Citation
The thermolysis of gem-difluorospiropentane, the kinetic effect of fluorine on the homodienyl hydrogen shift, and preparation and reactions of difluorodiiodomethane

Material Information

Title:
The thermolysis of gem-difluorospiropentane, the kinetic effect of fluorine on the homodienyl hydrogen shift, and preparation and reactions of difluorodiiodomethane
Creator:
Elsheimer, Seth Robert
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Alkenes ( jstor )
Fine structure ( jstor )
Flasks ( jstor )
Fluorine ( jstor )
Hydrocarbons ( jstor )
Hydrogen ( jstor )
Kinetics ( jstor )
Magnetism ( jstor )
Photolysis ( jstor )
Thermal decomposition ( jstor )

Record Information

Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
30570222 ( ALEPH )
11902141 ( OCLC )

Downloads

This item has the following downloads:


Full Text










THE THERMOLYSIS OF gem-DIFLUOROSPIROPENTANE,
THE KINETIC EFFECT OF FLUORINE ON THE
HOMODIENYL HYDROGEN SHIFT, AND PREPARATION AND REACTIONS OF DIFLUORODIIODOMETHANE















By

SETH ROBERT ELSHEIMER
















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA

1984





























To Harvey and Joanne Hall
without whom this would not have been possible.















ACKNOWLEDGEMENT

No acknowledgement can ever adequate ly express my gratitude to Professor William R. Dolbier, Jr., for his leadership, encouragement and friendship during the course of this research. His unrelenting enthusiasm and patience make him an effective educator and an outstanding scientist. It has been a pleasure to be a part of his

research team.

I would also like to thank Dr. Simmon Sellers and

Dheya Al-Fekri for the helpful instruction in the use of the kinetics apparatus, and Jim Rocca for running and helping to interpret many of the high field NMR spectra. Thanks go to Randy Winchester and Gene E. wicks for their helpful discussions and comradery.

Finally, it is with my deepest appreciation that I acknowledge the inestimable contributions of Ms. Dale Midgette who offered moral support and long hours of editorial assistance.















TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ------------------------------------------iii

ABSTRACT --------------------------------------------------- vi

CHAPTER

1 GENERAL INTRODUCTION AND THEORY------------------- 1

Fluorine as a Substituent ------ -------------------- 1
Fluorine as a Substituent on Alkenes -------------- 4
Fluorine as a Substituent on Cyclopropane ------- 9

2 THERMOLYSIS OF 1,1-DIDEUTERO-2,2-DIFLUOROSPIROPENTANE -------------------------------------- 13

Introduction ---------------------------------------- 13
Results and Discussion ----------------------------- 17

3 THE KINETIC EFFECT OF FLUORINE ON THE
HOMODIENYL HYDROGEN SHIFT -------------------------23

Introduction ---------------------------------------- 23
Thermolysis of cis,cis-l-Fluoro-2-methyl3-vinylcyclopropane------------------------------- 25
Results and Discussion ----------------------------- 27
Thermolysis of endo- and exo-8-Fluorobicyclo[5.1.0]oct-2-ene --------------------------- 35
Results and Discussion ----------------------------- 36

4 DIFLUORODIIODOMETHANE: PREPARATION, PROPERTIES,
AND POTENTIAL USES -------------------------------- 46

Introduction ---------------------------------------- 46
Results and Discussion ----------------------------- 49









iv









5 EXPERIMENTAL -------------------------------------- 59

General -------------------------------------------- 59
Preparation of l,1-Dideutero-2,2-difluorospiropentane 19 ---------------------------------- 59
Thermolysis of- 1,l-Dideutero-2,2-difluorospiropentane 19 ---------------------------------- 61
Comparative RaEe for Thermolysis of
1,1-Difluorospiropentane 12 --------------------- 62
Preparation of cis,cis-1-Fluoro-2-methyl3-vinylcyclopropane 31 -------------------------- 62
Thermolysis of cis,cis-1-Fluoro-2-methyl3-vinylcyclopropane 31 -------------------------- 66
Preparation of endo- and exo-8-Fluorobicyclo[5.1.0]oct-2-ene -------------------------- 67
Thermolysis of endo- and exo-9-Fluorobicyclo[5.1.0]oct-2-ene -------------------------- 71
Reaction of CHI with HgF2 ----------------------- 73
Preparation of FI2 ----- ----------------- 74
Photolyses of CF --------------------------- 75
Attempted Thermal Reaction of CF2 I2 with
2,3-Dimethyl-2-butene 54 ------------- 81
Simmons-Smith Reactions f CF I --------------- 81
Free-Radical Additions of CF 2to olefins----- 82
2 2
Zinc Reductions of 1,l-Difluoro-l,3diiodoheptane 61 ------------------------------ 87

6 GENERAL CONCLUSIONS ------------------------------- 88

APPENDICES

A KINETIC DATA ----- --------------------------------- 89

B SELECTED SPECTRA -----------------------------------102

REFERENCES ------------------------------------------------145

BIOGRAPHICAL SKETCH ---------------------------------------150
















V














Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy THE THERMOLYSIS OF gem-DIFLUOROSPIROPENTANE,
THE KINETIC EFFECT OF FLUORINE ON THE
HOMODIENYL HYDROGEN SHIFT, AND PREPARATION
AND REACTIONS OF DIFLUORODIIODOMETHANE By

SETH ROBERT ELSHEIMER

December 1984

Chairman: William R. Dolbier, Jr. Major Department: Chemistry

An isotopic labeling experiment showed that 1,1-difluorospiropentane thermally rearranges to 2,2-difluoromethylenecyclobutane via two competing mechanisms which are analogous to the rearrangement of the parent hydrocarbon. One mechanism involves initial cleavage of the C 1-C2 bond and the other involves initial C4-C5 bond cleavage. The former pathway predominates by 3 to 1. Difluorocarbene addition to (dideuteromethylene)cyclopropane gave l,1-Dideutero-2,2-difluorospiropentane. Gas phase thermolysis at 339.60C (k = 2.363+

0.025 x 10-5 s ) produced a mixture of the three possible gem-dideuterated isomers of 2,2-difluoromethylenecyclobutane.





vi









The relative amounts of these were determined by 1H and 19F NMR spectroscopy. The small secondary isotope effect observed (kH/kD = 1.15+0.02) is consistent with the major reaction path involving initial C1-C2 bond homolysis.

Cis,cis-l-fluoro-2-methyl-3-vinylcyclopropane was

prepared in 35% yield by treatment of cis-l,3-pentadiene with CHFI2 and diethylzinc. Its gas phase thermolysis at 152.8 171.40C produced a mixture of trans- and cis-1,3,5hexatriene the latter of which equilibrated with 1,3-cylcohexadiene under the reaction conditions. Rate constants for this first order, unimolecular process were measured at 6 temperatures and activation parameters were calculated (Ea=27.6+1.2 kcal/mol, Log A = 10.3+0.6). These results are consistent with an initial 1,5-homodienyl hydrogen shift followed by rapid HF elimination.

Treatment of 1,3-cycloheptadiene with CHFI2 and diethylzinc afforded endo- and exo-8-fluorobicyclo[5.1.0]oct-2-ene. Gas phase thermolysis of either isomer produced an approximately 2:1 ratio of 1-fluoro- and 7-fluoro-l,3-cyclooctadiene. Some preliminary kinetic studies were carried out. Possible mechanisms which account for these unexpected products are presented.

Difluorodiiodomethane, which was previously available

only in small amounts via difficult and low yield procedures, was prepared in practical quantities by treatment of CI4



vii








with HgF2. As a difluorocarbene synthon, CF2 12 was used in photochemical and Simmons-Smith cyclopropanations. Free-radical additions of CF2 2 to alkenes gave a,a-difluoro-a,y-diiodo adducts in good to excellent yields.











































viii














CHAPTER 1
GENERAL INTRODUCTION
AND THEORY

Fluorine as a Substituent

Fluorine is unique among substituents in its effects on organic systems. The high electronegativity, unshared electron pairs, and small size of fluorine make it a potent a-withdrawer and a potential -donor while at the same time having minimum steric requirements. A brief description of these properties is presented here, but the interested reader is directed to the excellent reviews of Smart '2 for a more comprehensive treatment. Electronegativity

Fluorine is the most electronegative of the elements. The electronegativity demands of fluorine result in a C-F bond that is rich in p-character as carbon gives up its
3
less tightly held p electrons. Fluorinated organic molecules often display changes in geometry reflecting changes in hybridization relative to their hydrocarbon analogues. Consider, for example, the enlarged HCH angle of 113.70 for CH2F2 compared with the idealized 109.50 of CH4.




1





2



Non-bonding Electrons

The presence of threenonr-bonded pairs of electrons on

a fluorine make it a potential 7-donating substituent. This Property is nicely illustrated by the observations that fluorine directly bound to a carbocation center stabilizes
5
the carbenium ion. This is best explained as conjugative interaction of fluorine's lone pairs wIith the vacant p-orbital of the carbenium ion, (1)







9C-F C=F (1)
/ /







The 7-donor capability of fluorine has also been used to explain the observed trends in bond dissociation energies of the halomethanes (Table 1-1).6 Note that as halogen content increases, Do(C-X) decreases for iodo-, bromo- and chloromethanes. This trend is reversed for fluoromethanes and spans a wider range of energies.




3



Table 1-1. Bond Dissociation Energies, D0(C-X) of
Halomethanes.a

X CH3X CH2X2 CHX3 CX4


F 109.9+1 119.5b 127.5b 130.5+3

Cl 84.6+0.2 80.1 77.6 73.1+1.8

Br 70.9+0.3 64c 62c 56.2+1.8

I 57.2+0.3 51.3c 45.7c

aAll data from ref. 7 unless otherwise noted. bRef. 8.
CRef. 9.


6


Pauling suggested that contributions from "double-bond, no-bond" resonance forms (2) account for these results. As n increases from 0 to 4 for CH(4-n) Fn, a greater number of such forms can be drawn. Ab initio calculations seem to support this description.10'11





F FO
I
7-C-F F-C=Fe (2)
i I
F F





Size

With reward to fluorine's size, two points should be made. Excluding hydrogen, fluorine has the smallest






4


12
Van der Waals radius of any substituent atom or group.12 This means that the steric requirements for a fluorine are minimal. Fluorine's small size also makes it well suited for overlap of its atomic orbitals with those of carbon. This results in a strong C-F bond. In fact, of all the elements, fluorine forms the strongest single bonds to carbon.

Fluorine as a Substituent on Alkenes

The effects of vinylic fluoro substituents have

frequently been misunderstood and misrepresented. Contrary to what was once believed,13 monofluoro and gem-difluoro substituents stabilize alkenes thermodynamically. The equilibration of fluoropropenes shows that a single fluorine is thermodynamically favored on the C=C bond by about

3 kcal/mol.14




FH2C H F CH3 F H

C=C C=C + C=C
H H H H H CH3
1 2 3



AHr, kcal/mol

1 2 -3.34

1 3 -2.68

2 + 3 +0.64





5


Equation (3),which is useful for calculating substituent 15
effects relative to CH3, seems to indicate that F is similar to CH3 in its ability to stabilize a double bond. A CH3 is considered to stabilize a C=C bond by about

3 kcal/mole.16





CH3 CH

CHF + CH2=CH-CH3 CH3-CH + CH2=CHF (3)

CH3 CH3



AHr = 0.0+1.0 kcal/mole


The increased thermodynamic stability of monofluoro

olefins is most easily explained by the resonance contribution depicted in equation (4) in which the non-bonding electrons of fluorine back-bond into the CC bond. This 7r
description is supported by ab initio calculations.11,17,18


q) F

C=C + GC-C (4)


Geminal difluoro substitution on a C=C bond is also thermodynamically stabilizing. The 7-bond dissociation
19
energies for ethylene, gem-difluoroethylene, and tetrafluoroethlylene are shown in Table 1-2.




6



Table 1-2. 7-Bond Dissociation Energies.

Do kcal/mol

CH2=CH2 59.1+2.0a

CH2=CF2 62.1+1.0b

CF2=CF2 52.3+2.0c

aRef. 19.
bRef. 20.
cRef. 21.





It appears that the 7-bond of CH2=CF2 is stabilized relative to CH2=CH2 and to CF2=CF2. Consider also the AHr for the isodesmic reaction (5).



CF2=CF2 + CH2=CH2 + 2 CH2=CF2 (5)

AH = -14.6 kcal/mol
r


DO(CF2=CF2) + D(C1H2=CH2) 2D (CH2=CF2 ) (6)
iF2 2T T t'22 -()
-14.2 kcal/mol



The similarity in the value of equation (6) to the

AH of equation (5) implies that the thermodynamic stability
r
of CH2=CF2 relative to CH2=CH2 and CF2=CF2 is due almost entirely to stabilization of the r-bond.

At first these conclusions may seem inconsistent with some of the thermodynamic studies of gem-difluoro systems. The Cope rearrangement of 4 to 5 (equation (7)), for example,




7


has a AHr of -5.1+0.6 kcal/mol, and the heat of hydror
genation of gem-difluoroethylene is 6.2 kcal/mol more exothermic than that of ethylene (equations (8) and (9)).


AH4,kcal/mol


F2 F2 -5.1+0.614 (7)




4 5


2
CH2=H2 + H2 CH3 CH3 -32.6+0.3 (8)


2
CH2=CF2 + H 2 CH CHF -38.8+2.8 (9)






These observations are not, however, a result of the destabilization of the alkene, but rather, a strong stabilization of the allylic and alkylic positions by gemdifluoro substitution. A useful concept here is that of "Incremental geminal stabilization"14 (IGSTAB) which is defined as the increase in thermodynamic stabilization of a geminally substituted system, per substituent, relative to the respective monosubstituted system. Isodesmic equations are used to determine these quantities and, as shown below, IGSTAB values are strongly system-dependent.




8



AH ,kcal/mol IGSTAB, kcal/mol
r


13.1
2CH3CH2F CH3CHF2 + CH3CH -6.6 (10)


-5.0
2CH2=CHF CH2=CF2 + CH2=CH2 -2.5 (11)


-13.25
2CH2=CHCH2F CH2=CH2CHF2 + CH2=CH-CH -6.6 (12)



Notice that the IGSTAB for the alkene is negative but those of the alkyl and allyl systems are even more negative. The driving force to convert vinyl CF2 to alkyl or allyl is the greater stability of the latter two groups, i.e. larger IGSTAB, and not destabilization of the gem-difluoro olefins.

The difference in vinylic and alkylic IGSTAB has been

rationalized using the double-bond, no-bond resonance model.14



F F
C ++ C

F FE

6a 6b



F F
/
C=C ++ C=C
F F

7a 7b





9


A resonance contributor such as 6b would be expected to provide greater stabilization to 6 than 7b can for 7.* Analogous contributing structures cannot be drawn for the monofluoro alkyl and vinyl systems.

Fluorine as a Substituent on Cyclopropane

The advantages of cyclopropane ring systems for the study of substituent effects are well known.22 How might the presence of fluorine substituents influence a cyclorpropane?

a-Withdrawing effects

Consider first the inductive effects. The high electronegativity of fluorine causes its bonds to carbon to be rich in p-character and leaves the remaining bonds poorer in p-character.3 This should result in an increased ring
**
strain as the unfluorinated sites are rehybridized to larger bond angles.

This description is neatly consistent with the

observations for gem-difluorocyclopropanes. The structure of l,l-difluorocyclopropane (Table 1-3) has been determined
by mirowae stdies24
by microwave studies24 and shows the C(l)-C(2) bond lengths to be shorter and the C(2)-C(3) bond length to be longer than the bonds of the parent cyclopropane.25 One way to


It may be helpful to recognize that the bonded portions of 6b and 7b are isoelectronic with a ketone and a ketene respectively.
**
For purposes of this discussion the term "strain" is used to denote the total net destabilization. The reader is reminded that this may have several components.23





10


visualize this effect is to recognize that the "bent" bonds of the cyclopropane ring are even more bent with gem-difluoro substitution on carbon.26 One would predict a qualitatively similar result, although smaller, for fluorocyclopropane (Table 1-3). The structure of C-C3H5F is not known experimentally but has been calculated.27



Table 1-3. Bond Lengths.
0 o
r[C(1)-C(2) ],A r[C(2)-C(3)],A



> 1.510a 1.510a



> F 1.494-1.497b 1.527-1.528b



> F2 1.464c 1.533c
aRef. 25.
bRef. 27.
cRef. 24.



As has been noted elsewhere,1,22,23 bond lengths cannot necessarily be correlated with bond strengths. Kinetic studies of gem-difluorocyclopropanes22,28,29 indicate a general weakening of the C-C bonds compared to the corresponding hydrocarbons. Homolysis of the C(1)-C(2) bond is enhanced by 0 to 2 kcal/mol while C(2)-C(3) cleavage is enhanced by 8 to 10 kcal/mol.








There are currently no reports in the literature of a single fluorine's kinetic effect on cyclopropane opening. 7r-Donating effects

A description of 7-acceptor influence on cyclopropane was offered by Hoffmann30 and extended by Gt'hther31 to include '-donors such as fluorine. Here one employs the familiar Walsh model of cyclopropane bonding in which the carbons are sp2 hybridized. One of the sp2 hybrid orbitals from each carbon is directed into the ring and the remaining two are used to form a-bonds to the hydrogens. The remaining p-orbitals, which are perpendicular to the CH2 planes, overlap to form the "bent" C-C bonds. The Walsh molecular orbitals of the ring can be qualitatively represented as shown on the left of Fiaure 1-1.

In order to assess the effect of -donors on this

model, one considers the HOMO and LUMO of the interacting fragments. The LUMO of the cyclopropane is 4 and the HOMO of a fluorine fragment is one of its three degenerate non-bonding atomic orbitals. As the fluorine donates electron density to the cyclopropane, the antibonding interactions for all C-C bonds increases. The implication here is that T-donors should destabilize the cyclopropane ring and weaken all the ring bonds.

Consistent with this model's inability to account for

the observed shorter C(l)-C(2) bond lengths in 1,1-difluorocyclopropane is the recent report from Clark et al.33 in





12



which they challenge the assumptions upon which the above model is based. These authors conclude that the e-withdrawing effect of a fluorine far exceeds its w-donor capability in cyclopropane systems.








u-DONOR











4
56








7-ACCEPTOR


92 3










Figure 1-1. The Effect of 7-Donors and -Acceptors on the Walsh Orbitals of Cyclopropane.














CHAPTER 2
THERMOLYSIS OF 1,1-DIDEUTERO-2,2DIFLUOROSPIROPENTANE

Introduction

Thermolyses of spiropentane systems have been studied extensively and the mechanism for the rearrangement of the parent hydrocarbon 8 is well understood. Initial cleavage of a peripheral bond34 occurs reversibly35 to produce diradical 9. Whether 9 then undergoes a second cleavage to give diradical 10 or goes directly to methylenecyclobutane 11 is not completely clear, but 11 has been shown 36
to automerize via 10.36 Activation parameters for the rearrangement of 8 to 11 have been determined.37






H2 CH2


8 9 10 11











13




14


In order to further investigate the kinetic effects of gem-difluoro substitution in cyclopropane systems, 1,1-difluorospiropentane, 12, was studied by Dolbier et al.38 Thermolysis of 12 gave 2,2-difluoromethylenecyclobutane 13 as the only product. Control experiments demonstrated that 10.5% of the observed product 13 was formed via (difluoromethylene)cyclobutane 14 which rapidly isomerized to 13 under the reaction conditions.


F2


12CF 2 13 2

F2



14

Activation parameters for the thermolysis of 12 are listed in Table 2-1 along with those for the parent hydrocarbon.



Table 2-1. Activation Parameters for the Thermolysis of Spiropentane and 1,l-Difluorospiropentane.

Eakcal/mol Log A Krel(3400C)


8 57.60.6 15.9+0.04 1.00


12 2 58.0+0.5 16.1+0.2 1.14





15


The modest rate enhancement of 12 relative to 8

(Ea and Log A equal within the experimental uncertainties) is consistent with the two mechanistic pathways depicted in Figure 2-1. These differ by which of the two peripheral bonds cleaves initially.




Mechanism a


F2 ,CF2 F2

CH2 CH2 CH2
12 15 16



CF



14 13
Mechanism b


F2 H2 IF2 C 2

2 CH
12 17 CH2 2
18

Figure 2-1. Pathways for Rearrangement of 1,1-Difluorospiropentane to 2,2-Difluoromethylenecyclobutane.





16



In order to determine how much 13, if any, is formed through the competition of mechanism a with mechanism b, an isotopic labeling study was devised.

Thermolysis of the dideuterated compound 19 can reveal, through the distribution of the deuteriums in the product, if there is significant competition by

mechanism b (Figure 2-2)


Mechanism a CF
F2CF
D2
19 20 21




CD 2 C


F2 D2

23 22




D2

D 2 F 2 F 2
27 24


Mechanism b

> ~ F2 CH2>KIF2 F2
F 2

D2 H 2
19 2 25 CH2 26 CD2



Figure 2-2. Deuterium Distribution According to Mechanism.




17


Results and Discussion

Synthesis of 19 was achieved through difluorocarbene addition39 to (dideuteromethylene)cyclopropane.40
1





> =2CD 2 CF3HgPh 2
D2
19



Thermolysis of 19 produced a mixture of the three possible gem-dideuterated 2,2-difluoromethylenecyclobutanes 23, 24 and 27. The identities and relative amounts of these were determiined by comparison of the 1H and 19F NMR spectra of the mixture with those of the undeuterated material.

The 1H NMR spectrum of 13 consists of two unresolved multiplets at 62.43-2.76 which were assigned to the C(3) and C(4) protons, and two vinylic multiplets at 65.15 and 65.49. The ratio of vinyl to non-vinyl protons is 1:2. The 1H NMR spectrum of the thermolysis products from 19 shows the same upfield multiplets at 62.41-2.76 but the vinyl signals are completely resolved into two quintets of doublets at 65.15 and 65.47. This pattern is explainable assuming that the allylic F and H coupling constants are each 3Hz. The smaller splitting, J=l.l Hz, is due to geminal coupling. The ratio of vinyl to non-vinyl protons is 1.0:2.1 which indicates that 23 is present in 37%.





18

























S.S 4r+ 13

















27 H<
H


24 D2 Z H
D

23














Figure 2-3. Comparison of the Vinylic H NMR Signals for 13 and the mixture 23, 24, and 27.




19


The ratios within these vinylic quintets are 1.0:7.6: 16.6:8.1:1.1 which is consistent with superimposition of a triplet from 24 and a quintet from 27, having identical chemical shift and coupling. Figure 2-3 shows a comparison of the vinylic regions of the IH NMR spectra for the undeterated 13 and the deuterated product mixture of 23, 24 and 27.

The 19F NMR spectrum of the undeuterated 13 shows a complex multiplet at 94.49 with a large vicinal HF coupling to the C(3) protons of 11.8 Hz. The mixture of thermolysis products from 19 shows not only the multiplet described above, but also a second, narrower multiplet at 94.85 which lacks vicinal HF coupling. This new signal is due to the presence of 27 which, in addition to possessing no H vicinal to the fluorines, displays a deuterium isotope effect on the 19F chemical shift. The magnitude and direction of this shift (0.36 ppm upfield) are consistent with those previously observed.41'42 The ratio of low to high field multiplets is 2.8:1.0, indicating 27 comprises 26% of the mixture. The 19F NMR spectra for the undeuterated 13 and the mixture of deuterated 23, 24 and 27 are compared in Figure 2-4. Knowing the amounts of 23 and 27 present to be 37% and 26% respectively, one then arrives, by subtraction, at 37% for the amount of the remaining isomer 24.





20




































24 23 27 c 'S

















Figure 2-4. Comparison of the 19F NMR Spectrum of 13 to that of the Mixture 23, 24, and 27.




21



The ratio 37:37:26 for 23:24:27 is consistent with the complete thermal equilibration of 23 and 24 which one would expect under the conditions used for thermolysis of 12. 36Since products 23 and 24 are formed via mechanism a, and 27 is formed via mechanism b, the product ratio indicates a competition between the two proposed pathways in which a is favored over b by about 3 to 1.













a b




>< 2 D2 D Ej

D2 2 2f





12 23 24 27



37% 37% 26%




The product ratios, which were established by 1H and 19F
NMR integrations have a reliability of q,+2%.





22



Samples of 19 and the undeuterated compound 12 were

thermolyzed under identical conditions to allow a comparison of their rates (Table 2-2). Rates were determined both by following disappearance of starting material versus an internal standard or alternatively, monitoring product formation. Greater precision was obtained for the latter method and those results were regarded as more reliable.



Table 2-2. Thermal Isomerization of 12 and 19 at 339.60C.
kx10 5, S -1 k x 10 5, s
(internal standard) (product)


12 3.7147+0.0345 2.7156+0.0196



19 3.3683+0.0316 2.3627+0.0246
D 2
The secondary kinetic isotope effect observed (k H/k =


1.15+0.02) is consistent with the majority of the reaction proceeding through initial C(1)-C(2) bond homolysis.*

The results from the thermolyses of 12 and 19 can

now take their place among those for other gem-difluorocyclopropanes. The observation of a very slight rate enhancement for cleavage of the C(l)-C(2) bond is consistent with earlier findings.22



In a similar but lower E rearrangement, the thermal isomerization f dideuterobis(cyclopropylidene) showed a kH/kD = 1.21.4














CHAPTER 3
THE KINETIC EFFECT OF FLUORINE ON THE 1,5 HOMODIENYL HYDROGEN SHIFT Introduction

In contrast to the wealth of information on gemdifluorocyclopropanes, the studies of the monofluoro derivatives are quite sparce, and these provide information on thermodynamics, rather than kinetics. Paquette's observation of the fluorosemibullvalene equilibrium qualitatively showed that a monofluoro substituent is favored thermodynamically on a double bond 43
rather than a cyclopropane.43

















A similar but quantitative study by Dolbier and Burkholder44 supports this result with the observed equilibrium between the isomeric monofluorinated methylenecyclopropanes.



23




24





F
F



AHr = -2.60+0.06 kcal/mol






A particular problem in the study of monofluoro

systems is that of HF elimination. A monofluoro compound shows a much greater tendency to eliminate IHF than does the corresponding gem-difluoro compound. Consider
14
for example the study by Dolbier and Medinger14 in which the attempted Cope rearrangement of 3-fluoro1,5-hexadiene could not compete with the rapid formation of HF elimination products.



F



F

1600C



28




25



Thermolysis of cis,cis-l-Fluoro-2methyl-3.-vinylcyclopropane

The 1,5 homodienyl hydrogen shift (equation (13)) was selected as a rearrangement in which the kinetic influence of a monofluoro substituent on a cyclopropane might be probed.





/ 2
4 1= (13)








The mechanistic details of the homodienyl shift have been presented elsewhere.4547 Due to the low activation energy for this concerted process the potential problem of HF elimination would be minimized. This system is additionally attractive since kinetic studies on the 45
parent hydrocarbon 29,45 and the gem-difluorinated
29
compound 30,29 are available for comparison.









29

29





26






F2 F2







30





A stereochemical requirement for the homodienyl

shift is that the carbon bearing the migrating hydrogen be on the same side of the cyclopropane ring plane as the alkene (i.e. cis). Given this restriction, there exist two possible isomeric l-fluoro-2-methyl-3-vinylcyclopropanes which should be accessible from formal addition of fluorocarbene to cis-l,3-pentadiene (14).






F


+ IF (14)





27


Excluding diadducts, there are four isomeric products one would expect from this synthetic strategy; two regioisomers each of which has two stereoisomers.




F F F F







31 32 33 34



Results and Discussion

Employing a variation of the method by Nishimura
48
and Furukawa, cis-l,3-pentadiene was heated with CHFI2 in the presence of diethylzinc (15).






CHFI2 31 33
Et2Zn F

PhCH3 +
940C
34h F

35% 21%



+ 25% diadducts




28


48
In agreement with earlier observations, the predominant mode of addition of the organometallic carbenoid produced cyclopropanes with the fluorine cis to the other groups on the ring. None of the trans monoadducts, 32 and 34 were observed under these conditions.

Gas phase, thermal isomerization of 31 carried out in a well-conditioned pyrex vessel with the results shown in equation (16). Yield was determined by direct GC analysis


F



6" (16)






of the gaseous product mixture compared to an internal standard. Products were identified by their 1H, 13C (and their absence of 19F) NMR spectra. Rates of thermal isomerization were measured at six temperatures. Data obtained are given in Table 3-1.



Table 3-1. Rates of Thermal Isomerization for 31.

T,0C k x 104,s152.8 1.210+0.030

157.1 1.740+0.043

160.4 2.300+0.063

165.1 2.978+0.082

168.1 3.612+0,183

171.4 5.064+0.046




29



An Arrhenius plot of the rate data gave a good straight line and the frequency factor and energy of activation were calculated by the method of linear least squares. Activation parameters calculated from rates based on product formation agreed, within experimental error, with those calculated from rates based upon the disappearance of starting material versus an internal standard. Greatest precision was obtained from the latter method, and it is those data which are used throughout this chapter.

Table 3-2 lists activation parameters and relative rates for the unfluorinated, cis-monofluorinated, and gem-difluorinated species.














Table 3-2. Activation Parameters for 29, 30, and 31.



Ea Log A T10C AH3 AS AG (166.20C) Krel at
kcal/mol kcal/mol cal/mol.!K kcal/mol (166.20c)


29a' 30.9+,0.4 10.9+0.2 166.2- 29.9 -11.7 35.0 (1)
222.1
(31.2) (11.0)



31 27.6+1.2 10.3+0.6 152.8- 26.7 -14.4 33.0 11.2
171.4

F2
30 c
23.3+0.5 10.3+0.3 52.6- 22.7 -13.5 28.6 1540
86.9




bFrom a linear least squares treatment of the rate data in ref. 45.
Numbers in parentheses are those reported in ref. 45.
CRef. 29.





