canal, between

the shoreline marshes and the first oyster bar. The Middle Discharge Bay

(Bay B) is situated along the discharge canal further seaward between the

first and second oyster bars, and its control, the Middle Control Bay (Bay

D), is located under similar circumstances south of the intake canal. The

Outer Discharge and Control bays (Bays OB and C, respectively) are located

in comparable areas beyond the second oyster bar from shore. The control

bays were chosen to replicate their discharge bays in terms of depth and

tidal flushing. The primary differences between these control and dis-

charge areas were assumed to be the effects of either the power plant

operation-thermal enrichment of the water and increased circulation of

offshore water in the discharge area due to the pumping of cooling

water--or the power plant siting-presence of long canal spoil bars.

Figure 2 also shows the locations of the discharge and control salt

marsh sites. The discharge marshes are located approximately 100 m from

the point where the discharge canal opens into the inner discharge bay.

As with the bays, the discharge and control marshes are similar areas in













































Figure 2. Locations of the Inner, Middle, and Outer Discharge Bays and
their Controls along with the Discharge and Control salt marsh
sites.









terms of natural tidal flows, but quite different in terms of the thermal

and circulation effects of the power plants.



Previous Crystal River Research


The estuarine and salt marsh ecosystems adjacent to the Crystal River

power plants have been the site for a multidisciplinary research effort

since 1971. During the period 1971-1974, research established some base-

line ecological conditions present in this estuary prior to the discharge

of additional heated water from Unit 3. Postoperational studies continued

from 1977 until 1981 in order to determine changes that may have occurred

in response to the new power-generating unit.

Early primary productivity measurements using Carbon-14 techniques

were made by Fox and Moyer (1972) in the intake and discharge canals. The

metabolism of the Inner Discharge Bay and Control Bay was studied using

oxygen change techniques by Smith (1976). The metabolism of the next set

of bays in the seaward direction was measured by McKellar (1975). Several

papers summarizing this research have been published (Smith et al. 1974;

McKellar 1977; Kemp et al. 1977). More recent bay metabolism studies

since the addition of Unit 3 have been presented as annual reports (Odum

et al. 1978; Caldwell et al. 1979, 1980; Montague et al. 1981) and are

summarized in this report. Community structure studies have monitored

phytoplankton and chlorophyll (Gibson et al. 1974; Connell, Metcalf and

Eddy, Inc. 1978, 1979; Metcalf and Eddy 1980); zooplankton (Maturo et al.

1974; Benkert 1980); nekton (Grimes and Mountain 1971; Adams et al. 1974;

Odum et al. 1974; Snedaker et al. 1974; Homer 1976); oysters (Lehman

1974); and benthic plants and animals (Adams et al. 1974; Evink and Green


1___1111111_-11_ _






8


1974; Van Tine 1974; Connell, Metcalf and Eddy, Inc. 1978, 1979; Metcalf

and Eddy 1980; Van Tine and Davis 1982).

Preoperational studies were conducted by Odum et al. (1974) and Young

(1974) at the salt marsh sites. Postoperational research in the salt

marshes has included work by Hornbeck (1979) and by Odum et al. (1978),

Caldwell et al. (1979, 1980), and Montague et al. (1981). The report that

follows summarizes the data presented in the annual progress reports for

the Crystal River salt marshes.














METHODS


Sampling Plan


Monitoring for the ETS studies began with an initial testing period

during the first quarter of 1977, resulting in the development of a rou-

tine of sampling that was continued without significant alteration until

the spring of 1981. The response of estuarine metabolism to power plant

operation was measured in an area that was large enough to give a range of

possible effects from acute to no significant effect. The discharge estu-

ary was divided into three zones for study, and control areas with similar

physical features were chosen for comparison. Based on preoperational

research by Carder et al. (1973), the Inner Discharge Bay represented the

zone of maximum temperature change, the Middle Discharge Bay a zone of

more moderate effect, and the Outer Discharge Bay was chosen to represent

near background conditions in terms of temperature elevation and salinity

changes.

The yearly cycle of estuarine metabolism was estimated by biweekly

sampling of planktonic and system production and respiration. Each quar-

ter two consecutive 24-hour intensive sampling studies were conducted.

These quarterly data receive equal treatment in the analyses that follow.

Metabolism of the Spartina and Juncus marsh systems was measured only on a

quarterly basis with two to four values of each metabolism parameter col-

lected during a sampling period. Measurement of marsh structure and









metabolism was limited to one station near the point of discharge and

therefore a gradient of salt marsh response to decreasing power plant

influence was not obtained over a spatial dimension.


Estuarine Metabolism

Estuarine metabolism was broken into two components for study: name-

ly, the planktonic subsystem and the overall system of plankton and ben-

thos. Metabolism of the benthic subsystem was estimated by subtracting

planktonic metabolism from the total system metabolism.

Planktonic metabolism was measured biweekly by use of the light-dark

bottle method (APHA 1975) during two consecutive 12- or 24-hour sampling

periods. Details of the modifications utilized during this study can be

found in previous annual reports (Montague et al. 1981; Odum et al. 1978;

Caldwell et al. 1979, 1980). Metabolism parameters measured include

plankton net productivity, plankton respiration, and plankton gross pro-

ductivity in units of dissolved oxygen change per area per time.

System metabolism was also measured by changes in DO concentrations.

The open water diurnal oxygen method used was developed by Odum (1956),

Odum and Hoskins (1958), and Odum and Wilson (1962) and was adapted to the

specific needs of the Crystal River study as discussed in Montague et al.

(1981). In addition to intensive 24-hour sampling of dissolved oxygen

changes on a quarterly basis, biweekly measurements were routinely made by

use of the dawn-dusk-dawn method of McConnell (1962) and McKellar (1975).

The details of the methods used at Crystal River have been discussed

thoroughly in annual project reports such as Montague et al. (1981).









In order to obtain metabolism values from DO changes, the diffusion

of oxygen through the air-water interface had to be estimated. On a num-

ber of occasions the floating dome diffusion method of Copeland and Duffer

(1964) as modified by Smith (1975) and McKellar (1975) was used to measure

oxygen diffusion in these bays. These diffusion corrections were applied

to all data in order to obtain values of system gross productivity, system

net productivity, and respiration.

Several physical factors were measured concurrently with metabolism

in order to establish cause-effect relationships that might exist in the

study area. At the time of collection of each DO sample, water tempera-

ture, salinity, water depth, and secchi disk depth were recorded. Contin-

uous recordings of insolation were made concurrently with sample collec-

tion. The ecological efficiency of the biological system was estimated by

converting gross productivity measurements to Calories and dividing by

insolation. Details of the measurement of these physical parameters are

presented elsewhere (Montague et al. 1981).


Salt Marsh Structure and Metabolism


The metabolism of Juncus-dominated and Spartina-dominated salt mar-

shes was measured quarterly in the discharge and control areas. Metabo-

lism of the living plants was measured in situ by recording changes in

atmospheric CO2 concentration of air flowing through plastic enclosures

over the plants during two or four consecutive 24-hour periods. Details

of the methods employed can be found in Brown (1978), Hornbeck (1979), and

Montague et al. (1981).









The plants within the enclosures were harvested after metabolism mea-

surement, and stalk height, stalk density, and live weight were recorded.

In addition, population densities of the salt marsh periwinkle (Littorina

irrorata) and of fiddler crab burrows (Uca spp.) were estimated at each of

the four sites.


Data Analysis


Statistical comparisons between discharge and control sites were made

using seasonal means and Student's t-test statistic (SAS 1981). Standard

error bars are excluded from the graphs for the sake of clarity; however,

any reference to significant differences between stations are based on 95%

confidence limits.

To illustrate and analyze the effect of power plant operation on the

various parameters, monthly differences between the discharge and control

data were plotted versus total power plant output. Total power output in

megawatt-hours (MWH) per month was chosen as the best integrative param-

eter for the combined effects of thermal and circulatory changes caused by

the three generating units. The best fit for each comparison was made

using linear regression analysis (SAS 1981). A regression equation of the

form


Y = mX + b


was used where Y is the dependent variable, m is the slope, X is the

independent variable, and b is equal to the Y-intercept when X = 0.














RESULTS


Estuarine Ecosystems


In the figures that follow, estuarine parameters have been presented

as seasonal means. Means were calculated as follows: Winter-January,

February, and March; Spring--April, May, and June; Summer-July, August,

and September; and Fall-October, November, and December. A summary of

measurements is included as an appendix.


Physical Parameters

Recorded insolation values during the 4 years of study were between

159 and 7400 Cal/m2.day (Fig. 3). Seasonal trends were typical for

central Florida with the yearly maximum in spring or summer and the yearly

minimum in the fall or winter. Total insolation for 1978 through 1980

appeared to be lower than 1977 and 1981 based on the days when measure-

ments were taken.

Water temperatures in the Inner, Middle, and Outer Bays are compared

in Figure 4. Temperatures in the three control bays were always similar.

Highest water temperatures were recorded for the Inner Discharge Bay with

a few measurements over 37C during the 1977 summer season. Maximum

temperatures were approximately 1C lower in the Middle Discharge Bay and

2C lower in the Outer Discharge Bay compared to the Inner Discharge Bay.

Salinity values in the estuarine ecosystems are presented in Figure

5. Some seasonal periodicity was noted with highest salinities occurring























"0 5.0-


.)

M 4.0-
0



-
0J



z
0
- 2.0-
o
-j


1.0


SP SU
1978


FA I W


SP SU
1979


FA WI


SP SU
1980"


Seasonal mean insolation at the Crystal River power plants recorded
during the 4-year study period.


SP SU FA WI
1977


Figure 3.


FA WI SP
1981


171 1 I I I













































0 --
28-
26-
24-
W 22
O

16-

14-
12- 1 1 U A
SP SU FA WI SP SU A WI SP
1977 1978 1979 1980 1981


36- OUTER
34-
32-


28-
26-
24-
22-
20-
18-
16-
14

1P SU FA WI SP SU FA WI SP SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981

Figure 4. Seasonal mean water temperatures for the Discharge (0) and Control
(0) Bays.













































Figure 5. Seasonal mean salinities for the Discharge (0) and Control (0) Bays.









in the summer and fall and lowest values recorded during the winter and

spring months. This pattern may be explained by the seasonal cycle of

evaporation from the water's surface in spite of greater rainfall during

the summer and smaller amounts during the winter. Salinity was signifi-

cantly higher in the Inner Discharge Bay than in its control (Fig. 5) by

approximately 3 ppt. Salinity in the Middle and Outer Discharge Bays was

rarely significantly different from control values.

Seasonal means for light extinction are presented in Figure 6 for the

three pairs of bays. Light extinction was significantly higher in the

Inner Discharge Bay than in its control throughout the study period,

although no clear seasonal trends were observed. Light extinction was not

significantly different between the Middle and Outer Discharge Bays and

their controls (Fig. 6). Light extinction in the Outer bays went through

seasonal cycles with maximum values in the spring and minimum values dur-

ing the winter.


Plankton Metabolism

Plankton gross productivity showed no consistent differences between

discharge and control bays (Fig. 7). Seasonal cycles of plankton gross

productivity tracked insolation in all of the bays. Plankton productivity

increased from the inner to the outer bays. This trend was probably in

response to the greater depth of the outer bays, which resulted in higher

areal productivity values. Plankton productivity on a volume basis was

not significantly different between the Middle and Outer Control Bays,

although it was significantly lower in the Inner Control Bay. Volumetric

plankton productivity was similar in all three of the discharge bays.







18







3.0- INNER


2.5-


2.0-


1.5


1.0-


0.5


00-.- ___|__--_--_--_____--_--_--______--_--__--_____--__
0. A I ~ 1 P I r
SP SU WI SP SU W SP SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


3.0- MIDDLE


2.5-





2F 1.5-
O

Z 1.0-

S0.5-
I-



SP SU FA WI SP SU FA WI SP SU FA WI SP SU FA Wl SP
1977 1978 1979 1980 1981


3.0OUTER

2.5


2.0-


1:5.


1.0-


05-


0.0- ____________________________________________
SP SU FA WI SP SU FA WI SP SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


Figure 6. Seasonal mean light extinctions for the Discharge (0) and Control (0)
Bays.











Page 19 is missing from the manuscript. This graph appears to be the Fig.7 referred to in
the text on p.17.


c----a DISCHARGE A
-----+ CONTROL E


"NT TT


T I T +



UTA
4 / I /


\ / .



WI SP SU F -1 Wl SP SU F WI SP SU F WI W SP SU F 'I SP SU F

1973 1977 1978 1979 1980
UNIT 3
UNIT 2
UNIT I


5


I
(J

0
o


>
.-

0
:3
0
0
a--
o
1.

C,
0


z

Fz

a-


o


( I _









Plankton net productivity did not have any clear trend in response to

the power plant operation (Fig. 8). Seasonal cycles were evident and once

again the outer bays were more productive than the middle and inner bays

on an areal basis, due largely to their greater depth.

Plankton respiration was consistently lower in the three discharge

bays compared to their controls although the differences were rarely sig-

nificant (Fig. 9). Weak seasonal patterns were evident and unlike gross

and net plankton productivity, there was little difference between the

plankton respiration per area of the inner bays as compared to the middle

and outer bays. Thus, plankton respiration on a volume basis was higher

in the inner bays than in the outer bays.


System Metabolism

System gross productivity was consistently lower in the Inner Dis-

charge Bay relative to its control bay (Fig. 10). On the other hand, the

gross productivity of the Middle Discharge Bay was consistently higher

than its control although the differences were often small. No consistent

stimulation or inhibition was found between the Outer Discharge Bay and

its control. System gross productivity was generally highest in the near-

shore areas of the control estuary than in the deeper offshore areas. The

periodicity of system gross productivity in all of the study bays closely

correlated with the cyclic pattern of insolation.

System net productivity of the Inner Discharge Bay was consistently

lower than that of its control bay (Fig. 11). This parameter was consis-

tently higher in the Middle Discharge Bay relative to its control,

although the apparent difference was small. In the outer bays, there was

no consistent stimulation of net productivity observed.




































'2


oN
(0
E
0

c-






w

z
C-,




0
I-
z

0
I.-
z


Seasonal mean plankton net productivity for the Discharge (9) and
Control (0) Bays.


Figure 8.












INNER


SP SU FAWi1 SP SU FAl I SP SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


4-
MIDDLE


3-



2-



1-^


SP SU FA WI SP SU
1977 1978


FA WI SP SU FA WI SP SU FA WI SP
1979 1980 1981


OUTER


Figure 9. Seasonal mean plankton respiration for the Discharge (0) and Control
(0) Bays.













INNER


P SU FA I W SiP SU FA V; SP SU FA Wl
1977 1978 1979


sP sU PA W SP
1980 1981


Figure 10. Seasonal mean system gross productivity for the Discharge (0) and
Control (0) Bays.












INNER


'P s F'A |WI 9P du A IAWI P SU FA I W S'U FA iWSl s
1977 1978 1979 1980 1981


Figure 11. Seasonal mean system net productivity for the Discharge (e) and
Control (0) Bays.









System respiration was also depressed in the Inner Discharge Bay rel-

ative to its control bay (Fig. 12). This parameter was generally higher

in the Middle Discharge Bay compared to its control, while there was very

little difference between the two outer bays. The pattern of system res-

piration closely followed insolation and productivity in all of the bays.

Ecological efficiency data for all of the estuarine bays are pre-

sented in Figure 13. Unlike the productivity values, ecological effici-

ency generally reached maximum levels during the fall season (October,

November, and December), rather than during the summer season. This

parameter underwent a declining trend in the Inner and Middle bays during

the 4 years of study.



Salt Marsh Ecosystems


Structure

Live weight data for the control and thermal salt marsh plants are

presented in Figure 14. There was no consistent difference in live weight

between control and thermal marshes for either Spartina or Juncus. Juncus

live weight values fluctuated between 600 and 1700 g-m-2 for both

marshes, and Spartina live weights were generally lower with values rang-

ing between 300 and 1000 g'm-2.

A seasonal summary of live stalk density for the Crystal River salt

marshes is given in Figure 15. Stalk density was consistently greater at

the discharge marsh sites than at the control marsh sites for both Spar-

tina and Juncus. Combining these data with information on live weight

presented in Figure 14 shows that the specific weight (weight per stalk)


_ ____ ____ ______ __ ___


------ ---- I
































T 1977 I 1978 | 1979 | 1980 I 1981


6- MIDDLE


E 5

2 4-




w

w
U-


SP U FA WI S U A I SU AWI SP SU FA WI SP
1977 1978 1979 1980 1981


6- OUTER

5


4









I-

SP SU FA Wl S SSU FA WI SP SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


Figure 12. Seasonal mean system respiration for the Discharge (@) and Control
(0) Bays.












1.2. INNER

1.0-


0.8-

0.6-


0.4-


02-


P SU FA WI SP SU FA WI SO SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


MIDDLE


U P SU FA Wil SP SU FA SP 4SU FA WI SP SU FA WI SP
1977 1978 1979 1980 1981


OUTER


SP SS A WI S U FA Wl SP U A I S9P U A WI -P
1977 1978 1979 1980 1981

Figure 13. Seasonal mean ecological efficiencies for the Discharge (0) and
Control (0) Bays.


















JUNCUS


SP du FA Wl SP SU FA WI SP SU
1977 1978 1979


FA Wl SP SU FA WIW
1980 1981


SPARTINA


SP SU FA WI SP SU FA WI SP SU FA WI SP SU FA WI
1977 1978 1979 1980 1981


Figure 14.


Seasonal mean live weights for the
Marshes.


Discharge (0) and Control (0)


2000 -


1500 -




1000 -




500 -


0-




2000-


1500-




1000-




500 -




0-







































C-4
'E




C>,

z
LLI
0a
Q
_1
F -
V)




















Figure 15.


1000



800



600



400



200 -

zo-

0





500-



400



300-



200-



100


t>


SP SU FA WI SP SU FA WI SP SU FA WI SP SU FA WI
1977 1978 1979 1980 1981




SPARTINA


SP SU FA W SP SU FA Wl SP SU FA Wl SP SU FA WI
1977 1978 1979 1980 1981



Seasonal mean live stalk densities for the Discharge (0) and Control
(0) Marshes.


.









of both the Spartina and Juncus plants was consistently lower in the dis-

charge marsh than in its control.

Stalk height of the salt marsh plants during the study period is pre-

sented in Figure 16. For both Spartina and Juncus, stalk height was con-

sistently shorter in the discharge marsh compared to its control.


Snail and Fiddler Crab Densities

The density of the marsh periwinkle, Littorina irrorata, in both

Spartina and Juncus marshes of the discharge side was found to be consis-

tently greater than that of the controls (Fig. 17). Snail density was

similar in both Juncus and Spartina marshes.

No consistent differences in fiddler crab burrow density was found

between any of the marshes (Fig. 18).


Metabolism

Metabolism data for the salt marsh ecosystems at Crystal River are

presented in Figures 19-21.

Figure 19 shows the 4-year trends in salt marsh gross productivity.

There was no clear stimulation or inhibition of gross productivity observ-

ed for either salt marsh species, although, a seasonal shift was consis-

tently recorded for Spartina with the discharge marsh attaining maximum

productivity values several months earlier than the control marsh. Juncus

was generally more productive than Spartina, averaging approximately 5.5 g

C'm-2.d-1 for the former compared to 3.5 g C*m-2.d-1 for the latter.

Salt marsh net productivity measurements are presented in Figure 20.

Once again no trends of stimulation or inhibition of this parameter were

found in either salt marsh community. Net productivity of the Spartina

marshes was generally lower than the corresponding Juncus sites.


_ ~_~_ I


_ ___ __





















140-


120-
-


100-
so-

-
80-



60-


40-






140-



120-



100-


80-



60-



40-


JUNCUS


SP SU FA WI SP SU WI SP SU FA WI SP SU FA WI
1977 1978 1979 1980 1981



SPARTINA


I I I1 1 II I Ill
SP SU FA WI SP SU FA WI SP SU FA Wl SP SU FA WI
1977 1978 1979 1980 1981


Figure 16. Seasonal mean stalk heights for the Discharge (e) and Control (0)
Marshes.




































































Figure 17.


JUNCUS


WI
1981


Seasonal mean marsh periwinkle (Littorina irrorata) densities for
the Discharge (0) and Control (0) Marshes.


1



















JUNCUS


SP SU FA W SP SU FA W SP SU FA] W SP SU AI WI
1977 1978 1979 1980 1981


500-


400-


300-


200-


Figure 18.


SPARTINA


0i l i Ill I IIl i I I
SP SU FA WI SP SU FA Wl SP SU FA SP SU FA WI
1977 1978 1979 1980 1981


Seasonal mean fiddler crab (Uca spp.) burrow densities for the
Discharge (0) and Control (O)-TMarshes.


500-


400-


300-


200-

















JUNCUS


Wl SP SU FA l SP SU FA Wl SP SU FA WI SP SU FA Wl
1977 1978 1979 1980 1981

SPARTINA


0 I I I
WI SP SU FA WI SP SU FA Wl SP SU
1977 1978 1979


FA WI SP SU FA W
1980 1981


Figure 19.


Seasonal mean
(0) Marshes.


gross productivities for the Discharge (*) and Control






















JUNCUS


P SU F A Wl SP SU FA S SP U F WA 1
1977 1978 1979 1980 1981


SPARTINA


1977


1979


1980


1981


Figure 20. Seasonal mean net productivities for the Discharge (*) and Control
(0) Marshes.

































O
'



E











z















Figure 21.
LIJ


JUNCUS


WI SP SU FA WI SP SU FA WI SP SU FA WI SP SU FA WI
WI SP SUFA l
1977 1978 1979 1980 1981


1 SPARTINA


W SP SU FA W SP SU FA WI SP SU FA WI SP SU FA W
1977 1978 1979 1980 1981

Seasonal mean night respiration for the Discharge (e) and Control
(0) Marshes.






37


Night respiration data for the salt marsh ecosystems is summarized in

Figure 21. Power plant operation had no consistent effect on this vari-

able. Night respiration in the Juncus marsh was generally higher than

that of the adjacent Spartina marsh.















DISCUSSION


Power Plant as a Forcing Function


System parameters such as structure and metabolism represent an inte-

gration of numerous physical and environmental variables. These environ-

mental factors are often the result of forces or processes occurring out-

side the system of study and are referred to as "external forcing func-

tions."

One of the most important aspects of the Crystal River metabolism

study was the determination of the overall effect of the power plants on

the structure and function of estuarine systems. The dominant factors

resulting from power plant operation that had effects on the estuarine

system were: temperature increase in discharge waters (Grimes and Mountain

1970; Smith et al. 1974); increase in water circulation in the discharge

area (Carder et al. 1973); an increase in turbidity due to dredging and

barge traffic; and an increase in nutrients in the discharge area (Odum et

al. 1974). Some information allowing a factoring of effects such as temp-

erature and turbidity data on estuarine processes was obtained during the

course of the study. Other potentially important factors such as water

circulation and nutrient availability were insufficiently sampled to draw

definite conclusions concerning their role in estuarine metabolism. The

parameter that provided the most valuable integrative record of the fac-

tors listed above was total power output on a monthly basis. Linear


__1_____1_1___________1_1_______1_1_____









regression analysis between power output and the measured estuarine param-

eters provides a basis for making conclusions concerning the impact of the

power-generating units on the Crystal River estuary.

