Chapter X. Florida Agricultural Energy Consumption Model Results

http://edis.ifas.ufl.edu/ ( Publisher's URL )
MISSING IMAGE

Material Information

Title:
Chapter X. Florida Agricultural Energy Consumption Model Results
Physical Description:
Fact sheet
Creator:
Fluck, Richard C.
Publisher:
University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS
Place of Publication:
Gainesville, Fla.
Publication Date:

Notes

Acquisition:
Collected for University of Florida's Institutional Repository by the UFIR Self-Submittal tool. Submitted by Melanie Mercer.
Publication Status:
Published
General Note:
"Publication date: November 1991."
General Note:
"Energy Information Document 1028"

Record Information

Source Institution:
University of Florida Institutional Repository
Holding Location:
University of Florida
Rights Management:
All rights reserved by the submitter.
System ID:
IR00004784:00001


This item is only available as the following downloads:


Full Text

PAGE 1

EnergyInformationDocument1028 November1991 ChapterX.FloridaAgriculturalEnergyConsumption ModelResults1 RichardC.Fluck,BalwinderS.PanesarandC.DirelleBaird2INTRODUCTIONFlorida'sagricultureishighlyimportanttothe economyofthestate.Itisverydiverseintermsof numberandtypesofcommoditiesproduced.The productionsystemsformanyofthesecommodities arequiteenergyintensiveduetosuchfactorsaspoor soilfertility,highpestpressures,irrigationofalarge portionofthecultivatedacreage,andlargeacreages offruits,vegetablesandornamentals. TheFloridaAgriculturalEnergyConsumption Modelwasdevelopedtoaddressalackofadequate knowledgeoftheamountsofenergyrequiredby Floridaagriculturalproduction.Priortothe developmentofthismodel,dataonquantitiesof energycommodities(dieselfuel,gasoline,electricity, etc.)consumedwerefragmentaryandsporadic.Data ontheindirectenergy(energyrequiredtoprovide fertilizers,pesticides,labor,etc.)requirementswere verydeficient.Ingeneral,informationisinadequate aboutwhereenergyisusedinagriculturalproduction andwhereitcanbebettermanagedforgreater efficiency.Betterandmoretimelydataisneededfor tworeasons:1)Intheeventofanenergyshortage weneedtoknowhowbesttoallocateavailablefossil fuelenergyresourceswithintheagriculturalindustry tomaintainadequateproductionoffoodandother agriculturalcommodities,and2)Byidentifyingthe agriculturalproductionsystemsthatconsumethe mostenergyandinwhatforms,wecanfocusour effortsonmakingthosesystemsmoreenergyefficient inordertoachievegreaterenergysavings. ThisreportdetailstheresultsofacomputerbasedspreadsheetmodelofFloridaagricultural energyconsumption,theFloridaAgriculturalEnergy ConsumptionModel.Adetaileddescriptionofthe model,titled FloridaAgriculturalEnergyConsumption Model,PresentationAndVerification ,isavailablefrom theseniorauthor.DESCRIPTIONOFMODELTheobjectivefortheprojectwhichledtothe developmentofthemodelwastodevelopan accountingmechanismtoprovideenergyconsumption dataforFloridaagriculturalproductionsystemsonan annualbasis.Theoutcomeisacomputer-based spreadsheetmodelofFloridaagriculturalenergy 1.ThisdocumentisChapter10oftheEnergyInformationHandbook,EnergyInformationDocument1028,aseriesoftheFloridaEnergy ExtensionService,FloridaCooperativeExtensionService,InstituteofFoodandAgriculturalSciences,UniversityofFlorida.Publicationdate: November1991. 2.RichardC.Fluck,Professor,AgriculturalEngineeringDepartment;BalwinderS.Panazar,GraduateResearchAssistant,Agricultural EngineeringDepartment;C.DirelleBaird,Professor,AgriculturalEngineeringDepartment;CooperativeExtensionService,InstituteofFood andAgriculturalSciences,UniversityofFlorida,GainesvilleFL32611. TheFloridaEnergyExtensionServicereceivesfundingfromtheFloridaEnergyOffice,DepartmentofCommunityAffairsandisoperated bytheUniversityofFlorida'sInstituteofFoodandAgriculturalSciencesthroughtheCooperativeExtensionService.Theinformation containedhereinistheproductoftheFloridaEnergyExtensionServiceanddoesnotnecessarilyreflecttheviewsoftheFloridaEnergyOffice. TheInstituteofFoodandAgriculturalSciencesisanequalopportunity/affirmativeactionemployerauthorizedtoprovideresearch,educational informationandotherservicesonlytoindividualsandinstitutionsthatfunctionwithoutregardtorace,color,sex,age,handicap,ornational origin.Forinformationonobtainingotherextensionpublications,contactyourcountyCooperativeExtensionServiceoffice. FloridaCooperativeExtensionService/InstituteofFoodandAgriculturalSciences/UniversityofFlorida/ChristineTaylorStephens,Dean

