Material Information

Development of a personalized diagnostic model for kidney stone disease tailored to acute care by integrating large clinical, demographics and laboratory data: the diagnostic acute care algorithm - kidney stones (DACA-KS)
Zhaoyi Chen
Victoria Y. Bird
Rupam Ruchi
Mark S. Segal
Jiang Bian
Saeed R. Khan
Marie-Carmelle Elie
Mattia Prosperi
BMC, BMC Medical Informatics and Decision Making
Publication Date:


Subjects / Keywords:
Diagnostic algorithm ( fast )
Kidney stones ( fast )
Big data analysis ( fast )


Background: Kidney stone (KS) disease has high, increasing prevalence in the United States and poses a massive economic burden. Diagnostics algorithms of KS only use a few variables with a limited sensitivity and specificity. In this study, we tested a big data approach to infer and validate a ‘multi-domain’ personalized diagnostic acute care algorithm for KS (DACA-KS), merging demographic, vital signs, clinical, and laboratory information. Methods: We utilized a large, single-center database of patients admitted to acute care units in a large tertiary care hospital. Patients diagnosed with KS were compared to groups of patients with acute abdominal/flank/groin pain, genitourinary diseases, and other conditions. We analyzed multiple information domains (several thousands of variables) using a collection of statistical and machine learning models with feature selectors. We compared sensitivity, specificity and area under the receiver operating characteristic (AUROC) of our approach with the STONE score, using cross-validation. Results: Thirty eight thousand five hundred and ninety-seven distinct adult patients were admitted to critical care between 2001 and 2012, of which 217 were diagnosed with KS, and 7446 with acute pain (non-KS). The multi-domain approach using logistic regression yielded an AUROC of 0.86 and a sensitivity/specificity of 0.81/0.82 in cross-validation. Increase in performance was obtained by fitting a super-learner, at the price of lower interpretability. We discussed in detail comorbidity and lab marker variables independently associated with KS (e.g. blood chloride, candidiasis, sleep disorders). Conclusions: Although external validation is warranted, DACA-KS could be integrated into electronic health systems; the algorithm has the potential used as an effective tool to help nurses and healthcare personnel during triage or clinicians making a diagnosis, streamlining patients’ management in acute care. Keywords: Diagnostic algorithm, Kidney stones, Big data analysis.
General Note:
Chen et al. BMC Medical Informatics and Decision Making (2018) 18:72; Pages 1-14

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

UFDC Membership

University of Florida Institutional Repository