Citation
Patient doses and image quality in interventional neuroradiology

Material Information

Title:
Patient doses and image quality in interventional neuroradiology
Creator:
Gkanatsios, Nikolaos A.
Publication Date:

Subjects

Subjects / Keywords:
Dosage ( jstor )
Dosimetry ( jstor )
Electric potential ( jstor )
Fluoroscopy ( jstor )
Image intensifiers ( jstor )
Imaging ( jstor )
Iodine ( jstor )
Magnification ( jstor )
Pediatrics ( jstor )
Radiology ( jstor )

Record Information

Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
30019192 ( ALEPH )
40878833 ( OCLC )

Downloads

This item has the following downloads:


Full Text











PATIENT DOSES AND IMAGE QUALITY
IN INTERVENTIONAL NEURORADIOLOGY













By


NIKOLAOS A. GKANATSIOS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1998















ACKNOWLEGEMENTS


I would like to gratefully acknowledge the following who have helped me

throughout my graduate work:


Dr. Walter Huda, my advisor, for his invaluable guidance, time and patience
throughout the course of this research and the preparation of this dissertation.
I am very grateful for his continuous advice and suggestions throughout my
graduate work.

My Ph.D. committee members, Prof. James S. Tulenko, Dr. Wesley E. Bolch,
Dr. Janice C. Honeyman, Dr Keith R. Peters and Dr. Irvine F. Hawkins, for
reviewing my progress and guiding me through my Ph.D. research.

Ms. Lynn Rill, for her valuable time evaluating all the radiographic images
and for her review and comments on the manuscript.

Mr. Dennis Pinner from Toshiba America Medical Systems, for his valuable
insights into understanding the imaging equipment and for providing me with
the requested information and documentation on the imaging system.

The Department of Radiology, for giving me the graduate assistantship to
pursue my graduate studies, and for all the resources they made available for
me throughout my graduate research.

My beloved parents, Anastasia and Argyrios Gkanatsios, for their love,
encouragement, and support throughout all my endeavors. They are the ones
who made this possible for me.















TABLE OF CONTENTS



ACKN OW LEGEM ENTS................................................................................................... ii

LIST OF TABLES............................................................................................................. vi

LIST OF FIGURES ......................................................................................................... viii

ABSTRA CT....................................................................................................................... xi

CHAPTERS

1 INTRODUCTION ....................................................................................................... 1

Interventional Neuroradiology..................................................................................... 1
Patient Dosim etry........................................................................................................ 2
Dose M monitoring System s............................................................................................ 4
Im age Quality .............................................................................................................. 5
Purpose of This W ork.................................................................................................. 6

2 LITERATURE REVIEW ............................................................................................ 8

Introduction.................................................................................................................. 8
Interventional Neuroradiologic Procedures.......................................................... 8
Determ inistic Radiation Effects............................................................................ 9
Stochastic Radiation Effects............................................................................... 12
Dosim etry .................................................................................................................. 13
Surface Dose....................................................................................................... 13
Energy Im parted ................................................................................................. 15
Effective Dose .................................................................................................... 18
Im age Quality ............................................................................................................ 21
Im age Contrast.................................................................................................... 21
Im age Noise........................................................................................................ 23
Spatial Resolution............................................................................................... 26
Im aging Technique Factors ....................................................................................... 27
Tube Potential..................................................................................................... 28
Input Exposure to the Im age Receptor............................................................... 29
M agnification ..................................................................................................... 30

3 SURFACE DOSES.................................................................................................... 32









N euroradiologic Im aging........................................................................................... 32
Clinical Practice.................................................................................................. 32
Im aging Equipm ent ............................................................................................ 33
Operation............................................................................................................ 35
Im aging Techniques ........................................................................................... 36
The Patient D osim etry System .................................................................................. 38
System Description............................................................................................. 38
Calibration.......................................................................................................... 40
Evaluation........................................................................................................... 42
Data Acquisition................................................................................................. 45
Fluoroscopy ............................................................................................................... 47
X-Ray Beam Localization.................................................................................. 47
Surface Doses ..................................................................................................... 48
Surface Dose Rates............................................................................................. 49
Fluoroscopic Tim es and Intervals....................................................................... 51
Radiography............................................................................................................... 53
X-Ray Beam Localization.................................................................................. 53
Surface Doses ..................................................................................................... 54
Surface Dose Rates............................................................................................. 54
Radiographic Fram es.......................................................................................... 56
Conclusions................................................................................................................ 57

4 ENERGY IMPARTED AND EFFECTIVE DOSE IN NEURORADIOLOGY....... 60

Introduction................................................................................................................ 60
M ethod....................................................................................................................... 62
Energy Im parted................................................................................................. 62
Adult Effective Doses......................................................................................... 66
Pediatric Effective Dose..................................................................................... 69
Adult Patient Doses ................................................................................................... 71
Energy Im parted................................................................................................. 71
Effective Doses................................................................................................... 74
Pediatric Patient Doses.............................................................................................. 75
Energy Im parted................................................................................................. 76
Effective Doses................................................................................................... 79
Discussion.................................................................................................................. 80
Conclusions................................................................................................................ 83

5 IM AGE QUALITY .................................................................................................... 86

Im age Acquisition...................................................................................................... 86
Phantom Description.......................................................................................... 86
Acquisition of Digitally Subtracted Im ages....................................................... 88
Dosim etry and Im age Quality.................................................................................... 94
Dosim etry ........................................................................................................... 94
Im age Quality Evaluation................................................................................... 95
Precision of M easurem ents................................................................................. 96









Results........................................................................................................................ 97
Tube Voltage ...................................................................................................... 97
Image Intensifier Input Exposure..................................................................... 100
Geometric Object M agnification...................................................................... 102
Discussion................................................................................................................ 107
Patient Surface Dose......................................................................................... 107
Energy Imparted............................................................................................... 110
Image Quality................................................................................................... 113
Conclusions.............................................................................................................. 114

6 CONCLUSIONS ..................................................................................................... 116

Patient Dosim etry .................................................................................................... 116
Surface Doses ................................................................................. ................. 116
Effective Doses................................................................................................. 117
Im age Quality .......................................................................................................... 119
Future W ork............................................................................................................. 120

BIBLIOGRAPHY ........................................................................................................... 122

BIOGRAPHICAL SCHETCH........................................................................................ 131





























V















LIST OF TABLES


Table age

2-1. Deterministic Effects of the Skin after Single-Fraction Irradiation....................... 11

3-1. List of the Input Signals Interfaced to the PEMNET Dosimetry System from
the Toshiba Neurobiplane Imaging Unit................................................................ 40

3-2. Experimental Arrangements for Evaluating the Patient Dosimetry System..........44

3-3. Summary of the Ratios of the Measured to Calculated Surface Doses, Xh/Xc,
Obtained During Testing of the Accuracy of the Patient Exposure System..........45

4-1. Computed a and fi Coefficients and Half-Value Layers for X-Ray Beams as
a Function of Tube Voltage ................................................................................... 64

4-2. Backscatter Fractions of Radiation Exposure at Different Tube Voltages............ 65

4-3. Patient Thickness and Area of Exposure Corresponding to the Head Region
of Different Age Groups........................................................................................ 66

4-4. Patient Thickness and Area of Exposure Corresponding to the Trunk Region
of Different Age Groups........................................................................................ 67
4-5. Values of Effective Dose per Unit Energy Imparted, E/l in mJ/Sv, for
Different Body Projections as a Function of Tube Voltage................................... 70

4-6. Standard Patient Mass for Different Age Groups .................................................. 70

5-1. Iodine Contrast Concentration in Each Vessel of the Vessel Insert ...................... 89

5-2. Imaging Techniques During Tube Voltage Experiments ...................................... 92

5-3. Imaging Techniques During Geometric Object Magnification Experiments ........93

5-4. Score Describing the Visibility of Each Iodine Contrast Concentration ...............95

5-5. Tube Voltage Dependency at 120 p.R/frame ......................................................... 98

5-6. Tube Voltage Dependency at 440 .R/frame ......................................................... 98

vi









5-7. Image Intensifier Input Exposure Dependency.................................................... 102

5-8. Geometric Object Magnification Dependency at 120 pR/frame ......................... 104

5-9. Geometric Object Magnification Dependency at 440 p.R/frame ......................... 104

5-10. Comparison of the Effects of Tube Voltage, Input Exposure and Geometric
Magnification on the Surface Dose for a Range of Changes in Threshold
Iodine Concentration at 120 ptR/frame ................................................................ 108

5-11. Comparison of the Effects of Tube Voltage, Input Exposure and Geometric
Magnification on the Surface Dose for a Range of Changes in Threshold
Iodine Concentration at 440 gR/frame ................................................................ 108

5-12. Comparison of the Effects of Tube Voltage, Input Exposure and Geometric
Magnification on the Energy Imparted for a Range of Changes in Threshold
Iodine Concentration at Low Input Exposures .................................................... 111

5-13. Comparison of the Effects of Tube Voltage, Input Exposure and Geometric
Magnification on the Energy Imparted for a Range of Changes in Threshold
Iodine Concentration at High Input Exposures.................................................... 111















LIST OF FIGURES


Figure page

1-1. Unsubtracted image (left) where anatomical details are mixed with diagnostic
information. Digitally subtracted angiogram (right) where anatomical
information has been subtracted to allow easier visualization ofvasculature.........2

2-1. Key parameters that affect patient dose and image quality in x-ray imaging........28

3-1. Histogram of surface dose contribution at different x-ray tube voltages from
frontal plane (black bars) and lateral plane (gray bars) fluoroscopy for an
average interventional neuroradiologic procedure................................................. 37

3-2. Histogram of surface dose contribution at different x-ray tube voltages from
frontal plane (black bars) and lateral plane (gray bars) radiography for an
average interventional neuroradiologic procedure................................................. 38

3-3. Calibration setup of the frontal plane (left) and lateral plane (right) using an
RSD RS-235 anthropomorphic head phantom ...................................................... 42

3-4. Sample page from the PEMNET database showing all recorded information
for the frontal im aging plane.................................................................................. 46

3-5. Histogram distribution of surface doses for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) fluoroscopy........................................... 49

3-6. Histogram distribution of surface dose rates for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) fluoroscopy........................................... 50

3-7. Histogram distribution of fluoroscopic times to 175 patients from frontal plane
(black bars) and later plane (gray bars) fluoroscopy.............................................. 52

3-8. Histogram distribution of fluoroscopic intervals for 175 patients from frontal
plane (black bars) and lateral plane (gray bars) fluoroscopy ................................. 53

3-9. Histogram distribution of surface doses for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) radiography........................................... 55
3-10. Histogram distribution of surface dose rates for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) radiography........................................... 56

viii









3-11. Histogram distribution of the number of radiographic frames for 175 patients
from frontal plane (black bars) and lateral plane (gray bars) radiography ............. 57

3-12. Histogram distribution of the total surface doses to 175 patients from frontal
plane (black bars) and later plane (gray bars) fluoroscopy and radiography
com bined................................................................................................................ 59

4-1. Values of wo as a function of water phantom thickness for tube voltages of 60
kVp, 80 kVp and 100 kVp ..................................................................................... 63

4-2. Effective dose as a function of patient mass for one joule of uniform whole
body irradiation...................................................................................................... 71

4-3. Histogram distribution of energy imparted to patients from use of fluoroscopy
during interventional neuroradiologic procedures ................................................. 72

4-4. Histogram distribution of energy imparted to patients from radiographic
acquisitions during interventional neuroradiologic procedures ............................. 73

4-5. Histogram distribution of the total energy imparted to patients undergoing
diagnostic angiographic and therapeutic embolization neuroradiologic
procedures .............................................................................................................. 75

4-6. Histogram distribution of the total effective dose to patients from biplane
neuroradiologic exam nations ................................................................................ 76

4-7. Energy imparted as a function of patient mass from fluoroscopy during
interventional neuroradiologic procedures on pediatric patients. Line shows
the linear fit between energy imparted and patient mass ....................................... 77

4-8. Energy imparted as a function of patient mass from radiographic acquisitions
during interventional neuroradiologic procedures on pediatric patients. Line
shows the linear fit between energy imparted and patient mass ............................ 78

4-9. Energy imparted as a function of patient mass from interventional
neuroradiologic procedures on pediatric patients. Line shows the linear fit
between energy imparted and patient mass............................................................ 79

4-10. Effective dose as a function of patient mass from interventional
neuroradiologic procedures on pediatric patients. Line shows the linear fit
between effective dose and patient mass ............................................................... 80

4-11. Comparison of E/ls values vs. patient age as determined by Equation (4.4) and
by using the dosimetry data from Hart et al. (1996a) ............................................ 84

5-1. Schematic diagram of the acrylic phantom with the vessel and blank inserts
used to simulate small vessels for the purpose of evaluating image quality in
neuroradiology ....................................................................................................... 87

ix









5-2. Experimental setup for DSA acquisitions.............................................................. 90

5-3. Position of the two ionization chambers relative to the vessel insert (left).
Subtracted im age (right) ........................................................................................ 90

5-4. Surface dose and energy imparted as a function of tube voltage........................... 99

5-5. Threshold iodine concentration as a function of tube voltage. The circles
correspond to the 120 .tR/frame and have been fitted to kVp207. The squares
correspond to the 440 tR/frame and have been fitted to kVp56.......................... 100

5-6. Surface dose and energy imparted as a function of image intensifier input
exposure at 70 kV p .............................................................................................. 101

5-7. Threshold iodine concentration as a function of image intensifier input
exposure for a constant video level at 70 kVp ..................................................... 103

5-8. Surface dose and energy imparted as a function of image intensifier input
exposure at 70 kV p .............................................................................................. 105

5-9. Threshold iodine concentration as a function of geometric object
m agnification at 70 kVp....................................................................................... 106

5-10. Change in surface dose versus change in threshold iodine concentration
with tube voltage input exposure and magnification ........................................... 109

5-11. Change in energy imparted versus change in threshold iodine concentration
with tube voltage input exposure and magnification ........................................... 112













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


PATIENT DOSES AND IMAGE QUALITY
IN INTERVENTIONAL NEURORADIOLOGY

By

Nikolaos A. Gkanatsios

December, 1998

Chairman: James S. Tulenko
Cochairman: Walter Huda
Major Department: Nuclear and Radiological Engineering

Diagnostic and therapeutic interventional neuroradiologic procedures involve

imaging of catheter manipulation and vascular anomalies of the brain and generally

require extensive use of x-ray radiation. Knowledge of the surface dose allows one to

estimate the probability of inducing deterministic effects, whereas the corresponding

value of effective dose is related to the patient stochastic risk. Modification of key

imaging parameters (i.e., tube voltage, input exposure to the image receptor and

geometric magnification) impact on patient doses and image quality, with the latter being

defined as the lowest concentration of iodine in a vessel that may be visually detected in

the radiographic image. A dosimetry system was installed on a biplane neuroradiologic

imaging system to determine the doses to patients undergoing interventional

neuroradiologic procedures. The dosimetry system computed surface doses on the basis

of selected technique factors and information about patient location relative to the x-ray









tube. The energy imparted to the patient, e, was determined using the surface dose, x-ray

beam quality (i.e., kVp and HVL), exposure area and thickness of the patient and was

converted into the corresponding value of effective dose, E. Values of surface dose and E

were obtained for 175 patients, consisting of 149 adults and 26 pediatrics. Median values

of surface doses to the head region were 1.2 Gy in the frontal plane and 0.62 Gy in the

lateral plane. Median values of the effective doses were 36 mSv for adult patients and 44

mSv for pediatric patients. An acrylic phantom with 1-mm diameter vessels filled with

iodine contrast was used to evaluate the effects of varying imaging parameters on signal

detection and patient doses during digital subtraction angiography. Reducing the x-ray

tube voltage offered the largest improvement in image quality for a given increase in

patient dose. Increasing the image intensifier input exposure beyond 250 pR/frame

provided very little improvement in image quality, and this II exposure level should not

be exceeded in interventional neuroradiologic imaging. A linear relationship was

observed between magnification and threshold concentration, which offers significant

patient benefits when surface doses are not expected to exceed the threshold doses for the

induction of deterministic effects.














CHAPTER 1
INTRODUCTION



Interventional Neuroradiology

Neuroradiology is a multi-imaging science, which utilizes all imaging modalities

(i.e., plain film, digital radiography, computed tomography, magnetic resonance imaging,

nuclear medicine, etc) to accomplish a complete diagnosis of human neurology.

Neuroradiology can be distinguished as conventional or interventional neuroradiology.

Conventional neuroradiology uses modalities such as plain film radiography, computed

tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) to diagnose

neurologic abnormalities. Interventional neuroradiology studies the vasculature and

blood kinetics of the brain by means of catheterization performed with the transfemoral

artery technique. Interventional neuroradiologic procedures can be further distinguished

as diagnostic angiographic or therapeutic embolization procedures. The imaging portion

of any interventional neuroradiologic procedure is accomplished by use of digital

subtraction angiography (DSA). In digital subtraction angiography, a mask image is

being subtracted from an image enhanced with injected iodinated contrast to isolate

vasculature structures from the rest of the anatomy as shown in Figure 1-1.

Interventional neuroradiologic procedures often involve long fluoroscopic

exposure times and the acquisition of a large number of radiographic images. As a result,

there is a possibility of induction of deterministic radiation effects such as skin erythema

and epilation. It is also important to determine the stochastic risks involved in such
1









procedures in both adult and pediatric patients. Modification of key imaging parameters

(i.e., tube voltage, input exposure to the image receptor and geometric magnification)

impact on image quality and patient doses from interventional neuroradiologic

procedures. The effects of these parameters on image quality and patient doses should be

quantified and optimized in order to ensure adequate diagnostic image quality and

reduced patient doses.




















FIGURE 1-1: Unsubtracted image (left) where anatomical details are mixed with
diagnostic information. Digitally subtracted angiogram (right) where
anatomical information has been subtracted to allow easier visualization of
vasculature.



Patient Dosimetry

The surface dose is the dosimetric quantity that measures the dose absorbed in the

surface of an irradiated region from radiation exposures. The surface dose accounts for

the energy absorbed in the skin and can predict the possibility of inducing deterministic

injuries from high dose interventional radiologic procedures (i.e., cardiac catheterization,

abdominal interventional or neurointerventional procedures). Deterministic injuries









associated with interventional neuroradiologic procedures primarily consist of injuries

induced to the skin of the patient such as skin erythemas and epilations. Knowledge of

surface doses may also provide information on the probability of deterministic injuries to

the lens of the eye from interventional neuroradiologic procedures.

The effective dose, E, is a dosimetric parameter, which takes into account the

doses received by all irradiated radiosensitive organs. The effective dose is able to

account for nonuniform irradiation of different organs and tissues in the body and can be

used as an indicator of the stochastic radiation risk associated with radiologic x-ray

examinations. Determining effective doses for radiologic examinations by measurement

or calculation is generally very difficult. By contrast, the energy imparted, e, to the

patient may be obtained from the x-ray exposure-area product incident on the patient. As

energy imparted is approximately proportional to the effective dose for any given x-ray

radiographic view, the availability of El/c ratios (Huda and Gkanatsios, 1997) for common

radiographic projections provides a convenient way for estimating effective doses. Such

ratios primarily depend on the projection employed (body region irradiated and x-ray

beam orientation) and secondarily on the tube potential and beam filtration.

The effective dose as a dose descriptor in diagnostic radiology enables a direct

comparison of the detriment associated with different radiologic procedures. Expressing

patient doses in terms of the effective dose provides a consistent method of reporting

doses from diagnostic radiologic examinations. Effective doses in interventional

neuroradiology can simply be compared to other radiologic doses (i.e., computed

tomography, nuclear medicine, cardiac catheterization procedures, etc.). The use of the

effective dose also permits an estimate of patient risk to be obtained by using current









stochastic risk factors (ICRP, 1991; UNSCEAR, 1993; NAS, 1990). Use of such

stochastic risk factors with the effective doses computed for interventional

neuroradiologic procedures will provide useful information on the stochastic risks to

patients undergoing such high dose procedures.




Dose Monitoring Systems

A radiation monitoring system which provides feedback of dosimetric information

could play a role in ensuring that patient exposures are as low as reasonably achievable

(ALARA, ICRP, 1982). The benefits of a radiation monitoring system include

identification of individual patients who may be at risk for the induction of deterministic

radiation effects (Wagner et al., 1994), provision of a formal record of the patient

exposure as well as an increase in the radiologist's awareness of potential high patient

doses. In addition, the radiation monitoring system can serve as a powerful tool to

empirically investigate the tradeoffs between patient dose and corresponding image

quality when radiographing appropriate phantoms.

Use of modem on-line dosimetry systems on today's advanced x-ray imaging

equipment provides the necessary tools for fast and accurate acquisition of dosimetry data

on patients undergoing complex radiologic procedures. A patient dosimetry system

(PEMNET*) was installed in 1995 in the neuroradiology suite at the Department of

Radiology at Shands Hospital of the University of Florida. The patient dosimetry system

monitored both frontal and lateral imaging planes and recorded the amount of radiation


* Clinical Microsystems, Arlington, VA









received by patients undergoing interventional neuroradiologic procedures along with

additional dosimetric information to help to compute effective doses.




Image Quality

The purpose of any radiographic image (analog or digital) is to provide the observer

with adequate diagnostic information to detect and identify or rule out an abnormality and

then to interpret its meaning and determine its cause. The ability of a radiographic image

to convey this information to the observer depends on the quality of the image, which can

be described in terms of contrast, noise and resolution. Image quality is very critical in

interventional neuroradiologic procedures. The ability to visualize small and low contrast

objects is of paramount importance, where neurovascular instruments may be as small as

200 grm and where vessel sizes are as small as 100 gim. The produced images require

high contrast, low noise and high resolution, which can be achieved with high radiation

doses. Any dose reduction strategy must always ensure that image quality is not

compromised and patients do not suffer any adverse clinical consequences as a result of

inadequate visualization of catheters or vasculature.

Ways to improve detection of small vessels during interventional neuroradiologic

procedures using digital subtraction angiography (DSA) include the variation of major

imaging parameters such as tube voltage and image intensifier input exposure, as well as

use of geometric object magnification. Although these parameters affect image quality,

they also influence patient surface doses and effective doses. Further study is necessary

to improve our understanding of how technique parameters affect patient doses and to

what extent they can improve image quality.









Purpose of This Work

Following the installation of the patient dosimetry system on the interventional

neurobiplane suite at Shands Hospital of the University of Florida, dosimetry data on

patients undergoing interventional neuroradiologic procedures were stored in a patient

database for later analysis and evaluation. Dosimetric information on 149 adult patients

and 26 pediatric patients who underwent interventional neuroradiologic procedures was

recorded in the database. Seventeen of 149 adult patients and ten of the 26 pediatric

patients recorded in the database underwent therapeutic embolization procedures.

In this work, the dosimetry data to the adult and pediatric patients recorded by the

patient dosimetry system are analyzed to compute surface doses to the patients' head

region from interventional neuroradiologic procedures. Surface doses are then considered

to assess the risk of deterministic effects to patients who undergo such interventional

procedures, as well as similar high dose radiologic procedures.

Information on the x-ray beam qualities (kVp and HVL) recorded by the patient

dosimetry system with patient thickness and the x-ray beam exposure area are used to

compute the energy imparted to these patients from recorded values of entrance skin

exposures. Values of energy imparted are then converted to patient effective dose, E,

using Els conversion factor corresponding to the projections and body regions irradiated

during interventional neuroradiologic procedures. Values of Els for the posterio-anterior

(PA) projections of the abdomen, chest and cervical spine and for the PA and lateral

(LAT) views of the head are obtained from radiation dosimetry data computed using

Monte Carlo calculations on an adult anthropomorphic phantom (Hart et al., 1994a).









This method is extended to determine effective doses to pediatric patients who differ in

mass from the adult sized phantoms used in current patient dose assessment procedures.

Manipulation of the tube voltage, input exposure to the image receptor and

geometric object magnification impact on patient doses and image quality, with the latter

being defined as the lowest concentration of iodine in a vessel that may be visually

detected in the radiographic image. The effects of these imaging parameters on signal

detection and the corresponding changes in patient doses are investigated in this work.

The results of this work provide the radiologic community with a variety of

information on patient surface doses, energy imparted and effective doses. Such

information will help to evaluate the risks of deterministic and stochastic effects to

patients undergoing interventional neuroradiologic or similar high dose radiologic

procedures. The results on how imaging parameters (i.e., tube voltage, image intensifier

input exposure and geometric object magnification) affect image quality will help to

improve image quality and reduce patient doses, thus providing improved patient care to

the healthcare community.














CHAPTER 2
LITERATURE REVIEW



Introduction




Interventional Neuroradiologic Procedures

During diagnostic neuroradiologic procedures, all initial angiograms performed

on a given vessel territory constitute complete coverage of arterial, capillary and venous

phases. Subsequent examinations of that vessel with various alterations in positioning

(projection), magnification, and contrast injection are performed to specifically evaluate

the visualized or anticipated pathology. As a result, these are limited to arterial phase for

aneurysms, capillary phase for tumors, and venous phase for study of venous patency. In

therapeutic neuroradiologic procedures, a complete diagnostic angiographic procedure is

followed by the introduction of embolic agents into the vasculature from a location next

to the vascular abnormality. Such embolic agents might consist of gelatin sponge or

polyvinyl alcohol for short-term occlusions or detachable balloons, metallic coils and

cyanoacrylates for long-term occlusions. Subsequent evaluation of the pathology during

embolization continues until a satisfactory occlusion of the vascular abnormality has been

achieved.

During all neuroradiologic procedures, frontal fluoroscopy is used in the truncal

and thoracic regions to visualize catheter placement. Biplane fluoroscopy of the head









region is used for target position verification. Most DSA image acquisitions are

performed using biplane acquisitions with only occasional use of single plane

acquisitions. Single (frontal) plane imaging is primarily used to evaluate aneurysm neck

origin with either standard DSA imaging or with rotational digital angiography (DA).

Due to the nature of neuroradiologic procedures, good image quality, long fluoroscopic

times and a significant number of angiographic images are required to evaluate any

visualized pathology. Thus, neuroradiologic procedures result in high patient doses,

primarily absorbed over the head region of the patient. This suggests the possibility of

induction of deterministic radiation effects such as skin erythema and epilation (Huda and

Peters, 1994; Shope, 1996).




Deterministic Radiation Effects

Deterministic or non-stochastic effects of ionizing radiation include the types of

injuries resulting from whole-body or local exposures to radiation that cause sufficient

cell damage or cell killing to substantial numbers or proportions of cells to impair

function in the irradiated tissues or organs (ICRP, 1977). Since a given number or

proportion of cells must be affected, there is a threshold dose below which the number or

proportion of cells affected is insufficient for the defined deterministic injury to occur

(ICRP, 1984). The threshold dose depends on the level of injury or the sensitivity of the

tissues or organs being irradiated (Field and Upton, 1985). Any increase in dose above

the threshold increases the level of injury, since fewer cells will survive at increased

radiation dose. The effect will also increase with increased dose rate. Increased dose rate









will accelerate cell damage without allowing enough time for more effective cell repair or

repopulation (ICRP, 1991).

The doses that result in the clinical appearance of deterministic effects are

generally of the order of a few Gray to tens of Gray. The time at which the effect

becomes noticeable may range from a few hours to some years after exposure, depending

on the type of effect and the characteristics of the irradiated tissue. The levels of

radiation exposure and the irradiated tissues involved in interventional neuroradiology

raise concern for deterministic effects of the skin and eyes. Table 2-1 lists the skin

effects, threshold doses and time of observation of the expected effect after irradiation

(Wagner et al., 1994). An early transient erythema may be observed a few hours after

irradiation at skin absorbed doses in excess of 2 Gy, with a main erythema appearing

about 10 days later, when skin doses exceed 6 Gy. A temporary epilation may be

observed three weeks after an absorbed dose of 3 Gy to the skin surface with a permanent

condition resulting at doses above 7 Gy. The concern to the eye involves small opacities

on the lens of the eye, which may occur at doses of the order of about 1-2 Gy (Merriam

and Focht, 1957; NAS, 1990). More severe cases of cataracts occur at thresholds above

5-6 Gy with a latent period of about a year after irradiation.

Deterministic effects will often have a more severe impact on children, since

tissues are actively growing in comparison to adults (UNSCEAR, 1993). Additional

deterministic effects that have been observed from irradiation during childhood include

effects on growth and development, hormonal deficiencies, organ dysfunctions and

effects on intellectual and cognitive functions. From current data available (UNSCEAR,

1993), there is no evidence that the threshold of deterministic effects to the skin and eyes









are any different for children or adults. Although the brain is most sensitive to radiation

insults during the first four years after birth when rapid growth and development of the

brain takes place, single doses in excess of 10 Gy have to be administered to the brain

during childhood before any deterministic effect of neurophysiologic or neuroendocrine

nature are observed.



TABLE 2-1: Deterministic Effects of the Skin after Single-Fraction Irradiation

Deterministic Dose Threshold Onset Time Peak Time
Efec ______(y)__ Onset Time Peak Time
Effect (Gy)
Early transient 2 hours -24 hours
erythema
Temporary epilation 3 -3 weeks --

Main erythema 6 -10 days -2 weeks

Permanent epilation 7 -3 weeks --

Dry desquamation 10 -4 weeks -5 weeks

Invasive fibrosis 10 .

Dermal atrophy 11 >14 weeks --

Telangiectasia 12 >52 weeks --

Moist desquamation 15 -4 weeks -5 weeks

Late erythema 15 -6-10 weeks --

Dermal necrosis 18 > 10 weeks --
Secondary 20 >6 weeks --
ulceration
SOURCE: Wagner et al., 1994.









Stochastic Radiation Effects

Unlike the deterministic effects, stochastic effects are those for which the

probability of an effect occurring is a function of dose without threshold and its severity

of the effect is dose-independent (ICRP, 1977). Stochastic effects can be categorized as

somatic (carcinogenic) effects and hereditary (genetic) effects, which may occur from

injury to one or a small number of cells. Since a single cell may be enough to initiate the

effect, there is a finite probability that the effect will occur however small the dose.

Thus, stochastic effects are normally assumed to have no dose threshold below which the

effect cannot possibly occur.

Since a stochastic effect may occur at any level of radiation exposure, the

exposure should be kept as low as reasonably achievable (ICRP, 1977). Unnecessary

exposures should be avoided, necessary exposures should be optimized to provide the

maximum benefit to the patient, and the total doses should be limited to the minimum

amount consistent with the medical benefit to the individual patient (ICRP, 1982, 1983).

In the case of optimizing medical procedures for the best dose-benefit outcome, the main

concern should be the amount and type of information derived from the examination and

its diagnostic value.

Whole body irradiation or its equivalent as expressed by the effective dose

equivalent or effective dose can be converted to a stochastic risk estimate using a total

risk factor as determined by the ICRP (1977, 1978, 1991). From the ICRP (1991)

attempt to estimate absolute stochastic risks from whole-body irradiation, a risk

coefficient of 5x105O cancers and genetic abnormalities per mSv of radiation dose was

derived. Such a risk coefficient puts one out of 20,000 people who received a whole









body dose equivalent of 1 mSv to risk of developing a fatal cancer. This is a more

conservative value from the previously derived risk coefficient of 1.65x105 (ICRP,

1978), where one out of 60,600 people who receive 1 mSv will develop a fatal cancer. In

general, these risk factors need to be treated with great caution given the current

uncertainties associated with the extrapolation of radiation risks from high doses to those

normally encountered in diagnostic radiology (Fry, 1996; Puskin and Nelson, 1996)

Although knowledge of the pediatric effective dose associated with radiologic

procedure is helpful, it is important to note that any resultant detriment will depend on the

age of the exposed individual. The stochastic radiation risks of carcinogenesis and

genetic effects are generally greater for children than for adults to at least a factor of two

(ICPR, 1991; NCRP, 1985). These factors would need to be taken into account when

converting any pediatric effective doses into a value of risk or detriment. As a result,

direct comparisons of pediatric doses with those of adults need to be treated with

circumspection.




Dosimetry




Surface Dose

The surface dose is the simplest and most frequent method used to measure

patient doses from radiologic examinations because direct measurements on patients can

be performed easily at the skin surface. The surface dose can be obtained from

measurements of the skin exposure using an ionization chamber or specialized detectors

attached to the skin surface during the examination (i.e., thermoluminescent chips,









fiberoptic scintillarors). The surface dose may also be converted to organ doses (Jones

and Wall, 1985), although such an approach may result in errors of more than 20%

(Padovani et al., 1987).

Although simple to obtain, the surface dose is a poor indicator of the true

significance of radiation exposure to the patient because it overlooks a number of

important factors. For example, in a fluoroscopic exam the surface dose does not account

for changes in the depth of the radiosensitive organs, changes in the exposed field size,

changes in the position of the patient, and changes in the beam qualities, overlaying

exposure fields and partial exposure of organs (Wagner, 1991). More importantly, the

surface dose does not account for the area of exposure or the penetrating ability of the x-

ray beam as the energy of x-rays varies.

The above factors make surface dose a quantity of limited dosimetric value when

estimating stochastic risks. However, the surface dose is the quantity of choice when

trying to predict the occurrence of deterministic radiation effects of the skin during high

dose interventional radiologic procedures. In this case, the surface dose is the dose to the

organ, the skin. Vano et al. (1998) measured surface doses of 11-15 Gy resulting in

erythematous lesions and chronic radiodermatitis from procedures in interventional

cardiology. Huda and Peters (1994) computed an upper estimate of 6.6 Gy to the

occipital region of the skull resulting in temporary epilation from an embolization

neuroradiologic procedure. Other studies reported a range of surface doses for

neurointerventional procedures. Norbash et al. (1996) studied twelve typical

interventional neuroradiologic procedures and measured a range of 0.31-2.7 Gy to the

skin surface of the head with a mean value of 1.5 Gy. Bergeron et al. (1994) measured









0.13-1.3 Gy with a mean value of 0.62 Gy for eight patients undergoing

neurointerventional procedures. Chopp et al. (1980) reported an average surface dose to

the head of 0.16 Gy. Gkanatsios et al. (1997) measured surface doses to 114 patients

undergoing neurointerventional procedures and recorded doses ranging from 0.1-5.0 Gy

with median values of 1.2 Gy and 0.64 Gy for the frontal and lateral planes, respectively.

Although about 30 patients in the latter study exceeded the deterministic threshold of 2.0

Gy, no radiation-induced skin effects were noticed.




Energy Imparted

Although the surface dose or exposure has been popular when expressing patient

radiation doses, these parameter do not take into account the x-ray beam quality (i.e.,

half-value layer) or the size of the irradiated area. An alternative quantity that can be

used to assess patient dosimetry is the energy imparted, or integral dose (Wall et al.,

1979; Harrison, 1983; Huda 1984; Cameron 1992). Energy imparted is a measure of the

total energy deposited in a volume (i.e., head, chest, abdomen, etc.) from exposure to x

rays. The primary factors that affect energy imparted are the x-ray exposure, the area

exposed, the energy of the x-ray beam, and the thickness of the exposed volume

(Gkanatsios, 1995; Gkanatsios and Huda, 1997). Secondary factors affecting energy

imparted are the filtration, the voltage waveform ripple, and the target angle (Shrimpton

et al., 1984; Gkanatsios, 1995). Energy imparted may be used to compute the associated

risk from different types of radiologic examinations, optimize imaging techniques with

respect to patient dose, or even estimate the effective dose to the patient.









The computation of energy imparted can be carried out with accuracy and ease

(Carlsson, 1963; Huda, 1984; Shrimpton et al., 1984; Gkanatsios and Huda, 1997). A

number of approaches have been developed to obtain values of energy imparted from

radiologic procedures (i.e., Carlsson, 1963, 1965a, 1965b; Carlsson et al., 1984; Harrison,

1983; Shrimpton and Wall; 1982). Most methods calculate values of energy imparted

from depth dose data or from estimates of the incident energy to the irradiated volume.

Energy imparted generally depends on the x-ray beam quality, as well as the field size

and irradiation geometry, which makes depth dose data of limited value in the everyday

clinical setting. Monte Carlo techniques are another way to compute energy imparted,

given that photon interaction cross sections and x-ray energy distributions are well known

(Persliden and Carlsson, 1984; Boone 1992). However, these methods are computer

intensive, time-consuming, and relatively cumbersome to use. Other simplified methods,

such as the use of half-value thickness of tissue (Hummel et al., 1985), also can be used

to calculate values of energy imparted. The most practical approach developed to obtain

values of energy imparted is the use of transmission ionization chambers, which can

generate energy imparted data from an exposure-area, or air collision kerma-area product

(Shrimpton et al., 1984). Measurements of exposure-area product have been reported to

result in an accuracy of energy imparted between 10% and 20% (Shrimpton et al., 1984;

Berthelsen and Caderbland, 1991). However, exposure-area product meters do not take

into account patient thickness, and the incident beam may not totally irradiate the patient.

Although it may be possible to overcome both these limitations, an accurate and practical

method for estimating energy imparted to patients that does not rely on special

instrumentation would clearly be advantageous.









Recently, Gkanatsios and Huda developed a simplified method to compute energy

imparted from any radiologic procedure (Gkanatsios, 1995; Gkanatsios and Huda, 1997),

which may be used with the dosimetry equipment available in most radiology

departments. The method is based on Monte Carlo calculations of energy imparted from

monoenergetic photons (Boone, 1992) and makes use of published diagnostic energy x-

ray spectra (Tucker et at., 1991). The patient is modeled as a homogenous slab of water

with a specified thickness. The water equivalence of a given patient may be obtained by

direct measurement of the patient or by estimating the thickness of water which results in

the same x-ray technique factors when the imaging equipment is in automatic exposure

control (AEC) mode. Experimental measurements needed for this computation include

the entrance skin exposure, the x-ray beam qualities (kVp and HVL), as well as the

exposed area and thickness of the patient, all of which may be readily measured or

otherwise estimated. Gkanatsios and Huda compared this method with values of energy

imparted determined using Monte Carlo techniques and anthropomorphic phantoms for a

range of diagnostic examinations. At 60, 80 and 120 kVp, absolute values of energy

imparted obtained using this method differed by 3%, 10% and 22% respectively, from the

corresponding results of Monte Carlo computations obtained for an anthropomorphic

phantom.

The assumption that energy imparted to the head and trunk can determine

radiologic risk has been investigated by many researchers (Bengtsson et al., 1978; Huda,

1984; Carlsson and Carlsson, 1986; Le Heron, 1992; Chapple et al., 1994). It was found

that there may be a valid relationship between energy imparted and radiologic risk.

Although the radiosensitivities of different organs and tissues are ignored, the energy









imparted will predict associated radiologic risks as accurately as when computing doses

to individual organs (Wall et al., 1979; Harrison, 1983; Cameron, 1992). A reasonable

linear correlation within a factor of two or three (IPSM, 1988; Huda and Bissessur, 1990)

was also detected between total energy imparted and effective dose to the head and trunk.

Provided that the examining view (AP, PA, LAT, etc.) and the x-ray beam qualities are

known, the effective dose can be determined easily from values of energy imparted (Huda

and Gkanatsios, 1997, 1998).




Effective Dose

The effective dose, E, is a dosimetric parameter, which takes into account the doses

received by all irradiated radiosensitive organs. The effective dose is able to account for

nonuniform irradiation of different organs and tissues in the body. Thus, the effective

dose is considered a measure of the stochastic risk associated with radiologic

examinations by directly comparing partial body irradiation to whole body radiation

exposure (ICRP, 1977, 1991; Huda et al., 1991). Although the effective dose is an

occupational dose quantity based on an age profile for radiation workers, this dose

descriptor is being increasingly used to quantify the amount of radiation received by

patients undergoing radiologic examinations which use ionizing radiation (ICRP, 1987;

NCRP, 1989; UNSCEAR, 1993).

Measurement or computation of effective doses for any x-ray examination is

difficult and time consuming. An additional problem is that most measurements or

calculations make use of a standard phantom based on the reference man as defined by

the International Commission on Radiological Protection (ICRP, 1975). Although the









importance of patient size for medical radiation dosimetry has been recognized

(Lindskoug, 1992; Chappel et al., 1995), it is not obvious how to scale the effective dose

computed for standard man to different sized patients, such as pediatric patients, who

undergo similar examinations. These limitations impede the wider use of effective dose

in radiology. Huda and Gkanatsios (1997) proposed a method to determine the effective

dose, E, to patients undergoing any radiologic examination using the energy imparted to

the patient, -. Values of E/le were obtained from the radiation dosimetry data presented

for 68 x-ray projections computed using Monte Carlo calculations on an adult

anthropomorphic phantom (Hart et al., 1994a). The energy imparted to patients may be

determined from values of the exposure-area product incident on the patient and can be

combined with E/le ratios (i.e., 5.0 mSv/J for a head PA view) to yield values of the

patient effective dose. In addition, this method was extended to determine effective doses

to patients who differ in mass from the adult sized phantoms used in current patient dose

assessment procedures (Huda et al., 1989b; Le Heron, 1992).

Although the computation of effective dose is cumbersome in most cases, a range

of effective doses has been reported in the literature that pertain to neurointerventional

procedures. Feygelman et al. (1992) studied ten cases and reported values ranging from

1.6-14 mSv with a mean of 6.2 mSv. Bergeron et al. (1994) reported an average of 1.8

mSv with a range of 0.44-3.4 mSv for a limited number of eight patients undergoing

similar procedures. McParland (1998) reported a median of 7.0 mSv with a range of 2.1-

20 mSv when he computed effective doses to patients undergoing cerebral angiography.

A wider range was reported by Berthelson and Cederblad (1991), who computed effective

doses between 3.5 mSv and 25 mSv.









Despite its popularity, the effective dose introduces some problems when used in

diagnostic radiology. First, it does not account for differences between the age

distribution of workers and that of the general public with regard to the determination of

the appropriate organ weighting factors. The effective dose also excludes curable cancer

or hereditary harm beyond the second generation. Both these factors make the effective

dose a questionable quantity in risk assessment associated with diagnostic radiologic

procedures (UNSCEAR, 1988; Cameron, 1992). It should also be mentioned that the

effective dose applies only to low radiation doses, which generally is the case in

diagnostic radiology. However, in areas like cardiology and neuroradiology, where

extended diagnostic and therapeutic procedures may deliver local patient doses of several

Gray, the effective dose may not be an appropriate dosimetric quantity.

Another problem with the effective dose is the uncertainties involved with its

calculation. The calculation of the effective dose must include an analysis of the dose

distribution within the body, which is difficult to do for radiologic procedures,

particularly fluoroscopy. As an alternative, dose distributions are derived from Monte

Carlo techniques using mathematical phantoms (Gibbs et al., 1984; Jones and Wall,

1985; Huda et al., 1991; Le Heron, 1992) or from calculations of the average organ dose

in anthropomorphic phantoms (Faulkner and Harrison, 1988; Huda et al., 1989a, 1989b).

Such techniques, though, can only provide approximations of the true organ dose

distribution. Furthermore, the selection of the "remainder" organs is problematic in dose

distribution analysis and may vary for each examination. Effective dose also requires the

use of a dose equivalent, which is based on the quality factor, Q, of the type of radiation









involved (ICRP, 1977), and use of organ and tissue weighting factors, W, (ICRP, 1991).

Both these factors are considered to be biologically uncertain (Cameron, 1992).

Notwithstanding the fact that there are problems associated with converting

effective doses to a corresponding detriment (Huda and Bews, 1990), there are important

benefits to be gained by using effective dose to quantify patient doses in diagnostic

radiology. One advantage is that the effective dose attempts to measure the risk to the

patient, which is the motivation for all patient dosimetry studies in diagnostic radiology.

In addition, the effective dose to a patient undergoing any examination may be compared

to that of any other radiologic procedure, as well as to natural background exposure and

regulatory dose limits, which are increasingly expressed using effective dose values

(ICRP, 1991; NRC, 1995a, 1995b).




Image Quality

The extraction of adequate diagnostic information from radiographic images is

important in radiology in order to detect and identify an abnormality and then to interpret

its meaning and determine its cause. Thus the quality of the radiographic image is very

important in conveying diagnostic information to the observer. Image quality can be

described in terms of contrast, noise and resolution.




Image Contrast

Image contrast can be defined as the difference in the optical density (film) or

brightness (digital) in an image between an area of interest and its surrounding

background. Image contrast is determined by several factors including the characteristics









of the materials being imaged, the characteristics of the x-ray spectrum, the

characteristics of the detector and display media and physical perturbations such as

scattered radiation (Hasagawa, 1991). These dependencies separate image contrast into

radiographic (subject) contrast, detector contrast and display contrast.

Radiographic contrast. Radiographic or subject contrast characterizes the

differences in x-ray fluence emerging from different regions of the imaged object.

Radiographic contrast depends on differences in material thickness, atomic numbers,

physical density and electron density between different regions of the imaged object and

their interaction with radiation.

Detector contrast. Detector contrast on the other hand, can be expressed as the

ability of the imaging detector to convert differences in x-ray fluence emerging from an

object to differences in optical density (film detector) or brightness (digital detector). The

detector contrast can shape the radiographic contrast according to the detector's

characteristic response to x-rays. Thus, detector contrast depends on the properties of the

detector material, its thickness, atomic numbers, electron density and the physical process

by which the detector converts x-ray fluence into an image.

Display contrast. The third component of image contrast is the display contrast,

which refers to the digital display of images. Display contrast depends on the display

parameters (i.e., window and level) under which the image is viewed and can be

manipulated by the observer.

Other contrast dependencies. Image contrast in general, is also affected by

physical perturbations such as scattered radiation, image intensifier veiling glare and the

base and fog of film, all of which reduce image contrast.









Image Noise

Every radiographic image is degraded by noise superimposed on the image by

random processes occurring along the imaging chain. Detection of a signal that is

superimposed on noise depends on the relative magnitude of the noise compared to the

signal and the ability of the observer to differentiate between the brightness distribution

of the noise and that of the signal plus noise (Giger et aL, 1986b). The overall noise of an

image consists of various noise components. The statistical nature of x-ray production

and attenuation in the detector results in quantum mottle. Structure mottle, electronic

noise, quantization noise, time jitter and display device noise are additional noise

components in digital imaging detectors (Giger, 1985).

In digital imaging as in digital subtraction angiography, the noise components can

be categorized as static and non-static noise. Static noise is independent from one frame

to the next and always presents the same pattern. Thus, static noise is eliminated in

digital subtraction angiography. Structure mottle is the most important static noise

component in digital imaging. Non-static noise is frame dependent, which means that the

noise pattern varies from one frame to the next. Non-static noise sources are always

present in digital subtraction angiography. Significant no-static noise sources in digital

imaging are the quantum mottle and electronic noise.

The primary source of noise in digital imaging is usually quantum mottle, which

corresponds to random spatial fluctuations of the distribution of x-ray quanta absorbed by

the detector. Since the production and attenuation of x rays are Poisson statistical

processes, quantum mottle follows Poisson statistics, which makes it easily quantifiable.

Consequently, increasing the exposure to the imaging detector will improve a









radiographic image by decreasing quantum mottle. Improving the attenuation properties

of the imaging detector will also reduce quantum mottle of radiographic images.

Secondary sources of noise become important in radiographic imaging, when the

image receptor is exposed to high enough radiation to eliminate most of the quantum

mottle. Secondary noise sources in digital imaging consist of the structure mottle,

electronic noise, quantization noise and time jitter.

Structure mottle. Structure mottle is the second most important noise component

in single-frame digital imaging after quantum mottle, and it becomes the dominant noise

source in images acquired using high x-ray fluence (Giger et al., 1986b). The structure

mottle is introduced to the imaging line by the image intensifier. Structure mottle

depends on the physical structure of both the input and output phosphor layers. Since

structure mottle is a static component of image noise, its noise pattern is constant from

frame to frame. Therefore, structure mottle can be eliminated by the subtraction of two

image frames as done in digital subtraction angiography. Another characteristic of

structure mottle pertaining to its static nature is that structure mottle remains unchanged

after frame integration.

Electronic noise. Electronic noise arises from the video camera as a form of dark

current added to the exposure-dependent video signal. The magnitude of electronic noise

is inversely proportional to the dynamic range of the TV camera and is relatively

independent of video signal size. In order to minimize the perturbations added to a

digital radiographic image by electronic noise, the video signal should be maximized

when possible (Cohen et al., 1982). In general, the electronic noise in a digital imaging

system is quite small relative to the quantum and structure mottle (Roehrig et al., 1981;









Baiter et al., 1984). However, electronic noise becomes a significant noise source when

an object is imaged at low video levels and using low x-ray fluence. It was also

demonstrated by Geiger et al. (1986b) that electronic noise contribution becomes

substantial at spatial frequencies of about 1.0 cycles/mm.

Quantization noise. Another noise component of a digital imaging system is quantization

noise. Quantization noise is the error introduced into an analog signal (i.e., TV video

signal) when it is digitized. Quantization noise depends on the width of the quantization

step. In general, digital imaging systems are designed to minimize quantization errors,

which makes quantization noise insignificant in comparison to quantum mottle or even

electronic noise (Burgess, 1984; Boon et al., 1990; Rajapakshe and Shalev, 1994; Baxter

etal., 1997).

Time jitter. Another component of noise that may appear in digital imaging systems is

time jitter (Arnold and Scheibe, 1984; Esthappan et al., 1998). Time jitter is usually

caused by incorrect alignment of the scanning electron beam in the television camera

from one video frame to the next. Time jitter may also be caused by a variable

asynchrony between the video signal and the analog-to-digital converter. In general, time

jitter produces a variation in pixel position from one image frame to the next. The

importance of time jitter becomes significant in digital subtraction angiography, when

this spatial pixel shift changes the spatial pattern of static noise bringing up structure

mottle in a digitally subtracted image. Therefore, careful design and stable electronics are

required in digital imaging systems to avoid time jitter in order to eliminate structure

mottle completely from digitally subtracted images.









Spatial Resolution

The third parameter used to quantify image quality in addition to contrast and noise

is spatial resolution, frequently referred to as resolution. Although spatial resolution does

not have as much of an impact on image quality as contrast or noise, in applications of

neurointerventional imaging spatial resolution becomes somewhat more important.

During interventional neuroradiologic procedures, the need to visualize tiny

neurovascular instruments (i.e., catheters and guide wires) and vessels as small as 100

lim, requires high spatial resolution. The spatial resolution of an imaging system can be

characterized by its modulation transfer function (MTF) (Haus, 1979; Metz and Doi,

1979) which can be obtained from measurements of the point or line spread functions.

The determination of MTF of digital imaging systems, however, requires careful handling

to avoid aliasing effects caused by the discrete data sampling of digital systems (Giger

and Doi, 1984; Fujita et al., 1985). In general, the spatial resolution of an imaging

system depends on geometric, motion, detector and digitization unsharpness.

Geometric unsharpness. Geometric unsharpness refers to the loss of image detail

due to the finite size of the radiation source (i.e., focal spot) (Hasagawa, 1991). Heat

loading of the anode of an x-ray tube requires that the focal spot is large enough to

dissipate the generated heat. The finite size of the focal spot creates unsharpness called

penumbra at the edges of the imaged object. To limit the amount of geometric

unsharpness in neurointerventional imaging, x-ray tubes with steep anode angles (i.e., 9-

11 degrees) and small effective focal spots (i.e., 0.3 mm or 0.6 mm) are used. Another

practice often used in neurointerventional imaging is the use of magnification, which also

increases geometric unsharpness.









Motion unsharpness. Motion unsharpness refers to the loss of spatial resolution

due to motion of the x-ray source, detector and/or object being imaged (Hasagawa, 1991).

When one or more of these components move, motion unsharpness is introduced, which

degrades spatial resolution. Patient motion caused by discomfort and the continuous

moving of the patient's heart and diaphragm is usually the greatest concern, since source

and detector can be easily secured in place. Sedation or immobilization of the patient

during a radiographic procedure and short exposure times will help reduce the amount of

motion unsharpness.

Detector unsharpness. Detector unsharpness refers to the loss of spatial resolution

due to the finite resolving power of the detector (Hasagawa, 1991). In screen-film

systems, detector unsharpness is also caused by light diffusion in the intensifier screens.

Thicker intensifier screens will allow more light diffusion and create more unsharpness.

In digital imaging, spatial resolution depends on the TV bandwidth and pixel size. Thus,

TV systems with 1024 lines are used in neurointerventional applications. In addition, any

digitization will result in loss of spatial resolution due to the inherent pixellation of a

digital image in comparison to the original analog image.




Imaging Technique Factors

Patient doses and image quality are both influenced by the selection of imaging

techniques. Figure 2-2 shows some key parameters along the line of an x-ray imaging

system which can alter patient absorbed doses and image quality. Such parameters are

the tube voltage, tube filtration, input exposure to the imaging detector, magnification

and image processing. With the exception of image processing, an attempt to decrease








patient dose by altering one or more of these parameters will also degrade image quality.

Thus, tradeoffs between varying different imaging technique factors merit investigation

to find better ways to improve image quality while maintaining low patient doses.


Image Processing


Magnification Input Exposure

\q- Filtration


FIGURE 2-1: Key parameters that affect patient dose and image quality in x-ray imaging.


Tube Potential

Very early in the history of diagnostic radiology, tube voltage and the use of

specialized K-edge filters were studied extensively to optimize patient dose and image

quality (Trout et al., 1952; Koedooder and Venema, 1985; Shrimpton et al., 1988; Nagel,

1989). In general it was shown that an increase in tube voltage decreases patient

exposure and degrades image quality. The optimal tube voltage for detecting large-area,









low-contrast iodinated objects was determined to be between 50-60 kVp (Tapiovaara and

Sandborg, 1995). The same study also showed that for detecting thin, soft-tissue detail a

tube voltage between 70-100 kVp should be used. Also, Thompson et al. (1983)

concluded that high tube voltages between 100-110 kVp combined with increased

contrast agent concentration are the optimal techniques for detecting stones in operative

T-tube cholangiography.

The optimal tube potential depends on the imaging requirements of each imaging

procedure. In interventional neuroradiologic procedures, where both visibility of small

iodinated vessels and high spatial resolution are important, low tube voltage may be used

to maintain adequate image quality. As a consequence, low tube voltage will contribute

to high patient absorbed doses. As the tube voltage increases, both entrance absorbed

dose and energy imparted to the patient decrease for a constant input exposure to the

imaging detector. However, it should be noted that for a constant input exposure to the

patient, increase in tube voltage would increase the energy imparted to the patient

(Gkanatsios and Huda, 1997).



Input Exposure to the Image Receptor

The relationship between input exposure to the image receptor and patient

absorbed dose is linear. The input exposure to the image intensifier also affect image

quality. As the input exposure increases, the dose to the patient increases and the

significance of the quantum mottle in a radiographic image decreases. Since most

radiographic images are quantum limited, increasing the exposure to the image receptor

will always improve contrast-to-noise (CNR) and signal-to-noise (SNR) ratios by









reducing image noise. However, as the input exposure increases to the point that other

noise sources (i.e., structure mottle in singe-frame digital radiographs) become as

significant as quantum mottle, then any increase in input exposure will have a minor

effect on image quality.

Any increase in input exposure to the image receptor at a given tube voltage will

increase patient absorbed doses, proportionally. For a film-screen imaging system, where

the input exposure to the system is controlled by an optimum optical density, there is

negligible flexibility in varying the input exposure. In digital imaging systems, however,

the range of input exposure can vary considerably and still produce a useful, diagnostic

image. Thus, while operating in the range of input exposures where quantum mottle is

the dominant noise component, increasing the input exposure for the purpose of

improving contrast visibility is justifiable. However, if the input exposure to the image

receptor is already high enough so that quantum mottle is not the primary component of

radiographic noise, any increase in input exposure only increases patient absorbed doses.

Such practice lowers the standard of patient care by not following the ALARA principle.




Magnification

Magnification and its effects on image quality have been studied in both

conventional radiography and mammography (Doi and Rossmann, 1974; Wagner et al.,

198 la, 1981b; Sandrik and Wagner, 1982). In general, magnification improves visibility

of small, low contrast objects. As the magnification increases, the effective noise in the

image detector is reduced improving the signal-to-noise ratio, and visibility of small









structures improves (Doi and Imhof, 1977). Scatter radiation is also reduced with

increased magnification, which improved contrast detectability (Sandor and Nott, 1980).

In neurointerventional radiologic procedures, magnification is often used as a tool

to visualize small vasculature. Care should be taken, however, when magnification is

used, since the entrance absorbed dose to the patient increases significantly with

magnification. Energy imparted, on the other hand, is independent of magnification as

both distance from the x-ray source and area of exposure decrease equally as

magnification is employed. The choice between geometric-change of distance between

patient and x-ray source-and electronic magnification -changing the input diameter of

the image detector-should be considered every time magnification is required, and the

possibility of dose savings between the two methods should be investigated in any

imaging system.














CHAPTER 3
SURFACE DOSES



Neuroradiologic Imaging

Clinical Practice

Interventional neuroradiologic procedures are performed on patients suspected to

have vascular anomalies in the brain (i.e., aneurysm, vasculitis or arteriovenous

malformations), patients that have brain tumors, patients who have had a stroke episode

or patients requiring certain types of psychological evaluation. A neurointerventional

procedure may be a diagnostic angiographic or therapeutic embolization procedure. In

diagnostic angiographic procedures, the vasculature and blood dynamics of certain parts

of the brain are studied by imaging the kinetics of radio-opaque media injected in the

vasculature of the brain. In therapeutic neurointerventional procedures, corrective action

is taken to occlude vascular anomalies by injecting embolic agents such as gelatin

sponges or metallic coils. Usually, a therapeutic embolization procedure is preceded by a

diagnostic angiographic procedure. In both types of neurointerventional procedures, x-

ray imaging is used extensively in the forms of fluoroscopy, conventional film and digital

radiography.

The transfemoral artery technique is used to perform neurointerventional

procedures, where a catheter is inserted into the common femoral or deep femoral artery

from where it is driven to the vascular network of the brain. Limited amount of frontal









plane fluoroscopy is used on the trunk and thoracic regions to guide the catheter up to the

vertebral or carotid arteries. Once there, further use of fluoroscopy in both imaging

planes, frontal and lateral, is used to position the catheter at the appropriate site to be

studied. Although biplane fluoroscopy is used in this stage, most of the fluoroscopy is

still done using the frontal plane. Once the catheter is in place, radio-opaque contrast is

injected to that location and a series of radiographic images are acquired in plain film or

in digital format. In diagnostic angiographic procedures, the acquisition of radiographic

images is done in biplane mode almost exclusively. In therapeutic embolization

procedures, both biplane and single plane imaging, either frontal or lateral are used

during different stages of the embolization progress evaluation. During each radiographic

acquisition, the frame rate and number of frames may vary from 1-3 frames per second

and 10-50 frames per acquisition, respectively.




