PAGE 1
PERSPECTIVE published:17November2017 doi:10.3389/feart.2017.00095 FrontiersinEarthScience|www.frontiersin.org 1 November2017|Volume5|Article95 Editedby: CristinaSantin, SwanseaUniversity,UnitedKingdom Reviewedby: MichaelW.I.Schmidt, UniversityofZurich,Switzerland PhilippaLouiseAscough, ScottishUniversitiesEnvironmental ResearchCentre,UnitedKingdom MichaelIanBird, JamesCookUniversityCairns, Australia *Correspondence: AndrewR.Zimmerman azimmer@u.edu Specialtysection: Thisarticlewassubmittedto Biogeoscience, asectionofthejournal FrontiersinEarthScience Received: 10August2017 Accepted: 06November2017 Published: 17November2017 Citation: ZimmermanARandMitraS(2017) TrialbyFire:OntheTerminologyand MethodsUsedinPyrogenicOrganic CarbonResearch. Front.EarthSci.5:95. doi:10.3389/feart.2017.00095 TrialbyFire:OntheTerminologyandMethodsUsedinPyrogenicOrganicCarbonResearchAndrewR.Zimmerman 1 andSiddharthaMitra 2 1 DepartmentofGeologicalSciences,UniversityofFlorida, Gainesville,FL,UnitedStates, 2 DepartmentofGeological Sciences,EastCarolinaUniversity,Greenville,NC,Unite dStates Ourunderstandingofthecyclingofre-derived,i.e.,pyro genicorganicmatter(pyOM), aswellasthegoalsofthecommunityofresearcherswhostudy it,maybeinhibited bythemanytermsandmethodscurrentlyusedinitsquantica tionandcharacterization. TermscurrentlyusedforpyOMhaveevolvedbyconvention,bu tareoftenpoorlydened. Further,eachofthedifferentmethodsnowusedtoquantifys olidanddissolvedpyrogenic carbon(pyC)comeswithitsownbiasesandartifacts.Thatis ,eachdetectsonlya fractionofthetotalpyrogenicproductsproducedbyre,wh ile,atthesametime,include somefractionofnon-pyrogenicOM.Thismaybeevidentinthe commonlyobserved correlationsbetweenpyCandtotalorganicCreportedforbo thsoilsanddissolved OMinmanydifferentsystems.Wesuggestthatourresearchar eacanbeplacedon astrongerfootingby:(1)agreementuponacommonsetofterm stiedtothemethod usedfordetection(e.g.,oftheformpyC method ),(2)implementationofanother“ring trial”studywithawidersetofnaturalsoilandwatersample sthatcross-compare morerecentlydevelopedmethods,and(3)furtherinvestiga tionoftheprocesseswhich preserve/degrade/transportpyOMintheenvironment.Keywords:pyrogeniccarbon,blackcarbon,quantication, artifacts,biochar,ringtrial INTRODUCTIONTheunderstandingthatreandpyrogenicorganicmatter(pyOM) havecontributedtoshaping Earth'sbiosphereisonethathasevolvedwithinanumberofdi sparateeldsincludinggeology, ecology,atmospherescience,agriculture/soilscience,an danthropology.Ineacheld,this realization,alongwithassociatedterminologyandmethod ology,hastendedtoevolveseparately, withlimitedcross-disciplinarycommunication.Humanshav ebeenusingpyOMinindustry (charcoalusedinthesmeltingofcopperasearlyas5,000BCE)an dmedicineforthousandsof years( ScottandDamblon,2010 ).However,formalresearchintocharcoal'spropertiesbegan as earlythebeginningofthetwentiethcentury(e.g., Hedin,1907;Sweetser,1908;Homfray,1910 ). Charcoalwasnotedinsoilsevenearlier(e.g., Heer,1866;Fliche,1907;GodwinandTansley,1941 ), butwasnottreatedquantitativelyandusedasanindicatorof pastvegetationandhumansettlement bypaleoecologistsandarcheologists,respectively,untilmu chlater( Western,1963;Camps,1971 ). Detectionandquanticationofcharcoalinmarineandlakes edimentsledtotherstuseofpyOM asaproxyforpastre-frequencyandclimateinthe1970's( Smithetal.,1973;Herring,1976;Swain, 1978 ),thoughtherewassomedebateatthistimeastoitspyrogenic origin( Schopf,1975 ).
PAGE 2
ZimmermanandMitra PyrogenicOrganicCarbonResearch Considerationofthepyrogeniccomponentofaerosolsand thedevelopmentoftherstinstrumenttomeasureaerosolsoo t concentrations( Thomas,1952 )wassparkedbythe“London fog”ofDecember1952whichkilledatleast4,000( Wilkins, 1954 ).Thedarkcoloroftheltersusedtocollectthe“soot” derivedfromcoal-burningledtouseoftheterm“blackcarbo n” (BC)withintheeldofatmosphericchemistry(e.g., Novakov, 1981,1984;Gundeletal.,1984 ). Novakov(1981,1984) dened BCas“combustion-producedblackparticulatecarbonhavingagraphiticmicrostructure”andsoon,theterm“BC”wasappliedmorebroadlytopyOMinbothitsatmosphericandgeologicalforms( Goldberg,1985 ).However,theterm“elementalcarbon,” reectingitsC-richcharacter,wasandisstillalsowidely usedby theatmosphericcommunity,whichhaslargelybeenconcernedwithitslightabsorptionandassociateddirectradiativefo rcingof Earth'sclimate( Bondetal.,2004 ).Althoughtherehavebeenquite afewinter-laboratorycomparisonsofmethodsusedtoquanti fy aerosolBC(e.g., Countess,1990;Birch,1998;Hitzenbergeretal., 1999,2006;Schmidetal.,2001;tenBrinketal.,2004 ),thereis stillnouniversallyacceptedmethodforisolatingaerosolpy OM (discussedfurtherinnextsection). AwarenessofelevatedatmosphereCO 2 andotheratmosphere greenhousegasconcentrationsinthe1970'sledtoconsider ation oftheroleofreintheglobalCcycle.Therstestimateofgl obal biomassburningandcharcoalproduction,500–700Tgyr 1 ( SeilerandCrutzen,1980 )wasanattempttobalancethepoor matchbetweenCinputstotheatmospherewithknownremovalmechanisms.Thisestimatewassincereviseddownwardandisnowgenerallyagreedtobeintherangeof50–300Tgyr 1 ( KuhlbuschandCrutzen,1996;Forbesetal.,2006;Birdetal. 2015;Santinetal.,2016 ).Anotherturningpointingeochemists' understandingofpyOMwasthe“BCcombustioncontinuum”rstproposedby Hedgesetal.