In determining the actual effect of the power plants on the estuarine

systems it is also necessary to factor out the background changes in these

parameters due to environmental factors other than those caused by the

power generating units. The control data presented in the Results section

of this report can be used for such a purpose. In the analysis that fol-

lows, control data have been subtracted from corresponding discharge data

measured concurrently, providing "delta" values for regression analysis

with power plant output.


Power Output

A summary of monthly power output from the three units combined, and

from Unit 3 alone, is presented in Figure 22. Total monthly output varied

between 200,000 and 1,100,000 MWH during the period of study from 1977 to

1981. The rated maximum possible output of these units is 1,353,335 MWH

for a 30-day month. Figure 22 illustrates the importance of Unit 3 in

providing power output greater than 500,000 MWH per month. During the

last 3 years of study, Unit 3 supplied no appreciable output during May,

June, and July.


Water Temperature

Figure 23 presents the temperature differential (AT) recorded between

the discharge and control estuaries, graphed as a function of total month-

ly output. This AT was positive for all measurements taken and was sig-

nificantly highly explained by power output (R2 > 0.50) for all three

bay systems. Average AT's for the bays were: Inner, 4.45C; Middle,





























900

2 800

700 -
a.
S60
0

500
z
-j
L 400

S300
o V
200

100

0
F M



Figure 22. Monthly power
alone.


1977 1978 1979 1980

output from the three units combined and from Unit 3














Y= (4.92 x IO6)x +1.41
r2= 0.509
P(M*0)>99.9%
P(b*0)>98.5%


Y=(4.99xlO6) x+0.54
r2= 0.537
P(M0O)>99.9%
P(b 0) >70.3%


-f +
+
+ 4t


4 --
-I


500000


700000


900000


4- 4-
4-


Figure 23.


300000 500000 700000 90000C 1100000
POWER OUTPUT MWH MONTH"-
Regression of monthly temperature differential between the Discharge
and Control Bays against total power output.


INNER


-4-


MIDDLE


4- -4


4-I 4-


1100000


Y=(4.36 x 0"6) x+0.26
r2= 0.517
P(M*O)>99.9%
P(b*O)>41.6%


OUTER









3.790C; and Outer, 3.120C. The fact that the intercept value for the

Inner bays was significantly positive indicates that the Inner Discharge

Bay has a higher background water temperature than its control bay. This

may possibly result from a shallower mean depth at the sampling point in

the discharge bay compared to the control.


Salinity and Light Extinction

The correlation between power output and the salinity differential

in the three bay systems is presented in Fig. 24. Although the salinity

of the Inner Discharge Bay was consistently higher than that of its con-

trol bay, this differential was not explained by the power output of the

Crystal River units. Smaller salinity differentials in the middle and

outer bays had a slight positive relationship with power output.

Similar results were found for light extinction measurements as indi-

cated in Fig. 25. Once again, the light extinction differential was not

explained by power plant output for the inner bays and only slightly

dependent on output in the middle and outer bays.

These regressions clarify an important consideration in comparing the

discharge bays to their control bays. The Inner Discharge Bay is funda-

mentally altered in terms of salinity and turbidity compared to its con-

trol because of the pumping of offshore water to its inshore location.

The absence of a significant relationship with total power output may be

explained by a threshold level of effect below the lowest pumping rate of

the plants. Thus, whenever any of the power plants are in operation, the

water in the Inner Discharge Bay is almost entirely of offshore origin

rather than from inshore sources. The regression analysis confirms the

earlier field and modelling studies (Carder et al. 1973; Klausewitz 1973;










INNER

4r 4- + +
46- 4 + +
+ -- + +
+ -1-+ +l.- 4+ + +
2- .+

O- -----------------------


Y=(1.67 x 10-2) x+3.48
r2=0.0005
P(M*0)>11.6%
P(bO0)>99.9%


S obo1506 30000 45o000 600000 750000 900000 1050000


MIDDLE


Y=(3.15xlO-6x-1.64
r2:-0.219
P(M*0)>99.8%
P(b*0)>98.2%


44-

+




0 150000 30000 450000 600000 750000 900000 1050000


OUTER


Y=(3.05IO'-6)x-2.85
r2=0.218
P(M*0)>99.8%
P(b*0)>99.9%


I2* + I +++ +


-4- T





0 150000 300000 450000 600000 750000 900000 1050000


Figure 24. Regression of monthly salinity differential between the Discharge
and Control Bays against total power output.
















Y=(I.31 x107)x+0.45
r2 =0.0008
P(M*0)>39.4%
P(b*0)>98.6% 4.


INNER


+ -


-- -"-


I + ,


-_---I 50 50-- 6 -50-
+






S 50600 200000 350000 500000 650000 800000 950000 1100000


MIDDLE


Y=(6.88 x 10)x-0.32
r2=0.196
P(M 0)>99.7%
P(b *0)>95.7%


0 50000 -200600


350b00 500000


++
++ +


+ + +
.+ -4

4- +-


650000 800000 950000 1100000


Y:(3.9510x7) x-0.15
r2=0.118
P(M 0)>97.4%
P(b *0)>76.7 %


t tI--- 4
t+-I-- + -
-- IH -+

+4- +


- -1------------I I I I


0 50000 200000 350000 500000 650000 800000
POWER OUTPUT MWH MONTH"'


950000 1100000


Regression of light extinction differential between the Discharge
and Control Bays against total power output.


44


I


Z
0 -
OL


X
I-
W
0
-1 -0.5-


Q


OUTER


Figure 25.


A









Cottrell 1974) that documented the flushing of the Inner Discharge Bay

and the high flux of sediment to this basin. The slight positive regres-

sions found in the middle and outer bays indicate that at the observed

power plant pumping rates, these systems were not completely overwhelmed

by offshore water. Also, the negative intercept values indicate that the

Middle and Outer Control bays may have higher background salinity values

than the corresponding discharge bays.


Plankton Metabolism


Figure 26 presents the regression graphs of plankton gross productiv-

ity differential against power plant output. No significant effect on

this parameter attributable to power plant operation was detected. As

noted earlier, there was also no consistent stimulation or inhibition of

plankton productivity between any of the discharge and control bays.

McKellar (1975) and Smith (1976) found similar results for phytoplankton

productivity during their studies in the discharge bays prior to the

start-up of Unit 3.

The linear regression analysis in Figure 26 is not designed to detect

possible seasonal patterns of stimulation or inhibition in plankton gross

productivity, so average seasonal means throughout the study period have

been computed and are presented in Table 1. Seasonal effects were found

in the Inner Discharge Bay where plankton gross productivity was signifi-

cantly enhanced during the spring season and significantly inhibited

during the warm summer months.













Y-(-6.07 xl'7)x+0.27
r =0.024
P(M*0)>65.9%
P(b*0)>45.2%


INNER


++-- .+- +- + .
4 1_ . `
+ t+4


) 150000 300000 450000 600000 750000 900000 1050000


MIDDLE


Y=(-4.12xI )x + 0.31
r =0.009
P(M*0)>45.6%
P(b$0)>48.0%


_-.
+ .- I -- 4 -1-
S+ 1-+ -4 -
4 4- + -


0 150000 300000 450000 600000 750000 900000 1050000


-7
Y=(2.13x10 )x-0.004
r2 =0.001
P(M*0)>17.8 %
P(b*0)>0.4%'


OUTER


+- .


-4 44


+ -- -

+ +


S 15soboo 30dooo 45d000 60dooo 75d000 90ooo00 05b000
POWER OUTPUT MWH-MONTH-'


Figure 26.


Regression of monthly plankton gross productivity differential
between the Discharge and Control Bays against total power output.









Table 1. Differential plankton gross productivity data between dis-
charge and control bays at Crystal River, Florida, during
the period 1977-1981. Values are means two standard
errors (n = 147).



Season

Bay Winter Spring Summer Fall


Inner -0.01 0.10 0.45 0.38 -1.07 0.48 -0.04 0.16

Middle -0.07 0.08 0.14 0.62 0.01 0.60 0.18 0.40

Outer -0.19 0.27 0.25 0.88 0.58 0.67 -0.21 0.42









System Metabolism

The regression of differential system gross productivity data on

power output is displayed in Figure 27. Although confirming that system

gross productivity was consistently lower in the Inner Discharge Bay than

in the Inner Control Bay, and consistently higher in the Middle Discharge

Bay relative to its control, the regression analysis found only a slight

negative relationship with power plant output. No effect of power plant

operation was visible in the gross productivity data for the outer bays.

The possibility of seasonal effects on system gross productivity was

also investigated. The 4-year seasonal means of these delta values are

summarized in Table 2. Average inhibition of system metabolism in the

Inner Discharge Bay increased from -1.3 to -6.2 g 02-m-2*d-1 between the

winter and summer seasons. The stimulation observed in the Middle Dis-

charge Bay occurred during the cooler seasons and was not significant

during summer.


Marsh Metabolism

Gross productivity differential between discharge and control marsh

sites is plotted versus power output in Figure 28. Juncus gross produc-

tivity was not significantly affected by power output in the Discharge

Marsh, but Spartina productivity did show significant inhibition. The

night respiration differential analysis between discharge and control

marshes is presented in Figure 29. Night respiration of both species was

significantly inhibited by increasing power plant output.







49









6 Y=(-1.86 x10-6)x-2.29 INNER
r2 =0.035
SP(M*0O>76.1%
2. P(b*0)>95.5%


2- -----------4-- -- -- - -

4-

+ + 4 4- 4
*D -6- +

+ +
0O
-10-1- lll]I
S 0 150000 300000 450000 600000 750000 900000 1050000
6
OS

> 6- Y=(-I.52 xIO6 )x +1.95 P(b*0)>99.9% MIDDLE
r2 = 0.086
> 4- P(M*O)>94.4% -
-- 4 .-- ,-++ ,
0 2- -- -- 4--- -- 4--- l-

o 0-
+4 4- +

S -2-


0 -4-










-6-
UiJ
-8-
>-
S-10--------
0 150000 300000 45000. 600000 750000 900000 1050000

W
P6- Y=(-1.84xIU6)x+1.13 OUTER
r2 =0.036 + +
4- P(M:0)>76.8 %
P(b*0)>69.8%



-Z- 4- + +- 4-


-4-

-6-

-8-

-10-
0 150000 300000 450000- 600000 750000 900000 1050000
POWER OUTPUT MWH MONTH-'


Figure 27. Regression of monthly system gross productivity differential between
the Discharge and Control Bays against total power output.









Table 2. Differential system gross productivity data between dis-
charge and control bays at Crystal River, Florida, during
the period 1977-1981. Values are means two standard
errors (n = 168).



Season

Bay Winter Spring Summer Fall


Inner -1.28 0.30 -2.70 0.70 -6.16 0.88 -3.02 0.85

Middle 0.67 0.40 1.69 0.58 0.75 0.94 0.89 0.71

Outer 0.56 0.45 0.20 0.80 -0.09 1.09 -0.10 0.76









































TOTAL OUTPUT, mwh month-I


Figure 28.


1 I I 1 I I I II I .1 I I
0 200000 400000 600000 800000 1000000
TOTAL OUTPUT, mwh month'


Regression of monthly gross productivity differential between the
Discharge and Control Marshes against total power output.


Y=(-5.13x 10-6)x+3.55 SPARTINA
Sr2= 0.377
P(M*0)>98.5% --
P(bt0)>98.4% + + +





+
+t













































400000 600000 800000
TOTAL OUTPUT, mwh month-i


Figure 29.


I I I I I I 1 I I 1 I I
0 200000 400000 600000 800000 1000000
TOTAL OUTPUT, mwh -month-


Regression of monthly night respiration differential between the
Discharge and Control Marshes against total power output.


1.5-


1.5-


.5-


0-


-.5-


-1.0-


Y=(-L34 x0-6)x+1.12 SPARTINA
r2=0295
P(M*0)>96.3% +
P(b 0)> 98.5 %








+ ++









Additional Effects of Unit 3


The graphs presented in the preceding section are useful in determin-

ing the average impact of the additional capacity of Unit 3 at Crystal

River. All of the points on Figures 23 to 29 where power output was above

500,000 MWH per month, were the result of the additional output of Unit 3.

If a vertical line is drawn on those graphs at the 500,000 MWH per month

output value, changes occurring to the right of this line can be attrib-

uted to the additional capacity of Unit 3.

For water temperature (Fig. 23), this additional power output result-

ed in an average additional temperature rise of approximately 20C between

the Inner Discharge and Control bays, resulting in combined AT's as high

as 9.60C during Unit 3 operation.

The operation of Unit 3 had no significant additional impact on

salinity, light extinction, or plankton gross productivity values in the

Inner Discharge Bay, and slightly increased salinity and light extinction

levels in the middle and outer bays relative to their controls (Figs.

24-26).

The average inhibitory effect of Unit 3 operation on system gross

productivity in the Inner and Middle Discharge Bays was approximately 1 g

02.m-2"d-1. This represents from one-fourth to one-half of
the total average system gross productivity remaining in these systems.

Unit 3 operation reduced the average Spartina gross productivity by

nearly 2 g C-m-2-d-1 (Fig. 28). This reduction is nearly 50% of

the average gross productivity in the Spartina Discharge Marsh.

In their analysis of the Crystal River estuarine data presented in

this report, Benkert and Lucas (in prep.) documented a significant corre-









lation between water temperature and metabolism. Figures 30 and 31, which

are borrowed from that report, illustrate the decline in system and plank-

ton gross productivity at temperatures above 320C. This finding has crit-

ical importance in interpreting the effect of additional heated water dis-

charge to these estuarine systems. As long as the temperature of water in

the discharge area is less than 320C, gross metabolism is enhanced by

power plant operation. But, when water temperatures are naturally highest

during the summer season due to high insolation, the estuarine ecosystems

respond to additional thermal loading by decreases in metabolism. The

summer outages for Unit 3 during the last 3 years of this study may have

prevented even greater metabolism decreases in the Inner Discharge Bay

than those documented in this report. During the one summer season when

Unit 3 had significant power output (1977), record lows for plankton

(Figs. 7 and 8) and system (Figs. 10 and 11) productivity were recorded in

this bay. This inhibitory effect of Unit 3 summer operation was apparent-

ly limited to the Inner Discharge Bay, covering an area of approximately

100 hectares (250 acres).


Estuarine and Marsh Adaptations

Adaptations by the estuarine communities to the new physical regimes

caused by the addition of Unit 3 were expected to occur during the long

time span of this study (Odum et al. 1974). However, no recovery of the

heavily impacted Inner Discharge Bay system was observed. In fact, system

gross productivity (Fig. 10) and respiration (Fig. 12) for these bays

gradually decreased during the last 3 years of study. Enhanced metabolism

in the Middle Discharge Bay relative to its control may have been a physi-
















INNER DISCHARGE BAY


.. ..


8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38


MIDDLE DISCHARGE BAY





*.
; *"
**
-. .'. ...



:. :. ." -


.. : .. . ." "


1.0 8 10 12 14 16 8 20 22 24 26 28 30 32 34 36 38


1to- INNER CONTROL BAY

9.0

80

7.0

60

50
40

30 -..
2 *

20- ' ". '. *-'

20 ** ...*:.< 1 '. *
.0 141618...0 22.24.2683-' 363

-t o 10 2 4 16 18L 2J0 2 2o 22 2A 26 3'4 3'6 38


MIDDLE CONTROL BAY



Wo-

ic -
20






to **
**a*
.0




S
0 .* ..
2.I .... .


10 12 14 16 18 20 22 24 26 28 30 32 34 36 38


TEMPERATURE, C





Figure 30. Response of system gross productivity to water temperature for the
Inner and Middle Bays (from Benkert and Lucas in prep.).


i I


-In





*.- 8
8


-!

















INNER DISCHARGE BAY


40 *
o ** ** :. **
o . ... .. .. : .. : .......
20 1
10.
0- :

8 10 12. 14 16 18 20 22 24 26 28 3032 4 3638













.0zo MIDDLE DISCHARGE BAY






:=' -
,, t
fL
'' '. i','.s "'
t, .~
r

,, .


t o6 2r2 24 I 30 32 34 36 I
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38


I.

* *


0 1- I I I I . 1I-.-
8 0 12 14 16 1B 20 22 24 26 28 30 32 34 36 38













.^L MIDDLE CONTROL BAY


.5.


.L


8 10 12 14 16 2 24 8 3 34 3
8 10 12 14 16 18 20 22 24 26 2a 3o 32 34 36 38


TEMPERATURE C






Figure 31. Response of plankton gross productivity to water temperature for the Inner and Middle Bays
(from Benkert and Lucas in prep.).


INNER CONTROL BAY


.ii. .,
:" t~







)cal response to higher temperatures or an adaptation through changes in

species dominance.

It is interesting to note that water temperatures above 32*C were

never recorded in the control bays during the course of this study and

that this temperature appeared to be a critical metabolism maxima as dis-

cussed in the previous section. This connection leads to the interesting

speculation that local producer populations at Crystal River may not con-

tain species that are adapted for high productivity at high water tempera-

tures, if indeed such species do exist elsewhere. In fact, Thorhaug

(1974), working in a south Florida estuary, noted biomass maxima for

several marine macrophytes and macroalgae at 31C and senescence and death

above 32"C.

If any adaptations did occur, they must have occurred soon after the

start-up of Unit 3. It is likely that even to maintain reduced metabolism

levels, the impacted estuarine systems had undergone some morphological

and taxonomic adaptations to the new regimes. For example, in the Inner

Discharge Bay, the planktonic community replaced the benthic community as

the dominant component in system metabolism as compared to the preopera-

tional period studied by Smith (1976). An adaptation phenomena was better

documented for the Spartina and Juncus salt marsh ecosystems. Although

metabolism of these systems was not consistently altered due to treatment,

obvious morphological differences were found between the discharge and

control sites. For both marsh plant species, the predominant growth form

changed to greater numbers of shoots and smaller size per shoot in the

discharge marshes compared to the control marshes. This apparent adapta-

tion resulted in similar total biomass and system metabolism between the

two treatment areas.














CONCLUSIONS


1. Power plant operation near Crystal River, Florida, significantly in-

creased temperature, salinity, and turbidity of inshore bay systems

during the 4 years of study.

2. Planktonic productivity and respiration were neither consistently stim-

ulated nor inhibited by power plant operation, although seasonal inhib-

ition of plankton gross productivity by water temperatures above 320C

was observed.

3. A mixed response of system gross productivity to power plant operation

was observed in the estuarine bays. The Inner Discharge Bay productiv-

ity was consistently lower compared to its control, with greatest in-

hibition during the summer months when water temperatures were above

320C. On the other hand, in the cooler Middle Discharge Bay system

productivity was generally enhanced compared to its control bay. The

Outer Discharge Bay was more productive than its control during the

colder months.

4. System net productivity and respiration were reduced in the Inner Dis-

charge Bay compared to its control bay.

5. Live plant weight, Uca burrow density, and salt marsh gross productiv-

ity, net productivity, and respiration were not consistently altered

between discharge and control Spartina and Juncus sites, although sig-

nificant seasonal shifts were observed in timing of productivity.









6. Linear regression analysis indicated that increased power output from

the three units at Crystal River significantly reduced Spartina gross

productivity and night respiration and Juncus night respiration of the

discharge marshes compared to their controls.

7. The primary effect of the addition of Unit 3 was the occurrence of

stressful temperatures in the Inner Discharge Bay during the warmer

months with some compensation through stimulation of metabolism during

the colder months. During the last 3 years of the 4-year study period,

Unit 3 supplied no appreciable output during May, June, and July.

8. The overall detrimental effect of the three power plants on metabolism

of Crystal River estuarine and salt marsh ecosystems during the study

period (1977-1981) appears to have been limited to an area no larger

than the Inner Discharge Bay-100 hectares (250 acres).















ACKNOWLEDGMENTS


This report is based on the energy and efforts of many persons who

are currently or were formerly affiliated with the University of Florida.

The principal investigator during the 4 years of field studies at Crystal

River was Dr. Howard T. Odum. Dr. Odum played the main role in the insti-

gation and completion of this research.

Mr. John W. Caldwell was project coordinator and led field and office

activities for the first 3 years of the Crystal River study. Dr. Clay L.

Montague was project coordinator during the last year of the project.

The following graduate and undergraduate student assistants provided

the greatest amount of time to the completion of the project goals:

K. Benkert, D. Campbell, G. Goforth, P. Goren, K. Herndon, J. Higman,

D. Hoelzer, D. Hornbeck, J. Kosik, K. Limburg, J. Lucas, K. Riddell,

L. Schwartz, P. Wallace, and A. Watson.

Funding for this project was provided by the Florida Power Corpora-

tion under contracts: QEA-00002, QEA-00014, QEA-00030, and QEA-00045.


_ __ __














REFERENCES CITED


Adams, C. A., C. J. Bilgere, and S. C. Snedaker. 1974. Appendix Bl:

Impingement data record. In Crystal River Power Plant: Environmental

Considerations. Final Report to the Interagency Research Committee.

Florida Power Corporation, St. Petersburg, Fla.

American Public Health Association. 1975. Standard methods for the exam-

ination of water and wastewater, 14th ed. American Public Health

Association, New York.

Benkert, K. A. 1980. Annual productivity and simulation models of the

Chaetognath, Sagitta hispida, exposed to a thermal plume at Crystal

River, Florida. Master's thesis, University of Florida, Gainesville.

Benkert, K. A., and J. Lucas. 1982. Community metabolism and thermal

ecology of an estuarine ecosystem (in prep.)

Bregman, J. I. 1969. Putting waste heat in its place. Pages 3-14 in

F. L. Parker and P. A. Krenkel (eds.), Engineering aspects of thermal

pollution. Vanderbilt.

Brown, S. 1978. A comparison of cypress ecosystems in the landscape of

Florida. Ph.D. dissertation, University of Florida, Gainesville.

Caldwell, J. W., H. T. Odum, K. Benkert, J. Lucas, K. Limburg, and G.

Goforth. 1979. Annual record of estuarine ecosystems at Crystal

River, Florida. Annual Report given to the Florida Power Corpora-

tion, Contract QEA-00014. Gainesville, Fla.









Caldwell, J. W., H. T. Odum, K. Benkert, J. Lucas, D. Campbell, G.

Goforth, J. Kosik, and W. Coggins. 1980. Annual record of estuarine

ecosystems at Crystal River, Florida. Annual Report given to the

Florida Power Corporation, Contract QEA-00030. Gainesville, Fla.

Carder, K. L., R. H. Klausewitz, and B. A. Rodgers. 1973. Preliminary

data on the nature of flow in the area of the intake channel of the

Crystal River power plant. Tech Report No. 2 to Florida Power Cor-

poration, St. Petersburg, Fla.

Connell, Metcalf, and Eddy, Inc. 1978. Crystal River community structure

study for Florida Power Corporation. Annual Report to Florida Power

Corporation.

Connell, Metcalf, and Eddy, Inc. 1979. Community structure study.

Annual Report to Florida Power Corporation.

Copeland, B. J., and W. R. Duffer. 1964. Use of a clear plastic dome to

measure gaseous diffusion rates in natural waters. Limnol. Oceanogr.

9:494-99.

Cottrell, D. J. 1974. Sediment composition and distribution at Crystal

River power plant: Erosion versus deposition. In Crystal River Power

Plant: Environmental Considerations. Final Report to the Interagency

Research Committee. Florida Power Corporation, St. Petersburg, Fla.