Imaging Equipment

The x-ray imaging system used in this study consisted of a biplane Toshibat

KXO-80 high voltage diagnostic x-ray generator and the Toshiba DFP-2000A/A3 digital

fluorography system configured for neuroradiologic procedures. The configurations of

the two imaging planes, frontal and lateral, were identical. The frontal plane was built

around the Toshiba KXO-80C high frequency x-ray generator. The lateral plane was

based on its sister generator, the KXO-80D. Both generators were interfaced together to

function as a biplane unit suited for neurointerventional applications.


t Toshiba America Medical Systems, Tustin, CA









Tri-focal metal Toshiba ROTANODE x-ray tubes having nominal focal spot sizes

of 0.3 mm, 0.6 mm and 1.0 mm and inherent filtration of about 3.0 mm aluminum were

used as the x-ray sources. The collimator assembly provided an almost circular x-ray

field using a multi-blade collimating iris matched tightly to the size of the image

intensifier input area. The collimator assembly provided total collimation with the help

of four metal blades or partial collimation using wedge shaped, transparent filters. A

support table with a comfort pad totaling an equivalent filtration of 3.0 mm aluminum at

80 kVp were placed between the x-ray beam and the patient.

Two image receptors were available. The first receptor was a biplane screen-film

system rated as 600-speed and 400-speed for the frontal and lateral imaging planes,

respectively. The second image receptor was a digital radiography detector. The digital

radiography detector consisted of a CsI image intensifier tube with three effective input

diameters of 31 cm, 23 cm and 15 cm. A carbon fiber interspaced grid with a ratio of

10:1 was used to remove scatter radiation to the input phosphor of the image intensifier.

An automatic iris control adjusted the amount of light reaching the TV camera. The TV

camera consisted of a high-resolution CCD head (1024 lines) and 10-bit analog to digital

converter. Digital information was passed from the TV camera to the digital image

processor. Analog video signals of 1024 lines at 60 Hz interlaced were passed to the live

fluoroscopic high-resolution monitors. The digital image processor was a Toshiba DFP-

2000A/A3 digital fluorography system capable of split display fluoroscopy, roadmap

fluoroscopy, digital angiography and digital subtraction angiography.









Operation

The x-ray imaging system was capable of continuous fluoroscopy or pulsed

fluoroscopy at 15 or 30 frames/sec. Pulsed fluoroscopy could operate at low or high kVp

ranges when a high or low tube current (mA) was selected. Pulsed fluoroscopy at 30

frames/sec and high mA setting was primarily used as the default fluoroscopic technique

during most neurointerventional procedures. Targeted input exposures to the image

intensifier in fluoroscopy were measured at 1.9 iR/frame, 3.4 gR/frame and 4.7

pR/frame for the 31 cm, 23 cm and 15 cm input diameters, respectively, using a 2.0 mm

copper filter.

Limited amount of frontal plane fluoroscopy was used on the trunk and thoracic

regions to drive the catheter to the head region. On average, about thirty seconds (34

11 sec) of fluoroscopy were spent along the trunk region. An additional two minutes

(133 77 sec), on average, were spent along the upper thoracic, lower neck region to

enter the vertebral or carotid arteries. The remaining use of fluoroscopy was allocated to

the head region during placement of the catheter in the appropriate arterial branch to be

imaged. During this time, the majority of fluoroscopy was performed in the frontal plane.

Lateral fluoroscopy was used in those cases where frontal imaging does not contain

adequate information to help in catheter manipulation. Biplane fluoroscopy was used to

verify target positioning prior to each contrast injection and imaging.

Digital subtraction angiography (DSA) was the primary imaging method during

interventional neuroradiologic procedures and was mainly performed at a rate of 3.0

frames/sec. Rates up to 6.0 frames/sec were used to evaluate high flow dynamics. The

input exposure to the image intensifier in digital subtraction angiography was user









selected and it could vary from 50 tR/frame to 1000 gR/frame with 500-700 pR/frame

being the default value.

In digital subtraction angiography, most diagnostic radiographic procedures used

biplane imaging with the occasional use of single plane imaging during the evaluation of

aneurysms of neck origin. In therapeutic embolization procedures, on the other hand,

single plane radiography may provide enough information to evaluate the progress of the

embolization during the intermediate stages of vessel occlusion. Thus, embolization

procedures made extensive use of single plane radiography. Biplane radiography was

still required to make definitive evaluation of the embolization result at the more critical

stages of the procedure.




Imaging Techniques

In fluoroscopy, the automatic brightness control (ABC) adjusts the x-ray tube

voltage to yield the appropriate amount of light at the output of the image intensifier.

Figure 3-1 shows the relative frequency at which different tube voltages were used during

fluoroscopy of a typical interventional neuroradiologic procedure. Relative frequencies

were computed by determining the fraction of surface dose delivered to the patient at

each kVp interval. In the frontal plane, the tube voltages mostly used during fluoroscopic

imaging were distributed between 66 kVp and 95 kVp, most frequently in the 81-85 kVp

range. In the lateral plane, tube voltages between 61 kVp and 85 kVp were equally used

during fluoroscopy with a more frequent use of the 71-75 kVp range. In general, the tube

voltages used in the frontal plane were shifted about 10 kVp higher to those of the lateral









plane. The difference in physical thickness of the head region between frontal and lateral

views explains such differences.


30%

0



M
CL

.20%
0
0
0



S0
0
I.
0-
U_ 10%
4)



0%


56-60


71-75 86-90 101-105
X-Ray Tube Voltage (kVp)


FIGURE 3-1: Histogram of surface dose contribution at different x-ray tube voltages from
frontal plane (black bars) and lateral plane (gray bars) fluoroscopy for an
average interventional neuroradiologic procedure.



In digital radiography, the tube voltage is determined from the associated

fluoroscopic techniques. Figure 3-2 shows the relative frequency at which different tube

voltages were used during radiography of a typical interventional neuroradiologic

procedure. Similarly to fluoroscopy, the distribution of radiographic tube voltages in the

frontal plane was shifted about 10 kVp higher to that of the lateral plane. The most

frequently used voltages in the frontal plane were located at the 76-80 kVp range. Tube

voltages at the 81-95 kVp range were also used extensively during radiography in the









frontal plane. In the lateral plane, voltages between 61-75 kVp and 86-90 kVp were most

frequently used. The range of 66-70 kVp signifies the radiographic tube voltages

primarily used in the lateral plane.


30%


U)
0.

S20%
0
0

0r
0

I- 10%

o



0%


56-60


71-75 86-90 101-105
X-Ray Tube Voltage (kVp)


FIGURE 3-2: Histogram of surface dose contribution at different x-ray tube voltages from
frontal plane (black bars) and lateral plane (gray bars) radiography for an
average interventional neuroradiologic procedure.



The Patient Dosimetry System

System Description

A patient dosimetry system (PEMNET ) was installed in April 1995 on each of

the two x-ray imaging planes of the Toshiba neurobiplane KXO-80C/D unit. The


SPEMNET: Patient Exposure Monitoring Network. Clinical Microsystems Inc., Arlington, VA.









PEMNET unit is a microprocessor-based system running its own on-board software.

Eight units can be networked to a single PC server via RS-121 interfaces, through which

they transfer patient dosimetric data to the PC server for storage and analysis, or receive

calibration information from the PC. The PEMNET system does not measure surface

doses directly, as may be the case of dose area product meters (Shrimpton and Wall,

1982). Instead, the system is passively hardwired to the x-ray generator to acquire the

input signals listed in Table 3-1. These input signals permit the computation of surface

doses that patients would receive, if it were assumed that the same skin area is continually

exposed to the x-ray beam.

The PEMNET dosimetry system computed patient surface doses by using the x-

ray tube radiation output at the selected technique factors (kVp and mA) together with

information about the patient location relative to the x-ray tube and measured exposure

times. The patient location was determined from the height of the x-ray table relative to

the x-ray tube or by using an ultrasonic sensor at orientations where the position of the

table was not relevant, as in lateral views. When the x-ray table intercepted the x-ray

beam, x-ray attenuation by the table was taken into account. The surface dose was

computed in digital radiography, whereas the surface dose rate was determined in

fluoroscopy. In both digital radiography and fluoroscopy, the patient dosimetry system

calculated surface dose rates by sampling the radiation technique factors every 5 ms, and

by computing an average exposure rate every 800 ms. The surface skin exposure rate and

the cumulative surface skin exposure were displayed in real time for each imaging plane









on two panel displays adjacent to the image display monitors and were readily visible by

the neuroradiologic staff.



TABLE 3-1: List of the Input Signals Interfaced to the PEMNET Dosimetry System from
the Toshiba Neurobiplane Imaging Unit

Signal Description Comments

Tube Potential (kV) Radiographic or fluoroscopic

Tube Current (mA) Radiographic or fluoroscopic

Pulsed Fluoroscopy Current (mA) 20 mA or 50 mA

Table Height (cm) Relative to the floor plane

C-Arm Height (cm) Relative to the floor plane

C-Arm Angulation () RAO and CAU rotations

Ultrasonic Distance Measurement (cm) Active after a C-arm rotation of 15

NOTE: RAO = right anterior oblique; CAU craniocaudal.



Calibration

The x-ray tube radiation output was detmined from exposure measurements

obtained using an MDH 1015CO radiation monitor with a 10x5-6 ionization chamber

attached to the surface of an RSD RS-235** anthropomorphic head phantom as depicted

in Figure 3-3. For exposure calibrations, the ionization chamber was located at the

isocenter of each C-arm and in direct contact with the head phantom. For frontal (PA)

exposures, the ionization chamber was located at the occipital area of the



Radcal Corporation, Monrovia, CA
" Radiology Support Devices Inc; Long Beach, CA








anthropomorphic phantom, while for lateral exposures the chamber was located next to

the temporal bone of the phantom. All measurements of entrance skin exposures

included the contribution of backscatter radiation. The entrance skin exposure was

converted to the surface dose using the expression


D 87.7 Cz c J
D 1=- mGy (3.1)



where D is dose to muscle in mGy for monoenergetic photons, and X is the exposure in

roentgens; (ip),nuce is the mass energy absorption coefficient of muscle, and (,1/p,)a, is

the mass energy absorption coefficient of air. The ratio of mass energy absorption

coefficients of muscle to air does not change significantly with energy (about 4%

between 30 keV and 100 keV x rays) and can be taken to be equal to 1.06 for

polyenergetic, diagnostic x-ray spectra (Johns and Cunningham, 1983; Jones and Wall

1985; Wall et al., 1988). The dose D to muscle from polyenergetic x-ray spectra then is

given by

87 7
D = 87.7 x-xl.06xX=9.30xX mGy (3.2)
10

where both the dose in muscle and the exposure in air include contribution from

backscatter radiation.

X-ray generator signals fed to the patient dosimetry system were calibrated to read

the correct technique factors, source-to-patient distance and tube orientation. The

ultrasonic sensors attached to the side of each x-ray tube collimator were calibrated to

measure the x-ray source-to-patient surface distance directly. Measured surface doses

were entered into the patient dosimetry system and transferred to the PC server along









with kVp, mA, and exposure time information. A calibration program on the PC server

generated corresponding surface dose curves (third and fourth degree polynomials) as a

function of the applied kVp and mAs at different modes of operation (i.e., radiographic or

fluoroscopic) and transferred the curve coefficients back to the system's microprocessor.

Two calibrations were performed separately for each imaging plane, with and without the

presence of the x-ray table, in order to derive the table attenuation coefficients.




44











FIGURE 3-3: Calibration setup of the frontal plane (left) and lateral plane (right) using an
RSD RS-235 anthropomorphic head phantom.



Evaluation

The accuracy of the patient dosimetry system was evaluated in all fluoroscopic

and radiographic modes of operation. In fluoroscopy, the Toshiba neurobiplane unit may

be operated either in continuous or pulsed (15 or 30 frames/sec) mode. In the

radiographic mode, the unit may be operated either in cut film (CF) mode or in digital

subtraction angiography (DSA) mode. Each acquisition mode was investigated using the

geometry of a typical patient setup. The ionization chamber was attached to the

anthropomorphic phantom as shown in Figure 3-3. For the frontal plane system









evaluation, table attenuation and positioning were taken into consideration. There was no

table attenuation during testing of the lateral plane. The source-to-patient distance was

measured directly by the ultrasonic sensor in the lateral plane.

Measured surface doses were compared to the corresponding values computed by

the patient dosimetry system for the experimental arrangements listed in Table 3-2. Table

3-3 shows ratios of the measured, X., to calculated, Xc, surface doses obtained with the

patient dosimetry system. Average Xl/Xc ratios ( one standard deviation) over clinical

kV and mAs ranges are given in Table 3-3, together with the total number of individual

data points recorded. Changing the source to patient distance or the electronic

magnification during continuous fluoroscopy resulted in an average XJ/Xc ratio of

1.040.03. Simulation of a non-standard examination performed in the frontal plane,

with "maximized" changes made to all possible imaging parameters, resulted in a surface

dose computed by the patient exposure system of 0.98 Gy whereas the measured value

was 0.93 Gy (5% difference).

In general, these results demonstrated that the patient dosimetry system would

normally generate surface doses, which are within 5% of the true surface dose. The

uncertainties of threshold radiation doses for the induction of deterministic effects such as

skin erythema or epilation are considerably larger than 5% (Wagner et al., 1994; Rubin

and Casarett, 1968; UNSCEAR, 1988) due to factors such as the anatomical location and

size of the irradiated region, tissue vascularity and oxygenation, as well as the patient age,

genetic background and hormonal status. Thus the accuracy of the patient dosimetry

system is adequate for measuring surface doses to patients undergoing interventional

neuroradiologic procedures.









TABLE 3-2: Experimental Arrangements for Evaluating the Patient Dosimetry System

Arrangement Variables Purpose

Tube voltage

Tube current

Exposure time Evaluate the system
Imaging techniques response to technique
Frame rate changes

Electronic magnification

Geometric magnification

Continuous fluoroscopy

Pulsed fluoroscopy Evaluate the system
Image Acquisition Modes response in different image
Cut film acquisition modes
Digital subtraction
angiography
Image acquisition modes

Imaging techniques
Complete techniques Simulate a complete patient
neurointerventional Table height and location examination maximizing
procedure changes which are
procedure Source-to-image receptor technically possible to
(-1.0 Gy) distance determine an upper limit of
C-arm rotation the accuracy of the system
C-arm rotollimation
Collimation









TABLE 3-3: Summary of the Ratios of the Measured to Calculated Surface Doses, XA/Xc,
Obtained During Testing of the Accuracy of the Patient Exposure System
Operating Number Frontal Lateral Comments
-ivr i i .Comments
Mode of Tests Plane Plane
Continuous
Continuous 28 0.99 0.03 1.04 0.02
Fluoroscopy

Pulsed 13 0.96 0.02 0.96 0.02 kV and mAs techniques
Fluoroscopy we re.02 0.96 v-e0.02 wd

Radiography 10 0.94 0.05 1.01+ 0.01
(CF and DSA)
Continuous ,
Continuous min 1.03 1.01
Fluoroscopy

Pulsed 10 min 0.93 1.03 Automatic brightness
Fluoroscopy control (ABC) was used

Radiography 70
(CF and DSA) frames 0


NOTE: CF cut film acquisition; DSA = digital subtraction acquisition
SOURCE: Gkanatsios et al., 1997.


Data Acquisition

Following the introduction of the patient dosimetry system into clinical practice,

dosimetry data were obtained for 175 patients undergoing interventional neuroradiologic

examinations. At the end of each patient examination, the recorded surface dose data

were automatically uploaded to the PC server for subsequent analysis. A database with

information shown in Figure 3-4 was built. Dosimetry data were analyzed to provide

cumulative doses for each imaging mode on both imaging planes for the complete patient

neurointerventional procedure. In addition, dosimetry data were also obtained for

discrete kV intervals, as well as for discrete dose rate intervals.











Additional information made available by the patient dosimetry system included

the total fluoroscopic time, the number of times fluoroscopy was engaged, and the total


number of radiographic (cut film and DSA) images acquired.


Patient ID: Attending Radiologist j

Type of Exam E,.'3S M "l Fellow:. 3M

Date of Exam Resident

Age: W D BiplaneP"
MaleFN FemaeF


FRONTAL PLANE


f IMMUS
M)DROS~aili-


Time: -
Exposme: -
Engage.:


R<10:
R<20:
R>20:


Exposer
FRamer.


R00t
R<1ft
R<20:
R>20t


Time: -
Exposume:



R
R<20:
M-20: 3S


6O9kV:
65 kV:
70 kV:
75 kV:
80 kV:
05 kY:
90 kV:
QE Li.


(G0 kV:
60 kV:
65 kV:
70 kV:
75 kV:
80 kV:
85 kV:
90 kV:
ttl.f


-J W.. z;1 KYV
100kV: 100 V:
105 kV: 105 kV:
110 kV: 110 kV:

Record: "jI|J| 3a4 Ij |ml DI 114


<(60 kY:
60 kV:
65 kV:
70 kV:
75 kV:
80 kV:
85 kV:
90 kV:
95 kV:
100 LkV:
105 kV:
110 kV:


FIGURE 3-4: Sample page from the PEMNET database showing all recorded information
for the frontal imaging plane.


Time:
Expose:
Engage.


R R<20:
R>20:


DM*ITSAHH
StIiTsACiIONn









Fluoroscopyv

Dosimetric data including the surface dose received by the patient from use of

fluoroscopy, the total time of fluoroscopy, and the rate at which dose was delivered to the

patient were recorded by the patient dosimetry system. Additional recorded information

included the number of times fluoroscopy was engaged and the x-ray tube voltages used

in fluoroscopy during the course of a neuroradiologic procedure (seen in Figure 3-4).




X-Ray Beam Localization

During neurointerventional procedures, fluoroscopy was used to position the

catheter next to the vessel anomaly in the brain in order to inject contrast and

subsequently image the anomaly. Since the transfemoral artery technique was used to

guide the catheter to the vertebral or carotid arteries, some fluoroscopy was performed

over the truncal and thoracic regions of a patient. After studying the use of fluoroscopy

for ten patients, it was determined that, on average, about thirty seconds (34 11 sec) of

frontal plane fluoroscopy were spent on the truncal region and an additional two minutes

(133 77 sec) at the upper thoracic, lower neck region.

The amount of fluoroscopy performed over the truncal and thoracic regions was

relatively independent of the patient and the type of neurointerventional procedure.

Therefore, the surface dose corresponding to 2.5 minutes of fluoroscopy was subtracted

from the dose contributed by use of frontal plane fluoroscopy. The remaining dose was

considered to be absorbed in the head region of the patient. To subtract this fraction from

the surface dose to the head, the average dose rate was computed for each patient,









multiplied by 2.5 minutes and subtracted from the total surface dose corresponding to

frontal plane fluoroscopy.

During interventional neuroradiologic procedures, a 20-30 rotation of the x-ray

source in the sagittal plane of the patient may be used when acquiring radiographic

images. Although the central axis of the x-ray beam changes position on the surface of

the head with rotation of the x-ray source, there are parts of the x-ray beam, which

overlap before and after rotation. Such overlaps indicate that there are areas that will

always be exposed to radiation regardless of the applied x-ray source rotation. Thus, any

rotation of the x-ray source could be ignored when computing surface doses from

radiographic exposures, since the maximum surface dose to any given area of the head is

of interest.




Surface Doses

Figure 3-5 shows the histogram distribution of the patient surface doses received

from fluoroscopy alone. The median values of the fluoroscopic surface doses were 0.32

Gy and 0.11 Gy for the frontal and lateral imaging planes, respectively. Maximum

surface doses were computed at 2.4 Gy for the frontal plane and 2.7 Gy for lateral plane.

The data shown in Figure 3-5 do not differentiate between diagnostic and therapeutic

procedures.

The distribution of surface dose in frontal plane fluoroscopy was mainly spread

over the range of 0.0-0.8 Gy. In the lateral plane, the majority of patients (70%) received

less than 0.2 Gy with some patients (17%) receiving between 0.2-0.4 Gy. The lateral

plane was mainly used for catheter position verification and less for catheter









manipulation, which kept the surface doses in the lateral plane low in comparison to the

frontal plane. Surface doses at the tail of the dose distribution for each plane (above 0.6-

0.8 Gy) corresponded to embolization neuroradiologic procedures. Such procedures

require use of additional fluoroscopy for catheter positioning and verification at the site

of occlusion. Twenty-seven (15%) out of 175 patients recorded underwent cerebral

embolization.


150


120


90


60


30


0
0.


00-0.20


0.81-1.00 1.61-1.80
Surface Absorbed Dose (Gy)


2.41-2.60


FIGURE 3-5: Histogram distribution of surface doses for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) fluoroscopy.



Surface Dose Rates

Figure 3-6 shows the histogram distribution of the rate at which surface doses

were delivered to the patient during fluoroscopy. The median values of the fluoroscopic


FRONTAL
Median = 0.32 Gy
(Maximum) = 2.4 Gy

LATERAL
Median = 0.11 Gy
(Maximum) = 2.7 Gy







*'~ rJ i-B ^ _









surface dose rates were 37 mGy/min for the frontal plane and 43 mGy/min for the lateral

plane. The maximum skin dose rates recorded by the patient dosimetry system were

approximately 100 mGy/min for both planes. Since patient thickness is smaller in the

lateral dimension of the head, the automatic brightness control selects a lower tube

voltage (also seen in Figure 3-1), which increases the surface dose rate.

The histogram distribution of the surface dose rate in the frontal imaging plane

presents a normal distribution shape, but is widely spread over the range of mGy/min to

55 mGy/min. The dose rate distribution in the lateral plane is more concentrated at the

16-30 mGy/min and 46-65 mGy/min. In general, fluoroscopic imaging may vary

significantly from patient to patient due to variations in source-to-surface distance and the

selection of imaging techniques (i.e., kVp/mA).



30
FRONTAL
Median =37 mGy/min
(Maximum) = 99
20 mGy/min
4c 2
L -LATERAL
SMedian = 43 mGy/min
0 (Maximum) = 101
E10 niGy/min
z



0
o n E! n: : .


0.0-5.0 30.1-35.0 60.1-65.0 90.1-95.0
Surface Absorbed Dose Rate (mGylmin)
FIGURE 3-6: Histogram distribution of surface dose rates for 175 patients from frontal
plane (black bars) and lateral plane (gray bars) fluoroscopy.









Fluoroscopic Times and Intervals

Other useful information recorded by the patient dosimetry system included the

total time of fluoroscopy and the number of times fluoroscopy was engaged during an

interventional neuroradiologic procedure. Figure 3-7 shows the histogram distribution of

total fluoroscopic times in each imaging plane. The frontal plane was most frequently

used with a median value of 12 minutes per patient examination compared to a median

value of 3.0 minutes in the lateral plane. The fluoroscopic times in the frontal plane were

more spread over the range of 5-20 minutes in comparison to the lateral plane, which

used less than 5 min of fluoroscopy for the majority (73%) of the patients. The data

shown in Figure 3-7 include both diagnostic and embolization neuroradiologic

procedures with the higher values corresponding to the latter. For embolization

procedures, the duration of fluoroscopy may be extended well beyond the median values

to times as high as 70 minutes and 41 minutes for the frontal and lateral planes,

respectively.

Figure 3-8 shows a histogram distribution of the number of times fluoroscopy was

engaged on each imaging plane. The median number of times that the operator initiated

fluoroscopy was 62 in the frontal plane and 26 in the lateral plane. This difference clearly

indicates the extensive use of fluoroscopy in the frontal imaging plane during

interventional neuroradiologic procedures. Increased number of fluoroscopic instances

also indicate higher surface doses (seen in Figure 3-5) and longer fluoroscopic times

(Figure 3-7) between the frontal and lateral imaging planes.










150
FRONTAL
120 Median = 12 min
(Maximum) = 70 min


0 LATERAL
C. Median = 3.0 min
4m
0, (Maximum) =41 min
I-
S60
E
z
30


0 ,1 T, I I
0.0-5.0 20.1-25.0 40.1-45.0 60.1-65.0
Fluoroscopic Time (min)

FIGURE 3-7: Histogram distribution of fluoroscopic times to 175 patients from frontal
plane (black bars) and later plane (gray bars) fluoroscopy.


Catheter positioning primarily done using the frontal imaging plane varies widely

from patient to patient. This difference between frontal and lateral imaging planes

introduced a wider spread to the histogram distribution of fluoroscopic intervals

corresponding to the frontal plane, as shown in Figure 3-8. Both distributions, however,

show long tails with a maximum of 226 fluoroscopic intervals in the frontal plane and

170 intervals in the lateral plane. Such tails on the distribution may account for the need

to use additional fluoroscopy during embolization procedures.










60-
FRONTAL
Median = 62
(45 (Maximum) = 226
e-
*LATERAL
C. Median = 26
'`30 (Maximum)= 170
I-
E

0





0.0-15.0 90.1-105.0 180.1-195.0
Fluoroscopic Intervals

FIGURE 3-8: Histogram distribution of fluoroscopic intervals for 175 patients from
frontal plane (black bars) and lateral plane (gray bars) fluoroscopy.



Radiography

Dosimetric data on the surface dose received by the patient from use of

radiographic imaging (i.e., cut film and DSA images), the number of radiographic frames,

and the dose per frame were recorded by the patient dosimetry system. Additional

recorded information included the radiographic tube voltages used during the course of a

neuroradiologic procedure (seen in Figure 3-4).




X-Ray Beam Localization

Radiographic image acquisitions are performed almost exclusively on the head

region during interventional neuroradiologic procedures. The majority of them is









performed employing the digital subtraction angiography (DSA) technique. As discussed

under x-ray beam localization for fluoroscopy, the main goal is to compute the maximum

doses delivered to any surface of a patient's head. Similarly to fluoroscopy, radiography

may also be considered unaffected by the small degree of x-ray source angulation usually

applied to the frontal imaging plane in the sagittal plane of the patient.




Surface Doses

Figure 3-9 shows the histogram distribution of the patient surface doses received

from radiographic acquisitions. The median values of the radiographic surface doses

were 0.80 Gy and 0.50 Gy for the frontal and lateral planes, respectively. The maximum

radiographic dose recorded in the frontal plane was 4.8 Gy, twice the maximum dose

recorded in fluoroscopy for the same plane. In the lateral plane the maximum

radiographic surface dose was 3.8 Gy, about 30% higher than the maximum dose from

fluoroscopy in the same plane.

Although the histogram distribution of the radiographic surface doses in the

frontal plane has a longer tail and a higher median value than the dose distribution in the

lateral plane, both distributions are very similar. This supports the fact that frontal and

lateral plane radiography are equally utilized during any type of interventional

neuroradiologic procedure.




Surface Dose Rates

Figure 3-10 shows the histogram distribution of the surface dose per frame in

radiographic imaging with median values of 2.5 mGy/friame and 1.8 mGy/frame for the








frontal and lateral planes, respectively. Maximum doses of 5.6 mGy/frame were recorded

in the frontal plane and 4.9 mGy/frame in the lateral plane. In general, the size and

densities of the head region do not vary significantly among patients. Similar tube

voltages would be used for all radiographic imaging acquisitions. Therefore, the

distribution of doses per frame depends mostly on changes to the source-to-surface

distance (i.e., use of different degrees of magnification among patients). In the frontal

plane where geometric magnification is more frequently used, the dose per frame

distribution approaches that of a wide normal shaped distribution. In the lateral plane

where magnification is not uses as often, the distribution is steeper (less variability).



75 -
FRONTAL
Median = 0.80 Gy
(Maximum) = 4.8 Gy
50
._50 LATERAL
W. rMedian = 0.50 Gy
S(Maximum) = 3.8 Gy
L.
S25
Zo



0 C*

0.00-0.30 1.21-1.50 2.41-2.70 3.61-3.90
Surface Absorbed Dose (Gy)
FIGURE 3-9: Histogram distribution of surface doses for 175 patients from frontal plane
(black bars) and lateral plane (gray bars) radiography.









Radiographic Frames

Figure 3-11 shows the histogram distribution of the number of radiographic

(DSA) frames acquired during diagnostic and therapeutic neuroradiologic procedures.

Median values of 353 frames and 316 frames were recorded for the frontal and lateral

plane, respectively. Due to the complexity of some embolization procedures, however,

the number of frames acquired to evaluate the progress of an occlusion may run as high

as 1400 in the frontal plane and 1000 in the lateral plane.




45
FRONTAL
Median = 2.5 mGy/frame
(Maximum) = 5.6 mGy/frame
30
0 ~LATERAL
C. Median = 1.8 mGy/frame
'Maximum) = 4.9 mGy/frame


z



0

0.00-0.30 1.51-1.80 3.01-3.30 4.51-4.80
Surface Absorbed Dose per Frame (mGylframe)
FIGURE 3-10: Histogram distribution of surface dose rates for 175 patients from frontal
plane (black bars) and lateral plane (gray bars) radiography.


As shown by the distribution of radiographic frames in both planes, the number of

imaging frames required in each procedure is variable. Depending on the degree of

difficulty of extracting diagnostic information from the acquired images, as well as the









type of anomaly to be diagnosed, the number of radiographic images acquired is normally

between 100 and 500 frames. Embolization procedures, on the other hand, may require

two to four times the number of radiographic images to complete the associated tasks.




45
FRONTAL
Median = 353 frame
(Maximum) = 1388 frame
30
(I)_
LATERAL
.. Median = 316 frame
|(Maximum) = 999 frame

E15

z

.4!

0*
0-100 401-500 801-900 1201-1300
Number of Radiographic Frames
FIGURE 3-11: Histogram distribution of the number of radiographic frames for 175
patients from frontal plane (black bars) and lateral plane (gray bars)
radiography.



Conclusions

Figure 3-12 shows the histogram distributions of the total surface dose to the

patient from the use of fluoroscopy and radiography during an interventional

neuroradiologic procedure. The medians of the total surface dose were 1.2 Gy and 0.64

Gy for the frontal and lateral plane, respectively. The maximum surface dose received by

a patient was of the order of 5 Gy for both imaging planes. The majority of the doses









were concentrated between 0.2 Gy and 1.2 Gy for both imaging planes. A significant

number of higher doses, however, was indicated by the tails of the two histogram

distributions. Most of the dose was contributed by radiography, which accounts for the

67% of the total surface dose in the frontal plane and 78% of the total dose in the lateral

plane. Fluoroscopy only accounted for the 33% and 22% of the total surface dose in the

frontal and lateral plane, respectively.

Although 28% of the patients in this study may have exceeded the nominal

threshold absorbed dose to the skin for the induction of deterministic effects (2 Gy), there

were no cases of epilation or skin erythema observed in this series of 175 patients. This

is not surprising since any erythema would be fleeting and faint. Epilation would only be

identified by a slightly different amount of hair loss, as perceived when combing one's

hair, and would not require total loss of hair. For acute radiation exposures, observable

effects such as total epilation are more likely to occur at doses in excess of 6 Gy (Huda

and Peters, 1994).

Several factors need to be considered in predicting the likelihood of deterministic

effects to patients undergoing neuroradiologic examinations. One factor is the fact that

radiation doses are delivered over an extended time period, which may be as long as

several hours. Of great importance is also the fact that the radiation field is varied over

the patient. For individuals with the highest radiation exposures, the neuroradiologist

generally makes a concerted effort to either move the relative orientation of the x-ray

beam or to utilize the orthogonal imaging plane in so far as these options do not adversely

impact the required imaging information. Many of the neuroradiologic imaging

procedures also make use of wedge shaped transparent filters which serve to reduce the









radiation doses at the periphery of the x-ray field of view whilst maintaining image

quality within the central region. All these factors reduce the likelihood of deterministic

injuries to patients and should be practiced during extended neuroradiologic procedures.


60




to
1 40
'I
a.
4-
0
k.

E 20
z


0.00-0.30 1.51-1.80 3.01-3.30 4.51-4.80

Surface Absorbed Dose (Gy)
FIGURE 3-12: Histogram distribution of the total surface doses to 175 patients from
frontal plane (black bars) and later plane (gray bars) fluoroscopy and
radiography combined.














CHAPTER 4
ENERGY IMPARTED AND EFFECTIVE DOSE IN NEURORADIOLOGY



Introduction

The effective dose, E, is a dosimetric parameter which takes into account the doses

received by all irradiated radiosensitive organs and may be taken to be measures of the

stochastic risk (ICRP, 1977, 1991). Although the effective dose is an occupational dose

quantity based on an age profile for radiation workers, this dose descriptor is being

increasingly used to quantify the amount of radiation received by patients undergoing

diagnostic examinations which use ionizing radiation (ICRP, 1987; NCRP, 1989;

UNSCEAR, 1993). Notwithstanding the fact that there are problems associated with

converting effective doses to a corresponding detriment (Huda and Bews, 1990), there are

important benefits to be gained by using effective dose to quantify patient doses in

diagnostic radiology. One advantage is that the effective dose attempts to measure the

stochastic risk to the patient, which is the motivation for all patient dosimetry studies in

diagnostic radiology. In addition, the effective dose to a patient undergoing any

examination may be compared to that of any other radiologic procedure as well as natural

background exposure and regulatory dose limits (ICRP, 1991; NRC, 1995a, 1995b).

Measurements or computations of effective doses from x-ray examinations are

difficult and time consuming. An additional problem is that most measurements or

calculations make use of a standard phantom based on the reference man as defined by

the International Commission on Radiological Protection (ICRP, 1975). Although the

60









importance of patient size for medical radiation dosimetry has been recognized

(Lindskoug, 1992; Chappel et al., 1995), it is not obvious how to scale the effective dose

computed for standard man to different size patients, such as pediatric patients, who

undergo similar examinations. These limitations impede the wider use of effective dose

in radiology. Huda and Gkanatsios (1997) developed a more practical approach to

compute effective doses from energy imparted for a variety of radiologic examinations

and different size patients including infants and children. This method was used in this

chapter to compute effective doses from computed values of energy imparted to patients

undergoing interventional neuroradiologic procedures.

Exposure-area products to different regions of the body and at different tube

voltages were used to compute values of energy imparted, e, from interventional

neuroradiologic procedures (Gkanatsios, 1995; Gkanatsios and Huda, 1997). Values of

energy imparted were converted to patient effective dose, E, using Ele conversion factor

corresponding to the projections and body regions irradiated during interventional

neuroradiologic procedures. Values of Ele for the posterio-anterior (PA) projections of

the abdomen, chest and cervical spine and for the PA and lateral (LAT) views of the head

were obtained from radiation dosimetry data computed using Monte Carlo calculations on

an adult anthropomorphic phantom (Hart et al., 1994a). This method was extended to

determine effective doses to pediatric patients who differ in mass from the adult sized

phantom.









Method




Energy Imparted

The energy imparted, e, to a patient undergoing any radiologic x-ray examination

can be estimated by modeling the phantom as a slab of water with thickness z using the

expression

e= o x ESE x A J (4.1)


where Co is the energy imparted per entrance exposure-area product, ESE is the exposure

measured free-in-air at the beam entrance plane of the phantom, and A is the area of

exposure also measured at the entrance plane (Gkanatsios, 1995; Gkanatsios and Huda,

1997).

The parameter oC depends on the water phantom thickness z, the x-ray tube

voltage and x-ray beam half-value layer (Gkanatsios, 1995; Gkanatsios and Huda, 1997)

Values of co can be computed from

co = a x HVL + 0 J R1 cm-2 (4.2)

where a and fl are coefficients that depend on tube voltage and phantom thickness, and

HVL is the half-value layer of the x-ray beam at a given tube voltage in mm of

aluminum. Figure 4-1 shows the behavior of co as a function of water phantom thickness

for x-ray tube voltages of 60 kVp, 80 kVp and 100 kVp as apply to the x-ray tube and

table filtration of the neuro-biplane Toshiba imaging system. Examples of a and f8

coefficients and half-value layers of the x-ray beams at different tube voltages are given

in Table 4-1.






63


200
0 100 kVp (HVL = 5.3 mm AI)
x80 kVp (HVL =4.3 mm AI)
150 A 60 kVp (HVL = 3.2 mm Al)

E
= J..-- -.- -

u y^ .,---..
h100 A.



50




0 10 20 30 40
Water Phantom Thickness (cm)

FIGURE 4-1: Values of co as a function of water phantom thickness for tube voltages of
60 kVp, 80 kVp and 100 kVp.
NOTE: The values of co were computed for constant voltage
waveforms, an x-ray tube anode angle of 11 and 6.0 mm Al
filtration (x-ray tube filtration plus table filtration of the Toshiba
frontal imaging plane).


The free-in-air entrance exposures to the patient, ESE, were obtained from the

patient exposure data recorded by the frontal and lateral patient exposure meters at 5 kVp

intervals (Figure 3-4). The recorded exposures included the contribution of backscatter

radiation from an RSD RS-235t anthropomorphic head phantom. Therefore, backscatter

fractions measured using the same phantom were subtracted from the recorded exposures.

Table 4-2 lists measured backscatter fractions for the RSD RS-235 anthropomorphic head

phantom as a function of tube voltage for the frontal and lateral imaging planes.


t Radiology Support Devices Inc; Long Beach, CA









TABLE 4-1: Computed a and ft Coefficients and Half-Value Layers for X-Ray Beams as a
Function of Tube Voltage

Tube Voltage a coefficient Coefficient HVL-Frontal HVI--Lateral
a Coefficient C c(mm Al) (Cmm Al)
(kVp)_______'_____( m l __ ( m l
50 2.275E-05 1.300E-05 2.64 1.85

60 2.229E-05 1.895E-05 3.23 2.23

70 2.147E-05 2.521E-05 3.77 2.59

80 2.031E-05 3.215E-05 4.32 2.96

90 1.899E-05 3.910E-05 4.85 3.35

100 1.771E-05 4.557E-05 5.34 3.74

110 1.654E-05 5.145E-05 5.80 4.12

120 1.549E-05 5.673E-05 6.23 4.51

NOTE: a and f8 coefficients were computed for a water phantom
thickness of 20 cm. The half-value layers were determined for constant
voltage waveforms, an x-ray tube anode angle of 11, 6.0 mm Al
filtration for the frontal imaging system (x-ray tube filtration plus table
filtration) and 3.0 mm Al filtration for the lateral imaging system (x-ray
tube filtration).



Energy imparted values were computed separately for fluoroscopy and

radiography. In frontal plane fluoroscopy, the abdominal, upper thoracic, lower neck and

head regions were irradiated. As determined in Chapter 3, about thirty seconds of frontal

plane fluoroscopy were spent on average on the abdominal region and an additional two

minutes at the upper thoracic, lower neck region. The exposures corresponding to these

fluoroscopic times were used to compute the energy imparted to the abdomen and upper

chest, lower neck body regions. The remaining fluoroscopic exposure was focused over

the head region and was used to compute the energy imparted to the head. In lateral









fluoroscopy, frontal radiography and lateral radiography all exposure was taken to be

incident on the head region.



TABLE 4-2: Backscatter Fractions of Radiation Exposure at Different Tube Voltages
Tube Voltage Backscatter Backscatter
(kVp) Factor (Frontal) Factor (Lateral)
50 0.056 0.119

60 0.073 0.130

70 0.084 0.135

80 0.096 0.140

90 0.107 0.143

100 0.110 0.147

110 0.116 0.154

120 0.121 0.157

NOTE: Backscatter fractions were determined using the RSD RS-235
anthropomorphic head phantom.



For the purpose of computing energy imparted, the water equivalent thickness of

the irradiated region as well as the area of exposure at the x-ray beam entrance surface

were required. Table 4-3 lists the water equivalent thickness and exposure area of the

head regions corresponding to different age groups used to compute energy imparted to

the head. Table 4-4 lists the water equivalent thickness and exposure area for different

age groups used to compute energy imparted to the abdominal and upper thoracic, lower

neck regions.









TABLE 4-3: Patient Thickness and Area of Exposure Corresponding to the Head Region
of Different Age Groups

Patient Head PA LAT PA Area of
SDensity Thickness Thickness Exposure
Age (g/cm3) (cm) (cm) (cm2)

Newborn 1.057 12.3 9.51 86.7

1-yr-old 1.071 16.7 13.1 160

5-yr-old 1.090 19.8 15.5 221

10-yr-old 1.095 20.6 16.2 239

15-yr-old 1.104 21.6 17.2 265

Adult 1.112 22.2 17.8 279


NOTE: PA thickness and LAT thickness represent the equivalent
thickness of a water phantom computed from the physical dimensions
and density of the head. The area of exposure for each patient group in
the PA projection was computed using the physical dimensions of the
head. The area of exposure in the LAT projection was estimated to be
equivalent to 1.2 of the corresponding areas in the PA projection.
SOURCE: Densities and physical diameters of the head region at
different age groups were taken from Huda et al., 1997.


Adult Effective Doses

The National Radiological Protection Board (NRPB) have performed a

comprehensive series of Monte Carlo dose calculations for the most common x-ray

projections (Hart et al., 1994a). The Monte Carlo runs made use of a hermaphrodite

anthropomorphic phantom with a mass of 70.9 kg and a height of 174 cm, which included

the female breasts, ovaries, uterus and testes. Each Monte Carlo run tracked the pattern

of energy deposition in the anthropomorphic phantom from primary and scattered

photons for total 4,000,000 photons used with each x-ray projection. A total of 68

separate views were obtained using x-ray spectra generated between 50 kVp and 120 kVp









with added filtration ranging from 2 mm Al to 5 mm Al. X-ray spectral data were

obtained using an updated version of a computer program published by Iles (1987).



TABLE 4-4: Patient Thickness and Area of Exposure Corresponding to the Trunk Region
of Different Age Groups

Trunk Abdomen Chest/Neck PA Area of
Patient Densit Thickness Thickness Exposure
Age (em -PA- -PA- (cm')
(glcm3) (cm) (cm)

Newborn 0.995 9.75 9.00 175

1-yr-old 1.002 13.0 11.2 175

5-yr-old 1.000 15.0 13.2 175

10-yr-old 1.005 16.9 13.8 175

15-yr-old 1.030 20.2 14.6 175

Adult 1.018 20.4 15.0 175

NOTE: The PA thickness represents the equivalent thickness of a water
phantom computed from the physical diameters and density of the
trunk.
SOURCE: Densities and physical diameters of the trunk region at
different age groups were taken from Huda et al., 1997.



For each x-ray examination, the Monte Carlo dosimetry data generated by the

NRPB permitted the computation of the effective dose, E, as defined by the International

Commission on Radiological Protection (ICRP, 1977, 1991). The phantom breast dose

and the mean of the testes and ovary doses were used to determine the contributions to

the effective dose from the breast and gonads, respectively. The Monte Carlo dosimetry

data also provided the mean doses to three body regions consisting of the head, Dh, trunk,









D, and legs, D,. Mean doses to these three body regions were used to compute the mean

energy imparted to the patient, e, using the equation

S= Dh x 5.8 +D, x 43.0 +D, x 22.1 J (4.3)


where the mass of the head is 5.8 kg, the mass of the trunk, including the arms, is 43.0

kg and the mass of the legs is 22.1 kg.

The complete dosimetry results of these Monte Carlo simulations have been made

available in a software format (Hart et al., 1994b) and were used to obtain the values of

effective dose and energy imparted for specific projections as applied to radiation

exposures during interventional neuroradiologic procedures. These projections were the

posterio-anterior projections of the abdomen, chest, cervical spine, and head regions, as

well as the right lateral projection of the head region. For each x-ray projection, values of

El/ were computed at eight tube voltages ranging between 50 kV and 120 kV and

generated at 10 kV intervals with a beam filtration equivalent to 3.0 mm aluminum

(lateral plane) and 6.0 mm aluminum (frontal plane). The effective dose per unit energy

imparted, Ele (mSv J'), for the projections of the trunk and head regions are given in

Table 4-5. The average Ele ratios of the chest and C-spine projections at each kVp were

used to determine effective doses from irradiation of the upper thoracic, lower neck

region.


I Wall BF. Private communication (1996).








Pediatric Effective Dose

By definition, 1 Gy of uniform whole body irradiation to x-rays results in an

effective dose of 1 Sv and is independent of the mass of the exposed individual. For a

70.9 kg anthropomorphic adult subject to uniform whole body irradiation, energy

imparted can be directly converted into effective dose with one joule corresponding to an

effective dose of 14.1 mSv. For uniform whole body irradiation, the effective dose E(M)

to an individual with a mass M (Table 4-6) who absorbs a total of e J is given by


E(M) = c x 14.1 x 70--9 mSv (4.4)
M

Figure 4-2 shows how the effective dose varies with the patient mass for uniform whole

body irradiation with a total of one joule imparted to the individual.

For nonuniform exposures normally encountered in diagnostic radiology, the

relative radiosensitivity of the irradiated region needs to be taken into account when

obtaining the effective dose. The relative radiosensitivity of any body region remains

approximately constant with age (ICRP, 1991; Almen and Mattsson, 1996). For instance,

if the head accounts for x% of the total stochastic risk in adults uniformly exposed to x-

rays, this body region will also account for approximately x% of the total stochastic risk

for any other age group. As a result, the effective dose to a patient of mass M kg for a

given x-ray projection i who absorbs joules of energy is obtained using


E'(^\ E} 70.9
E{M)=ex 7. mSv (4.5)
i M









where (E/le), is the ratio of effective dose to energy imparted (mSv J') obtained for the

same projection i in the adult anthropomorphic phantom with a mass of 70.9 kg.

Standard masses of patients of different ages are given in Table 4-6.



TABLE 4-5: Values of Effective Dose per Unit Energy Imparted, Ele in mJ/Sv, for
Different Body Projections as a Function of Tube Voltage

SAbdomen Chest C-Spine Head Head
kVp (PA) (PA) (PA) (PA) (LAT)

50 10.7 12.8 4.19 4.06 4.08

60 12.0 13.6 4.67 4.62 4.56

70 13.2 14.1 5.04 5.00 4.94

80 13.9 14.6 5.40 5.40 5.29

90 14.5 15.0 5.66 5.68 5.61

100 14.9 15.4 5.92 5.90 5.87

110 15.4 15.6 6.11 6.17 6.06

120 15.8 15.8 6.27 6.32 6.24

NOTE: The values of Ele corresponding to PA views were computed
for 6.0 mm Al filtration (frontal imaging plane). The values of Ele
corresponding to the Head LAT view were computed for 3.0 mm Al
filtration (lateral imaging plane).


TABLE 4-6: Standard Patient Mass for Different Age Groups

Age Newborn 1-yr-old 5-yr-old 10-yr-old 15-yr-old Adult
Group
Patient
Mat 3.4 9.8 19 32 55 70.9
MassSOURCE: Huda e(kg) al., 1997.
SOURCE: Huda el al.. 1997.









1000


3.0 kg for a new born


Cl)
IuJ

o 100







10

10 100

Patient Mass (kg)

FIGURE 4-2: Effective dose as a function of patient mass for one joule of uniform whole
body irradiation.



Adult Patient Doses

The following sections summarize the energy imparted and effective doses to adult

patients from interventional neuroradiologic procedures. One hundred and forty nine

adult patients, 132 of them underwent diagnostic angiographic and seventeen underwent

therapeutic embolization procedures, were studied. Fluoroscopy and radiographic

acquisitions were reviewed separately.




Energy Imparted

Figure 4-3 shows the histogram distribution of the energy imparted to patients

from use of fluoroscopy during interventional neuroradiologic procedures. The median









value of energy imparted was 1.77 J with energy imparted in the frontal plane being the

major component of fluoroscopy. The distribution of energy imparted in fluoroscopy was

mainly spread over the range of 0-5 J. Fourteen (9%) of 149 adult patients received more

than 5 J with three (2%) patients receiving more than 10 J of energy imparted from

fluoroscopy with a maximum value of 12.6 J. Although there was no separation done in

the distribution between diagnostic angiographic and therapeutic embolization

procedures, the median value of energy imparted to patients who underwent

embolizations was 3.48 J. Six of the seventeen embolization patient exceeded the value

of 5 J.


IiL.


BIPLANE FLUOROSOPY
Median = 1.77 J
Maximum = 12.6 J

FRONTAL FLUOROSOPY
Median = 1.33 J
Maximum = 9.67 J

LATERAL FLUOROSOPY
Median = 0.31 J
Maximum = 8.98 J


4-5 8-9
Energy Imparted (J)


12-13


FIGURE 4-3: Histogram distribution of energy imparted to patients from use of
fluoroscopy during interventional neuroradiologic procedures.


60



U,
40
CL
N.0.
(.
o
0

E 20
z



0


I


mm m









Figure 4-4 shows the histogram distribution of the energy imparted to patients

from radiographic acquisitions during interventional neuroradiologic procedures. The

median value of energy imparted was 4.30 J. The distribution of energy imparted from

radiographic acquisitions was mainly spread over the range of 0-10 J. Sixteen (11%) of

149 adult patients received between 10 J and 15 J. A maximum value of 21.2 J was

recorded. The median value of energy imparted to patients who underwent therapeutic

embolization procedures was 8.40 J. Seven of the seventeen embolization patients

received energy imparted from radiographic acquisitions greater than 10 J.



30
BIPLANE RADIOGRAPHY
Median = 4.30 J
Maximum = 21.2 J
(a
S20 |FRONTAL RADIOGAPHY
E2 Median= 2.71 J
Maximum = 16.6 J
0
LATERAL RADIOGRAPHY
E 10 Median= 1.26J
Z Maximum = 10.9 J





0-1 5-6 10-11 15-16 20-21
Energy Imparted (J)

FIGURE 4-4: Histogram distribution of energy imparted to patients from radiographic
acquisitions during interventional neuroradiologic procedures.


Figure 4-5 shows the histogram distributions of the total energy imparted to adult

patient from diagnostic angiographic and therapeutic embolization neuroradiologic









procedures. The median value of the total energy imparted was 6.69 J. The maximum

energy imparted received by a patient was 26.9 J. The majority of the patients who

underwent interventional neuroradiologic procedures received up to 14 J of energy

imparted. Fifteen (10%) of the adult patients shown by the tail of the distribution in

Figure 4-5 received energy imparted between 14 J and 27 J. The median value of the

total energy imparted to patients who underwent therapeutic embolization procedures was

13.3 J. Eight of the seventeen embolization patients exceeded the 14 J value of total

energy imparted. The largest fraction of energy imparted was produced by radiographic

acquisitions. The average fraction of energy imparted from radiographic acquisitions was

about 66% of the total energy imparted. Only one third of the total energy imparted was

accounted for use of fluoroscopy.




Effective Doses

Figure 4-6 shows the histogram distributions of the total effective dose to adult

patient from diagnostic angiographic and therapeutic embolization neuroradiologic

procedures. The median value of the total effective doses was 36 mSv. The majority of

the patients who underwent interventional neuroradiologic procedures received between

10 mSv and 70 mSv of effective dose. The tail of the histogram distribution shown in

Figure 4-6 corresponds to nineteen (13%) patients who received effective doses greater

than 70 mSv. The median value of the total effective dose to patients who underwent

therapeutic embolization procedures was 74 mSv. Ten of the seventeen embolization

patients exceeded the 70 mSv value of total effective dose. As in surface doses and

energy imparted, radiographic acquisitions accounted for the largest fraction of the










effective dose to adult patients. On average, about 64% of the effective dose

corresponded to radiographic acquisitions. Use of fluoroscopy accounted for only one

third of the total effective dose received by patients during interventional neuroradiologic

procedures.


0 ,JU
4.2
0
4'
0.
o 20
,I-

E

Z10



0


0-2 8-10 16-18 24-26
Energy Imparted (J)


FIGURE 4-5: Histogram distribution of the total energy imparted to patients undergoing
diagnostic angiographic and therapeutic embolization neuroradiologic
procedures.



Pediatric Patient Doses

The following sections summarize the energy imparted and effective doses to

pediatric patients from interventional neuroradiologic procedures. Twenty-six pediatric

patients (younger than 20 years of age), sixteen of them underwent diagnostic









angiographic and ten underwent therapeutic embolization procedures, were studied.

Fluoroscopy and radiographic acquisitions were reviewed separately.


Sou
(I) L




S3
0
0U
o 20
L.
0
.0
E
z10




0


0-10 60-70 120-130
Effective Dose (mSv)


FIGURE 4-6: Histogram distribution of the total effective dose to patients from biplane
neuroradiologic examinations.



Energy Imparted

Figure 4-7 plots the energy imparted to pediatric patients from fluoroscopy as a

function of patient mass. The mass of each patient was interpolated from Table 4-6

according to the age of the patient. As Figure 4-7 shows, there is no significant

correlation of energy imparted to patient mass. The median value of energy imparted

from fluoroscopy to all pediatric interventional neuroradiologic procedures was 1.04 J.

Pediatric patients who underwent therapeutic embolization procedures had a median of









1.62 J. The median value of energy imparted from fluoroscopy to adult patients who

underwent interventional neuroradiologic procedures was 1.77 J.


A
S4-
(0

E

I-l
0 2-
C


40
Patient Mass (kg)


FIGURE 4-7:


Energy imparted as a function of patient mass from fluoroscopy during
interventional neuroradiologic procedures on pediatric patients. Line
shows the linear fit between energy imparted and patient mass.


Figure 4-8 plots the energy imparted to pediatric patients from radiographic

acquisitions as a function of patient mass. As was the case for fluoroscopy, there was no

significant correlation between the energy imparted from radiographic acquisitions and

patient mass. The median value of energy imparted from radiographic acquisitions to all

pediatric interventional neuroradiologic procedures was 2.01 J. Pediatric patients who

underwent therapeutic embolization procedures had a median value of energy imparted of


BIPLANE FLUOROSOPY
Therapeutic
x Diagnostic




UX
*X
x


m m x=.0 ______

5V
A N i i , t , I x t , t N t i









2.61 J. The median value of energy imparted from radiographic acquisitions to adult

patients who underwent interventional neuroradiologic procedures was 4.30 J.


BIPLANE RADIOGRAPHY
Therapeutic
12 X Diagnostic


9 U

x
6 X
r'= 0.17 .--''

3-X
3 X
,., x x
m X X X
n I I If l i i i i i i i i i i !- i 1 1 1 i 1 i- j 1 1 1 1 1- I i i i i
0
n .. . .


40
Patient Weight (kg)


FIGURE 4-8: Energy imparted as a function of patient mass from radiographic
acquisitions during interventional neuroradiologic procedures on
pediatric patients. Line shows the linear fit between energy imparted and
patient mass.


Figure 4-9 plots the total energy imparted to pediatric patients during

interventional neuroradiologic procedures as a function of patient mass. As Figure 4-9

shows, there was no significant correlation between total energy imparted from

interventional neuroradiologic procedures and patient mass. The median value of total

energy imparted to all pediatric interventional neuroradiologic procedures was 3.45 J.

Pediatric patients who underwent therapeutic embolization procedures had a median

value of energy imparted of 4.09 J. The median value of energy imparted from









radiographic acquisitions to adult patients who underwent interventional neuroradiologic

procedures was 6.69 J.


20



-15
"O

E 10
C


'U


40
Patient Mass (kg)


FIGURE 4-9:


Energy imparted as a function of patient mass from interventional
neuroradiologic procedures on pediatric patients. Line shows the linear
fit between energy imparted and patient mass.


Effective Doses

Figure 4-10 plots the total effective dose to pediatric patients from interventional

neuroradiologic procedures as a function of patient mass. Although the pediatric data of

the total effective doses are widely scattered (r2 = 0.3), a linear correlation between

effective dose and patient mass is evident. The median value of total effective dose to all

pediatric interventional neuroradiologic procedures was 44 mSv and was higher

compared to the median value of 36 mSv effective dose to adult patients. Pediatric


FLUOROSCOPY
&
RADIOGRAPHY
Therapeutic
x Diagnostic



t
x
,X





: M X X
. . . . . .








patients who underwent therapeutic embolization procedures had a median value of 66

mSv effective dose.


250


200


150-


100-


50 -


40
Patient Mass (kg)


FIGURE 4-10: Effective dose as a function of patient mass from interventional
neuroradiologic procedures on pediatric patients. Line shows the linear
fit between effective dose and patient mass.



Discussion

Major errors in determining energy imparted to patients result when estimating the

equivalent water phantom thickness, z, and due to the implicit differences between a

(finite) heterogeneous patient and a semi-infinite homogeneous water phantom. Figure

4-1 shows the energy imparted per unit exposure-area product, c, as a function of

phantom thickness for a range of x-ray tube voltages. The largest increase of co with

phantom thickness is expected at small thicknesses, given that the mean free path of


FLUOROSCOPY
&
X RADIOGRAPHY

Therapeutic
x Diagnostic

x
X

Adult median

X r' 00. 3xK


X K1


t









monoenergetic photons in water ranges from 4.4 cm at 50 keV to 6.6 cm at 140 keV.

Once the phantom thickness reaches about three or four mean free paths, most of the x-

ray photons will have been absorbed and any further increase of the phantom thickness

will have little affect on Cw.

Figure 4-1 shows that at 80 kV, the thickness of the water phantom used to simulate

a patient for the purposes of estimating energy imparted generally will not be a critical

parameter for applications with phantom thicknesses greater than 15 cm. Since the water

equivalent size of an adult head is between 18 cm (lateral view) and 22 cm (frontal view),

small deviations from the average sizes given in Table 4-3 will have a minimal effect on

the computation of energy imparted. A difference between a 20 cm and 22 cm phantom

thickness at 80 kVp is of the order of 2%. Even for pediatric patients where the size of

the head is smaller (13 cm to 17 cm for 1-yr-olds), a 2 cm error in estimating the water

equivalent thickness will result in a maximum error of about 5% when computing energy

imparted.

Minor errors in computing energy imparted to patients arise from the use of

diverging x-ray beams in clinical applications and the presence of nonuniformities in x-

ray beam intensity due to the heel effect. The former is likely to be of negligible

importance whereas the latter could easily be accounted for by experimentally obtaining

an average entrance skin exposure over the beam area. Measuring the exposure at the

centerline of the x-ray beam is also a good approximation of the average exposure over

the entire field. Another error in determining energy imparted from irradiation to the

head region results from occasional use of wedge shaped transparent filters which serve

to reduce the radiation doses at the periphery of the x-ray field of view whilst maintaining









image quality within the central region. Such filters are used during imaging of the

frontal view of the head and can attenuate the entrance exposure by about 50% at 80 kVp.