(2000) and SchmidtandNoack (2000) andlaterelaborateduponbyothers( Masiello,2004; Elmquistetal.,2006;PrestonandSchmidt,2006 ).Itmaintained thatpyOMiscomposedofawiderangeofmaterialsfromslightlycharredbiomasstohighlycondensedgraphiteandsoot.Witht his “continuumperspective”camethewiderrecognitionthatpyOMcannotbewhollyrefractory,butisdegradedtodierentexte nts throughavarietyofabioticandmicrobially-enhancedproce sses. Acalltocomparemethodsusedtoquantifypyrogenic carbon(pyC)insoilsandsediments,whichrequirestheuseoftechniquesdierentfromthoseusedinatmosphericsciencesduetothepresenceofinterferingmatrices,cameatmuchthesametime.Therstmethodcomparisoneortsexaminedalimitedrangeofsampletypes( Currieetal.,2002 )or resultedinwidelyrangingvaluesforindividualsamples( Schmidt etal.,2001 ).Thus,a“SteeringCommitteeforBlackCarbon ReferenceMaterials”wasestablishedandrecommendedalarg er setofpyrogenicandnon-pyrogenictestmaterials( Schmidt etal.,2003 ).TheresultingcomprehensiveevaluationofpyC quanticationmethods( Hammesetal.,2007 ),thesocalled“BC ringtrial,”madeitclearthateachanalyticalmethodissel ective foradierentpartofthepyOMcontinuum. Atthesametimethatsoilscientistsandagronomistswere realizingthepotentialofsoilamendmentsofpyCtoenhancesoilfertilityandmitigateclimatechangethroughCseques tration ( Lehmannetal.,2002;Lehmann,2007a,b ),environmental scientistsidentiedsubstantialamountsofpyCinanever-wideningrangeofsettingsincludingriverwater( Dingetal., 2013;Jaeetal.,2013 ),marshes( Dittmaretal.,2012b )and theocean( Dittmar,2008;Stubbinsetal.,2010;Ziolkowskiand Druel,2010 ).However,allofthesepursuitsrequiretheability toaccuratelyquantifypyCandtotrackthechemicalevolutio n andtransportofpyOMintheenvironment.PYROGENICSUBSTANCESQUANTIFICATIONMETHODSThemethodsusedtoquantifypyCvarywidelyintheircost,easeofapplication,andunfortunately,inthepyOMfractionthattheytarget.ThesemethodscanbecategorizedasthosethatrelyonpyOMdetectionof:(1)morphology,(2)lightabsorption,(3)thermalorchemicalstability,and(4)chemi cal composition.Archeologistsandsomegeoscientistscommonlyuselightmicroscopyandparticlemorphologytocountthenumberandsizeofcharcoalparticles(e.g., Smithetal.,1975; FigueiralandMosbrugger,2000;ScottandDamblon,2010 ). However,thesemethodscannotquantifypyCandarebiasedtowarddetectionofparticlesoflargersizes( Masiello,2004; CrawfordandBelcher,2016 ).Atmosphericscientistsquantify pyCusingopticaltechniques( RosenandNovakov,1977 ), thermalheatingcombinedwithopticalmethods,orlaser-inducedincandescence( Watsonetal.,2005 ;forahistorical perspective,see NovakovandRosen,2013 ).Whilemanyof thesemethodsaresubjecttointerferencesintroducedduri ng mixingofcombustion-derivedaerosolswithnon-pyrogenicO M ( Bondetal.,2013 ),quanticationofpyCinsoilorsedimentary matricesisevenmoredicultduetotheevengreaterpresence of mineralsandcomplexnon-pyrogenicgeopolymers.Tocopewiththis,manyapproachesassumepyOMtobethemostrefractoryOMfraction.Thus,dierentthermaland/orchemicaloxidati on techniques(e.g.,CTO-375,dichromateoxidation,UVoxidat ion, catalytichydrogenpyrolysis(hy-py)havebeenusedtoremovemorelabileOMandassumetheresidualtobepyOM(e.g., Lim andCachier,1996;Gustafssonetal.,1997,2001;Thevenone tal., 2010 ). AnalgroupofmethodsidentifypyOMusingsomeaspectof itschemicalstructure.Theabundanceofbothlevoglucosan ,an anhydroussugarformedduringcellulosecombustion( Eliasetal., 2001;Kuoetal.,2008 ),andbenzenepolycarboxylicacids(BPCAs) whichareformedvianitricacidoxidation( Glaseretal.,1998; Brodowskietal.,2005;Dittmar,2008 )havebeenusedaschemical markersforlowertemperaturecharredOMandcondensedaromaticC,respectively.AnothertechniqueinfersthepyCcontentofasampleusingthesorptivecharacteristicsofpyreneontothesample( Flores-Cervantesetal.,2009a,b ).Spectroscopic toolssuchas 13 C-nuclearmagneticresonance(NMR)and mid-infrared(MIR)spectroscopyprovideinformationonthestructureandchemicalbondsofOMpresentinamaterial.InthecaseofNMR,itisgenerallyaromaticCthatisquantiedandassociatedwithpyC( SimpsonandHatcher,2004;Nelson andBaldock,2005 ),thoughspecializedtechniqueshavebeen FrontiersinEarthScience|www.frontiersin.org 2 November2017|Volume5|Article95
PAGE 3
ZimmermanandMitra PyrogenicOrganicCarbonResearch developedtoestimatethecondensedaromaticfraction( Knicker etal.,2005;McBeathetal.,2011 ).ThoughMIRalsoexaminesa sample'sspectralcharacteristics,itrequirescalibration usingone oftheotherpyCmethodsinordertobequantitative( Janiketal., 2007;Bornemannetal.,2008;Cotrufoetal.,2016 ).Moredetailed reviewsofmethodsusedtoquantifypyCcanbefoundelsewhere( Meredithetal.,2012;Birdetal.,2015 ). PROBLEMSANDPERPLEXITIESWhilethemethodsusedtostudypyOMproductionandcyclinghaveadvancedgreatlyinthelastdecade,webelievethatthe re arestillterminology,methodology/conceptualimpediments to furtherprogressthaturgentlyneedtobeaddressed.Thisinh ibits bothresearchfundingopportunitiesandimplementationofthere-sciencecommunityndingsandrecommendations,bethe y insettingsofagriculture,policy,orclimate/geochemical model incorporation.TerminologyIssuesFromthediscussionabove,itshouldbeclearthatdierentr e researchsub-communitieshaveadoptedvarioustermsforpyOMorpyOMfractions,oftenforhistoricalreasonsonly.Confus ion arisesbecausethesetermsareoftennotassociatedwithspec ic denitions,orbecausetermshavebeenadoptedacrossresear ch communityboundarieswithoutregardfortheiroriginalnar row denitions.Forexample,theatmosphericcommunityreferstoBCascombustion-generatedaerosolsthatabsorbvisiblelig ht, areinsolubleinwater,andexistasaggregatesofcarbonsphe rules ( Novakov,1984;Bondetal.,2013 ).Ontheotherhand,BC hascometobeusedbymanyasshorthandforpyrogenicCofallforms.Theterm“dissolvedblackcarbon”conictswit h theatmosphericcommunity'sdenitionthatBCshouldnotbesolubleinwater.Organiccompoundsdetectedintheaqueousfractionofcombustion-derivedaerosolsaretypicallyrefe rredto bytheatmosphericcommunityaswatersolubleorganiccarbon( Decesarietal.,2000;Mayol-Braceroetal.,2002 ).Inthepast, sootwasdenedasthetotalcarbonaceousmaterialproducedbycombustion( Novakov,1984 ).However,forothers,sootis thecondensateofcombustiongasesandhasgraphiticstructu re ( Hammesetal.,2007 ).Thematerialsreferredtoascharcoal, biochar,andagricharmayallbethesame,orsomewhatdieren t ( LehmannandJoseph,2015 ).Whileitisunderstoodthat dierentanalyticalmethodstargetdierentpyCfractions,th ere isasyetnoconsistentmethodorproperty-basedterminologyappliedacrossdierentresearchcommunities.Thislackofconsistencymayinhibitcross-disciplinarycommunication and fertilizationofnewconcepts.Methodology/ConceptualIssuesSeveralmethodologicalissuesandrecentobservationssho