Evink, G., and B. Green. 1974. Benthic invertebrate comparisons in two

estuaries adjacent to the Crystal River power generation facility.

In Crystal River Power Plant: Environmental Considerations. Final

Report to the Interagency Research Committee. Florida Power

Corporation, St. Petersburg, Florida.








Fox, J. L., and M. S. Moyer. 1972. Effects of power plant chlorination

on marine microbiota. Appendix C. Env. Status Report to Florida

Power Corporation.

Gibson, R. A., J. 0. Johansson, M. E. Gorman, and T. L. Hopkins. 1974.

Phytoplankton ecology in the vicinity of the Florida Power Corpora-

tion generating plant at Crystal River, November 1973-April 1974. In

Crystal River Power Plant: Environmental Considerations. Final

Report to the Interagency Research Committee. Florida Power Corpora-

tion, St. Petersburg, Fla.

Grimes, C. B., and J. A. Mountain. 1971. Effects of thermal effluent

upon marine fishes near the Crystal River steam electric station.

FDNR Profession Paper Series No. 17.

Homer, M. 1976. Seasonal abundance, biomass, diversity, and trophic

structure of fish in a salt marsh tidal creek affected by a coastal

power plant. In G. W. Esch and R. W. McFarland (eds.), Thermal ecol-

ogy, II. AEC Symposium Series. AEC Publ., Oak Ridge, Tenn.

Hornbeck, D. A. 1979. Metabolism of salt marshes and their role in the

economy of a coastal community. Master's thesis, University of Flor-

ida, Gainesville.

Kemp, W. M., W. H. B. Smith, H. N. McKellar, M. E. Lehman, M. Homer, D. L.

Young, and H. T. Odum. 1977. Energy cost-benefit analysis applied

to power plants near Crystal River, Florida. Pages 508-43 in C. A.

S. Hall and J. W. Day, Jr. (eds.), Ecosystem Modeling in Theory and

Practice: An Introduction with Case Histories. John Wiley and Sons,

New York.









Klausewitz, R. H. 1973. Preliminary results of the dispersion model for

the Crystal River power plant. Tech Report No. 1 to the Florida

Power Corporation, St. Petersburg, Fla.

Lehman, M. E. 1974. Oyster reefs at Crystal River, Florida, and their

adaptation to thermal plumes. Master's thesis, University of Flor-

ida, Gainesville.

McConnell, W. J. 1962. Productivity relations in carbon microcosms.

Limnol. Oceanogr. 7:335-43.

McKellar, H. N., Jr. 1975. Metabolism and models of estuarine bay eco-

systems affected by a coastal power plant. Ph.D. dissertation, Uni-

versity of Florida, Gainesville.

McKellar, H. N., Jr. 1977. Metabolism and model of an estuarine bay eco-

system affected by a coastal power plant. Ecol. Modelling 3:85-118.

McKellar, H. N., Jr., and W. H. B. Smith. 1981. Ecosystem level assess-

ments should be emphasized over population level assessments. Pages

67-74 in L. B. Jensen (ed.), Issues associated with impact

assessment. Ecological Analysts, Inc. Sparks, Md.

Maturo, F. J., J. W. Caldwell, and W. Ingram. 1974. A supplementary

zooplankton survey at the Crystal River plant site. In Crystal River

Power Plant: Environmental Considerations. Final Report to the

Interagency Research Committee. Florida Power Corporation, St.

Petersburg, Fla.

Metcalf and Eddy. 1980. Crystal River community structure study. Annual

Report to the Florida Power Corporation, St. Petersburg, Fla.

Montague, C. L., J. W. Caldwell, R. L. Knight, K. A. Benkert, A. M.

Watson, W. F. Coggins, J. J. Kosik, and K. F. Limburg. 1981. Record

of metabolism of estuarine ecosystems at Crystal River, Florida.


___1____1_1__1__1__1_iII









Final Annual Report to Florida Power Corporation, Contract QEA-00045.

Gainesville, Fla.

NOAA. 1977, 1978, 1979, 1980. Climatological data: Annual summary,

Florida. National Climatic Center, Asheville, N.C.

Odum, H. T. 1956. Primary production in flowing waters. Limnol. and

Oceanogr. 1:102-117.

Odum, H. T., J. W. Caldwell, K. Benkert, J. Lucas, R. Knight, and D.

Hornbeck. 1978. Annual record of metabolism of estuarine ecosystems

at Crystal River, Florida. Annual Report given to the Florida Power

Corporation, Contract QEA-00002. Gainesville, Florida.

Odum, H. T., and C. M. Hoskins. 1958. Comparative studies on the metabo-

lism of marine waters. Publ. Inst. Mar. Sci. Univ. Tex. 5:16-46.

Odum, H. T., W. M. Kemp, W. H. B. Smith, H. N. McKellar, D. L. Young, M.

E. Lehman, M. L. Homer, L. H. Gunderson, and A. D. Merriam. 1974.

An energy evaluation of the system of power plants, estuarine ecol-

ogy, and alternatives for management: Power plants and estuaries at

Crystal River, Florida, Vol. 1.

Odum, H. T., and R. F. Wilson. 1962. Further studies on reaeration and

metabolism of Texas bays: 1958-1960. Publ. Inst. Mar. Sci. Univ.

Tex. 8:23-55.

SAS Institute. 1981. SAS users guide. SAS Institute, Inc., Raleigh,

N.C. 494 pp.

Smith, W. H. B. 1976. Productivity measurements and simulation models of

a shallow estuarine ecosystem receiving a thermal plume at Crystal

River, Florida. Ph.D. dissertation, University of Florida, Gaines-

ville.







'Smith, W. H. B., H. McKellar, D. L. Young, and M. E. Lehman. 1974. Total

metabolism of thermally affected coastal systems on the west coast of

Florida. In J. W. Gibbons and R. R. Sharitz (eds.), Thermal ecology.

AEC Symposium Series. AEC Publ., Oak Ridge, Tenn.

Snedaker, S. C., D. J. Cottrell, and R. F. Van Tine. 1974. Crystal River

power plant: Environmental considerations. Final Report to the

Interagency Research Committee. Florida Power Corporation, St.

Petersburg, Fla.

Thorhaug, A. 1974. Effect of thermal effluents on the marine biology of

southeastern Florida. Pages 518-531 in J. W. Gibbons and R. R.

Sharitz (eds.), Thermal ecology. AEC Symposium Series, AEC Publ.,

Oak Ridge, Tenn.

Van Tine, R. 1974. Temporal changes of macroalgae and seagrass distribu-

tion at the Crystal River power plant. In Crystal River Power Plant:

Environmental Considerations. Final Report to the Interagency

Research Committee. Florida Power Corporation, St. Petersburg, Fla.

Van Tine, R. F., and J. S. Davis. 1982. Biomass of dominant benthic

algae and seagrasses in adjacent heated and nonheated estuaries of

Crystal Bay, Florida. Unpub. manus.

Young, D. L. 1974. Studies of Florida Gulf coast salt marshes receiving

thermal discharges. In J. W. Gibbons and R. R. Sharitz (eds.), Ther-

mal ecology. AEC Symposium Series. AEC Publ., Oak Ridge, Tenn.






























APPENDIX A

SUMMARY OF DATA FROM THE DISCHARGE
AND CONTROL BAYS







Inner Discharge Bay (A)


WS TINE PC Pi R PLAMnI PLANKf PLtSW INSIL TEIP Sf EXTDICT ECOLLEF FERPUI llTH DAYPY YEAR


1 SP77 0.40 0.14 0.26 0.2?1
2 SP?7 2.99 2.39 0.60 0.39
3 'S77 0.18 -0.10 0.28 0.29
4 ?7 1 1.0 1.0 0.00 -0.39
5 SU77 0.43 0.18 0.25 0.04
6 S177 -0.13 -0.45 0.32 0.114
7 SU77 -0.28 -0.45 0.17 2.01
8 S177 1.45 0.44 0.84 1. 4
4 S177 2.45 1.75 0.70 1.8'
10 1177 1.70 1.35 0.35 0.73
11 S77 0.15 0.15 0.00 1.5
12 S?77 0.49 0.39 0.10 0.9
13 A?77 1.92 0.13 1.7q 0.(
14 A?77 0.83 0.U 0.67 0.97
15 FA77 0.27 0.27 0.00 0.54
16 877 0. 0. 0.014 0.00 0.4
17 FA77 0.16 0.46 0.10 0.48
18 FA77 0.27 0.27 0.00 0.49
19 FA77 0.39 0.3q 0.00 0.41
20 FA?7 0.39 0.37 0.02 0..
21 FA?? 0.37 0.29 0.0 .
22 FA77 O.63 0.3 0.00 0.54
23 FA77 0.48 0.48 0.00 0.29
2l4 8 0.23 0.11 0.10 0.24
23 1178 0.q3 0.4 0.44 0.40
26 1178 0.51 0.51 0.00 0.71
27 1I78 0.4 0.Q49 0.00 0.11
28 1178 0.64 0.44 0.00 0.4
29 11I78 2.27 2.15 0.12
30 78 0.45 0.41 0.04 0.68
31 II78 0.80 0.44 0.36 0.-9
32 SP78 3.01 1.52 1.4 1.01
33 SF78 3.78 2.08 1.70 1.40
34 SP78 5.33 3.00 2.33 1.27
35 SP78 3.38 1.41 1.89 1.6
36 S78 5.35 3.03 2.32 3.83
37 SP78 2.85 1.88 0.96 3.35
38 SP78 4.68 1.72 2.96 1.9
39 SP78 9.58 .33 3.25 2.25
40 SP78 2.87 2.02 0.85 1.',,
41 SP78 2.29 1.33 0.9 2.3
42 SP78 3.15 2.12 1.03 2.85
43 SP78 2.3
44 S1178 0.4 -0.49 0.95 1.76
43 78 0.72 -0.31 1.3 1.44
46 S78 2.02 1.58 0.44 3.04
47 SU78 1.17 0.87 0.30 2.32
4 S1178 3.56 2.67 0.89 1.43
149 SU78 2.33 0.6d 1.14 1.41
50 3178 3.74 3.00 0.76 0.79
51 SU78 3.85 2.91 0.91 1.32
52 SU78 3.33 1.72 1.41 2.43
53 3S78 2.76 0.80 1.9 1.34
4 FA78 5.12 2.10 3.02 1.84
53 F7A8 3.13 2.25 0.88 1.25
56 FA78 0.75 0.39 0.36 1.44
57 r 78 1.07 0.46 0.61 1.20
58 FA78 2.49 2.14 0.35 1.13
59 FA78 4.24 1.51 2.73 1.14
40 rA78 4.30 1.24 3.04 0.714
61 FA78 2.15 0.47 1.48 1.04
62 FA78 2.78 1.10 1.68 0.17
63 FA78 1.68 1.25 0.43 0.5V
64 FA78 1.22 .0.68 .54 0.2
65 1179 1.87 1.10 0.77 0.50
46 i19 0.71 4 0.5. 0.18 0.33
67 1179 0.39 0.00 0.39 0.53
8 1117 0.34
4 W17 0.54 0.54 0.00 0.2b
70 l117 0.58 0.45 0.13 0.77
71 I179 0.46 0.46 0.00 1.04
72 UIlq 0.13 0.07 0.06 0.44
73 I179 0.86 0.61 0.25 0. 1
179 9 2.01 1.42 0.59 1.17
75 SP79 1.62 0.71 0.85 1.73


0.21 0.03 24.3 24.6 1.90
-0.39 0.78 35.3 28.4 1.80
-0.65 0.94 4200 35.1 28.0 2.00
-0.92 0.53 7400 37.3 29.3 1.30
-0.45 0.41 5570 37.1 29.8 1.10
-0.04 0.18 4780 34.9 30.1 2.30
0.25 1.78 6030 34.3 30.9 2.30
1.16 0.28 3870 30.1 28.1 1.70
1.73 0.11 5230 3.7 2.3 1.40
0.53 0.20 6579 33.8 29.6 1.40
1.15 0.40 462 35.8 32.5 1.90
0.72 0.25 486 35.9 32.5 1.70
0.37 0.29 5W 33.8 31.2 1.50
0.78 0.19 5238 33.4 31.1 2.10
0.42 0.14 662 26.7 28.5 1.30
0.40 0.26 4227 26.1 28.0 1.10
0.5 0.12 2961 27.3 29.7 1.40
0.27 0.22 W41 19.5 29.3 1.40
0.31 0.30 W447 23.3 30.0 1.40
-0.01 0.07 2619 23.8 25.6 1.20
1.00 3416 25.14 25.9 1.10
0.37 0.17 22.7 29.0
0.21 0.014 22.9 28.5
0.20 0.09 159 13.0 23.8
0.33 0.07 453 13.1 241.5
0.79 0.00 1013 17.4 26.q
0.2q 0.22 1358 18.0 26.5 0.27
0.54 0.11 2028 18.4 22.1 1.70
4221 19.8 19.1 2.27
0.48 0.00 W44 20.8 17.4 3.40
0.73 0.17 4383 21.5 16.7 1.55
0.78 0.23 4201 26.8 20.1 2.83
1.07 0.33 i459 27.5 20.0 2.143
1.07 0.20 5408 25.3 21.4 1.36
1.40 0.08 3551 25.5 22.4 1.55
3.78 0.05 4921 30.5 23.8 1.79
2.75 0.60 2921 31.3 23.7 1.36
1.67 0.32 2&d 29.1 20.8 2.83
2.08 0.17 556 30.5 21.2 1.89
1 42 0.23 4278 33.8 24.0 1.70
2.36 0.00 4036 33.8 23.7 1.36
2.63 0.23 4114 31.1 24.4 1.55
2.20 0.19 351
1.74 0.02 3830 32.8 24.5 1.42
135 0.09 414 31.8 24.3 1.142
2.78 0.28 4036 31.8 25.14 1.70
1.99 0.33 37% 32.3 26.2 1.dZ
1.56 0.27 3871 33.0 23.0
1.53 0.10 2502 33.1 24.2
0.52 0.27 4762 33.8 25.7
1.30 0.02 4762 34.1 26.1
1.86 0.77 3511 31.8 27.6 1.42
1.30 0.04 3q93 31.4 27.4 1.31
1.60 0.2q 2q72 2q.9 30.1
0.50 0.75 3830 31.8 30.3 1.70
0. 6 0.78 4144 2q.8 30.8 2.43
0.82 0.38 3227 29.4 28.7 1.55
0.96 0.17 27.9 28.8 4.25
0.72 0.4 27.2 28.8 2.13
0.74 0.00 2582 27.9 27.9 2.00
1.014 0.00 230 28.1 27.9 1.31
0.01 0.1 1775 20.2 24.1
0.56 0.02 2743 21.7 25.1
0.62 0.00 2663 20.5 27.0 1.55
0.43 0.07 2662 14.3 27.0
-0.16 0.14 1773 14.2 28.2
0.41 0.12 2080 20.0 26.9
0.34 0.00 32214 19.9 26.2
0.25 0.00 1750 20.1 24.5 1.42
0.51 0.26 2022 19.9 24.8 1.89
0.72 0.32 2980 22.4 25.1
0.29 0.15 3246 20.0 25.5 1.85
0.55 0.44 4417 20.3 26.1 1.59
1.13 0.04 4533 27.2 24.4 1.54
1.34 0.39 4193 28.4 24.7 1.70


0.6000 4 23 77
0.1304 6 97 77
0.017143 1.6111 7 0 77
0.097297 -0.2167 7 37 77
0.030830 0.0930 7 43 77
-0.010879 -1.0749 8 30 77
-4.018514 -7.2500 8 33 77
0.149871 0.9931 8 73 77
0.187380 0.7510 8 77 77
0.103359 0.42m4 9 27 77
0.009285 10.3333 9 63 77
0.040033 1.9746 9 47 77
0.140505 0.3438 10 3 77
0.063383 1.1687 10 7 77
0.016713 2.0741 10 57 77
0.030833 1.3750 10 60 77
0.021614 4.2500 11 3 77
0.024319 1.8148 11 47 ??
0.035887 1.5641 11 50 77
0.059565 0.1538 11 97 77
0.043324 11 99 77
0.8571 12 63 77
0.5833 12 67 77
0.578614 1.2609 2 3 78
0.821192 0.4301 2 7 78
0.201382 1.5490 2 60 78
0.14310 1.0408 2 63 78
0.126233 1.0156 3 13 78
0.215115 3 63 78
0.040872 1.5111 3 97 78
0.073009 1.1250 3 99 78
0.286598 0.3355 4 23 78
0.328767 0.3704 4 27 78
0.394211 0.2383 4 73 78
0.380738 0.4910 4 77 78
0.434606 0.7159 5 27 78
0.390277 1.1754 5 30 78
0.702703 0.4252 5 67 78
0.688095 0.2349 5 70 78
0.268350 0.57'i 6 27 78
0.224957 1.0306 6 30 78
0.306122 0.9048 4 77 78
6 80 78
0.048042 3.8261 7 23 78
0.094114 2.0000 7 27 78
0.200198 1.5149 7 70 78
0.123353 1.9829 7 73 78
0.367519 0.5140 8 17 78
0.372502 0.6996 8 20 78
0.315834 0.2101 8 93 78
0.323314 0.3429 8 97 78
0.379379 0.7898 9 70 78
0.280488 0.4855 9 73 78
0.89098 0.3691 10 3 78
0.324683 0.3994 10 20 78
0.072307 1.9200 10 23 78
0.132631 1.1215 10 77 78
0.4538 11 37 78
0.2807 11 40 78
0.466150 0.1721 11 5 78
0.367521 0.4837 1 99 78
0.626979 0.0612 12 50 78
0.2K,37 0.3452 12 53 78
0.183252 0.5082 12 57 78
0.280492 0.2674 1 17 79
0.167461 0.445q 1 20 79
0.075000 1.3590 1 77 79
1 80 79
0.123429 0.4630 2 53 79
0.114738 1.3276 3 7 79
0.041745 2.2609 3 10 79
0.01020 3.384 3 57 79
4.077881 1.1512 3 60 79
0.177366 0.5821 3 99 79
0.154543 1.0479 4 3 79








Inner DischarQe Bay (A) 69


3)S TIlE PF PH 2 PFLAM? FL RIPl PLM IiS F TImP SAL EXinCT ECOLDF FERIHW TH MT DAY YEAR


76 SP7q 0.53 0.29 0.24 1.16
77 SP7 -0.41 -4.46 0.05 2.92
78 SP7 5.34 3.45 1.89 1.71
79 SP79 3.41 1.64 1.77
80 SP79 2.51 1.48 0.83 2.4A
81 SP1 1.98 1.34 0.64 2.15
82 SP71 3.64 1.16 2.53 1.3
83 SF7 2.53 1.0L 1.47 2.84
84 SP7q 1.48 1.11 0.31 0.5
85 SPV7 0.37 0.08 0.29 1.42
86 Su17 2.71 1.94 0.77 2.24
87 JSU7 2.65 1.6 0.69 2.34
88 g 7S 1.36 0.64 0.72 3.45
89 SUN 1.56 0.87 0. I 5.67
qO SU~ 3.00 2.18 0.82 0.76
91 Sn7 1.11 0.43 0.8 1.37
92 3179 .15 3.05 2.10 2.0;
93 SUn4 4.51 2.38 2.13 2.37
94 SN7 1.33 -0.06 1.39 1.10
95 SUn 1.18 -0.21 1.39 2.19
96 S7U 2.27 0.47 1.80 0.51
97 FAN7 3.07 1.15 1.92 1.70
98 FA74 3.94 1.87 2.07 2.26
99 FA7 3.54 1.11 2.43 1.20
1040 FA? 3.23 1.08 2.15 1.87
101 FA7 3.82 1.05 2.77 0.60
102 FAN 3.08 1.83 1.25
103 FA7 5.14 2.92 2.52 1.6
104 FA79 7.24 3.79 3.47 0.98
105 FA79 2.21 1.64 0.57 0.33
104 FAN 2.12 1.16 1.26
107 FLA 0.50 0.38 0.12 0.17
108 FA7 0.19 0.19 0.00 0.71
109 i180 0.917 0.55 o.42 0.0
110 Il18 0.71 0.44t 0.25 O.4Z
111 i180 2.18 0.96 2.02 0.27
112 H180 2.58 1.42 1.14 0.22
113 180O 0.41 0.41 0.00
114 il80 0.55 0.55 0.00
115 i180 1.03 0.75 0.28 0.44
116 I180 0.70 0.64 0.O6 O.-
117 i180 0.82 0.82 0.00
118 1i88 0.59 .59 0.0 0.74
119 HI80 0.96 0.60 0.36 0.52
120 118 1.06 4.82 0.24 0.37
121 SP80 40.6 0.18 0.46 0.61
122 F86 1.89 1.31 0.58 0.11
123 SP8O 2.00 1.62 0.38 0.93
124 S80 1.0R 0.89 0.26 1.30
125 P80 2.43 1.41 0.52 1.46
126 OS80 2.75 1.97 0.78 2.77
127 SP90 2.73 1.77 0.96 2.13
128 SP80 3.14 1.82 1.32 2.52
129 P80 3.45 1.79 1.66 2.03
130 SP80 2.94 1.70 1.24 4.10
131 SP80 1.84 0.74 1.10 2.52
112 SPF8 2.93 2.05 0.88 3.72
133 P80 1.61 0.99 0.62 1.84
134 SUO8 4.04 2.58 1.46 4.5
135 Si80 1.03 0.57 0. 4 1.90
136 SU80 1.22 0.31 0.91 1.60
137 SU80 1.09 0.17 0.92 1.14
138 US80 1.45 0.42 1.03 1.3
139 180 1.87 1.14 0.73 1.3
140 SU80 1.44 0.84 0.60 1.24
141 SU8O 1.46 0.57 0.89 0.79
142 SU80 0.74 4.49 0.25 0.47
143 SU80 2.61 0.30 1.89 1.67
144 SU80 1.05 0.88 0.17 0. 7
145 SU80 2.57 1.31 1.24 0.14
146 SU80 1.66 1.51 0.15 0.6T
147 FA80 4.98 4.69 0.29 1.18
148 FA80 1.20 0.64 0.56 1.i4
149 FAS8 0.47 0.47 0.00 O.52
150 FA80 0.15 0.15 0.00 0.73


0.80
2.44
1.71

2.20
1.95
1.03
2.51
0.41
-0.13
1.67
2.02
2.92
5.01
0.55
1.15
1.77
1.92
1.39
1.10
0.38
1.20
1.94
1.01
1.87
0.36

0.7<
0.80
0.19

0.05
0.71
-0.09

O.M
-0.02
0.16
0.04


0.26
0.03

0.40
0.48
0.37
0.53
O.11
0.85
1.28
1.19
2.45
2.07
2.48
1.88
3.73
2.40
3.72
1.49
4.44
1.68
1.44
0.91
0.98
1.00
1.28
0.57
0.03
1.60
0.51
0.71
0.34
0. 3
0.46
O. 45
.l29
0.29