As these filters cover an area between 10% and 20%, an overestimate of the energy

imparted from frontal imaging plane fluoroscopy of the order of 5% to 10% can occur.

Use of Equation (4.4) permits the determination of the approximate values of

effective doses to pediatric patients who undergo radiologic examinations. The NRPB

has recently published dosimetric data on pediatric patients ranging from the newborn to

15 year olds (Hart et al., 1996). Figure 4-11 shows a comparison between the Ele values

obtained using Equation (4.4) (continuous line) with the NRPB data (solid circles), which

were determined by performing Monte Carlo calculations in a range of anthropomorphic

phantoms of different age. Differences between these two data sets, when averaged over

the five ages investigated, were 17% with the largest differences shown for the 1-yr-old

(31%) and 5-yr-old (36%) phantoms. Such differences may be due to pediatric heads

accounting for a markedly larger fraction of the total body masses in these ages compared

to adults. It is of interest to note, however, that use of different types of anthropomorphic

phantoms to determine pediatric effective doses in planar radiography can result in

differences in effective dose of the order of 30% (Hart et al., 1996b).

In general, the effective doses computed in this work compare three to six times

higher to values published by others for similar interventional neuroradiologic procedures

(Feygelman et al., 1992; Bergeron et al., 1994; McParland, 1998; Berthelson and

Cederblad, 1991). However, all other reported values refer to limited number of 8-28

procedures, and none of them made use of means of recording radiation exposures in real

time. Different imaging equipment, setup and imaging procedures among institutions









play a major role to how different effective doses may be among institutions. The fact

that Shands hospital at the University of Florida is an academic institution that trains new

neurointerventional radiologists may also account for some of the differences between the

recorded effective doses in this work and others.




Conclusions

Values of energy imparted from interventional neuroradiologic procedures were

high due to the demands and complexity of these procedures. The median value of the

total energy imparted to adult patients who underwent interventional neuroradiologic

procedures was 6.69 J. Pediatric patients received a median value of energy imparted of

3.45 J from interventional neuroradiologic procedures. In the case of therapeutic

embolization procedures, additional use of fluoroscopy is required for catheter

manipulation and positioning at the site of occlusion, as well as extensive radiographic

acquisitions to evaluate the progress of the occlusion. Such demands increased the

median values of energy imparted to adults undergoing therapeutic embolization

procedures to 13.3 J. Pediatric embolizations received a median value of 4.09 J. Overall,

radiographic acquisitions accounted for two thirds of the total energy imparted, with

fluoroscopy contributing only one third. There was no significant correlation between

energy imparted from interventional neuroradiologic procedures and patient mass.










1000-

S/ Equation (4.4)


Newborn
S100-



^1 -yr
-to

S5-yr 10-yr Adul
:15-yr




1 10 100
Patient Mass (kg)

FIGURE 4-11: Comparison of Ele values vs. patient age as determined by Equation (4.4)
and by using the dosimetry data from Hart et al. (1996a).
NOTE: Values of Ele were computed for the right lateral
projection of the head.





Effective doses computed for the 149 adult patients who underwent interventional

neuroradiologic procedures had a median value of 36 mSv. Pediatric patients received a

median effective dose of 44 mSv from interventional neuroradiologic procedures. The

median effective dose to adults undergoing therapeutic embolization procedures was 74

mSv. Pediatric embolizations received a median effective dose of 66 mSv. As was the

case for energy imparted, radiographic acquisitions accounted for two thirds of the total

effective dose, with fluoroscopy contributing only one third. Unlike energy imparted,

effective doses showed a good linear correlation with patient mass.









The use of the effective dose permits an estimate of stochastic risk to be obtained

by using current stochastic risk coefficients (ICRP, 1991; UNSCEAR, 1993; NAS, 1990).

At the last attempt of the ICRP (1991) to estimate absolute stochastic risks from whole-

body irradiation, a risk coefficient of 5x10.5 cancers per mSv of effective dose was

derived. Using this risk coefficient, the median effective dose of 36 mSv to adult patients

would result in one fatal cancer for every 555 interventional neuroradiologic procedures.

An effective dose of 74 mSv to adults undergoing therapeutic embolization procedures

would result in one fatal cancer for every 270 such procedures. The immediate, life

saving benefits of interventional neuroradiologic procedures, however, far outweigh the

risk of distant stochastic effects associated with these procedures. Also, such risk

coefficients need to be treated with great caution given the current uncertainties

associated with the extrapolation of radiation risks from high doses to those normally

encountered in diagnostic radiology (Fry, 1996; Puskin and Nelson, 1996).

In the case of pediatric patients undergoing interventional neuroradiologic

procedures, it is important to note that any resultant stochastic detriment will depend on

the age of the exposed individual. The stochastic radiation risks of carcinogenesis and

genetic effects are generally greater for children than for adults to at least a factor of two

(ICPR, 1991; NCRP, 1985). These factors would need to be taken into account when

converting any pediatric effective doses into a value of risk or detriment. As a result,

direct comparisons of pediatric doses with those of adults need to be treated with

circumspection.














CHAPTER 5
IMAGE QUALITY



Image Acquisition

A phantom made of acrylic incorporating 1.0 mm diameter cylindrical vessels

filled with iodinated contrast was used to investigate signal detection during digital

subtraction angiography (DSA). The detection of signal from iodinated vessels was

evaluated by studying the threshold iodine contrast concentration detected in images

acquired under specified parameters using digital image subtraction.




Phantom Description

Figure 5-1 illustrates the phantom used to simulate 1.0 mm diameter vessels for

the purpose of evaluating image quality in neuroradiology. The phantom consists of

stacked acrylic blocks with dimensions of 30 cm x 30 cm x 1.3 cm. An insert holder

made of acrylic with a thickness of 1.3 cm is positioned at the center of the phantom to

accommodate a vessel insert. A blank and a vessel insert measuring 30 cm x 9.0 cm x

1.3 cm were made out of acrylic. The blank insert was used to acquire mask images

during digital subtraction angiography. The vessel insert had thirty cylindrical vessels

1.0 mm in diameter and 35 mm in length drilled along its midplane at intervals of 8.0 mm

apart. The total phantom thickness was 16.5 cm of acrylic, which was taken to be






87

equivalent to about 20 cm of water taking the density of acrylic to be 1.19 g/cm3 (Shleien,

1992).


Acrylic
H' I er


it~


-4------


Vessel
Insert


Blank
Insert


Insert Slide


Acrylic
Blocks


FIGURE 5-1: Schematic diagram of the acrylic phantom with the vessel and blank inserts
used to simulate small vessels for the purpose of evaluating image quality
in neuroradiology.


I-


----i









The vessels on the acrylic insert were filled with iodinated contrast prepared from

Ultravist" 300 iopromide solution diluted in heparin solution. The iodine concentrations

in the contrast medium used to fill each vessel ranged from 50 mg/cc iodine in contrast

solution to about 5.0 mg/cc as given in Table 5-1. The iodine concentration in each

vessel was made to be 92% of the previous concentration.




Acquisition of Digitally Subtracted Images

The general experimental setup shown in Figure 5-2 used an x-ray source to

image receptor distance (SID) of 105 cm (maximum SID) with the acrylic phantom

positioned so that the geometric magnification of the vessel insert was 1.2. A 10x5-6

ionization chamber of an MDH 1015C*** exposure meter was attached to the beam

entrance surface of the phantom to record entrance exposure. A 10x5-60tt1 ionization

chamber of a second MDH 1015C exposure meter was attached to the surface of the

image intensifier behind the grid to record the input exposure to the image receptor. Both

ionization chambers were positioned carefully not to overlap with the vessels of the

vessel insert as shown in Figure 5-3.

The 23 cm diameter image intensifier mode was used for all image acquisitions.

The generator was set to manual techniques allowing fine adjustments of the tube voltage

(kVp), tube current (mA) and exposure time (ms). The optical gain was electronically

adjusted by changing the diameter of the iris located between the image intensifier output

phosphor and TV camera lens to produce a constant video level. All digital subtraction


H Berlex Laboratories, Wayne, NJ
**" Radcal Corporation, Monrovia, CA.




Full Text

PAGE 1

3$7,(17 '26(6 $1' ,0$*( 48$/,7< ,1 ,17(59(17,21$/ 1(8525$',2/2*< %\ 1,.2/$26 $ *.$1$76,26 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/(*(0(176 ZRXOG OLNH WR JUDWHIXOO\ DFNQRZOHGJH WKH IROORZLQJ ZKR KDYH KHOSHG PH WKURXJKRXW P\ JUDGXDWH ZRUN f 'U :DOWHU +XGD P\ DGYLVRU IRU KLV LQYDOXDEOH JXLGDQFH WLPH DQG SDWLHQFH WKURXJKRXW WKH FRXUVH RI WKLV UHVHDUFK DQG WKH SUHSDUDWLRQ RI WKLV GLVVHUWDWLRQ DP YHU\ JUDWHIXO IRU KLV FRQWLQXRXV DGYLFH DQG VXJJHVWLRQV WKURXJKRXW P\ JUDGXDWH ZRUN f 0\ 3K' FRPPLWWHH PHPEHUV 3URI -DPHV 6 7XOHQNR 'U :HVOH\ ( %ROFK 'U -DQLFH & +RQH\PDQ 'U .HLWK 5 3HWHUV DQG 'U ,UYLQH ) +DZNLQV IRU UHYLHZLQJ P\ SURJUHVV DQG JXLGLQJ PH WKURXJK P\ 3K' UHVHDUFK f 0V /\QQ 5LOO IRU KHU YDOXDEOH WLPH HYDOXDWLQJ DOO WKH UDGLRJUDSKLF LPDJHV DQG IRU KHU UHYLHZ DQG FRPPHQWV RQ WKH PDQXVFULSW f 0U 'HQQLV 3LQQHU IURP 7RVKLED $PHULFD 0HGLFDO 6\VWHPV IRU KLV YDOXDEOH LQVLJKWV LQWR XQGHUVWDQGLQJ WKH LPDJLQJ HTXLSPHQW DQG IRU SURYLGLQJ PH ZLWK WKH UHTXHVWHG LQIRUPDWLRQ DQG GRFXPHQWDWLRQ RQ WKH LPDJLQJ V\VWHP f 7KH 'HSDUWPHQW RI 5DGLRORJ\ IRU JLYLQJ PH WKH JUDGXDWH DVVLVWDQWVKLS WR SXUVXH P\ JUDGXDWH VWXGLHV DQG IRU DOO WKH UHVRXUFHV WKH\ PDGH DYDLODEOH IRU PH WKURXJKRXW P\ JUDGXDWH UHVHDUFK f 0\ EHORYHG SDUHQWV $QDVWDVLD DQG $UJ\ULRV *NDQDWVLRV IRU WKHLU ORYH HQFRXUDJHPHQW DQG VXSSRUW WKURXJKRXW DOO P\ HQGHDYRUV 7KH\ DUH WKH RQHV ZKR PDGH WKLV SRVVLEOH IRU PH

PAGE 3

7$%/( 2) &217(176 $&.12:/(*(0(176 LL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLLL $%675$&7 [L &+$37(56 ,1752'8&7,21 ,QWHUYHQWLRQDO 1HXURUDGLRORJ\ 3DWLHQW 'RVLPHWU\ 'RVH 0RQLWRULQJ 6\VWHPV ,PDJH 4XDOLW\ 3XUSRVH RI 7KLV :RUN /,7(5$785( 5(9,(: ,QWURGXFWLRQ ,QWHUYHQWLRQDO 1HXURUDGLRORJLF 3URFHGXUHV 'HWHUPLQLVWLF 5DGLDWLRQ (IIHFWV 6WRFKDVWLF 5DGLDWLRQ (IIHFWV 'RVLPHWU\ 6XUIDFH 'RVH (QHUJ\ ,PSDUWHG (IIHFWLYH 'RVH ,PDJH 4XDOLW\ ,PDJH &RQWUDVW ,PDJH 1RLVH 6SDWLDO 5HVROXWLRQ ,PDJLQJ 7HFKQLTXH )DFWRUV 7XEH 3RWHQWLDO ,QSXW ([SRVXUH WR WKH ,PDJH 5HFHSWRU 0DJQLILFDWLRQ 685)$&( '26(6 LLL

PAGE 4

1HXURUDGLRORJLF ,PDJLQJ &OLQLFDO 3UDFWLFH ,PDJLQJ (TXLSPHQW 2SHUDWLRQ ,PDJLQJ 7HFKQLTXHV 7KH 3DWLHQW 'RVLPHWU\ 6\VWHP 6\VWHP 'HVFULSWLRQ &DOLEUDWLRQ (YDOXDWLRQ 'DWD $FTXLVLWLRQ )OXRURVFRS\ ;5D\ %HDP /RFDOL]DWLRQ 6XUIDFH 'RVHV 6XUIDFH 'RVH 5DWHV )OXRURVFRSLF 7LPHV DQG ,QWHUYDOV 5DGLRJUDSK\ ;5D\ %HDP /RFDOL]DWLRQ 6XUIDFH 'RVHV 6XUIDFH 'RVH 5DWHV 5DGLRJUDSKLF )UDPHV &RQFOXVLRQV (1(5*< ,03$57(' $1' ())(&7,9( '26( ,1 1(8525$',2/2*< ,QWURGXFWLRQ 0HWKRG (QHUJ\ ,PSDUWHG $GXOW (IIHFWLYH 'RVHV 3HGLDWULF (IIHFWLYH 'RVH $GXOW 3DWLHQW 'RVHV (QHUJ\ ,PSDUWHG (IIHFWLYH 'RVHV 3HGLDWULF 3DWLHQW 'RVHV (QHUJ\ ,PSDUWHG (IIHFWLYH 'RVHV 'LVFXVVLRQ &RQFOXVLRQV ,0$*( 48$/,7< ,PDJH $FTXLVLWLRQ 3KDQWRP 'HVFULSWLRQ $FTXLVLWLRQ RI 'LJLWDOO\ 6XEWUDFWHG ,PDJHV 'RVLPHWU\ DQG ,PDJH 4XDOLW\ 'RVLPHWU\ ,PDJH 4XDOLW\ (YDOXDWLRQ 3UHFLVLRQ RI 0HDVXUHPHQWV ,9

PAGE 5

5HVXOWV 7XEH 9ROWDJH ,PDJH ,QWHQVLILHU ,QSXW ([SRVXUH *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 'LVFXVVLRQ 3DWLHQW 6XUIDFH 'RVH (QHUJ\ ,PSDUWHG ,PDJH 4XDOLW\ &RQFOXVLRQV &21&/86,216 3DWLHQW 'RVLPHWU\ 6XUIDFH 'RVHV (IIHFWLYH 'RVHV ,PDJH 4XDOLW\ )XWXUH :RUN %,%/,2*5$3+< %,2*5$3+,&$/ 6&+(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH SDJH 'HWHUPLQLVWLF (IIHFWV RI WKH 6NLQ DIWHU 6LQJOH)UDFWLRQ ,UUDGLDWLRQ /LVW RI WKH ,QSXW 6LJQDOV ,QWHUIDFHG WR WKH 3(01(7 'RVLPHWU\ 6\VWHP IURP WKH 7RVKLED 1HXURELSODQH ,PDJLQJ 8QLW ([SHULPHQWDO $UUDQJHPHQWV IRU (YDOXDWLQJ WKH 3DWLHQW 'RVLPHWU\ 6\VWHP 6XPPDU\ RI WKH 5DWLRV RI WKH 0HDVXUHG WR &DOFXODWHG 6XUIDFH 'RVHV ;-;& 2EWDLQHG 'XULQJ 7HVWLQJ RI WKH $FFXUDF\ RI WKH 3DWLHQW ([SRVXUH 6\VWHP &RPSXWHG D DQG &RHIILFLHQWV DQG +DOI9DOXH /D\HUV IRU ;5D\ %HDPV DV D )XQFWLRQ RI 7XEH 9ROWDJH %DFNVFDWWHU )UDFWLRQV RI 5DGLDWLRQ ([SRVXUH DW 'LIIHUHQW 7XEH 9ROWDJHV 3DWLHQW 7KLFNQHVV DQG $UHD RI ([SRVXUH &RUUHVSRQGLQJ WR WKH +HDG 5HJLRQ RI 'LIIHUHQW $JH *URXSV 3DWLHQW 7KLFNQHVV DQG $UHD RI ([SRVXUH &RUUHVSRQGLQJ WR WKH 7UXQN 5HJLRQ RI 'LIIHUHQW $JH *URXSV 9DOXHV RI (IIHFWLYH 'RVH SHU 8QLW (QHUJ\ ,PSDUWHG (OV LQ P-6Y IRU 'LIIHUHQW %RG\ 3URMHFWLRQV DV D )XQFWLRQ RI 7XEH 9ROWDJH 6WDQGDUG 3DWLHQW 0DVV IRU 'LIIHUHQW $JH *URXSV ,RGLQH &RQWUDVW &RQFHQWUDWLRQ LQ (DFK 9HVVHO RI WKH 9HVVHO ,QVHUW ,PDJLQJ 7HFKQLTXHV 'XULQJ 7XEH 9ROWDJH ([SHULPHQWV ,PDJLQJ 7HFKQLTXHV 'XULQJ *HRPHWULF 2EMHFW 0DJQLILFDWLRQ ([SHULPHQWV 6FRUH 'HVFULELQJ WKH 9LVLELOLW\ RI (DFK ,RGLQH &RQWUDVW &RQFHQWUDWLRQ 7XEH 9ROWDJH 'HSHQGHQF\ DW S5IUDPH 7XEH 9ROWDJH 'HSHQGHQF\ DW S5IUDPH YL

PAGE 7

,PDJH ,QWHQVLILHU ,QSXW ([SRVXUH 'HSHQGHQF\ *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 'HSHQGHQF\ DW S5IUDPH *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 'HSHQGHQF\ DW S5IUDPH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH 6XUIDFH 'RVH IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW S5IUDPH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH 6XUIDFH 'RVH IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW S5IUDPH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH (QHUJ\ ,PSDUWHG IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW /RZ ,QSXW ([SRVXUHV ,OO &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH (QHUJ\ ,PSDUWHG IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW +LJK ,QSXW ([SRVXUHV 9OO

PAGE 8

/,67 2) ),*85(6 )LJXUH 5DJH 8QVXEWUDFWHG LPDJH OHIWf ZKHUH DQDWRPLFDO GHWDLOV DUH PL[HG ZLWK GLDJQRVWLF LQIRUPDWLRQ 'LJLWDOO\ VXEWUDFWHG DQJLRJUDP ULJKWf ZKHUH DQDWRPLFDO LQIRUPDWLRQ KDV EHHQ VXEWUDFWHG WR DOORZ HDVLHU YLVXDOL]DWLRQ RI YDVFXODWXUH .H\ SDUDPHWHUV WKDW DIIHFW SDWLHQW GRVH DQG LPDJH TXDOLW\ LQ [UD\ LPDJLQJ +LVWRJUDP RI VXUIDFH GRVH FRQWULEXWLRQ DW GLIIHUHQW [UD\ WXEH YROWDJHV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ IRU DQ DYHUDJH LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH +LVWRJUDP RI VXUIDFH GRVH FRQWULEXWLRQ DW GLIIHUHQW [UD\ WXEH YROWDJHV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ IRU DQ DYHUDJH LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH &DOLEUDWLRQ VHWXS RI WKH IURQWDO SODQH OHIWf DQG ODWHUDO SODQH ULJKWf XVLQJ DQ 56' 56 DQWKURSRPRUSKLF KHDG SKDQWRP 6DPSOH SDJH IURP WKH 3(01(7 GDWDEDVH VKRZLQJ DOO UHFRUGHG LQIRUPDWLRQ IRU WKH IURQWDO LPDJLQJ SODQH +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVH UDWHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ +LVWRJUDP GLVWULEXWLRQ RI IOXRURVFRSLF WLPHV WR SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHU SODQH JUD\ EDUVf IOXRURVFRS\ +LVWRJUDP GLVWULEXWLRQ RI IOXRURVFRSLF LQWHUYDOV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVH UDWHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ YLLL

PAGE 9

+LVWRJUDP GLVWULEXWLRQ RI WKH QXPEHU RI UDGLRJUDSKLF IUDPHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO VXUIDFH GRVHV WR SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHU SODQH JUD\ EDUVf IOXRURVFRS\ DQG UDGLRJUDSK\ FRPELQHG 9DOXHV RI FR DV D IXQFWLRQ RI ZDWHU SKDQWRP WKLFNQHVV IRU WXEH YROWDJHV RI N9S N9S DQG N9S (IIHFWLYH GRVH DV D IXQFWLRQ RI SDWLHQW PDVV IRU RQH MRXOH RI XQLIRUP ZKROH ERG\ LUUDGLDWLRQ +LVWRJUDP GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG WR SDWLHQWV IURP XVH RI IOXRURVFRS\ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV +LVWRJUDP GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG WR SDWLHQWV IURP UDGLRJUDSKLF DFTXLVLWLRQV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO HQHUJ\ LPSDUWHG WR SDWLHQWV XQGHUJRLQJ GLDJQRVWLF DQJLRJUDSKLF DQG WKHUDSHXWLF HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUHV +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO HIIHFWLYH GRVH WR SDWLHQWV IURP ELSODQH QHXURUDGLRORJLF H[DPLQDWLRQV (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP IOXRURVFRS\ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP UDGLRJUDSKLF DFTXLVLWLRQV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV (IIHFWLYH GRVH DV D IXQFWLRQ RI SDWLHQW PDVV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HIIHFWLYH GRVH DQG SDWLHQW PDVV &RPSDULVRQ RI (H YDOXHV YV SDWLHQW DJH DV GHWHUPLQHG E\ (TXDWLRQ f DQG E\ XVLQJ WKH GRVLPHWU\ GDWD IURP +DUW HW DO Df 6FKHPDWLF GLDJUDP RI WKH DFU\OLF SKDQWRP ZLWK WKH YHVVHO DQG EODQN LQVHUWV XVHG WR VLPXODWH VPDOO YHVVHOV IRU WKH SXUSRVH RI HYDOXDWLQJ LPDJH TXDOLW\ LQ QHXURUDGLRORJ\ ,;

PAGE 10

([SHULPHQWDO VHWXS IRU '6$ DFTXLVLWLRQV 3RVLWLRQ RI WKH WZR LRQL]DWLRQ FKDPEHUV UHODWLYH WR WKH YHVVHO LQVHUW OHIWf 6XEWUDFWHG LPDJH ULJKWf 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI WXEH YROWDJH 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI WXEH YROWDJH 7KH FLUFOHV FRUUHVSRQG WR WKH S5IUDPH DQG KDYH EHHQ ILWWHG WR N9S 7KH VTXDUHV FRUUHVSRQG WR WKH S5IUDPH DQG KDYH EHHQ ILWWHG WR N9S 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH DW N9S 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH IRU D FRQVWDQW YLGHR OHYHO DW N9S 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH DW N9S 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI JHRPHWULF REMHFW PDJQLILFDWLRQ DW N9S &KDQJH LQ VXUIDFH GRVH YHUVXV FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZLWK WXEH YROWDJH LQSXW H[SRVXUH DQG PDJQLILFDWLRQ &KDQJH LQ HQHUJ\ LPSDUWHG YHUVXV FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZLWK WXEH YROWDJH LQSXW H[SRVXUH DQG PDJQLILFDWLRQ [

PAGE 11

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 3$7,(17 '26(6 $1' ,0$*( 48$/,7< ,1 ,17(59(17,21$/ 1(8525$',2/2*< %\ 1LNRODRV $ *NDQDWVLRV 'HFHPEHU &KDLUPDQ -DPHV 6 7XOHQNR &RFKDLUPDQ :DOWHU +XGD 0DMRU 'HSDUWPHQW 1XFOHDU DQG 5DGLRORJLFDO (QJLQHHULQJ 'LDJQRVWLF DQG WKHUDSHXWLF LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV LQYROYH LPDJLQJ RI FDWKHWHU PDQLSXODWLRQ DQG YDVFXODU DQRPDOLHV RI WKH EUDLQ DQG JHQHUDOO\ UHTXLUH H[WHQVLYH XVH RI [UD\ UDGLDWLRQ .QRZOHGJH RI WKH VXUIDFH GRVH DOORZV RQH WR HVWLPDWH WKH SUREDELOLW\ RI LQGXFLQJ GHWHUPLQLVWLF HIIHFWV ZKHUHDV WKH FRUUHVSRQGLQJ YDOXH RI HIIHFWLYH GRVH LV UHODWHG WR WKH SDWLHQW VWRFKDVWLF ULVN 0RGLILFDWLRQ RI NH\ LPDJLQJ SDUDPHWHUV LH WXEH YROWDJH LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU DQG JHRPHWULF PDJQLILFDWLRQf LPSDFW RQ SDWLHQW GRVHV DQG LPDJH TXDOLW\ ZLWK WKH ODWWHU EHLQJ GHILQHG DV WKH ORZHVW FRQFHQWUDWLRQ RI LRGLQH LQ D YHVVHO WKDW PD\ EH YLVXDOO\ GHWHFWHG LQ WKH UDGLRJUDSKLF LPDJH $ GRVLPHWU\ V\VWHP ZDV LQVWDOOHG RQ D ELSODQH QHXURUDGLRORJLF LPDJLQJ V\VWHP WR GHWHUPLQH WKH GRVHV WR SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH GRVLPHWU\ V\VWHP FRPSXWHG VXUIDFH GRVHV RQ WKH EDVLV RI VHOHFWHG WHFKQLTXH IDFWRUV DQG LQIRUPDWLRQ DERXW SDWLHQW ORFDWLRQ UHODWLYH WR WKH [UD\ [L

PAGE 12

WXEH 7KH HQHUJ\ LPSDUWHG WR WKH SDWLHQW H ZDV GHWHUPLQHG XVLQJ WKH VXUIDFH GRVH [UD\ EHDP TXDOLW\ LH N9S DQG +9/f H[SRVXUH DUHD DQG WKLFNQHVV RI WKH SDWLHQW DQG ZDV FRQYHUWHG LQWR WKH FRUUHVSRQGLQJ YDOXH RI HIIHFWLYH GRVH ( 9DOXHV RI VXUIDFH GRVH DQG ( ZHUH REWDLQHG IRU SDWLHQWV FRQVLVWLQJ RI DGXOWV DQG SHGLDWULFV 0HGLDQ YDOXHV RI VXUIDFH GRVHV WR WKH KHDG UHJLRQ ZHUH *\ LQ WKH IURQWDO SODQH DQG *\ LQ WKH ODWHUDO SODQH 0HGLDQ YDOXHV RI WKH HIIHFWLYH GRVHV ZHUH P6Y IRU DGXOW SDWLHQWV DQG P6Y IRU SHGLDWULF SDWLHQWV $Q DFU\OLF SKDQWRP ZLWK PP GLDPHWHU YHVVHOV ILOOHG ZLWK LRGLQH FRQWUDVW ZDV XVHG WR HYDOXDWH WKH HIIHFWV RI YDU\LQJ LPDJLQJ SDUDPHWHUV RQ VLJQDO GHWHFWLRQ DQG SDWLHQW GRVHV GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ 5HGXFLQJ WKH [UD\ WXEH YROWDJH RIIHUHG WKH ODUJHVW LPSURYHPHQW LQ LPDJH TXDOLW\ IRU D JLYHQ LQFUHDVH LQ SDWLHQW GRVH ,QFUHDVLQJ WKH LPDJH LQWHQVLILHU LQSXW H[SRVXUH EH\RQG S5IUDPH SURYLGHG YHU\ OLWWOH LPSURYHPHQW LQ LPDJH TXDOLW\ DQG WKLV ,, H[SRVXUH OHYHO VKRXOG QRW EH H[FHHGHG LQ LQWHUYHQWLRQDO QHXURUDGLRORJLF LPDJLQJ $ OLQHDU UHODWLRQVKLS ZDV REVHUYHG EHWZHHQ PDJQLILFDWLRQ DQG WKUHVKROG FRQFHQWUDWLRQ ZKLFK RIIHUV VLJQLILFDQW SDWLHQW EHQHILWV ZKHQ VXUIDFH GRVHV DUH QRW H[SHFWHG WR H[FHHG WKH WKUHVKROG GRVHV IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV ;OO

PAGE 13

&+$37(5 ,1752'8&7,21 ,QWHUYHQWLRQDO 1HXURUDGLRORHY 1HXURUDGLRORJ\ LV D PXOWLLPDJLQJ VFLHQFH ZKLFK XWLOL]HV DOO LPDJLQJ PRGDOLWLHV LH SODLQ ILOP GLJLWDO UDGLRJUDSK\ FRPSXWHG WRPRJUDSK\ PDJQHWLF UHVRQDQFH LPDJLQJ QXFOHDU PHGLFLQH HWFf WR DFFRPSOLVK D FRPSOHWH GLDJQRVLV RI KXPDQ QHXURORJ\ 1HXURUDGLRORJ\ FDQ EH GLVWLQJXLVKHG DV FRQYHQWLRQDO RU LQWHUYHQWLRQDO QHXURUDGLRORJ\ &RQYHQWLRQDO QHXURUDGLRORJ\ XVHV PRGDOLWLHV VXFK DV SODLQ ILOP UDGLRJUDSK\ FRPSXWHG WRPRJUDSK\ &7f PDJQHWLF UHVRQDQFH LPDJLQJ 05,f DQG XOWUDVRXQG 86f WR GLDJQRVH QHXURORJLF DEQRUPDOLWLHV ,QWHUYHQWLRQDO QHXURUDGLRORJ\ VWXGLHV WKH YDVFXODWXUH DQG EORRG NLQHWLFV RI WKH EUDLQ E\ PHDQV RI FDWKHWHUL]DWLRQ SHUIRUPHG ZLWK WKH WUDQVIHPRUDO DUWHU\ WHFKQLTXH ,QWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV FDQ EH IXUWKHU GLVWLQJXLVKHG DV GLDJQRVWLF DQJLRJUDSKLF RU WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV 7KH LPDJLQJ SRUWLRQ RI DQ\ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH LV DFFRPSOLVKHG E\ XVH RI GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f ,Q GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ D PDVN LPDJH LV EHLQJ VXEWUDFWHG IURP DQ LPDJH HQKDQFHG ZLWK LQMHFWHG LRGLQDWHG FRQWUDVW WR LVRODWH YDVFXODWXUH VWUXFWXUHV IURP WKH UHVW RI WKH DQDWRP\ DV VKRZQ LQ )LJXUH ,QWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RIWHQ LQYROYH ORQJ IOXRURVFRSLF H[SRVXUH WLPHV DQG WKH DFTXLVLWLRQ RI D ODUJH QXPEHU RI UDGLRJUDSKLF LPDJHV $V D UHVXOW WKHUH LV D SRVVLELOLW\ RI LQGXFWLRQ RI GHWHUPLQLVWLF UDGLDWLRQ HIIHFWV VXFK DV VNLQ HU\WKHPD DQG HSLODWLRQ ,W LV DOVR LPSRUWDQW WR GHWHUPLQH WKH VWRFKDVWLF ULVNV LQYROYHG LQ VXFK

PAGE 14

SURFHGXUHV LQ ERWK DGXOW DQG SHGLDWULF SDWLHQWV 0RGLILFDWLRQ RI NH\ LPDJLQJ SDUDPHWHUV LH WXEH YROWDJH LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU DQG JHRPHWULF PDJQLILFDWLRQf LPSDFW RQ LPDJH TXDOLW\ DQG SDWLHQW GRVHV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH HIIHFWV RI WKHVH SDUDPHWHUV RQ LPDJH TXDOLW\ DQG SDWLHQW GRVHV VKRXOG EH TXDQWLILHG DQG RSWLPL]HG LQ RUGHU WR HQVXUH DGHTXDWH GLDJQRVWLF LPDJH TXDOLW\ DQG UHGXFHG SDWLHQW GRVHV )LJXUH 8QVXEWUDFWHG LPDJH OHIWf ZKHUH DQDWRPLFDO GHWDLOV DUH PL[HG ZLWK GLDJQRVWLF LQIRUPDWLRQ 'LJLWDOO\ VXEWUDFWHG DQJLRJUDP ULJKWf ZKHUH DQDWRPLFDO LQIRUPDWLRQ KDV EHHQ VXEWUDFWHG WR DOORZ HDVLHU YLVXDOL]DWLRQ RI YDVFXODWXUH 3DWLHQW 'RVLPHWU\ 7KH VXUIDFH GRVH LV WKH GRVLPHWULF TXDQWLW\ WKDW PHDVXUHV WKH GRVH DEVRUEHG LQ WKH VXUIDFH RI DQ LUUDGLDWHG UHJLRQ IURP UDGLDWLRQ H[SRVXUHV 7KH VXUIDFH GRVH DFFRXQWV IRU WKH HQHUJ\ DEVRUEHG LQ WKH VNLQ DQG FDQ SUHGLFW WKH SRVVLELOLW\ RI LQGXFLQJ GHWHUPLQLVWLF LQMXULHV IURP KLJK GRVH LQWHUYHQWLRQDO UDGLRORJLF SURFHGXUHV LH FDUGLDF FDWKHWHUL]DWLRQ DEGRPLQDO LQWHUYHQWLRQDO RU QHXURLQWHUYHQWLRQDO SURFHGXUHVf 'HWHUPLQLVWLF LQMXULHV

PAGE 15

DVVRFLDWHG ZLWK LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV SULPDULO\ FRQVLVW RI LQMXULHV LQGXFHG WR WKH VNLQ RI WKH SDWLHQW VXFK DV VNLQ HU\WKHPDV DQG HSLODWLRQV .QRZOHGJH RI VXUIDFH GRVHV PD\ DOVR SURYLGH LQIRUPDWLRQ RQ WKH SUREDELOLW\ RI GHWHUPLQLVWLF LQMXULHV WR WKH OHQV RI WKH H\H IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH HIIHFWLYH GRVH ( LV D GRVLPHWULF SDUDPHWHU ZKLFK WDNHV LQWR DFFRXQW WKH GRVHV UHFHLYHG E\ DOO LUUDGLDWHG UDGLRVHQVLWLYH RUJDQV 7KH HIIHFWLYH GRVH LV DEOH WR DFFRXQW IRU QRQXQLIRUP LUUDGLDWLRQ RI GLIIHUHQW RUJDQV DQG WLVVXHV LQ WKH ERG\ DQG FDQ EH XVHG DV DQ LQGLFDWRU RI WKH VWRFKDVWLF UDGLDWLRQ ULVN DVVRFLDWHG ZLWK UDGLRORJLF [UD\ H[DPLQDWLRQV 'HWHUPLQLQJ HIIHFWLYH GRVHV IRU UDGLRORJLF H[DPLQDWLRQV E\ PHDVXUHPHQW RU FDOFXODWLRQ LV JHQHUDOO\ YHU\ GLIILFXOW %\ FRQWUDVW WKH HQHUJ\ LPSDUWHG H WR WKH SDWLHQW PD\ EH REWDLQHG IURP WKH [UD\ H[SRVXUHDUHD SURGXFW LQFLGHQW RQ WKH SDWLHQW $V HQHUJ\ LPSDUWHG LV DSSUR[LPDWHO\ SURSRUWLRQDO WR WKH HIIHFWLYH GRVH IRU DQ\ JLYHQ [UD\ UDGLRJUDSKLF YLHZ WKH DYDLODELOLW\ RI (OH UDWLRV +XGD DQG *NDQDWVLRV f IRU FRPPRQ UDGLRJUDSKLF SURMHFWLRQV SURYLGHV D FRQYHQLHQW ZD\ IRU HVWLPDWLQJ HIIHFWLYH GRVHV 6XFK UDWLRV SULPDULO\ GHSHQG RQ WKH SURMHFWLRQ HPSOR\HG ERG\ UHJLRQ LUUDGLDWHG DQG [UD\ EHDP RULHQWDWLRQf DQG VHFRQGDULO\ RQ WKH WXEH SRWHQWLDO DQG EHDP ILOWUDWLRQ 7KH HIIHFWLYH GRVH DV D GRVH GHVFULSWRU LQ GLDJQRVWLF UDGLRORJ\ HQDEOHV D GLUHFW FRPSDULVRQ RI WKH GHWULPHQW DVVRFLDWHG ZLWK GLIIHUHQW UDGLRORJLF SURFHGXUHV ([SUHVVLQJ SDWLHQW GRVHV LQ WHUPV RI WKH HIIHFWLYH GRVH SURYLGHV D FRQVLVWHQW PHWKRG RI UHSRUWLQJ GRVHV IURP GLDJQRVWLF UDGLRORJLF H[DPLQDWLRQV (IIHFWLYH GRVHV LQ LQWHUYHQWLRQDO QHXURUDGLRORJ\ FDQ VLPSO\ EH FRPSDUHG WR RWKHU UDGLRORJLF GRVHV LH FRPSXWHG WRPRJUDSK\ QXFOHDU PHGLFLQH FDUGLDF FDWKHWHUL]DWLRQ SURFHGXUHV HWFf 7KH XVH RI WKH HIIHFWLYH GRVH DOVR SHUPLWV DQ HVWLPDWH RI SDWLHQW ULVN WR EH REWDLQHG E\ XVLQJ FXUUHQW

PAGE 16

VWRFKDVWLF ULVN IDFWRUV ,&53 816&($5 1$6 f 8VH RI VXFK VWRFKDVWLF ULVN IDFWRUV ZLWK WKH HIIHFWLYH GRVHV FRPSXWHG IRU LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZLOO SURYLGH XVHIXO LQIRUPDWLRQ RQ WKH VWRFKDVWLF ULVNV WR SDWLHQWV XQGHUJRLQJ VXFK KLJK GRVH SURFHGXUHV 'RVH 0RQLWRULQJ 6\VWHPV $ UDGLDWLRQ PRQLWRULQJ V\VWHP ZKLFK SURYLGHV IHHGEDFN RI GRVLPHWULF LQIRUPDWLRQ FRXOG SOD\ D UROH LQ HQVXULQJ WKDW SDWLHQW H[SRVXUHV DUH DV ORZ DV UHDVRQDEO\ DFKLHYDEOH $/$5$ ,&53 f 7KH EHQHILWV RI D UDGLDWLRQ PRQLWRULQJ V\VWHP LQFOXGH LGHQWLILFDWLRQ RI LQGLYLGXDO SDWLHQWV ZKR PD\ EH DW ULVN IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF UDGLDWLRQ HIIHFWV :DJQHU HW DO f SURYLVLRQ RI D IRUPDO UHFRUG RI WKH SDWLHQW H[SRVXUH DV ZHOO DV DQ LQFUHDVH LQ WKH UDGLRORJLVWfV DZDUHQHVV RI SRWHQWLDO KLJK SDWLHQW GRVHV ,Q DGGLWLRQ WKH UDGLDWLRQ PRQLWRULQJ V\VWHP FDQ VHUYH DV D SRZHUIXO WRRO WR HPSLULFDOO\ LQYHVWLJDWH WKH WUDGHRIIV EHWZHHQ SDWLHQW GRVH DQG FRUUHVSRQGLQJ LPDJH TXDOLW\ ZKHQ UDGLRJUDSKLQJ DSSURSULDWH SKDQWRPV 8VH RI PRGHP RQOLQH GRVLPHWU\ V\VWHPV RQ WRGD\nV DGYDQFHG [UD\ LPDJLQJ HTXLSPHQW SURYLGHV WKH QHFHVVDU\ WRROV IRU IDVW DQG DFFXUDWH DFTXLVLWLRQ RI GRVLPHWU\ GDWD RQ SDWLHQWV XQGHUJRLQJ FRPSOH[ UDGLRORJLF SURFHGXUHV $ SDWLHQW GRVLPHWU\ V\VWHP 3(01(7rf ZDV LQVWDOOHG LQ LQ WKH QHXURUDGLRORJ\ VXLWH DW WKH 'HSDUWPHQW RI 5DGLRORJ\ DW 6KDQGV +RVSLWDO RI WKH 8QLYHUVLW\ RI )ORULGD 7KH SDWLHQW GRVLPHWU\ V\VWHP PRQLWRUHG ERWK IURQWDO DQG ODWHUDO LPDJLQJ SODQHV DQG UHFRUGHG WKH DPRXQW RI UDGLDWLRQ r &OLQLFDO 0LFURV\VWHPV $UOLQJWRQ 9$

PAGE 17

UHFHLYHG E\ SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DORQJ ZLWK DGGLWLRQDO GRVLPHWULF LQIRUPDWLRQ WR KHOS WR FRPSXWH HIIHFWLYH GRVHV ,PDJH 4XDOLW\ 7KH SXUSRVH RI DQ\ UDGLRJUDSKLF LPDJH DQDORJ RU GLJLWDOf LV WR SURYLGH WKH REVHUYHU ZLWK DGHTXDWH GLDJQRVWLF LQIRUPDWLRQ WR GHWHFW DQG LGHQWLI\ RU UXOH RXW DQ DEQRUPDOLW\ DQG WKHQ WR LQWHUSUHW LWV PHDQLQJ DQG GHWHUPLQH LWV FDXVH 7KH DELOLW\ RI D UDGLRJUDSKLF LPDJH WR FRQYH\ WKLV LQIRUPDWLRQ WR WKH REVHUYHU GHSHQGV RQ WKH TXDOLW\ RI WKH LPDJH ZKLFK FDQ EH GHVFULEHG LQ WHUPV RI FRQWUDVW QRLVH DQG UHVROXWLRQ ,PDJH TXDOLW\ LV YHU\ FULWLFDO LQ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH DELOLW\ WR YLVXDOL]H VPDOO DQG ORZ FRQWUDVW REMHFWV LV RI SDUDPRXQW LPSRUWDQFH ZKHUH QHXURYDVFXODU LQVWUXPHQWV PD\ EH DV VPDOO DV SP DQG ZKHUH YHVVHO VL]HV DUH DV VPDOO DV SP 7KH SURGXFHG LPDJHV UHTXLUH KLJK FRQWUDVW ORZ QRLVH DQG KLJK UHVROXWLRQ ZKLFK FDQ EH DFKLHYHG ZLWK KLJK UDGLDWLRQ GRVHV $Q\ GRVH UHGXFWLRQ VWUDWHJ\ PXVW DOZD\V HQVXUH WKDW LPDJH TXDOLW\ LV QRW FRPSURPLVHG DQG SDWLHQWV GR QRW VXIIHU DQ\ DGYHUVH FOLQLFDO FRQVHTXHQFHV DV D UHVXOW RI LQDGHTXDWH YLVXDOL]DWLRQ RI FDWKHWHUV RU YDVFXODWXUH :D\V WR LPSURYH GHWHFWLRQ RI VPDOO YHVVHOV GXULQJ LQWHUYHQWLRQDO QHXURUDGLR ORJLF SURFHGXUHV XVLQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f LQFOXGH WKH YDULDWLRQ RI PDMRU LPDJLQJ SDUDPHWHUV VXFK DV WXEH YROWDJH DQG LPDJH LQWHQVLILHU LQSXW H[SRVXUH DV ZHOO DV XVH RI JHRPHWULF REMHFW PDJQLILFDWLRQ $OWKRXJK WKHVH SDUDPHWHUV DIIHFW LPDJH TXDOLW\ WKH\ DOVR LQIOXHQFH SDWLHQW VXUIDFH GRVHV DQG HIIHFWLYH GRVHV )XUWKHU VWXG\ LV QHFHVVDU\ WR LPSURYH RXU XQGHUVWDQGLQJ RI KRZ WHFKQLTXH SDUDPHWHUV DIIHFW SDWLHQW GRVHV DQG WR ZKDW H[WHQW WKH\ FDQ LPSURYH LPDJH TXDOLW\

PAGE 18

3XUSRVH RI 7KLV :RUN )ROORZLQJ WKH LQVWDOODWLRQ RI WKH SDWLHQW GRVLPHWU\ V\VWHP RQ WKH LQWHUYHQWLRQDO QHXURELSODQH VXLWH DW 6KDQGV +RVSLWDO RI WKH 8QLYHUVLW\ RI )ORULGD GRVLPHWU\ GDWD RQ SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZHUH VWRUHG LQ D SDWLHQW GDWDEDVH IRU ODWHU DQDO\VLV DQG HYDOXDWLRQ 'RVLPHWULF LQIRUPDWLRQ RQ DGXOW SDWLHQWV DQG SHGLDWULF SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV UHFRUGHG LQ WKH GDWDEDVH 6HYHQWHHQ RI DGXOW SDWLHQWV DQG WHQ RI WKH SHGLDWULF SDWLHQWV UHFRUGHG LQ WKH GDWDEDVH XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ,Q WKLV ZRUN WKH GRVLPHWU\ GDWD WR WKH DGXOW DQG SHGLDWULF SDWLHQWV UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP DUH DQDO\]HG WR FRPSXWH VXUIDFH GRVHV WR WKH SDWLHQWVf KHDG UHJLRQ IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 6XUIDFH GRVHV DUH WKHQ FRQVLGHUHG WR DVVHVV WKH ULVN RI GHWHUPLQLVWLF HIIHFWV WR SDWLHQWV ZKR XQGHUJR VXFK LQWHUYHQWLRQDO SURFHGXUHV DV ZHOO DV VLPLODU KLJK GRVH UDGLRORJLF SURFHGXUHV ,QIRUPDWLRQ RQ WKH [UD\ EHDP TXDOLWLHV N9S DQG +9/f UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP ZLWK SDWLHQW WKLFNQHVV DQG WKH [UD\ EHDP H[SRVXUH DUHD DUH XVHG WR FRPSXWH WKH HQHUJ\ LPSDUWHG WR WKHVH SDWLHQWV IURP UHFRUGHG YDOXHV RI HQWUDQFH VNLQ H[SRVXUHV 9DOXHV RI HQHUJ\ LPSDUWHG DUH WKHQ FRQYHUWHG WR SDWLHQW HIIHFWLYH GRVH ( XVLQJ (V FRQYHUVLRQ IDFWRU FRUUHVSRQGLQJ WR WKH SURMHFWLRQV DQG ERG\ UHJLRQV LUUDGLDWHG GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 9DOXHV RI (V IRU WKH SRVWHULRDQWHULRU 3$f SURMHFWLRQV RI WKH DEGRPHQ FKHVW DQG FHUYLFDO VSLQH DQG IRU WKH 3$ DQG ODWHUDO /$7f YLHZV RI WKH KHDG DUH REWDLQHG IURP UDGLDWLRQ GRVLPHWU\ GDWD FRPSXWHG XVLQJ 0RQWH &DUOR FDOFXODWLRQV RQ DQ DGXOW DQWKURSRPRUSKLF SKDQWRP +DUW HW DO Df

PAGE 19

7KLV PHWKRG LV H[WHQGHG WR GHWHUPLQH HIIHFWLYH GRVHV WR SHGLDWULF SDWLHQWV ZKR GLIIHU LQ PDVV IURP WKH DGXOW VL]HG SKDQWRPV XVHG LQ FXUUHQW SDWLHQW GRVH DVVHVVPHQW SURFHGXUHV 0DQLSXODWLRQ RI WKH WXEH YROWDJH LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU DQG JHRPHWULF REMHFW PDJQLILFDWLRQ LPSDFW RQ SDWLHQW GRVHV DQG LPDJH TXDOLW\ ZLWK WKH ODWWHU EHLQJ GHILQHG DV WKH ORZHVW FRQFHQWUDWLRQ RI LRGLQH LQ D YHVVHO WKDW PD\ EH YLVXDOO\ GHWHFWHG LQ WKH UDGLRJUDSKLF LPDJH 7KH HIIHFWV RI WKHVH LPDJLQJ SDUDPHWHUV RQ VLJQDO GHWHFWLRQ DQG WKH FRUUHVSRQGLQJ FKDQJHV LQ SDWLHQW GRVHV DUH LQYHVWLJDWHG LQ WKLV ZRUN 7KH UHVXOWV RI WKLV ZRUN SURYLGH WKH UDGLRORJLF FRPPXQLW\ ZLWK D YDULHW\ RI LQIRUPDWLRQ RQ SDWLHQW VXUIDFH GRVHV HQHUJ\ LPSDUWHG DQG HIIHFWLYH GRVHV 6XFK LQIRUPDWLRQ ZLOO KHOS WR HYDOXDWH WKH ULVNV RI GHWHUPLQLVWLF DQG VWRFKDVWLF HIIHFWV WR SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF RU VLPLODU KLJK GRVH UDGLRORJLF SURFHGXUHV 7KH UHVXOWV RQ KRZ LPDJLQJ SDUDPHWHUV LH WXEH YROWDJH LPDJH LQWHQVLILHU LQSXW H[SRVXUH DQG JHRPHWULF REMHFW PDJQLILFDWLRQf DIIHFW LPDJH TXDOLW\ ZLOO KHOS WR LPSURYH LPDJH TXDOLW\ DQG UHGXFH SDWLHQW GRVHV WKXV SURYLGLQJ LPSURYHG SDWLHQW FDUH WR WKH KHDOWKFDUH FRPPXQLW\

PAGE 20

&+$37(5 /,7(5$785( 5(9,(: ,QWURGXFWLRQ ,QWHUYHQWLRQDO 1HXURUDGLRORJLF 3URFHGXUHV 'XULQJ GLDJQRVWLF QHXURUDGLRORJLF SURFHGXUHV DOO LQLWLDO DQJLRJUDPV SHUIRUPHG RQ D JLYHQ YHVVHO WHUULWRU\ FRQVWLWXWH FRPSOHWH FRYHUDJH RI DUWHULDO FDSLOODU\ DQG YHQRXV SKDVHV 6XEVHTXHQW H[DPLQDWLRQV RI WKDW YHVVHO ZLWK YDULRXV DOWHUDWLRQV LQ SRVLWLRQLQJ SURMHFWLRQf PDJQLILFDWLRQ DQG FRQWUDVW LQMHFWLRQ DUH SHUIRUPHG WR VSHFLILFDOO\ HYDOXDWH WKH YLVXDOL]HG RU DQWLFLSDWHG SDWKRORJ\ $V D UHVXOW WKHVH DUH OLPLWHG WR DUWHULDO SKDVH IRU DQHXU\VPV FDSLOODU\ SKDVH IRU WXPRUV DQG YHQRXV SKDVH IRU VWXG\ RI YHQRXV SDWHQF\ ,Q WKHUDSHXWLF QHXURUDGLRORJLF SURFHGXUHV D FRPSOHWH GLDJQRVWLF DQJLRJUDSKLF SURFHGXUH LV IROORZHG E\ WKH LQWURGXFWLRQ RI HPEROLF DJHQWV LQWR WKH YDVFXODWXUH IURP D ORFDWLRQ QH[W WR WKH YDVFXODU DEQRUPDOLW\ 6XFK HPEROLF DJHQWV PLJKW FRQVLVW RI JHODWLQ VSRQJH RU SRO\YLQ\O DOFRKRO IRU VKRUWWHUP RFFOXVLRQV RU GHWDFKDEOH EDOORRQV PHWDOOLF FRLOV DQG F\DQRDFU\ODWHV IRU ORQJWHUP RFFOXVLRQV 6XEVHTXHQW HYDOXDWLRQ RI WKH SDWKRORJ\ GXULQJ HPEROL]DWLRQ FRQWLQXHV XQWLO D VDWLVIDFWRU\ RFFOXVLRQ RI WKH YDVFXODU DEQRUPDOLW\ KDV EHHQ DFKLHYHG 'XULQJ DOO QHXURUDGLRORJLF SURFHGXUHV IURQWDO IOXRURVFRS\ LV XVHG LQ WKH WUXQFDO DQG WKRUDFLF UHJLRQV WR YLVXDOL]H FDWKHWHU SODFHPHQW %LSODQH IOXRURVFRS\ RI WKH KHDG

PAGE 21

UHJLRQ LV XVHG IRU WDUJHW SRVLWLRQ YHULILFDWLRQ 0RVW '6$ LPDJH DFTXLVLWLRQV DUH SHUIRUPHG XVLQJ ELSODQH DFTXLVLWLRQV ZLWK RQO\ RFFDVLRQDO XVH RI VLQJOH SODQH DFTXLVLWLRQV 6LQJOH IURQWDOf SODQH LPDJLQJ LV SULPDULO\ XVHG WR HYDOXDWH DQHXU\VP QHFN RULJLQ ZLWK HLWKHU VWDQGDUG '6$ LPDJLQJ RU ZLWK URWDWLRQDO GLJLWDO DQJLRJUDSK\ '$f 'XH WR WKH QDWXUH RI QHXURUDGLRORJLF SURFHGXUHV JRRG LPDJH TXDOLW\ ORQJ IOXRURVFRSLF WLPHV DQG D VLJQLILFDQW QXPEHU RI DQJLRJUDSKLF LPDJHV DUH UHTXLUHG WR HYDOXDWH DQ\ YLVXDOL]HG SDWKRORJ\ 7KXV QHXURUDGLRORJLF SURFHGXUHV UHVXOW LQ KLJK SDWLHQW GRVHV SULPDULO\ DEVRUEHG RYHU WKH KHDG UHJLRQ RI WKH SDWLHQW 7KLV VXJJHVWV WKH SRVVLELOLW\ RI LQGXFWLRQ RI GHWHUPLQLVWLF UDGLDWLRQ HIIHFWV VXFK DV VNLQ HU\WKHPD DQG HSLODWLRQ +XGD DQG 3HWHUV 6KRSH f 'HWHUPLQLVWLF 5DGLDWLRQ (IIHFWV 'HWHUPLQLVWLF RU QRQVWRFKDVWLF HIIHFWV RI LRQL]LQJ UDGLDWLRQ LQFOXGH WKH W\SHV RI LQMXULHV UHVXOWLQJ IURP ZKROHERG\ RU ORFDO H[SRVXUHV WR UDGLDWLRQ WKDW FDXVH VXIILFLHQW FHOO GDPDJH RU FHOO NLOOLQJ WR VXEVWDQWLDO QXPEHUV RU SURSRUWLRQV RI FHOOV WR LPSDLU IXQFWLRQ LQ WKH LUUDGLDWHG WLVVXHV RU RUJDQV ,&53 f 6LQFH D JLYHQ QXPEHU RU SURSRUWLRQ RI FHOOV PXVW EH DIIHFWHG WKHUH LV D WKUHVKROG GRVH EHORZ ZKLFK WKH QXPEHU RU SURSRUWLRQ RI FHOOV DIIHFWHG LV LQVXIILFLHQW IRU WKH GHILQHG GHWHUPLQLVWLF LQMXU\ WR RFFXU ,&53 f 7KH WKUHVKROG GRVH GHSHQGV RQ WKH OHYHO RI LQMXU\ RU WKH VHQVLWLYLW\ RI WKH WLVVXHV RU RUJDQV EHLQJ LUUDGLDWHG )LHOG DQG 8SWRQ f $Q\ LQFUHDVH LQ GRVH DERYH WKH WKUHVKROG LQFUHDVHV WKH OHYHO RI LQMXU\ VLQFH IHZHU FHOOV ZLOO VXUYLYH DW LQFUHDVHG UDGLDWLRQ GRVH 7KH HIIHFW ZLOO DOVR LQFUHDVH ZLWK LQFUHDVHG GRVH UDWH ,QFUHDVHG GRVH UDWH

PAGE 22

ZLOO DFFHOHUDWH FHOO GDPDJH ZLWKRXW DOORZLQJ HQRXJK WLPH IRU PRUH HIIHFWLYH FHOO UHSDLU RU UHSRSXODWLRQ ,&53 f 7KH GRVHV WKDW UHVXOW LQ WKH FOLQLFDO DSSHDUDQFH RI GHWHUPLQLVWLF HIIHFWV DUH JHQHUDOO\ RI WKH RUGHU RI D IHZ *UD\ WR WHQV RI *UD\ 7KH WLPH DW ZKLFK WKH HIIHFW EHFRPHV QRWLFHDEOH PD\ UDQJH IURP D IHZ KRXUV WR VRPH \HDUV DIWHU H[SRVXUH GHSHQGLQJ RQ WKH W\SH RI HIIHFW DQG WKH FKDUDFWHULVWLFV RI WKH LUUDGLDWHG WLVVXH 7KH OHYHOV RI UDGLDWLRQ H[SRVXUH DQG WKH LUUDGLDWHG WLVVXHV LQYROYHG LQ LQWHUYHQWLRQDO QHXURUDGLRORJ\ UDLVH FRQFHUQ IRU GHWHUPLQLVWLF HIIHFWV RI WKH VNLQ DQG H\HV 7DEOH OLVWV WKH VNLQ HIIHFWV WKUHVKROG GRVHV DQG WLPH RI REVHUYDWLRQ RI WKH H[SHFWHG HIIHFW DIWHU LUUDGLDWLRQ :DJQHU HW DO f $Q HDUO\ WUDQVLHQW HU\WKHPD PD\ EH REVHUYHG D IHZ KRXUV DIWHU LUUDGLDWLRQ DW VNLQ DEVRUEHG GRVHV LQ H[FHVV RI *\ ZLWK D PDLQ HU\WKHPD DSSHDULQJ DERXW GD\V ODWHU ZKHQ VNLQ GRVHV H[FHHG *\ $ WHPSRUDU\ HSLODWLRQ PD\ EH REVHUYHG WKUHH ZHHNV DIWHU DQ DEVRUEHG GRVH RI *\ WR WKH VNLQ VXUIDFH ZLWK D SHUPDQHQW FRQGLWLRQ UHVXOWLQJ DW GRVHV DERYH *\ 7KH FRQFHUQ WR WKH H\H LQYROYHV VPDOO RSDFLWLHV RQ WKH OHQV RI WKH H\H ZKLFK PD\ RFFXU DW GRVHV RI WKH RUGHU RI DERXW *\ 0HUULDP DQG )RFKW 1$6 f 0RUH VHYHUH FDVHV RI FDWDUDFWV RFFXU DW WKUHVKROGV DERYH *\ ZLWK D ODWHQW SHULRG RI DERXW D \HDU DIWHU LUUDGLDWLRQ 'HWHUPLQLVWLF HIIHFWV ZLOO RIWHQ KDYH D PRUH VHYHUH LPSDFW RQ FKLOGUHQ VLQFH WLVVXHV DUH DFWLYHO\ JURZLQJ LQ FRPSDULVRQ WR DGXOWV 816&($5 f $GGLWLRQDO GHWHUPLQLVWLF HIIHFWV WKDW KDYH EHHQ REVHUYHG IURP LUUDGLDWLRQ GXULQJ FKLOGKRRG LQFOXGH HIIHFWV RQ JURZWK DQG GHYHORSPHQW KRUPRQDO GHILFLHQFLHV RUJDQ G\VIXQFWLRQV DQG HIIHFWV RQ LQWHOOHFWXDO DQG FRJQLWLYH IXQFWLRQV )URP FXUUHQW GDWD DYDLODEOH 816&($5 f WKHUH LV QR HYLGHQFH WKDW WKH WKUHVKROG RI GHWHUPLQLVWLF HIIHFWV WR WKH VNLQ DQG H\HV