uld causeustoquestionourabilitytoquantifytheamountofpyOM(orpyC)innaturalsamples.Therstissueisthatmanyofthesemethodsrequirea“ conversionfactor ”ofsometypeto transformmeasuredparameterssuchasapost-treatmentresid ue weightorcompoundabundancetoanamountofpyOMorpyCpresentinasample.Forexample,aconversionfactorhasbeencalculatedbasedontheoreticalBPCAyieldsoforganic structuresofmarineDOMobservedviaultrahigh-resolutio n massspectrometry(about3, Dittmar,2008;Stubbinsetal., 2012 )orfromtheBPCAyieldsofvariousaromaticsubstances includingactivatedC(2.27, Glaseretal.,1998 )PAHs,soot andCnanotubes(about4, Ziolkowskietal.,2011 ).However, applicationofanysingleBPCAconversionfactortoavarietyofpyOMtypeshasbeencalledintoquestion( Brodowskietal., 2005 ).Forthedichromateoxidationprocedure,acorrection factorderivedfromtheresidualyieldofplantcharoxidatio nwas usedtoaccountforpyClossesduringthechemicaltreatment( Knickeretal.,2008 ).Adegreeofuncertaintyhasbeengenerated intheresciencecommunitybecauseofthevarietyandrangeofconversionandcorrectionfactorsused,evenwithinspeci c analyticalmethods. ThesecondissueisthatpyCcanbefalselyidentiedas non-pyCandviceversa.UnderestimatesinpyCquanticationcertainlyoccurbecausenotallpyCisrecalcitrantorpurelycondensedaromatic,asassumedbymostanalyticalmethods(e.g.,Bosticketal.,thisissue, NguyenandLehmann,2009; Zimmerman,2010;Singhetal.,2012 ).SomeportionofpyCis likelydestroyedintheharshthermalandchemicaloxidatio n stepsused.Overestimatescanoccurinanumberofways.Notallnon-pyCisremovedbythermal/chemicaloxidationsteps(e.g., Knickeretal.,2007 ).Oxidativetreatmentscan evengenerateapparently“pyrogenic”OM(e.g., Derenneand Largeau,2001;Hammesetal.,2007;NovakovandRosen,2013 ).Thishasbeenshowntooccur,forexample,during theoxidationrequiredtoformBPCAcompounds( Brodowski etal.,2005;Kappenbergetal.,2016 )aswellasinstepsused toremovenon-pyrogenicaromaticCpriortoNMRanalysis( SimpsonandHatcher,2004 ).OtherNMRquantication approachesusespectraleditingormolecularmixingmodelstoseparatecondensedaromaticfromnon-condensedaromaticbiomolecules,bothofwhichrequireassumptionsorcorrectio ns thathavenotbeenfullyvalidated( Cusacketal.,2012;Paetsch etal.,2017 ).Lightabsorption-basedmethodsusedmainlyby atmospherechemistssuerfromuncertaintiesrelatedtonon-linearitiesinthelightattenuationcoecientwhichvaryw ith lterloadingandparticletype,aswellastointerferencesfromnon-pyrogenicOM(reviewedin KirchstetterandNovakov, 2007 ). Lightabsorption,BPCAandsomeNMRquantication techniquesusetheassumptionthatonlypyOM,takestheformofcondensedaromaticsstructures.Butincreasingly,this has beenshownnottobethecase.Forinstance,melanoidins,severalplants,fungiandpigmentsyieldedquantitiesofBPCA s (evenhighly-carboxylatedBPCAswhichareindicativeofver y condensedaromaticOM)likethatofcharredplantmaterial( Brodowskietal.,2005;GlaserandKnorr,2008 ).Thesemaybe derivedfromligninortannin,whichincludeawidevarietyo f polycondensedaromatics( HernesandHedges,2000;Waggoner etal.,2015 ).Othernon-pyrogenicOMsourcesofcondensed aromaticOMareabundantinthegeosphere,includingwoodypeat,coal,kerogen,andoil( YoshiokaandIshiwatari,2005; Hammesetal.,2007;Wangetal.,2012;Hartmanetal.,2015;Lietal.,2017 ).StillotherstudieshavefoundthatnonpyrogenicOMcanbereadilytransformedtocondensedaromaticOM,whichwouldappeartobepyrogenic,throughphotolytic, FrontiersinEarthScience|www.frontiersin.org 3 November2017|Volume5|Article95
PAGE 4
ZimmermanandMitra PyrogenicOrganicCarbonResearch microbial,orchemicaldegradativeprocesses( GlaserandKnorr, 2008;Chenetal.,2014;Waggoneretal.,2015;DiDonatoetal ., 2016 ). GiventhatwearendingevermorewaysinwhichpyOMcan crosstheanalyticalwindowintonon-pyOMandviceversa,itisperhapsnotsurprisingthatmanyhaveobservedcorrelationsbetweenpyCandtotalCconcentrationsinsoilsregionally( GlaserandAmelung,2003;Jaussetal.,2015;Ahmedetal.,20 17; Qietal.,2017 )andglobally( Reisseretal.,2016 ),anddissolvedin naturalwatersregionally( Dittmaretal.,2012a;Dingetal.,2013, 2014,2015;Guerenaetal.,2015 )andglobally( Jaeetal.,2013; Wagneretal.,2015 )andeveninaqueousleachatesofmarine aerosols( Baoetal.,2017 ).Thesecorrelationsindicate,asdo othermoredetailedstatisticalexaminations(inthesames tudies), alackofdependenceofpyCconcentrationsonrehistoryorclimate.Aplotofdatacompiledbyarecentliteraturereview( Reisseretal.,2016 )showsasignicantrelationshipbetweenpyC andtotalCinglobalsoilsacrossallquanticationmethods and withineachmethod(exceptCTO-375, Figure1 ).Thestrongest correlationsarefoundfordataderivedfromBPCAandNMR,suggestingthatthesemethodsmayhavethegreatestlikelih ood forartifactsthatmisidentifypyC.Alternatively,thendi ngof correlationbetweenpyCandtotalCregardlessoftheanalytica l methodused,mightsuggesttherelationshipispresentinnat ure. Thatis,production,degradation/preservationormobilizati on processesmayactonpyCandnon-pyCinwaysthatcausethemtoco-vary.Forexample,regionsofhigherproductivity,thushighersoilC,alsohavemorebiomasstoburnandaretherefor e likelytohavegreaterpyCinsoilsanddrainagewaters( Alexis etal.,2007;vanLeeuwenetal.,2014 ).Soilswithgreateramounts ofclayormetaloxidemineralorevencharcoals,arelikelyt o sorbandthereforeprotectbothpyOMandnon-pyOMfrommicrobialmineralizationthroughsorptiveprotection( Kasozi etal.,2010;Zimmermanetal.,2011 )oraggregatestabilization ( Wangetal.,2017 ).Andsoiltranslocation,erosion,leaching,and otherhydrologic/climatic-relatedprocessesofaregionar elikely toacttomobilizebothpyOMandnon-pyOMinsimilarways( HilscherandKnicker,2011;JienandWang,2013 ),thoughnot necessarilytoequalextents( Rumpeletal.,2009 ).Finally,ithas beensuggestedthatpyCmobilizationmayoccurviaassociati on withotherOMindissolved( Jaeetal.,2013 )orperhapscolloidal ( ZandandGrathwohl,2016;Kumarietal.,2017 )form,butthe controllingmechanismsarestillunknown( Wagneretal.,2017 ). RECOMMENDATIONSDespite,orpossiblyevenbecauseofthemanyissuesfacingthepyCcyclingresearchcommunity,wemaybeonthebrinkofmakinggreatadvancesinthiseld,butonlyiftheseissuesa re acknowledgedanddealtwith.First,wesuggestmorestringe nt useofterminology.Theterms“pyOM”or“pyC”shouldbeusedwhenreferringtothetotalityofre-derivedcarbonac eous substances.Thesetermsrepresentthebroadestshortformsforthetotalsubstanceofpyrogenicoriginandthecarboninthesesubstances,respectively.Whenreportinganalyticalre sults, wesuggestthattermstiedtothemethodorpropertiesused FIGURE1| Relationshipsbetweentotalsoilorganiccarbon(SOC)and pyrogeniccarbon(pyC)asdeterminedbydifferentmethods. Pearsonlinear correlationcoefcients( r )andlevelsofsignicance( p )aregiveninthelegend. Dataaretakenfrom Reisseretal.(2016) ,acompilationofresultsofglobalsoil datafrom55studies. fordetectionshouldbeused.Forgreatestclarity,wethesetermscouldtaketheform“pyC method ”( Figure2 ).Forexample, substancesquantiedvialightmicroscopymightbereferredtoaspyC mic .Substancesisolatedbasedontheirchemical orthermalresistancecouldbedesignatedpyC CTR .Theterm “pyC LE ”shouldbeusedforsubstancesdetectedbasedupontheir nearcompletelightextinctionproperties,butfailingtoconvi nce themainlyatmosphericcommunityofthis,wesuggestthatterrestrialandaquaticscientistsleavetheterm“blackcar bon” tothem.UseofthesetermswillserveascontinuousreminderthataquantityofCrefersonlytoaportionofthesubstancesproducedbyresandmayevencontainanon-pyrogenicportion. Regardingthepotentialforanalyticalartifactsthatplague pyCcyclingresearch,werecommend,rst,thatanother“ringtrial”studybeconductedsothattechniquesthathavebeendevelopedsincethelastringtrial(suchasMIRspectroscopyandcatalytichydrogenpyrolysisandimprovementsinNMRandBPCAanalyticalmethods)canbecomparedandtheirrelativestrengthsandweaknessesre-evaluated.Thisring study shouldincludenotjustgeochemists,butalsothosethatstudypyOMfromtheanthropology,atmosphereandagriculturecommunities.Moreover,thenewringtrialshouldalsomakeuseofmodernanalyticaltechniquesthatcandeconvolvecompositionofpyOMatunprecedentedlevels(e.g.,aerosolmassspectrometer,Fouriertransformioncyclotronresonan ce massspectrometer).Inadditiontothesetofpyrogenicand“potentiallyinterfering”materialsincludedintherstri ngtrial ( Hammesetal.,2007 ),thisnewringtrialshouldincludea biocharthermalseries,whichwouldbeexpectedtohavearegularlyincreasingdegreeofaromaticcondensation( Caoetal., 2012 ).Furthermore,werecommendabroadersetofatmospherederivedsamplessuchasthedieselsootstandard(NIST FrontiersinEarthScience|www.frontiersin.org 4 November2017|Volume5|Article95
PAGE 5
ZimmermanandMitra PyrogenicOrganicCarbonResearch FIGURE2| Proposedpyrogeniccarbonterminologybaseduponmethodsu sedforidentication/quanticationandestimatedplacement ofthesematerialsonthe “combustion/stabilitycontinuum.”Dottedlinesrepresent estimateduncertainlyrange. SRM2975)andaqueoussamples(preferablynotfreeze-dried)isolatedfromriverandoceanwater.Additionalnon-pyrogen ic materialssuchaswoodbiomass,leachatefromthisbiomass,andphotodegradedbiomassleachateshouldalsobeconsidere d foranalyses.Toevaluatematrixeectsassociatedwitheachmethod,astandardadditionexperimentshouldbeaddedtothemethodintercomparison,wherebydierentamountsofapyOM,suchaswoodchar,areaddedtoasoil-likemixturecontainingnopyOM.Thisringtrialshouldbefollowedupnotonlywithareportofresults,butwithabest-practicespaperthatincludesconsensusrecommendationsforuseofterminology. Untilnow,thefocusofmanyresciencestudieshasbeento establishpropertiesofpyrogenicsubstancesandtheirinvent ories indierentsystems.Giventhemajorquestionofthecauseoft he often-observedpyC/TOCcorrelation,agreaterfocusshould be placedonstudiesthatcomparetransformationandmovementofpyrogenicrelativetodierenttypesofnon-pyrogenicsubstanc es. MechanisticpyOMinvestigationsareneededtounderstandbot h preservationprocessessuchasadsorption,metal-complexatio n andaggregateformation,andtransformationprocessessuch as solubilization,volatilization,andmicrobial,chemical andphotodegradation.Inaddition,pyCmobilizationstudiesshouldf ocus notjustonparticlemovementinsoilviatranslocationanderosion,buttransportinaerosol,colloid,anddissolvedfo rms viaatmosphereandaqueousprocesses.Wehopethiscommentstimulatesgreaterdialogbetweenresearchcommunitiestha t studyvariousaspectsofpyrogenicsubstances.Thedesiredre sult wouldbenotonlyamorecompleteunderstandingoftheproductionandcyclingofpyC,butalsoagreaterapplicationoftheseinsightsinsuchareasasagricultureandclimatemodeling.AUTHORCONTRIBUTIONSAllauthorslistedhavemadeasubstantial,directandintel lectual contributiontothework,andapproveditforpublication.FUNDINGThisworkwasfundedbytheU.S.NationalScienceFoundation—GeobiologyandLow-TemperatureGeochemistryProgram(EAR-1451367).ACKNOWLEDGMENTSThisworkwassubstantiallyimprovedthroughhelpfulconversationswithDrs.GerardCornelissenandMichaelBird. FrontiersinEarthScience|www.frontiersin.org 5 November2017|Volume5|Article95
PAGE 6
ZimmermanandMitra PyrogenicOrganicCarbonResearch REFERENCESAhmed,Z.U.,Woodbury,P.B.,Sanderman,J.,Hawke,B.,Jauss,V., Solomon, D.,etal.(2017).AssessingsoilcarbonvulnerabilityintheWes ternUSAby geospatialmodelingofpyrogenicandparticulatecarbonstocks. J.Geophys.Res. Biogeosci. 122,354–369.doi:10.1002/2016JG003488 Alexis,M.A.,Rasse,D.P.,Rumpel,C.,Bardoux,G.,Pechot,N.,Sc hmalzer,P.,etal. (2007).FireimpactonCandNlossesandcharcoalproductioninascru boak ecosystem. Biogeochemistry 82,201–216.doi:10.1007/s10533-006-9063-1 Bao,H.Y.,Niggemann,J.,Luo,L.,Dittmar,T.,andKao,S.J.(20 17).Aerosols asasourceofdissolvedblackcarbontotheocean. Nat.Commun. 8,1–7. doi:10.1038/s41467-017-00437-3 Birch,M.E.(1998).Analysisofcarbonaceousaerosols:interlab oratory comparison. Analyst 123,851–857.doi:10.1039/a800028j Bird,M.I.,Wynn,J.G.,Saiz,G.,Wurster,C.M.,andMcBeath, A.(2015). ThePyrogenicCarbonCycle. Annu.Rev.EarthPlanet.Sci. 43,273–298. doi:10.1146/annurev-earth-060614-105038 Bond,T.C.,Doherty,S.J.,Fahey,D.W.,Forster,P.M.,Bernts en,T.,DeAngelo, B.J.,etal.(2013).Boundingtheroleofblackcarbonintheclimatesystem:ascienticassessment. J.Geophys.Res.Atmospheres 118,5380–5552. doi:10.1002/jgrd.50171 Bond,T.C.,Streets,D.G.,Yarber,K.F.,Nelson,S.M.,Woo,J. H.,and Klimont,Z.(2004).Atechnology-basedglobalinventoryofblacka nd organiccarbonemissionsfromcombustion. J.Geophys.Res. 109:D14203. doi:10.1029/2003JD003697 Bornemann,L.,Welp,G.,Brodowski,S.,Rodionov,A.,andAmelung, W.(2008).Rapidassessmentofblackcarboninsoilorganicmatte r usingmid-infraredspectroscopy. Org.Geochem. 39,1537–1544. doi:10.1016/j.orggeochem.2008.07.012 Brodowski,S.,Rodionov,A.,Haumaier,L.,Glaser,B.,andAmelun g,W.(2005). Revisedblackcarbonassessmentusingbenzenepolycarboxylicac ids. Org. Geochem. 36,1299–1310.doi:10.1016/j.orggeochem.2005.03.011 Camps,G.(1971).Studyofprehistoriccharcoal–preparationofthins ectionsand structuralanalysis–French-Couvert,M. Anthropologie 75,282–283. Cao,X.,Pignatello,J.J.,Li,Y.,Lattao,C.,Chappell,M.A.,Chen, N.,etal. (2012).Characterizationofwoodcharsproducedatdierenttempera tures usingadvancedsolid-state13CNMRspectroscopictechniques. EnergyFuels 26,5983–5991.doi:10.1021/ef300947s Chen,H.M.,Abdulla,H.A.N.,Sanders,R.L.,Myneni,S.C.B.,Moppe r,K.,and Hatcher,P.G.(2014).Productionofblackcarbon-likeandalipha ticmolecules fromterrestrialdissolvedorganicmatterinthepresenceofsunlight andiron. Environ.Sci.Technol.Lett. 1,399–404.doi:10.1021/ez5002598 Cotrufo,M.F.,Boot,C.,Abiven,S.,Foster,E.J.,Haddix,M. ,Reisser,M., etal.(2016).Quanticationofpyrogeniccarbonintheenvironme nt: anintegrationofanalyticalapproaches. Org.Geochem. 100,42–50. doi:10.1016/j.orggeochem.2016.07.007 Countess,R.J.(1990).Interlaboratoryanalysisofcarbonaceou saerosolsamples. AerosolSci.Technol. 12,114–121.doi:10.1080/02786829008959331 Crawford,A.J.,andBelcher,C.M.(2016).Area-volumerelationships forfossil charcoalandtheirrelevanceforrehistoryreconstruction. Holocene 26, 822–826.doi:10.1177/0959683615618264 Currie,L.A.,Benner,B.A.Jr.,Kessler,J.D.,Klinedinst,D.B., Klouda,G.A., Marolf,J.V.etal.(2002).Acriticalevaluationofinterlaboratoryd ataon total,elemental,andisotopiccarboninthecarbonaceousparticlere ference material,NISTSRM1649a. J.Natl.Inst.Stand.Technol. 107,279–298. doi:10.6028/jres.107.022 Cusack,D.F.,Chadwick,O.A.,Hockaday,W.C.,andVitousek, P.M.(2012). Mineralogicalcontrolsonsoilblackcarbonpreservation. Glob.Biogeochem. Cycle 26:GB2019.doi:10.1029/2011GB004109 Decesari,S.,Facchini,M.C.,Fuzzi,S.,andTagliavini,E.(2 000).Characterization ofwater-solubleorganiccompoundsinatmosphericaerosol:anewapproac h. J.Geophys.Res.Atmos. 105,1481–1489.doi:10.1029/1999JD900950 Derenne,S.,andLargeau,C.(2001).Areviewofsomeimportantfamili es ofrefractorymacromolecules:composition,origin,andfateinsoilsandsediments. SoilSci. 166,833–847.doi:10.1097/00010694-200111000-00008 DiDonato,N.,Chen,H.M.,Waggoner,D.,andHatcher,P.G.(20 16).Potential originandformationformolecularcomponentsofhumicacidsinsoils.Geochim.Cosmochim.Acta 178,210–222.doi:10.1016/j.gca.2016.01.013 Ding,Y.,Cawley,K.M.,daCunha,C.N.,andJae,R.(2014).En vironmental dynamicsofdissolvedblackcarboninwetlands. Biogeochemistry 119,259–273. doi:10.1007/s10533-014-9964-3 Ding,Y.,Yamashita,Y.,Dodds,W.K.,andJae,R.(2013).Dis solvedblackcarbon ingrasslandstreams:isthereaneectofrecentrehistory? Chemosphere 90, 2557–2562.doi:10.1016/j.chemosphere.2012.10.098 Ding,Y.,Yamashita,Y.,Jones,J.,andJae,R.(2015).Disso lvedblack carboninborealforestandglacialriversofcentralAlaska:asses smentof biomassburningversusanthropogenicsources. Biogeochemistry 123,15–25. doi:10.1007/s10533-014-0050-7 Dittmar,T.(2008).Themolecularleveldeterminationofblackcarbo n inmarinedissolvedorganicmatter. Org.Geochem. 39,396–407. doi:10.1016/j.orggeochem.2008.01.015 Dittmar,T.,deRezende,C.E.,Manecki,M.,Niggemann,J.,Ova lle,A.R.C., Stubbins,A.,etal.(2012a).Continuousuxofdissolvedblack carbonfroma vanishedtropicalforestbiome. Nat.Geosci. 5,618–622.doi:10.1038/ngeo1541 Dittmar,T.,Paeng,J.,Gihring,T.M.,Suryaputra,I.,andHuettel, M.(2012b). Dischargeofdissolvedblackcarbonfromare-aectedintertida lsystem. Limnol.Oceanogr. 57,1171–1181.doi:10.4319/lo.2012.57.4.1171 Elias,V.O.,Simoneit,B.R.T.,Cordeiro,R.C.,andTurcq,B.(20 01).Evaluating levoglucosanasanindicatorofbiomassburninginCarajas,Amazon ia:a comparisontothecharcoalrecord. Geochim.Cosmochim.Acta 65,267–272. doi:10.1016/S0016-7037(00)00522-6 Elmquist,M.,Cornelissen,G.,Kukulska,Z.,andGustafsson,.( 2006).Distinct oxidativestabilitiesofcharversussootblackcarbon:implicat ionsfor quanticationandenvironmentalrecalcitrance. Glob.Biogeochem.Cycle 20:GB2009.doi:10.1029/2005GB002629 Figueiral,I.,andMosbrugger,V.(2000).Areviewofcharcoalan alysisas atoolforassessingquaternaryandtertiaryenvironments:achiev ements andlimits. Palaeogeogr.Palaeoclimatol.Palaeoecol. 164,397–407. doi:10.1016/S0031-0182(00)00195-4 Fliche,P.(1907).NotesuruncharbonquaternairedeChataigni er. Bull.Soc.Bot. Fr. 54,132–136.doi:10.1080/00378941.1907.10831239 Flores-Cervantes,D.X.,Plata,D.L.,MacFarlane,J.K.,Reddy,C. M.,and Gschwend,P.M.(2009a).Blackcarboninmarineparticulateorgani ccarbon: inputsandcyclingofhighlyrecalcitrantorganiccarbonintheGulf ofMaine. Mar.Chem. 113,172–181.doi:10.1016/j.marchem.2009.01.012 Flores-Cervantes,D.X.,Reddy,C.M.,andGschwend,P.M.(2009 b). Inferringblackcarbonconcentrationsinparticulateorganicmatte rby observingpyreneuorescencelosses. Environ.Sci.Technol. 43,4864–4870. doi:10.1021/es900043c Forbes,M.S.,Raison,R.J.,andSkjemstad,J.O.(2006).Format ion,transformation andtransportofblackcarbon(charcoal)interrestrialandaquatice cosystems. Sci.TotalEnviron. 370,190–206.doi:10.1016/j.scitotenv.2006.06.007 Glaser,B.,andAmelung,W.(2003).Pyrogeniccarboninnativegra sslandsoils alongaclimosequenceinNorthAmerica. Glob.Biogeochem.Cycle 17,1064. doi:10.1029/2002GB002019 Glaser,B.,Haumaier,L.,Guggenberger,G.,andZech,W.(1998 ).Blackcarbonin soils:theuseofbenzenecarboxylicacidasspecicmarkers. Org.Geochem. 29, 811–819.doi:10.1016/S0146-6380(98)00194-6 Glaser,B.,andKnorr,K.H.(2008).Isotopicevidenceforconden sedaromatics fromnon-pyrogenicsourcesinsoils-implicationsforcurrentmethods for quantifyingsoilblackcarbon. RapidCommun.MassSpectrom. 22,935–942. doi:10.1002/rcm.3448 Godwin,H.,andTansley,A.G.(1941).Prehistoriccharcoalsasev idenceofformer vegetation,soilandclimate. J.Ecol. 29,117–126.doi:10.2307/2256222 Goldberg,E.(1985). BlackCarbonintheEnvironment:PropertiesandDistributi on NewYork,NY:JohnWileyandSons. Guerena,D.T.,Lehmann,J.,Walter,T.,Enders,A.,Neufeldt,H., Odiwour,H., etal.(2015).Terrestrialpyrogeniccarbonexporttouvialecosyst ems:lessons learnedfromtheWhiteNilewatershedofEastAfrica. Glob.Biogeochem.Cycle 29,1911–1928.doi:10.1002/2015GB005095 Gundel,L.A.,Dod,R.L.,Rosen,H.,andNovakov,T.(1984).The relationshipbetweenopticalattenuationandblackcarbonconc entration forambientandsourceparticles. Sci.TotalEnviron. 36,197–202. doi:10.1016/0048-9697(84)90266-3 Gustafsson,O.,Bucheli,T.D.,Kululska,M.,Andersson,C.,La rgeau,C.,Rouzard, J.N.,etal.(2001).Evaluationofaprotocolforthequanticati onofblackcarbon FrontiersinEarthScience|www.frontiersin.org 6 November2017|Volume5|Article95
PAGE 7
ZimmermanandMitra PyrogenicOrganicCarbonResearch insediments,soils,andaquaticsediments. Glob.Biogeochem.Cycle 15,881–890. doi:10.1029/2000GB001380 Gustafsson,O.,Haghseta,F.,Chan,C.,MacFarlane,J.,andGs chwend,P.M. (1997).Quanticationofthedilutesedimentarysootphase:implic ations forPAHspeciationandbioavailability. Environ.Sci.Technol. 31,203–209. doi:10.1021/es960317s Hammes,K.,Schmidt,M.W.I.,Smernik,R.J.,Currie,L.A.,Ball,W.P., Nguyen,T. H.,etal.(2007).Comparisonofquanticationmethodstomeasurerederived (black/elemental)carboninsoilsandsedimentsusingreferencemate rialsfrom soil,water,sedimentandtheatmosphere. Glob.Biogeochem.Cycle 21:GB3016. doi:10.1029/2006GB002914 Hartman,B.E.,Chen,H.M.,andHatcher,P.G.(2015).Anon-thermo genic sourceofblackcarboninpeatandcoal. Int.J.CoalGeol. 144,15–22. doi:10.1016/j.coal.2015.03.011 Hedges,J.I.,Eglinton,G.,Hatcher,P.G.,Kirchman,D.L.,Arno sti,C., Derenne,S.,etal.(2000).Themolecularly-uncharacterizedcomponent of nonlivingorgancimatterinnaturalenvironments. Org.Geochem. 31,945–958. doi:10.1016/S0146-6380(00)00096-6 Hedin,S.G.(1907).Onextractionbycaseinoftrypsin,adsorbed bycharcoal. Biochem.J. 2,81–88.doi:10.1042/bj0020081 Heer,O.(1866).“DiePanzenderPfahlbauten,”in Neujahrsblatt,Herausgegeben vonderNaturforschendeGesellschaftZrich, 1–54. Hernes,P.J.,andHedges,J.I.(2000).Determinationofcondense dtannin monomersinenvironmentalsamplesbycapillarygaschromatographyofaciddepolymerizationextracts. Anal.Chem. 72,5115–5124.doi:10.1021/ac991301y Herring,J.R.(1976).CenozoiccharcoaluxincreasetoNorthPac icsediments. Trans.Am.Geophys.Union 57,259–259. Hilscher,A.,andKnicker,H.(2011).Degradationofgrass-derive dpyrogenic organicmaterial,transportoftheresidueswithinasoilcolumnanddi stribution insoilorganicmatterfractionsduringa28monthmicrocosmexperimen t. Org. Geochem. 42,42–54.doi:10.1016/j.orggeochem.2010.10.005 Hitzenberger,R.,Jennings,S.G.,Larson,S.M.,Dillner,A.,C achier,H.,Galambos, Z.,etal.(1999).Intercomparisonofmeasurementmethodsforblackca rbon aerosols. Atmos.Environ. 33,2823–2833.doi:10.1016/S1352-2310(98)00360-4 Hitzenberger,R.,Petzold,A.,Bauer,H.,Ctyroky,P.,Pouresmaei l,P.,Laskus,L., etal.(2006).Intercomparisonofthermalandopticalmeasurementmetho dsfor elementalcarbonandblackcarbonatanurbanlocation. Environ.Sci.Technol. 40,6377–6383.doi:10.1021/es051228v Homfray,I.F.(1910).Ontheabsorptionofgasesbycharcoal. Proc.Royal Soc.Lond.Ser.AContain.Pap.Math.Phys.Character 84,99–106. doi:10.1098/rspa.1910.0060 Jae,R.,Ding,Y.,Niggemann,J.,Vahatalo,A.V.,Stubbins,A .,Spencer, R.G.M.,etal.(2013).Globalcharcoalmobilizationfromsoilsviadissolutionandriverinetransporttotheoceans. Science 340,345–347. doi:10.1126/science.1231476 Janik,L.J.,Skjemstad,J.O.,Shepherd,K.D.,andSpouncer,L.R .(2007).The predictionofsoilcarbonfractionsusingmid-infrared-partialleas tsquare analysis. Aust.J.SoilRes. 45,73–81.doi:10.1071/SR06083 Jauss,V.,Johnson,M.,Krull,E.,Daub,M.,andLehmann,J.(2015 ).Pyrogenic carboncontrolsacrossasoilcatenainthePacicNorthwest. Catena 124,53–59. doi:10.1016/j.catena.2014.09.001 Jien,S.-H.,andWang,C.-S.(2013).Eectsofbiocharonsoil properties anderosionpotentialinahighlyweatheredsoil. Catena 110,225–233. doi:10.1016/j.catena.2013.06.021 Kappenberg,A.,Blaesing,M.,Lehndor,E.,andAmelung,W.(2016 ).Black carbonassessmentusingbenzenepolycarboxylicacids:limitatio nsfororganicrichmatrices. Org.Geochem. 94,47–51.doi:10.1016/j.orggeochem.2016.01.009 Kasozi,G.N.,Zimmerman,A.R.,Nkedi-Kizza,P.,andGao,B.(201 0).Catechol andhumicacidsorptionontoarangeoflaboratory-producedblackcarbo ns (biochars). Environ.Sci.Technol. 44,6189–6195.doi:10.1021/es1014423 Kirchstetter,T.W.,andNovakov,T.(2007).Controlledgenerat ionofblack carbonparticlesfromadiusionameandapplicationsinevaluatingblackcarbonmeasurementmethods. Atmos.Environ. 41,1874–1888. doi:10.1016/j.atmosenv.2006.10.067 Knicker,H.,Hilscher,A.,Gonzalez-Vila,F.J.,andAlmendros,G. (2008).Anewconceptualmodelforthestructuralpropertiesofcharproducedduringvegetationres. Org.Geochem. 39,935–939. doi:10.1016/j.orggeochem.2008.03.021 Knicker,H.,Muer,P.,andHilscher,A.(2007).Howusefulischemi caloxidation withdichromateforthedeterminationof“blackcarbon”inre-ae ctedsoils? Geoderma 142,178–196.doi:10.1016/j.geoderma.2007.08.010 Knicker,H.,Totsche,K.U.,Almendros,G.,andGonzalez-Vila,F.J. (2005). Condensationdegreeofburntpeatandplantresiduesandthereliabili tyof solid-stateVACPMASC-13NMRspectraobtainedfrompyrogenichumicmaterial. Org.Geochem. 36,1359–1377.doi:10.1016/j.orggeochem.2005.06.006 Kuhlbusch,T.,andCrutzen,P.(1996).