31



These results are most easily explained by the following mechanistic scheme. Initially the 1,5-homodienyl hydrogen shift takes place in a concerted fashion to produce cis-3-fluoro-1,4-pentadiene 32. This bisallylic fluoride then rapidly loses HF to give trans- and cis- 1,3,5-hexatriene, the latter of which equilibrates with 1,3-cyclohexadiene under these conditions.



F F
F


I/CH2 -HF
32
+









From the data in Table 3-2 one can see that a cismonofluoro substituent lowers the activation energy for the homodienyl shift by 3.3 kcal/mol and a second fluorine (gem-difluoro) lowers it by an additional 4.3 kcal/mol. At 166.21C the relative rate of thermolysis is increased only 11-fold by a single fluorine substituent, while an additional 130-fold rate enhancement is observed for 30.




32



A rationalization for this non-linearity of substituent effect can be found in the following model. Consider the parameters and 0 shown in Figure 3-1.












x











Figure 3-1. Substituent Bond Angles Relative to the Cyclopropane Ring Plane.








These are defined as the angle between the cyclopropane ring plane and the C-X or C-y bond respectively. When x and y are both F, one expects that and e will be equal. The bonds to fluorine will be rich in p-character and the resulting rehybridization around C(l) must manifest itself through additional ring strain as the C(2)-C(l)-C(3) valence angle is opened outward.




33


Now consider the monofluoro case (x = F, y = H). As before the bond to fluorine is richer in p-characterand causes a rehybridization around C(l) resulting in an increase in all the angles not involving the C-F bond.* The already strained cyclopropane bonds cannot accommodate the loss of p-character as well as the C(l)-H bond can. One would expect a flattening of the C(l)-H bond relative to the cyclopropane ring, i.e., an increase in 6 and a decrease in The important point here is that the diminution of p-character in the bonds of C(l) to nonfluorine atoms can be partially compensated by something other than ring strain. By contrast, the gem-difluoro species (x = y = F) does not have this option.

The observed non-additivity of rate enhancement by monofluoro and gem-difluoro substituents also can be explained using a transition state argument. Although the exact nature of the activated complex is not known, it can be reasonably assumed to be some structural hybrid of the reactant and the product. Recall that the IGSTAB values discussed in Chapter 1 are strongly system-dependent. Incremental geminal stabilization by fluorine follows the trend alkyl = allyl >> cyclopropyl > vinyl.49 As the reaction


It may be helpful to consider the (absurd but enlightening) limiting cas where the C-F bond is pure p. This would result in sp hybridization around C(l) making C(l), C(2), C(3) and y essentially coplanar with the C-F bond perpendicular to the plane.





34



proceeds from the cyclopropane to the bisallylic product, it passes through an activated complex which can be represented as 33. This species would be expected to



x y






33 a. x =y = F

b. x = H, y = F





have an IGSTAB for fluorine somewhere between cyclopropyl and allyl. One would predict a lowering of the transition state for 33a relative to that of 33b. Double-bond, nobond resonance forms (equation (17)), which have no counterparts for the monofluoro species, can be used to rationalize the system-dependence of IGSTAB.



E e P E 9 9
F F F F F F



-~ I I(17)





35



Thermolysis of endo- and exo8-Fluorobicyclo [5.1.0] oct-2-ene

In a related study, the thermolyses of 34 and 35

were examined. The hydrocarbon 36, and the gem-difluoroanalogue 37 have been examined previously.









F F

34 35










36 K = 37
-- eq
E = 38.6+0.6 kcal/mol Log A = 13.3




F F2





37 38
-4 -1
k(152.50)=4.47x10 s





36


The hydrocarbon undergoes a reversible homodienyl shift for which the activation and equilibrium parameters were
50
determined.50 The difluoro species 37 was found to rearrange cleanly to 3,3-difluoro-l,4-cyclooctadiene 38 and a rate constant was determined for a single temperature.29

Results and Discussion

Reaction of 1,3-cycloheptadiene with CHFI2 and

diethylzinc yielded the products shown in Table 3-3. The compounds were identified by standard spectral methods.











~Et2Zn + CHFI2 Et2Zn
75-900C
43h
PhCH3





37



Table 3-3. Reaction Products from 1,3-Cycloheptatriene, CHFI2 and Diethylzinc.








% Yield


F 71
34









9
35 F



F



7


39 F



F


5


40 F




38



Thermolysis of 34 was carried out at three temperatures. The results are given in Table 3-4. Interestingly, neither 41 nor the HF elimination product 42 was observed in the product mixture.




F






41 42




A single rate was determined for the exo isomer 35 which thermolyzed to give two products with the same GC retention times as 43 and 44 and which appeared in a similar ratio.




39



Table 3-4. Rate and Product Data for the Thermolysis of 34 and 35.




F F




34 43 44



4 -1L
T, 0C 43/44 kx10 ,s-1

190.0 1.84 1.796+0.059



181.0 1.72 1.199+0.041



175.2 1.54 0.745+0.027







173.8 1.57 0.194+0.045
F
35







34: Ea 24.1+3.9 kcal/mol, Log A = 7.63+1.90
-5 -1
-k(calculated for 173.80C) = 7.0x00 s




40



The observed products are difficult to account for

mechanistically (Figure 3-2). Assuming that 34 undergoes the expected homodienyl shift, the primary product formed would be the 1,4-diene 41. There is, however, no obvious mechanism for going from a 1,4-cyclooctadiene to a 1,3-cyclooctadiene. Products 43 and 44 can interconvert with one another (and also the other two isomeric monofluoro 1,3-cyclooctadienes) via 1,5-hydrogen shifts. The problem, then, is reduced to finding a mechanistic entry into 1,3-cyclooctadiene systems from 34.



F
F



34a 34b 41







1,5 H-Shifts
F
F F

(OF


43 44 45 46



Figure 3-2. Possible Intermediates in the Thermal Rearrangement of 34 to 43 and 44.





41



A possible conversion of 41 to 45 could involve a

1,3-fluorine shift. Similar 1,3-fluorine shifts, although never unambiguously demonstrated, have been proposed and strongly implicated for the rearrangements of more highly fluorinated compounds. Gas phase thermolysis of 47, for example, has been shown to give 48 as the major product. Control experiments seem to have ruled out the possibility of surface-catalyzed or fluoride ion-promoted reactions.51








FF
F2 F F

2 H 380-4000C FO H
F2 F2


47 48




42



An alternative mechanism, which does not require the intermediacy of 41, can be visualized by first considering the simplified systems shown in equations (18) and (19). The usual homodienyl hydrogen shift involves, in the simplest case, a methyl vinyl cyclopropane. The cyclopropane bond is in the 2,3 or "internal" position of the 1,5 system

(18). Equation (19) shows a different system in which the migrating cyclopropane bond is at the 4,5 or "terminal" position. Neither of these molecules can undergo the reaction depicted for the other. However, a species such as 34 meets the structural requirements for either mechanism.






3 2
internal (18)
Li\ CH 2

5









3 H terminal (19)

CH
1





43



Figure 3-3 shows an additional factor which may help account for the unusual products. In order to yield the observed product with cis double bonds in the ring, the usual internal homodienyl shift is required to proceed via the "saddle" conformation 34b47 in which the crossring Van der Waals interactions are unfavorable. Molecular models show that a lower energy conformer 34a has good geometrical disposition for the terminal homodienyl shift and can give a cis,cis-l,3-cyclooctadiene. A product formally derivable from such a terminal homodienyl shift






F






34a 34b






FF






Figure 3-3. Conformations for Internal and Terminal Homodienyl Shifts.





44


28
has been observed previously. Dolbier and Sellers reported 4,4-difluoro-l,3-hexadiene 49 as a thermolysis product of 50.










50 49



It is not obvious why the internal homodienyl pathway should be favored for both the hydrocarbon50 and the gemdifluoro compound29 while the terminal pathway is implicated for 34 and 35. Table 3-5 compares the activation parameters and rates for these systems. Such a comparison must, however, be approached cautiously due to the large uncertainties in the activation parameters determined for 34 and the suggestion of an alternative mechanism for that species.




45



Table 3-5. Activation Parameters and Relative Rates for Thermal Isomerization of 34, 36 and 37.








Ea = 38.6+0.6 kcal/mol Ea

/-Log A = 13.3 36





F Ea = 24.1+3.9 kcal/mol
a
Log A = 7.6+1.9 34







F kl52.50 = 4.47x10-4 s-1
1!52.50


37

-1
ID # k(152.50),s krel

36 3.25 x 10-7 1

34 1.68 x 10-5 52

37 4.47 x 10-4 1400















CHAPTER 4
DIFLUORODIIODOMETHANE: PREPARATION,
PROPERTIES, AND POTENTIAL USES Introduction

Fluorodiiodomethane, CHFI2, has been shown to be a useful reagent for the preparation of monofluorocyclo48
propanes. Hine et al. reported obtaining CHFI2 in 32% yield from the reaction of neat iodoform heated to 1200C and treated with solid mercuric fluoride followed 52
by distillation of the product at reduced pressure.



2CHI3 + HgF2 2CHFI2 + HgI2



It was thought that a variation of this method might produce better results. An apparatus which would allow the reaction to be run at 1201C and under reduced pressure provided the possibility for continuous removal of the product as it was formed, thus minimizing the formation of CHF2 I and CHF3.

As expected, this procedure gave CHFI2 in an improved yield of 47%. Also found were the unexpected products diiodomethane and difluorodiiodomethane.




46




47




HyF2
H5F 2

CHI3 1200 CHFI2 + CH2 2 + CF2 2

47% 6% 6%



That the two minor products were formed in an essentially aprotic medium and appear in equal amounts suggests that they are secondary products resulting from the disproportionation of CHFI2.



2CHFI2 + CH2 I2 + CF2 12



Interest in CF2 12 arose from its possible synthetic utility (Figure 4-1). Besides having potential as a difluorocarbene precursor, CF212 was expected to undergo free radical additions to olefins to produce adducts 51 which in turn might be reduced to primary gem-difluorides 52 or reductively coupled to yield gem-difluorocyclopropanes 53.





48




F 2



hvorA
>=< + CF 2I2

53


R"







CF2 I CHF2




51 52



Figure 4-1. CF 2I2 as a Synthetic Reagent.






A literature search on CF 2I2 revealed another

surprising fact. Contrary to what its simple formula would suggest, CF2I2 has previously been available in only small amounts via difficult and low-yield procedures involving the y-irradiation of CF3I 53,54 or the addition of difluorocarbene to molecular iodine.55-58 Clearly any routine use of CF 2I2 requires a more practical source.





49









Results and Discussion

Preparation

As expected from analogy to the preparation of

CHiFI 2 from CHI 31'5 treatment of the readily available CI 459,60 with HgF 2 produced CF 2,2 in fair yield.




25-110 0C
CI 4 + HgF 2 27% CF2 12 + HIq2





An attempt to carry out this transformation using a 9:1 molar ration of KF/HgF 2 gave unsatisfactory results. Properties

Difluorodiiodomethane is a pale yellow liquid which at room temperature or upon exposure to light quickly acquires the characteristic burgundy color of I 2-containing solutions. It boils at 39-410C (80 torr) and has a vapor pressure of 28 torr at 251C. Although refrigeration is recommended, only minor decomposition (<2%) is observed when CF 2 12 is stored at room temperature in a pyrex flask for several weeks. It is stable indefinitely at -781C and is miscible with most organic solvents. Detailed spectral data are given in the experimental chapter.





50


Photolyses

Photolysis of CF 2I2 in the presence of 2,3-dimethyl2-butene 54 under various conditions (see experimental) gave 55 and 56. In the absence of olefins, photolysis of CF212 yields 57 and 12.











CF2I2 A

hv 55 56






ICF2CF21

hv 57















These observations are most easily rationalized through the processes shown in Figure 4-2.




51












CFIF1 CF 2I

57



I -i \-/5

F 2
:CF2 A


55

Figure 4-2. Mechanisms of CF 2I2 Photolysis.





Initial photodissociation of CF2I2 produces a difluoroiodomethyl radical and an iodine atom. The CF2I then has several possible fates. It can be captured by the olefin to give a radical intermediate 58 which then loses a hydrogen atom to give 56. It can lose a second iodine atom to produce difluorocarbene which is then trapped by the olefin to give 55. It can couple to another CF2I to give 57. Finally, it can couple to an iodine atom to regenerate the starting material.




52



The highest yields of 55 obtained photochemically

were through the use of Hg or NaOH(aq) as iodine scavengers.







CF 2 12 F2 C
.... h-v S +/

Hg 25% 29%




61
Analogous reactions have been reported for CH212 and
62
CHF 12.

Less satisfactory results were obtained when 1-hexene

was reacted under these conditions. Only a trace amount of the desired cyclopropane 60 was detected.








CF 21

hv
59 60 2





53



Thermolysis

Difluorodiiodomethane is not a good thermal source of difluorocarbene. When a sample of CF 212 was heated at 870C for 32h with excess 54, no significant reaction was observed and the CF 212 was recovered in >85%. Simmons-Smith reactions

When CF 2I2 was used in place of CH212 for a modified Simmons-Smith reaction,63 54 was converted to 55 in a very modest yield (3% by NMR). A recent report that SimmonsSmith cyclopropanations with CH212 are facilitated by ultrasonic irradiation64 suggested that a similar enhancement might be observed for CF212. When the reaction of 54 with CF 212 and Zn was carried out in a sonicator, the yield was improved more than 12-fold.







CF212/Zn 2 38%

MeOCH 2CH 2OMe

54 55





54



Free-radical additions

As expected, CF212 proved to be an excellent reagent for free-radical chain additions to alkenes. Its addition to 1-hexene and methyl propenoate proceeded smoothly in 73% and 47% isolated yields respectively. These reactions have analogy in the addition of CF2Br2 to alkenes65 but are cleaner in that telomerization is not a significant side reaction.





CH2=CH(CH2) 3CH3 + CF2I A CF 2ICH2 CHI(CH) 3CH3
(BzO) 2

73%

59 61





CH2=CHCO 2CH3 + CF I2 ) CF2ICH2CHICO2CH3 (BzO) 2

74%
62 63

Similar reactions of CF 212 with internal olefins such as trans-4-octene and cyclohexene were also quite successful. However, its attempted addition to 54 resulted in the exclusive formation of 56, likely via diversion of the expected radical intermediate 58 by H atom abstraction.




55



CF I
C2 2
.A

(BzO) CH3 (CH2 2CHICH (CH2 2CH3
21
64 84% 65 CF 2 I




CF I
2 2


(BzO) 2 CF2 F2

66 65% 67 68


(67/68 = 70:30)






CF2 2


(BzO) 2 54 95% 56


Reduction of radical adducts

With the radical adducts 51 so readily accessible,
it seemed worthwhile to devise methods for their conversion to primary gem-difluorides 52 or gem-difluorocyclopropanes 53. Analogous reductions of alkyl iodides to alkanes66 and intramolecular reductive couplings of a,y-diiodides to cyclopropanes67-69 are known.




56



Treatment of 1,1-difluoro-l,3-diiodoheptane 61 with Zn in refluxing ethanol gave 1,1-difluoroheptane 69 and l-butyl-2,2-difluorocyclopropane 60 along with a variety of mostly unidentified side products. A cleaner reaction occurs when it is carried out in THF and the relative amount of 69 produced is enhanced.




69 60


F2 _____ _F2 Others
2



EtOH
61 .> 36% 23% 41%


ZV\k CF2I + Zn
I

S52% 25% 23%
THF


(Relative yields)







Reductive couplings of the type 61 + 60 are especially interesting and useful in that they provide a route into gem-difluorocyclopropanes that does not require difluorocarbene addition. Consider, for example, ester 70.





57





F2


CO 2 CH 3 CO2CH3 + 2 CO2CH3

70 62




One would retrosynthetically view this as having come from CF2 addition to methyl propenoate 62. Unfortunately, all of the usual methods for formal CF2 addition to alkenes are notoriously unsuccessful with electron deficient olefins.1,70 An alternative route to 70 would involve radical addition of CF 212 to 62 followed by reductive coupling of the resulting diiodide 63.









CO 2CH3 F2
-> ICF2CH2 CHICO2CH3 --CO2CH3



62 63 70





58



Summary

Difluorodiiodomethane is now available in quantities that make it a practical laboratory reagent. It can be produced in fair yield by the treatment of CI4 with HgF2.

As a difluorocarbene synthon, CF2 12 has been used for

photochemical and Simmons-Smith cyclopropanations. Although the generality of these reactions has not been verified, fair yields of gem -difluorocyclopropane 55 have been achieved with alkene 54.

Difluorodiiodomethane undergoes facile free-radical additions to alkenes. Isolated yields of 47 84% are obtainable from the addition of CF2 12 to various monosubstituted and disubstituted olefins.










8 F




54 55














CHAPTER 5
EXPERIMENTAL

General

NMR spectra were recorded on a Nicolet NT-300, a Jeol FX-100, a Varian XL-100 or a Varian EM 360L spectrometer. 1H and 13C chemical shifts (6) are reported as ppm downfield of internal TMS. 19F chemical shifts (f) are reported in ppm upfield of internal CFC13. All NMR spectra were obtained at ambient temperature in CDC13 unless otherwise specified. Where 19F NMR yields are reported, a predetermined amount of m-bromobenzotrifluoride (Columbia Chemical Co.) was used as an internal standard. Infrared spectra were recorded on a PerkinElmer 283B spectrophotometer from films of neat liquids between KBr plates. Mass spectra and exact masses were determined on an AEI-MS 50 spectrometer at 70 eV and are reported as m/q(% rel. base)fragment. Unless otherwise specified all photolyses were carried out in a Rayonet photochemical reactor with 350 nm source lamps. Preparation of 1,1-Dideutero-2,2-difluorospiropentane, 19 Into a small carius tube were placed 1.16g of CF3HgPh 39 (3.34 mmol)., 1.58g of Nal (10.5 mmol), 0.18g of (dideuteromethylene)cyclopropane40 (3.21 mmol), about 1.5 ml of benzene (freshly distilled from CaH2 onto molecular 59





60



sieves), and a few mg of Bu4N IG. The tube was sealed under vacuum and suspended in a preheated oil bath equipped with a mechanical stirrer. The tube was situated such that the blades of the stirring propeller could vibrate against it and provide agitation for the reacting mixture. After 48h of heating at 85-88*C, the tube was opened and all volatile material was vacuum transferred to a small flask. The product 19 was isolated by preparative GC (10% tricresylphosphate, 800C, 15' x 0.25", He flow = 60 nL/min) in 40% yield. 1H NMR: 6 1.15 (m)

19F NMR: 135.69 (m)

13C NMR: 6 114.56 (t,J = 285.2 Hz, CF2)

5 15.3 (m, CD2)

6 27.6 (v weak, tentatively identified as spiro C)*

6 6.47 (s, C3 and C4)

IR: 700, 740, 960, 1060, 1210, 1255, 1450, 1550, 3025, 3100 cmi MS: High resolution mean of 11 scans

M= 106.05571, std dv + 0.00248 (23.4 ppm)

Calculated C5H4F2D2 = 106.05631

dev = -0.00060(-5.7 ppm)


compund 13
Model compound 71 shows a spiro C resonance at 5 25.1. Henryk Koroniak, unpublished results, 1982, Univ. of Fl.


71 = 0/F




61



Thermolysis of 1, l-Dideutero-.2,2-difluorospiropropane 19

The thermolysis of 19 was carried out in a wellconditioned, spherical, pyrex vessel of approximately 200 mL capacity, submerged in a stirred, thermostated, molten salt bath (eutectic mixture 50/50 by weight of NaNO2 and KNO 3, mp = 1500). The temperature was measured using a chromel-alumel thermocouple in conjunction with a Tinsley type 3387E potentiometer. The thermocouple was immersed in a well next to the thermolysis vessel. The temperaturewas controlled to +0.10C using a Hallikainen (now TOTCO) Instrument Thermotrol proportional controller with a model 1256A platinum resistance probe. Product identification was done by standard spectroscopic methods on material from preparative runs in which 40 torr of 19 were expanded into the pyrolysis vessel through a contiguous vaccum line and thermolyzed for 5 to 6 halflives. A mixture of 23, 24 and 27 was purified by preparative GC (10% ODPN, 20' x 0.25", 350, He flow = 30 mL/min) Compounds 23, 24, and 27 were identified by their NMR spectra which were similar to those of the undeuterated 13 (See discussion in text). For kinetics, a mixture of approximately 10 torr of 19 and the internal standard pentane, was stirred for several hours in an isolated section of the vacuum line and checked by GC for homogeneity before expanding the mixture into the thermolysis vessel.





62



The kinetic run was sampled at convenient intervals by removing small fractions of the pyrolysis mixture by expansion through a small section of the vacuum line into a gas storage bulb and diluting with argon. This sample bulb was removed and used to make multiple GC injections through a gas sampling valve. A HewlettPackard 5710A gas chromatograph with a flame ionization detector was used in conjunction with an HP-3380S integrator for the anlaysis. Baseline resolution of peaks was observed. Each point in the rate constant is an average of at least 3 GC runs. The rate constant plot contained 6 points and was derived by a linear least squares analysis of the experimental data yielding a correlation coefficient of 0.9998.

Comparative Rate for Thermolysis of
1,!7-Difluorospiropentane 12

For comparison purposes, a thermolysis of the

undeuterated material 12 was carried out in the manner described above at the same temperature on the same day. Samples of the reaction mixture taken at six times gave a plot with a correlation coefficient of 0.99989. Preparation of cis,cis-l-Fluoro-.2-methyl-3-vinylcyclopropane 31

The following procedure was patterned after that of

Nishimura and Furukawa.48 A 50-mL 3-necked flask was equipped with a nitrogen inlet stopcock, a dry ice condenser, a magnetic stirring bar, and a rubber septum. The outlet




63



of the condenser was connected to a mineral oil, U-tube bubbler. The glassware used for the apparatus was dried in an 1201C oven and assembled hot, then cooled to ambient temperature under a slow flow of dry nitrogen. The nitrogen 71
flow was discontinued and, with standard syringe technique, the following reagents were placed in the reaction flask: 20 mL 1.6 M diethylzinc in toluene (32 mmol, Aldrich, Cautior! extremely pyrophoric), 4.0 mL cis-l,3-pentadiene (40 mole, Fluka), and 2.7 rL CHFI252 (8.5g, 30 mmol). The condenser was filled with dry ice and the reaction mixture was magnetically stirred. Reaction progress was monitored by anaerobically syringing out a small sample of the mixture into a septum-capped NMR tube and examining it by 19F NMR for disappearance of CHFI2 ( i02, d, J=48 Hz). The sample could then be placed back into the reaction mixture. No reaction was observed to occur at room temperature after 16h. The reaction mixture was heated to 940C for 15h, and an additional

1 mL of neat diethylzinc72 was added by syringe followed by another 19h of heating. The reaction flask was cooled to 00C and the mixturewas slowly quenched (caution!) with approximately 30 mL of 0.75 M HCI and transferred to a separatory funnel. The organic layerwa's washed thrice with 0.75 M HCI and thrice with distilled water then dried over CaCI2. The resulting solution was examined by 19F NMR and yields were determined by integration. Samples of the products were isolated by preparative PC (20% Diisodecylphthalate, 10' x 0.25", 730, 30 mL/min He flow)





64

31, 35%
H NMR 6 4.63 (dt, J=65.5 Hz, J-5.8 Hz, 1H, FC-H)

6 1.12 (m, 3H, CH3)

6 1.48 1.60 (m, 1H, allylic)

6 1.02 1.16 (m, 1H, MeC-H)

6 5.:66(dddd, J=17.2 Hz, J=10.4 Hz, J=9.3 Hz,

J=1 Hz, 1H, internal vinyl)

5 5.24 (dd, J=17.2 Hz, J=2.1 Hz, 1H, terminal

vinyl cis to cyclopropyl)

6 5.15 (dd, J=10.4 Hz, J=2.1 Hz, 1H, terminal

vinyl trans to cyclopropyl). 19F NMR:4237.1 (dt, J=65.6 Hz, J=7 Hz) 1C NMR:6130.6 (d, J=8.5 Hz, internal olefinic) 6117.0 (s, terminal olefinic)

6 74.6 (d, J=221 Hz, CHF)

6 22.7 (d, J=9.8 Hz, allylic)

6 15.6 (d, J=11.0 Hz, C-Me)

6 5.8 (d, J=8.6 Hz, CH3)

IR: 285(wk), 330(wk), 710(wk), 730, 780, 860, 905, 970, 990,

1015, 1045, 1075, 1115(wk), 1145, 1180, 1230, 1330,

1390, 1460, 1635, 1695, 2880, 2940, 2960, 2990, 3010,
-1
3040, 3085 cm 1 MS: 100 (30.2) M

85 (100) M+-CH3

79 (10.6) 72 (17.3)

65 (18.8) C5H5





65



59 (37.7) C2H2F

53 (17.4) 51 (11.4) 46 (9.3) 41 (20.7)

39 (46.2) C3H3 27 (20.7) C2 H3

33, 21%
1
H NMR 6 4.65 (dtd, J=66 Hz, J=7 Hz, J= 4 Hz, FC-H)

6 4.8 5.9 (m, vinylic) 19
19F NMR #223.5 (ddddd, J=65.0 Hz, J=23 Hz, J=12.3 Hz, J=5.0 Hz, J=1.1 Hz)

At least four isomeric diadducts which were not separable by GC were also observed (24%). The chemical shifts and coupling patterns from the 19F NMR spectrumof a mixture of these were consistent with the presence of approximately 11-12% each of the syn, syn diadducts 72 and 73 and approximately 1% each of the syn, anti diadducts 74 and 75 (Table 5-1).

F


F F F


72 73 74 75




66



Table 5-1. 19F NMR Data from Mixture of Diadducts.

Description % rel
_intensity


207.0 dtd, J=64.0 Hz, J=21,4 Hz, J=10.5 Hz 1



208.0 dtd, J=64.2 Hz, J=21.7 Hz, J=10.0 Hz 2



224.7 m, at least 2 different F's, unresolved, 47

syn environment for each i.e., dt

J 65 Hz, J=10 Hz



239.0 m, several different F's, unresolved, 50

syn environment for each i.e., dt

J=65 Hz, J=10 Hz




Thermolysis of. cis,Cis-l-F.luoro-2-methyl-3-vinylcyclopropane 31

The gas phase thermolyses of 31 were carried out as was described for that of 19 above except the internal standard used was methylcyclohexane and GC analyses were performed using a Hewlett-Packard 5790A series gas chromatograph with gas injection system and flame ionization detector in conjunction with a Hewlett-Packard 3390A integrator. The column was 10' x 0.125", 10% B,B-oxydipropionitrile on chromosorp WHP at 600C, with 5.5 mL/min N2 flow. A preparative run showed, assuming uniform detector response, 99% material





67



balance by internal standard after 7.2 half-lives. A sample of the gaseous reaction mixture was taken directly from the thermolysis vessel without condensing and examined by GC/MS. Only C6H8 products, starting material, and internal standard coud be detected. One preparative run was condensed directly into anNMR tube, which was then sealed at -1960C. The sample was maintained at -500C or below until NMR analysis was complete. Only elimination products were observed. These were identified by their 1H and 13C NMR spectra.

Preparation of endo- and exo-8-Fluorobicyclo[5.1.0]oct-2-ene, 34 and 35.

A procedure similar to that described above for the preparation of 31 was used. Intoan oxygen-free apparatus were syringed 2.8 ml of 1,3-cycloheptadiene (26 mmol, Aldrich), 12.5 ml of 1.6 M diethylzinc in toluene (20 mmol, Aldrich)
52
and 5.0g of CHFI52 (17.5 mmol). The magnetically stirred mixture was heated at a pot temperature of 75-900C for 43h. In addition to 8% unreacted CHFI2, the following products were obtained by preparative GC (20% carbowax, 20' x 0.25", 135cC, 60 mL/min He flow)

34, 71%
H NMR: 6 4.50 (dt, J=66 Hz, J=6 Hz, 1H, FC-H)

6 4.30 4.75 (m, 2H, vinylic)

6 0.85 -2.42 (m, 8H)





68



19F NMR: 234 (dt, J=66.9 Hz, J=6.7 Hz)

C NMR:6 132.4 (s, C3)

6 122.2 (d, J=5.1 Hz, C2) 6 73.7 (d, J=220.9 Hz, C3)

6 29.0 (s, C4) 6 23.7 (s, C5)

6 19.6 (d, J=7.0 Hz, C6) 6 18.3 (d, J=9.6 Hz, C1)

6 18.2 (d, J=10.9 Hz, C7)

IR: 585, 690, 710, 880, 1005, 1040, 1115, 1125, 1195,
-1
1225, 1410, 1450, 1665, 2870, 2940, 3005 cm MS: M+ 126.0845 std dev = + 0.00065 (+ 5.2 ppm)

mean of 10 scans

Calculated for C8H11F = 126.08448

dev = 0.00003 (+ 0.2 ppm)

126 (15.9) M+

111 (21.0) 98 (17.5) 97 (37.2) 93 (57.1) 91 (24.0) 85 (19.0) 79 (26.1) 67 (11.8) 65 (11.7) 59 (13.4) 39 (23.0)




69



35, 9%
H NMR: 6 4.22 (dt, J=64.6 Hz, H=2.2 Hz, 1H, FC-H)

6 5.32 5.58 (m, 1H, C2-H)

6 5.62 5.84 (d br s, 1H, C3-H)

6 1.0 2.15 (br unresolved m) 19
19F NMR:c199.6 (dt, J=64.8 Hz, J=44 Hz) 13C NMR:6130.6 (d, J=3.1 Hz) 5125.4 (d, J=0.7 Hz)

6 79.7 (d, J=231.1 Hz, C8)

6 30.4 (s, C4) 6 26.5 (s, C5)

6 26.1 (d, J=9.0 Hz, C1) 6 25.0 (d, J=1.7 Hz, C6)

6 24.2 (d, J=11.2 Hz, C7)

IR: 690, 710, 1105, 1380, 1450, 1640, 2860, 2920, 2960,
-1
3010 cm1

MS: M 126.08473 std. dev. = + 0.00065 (+ 1.5 ppm)

mean of 9 scans

Calculated CH F = 126.08448

dev. = -0.00025 (-2.0 ppm)

126(5.7)M+, 67 (100,base) C5H7, and many others




70




39, 7% H F
a /


4

3
H
C 2







IH NMR: 6 4.59 (dt, J=66.2 Hz, J=6.2 Hz, 2H, Ha)

6 1.58 1.80 (br s, 6H, H's on C4 and C 5)

6 0.91 1.03 (m, 2H, Hb) 6 0.68 0.81 (m, 2H, H c)
19F NMR:c237.4 (dt, J=66.2 Hz, J=5.9 Hz) 13C NMR:6 73.0 (d, J=223.4 Hz, C1)

6 23.2 (s, C5)

6 17.9 (d, J=8.5 Hz, C4)

6 15.0 (d, J=11.0 Hz, C3)

5 10.6 (dd, J=10.4 Hz, J=7.9 Hz, C2)

IR: 530, 565, 605, 615, 740, 775, 785, 835, 930, 990,

1025, 1070, 1140, 1190, 1220, 1360, 1405, 1455, 2870,

2930, 2960, 3010, 3050 cm1

MS: M 158.0910 std. dev. = + 0.0018 (14.5 ppm)

mean of 13 scans

Calculated for C9HI2F2 = 158.09070

dev. = +0.00029 (+ 1.9 ppm)

86 (100) base peak





71



40, 5%

This material was not isolated by preparative GC, but was observed in the reaction mixture by NMR 19F NMR 6237.3 (dt, J=65.7 Hz, J=6 Hz, endo F)

6203.5 (dt, J=64 Hz, J=21 Hz, exo F)

Thermolyses of endo- and exo-8-Fluorobicydlo[5.1.] o]ct-2-ene

The procedure and apparatus were the same as those described for the thermolysis of 19 except that because of the low vapor pressures of 34 and 35, the sample bulbs had to be heated to about 50'C in order to maintain good reproducibility of GC injections. The sampling bulbs were wrapped with Thermolyne, BriskHeat- silicon rubber embedded flexible electrical heating tape and covered with a blanket of plaster of Paris. All portions of the sampling area, kinetics line, and gas injection system were maintained at about 50'C. A maximum vapor pressure of 4 to 5 torr could be obtained and was used for all kinetic and preparative runs. One preparative run was carried out on 34 with

5 torr of nonane present as an internal standard and, assuming uniform defect response, >95% material balance was observed after 7.5 half-lives. Several preparative runs were performed consecutively and condensed into a small flask. The resulting products were isolated by preparative GC (20% dinonylphthalate, 1350, 20' x 0.25", 60 mL/min He flow).




72



43
1H NMR: 8 5.78 (m, 1H, C2-H)

6 5.61 (dt, J=10.8 Hz, J=7.7 Hz, 1H, C 4-H) 8 5.46 (dd, J=21.0 Hz, J=4.7 Hz, 1H, C3-H)

5 2.34 (m, 2H, C8-H) 5 2.24 (m, 2H, C5-H)

6 1.67 (m, 2H) 5 1.51 (m, 2H)
13C NMR:S 161.3 (d, J=252.5 Hz, C1)

5 130.8 (d, J=2.0 Hz, C4)

5 122.9 (d, J=12.4 Hz, C3) 5 102.9 (d, J=27.1 Hz, C2)

5 30.0 (d, J=28.5, C8)

5 26.8 (s, C5) 5 24.8 (s, C6)

5 20.7 (d, J=4.9 Hz, C7) 19F NMR:4 90.9 (m) 44
IH NMR: 5 6.00 (dd, J=11.1 Hz, J=4.1 Hz, 1H)

5 5.77 (dd, J=12.0 Hz, J=4.] Hz, 1H)

5 5.72 5.55 (m, 2H) 5 2.78 1.42 (m, 6H) 13C NMR:S 131.5 (s, C3)

5 129.9 (s, C2)

5 125.6 (d, J=10.3 Hz, C4)

5 125.1 (s, C1)




73



6 90.4 (d, J=169.5 Hz, C6)

6 33.2 (d, J=22.8 Hz, C5) 6 28.2 (d, J=21.2 Hz, C7)

6 23.7 (d, J=8.0 Hz, C8)
F NMR: 172 (m)

Reaction of CHI3 with HgF2

Into two solid additiontubes were placed a total of 99.1 g of HgF2 (0.415 mol, Alfa Products). These were inserted into a 500-mL 3-necked flask containing a large stirring magnet and 349.3 g of solid CHI 3(0.8872 mol), and equipped with a distillation head. The system was evacuated to 50 torr, and the reaction flask was heated over an oil bath at approximately 1400C until nearly all the CHI3 had melted. The temperature was decreased to 1201C and the solid HgF2 was added gradually to the magnetically stirring CHI3 melt over a 40 minute period. A dark burgundy-colored distillate was collected at 600 to 800 in a 200-mL receiving flask which was cooled to 00. Approximately 60 mL of distillate (154q) were collected. This material was washed twice with aqueous Na2S203 and then fractionally vacuum distilled to produce lllg of CHFI2 (47%, BP=55-65', 50 torr) and 6% each of CF212(BP=29-33,50 torr), and CH212(BP=>750, 50 torr).




74



Preparation of CF 2I2

Into a 500-mL three-necked flask equipped with

distillation head and vacuum Hershberg stirrer were placed
59
142.4g of C14 (0.274 mol) and 69.6g of HgF2 (0.292 mol). The flask was closed off with a 125-mL pressure-equalizing addition funnel containing 100 mL of 1,2-dichlorobenzene.* The system was evacuated to 50 torr through a -78'C trap, and the dichlorobenzene was added slowly (exothermic as reactions begin!) until the heterogeneous system was wet enough to stir easily (ca. 80 mL). (In an alternative procedure a solid addition tube was used to slowly add HgF2 to a stirring solution of C14) Heating at 1001C produced a dark purple distillate which came over at 50-81'C (50 torr) into a receiving flask cooled to 01C. Distillation ceased after about 45 min. The trap contents and distillate were combined with those from a previous run (0.270 mol of CI4 and 0.273 mol of HgF2) and distilled under vacuum: yield 44.8g (27%); bp 39-41C (80 torr) Small amounts of crude CF212 can be purified (i.e., freed from 12 ) as needed by Other inert, high-boiling solvents (e.g. perfluorodecaline or n-C F 7SO 2F) can also be used.

Higher isolated yields can be obtained by claiming the
small amount of CF 2I2 remaining in the reaction mixture. This can be done by slowly pulling a vacuum above the stirring mixture at room temperature through a -781 trap followed by vacuum distillation of the trap contents.




75



trap to trap distillation under high vacuum through a 0,

-40, -78, and -1960C trap system. Pure CF21 2 is found in the -780C trap. It has a vapor pressure of 28 torr at

250C.

19F NMR:4 -18.6 (s) 13C NMR:S 2.29 (t, J=378 Hz) MS: 304 (28) M

285 (3.6) CF2I

2
254 (24) 1 2

177 (100) CF2I 158 (3.0) CFI

127 (36) I

50 (2.2) CF2
-1
IR: 720, 1045, 1095 cm-1 Photolyses of CF2 2 Photolysis of CF2 12 with 2,3-Dimethyl-2-butene 54 and Hg

Into a small Carius tube were weighed 0.30g of CF2 12 (0.99 mmol), 1.33g of 2,3-dimethyl-2-butene (16 mmol), and

0.87g of Hg (4.4 mmol). The reaction mixture was thoroughly degassed, and the tube was sealed under vacuum. The mixture was photolyzed for 23h with occasional shaking. Afterward the tube was opened, and all volatile material was vacuum transferred and analyzed by 19F NMR. The product mixture contained 25% l,l-difluoro-2,2,3,3-tetramethylcyclopropane 55 and 29% 4,4-difluoro-4-iodo-2,3,3-trimethyl-l-butene 56. Pure samples of each were isolated by preparative gas chromatography(20% dinonyl phthalate on Chromosorb WHP, 20' x 0.25", 110C).




76


55

The 1H NMR (6 1.1, t, J=2 Hz) and the 19F NMR (0149) spectra were identical with those reported for 55. 73, 56
1H NMR: 6 5.09 (br s, 1H, vinylic)

6 5.05 (br s, 1H, vinylic)

6 1.85 (dd, J=3.3 Hz, J=1.5 Hz, 3H, allylic)

6 1.29 (t, J=0.8 Hz, 6H, methyls on C3) 19F NMR:4 41.5 (br s) 13C NMR:6 145.5 (br s, C2)

6 116.3 (s, C1)

6 114.5 (t, J=322 Hz, C4)

6 52.7 (t, J=15.9 Hz C3)

6 23.1 (t, J=3.7 Hz, methyls on C3)

6 21.3 (t, J=3.1 Hz, allylic methyl on C2) IR: 575, 770, 860, 925, 1070(s), 1215, 1385, 1450,
-1
1640(w), 2960 cm1
+
MS: M = 259.98822 std. dev. = + 0.0027 (10.1 ppm)
2
Calculated for C7H 11F2I = 259.98736

dev. = 0.00086 (+ 3.3 ppm)

260 (0.1) M+

133 (71.3) M+-I

128 (10.7) 127 (8.0)

113 (21.2)

97 (15.4)




77



91 (29.1) 85 (11.0)

83 (16.7) M+-CF 2 1

77 (26.3) 73 (33.2) 70 (13.4) 69 (22.0) 67 (16.7) 65 (28.8) 61 (14.1) 57 (35.4) 55 (37.5) 53 (17.8) 51 (11.1)

43 (32.0) C 3 H 7 41 (100) C 3 H 5

39 (46.3) 29 (13.6) 28 (15.2) 27 (20.9)

Photolysis of CF 2 1 2 and 54 without Hg

In the absence of mercury, a photolysis performed as described above showed only 40% conversion of CF 2 1 2 and gave a similar product ratio.





78


Gas Phase Photolysis of CF 2I2 and 54

Into a 570 mL vycor photolysis bulb were vacuum

transferred 0.74 mmol of CF 2I2 and 2.1 mmol of 49. The system was thoroughly degassed and then the bulb was suspended in a Rayonet photolysis apparatus equipped with 254 nm source lamps. Almost immediately the reaction mixture darkened with 12 coloration. Photolysis was continued for 4h. All volatile material was vacuum transferred into a small plum-bottom flask and examined by 19F NMR: 19% 46, 14% 45 and two unidentified products 6% 103.9(s) and 2% 96.2(s).

Photolysis of Neat CF 2I2

Liquid CF2I2 was degassed and a sample was allowed to expand into an evacuated vycor photolysis bulb until its maximum vapor pressure at room temperature was obtained (28 torr). The bulb was closed off and the CF 212 was photolyzed at 254 nm as described above. Within minutes, 12 was seen crystallizing on the walls of the bulb. Afer 2h of photolysis, all volatile material was vacuum transferred to a small flask and examined by 19F NMR which showed ICF 2CF 2I (57, 453.2) and CF 2I2 to be the only 19F-containing species present in other than trace amounts. 57/CF212 1 0/1.





79



Photolysis of CF I and 54 at Elevated Temperature
2 2

A solution of 0.79g of CF212 (2.56 mmol) and 0.81g of 54 (9.6 mmol) was refluxed and photolyzed for 21h under a blanket of dry N2. A Sears 150W, 120V projector flood lamp was used as a light source mounted about 8 cm from the reaction flask. The 19F NMR spectrum of the crude reaction mixture showed 56 to be the major 19F-containing species in addition to small amounts of other unidentified products. No 55 or unreacted CF 212 was observed. Photolysis of CF 212 with 54 and Aqueous NaOH

Into a 25 mL round-bottom flask were placed 0.56g of

54 (6.7 mmol), 15 mL CH2Cl2 1.16g of CF212 (3.82 mmol) and

5 mL of 5M aqueous NaOH. The magnetically stirred reaction flask was equipped with a reflux condenser and the mixture was photolyzed for 23h. The two-phase liquid system was separated and the organic phase was dried over CaCl2 then distilled to remove most of the CH2Cl 2' Absolute yields were not determined; however, 19F NMR analysis showed four 19F-containing species (two unidentified) in the following relative amounts: 54% 56, 30% 55, 9% 80(s), 7% 38(s). Photolysis of CF I2 with 1-Hexene and Hg

Into a small carius tube were weighed 0.36g of CF 212 (1.2 mmol), 0.90g of 1-hexene (10.7 mmol) and 0.59g of mercury (2.9 mmol). The mixture was degassed and the tube was sealed under vacuum at -196C. After thawing, the




80



mixture was photolyzed and mechanically agitated for 18h. The tube was opened and the volatile material was examined by 19F NMR. The reaction yield was too low to be determined by NMR integration. A trace amount of l-butyl-2,2-difluorocyclopropane 60 was detected and identified by its Fourier transformed 19F NMR spectrum. AB quartet with further splitting midpoint $136.7, JAB=156.3 Hz, Ap=16.8 J(F H )=12.4 Hz aa
J(FbHb)-J(FbHc)=13.5 Hz



Bu




H H FA
a c

F
L B
Hb


60



Some trans, vicinal H-F couplings are also visible (1-3 Hz). The 19F NMR spectrum of 60 closely resembled that of model compound 76.

76
76




81



Attempted Thermal Reaction of CF2 I2 and 2,3Dimethyl-2-butene 54.

Into a small Carius tube were placed 0575g of CF 2I2 (1.89 mmol), and 0.817g of 54 (9.73 mmol). The solution was degassed and the tube was sealed under vacuum at -196'. After it was allowed to warm to ambient temperature, the tube was placed in a preheated oil bath and kept at 83-871C for 32h. Analysis by GC and NMR showed the only significant new component in the mixture was 2,3-dimethyl-l-butene which resulted from the I 2-catalyzed isomerization of 54.

Simmons-Smith Reactions of CF 2I2 Reaction of CF2 I2 with 54, Zn, and CuCl


The following procedure was patterned after that of 63
Rawson and Harrison. A 25-mL, three-necked flask was equipped with a spiral condenser, a rubber septum, an addition funnel, and two stopcocks for the inlet and outlet of N2* A solution of 0.463g of CF212 (1.16 mmol) in 1 mL of anhydrous diethyl ether was placed into the addition funnel. Into the reaction flask were placed 0.219g of Zn dust (3.35 mmol), 75
0.322g of freshly prepared CuCl, and 2 mL of anhydrous diethyl ether. The magnetically stirred mixture was warmed to gentle reflux for 15 minutes whereupon 0.5 mL of 54 (4.2 mmol, Aldrich) was added by syringe. Heating was temporarily discontinued while the CF 2I2 solution was added dropwise over 10 minutes. Reflux heating was resumed for 4.5h. All volatile material was vacuum transferred to a small flask. Yield of 55 was 3% by 19F NMR.





82



Reaction of CF 2I2 and 54 with Zn and Ultrasound

Into a 10-mL flask were weighed 0.36g of Zn dust

(5.5 mmol), 0.43g of 1,2-dimethoxyethane, and 0.56g of 54. The flask was equipped with a spiral condenser, nitrogen inlet and outlet stopcocks and an addition funnel containing a solution of 0.96g of CF 2I2 (3.16 mmol) in 0.66g of 1,2-dimethoxyethane. The system was purged with a slow flow of dry N2 and the reaction vessel was mounted inside a sonic cleaner (Bransonic 2 117V, 60 Hz, 40W, Branson Instruments Co.) at a depth that produced the maximum agitation. After 20 minutes of sonication, the CF 212 solution was added dropwise over 6 minutes and the heterogeneous reaction mixture was sonicated for an additional 3 hours while the bath temperature climbed slowly to 580C. All volatile material was vacuum transferred from the mixture and the clear, colorless solution was examined by 19F NMR. Yield of 55 was 38%.

Free-Radical Additions of
CF212 to Aikenes

Addition of CF212 to 1-Hexene

Into a 10-mL round-bottomed flask were weighed 0.325g of CF212 (1.07 mmol), 1.108g of 1-hexene (13.2 mmol), and 10mg of benzoyl peroxide. After refluxing the magnetically stirred solution for 10.5h, excess olefin was removed by rotary evaporation, and the pale pink residue was purified





83



by flash chromatography,76eluting with hexane, to yield

0.304g of l,l-difluoro-l,3-diiodoheptane 61; 73%. H NMR: 6 0.95 (t, J=6 Hz, 3H)

6 1.2 3.1 (br m, 6H)

6 2.8 3.6 (m, 2H)

6 4.32 (quint, J=7 H,lH)
19F ~MR:4 36.18 (midpoint, AB, JAB= 172 Hz, A=1.75)

downfield F (dd, J=18 Hz, J=10 Hz)

upfield F (dd, J=17 Hz, J=14 Hz)

Also visible was 43% of the opposite regioadduct

2-(difluoroiodomethyl)-l-iodohexane

S38.1 (midpoint AB of d, JAB=172, A=1.75, JHF10 Hz) 13
13C NMR:6 99.6 (t, J=316 Hz, C1)

6 58.2 (t, J=40 Hz, C2)

6 39.2 (s) 6 31.5 (s)

6 25.3 (br s, C3)

6 21.7 (s)

6 13.9 (s, C7)

IR: 895(s), 1060, 1165, 2870, 2880, 2930(s), 2970(s)cm-1 MS: 388 (1.0) M

261 (4.8) M+-I 41 (100) C3H5

and many smaller fragments




84



Addition of CF2 I2 to Methyl Propenoate

A mixture of 1.02g of methyl propenoate (11.8 mmol, MCB, freshly distilled from phenothiazene onto molecular sieves), 2.15gc of CF2 12 (7.07 mmol), about 4 mL of benzene and 0.1g of benzoyl peroxide (0.1 mmol) was treated as described above for 19h at 90-1060C to yield 36% of unreacted CF2 12 and 1.29g of methyl 4,4-difluoro-2,4-diiodobutanoate 63 47%. H NMR: 6 4.55 (dd, J=10 Hz, J=3.8 Hz, 1H)

6 2.84 3.95 (m, 2H)

6 3.77 (s, 3H)
19F NMR: 40.1 (midpoint, AB, JAB=176 Hz, A$=0.3, JHF=15 Hz) 1C NMR:6 170.3 (s, C=O)

6 97.0 (t, J=315 Hz, CF2I)

6 54.5 (t, J=21 Hz, CH2)

6 53.3 (s, CH3)

6 7.8 (t, J=2.4 Hz, CHI) MS: 359 (1.3) M-OCH
3
331 (0.3) M-CO2CH3

263 (20.8) M-I

254 (0.8) 12
2
136 (100)

127 (24.5) I

77 (27.7) C3H3F2 64 (3.0) C2H2 2 59 (17.3) CO2CH3





85



31 (13.9) OCH3

and other fragments No M was observed.

Addition of CF2 I2 to trans-4-Octene

A mixture of 0.70g of CF2 12 (2.3 mmol), 0.81g of

trans-4-octene (7.2 mmol) and 0.10gc of benzoyl peroxide was allowed to react as described above at 1100 for 24h to yield 84% of a 1:1 mixture of the two possible diastereoisomeric 4-(difluoroiodomethyl)-5-iodooctanes 65. The 1H-NMR of the reaction mixture shows the hydrogens on C5 as multiplets 64.45.
19F NMR: 36.6 (midpoint, AB of d, A$=3.02, JAB=187 Hz)

downfield F (d, JHF=14 Hz) upfield F (d, J HF=17.5 Hz)

37.5 (midpoint, AB of d, A6=3.17, JAB=188 Hz

downfield F (d, JHF=13.5 Hz)

upfield F (d, JHF=15 Hz)

Radical Addition of CF2 I2 to Cyclohexene

A mixture of 1.00g of CF2 12 (3.3 mmol), 1.20g of cyclohexene (14.6 mmol), and 0.03g of benzoyl peroxide (0.1 mmol) was allowed to react at 90-970C for 20h to yield 61% of a mixture consisting of 65% trans-1-(difluoroiodomethyl)-2-iodocyclohexane 67, 28% cis-1-(difluoroiodomethyl)-2-iodocyclohexane 68, 4% unreacted CF212, and 3% of an unidentified product (642, midpoint, AB .7=10 Hz,





86


A =l ppm). The major diastereomeric products were isolated by preparative GLC. The column was 20% OV-210 on Chromasorb WHP 60/80, 10' x 0.25", at 1500C. Some slight decomposition was noted under these GC conditions. The retention times were trans = 27 min, and cis = 33 min. 67
19F NMR:4 34.5 (d, J=10.3 Hz) H NMR: 6 4.27 (ddd, J=8.5 Hz, J=7.0 Hz, J=4.5 Hz, 1H, H-CI)

6 1.1 2.5 (m, 9H) 13
C NMR:6 108 (t, J=319 Hz, CF2I)

6 57.3 (t, J=16.5 Hz, C1)

6 38.3 (s) 6 27.9 (s)

6 27.5 (dd, J=3.6 Hz, J=2.5 Hz)

6 26.2 (s) 6 22.7 (s)

68
19F NMR: 42.4 (midpoint, AB, J AB=172 Hz, AQ=5.12)

downfield F (d, JHF=13.6 Hz)

upfield F (d, JHF=12.8 Hz) IH NMR: 6 4.75 (br s, 1H, H-CI)

6 1.1 2.3 (m, 9H)
13C NMR:6 105.7 (dd, J=321 Hz, J=320 Hz, CF2I)

6 57.5 (t, J=9.8 Hz, C1)

6 37.2 (s)

6 32.1 (dd, J=3.7 Hz, J=2.4 Hz, C6)




87



6 24.8 (s)

6 23.6 (t, J=2.4 Hz, C2)

6 22.2 (s)

Addition of CF2 12 to 2,3-Dimethyl-2-butene 54

Refluxing 0.56g of CF2 12 (1.8 mmol), 0.86g of 54

(10 mmol), and 0.02g of benzoyl peroxide (0.08 mmol) for 24h gave 56 as the only F-containing product. More than half of the CF212 was recovered unchanged. The yield was 95% based on converted CF2 12 and 19F NMR integration.

Zinc Reductions of 1,1-Difluoro1,3-diiodoheptane 61

Into a 10-mL flask were placed 0.180g of 61 (0.464 mnmol),

1 mL of THF (freshly distilled from LiAlH4 and storred over CaH2 until use), 0.083g of Zn dust (1.28 rmmol, acid washed) and a small crystal of ZnCl2. The magnetically stirred mixture was refluxed for 8.5 h. All volatile material was then vacuum transferred and analyzed by 19F NMR. The relative yields of F-containing products were 52% 59, 25% 60 and 23% of other mostly unidentified products. When a similar reaction was carried out in ethanol, the relative yields were 36, 23 and 41% respectively. The 19F NMR spectrum of 60 was identical to that reported above for 60 prepared from photolysis of CF2 I2 with 1-hexene. 59
196.1 (dt, J=57 Hz, J=17 Hz)
F NMR:4 116.1 (dt, J=57 Hz, J=17 Hz)














CHAPTER 6
GENERAL CONCLUSIONS

The thermal rearrangement of 1,1-difluorospiropentane to 2,2-difluoromethylenecyclobutane was shown to proceed via two competing mechanisms. Initial C1-C2 bond cleavage is three times faster than initial C4-C5 bond cleavage.

The kinetics for the thermal isomerization of

cis,cis-l-fluoro-2-methyl-3-vinylcyclopropane indicate that a cis-monofluoro substituent in the 1 position lowers the activation energy for the 1,5-homodienyl hydrogen shift by 3.3 kcal/mol relative to the hydrocarbon. This value is less than half of the Ea lowering observed for the rearrangement of the gem-difluoro species.

Difluorodiiodomethane is now available in practical quantities through the treatment of CI4 with HgF2. This versatile reagent has been used in photochemical and SimmonsSmith cyclopropanations and undergoes facile free-radical additions to alkenes.











88







APPENDIX A
KINETIC DATA

Table A-1. Kinetic Data for Thermolysis of 12 at 339.6"C.


min % 12 % 13 % std


1.9 38.14 61.50
1.9 38.36 61.64
1.9 39.19 61.37

26.2 37.13 1.54 61.02
26.2 37.20 1.50 60.80
26.2 37.28 1.35 60.81

52.6 34.28 2.93 62.32
52.6 34.14 2.90 62.22
52.6 34.75 3.03 61.78
52.6 34.48 3.01 61.71
52.6 34.40 2.98 62.13

81.7 32.48 4.68 62.26
81.7 32.09 4.62 61.63
81.7 32.25 4.47 62.27
81.7 32.21 4.51 62.45

163.7 27.31 8.22 62.86
163.7 27.52 8.33 63.21
163.7 27.36 8.33 63.10
163.7 27.50 8.28 63.20

201.7 24.98 9.73 63.41
201.7 25.20 9.76 63.38
201.7 25.09 9.89 63.41
201.7 25.26 9.90 63.52

244.5 23.60 11.47 63.75
244.5 23.29 11.29 64.20
244.5 22.53 11.32 64.06
244.5 23.37 11.34 64.40












89





90




Table A-2. Kinetic Data for Thermolysis of 19 at 339.60 C.


min % 19% % 23+24+27 % std


1.5 32.15 -67.20
1.5 32.92 -67.08
1.5 32.42 -67.58
1.5 32.68 -66.62

20.6 31.70 0.76 67.54
20.6 31.37 0.68 67.95
20.6 31.56 0.77 67.50

62.3 28.73 2.55 67.96
62.3 28.37 2.49 68.66
62.3 29.04 2.41 68.06

92.4 26.63 3.78 68.24
92.4 27.21 3.78 67.94
92.4 27.09 3.73 68.62

128.1 25.99 4.71 68.38
128.1 26.09 4.67 68.11
128.1 25.70 4.54 67.95

168.0 23.57 6.37 69.43
168.0 23.58 6.40 68.58
168.0 23.91 6.40 68.74
168.0 23.18 6.38 69.22

263.4 19.72 8.67 70.67
263.4 19.62 8.88 70.51
263.4 20.04 8.95 70.09





91





Table A-3. KinetiC Data for Thermolysis of 31 at 152.80C.


min % 31 % Pi % P2 % P3 % P4 % std


0 92.912 0.631 0.649 0.025 0.022 3.450
0 92.886 0.623 0.632 0.018 0.008 3.450
0 92.840 0.609 0.584 3.462

15 84.579 7.758 0.852 1.231 0.098 3.381
15 84.558 7.684 0.858 1.211 0.101 3.372
15 84.125 7.563 0.944 1.243 0.140 3.401

30 75.877 14.719 1.086 2.362 0.204 3.465
30 76.203 14.722 1.173 2.348 0.195 3.392
30 75.604 14.475 1.290 2.260 0.206 3.436

45 72.896 15.576 2.564 2.359 0.260 3.660
45 72.973 15.350 2.728 2.246 0.225 3.685
45 73.002 15.082 2.875 2.190 0.168 3.755

60 62.364 25.782 1.791 3.867 0.381 3.463
60 62.489 25.574 1.808 3.859 0.324 3.507
60 62.523 25.521 1.867 3.921 0.411 3.499

75 59-008 26.651 3.097 4.262 0.503 3.707
75 58.964 26.294 3.166 4.193 0.489 3.702
75 58.865 26.008 3.331 3.970 0.576 3.726

105 45.212 39.386 2.596 6.109 0.601 3.483
105 45.191 39.231 2.522 6.190 0.587 3.470
105 45.024 38.977 2.593 5.864 0.300 3.471




92




Table A-4. Kinetic Data for Thermolysis of 31 at 157.1'C.


min % 31 % Pi % P2 % P3 % P4 % std


12 82.833 7.533 1.007 1.260 0.182 4.091
12 81.955 7.828 1.195 1.407 0.249 4.120
12 80.591 7.820 1.497 1.459 4.267


24 73.921 13.644 1.425 2.503 4.137
24 73.571 14.576 1.462 2.411 0.155 4.060
24 73.360 14.448 1.437 2.448 0.250 4.096

36 65.692 20.788 1.757 3.772 0.441 4.184
36 65.491 20.649 1.692 3.698 0.342 4.192
36 65.397 20.580 1.901 2.867 4.326

48 59.569 26.269 1.945 4.462 0.327 4.206
48 59.183 25.929 1.967 4.506 0.364 4.285
48 59.538 26.124 1.841 4.416 0.296 4.258

60 58.565 23.186 5.230 3.602 0.629 4.826
60 57.992 23.120 5.124 3.463 0.460 4.925
60 59.150 23.133 5.527 3.557 0.488 4.944

72 51.575 27.697 6.454 4.088 0.498 4.857
72 51.966 27.355 6.691 3.878 4.881
72 50.668 26.622 6.655 3.407 4.875

84 50.384 25.713 9.131 2.825 5.401
84 50.499 25.678 9.340 2.858 0.559 5.297
84 50.753 25.520 9.393 2.737 0.444 5.275




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EUHWSD83J_FOI0RT INGEST_TIME 2014-08-06T00:13:21Z PACKAGE AA00023681_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

7+( 7+(502/<6,6 2) JHP',)/825263,523(17$1( 7+( .,1(7,& ())(&7 2) )/825,1( 21 7+( +202',(1
PAGE 2

7R +DUYH\ DQG -RDQQH +DOO ZLWKRXW ZKRP WKLV ZRXOG QRW KDYH EHHQ SRVVLEOH

PAGE 3

$&.12:/('*(0(17 1R DFNQRZOHGJHPHQW FDQ HYHU DGHTXDWHO\ H[SUHVV P\ JUDWLWXGH WR 3URIHVVRU :LOOLDP 5 'ROELHU -U IRU KLV OHDGHUVKLS HQFRXUDJHPHQW DQG IULHQGVKLS GXULQJ WKH FRXUVH RI WKLV UHVHDUFK +LV XQUHOHQWLQJ HQWKXVLDVP DQG SDWLHQFH PDNH KLP DQ HIIHFWLYH HGXFDWRU DQG DQ RXWVWDQGLQJ VFLHQWLVW ,W KDV EHHQ D SOHDVXUH WR EH D SDUW RI KLV UHVHDUFK WHDP ZRXOG DOVR OLNH WR WKDQN 'U 6LPPRQ 6HOOHUV DQG 'KH\D $O)HNUL IRU WKH KHOSIXO LQVWUXFWLRQ LQ WKH XVH RI WKH NLQHWLFV DSSDUDWXV DQG -LP 5RFFD IRU UXQQLQJ DQG KHOSLQJ WR LQWHUSUHW PDQ\ RI WKH KLJK ILHOG 105 VSHFWUD 7KDQNV JR WR 5DQG\ :LQFKHVWHU DQG *HQH ( :LFNV IRU WKHLU KHOSIXO GLVFXVVLRQV DQG FRPUDGHU\ )LQDOO\ LW LV ZLWK P\ GHHSHVW DSSUHFLDWLRQ WKDW DFNQRZOHGJH WKH LQHVWLPDEOH FRQWULEXWLRQV RI 0V 'DOH 0LGJHWWH ZKR RIIHUHG PRUDO VXSSRUW DQG ORQJ KRXUV RI HGLWRULDO DVVLVWDQFH LQ

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL $%675$&7 YL &+$37(5 *(1(5$/ ,1752'8&7,21 $1' 7+(25< )OXRULQH DV D 6XEVWLWXHQW )OXRULQH DV D 6XEVWLWXHQW RQ $ONHQHV )OXRULQH DV D 6XEVWLWXHQW RQ &\FORSURSDQH 7+(502/<6,6 2) ','(87(52',)/8252 6 3,523(17$1( ,QWURGXFWLRQ 5HVXOWV DQG 'LVFXVVLRQ 7+( .,1(7,& ())(&7 2) )/825,1( 21 7+( +202',(1@RFWHQH 5HVXOWV DQG 'LVFXVVLRQ ',)/8252',,2'20(7+$1( 35(3$5$7,21 3523(57,(6 $1' 327(17,$/ 86(6 ,QWURGXFWLRQ 5HVXOWV DQG 'LVFXVVLRQ LY

PAGE 5

(;3(5,0(17$/ *HQHUDO 3UHSDUDWLRQ RI O'LGHXWHURGLIOXRUR VSLURSHQWDQH 7KHUPRO\VLV RI O'LGHXWHURGLIOXRUR VSLURSHQWDQH &RPSDUDWLYH 5DWH IRU 7KHUPRO\VLV RI 'LIOXRURVSLURSHQWDQH 3UHSDUDWLRQ RI FLV IFLVO)OXRURPHWK\O YLQ\OF\FORSURSDQH B 7KHUPRO\VLV RI FLVFLVO)OXRURPHWK\O YLQ\OF\FORSURSDQH B 3UHSDUDWLRQ RI HQGR DQG H[R)OXRUR ELF\FOR>@RFWHQH 7KHUPRO\VLV RI HQGR DQG H[R)OXRUR ELF\FOR>@RFWHQH 5HDFWLRQ RI &+, ZLWK +J) 3UHSDUDWLRQ RI &)A,A 3KRWRO\VHV RI &)f,B $WWHPSWHG 7KHUPDO 5HDFWLRQ RI &)A,} ZLWK 'LPHWK\OEXWHQH B 6LPPRQV6PLWK 5HDFWLRQVRI )UHH5DGLFDO $GGLWLRQV RI &)LAWR ROHILQV =LQF 5HGXFWLRQV RI 'LIOXRUR GLLRGRKHSWDQH *(1(5$/ &21&/86,216 $33(1',&(6 $ .,1(7,& '$7$ % 6(/(&7(' 63(&75$ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ 9

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( 7+(502/<6,6 2) JHP',)/825263,523(17$1( 7+( .,1(7,& ())(&7 2) )/825,1( 21 7+( +202',(1
PAGE 7

7KH UHODWLYH DPRXQWV RI WKHVH ZHUH GHWHUPLQHG E\ DQG ) 105 VSHFWURVFRS\ 7KH VPDOO VHFRQGDU\ LVRWRSH HIIHFW REVHUYHG NANS f LV FRQVLVWHQW ZLWK WKH PDMRU UHDFWLRQ SDWK LQYROYLQJ LQLWLDO &A& ERQG KRPRO\VLV &LVFLVOIOXRURPHWK\OYLQ\OF\FORSURSDQH ZDV SUHSDUHG LQ b \LHOG E\ WUHDWPHQW RI FLVSHQWDGLHQH ZLWK &+), DQG GLHWK\O]LQF ,WV JDV SKDVH WKHUPRO\VLV DW r& SURGXFHG D PL[WXUH RI WUDQV DQG FLV KH[DWULHQH WKH ODWWHU RI ZKLFK HTXLOLEUDWHG ZLWK F\OFR KH[DGLHQH XQGHU WKH UHDFWLRQ FRQGLWLRQV 5DWH FRQVWDQWV IRU WKLV ILUVW RUGHU XQLPROHFXODU SURFHVV ZHUH PHDVXUHG DW WHPSHUDWXUHV DQG DFWLYDWLRQ SDUDPHWHUV ZHUH FDOFXODWHG ( NFDOPRO /RJ $ f 7KHVH UHVXOWV DUH FRQVLVWHQW ZLWK DQ LQLWLDO KRPRGLHQ\O K\GURJHQ VKLIW IROORZHG E\ UDSLG +) HOLPLQDWLRQ 7UHDWPHQW RI F\FORKHSWDGLHQH ZLWK &+), DQG GLHWK\On ]LQF DIIRUGHG HQGR DQG H[RIOXRURELF\FOR>@RFWHQH *DV SKDVH WKHUPRO\VLV RI HLWKHU LVRPHU SURGXFHG DQ DSSUR[LPn DWHO\ UDWLR RI IOXRUR DQG IOXRURF\FORRFWDGLHQH 6RPH SUHOLPLQDU\ NLQHWLF VWXGLHV ZHUH FDUULHG RXW 3RVVLEOH PHFKDQLVPV ZKLFK DFFRXQW IRU WKHVH XQH[SHFWHG SURGXFWV DUH SUHVHQWHG 'LIOXRURGLLRGRPHWKDQH ZKLFK ZDV SUHYLRXVO\ DYDLODEOH RQO\ LQ VPDOO DPRXQWV YLD GLIILFXOW DQG ORZ \LHOG SURFHGXUHV ZDV SUHSDUHG LQ SUDFWLFDO TXDQWLWLHV E\ WUHDWPHQW RI &,A 9OO

PAGE 8

ZLWK +J)! $V D GLIOXRURFDUEHQH V\QWKRQ &)A,A ZDV XVHG LQ SKRWRFKHPLFDO DQG 6LPPRQV6PLWK F\FORSURSDQDWLRQV )UHHUDGLFDO DGGLWLRQV RI &), WR DONHQHV JDYH DDGLIOXRURD\GLLRGR DGGXFWV LQ JRRG WR H[FHOOHQW \LHOGV YLQ

PAGE 9

&+$37(5 *(1(5$/ ,1752'8&7,21 $1' 7+(25< )OXRULQH DV D 6XEVWLWXHQW )OXRULQH LV XQLTXH DPRQJ VXEVWLWXHQWV LQ LWV HIIHFWV RQ RUJDQLF V\VWHPV 7KH KLJK HOHFWURQHJDWLYLW\ XQVKDUHG HOHFWURQ SDLUV DQG VPDOO VL]H RI IOXRULQH PDNH LW D SRWHQW DZLWKGUDZHU DQG D SRWHQWLDO 7UGRQRU ZKLOH DW WKH VDPH WLPH KDYLQJ PLQLPXP VWHULF UHTXLUHPHQWV $ EULHI GHVFULSWLRQ RI WKHVH SURSHUWLHV LV SUHVHQWHG KHUH EXW WKH LQWHUHVWHG UHDGHU LV GLUHFWHG WR WKH H[FHOOHQW UHYLHZV RI 6PDUW n IRU D PRUH FRPSUHKHQVLYH WUHDWPHQW (OHFWURQHJDWLYLW\ )OXRULQH LV WKH PRVW HOHFWURQHJDWLYH RI WKH HOHPHQWV 7KH HOHFWURQHJDWLYLW\ GHPDQGV RI IOXRULQH UHVXOW LQ D &) ERQG WKDW LV ULFK LQ SFKDUDFWHU DV FDUERQ JLYHV XS LWV OHVV WLJKWO\ KHOG S HOHFWURQV )OXRULQDWHG RUJDQLF PROHFXOHV RIWHQ GLVSOD\ FKDQJHV LQ JHRPHWU\ UHIOHFWLQJ FKDQJHV LQ K\EULGL]DWLRQ UHODWLYH WR WKHLU K\GURFDUERQ DQDORJXHV &RQVLGHU IRU H[DPSOH WKH HQODUJHG +&+ DQJOH RI r IRU &+) FRPSDUHG ZLWK WKH LGHDOL]HG r RI &+

PAGE 10

1RQERQGLQJ (OHFWURQV 7KH SUHVHQFH RI WKUHH QRQERQGHG SDLUV RI HOHFWURQV RQ D IOXRULQH PDNH LW D SRWHQWLDO LUGRQDWLQJ VXEVWLWXHQW 7KLV SURSHUW\ LV QLFHO\ LOOXVWUDWHG E\ WKH REVHUYDWLRQV WKDW IOXRULQH GLUHFWO\ ERXQG WR D FDUERFDWLRQ FHQWHU VWDELOL]HV WKH FDUEHQLXP LRQ 7KLV LV EHVW H[SODLQHG DV FRQMXJDWLYH LQWHUDFWLRQ RI IOXRULQHnV ORQH SDLUV ZLWK WKH YDFDQW SRUELWDO RI WKH FDUEHQLXP LRQ f #&) & )k f 7KH 7UGRQRU FDSDELOLW\ RI IOXRULQH KDV DOVR EHHQ XVHG WR H[SODLQ WKH REVHUYHG WUHQGV LQ ERQG GLVVRFLDWLRQ HQHUJLHV RI WKH KDORPHWKDQHV 7DEOH f 1RWH WKDW DV KDORJHQ FRQWHQW LQFUHDVHV 'r&;f GHFUHDVHV IRU LRGR EURPR DQG FKORUR PHWKDQHV 7KLV WUHQG LV UHYHUVHG IRU IOXRURPHWKDQHV DQG VSDQV D ZLGHU UDQJH RI HQHUJLHV

PAGE 11

7DEOH %RQG +DORPHWKDQHVD 'LVVRFLDWLRQ (QHUJLHV 'r&;f RI ; FK[ FK[ FK[ F[ ) E E &O %U r 2K .f 4 r & D$OO GDWD IURP UHI XQOHVV RWKHUZLVH QRWHG 5HI &5HI J 3DXOLQJ VXJJHVWHG WKDW FRQWULEXWLRQV IURP GRXEOHERQG QRERQG UHVRQDQFH IRUPV f DFFRXQW IRU WKHVH UHVXOWV $V Q LQFUHDVHV IURP WR IRU &+ ) D JUHDWHU QXPEHU RI VXFK IRUPV FDQ EH GUDZQ $E LQLWLR FDOFXODWLRQV VHHP WR VXSSRUW WKLV GHVFULSWLRQ A ) k )& )k f ) ) )&) ) 6L]H :LWK UHJDUG WR IOXRULQHnV VL]H WZR SRLQWV VKRXOG EH PDGH ([FOXGLQJ K\GURJHQ IOXRULQH KDV WKH VPDOOHVW

PAGE 12

9DQ GHU :DDOV UDGLXV RI DQ\ VXEVWLWXHQW DWRP RU JURXS 7KLV PHDQV WKDW WKH VWHULF UHTXLUHPHQWV IRU D IOXRULQH DUH PLQLPDO )OXRULQHnV VPDOO VL]H DOVR PDNHV LW ZHOO VXLWHG IRU RYHUODS RI LWV DWRPLF RUELWDOV ZLWK WKRVH RI FDUERQ 7KLV UHVXOWV LQ D VWURQJ &) ERQG ,Q IDFW RI DOO WKH HOHPHQWV IOXRULQH IRUPV WKH VWURQJHVW VLQJOH ERQGV WR FDUERQ )OXRULQH DV D 6XEVWLWXHQW RQ $ONHQHV 7KH HIIHFWV RI YLQ\OLF IOXRUR VXEVWLWXHQWV KDYH IUHTXHQWO\ EHHQ PLVXQGHUVWRRG DQG PLVUHSUHVHQWHG &RQWUDU\ WR ZKDW ZDV RQFH EHOLHYHG PRQRIOXRUR DQG JHPGLIOXRUR VXEVWLWXHQWV VWDELOL]H DONHQHV WKHUPRG\QDPLFDOO\ 7KH HTXLOLEUDWLRQ RI IOXRURSURSHQHV VKRZV WKDW D VLQJOH IOXRULQH LV WKHUPRG\QDPLFDOO\ IDYRUHG RQ WKH & & ERQG E\ DERXW NFDOPROA )+f& ? + & &n +n + ) ? F F + }f f $+A NFDOPRO r r‘ r

PAGE 13

(TXDWLRQ f ZKLFK LV XVHIXO IRU FDOFXODWLQJ VXEVWLWXHQW HIIHFWV UHODWLYH WR &+A VHHPV WR LQGLFDWH WKDW ) LV VLPLODU WR &+A LQ LWV DELOLW\ WR VWDELOL]H D GRXEOH ERQG $ &+A LV FRQVLGHUHG WR VWDELOL]H D & & ERQG E\ DERXW NFDOPROHA &+ &+ &+) &+ &+&+ Y &+&+ &+" &+) &+ &+ f $+U NFDOPROH 7KH LQFUHDVHG WKHUPRG\QDPLF VWDELOLW\ RI PRQRIOXRUR ROHILQV LV PRVW HDVLO\ H[SODLQHG E\ WKH UHVRQDQFH FRQWULEXn WLRQ GHSLFWHG LQ HTXDWLRQ f LQ ZKLFK WKH QRQERQGLQJ HOHFWURQV RI IOXRULQH EDFNERQG LQWR WKH && ERQG 7KLV 77 GHVFULSWLRQ LV VXSSRUWHG E\ DE LQLWLR FDOFXODWLRQV n n *HPLQDO GLIOXRUR VXEVWLWXWLRQ RQ D & & ERQG LV DOVR WKHUPRG\QDPLFDOO\ VWDELOL]LQJ 7KH 7WERQG GLVVRFLDWLRQ HQHUJLHV IRU HWK\OHQH JHPGLIOXRURHWK\OHQH DQG WHWUD IOXRURHWK\OHQH DUH VKRZQ LQ 7DEOH

PAGE 14

7DEOH LU%RQG 'L FK FK &+ B &)Q ] ] FI FI D5HI E5HI &5HI VRFLDWLRQ (QHUJLHV 'r NFDOPRO 77n D E & ,W DSSHDUV WKDW WKH PERQG RI &+ &) LV VWDELOL]HG UHODWLYH WR &+ &+ DQG WR &) &) &RQVLGHU DOVR WKH $+U IRU WKH LVRGHVPLF UHDFWLRQ f &) &) &+ &+ ‘! &+ &) f $+BA NFDOPRO 'rL&) &)f 'r&+ &+f 'r&+" &)f f NFDOPRO 7KH VLPLODULW\ LQ WKH YDOXH RI HTXDWLRQ f WR WKH $+A RI HTXDWLRQ f LPSOLHV WKDW WKH WKHUPRG\QDPLF VWDELOLW\ RI &+ &) UHODWLYH WR &+ &+ DQG &) &)R nV AXH DOPRVW HQWLUHO\ WR VWDELOL]DWLRQ RI WKH 77ERQG $W ILUVW WKHVH FRQFOXVLRQV PD\ VHHP LQFRQVLVWHQW ZLWK VRPH RI WKH WKHUPRG\QDPLF VWXGLHV RI JHPGLIOXRUR V\VWHPV 7KH &RSH UHDUUDQJHPHQW RI WR HTXDWLRQ ff IRU H[DPSOH

PAGE 15

KDV D $+BA RI NFDOPRO DQG WKH KHDW RI K\GURn JHQDWLRQ RI JHPGLIOXRURHWK\OHQH LV NFDOPRO PRUH H[RWKHUPLF WKDQ WKDW RI HWK\OHQH HTXDWLRQV f DQG ff $+NFDOPRO &+ &) + &+&+) f 7KHVH REVHUYDWLRQV DUH QRW KRZHYHU D UHVXOW RI WKH GHVWDELOL]DWLRQ RI WKH DONHQH EXW UDWKHU D VWURQJ VWDELOL]DWLRQ RI WKH DOO\OLF DQG DON\OLF SRVLWLRQV E\ JHP GLIOXRUR VXEVWLWXWLRQ $ XVHIXO FRQFHSW KHUH LV WKDW RI ,QFUHPHQWDO JHPLQDO VWDELOL]DWLRQ ,*67$%f ZKLFK LV GHILQHG DV WKH LQFUHDVH LQ WKHUPRG\QDPLF VWDELOL]DWLRQ RI D JHPLQDOO\ VXEVWLWXWHG V\VWHP SHU VXEVWLWXHQW UHODWLYH WR WKH UHVSHFWLYH PRQRVXEVWLWXWHG V\VWHP ,VRGHVPLF HTXDWLRQV DUH XVHG WR GHWHUPLQH WKHVH TXDQWLWLHV DQG DV VKRZQ EHORZ ,*67$% YDOXHV DUH VWURQJO\ V\VWHPGHSHQGHQW

PAGE 16

$+ANFDOPRO ,*67$%NFDOPRO &+&+) &+&+) &+&+ f &+ &+) &+ &) &+ &+ f &+ &+&+) &+ &+&+) &+ &+&+ f 1RWLFH WKDW WKH ,*67$% IRU WKH DONHQH LV QHJDWLYH EXW WKRVH RI WKH DON\O DQG DOO\O V\VWHPV DUH HYHQ PRUH QHJDWLYH 7KH GULYLQJ IRUFH WR FRQYHUW YLQ\O &) WR DON\O RU DOO\O LV WKH JUHDWHU VWDELOLW\ RI WKH ODWWHU WZR JURXSV LH ODUJHU ,*67$% DQG QRW GHVWDELOL]DWLRQ RI WKH JHPGLIOXRUR ROHILQV 7KH GLIIHUHQFH LQ YLQ\OLF DQG DON\OLF ,*67$% KDV EHHQ $ UDWLRQDOL]HG XVLQJ WKH GRXEOHERQG QRERQG UHVRQDQFH PRGHO ) & & ? ) ) k D E

PAGE 17

$ UHVRQDQFH FRQWULEXWRU VXFK DV E ZRXOG EH H[SHFWHG WR SURYLGH JUHDWHU VWDELOL]DWLRQ WR B WKDQ E FDQ IRU @Br $QDORJRXV FRQWULEXWLQJ VWUXFWXUHV FDQQRW EH GUDZQ IRU WKH PRQRIOXRUR DON\O DQG YLQ\O V\VWHPV )OXRULQH DV D 6XEVWLWXHQW RQ &\FORSURSDQH 7KH DGYDQWDJHV RI F\FORSURSDQH ULQJ V\VWHPV IRU WKH VWXG\ RI VXEVWLWXHQW HIIHFWV DUH ZHOO NQRZQ +RZ PLJKW WKH SUHVHQFH RI IOXRULQH VXEVWLWXHQWV LQIOXHQFH D F\FORUSURSDQH J:LWKGUDZLQJ HIIHFWV &RQVLGHU ILUVW WKH LQGXFWLYH HIIHFWV 7KH KLJK HOHFWURn QHJDWLYLW\ RI IOXRULQH FDXVHV LWV ERQGV WR FDUERQ WR EH ULFK LQ SFKDUDFWHU DQG OHDYHV WKH UHPDLQLQJ ERQGV SRRUHU P SFKDUDFWHU 7KLV VKRXOG UHVXOW LQ DQ LQFUHDVHG ULQJ fN N VWUDLQ DV WKH XQIOXRULQDWHG VLWHV DUH UHK\EULGL]HG WR ODUJHU ERQG DQJOHV 7KLV GHVFULSWLRQ LV QHDWO\ FRQVLVWHQW ZLWK WKH REVHUYDWLRQV IRU JHPGLIOXRURF\FORSURSDQHV 7KH VWUXFWXUH RI GLIOXRURF\FORSURSDQH 7DEOH f KDV EHHQ GHWHUPLQHG E\ PLFURZDYH VWXGLHV DQG VKRZV WKH &Of&f ERQG OHQJWKV WR EH VKRUWHU DQG WKH &f&f ERQG OHQJWK WR EH ORQJHU WKDQ WKH ERQGV RI WKH SDUHQW F\FORSURSDQH 2QH ZD\ WR ,W PD\ EH KHOSIXO WR UHFRJQL]H WKDW WKH ERQGHG SRUWLRQV RI E DQG E DUH LVRHOHFWURQLF ZLWK D NHWRQH DQG D NHWHQH UHVSHFWLYHO\ N N )RU SXUSRVHV RI WKLV GLVFXVVLRQ WKH WHUP VWUDLQ LV XVHG WR GHQRWH WKH WRWDO QHW GHVWDELOL]DWLRQ 7KH UHDGHU LV UHPLQGHG WKDW WKLV PD\ KDYH VHYHUDO FRPSRQHQWVA

PAGE 18

YLVXDOL]H WKLV HIIHFW LV WR UHFRJQL]H WKDW WKH EHQW ERQGV RI WKH F\FORSURSDQH ULQJ DUH HYHQ PRUH EHQW ZLWK JHPGLIOXRUR VXEVWLWXWLRQ RQ FDUERQ 2QH ZRXOG SUHGLFW D TXDOLWDWLYHO\ VLPLODU UHVXOW DOWKRXJK VPDOOHU IRU IOXRURF\FORSURSDQH 7DEOH f 7KH VWUXFWXUH RI &&A+L) LV QRW NQRZQ H[SHULPHQWDOO\ EXW KDV EHHQ FDOFXODWHG 7DEOH U>&f&f@ $ D E %RQG /HQJWKV U >&f&f @ $ D E A!) & r D5HI E5HI &5HI $V KDV EHHQ QRWHG HOVHZKHUH n f ERQG OHQJWKV FDQQRW QHFHVVDULO\ EH FRUUHODWHG ZLWK ERQG VWUHQJWKV .LQHWLF VWXGLHV RI JHPGLIOXRURF\FORSURSDQHV n n LQGLFDWH D JHQHUDO ZHDNHQLQJ RI WKH && ERQGV FRPSDUHG WR WKH FRUUHVSRQGLQJ K\GURFDUERQV +RPROYVLV RI WKH &Of&f ERQG LV HQKDQFHG E\ WR NFDOPRO ZKLOH &f&f FOHDYDJH LV HQKDQFHG E\ WR NFDOPRO

PAGE 19

7KHUH DUH FXUUHQWO\ QR UHSRUWV LQ WKH OLWHUDWXUH RI D VLQJOH IOXRULQHnV NLQHWLF HIIHFW RQ F\FORSURSDQH RSHQLQJ LU'RQDWLQJ HIIHFWV $ GHVFULSWLRQ RI LUDFFHSWRU LQIOXHQFH RQ F\FORSURSDQH ZDV RIIHUHG E\ +RIIPDQQA DQG H[WHQGHG E\ *LLKWKHUA WR LQFOXGH LUGRQRUV VXFK DV IOXRULQH +HUH RQH HPSOR\V WKH IDPLOLDU :DOVK PRGHO RI F\FORSURSDQH ERQGLQJ LQ ZKLFK WKH FDUERQV DUH VS K\EULGL]HG 2QH RI WKH VS K\EULG RUELWDOV IURP HDFK FDUERQ LV GLUHFWHG LQWR WKH ULQJ DQG WKH UHPDLQLQJ WZR DUH XVHG WR IRUP DERQGV WR WKH K\GURJHQV 7KH UHPDLQLQJ SRUELWDOV ZKLFK DUH SHUSHQGLFXODU WR WKH &+A SODQHV RYHUODS WR IRUP WKH EHQW && ERQGV 7KH :DOVK PROHFXODU RUELWDOV RI WKH ULQJ FDQ EH TXDOLWDWLYHO\ UHSUHVHQWHG DV VKRZQ RQ WKH OHIW RI )LJXUH ,Q RUGHU WR DVVHVV WKH HIIHFW RI IUGRQRUV RQ WKLV PRGHO RQH FRQVLGHUV WKH +202 DQG /802 RI WKH LQWHUDFWLQJ IUDJPHQWV 7KH /802 RI WKH F\FORSURSDQH LV DQG WKH +202 RI D IOXRULQH IUDJPHQW LV RQH RI LWV WKUHH GHJHQHUDWH QRQERQGLQJ DWRPLF RUELWDOV $V WKH IOXRULQH GRQDWHV HOHFWURQ GHQVLW\ WR WKH F\FORSURSDQH WKH DQWLERQGLQJ LQWHUDFWLRQV IRU DOO && ERQGV LQFUHDVHV 7KH LPSOLFDWLRQ KHUH LV WKDW LUGRQRUV VKRXOG GHVWDELOL]H WKH F\FORSURSDQH ULQJ DQG ZHDNHQ DOO WKH ULQJ ERQGV &RQVLVWHQW ZLWK WKLV PRGHOnV LQDELOLW\ WR DFFRXQW IRU WKH REVHUYHG VKRUWHU &Of&f ERQG OHQJWKV LQ GLIOXRUR F\FORSURSDQH LV WKH UHFHQW UHSRUW IURP &ODUN HW DO LQ

PAGE 20

ZKLFK WKH\ FKDOOHQJH WKH DVVXPSWLRQV XSRQ ZKLFK WKH DERYH PRGHO LV EDVHG 7KHVH DXWKRUV FRQFOXGH WKDW WKH DZLWKn GUDZLQJ HIIHFW RI D IOXRULQH IDU H[FHHGV LWV LUGRQRU FDSDELOLW\ LQ F\FORSURSDQH V\VWHPV )LJXUH 7KH (IIHFW RI WW'RQRUV DQG WW$FFHSWRUV RQ WKH :DOVK 2UELWDOV RI &\FORSURSDQH 72

PAGE 21

&+$37(5 7+(502/<6,6 2) O'O'(87%52 ',)/825263,523(17$1( ,QWURGXFWLRQ 7KHUPRO\VHV RI VSLURSHQWDQH V\VWHPV KDYH EHHQ VWXGLHG H[WHQVLYHO\ DQG WKH PHFKDQLVP IRU WKH UHDUUDQJHPHQW RI WKH SDUHQW K\GURFDUERQ 4B LV ZHOO XQGHUVWRRG ,QLWLDO FOHDYDJH RI D SHULSKHUDO ERQG RFFXUV UHYHUVLEO\ WR SURGXFH GLUDGLFDO B :KHWKHU B WKHQ XQGHUJRHV D VHFRQG FOHDYDJH WR JLYH GLUDGLFDO B RU JRHV GLUHFWO\ WR PHWK\OHQHF\FOR EXWDQH B LV QRW FRPSOHWHO\ FOHDU EXW KDV EHHQ VKRZQ WR DXWRPHUL]H YLD BA $FWLYDWLRQ SDUDPHWHUV IRU WKH UHDUUDQJHPHQW RI WR KDYH EHHQ GHWHUPLQHG

PAGE 22

,Q RUGHU WR IXUWKHU LQYHVWLJDWH WKH NLQHWLF HIIHFWV RI JHPGLIOXRUR VXEVWLWXWLRQ LQ F\FORSURSDQH V\VWHPV OGLI OXRURVSLURSHQWDQH ZDV VWXGLHG E\ 'ROELHU HW DO 7KHUPRO\VLV RI JDYH GLIOXRURPHWK\OHQHF\FOREXWDQH DV WKH RQO\ SURGXFW &RQWURO H[SHULPHQWV GHPRQVWUDWHG WKDW b RI WKH REVHUYHG SURGXFW ZDV IRUPHG YLD GLIOXRUR PHWK\OHQHf F\FOREXWDQH ZKLFK UDSLGO\ LVRPHUL]HG WR XQGHU WKH UHDFWLRQ FRQGLWLRQV $FWLYDWLRQ SDUDPHWHUV IRU WKH WKHUPRO\VLV RI DUH OLVWHG LQ 7DEOH DORQJ ZLWK WKRVH IRU WKH SDUHQW K\GURFDUERQ 7DEOH $FWLYDWLRQ 3DUDPHWHUV IRU WKH 7KHUPRO\VLV RI 6SLURSHQWDQH DQG 'LIOXRURVSLURSHQWDQH ;[) (DNFDOPRO /RJ $ r&f UHO

PAGE 23

7KH PRGHVW UDWH HQKDQFHPHQW RI UHODWLYH WR ( DQG /RJ $ HTXDO ZLWKLQ WKH H[SHULPHQWDO XQFHUWDLQWLHVf LV FRQVLVWHQW ZLWK WKH WZR PHFKDQLVWLF SDWKZD\V GHSLFWHG LQ )LJXUH 7KHVH GLIIHU E\ ZKLFK RI WKH WZR SHULSKHUDO ERQGV FOHDYHV LQLWLDOO\ 0HFKDQLVP D )LJXUH 3DWKZD\V IRU 5HDUUDQJHPHQW RI 'LIOXRUR VSLURSHQWDQH WR 'LIOXRURPHWK\OHQHF\FOREXWDQH

PAGE 24

,Q RUGHU WR GHWHUPLQH KRZ PXFK LI DQY LV IRUPHG WKURXJK WKH FRPSHWLWLRQ RI PHFKDQLVP D ZLWK PHFKDQLVP E DQ LVRWRSLF ODEHOLQJ VWXG\ ZDV GHYLVHG 7KHUPRO\VLV RI WKH GLGHXWHUDWHG FRPSRXQG FDQ UHYHDO WKURXJK WKH GLVWULEXWLRQ RI WKH GHXWHULXPV LQ WKH SURGXFW LI WKHUH LV VLJQLILFDQW FRPSHWLWLRQ E\ PHFKDQLVP E )LJXUH f )LJXUH 'HXWHULXP 'LVWULEXWLRQ $FFRUGLQJ WR 0HFKDQLVP

PAGE 25

5HVXOWV DQG 'LVFXVVLRQ 6\QWKHVLV RI ZDV DFKLHYHG WKURXJK GLIOXRURFDUEHQH DGGLWLRQ WR GLGHXWHURPHWK\OHQHfF\FORSURSDQH &)M+J3K 7KHUPRO\VLV RI B SURGXFHG D PL[WXUH RI WKH WKUHH SRVVLEOH JHPGLGHXWHUDWHG GLIOXRURPHWK\OHQHF\FOR EXWDQHV B BB DQG B 7KH LGHQWLWLHV DQG UHODWLYH DPRXQWV RI WKHVH ZHUH GHWHUPLQHG E\ FRPSDULVRQ RI WKH + DQG ) 105 VSHFWUD RI WKH PL[WXUH ZLWK WKRVH RI WKH XQGHXWHUDWHG PDWHULDO 7KH 105 VSHFWUXP RI B FRQVLVWV RI WZR XQUHVROYHG PXOWLSOHWV DW ZKLFK ZHUH DVVLJQHG WR WKH &f DQG &f SURWRQV DQG WZR YLQ\OLF PXOWLSOHWV DW DQG 7KH UDWLR RI YLQ\O WR QRQYLQ\O SURWRQV LV 7KH ‘n+ 105 VSHFWUXP RI WKH WKHUPRO\VLV SURGXFWV IURP VKRZV WKH VDPH XSILHOG PXOWLSOHWV DW EXW WKH YLQ\O VLJQDOV DUH FRPSOHWHO\ UHVROYHG LQWR WZR TXLQWHWV RI GRXEOHWV DW DQG 7KLV SDWWHUQ LV H[SODLQn DEOH DVVXPLQJ WKDW WKH DOO\OLF ) DQG + FRXSOLQJ FRQVWDQWV DUH HDFK +] 7KH VPDOOHU VSOLWWLQJ OO +] LV GXH WR JHPLQDO FRXSOLQJ 7KH UDWLR RI YLQ\O WR QRQYLQ\O SURWRQV LV ZKLFK LQGLFDWHV WKDW LV SUHVHQW LQ b

PAGE 26

)LJXUH &RPSDULVRQ RI WKH 9LQ\OLF 105 6LJQDOV IRU B DQG WKH PL[WXUH B B DQG

PAGE 27

7KH UDWLRV ZLWKLQ WKHVH YLQ\OLF TXLQWHWV DUH ZKLFK LV FRQVLVWHQW ZLWK VXSHULPSRVLWLRQ RI D WULSOHW IURP e DQG D TXLQWHW IURP B KDYLQJ LGHQWLFDO FKHPLFDO VKLIW DQG FRXSOLQJ )LJXUH VKRZV D FRPSDULVRQ RI WKH YLQ\OLF UHJLRQV RI WKH 105 VSHFWUD IRU WKH XQGHWHUDWHG B DQG WKH GHXWHUDWHG SURGXFW PL[WXUH RI B $B DQG 7KH ) 105 VSHFWUXP RI WKH XQGHXWHUDWHG VKRZV D FRPSOH[ PXOWLSOHW DW FI! ZLWK D ODUJH YLFLQDO +) FRXSOLQJ WR WKH &f SURWRQV RI +] 7KH PL[WXUH RI WKHUPRO\VLV SURGXFWV IURP /B VKRZV QRW RQO\ WKH PXOWLSOHW GHVFULEHG DERYH EXW DOVR D VHFRQG QDUURZHU PXOWLSOHW DW c! ZKLFK ODFNV YLFLQDO +) FRXSOLQJ 7KLV QHZ VLJQDO LV GXH WR WKH SUHVHQFH RI B ZKLFK LQ DGGLWLRQ WR SRVVHVVLQJ QR + YLFLQDO WR WKH IOXRULQHV GLVSOD\V D GHXWHULXP LVRWRSH HIIHFW RQ WKH ) FKHPLFDO VKLIW 7KH PDJQLWXGH DQG GLUHFWLRQ RI WKLV VKLIW SSP XSILHOGf DUH FRQVLVWHQW ZLWK WKRVH SUHYLRXVO\ REVHUYHG n n 7KH UDWLR RI ORZ WR KLJK ILHOG PXOWLSOHWV LV LQGLFDWLQJ FRPSULVHV b RI WKH PL[WXUH 7KH ) 105 VSHFWUD IRU WKH XQGHXWHUDWHG B DQG WKH PL[WXUH RI GHXWHUDWHG B B DQG B DUH FRPSDUHG LQ )LJXUH .QRZLQJ WKH DPRXQWV RI B DQG B SUHVHQW WR EH b DQG b UHVSHFWLYHO\ RQH WKHQ DUULYHV E\ VXEWUDFWLRQ DW b IRU WKH DPRXQW RI WKH UHPDLQLQJ LVRPHU

PAGE 28

)LJXUH &RPSDULVRQ RI WKH ) 105 6SHFWUXP RI WR WKDW RI WKH 0L[WXUH DQG

PAGE 29

‘N 7KH UDWLR IRU B$B LV FRQVLVWHQW ZLWK WKH FRPSOHWH WKHUPDO HTXLOLEUDWLRQ RI DQG ZKLFK RQH ZRXOG H[SHFW XQGHU WKH FRQGLWLRQV XVHG IRU WKHUPRO\VLV RI 6LQFH SURGXFWV B DQG DUH IRUPHG YLD PHFKDQLVP D DQG LV IRUPHG YLD PHFKDQLVP E WKH SURGXFW UDWLR LQGLFDWHV D FRPSHWLWLRQ EHWZHHQ WKH WZR SURSRVHG SDWKZD\V LQ ZKLFK D LV IDYRUHG RYHU E E\ DERXW WR b b b r 7KH SURGXFW UDWLRV ZKLFK ZHUH HVWDEOLVKHG E\ + DQG ) 105 LQWHJUDWLRQV KDYH D UHOLDELOLW\ RI A b

PAGE 30

6DPSOHV RI B DQG WKH XQGHXWHUDWHG FRPSRXQG ZHUH WKHUPRO\]HG XQGHU LGHQWLFDO FRQGLWLRQV WR DOORZ D FRPSDULn VRQ RI WKHLU UDWHV 7DEOH f 5DWHV ZHUH GHWHUPLQHG ERWK E\ IROORZLQJ GLVDSSHDUDQFH RI VWDUWLQJ PDWHULDO YHUVXV DQ LQWHUQDO VWDQGDUG RU DOWHUQDWLYHO\ PRQLWRULQJ SURGXFW IRUPDWLRQ *UHDWHU SUHFLVLRQ ZDV REWDLQHG IRU WKH ODWWHU PHWKRG DQG WKRVH UHVXOWV ZHUH UHJDUGHG DV PRUH UHOLDEOH 7DEOH 7KHUPDO ,VRPHUL]DWLRQ RI B DQG B DW r& N [ V N [ V LQWHUQDO VWDQGDUGf SURGXFWf 7KH VHFRQGDU\ NLQHWLF LVRWRSH HIIHFW REVHUYHG NAN 4fLV FRQVLVWHQW ZLWK WKH PDMRULW\ RI WKH UHDFWLRQ SURFHHGLQJ WKURXJK LQLWLDO &Of&f ERQG KRPRO\VLVr 7KH UHVXOWV IURP WKH WKHUPRO\VHV RI DQG FDQ QRZ WDNH WKHLU SODFH DPRQJ WKRVH IRU RWKHU JHPGLIOXRUR F\FORSURSDQHV 7KH REVHUYDWLRQ RI D YHU\ VOLJKW UDWH HQKDQFHPHQW IRU FOHDYDJH RI WKH &Of&f ERQG LV FRQVLVW HQW ZLWK HDUOLHU ILQGLQJV N ,Q D VLPLODU EXW ORZHU ( UHDUUDQJHPHQW WKH WKHUPDO LVRPHUL]DWLRQ RI GLGHXWHURELVF\FORSURS\OLGHQHf VKRZHG D 9N' r n

PAGE 31

&+$37(5 7+( .,1(7,& ())(&7 2) )/8251( 21 7+( +202',(1
PAGE 32

) $+A NFDOPRO $ SDUWLFXODU SUREOHP LQ WKH VWXG\ RI PRQRIOXRUR V\VWHPV LV WKDW RI +) HOLPLQDWLRQ $ PRQRIOXRUR FRPSRXQG VKRZV D PXFK JUHDWHU WHQGHQF\ WR HOLPLQDWH +) WKDQ GRHV WKH FRUUHVSRQGLQJ JHPGLIOXRUR FRPSRXQG &RQVLGHU IRU H[DPSOH WKH VWXG\ E\ 'ROELHU DQG 0HGLQJHU LQ ZKLFK WKH DWWHPSWHG &RSH UHDUUDQJHPHQW RI IOXRUR KH[DGLHQH FRXOG QRW FRPSHWH ZLWK WKH UDSLG IRUPDWLRQ RI +) HOLPLQDWLRQ SURGXFWV )

PAGE 33

7KHUPRO\VLV RI FLVFLVO)OXRUR PHWK\OYLQ\OF\FORSURSDQH 7KH KRPRGLHQ\O K\GURJHQ VKLIW HTXDWLRQ ff ZDV VHOHFWHG DV D UHDUUDQJHPHQW LQ ZKLFK WKH NLQHWLF LQIOXHQFH RI D PRQRIOXRUR VXEVWLWXHQW RQ D F\FORSURSDQH PLJKW EH SUREHG 7KH PHFKDQLVWLF GHWDLOV RI WKH KRPRGLHQ\O VKLIW KDYH EHHQ SUHVHQWHG HOVHZKHUH 'XH WR WKH ORZ DFWLYDWLRQ HQHUJ\ IRU WKLV FRQFHUWHG SURFHVV WKH SRWHQWLDO SUREOHP RI +) HOLPLQDWLRQ ZRXOG EH PLQLPL]HG 7KLV V\VWHP LV DGGLWLRQDOO\ DWWUDFWLYH VLQFH NLQHWLF VWXGLHV RQ WKH SDUHQW K\GURFDUERQ DQG WKH JHPGL IOXRULQD WHG FRPSRXQG DUH DYDLODEOH IRU FRPSDULVRQ

PAGE 34

$ VWHUHRFKHPLFDO UHTXLUHPHQW IRU WKH KRPRGLHQ\O VKLIW LV WKDW WKH FDUERQ EHDULQJ WKH PLJUDWLQJ K\GURJHQ EH RQ WKH VDPH VLGH RI WKH F\FORSURSDQH ULQJ SODQH DV WKH DONHQH LH FLVf *LYHQ WKLV UHVWULFWLRQ WKHUH H[LVW WZR SRVVLEOH LVRPHULF OIOXRURPHWK\OYLQ\O F\FORSURSDQHV ZKLFK VKRXOG EH DFFHVVLEOH IURP IRUPDO DGGLWLRQ RI IOXRURFDUEHQH WR FLVSHQWDGLHQH f )

PAGE 35

([FOXGLQJ GLDGGXFWV WKHUH DUH IRXU LVRPHULF SURGXFWV RQH ZRXOG H[SHFW IURP WKLV V\QWKHWLF VWUDWHJ\ WZR UHJLRLVRPHUV HDFK RI ZKLFK KDV WZR VWHUHRLVRPHUV ) ) ) ) 5HVXOWV DQG 'LVFXVVLRQ (PSOR\LQJ D YDULDWLRQ RI WKH PHWKRG E\ 1LVKLPXUD DQG )XUXNDZD FLVSHQWDGLHQH ZDV KHDWHG ZLWK &+), LQ WKH SUHVHQFH RI GLHWK\O]LQF f &+), (W=Q 3K&+ r& K f b GLDGGXFWV b

PAGE 36

,Q DJUHHPHQW ZLWK HDUOLHU REVHUYDWLRQV WKH SUHn GRPLQDQW PRGH RI DGGLWLRQ RI WKH RUJDQRPHWDOOLF FDUEHQRLG SURGXFHG F\FORSURSDQHV ZLWK WKH IOXRULQH FLV WR WKH RWKHU JURXSV RQ WKH ULQJ 1RQH RI WKH WUDQV PRQRDGGXFWV B DQG ZHUH REVHUYHG XQGHU WKHVH FRQGLWLRQV *DV SKDVH WKHUPDO LVRPHUL]DWLRQ RI FDUULHG RXW LQ D ZHOOFRQGLWLRQHG S\UH[ YHVVHO ZLWK WKH UHVXOWV VKRZQ LQ HTXDWLRQ f
PAGE 37

$Q $UUKHQLXV SORW RI WKH UDWH GDWD JDYH D JRRG VWUDLJKW OLQH DQG WKH IUHTXHQF\ IDFWRU DQG HQHUJ\ RI DFWLYDWLRQ ZHUH FDOFXODWHG E\ WKH PHWKRG RI OLQHDU OHDVW VTXDUHV $FWLYDWLRQ SDUDPHWHUV FDOFXODWHG IURP UDWHV EDVHG RQ SURGXFW IRUPDWLRQ DJUHHG ZLWKLQ H[SHULPHQWDO HUURU ZLWK WKRVH FDOFXODWHG IURP UDWHV EDVHG XSRQ WKH GLVDSSHDUDQFH RI VWDUWLQJ PDWHULDO YHUVXV DQ LQWHUQDO VWDQGDUG *UHDWHVW SUHFLVLRQ ZDV REWDLQHG IURP WKH ODWWHU PHWKRG DQG LW LV WKRVH GDWD ZKLFK DUH XVHG WKURXJKn RXW WKLV FKDSWHU 7DEOH OLVWV DFWLYDWLRQ SDUDPHWHUV DQG UHODWLYH UDWHV IRU WKH XQIOXRULQDWHG FLVPRQRIOXRULQDWHG DQG JHPGLIOXRULQDWHG VSHFLHV

PAGE 38

7DEOH $FWLYDWLRQ 3DUDPHWHUV IRU DQG ( D NFDOPRO /RJ $ 7r& D$ NFDOPRO $6A FDOPRO. $*Ar&f NFDOPRO DW UHO r&f f f f $ 2 D FO A)URP D OLQHDU OHDVW VTXDUHV WUHDWPHQW RI WKH UDWH GDWD LQ UHI 1XPEHUV LQ SDUHQWKHVHV DUH WKRVH UHSRUWHG LQ UHI 5HI

PAGE 39

7KHVH UHVXOWV DUH PRVW HDVLO\ H[SODLQHG E\ WKH IROORZn LQJ PHFKDQLVWLF VFKHPH ,QLWLDOO\ WKH KRPRGLHQ\O K\GURJHQ VKLIW WDNHV SODFH LQ D FRQFHUWHG IDVKLRQ WR SURGXFH FLVIOXRURSHQWDGLHQH 7KLV ELVDOO\OLF IOXRULGH WKHQ UDSLGO\ ORVHV +) WR JLYH WUDQV DQG FLV KH[D WULHQH WKH ODWWHU RI ZKLFK HTXLOLEUDWHV ZLWK F\FOR KH[DGLHQH XQGHU WKHVH FRQGLWLRQV )URP WKH GDWD LQ 7DEOH RQH FDQ VHH WKDW D FLV PRQRIOXRUR VXEVWLWXHQW ORZHUV WKH DFWLYDWLRQ HQHUJ\ IRU WKH KRPRGLHQ\O VKLIW E\ NFDOPRO DQG D VHFRQG IOXRULQH JHPGLIOXRURf ORZHUV LW E\ DQ DGGLWLRQDO NFDOPRO $W r& WKH UHODWLYH UDWH RI WKHUPRO\VLV LV LQFUHDVHG RQO\ IROG E\ D VLQJOH IOXRULQH VXEVWLWXHQW ZKLOH DQ DGGLWLRQDO IROG UDWH HQKDQFHPHQW LV REVHUYHG IRU

PAGE 40

$ UDWLRQDOL]DWLRQ IRU WKLV QRQOLQHDULW\ RI VXEn VWLWXHQW HIIHFW FDQ EH IRXQG LQ WKH IROORZLQJ PRGHO &RQVLGHU WKH SDUDPHWHUV DQG VKRZQ LQ )LJXUH )LJXUH 6XEVWLWXHQW %RQG $QJOHV 5HODWLYH WR WKH &\FORSURSDQH 5LQJ 3ODQH 7KHVH DUH GHILQHG DV WKH DQJOH EHWZHHQ WKH F\FORSURSDQH ULQJ SODQH DQG WKH &[ RU &\ ERQG UHVSHFWLYHO\ :KHQ ; DQG \ DUH ERWK ) RQH H[SHFWV WKDW M! DQG ZLOO EH HTXDO 7KH ERQGV WR IOXRULQH ZLOO EH ULFK LQ SFKDUDFWHU DQG WKH UHVXOWLQJ UHK\EULGL]DWLRQ DURXQG &Of PXVW PDQLIHVW LWVHOI WKURXJK DGGLWLRQDO ULQJ VWUDLQ DV WKH &f&f&f YDOHQFH DQJOH LV RSHQHG RXWZDUG

PAGE 41

1RZ FRQVLGHU WKH PRQRIOXRUR FDVH [ ) \ +f $V EHIRUH WKH ERQG WR IOXRULQH LV ULFKHU LQ SFKDUDFWHUDQG FDXVHV D UHK\EULGL]DWLRQ DURXQG &Of UHVXOWLQJ LQ DQ LQFUHDVH LQ DOO WKH DQJOHV QRW LQYROYLQJ WKH &) ERQGr 7KH DOUHDG\ VWUDLQHG F\FORSURSDQH ERQGV FDQQRW DFFRPPRGDWH WKH ORVV RI SFKDUDFWHU DV ZHOO DV WKH &Of+ ERQG FDQ 2QH ZRXOG H[SHFW D IODWWHQLQJ RI WKH &Of+ ERQG UHODWLYH WR WKH F\FORSURSDQH ULQJ LH DQ LQFUHDVH LQ DQG D GHFUHDVH LQ FM! 7KH LPSRUWDQW SRLQW KHUH LV WKDW WKH GLPLQXWLRQ RI SFKDUDFWHU LQ WKH ERQGV RI &Of WR QRQn IOXRULQH DWRPV FDQ EH SDUWLDOO\ FRPSHQVDWHG E\ VRPHWKLQJ RWKHU WKDQ ULQJ VWUDLQ %\ FRQWUDVW WKH JHPGLIOXRUR VSHFLHV [ \ )f GRHV QRW KDYH WKLV RSWLRQ 7KH REVHUYHG QRQDGGLWLYLW\ RI UDWH HQKDQFHPHQW E\ PRQRIOXRUR DQG JHPGLIOXRUR VXEVWLWXHQWV DOVR FDQ EH H[SODLQHG XVLQJ D WUDQVLWLRQ VWDWH DUJXPHQW $OWKRXJK WKH H[DFW QDWXUH RI WKH DFWLYDWHG FRPSOH[ LV QRW NQRZQ LW FDQ EH UHDVRQDEO\ DVVXPHG WR EH VRPH VWUXFWXUDO K\EULG RI WKH UHDFWDQW DQG WKH SURGXFW 5HFDOO WKDW WKH ,*67$% YDOXHV GLVFXVVHG LQ &KDSWHU DUH VWURQJO\ V\VWHPGHSHQGHQW ,QFUHPHQWDO JHPLQDO VWDELOL]DWLRQ E\ IOXRULQH IROORZV WKH WUHQG DON\O DOO\O !! F\FORSURS\O YLQ\O $V WKH UHDFWLRQ MF ,W PD\ EH KHOSIXO WR FRQVLGHU WKH DEVXUG EXW HQOLJKWHQLQJf OLPLWLQJ FDVH ZKHUH WKH &) ERQG LV SXUH S 7KLV ZRXOG UHVXOW LQ VSA K\EULGL]DWLRQ DURXQG &Of PDNLQJ &Of &f &f DQG \ HVVHQWLDOO\ FRSODQDU ZLWK WKH &) ERQG SHUSHQGn LFXODU WR WKH SODQH

PAGE 42

SURFHHGV IURP WKH F\FORSURSDQH WR WKH ELVDOO\OLH SURGXFW LW SDVVHV WKURXJK DQ DFWLYDWHG FRPSOH[ ZKLFK FDQ EH UHSUHVHQWHG DV 7KLV VSHFLHV ZRXOG EH H[SHFWHG WR KDYH DQ ,*67$% IRU IOXRULQH VRPHZKHUH EHWZHHQ F\FORSURS\O DQG DOO\O 2QH ZRXOG SUHGLFW D ORZHULQJ RI WKH WUDQVLWLRQ VWDWH IRU D UHODWLYH WR WKDW RI E 'RXEOHERQG QRn ERQG UHVRQDQFH IRUPV HTXDWLRQ ff ZKLFK KDYH QR FRXQWHUSDUWV IRU WKH PRQRIOXRUR VSHFLHV FDQ EH XVHG WR UDWLRQDOL]H WKH V\VWHPGHSHQGHQFH RI ,*67$% k k k ) ) ) ) ) ) f

PAGE 43

7KHUPRO\VLV RI HQGR DQG H[R )OXRURELF\FOR>@RFWHQH ,Q D UHODWHG VWXG\ WKH WKHUPRO\VHV RI DQG B ZHUH H[DPLQHG 7KH K\GURFDUERQ B DQG WKH JHPGLIOXRUR DQDORJXH KDYH EHHQ H[DPLQHG SUHYLRXVO\ f§ HT (t NFDOPRO /RJ $

PAGE 44

7KH K\GURFDUERQ XQGHUJRHV D UHYHUVLEOH KRPRGLHQ\O VKLIW IRU ZKLFK WKH DFWLYDWLRQ DQG HTXLOLEULXP SDUDPHWHUV ZHUH GHWHUPLQHG 7KH GLIOXRUR VSHFLHV B ZDV IRXQG WR UHDUUDQJH FOHDQO\ WR GLI OXRURF\FORRFWDGLHQH B DQG D UDWH FRQVWDQW ZDV GHWHUPLQHG IRU D VLQJOH WHPSHUDWXUH 5HVXOWV DQG 'LVFXVVLRQ 5HDFWLRQ RI F\FORKHSWDGLHQH ZLWK &+),A DQG GLHWK\O]LQF \LHOGHG WKH SURGXFWV VKRZQ LQ 7DEOH 7KH FRPSRXQGV ZHUH LGHQWLILHG E\ VWDQGDUG VSHFWUDO PHWKRGV (W=Q r& K 3K&+

PAGE 45

7DEOH 5HDFWLRQ 3URGXFWV IURP &\FORKHSWDWULHQH &+), DQG 'LHWK\O]LQF )

PAGE 46

7KHUPRO\VLV RI BB ZDV FDUULHG RXW DW WKUHH WHPSHUDn WXUHV 7KH UHVXOWV DUH JLYHQ LQ 7DEOH ,QWHUHVWLQJO\ QHLWKHU B QRU WKH +) HOLPLQDWLRQ SURGXFW ZDV REVHUYHG LQ WKH SURGXFW PL[WXUH \ ? Ia? $ VLQJOH UDWH ZDV GHWHUPLQHG IRU WKH H[R LVRPHU B ZKLFK WKHUPRO\]HG WR JLYH WZR SURGXFWV ZLWK WKH VDPH *& UHWHQn WLRQ WLPHV DV B DQG B DQG ZKLFK DSSHDUHG LQ D VLPLODU UDWLR

PAGE 47

7DEOH 5DWH DQG 3URGXFW 'DWD IRU WKH 7KHUPRO\VLV RI DQG $ } 7 r& N[ V (D NFDOPRO /RJ $ N FDOFXODWHG IRU r&f [ V

PAGE 48

7KH REVHUYHG SURGXFWV DUH GLIILFXOW WR DFFRXQW IRU PHFKDQLVWLFDOO\ )LJXUH f $VVXPLQJ WKDW B XQGHUJRHV WKH H[SHFWHG KRPRGLHQ\O VKLIW WKH SULPDU\ SURGXFW IRUPHG ZRXOG EH WKH GLHQH 7KHUH LV KRZHYHU QR REYLRXV PHFKDQLVP IRU JRLQJ IURP D F\FORRFWDGLHQH WR D F\FORRFWDGLHQH 3URGXFWV B DQG B FDQ LQWHUFRQYHUW ZLWK RQH DQRWKHU DQG DOVR WKH RWKHU WZR LVRPHULF PRQR IOXRUR F\FORRFWDGLHQHVf YLD K\GURJHQ VKLIWV 7KH SUREOHP WKHQ LV UHGXFHG WR ILQGLQJ D PHFKDQLVWLF HQWU\ LQWR F\FORRFWDGLHQH V\VWHPV IURP )LJXUH 3RVVLEOH ,QWHUPHGLDWHV LQ WKH 7KHUPDO 5HDUUDQJHPHQW RI WR DQG

PAGE 49

$ SRVVLEOH FRQYHUVLRQ RI e WR e FRXOG LQYROYH D IOXRULQH VKLIW 6LPLODU IOXRULQH VKLIWV DOWKRXJK QHYHU XQDPELJXRXVO\ GHPRQVWUDWHG KDYH EHHQ SURSRVHG DQG VWURQJO\ LPSOLFDWHG IRU WKH UHDUUDQJHPHQWV RI PRUH KLJKO\ IOXRULQDWHG FRPSRXQGV *DV SKDVH WKHUPRO\VLV RI e IRU H[DPSOH KDV EHHQ VKRZQ WR JLYH e DV WKH PDMRU SURGXFW &RQWURO H[SHULPHQWV VHHP WR KDYH UXOHG RXW WKH SRVVLELOLW\ RI VXUIDFHFDWDO\]HG RU IOXRULGH LRQSURPRWHG UHDFWLRQVA

PAGE 50

$Q DOWHUQDWLYH PHFKDQLVP ZKLFK GRHV QRW UHTXLUH WKH LQWHUPHGLDF\ RI B FDQ EH YLVXDOL]HG E\ ILUVW FRQVLGHULQJ WKH VLPSOLILHG V\VWHPV VKRZQ LQ HTXDWLRQV f DQG f 7KH XVXDO KRPRGLHQ\O K\GURJHQ VKLIW LQYROYHV LQ WKH VLPSOHVW FDVH D PHWK\O YLQ\O F\FORSURSDQH 7KH F\FORSURSDQH ERQG LV LQ WKH RU LQWHUQDO SRVLWLRQ RI WKH V\VWHP f (TXDWLRQ f VKRZV D GLIIHUHQW V\VWHP LQ ZKLFK WKH PLJUDWLQJ F\FORSURSDQH ERQG LV DW WKH RU WHUPLQDO SRVLWLRQ 1HLWKHU RI WKHVH PROHFXOHV FDQ XQGHUJR WKH UHDFWLRQ GHSLFWHG IRU WKH RWKHU +RZHYHU D VSHFLHV VXFK DV Be PHHWV WKH VWUXFWXUDO UHTXLUHPHQWV IRU HLWKHU PHFKDQLVP f

PAGE 51

)LJXUH VKRZV DQ DGGLWLRQDO IDFWRU ZKLFK PD\ KHOS DFFRXQW IRU WKH XQXVXDO SURGXFWV ,Q RUGHU WR \LHOG WKH REVHUYHG SURGXFW ZLWK FLV GRXEOH ERQGV LQ WKH ULQJ WKH XVXDO LQWHUQDO KRPRGLHQ\O VKLIW LV UHTXLUHG WR SURFHHG YLD WKH VDGGOH FRQIRUPDWLRQ E LQ ZKLFK WKH FURVVn ULQJ 9DQ GHU :DDOV LQWHUDFWLRQV DUH XQIDYRUDEOH 0ROHFXODU PRGHOV VKRZ WKDW D ORZHU HQHUJ\ FRQIRUPHU D KDV JRRG JHRPHWULFDO GLVSRVLWLRQ IRU WKH WHUPLQDO KRPRGLHQ\O VKLIW DQG FDQ JLYH D FLVFLVF\FORSFWDGLHQH $ SURGXFW IRUPDOO\ GHULYDEOH IURP VXFK D WHUPLQDO KRPRGLHQ\O VKLIW )LJXUH &RQIRUPDWLRQV IRU ,QWHUQDO DQG 7HUPLQDO +RPRGLHQ\O 6KLIWV

PAGE 52

KDV EHHQ REVHUYHG SUHYLRXVO\ 'ROELHU DQG 6HOOHUV UHSRUWHG GLIOXRURKH[DGLHQH DV D WKHUPRO\VLV SURGXFW RI B ,W LV QRW REYLRXV ZK\ WKH LQWHUQDO KRPRGLHQ\O SDWKZD\ VKRXOG EH IDYRUHG IRU ERWK WKH K\GURFDUERQ DQG WKH JHP GLIOXRUR FRPSRXQG ZKLOH WKH WHUPLQDO SDWKZD\ LV LPSOLFDWHG IRU B DQG B 7DEOH FRPSDUHV WKH DFWLYDWLRQ SDUDPHWHUV DQG UDWHV IRU WKHVH V\VWHPV 6XFK D FRPSDULVRQ PXVW KRZHYHU EH DSSURDFKHG FDXWLRXVO\ GXH WR WKH ODUJH XQFHUWDLQn WLHV LQ WKH DFWLYDWLRQ SDUDPHWHUV GHWHUPLQHG IRU B DQG WKH VXJJHVWLRQ RI DQ DOWHUQDWLYH PHFKDQLVP IRU WKDW VSHFLHV

PAGE 53

7DEOH $FWLYDWLRQ 3DUDPHWHUV DQG 5HODWLYH 5DWHV IRU 7KHUPDO ,VRPHUL]DWLRQ RI DQG ( NFDOPRO FO f§ /RJ $ ; ; ,4 ;

PAGE 54

&+$37(5 ',)/8252',,2'20(7+$1( 35(3$5$7,21 3523(57,(6 $1' 327(17,$/ 86(6 ,QWURGXFWLRQ )OXRURGLLRGRPHWKDQH &+), KDV EHHQ VKRZQ WR EH D XVHIXO UHDJHQW IRU WKH SUHSDUDWLRQ RI PRQRIOXRURF\FOR SURSDQHV +LQH HW DO UHSRUWHG REWDLQLQJ &+), LQ b \LHOG IURP WKH UHDFWLRQ RI QHDW LRGRIRUP KHDWHG WR r& DQG WUHDWHG ZLWK VROLG PHUFXULF IOXRULGH IROORZHG E\ GLVWLOODWLRQ RI WKH SURGXFW DW UHGXFHG SUHVVXUH &+, +J) &+), +JO ,W ZDV WKRXJKW WKDW D YDULDWLRQ RI WKLV PHWKRG PLJKW SURGXFH EHWWHU UHVXOWV $Q DSSDUDWXV ZKLFK ZRXOG DOORZ WKH UHDFWLRQ WR EH UXQ DW r& DQG XQGHU UHGXFHG SUHVVXUH SURYLGHG WKH SRVVLELOLW\ IRU FRQWLQXRXV UHPRYDO RI WKH SURGXFW DV LW ZDV IRUPHG WKXV PLQLPL]LQJ WKH IRUPDWLRQ RI &+), DQG &+) $V H[SHFWHG WKLV SURFHGXUH JDYH &+), LQ DQ LPSURYHG \LHOG RI b $OVR IRXQG ZHUH WKH XQH[SHFWHG SURGXFWV GLLRGRPHWKDQH DQG GLIOXRURGLLRGRPHWKDQH

PAGE 55

+6) &+, &+), &+ &), r b b b 7KDW WKH WZR PLQRU SURGXFWV ZHUH IRUPHG LQ DQ HVVHQWLDOO\ DSURWLF PHGLXP DQG DSSHDU LQ HTXDO DPRXQWV VXJJHVWV WKDW WKH\ DUH VHFRQGDU\ SURGXFWV UHVXOWLQJ IURP WKH GLVn SURSRUWLRQDWLRQ RI &+),f &+), FK, &), ,QWHUHVW LQ &), DURVH IURP LWV SRVVLEOH V\QWKHWLF XWLOLW\ )LJXUH f %HVLGHV KDYLQJ SRWHQWLDO DV D GLIOXRURFDUEHQH SUHFXUVRU &), ZDV H[SHFWHG WR XQGHUJR IUHH UDGLFDO DGGLWLRQV WR ROHILQV WR SURGXFH DGGXFWV G ZKLFK LQ WXUQ PLJKW EH UHGXFHG WR SULPDU\ JHPGLIOXRULGHV RU UHGXFWLYHO\ FRXSOHG WR \LHOG JHPGLIOXRURF\FOR SURSDQHV

PAGE 56

)LJXUH &), DV D 6\QWKHWLF 5HDJHQW $ OLWHUDWXUH VHDUFK RQ &), UHYHDOHG DQRWKHU VXUSULVLQJ IDFW &RQWUDU\ WR ZKDW LWV VLPSOH IRUPXOD ZRXOG VXJJHVW &), KDV SUHYLRXVO\ EHHQ DYDLODEOH LQ RQO\ VPDOO DPRXQWV YLD GLIILFXOW DQG ORZ\LHOG SURFHGXUHV LQYROYLQJ WKH \LUUDGLDWLRQ RI &)A, n RU WKH DGGLWLRQ f§ RI GLIOXRURFDUEHQH WR PROHFXODU LRGLQH &OHDUO\ DQ\ URXWLQH XVH RI &), UHTXLUHV D PRUH SUDFWLFDO VRXUFH

PAGE 57

5HVXOWV DQG 'LVFXVVLRQ 3UHSDUDWLRQ $V H[SHFWHG IURP DQDORJ\ WR WKH SUHSDUDWLRQ RI &+), IURP &+, WUHDWPHQW RI WKH UHDGLO\ DYDLODEOH &4 & $ &, n ZLWK +J) SURGXFHG &), LQ IDLU \LHOG r& &O +J) &) +JO ] b ] ] ] $Q DWWHPSW WR FDUU\ RXW WKLV WUDQVIRUPDWLRQ XVLQJ D PRODU UDWLRQ RI .)+J) JDYH XQVDWLVIDFWRU\ UHVXOWV 3URSHUWLHV 'LIOXRURGLLRGRPHWKDQH LV D SDOH \HOORZ OLTXLG ZKLFK DW URRP WHPSHUDWXUH RU XSRQ H[SRVXUH WR OLJKW TXLFNO\ DFTXLUHV WKH FKDUDFWHULVWLF EXUJXQG\ FRORU RI ,aFRQWDLQLQJ VROXWLRQV ,W ERLOV DW r& WRUUf DQG KDV D YDSRU SUHVVXUH RI WRUU DW r& $OWKRXJK UHIULJHUDWLRQ LV UHFRPPHQGHG RQO\ PLQRU GHFRPSRVLWLRQ bf LV REVHUYHG ZKHQ &), LV VWRUHG DW URRP WHPSHUDWXUH LQ D S\UH[ IODVN IRU VHYHUDO ZHHNV ,W LV VWDEOH LQGHILQLWHO\ DW r& DQG LV PLVFLEOH ZLWK PRVW RUJDQLF VROYHQWV 'HWDLOHG VSHFWUDO GDWD DUH JLYHQ LQ WKH H[SHULPHQWDO FKDSWHU

PAGE 58

3KRWRO\VHV 3KRWRO\VLV RI &), LQ WKH 3UHVHQFH RI GLPHWK\O EXWHQH XQGHU YDULRXV FRQGLWLRQV VHH H[SHULPHQWDOf JDYH DQG B ,Q WKH DEVHQFH RI ROHILQV SKRWRO\VLV RI &), \LHOGV B DQG ,A KY 7KHVH REVHUYDWLRQV DUH PRVW HDVLO\ UDWLRQDOL]HG WKURXJK WKH SURFHVVHV VKRZQ LQ )LJXUH

PAGE 59

KY &9 )LJXUH 0HFKDQLVPV RI &)A,A 3KRWRO\VLV ,QLWLDO SKRWRGLVVRFLDWLRQ RI &), SURGXFHV D GLIOXRURLRGR PHWK\O UDGLFDO DQG DQ LRGLQH DWRP 7KH &), WKHQ KDV VHYHUDO SRVVLEOH IDWHV ,W FDQ EH FDSWXUHG E\ WKH ROHILQ WR JLYH D UDGLFDO LQWHUPHGLDWH ZKLFK WKHQ ORVHV D K\GURJHQ DWRP WR JLYH B ,W FDQ ORVH D VHFRQG LRGLQH DWRP WR SURGXFH GLIOXRURFDUEHQH ZKLFK LV WKHQ WUDSSHG E\ WKH ROHILQ WR JLYH B ,W FDQ FRXSOH WR DQRWKHU &), WR JLYH )LQDOO\ LW FDQ FRXSOH WR DQ LRGLQH DWRP WR UHJHQHUDWH WKH VWDUWLQJ PDWHULDO

PAGE 60

7KH KLJKHVW \LHOGV RI REWDLQHG SKRWRFKHPLFDOO\ ZHUH WKURXJK WKH XVH RI +J RU 1D2+A A DV LRGLQH VFDYHQJHUV $QDORJRXV UHDFWLRQV KDYH EHHQ UHSRUWHG IRU &+, FKIL DQG /HVV VDWLVIDFWRU\ UHVXOWV ZHUH REWDLQHG ZKHQ KH[HQH ZDV UHDFWHG XQGHU WKHVH FRQGLWLRQV 2QO\ D WUDFH DPRXQW RI WKH GHVLUHG F\FORSURSDQH ZDV GHWHFWHG &) KY +J

PAGE 61

7KHUPRO\VLV 'LIOXRURGLLRGRPHWKDQH LV QRW D JRRG WKHUPDO VRXUFH RI GLIOXRURFDUEHQH :KHQ D VDPSOH RI &) ZDV KHDWHG DW r& IRU K ZLWK H[FHVV B QR VLJQLILFDQW UHDFWLRQ ZDV REVHUYHG DQG WKH &)A,A ZDV UHFRYHUHG LQ !b 6LPPRQV6PLWK UHDFWLRQV :KHQ &)A,A ZDV XVHG LQ SODFH RI IRU D PRGLILHG 6LPPRQV6PLWK UHDFWLRQ B ZDV FRQYHUWHG WR B LQ D YHU\ PRGHVW \LHOG b E\ 105f $ UHFHQW UHSRUW WKDW 6LPPRQV 6PLWK F\FORSURSDQDWLRQV ZLWK DUH IDFLOLWDWHG E\ XOWUD VRQLF LUUDGLDWLRQ VXJJHVWHG WKDW D VLPLODU HQKDQFHPHQW PLJKW EH REVHUYHG IRU &)Of :KHQ WKH UHDFWLRQ RI B ZLWK &), DQ =Q ZDV FDUWLHG RXW LQ D VRQLFDWRU WKH \LHOG ZDV LPSURYHG PRUH WKDQ IROG

PAGE 62

)UHHUDGLFDO DGGLWLRQV $V H[SHFWHG &), 3URYHG WR ‘EH DQ H[FHOOHQW UHDJHQW IRU IUHHUDGLFDO FKDLQ DGGLWLRQV WR DONHQHV ,WV DGGLWLRQ WR KH[HQH DQG PHWK\O SURSHQRDWH SURFHHGHG VPRRWKO\ LQ b DQG b LVRODWHG \LHOGV UHVSHFWLYHO\ 7KHVH UHDFWLRQV KDYH DQDORJ\ LQ WKH DGGLWLRQ RI &)%U WR DOLHQHV EXW DUH FOHDQHU LQ WKDW WHORPHUL]DWLRQ LV QRW D VLJQLILFDQW VLGH UHDFWLRQ F9FKFKfFK FIL $ %]2f &),&+&+,&+f&+ b FK FKFRFK FIL FILFKFKLFRFK %]2f b e B 6LPLODU UHDFWLRQV RI &), ZLWK LQWHUQDO ROHILQV VXFK DV WUDQVRFWHQH DQG F\FORKH[HQH ZHUH DOVR TXLWH VXFFHVVIXO +RZHYHU LWV DWWHPSWHG DGGLWLRQ WR e UHVXOWHG LQ WKH H[FOXVLYH IRUPDWLRQ RI B OLNHO\ YLD GLYHUVLRQ RI WKH H[SHFWHG UDGLFDO LQWHUPHGLDWH E\ + DWRP DEVWUDFWLRQ

PAGE 63

&)B, $ f§ &+ &+f &+,&+&+f&+ %]2f b B &), &), $ %]2f b BB f Z $ Y &), ? = U$ %]2f f} b 5HGXFWLRQ RI UDGLFDO DGGXFWV :LWK WKH UDGLFDO DGGXFWV -/ VR UHDGLO\ DFFHVVLEOH LW VHHPHG ZRUWKZKLOH WR GHYLVH PHWKRGV IRU WKHLU FRQYHUVLRQ WR SULPDU\ JHPGLIOXRULGHV B RU JHPGLIOXRURF\FORSURSDQHV $QDORJRXV UHGXFWLRQV RI DON\O LRGLGHV WR DONDQHV DQG LQWUDPROHFXODU UHGXFWLYH FRXSOLQJV RI D\GLLRGLGHV WR F\FORSURSDQHV DUH NQRZQ

PAGE 64

7UHDWPHQW RI GLIOXRURGLLRGRKHSWDQH ZLWK =Q LQ UHIOX[LQJ HWKDQRO JDYH GLIOXRURKHSWDQH B DQG EXW\OGLI OXRURF\FORSURSDQH B DORQJ ZLWK D YDULHW\ RI PRVWO\ XQLGHQWLILHG VLGH SURGXFWV $ FOHDQHU UHDFWLRQ RFFXUV ZKHQ LW LV FDUULHG RXW LQ 7+) DQG WKH UHODWLYH DPRXQW RI SURGXFHG LV HQKDQFHG (W2+ r b b b b b 5HODWLYH \LHOGVf 5HGXFWLYH FRXSOLQJV RI WKH W\SH B rf B DUH HVSHFLDOO\ LQWHUHVWLQJ DQG XVHIXO LQ WKDW WKH\ SURYLGH D URXWH LQWR JHPGLIOXRURF\FORSURSDQHV WKDW GRHV QRW UHTXLUH GLIOXRUR FDUEHQH DGGLWLRQ &RQVLGHU IRU H[DPSOH HVWHU

PAGE 65

2QH ZRXOG UHWURV\QWKHWLFDOO\ YLHZ WKLV DV KDYLQJ FRPH IURP &) DGGLWLRQ WR PHWK\O SURSHQRDWH 8QIRUWXQDWHO\ DOO RI WKH XVXDO PHWKRGV IRU IRUPDO &)A DGGLWLRQ WR DONHQHV DUH QRWRULRXVO\ XQVXFFHVVIXO ZLWK HOHFWURQ GHILFLHQW ROHILQV n $Q DOWHUQDWLYH URXWH WR ZRXOG LQYROYH UDGLFDO DGGLWLRQ RI &)O WR B IROORZHG E\ UHGXFWLYH FRXSOLQJ RI WKH UHVXOWLQJ GLLRGLGH LFIFKFKLFRFK

PAGE 66

6XPPDU\ 'LIOXRURGLLRGRPHWKDQH LV QRZ DYDLODEOH LQ TXDQWLWLHV WKDW PDNH LW D SUDFWLFDO ODERUDWRU\ UHDJHQW ,W FDQ EH SURGXFHG LQ IDLU \LHOG E\ WKH WUHDWPHQW RI &,A ZLWK +J) $V D GLIOXRURFDUEHQH V\QWKRQ &), KDV EHHQ XVHG IRU SKRWRFKHPLFDO DQG 6LPPRQV6PLWK F\FORSURSDQDWLRQV $OWKRXJK WKH JHQHUDOLW\ RI WKHVH UHDFWLRQV KDV QRW EHHQ YHULILHG IDLU \LHOGV RI JHP GLIOXRURF\FORSURSDQH B KDYH EHHQ DFKLHYHG ZLWK DONHQH 'LIOXRURGLLRGRPHWKDQH XQGHUJRHV IDFLOH IUHHUDGLFDO DGGLWLRQV WR DONHQHV ,VRODWHG \LHOGV RI b DUH REWDLQDEOH IURP WKH DGGLWLRQ RI WR YDULRXV PRQR VXEVWLWXWHG DQG GLVXEVWLWXWHG ROHILQV

PAGE 67

&+$37(5 (;3(5,0(17$/ *HQHUDO 105 VSHFWUD ZHUH UHFRUGHG RQ D 1LFROHW 17 D -HRO ); D 9DUDQ ;/ RU D 9DUDQ (0 / VSHFWURPHWHU DQG FKHPLFDO VKLIWV f DUH UHSRUWHG DV SSP GRZQILHOG RI LQWHUQDO 706 ) FKHPLFDO VKLIWV M!f DUH UHSRUWHG LQ SSP XSILHOG RI LQWHUQDO &)&OA $OO 105 VSHFWUD ZHUH REWDLQHG DW DPELHQW WHPSHUDWXUH LQ &'&OA XQOHVV RWKHUZLVH VSHFLILHG :KHUH ) 105 \LHOGV DUH UHSRUWHG D SUHGHWHUPLQHG DPRXQW RI PEURPREHQ]RWUL IOXRULGH &ROXPELD &KHPLFDO &Rf ZDV XVHG DV DQ LQWHUQDO VWDQGDUG ,QIUDUHG VSHFWUD ZHUH UHFRUGHG RQ D 3HUNLQ (OPHU % VSHFWURSKRWRPHWHU IURP ILOPV RI QHDW OLTXLGV EHWZHHQ .%U SODWHV 0DVV VSHFWUD DQG H[DFW PDVVHV ZHUH GHWHUPLQHG RQ DQ $(,06 VSHFWURPHWHU DW H9 DQG DUH UHSRUWHG DV PTb UHO EDVHfIUDJPHQW 8QOHVV RWKHUZLVH VSHFLILHG DOO SKRWRO\VHV ZHUH FDUULHG RXW LQ D 5D\RQHWA SKRWRFKHPLFDO UHDFWRU ZLWK QP VRXUFH ODPSV 3UHSDUDWLRQ RI O'LGHXWHURGLIOXRURVSLURSHQWDQH ,QWR D VPDOO FDULXV WXEH ZHUH SODFHG J RI &)A+J3K PPROf J RI 1DO PPROf J RI GLGHXWHUR PHWK\OHQHfF\FORSURSDQH PPROf DERXW PO RI EHQ]HQH IUHVKO\ GLVWLOOHG IURP &D+A RQWR PROHFXODU

PAGE 68

VLHYHVf DQG D IHZ PJ RI %X1HO4 7KH WXEH ZDV VHDOHG XQGHU YDFXXP DQG VXVSHQGHG LQ D SUHKHDWHG RLO EDWK HTXLSSHG ZLWK D PHFKDQLFDO VWLUUHU 7KH WXEH ZDV VLWXDWHG VXFK WKDW WKH EODGHV RI WKH VWLUULQJ SURSHOOHU FRXOG YLEUDWH DJDLQVW LW DQG SURYLGH DJLWDWLRQ IRU WKH UHDFWLQJ PL[WXUH $IWHU K RI KHDWLQJ DW r& WKH WXEH ZDV RSHQHG DQG DOO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG WR D VPDOO IODVN 7KH SURGXFW ZDV LVRODWHG E\ SUHSDUDWLYH *& b WULFUHV\,SKRVSKDWH r& n [ +H IORZ P/PLQf LQ b \LHOG + 105 Pf ) 105 c! Pf & 105 W+] &)f P &'f Y ZHDN WHQWDWLYHO\ LGHQWLILHG DV VSLUR &fr V DQG &Af ,5 FPn 06 +LJK UHVROXWLRQ PHDQ RI VFDQV 0 VWG GY SSPf &DOFXODWHG &A+A)' GHY SSPf r 0RGHO FRPSRXQG B VKRZV D VSLUR & UHVRQDQFH DW +HQU\N .RURQLDN XQSXEOLVKHG UHVXOWV 8QLY RI )O

PAGE 69

7KHUPRO\VLV RI O'LGHXWHURGLIOXRURVSLURSURSDQH B 7KH WKHUPRO\VLV RI B ZDV FDUULHG RXW LQ D ZHOO FRQGLWLRQHG VSKHULFDO S\UH[ YHVVHO RI DSSUR[LPDWHO\ P/ FDSDFLW\ VXEPHUJHG LQ D VWLUUHG WKHUPRVWDWHG PROWHQ VDOW EDWK HXWHFWLF PL[WXUH E\ ZHLJKW RI 1D1&! DQG .12A PS rf 7KH WHPSHUDWXUH ZDV PHDVXUHG XVLQJ D FKURPHODOXPHO WKHUPRFRXSOH LQ FRQMXQFWLRQ ZLWK D 7LQVOH\ W\SH ( SRWHQWLRPHWHU 7KH WKHUPRFRXSOH ZDV LPPHUVHG LQ D ZHOO QH[W WR WKH WKHUPRO\VLV YHVVHO 7KH WHPSHUDWXUH ZDV FRQWUROOHG WR r& XVLQJ D +DOOLNDLQHQ QRZ 727&2f ,QVWUXPHQW 7KHUPRWURO SURSRUWLRQDO FRQWUROOHU ZLWK D PRGHO $ SODWLQXP UHVLVWDQFH SUREH 3URGXFW LGHQWLILFDWLRQ ZDV GRQH E\ VWDQGDUG VSHFWURVFRSLF PHWKRGV RQ PDWHULDO IURP SUHSDUDWLYH UXQV LQ ZKLFK WRUU RI ZHUH H[SDQGHG LQWR WKH S\URO\VLV YHVVHO WKURXJK D FRQWLJXRXV YDFFXP OLQH DQG WKHUPRO\]HG IRU WR KDOI OLYHV $ PL[WXUH RI B B DQG B ZDV SXULILHG E\ SUHn SDUDWLYH *& b 2'31 n [ r +H IORZ P/PLQf &RPSRXQGV $B DQG B ZHUH LGHQWLILHG E\ WKHLU 105 VSHFWUD ZKLFK ZHUH VLPLODU WR WKRVH RI WKH XQGHXWHUDWHG 6HH GLVFXVVLRQ LQ WH[Wf )RU NLQHWLFV D PL[WXUH RI DSSUR[LPDWHO\ WRUU RI B DQG WKH LQWHUQDO VWDQGDUG SHQWDQH ZDV VWLUUHG IRU VHYHUDO KRXUV LQ DQ LVRODWHG VHFWLRQ RI WKH YDFXXP OLQH DQG FKHFNHG E\ *& IRU KRPRJHQHLW\ EHIRUH H[SDQGLQJ WKH PL[WXUH LQWR WKH WKHUPRO\VLV YHVVHO

PAGE 70

7KH NLQHWLF UXQ ZDV VDPSOHG DW FRQYHQLHQW LQWHUYDOV E\ UHPRYLQJ VPDOO IUDFWLRQV RI WKH S\URO\VLV PL[WXUH E\ H[SDQVLRQ WKURXJK D VPDOO VHFWLRQ RI WKH YDFXXP OLQH LQWR D JDV VWRUDJH EXOE DQG GLOXWLQJ ZLWK DUJRQ 7KLV VDPSOH EXOE ZDV UHPRYHG DQG XVHG WR PDNH PXOWLSOH *& LQMHFWLRQV WKURXJK D JDV VDPSOLQJ YDOYH $ +HZOHWW 3DFNDUG $ JDV FKURPDWRJUDSK ZLWK D IODPH LRQL]DWLRQ GHWHFWRU ZDV XVHG LQ FRQMXQFWLRQ ZLWK DQ +3 6 LQWHJUDWRU IRU WKH DQOD\VLV %DVHOLQH UHVROXWLRQ RI SHDNV ZDV REVHUYHG (DFK SRLQW LQ WKH UDWH FRQVWDQW LV DQ DYHUDJH RI DW OHDVW *& UXQV 7KH UDWH FRQVWDQW SORW FRQWDLQHG SRLQWV DQG ZDV GHULYHG E\ D OLQHDU OHDVW VTXDUHV DQDO\VLV RI WKH H[SHULPHQWDO GDWD \LHOGLQJ D FRUUHODWLRQ FRHIILFLHQW RI &RPSDUDWLYH 5DWH IRU 7KHUPRO\VLV RI 'LIOXSURVSLURSHQWDQH )RU FRPSDULVRQ SXUSRVHV D WKHUPRO\VLV RI WKH XQGHXWHUDWHG PDWHULDO ZDV FDUULHG RXW LQ WKH PDQQHU GHVFULEHG DERYH DW WKH VDPH WHPSHUDWXUH RQ WKH VDPH GD\ 6DPSOHV RI WKH UHDFWLRQ PL[WXUH WDNHQ DW VL[ WLPHV JDYH D SORW ZLWK D FRUUHODWLRQ FRHIILFLHQW RI 3UHSDUDWLRQ RI FLVFLVO)OXRURPHWK\O\LQ\OF\FOR SURSDQH 7KH IROORZLQJ SURFHGXUH ZDV SDWWHUQHG DIWHU WKDW RI 1LVKLPXUD DQG )XUXNDZD $ P/ QHFNHG IODVN ZDV HTXLSSHG ZLWK D QLWURJHQ LQOHW VWRSFRFN D GU\ LFH FRQGHQVHU D PDJQHWLF VWLUULQJ EDU DQG D UXEEHU VHSWXP 7KH RXWOHW

PAGE 71

RI WKH FRQGHQVHU ZDV FRQQHFWHG WR D PLQHUDO RLO 8WXEH EXEEOHU 7KH JODVVZDUH XVHG IRU WKH DSSDUDWXV ZDV GULHG LQ DQ r& RYHQ DQG DVVHPEOHG KRW WKHQ FRROHG WR DPELHQW WHPSHUDWXUH XQGHU D VORZ IORZ RI GU\ QLWURJHQ 7KH QLWURJHQ IORZ ZDV GLVFRQWLQXHG DQG ZLWK VWDQGDUG V\ULQJH WHFKQLTXH WKH IROORZLQJ UHDJHQWV ZHUH SODFHG LQ WKH UHDFWLRQ IODVN P/ 0 GLHWK\O]LQF LQ WROXHQH PPRO $OGULFK &DXWLRQf H[WUHPHO\ S\URSKRULFf P/ FLVSHQWDGLHQH PPROH )OXNDf DQG P/ &+),A J PPROf 7KH FRQGHQVHU ZDV ILOOHG ZLWK GU\ LFH DQG WKH UHDFWLRQ PL[WXUH ZDV PDJQHWn LFDOO\ VWLUUHG 5HDFWLRQ SURJUHVV ZDV PRQLWRUHG E\ DQDHUREn LFDOO\ V\ULQJLQJ RXW D VPDOO VDPSOH RI WKH PL[WXUH LQWR D VHSWXPFDSSHG 105 WXEH DQG H[DPLQLQJ LW E\ ) 105 IRU GLVn DSSHDUDQFH RI &+), WMf G +]f 7KH VDPSOH FRXOG WKHQ EH SODFHG EDFN LQWR WKH UHDFWLRQ PL[WXUH 1R UHDFWLRQ ZDV REVHUYHG WR RFFXU DW URRP WHPSHUDWXUH DIWHU K 7KH UHDFWLRQ PL[WXUH ZDV KHDWHG WR r& IRU K DQG DQ DGGLWLRQDO P/ RI QHDW GLHWK\O]LQF ZDV DGGHG E\ V\ULQJH IROORZHG E\ DQRWKHU K RI KHDWLQJ 7KH UHDFWLRQ IODVN ZDV FRROHG WR r& DQG WKH PL[WXUH ZDV VORZO\ TXHQFKHG FDXWLRQf ZLWK DSSUR[LPDWHO\ P/ RI 0 +& DQG WUDQVIHUUHG WR D VHSDUDWRU\ IXQQHO 7KH RUJDQLF OD\HU ZDV ZDVKHG WKULFH ZLWK 0 +& DQG WKULFH ZLWK GLVWLOOHG ZDWHU WKHQ GULHG RYHU &D&O! 7KH UHVXOWLQJ VROXWLRQ ZDV H[DPLQHG E\ ) 105 DQG \LHOGV ZHUH GHWHUPLQHG E\ LQWHJUDWLRQ 6DPSOHV RI WKH SURGXFWV ZHUH LVRODWHG E\ SUHSDUDWLYH 2& b 'LLVRGHF\O SKWKDODWH n [ r P/PLQ +H IORZf

PAGE 72

b ;+ 105 GW +] +] + )&+f P + &+f P + DOO\OLFf P + 0H&+f GGGG +] +] +] +] + LQWHUQDO YLQ\Of GG +] +] + WHUPLQDO YLQ\O FLV WR F\FORSURS\Of GG +] +] + WHUPLQDO YLQ\O WUDQV WR F\FORSURS\Of ) 105 GW +] +]f & 105 G +] LQWHUQD ROHILQLFf V WHUPLQDO ROHILQLFf G +] &+)f G +] DOO\OLFf G +] &+Hf G +] &+f ,5 ZNf ZNf ZNf ZNf FP 06 f 0 f 0&+ f f f &+

PAGE 73

f &+) f f f f f &+ f &+ B b + 105 GWG +] +] +] )&+f P YLQ\OLFf ) 105 c! GGGGG +] +] +] +] OO +]f $W OHDVW IRXU LVRPHULF GLDGGXFWV ZKLFK ZHUH QRW VHSDUDEOH E\ *& ZHUH DOVR REVHUYHG bf 7KH FKHPLFDO VKLIWV DQG FRXSOLQJ SDWWHUQV IURP WKH ) 105 VSHFWUXP RI D PL[WXUH RI WKHVH ZHUH FRQVLVWHQW ZLWK WKH SUHVHQFH RI DSSUR[LPDWHO\ b HDFK RI WKH V\Q V\Q GLDGGXFWV B DQG B DQG DSSUR[LPDWHO\ b HDFK RI WKH V\Q DQWL GLDGGXFWV DQG 7DEOH f

PAGE 74

7DEOH ) 105 'DWD IURP 0L[WXUH RI 'LDGGXFWV I! 'HVFULSWLRQ b UHO f LQWHQV LW\ GWG +] +] +] GWG +] +] +] P DW OHDVW GLIIHUHQW )nV XQUHVROYHG V\Q HQYLURQPHQW IRU HDFK LH GW +] +] P VHYHUDO GLIIHUHQW )nV XQUHVROYHG V\Q HQYLURQPHQW IRU HDFK LH GW +] +] 7KHUPRO\VLV RI FLV FLVO)OXRURPHWK\OYLQ\OF\FORSURSDQH 7KH JDV SKDVH WKHUPRO\VHV RI -/ ZHUH FDUULHG RXW DV ZDV GHVFULEHG IRU WKDW RI DERYH H[FHSW WKH LQWHUQDO VWDQGDUG XVHG ZDV PHWK\OF\FORKH[DQH DQG *& DQDO\VHV ZHUH SHUIRUPHG XVLQJ D +HZOHWW3DFNDUG $ VHULHV JDV FKURPDWRJUDSK ZLWK JDV LQMHFWLRQ V\VWHP DQG IODPH LRQL]DWLRQ GHWHFWRU LQ FRQn MXQFWLRQ ZLWK D +HZOHWW3DFNDUG $ LQWHJUDWRU 7KH FROXPQ ZDV n [ b R[\GLSURSLRQLWULOH RQ FKURPRVRUS :+3 DW r& ZLWK P/PLQ IORZ $ SUHSDUDWLYH UXQ VKRZHG DVVXPLQJ XQLIRUP GHWHFWRU UHVSRQVH b PDWHULDO

PAGE 75

EDODQFH E\ LQWHUQDO VWDQGDUG DIWHU KDOIOLYHV $ VDPSOH RI WKH JDVHRXV UHDFWLRQ PL[WXUH ZDV WDNHQ GLUHFWO\ IURP WKH WKHUPRO\VLV YHVVHO ZLWKRXW FRQGHQVLQJ DQG H[DPLQHG E\ *&06 2QO\ &A+J SURGXFWV VWDUWLQJ PDWHULDO DQG LQWHUQDO VWDQGDUG FRXG EH GHWHFWHG 2QH SUHSDUDWLYH UXQ ZDV FRQGHQVHG GLUHFWO\ LQWR DQ105 WXEH ZKLFK ZDV WKHQ VHDOHG DW r& 7KH VDPSOH ZDV PDLQWDLQHG DW r& RU EHORZ XQWLO 105 DQDO\VLV ZDV FRPSOHWH 2QO\ HOLPLQDWLRQ SURGXFWV ZHUH REVHUYHG 7KHVH ZHUH LGHQWLILHG E\ WKHLU DQG & 105 VSHFWUD 3UHSDUDWLRQ RI HQGR DQG H[R)OXRURELF\FOR > @ RFWHQH B DQG $ SURFHGXUH VLPLODU WR WKDW GHVFULEHG DERYH IRU WKH SUHSDUDWLRQ RI B ZDV XVHG ,QWR DQ R[\JHQIUHH DSSDUDWXV ZHUH V\ULQJHG PO RI F\FORKHSWDGLHQH PPRO $OGULFKf PO RI 0 GLHWK\O]LQF LQ WROXHQH PPRO $OGULFKf DQG J RI &+), PPROf 7KH PDJQHWLFDOO\ VWLUUHG PL[WXUH ZDV KHDWHG DW D SRW WHPSHUDWXUH RI r& IRU K ,Q DGGLWLRQ WR b XQUHDFWHG &+), WKH IROORZLQJ SURGXFWV ZHUH REWDLQHG E\ SUHSDUDWLYH *& b FDUERZD[ n [ r& P/PLQ +H IORZf b + 105 GW +] +] + )&+f P + YLQ\OLFf P +f

PAGE 76

I 105 I! UWr rr +] +]f F 105 V n & A G +] &` G +] n &` V &` V &f G +] &` GU +] &O` G +] &` ,5 U + FP 06 0 VWG GHY SSPf PHDQ RI VFDQV &DOFXODWHG IRU &J+A) GHY SSPf f 0 f f f f f f f f f f f

PAGE 77

b 105 GW +] + +] P + & +f G EU V + &J+f EU XQUHVROYHG Pf ) 105 FI! GW +] +]f & 105 G +]f G +]f G +] &Jf V &! V Ff G +] G +] &Jf G OO +] &"f ,5 FP 06 0 VWG GHY SSPf PHDQ RI VFDQV &DOFXODWHG &J+A) GHY SSPf f0 EDVHf &A+\ DQG PDQ\ RWKHUV

PAGE 78

+ 105 GW +] +] + +D} EU V + +nV RQ DQG &f P + +Ef P + + f I 105 WMf GW +] +]f F 105 G +] V &f G +] &f G +] &f GG +] +] &f ,5 FP 06 0 VWG GHY SSPf PHDQ RI VFDQV &DOFXODWHG IRU &+) GHY SSPf f EDVH SHDN

PAGE 79

b 7KLV PDWHULDO ZDV QRW LVRODWHG E\ SUHSDUDWLYH *& EXW ZDV REVHUYHG LQ WKH UHDFWLRQ PL[WXUH E\ 105 ) 105 GW +] +] HQGR )f GW +] +] H[R )f 7KHUPRO\VHV RI HQGR DQG H[R)OXRURELF\FORa >@RFWHQH 7KH SURFHGXUH DQG DSSDUDWXV ZHUH WKH VDPH DV WKRVH GHVFULEHG IRU WKH WKHUPRO\VLV RI H[FHSW WKDW EHFDXVH RI WKH ORZ YDSRU SUHVVXUHV RI DQG B WKH VDPSOH EXOEV KDG WR EH KHDWHG WR DERXW r& LQ RUGHU WR PDLQWDLQ JRRG UHSURGXFLELOLW\ RI *& LQMHFWLRQV 7KH VDPSOLQJ EXOEV k ZHUH ZUDSSHG ZLWK 7KHUPRO\QH %ULVN+HDW VLOLFRQ UXEEHU HPEHGGHG IOH[LEOH HOHFWULFDO KHDWLQJ WDSH DQG FRYHUHG ZLWK D EODQNHW RI SODVWHU RI 3DULV $OO SRUWLRQV RI WKH VDPSOLQJ DUHD NLQHWLFV OLQH DQG JDV LQMHFWLRQ V\VWHP ZHUH PDLQWDLQHG DW DERXW r& $ PD[LPXP YDSRU SUHVVXUH RI WR WRUU FRXOG EH REWDLQHG DQG ZDV XVHG IRU DOO NLQHWLF DQG SUHSDUDn WLYH UXQV 2QH SUHSDUDWLYH UXQ ZDV FDUULHG RXW RQ ZLWK WRUU RI QRQDQH SUHVHQW DV DQ LQWHUQDO VWDQGDUG DQG DVVXPLQJ XQLIRUP GHIHFW UHVSRQVH !b PDWHULDO EDODQFH ZDV REVHUYHG DIWHU KDOIOLYHV 6HYHUDO SUHSDUDWLYH UXQV ZHUH SHUIRUPHG FRQVHFXWLYHO\ DQG FRQGHQVHG LQWR D VPDOO IODVN 7KH UHVXOWLQJ SURGXFWV ZHUH LVRODWHG E\ SUHSDUDWLYH *& b GLQRQ\OSKWKDODWH r n [ P/PLQ +H IORZf

PAGE 80

;+ 105 P + &+f f ,, 1 f R f§ ,, K 3 6 +] + F+f GG +] +] + FKf P + &J+f P + &+f UD +f P +f & 105 G +] G +] &f G +] &Jf G +] &f G &Jf V &f 6 V &f G +] &Mf ) 105 FI! Pf + 105 GG OOO +] +] +f GG +] @ +] +f P +f P +f & 105 V &Jf 6 &f G +] &Af V &f

PAGE 81

G +] &Jf G +] &Ff G +] & f G +] &Bf 2 ) 105 FI! Pf 5HDFWLRQ RI &+,A ZLWK +J) ,QWR WZR VROLG DGGLWLRQ WXEHV ZHUH SODFHG D WRWDO RI J RI +J) PRO $OID 3URGXFWVf 7KHVH ZHUH LQVHUWHG LQWR D P/ QHFNHG IODVN FRQWDLQLQJ D ODUJH VWLUULQJ PDJQHW DQG J RI VROLG &+, PROf DQG HTXLSSHG ZLWK D GLVWLOODWLRQ KHDG 7KH V\VWHP ZDV HYDFXDWHG WR WRUU DQG WKH UHDFWLRQ IODVN ZDV KHDWHG RYHU DQ RLO EDWK DW DSSUR[LPDWHO\ r& XQWLO QHDUO\ DOO WKH &+,A KDG PHOWHG 7KH WHPSHUDWXUH ZDV GHFUHDVHG WR r& DQG WKH VROLG +J) ZDV DGGHG JUDGXDOO\ WR WKH PDJQHWLFDOO\ VWLUULQJ &+,A PHOW RYHU D PLQXWH SHULRG $ GDUN EXUJXQG\FRORUHG GLVWLOODWH ZDV FROOHFWHG DW r WR r LQ D P/ UHFHLYLQJ IODVN ZKLFK ZDV FRROHG WR r $SSUR[LPDWHO\ P/ RI GLVWLOODWH Jf ZHUH FROOHFWHG 7KLV PDWHULDO ZDV ZDVKHG WZLFH ZLWK DTXHRXV 1D6 DQG WKHQ IUDFWLRQDOO\ YDFXXP GLVWLOOHG WR SURGXFH OOOJ RI &+), b %3 r WRUUf DQG b HDFK RI &),%3 WRUUf DQG &+,%3 !r WRUUf

PAGE 82

3UHSDUDWLRQ RI &)A ,QWR D P/ WKUHHQHFNHG IODVN HTXLSSHG ZLWK GLVWLOODWLRQ KHDG DQG YDFXXP +HUVKEHUJ VWLUUHU ZHUH SODFHG J RI &O PROf DQG J RI +J) PROf 7KH IODVN ZDV FORVHG RII ZLWK D P/ SUHVVXUHHTXDOL]LQJ DGGLWLRQ IXQQHO FRQWDLQLQJ P/ RI GLFKORUREHQ]HQHr 7KH V\VWHP ZDV HYDFXDWHG WR WRUU WKURXJK D r& WUDS DQG WKH GLFKORUREHQ]HQH ZDV DGGHG VORZO\ H[RWKHUPLF DV UHDFWLRQV EHJLQ,f XQWLO WKH KHWHURJHQHRXV V\VWHP ZDV ZHW HQRXJK WR VWLU HDVLO\ FD P/f ,Q DQ DOWHUQDWLYH SURFHGXUH D VROLG DGGLWLRQ WXEH ZDV XVHG WR VORZO\ DGG +J) WR D VWLUULQJ VROXWLRQ RI &,Af +HDWLQJ DW r& SURGXFHG D GDUN SXUSOH GLVWLOODWH ZKLFK FDPH RYHU DW r& WRUUf LQWR D UHFHLYLQJ IODVN FRROHG WR r& 'LVWLOODWLRQ r r FHDVHG DIWHU DERXW PLQ 7KH WUDS FRQWHQWV DQG GLVWLOODWH ZHUH FRPELQHG ZLWK WKRVH IURP D SUHYLRXV UXQ PRO RI &OA DQG PRO RI +J)f DQG GLVWLOOHG XQGHU YDFXXP \LHOG J bf ES r& WRUUf 6PDOO DPRXQWV RI FUXGH &), FDQ EH SXULILHG LH IUHHG IURP ,f DV QHHGHG E\ aN 2WKHU LQHUW KLJKERLOLQJ VROYHQWV HJ SHUIOXRURGHFDOLQH RU Q& )f6R)f FDQ DOVR EH XVHG R ] N N +LJKHU LVRODWHG \LHOGV FDQ EH REWDLQHG E\ FODLPLQJ WKH VPDOO DPRXQW RI &), UHPDLQLQJ LQ WKH UHDFWLRQ PL[WXUH 7KLV FDQ EH GRQH E\ VORZO\ SXOOLQJ D YDFXXP DERYH WKH VWLUULQJ PL[WXUH DW URRP WHPSHUDWXUH WKURXJK D r WUDS IROORZHG E\ YDFXXP GLVWLOODWLRQ RI WKH WUDS FRQWHQWV

PAGE 83

WUDS WR WUDS GLVWLOODWLRQ XQGHU KLJK YDFXXP WKURXJK D DQG r& WUDS V\VWHP 3XUH &), LV IRXQG LQ WKH r& WUDS LW KDV D YDSRU SUHVVXUHnRI WRUU DW r& ) 105 I! Vf & 105 W +]f 06 f 0 f &), f f &), f &), f f &) ,5 FP 3KRWRO\VHV RI &), 3KRWRO\VLV RI &), 'LPHWK\OEXWHQH B DQG +J ,QWR D VPDOO &DULXV WXEH ZHUH ZHLJKHG J RI &) A PPROf J RI GLPHWK\OEXWHQH PPROf DQG J RI +J PPROf 7KH UHDFWLRQ PL[WXUH ZDV WKRURXJKO\ GHJDVVHG DQG WKH WXEH ZDV VHDOHG XQGHU YDFXXP 7KH PL[WXUH ZDV SKRWRO\]HG IRU K ZLWK RFFDVLRQDO VKDNLQJ $IWHUZDUG WKH WXEH ZDV RSHQHG DQG DOO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG DQG DQDO\]HG E\ ) 105 7KH SURGXFW PL[WXUH FRQWDLQHG b GLIOXRURWHWUDPHWK\OF\FORSURSDQH DQG b GLIOXRURLRGRWULPHWK\OOEXWHQH 3XUH VDPSOHV RI HDFK ZHUH LVRODWHG E\ SUHSDUDWLYH JDV FKURPDn WRJUDSK\ b GLQRQ\O SKWKDODWH RQ &KURPRVRUE :+3 n [ r&f

PAGE 84

7KH + 105 W +]f DQG WKH ) 105 f VSHFWUD ZHUH LGHQWLFDO ZLWK WKRVH UHSRUWHG IRU + 105 EU V + YLQ\OLFf EU V + YLQ\OLFf GG +] +] + DOO\OLFf W +] + PHWK\OV RQ Ff ) 105 EU Vf & 105 EU V & f V &[f W +] &f W +] &f W +] PHWK\OV RQ f W +] DOO\OLF PHWK\O RQ &f ,5 Vf Zf FP 06 0 VWG GHY SSPf &DOFXODWHG IRU &B+)B, GHY A SSPf f 0 f 0, f f f f

PAGE 85

f f f 0&), f f f f f f f f f f f f &+ f &+F f f f f 3KRWRO\VLV RI &), DQA B ZLWKRXW +J ,Q WKH DEVHQFH RI PHUFXU\ D SKRWRO\VLV SHUIRUPHG DV GHVFULEHG DERYH VKRZHG RQO\ b FRQYHUVLRQ RI &)O DQG JDYH D VLPLODU SURGXFW UDWLR

PAGE 86

*DV 3KDVH 3KRWRO\VLV RI &) DQ ,QWR D P/ Y\FRU SKRWRO\VLV EXOE ZHUH YDFXXP WUDQVIHUUHG PPRO RI &), DQG PPRO RI e 7KH V\VWHP ZDV WKRURXJKO\ GHJDVVHG DQG WKHQ WKH EXOE ZDV VXVSHQGHG LQ D 5D\RQHWp SKRWRO\VLV DSSDUDWXV HTXLSSHG ZLWK QP VRXUFH ODPSV $OPRVW LPPHGLDWHO\ WKH UHDFWLRQ PL[WXUH GDUNHQHG ZLWK O FRORUDWLRQ 3KRWRO\VLV ZDV FRQWLQXHG IRU K $OO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG LQWR D VPDOO SOXPERWWRP IODVN DQG H[DPLQHG E\ ) 105 b b e DQG WZR XQLGHQWLILHG SURGXFWV b c! Vf DQG b c! Vf 3KRWRO\VLV RI 1HDW &), /LTXLG &), ZDV GHJDVVHG DQG D VDPSOH ZDV DOORZHG WR H[SDQG LQWR DQ HYDFXDWHG Y\FRU SKRWRO\VLV EXOE XQWLO LWV PD[LPXP YDSRU SUHVVXUH DW URRP WHPSHUDWXUH ZDV REWDLQHG WRUUf 7KH EXOE ZDV FORVHG RII DQG WKH &), ZDV SKRWR O\]HG DW QP DV GHVFULEHG DERYH :LWKLQ PLQXWHV ZDV VHHQ FU\VWDOOL]LQJ RQ WKH ZDOOV RI WKH EXOE $IHU K RI SKRWRO\VLV DOO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG WR D VPDOO IODVN DQG H[DPLQHG E\ ) 105 ZKLFK VKRZHG ,&)&), c!f DQG &), WR EH WKH RQO\ A )BFRQWDLQLQJ VSHFLHV SUHVHQW LQ RWKHU WKDQ WUDFH DPRXQWV &),

PAGE 87

3KRWRO\VLV RI &), DQG B DW (OHYDWHG 7HPSHUDWXUH $ VROXWLRQ RI J RI &), PPROf DQG J RI B PPROf ZDV UHIOX[HG DQG SKRWRO\]HG IRU K XQGHU D EODQNHW RI GU\ $ 6HDUV : 9 SURMHFWRU IORRG ODPS ZDV XVHG DV D OLJKW VRXUFH PRXQWHG DERXW FP ‘ IURP WKH UHDFWLRQ IODVN 7KH ) 105 VSHFWUXP RI WKH FUXGH UHDFWLRQ PL[WXUH VKRZHG WR EH WKH PDMRU )FRQWDLQ LQJ VSHFLHV LQ DGGLWLRQ WR VPDOO DPRXQWV RI RWKHU XQLGHQWLILHG SURGXFWV 1R B RU XQUHDFWHG &), ZDV REVHUYHG 3KRWRO\VLV RI &) B DQG $TXHRXV 1D2+ ,QWR D P/ URXQGERWWRP IODVN ZHUH SODFHG J RI PPROf P/ &,A&A J RI &), PPROf DQG P/ RI 0 DTXHRXV 1D2+ 7KH PDJQHWLFDOO\ VWLUUHG UHDFWLRQ IODVN ZDV HTXLSSHG ZLWK D UHIOX[ FRQGHQVHU DQG WKH PL[WXUH ZDV SKRWRO\]HG IRU K 7KH WZRSKDVH OLTXLG V\VWHP ZDV VHSDUDWHG DQG WKH RUJDQLF SKDVH ZDV GULHG RYHU &D&A WKHQ GLVWLOOHG WR UHPRYH PRVW RI WKH $EVROXWH \LHOGV ZHUH QRW GHWHUPLQHG KRZHYHU ) 105 DQDO\VLV VKRZHG IRXU )FRQWDPLQJ VSHFLHV WZR XQLGHQWLILHGf LQ WKH IROORZLQJ UHODWLYH DPRXQWV b B b BB b ^! Vf b Vf 3KRWRO\VLV RI &), ZLWK +H[HQH DQG +J ,QWR D VPDOO FDULXV WXEH ZHUH ZHLJKHG J RI &), PPROf J RI KH[HQH PPROf DQG J RI PHUFXU\ PPROf 7KH PL[WXUH ZDV GHJDVVHG DQG WKH WXEH ZDV VHDOHG XQGHU YDFXXP DW r& $IWHU WKDZLQJ WKH

PAGE 88

PL[WXUH ZDV SKRWRO\]HG DQG PHFKDQLFDOO\ DJLWDWHG IRU K 7KH WXEH ZDV RSHQHG DQG WKH YRODWLOH PDWHULDO ZDV H[DPLQHG E\ ) 105 7KH UHDFWLRQ \LHOG ZDV WRR ORZ WR EH GHWHUPLQHG E\ 105 LQWHJUDWLRQ $ WUDFH DPRXQW RI EXW\OGLIOXRUR F\FORSURSDQH B ZDV GHWHFWHG DQG LGHQWLILHG E\ LWV )RXULHU WUDQVIRUPHG ) 105 VSHFWUXP $% TXDUWHW ZLWK IXUWKHU VSOLWWLQJ PLGSRLQW +] $ ) + f +] D D )+ f ) + f +] E E EH

PAGE 89

$WWHPSWHG 7KHUPDO 5HDFWLRQ RI &), DQG n 'LPHWK\OEXWHQH ,QWR D VPDOO &DULXV WXEH ZHUH SODFHG fJ RI &)f, A ]r PPROf DQG J RI B PPROf 7KH VROXWLRQ ZDV GHJDVVHG DQG WKH WXEH ZDV VHDOHG XQGHU YDFXXP DW r $IWHU LW ZDV DOORZHG WR ZDUP WR DPELHQW WHPSHUDWXUH WKH WXEH ZDV SODFHG LQ D SUHKHDWHG RLO EDWK DQG NHSW DW r& IRU K $QDO\VLV E\ *& DQG 105 VKRZHG WKH RQO\ VLJQLILFDQW QHZ FRPSRQHQW LQ WKH PL[WXUH ZDV GLPHWK\OOEXWHQH ZKLFK UHVXOWHG IURP WKH AFDWDO\]HG LVRPHUL]DWLRQ RI 6LPPRQV6PLWK 5HDFWLRQV RI &), 5HDFWLRQ RI &), ZLWK B =Q DQG &X&O 7KH IROORZLQJ SURFHGXUH ZDV SDWWHUQHG DIWHU WKDW RI 5DZVRQ DQG +DUULVRQ $ P/ WKUHHQHFNHG IODVN ZDV HTXLSSHG ZLWK D VSLUDO FRQGHQVHU D UXEEHU VHSWXP DQ DGGLWLRQ IXQQHO DQG WZR VWRSFRFNV IRU WKH LQOHW DQG RXWOHW RI 1A $ VROXWLRQ RI J RI &), PPROf LQ P/ RI DQK\GURXV GLHWK\O HWKHU ZDV SODFHG LQWR WKH DGGLWLRQ IXQQHO ,QWR WKH UHDFWLRQ IODVN ZHUH SODFHG J RI =Q GXVW PPROf J RI IUHVKO\ SUHSDUHG &X&O DQG P/ RI DQK\GURXV GLHWK\O HWKHU 7KH PDJQHWLFDOO\ VWLUUHG PL[WXUH ZDV ZDUPHG WR JHQWOH UHIOX[ IRU PLQXWHV ZKHUHXSRQ P/ RI B PPRO $OGULFKf ZDV DGGHG E\ V\ULQJH +HDWLQJ ZDV WHPSRUDULO\ GLVFRQWLQXHG ZKLOH WKH &), VROXWLRQ ZDV DGGHG GURSZLVH RYHU PLQXWHV 5HIOX[ KHDWLQJ ZDV UHVXPHG IRU K $OO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG WR D VPDOO IODVN
PAGE 90

5HDFWLRQ RI &)A,A DQG B ZLWK =Q DQG 8OWUDVRXQG ,QWR D P/ IODVN ZHUH ZHLJKHG J RI =Q GXVW PPROf J RI GLPHWKR[\HWKDQH DQG J RI 7KH IODVN ZDV HTXLSSHG ZLWK D VSLUDO FRQGHQVHU QLWURJHQ LQOHW DQG RXWOHW VWRSFRFNV DQG DQ DGGLWLRQ IXQQHO FRQWDLQLQJ D VROXWLRQ RI J RI &), PPROf LQ J RI GLn PHWKR[\HWKDQH 7KH V\VWHP ZDV SXUJHG ZLWK D VORZ IORZ RI GU\ 1 DQG WKH UHDFWLRQ YHVVHO ZDV PRXQWHG LQVLGH D VRQLF FOHDQHU %UDQVRQLF 9 +] : %UDQVRQ ,QVWUXPHQWV &Rf DW D GHSWK WKDW SURGXFHG WKH PD[LPXP DJLWDWLRQ $IWHU PLQXWHV RI VRQLFDWLRQ WKH &), VROXWLRQ ZDV DGGHG GURSZLVH RYHU PLQXWHV DQG WKH KHWHURJHQHRXV UHDFWLRQ PL[WXUH ZDV VRQLFDWHG IRU DQ DGGLWLRQDO KRXUV ZKLOH WKH EDWK WHPSHUDWXUH FOLPEHG VORZO\ WR r& $OO YRODWLOH PDWHULDO ZDV YDFXXP WUDQVIHUUHG IURP WKH PL[WXUH DQG WKH FOHDU FRORUOHVV VROXWLRQ ZDV H[DPLQHG E\ ) 105
PAGE 91

E\ IODVK FKURPDWRJUDSK\ AHOXWLQJ ZLWK KH[DQH WR \LHOG J RI GLIOXRURGLLRGRKHSWDQH b + 105 W +] +f EU P +f P +f TXLQW ++f ) 105 PLGSRLQW $% -Q +] $W! O f $G GRZQILHOG ) GG +] +]f XSILHOG ) GG +] +]f $OVR YLVLEOH ZDV Yb RI WKH RSSRVLWH UHJLRDGGXFW GLIOXRURLRGRPHWK\OfLRGRKH[DQH c! PLGSRLQW $% RI G -AJ $I! -AS +]f & 105 W +] &Af W +] &f Vf Vf EU V &Af Vf V &"f ,5 Vf Vf VfFPB 06 f 0 f 0, f &+ DQG PDQ\ VPDOOHU IUDJPHQWV

PAGE 92

$GGLWLRQ RI &)A,A WR 0HWK\O 3URSHQRDWH $ PL[WXUH RI J RI PHWK\O SURSHQRDWH PPRO 0&% IUHVKO\ GLVWLOOHG IURP SKHQRWKLD]HQH RQWR PROHFXODU VLHYHVf J RI &), PPROf DERXW P/ RI EHQ]HQH DQG 2OJ RI EHQ]R\O SHUR[LGH PPROf ZDV WUHDWHG DV GHVFULEHG DERYH IRU K DW r& WR \LHOG b RI XQUHDFWHG &), DQG J RI PHWK\O GLIOXRURGLLRGR EXWDQRDWH b + 105 GG +] +] +f P +f V +f ) 105 FI! PLGSRLQW $% -B +] $! -7 +]f $G QU & 105 V & f W +] &)' W +] &+f V &+f W +] &+,f 06 f 02&+ f 0&&+ f 0f§, f f f f &+) f &+) f &&+

PAGE 93

f 2&+ DQG RWKHU IUDJPHQWV 1R 0 ZDV REVHUYHG $GGLWLRQ RI &), WR WUDQVFWHQH $ PL[WXUH RI 4J RI &), PPROf J RI WUDQVRFWHQH PPROf DQG J RI EHQ]R\O SHUR[LGH ZDV DOORZHG WR UHDFW DV GHVFULEHG DERYH DW r IRU K WR \LHOG b RI D PL[WXUH RI WKH WZR SRVVLEOH GLD VWHUHRLVRPHULF GLIOXRURLRGRPHWK\OfLRGRRFWDQHV 7KH n+105 RI WKH UHDFWLRQ PL[WXUH VKRZV WKH K\GURJHQV RQ DV PXOWLSOHWV A) 105`f PLGSRLQW $% RI G $FMf +]f $% GRZQILHOG ) G +]f QU XSILHOG ) G -f +]f QU PLGSRLQW $% RI G $F-! -K +] $% GRZQILHOG ) G -UL +]f +U XSILHOG ) G -77 +]f +U 5DGLFDO $GGLWLRQ RI &), WR &\FORKH[HQH $ PL[WXUH RI O22J RI &), PPROf J RI F\FORKH[HQH PPROf DQG J RI EHQ]R\O SHUR[LGH PPROf ZDV DOORZHG WR UHDFW DW r& IRU K WR \LHOG b RI D PL[WXUH FRQVLVWLQJ RI b WUDQVGLIOXRURn LRGRPHWK\O f LRGRF\FORKH[DQH b FLVGLIOXRURn LRGRPHWK\Of LRGRF\FORKH[DQH B b XQUHDFWHG &),n DQG b RI DQ XQLGHQWLILHG SURGXFW FMf PLGSRLQW $% +]

PAGE 94

$FI}f§ SSPf 7KH PDMRU GLDVWHUHRPHULF SURGXFWV ZHUH LVRODWHG E\ SUHSDUDWLYH */& 7KH FROXPQ ZDV b 29 RQ &KURPDVRUE :+3 n [ DW r& 6RPH VOLJKW GHFRPSRVLWLRQ ZDV QRWHG XQGHU WKHVH *& FRQGLWLRQV 7KH UHWHQWLRQ WLPHV ZHUH WUDQV PLQ DQG FLV PLQ B ) 105UFMf G +]f + 105 GGG +] +] +] + +&,f P +f & 105 W +] &),f W +] &f Vf Vf GG +] +]f Vf Vf ) 105 -f PLGSRLQW $% +] $FI! f $% + 105 GRZQILHOG ) G +]f +U XSILHOG ) G -f +]f +U EU V + +&,f 6 P +f & 105 GG +] +] &),f W +] &sf Vf GG +] +] &Jf

PAGE 95

Vf W +] & f Vf $GGLWLRQ RI &), WR 'LPHWK\OEXWHQH B 5HIOX[LQJ J RI &), r PPROf J RI B PPROf DQG J RI EHQ]R\O SHUR[LGH PPROf IRU K JDYH B DV WKH RQO\ )FRQWDLQLQJ SURGXFW 0RUH WKDQ KDOI RI WKH &), ZDV UHFRYHUHG XQFKDQJHG 7KH \LHOG ZDV b EDVHG RQ FRQYHUWHG &), DQG ) LQWHJUDWLRQ =LQF 5HGXFWLRQV RI 'LIOXRUR GLLRGRKHSWDQH ,QWR D P/ IODVN ZHUH SODFHG J RI B PPROf P/ RI 7+) IUHVKO\ GLVWLOOHG IURP /L$O+A DQG VWRUUHG RYHU &D+ XQWLO XVHf J RI =Q GXVW PPRO DFLG ZDVKHGf DQG D VPDOO FU\VWDO RI =Q&A 7KH PDJQHWLFDOO\ VWLUUHG PL[WXUH ZDV UHIOX[HG IRU K $OO YRODWLOH PDWHULDO ZDV WKHQ YDFXXP WUDQVIHUUHG DQG DQDO\]HG E\ ) 105 7KH UHODWLYH \LHOGV RI )FRQWDLQLQJ SURGXFWV ZHUH b b DQG b RI RWKHU PRVWO\ XQLGHQWLILHG SURGXFWV :KHQ D VLPLODU UHDFWLRQ ZDV FDUULHG RXW LQ HWKDQRO WKH UHODWLYH \LHOGV ZHUH DQG b UHVSHFWLYHO\ 7KH ) 105 VSHFWUXP RI B ZDV LGHQWLFDO WR WKDW UHSRUWHG DERYH IRU SUHSDUHG IURP SKRWRO\VLV RI &), ZLWK KH[HQH ) 105r GW +] +]f

PAGE 96

&+$37(5 *(1(5$/ &21&/86,216 7KH WKHUPDO UHDUUDQJHPHQW RI GLIOXRURVSLURSHQWDQH WR GLIOXRURPHWK\OHQHF\FOREXWDQH ZDV VKRZQ WR SURFHHG YLD WZR FRPSHWLQJ PHFKDQLVPV ,QLWLDO ERQG FOHDYDJH LV WKUHH WLPHV IDVWHU WKDQ LQLWLDO &A& ERQG FOHDYDJH 7KH NLQHWLFV IRU WKH WKHUPDO LVRPHUL]DWLRQ RI FLVFLVOIOXRURPHWK\OYLQ\OF\FORSURSDQH LQGLFDWH WKDW D FLVPRQRIOXRUR VXEVWLWXHQW LQ WKH SRVLWLRQ ORZHUV WKH DFWLYDWLRQ HQHUJ\ IRU WKH KRPRGLHQ\O K\GURJHQ VKLIW E\ NFDOPRO UHODWLYH WR WKH K\GURFDUERQ 7KLV YDOXH LV OHVV WKDQ KDOI RI WKH (A ORZHULQJ REVHUYHG IRU WKH UHDUUDQJHPHQW RI WKH JHPGLIOXRUR VSHFLHV 'LIOXRURGLLRGRPHWKDQH LV QRZ DYDLODEOH LQ SUDFWLFDO TXDQWLWLHV WKURXJK WKH WUHDWPHQW RI &,A ZLWK +J" 7KLV YHUVDWLOH UHDJHQW KDV EHHQ XVHG LQ SKRWRFKHPLFDO DQG 6LPPRQV 6PLWK F\FORSURSDQDWLRQV DQG XQGHUJRHV IDFLOH IUHHUDGLFDO DGGLWLRQV WR DONHQHV

PAGE 97

$33(1',; $ .,1(7,& '$7$ 7DEOH $O UDLQ .LQHWLF 'DWD IRU b BB 7KHUPRO\VLV RI b B DW r b VWG

PAGE 98

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI BB DW r & PLQ b BBb b b VWG

PAGE 99

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI DW r& PLQ b + b 3; b 3 b 3 b 3 b VWG

PAGE 100

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI -B DW ,R & PLQ b BB b 3; b 3 b 3 b 3 b VWG B

PAGE 101

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI DW r& PLQ b Lf§, R?R b 3 b 3 b 3 b VWG

PAGE 102

7DEOH $ .LQHWLF 'DWD b B b 3[ IRU 7KHUPRO\VLV RI b 3 b 3 DW b 3 r & b VWG B

PAGE 103

n7DEOH $ .LQHWLF 'DWD PLQ b b 3MB IRU 7KHUPRO\VLV RI b S b 3 DW b 3 r& b VWG B

PAGE 104

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI BB DW r & PLQ b BB b 3; b 3 b 3 b 3 b VWG f§ B

PAGE 105

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI BB DW r&m PLQ b b b

PAGE 106

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI DW r& PLQ b BB b BB b Be b VWG

PAGE 107

7DEOH $OO .LQHWLF 'DWD IRU 7KHUPRO\VLV RI BB DW r& PLQ b B b BB b BB

PAGE 108

7DEOH $ .LQHWLF 'DWD IRU 7KHUPRO\VLV RI DW r& PLQ b b BB b BB

PAGE 109

$33(1',; % 6(/(&7(' 63(&75$

PAGE 110

WUDQVPLVVLRQ )LJXUH %O ,5 6SHFWUXP RI

PAGE 111

75$160,66,21 ^9 )LJXUH % ,5 6SHFWUXP RI

PAGE 112

)LJXUH % DQG ) 105 6SHFWUXP RI DQ A 0L[WXUH RI

PAGE 113

-81 & 52&&$ ',)/825263,523(17 $1(6 00 ,1 &'&/ (/+(,0(5 & WRFD 0IO82$26+IW23(+,$1(6 )LJXUH % 1RWH 6HH A& 105 6SHFWUXP RI DQ D DOVR H[SDQVLRQ )LJXUH %f 0L[WXUH RI DQG

PAGE 114

)LJXUH % ([SDQVLRQV RI & 105 6SHFWUXP RI DQ A 0L[WXUH RI DQG

PAGE 115

)LJXUH % ,5 6SHFWUXP RI

PAGE 116

),, -,. 3,3&$;&%&/&)&/ +06(/6+(,+(5 21(38/6( 6(48(1&( 3 8 86(& 6(& 1$ 6,=( $7 06(& 43' 21 $%& 21 %877(58*57+ ),/7(5 21 %% $77 $%& %,76 $, 68 r %4 5* 86(& %( 86(& 7/ +,*+ 328(5 21 ) %% +2'8/$7,21 2)) 2) /, +( , 6) (+ 3$ 3% +(,*+7 % )5(4+=f 33+ f n n n n n ‘ / Wf§Lf§Lf§Lf§Lf§U aL L L L L L L L L > L L L L L L L L L A L L L L L L L L L Lf§L Lf§_f§Lf§Lf§Qa_f§Lf§Lf§U )LJXUH % f 330 ) 105 6SHFWUXP RI

PAGE 117

/,1( + -,0 -8/ n‘ 3L' &$\&&&/n706  600 (/6K(  0(3! r 9 0O 0 +(,*+7 +OO } }* r ,I } } } } } 3'1 )5(2,+=f r} r }  } R }, r 35+ D } } } ;

PAGE 118

X cnLU} += UU]0U)+ nMR += + I > + Wf+ )rI=L L]UL]" Q O860 L LPm c 7f" 7 I Q]LX :=, -  LLQ 0OO +L X + SP LcP LL6WH & LLL U LF OOO "f " ,FLO OLO LL 60 f m m )LJXUH % A& 105 6SHFWUXP RI ); 63(&7580 :2 &n f Y 7M S\I *2nr N Oe 0f O ? ’ IM Q ,+-Urr /O,O

PAGE 119

5,0$5 .6 $%6&,66$ 25',1$7( >n ‘ UL M 99,/,$' */$I6 &2 ,1& > &+$57 12 9*3( O76O U Y M 6&$1 7,0( n A (;3$16,21 n f, W n 6,1*/( %($0 $%6 23(5$725 r"f nOL LB2$7e ]On6? Un O 2,*,1 >> ^ 5()(5(1&( /2: /,0,7 7,0( '5,9( 6WLU 352*5$0 BB// 35( $03/( &+233(5 5() 1R 66 )LJXUH % ,5 6SHFWUXP RI ,OO

PAGE 120

)(% ) 52&&$ )b ,1 72/8(1( &)&/ 81/2&.(' (/6+(,0(5 Q M U )LJXUH %OO ) 105 6SHFWUXP RI /,1(2 +(,*+7 )5(4+=f ))UL % % 330

PAGE 121

); IRWf 6On/&7+80 12 f9 OnLnO L &2&L" L f L LI rn‘r} 7LYn6 OF r r 6f U L ‘ L n L ,& F! 2 / r ,1

PAGE 122

/,1(1 +(,*+7 )5(4+=f 33UO ,W =,& 52&&$ 65(=&&/++ /.n (/6+(+(5 21(38/6( 6(48(1&( 3 86(& 6(& 1$ 6,=(  $7 6(& 432 21 $5& 21 )877(5825+ ),/7(5 21 2) $77 $)& %,76 $, 68 r " +8 OLIL 86(& %( 86(& ,/ +,*+ 328(5 21 ) 2) +20/$7,2+ 21 4) 6) f *+ 3$ 3 !1$ !77 +56 }1APLL9IL}ILIZ *2 > 330 )LJXUH % & 105 6SHFWUXP RI

PAGE 123

)LJXUH % ,5 6SHFWUXP RI

PAGE 124

) 52&&$ 3 20*20/ &'&/ &)&/ 00 (/6+( 0(5 0$< )LJXUH % 105 6SHFWUXP RI ) 52&&$ 30*1/ &'&/ &)&/ +1 ,) / 6+( +( 5 21()8/6( 6(48(1&( 3 86(& 6(& 1IW 6,=( $7 16(& *38 21 $5& 21 %877(58257+ ),/7(5 21 +5 $77 $%& %,76 $, 68 +8 5* 86(& +( 86(& 7/ +,*+ 328(5 21 4) 6) (0 3$ 35 /,1( +(,*+7 )5(4+=f 330 330

PAGE 126

$35 & 52&&$ 30*0/ &'&/ 00)'4 8 (/6+(,0(5 &  52&&$ 3$+*./ &'&/ 00) 3 8 (/6+(,0(5 3(7 & 08/7n6 3+$6( $/7 3 86(& 3 86(& 3r 6(& 3, 9$/8(6 IO 06(& % 86(& 1$ r 6,=( r $7 r 6(& 233 2+ $%& 2+ %8,,(5825,+ ),/7(5 2UO 3% $77r $%& r %,76 $, 68 A %8 r  5* 86(& '( 86(& 7/ +,*+ 328(IW 2+ ) %% 0238/$ 7, 2+ 2+ 2)r 6) *1r 3$r 3%r % !77 +56 )LJXUH % & 105 6SHFWUXP RI

PAGE 127

)LJXUH % ,5 6SHFWUXP RI

PAGE 128

, L L L L L L L L L U Lf§Lf§_f§ ‘ )LJXUH % ) 105 6SHFWUXP RI 0$< ) 52&&IO 3+*8/ &'&/ 7+6&)&/ 0+ (/6+(, +(5 21(38/6( 6(48(1&( 3 86(& 6(& 1$ 6,=(  $7 6(& 43,O 21 $%& 21 %877(58257+ ),/7(5 21 %% $77 $%& %,76 $, 6: '8 5* 86(& '( 86(& 7/ +,*+ 328(5 21 2) 6) 3$ 3% !%1 /,1(1 +(,*+7 )5(4+=f 330 330

PAGE 129

/,1(+ +(,*+7 )5(4+= 33+ L + 52&&$ 3+*8/ &'&/ 706&)&/ ++ (/6+(,+(5 21(38/6( 6(48(1&( 3 86(& 86(& +' 6,=( $7 6(& 438 21 $%& 21 877(58257+ ),/7(5 21 %% $77 $%& %,76 $, 68 A '8 5* 86(& %( 86(& 7/ +,*+ 348(5 21 2) 6) *+ 3$ 3% 330 105 6SHFWUXP RI )LJXUH %

PAGE 130

, )LJXUH % 7 $ F3/FUPL012 M_/N L2n8 UL f O U Q f f n n KD L ?Ur r L‘B ,) L ’ fmf ’ 9 P L 9 f B & 105 6SHFWUXP RI

PAGE 131

,1 &'&/ 1$ 6,=( $7 16(& 43' 21 $%& 21 %877(58257+ ),/7(5 21 %% $77 $%& %,76 $, 68 r  +8 r 5* 86(& 3( 86(& 7/ +,*+ 328(5 2+ ) 6) 3$ 3% !33 /,1(} +(,*+7/f )5(4+=f 330 n M/ )LJXUH % FT L ‘ L ) 105 6SHFWUXP RI ‘n

PAGE 132

+ 54&&$ 65($+*8/ &'&/ WW6 ++ (/6+(+(5 21(38/6( 6(48(1&( 3 86(& 6(& 1$ 6,=( $7 6(& 43' 21 $%& 21 %77(58'57+ ILOWHU RQ /% $77 $'& %,76 $, VX QX 5* 86(& OH 86(& 7/ +,*+ 3'8(5 21 2) 6) *+ 3$ 3% ƒ 2f 0 7a fL U L aWa L L L U a_ U L L L U L U )LJXUH % + 105 6SHFWUXP RI eB 1RWH 6HH DOVR H[SDQVLRQV )LJXUH %f

PAGE 133

)5(2,+=f } 331 " )5(4  +=f " 33r

PAGE 134

65($,0*%8/ &%&/ 716 11 (/6+(,1(5 &$5%21 08/7,3/,&,7< 3 86(& 3 86(& 6(& +, 9$/8(6 } } 16(& 86(& 1$ 6,=( $7 6(& 43' 21 $%& 21 %877(58257+ ),/7(5 21 3% $77 $'& %,76 $, 68 A '8 5 86(& '( 86W& 7/ +,*+ 32:(5 21 ) % 02'8/$7,21 21 ) 6) *+ U 3$ 3% )LJXUH % F /,1( +(,*+7 )5(4 +=f 3)+ • %, % ,% U R 330 & 105 6SHFWUXP RI

PAGE 135

\ ‘b! + 52//$ 65(%+*8/ &'&/ A,06 ++ (/6+(,+(5 21(38/6( 6(48(1&( 3 On 86(& 6(& 1$ 6,=( $7 6(& 43% 21 $%& 21 %877(58257+ ),/7(5 21 ,n% $77 $'& %,76 $, 68 A '8 5* 86(& KH 86(& / +,*+ 328(5 21 ) 6) *+ 3$ 3% L L L L UAa_ L L U + )L f_ f, 7 330 )LJXUH % + 105 6SHFWUXP RI B 1RWH 6HH DOVR H[SDQVLRQV )LJXUH %

PAGE 136

+ 52&&$ -81 65(%0*8/ &'&/ }‘ 706 00 (/6+(,0(5

PAGE 137

/,1(} +(,*+7 (5(4+=f 330 ,, + % f L L U f, U 65(%,1*8/ &'&/ 7+6 +, (/6+(,0(5 &$5%21 08/7,3/,&,7< IO 86(& 3 86(& % 6(& ', 9$/8(6 r } 06(& 86(& 1$ 6,=( $7 6(& 25% 21 $%& 21 %877(58257+ ),/7(5 21 %% $77 $%& %,76 $, 68 %8 5* 86(& %( 86(& 7/ +,*+ 328(5 21 ) %% 02'8/$7,21 21 ) 6) *+ 3$ 3% __:} f, n U Uf§U R 330 )LJXUH % 105 6SHFWUXP RI

PAGE 138

33 /,1(6 +(,*+7/f )5(4+=f 33LL 21(38/6( 6(48(1&( 3r1 86(& 6(& f§ 6,=( m $7 432 &1 $%& 1 O nL 06(& EX L SZLMS P U Q IHU RQ $ O 7 $& X A %,76 $, m VX '8 5* 86(' '( 86(& 7/ +,*+ ) 32:(5 21  %6 02'8/$7,21 21 ) 6) *0 3$ 3% 6&$/( +=&0 330&0 330 9 U U )LJXUH % Q ‘ ) 105 6SHFWUXP RI

PAGE 139

67$57 2) 6:((3 !+! (1' 2) 6:((3 L&[7 63(&7580 $03 _-/, 69))3 7,0( PLQ 6$03/( U 5(0$5.6 SIn/5$O 25 6 )OO7)5 VHF 6:()3 :,'7+ ,2 SSP RU +] 62/9(17 &'WOM '$7( B (1' 2) 6:((3B B SSP RU +U 63(&7580 52 I )LJXUH % + 105 6SHFWUXP RI (0 0+] 105 63(&7520(7(5

PAGE 140

); 63(&7580 12 S /$0,n/W I nf ‘‘L Wr V2/YUQU FRLM8 QLKDWLRK a WFU ,WL / +, UmBIO Y e /L ,(,3 ,8KO 8W&O ,,,} 8 // U L RRfL-L 0 IX OrL L O nf ’ !O I LL / GXR / O 67 L+& "frm } 6( & LUL&K[L V Lc cQQLnL V 0 LIOO 6L f,} $W &80 f f} &,)[$/ n,-70B£ ,nOO LL + LW WK cLW YGn7RL O+L ’ FY 0!W L? 7> /LL-/O/eL L! ‘ L 6 .I n9L FrON6OO0$' */$66 &2 ,I-& 8 +L ,n O2LNOO >,W ,W 1$ 1 QZ OLf 8 )LJXUH % & 105 6SHFWUXP RI

PAGE 141

)LJXUH % ,5 6SHFWUXP RI

PAGE 142

21(38/6( 6(48(1&( 3 ’ 86(& 6(& 1$ 6,=( ‘ $7 06(& 43' 21 $%& 21 %877(5:257+ ),/7(5 21 2% $77 $2& %,76 $, % 61 ': 5* 6 86(& '( 86(& 7/ +,*+ 32:(5 2)) ) %% 02'8/$7,21 2)) ) % 6) (0 3$ 3% +=&0 330&0 ,1(6 +(,*+7/f )5(4cKLf 330 ,  ,1(6 +(,*+7/f )5(4+=f 330 Q n" • )LJXUH % ) 105 6SHFWUXP RI

PAGE 143

 6c. ; fn 63(&7580 12 0 B 9 00 }O6 WHU ORX rU"+ rVUr OU ‘0O 6 MnnOV L LM &r n‘f mn-OL LM Xr ?! X?X IW O &38 f R n ,G 8 Q "W +L f n X fOLO r LQ P 0O LPP ff, "" 0O LL f fL r}  f 06 f f f0 n LO c7LO c c  c  f r 0O f6 L f f fn   f6 Q I M U LL IM ‘ 0 Or ‘ 7+/22 fU L n LYnL D W/KH n

PAGE 144

)LJXUH % F 105 6SHFWUXP RI ); ,8! Ln [ LXMU QR 0 S ‘M 0L O M L &2M&KM U LnL U 08 9,,, &2&, &nL !UM L Q UUQ f £ O L_ ‘ LI 7W9O6 LU G; L ‘ IL L SLL Q ‘ ‘  L M /L U f "9 IW L A Q?I

PAGE 145

)LJXUH % + 105 6SHFWUXP RI I O I I W V V k B i 6 V ‘ n f§ f§ f§ f§ i f§ 6Ff§ J L f§ f§ r G f f L c L f§ L / n f n n ‘ ‘f§ L (0 0+] 105 63(&7520(7(5 ‘ r &O 6 c, L L " L  I#I

PAGE 146

)LJXUH % ) 105 6SHFWUXP RI 5HDFWLRQ 0L[WXUH &RQWDLQLQJ DQG

PAGE 147

)LJXUH % 105 6SHFWUXP RI

PAGE 148

X? A ‘,U ‘On += 8,. 0+=f "m +7; f  fX LL" 9 "V L AL IL V fe n U n n! J m  UI 8 LL QV  cD m 2" ILD m W f r  e  r n 3 n ‘9 )LJXUH % & 105 6SHFWUXP RI (; ‘f 63(&7580 12 6$W+ ( ‘fQL YL UO XfX XLK LQUL I/ O 0 L, f f n ,, r7 U , f ,f ’ LnU ‘ f L X r r LLL c  B" / @ Y ` n r 99,/0$2 */$66 &2 ,*& 86 5"LfDUL2L!) c EXHQD Q M RH Q f ‘! rf

PAGE 149

); 63(&7580 12  IO" 6$03/( M f fff f L f }Yr Q ‘ r 9W &I,I r f,I3$7+ ,nO , +, _L X f7 W L ’ F ’ OL$7W r +$} ‘f` 0n-WL f ZQ PDLf UL DV FR LUL 8 L ,G L_ 1$ UM L_L WLL!

PAGE 150

K$ W 63W&7580 12 7LO7/ fff‘n Q D"W K] nmISK += ‘ rn P W ‘ (6=f Vr r • f @ c nO f cL OO c ,, r 9 O ," "0 , SSm n f r n c L"" c !L c r fr! = r mr L !f ‘ f 8 f f O n9, F Q

PAGE 151

) P -LQ +3 $&$&%8r&)8PWV(/60(LmL5 21(38/6( 6(48(1&( )n 86(& , 6(& +$ 6,=( $7 6(& 43' 21 $%& 21 %877(582575 ),/7(5 '1 $77 $%& %,76 $, $ 62 r '8 5* 86(& ,( 86(& 7/ +,*+ )28(5 21 ) %% +2%8/$7,21 2)) 2) %$ $ 6) (+ $ )n$ )f% 7 ‘3L-nM U\U )LJXUH % A) 105 6SHFWUXP RI D 0L[WXUH RI B DQG H[SDQVLRQV )LJXUH %f 330 1RWH 6HH DOVR

PAGE 152

)IF2} ,+7 (*F$/ } )520 ,17(*5$/ I2 ,,,,*+7 )5('+=f 3IIW P K n" L" " n "" K )LJXUH % DQG ‘ ‘ L ‘ U‘ n ‘ L ‘ n ‘ L ‘ ‘ 330 W L ([SDQVLRQV RI WKH ) 105 6SHFWUXP RI D 0L[WXUH RI

PAGE 153

5()(5(1&(6 % ( 6PDUW 7KH &KHPLVWU\ RI )XQFWLRQDO *URXSV 6XSSOHPHQW 6 3DWDL = 5DSSDSRUW (GV -RKQ :LOH\ t 6RQV /WG&KLFKHVWHU 3DUW &K )OXRURFDUERQV % ( 6PDUW 0ROHFXODU 6WUXFWXUHV DQG (QHUJHWLFV -) /LHEPDQ $ *UHHQEHUJ (GV 9HUODJ &KHPLH ,QWHUQDWLRQDO ,QF 'HHUILHOG %HDFK LQ SUHVV &K )OXRULQDWHG 2UJDQLF 0ROHFXOHV + $ %HQW &KHP 5HY AA e 0 +DUPRQ\ 9 : /DXULH 5 / .XF]NRZVNL 5 + 6FKZHQGHPDQ $ 5DPVD\ ) /RYDV : /DIIHUW\ $ 0DNL 3K\V &KHP 5HI 'DWD $ 2ODK DQG < 0R $GY LQ )OXRULQH &KHP Znnn / 3DXOLQJ 1DWXUH RI WKH &KHPLFDO %RQG UG HG &RUQHOO 8QLY 3UHVV ,WKDFD 1< AA ) 0F0LOOHQ 0 *ROGHQ $QQ 5HY 3K\V &KHP 0 3LFNDUG $ 6 5RGJHUV ,QW &KHPLFDO .LQHWLFV 0n f : (JJHU $ 7 &RFNV +HOY &KLP $FWD AA 1 & %DLUG &DQ &KHP B / 5DGRP : +HKUH $ 3RSOH $P &KHP 6RF Lr f + )RUVWHU ) 9RJWOH $QJHZ &KHP ,QW (G (QJ f9E2MK n

PAGE 154

3 %DUWOHWW 5 & :KHODQG $P &KHP 6RF : 5 'ROELHU -U 6 0HGLQJHU $ *UHHQEHUJ ) /LHEPDQ 7HWUDKHGURQ 'LOO $ *UHHQEHUJ ) /LHEPDQ $P &KHP 6RF +LQH 6WUXFWXUDO (IIHFWV RQ (TXLOLEULD LQ 2UJDQLF &KHPLVWU\ -RKQ :LOH\ t 6RQV 1HZ
PAGE 155

+ *QWKHU 7HW /HWW :DOVK 7UDQV )DUDGD\ 6RF A e 7 &ODUN : 6SLW]QDJHO 5 .ORVF 3Y5 6FKOH\HU $P &KHP 6RF eA *DMHZVNL $P &KHP 6RF ee f BB & *LOEHUW 7HWUDKHGURQ e :Y( 'RHULQD & *LOEHUW 7HWUDKHGURQ 6XSSO 0 & )ORZHUV + : 5 'ROELHU -U 6 5 (OVKHLPHU 6H\IHUWK 6 3 : 5 'ROELHU -U :=n % /DPEHUW / < .DQD]DZD 6SHFWURVF eeie 5 -DPHV + &KHP 6RF : 5 'ROELHU -U 08n =sn f 5 (OOLV + 0 6 *ODVV 5 6 f 0 )UH\ &KHP 6RF eeee 6 ) 6HOOHUV % + $O6DGHU $P &KHP 6RF +RSSHU 2UT &KHP + $ORQVR $P &KHP 6RF *UHLIHQVWHLQ $P &KHP 6RF %DOGHVZHLOHU 1 & &UDLJ 0RO %LUQEHUJ / $ 3DTXHWWH $P & 5 %XUNKROGHU 7HW /HWW )UH\ &KHP 6RF A %RLNHVV 6 :LQVWHLQ 7HW /HWW + 0 )UH\ 5 1LVKLPXUD 6ROO\ ,QW &KHP .LQHWLFV )XUXNDZD -&6 &KHP &RPP $ *UHHQEHUJ ) /LHEPDQ : 5 'ROELHU -U 6 0HGLQJHU $ 6NDQFNH 7HWUDKHGURQ e B

PAGE 156

: *ULPPH L : )HDVW e +LH 5 6RF 0F$OSLQH UEn?!UEUE U?Mn?Mn?MQM +LH 5 %XWWHUZRUWK 3 % /DQJIRUG $P &KHP 0F$OSLQH + 6XWFOLIIH 6SHFWURFKLP $FWD $ : 0DKOHU ,QRUJ &KHP 5 $ 0LWVFK +HWHURF\FOLF &KHP + 6 .HOVLQJ %XUWRQ 7HW /HWW $ :KHDWRQ %XUWRQ 2UJ &KHP 5 ( 0F$UWKXU + 6LPRQV ,QRUJDQLF 6\QWKHVLV / ) $XGULHWK (G 0F*UDZ+LOO 1HZ
PAGE 157

' & ) %XUWRQ /DQH / +DKQIHOG )OXRU &KHP 5HY : .UDPHU $OGULFKLPLFD $FWD n & 5 $ + ZLQQ 1ROHU %ODWW S : &DUSHQWHU $ :KHDWRQ 5 1 .HOOHU : & 6WLOO 2UJDQLF 6\QWKHVHV &ROOHFWLYH 9ROXPH ,, (G -RKQ :LOH\ t 6RQV ,QF 1HZ
PAGE 158

%,2*5$3+,&$/ 6.(7&+ 6HWK (OVKHLPHU VSHQW PRVW RI KLV HDUO\ \HDUV LQ )ORULGDnV +ROO\ZRRG)RUW /DXGHUGDOH DUHD +H DWWHQGHG %URZDUG &RPPXQLW\ &ROOHJH RQ D 0DWK DQG 6FLHQFH 'LYLVLRQDO +RQRUV VFKRODUVKLS DQG JUDGXDWHG ZLWK KLJKHVW KRQRUV IURP WKHUH LQ ZLWK DQ $$ GHJUHH ,Q KH UHFHLYHG KLV %6 GHJUHH LQ FKHPLVWU\ IURP )ORULGD $WODQWLF 8QLYHUVLW\ ,Q WKH IDOO RI WKH VDPH \HDU KH EHJDQ JUDGXDWH VWXGLHV DW WKH 8QLYHUVLW\ RI )ORULGD 6HWKnV DFDGHPLF KRQRUV LQFOXGH PHPEHUVKLS LQ 3KL 7KHWD .DSSD DQG 3KL .DSSD 3KL DQG KH KDV WZLFH UHFHLYHG WKH DZDUG IRU EHVW VWXGHQW SUHVHQWDWLRQ LQ 2UJDQLF%LRRUJDQLF3RO\PHU &KHPLVWU\ 'LYLVLRQ DW WKH )ORULGD PHHWLQJ RI WKH $PHULFDQ &KHPLFDO 6RFLHW\ DQG f 6HWK KDV EHHQ D ORQJ WLPH ORYHU RI WKHDWUH DQG DIWHU \HDUV RI EHLQJ D FORVHW 7KHVSLDQf KH PDGH KLV VWDJH GHEXW LQ :LWKLQ D \HDU KH DSSHDUHG LQ VHYHUDO *DLQHVYLOOH WKHDWUHV ZLWK UROHV LQ )LGGOHU RQ WKH 5RRI $ )XQQ\ 7KLQJ +DSSHQHG RQ WKH :D\ WR WKH )RUXP 7KH 8QVLQNDEOH 0ROO\ %URZQ $ &KULVWPDV &DURO /LnO $EQHU DQG $EVXUG 3HUVRQ 6LQJXODU $W WKH WLPH RI JUDGXDWLRQ IURP WKH 8QLYHUVLW\ RI )ORULGD 6HWK KDG DFFHSWHG D SRVWGRFWRUDO UHVHDUFK SRVLWLRQ DW WKH 8QLYHUVLW\ RI &DOLIRUQLD 6DQ 'LHJR

PAGE 159

*DLQHVYLOOH 6XQ 6HSWHPEHU .HYLQ .ROF]\QVNL6XQ VWDII SKRWRJUDSKHU *DV XQGHU JODVV 6HWK (LVKHLPHU FKHFNV D VWLUULQJ DSSDUDWXV PDGH RI JODVV LQ KLV 8) ODERUDWRU\ (LVKHLPHU D FKHPLVW\ JUDGXDWH VWXGHQW ZDV PHDVXULQJ WKH VSHHG RI D FKHPLFDO UHDFWLRQ RI JDV

PAGE 160

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ f :LOOLDP 5 'ROELHU -U &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ? ? :LOOL 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0HUOH $ %DWWLVWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0RQNKRUVW RU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -SKQ? 'RU V H\ $AVM/HWDQW 3URIHVVRU R &KHPLVWU\

PAGE 161

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ IRU *UDGXDWH 6WXGLHV DQG 5HVHDUFK