PAGE 23

DUH DQ\ GLIIHUHQW IRU FKLOGUHQ RU DGXOWV $OWKRXJK WKH EUDLQ LV PRVW VHQVLWLYH WR UDGLDWLRQ LQVXOWV GXULQJ WKH ILUVW IRXU \HDUV DIWHU ELUWK ZKHQ UDSLG JURZWK DQG GHYHORSPHQW RI WKH EUDLQ WDNHV SODFH VLQJOH GRVHV LQ H[FHVV RI *\ KDYH WR EH DGPLQLVWHUHG WR WKH EUDLQ GXULQJ FKLOGKRRG EHIRUH DQ\ GHWHUPLQLVWLF HIIHFW RI QHXURSK\VLRORJLF RU QHXURHQGRFULQH QDWXUH DUH REVHUYHG 7DEOH 'HWHUPLQLVWLF (IIHFWV RI WKH 6NLQ DIWHU 6LQJOH)UDFWLRQ ,UUDGLDWLRQ 'HWHUPLQLVWLF (IIHFW 'RVH 7KUHVKROG *\f 2QVHW 7LPH 3HDN 7LPH (DUO\ WUDQVLHQW HU\WKHPD KRXUV KRXUV 7HPSRUDU\ HSLODWLRQ ZHHNV f§ 0DLQ HU\WKHPD a GD\V ZHHNV 3HUPDQHQW HSLODWLRQ ZHHNV f§ 'U\ GHVTXDPDWLRQ ZHHNV ZHHNV ,QYDVLYH ILEURVLV f§ f§ 'HUPDO DWURSK\ ZHHNV f§ 7HODQJLHFWDVLD ZHHNV f§ 0RLVW GHVTXDPDWLRQ ZHHNV ZHHNV /DWH HU\WKHPD ZHHNV f§ 'HUPDO QHFURVLV ZHHNV f§ 6HFRQGDU\ XOFHUDWLRQ ZHHNV 6285&( :DJQHU HW DO

PAGE 24

6WRFKDVWLF 5DGLDWLRQ (IIHFWV 8QOLNH WKH GHWHUPLQLVWLF HIIHFWV VWRFKDVWLF HIIHFWV DUH WKRVH IRU ZKLFK WKH SUREDELOLW\ RI DQ HIIHFW RFFXUULQJ LV D IXQFWLRQ RI GRVH ZLWKRXW WKUHVKROG DQG LWV VHYHULW\ RI WKH HIIHFW LV GRVHLQGHSHQGHQW ,&53 f 6WRFKDVWLF HIIHFWV FDQ EH FDWHJRUL]HG DV VRPDWLF FDUFLQRJHQLFf HIIHFWV DQG KHUHGLWDU\ JHQHWLFf HIIHFWV ZKLFK PD\ RFFXU IURP LQMXU\ WR RQH RU D VPDOO QXPEHU RI FHOOV 6LQFH D VLQJOH FHOO PD\ EH HQRXJK WR LQLWLDWH WKH HIIHFW WKHUH LV D ILQLWH SUREDELOLW\ WKDW WKH HIIHFW ZLOO RFFXU KRZHYHU VPDOO WKH GRVH 7KXV VWRFKDVWLF HIIHFWV DUH QRUPDOO\ DVVXPHG WR KDYH QR GRVH WKUHVKROG EHORZ ZKLFK WKH HIIHFW FDQQRW SRVVLEO\ RFFXU 6LQFH D VWRFKDVWLF HIIHFW PD\ RFFXU DW DQ\ OHYHO RI UDGLDWLRQ H[SRVXUH WKH H[SRVXUH VKRXOG EH NHSW DV ORZ DV UHDVRQDEO\ DFKLHYDEOH ,&53 f 8QQHFHVVDU\ H[SRVXUHV VKRXOG EH DYRLGHG QHFHVVDU\ H[SRVXUHV VKRXOG EH RSWLPL]HG WR SURYLGH WKH PD[LPXP EHQHILW WR WKH SDWLHQW DQG WKH WRWDO GRVHV VKRXOG EH OLPLWHG WR WKH PLQLPXP DPRXQW FRQVLVWHQW ZLWK WKH PHGLFDO EHQHILW WR WKH LQGLYLGXDO SDWLHQW ,&53 f ,Q WKH FDVH RI RSWLPL]LQJ PHGLFDO SURFHGXUHV IRU WKH EHVW GRVHEHQHILW RXWFRPH WKH PDLQ FRQFHUQ VKRXOG EH WKH DPRXQW DQG W\SH RI LQIRUPDWLRQ GHULYHG IURP WKH H[DPLQDWLRQ DQG LWV GLDJQRVWLF YDOXH :KROH ERG\ LUUDGLDWLRQ RU LWV HTXLYDOHQW DV H[SUHVVHG E\ WKH HIIHFWLYH GRVH HTXLYDOHQW RU HIIHFWLYH GRVH FDQ EH FRQYHUWHG WR D VWRFKDVWLF ULVN HVWLPDWH XVLQJ D WRWDO ULVN IDFWRU DV GHWHUPLQHG E\ WKH ,&53 f )URP WKH ,&53 f DWWHPSW WR HVWLPDWH DEVROXWH VWRFKDVWLF ULVNV IURP ZKROHERG\ LUUDGLDWLRQ D ULVN FRHIILFLHQW RI [f FDQFHUV DQG JHQHWLF DEQRUPDOLWLHV SHU P6Y RI UDGLDWLRQ GRVH ZDV GHULYHG 6XFK D ULVN FRHIILFLHQW SXWV RQH RXW RI SHRSOH ZKR UHFHLYHG D ZKROH

PAGE 25

ERG\ GRVH HTXLYDOHQW RI P6Y WR ULVN RI GHYHORSLQJ D IDWDO FDQFHU 7KLV LV D PRUH FRQVHUYDWLYH YDOXH IURP WKH SUHYLRXVO\ GHULYHG ULVN FRHIILFLHQW RI [f ,&53 f ZKHUH RQH RXW RI SHRSOH ZKR UHFHLYH P6Y ZLOO GHYHORS D IDWDO FDQFHU ,Q JHQHUDO WKHVH ULVN IDFWRUV QHHG WR EH WUHDWHG ZLWK JUHDW FDXWLRQ JLYHQ WKH FXUUHQW XQFHUWDLQWLHV DVVRFLDWHG ZLWK WKH H[WUDSRODWLRQ RI UDGLDWLRQ ULVNV IURP KLJK GRVHV WR WKRVH QRUPDOO\ HQFRXQWHUHG LQ GLDJQRVWLF UDGLRORJ\ )U\ 3XVNLQ DQG 1HOVRQ f $OWKRXJK NQRZOHGJH RI WKH SHGLDWULF HIIHFWLYH GRVH DVVRFLDWHG ZLWK UDGLRORJLF SURFHGXUH LV KHOSIXO LW LV LPSRUWDQW WR QRWH WKDW DQ\ UHVXOWDQW GHWULPHQW ZLOO GHSHQG RQ WKH DJH RI WKH H[SRVHG LQGLYLGXDO 7KH VWRFKDVWLF UDGLDWLRQ ULVNV RI FDUFLQRJHQHVLV DQG JHQHWLF HIIHFWV DUH JHQHUDOO\ JUHDWHU IRU FKLOGUHQ WKDQ IRU DGXOWV WR DW OHDVW D IDFWRU RI WZR ,&35 1&53 f 7KHVH IDFWRUV ZRXOG QHHG WR EH WDNHQ LQWR DFFRXQW ZKHQ FRQYHUWLQJ DQ\ SHGLDWULF HIIHFWLYH GRVHV LQWR D YDOXH RI ULVN RU GHWULPHQW $V D UHVXOW GLUHFW FRPSDULVRQV RI SHGLDWULF GRVHV ZLWK WKRVH RI DGXOWV QHHG WR EH WUHDWHG ZLWK FLUFXPVSHFWLRQ 'RVLPHWU\ 6XUIDFH 'RVH 7KH VXUIDFH GRVH LV WKH VLPSOHVW DQG PRVW IUHTXHQW PHWKRG XVHG WR PHDVXUH SDWLHQW GRVHV IURP UDGLRORJLF H[DPLQDWLRQV EHFDXVH GLUHFW PHDVXUHPHQWV RQ SDWLHQWV FDQ EH SHUIRUPHG HDVLO\ DW WKH VNLQ VXUIDFH 7KH VXUIDFH GRVH FDQ EH REWDLQHG IURP PHDVXUHPHQWV RI WKH VNLQ H[SRVXUH XVLQJ DQ LRQL]DWLRQ FKDPEHU RU VSHFLDOL]HG GHWHFWRUV DWWDFKHG WR WKH VNLQ VXUIDFH GXULQJ WKH H[DPLQDWLRQ LH WKHUPROXPLQHVFHQW FKLSV

PAGE 26

ILEHURSWLF VFLQWLOODURUVf 7KH VXUIDFH GRVH PD\ DOVR EH FRQYHUWHG WR RUJDQ GRVHV -RQHV DQG :DOO f DOWKRXJK VXFK DQ DSSURDFK PD\ UHVXOW LQ HUURUV RI PRUH WKDQ b 3DGRYDQL HW DO f $OWKRXJK VLPSOH WR REWDLQ WKH VXUIDFH GRVH LV D SRRU LQGLFDWRU RI WKH WUXH VLJQLILFDQFH RI UDGLDWLRQ H[SRVXUH WR WKH SDWLHQW EHFDXVH LW RYHUORRNV D QXPEHU RI LPSRUWDQW IDFWRUV )RU H[DPSOH LQ D IOXRURVFRSLF H[DP WKH VXUIDFH GRVH GRHV QRW DFFRXQW IRU FKDQJHV LQ WKH GHSWK RI WKH UDGLRVHQVLWLYH RUJDQV FKDQJHV LQ WKH H[SRVHG ILHOG VL]H FKDQJHV LQ WKH SRVLWLRQ RI WKH SDWLHQW DQG FKDQJHV LQ WKH EHDP TXDOLWLHV RYHUOD\LQJ H[SRVXUH ILHOGV DQG SDUWLDO H[SRVXUH RI RUJDQV :DJQHU f 0RUH LPSRUWDQWO\ WKH VXUIDFH GRVH GRHV QRW DFFRXQW IRU WKH DUHD RI H[SRVXUH RU WKH SHQHWUDWLQJ DELOLW\ RI WKH [ UD\ EHDP DV WKH HQHUJ\ RI [UD\V YDULHV 7KH DERYH IDFWRUV PDNH VXUIDFH GRVH D TXDQWLW\ RI OLPLWHG GRVLPHWULF YDOXH ZKHQ HVWLPDWLQJ VWRFKDVWLF ULVNV +RZHYHU WKH VXUIDFH GRVH LV WKH TXDQWLW\ RI FKRLFH ZKHQ WU\LQJ WR SUHGLFW WKH RFFXUUHQFH RI GHWHUPLQLVWLF UDGLDWLRQ HIIHFWV RI WKH VNLQ GXULQJ KLJK GRVH LQWHUYHQWLRQDO UDGLRORJLF SURFHGXUHV ,Q WKLV FDVH WKH VXUIDFH GRVH LV WKH GRVH WR WKH RUJDQ WKH VNLQ 9DQR HW DO f PHDVXUHG VXUIDFH GRVHV RI *\ UHVXOWLQJ LQ HU\WKHPDWRXV OHVLRQV DQG FKURQLF UDGLRGHUPDWLWLV IURP SURFHGXUHV LQ LQWHUYHQWLRQDO FDUGLRORJ\ +XGD DQG 3HWHUV f FRPSXWHG DQ XSSHU HVWLPDWH RI *\ WR WKH RFFLSLWDO UHJLRQ RI WKH VNXOO UHVXOWLQJ LQ WHPSRUDU\ HSLODWLRQ IURP DQ HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUH 2WKHU VWXGLHV UHSRUWHG D UDQJH RI VXUIDFH GRVHV IRU QHXURLQWHUYHQWLRQDO SURFHGXUHV 1RUEDVK HW DO f VWXGLHG WZHOYH W\SLFDO LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DQG PHDVXUHG D UDQJH RI *\ WR WKH VNLQ VXUIDFH RI WKH KHDG ZLWK D PHDQ YDOXH RI *\ %HUJHURQ HW DO f PHDVXUHG

PAGE 27

*\ ZLWK D PHDQ YDOXH RI *\ IRU HLJKW SDWLHQWV XQGHUJRLQJ QHXURLQWHUYHQWLRQDO SURFHGXUHV &KRSS HW DO f UHSRUWHG DQ DYHUDJH VXUIDFH GRVH WR WKH KHDG RI *\ *NDQDWVLRV HW DO f PHDVXUHG VXUIDFH GRVHV WR SDWLHQWV XQGHUJRLQJ QHXURLQWHUYHQWLRQDO SURFHGXUHV DQG UHFRUGHG GRVHV UDQJLQJ IURP *\ ZLWK PHGLDQ YDOXHV RI *\ DQG *\ IRU WKH IURQWDO DQG ODWHUDO SODQHV UHVSHFWLYHO\ $OWKRXJK DERXW SDWLHQWV LQ WKH ODWWHU VWXG\ H[FHHGHG WKH GHWHUPLQLVWLF WKUHVKROG RI *\ QR UDGLDWLRQLQGXFHG VNLQ HIIHFWV ZHUH QRWLFHG (QHUJ\ ,PSDUWHG $OWKRXJK WKH VXUIDFH GRVH RU H[SRVXUH KDV EHHQ SRSXODU ZKHQ H[SUHVVLQJ SDWLHQW UDGLDWLRQ GRVHV WKHVH SDUDPHWHU GR QRW WDNH LQWR DFFRXQW WKH [UD\ EHDP TXDOLW\ LH KDOIYDOXH OD\HUf RU WKH VL]H RI WKH LUUDGLDWHG DUHD $Q DOWHUQDWLYH TXDQWLW\ WKDW FDQ EH XVHG WR DVVHVV SDWLHQW GRVLPHWU\ LV WKH HQHUJ\ LPSDUWHG RU LQWHJUDO GRVH :DOO HW DO +DUULVRQ +XGD &DPHURQ f (QHUJ\ LPSDUWHG LV D PHDVXUH RI WKH WRWDO HQHUJ\ GHSRVLWHG LQ D YROXPH LH KHDG FKHVW DEGRPHQ HWFf IURP H[SRVXUH WR [ UD\V 7KH SULPDU\ IDFWRUV WKDW DIIHFW HQHUJ\ LPSDUWHG DUH WKH [UD\ H[SRVXUH WKH DUHD H[SRVHG WKH HQHUJ\ RI WKH [UD\ EHDP DQG WKH WKLFNQHVV RI WKH H[SRVHG YROXPH *NDQDWVLRV *NDQDWVLRV DQG +XGD f 6HFRQGDU\ IDFWRUV DIIHFWLQJ HQHUJ\ LPSDUWHG DUH WKH ILOWUDWLRQ WKH YROWDJH ZDYHIRUP ULSSOH DQG WKH WDUJHW DQJOH 6KULPSWRQ HW DO *NDQDWVLRV f (QHUJ\ LPSDUWHG PD\ EH XVHG WR FRPSXWH WKH DVVRFLDWHG ULVN IURP GLIIHUHQW W\SHV RI UDGLRORJLF H[DPLQDWLRQV RSWLPL]H LPDJLQJ WHFKQLTXHV ZLWK UHVSHFW WR SDWLHQW GRVH RU HYHQ HVWLPDWH WKH HIIHFWLYH GRVH WR WKH SDWLHQW

PAGE 28

7KH FRPSXWDWLRQ RI HQHUJ\ LPSDUWHG FDQ EH FDUULHG RXW ZLWK DFFXUDF\ DQG HDVH &DUOVVRQ +XGD 6KULPSWRQ HW DO *NDQDWVLRV DQG +XGD f $ QXPEHU RI DSSURDFKHV KDYH EHHQ GHYHORSHG WR REWDLQ YDOXHV RI HQHUJ\ LPSDUWHG IURP UDGLRORJLF SURFHGXUHV LH &DUOVVRQ D E &DUOVVRQ HW DO +DUULVRQ 6KULPSWRQ DQG :DOO f 0RVW PHWKRGV FDOFXODWH YDOXHV RI HQHUJ\ LPSDUWHG IURP GHSWK GRVH GDWD RU IURP HVWLPDWHV RI WKH LQFLGHQW HQHUJ\ WR WKH LUUDGLDWHG YROXPH (QHUJ\ LPSDUWHG JHQHUDOO\ GHSHQGV RQ WKH [UD\ EHDP TXDOLW\ DV ZHOO DV WKH ILHOG VL]H DQG LUUDGLDWLRQ JHRPHWU\ ZKLFK PDNHV GHSWK GRVH GDWD RI OLPLWHG YDOXH LQ WKH HYHU\GD\ FOLQLFDO VHWWLQJ 0RQWH &DUOR WHFKQLTXHV DUH DQRWKHU ZD\ WR FRPSXWH HQHUJ\ LPSDUWHG JLYHQ WKDW SKRWRQ LQWHUDFWLRQ FURVV VHFWLRQV DQG [UD\ HQHUJ\ GLVWULEXWLRQV DUH ZHOO NQRZQ 3HUVOLGHQ DQG &DUOVVRQ %RRQH f +RZHYHU WKHVH PHWKRGV DUH FRPSXWHU LQWHQVLYH WLPHFRQVXPLQJ DQG UHODWLYHO\ FXPEHUVRPH WR XVH 2WKHU VLPSOLILHG PHWKRGV VXFK DV WKH XVH RI KDOIYDOXH WKLFNQHVV RI WLVVXH +XPPHO HW DO f DOVR FDQ EH XVHG WR FDOFXODWH YDOXHV RI HQHUJ\ LPSDUWHG 7KH PRVW SUDFWLFDO DSSURDFK GHYHORSHG WR REWDLQ YDOXHV RI HQHUJ\ LPSDUWHG LV WKH XVH RI WUDQVPLVVLRQ LRQL]DWLRQ FKDPEHUV ZKLFK FDQ JHQHUDWH HQHUJ\ LPSDUWHG GDWD IURP DQ H[SRVXUHDUHD RU DLU FROOLVLRQ NHUPDDUHD SURGXFW 6KULPSWRQ HW DO f 0HDVXUHPHQWV RI H[SRVXUHDUHD SURGXFW KDYH EHHQ UHSRUWHG WR UHVXOW LQ DQ DFFXUDF\ RI HQHUJ\ LPSDUWHG EHWZHHQ b DQG b 6KULPSWRQ HW DO %HUWKHOVHQ DQG &DGHUEODQG f +RZHYHU H[SRVXUHDUHD SURGXFW PHWHUV GR QRW WDNH LQWR DFFRXQW SDWLHQW WKLFNQHVV DQG WKH LQFLGHQW EHDP PD\ QRW WRWDOO\ LUUDGLDWH WKH SDWLHQW $OWKRXJK LW PD\ EH SRVVLEOH WR RYHUFRPH ERWK WKHVH OLPLWDWLRQV DQ DFFXUDWH DQG SUDFWLFDO PHWKRG IRU HVWLPDWLQJ HQHUJ\ LPSDUWHG WR SDWLHQWV WKDW GRHV QRW UHO\ RQ VSHFLDO LQVWUXPHQWDWLRQ ZRXOG FOHDUO\ EH DGYDQWDJHRXV

PAGE 29

5HFHQWO\ *NDQDWVLRV DQG +XGD GHYHORSHG D VLPSOLILHG PHWKRG WR FRPSXWH HQHUJ\ LPSDUWHG IURP DQ\ UDGLRORJLF SURFHGXUH *NDQDWVLRV *NDQDWVLRV DQG +XGD f ZKLFK PD\ EH XVHG ZLWK WKH GRVLPHWU\ HTXLSPHQW DYDLODEOH LQ PRVW UDGLRORJ\ GHSDUWPHQWV 7KH PHWKRG LV EDVHG RQ 0RQWH &DUOR FDOFXODWLRQV RI HQHUJ\ LPSDUWHG IURP PRQRHQHUJHWLF SKRWRQV %RRQH f DQG PDNHV XVH RI SXEOLVKHG GLDJQRVWLF HQHUJ\ [ UD\ VSHFWUD 7XFNHU HW DL f 7KH SDWLHQW LV PRGHOHG DV D KRPRJHQRXV VODE RI ZDWHU ZLWK D VSHFLILHG WKLFNQHVV 7KH ZDWHU HTXLYDOHQFH RI D JLYHQ SDWLHQW PD\ EH REWDLQHG E\ GLUHFW PHDVXUHPHQW RI WKH SDWLHQW RU E\ HVWLPDWLQJ WKH WKLFNQHVV RI ZDWHU ZKLFK UHVXOWV LQ WKH VDPH [UD\ WHFKQLTXH IDFWRUV ZKHQ WKH LPDJLQJ HTXLSPHQW LV LQ DXWRPDWLF H[SRVXUH FRQWURO $(&f PRGH ([SHULPHQWDO PHDVXUHPHQWV QHHGHG IRU WKLV FRPSXWDWLRQ LQFOXGH WKH HQWUDQFH VNLQ H[SRVXUH WKH [UD\ EHDP TXDOLWLHV N9S DQG +9/f DV ZHOO DV WKH H[SRVHG DUHD DQG WKLFNQHVV RI WKH SDWLHQW DOO RI ZKLFK PD\ EH UHDGLO\ PHDVXUHG RU RWKHUZLVH HVWLPDWHG *NDQDWVLRV DQG +XGD FRPSDUHG WKLV PHWKRG ZLWK YDOXHV RI HQHUJ\ LPSDUWHG GHWHUPLQHG XVLQJ 0RQWH &DUOR WHFKQLTXHV DQG DQWKURSRPRUSKLF SKDQWRPV IRU D UDQJH RI GLDJQRVWLF H[DPLQDWLRQV $W DQG N9S DEVROXWH YDOXHV RI HQHUJ\ LPSDUWHG REWDLQHG XVLQJ WKLV PHWKRG GLIIHUHG E\ b b DQG b UHVSHFWLYHO\ IURP WKH FRUUHVSRQGLQJ UHVXOWV RI 0RQWH &DUOR FRPSXWDWLRQV REWDLQHG IRU DQ DQWKURSRPRUSKLF SKDQWRP 7KH DVVXPSWLRQ WKDW HQHUJ\ LPSDUWHG WR WKH KHDG DQG WUXQN FDQ GHWHUPLQH UDGLRORJLF ULVN KDV EHHQ LQYHVWLJDWHG E\ PDQ\ UHVHDUFKHUV %HQJWVVRQ HW DL +XGD &DUOVVRQ DQG &DUOVVRQ /H +HURQ &KDSSLH HW DO f ,W ZDV IRXQG WKDW WKHUH PD\ EH D YDOLG UHODWLRQVKLS EHWZHHQ HQHUJ\ LPSDUWHG DQG UDGLRORJLF ULVN $OWKRXJK WKH UDGLRVHQVLWLYLWLHV RI GLIIHUHQW RUJDQV DQG WLVVXHV DUH LJQRUHG WKH HQHUJ\

PAGE 30

LPSDUWHG ZLOO SUHGLFW DVVRFLDWHG UDGLRORJLF ULVNV DV DFFXUDWHO\ DV ZKHQ FRPSXWLQJ GRVHV WR LQGLYLGXDO RUJDQV :DOO HW DO +DUULVRQ &DPHURQ f $ UHDVRQDEOH OLQHDU FRUUHODWLRQ ZLWKLQ D IDFWRU RI WZR RU WKUHH ,360 +XGD DQG %LVVHVVXU f ZDV DOVR GHWHFWHG EHWZHHQ WRWDO HQHUJ\ LPSDUWHG DQG HIIHFWLYH GRVH WR WKH KHDG DQG WUXQN 3URYLGHG WKDW WKH H[DPLQLQJ YLHZ $3 3$ /$7 HWFf DQG WKH [UD\ EHDP TXDOLWLHV DUH NQRZQ WKH HIIHFWLYH GRVH FDQ EH GHWHUPLQHG HDVLO\ IURP YDOXHV RI HQHUJ\ LPSDUWHG +XGD DQG *NDQDWVLRV f (IIHFWLYH 'RVH 7KH HIIHFWLYH GRVH ( LV D GRVLPHWULF SDUDPHWHU ZKLFK WDNHV LQWR DFFRXQW WKH GRVHV UHFHLYHG E\ DOO LUUDGLDWHG UDGLRVHQVLWLYH RUJDQV 7KH HIIHFWLYH GRVH LV DEOH WR DFFRXQW IRU QRQXQLIRUP LUUDGLDWLRQ RI GLIIHUHQW RUJDQV DQG WLVVXHV LQ WKH ERG\ 7KXV WKH HIIHFWLYH GRVH LV FRQVLGHUHG D PHDVXUH RI WKH VWRFKDVWLF ULVN DVVRFLDWHG ZLWK UDGLRORJLF H[DPLQDWLRQV E\ GLUHFWO\ FRPSDULQJ SDUWLDO ERG\ LUUDGLDWLRQ WR ZKROH ERG\ UDGLDWLRQ H[SRVXUH ,&53 +XGD HW DO f $OWKRXJK WKH HIIHFWLYH GRVH LV DQ RFFXSDWLRQDO GRVH TXDQWLW\ EDVHG RQ DQ DJH SURILOH IRU UDGLDWLRQ ZRUNHUV WKLV GRVH GHVFULSWRU LV EHLQJ LQFUHDVLQJO\ XVHG WR TXDQWLI\ WKH DPRXQW RI UDGLDWLRQ UHFHLYHG E\ SDWLHQWV XQGHUJRLQJ UDGLRORJLF H[DPLQDWLRQV ZKLFK XVH LRQL]LQJ UDGLDWLRQ ,&53 1&53 816&($5 f 0HDVXUHPHQW RU FRPSXWDWLRQ RI HIIHFWLYH GRVHV IRU DQ\ [UD\ H[DPLQDWLRQ LV GLIILFXOW DQG WLPH FRQVXPLQJ $Q DGGLWLRQDO SUREOHP LV WKDW PRVW PHDVXUHPHQWV RU FDOFXODWLRQV PDNH XVH RI D VWDQGDUG SKDQWRP EDVHG RQ WKH UHIHUHQFH PDQ DV GHILQHG E\ WKH ,QWHUQDWLRQDO &RPPLVVLRQ RQ 5DGLRORJLFDO 3URWHFWLRQ ,&53 f $OWKRXJK WKH

PAGE 31

LPSRUWDQFH RI SDWLHQW VL]H IRU PHGLFDO UDGLDWLRQ GRVLPHWU\ KDV EHHQ UHFRJQL]HG /LQGVNRXJ &KDSSHO HW DO f LW LV QRW REYLRXV KRZ WR VFDOH WKH HIIHFWLYH GRVH FRPSXWHG IRU VWDQGDUG PDQ WR GLIIHUHQW VL]HG SDWLHQWV VXFK DV SHGLDWULF SDWLHQWV ZKR XQGHUJR VLPLODU H[DPLQDWLRQV 7KHVH OLPLWDWLRQV LPSHGH WKH ZLGHU XVH RI HIIHFWLYH GRVH LQ UDGLRORJ\ +XGD DQG *NDQDWVLRV f SURSRVHG D PHWKRG WR GHWHUPLQH WKH HIIHFWLYH GRVH ( WR SDWLHQWV XQGHUJRLQJ DQ\ UDGLRORJLF H[DPLQDWLRQ XVLQJ WKH HQHUJ\ LPSDUWHG WR WKH SDWLHQW H 9DOXHV RI (H ZHUH REWDLQHG IURP WKH UDGLDWLRQ GRVLPHWU\ GDWD SUHVHQWHG IRU [UD\ SURMHFWLRQV FRPSXWHG XVLQJ 0RQWH &DUOR FDOFXODWLRQV RQ DQ DGXOW DQWKURSRPRUSKLF SKDQWRP +DUW HW DO Df 7KH HQHUJ\ LPSDUWHG WR SDWLHQWV PD\ EH GHWHUPLQHG IURP YDOXHV RI WKH H[SRVXUHDUHD SURGXFW LQFLGHQW RQ WKH SDWLHQW DQG FDQ EH FRPELQHG ZLWK (H UDWLRV LH P6YIRU D KHDG 3$ YLHZf WR \LHOG YDOXHV RI WKH SDWLHQW HIIHFWLYH GRVH ,Q DGGLWLRQ WKLV PHWKRG ZDV H[WHQGHG WR GHWHUPLQH HIIHFWLYH GRVHV WR SDWLHQWV ZKR GLIIHU LQ PDVV IURP WKH DGXOW VL]HG SKDQWRPV XVHG LQ FXUUHQW SDWLHQW GRVH DVVHVVPHQW SURFHGXUHV +XGD HW DL E /H +HURQ f $OWKRXJK WKH FRPSXWDWLRQ RI HIIHFWLYH GRVH LV FXPEHUVRPH LQ PRVW FDVHV D UDQJH RI HIIHFWLYH GRVHV KDV EHHQ UHSRUWHG LQ WKH OLWHUDWXUH WKDW SHUWDLQ WR QHXURLQWHUYHQWLRQDO SURFHGXUHV )H\JHOPDQ HW DO f VWXGLHG WHQ FDVHV DQG UHSRUWHG YDOXHV UDQJLQJ IURP P6Y ZLWK D PHDQ RI P6Y %HUJHURQ HW DO f UHSRUWHG DQ DYHUDJH RI P6Y ZLWK D UDQJH RI P6Y IRU D OLPLWHG QXPEHU RI HLJKW SDWLHQWV XQGHUJRLQJ VLPLODU SURFHGXUHV 0F3DUODQG f UHSRUWHG D PHGLDQ RI P6Y ZLWK D UDQJH RI P6Y ZKHQ KH FRPSXWHG HIIHFWLYH GRVHV WR SDWLHQWV XQGHUJRLQJ FHUHEUDO DQJLRJUDSK\ $ ZLGHU UDQJH ZDV UHSRUWHG E\ %HUWKHOVRQ DQG &HGHUEODG f ZKR FRPSXWHG HIIHFWLYH GRVHV EHWZHHQ P6Y DQG P6Y

PAGE 32

'HVSLWH LWV SRSXODULW\ WKH HIIHFWLYH GRVH LQWURGXFHV VRPH SUREOHPV ZKHQ XVHG LQ GLDJQRVWLF UDGLRORJ\ )LUVW LW GRHV QRW DFFRXQW IRU GLIIHUHQFHV EHWZHHQ WKH DJH GLVWULEXWLRQ RI ZRUNHUV DQG WKDW RI WKH JHQHUDO SXEOLF ZLWK UHJDUG WR WKH GHWHUPLQDWLRQ RI WKH DSSURSULDWH RUJDQ ZHLJKWLQJ IDFWRUV 7KH HIIHFWLYH GRVH DOVR H[FOXGHV FXUDEOH FDQFHU RU KHUHGLWDU\ KDUP EH\RQG WKH VHFRQG JHQHUDWLRQ %RWK WKHVH IDFWRUV PDNH WKH HIIHFWLYH GRVH D TXHVWLRQDEOH TXDQWLW\ LQ ULVN DVVHVVPHQW DVVRFLDWHG ZLWK GLDJQRVWLF UDGLRORJLF SURFHGXUHV 816&($5 &DPHURQ f ,W VKRXOG DOVR EH PHQWLRQHG WKDW WKH HIIHFWLYH GRVH DSSOLHV RQO\ WR ORZ UDGLDWLRQ GRVHV ZKLFK JHQHUDOO\ LV WKH FDVH LQ GLDJQRVWLF UDGLRORJ\ +RZHYHU LQ DUHDV OLNH FDUGLRORJ\ DQG QHXURUDGLRORJ\ ZKHUH H[WHQGHG GLDJQRVWLF DQG WKHUDSHXWLF SURFHGXUHV PD\ GHOLYHU ORFDO SDWLHQW GRVHV RI VHYHUDO *UD\ WKH HIIHFWLYH GRVH PD\ QRW EH DQ DSSURSULDWH GRVLPHWULF TXDQWLW\ $QRWKHU SUREOHP ZLWK WKH HIIHFWLYH GRVH LV WKH XQFHUWDLQWLHV LQYROYHG ZLWK LWV FDOFXODWLRQ 7KH FDOFXODWLRQ RI WKH HIIHFWLYH GRVH PXVW LQFOXGH DQ DQDO\VLV RI WKH GRVH GLVWULEXWLRQ ZLWKLQ WKH ERG\ ZKLFK LV GLIILFXOW WR GR IRU UDGLRORJLF SURFHGXUHV SDUWLFXODUO\ IOXRURVFRS\ $V DQ DOWHUQDWLYH GRVH GLVWULEXWLRQV DUH GHULYHG IURP 0RQWH &DUOR WHFKQLTXHV XVLQJ PDWKHPDWLFDO SKDQWRPV *LEEV HW DO -RQHV DQG :DOO +XGD HW DO /H +HURQ f RU IURP FDOFXODWLRQV RI WKH DYHUDJH RUJDQ GRVH LQ DQWKURSRPRUSKLF SKDQWRPV )DXONQHU DQG +DUULVRQ +XGD HW DO D Ef 6XFK WHFKQLTXHV WKRXJK FDQ RQO\ SURYLGH DSSUR[LPDWLRQV RI WKH WUXH RUJDQ GRVH GLVWULEXWLRQ )XUWKHUPRUH WKH VHOHFWLRQ RI WKH fUHPDLQGHUf RUJDQV LV SUREOHPDWLF LQ GRVH GLVWULEXWLRQ DQDO\VLV DQG PD\ YDU\ IRU HDFK H[DPLQDWLRQ (IIHFWLYH GRVH DOVR UHTXLUHV WKH XVH RI D GRVH HTXLYDOHQW ZKLFK LV EDVHG RQ WKH TXDOLW\ IDFWRU 4 RI WKH W\SH RI UDGLDWLRQ

PAGE 33

LQYROYHG ,&53 f DQG XVH RI RUJDQ DQG WLVVXH ZHLJKWLQJ IDFWRUV ,&53 f %RWK WKHVH IDFWRUV DUH FRQVLGHUHG WR EH ELRORJLFDOO\ XQFHUWDLQ &DPHURQ f 1RWZLWKVWDQGLQJ WKH IDFW WKDW WKHUH DUH SUREOHPV DVVRFLDWHG ZLWK FRQYHUWLQJ HIIHFWLYH GRVHV WR D FRUUHVSRQGLQJ GHWULPHQW +XGD DQG %HZV f WKHUH DUH LPSRUWDQW EHQHILWV WR EH JDLQHG E\ XVLQJ HIIHFWLYH GRVH WR TXDQWLI\ SDWLHQW GRVHV LQ GLDJQRVWLF UDGLRORJ\ 2QH DGYDQWDJH LV WKDW WKH HIIHFWLYH GRVH DWWHPSWV WR PHDVXUH WKH ULVN WR WKH SDWLHQW ZKLFK LV WKH PRWLYDWLRQ IRU DOO SDWLHQW GRVLPHWU\ VWXGLHV LQ GLDJQRVWLF UDGLRORJ\ ,Q DGGLWLRQ WKH HIIHFWLYH GRVH WR D SDWLHQW XQGHUJRLQJ DQ\ H[DPLQDWLRQ PD\ EH FRPSDUHG WR WKDW RI DQ\ RWKHU UDGLRORJLF SURFHGXUH DV ZHOO DV WR QDWXUDO EDFNJURXQG H[SRVXUH DQG UHJXODWRU\ GRVH OLPLWV ZKLFK DUH LQFUHDVLQJO\ H[SUHVVHG XVLQJ HIIHFWLYH GRVH YDOXHV ,&53 15& D Ef ,PDJH 4XDOLW\ 7KH H[WUDFWLRQ RI DGHTXDWH GLDJQRVWLF LQIRUPDWLRQ IURP UDGLRJUDSKLF LPDJHV LV LPSRUWDQW LQ UDGLRORJ\ LQ RUGHU WR GHWHFW DQG LGHQWLI\ DQ DEQRUPDOLW\ DQG WKHQ WR LQWHUSUHW LWV PHDQLQJ DQG GHWHUPLQH LWV FDXVH 7KXV WKH TXDOLW\ RI WKH UDGLRJUDSKLF LPDJH LV YHU\ LPSRUWDQW LQ FRQYH\LQJ GLDJQRVWLF LQIRUPDWLRQ WR WKH REVHUYHU ,PDJH TXDOLW\ FDQ EH GHVFULEHG LQ WHUPV RI FRQWUDVW QRLVH DQG UHVROXWLRQ ,PDJH &RQWUDVW ,PDJH FRQWUDVW FDQ EH GHILQHG DV WKH GLIIHUHQFH LQ WKH RSWLFDO GHQVLW\ ILOPf RU EULJKWQHVV GLJLWDOf LQ DQ LPDJH EHWZHHQ DQ DUHD RI LQWHUHVW DQG LWV VXUURXQGLQJ EDFNJURXQG ,PDJH FRQWUDVW LV GHWHUPLQHG E\ VHYHUDO IDFWRUV LQFOXGLQJ WKH FKDUDFWHULVWLFV

PAGE 34

RI WKH PDWHULDOV EHLQJ LPDJHG WKH FKDUDFWHULVWLFV RI WKH [UD\ VSHFWUXP WKH FKDUDFWHULVWLFV RI WKH GHWHFWRU DQG GLVSOD\ PHGLD DQG SK\VLFDO SHUWXUEDWLRQV VXFK DV VFDWWHUHG UDGLDWLRQ +DVDJDZD f 7KHVH GHSHQGHQFLHV VHSDUDWH LPDJH FRQWUDVW LQWR UDGLRJUDSKLF VXEMHFWf FRQWUDVW GHWHFWRU FRQWUDVW DQG GLVSOD\ FRQWUDVW 5DGLRJUDSKLF FRQWUDVW 5DGLRJUDSKLF RU VXEMHFW FRQWUDVW FKDUDFWHUL]HV WKH GLIIHUHQFHV LQ [UD\ IOXHQFH HPHUJLQJ IURP GLIIHUHQW UHJLRQV RI WKH LPDJHG REMHFW 5DGLRJUDSKLF FRQWUDVW GHSHQGV RQ GLIIHUHQFHV LQ PDWHULDO WKLFNQHVV DWRPLF QXPEHUV SK\VLFDO GHQVLW\ DQG HOHFWURQ GHQVLW\ EHWZHHQ GLIIHUHQW UHJLRQV RI WKH LPDJHG REMHFW DQG WKHLU LQWHUDFWLRQ ZLWK UDGLDWLRQ 'HWHFWRU FRQWUDVW 'HWHFWRU FRQWUDVW RQ WKH RWKHU KDQG FDQ EH H[SUHVVHG DV WKH DELOLW\ RI WKH LPDJLQJ GHWHFWRU WR FRQYHUW GLIIHUHQFHV LQ [UD\ IOXHQFH HPHUJLQJ IURP DQ REMHFW WR GLIIHUHQFHV LQ RSWLFDO GHQVLW\ ILOP GHWHFWRUf RU EULJKWQHVV GLJLWDO GHWHFWRUf 7KH GHWHFWRU FRQWUDVW FDQ VKDSH WKH UDGLRJUDSKLF FRQWUDVW DFFRUGLQJ WR WKH GHWHFWRUfV FKDUDFWHULVWLF UHVSRQVH WR [UD\V 7KXV GHWHFWRU FRQWUDVW GHSHQGV RQ WKH SURSHUWLHV RI WKH GHWHFWRU PDWHULDO LWV WKLFNQHVV DWRPLF QXPEHUV HOHFWURQ GHQVLW\ DQG WKH SK\VLFDO SURFHVV E\ ZKLFK WKH GHWHFWRU FRQYHUWV [UD\ IOXHQFH LQWR DQ LPDJH 'LVSOD\ FRQWUDVW 7KH WKLUG FRPSRQHQW RI LPDJH FRQWUDVW LV WKH GLVSOD\ FRQWUDVW ZKLFK UHIHUV WR WKH GLJLWDO GLVSOD\ RI LPDJHV 'LVSOD\ FRQWUDVW GHSHQGV RQ WKH GLVSOD\ SDUDPHWHUV LH ZLQGRZ DQG OHYHOf XQGHU ZKLFK WKH LPDJH LV YLHZHG DQG FDQ EH PDQLSXODWHG E\ WKH REVHUYHU 2WKHU FRQWUDVW GHSHQGHQFLHV ,PDJH FRQWUDVW LQ JHQHUDO LV DOVR DIIHFWHG E\ SK\VLFDO SHUWXUEDWLRQV VXFK DV VFDWWHUHG UDGLDWLRQ LPDJH LQWHQVLILHU YHLOLQJ JODUH DQG WKH EDVH DQG IRJ RI ILOP DOO RI ZKLFK UHGXFH LPDJH FRQWUDVW

PAGE 35

,PDJH 1RLVH (YHU\ UDGLRJUDSKLF LPDJH LV GHJUDGHG E\ QRLVH VXSHULPSRVHG RQ WKH LPDJH E\ UDQGRP SURFHVVHV RFFXUULQJ DORQJ WKH LPDJLQJ FKDLQ 'HWHFWLRQ RI D VLJQDO WKDW LV VXSHULPSRVHG RQ QRLVH GHSHQGV RQ WKH UHODWLYH PDJQLWXGH RI WKH QRLVH FRPSDUHG WR WKH VLJQDO DQG WKH DELOLW\ RI WKH REVHUYHU WR GLIIHUHQWLDWH EHWZHHQ WKH EULJKWQHVV GLVWULEXWLRQ RI WKH QRLVH DQG WKDW RI WKH VLJQDO SOXV QRLVH *LJHU HW DO Ef 7KH RYHUDOO QRLVH RI DQ LPDJH FRQVLVWV RI YDULRXV QRLVH FRPSRQHQWV 7KH VWDWLVWLFDO QDWXUH RI [UD\ SURGXFWLRQ DQG DWWHQXDWLRQ LQ WKH GHWHFWRU UHVXOWV LQ TXDQWXP PRWWOH 6WUXFWXUH PRWWOH HOHFWURQLF QRLVH TXDQWL]DWLRQ QRLVH WLPH MLWWHU DQG GLVSOD\ GHYLFH QRLVH DUH DGGLWLRQDO QRLVH FRPSRQHQWV LQ GLJLWDO LPDJLQJ GHWHFWRUV *LJHU f ,Q GLJLWDO LPDJLQJ DV LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ WKH QRLVH FRPSRQHQWV FDQ EH FDWHJRUL]HG DV VWDWLF DQG QRQVWDWLF QRLVH 6WDWLF QRLVH LV LQGHSHQGHQW IURP RQH IUDPH WR WKH QH[W DQG DOZD\V SUHVHQWV WKH VDPH SDWWHUQ 7KXV VWDWLF QRLVH LV HOLPLQDWHG LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ 6WUXFWXUH PRWWOH LV WKH PRVW LPSRUWDQW VWDWLF QRLVH FRPSRQHQW LQ GLJLWDO LPDJLQJ 1RQVWDWLF QRLVH LV IUDPH GHSHQGHQW ZKLFK PHDQV WKDW WKH QRLVH SDWWHUQ YDULHV IURP RQH IUDPH WR WKH QH[W 1RQVWDWLF QRLVH VRXUFHV DUH DOZD\V SUHVHQW LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ 6LJQLILFDQW QRVWDWLF QRLVH VRXUFHV LQ GLJLWDO LPDJLQJ DUH WKH TXDQWXP PRWWOH DQG HOHFWURQLF QRLVH 7KH SULPDU\ VRXUFH RI QRLVH LQ GLJLWDO LPDJLQJ LV XVXDOO\ TXDQWXP PRWWOH ZKLFK FRUUHVSRQGV WR UDQGRP VSDWLDO IOXFWXDWLRQV RI WKH GLVWULEXWLRQ RI [UD\ TXDQWD DEVRUEHG E\ WKH GHWHFWRU 6LQFH WKH SURGXFWLRQ DQG DWWHQXDWLRQ RI [ UD\V DUH 3RLVVRQ VWDWLVWLFDO SURFHVVHV TXDQWXP PRWWOH IROORZV 3RLVVRQ VWDWLVWLFV ZKLFK PDNHV LW HDVLO\ TXDQWLILDEOH &RQVHTXHQWO\ LQFUHDVLQJ WKH H[SRVXUH WR WKH LPDJLQJ GHWHFWRU ZLOO LPSURYH D

PAGE 36

UDGLRJUDSKLF LPDJH E\ GHFUHDVLQJ TXDQWXP PRWWOH ,PSURYLQJ WKH DWWHQXDWLRQ SURSHUWLHV RI WKH LPDJLQJ GHWHFWRU ZLOO DOVR UHGXFH TXDQWXP PRWWOH RI UDGLRJUDSKLF LPDJHV 6HFRQGDU\ VRXUFHV RI QRLVH EHFRPH LPSRUWDQW LQ UDGLRJUDSKLF LPDJLQJ ZKHQ WKH LPDJH UHFHSWRU LV H[SRVHG WR KLJK HQRXJK UDGLDWLRQ WR HOLPLQDWH PRVW RI WKH TXDQWXP PRWWOH 6HFRQGDU\ QRLVH VRXUFHV LQ GLJLWDO LPDJLQJ FRQVLVW RI WKH VWUXFWXUH PRWWOH HOHFWURQLF QRLVH TXDQWL]DWLRQ QRLVH DQG WLPH MLWWHU 6WUXFWXUH PRWWOH 6WUXFWXUH PRWWOH LV WKH VHFRQG PRVW LPSRUWDQW QRLVH FRPSRQHQW LQ VLQJOHIUDPH GLJLWDO LPDJLQJ DIWHU TXDQWXP PRWWOH DQG LW EHFRPHV WKH GRPLQDQW QRLVH VRXUFH LQ LPDJHV DFTXLUHG XVLQJ KLJK [UD\ IOXHQFH *LJHU HW DO Ef 7KH VWUXFWXUH PRWWOH LV LQWURGXFHG WR WKH LPDJLQJ OLQH E\ WKH LPDJH LQWHQVLILHU 6WUXFWXUH PRWWOH GHSHQGV RQ WKH SK\VLFDO VWUXFWXUH RI ERWK WKH LQSXW DQG RXWSXW SKRVSKRU OD\HUV 6LQFH VWUXFWXUH PRWWOH LV D VWDWLF FRPSRQHQW RI LPDJH QRLVH LWV QRLVH SDWWHUQ LV FRQVWDQW IURP IUDPH WR IUDPH 7KHUHIRUH VWUXFWXUH PRWWOH FDQ EH HOLPLQDWHG E\ WKH VXEWUDFWLRQ RI WZR LPDJH IUDPHV DV GRQH LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ $QRWKHU FKDUDFWHULVWLF RI VWUXFWXUH PRWWOH SHUWDLQLQJ WR LWV VWDWLF QDWXUH LV WKDW VWUXFWXUH PRWWOH UHPDLQV XQFKDQJHG DIWHU IUDPH LQWHJUDWLRQ (OHFWURQLF QRLVH (OHFWURQLF QRLVH DULVHV IURP WKH YLGHR FDPHUD DV D IRUP RI GDUN FXUUHQW DGGHG WR WKH H[SRVXUHGHSHQGHQW YLGHR VLJQDO 7KH PDJQLWXGH RI HOHFWURQLF QRLVH LV LQYHUVHO\ SURSRUWLRQDO WR WKH G\QDPLF UDQJH RI WKH 79 FDPHUD DQG LV UHODWLYHO\ LQGHSHQGHQW RI YLGHR VLJQDO VL]H ,Q RUGHU WR PLQLPL]H WKH SHUWXUEDWLRQV DGGHG WR D GLJLWDO UDGLRJUDSKLF LPDJH E\ HOHFWURQLF QRLVH WKH YLGHR VLJQDO VKRXOG EH PD[LPL]HG ZKHQ SRVVLEOH &RKHQ HW DO f ,Q JHQHUDO WKH HOHFWURQLF QRLVH LQ D GLJLWDO LPDJLQJ V\VWHP LV TXLWH VPDOO UHODWLYH WR WKH TXDQWXP DQG VWUXFWXUH PRWWOH 5RHKULJ HW DO

PAGE 37

%DOWHU HW DO f +RZHYHU HOHFWURQLF QRLVH EHFRPHV D VLJQLILFDQW QRLVH VRXUFH ZKHQ DQ REMHFW LV LPDJHG DW ORZ YLGHR OHYHOV DQG XVLQJ ORZ [UD\ IOXHQFH ,W ZDV DOVR GHPRQVWUDWHG E\ *HLJHU HW DO Ef WKDW HOHFWURQLF QRLVH FRQWULEXWLRQ EHFRPHV VXEVWDQWLDO DW VSDWLDO IUHTXHQFLHV RI DERXW F\FOHVPP 4XDQWL]DWLRQ QRLVH $QRWKHU QRLVH FRPSRQHQW RI D GLJLWDO LPDJLQJ V\VWHP LV TXDQWL]DWLRQ QRLVH 4XDQWL]DWLRQ QRLVH LV WKH HUURU LQWURGXFHG LQWR DQ DQDORJ VLJQDO LH 79 YLGHR VLJQDOf ZKHQ LW LV GLJLWL]HG 4XDQWL]DWLRQ QRLVH GHSHQGV RQ WKH ZLGWK RI WKH TXDQWL]DWLRQ VWHS ,Q JHQHUDO GLJLWDO LPDJLQJ V\VWHPV DUH GHVLJQHG WR PLQLPL]H TXDQWL]DWLRQ HUURUV ZKLFK PDNHV TXDQWL]DWLRQ QRLVH LQVLJQLILFDQW LQ FRPSDULVRQ WR TXDQWXP PRWWOH RU HYHQ HOHFWURQLF QRLVH %XUJHVV %RRQ HW DO 5DMDSDNVKH DQG 6KDOHY %D[WHU HWDO f 7LPH MLWWHU $QRWKHU FRPSRQHQW RI QRLVH WKDW PD\ DSSHDU LQ GLJLWDO LPDJLQJ V\VWHPV LV WLPH MLWWHU $UQROG DQG 6FKHLEH (VWKDSSDQ HW DO f 7LPH MLWWHU LV XVXDOO\ FDXVHG E\ LQFRUUHFW DOLJQPHQW RI WKH VFDQQLQJ HOHFWURQ EHDP LQ WKH WHOHYLVLRQ FDPHUD IURP RQH YLGHR IUDPH WR WKH QH[W 7LPH MLWWHU PD\ DOVR EH FDXVHG E\ D YDULDEOH DV\QFKURQ\ EHWZHHQ WKH YLGHR VLJQDO DQG WKH DQDORJWRGLJLWDO FRQYHUWHU ,Q JHQHUDO WLPH MLWWHU SURGXFHV D YDULDWLRQ LQ SL[HO SRVLWLRQ IURP RQH LPDJH IUDPH WR WKH QH[W 7KH LPSRUWDQFH RI WLPH MLWWHU EHFRPHV VLJQLILFDQW LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ ZKHQ WKLV VSDWLDO SL[HO VKLIW FKDQJHV WKH VSDWLDO SDWWHUQ RI VWDWLF QRLVH EULQJLQJ XS VWUXFWXUH PRWWOH LQ D GLJLWDOO\ VXEWUDFWHG LPDJH 7KHUHIRUH FDUHIXO GHVLJQ DQG VWDEOH HOHFWURQLFV DUH UHTXLUHG LQ GLJLWDO LPDJLQJ V\VWHPV WR DYRLG WLPH MLWWHU LQ RUGHU WR HOLPLQDWH VWUXFWXUH PRWWOH FRPSOHWHO\ IURP GLJLWDOO\ VXEWUDFWHG LPDJHV

PAGE 38

6SDWLDO 5HVROXWLRQ 7KH WKLUG SDUDPHWHU XVHG WR TXDQWLI\ LPDJH TXDOLW\ LQ DGGLWLRQ WR FRQWUDVW DQG QRLVH LV VSDWLDO UHVROXWLRQ IUHTXHQWO\ UHIHUUHG WR DV UHVROXWLRQ $OWKRXJK VSDWLDO UHVROXWLRQ GRHV QRW KDYH DV PXFK RI DQ LPSDFW RQ LPDJH TXDOLW\ DV FRQWUDVW RU QRLVH LQ DSSOLFDWLRQV RI QHXURLQWHUYHQWLRQDO LPDJLQJ VSDWLDO UHVROXWLRQ EHFRPHV VRPHZKDW PRUH LPSRUWDQW 'XULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV WKH QHHG WR YLVXDOL]H WLQ\ QHXURYDVFXODU LQVWUXPHQWV LH FDWKHWHUV DQG JXLGH ZLUHVf DQG YHVVHOV DV VPDOO DV SP UHTXLUHV KLJK VSDWLDO UHVROXWLRQ 7KH VSDWLDO UHVROXWLRQ RI DQ LPDJLQJ V\VWHP FDQ EH FKDUDFWHUL]HG E\ LWV PRGXODWLRQ WUDQVIHU IXQFWLRQ 07)f +DXV 0HW] DQG 'RL f ZKLFK FDQ EH REWDLQHG IURP PHDVXUHPHQWV RI WKH SRLQW RU OLQH VSUHDG IXQFWLRQV 7KH GHWHUPLQDWLRQ RI 07) RI GLJLWDO LPDJLQJ V\VWHPV KRZHYHU UHTXLUHV FDUHIXO KDQGOLQJ WR DYRLG DOLDVLQJ HIIHFWV FDXVHG E\ WKH GLVFUHWH GDWD VDPSOLQJ RI GLJLWDO V\VWHPV *LJHU DQG 'RL )XMLWD HW DO f ,Q JHQHUDO WKH VSDWLDO UHVROXWLRQ RI DQ LPDJLQJ V\VWHP GHSHQGV RQ JHRPHWULF PRWLRQ GHWHFWRU DQG GLJLWL]DWLRQ XQVKDUSQHVV *HRPHWULF XQVKDUSQHVV *HRPHWULF XQVKDUSQHVV UHIHUV WR WKH ORVV RI LPDJH GHWDLO GXH WR WKH ILQLWH VL]H RI WKH UDGLDWLRQ VRXUFH LH IRFDO VSRWf +DVDJDZD f +HDW ORDGLQJ RI WKH DQRGH RI DQ [UD\ WXEH UHTXLUHV WKDW WKH IRFDO VSRW LV ODUJH HQRXJK WR GLVVLSDWH WKH JHQHUDWHG KHDW 7KH ILQLWH VL]H RI WKH IRFDO VSRW FUHDWHV XQVKDUSQHVV FDOOHG SHQXPEUD DW WKH HGJHV RI WKH LPDJHG REMHFW 7R OLPLW WKH DPRXQW RI JHRPHWULF XQVKDUSQHVV LQ QHXURLQWHUYHQWLRQDO LPDJLQJ [UD\ WXEHV ZLWK VWHHS DQRGH DQJOHV LH GHJUHHVf DQG VPDOO HIIHFWLYH IRFDO VSRWV LH PP RU PPf DUH XVHG $QRWKHU SUDFWLFH RIWHQ XVHG LQ QHXURLQWHUYHQWLRQDO LPDJLQJ LV WKH XVH RI PDJQLILFDWLRQ ZKLFK DOVR LQFUHDVHV JHRPHWULF XQVKDUSQHVV

PAGE 39

0RWLRQ XQVKDUSQHVV 0RWLRQ XQVKDUSQHVV UHIHUV WR WKH ORVV RI VSDWLDO UHVROXWLRQ GXH WR PRWLRQ RI WKH [UD\ VRXUFH GHWHFWRU DQGRU REMHFW EHLQJ LPDJHG +DVDJDZD f :KHQ RQH RU PRUH RI WKHVH FRPSRQHQWV PRYH PRWLRQ XQVKDUSQHVV LV LQWURGXFHG ZKLFK GHJUDGHV VSDWLDO UHVROXWLRQ 3DWLHQW PRWLRQ FDXVHG E\ GLVFRPIRUW DQG WKH FRQWLQXRXV PRYLQJ RI WKH SDWLHQWfV KHDUW DQG GLDSKUDJP LV XVXDOO\ WKH JUHDWHVW FRQFHUQ VLQFH VRXUFH DQG GHWHFWRU FDQ EH HDVLO\ VHFXUHG LQ SODFH 6HGDWLRQ RU LPPRELOL]DWLRQ RI WKH SDWLHQW GXULQJ D UDGLRJUDSKLF SURFHGXUH DQG VKRUW H[SRVXUH WLPHV ZLOO KHOS UHGXFH WKH DPRXQW RI PRWLRQ XQVKDUSQHVV 'HWHFWRU XQVKDUSQHVV 'HWHFWRU XQVKDUSQHVV UHIHUV WR WKH ORVV RI VSDWLDO UHVROXWLRQ GXH WR WKH ILQLWH UHVROYLQJ SRZHU RI WKH GHWHFWRU +DVDJDZD f ,Q VFUHHQILOP V\VWHPV GHWHFWRU XQVKDUSQHVV LV DOVR FDXVHG E\ OLJKW GLIIXVLRQ LQ WKH LQWHQVLILHU VFUHHQV 7KLFNHU LQWHQVLILHU VFUHHQV ZLOO DOORZ PRUH OLJKW GLIIXVLRQ DQG FUHDWH PRUH XQVKDUSQHVV ,Q GLJLWDO LPDJLQJ VSDWLDO UHVROXWLRQ GHSHQGV RQ WKH 79 EDQGZLGWK DQG SL[HO VL]H 7KXV 79 V\VWHPV ZLWK OLQHV DUH XVHG LQ QHXURLQWHUYHQWLRQDO DSSOLFDWLRQV ,Q DGGLWLRQ DQ\ GLJLWL]DWLRQ ZLOO UHVXOW LQ ORVV RI VSDWLDO UHVROXWLRQ GXH WR WKH LQKHUHQW SL[HOODWLRQ RI D GLJLWDO LPDJH LQ FRPSDULVRQ WR WKH RULJLQDO DQDORJ LPDJH ,PDJLQJ 7HFKQLTXH )DFWRUV 3DWLHQW GRVHV DQG LPDJH TXDOLW\ DUH ERWK LQIOXHQFHG E\ WKH VHOHFWLRQ RI LPDJLQJ WHFKQLTXHV )LJXUH VKRZV VRPH NH\ SDUDPHWHUV DORQJ WKH OLQH RI DQ [UD\ LPDJLQJ V\VWHP ZKLFK FDQ DOWHU SDWLHQW DEVRUEHG GRVHV DQG LPDJH TXDOLW\ 6XFK SDUDPHWHUV DUH WKH WXEH YROWDJH WXEH ILOWUDWLRQ LQSXW H[SRVXUH WR WKH LPDJLQJ GHWHFWRU PDJQLILFDWLRQ DQG LPDJH SURFHVVLQJ :LWK WKH H[FHSWLRQ RI LPDJH SURFHVVLQJ DQ DWWHPSW WR GHFUHDVH