“Blackcarbon,theglobal carboncycle, andatmosphericcarbondioxide,”in BiomassBurningandGlobalChange, ed J.Levine(Cambridge,MA:TheMITPress),Chapter16,160–169. Kumari,K.,Moldrup,P.,Paradelo,M.,Elsgaard,L.,anddeJonge,L.W. (2017). Eectsofbiocharondispersibilityofcolloidsinagriculturalsoi ls. J.Environ. Qual. 46,143–152.doi:10.2134/jeq2016.08.0290 Kuo,L.J.,Herbert,B.E.,andLouchouarn,P.(2008).Canlevogluc osanbeusedto characterizeandquantifychar/charcoalblackcarboninenviron mentalmedia? Org.Geochem. 39,1466–1478.doi:10.1016/j.orggeochem.2008.04.026 Lehmann,J.(2007a).Bio-energyintheblack. Front.Ecol.Environ. 5,381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 Lehmann,J.(2007b).Ahandfulofcarbon. Nature 447,143–144. doi:10.1038/447143a Lehmann,J.,andJoseph,S.(2015).“Biocharforenvironmentalma nagement: anintroduction,”in EnvironmentalManagement:Science,Technologyand Implementation, edsJ.Lehmann,andS.Joseph(London:Earthscan),235. Lehmann,J.,daSilva,J.P.Jr.,Rondon,M.,Cravo,M.,Greenwood, J.,Hehls,B. etal.(2002).“Slashandchar:afeasiblealternativeforsoilfert ilitymanagement inthecentralamazon?”in 17thWorldConferenceofSoilScience ,edS.T1UoS (Bangkok:InternationalUnionofSoilSciences),449,1–12. Li,W.B.,Hou,Y.C.,Yang,F.,andWu,W.Z.(2017).Productiono fbenzene carboxylicacidsandsmall-moleculefattyacidsfromlignitebytwo-s tagealkalioxygen. Ind.Eng.Chem.Res. 56,1971–1978.doi:10.1021/acs.iecr.6b04562 Lim,B.,andCachier,H.(1996).Determinationofblackcarbonby chemicaloxidationandthermaltreatmentinrecentmarineandlakesedimentsandcretaceous-tertiaryclays. Chem.Geol. 131,143–154. doi:10.1016/0009-2541(96)00031-9 Masiello,C.A.(2004).Newdirectionsinblackcarbonorganicge ochemistry. Mar. Chem. 92,201–213.doi:10.1016/j.marchem.2004.06.043 Mayol-Bracero,O.L.,Gabriel,R.,Andreae,M.O.,Kirchstetter,T .W.,Novakov, T.,Ogren,J.,etal.(2002).CarbonaceousaerosolsovertheIndi anocean duringtheIndianoceanexperiment(INDOEX):chemicalcharacteriza tion, opticalproperties,andprobablesources. J.Geophys.Res. 107,8030. doi:10.1029/2000JD000039 McBeath,A.V.,Smernik,R.J.,Schneider,M.P.W.,Schmidt,M.W .I.,and Plant,E.L.(2011).Determinationofthearomaticityandthedegre eof aromaticcondensationofathermosequenceofwoodcharcoalusin gNMR. Org. Geochem. 42,1194–1202.doi:10.1016/j.orggeochem.2011.08.008 Meredith,W.,Ascough,P.L.,Bird,M.I.,Large,D.J.,Snape,C. E.,Sun,Y.,etal. (2012).Assessmentofhydropyrolysisasamethodforthequantica tionof blackcarbonusingstandardreferencematerials. Geochim.Cosmochim.Acta 97,131–147.doi:10.1016/j.gca.2012.08.037 Nelson,P.N.,andBaldock,J.A.(2005).Estimatingthemolecularc omposition ofadiverserangeofnaturalorganicmaterialsfromsolid-state 13 CNMRand elementalanalyses. Biogeochemistry 72,1–34.doi:10.1007/s10533-004-0076-3 Nguyen,B.T.,andLehmann,J.(2009).Blackcarbondecompositio n undervaryingwaterregimes. Org.Geochem. 40,846–853. doi:10.1016/j.orggeochem.2009.05.004 Novakov,T.(1981).“Microchemicalcharacterizationofaerosols ,”in Proceedings ofthe8thInternationalMicrochemicalSymposium, edsH.Malissa,M. Grasserbauer,andR.Belcher(Graz:Springer),141–165. Novakov,T.(1984).Theroleofsootandprimaryoxidantsinatmospheri c chemistry. Sci.TotalEnviron. 36,1–10.doi:10.1016/0048-9697(84)90241-9 Novakov,T.,andRosen,H.(2013).Theblackcarbonstory:earlyhi storyandnew perspectives. Ambio 42,840–851.doi:10.1007/s13280-013-0392-8 Paetsch,L.,Mueller,C.W.,Rumpel,C.,Angst,Š.,Wiesheu,A.C., Girardin,C., etal.(2017).Amulti-techniqueapproachtoassessthefateofbioc harinsoil andtoquantifyitseectonsoilorganicmattercomposition. Organ.Geochem. 112,177–186.doi:10.1016/j.orggeochem.2017.06.012 Preston,C.M.,andSchmidt,M.W.I.(2006).Black(pyrogenic)car bon: asynthesisofcurrentknowledgeanduncertaintieswithspecial FrontiersinEarthScience|www.frontiersin.org 7 November2017|Volume5|Article95
PAGE 8
ZimmermanandMitra PyrogenicOrganicCarbonResearch considerationofborealregions. Biogeosciences 3,397–420.doi:10.5194/bg-3397-2006 Qi,F.J.,Naidu,R.,Bolan,N.S.,Dong,Z.M.,Yan,Y.B.,Lamb,D .,etal. (2017).PyrogeniccarboninAustraliansoils. Sci.TotalEnviron. 586,849–857. doi:10.1016/j.scitotenv.2017.02.064 Reisser,M.,Purves,R.S.,Schmidt,M.W.I.,andAbiven,S.(2 016).Pyrogenic carboninsoils:aliterature-basedinventoryandaglobalestimati onof itscontentinsoilorganiccarbonandstocks. Front.EarthSci. 4:80. doi:10.3389/feart.2016.00080 Rosen,H.,andNovakov,T.(1977).Ramanscatteringandthechara cterisationof atmosphericaerosolparticles. Nature 266,708–710.doi:10.1038/266708a0 Rumpel,C.,Ba,A.,Darboux,F.,Chaplot,V.,andPlanchon,O.(2009 ).Erosion budgetandprocessselectivityofblackcarbonatmeterscale. Geoderma 154, 131–137.doi:10.1016/j.geoderma.2009.10.006 Santin,C.,Doerr,S.H.,Kane,E.S.,Masiello,C.A.,Ohlson,M.,d elaRosa,J.M., etal.(2016).Towardsaglobalassessmentofpyrogeniccarbonfromv egetation res. Glob.Chang.Biol. 22,76–91.doi:10.1111/gcb.12985 Schmid,H.,Laskus,L.,Abraham,H.J.,Baltensperger,U.,Lavanchy, V., Bizjak,M.,etal.(2001).Resultsofthe“carbonconference”in ternational aerosolcarbonroundrobinteststageI. Atmos.Environ. 35,2111–2121. doi:10.1016/S1352-2310(00)00493-3 Schmidt,M.W.I.,Masiello,C.A.,andSkjemstad,J.O.(2003).Fi nal recommendationsforreferencematerialsinblackcarbonanalysis. EosTrans. AGU 84,582–583.doi:10.1029/2003EO520006 Schmidt,M.W.I.,andNoack,A.G.(2000).Blackcarboninsoilsa ndsediments: analysis,distribution,implications,andcurrentchallenges. Glob.Biogeochem. Cycle 14,777–793.doi:10.1029/1999GB001208 Schmidt,M.W.I.,Skjemstad,J.O.,Czimczik,C.I.,Glaser,B.,P rentice,K.M., Gelinas,Y.,etal.(2001).Comparativeanalysisofblackcarbonins oils. Glob. Biogeochem.Cycle 15,163–167.doi:10.1029/2000GB001284 Schopf,J.M.(1975).Modesoffossilpreservation. Rev.Palaeobot.Palynol. 20, 27–53.doi:10.1016/0034-6667(75)90005-6 Scott,A.C.,andDamblon,F.(2010).Charcoal:taphonomyandsign icancein geology,botanyandarchaeology. Palaeogeogr.Palaeoclimatol.Palaeoecol. 291, 1–10.doi:10.1016/j.palaeo.2010.03.044 Seiler,W.,andCrutzen,P.J.(1980).Estimatesofgrossandnet uxesofcarbon betweenthebiosphereandtheatmospherefrombiomassburning. Clim. Change 2,207–247.doi:10.1007/BF00137988 Simpson,M.J.,andHatcher,P.G.(2004).Determinationofblackc arbon innaturalorganicmatterbychemicaloxidationandsolid-state 13 C nuclearmagneticresonancespectroscopy. Org.Geochem. 35,923–935. doi:10.1016/j.orggeochem.2004.04.004 Singh,N.,Abiven,S.,Torn,M.S.,andSchmidt,M.W.I.(2012). Fire-derived organiccarboninsoilturnsoveronacentennialscale. Biogeosciences 9, 2847–2857.doi:10.5194/bg-9-2847-2012 Smith,D.M.,Grin,J.J.,andGoldberg,E.D.(1973).Elementalca rboninmarine sediments-baselineforburning. Nature 241,268–270.doi:10.1038/241268a0 Smith,D.M.,Grin,J.J.,andGoldberg,E.D.(1975).Spectrometric methodfor thequantitativedeterminationofelementalcarbon. Anal.Chem. 47,233–238. doi:10.1021/ac60352a032 Stubbins,A.,Hood,E.,Raymond,P.A.,Aiken,G.R.,Sleighter, R.L.,Hernes,P. J.,etal.(2012).Anthropogenicaerosolsasasourceofancientdi ssolvedorganic matteringlaciers. Nat.Geosci. 5,198–201.doi:10.1038/ngeo1403 Stubbins,A.,Spencer,R.G.M.,Chen,H.M.,Hatcher,P.G.,Moppe r,K., Hernes,P.J.,etal.(2010).Illuminateddarkness:molecularsignature sofCongo riverdissolvedorganicmatteranditsphotochemicalalterationas revealed byultrahighprecisionmassspectrometry. Limnol.Oceanogr. 55,1467–1477. doi:10.4319/lo.2010.55.4.1467 Swain,A.M.(1978).Environmentalchangesduringthepast2000y earsinnorthcentralWisconsin:analysisofpollen,charcoal,andseedsfromvar vedlake sediments. Quat.Res. 10,55–68.doi:10.1016/0033-5894(78)90013-3 Sweetser,R.H.(1908).Charcoalandcokeasblast-furnacefuels Trans.Am.Inst. Min.Metall.Eng. 39,228–235. tenBrink,H.,Maenhaut,W.,Hitzenberger,R.,Gnauk,T.,Spindle r,G.,Even,A., etal.(2004).INTERCOMP2000:thecomparabilityofmethodsinusei nEurope formeasuringthecarboncontentofaerosol. Atmos.Environ. 38,6507–6519. doi:10.1016/j.atmosenv.2004.08.027 Thevenon,F.,Williamson,D.,Bard,E.,Anselmetti,F.S.,Beaufort ,L.,and Cachier,H.(2010).Combiningcharcoalandelementalblackcarbo nanalysisin sedimentaryarchives:implicationsforpastreregimes,thepyrogenic carbon cycle,andthehuman-climateinteractions. Glob.Planet.Change 72,381–389. doi:10.1016/j.gloplacha.2010.01.014 Thomas,M.D.(1952).Thepresentstatusofthedevelopmentofinstru mentation fromthestudyofairpollution. Proc.Natl.AirPollut.Sympos. 2,16–23. vanLeeuwen,T.T.,vanderWerf,G.R.,Homann,A.A.,Detmers, R.G.,Rucker,G.,French,N.H.F.,etal.(2014).Biomassburningfuelconsumptionrates:aeldmeasurementdatabase. Biogeosciences 11, 7305–7329.doi:10.5194/bg-11-7305-2014 Waggoner,D.C.,Chen,H.M.,Willoughby,A.S.,andHatcher,P.G (2015).Formationofblackcarbon-likeandalicyclicaliphaticcompou ndsby hydroxylradicalinitiateddegradationoflignin. Org.Geochem. 82,69–76. doi:10.1016/j.orggeochem.2015.02.007 Wagner,S.,Ding,Y.,andJa,R.(2017).Anewperspectiveont he apparentsolubilityofdissolvedblackcarbon. Front.EarthSci. 5:75. doi:10.3389/feart.2017.00075 Wagner,S.,Riedel,T.,Niggemann,J.,Vhtalo,A.V.,Dittmar, T.,andJa, R.(2015).Linkingthemolecularsignatureofheteroatomicdissolv edorganic mattertowatershedcharacteristicsinworldrivers. Environ.Sci.Technol. 49, 13798–13806.doi:10.1021/acs.est.5b00525 Wang,D.Y.,Fonte,S.J.,Parikh,S.J.,Six,J.,andScow,K.M. (2017). Biocharadditionscanenhancesoilstructureandthephysicals tabilization ofCinaggregates. Geoderma 303,110–117.doi:10.1016/j.geoderma.2017. 05.027 Wang,W.H.,Hou,Y.C.,Wu,W.Z.,Niu,M.G.,andLiu,W.N.(2012) .Production ofbenzenepolycarboxylicacidsfromlignitebyalkali-oxygenoxid ation. Ind. Eng.Chem.Res. 51,14994–15003.doi:10.1021/ie3021297 Watson,J.G.,Chow,J.C.,andChen,L.W.A.(2005).Summaryofor ganic andelementalcarbon/blackcarbonanalysismethodsandintercompa risons. AerosolAirQual.Res. 5,65–102.doi:10.4209/aaqr.2005.06.0006 Western,A.C.(1963).“Woodandcharcoalinarchaeology,”in Sciencein Archaeology:AComprehensiveSurveyofProgressandResearc h ,edsD. BrothwellandE.Higgs(London:ThamesandHudson),150–158. Wilkins,E.T.(1954).AirpollutionaspectsoftheLondonfogofde cember 1952-discussion. Q.J.RoyalMeteorol.Soc. 80,267–271.doi:10.1002/qj.49708 034420 Yoshioka,H.,andIshiwatari,R.(2005).Animprovedrutheniumtet roxide oxidationofmarineandlacustrinekerogens:possibleoriginoflowmolecularweightacidsandbenzenecarboxylicacids. Org.Geochem. 36,83–94. doi:10.1016/j.orggeochem.2004.07.002 Zand,A.D.,andGrathwohl,P.(2016).Enhancedimmobilizationof polycyclic aromatichydrocarbonsincontaminatedsoilusingforestwood-de rived biocharandactivatedcarbonundersaturatedconditions,an dthe importanceofbiocharparticlesize. Pol.J.Environ.Stud. 25,427–441. doi:10.15244/pjoes/60160 Zimmerman,A.(2010).Abioticandmicrobialoxidationoflaboratoryproducedblackcarbon(biochar). Environ.Sci.Technol. 44,1295–1301. doi:10.1021/es903140c Zimmerman,A.R.,Gao,B.,andAhn,M.-Y.(2011).Positiveandneg ativecarbon mineralizationprimingeectsamongavarietyofbiochar-amendedsoi ls. Soil Biol.Biochem. 43,1169–1179.doi:10.1016/j.soilbio.2011.02.005 Ziolkowski,L.A.,Chamberlin,A.R.,Greaves,J.,andDruel,E.R.M (2011).Quanticationofblackcarboninmarinesystemsusingth ebenzene polycarboxylicacidmethod:amechanisticandyieldstudy. Limnol.Oceanogr. Methods 9,140–149.doi:10.4319/lom.2011.9.140 Ziolkowski,L.A.,andDruel,E.R.M.(2010).Agedblackcarbon identiedinmarinedissolvedorganiccarbon. Geophys.Res.Lett. 37:L16601. doi:10.1029/2010GL043963 ConictofInterestStatement: Theauthorsdeclarethattheresearchwas conductedintheabsenceofanycommercialornancialrelations hipsthatcould beconstruedasapotentialconictofinterest.Copyright2017ZimmermanandMitra.Thisisanopen-accessarti cledistributed underthetermsoftheCreativeCommonsAttributionLicense (CCBY).Theuse, distributionorreproductioninotherforumsispermitted,p rovidedtheoriginal author(s)orlicensorarecreditedandthattheoriginalpub licationinthisjournal iscited,inaccordancewithacceptedacademicpractice.No use,distributionor reproductionispermittedwhichdoesnotcomplywiththeset erms. FrontiersinEarthScience|www.frontiersin.org 8 November2017|Volume5|Article95
|