3639 30.2 26.0
3536 29.8 24.2
3410 29.6 26.7
3410 29.7 25.4
5260 27.6 25.4
5470 27.3 25.8
406 33.3 26.1
4334 32.9 26.q
5303 32.6 28.9
4367 32.1 29.5
4680 34.3 27.9
4783 34.0 28.0
3016 31.8 27.4
3328 31.7 26.9
3262 34.9 27.4
3170 34.6 27.4
4265 32.2 27.4
4506 33.1 27.8
3562 31.9 27.4
3343 32.0 28.5
2005 34.0 28.0
4263 31.6 26.2
3781 29.9 24.5
3008 30.2 28.8
2812 30.3 21.5
2213 28.6 29.4
2870 26.2 29.7
2478 22.3 28.8
2651 20.6 28.3
3077 14.8 28.9
2328 14.9 28.4
980 24.2 29.1
231 25.3 29.6
45 19.0 27.3
2351 16.4 27.4
1810 22.7 28.5
2616 22.3 28.8
3952 19.6 27.1
3120 19.7 25.q
3773 23.2 27.1
213 24.4 26.3
3818 19.8 24.4
2525 21.1 23.7
4145 23.2 25.3
5080 21.8 25.5
2184 24.2 24.2
5125 24.0 23.8
4605 24.2 25.1
3550 25.0 5.2
5259 24.2 21.4
5125 26.8 21.1
4189 30.6 22.0
3387 30.4 22.4
4546 30.5 22.8
4902 29.3 23.0
5140 32.1 25.9
4768 32.3 25.4
2303 30.5 19.7
547 31.9 20.0
506 33.4 22.5
4019 33.4 22.2
3758 34.0 21.1
4724 33.9 21.1
4442 34.4 23.0
4709 35.5 23.8
4575 34.5 26.
4397 35.4 27.1
4075 32.1 29.1
362 34.1 29.7
3207 35.2 29.6
363 36.4 30.1
3678 31.1 27.4
3354 31.5 27.1
2228 30.1 26.4
4165 29.4 26.8


0.05624 2.1887
-0.04638 -7.1220
0.46239 0.3202
0.40000
0.19097 0.9801
0.14479 1.0859
0.43335 0.3740
0.23330 1.1304
0.11163 0.419
0.03339 3.8378
0.23142 0.8339
0.22162 0.8906
0.18302 2.5000
0.18750 3.7628
0.36787 0.2533
0.14006 1.2342
0.48300 0.403q
0.40036 0.5255
0.14915 1.3534
0.14119 1.8559
0.45287 0.2247
0.28806 0.5537
0.41682 0.5736
0.47074 0.3390
0.45-46 0.5789
0.69447 0.1571
0.42927
0.87813 0.190
1.054o 4 0.1350
0.28729 0.1413
0.41581
0.20408 0.3400
0.32900 3.7368
0.60155 0.0309
0.12080 0.0282
0.65856 0.0906
0.39450 0.0853
0.04150
0.07051
0.10920 0.4272
0.13090 0.1143
0.08591
0.0947 1.2831
0.09244 0.5417
0.0834. 0.3491
0.11722 0.844
0.14751 0.0582
0.17312 0.4650
0.12282 1.1927
0.18483 0.6008
0.21463 1.0073
0.26M68 0.7802
0.37083 0.8025
0.303:6 0.5884
0.23990 1.3946
0.14319 1.3646
0.24581 1.2696
0.27964 1.1429
0.29559 1.1287
0.08230 1.8447
0.12142 1.3115
0.11612 1.0826
0.12278 0.9448
0.16839 0.7112
0.12232 0.8889
0.12765 0.5411
0.06732 0.6351
0.26'05 0.6208
0.11376 0.8286
0.32055 0.3735
0.18127 0.3795
0.10658 1.2041
0.14311 0.8667
0.08438 1.1064
0.01441 .8667







Inner Discharge Bay (A)


0UL TIE PC Pff II FPLA PLA;PII PLIRK IINSL TEI S1.I EXTINCT ECOLEFf FERPL lINTi DAY YEAR


151 fra0 -0.16 -0.14 0.00 1.63
152 FA80 0.59 0.58 0.01 1.28
153 FA80 0.42 0.62 0.00 0.78
15,4 r80 0.11 0.11 0.00 1.00
153 F80 0.2 1 0.1 0.00 0.43
156 FA 0 -0.04 -0.04 0.00 0.52
1571 181 0.54 0.54 0.00
153 181 0.76 0.43 0.33
159 1181 0;. 0.83 0.16 0.o9
160 1181 0.41 0.41
161 11 0.74 0.74 0.31
162 181 0.40 0.40
13 1 81 .m 4 0 .04 0.2r4
16 1181 0.41 0.4 0.23
165 1081 0.71 0. 54 0.25 0.40
164 1181 3.00 2.10 0.90 0.41
167 181 0.22 -0.01 0.23 0.42
168 181 0.53 0.53 0.52
16q9 181 1.87 1.63 0.24 0.48
170 II81 1.83 1.46 0.37 0.31
171 SP81 3.00 2.61 0.39 1.49
172 SP81 1.07 0.86 0.21


0.84 1792 26.2 26.2
0.27 2663 26.0 246.
0.21 3607 24.1 26.3
0.14 23.1 25.3
0.07 1537 24.0 24.3
0.23 22A4 23.6 25.8
3451 18.5 25.8
3162 17.4 26.1
2934 13.4 26.3
13.3 26.1
0.11 4 45 20.7 26.5
1993 20.5 26.8
0.07 2820 19.6 25.5
0.14 4026 20.0 26.2
0.31 4727 20.2 25.7
0.11 4531 21.2 26.4
0.07 2152 23.8 25.0
5200 2..5 25.3
0.1 5575 lq1. 24.3
0.0 4642 20.7 24.8
0.57 5444 28.3 25.9
6015 21.1 26.3


1.36 -0.035714 -10.188
1.55 0.088622 2.161
2.83 0.068755 1.258
2.83 .. 191
1.55 .054652 2.048
-0.007114 -13.00
S0.059162
S0.0q6142
0.13494 0.091

0.063724 0.527
0.040105
0.005674 6.000
0.040735 0.561
0.06850 0.5"6
0.264842 0.137
0.040892 1.909
0.040749 0.981
1.54 0.134170 0.257
1.13 0.157014 0.169
2.00 0.224426 0.197
1.54 0.071155







Inner Control Bay (E)


WS TIHE PC PHn R LM I; PMAeP LRMH PL INI. TEVI S aLXTrJT EELEF PEPLK( ITH CAY YEAR


1 SI1? 8.00 3.8 4.32
2 SI07 4.90 1.81 3.01
3 SU77 7.52 3.55 3.97 4.05
4 S177 15.42 q.39 4.53 1.74
5 SU77 13.12 7.12 6.00 2.58
4 S177 10.4 5.03 5.89 1.63
7 SU77 8.66 4.14 4.50 1.84
8 FA7? 7.49 4.41 2.85 2.34
9 FA77 4.14 1.23 3.51 1.38
10 FA?? 4.12 2.88 3.24 0.76
11 FA77 5.85 2.64 3.20 0.53
12 FA77 4.12 1.44 3.28 0.88
13 F?77 3.60 1.74 1.86 0.14
14 FA77 2.83 2.08 0.75 0.29
15 FlA? 3.81 1.71 2.10 0.21
14 FA?7 4.1 1.46 3.30 O.44
17 FA77 3.60 2.48 1.12 0.16
18 A?77 3.17 1.15 2.42 0.24
19 1n78 0.85 0.54 0.31 0.17
20 11178 0.72 0.26 o.41 0.41
21 1178 2.28 1.22 1.04 0.79
22 178 2.87 1.35 1.52 0.14
23 I178 3.14 1.85 1.29 1.09
24 I178 2.54 1.1 1.08
25 1178 2.01 0.67 1.34 0.61
26 1178 2.40 1.34 1.0 .
27 ?78 7.17 3.83 3.34 0.49
28 P78 7.02 2.34 4.48 0.89
29 SP78 8.75 4.31 4.44 0.84
30 SP78 5.97 2.93 3.04 1.09
31 SP78 14.94 2.89 1.57 1.28
32 SP78 3.99 1.42 2.57 2.61
33 578 5.21 1.47 3.74 1.7q
34 SP78 q.04 6.38 2.64 2.46
35 SP78 6.65 3.06 3.59 2.42
34 3P78 7.02 3.61 3.41 2.44
37 SP78 9.00 4.70 4.30 1.99
38 SP78 8.15 4.41 3.49 2.00
39 S178 7. 1 4.35 3.40 3.30
40 SU78 8.28 4.91 3.37 3.52
41 SU78 11.29 7.57 3.72 2.32
42 3U78 9.15 5.01 3.34 1.84
43 S078 7.76 4.18 3.58 1.70
44 SU78 4.76 2.08 2.68 1.85
45 SU78 q.21 5.06 4.15 1.54
6 SU78 10.93 6.22 4.71 1.75
47 SU78 9.10 2.60 6.50 2.29
48 U178 4.79 2.86 3.93 2.08
49 FA78 8.28 3., 4.69 1.01
50 Ft78 3.51 1.47 2.04 1.20
51 FA78 4.70 1.99 2.71 1.20
52 Ff78 5.40 2.37 3.03 1.54
53 rA78 3.95 1.15 2.80 1.11
54 F17 4.44 2.13 2.31 1.58
55 FA78 4.58 2.30 4.28 2.12
54 FA78 3.66 1.32 2.34 1.26
57 FA78 3.08 1.90 1.18 0.41
58 FA78 3.04 1.57 1.47 0.58
59 FA78 2.53 1.41 1.07 0.32
60 1Y79 1.43 1.35 0.08 0.12
61 1I47 1.51 0.42 0.59 0.30
62 1O79 2.00 0. 6 1.14 0.20
43 17 0.34
64 mI79 2.91 1.14 1.75 0.27
65 1l79 2.05 0.91 1.14 0.67
66 I174 2.16 0.80 1.36 0.91
67 t17q 1.21 0.79 0.42 0.1I
68 1179 1.70 1.11 0.57 1.13
69 1I79 3.72 2.40 1.32 0.54
70 SP79 3.71 2.55 1.16 0.34
71 SP79 2.50 1.41 1.01 0.80
72 SP79 4.13 3.20 1.37 1.11
73 SP79 4.18 2.: 1.74 1.91
74 SP74 7.91 4.70 3.21
75 SP7 4.04 2.61 1.43 1.3q


3.69
1.27
1.58
0.94
1.42
1.48
0.613
0.52
0.29
S0.51
0.14
0.26
0.20
0.26
-0.06
4.24
0.14
0.26
0.79
0.00
1.09

0.57

0.63
0.72
0.73
1.09
0.81
1.51
1.05

1.45
2.32
1.49
1.66
2.56
2.95
2.19
1.46
1.36
1.57
1.14
1.55
2.04
2.02
0.87
0.76
1.05
1.09
0.80
1.58
2.12
-0.03
0.33
0.58
0.30
0.12
-0.22
0.09
0.34
0.27
0.44
0.84
-0.22
1.13
0.30
0.10
0.37
1.11
0.92

1 13


30.3 24.4 1.10
29.1 25.9 1.20
28.0 22.1 1.10
28.6 19.8 1.10
30.8- 23.5 1.10
30.1 25.q 1.00
30.4 25.4 1.00
28.8 25.0 1.10
28.4 25.2 1.14
18.1 28.3 1.00
18.3 28.14 0.90
20.5 29.5 0.q0
14.7 2q.3 0.90
15.7 29.4 0.90
17.8 23.8 0.90
19.5 21.0 o.q9
15.4 24.0
15.8 21.0
9.0 22.4 1.12
10.1 21.0
111.1 21.7
114.1 22.5
15.3 17.8 1.06
13.6 21.0 1.31
17.3 20.0 1.89
18.5 19.2 1.42
24.5 19.2 1.31
24.8 14.2 1.21
22.3 1.9 .
22.2 17.2 1.21
21.4 16.5 1.'8
28.0 16.3 1.55
26.3 15.4 1.70
26.1 15.9 1.55
30.0 17.1 1.17
30.1 16.4 1.13
27.1 19.0 0.9f
28.0 20.1 0.90
29.2 18.3 1.13
29.2 19.8 1.13
28.3 18.0
28.9 18.9 1.06
29.2 114.4 1.13
29.1 16.q 1.00
31.14 21.k 1.90
31.5 21.3 1.90
29.6 24.3 1.31
29.6 25.2 1.13
26.5 27.2 1.15
26. 29.7 1.31
23.7 29.2 1.55
23.2 28.1 1.31
22.1 27.1
21.7 27.4 1.21
21.8 24.1 1.13
23.4 24.3 1.55
14.8 2k..6
14.4 24.7
13.6 25.3
10.1 25.8
12.4 24..
11.8 23.0 1.70
12.7 21.6 3.10
16.? 1.0 1.21
16.2 23.0 0.91
17.3 22. 1.62
17.14 24.1 2.13
17.7 24..4 1.42
21.0 21.0 1.211
22.2 19.7 1.21
21.4 22.6 1.55
24.2 21.2
27.2 21.q 1.8
27.3 20.5
25.1 25.7 1.70


0.5751 .
0.41004 .
0.77726 0.5385M
1.21759 0.109296
0.74769 0.19646w
0.67719 0.11895
0.70752 0.212171
0.51812 0.312117
0.36197 0.291139
0.37883 0.121183
0.37578 0.090598
0.63762 0.18611
0.32125 0.038889
0.2604. 0.102173
0.58190 0.055118
0.55738 0.09213
O.di4~k
0.075710
2.13836 0.200000
0.63576 0.55556
0.90030 0.3491
0.84536 0.05571f
0.61933 0.3i71
0.24070
0.18256 0.393483
0.21903
0.48249 0.133891
0.61057 0.126781
0.44719 O.094000
0.47214 0.182580
0.3623t 0.28A6
0.54639 0.654 35
0.78228 0.313570
0.6t131 0.272124
0.62179 0.363910
0.69571 0.37d08
0.87416 0.220000
0.91805 0.245399
0.83029 0.4150%
0.79826 0.425121
1.11893 0.205492
0.96168 0.203279
0.80124 0.219072
0.7C099 0.38855
0.77362 0.162866
0.91810 0.160114
1.03674 0.251648
O.69004 0.306333
1.11440 0.121981
0.3658 0.341880
0.45312 0.255319
0.46935 0.285185
0.281013
0.355856
1.01934 0.322188
0.42564 0.314262
0.690S 0.159091
0.414331 0.140789
0.38002 0.126482
0.2188 0.083914
0.34028 0.19875
0.38462 0.100000

0.66514 0.092784
0.10554 0.326829
0.28993 0.42129
0.11911 0.0826M5
0.15395 0.664706
0.32826 0.150538
0.35392 0.105121
0.27480 0.320000
0.51697 0.212888
0.51897 0.-08120
0.927 8
0.30722 0.344051







Inner Control Bay (E) 72


E8s TuIE PC PK R PLANE PFLAKPH PLAsNI INS. TEMP S EXTICtT ECOLEFF F4PLM 1IHTH DAY YEAR


7 SP79 2.24 1.21 1.03
77 SF7 8.33 2.42 5.91
78 SP7 7.71 3.65 4..0
79 SP7 5.99 3.33 2.64
80 SF7 4.75 2.73 2.02
81 SU7 9.60 6.23 3.37
82 SU7 9q.26 5.51 3.75
83 SU17 5.53 3.34 2.19
84 SU17 5.05 2.38 2.67
85 SU17 7.43 3.53 4.08
86 SU 7 6.19 3.q0 3.10
87 SU19 8.41 4.41 4.40
88 SU37 8.42 4.95 3.47
89 S11M 5.15 1.49 3.66
90 SUN 3.4 0.72 2.92
91 TRfT 7.13 3.21 3.90
92 FA79 8.59 5.38 3.21
93 FA79 3.77 1.33 2.i44
94 FAT7 4.54 2.04 2.50
95 FA 7 7.19 2.28 4.91
96 FNr? 6.04 3.46 2.58
97 FAR7 2.A5 1.72 1.23
98 FA71 4.40 2.61t 1.71
99 FA79 1.48 1.14 0.84
100 FAt 1.36 1.17 0.19
101 tFA? 3.67 1.26 2.41
102 FA?4 3.04 0.65 2.39
103 1180 0.45 0.02 0.43
104 US1 1.01 0.41 0.40
105 1180 3.09 1.,4 1.60
106 180 4.53 2.50 2.43
107 1180 1.91 1.33 0.58
108 l190 1.79 0.70 1.09
10q9 I80 1.89 1.12 0.77
110 1I80 2.27 1.20 1.07
111 l80 1.53 1.29 0.24
112 11180 2.78 1.00 1.78
113 iS80 1.10 0.31 0.79
114 iI80 3.70 2.07 1.63
115 SP80 2.09 0.71 1.38
116 SP80 4.57 3.,4 1.08
117 P80 1.31 1.31 0.00
118 S80 2.94 1.61 1.33
119 si80 4.07 2.52 1.55
120 S80 4.00 2.16 1.84
121 P86 4.89 4.22 2.67
122 SP80 4.65 2.48 2.17
123 SP0 6.45 3.31 2.74
124 SP80 5.37 3.29 2.08
125 SPs8 8.69 4.95 3.74
126 SP80 .94 2.79 4.15
127 SP80 4.07 1.67 2.40
128 O180 7.31 5.11 2.20
129 1180 11.30 4.01 5.29
110 $0 8 5.76 2.73 3.03
131 1 80 3.94 2.35 1.59
112 1180 7.20 3.52 3.68
113 1180 9.60 5.25 4.35
114 3U80 9.71 5.09 4.47
115 SU80 8.36 4.40 3.q9
116 SU80 q.76 4. 1 4.85
117 SU0 6.14 3.18 2.98
118 SU80 8.87 4.24 4.63
119 SU18 8.4 4.11 4.36
140 SU80 7.92 3.4 4.51
141 FA80 5.15 3.90 1.35
142 FASO 10.77 6.47 4.10
143 rFAO 8.40 5.16 3.74
144 F80 8.72 5.35 3.37
145 FA80 5.47 3.00 2.47
14d F 8 4.01 1.50 2.51
147 FASr 2.14 1.51 0.55
148 FAS9 2.99 2.71 0.28
149 FA8O 2.92 1.54 1.38
150 r80 5.03 2.74 2.27


1.A6
1.68
4.26
3.A4
2.21
9.59

5.vq
8.92
2.25
3.24
2.37
2.31
1.31.
2.21
2.30
2.01
1.2.
1.71




0.94
O.4
0.34
0.20






0.11






1.23
1.43
.0A

8.a
6.11
0. 0


1.77
0.0
O.A
1.7r

0.84

1.75
0.V43


1.49
1.74
2.34
2.4
1.09

2.46
3.70
2.41
3.04
3.43
2.15
1.46
2.99
3.0
1.0e
0.q9
0.4!
0.9
2.1
2.14
.40
0.31
0.42
0.41


0.60 5470 24.7 25.8
0.68 340 30.7 24.4
0.92 4334 29.4 25.3
0.82 5303 29.9 25.4
0.08 4367 29.2 26.1
1.50 4680 30.8 25.9
1.06 4783 30.3 26.3
0.81 3016 28.9 22.6
1.16 3328 29.0 22.8
0.77 3262 29.3 22.3
0.94 3170 29.3 23.7
0.86 4265 29.6 23.7
0.57 4506 29.9 23.0
0.52 3562 29.3 22.8
0.55 3343 28.8 25.1
0.29 4263 25.3 22.2
0.06 3781 24.2 22.7
0.41 3008 25.0 24.5
0.34 2812 25.3 26.4
0.07 2213 23.9 25.3
2870 22.0 25.5
0.43 2478 15.5 28.1
0.17 2651 16.1 27.7
0.00 3077 10.5 27.5
2328 11.0 28.9
0.00 80 20.2 24.8
0.26 231 18.3 24.8
MA 12.2 26.2
2351 11.0 264.
0.18 1810 11.0 24.4
0.23 261 17.1 25.1
3952 10.0 25.5
3120 10.1 25.9
0.36 3773 17.5 21.7
0.00 2139 18.8 19.8
0.00 3818 18.2 20.9
0.78 2525 20.2 18.6
0.36 4145 20.7 19.8
0.22 5080 18.2 20.4
0.34 2184 22.3 18.5
0.00 5125 21.2 18.8
0.32 465 22.3 21.8
0.00 3550 21.3 22.2
0.37 5259 23.4 20.7
0.27 5125 24.5 21.4
0.13 4189 27.8 18.6
0.29 3387 27.5 19.1
0.33 4546 2.7 18.6
0.77 4902 26.8 19.8
0.30 5140 28.8 21.5
0.02 4768 2q.4 22.7
0.44 2303 28.7 16.9
0.14 5467 29.4 16.4
0.54 5006 30.3 19.2
0.59 4019 29.9 18.0
0.43 3758 31.3 17.9
0.41 4724 31.1 17.8
0.89 4442 29.7 16.9
0.50 4709 30.6 18.7
0.60 4575 29.4 21.1
0.q6 4397 29.8 23.6
0.83 4075 28.0 25.7
0.50 3692 28.2 24.1
0.64 3207 30.3 24.1
0.58 363 30.5 23.9
0.34 3678 23.6 26.7
0.02 3354 24.5 26.1
0.01 2228 23.0 24.1
0.22 4165 21.2 25.2
1.09 1792 19.4 25.8
1.03 263 20.2 24.5
0.05 3607 14.6 24.6
0.10 14.9 24.3
0.00 1537 14.1 23.3
0.30 249 15.8 22.7


0.16380 0.71875
0.97827 0.22569
0.71158 0.55253
0.45182 0.0748
0.43508 0.48211
0.82051 0.9989
0.77441
0.73342 0.90547
0.60697 1.58812
0.93562 0.28834
0.78107 0.52342
0.78875 0.28181
0.74520 0.2698
0.57833 0.25437
0.4m354 0.5746
0.66901 0.32258
0.90875 0.24331
0.50133 0.33422
0.64580 0.37665
1.29959 0.13769
0.84181
0.47619 0.11525
0.a390 0.04545
0.25739 -0.02020
0.23368
1.497 0.02180
5.2d607 0.08553
0.27907 1.20000
0.17184 -0.05941


0.68287
0.69266
0.19332
0.2294i
0.20037
0.42450
0.16029
0.44040
0.10615
0.29134
0.38278
0.35668
0.11379
0.33127
0.30656
0.31220
0.457M1
0.54916
0.53234
0.43819
0.67626
0.58221
0.70690
0.53485
0.90292
0.57328
0.41937
0.40965
0.86448
0.82905
0.73093
0.88788
0.40466
0.961040
1.05893
0.8686
0.56W00
1.28444
1.59785
0.8375
1.22018
0.60233
0.23732

0.75092
8.08032


0.03560
0.0301


0.23280
0.09692
0.54248
0.44245
1.30000
0.172m7
0.42584
0.13786
0.57252
0.29252
0.16462
0.44250
0.1244W
0.37634
0.13884
0.34451
0.10357
0.21470
0.42752
0.32285
0.18053
0.28646
0.43147
0.28611
0.38542
0.2647
0.46531
0.35656
0.34903
0.22097
0.35218
0.3q015
0.20471
0.09192
0.07303
0.04862
0.40037
0.53367
0.18692
0.12709
0.14384
0.08151






Inner Control Bay (E)


0S TIME PC P1 R P RANP: FLR.kP PL M

151 1181 1.13 0.96 0.38 0.22
152 181 1.67 0.96 0.71
153 0181 1.84 1.43 0.41 '0.31'
154 1181 2.78 1.80 0.98
155 11181 2.27 1.38 0.89 0.26
156 11181 1.77 1.05 0.72
157 MI81 .21 0.21 0.06
158 1I81 1.40 0.60 0.80
159 1T81 2.02 1.02 1.00 0.45
10 11181 5.93 2.1 3.02 0.58
161 181 2.60 1.13 1.47 0.44
162 1181 4.6 2.54 2.10 0.47
163 RI81 3.31 2.42 1.29 0.lk
164 KI81 1.83 1.57 0.26 0.58
165 3P81 3.45 2.00 1.45 1.30
166 SP81 5.3 3.20 2.14 .