PAGE 2

ChapterX.FloridaAgriculturalEnergyConsumptionModelResults Page2consumption,theFloridaAgriculturalEnergy ConsumptionModel(FAECM). Thescopeofthemodelislimitedtoagricultural production.Itdoesnotextendbeyondthe"farm gate"intootheragribusinessindustries,suchasfood processing,despitethefactthatwithsomelargefarm operations,processingispartofthesameenterprise. Byitsnature,however,inincludingtheindirect energyforagriculturalproductionthemodeldoes extendbackwardstoincludetheenergyrequiredto provideinputssuchasfertilizers,pesticidesand machinery. Processanalysis,oneoftheconventionalmethods forperformingenergyanalyses,wasusedin developingthemodel.Thenetworks,processesor activitiesrequiredtomakeafinalproductare identifiedandeachprocessofthenetworksis analyzedforenergyinputsandenergyormaterial outputs.Eachidentifiedinputisthenassignedan energyvalue,dependingonthesystemboundaryof theenergyanalysis. Existingproductioncostbudgets,representing typicalproductionprocessesthatconstitutecomplete agriculturalproductionsystems,wereobtainedfor approximately50ofFlorida'smostimportant agriculturalcommodities.Thesebudgetswere evaluatedfromanenergyanalysispointofview,and thequantitiesormonetarycostsofallinputswere transformedtoenergyrequirements.Allproduction budgetinputswerecategorizedintofiveenergy commoditiesandtwelveotherinputs,totransformthe commodityproductionbudgetsintocommodity energybudgets. Theconceptofenergysequesteredingoodsand serviceswasusedtodeterminingthetotalprimary energyrequirementsofthoseinputsintheformof services,fertilizer,chemicalsandothernon-fuel materials.Primaryenergyisthetotalenergy,both directorheatenergyandindirectorotherenergythat issequesteredorembodiedinaproductorservice. SomeoftheprimaryenergyrequiredforFlorida agriculturalproductionisexpendedoutsideFlorida, atlocationswhereindustriesmanufacturesomeofthe inputsrequired,forexample.Theconceptsofboth heatgenerated(directorthermalenergy)and sequesteredenergywereappliedtoenergy commodities;diesel,gasoline,lubricants,LPG,and electricity. Thescopeoftheindirectenergyinputsincluded inthemodelexceedsthatofmanyotheragricultural energyanalyses.Thecategory"othercosts"includes allothercostsnotincludedinanyoftheothersixteen inputcategories.Forexample,suppliessuchas containers,twine,fencingmaterials,andpaintare included.Capitalcostsforbuildings,machineryand irrigationsystemsareincluded.Repairand maintenancecostsareincluded.Landrental,taxes andfees,andcustomservicesmaybeincluded.All theseinputsinthe"othercosts"categoryrequirethe expenditureofenergy. Agriculturalcommodityenergyrequirementsas specifiedinthecommodityenergybudgetswere multipliedbyannualproductionlevels(numberof acresorheadoflivestock)fortheirrespective commoditiestocalculatestatewidetotalsforthe17 categoriesofenergy-requiringinputs.Minor commodities'productionlevelswereincludedinthe totalsalso.Totalsweredeterminedforbothdirector thermalenergyandtotalprimaryenergy,forboth individualcommoditiesandforstatewideannual agriculturalproductionrequirements. Themodelwasverifiedbymakingcomparisons withfouryearsofAgriculturalCensusdataforenergy commodityconsumption.Themodelpredicts somewhathigherenergyconsumptionthanisreflected byAgriculturalCensusdatafordirectenergy consumption.Thismayperhapsbeduetofarmers' usinglowerinputlevelsthanindicatedbythe productionbudgets,aswellaspossibleunderreporting bytheAgriculturalCensuses.RESULTSANDDISCUSSION OverallResultsFloridaproductionagriculturecurrentlyrequires annuallyabout36.7trillionBtu'sofdirectenergyand about103.0trillionBtu'sofindirectenergy,or139.7 trillionBtu'softotalprimaryenergy.Agricultureis oneofFlorida'smostimportantindustries.Itisvery importanttoFlorida'seconomythatagriculturebe adequatelyconsideredand,ifnecessary,protectedin theeventofsharplyincreasedenergycostsor decreasedenergyavailability.Themodeldoesnot addresslocationwithinFloridaortimeduringthe yearthatagriculturalneedsenergyorenergyrequiringinputs;thesefactorsmustalsobe consideredinsuchaneventuality.

PAGE 3

ChapterX.FloridaAgriculturalEnergyConsumptionModelResults Page3TrendsOverTimeThemodelhasbeenappliedtothemostrecent fourAgriculturalCensusyears(1974,1978,1982,and 1987)aswellasto1990.Duringthis16yearperiod from1974to1990,Floridaagriculture'stotal cultivatedacreagehasremainedrelativelyconstant. However,therehaveoccurredratherseverechanges inproductionlevelsofindividualcommodities,aswell asatrendtowardcommoditieswhoseproduction systemsaremoreintensive.Totaldirectenergy requirementsasdeterminedbythemodelhave remainedrelativelyconstant,varyingabout10 percent;1990'sdirectenergyrequirementsforFlorida productionagricultureat36.7trillionBtu'sareonly 1percentbelow1974's.Totalprimaryenergy requirementshavedecreasedabout17percentfrom 1974,andabout20percentfrom1978'samount.This decreaseappearstobedueprimarilytoincreased energyefficiencyoftheinputcategory,"othercosts", representedbytheaverageofgoodsandservicesin theGrossNationalProductaswellasdecreased energyrequirementsofproducingnitrogenfertilizer andprovidingagriculturallabor. Notethatthemodelisrespondingprimarilyto changesinproductionlevelsofindividual commodities.Themodelisnotrespondingtoreal changesinimprovedagriculturalproductionpractices andtechnologythathavealsooccurred.Itislikely thatimprovedagriculturaltechnologyandenergy conservationpracticeshavealsoresultedinimproved energyefficiencythatthemodeldoesnotexhibit. Thechangeoflargestmagnitudeindirectenergy requirementssince1974isthedecreaseindieselfuel requirements,althoughthegreatestpercentage changeisthemorethandoublingofLPgas requirementsduetoincreasedfoliageplant production.Changesinindirectenergyinputsfrom 1974to1990listedindecreasingorderofmagnitude ofenergyrequirementsinclude1)decreasedenergy requirementsfor"othercosts"duetoincreasedenergy efficiencyofindustrialproduction;2)decreased nitrogenenergyrequirementsduemainlytoincreased energyefficiencyofnitrogenfertilizermanufacture;3) decreasedlaborenergyrequirementsdueto decreasedenergyembodiedperunitoflabor;4) increasedenergyrequirementsforsaltandminerals andveterinaryservicesandmedicinesdueto increasedlivestockproduction;and5)increased fungicideenergyrequirementsduetoincreased productionofanumberofdifferentcrops.CommodityEnergyBudgetsFormanyagriculturalcommodities,dieselfuelis theenergycommoditywhichconsumesthemost directorheatenergy.Formostcommodities,the category"othercosts"representsthelargest percentageoftotalprimaryenergyinputs.The relativeimportanceofthe17inputsintermsoftotal energyrequirements,aswellasthemagnitudesofthe totaldirectandtotalprimaryenergyrequirements, varygreatlywithcommodity. ThetotalenergyinputstoFloridaagriculture showasignificantdegreeofstabilityorresistanceto change;theydonotvarygreatlyfromyeartoyear andarenoteasilyorquicklychanged.Thisappears tobeduetothemagnitudeandvarietyofFlorida's agriculture.Althoughnotallofthe17input categoriesareusedinproducingeachcommodity,all 17inputcategoriesarevitallyimportanttoFlorida agriculture.Somesubstitutionscananddooccur amongtheseinputcategoriesasrelativecostsvary overtimeandastechnologychanges,butextensiveor suddenshiftsareunlikelytooccurexceptinresponse toextremechangesincost,availabilityofinputsor improvementsintechnology."Othercosts"includes capitalcosts,whichrepresentcapitalinvestmentsthat arereplacedonlyoveranumberofyearsandthatto alargedegreedeterminethenatureoftheproduction systems.EnergyCommodityInputRequirementsFloridaagriculturalproductioncurrentlyrequires 168.5milliongallonsofdieselfuelannually,51.8 milliongallonsofgasoline,14.4milliongallonsof lubricants,32.5milliongallonsofLPgas,and378.9 millionkilowatthoursofelectricity.Florida agriculturedependsvitallyondieselfuel,asdiesel providesabouttwothirdsofthedirectenergy requirementsforFloridaagriculturalproduction. Liquidfuelsareuniversallyandwidelyusedin industrializedagriculture,andwillnoteasilybe replaced.Ultimately,itmaybenecessarytorestrict otherusesoftheseliquidfuelsinordertosupply agriculture'sneeds.Theinfrastructuretosupply, deliverandusethesedirectenergycommoditiesisin place,isfunctioningsatisfactorily,andisnoteasilyor quicklymodified.

PAGE 4

ChapterX.FloridaAgriculturalEnergyConsumptionModelResults Page4RequirementsforOtherInputsFloridaagriculturalproductionrequiresannually 732.2millionpoundsofnitrogen,320.4million poundsofphosphate,759.5millionpoundsofpotash, 4.39millionpoundsofherbicides,12.85million poundsofinsecticides,9.00millionpoundsof fungicides,15.88millionpoundsofotherpesticides, 1353millionpoundsofotherchemicals(thisismainly lime),6.58milliondollarsofsaltandotherminerals forlivestock,50.16milliondollarsofveterinary servicesandmedicines,217.0millionhoursoflabor and2.918billiondollarsofothercosts.Allthese quantitiesofinputsarebeingsuppliedsatisfactorily. Futurechangesinproductionlevelsofindividual commoditieswillforceadjustmentsininputlevels.DirectandIndirectEnergyRequirementsThedifferencebetweenFloridaagricultural production'stotalannualprimaryenergyrequirement of36.7trillionBtu'sandthetotalannualdirector heatenergyrequirementof139.7trillionBtu'sisthe totalannualindirectenergyrequirementof103.0 trillionBtu's.Directenergyiscurrently27percentof thetotalandindirectenergyis73percentofthetotal. Theenergycommodities(thedirectenergyinputs) arethehighlyvisibleenergyrequirementsfor agriculture.Incontrast,theindirectenergy requirementsarethelessvisibleorhidden,andoften unrecognized,energyrequirements.Theindirect energycomponentisalmostthreetimesthedirect energycomponent.Theindirectenergyrequirement isnolessimportantornecessarythanthedirect. Policyanddecisionmakers,agriculturalleaders,and othersmustrealizetheimportanceofindirectaswell asdirectenergyrequirementstoFloridaagriculture. About64.2percentofthetotaldirectorheat energyinputsforFloridaagricultureiscurrently (1990)accountedforbydieselfuel,followedinorder bygasoline(17.8percent),LPgas(8.5percent), lubricants(6.0percent)andelectricity(3.5percent). Thelargestpercentageofthetotalprimaryenergy inputforFloridaagricultureisrepresentedby"other costs"(31.1percent),followedbydieselfuel(20.5 percent),nitrogen(16.7percent),labor(8.5percent), gasoline(5.7percent),electricity(3.6percent),potash (3.2percent),andLPgas(2.7percent).The categoriesoflubricants,phosphorus,herbicides, insecticides,fungicides,otherpesticides,other chemicals,saltandminerals,andveterinaryservices andmedicineseachrepresentnomorethantwo percentandtogethersumtoabouteightpercentof thetotalprimaryenergyrequirementforFlorida agriculture.Thislattergroupofinputsisnolessvital toFloridaagriculture,buttheinputsrepresentingthe largerpercentagesofdirectandtotalprimaryenergy inputsarewherethegreatestpotentialreductionsin energyrequirementsexist.EnergyConsumptionbyCommodities andCommodityGroupingsCommoditiesrequiringthemostdirectenergy are,inorderofmagnitudefromlargesttoward smallest,oranges,grapefruit(includesothercitrusand miscellaneoustropicalfruits),ornamentalplants, foliageplants,beef,broilers,layers,tomatoes (includesokra),cornandwatermelons(includes cantaloupes).Thesetoptencommoditiesaccountfor almost84percentofthedirectenergyconsumptionof Floridaagriculturalproduction. Commoditiesrequiringthemosttotalprimary energyare,inorder,oranges,beef,foliageplants, dairy,horses,grapefruit(includesothercitrusand miscellaneoustropicalfruits),ornamentalplants, layers,tomatoes(includesokra)andbroilers.These toptencommoditiesaccountfor77percentofthe totalprimaryenergyconsumptionofFlorida agriculturalproduction(Table1). Commoditiesrequiringthemostfertilizerprimary energyare,inorder,beef(beefproductionistreated ascombinedwithpasture,someofwhichisfertilized), oranges,ornamentalplants,grapefruit(includesother citrusandmiscellaneoustropicalfruits),corn,foliage plants,sweetcorn,bahiagrass,tomatoesandsod. Thesetoptencommoditiesaccountforover79 percentoftheprimaryenergyconsumptionfor fertilizersforFloridaagriculturalproduction.Energy conservationintheformofappropriatefertilizer applicationpracticescanfocusonthesecommodities forgreatestimpact. Commoditiesrequiringthemostprimaryenergy forchemicalsare,inorder,beef,oranges,grapefruit (includesothercitrusandmiscellaneoustropical fruits),tomatoes(includesokra),ornamentalplants, foliageplants,peanuts,bellpeppers(includeshot peppers),dairyandcucumbers(includes miscellaneousvegetables).Thesetencommodities accountforover85percentoftheprimaryenergy consumptionforchemicalsforFloridaagricultural production.

PAGE 5

ChapterX.FloridaAgriculturalEnergyConsumptionModelResults Page5Commoditiesrequiringthemostprimaryenergy forlaborare,inorder,foliageplants,ornamental plants,horses,beef,bellpeppers(includeshot peppers),oranges,tomatoes(includesokra),dairy, sweetcornandcucumbers(includesmiscellaneous vegetables).Thesetoptencommoditiesaccountfor over81percentoftheprimaryenergyconsumption forlaborusedinFloridaagriculturalproduction. Mechanizationofsomeoftheoperationsinvolvedin theproductionofthese,andother,commoditiesmay affect(eitherincreaseordecrease)totalenergy requirements. Althoughthelargestportionofbothdirectand totalFloridaagriculturalenergyrequirementsare accountedforbyonlyasmallnumberofcommodities, Floridaproducesalargenumberofotheragricultural commodities.Theseothercommoditiestoorequire considerablequantitiesofenergy.Itisobviousthat thosecommoditiesnamedintheabovefive paragraphs,however,shouldbetheonesonwhich effortsshouldbedirectedtoachievethegreatest decreasesinenergyconsumptioninFlorida agriculturalproduction. Fruitcropsisthecommoditygroupingthat requiresthelargestportionofthedirectenergy-over43percent.Livestockrequiresthelargest portionoftheindirectenergyrequirements,over42 percent,aswellasthelargestportionofthetotal primaryenergyrequired,at35percent.These commoditygroupingswouldappeartobetheones whosecommonoperationsshouldreceivethemost attentioninordertoimproveenergyefficienciesand decreaseenergyconsumption.ProductionPerUnitofEnergyConsumptionEnergyproductivityisthequantityofproduct obtainedfromtheproductionsystemperunitof energyconsumed.Energyproductivitiesarenot usefulforcomparingcommodities;commoditiesdiffer considerablyintheirnatureandvalueaswellasin theirproductionsystems.Energyproductivitiescan beused,however,tocomparetheenergyefficiencies ofproposedproductionsystemsforaspecific commoditywithitscurrentproductionsystem.The factthatcommoditiesthataresimilar(forexample, grains)demonstrateenergyproductivitiesthatare similarisaninterestingcoincidencethatprobablyhas arationalbasis.IMPLICATIONSOnewayFAECMcanbeusedistoplay"whatif" games,orsimulationofspecifichypothetical scenarios.Thesemaytakethenatureofsensitivity analyses,inwhichaparticularadjustmentofsome parameterismadeandtheconsequencesare examined.Forexample,aspecifiedreductionin sugarcaneacreageduetoincreasedsugarimportsor arequiredreductioninwaterpollutionmightbe modeledtodetermineitsimpactonthestatewide energyinputrequirementsforsugarcane. AsFlorida'shumanpopulationcontinuesto increase,pressuresonagriculturemayresultin decreasedproductionofcertaincommodities,suchas certainagronomiccrops.Butincreaseddemandfrom increasedpopulationmayalsoleadtoincreased productionofothercommodities,suchas ornamentals.Themodelcanbeusedtoestimatethe impactsonagriculturalenergyrequirementsdueto anypredictedproductionlevelchanges. IftheeffectsoftheproposedFreeTrade AgreementwithMexicoact,theUSGATTproposal, etc.onFloridaagriculturalproductioncanbe predicted,resultantchangesinFloridaagricultural productionenergyrequirementscouldeasilybe estimatedusingthismodel.Predictedchangesin productionlevelscanbeenteredintothemodelto determinetheestimatedchangesinenergy requirements. Increasesintemperaturesduetoglobalwarming, increasedcarbondioxide,etc.canhaveeffectsupon thequantitiesandyieldsofvariouscommoditiesthat areproducedinFlorida.Iftheeffectsonproduction levelsand/oryieldscanbepredicted,theeffectsupon statewideenergyrequirementscanalsobepredicted byusingthismodel. Mostoftheoriginalproductionbudgetsupon whichthemodelwasbasedweredatedinthelate 1980's,andthereforereflecttechnologyusedduring thoseyears.Productiontechnologychangesmay reflectnewlyavailabletechnology,changingrelative costsofinputs,newpestpressures,etc.The productionbudgetsandenergybudgetscanreadilybe updatedtoreflectcurrent,anticipatedorproposed productiontechnology.Themodelwillthenprovide theproductionenergyrequirementsusingthenew productiontechnology.

PAGE 6

ChapterX.FloridaAgriculturalEnergyConsumptionModelResults Page6Commoditieswhoseproductionrequireslarge quantitiesofenergy,eitherdirectorindirect,will,in thefutureasenergybecomesmoreexpensiverelative tootherinputs,bemorelikelytosufferproduction decreases.Suchproductiondecreaseswillbeless likelyforhighly-valuedcommoditiesthatcan withstandpriceincreasestocoverincreasedcosts. Commoditiesthatproducenetenergyandexhibitvery largeenergyproductivities,suchasgrass,sorghum andsugarcane,maybecandidatesforrenewable energysourcesandthereforealsobecandidatesfor increasedproduction.SUMMARYAFloridaAgriculturalEnergyConsumption Modelhasbeendeveloped.Itisausefulaccounting methodologyforquantifyingthedirectaswellasthe totalprimaryenergyrequirementsforFlorida agriculturalproduction.Itrespondstocropacreages andnumberofheadoflivestockindeterminingthe energyconsumptionwithinseventeencategoriesof inputs. Table1. TotalPrimaryEnergyRequirementsforFloridaAgriculturalCommodities,1990. Ranking Commodity Energy (TrillionBtu)1 Percent Cumulative Percent 1 Oranges 19.7 15.99 15.99 2 Beef 14.0 11.35 27.34 3 FolPlant 10.7 8.70 36.04 4 Dairy 10.5 8.51 44.55 5 Horse 10.4 8.46 53.00 6 Grapefruit 9.3 7.52 60.52 7 OrnPlant 8.8 7.10 67.62 8 Layers 4.4 3.56 71.18 9 Tomato 4.1 3.30 74.48 10 Broiler 3.9 3.19 77.67 11 CornGrain 2.3 1.89 79.56 12 SweetCorn 2.2 1.78 81.34 13 Cucumber 2.0 1.65 83.00 14 Watermelon 1.4 1.13 84.12 15 BellPepper 1.3 1.09 85.22 Next27Crops 17.8 14.48 99.70 1Thereareapproximately125,000Btuinonegallonofgasoline.