PAGE 40

SDWLHQW GRVH E\ DOWHULQJ RQH RU PRUH RI WKHVH SDUDPHWHUV ZLOO DOVR GHJUDGH LPDJH TXDOLW\ 7KXV WUDGHRIIV EHWZHHQ YDU\LQJ GLIIHUHQW LPDJLQJ WHFKQLTXH IDFWRUV PHULW LQYHVWLJDWLRQ WR ILQG EHWWHU ZD\V WR LPSURYH LPDJH TXDOLW\ ZKLOH PDLQWDLQLQJ ORZ SDWLHQW GRVHV f§6! ,7 $'& ,PDJH 3URFHVVLQJ ,9 WLWW ,QSXW ([SRVXUH n n )LOWUDWLRQ ),*85( .H\ SDUDPHWHUV WKDW DIIHFW SDWLHQW GRVH DQG LPDJH TXDOLW\ LQ [UD\ LPDJLQJ 7XEH 3RWHQWLDO 9HU\ HDUO\ LQ WKH KLVWRU\ RI GLDJQRVWLF UDGLRORJ\ WXEH YROWDJH DQG WKH XVH RI VSHFLDOL]HG .HGJH ILOWHUV ZHUH VWXGLHG H[WHQVLYHO\ WR RSWLPL]H SDWLHQW GRVH DQG LPDJH TXDOLW\ 7URXW HW DO .RHGRRGHU DQG 9HQHPD 6KULPSWRQ HW DO 1DJHO f ,Q JHQHUDO LW ZDV VKRZQ WKDW DQ LQFUHDVH LQ WXEH YROWDJH GHFUHDVHV SDWLHQW H[SRVXUH DQG GHJUDGHV LPDJH TXDOLW\ 7KH RSWLPDO WXEH YROWDJH IRU GHWHFWLQJ ODUJHDUHD

PAGE 41

ORZFRQWUDVW LRGLQDWHG REMHFWV ZDV GHWHUPLQHG WR EH EHWZHHQ N9S 7DSLRYDDUD DQG 6DQGERUJ f 7KH VDPH VWXG\ DOVR VKRZHG WKDW IRU GHWHFWLQJ WKLQ VRIWWLVVXH GHWDLO D WXEH YROWDJH EHWZHHQ N9S VKRXOG EH XVHG $OVR 7KRPSVRQ HW DO f FRQFOXGHG WKDW KLJK WXEH YROWDJHV EHWZHHQ N9S FRPELQHG ZLWK LQFUHDVHG FRQWUDVW DJHQW FRQFHQWUDWLRQ DUH WKH RSWLPDO WHFKQLTXHV IRU GHWHFWLQJ VWRQHV LQ RSHUDWLYH 7WXEH FKRODQJLRJUDSK\ 7KH RSWLPDO WXEH SRWHQWLDO GHSHQGV RQ WKH LPDJLQJ UHTXLUHPHQWV RI HDFK LPDJLQJ SURFHGXUH ,Q LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZKHUH ERWK YLVLELOLW\ RI VPDOO LRGLQDWHG YHVVHOV DQG KLJK VSDWLDO UHVROXWLRQ DUH LPSRUWDQW ORZ WXEH YROWDJH PD\ EH XVHG WR PDLQWDLQ DGHTXDWH LPDJH TXDOLW\ $V D FRQVHTXHQFH ORZ WXEH YROWDJH ZLOO FRQWULEXWH WR KLJK SDWLHQW DEVRUEHG GRVHV $V WKH WXEH YROWDJH LQFUHDVHV ERWK HQWUDQFH DEVRUEHG GRVH DQG HQHUJ\ LPSDUWHG WR WKH SDWLHQW GHFUHDVH IRU D FRQVWDQW LQSXW H[SRVXUH WR WKH LPDJLQJ GHWHFWRU +RZHYHU LW VKRXOG EH QRWHG WKDW IRU D FRQVWDQW LQSXW H[SRVXUH WR WKH SDWLHQW LQFUHDVH LQ WXEH YROWDJH ZRXOG LQFUHDVH WKH HQHUJ\ LPSDUWHG WR WKH SDWLHQW *NDQDWVLRV DQG +XGD f ,QSXW ([SRVXUH WR WKH ,PDJH 5HFHSWRU 7KH UHODWLRQVKLS EHWZHHQ LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU DQG SDWLHQW DEVRUEHG GRVH LV OLQHDU 7KH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU DOVR DIIHFW LPDJH TXDOLW\ $V WKH LQSXW H[SRVXUH LQFUHDVHV WKH GRVH WR WKH SDWLHQW LQFUHDVHV DQG WKH VLJQLILFDQFH RI WKH TXDQWXP PRWWOH LQ D UDGLRJUDSKLF LPDJH GHFUHDVHV 6LQFH PRVW UDGLRJUDSKLF LPDJHV DUH TXDQWXP OLPLWHG LQFUHDVLQJ WKH H[SRVXUH WR WKH LPDJH UHFHSWRU ZLOO DOZD\V LPSURYH FRQWUDVWWRQRLVH &15f DQG VLJQDOWRQRLVH 615f UDWLRV E\

PAGE 42

UHGXFLQJ LPDJH QRLVH +RZHYHU DV WKH LQSXW H[SRVXUH LQFUHDVHV WR WKH SRLQW WKDW RWKHU QRLVH VRXUFHV LH VWUXFWXUH PRWWOH LQ VLQJHIUDPH GLJLWDO UDGLRJUDSKVf EHFRPH DV VLJQLILFDQW DV TXDQWXP PRWWOH WKHQ DQ\ LQFUHDVH LQ LQSXW H[SRVXUH ZLOO KDYH D PLQRU HIIHFW RQ LPDJH TXDOLW\ $Q\ LQFUHDVH LQ LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU DW D JLYHQ WXEH YROWDJH ZLOO LQFUHDVH SDWLHQW DEVRUEHG GRVHV SURSRUWLRQDOO\ )RU D ILOPVFUHHQ LPDJLQJ V\VWHP ZKHUH WKH LQSXW H[SRVXUH WR WKH V\VWHP LV FRQWUROOHG E\ DQ RSWLPXP RSWLFDO GHQVLW\ WKHUH LV QHJOLJLEOH IOH[LELOLW\ LQ YDU\LQJ WKH LQSXW H[SRVXUH ,Q GLJLWDO LPDJLQJ V\VWHPV KRZHYHU WKH UDQJH RI LQSXW H[SRVXUH FDQ YDU\ FRQVLGHUDEO\ DQG VWLOO SURGXFH D XVHIXO GLDJQRVWLF LPDJH 7KXV ZKLOH RSHUDWLQJ LQ WKH UDQJH RI LQSXW H[SRVXUHV ZKHUH TXDQWXP PRWWOH LV WKH GRPLQDQW QRLVH FRPSRQHQW LQFUHDVLQJ WKH LQSXW H[SRVXUH IRU WKH SXUSRVH RI LPSURYLQJ FRQWUDVW YLVLELOLW\ LV MXVWLILDEOH +RZHYHU LI WKH LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU LV DOUHDG\ KLJK HQRXJK VR WKDW TXDQWXP PRWWOH LV QRW WKH SULPDU\ FRPSRQHQW RI UDGLRJUDSKLF QRLVH DQ\ LQFUHDVH LQ LQSXW H[SRVXUH RQO\ LQFUHDVHV SDWLHQW DEVRUEHG GRVHV 6XFK SUDFWLFH ORZHUV WKH VWDQGDUG RI SDWLHQW FDUH E\ QRW IROORZLQJ WKH $/$5$ SULQFLSOH 0DJQLILFDWLRQ 0DJQLILFDWLRQ DQG LWV HIIHFWV RQ LPDJH TXDOLW\ KDYH EHHQ VWXGLHG LQ ERWK FRQYHQWLRQDO UDGLRJUDSK\ DQG PDPPRJUDSK\ 'RL DQG 5RVVPDQQ :DJQHU HW DO D E 6DQGULN DQG :DJQHU f ,Q JHQHUDO PDJQLILFDWLRQ LPSURYHV YLVLELOLW\ RI VPDOO ORZ FRQWUDVW REMHFWV $V WKH PDJQLILFDWLRQ LQFUHDVHV WKH HIIHFWLYH QRLVH LQ WKH LPDJH GHWHFWRU LV UHGXFHG LPSURYLQJ WKH VLJQDOWRQRLVH UDWLR DQG YLVLELOLW\ RI VPDOO

PAGE 43

VWUXFWXUHV LPSURYHV 'RL DQG ,PKRI f 6FDWWHU UDGLDWLRQ LV DOVR UHGXFHG ZLWK LQFUHDVHG PDJQLILFDWLRQ ZKLFK LPSURYHG FRQWUDVW GHWHFWDELOLW\ 6DQGRU DQG 1RWW f ,Q QHXURLQWHUYHQWLRQDO UDGLRORJLF SURFHGXUHV PDJQLILFDWLRQ LV RIWHQ XVHG DV D WRRO WR YLVXDOL]H VPDOO YDVFXODWXUH &DUH VKRXOG EH WDNHQ KRZHYHU ZKHQ PDJQLILFDWLRQ LV XVHG VLQFH WKH HQWUDQFH DEVRUEHG GRVH WR WKH SDWLHQW LQFUHDVHV VLJQLILFDQWO\ ZLWK PDJQLILFDWLRQ (QHUJ\ LPSDUWHG RQ WKH RWKHU KDQG LV LQGHSHQGHQW RI PDJQLILFDWLRQ DV ERWK GLVWDQFH IURP WKH [UD\ VRXUFH DQG DUHD RI H[SRVXUH GHFUHDVH HTXDOO\ DV PDJQLILFDWLRQ LV HPSOR\HG 7KH FKRLFH EHWZHHQ JHRPHWULFf§FKDQJH RI GLVWDQFH EHWZHHQ SDWLHQW DQG [UD\ VRXUFHf§DQG HOHFWURQLF PDJQLILFDWLRQ FKDQJLQJ WKH LQSXW GLDPHWHU RI WKH LPDJH GHWHFWRUf§VKRXOG EH FRQVLGHUHG HYHU\ WLPH PDJQLILFDWLRQ LV UHTXLUHG DQG WKH SRVVLELOLW\ RI GRVH VDYLQJV EHWZHHQ WKH WZR PHWKRGV VKRXOG EH LQYHVWLJDWHG LQ DQ\ LPDJLQJ V\VWHP

PAGE 44

&+$37(5 685)$&( '26(6 1HXURUDGLRORJLF ,PDJLQJ &OLQLFDO 3UDFWLFH ,QWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DUH SHUIRUPHG RQ SDWLHQWV VXVSHFWHG WR KDYH YDVFXODU DQRPDOLHV LQ WKH EUDLQ LH DQHXU\VP YDVFXOLWLV RU DUWHULRYHQRXV PDOIRUPDWLRQVf SDWLHQWV WKDW KDYH EUDLQ WXPRUV SDWLHQWV ZKR KDYH KDG D VWURNH HSLVRGH RU SDWLHQWV UHTXLULQJ FHUWDLQ W\SHV RI SV\FKRORJLFDO HYDOXDWLRQ $ QHXURLQWHUYHQWLRQDO SURFHGXUH PD\ EH D GLDJQRVWLF DQJLRJUDSKLF RU WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUH ,Q GLDJQRVWLF DQJLRJUDSKLF SURFHGXUHV WKH YDVFXODWXUH DQG EORRG G\QDPLFV RI FHUWDLQ SDUWV RI WKH EUDLQ DUH VWXGLHG E\ LPDJLQJ WKH NLQHWLFV RI UDGLRRSDTXH PHGLD LQMHFWHG LQ WKH YDVFXODWXUH RI WKH EUDLQ ,Q WKHUDSHXWLF QHXURLQWHUYHQWLRQDO SURFHGXUHV FRUUHFWLYH DFWLRQ LV WDNHQ WR RFFOXGH YDVFXODU DQRPDOLHV E\ LQMHFWLQJ HPEROLF DJHQWV VXFK DV JHODWLQ VSRQJHV RU PHWDOOLF FRLOV 8VXDOO\ D WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUH LV SUHFHGHG E\ D GLDJQRVWLF DQJLRJUDSKLF SURFHGXUH ,Q ERWK W\SHV RI QHXURLQWHUYHQWLRQDO SURFHGXUHV [ UD\ LPDJLQJ LV XVHG H[WHQVLYHO\ LQ WKH IRUPV RI IOXRURVFRS\ FRQYHQWLRQDO ILOP DQG GLJLWDO UDGLRJUDSK\ 7KH WUDQVIHPRUDO DUWHU\ WHFKQLTXH LV XVHG WR SHUIRUP QHXURLQWHUYHQWLRQDO SURFHGXUHV ZKHUH D FDWKHWHU LV LQVHUWHG LQWR WKH FRPPRQ IHPRUDO RU GHHS IHPRUDO DUWHU\ IURP ZKHUH LW LV GULYHQ WR WKH YDVFXODU QHWZRUN RI WKH EUDLQ /LPLWHG DPRXQW RI IURQWDO

PAGE 45

SODQH IOXRURVFRS\ LV XVHG RQ WKH WUXQN DQG WKRUDFLF UHJLRQV WR JXLGH WKH FDWKHWHU XS WR WKH YHUWHEUDO RU FDURWLG DUWHULHV 2QFH WKHUH IXUWKHU XVH RI IOXRURVFRS\ LQ ERWK LPDJLQJ SODQHV IURQWDO DQG ODWHUDO LV XVHG WR SRVLWLRQ WKH FDWKHWHU DW WKH DSSURSULDWH VLWH WR EH VWXGLHG $OWKRXJK ELSODQH IOXRURVFRS\ LV XVHG LQ WKLV VWDJH PRVW RI WKH IOXRURVFRS\ LV VWLOO GRQH XVLQJ WKH IURQWDO SODQH 2QFH WKH FDWKHWHU LV LQ SODFH UDGLRRSDTXH FRQWUDVW LV LQMHFWHG WR WKDW ORFDWLRQ DQG D VHULHV RI UDGLRJUDSKLF LPDJHV DUH DFTXLUHG LQ SODLQ ILOP RU LQ GLJLWDO IRUPDW ,Q GLDJQRVWLF DQJLRJUDSKLF SURFHGXUHV WKH DFTXLVLWLRQ RI UDGLRJUDSKLF LPDJHV LV GRQH LQ ELSODQH PRGH DOPRVW H[FOXVLYHO\ ,Q WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ERWK ELSODQH DQG VLQJOH SODQH LPDJLQJ HLWKHU IURQWDO RU ODWHUDO DUH XVHG GXULQJ GLIIHUHQW VWDJHV RI WKH HPEROL]DWLRQ SURJUHVV HYDOXDWLRQ 'XULQJ HDFK UDGLRJUDSKLF DFTXLVLWLRQ WKH IUDPH UDWH DQG QXPEHU RI IUDPHV PD\ YDU\ IURP IUDPHV SHU VHFRQG DQG IUDPHV SHU DFTXLVLWLRQ UHVSHFWLYHO\ ,PDJLQJ (TXLSPHQW 7KH [UD\ LPDJLQJ V\VWHP XVHG LQ WKLV VWXG\ FRQVLVWHG RI D ELSODQH 7RVKLEDW .;2 KLJK YROWDJH GLDJQRVWLF [UD\ JHQHUDWRU DQG WKH 7RVKLED ')3$$ GLJLWDO IOXRURJUDSK\ V\VWHP FRQILJXUHG IRU QHXURUDGLRORJLF SURFHGXUHV 7KH FRQILJXUDWLRQV RI WKH WZR LPDJLQJ SODQHV IURQWDO DQG ODWHUDO ZHUH LGHQWLFDO 7KH IURQWDO SODQH ZDV EXLOW DURXQG WKH 7RVKLED .;2& KLJK IUHTXHQF\ [UD\ JHQHUDWRU 7KH ODWHUDO SODQH ZDV EDVHG RQ LWV VLVWHU JHQHUDWRU WKH .;2' %RWK JHQHUDWRUV ZHUH LQWHUIDFHG WRJHWKHU WR IXQFWLRQ DV D ELSODQH XQLW VXLWHG IRU QHXURLQWHUYHQWLRQDO DSSOLFDWLRQV I 7RVKLED $PHULFD 0HGLFDO 6\VWHPV 7XVWLQ &$

PAGE 46

7ULIRFDO PHWDO 7RVKLED 527$12'( [UD\ WXEHV KDYLQJ QRPLQDO IRFDO VSRW VL]HV RI PP PP DQG PP DQG LQKHUHQW ILOWUDWLRQ RI DERXW PP DOXPLQXP ZHUH XVHG DV WKH [UD\ VRXUFHV 7KH FROOLPDWRU DVVHPEO\ SURYLGHG DQ DOPRVW FLUFXODU [UD\ ILHOG XVLQJ D PXOWLEODGH FROOLPDWLQJ LULV PDWFKHG WLJKWO\ WR WKH VL]H RI WKH LPDJH LQWHQVLILHU LQSXW DUHD 7KH FROOLPDWRU DVVHPEO\ SURYLGHG WRWDO FROOLPDWLRQ ZLWK WKH KHOS RI IRXU PHWDO EODGHV RU SDUWLDO FROOLPDWLRQ XVLQJ ZHGJH VKDSHG WUDQVSDUHQW ILOWHUV $ VXSSRUW WDEOH ZLWK D FRPIRUW SDG WRWDOLQJ DQ HTXLYDOHQW ILOWUDWLRQ RI PP DOXPLQXP DW N9S ZHUH SODFHG EHWZHHQ WKH [UD\ EHDP DQG WKH SDWLHQW 7ZR LPDJH UHFHSWRUV ZHUH DYDLODEOH 7KH ILUVW UHFHSWRU ZDV D ELSODQH VFUHHQILOP V\VWHP UDWHG DV VSHHG DQG VSHHG IRU WKH IURQWDO DQG ODWHUDO LPDJLQJ SODQHV UHVSHFWLYHO\ 7KH VHFRQG LPDJH UHFHSWRU ZDV D GLJLWDO UDGLRJUDSK\ GHWHFWRU 7KH GLJLWDO UDGLRJUDSK\ GHWHFWRU FRQVLVWHG RI D &VO LPDJH LQWHQVLILHU WXEH ZLWK WKUHH HIIHFWLYH LQSXW GLDPHWHUV RI FP FP DQG FP $ FDUERQ ILEHU LQWHUVSDFHG JULG ZLWK D UDWLR RI ZDV XVHG WR UHPRYH VFDWWHU UDGLDWLRQ WR WKH LQSXW SKRVSKRU RI WKH LPDJH LQWHQVLILHU $Q DXWRPDWLF LULV FRQWURO DGMXVWHG WKH DPRXQW RI OLJKW UHDFKLQJ WKH 79 FDPHUD 7KH 79 FDPHUD FRQVLVWHG RI D KLJKUHVROXWLRQ &&' KHDG OLQHVf DQG ELW DQDORJ WR GLJLWDO FRQYHUWHU 'LJLWDO LQIRUPDWLRQ ZDV SDVVHG IURP WKH 79 FDPHUD WR WKH GLJLWDO LPDJH SURFHVVRU $QDORJ YLGHR VLJQDOV RI OLQHV DW +] LQWHUODFHG ZHUH SDVVHG WR WKH OLYH IOXRURVFRSLF KLJKUHVROXWLRQ PRQLWRUV 7KH GLJLWDO LPDJH SURFHVVRU ZDV D 7RVKLED ')3 $$ GLJLWDO IOXRURJUDSK\ V\VWHP FDSDEOH RI VSOLW GLVSOD\ IOXRURVFRS\ URDGPDS IOXRURVFRS\ GLJLWDO DQJLRJUDSK\ DQG GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\

PAGE 47

2SHUDWLRQ 7KH [UD\ LPDJLQJ V\VWHP ZDV FDSDEOH RI FRQWLQXRXV IOXRURVFRS\ RU SXOVHG IOXRURVFRS\ DW RU IUDPHVVHF 3XOVHG IOXRURVFRS\ FRXOG RSHUDWH DW ORZ RU KLJK N9S UDQJHV ZKHQ D KLJK RU ORZ WXEH FXUUHQW P$f ZDV VHOHFWHG 3XOVHG IOXRURVFRS\ DW IUDPHVVHF DQG KLJK P$ VHWWLQJ ZDV SULPDULO\ XVHG DV WKH GHIDXOW IOXRURVFRSLF WHFKQLTXH GXULQJ PRVW QHXURLQWHUYHQWLRQDO SURFHGXUHV 7DUJHWHG LQSXW H[SRVXUHV WR WKH LPDJH LQWHQVLIOHU LQ IOXRURVFRS\ ZHUH PHDVXUHG DW S5IUDPH S5IUDPH DQG S5IUDPH IRU WKH FP FP DQG FP LQSXW GLDPHWHUV UHVSHFWLYHO\ XVLQJ D PP FRSSHU ILOWHU /LPLWHG DPRXQW RI IURQWDO SODQH IOXRURVFRS\ ZDV XVHG RQ WKH WUXQN DQG WKRUDFLF UHJLRQV WR GULYH WKH FDWKHWHU WR WKH KHDG UHJLRQ 2Q DYHUDJH DERXW WKLUW\ VHFRQGV s VHFf RI IOXRURVFRS\ ZHUH VSHQW DORQJ WKH WUXQN UHJLRQ $Q DGGLWLRQDO WZR PLQXWHV s VHFf RQ DYHUDJH ZHUH VSHQW DORQJ WKH XSSHU WKRUDFLF ORZHU QHFN UHJLRQ WR HQWHU WKH YHUWHEUDO RU FDURWLG DUWHULHV 7KH UHPDLQLQJ XVH RI IOXRURVFRS\ ZDV DOORFDWHG WR WKH KHDG UHJLRQ GXULQJ SODFHPHQW RI WKH FDWKHWHU LQ WKH DSSURSULDWH DUWHULDO EUDQFK WR EH LPDJHG 'XULQJ WKLV WLPH WKH PDMRULW\ RI IOXRURVFRS\ ZDV SHUIRUPHG LQ WKH IURQWDO SODQH /DWHUDO IOXRURVFRS\ ZDV XVHG LQ WKRVH FDVHV ZKHUH IURQWDO LPDJLQJ GRHV QRW FRQWDLQ DGHTXDWH LQIRUPDWLRQ WR KHOS LQ FDWKHWHU PDQLSXODWLRQ %LSODQH IOXRURVFRS\ ZDV XVHG WR YHULI\ WDUJHW SRVLWLRQLQJ SULRU WR HDFK FRQWUDVW LQMHFWLRQ DQG LPDJLQJ 'LJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f ZDV WKH SULPDU\ LPDJLQJ PHWKRG GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DQG ZDV PDLQO\ SHUIRUPHG DW D UDWH RI IUDPHVVHF 5DWHV XS WR IUDPHVVHF ZHUH XVHG WR HYDOXDWH KLJK IORZ G\QDPLFV 7KH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLIOHU LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ ZDV XVHU

PAGE 48

VHOHFWHG DQG LW FRXOG YDU\ IURP S5IUDPH WR S5IUDPH ZLWK S5IUDPH EHLQJ WKH GHIDXOW YDOXH ,Q GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ PRVW GLDJQRVWLF UDGLRJUDSKLF SURFHGXUHV XVHG ELSODQH LPDJLQJ ZLWK WKH RFFDVLRQDO XVH RI VLQJOH SODQH LPDJLQJ GXULQJ WKH HYDOXDWLRQ RI DQHXU\VPV RI QHFN RULJLQ ,Q WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV RQ WKH RWKHU KDQG VLQJOH SODQH UDGLRJUDSK\ PD\ SURYLGH HQRXJK LQIRUPDWLRQ WR HYDOXDWH WKH SURJUHVV RI WKH HPEROL]DWLRQ GXULQJ WKH LQWHUPHGLDWH VWDJHV RI YHVVHO RFFOXVLRQ 7KXV HPEROL]DWLRQ SURFHGXUHV PDGH H[WHQVLYH XVH RI VLQJOH SODQH UDGLRJUDSK\ %LSODQH UDGLRJUDSK\ ZDV VWLOO UHTXLUHG WR PDNH GHILQLWLYH HYDOXDWLRQ RI WKH HPEROL]DWLRQ UHVXOW DW WKH PRUH FULWLFDO VWDJHV RI WKH SURFHGXUH ,PDJLQJ 7HFKQLTXHV ,Q IOXRURVFRS\ WKH DXWRPDWLF EULJKWQHVV FRQWURO $%&f DGMXVWV WKH [UD\ WXEH YROWDJH WR \LHOG WKH DSSURSULDWH DPRXQW RI OLJKW DW WKH RXWSXW RI WKH LPDJH LQWHQVLILHU )LJXUH VKRZV WKH UHODWLYH IUHTXHQF\ DW ZKLFK GLIIHUHQW WXEH YROWDJHV ZHUH XVHG GXULQJ IOXRURVFRS\ RI D W\SLFDO LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH 5HODWLYH IUHTXHQFLHV ZHUH FRPSXWHG E\ GHWHUPLQLQJ WKH IUDFWLRQ RI VXUIDFH GRVH GHOLYHUHG WR WKH SDWLHQW DW HDFK N9S LQWHUYDO ,Q WKH IURQWDO SODQH WKH WXEH YROWDJHV PRVWO\ XVHG GXULQJ IOXRURVFRSLF LPDJLQJ ZHUH GLVWULEXWHG EHWZHHQ N9S DQG N9S PRVW IUHTXHQWO\ LQ WKH N9S UDQJH ,Q WKH ODWHUDO SODQH WXEH YROWDJHV EHWZHHQ N9S DQG N9S ZHUH HTXDOO\ XVHG GXULQJ IOXRURVFRS\ ZLWK D PRUH IUHTXHQW XVH RI WKH N9S UDQJH ,Q JHQHUDO WKH WXEH YROWDJHV XVHG LQ WKH IURQWDO SODQH ZHUH VKLIWHG DERXW N9S KLJKHU WR WKRVH RI WKH ODWHUDO

PAGE 49

SODQH 7KH GLIIHUHQFH LQ SK\VLFDO WKLFNQHVV RI WKH KHDG UHJLRQ EHWZHHQ IURQWDO DQG ODWHUDO YLHZV H[SODLQV VXFK GLIIHUHQFHV b f D e b R !r R F f ,7 f e b Gf n‘6 -+ 2 b ;5D\ 7XEH 9ROWDJH N9Sf )LJXUH +LVWRJUDP RI VXUIDFH GRVH FRQWULEXWLRQ DW GLIIHUHQW [UD\ WXEH YROWDJHV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ IRU DQ DYHUDJH LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH ,Q GLJLWDO UDGLRJUDSK\ WKH WXEH YROWDJH LV GHWHUPLQHG IURP WKH DVVRFLDWHG IOXRURVFRSLF WHFKQLTXHV )LJXUH VKRZV WKH UHODWLYH IUHTXHQF\ DW ZKLFK GLIIHUHQW WXEH YROWDJHV ZHUH XVHG GXULQJ UDGLRJUDSK\ RI D W\SLFDO LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH 6LPLODUO\ WR IOXRURVFRS\ WKH GLVWULEXWLRQ RI UDGLRJUDSKLF WXEH YROWDJHV LQ WKH IURQWDO SODQH ZDV VKLIWHG DERXW N9S KLJKHU WR WKDW RI WKH ODWHUDO SODQH 7KH PRVW IUHTXHQWO\ XVHG YROWDJHV LQ WKH IURQWDO SODQH ZHUH ORFDWHG DW WKH N9S UDQJH 7XEH YROWDJHV DW WKH N9S UDQJH ZHUH DOVR XVHG H[WHQVLYHO\ GXULQJ UDGLRJUDSK\ LQ WKH

PAGE 50

IURQWDO SODQH ,Q WKH ODWHUDO SODQH YROWDJHV EHWZHHQ N9S DQG N9S ZHUH PRVW IUHTXHQWO\ XVHG 7KH UDQJH RI N9S VLJQLILHV WKH UDGLRJUDSKLF WXEH YROWDJHV SULPDULO\ XVHG LQ WKH ODWHUDO SODQH ;5D\ 7XEH 9ROWDJH N9Sf )LJXUH +LVWRJUDP RI VXUIDFH GRVH FRQWULEXWLRQ DW GLIIHUHQW [UD\ WXEH YROWDJHV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ IRU DQ DYHUDJH LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH 7KH 3DWLHQW 'RVLPHWU\ 6\VWHP 6\VWHP 'HVFULSWLRQ $ SDWLHQW GRVLPHWU\ V\VWHP 3(01(7rf ZDV LQVWDOOHG LQ $SULO RQ HDFK RI WKH WZR [UD\ LPDJLQJ SODQHV RI WKH 7RVKLED QHXURELSODQH .;2&' XQLW 7KH 3(01(7 3DWLHQW ([SRVXUH 0RQLWRULQJ 1HWZRUN &OLQLFDO 0LFURV\VWHPV ,QF $UOLQJWRQ 9$

PAGE 51

3(01(7 XQLW LV D PLFURSURFHVVRUEDVHG V\VWHP UXQQLQJ LWV RZQ RQERDUG VRIWZDUH (LJKW XQLWV FDQ EH QHWZRUNHG WR D VLQJOH 3& VHUYHU YLD 56 LQWHUIDFHV WKURXJK ZKLFK WKH\ WUDQVIHU SDWLHQW GRVLPHWULF GDWD WR WKH 3& VHUYHU IRU VWRUDJH DQG DQDO\VLV RU UHFHLYH FDOLEUDWLRQ LQIRUPDWLRQ IURP WKH 3& 7KH 3(01(7 V\VWHP GRHV QRW PHDVXUH VXUIDFH GRVHV GLUHFWO\ DV PD\ EH WKH FDVH RI GRVH DUHD SURGXFW PHWHUV 6KULPSWRQ DQG :DOO f ,QVWHDG WKH V\VWHP LV SDVVLYHO\ KDUGZLUHG WR WKH [UD\ JHQHUDWRU WR DFTXLUH WKH LQSXW VLJQDOV OLVWHG LQ 7DEOH 7KHVH LQSXW VLJQDOV SHUPLW WKH FRPSXWDWLRQ RI VXUIDFH GRVHV WKDW SDWLHQWV ZRXOG UHFHLYH LI LW ZHUH DVVXPHG WKDW WKH VDPH VNLQ DUHD LV FRQWLQXDOO\ H[SRVHG WR WKH [UD\ EHDP 7KH 3(01(7 GRVLPHWU\ V\VWHP FRPSXWHG SDWLHQW VXUIDFH GRVHV E\ XVLQJ WKH [ UD\ WXEH UDGLDWLRQ RXWSXW DW WKH VHOHFWHG WHFKQLTXH IDFWRUV N9S DQG P$f WRJHWKHU ZLWK LQIRUPDWLRQ DERXW WKH SDWLHQW ORFDWLRQ UHODWLYH WR WKH [UD\ WXEH DQG PHDVXUHG H[SRVXUH WLPHV 7KH SDWLHQW ORFDWLRQ ZDV GHWHUPLQHG IURP WKH KHLJKW RI WKH [UD\ WDEOH UHODWLYH WR WKH [UD\ WXEH RU E\ XVLQJ DQ XOWUDVRQLF VHQVRU DW RULHQWDWLRQV ZKHUH WKH SRVLWLRQ RI WKH WDEOH ZDV QRW UHOHYDQW DV LQ ODWHUDO YLHZV :KHQ WKH [UD\ WDEOH LQWHUFHSWHG WKH [UD\ EHDP [UD\ DWWHQXDWLRQ E\ WKH WDEOH ZDV WDNHQ LQWR DFFRXQW 7KH VXUIDFH GRVH ZDV FRPSXWHG LQ GLJLWDO UDGLRJUDSK\ ZKHUHDV WKH VXUIDFH GRVH UDWH ZDV GHWHUPLQHG LQ IOXRURVFRS\ ,Q ERWK GLJLWDO UDGLRJUDSK\ DQG IOXRURVFRS\ WKH SDWLHQW GRVLPHWU\ V\VWHP FDOFXODWHG VXUIDFH GRVH UDWHV E\ VDPSOLQJ WKH UDGLDWLRQ WHFKQLTXH IDFWRUV HYHU\ PV DQG E\ FRPSXWLQJ DQ DYHUDJH H[SRVXUH UDWH HYHU\ PV 7KH VXUIDFH VNLQ H[SRVXUH UDWH DQG WKH FXPXODWLYH VXUIDFH VNLQ H[SRVXUH ZHUH GLVSOD\HG LQ UHDO WLPH IRU HDFK LPDJLQJ SODQH

PAGE 52

RQ WZR SDQHO GLVSOD\V DGMDFHQW WR WKH LPDJH GLVSOD\ PRQLWRUV DQG ZHUH UHDGLO\ YLVLEOH E\ WKH QHXURUDGLRORJLF VWDII 7DEOH /LVW RI WKH ,QSXW 6LJQDOV ,QWHUIDFHG WR WKH 3(01(7 'RVLPHWU\ 6\VWHP IURP WKH 7RVKLED 1HXURELSODQH ,PDJLQJ 8QLW 6LJQDO 'HVFULSWLRQ &RPPHQWV 7XEH 3RWHQWLDO N9f 5DGLRJUDSKLF RU IOXRURVFRSLF 7XEH &XUUHQW P$f 5DGLRJUDSKLF RU IOXRURVFRSLF 3XOVHG )OXRURVFRS\ &XUUHQW P$f P$ RU P$ 7DEOH +HLJKW FPf 5HODWLYH WR WKH IORRU SODQH &$UP +HLJKW FPf 5HODWLYH WR WKH IORRU SODQH &$UP $QJXODWLRQ rf 5$2 DQG &$8 URWDWLRQV 8OWUDVRQLF 'LVWDQFH 0HDVXUHPHQW FPf $FWLYH DIWHU D &DUP URWDWLRQ RI r 127( 5$2 ULJKW DQWHULRU REOLTXH &$8 FUDQLRFDXGDO &DOLEUDWLRQ 7KH [UD\ WXEH UDGLDWLRQ RXWSXW ZDV GHMJUPLQHG IURP H[SRVXUH PHDVXUHPHQWV REWDLQHG XVLQJ DQ 0'+ & UDGLDWLRQ PRQLWRU ZLWK D [ LRQL]DWLRQ FKDPEHU DWWDFKHG WR WKH VXUIDFH RI DQ 56' 56rr DQWKURSRPRUSKLF KHDG SKDQWRP DV GHSLFWHG LQ )LJXUH )RU H[SRVXUH FDOLEUDWLRQV WKH LRQL]DWLRQ FKDPEHU ZDV ORFDWHG DW WKH LVRFHQWHU RI HDFK &DUP DQG LQ GLUHFW FRQWDFW ZLWK WKH KHDG SKDQWRP )RU IURQWDO 3$f H[SRVXUHV WKH LRQL]DWLRQ FKDPEHU ZDV ORFDWHG DW WKH RFFLSLWDO DUHD RI WKH i 5DGFDO &RUSRUDWLRQ 0RQURYLD &$ f 5DGLRORJ\ 6XSSRUW 'HYLFHV ,QF /RQJ %HDFK &$

PAGE 53

DQWKURSRPRUSKLF SKDQWRP ZKLOH IRU ODWHUDO H[SRVXUHV WKH FKDPEHU ZDV ORFDWHG QH[W WR WKH WHPSRUDO ERQH RI WKH SKDQWRP $OO PHDVXUHPHQWV RI HQWUDQFH VNLQ H[SRVXUHV LQFOXGHG WKH FRQWULEXWLRQ RI EDFNVFDWWHU UDGLDWLRQ 7KH HQWUDQFH VNLQ H[SRVXUH ZDV FRQYHUWHG WR WKH VXUIDFH GRVH XVLQJ WKH H[SUHVVLRQ >f§ G R L&Wrrr P*\ f ? 3 DLU ZKHUH LV GRVH WR PXVFOH LQ P*\ IRU PRQRHQHUJHWLF SKRWRQV DQG ; LV WKH H[SRVXUH LQ URHQWJHQV ^SMSfPXVFOH LV WKH PDVV HQHUJ\ DEVRUSWLRQ FRHIILFLHQW RI PXVFOH DQG MXMSfDLU LV WKH PDVV HQHUJ\ DEVRUSWLRQ FRHIILFLHQW RI DLU 7KH UDWLR RI PDVV HQHUJ\ DEVRUSWLRQ FRHIILFLHQWV RI PXVFOH WR DLU GRHV QRW FKDQJH VLJQLILFDQWO\ ZLWK HQHUJ\ DERXW b EHWZHHQ NH9 DQG NH9 [ UD\Vf DQG FDQ EH WDNHQ WR EH HTXDO WR IRU SRO\HQHUJHWLF GLDJQRVWLF [UD\ VSHFWUD -RKQV DQG &XQQLQJKDP -RQHV DQG :DOO :DOO HW DO f 7KH GRVH WR PXVFOH IURP SRO\HQHUJHWLF [UD\ VSHFWUD WKHQ LV JLYHQ E\ f§[ [: [: P*\ f ZKHUH ERWK WKH GRVH LQ PXVFOH DQG WKH H[SRVXUH LQ DLU LQFOXGH FRQWULEXWLRQ IURP EDFNVFDWWHU UDGLDWLRQ ;UD\ JHQHUDWRU VLJQDOV IHG WR WKH SDWLHQW GRVLPHWU\ V\VWHP ZHUH FDOLEUDWHG WR UHDG WKH FRUUHFW WHFKQLTXH IDFWRUV VRXUFHWRSDWLHQW GLVWDQFH DQG WXEH RULHQWDWLRQ 7KH XOWUDVRQLF VHQVRUV DWWDFKHG WR WKH VLGH RI HDFK [UD\ WXEH FROOLPDWRU ZHUH FDOLEUDWHG WR PHDVXUH WKH [UD\ VRXUFHWRSDWLHQW VXUIDFH GLVWDQFH GLUHFWO\ 0HDVXUHG VXUIDFH GRVHV ZHUH HQWHUHG LQWR WKH SDWLHQW GRVLPHWU\ V\VWHP DQG WUDQVIHUUHG WR WKH 3& VHUYHU DORQJ

PAGE 54

ZLWK N9S P$ DQG H[SRVXUH WLPH LQIRUPDWLRQ $ FDOLEUDWLRQ SURJUDP RQ WKH 3& VHUYHU JHQHUDWHG FRUUHVSRQGLQJ VXUIDFH GRVH FXUYHV WKLUG DQG IRXUWK GHJUHH SRO\QRPLDOVf DV D IXQFWLRQ RI WKH DSSOLHG N9S DQG P$V DW GLIIHUHQW PRGHV RI RSHUDWLRQ LH UDGLRJUDSKLF RU IOXRURVFRSLFf DQG WUDQVIHUUHG WKH FXUYH FRHIILFLHQWV EDFN WR WKH V\VWHPfV PLFURSURFHVVRU 7ZR FDOLEUDWLRQV ZHUH SHUIRUPHG VHSDUDWHO\ IRU HDFK LPDJLQJ SODQH ZLWK DQG ZLWKRXW WKH SUHVHQFH RI WKH [UD\ WDEOH LQ RUGHU WR GHULYH WKH WDEOH DWWHQXDWLRQ FRHIILFLHQWV )LJXUH &DOLEUDWLRQ VHWXS RI WKH IURQWDO SODQH OHIWf DQG ODWHUDO SODQH ULJKWf XVLQJ DQ 56' 56 DQWKURSRPRUSKLF KHDG SKDQWRP (YDOXDWLRQ 7KH DFFXUDF\ RI WKH SDWLHQW GRVLPHWU\ V\VWHP ZDV HYDOXDWHG LQ DOO IOXRURVFRSLF DQG UDGLRJUDSKLF PRGHV RI RSHUDWLRQ ,Q IOXRURVFRS\ WKH 7RVKLED QHXURELSODQH XQLW PD\ EH RSHUDWHG HLWKHU LQ FRQWLQXRXV RU SXOVHG RU IUDPHVVHFf PRGH ,Q WKH UDGLRJUDSKLF PRGH WKH XQLW PD\ EH RSHUDWHG HLWKHU LQ FXW ILOP &)f PRGH RU LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f PRGH (DFK DFTXLVLWLRQ PRGH ZDV LQYHVWLJDWHG XVLQJ WKH JHRPHWU\ RI D W\SLFDO SDWLHQW VHWXS 7KH LRQL]DWLRQ FKDPEHU ZDV DWWDFKHG WR WKH DQWKURSRPRUSKLF SKDQWRP DV VKRZQ LQ )LJXUH )RU WKH IURQWDO SODQH V\VWHP

PAGE 55

HYDOXDWLRQ WDEOH DWWHQXDWLRQ DQG SRVLWLRQLQJ ZHUH WDNHQ LQWR FRQVLGHUDWLRQ 7KHUH ZDV QR WDEOH DWWHQXDWLRQ GXULQJ WHVWLQJ RI WKH ODWHUDO SODQH 7KH VRXUFHWRSDWLHQW GLVWDQFH ZDV PHDVXUHG GLUHFWO\ E\ WKH XOWUDVRQLF VHQVRU LQ WKH ODWHUDO SODQH 0HDVXUHG VXUIDFH GRVHV ZHUH FRPSDUHG WR WKH FRUUHVSRQGLQJ YDOXHV FRPSXWHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP IRU WKH H[SHULPHQWDO DUUDQJHPHQWV OLVWHG LQ 7DEOH 7DEOH VKRZV UDWLRV RI WKH PHDVXUHG ;0 WR FDOFXODWHG ;F VXUIDFH GRVHV REWDLQHG ZLWK WKH SDWLHQW GRVLPHWU\ V\VWHP $YHUDJH ;-;& UDWLRV s RQH VWDQGDUG GHYLDWLRQf RYHU FOLQLFDO N9 DQG P$V UDQJHV DUH JLYHQ LQ 7DEOH WRJHWKHU ZLWK WKH WRWDO QXPEHU RI LQGLYLGXDO GDWD SRLQWV UHFRUGHG &KDQJLQJ WKH VRXUFH WR SDWLHQW GLVWDQFH RU WKH HOHFWURQLF PDJQLILFDWLRQ GXULQJ FRQWLQXRXV IOXRURVFRS\ UHVXOWHG LQ DQ DYHUDJH ;-;& UDWLR RI s 6LPXODWLRQ RI D QRQVWDQGDUG H[DPLQDWLRQ SHUIRUPHG LQ WKH IURQWDO SODQH ZLWK fPD[LPL]HGf FKDQJHV PDGH WR DOO SRVVLEOH LPDJLQJ SDUDPHWHUV UHVXOWHG LQ D VXUIDFH GRVH FRPSXWHG E\ WKH SDWLHQW H[SRVXUH V\VWHP RI *\ ZKHUHDV WKH PHDVXUHG YDOXH ZDV *\ b GLIIHUHQFHf ,Q JHQHUDO WKHVH UHVXOWV GHPRQVWUDWHG WKDW WKH SDWLHQW GRVLPHWU\ V\VWHP ZRXOG QRUPDOO\ JHQHUDWH VXUIDFH GRVHV ZKLFK DUH ZLWKLQ b RI WKH WUXH VXUIDFH GRVH 7KH XQFHUWDLQWLHV RI WKUHVKROG UDGLDWLRQ GRVHV IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV VXFK DV VNLQ HU\WKHPD RU HSLODWLRQ DUH FRQVLGHUDEO\ ODUJHU WKDQ b :DJQHU HW DO 5XELQ DQG &DVDUHWW 816&($5 f GXH WR IDFWRUV VXFK DV WKH DQDWRPLFDO ORFDWLRQ DQG VL]H RI WKH LUUDGLDWHG UHJLRQ WLVVXH YDVFXODULW\ DQG R[\JHQDWLRQ DV ZHOO DV WKH SDWLHQW DJH JHQHWLF EDFNJURXQG DQG KRUPRQDO VWDWXV 7KXV WKH DFFXUDF\ RI WKH SDWLHQW GRVLPHWU\ V\VWHP LV DGHTXDWH IRU PHDVXULQJ VXUIDFH GRVHV WR SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV

PAGE 56

7DEOH ([SHULPHQWDO $UUDQJHPHQWV IRU (YDOXDWLQJ WKH 3DWLHQW 'RVLPHWU\ 6\VWHP $UUDQJHPHQW 9DULDEOHV 3XUSRVH ,PDJLQJ WHFKQLTXHV 7XEH YROWDJH 7XEH FXUUHQW ([SRVXUH WLPH (YDOXDWH WKH V\VWHP UHVSRQVH WR WHFKQLTXH )UDPH UDWH FKDQJHV (OHFWURQLF PDJQLILFDWLRQ *HRPHWULF PDJQLILFDWLRQ ,PDJH $FTXLVLWLRQ 0RGHV &RQWLQXRXV IOXRURVFRS\ 3XOVHG IOXRURVFRS\ (YDOXDWH WKH V\VWHP UHVSRQVH LQ GLIIHUHQW LPDJH &XW ILOP DFTXLVLWLRQ PRGHV 'LJLWDO VXEWUDFWLRQ DQJLRJUDSK\ &RPSOHWH QHXURLQWHUYHQWLRQDO SURFHGXUH ,PDJH DFTXLVLWLRQ PRGHV ,PDJLQJ WHFKQLTXHV 6LPXODWH D FRPSOHWH SDWLHQW 7DEOH KHLJKW DQG ORFDWLRQ mffnQDWLRQ PD[LPL]LQJ FKDQJHV ZKLFK DUH 6RXUFHWRLPDJH UHFHSWRU WHFKQLFDOO\ SRVVLEOH WR +2*\f GLVWDQFH GHWHUPLQH DQ XSSHU OLPLW RI B WKH DFFXUDF\ RI WKH V\VWHP &DUP URWDWLRQ &ROOLPDWLRQ

PAGE 57

7DEOH 6XPPDU\ RI WKH 5DWLRV RI WKH 0HDVXUHG WR &DOFXODWHG 6XUIDFH 'RVHV ;-;& 2EWDLQHG 'XULQJ 7HVWLQJ RI WKH $FFXUDF\ RI WKH 3DWLHQW ([SRVXUH 6\VWHP 2SHUDWLQJ 0RGH 1XPEHU RI 7HVWV )URQWDO 3ODQH /DWHUDO 3ODQH &RPPHQWV &RQWLQXRXV )OXRURVFRS\ s s 3XOVHG )OXRURVFRS\ s s N9 DQG P$V WHFKQLTXHV ZHUH YDULHG 5DGLRJUDSK\ &) DQG '6$f s s &RQWLQXRXV )OXRURVFRS\ PLQ 3XOVHG )OXRURVFRS\ PLQ $XWRPDWLF EULJKWQHVV FRQWURO $%&f ZDV XVHG 5DGLRJUDSK\ &) DQG '6$f IUDPHV 127( &) FXW ILOP DFTXLVLWLRQ '6$ GLJLWDO VXEWUDFWLRQ DFTXLVLWLRQ 6285&( *NDQDWVLRV HWDO 'DWD $FTXLVLWLRQ )ROORZLQJ WKH LQWURGXFWLRQ RI WKH SDWLHQW GRVLPHWU\ V\VWHP LQWR FOLQLFDO SUDFWLFH GRVLPHWU\ GDWD ZHUH REWDLQHG IRU SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF H[DPLQDWLRQV $W WKH HQG RI HDFK SDWLHQW H[DPLQDWLRQ WKH UHFRUGHG VXUIDFH GRVH GDWD ZHUH DXWRPDWLFDOO\ XSORDGHG WR WKH 3& VHUYHU IRU VXEVHTXHQW DQDO\VLV $ GDWDEDVH ZLWK LQIRUPDWLRQ VKRZQ LQ )LJXUH ZDV EXLOW 'RVLPHWU\ GDWD ZHUH DQDO\]HG WR SURYLGH FXPXODWLYH GRVHV IRU HDFK LPDJLQJ PRGH RQ ERWK LPDJLQJ SODQHV IRU WKH FRPSOHWH SDWLHQW QHXURLQWHUYHQWLRQDO SURFHGXUH ,Q DGGLWLRQ GRVLPHWU\ GDWD ZHUH DOVR REWDLQHG IRU GLVFUHWH N9 LQWHUYDOV DV ZHOO DV IRU GLVFUHWH GRVH UDWH LQWHUYDOV

PAGE 58

$GGLWLRQDO LQIRUPDWLRQ PDGH DYDLODEOH E\ WKH SDWLHQW GRVLPHWU\ V\VWHP LQFOXGHG WKH WRWDO IOXRURVFRSLF WLPH WKH QXPEHU RI WLPHV IOXRURVFRS\ ZDV HQJDJHG DQG WKH WRWDO QXPEHU RI UDGLRJUDSKLF FXW ILOP DQG '6$f LPDJHV DFTXLUHG )LJXUH 6DPSOH SDJH IURP WKH 3(01(7 GDWDEDVH VKRZLQJ DOO UHFRUGHG LQIRUPDWLRQ IRU WKH IURQWDO LPDJLQJ SODQH

PAGE 59

)OXRURVFRS\ 'RVLPHWULF GDWD LQFOXGLQJ WKH VXUIDFH GRVH UHFHLYHG E\ WKH SDWLHQW IURP XVH RI IOXRURVFRS\ WKH WRWDO WLPH RI IOXRURVFRS\ DQG WKH UDWH DW ZKLFK GRVH ZDV GHOLYHUHG WR WKH SDWLHQW ZHUH UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP $GGLWLRQDO UHFRUGHG LQIRUPDWLRQ LQFOXGHG WKH QXPEHU RI WLPHV IOXRURVFRS\ ZDV HQJDJHG DQG WKH [UD\ WXEH YROWDJHV XVHG LQ IOXRURVFRS\ GXULQJ WKH FRXUVH RI D QHXURUDGLRORJLF SURFHGXUH VHHQ LQ )LJXUH f ;5DY %HDP /RFDOL]DWLRQ 'XULQJ QHXURLQWHUYHQWLRQDO SURFHGXUHV IOXRURVFRS\ ZDV XVHG WR SRVLWLRQ WKH FDWKHWHU QH[W WR WKH YHVVHO DQRPDO\ LQ WKH EUDLQ LQ RUGHU WR LQMHFW FRQWUDVW DQG VXEVHTXHQWO\ LPDJH WKH DQRPDO\ 6LQFH WKH WUDQVIHPRUDO DUWHU\ WHFKQLTXH ZDV XVHG WR JXLGH WKH FDWKHWHU WR WKH YHUWHEUDO RU FDURWLG DUWHULHV VRPH IOXRURVFRS\ ZDV SHUIRUPHG RYHU WKH WUXQFDO DQG WKRUDFLF UHJLRQV RI D SDWLHQW $IWHU VWXG\LQJ WKH XVH RI IOXRURVFRS\ IRU WHQ SDWLHQWV LW ZDV GHWHUPLQHG WKDW RQ DYHUDJH DERXW WKLUW\ VHFRQGV s VHFf RI IURQWDO SODQH IOXRURVFRS\ ZHUH VSHQW RQ WKH WUXQFDO UHJLRQ DQG DQ DGGLWLRQDO WZR PLQXWHV s VHFf DW WKH XSSHU WKRUDFLF ORZHU QHFN UHJLRQ 7KH DPRXQW RI IOXRURVFRS\ SHUIRUPHG RYHU WKH WUXQFDO DQG WKRUDFLF UHJLRQV ZDV UHODWLYHO\ LQGHSHQGHQW RI WKH SDWLHQW DQG WKH W\SH RI QHXURLQWHUYHQWLRQDO SURFHGXUH 7KHUHIRUH WKH VXUIDFH GRVH FRUUHVSRQGLQJ WR PLQXWHV RI IOXRURVFRS\ ZDV VXEWUDFWHG IURP WKH GRVH FRQWULEXWHG E\ XVH RI IURQWDO SODQH IOXRURVFRS\ 7KH UHPDLQLQJ GRVH ZDV FRQVLGHUHG WR EH DEVRUEHG LQ WKH KHDG UHJLRQ RI WKH SDWLHQW 7R VXEWUDFW WKLV IUDFWLRQ IURP WKH VXUIDFH GRVH WR WKH KHDG WKH DYHUDJH GRVH UDWH ZDV FRPSXWHG IRU HDFK SDWLHQW

PAGE 60

PXOWLSOLHG E\ PLQXWHV DQG VXEWUDFWHG IURP WKH WRWDO VXUIDFH GRVH FRUUHVSRQGLQJ WR IURQWDO SODQH IOXRURVFRS\ 'XULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV D rr URWDWLRQ RI WKH [UD\ VRXUFH LQ WKH VDJLWWDO SODQH RI WKH SDWLHQW PD\ EH XVHG ZKHQ DFTXLULQJ UDGLRJUDSKLF LPDJHV $OWKRXJK WKH FHQWUDO D[LV RI WKH [UD\ EHDP FKDQJHV SRVLWLRQ RQ WKH VXUIDFH RI WKH KHDG ZLWK URWDWLRQ RI WKH [UD\ VRXUFH WKHUH DUH SDUWV RI WKH [UD\ EHDP ZKLFK RYHUODS EHIRUH DQG DIWHU URWDWLRQ 6XFK RYHUODSV LQGLFDWH WKDW WKHUH DUH DUHDV WKDW ZLOO DOZD\V EH H[SRVHG WR UDGLDWLRQ UHJDUGOHVV RI WKH DSSOLHG [UD\ VRXUFH URWDWLRQ 7KXV DQ\ URWDWLRQ RI WKH [UD\ VRXUFH FRXOG EH LJQRUHG ZKHQ FRPSXWLQJ VXUIDFH GRVHV IURP UDGLRJUDSKLF H[SRVXUHV VLQFH WKH PD[LPXP VXUIDFH GRVH WR DQ\ JLYHQ DUHD RI WKH KHDG LV RI LQWHUHVW 6XUIDFH 'RVHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH SDWLHQW VXUIDFH GRVHV UHFHLYHG IURP IOXRURVFRS\ DORQH 7KH PHGLDQ YDOXHV RI WKH IOXRURVFRSLF VXUIDFH GRVHV ZHUH *\ DQG *\ IRU WKH IURQWDO DQG ODWHUDO LPDJLQJ SODQHV UHVSHFWLYHO\ 0D[LPXP VXUIDFH GRVHV ZHUH FRPSXWHG DW *\ IRU WKH IURQWDO SODQH DQG *\ IRU ODWHUDO SODQH 7KH GDWD VKRZQ LQ )LJXUH GR QRW GLIIHUHQWLDWH EHWZHHQ GLDJQRVWLF DQG WKHUDSHXWLF SURFHGXUHV 7KH GLVWULEXWLRQ RI VXUIDFH GRVH LQ IURQWDO SODQH IOXRURVFRS\ ZDV PDLQO\ VSUHDG RYHU WKH UDQJH RI *\ ,Q WKH ODWHUDO SODQH WKH PDMRULW\ RI SDWLHQWV bf UHFHLYHG OHVV WKDQ *\ ZLWK VRPH SDWLHQWV bf UHFHLYLQJ EHWZHHQ *\ 7KH ODWHUDO SODQH ZDV PDLQO\ XVHG IRU FDWKHWHU SRVLWLRQ YHULILFDWLRQ DQG OHVV IRU FDWKHWHU

PAGE 61

PDQLSXODWLRQ ZKLFK NHSW WKH VXUIDFH GRVHV LQ WKH ODWHUDO SODQH ORZ LQ FRPSDULVRQ WR WKH IURQWDO SODQH 6XUIDFH GRVHV DW WKH WDLO RI WKH GRVH GLVWULEXWLRQ IRU HDFK SODQH DERYH *\f FRUUHVSRQGHG WR HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUHV 6XFK SURFHGXUHV UHTXLUH XVH RI DGGLWLRQDO IOXRURVFRS\ IRU FDWKHWHU SRVLWLRQLQJ DQG YHULILFDWLRQ DW WKH VLWH RI RFFOXVLRQ 7ZHQW\VHYHQ bf RXW RI SDWLHQWV UHFRUGHG XQGHUZHQW FHUHEUDO HPEROL]DWLRQ ‘f§r F G! b 4 rr R MM ( 6XUIDFH $EVRUEHG 'RVH *\f ),*85( +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ 6XUIDFH 'RVH 5DWHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH UDWH DW ZKLFK VXUIDFH GRVHV ZHUH GHOLYHUHG WR WKH SDWLHQW GXULQJ IOXRURVFRS\ 7KH PHGLDQ YDOXHV RI WKH IOXRURVFRSLF

PAGE 62

VXUIDFH GRVH UDWHV ZHUH P*\PLQ IRU WKH IURQWDO SODQH DQG P*\PLQ IRU WKH ODWHUDO SODQH 7KH PD[LPXP VNLQ GRVH UDWHV UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP ZHUH DSSUR[LPDWHO\ P*\PLQ IRU ERWK SODQHV 6LQFH SDWLHQW WKLFNQHVV LV VPDOOHU LQ WKH ODWHUDO GLPHQVLRQ RI WKH KHDG WKH DXWRPDWLF EULJKWQHVV FRQWURO VHOHFWV D ORZHU WXEH YROWDJH DOVR VHHQ LQ )LJXUH f ZKLFK LQFUHDVHV WKH VXUIDFH GRVH UDWH 7KH KLVWRJUDP GLVWULEXWLRQ RI WKH VXUIDFH GRVH UDWH LQ WKH IURQWDO LPDJLQJ SODQH SUHVHQWV D QRUPDO GLVWULEXWLRQ VKDSH EXW LV ZLGHO\ VSUHDG RYHU WKH UDQJH RI P*\PLQ WR P*\PLQ 7KH GRVH UDWH GLVWULEXWLRQ LQ WKH ODWHUDO SODQH LV PRUH FRQFHQWUDWHG DW WKH P*\PLQ DQG P*\PLQ ,Q JHQHUDO IOXRURVFRSLF LPDJLQJ PD\ YDU\ VLJQLILFDQWO\ IURP SDWLHQW WR SDWLHQW GXH WR YDULDWLRQV LQ VRXUFHWRVXUIDFH GLVWDQFH DQG WKH VHOHFWLRQ RI LPDJLQJ WHFKQLTXHV LH N9SP$f 6XUIDFH $EVRUEHG 'RVH 5DWH P*\PLQf )LJXUH +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVH UDWHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\

PAGE 63

)OXRURVFRSLF 7LPHV DQG ,QWHUYDOV 2WKHU XVHIXO LQIRUPDWLRQ UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP LQFOXGHG WKH WRWDO WLPH RI IOXRURVFRS\ DQG WKH QXPEHU RI WLPHV IOXRURVFRS\ ZDV HQJDJHG GXULQJ DQ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WRWDO IOXRURVFRSLF WLPHV LQ HDFK LPDJLQJ SODQH 7KH IURQWDO SODQH ZDV PRVW IUHTXHQWO\ XVHG ZLWK D PHGLDQ YDOXH RI PLQXWHV SHU SDWLHQW H[DPLQDWLRQ FRPSDUHG WR D PHGLDQ YDOXH RI PLQXWHV LQ WKH ODWHUDO SODQH 7KH IOXRURVFRSLF WLPHV LQ WKH IURQWDO SODQH ZHUH PRUH VSUHDG RYHU WKH UDQJH RI PLQXWHV LQ FRPSDULVRQ WR WKH ODWHUDO SODQH ZKLFK XVHG OHVV WKDQ PLQ RI IOXRURVFRS\ IRU WKH PDMRULW\ bf RI WKH SDWLHQWV 7KH GDWD VKRZQ LQ )LJXUH LQFOXGH ERWK GLDJQRVWLF DQG HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUHV ZLWK WKH KLJKHU YDOXHV FRUUHVSRQGLQJ WR WKH ODWWHU )RU HPEROL]DWLRQ SURFHGXUHV WKH GXUDWLRQ RI IOXRURVFRS\ PD\ EH H[WHQGHG ZHOO EH\RQG WKH PHGLDQ YDOXHV WR WLPHV DV KLJK DV PLQXWHV DQG PLQXWHV IRU WKH IURQWDO DQG ODWHUDO SODQHV UHVSHFWLYHO\ )LJXUH VKRZV D KLVWRJUDP GLVWULEXWLRQ RI WKH QXPEHU RI WLPHV IOXRURVFRS\ ZDV HQJDJHG RQ HDFK LPDJLQJ SODQH 7KH PHGLDQ QXPEHU RI WLPHV WKDW WKH RSHUDWRU LQLWLDWHG IOXRURVFRS\ ZDV LQ WKH IURQWDO SODQH DQG LQ WKH ODWHUDO SODQH 7KLV GLIIHUHQFH FOHDUO\ LQGLFDWHV WKH H[WHQVLYH XVH RI IOXRURVFRS\ LQ WKH IURQWDO LPDJLQJ SODQH GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ,QFUHDVHG QXPEHU RI IOXRURVFRSLF LQVWDQFHV DOVR LQGLFDWH KLJKHU VXUIDFH GRVHV VHHQ LQ )LJXUH f DQG ORQJHU IOXRURVFRSLF WLPHV )LJXUH f EHWZHHQ WKH IURQWDO DQG ODWHUDO LPDJLQJ SODQHV

PAGE 64

)OXRURVFRSLF 7LPH PLQf ),*85( +LVWRJUDP GLVWULEXWLRQ RI IOXRURVFRSLF WLPHV WR SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHU SODQH JUD\ EDUVf IOXRURVFRS\ &DWKHWHU SRVLWLRQLQJ SULPDULO\ GRQH XVLQJ WKH IURQWDO LPDJLQJ SODQH YDULHV ZLGHO\ IURP SDWLHQW WR SDWLHQW 7KLV GLIIHUHQFH EHWZHHQ IURQWDO DQG ODWHUDO LPDJLQJ SODQHV LQWURGXFHG D ZLGHU VSUHDG WR WKH KLVWRJUDP GLVWULEXWLRQ RI IOXRURVFRSLF LQWHUYDOV FRUUHVSRQGLQJ WR WKH IURQWDO SODQH DV VKRZQ LQ )LJXUH %RWK GLVWULEXWLRQV KRZHYHU VKRZ ORQJ WDLOV ZLWK D PD[LPXP RI IOXRURVFRSLF LQWHUYDOV LQ WKH IURQWDO SODQH DQG LQWHUYDOV LQ WKH ODWHUDO SODQH 6XFK WDLOV RQ WKH GLVWULEXWLRQ PD\ DFFRXQW IRU WKH QHHG WR XVH DGGLWLRQDO IOXRURVFRS\ GXULQJ HPEROL]DWLRQ SURFHGXUHV

PAGE 65

)OXRURVFRSLF ,QWHUYDOV ),*85( +LVWRJUDP GLVWULEXWLRQ RI IOXRURVFRSLF LQWHUYDOV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf IOXRURVFRS\ 5DGLRJUDSK\ 'RVLPHWULF GDWD RQ WKH VXUIDFH GRVH UHFHLYHG E\ WKH SDWLHQW IURP XVH RI UDGLRJUDSKLF LPDJLQJ LH FXW ILOP DQG '6$ LPDJHVf WKH QXPEHU RI UDGLRJUDSKLF IUDPHV DQG WKH GRVH SHU IUDPH ZHUH UHFRUGHG E\ WKH SDWLHQW GRVLPHWU\ V\VWHP $GGLWLRQDO UHFRUGHG LQIRUPDWLRQ LQFOXGHG WKH UDGLRJUDSKLF WXEH YROWDJHV XVHG GXULQJ WKH FRXUVH RI D QHXURUDGLRORJLF SURFHGXUH VHHQ LQ )LJXUH f ;5DY %HDP /RFDOL]DWLRQ 5DGLRJUDSKLF LPDJH DFTXLVLWLRQV DUH SHUIRUPHG DOPRVW H[FOXVLYHO\ RQ WKH KHDG UHJLRQ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH PDMRULW\ RI WKHP LV

PAGE 66

SHUIRUPHG HPSOR\LQJ WKH GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f WHFKQLTXH $V GLVFXVVHG XQGHU [UD\ EHDP ORFDOL]DWLRQ IRU IOXRURVFRS\ WKH PDLQ JRDO LV WR FRPSXWH WKH PD[LPXP GRVHV GHOLYHUHG WR DQ\ VXUIDFH RI D SDWLHQWfV KHDG 6LPLODUO\ WR IOXRURVFRS\ UDGLRJUDSK\ PD\ DOVR EH FRQVLGHUHG XQDIIHFWHG E\ WKH VPDOO GHJUHH RI [UD\ VRXUFH DQJXODWLRQ XVXDOO\ DSSOLHG WR WKH IURQWDO LPDJLQJ SODQH LQ WKH VDJLWWDO SODQH RI WKH SDWLHQW 6XUIDFH 'RVHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH SDWLHQW VXUIDFH GRVHV UHFHLYHG IURP UDGLRJUDSKLF DFTXLVLWLRQV 7KH PHGLDQ YDOXHV RI WKH UDGLRJUDSKLF VXUIDFH GRVHV ZHUH *\ DQG *\ IRU WKH IURQWDO DQG ODWHUDO SODQHV UHVSHFWLYHO\ 7KH PD[LPXP UDGLRJUDSKLF GRVH UHFRUGHG LQ WKH IURQWDO SODQH ZDV *\ WZLFH WKH PD[LPXP GRVH UHFRUGHG LQ IOXRURVFRS\ IRU WKH VDPH SODQH ,Q WKH ODWHUDO SODQH WKH PD[LPXP UDGLRJUDSKLF VXUIDFH GRVH ZDV *\ DERXW b KLJKHU WKDQ WKH PD[LPXP GRVH IURP IOXRURVFRS\ LQ WKH VDPH SODQH $OWKRXJK WKH KLVWRJUDP GLVWULEXWLRQ RI WKH UDGLRJUDSKLF VXUIDFH GRVHV LQ WKH IURQWDO SODQH KDV D ORQJHU WDLO DQG D KLJKHU PHGLDQ YDOXH WKDQ WKH GRVH GLVWULEXWLRQ LQ WKH ODWHUDO SODQH ERWK GLVWULEXWLRQV DUH YHU\ VLPLODU 7KLV VXSSRUWV WKH IDFW WKDW IURQWDO DQG ODWHUDO SODQH UDGLRJUDSK\ DUH HTXDOO\ XWLOL]HG GXULQJ DQ\ W\SH RI LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH 6XUIDFH 'RVH 5DWHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH VXUIDFH GRVH SHU IUDPH LQ UDGLRJUDSKLF LPDJLQJ ZLWK PHGLDQ YDOXHV RI P*\IUDPH DQG P*\IUDPH IRU WKH

PAGE 67

IURQWDO DQG ODWHUDO SODQHV UHVSHFWLYHO\ 0D[LPXP GRVHV RI P*\IIDPH ZHUH UHFRUGHG LQ WKH IURQWDO SODQH DQG P*\IIDPH LQ WKH ODWHUDO SODQH ,Q JHQHUDO WKH VL]H DQG GHQVLWLHV RI WKH KHDG UHJLRQ GR QRW YDU\ VLJQLILFDQWO\ DPRQJ SDWLHQWV 6LPLODU WXEH YROWDJHV ZRXOG EH XVHG IRU DOO UDGLRJUDSKLF LPDJLQJ DFTXLVLWLRQV 7KHUHIRUH WKH GLVWULEXWLRQ RI GRVHV SHU IUDPH GHSHQGV PRVWO\ RQ FKDQJHV WR WKH VRXUFHWRVXUIDFH GLVWDQFH LH XVH RI GLIIHUHQW GHJUHHV RI PDJQLILFDWLRQ DPRQJ SDWLHQWVf ,Q WKH IURQWDO SODQH ZKHUH JHRPHWULF PDJQLILFDWLRQ LV PRUH IUHTXHQWO\ XVHG WKH GRVH SHU IUDPH GLVWULEXWLRQ DSSURDFKHV WKDW RI D ZLGH QRUPDO VKDSHG GLVWULEXWLRQ ,Q WKH ODWHUDO SODQH ZKHUH PDJQLILFDWLRQ LV QRW XVHV DV RIWHQ WKH GLVWULEXWLRQ LV VWHHSHU OHVV YDULDELOLW\f 6XUIDFH $EVRUEHG 'RVH *\f )LJXUH +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\

PAGE 68

5DGLRJUDSKLF )UDPHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH QXPEHU RI UDGLRJUDSKLF '6$f IUDPHV DFTXLUHG GXULQJ GLDJQRVWLF DQG WKHUDSHXWLF QHXURUDGLRORJLF SURFHGXUHV 0HGLDQ YDOXHV RI IUDPHV DQG IUDPHV ZHUH UHFRUGHG IRU WKH IURQWDO DQG ODWHUDO SODQH UHVSHFWLYHO\ 'XH WR WKH FRPSOH[LW\ RI VRPH HPEROL]DWLRQ SURFHGXUHV KRZHYHU WKH QXPEHU RI IUDPHV DFTXLUHG WR HYDOXDWH WKH SURJUHVV RI DQ RFFOXVLRQ PD\ UXQ DV KLJK DV LQ WKH IURQWDO SODQH DQG LQ WKH ODWHUDO SODQH 6XUIDFH $EVRUEHG 'RVH SHU )UDPH P*\IUDPHf ),*85( +LVWRJUDP GLVWULEXWLRQ RI VXUIDFH GRVH UDWHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ $V VKRZQ E\ WKH GLVWULEXWLRQ RI UDGLRJUDSKLF IUDPHV LQ ERWK SODQHV WKH QXPEHU RI LPDJLQJ IUDPHV UHTXLUHG LQ HDFK SURFHGXUH LV YDULDEOH 'HSHQGLQJ RQ WKH GHJUHH RI GLIILFXOW\ RI H[WUDFWLQJ GLDJQRVWLF LQIRUPDWLRQ IURP WKH DFTXLUHG LPDJHV DV ZHOO DV WKH

PAGE 69

W\SH RI DQRPDO\ WR EH GLDJQRVHG WKH QXPEHU RI UDGLRJUDSKLF LPDJHV DFTXLUHG LV QRUPDOO\ EHWZHHQ DQG IUDPHV (PEROL]DWLRQ SURFHGXUHV RQ WKH RWKHU KDQG PD\ UHTXLUH WZR WR IRXU WLPHV WKH QXPEHU RI UDGLRJUDSKLF LPDJHV WR FRPSOHWH WKH DVVRFLDWHG WDVNV 1XPEHU RI 5DGLRJUDSKLF )UDPHV )LJXUH +LVWRJUDP GLVWULEXWLRQ RI WKH QXPEHU RI UDGLRJUDSKLF IUDPHV IRU SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHUDO SODQH JUD\ EDUVf UDGLRJUDSK\ &RQFOXVLRQV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQV RI WKH WRWDO VXUIDFH GRVH WR WKH SDWLHQW IURP WKH XVH RI IOXRURVFRS\ DQG UDGLRJUDSK\ GXULQJ DQ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUH 7KH PHGLDQV RI WKH WRWDO VXUIDFH GRVH ZHUH *\ DQG *\ IRU WKH IURQWDO DQG ODWHUDO SODQH UHVSHFWLYHO\ 7KH PD[LPXP VXUIDFH GRVH UHFHLYHG E\ D SDWLHQW ZDV RI WKH RUGHU RI *\ IRU ERWK LPDJLQJ SODQHV 7KH PDMRULW\ RI WKH GRVHV

PAGE 70

ZHUH FRQFHQWUDWHG EHWZHHQ *\ DQG *\ IRU ERWK LPDJLQJ SODQHV $ VLJQLILFDQW QXPEHU RI KLJKHU GRVHV KRZHYHU ZDV LQGLFDWHG E\ WKH WDLOV RI WKH WZR KLVWRJUDP GLVWULEXWLRQV 0RVW RI WKH GRVH ZDV FRQWULEXWHG E\ UDGLRJUDSK\ ZKLFK DFFRXQWV IRU WKH b RI WKH WRWDO VXUIDFH GRVH LQ WKH IURQWDO SODQH DQG b RI WKH WRWDO GRVH LQ WKH ODWHUDO SODQH )OXRURVFRS\ RQO\ DFFRXQWHG IRU WKH b DQG b RI WKH WRWDO VXUIDFH GRVH LQ WKH IURQWDO DQG ODWHUDO SODQH UHVSHFWLYHO\ $OWKRXJK b RI WKH SDWLHQWV LQ WKLV VWXG\ PD\ KDYH H[FHHGHG WKH QRPLQDO WKUHVKROG DEVRUEHG GRVH WR WKH VNLQ IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV *\f WKHUH ZHUH QR FDVHV RI HSLODWLRQ RU VNLQ HU\WKHPD REVHUYHG LQ WKLV VHULHV RI SDWLHQWV 7KLV LV QRW VXUSULVLQJ VLQFH DQ\ HU\WKHPD ZRXOG EH IOHHWLQJ DQG IDLQW (SLODWLRQ ZRXOG RQO\ EH LGHQWLILHG E\ D VOLJKWO\ GLIIHUHQW DPRXQW RI KDLU ORVV DV SHUFHLYHG ZKHQ FRPELQJ RQHnV KDLU DQG ZRXOG QRW UHTXLUH WRWDO ORVV RI KDLU )RU DFXWH UDGLDWLRQ H[SRVXUHV REVHUYDEOH HIIHFWV VXFK DV WRWDO HSLODWLRQ DUH PRUH OLNHO\ WR RFFXU DW GRVHV LQ H[FHVV RI *\ +XGD DQG 3HWHUV f 6HYHUDO IDFWRUV QHHG WR EH FRQVLGHUHG LQ SUHGLFWLQJ WKH OLNHOLKRRG RI GHWHUPLQLVWLF HIIHFWV WR SDWLHQWV XQGHUJRLQJ QHXURUDGLRORJLF H[DPLQDWLRQV 2QH IDFWRU LV WKH IDFW WKDW UDGLDWLRQ GRVHV DUH GHOLYHUHG RYHU DQ H[WHQGHG WLPH SHULRG ZKLFK PD\ EH DV ORQJ DV VHYHUDO KRXUV 2I JUHDW LPSRUWDQFH LV DOVR WKH IDFW WKDW WKH UDGLDWLRQ ILHOG LV YDULHG RYHU WKH SDWLHQW )RU LQGLYLGXDOV ZLWK WKH KLJKHVW UDGLDWLRQ H[SRVXUHV WKH QHXURUDGLRORJLVW JHQHUDOO\ PDNHV D FRQFHUWHG HIIRUW WR HLWKHU PRYH WKH UHODWLYH RULHQWDWLRQ RI WKH [UD\ EHDP RU WR XWLOL]H WKH RUWKRJRQDO LPDJLQJ SODQH LQ VR IDU DV WKHVH RSWLRQV GR QRW DGYHUVHO\ LPSDFW WKH UHTXLUHG LPDJLQJ LQIRUPDWLRQ 0DQ\ RI WKH QHXURUDGLRORJLF LPDJLQJ SURFHGXUHV DOVR PDNH XVH RI ZHGJH VKDSHG WUDQVSDUHQW ILOWHUV ZKLFK VHUYH WR UHGXFH WKH

PAGE 71

UDGLDWLRQ GRVHV DW WKH SHULSKHU\ RI WKH [UD\ ILHOG RI YLHZ ZKLOVW PDLQWDLQLQJ LPDJH TXDOLW\ ZLWKLQ WKH FHQWUDO UHJLRQ $OO WKHVH IDFWRUV UHGXFH WKH OLNHOLKRRG RI GHWHUPLQLVWLF LQMXULHV WR SDWLHQWV DQG VKRXOG EH SUDFWLFHG GXULQJ H[WHQGHG QHXURUDGLRORJLF SURFHGXUHV 6XUIDFH $EVRUEHG 'RVH *\f )LJXUH +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO VXUIDFH GRVHV WR SDWLHQWV IURP IURQWDO SODQH EODFN EDUVf DQG ODWHU SODQH JUD\ EDUVf IOXRURVFRS\ DQG UDGLRJUDSK\ FRPELQHG

PAGE 72

&+$37(5 (1(5*< ,03$57(' $1' ())(&7,9( '26( ,1 1(8525$',2/2*< ,QWURGXFWLRQ 7KH HIIHFWLYH GRVH ( LV D GRVLPHWULF SDUDPHWHU ZKLFK WDNHV LQWR DFFRXQW WKH GRVHV UHFHLYHG E\ DOO LUUDGLDWHG UDGLRVHQVLWLYH RUJDQV DQG PD\ EH WDNHQ WR EH PHDVXUHV RI WKH VWRFKDVWLF ULVN ,&53 f $OWKRXJK WKH HIIHFWLYH GRVH LV DQ RFFXSDWLRQDO GRVH TXDQWLW\ EDVHG RQ DQ DJH SURILOH IRU UDGLDWLRQ ZRUNHUV WKLV GRVH GHVFULSWRU LV EHLQJ LQFUHDVLQJO\ XVHG WR TXDQWLI\ WKH DPRXQW RI UDGLDWLRQ UHFHLYHG E\ SDWLHQWV XQGHUJRLQJ GLDJQRVWLF H[DPLQDWLRQV ZKLFK XVH LRQL]LQJ UDGLDWLRQ ,&53 1&53 816&($5 f 1RWZLWKVWDQGLQJ WKH IDFW WKDW WKHUH DUH SUREOHPV DVVRFLDWHG ZLWK FRQYHUWLQJ HIIHFWLYH GRVHV WR D FRUUHVSRQGLQJ GHWULPHQW +XGD DQG %HZV f WKHUH DUH LPSRUWDQW EHQHILWV WR EH JDLQHG E\ XVLQJ HIIHFWLYH GRVH WR TXDQWLI\ SDWLHQW GRVHV LQ GLDJQRVWLF UDGLRORJ\ 2QH DGYDQWDJH LV WKDW WKH HIIHFWLYH GRVH DWWHPSWV WR PHDVXUH WKH VWRFKDVWLF ULVN WR WKH SDWLHQW ZKLFK LV WKH PRWLYDWLRQ IRU DOO SDWLHQW GRVLPHWU\ VWXGLHV LQ GLDJQRVWLF UDGLRORJ\ ,Q DGGLWLRQ WKH HIIHFWLYH GRVH WR D SDWLHQW XQGHUJRLQJ DQ\ H[DPLQDWLRQ PD\ EH FRPSDUHG WR WKDW RI DQ\ RWKHU UDGLRORJLF SURFHGXUH DV ZHOO DV QDWXUDO EDFNJURXQG H[SRVXUH DQG UHJXODWRU\ GRVH OLPLWV ,&53 15& D Ef 0HDVXUHPHQWV RU FRPSXWDWLRQV RI HIIHFWLYH GRVHV IURP [UD\ H[DPLQDWLRQV DUH GLIILFXOW DQG WLPH FRQVXPLQJ $Q DGGLWLRQDO SUREOHP LV WKDW PRVW PHDVXUHPHQWV RU FDOFXODWLRQV PDNH XVH RI D VWDQGDUG SKDQWRP EDVHG RQ WKH UHIHUHQFH PDQ DV GHILQHG E\ WKH ,QWHUQDWLRQDO &RPPLVVLRQ RQ 5DGLRORJLFDO 3URWHFWLRQ ,&53 f $OWKRXJK WKH

PAGE 73

LPSRUWDQFH RI SDWLHQW VL]H IRU PHGLFDO UDGLDWLRQ GRVLPHWU\ KDV EHHQ UHFRJQL]HG /LQGVNRXJ &KDSSHO HW DO f LW LV QRW REYLRXV KRZ WR VFDOH WKH HIIHFWLYH GRVH FRPSXWHG IRU VWDQGDUG PDQ WR GLIIHUHQW VL]H SDWLHQWV VXFK DV SHGLDWULF SDWLHQWV ZKR XQGHUJR VLPLODU H[DPLQDWLRQV 7KHVH OLPLWDWLRQV LPSHGH WKH ZLGHU XVH RI HIIHFWLYH GRVH LQ UDGLRORJ\ +XGD DQG *NDQDWVLRV f GHYHORSHG D PRUH SUDFWLFDO DSSURDFK WR FRPSXWH HIIHFWLYH GRVHV IURP HQHUJ\ LPSDUWHG IRU D YDULHW\ RI UDGLRORJLF H[DPLQDWLRQV DQG GLIIHUHQW VL]H SDWLHQWV LQFOXGLQJ LQIDQWV DQG FKLOGUHQ 7KLV PHWKRG ZDV XVHG LQ WKLV FKDSWHU WR FRPSXWH HIIHFWLYH GRVHV IURP FRPSXWHG YDOXHV RI HQHUJ\ LPSDUWHG WR SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ([SRVXUHDUHD SURGXFWV WR GLIIHUHQW UHJLRQV RI WKH ERG\ DQG DW GLIIHUHQW WXEH YROWDJHV ZHUH XVHG WR FRPSXWH YDOXHV RI HQHUJ\ LPSDUWHG H IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV *NDQDWVLRV *NDQDWVLRV DQG +XGD f 9DOXHV RI HQHUJ\ LPSDUWHG ZHUH FRQYHUWHG WR SDWLHQW HIIHFWLYH GRVH ( XVLQJ (OV FRQYHUVLRQ IDFWRU FRUUHVSRQGLQJ WR WKH SURMHFWLRQV DQG ERG\ UHJLRQV LUUDGLDWHG GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 9DOXHV RI (OV IRU WKH SRVWHULRDQWHULRU 3$f SURMHFWLRQV RI WKH DEGRPHQ FKHVW DQG FHUYLFDO VSLQH DQG IRU WKH 3$ DQG ODWHUDO /$7f YLHZV RI WKH KHDG ZHUH REWDLQHG IURP UDGLDWLRQ GRVLPHWU\ GDWD FRPSXWHG XVLQJ 0RQWH &DUOR FDOFXODWLRQV RQ DQ DGXOW DQWKURSRPRUSKLF SKDQWRP +DUW HW DO Df 7KLV PHWKRG ZDV H[WHQGHG WR GHWHUPLQH HIIHFWLYH GRVHV WR SHGLDWULF SDWLHQWV ZKR GLIIHU LQ PDVV IURP WKH DGXOW VL]HG SKDQWRP

PAGE 74

0HWKRG (QHUJ\ ,PSDUWHG 7KH HQHUJ\ LPSDUWHG H WR D SDWLHQW XQGHUJRLQJ DQ\ UDGLRORJLF [UD\ H[DPLQDWLRQ FDQ EH HVWLPDWHG E\ PRGHOLQJ WKH SKDQWRP DV D VODE RI ZDWHU ZLWK WKLFNQHVV ] XVLQJ WKH H[SUHVVLRQ H FR[(6([$ f ZKHUH FR LV WKH HQHUJ\ LPSDUWHG SHU HQWUDQFH H[SRVXUHDUHD SURGXFW (6( LV WKH H[SRVXUH PHDVXUHG IIHHLQDLU DW WKH EHDP HQWUDQFH SODQH RI WKH SKDQWRP DQG $ LV WKH DUHD RI H[SRVXUH DOVR PHDVXUHG DW WKH HQWUDQFH SODQH *NDQDWVLRV *NDQDWVLRV DQG +XGD f 7KH SDUDPHWHU FR GHSHQGV RQ WKH ZDWHU SKDQWRP WKLFNQHVV ] WKH [UD\ WXEH YROWDJH DQG [UD\ EHDP KDOIYDOXH OD\HU *NDQDWVLRV *NDQDWVLRV DQG +XGD f 9DOXHV RI FR FDQ EH FRPSXWHG IURP FR D[ +9/ S -5n FPn f ZKHUH D DQG DUH FRHIILFLHQWV WKDW GHSHQG RQ WXEH YROWDJH DQG SKDQWRP WKLFNQHVV DQG +9/ LV WKH KDOIYDOXH OD\HU RI WKH [UD\ EHDP DW D JLYHQ WXEH YROWDJH LQ PP RI DOXPLQXP )LJXUH VKRZV WKH EHKDYLRU RI FR DV D IXQFWLRQ RI ZDWHU SKDQWRP WKLFNQHVV IRU [UD\ WXEH YROWDJHV RI N9S N9S DQG N9S DV DSSO\ WR WKH [UD\ WXEH DQG WDEOH ILOWUDWLRQ RI WKH QHXURELSODQH 7RVKLED LPDJLQJ V\VWHP ([DPSOHV RI D DQG IW FRHIILFLHQWV DQG KDOIYDOXH OD\HUV RI WKH [UD\ EHDPV DW GLIIHUHQW WXEH YROWDJHV DUH JLYHQ LQ 7DEOH

PAGE 75

)LJXUH 9DOXHV RI FR DV D IXQFWLRQ RI ZDWHU SKDQWRP WKLFNQHVV IRU WXEH YROWDJHV RI N9S N9S DQG N9S 127( 7KH YDOXHV RI FR ZHUH FRPSXWHG IRU FRQVWDQW YROWDJH ZDYHIRUPV DQ [UD\ WXEH DQRGH DQJOH RI r DQG PP $ ILOWUDWLRQ [UD\ WXEH ILOWUDWLRQ SOXV WDEOH ILOWUDWLRQ RI WKH 7RVKLED IURQWDO LPDJLQJ SODQHf 7KH IUHHLQDLU HQWUDQFH H[SRVXUHV WR WKH SDWLHQW (6( ZHUH REWDLQHG IURP WKH SDWLHQW H[SRVXUH GDWD UHFRUGHG E\ WKH IURQWDO DQG ODWHUDO SDWLHQW H[SRVXUH PHWHUV DW N9S LQWHUYDOV )LJXUH f 7KH UHFRUGHG H[SRVXUHV LQFOXGHG WKH FRQWULEXWLRQ RI EDFNVFDWWHU UDGLDWLRQ IURP DQ 56' 56IW DQWKURSRPRUSKLF KHDG SKDQWRP 7KHUHIRUH EDFNVFDWWHU IUDFWLRQV PHDVXUHG XVLQJ WKH VDPH SKDQWRP ZHUH VXEWUDFWHG IURP WKH UHFRUGHG H[SRVXUHV 7DEOH OLVWV PHDVXUHG EDFNVFDWWHU IUDFWLRQV IRU WKH 56' 56 DQWKURSRPRUSKLF KHDG SKDQWRP DV D IXQFWLRQ RI WXEH YROWDJH IRU WKH IURQWDO DQG ODWHUDO LPDJLQJ SODQHV W 5DGLRORJ\ 6XSSRUW 'HYLFHV ,QF /RQJ %HDFK &$

PAGE 76

7DEOH &RPSXWHG D DQG &RHIILFLHQWV DQG +DOI9DOXH /D\HUV IRU ;5D\ %HDPV DV D )XQFWLRQ RI 7XEH 9ROWDJH 7XEH 9ROWDJH N9Sf D &RHIILFLHQW &RHIILFLHQW +9/f§)URQWDO PP $Of +9/f§/DWHUDO PP $Of ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 127( D DQG L FRHIILFLHQWV ZHUH FRPSXWHG IRU D ZDWHU SKDQWRP WKLFNQHVV RI FP 7KH KDOIYDOXH OD\HUV ZHUH GHWHUPLQHG IRU FRQVWDQW YROWDJH ZDYHIRUPV DQ [UD\ WXEH DQRGH DQJOH RI r PP $ ILOWUDWLRQ IRU WKH IURQWDO LPDJLQJ V\VWHP [UD\ WXEH ILOWUDWLRQ SOXV WDEOH ILOWUDWLRQf DQG PP $ ILOWUDWLRQ IRU WKH ODWHUDO LPDJLQJ V\VWHP [UD\ WXEH ILOWUDWLRQf (QHUJ\ LPSDUWHG YDOXHV ZHUH FRPSXWHG VHSDUDWHO\ IRU IOXRURVFRS\ DQG UDGLRJUDSK\ ,Q IURQWDO SODQH IOXRURVFRS\ WKH DEGRPLQDO XSSHU WKRUDFLF ORZHU QHFN DQG KHDG UHJLRQV ZHUH LUUDGLDWHG $V GHWHUPLQHG LQ &KDSWHU DERXW WKLUW\ VHFRQGV RI IURQWDO SODQH IOXRURVFRS\ ZHUH VSHQW RQ DYHUDJH RQ WKH DEGRPLQDO UHJLRQ DQG DQ DGGLWLRQDO WZR PLQXWHV DW WKH XSSHU WKRUDFLF ORZHU QHFN UHJLRQ 7KH H[SRVXUHV FRUUHVSRQGLQJ WR WKHVH IOXRURVFRSLF WLPHV ZHUH XVHG WR FRPSXWH WKH HQHUJ\ LPSDUWHG WR WKH DEGRPHQ DQG XSSHU FKHVW ORZHU QHFN ERG\ UHJLRQV 7KH UHPDLQLQJ IOXRURVFRSLF H[SRVXUH ZDV IRFXVHG RYHU WKH KHDG UHJLRQ DQG ZDV XVHG WR FRPSXWH WKH HQHUJ\ LPSDUWHG WR WKH KHDG ,Q ODWHUDO

PAGE 77

IOXRURVFRS\ IURQWDO UDGLRJUDSK\ DQG ODWHUDO UDGLRJUDSK\ DOO H[SRVXUH ZDV WDNHQ WR EH LQFLGHQW RQ WKH KHDG UHJLRQ 7DEOH %DFNVFDWWHU )UDFWLRQV RI 5DGLDWLRQ ([SRVXUH DW 'LIIHUHQW 7XEH 9ROWDJHV 7XEH 9ROWDJH N9Sf %DFNVFDWWHU )DFWRU )URQWDOf %DFNVFDWWHU )DFWRU /DWHUDOf 127( %DFNVFDWWHU IUDFWLRQV ZHUH GHWHUPLQHG XVLQJ WKH 56' 56 DQWKURSRPRUSKLF KHDG SKDQWRP )RU WKH SXUSRVH RI FRPSXWLQJ HQHUJ\ LPSDUWHG WKH ZDWHU HTXLYDOHQW WKLFNQHVV RI WKH LUUDGLDWHG UHJLRQ DV ZHOO DV WKH DUHD RI H[SRVXUH DW WKH [UD\ EHDP HQWUDQFH VXUIDFH ZHUH UHTXLUHG 7DEOH OLVWV WKH ZDWHU HTXLYDOHQW WKLFNQHVV DQG H[SRVXUH DUHD RI WKH KHDG UHJLRQV FRUUHVSRQGLQJ WR GLIIHUHQW DJH JURXSV XVHG WR FRPSXWH HQHUJ\ LPSDUWHG WR WKH KHDG 7DEOH OLVWV WKH ZDWHU HTXLYDOHQW WKLFNQHVV DQG H[SRVXUH DUHD IRU GLIIHUHQW DJH JURXSV XVHG WR FRPSXWH HQHUJ\ LPSDUWHG WR WKH DEGRPLQDO DQG XSSHU WKRUDFLF ORZHU QHFN UHJLRQV

PAGE 78

7DEOH 3DWLHQW 7KLFNQHVV DQG $UHD RI ([SRVXUH &RUUHVSRQGLQJ WR WKH +HDG 5HJLRQ RI 'LIIHUHQW $JH *URXSV 3DWLHQW $JH +HDG 'HQVLW\ JFPf 3$ 7KLFNQHVV FPf /$7 7KLFNQHVV FPf 3$ $UHD RI ([SRVXUH FPf 1HZERUQ \UROG \UROG \UROG \UROG $GXOW 127( 3$ WKLFNQHVV DQG /$7 WKLFNQHVV UHSUHVHQW WKH HTXLYDOHQW WKLFNQHVV RI D ZDWHU SKDQWRP FRPSXWHG IURP WKH SK\VLFDO GLPHQVLRQV DQG GHQVLW\ RI WKH KHDG 7KH DUHD RI H[SRVXUH IRU HDFK SDWLHQW JURXS LQ WKH 3$ SURMHFWLRQ ZDV FRPSXWHG XVLQJ WKH SK\VLFDO GLPHQVLRQV RI WKH KHDG 7KH DUHD RI H[SRVXUH LQ WKH /$7 SURMHFWLRQ ZDV HVWLPDWHG WR EH HTXLYDOHQW WR RI WKH FRUUHVSRQGLQJ DUHDV LQ WKH 3$ SURMHFWLRQ 6285&( 'HQVLWLHV DQG SK\VLFDO GLDPHWHUV RI WKH KHDG UHJLRQ DW GLIIHUHQW DJH JURXSV ZHUH WDNHQ IURP +XGD HW DO $GXOW (IIHFWLYH 'RVHV 7KH 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG 153%f KDYH SHUIRUPHG D FRPSUHKHQVLYH VHULHV RI 0RQWH &DUOR GRVH FDOFXODWLRQV IRU WKH PRVW FRPPRQ [UD\ SURMHFWLRQV ^+DUW HW DO Df 7KH 0RQWH &DUOR UXQV PDGH XVH RI D KHUPDSKURGLWH DQWKURSRPRUSKLF SKDQWRP ZLWK D PDVV RI NJ DQG D KHLJKW RI FP ZKLFK LQFOXGHG WKH IHPDOH EUHDVWV RYDULHV XWHUXV DQG WHVWHV (DFK 0RQWH &DUOR UXQ WUDFNHG WKH SDWWHUQ RI HQHUJ\ GHSRVLWLRQ LQ WKH DQWKURSRPRUSKLF SKDQWRP IURP SULPDU\ DQG VFDWWHUHG SKRWRQV IRU WRWDO SKRWRQV XVHG ZLWK HDFK [UD\ SURMHFWLRQ $ WRWDO RI VHSDUDWH YLHZV ZHUH REWDLQHG XVLQJ [UD\ VSHFWUD JHQHUDWHG EHWZHHQ N9S DQG N9S

PAGE 79

ZLWK DGGHG ILOWUDWLRQ UDQJLQJ IURP PP $ WR PP $O ;UD\ VSHFWUDO GDWD ZHUH REWDLQHG XVLQJ DQ XSGDWHG YHUVLRQ RI D FRPSXWHU SURJUDP SXEOLVKHG E\ OLHV f 7DEOH 3DWLHQW 7KLFNQHVV DQG $UHD RI ([SRVXUH &RUUHVSRQGLQJ WR WKH 7UXQN 5HJLRQ RI 'LIIHUHQW $JH *URXSV 3DWLHQW $JH 7UXQN 'HQVLW\ JFPf $EGRPHQ 7KLFNQHVV f§3$f§ FPf &KHVW1HFN 7KLFNQHVV f§3$f§ FPf 3$ $UHD RI ([SRVXUH FPf 1HZERUQ \UROG \UROG \UROG \UROG $GXOW 127( 7KH 3$ WKLFNQHVV UHSUHVHQWV WKH HTXLYDOHQW WKLFNQHVV RI D ZDWHU SKDQWRP FRPSXWHG IURP WKH SK\VLFDO GLDPHWHUV DQG GHQVLW\ RI WKH WUXQN 6285&( 'HQVLWLHV DQG SK\VLFDO GLDPHWHUV RI WKH WUXQN UHJLRQ DW GLIIHUHQW DJH JURXSV ZHUH WDNHQ IURP +XGD HW DO )RU HDFK [UD\ H[DPLQDWLRQ WKH 0RQWH &DUOR GRVLPHWU\ GDWD JHQHUDWHG E\ WKH 153% SHUPLWWHG WKH FRPSXWDWLRQ RI WKH HIIHFWLYH GRVH ( DV GHILQHG E\ WKH ,QWHUQDWLRQDO &RPPLVVLRQ RQ 5DGLRORJLFDO 3URWHFWLRQ ,&53 f 7KH SKDQWRP EUHDVW GRVH DQG WKH PHDQ RI WKH WHVWHV DQG RYDU\ GRVHV ZHUH XVHG WR GHWHUPLQH WKH FRQWULEXWLRQV WR WKH HIIHFWLYH GRVH IURP WKH EUHDVW DQG JRQDGV UHVSHFWLYHO\ 7KH 0RQWH &DUOR GRVLPHWU\ GDWD DOVR SURYLGHG WKH PHDQ GRVHV WR WKUHH ERG\ UHJLRQV FRQVLVWLQJ RI WKH KHDG 'K WUXQN

PAGE 80

'f DQG OHJV 0HDQ GRVHV WR WKHVH WKUHH ERG\ UHJLRQV ZHUH XVHG WR FRPSXWH WKH PHDQ HQHUJ\ LPSDUWHG WR WKH SDWLHQW e XVLQJ WKH HTXDWLRQ V 'K [ [ [ f ZKHUH WKH PDVVX RI WKH KHDG LV NJ WKH PDVV RI WKH WUXQN LQFOXGLQJ WKH DUPV LV NJ DQG WKH PDVV RI WKH OHJV LV NJ 7KH FRPSOHWH GRVLPHWU\ UHVXOWV RI WKHVH 0RQWH &DUOR VLPXODWLRQV KDYH EHHQ PDGH DYDLODEOH LQ D VRIWZDUH IRUPDW +DUW HW DL Ef DQG ZHUH XVHG WR REWDLQ WKH YDOXHV RI HIIHFWLYH GRVH DQG HQHUJ\ LPSDUWHG IRU VSHFLILF SURMHFWLRQV DV DSSOLHG WR UDGLDWLRQ H[SRVXUHV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KHVH SURMHFWLRQV ZHUH WKH SRVWHULRDQWHULRU SURMHFWLRQV RI WKH DEGRPHQ FKHVW FHUYLFDO VSLQH DQG KHDG UHJLRQV DV ZHOO DV WKH ULJKW ODWHUDO SURMHFWLRQ RI WKH KHDG UHJLRQ )RU HDFK [UD\ SURMHFWLRQ YDOXHV RI (OV ZHUH FRPSXWHG DW HLJKW WXEH YROWDJHV UDQJLQJ EHWZHHQ N9 DQG N9 DQG JHQHUDWHG DW N9 LQWHUYDOV ZLWK D EHDP ILOWUDWLRQ HTXLYDOHQW WR PP DOXPLQXP ODWHUDO SODQHf DQG PP DOXPLQXP IURQWDO SODQHf 7KH HIIHFWLYH GRVH SHU XQLW HQHUJ\ LPSDUWHG (OV P6Y -nf IRU WKH SURMHFWLRQV RI WKH WUXQN DQG KHDG UHJLRQV DUH JLYHQ LQ 7DEOH 7KH DYHUDJH (OV UDWLRV RI WKH FKHVW DQG &VSLQH SURMHFWLRQV DW HDFK N9S ZHUH XVHG WR GHWHUPLQH HIIHFWLYH GRVHV IURP LUUDGLDWLRQ RI WKH XSSHU WKRUDFLF ORZHU QHFN UHJLRQ `:DOO %) 3ULYDWH FRPPXQLFDWLRQ f

PAGE 81

3HGLDWULF (IIHFWLYH 'RVH %\ GHILQLWLRQ *\ RI XQLIRUP ZKROH ERG\ LUUDGLDWLRQ WR [UD\V UHVXOWV LQ DQ HIIHFWLYH GRVH RI 6Y DQG LV LQGHSHQGHQW RI WKH PDVV RI WKH H[SRVHG LQGLYLGXDO )RU D NJ DQWKURSRPRUSKLF DGXOW VXEMHFW WR XQLIRUP ZKROH ERG\ LUUDGLDWLRQ HQHUJ\ LPSDUWHG FDQ EH GLUHFWO\ FRQYHUWHG LQWR HIIHFWLYH GRVH ZLWK RQH MRXOH FRUUHVSRQGLQJ WR DQ HIIHFWLYH GRVH RI P6Y )RU XQLIRUP ZKROH ERG\ LUUDGLDWLRQ WKH HIIHFWLYH GRVH (^0f WR DQ LQGLYLGXDO ZLWK D PDVV 0 7DEOH f ZKR DEVRUEV D WRWDO RI V LV JLYHQ E\ (0f H[ [ f§ 0 P6Y f )LJXUH VKRZV KRZ WKH HIIHFWLYH GRVH YDULHV ZLWK WKH SDWLHQW PDVV IRU XQLIRUP ZKROH ERG\ LUUDGLDWLRQ ZLWK D WRWDO RI RQH MRXOH LPSDUWHG WR WKH LQGLYLGXDO )RU QRQXQLIRUP H[SRVXUHV QRUPDOO\ HQFRXQWHUHG LQ GLDJQRVWLF UDGLRORJ\ WKH UHODWLYH UDGLRVHQVLWLYLW\ RI WKH LUUDGLDWHG UHJLRQ QHHGV WR EH WDNHQ LQWR DFFRXQW ZKHQ REWDLQLQJ WKH HIIHFWLYH GRVH 7KH UHODWLYH UDGLRVHQVLWLYLW\ RI DQ\ ERG\ UHJLRQ UHPDLQV DSSUR[LPDWHO\ FRQVWDQW ZLWK DJH ,&53 $OPQ DQG 0DWWVVRQ f )RU LQVWDQFH LI WKH KHDG DFFRXQWV IRU [b RI WKH WRWDO VWRFKDVWLF ULVN LQ DGXOWV XQLIRUPO\ H[SRVHG WR [ UD\V WKLV ERG\ UHJLRQ ZLOO DOVR DFFRXQW IRU DSSUR[LPDWHO\ [b RI WKH WRWDO VWRFKDVWLF ULVN IRU DQ\ RWKHU DJH JURXS $V D UHVXOW WKH HIIHFWLYH GRVH WR D SDWLHQW RI PDVV 0 NJ IRU D JLYHQ [UD\ SURMHFWLRQ L ZKR DEVRUEV IMRXOHV RI HQHUJ\ LV REWDLQHG XVLQJ (0f e; (` [ ?e-c 0 P6Y f

PAGE 82

ZKHUH (Vfc LV WKH UDWLR RI HIIHFWLYH GRVH WR HQHUJ\ LPSDUWHG P6Y -nf REWDLQHG IRU WKH VDPH SURMHFWLRQ L LQ WKH DGXOW DQWKURSRPRUSKLF SKDQWRP ZLWK D PDVV RI NJ 6WDQGDUG PDVVHV RI SDWLHQWV RI GLIIHUHQW DJHV DUH JLYHQ LQ 7DEOH 7DEOH 9DOXHV RI (IIHFWLYH 'RVH SHU 8QLW (QHUJ\ ,PSDUWHG (OV LQ P-6Y IRU 'LIIHUHQW %RG\ 3URMHFWLRQV DV D )XQFWLRQ RI 7XEH 9ROWDJH N9S $EGRPHQ &KHVW 3$f 3$f &6SLQH 3$f +HDG 3$f +HDG /$7f 127( 7KH YDOXHV RI (OH FRUUHVSRQGLQJ WR 3$ YLHZV ZHUH FRPSXWHG IRU PP $O ILOWUDWLRQ IURQWDO LPDJLQJ SODQHf 7KH YDOXHV RI (H FRUUHVSRQGLQJ WR WKH +HDG /$7 YLHZ ZHUH FRPSXWHG IRU PP $O ILOWUDWLRQ ODWHUDO LPDJLQJ SODQHf 7DEOH 6WDQGDUG 3DWLHQW 0DVV IRU 'LIIHUHQW $JH *URXSV $JH *URXS 1HZERUQ \UROG \UROG \UROG \UROG $GXOW 3DWLHQW 0DVV NJf 6285&( +XGD HW DO

PAGE 83

),*85( (IIHFWLYH GRVH DV D IXQFWLRQ RI SDWLHQW PDVV IRU RQH MRXOH RI XQLIRUP ZKROH ERG\ LUUDGLDWLRQ $GXOW 3DWLHQW 'RVHV 7KH IROORZLQJ VHFWLRQV VXPPDUL]H WKH HQHUJ\ LPSDUWHG DQG HIIHFWLYH GRVHV WR DGXOW SDWLHQWV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 2QH KXQGUHG DQG IRUW\ QLQH DGXOW SDWLHQWV RI WKHP XQGHUZHQW GLDJQRVWLF DQJLRJUDSKLF DQG VHYHQWHHQ XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZHUH VWXGLHG )OXRURVFRS\ DQG UDGLRJUDSKLF DFTXLVLWLRQV ZHUH UHYLHZHG VHSDUDWHO\ (QHUJ\ ,PSDUWHG )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH HQHUJ\ LPSDUWHG WR SDWLHQWV IURP XVH RI IOXRURVFRS\ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH PHGLDQ

PAGE 84

YDOXH RI HQHUJ\ LPSDUWHG ZDV ZLWK HQHUJ\ LPSDUWHG LQ WKH IURQWDO SODQH EHLQJ WKH PDMRU FRPSRQHQW RI IOXRURVFRS\ 7KH GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG LQ IOXRURVFRS\ ZDV PDLQO\ VSUHDG RYHU WKH UDQJH RI )RXUWHHQ bf RI DGXOW SDWLHQWV UHFHLYHG PRUH WKDQ ZLWK WKUHH bf SDWLHQWV UHFHLYLQJ PRUH WKDQ RI HQHUJ\ LPSDUWHG IURP IOXRURVFRS\ ZLWK D PD[LPXP YDOXH RI $OWKRXJK WKHUH ZDV QR VHSDUDWLRQ GRQH LQ WKH GLVWULEXWLRQ EHWZHHQ GLDJQRVWLF DQJLRJUDSKLF DQG WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV WKH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG WR SDWLHQWV ZKR XQGHUZHQW HPEROL]DWLRQV ZDV 6L[ RI WKH VHYHQWHHQ HPEROL]DWLRQ SDWLHQW H[FHHGHG WKH YDOXH RI %,3/$1( )/8252623< 0HGLDQ 0D[LPXP )5217$/ )/8252623< 0HGLDQ 0D[LPXP /$7(5$/ )/8252623< 0HGLDQ 0D[LPXP (QHUJ\ ,PSDUWHG -f )LJXUH +LVWRJUDP GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG WR SDWLHQWV IURP XVH RI IOXRURVFRS\ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV

PAGE 85

)LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQ RI WKH HQHUJ\ LPSDUWHG WR SDWLHQWV IURP UDGLRJUDSKLF DFTXLVLWLRQV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG ZDV 7KH GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV ZDV PDLQO\ VSUHDG RYHU WKH UDQJH RI 6L[WHHQ bf RI DGXOW SDWLHQWV UHFHLYHG EHWZHHQ DQG $ PD[LPXP YDOXH RI ZDV UHFRUGHG 7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG WR SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZDV 6HYHQ RI WKH VHYHQWHHQ HPEROL]DWLRQ SDWLHQWV UHFHLYHG HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV JUHDWHU WKDQ DV &/ 2 OB D! Q c ] )LJXUH +LVWRJUDP GLVWULEXWLRQ RI HQHUJ\ LPSDUWHG WR SDWLHQWV IURP UDGLRJUDSKLF DFTXLVLWLRQV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQV RI WKH WRWDO HQHUJ\ LPSDUWHG WR DGXOW SDWLHQW IURP GLDJQRVWLF DQJLRJUDSKLF DQG WKHUDSHXWLF HPEROL]DWLRQ QHXURUDGLRORJLF %,3/$1( 5$',2*5$3+< 0HGLDQ 0D[LPXP )5217$/ 5$',2*$3+< 0HGLDQ 0D[LPXP /$7(5$/ 5$',2*5$3+< 0HGLDQ 0D[LPXP (QHUJ\ ,PSDUWHG -f

PAGE 86

SURFHGXUHV 7KH PHGLDQ YDOXH RI WKH WRWDO HQHUJ\ LPSDUWHG ZDV 7KH PD[LPXP HQHUJ\ LPSDUWHG UHFHLYHG E\ D SDWLHQW ZDV 7KH PDMRULW\ RI WKH SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV UHFHLYHG XS WR RI HQHUJ\ LPSDUWHG )LIWHHQ bf RI WKH DGXOW SDWLHQWV VKRZQ E\ WKH WDLO RI WKH GLVWULEXWLRQ LQ )LJXUH UHFHLYHG HQHUJ\ LPSDUWHG EHWZHHQ DQG 7KH PHGLDQ YDOXH RI WKH WRWDO HQHUJ\ LPSDUWHG WR SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZDV (LJKW RI WKH VHYHQWHHQ HPEROL]DWLRQ SDWLHQWV H[FHHGHG WKH YDOXH RI WRWDO HQHUJ\ LPSDUWHG 7KH ODUJHVW IUDFWLRQ RI HQHUJ\ LPSDUWHG ZDV SURGXFHG E\ UDGLRJUDSKLF DFTXLVLWLRQV 7KH DYHUDJH IUDFWLRQ RI HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV ZDV DERXW b RI WKH WRWDO HQHUJ\ LPSDUWHG 2QO\ RQH WKLUG RI WKH WRWDO HQHUJ\ LPSDUWHG ZDV DFFRXQWHG IRU XVH RI IOXRURVFRS\ (IIHFWLYH 'RVHV )LJXUH VKRZV WKH KLVWRJUDP GLVWULEXWLRQV RI WKH WRWDO HIIHFWLYH GRVH WR DGXOW SDWLHQW IURP GLDJQRVWLF DQJLRJUDSKLF DQG WKHUDSHXWLF HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUHV 7KH PHGLDQ YDOXH RI WKH WRWDO HIIHFWLYH GRVHV ZDV P6Y 7KH PDMRULW\ RI WKH SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV UHFHLYHG EHWZHHQ P6Y DQG P6Y RI HIIHFWLYH GRVH 7KH WDLO RI WKH KLVWRJUDP GLVWULEXWLRQ VKRZQ LQ )LJXUH FRUUHVSRQGV WR QLQHWHHQ bf SDWLHQWV ZKR UHFHLYHG HIIHFWLYH GRVHV JUHDWHU WKDQ P6Y 7KH PHGLDQ YDOXH RI WKH WRWDO HIIHFWLYH GRVH WR SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZDV P6Y 7HQ RI WKH VHYHQWHHQ HPEROL]DWLRQ SDWLHQWV H[FHHGHG WKH P6Y YDOXH RI WRWDO HIIHFWLYH GRVH $V LQ VXUIDFH GRVHV DQG HQHUJ\ LPSDUWHG UDGLRJUDSKLF DFTXLVLWLRQV DFFRXQWHG IRU WKH ODUJHVW IUDFWLRQ RI WKH

PAGE 87

HIIHFWLYH GRVH WR DGXOW SDWLHQWV 2Q DYHUDJH DERXW b RI WKH HIIHFWLYH GRVH FRUUHVSRQGHG WR UDGLRJUDSKLF DFTXLVLWLRQV 8VH RI IOXRURVFRS\ DFFRXQWHG IRU RQO\ RQH WKLUG RI WKH WRWDO HIIHFWLYH GRVH UHFHLYHG E\ SDWLHQWV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV (QHUJ\ ,PSDUWHG -f )LJXUH +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO HQHUJ\ LPSDUWHG WR SDWLHQWV XQGHUJRLQJ GLDJQRVWLF DQJLRJUDSKLF DQG WKHUDSHXWLF HPEROL]DWLRQ QHXURUDGLRORJLF SURFHGXUHV 3HGLDWULF 3DWLHQW 'RVHV 7KH IROORZLQJ VHFWLRQV VXPPDUL]H WKH HQHUJ\ LPSDUWHG DQG HIIHFWLYH GRVHV WR SHGLDWULF SDWLHQWV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7ZHQW\VL[ SHGLDWULF SDWLHQWV \RXQJHU WKDQ \HDUV RI DJHf VL[WHHQ RI WKHP XQGHUZHQW GLDJQRVWLF

PAGE 88

DQJLRJUDSKLF DQG WHQ XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZHUH VWXGLHG )OXRURVFRS\ DQG UDGLRJUDSKLF DFTXLVLWLRQV ZHUH UHYLHZHG VHSDUDWHO\ %,3/$1( )/82526&23< t 5$',2*5$3+< 0HGLDQ P6Y 0D[LPXP P6Y )5217$/ 3/$1( 0HGLDQ P6Y 0D[LPXP P6Y /$7(5$/ 3/$1( 0HGLDQ 0D[LPXP P6Y (IIHFWLYH 'RVH P6Yf ),*85( +LVWRJUDP GLVWULEXWLRQ RI WKH WRWDO HIIHFWLYH GRVH WR SDWLHQWV IURP ELSODQH QHXURUDGLRORJLF H[DPLQDWLRQV (QHUJ\ ,PSDUWHG )LJXUH SORWV WKH HQHUJ\ LPSDUWHG WR SHGLDWULF SDWLHQWV IURP IOXRURVFRS\ DV D IXQFWLRQ RI SDWLHQW PDVV 7KH PDVV RI HDFK SDWLHQW ZDV LQWHUSRODWHG IURP 7DEOH DFFRUGLQJ WR WKH DJH RI WKH SDWLHQW $V )LJXUH VKRZV WKHUH LV QR VLJQLILFDQW FRUUHODWLRQ RI HQHUJ\ LPSDUWHG WR SDWLHQW PDVV 7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG IURP IOXRURVFRS\ WR DOO SHGLDWULF LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV 3HGLDWULF SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV KDG D PHGLDQ RI

PAGE 89

7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG IURP IOXRURVFRS\ WR DGXOW SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV 7 R W UH D ( !} R!  +, I %,3/$1( )/8252623< ‘ ‘ 7KHUDSHXWLF ‘ [ 'LDJQRVWLF ‘ ; ‘ ; % U ‘ ; ; ;f§ ‘ 7 [ ; 5 r ; Vr; ; r 3DWLHQW 0DVV NJf )LJXUH (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP IOXRURVFRS\ GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV )LJXUH SORWV WKH HQHUJ\ LPSDUWHG WR SHGLDWULF SDWLHQWV IURP UDGLRJUDSKLF DFTXLVLWLRQV DV D IXQFWLRQ RI SDWLHQW PDVV $V ZDV WKH FDVH IRU IOXRURVFRS\ WKHUH ZDV QR VLJQLILFDQW FRUUHODWLRQ EHWZHHQ WKH HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV DQG SDWLHQW PDVV 7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV WR DOO SHGLDWULF LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV 3HGLDWULF SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV KDG D PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG RI

PAGE 90

7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG IURP UDGLRJUDSKLF DFTXLVLWLRQV WR DGXOW SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV )LJXUH (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP UDGLRJUDSKLF DFTXLVLWLRQV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV )LJXUH SORWV WKH WRWDO HQHUJ\ LPSDUWHG WR SHGLDWULF SDWLHQWV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DV D IXQFWLRQ RI SDWLHQW PDVV $V )LJXUH VKRZV WKHUH ZDV QR VLJQLILFDQW FRUUHODWLRQ EHWZHHQ WRWDO HQHUJ\ LPSDUWHG IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DQG SDWLHQW PDVV 7KH PHGLDQ YDOXH RI WRWDO HQHUJ\ LPSDUWHG WR DOO SHGLDWULF LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV 3HGLDWULF SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV KDG D PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG RI 7KH PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG IURP

PAGE 91

UDGLRJUDSKLF DFTXLVLWLRQV WR DGXOW SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLR ORJLF SURFHGXUHV ZDV ),*85( (QHUJ\ LPSDUWHG DV D IXQFWLRQ RI SDWLHQW PDVV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HQHUJ\ LPSDUWHG DQG SDWLHQW PDVV (IIHFWLYH 'RVHV )LJXUH SORWV WKH WRWDO HIIHFWLYH GRVH WR SHGLDWULF SDWLHQWV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DV D IXQFWLRQ RI SDWLHQW PDVV $OWKRXJK WKH SHGLDWULF GDWD RI WKH WRWDO HIIHFWLYH GRVHV DUH ZLGHO\ VFDWWHUHG U f D OLQHDU FRUUHODWLRQ EHWZHHQ HIIHFWLYH GRVH DQG SDWLHQW PDVV LV HYLGHQW 7KH PHGLDQ YDOXH RI WRWDO HIIHFWLYH GRVH WR DOO SHGLDWULF LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV P6Y DQG ZDV KLJKHU FRPSDUHG WR WKH PHGLDQ YDOXH RI P6Y HIIHFWLYH GRVH WR DGXOW SDWLHQWV 3HGLDWULF