0.23 3651
3162
0.03 2934

0.S6 4145
3993
0.05 2820
4026
0.24 4727
0.24 4531
0.03 2152
0.12 5200
0.31 5575
0.24 4662
1.09 5444
6015


11.2 23.
10.0 24.7
9.7 23.1 1.79
7.6 23.8 1.88
12.8 23.8 .
13.1 23.6 0.81
1.4 23.9 2.12
13.2 24.6 3.40
17.4 24.9
18.3 23.5
16.5 24.9
U.4 24.5 1.13
18.4 21.9 1.13
19.6 21.6 1.06
22.q 22.0 1.21
23.3 21.2 0.94


0.146809 0.164179
0.211259 .
0.250852 0.168418

0.195479 0.114537
0.17731 .0
0.029787 0.285714
0.1390 .
0.170933 0.222772
0.523505 40.97808
0.483271 0.169231
0.356923 0.161293
0.217489 0.132931
0.157014 0.3169
0.253490 0.376812
0.355112


13 81
16 81
52 81
55 81
97 81
99 81
46 81
53 81
96 81
99 81
42 81
45 81
87 81
90 81
33 81
37 81







Middle Discharge Bay (B)


3IS TIlE PC P R FLMAIPC FLAIKFK PLAKIR INSaL TEOP SAL EXTINiCT ECOLEFr PEOPLK tLIrH DY YEAR


1 SF77 4.14 2.45 1.64 2.08
2 SP77 10.39 6.44 3.95 2.39
3 SU77 1.20 -0.30 1.50
4 S1177 8.57 4.88 3.69 1.51
5 SU77 5.20 1.83 3.43 1.70
4 SU77 0.75 -0.48 1.23 2.68
7 SU17 9.02 4.16 4.86 5.01
8 SUn7 5.04 2.45 2.39 1.39
9 SU?7 8.83 3.23 3.40 64.w
10 SU77 3.98 1.q8 2.00 3. .
11 SU77 8.53 4.47 3.84 2.31
12 SUn7 .91 4.76 2.15 2.41
13 FA77 6.19 3.12 3.07 5.55
14 FA77 5.81 2.64 3.17 3.51
15 FA?? 5.11 2.19 2.92 1.~
16 FA?77 3.44 1.71 1.73 2.12
17 FA77 3.24 1.44 1.80 2.5
18 FA?? 1.98 1.13 0.85 1.24
19 FA7? 2.41 1.45 O.96 0.%
20 FA77 3.06 1.38 1.68 1.08
21 rA77 2.44 1.25 1.19 1.%,
22 FA77 3.28 2.20 1.08 1.11
23 FA77 2.68 2.10 0.58 0.A1
24 1178 0.43 0.00 0.93 0.57
25 H78 1.47 0.54 0.93 0.77
26 8178 1.42 1.03 0.59 1.12
27 8178 3.59 1.81 1.78 0.57
28 1#78 1.42 1.33 0.09 1.5
29 1178 3.63 2.47 1.1 .
30 1178 2.32 0.93 1.39 1.77
31 1178 3.41 1.54 1.87 2.14
32 SP78 4.52 2.49 2.03 3.24
33 SP78 6.30 3.24 3.06 3.79
34 SP78 8.48 4.82 3.66 3.24
35 SP78 6.26 5.08 1.18 2.81
36 SP78 8.11 5.34 2.77 6.4
37 SP78 5.33 1.91 3.36 6.6M
38 SP78 3.36 1.35 2.03 2.46
39 SP78 8.33 3.34 2.99 2.62
40 SP78 7.18 4.35 2.83 5.19
41 SP78 5.80 2.43 3.37 6.'
42 SP78 10.d4 4.95 5.69 2.39
43 SP78 5.79 3.27 2.52 4.2
44 SU78 3.78 1.3q 2.3q 3.6
45 SU78 5.84 3.29 2.57 1.0
46 SU?8 8.26 5.22 3.04 5.14
47 SU78 6.97 4.08 2.89 4.214
48 SU78 6.22 1.88 4.34 2.11
49 SU78 3.85 1.47 2.38 1.95
50 U78 8.05 4.05 4.00 3.40
51 SU78 6.50 3.97 2.53 4.3
52 SU78 6.42 2.63 3.79 2.25
53 SU78 3.90 1.73 2.17 1.74
54 FA78 9.12 4.59 4.53 1.14
55 FA78 7.64 4.03 3.61 2.69
56 FA78 8.47 4.65 3.82 1.1%
57 F?78 3.45 1.65 1.80 1.91
58 FA78 q.97 5.54 4.43 3.37
59 FA78 8.65 4.34 4.31 4.01
40 FA78 5.99 2.85 3.14 3.t~
61 FA78 5.58 2.27 3.31
42 FA78 5.53 2.44 3.09 0.91
63 FA78 3.49 2.17 1.32 0.77
44 FA78 3.35 1.82 1.53 0.77
65 1179 2.65 1.50 1.15 1.00
66 91I7 1.99 1.15 0.84 0.51
47 I179M 0.37 0.20 0.17 O.95
48 I9 1.59
69 1I79 4.17 1.84 2.28 1.82
70 1179 2.90 1.31 1.59 1.76
71 11179 2.76 1.11 1.65 2.53
72 1117 2.97 1.37 1.d0 0.51
73 #179 2.45 1.62 1.03 0.51
74 1117 3.38 2.22 1.16 1.73
75 SFP7 5.62 3.17 2.45 1.?7


2.27
0.21
0.75
-1.38
0.29
1.01
5.11
1.14
6.06
2.51
1.81
2.37
4.62
3.20
1.43
1.77
1.88
0.49
0.65
0.84
1.18
0.82
0.81
0.41
0.39
1.46
0.57
1.37

1.57
1.49
2.42
3.11
2.77
2.64
6.57
5.96
2.00
2.22
4.37
6.29
2.02
4.09
3.52
1.38
4.64
3.3]
1.81
1.46
2.98
4.11
2.14
1.49
1.50
2.04
1.29
1.45
3.08
3.66
2.50

0.73
0.77
0.73
0.914
-0.41
0.83
1.59
1.25
1.27
2.53
0.51
0.52
1.22
1.22


25.7 24.3 1.62
35.6 28.5 1.13
4200 35.3 28.? 1.50
7400 34.1 29.0 1.10
570 35.q 2q.6 0.93
4780 34.5 29.7 1.50
3870 29.7 26.9 1.40
6030 34.0 30.R 1.20
5230 29.7 25.q 1.10
6567 33.q 31.5 1.40
4571 34.6 21.7 1.30
48W9 34.q 31.3 1.30
54 31.1 30.6 1.50
5238 32.4 30.0 1.50
462 21.7 27.5 1.20
6227 23.1 26.7 1.10
2961 26.3 2q.7 1.40
W1 18.6 29.k 1.20
4347 21.6 29.4 1.40
2619 23.1 25.5 1.10
416i 24.8 25.5 1.10
1. 9. 27.8 1.00
21.3 28.0 0.92
159 12.8 21.3 1.29
l53 12.q 23.7
1011 17.6 24.6 1. 4
1358 16.6 23.8 1.55
2028 17.7 20.8 1.62
4221 17.1 11.1 1.79
440 18.7 11.5 1.70
i1383 19.8 13.7 1.70
4201 25.q 18.1 2.43
459 26.4 17.9 2.143
540 24.5 20.4 1.42
3551 24.3 21.2 1.48
4924 28.5 22.q 1.31
2921 29.8 23.4 1.36
264 28.1 19.8 1.55
556' 28.9 19.6 1.42
4278 32.8 22.8 1.48
4036 32.8 23.0 1.55
4116 30.4 24.2 1.36
3551 30.2 24.1 1.13
3830 31.7 21.5 1.42
4149 31.1 21.5 1.31
4036 30.q 24.7 1.31
37% 31.0 25.2 1.27
3874 31.5 22.7 1.42
2502 31.4 22.8 1.06
4762 34.0 25.4 1.31
4762 33.8 25.1 1.15
3511 31.2 27.1 1.21
3936 30.7 24.5 1.21
2972 30.7 0.1 1.42
3830 30.6 21.9 1.42
4149 27.6 21.7 1.31
3227 28.9 28.7 1.48
.27.4 28.4 1.48
27.9 28.7 1.42
2582 27.4 28.2 1.48
2340 27.3 27.9 1.55
1775 19.9 25.6 1.21
2743 20.5 26.5 1.06
2663 19.7 26.7 1.31
2642 16.4 27.0 1.35
1775 14.4 27.5
2080 18.5 24.5 1.28
3224 19.8 26.5 1.70
1750 20.2 24.3 1.31
2022 19.1 24.1 1.17
2980 21.0 214 1. 42
3246 19.0 24.4 1.03
4417 19.5 25.2 1.06
4513 26.1 24.4 1.52
4193 26.6 24.4 1.36


0.46807
0.23003
0.11429
0.46324 0.17853
0.37343 0.34231
0.06276 3.57333
0.93230 0.14523
0.33431 0.27571
0.67533 0.7574
0.24261 0.86432
0.51862 0.27081
0.56454 0.35022
0.45295 0.8961
0. 4436 0.6521
0.31631 0.35225
0.220q7 0.64128
0.43769 0.79630
0.17834 0.42626
0.22174 0.39834
0.46735 0.35294
0.28571 0.43934
0.33841
0.35821
2 33962 0.412
1.29801 0.52381
0.63968 1.12346
1.057%" 0.15877
0.28008 1.11268
0.3439 .
0.21072 0.76293
0.31120 0.62757
0.43037 0.71681
0.547S 0.60159
0.42722 0.38208
0.70515 0.45847
0.5881 0.85373
0.72989 1.25328
0.50751 0.72781
0.59831 0.31453
0.67139 0.72284
0.57483 1.10400
1.03401 0.22462
0.65221 0.73921
0.31478 0.97354
0.5649 0.30717
0.81863 0.62228
0.73484 0.40832
0.64223 0.33921
0.6551 0.41031
0.67619 0.43230
0.54599 0.47385
0.73142 0.35047
0.39634 0.44615
1.22746 0.17982
0.79741 0.35209
0.81653 0.18654
0.42764 0.55362
0.33801
0.46590
0.92796 0.51419
0.95385
1.24620 0.17902
0.50893 0.22043
0.50319 0.22985
0.39820 0.37736
0.44845 0.25628
0.07115 2.56757

0.95314 0.43645
0.573-1 0.66900
0.37047 0.91667
0.34 R9 0.17172
0.23 98 0.19621
0.29826 0.51183
0.53611 0.31673







Middle Discharge Bay (B)


WES TIE PC PH R PLAPG FLAHRPH PLANKR InSI L TE P SAL EXTICT ECDLEFF FERPL MHTH DAY YEAR


76 SP74 3.31
77 S79 1.591
78 SF79 7.q0
79 SP79 q.00
80 P79 4.61
81 SP79 4.02
82 SP79 7.29
83 SP79 8.11
84 SP79 8.16
85 qS79 2.56
86 SU79 q.4'9
87 su79 7.71
88 0U79 2.0
89 S179 5.76
q90 157 3.58
91 SU79 6.73
q2 SUI7 11.61
93 SU79 11.5s
94 S1UT 3.92
95 SU79 3.13
96 SU17 4.77
97 FA79 5.36
98 FA79 7.77
99 FA79 h4.1
100 FA71 5.05
101 FA79 5.74
102 FA7? 4.75
103 FA?7 3.28
104 FA7I 6.13
165 FA?7 4.32
106 rA79 5.85
107 FA79 3.10
108 FA7q -0.27
109 HIs1 0.42
110 m180 .71
111 Ia80 4.27
112 I180 3.35
113 9IS0 2.56
114 i180 4.15
115 HI80 5.01
116 I180 4.54
117 I180 2.45
118 1180 1.72
119 1180 1.92
120 HIS0 2.57
121 SP1 3.02
122 SP80 3.24
123 S80 14.63
124 SP80 2.17
125 SF80 3.29
126 S80 4.96
127 SPO8 8.39
128 SP80 5.70
129 SF80 7.98
110 S980 6.24
11 SP80 8.70
112 SP90 5.87
113 SP80 4.02
114 1U80 7.71
115 S10 7.66
116 SU1 6.46
117 SU80 6.13
118 SU80 6.68
119 SU80 6.90
140 S180 5.25
141 SU0 4.35
142 1U80 5.81
143 SU0 6.80
144 U80 6.45
145 SU80 7.31
14 1SU80 5.93
147 FA80 7.15
148 FAS 5.15
149 FAN8 1.17
150 FA80 0.84


1.57 1.74
4.46 1.11
3.49 3.91
4.41 4.59
3.07 1.54
2.43 1.99
3.34 3.13
3.97 4.14
4.46 3.70
1.40 1.11
5.47 3.52
4.42 3.14
1.51 0.55
3.68 2.08
2.21 1.37
3.79 2.94
5.82 5.79
6.09 5.50
1.03 2.89
0.74 2.39
1.98 2.74
1.95 3.41
4.49 3.18
1.84 2.59
2.23 2.82
2.56 3.18
3.20 1.55
3.06 0.19
2.25 3.88
2.99 1.33
2.93 2.92
1.08 2.02
-0.27 0.00
0.31 0.31
o.4q 0.22
2.54 1.68
2.05 1.30
1.43 0.93
2.27 1.88
3.06 1.95
2.91 1.63
1.75 0.70
1.14 0.58
1.30 0.2
1.94 0.63
1.63 1.39
2.36 0.88
2.85 1.78
1.03 1.14
1.85 1.44
3.26 1.70
5.06 3.31
3.02 2.68
3.94 4.04
3.76 2.50
4.q5 3.75
2.89 3.01
2.37 1.65
5.22 2.49
4.08 3.58
2.q9 3.50
2.94 3.19
3.90 2.78
3.73 3.17
2.14 3.11
3.31 3.04
3.08 2.73
3.96 2.84
3.36 3.09
4.U4 2.67
3.31 2.62
3.3/ 3.78
2.32 2.83
1.17 0.00
0.8 4.440


29.8 26.2
28.8 26.0
28.7 25.7
28.7 24.5
26.9 24.9
26.3 24.7
33.3 25.1
32.6 26.1
31.7 27.4
31.4 28.1
33.3 27.5
33.2 27.6
31.6 27.5
31.1 26.q
34.7 27.7
35.0 28.0
32.5 27.7
33.0 27.9
31.0 26.3
30.5 26.5
32.4 27.3
28.2 21.4
28.0 22.7
31.2 28.9
31.2 29.6
29.1 29.6
27.2 29.3
21.4 26.9
21.9 27.4
21.3 29.0
20.6 28.1
25.8 29.3
25.0 30.1
18.5 27.0
15.3 26.8
22.5 28.4
22.8 28.7
17.4 27.6
17.5 24.3
22.1 27.1
22.7 2U.6
19.6 24.0
20.7 24.0
23.2 25.0
20.4 25.1
24.1 24.2
22.9 22.5
23.0 22.4
23.5 21.1
25.4 19.3
26.2 19.8
29.9 21.2
29.6 22.0
29.3 22.3
28.5 22.7
31.0 24.8
30.9 21.8
29.3 17.5
30.9 17.5
32.2 21.2
32.4 21.7
32.7 18.5
32.9 19.0
33.2 22.4
34.0 22.8
32.6 25.6
33.0 25.q
32.5 29.1
32.9 23.9
34.9 29.9
34.8 29.7
28.8 27.1
29.0 27.0
29.4 26.3
29.4 26.7


0.36384
0.17936
0.92669
1.05572
0.35057
0.29347
0.85614
0.7450
0.61530
0.23449
0.81111
0.1847
0.27321
0.69231
0.43899
0.84121
1.08860
1.42835
0.44020
0.37451
0.95162
0.50213
0.82200
0.59174
0.71835
1.03751
0.62402
0.52946
0.92493
0.54159
1.00515
1.26531


1.3474
2.5849
0.5367

0.8850
1.0771
0.54405
0.7189
0.3174
1.4336
0.6091
1.0103
2.2233
1.4844
0.8212
0.7177
0.6064
0.3563
0.9847
1.0703
0.4403
0.1343
0.2510
0.5146
0.4752
0.2317

0.3018
0.1354
0.136
0.0803
0.1484


-0.46753 -8.8889
0.38450 0.4677
0.12000 0.172
0.94365 0.1358
0.51223 0.1463
0.25911 0.1016
0.53205 0.1566
0.53114 0.2176
0.84899 0.1231
0.2548 0.4041
0.27248 4.8256
0.18528 0.4427
0.20216 0.3735
0.55311 0.2748
0.25288 4.1049
0.40217 .4644
0.24451 0.7880
0.25024 0.6831
0.38712 0.5968
0.80115 0.2653
0.47316 0.5070
0.70216 0.4571
0.51041 0.894
0.67704 0.5287
0.49245 0.9497
0.69822 1.0124
4.56411 1.1971
0.61207 0.7402
0.64215 0.8514
0.45247 0.8238
0.54562 0.7964
0.62114 0.U609
0.44595 0.6781
0.55519 0.4724
0.52654 0.7177
0.66748 0.5779
0.64981 0.2016
0.91176 0.3680
0.617,6 0.2816
0.77760 0.3888
0.41419 0.5767
0.21C05 1.1966
4.08259








Middle Discharge Bay (B)


OS TINE Pc PN I PFLAMIT PLA; if l PsIKI< IISL TEIP SAL EXTINCT ECBLEFF PERPLK IalrH AY YEAR


151 FABO 3.67 1.3q 2.28 2.42
152 FA80 1.97 1.10 0.87 2.09
153 FAO O.79 0.79 0.00 0.84
154 FASO 1.70 0.92 0.78 1.08
153 FASO 0.71 0.29 0.42 1.21
154 FASO 0.84 0.64 0.20 0.42
151 1I81 2.87 1.93 0.9q 0.7
1538 181 2.41 1.70 0.71
159 181 1.8 0.23
160 UI81 0.41
161 I181 1.09 1.09 0.91
162 UI81 0.86 0.40 0.26 0.50
163 I81 .0..7 0. 0.47
1A UI81 0.35 0.3 0.52
165 1UI81 1.9 1.00 0.94 0.7q
164 81 2.20 1.04 1.14 0.73
167 1i81 1.35 0.48 0.87 0.77
168 6181 4.88 3.04 1.88 1.60
161 UI81 2.89 1.73 1.16 1.01
170 U81 2.50 1.25 1.25 0.8
171 SP81 3.47 1.91 1.54 3.23
172 SP81 3.21 1.40 1.61


0.84 1712 24.6 24.1
0.31 2663 24.7 24.3
0.09 3607 23.8 24.4
0.03 22.8 25.4
0.61 1537 23.1 25.9
0.34 2249 22.5 26.0
2.39 3651 17.6 25.5
3162 17.4 24.0
0.06 2934 16.2 26.2
S15.2 24.0
0.36 4645 20.2 26.6
0.27 3993 1q.8 26.9
0.06 2820 18.8 25.5
0.16 4026 18.5 25.8
0.15 4727 19.7 24.0
0.11 4531 20.8 25.7
0.35 2152 21.9 24.6
0.13 5200 23.0 24.7
0.07 5575 20.7 23.2
4.26 4d62 21.1. 23.6
0.70 5444 27.0 25.4
6015 27.9 26.1


0.819196 0.795(4
0.295907 1.06091
0.087407 1.06329
0.63529
0.184776 1.70423
0.141940 0.73810
0.314434 0.33798
0.304870
0.229031 0.13690

0.0938A 0.83486
0.086151 0.58140
0.095035 0.70149
0.034774 1.48571
0.16 4i 0.40722
0.19'218 0.33182
0.250M29 0.57037
0.375385 0.20412
0.207354 0.34948
0.214550 0.33600
0.25460 0.q3084
0.213466 .







Middle Control Bay (D)


iBS TIdW PC Pm 9 PLATItC fAflifKH PLA4WK DlSO. TEIP SAL EXTICT ECOLEf PRPLH WHNTH DY YEAR


1 SP77 2.3 0.46 1.40 1.51
2 SF77 9.32 5.58 3.74 5.04
3 SU77 7.26 3.73 3.53 4.07
4 SU77 6.34 2.30 4.04 2.35
5 SU77 8.01 3.93 4.08 4.?7
6 SU77 1.87 -0.42 2.29 3.65
7 SU77 4.98 2.65 2.33 3.'9
8 SU77 6.33 2.889 3.45 2.55
9 SU77 8.16 4.13 4.03 3.13
10 SU77 4.06 1.95 2.11 2.32
t1 SU77 5.66 2.79 2.87 2.67
12 S??7 6.23 3.83 2.40 2.11
13 FA77 4.88 1.73 3.15 4.15
14 FA77 3.49 1.12 2.37 2.46
15 FA77 2.00 0.36 1.6 0.40
16 FA77 3.58 1.91 1.67 1.02
17 FV77 2.61 0.85 1.76 0.42
18 FA77 2.13 1.04 1.07 0.6
19 FA77 2.09 0.51 1.58
20 FA77 1.3 4.96 0.443 0.
21 FA77 2.70 0.53 2.17 0.5t
22 Ff77 1.89 1.21 0.60 0.5
23 FA77 3.39 1.32 2.07 0.30
24 u178 0.41 0.05 0.36 0.40
25 UI78 0.85 0.39 0.46 0.71
26 HI78 1.62 1.23 0.P3 1.74
27 I178 1.91 0.38 1.53 1.55
28 78 3.13 1.26 1.87 2.87
29 m178 0.95 o.5 0.00 .
30 UI78 1.54 0.58 O.9V 2.17
31 UI78 2.74 1.12 1.62 2.31
32 SP78 3.63 1.65 1.98 2.30
31 SP78 3.19 1.54 1.5 3.2.1
34 SP78 5.07 2.88 2.19 2.4
35 SP78 3.37 0.54 2.83 2.W4
36 SP78 4.18 3.30 2.88 4.23
37 SP78 5.47 2.54 2.93 4.11
38 SP78 4.13 1.49 2.64 1.91
31 SP78 8.05 4.64 3.41 2.61
40 S78 5.20 1.35 3.85 4.0
41 SP78 5.16 3.01 2.15 5.Wk
42 SP78 5.59 3.26 2.33 3.74
43 SP8 3.31 1.34 1.R97 2.69
44 SU78 4.40 2.52 1.88 4.41
45 SU78 2.83 2.01 0.82 4.17
46 SU78 8.92 5.96 2.96 3.5
47 SU78 4.04 3.76 2.28 5.46
48 SU78 6.72 3.88 2.84 2.it
41 SU78 4.25 1.49 2.76 1.15
50 SU78 6.31 3.00 3.31 3.46
51 0S78 7.11 4.32 2.79 5.98
52 S078 4.13 1.36 2.77 3.11
53 SU78 4.50 2.60 1.96 3.40
59 FA78 6.95 3.00 3.95 1.87
53 FA78 3.04 1.78 1.26 1.19
56 F178 4.05 1.88 2.17 2.8
57 FA78 3.98 1.66 2.32 3.76
58 FA78 4.03 2.39 1.64 1.6
5q FA78 5.46 2.30 3.16 3.25
60 FA78 3.95 1.72 2.23 2.6?
61 FA78 2.87 1.32 1.55 2.35
62 FA78 1.00 0.26 0.74 0.81
63 FA78 2.80 1.51 1.29 0.65
4 FA78 0.44 -0.45 1.04 0.51
65 1179 1.27 o0.1 0.28 0.34
66 1179 2.80 1.58 1.22 0.45
67 11179 0.55 .16 0.31 1.21
8 11179 .
69 1179 2.93 1.38 1.55 0.80
70 1117 1.49 0.86 0.63 1.3
71 11179 1.45 0.42 0.83 1.1.4
72 17?9 1.11 0.43 0.68 1-.14
73 1117 1.73 1.31 0.42 1.48
79 I179 2.89 1.63 1.24 0.97
75 SF71 2.71 1.45 1.26 1.14


S20.4 23.7 1.37
31.3 26.4 1.40
4200 30.8 26.9 1.50
570 30.7 27.1 1.10
400 31. 27.2 0.97
4780 29.7 28.2 1.10
3870 27.1 24.9 1.50
6030 29.2 28.4 1.10
5230 28.4 22.5 1.70
62 29.5 30.q 0.90
4894 29.9 30.0 0.80
654 30.4 26.7 1.40
546 28.5 28.3 0.90
5238 28.6 28.5 1.10
6.42 18.8 28.0 1.00
6227 18.6 27.6 1.10
2461 20.8 2q.3 1.10
1417 15.4 3.0.0 0.9
441 15.0 29.3 1.10
2419 17.4 24.? 0.90
3416 18.6 24.7 0.O9
15.2 26.5
15.6 24.5 0.71
159 9.1 23.5 1.06
453 9.7 22.7 0.85
1011 13.4 24.8 0.74
1358 13.5 25.7 1.70
2028 15.0 21.5 1.12
4221 14.5 21.4 1.42
404 17.7 19.4 1.84
4383 18.5 18.6 1.48
4201 24.3 22.2 1.55
4599 24.4 22.2 1.55
5O08 22.7 22.0 1.31
3551 22.7 23.8 1.55
492 26.3 21.2 1.48
2921 27.4 21.1 1.7q
264 26.3 18.1 1.17
5569 26.4 19.5 1.26
4278 2q4. 20.4 1.36
4034 30.2 21.8 1.26
411 27.4 23.6 1.04
3551 27.7 24.5 1.21
3830 29.5 21.5 1.13
4149 29.6 22.9 1.06
4036 28.5 21.9 1.00
37'9 29.1 23.2 1.13
4762 29.2 19.1 0.85
4762 29.6 21.4 1.10
3874 30.0 24.0 0.81
2502 30.8 24.5 0.83
3511 29.0 27.6 1.6
3936 29.0 27.7 1.06
2972 26.8 28.8 1.21
3830 26.2 31.2 1.42
4149 2A.0 31.8 1.42
3227 22.7 28.2 2.00
21.9 28.5 1.21
.21.8 28.5 1.42
2582 21.6 26.2 1.36
2340 22.7 26.4 1.48
1775 14.1 25.2 0.85
2743 14.1 25. .
2663 13.8 26.4 2.i3
2662 10.2 25.6 1.04
1775 11.8 25.8 0.75
200 12.0 23.4 1.28
3224 12.8 22.4 4.25
1750 1 .8 21.3 1.10
2022 15.3 24.6 1.48
2980 16.1 24.8 0.95
3216 17.3 25.8 1.36
417 17. 27.0 1.36
4533 20.3 21.0 1.35
4193 21.5 21.7 1.21


0.63983
0.54077
0.69141 0.56061
0.45530 0.37066
0.4329?7 .58924
0.1561 1.95187
0.51473 0.792O0
0.41990 0.40284
0.62409 0.43260
0.25132 0.57143
0.46242 0.47173
0.37878 0.46710
0.35712 0.85041
0.26651 0.76218
0.12380 0.45000
0.22991 0.28192
0.35258 0.35249
0.196q4 0.28169
0.18825
0.21229 0.61871
0.31616 0.18384
0.29630
0.08850
1.031.4 1.17073
0.7505 0.89112
0.63968 1.07407
0.56259 0.81152
0.61736 0.91l93
0.9003 .
0.13987 1.42208
0.25004 0.84307
0.3453 0.63361
0.27745 1.01254
0.37500 0.40631
0.3791 0.7240
0.50203 0.68447
0.74906 0.75137
0.62012 0.48184
0.57820 0.32422
0.48621 0.81423
0.51140 1.05424
0.54325 0.67621
0.37285 0.81264
0.45953 0.q2500
0.27284 1.47350
0.88140 0.44283
0.63679 0.90397
0.54747 0.42857
0.35 69 0.43529
0.65152 4.54834
1.13669 0.71449
0.47052 0.75303
0.45732 0.75556
0.93540 0.26187
0.31749 0.39145
0.39046 0.69136
0.493314 0.9472
0.48635
0.59524
0.61193 O.67595
0.49060 0.81882
0.22535 0.81000
4.40831 0.23214
O.0649 1.20455
0.19483 0.26772
0.6309 0.16071
0.10571 2.23636

0.66971 0.29693
0.29%76 0.89262
0.11463 0.96552
0.13678 1.04505
0.1567 0.97110
0.25502 0.33564
0.25853 0.42804







.MIddle Control Bay (D)


8S TME PC PH R PLA'iPC PLAJKF PLRA.M IS 2 L TOiP SIL EXTIWCT ECOLEfF ~iRKWt I CTH OAY YEAR


76 SP79 3.48 1.89 1.79q
77 SP79 3.69 2.34 1.35
78 SPF7 5.30 2.31 2.91
79 SP79 5.45 3.31 2.14
80 SP79 3.47 2.04 1.03
81 SP9 3.34 1.80 1.54
82 SP79 4.45 2.00 2.95
83 SP74 5.09 2.74 2.35
84 SP79 5.69 3.19 2.50
85 SPF1 556 3.27 2.29
86 SU17 7.38 3.55 3.83
87 3S117 8.02 3.95 4.47
88 S1179 7.81 4.39 3.42
89 U 79 7.16 3.39 3.77
90 SU79 5.08 2.35 2.74
91 SU5 6.16 2.85 3.31
42 SU79 7.71 3.71 4.00
13 ?79 7.83 4.17 3.66
q4 SUN 2.86 0.50 2.34
q5 SUN 2.21 0.38 1.83
96 rATN 4.87 2.77 2.10
q7 FAN 5.92 3.25 2.67
q8 fA79 5.53 2.74 2.71
q9 FA7 6.30 3.42 2.48
100 FA7N 3.40 1.22 2.18
101 FA87 3.34 2.21 1.13
102 FA7N 5.85 3.37 1.48
103 FAN 5.57 3.3q 2.18
164 TFA 3.05 2.06 0.99
105 FAN7 1.92 1.80 0.12
106 FA7N 3.06 1.39 1.67
107 ?FA7 2.33 0.65 1.68
108 8IO -0.21 -0.36 0.15
109 I18SO 0.85 0.39 0.46
10 IIISO 1.41 0.65 4.76
111 II80 1.8 0.98 1.00
112 IO80 1.21 1.19 0.02
113 1180 2.10 1.21 0.89
114 180 0.25 0.20 0.05
115 1118 1.70 0.73 0.97
116 nI80 3.33 1.97 1.34
117 1118 2.77 1.12 1.65
118 VIas 1.54 1.09 0.45
119 UI80 2.71 1.56 1.15
120 SPF8 1.43 0.43 1.00
121 SP96 3.33 1.96 1.53
122 SF80 1.43 1.28 0.15
123 SP80 2.00 0.78 1.22
124 !P80 2.71 1.39 1.32
125 SPB0 3.73 2.00 1.73
126 SP80 3.48 1.85 1.63
127 SP80 5.23 2.89 2.37
128 SP80 2.57 1.29 1.28
129 SPO8 3.13 1.67 1.46
130 SP80 5.36 3.06 2.36
131 SP80 4.62 2.27 2.35
132 SP80 2.81 1.45 1.36
113 SU80 5.27 3.03 2.24
134 3U80 4.06 1.85 2.21
135 S180 4.28 2.49 1.79
136 SU80 4.98 2.30 2.8
137 SU80 3.23 1.40 1.83
118 SU80 5.09 2.78 2.31
119 ,Su80 4.3q 2.19 2.20
140 SU80 3.21 1.69 1.52
141 SU80 4.38 2.03 2.35
142 SU18 2.89 1.12 1.77
143 SU80 4.25 2.58 1.67
144 SU80 7.95 4.33 3.62
145 SU8 46.21 2.72 3.41
146 FA8 3.90 1.68 2.22
147 FA18 5.09 2.92 2.16
148 FABO 3.35 1.83 1.52
144 FA8O 7.42 4.32 2.70
150 FtA8 2.03 1.48 0.35


1.63
1.17
2.16

6.58
5.60
2.15
3.75
4.41
4.30
7.03
4.48
5.15
6.05
2.26
4.11
4.57
5.13
2.15
2.82
3.43
2.10
2.60
2.23
1.00
1.89
0.70
0.75
-8.06
0.60
0.26
0.56
0.11
0.05
0.24
0.06
0.06
1.09
0.40
1.00

-1.31
1.28
1.56
1.08
2.67
0.72
1.86
1.59
3.16
3.02
4.69
1.56
2.79
3.01
4.58
3.85
5.50
1.84
1.36
1.88
1.67
1.5R
2.21
5.40
3.76
2.67
2.61
2.48
4.20
1.50
1.32
1.66
2.23
1.93


3439 24.4 24.8
3534 24.0 24.0
3410 24.9 24.2
3410 27.3 22.2
5260 25.4 26.8
5470 24.9 26.2
3406 30.5 26.3
4334 29.7 24.8
5303 30.1 28.0
437 29.8 28.8
4480 31.0 27.9
4783 30.7 28.4
3016 29.2 24.7
3328 29.1 25.4
3262 30.1 24.6
3170 29.8 25.4
4265 29.9 26.5
450 30.2 26.0
3562 29.2 26.9
3343 28.8 27.q
4263 25.q 27.0
3781 24.5 26.2
3008 24.8 27.1
2812 25.1 27.8
2213 23.8 26.4
2870 22.4 24.7
2478 16.9 28.4
2451 17.0 28.1
3077 13.8 29.1
2328 13.2 27.9
980 19.6 26.9
231 18.2 27.4
645 12.5 27.1
2351 11.4 27.6
1810 14.4 26.3
2616 16.4 26.5
3952 11U.9 27.1
312 10.9 25.1
3773 16.1 25.7
2139 17.8 23.3
3818 14.7 21.0
2525 18.8 20.9
4145 21.3 24.4
5080 19.2 25.6
2184 22.4 21.7
5125 21.5 22.5
4605 21.3 24.9
3550 21.7 24.7
5259 23.3 23.1
5125 24.1 22.8
4189 27.4 21.4
3387 27.3 22.5
4546 26.8 21.8
4902 26.8 27.5
5140 28.7 25.1
4748 29.2 25.4
2303 29.0 20.9
5467 29.7 20.8
5006 30.4 22.0
4019 30.1 21.2
3758 31.0 19.4
4724 30.9 19.7
1442 29.5 21.3
4709 30.2 22.1
4575 29.5 26.0
4397 29.6 25.6
4075 28.4 28.4
3692 28.5 29.1
3207 30.1 24.6
3663 30.2 27.0
3678 24.6 25.8
3354 25.0 25.7
2228 22.7 25.7
41i5 21.8 26.3
1712 19.0 25.q


0.41.51 0.5734
0.41742 0.4611
0.62170 0.6642
0.63930
0.23346 2.1433
0.24424 2.0090
0.58133 0.5152
0.46917 0.8861
0.42919 0.9209
0.50927 1.0126
0.43077 1.1707
0.67071 0.6958
1.03581 0.7849
0.86038 1.0978
0.62414 0.5933
0.77729 0.8263
0.72309 0.7289
0.69507 0.7688
0.32117 0.9720
0.24443 1.5339
0.45646 0.7906
0.62629 0.3953
0.73537 0.581
0.84916 0.5442
0.61455 0.2941
0.46531 0.3263
0.81517 0.2772
0.84444 0.1849
0.39449 0.0623
0.32990 1.0781
1.24698 0.0980
4.03463 0.2403
-0.13023 -1.3333
0.14462 0.1745
0.31160 0.3121
0.30275 0.1414
0.12247 0.1074
0.26923 0.5190
0.02650 3.2000
0.31791 0.7294
0.34887
0.43881 0.5235
0.14861 1.2987
0.21313 0.4827
0.26190 1.1888
0.259MO 0.9429
0.12421 0.9231
0.22535 0.9300
0.20612 0.8487
0.29112 1.0777
0.33230 0.9548
0.61766 0.9885
0.22613 0.7510
0.25541 1.0575
0.41712 0.4381
0.38758 1.1277
0.48804 1.5231
0.38559 1.0816
0.32441 .46305
0.42598 0.5537
0.53007 0.4839
0.2T'0 0.8700
0.45835 0.4322
0.37290 0.6287
0.28044 1.9751
0.3r845 1.0297
0.28368 1.2007
0.46446 0.7153
0.99158 0.4377
0.47813 0.8454
0.42414 0.4667
0.60584 0.4k44
0.40144 0.6455
0.67411 0.4729
0.45312 1.4187









Middle Control Bay (D)


881 TIE PC P RP PLAi PLK PLAKKF PLKR ISOL TErM SkL EXTICT ECOLEFF PERPLN IWTH DAY YEAR


151 FASO 1.48 1.07 1.61 2.84
152 FA80 2.32 1.81 0.51 1.18
153 FA80 3.22 2.02 1.20 1.17
159 FA80 0.49 0.03 0.46 0.40
155 FAO 3.31 2.43 0.88 0.75
156 UI81 1.32 0.56 0.76 0.0
151 1181 1.15 0.69 0.46 0.31
158 1I81 1.10 0.71 0.39 0.30
154 UI81 1.88 0.8 1.01
160 VIS1 0.39 0.06 0.33 0.46
161 UI81 2.13 0.81 1.32 0.4
162 HI81 1.30 0.4 0.37 M0.6
143 HI81 1.!q 1.02 0.'2 1.01
1A4 UI81 1.9 1.20 O.79 0.44
165 1I81 2.45 1.09 1.36 0.57
166 i181 1.22 0.18 1.04 0.76
167 1181 3.74 1.93 1.81 0.54
168 vI81 2.55 1.3 1.16 1.02
19 11181 2.72 1.13 0.71 1.04
170 SF81 2.3 1.25 1.0 3.34
171 SP81 1.48 0.7 0.75 .


1.8q
1.18
0.72
0.40
-0.08
-0.29
0.27
0.12

0.28
0.13
0.82
0.72
0.36
0.30
0.4q
0.52
0.57
0.38
1.89


0.17 2d63
0.00 3607
0.45
0.00 1537
0.84 2214
0.38 3651
0.04 3162
0.18 2q34

0.18 W445
0.51 3993
0.14 2820
0.29 4026
0.10 4727
0.27 4531
0.27 2152
0.04 5200
0.45 5575
0.66 4662
1.50 544
6015


19.7 25.5 1.42
15.9 25.7 1.62
15.9 24.5 1.31
16.2 24.q 0.87
15.q 24.3 1.00
11.4 25.1 0.94
10.6 25.8
q.4 24.4 0.85
8.0 25.2 1.54
12.8 24.6
13.0 24.9
11.7 24.9 1.79
12.7 25.3 1.48
17.5 26.4
18.3 25.7
14.8 24.4 1.06
16.8 24.7 0.81
17.8 23.8 1.21
11.1 23.3 1.00
22.5 24.8 1.70
23.4 24.1 1.31


0.252347 1.70238
0.257278 0.50862
0.3d335
0.127521 0.81633
0.588706 0.22161
0.144418 0.06818
0.145478 0.24l57
0.1 4966 0.27273

0.033584 1.17449
0.213373 0.30047
0.184397 0.73846
0.192747 0.52062
0.16831% 0.23116
0.216288 0.23265
0.226766 0.62295
0.287612 0.14973
0.182960 0.40000
0.233376 0.38235
0.171932 1.44872
.08421 .







Outer Discharge Bay (OB)


i68S TIME PC PE I PLARNm PULARNP PL IS IISL TEW SAL EXTNHCT ECLEfF FERPMI IliTH DIf YEAR


1 SP77 2.99 2.03 0.91
2 S177 '.85 1.83 2.97
3 1177 5.30 2.77 2.53
4 S11 0.15 -2.21 2.34
5 S1171 5.61 2.36 3.33 0.0
6 iU77 4.90 3.40 1.50 7.24
7 S1177 4.32 2.82 1.50 5.14
8 SU?7 7.67 4.54 3.13 2.36
9 1U71 5.26 3.65 1.58 3.31
10 FA7? 9.26 4.41 4.85 3.50
11 FA77 7.04 2.50 4.514 ..0
12 RA77 5.02 3.14 1.88 2.75
13 FA77 3.46 1.6 0.80 2. N
1' Fr77 6.19 2.54 3.65 2.23
15 FA77 3.08 1.91 1.17 2.0
16 FAr? 4.08 2.73 1.35 1.60
17 fr77 2.46 1.37 1.09 0.'1
18 A?77 3.82 1.51 2.25 1.i'i
19 FA77 1.67 1.67 0.00 1.28
20 FAr7 1.A4 1.4 0.00 1.19
21 II178 1.29 1.08 0.21 0.95
22 m178 0.95 0.64 0.31 0.74
23 11178 2.80 2.74 0.06 2.-A
24 11178 1.47 0.9 0.48 0.81
25 1I78 0.46 0.46 0.00 2.81
26 1978 5.39 3.' 1.45
27 11178 2.28 0.56 1.72 3.87
28 11178 4.29 3.72 2.57 4.45
29 SP78 3.80 1.41 2.3q 5.0
30 SP78 5.11 2..4 2.62 4.46
31 SP78 8.42 5.76 2.66 6.73
32 SP78 5.29 2.07 3.22 4.7
33 SP78 5.04 2.0 3.04 12.30
34 SF78 4.13 4.68 1.45 13.1U
35 SP78 1.28 -1.66 2.94 3.3
36 SP78 5.10 1.49 3.61 2.43
37 SP78 4.50 2.03 2.47 ? .08
38 P78
39 SP78 7.30 3.24 4.06 9.10
40 SP78 5.15 3.24 1.91
41 SU78 2.21 -1.54 3.75 5.451
42 S178 1.31 -0.5 2.26 5.81
'13 1U78 5.27 4.34 0.93
44 SU78 4.49 2.70 1.79 4.-I
45 SU78 2.70 1.52 1.18 4.56
44 S178 2.19 1.46 0.73 4.12
47 S178 2.56 1.03 1.53 4.l'
48 SU78 4.54 3.38 1.16 5.4?
49 SU78 5.81 2..1 3.12 3.70
50 SU78 5.46 3.15 2.31 3. 4
51 FA78 1.1l 0.10 1.81 4.Nt
52 FR78 7.79 4.15 3.64 3.03
53 rF78 5.50 2.43 3.07 3.45
54 FA78 4.'4 3.13 1.51 4.2?
55 FA78 9.25 1.20 8.05 4.21
56 f178 2.22 1.67 0.55 '4.72
57 FA78 3.46 1.38 2.08 3.6'1
58 FA78 1.45 0.77 0.68 0.15
51 Fr78 3.76 4.0 3.76 1.04.
60 FA78 1.68 1.40 0.08 1. 0
41 FA78 1.40 0.00 1.40 1.91
62 I179 5.28 4.72 0.56 2.02
63 V1I1 2.50 2.50 0.00 0.14
64 1I79 1.36 0.50 0.86 1.42
65 17 1.31
4 11179 1.43 1.32 0.11 1.31
47 179 2.55 2.22 0.33 1.4Q
48 III7 4.49 3.07 1.42 3.51.
69 1179 3.21 2.13 1.08 1.03
76 117 2.2' 2.08 0.16 1.3
71 I117 3.46 2.43 1.03 0.'3
72 SP79 3.48 2.32 1.16 1.03
73 SP79 4.d2 2.S4 1.98 4.40
74 SP79 4.07 2.49 1.58 7.52
75 SP7? 5.73 3.28 2.45


33.38 27.68 1.79 99 77
4200 33.38 27.68 1.48 0.46190 7 3 77
5570 35.00 2q.01 1.22 0.38061 7 43 77
4780 33.30 30.10 1.2 0.01255 8 30 7
-0.14 0.94 3870 29.52 26.74 1.31 .58811 0.14060 8 73 77
6.23 1.03 5230 29.52 26.74 1.3< 0.37476 1.48163 8 77 77
4.17 1.02 6579 34.77 29.70 1.06 0.26265 1.20119 9 27 77
1.14 1.24 662 33.78 31.48 1.43 0.47478 0.31030 9 3 77
2.84 0.47 986 33.78 31.48 1.70 0.42198 0.62928 9 67 77
2.34 1.16 546 32.4 30.17 1.29 0.67764 0.37797 10 3 77
3.51 0.55 5238 32.73 29.98 1.43 0.53761 0.57670 10 7 77
2.12 0.63 662 22.46 26.38 1.17 0.31074 0.54781 10 57 77
1.93 0.65 6227 22.46 24.38 1.06 0.22224 0.74566 10 60 77
2.00 0.23 2961 24.30 28.37 1.42 0.83620 0.36026 11 3 77
1.08 0.97 4441 1.98 2.30 1.36 0.27741 0.558 11 47 77
1.29 0.31 4347 19.98 29.30 1.31 0.3743 0.39216 11 50 77
0.89 .07 2619 23.40 25.16 1.13 0.37572 0.39024 11 97 71
1.16 0.33 3416 23.40 25.16 1.26 0.44731 0.3q005 11 9 77
0.96 0.32 18.40 25.20 0.89 .7667 12 43 77
1.02 0.17 20.30 27.50 0.94 0.8269 12. 7 77
0.23 0.32 15q 13.00 22.10 1.11 3.24528 0.42436 2 3 78
0.41 0.35 453 12.40 23.40 0.81 0.83895 0.8000 2 7 78
2.02 0.62 1013 16.30 26.90 1.17 1.10563 0.94286 2 0 78
0.49 0.40 1358 16.30 27.00 1.418 0.43299 0.5582 2 63 78
2.81 0.00 2028 17.60 20.80 1.48 0.09073 6.10870 3 13 78
4221 U.20 11.40 1.55 0.51078 3 3 78
2.64 1.23 4404 18.80 12.80 1.89 0.20708 1.69737 3 97 78
3.29 1.16 4383 20.00 13.00 1.62 0.57404 0.70747 3 9 ?78
3.04 1.96 4201 25.90 17.40 2.11 0.36182 1 31579 4 23 78
3.59 1.02 4599 25.90 16.9 2.43 .44444 0.90215 4 27 78
5.88 0.85 5408 24.30 19.80 2.13 0.42278 0.79129 4 73 78
4.73 2.04 3551 24.20 20.10 1.9 0.5q589 1.27177 4 77 78
11.57 0.43 4q24 29.40 23.70 1.79 0.4042 2.38095 5 27 78
12.15 0.98 2921 30.10 23.90 1.48 0.8344 2.14192 5 30 78
2.90 0.44 264 30.50 20.70 1.62 0.19219 2.76563 5 47 78
2.45 0.48 55<6 30.20 20.70 1.48 0.36431 0.57451 5 70 78
5.13 0.95 4278 32.90 23.40 1.24 0.42076 1.35111 6 27 78
4036 31.20 23.50 1.42 6 30 78
8.23 0.87 4116 30.30 24.10 1.48 0.70943 1.24658 6 77 78
3551 30.00 23.70 1.70 0.58012 4 80 78
4.79 0.26 3830 31.70 23.30 1.5S .23081 2.28547 7 23 78
5.49 0.32 4149 31.00 23.20 1.42 0.12630 4.3511 7 27 78
4036 .60 25.20 1.42 0.52230 7 70 78
3.88 0.67 3794 31.50 24.40 1.70 0.47318 1.01316 7 73 78
4.01 0.55 3874 33.00 21.70 1.30 0.27878 1.8889 8 17 78
4.20 0.00 2502 32.44 23.60 1.42 0.35412 1.91781 8 20 78
3.08 1.06 472 33.50 24.60 1.13 0.21504 1.61711 8 93 78
4.61 0.46 47'2 33.40 25.40 1.17 0.38135 1.1164 8 97 78
3.70 0.00 3511 31.00 25.90 1.42 0.66192 0.63683 9 70 78
3.94 0.00 393 30.60 25.50 1.26 0.55488 0.72161 9 73 78
3.23 1.11 2972 31.00 30.30 1.58 0.25707 2.27225 10 3 78
2.03 1.00 3830 31.00 29.70 1.42 0.81V58 0.38896 10 20 78
2.24 0.81 441 27.70 28.20 1.42 0.53025 0.55455 10 23 78
3.20 1.07 3227 26.10 27.2 1.31 0.57515 0.92026 10 77? 78
3.42 0.81 27.30 28.40 1.65 0.45730 11 37 78
4.72 0.00 27.20 28.20 1.5 2.12613 11 40 78
3.61 0.00 2582 26.30 27.80 1.42 0.53602 1.04335 1 97 78
0.06 0.13 2340 26.80 27.90 1.48 0.2478 0.13103 11 99 78
0.88 0.21 1775 19.40 25.50 1.06 0.84732 0.28989 12 50 78
1.77 0.03 2743 18.80 25.90 1.17 0.24499 1.07143 12 53 78
1.64 0.27 2663 18.40 26.00 1.31 0.21029 1.36429 12 57 78
1.90 0.12 2662 15.30 24.70 1.01 O.7933 0.38258 1 17 71
-0.48 1.37 1775 14.40 27.30 0.73 0.56338 0.35600 1 20 71
1.29 0.13 2080 15.20 24.20 1.10 0.24154 1.04412 1 77 79
1.31 0.00 3224 17.50 25.80 1.70 1 80 79
1.15 0.36 1750 19.90 24.40 1.79 0.32686 1.0554 2 53 79
1.42 0.50 2022 18.20 24.0 1.21 0.50445 0.75214 3 7 79
3.51 0.00 290 1.10 24.30 0.83 0.60268 0.78174 3 10 79
0.63 0.40 3246 18.60 23.80 1.10 0.39556 0.32087 3 57 7q
1.36 0.00 441? 18.60 24.30 1.15 0.20285 0.471'4 3 d0 7
0.05 0.q3 4531 24.80 24.20 1.21 0.30532 0.28324 3 99 7?
-0.09 1.12 4193 25.70 24.40 1.24 0.33198 0.29598 4 3 79
3.81 0.81 363 29.00 26.10 2.62 0.50783 1.0000, 4 70 79
6.56 0.6 3536 27.90 26.10 2.43 0.464 1 1.84747 4 73 79
3410 28.30 25.70 2.27 0.7214 5 17 79







Outer Discharge Bay (OB)


09S TIME PC Ph R PUI PS FLAW PI FLAIR INS OL TEMP SAL EXTINCT ECOLrFT FERPLN IMfTH DAY YEAR


76 SP79 3.20 1.19 1.21
77 SP7q 4.86 3.32 1.31
78 SP7 i4.62 2.48 2.14
71 SP79 2.37 1.24 1.13
80 SP79 4.71 2.51 2.20
81 SP79 5.14 3.71 1.40
82 SP ? 5.29 2.95 2.34
83 SU7 5.15 2.78 2.37
81 SU79 6.7 3.68 3.11
85 571R 8.07 5.14 2.1q
84 SU7 7.73 3.89 3.84
87 S117 1.23 -0.75 1.98
88 SU7 2.19 0.83 1.34
89 S117 3.%' 1.5 2.29
Io siU7 4.52 1.80 2.72
q1 SU7 4.5' -1.37 5.91
92 579 4.33 -1.25 5.58
93 FA7 3.98 0.42 3.36
94 FtA7 6.10 2.20 3.90
95 FA?7 1.18 0.10 1.08
96 FA71 1.53 1.3q 0.14
97 FA7? 1.29 0.13 1.16
98 F879 0.83 0.06 0.77
q99 r79 1.34 1.34 0.00
100 FAq7 3.09 3.q09 .00
161 FA71 2.58 2.58 0.00
102 7871 1.9 1.99 0.00
103 FA7 0.73 0.73 0.00
144 FA7t -0.25 -4.25 4.00
105 I(180 0.30 0.30 0.00
106 IO80 2.70 1.84 0.86
107 11180 2.25 2.25 0.00
108 1180 2.75 2.75 0.00
109 1180 0. .9 0.9 O.00
11.0 1180 3.30 3.30 0.00
111 III80 5.24 4.22 1.01
112 i180 3.91 3.17 0.71.
113 III80 4.14 '4.1. 0.00
114 III80 2.57 2.16 0.41
115 HI8 1.55 0.83 4.72
116 I180 .5' 3.q5 O.59
117 SP80 2.81 1.51 1.30
118 SP80 3.02 2.47 0.35
119 SP80 3.30 2.78 0.52
120 SP80 2.80 1.78 1.02
121 80 2.34 2.03 0.31
122 SP80 2.93 2.40 0.53
123 SP80 7.52 5.29 2.23
121 SP80 4.47 2.34 2.13
15 SP80 3.95 1.47 2.4
126 SPF8 4.89 3.06 1.78
127 SP80 1.33 0.09 1.24
128 SP80 4.28 3.41 0.67
129 SP80 3.70 1.2'. 2.46
lo SU80 l 1.05 11.32 2.73
131 SU80 7.63 3.83 3.80
112 SU80 7.12 4.57 2.85
133 1S80 11.55 5.71 5.81
1134 180 1.78 0.57 1.21
115 SU80 7.q1 4.33 1.58
136 SU80 6.52 4.30 2.22
137 580 8.97 5.03 3.9'
138 S180 7.39 3.81 3.58
1319 S80 8.34 i.07 I.27
140 SU80 10.13 5.83 4.30
141 3S80 10.59 8.15 2.'.
142 380 10.7? 4.51 i.23
143 FA8 6.59 3.12 3.-7
144 FA180 .38 '.13 2.25
145 FA80 1.86 1.79 0.07
146 FA84 1.41 1.41 0.00
147 FA80 7.98 3.13 4.85
18 rA80 3.15 2.00 1.15
149 FA80 2.06 1.30 0.74
150 FA80 1.96 1.36 0.60


3.4

3.4R
4.8
8.A

10.31.
7.19
3.6?'


8.40
7.19
10.31.
5.19
9.400
7.03
6.43
6..21
2.30
4.17
2.92
'4.21.
1.7T
1.27
1.11
2.09
0.5*
0.r4
0.50
1.18
0.31
O..

0.57
0.51
0.20
1.67
0.91-
1.50
2.14
2.X
2.Y
1.7
1.33
2.44
2.U
2.01?
4.60
6.15.
7.y3
6.19

7.U
7.13
4.0
13.'1
7.2/

7.31.
7.0'
5.3
8.00
7.'fi
7.15
7.31
6.28
5.ib
5.33
8.56
4.4
4.41
2.'4"
2 .
3.'1
2.11
1.58
1.W1


3.79
3.18
1.93
7.07
2.78
2.47
5.10
7.46
6.17
9.52
k.44
8.26
5.56
5.14
5.17
4.01
1.58
3.6
2.62
3.23
0.97
1.72
1.43

0.29
0.48
0.17
1.18
0.21
0.36
0.52
0.36
0.42
0.10
1.63
0.35
1.08
1.03
1.85
2.01
1.36
0.35
2.28
2.06
2.22
4.29
5.63
6.63
5.42
7.34
1.17
7.13
3.61
12.29
6.60
5.88
6.18
6.06
4.83
7.941
6.80
6.16
5.63
4.78
41.43
7.28
4.01
3.78
2.09
2.08
2.23
1.05
1.50
0.60


3410 28.7 25.6
0.70 5260 25.6 22.4
0.89 5470 25.1 22.7
0.72 3406 31.4 21.6
0.28 4334 30.7 23.6
0.8 5303 31.5 27.4
0.81 436 30.7 27.3
1.78 4680 33.3 27.2
1.03 4783 32.6 24.9
1 01 3014 2q9. 28.1
0.79 3328 29.6 28.1
0.75 3262 35.5 27.5
1.14 3170 35.1 27.7
1.47 4265 32.1 27.2
0.9 4506 32.8 27.5
1.07 3542 31.4 27.1
0.83 3343 30.5 26.6
1.02 4263 27.9 19.7
0.52 3781 27.1 20.8
0.30 3008 30.7 28.2
1.01 2812 29.7 28.3
0.56 2213 29.9 29.5
0.10 2870 28.8 29.9
0.47 2178 23.1 28.2
0.66 251 21.6 27.0
0.36 3077 18.3 28.0
0.26 2328 18.1 27.3
0.03 0 2. 2. 8.7
4.0 231 24.0 29.2
0.10 65 18.3 26.8
0.04 2351 15.7 26.4
0.07 1810 21.1 28.2
0.43 216 21.8 28.5
0.3q 3952 18.7 27.1
0.10 3120 15.9 25.6
0.04 3773 20.4 27.1
0.56 2139 21.3 26.9
0.12 3818 18.0 24.5
1.16 252 19.0 25.1
4.34 td45 22.1 25.5
0.35 508 19.8 21.8
0.39 2180 24.0 2i..3
0.98 5125 23.2 21.0
0.16 4405 22.3 21.8
0.00 3550 23.2 23.0
0.6 5259 24.9 19.0
0.31 5125 25.6 19.4
0.52 '189 29.5 21.1
0.75 3387 29.1 21.7
0.77 45W6 28.8 22.1
0.65 4902 28.2 22.5
0.67 5110 30.2 24.3
0.00 .768 30.4 23.6
0.98 2303 30.2 18.2
0.72 5167 30.4 16.8
0.6 5006 31.9 21.1
0.71 4I19 32.1 22.0
1.13 3758 32.8 19.2
1 01 172' 32.7 18.8
0.56 W42 32.4 22.5
0.06 4709 33.5 22.8
0.65 1.75 32.5 23.3
1.15 4397 32.6 24.1
0.65 4075 31.3 28.8
0.90 3692 31.0 27.5
0.90 3207 34.0 29.5
1.28 3 3 3] 3. 2q.6
0.51 3678 27.0 25.6
0.23 3354 28.7 27.0
0.87 2228 26.9 25.5
4.81 4165 25.9 25.4
1.25 17192 22.1 26.1
1.06 2663 22.7 26.5
0.38 3647 19.0 22.4
0.88 19.4 23.6


0.37537
0.36958 0.9239
0.33784 0.9459
0.27833 1.1181
0.43470 1.5605
0.38771 0.7043
0.46845 0.6240
0.4417 1.3359
0.5678' 1.250
1.07029 0.8897
0.92409 1.3338
0.15083 4.2195
0.27434 4.2922
0.3Fi52 1.7843
0.40124 1.4226
0.50983 1.371
0.51810 1.1178
0.37345 0.6533
0.6.53 0.6836
0.15691 2.7146
0.21764 2.7712
0.23317 1.1860
0.11568 2.1928
0.21630 0.8284
0.49662 0.6784
0.33539 0.2519
0.31192 0.3711
0.29796 0.6849
-0.13190 -4.7200
0.18605 1.0313
0.45438 0.1481
4.W724 0.2622
0.12049 0.2873
0.04960 1.6531
0.42108 0.06 6
0.55745 0.3175
0.73118 0.2327
0.433/3 0.3623
0.40713 0.8521
0.1958 1.4452
0.35748 0.5198
0.51465 0.6228
0.23571 0.i440
0.28664 0.73'9
0.31549 0.7357
0.17798 1.2350
0.22868 1.5700
0.71807 0.8178
0.52790 1.6510
0.34756 1.5671
0.39%14 1.6508
0.10330 3.6311
0.35906 1.s659
0.6t261 1.2W86
1.02799 0.9260
0.60967 0.9528
0.7384(9 0.8881
1.22918 0. 329
0.15072 3.9719
0.71229 4.4814
0.55383 1.2270
0.78426 0.8305
0.67228 0.9892
0.8185 0.7530
1.09751 0.5607
1.32086 0.5033
1.18ol o.lou
1.17281 0.7970
.71669 0.6980
0.76038 0.6285
0.33393 1.591I
4.13.41 2.496W
1.78125 0.4361
0.17315 0.6698
0.22841 0.4126
0.7531








Outer Discharge Bay (OB) 82


0BS TIdE PC PM Nr PLAHPC PLAW PLVqK R INSOL TEW Sl EXTINCT ECDLEFF PEPL IfUNTH DAY EAR


151 FAM 2.30 1.73 0.57 2.72
152 FAO 1.56 1.5 0.00 2.05
153 U181 2.29 2.06 0.23 0.50
15 11181 2.38 2.03 0.35
155 1I81 3.8 3.89
156 181 2.07 2.07
157 H891 2.45 2.45 0.7?
158 U81 1.4 1.10 0.35 0.92
159 I81 1.2 1.2 0.2
160 M11 1.41 1.41 0.89
161 Nl81 1.43 0..3 0.55 1.12
162 HI81 3.60 2.60 1.00 0.65
163 9191 3.70 0.89 2.81 1.01
164 H81 2.83 2.28 0.55 1.47
164 HI81 2.4A 2.4'4 1.27
166 MI81 1.86 1.46 0.46 0.99
167 SP81 .25 2.46 1.79 2.87
168 S981 4.42 4.31 2. .


1. o
1.09
-0.32



0.28
0.17
0.75
0.57
0.92
0.63
0.90
1.34
1.01
0.59
1.81


1.63 1537 22.8 25.9 1.00
0.96 2249 22.7 26.0 1.36
0.82 3451 17.1 25.0 1.21
3162 16.6 25.6 1.19
2934 14.6 26.2 .
14. 26.2 1.54
0.19 4645 18.8 25.0 0.85
4.75 3993 17. 26.2 1.48
0.17 2820 18.3 25.3 1.89
0.29 4026 18.2 25.4 1.54
0.20 4727 19.3 23.3 0.85
0.03 531 20.0 24.4
0.11 2152 20.9 23.9 0.92
0.13 5200 22.5 24.8 1.26
0.22 5575 20.4 22.8 1.13
0.o4 d462 20.8 22.8 1.00
1.06 5444 26.0 25.2 1.71
6013 26.4 26.1 1.79


0.598539 1.18261
0.277457 1.31410
0.253890 0.21834
0.301075
0.530334

0.210980 0.191854
0.149254 0.63%48
0.229787 0.56790
0.14009 0.40993
0.121t7 0.78322
0.317811 0.18333
0.687732 0.27297
4.217642 0.51943
0.17507 0.50410
0.159588 0.53226
0.312270 0.67"29
0.4233 .


80
80
81
81
81
81
81
81 -


81
81
81
81
81
81
81
81
81
81







Outer Control Bay (C)


RST TIIE PC PK R FPLM l FPLA((i PLP(v IzSEOL. E SAL EXTIRCT ECOL.rF PEfPL I MM DY YEAR


1 SP77 11.84 4.02 5.82 9.89 4.83 3.05 30.34 28.12 2.0
2 5177 7.87 3.81 4.06 7.18 4.80 2.38 420 30.34 28.12 1.79
3 SU77 9.20 4..0 4.40 8.65 4.36 4.29 7100 31.82 28.64 0.93
4 1S77 8.35 4.70 3.65 3.74 1.54 2.22 5570 30.97 28.45 0.96


5 S177 O.9q O0.* 0.30 4.24
SSU177 5.33 2.03 3.30 2.48
7 S177 8.40 4.77 3.63 9.85
8 S177 11.86 5.84 4.02 4.28
q SU77 4.32 1.40 2.92 3.44
10 S177 5.32 3.43 1.89 5.34
11 5177 2.56 1.60 0.8q 5.01
12 FA77 4.27 2.41 3.66 5.44
13 FA77 4.54 1.47 3.07 3.52
14 FA77 4.01 1.70 2.31 2.83
15 FA77 3.85 2.0 1.85 2.10
16 F 77 2.6 1.48 1.16 2.60
17 FA77 3.4 1.32 2.17 2.12
18 FAn7 4.41 2.11 2.30 1.42
19 FA77 1.74 0.6 1.08 0.73
26 FA77 2.59 0.71 1.84 1.11
21 FA77 2.93 1.48 1.25 1.47
22 FA77 4.25 1.1. 2.30 0.59
23 11178 -1.37 -1.47 0.10 0.77
24 1178 2.67 1.08 1.54 1.10
25 1118 2.61 1.37 1.32 2.58
26 11178 1.85 0.38 1.47 1.27
27 WI78 3.71 1.76 1.95 3.65
28 11178 2.26 1.0 0.44 .
29 U18 2.29 1.25 1.04 2.35
30 11178 2.21 0.48 1.73 3.25
31 SP18 2.13 0.50 1.23 3.86
32 SP78 1.72 0.5 1.77 3.44
31 SP78 7.05 5.22 2.03 2.3
34 S78 4.78 0.82 3.96 4.17
5 P78 5.24 2.43 2.61 5.14
36 SP18 5.02 2.63 2.39 9.41
37 SP78 3.05 0.77 2.28 2.84
39 SP78 4.79 2.45 2.34 3.71
39 SP78 5.67 2.52 3.15
0 S78 .
41 SP78 7.71 4.42 3.29 6.30
42 SP78 5.81 2.77 3.04 5.35
43 1SU78 4.42 1.% 2.47 3.714
44 W178 5.17 2.51 2.60 4.34
45 1SU78 9.80 5.53 4.27 6.14
.6 S1178 8.47 4.88 3.59 7.87
47 1178 4.61 2.46 2.15 3.11
8 SU178 4.29 1.97 2.32 3.29
49 S1178 4.72 2.93 1.79 3.67
S S1178 7.7 4.77 3.00 6.98
51 S178 6.46 2.30 3.56 5.05
52 S1178 4.4 2. 2.06 3.61
53 FA78 4.22 2.26 1.96 2.57"
NS fA78 5.08 3.20 1.88
?j FR78 3.35 1.70 1.65
56 FA78 4.15 1.50 2.45 3.77
57 FA78 2.88 1.44 1.44 1.93
58 FA78 2.6 1.41 1.25 5.21
55 FA78 4.72 2.14 2.56 2.74
60 FP78 3.22 1.24 1.96 4.14
61 FA78 1.32 0.72 0.40 0.5.4
62 F(78 1.90 1.0 0.90 1.02
3 FA78 1.20 0.51 0.69 1.90
64 1179 2.94 1.4 1.28 0.38
45 1117 2.40 1.46 0.74 4.81
44 1117 2.A5 1.22 1.73 1.70
61 l1 1.31
68 M17 3.12 1.72 1.40 1.07
69 g17 2.66 1.21 1.45 2.09
70 1171 2.31 1.17 1.14 3.33
71 1179 1.99 1.17 4.82 1.72
72 1179 3.39 1.19 1.40 2.51
73 119 3.31 1.45 1.84 1.60
74 SF79 2.35 1.11 1.24 0.92
75 SV79 3.80 1.51 2.29 4.39


4.05 2.21 4780 29.30 2.54 1.04
0.86 1.62 6030 29.30 2q.54 1.24
8.75 1.11 3870 28.04 24.A 1.11
2.47 1.81 5230 28.04 24.64 0.94
1.W7 1.49 6579 2q.80 28.10 1.13
4.21 1.13 6462 2q.64 31.08 1.00
4.14 1.01 489 29.44 31.08 0.85
4.o9 1.35 546 28.74 29.88 0.82
2.78 0.74 5238 28.74 29.6 0.82
2.66 0.22 A62 19.08 27.48 1.00
1.59 0.51 6227 19.08 27.48 0.14
1.81 0.79 2961 21.17 28.70 1.03
1.q2 0.20 4441 15.58 29.98 1.10
1.07 0.35 4347 15.58 29.98 1.10
0.43 0.30 2619 18.14 25.30 0.A4
0.86 4.25 3416 18.14 25.30 0.92
0.59 0.88 15.40 27.90 0.61
0.18 0:37 15.70 26.70 0.64
0.57 0.20 159 9.2 23.80 1.08
0.63 0.47 453 9.80 23.50 0.40
2.04 0.49 1013 12.90 25.50 0.7q
1.21 0.06 1358 13.10 26.60 1.3
3.65 0.00 2028 14.60 23.50 1.70
4221 15.00 22.60 1.34
1.94 0.41 444 17.90 18.50 1.55
S 2.42 0.63 4383 18.40 18.30 1.42
3.1 0.23 4201 24.20 23.10 1.55
2.61 0.83 4599 24.30 23.00 1.55
1.66 0.70 5408 23.10 24.40 1.70
2.22 1.95 3551 23.00 25.20 1.70
4.64 0.55 424 26.10 23.10 1.48
8.0q 1.32 2321 26.90 23.30 1.89
2.18 0.66 26A 26.60 19.40 1.26
2.62 1.49 5569 26.70 21.20 1.36
4278 29.50 24.00 1.36'
4036 29.30 23.90 1.31
4.73 1.57 411 27.20 25.90 1.06
4.00 1.35 3551 27.90 26.30 1.21
2.68 1.06 3830 29.60 22.50 1.13
3.74 O.60 4149 29.80 24.30 1.13
6.14 0.00 4036 28.50 23.90 1.00
6.50 1.37 37% 28.80 25.20 1.10
1.96 1.15 3874 29.20 21.50 0.87
2.41 0.68 2502 29.40 23.10 1.03
2.q5 0.72 4762 31.10 24.40 0.85
4.41 0.57 4762 30.90 25.00 0.97
4.16 0.89 3511 29.20 28.30 1.10
3.29 0.32 3936 29.40 28.50 1.10
2.57 0.00 2972 26.30 29.70 1.36
3830 26.30 32.10 1.21
4109 24.40 32.00 1.42
2.71 1.06 3227 22.70 28.50 1.55
1.58 0.35 22.00 28.50 1.14
5.21 0.00 21.90 28.50 1.03
1.93 0.81 2582 21.70 27.70 1.17
3.14 1.00 2340 22.60 27.80 1.55
0.47 0.09 1775 13.90 26.10 0.89
0.87 0.15 2743 14.00 26.30 0.89
1.90 0.00 2663 14.00 26.90 1.48
0.38 0.00 2662 10.10 25.70 1.12
-0.20 1.01 1775 11.60 26.30 0.81
-0.02 1.72 2080 12.30 24.80 1.36
-0.87 2.26 3224 12.70 24.30 4.25
1.07 0.00 1750 14.30 24.50 1.31
1.30 0.79 2022 15.30 25.20 0.92
2.62 0.71 2980 15.q0 25.40 1.4.8
O. 6 0.76 3246 17.20 2A6.0 1.<42
2.31 0.20 4417 17.30 27.20 1.42
0.73 0.87 4533 20.10 23.80 1.35
0.41 0.51 4193 21.00 23.10 1.27
2.82 1.57 3639 24.50 26.10 1.79


0.83446 6 99 77
0.7495 .91233 7 3 77
0.4913 0.94022 7 37 77
0.5r,4 0.45030 7 43 77
0.4528 6.32323 8 30 77
0.3536 0.46529 8 33 77
0.8682 1.17242 8 73 77
0.9071 0.36088 8 77 77
0.2427 0.80093 9 27 77
0.3293 1.00316 9 43 77
0.2492 1.95703 9 67 77
0.188 0.89472 10 3 77
0.3467 0.77533 10 7 77
0.2482 0.71820 10 57 77
0.2473 0.54545 10 60 77
0.3566 0.98485 11 3 77
0.3143 0.60745 11 47 77
0.4058 0.32200 11 50 77
0.2458 0.41954 11 97 77
4.3633 0.42857 11 99 77
0.50171 12 43 77
0.12941 12 67 77
-3.4465 -0.56204 2 3 78
2.3574 0.41199 2 7 78
1.0622 0.95911 2 90 78
0.544q 0.68649 2 63 78
0.7318 0.98383 3 13 78
0.2142 3 43 78
0.2080 1.02620 3 97 78
0.2017 1.47059 3 99 78
0.2028 1.81221 4 23 78
0.149 2.00000 4 27 78
0.5214 0.33475 4 73 78
0.5384 0.87238 4 77 78
0.4257 0.99046 5 27 78
0.6874 1.87450 5 30 78
0.4580 0.93115 5 67 78
0.3440 0.77453 5 70 78
0.5302 27 78
d 30 78
0.7493 0.81712 6 77 78
0.6545 0.o2083 6 80 78
0.416d 0.84615 7 23 78
0.4 84 0.83946 7 27 78
0.9713 0.62653 7 70 78
0.8930 0.42916 7 73 78
0.4740 0.47462 8 17 78
0.6859 0.76690 8 20 78
0.3965 0.77754 8 93 78
0.6527 0.89833 8 97 78
0.7360 0.78173 9 70 78
0.4533 0.80942 9 73 78
0.5680 0.60900 10 3 78
0.5305 10 20 78
0.3230 10 23 78
0.5144 0.90843 10 77 78
0.67014 11 37 78
1.95865 11 40 78
0.7312 0.58051 11 97 78
0.5504 1.28571 11 99 78
0.2975 0.42424 12 50 78
0.2771 0.53684 12 53 78
0.1802 1.58333 12 57 78
0.4418 0.12925 1 17 79
0.5408 0.33750 1 20 79
0.5473 0.57627 1 77 79
1 80 79
0.7131 0.3425 2 53 74
0.5262 0.78571 3 7 79
0.3101 1.l4.15 3 10 79
0.2452 0.8632 3 57 74
0.3070 0.74041 3 60 71
0.2921 0.48338 3 99 74
0.2242 0.39149 4 3 79
0.4177 1.1552 4 70 79


-- L






Outer Control Bay (C)


OiB TlE PC PiN PLAWf F PLiKP PLANiS INS TEFP SAL EXTINCT EC 'IF." pgPLH IffiTH M AY YEAR


74 SF7 4.52 2.75 1.77
77 SP74 3.15 1.24 1.91
78 SP19 4.6 2.85 1.81
7? SP79 3.91 3.01 0.90
80 SP79 3.61 1.23 2.38
81 tP7 4.29 1.82 2.'
82 SP1? 4.70 2.36 2.31
83 SPF7 5.63 3.1k 2.49
84 SFP7 4.52 2.96 1.5
85 S7UN 6.43 2.83 3.40
86 SU79 7.12 3.60 3.52
87 S1R9 4.27 3.71 2.5
88 31S7 4.62 3.34 3.26
89 SUfI1 5.53 2.74 2.80
90 SU7 7.02 3.19 3.83
91 SU79 8.82 4.47 4.15
92 S179 7.97 4.17 3.80
93 SU7 2.35 -4.18 2.53
99 SU79 2.60 0.67 1.93
95 FA7N 3.41 1.82 1.59
96 FA7 5..6 3.10 2.56
97 FA79 5.27 2.99 2.28
98 FAT7 7.94 5.48 2.82
9r FA7 3.34 1.23 2.14t
100 FA7 3.21 2.22 0.99
101 FA?7 3.24 3.24 0.00
102 FA'I7 5.80 3.32 2.48
103 FA79 3.59 2.55 1.04
104 FA79 2.01 1.59 0.42
105 FA7 1.21 0.53 0.8
104 FA?7 1.11 0.07 1.04
107 3.81 1.73 2.08
108 1180 4.76 2.99 1.77
104 I80 0.21 0.21 .
110 l180 0.45 0.04 0.39
111 UI80 0.43 0.43 0.00
112 v80 1.03 0.46 0.57
113 11180 0.03 0.03 0.00
114 l180 5.48 3.43 2.05
115 M180 1.97 1.11 0.86
116 180 2.15 1.33 0.82
117 1180 2.20 1.27 0.93
118 UI80 2.99 1.07 1.92
119 1i80 0.56 0.40 0.16
120 9180 2.90 1.47 1.23
121 SP80 1.62 0.59 1.03
122 SPO8 3.60 2.08 1.52
123 SP80 1.83 1.35 0.48
124 SP8O 1.01 0.57 0.4'
125 SP80 2.85 1.28 1.5?
126 SP80 3.61 1.25 2.36
127 SPO0 4.53 2.77 1.74
128 SP80 3.86 1.qo 1.96
129 SPSO 3.74 1.88 1.86
130 SF80 4.08 2.19 1.89
131 SPSF 6.26 3.73 2.53
132 SP80 5.34 2.44 2.92
131 SP80 2.04 0.9 1.08
134 SU80 5.6d 3.48 2.16
135 SU80 4.70 2.10 2.60
136 S890 4.34 2.31 2.03
137 SU80 5.13 2.24 2.89
138 S180 4.01 2.11 1.90
139 SU80 4.99 2.73 2.26
1480SU89 5.0' 3.10 1.%'
141 SU80 6.36 3.22 3.14
142 SU80 6.08 3.46 2.62
143 SU80 3.20 1.38 1.82
14 SU80 4.20 2.37 1.83
145 SU80 5.62 3.67 1.95
1W SU80 4.00 2.62 3.38
14? FATO 4.56 2.09 2.47
148 FABO 5.99 3.22 2.77
14 FAO8 2.07 1.45 0.42
150 FABO 1179 1.01 0.78


4.39
2. -

i.
6.58


8.6
4.9a
8.A01
7.00
8.11.
8.' K

4.57
6.79
7.1V
8.20
5.31
7.31
5.39
4.747
3.74
7.01
2.41
2.65
4.36
3.98
2.71
1.W
0.40
0.24
4.40
4.42
0.3R
0.68
0.77
-0.01
0.5
1.:0
O.f9

.A
2.73
3.73
3.7
1.88
2.4
2.475




3.8w


8.'.?
1.d
2.%.









4.9'
5.2-










4.3
5.14







3.19
8.24
4.51
8.47

3.21






8.43
4.39
3.4

4.36
i.2

6.41
5.115
4.1f
3.11
5.41
6.24
2.'92
3.21
2.!Q
2. y


3.81
1.90

5.80
7.65
4.75
8.07
3.72
4.53
5.84
7.40
7.94
9.73
3.51
6.79
5.71
6.9q
4.12
6.10
4.92
4.40
3.29
5.58
2.43
2.02
4.15
2.02
2.70
1.36
6.47
0.07
3.26
3.47
-0.08
0.13
0.77
-0.01
0.28
1.20
0.64
0.29

1.98
2.97
3.25
1.46
3.81
1.68
1.41
2.10
3.09
5.32
5.47
3.71
4.60
3.47
8.23
4.29
8.02
3.90
3.04
2.98
2.98
3.30
2.48
5.18
3.98
3.35
2.22
4.19
4.74
1.45
1.4
1.46
1.42


24.1 25.0
24.6 25.q
27.0 25.0
25.6 24.4
24.8 24.1
30.3 27.0
29.6 27.3
30.0 29.4
29.8 30.0
31.1 28.6
30.8 29.0
29.3 27.0
29.3 28.2
30.4 25.4
29.8 26.2
30.0 27.0
30.3 27.1
29.1 28.4
29.0 29.0
26.1 28.1
24.8 27.7
24.8 27.4
25.0 28.3
23.8 28.0
22.4 28.3
17.2 28.0
17.2 27.q
14.7 28.5
13.8 27.9
19.0 28.0
18.1 28.5
22.7 26.1
22.1 26.0
12.6 27.3
11.9 27.4
16.1 27.4
16.4 28.1
13.2 26.9
11.0 24.5
15.9 26.7
17.8 24.5
15.8 24.2
17.9 22.4
20.6 25.8
19.4 23.7
22.1 23.4
21.5 21.4
21.3 25.6
21.6 25.4
23.2 23.2
23.9 21.3
27.2 23.0
27.0 24.1
26.7 22.8
26.8 23.4
28.2 26.5
28.7 26.4
29.2 22.7
29.6 22.1
30.3 22.6
30.0 21.5
31.1 21.1
31.1 21.0
29.4 24.2
30.2 24.4
29.5 27.0
29.6 27.0
28.6 29.1
28.6 29.6
30.1 28.4
30.3 28.8
24.3 25.3
24.7 25.5
19.0 26.2
19.7 26.0


2.270
1.890
2.270
2.830
2.830
2.006
2.270
1.420
1.480
1.900
2.210
1.420
1.420
1.210
1.490
1.810
1.890
1.360
1.840
2.350
1.720
1.36
1.360
1.10
1.210
1.000
0.850
1.310
1.420
0.710
0.760
1.481
1.481
0.890
1.280
0.790
0.770
1.70
1.260
1.130
0.790
1.620
1.420
3.400
1.550
2.290
2.340
2.430
2.620
2.430
2.620
3.40
2.830
2.430
2.830
1.240
2.130
2.880
2.090
1.790
2.830
2.130
2.110
1.170
1.030
2.000
2.130
1.100
1.030
1.040
0.950
1.210
1.060
1.30
1.360


0.51131 0.9712
0.34650 0.8508
0.54463
0.2973T 1.682q
0.26349 2.5374
0.50382 1.2751
0.43378 1.8298
0.4246? 0.8757
0.41401 1.7876
0.54957 1.2131
0.5954 1.2514
0.83156 1.422
0.7957 1.6873
0. 7934 0.8249
0.88580 0.672
0.82720 0.8152
0.70750 1.0289
0.2639 2.2596
0.31110 2.826
0.3199, 1.5806
0.59878 0.8463
0.70080 0.7135
1.12374 0.8873
4.0371 0.7275
0.4739 0.8253
0.52300 1.4352
0.87514 0.672
0.466 0.7521
0.3453 0.7214
0.49k88 4.4q5
1.92208 0.2162
0.68402 1.1549
0.45714 0.9286
0.13023 1 d67
0.07656 1.5111
0.09503 1.7R07
0.15749 -0.0097
0.00304 18.3333


0.70256
0.2085S
0.40206
0.23049
0.47366
0.05404
0.22835
0.29670
4.28048
0.15894
0.11380
0.21 71
0.28176
4.43256
0.45586
0.32908
0.33293
0.48714
0.44%96
0.35432
0.41214
0.37555
0.4319
0.54604
0.3395W,
0.449353
0.42812
0.55607
0.55310
0.31411
0.4554W
0.70097
0.45520
0.41592
0.71437
0.d4205
0.26887


0.2190
0.5533
0.4093

O.,,
0.9331
4.6607
1.3034
1.1405
1.094'
1.334
1.6337
1.0316
12327
1.1744
1.4171
1.0294
2 0245
0.7204
1.5802
2.5637
1.4628
1.0213
0.9171
0.7115
1.0848
0.8591
0.8651
1.0425
0.8470
1 3000
0.7595
0.8m15
1.0433
0.5307
0.5392
1.1739
1.3240


4 73
5 17
5 20
5 60
5 63
6 27
6 30
1 83
6 84
7 27
7 30
7 77
7 81
8 19
8 23
8 61
8 65
9 27
9 30
10 16
10 19
10 61
10 65
11 7
11 10
U t a
11 53
11 57
11 99
12 3
12 48
12 52
0 q
1 3
1 13
1 16
1 58
1, 41
2 6
2 '4







Outer Control Bay (C) 85


MIS TIWE PC PH R PLAH.PG FLINWF PLHAN INSL TE P SAL EXTINCT ECOLEF. FERPUL HNTH DAY YEAR


151 FA80 2.5 1.97 0.48 2.09
152 FA80 3.82 3.46 0.36 1.5
153 FA80 2.03 0.q9 1.04 0.7i
154 FASO 1.13 0.51 0.62 O.'"
155 11181 1.52 0.63 0.89 0.043
156 i81 0.94 0.44 0.48
157 181 1.00 0.80 0.20 0.40
158 1181 -0.26 -4.49 0.23
159 i181 2.95 0.17 2.78 0.41
160 IK81 2.49 0.69 1.80 0. f
11 11181 1.14 4.87 0.27 0.61
162 1I81 1.5 0.76 0.82 0.87
163 I181 2.48 1.25 1.23 0.02
164 l181 4.42 1.74 2.66 0.8)
145 1181 2.36 M0.9 1.37 1.11
166 1181 2.03 1.50 0.53 0.86
167 1810 1.57 0.19 0.78 1.5
168 181 1.8O 1.42 0.47 1.4a
149 SP81 1.97 1.38 0.159 .61
170 SP81 3.46 2.19 1.27 .


0.90
1.11
0.60
0.60
-0.51

0.10

-0.12
-0.03
0.78
0.54
0.65
0.47
0.45
O.86
1.04
0.61
2.31


1.19 3697 16.2 25.2
0.41 15.8 24.4
0.15 1537 16.4 25.5
0.36 2249 15.8 25.3
0.% 3651 11.4 25.8
3162 10.9 25.9
0.30 293 q9.0 25.1
8.6 25.9
0.53 465 12.6 25.4
0.88 3q43 12.7 24.8
0.03 2820 11.7 21.5
0.31 4026 12.5 24.8
0.17 4727 17.6 26.1
0.35 0531 18.0 26.2
4.70 2152 16.9 24.6
5200 17.0 24.9
0.51 5575 17.7 24.3
4.87 4662 19.1 23.8
2.38 514 22.6 26.4
6015 23.4 25.5


0.227336 1.01951
0.39791
0.528302 0.36946
0.200918 0.8956
0.16653 0.28289
0.118912
0.13M633 0.14000

0.254437 0.13898
0.2437 0.341137
0.161702 0.71053
0.156980 0.55063
0.209858 0.33065
0.390201 0.18552
4.438662 0.48729
0.156154 0.42365
0.112646 0.98726
0.162162 0.78307
0.144747 2 38071
0.230091































SUMMARY OF DATA FROM THE
THERMAL AND CONTROL MARSHES









18S SPECIES SEES O. t DY' YEAR TRET I'.. L IHTi. tG LSTK C:Ti PR LUsI D IP SPIT' STHT LITT UCA FLOiER


:32:1
53 5
3351
453



5370
2 5

2i41
2 P 6

.1.

23.5

246h
3--33




2 i




i7, 3 A
173-






2747
3







2Aii






.5
5442
2760




135
67.i
2d37











2815




47 1
-Uf^S
2a?7;
5J7!?


4.88
5.04
2.68
1.07
5.07
3. 5
2.48
2.59
4.94
6.44
3.44
2.82
6.6t
5.86,
9.42
4.49
3.09
4.71
1.52
1.14
3.39
1.49
3.90
2.47
4.82
5.08
2.41
5.93
5.81
3.59
3.55
0.78
1.q4
2.50
1.51
0.19
1.03
2.82
2.50
2.79
1.98
3.72
4.62
0.90
1.19
4.05
3.69
0.94
2.86
3.32
0.81
1.18
2.95
1.79
2.19
1.17
3.52
6.06
1.70
-0.39
3.51
2.60
2.28
0.05


2.88
1.73
1.47
1.05
2.67
3.28
1.27
0.87
1.24
1.26
2.38
1.74
2.33
2.11
2.84
1.04
4.60
2.09
1.48
1.01
2.68
2.36
1.66
1.06
2.16
1.48
1.61
1.21
3.13
2.61
2.50
1.32
1.42
1.69
1.38
0.18
2.04
2.90
1.19
1.07
0.65
1.03
1.34
1.31
1.52
1.49
1.54
1.20
2.91
1.20
1.14
0.56
2.73
2.39
1.09
0.49
1.51
1.62
1.23
1.32
2.31
2.09
1.77
0.74


7.77 650.0 274.0 1.37 1140
6.78 446.0 353.0 1.86 941
4.15 569.0 118.0 1.66 1530
2.12 438.0 266.0 0.73 575
-7.74 29i.0 i90.0 1 51 939
6.93 529.0 3:5.0 1.05 1230
3.75 341.0 378.0 1.58 1450
3.46 298.0 2N6.0 2.25 634
6.19 29 .0 3.4.0 2.79 1130
8.20 561.0 532.0 2.69 968
5.82 410.0 56.0 1.25 952
4.58 435.0 3j4.0 1.52 1070
8.83 688.0 2'0.0 1.99 46
7.M8 509.0 272.0 1.61 1020
12.26 626.0 4 7.0 2.13 1570
5.55 518.0 331.0 1353
7.64 650.0 222.0 1.02 988
6.80 795.0 773.0 1.62 1350
3.00 696.0 173.0 1.12 1510
2.15 552.0 5 7.0 1.17 892
6.57 738.0 518.0 1.28 950
3.85 487.0 F82.0 0.78 1790
5.56 700.0 /33.0 1.77 1430
4.02 467.0 415.0 2.17 891
6.98 816.0 751.0 1.83 1160
6.56 812.0 832.0 1.83 1120
4.03 453.0 610.0 1.19 8-0
7.14 770.0 5'0.0 3.50 1280
8.91 766.0 624.0 1.8 1100
6.20 561.0 587.0 1.02 110
6.04 586.0 530.0 1.22 1130
2.10 701.0 494.0 1270
3.36 71.0 101.0 1.9 338
4.19 42.5 27.1 1.22 510
2.89 95.1 14.0 1.13 784
0.37 77.0 '-4. 0 .9 250
3.07 75.0 96.0 0.67 224
5.72 67.0 69.0 0.91 453
3.69 120.0 63.0 1.75 1140
3.86 115.0 70.7 2.04 413
2.63 92.0 125.0 1.93 184
4.69 73.8 70.2 1.1 374
5.96 121.0 89.8 2.18 626
2.43 134.0 71.1 1.12 476
2.71 103.0 82.2 O.'9 400
5.5M 119.0 4 .0 1.59 848
5.28 11..0 57. 1.68 1040
2.13
5.77 146.0 16.0 1.07 3'5
4.52 126.0 74.7 1.82 609
1.95 97.5 9.6 0.84 56
0.73 230.0 85.0 0.51 322
5.63 190.0 115.0 1.06 312
4.38 144.0 1I2.0 0.84 424
3.28 159..0 10.0 1.83 695
1.65 229.0 101.0 2.03 329
5.09 234.0 165.0 1.60 272
7.66 157.0 53.3 1.94 472
2.93 179.0 52.9 1.12 720
0.92 259.0 98.2 0.41. 485
5.82 215.0 1.5.0 1.30 412
4.61 153.0 66.4 0.94 754
4.05 209.0 45.8 1.13 970
0.94


alji ?.3
630 1.8
772 2.1
1310 2.9
425 2.1
9?70 2.0,
12.5 2.3
90 3.0
c1 2.1
-71- 1.8
830 1.7
1250 2.3
1210 2.2
750 1.4
808 2.0
137f 2.5
11.5 i.
7135 1.5
1240 1.7
11.1 2.2
5lIo 1.9
1040 I..4
110 2.5
1280 1 8
1090 1.9
10'10 1.4
1540 1 4
1260 1.8
1290 1.7

100 1.9
8i3 .
4;^ .0.O
187 8.4
2ir5 8.i
321 3.8
478 2.8
555 6.8
518 9.4
8?i 3.5
542 2.0
959 5.4
500 5.4
3?7 3.4
ii4 3.9
347 7.6
o41 9.5
3/A 2.8
2'~ 4.9
182 5.6
283 1.4
32/ 1.8
704 3.0
3T5 4.8
357 1.4
?71 1.1
586 3.0
19' 4.4
17N 1.9
323 2.0
323 5.0
210 4.7


105.0 0.8 102
109.0 0.0 189
113.0 0.0 134
102.0 0.0 120
.103.0 0.0 181
11.2. 0.0 291
120.0 0.0 2%0
108.0 1.6 5
90.1 11.2 152
q4.7 0.0 189
118.0 4.8 205
97.7 0.8 68
84.3 3.2 222
103.0 4.0 252
1id.0 7.6 138
11.0 1.8 202
q1.0 3.2 153
100.0 2.0
105.0 5.6 I19
q0.7 0.0 88
86.7 5.7 277
99.4 3.3 37?
102.0 2.3 276
102.0 12.8 210
85.7 6.4 131
84.9 12.8 170
99.0 8.8 242
94.9 23.2 191
78.8 9.6 233
%q.6 13.1 450
98.7 8.8 182
93.6 2.2 110
86.0 84
83.0 C.0 237
92. 0.4 207
59.0 0.6 101
70.1 0.4 205
84.7 0.0 357
80.0 0.9 278
55.7 5.7 104
55.9 4.4 213

70.0 3.1 175
60.1 1.3 212
55.7 1.8 132
o1. 3.1 152
70.7 1.8 152
77.1 12.9 19
60.0 2.0 97
73.0 8.0
80.0 10.6 134
42.0 1.1 li
51.5 8.0 303
71.4 1.6 267
63.0 9.3 316
36.4 8.9 220
41.6 6.7 301
57.2 12.4 167
50.0 10.2 248
42.6 20.9 116
46.2 15.6 234
62.8 10.0 148
59.1 24.0 156


16.0
0.0
2.4
0.0
6.2
0.0
0.0
0.0
4.8
3.2
0.0
0.0
1.6
0.0
0.0
0.0
2.4
0.0
0.0
6.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8
0.0
0.0
0.0
0.0
11.1
0.0
0.0
13.8
0.0
0.0
4.9
5.3
1.3
24.4
0.0
7.1
0.0

2.2
0.0
0.0
7.1
7.6
3.1
36.0




University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs