<%BANNER%>
HIDE
 Title Page
 Letter of transmittal
 Table of Contents
 List of Figures
 List of Tables
 Introduction
 Northeastern Gulf of Mexico: General...
 Granulometric analyses
 Heavy mineral reconnaissance
 Summary and conclusions
 Reference
 Appendix I. Detailed sample...
 Appendix II. Sample textural...
 Appendix III. Running averages...
 Appendix V. Modal analyses and...
 Copyright


FGS



Heavy mineral reconnaissance off the coast of the Apalachicola River Delta, northwest Florida ( FGS: Report of investiga...
CITATION SEARCH THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00001282/00001
 Material Information
Title: Heavy mineral reconnaissance off the coast of the Apalachicola River Delta, northwest Florida ( FGS: Report of investigation 95 )
Series Title: ( FGS: Report of investigation 95 )
Physical Description: vii, 61 p. : ill., map ; 23 cm.
Language: English
Creator: Arthur, Jonathan D
United States -- Minerals Management Service
Florida -- Bureau of Geology
Publisher: State of Florida, Dept. of Natural Resources, Division of Resource Management, Bureau of Geology
Place of Publication: Tallahassee
Publication Date: 1986
 Subjects
Subjects / Keywords: Heavy minerals -- Florida -- Apalachicola River Region   ( lcsh )
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
 Notes
Statement of Responsibility: by Jonathan D. Arthur ... et al. ; in cooperation with U.S. Minerals Management Service.
Bibliography: Bibliography: p. 42-44.
 Record Information
Source Institution: University of Florida
Rights Management:
The author dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law and all related or neighboring legal rights he or she had in the work, to the extent allowable by law.
Resource Identifier: aleph - 000937917
oclc - 15363842
notis - AEP9125
System ID: UF00001282:00001

Table of Contents
    Title Page
        Page i
        Page ii
    Letter of transmittal
        Page iii
        Page iv
    Table of Contents
        Page v
    List of Figures
        Page vi
    List of Tables
        Page vii
    Introduction
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
    Northeastern Gulf of Mexico: General setting
        Page 10
        Page 11
        Page 12
    Granulometric analyses
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
    Heavy mineral reconnaissance
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
    Summary and conclusions
        Page 41
    Reference
        Page 42
        Page 43
        Page 44
    Appendix I. Detailed sample location
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
    Appendix II. Sample textural characteristics
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
    Appendix III. Running averages (four point) of textural and heavy mineral data
        Page 55
    Appendix V. Modal analyses and percent heavy minerals in the 3-4 phi fraction
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
    Copyright
        Copyright
Full Text



STATE OF FLORIDA
DEPARTMENT OF NATURAL RESOURCES
Elton J. Gissendanner, Executive Director


DIVISION OF RESOURCE MANAGEMENT
Art Wilde, Director


BUREAU OF GEOLOGY
Walter Schmidt, Chief





Report of Investigation No. 95


HEAVY MINERAL RECONNAISSANCE OFF THE COAST OF THE
APALACHICOLA RIVER DELTA, NORTHWEST FLORIDA


by


Jonathan D. Arthur
Joseph Applegate


Shekhar Meikote
Thomas M. Scott


Published for the
FLORIDA GEOLOGICAL SURVEY


in cooperation with
U. S. MINERALS MANAGEMENT SERVICE


TALLAHASSEE
1986












DEPARTMENT
OF
NATURAL RESOURCES


BOB GRAHAM
Governor


GEORGE FIRESTONE
Secretary of State


BILL GUNTER
Treasurer


RALPH D. TURLINGTON
Commissioner of Education


JIM SMITH
Attorney General


GERALD A. LEWIS
Comptroller


DOYLE CONNER
Commissioner of Agriculture


ELTON J. GISSENDANNER
Executive Director


OE


S--I C



SCIrERC
L:3S^ (







LETTER OF TRANSMITTAL


BUREAU OF GEOLOGY
TALLAHASSEE
June 1986


Governor Bob Graham, Chairman
Florida Department of Natural Resources
Tallahassee, Florida 32301


Dear Governor Graham,

The Bureau of Geology, Division of Resource Management, Depart-
ment of Natural Resources, is publishing as Report of Investigation 95,
"Heavy Mineral Reconnaissance Off The Coast Of The Apalachicola River
Delta, Northwest Florida".

An increasing demand for heavy minerals, due to their unique physical
and chemical properties, requires that Florida's heavy mineral deposits
be delineated. This report presents basic data on the types, occurrence,
and distribution of heavy minerals offshore of northwest Florida. These
data are necessary for resource planning and development purposes.

Respectfully yours,

Walter Schmidt, Chief
Bureau of Geology











































Printed for the
FLORIDA GEOLOGICAL SURVEY
Tallahassee
1986






iv







TABLE OF CONTENTS


Introduction
Objectives and Scope ............................................................ 1
Acknowledgements............................................................... 1
Definitions and Uses of Heavy Minerals .................................... 2
Heavy Minerals Classification................................................ 4
Heavy Mineral Occurrence...................................... ....... 4
Domestic Sedimentary Heavy Mineral Resources................... 4
Previous Investigations............................................................ 6
Sampling Technique.............................................................. 7
Laboratory Procedures .......................................................... 7
Northeastern Gulf of Mexico: General Setting
Introduction ........................................................................... 10
Rivers and Bays .................................................................... 10
Barrier Islands.......................................................................... 11
S hoals .................................................................................... ..... 11
Granulometric Analyses
Introduction ............................................................................ 13
R results ................................................................................... 13
D iscussion................................................ ............................. 18
Heavy Mineral Reconnaissance
Introduction ............................................................................ 27
Heavy Mineral Concentration ................................... .......... 27
Heavy Mineral Provenance ...................................... ......... 30
Distribution of Heavy Minerals................................. ......... 32
Opaques ...................................................................... 32
Ultrastables.................................................................. 32
Metastables ..................................................................... 39
Summary and Conclusions............................................ .......... ... 41
References ..................................................................................... 42
Appendices
I Detailed Sample Location................................................... 45
II Sample Textural Characteristics............................. .......... 50
III Running Averages (Four Point) of Textural and Heavy Mineral
Data .......................................................... .......................... 55
IV Modal Analyses and Percent Heavy Minerals in the 2-3 phi
Fraction ............................................................................... 56
V Modal Analyses and Percent Heavy Minerals in the 3-4 phi
Fraction ............................................................................... 61







FIGURES


Figure 1 Depositional sequence for heavy mineral deposits....... 5
Figure 2 Study area and sample location map showing
morphological features discussed in text .................... 8
Figure 3 Flowchart of laboratory procedure................................ 9
Figure 4 Apalachicola River drainage system........................... 12
Figure 5 Four point transectt averages) running averages of
sample mean grain size (phi units) versus longitude.... 15
Figure 6 Four point transectt averages) running averages of
sample standard deviation (phi units) versus longitude 16
Figure 7 Four point transectt averages) running averages of
sample percent fines > 4.5 phi versus longitude ....... 17
Figure 8 Sample skewness versus sample standard deviation.. 19
Figure 9 Sample kurtosis versus sample skewness.................. 20
Figure 10 Log-log plot of sample suite standard deviation of
percent fines versus sample suite mean of percent
fines ................................... ................................... 21
Figure 11 Log-log plot of sample suite standard deviation of
means versus sample suite standard deviation of
standard deviations................................... ....... ... 22
Figure 12 Representative grain size distributions on probability
plots ............................................................................. 24
Figure 13 Probability plot of a representative sample within the
study area ................................................ ........ .... 25
Figure 14 Probability plot of a representative sample within the
study area................................................................... 26
Figure 15 Distribution of weight percent heavy minerals within
the 2-3 phi fraction.................................... ........ .. 28
Figure 16 Four point transectt averages) running averages of
weight percent heavy minerals within the 2-3 phi
fraction versus longitude.............................................. 29
Figure 17 Four point (sample) running averages of weight
percent heavy minerals within the 3-4 phi fraction
versus longitude...................................... ........ .... 31
Figure 18 Distribution of opaque minerals (estimate of volume
percent) within the 2-3 phi heavy mineral fraction....... 33
Figure 19 Distribution of zircon (estimate of volume percent)
within the 2-3 phi heavy mineral fraction .................. 34








Figure 20 Distribution of tourmaline (estimate of volume
percent) within the 2-3 phi heavy mineral fraction........ 35
Figure 21 Distribution of rutile (estimate of volume percent)
within the 2-3 phi heavy mineral fraction .................. 36
Figure 22 Distribution of kyanite (estimate of volume percent)
within the 2-3 phi heavy mineral fraction .................. 37
Figure 23 Distribution of staurolite (estimate of volume percent)
within the 2-3 phi heavy mineral fraction .................. 38
Figure 24 Distribution of epidote (estimate of volume percent)
within the 2-3 phi heavy mineral fraction .................. 40

TABLES


Table 1 Physical properties and industrial uses of heavy
minerals occurring in the northeast Gulf of Mexico ...... 3
Table 2 Heavy minerals percentages of the heavy mineral
fraction reported for northwest Florida, Alabama and
M ississippi........................ .................................... 30







REPORT OF INVESTIGATION NO. 95


HEAVY MINERAL RECONNAISSANCE OFF THE COAST
OF THE APALACHICOLA RIVER DELTA, NORTHWEST
FLORIDA


by
Jonathan D. Arthur, Joseph Applegate,
Shekhar Melkote, Thomas M. Scott

INTRODUCTION

OBJECTIVES AND SCOPE
The objectives of this investigation are to systematically examine
heavy mineral concentrations along the inner continental shelf of the north-
eastern Gulf of Mexico and to summarize the textural characteristics of
the region. The study area extends along Florida's northwest coastline
from approximately 15 miles (24 km) offshore of Apalachee Bay to the
same distance offshore of Pensacola Bay. Grain size analyses and pos-
sible sediment sources are discussed in the "Granulometric Analyses"
section of the report. The "Heavy Mineral Reconnaissance" section pre-
sents data pertaining to heavy mineral suites, provenance, concentration
and distribution. Also included in the report is background information
regarding heavy mineral classifications, uses, resources, sampling and
analytical methods.

ACKNOWLEDGEMENTS
This investigation was made possible by a cooperative agreement
between the Florida Bureau of Geology and the Minerals Management
Service of the U. S. Department of the Interior (Contract number 14-12-
0001-30115).
The authors gratefully acknowledge the Florida State University
(F.S.U.) for use of its various facilities. More specifically, we are indebted
to Dr. William Herrnkind, Director of the F.S.U. Marine Laboratory and his
secretary, Mary Westberg, for the arrangements and permission to use
the research vessel R/V Wolf for sediment sampling offshore of northwest
Florida. Further appreciation is extended to Dennis S. Cassidy, Director
of the Antarctic Research Facility and to Drs. Joseph F. Donoghue and
William C. Parker, Department of Geology, F.S.U. for use of their storage
and laboratory facilities.
Special thanks are extended to Kenneth M. Campbell, Tony Murray
and Thomas S. Wilson (boat captain) for assistance in obtaining samples.
The authors deeply appreciate the critical reading of the manuscript and
helpful comments throughout the investigation made by Drs. William F.
Tanner and Joseph F. Donoghue, Department of Geology, F.S.U. We also
are appreciative of the review by the staff of the Florida Bureau of Geology.







BUREAU OF GEOLOGY


The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the
official policies, either express or implied, of the U. S. Government.

DEFINITIONS AND USES OF HEAVY MINERALS
Heavy minerals are defined as discrete, liberated, sand-sized particles
having a density greater than 2.85 (Garner, 1978; Gary, et al., 1972).
Heavy minerals are generally categorized as "beach sands" or as "beach
environment" deposits due to their depositional association with coastal
processes (see "Heavy Minerals Occurrence"). The heavy mineral suite
characterizing the area of investigation consists of ilmenite, kyanite, stau-
rolite, tourmaline, zircon, rutile and minor amounts of epidote, sphene,
amphibole, magnetite, sillimanite, leucoxene and garnet. These minerals
are significant in both industrial and scientific aspects.
The worldwide industrial importance of heavy minerals has become
more apparent in the past few decades. An increasing demand for these
minerals, due to their unique physical and chemical properties, requires
that new deposits be discovered and developed. Table 1 lists a few im-
portant properties and industrial uses of the heavy minerals occurring
within the study area. Titanium minerals (rutile, ilmenite and leucoxene)
are currently mined for titanium metal and titanium oxide. The metallic
phase of titanium is useful in high temperature alloy production (e.g., for
use in aircraft and aerospace industries). Titanium oxide is primarily used
in pigment manufacturing. Magnetite, usually the hard rock (igneous and
metamorphic) variety, is mined as a source of iron. The minerals staurolite,
garnet and zircon are useful as abrasives. Staurolite can also serve as a
source of aluminum for the manufacture of portland cement and zircon is
a source of zirconium and hafnium. Kyanite, sillimanite (hard rock varieties)
and zircon are refractory materials.







REPORT OF INVESTIGATION NO. 95


Table 1. Physical properties and industrial uses of heavy minerals
occurring in the northeast Gulf of Mexico. Compiled from
Elements of Mineralogy, 1968, and 1983 Minerals Yearbook.


Mineral Composition
Magnetite Fe304


Ilmenite


FeTi03


Density Hardness Common Uses
5.2 6.0 Ore of iron


4.7 6.0 Ore of titan-
ium, Ti0n
pigment


Zircon ZrSiO, 3.9-4.7 7.5 Ore of Zr, Hf,
foundry sand,
refractory
Ultrastable
Tourmaline Na(Fe,Mg), 3.0-3.2 7.5 None
AIl(B03)3
(Si,08) (OH),
Rutile Ti02 4.2-4.5 6.5 Ore of titan-
ium, pigment
Kyanite AISi0 3.63 4.0-7.0 Refractory
Staurolite FeAISiO0,o 3.76 7.0 Abrasives,
portland ce-
ment
Sillimanite AISiO, 3.24 7.0 Refractory
Epidote Ca2(AI, 3.3-3.6 7.0 None
Fe,Mn)3 (OH)
Si30,,
Metastable Garnet (Fe,Mg,Ca), 3.5-4.3 7.0-7.5 Abrasives, fil-
(AI,Fe,Cr), tering medium
(Si04),
Sphene CaTiSi0,, 3.5 6.0 None
Hornblende NaCa, 3.0-3.4 6.0 None
(Mg,Fe,AI)o
(Si,AI)8022
(OH),

Analysis of the heavy fraction of sands is useful in solving strati-
graphic, paleostratigraphic and sedimentologic problems. Heavy mineral
suites aid in the correlation of strata and in ascertaining sediment source
areas. Furthermore, information regarding the direction and strength of
sedimentation pulses and provenance mixing can be provided by heavy
mineral investigations.


Opaque






BUREAU OF GEOLOGY


HEAVY MINERAL CLASSIFICATION
For the purpose of general study, Folk (1974) classified four groups
of heavy minerals: opaques, micas, ultrastables, and metastables. These
groups are discussed relative to minerals occurring in the study area.
Minerals belonging to the opaque group (magnetite, ilmenite and leucox-
ene) average a higher specific gravity due to their iron and titanium content
and dense crystallographic structure (Table 1). The mica-group minerals
are omitted from this study because they are easily weathered and there-
fore are present only in trace amounts. The minerals zircon, tourmaline
and rutile form the ultrastable group due to their high degree of hardness
and resistance to chemical and physical weathering. Consequently, a high
percentage of ultrastable minerals within a sample may indicate that the
sands are mature and have been reworked from older sediments. Meta-
stable minerals are slightly less resistant to weathering than the ultrast-
ables, however, both groups are considerably more durable than the
micas. The metastable mineral group includes garnet, hornblende, epi-
dote, sphene, kyanite, sillimanite and staurolite.

HEAVY MINERAL OCCURRENCE
In order to illustrate the various modes of occurrence of heavy mineral
deposits, Garner's (1978) depositional sequence for titanium minerals can
be applied (Figure 1). In this sequence, "in situ alteration" deposits are
the only deposits unique to titanium minerals. The remaining portion of
the diagram is discussed in terms of all heavy minerals. These minerals
crystallize as a result of igneous and metamorphic processes. For titanium
minerals, the resulting "hard rock deposits" may undergo in situ alteration,
thereby reacting to form new titanium-bearing phases (e.g., perovskite
altering to anatase and ilmenite). Hard rocks may also be physically weath-
ered and transported to form a variety of sedimentary deposits: continental
alluvial, deltaic and marine deposits (Figure 1). Garner (1978) has sub-
divided marine deposits into aeolian (dunal), strandline beach and offshore
sand deposits.

DOMESTIC SEDIMENTARY HEAVY MINERAL RESOURCES
Heavy mineral sand resources in the United States are widespread
and numerous. However, few of these deposits are considered recoverable
under current economic conditions. Heavy minerals in the northeastern
Gulf of Mexico common to those valued as economic resources are rutile,
ilmenite, staurolite, kyanite, sillimanite, garnet and zircon. Only four detrital
heavy mineral mining operations of these minerals (except for kyanite and
sillimanite) are currently active in the United States (1983 Minerals Year-
book).




BOOK TIGHTLY BOUND
REPORT OF INVESTIGATION NO. 95 5





HARD ROCK DEPOSITS

IN SITU WEATHERED
ALTERATION RESIDUAL
DEPOSITS DEPOSITS

CONTINENTAL DPS0
ALLUVIAL DEPOSITS

I
DELTAIC DEPOSITS

MARINE DEPOSITS 14

STRANDLINE
BEACH DEPOSITS


DUNAL DEPOSITS OFFSHORE
SAND DEPOSITS




Figure 1. Depositional sequence for heavy mineral deposits
(Garner, 1978). Asterisk indicates deposits unique to
titanium materials.







BUREAU OF GEOLOGY


Reserve estimates of titanium from domestic rutile and ilmenite are
1 million and 10 million tons, respectively. Rutile resources occur primarily
in Georgia, Tennessee and Florida. These states, in addition to New Jer-
sey. also host major sedimentary ilmenite resources. Mining operations
in Starke and Highland, Florida (Trail Ridge area) and Green Cove Springs,
Florida are currently the nation's only producers of ilmenite and rutile from
sand deposits.
Economic co-products of titanium mineral production include kyanite,
sillimanite. staurolite and zircon. Minor amounts of kyanite and sillimanite
have been recovered from ilmenite sands of New Jersey, Georgia and
Florida (Espenshade. 1973). An additional sedimentary resource of these
two minerals is found within the pebble phosphate deposits of Florida
(Stow, 1968). Staurolite resources in the Trail Ridge area are being mined
at a rate of about 0.1 million tons per year (1982 and 1983 Minerals
Yearbook). No other commercial production or resources of staurolite is
reported. Zircon players of Florida and Georgia are estimated to contain
4 million tons of zirconium (Lynd, 1980). Hafnium, an additional economic
constituent of zircon, is concentrated within these reserves at an estimated
0.8 million tons. The Trail Ridge area is also the only producer of domestic
zircon, which is mined at a rate slightly lower than staurolite (Adams, 1983).
Seventy-five percent of the world's garnet production is accounted
for by the United States (Smoak, 1983). Although there are four active
mining operations recovering domestic garnet, only one of the deposits is
sedimentary. This resource is a continental alluvial garnet deposit in Be-
newah County. Idaho.

PREVIOUS INVESTIGATIONS
Phelps (1940), in analysing modern beach sands of Florida, observed
highest heavy mineral concentrations at Jacksonville Beach (25 weight
percent) on the Atlantic coast and in Venice and Indian Rocks beaches
(13 and 10 weight percent, respectively) on the Gulf Coast. More recent
heavy mineral surveys of Florida's Atlantic continental shelf were con-
ducted by Pilkey (1963) and Grosz and Escowitz (1983). Similar studies
of the Gulf Coast include Goldstein (1942), Tanner, et al. (1961) and Hood,
et al. (1971). the first two of which are within or proximal to the present
area ot investigation. Goldstein's (1942) "Eastern Gulf Province" (north-
west Florida and south Alabama) is characterized by a suite containing
ilmenite, leucoxene, staurolite, kyanite, zircon, tourmaline and epidote,
averaging 0.44 weight percent heavy minerals. An almost identical heavy
mineral concentration and suite is reported for the vicinity of St. George
Island (Tanner, et al.. 1961). Heavy mineral concentrations within the shoal
near St. George Island are hypothesized to increase with depth (Tanner,
et al., 1961).
The most studied heavy mineral deposits within Florida's mainland
occur within Pleistocene beach ridge deposits of northeast peninsular
Florida. The Green Cove Springs, Boulougne and Trail Ridge (Highland)







REPORT OF INVESTIGATION NO. 95


deposits average 2 to 3 weight percent heavy minerals and are charac-
terized by a suite comprised of ilmenite, rutile, sillimanite, staurolite, zircon
and tourmaline (Pirkle, et al., 1977). The nearby Yulee deposits contain
different proportions of the same suite, which constitutes 3 to 4 weight
percent of the sediment (Pirkle, el al., 1984).

SAMPLING TECHNIQUE
In May, 1984, 250 surface samples were taken with a Shipek grab
sampler aboard the Florida State University Marine Laboratory's R/V Wolf
in the northeastern Gulf of Mexico. Thirty-two north-south transects were
constructed using Loran overprinted nautical charts. Sample collection
sites along these transects were located using Loran coordinates, which
were later converted to latitude and longitude. Appendix I lists the sample
numbers, sample depths and corresponding latitude and longitude. The
transects along the study area begin approximately 3.4 miles (5.5 km)
offshore and average about 11.5 miles (18.5 km) in length. The transects
are separated from each other by an average distance of 6 miles (9.5
km). In general, surface samples were collected at about 1.1 mile (1.8
km) intervals along the transects east of Cape San Bias, and at approx-
imately 1.7 mile (2.7 km) intervals along transects west of Cape San Bias.
Transect and sample numbers (labels) increase toward the west and
south, respectively. For example, transect 1 (T-1) is the eastern-most
transect, and T-28 is the western-most transect of the study area. Sample
1-1 is the first sample (northernmost and nearest to the shore) on transect
1 and sample 1-11 is the last sample (farthest from the shore) on transect
1. Figure 2 shows sample locations within the study area in addition to
several morphological features which will be introduced in the next chapter
of this report.

LABORATORY PROCEDURES
The samples were initially split to yield 75-100 grams (gm) and dried
for 12 hours at 700C. Organic material in the samples, present only in
minor amounts, was handpicked and/or removed through decantation. The
samples were then wet sieved, dried, and dry sieved at quarter-phi inter-
vals (-1.0 phi to + 4.0 phi) on a ro-tap machine. Weight percent, cumulative
weight percent, and the four moment measures (mean, standard deviation,
skewness and kurtosis) were computed using a granulometric program
(Kirkpatrick, 1982).



















SIA I I I I TI C
SCE ti N Tie 29



7 ,"6 r m0
I-



Figure 2. Study area and sample location map showing morphological features
discussed in text: PB is Pensacola Bay; ER is Escambia River; YR is Yellow
River; SRI is Santa Rosa Island; CB is Choctawhatchee Bay; SAB is St.
Andrews Bay; SI is Shell Island; Cl is Crooked Island; SJB is St. Josephs
Bay; CSB is Cape San Bias; CSBS is Cape San Bias Shoal; SVI is St.
Vincent Island; SGI is St. George Island; CSGS is Cape St. George Shoal;
DI is Dog Island; DIR is Dog Island Reef; AH is Alligator Harbor; OB is
Ochlockonee Bay; OS is Ochlockonee Shoal; SS is South Shoal; AB is
Apalachee Bay; solid lines with closed circles indicate transect and sample
locations.







REPORT OF INVESTIGATION NO. 95


Sediments in the size fractions 2.25, 2.50, 2.75, and 3.00 phi and in
3.25, 3.50, 3.75, and 4.00 phi were combined to form two groups. The
two groups were further split to yield a smaller fraction. These fractions
(5-10 gm) were centrifuged using tetrabromoethane to separate the heavy
minerals. Heavy mineral analyses for the 2-3 phi interval were completed
for all samples. In the 3-4 phi fraction, one sample per transect (the middle
sample where possible) was analyzed. The heavy mineral analyses in-
cluded determination of the weight percent of heavy minerals and modal
analysis (200 counts per slide). Figure 3 is a flowchart of the laboratory
procedure used in this investigation.

Figure 3. Flowchart of laboratory procedure.

STEP
1. Start


2. Split .............................................. ............... >
3. Oven dry @ 70O'Ci2 hours and weigh.................>
4. W et sieve ..................................... ................. >

5. Oven Dry @ 70C/12 hours and weigh ..............>

6. Dry seive 100gm @ 25 minutes @ 0.25 phi
interval
7. W eigh sieve fractions......................... ............ >

8. Form 2-3 phi and 3-4 phi fractions
9. Centrifuge separation/tetrabromoethane @ 1000
rpm 20 minutes .................................. ............ >

10. Modal analysis/200 counts per slide ..................>


Save 10% of sample
Total sample weight
Percent fines (>4.5
phi)
Percent coarse
(-s 4.5 phi)


Granulometric
analysis


Weight percent
heavy minerals
Volume percent
heavy minerals






BUREAU OF GEOLOGY


NORTHEASTERN GULF OF MEXICO: GENERAL SETTING

INTRODUCTION
The Gulf Coastal province has an area of approximately 150,000
square miles (388,500 square km) and contains about 50,000 feet (15,240
m) of predominantly arenaceous-argillaceous, marine to shallow marine
strata (Murray, 1960). The area of this investigation, (Figure 2) is the inner-
continental shelf of the province extending 15 miles (23 km) offshore from
Apalachee Bay, Florida (83040' longitude) to about 15 miles (23 km) off-
shore of Pensacola, Florida (87000' longitude). Many modern coastal en-
vironments such as deltas, estuaries, shoals and bays exist along this
stretch of coast (Figure 2). The climate is humid-semitropical with a mean
annual temperature of 68.9C (20.5C) and a mean annual rainfall of 56.2
inches (142.8 cm), (Schnable and Goodell, 1968). Marine, coastal and
alluvial sediments make up much of the Cretaceous and Tertiary strata
of Florida. A veneer of sediments covering seaward portions of the coastal
plain represents the Pleistocene.
In the northeastern Gulf of Mexico, the tidal range is approximately
3.3 feet. The surf zone wave energy levels range from "zero" [average
annual breaker height much less than 4 inches (10 cm)] in Apalachee Bay
to "moderate" [average annual breaker height approximately 9.8 inches
(25 cm)] west of Cape San Bias (Tanner, et al., 1961).

RIVERS AND BAYS
The northeastern Gulf of Mexico is essentially a depositional basin
with numerous rivers flowing into the bays that border the present coast-
line. In the study area, the Apalachicola River is the largest river and is a
part of the three-state drainage system encompassing 19,614 square miles
(50,800 square km), (Leitman,et al., 1983). The system is composed of
four major rivers the Flint, Chattahoochee, Chipola and Apalachicola
rivers (Figure 4). The Flint and Chattahoochee rivers originate in northern
Georgia, and ultimately join at the Jim Woodruff Dam on Lake Seminole.
The Apalachicola River flows south from the dam approximately 66 miles
(106 km) to Apalachicola Bay. The drainage basins of the Apalachicola
River cover approximately 2,400 square miles (6,200 square km). Sedi-
ments from these extensive drainage basins are currently forming a mod-
ern delta, which is prograding into the Apalachicola Bay (Donoghue and
Bedosky, 1985). However, upstream sediment transport is obstructed by
the Jim Woodruff Dam. Apalachicola Bay is part of a lagoon-estuary com-
plex behind St. George and St. Vincent islands.
Located east of the Apalachicola Bay are the Ochlockonee and Apa-
lachee bays. Water and sediment are supplied to them by the Ochlockonee
River. The Aucilla and St. Marks rivers, which drain the north Florida-south
Georgia Coastal Plain, flow into the Apalachee Bay (Figure 4).
Four major bays are located within the western portion of the study
area. From east to west, they are the St. Joseph, St. Andrews, Chocta-






REPORT OF INVESTIGATION NO. 95


whatchee and Pensacola bays. The morphology of these bays is similar
to that of Apalachicola Bay in that they are bounded by barrier islands.
St. Joseph Bay is an exception due to its confinement by a large spit (St.
Joseph Spit). With respect to other bays in the study area, St. Joseph and
St. Andrews bays are not recipient to any major rivers or drainage systems.
Choctawhatchee Bay is primarily fed by the Choctawhatchee River while
the largest rivers draining into the Pensacola Bay system are the Yellow
and Escambia rivers. These three rivers transport sediment from the
coastal plain of southern Alabama and the Florida panhandle (Figure 4).

BARRIER ISLANDS
The barrier island systems flanking Apalachicola Bay and St. George
Sound consist of Dog Island, St. George Island, and St. Vincent Island.
The eastern-most and smallest of the three islands, Dog Island, owes its
present shape to two opposing littoral drift cells (Stapor, 1971). St. George
Island, which is the largest of the three is approximately 28 miles (45 km)
in length, 1 mile (1.5 km) in width. The island has the shape of a triple
arc with two convex seaward arcs and a concave seaward arc in between
(Schade, 1985). St. Vincent Island, a wedge-shaped barrier island, lies
west of St. George Island. St. Vincent Island is approximately 9 miles (14.5
km) long, and 7 miles (11 km) wide at its east end but tapers to a point
at its west end. Significant shoreline morphologies proximal to these is-
lands are Alligator Peninsula to the east and the larger St. Joseph Spit to
the west. Beach and dune ridges are common features of barrier islands,
spits, and the mainland coast in this area.
In the Panama City region, Crooked Island and Shell Island separate
St. Andrews Sound into an eastern and western portion. In the Pensacola
region, Santa Rosa Island extends about 50 miles (80.5 km) from the
mouth of Pensacola Bay to the mouth of Choctawhatchee Bay.

SHOALS
Several offshore sand bars or shoals exist in the vicinity of Dog Island,
St. George Island, and Cape San Bias (Figure 2). These shoals are re-
ported to contain high concentrations of heavy minerals (Tanner, et. al.,
1961). West of Cape San Bias, the inner continental shelf is practically
devoid of any major sand bars. The absence of sand bars in this region
might be attributed to higher energy levels and a steeper shelf slope.
Three prominent shoals in the vicinity of Dog Island are Dog Island
Reef, South Shoal and Ochlockonee Shoal. Dog Island Reef lies parallel
to the coast between Dog Island and Alligator Harbor. The South Shoal
extends into the Gulf approximately 5 miles (8 km) south of Alligator Har-
bor. Ochlockonee Shoal lies approximately 8 miles (13 km) southeast of
Ochlockonee Bay.






12 BUREAU OF GEOLOGY

Two well developed shoals seaward of Cape San Bias and St. George
Island are important morphological features in this area. These shoals
extend about 10 miles (16 km) into the Gulf and are characterized by
broad irregular ridges and troughs.
Dog Island Reef, South Shoal, and Ochlockonee Shoal are believed
to be drowned barrier islands (Schnable and Goodell, 1968). The origin
of Cape San Bias Shoal and Cape St. George Shoal is unresolved.



Figure 4. Apalachicola River drainage system.
__L--- -~----^------;j)





ALABAMA
GEORGIA
CITTI Ma tIll FLInt '



i IAI } U .3


APALACHICiLA I.


GULF OF MEXICO






REPORT OF INVESTIGATION NO. 95


GRANULOMETRIC ANALYSES

INTRODUCTION
Granulometric moment measures include the mean grain size, stand-
ard deviation, skewness, and kurtosis. These textural parameters, along
with the percent fines (finer than (>) 4.5 phi), reflect the physical processes
operating at the site of deposition. Ostensibly, a set of physical processes
is unique to a particular environment. The size frequency of particles in a
sedimentary environment is thought to be a function of (1) the availability
of source material, (2) the processes of erosion, transportation, and dep-
osition, and (3) the energy level in the environment (Greenwood, 1969).
Sample mean grain size is the average grain size of a sediment
sample. This parameter is thought to be an indicator of the availability of
various sediment sizes for a given deposit.
Sample standard deviation is a measure of grain size dispersion about
the sample mean. Values of standard deviation are used to indicate the
relative degree of sorting in sediments. Well-sorted sediments have low
standard deviation values. The scale of Friedman (1962) for sorting values
is used in this study.
Sample skewness defines the symmetry of a grain size distribution.
Negative skewness values indicate a dominance of fine-grained particles
in the sample, whereas a positive value indicates that the sample contains
a relative abundance of coarse grained particles. A gaussian or normal
distribution has a skewness value of zero.
Sample kurtosis is a measure of the relative peakedness of a distri-
bution. The gaussian distribution is mesokurtic and has a kurtosis value
of three. Leptokurtic curves are more peaked and have kurtosis values
exceeding three. This type of curve indicates that the population is con-
centrated in the central portion of the curve, hence better internal sorting
of sediments. Platykurtic distributions, on the other hand have flatter curves
with values less than three. Piatykurtic curves generally indicate poorer
sorting and tend to be coincident with high standard deviation values.
The percent fines within a sample is commonly used to differentiate
fluvial from marine environments. The fine fraction is grouped in the >4.5
phi size class for the following reasons: (1) most samples have a very low
percentage of fines; and (2) in that this study pertains to heavy mineral
reconnaissance, granulometry of the sand size fraction is more relevant
in understanding factors controlling heavy mineral distribution.

RESULTS
Results of textural analysis of samples from the northeast Gulf of
Mexico (Appendix II) indicate that few overall longitudinal (east-west)
trends exist within the data. However, several semi-regional trends are
observed. Four point running averages (average of four transect averages)
of two of the moment measures and of percent fines (Appendix III) were






BUREAU OF GEOLOGY


calculated and plotted versus longitude in order to enhance these distri-
butions. Note that abbreviations for coastal features are included in Figures
5 through 7, 16 and 17. For purposes of discussion, these coastal geo-
graphic features are referred to as representative of actual sample loca-
tions, although we recognize that the features are actually north of the
sediments.
Mean grain size is variable, but is consistently within the medium sand
size grade: grand mean grain size equals 1.62 phi. Values of this parameter
range from 1.25 phi to 2.87 phi. Figure 5 is a plot of four point running
averages of mean grain size versus longitude. From Apalachee Bay west-
ward to St. George Island, mean grain size generally decreases. A well-
defined peak occurs symmetrically about the St. Andrews Bay area, coar-
sening to a maximum average value of 1.81 phi. A smaller, more poorly-
defined peak is centered around Choctawhatchee Bay. The minimum
mean grain size of these two peaks averages 1.35 phi.
Standard deviation four point running averages range from 0,66 phi
(moderately well sorted) to 0.93 phi (moderately sorted), The mean of
standard deviation values is 0.79 phi. Variation between four point running
averages of standard deviation versus longitude (Figure 6) is inverse to
that of the mean grain size distribution (Figure 5) in the central portion of
the study area. Moderately sorted sediments occur near Dog Island Shoal,
Cape San Bias and Pensacola Bay. Two peaks of standard deviation
values represent moderately sorted sediments near St. George Island and
midway between St. Andrews and Choctawhatchee bays. These two areas
correspond to minimum mean grain size values.
The distribution of percent fines (weight percent) as four point running
averages versus longitude (Figure 7) shows a correlation between high
values and the areas near Apalachee Bay, Dog Island, Cape St. George,
and immediately east of St. Andrews and Choctawhatchee bays. The
areas between these localities and west of Choctawhatchee Bay contain
a relatively lower percentage of fines. Also, the peak in percent fine values
east of Choctawhatchee Bay roughly corresponds to a peak in mean grain
size and standard deviation values for the same area. Values of percent
fines (and to a lesser degree, mean grain size and standard deviation)
show a general westward decrease throughout the study area (Figures 5,
6 and 7). Percent fines range from 0.00 to 22.66 and average 2.02.
Skewness and kurtosis are not plotted against longitude since they
explain information similar to that of mean grain size and standard devia-
tion, respectively. Skewness values average -0.38, indicating that samples
generally have a coarse tail distribution. The mean kurtosis value equals
4.70, indicating that the average grain size distribution is slightly more
peaked than a gaussian distribution.









O


L m
W M
go



.87 87- \ 85 8 842 4
Z "



I z1

Z




LONGITUDE

Figure 5. Four point transectt averages) running averages of sample mean grain size
(phi units) versus longitude. PB is Pensacola Bay; CB is Choctawhatchee
Bay; SAB is St. Andrews Bay; CSB is Cape San Bias; SGI is St. George
Island. AB is Aoalachee Bay.






C)




0.

co
z



C C
CO



o
0 a
z 0
I- -<



87Q94 87X0 86%a0 850U 85tOX 84020 8340
LONGITUDE

Figure 6. Four point transectt averages) running averages of sample standard
deviation (phi units) versus longitude. PB is Pensacola Bay; CB is
Choctawhatchee Bay; SAB is St. Andrews Bay; CSB Is Cape San Bias; SGI
is St. George Island; AB Is Apalachee Bay.













z 0
LL -1
0
Ea
m ,_ i I 1 s





Figure 7 Four point transectt averages) running averages of saple percent fines >




SAB is St. ndrews Bay; CSB is Cape San Bras; SGI is St. George Island
0AB is Apalachee Bay.
z
z
P
2- T J (0

87* 8?% 866o2 0 8540 WV 8402Y 834a
LONGITUDE

Figure 7. Four point transectt averages) running averages of sample percent fines >
4.5 phi versus longitude. PB is Pensacola Bay; CB is Choctawhatchee Bay;
SAB is St. Andrews Bay; CSB is Cape San Bias; SGI is St. George Island;
AB is Apalachee Bay.






BUREAU OF GEOLOGY


DISCUSSION
Interpretation of individual textural parameters, their interrelationships
and grain size distributions indicates that sediments from the northeastern
Gulf of Mexico are predominately fluvial in origin despite their present
location within a low to moderate energy coastal area. Reworking of these
sediments during Pleistocene sea level fluctuations was not efficient or
rapid enough to remove the fluvial characteristics from the sediments. In
the following discussion, bivariate plots confirm the fluvial origin; however,
the influence of coastal or marine processes cannot be totally eliminated.
By plotting granulometric moment measures for more than 250 sam-
ples of known environments, Friedman (1961) has delineated bivariate
fields representing beach, river and dune environments. Figure 8 is a plot
of sample skewness versus sample standard deviation. When compared
to Friedman's (1961) delineation, approximately 80 percent of the samples
plot as river sediments. Similarly, the plot of sample kurtosis versus sample
skewness (Figure 9) also indicates that the samples contain fluvial textural
characteristics. The samples that plot as beach sediments on Figures 8
and 9 are located either proximal to a shoal or within the northern third of
a transect (nearest the coastline).
Variation in percent fine data also separates beach from river samples
(Tanner. 1985, unpublished research). This Is shown in the bivariate log-
log plot of the standard deviation of percent fines versus the mean of
percent fines of Figure 10. The percent fines in this diagram is the weight
percent greater than or equal to 4.0 phi. Note that all but two of the beach
samples are from the northeastern Gulf of Mexico. The field of points
representing transect averages plots within the "river" field, again sug-
gesting a fluvial origin. A notable variation within the data on Figure 10 is
that the standard deviation of percent fines for transects 23 through 29
decreases from 1.5 to 0.2. Increased sorting within the fine fraction west-
ward from Choctawhatchee Bay is in accordance with decreasing values
of mean grain size, standard deviation and percent fines (Figures 5, 6 and
7). all of which may be due to higher energy levels and a steeper shelf
slope within the area.








REPORT OF INVESTIGATION NO. 95


*1- -


"BEACH '
NI
I



"BEACH"'
I
i,


)K

















"RIVER"
w mk~ t

mf^


.40 .80
STANDARD DEVI


1.20
NATION


1.60
(PHI)


2.00


Figure 8. Sample skewness versus sample standard deviation.
Beach and river reference fields are transposed from
Friedman (1961).


.00


I







BUREAU OF GEOLOGY


-2.00 -1.50 -1.00 -.50
SKEWNESS


Figure 9. Sample kurtosis versus sample skewness. Beach and
river reference fields are transposed from Friedman
(1961).


.50





MEAN OF % FINES 2 40
0.01 0.1 1.0 10.0

Pecos R., Tex.

Al TRANSECT AVERAGE FIELD .
( : Red R., Tex.
UE
i.1.0 0

I. Chlckasawhay R., .
0 Ala. 0

w 0
0 RIVER C
O 0.1
Keaton Bch.
zQ Brazos R., Tex.
Z 0
I.y Cape San Bias

St. George Is. (
.* BEACH
Atlantic Coast

Pacific Coast
St. George Sound

Figure 10. Log-log plot of sample suite standard deviation of percent fines versus
sample suite mean of percent fines (Tanner, 1985, unpublished research).







BUREAU OF GEOLOGY


Figure 11 contrasts variability (standard deviation) among sample
suite means and sample suite standard deviations (Tanner, 1979). This
plot emhasizes that no environments are mutually exclusive and that nar-
rowly defined depositional processes operate in more than one deposi-
tional environment. Environments represented on the diagram are swash,
dune, lagoon, offshore, coastal plain stream and mountain stream. The
point representing the grand average of all samples for these two param-
eters falls within the coastal plain stream field. With respect to overlapping
fields and transect averages, swash and offshore wave environments can-
not be eliminated as possible depositional environments, although a fluvial
origin accounts for most of the samples.


0.1


1.0








O'

0.1











0.01


Chi


1.0


Figure 11. Log-log plot of sample suite standard deviation of means
versus sample suite standard deviation of standard
deviations (Tanner, 1979). Asterisk indicates the grand
average value of samples from the study area.








REPORT OF INVESTIGATION NO. 95


Prior to discussion of the probability plots, a brief description of their
application and data distribution is warranted. Probability plots are con-
structed by plotting the log of grain size class (phi) versus cumulative
weight percent on arithmetic probability paper. These plots characterize
sediment sorting, population mixing and other subtle textural character-
istics within a sample. A gaussian distribution is observed as a linear
segment on a probability plot. A combination of these linear segments
may represent two or more components that make up the grain size dis-
tribution of a sample (Tanner, 1959). In some cases, the inflections be-
tween these segments represent "surf breaks" (Tanner, 1966). A "surf
break" is a concave inflection in the coarse or middle part of a probability
plot representing a winnowing process due to wave or surf action (Tanner,
1966). The slope of each linear segment represents the internal standard
deviation of its distribution. Consequently, the plot of a normally distributed,
well sorted sediment will have a gentle slope. Truncations of linear seg-
ments within the first and last tenths (10.0 weight percent) of the Y-axis
may indicate the presence of a coarse or fine tail, respectively. Figure 12
illustrates textural characteristics of eolian, river beach and sediments on
a probability plot. Included in the beach sample are gentle slopes, surf
breaks, and the presence of coarse and fine tails. Configurations of eolian
samples may contain convex inflections adjacent to a well sorted normal
distribution of finer-grained particles and the absence of a coarse tail.
Alluvial samples would typically plot as several linear segments with rel-
atively steep slopes (both indicative of poor sorting) and a pronounced
tail of fines or a high percentage of fines.
Figures 13 and 14 are probability plots representing the two most
common, interpretable sample grain size distributions within our study
area. The distribution of sample 26-5 (Figure 13) has characteristics most
indicative of a beach or near-shore marine environment: coarse and fine
tails, a possible surf break and relatively good sorting. The poor sorting
and high percentage of fine particles reflected in the distribution of sample
19-2 (Figure 14) may best represent a fluvial environment, since it does
not appear to contain eolian or beach characteristics. A large number of
probability plots in our investigation show a single, apparently gaussian
grain size distribution. Although many of these plots are problematic in
their interpretation, a portion of the samples may reflect both fluvial and
marine textural characteristics.




PRF DIST. OF GRHN SIZE US. % BY MT.
8 -1S \
I 1.

E 2 0.2 CT


I I \I "
1 25 5 95 99 99.925









Cape San Bas beach dune ridge (Visher, 1969); and D- Altaaha River
199). S-surf break CT-oarse ta.75

1 2.25


T 3.25 0
3.5
3.75 % a \





0.01 9.1 1 5 101625 59 759849695 99 99.9
CUMULATIVE HEIGHT %

Figure 12. Representative grain size distributions on probability plots: A-Brazos River
(Visher, 1969); B- sand placed in a beach environment (Tanner, 1966); 0-
Cape San Bias beach dune ridge (Visher, 1969); and D- Attamaha River
S(Visher. 1969). SB-surf break: CT-coarse tail; FT-fine tail.




S~ FREQ. DIST. OF GRH SIZE US, % BY MT.


CT


-1
-0.75
-6.5
-9.25
9
9.25
9.5
9.75
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3
3,25
3.5
3.75
4


FT


%F: 0.85


A a


9.91 g.1 1 5 1016 25 58 75 84 9 95
CUMULATIVE WEIGHT %
OUTPUT FOR SAMPLE LABELED -- 26-5


99 99.9


Figure 13. Probability plot of a representative sample within the study area. SB-surf
break; CT-coarse tail; FT-fine tail.


SB?


-- -- -- ---I -----' -- --- -- -


a a


9 a a





FREQ, DIST. OF GRN SIZE US.


-1
-8.75

-0.25
9..5

1.25
8.5



1.75
1.5

2
2.25
2.5
2.75
3
3.25
3.5
3.75
4


9.91 8.1 1 5 1 16 25 58 7584 9 95
CUMULATIVE HEIGHT 4
OUTPUT FOR SAMPLE LABELED -- 19-2


Figure 14. Probability plot of a representative sample within the study area.


99 99.9


%F: 11.5


a A


% BY WT.


* At


a I


* ft







REPORT OF INVESTIGATION NO. 95


HEAVY MINERAL RECONNAISSANCE

INTRODUCTION
The data base of this heavy mineral reconnaissance includes: (1)
analysis of 250 samples for heavy mineral concentration in the 2 to 3 phi
interval (2) analysis of 32 samples (one representative per transect) for
heavy mineral concentration in the 3 to 4 phi interval and (3) modal analysis
of the heavy minerals fraction. The 2 to 3 phi fraction was analyzed in
much more detail because the 3 to 4 phi fraction typically contains a higher
modal concentration of ultrastable minerals. This method provides a more
diverse suite of heavy minerals due to the fact that the metastable mineral
group would be more accurately represented for interpretation. Further-
more, the 2 to 3 phi fraction represents a much greater volume of the total
sample as is documented by sample mean grain size in Appendix II.

HEAVY MINERAL CONCENTRATION
In the 2 to 3 phi fraction, heavy mineral concentrations range from
0.01 to 4.35 weight percent and average 0.51 weight percent (N= 250)
within the study area (Appendix IV). Sample concentrations times 100 are
contoured on Figure 15. Local variations indicate high concentrations (2.0
weight percent) approximately 15 miles (24 km) south of Dog Island and
west-central St. George Island and approximately 5 miles (8 km) south
and 20 miles (32 km) southwest of Choctawhatchee Bay. Figure 16 illus-
trates the regional pattern of heavy mineral concentrations as a plot of
four-point running averages versus longitude (Appendix III). Regional
"highs" are located seaward of St. George and Santa Rosa islands (1.0
weight percent). The trend also indicates a westward increase in heavy
mineral content (2 to 3 phi fraction) throughout the study area.
The regional distribution of heavy minerals in the 3 to 4 phi fraction
mirrors that of the 2 to 3 phi fraction (Figure 17). The average concentration
of heavy minerals in the 3 to 4 phi interval is 4.39 weight percent (N = 32)
and ranges from a low of 0.33 weight percent at transect 3 to a high of
18.78 weight percent at transect 16 (Appendix V).
In a comparison of semi-regional heavy mineral concentrations and
textural characteristics of sediments within the study area, one possible
correlation is observed. There appears to be an inverse relationship be-
tween four point running averages of transect mean grain size and weight
percent heavy minerals (either fraction) with respect to longitude (Figures
5 and 16). For example, the relatively high concentrations within sediments
near St. George Island correspond to relatively low mean grain size values
for the region. Hydrodynamic processes responsible for the semi-regional
fluctuations in mean grain size may also account for the relative heavy
mineral enrichments. Further investigation of this apparent relationship is
warranted.



















GULF OF MEXICO :



0


0
CONTOUR INTERVAL *s
2 o M tno o ,s PERCENT HEAVY IIERALS x 100
2- 3 PHIIFRACTION





Figure 15. Distribution of weight percent heavy minerals within the 2-3 phi fraction. Note
that the contour interval equals 100 for values greater than 100.




* I I I i I -
-r
IC




- C

0







, z

>a z
u PB CB SAB CSB SGI A S. 0
Z 87q0 87CtX 86'30( 850403 854tX 8420( 834 $
LONGITUDE

Figure 16. Four point transectt averages) running averages of weight percent heavy
minerals within the 2-3 phi fraction versus longitude. PB is Pensacola Bay;
CB is Choctawhatchee Bay; SAB is St. Andrews Bay; CSB is Cape San
Bias; SGI is St. George Island; AB is Apalachee Bay.






BUREAU OF GEOLOGY


HEAVY MINERAL PROVENANCE
A provenance is defined as the "place of origin" or "the area from
which the constituent minerals of sediment, sedimentary rocks or facies
are derived" (Gary, et al., 1972). A heavy mineral provenance is the ig-
neous and/or metamorphic source area contributing the heavy minerals
to a receiving basin. Similar heavy mineral suites reported for proximal
study areas may indicate similar provenance. Table 2 enables comparison
of nearby heavy minerals suites reported by Goldstein (1942) and Drum-
mond and Stow (1979) to the suite occurring in the present study area.
Noting the proximity and similarity of mineral species and proportions
among these suites, one may infer that the suites originated from the same
provenance. These suites are characterized by the presence of kyanite,
staurolite, tourmaline, zircon and opaque minerals. In agreement with
Table 2. Heavy minerals percentages of the heavy mineral fraction
reported for northwest Florida, Alabama and Mississippi. NR
= not reported.
OFFSHORE NW FL. OFFSHORE ALA. OFFSHORE FL.
(PRESENT STUDY) AND MISSISSIPPI AND ALA.
2-3 phi 3-4 phi Drummond and Goldstein,
(N=247) (N=32) Stow, (1979) (1942)
Opaques 32.1 42.6 28 27.0
(Ilmenite)
Kyanite 24.7 16.5 22 10.8
Staurolite 13.9 9.4 18 9.4
Tourmaline 12.4 5.7 19 5.8
Zircon 3.3 8.7 7 7.0
Rutile 3.0 3.6 0.3 2.9
Epidote 2.8 1.7 NR 8.7
Sphene 3.0 1.6 NR NR
Amphibole 2.3 0.7 NR 3.6
Sillimanite 1.8 4.2 2 1.5
Garnet 0.4 0.4 NR 0.8
Leucoxene 1.0 4.8 3 8.5

the findings of Goldstein (1942) and Drummond,et al., (1979), it is con-
cluded that the heavy mineral provenance for the shelf sediments on the
northeastern Gulf of Mexico is the crystalline belt of the southern Appa-
lachian Piedmont. Although the ultimate source of heavy minerals is lo-
cated north of the study area, Tanner (1985, personal communication)
has proposed that sediments more recently were moved northward as
sea level rose. These sediments were deposited as bars and shoals during
low Pleistocene sea-level stands. Pertinent to this discussion is the fact
that the Apalachicola River system presently does not contribute sedi-
ments to the Gulf. Instead, modern sediments are trapped in lagoons and
estuaries (Doyle and Sparks, 1980; Donoghue and Bedosky, 1985). Drum-
mond and Stow (1979) suggest that offshore shelf and shoals contribute





II I I I I



I-



)









> S0
GCl






Wa ) i cc, a _
-0
0

Cpr cm SM cam AS6
S87q' e81xy 86E'O 854o' 8s~5q 84t0 8340O
LONGITUDE

Figure 17. Four point (sample) running averages of weight percent heavy minerals
within the 3-4 phi fraction versus longitude. PB is Pensacola Bay; CB is
Choctawhatchee Bay; SAB is St. Andrews Bay; CSB is Cape San Bias; SGI
is St. George Island; AB is Apalachee Bay.







BUREAU OF GEOLOGY


sediments to the Alabama and Mississippi coastal areas as well.

DISTRIBUTION OF HEAVY MINERALS
Modal percentages of individual heavy minerals within the 2 to 3 phi
heavy mineral fraction (Appendix IV) are contoured in figures 18 through
24. Average values of these minerals are listed in Table 2. Several local
variations occur between Apalachee Bay and Cape San Bias as opposed
to the more regional trends in the western half of the study area. In the
discussion of concentrations in the finer grain size interval (3-4 phi, Ap-
pendix V), the reader is reminded that these data represent one sample
per transect. Therefore, it is difficult to distinguish whether observed values
from this size fraction represent local or regional trends.

OPAQUES
Figure 18 shows the distribution of the opaque group minerals, il-
menite, magnetite, and leucoxene. Highest concentrations (60 modal per-
cent) within the 2-3 phi heavy mineral fraction occur near the shoals
offshore of St. George and Dog Islands and in Apalachee Bay. Samples
from the east-central portion of this bay contain the lowest concentrations
within the study area (15 modal percent). Apalachee and St. Andrews bay
sediments contain the lowest modal concentrations of opaques in the 3
to 4 phi heavy mineral fraction. Highest concentrations within this finer
grain size interval occur offshore between St. Andrews and Chocta-
whatchee bays.

ULTRASTABLES
The ultrastable group minerals identified in this study include zircon,
tourmaline and rutile. Local concentrations of zircon (15 modal percent,
2-3 phi) occur in the heavy mineral fraction of sediments seaward of Dog
Island and Choctawhatchee Bay (Figure 19). In the 3 to 4 phi interval, the
same area south of Dog Island and also sample number 1-5 contain zircon
greater than 20 modal percent. The tourmaline distribution (Figure 20)
best exemplifies the trend typical of all heavy minerals in the study area,
having smooth regional trends in the west as opposed to irregular local
variations in the east. Maximum concentrations of tourmaline occur in the
eastern half of Apalachee Bay (30 modal percent, 2-3 phi) and seaward
of Panama City (10 modal percent, 3-4 phi).
A westward decrease in rutile concentrations within the coarser sed-
iment heavy mineral fraction is shown in Figure 21. High concentrations
of rutile are observed in samples seaward of the eastern tip of St. George
Island (12 modal percent). In the same location, heavy minerals in the 3
to 4 phi fraction contain the highest modal concentration of rutile.













1m A
-I
GULF OF MEXICO C 0n



O

0
z
CONTOUR INTERVAL. 1 Z
so Io 31" 30 40 MILES OPAQUES P
a 0 II 3 4 4 IILOWlTI ES
I Io sI I II e4 m ou m




Figure 18. Distribution of opaque minerals (estimate of volume percent) within the 2-3
phi heavy mineral fraction.






























Figure 19. Distribution of zircon (estimate of volume percent) within the 2-3 phi heavy
mineral fraction.













Paame Cft M



oo -I
0O
GULF OF MEXICO


Ia

N o-J /-

z
z
CONTOUR INTERVAL o10 0
s 0 10 230 0 40 MILES TOURMALINE
I 0 Is 3 44 4 IEII TmS






Figure 20. Distribution of tourmaline (estimate of volume percent) within the 2-3 phi W
heavy mineral fraction. W1

















\\ Sp W
GULF OF MEXICO -

C
0




CONTOUR INTERVAL a 3
io o o0 o so o 1 MILI RUTILE
1* 0 1I I 44 14 KILAKITS





Figure 21. Distribution of rutile (estimate of volume percent) within the 2-3 phi heavy
mineral fraction.

















GULF OF MEXICO o
0


I0
S1 o <


0
z
CONTOUR INTERVAL = 10 0
10 1O s20 O0 40 MIL E KYANITE
0 i s 4 0 64 iiLOMCTE





Figure 22. Distribution of kyanite (estimate of volume percent) within the 2-3 phi heavy
mineral fraction.











TeldJ a*


o O IN f 0 TAUROLITE
GULF OF MEXICO M t








CONTOUR INTERVAL 10 <
S0 I 3so o4 EILO STAUROLITE







Figure 23. Distribution of staurolite (estimate of volume percent) within the 2-3 phi heavy
mineral fraction.






REPORT OF INVESTIGATION NO. 95 39
METASTABLES
Figures 22 and 23 show the distribution of kyanite and staurolite,
respectively. The other metastable minerals, garnet, sphene, amphibole
and sillimanite are not shown due to the fact that they are present only in
trace amounts (values < 3.0 modal percent ) within the 2 to 3 phi heavy
mineral fraction. Instead, these four minerals will be discussed with respect
to the epidote distribution shown on Figure 24.
West of Cape San Bias, the kyanite mode averages 25 percent and
shows a homogenous distribution (Figure 22). In the eastern half of the
study area, kyanite is less abundant with the exception of sediments prox-
imal to the shoals. Staurolite, however is relatively homogeneous in its
distribution throughout the study area (Figure 23). Maximum observed
concentrations of kyanite and staurolite in the 3 to 4 phi heavy mineral
size grade occur in samples 20-5 (30.3 modal percent) and 16-5 (15.3
modal percent), respectively.
Figure 24 shows the distribution of epidote within the study area. The
concentration of epidote in sediments between and offshore from Alligator
Point and Dog Island corresponds to areas of maximum concentrations
of garnet, amphibole and sphene (Appendix IV). Comparatively high con-
centrations of hornblende are also found near the epidote maximum (12
percent contour) within sediments near Cape St. George Shoal (Figure
24). Additional maximum garnet concentrations occur within samples from
the southern half of transect 14. Within the 3 to 4 phi fraction, maximum
concentrations of epidote, sillimanite and amphibole occur between tran-
sects 19 to 20.


















-.. w







9'2o *o 9o so "Ls EPIDOTE
a I 46 44 KI&OWsTVl





Figure 24. Distribution of epidote (estimate of volume percent) within the 2-3 phi heavy
mineral fraction.






REPORT OF INVESTIGATION NO. 95


SUMMARY AND CONCLUSIONS
1. It is postulated from granulometric and heavy mineral analysis that
the inner continental shelf sediments of the northeastern Gulf of Mexico
are predominantly fluvial in origin. These sediments have been transported
to the shelf primarily by the Apalachicola River during the low sea level
stands of the Pleistocene. Data also indicate evidence of reworking by
coastal or marine offshore wave processes.
2. The primary source of sediments in the study area are the crystalline
rocks of the southern Appalachians. However, results indicate that these
sediments are presently being contributed from a reworked offshore sed-
iment source.
3. There is a general westward decrease in values of sample mean grain
size, standard deviation and percent fines throughout the study area.
4. Kyanite, staurolite, tourmaline, zircon and opaque minerals charac-
terize the heavy mineral suite of sediments in the study area. Minor
amounts of garnet, epidote, sillimanite, amphibole, rutile and sphene are
also observed.
5. The grand average of heavy mineral concentrations in the 2 to 3 phi
interval is 0.51 weight percent. Higher concentrations of heavy minerals
are found in the 3 to 4 phi interval (4.39 weight percent). However, this
very fine sand grade represents a very small weight fraction (approximately
less than 3 percent) of the total sample.
6. There is a general westward increase in heavy mineral concentration
throughout the study area. Maximum concentrations of heavy minerals (2-
3 phi) superimposed on this trend occur within sediments offshore of St.
George and Santa Rosa islands.
7. Local variations of individual heavy mineral species generally corre-
spond to shoals located within the eastern half of the study area.






BUREAU OF GEOLOGY


REFERENCES
Adams, W. T., 1983, Zirconium and Hafnium: in 1983 Minerals Yearbook,
U. S. Dept. of the Interior, Bur. of Mines, U. S. Government Printing
Office, Washington, D. C., 1984, V. 1, 993 p.
Donoghue, J. F. and Bedosky, S. J., 1985, Recent sediments of a delta
complex, Apalachicola River, Florida: Southeastern Section Geol. Soc.
of Amer., Abstracts with Program, 1985, v. 17, No. 2, p. 110.
Doyle, L. J. and Sparks, T. N., 1980, Sediments of the Mississippi, Alabama
and Florida (MAFLA) continental shelf: Jour. Sed. Petrol., V. 50, No.
3, p. 905-916.
Drummond, S. E. and Stow, H. S., 1979, Hydraulic differentiation of heavy
minerals, offshore Alabama and Mississippi: Geol. Soc. America Bull.,
V. 90, No. 9, p. 1429-1457.
Espenshade, G. H., 1973, Kyanite and related minerals: in Brobst, D. A.
and Pratt, W. P., eds., U. S. Mineral Resources, U. S. Geol. Survey
Prof. Paper 820, 722 p.
Folk, R. L., 1974, Petrology of Sedimentary Rocks: Hemphill Publishing
Co., Austin, Tx., 182 p.
Friedman, G. M., 1961, Distinction between dune, beach, and river sands
from their textural characteristics: Jour. Sed. Petrol., V. 31, No. 4, p.
514-529.
Friedman, G. M., 1962, On sorting, sorting coefficients and lognormality
of the grain size distribution of sandstone, Jour. Geology, V. 70, p.
737-753.
Gamer, T. E., 1978, Geological classification and evaluation of heavy
mineral deposits: in Twelfth Forum on the Geology of Industrial
Minerals, Georgia Geol. Surv. Info. Cir. No. 49, 78 p.
Gary, M., McAfee, R. and Wolf, C. L., eds., 1972, Glossary of Geology:
Amer. Geol. Inst., Washington, D. C., 805 p.
Goldstein, A., Jr., 1942, Sedimentary petrologic provinces of the northern
Gulf of Mexico: Jour. of Sed. Petrol., V. 12, No. 2, p. 77-84.
Greenwood, B., 1969, Sediment parameters and environmental
discrimination, an application of multivariate statistics: Canadian Jour.
of Earth Sciences, V. 6, p. 1347-1358.
Grosz, A. E. and Escowitz, E.E., 1983, Placer heavy minerals of the United
States Atlantic continental shelf: Southeastern Section Geol. Soc. of
Amer., Abstracts with Program, 1983, p. 103.
Hood, W. C, Hood, S. D., and Oleson, S. M., 1971, Heavy minerals of
northern Sand Key, Pinellas County, Florida: Southeastern Geology,
V. 13, No. 3, p. 187-198.
Kirkpatrick, G. L., 1982, Statistical analysis of grain size as a possible key
to ancient depositional environments: M. S. Thesis, Florida State
University, Tallahassee, Florida, 181 p.






REPORT OF INVESTIGATION NO. 95


Leitman, H. M., Sohm, J. E. and Franklin, M.A., 1983, Wetland hydrology
and tree distribution of the Apalachicola River flood plain, Florida: U.
S. Geol. Survey Water Supply Paper 2196-A, p. 1-20.
Lynd, L. E., 1980, Titanium: in Mineral Facts and Problems, 1980 Edition:
U. S. Dept. of the Interior, Bur. of Mines Bull. No. 671, 1060 p.
Mason, B. and Berry, L. G., 1969, Elements of Mineralogy:W. H. Freeman
and Company, San Francisco, 550 p.
Murray, G. E., 1960, Geologic Framework of Gulf Coastal Province of
United States: in Shepard, F. P., Phelger, F. B., and Van Andel, T.
H., eds., Recent Sediments, Northwest Gulf of Mexico: Am. Assoc.
Petrol. Geol., Tulsa, Oklahoma, 349 p.
Phelps, W. B., 1940, Heavy mineral in the beach sands of Florida: Proc.
of Fla. Acad. of Sciences, V. 5, p. 168-171.
Pilkey, O. H., 1963, Heavy minerals of the U. S. South Atlantic continental
shelf and slope: Geol. Soc. of Amer. Bull., V. 76, p. 641-648.
Pirkle, E. C., Pirkle, W. A. and Yoho, W. H., 1977, The Highland heavy
mineral sand deposits on Trail Ridge in northern peninsular Florida:
Fla. Bur. of Geology, Report of Investigation No. 84, 50 p.
Pirkle, E. C., Pirkle, W. A. and Stayert, P. R., 1984, The Yulee heavy
mineral sand deposits of northeastern Florida: Econ. Geol., V. 79, No.
4, p. 725-737.
Schade, C. J., 1985, Late Holocene sedimentology of St. George Island,
Florida: M. S. Thesis, Florida State Univ., Tallahassee, Florida, 194
p.
Schnable, J. E., and Goodell, H. G., 1968, Pleistocene Recent
stratigraphy, evolution and development of the Apalachicola coast,
Florida: Geol. Soc. of Amer. Spec. Paper No. 112, 72 p.
Smoak, J. F., 1983, Abrasive Minerals: in 1983 Minerals Yearbook: U. S.
Dept. of the Interior, Bureau of Mines, U. S. Government Printing
Office, Washington, D. C., 1984, v. 1, 993 p.
Stapor, F. W., 1971, Sediment budgets on a compartmented low-to-
moderate energy coast in northwest Florida: Marine Geol., V. 10, No.
2, M1-M2.
Stow, S. H., 1968, The heavy minerals of the Bone Valley Formation and
their potential value: Econ. Geol., V. 63, No. 8, p. 973-975.
Tanner, W. F., 1959, Sample components obtained by the method of
differences: Jour. of Sed. Petrol., V. 29, No. 3, p. 408-411.
Tanner, W. F., Mullins, A., and Bates, J. D., 1961, Possible masked heavy
mineral deposit, Florida Panhandle: Econ. Geol., V. 56 p. 1079-1087.
Tanner, W. F., 1966, The surf "break" key to paleogeography?:
Sedimentology V.7, p. 203-210.






44 REPORT OF INVESTIGATION NO. 95

Tanner, W. F., 1979, Sedimentological tools for identifying depositional
environments: in Arden, D. D., Beck, B. F. and Morrow, E., eds.,
Second Symposium on the Geology of the Southeastern Coastal Plain,
Georgia Geol. Survey Info. Cir. No. 53, 219 p.
Visher, G. S., 1969, Grain Size Distributions and Depositional Processes:
Jour. Sed. Petrol., V. 39, p. 1074-1106.







REPORT OF INVESTIGATION NO. 95


APPENDIX I

Detailed Sample Location.
"Trans. #" is transect number

SAMPLE# DATE TRANS.# LORAN-W LORAN-Y DEPTH(M) LATITUDE LONGITUDE


1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
7-1
7-2


05/01/84 01
05/01/84 01
05/01/84 01
05/01/84 01
05/01/84 01
05/01/84,. .01
05/01/84 01
05/01/84 01
05/01/84 01
05/01/84 01
05/01/84 01
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 02
05/01/84 03
05/01/84 03
05/01/84 03
05/01/84 03
05/02/84 03
05/02/84 03
05/02/84 03
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 04
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 06
05/02/84 07
05/02/84 07


14490.5 46258.7
14487.8 46250.5
14484.3 46244.0
14480.8 46234.8
14477.4 46226.5
14473.0 46218.3
14470.5 46210.3
14467.0 46203.7
14463.8 46194.6
14460.6 46186.9
14456.5 46176.5
14492.0 46333.2
14488.5 46326.0
14484.6 46317.3
14481.3 46308.5
14472.9 46301.5
14474.5 46292.7
14470.6 46284.7
14467.7 46275.8
14464.0 46268.2
14484.5 46390.8
14481.0 46381.9
14476.6 46371.8
14473.8 46365.6
14470.1 46356.8
14466.9 46348.9
14462.5 46339.6
14459.1 46332.0
14471.3 46434.4
14467.2 46425.7
14463.5 46417.1
14459.5 46408.0
14455.5 46399.3
14451.6 46390.6
14448.0 46382.3
14444.1 46374.0
14427.0 46415.5
14422.8 46405.7
14418.7 46397.3
14414.7 46387.9
14410.5 46377.5
14407.8 46370.1
14402.8 46361.4
14398.5 46352.0
14394.6 46343.5
14410.6 46444.0
14407.2 46436.1


1.52
2.43
3.01
3.01
4.57
5.18
4.57
4.57
6.09
6.09
7.62
2.44
2.44
2.44
3.05
4.57
4.57
4.57
4.57
4.57
3.66
3.66
3.96
3.66
5.48
6.10
6.10
6.10
4.57
4.57
4.57
4.87
4.57
2.43
4.57
4.57
7.62
7.62
7.62
12.19
10.66
10.66
12.19
15.24
13.71
2.43
4.57


29 55.91
29 55.05
29 54.07
29 53.00
2951.95
29 50.95
29 49.98
29 49.05
29 48.02
29 47.80
29 45.85
29 59.00
29 58.01
29 56.95
29 55.99
29 55.05
29 54.01
29 52.93
29 52.00
2951.01
29 59.70
29 58.65
29 57.55
29 56.82
29 55.85
29 54.85
29 53.75
29 52.85
29 59.02
29 58.00
29 57.00
29 55.90
29 54.95
29 54.02
29 52.90
29 52.00
29 51.44
29 50.31
29 49.25
29 48.45
29 47.29
29 46.30
29 45.45
29 44.30
29 43.25
29 50.45
29 49.50


83 52.20
83 52.10
83 52.25
83 52.25
83 52.31
83 52.31
83 52.37
83 52.50
83 52.43
83 52.45
83 52.43
83 58.42
83 58.45
83 58.46
83 58.45
83 58.46
83 58.45
83 58.50
83 58.30
83 58.49
84 04.71
84 04.71
84 04.71
84 04.75
84 04.71
84 04.71
84 04.75
84 04.80
8411.03
84 11.10
84 11.12
84 11.10
84 11.10
84 11.10
84 11.10
8411.10
84 17.60
84 17.55
84 17.65
84 17.55
84 17.40
84 17.55
84 17.48
84 17.48
84 17.42
84 22.70
84 22.76







46 BUREAU OF GEOLOGY


SAMPLE# DATE TRANS.# LORAN-W LORAN-Y DEPTH(M) LATITUDE LONGITUDE


7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-13
10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
13-1
13-2
13-3
13-4


05/02/84
05/02/84
05/02/84
05/02/84
05/02/84
05/02/84
05/02/84
05/02/84
05/02/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
04/30/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/05/84
05/06/84
05/06/84
05/06/84
05/06/84


07
07
07
07
07
07
07
07
07
08
08
08
08
09
09
09
09
09
09
09
09
09
09
09
09
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13


14402.8 46428.1
14399.1 46417.8
14395.2 46408.8
14390.7 46397.8
14386.7 46390.5
14382.7 46381.8
14378.0 46372.0
14374.0 46362.4
14370.8 46352.1
14414.5 46489.7
14410.6 46480.9
14405.9 46472.7
14401.8 46462.8
14405.4 46504.8
14401.4 46494.5
14397.5 46485.9
14393.9 46478.0
14389.1 46467.3
14384.5 46458.3
14380.0 46450.9
14375.8 46440.3
14371.5 46431.5
14367.8 46422.6
14363.4 46412.3
14350.5 46385.1
14392.7 46522.9
14387.8 46514.6
14384.8 46505.3
14378.8 46496.7
14374.5 46487.2
14353.9 46476.4
14349.6 46467.1
14345.0 46458.2
14340.1 46448.7
14336.3 46439.7
14331.7 46431.4
14327.6 46422.0
14323.0 46413.8
14318.4 46404.1
14313.9 46395.1
14309.4 46385.3
14331.7 46517.2
14328.0 46508.7
14324.5 46501.4
14321.7 46492.8
14314.1 46480.8
14310.4 46471.9
14306.9 46462.5
14301.2 46453.2
14295.6 46444.7
14292.0 46435.0
14286.1 46426.9
14287.3 46505.2
14283.0 46495.9
14277.6 46483.1
14272.5 46475.0


6.09
6.09
7.62
12.19
12.19
14.63
50.85
15.24
15.24
6.09
6.70
9.75
10.66
6.09
6.09
6.09
4.57
7.62
7.62
7.62
13.71
13.71
13.71
13.71
15.54
3.04
4.57
4.57
3.04
4.57
9.14
10.66
12.19
12.19
12.19
15.24
16.76
16.76
15.24
18.28
19.81
4.57
6.09
7.62
9.75
10.05
12.19
13.71
13.71
15.24
16.76
16.76
6.10
6.10
7.62
7.93


29 48.60 84 22.76
29 47.65 84 22.60
29 46.68 84 22.51
29 45.48 84 22.40
29 44.55 84 22.50
29 43.60 84 22.48
29 42.48 84 22.28
2941.50 8422.48
2940.50 8422.10
29 53.20 84 25.70
29 52.24 84 25.70
2951.30 8425.70
29 50.21 84 25.61
29 52.78 84 28.45
2951.79 8428.25
29 50.83 84 28.25
2949.95 8428.18
2948.82 8428.10
29 47.78 84 28.20
29 46.80 84 28.30
2945.75 8428.18
29 44.73 84 28.20
29 43.80 84 28.10
29 42.77 84 27.98
29 39.70 84 27.98
2952.19 8432.14
2951.04 8432.10
29 50.21 84 31.95
29 48.92 84 32.35
29 48.10 84 32.25
2945.11 8434.44
2944.10 8434.37
29 43.13 84 34.44
29 42.05 84 34.52
2941.11 8434.37
2940.15 8434.52
2939.11 8434.59
29 38.21 84 34.52
29 37.26 84 34.63
29 36.15 84 34.52
29 35.13 84 34.44
29 45.08 84 38.86
29 44.20 84 38.80
29 43.43 84 38.78
29 42.60 84 38.58
2941.15 8438.80
29 40.21 84 38.78
29 39.32 84 38.62
29 38.20 84 38.76
2937.14 8438.92
29 36.20 84 38.78
29 35.13 84 39.05
29 40.03 84 46.60
29 39.05 84 46.62
29 37.80 84 46.40
29 36.28 84 46.05








REPORT OF INVESTIGATION NO. 95 47

SAMPLE# DATE TRANS.# LORAN-W LORAN-Y DEPTH(M) LATITUDE LONGITUDE
13-5 05/06/84 13 14268.4 46466.2 12.19 29 35.71 84 46.40
13-6 05/06/84 13 14263.4 46457.3 13.72 29 34.86 84 46.60
13-7 05/06/84 13 14259.2 46446.8 16.76 29 33.64 84 46.20
13-8 05/06/84 13 14253.7 46436.3 18.29 29 32.61 84 46.39
13-9 05/06/84 13 14249.0 46428.0 18.29 29 31.63 84 46.48
13-10 05/06/84 13 14245.2 46418.0 18.29 29 30.65 84 46.38
14-1 05/06/84 14 14250.3 46517.9 4.88 29 37.49 84 52.78
14-2 05/06/84 14 14245.8 46508.3 9.14 29 36.50 84 52.69
14-3 05/06/84 14 14241.1 46498.9 7.62 29 35.51 84 52.71
14-4 05/06/84 14 14235.9 46488.4 12.19 2934.39 8452.68
14-5 05/06/84 14 14231.8 46482.3 10.67 29 33.62 84 52.73
14-6 05/06/84 14 14227.0 46470.5 12.19 29 32.40 84 52.63
14-7 05/06/84 14 14222.6 46459.9 12.19 29 31.34 84 52.52
14-8 05/06/84 14 14213.1 46441.3 13.72 29 29.28 84 52.52
14-9 05/06/84 14 14208.5 46423.1 18.29 29 27.60 84 51.95
14-10 05/06/84 14 14205.6 46419.6 19.81 29 27.12 84 52.02
15-1 05/07/84 15 14207.8 46523.4 7.62 29 34.42 84 59.10
15-2 05/07/84 15 14203.3 46513.9 3.05 29 33.40 84 59.03
15-3 05/07/84 15 14199.3 46504.6 9.14 29 32.42 84 58.98
15-4 05/07/84 15 14193.0 46495.0 7.62 29 31.31 84 59.20
15-5 05/07/84 15 14189.0 46485.3 9.14 29 30.32 84 59.03
15-6 05/07/84 15 14184.6 46475.7 9.14 29 29.30 84 58.98
15-7 05/07/84 15 14180.7 46467.4 4.57 29 28.33 84 58.97
15-8 05/07/84 15 14176.0 46457.0 7.62 29 27.20 84 58.84
15-9 05/07/84 15 14171.0 46447.0 16.76 29 26.19 84 58.88
15-10 05/07/84 15 14165.7 46436.8 16.76 29 25.00 84 58.92
16-1 05/07/84 16 14178.1 46517.5 3.05 2931.70 85 02.75
16-2 05/07/84 16 14175.5 46512.6 7.62 29 31.13 85 02.75
16-3 05/07/84 16 14170.5 46502.5 4.88 29 30.10 85 02.73
16-4 05/07/84 16 14167.4 46495.3 6.10 29 29.35 85 02.65
16-5 05/07/84 16 14161.6 46484.8 9.14 29 28.13 85 02.75
16-6 05/07/84 16 14157.2 46474.5 6.10 29 27.06 85 02.65
17-1 05/07/84 17 14150.5 46616.0 6.10 29 34.55 85 12.98
17-2 05/07/84 17 14146.0 46600.5 6.10 29 33.10 85 12.58
17-3 05/07/84 17 14141.5 46591.3 7.62 2932.05 85 12.51
17-4 05/07/84 17 14135.5 46581.3 7.62 29 30.80 85 12.62
17-5 05/07/84 17 14133.1 46570.8 9.14 29 29.81 85 12.21
17-6 05/07/84 17 14127.2 46563.7 12.19 29 29.00 85 12.58
17-7 05/07/84 17 14122.0 46554.6 13.72 29 27.88 85 12.67
17-8 05/07/84 17 14118.2 46545.2 16.76 29 26.90 85 12.48
17-9 05/07/84 17 14114.1 46536.9 21.34 29 26.01 85 12.45
18-1 05/10/84 18 14108.7 46654.2 1.52 29 37.52 85 17.82
18-2 05/10/84 18 14105.4 46647.3 4.57 29 36.75 85 17.80
18-3 05/10/84 18 14100.1 46638.3 6.10 29 35.70 85 17.90
18-4 05/10/84 18 14095.6 46628.8 7.62 29 34.62 85 17.83
18-5 05/10/84 18 14091.1 46620.4 13.72 29 33.75 85 17.92
18-6 05/10/84 18 14086.7 46610.9 13.72 29 32.69 85 17.83
18-7 05/10/84 18 14080.8 46601.8 13.72 29 31.57 85 17.57
18-8 05/10/84 18 14076.7 46593.0 18.29 29 30.55 85 17.98
19-1 05/10/84 19 14092.1 46663.6 9.14 29 37.32 85 20.55
19-2 05/10/84 19 14087.3 46653.6 9.14 29 36.25 85 20.48
19-3 05/10/84 19 14082.3 46645.2 6.10 29 35.25 85 20.52
19-4 05/10/84 19 14077.5 46635.7 9.14 2934.18 8520.58
19A-1 05/14/84 19A 14139.9 46847.3 7.62 29 55.28 85 29.40
19A-2 05/14/84 19A 14121.5 46833.1 12.19 2953.18 8530.70
19A-3 05/14/84 19A 14113.9 46816.4 13.72 29 51.37 85 30.53








48 BUREAU OF GEOLOGY

SAMPLE# DATE TRANS.# LORAN-W LORAN-Y DEPTH(M) LATITUDE LONGITUDE


19A-4 05/14/84
19A-5 05/14/84
19A-6 05/14/84
19A-7 05/14/84
20-1 05/10/84
20-2 05/10/84
20-3 05/10/84
20-4 05/10/85
20-5 05/10/84
20-6 05/10/84
20-7 05/10/84
20A-1 05/13/84
20A-2 05/13/84
20A-3 05/13/84
20A-4 05/13/84
20A-5 05/13/84
20A-6 05/13/84
20A-7 05/13/84
21-1 05/10/84
21-2 05/10/84
21-3 05/10/84
21-4 05/10/84
21-5 05/10/84
21-6 05/10/84
21-7 05/10/84
21A-1 05/13/84
21A-2 05/13/84
21A-3 05/13/84
21A-4 05/13/84
21A-5 05/13/84
21A-6 05/13/84
21A-7 05/13/84
22-1 05/11/84
22-2 05/11/84
22-3 05/11/84
22-4 05/11/84
22-5 05/11/84
22-6 05/11/84
22-7 05/11/84
22A-1 05/13/84
22A-2 05/13/84
22A-3 05/13/84
22A-4 05/13/84
22A-5 05/13/84
22A-6 05/13/84
22A-7 05/13/84
23-1 05/11/84
23-2 05/11/84
23-3 05/11/84
23-4 05/11/84
23-5 05/11/84
23-6 05/11/84
23-7 05/11/84
23A-1 05/13/84
23A-2 05/13/84
23A-3 05/13/84


19A
19A
19A
19A
20
20
20
20
20
20
20
20A
20A
20A
20A
20A
20A
20A
21
21
21
21
21
21
21
21A
21A
21A
21A
21A
21A
21A
22
22
22
22
22
22
22
22A
22A
22A
22A
22A
22A
22A
23
23
23
23
23
23
23
23A
23A
23A


14105.7 46801.2
14098.8 46787.2
14091.2 46772.6
14084.0 46756.8
14108.5 46908.3
14100.4 46894.5
14092.1 46877.9
14084.1 46863.4
14076.9 46828.3
14069.1 46832.4
14060.2 46817.4
14077.7 46954.6
14070.2 46940.4
14062.2 46926.5
14055.1 46912.2
14047.5 46897.1
14040.3 46883.4
14032.8 46858.4
14046.4 47005.4
14039.2 46991.9
14032.3 46977.8
14025.4 46964.3
14018.2 46949.8
14011.7 46935.7
14003.1 46922.5
14008.3 47041.3
14001.6 47027.7
13994.0 47015.0
13987.1 47001.8
13979.5 46988.1
13972.2 46974.5
13965.6 46962.5
13963.2 47068.5
13956.5 47056.0
13949.2 47043.2
13945.3 47031.1
13936.5 47018.3
13929.7 47004.9
13922.6 46993.0
13914.8 47090.9
13908.1 47078.9
13901.8 47067.8
13895.7 47055.3
13889.2 47043.4
13882.8 47031.2
13876.8 47018.5
13860.3 47105.2
13854.7 47094.5
13849.2 47084.4
13842.8 47071.1
13836.1 47059.7
13830.3 47048.8
13823.7 47035.8
13804.3 47118.4
13798.4 47107.3
13793.4 47095.9


15.24
18.29
18.29
18.29
18.23
19.81
21.34
21.34
22.86
22.86
24.38
18.23
18.23
19.81
22.86
22.86
24.38
25.91
18.23
19.81
21.34
22.86
24.38
21.34
27.43
19.81
21.33
24.38
25.90
25.90
28.95
27.43
21.34
24.38
25.90
24.38
25.90
27.43
27.43
21.34
22.86
24.38
25.91
28.95
30.48
32.00
24.38
22.86
27.43
30.48
28.95
30.48
32.00
19.81
21.33
24.38


29 49.65
29 48.08
29 46.40
29 44.77
29 59.48
29 57.85
29 56.02
29 54.40
29 52.72
29 50.90
29 49.12
30 03.01
3001.38
29 59.72
2958.10
29 56.39
29 54.73
29 52.00
30 07.51
30 05.89
30 04.21
30 02.57
30 00.82
29 59.20
29 57.54
30 10.89
30 09.15
30 07.55
30 05.90
30 04.16
30 02.42
30 00.95
30 13.61
3011.86
30 10.20
30 08.59
30 06.95
30 05.30
30 03.66
30 15.95
30 14.26
30 12.62
30 10.98
30 09.38
30 07.69
30 06.00
30 17.49
30 15.88
30 14.42
30 12.63
30 10.88
3009.18
30 07.49
30 19.12
30 17.40
30 15.70


85 30.58
85 30.51
85 30.50
85 30.40
85 36.75
85 36.88
85 36.80
85 36.91
86 36.80
85 36.81
85 36.92
85 42.98
85 43.00
85 43.10
8543.11
8543.12
8543.10
85 42.50
85 49.40
85 49.49
85 49.40
85 49.43
85 49.40
85 49.34
85 49.59
85 55.64
85 55.66
85 55.75
85 55.76
85 55.88
85 55.95
85 56.05
8601.76
8601.89
86 02.00
86 02.05
86 02.14
86 02.22
86 02.25
86 08.01
86 08.14
86 08.23
86 08.26
86 08.38
86 08.40
86 08.48
86 14.32
86 14.40
86 14.51
86 14.45
86 14.70
86 14.72
86 14.92
86 20.48
86 20.65
86 20.70








REPORT OF INVESTIGATION NO. 95 49

SAMPLE# DATE TRANS.# LORAN-W LORAN-Y DEPTH(M) LATITUDE LONGITUDE
23A-4 05/13/84 23A 13787.1 47086.0 27.43 30 14.21 86 20.95
23A-5 05/13/84 23A 13789.1 47074.7 28.95 30 12.69 86 20.20
23A-6 05/13/84 23A 13776.4 47064.0 32.00 30 10.89 86 21.05
23A-7 05/13/84 23A 13770.8 47053.3 30.48 30 09.34 86 21.12
24-1 05/11/84 24 13744.5 47125.0 21.34 30 20.01 86 26.89
24-2 05/11/84 24 13739.7 47114.9 21.34 30 18.41 86 26.95
24-3 05/11/84 24 13734.3 47104.4 19.20 30 16.77 86 27.01
24-4 05/11/84 24 13730.0 47095.0 24.38 30 15.30 86 27.12
24-5 05/11/84 24 13723.7 47083.4 27.43 30 13.48 86.27.32
24-6 05/11/84 24 13718.6 47072.4 27.43 30 11.78 86 27.40
24-7 05/11/84 24 13711.6 47060.9 28.95 30 09.99 86 27.55
25-1 05/12/84 25 13618.6 47128.5 18.29 30 20.65 86 39.65
25-2 05/12/84 25 13614.4 47119.3 18.29 30 19.00 8639.70
25-3 05/12/84 25 13609.4 47109.7 19.81 30 17.35 86 39.85
25-4 05/12/84 25 13605.0 47099.3 21.34 30 15.60 86 39.95
25-5 05/12/84 25 13599.8 47089.8 25.91 30 14.01 86 40.10
25-6 05/12/84 25 13595.6 47079.7 22.86 30 12.34 86 40.15
25-7 05/12/84 25 13591.4 47069.7 24.38 30 10.65 86 40.22
26-1 05/12/84 26 13506.1 47123.4 19.81 30 19.86 86 50.53
26-2 05/12/84 26 13499.1 47114.5 18.29 30 18.23 86 50.90
26-3 05/12/84 26 13496.4 47104.3 19.81 30 16.38 86 50.85
26-4 05/12/84 26 13492.5 47095.2 22.86 30 14.75 86 50.90
26-5 05/12/84 26 13490.2 47086.2 24.38 30 13.18 86 50.85
26-6 05/12/84 26 13487.3 47077.7 27.43 30 11.69 86 50.90
26-7 05/12/84 26 13481.3 47067.8 30.48 30 09.94 86 51.13
27-1 05/12/84 27 13367.5 47110.3 18.29 30 17.68 87 03.74
27-2 05/12/84 27 13366.0 47101.3 19.81 30 15.94 87 13.65
27-3 05/12/84 27 13363.6 47091.8 16.76 30 14.15 8703.60
27-4 05/12/84 27 13361.4 47084.1 25.91 30 12.73 8703.58
27-5 05/12/84 27 13358.5 47075.0 27.43 30 11.02 87 03.62
27-6 05/12/84 27 13355.6 47065.8 21.34 30 09.33 87 03.62
27-7 05/12/84 27 13353.2 47056.4 22.86 30 07.60 87 03.60
28-1 05/12/84 28 13236.0 47102.6 10.67 30 16.50 87 19.43
28-2 05/12/84 28 13234.1 47094.8 15.24 30 14.90 87 19.40
28-3 05/12/84 28 13232.2 47086.4 18.29 30 13.23 87 19.38
28-4 05/12/84 28 13230.2 47077.6 18.29 30 11.51 87 12.39
28-5 05/12/84 28 13227.3 47069.5 21.34 30 09.95 87 19.43
28-6 05/12/84 28 13226.1 47060.6 21.34 30 08.19 87 19.32
28-7 05/12/84 28 13223.2 47052.0 25.91 30 06.55 87 19.38







50 BUREAU OF GEOLOGY

APPENDIX II

Sample Textural Characteristics. Abbreviations are as follows: Num is
sample number; Tweight is total sample weight used for granulometric
and heavy mineral analyses; %Fine is weight percent fines < 4.5 phi;
Mean is mean grain size; Median is median grain size; S is standard
deviation of mean grain size; Skew is skewness; Kurt is kurtosis.

NUM WEIGHT %FINE MEAN MEDIAN S SKEW. KURT.
1-1 100.084 2.790 2.744 2.793 0.526 -0.763 8.297
1-2 99.560 2.647 2.841 2.876 0.499 -0.853 9.480
1-3 93.620 2.223 2.501 2.733 0.830 -1.009 7.853
1-4 86.961 2.401 1.981 2.479 1.199 -0.566 3.344
1-5 85.611 1.613 2.370 2.686 0.937 -0.957 6.596
1-6 106.080 1.469 1.243 1.209 1.166 -0.062 2.066
1-7 99.467 2.872 0.523 0.194 1.330 0.294 2.113
1-8 112.575 1.504 2.437 2.675 0.867 -1.209 9.354
1-9 74.812 1.585 2.226 2.500 0.970 -1.056 7.384
1-10 85.037 1.897 1.309 1.403 1.088 -0.171 2.379
1-11 78.143 1.445 1.254 1.376 1.091 -0.186 2.423
2-2 74.697 1.791 2.517 2.776 0.918 -1.000 7.399
2-3 79.637 1.132 2.825 2.836 0.455 -0.434 5.538
2-4 79.956 0.945 2.874 2.847 0.389 -0.303 5.759
2-5 78.583 1.123 2.776 2.811 0.495 -0.061 6.825
2-6 75.230 1.333 2.045 2.456 1.189 -0.683 4.048
2-7 94.610 1.689 1.987 2.419 1.172 -0.429 2.809
2-8 74.435 2.936 2.079 2.410 1.040 -0.582 3.925
2-9 75.684 1.096 0.795 0.720 0.873 0.153 3.101
2-10 78.176 1.806 2.214 2.590 1.015 -0.728 4.766
3-3 81.364 1.212 1.066 1.186 0.926 -0.206 3.314
3-4 81.125 0.879 2.356 2.583 0.900 -0.747 5.762
3-5 85.300 15.233 2.571 2.911 1.045 -0.771 5.022
3-6 74.396 1.858 1.121 1.421 1.243 -0.177 2.066
3-8 73.186 4.472 2.521 2.872 1.155 -0.835 5.160
3-9 88.119 1.622 2.002 2.493 1.226 -0.515 3.033
4-1 89.146 4.090 1.059 1.144 1.322 0.046 2.108
4-2 86.476 2.640 2.475 2.879 1.029 -0.616 3.813
4-3 78.260 1.470 2.744 2.936 0.790 -1.127 10.069
4-4 83.133 1.250 2.471 2.663 0.740 -0.356 3.202
4-5 75.735 1.070 2.402 2.573 0.772 -0.305 2.903
4-6 84.087 0.970 1.910 1.908 0.697 -0.120 2.756
4-8 79.110 1.380 2.769 2.930 0.679 -0.692 5.510
6-1 96.205 2.080 2.694 2.882 0.859 -1.079 8.771
6-2 84.975 2.200 1.788 1.658 1.159 -0.116 2.381
6-3 84.857 1.200 1.043 1.382 1.319 -0.172 1.831
6-4 72.895 5.220 2.725 2.876 0.768 -1.303 11.551
6-5 76.277 1.590 2.359 2.437 0.587 -0.718 7.513
6-6 78.508 4.990 2.487 2.605 0.602 -0.754 7.533
6-7 81.312 1.190 0.862 1.024 1.216 0.010 2.065
6-8 86.277 4.430 2.078 2.269 0.947 -0.598 4.431
6-9 72.988 1.220 1.923 1.960 0.722 -0.545 6.056
7-1 79.843 1.620 2.529 2.548 0.598 -0.332 5.778








REPORT OF INVESTIGATION NO. 95 51

NUM WEIGHT %FINE MEAN MEDIAN S SKEW. KURT.
7-2 81.363 0.000 2.110 2.186 0.570 -0.434 5.073
7-3 79.329 0.000 1.881 1.903 0.530 -0.283 4.562
7-4 71.432 0.890 1.397 1.398 0.433 0.102 3.644
7-5 79.959 0.880 1.073 1.155 0.767 -0.134 2.905
7-6 79.283 1.310 1.157 1.208 0.841 -0.038 2.983
7-7 77.829 1.810 0.771 0.753 0.964 0.064 2.812
7-8 76.712 1.450 1.240 1.393 0.910 -0.260 3.221
7-9 84,018 1.120 0.824 0.978 1.046 -0.090 2.256
7-10 77.770 2.120 0.957 0.982 0.996 0.032 2.804
7-11 73.672 1.250 0.740 0.751 0.877 -0.030 2.614
8-1 82.505 2.630 1.879 1.863 0.747 -0.155 4.027
8-2 77.782 1.830 1.776 1.827 0.543 -0.761 8.809
8-3 85.019 5.710 1.940 1.970 0.678 -0.511 6.204
8-4 85.659 1.620 1.858 1.892 0.588 -0.470 7.299
9-1 89.552 2.830 0.639 0.777 1.064 -0.029 2.311
9-2 78.624 13.34 2.137 2.397 1.067 -0.640 4.546
9-3 89.952 3.820 2.222 2.257 0.758 -0.250 3.987
9-4 73.914 0.880 1.864 1.909 0.520 -0.384 4.881
9-5 80.045 1.520 0.736 0.784 0.847 -0.055 3.202
9-6 83.088 1.280 1.756 1.795 0.675 -0.530 6.180
9-7 80.553 1.060 1.567 1.654 0.731 -0.550 5.366
9-8 80.875 1.660 0.861 0.771 0.888 0.225 3.587
9-9 76.283 2.220 1.119 1.252 0.970 -0.166 2.710
9-10 83.154 1.090 1.971 2.009 0.596 -0.726 8.608
9-11 88.031 1.040 1.547 1.641 0.688 -0.502 4.893
9-13 94.401 0.960 1.358 1.485 0.729 -0.345 3.469
10-1 84.514 4.090 2.621 2.779 0.758 -0.897 8.135
10-2 85.692 1.180 1.891 1.919 0.622 -0.407 5.927
10-3 78.581 9.690 2.531 2.777 0.981 -0.907 6.678
10-4 94.409 1.190 2.103 2.160 0.362 -0.698 8.038
10-5 85.476 1.170 1.636 1.747 0.812 -0.589 5.053
11-1 87.455 1.210 0.807 0.886 0.917 -0.096 2.917
11-2 76.817 0.850 0.833 0.842 0.836 -0.017 2.631
11-3 92.586 0.910 0.922 0.835 0.831 0.133 2.735
11-4 83.648 1.320 0.493 0.469 1.221 0.113 1.837
11-5 85.042 0.820 0.762 0.923 0.861 -0.208 2.686
11-6 92.210 1.550 1.589 1.530 1.141 -0.016 2.195
11-8 91.162 6.040 2.510 2.677 0.857 -0.477 4.127
11-9 87.554 1.180 2.346 2.419 0.585 -0.848 9.863
11-10 82.317 1.190 0.746 0.768 0.818 0.039 2.981
11-11 91.797 0.000 1.313 1.508 0.934 -0.342 3.133
12-1 82.861 1.240 2.235 2.259 0.555 -0.331 4.630
12-2 85.585 1.080 2.470 2.616 0.557 -0.950 9.715
12-3 91.589 2.190 2.237 2.448 0.844 -0.866 6.765
12-4 79.176 0.750 1.234 1.292 0.786 -0.076 3.037
12-5 85.690 0.850 1.087 1.173 0.850 -0.121 2.918
12-6 77.058 0.920 1.038 0.956 0.931 0.073 2.674
12-7 87.807 5.370 2.499 2.702 0.880 -0.770 6.071
12-8 88.152 0.960 1.300 1.389 0.798 -0.301 3.960
12-9 90.255 1.460 0.328 0.185 0.899 0.389 3.365
12-10 93.119 1.550 1.732 1.881 0.875 -0.565 4.580
12-11 76.368 1.590 1.970 2.168 0.919 -0.789 5.381
13-1 92.860 22.660 2.205 2.474 0.974 -0.736 5.331
13-2 88.594 1.090 2.038 2.074 0.638 -0.459 5.177
13-3 91.244 1.240 1.817 1.922 0.707 -0.397 3.775
13-4 81.959 0.960 1.151 1.170 0.760 -0.039 2.841







BUREAU OF GEOLOGY


NUM WEIGHT


13-5
13-6
13-7
13-8
13-9
13-10
14-1
14-2
14-3
14-5
14-6
14-7
14-9
14-10
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
16-1
16-2
16-3
16-4
16-5
16-6
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
17-9
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
19-1
19-2
19-3
19-4
19A-1
19A-2
19A-3
19A-4
19A-5
19A-6


84.220
87.086
86.441
72.699
83.230
88.430
89.852
79.776
83.936
85.973
83.401
91.743
88.166
88.924
82.317
81.087
88.470
89.851
85.596
92.750
97.785
85.578
91.430
90.928
88.375
87.875
84.199
91.547
79.662
83.863
85.253
84.903
82.032
93.830
86.229
85.846
86.272
90.479
88.164
88.260
88.654
88.350
95.331
93.122
84.460
80.197
86.551
84.918
90.394
84.435
88.582
86.649
90.146
78.838
88.933
82.456


%FINE MEAN MEDIAN


1.100
1.280
1.720
2.160
2.530
1.390
1.070
1.490
1.230
1.110
1.290
6.450
4.520
9.100
0.880
1.140
0.870
1.420
0.960
0.910
6.120
13.000
2.600
0.890
1.020
0.960
1.160
1.000
1.020
1.281
1.102
0.000
1.053
1.040
1.144
1.620
1.405
1.132
2.041
1.094
4.274
1.126
1.073
1.265
2.352
1.959
6.386
11.500
0.000
1.031
1.302
3.617
1.395
1.705
1.417
3.507


0.960
1.237
0.497
0.288
1.492
1.146
1.812
1.323
1.554
1.067
0.969
0.986
0.667
0.627
1.390
1.573
1.302
2.318
1.396
1.327
1.407
0.601
1.684
1.493
1.733
2.071
1.920
1.927
1.538
2.352
2.116
1.970
1.861
2.376
1.645
2.021
0.827
0.480
2.348
2.394
2.452
2.003
1.447
1.214
1.089
0.580
1.888
2.416
0.671
1.518
2.236
2.565
1.666
2.626
1.378
2.567


0.909
1.376
0.401
0.232
1.674
1.334
0.612
0.725
1.624
1.140
1.096
0.089
0.613
0.612
1.538
1.763
1.448
2.239
1.473
1.430
1.585
0.525
2.019
1.676
2.278
2.155
1.939
1.943
1.637
2.388
2.146
2.017
1.917
2.441
1.731
2.211
0.933
0.477
2.446
2.495
2.492
2.117
1.528
1.350
1.328
0.571
1.942
2.461
0.695
1.651
2.363
2.694
1.662
2.682
1.557
2.811


S SKEW. KURT.


0.780
0.908
0.851
1.008
1.111
0.937
0.728
0.725
0.639
0.749
0.850
0.832
0.860
0.943
0.734
0.794
0.912
0.462
0.790
0.724
0.962
0.990
1.206
0.813
1.224
0.518
0.341
0.470
0.617
0.386
0.472
0.598
0.540
0.414
0.583
0.867
0.847
0.741
0.471
0.464
0.350
0.708
0.793
0.951
0.945
0.869
0.502
0.429
1.038
0.738
0.582
0.664
0.696
0.442
0.909
0.933


0.055
-0.138
0.261
0.275
-0.327
-0.241
-0.607
-0.297
-0.438
-0.182
-0.230
-0.251
0.210
0.137
-0.560
-0.701
-0.382
-0.390
-0.349
-0.372
-0.597
0.341
-0.392
-0.574
-0.608
-0.862
-0.360
-0.663
-0.824
-0.258
-0.573
-0.508
-0.415
-0.524
-0.735
-0.742
-0.151
0.169
-0.961
-0.927
-1.169
-0.860
-0.406
-0.224
-0.357
0.163
-0.902
-1.703
0.017
-0.774
-0.632
-0.960
-0.253
-0.101
-0.423
-1.113


2.647
2.395
3.136
2.757
2,741
2.648
4.933
4.001
4.727
3.131
2.972
2.934
3.365
2.844
4.331
5.037
3.523
7.340
4.131
4.043
4.207
3.695
2.611
4.149
3.211
8.631
8.368
9.168
7.406
4.784
7.419
5.466
4.844
5.731
6.797
5.377
2.470
3.674
9.567
9.135
20.046
7.373
3.920
2.940
2.828
3.102
10.428
24.800
2.188
5.784
5.458
8.962
4.409
2.512
3.638
8.153









REPORT OF INVESTIGATION NO. 95


NUM WEIGHT


19A-7
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20A-1
20A-2
20A-3
20A-4
20A-5
20A-6
20A-7
21-1
21-2
21-3
21-4
21-5
21-6
21-7
21A-1
21A-2
21A-3
21A-4
21A-5
21A-6
21A-7
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22A-1
22A-2
22A-3
22A-4
22A-5
22A-6
22A-7
23-1
23-2
23-3
23-4
23-5
23-6
23-7
23A-1
23A-2
23A-3
23A-4
23A-5
23A-6


83.252
87.818
86.440
89.468
84.937
84.696
81.975
90.405
81.602
89.880
90.204
69.122
72.957
74.337
96.361
88.129
93.631
81.511
96.401
89.461
91.926
87.864
88.603
80.999
91.426
85.996
87.284
95.094
99.714
89.425
84.741
83.851
89.490
91.652
83.355
90.213
88.151
83.960
86.404
87.496
87.705
89.722
90.197
87.187
88.926
84.900
83.161
92.852
84.000
83.459
91.858
91.380
86.984
89.439
90.399
86.114


%FINE
1.239
1.860
2.338
1.810
1.592
1.839
2.356
1.521
1.155
1.393
1.255
1.332
1.508
1.258
1.982
1.372
0.903
1.006
1.167
1.054
1.202
1.350
1.682
1.552
4.082
1.248
1.457
1.955
1.310
2.517
0.036
1.235
0.000
1.480
1.513
1.367
8.951
1.464
1.244
1.320
1.156
1.361
2.639
4.450
1.500
1.354
1.531
1.281
2.631
2.336
1.316
1.371
1.844
1.754
1.441
3.284


MEAN MEDIAN S SKEW. KURT.


2.246
2.189
2.154
2.269
1.795
2.341
1.616
1.689
1.336
2.178
1.015
2.086
2.025
0.965
2.584
2.377
0.638
1.257
0.884
1.039
1.011
1.019
1.020
1.562
2.575
1.164
1.488
0.489
1.145
1.273
0.814
1.866
1.452
1.812
1.169
1.478
1.965
1.618
2.021
2.080
0.406
0.934
0.420
1.653
2.487
1.189
1.212
1.853
2.111
2.386
1.502
0.894
2.266
0.860
1.160
1.211


2.228
2.331
2.499
2.354
1.901
2,526
1.740
1.855
1.498
2.276
1.060
2.208
2.117
1.030
2.651
2.528
0.547
1.369
0.960
1.022
0.978
1.109
0.988
1.690
2.715
1.260
1.563
0.423
1.223
1.356
0.831
1.978
1.590
2.097
1.386
1.689
2.188
1.805
2.082
2.128
0.433
1.069
0.365
1.687
2.578
1.192
1.394
1.903
2.191
2.467
1.560
1.041
2.320
0.819
1.245
1.233


0.459
0.787
1.141
0.683
0.805
0.812
0.742
0.801
0.806
0.607
0.833
0.788
0.723
0.781
0.711
0.668
0.787
0.788
0.847
0.805
0.806
0.907
1.266
0.835
0.750
0.867
0.691
0.982
0.767
0.572
0.824
0.785
0.180
1.037
1.004
0.892
1.024
0.868
2.672
0.671
0.990
1.124
1.205
0.791
0.546
0.746
1.012
0.601
0.672
0.621
0.641
0.904
0.638
0.944
0.889
1.354


-0.480
-0.516
-0.630
-0.782
-0.438
-0.655
-0.376
-0.610
-0.267
-0.606
-0.109
-0.762
-0.584
-0.200
-0.862
-0.590
0.287
-0.170
-0.165
-0.001
0.009
-0.185
0.012
-0.340
-0.738
-0.188
-0.339
0.214
-0.225
-0.433
-0.022
-0.455
-0.372
-0.663
-0.231
-0.437
-0.362
-0.590
-0.663
-0.590
0.104
-0.107
0.213
-0.191
-0.691
-0.019
-0.142
-0.584
-0.482
-0.800
-0.322
-0.227
-0.438
0.021
-0.126
-0.047


9.238
4.530
4.080
8.298
4.290
5.451
3.677
5.035
2.917
5.892
2.868
6.303
5.249
3.286
7.712
5.409
3.419
2.661
2.638
2.836
2.883
2.870
1.835
3.511
6.632
3.032
4.275
2.768
3.570
5.031
3.344
4.117
3.530
4.194
2.520
3.405
2.915
4.343
6.091
6.268
2.379
2.248
2.240
3.504
7.901
3.484
2.433
7.292
5.635
8.936
4.489
2.807
5.332
2.357
2.656
1.841








BUREAU OF GEOLOGY


NUM WEIGHT


23A-7
24-1
24-2
24-3
24-4
24-5
24-6
24-7
25-1
25-2
25-3
25-4
25-5
25-6
25-7
26-1
26-2
26-3
26-4
26-5
26-6
26-7
27-1
27-2
27-3
27-4
27-5
27-6
27-7
28-1
28-2
28-3
28-4
28-5
28-6
28-7


87.553
91.582
89.732
85.139
91.953
88.708
93.365
83.923
87.041
89.442
94.790
94.095
87.692
79.442
91.914
87.256
85.038
86.358
83.796
90.593
90.761
80.097
89.151
89.180
91.442
86.645
93.186
86.077
86.884
86.503
82.843
92.589
85.188
94.167
70.488
108.793


%FINE
1.506
1.090
1.280
1.110
1.270
1.580
1,210
1.410
1.050
1.430
1.080
2.210
1.440
1.120
1.190
1.060
1.060
1.500
1.090
0.850
1.050
1.480
1.334
1.174
1.070
0.912
1.191
1.187
1.122
1.000
1.000
1.110
1.110
1.030
0.870
1.130


MEAN MEDIAN S SKEW. KURT.


1.754
1.015
0.533
1.461
1.501
1.335
1.253
1.507
1.586
1.706
1.613
1.622
1.818
1.457
1.491
1.230
1.401
1.934
1.607
1.300
0.799
1.885
1.650
1.639
1.758
1.672
1.282
1.606
1.344
1.734
1.586
1.223
1.427
1.199
0.955
1.795


1.795
1.072
0.484
1.525
1.572
1.472
1.324
1.606
1.648
1.833
1.682
1.668
1.887
1.518
1.584
1.326
1.539
1.948
1.634
1.313
0.978
1.982
1.749
1.694
1.803
1.722
1.393
1.621
1.396
1,753
1.606
1.253
1.505
1.353
1.125
1.835


0.538
0.772
0.741
0.677
0.762
0.826
0.784
0.708
0.586
0.765
0.666
0.577
0.709
0.715
0.644
0.761
0.738
0.648
0.609
0.707
0.952
0.824
0.693
0.583
0.636
0.697
0.707
0.513
0.684
0.566
0.570
0.703
0.670
0.836
0.899
0.582


-0.507
-0.124
0.169
-0.246
-0.332
-0.373
-0.190
-0.320
-0.313
-0.519
-0.410
-0.452
-0.435
-0.231
-0.471
-0.219
-0.342
-0.375
-0.317
-0.053
-0.219
-0.556
-0.510
-0.421
-0.385
-0.318
-0.400
-0.309
-0.233
-0.187
-0.201
-0.153
-0.267
-0.306
-0.217
-0.445


6.703
3.079
3.392
3.815
4.010
3.541
3.260
3.732
4.127
4.381
4.566
5.761
4.858
3.936
4.829
3.196
3.265
5.311
4.628
3.573
2.386
4.932
4.927
5.215
4.626
4.053
4.031
5.553
4.031
3.746
4.217
3.359
3.526
3.130
2.493
5.733









REPORT OF INVESTIGATION NO. 95


APPENDIX III


Running averages (four point) of Textural


and Heavy Mineral Data
MEAN STANDARD WT. % HEAVY
DEVIATION 2-3 PHI


NUM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


0.934
0.923
0.907
0.796
0.780
0.729
0.760
0.803
0.820
0.841
0.827
0.791
0.725
0.701
0.660
0.661
0.716
0.730
0.761
0.814
0.797
0.843
0.821
0.812
0.811
0.744
0.753
0.703
0.687


0.145
0.116
0.167
0.186
0.296
0.314
0.386
0.434
0.389
0.743
0.831
0.944
0.956
0.608
0.404
0.248
0.212
0.283
0.424
0.474
0.604
0.471
0.537
0.477
0.540
0.774
0.850
0.926
0.901


*INDICATES DATA CALCULATED FOR ONE SAMPLE PER TRANSECT.


1.930
1.553
1.716
1.863
1.668
1.708
1.683
1.606
1.557
1.300
1.353
1.408
1.522
1.663
1.708
1.738
1.805
1.818
1.706
1.532
1.383
1.249
1.416
1.602
1.521
1.587
1.488
1.357
1.368


MINERALS IN
3-4 PHI*
0.882
1.213
1.264
1.691
2.073
2.455
2.700
3.480
3.548
3.827
4.486
7.893
10.414
10.424
10.948
7.254
4.279
3.813
3.003
2.843
3.481
3.173
3.035
2.755
3.952
4.464
5.245
6.365
6.014


WT.%
FINES
2.545
2.698
2.546
2.229
2.423
2.639
2.779
2.436
2.464
2.314
2.682
2.512
2.074
1.790
2.185
2.444
2.661
2.547
1.655
1.636
1.440
1.734
2.000
1.960
1.992
1.677
1.415
1.248
1.182








56 BUREAU OF GEOLOGY

APPENDIX IV

Modal analyses of the 2-3 Phi Heavy Mineral Fraction. Abbreviations are
as follows: Op-opaques; Lu-leucoxene; Ru-rutile; Sp-sphene; Ky-kyanite;
Tour-tourmaline; St-staurolite; Zr-zircon; Ep-epidote; Sill-sillimanite;
Amph-amphibole; Gr-garnet; Wt%HM-weight percent heavy minerals
within the above grain size fraction; 0000...-indicates lack of data.

SAMP OP LU RU SP KY TOUR ST ZR EP SILL AMPH GR WT%HM
1-1 15.3 00.0 03.3 00.0 28.3 31.8 12.9 05.2 01.4 00.4 00.0 00.9 0.583
1-2 15.9 00.0 03.9 00.0 29.4 33.9 09.5 07.4 00.0 00.0 00.0 00.0 0.572
1-3 21.6 01.0 05.7 02.0 22.9 24.4 10.0 09.1 03.3 00.0 01.0 00.0 0.056
1-4 28.7 00.0 08.7 05.9 16.5 11.3 17.5 03.5 02.9 03.5 01.0 00.4 0.098
1-5 34.1 00.0 05.1 00.5 22.8 17.3 14.3 04.5 01.1 00.5 00.0 00.0 0.102
1-6 28.6 00.0 03.6 00.0 22.4 23.5 14.0 06.8 00.5 00.5 00.0 00.0 0.048
1-7 56.9 00.0 02.4 00.0 13.4 15.2 09.7 02.4 00.0 00.0 00.0 00.0 0.096
1-8 16.3 00.0 00.0 00.0 28.0 35.2 16.3 03.6 00.0 00.6 00.0 00.0 0.138
1-9 25.3 00.5 04.2 02.9 19.5 13.4 19.0 05.8 05.8 03.8 00.0 00.0 0.024
1-10 15.9 00.0 02.6 00.0 28.6 34.7 15.9 02.0 00.0 00.6 00.0 00.0 0.764
1-11 24.9 00.5 04.5 00.5 20.9 15.2 22.8 10.2 00.0 00.5 00.0 00.0 0.400
2-2 12.8 00.6 06.1 00.0 23.2 39.2 11.9 05.7 00.6 00.0 00.0 00.0 0.055
2-3 19.3 00.0 05.1 00.0 13.4 31.9 20.7 08.1 01.4 00.0 00.0 00.0 0.031
2-4 14.5 00.0 01.5 00.0 27.0 37.0 16.6 03.1 00.0 00.0 00.0 00.0 0.079
2-5 14.6 00.0 02.0 00.0 24.7 39.4 14.1 04.5 00.0 00.5 00.0 00.0 0.158
2-6 18.4 00.0 05.4 00.5 31.1 27.7 12.4 03.0 01.4 00.0 00.0 00.0 0.152
2-7 17.1 00.0 03.6 00.0 32.0 27.4 16.0 03.6 00.6 00.0 00.0 00.0 0.187
2-8 17.9 00.0 03.4 00.4 24.8 29.1 19.5 04.3 00.4 00.0 00.0 00.0 0.164
2-9 10.9 00.0 03.7 00.0 30.0 37.3 15.5 02.7 00.0 00.0 00.0 00.0 0.264
2-10 12.0 00.5 01.5 01.5 31.3 32.3 16.1 04.1 00.0 05.0 00.0 00.0 0.154
3-4 16.0 01.5 03.0 03.5 28.0 22.5 10.0 07.5 04.0 03.5 00.5 00.0 0.051
3-5 32.5 00.5 03.5 03.0 23.0 20.5 03.5 05.0 02.0 06.5 00.0 00.0 0.112
3-6 17.0 00.5 03.1 00.5 27.2 22.7 20.1 04.0 01.5 03.6 00.0 00.0 0.182
3-7 21.0 00.0 02.0 03.5 22.5 21.0 17.5 03.0 03.5 07.0 00.0 00.0 0.177
3-8 23.1 01.4 00.4 02.5 24.7 24.2 15.9 00.4 03.3 03.8 00.0 00.0 0.081
3-9 22.5 01.0 01.5 02.5 29.5 31.5 06.0 01.0 01.5 03.0 00.0 00.0 0.057
4-1 34.5 00.5 01.0 01.0 19.0 14.5 17.5 04.0 04.0 04.0 00.0 00.0 0.078
4-3 33.0 00.0 00.5 01.5 33.0 11.8 14.8 03.4 00.5 01.5 00.0 00.0 0.038
4-4 26.6 00.5 00.0 01.0 28.1 18.6 14.1 05.5 01.0 04.0 00.5 00.0 0.109
4-5 27.4 00.6 02.0 00.0 39.2 14.5 09.8 01.5 01.1 01.5 02.6 00.0 0.069
4-6 39.5 00.0 10.3 00.0 21.0 10.9 14.1 02.7 01.8 00.5 00.0 00.0 0.063
4-7 27.9 00.0 07.0 00.0 26.7 15.2 14.0 04.7 00.0 03.4 00.0 01.2 0.123
4-8 76.7 00.0 01.0 00.5 12.5 02.9 05.5 01.0 00.0 00.0 00.0 00.0 0.016
6-1 40.7 02.3 01.1 00.0 23.3 15.2 11.6 02.3 00.0 03.4 00.0 00.0 0.008
6-2 43.6 00.0 00.7 00.0 22.9 16.8 13.0 01.5 00.0 01.5 00.0 00.0 0.136
6-3 38.2 00.7 06.3 00.0 19.6 11.0 18.8 05.4 00.0 00.0 00.0 00.0 0.272
6-4 24.5 01.0 01.0 03.6 28.1 21.9 09.9 01.5 01.5 06.3 00.5 00.0 0.026
6-5 18.6 00.9 00.9 01.9 36.3 25.5 09.4 02.9 01.9 00.9 00.5 00.0 0.024
6-6 24.8 01.9 02.5 00.0 37.1 16.4 11.8 03.0 01.9 00.5 00.0 00.0 0.088
6-7 39.9 00.5 03.6 00.5 19.7 15.7 11.7 02.5 04.5 01.1 01.1 00.0 0.233
6-8 26.3 00.5 04.5 01.0 21.9 18.4 18.0 03.4 03.9 01.0 00.0 01.0 0.224
6-9 26.3 01.0 05.0 00.5 23.8 18.0 16.5 03.9 02.4 02.0 00.0 00.5 0.312
7-1 24.9 00.0 04.0 00.5 25.3 26.4 16.8 01.1 00.0 01.1 00.0 00.0 0.145
7-2 36.0 00.0 04.0 00.0 27.0 10.5 17.5 03.0 01.0 01.0 00.0 00.0 0.085









REPORT OF INVESTIGATION NO. 95 57

SAMP OP LU RU SP KY TOUR ST ZR EP SILL AMPH GR WT%HM
7-3 32.9 00.0 04.1 00.6 23.2 12.4 21.6 02.6 01.5 01.1 00.0 00.0 0.113
7-4 45.6 00.0 05.1 01.1 17.1 09.3 17.1 02.6 01.1 01.1 00.0 00.0 0.303
7-5 37.5 01.0 09.8 00.4 19.0 09.8 13.2 08.3 01.0 00.0 00.0 00.0 0.446
7-6 27.3 01.6 07.6 00.5 24.2 13.2 21.3 01.1 02.5 00.5 00.0 00.5 0.581
7-7 42.1 01.6 02.1 02.1 16.4 07.3 13.6 11.6 01.1 01.1 01.1 00.0 0.349
7-8 39.5 02.0 06.0 00.5 19.5 08.0 16.0 06.5 00.5 00.5 00.0 01.0 0.656
7-9 39.7 00.6 04.7 01.1 16.0 10.3 18.0 06.1 01.5 02.1 00.0 00.0 0.518
7-10 24.5 01.5 05.0 00.5 24.0 16.5 17.5 07.0 01.0 00.5 01.5 00.5 0.213
7-11 47.0 00.5 02.0 00.5 19.5 07.5 13.0 06.0 02.5 01.0 01.0 01.0 0.329
8-1 32.1 00.0 00.4 01.0 25.7 13.6 20.9 05.4 01.0 00.0 00.0 00.0 0.371
8-2 36.8 00.5 00.0 01.5 21.6 10.0 13.9 02.4 06.7 01.5 04.3 00.0 0.124
8-3 34.6 00.0 00.0 02.8 18.7 17.2 13.6 01.0 04.7 02.4 04.7 00.4 0.080
8-4 25.5 03.0 01.0 05.0 24.5 19.0 13.5 04.0 02.0 00.0 01.5 01.0 0.164
9-1 38.4 04.8 00.0 15.8 13.9 11.6 10.1 02.8 00.9 00.4 00.0 00.9 0.671
9-2 28.4 00.0 00.5 08.5 24.9 21.4 07.9 00.5 02.0 03.4 02.0 00.5 0.126
9-3 30.9 00.0 00.5 14.2 18.3 11.0 10.5 01.6 06.2 01.6 04.1 01.0 0.124
9-4 29.9 00.0 00.5 11.9 24.9 11.4 12.5 00.5 03.9 02.4 02.0 00.0 0.204
9-5 59.4 00.0 04.9 01.5 09.8 05.8 06.8 07.4 02.5 00.0 00.5 01.5 2.733
9-6 32.1 00.0 02.0 02.0 27.0 18.3 09.1 03.0 03.6 00.6 00.0 02.0 0.247
9-7 36.1 00.0 02.6 00.5 28.1 09.0 16.0 03.1 03.1 00.5 00.0 01.0 0.192
9-8 38.3 00.0 02.7 01.0 20.3 06.3 13.8 10.7 05.4 00.6 00.0 01.1 0.356
9-9 35.2 00.0 05.5 00.5 21.6 16.5 15.6 00.5 03.6 00.5 00.0 00.5 0.223
9-10 22.3 00.0 05.9 00.0 29.2 18.9 19.3 01.9 01.4 01.0 00.0 00.0 0.217
9-11 23.8 00.0 02.4 00.0 35.3 17.5 18.9 01.0 01.0 00.0 00.0 00.0 0.419
9-13 32.1 01.0 03.4 01.5 21.4 10.7 21.4 05.4 02.4 01.0 00.0 00.0 0.635
10-1 50.5 00.0 01.1 13.2 15.7 09.1 05.1 01.6 01.6 02.5 00.0 00.0 0.138
10-2 35.6 00.4 02.9 04.4 20.0 14.2 15.6 04.4 01.4 01.0 00.0 00.0 0.345
10-3 27.1 00.0 02.0 30.5 11.8 10.9 10.3 00.9 02.4 02.5 00.9 00.5 0.097
10-4 38.7 00.0 01.5 06.8 20.5 12.3 09.8 03.5 03.5 02.5 00.9 00.0 0.299
10-5 33.2 00.0 02.0 31.3 18.0 05.9 03.5 01.0 02.5 02.9 00.4 00.0 0.220
11-1 60.1 00.0 01.6 06.8 09.3 03.6 13.9 03.1 01.1 00.0 00.0 00.0 0.662
11-2 40.9 00.0 02.0 11.2 15.3 09.1 10.8 07.7 01.0 01.0 00.0 01.0 0.645
11-3 40.3 01.6 02.6 15.9 17.9 08.7 09.7 01.6 01.0 01.0 00.0 00.0 0.420
11-4 30.6 01.9 04.6 10.6 14.4 11.6 09.3 11.6 00.0 05.6 00.0 00.0 0.285
11-5 41.2 01.6 02.2 27.8 08.4 05.0 06.6 00.6 03.4 03.4 00.0 00.0 1.720
11-6 23.9 06.6 04.2 08.9 10.8 10.8 16.5 13.1 00.0 05.1 00.0 00.0 0.252
11-8 44.2 02.6 02.6 03.6 18.6 13.5 08.5 03.1 02.1 01.5 00.0 00.0 0.080
11-9 31.8 01.4 01.9 04.3 24.2 15.1 14.7 00.9 01.9 03.8 00.0 00.0 0.167
11-10 44.4 00.4 11.2 01.4 15.0 04.9 15.0 06.2 00.9 00.4 00.0 00.0 1.590
11-11 22.4 03.3 03.8 03.3 17.8 15.4 22.8 06.1 01.1 04.2 00.0 00.0 0.457
12-1 25.4 01.4 03.2 00.0 25.4 11.2 11.2 02.9 02.9 05.7 10.8 00.0 0.083
12-2 18.3 00.0 02.1 02.1 21.3 12.0 14.9 02.1 00.4 12.0 14.9 00.0 0.109
12-3 22.9 01.7 03.9 02.2 22.4 07.9 13.3 00.8 03.9 06.6 13.7 00.4 0.093
12-4 19.7 00.0 05.0 01.7 23.3 15.9 23.8 03.3 00.0 02.8 04.5 00.0 0.940
12-5 19.5 00.0 04.1 01.4 21.8 11.7 29.8 01.8 00.0 10.0 00.0 00.0 0.695
12-6 40.4 00.0 08.9 01.6 09.9 09.9 07.9 16.3 01.6 02.1 00.5 01.0 0.542
12-7 20.0 02.2 01.1 07.4 21.1 20.6 19.4 01.8 01.8 02.9 01.8 00.0 0.058
12-8 31.2 02.3 11.3 00.5 16.1 07.2 11.8 13.0 00.9 00.0 00.0 01.4 0.776
12-9 35.0 04.4 04.4 04.4 22.8 10.0 07.2 03.8 03.4 03.4 00.6 00.6 0.186
12-10 32.9 01.4 05.8 00.9 17.9 10.6 19.3 07.7 02.0 00.9 00.0 00.4 0.273
12-11 38.9 01.0 03.8 01.0 15.9 06.1 16.9 10.8 03.2 01.0 01.0 00.4 0.395
13- 38.5.. 00.0, 03.0 0.1..1 183 16.8 09.2 02.1 05.1 03.6 07.7 00.0 0.176
13-2 39.8 00.5 06.7 01.0 18.1 05.7 18.1 02.4 01.5 01.0 04.7 00.5 0.445
13-3 37.0 00.5 07.0 01.5 24.0 08.5 12.0 01.5 05.0 00.5 02.0 00.5 0.340
13-4 42.3 00.0 05.1 00.4 14.6 07.0 18.3 03.2 05.1 01.9 01.9 00.0 0.405
13-5 33.2 00.4 07.8 02.0 26.3 05.3 14.4 05.3 01.4 01.0 01.4 01.0 0.252








58 BUREAU OF GEOLOGY

SAMP OP LU RU SP KY TOUR ST ZR EP SILL AMPH GR WT%HM
13-6 34.8 00.0 02.9 00.0 28.9 10.9 14.4 03.9 02.0 00.5 01.0 00.5 0.397
13-7 48.9 00.5 03.6 01.1 12.1 06.5 10.1 07.6 05.1 00.5 04.0 00.0 0.497
13-8 60.4 00.0 01.8 00.0 15.1 09.5 09.5 01.8 01.8 00.0 00.0 00.0 0.171
13-9 45.1 00.0 04.7 02.5 13.8 05.1 20.6 03.5 04.7 00.0 00.0 00.0 0.210
13-10 35.8 00.6 09.3 07.3 17.7 10.8 05.1 07.3 03.1 00.6 02.6 00.0 0.376
14-1 40.5 00.0 03.3 01.8 17.5 13.2 12.8 00.5 01.5 00.9 06.2 01.8 0.354
14-2 46.8 00.0 05.5 01.5 19.9 05.5 06.9 02.9 04.5 01.0 02.0 01.5 1.688
14-3 37.4 01.9 04.3 00.0 16.5 06.4 14.1 04.3 09.2 01.5 03.0 01.5 0.631
14-5 38.9 03.8 04.8 01.4 13.9 01.9 10.6 06.8 11.1 00.0 03.8 02.8 2.417
14-6 48.3 01.5 02.9 00.0 15.4 06.2 07.2 04.3 10.0 00.0 03.8 00.5 3.308
14-7 44.1 01.3 03.1 00.0 18.1 05.5 04.5 01.9 10.5 00.0 08.1 02.7 2.081
14-8 31.8 00.0 02.1 00.0 20.0 08.8 06.6 02.1 11.8 01.0 13.4 02.5 00000
14-9 38.2 02.5 02.5 02.5 23.7 04.5 02.5 03.4 10.9 00.5 06.5 02.5 0.777
14-10 46.4 01.6 05.1 03.6 17.2 05.6 07.6 02.5 05.6 01.1 03.6 00.5 0.565
15-2 46.6 00.5 04.2 00.0 18.1 05.8 11.4 01.0 05.8 02.3 04.2 00.0 1.291
15-3 31.0 01.4 02.9 00.0 29.5 05.8 17.1 00.5 04.2 02.9 04.2 00.5 0.767
15-4 42.0 01.0 01.0 03.1 28.5 05.0 07.5 02.0 07.5 01.5 01.0 00.0 2.363
15-5 25.5 01.5 00.9 07.1 20.8 07.1 16.9 01.8 08.1 05.6 04.8 00.0 0.271
15-6 43.5 01.2 00.5 01.7 19.4 06.5 13.5 02.4 03.5 03.5 02.9 01.2 1.297
5-7 29.7 00.0 05.0 01.2 38.0 06.3 07.6 00.7 03.8 05.7 01.9 00.0 1.167
15-8 27.4 00.4 03.2 01.3 23.1 05.6 19.9 01.3 06.9 04.1 06.4 00.0 0.571
15-9 38.6 00.4 00.4 01.4 24.2 03.8 15.0 00.9 09.2 00.9 03.8 00.9 0.884
15-10 16.6 00.9 00.9 00.0 23.7 13.0 04.4 00.0 12.1 02.2 25.5 00.4 0.202
16-1 37.9 00.0 00.5 00.0 22.0 11.5 07.7 02.8 05.5 00.0 06.4 01.3 0.411
16-2 27.0 01.0 06.0 00.0 21.0 12.0 10.5 06.0 06.0 02.0 08.0 00.5 0.367
16-3 35.0 00.0 01.8 00.0 23.0 10.6 09.7 00.9 11.5 02.7 04.1 00.4 0.464
16-4 48.5 00.0 04.9 00.0 15.6 06.8 15.6 00.4 04.5 00.9 01.9 00.5 2.769
16-5 35.7 00.0 03.9 00.5 21.5 09.8 14.3 00.5 05.8 01.9 05.8 00.0 0.376
16-6 48.1 00.5 07.9 00.0 17.8 05.0 09.0 03.0 05.0 00.5 03.0 00.5 2.570
17-1 25.2 00.0 00.0 00.0 31.0 17.0 14.5 00.0 05.8 01.9 04.3 00.0 0.199
17-2 31.7 00.0 02.0 00.0 30.8 10.2 12.6 01.0 02.5 02.0 07.4 00.0 0.268
17-3 23.8 00.0 01.0 00.0 31.9 11.0 15.8 01.0 07.1 02.3 05.3 01.0 0.216
17-4 29.7 00.0 01.9 00.0 28.6 08.3 14.1 00.4 04.9 03.4 06.8 01.9 0.371
17-5 20.6 00.0 01.4 00.0 25.2 22.5 10.1 00.0 09.7 00.5 08.8 01.4 0.228
17-6 32.6 00.0 03.0 00.0 29.6 08.4 14.2 00.9 04.3 02.4 03.9 00.5 0.791
17-7 29.0 00.0 02.0 00.0 24.5 13.0 05.5 01.5 08.0 04.0 12.5 00.0 0.177
17-8 42.7 00.0 01.4 00.0 22.0 04.2 07.6 02.3 09.9 01.0 08.5 00.4 0.773
17-9 51.1 00.0 01.6 00.5 13.7 05.6 08.5 01.1 10.1 01.1 05.6 01.6 0.397
18-1 31.1 00.0 04.7 00.0 25.1 17.4 14.2 01.3 01.3 01.8 02.1 00.8 0.216
18-2 28.6 00.0 03.0 00.4 23.7 19.9 16.1 02.4 01.5 01.0 03.4 00.0 0.074
18-3 29.4 00.0 08.4 00.0 23.8 14.6 16.7 03.1 01.4 01.0 01.4 00.0 0.381
13-4 26.2 00.9 04.6 00.9 22.5 17.1 13.8 01.8 02.7 01.8 07.4 00.0 0.127
18-5 35.1 00.9 06.1 00.0 26.0 07.5 14.7 02.3 02.3 00.5 02.8 01.4 0.230
18-6 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.158
18-7 30.6 00.5 04.5 00.0 19.3 14.4 15.3 03.4 04.5 00.5 07.0 00.0 0.353
18-8 39.1 01.9 05.0 00.0 14.4 08.5 08.5 02.5 07.0 00.5 11.3 01.4 0.429
19-1 29.1 01.0 05.4 00.0 22.4 17.9 16.1 01.0 02.4 01.5 01.9 01.5 0.268
19-2 34.2 01.0 05.5 00.0 21.6 14.6 13.0 02.1 03.6 01.0 01.5 02.1 0.161
19-3 37.4 02.0 02.4 00.0 22.8 14.9 12.5 01.0 01.0 05.0 00.0 01.0 0.048
19-4 31.1 00.9 02.4 00.0 25.4 12.9 14.4 04.1 03.7 01.3 03.7 00.0 0.179
19A-1 25.4 00.5 02.4 00.0 29.6 22.9 10.0 00.5 00.0 05.2 03.3 00.0 0.040
19A-2 35.6 00.4 03.5 00.0 24.9 15.1 09.8 00.4 02.0 04.4 02.9 01.0 0.065
19A-3 35.7 00.9 04.3 00.0 27.7 09.0 12.3 03.8 03.0 00.9 03.4 00.0 0.249
19A-4 12.6 00.4 00.0 00.0 22.3 21.8 10.3 01.0 07.9 03.7 19.0 01.0 0.017
19A-5 40.2 01.9 05.6 00.0 18.4 07.1 08.6 02.8 02.8 01.4 10.0 00.9 0.607
19A-6 24.4 01.7 02.3 00.0 21.3 08.8 11.5 01.3 07.9 03.1 16.9 00.8 0.044









REPORT OF INVESTIGATION NO. 95 59

SAMP OP LU RU SP KY TOUR ST ZR EP SILL AMPH GR WT%HM
19A-7 37.8 00.5 01.8 00.0 20.8 09.5 09.9 01.5 07.5 01.5 08.5 00.9 0.386
20-1 31.0 00.0 04.9 00.0 28.1 14.5 11.2 01.4 02.5 02.5 04.3 00.0 0.124
20-2 27.7 00.0 05.0 00.5 25.1 19.1 10.6 01.5 02.6 04.5 03.6 00.0 0.058
20-3 22.6 00.0 00.7 00.0 39.2 14.6 14.6 00.7 00.7 03.8 03.8 00.0 0.037
20-4 30.1 00.4 05.8 00.4 30.5 10.7 11.7 01.5 02.4 01.0 05.4 00.0 0.288
20-5 29.6 01.1 00.5 00.0 31.3 10.5 12.7 01.1 02.2 05.8 05.3 00.0 0.072
20-6 33.5 01.0 04.9 00.0 23.7 08.3 15.0 03.0 03.8 01.9 04.3 00.4 0.376
20-7 42.7 00.4 05.7 00.0 21.1 07.0 07.6 02.3 04.7 00.4 05.7 02.3 0.708
20-8 34.9 00.0 04.5 00.0 32.3 06.7 12.8 03.4 01.2 02.9 01.2 00.0 00000
20A-1 37.2 00.0 04.1 00.0 33.0 06.8 10.6 04.1 01.4 01.9 01.0 00.0 0.991
20A-2 31.3 00.4 03.0 00.0 28.2 11.9 16.7 01.7 02.2 01.3 02.6 00.4 0.398
20A-3 29.1 00.0 03.8 00.0 36.3 09.5 10.9 03.0 02.5 02.5 02.0 00.5 0.819
20A-4 29.3 00.0 05.3 00.5 27.1 13.1 14.9 01.3 02.4 01.6 04.5 00.0 0.265
20A-5 21.8 00.4 04.2 00.4 27.4 13.8 15.5 02.1 04.2 00.8 08.4 00.8 0.258
20A-6 36.6 00.3 03.5 00.3 26.2 07.7 12.5 02.2 03.8 00.9 04.4 01.2 0.915
20A-7 17.9 00.7 02.1 01.0 26.9 14.4 08.7 00.0 07.7 02.8 17.4 00.3 0.065
21-1 26.2 01.0 02.4 01.4 30.5 13.7 12.0 00.3 04.1 02.4 05.5 00.3 0.203
21-2 44.2 01.5 08.3 00.4 19.3 06.8 10.3 04.3 01.5 00.8 02.4 00.0 1.340
21-3 37.0 00.0 06.0 00.0 23.5 07.0 13.0 03.5 03.5 00.8 05.3 00.5 0.737
21-4 31.5 00.4 02.7 00.4 35.1 09.9 13.1 02.4 00.8 02.7 00.8 00.0 0.380
21-5 33.7 00.5 02.3 00.0 29.1 10.9 16.3 02.3 01.9 00.5 02.3 00.0 0.596
21-6 34.0 00.0 01.7 01.7 27.1 11.3 15.7 03.3 00.4 00.4 04.0 00.4 0.665
21-7 40.5 00.0 02.7 01.4 28.4 08.1 13.0 03.2 00.9 00.5 00.9 00.5 1.174
21A-1 25.9 00.9 01.9 01.4 25.0 11.1 16.8 01.9 07.7 03.3 03.8 00.0 0.150
21A-2 27.6 00.5 00.5 00.5 37.6 08.8 17.1 01.7 01.7 03.1 01.4 00.0 0.335
21A-3 17.3 00.5 00.5 01.0 33.6 20.8 16.4 00.5 01.9 05.0 02.5 00.0 0.119
21A-4 37.2 01.0 00.0 00.4 33.4 09.7 13.0 01.4 02.8 01.0 00.0 00.0 0.649
21A-5 40.7 00.9 00.5 00.5 28.8 10.4 13.1 02.1 01.7 00.9 00.5 00.0 0.524
21A-6 40.6 00.5 00.0 01.5 27.5 05.4 14.7 02.5 02.5 02.9 00.9 00.9 0.321
21A-7 39.0 00.9 00.0 00.5 25.8 12.6 15.3 01.8 00.5 01.4 01.8 00.9 0.708
21-1 29.6 00.8 02.5 09.3 33.9 07.2 09.7 02.2 01.3 00.8 02.5 00.0 2.023
22-2 39.7 00.0 04.2 00.0 25.2 05.6 15.3 06.3 01.7 00.3 01.7 00.3 1.185
22-3 32.5 00.0 04.1 01.3 21.6 08.3 14.5 06.3 04.1 00.9 05.9 00.5 0.568
22-4 25.9 00.0 03.0 00.0 32.7 09.4 15.6 01.7 03.6 01.2 05.8 00.9 0.489
22-5 26.9 00.0 02.5 00.5 28.9 10.7 22.7 01.7 03.8 00.0 02.0 00.5 0.162
22-6 32.5 01.0 02.8 01.0 27.9 10.1 20.1 03.6 00.5 00.5 00.0 00.0 0.572
22-7 36.6 01.0 02.3 01.0 30.0 11.0 11.9 01.4 02.3 01.4 01.0 00.0 0.290
22A-1 21.1 03.2 00.0 42.7 14.6 06.1 07.6 00.4 01.4 00.0 02.9 00.0 0.217
22A-2 28.9 01.0 01.5 03.9 27.8 09.5 10.9 10.4 02.0 00.5 02.9 00.5 0.459
22A-3 24.7 01.0 02.4 03.3 29.0 10.7 15.0 01.0 03.8 03.3 06.1 00.0 0.120
22A-4 22.9 01.0 02.4 00.4 26.7 14.4 21.5 01.4 01.8 01.4 05.6 00.4 0.222
22A-5 33.7 01.0 01.4 01.0 26.4 08.7 17.8 04.5 02.2 01.8 01.0 00.5 0.354
22A-6 44.2 00.4 00.4 01.0 24.8 06.8 14.5 04.3 01.5 01.0 00.4 00.4 0.268
22A-7 37.7 00.5 01.6 00.5 25.7 07.9 01.6 01.6 03.1 04.1 00.0 00.0 0.195
23-1 37.4 00.0 02.9 05.0 22.3 10.0 11.9 05.0 02.0 01.0 02.0 00.5 0.460
23-2 24.1 00.9 01.4 01.9 28.8 18.2 15.3 00.9 03.3 01.9 02.4 00.4 0.055
23-3 27.4 00.5 03.5 00.8 20.8 05.3 15.3 17.4 06.0 00.8 01.8 00.5 1.300
23-4 30.8 00.0 02.8 00.0 23.3 07.9 19.2 11.6 02.4 00.0 01.8 00.0 0.457
23-5 29.8 00.9 02.0 00.0 32.2 12.2 18.0 01.7 00.9 00.0 02.4 00.0 0.616
23-6 23.2 02.8 01.0 01.8 36.5 14.7 11.9 01.3 02.2 01.3 02.2 01.0 0.150
23-7 23.1 03.8 01.7 00.7 29.0 12.3 16.7 00.7 03.8 01.0 06.6 00.3 0.121
23A-1 30.6 04.6 01.9 00.9 26.3 12.9 16.6 02.8 02.4 00.9 00.0 00.0 0.636
23A-2 30.0 02.3 01.6 01.9 28.8 07.3 15.3 08.1 02.7 00.7 00.3 00.7 0.753
23A-3 33.5 00.9 03.3 01.5 27.9 08.9 14.6 02.4 02.4 03.8 00.0 00.9 0.186
23A-4 28.7 01.9 02.4 00.4 28.7 07.9 18.1 04.6 03.2 02.8 00.4 00.9 0.384
23A-5 28.4 03.6 00.9 01.4 24.3 13.9 19.3 02.7 03.6 01.4 00.0 00.5 0.251








BUREAU OF GEOLOGY


SAMP OP LU RU SP KY TOUR ST


23A-6
23A-7
24-1
24-2
24-3
24-4
24-5
24-6
24-7
25-1
25-2
25-3
25-4
25-5
25-6
25-7
26-1
26-2
26-3
26-4
26-5
26-6
26-7
27-1
27-2
27-3
27-4
27-5
27-6
27-7
28-1
28-2
28-3
28-4
28-5
28-6
28-7


31.5
35.0
25-0
30.2
30.6
23-7
27.8
30.1
37.4
28.1
27.8
30-7
29.6
30.2
36.6
41.2
33-5
27.3
23.2
36.2
38.6
33.4
27.4
35.6
31.3
37.3
27.3
31.4
31.1
26.3
33.9
33.1
32.9
35.0
37.7
35.5
34.6


01.5
01.5
02.2
02.6
02.3
01.3
00.0
01.0
03.0
04.1
03.0
01.8
04.0
01.9
01:1
02.1
05.1
02.3
02.2
02.2
02.3
01.4
02.8
01.4
01.9
02.0
01.5
02.2
03.7
o3-8
02.4
02.9
03.2
02.7
02.3
01.8
03.2


02.1
01.0
01.8
01.5
01.9
02.8
00.9
02.0
01.2
02.7
01.7
01.8
02.4
03.5
01.9
02.4
01.5
02.7
01.3
01.8
01.9
02.9
01.9
01.8
01.4
01.0
01.5
02.2
01.8
01.9
01.5
02-4
01.3
02.3
01.3
01.8
01.4


01.0
01.5
01.8
00.5
00.5
00.4
00.9
00.0
01.2
01.3
00.8
02.2
00.0
00.7
00.8
01.3
00.0
00.9
00.0
00.5
01.4
03.2
00.0
01.8
00.0
00.0
00.5
00.4
01.4
01.4
01.0
01.5
00.9
00.5
01.9
00.8
00.9


24.1
31.6
34.3
33.6
32.3
34.3
42.2
26.8
30.5
25.0
29.1
28.1
28.8
30.9
33.4
27.1
34.5
30.0
33.7
31.7
28.6
30.9
26.9
31.8
31.8
31.1
32.0
31.9
30.7
35.6
30.1
26.5
24.1
26.4
22.3
26.0
28.4


07.0
09.2
07.9
05.5
07.9
12.5
08.5
10.5
09.9
14.1
09.7
12.6
08.4
08.6
06.7
07.9
09.9
08.7
16.9
11.4
06.6
06.6
16.6
06.1
00.9
06.2
11.4
08.1
11.1
09.6
05.8
04.8
10.0
06.3
07.3
04.3
10.3


11.6
12.2
17.1
18.1
16.9
12.5
14.8
16.7
13.3
20.9
16.3
17.2
19.6
16.1
15.2
13.5
11.8
21.3
16.5
12.3
13.8
15.9
13.4
13.6
17.6
17.2
16.2
S20.6
14:5
15.0
16.5
22.6
17.6
15.5
21.3
17.4
16.3


ZR EP SILL AMPH


02.1 03.1
03.8 01.9
04.8 01.4
03.6 03.1
01.0 02.3
01.9 03.2
01.3 02.2
04.3 03.8
00.9 01.2
03.1 00.5
05.2 01.7
00.9 01.4
01.6 01.6
01.5 01.9
01.9 00.0
01.3 01.6
02.4 00.5
00.9 03.1
01.3 02.8
02.8 00.9
04.7 00.5
03.8 00.4
00.4 04.6
03.3 01.0
02.8 00.0
00.5 02.4
05.2 02.0
02.2 00.0

03.8 00.0
05.4 01.9
04.8 00.0
05.6 02.4
09.5 01.3
04.1 04.1
05.6 00.8
03.6 00.5


14.1
01.5
03.9
01.5
02.9
06.1
01.3
02.9
01.2
00.0
03.0
03.1
02.4
03.5
01.6
00.8
00.5
00.9
00.5
00.5
00.5
01.0
04.1
02.8
00.9
01.0
01.5
00.4
00.4
02.3
01.5
01.0
00.9
00.5
00.5
04.3
00.5


02.1
00.4
00.0
00.0
00.0
01.3
00.0
01.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.9
00.0
00.0
01.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.0
00.8
00.0


GR
00.0
00.4
00.0
00.0
01.4
00.0
00.0
01.0
00.0
00.0
01.3
00.0
01.6
00.7
00.8
00.8
00.5
01.9
01.3
00.0
01.0
00.4
00.9
01.0
01.9
00.5
01.0
00.4
00.0
00.0
00.0
01.0
01.3
00.0
00.0
00.8
00.5


WT%HM
0.125
0.736
4.354
0.750
0.429
0.416
0.259
0.367
0.481
1.155
0.498
0.708
1.636
0.288
1.999
2.089
1.271
1.036
0.341
0.828
1.060
0.641
0.107
0.820
0.987
0.460
0.368
1.106
0.730
0.747
0.516
1.332
0.678
1.303
1.148
0.939
0.450









REPORT OF INVESTIGATION NO. 95 61

APPENDIX V

Modal Analyses of the 3-4 Phi Heavy Mineral Fraction. Abbreviations are
as follows: Op-opaques; Lu-leucoxene; Ru-rutile; Sp-sphene; Ky-kyanite;
Tour-tourmaline; St-staurolite; Zr-zircon; Ep-epidote; Sill-sillimanite;
Amph-amphibole; Gr-garnet; Wt%HM-weight percent heavy minerals
within the above grain size fraction.

SAMP OP LU RU SP KY TOUR ST ZR EP SILL AMPH GR WT%HM
1-5 21.1 11.1 02.9 02.5 21.1 06.4 08.9 20.0 00.4 01.3 00.0 04.3 1.29
2-5 29.1 07.4 04.7 04.1 19.0 06.5 11.9 08.9 01.2 01.7 00.0 04.7 1.12
3-5 24.4 14.7 04.9 02.0 23.5 06.8 13.7 07.8 01.4 01.0 00.0 00.0 0.33
4-5 34.7 19.6 03.5 01.4 19.0 04.9 09.2 06.8 01.0 00.0 00.0 00.0 0.78
6-5 25.9 06.6 02.4 02.4 26.5 10.8 12.7 03.1 02.4 07.2 00.0 00.0 2.62
7-6 36.5 02.9 03.5 01.2 24.7 08.8 07.1 12.4 01.7 01.2 00.0 00.0 1.33
9-4 35.6 13.8 02.2 02.2 17.8 05.8 06.6 04.4 00.4 10.2 00.0 00.8 2.31
10-5 41.8 00.0 02.9 04.5 20.9 01.5 14.9 07.4 00.7 03.4 00.0 01.5 4.15
11-5 28.5 07.0 06.5 10.0 11.0 07.5 07.5 21.5 00.0 00.0 00.0 00.5 2.31
12-5 35.4 03.8 08.7 02.4 11.0 05.7 07.7 23.4 01.0 00.0 00.5 00.5 5.16
13-5 46.1 04.1 08.3 03.2 12.7 04.1 08.7 09.5 01.0 00.5 01.8 00.0 2.58
14-5 43.4 03.4 07.7 00.5 21.4 04.2 05.3 06.6 02.9 02.3 02.3 00.0 5.26
15-5 47.3 00.0 03.1 00.0 27.2 04.5 07.6 03.1 04.0 00.5 02.6 00.5 4.95
16-5 48.1 04.8 01.9 00.0 16.8 03.8 15.3 07.7 00.4 00.9 00.0 00.0 18.7
17-5 50.2 02.9 03.3 00.0 19.5 04.0 08.5 07.7 00.8 02.9 00.4 00.0 12.7
18-5 39.9 04.5 01.4 01.4 17.0 02.8 11.4 08.3 01.4 11.0 01.0 00.0 5.30
19-4 50.5 02.9 03.5 00.5 10.7 01.5 04.9 08.8 00.0 16.6 00.0 00.0 7.04
19A-5 35.9 01.9 05.4 01.5 08.8 04.3 03.4 08.8 01.9 25.2 03.0 00.0 4.00
20-5 34.5 03.3 03.3 00.0 30.3 04.7 06.0 04.7 06.6 03.3 03.7 00.0 0.77
20A-5 33.2 01.3 03.2 00.0 19.4 12.4 06.0 08.3 03.2 11.5 01.3 00.0 3.44
21-5 36.5 01.3 06.0 00.0 18.2 06.4 11.5 08.7 01.8 08.3 01.3 00.0 3.80
21A-5 59.9 02.5 01.4 01.0 10.9 01.9 10.4 07.0 03.0 01.9 00.0 00.0 3.36
22-5 54.3 03.3 02.8 00.5 10.8 03.2 09.7 08.7 02.2 03.2 01.0 00.0 3.32
22A-6 59.1 02.0 03.0 01.0 11.2 02.6 10.2 07.1 01.6 02.0 00.0 00.0 2.21
23-5 59.0 03.0 01.0 00.0 13.0 05.5 09.0 06.0 01.0 02.5 00.0 00.0 3.25
23A-5 51.4 04.3 02.7 01.0 11.4 05.4 09.1 08.6 01.6 03.2 01.0 00.0 2.24
24-5 53.0 04.9 03.8 01.4 09.2 06.4 09.2 05.8 01.9 02.4 01.9 00.0 8.11
25-5 55.2 03.0 00.9 00.0 12.8 08.4 12.4 04.5 00.9 02.0 00.0 00.0 4.25
26-5 55.3 02.8 02.2 01.0 10.5 06.4 12.7 06.4 01.3 01.3 00.0 00.0 6.37
27-5 50.5 03.9 01.9 01.0 11.8 09.4 10.8 08.5 01.0 00.0 01.0 00.0 6.72
28-5 43.8 03.1 02.7 01.7 14.2 09.3 10.7 08.4 02.7 03.1 00.4 00.0 6.70










FLRD GEOLOSk ( IC SUfRiW


COPYRIGHT NOTICE
[year of publication as printed] Florida Geological Survey [source text]


The Florida Geological Survey holds all rights to the source text of
this electronic resource on behalf of the State of Florida. The
Florida Geological Survey shall be considered the copyright holder
for the text of this publication.

Under the Statutes of the State of Florida (FS 257.05; 257.105, and
377.075), the Florida Geologic Survey (Tallahassee, FL), publisher of
the Florida Geologic Survey, as a division of state government,
makes its documents public (i.e., published) and extends to the
state's official agencies and libraries, including the University of
Florida's Smathers Libraries, rights of reproduction.

The Florida Geological Survey has made its publications available to
the University of Florida, on behalf of the State University System of
Florida, for the purpose of digitization and Internet distribution.

The Florida Geological Survey reserves all rights to its publications.
All uses, excluding those made under "fair use" provisions of U.S.
copyright legislation (U.S. Code, Title 17, Section 107), are
restricted. Contact the Florida Geological Survey for additional
information and permissions.