PAGE 92

SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV KDG D PHGLDQ YDOXH RI P6Y HIIHFWLYH GRVH )LJXUH (IIHFWLYH GRVH DV D IXQFWLRQ RI SDWLHQW PDVV IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV RQ SHGLDWULF SDWLHQWV /LQH VKRZV WKH OLQHDU ILW EHWZHHQ HIIHFWLYH GRVH DQG SDWLHQW PDVV 'LVFXVVLRQ 0DMRU HUURUV LQ GHWHUPLQLQJ HQHUJ\ LPSDUWHG WR SDWLHQWV UHVXOW ZKHQ HVWLPDWLQJ WKH HTXLYDOHQW ZDWHU SKDQWRP WKLFNQHVV ] DQG GXH WR WKH LPSOLFLW GLIIHUHQFHV EHWZHHQ D ILQLWHf KHWHURJHQHRXV SDWLHQW DQG D VHPLLQILQLWH KRPRJHQHRXV ZDWHU SKDQWRP )LJXUH VKRZV WKH HQHUJ\ LPSDUWHG SHU XQLW H[SRVXUHDUHD SURGXFW FR DV D IXQFWLRQ RI SKDQWRP WKLFNQHVV IRU D UDQJH RI [UD\ WXEH YROWDJHV 7KH ODUJHVW LQFUHDVH RI FR ZLWK SKDQWRP WKLFNQHVV LV H[SHFWHG DW VPDOO WKLFNQHVVHV JLYHQ WKDW WKH PHDQ IUHH SDWK RI

PAGE 93

PRQRHQHUJHWLF SKRWRQV LQ ZDWHU UDQJHV IURP FP DW NH9 WR FP DW NH9 2QFH WKH SKDQWRP WKLFNQHVV UHDFKHV DERXW WKUHH RU IRXU PHDQ IUHH SDWKV PRVW RI WKH [ UD\ SKRWRQV ZLOO KDYH EHHQ DEVRUEHG DQG DQ\ IXUWKHU LQFUHDVH RI WKH SKDQWRP WKLFNQHVV ZLOO KDYH OLWWOH DIIHFW RQ DW )LJXUH VKRZV WKDW DW N9 WKH WKLFNQHVV RI WKH ZDWHU SKDQWRP XVHG WR VLPXODWH D SDWLHQW IRU WKH SXUSRVHV RI HVWLPDWLQJ HQHUJ\ LPSDUWHG JHQHUDOO\ ZLOO QRW EH D FULWLFDO SDUDPHWHU IRU DSSOLFDWLRQV ZLWK SKDQWRP WKLFNQHVVHV JUHDWHU WKDQ FP 6LQFH WKH ZDWHU HTXLYDOHQW VL]H RI DQ DGXOW KHDG LV EHWZHHQ FP ODWHUDO YLHZf DQG FP IURQWDO YLHZf VPDOO GHYLDWLRQV IURP WKH DYHUDJH VL]HV JLYHQ LQ 7DEOH ZLOO KDYH D PLQLPDO HIIHFW RQ WKH FRPSXWDWLRQ RI HQHUJ\ LPSDUWHG $ GLIIHUHQFH EHWZHHQ D FP DQG FP SKDQWRP WKLFNQHVV DW N9S LV RI WKH RUGHU RI b (YHQ IRU SHGLDWULF SDWLHQWV ZKHUH WKH VL]H RI WKH KHDG LV VPDOOHU FP WR FP IRU \UROGVf D FP HUURU LQ HVWLPDWLQJ WKH ZDWHU HTXLYDOHQW WKLFNQHVV ZLOO UHVXOW LQ D PD[LPXP HUURU RI DERXW b ZKHQ FRPSXWLQJ HQHUJ\ LPSDUWHG 0LQRU HUURUV LQ FRPSXWLQJ HQHUJ\ LPSDUWHG WR SDWLHQWV DULVH IURP WKH XVH RI GLYHUJLQJ [UD\ EHDPV LQ FOLQLFDO DSSOLFDWLRQV DQG WKH SUHVHQFH RI QRQXQLIRUPLWLHV LQ [ UD\ EHDP LQWHQVLW\ GXH WR WKH KHHO HIIHFW 7KH IRUPHU LV OLNHO\ WR EH RI QHJOLJLEOH LPSRUWDQFH ZKHUHDV WKH ODWWHU FRXOG HDVLO\ EH DFFRXQWHG IRU E\ H[SHULPHQWDOO\ REWDLQLQJ DQ DYHUDJH HQWUDQFH VNLQ H[SRVXUH RYHU WKH EHDP DUHD 0HDVXULQJ WKH H[SRVXUH DW WKH FHQWHUOLQH RI WKH [UD\ EHDP LV DOVR D JRRG DSSUR[LPDWLRQ RI WKH DYHUDJH H[SRVXUH RYHU WKH HQWLUH ILHOG $QRWKHU HUURU LQ GHWHUPLQLQJ HQHUJ\ LPSDUWHG IURP LUUDGLDWLRQ WR WKH KHDG UHJLRQ UHVXOWV IURP RFFDVLRQDO XVH RI ZHGJH VKDSHG WUDQVSDUHQW ILOWHUV ZKLFK VHUYH WR UHGXFH WKH UDGLDWLRQ GRVHV DW WKH SHULSKHU\ RI WKH [UD\ ILHOG RI YLHZ ZKLOVW PDLQWDLQLQJ

PAGE 94

LPDJH TXDOLW\ ZLWKLQ WKH FHQWUDO UHJLRQ 6XFK ILOWHUV DUH XVHG GXULQJ LPDJLQJ RI WKH IURQWDO YLHZ RI WKH KHDG DQG FDQ DWWHQXDWH WKH HQWUDQFH H[SRVXUH E\ DERXW b DW N9S $V WKHVH ILOWHUV FRYHU DQ DUHD EHWZHHQ b DQG b DQ RYHUHVWLPDWH RI WKH HQHUJ\ LPSDUWHG IURP IURQWDO LPDJLQJ SODQH IOXRURVFRS\ RI WKH RUGHU RI b WR b FDQ RFFXU 8VH RI (TXDWLRQ f SHUPLWV WKH GHWHUPLQDWLRQ RI WKH DSSUR[LPDWH YDOXHV RI HIIHFWLYH GRVHV WR SHGLDWULF SDWLHQWV ZKR XQGHUJR UDGLRORJLF H[DPLQDWLRQV 7KH 153% KDV UHFHQWO\ SXEOLVKHG GRVLPHWULF GDWD RQ SHGLDWULF SDWLHQWV UDQJLQJ IURP WKH QHZERUQ WR \HDU ROGV +DUW HW DO f )LJXUH VKRZV D FRPSDULVRQ EHWZHHQ WKH (OV YDOXHV REWDLQHG XVLQJ (TXDWLRQ f FRQWLQXRXV OLQHf ZLWK WKH 153% GDWD VROLG FLUFOHVf ZKLFK ZHUH GHWHUPLQHG E\ SHUIRUPLQJ 0RQWH &DUOR FDOFXODWLRQV LQ D UDQJH RI DQWKURSRPRUSKLF SKDQWRPV RI GLIIHUHQW DJH 'LIIHUHQFHV EHWZHHQ WKHVH WZR GDWD VHWV ZKHQ DYHUDJHG RYHU WKH ILYH DJHV LQYHVWLJDWHG ZHUH b ZLWK WKH ODUJHVW GLIIHUHQFHV VKRZQ IRU WKH \UROG bf DQG \UROG bf SKDQWRPV 6XFK GLIIHUHQFHV PD\ EH GXH WR SHGLDWULF KHDGV DFFRXQWLQJ IRU D PDUNHGO\ ODUJHU IUDFWLRQ RI WKH WRWDO ERG\ PDVVHV LQ WKHVH DJHV FRPSDUHG WR DGXOWV ,W LV RI LQWHUHVW WR QRWH KRZHYHU WKDW XVH RI GLIIHUHQW W\SHV RI DQWKURSRPRUSKLF SKDQWRPV WR GHWHUPLQH SHGLDWULF HIIHFWLYH GRVHV LQ SODQDU UDGLRJUDSK\ FDQ UHVXOW LQ GLIIHUHQFHV LQ HIIHFWLYH GRVH RI WKH RUGHU RI b +DUW HW DO Ef ,Q JHQHUDO WKH HIIHFWLYH GRVHV FRPSXWHG LQ WKLV ZRUN FRPSDUH WKUHH WR VL[ WLPHV KLJKHU WR YDOXHV SXEOLVKHG E\ RWKHUV IRU VLPLODU LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV )H\JHOPDQ HW DO %HUJHURQ HW DO 0F3DUODQG %HUWKHOVRQ DQG &HGHUEODG f +RZHYHU DOO RWKHU UHSRUWHG YDOXHV UHIHU WR OLPLWHG QXPEHU RI SURFHGXUHV DQG QRQH RI WKHP PDGH XVH RI PHDQV RI UHFRUGLQJ UDGLDWLRQ H[SRVXUHV LQ UHDO WLPH 'LIIHUHQW LPDJLQJ HTXLSPHQW VHWXS DQG LPDJLQJ SURFHGXUHV DPRQJ LQVWLWXWLRQV

PAGE 95

SOD\ D PDMRU UROH WR KRZ GLIIHUHQW HIIHFWLYH GRVHV PD\ EH DPRQJ LQVWLWXWLRQV 7KH IDFW WKDW 6KDQGV KRVSLWDO DW WKH 8QLYHUVLW\ RI )ORULGD LV DQ DFDGHPLF LQVWLWXWLRQ WKDW WUDLQV QHZ QHXURLQWHUYHQWLRQDO UDGLRORJLVWV PD\ DOVR DFFRXQW IRU VRPH RI WKH GLIIHUHQFHV EHWZHHQ WKH UHFRUGHG HIIHFWLYH GRVHV LQ WKLV ZRUN DQG RWKHUV &RQFOXVLRQV 9DOXHV RI HQHUJ\ LPSDUWHG IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZHUH KLJK GXH WR WKH GHPDQGV DQG FRPSOH[LW\ RI WKHVH SURFHGXUHV 7KH PHGLDQ YDOXH RI WKH WRWDO HQHUJ\ LPSDUWHG WR DGXOW SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZDV 3HGLDWULF SDWLHQWV UHFHLYHG D PHGLDQ YDOXH RI HQHUJ\ LPSDUWHG RI IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ,Q WKH FDVH RI WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV DGGLWLRQDO XVH RI IOXRURVFRS\ LV UHTXLUHG IRU FDWKHWHU PDQLSXODWLRQ DQG SRVLWLRQLQJ DW WKH VLWH RI RFFOXVLRQ DV ZHOO DV H[WHQVLYH UDGLRJUDSKLF DFTXLVLWLRQV WR HYDOXDWH WKH SURJUHVV RI WKH RFFOXVLRQ 6XFK GHPDQGV LQFUHDVHG WKH PHGLDQ YDOXHV RI HQHUJ\ LPSDUWHG WR DGXOWV XQGHUJRLQJ WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV WR 3HGLDWULF HPEROL]DWLRQV UHFHLYHG D PHGLDQ YDOXH RI 2YHUDOO UDGLRJUDSKLF DFTXLVLWLRQV DFFRXQWHG IRU WZR WKLUGV RI WKH WRWDO HQHUJ\ LPSDUWHG ZLWK IOXRURVFRS\ FRQWULEXWLQJ RQO\ RQH WKLUG 7KHUH ZDV QR VLJQLILFDQW FRUUHODWLRQ EHWZHHQ HQHUJ\ LPSDUWHG IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV DQG SDWLHQW PDVV

PAGE 96

)LJXUH &RPSDULVRQ RI (V YDOXHV YV SDWLHQW DJH DV GHWHUPLQHG E\ (TXDWLRQ f DQG E\ XVLQJ WKH GRVLPHWU\ GDWD IURP +DUW HW DO Df 127( 9DOXHV RI (V ZHUH FRPSXWHG IRU WKH ULJKW ODWHUDO SURMHFWLRQ RI WKH KHDG (IIHFWLYH GRVHV FRPSXWHG IRU WKH DGXOW SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV KDG D PHGLDQ YDOXH RI P6Y 3HGLDWULF SDWLHQWV UHFHLYHG D PHGLDQ HIIHFWLYH GRVH RI P6Y IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH PHGLDQ HIIHFWLYH GRVH WR DGXOWV XQGHUJRLQJ WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZDV P6Y 3HGLDWULF HPEROL]DWLRQV UHFHLYHG D PHGLDQ HIIHFWLYH GRVH RI P6Y $V ZDV WKH FDVH IRU HQHUJ\ LPSDUWHG UDGLRJUDSKLF DFTXLVLWLRQV DFFRXQWHG IRU WZR WKLUGV RI WKH WRWDO HIIHFWLYH GRVH ZLWK IOXRURVFRS\ FRQWULEXWLQJ RQO\ RQH WKLUG 8QOLNH HQHUJ\ LPSDUWHG HIIHFWLYH GRVHV VKRZHG D JRRG OLQHDU FRUUHODWLRQ ZLWK SDWLHQW PDVV

PAGE 97

7KH XVH RI WKH HIIHFWLYH GRVH SHUPLWV DQ HVWLPDWH RI VWRFKDVWLF ULVN WR EH REWDLQHG E\ XVLQJ FXUUHQW VWRFKDVWLF ULVN FRHIILFLHQWV ,&53 816&($5 1$6 f $W WKH ODVW DWWHPSW RI WKH ,&53 f WR HVWLPDWH DEVROXWH VWRFKDVWLF ULVNV IURP ZKROH ERG\ LUUDGLDWLRQ D ULVN FRHIILFLHQW RI [ 2n FDQFHUV SHU P6Y RI HIIHFWLYH GRVH ZDV GHULYHG 8VLQJ WKLV ULVN FRHIILFLHQW WKH PHGLDQ HIIHFWLYH GRVH RI P6Y WR DGXOW SDWLHQWV ZRXOG UHVXOW LQ RQH IDWDO FDQFHU IRU HYHU\ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV $Q HIIHFWLYH GRVH RI P6Y WR DGXOWV XQGHUJRLQJ WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZRXOG UHVXOW LQ RQH IDWDO FDQFHU IRU HYHU\ VXFK SURFHGXUHV 7KH LPPHGLDWH OLIH VDYLQJ EHQHILWV RI LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV KRZHYHU IDU RXWZHLJK WKH ULVN RI GLVWDQW VWRFKDVWLF HIIHFWV DVVRFLDWHG ZLWK WKHVH SURFHGXUHV $OVR VXFK ULVN FRHIILFLHQWV QHHG WR EH WUHDWHG ZLWK JUHDW FDXWLRQ JLYHQ WKH FXUUHQW XQFHUWDLQWLHV DVVRFLDWHG ZLWK WKH H[WUDSRODWLRQ RI UDGLDWLRQ ULVNV IURP KLJK GRVHV WR WKRVH QRUPDOO\ HQFRXQWHUHG LQ GLDJQRVWLF UDGLRORJ\ )U\ 3XVNLQ DQG 1HOVRQ f ,Q WKH FDVH RI SHGLDWULF SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV LW LV LPSRUWDQW WR QRWH WKDW DQ\ UHVXOWDQW VWRFKDVWLF GHWULPHQW ZLOO GHSHQG RQ WKH DJH RI WKH H[SRVHG LQGLYLGXDO 7KH VWRFKDVWLF UDGLDWLRQ ULVNV RI FDUFLQRJHQHVLV DQG JHQHWLF HIIHFWV DUH JHQHUDOO\ JUHDWHU IRU FKLOGUHQ WKDQ IRU DGXOWV WR DW OHDVW D IDFWRU RI WZR ,&35 1&53 f 7KHVH IDFWRUV ZRXOG QHHG WR EH WDNHQ LQWR DFFRXQW ZKHQ FRQYHUWLQJ DQ\ SHGLDWULF HIIHFWLYH GRVHV LQWR D YDOXH RI ULVN RU GHWULPHQW $V D UHVXOW GLUHFW FRPSDULVRQV RI SHGLDWULF GRVHV ZLWK WKRVH RI DGXOWV QHHG WR EH WUHDWHG ZLWK FLUFXPVSHFWLRQ

PAGE 98

&+$37(5 ,0$*( 48$/,7< ,PDJH $FTXLVLWLRQ $ SKDQWRP PDGH RI DFU\OLF LQFRUSRUDWLQJ PP GLDPHWHU F\OLQGULFDO YHVVHOV ILOOHG ZLWK LRGLQDWHG FRQWUDVW ZDV XVHG WR LQYHVWLJDWH VLJQDO GHWHFWLRQ GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ '6$f 7KH GHWHFWLRQ RI VLJQDO IURP LRGLQDWHG YHVVHOV ZDV HYDOXDWHG E\ VWXG\LQJ WKH WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ GHWHFWHG LQ LPDJHV DFTXLUHG XQGHU VSHFLILHG SDUDPHWHUV XVLQJ GLJLWDO LPDJH VXEWUDFWLRQ 3KDQWRP 'HVFULSWLRQ )LJXUH LOOXVWUDWHV WKH SKDQWRP XVHG WR VLPXODWH PP GLDPHWHU YHVVHOV IRU WKH SXUSRVH RI HYDOXDWLQJ LPDJH TXDOLW\ LQ QHXURUDGLRORJ\ 7KH SKDQWRP FRQVLVWV RI VWDFNHG DFU\OLF EORFNV ZLWK GLPHQVLRQV RI FP [ FP [ FP $Q LQVHUW KROGHU P PDGH RI DFU\OLF ZLWK D WKLFNQHVV RI FP LV SRVLWLRQHG DW WKH FHQWHU RI WKH SKDQWRP WR DFFRPPRGDWH D YHVVHO LQVHUW $ EODQN DQG D YHVVHO LQVHUW PHDVXULQJ FP [ FP [ FP ZHUH PDGH RXW RI DFU\OLF 7KH EODQN LQVHUW ZDV XVHG WR DFTXLUH PDVN LPDJHV GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ 7KH YHVVHO LQVHUW KDG WKLUW\ F\OLQGULFDO YHVVHOV PP LQ GLDPHWHU DQG PP LQ OHQJWK GULOOHG DORQJ LWV PLGSODQH DW LQWHUYDOV RI PP DSDUW 7KH WRWDO SKDQWRP WKLFNQHVV ZDV FP RI DFU\OLF ZKLFK ZDV WDNHQ WR EH

PAGE 99

HTXLYDOHQW WR DERXW FP RI ZDWHU WDNLQJ WKH GHQVLW\ RI DFU\OLF WR EH JFP 6KOHLHQ f $FU\OLF 9HVVHO %ODQN ,QVHUW ,QVHUW )LJXUH 6FKHPDWLF GLDJUDP RI WKH DFU\OLF SKDQWRP ZLWK WKH YHVVHO DQG EODQN LQVHUWV XVHG WR VLPXODWH VPDOO YHVVHOV IRU WKH SXUSRVH RI HYDOXDWLQJ LPDJH TXDOLW\ LQ QHXURUDGLRORJ\

PAGE 100

7KH YHVVHOV RQ WKH DFU\OLF LQVHUW ZHUH ILOOHG ZLWK LRGLQDWHG FRQWUDVW SUHSDUHG IURP 8OWUDYLVWiV LRSURPLGH VROXWLRQ GLOXWHG LQ KHSDULQ VROXWLRQ 7KH LRGLQH FRQFHQWUDWLRQV LQ WKH FRQWUDVW PHGLXP XVHG WR ILOO HDFK YHVVHO UDQJHG IURP PJFF LRGLQH LQ FRQWUDVW VROXWLRQ WR DERXW PJFF DV JLYHQ LQ 7DEOH 7KH LRGLQH FRQFHQWUDWLRQ LQ HDFK YHVVHO ZDV PDGH WR EH b RI WKH SUHYLRXV FRQFHQWUDWLRQ $FTXLVLWLRQ RI 'LJLWDOO\ 6XEWUDFWHG ,PDJHV 7KH JHQHUDO H[SHULPHQWDO VHWXS VKRZQ LQ )LJXUH XVHG DQ [UD\ VRXUFH WR LPDJH UHFHSWRU GLVWDQFH 6,'f RI FP PD[LPXP 6,'f ZLWK WKH DFU\OLF SKDQWRP SRVLWLRQHG VR WKDW WKH JHRPHWULF PDJQLILFDWLRQ RI WKH YHVVHO LQVHUW ZDV $ [ LRQL]DWLRQ FKDPEHU RI DQ 0'+ &rrr H[SRVXUH PHWHU ZDV DWWDFKHG WR WKH EHDP HQWUDQFH VXUIDFH RI WKH SKDQWRP WR UHFRUG HQWUDQFH H[SRVXUH $ [ LRQL]DWLRQ FKDPEHU RI D VHFRQG 0'+ & H[SRVXUH PHWHU ZDV DWWDFKHG WR WKH VXUIDFH RI WKH LPDJH LQWHQVLILHU EHKLQG WKH JULG WR UHFRUG WKH LQSXW H[SRVXUH WR WKH LPDJH UHFHSWRU %RWK LRQL]DWLRQ FKDPEHUV ZHUH SRVLWLRQHG FDUHIXOO\ QRW WR RYHUODS ZLWK WKH YHVVHOV RI WKH YHVVHO LQVHUW DV VKRZQ LQ )LJXUH 7KH FP GLDPHWHU LPDJH LQWHQVLILHU PRGH ZDV XVHG IRU DOO LPDJH DFTXLVLWLRQV 7KH JHQHUDWRU ZDV VHW WR PDQXDO WHFKQLTXHV DOORZLQJ ILQH DGMXVWPHQWV RI WKH WXEH YROWDJH N9Sf WXEH FXUUHQW P$f DQG H[SRVXUH WLPH PVf 7KH RSWLFDO JDLQ ZDV HOHFWURQLFDOO\ DGMXVWHG E\ FKDQJLQJ WKH GLDPHWHU RI WKH LULV ORFDWHG EHWZHHQ WKH LPDJH LQWHQVLILHU RXWSXW SKRVSKRU DQG 79 FDPHUD OHQV WR SURGXFH D FRQVWDQW YLGHR OHYHO $OO GLJLWDO VXEWUDFWLRQ %HUOH[ /DERUDWRULHV :D\QH 1nrr 5DGFDO &RUSRUDWLRQ 0RQURYLD &$

PAGE 101

DQJLRJUDSK\ DFTXLVLWLRQV ZHUH SHUIRUPHG XVLQJ WKH PP IRFDO VSRW VL]H 7KH ZLQGRZ DQG OHYHO RI WKH GLVSOD\HG LPDJHV ZHUH DGMXVWHG WR RSWLPL]H VLJQDO GHWHFWLRQ GXULQJ HDFK '6$ LPDJH DFTXLVLWLRQ VR WKDW WKH UHVXOWLQJ LPDJHV ZRXOG QRW EH FRQWUDVW OLPLWHG 7DEOH ,RGLQH &RQWUDVW &RQFHQWUDWLRQ LQ (DFK 9HVVHO RI WKH 9HVVHO ,QVHUW ++ R D 6n IW Q R &n6MG ( X ;! e 9L L D 2% ] 9L 9L D Q IW D R 8 nr X 2n R D R X R D f Q R ++ 127( 7KH LRGLQH FRQFHQWUDWLRQ LQ HDFK YHVVHO ZDV PDGH WR EH b RI WKH SUHYLRXV FRQFHQWUDWLRQ WW 7KH [ LRQL]DWLRQ FKDPEHU KDV D JDLQ RI [O2 IRU EHWWHU UHVROXWLRQ

PAGE 102

)LJXUH ([SHULPHQWDO VHWXS IRU '6$ DFTXLVLWLRQV )LJXUH 3RVLWLRQ RI WKH WZR LRQL]DWLRQ FKDPEHUV UHODWLYH WR WKH YHVVHO LQVHUW OHIWf 6XEWUDFWHG LPDJH ULJKWf

PAGE 103

7KH WXEH YROWDJH ZDV DGMXVWHG RQ WKH JHQHUDWRU DQG PRQLWRUHG XVLQJ D 0DFKOHWW '\QDO\VHU ,,,P ZLWK D GLJLWDO GLVSOD\ 7KH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU ZDV VHW E\ DGMXVWLQJ WKH SURGXFW RI WXEH FXUUHQW DQG H[SRVXUH WLPH P$Vf 7KH LQSXW H[SRVXUH ZDV YHULILHG E\ WKH LRQL]DWLRQ FKDPEHU DWWDFKHG WR WKH VXUIDFH RI WKH LPDJH LQWHQVLILHU 7KH RSWLFDO JDLQ ZDV FRQWUROOHG E\ HOHFWURQLF DGMXVWPHQWV RI WKH LULV GLDPHWHU WR SURGXFH D FRQVWDQW YLGHR OHYHO GXULQJ DOO '6$ LPDJH DFTXLVLWLRQV 7KH HIIHFWV RI WXEH YROWDJH LPDJH LQWHQVLILHU LQSXW H[SRVXUH DQG JHRPHWULF REMHFW PDJQLILFDWLRQ ZHUH VWXGLHG E\ YDU\LQJ WKH DSSURSULDWH SDUDPHWHUV 7KH IROORZLQJ VHWXS ZDV XVHG IRU HDFK VHOHFWHG SDUDPHWHU 7XEH YROWDJH N9Sf %DVHOLQH WHFKQLTXHV ZHUH VHW DW D WXEH YROWDJH RI N9S ZKHUH WKH LQSXW H[SRVXUH ZDV DGMXVWHG WR S5IUDPH DQG WKH HOHFWURQLF LULV ZDV DGMXVWHG WR SURGXFH D PHDQ SL[HO YDOXH EHWZHHQ 7KHQ WKH WXEH YROWDJH ZDV YDULHG IURP N9S WR N9S DQG WKH LQSXW H[SRVXUH ZDV DGMXVWHG DSSURSULDWHO\ WR PDLQWDLQ DQ DYHUDJH SL[HO YDOXH EHWZHHQ DQG DV VKRZQ LQ 7DEOH 7R UHSHDW WKH H[SHULPHQW DW D KLJKHU LPDJH LQWHQVLILHU LQSXW H[SRVXUH WKH EDVHOLQH WHFKQLTXHV ZHUH UHVHW DW D WXEH YROWDJH RI N9S ZKHUH WKH LQSXW H[SRVXUH ZDV DGMXVWHG WR S5IUDPH DQG WKH HOHFWURQLF LULV ZDV DGMXVWHG WR SURGXFH D PHDQ SL[HO YDOXH EHWZHHQ DQG 7KHQ WKH WXEH YROWDJH ZDV YDULHG IURP N9S WR N9S DQG WKH LQSXW H[SRVXUH ZDV DGMXVWHG WR PDLQWDLQ WKH VDPH DYHUDJH SL[HO YDOXH DV VKRZQ LQ 7DEOH P *UHHQZLFK ,QVWUXPHQW &2 ,QF *UHHQZLFK &7

PAGE 104

7DEOH ,PDJLQJ 7HFKQLTXHV 'XULQJ 7XEH 9ROWDJH ([SHULPHQWV N9S S5IUDPH S5IUDPH P$V ,, ([SRV S5IUDPHf 9LGHR /HYHO P$V ,, ([SRV S5IUDPHf 9LGHR /HYHO ,PDJH LQWHQVLILHU LQSXW H[SRVXUH 7KH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU ZDV YDULHG IURP DERXW S5IUDPH WR S5IUDPH $ WXEH YROWDJH RI N9S ZDV XVHG GXULQJ DOO '6$ LPDJH DFTXLVLWLRQV 7KH RSWLFDO JDLQ ZDV DGMXVWHG DFFRUGLQJO\ WR PDLQWDLQ DQ DYHUDJH SL[HO YDOXH EHWZHHQ DQG IRU DOO VHOHFWHG LPDJH LQWHQVLILHU LQSXW H[SRVXUHV DV VXFK SL[HO YDOXHV FRUUHVSRQG WR FOLQLFDO SUDFWLFH *HRPHWULF REMHFW PDJQLILFDWLRQ 7KH SRVLWLRQ RI WKH SKDQWRP ZDV YDULHG WR DFKLHYH D UDQJH RI JHRPHWULF REMHFW PDJQLILFDWLRQ IURP iVi WR $ WXEH YROWDJH RI N9S ZDV XVHG GXULQJ DOO '6$ LPDJH DFTXLVLWLRQV 7KH LPDJH LQWHQVLILHU LQSXW H[SRVXUH ZDV ILUVW VHW WR S5IUDPH DQG WKH H[SHULPHQW ZDV

PAGE 105

UHSHDWHG DW S5IUDPH 7KH P$V ZDV DGMXVWHG DFFRUGLQJO\ WR SURGXFH D PHDQ SL[HO YDOXH EHWZHHQ DQG DV VKRZQ LQ 7DEOH 7DEOH ,PDJLQJ 7HFKQLTXHV 'XULQJ *HRPHWULF 2EMHFW 0DJQLILFDWLRQ ([SHULPHQWV 0DJ S5IUDPH S5IUDPH P$V ,, ([S S5IUDPHf 9LGHR /HYHO P$V ,, ([S S5IUDPHf 9LGHR /HYHO 'XULQJ DOO GLJLWDO VXEWUDFWLRQ DFTXLVLWLRQV D PDVN RI D VLQJOH IUDPH ZDV DFTXLUHG DW IUDPHVVHF DFTXLVLWLRQ UDWH XVLQJ WKH EODQN SKDQWRP LQVHUW 7KH EODQN LQVHUW ZDV WKHQ UHSODFHG E\ WKH YHVVHO LQVHUW DQG WZHQW\ DGGLWLRQDO IUDPHV ZHUH DFTXLUHG ZLWK QR IUDPH LQWHJUDWLRQ DW WKH VDPH DFTXLVLWLRQ UDWH RI IUDPHVVHF 7KH WHQWK IUDPH RI HDFK '6$ LPDJH DFTXLVLWLRQ ZDV DOZD\V XVHG IRU LPDJH HYDOXDWLRQ 7KH EHDP HQWUDQFH H[SRVXUHV WR WKH SKDQWRP DQG WR WKH LPDJH LQWHQVLILHU ZHUH UHFRUGHG GXULQJ HDFK '6$ DFTXLVLWLRQ VHTXHQFH P *HRPHWU\ OLPLWHG

PAGE 106

'RVLPHWU\ DQG ,PDJH 4XDOLW\ 'RVLPHWU\ 7KH H[SRVXUH WR WKH SKDQWRP ZDV PHDVXUHG DW WKH [UD\ EHDP HQWUDQFH SODQH XVLQJ D [ LRQL]DWLRQ FKDPEHU RI DQ 0'+ & 7KH PHDVXUHG H[SRVXUH LQFOXGHG EDFNVFDWWHU UDGLDWLRQ FRPLQJ IURP WKH DFU\OLF SKDQWRP 7KH HQWUDQFH H[SRVXUH SHU IUDPH ZDV REWDLQHG IURP WKH LQWHJUDO H[SRVXUH PHDVXUHG IRU HDFK LPDJH DFTXLVLWLRQ VHTXHQFH GLYLGHG E\ WKH QXPEHU RI DFTXLUHG IUDPHV $ FRQYHUVLRQ IDFWRU RI [Of &NJ 5f FRUUHVSRQGLQJ WR DQ DEVRUEHG GRVH RI P*\ IRU PXVFOH WLVVXH ZDV XVHG WR FRQYHUW WKH EHDP HQWUDQFH H[SRVXUH WR VXUIDFH GRVH DV ZDV VKRZQ LQ (TXDWLRQ 7KH HQHUJ\ LPSDUWHG ZDV FRPSXWHG XVLQJ (TV DQG IRU WKH DSSOLHG WXEH YROWDJH DQG FRUUHVSRQGLQJ KDOIYDOXH OD\HU 7KH ZDWHU HTXLYDOHQW SKDQWRP WKLFNQHVV QHHGHG WR GHWHUPLQH HQHUJ\ LPSDUWHG ZDV WDNHQ WR EH FP IRU DOO HQHUJ\ LPSDUWHG FRPSXWDWLRQV 7KH H[SRVXUH ZDV REWDLQHG IURP GLUHFW H[SRVXUH PHDVXUHPHQWV GXULQJ HDFK LPDJH DFTXLVLWLRQ VHTXHQFH DQG LQFOXGHG EDFNVFDWWHU 7KH EDFNVFDWWHU UDGLDWLRQ IUDFWLRQ ZDV PHDVXUHG IRU WKH FRUUHVSRQGLQJ SKDQWRP DQG DSSOLHG WXEH YROWDJHV DQG ZDV VXEWUDFWHG IURP WKH PHDVXUHG H[SRVXUHV WR REWDLQ WKH IUHHLQDLU H[SRVXUH 7KH H[SRVXUH DUHD DW WKH EHDP HQWUDQFH SODQH RI WKH SKDQWRP ZDV FRPSXWHG IURP JHRPHWU\ DVVXPLQJ WKDW WKH EHDP DUHD DW WKH LPDJH LQWHQVLILHU SODQH ZDV D FLUFOH ZLWK D GLDPHWHU RI FP 7KH GLDPHWHU DQG VKDSH RI WKH [UD\ EHDP DUHD ZHUH YHULILHG XVLQJ ILOP

PAGE 107

,PDJH 4XDOLW\ (YDOXDWLRQ )RU WKH SXUSRVH RI HYDOXDWLQJ VLJQDO GHWHFWLRQ RI VPDOO LRGLQDWHG YHVVHOV GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ WKH WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ ZDV GHWHUPLQHG IURP WKH VXEWUDFWHG LPDJHV RI WKH YHVVHO LQVHUW $Q LQGHSHQGHQW REVHUYHU ZDV XVHG IRU WKLV WDVN 7KH FULWHULD XVHG WR HYDOXDWH VLJQDO GHWHFWLRQ E\ WKH REVHUYHU DUH JLYHQ LQ 7DEOH ZKHUH D VFDOH RI ZDV GHILQHG WR FKDUDFWHUL]H WKH YLVLELOLW\ RI D JLYHQ LRGLQH FRQFHQWUDWLRQ 7KH REVHUYHU ZDV WUDLQHG RQ WKH FULWHULD RI VFRULQJ HDFK LRGLQH FRQFHQWUDWLRQ XVLQJ WHQ VXEWUDFWHG LPDJHV VLPLODU WR WKRVH DVNHG WR HYDOXDWH $OO WKH LPDJHV ZHUH WKHQ SUHVHQWHG LQ D UDQGRP RUGHU WR WKH WUDLQHG REVHUYHU )RU HDFK LPDJH WKH REVHUYHU LGHQWLILHG WKH ILUVW YHVVHO WKDW ZDV QRW YLVLEOH DQG VFRUHG WKH FRQVHFXWLYH YHVVHOV XS WR WKH ILUVW YHVVHO WKDW ZDV SHUIHFWO\ YLVLEOH 7KH ORZHVW FRQFHQWUDWLRQ WKDW ZDV DVVLJQHG D VFRUH RI WKUHH ZDV WDNHQ WR EH WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ RI HDFK LPDJH 7DEOH 6FRUH 'HVFULELQJ WKH 9LVLELOLW\ RI (DFK ,RGLQH &RQWUDVW &RQFHQWUDWLRQ 6FRUH &RPPHQW ,RGLQH FRQFHQWUDWLRQ ZDV QRW UHVROYHG ,RGLQH FRQFHQWUDWLRQ ZDV EDUHO\ UHVROYHG ,RGLQH FRQFHQWUDWLRQ ZDV UHVROYHG WR D FRQILGHQFH OHYHO RI b ,RGLQH FRQFHQWUDWLRQ ZDV ZHOO UHVROYHG ,RGLQH FRQFHQWUDWLRQ ZDV SHUIHFWO\ UHVROYHG

PAGE 108

3UHFLVLRQ RI 0HDVXUHPHQWV $ VHW RI WHFKQLTXH SDUDPHWHUV ZKLFK GHOLYHUHG DQ H[SRVXUH RI DSSUR[LPDWHO\ S5IUDPH WR WKH LQSXW SKRVSKRU DQG SURGXFHG D YLGHR OHYHO RI DW N9S ZDV XVHG WR DFTXLUH ILYH GLJLWDO VXEWUDFWLRQ DFTXLVLWLRQ VHTXHQFHV 7KHVH VHTXHQFHV ZHUH DFTXLUHG DW GLIIHUHQW VWDJHV RI WKH H[SHULPHQW 7KH ILYH LPDJH DFTXLVLWLRQ VHTXHQFHV ZHUH XVHG WR GHWHUPLQH WKH PHDVXUHPHQW SUHFLVLRQ RI WKH FRPSXWHG GRVLPHWULF SDUDPHWHUV DV ZHOO DV WKH SUHFLVLRQ RI WKH UHDGHU SHUIRUPDQFH ZKHQ HYDOXDWLQJ WKH WKUHVKROG FRQWUDVW FRQFHQWUDWLRQ RI WKH VXEWUDFWHG LPDJHV 7KH H[SRVXUH WR WKH SKDQWRP ZDV PHDVXUHG DW WKH [UD\ EHDP HQWUDQFH SODQH DQG WKH VXUIDFH GRVHV DQG HQHUJ\ LPSDUWHG ZHUH FRPSXWHG IRU HDFK DFTXLVLWLRQ 7KH DYHUDJH HQWUDQFH H[SRVXUH PHDVXUHG ZDV s P5IIDPH 7KH DYHUDJH YLGHR OHYHO ZDV s $Q DYHUDJH VXUIDFH GRVH RI s P*\IIDPH DQG DQ DYHUDJH HQHUJ\ LPSDUWHG RI s P-IIDPH ZHUH FRPSXWHG IURP WKH ILYH LPDJH DFTXLVLWLRQ VHTXHQFHV 7KH VXEWUDFWHG LPDJHV RI WKH ILYH DFTXLVLWLRQ VHTXHQFHV XVHG WR GHWHUPLQH WKH SUHFLVLRQ ZHUH SUHVHQWHG WR WKH REVHUYHU LQ D UDQGRP RUGHU PL[HG ZLWK RWKHU VLPLODU VXEWUDFWHG LPDJHV 7KH VWDQGDUG GHYLDWLRQ RI WKH ILYH UHDGLQJV ZDV WDNHQ WR EH WKH SUHFLVLRQ RI WKH WKUHVKROG FRQWUDVW FRQFHQWUDWLRQ DQG ZDV FRPSXWHG WR EH sb RI WKH WKUHVKROG FRQWUDVW FRQFHQWUDWLRQ s PJFFf

PAGE 109

5HVXOWV 7XEH 9ROWDJH 7DEOH S5IUDPH DW N9Sf DQG 7DEOH S5IIDPH DW N9Sf VXPPDUL]H WKH UHVXOWV RI VXUIDFH GRVH HQHUJ\ LPSDUWHG DQG WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ IRU YDU\LQJ WXEH YROWDJH XQGHU FRQVWDQW YLGHR OHYHO GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ )LJXUH VKRZV WKH VXUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI WXEH YROWDJH 7R ERWK ORZ DQG KLJK LQSXW H[SRVXUHV WKH VXUIDFH GRVH GHFUHDVHG E\ DERXW b DQG WKH HQHUJ\ LPSDUWHG GURSSHG E\ DOPRVW b DV WKH WXEH YROWDJH LQFUHDVHG IURP N9S WR N9S 7KH ODUJHVW GHFUHDVH LQ GRVHV RFFXUUHG EHWZHHQ N9S DQG N9S )LJXUH VKRZV WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI WXEH YROWDJH 7KH WKUHVKROG FRQFHQWUDWLRQ LQFUHDVHG IDVWHU ZLWK WXEH YROWDJH DW S5IUDPH FRPSDUHG WR WKH S5IIDPH $W S5IUDPH WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZDV SURSRUWLRQDO WR WKH N9S DQG LQFUHDVHG DERXW b ZKHQ WKH WXEH YROWDJH LQFUHDVHG IURP N9S WR N9S DQG DQRWKHU b IURP N9S WR N9S $W S5IUDPH WKH WKUHVKROG FRQFHQWUDWLRQ EHFDPH OHVV VHQVLWLYH WR WXEH YROWDJH FKDQJHV DQG ZDV SURSRUWLRQDO WR N9Sn $W WKLV LQSXW H[SRVXUH FKDQJHV WR WKH WXEH YROWDJH IURP N9S WR N9S LQFUHDVHG WKUHVKROG LRGLQH FRQFHQWUDWLRQ E\ DERXW b &KDQJHV WR WKH WXEH YROWDJH IURP N9S WR N9S LQFUHDVHG WKUHVKROG FRQWUDVW E\ DQRWKHU b

PAGE 110

7DEOH 7XEH 9ROWDJH 'HSHQGHQF\ DW S5IUDPH N9S ,, ,QSXW ([SRVXUH S5IUDPHf 9LGHR /HYHO PHDQ SL[HO YDOXHf 6XUIDFH 'RVH P*\IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ PJFFf 7DEOH 7XEH 9ROWDJH 'HSHQGHQF\ DW S5 IUDPH N9S ,, ,QSXW ([SRVXUH S5IUDPHf 9LGHR /HYHO PHDQ SL[HO YDOXHf 6XUIDFH 'RVH P*\IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ PJFFf

PAGE 111

6XUIDFH 'RVH P*\IUDPHf 6XUIDFH 'RVH P*\IUDPHf )LJXUH 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI WXEH YROWDJH (QHUJ\ ,PSDUWHG P-IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf

PAGE 112

),*85( 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI WXEH YROWDJH 7KH FLUFOHV FRUUHVSRQG WR WKH S5IUDPH DQG KDYH EHHQ ILWWHG WR N9S 7KH VTXDUHV FRUUHVSRQG WR WKH S5IUDPH DQG KDYH EHHQ ILWWHG WR N9Sn ,PDJH ,QWHQVLILHU ,QSXW ([SRVXUH 7DEOH VXPPDUL]HV WKH UHVXOWV RI VXUIDFH GRVH HQHUJ\ LPSDUWHG DQG WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ IRU YDU\LQJ LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU XQGHU FRQVWDQW YLGHR OHYHO DQG WXEH YROWDJH GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ )LJXUH VKRZV WKH VXUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH DW D WXEH YROWDJH RI N9S $W D JLYHQ WXEH YROWDJH ERWK SDUDPHWHUV DUH GLUHFWO\ SURSRUWLRQDO WR WKH LQSXW H[SRVXUH )RU WKH SDUWLFXODU '6$ SKDQWRP DQG JHRPHWU\ XVHG WKH VXUIDFH GRVH SHU S5IUDPH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU ZDV DERXW P*\ 7KH HQHUJ\ LPSDUWHG IRU WKH VDPH S5IUDPH LQSXW H[SRVXUH ZDV DERXW P-

PAGE 113

P L 2 2 R D D 'f R ,PDJH ,QWHQVLILHU ,QSXW ([SRVXUH S5IUDPHf ),*85( 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH DW N9S )LJXUH VKRZV WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH ,Q JHQHUDO DV WKH LQSXW H[SRVXUH LQFUHDVHV WKH WKUHVKROG FRQFHQWUDWLRQ GHFUHDVHV 7KH GDWD EHORZ S5IUDPH ZHUH ILWWHG VHSDUDWHO\ DQG VKRZHG WR EH SURSRUWLRQDO WR =;r ZKHUH LV WKH LQSXW H[SRVXUH 6XFK SURSRUWLRQDOLW\ LQGLFDWHV D EHKDYLRU YHU\ VLPLODU WR WKH WKHRUHWLFDO TXDQWXP OLPLWHG FXUYH SORWWHG DV 'n 7KH GDWD DERYH S5IUDPH VKRZHG SURSRUWLRQDOLW\ WR =; $W LQSXW H[SRVXUHV EHORZ S5IUDPH LQFUHDVLQJ LQSXW H[SRVXUH E\ D IDFWRU RI WZR LPSURYHG WKUHVKROG FRQFHQWUDWLRQ E\ b $Q LPSURYHPHQW RI RQO\ b FRXOG EH DFKLHYHG E\ GRXEOLQJ WKH LQSXW H[SRVXUH DIWHU S5IIDPH

PAGE 114

7DEOH ,PDJH ,QWHQVLILHU ,QSXW ([SRVXUH 'HSHQGHQF\ ,QSXW ([SRVXUH S5IUDPHf 0HDQ 9LGHR /HYHO SL[HO YDOXHf 6XUIDFH 'RVH P*\IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ PJFFf 127( $ FRQVWDQW WXEH YROWDJH RI N9S ZDV XVHG IRU DOO LPDJH LQWHQVLILHU LQSXW H[SRVXUHV *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 7DEOH S5IUDPHf DQG 7DEOH S5IUDPHf VXPPDUL]H WKH UHVXOWV RI VXUIDFH GRVH HQHUJ\ LPSDUWHG DQG WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ IRU YDU\LQJ JHRPHWULF PDJQLILFDWLRQ XQGHU FRQVWDQW YLGHR OHYHO DQG WXEH YROWDJH GXULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\

PAGE 115

)LJXUH 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH IRU D FRQVWDQW YLGHR OHYHO DW N9S )LJXUH VKRZV WKH VXUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI JHRPHWULF REMHFW PDJQLILFDWLRQ DW S5IUDPH DQG S5IUDPH 6XUIDFH GRVH LQFUHDVHG DV WKH VTXDUH RI LQFUHDVH LQ JHRPHWULF PDJQLILFDWLRQ GXH WR LWV LQYHUVH SURSRUWLRQDOLW\ WR WKH VTXDUH RI WKH VRXUFHWRVXUIDFH GLVWDQFH 2Q WKH RWKHU KDQG HQHUJ\ LPSDUWHG UHPDLQHG DOPRVW FRQVWDQW ZLWK JHRPHWULF PDJQLILFDWLRQ 7KH b LQFUHDVH LQ HQHUJ\ LPSDUWHG DFURVV WKH PDJQLILFDWLRQ UDQJH VKRZQ LQ )LJXUH ZDV FDXVHG E\ WKH LQFUHDVHG LQ LPDJLQJ WHFKQLTXHV WR PDLQWDLQ D FRQVWDQW YLGHR OHYHO 7DEOH f 7KH LQFUHDVH LQ UDGLRJUDSKLF WHFKQLTXHV ZDV FDXVHG E\ WKH UHGXFHG VFDWWHU UHDFKLQJ WKH LPDJH LQWHQVLILHU E\ PRYLQJ WKH SKDQWRP IDUWKHU DZD\ IURP WKH LPDJH LQWHQVLILHU WR LQFUHDVH PDJQLILFDWLRQ

PAGE 116

7DEOH *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 'HSHQGHQF\ DW S5IUDPH *HRP 2EMHFW 0DJ ,, ,QSXW ([SRVXUH S5IUDPHf 9LGHR /HYHO PHDQ SL[HO YDOXHf 6XUIDFH 'RVH P*\IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ PJFFf 7DEOH *HRPHWULF 2EMHFW 0DJQLILFDWLRQ 'HSHQGHQF\ DW S5IUDPH *HRP 2EMHFW 0DJ ,, ,QSXW ([SRVXUH S5IUDPHf 9LGHR /HYHO PHDQ SL[HO YDOXHf 6XUIDFH 'RVH P*\IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ PJFFf

PAGE 117

6XUIDFH 'RVH P*\IUDPHf 6XUIDFH 'RVH P*\IUDPHf )LJXUH 6XUIDFH GRVH DQG HQHUJ\ LPSDUWHG DV D IXQFWLRQ RI LPDJH LQWHQVLILHU LQSXW H[SRVXUH DW N9S (QHUJ\ ,PSDUWHG P-IUDPHf (QHUJ\ ,PSDUWHG P-IUDPHf

PAGE 118

)LJXUH VKRZV WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI JHRPHWULF REMHFW PDJQLILFDWLRQ DW S5IUDPH DQG S5IUDPH 7KH GLIIHUHQFH LQ WKUHVKROG FRQFHQWUDWLRQ EHWZHHQ WKH S5IUDPH DQG S5IUDPH LQSXW H[SRVXUHV ZDV DERXW b DFURVV WKH PDJQLILFDWLRQ UDQJH VKRZQ LQ )LJXUH 7KH UHODWLRQVKLS EHWZHHQ PDJQLILFDWLRQ DQG WKUHVKROG LRGLQH FRQWUDVW ZDV DSSUR[LPDWHO\ OLQHDU $Q LQFUHDVH E\ D IDFWRU RI WZR WR JHRPHWULF PDJQLILFDWLRQ GHFUHDVHG WKUHVKROG FRQFHQWUDWLRQ E\ KDOI )LJXUH 7KUHVKROG LRGLQH FRQFHQWUDWLRQ DV D IXQFWLRQ RI JHRPHWULF REMHFW PDJQLILFDWLRQ DW N9S

PAGE 119

'LVFXVVLRQ 3DWLHQW 6XUIDFH 'RVH 7KH HIIHFWV RI WXEH YROWDJH LQSXW H[SRVXUH DQG JHRPHWULF PDJQLILFDWLRQ RQ VXUIDFH GRVH ZHUH GHPRQVWUDWHG LQ )LJXUH )LJXUH DQG )LJXUH UHVSHFWLYHO\ $ FRPSDULVRQ RI WKH FKDQJHV LQWURGXFHG WR WKH VXUIDFH GRVH E\ YDU\LQJ WKHVH SDUDPHWHUV WR DFKLHYH D JLYHQ FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ LV JLYHQ LQ 7DEOH DQG 7DEOH 7KH FKDQJHV LQ VXUIDFH GRVH OLVWHG LQ 7DEOH KDYH EHHQ FRPSXWHG XVLQJ N9S S5IUDPH DQG [O PDJQLILFDWLRQ DV WKH VWDUWLQJ SRLQW 7KH FKDQJHV LQ VXUIDFH GRVH JLYHQ LQ 7DEOH KDYH EHHQ FRPSXWHG XVLQJ N9S S5IUDPH DQG [O PDJQLILFDWLRQ DV WKH VWDUWLQJ SRLQW )LJXUH SORWV WKH FKDQJHV LQ VXUIDFH GRVH LQWURGXFHG E\ WKH WXEH YROWDJH LQSXW H[SRVXUH DQG JHRPHWULF PDJQLILFDWLRQ YHUVXV WKH FRUUHVSRQGLQJ FKDQJHV LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ ,Q JHQHUDO WKH VPDOOHVW LQFUHDVH LQ VXUIDFH GRVH IRU WKH VDPH GHFUHDVH LQ WKUHVKROG FRQFHQWUDWLRQ FDQ EH DFKLHYHG E\ ORZHULQJ WKH WXEH YROWDJH $W S5IUDPH RI LQSXW H[SRVXUH ZKHUH TXDQWXP PRWWOH LV WKH SULPDU\ VRXUFH RI QRLVH )LJXUH f PDJQLILFDWLRQ EHFRPHV WKH PRVW LQHIILFLHQW SDUDPHWHU WR LPSURYH VLJQDO GHWHFWLRQ )RU DFKLHYLQJ WKH VDPH LPSURYHPHQW LQ WKUHVKROG FRQFHQWUDWLRQ PDJQLILFDWLRQ LQFUHDVHG VXUIDFH GRVH WZLFH DV PXFK FRPSDUHG WR LQSXW H[SRVXUH DQG WKUHH WR IRXU WLPHV FRPSDUHG WR WXEH YROWDJH ,Q WKH FDVH RI S5IUDPH LQSXW H[SRVXUH KRZHYHU ZKHUH TXDQWXP PRWWOH GRHV QRW DSSHDU WR EH WKH SULPDU\ VRXUFH RI QRLVH LQSXW H[SRVXUH EHFRPHV WKH PRVW LQHIILFLHQW SDUDPHWHU WR LPSURYH VLJQDO GHWHFWLRQ

PAGE 120

7DEOH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH 6XUIDFH 'RVH IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW S5IUDPH &KDQJH LQ 7KUHVKROG &RQFHQWUDWLRQ &KDQJH LQ 6' ZLWK N9S &KDQJH LQ 6' ZLWK ,, ([SRVXUH &KDQJH LQ 6' ZLWK 0DJQLILFDWLRQ b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf 127( 9DOXHV LQ SDUHQWKHVLV LQGLFDWH WKH WKUHVKROG FRQFHQWUDWLRQ DQG LPDJLQJ WHFKQLTXHV UHTXLUHG WR DFKLHYH WKH TXRWHG FKDQJH LQ WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ 7DEOH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH 6XUIDFH 'RVH IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW S5IUDPH &KDQJH LQ &KDQJH LQ 6' ZLWK &KDQJH LQ 6' ZLWK &KDQJH LQ 6' ZLWK 7KUHVKROG &RQFHQWUDWLRQ N9S ,, ([SRVXUH 0DJQLILFDWLRQ b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5-IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [f 127( 9DOXHV LQ SDUHQWKHVLV LQGLFDWH WKH WKUHVKROG FRQFHQWUDWLRQ DQG LPDJLQJ WHFKQLTXHV UHTXLUHG WR DFKLHYH WKH TXRWHG FKDQJH LQ WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ

PAGE 121

&KDQJH LQ 6XUIDFH 'RVH &KDQJH LQ 6XUIDFH 'RVH ),*85( &KDQJH LQ VXUIDFH GRVH YHUVXV FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZLWK WXEH YROWDJH LQSXW H[SRVXUH DQG PDJQLILFDWLRQ

PAGE 122

(QHUJ\ ,PSDUWHG 7KH HIIHFWV RI WXEH YROWDJH LQSXW H[SRVXUH DQG JHRPHWULF PDJQLILFDWLRQ RQ HQHUJ\ LPSDUWHG ZHUH GHPRQVWUDWHG LQ )LJXUH )LJXUH DQG )LJXUH UHVSHFWLYHO\ $ FRPSDULVRQ RI WKH FKDQJHV LQWURGXFHG WR WKH HQHUJ\ LPSDUWHG E\ YDU\LQJ WKHVH SDUDPHWHUV WR DFKLHYH D JLYHQ FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ LV JLYHQ LQ 7DEOH DQG 7DEOH 7KH FKDQJHV OLVWHG LQ 7DEOH KDYH EHHQ FRPSXWHG XVLQJ N9S S5IUDPH DQG [O PDJQLILFDWLRQ DV WKH VWDUWLQJ SRLQW 7KH FKDQJHV LQ 7DEOH KDYH EHHQ FRPSXWHG XVLQJ N9S S5IUDPH DQG [O PDJQLILFDWLRQ DV WKH VWDUWLQJ SRLQW )LJXUH VKRZV WKH FKDQJHV LQ HQHUJ\ LPSDUWHG LQWURGXFHG E\ WKH WXEH YROWDJH LQSXW H[SRVXUH DQG JHRPHWULF PDJQLILFDWLRQ YHUVXV WKH FRUUHVSRQGLQJ FKDQJHV LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ 8QOLNH WKH FDVH RI VXUIDFH GRVH JHRPHWULF PDJQLILFDWLRQ KDV D YHU\ OLPLWHG HIIHFW RQ HQHUJ\ LPSDUWHG DQG D OLQHDU HIIHFW RQ WKUHVKROG FRQWUDVW FRQFHQWUDWLRQ )LJXUH f 7KXV JHRPHWULF PDJQLILFDWLRQ EHFRPHV WKH SDUDPHWHU RI FKRLFH WR LPSURYH VLJQDO GHWHFWLRQ ZLWK WKH OHDVW LPSDFW RQ HQHUJ\ LPSDUWHG 7KH PRVW LQHIILFLHQW SDUDPHWHU LQ WHUPV RI HQHUJ\ LPSDUWHG WR LPSURYH VLJQDO GHWHFWLRQ LV WKH LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU :KHQ TXDQWXP PRWWOH LV WKH SULPDU\ QRLVH VRXUFH RQ DQ LPDJH LQSXW H[SRVXUH LQFUHDVHV HQHUJ\ LPSDUWHG WZR WR WKUHH WLPHV PRUH WKDQ WXEH YROWDJH GRHV IRU WKH VDPH WKUHVKROG FRQWUDVW FKDQJHV $V TXDQWXP PRWWOH EHFRPHV OHVV LPSRUWDQW WR LPDJH QRLVH LQSXW H[SRVXUH LQFUHDVHV HQHUJ\ LPSDUWHG GUDPDWLFDOO\ ZLWKRXW D VLJQLILFDQW LQFUHDVH LQ LPDJH TXDOLW\

PAGE 123

,OO 7DEOH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH (QHUJ\ ,PSDUWHG IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW /RZ ,QSXW ([SRVXUHV &KDQJH LQ &KDQJH LQ (O ZLWK &KDQJH LQ (O ZLWK &KDQJH LQ (O ZLWK 7KUHVKROG &RQFHQWUDWLRQ N9S ,, ([SRVXUH 0DJQLILFDWLRQ b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf MX5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [f 127( 9DOXHV LQ SDUHQWKHVLV LQGLFDWH WKH WKUHVKROG FRQFHQWUDWLRQ DQG LPDJLQJ WHFKQLTXHV UHTXLUHG WR DFKLHYH WKH TXRWHG FKDQJH LQ WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ 7DEOH &RPSDULVRQ RI WKH (IIHFWV RI 7XEH 9ROWDJH ,QSXW ([SRVXUH DQG *HRPHWULF 0DJQLILFDWLRQ RQ WKH (QHUJ\ ,PSDUWHG IRU D 5DQJH RI &KDQJHV LQ 7KUHVKROG ,RGLQH &RQFHQWUDWLRQ DW +LJK ,QSXW ([SRVXUHV &KDQJH LQ &KDQJH LQ (O ZLWK &KDQJH LQ (O ZLWK &KDQJH LQ (O ZLWK 7KUHVKROG &RQFHQWUDWLRQ N9S ,, ([SRVXUH 0DJQLILFDWLRQ b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf cM5IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [Of b b b b PJFFf N9Sf S5-IUDPHf [Of b b b b PJFFf N9Sf S5IUDPHf [f 127( 9DOXHV LQ SDUHQWKHVLV LQGLFDWH WKH WKUHVKROG FRQFHQWUDWLRQ DQG LPDJLQJ WHFKQLTXHV UHTXLUHG WR DFKLHYH WKH TXRWHG FKDQJH LQ WKUHVKROG LRGLQH FRQWUDVW FRQFHQWUDWLRQ

PAGE 124

&KDQJH LQ 6XUIDFH 'RVH &KDQJH LQ (QHUJ\ ,PSDUWHG &KDQJH LQ 7KUHVKROG &RQWUDVW )LJXUH &KDQJH LQ HQHUJ\ LPSDUWHG YHUVXV FKDQJH LQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZLWK WXEH YROWDJH LQSXW H[SRVXUH DQG PDJQLILFDWLRQ

PAGE 125

,PDJH 4XDOLW\ )LJXUH VKRZHG WKDW WXEH YROWDJH KDV D VLJQLILFDQW HIIHFW RQ WKH WKUHVKROG LRGLQH FRQFHQWUDWLRQ ,Q ERWK cD5IUDPH DQG S5IUDPH LPDJH LQWHQVLILHU LQSXW H[SRVXUHV WKH WXEH YROWDJH GHPRQVWUDWHG D JRRG SRZHU UHODWLRQVKLS RI N9S ZLWK WKUHVKROG FRQFHQWUDWLRQ ZKHUH Q 7KH KLJK DEVRUSWLRQ RI LRGLQH DW ORZ WXEH YROWDJHV GXH WR LWV NH9 .HGJH LV WKH SULPDU\ IDFWRU RI GHFUHDVHG WKUHVKROG FRQWUDVW DW ORZ WXEH YROWDJHV $V WKH WXEH YROWDJH GHFUHDVHV WKH PHDQ HQHUJ\ RI WKH [UD\ EHDP GHFUHDVHV IURP DERXW NH9 DW N9S +9/ PP $Of WR NH9 DW N9S +9/ PP $Of 7KXV D N9S [UD\ EHDP ZLWK D PHDQ HQHUJ\ MXVW DERYH WKH HGJH RI LRGLQH LV H[SHFWHG WR SURGXFH WKH KLJKHVW LPDJH FRQWUDVW $ VHFRQG IDFWRU DIIHFWLQJ FRQWUDVW LV VFDWWHU UDGLDWLRQ 6FDWWHU UDGLDWLRQ LQFUHDVHV ZLWK LQFUHDVHG WXEH YROWDJH DQG GHJUDGHV FRQWUDVW DQG WKH VLJQDOWRQRLVH UDWLR RI WKH LPDJHV ,Q )LJXUH ZKHUH WKH WKUHVKROG FRQWUDVW LV JLYHQ DV D IXQFWLRQ RI LQSXW H[SRVXUH WR WKH LPDJH LQWHQVLILHU WZR UHJLRQV FDQ EH GLVWLQJXLVKHG 7KH ILUVW UHJLRQ H[WHQGV WR DQ LQSXW H[SRVXUH RI DERXW S5IUDPH DQG FDQ EH FKDUDFWHUL]HG DV TXDQWXP QRLVH OLPLWHG =fnrf ZKHUH TXDQWXP PRWWOH LV WKH SULPDU\ VRXUFH RI LPDJH QRLVH $Q\ LQFUHDVH WR LQSXW H[SRVXUH LQ WKLV UHJLRQ ZLOO LPSURYH LPDJH TXDOLW\ E\ GHFUHDVLQJ TXDQWXP PRWWOH %H\RQG WKH LQSXW H[SRVXUH RI S5IUDPH WKH UHODWLRQVKLS EHWZHHQ WKUHVKROG LRGLQH FRQFHQWUDWLRQ DQG LQSXW H[SRVXUH GHYLDWHV IURP EHLQJ TXDQWXP OLPLWHG WR 'n $W WKLV UHJLRQ RI LQSXW H[SRVXUHV RWKHU QRLVH IDFWRUV LH HOHFWURQLF QRLVH WLPH MLWWHU DQG VWUXFWXUH QRLVHf EHFRPH HTXDOO\ LPSRUWDQW WR TXDQWXP PRWWOH 6XFK IDFWRUV DUH QRW DIIHFWHG E\ DQ\ LQFUHDVH WR LQSXW H[SRVXUH $GGLWLRQDO LQFUHDVHV WR LQSXW H[SRVXUH EH\RQG S5IUDPH LV QRW DV HIIHFWLYH LQ LPSURYLQJ LPDJH TXDOLW\ 7KXV LW LV VHQVLEOH

PAGE 126

WR VHOHFW DQ LQSXW H[SRVXUH RI DERXW S5IUDPH IRU DOO LPDJH DFTXLVLWLRQV LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ )LJXUH VKRZV WKDW JHRPHWULF REMHFW PDJQLILFDWLRQ KDV D OLQHDU HIIHFW RQ WKUHVKROG FRQFHQWUDWLRQ ,Q ERWK S5IUDPH DQG S5IIDPH LQSXW H[SRVXUHV GRXEOLQJ JHRPHWULF PDJQLILFDWLRQ GHFUHDVHG WKUHVKROG FRQFHQWUDWLRQ E\ D IDFWRU RI WZR 7KH PDMRU IDFWRU WKDW LPSURYHV FRQWUDVW ZLWK JHRPHWULF PDJQLILFDWLRQ LV WKH LQFUHDVH LQ WKH SURMHFWHG DUHD RI WKH LPDJHG REMHFW LH LRGLQDWHG YHVVHOf 7KH LQFUHDVH RI VLJQDO DUHD LPSURYHV WKH VLJQDOWRQRLVH UDWLR RI WKH LPDJHG REMHFW DQG LPSURYHV VLJQDO GHWHFWLRQ $QRWKHU IDFWRU WKDW LPSURYHV WKUHVKROG LRGLQH FRQFHQWUDWLRQ ZLWK LQFUHDVHG PDJQLILFDWLRQ LV WKH LQFUHDVHG DLUJDS $LUJDSV DFW DV VFDWWHU UHPRYDO PHGLD $V WKH DLUJDS EHWZHHQ WKH SKDQWRP DQG WKH LPDJH UHFHSWRU LQFUHDVHV ZLWK PDJQLILFDWLRQ OHVV VFDWWHU UDGLDWLRQ UHDFKHV WKH LPDJH UHFHSWRU DQG FRQWUDVW LV LPSURYHG 7KH ZLGH YDULDELOLW\ RI UHDGLQJV DW ORZ LQSXW H[SRVXUHV PD\ EH H[SODLQHG E\ WKH VLJQLILFDQW LPDJH QRLVH RQ WKRVH LPDJHV ZKLFK PDNHV LPDJH TXDOLW\ HYDOXDWLRQ GLIILFXOW 3RVVLEOH YDULDWLRQ RI GLVWDQFH EHWZHHQ WKH LPDJH DQG WKH REVHUYHU ZLOO DOVR LQWURGXFH VRPH YDULDELOLW\ GXULQJ LPDJH HYDOXDWLRQ $V WKH GLVWDQFH RI WKH REVHUYHU IURP WKH LPDJH YDULHV WKH SHUFHLYHG GLDPHWHU RI WKH YHVVHO FKDQJHV DIIHFWLQJ VLJQDO GHWHFWLRQ %XUJHVV DQG +XPSKUH\ f &RQFOXVLRQV 5HGXFLQJ WKH [UD\ WXEH YROWDJH RIIHUHG WKH ODUJHVW LPSURYHPHQW LQ LPDJH TXDOLW\ IRU D JLYHQ LQFUHDVH LQ SDWLHQW GRVH ,QFUHDVLQJ WKH LPDJH LQWHQVLILHU LQSXW H[SRVXUH EH\RQG S5IUDPH SURYLGHG YHU\ OLWWOH LPSURYHPHQW LQ LPDJH TXDOLW\ 7KLV LPDJH

PAGE 127

LQWHQVLILHU LQSXW H[SRVXUH OHYHO VKRXOG QRW EH H[FHHGHG LQ LQWHUYHQWLRQDO QHXURUDGLRORJLF LPDJLQJ XQOHVV D YDOLG MXVWLILFDWLRQ LV H[SOLFLWO\ JLYHQ $ OLQHDU UHODWLRQVKLS ZDV REVHUYHG EHWZHHQ PDJQLILFDWLRQ DQG WKUHVKROG FRQFHQWUDWLRQ ZKLFK RIIHUV VLJQLILFDQW SDWLHQW EHQHILWV ZKHQ VXUIDFH GRVHV DUH QRW H[SHFWHG WR H[FHHG WKH WKUHVKROG GRVHV IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV ,Q FDVHV ZKHQ VWRFKDVWLF HIIHFWV PD\ EH VLJQLILFDQW LH SHGLDWULF FDVHVf DQG GHWHUPLQLVWLF HIIHFWV FDQ EH WROHUDWHG D VLJQLILFDQW LQFUHDVH LQ LPDJH TXDOLW\ FDQ EH DFKLHYHG E\ LQFUHDVLQJ JHRPHWULF PDJQLILFDWLRQ ZLWKRXW LQWURGXFLQJ DQ\ VLJQLILFDQW FKDQJHV WR HQHUJ\ LPSDUWHG 'XULQJ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ WKH DPRXQW RI LRGLQH FRQWUDVW WKDW FDQ EH WROHUDWHG E\ D SDWLHQW PD\ DOVR EH RI FRQFHUQ 'XH WR FRQWLQXRXV GLOXWLRQ RI WKH LRGLQH FRQWUDVW LQ WKH EORRG VWUHDP WKH LRGLQH FRQFHQWUDWLRQ LQ WKH LPDJHG EORRG YHVVHO GHFUHDVHV VLJQLILFDQWO\ ZLWK GLVWDQFH $ KLJKHU LRGLQH FRQFHQWUDWLRQ ZRXOG EH UHTXLUHG WR LPDJH GLVWDQW YHVVHOV HVSHFLDOO\ GXULQJ WKH FDSLOODU\ SKDVH ,QVWHDG RI LQFUHDVLQJ WKH LRGLQH FRQFHQWUDWLRQ LQ VXFK FDVHV XVH RI ORZHU WXEH YROWDJHV ZLOO GHFUHDVH WKH WKUHVKROG FRQFHQWUDWLRQ VLJQLILFDQWO\ WR DOORZ XVH RI OHVV RI DQ DPRXQW RI LRGLQH &KDQJLQJ WKH WXEH YROWDJH IURP N9S WR N9S IRU H[DPSOH ZLOO GHFUHDVH WKH WKUHVKROG FRQFHQWUDWLRQ E\ PRUH WKDQ b ZKLFK WUDQVODWHV WR b OHVV LRGLQH XVHG RQ WKH SDWLHQW 6XFK D GHFUHDVH LQ WXEH YROWDJH KRZHYHU UHVXOWV LQ DERXW b LQFUHDVH LQ VXUIDFH GRVH DQG b LQFUHDVH LQ HQHUJ\ LPSDUWHG

PAGE 128

&+$37(5 &21&/86,216 3DWLHQW 'RVLPHWU\ 6XUIDFH 'RVHV 3DWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV UHFHLYH VLJQLILFDQW UDGLDWLRQ GRVHV GXH WR WKH FRPSOH[LW\ RI VXFK SURFHGXUHV DQG WKH DPRXQW RI GLDJQRVWLF LQIRUPDWLRQ UHTXLUHG WR HYDOXDWH QHXURUDGLRORJLF DEQRUPDOLWLHV 7KH PHGLDQ YDOXHV IRU WKH UHFRUGHG VXUIDFH GRVHV WR WKH SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZHUH *\ LQ WKH IURQWDO LPDJLQJ SODQH RFFLSLWDO UHJLRQ RI WKH KHDGf DQG *\ LQ WKH ODWHUDO LPDJLQJ SODQH QH[W WR WHPSRUDO ERQHf 7KH PD[LPXP VXUIDFH GRVH UHFHLYHG E\ D SDWLHQW ZDV RI WKH RUGHU RI *\ LQ HLWKHU LPDJLQJ SODQH 7KH PDMRULW\ RI WKH SDWLHQWV UHFHLYHG VXUIDFH GRVHV EHWZHHQ *\ DQG *\ 7KLUW\WKUHH SHUFHQW RI WKH SDWLHQWV H[FHHGHG WKH GRVH WDNHQ WR EH WKH WKUHVKROG VXUIDFH GRVH *\f IRU GHWHUPLQLVWLF LQMXULHV RI WKH VNLQ 0RVW RI WKH VXUIDFH GRVH ZDV FRQWULEXWHG E\ UDGLRJUDSKLF DFTXLVLWLRQV ZKLFK DFFRXQWHG IRU WKH b RI WKH WRWDO VXUIDFH GRVH LQ WKH IURQWDO SODQH DQG b RI WKH WRWDO GRVH LQ WKH ODWHUDO SODQH )OXRURVFRS\ FRQWULEXWHG RQO\ b DQG b RI WKH WRWDO VXUIDFH GRVH LQ WKH IURQWDO DQG ODWHUDO SODQHV UHVSHFWLYHO\ $OWKRXJK DERXW b RI WKH SDWLHQWV LQ WKLV VWXG\ PD\ KDYH H[FHHGHG WKH QRPLQDO WKUHVKROG VXUIDFH GRVH WR WKH VNLQ IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV WKHUH ZHUH QR

PAGE 129

FDVHV RI HSLODWLRQ RU VNLQ HU\WKHPD REVHUYHG DPRQJ WKH SDWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV :KHQ GHWHUPLQLQJ WKH OLNHOLKRRG RI GHWHUPLQLVWLF HIIHFWV WR SDWLHQWV XQGHUJRLQJ QHXURUDGLRORJLF H[DPLQDWLRQV LW VKRXOG EH QRWHG WKDW WKH UDGLDWLRQ GRVHV DUH GHOLYHUHG RYHU DQ H[WHQGHG WLPH SHULRG ZKLFK PD\ EH DV ORQJ DV VHYHUDO KRXUV DQG WKH UDGLDWLRQ ILHOG PD\ YDU\ RYHU WKH SDWLHQW )RU DFXWH UDGLDWLRQ H[SRVXUHV REVHUYDEOH HIIHFWV VXFK DV WRWDO HSLODWLRQ DUH PRUH OLNHO\ WR RFFXU DW GRVHV PXFK KLJKHU WKDQ *\ ZKLFK LV FRQVLGHUHG WR EH WKH WKUHVKROG IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF HIIHFWV (IIHFWLYH 'RVHV 3DWLHQWV ZKR XQGHUZHQW LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV UHFHLYHG W\SLFDOO\ EHWZHHQ P6Y DQG P6Y RI HIIHFWLYH GRVH 7KH GLVWULEXWLRQ RI HIIHFWLYH GRVHV WR WKHVH SDWLHQWV KDG D PHGLDQ YDOXH RI P6Y ZLWK D PD[LPXP HIIHFWLYH GRVH RI P6Y 3DWLHQW ZKR XQGHUZHQW GLDJQRVWLF SURFHGXUHV KDG D PHGLDQ YDOXH RI P6Y WRWDO HIIHFWLYH GRVH 7KH PHGLDQ YDOXH RI WKH WRWDO HIIHFWLYH GRVH WR SDWLHQWV ZKR XQGHUZHQW WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZDV P6Y 7HQ RI WKH VHYHQWHHQ DGXOW HPEROL]DWLRQ SURFHGXUHV H[FHHGHG WKH P6Y YDOXH RI WRWDO HIIHFWLYH GRVH 7ZR WKLUGV RI WKH HIIHFWLYH GRVH ZDV FRQWULEXWHG E\ LPDJLQJ LQ WKH IURQWDO LPDJLQJ SODQH $V ZDV WKH FDVH IRU VXUIDFH GRVH UDGLRJUDSKLF DFTXLVLWLRQV DFFRXQWHG IRU WKH ODUJHVW IUDFWLRQ RI WKH HIIHFWLYH GRVH WR DGXOW SDWLHQWV 2Q DYHUDJH DERXW b RI WKH HIIHFWLYH GRVH FRUUHVSRQGHG WR UDGLRJUDSKLF DFTXLVLWLRQV 8VH RI IOXRURVFRS\ DFFRXQWHG IRU RQO\ RQH WKLUG RI WKH WRWDO HIIHFWLYH GRVH UHFHLYHG E\ SDWLHQWV GXULQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV

PAGE 130

8VLQJ WKH UHFHQW ULVN FRHIILFLHQW RI [ 2n FDQFHUV SHU P6Y RI HIIHFWLYH GRVH ,&53 f WKH HIIHFWLYH GRVHV FRPSXWHG LQ WKLV VWXG\ FDQ EH FRQYHUWHG WR D VWRFKDVWLF GHWULPHQW 7KH PHGLDQ HIIHFWLYH GRVH RI P6Y WR DGXOW SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ZRXOG UHVXOW LQ RQH IDWDO FDQFHU IRU HYHU\ VXFK SURFHGXUHV $Q HIIHFWLYH GRVH RI P6Y WR DGXOWV XQGHUJRLQJ WKHUDSHXWLF HPEROL]DWLRQ SURFHGXUHV ZRXOG UHVXOW LQ RQH IDWDO FDQFHU IRU HYHU\ HPEROL]DWLRQV ,Q JHQHUDO WKHVH VWRFKDVWLF ULVNV DUH ORZ FRPSDUHG WR WKH OLIH VDYLQJ EHQHILWV WKH SDWLHQWV UHFHLYH E\ XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV ,Q WKH FDVH RI SHGLDWULF SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV WKH HIIHFWLYH GRVH ZDV IRXQG WR KDYH D OLQHDU FRUUHODWLRQ WR SDWLHQW PDVV DJHf 7KLV FRUUHODWLRQ UHVXOWHG WR KLJKHU HIIHFWLYH GRVHV WR SHGLDWULF SDWLHQWV FRPSDUHG WR WKH FRUUHVSRQGLQJ DGXOW HIIHFWLYH GRVHV 7KH PHGLDQ HIIHFWLYH GRVH WR SHGLDWULF SDWLHQWV ZDV P6Y 3HGLDWULF SDWLHQWV XQGHUJRLQJ HPEROL]DWLRQ SURFHGXUHV UHFHLYHG D PHGLDQ HIIHFWLYH GRVH RI P6Y $Q\ UHVXOWDQW VWRFKDVWLF GHWULPHQW GHSHQGV RQ WKH DJH RI WKH H[SRVHG LQGLYLGXDO 7KH VWRFKDVWLF UDGLDWLRQ ULVNV RI FDUFLQRJHQHVLV DQG JHQHWLF HIIHFWV DUH JHQHUDOO\ JUHDWHU IRU FKLOGUHQ WKDQ IRU DGXOWV WR DW OHDVW D IDFWRU RI WZR ,&35 1&53 f 7KHVH IDFWRUV ZRXOG QHHG WR EH WDNHQ LQWR DFFRXQW ZKHQ FRQYHUWLQJ DQ\ SHGLDWULF HIIHFWLYH GRVHV LQWR D YDOXH RI ULVN RU GHWULPHQW ,Q JHQHUDO SHGLDWULF SDWLHQWV UHFHLYH DSSUR[LPDWHO\ WKH VDPH HIIHFWLYH GRVHV DV DGXOW SDWLHQWV GR IURP LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV 7KH IDFW WKDW VWRFKDVWLF ULVNV DVVRFLDWHG ZLWK FKLOGUHQ DUH KLJKHU WKDQ WKH ULVNV DVVRFLDWHG ZLWK DGXOWV UHTXLUHV WKDW ZH VKRXOG IRFXV RXU DWWHQWLRQ WR UHGXFLQJ GRVHV WR SHGLDWULF SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV

PAGE 131

,PDJH 4XDOLW\ 7KH WXEH YROWDJH KDG WKH VWURQJHVW HIIHFW RQ LPDJH TXDOLW\ IRU WKH VDPH LQFUHDVH RI SDWLHQW GRVH DPRQJ WKH WKUHH WHFKQLTXH SDUDPHWHUV VWXGLHGf§WXEH YROWDJH LPDJH LQWHQVLILHU LQSXW H[SRVXUH DQG JHRPHWULF REMHFW PDJQLILFDWLRQ 7KH SKRWRHOHFWULF HIIHFW RI LRGLQH DW ORZ WXEH YROWDJHV LPSURYHV FRQWUDVW GHWHFWDELOLW\ DQG WKXV VLJQDO GHWHFWLRQ DV WXEH YROWDJH GHFUHDVHV 7KLV VWURQJ FRUUHODWLRQ EHWZHHQ WXEH YROWDJH DQG WKUHVKROG FRQFHQWUDWLRQ FDQ EH H[SUHVVHG DV D SRZHU UHODWLRQVKLS RI N9S ZKHUH Q } 7XEH YROWDJH DOVR KDV D VLJQLILFDQW HIIHFW RQ SDWLHQW GRVHV $ GHFUHDVH RI bb LQ VXUIDFH GRVH DQG HIIHFWLYH GRVH FDQ EH DFKLHYHG E\ LQFUHDVLQJ WKH WXEH YROWDJH IURP N9S WR N9S ZKLOH WKH RWKHU WZR SDUDPHWHUV UHPDLQ FRQVWDQW ZLWK WKH ODUJHVW GHFUHDVH LQ GRVHV RFFXUULQJ EHWZHHQ N9S DQG N9S 7ZR UHJLRQV RI LPDJH LQWHQVLILHU LQSXW H[SRVXUHV ZHUH REVHUYHG UHJDUGLQJ FKDQJHV LQ WKUHVKROG FRQFHQWUDWLRQ 7KH ILUVW UHJLRQ ZDV H[WHQGHG EHORZ S5IUDPH DQG ZDV TXDQWXP PRWWOH OLPLWHG ,QFUHDVLQJ LQSXW H[SRVXUH E\ D IDFWRU RI WZR LQ WKLV UHJLRQ LPSURYHG WKUHVKROG FRQFHQWUDWLRQ E\ b 7KH VHFRQG UHJLRQ ZDV REVHUYHG DERYH S5IUDPH ZKHUH OHVV LPSURYHPHQW LQ LPDJH TXDOLW\ FRXOG EH DFKLHYHG EH\RQG WKLV SRLQW VLQFH TXDQWXP PRWWOH GLG QRW DSSHDU WR EH WKH SULPDU\ VRXUFH RI LPDJH QRLVH $Q LPSURYHPHQW RI RQO\ b FRXOG EH DFKLHYHG E\ GRXEOLQJ WKH LQSXW H[SRVXUH DW WKH UHJLRQ EH\RQG S5IUDPH 7KXV LW LV VHQVLEOH WR VHOHFW DQ LQSXW H[SRVXUH RI S5IUDPH DV WKH LQSXW H[SRVXUH IRU DOO LPDJH DFTXLVLWLRQV LQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ WR FDSLWDOL]H LQ WKH LPSURYHPHQW RI LPDJH TXDOLW\ ZLWKRXW VLJQLILFDQWO\ LQFUHDVLQJ SDWLHQW GRVHV

PAGE 132

*HRPHWULF REMHFW PDJQLILFDWLRQ ZDV IRXQG WR EH OLQHDUO\ FRUUHODWHG WR WKUHVKROG FRQWUDVW ,QFUHDVLQJ JHRPHWULF PDJQLILFDWLRQ E\ D IDFWRU RI WZR LPSURYHG LPDJH TXDOLW\ E\ GHFUHDVLQJ WKUHVKROG LRGLQH FRQWUDVW E\ D IDFWRU RI WZR 7KLV LQFUHDVH LQ LPDJH TXDOLW\ E\ DSSO\LQJ JHRPHWULF PDJQLILFDWLRQ FDQ EH DFKLHYHG ZLWK D PLQLPDO LQFUHDVH LQ HIIHFWLYH GRVH WR WKH SDWLHQW 7KXV PDJQLILFDWLRQ FDQ EH XVHG WR LPSURYH VLJQDO GHWHFWLRQ ZKHUH VWRFKDVWLF ULVNV PD\ EH RI FRQFHUQ 2Q WKH RWKHU KDQG JHRPHWULF PDJQLILFDWLRQ KDG D VWURQJ HIIHFW RQ VXUIDFH GRVH *HRPHWULF PDJQLILFDWLRQ VKRXOG EH PLQLPL]HG ZKHUH WKHUH LV D FRQFHUQ RI GHWHUPLQLVWLF LQMXULHV ,Q JHQHUDO WKH WKUHH LPDJLQJ SDUDPHWHUV VWXGLHG LQ WKLV ZRUN WR TXDQWLI\ WKHLU HIIHFWV RQ LPDJH TXDOLW\ DQG SDWLHQW GRVH LQGLFDWHG WKDW UHGXFLQJ WKH [UD\ WXEH YROWDJH RIIHUHG WKH ODUJHVW LPSURYHPHQW LQ LPDJH TXDOLW\ IRU D JLYHQ LQFUHDVH LQ SDWLHQW GRVH ,QFUHDVLQJ WKH LPDJH LQWHQVLILHU LQSXW H[SRVXUH EH\RQG S5IIDPH SURYLGHG YHU\ OLWWOH LPSURYHPHQW LQ LPDJH TXDOLW\ $ OLQHDU UHODWLRQVKLS ZDV REVHUYHG EHWZHHQ PDJQLILFDWLRQ DQG WKUHVKROG FRQFHQWUDWLRQ ZKLFK RIIHUV VLJQLILFDQW SDWLHQW EHQHILWV ZKHQ VXUIDFH GRVHV DUH QRW H[SHFWHG WR H[FHHG WKH WKUHVKROG GRVHV IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF LQMXULHV 7KHVH IDFWV VKRXOG EH FRQVLGHUHG HYHU\ WLPH D VHOHFWLRQ RI LPDJLQJ WHFKQLTXHV LV UHTXLUHG IRU RSWLPL]DWLRQ SXUSRVHV )XWXUH :RUN 7KH WUDGLWLRQDO WKUHVKROG IRU WKH LQGXFWLRQ RI GHWHUPLQLVWLF LQMXULHV WR WKH VNLQ ZDV SURSRVHG WR EH RI WKH RUGHU RI *\ :DJQHU HW DO f $ VLJQLILFDQW QXPEHU bf RI SDWLHQWV XQGHUJRLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF SURFHGXUHV VWXGLHG LQ WKLV ZRUN H[FHHGHG WKH SURSRVHG WKUHVKROG IRU GHWHUPLQLVWLF HIIHFWV ZLWKRXW QRWLFLQJ DQ\ UDGLDWLRQ

PAGE 133

LQMXULHV VXFK DV HSLODWLRQV DQG HU\WKHPDV 7KLV VXJJHVWV WKDW D KLJKHU WKUHVKROG YDOXH VKRXOG EH FRQVLGHUHG DV WKH WULJJHULQJ SRLQW RI VXFK GHWHUPLQLVWLF LQMXULHV 0RUH ZRUN LV UHTXLUHG WR UHHYDOXDWH WKHVH WKUHVKROGV DQG GHWHUPLQH D EHWWHU YDOXH ,Q WKLV ZRUN WKHUH ZDV QR LPDJH SURFHVVLQJ RWKHU WKDQ ZLQGRZ DQG OHYHO DSSOLHG WR WKH GLJLWDOO\ VXEWUDFWHG LPDJHV GXULQJ WKH HYDOXDWLRQ RI LPDJH TXDOLW\ $ PXOWLWXGH RI SURFHVVLQJ DOJRULWKPV DQG WHFKQLTXHV DUH DYDLODEOH WKDW PD\ EH DEOH WR LPSURYH LPDJH TXDOLW\ ZLWKRXW DIIHFWLQJ SDWLHQW GRVH 6XFK LPDJH SURFHVVLQJ WHFKQLTXHV PD\ EH VWXGLHG WR HYDOXDWH WKHLU HIIHFWV RQ VLJQDO GHWHFWLRQ DV WKH\ PD\ DSSO\ RQ GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ 'LJLWDO VXEWUDFWLRQ DQJLRJUDSK\ XVHV WKH SKRWRHOHFWULF HIIHFW LQ LRGLQH RFFXUULQJ DW NH9 WR GLIIHUHQWLDWH EHWZHHQ DQJLRJUDSKLF VWUXFWXUHV DQG RWKHU DQDWRP\ 'LIIHUHQW FRQWUDVW DJHQWV ZLWK KLJKHU DWRPLF QXPEHUV DQG .HGJH HQHUJLHV ZLOO EH DEOH WR UHGXFH SDWLHQW GRVH IRU WKH VDPH LPDJH TXDOLW\ +RZHYHU WKH WR[LFLW\ RI KLJKHU DWRPLF QXPEHU DJHQWV PD\ OLPLW VXFK HIIHFWV 6XFK FRQWUDVW DJHQWV QHHG WR EH HYDOXDWHG IRU DSSOLFDWLRQV LQ LQWHUYHQWLRQDO QHXURUDGLRORJ\ WR TXDQWLI\ WKHLU HIIHFWV RQ LPDJH TXDOLW\ DQG WKH FRUUHVSRQGLQJ FKDQJHV LQ SDWLHQW GRVH 7KH DOUHDG\ KLJK TXDQWXP GHWHFWLYH HIILFLHQF\ '4(f RI FXUUHQW LPDJH LQWHQVLILHU V\VWHPV XVHG LQ [UD\ LPDJLQJ VHWV D OLPLW WR IXUWKHU LPSURYHPHQW LQ VLJQDO GHWHFWLRQ ZLWK WKH FXUUHQW LPDJLQJ HTXLSPHQW XVHG LQ LQWHUYHQWLRQDO QHXURUDGLRORJ\ ,W LV OLNHO\ WKDW D GLUHFW GLJLWDO GHWHFWRU WKDW ZLOO EH DEOH WR H[FHHG WKH HIILFLHQF\ RI FXUUHQW LPDJH LQWHQVLILHUV LPSURYH VLJQDO GHWHFWLRQ DQG GHFUHDVH SDWLHQW GRVH ZLOO UHSODFH WKH LPDJH LQWHQVLILHU LQ WKH IXWXUH 7KH DSSOLFDWLRQ RI VXFK GLJLWDO [UD\ LPDJH UHFHSWRUV UHTXLUHV IXUWKHU GHYHORSPHQW DQG HYDOXDWLRQ

PAGE 134

%,%/,2*5$3+< $OPQ $ 0DWWVVRQ 6 f2Q WKH FDOFXODWLRQ RI HIIHFWLYH GRVHV WR FKLOGUHQ DQG DGROHVFHQWVf -RXUQDO RI 5DGLDWLRQ 3URWHFWLRQ f $UQROG %$ 6FKHLEH 32 f1RLVH DQDO\VLV RI D GLJLWDO UDGLRJUDSK\ V\VWHPf $PHULFDQ -RXUQDO RI 5RHQWJHQRORJ\ f %DOWHU 6 (UJXQ 7VFKROO ( %XFKPDQQ ) 9HUKRHYHQ / f'LJLWDO VXEWUDFWLRQ DQJLRJUDSK\ IXQGDPHQWDO QRLVH FKDUDFWHULVWLFVf 5DGLRORJ\ f %D[WHU :7 'DYLGHQNR -0 /RHZ /0 :XVNHOO -3 -DOLIH f7HFKQLFDO IHDWXUHV RI D &&' YLGHR FDPHUD V\VWHP WR UHFRUG FDUGLDF IOXRUHVFHQFH GDWDf $QQ %LRPHG (QJ f %HQJWVVRQ %ORPJUHQ 3 %HUJPDQ ƒEHUJ / f3DWLHQW H[SRVXUHV DQG UDGLDWLRQ ULVNV LQ 6ZHGLVK GLDJQRVWLF UDGLRORJ\f $FWD 5DGLROJLFD 2QFRORJ\ f %HUJHURQ 3 &DUULHU 5 5R\ %ODLV 1 5D\PRQG f5DGLDWLRQ GRVHV WR SDWLHQWV LQ QHXURLQWHUYHQWLRQDO SURFHGXUHVf $PHULFDQ -RXUQDO RI 1HXURUDGLRORJ\ f %HUWKHOVHQ % &HGHUEODG $ f5DGLDWLRQ GRVHV WR SDWLHQWV DQG SHUVRQQHO LQYROYHG LQ HPEROL]DWLRQ RI LQWUDFHUHEUDO DUWHULRYHQRXV PDOIRUPDWLRQVf $ HWD 5DGLROJLFD f %RRQH -0 f3DUDPHWUL]HG [UD\ DEVRUSWLRQ LQ GLDJQRVWLF UDGLRORJ\ IURP 0RQWH &DUOR FDOFXODWLRQV ,PSOLFDWLRQV IRU [UD\ GHWHFWRU GHVLJQf 0HGLFDO 3K\VLFV f %RRQH -0 6KDEHU *6 7HFRW]N\ 0 f'XDOHQHUJ\ PDPPRJUDSK\ D GHWHFWRU DQDO\VLVf 0HGLFDO 3K\VLFV f %XUJHVV $( f(IIHFW RI TXDQWL]DWLRQ QRLVH RQ YLVXDO VLJQDO GHWHFWLRQ LQ QRLV\ LPDJHVf 2SW 6RF $P >$@ f %XUJHVV $( +XPSKUH\ f9LVXDO SHUFHSWLRQ OLPLWV LQ DQJLRJUDSK\f 3URFHHGLQJV RI WKH 6RFLHW\ RI 3KRWR2SWLFDO LQVWUXPHQWDWLRQ (QJLQHHUV f %XUNKDUW 5/ 3DWLHQW 5DGLDWLRQ ([SRVXUHV LQ 'LDJQRVWLF 5DGLRORJ\ ([DPLQDWLRQV $Q 2YHUYLHZ ++6 3XEOLFDWLRQ )'$f 5RFNYLOOH 0' f

PAGE 135

&DPHURQ f'RVH HTXLYDOHQW RXWf§,PSDUWHG HQHUJ\ LQf +36 1HZVOHWWHU f &DUOVVRQ & f'HWHUPLQDWLRQ RI LQWHJUDO DEVRUEHG GRVH IURP H[SRVXUH PHDVXUHPHQWVf $FWD 5DGLROJLFD f &DUOVVRQ & f,QWHJUDO DEVRUEHG GRVHV LQ URHQWJHQ GLDJQRVWLF SURFHGXUHV 7KH GRVLPHWHUf $FWD 5DGLROJLFD 7KHUDS\ 3K\VLFV %LRORJ\ Df &DUOVVRQ & f,QWHJUDO DEVRUEHG GRVHV LQ URHQWJHQ GLDJQRVWLF SURFHGXUHV ,, 0HDVXUHPHQW RI LQWHJUDO GRVHV LQ WZR URHQWJHQ GLDJQRVWLF GHSDUWPHQWVf $FWD 5DGLROJLFD 7KHUDS\ 3K\VLFV %LRORJ\ Ef &DUOVVRQ &DUOVVRQ & f5HODWLRQV EHWZHHQ HIIHFWLYH GRVH HTXLYDOHQW DQG PHDQ DEVRUEHG GRVH HQHUJ\ LPSDUWHGf WR SDWLHQWV LQ GLDJQRVWLF UDGLRORJ\f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f &DUOVVRQ &DUOVVRQ & 3HUVOLGHQ f(QHUJ\ LPSDUWHG WR WKH SDWLHQWV LQ GLDJQRVWLF UDGLRORJ\ FDOFXODWLRQ RI FRQYHUVLRQ IDFWRUV IRU GHWHUPLQLQJ WKH HQHUJ\ LPSDUWHG IURP PHDVXUHPHQWV RI WKH DLU FROOLVLRQ NHUPD LQWHJUDWHG RYHU EHDP DUHDf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f &KDSSHO &/ %URDGKHDG '$ )DXONQHU f$ SKDQWRP EDVHG PHWKRG IRU GHULYLQJ W\SLFDO SDWLHQW GRVHV IURP PHDVXUHPHQWV RI GRVHDUHD SURGXFW RQ SRSXODWLRQV RI SDWLHQWVf %ULWLVK -RXUQDO RI 5DGLRORJ\ f &KDSSLH & )DXONQHU +XQWHU ( f(QHUJ\ LPSDUWHG WR QHRQDWHV GXULQJ ;UD\ H[DPLQDWLRQV LQ D VSHFLDO FDUH EDE\ XQLWf %ULWLVK -RXUQDO RI 5DGLRORJ\ f &KRSS 0 3RUWQR\ +' 6FKXULQJ 5 &URLVDDQW 3 f&OLQLFDO GRVLPHWU\ GXULQJ FHUHEUDO DUWHULRJUDSK\f 1HXURUDGLRORJ\ f &RKHQ :DJQHU / 5DXVFKNROE ( f(YDOXDWLRQ RI D GLJLWDO VXEWUDFWLRQ DQJLRJUDSK\ XQLWf 5DGLRORJ\ f 'RL ,PKRI f1RLVH UHGXFWLRQ E\ UDGLRJUDSKLF PDJQLILFDWLRQf 5DGLRORJ\ f 'RL 5RVVPDQQ f7KH HIIHFW RI UDGLRJUDSKLF PDJQLILFDWLRQ RQ EORRG YHVVHO LPDJLQJ ZLWK YDULRXV VFUHHQILOP V\VWHPVf 0HGLFDO 3K\VLFV f (VWKDSSDQ +DUDXFKL + +RIIPDQQ .5 f(YDOXDWLRQ RI LPDJLQJ JHRPHWULHV FDOFXODWHG IURP ELSODQH LPDJHVf 0HGLFDO 3K\VLFV f )DXONQHU +DUULVRQ 5 f(VWLPDWLRQ RI HIIHFWLYH GRVH HTXLYDOHQW LQ GLDJQRVWLF UDGLRORJ\f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f

PAGE 136

)H\JHOPDQ 90 +XGD : 3HWHUV .5 f(IIHFWLYH GRVH HTXLYDOHQWV WR SDWLHQWV XQGHUJRLQJ FHUHEUDO DQJLRJUDSK\f $PHULFDQ -RXUQDO RI 1HXURUDGLRORJ\ f )LHOG 6% 8SWRQ $& f1RQVWRFKDVWLF HIIHFWV &RPSDWLELOLW\ ZLWK SUHVHQW ,&53 UHFRPPHQGDWLRQVf ,QW -5DGLDW %LRO f )U\ 5-0 f(IIHFWV RI ORZ GRVHV RI UDGLDWLRQf +HDOWK 3K\VLFV f )XMLWD + 'RL *LJHU 0/ f,QYHVWLJDWLRQ RI EDVLF LPDJLQJ SURSHUWLHV LQ GLJLWDO UDGLRJUDSK\ 07)V RI ,,79 GLJLWDO LPDJLQJ V\VWHPVf 0HGLFDO 3K\VLFV f *LEEV 6 3XMRO $ &KHQ 7 0DOFROP $ -DPHV ( f3DWLHQW ULVN IURP LQWHUSDWLHQW UDGLRJUDSK\f 2UDO 6XUJHU\ f *LJHU 0/ ,QYHVWLJDWLRQ RI %DVLF ,PDJLQJ 3URSHUWLHV LQ 'LJLWDO 5DGLRJUDSK\ 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI &KLFDJR &KLFDJR ,/ f *LJHU 0/ 'RL f,QYHVWLJDWLRQ RI EDVLF LPDJLQJ SURSHUWLHV LQ GLJLWDO UDGLRJUDSK\ 0RGXODWLRQ WUDQVIHU IXQFWLRQf 0HGLFDO 3K\VLFV f *LJHU 0/ 'RL )XMLWD + f,QYHVWLJDWLRQ RI EDVLF LPDJLQJ SURSHUWLHV LQ GLJLWDO UDGLRJUDSK\ 1RLVH :LHQHU VSHFWUD RI ,,79 GLJLWDO LPDJLQJ V\VWHPV f 0HGLFDO 3K\VLFV Df *LJHU 0/ 2KDUD 'RL f,QYHVWLJDWLRQ RI EDVLF LPDJLQJ SURSHUWLHV LQ GLJLWDO UDGLRJUDSK\ (IIHFW RI GLVSOD\HG JUD\ OHYHOV RQ VLJQDO GHWHFWLRQf 0HGLFDO 3K\VLFV Ef *NDQDWVLRV 1$ &RPSXWDWLRQ RI (QHUJ\ ,PSDUWHG LQ 'LDJQRVWLF 5DGLRORJ\ 0DVWHU 7KHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ f *NDQDWVLRV 1$ +XGD : f&RPSXWDWLRQ RI HQHUJ\ LPSDUWHG LQ GLDJQRVWLF UDGLRORJ\f 0HGLFDO 3K\VLFV f *NDQDWVLRV 1$ +XGD : 3HWHUV .5 )UHHPDQ -$ f(YDOXDWLRQ RI DQ RQOLQH SDWLHQW H[SRVXUH PHWHU LQ QHXURUDGLRORJ\f 5DGLRORJ\ f *URVVZHQGW % f%DFNVFDWHU IDFWRUV IRU [UD\V JHQHUDWHG DW YROWDJHV EHWZHHQ DQG N9f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f *URVVZHQGW % f'HSHQGHQFH RI WKH SKRWRQ EDFNVFDWWHU SKDQWRP IRU ZDWHU RQ VRXUFHWR SKDQWRP GLVWDQFH DQG LUUDGLDWLRQ ILHOG VL]Hf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f +DUULVRQ 5 f$ UHHYDOXDWLRQ RI WKH nVDWXUDWHG VFDWWHUn PHWKRG IRU HVWLPDWLQJ WKH HQHUJ\ LPSDUWHG WR SDWLHQWV GXULQJ GLDJQRVWLF UDGLRORJ\ H[DPLQDWLRQVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f

PAGE 137

+DUW -RQHV '* :DOO %) 153% 5HSRUW (VWLPDWLRQ RI (IIHFWLYH 'RVH LQ 'LDJQRVWLF 5DGLRORJ\ IURP (QWUDQFH 6XUIDFH 'RVH DQG 'RVH$UHD 3URGXFW 0HDVXUHPHQWV 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG &KLOWRQ 2[RQ 8. Df +DUW -RQHV '* :DOO %) 153% 6RIWZDUH 65 1RUPDOL]HG 2UJDQ 'RVHV IRU 0HGLFDO ;5D\ ([DPLQDWLRQV &DOFXODWHG 8VLQJ 0RQWH &DUOR 7HFKQLTXHV 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG 'LGFRW 2[RQ Ef +DUW -RQHV '* :DOO %) 153% 6RIWZDUH 65 1RUPDOL]HG 2UJDQ 'RVHV IRU 3HGLDWULF ;5D\ ([DPLQDWLRQV &DOFXODWHG 8VLQJ 0RQWH &DUOR 7HFKQLTXHV 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG 'LGFRW 2[RQ Df +DUW -RQHV '* :DOO %) 153% 5HSRUW 5 &RHIILFLHQWV IRU (VWLPDWLQJ (IIHFWLYH 'RVHV IURP 3HGLDWULF ;5D\ ([DPLQDWLRQV 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG 'LGFRW 2[RQ Ef +DVDJDZD %+ 7KH 3K\VLFV RI 0HGLFDO ;5D\ ,PDJLQJ 0HGLFDO 3K\VLFV 3XEOLVKLQJ 0DGLVRQ :, f +DXV $* HGLWRUf $$30 0RQRJUDP 7KH 3K\VLFV RI 0HGLFDO ,PDJLQJ 5HFRUGLQJ 6\VWHP 0HDVXUHPHQWV DQG 7HFKQLTXHV $PHULFDQ ,QVWLWXWH RI 3K\VLFV 1HZ
PAGE 138

+XGD : 6DQGLVRQ 3DOVHU 5 6DYRLH f5DGLDWLRQ GRVHV DQG GHWULPHQW IURP FKHVW [ UD\ H[DPLQDWLRQVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ Ef +XPPHO 5 :HVHQEHUJ 5 $PXQGVRQ f$ FRPSXWHUL]HG [UD\ GRVHPRQLWRULQJ V\VWHPf 5DGLRORJ\ f OLHV :153% 5HSRUW 5 7KH &RPSXWDWLRQ RI %UHPVVWUDKOXQJ ;5D\ 6SHFWUD 2YHU DQ (QHUJ\ 5DQJH NH9 WR NH9 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG 'LGFRW 2[RQ f ,QVWLWXWH RI 3K\VLFDO 6FLHQFHV LQ 0HGLFLQH 5HSRUW $UH ;5D\V 6DIH (QRXJK" 3DWLHQW 'RVHV DQG 5LVNV LQ 'LDJQRVWLF 5DGLRORJ\ 7KH ,QVWLWXWH RI 3K\VLFDO 6FLHQFHV LQ 0HGLFLQH
PAGE 139

-RQHV :DOO % 153% 5HSRUW 2UJDQ 'RVHV IURP 0HGLFDO ;5D\ ([DPLQDWLRQV &DOFXODWHG 8VLQJ 0RQWH &DUOR 7HFKQLTXHV 1DWLRQDO 5DGLRORJLFDO 3URWHFWLRQ %RDUG &KLOWRQ 8. f .OHYHQKDJHQ 6& f7KH EXLOWXS RI EDFNVFDWWHU DW WKH HQHUJ\ UDQJH PP $ WR PP $ +9/f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f .RHGRRGHU 9HQHPD +: f)LOWHU PDWHULDOV IRU GRVH UHGXFWLRQ LQ VFUHHQILOP UDGLRJUDSK\f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f /H +HURQ f(VWLPDWLRQ RI HIIHFWLYH GRVH WR WKH SDWLHQW GXULQJ PHGLFDO [UD\ H[DPLQDWLRQV IURP PHDVXUHPHQWV RI WKH GRVHDUHD SURGXFWVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f /LQGVNRXJ %$ f7KH UHIHUHQFH PDQ LQ GLDJQRVWLF UDGLRORJ\ GRVLPHWU\f %ULWLVK -RXUQDO RI 5DGLRORJ\ f 0DQQ\ () %XUNKDUW 5/ 0HDVXUHPHQW 7HFKQLTXHV IRU 8VH :LWK 7HFKQLTXH([SRVXUH *XLGHV ++6 3XEOLFDWLRQ )'$f 5RFNYLOOH 0' f 0F3DUODQG %f$ VWXG\ RI SDWLHQW UDGLDWLRQ GRVHV LQ LQWHUYHQWLRQDO UDGLRORJLFDO SURFHGXUHVf %ULWLVK -RXUQDO RI 5DGLRORJ\ f 0HUULDP *5 -U )RFKW () f$ FOLQLFDO VWXG\ RI UDGLDWLRQ FDWDUDFWV LQ UHODWLRQVKLS WR GRVHf $PHULFDQ -RXUQDO RI 5RHQWJHQRORJ\ f 0HW] &( 'RL f7UDQVIHU IXQFWLRQ DQDO\VLV RI UDGLRJUDSKLF LPDJLQJ V\VWHPVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 1DJHO +' f&RPSDULVRQ RI SHUIRUPDQFH FKDUDFWHULVWLFV RI FRQYHQWLRQDO DQG .HGJH ILOWHUV LQ JHQHUDO GLDJQRVWLF UDGLRORJ\f 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 1DWLRQDO $FDGHP\ RI 6FLHQFHV %(,5 9 +HDOWK (IIHFWV RI ([SRVXUH WR /RZ /HYHOV RI ,RQL]LQJ 5DGLDWLRQ 1DWLRQDO $FDGHP\ 3UHVV :DVKLQJWRQ '& f 1DWLRQDO &RXQFLO RQ 5DGLDWLRQ 3URWHFWLRQ DQG 0HDVXUHPHQWV 5HSRUW 1R ,QGXFWLRQ RI 7K\URLG &DQFHU E\ ,RQL]LQJ 5DGLDWLRQ 1DWLRQDO &RXQFLO RQ 5DGLDWLRQ 3URWHFWLRQ DQG 0HDVXUHPHQWV %HWKHVGD 0' f 1DWLRQDO &RXQFLO RQ 5DGLDWLRQ 3URWHFWLRQ DQG 0HDVXUHPHQWV 5HSRUW 1R ([SRVXUH RI WKH 86 3RSXODWLRQ IURP 'LDJQRVWLF 0HGLFDO 5DGLDWLRQ 1DWLRQDO &RXQFLO RQ 5DGLDWLRQ 3URWHFWLRQ DQG 0HDVXUHPHQWV %HWKHVGD 0' f 1RUEDVK $0 %XVLFN 0DUNV 03 f7HFKQLTXHV IRU UHGXFLQJ LQWHUYHQWLRQDO QHXURUDGLRORJLF VNLQ GRVH WXEH SRVLWLRQ URWDWLRQ DQG VXSSOHPHQWDO EHDP ILOWUDWLRQf $PHULFDQ -RXUQDO RI 1HXURUDGLRORJ\ f

PAGE 140

1XFOHDU 5HJXODWRU\ &RPPLVVLRQ &)5 1RWLFHV ,QVWUXFWLRQV DQG 5HSRUWV WR :RUNHUV ,QVSHFWLRQ DQG ,QYHVWLJDWLRQV 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ :DVKLQJWRQ '& Df 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ &)5 6WDQGDUGV IRU 3URWHFWLRQ $JDLQVW 5DGLDWLRQ 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ :DVKLQJWRQ '& Ef 3DGRYDQL 5 &RQWHQWR )DEUHWWR 0 0DOLVDQ 05 %DUELQD 9 *R]]L f3DWLHQW GRVHV DQG ULVNV IURP GLDJQRVWLF UDGLRORJ\ LQ 1RUWKHDVW ,WDO\f %ULWLVK -RXUQDO RI 5DGLRORJ\ f 3DWURFLQLR +%LVVRQQHWWH -3 %XVVLUH 05 6FKUHLQHU /f/LPLWLQJ YDOXHV RI EDFNVFDWWHU IDFWRUV IRU ORZHQHUJ\ [UD\ EHDPVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 3HUVOLGHU &DUOVVRQ f(QHUJ\ LPSDUWHG WR ZDWHU VODEV E\ SKRWRQV LQ HQHUJ\ UDQJH NH9 &DOFXODWLRQV XVLQJ 0RQWH &DUOR SKRWRQ WUDQVSRUW PRGHOf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 3XVNLQ -6 1HOVRQ &% f(VWLPDWHV RI UDGLRJHQLF FDQFHU ULVNVf +HDOWK 3K\VLFV f 5DMDSDNVKH 5 6KDOHY 6 f1RLVH DQDO\VLV LQ UHDOWLPH SRUWDO LPDJLQJ 4XDQWL]DWLRQ QRLVT 0HGLFDO 3K\VLFV f 5RHKULJ + 1XGHOPDQ 6 )LVKHU +' )URVW 00 &DSS 03 f3KRWRHOHFWURQLF LPDJLQJ IRU UDGLRORJ\f ,((( 7UDQVDFWLRQV RQ 1XFOHDU 6FLHQFH f 5XELQ 3 &DVDUHWW *: &OLQLFDO 5DGLDWLRQ 3DWKRORJ\ 9RO DQG ,, :% 6DXQGHUV 3KLODGHOSKLD 3$ f 5XGLQ 6 %HGQDUHN '5 f1RQKDUGHQLQJ [UD\ EHDP DWWHQXDWLQJ ILOWHUVf $EVWUDFW $$30 $QQXDO 0HHWLQJ 3URJUDP 0HGLFDO 3K\VLFV f 6DQGRU 7 1DWW 3 f(IIHFW RI UDGLRJUDSKLF PDJQLILFDWLRQ RQ LPDJH FRQWUDVW RI EORRG YHVVHOVf $PHULFDQ -RXUQDO RI 5RHQWJHQRORJ\ f 6DQGULN -0 :DJQHU 5) f$EVROXWH PHDVXUHV RI SK\VLFDO LPDJH TXDOLW\ PHDVXUHPHQW DQG DSSOLFDWLRQ WR UDGLRJUDSKLF PDJQLILFDWLRQf 0HGLFDO 3K\VLFV f 6KOHLHQ % HGLWRUf 7KH +HDOWK 3K\VLFV DQG 5DGLRORJLFDO +HDOWK +DQGERRN 6FLQWD ,QF 6LOYHU 6SULQJ 0' f 6KRSH 7% f5DGLDWLRQLQGXFHG VNLQ LQMXULHV IURP IOXRURVFRS\f 5DGLRJUDSKLFV f

PAGE 141

6KULPSWRQ 3 :DOO % f$Q HYDOXDWLRQ RI WKH 'LDPHQWRU WUDQVPLVVLRQ LRQL]DWLRQ FKDPEHU LQ LQGLFDWLQJ H[SRVXUHDUHD SURGXFW 5 FPf GXULQJ GLDJQRVWLF UDGLRORJLFDO H[DPLQDWLRQVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 6KULPSWRQ 3& -RQHV ':DOO %) f7KH LQIOXHQFH RI WXEH ILOWUDWLRQ DQG SRWHQWLDO RQ SDWLHQW GRVH GXULQJ [UD\ H[DPLQDWLRQVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 6KULPSWRQ 3 :DOO % -RQHV )LVKHU ( f7KH PHDVXUHPHQW RI HQHUJ\ LPSDUWHG WR SDWLHQWV GXULQJ GLDJQRVWLF [UD\ H[DPLQDWLRQV XVLQJ WKH 'LDPHQWRU H[SRVXUHDUHD SURGXFW PHWHUf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 6XOHLPDQ 2+ $QWRQVHQ 5 &RQZD\ % 0F*URKDQ 5XHWHU ) 6OD\WRQ 5 f$VVHVVLQJ SDWLHQW H[SRVXUH LQ IOXRURVFRS\f 5DGLDWLRQ 3URWHFWLRQ DQG 'RVLPHWU\ f 7DSLRYDDUD 06DQGERUJ 0 f(YDOXDWLRQ RI LPDJH TXDOLW\ LQ IOXRURVFRS\ E\ PHDVXUHPHQWV DQG 0RQWH &DUOR FDOFXODWLRQVf 3K\VLFV LQ 0HGLFLQH DQG %LRORJ\ f 7KRPSVRQ :0 +DOYRUVHQ 5$ *HGJDXGDV 5. .HOYLQ )0 5LFH 53 :RRGILHOG 6 -RKQVRQ *$ +HGOXQJ /: -RUJHQVHQ '% f+LJK N9S YV ORZ N9S IRU 7WXEH RSHUDWLYH FKRODQJLRJUDSK\f 5DGLRORJ\ f 7URXW (' .HOOH\ -3 &DWKH\ *$ f7KH XVH RI ILOWHUV WR FRQWURO UDGLDWLRQ H[SRVXUH WR WKH SDWLHQW LQ GLDJQRVWLF URHQWJHQRORJ\f $PHULFDQ -RXUQDO RI 5RHQWJHQRORJ\ 5DGLXP 7KHUDS\ DQG 1XFOHDU 0HGLFLQH f 7XFNHU 0 %DPHV DQG &KDNUDERUW\ f6HPLHPSLULFDO PRGHO IRU JHQHUDWLQJ WXQJVWHQ WDUJHW [UD\ VSHFWUDf 0HGLFDO 3K\VLFV f 8QLWHG 1DWLRQV 6FLHQWLILF &RPPLWWHH RQ WKH (IIHFWV RI $WRPLF 5DGLDWLRQ 816&($5f 5HSRUW WR WKH *HQHUDO $VVHPEO\ 6RXUFHV (IIHFWV DQG 5LVNV RI ,RQL]LQJ 5DGLDWLRQ 8QLWHG 1DWLRQV 1HZ
PAGE 142

:DJQHU /. &RKHQ :RQJ :+ $PWH\ 65 f'RVH HIILFLHQF\ DQG WKH HIIHFWV RI UHVROXWLRQ DQG QRLVH RQ GHWDLQ SHUFHSWLELOLW\ LQ UDGLRJUDSKLF PDPPRJUDSK\f 0HGLFDO 3K\VLFV Df :DJQHU /. &RKHQ :RQJ :+ $PWH\ 65 f5HVROXWLRQ LQ UDGLRJUDSKLF PDJQLILFDWLRQf 0HGLFDO 3K\VLFV Ef :DJQHU /. (LIHO 3*HLVH 5$ f3RWHQWLDO ELRORJLFDO HIIHFWV IROORZLQJ KLJK [UD\ GRVH LQWHUYHQWLRQDO SURFHGXUHVf -RI9DVF,QW5DG f :DOO % )LVKHU ( 3D\QWHU 5 +XGVRQ $ %LUG 3 f'RVHV WR SDWLHQWV IURP SKDQWRPRJUDSKLF DQG FRQYHQWLRQDO GHQWDO UDGLRJUDSK\f %ULWLVK -RXUQDO RI 5DGLRORJ\ f :DOO % +DUULVRQ 5 6SLHUV ) ,630 5HSRUW 3DWLHQW 'RVLPHWU\ 7HFKQLTXHV LQ 'LDJQRVWLF 5DGLRORJ\ 7KH ,QVWLWXWH RI 3K\VLFDO 6FLHQFH LQ 0HGLFLQH
PAGE 143

%,2*5$3+,&$/ 6&+(7&+ 1LNRODRV $ *NDQDWVLRV ZDV ERP LQ *UHHFH LQ WR $UJ\ULRV DQG $QDVWDVLD *NDQDWVLRV +H FDPH WR WKH 8QLWHG 6WDWHV LQ DQG HDUQHG D EDFKHORUfV GHJUHH LQ QXFOHDU HQJLQHHULQJ IURP :RUFHVWHU 3RO\WHFKQLF ,QVWLWXWH :RUFHVWHU 0$ LQ 7KH VDPH \HDU KH MRLQHG WKH JUDGXDWH SURJUDP RI WKH 8QLYHUVLW\ RI )ORULGD ZKHUH KH HDUQHG KLV 0DVWHU RI 6FLHQFH LQ PHGLFDO SK\VLFV LQ $XJXVW RI +H ZDV DFFHSWHG DV D 3K' FDQGLGDWH LQ WKH 'HSDUWPHQW RI 1XFOHDU DQG 5DGLRORJLFDO 6FLHQFHV DW WKH 8QLYHUVLW\ RI )ORULGD 1LNRODRV *NDQDWVLRV HDUQHG KLV 'RFWRU RI 3KLORVRSK\ GHJUHH IURP WKH 8QLYHUVLW\ RI )ORULGD LQ

PAGE 144

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KMOTVRSK\ W-8Y-n V 6 7XOHQNR &KDLU IHVVRU RI 1XFOHDU DQG 5DGLRORJLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ , :DOWHU +XGG &RFKDLU $VVRFLDWH 3URIHVVRU RI 1XFOHDU DQG 5DGLRORJLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :HVOH\ ( ,AROFK $VVRFLDWH 3URIHVVRU RI 1XFOHDU DQG 5DGLRORJLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ c/8A\\Drnf§A A-DQLFH & +RQH\PDQ $VVRFLDWH 3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ nn.HLWK 5n 3HWHQ7 $VVRFLDWH 3URIHVVRU RI 5DGLRORJ\

PAGE 145

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ,UYLQ ) +DZNLQV 3URIHVVRU RI 5DGLRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ 02KDQLDQ 'HDQ *UDGXDWH 6FKRRO

PAGE 146

/2  } AA 81,9(56,7< 2) )/5,r


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E6BFIG2Y7_F4GMJ6 INGEST_TIME 2014-05-24T00:20:29Z PACKAGE AA00020955_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES