Citation
Ultraviolet-assisted processing of dielectric thin films for metal oxide semiconductor applications

Material Information

Title:
Ultraviolet-assisted processing of dielectric thin films for metal oxide semiconductor applications
Creator:
Howard, Joshua M
Publication Date:
Language:
English
Physical Description:
xv, 129 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Annealing ( jstor )
Capacitance ( jstor )
Dielectric materials ( jstor )
Excimers ( jstor )
Lamps ( jstor )
Oxides ( jstor )
Oxygen ( jstor )
Silicon ( jstor )
Thin films ( jstor )
Ultraviolet radiation ( jstor )
Dissertations, Academic -- Materials Science and Engineering -- UF ( lcsh )
Materials Science and Engineering thesis, Ph.D ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph.D.)--University of Florida, 2002.
Bibliography:
Includes bibliographical references.
General Note:
Printout.
General Note:
Vita.
Statement of Responsibility:
by Joshua M. Howard.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
029646702 ( ALEPH )
51946788 ( OCLC )

Downloads

This item has the following downloads:


Full Text










ULTRAVIOLET-ASSISTED PROCESSING OF DIELECTRIC THIN FILMS FOR
METAL OXIDE SEMICONDUCTOR APPLICATIONS















By

JOSHUA M. HOWARD


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2002



























Copyright 2002

by

Joshua M. Howard



























I would like to dedicate this work to the memory of my great grandmother, mormor, who
will live on in my heart forever.














ACKNOWLEDGMENTS

I would like to first thank my advisor, Dr. Rajiv Singh, for all the enduring support

and encouragement he has given to me since I joined his group. His guidance and

friendship have played an integral role in molding me into the scientific researcher I am

today. Next I would like to thank Dr. Valentin Cracuin, who also works with Dr. Singh

as a visiting researcher from Romania. Valentin has acted as a great mentor throughout

my time here. He has served as an inspiration for me to excel in all aspects of any project

I undertake and taught me to look deeper than what may appear on the surface. Above

all, Valentin has become someone whom I can truly call my friend. I would also like to

thank Dr. Stephen Pearton for serving on my committee and for his keen insight into life

that has always helped me put the world into perspective. I would also like to thank Dr.

Cammy Abemrnathy for her smile and kind word that has often helped me through the day.

Additionally, I thank Dr. David Norton for his assistance, enthusiasm, and for use of his

laboratory equipment. Finally I would like to thank Dr. Fan Ren for use of his electrical

characterization equipment and for serving on my committee.

I would like to thank my parents, my brother David, and my extended family for all of

the love and encouragement they have given me throughout my life. I will always

cherish the active roles each played in my life growing up and how each person worked

in a special way to help me become the person I am today.

There are many contemporaries here at the University of Florida that deserve thanks

for their help and friendship. In particular, I would like to thank Brent Gila, Mark








Overberg, Michael Ollinger, Nabil Bassim, Francis Kelly, Anuranjan Srivastava, Srinivas

Pietambaram, Chad Essary, and Seemant Rawal. I would also like to acknowledge all of

the other wonderful group members current and past that are far too many to list.

There are many friends that have come and gone throughout my life, but occasionally

you meet people who you know will be there for the rest of your life. I would like to

thank several of my dear high school friends, including Christopher Schmidt, Andrew

Rogers, the whole Coombs clan, and Victoria Aronold, for all of their love, lessons, and

friendship. I would also like to thank Daniel Kammler from my days at the University of

Missouri-Rolla for being a truly amazing human being.

Additionally, I would like to thank my best friend Jennifer Gray for all of her love and

care. It is not every day that you get to be best friends with the person you love, but

somehow I have found myself in this situation. Her confidence and spirit make my world

a happier place to live. I thank her for everything that she is.

It would be impossible to list all of the attributes that each of these close friends

exhibits, but it can definitely be summed up that these people represent the best that the

human race has to offer and for this I feel blessed that they have been a part of my life.















TABLE OF CONTENTS
page

ACKNOW LEDGM ENTS ................................................................................................. iv

ABSTRACT..................................................................................................................... xiv

CHAPTER

1 LITERA TURE REVIEW ................................................................................................. 1

Introduction..................................................................................................................... 1
The Transistor................................................................................................................. 1
History...................................................................................................................... 2
Basic Transistor........................................................................................................ 2
Fundam ental Lim itations................................................................................................ 3
M materials Selection Criteria............................................................................................ 4
Perm ittivity and Barrier Height................................................................................ 5
Therm odynam ic Stability......................................................................................... 5
Interface Quality....................................................................................................... 6
Film M icrostructure ................................................................................................. 7
Gate Com patibility................................................................................................... 7
Process Com patibility.............................................................................................. 8
Reliability................................................................................................................. 8
Excim er Laser Basics...................................................................................................... 9
Ultraviolet Lam p Basics ............................................................................................... 10
Ultraviolet Excim er Radiation Sources.................................................................. 10
Silent Barrier Discharge Excim er Radiation.......................................................... 11
M materials and Properties ............................................................................................... 13
M otivation..................................................................................................................... 15
Oxygenation of Film s ................................................................................................... 18

2 EXPERIM ENTAL PROCEDURES............................................................................... 27

System Geom etries ....................................................................................................... 27
Laser System .......................................................................................................... 27
UVPLD System ...................................................................................................... 29
Excim er Annealing System .................................................................................... 30
Excim er Lam p Design............................................................................................ 30
Experim ental Setups and Sam ples................................................................................ 31
Interfacial Layer Form ation................................................................................... 32








In-Situ Ultraviolet PLD.......................................................................................... 32
Post Deposition Ultraviolet Annealing.................................................................. 33
Experimental Characterization Techniques.................................................................. 34
Variable Angle Spectroscopic Ellipsometry.......................................................... 34
X-ray Reflectivity................................................................................................... 35
X-ray Diffraction and Glancing Incidence X-ray Diffraction................................ 36
X-ray Photoelectron Spectroscopy......................................................................... 38
Atomic Force M icroscopy...................................................................................... 38
Fourier Transform Infrared Spectroscopy.............................................................. 39
Electrical Characterization..................................................................................... 39
Current-Voltage M easurements....................................................................... 40
Capacitance-Voltage M easurement................................................................. 41
Transmission Electron M icroscopy....................................................................... 45

3 INTERFACIAL LAYER FORM ATION ....................................................................... 59

Anneal Conditions ........................................................................................................ 59

4 ULTRAVIOLET PROCESSING ................................................................................... 81

In-situ Ultraviolet PLD ................................................................................................. 81
Barium Strontium Titanate (BST).......................................................................... 82
Yttrium Oxide (Y203)............................................................................................ 90

5 POST DEPOSITION ULTRAVIOLET ANNEALING............................................... 105

Ultraviolet-Assisted Oxidation of Silicon................................................................... 105
HfO2 Post Deposition Anneal..................................................................................... 106

6 CONCLUSIONS........................................................................................................... 117

APPENDIX ELECTRICAL DATA EXTRACTION METHOD................................... 120

LIST OF REFERENCES ................................................................................................. 125

BIOGRAPHICAL SKETCH .......................................................................................... 129














LIST OF TABLES
Table page



1-1 Industrial timeline for minimum feature size and equivalent dielectric thickness in
M O SFET devices [2] ................................................................................................. 4

1-2 Different wavelengths possible as a function of rare gas or rare gas halide mixture
used for excimer decomposition ................................................................................ 14

1-3 Various properties of high-k oxide materials............................................................. 15

2-1 Conditions for growth and post deposition heat treatments of thin ZrO2 films.........32

2-2 Conditions for in-situ ultraviolet annealing with an Hg lamp array during growth
of BST and Y203 thin film s ....................................................................................... 33

2-3 Conditions for post deposition excimer anneals of HfO2 thin films.......................... 34

2-4 Conversion factors for series-parallel electrical equivalent circuits .......................... 44

3-1 Partial pressure of oxygen for respective deposition ambients.................................. 60

3-2 VASE thickness measurements of ZrO2 samples after post-deposition heat
teatm ents in various ambients.................................................................................... 61

3-3 Thickness, roughness, and density data for the various XRR model options for the
oxygen annealed ZrO2 ................................................................................................ 62

3-4 Modeling data for the as-deposited, vacuum, helium, and oxygen annealed
sam ples.......................................................................................................................63

4-1 XRR data for the PLD and UVPLD deposited BST samples.................................... 83

4-2 XRD peak data for the PLD and UVPLD deposited BST samples ........................... 85

4-3 GIXD peak data for the PLD and UVPLD deposited BST samples: ........................ 86

4-4 XRR data for the PLD and UVPLD deposited Y203 samples................................... 91

4-5 GIXD peak data for the PLD and UVPLD deposited Y203 samples ........................ 92








5-1 VASE thickness measurements for silicon oxidized with and without ultraviolet
radiation at 300C ...................................................................................................... 106

5-2 VASE thickness measurements for HfO2 anneals with and without ultraviolet
radiation ..................................................................................................................... 108

5-3 XRR data for the thickness and density of the amorphous interfacial layer.............. 109














LIST OF FIGURES
Figure page



1-1 Schematic of a typical MOSFET. The gate, insulator, and silicon form the metal
oxide semiconductor capacitor portion of a MOSFET.............................................. 21

1-2 Calculated conduction and valence band offsets for various perspective alternative
dielectric m materials on Si............................................................................................ 22

1-3 Ternary phase diagrams illustrating a) "SiO2 dominant," b) "no phase dominant,"
and c) "metal oxide dominant" systems. System c represents a stable condition
for a metal oxide when in direct contact with silicon................................................ 23

1-4 Schematic of total energy associated with laser ablation of a surface....................... 24

1-5 Sinusoidal voltage versus time plot indicating conditions where silent barrier
m icrodischarges m ay occur........................................................................................ 25

1-6 Spectral emission characteristics for A) low pressure mercury lamp and B) xenon
excim er lam p.............................................................................................................. 26

2-1 Ultraviolet-assisted pulsed laser deposition system, KrF excimer laser, and optic
setup ........................................................................................................................... 46

2-2 Homemade excimer annealing system equipped with vacuum ultraviolet lamp.......47

2-3 Schematic of excimer lamp illustrating the concentric tube design and how a radio
frequency load is delivered to the system .................................................................. 48

2-4 Tiny microdischarges from the ignited excimer lamp are the origin of the excimer
radiation ..................................................................................................................... 49

2-5 General x-ray reflectivity setup showing physical relationships between the
acquired data and the modeling output ...................................................................... 50

2-6 General x-ray diffraction setup illustrating the interaction of x-rays with a
structure as they pertain to Braggs Law..................................................................... 51

2-7 Process of incoming radiation ejecting a characteristic photoelectron from a
carbon sam ple ............................................................................................................ 52








2-8 Schematic of atomic force microscope and the various components that allow up
to atom ic resolution.................................................................................................... 53

2-9 Typical MOS capacitor prepared for this dissertation ............................................... 54

2-10 Block diagram of Keithley Win-82 system and how it connects to the probe
station. Adapted from Keithley Win-82 operation manual....................................... 55

2-11 Typical capacitance-voltage illustrating the three main regions that occur in a
MOS device as a function of bias voltage applied. Adapted from the Keithley
W in-82 operation m annual .......................................................................................... 56

2-12 A) parallel, B) series, and C) combined series and parallel models for generation
of capacitance inform ation......................................................................................... 57

2-13 Schematic of electron beam after passing through an ultrathin TEM sample.
Some electrons are scattered while others remain unscattered.................................. 58

3-1 XRR spectra of A) raw data, B) 1 layer model without fit, C) 1 layer model with
fit, and D) 2 layer model with fit illustrating the importance of a good model
when analyzing XRR data ......................................................................................... 71

3-2 XRR spectra of A) as-deposited, B) vacuum annealed, C) helium annealed, and
D) oxygen annealed ZrO2 thin films as modeled with the "2 layer model with fit"..72

3-3 Plot ofinterfacial layer density as determined by XRR as a function of oxygen
content in the annealing system. Bulk Si02 has been added as a reference.............73

3-4 Cross sectional TEM of a polycrystalline ZrO2 thin film atop an amorphous
interfacial layer atop single crystalline silicon........................................................... 74

3-5 FTIR spectra of A) oxygen anneal, B) helium anneal, and C) as-deposited ZrO2
thin films showing the increase in Si--O bonding absorption in stretching,
bending and rocking m odes ....................................................................................... 75

3-6 XPS data ofSi 2p region of an as-deposited ZrO2 thin film and after various post
deposition anneals...................................................................................................... 76

3-7 Plot ofSi 2p binding energy of oxygen bonded to silicon as a function of oxygen
content in the annealing system. Bulk SiO2 has been added as a reference.............77

3-8 XPS spectra of A) raw data, B) 1 peak fit, C) 2 peak fit, and D) 3 peak fit fit
illustrating the importance of a good model when analyzing XPS data .................... 78

3-9 XPS spectra with "3 peak fit" of A) as-deposited, B) vacuum annealed, C) helium
annealed, and D) oxygen annealed ZrO2 ............................................................... 79








3-10 Plot of 0 Is binding energy of oxygen bonded to silicon as a function of oxygen
content in the annealing system. Bulk SiO2 has been added as a reference.............80

4-1 XRR spectra of A) UVPLD raw data, B) UVPLD 1 layer model, C) UVPLD 3
layer model, and D) PLD 3 layer model for BST samples ........................................ 94

4-2 Cross sectional TEM of a polycrystalline BST thin film atop an amorphous
interfacial layer atop a single crystal silicon substrate............................................... 95

4-3 AFM of BST for PLD and UVPLD deposited samples. The UVPLD deposited
sample exhibits increased roughness larger grain sizes............................................. 96

4-4 GIXD of BST for PLD and UVPLD deposited samples. The UVPLD deposited
sample exhibits increased (110) texturing ................................................................. 97

4-5 0 ls XPS of BST for PLD and UVPLD deposited samples. Peak B corresponds
to the amount of physically trapped oxygen in the thin film structure and is
reduced in the UVPLD deposited sample.................................................................. 98

4-6 Current density versus voltage plot for BST of PLD and UVPLD deposited
sam ples....................................................................................................................... 99

4-7 High frequency capacitance versus voltage plot for BST of PLD and UVPLD
deposited sam ples ...................................................................................................... 100

4-8 XPS spectra of A) UVPLD raw data, B) UVPLD 3 layer model, C) PLD raw data,
and D) PLD 3 layer model for Y203 samples ............................................................ 101

4-9 Cross sectional TEM of a polycrystalline Y203 thin film atop an amorphous
interfacial layer atop a single crystal silicon substrate............................................... 102

4-10 GIXD of Y203 for PLD and UVPLD deposited samples. The UVPLD sample
exhibits increased (222) texturing.............................................................................. 103

4-11 0 ls XPS of Y203 for PLD UVPLD deposited samples. Peak B corresponds to
the amount of physically trapped oxygen within the thin film structure ................... 104

5-1 VASE thickness versus time results for oxidation of silicon with and without
excim er radiation in oxygen....................................................................................... 112

5-2 VASE thickness of the overall HfO2 for samples annealed with and without
utraviolet radiation ..................................................................................................... 113

5-3 XRR thickness measurements of the HfD2 interfacial layer for samples annealed
with and without ultraviolet radiation........................................................................ 114

5-4 XRR density measurements of the Hf02 interfacial layer for samples annealed
with and without ultraviolet radiation........................................................................ 115








5-5 Capacitance-voltage measurements of HfO2 MOS devices for samples annealed
with and without ultraviolet radiation........................................................................ 116














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ULTRAVIOLET-ASSISTED PROCESSING OF
DIELECTRIC THIN FILMS FOR METAL OXIDE
SEMICONDUCTOR APPLICATIONS

By

Joshua M. Howard

December, 2002

Chair: Dr. Rajiv K. Singh
Major Department: Materials Science and Engineering

Oxygenation of oxide thin films was studied in this dissertation with application to

metal oxide semiconductor technology. One of the main challenges envisioned for future

microelectronic devices is finding a replacement gate dielectric for silicon dioxide (Si02)

on silicon in metal oxide semiconductor applications. Several alternative high-k

dielectric materials have been proposed as a solution to this problem because insertion of

such a layer would allow thicker layers not subject to tunneling leakage issues

encountered with ultrathin Si02 layers to be deposited. However, studies have indicated

that new problems exist with these alternative layers. Among these issues are the

formation of a low-k interfacial dielectric layer and an unacceptable level of oxygen

vacancies in the films that contribute to leakage currents. In an attempt to address these

issues, a three part experimental procedure has been designed to look at the role of

oxygen in the thin film system. First, the formation of an interfacial layer as a function of








oxygen concentration in the thin film system has been investigated. Next, ultraviolet

radiation was added to a pulsed laser deposition (PLD) system for in-situ ultraviolet-

assisted PLD growth of dielectric films. Through the addition of ultraviolet radiation,

highly reactive oxygen species are generated which alter the oxygenation conditions and

dynamically alter the films properties and final oxygenation conditions. Finally, the

application of ultraviolet annealing to already deposited hafnium dioxide (HfO2) thin

films was studied to look at the possibility of more fully oxygenating the film after

growth. A variety of characterization techniques indicate that both oxygen trapped in the

film and oxygen that passes from the ambient through the film to the interface are

responsible for the formation of the interfacial layer. Additionally, the application of

ultraviolet radiation to a growth system can alter physical properties of a growing film,

such as texturing of a polycrystalline film and overall reduction of trapped oxygen within

the film. Furthermore, post-deposition ultraviolet annealing allows for the migration of

oxygen species to the interface for growth of the interface and results in an unwanted

reduction of the overall electrical properties.













CHAPTER 1
LITERATURE REVIEW

Introduction

Although silicon dioxide has remained the insulator of choice in metal oxide

semiconductor devices for more than three decades, fundamental limitations of the

material predict that its reign will soon come to an end. This has prompted many

research teams around the world to search for a solution to this problem. However, the

answer has proven to be surprisingly elusive. An approach chosen by many is to use a

high dielectric constant material in place of the SiO2 layer, thus alleviating the issues that

are forcing the change in the first place. This dissertation addresses problems associated

with the implementation of such an alternative layer. Special attention is given to

exploring a second unwanted interfacial layer and developing the origins of that layer as a

function of oxygen content in the system. Next, the effects of ultraviolet radiation are

investigated to determine if a link could be made between the oxygen species in the

system and the quality of in-situ and post-deposition processed samples.

The Transistor

The transistor is arguably one of the most important inventions of the twentieth

century. It has paved the way for countless technological advancements as humans have

moved into an era where communication around the world can occur in a matter of

seconds. Data, information, and ideas can stream about the globe without time or

distance ever coming into consideration. The transistor, as initially theorized and later








developed, changed the course of computers forever. First it replaced vacuum tubes in

early computers, and then was refined to a stage whereby fully integrated circuitry

became a reality. Now it is integrated into microprocessors with millions of transistors

working flawlessly on a single small microchip. The transistor truly has allowed humans

to move into a new definition of existence.

History

In 1945 Bell Laboratories began research into a class of materials known as

semiconductors. Their goal was to replace vacuum tubes (developed in 1906) for signal

amplification in long distance telecommunications applications. The vacuum tubes were

known to be unreliable, consume too much power, and produce too much heat. On

1h
December 16th, 1947, the "point contact transistor" was created and consisted of strips of

gold foil on a plastic triangle in intimate contact with a slab of germanium. This design

was soon improved upon with the invention of the "junction (sandwich) transistor" a year

later. This new transistor proved to be more rugged, practical and easier to manufacture.

Twelve years later, a new design based on original theories for a field effect transistor

was created. This design is the same one that has been continually used and adjusted for

the past forty years.

Basic Transistor

A schematic of a modem metal oxide semiconductor field effect transistor (MOSFET)

is shown in Figure 1-1 [1]. There are several important features to note. First, the

transistor serves as a switching device that works on a field effect theory. As a voltage is

applied to the gate, charge carriers from extrinsic dopants in the silicon are either

attracted to or repelled from the silicon/silicon dioxide interface. This metal oxide

semiconductor (MOS) layered structure is essentially a capacitor. Under certain








conditions the excess charge carriers in the silicon may form a conductive channel at the

interface. By sensing whether or not a current is flowing along this channel under

certain given conditions, a one and zero interpretation may be generated. For example, if

there is a current sensed, a one is interpreted and if no current is sensed, a zero is

interpreted. These ones and zeros form the basis of all computer technology, which

strings together long arrays of ones and zeros in binary coding.

Fundamental Limitations

To date, the microelectronics industry continues to increase performance by

decreasing microelectronic device size. However, several roadblocks have been

envisioned for the near future. The desire to increase metal oxide semiconductor field

effect transistor (MOSFET) speed by decreasing the lateral dimensions (i.e., gate length)

also demands a proportional reduction in the gate oxide thickness. The reduction in gate

oxide thickness is necessary in order to maintain a constant capacitance per unit area in

the semiconductor material. Within the next several years, silicon dioxide on silicon

technology will reach fundamental limitations with respect to unacceptable leakage

currents and low breakdown voltages. The problem occurs at very small gate thicknesses

(sub 20A regime) required for future devices because of the exponential dependence of

leakage current (due to direct electron tunneling) on the thickness of the dielectric layer

[1-3]. Buchanan [2] illustrates the situation for SiO2, where at a gate bias of-1 V, the

leakage current changes from 1 X 1012 A/cm2 at -35A to 1 A/cm2 at -15A. This

represents a change of twelve orders of magnitude in current for a thickness change of

little more than a factor of two! This very high leakage current causes many concerns as

to the operation of devices with respect to conceivably altering device performance, as

well as creating standby power dissipation, reliability, and lifetime issues. As seen in








Table 1-1, the industry timeline as presented by Buchanan [2] for the minimum feature

size and the equivalent oxide thickness predicts quickly approaching deadlines for SiO2

technology.



Table 1-1 Industrial timeline for minimum feature size and equivalent dielectric
thickness in MOSFET devices [2].______ ____
Year Minumum Feature Size Equivalent Dielectric
(P.n) Thickness (A)
1997 0.25 40-50
1999 0.18 30-40
2001 0.15 20-30
2003 0.13 20-30
2006 0.10 15-20
2009 ____0.07_____ <15
2012 0.05 <10 v

Though the thinning process has been successful for the past four decades, limits are

quickly being approached and must be addressed for the vigorous pace the

microelectronic industry has followed for so many years to continue. Bear in mind that

this must occur while still maintaining high quality standards that MOSFET technologies

require.

Materials Selection Criteria

Due to the problem facing SiO2 technology, there is a need for an alternate solution for

SiO2 as the dielectric of choice on silicon. However, as mentioned previously, to date,

there are no immediate solutions to this problem. Though much work has been done,

mainly in the area ofhigh-k dielectric alternatives, incompatibilities with silicon

interfaciall layer formation) as well as low quality deposited oxides with high leakage

currents and large defect densities have continued to plague the insertion of an alternate

layer. As outlined by Wilk et al. [4] in a thorough review of the current status on high-k

dielectrics, there are a group of main considerations that must be satisfied before insertion








of an alternate dielectric layer into silicon industrial processes will take place. In short,

there are a set of main criteria that must be satisfied for a material to satisfactorily

perform as a gate dielectric.

Permittivity and Barrier Height

First, the permittivity and barrier height must be taken into consideration. While

many scientists originally felt that a material with a K > 25 would be necessary, it was

later found that this may not be exactly true and that among other things, the barrier

height of the material must also be taken into consideration along with the dielectric

constant. An example of the band offsets for various high dielectric constant materials in

contact with silicon is shown in Figure 1-2 [5]. The best materials for consideration

should have a conduction band offset greater than -1 eV, because as barrier height of the

material decreases, there is also an exponential increase in leakage current as a result of

Schottky emission of electrons into the conduction band [1, 3]. Unfortunately, there

exists a general relationship where barrier height decreases with increasing dielectric

constant. A comparison of the band offsets for SiO2 (C = 3.9) and BaTiO3 (E > 2000)

clearly illustrates this point. What this means is that there is an optimization problem to

see which will have the larger effect.

Thermodynamic Stability

A second important consideration is the thermodynamic stability of the new dielectric

material when in direct contact with silicon. An important approach toward predicting

and understanding the relative stability of a particular three component system for device

applications can be explained through ternary phase diagrams [6]. Hubbard describes the

three main categories for phase diagrams as "SiO2 dominant," "no phase dominant," and

"metal oxide dominant." Each of these is shown in Figure 1-3 [6]. The metal oxide








dominant type is of interest in this study. As an example, a comparison of the Zr-Si-O

phase diagram (metal oxide dominant) versus the Ta-Si-O (Si02 dominant) can reveal a

great deal of information. Inspection of the Zr-Si-O phase diagram in Figure 1-3 (C)

shows tie lines that directly connect ZrO2 and Si. This indicates stable ternary

compounds (i.e., ZrO2 should be stable on Si). Though sufficient data are unavailable for

the Hf-Si-O system, proximity on the periodic table and in similarities noted between Hf

and Zr indicate that the same argument should hold true for the stability of HfD2 on Si.

On the other hand, inspection of the Ta (or Ti) phase diagram in Figure 1-3 (A or B) does

not have any tie lines connecting the compound of interest to Si, thus indicating a lack of

stable ternary compounds. The stability of the systems, as predicted by these ties lines, is

of paramount importance since it suggests that control of the dielectric/Si interface may

be possible. However, it is important to keep in mind that even though the phase

diagrams indicate stability in certain compounds over others, the phase diagrams are

generated for equilibrium conditions. In fact, most of the deposition techniques do not

occur under equilibrium conditions. This is an important difference to note since there

have been many reports about systems that were predicted to have the thermodynamic

considerations under control that still exhibit unwanted interfacial layers [7-10].

Interface Quality

The third criterion that must be considered is the interface quality. This is of

particular importance because an interface of poor quality will result in degradation of

device performance. Imperfect bonding will cause under or overconstrained states that

have a direct correlation to the leakage current and electron channel mobility and lead to

degraded performance. In addition, a particularly rough interface can have adverse

effects on device performance with respect to poor channel mobility characteristics.








Film Microstructure

An additional criterion which has been thoroughly analyzed is thefilm microstructure.

There is still much debate on whether a polycrystalline, single crystalline, or amorphous

film will work best. It has been argued that a polycrystalline setup is subject to high

leakage currents due to nonstoichiometries that occur along the grain boundaries that act

as leakage paths. This would seem to infer that a single crystal structure would be an

ideal solution to this problem; however, the equipment typically used to grow single

crystalline films is very expensive and not readily adaptable to a large scale industrial

atmosphere. Furthermore, if it is possible to create a single crystal interface, it is very

difficult to maintain the integrity of the single crystalline structure in subsequent thermal

processing steps. One may also argue that the amorphous structure of SiO2 that has been

used so successfully for so many years would be ideal. This, however, also runs into

problems since many of the high-k dielectric alternatives are not naturally in an

amorphous state and quickly convert to a polycrystalline state when subsequent heat

treatments of the layer are conducted. This particular concern has been an issue of great

debate since many groups have generated decent data for each of the possibilities [11-13].

Gate Compatibility

Next, gate compatibility must be taken into consideration. Namely, the dielectric has

to be compatible with the current industry standard, which is a highly doped

polycrystalline silicon (poly-Si) gate. This proves to be a much greater task than

immediately apparent. There are issues associated with the diffusion of the dopant

species into the gate dielectric materials, especially such materials as ZrO2 and Hf02 that

are reported to have rather open structures [2, 5]. The diffusion of the dopant ions into the

dielectric may cause deleterious effects on the dielectric properties as well as create areas








in the gate where increased resistances are encountered. There is a possibility of solving

this issue by replacing the poly-Si with a metal gate, but there are certain problems

associated with that as well. First, the poly-Si gate currently allows tuning of the dopant

levels to correlate to desired threshold voltages for both nMOS and pMOS devices.

Switching to a metal means that this will no longer be an option, so either a midgap metal

or two different metals with appropriate work functions will need to be implemented. It

turns out that the midgap metal appears to be potentially limiting due to future predictions

of the power requirements versus threshold voltages related to the midgap metal being to

large and resulting difficulties turning the devices on. Midgap work function metal gate

systems have also been predicted to be unable to provide a performance improvement

worthy of the added process complexity [4]. This leaves the option of introducing two

different metals into the CMOS system. Though this would require a bit of additional

work to fully investigate the associated issues, this does appear to be a viable option for

future devices.

Process Compatibility

Next, it is important to ensure that the dielectric does have good process compatibility.

Simply stated, the microelectronics industry is tooled for large scale fabrication of Si02

on silicon devices. It is easily conceivable that the dielectric that most easily slips into

the current complex industrial process or requires the fewest number of modifications

will be chosen. This is regardless of its status in other areas so long as continued device

performance can still be achieved.

Reliability

Finally, the reliability of devices must be proven. Time dependent dielectric

breakdown studies where higher voltages stress devices to breakdown conditions in








reasonable time periods so that lifetime estimates for actual working conditions may be

calculated must be conducted. Once done, the lifetime calculations must fit into the

stringent ten year lifetime policy set up as the industry standard. To date, few reports

have been generated of this nature and additional work must still be conducted.

Excimer Laser Basics
Though there are many techniques available for the deposition of thin oxide films onto

a substrate, pulsed laser deposition has several key advantages that make it an ideal

research tool. Stoichiometric transfer of molecules from the target to the substrate,

effective rapid prototyping of many different materials, and a wide range of applications

are foremost on this list.

The ablation process itself is characterized by an input of energy from the laser to a

given target material. Subsequently, the energy distribution shown in Figure 1-4 [14]

occurs whereby the total energy for the system is represented as

E=Er+Ep+Ed+ Ec (1-1)

where E is the laser energy, Er the reflected energy, Ep the energy of the plasma plume,

Ed the energy of disintegration due to particles blown off by the vapor-gas jet, and Ec the

energy absorbed by the cavity wall. There are additional factors related to the laser

energy that play an important role in surface response to pulse energy. For a given

material, a combination of pulse energy and ablation threshold energy determines if

ablation will occur, and to what level. It should be apparent that higher pulse energies

result in an increasing level of ablation. If the pulse energy is less than the ablation

threshold, material will not be physically removed from the surface (i.e., Ep and Ed tend

to zero), but that energy may still be absorbed by the cavity wall (Ec) for laser annealing








experiments. All experimentation in this study was carried out at an energy value much

greater than the ablation threshold.

Ultraviolet Lamp Basics

Ultraviolet Excimer Radiation Sources

Over the past decade, numerous research teams have placed a considerable amount of

effort and resources into the development of ultraviolet (UV) radiation sources that can

be added to already existing processes related to the deposition and post deposition

treatments of thin films. UV systems such as hollow cathode discharges [15, 16],

constricted glow discharges [17], low pressure glow discharge from Hg lamps [18-22],

and excimer lamps [15, 16, 23-35] have been used as additions to a variety of deposition

techniques. Much research has been conducted with excimer lamps powered by radio

frequency power supplies [23-29], but reports of microwave direct current magnetron

power supplies have also been reported [36]. Radio frequency driven excimer based

silent barrier discharge lamps have been the main contributors in a large part due to

efforts by Boyd et al. Experiments include photo-induced deposition of silicon

dielectrics such as silicon oxide, silicon nitride, and silicon oxynitride as well as direct

oxidation of both Si and Ge substrates, and direct nitridation of Si surfaces [23, 24, 29].

High-k dielectric materials such as tantalum pentoxide (Ta205) have been deposited via a

photo-assisted CVD process [26, 27] whereby absorbtion of the highly energetic photons

emitted by the UV source results in the direct photodissociation of the precursor

materials. Along similar lines, post deposition excimer UV annealing of the as-deposited

samples has been conducted, compared, and thoroughly analyzed [26, 27]. Additionally,

the decomposition of palladium acetate films for subsequent electrodeless deposition of

metals [37, 38], surface modification of polymeric materials [39], and photo-assisted








conversion ofpolyamic acid to form low-k dielectric polymeric polyimide [40] have also

been explored. The majority of this work was conducted using excimer lamps. However

several early experiments were conducted with a low pressure glow discharge Hg lamp

[41] that has served as a useful tool for comparison in more recent excimer studies.

Other groups have also investigated a variety of other UV radiation sources with

respect to physical design and mechanisms for UV emission [15-17, 30-35]. Many of

these are novel designs, but some are available from manufacturers (especially low

pressure Hg lamps), and are discussed by the respective authors on a case by case basis.

Deposition of silicon nitride on silicon by a low pressure Hg lamp [35], deposition of

silicon nitride on III-V materials via a highly controlled photo-CVD process [19], and

finally, the photolithic CVD of silicon dioxide utilizing an USHIO brand head on Xe

excimer lamp [35] have also been pursued. Furthermore, Imai et al. [42] have looked

into the densification of sol-gel films such as silicon dioxide and titanium dioxide by

ultraviolet irradiation.

Silent Barrier Discharge Excimer Radiation

Since an in-house version of an excimer lamp was designed, built, and included in

portions of the experimentation as an excimer UV radiation source, it is useful to look at

a few of the properties associated with silent barrier discharges which seem to make this

the best current option for a radiation source. First, with respect to other options

available on the market, such as low pressure Hg lamps, the option of a Xe excimer lamp

based on silent barrier discharge appears to be a superior option in several respects. The

initial advantage lies in the power capabilities of the Xe lamp over the Hg lamp.

Reported values for the Xe lamps range from as little as 10 mW/cm2 to as great as 200

mW/cm2 [24,31,35, 37,43]. In comparison to low pressure Hg lamps, reported values








are less than 10 mW/cm2 [28]. Intensities have been measured by a variety of methods,

but commonly chemical actinometry or sodium salicylate scintillators coupled with

monochromators have been used [28, 30, 36]. More recently, Ushio and Hamamatsu

have made solid state photosensitive detectors for specific vacuum ultraviolet

measurements.

The reason that such high intensities may be achieved has to do with the physics

behind the generation of a silent barrier discharge. Using xenon as an example, the gas

undergoes an excitation as a response to a radio frequency signal.

Xe + e -+ Xe (1-2)

Xe* +Xe+ Xe -+ Xe (1-3)

Xe; -* Xe + Xe + h v(1 72nm) (1-4)

The emission of radiation occurs in one of thousands ofmicrodischarges that result as

a function of radio frequency stimulus. As the sinusoidal oscillation of the voltage

occurs, microdischarges may occur when a particular value for the voltage is achieved.

This microdischarge remains until the change in voltage with respect to time is zero (i.e.,

dv/dt =0). This is shown graphically in Figure 1-5 [44].

Clearly, it is advantageous to have a higher flux of photons due to increased ability to

dissociate various ambient gases (02), or precursor gases. Additionally, the greater

photon flux may be advantageous with respect to the photonic effects, as the photons

bombard the substrate and subsequently the growing film. The Xe excimer lamp has

additional attractive features. First, the lamps are relatively inexpensive and easy to

fabricate in comparison to other photo assisted processes where lasers or ion beams may

be required [42]. The Xe lamp may also be easily adapted to very large areas by setting








up arrays of the lamps. This is particularly attractive for large scale applications in

industry in the future if successful lab results support implementation. Additionally, the

lamps are compatible with both atmospheric and vacuum operation. Xe excimers also

exhibit narrow full with at half maximum (FWHM) values in single sharp emission

spectra [23]. This is in contrast to the low pressure Hg lamps where a majority of the

emitted radiation is actually occurring in a range above 200 nm which is above our range

of interest. Both types of the emission spectra can be seen in Figure 1-6 [45]. To add to

the low FWHM values, excimer lamps have a wide range of tunability with respect to the

desired wavelength of radiation emitted. By simply changing the gas in the discharge

region of the lamp, different wavelengths may easily be generated. This is illustrated in

Table 1-2.

As mentioned previously, the lamp design that Boyd, in conjunction with Kogelschatz,

has chosen to use has been developed based off of United States patent 4,837,484 dating

back to 1989 [46]. In this patent, a fairly detailed description of an excimer lamp design

based off of silent barrier discharge is described and several variations are presented. In

this work, reference is also made to "prior art" in the Soviet journal Zhurnal Prikladnoi

Spektroskopii in a publication entitled, "Vacuum-ultraviolet Lamps with a Barrier

Discharge in Inert Gases." From these, we have also made an in house version of the

lamp.

Materials and Properties

As identified in the literature, there are numerous options for high-k dielectric

materials. Possibilities include tantalum pentoxide (Ta2Os), titanium oxide (TiO2),

cerium oxide (CeO2), zirconium dioxide (ZrO2), yttrium oxide (Y203), hafnium oxide








Table 1-2 Different wavelengths possible as a function of rare gas or rare gas halide
mixture used for excimer decomposition.
Excimer Complex Wavelength (nm) UV Range
Ar 126
Kr2* 146
F2* 158
ArBr* 165
Xe2* 172 VUV
ArCl* 175
KrI* 190
ArF* 193
KrBr* 207
KrCI* 222
KrF8 248 UV-C
XeI* 253
C12* 259
XeBr* 283
Br* 289 UV-B
XeCl* 308
12 342 UV-A
XeF* 351__________

(HfO2), aluminum oxide (A1203), and barium strontium titanate (Bao.sSro.sTiO3). As

mentioned earlier, it is important to consider the main criteria associated with selecting a

material. The main criteria that need to be taken into consideration for initial material

consideration are permittivity, barrier height, and thermodynamic stability. As seen in

Table 1-3, there are many options that are suitable for our investigation.

Ta205, TiO2, and BST all lack a thermodynamic stability in direct contact with Si.

This can immediately eliminate them from consideration as MOS candidates. However,

BST will be investigated due to its extremely large permittivity and previous experiments

that suggest it may be a feasible material in light of certain findings to be explained later.

From the list of other remaining materials, it is only a matter of selecting materials that

are predicted to fulfill the other criteria. Input from industrial sources and extensive

research conducted on these materials suggest that Y203, ZrO2, and HfO2 are excellent








Table 1-3 Various properties ofhigh-k oxide materials
Oxide Dielectric Conduction Density Melting Stability in
Material Constant Band Offset (g/cm3) Point (C) Contact with
(eV) Silicon
A1203 9.3 2.8 3.97 2054 YES
BaSrosTio.503 80-3600 -0.1-0.1 6.02 1625 NO
CeO2 7 --- 7.65 2400 YES
HfO2 -25 1.5 9.68 2774 YES
Ta205 24-65 0.3 8.20 1785 NO
TiO2 80-170 --- 4.23 1843 NO
Y203 10 2.3 5.03 2439 YES
ZrO2 -25 1.4 5.68 2710 YES

candidates. These, along with BST, have been used for various portions of the studies.

Motivation

Intense activity in the microelectronics field to solve this problem is currently

underway. Several different approaches including new innovative device architecture

designs (e.g., vertical structures and double gate planar transistors [4]), alternative gate

oxides, and new process integration have all been proposed to solve this problem. To

date, new device architectures are still under development and not ready to be

implemented into full scale production. The possibility of moving the deposition of the

final gate dielectric to the post heat treatment portion of the CMOS process is a daunting

task with respect to companies adding to the already existing infrastructures. The option

whereby the gate dielectric is replaced with a new dielectric material of higher

permittivity has been pursued by many research teams [8, 9,47-49]. According to the

equations that govern metal oxide semiconductor (MOS) technology, if a dielectric

material with a higher dielectric constant were substituted for the current Si02 oxide, a

thicker layer could be synthesized while still maintaining a capacitance per unit area that

is equivalent to a very thin Si02 layer. This effect can be seen in the equation








high
thigh-k -k (1-5)


where t is thickness and K is the dielectric constant of the respective high-k dielectric and

the standard dielectric to be replaced. Another commonly referred to value is the

equivalent oxide thickness (EOT) and signifies the thickness an equivalent SiO2 layer

would be if in fact the layer were SiO2. This EOT value is paramount for research teams

that desire to create a high-k gate stack that will be used in future MOS devices. This is

because it is of no use to generate a layer that has an EOT thicker than if one were to just

use SiO2 in the first place. An additional equation that is easier to use to determine EOT

when capacitance and gate area are known is

EOT = 3.9xgc xA (1-6)
C
CO^-y (1-6)


where 3.9 is the dielectric constant of a high quality SiO2, co is the permittivity of free

space (8.854x10"12 F/m), A is the area of the gate, and C is the capacitance measured on

the meter. This is simply a reorganized version of the more general equation for the

capacitance of a MOS capacitor, where knowledge of any three of the four unknowns

allows for calculation of the fourth

t =(1-7)
t

where all values are the same as above and e is the dielectric constant of the high-k

dielectric.

In theory, insertion of an alternative high-k dielectric layer is an attractive option, but

in practice very difficult to achieve. The current SiO2 dielectric layer for Si functions

nearly ideally. Si is unreceptive to having that layer stripped and subsequent alternate








layers deposited in its place. There are problems with unwanted interfacial layers, which

form during the deposition of the alternate dielectric layer, such as SiOx,, or silicates. The

formation of an interfacial layer has the ability to quickly nullify any of the beneficial

effects of an alternative high-k layer. This is so because it changes the equivalent

electrical circuit that would describe the MOS capacitor from a single capacitor system to

a double capacitor system. The new system has a capacitance associated with the high

dielectric constant material in series with a capacitance associated with the low dielectric

constant material. This is then expressed as an overall capacitance by the following

equation:
1 1 1
1 = + 1 (1-8)
C Total C High-k C Low-k

Since the total capacitance is what would be the output on a measurement meter, a

combination of this equation and equation 1-7 above, would allow for determination of

the impact from each individual capacitance associated with both the high and low-k

material. It should be easy to envision the desire to then apply these results a layer

without any interfacial layer so that the total capacitance measured is 100% from the

high-k layer with an end result of a much smaller EOT.

If it is possible to eliminate the interfacial layer, there are still problems associated

with unacceptable defect levels in the oxide and at the oxide/semiconductor interface.

This combination of issues has prohibited the generation of high enough quality layers

for viable substitution.

In this research project, several of the more promising dielectric materials available

have been selected and an attempt will be made to create a MOS capacitor with an

alternate high-k material substituted in for the SiO2. The objective of this research is not








to generate an alternate high-k MOS stack with an extraordinarily low EOT, but rather

study the role that oxygen has with respect to the interfacial region. That is, if a low

dielectric constant interfacial layer forms, what is its chemical nature, and if oxygen took

part in the formation, what were possible sources for the oxygen. Additionally, high

intensity ultraviolet radiation sources will be added (during deposition and post

deposition processes) to investigate the role of ultraviolet radiation as it applies to

changes it causes in dry oxygen systems. The radiation used in in-situ deposition

processes is supplied by an array of low pressure mercury lamps, while post deposition

annealing radiation is supplied by a xenon excimer ultraviolet radiation source. It will be

shown that deep ultraviolet radiation has a definitive role during each of the processing

steps and that it can be an effective way to alter device properties such as structural,

chemical and electrical characteristics.

Oxygenation of Films

Numerous reports have claimed a direct connection of the leakage current of alternate

high-k dielectric materials to the amount of oxygen vacancies associated with the grown

film [50-53]. It is also well known that while pulsed laser deposition is an excellent

technique for the stoichiometric transfer of materials to the growing surface, like many

deposition techniques, there is typically also an oxygen deficiency associated with the

films. Traditionally, these films have undergone post deposition 02 treatments to help

create more stoichiometric films and reduce the number of oxygen vacancies [54].

However, considerable effort has been placed on analyzing the effect of UV radiation

as a method for creating more reactive oxygen species that will more effectively create

stoichiometric structures and reduce oxygen vacancies. When radiation sources were

added to conventional systems, photo-assisted growth of SiO2 on silicon [20, 25, 29]








showed improvement with respect to enhanced oxidation rates and overall better

properties, especially when the oxidations were conducted at temperatures much lower

than those used in conventional dry oxidation. The addition of the low pressure Hg lamp

to the system, which emits a majority of 254 nm radiation, but also a smaller percentage

of 185 nm radiation [41], was claimed to have beneficial effects for the following reason.

The radiation (especially the 185 nm portion) has the ability to convert normal dry

oxygen (02) in the reaction vessels into more reactive gaseous species. The species

generated include ozone (03) and other atomic oxygen species. This newly generated 03

then undergoes a dissociation back to 02 and atomic 0('D), ranging from several percent

to greater than 10% in 02 [41]. Boyd et al. claim that the atomic 0 has the ability to

move more easily through the growing SiO2 matrix which enables it to reach the Si

interface more readily for enhanced growth rates. It will also combine with defects that

occur during normal growth of Si02 resulting in better stoichiometric higher quality

films.

According to later studies by Zhang et al, with photo-oxidation of silicon using a

much higher intensity xenon excimer lamp, the 02 in the system follows the following

scheme. The bond energy of 02 is known to be close to 5.1 eV and the energy, as

calculated from the wavelength associated with Xe excimer emission, of the photons

emitted from the xenon lamp are -7.2 eV. This allows the following reaction to take

place.

02 + hv(X = 172 nm) -> 0(3p) + 0(lD) (1-9)

The oxygen atoms released can subsequently form ozone by the following reaction

02 + 0(3p) + M -+ 03 + M (M is a third body) (1-10)








where M is a third body participant and can be either a buffer gas, or in many cases, just

the oxygen that is already in the system. The ozone can then be decomposed by further

absorption of the vacuum ultraviolet light or thermally, thereby producing additional

excited state 'D oxygen atoms:

03 + hv( = 172nm) 02 + O('D) (1-11)

The O('D) atoms are claimed to be the main reason that enhancements are seen in

samples that are processed with UV radiation due to their ease of moving about the

matrices and/or their reactivity with defects inherent in the matrix. Additionally, the

effect of the UV excimer radiation has also been adjusted as time progressed with respect

to a second role of the UV radiation. This role is the effect of direct photonic

bombardment of the surfaces from the energetic photons being emitted from the lamp.

Wengenmair et al. [55] have shown in a study on TiN, where no oxygen is incorporated

into the experiment, that UV radiation still caused differences in as-deposited samples

versus UV deposited samples. This does serve as an indirect indication that photonic

bombardment is playing a role in the UV process since no other process conditions were

varied. Several different characterization techniques were used to confirm this

observation.






















OXIDE i /ELECTRODE





~CHANNEL-4 LJ
C---A-N-NE-L^----
p )- TYPE


BS
(SUBSTRATE BIAS)

Figure I-1 Schematic of a typical MOSFET [1]. The gate, insulator, and silicon form the
metal oxide semiconductor capacitor portion of a MOSFET















6

4
3.5I
2.4 2.8
2 L 2.4 0.3 0.8 11.4 115 28 1.3 11-5
00.1 I

1.8 2.3
3.0 31 4 3.3 3.4
-2 4.4 1 13433 34 .9 3.6 3.4
4.9
B4 TIO ZrO2 4
S1 804 T" B&S Hot Y2% ZrTis4
slot A6%
-8

Figure 1-2 Calculated conduction and valence band offsets for various perspective
alternative dielectric materials on Si [5].








0 0

AAA
o102 M01 0so2



M P~k Mi Si M hAi7 AVI- Si
(a) o (b)
)x S102

;MOI ^-SLiO2

M hWiy Ask Si
(C)
Figure 1-3 Ternary phase diagrams illustrating a) "SiO2 dominant," b) "no phase
dominant," and c) "metal oxide dominant" systems. System c represents a stable
condition for a metal oxide when in direct contact with silicon [6]











































Figure 1-4 Schematic of total energy associated with laser ablation of a surface [15].



















v




I i I i i ,









HS H

It
U i ii ii e a
I B I Ii \ I
II I I I B
I' B I I I B I




II I; Ii II
II II Ii-




H IM I *I I
I !B" -
B!II




I I I I I I I I




I I I I I I I I


Figure 1-5 Sinusoidal voltage versus time plot indicating conditions where silent barrier
microdischarges may occur [44].












Relative Spectral Energy Distribution







0 1 -A
S (A),

2 -i




E~Il
o i *l E



0 *' '* -I -


100 200 300
Wavelength


100 200 3M
Wavelength


400 500
(Nanometers)


400 500
(Nanometers)


Figure 1-6 Spectral emission characteristics for A) low pressure mercury lamp and B)
xenon excimer lamp. Plots adapted from [45]













CHAPTER 2
EXPERIMENTAL PROCEDURES

System Geometries
There are four main components used for experimentation. This includes the laser

used for the laser ablation process, a traditional pulsed laser deposition (PLD) system that

has been modified to an ultraviolet-assisted PLD (UVPLD) system and a homemade

vacuum system equipped with a silent barrier discharge excimer lamp that is used for

post deposition annealing of grown high-k dielectrics. The excimer lamp used for the

post deposition system will be discussed in detail.

Laser System

A Lambda Physik LPX 305 i KrF excimer laser (s/n 9412 E 4188) was used for all

laser ablation portions of the experimentation. This particular laser works in a pulsed

mode delivering 25 nanosecond duration square wave shaped pulses at frequencies

ranging from 1 50 Hz and output energies from 10 1100 mJ (fluence 0-3 J/cm2). The

computer is triggered by either an "internal" computer or from a remote "external"

computer.

Excimer lasers work on the principle of stimulated emission of photons in a cavity

where Kr, F, and a buffer gas are all contained. The Kr and F are elevated into excited

states by application of very high voltages (16 -21 kV) so that excited KrF* complexes

form and upon their decay give off single wavelength 248 nm radiation. As a result of

specific cavity design, conditions exist whereby stimulated emission of coherent radiation








occurs and subsequent amplified high energy laser output in a pulsed mode can be

obtained.

The laser radiation emitted from the cavity is directed through a series of lenses and an

aperture until it finally impinges the sample. For the PLD system, the laser beam first

traverses a collimation lens in an attempt to keep the radiation from diverging due to

scattering as it passes through the ambient air. Immediately after the collimating lens, a 1

x 2 cm aperture is used to cut away the more diffuse lower energy edges from the

incident beam. The beam then progresses into the chamber through an excimer grade

fused silica window and then through a focusing optic with a focal length of 25 cm.

Finally, a 2 mm thick quartz plate is used to protect the optic from material ablated from

the target. Using a Gentec Sun Series EM1 energy meter (s/n 86052), the energy inside

the chamber was determined after the pulsed laser beam had passed through all the

optical components (without the focusing lens). An additional 10% of that was

subtracted to take into account for the final focusing optic. From this value, divided by

the area of the final spot size on the target, a precise calculation of the laser fluence was

possible.

The ablation spot on the target had dimensions of 2 x 5 mm in a nearly perfect

representation of the rectangular aperture used earlier in the beam path. This type of spot

was achieved by adjusting the focusing lens position to a local greater than the focal point

of 25 cm to a position ~35 cm, which coincided with the image plane of the lens.

Because the aperture was used, imaging of it was possible and a spot with a highly

uniform energy density was created. It was found that while ablation at the focal point

resulted in a smaller spot size corresponding to a greater fluence, this was unnecessary








and detrimental to the setup. First, it was unnecessary because the threshold value for

laser ablation of oxide materials frequently does not require high energy densities, as was

the case in our experimentation. Second, taking the beam to the focal point resulted in a

highly irregular spot geometry which also consisted of two additional satellite peaks to

either side of the main ablation spot. The main spot was characterized by a Gaussian

type energy distribution while the satellite peaks were clearly of a different energy all

together. All samples grown in the PLD setup used this laser and optical setup.

UVPLD System

The pulsed laser deposition performed for this dissertation was done in a Neocera

brand vacuum system. The entire system with laser, but without computer control is

shown schematically in Figure 2-1. The system is a single chamber design that is

routinely backfilled with nitrogen to atmospheric pressure so samples may be mounted

and/or removed. It can easily reach vacuums of 1X10-6 Torr within an hour, 1X10"7 Torr

within twenty four hours, and 1X10-8 Torr with the addition of liquid nitrogen cooling to

the system. Vacuum is achieved via a Pfeiffer MD-4T oil free diaphragm roughing pump

and a Pfeiffer TMU 230 turbo pump. A calibrated Neocera brand stainless steel resistive

heater capable of 850C is mounted vertically in the chamber and used to controllably

heat and cool the substrate to and from the desired temperature. There is a computer

controlled multitarget carousel available for depositions of up to six different materials

for multilayer or superlattice experiments. An array of low pressure Hg lamps has been

added to the conventional PLD setup to convert it into a UVPLD apparatus. Ultrapure

gases may be added to the system through a highly sensitive Varian brand leak valve for

a wide range of deposition ambients and pressures.








Excimer Annealing System

An in house vacuum system, seen in Figure 2-2, was setup for the purpose of post

deposition annealing of samples. The system has the ability to reach high vacuum

(1X10"7 Torr) conditions via a Varian SD-450 two stage rotary vane roughing pump

using Fomblin vacuum pump fluid coupled with a Pfeiffer TPU 170 turbo pump. There

is precise atmospheric control via a highly sensitive Varian brand leak valve, and it is

equipped with an Excel Instruments stainless steel resistive heater capable of up to 850

C. The main feature of the system is an excimer lamp designed and built in-house that

has been added to the system. The lamp was setup in a through mode so that the

cylindrical quartz tubing of the lamp entered the vacuum chamber on one side through

vacuum feedthroughs, traversed the entire vacuum cavity and exited another vacuum

feedthrough out the other side. This is important in the design because it allows for

efficient water cooling of the lamp as well as vacuum compatibility. The system is

designed to accommodate full evacuation of essential portions of the excimer lamp (lx 10"

6 Torr) and then, through a gas manifold, precisely backfill the lamp to any desired

pressure up to atmospheric pressure with any gas of choice.

Excimer Lamp Design

The lamp design is based off of United States patent 4,837,484 (1989) and similar

designs employed by Boyd et al. in London, England. The basic design of the lamp, as

seen in Figure 2-3, entails the fusion of a pair of quartz tubes. The tubes are made from

ultrahigh purity quartz (Suprasil) produced by Heraeus, and is the only quartz in the

world capable of passing -80% of the excimer ultraviolet radiation emitted by xenon

complexes (172 rnm). Standard high quality quartz will not pass any of the radiation at

this wavelength. The quartz tubes are of two diameters so that one longer tube can fit








concentrically within the other, thus forming a gap. The ends of the shorter tube are

fused to the longer tube in a way such that a constant gap along the length is maintained.

An additional third tube (the gas inlet in Figure 2-3) must also be added to the tubes so

that there is an access port to the gap. This tube will later be used as a port for pulling a

high vacuum on the gap, and eventually for backfilling of any of a variety of gases

capable of excimer decomposition. Table 1-2 shows a list of possible gases that may be

used in a given lamp and the radiation wavelength they emit. The outer tube is then

covered by a metallic mesh. The finer the mesh the better since there will be less

obstruction for exiting radiation and therefore result in greater energy densities. This

mesh is to be grounded. When mounted, the inside of the inner tube will serve two

purposes. First, deionized water will flow through the system at all times during

operation as an efficient cooling mechanism. As the power input into the system

increases, the cooling water plays an increasing important role. Second, a metal wire

capable of carrying high powers will be spiraled along the interior of the tube. This wire

is connected to a radio frequency (RF) power supply (T & C Conversions, Inc.), that

generates up to a 200 watt load to induce excimer decomposition. Figure 2-4 shows the

microdischarges of the ignited excimer lamp located in the center vacuum portion of the

high vacuum system.

Experimental Setups and Samples

There are three main areas that comprise the work discussed in this dissertation. As a

result, it is important to delineate the various samples that were produced or modified in

each stage, and discuss any preparations or modifications that were completed.








Interfacial Layer Formation

In this initial portion of the experimentation, the characteristics of an interfacial layer

were investigated. Ultrathin ZrO2 samples were deposited in a conventional PLD

chamber and exposed to different ambient temperatures in a post deposition anneal.

Vacuum, helium, and oxygen were used as annealing ambient gases. The main goal for

this investigation was to try to determine the source or sources of oxygen that may exist

during a typical deposition and, in particular, how they impact the characteristics of an

unwanted interfacial layer. The conditions for deposition and post deposition heat

treatments are shown in Table 2-1. The samples were investigated by variable angle

spectroscopic ellipsometry, x-ray reflectivity, x-ray photoelectron spectroscopy, and

Fourier transform infrared spectroscopy. These techniques will be discussed later in this

chapter.



Table 2-1 Conditions for growth and post deposition heat treatments of thin ZrO2 films
Sample Post Deposition Anneal Atmosphere
1 No Anneal
2 Vacuum (6 x10-6 Torr)
3 Helium (600 Torr)
4 Oxygen (600 Torr)

In-Situ Ultraviolet PLD

For this experimentation, a conventional PLD system has been fitted with an array of

Hg lamps. The lamps emitted radiation in the ultraviolet and deep ultraviolet regions.

That is, a majority of the radiation was emitted at ~256 nm, and a much smaller portion

(~-10%) at ~ 185 nm. The 185 nm radiation is responsible for the conversion of oxygen

into ozone and other atomic oxygen species. Once the lamps were added to the system,

Y203 and Bao.sSro.sTiO3 (BST) thin films were deposited. An optimum pressure of








ambient oxygen during ablation was determined for each of the materials. The

optimization was done by comparing the full width at half maximum (FWHM) of a given

x-ray diffraction peak of films deposited at different pressures. Table 2-2 shows the

specific oxygen conditions used for the depositions.



Table 2-2 Conditions for in-situ ultraviolet annealing with an Hg lamp array during
growth of BST and Y203 thin films.
~~____~~___Oxygen Pressure (mTorr) Ultraviolet Radiation
Barium Strontium Titanate_______________________
1 20 NO
2 10 YES
Yttrium Oxide_________________________
1 10 NO
2 4 YES

Once samples were obtained, they were characterized by variable angle spectroscopic

ellipsometry, x-ray reflectivity, x-ray diffraction (glancing incidence x-ray diffraction),

atomic force microscopy, transmission electron microscopy, current-voltage, capacitance

voltage, and x-ray photoelectron spectroscopy.

Post Deposition Ultraviolet Annealing

In the final portion of experimentation, an array of hafnium dioxide (HfO2) samples

underwent a post-deposition excimer annealing step in the system shown in Figure 2-2.

These films were deposited by a chemical vapor deposition technique by the Motorola

Company on a 200mm p-type silicon wafer. The wafer was broken into smaller pieces

and then placed in the excimer annealing chamber. The main difference with the excimer

radiation compared to Hg ultraviolet radiation is that the emission in the ultraviolet

region is a focused single sharp emission peak at 172 nm. Therefore, all of the radiation

is acting to convert the dry oxygen into ozone and atomic oxygen. Table 2-3 shows the

conditions for the post deposition anneals.








Table 2-3 Conditions for pos deposition excimer anneals of HfO2 thin films
Anneal Temperature C Excimer Ultraviolet
Radiation
1 No Anneal---
2 300 NO
3 300 YES
4 475 NO
5 475 YES
6 600 NO
7 __600 YES


One set of samples was annealed in dry oxygen at temperatures of 300, 475, and 600C.

A second set of samples was grown in the presence of dry oxygen and excimer UV

radiation, again at 300,475, and 600C. Both systems were at an oxygen pressure of 5

mTorr. An as-deposited control sample from the Motorola wafer that did not undergo

any post deposition annealing was also analyzed. Upon annealing, the samples were

tested by variable angel spectroscopic ellipsometry, x-ray reflectivity, x-ray diffraction

(glancing incidence x-ray diffraction), atomic force microscopy, and capacitance voltage

measurements.

Experimental Characterization Techniques

Several measurement techniques have been used to illuminate the differences seen

between the samples that underwent radiation treatments versus those that did not. The

properties of the films that were examined included structural, chemical, and electrical

properties. Additional information is provided for the electrical characterization in the

appendix due to its importance with respect to the ultimate goal of creating a better

transistor.

Variable Angle Spectroscopic Ellipsometry

VASE is a very powerful, simple, and nondestructive means for determination of

thickness in multilayered structures as well as optical properties such as index of








refraction and extinction coefficient. The optimum thickness range for ellipsometry is

between 1-1000 nm and is well suited to the flat planar materials with low surface

roughnesses generated for this dissertation. All measurements were made with a J. A.

Woollamn brand M-88 variable angle ellipsometer, with the angle of incidence set to 75.

This angle is optimum for semiconductor and microelectronic thin films. In this

technique, the sample is subjected to a collimated beam of light from a xenon lamp. The

light is adjusted so there is a known polarization state as is leaves the polarizer. After the

beam of know polarization interacts with the sample, it will then exhibit a new

polarization state. This new polarization state is interpreted by an analyzer, allowing a

determination of the ratio of the complex Fresnel reflection coefficients and ultimately

the psi and delta functions that are related to the properties of the sample. This method

then requires the experimentally determined data to be compared to data from a

theoretical model that is adjusted until a "best fit" can be found between the two. This

does indicate that the better the theoretical model used for fitting, the closer the answer

will be to the correct values. Since there is also the possibility that several different

theoretical models fit well to one set of experimental data and may produce equivalently

good fits, it is up to the user to evaluate and assimilate all information about the sample to

develop a physically realistic theoretical model. It is therefore useful to make

measurements at optimum wavelength and angle of incidence combinations to keep the

assumed theoretical model simple yet realistic.

X-ray Reflectivity

X-ray reflectivity (XRR) measurements were made with the assistance of a Philips

brand MRD X'Pert system. Data generated from an x-ray reflectivity plot include

thickness, roughness, and density of a given material. Figure 2-5 is an example of a








typical plot showing how the different features of an acquired spectrum relate to the

various data that can be extracted from the spectrum. Similar to VASE, the technique is

well suited to smooth flat samples with low surface roughnesses and is most sensitive to

samples in the 2-400 nm thickness range. This particular x-ray based analysis technique

works by impinging the sample with x-rays over an array of angles ranging from slightly

sub-critical angles to the first few degrees after the critical angle. The critical angle, also

known as Brewster's angle, corresponds to the point at which x-rays change from total

reflection off the surface to absorption and interaction with the sample as defined by

Snell's law. The retrieved data results from monitoring the intensity of the x-ray beam

reflected from various interfaces relative to the incident beam as a function of the

scattering transfer vector. Fresnel equations will then describe the interaction of the x-

rays with one another and with interfaces encountered in the structure. The constructive

or destructive nature of the x-rays at a given angle results in generation of a fringe

pattern. Similar to VASE, this pattern is compared to a user input model that

incorporates thickness, roughness, density, and absorption parameters. Again, the better

the input model, the more accurately the results will match the real physical structure.

X-ray Diffraction and Glancing Incidence X-ray Diffraction

XRD is most commonly used to identify crystalline phases and measure the structural

properties of the phases such as strain, grain size, epitaxial quality, phase composition,

preferred orientation, and defect structure. Additionally, the technique is noncontact and

nondestructive and will produce spectra for films as little as 50A in thickness. The basic

setup of the diffraction process is seen in Figure 2-6. The premise of this relatively

simple characterization tool is the generation of diffraction peaks due to constructive and

destructive interference from x-rays scattered by the atomic planes in a crystal. The








condition for constructive interference from planes with a given spacing is given by

Bragg's Law:

X = 2dhkisinOhkl (2-1)

where X is the wavelength of the incident x-ray radiation (typically Cu Ka), dhki is the

d-spacing between (hkl) planes, and 0hkI is the angle between the atomic plane and the

incidence direction for the x-rays. For single crystal films, there is only one specimen

orientation that will satisfy the conditions for Bragg diffraction, however, with thin films

that are polycrystalline, fiber textured, or exhibit preferred orientations, several families

of planes may contribute to a diffraction system. X-ray diffraction data for this

dissertation was obtained with a Philips MRD diffraction system. Once an x-ray

diffraction pattern is generated, positive phase identification can be achieved by

comparing measured d-spacing from the diffraction pattern (and their integrated

intensities) to a known JCPDS powder diffraction standard.

In certain cases, it is not possible to get any type of diffraction pattern from a sample

because the sample is either too thin or the peaks of interest are being masked by a much

more intense peak that comes from the single crystal substrate. In this instance, a special

mode of x-ray diffraction known as glancing incidence x-ray diffraction may be used. In

this setup, the incident angle of the x-ray system is fixed at a small value (typically from

0.250-1.000) and the receiving slit is allowed to scan through a typical range for a

conventional XRD 20 scan. As a result, only planes that satisfy the Bragg condition with

the additional constraint in place will produce peaks. In a polycrystalline sample with

many orientations, this will still generate a representative x-ray diffraction plot, but with

much higher surface sensitivity and under proper conditions, without any masking peaks








from the silicon substrate. This method proved to be beneficial for several samples in

this dissertation due to the low thicknesses used in different portions of the

experimentation.

X-ray Photoelectron Spectroscopy

XPS spectra were collected using a Perkin Elmer 5100 installation using Mg Ka

radiation at a takeoff angle of 90. This technique is clearly one of the most broadly

applicable general surface analysis techniques due to its high surface sensitivity and

quantitative chemical state analysis capabilities. Elemental detection includes all

elements except hydrogen and helium. Again, the smooth flat samples measured in this

dissertation are optimum for this analysis technique. In the XPS process, high energy

photons can ionize atoms to produce free electrons known as photoelectrons. The kinetic

energy (KE) of the electron depends on the energy of the photon by Einstein's

photoelectric law:

KE=hv-BE (2-2)

where hv is the energy of the incident photon and BE is the binding energy. In this

equation, hv is known, KE is measured, and BE is therefore the determined output. The

measured BE is specific to the atom concerned and thereby succinctly identifies the atom.

Figure 2-7 shows the photoelectron process with carbon as an example. While the Mg

Ka has sufficient energy (-1486.6 eV) to eject the innermost electrons from carbon, the

photons may also remove the 2s or 2p electrons. XPS data may be interpreted by the user

to give sensitive elemental and chemical state analysis.

Atomic Force Microscopy

Atomic force microscopy measurements were made with a Digital Instruments brand

Nanoscope III operating in tapping mode. This technique was chosen for its exceptional








ability to produce topographic images of a surface in all three dimensions at remarkably

high resolutions. If conditions are properly set, atomic resolution is attainable. This

technique is also perfectly suited to the insulating, low roughness samples created for this

dissertation. In an atomic force microscope, a sharp tip is mounted on a flexible

cantilever. When the tip comes into close proximity of a sample surface, van der Waal

forces repel the tip causing the cantilever to deflect. A piezoelectric scanner is

responsible for moving the cantilever/tip assembly along the surface of the sample, while

a laser reflecting off the end of the cantilever maps the topographical changes the

cantilever senses. This is shown schematically in Figure 2-8.

Fourier Transform Infrared Spectroscopy

This method is one of the few techniques that provides information about the chemical

bonding in a material, and is nondestructive. Here the goal is to determine changes in the

intensity of a beam of infrared radiation as a function as a function of wavelength or

frequency after it interacts with a sample. The FTIR used in these investigations is a

Nicloet MAGNA 760 equipped with potassium bromide (KBr) optics and operating in

transmission mode. The main feature is the ability to determine in a qualitative (and

quantitative) sense the types of bonds that are present in a thin film structure.

Electrical Characterization

A primary tool for indication of quality of thin film is the use of electrical

characterization techniques. After deposition or processing of thin films, metal oxide

semiconductor (MOS) devices were fabricated and measured. Typical preparation of the

film included the deposition of either gold (Au) or platinum (Pt) contacts via evaporation

or DC magnetron sputtering, respectively. In both cases, a mask with an array of circular

dots ranging from 25-500um was used to create dot arrays on the samples. The backside








contact was either evaporated Au or silver (Ag). In both cases, the backside of the wafer

was cleaned and the surface was abraded so that clean silicon, without any native silicon

dioxide, was present. It is of paramount importance to understand the consequences of

which type of metal is chosen depending on what dielectric is deposited and whether the

silicon substrate is n-type or p-type. If improper metals are chosen for a given setup,

band alignment conditions may exist whereby non-ohmic contacts are created within the

device itself. As an example, the backside metal contact on a p-type silicon wafer should

have a work function greater than that of the silicon. If these conditions are met, there

should be an ohmic contact, if not, the contact will be a rectifying Schottky contact. The

most recent generation of a MOS capacitor fabricated for this dissertation is shown in

Figure 2-9. After metallization of the front side contact (i.e., gate) was complete,

samples underwent heat treatments either in an AG Associates rapid thermal annealing

(RTA) furnace or in a conventional furnace. In both cases, in a forming gas atmosphere

(10% H2, balance N2) was utilized. Both current-voltage and capacitance-voltage

measurements were taken once the MOS capacitors were formed.

Current-Voltage Measurements

Once MOS devices were fabricated, a Keithley Instruments Inc., KI236 source

measurement unit (SMU) was used to measure the current flow through a device. The

236 SMU was attached to a black box probe station equipped with a pair of Signatone

Inc, micromanipulators. The micromanipulators were fitted with tungsten probes that

were milled to produce a fine -5 um tip. The output of the SMU was connected to the

micromanipulator in contact with the gate (Pt or Au) while the input was connected to the

backside contact (Ag or Au). This configuration is optimal for the determination of

current leakage pathways directly below the device being measured (i.e., it avoids stray








leakage paths). Determination of the leakage current is an essential first step in analyzing

an MOS device. Typically a current compliance threshold (a value that may not be

exceeded) of 100 nA is input into the measurement parameters. Then a direct current

bias sweep is conducted over a voltage range (usually negative to positive) and the

amount of current that passes through the MOS structure is monitored. Typically it is

best to start at a small voltage sweep range so that it is possible to determine if the device

is leaky without causing a large amount of bias induced defects. The main goal of the

leakage current measurement is to identify a high quality device that can be used for

capacitance voltage measurements and to determine if excessive leakage is present that

needs further investigation.

Capacitance-Voltage Measurement

Capacitance-voltage measurements serve as one of the most versatile and sensitive of

all electrical characterization techniques. It is the ultimate tool for determining discreet

differences in a MOS device that may serve as the final word in whether a given

processing condition has resulted in a high enough quality device to apply to MOSFET

applications. These measurements were carried out with a Kiethley Instruments Inc.

Win-82 measurement system. This system, as seen in Figure 2-10 is comprised of four

main components that work in unison. The Keithly 590 capacitance meter is used for

high frequency capacitance measurements at 100 kHz and 1 MHz. The Keithley 595

capacitor is used for simultaneous quasistatic low frequency measurements. The

Keithley 230 voltage source is used for static bias condition measurements. These three

devices are wired into the Keithley 5951 remote input coupler, which serves to filter the

device data to and from the various pieces of equipment. Due to its ability to give








detailed information about the quality of the MOS device, the Win-82 system will be

discussed in the appendix.

The output of a typical CV curve can be seen in Figure 2-11. There are several

important features that should be noted. First, there are three important regions with

respect to gate bias voltage to take into consideration, known as accumulation, depletion,

and inversion. The presence of the different regions is a result of the majority charge

carriers (e.g., holes in a p-type silicon wafer) in the semiconductor. When a negative bias

is applied to the gate electrode, positively charged holes are attracted from the

semiconductor bulk region to the oxide/semiconductor interface where they accumulate

(the accumulation region). The depletion region is generated when a gate is made less

negative and the reduced field across the oxide allows the charge at the interface to

diminish. As the sign on the voltage changes from a negative to a positive, majority

carriers are repelled from the interface creating an area depleted of majority carriers (the

depletion region). Finally, the inversion region is generated when the voltage becomes

very positive and the depletion width has increased to a point where other mechanisms

may become important. For example, in the depletion region, the product of the

concentration of electrons and hole (np) is much less than the square of the intrinsic

carrier concentration (n,2) and in this case, pair generation may occur and the subsequent

minority carriers may migrate to the interface. The result of this is prevention of further

depletion and a constant value for the capacitance. An additional possible scenario may

occur whereby insufficient time is allowed for pair generation in which case a model

called deep depletion will occur.








The high frequency measurement system has the ability to measure two different

frequencies and using Metrics ICS software, two different equivalent circuit models, seen

in Figure 2-12, to generate capacitance values. There are parallel and series models that

represent two different physical structures. The series model addresses a capacitor in

series with a resistance of some sort (possibly from the semiconductor). The equation

that describes this scenario is

Z=R+iX (2-3)

where Z is the impedance, R is the resistance, and X is the reactance. Additionally, the

parallel model addresses a capacitor in parallel with some sort of conductance (possibly

leakage through an ultrathin film). The equation that describes this scenario is

Y = G + iB (2-4)

where Y is the admittance, G is the conductance, and B is susceptance. Note that the

admittance, conductance, and susceptance are each the reciprocals of the impedance,

resistance, and reactance, respectively. The reactance and susceptance can then be

further described in a capacitive sense as:

X = 1 (2-5)
a)Cs

Y = aCp (2-6)

where w is the frequency of the setup and Cs and Cp are the capacitance when using the

series model and parallel model respectively. The net impedance of the equivalent series

and parallel circuits at a given frequency are equal, but the individual components are

not:

R + iX= (2-7)
G+iB








If there is a lossless circuit (i.e. R = 0 and G = 0) the Cs and Cp are equal. However,

since circuits do have losses, a dissipation factor is added to the system.

D= aCsR (2-8)


D= G (2-9)
C,,Cp

Through further numerical manipulation, it is determined that conversion from one

equivalent circuit model to the other is readily possible as seen in Table 2-4



Table 2-4 Conversion factors for series-parallel electrical equivalent circuits.
Model Dissipation Factor Capacitance Resistance or
Conductance
Parallel Cp, G D =1= G C =(I+D2)Cp R D2
Q aOCP (I+D2)G
Series Cs, R D =1 = R CP = Cs G= D2
Q I+D2 (I+D2)R

This treatment has been applied to illustrate how capacitance values are generated

from the impedance values and subsequent conversion to series and parallel cases. As

mentioned earlier, the series represents a physical scenario where a capacitor is in line

with some type of resistance, while the parallel mode represents a physical scenario

where a capacitor is in parallel with some type of conductance. This however does not

take into consideration the physical possibility of an ultrathin film that is leaky, but also

encounters resistance from the substrate. In this case, a three element electrical circuit,

also seen in Figure 2-12, could be analyzed in a similar manner as above to develop

equations for converting from either the parallel or series mode to the three element

equivalent circuit that more appropriately represents the physical structure.








Transmission Electron Microscopy

The TEM microscope has among the highest lateral spatial resolution in imaging

mode of any characterization technique. The TEM used for analysis is a Jeol 2010 high

resolution microscope with a nominal spatial resolution of 1.8A. Additional features of

the microscope include diffraction information, energy dispersive spectroscopy, and

electron energy loss spectroscopy. The fundamental basis for the TEM is generation of

an electron beam from an electron gun. The electron beam then passes through a variety

of lenses and impinges an ultrathin sample. As seen in Figure 2-13, both scattered and

unscattered electrons that penetrate the sample thickness comprise the TEM signal.

Sample requirements for TEM analysis are quite stringent in the sense that they must be

less than 200nm thick. For the analysis done here, samples were made so that cross

sectional analysis was capable. Though this type of sample preparation is much more

complex and delicate than conventional sample preparation, this type of measurement

gives the ability to determine the thickness of a grown film, which can then be input into

VASE and XRR models to help develop more realistic and truly physical models.





























2" Stainless
Steel Heater


KrF
Excimer

Laser


248 nm


Collimating Lens

Aperture


Focal Lens


Load Lock
Doorway i
Array Variable Leak
., Valve

Load Lock Target
Doorway

Multi-Target
Carousel


Figure 2-1 Ultraviolet-assisted pulsed laser deposition system, KrF excimer laser, and
optic setup.











































Figure 2-2 Homemade excimer annealing system equipped with vacuum ultraviolet
lamp.















rge Gap UV Quartz Walls


I A


Aj

H
Gene
--


N Inner Electrode


v P UV
rator Perforated Outer Electrode Ga;
*---


s Inlet


Figure 2-3 Schematic of excimer lamp illustrating the concentric tube design and how a
radio frequency load is delivered to the system. Figure adapted from [44].


m


Discha



































Figure 2-4 Tiny microdischarges from the ignited excimer lamp are the origin of the
excimer radiation.





















1.00E+08 ____ ___ ___ ___ ___ ___ ___ ___ ___
1.E+08Thickness Roughness Density
Silicon 00 6 A 2.33 g/cm3
SiO: HID2 16A 4A 2.73 g/cm3
1.00E+06 HfO2 49A 4A 9.46 g/cm3

Roughness

1.00E+04 -



1.00E+02 -


Density Thickness
1.00E+00 .I.III
0 1 2 3 4 5
2-Theta (Degree)

Figure 2-5 General x-ray reflectivity setup showing physical relationships between the
acquired data and the modeling output.
















substrate


thin film


Figure 2-6 General x-ray diffraction setup illustrating the interaction of x-rays with a
structure as they pertain to Braggs Law [56].


incident















hv= 1486.6eV
K.E.ls

OC ---- 0
2p- e2p---10eV
2s e2s-2OeV



1s If ,A Eis-290eV


Ic(eV)


Figure 2-7 Process of incoming radiation ejecting a characteristic photoelectron from a
carbon sample [56]




















mirror / -i;;;7--
Z-------- fasr d~iod~e7
/ K -----------
\ PSPD
\ CW MSSS^


\a

\ I
\ lI
\ I
S/
(

\i I
\ I


image 4


feedback loop


PZT scanner


Figure 2-8 Schematic of atomic force microscope and the various components that allow
up to atomic resolution [56].
















( Microprobes
'-'- Gate Metal
/ Insulator
S//


Backside Contact p-type Semiconductor
Figure 2-9 Typical MOS capacitor prepared for this dissertation.











































Figure 2-10 Block diagram of Keithley Win-82 system and how it connects to the probe
station. Adapted from Keithley Win-82 operation manual.



















Cox '
Co
Depletion Inversion
Accumulation \\=

Capacitance
Onset of Strong Inversion
vOnset
WS= 2'B~n

CH
CMIN


-V GS VFB THRESHOLD +VGS
GATE BIAS VOLTAGE, V G S

Figure 2-11 Typical capacitance-voltage illustrating the three main regions that occur in
a MOS device as a function of bias voltage applied. Adapted from the Keithley Win-82
operation manual.




















(B)

R


(C)


Figure 2-12 A) parallel, B) series, and C) combined series and parallel models for
generation of capacitance information.











Incident beam


I Unscattered
electrons


Figure 2-13 Schematic of electron beam after passing through an ultrathin TEM sample.
Some electrons are scattered while others remain unscattered [56].













CHAPTER 3
INTERFACIAL LAYER FORMATION

As mentioned previously, many research teams have been searching for an alternative

high-k dielectric material to replace the currently used SiO2. Although this procedure

appears to be simple, implementation of this new layer has encountered problems. One

such problem is the presence of an unwanted interfacial layer that forms between the

silicon substrate and the alternative high-k dielectric layer. The composition of the

interfacial layer was and still is a topic of considerable debate with respect to its origin

and composition. Though it is commonly accepted that oxygen plays an intricate role,

the exact modes are not well understood. This portion of experimentation looks into

these questions as they pertain to oxygen conditions in the pulsed laser deposition (PLD)

system during post deposition heat treatments.

Anneal Conditions

For this study, four identical ultrathin ZrO2 samples were grown by conventional PLD

and then subjected to high temperature anneals in different ambient gases without

breaking vacuum conditions in the deposition chamber. Due to analysis requirements, a

special mount was used to attach the silicon by mechanical contact only to the substrate

heater. This was in contrast to the typical method of attaching the samples with silver

paste. Because of the alternative mounting technique, there was an increase in thermal

losses associated with the substrate so even though the substrate heater is capable of

850C, annealing temperatures were limited to 750 C. Of the four samples, the first

sample was not heat treated in any way so that comparison of an as-deposited sample








could be conducted. The remaining three samples were annealed for 10 minute

increments in vacuum, ultra high purity (UHP, 99.999995%) helium, and UHP oxygen.

Table 3-1 shows the respective partial pressures of oxygen for the various low, mid, and

high conditions.



Table 3-1: Partial pressure of oxygen for respective deposition ambients.
Sample Actual Pressure (Torr) Oxygen Partial Pressure
(Torr)
As-deposited ..--
Vacuum annealed 5x10-I6 5x10'0
Helium annealed 600 6x10-4
Oxygen annealed 600 600

Once the samples were processed, they were analyzed by variable angle spectroscopic

ellipsometry (VASE), x-ray reflectivity (XRR), Fourier transform infrared spectroscopy

(FTIR), and x-ray photoelectron spectroscopy (XPS). Additionally, a cross sectional

transmission electron microscopy (XTEM) investigation of the oxygen annealed sample

was performed.

A 239A Si02 on silicon calibration wafer was used before any data was collected

to verify the accuracy of the VASE probe station. When the samples were measured, a

model with ZrO2 on silicon was used. Additional models with an additional interfacial

layer was considered, however, it was found that more detailed models would return to a

single layer model when the fitting iterations were allowed to proceed. From the four

samples, the following data shown in Table 3-2 was collected by VASE.

There is an increase in overall thickness of the sample as the amount of oxygen in the

system increases. Since all of the samples were grown under identical conditions, the








Table 3-2: VASE thickness measurements of ZrO2 samples after post-deposition heat
treatments in various ambients.________________
Sample Thickness (A)
As-deposited 39
Vacuum annealed 43
Helium annealed 47
Oxygen annealed 48

thickness of the ZrO2 layer is not expected to increase. However, the overall thickness

may increase if there is an additional second layer that cannot be individually discerned

by the ellipsometer, but does exist and adds to the overall thickness.

XRR analysis of the four samples was completed. The data from the VASE

measurements were used as starting thicknesses for modeling of the XRR spectra. Since

XRR data takes thickness, roughness, and density of any number of layers into

consideration, it is of utmost importance to have an approximate idea of the model as it

pertains to the actual physical sample. As an example of the importance of a good model

to describe the experimentally acquired data, the oxygen annealed sample is shown in

Figure 3-1 with a variety of modeling options.

Figure 3-1 shows the acquired "Raw Data" XRR scan and three different modeling

possibilities. The first modeling possibility labeled, "1 Layer Model Without Fit"

represents the situation where the user input values for thickness, roughness, and density

for a single layer of ZrO2 on top of single crystalline silicon (This would represent the

ideal case). After inputting the data, no additional processing was conducted. A value

known as the mean square error (MSE) serves as an indication of the quality of fit

between the model and the experimental data. The MSE value for the "1 Layer Model

Without Fit" was ~lxl02. As a reference, a poor MSE would be -1x102 whereas an

excellent fit would be around Ixl0"3. The next modeling possibility labeled, "1 Layer









Model With Fit" is identical to the previous model, however, additional processing step is

allowed to occur. The additional processing is an iterative modeling sequence where the

initial values input from the user are allowed to vary in an attempt to develop a better fit

(i.e., a lower MSE value). The iterative sequence must be carefully monitored because it

is possible to obtain a mathematically lower MSE value by losing the physical reality of

the model. For this example, the density of the ZrO2 layer has veered from the ideal

value of 5.68 g/cm3 and become a physically unrealistic value of 4.77 g/cm3. The MSE

associated with this second model was -1x10'". The final model labeled, "2 Layer Model

With Fit" shows that with the addition of a second layer between the ZrO2 and the silicon

has a profound positive effect by generating a realistic model exhibiting a very low MSE

value of 8x10"3. The data for the three different models are shown in Table 3-3.



Table 3-3: Thickness, roughness, and density data for the various XRR model options for
the oxygen annealed ZrO2.
1 Layer Model Thickness (A) Roughness (A) Density (g/cm3)
Without Fit_______
Silicon Substrate 00oo 5 2.33
ZrO2 Layer 48 4 5.68

1 Layer Model
With Fit_________________
Silicon Substrate 00oo 8 2.33
ZrO2 Layer 45 2 4.77

2 Layer Model
With Fit_________________________
Silicon Substrate 00oo 4 2.33
Interfacial Layer 22 6 2.40
ZrO2 Layer 16 4 5.88

With respect to the two layer model, initially a density for a pure amorphous Si02

(2.19 g/cm3) [57] layer was input, but this proved inadequate to perfectly describe the









desired data until the density of the interfacial layer was allowed to vary. Upon variation,

the density increased to a value of 2.40 g/cm3 and allowed for the very low MSE value

shown above. The impact of the higher density value will be discussed later and it will

be explained why this is still an acceptable physically realistic value.

Since the importance of the "2 Layer Model With Fit" has been shown, all future XRR

analysis will implement this type of model. Figure 3-2 shows the four XRR spectra

corresponding to the as-deposited, vacuum, helium, and oxygen annealed samples and the

modeling associated with each. The modeled values are shown in Table 3-4.



Table 3-4: Modeling data for the as-deposited, vacuum, helium, and oxygen annealed
samples.
As-deposited Thickness (A) Roughness (A) Density (g/cms)
Silicon Substrate 0c 4 2.33
Interfacial Layer 12 4 2.68
ZrO2 21 5 5.86

Vacuum Anneal_ ______________________
Silicon Substrate o0 5 2.33
Interfacial Layer 14 3 2.67
ZrO2 21 5 5.86

Helium Anneal_______
Silicon Substrate oo 3 2.33
Interfacial Layer 17 4 2.58
ZrO2 20 5 5.63

Oxygen Anneal______________________
Silicon Substrate oo 4 2.33
Interfacial Layer 22 6 2.4
ZrO2 -- 16 4 5.88

Figure 3-2 shows that the two layer model was effective in interpreting all of the

different anneal conditions. From Table 3-4, there are two important features that should

be noted with respect to the interfacial layer. First, the interfacial layer is the thinnest for








the as-deposited sample at 12 A and increases to 14, 17, and 22 A when annealed in

vacuum, helium, and oxygen, respectively. Second, a similar trend is seen for the

densities of the interfacial layer. In this situation, the density is greatest for the as-

deposited sample at 2.68 g/cm3 and decreases to 2.67, 2.58, and 2.40 g/cm3 when

annealed in vacuum, helium, and oxygen respectively. Figure 3-3 shows how as the

partial pressure of oxygen in the system increased, the density of the interfacial layer

decreased.

Since XRR investigations indicated that an interfacial layer was present, an XTEM

sample was prepared from the oxygen annealed sample. This was to determine if the

micrograph would support the interfacial layer data exhibited in the XRR. As shown in

Figure 3-4, it is clear that the sample is composed of two distinct layers atop the single

crystal silicon. Unlike the ideal structure that would exhibit a single ZrO2 layer atop the

silicon, there is a distinct polycrystalline ZrO2 layer atop an amorphous layer atop the

single crystalline silicon substrate. From the micrograph the thickness of the

polycrystalline layer is -20A and the thickness of the amorphous layer is also -20A.

The next step in the investigation led to measurement of the samples by FTIR with a

Nicolet MAGNA 760 instrument in transmission mode. In this case, the backside of the

samples was cleaned and underwent a 1% hydrofluoric (HF) acid cleansing immediately

prior to their placement into the nitrogen purged FTIR bench chamber. By using HF on

the backside of the samples immediately prior to their measurement, this ensured that any

signal response from the infrared measurement would be not be attributed to Si--O

bonds on the backside of the oxidized silicon sample and could only originate from the

dielectric side of the sample (i.e., the interfacial region). Figure 3-5 is a compilation of








the results recorded from the as-deposited, helium, and oxygen annealed samples.

Inspection of the plot reveals that the as-deposited control sample already showed a peak

located around 1080 cm"1 relating to Si--O---Si bonding in stretching mode. Upon

annealing in helium, the area under the 1080 cm"1 peak increased by -93%. When

annealed in oxygen, the area under the peak increased by -190% with respect to the as-

deposited peak. Peaks at 800 and 460 cm'1 corresponding to Si--O-Si bending and

rocking modes also showed similar increases in absorption. [58, 59]

The next step in the analysis process included a detailed investigation of the various

XPS peaks. Figure 3-6 shows the Si 2p peaks as acquired at a take-off angle of 90

without any sputtering for the different annealing conditions. There are two prominent

peaks associated with the Si 2p region. There is one peak that is located at -99.3 eV

which is attributed to the silicon substrate and a second peak that located at -103.3eV

which is attributed to silicon bonded to oxygen in the interfacial layer. While the position

of the peak located at -99.3 eV remains relatively constant, the position of the higher

binding energy peak is continually changing as a function of annealing condition. For the

as-deposited sample the higher energy peak is located at -103.1 eV. Annealing in

vacuum, helium, and oxygen resulted in a continual increase to values of 103.2, 103.3,

and 103.5 eV, respectively. The vertical line located at -103.6 eV seen in Figure 3-7

corresponds to silicon bonded to oxygen in a pure thick SiO2 layer. [60]

Analysis of the XPS 0 Is peaks reveals a single peak exhibiting an asymmetric shape

indicative of multiple chemical species. In order to analyze this type of peak, a fitting

program is utilized whereby the single asymmetric peak is deconvoluted into two or more

Gaussian peaks. An example of the fitting process can be seen in Figure 3-8 which








shows A) the raw data peak, B) 1 peak fit, C) 2 peak fit, and D) 3 peak fits. Similar to the

XRR fitting program, the XPS fitting program also has an MSE value that it generates as

a quality of fit for the different types of models. From Figure 3-8, for the oxygen

annealed sample, it is clear that a single peak fit is totally unacceptable as well as

exhibiting an unacceptably large MSE value of 28.5. As seen in B, the two Gaussian

peak fit has a much better MSE value of 6.5, but is still not considered a good fit. This is

because the full width at half maximum (FWHM) associated with the peak reaches a

value of 2.25 eV. Typical values for a peak representing this type of layer will be more

in the 1.5 eV range. This leads to the three peak fit shown in C that has a good MSE

value of 4.8. Additionally, each of the peaks exhibit reasonable values for FWHM and

can be accounted for in a physical manner. For this example, peak A is corresponded to

oxygen bound to zirconium, peak B corresponded to oxygen bound to silicon, and peak C

is associated with trapped physisorbed oxygen present in the pulsed laser deposited films.

Not all XPS peaks call for three peaks to obtain a good fit. The key it to always have a

physical model that explains the fit well and also remains within reasonable boundary

conditions.

Figure 3-9 shows the three peak fit for each of the four anneal conditions.

Peaks are located at A) -530.2, B) -531.5, and C) -532.0 eV corresponding to oxygen

bound to zirconium, silicon, and physisorbed oxygen, respectively. The binding energy

of the oxygen bonded to zirconium 0 Is peak matches perfectly with its standard location

of-530.2 eV in all annealing conditions while the binding energy of the oxygen bonded

to silicon 0 ls peak is -1 eV lower than its pure bulk Si02 value of-532.5 eV [60]. As

with the trend seen in the Si 2p peaks, Figure 3-10 shows a similar trend also occurs with








the binding energies of the oxygen bonded to silicon 0 Is peak. Again, a continuous

shift that corresponds directly to the amount of oxygen in the system changes the binding

energies to values farthest from pure Si02 in low oxygen conditions and nearest to pure

SiO2 in high oxygen conditions. In addition to the shifting of the peak, there is an

additional change to note. This second change relates to the size of peak C corresponding

to trapped oxygen in the film. Analysis of oxygen content reveals that the amount of

oxygen trapped in the film corresponds to -15% for the as deposited film while all of the

annealed films reduced to a value of -10%. This important result shows a decrease of

5% of the trapped oxygen in the film structure when annealed.

Interpretation of the data reveals several important results from this study. First,

VASE measurements were conducted as an initial measure of the thickness of the sample.

While the VASE system was unable to discern discreet differences in the layer, it was

able to detect an increase of the overall layer thickness. Since the ZrO2 would not be

expected to increase during a post deposition anneal, this seemed to indicate growth of a

second non-ZrO2 layer. The data from the VASE was used as a first approximation in the

XRR modeling where the fit revealed that a single ZrO2 layer atop a silicon substrate

model was insufficient to describe the shape of the experimentally acquired data. As a

result, an additional layer was added between the ZrO2 and the silicon substrate as an

interfacial layer. The interfacial layer was initially given a density of pure amorphous

Si02 (2.19 g/cm3) [57] which represented the theoretical scenario where the interfacial

layer is composed entirely of Si02 and no other species or compounds are present.

Without any fitting procedures, this was still an improvement over the single layer model,

but by allowing the density of the interfacial layer to vary, excellent fits with very low








MSE values were obtainable for the as-deposited sample and all of the annealed samples.

The important ramification of the density variations was that the density of the interfacial

layer was always larger than that of pure amorphous silicon. The values began at a value

of 2.68 g/cm3 and decreased toward a more SiO2 like density as anneal conditions

incorporated more oxygen. The sample annealed in pure oxygen exhibited an interfacial

layer of 2.40 g/cm3. This important result indicates that the structure of the interfacial

layer is not a pure SiO2, but instead may include higher density materials such as Zr

metal in a silicate-like structure, or ZrO2 in a physical mixture with SiO2. Other options

include a layer that consist of a pure Si02, silicate, or silicide, but this cannot be the case,

since the density of these layers are 2.19, 4.6, and 4.88 g/cm3, respectively [57]. As an

additional confirmation of the existence of the interfacial layer, an XTEM micrograph

was prepared. Indeed, for the oxygen sample, an amorphous interfacial layer -20 A in

thickness and a polycrystalline layer of -20 A was observable. This result correlated

well with the XRR results. The FTIR conducted on the samples revealed a substantial

increase in area under the 1080 cm'- peak (Si-O---Si stretching mode) when the helium

anneal was conducted and an even larger increase when the oxygen anneal was

conducted. This increase in absorbance indicates physically more Si--O bonding

associated with the structure and agrees well with the density and thickness variations

seen in the XRR data. That is, as the oxygen content in the anneal conditions increase,

the density of the interfacial layer became more like SiO2. XPS investigations of the Si

2p and 0 1 s regions further supported the existence of the interfacial layer and more

importantly that it was not composed of a pure SiO2. The fact that the Si 2p located

around -103 eV (instead of 103.6 eV for pure SiO2) shifts to higher binding energies as a








function of oxygen content indicates that there is either a more complex bonding

environment for the silicon bonded to oxygen, or a thin film artifact. XRR and FTIR data

both indicate that a more complex bonding environment more aptly explain this

discrepancy. Oxygen diffusing to the interface and reacting to form Si02 explains the

change in density seen by the XRR scans and the increase in Si--O bonds exhibited by

the FTIR spectra. The 0 ls peak associated with oxygen bonded to silicon is ~1 eV away

from its pure bulk Si02 value of-532.5 eV [60]. Similar to the Si 2p peaks, the binding

energies of the oxygen bonded to silicon continuously shift from values farthest from

pure SiO2 at low oxygen conditions to values nearest SiO2 for the pure oxygen annealed

sample.

All of the proceeding data question the source of the oxygen species that make up the

interfacial layer and the composition of the interfacial layer. The oxygen may come from

the ambient gases that are used during the heat treatments [61], from trapped oxygen

located within the grown ZrO2 film [62-64], or from direct chemical reaction between the

silicon and the grown layer [65].

Due to the predicted thermodynamic stability of ZrO2 in direct contact with silicon at

1000 C [6], a chemical reaction between the grown ZrO2 film and the silicon substrate is

unlikely. XPS data supports the migration of trapped oxygen in the ZrO2 film under high

temperature treatments. The Ols peak located at -532 eV and corresponding to trapped

oxygen is seen to decrease from a concentration of-15% in the as-deposited control

sample to values in the 8 10% range for samples that underwent anneals. Growth of the

interfacial layer during deposition has previously been connected to the amount of

trapped (physisorbed) oxygen present in the films [64]. However, the amount of oxygen








that is available in the trapped state is limited. The significant growth of the interfacial

layer requires an additional oxygen source. The source is oxygen from the ambient

diffusing through the grown sample, migrating to the interface, and reacting within the

interfacial region. This is easily an acceptable notion since crystalline ZrO2 is a relatively

open structure that is a good oxygen conductor.

Ultrathin ZrO2 films were deposited on silicon and then heat treated in different

atmospheres representing different oxygen conditions. VASE, XRR, XTEM, FTIR, and

XPS were utilized to determine A) if an interfacial layer was present and B) if there was,

what role oxygen played in the origin and composition of the layer. It was found that the

various characterization tools did indeed support the existence of an interfacial, even for

the as-deposited sample. The composition was determined to be a physical mixture of

ZrO2 and SiO2 that could be affected by oxygen in the system. It was also determined

that oxygen in the system originated from two sources. The first of these was trapped

oxygen in the film and the second was from diffusion of ambient gases through the film

to the interfacial region. Due to these two mechanisms, it has been concluded that it

would be very difficult to achieve an oxide based alternative high-k dielectric on silicon

without forming an interfacial layer by conventional PLD.







71






18+8 A) Raw Data
19+7
1E+6
1E+5
0 1E+4
Q
1B+3
1E+2
11+1
1 0.184 0.415 0.646 0.878 1.109 1.340 1.571 1.803 2.034 2.265 2.496
Theta-2Theta

1E+8
1E+7 B) 1 Layer Model

1E+6 Without Fit
1,6 Without Fit

S1E+5

o 11+4
1E+3
IE2
11+2 i Fit
1E+1o
1E+1 0.184 0.415 0.646 0.878 1.109 1.340 1.571 1.803 2.034 2.265 2.496
Theta-2Theta
1E+8
1E+7 C) 1 Layer Model
1E+6 With Fit
S1E+5
o 1E+4
1E+3
1E+2 Fit

+ 0.184 0.415 0.646 0.878 1.109 1.340 1.571 1.803 2.034 2.265 2.496
Theta-2Theta

1E+8
1+7 Fit D) 2 Layer Model
1E+6

r- 11+5
0 18+4

IE+3 ~~ ~~ --
1I+2
1E+1
0.184 0.415 0.646 0.878 1.109 1.340 1.571 1.803 2.034 2.265 2.496
Theta-2Theta


Figure 3-1 XRR spectra of A) raw data, B) 1 layer model without fit, C) 1 layer model
with fit, and D) 2 layer model with fit illustrating the importance of a good model when
analyzing XRR data.







72






1E+8
1E+7 A) Oxygen Anneal

S1E+6
S1E+5
0 1E+4
IE+3
1E+2
1E+1

0.179 0.411 0.642 0.874 1.106 1.338 1.569 1.801 2.033 2.265 2.496
Omega
Theta-2Theta
1E+8
1E+7 B) Vacuum Anneal
S1E+6
1E+5
o 1E+4
1E+3
1E+2
1E+1 3 v4C
IE+0
0.173 0.405 0.638 0.870 1.102 1.335 1.567 1.799 2.032 2.264 2.496
Omega
Theta-2Theta Omega

1E+8
1E+7 C) Helium Anneal

1E+6
1E+5

G 1E+4 r
1E+3
1E+2
1E+1
13.0
1E+0 0.195 0.425 0.655 0.885 1.115 1.346 1.576 1.806 2.036 2.266 2.496
Omega
Theta-2Theta mea

1E+8
1+7- D) Oxygen Anneal


IEel
S1E+5
0 1E+4

1E+3

1E+2

+ 0.184 0.415 0.646 0.878 1.109 1.340 1.571 1.803 2.034 2.265 2.496
Omega
Theta-2Theta Omega



Figure 3-2 XRR spectra of A) as-deposited, B) vacuum annealed, C) helium annealed,
and D) oxygen annealed ZrO2 thin films as modeled with the "2 layer model with fit".






73

















2.8




2.6




.r-2.4
E



S2.2




2.0




1.8 --- -
Bulk SiO2 Oxygen Helium Vacuum As-deposited


Figure 3-3 Plot of interfacial layer density as determined by XRR as a function of
oxygen content in the annealing system. Bulk SiO2 has been added as a reference.












































Figure 3-4 Cross sectional TEM of a polycrystalline ZrO2 thin film atop an amorphous
interfacial layer atop single crystalline silicon.




















0.08
Stretching
0.07 -
SA
0.06 -

^ 0.05 Rocking

0.04 B
S0.03

0.02
Bending ^
0.01 i


1300 1200 1100 1000 900 800 700 600 500 400
Wave Number (cm 1)


Figure 3-5 FTIR spectra of A) oxygen anneal, B) helium anneal, and C) as-deposited
ZrO2 thin films showing the increase in Si--O bonding absorption in stretching, bending
and rocking modes.






76















Ideal SiO,
35000 -

30000 -

25000 -

S20000 Ox\ en

S15000 -_ ^ ^^ ^ ^ y YV Helium
1000 acuum


5000 -0 -- No Anneal
500

106 104 102 100 98 96
Binding Energy (eV)


Figure 3-6 XPS data of Si 2p region of an as-deposited ZrO2 thin film and after various
post deposition anneals.





















103.7


103.6


103.5- -- --


>. 103.4
0
C
IL


0 3.1
I 103.3- |--




103.2
103.1 -, fl


103.0 -t--- -- ----___---- -- ----- '-'-- ---- -- -- --
Bulk SiO2 Oxygen Helium Vacuum As-deposited


Figure 3-7 Plot of Si 2p binding energy of oxygen bonded to silicon as a function of
oxygen content in the annealing system. Bulk SiO2 has been added as a reference.
































Binding Energy, eV Binding Energy, eV

C) 2 Peak Fit D) 3 Peak Fit


o 0o





337 A3 33 U~ 59 Sr 53,7 335 333 5,31 3
Binding Energy, eV Binding Energy, eV

Figure 3-8 XPS spectra of A) raw data, B) 1 peak fit, C) 2 peak fit, and D) 3 peak fit fit
illustrating the importance of a good model when analyzing XPS data.

























A) As-deposited


Delta 1.32 eV


33 3 33 33- -9 r3
Binding Energy, eV
C) Helium Anneal


/ <\ Delta 1.57 eV


37 Binding Energy, eV33 31
Binding Energy, eV


B) Vacuum Anneal

/ \ Delta 1.22 eV


337 -3 3 3--- .... -i -
Binding Energy, eV
D) Oxygen Anneal


Delta = l.88 eV


227 5337 3'331 5
Binding Energy, eV


Figure 3-9 XPS spectra with "3 peak fit" of A) as-deposited, B) vacuum annealed, C)
helium annealed, and D) oxygen annealed ZrO2.


Z


0
U














0
U






80

















533.0



532.5



532.0 -



I 531.5-


m
531.0 -



530.5 -



530.0 ---
Bulk Si02 Oxygen Helium Vacuum As-deposited


Figure 3-10 Plot of 0 Is binding energy of oxygen bonded to silicon as a function of
oxygen content in the annealing system. Bulk SiO2 has been added as a reference.













CHAPTER 4
ULTRAVIOLET PROCESSING

Among the results from the experimentation with ZrO2 post deposition anneals it was

determined that even the as-deposited sample which did not undergo any additional

processing already exhibited an interfacial layer. At that stage the interfacial layer was

determined to have the smallest fraction of detrimental Si02 mixed with ZrO2 compared

to any later stages of processing, but exhibited the greatest amount of trapped oxygen.

Since analysis of the interfacial layer revealed that further heat treatments resulted in the

migration of the trapped oxygen to the interface, this portion of experiments aimed to

investigate the possibility of reducing the amount of trapped oxygen in an as deposited

dielectric film through the application of ultraviolet radiations sources. Additionally, this

experimentation sought to determine if there were any other effects that occurred when

ultraviolet radiation was utilized in-situ during deposition. A low pressure mercury lamp

array was added to the conventional PLD system for in-situ ultraviolet-assisted

deposition.

In-situ Ultraviolet PLD

A conventional PLD system was fitted with an array of low pressure mercury lamps.

Both barium strontium titanate (BST) and yttrium oxide (Y203) samples were deposited

for this study. Barium strontium titanate is an extremely high dielectric constant material

with reported bulk values ranging from as low as 80 to as high as 3600 in bulk material

depending on crystallographic orientation [57]. To date, BST has been rejected as a

possible candidate for MOS applications due to its predicted unstable interface and the








predicted negative conduction band lineup when in direct contact with silicon. However,

it still has been studied here due to previous results that indicate positive MOS results,

and based on its merit as a possible high-k dielectric material in a device that does not

have such stringent interfacial requirements as a MOS device does. Y203 has also been

identified as a possible candidate for an alternate dielectric material, but not fully

embraced because of its moderately high dielectric constant of-10. If pursued, it would

only provide a solution for a limited number of device generations before encountering

the same problems SiO2 is facing now. In this study, the paramount matter was to

investigate possible effects the ultraviolet radiation may have with respect to properties of

the deposited film, and specifically how oxygen is present in the system.

Barium Strontium Titanate (BST)

Two BST thin film samples were deposited for this study. One sample was deposited

in the conventional PLD setup while the second was deposited under the UVPLD

conditions where the low pressure mercury lamp array was utilized. For each case, the

samples were deposited at a substrate temperature of 650 C, at a pulse count of 800, and

a laser fluence of~-l J/cm2. The optimum pressure was determined for each of the two

samples by growing several samples at different pressures, performing x-ray diffraction

(XRD) and then comparing the full width at half maximum (FWHM) values of the

primary (110) peaks. The pressure that resulted in the smallest value for FWHM of the

major XRD peak was determined to be the most crystalline and used for all subsequent

experimentation. For BST, the sample deposited without ultraviolet radiation had an

optimum oxygen deposition pressure of 20 mTorr, while the optimum pressure for the

sample deposited with ultraviolet radiation had an optimum pressure of only 10 mTorr.

This turns out to be a very important result that will be discussed in more detail later.









Under the above mentioned deposition conditions, samples were deposited and

measured by VASE using a single layer model of barium titanate on silicon. Though the

deposited samples were actually BaSro.5Tio.503, the model for barium titanate was the

closest model available and would exhibit similar optical properties to the BST. Any

attempt to use a two layer model with an additional interfacial layer returned to a single

layer model when the fitting program was executed. The resulting overall thickness

values from the single layer model were 475A and 415A for UVPLD and PLD deposited

samples, respectively. These values were used as the first approximations in XRR

modeling.

The XRR plots for the PLD and UVPLD deposited samples are shown in Figure 4-1

and the data for each is shown in Table 4-1.



Table 4-1: XRR data for the PLD and UVPLD deposited BST samples.


--.


PLD Sample Thickness (A Roughness (A) Density (g/cm3)
Silicon Substrate 11 2.33
Interfacial Layer 34 9 3.26
BST 374 8 5.45
Surface Layer 18 6 3.7

UVPLD Sample
Silicon Substrate 8 2.33
Interfacial Layer 33 6 3.45
BST 436 7 5.46
Surface Layer 5 25 2.19

The first important aspect to note in from Table 4-1, is that proper fitting of the BST

required a "3 Layer Model" to fit the experimentally acquired data. In instances where a

good fit cannot be readily found with a "2 Layer Model", an additional lower density

layer may be added to take into account for surface impurities and roughness effects. The

shape of the XRR plots of the BST, shown in Figure 4-1, revealed compelling evidence








for the existence of an interfacial layer for both the PLD and UVPLD deposited samples.

The plot labeled "UVPLD Raw Data" shows a dampened region from -0.425 to -0.675

along the theta-2theta axis where the amplitude of the oscillations did not match all of the

other values along the theta-2theta axis. The only method to account for this type of

dampening is with the addition of an interfacial layer exhibiting a particular thickness and

density combination. The plot labeled "UVPLD 1 Layer Model" shows how the

oscillations remain constant along the entire theta-2theta axis without the addition of the

interfacial layer. Sections C and D of Figure 4-1 show the best fits that could be achieved

with the "3 Layer Model" for the UVPLD and PLD deposited samples, respectively. In

the case of the PLD deposited sample, the thickness of the interfacial layer was -34 A

whereas the UVPLD sample was 33 A. More importantly, the density of the PLD

deposited sample was -3.26 g/cm3 whereas the UVPLD was -3.45 g/cm3. This value is

greater than that of a pure amorphous Si02, but still much less than a pure silicate or

silicide. Another important characteristic to note included the high surface roughness of

25 A associated with the UVPLD sample versus the only 6 A for the PLD sample.

Finally, the overall thicknesses from XRR are in good agreement with the earlier values

determined from VASE.

In order to verify the existence of the interfacial layer seen in the XRR results, an

XTEM micrograph of a BST film was obtained and is shown in Figure 4-2. The features

of the micrograph include a two layered structure composed of a polycrystalline BST

layer atop an amorphous interfacial layer atop the single crystalline silicon. Though the

polycrystallinity of the BST layer is not apparent in Figure 4-2, less magnified images do

in fact reveal the polycrystalline morphology.








In an effort to verify the large roughness differences found between the PLD and

UVPLD deposited samples, atomic force microscopy (AFM) measurements were made

on the samples. Seen in Figure 4-3, it was found that the AFM measurements made over

an area of 1Igm x IAm verified the XRR results showing RMS values of 7A to 23A for

PLD and UVPLD deposited samples, respectively. The AFM measurements also

revealed a great deal of surface texturing associated with the UVPLD deposited sample

with an average grain size of~-300 nm. This is in contrast to the PLD sample which

exhibits neither surface texturing nor large grains.

The data for the XRD investigation of both the UVPLD and PLD deposited samples

are shown in Table 4-2.



Table 4-2: XRD peak data for the PLD and UVPLD deposited BST samples.
PLD Sample 2-Theta Peak FWHM (0) Peak Orientation
Location (0)
Peak 1 31.70 0.5573 (110)
Peak 2 45.45 0.5568 (111)

UVPLD Sample ~
Peak 1 31.81 0.4705 (110)
Peak 2 45.61 0.5691 (111)

The XRD spectra were composed of two distinct peaks for each. The main difference

between the PLD and UVPLD deposited samples was the slightly smaller (-0.0816 less)

FWHM value in the (110) peak for the UVPLD deposited sample. An additional

difference between the two samples is a slight shift in the 2-theta values between the PLD

and UVPLD samples. These differences were attributed to both the grain size increase

seen in the UVPLD sample as well as stresses inherent in the thin film system. A

variation of XRD, grazing incidence x-ray diffraction (GIXD), was also completed for




Full Text

PAGE 1

8/75$9,2/(7$66,67(' 352&(66,1* 2) ',(/(&75,& 7+,1 ),/06 )25 0(7$/ 2;,'( 6(0,&21'8&725 $33/,&$7,216 %\ -26+8$ 0 +2:$5' $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ -RVKXD 0 +RZDUG

PAGE 3

, ZRXOG OLNH WR GHGLFDWH WKLV ZRUN WR WKH PHPRU\ RI P\ JUHDW JUDQGPRWKHU PRUPRU ZKR ZLOO OLYH RQ LQ P\ KHDUW IRUHYHU

PAGE 4

$&.12:/('*0(176 ZRXOG OLNH WR ILUVW WKDQN P\ DGYLVRU 'U 5DMLY 6LQJK IRU DOO WKH HQGXULQJ VXSSRUW DQG HQFRXUDJHPHQW KH KDV JLYHQ WR PH VLQFH MRLQHG KLV JURXS +LV JXLGDQFH DQG IULHQGVKLS KDYH SOD\HG DQ LQWHJUDO UROH LQ PROGLQJ PH LQWR WKH VFLHQWLILF UHVHDUFKHU DP WRGD\ 1H[W ZRXOG OLNH WR WKDQN 'U 9DOHQWLQ &UDFXLQ ZKR DOVR ZRUNV ZLWK 'U 6LQJK DV D YLVLWLQJ UHVHDUFKHU IURP 5RPDQLD 9DOHQWLQ KDV DFWHG DV D JUHDW PHQWRU WKURXJKRXW P\ WLPH KHUH +H KDV VHUYHG DV DQ LQVSLUDWLRQ IRU PH WR H[FHO LQ DOO DVSHFWV RI DQ\ SURMHFW XQGHUWDNH DQG WDXJKW PH WR ORRN GHHSHU WKDQ ZKDW PD\ DSSHDU RQ WKH VXUIDFH $ERYH DOO 9DOHQWLQ KDV EHFRPH VRPHRQH ZKRP FDQ WUXO\ FDOO P\ IULHQG ZRXOG DOVR OLNH WR WKDQN 'U 6WHSKHQ 3HDUWRQ IRU VHUYLQJ RQ P\ FRPPLWWHH DQG IRU KLV NHHQ LQVLJKW LQWR OLIH WKDW KDV DOZD\V KHOSHG PH SXW WKH ZRUOG LQWR SHUVSHFWLYH ZRXOG DOVR OLNH WR WKDQN 'U &DPP\ $EHUQDWK\ IRU KHU VPLOH DQG NLQG ZRUG WKDW KDV RIWHQ KHOSHG PH WKURXJK WKH GD\ $GGLWLRQDOO\ WKDQN 'U 'DYLG 1RUWRQ IRU KLV DVVLVWDQFH HQWKXVLDVP DQG IRU XVH RI KLV ODERUDWRU\ HTXLSPHQW )LQDOO\ ZRXOG OLNH WR WKDQN 'U )DQ 5HQ IRU XVH RI KLV HOHFWULFDO FKDUDFWHUL]DWLRQ HTXLSPHQW DQG IRU VHUYLQJ RQ P\ FRPPLWWHH ZRXOG OLNH WR WKDQN P\ SDUHQWV P\ EURWKHU 'DYLG DQG P\ H[WHQGHG IDPLO\ IRU DOO RI WKH ORYH DQG HQFRXUDJHPHQW WKH\ KDYH JLYHQ PH WKURXJKRXW P\ OLIH ZLOO DOZD\V FKHULVK WKH DFWLYH UROHV HDFK SOD\HG LQ P\ OLIH JURZLQJ XS DQG KRZ HDFK SHUVRQ ZRUNHG LQ D VSHFLDO ZD\ WR KHOS PH EHFRPH WKH SHUVRQ DP WRGD\ 7KHUH DUH PDQ\ FRQWHPSRUDULHV KHUH DW WKH 8QLYHUVLW\ RI )ORULGD WKDW GHVHUYH WKDQNV IRU WKHLU KHOS DQG IULHQGVKLS ,Q SDUWLFXODU ZRXOG OLNH WR WKDQN %UHQW *LOD 0DUN ,9

PAGE 5

2YHUEHUJ 0LFKDHO 2OOLQJHU 1DELO %DVVLP )UDQFLV .HOO\ $QXUDQMDQ 6ULYDVWDYD 6ULQLYDV 3LHWDPEDUDP &KDG (VVDU\ DQG 6HHPDQW 5DZDO ZRXOG DOVR OLNH WR DFNQRZOHGJH DOO RI WKH RWKHU ZRQGHUIXO JURXS PHPEHUV FXUUHQW DQG SDVW WKDW DUH IDU WRR PDQ\ WR OLVW 7KHUH DUH PDQ\ IULHQGV WKDW KDYH FRPH DQG JRQH WKURXJKRXW P\ OLIH EXW RFFDVLRQDOO\ \RX PHHW SHRSOH ZKR \RX NQRZ ZLOO EH WKHUH IRU WKH UHVW RI \RXU OLIH ZRXOG OLNH WR WKDQN VHYHUDO RI P\ GHDU KLJK VFKRRO IULHQGV LQFOXGLQJ &KULVWRSKHU 6FKPLGW $QGUHZ 5RJHUV WKH ZKROH &RRPEV FODQ DQG 9LFWRULD $URQROG IRU DOO RI WKHLU ORYH OHVVRQV DQG IULHQGVKLS ZRXOG DOVR OLNH WR WKDQN 'DQLHO .DPPOHU IURP P\ GD\V DW WKH 8QLYHUVLW\ RI 0LVVRXUL5ROOD IRU EHLQJ D WUXO\ DPD]LQJ KXPDQ EHLQJ $GGLWLRQDOO\ ZRXOG OLNH WR WKDQN P\ EHVW IULHQG -HQQLIHU *UD\ IRU DOO RI KHU ORYH DQG FDUH ,W LV QRW HYHU\ GD\ WKDW \RX JHW WR EH EHVW IULHQGV ZLWK WKH SHUVRQ \RX ORYH EXW VRPHKRZ KDYH IRXQG P\VHOI LQ WKLV VLWXDWLRQ +HU FRQILGHQFH DQG VSLULW PDNH P\ ZRUOG D KDSSLHU SODFH WR OLYH WKDQN KHU IRU HYHU\WKLQJ WKDW VKH LV ,W ZRXOG EH LPSRVVLEOH WR OLVW DOO RI WKH DWWULEXWHV WKDW HDFK RI WKHVH FORVH IULHQGV H[KLELWV EXW LW FDQ GHILQLWHO\ EH VXPPHG XS WKDW WKHVH SHRSOH UHSUHVHQW WKH EHVW WKDW WKH KXPDQ UDFH KDV WR RIIHU DQG IRU WKLV IHHO EOHVVHG WKDW WKH\ KDYH EHHQ D SDUW RI P\ OLIH Y

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LY $%675$&7 [LY &+$37(5 /,7(5$785( 5(9,(: ,QWURGXFWLRQ 7KH 7UDQVLVWRU +LVWRU\ %DVLF 7UDQVLVWRU )XQGDPHQWDO /LPLWDWLRQV 0DWHULDOV 6HOHFWLRQ &ULWHULD 3HUPLWWLYLW\ DQG %DUULHU +HLJKW 7KHUPRG\QDPLF 6WDELOLW\ ,QWHUIDFH 4XDOLW\ )LOP 0LFURVWUXFWXUH *DWH &RPSDWLELOLW\ 3URFHVV &RPSDWLELOLW\ 5HOLDELOLW\ ([FLPHU /DVHU %DVLFV 8OWUDYLROHW /DPS %DVLFV 8OWUDYLROHW ([FLPHU 5DGLDWLRQ 6RXUFHV 6LOHQW %DUULHU 'LVFKDUJH ([FLPHU 5DGLDWLRQ 0DWHULDOV DQG 3URSHUWLHV 0RWLYDWLRQ 2[\JHQDWLRQ RI )LOPV (;3(5,0(17$/ 352&('85(6 6\VWHP *HRPHWULHV /DVHU 6\VWHP 893/' 6\VWHP ([FLPHU $QQHDOLQJ 6\VWHP ([FLPHU /DPS 'HVLJQ ([SHULPHQWDO 6HWXSV DQG 6DPSOHV ,QWHUIDFLDO /D\HU )RUPDWLRQ YL

PAGE 7

,Q6LWX 8OWUDYLROHW 3/' 3RVW 'HSRVLWLRQ 8OWUDYLROHW $QQHDOLQJ ([SHULPHQWDO &KDUDFWHUL]DWLRQ 7HFKQLTXHV 9DULDEOH $QJOH 6SHFWURVFRSLF (OOLSVRPHWU\ ;UD\ 5HIOHFWLYLW\ ;UD\ 'LIIUDFWLRQ DQG *ODQFLQJ ,QFLGHQFH ;UD\ 'LIIUDFWLRQ ;UD\ 3KRWRHOHFWURQ 6SHFWURVFRS\ $WRPLF )RUFH 0LFURVFRS\ )RXULHU 7UDQVIRUP ,QIUDUHG 6SHFWURVFRS\ (OHFWULFDO &KDUDFWHUL]DWLRQ &XUUHQW9ROWDJH 0HDVXUHPHQWV &DSDFLWDQFH9ROWDJH 0HDVXUHPHQW 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ ,17(5)$&,$/ /$<(5 )250$7,21 $QQHDO &RQGLWLRQV 8/75$9,2/(7 352&(66,1* ,QVLWX 8OWUDYLROHW 3/' %DULXP 6WURQWLXP 7LWDQDWH %67f
PAGE 8

7DEOH /,67 2) 7$%/(6 SDJH ,QGXVWULDO WLPHOLQH IRU PLQLPXP IHDWXUH VL]H DQG HTXLYDOHQW GLHOHFWULF WKLFNQHVV LQ 026)(7 GHYLFHV >@ 'LIIHUHQW ZDYHOHQJWKV SRVVLEOH DV D IXQFWLRQ RI UDUH JDV RU UDUH JDV KDOLGH PL[WXUH XVHG IRU H[FLPHU GHFRPSRVLWLRQ 9DULRXV SURSHUWLHV RI KLJKN R[LGH PDWHULDOV &RQGLWLRQV IRU JURZWK DQG SRVW GHSRVLWLRQ KHDW WUHDWPHQWV RI WKLQ =U ILOPV &RQGLWLRQV IRU LQVLWX XOWUDYLROHW DQQHDOLQJ ZLWK DQ +J ODPS DUUD\ GXULQJ JURZWK RI %67 DQG <2 WKLQ ILOPV &RQGLWLRQV IRU SRVW GHSRVLWLRQ H[FLPHU DQQHDOV RI )+2 WKLQ ILOPV &RQYHUVLRQ IDFWRUV IRU VHULHVSDUDOOHO HOHFWULFDO HTXLYDOHQW FLUFXLWV 3DUWLDO SUHVVXUH RI R[\JHQ IRU UHVSHFWLYH GHSRVLWLRQ DPELHQWV 9$6( WKLFNQHVV PHDVXUHPHQWV RI =2 VDPSOHV DIWHU SRVWGHSRVLWLRQ KHDW WHDWPHQWV LQ YDULRXV DPELHQWV 7KLFNQHVV URXJKQHVV DQG GHQVLW\ GDWD IRU WKH YDULRXV ;55 PRGHO RSWLRQV IRU WKH R[\JHQ DQQHDOHG =2 0RGHOLQJ GDWD IRU WKH DVGHSRVLWHG YDFXXP KHOLXP DQG R[\JHQ DQQHDOHG VDPSOHV ;55 GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV ;5' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV *,;' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV ;55 GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG <2 VDPSOHV *,;' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG <2 VDPSOHV 9OOO

PAGE 9

9$6( WKLFNQHVV PHDVXUHPHQWV IRU VLOLFRQ R[LGL]HG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ DW r& 9$6( WKLFNQHVV PHDVXUHPHQWV IRU +' DQQHDOV ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ ;55 GDWD IRU WKH WKLFNQHVV DQG GHQVLW\ RI WKH DPRUSKRXV LQWHUIDFLDO OD\HU ,;

PAGE 10

)LJXUH /,67 2) ),*85(6 SDJH 6FKHPDWLF RI D W\SLFDO 026)(7 7KH JDWH LQVXODWRU DQG VLOLFRQ IRUP WKH PHWDO R[LGH VHPLFRQGXFWRU FDSDFLWRU SRUWLRQ RI D 026)(7 &DOFXODWHG FRQGXFWLRQ DQG YDOHQFH EDQG RIIVHWV IRU YDULRXV SHUVSHFWLYH DOWHUQDWLYH GLHOHFWULF PDWHULDOV RQ 6L 7HUQDU\ SKDVH GLDJUDPV LOOXVWUDWLQJ Df f62 GRPLQDQWf Ef fQR SKDVH GRPLQDQWf DQG Ff fPHWDO R[LGH GRPLQDQWf V\VWHPV 6\VWHP F UHSUHVHQWV D VWDEOH FRQGLWLRQ IRU D PHWDO R[LGH ZKHQ LQ GLUHFW FRQWDFW ZLWK VLOLFRQ 6FKHPDWLF RI WRWDO HQHUJ\ DVVRFLDWHG ZLWK ODVHU DEODWLRQ RI D VXUIDFH 6LQXVRLGDO YROWDJH YHUVXV WLPH SORW LQGLFDWLQJ FRQGLWLRQV ZKHUH VLOHQW EDUULHU PLFURGLVFKDUJHV PD\ RFFXU 6SHFWUDO HPLVVLRQ FKDUDFWHULVWLFV IRU $f ORZ SUHVVXUH PHUFXU\ ODPS DQG %f [HQRQ H[FLPHU ODPS 8OWUDYLROHWDVVLVWHG SXOVHG ODVHU GHSRVLWLRQ V\VWHP .U) H[FLPHU ODVHU DQG RSWLF VHWXS +RPHPDGH H[FLPHU DQQHDOLQJ V\VWHP HTXLSSHG ZLWK YDFXXP XOWUDYLROHW ODPS 6FKHPDWLF RI H[FLPHU ODPS LOOXVWUDWLQJ WKH FRQFHQWULF WXEH GHVLJQ DQG KRZ D UDGLR IUHTXHQF\ ORDG LV GHOLYHUHG WR WKH V\VWHP 7LQ\ PLFURGLVFKDUJHV IURP WKH LJQLWHG H[FLPHU ODPS DUH WKH RULJLQ RI WKH H[FLPHU UDGLDWLRQ *HQHUDO [UD\ UHIOHFWLYLW\ VHWXS VKRZLQJ SK\VLFDO UHODWLRQVKLSV EHWZHHQ WKH DFTXLUHG GDWD DQG WKH PRGHOLQJ RXWSXW *HQHUDO [UD\ GLIIUDFWLRQ VHWXS LOOXVWUDWLQJ WKH LQWHUDFWLRQ RI [UD\V ZLWK D VWUXFWXUH DV WKH\ SHUWDLQ WR %UDJJV /DZ 3URFHVV RI LQFRPLQJ UDGLDWLRQ HMHFWLQJ D FKDUDFWHULVWLF SKRWRHOHFWURQ IURP D FDUERQ VDPSOH [

PAGE 11

6FKHPDWLF RI DWRPLF IRUFH PLFURVFRSH DQG WKH YDULRXV FRPSRQHQWV WKDW DOORZ XS WR DWRPLF UHVROXWLRQ 7\SLFDO 026 FDSDFLWRU SUHSDUHG IRU WKLV GLVVHUWDWLRQ %ORFN GLDJUDP RI .HLWKOH\ :LQ V\VWHP DQG KRZ LW FRQQHFWV WR WKH SUREH VWDWLRQ $GDSWHG IURP .HLWKOH\ :LQ RSHUDWLRQ PDQXDO 7\SLFDO FDSDFLWDQFHYROWDJH LOOXVWUDWLQJ WKH WKUHH PDLQ UHJLRQV WKDW RFFXU LQ D 026 GHYLFH DV D IXQFWLRQ RI ELDV YROWDJH DSSOLHG $GDSWHG IURP WKH .HLWKOH\ :LQ RSHUDWLRQ PDQXDO $f SDUDOOHO %f VHULHV DQG &f FRPELQHG VHULHV DQG SDUDOOHO PRGHOV IRU JHQHUDWLRQ RI FDSDFLWDQFH LQIRUPDWLRQ 6FKHPDWLF RI HOHFWURQ EHDP DIWHU SDVVLQJ WKURXJK DQ XOWUDWKLQ 7(0 VDPSOH 6RPH HOHFWURQV DUH VFDWWHUHG ZKLOH RWKHUV UHPDLQ XQVFDWWHUHG ;55 VSHFWUD RI $f UDZ GDWD %f OD\HU PRGHO ZLWKRXW ILW &f OD\HU PRGHO ZLWK ILW DQG 'f OD\HU PRGHO ZLWK ILW LOOXVWUDWLQJ WKH LPSRUWDQFH RI D JRRG PRGHO ZKHQ DQDO\]LQJ ;55 GDWD ;55 VSHFWUD RI $f DVGHSRVLWHG %f YDFXXP DQQHDOHG &f KHOLXP DQQHDOHG DQG 'f R[\JHQ DQQHDOHG =2 WKLQ ILOPV DV PRGHOHG ZLWK WKH f OD\HU PRGHO ZLWK ILWff 3ORW RI LQWHUIDFLDO OD\HU GHQVLW\ DV GHWHUPLQHG E\ ;55 DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH =2 WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS VLQJOH FU\VWDOOLQH VLOLFRQ )7,5 VSHFWUD RI $f R[\JHQ DQQHDO %f KHOLXP DQQHDO DQG &f DVGHSRVLWHG =U&! WKLQ ILOPV VKRZLQJ WKH LQFUHDVH LQ 6Lf§2 ERQGLQJ DEVRUSWLRQ LQ VWUHWFKLQJ EHQGLQJ DQG URFNLQJ PRGHV ;36 GDWD RI 6L S UHJLRQ RI DQ DVGHSRVLWHG =2 WKLQ ILOP DQG DIWHU YDULRXV SRVW GHSRVLWLRQ DQQHDOV 3ORW RI 6L S ELQGLQJ HQHUJ\ RI R[\JHQ ERQGHG WR VLOLFRQ DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH ;36 VSHFWUD RI $f UDZ GDWD %f SHDN ILW &f SHDN ILW DQG 'f SHDN ILW ILW LOOXVWUDWLQJ WKH LPSRUWDQFH RI D JRRG PRGHO ZKHQ DQDO\]LQJ ;36 GDWD ;36 VSHFWUD ZLWK f SHDN ILWf RI $f DVGHSRVLWHG %f YDFXXP DQQHDOHG &f KHOLXP DQQHDOHG DQG 'f R[\JHQ DQQHDOHG =U [L

PAGE 12

3ORW RI 2 ,V ELQGLQJ HQHUJ\ RI R[\JHQ ERQGHG WR VLOLFRQ DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH ;55 VSHFWUD RI $f 893/' UDZ GDWD %f 893/' OD\HU PRGHO &f 893/' OD\HU PRGHO DQG 'f 3/' OD\HU PRGHO IRU %67 VDPSOHV &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH %67 WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS D VLQJOH FU\VWDO VLOLFRQ VXEVWUDWH $)0 RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' GHSRVLWHG VDPSOH H[KLELWV LQFUHDVHG URXJKQHVV ODUJHU JUDLQ VL]HV *,;' RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' GHSRVLWHG VDPSOH H[KLELWV LQFUHDVHG f WH[WXULQJ 2OV ;36 RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 3HDN % FRUUHVSRQGV WR WKH DPRXQW RI SK\VLFDOO\ WUDSSHG R[\JHQ LQ WKH WKLQ ILOP VWUXFWXUH DQG LV UHGXFHG LQ WKH 893/' GHSRVLWHG VDPSOH &XUUHQW GHQVLW\ YHUVXV YROWDJH SORW IRU %67 RI 3/' DQG 893/' GHSRVLWHG VDPSOHV +LJK IUHTXHQF\ FDSDFLWDQFH YHUVXV YROWDJH SORW IRU %67 RI 3/' DQG 893/' GHSRVLWHG VDPSOHV ;36 VSHFWUD RI $f 893/' UDZ GDWD %f 893/' OD\HU PRGHO &f 3/' UDZ GDWD DQG 'f 3/' OD\HU PRGHO IRU <2 VDPSOHV &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH <2 WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS D VLQJOH FU\VWDO VLOLFRQ VXEVWUDWH *,;' RI <2 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' VDPSOH H[KLELWV LQFUHDVHG f WH[WXULQJ 2OV ;36 RI <2 IRU 3/' 893/' GHSRVLWHG VDPSOHV 3HDN % FRUUHVSRQGV WR WKH DPRXQW RI SK\VLFDOO\ WUDSSHG R[\JHQ ZLWKLQ WKH WKLQ ILOP VWUXFWXUH 9$6( WKLFNQHVV YHUVXV WLPH UHVXOWV IRU R[LGDWLRQ RI VLOLFRQ ZLWK DQG ZLWKRXW H[FLPHU UDGLDWLRQ LQ R[\JHQ 9$6( WKLFNQHVV RI WKH RYHUDOO +2 IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XWUDYLROHW UDGLDWLRQ ;55 WKLFNQHVV PHDVXUHPHQWV RI WKH +I' LQWHUIDFLDO OD\HU IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ ;55 GHQVLW\ PHDVXUHPHQWV RI WKH +I&! LQWHUIDFLDO OD\HU IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ ;OO

PAGE 13

&DSDFLWDQFHYROWDJH PHDVXUHPHQWV RI +I' 026 GHYLFHV IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ ;OOO

PAGE 14

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 8/75$9,2/(7$66,67(' 352&(66,1* 2) ',(/(&75,& 7+,1 ),/06 )25 0(7$/ 2;,'( 6(0,&21'8&725 $33/,&$7,216 %\ -RVKXD 0 +RZDUG 'HFHPEHU &KDLU 'U 5DMLY 6LQJK 0DMRU 'HSDUWPHQW 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 2[\JHQDWLRQ RI R[LGH WKLQ ILOPV ZDV VWXGLHG LQ WKLV GLVVHUWDWLRQ ZLWK DSSOLFDWLRQ WR PHWDO R[LGH VHPLFRQGXFWRU WHFKQRORJ\ 2QH RI WKH PDLQ FKDOOHQJHV HQYLVLRQHG IRU IXWXUH PLFURHOHFWURQLF GHYLFHV LV ILQGLQJ D UHSODFHPHQW JDWH GLHOHFWULF IRU VLOLFRQ GLR[LGH 62f RQ VLOLFRQ LQ PHWDO R[LGH VHPLFRQGXFWRU DSSOLFDWLRQV 6HYHUDO DOWHUQDWLYH KLJKN GLHOHFWULF PDWHULDOV KDYH EHHQ SURSRVHG DV D VROXWLRQ WR WKLV SUREOHP EHFDXVH LQVHUWLRQ RI VXFK D OD\HU ZRXOG DOORZ WKLFNHU OD\HUV QRW VXEMHFW WR WXQQHOLQJ OHDNDJH LVVXHV HQFRXQWHUHG ZLWK XOWUDWKLQ 62 OD\HUV WR EH GHSRVLWHG +RZHYHU VWXGLHV KDYH LQGLFDWHG WKDW QHZ SUREOHPV H[LVW ZLWK WKHVH DOWHUQDWLYH OD\HUV $PRQJ WKHVH LVVXHV DUH WKH IRUPDWLRQ RI D ORZN LQWHUIDFLDO GLHOHFWULF OD\HU DQG DQ XQDFFHSWDEOH OHYHO RI R[\JHQ YDFDQFLHV LQ WKH ILOPV WKDW FRQWULEXWH WR OHDNDJH FXUUHQWV ,Q DQ DWWHPSW WR DGGUHVV WKHVH LVVXHV D WKUHH SDUW H[SHULPHQWDO SURFHGXUH KDV EHHQ GHVLJQHG WR ORRN DW WKH UROH RI R[\JHQ LQ WKH WKLQ ILOP V\VWHP )LUVW WKH IRUPDWLRQ RI DQ LQWHUIDFLDO OD\HU DV D IXQFWLRQ RI [LY

PAGE 15

R[\JHQ FRQFHQWUDWLRQ LQ WKH WKLQ ILOP V\VWHP KDV EHHQ LQYHVWLJDWHG 1H[W XOWUDYLROHW UDGLDWLRQ ZDV DGGHG WR D SXOVHG ODVHU GHSRVLWLRQ 3/'f V\VWHP IRU LQVLWX XOWUDYLROHW DVVLVWHG 3/' JURZWK RI GLHOHFWULF ILOPV 7KURXJK WKH DGGLWLRQ RI XOWUDYLROHW UDGLDWLRQ KLJKO\ UHDFWLYH R[\JHQ VSHFLHV DUH JHQHUDWHG ZKLFK DOWHU WKH R[\JHQDWLRQ FRQGLWLRQV DQG G\QDPLFDOO\ DOWHU WKH ILOPV SURSHUWLHV DQG ILQDO R[\JHQDWLRQ FRQGLWLRQV )LQDOO\ WKH DSSOLFDWLRQ RI XOWUDYLROHW DQQHDOLQJ WR DOUHDG\ GHSRVLWHG KDIQLXP GLR[LGH +I'f WKLQ ILOPV ZDV VWXGLHG WR ORRN DW WKH SRVVLELOLW\ RI PRUH IXOO\ R[\JHQDWLQJ WKH ILOP DIWHU JURZWK $ YDULHW\ RI FKDUDFWHUL]DWLRQ WHFKQLTXHV LQGLFDWH WKDW ERWK R[\JHQ WUDSSHG LQ WKH ILOP DQG R[\JHQ WKDW SDVVHV IURP WKH DPELHQW WKURXJK WKH ILOP WR WKH LQWHUIDFH DUH UHVSRQVLEOH IRU WKH IRUPDWLRQ RI WKH LQWHUIDFLDO OD\HU $GGLWLRQDOO\ WKH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ WR D JURZWK V\VWHP FDQ DOWHU SK\VLFDO SURSHUWLHV RI D JURZLQJ ILOP VXFK DV WH[WXULQJ RI D SRO\FU\VWDOOLQH ILOP DQG RYHUDOO UHGXFWLRQ RI WUDSSHG R[\JHQ ZLWKLQ WKH ILOP )XUWKHUPRUH SRVWGHSRVLWLRQ XOWUDYLROHW DQQHDOLQJ DOORZV IRU WKH PLJUDWLRQ RI R[\JHQ VSHFLHV WR WKH LQWHUIDFH IRU JURZWK RI WKH LQWHUIDFH DQG UHVXOWV LQ DQ XQZDQWHG UHGXFWLRQ RI WKH RYHUDOO HOHFWULFDO SURSHUWLHV [Y

PAGE 16

&+$37(5 /,7(5$785( 5(9,(: ,QWURGXFWLRQ $OWKRXJK VLOLFRQ GLR[LGH KDV UHPDLQHG WKH LQVXODWRU RI FKRLFH LQ PHWDO R[LGH VHPLFRQGXFWRU GHYLFHV IRU PRUH WKDQ WKUHH GHFDGHV IXQGDPHQWDO OLPLWDWLRQV RI WKH PDWHULDO SUHGLFW WKDW LWV UHLJQ ZLOO VRRQ FRPH WR DQ HQG 7KLV KDV SURPSWHG PDQ\ UHVHDUFK WHDPV DURXQG WKH ZRUOG WR VHDUFK IRU D VROXWLRQ WR WKLV SUREOHP +RZHYHU WKH DQVZHU KDV SURYHQ WR EH VXUSULVLQJO\ HOXVLYH $Q DSSURDFK FKRVHQ E\ PDQ\ LV WR XVH D KLJK GLHOHFWULF FRQVWDQW PDWHULDO LQ SODFH RI WKH 62 OD\HU WKXV DOOHYLDWLQJ WKH LVVXHV WKDW DUH IRUFLQJ WKH FKDQJH LQ WKH ILUVW SODFH 7KLV GLVVHUWDWLRQ DGGUHVVHV SUREOHPV DVVRFLDWHG ZLWK WKH LPSOHPHQWDWLRQ RI VXFK DQ DOWHUQDWLYH OD\HU 6SHFLDO DWWHQWLRQ LV JLYHQ WR H[SORULQJ D VHFRQG XQZDQWHG LQWHUIDFLDO OD\HU DQG GHYHORSLQJ WKH RULJLQV RI WKDW OD\HU DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH V\VWHP 1H[W WKH HIIHFWV RI XOWUDYLROHW UDGLDWLRQ DUH LQYHVWLJDWHG WR GHWHUPLQH LI D OLQN FRXOG EH PDGH EHWZHHQ WKH R[\JHQ VSHFLHV LQ WKH V\VWHP DQG WKH TXDOLW\ RI LQVLWX DQG SRVWGHSRVLWLRQ SURFHVVHG VDPSOHV 7KH 7UDQVLVWRU 7KH WUDQVLVWRU LV DUJXDEO\ RQH RI WKH PRVW LPSRUWDQW LQYHQWLRQV RI WKH WZHQWLHWK FHQWXU\ ,W KDV SDYHG WKH ZD\ IRU FRXQWOHVV WHFKQRORJLFDO DGYDQFHPHQWV DV KXPDQV KDYH PRYHG LQWR DQ HUD ZKHUH FRPPXQLFDWLRQ DURXQG WKH ZRUOG FDQ RFFXU LQ D PDWWHU RI VHFRQGV 'DWD LQIRUPDWLRQ DQG LGHDV FDQ VWUHDP DERXW WKH JOREH ZLWKRXW WLPH RU GLVWDQFH HYHU FRPLQJ LQWR FRQVLGHUDWLRQ 7KH WUDQVLVWRU DV LQLWLDOO\ WKHRUL]HG DQG ODWHU

PAGE 17

GHYHORSHG FKDQJHG WKH FRXUVH RI FRPSXWHUV IRUHYHU )LUVW LW UHSODFHG YDFXXP WXEHV LQ HDUO\ FRPSXWHUV DQG WKHQ ZDV UHILQHG WR D VWDJH ZKHUHE\ IXOO\ LQWHJUDWHG FLUFXLWU\ EHFDPH D UHDOLW\ 1RZ LW LV LQWHJUDWHG LQWR PLFURSURFHVVRUV ZLWK PLOOLRQV RI WUDQVLVWRUV ZRUNLQJ IODZOHVVO\ RQ D VLQJOH VPDOO PLFURFKLS 7KH WUDQVLVWRU WUXO\ KDV DOORZHG KXPDQV WR PRYH LQWR D QHZ GHILQLWLRQ RI H[LVWHQFH +LVWRU\ ,Q %HOO /DERUDWRULHV EHJDQ UHVHDUFK LQWR D FODVV RI PDWHULDOV NQRZQ DV VHPLFRQGXFWRUV 7KHLU JRDO ZDV WR UHSODFH YDFXXP WXEHV GHYHORSHG LQ f IRU VLJQDO DPSOLILFDWLRQ LQ ORQJ GLVWDQFH WHOHFRPPXQLFDWLRQV DSSOLFDWLRQV 7KH YDFXXP WXEHV ZHUH NQRZQ WR EH XQUHOLDEOH FRQVXPH WRR PXFK SRZHU DQG SURGXFH WRR PXFK KHDW 2Q 'HFHPEHU WK WKH fSRLQW FRQWDFW WUDQVLVWRUf ZDV FUHDWHG DQG FRQVLVWHG RI VWULSV RI JROG IRLO RQ D SODVWLF WULDQJOH LQ LQWLPDWH FRQWDFW ZLWK D VODE RI JHUPDQLXP 7KLV GHVLJQ ZDV VRRQ LPSURYHG XSRQ ZLWK WKH LQYHQWLRQ RI WKH fMXQFWLRQ VDQGZLFKf WUDQVLVWRUf D \HDU ODWHU 7KLV QHZ WUDQVLVWRU SURYHG WR EH PRUH UXJJHG SUDFWLFDO DQG HDVLHU WR PDQXIDFWXUH 7ZHOYH \HDUV ODWHU D QHZ GHVLJQ EDVHG RQ RULJLQDO WKHRULHV IRU D ILHOG HIIHFW WUDQVLVWRU ZDV FUHDWHG 7KLV GHVLJQ LV WKH VDPH RQH WKDW KDV EHHQ FRQWLQXDOO\ XVHG DQG DGMXVWHG IRU WKH SDVW IRUW\ \HDUV %DVLF 7UDQVLVWRU $ VFKHPDWLF RI D PRGHP PHWDO R[LGH VHPLFRQGXFWRU ILHOG HIIHFW WUDQVLVWRU 026)(7f LV VKRZQ LQ )LJXUH >@ 7KHUH DUH VHYHUDO LPSRUWDQW IHDWXUHV WR QRWH )LUVW WKH WUDQVLVWRU VHUYHV DV D VZLWFKLQJ GHYLFH WKDW ZRUNV RQ D ILHOG HIIHFW WKHRU\ $V D YROWDJH LV DSSOLHG WR WKH JDWH FKDUJH FDUULHUV IURP H[WULQVLF GRSDQWV LQ WKH VLOLFRQ DUH HLWKHU DWWUDFWHG WR RU UHSHOOHG IURP WKH VLOLFRQVLOLFRQ GLR[LGH LQWHUIDFH 7KLV PHWDO R[LGH VHPLFRQGXFWRU 026f OD\HUHG VWUXFWXUH LV HVVHQWLDOO\ D FDSDFLWRU 8QGHU FHUWDLQ

PAGE 18

FRQGLWLRQV WKH H[FHVV FKDUJH FDUULHUV LQ WKH VLOLFRQ PD\ IRUP D FRQGXFWLYH FKDQQHO DW WKH LQWHUIDFH %\ VHQVLQJ ZKHWKHU RU QRW D FXUUHQW LV IORZLQJ DORQJ WKLV FKDQQHO XQGHU FHUWDLQ JLYHQ FRQGLWLRQV D RQH DQG ]HUR LQWHUSUHWDWLRQ PD\ EH JHQHUDWHG )RU H[DPSOH LI WKHUH LV D FXUUHQW VHQVHG D RQH LV LQWHUSUHWHG DQG LI QR FXUUHQW LV VHQVHG D ]HUR LV LQWHUSUHWHG 7KHVH RQHV DQG ]HURV IRUP WKH EDVLV RI DOO FRPSXWHU WHFKQRORJ\ ZKLFK VWULQJV WRJHWKHU ORQJ DUUD\V RI RQHV DQG ]HURV LQ ELQDU\ FRGLQJ )XQGDPHQWDO /LPLWDWLRQV 7R GDWH WKH PLFURHOHFWURQLFV LQGXVWU\ FRQWLQXHV WR LQFUHDVH SHUIRUPDQFH E\ GHFUHDVLQJ PLFURHOHFWURQLF GHYLFH VL]H +RZHYHU VHYHUDO URDGEORFNV KDYH EHHQ HQYLVLRQHG IRU WKH QHDU IXWXUH 7KH GHVLUH WR LQFUHDVH PHWDO R[LGH VHPLFRQGXFWRU ILHOG HIIHFW WUDQVLVWRU 026)(7f VSHHG E\ GHFUHDVLQJ WKH ODWHUDO GLPHQVLRQV LH JDWH OHQJWKf DOVR GHPDQGV D SURSRUWLRQDO UHGXFWLRQ LQ WKH JDWH R[LGH WKLFNQHVV 7KH UHGXFWLRQ LQ JDWH R[LGH WKLFNQHVV LV QHFHVVDU\ LQ RUGHU WR PDLQWDLQ D FRQVWDQW FDSDFLWDQFH SHU XQLW DUHD LQ WKH VHPLFRQGXFWRU PDWHULDO :LWKLQ WKH QH[W VHYHUDO \HDUV VLOLFRQ GLR[LGH RQ VLOLFRQ WHFKQRORJ\ ZLOO UHDFK IXQGDPHQWDO OLPLWDWLRQV ZLWK UHVSHFW WR XQDFFHSWDEOH OHDNDJH FXUUHQWV DQG ORZ EUHDNGRZQ YROWDJHV 7KH SUREOHP RFFXUV DW YHU\ VPDOO JDWH WKLFNQHVVHV VXE ƒ UHJLPHf UHTXLUHG IRU IXWXUH GHYLFHV EHFDXVH RI WKH H[SRQHQWLDO GHSHQGHQFH RI OHDNDJH FXUUHQW GXH WR GLUHFW HOHFWURQ WXQQHOLQJf RQ WKH WKLFNQHVV RI WKH GLHOHFWULF OD\HU >@ %XFKDQDQ >@ LOOXVWUDWHV WKH VLWXDWLRQ IRU 62 ZKHUH DW D JDWH ELDV RI a 9 WKH OHDNDJH FXUUHQW FKDQJHV IURP ; n $FP DW ƒ WR $FP DW ƒ 7KLV UHSUHVHQWV D FKDQJH RI WZHOYH RUGHUV RI PDJQLWXGH LQ FXUUHQW IRU D WKLFNQHVV FKDQJH RI OLWWOH PRUH WKDQ D IDFWRU RI WZR 7KLV YHU\ KLJK OHDNDJH FXUUHQW FDXVHV PDQ\ FRQFHUQV DV WR WKH RSHUDWLRQ RI GHYLFHV ZLWK UHVSHFW WR FRQFHLYDEO\ DOWHULQJ GHYLFH SHUIRUPDQFH DV ZHOO DV FUHDWLQJ VWDQGE\ SRZHU GLVVLSDWLRQ UHOLDELOLW\ DQG OLIHWLPH LVVXHV $V VHHQ LQ

PAGE 19

7DEOH WKH LQGXVWU\ WLPHOLQH DV SUHVHQWHG E\ %XFKDQDQ >@ IRU WKH PLQLPXP IHDWXUH VL]H DQG WKH HTXLYDOHQW R[LGH WKLFNQHVV SUHGLFWV TXLFNO\ DSSURDFKLQJ GHDGOLQHV IRU 62 WHFKQRORJ\ 7DEOH ,QGXVWULDO WLPHOLQH IRU PLQLPXP IHDWXUH VL]H DQG HTXLYDOHQW GLHOHFWULF WKLFNQHVV LQ 026)(7 GHYLFHV >@ @ LQ D WKRURXJK UHYLHZ RI WKH FXUUHQW VWDWXV RQ KLJKN GLHOHFWULFV WKHUH DUH D JURXS RI PDLQ FRQVLGHUDWLRQV WKDW PXVW EH VDWLVILHG EHIRUH LQVHUWLRQ

PAGE 20

RI DQ DOWHUQDWH GLHOHFWULF OD\HU LQWR VLOLFRQ LQGXVWULDO SURFHVVHV ZLOO WDNH SODFH ,Q VKRUW WKHUH DUH D VHW RI PDLQ FULWHULD WKDW PXVW EH VDWLVILHG IRU D PDWHULDO WR VDWLVIDFWRULO\ SHUIRUP DV D JDWH GLHOHFWULF 3HUPLWWLYLW\ DQG %DUULHU +HLJKW )LUVW WKH SHUPLWWLYLW\ DQG EDUULHU KHLJKW PXVW EH WDNHQ LQWR FRQVLGHUDWLRQ :KLOH PDQ\ VFLHQWLVWV RULJLQDOO\ IHOW WKDW D PDWHULDO ZLWK D ZRXOG EH QHFHVVDU\ LW ZDV ODWHU IRXQG WKDW WKLV PD\ QRW EH H[DFWO\ WUXH DQG WKDW DPRQJ RWKHU WKLQJV WKH EDUULHU KHLJKW RI WKH PDWHULDO PXVW DOVR EH WDNHQ LQWR FRQVLGHUDWLRQ DORQJ ZLWK WKH GLHOHFWULF FRQVWDQW $Q H[DPSOH RI WKH EDQG RIIVHWV IRU YDULRXV KLJK GLHOHFWULF FRQVWDQW PDWHULDOV LQ FRQWDFW ZLWK VLOLFRQ LV VKRZQ LQ )LJXUH >@ 7KH EHVW PDWHULDOV IRU FRQVLGHUDWLRQ VKRXOG KDYH D FRQGXFWLRQ EDQG RIIVHW JUHDWHU WKDQ a H9 EHFDXVH DV EDUULHU KHLJKW RI WKH PDWHULDO GHFUHDVHV WKHUH LV DOVR DQ H[SRQHQWLDO LQFUHDVH LQ OHDNDJH FXUUHQW DV D UHVXOW RI 6FKRWWN\ HPLVVLRQ RI HOHFWURQV LQWR WKH FRQGXFWLRQ EDQG >@ 8QIRUWXQDWHO\ WKHUH H[LVWV D JHQHUDO UHODWLRQVKLS ZKHUH EDUULHU KHLJKW GHFUHDVHV ZLWK LQFUHDVLQJ GLHOHFWULF FRQVWDQW $ FRPSDULVRQ RI WKH EDQG RIIVHWV IRU 62 H f DQG %D7L&! H f FOHDUO\ LOOXVWUDWHV WKLV SRLQW :KDW WKLV PHDQV LV WKDW WKHUH LV DQ RSWLPL]DWLRQ SUREOHP WR VHH ZKLFK ZLOO KDYH WKH ODUJHU HIIHFW 7KHUPRG\QDPLF 6WDELOLW\ $ VHFRQG LPSRUWDQW FRQVLGHUDWLRQ LV WKH WKHUPRG\QDPLF VWDELOLW\ RI WKH QHZ GLHOHFWULF PDWHULDO ZKHQ LQ GLUHFW FRQWDFW ZLWK VLOLFRQ $Q LPSRUWDQW DSSURDFK WRZDUG SUHGLFWLQJ DQG XQGHUVWDQGLQJ WKH UHODWLYH VWDELOLW\ RI D SDUWLFXODU WKUHH FRPSRQHQW V\VWHP IRU GHYLFH DSSOLFDWLRQV FDQ EH H[SODLQHG WKURXJK WHUQDU\ SKDVH GLDJUDPV >@ +XEEDUG GHVFULEHV WKH WKUHH PDLQ FDWHJRULHV IRU SKDVH GLDJUDPV DV f6L GRPLQDQWf fQR SKDVH GRPLQDQWf DQG fPHWDO R[LGH GRPLQDQWf (DFK RI WKHVH LV VKRZQ LQ )LJXUH >@ 7KH PHWDO R[LGH

PAGE 21

GRPLQDQW W\SH LV RI LQWHUHVW LQ WKLV VWXG\ $V DQ H[DPSOH D FRPSDULVRQ RI WKH =U6L SKDVH GLDJUDP PHWDO R[LGH GRPLQDQWf YHUVXV WKH 7D6L 62 GRPLQDQWf FDQ UHYHDO D JUHDW GHDO RI LQIRUPDWLRQ ,QVSHFWLRQ RI WKH =U6L SKDVH GLDJUDP LQ )LJXUH &f VKRZV WLH OLQHV WKDW GLUHFWO\ FRQQHFW =U&! DQG 6L 7KLV LQGLFDWHV VWDEOH WHUQDU\ FRPSRXQGV LH =U&! VKRXOG EH VWDEOH RQ 6Lf 7KRXJK VXIILFLHQW GDWD DUH XQDYDLODEOH IRU WKH +I6L V\VWHP SUR[LPLW\ RQ WKH SHULRGLF WDEOH DQG LQ VLPLODULWLHV QRWHG EHWZHHQ +I DQG =U LQGLFDWH WKDW WKH VDPH DUJXPHQW VKRXOG KROG WUXH IRU WKH VWDELOLW\ RI +I RQ 6L 2Q WKH RWKHU KDQG LQVSHFWLRQ RI WKH 7D RU 7Lf SKDVH GLDJUDP LQ )LJXUH $ RU %f GRHV QRW KDYH DQ\ WLH OLQHV FRQQHFWLQJ WKH FRPSRXQG RI LQWHUHVW WR 6L WKXV LQGLFDWLQJ D ODFN RI VWDEOH WHUQDU\ FRPSRXQGV 7KH VWDELOLW\ RI WKH V\VWHPV DV SUHGLFWHG E\ WKHVH WLHV OLQHV LV RI SDUDPRXQW LPSRUWDQFH VLQFH LW VXJJHVWV WKDW FRQWURO RI WKH GLHOHFWULF6L LQWHUIDFH PD\ EH SRVVLEOH +RZHYHU LW LV LPSRUWDQW WR NHHS LQ PLQG WKDW HYHQ WKRXJK WKH SKDVH GLDJUDPV LQGLFDWH VWDELOLW\ LQ FHUWDLQ FRPSRXQGV RYHU RWKHUV WKH SKDVH GLDJUDPV DUH JHQHUDWHG IRU HTXLOLEULXP FRQGLWLRQV ,Q IDFW PRVW RI WKH GHSRVLWLRQ WHFKQLTXHV GR QRW RFFXU XQGHU HTXLOLEULXP FRQGLWLRQV 7KLV LV DQ LPSRUWDQW GLIIHUHQFH WR QRWH VLQFH WKHUH KDYH EHHQ PDQ\ UHSRUWV DERXW V\VWHPV WKDW ZHUH SUHGLFWHG WR KDYH WKH WKHUPRG\QDPLF FRQVLGHUDWLRQV XQGHU FRQWURO WKDW VWLOO H[KLELW XQZDQWHG LQWHUIDFLDO OD\HUV >@ ,QWHUIDFH 4XDOLW\ 7KH WKLUG FULWHULRQ WKDW PXVW EH FRQVLGHUHG LV WKH LQWHUIDFH TXDOLW\ 7KLV LV RI SDUWLFXODU LPSRUWDQFH EHFDXVH DQ LQWHUIDFH RI SRRU TXDOLW\ ZLOO UHVXOW LQ GHJUDGDWLRQ RI GHYLFH SHUIRUPDQFH ,PSHUIHFW ERQGLQJ ZLOO FDXVH XQGHU RU RYHUFRQVWUDLQHG VWDWHV WKDW KDYH D GLUHFW FRUUHODWLRQ WR WKH OHDNDJH FXUUHQW DQG HOHFWURQ FKDQQHO PRELOLW\ DQG OHDG WR GHJUDGHG SHUIRUPDQFH ,Q DGGLWLRQ D SDUWLFXODUO\ URXJK LQWHUIDFH FDQ KDYH DGYHUVH HIIHFWV RQ GHYLFH SHUIRUPDQFH ZLWK UHVSHFW WR SRRU FKDQQHO PRELOLW\ FKDUDFWHULVWLFV

PAGE 22

)LOP 0LFURVWUXFWXUH $Q DGGLWLRQDO FULWHULRQ ZKLFK KDV EHHQ WKRURXJKO\ DQDO\]HG LV WKH ILOP PLFURVWUXFWXUH 7KHUH LV VWLOO PXFK GHEDWH RQ ZKHWKHU D SRO\FU\VWDOOLQH VLQJOH FU\VWDOOLQH RU DPRUSKRXV ILOP ZLOO ZRUN EHVW ,W KDV EHHQ DUJXHG WKDW D SRO\FU\VWDOOLQH VHWXS LV VXEMHFW WR KLJK OHDNDJH FXUUHQWV GXH WR QRQVWRLFKLRPHWULHV WKDW RFFXU DORQJ WKH JUDLQ ERXQGDULHV WKDW DFW DV OHDNDJH SDWKV 7KLV ZRXOG VHHP WR LQIHU WKDW D VLQJOH FU\VWDO VWUXFWXUH ZRXOG EH DQ LGHDO VROXWLRQ WR WKLV SUREOHP KRZHYHU WKH HTXLSPHQW W\SLFDOO\ XVHG WR JURZ VLQJOH FU\VWDOOLQH ILOPV LV YHU\ H[SHQVLYH DQG QRW UHDGLO\ DGDSWDEOH WR D ODUJH VFDOH LQGXVWULDO DWPRVSKHUH )XUWKHUPRUH LI LW LV SRVVLEOH WR FUHDWH D VLQJOH FU\VWDO LQWHUIDFH LW LV YHU\ GLIILFXOW WR PDLQWDLQ WKH LQWHJULW\ RI WKH VLQJOH FU\VWDOOLQH VWUXFWXUH LQ VXEVHTXHQW WKHUPDO SURFHVVLQJ VWHSV 2QH PD\ DOVR DUJXH WKDW WKH DPRUSKRXV VWUXFWXUH RI 62 WKDW KDV EHHQ XVHG VR VXFFHVVIXOO\ IRU VR PDQ\ \HDUV ZRXOG EH LGHDO 7KLV KRZHYHU DOVR UXQV LQWR SUREOHPV VLQFH PDQ\ RI WKH KLJKN GLHOHFWULF DOWHUQDWLYHV DUH QRW QDWXUDOO\ LQ DQ DPRUSKRXV VWDWH DQG TXLFNO\ FRQYHUW WR D SRO\FU\VWDOOLQH VWDWH ZKHQ VXEVHTXHQW KHDW WUHDWPHQWV RI WKH OD\HU DUH FRQGXFWHG 7KLV SDUWLFXODU FRQFHUQ KDV EHHQ DQ LVVXH RI JUHDW GHEDWH VLQFH PDQ\ JURXSV KDYH JHQHUDWHG GHFHQW GDWD IRU HDFK RI WKH SRVVLELOLWLHV >@ *DWH &RPSDWLELOLW\ 1H[W JDWH FRPSDWLELOLW\ PXVW EH WDNHQ LQWR FRQVLGHUDWLRQ 1DPHO\ WKH GLHOHFWULF KDV WR EH FRPSDWLEOH ZLWK WKH FXUUHQW LQGXVWU\ VWDQGDUG ZKLFK LV D KLJKO\ GRSHG SRO\FU\VWDOOLQH VLOLFRQ SRO\6Lf JDWH 7KLV SURYHV WR EH D PXFK JUHDWHU WDVN WKDQ LPPHGLDWHO\ DSSDUHQW 7KHUH DUH LVVXHV DVVRFLDWHG ZLWK WKH GLIIXVLRQ RI WKH GRSDQW VSHFLHV LQWR WKH JDWH GLHOHFWULF PDWHULDOV HVSHFLDOO\ VXFK PDWHULDOV DV =2 DQG )+2 WKDW DUH UHSRUWHG WR KDYH UDWKHU RSHQ VWUXFWXUHV > @ 7KH GLIIXVLRQ RI WKH GRSDQW LRQV LQWR WKH GLHOHFWULF PD\ FDXVH GHOHWHULRXV HIIHFWV RQ WKH GLHOHFWULF SURSHUWLHV DV ZHOO DV FUHDWH DUHDV

PAGE 23

LQ WKH JDWH ZKHUH LQFUHDVHG UHVLVWDQFHV DUH HQFRXQWHUHG 7KHUH LV D SRVVLELOLW\ RI VROYLQJ WKLV LVVXH E\ UHSODFLQJ WKH SRO\6L ZLWK D PHWDO JDWH EXW WKHUH DUH FHUWDLQ SUREOHPV DVVRFLDWHG ZLWK WKDW DV ZHOO )LUVW WKH SRO\6L JDWH FXUUHQWO\ DOORZV WXQLQJ RI WKH GRSDQW OHYHOV WR FRUUHODWH WR GHVLUHG WKUHVKROG YROWDJHV IRU ERWK Q026 DQG S026 GHYLFHV 6ZLWFKLQJ WR D PHWDO PHDQV WKDW WKLV ZLOO QR ORQJHU EH DQ RSWLRQ VR HLWKHU D PLGJDS PHWDO RU WZR GLIIHUHQW PHWDOV ZLWK DSSURSULDWH ZRUN IXQFWLRQV ZLOO QHHG WR EH LPSOHPHQWHG ,W WXUQV RXW WKDW WKH PLGJDS PHWDO DSSHDUV WR EH SRWHQWLDOO\ OLPLWLQJ GXH WR IXWXUH SUHGLFWLRQV RI WKH SRZHU UHTXLUHPHQWV YHUVXV WKUHVKROG YROWDJHV UHODWHG WR WKH PLGJDS PHWDO EHLQJ WR ODUJH DQG UHVXOWLQJ GLIILFXOWLHV WXUQLQJ WKH GHYLFHV RQ 0LGJDS ZRUN IXQFWLRQ PHWDO JDWH V\VWHPV KDYH DOVR EHHQ SUHGLFWHG WR EH XQDEOH WR SURYLGH D SHUIRUPDQFH LPSURYHPHQW ZRUWK\ RI WKH DGGHG SURFHVV FRPSOH[LW\ >@ 7KLV OHDYHV WKH RSWLRQ RI LQWURGXFLQJ WZR GLIIHUHQW PHWDOV LQWR WKH &026 V\VWHP 7KRXJK WKLV ZRXOG UHTXLUH D ELW RI DGGLWLRQDO ZRUN WR IXOO\ LQYHVWLJDWH WKH DVVRFLDWHG LVVXHV WKLV GRHV DSSHDU WR EH D YLDEOH RSWLRQ IRU IXWXUH GHYLFHV 3URFHVV &RPSDWLELOLW\ 1H[W LW LV LPSRUWDQW WR HQVXUH WKDW WKH GLHOHFWULF GRHV KDYH JRRG SURFHVV FRPSDWLELOLW\ 6LPSO\ VWDWHG WKH PLFURHOHFWURQLFV LQGXVWU\ LV WRROHG IRU ODUJH VFDOH IDEULFDWLRQ RI 62 RQ VLOLFRQ GHYLFHV ,W LV HDVLO\ FRQFHLYDEOH WKDW WKH GLHOHFWULF WKDW PRVW HDVLO\ VOLSV LQWR WKH FXUUHQW FRPSOH[ LQGXVWULDO SURFHVV RU UHTXLUHV WKH IHZHVW QXPEHU RI PRGLILFDWLRQV ZLOO EH FKRVHQ 7KLV LV UHJDUGOHVV RI LWV VWDWXV LQ RWKHU DUHDV VR ORQJ DV FRQWLQXHG GHYLFH SHUIRUPDQFH FDQ VWLOO EH DFKLHYHG 5HOLDELOLW\ )LQDOO\ WKH UHOLDELOLW\ RI GHYLFHV PXVW EH SURYHQ 7LPH GHSHQGHQW GLHOHFWULF EUHDNGRZQ VWXGLHV ZKHUH KLJKHU YROWDJHV VWUHVV GHYLFHV WR EUHDNGRZQ FRQGLWLRQV LQ

PAGE 24

UHDVRQDEOH WLPH SHULRGV VR WKDW OLIHWLPH HVWLPDWHV IRU DFWXDO ZRUNLQJ FRQGLWLRQV PD\ EH FDOFXODWHG PXVW EH FRQGXFWHG 2QFH GRQH WKH OLIHWLPH FDOFXODWLRQV PXVW ILW LQWR WKH VWULQJHQW WHQ \HDU OLIHWLPH SROLF\ VHW XS DV WKH LQGXVWU\ VWDQGDUG 7R GDWH IHZ UHSRUWV KDYH EHHQ JHQHUDWHG RI WKLV QDWXUH DQG DGGLWLRQDO ZRUN PXVW VWLOO EH FRQGXFWHG ([FLPHU /DVHU %DVLFV 7KRXJK WKHUH DUH PDQ\ WHFKQLTXHV DYDLODEOH IRU WKH GHSRVLWLRQ RI WKLQ R[LGH ILOPV RQWR D VXEVWUDWH SXOVHG ODVHU GHSRVLWLRQ KDV VHYHUDO NH\ DGYDQWDJHV WKDW PDNH LW DQ LGHDO UHVHDUFK WRRO 6WRLFKLRPHWULF WUDQVIHU RI PROHFXOHV IURP WKH WDUJHW WR WKH VXEVWUDWH HIIHFWLYH UDSLG SURWRW\SLQJ RI PDQ\ GLIIHUHQW PDWHULDOV DQG D ZLGH UDQJH RI DSSOLFDWLRQV DUH IRUHPRVW RQ WKLV OLVW 7KH DEODWLRQ SURFHVV LWVHOI LV FKDUDFWHUL]HG E\ DQ LQSXW RI HQHUJ\ IURP WKH ODVHU WR D JLYHQ WDUJHW PDWHULDO 6XEVHTXHQWO\ WKH HQHUJ\ GLVWULEXWLRQ VKRZQ LQ )LJXUH >@ RFFXUV ZKHUHE\ WKH WRWDO HQHUJ\ IRU WKH V\VWHP LV UHSUHVHQWHG DV ( (U (S(G(F rf ZKHUH ( LV WKH ODVHU HQHUJ\ (U WKH UHIOHFWHG HQHUJ\ (S WKH HQHUJ\ RI WKH SODVPD SOXPH (G WKH HQHUJ\ RI GLVLQWHJUDWLRQ GXH WR SDUWLFOHV EORZQ RII E\ WKH YDSRUJDV MHW DQG (F WKH HQHUJ\ DEVRUEHG E\ WKH FDYLW\ ZDOO 7KHUH DUH DGGLWLRQDO IDFWRUV UHODWHG WR WKH ODVHU HQHUJ\ WKDW SOD\ DQ LPSRUWDQW UROH LQ VXUIDFH UHVSRQVH WR SXOVH HQHUJ\ )RU D JLYHQ PDWHULDO D FRPELQDWLRQ RI SXOVH HQHUJ\ DQG DEODWLRQ WKUHVKROG HQHUJ\ GHWHUPLQHV LI DEODWLRQ ZLOO RFFXU DQG WR ZKDW OHYHO ,W VKRXOG EH DSSDUHQW WKDW KLJKHU SXOVH HQHUJLHV UHVXOW LQ DQ LQFUHDVLQJ OHYHO RI DEODWLRQ ,I WKH SXOVH HQHUJ\ LV OHVV WKDQ WKH DEODWLRQ WKUHVKROG PDWHULDO ZLOO QRW EH SK\VLFDOO\ UHPRYHG IURP WKH VXUIDFH LH (S DQG (G WHQG WR ]HURf EXW WKDW HQHUJ\ PD\ VWLOO EH DEVRUEHG E\ WKH FDYLW\ ZDOO (Ff IRU ODVHU DQQHDOLQJ

PAGE 25

H[SHULPHQWV $OO H[SHULPHQWDWLRQ LQ WKLV VWXG\ ZDV FDUULHG RXW DW DQ HQHUJ\ YDOXH PXFK JUHDWHU WKDQ WKH DEODWLRQ WKUHVKROG 8OWUDYLROHW /DPS %DVLFV 8OWUDYLROHW ([FLPHU 5DGLDWLRQ 6RXUFHV 2YHU WKH SDVW GHFDGH QXPHURXV UHVHDUFK WHDPV KDYH SODFHG D FRQVLGHUDEOH DPRXQW RI HIIRUW DQG UHVRXUFHV LQWR WKH GHYHORSPHQW RI XOWUDYLROHW 89f UDGLDWLRQ VRXUFHV WKDW FDQ EH DGGHG WR DOUHDG\ H[LVWLQJ SURFHVVHV UHODWHG WR WKH GHSRVLWLRQ DQG SRVW GHSRVLWLRQ WUHDWPHQWV RI WKLQ ILOPV 89 V\VWHPV VXFK DV KROORZ FDWKRGH GLVFKDUJHV > @ FRQVWULFWHG JORZ GLVFKDUJHV >@ ORZ SUHVVXUH JORZ GLVFKDUJH IURP +J ODPSV >@ DQG H[FLPHU ODPSV > @ KDYH EHHQ XVHG DV DGGLWLRQV WR D YDULHW\ RI GHSRVLWLRQ WHFKQLTXHV 0XFK UHVHDUFK KDV EHHQ FRQGXFWHG ZLWK H[FLPHU ODPSV SRZHUHG E\ UDGLR IUHTXHQF\ SRZHU VXSSOLHV >@ EXW UHSRUWV RI PLFURZDYH GLUHFW FXUUHQW PDJQHWURQ SRZHU VXSSOLHV KDYH DOVR EHHQ UHSRUWHG >@ 5DGLR IUHTXHQF\ GULYHQ H[FLPHU EDVHG VLOHQW EDUULHU GLVFKDUJH ODPSV KDYH EHHQ WKH PDLQ FRQWULEXWRUV LQ D ODUJH SDUW GXH WR HIIRUWV E\ %R\G HW DO ([SHULPHQWV LQFOXGH SKRWRLQGXFHG GHSRVLWLRQ RI VLOLFRQ GLHOHFWULFV VXFK DV VLOLFRQ R[LGH VLOLFRQ QLWULGH DQG VLOLFRQ R[\QLWULGH DV ZHOO DV GLUHFW R[LGDWLRQ RI ERWK 6L DQG *H VXEVWUDWHV DQG GLUHFW QLWULGDWLRQ RI 6L VXUIDFHV > @ +LJKN GLHOHFWULF PDWHULDOV VXFK DV WDQWDOXP SHQWR[LGH 7DVf KDYH EHHQ GHSRVLWHG YLD D SKRWRDVVLVWHG &9' SURFHVV > @ ZKHUHE\ DEVRUEWLRQ RI WKH KLJKO\ HQHUJHWLF SKRWRQV HPLWWHG E\ WKH 89 VRXUFH UHVXOWV LQ WKH GLUHFW SKRWRGLVVRFLDWLRQ RI WKH SUHFXUVRU PDWHULDOV $ORQJ VLPLODU OLQHV SRVW GHSRVLWLRQ H[FLPHU 89 DQQHDOLQJ RI WKH DVGHSRVLWHG VDPSOHV KDV EHHQ FRQGXFWHG FRPSDUHG DQG WKRURXJKO\ DQDO\]HG > @ $GGLWLRQDOO\ WKH GHFRPSRVLWLRQ RI SDOODGLXP DFHWDWH ILOPV IRU VXEVHTXHQW HOHFWURGHOHVV GHSRVLWLRQ RI PHWDOV > @ VXUIDFH PRGLILFDWLRQ RI SRO\PHULF PDWHULDOV >@ DQG SKRWRDVVLVWHG

PAGE 26

FRQYHUVLRQ RI SRO\DPLF DFLG WR IRUP ORZN GLHOHFWULF SRO\PHULF SRO\LPLGH >@ KDYH DOVR EHHQ H[SORUHG 7KH PDMRULW\ RI WKLV ZRUN ZDV FRQGXFWHG XVLQJ H[FLPHU ODPSV +RZHYHU VHYHUDO HDUO\ H[SHULPHQWV ZHUH FRQGXFWHG ZLWK D ORZ SUHVVXUH JORZ GLVFKDUJH +J ODPS >@ WKDW KDV VHUYHG DV D XVHIXO WRRO IRU FRPSDULVRQ LQ PRUH UHFHQW H[FLPHU VWXGLHV 2WKHU JURXSV KDYH DOVR LQYHVWLJDWHG D YDULHW\ RI RWKHU 89 UDGLDWLRQ VRXUFHV ZLWK UHVSHFW WR SK\VLFDO GHVLJQ DQG PHFKDQLVPV IRU 89 HPLVVLRQ > @ 0DQ\ RI WKHVH DUH QRYHO GHVLJQV EXW VRPH DUH DYDLODEOH IURP PDQXIDFWXUHUV HVSHFLDOO\ ORZ SUHVVXUH +J ODPSVf DQG DUH GLVFXVVHG E\ WKH UHVSHFWLYH DXWKRUV RQ D FDVH E\ FDVH EDVLV 'HSRVLWLRQ RI VLOLFRQ QLWULGH RQ VLOLFRQ E\ D ORZ SUHVVXUH +J ODPS >@ GHSRVLWLRQ RI VLOLFRQ QLWULGH RQ ,,,9 PDWHULDOV YLD D KLJKO\ FRQWUROOHG SKRWR&9' SURFHVV >@ DQG ILQDOO\ WKH SKRWROLWKLF &9' RI VLOLFRQ GLR[LGH XWLOL]LQJ DQ 86+,2 EUDQG KHDG RQ ;H H[FLPHU ODPS >@ KDYH DOVR EHHQ SXUVXHG )XUWKHUPRUH ,PDL HW DO >@ KDYH ORRNHG LQWR WKH GHQVLILFDWLRQ RI VROJHO ILOPV VXFK DV VLOLFRQ GLR[LGH DQG WLWDQLXP GLR[LGH E\ XOWUDYLROHW LUUDGLDWLRQ 6LOHQW %DUULHU 'LVFKDUJH ([FLPHU 5DGLDWLRQ 6LQFH DQ LQKRXVH YHUVLRQ RI DQ H[FLPHU ODPS ZDV GHVLJQHG EXLOW DQG LQFOXGHG LQ SRUWLRQV RI WKH H[SHULPHQWDWLRQ DV DQ H[FLPHU 89 UDGLDWLRQ VRXUFH LW LV XVHIXO WR ORRN DW D IHZ RI WKH SURSHUWLHV DVVRFLDWHG ZLWK VLOHQW EDUULHU GLVFKDUJHV ZKLFK VHHP WR PDNH WKLV WKH EHVW FXUUHQW RSWLRQ IRU D UDGLDWLRQ VRXUFH )LUVW ZLWK UHVSHFW WR RWKHU RSWLRQV DYDLODEOH RQ WKH PDUNHW VXFK DV ORZ SUHVVXUH +J ODPSV WKH RSWLRQ RI D ;H H[FLPHU ODPS EDVHG RQ VLOHQW EDUULHU GLVFKDUJH DSSHDUV WR EH D VXSHULRU RSWLRQ LQ VHYHUDO UHVSHFWV 7KH LQLWLDO DGYDQWDJH OLHV LQ WKH SRZHU FDSDELOLWLHV RI WKH ;H ODPS RYHU WKH +J ODPS 5HSRUWHG YDOXHV IRU WKH ;H ODPSV UDQJH IURP DV OLWWOH DV P:FP WR DV JUHDW DV P:FP > @ ,Q FRPSDULVRQ WR ORZ SUHVVXUH +J ODPSV UHSRUWHG YDOXHV

PAGE 27

DUH OHVV WKDQ P:FP >@ ,QWHQVLWLHV KDYH EHHQ PHDVXUHG E\ D YDULHW\ RI PHWKRGV EXW FRPPRQO\ FKHPLFDO DFWLQRPHWU\ RU VRGLXP VDOLF\ODWH VFLQWLOODWRUV FRXSOHG ZLWK PRQRFKURPDWRUV KDYH EHHQ XVHG > @ 0RUH UHFHQWO\ 8VKLR DQG +DPDPDWVX KDYH PDGH VROLG VWDWH SKRWRVHQVLWLYH GHWHFWRUV IRU VSHFLILF YDFXXP XOWUDYLROHW PHDVXUHPHQWV 7KH UHDVRQ WKDW VXFK KLJK LQWHQVLWLHV PD\ EH DFKLHYHG KDV WR GR ZLWK WKH SK\VLFV EHKLQG WKH JHQHUDWLRQ RI D VLOHQW EDUULHU GLVFKDUJH 8VLQJ [HQRQ DV DQ H[DPSOH WKH JDV XQGHUJRHV DQ H[FLWDWLRQ DV D UHVSRQVH WR D UDGLR IUHTXHQF\ VLJQDO ;H HA;H f ;H ;H ;HA!;H f ;H? } ;H ;H K YO QPf f 7KH HPLVVLRQ RI UDGLDWLRQ RFFXUV LQ RQH RI WKRXVDQGV RI PLFURGLVFKDUJHV WKDW UHVXOW DV D IXQFWLRQ RI UDGLR IUHTXHQF\ VWLPXOXV $V WKH VLQXVRLGDO RVFLOODWLRQ RI WKH YROWDJH RFFXUV PLFURGLVFKDUJHV PD\ RFFXU ZKHQ D SDUWLFXODU YDOXH IRU WKH YROWDJH LV DFKLHYHG 7KLV PLFURGLVFKDUJH UHPDLQV XQWLO WKH FKDQJH LQ YROWDJH ZLWK UHVSHFW WR WLPH LV ]HUR LH GYGW f 7KLV LV VKRZQ JUDSKLFDOO\ LQ )LJXUH >@ &OHDUO\ LW LV DGYDQWDJHRXV WR KDYH D KLJKHU IOX[ RI SKRWRQV GXH WR LQFUHDVHG DELOLW\ WR GLVVRFLDWH YDULRXV DPELHQW JDVHV 2f RU SUHFXUVRU JDVHV $GGLWLRQDOO\ WKH JUHDWHU SKRWRQ IOX[ PD\ EH DGYDQWDJHRXV ZLWK UHVSHFW WR WKH SKRWRQLF HIIHFWV DV WKH SKRWRQV ERPEDUG WKH VXEVWUDWH DQG VXEVHTXHQWO\ WKH JURZLQJ ILOP 7KH ;H H[FLPHU ODPS KDV DGGLWLRQDO DWWUDFWLYH IHDWXUHV )LUVW WKH ODPSV DUH UHODWLYHO\ LQH[SHQVLYH DQG HDV\ WR IDEULFDWH LQ FRPSDULVRQ WR RWKHU SKRWR DVVLVWHG SURFHVVHV ZKHUH ODVHUV RU LRQ EHDPV PD\ EH UHTXLUHG >@ 7KH ;H ODPS PD\ DOVR EH HDVLO\ DGDSWHG WR YHU\ ODUJH DUHDV E\ VHWWLQJ

PAGE 28

XS DUUD\V RI WKH ODPSV 7KLV LV SDUWLFXODUO\ DWWUDFWLYH IRU ODUJH VFDOH DSSOLFDWLRQV LQ LQGXVWU\ LQ WKH IXWXUH LI VXFFHVVIXO ODE UHVXOWV VXSSRUW LPSOHPHQWDWLRQ $GGLWLRQDOO\ WKH ODPSV DUH FRPSDWLEOH ZLWK ERWK DWPRVSKHULF DQG YDFXXP RSHUDWLRQ ;H H[FLPHUV DOVR H[KLELW QDUURZ IXOO ZLWK DW KDOI PD[LPXP ):+0f YDOXHV LQ VLQJOH VKDUS HPLVVLRQ VSHFWUD >@ 7KLV LV LQ FRQWUDVW WR WKH ORZ SUHVVXUH +J ODPSV ZKHUH D PDMRULW\ RI WKH HPLWWHG UDGLDWLRQ LV DFWXDOO\ RFFXUULQJ LQ D UDQJH DERYH QP ZKLFK LV DERYH RXU UDQJH RI LQWHUHVW %RWK W\SHV RI WKH HPLVVLRQ VSHFWUD FDQ EH VHHQ LQ )LJXUH >@ 7R DGG WR WKH ORZ ):+0 YDOXHV H[FLPHU ODPSV KDYH D ZLGH UDQJH RI WXQDELOLW\ ZLWK UHVSHFW WR WKH GHVLUHG ZDYHOHQJWK RI UDGLDWLRQ HPLWWHG %\ VLPSO\ FKDQJLQJ WKH JDV LQ WKH GLVFKDUJH UHJLRQ RI WKH ODPS GLIIHUHQW ZDYHOHQJWKV PD\ HDVLO\ EH JHQHUDWHG 7KLV LV LOOXVWUDWHG LQ 7DEOH $V PHQWLRQHG SUHYLRXVO\ WKH ODPS GHVLJQ WKDW %R\G LQ FRQMXQFWLRQ ZLWK .RJHOVFKDW] KDV FKRVHQ WR XVH KDV EHHQ GHYHORSHG EDVHG RII RI 8QLWHG 6WDWHV SDWHQW GDWLQJ EDFN WR >@ ,Q WKLV SDWHQW D IDLUO\ GHWDLOHG GHVFULSWLRQ RI DQ H[FLPHU ODPS GHVLJQ EDVHG RII RI VLOHQW EDUULHU GLVFKDUJH LV GHVFULEHG DQG VHYHUDO YDULDWLRQV DUH SUHVHQWHG ,Q WKLV ZRUN UHIHUHQFH LV DOVR PDGH WR fSULRU DUWf LQ WKH 6RYLHW MRXUQDO =KXUQDO 3ULNODGQRL 6SHNWURVNRSLL LQ D SXEOLFDWLRQ HQWLWOHG f9DFXXPXOWUDYLROHW /DPSV ZLWK D %DUULHU 'LVFKDUJH LQ ,QHUW *DVHVf )URP WKHVH ZH KDYH DOVR PDGH DQ LQ KRXVH YHUVLRQ RI WKH ODPS 0DWHULDOV DQG 3URSHUWLHV $V LGHQWLILHG LQ WKH OLWHUDWXUH WKHUH DUH QXPHURXV RSWLRQV IRU KLJKN GLHOHFWULF PDWHULDOV 3RVVLELOLWLHV LQFOXGH WDQWDOXP SHQWR[LGH 7D2Vf WLWDQLXP R[LGH 7Lf FHULXP R[LGH &Hf ]LUFRQLXP GLR[LGH =Uf \WWULXP R[LGH
PAGE 29

7DEOH 'LIIHUHQW ZDYHOHQJWKV SRVVLEOH DV D IXQFWLRQ RI UDUH JDV RU UDUH JDV KDOLGH PL[WXUH XVHG IRU H[FLPHU GHFRPSRVLWLRQ ([FLPHU &RPSOH[ :DYHOHQJWK QPf 89 5DQJH $U 989 .Ur Ir $U%Ur ;Hr $U&Or .U,r $U)r .U%Ur 89& .U&Or .U) ;HOr &Or ;H%Ur 89% %Ur ;H&Or 89$ ;H)r +If DOXPLQXP R[LGH $,2f DQG EDULXP VWURQWLXP WLWDQDWH %DR V6UR V7L2Lf $V PHQWLRQHG HDUOLHU LW LV LPSRUWDQW WR FRQVLGHU WKH PDLQ FULWHULD DVVRFLDWHG ZLWK VHOHFWLQJ D PDWHULDO 7KH PDLQ FULWHULD WKDW QHHG WR EH WDNHQ LQWR FRQVLGHUDWLRQ IRU LQLWLDO PDWHULDO FRQVLGHUDWLRQ DUH SHUPLWWLYLW\ EDUULHU KHLJKW DQG WKHUPRG\QDPLF VWDELOLW\ $V VHHQ LQ 7DEOH WKHUH DUH PDQ\ RSWLRQV WKDW DUH VXLWDEOH IRU RXU LQYHVWLJDWLRQ 7D 72 DQG %67 DOO ODFN D WKHUPRG\QDPLF VWDELOLW\ LQ GLUHFW FRQWDFW ZLWK 6L 7KLV FDQ LPPHGLDWHO\ HOLPLQDWH WKHP IURP FRQVLGHUDWLRQ DV 026 FDQGLGDWHV +RZHYHU %67 ZLOO EH LQYHVWLJDWHG GXH WR LWV H[WUHPHO\ ODUJH SHUPLWWLYLW\ DQG SUHYLRXV H[SHULPHQWV WKDW VXJJHVW LW PD\ EH D IHDVLEOH PDWHULDO LQ OLJKW RI FHUWDLQ ILQGLQJV WR EH H[SODLQHG ODWHU )URP WKH OLVW RI RWKHU UHPDLQLQJ PDWHULDOV LW LV RQO\ D PDWWHU RI VHOHFWLQJ PDWHULDOV WKDW DUH SUHGLFWHG WR IXOILOO WKH RWKHU FULWHULD ,QSXW IURP LQGXVWULDO VRXUFHV DQG H[WHQVLYH UHVHDUFK FRQGXFWHG RQ WKHVH PDWHULDOV VXJJHVW WKDW < =U DQG +I' DUH H[FHOOHQW

PAGE 30

7DEOH 9DULRXV SURSHUWLHV RI KLJKN R[LGH PDWHULDOV 2[LGH 0DWHULDO 'LHOHFWULF &RQVWDQW &RQGXFWLRQ %DQG 2IIVHW H9f 'HQVLW\ JFPf 0HOWLQJ 3RLQW r&f 6WDELOLW\ LQ &RQWDFW ZLWK 6LOLFRQ $,2 <(6 %D6UR7LR2 12 &H f§ <(6 +I a <(6 7D 12 7L f§ 12 <2 <(6 =U a <(6 FDQGLGDWHV 7KHVH DORQJ ZLWK %67 KDYH EHHQ XVHG IRU YDULRXV SRUWLRQV RI WKH VWXGLHV 0RWLYDWLRQ ,QWHQVH DFWLYLW\ LQ WKH PLFURHOHFWURQLFV ILHOG WR VROYH WKLV SUREOHP LV FXUUHQWO\ XQGHUZD\ 6HYHUDO GLIIHUHQW DSSURDFKHV LQFOXGLQJ QHZ LQQRYDWLYH GHYLFH DUFKLWHFWXUH GHVLJQV HJ YHUWLFDO VWUXFWXUHV DQG GRXEOH JDWH SODQDU WUDQVLVWRUV >@f DOWHUQDWLYH JDWH R[LGHV DQG QHZ SURFHVV LQWHJUDWLRQ KDYH DOO EHHQ SURSRVHG WR VROYH WKLV SUREOHP 7R GDWH QHZ GHYLFH DUFKLWHFWXUHV DUH VWLOO XQGHU GHYHORSPHQW DQG QRW UHDG\ WR EH LPSOHPHQWHG LQWR IXOO VFDOH SURGXFWLRQ 7KH SRVVLELOLW\ RI PRYLQJ WKH GHSRVLWLRQ RI WKH ILQDO JDWH GLHOHFWULF WR WKH SRVW KHDW WUHDWPHQW SRUWLRQ RI WKH &026 SURFHVV LV D GDXQWLQJ WDVN ZLWK UHVSHFW WR FRPSDQLHV DGGLQJ WR WKH DOUHDG\ H[LVWLQJ LQIUDVWUXFWXUHV 7KH RSWLRQ ZKHUHE\ WKH JDWH GLHOHFWULF LV UHSODFHG ZLWK D QHZ GLHOHFWULF PDWHULDO RI KLJKHU SHUPLWWLYLW\ KDV EHHQ SXUVXHG E\ PDQ\ UHVHDUFK WHDPV > @ $FFRUGLQJ WR WKH HTXDWLRQV WKDW JRYHUQ PHWDO R[LGH VHPLFRQGXFWRU 026f WHFKQRORJ\ LI D GLHOHFWULF PDWHULDO ZLWK D KLJKHU GLHOHFWULF FRQVWDQW ZHUH VXEVWLWXWHG IRU WKH FXUUHQW 62 R[LGH D WKLFNHU OD\HU FRXOG EH V\QWKHVL]HG ZKLOH VWLOO PDLQWDLQLQJ D FDSDFLWDQFH SHU XQLW DUHD WKDW LV HTXLYDOHQW WR D YHU\ WKLQ 62 OD\HU 7KLV HIIHFW FDQ EH VHHQ LQ WKH HTXDWLRQ

PAGE 31

W KLJKN A KLJKN A 9 .Rr HT f ZKHUH W LV WKLFNQHVV DQG N LV WKH GLHOHFWULF FRQVWDQW RI WKH UHVSHFWLYH KLJKN GLHOHFWULF DQG WKH VWDQGDUG GLHOHFWULF WR EH UHSODFHG $QRWKHU FRPPRQO\ UHIHUUHG WR YDOXH LV WKH HTXLYDOHQW R[LGH WKLFNQHVV (27f DQG VLJQLILHV WKH WKLFNQHVV DQ HTXLYDOHQW 62 OD\HU ZRXOG EH LI LQ IDFW WKH OD\HU ZHUH 62 7KLV (27 YDOXH LV SDUDPRXQW IRU UHVHDUFK WHDPV WKDW GHVLUH WR FUHDWH D KLJKN JDWH VWDFN WKDW ZLOO EH XVHG LQ IXWXUH 026 GHYLFHV 7KLV LV EHFDXVH LW LV RI QR XVH WR JHQHUDWH D OD\HU WKDW KDV DQ (27 WKLFNHU WKDQ LI RQH ZHUH WR MXVW XVH 62 LQ WKH ILUVW SODFH $Q DGGLWLRQDO HTXDWLRQ WKDW LV HDVLHU WR XVH WR GHWHUPLQH (27 ZKHQ FDSDFLWDQFH DQG JDWH DUHD DUH NQRZQ LV HTW-A,TA$ & f ZKHUH LV WKH GLHOHFWULF FRQVWDQW RI D KLJK TXDOLW\ 62 V LV WKH SHUPLWWLYLW\ RI IUHH VSDFH [n )Pf $ LV WKH DUHD RI WKH JDWH DQG & LV WKH FDSDFLWDQFH PHDVXUHG RQ WKH PHWHU 7KLV LV VLPSO\ D UHRUJDQL]HG YHUVLRQ RI WKH PRUH JHQHUDO HTXDWLRQ IRU WKH FDSDFLWDQFH RI D 026 FDSDFLWRU ZKHUH NQRZOHGJH RI DQ\ WKUHH RI WKH IRXU XQNQRZQV DOORZV IRU FDOFXODWLRQ RI WKH IRXUWK FBV6T$A f ZKHUH DOO YDOXHV DUH WKH VDPH DV DERYH DQG V LV WKH GLHOHFWULF FRQVWDQW RI WKH KLJKN GLHOHFWULF ,Q WKHRU\ LQVHUWLRQ RI DQ DOWHUQDWLYH KLJKN GLHOHFWULF OD\HU LV DQ DWWUDFWLYH RSWLRQ EXW LQ SUDFWLFH YHU\ GLIILFXOW WR DFKLHYH 7KH FXUUHQW 62 GLHOHFWULF OD\HU IRU 6L IXQFWLRQV QHDUO\ LGHDOO\ 6L LV XQUHFHSWLYH WR KDYLQJ WKDW OD\HU VWULSSHG DQG VXEVHTXHQW DOWHUQDWH

PAGE 32

OD\HUV GHSRVLWHG LQ LWV SODFH 7KHUH DUH SUREOHPV ZLWK XQZDQWHG LQWHUIDFLDO OD\HUV ZKLFK IRUP GXULQJ WKH GHSRVLWLRQ RI WKH DOWHUQDWH GLHOHFWULF OD\HU VXFK DV 6L2[ RU VLOLFDWHV 7KH IRUPDWLRQ RI DQ LQWHUIDFLDO OD\HU KDV WKH DELOLW\ WR TXLFNO\ QXOOLI\ DQ\ RI WKH EHQHILFLDO HIIHFWV RI DQ DOWHUQDWLYH KLJKN OD\HU 7KLV LV VR EHFDXVH LW FKDQJHV WKH HTXLYDOHQW HOHFWULFDO FLUFXLW WKDW ZRXOG GHVFULEH WKH 026 FDSDFLWRU IURP D VLQJOH FDSDFLWRU V\VWHP WR D GRXEOH FDSDFLWRU V\VWHP 7KH QHZ V\VWHP KDV D FDSDFLWDQFH DVVRFLDWHG ZLWK WKH KLJK GLHOHFWULF FRQVWDQW PDWHULDO LQ VHULHV ZLWK D FDSDFLWDQFH DVVRFLDWHG ZLWK WKH ORZ GLHOHFWULF FRQVWDQW PDWHULDO 7KLV LV WKHQ H[SUHVVHG DV DQ RYHUDOO FDSDFLWDQFH E\ WKH IROORZLQJ HTXDWLRQ n 7RWDO f F F +LJKN /RZN f 6LQFH WKH WRWDO FDSDFLWDQFH LV ZKDW ZRXOG EH WKH RXWSXW RQ D PHDVXUHPHQW PHWHU D FRPELQDWLRQ RI WKLV HTXDWLRQ DQG HTXDWLRQ DERYH ZRXOG DOORZ IRU GHWHUPLQDWLRQ RI WKH LPSDFW IURP HDFK LQGLYLGXDO FDSDFLWDQFH DVVRFLDWHG ZLWK ERWK WKH KLJK DQG ORZN PDWHULDO ,W VKRXOG EH HDV\ WR HQYLVLRQ WKH GHVLUH WR WKHQ DSSO\ WKHVH UHVXOWV D OD\HU ZLWKRXW DQ\ LQWHUIDFLDO OD\HU VR WKDW WKH WRWDO FDSDFLWDQFH PHDVXUHG LV b IURP WKH KLJKN OD\HU ZLWK DQ HQG UHVXOW RI D PXFK VPDOOHU (27 ,I LW LV SRVVLEOH WR HOLPLQDWH WKH LQWHUIDFLDO OD\HU WKHUH DUH VWLOO SUREOHPV DVVRFLDWHG ZLWK XQDFFHSWDEOH GHIHFW OHYHOV LQ WKH R[LGH DQG DW WKH R[LGHVHPLFRQGXFWRU LQWHUIDFH 7KLV FRPELQDWLRQ RI LVVXHV KDV SURKLELWHG WKH JHQHUDWLRQ RI KLJK HQRXJK TXDOLW\ OD\HUV IRU YLDEOH VXEVWLWXWLRQ ,Q WKLV UHVHDUFK SURMHFW VHYHUDO RI WKH PRUH SURPLVLQJ GLHOHFWULF PDWHULDOV DYDLODEOH KDYH EHHQ VHOHFWHG DQG DQ DWWHPSW ZLOO EH PDGH WR FUHDWH D 026 FDSDFLWRU ZLWK DQ DOWHUQDWH KLJKN PDWHULDO VXEVWLWXWHG LQ IRU WKH 62 7KH REMHFWLYH RI WKLV UHVHDUFK LV QRW

PAGE 33

WR JHQHUDWH DQ DOWHUQDWH KLJKN 026 VWDFN ZLWK DQ H[WUDRUGLQDULO\ ORZ (27 EXW UDWKHU VWXG\ WKH UROH WKDW R[\JHQ KDV ZLWK UHVSHFW WR WKH LQWHUIDFLDO UHJLRQ 7KDW LV LI D ORZ GLHOHFWULF FRQVWDQW LQWHUIDFLDO OD\HU IRUPV ZKDW LV LWV FKHPLFDO QDWXUH DQG LI R[\JHQ WRRN SDUW LQ WKH IRUPDWLRQ ZKDW ZHUH SRVVLEOH VRXUFHV IRU WKH R[\JHQ $GGLWLRQDOO\ KLJK LQWHQVLW\ XOWUDYLROHW UDGLDWLRQ VRXUFHV ZLOO EH DGGHG GXULQJ GHSRVLWLRQ DQG SRVW GHSRVLWLRQ SURFHVVHVf WR LQYHVWLJDWH WKH UROH RI XOWUDYLROHW UDGLDWLRQ DV LW DSSOLHV WR FKDQJHV LW FDXVHV LQ GU\ R[\JHQ V\VWHPV 7KH UDGLDWLRQ XVHG LQ LQVLWX GHSRVLWLRQ SURFHVVHV LV VXSSOLHG E\ DQ DUUD\ RI ORZ SUHVVXUH PHUFXU\ ODPSV ZKLOH SRVW GHSRVLWLRQ DQQHDOLQJ UDGLDWLRQ LV VXSSOLHG E\ D [HQRQ H[FLPHU XOWUDYLROHW UDGLDWLRQ VRXUFH ,W ZLOO EH VKRZQ WKDW GHHS XOWUDYLROHW UDGLDWLRQ KDV D GHILQLWLYH UROH GXULQJ HDFK RI WKH SURFHVVLQJ VWHSV DQG WKDW LW FDQ EH DQ HIIHFWLYH ZD\ WR DOWHU GHYLFH SURSHUWLHV VXFK DV VWUXFWXUDO FKHPLFDO DQG HOHFWULFDO FKDUDFWHULVWLFV 2[\JHQDWLRQ RI )LOPV 1XPHURXV UHSRUWV KDYH FODLPHG D GLUHFW FRQQHFWLRQ RI WKH OHDNDJH FXUUHQW RI DOWHUQDWH KLJKN GLHOHFWULF PDWHULDOV WR WKH DPRXQW RI R[\JHQ YDFDQFLHV DVVRFLDWHG ZLWK WKH JURZQ ILOP >@ ,W LV DOVR ZHOO NQRZQ WKDW ZKLOH SXOVHG ODVHU GHSRVLWLRQ LV DQ H[FHOOHQW WHFKQLTXH IRU WKH VWRLFKLRPHWULF WUDQVIHU RI PDWHULDOV WR WKH JURZLQJ VXUIDFH OLNH PDQ\ GHSRVLWLRQ WHFKQLTXHV WKHUH LV W\SLFDOO\ DOVR DQ R[\JHQ GHILFLHQF\ DVVRFLDWHG ZLWK WKH ILOPV 7UDGLWLRQDOO\ WKHVH ILOPV KDYH XQGHUJRQH SRVW GHSRVLWLRQ 2 WUHDWPHQWV WR KHOS FUHDWH PRUH VWRLFKLRPHWULF ILOPV DQG UHGXFH WKH QXPEHU RI R[\JHQ YDFDQFLHV >@ +RZHYHU FRQVLGHUDEOH HIIRUW KDV EHHQ SODFHG RQ DQDO\]LQJ WKH HIIHFW RI 89 UDGLDWLRQ DV D PHWKRG IRU FUHDWLQJ PRUH UHDFWLYH R[\JHQ VSHFLHV WKDW ZLOO PRUH HIIHFWLYHO\ FUHDWH VWRLFKLRPHWULF VWUXFWXUHV DQG UHGXFH R[\JHQ YDFDQFLHV :KHQ UDGLDWLRQ VRXUFHV ZHUH DGGHG WR FRQYHQWLRQDO V\VWHPV SKRWRDVVLVWHG JURZWK RI 62 RQ VLOLFRQ > @

PAGE 34

VKRZHG LPSURYHPHQW ZLWK UHVSHFW WR HQKDQFHG R[LGDWLRQ UDWHV DQG RYHUDOO EHWWHU SURSHUWLHV HVSHFLDOO\ ZKHQ WKH R[LGDWLRQV ZHUH FRQGXFWHG DW WHPSHUDWXUHV PXFK ORZHU WKDQ WKRVH XVHG LQ FRQYHQWLRQDO GU\ R[LGDWLRQ 7KH DGGLWLRQ RI WKH ORZ SUHVVXUH +J ODPS WR WKH V\VWHP ZKLFK HPLWV D PDMRULW\ RI QP UDGLDWLRQ EXW DOVR D VPDOOHU SHUFHQWDJH RI QP UDGLDWLRQ >@ ZDV FODLPHG WR KDYH EHQHILFLDO HIIHFWV IRU WKH IROORZLQJ UHDVRQ 7KH UDGLDWLRQ HVSHFLDOO\ WKH QP SRUWLRQf KDV WKH DELOLW\ WR FRQYHUW QRUPDO GU\ R[\JHQ 2f LQ WKH UHDFWLRQ YHVVHOV LQWR PRUH UHDFWLYH JDVHRXV VSHFLHV 7KH VSHFLHV JHQHUDWHG LQFOXGH R]RQH 2f DQG RWKHU DWRPLF R[\JHQ VSHFLHV 7KLV QHZO\ JHQHUDWHG 2 WKHQ XQGHUJRHV D GLVVRFLDWLRQ EDFN WR 2 DQG DWRPLF 2n'f UDQJLQJ IURP VHYHUDO SHUFHQW WR JUHDWHU WKDQ b LQ 2 >@ %R\G HW DO FODLP WKDW WKH DWRPLF 2 KDV WKH DELOLW\ WR PRYH PRUH HDVLO\ WKURXJK WKH JURZLQJ 62 PDWUL[ ZKLFK HQDEOHV LW WR UHDFK WKH 6L LQWHUIDFH PRUH UHDGLO\ IRU HQKDQFHG JURZWK UDWHV ,W ZLOO DOVR FRPELQH ZLWK GHIHFWV WKDW RFFXU GXULQJ QRUPDO JURZWK RI 62 UHVXOWLQJ LQ EHWWHU VWRLFKLRPHWULF KLJKHU TXDOLW\ ILOPV $FFRUGLQJ WR ODWHU VWXGLHV E\ =KDQJ HW DO ZLWK SKRWRR[LGDWLRQ RI VLOLFRQ XVLQJ D PXFK KLJKHU LQWHQVLW\ [HQRQ H[FLPHU ODPS WKH 2 LQ WKH V\VWHP IROORZV WKH IROORZLQJ VFKHPH 7KH ERQG HQHUJ\ RI 2 LV NQRZQ WR EH FORVH WR H9 DQG WKH HQHUJ\ DV FDOFXODWHG IURP WKH ZDYHOHQJWK DVVRFLDWHG ZLWK ;H H[FLPHU HPLVVLRQ RI WKH SKRWRQV HPLWWHG IURP WKH [HQRQ ODPS DUH a H9 7KLV DOORZV WKH IROORZLQJ UHDFWLRQ WR WDNH SODFH KY; QPf } Sf f'f f 7KH R[\JHQ DWRPV UHOHDVHG FDQ VXEVHTXHQWO\ IRUP R]RQH E\ WKH IROORZLQJ UHDFWLRQ 2 Sf 0 f§! 2 0 0 LV D WKLUG ERG\f f

PAGE 35

ZKHUH 0 LV D WKLUG ERG\ SDUWLFLSDQW DQG FDQ EH HLWKHU D EXIIHU JDV RU LQ PDQ\ FDVHV MXVW WKH R[\JHQ WKDW LV DOUHDG\ LQ WKH V\VWHP 7KH R]RQH FDQ WKHQ EH GHFRPSRVHG E\ IXUWKHU DEVRUSWLRQ RI WKH YDFXXP XOWUDYLROHW OLJKW RU WKHUPDOO\ WKHUHE\ SURGXFLQJ DGGLWLRQDO H[FLWHG VWDWH n' R[\JHQ DWRPV 2 KY$ QPf f§! n'f f 7KH 2n'f DWRPV DUH FODLPHG WR EH WKH PDLQ UHDVRQ WKDW HQKDQFHPHQWV DUH VHHQ LQ VDPSOHV WKDW DUH SURFHVVHG ZLWK 89 UDGLDWLRQ GXH WR WKHLU HDVH RI PRYLQJ DERXW WKH PDWULFHV DQGRU WKHLU UHDFWLYLW\ ZLWK GHIHFWV LQKHUHQW LQ WKH PDWUL[ $GGLWLRQDOO\ WKH HIIHFW RI WKH 89 H[FLPHU UDGLDWLRQ KDV DOVR EHHQ DGMXVWHG DV WLPH SURJUHVVHG ZLWK UHVSHFW WR D VHFRQG UROH RI WKH 89 UDGLDWLRQ 7KLV UROH LV WKH HIIHFW RI GLUHFW SKRWRQLF ERPEDUGPHQW RI WKH VXUIDFHV IURP WKH HQHUJHWLF SKRWRQV EHLQJ HPLWWHG IURP WKH ODPS :HQJHQPDLU HW DO >@ KDYH VKRZQ LQ D VWXG\ RQ 7L1 ZKHUH QR R[\JHQ LV LQFRUSRUDWHG LQWR WKH H[SHULPHQW WKDW 89 UDGLDWLRQ VWLOO FDXVHG GLIIHUHQFHV LQ DVGHSRVLWHG VDPSOHV YHUVXV 89 GHSRVLWHG VDPSOHV 7KLV GRHV VHUYH DV DQ LQGLUHFW LQGLFDWLRQ WKDW SKRWRQLF ERPEDUGPHQW LV SOD\LQJ D UROH LQ WKH 89 SURFHVV VLQFH QR RWKHU SURFHVV FRQGLWLRQV ZHUH YDULHG 6HYHUDO GLIIHUHQW FKDUDFWHUL]DWLRQ WHFKQLTXHV ZHUH XVHG WR FRQILUP WKLV REVHUYDWLRQ

PAGE 36

9* )LJXUH 6FKHPDWLF RI D W\SLFDO 026)(7 >@ 7KH JDWH LQVXODWRU DQG VLOLFRQ IRUP WKH PHWDO R[LGH VHPLFRQGXFWRU FDSDFLWRU SRUWLRQ RI D 026)(7

PAGE 37

L ‘ 6L 6-2r %D7L2 B B "OP 7$ A +IQ VE1r %D=I2 A $,$ @

PAGE 38

2 R Df R Ef Ff )LJXUH 7HUQDU\ SKDVH GLDJUDPV LOOXVWUDWLQJ Df f6L GRPLQDQWf Ef fQR SKDVH GRPLQDQWf DQG Ff fPHWDO R[LGH GRPLQDQWf V\VWHPV 6\VWHP F UHSUHVHQWV D VWDEOH FRQGLWLRQ IRU D PHWDO R[LGH ZKHQ LQ GLUHFW FRQWDFW ZLWK VLOLFRQ >@

PAGE 40

)LJXUH 6LQXVRLGDO YROWDJH YHUVXV WLPH SORW LQGLFDWLQJ FRQGLWLRQV ZKHUH VLOHQW EDUULHU PLFURGLVFKDUJHV PD\ RFFXU >@

PAGE 41

5HODWLYH 6SHFWUDO (QHUJ\ 'LVWULEXWLRQ e ?Q i BF D! [! 8/ :DYHOHQJWK 1DQRPHWHUVf RQ BF D! MM Dr Rn :DYHOHQJWK 1DQRPHWHUVf %f F 1 $f e ( ( F F T LQ L r 66 F F L! &2 F 7Un LR LO /OB F F b$ BO )LJXUH 6SHFWUDO HPLVVLRQ FKDUDFWHULVWLFV IRU $f ORZ SUHVVXUH PHUFXU\ ODPS DQG %f [HQRQ H[FLPHU ODPS 3ORWV DGDSWHG IURP >@

PAGE 42

&+$37(5 (;3(5,0(17$/ 352&('85(6 6\VWHP *HRPHWULHV 7KHUH DUH IRXU PDLQ FRPSRQHQWV XVHG IRU H[SHULPHQWDWLRQ 7KLV LQFOXGHV WKH ODVHU XVHG IRU WKH ODVHU DEODWLRQ SURFHVV D WUDGLWLRQDO SXOVHG ODVHU GHSRVLWLRQ 3/'f V\VWHP WKDW KDV EHHQ PRGLILHG WR DQ XOWUDYLROHWDVVLVWHG 3/' 893/'f V\VWHP DQG D KRPHPDGH YDFXXP V\VWHP HTXLSSHG ZLWK D VLOHQW EDUULHU GLVFKDUJH H[FLPHU ODPS WKDW LV XVHG IRU SRVW GHSRVLWLRQ DQQHDOLQJ RI JURZQ KLJKN GLHOHFWULFV 7KH H[FLPHU ODPS XVHG IRU WKH SRVW GHSRVLWLRQ V\VWHP ZLOO EH GLVFXVVHG LQ GHWDLO /DVHU 6\VWHP $ /DPEGD 3K\VLN /3; L .U) H[FLPHU ODVHU VQ ( f ZDV XVHG IRU DOO ODVHU DEODWLRQ SRUWLRQV RI WKH H[SHULPHQWDWLRQ 7KLV SDUWLFXODU ODVHU ZRUNV LQ D SXOVHG PRGH GHOLYHULQJ QDQRVHFRQG GXUDWLRQ VTXDUH ZDYH VKDSHG SXOVHV DW IUHTXHQFLHV UDQJLQJ IURP +] DQG RXWSXW HQHUJLHV IURP PIOXHQFH -FPf 7KH FRPSXWHU LV WULJJHUHG E\ HLWKHU DQ fLQWHUQDOf FRPSXWHU RU IURP D UHPRWH fH[WHUQDOf FRPSXWHU ([FLPHU ODVHUV ZRUN RQ WKH SULQFLSOH RI VWLPXODWHG HPLVVLRQ RI SKRWRQV LQ D FDYLW\ ZKHUH .U ) DQG D EXIIHU JDV DUH DOO FRQWDLQHG 7KH .U DQG ) DUH HOHYDWHG LQWR H[FLWHG VWDWHV E\ DSSOLFDWLRQ RI YHU\ KLJK YROWDJHV N9f VR WKDW H[FLWHG .U)r FRPSOH[HV IRUP DQG XSRQ WKHLU GHFD\ JLYH RII VLQJOH ZDYHOHQJWK QP UDGLDWLRQ $V D UHVXOW RI VSHFLILF FDYLW\ GHVLJQ FRQGLWLRQV H[LVW ZKHUHE\ VWLPXODWHG HPLVVLRQ RI FRKHUHQW UDGLDWLRQ

PAGE 43

RFFXUV DQG VXEVHTXHQW DPSOLILHG KLJK HQHUJ\ ODVHU RXWSXW LQ D SXOVHG PRGH FDQ EH REWDLQHG 7KH ODVHU UDGLDWLRQ HPLWWHG IURP WKH FDYLW\ LV GLUHFWHG WKURXJK D VHULHV RI OHQVHV DQG DQ DSHUWXUH XQWLO LW ILQDOO\ LPSLQJHV WKH VDPSOH )RU WKH 3/' V\VWHP WKH ODVHU EHDP ILUVW WUDYHUVHV D FROOLPDWLRQ OHQV LQ DQ DWWHPSW WR NHHS WKH UDGLDWLRQ IURP GLYHUJLQJ GXH WR VFDWWHULQJ DV LW SDVVHV WKURXJK WKH DPELHQW DLU ,PPHGLDWHO\ DIWHU WKH FROOLPDWLQJ OHQV D [ FP DSHUWXUH LV XVHG WR FXW DZD\ WKH PRUH GLIIXVH ORZHU HQHUJ\ HGJHV IURP WKH LQFLGHQW EHDP 7KH EHDP WKHQ SURJUHVVHV LQWR WKH FKDPEHU WKURXJK DQ H[FLPHU JUDGH IXVHG VLOLFD ZLQGRZ DQG WKHQ WKURXJK D IRFXVLQJ RSWLF ZLWK D IRFDO OHQJWK RI FP )LQDOO\ D PP WKLFN TXDUW] SODWH LV XVHG WR SURWHFW WKH RSWLF IURP PDWHULDO DEODWHG IURP WKH WDUJHW 8VLQJ D *HQWHF 6XQ 6HULHV (0, HQHUJ\ PHWHU VQ f WKH HQHUJ\ LQVLGH WKH FKDPEHU ZDV GHWHUPLQHG DIWHU WKH SXOVHG ODVHU EHDP KDG SDVVHG WKURXJK DOO WKH RSWLFDO FRPSRQHQWV ZLWKRXW WKH IRFXVLQJ OHQVf $Q DGGLWLRQDO b RI WKDW ZDV VXEWUDFWHG WR WDNH LQWR DFFRXQW IRU WKH ILQDO IRFXVLQJ RSWLF )URP WKLV YDOXH GLYLGHG E\ WKH DUHD RI WKH ILQDO VSRW VL]H RQ WKH WDUJHW D SUHFLVH FDOFXODWLRQ RI WKH ODVHU IOXHQFH ZDV SRVVLEOH 7KH DEODWLRQ VSRW RQ WKH WDUJHW KDG GLPHQVLRQV RI [ PP LQ D QHDUO\ SHUIHFW UHSUHVHQWDWLRQ RI WKH UHFWDQJXODU DSHUWXUH XVHG HDUOLHU LQ WKH EHDP SDWK 7KLV W\SH RI VSRW ZDV DFKLHYHG E\ DGMXVWLQJ WKH IRFXVLQJ OHQV SRVLWLRQ WR D ORFDO JUHDWHU WKDQ WKH IRFDO SRLQW RI FP WR D SRVLWLRQ a FP ZKLFK FRLQFLGHG ZLWK WKH LPDJH SODQH RI WKH OHQV %HFDXVH WKH DSHUWXUH ZDV XVHG LPDJLQJ RI LW ZDV SRVVLEOH DQG D VSRW ZLWK D KLJKO\ XQLIRUP HQHUJ\ GHQVLW\ ZDV FUHDWHG ,W ZDV IRXQG WKDW ZKLOH DEODWLRQ DW WKH IRFDO SRLQW UHVXOWHG LQ D VPDOOHU VSRW VL]H FRUUHVSRQGLQJ WR D JUHDWHU IOXHQFH WKLV ZDV XQQHFHVVDU\

PAGE 44

DQG GHWULPHQWDO WR WKH VHWXS )LUVW LW ZDV XQQHFHVVDU\ EHFDXVH WKH WKUHVKROG YDOXH IRU ODVHU DEODWLRQ RI R[LGH PDWHULDOV IUHTXHQWO\ GRHV QRW UHTXLUH KLJK HQHUJ\ GHQVLWLHV DV ZDV WKH FDVH LQ RXU H[SHULPHQWDWLRQ 6HFRQG WDNLQJ WKH EHDP WR WKH IRFDO SRLQW UHVXOWHG LQ D KLJKO\ LUUHJXODU VSRW JHRPHWU\ ZKLFK DOVR FRQVLVWHG RI WZR DGGLWLRQDO VDWHOOLWH SHDNV WR HLWKHU VLGH RI WKH PDLQ DEODWLRQ VSRW 7KH PDLQ VSRW ZDV FKDUDFWHUL]HG E\ D *DXVVLDQ W\SH HQHUJ\ GLVWULEXWLRQ ZKLOH WKH VDWHOOLWH SHDNV ZHUH FOHDUO\ RI D GLIIHUHQW HQHUJ\ DOO WRJHWKHU $OO VDPSOHV JURZQ LQ WKH 3/' VHWXS XVHG WKLV ODVHU DQG RSWLFDO VHWXS 893/' 6\VWHP 7KH SXOVHG ODVHU GHSRVLWLRQ SHUIRUPHG IRU WKLV GLVVHUWDWLRQ ZDV GRQH LQ D 1HRFHUD EUDQG YDFXXP V\VWHP 7KH HQWLUH V\VWHP ZLWK ODVHU EXW ZLWKRXW FRPSXWHU FRQWURO LV VKRZQ VFKHPDWLFDOO\ LQ )LJXUH 7KH V\VWHP LV D VLQJOH FKDPEHU GHVLJQ WKDW LV URXWLQHO\ EDFNILOOHG ZLWK QLWURJHQ WR DWPRVSKHULF SUHVVXUH VR VDPSOHV PD\ EH PRXQWHG DQGRU UHPRYHG ,W FDQ HDVLO\ UHDFK YDFXXPV RI ; 2n 7RUU ZLWKLQ DQ KRXU ;f 7RUU ZLWKLQ WZHQW\ IRXU KRXUV DQG ; 2n 7RUU ZLWK WKH DGGLWLRQ RI OLTXLG QLWURJHQ FRROLQJ WR WKH V\VWHP 9DFXXP LV DFKLHYHG YLD D 3IHLIIHU 0'7 RLO IUHH GLDSKUDJP URXJKLQJ SXPS DQG D 3IHLIIHU 708 WXUER SXPS $ FDOLEUDWHG 1HRFHUD EUDQG VWDLQOHVV VWHHO UHVLVWLYH KHDWHU FDSDEOH RI r& LV PRXQWHG YHUWLFDOO\ LQ WKH FKDPEHU DQG XVHG WR FRQWUROODEO\ KHDW DQG FRRO WKH VXEVWUDWH WR DQG IURP WKH GHVLUHG WHPSHUDWXUH 7KHUH LV D FRPSXWHU FRQWUROOHG PXOWLWDUJHW FDURXVHO DYDLODEOH IRU GHSRVLWLRQV RI XS WR VL[ GLIIHUHQW PDWHULDOV IRU PXOWLOD\HU RU VXSHUODWWLFH H[SHULPHQWV $Q DUUD\ RI ORZ SUHVVXUH +J ODPSV KDV EHHQ DGGHG WR WKH FRQYHQWLRQDO 3/' VHWXS WR FRQYHUW LW LQWR D 893/' DSSDUDWXV 8OWUDSXUH JDVHV PD\ EH DGGHG WR WKH V\VWHP WKURXJK D KLJKO\ VHQVLWLYH 9DUDQ EUDQG OHDN YDOYH IRU D ZLGH UDQJH RI GHSRVLWLRQ DPELHQWV DQG SUHVVXUHV

PAGE 45

([FLPHU $QQHDOLQJ 6\VWHP $Q LQ KRXVH YDFXXP V\VWHP VHHQ LQ )LJXUH ZDV VHWXS IRU WKH SXUSRVH RI SRVW GHSRVLWLRQ DQQHDOLQJ RI VDPSOHV 7KH V\VWHP KDV WKH DELOLW\ WR UHDFK KLJK YDFXXP ; 2n 7RUUf FRQGLWLRQV YLD D 9DUDQ 6' WZR VWDJH URWDU\ YDQH URXJKLQJ SXPS XVLQJ )RPEOLQ YDFXXP SXPS IOXLG FRXSOHG ZLWK D 3IHLIIHU 738 WXUER SXPS 7KHUH LV SUHFLVH DWPRVSKHULF FRQWURO YLD D KLJKO\ VHQVLWLYH 9DUDQ EUDQG OHDN YDOYH DQG LW LV HTXLSSHG ZLWK DQ ([FHO ,QVWUXPHQWV VWDLQOHVV VWHHO UHVLVWLYH KHDWHU FDSDEOH RI XS WR r& 7KH PDLQ IHDWXUH RI WKH V\VWHP LV DQ H[FLPHU ODPS GHVLJQHG DQG EXLOW LQKRXVH WKDW KDV EHHQ DGGHG WR WKH V\VWHP 7KH ODPS ZDV VHWXS LQ D WKURXJK PRGH VR WKDW WKH F\OLQGULFDO TXDUW] WXELQJ RI WKH ODPS HQWHUHG WKH YDFXXP FKDPEHU RQ RQH VLGH WKURXJK YDFXXP IHHGWKURXJKV WUDYHUVHG WKH HQWLUH YDFXXP FDYLW\ DQG H[LWHG DQRWKHU YDFXXP IHHGWKURXJK RXW WKH RWKHU VLGH 7KLV LV LPSRUWDQW LQ WKH GHVLJQ EHFDXVH LW DOORZV IRU HIILFLHQW ZDWHU FRROLQJ RI WKH ODPS DV ZHOO DV YDFXXP FRPSDWLELOLW\ 7KH V\VWHP LV GHVLJQHG WR DFFRPPRGDWH IXOO HYDFXDWLRQ RI HVVHQWLDO SRUWLRQV RI WKH H[FLPHU ODPS [ 7RUUf DQG WKHQ WKURXJK D JDV PDQLIROG SUHFLVHO\ EDFNILOO WKH ODPS WR DQ\ GHVLUHG SUHVVXUH XS WR DWPRVSKHULF SUHVVXUH ZLWK DQ\ JDV RI FKRLFH ([FLPHU /DPS 'HVLJQ 7KH ODPS GHVLJQ LV EDVHG RII RI 8QLWHG 6WDWHV SDWHQW f DQG VLPLODU GHVLJQV HPSOR\HG E\ %R\G HW DO LQ /RQGRQ (QJODQG 7KH EDVLF GHVLJQ RI WKH ODPS DV VHHQ LQ )LJXUH HQWDLOV WKH IXVLRQ RI D SDLU RI TXDUW] WXEHV 7KH WXEHV DUH PDGH IURP XOWUDKLJK SXULW\ TXDUW] 6XSUDVLOf SURGXFHG E\ +HUDHXV DQG LV WKH RQO\ TXDUW] LQ WKH ZRUOG FDSDEOH RI SDVVLQJ b RI WKH H[FLPHU XOWUDYLROHW UDGLDWLRQ HPLWWHG E\ [HQRQ FRPSOH[HV QPf 6WDQGDUG KLJK TXDOLW\ TXDUW] ZLOO QRW SDVV DQ\ RI WKH UDGLDWLRQ DW WKLV ZDYHOHQJWK 7KH TXDUW] WXEHV DUH RI WZR GLDPHWHUV VR WKDW RQH ORQJHU WXEH FDQ ILW

PAGE 46

FRQFHQWULFDOO\ ZLWKLQ WKH RWKHU WKXV IRUPLQJ D JDS 7KH HQGV RI WKH VKRUWHU WXEH DUH IXVHG WR WKH ORQJHU WXEH LQ D ZD\ VXFK WKDW D FRQVWDQW JDS DORQJ WKH OHQJWK LV PDLQWDLQHG $Q DGGLWLRQDO WKLUG WXEH WKH JDV LQOHW LQ )LJXUH f PXVW DOVR EH DGGHG WR WKH WXEHV VR WKDW WKHUH LV DQ DFFHVV SRUW WR WKH JDS 7KLV WXEH ZLOO ODWHU EH XVHG DV D SRUW IRU SXOOLQJ D KLJK YDFXXP RQ WKH JDS DQG HYHQWXDOO\ IRU EDFNILOOLQJ RI DQ\ RI D YDULHW\ RI JDVHV FDSDEOH RI H[FLPHU GHFRPSRVLWLRQ 7DEOH VKRZV D OLVW RI SRVVLEOH JDVHV WKDW PD\ EH XVHG LQ D JLYHQ ODPS DQG WKH UDGLDWLRQ ZDYHOHQJWK WKH\ HPLW 7KH RXWHU WXEH LV WKHQ FRYHUHG E\ D PHWDOOLF PHVK 7KH ILQHU WKH PHVK WKH EHWWHU VLQFH WKHUH ZLOO EH OHVV REVWUXFWLRQ IRU H[LWLQJ UDGLDWLRQ DQG WKHUHIRUH UHVXOW LQ JUHDWHU HQHUJ\ GHQVLWLHV 7KLV PHVK LV WR EH JURXQGHG :KHQ PRXQWHG WKH LQVLGH RI WKH LQQHU WXEH ZLOO VHUYH WZR SXUSRVHV )LUVW GHLRQL]HG ZDWHU ZLOO IORZ WKURXJK WKH V\VWHP DW DOO WLPHV GXULQJ RSHUDWLRQ DV DQ HIILFLHQW FRROLQJ PHFKDQLVP $V WKH SRZHU LQSXW LQWR WKH V\VWHP LQFUHDVHV WKH FRROLQJ ZDWHU SOD\V DQ LQFUHDVLQJ LPSRUWDQW UROH 6HFRQG D PHWDO ZLUH FDSDEOH RI FDUU\LQJ KLJK SRZHUV ZLOO EH VSLUDOHG DORQJ WKH LQWHULRU RI WKH WXEH 7KLV ZLUH LV FRQQHFWHG WR D UDGLR IUHTXHQF\ 5)f SRZHU VXSSO\ 7 t & &RQYHUVLRQV ,QFf WKDW JHQHUDWHV XS WR D ZDWW ORDG WR LQGXFH H[FLPHU GHFRPSRVLWLRQ )LJXUH VKRZV WKH PLFURGLVFKDUJHV RI WKH LJQLWHG H[FLPHU ODPS ORFDWHG LQ WKH FHQWHU YDFXXP SRUWLRQ RI WKH KLJK YDFXXP V\VWHP ([SHULPHQWDO 6HWXSV DQG 6DPSOHV 7KHUH DUH WKUHH PDLQ DUHDV WKDW FRPSULVH WKH ZRUN GLVFXVVHG LQ WKLV GLVVHUWDWLRQ $V D UHVXOW LW LV LPSRUWDQW WR GHOLQHDWH WKH YDULRXV VDPSOHV WKDW ZHUH SURGXFHG RU PRGLILHG LQ HDFK VWDJH DQG GLVFXVV DQ\ SUHSDUDWLRQV RU PRGLILFDWLRQV WKDW ZHUH FRPSOHWHG

PAGE 47

,QWHUIDFLDO /D\HU )RUPDWLRQ ,Q WKLV LQLWLDO SRUWLRQ RI WKH H[SHULPHQWDWLRQ WKH FKDUDFWHULVWLFV RI DQ LQWHUIDFLDO OD\HU ZHUH LQYHVWLJDWHG 8OWUDWKLQ =2 VDPSOHV ZHUH GHSRVLWHG LQ D FRQYHQWLRQDO 3/' FKDPEHU DQG H[SRVHG WR GLIIHUHQW DPELHQW WHPSHUDWXUHV LQ D SRVW GHSRVLWLRQ DQQHDO 9DFXXP KHOLXP DQG R[\JHQ ZHUH XVHG DV DQQHDOLQJ DPELHQW JDVHV 7KH PDLQ JRDO IRU WKLV LQYHVWLJDWLRQ ZDV WR WU\ WR GHWHUPLQH WKH VRXUFH RU VRXUFHV RI R[\JHQ WKDW PD\ H[LVW GXULQJ D W\SLFDO GHSRVLWLRQ DQG LQ SDUWLFXODU KRZ WKH\ LPSDFW WKH FKDUDFWHULVWLFV RI DQ XQZDQWHG LQWHUIDFLDO OD\HU 7KH FRQGLWLRQV IRU GHSRVLWLRQ DQG SRVW GHSRVLWLRQ KHDW WUHDWPHQWV DUH VKRZQ LQ 7DEOH 7KH VDPSOHV ZHUH LQYHVWLJDWHG E\ YDULDEOH DQJOH VSHFWURVFRSLF HOOLSVRPHWU\ [UD\ UHIOHFWLYLW\ [UD\ SKRWRHOHFWURQ VSHFWURVFRS\ DQG )RXULHU WUDQVIRUP LQIUDUHG VSHFWURVFRS\ 7KHVH WHFKQLTXHV ZLOO EH GLVFXVVHG ODWHU LQ WKLV FKDSWHU 7DEOH &RQGLWLRQV IRU JURZWK DQG SRVW GHSRVLWLRQ KHDW WUHDWPHQWV RI WKLQ =U&! ILOPV 6DPSOH 3RVW 'HSRVLWLRQ $QQHDO $WPRVSKHUH 1R $QQHDO 9DFXXP [ nE 7RUUf +HOLXP 7RUUf 2[\JHQ 7RUUf ,Q6LWX 8OWUDYLROHW 3/' )RU WKLV H[SHULPHQWDWLRQ D FRQYHQWLRQDO 3/' V\VWHP KDV EHHQ ILWWHG ZLWK DQ DUUD\ RI +J ODPSV 7KH ODPSV HPLWWHG UDGLDWLRQ LQ WKH XOWUDYLROHW DQG GHHS XOWUDYLROHW UHJLRQV 7KDW LV D PDMRULW\ RI WKH UDGLDWLRQ ZDV HPLWWHG DW QP DQG D PXFK VPDOOHU SRUWLRQ bf DW QP 7KH QP UDGLDWLRQ LV UHVSRQVLEOH IRU WKH FRQYHUVLRQ RI R[\JHQ LQWR R]RQH DQG RWKHU DWRPLF R[\JHQ VSHFLHV 2QFH WKH ODPSV ZHUH DGGHG WR WKH V\VWHP <2 DQG %DR6UR7L %67f WKLQ ILOPV ZHUH GHSRVLWHG $Q RSWLPXP SUHVVXUH RI

PAGE 48

DPELHQW R[\JHQ GXULQJ DEODWLRQ ZDV GHWHUPLQHG IRU HDFK RI WKH PDWHULDOV 7KH RSWLPL]DWLRQ ZDV GRQH E\ FRPSDULQJ WKH IXOO ZLGWK DW KDOI PD[LPXP ):+0f RI D JLYHQ [UD\ GLIIUDFWLRQ SHDN RI ILOPV GHSRVLWHG DW GLIIHUHQW SUHVVXUHV 7DEOH VKRZV WKH VSHFLILF R[\JHQ FRQGLWLRQV XVHG IRU WKH GHSRVLWLRQV 7DEOH &RQGLWLRQV IRU LQVLWX XOWUDYLROHW DQQHDOLQJ ZLWK DQ +J ODPS DUUD\ GXULQJ JURZWK RI %67 DQG <2 WKLQ ILOPV 2[\JHQ 3UHVVXUH P7RUUf 8OWUDYLROHW 5DGLDWLRQ %DULXP 6WURQWLXP 7LWDQDWH 12 <(6
PAGE 49

7DEOH &RQGLWLRQV IRU SRV GHSRVLWLRQ H[FLPHU DQQHDOV R n+I' WKLQ ILOPV $QQHDO 7HPSHUDWXUH r& ([FLPHU 8OWUDYLROHW 5DGLDWLRQ 1R $QQHDO 12 <(6 12 <(6 12 <(6 2QH VHW RI VDPSOHV ZDV DQQHDOHG LQ GU\ R[\JHQ DW WHPSHUDWXUHV RI DQG r& $ VHFRQG VHW RI VDPSOHV ZDV JURZQ LQ WKH SUHVHQFH RI GU\ R[\JHQ DQG H[FLPHU 89 UDGLDWLRQ DJDLQ DW DQG r& %RWK V\VWHPV ZHUH DW DQ R[\JHQ SUHVVXUH RI P7RUU $Q DVGHSRVLWHG FRQWURO VDPSOH IURP WKH 0RWRUROD ZDIHU WKDW GLG QRW XQGHUJR DQ\ SRVW GHSRVLWLRQ DQQHDOLQJ ZDV DOVR DQDO\]HG 8SRQ DQQHDOLQJ WKH VDPSOHV ZHUH WHVWHG E\ YDULDEOH DQJHO VSHFWURVFRSLF HOOLSVRPHWU\ [UD\ UHIOHFWLYLW\ [UD\ GLIIUDFWLRQ JODQFLQJ LQFLGHQFH [UD\ GLIIUDFWLRQf DWRPLF IRUFH PLFURVFRS\ DQG FDSDFLWDQFH YROWDJH PHDVXUHPHQWV ([SHULPHQWDO &KDUDFWHUL]DWLRQ 7HFKQLTXHV 6HYHUDO PHDVXUHPHQW WHFKQLTXHV KDYH EHHQ XVHG WR LOOXPLQDWH WKH GLIIHUHQFHV VHHQ EHWZHHQ WKH VDPSOHV WKDW XQGHUZHQW UDGLDWLRQ WUHDWPHQWV YHUVXV WKRVH WKDW GLG QRW 7KH SURSHUWLHV RI WKH ILOPV WKDW ZHUH H[DPLQHG LQFOXGHG VWUXFWXUDO FKHPLFDO DQG HOHFWULFDO SURSHUWLHV $GGLWLRQDO LQIRUPDWLRQ LV SURYLGHG IRU WKH HOHFWULFDO FKDUDFWHUL]DWLRQ LQ WKH DSSHQGL[ GXH WR LWV LPSRUWDQFH ZLWK UHVSHFW WR WKH XOWLPDWH JRDO RI FUHDWLQJ D EHWWHU WUDQVLVWRU 9DULDEOH $QJOH 6SHFWURVFRSLF (OOLSVRPHWU\ 9$6( LV D YHU\ SRZHUIXO VLPSOH DQG QRQGHVWUXFWLYH PHDQV IRU GHWHUPLQDWLRQ RI WKLFNQHVV LQ PXOWLOD\HUHG VWUXFWXUHV DV ZHOO DV RSWLFDO SURSHUWLHV VXFK DV LQGH[ RI

PAGE 50

UHIUDFWLRQ DQG H[WLQFWLRQ FRHIILFLHQW 7KH RSWLPXP WKLFNQHVV UDQJH IRU HOOLSVRPHWU\ LV EHWZHHQ QP DQG LV ZHOO VXLWHG WR WKH IODW SODQDU PDWHULDOV ZLWK ORZ VXUIDFH URXJKQHVVHV JHQHUDWHG IRU WKLV GLVVHUWDWLRQ $OO PHDVXUHPHQWV ZHUH PDGH ZLWK D $ :RROODP EUDQG 0 YDULDEOH DQJOH HOOLSVRPHWHU ZLWK WKH DQJOH RI LQFLGHQFH VHW WR r 7KLV DQJOH LV RSWLPXP IRU VHPLFRQGXFWRU DQG PLFURHOHFWURQLF WKLQ ILOPV ,Q WKLV WHFKQLTXH WKH VDPSOH LV VXEMHFWHG WR D FROOLPDWHG EHDP RI OLJKW IURP D [HQRQ ODPS 7KH OLJKW LV DGMXVWHG VR WKHUH LV D NQRZQ SRODUL]DWLRQ VWDWH DV LV OHDYHV WKH SRODUL]HU $IWHU WKH EHDP RI NQRZ SRODUL]DWLRQ LQWHUDFWV ZLWK WKH VDPSOH LW ZLOO WKHQ H[KLELW D QHZ SRODUL]DWLRQ VWDWH 7KLV QHZ SRODUL]DWLRQ VWDWH LV LQWHUSUHWHG E\ DQ DQDO\]HU DOORZLQJ D GHWHUPLQDWLRQ RI WKH UDWLR RI WKH FRPSOH[ )UHVQHO UHIOHFWLRQ FRHIILFLHQWV DQG XOWLPDWHO\ WKH SVL DQG GHOWD IXQFWLRQV WKDW DUH UHODWHG WR WKH SURSHUWLHV RI WKH VDPSOH 7KLV PHWKRG WKHQ UHTXLUHV WKH H[SHULPHQWDOO\ GHWHUPLQHG GDWD WR EH FRPSDUHG WR GDWD IURP D WKHRUHWLFDO PRGHO WKDW LV DGMXVWHG XQWLO D fEHVW ILWf FDQ EH IRXQG EHWZHHQ WKH WZR 7KLV GRHV LQGLFDWH WKDW WKH EHWWHU WKH WKHRUHWLFDO PRGHO XVHG IRU ILWWLQJ WKH FORVHU WKH DQVZHU ZLOO EH WR WKH FRUUHFW YDOXHV 6LQFH WKHUH LV DOVR WKH SRVVLELOLW\ WKDW VHYHUDO GLIIHUHQW WKHRUHWLFDO PRGHOV ILW ZHOO WR RQH VHW RI H[SHULPHQWDO GDWD DQG PD\ SURGXFH HTXLYDOHQWO\ JRRG ILWV LW LV XS WR WKH XVHU WR HYDOXDWH DQG DVVLPLODWH DOO LQIRUPDWLRQ DERXW WKH VDPSOH WR GHYHORS D SK\VLFDOO\ UHDOLVWLF WKHRUHWLFDO PRGHO ,W LV WKHUHIRUH XVHIXO WR PDNH PHDVXUHPHQWV DW RSWLPXP ZDYHOHQJWK DQG DQJOH RI LQFLGHQFH FRPELQDWLRQV WR NHHS WKH DVVXPHG WKHRUHWLFDO PRGHO VLPSOH \HW UHDOLVWLF ;UD\ 5HIOHFWLYLW\ ;UD\ UHIOHFWLYLW\ ;55f PHDVXUHPHQWV ZHUH PDGH ZLWK WKH DVVLVWDQFH RI D 3KLOLSV EUDQG 05' ;f3HUW V\VWHP 'DWD JHQHUDWHG IURP DQ [UD\ UHIOHFWLYLW\ SORW LQFOXGH WKLFNQHVV URXJKQHVV DQG GHQVLW\ RI D JLYHQ PDWHULDO )LJXUH LV DQ H[DPSOH RI D

PAGE 51

W\SLFDO SORW VKRZLQJ KRZ WKH GLIIHUHQW IHDWXUHV RI DQ DFTXLUHG VSHFWUXP UHODWH WR WKH YDULRXV GDWD WKDW FDQ EH H[WUDFWHG IURP WKH VSHFWUXP 6LPLODU WR 9$6( WKH WHFKQLTXH LV ZHOO VXLWHG WR VPRRWK IODW VDPSOHV ZLWK ORZ VXUIDFH URXJKQHVVHV DQG LV PRVW VHQVLWLYH WR VDPSOHV LQ WKH QP WKLFNQHVV UDQJH 7KLV SDUWLFXODU [UD\ EDVHG DQDO\VLV WHFKQLTXH ZRUNV E\ LPSLQJLQJ WKH VDPSOH ZLWK [UD\V RYHU DQ DUUD\ RI DQJOHV UDQJLQJ IURP VOLJKWO\ VXEFULWLFDO DQJOHV WR WKH ILUVW IHZ GHJUHHV DIWHU WKH FULWLFDO DQJOH 7KH FULWLFDO DQJOH DOVR NQRZQ DV %UHZVWHUfV DQJOH FRUUHVSRQGV WR WKH SRLQW DW ZKLFK [UD\V FKDQJH IURP WRWDO UHIOHFWLRQ RII WKH VXUIDFH WR DEVRUSWLRQ DQG LQWHUDFWLRQ ZLWK WKH VDPSOH DV GHILQHG E\ 6QHOOfV ODZ 7KH UHWULHYHG GDWD UHVXOWV IURP PRQLWRULQJ WKH LQWHQVLW\ RI WKH [UD\ EHDP UHIOHFWHG IURP YDULRXV LQWHUIDFHV UHODWLYH WR WKH LQFLGHQW EHDP DV D IXQFWLRQ RI WKH VFDWWHULQJ WUDQVIHU YHFWRU )UHVQHO HTXDWLRQV ZLOO WKHQ GHVFULEH WKH LQWHUDFWLRQ RI WKH [ UD\V ZLWK RQH DQRWKHU DQG ZLWK LQWHUIDFHV HQFRXQWHUHG LQ WKH VWUXFWXUH 7KH FRQVWUXFWLYH RU GHVWUXFWLYH QDWXUH RI WKH [UD\V DW D JLYHQ DQJOH UHVXOWV LQ JHQHUDWLRQ RI D IULQJH SDWWHUQ 6LPLODU WR 9$6( WKLV SDWWHUQ LV FRPSDUHG WR D XVHU LQSXW PRGHO WKDW LQFRUSRUDWHV WKLFNQHVV URXJKQHVV GHQVLW\ DQG DEVRUSWLRQ SDUDPHWHUV $JDLQ WKH EHWWHU WKH LQSXW PRGHO WKH PRUH DFFXUDWHO\ WKH UHVXOWV ZLOO PDWFK WKH UHDO SK\VLFDO VWUXFWXUH ;UD\ 'LIIUDFWLRQ DQG *ODQFLQJ ,QFLGHQFH ;UD\ 'LIIUDFWLRQ ;5' LV PRVW FRPPRQO\ XVHG WR LGHQWLI\ FU\VWDOOLQH SKDVHV DQG PHDVXUH WKH VWUXFWXUDO SURSHUWLHV RI WKH SKDVHV VXFK DV VWUDLQ JUDLQ VL]H HSLWD[LDO TXDOLW\ SKDVH FRPSRVLWLRQ SUHIHUUHG RULHQWDWLRQ DQG GHIHFW VWUXFWXUH $GGLWLRQDOO\ WKH WHFKQLTXH LV QRQFRQWDFW DQG QRQGHVWUXFWLYH DQG ZLOO SURGXFH VSHFWUD IRU ILOPV DV OLWWOH DV ƒ LQ WKLFNQHVV 7KH EDVLF VHWXS RI WKH GLIIUDFWLRQ SURFHVV LV VHHQ LQ )LJXUH 7KH SUHPLVH RI WKLV UHODWLYHO\ VLPSOH FKDUDFWHUL]DWLRQ WRRO LV WKH JHQHUDWLRQ RI GLIIUDFWLRQ SHDNV GXH WR FRQVWUXFWLYH DQG GHVWUXFWLYH LQWHUIHUHQFH IURP [UD\V VFDWWHUHG E\ WKH DWRPLF SODQHV LQ D FU\VWDO 7KH

PAGE 52

FRQGLWLRQ IRU FRQVWUXFWLYH LQWHUIHUHQFH IURP SODQHV ZLWK D JLYHQ VSDFLQJ LV JLYHQ E\ %UDJJfV /DZ ? GKNLVLQKNL f ZKHUH ; LV WKH ZDYHOHQJWK RI WKH LQFLGHQW [UD\ UDGLDWLRQ W\SLFDOO\ &X .Df GKNL LV WKH GVSDFLQJ EHWZHHQ KNOf SODQHV DQG KNL LV WKH DQJOH EHWZHHQ WKH DWRPLF SODQH DQG WKH LQFLGHQFH GLUHFWLRQ IRU WKH [UD\V )RU VLQJOH FU\VWDO ILOPV WKHUH LV RQO\ RQH VSHFLPHQ RULHQWDWLRQ WKDW ZLOO VDWLVI\ WKH FRQGLWLRQV IRU %UDJJ GLIIUDFWLRQ KRZHYHU ZLWK WKLQ ILOPV WKDW DUH SRO\FU\VWDOOLQH ILEHU WH[WXUHG RU H[KLELW SUHIHUUHG RULHQWDWLRQV VHYHUDO IDPLOLHV RI SODQHV PD\ FRQWULEXWH WR D GLIIUDFWLRQ V\VWHP ;UD\ GLIIUDFWLRQ GDWD IRU WKLV GLVVHUWDWLRQ ZDV REWDLQHG ZLWK D 3KLOLSV 05' GLIIUDFWLRQ V\VWHP 2QFH DQ [UD\ GLIIUDFWLRQ SDWWHUQ LV JHQHUDWHG SRVLWLYH SKDVH LGHQWLILFDWLRQ FDQ EH DFKLHYHG E\ FRPSDULQJ PHDVXUHG GVSDFLQJ IURP WKH GLIIUDFWLRQ SDWWHUQ DQG WKHLU LQWHJUDWHG LQWHQVLWLHVf WR D NQRZQ -&3'6 SRZGHU GLIIUDFWLRQ VWDQGDUG ,Q FHUWDLQ FDVHV LW LV QRW SRVVLEOH WR JHW DQ\ W\SH RI GLIIUDFWLRQ SDWWHUQ IURP D VDPSOH EHFDXVH WKH VDPSOH LV HLWKHU WRR WKLQ RU WKH SHDNV RI LQWHUHVW DUH EHLQJ PDVNHG E\ D PXFK PRUH LQWHQVH SHDN WKDW FRPHV IURP WKH VLQJOH FU\VWDO VXEVWUDWH ,Q WKLV LQVWDQFH D VSHFLDO PRGH RI [UD\ GLIIUDFWLRQ NQRZQ DV JODQFLQJ LQFLGHQFH [UD\ GLIIUDFWLRQ PD\ EH XVHG ,Q WKLV VHWXS WKH LQFLGHQW DQJOH RI WKH [UD\ V\VWHP LV IL[HG DW D VPDOO YDOXH W\SLFDOO\ IURP rf DQG WKH UHFHLYLQJ VOLW LV DOORZHG WR VFDQ WKURXJK D W\SLFDO UDQJH IRU D FRQYHQWLRQDO ;5' VFDQ $V D UHVXOW RQO\ SODQHV WKDW VDWLVI\ WKH %UDJJ FRQGLWLRQ ZLWK WKH DGGLWLRQDO FRQVWUDLQW LQ SODFH ZLOO SURGXFH SHDNV ,Q D SRO\FU\VWDOOLQH VDPSOH ZLWK PDQ\ RULHQWDWLRQV WKLV ZLOO VWLOO JHQHUDWH D UHSUHVHQWDWLYH [UD\ GLIIUDFWLRQ SORW EXW ZLWK PXFK KLJKHU VXUIDFH VHQVLWLYLW\ DQG XQGHU SURSHU FRQGLWLRQV ZLWKRXW DQ\ PDVNLQJ SHDNV

PAGE 53

IURP WKH VLOLFRQ VXEVWUDWH 7KLV PHWKRG SURYHG WR EH EHQHILFLDO IRU VHYHUDO VDPSOHV LQ WKLV GLVVHUWDWLRQ GXH WR WKH ORZ WKLFNQHVVHV XVHG LQ GLIIHUHQW SRUWLRQV RI WKH H[SHULPHQWDWLRQ ;UD\ 3KRWRHOHFWURQ 6SHFWURVFRS\ ;36 VSHFWUD ZHUH FROOHFWHG XVLQJ D 3HUNLQ (OPHU LQVWDOODWLRQ XVLQJ 0J .D UDGLDWLRQ DW D WDNHRII DQJOH RI r 7KLV WHFKQLTXH LV FOHDUO\ RQH RI WKH PRVW EURDGO\ DSSOLFDEOH JHQHUDO VXUIDFH DQDO\VLV WHFKQLTXHV GXH WR LWV KLJK VXUIDFH VHQVLWLYLW\ DQG TXDQWLWDWLYH FKHPLFDO VWDWH DQDO\VLV FDSDELOLWLHV (OHPHQWDO GHWHFWLRQ LQFOXGHV DOO HOHPHQWV H[FHSW K\GURJHQ DQG KHOLXP $JDLQ WKH VPRRWK IODW VDPSOHV PHDVXUHG LQ WKLV GLVVHUWDWLRQ DUH RSWLPXP IRU WKLV DQDO\VLV WHFKQLTXH ,Q WKH ;36 SURFHVV KLJK HQHUJ\ SKRWRQV FDQ LRQL]H DWRPV WR SURGXFH IUHH HOHFWURQV NQRZQ DV SKRWRHOHFWURQV 7KH NLQHWLF HQHUJ\ .(f RI WKH HOHFWURQ GHSHQGV RQ WKH HQHUJ\ RI WKH SKRWRQ E\ (LQVWHLQfV SKRWRHOHFWULF ODZ .( KX %( f ZKHUH KX LV WKH HQHUJ\ RI WKH LQFLGHQW SKRWRQ DQG %( LV WKH ELQGLQJ HQHUJ\ ,Q WKLV HTXDWLRQ KX LV NQRZQ .( LV PHDVXUHG DQG %( LV WKHUHIRUH WKH GHWHUPLQHG RXWSXW 7KH PHDVXUHG %( LV VSHFLILF WR WKH DWRP FRQFHUQHG DQG WKHUHE\ VXFFLQFWO\ LGHQWLILHV WKH DWRP )LJXUH VKRZV WKH SKRWRHOHFWURQ SURFHVV ZLWK FDUERQ DV DQ H[DPSOH :KLOH WKH 0J .D KDV VXIILFLHQW HQHUJ\ H9f WR HMHFW WKH LQQHUPRVW HOHFWURQV IURP FDUERQ WKH SKRWRQV PD\ DOVR UHPRYH WKH V RU S HOHFWURQV ;36 GDWD PD\ EH LQWHUSUHWHG E\ WKH XVHU WR JLYH VHQVLWLYH HOHPHQWDO DQG FKHPLFDO VWDWH DQDO\VLV $WRPLF )RUFH 0LFURVFRS\ $WRPLF IRUFH PLFURVFRS\ PHDVXUHPHQWV ZHUH PDGH ZLWK D 'LJLWDO ,QVWUXPHQWV EUDQG 1DQRVFRSH ,,, RSHUDWLQJ LQ WDSSLQJ PRGH 7KLV WHFKQLTXH ZDV FKRVHQ IRU LWV H[FHSWLRQDO

PAGE 54

DELOLW\ WR SURGXFH WRSRJUDSKLF LPDJHV RI D VXUIDFH LQ DOO WKUHH GLPHQVLRQV DW UHPDUNDEO\ KLJK UHVROXWLRQV ,I FRQGLWLRQV DUH SURSHUO\ VHW DWRPLF UHVROXWLRQ LV DWWDLQDEOH 7KLV WHFKQLTXH LV DOVR SHUIHFWO\ VXLWHG WR WKH LQVXODWLQJ ORZ URXJKQHVV VDPSOHV FUHDWHG IRU WKLV GLVVHUWDWLRQ ,Q DQ DWRPLF IRUFH PLFURVFRSH D VKDUS WLS LV PRXQWHG RQ D IOH[LEOH FDQWLOHYHU :KHQ WKH WLS FRPHV LQWR FORVH SUR[LPLW\ RI D VDPSOH VXUIDFH YDQ GHU :DDO IRUFHV UHSHO WKH WLS FDXVLQJ WKH FDQWLOHYHU WR GHIOHFW $ SLH]RHOHFWULF VFDQQHU LV UHVSRQVLEOH IRU PRYLQJ WKH FDQWLOHYHUWLS DVVHPEO\ DORQJ WKH VXUIDFH RI WKH VDPSOH ZKLOH D ODVHU UHIOHFWLQJ RII WKH HQG RI WKH FDQWLOHYHU PDSV WKH WRSRJUDSKLFDO FKDQJHV WKH FDQWLOHYHU VHQVHV 7KLV LV VKRZQ VFKHPDWLFDOO\ LQ )LJXUH )RXULHU 7UDQVIRUP ,QIUDUHG 6SHFWURVFRS\ 7KLV PHWKRG LV RQH RI WKH IHZ WHFKQLTXHV WKDW SURYLGHV LQIRUPDWLRQ DERXW WKH FKHPLFDO ERQGLQJ LQ D PDWHULDO DQG LV QRQGHVWUXFWLYH +HUH WKH JRDO LV WR GHWHUPLQH FKDQJHV LQ WKH LQWHQVLW\ RI D EHDP RI LQIUDUHG UDGLDWLRQ DV D IXQFWLRQ DV D IXQFWLRQ RI ZDYHOHQJWK RU IUHTXHQF\ DIWHU LW LQWHUDFWV ZLWK D VDPSOH 7KH )7,5 XVHG LQ WKHVH LQYHVWLJDWLRQV LV D 1LFORHW 0$*1$ HTXLSSHG ZLWK SRWDVVLXP EURPLGH .%Uf RSWLFV DQG RSHUDWLQJ LQ WUDQVPLVVLRQ PRGH 7KH PDLQ IHDWXUH LV WKH DELOLW\ WR GHWHUPLQH LQ D TXDOLWDWLYH DQG TXDQWLWDWLYHf VHQVH WKH W\SHV RI ERQGV WKDW DUH SUHVHQW LQ D WKLQ ILOP VWUXFWXUH (OHFWULFDO &KDUDFWHUL]DWLRQ $ SULPDU\ WRRO IRU LQGLFDWLRQ RI TXDOLW\ RI WKLQ ILOP LV WKH XVH RI HOHFWULFDO FKDUDFWHUL]DWLRQ WHFKQLTXHV $IWHU GHSRVLWLRQ RU SURFHVVLQJ RI WKLQ ILOPV PHWDO R[LGH VHPLFRQGXFWRU 026f GHYLFHV ZHUH IDEULFDWHG DQG PHDVXUHG 7\SLFDO SUHSDUDWLRQ RI WKH ILOP LQFOXGHG WKH GHSRVLWLRQ RI HLWKHU JROG $Xf RU SODWLQXP 3Wf FRQWDFWV YLD HYDSRUDWLRQ RU '& PDJQHWURQ VSXWWHULQJ UHVSHFWLYHO\ ,Q ERWK FDVHV D PDVN ZLWK DQ DUUD\ RI FLUFXODU GRWV UDQJLQJ IURP XP ZDV XVHG WR FUHDWH GRW DUUD\V RQ WKH VDPSOHV 7KH EDFNVLGH

PAGE 55

FRQWDG ZDV HLWKHU HYDSRUDWHG $X RU VLOYHU $Jf ,Q ERWK FDVHV WKH EDFNVLGH RI WKH ZDIHU ZDV FOHDQHG DQG WKH VXUIDFH ZDV DEUDGHG VR WKDW FOHDQ VLOLFRQ ZLWKRXW DQ\ QDWLYH VLOLFRQ GLR[LGH ZDV SUHVHQW ,W LV RI SDUDPRXQW LPSRUWDQFH WR XQGHUVWDQG WKH FRQVHTXHQFHV RI ZKLFK W\SH RI PHWDO LV FKRVHQ GHSHQGLQJ RQ ZKDW GLHOHFWULF LV GHSRVLWHG DQG ZKHWKHU WKH VLOLFRQ VXEVWUDWH LV QW\SH RU SW\SH ,I LPSURSHU PHWDOV DUH FKRVHQ IRU D JLYHQ VHWXS EDQG DOLJQPHQW FRQGLWLRQV PD\ H[LVW ZKHUHE\ QRQRKPLF FRQWDFWV DUH FUHDWHG ZLWKLQ WKH GHYLFH LWVHOI $V DQ H[DPSOH WKH EDFNVLGH PHWDO FRQWDFW RQ D SW\SH VLOLFRQ ZDIHU VKRXOG KDYH D ZRUN IXQFWLRQ JUHDWHU WKDQ WKDW RI WKH VLOLFRQ ,I WKHVH FRQGLWLRQV DUH PHW WKHUH VKRXOG EH DQ RKPLF FRQWDFW LI QRW WKH FRQWDFW ZLOO EH D UHFWLI\LQJ 6FKRWWN\ FRQWDFW 7KH PRVW UHFHQW JHQHUDWLRQ RI D 026 FDSDFLWRU IDEULFDWHG IRU WKLV GLVVHUWDWLRQ LV VKRZQ LQ )LJXUH $IWHU PHWDOOL]DWLRQ RI WKH IURQW VLGH FRQWDFW LH JDWHf ZDV FRPSOHWH VDPSOHV XQGHUZHQW KHDW WUHDWPHQWV HLWKHU LQ DQ $* $VVRFLDWHV UDSLG WKHUPDO DQQHDOLQJ 57$f IXUQDFH RU LQ D FRQYHQWLRQDO IXUQDFH ,Q ERWK FDVHV LQ D IRUPLQJ JDV DWPRVSKHUH b + EDODQFH 1f ZDV XWLOL]HG %RWK FXUUHQWYROWDJH DQG FDSDFLWDQFHYROWDJH PHDVXUHPHQWV ZHUH WDNHQ RQFH WKH 026 FDSDFLWRUV ZHUH IRUPHG &XUUHQW9ROWDJH 0HDVXUHPHQWV 2QFH 026 GHYLFHV ZHUH IDEULFDWHG D .HLWKOH\ ,QVWUXPHQWV ,QF ., VRXUFH PHDVXUHPHQW XQLW 608f ZDV XVHG WR PHDVXUH WKH FXUUHQW IORZ WKURXJK D GHYLFH 7KH 608 ZDV DWWDFKHG WR D EODFN ER[ SUREH VWDWLRQ HTXLSSHG ZLWK D SDLU RI 6LJQDWRQH ,QF PLFURPDQLSXODWRUV 7KH PLFURPDQLSXODWRUV ZHUH ILWWHG ZLWK WXQJVWHQ SUREHV WKDW ZHUH PLOOHG WR SURGXFH D ILQH a XP WLS 7KH RXWSXW RI WKH 608 ZDV FRQQHFWHG WR WKH PLFURPDQLSXODWRU LQ FRQWDFW ZLWK WKH JDWH 3W RU $Xf ZKLOH WKH LQSXW ZDV FRQQHFWHG WR WKH EDFNVLGH FRQWDFW $J RU $Xf 7KLV FRQILJXUDWLRQ LV RSWLPDO IRU WKH GHWHUPLQDWLRQ RI FXUUHQW OHDNDJH SDWKZD\V GLUHFWO\ EHORZ WKH GHYLFH EHLQJ PHDVXUHG LH LW DYRLGV VWUD\

PAGE 56

OHDNDJH SDWKVf 'HWHUPLQDWLRQ RI WKH OHDNDJH FXUUHQW LV DQ HVVHQWLDO ILUVW VWHS LQ DQDO\]LQJ DQ 026 GHYLFH 7\SLFDOO\ D FXUUHQW FRPSOLDQFH WKUHVKROG D YDOXH WKDW PD\ QRW EH H[FHHGHGf RI Q$ LV LQSXW LQWR WKH PHDVXUHPHQW SDUDPHWHUV 7KHQ D GLUHFW FXUUHQW ELDV VZHHS LV FRQGXFWHG RYHU D YROWDJH UDQJH XVXDOO\ QHJDWLYH WR SRVLWLYHf DQG WKH DPRXQW RI FXUUHQW WKDW SDVVHV WKURXJK WKH 026 VWUXFWXUH LV PRQLWRUHG 7\SLFDOO\ LW LV EHVW WR VWDUW DW D VPDOO YROWDJH VZHHS UDQJH VR WKDW LW LV SRVVLEOH WR GHWHUPLQH LI WKH GHYLFH LV OHDN\ ZLWKRXW FDXVLQJ D ODUJH DPRXQW RI ELDV LQGXFHG GHIHFWV 7KH PDLQ JRDO RI WKH OHDNDJH FXUUHQW PHDVXUHPHQW LV WR LGHQWLI\ D KLJK TXDOLW\ GHYLFH WKDW FDQ EH XVHG IRU FDSDFLWDQFH YROWDJH PHDVXUHPHQWV DQG WR GHWHUPLQH LI H[FHVVLYH OHDNDJH LV SUHVHQW WKDW QHHGV IXUWKHU LQYHVWLJDWLRQ &DSDFLWDQFH9ROWDJH 0HDVXUHPHQW &DSDFLWDQFHYROWDJH PHDVXUHPHQWV VHUYH DV RQH RI WKH PRVW YHUVDWLOH DQG VHQVLWLYH RI DOO HOHFWULFDO FKDUDFWHUL]DWLRQ WHFKQLTXHV ,W LV WKH XOWLPDWH WRRO IRU GHWHUPLQLQJ GLVFUHHW GLIIHUHQFHV LQ D 026 GHYLFH WKDW PD\ VHUYH DV WKH ILQDO ZRUG LQ ZKHWKHU D JLYHQ SURFHVVLQJ FRQGLWLRQ KDV UHVXOWHG LQ D KLJK HQRXJK TXDOLW\ GHYLFH WR DSSO\ WR 026)(7 DSSOLFDWLRQV 7KHVH PHDVXUHPHQWV ZHUH FDUULHG RXW ZLWK D .LHWKOH\ ,QVWUXPHQWV ,QF :LQ PHDVXUHPHQW V\VWHP 7KLV V\VWHP DV VHHQ LQ )LJXUH LV FRPSULVHG RI IRXU PDLQ FRPSRQHQWV WKDW ZRUN LQ XQLVRQ 7KH .HLWKO\ FDSDFLWDQFH PHWHU LV XVHG IRU KLJK IUHTXHQF\ FDSDFLWDQFH PHDVXUHPHQWV DW N+] DQG 0+] 7KH .HLWKOH\ FDSDFLWRU LV XVHG IRU VLPXOWDQHRXV TXDVLVWDWLF ORZ IUHTXHQF\ PHDVXUHPHQWV 7KH .HLWKOH\ YROWDJH VRXUFH LV XVHG IRU VWDWLF ELDV FRQGLWLRQ PHDVXUHPHQWV 7KHVH WKUHH GHYLFHV DUH ZLUHG LQWR WKH .HLWKOH\ UHPRWH LQSXW FRXSOHU ZKLFK VHUYHV WR ILOWHU WKH GHYLFH GDWD WR DQG IURP WKH YDULRXV SLHFHV RI HTXLSPHQW 'XH WR LWV DELOLW\ WR JLYH

PAGE 57

GHWDLOHG LQIRUPDWLRQ DERXW WKH TXDOLW\ RI WKH 026 GHYLFH WKH :LQ V\VWHP ZLOO EH GLVFXVVHG LQ WKH DSSHQGL[ 7KH RXWSXW RI D W\SLFDO &9 FXUYH FDQ EH VHHQ LQ )LJXUH 7KHUH DUH VHYHUDO LPSRUWDQW IHDWXUHV WKDW VKRXOG EH QRWHG )LUVW WKHUH DUH WKUHH LPSRUWDQW UHJLRQV ZLWK UHVSHFW WR JDWH ELDV YROWDJH WR WDNH LQWR FRQVLGHUDWLRQ NQRZQ DV DFFXPXODWLRQ GHSOHWLRQ DQG LQYHUVLRQ 7KH SUHVHQFH RI WKH GLIIHUHQW UHJLRQV LV D UHVXOW RI WKH PDMRULW\ FKDUJH FDUULHUV HJ KROHV LQ D SW\SH VLOLFRQ ZDIHUf LQ WKH VHPLFRQGXFWRU :KHQ D QHJDWLYH ELDV LV DSSOLHG WR WKH JDWH HOHFWURGH SRVLWLYHO\ FKDUJHG KROHV DUH DWWUDFWHG IURP WKH VHPLFRQGXFWRU EXON UHJLRQ WR WKH R[LGHVHPLFRQGXFWRU LQWHUIDFH ZKHUH WKH\ DFFXPXODWH WKH DFFXPXODWLRQ UHJLRQf 7KH GHSOHWLRQ UHJLRQ LV JHQHUDWHG ZKHQ D JDWH LV PDGH OHVV QHJDWLYH DQG WKH UHGXFHG ILHOG DFURVV WKH R[LGH DOORZV WKH FKDUJH DW WKH LQWHUIDFH WR GLPLQLVK $V WKH VLJQ RQ WKH YROWDJH FKDQJHV IURP D QHJDWLYH WR D SRVLWLYH PDMRULW\ FDUULHUV DUH UHSHOOHG IURP WKH LQWHUIDFH FUHDWLQJ DQ DUHD GHSOHWHG RI PDMRULW\ FDUULHUV WKH GHSOHWLRQ UHJLRQf )LQDOO\ WKH LQYHUVLRQ UHJLRQ LV JHQHUDWHG ZKHQ WKH YROWDJH EHFRPHV YHU\ SRVLWLYH DQG WKH GHSOHWLRQ ZLGWK KDV LQFUHDVHG WR D SRLQW ZKHUH RWKHU PHFKDQLVPV PD\ EHFRPH LPSRUWDQW )RU H[DPSOH LQ WKH GHSOHWLRQ UHJLRQ WKH SURGXFW RI WKH FRQFHQWUDWLRQ RI HOHFWURQV DQG KROH QSf LV PXFK OHVV WKDQ WKH VTXDUH RI WKH LQWULQVLF n\ FDUULHU FRQFHQWUDWLRQ Qc f DQG LQ WKLV FDVH SDLU JHQHUDWLRQ PD\ RFFXU DQG WKH VXEVHTXHQW PLQRULW\ FDUULHUV PD\ PLJUDWH WR WKH LQWHUIDFH 7KH UHVXOW RI WKLV LV SUHYHQWLRQ RI IXUWKHU GHSOHWLRQ DQG D FRQVWDQW YDOXH IRU WKH FDSDFLWDQFH $Q DGGLWLRQDO SRVVLEOH VFHQDULR PD\ RFFXU ZKHUHE\ LQVXIILFLHQW WLPH LV DOORZHG IRU SDLU JHQHUDWLRQ LQ ZKLFK FDVH D PRGHO FDOOHG GHHS GHSOHWLRQ ZLOO RFFXU

PAGE 58

7KH KLJK IUHTXHQF\ PHDVXUHPHQW V\VWHP KDV WKH DELOLW\ WR PHDVXUH WZR GLIIHUHQW IUHTXHQFLHV DQG XVLQJ 0HWULFV ,&6 VRIWZDUH WZR GLIIHUHQW HTXLYDOHQW FLUFXLW PRGHOV VHHQ LQ )LJXUH WR JHQHUDWH FDSDFLWDQFH YDOXHV 7KHUH DUH SDUDOOHO DQG VHULHV PRGHOV WKDW UHSUHVHQW WZR GLIIHUHQW SK\VLFDO VWUXFWXUHV 7KH VHULHV PRGHO DGGUHVVHV D FDSDFLWRU LQ VHULHV ZLWK D UHVLVWDQFH RI VRPH VRUW SRVVLEO\ IURP WKH VHPLFRQGXFWRUf 7KH HTXDWLRQ WKDW GHVFULEHV WKLV VFHQDULR LV = 5 L; f ZKHUH = LV WKH LPSHGDQFH 5 LV WKH UHVLVWDQFH DQG ; LV WKH UHDFWDQFH $GGLWLRQDOO\ WKH SDUDOOHO PRGHO DGGUHVVHV D FDSDFLWRU LQ SDUDOOHO ZLWK VRPH VRUW RI FRQGXFWDQFH SRVVLEO\ OHDNDJH WKURXJK DQ XOWUDWKLQ ILOPf 7KH HTXDWLRQ WKDW GHVFULEHV WKLV VFHQDULR LV < L% f ZKHUH < LV WKH DGPLWWDQFH LV WKH FRQGXFWDQFH DQG % LV VXVFHSWDQFH 1RWH WKDW WKH DGPLWWDQFH FRQGXFWDQFH DQG VXVFHSWDQFH DUH HDFK WKH UHFLSURFDOV RI WKH LPSHGDQFH UHVLVWDQFH DQG UHDFWDQFH UHVSHFWLYHO\ 7KH UHDFWDQFH DQG VXVFHSWDQFH FDQ WKHQ EH IXUWKHU GHVFULEHG LQ D FDSDFLWLYH VHQVH DV ; f f& D b ,, f ZKHUH FR LV WKH IUHTXHQF\ RI WKH VHWXS DQG &V DQG &S DUH WKH FDSDFLWDQFH ZKHQ XVLQJ WKH VHULHV PRGHO DQG SDUDOOHO PRGHO UHVSHFWLYHO\ 7KH QHW LPSHGDQFH RI WKH HTXLYDOHQW VHULHV DQG SDUDOOHO FLUFXLWV DW D JLYHQ IUHTXHQF\ DUH HTXDO EXW WKH LQGLYLGXDO FRPSRQHQWV DUH QRW L% 5 L; f

PAGE 59

,I WKHUH LV D ORVVOHVV FLUFXLW LH 5 DQG f WKH &V DQG &S DUH HTXDO +RZHYHU VLQFH FLUFXLWV GR KDYH ORVVHV D GLVVLSDWLRQ IDFWRU LV DGGHG WR WKH V\VWHP FR&V5 f R&f f 7KURXJK IXUWKHU QXPHULFDO PDQLSXODWLRQ LW LV GHWHUPLQHG WKDW FRQYHUVLRQ IURP RQH HTXLYDOHQW FLUFXLW PRGHO WR WKH RWKHU LV UHDGLO\ SRVVLEOH DV VHHQ LQ 7DEOH 7DEOH &RQYHUVLRQ IDFWRUV IRU VHULHVSDUD OHO HOHFWULFDO HTXLYDOHQW FLUFXLWV 0RGHO 'LVVLSDWLRQ )DFWRU &DSDFLWDQFH 5HVLVWDQFH RU &RQGXFWDQFH 3DUDOOHO &S r 4 FR&S & ? 'f&3 3 'f* 6HULHV &V 5 f§ FR&5 4 F V 3 F r 'f5 7KLV WUHDWPHQW KDV EHHQ DSSOLHG WR LOOXVWUDWH KRZ FDSDFLWDQFH YDOXHV DUH JHQHUDWHG IURP WKH LPSHGDQFH YDOXHV DQG VXEVHTXHQW FRQYHUVLRQ WR VHULHV DQG SDUDOOHO FDVHV $V PHQWLRQHG HDUOLHU WKH VHULHV UHSUHVHQWV D SK\VLFDO VFHQDULR ZKHUH D FDSDFLWRU LV LQ OLQH ZLWK VRPH W\SH RI UHVLVWDQFH ZKLOH WKH SDUDOOHO PRGH UHSUHVHQWV D SK\VLFDO VFHQDULR ZKHUH D FDSDFLWRU LV LQ SDUDOOHO ZLWK VRPH W\SH RI FRQGXFWDQFH 7KLV KRZHYHU GRHV QRW WDNH LQWR FRQVLGHUDWLRQ WKH SK\VLFDO SRVVLELOLW\ RI DQ XOWUDWKLQ ILOP WKDW LV OHDN\ EXW DOVR HQFRXQWHUV UHVLVWDQFH IURP WKH VXEVWUDWH ,Q WKLV FDVH D WKUHH HOHPHQW HOHFWULFDO FLUFXLW DOVR VHHQ LQ )LJXUH FRXOG EH DQDO\]HG LQ D VLPLODU PDQQHU DV DERYH WR GHYHORS HTXDWLRQV IRU FRQYHUWLQJ IURP HLWKHU WKH SDUDOOHO RU VHULHV PRGH WR WKH WKUHH HOHPHQW HTXLYDOHQW FLUFXLW WKDW PRUH DSSURSULDWHO\ UHSUHVHQWV WKH SK\VLFDO VWUXFWXUH

PAGE 60

7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ 7KH 7(0 PLFURVFRSH KDV DPRQJ WKH KLJKHVW ODWHUDO VSDWLDO UHVROXWLRQ LQ LPDJLQJ PRGH RI DQ\ FKDUDFWHUL]DWLRQ WHFKQLTXH 7KH 7(0 XVHG IRU DQDO\VLV LV D -HRO KLJK UHVROXWLRQ PLFURVFRSH ZLWK D QRPLQDO VSDWLDO UHVROXWLRQ RI ƒ $GGLWLRQDO IHDWXUHV RI WKH PLFURVFRSH LQFOXGH GLIIUDFWLRQ LQIRUPDWLRQ HQHUJ\ GLVSHUVLYH VSHFWURVFRS\ DQG HOHFWURQ HQHUJ\ ORVV VSHFWURVFRS\ 7KH IXQGDPHQWDO EDVLV IRU WKH 7(0 LV JHQHUDWLRQ RI DQ HOHFWURQ EHDP IURP DQ HOHFWURQ JXQ 7KH HOHFWURQ EHDP WKHQ SDVVHV WKURXJK D YDULHW\ RI OHQVHV DQG LPSLQJHV DQ XOWUDWKLQ VDPSOH $V VHHQ LQ )LJXUH ERWK VFDWWHUHG DQG XQVFDWWHUHG HOHFWURQV WKDW SHQHWUDWH WKH VDPSOH WKLFNQHVV FRPSULVH WKH 7(0 VLJQDO 6DPSOH UHTXLUHPHQWV IRU 7(0 DQDO\VLV DUH TXLWH VWULQJHQW LQ WKH VHQVH WKDW WKH\ PXVW EH OHVV WKDQ QP WKLFN )RU WKH DQDO\VLV GRQH KHUH VDPSOHV ZHUH PDGH VR WKDW FURVV VHFWLRQDO DQDO\VLV ZDV FDSDEOH 7KRXJK WKLV W\SH RI VDPSOH SUHSDUDWLRQ LV PXFK PRUH FRPSOH[ DQG GHOLFDWH WKDQ FRQYHQWLRQDO VDPSOH SUHSDUDWLRQ WKLV W\SH RI PHDVXUHPHQW JLYHV WKH DELOLW\ WR GHWHUPLQH WKH WKLFNQHVV RI D JURZQ ILOP ZKLFK FDQ WKHQ EH LQSXW LQWR 9$6( DQG ;55 PRGHOV WR KHOS GHYHORS PRUH UHDOLVWLF DQG WUXO\ SK\VLFDO PRGHOV

PAGE 61

)LJXUH 8OWUDYLROHWDVVLVWHG SXOVHG ODVHU GHSRVLWLRQ V\VWHP .U) H[FLPHU ODVHU DQG RSWLF VHWXS

PAGE 62

)LJXUH +RPHPDGH H[FLPHU DQQHDOLQJ V\VWHP HTXLSSHG ZLWK YDFXXP XOWUDYLROHW ODPS

PAGE 63

'LVFKDUJH *DS 4XDUW] :DOOV +9 *HQHUDWRU 3HUIRUDWHG 2XWHU (OHFWURGH *DV ,QOHW )LJXUH 6FKHPDWLF RI H[FLPHU ODPS LOOXVWUDWLQJ WKH FRQFHQWULF WXEH GHVLJQ DQG KRZ D UDGLR IUHTXHQF\ ORDG LV GHOLYHUHG WR WKH V\VWHP )LJXUH DGDSWHG IURP >@

PAGE 64

)LJXUH 7LQ\ PLFURGLVFKDUJHV IURP WKH LJQLWHG H[FLPHU ODPS DUH WKH RULJLQ RI WKH H[FLPHU UDGLDWLRQ

PAGE 65

&RXQWV $UELWUDU\f ( ( ( ( ( )LJXUH *HQHUDO [UD\ UHIOHFWLYLW\ VHWXS VKRZLQJ SK\VLFDO UHODWLRQVKLSV EHWZHHQ WKH DFTXLUHG GDWD DQG WKH PRGHOLQJ RXWSXW

PAGE 66

)LJXUH *HQHUDO [UD\ GLIIUDFWLRQ VHWXS LOOXVWUDWLQJ WKH LQWHUDFWLRQ RI [UD\V ZLWK D VWUXFWXUH DV WKH\ SHUWDLQ WR %UDJJV /DZ >@

PAGE 67

2 eSaH9 VaH9 eVaH9 eH9f )LJXUH 3URFHVV RI LQFRPLQJ UDGLDWLRQ HMHFWLQJ D FKDUDFWHULVWLF SKRWRHOHFWURQ IURP D FDUERQ VDPSOH >@

PAGE 68

)LJXUH 6FKHPDWLF RI DWRPLF IRUFH PLFURVFRSH DQG WKH YDULRXV FRPSRQHQWV WKDW DOORZ XS WR DWRPLF UHVROXWLRQ >@

PAGE 69

%DFNVLGH &RQWDFW SW\SH 6HPLFRQGXFWRU )LJXUH 7\SLFDO 026 FDSDFLWRU SUHSDUHG IRU WKLV GLVVHUWDWLRQ

PAGE 70

)LJXUH %ORFN GLDJUDP RI .HLWKOH\ :LQ V\VWHP DQG KRZ LW FRQQHFWV WR WKH SUREH VWDWLRQ $GDSWHG IURP .HLWKOH\ :LQ RSHUDWLRQ PDQXDO

PAGE 71

)LJXUH 7\SLFDO FDSDFLWDQFHYROWDJH LOOXVWUDWLQJ WKH WKUHH PDLQ UHJLRQV WKDW RFFXU LQ D 026 GHYLFH DV D IXQFWLRQ RI ELDV YROWDJH DSSOLHG $GDSWHG IURP WKH .HLWKOH\ :LQ RSHUDWLRQ PDQXDO

PAGE 72

$f ff§ -% 09 %f -; -f§YZ 5 &f -% ‘$$9 $$$U 5 )LJXUH $f SDUDOOHO %f VHULHV DQG &f FRPELQHG VHULHV DQG SDUDOOHO PRGHOV IRU JHQHUDWLRQ RI FDSDFLWDQFH LQIRUPDWLRQ

PAGE 73

,QFLGHQW EHDP 7KLQ VSHFLPHQ 6FDWWHUHG HOHFWURQV H 9? Pf§ a ? 8QVFDWWHUHG HOHFWURQV )LJXUH 6FKHPDWLF RI HOHFWURQ EHDP DIWHU SDVVLQJ WKURXJK DQ XOWUDWKLQ 7(0 VDPSOH 6RPH HOHFWURQV DUH VFDWWHUHG ZKLOH RWKHUV UHPDLQ XQVFDWWHUHG >@

PAGE 74

&+$37(5 ,17(5)$&,$/ /$<(5 )250$7,21 $V PHQWLRQHG SUHYLRXVO\ PDQ\ UHVHDUFK WHDPV KDYH EHHQ VHDUFKLQJ IRU DQ DOWHUQDWLYH KLJKN GLHOHFWULF PDWHULDO WR UHSODFH WKH FXUUHQWO\ XVHG 62 $OWKRXJK WKLV SURFHGXUH DSSHDUV WR EH VLPSOH LPSOHPHQWDWLRQ RI WKLV QHZ OD\HU KDV HQFRXQWHUHG SUREOHPV 2QH VXFK SUREOHP LV WKH SUHVHQFH RI DQ XQZDQWHG LQWHUIDFLDO OD\HU WKDW IRUPV EHWZHHQ WKH VLOLFRQ VXEVWUDWH DQG WKH DOWHUQDWLYH KLJKN GLHOHFWULF OD\HU 7KH FRPSRVLWLRQ RI WKH LQWHUIDFLDO OD\HU ZDV DQG VWLOO LV D WRSLF RI FRQVLGHUDEOH GHEDWH ZLWK UHVSHFW WR LWV RULJLQ DQG FRPSRVLWLRQ 7KRXJK LW LV FRPPRQO\ DFFHSWHG WKDW R[\JHQ SOD\V DQ LQWULFDWH UROH WKH H[DFW PRGHV DUH QRW ZHOO XQGHUVWRRG 7KLV SRUWLRQ RI H[SHULPHQWDWLRQ ORRNV LQWR WKHVH TXHVWLRQV DV WKH\ SHUWDLQ WR R[\JHQ FRQGLWLRQV LQ WKH SXOVHG ODVHU GHSRVLWLRQ 3/'f V\VWHP GXULQJ SRVW GHSRVLWLRQ KHDW WUHDWPHQWV $QQHDO &RQGLWLRQV )RU WKLV VWXG\ IRXU LGHQWLFDO XOWUDWKLQ =U&! VDPSOHV ZHUH JURZQ E\ FRQYHQWLRQDO 3/' DQG WKHQ VXEMHFWHG WR KLJK WHPSHUDWXUH DQQHDOV LQ GLIIHUHQW DPELHQW JDVHV ZLWKRXW EUHDNLQJ YDFXXP FRQGLWLRQV LQ WKH GHSRVLWLRQ FKDPEHU 'XH WR DQDO\VLV UHTXLUHPHQWV D VSHFLDO PRXQW ZDV XVHG WR DWWDFK WKH VLOLFRQ E\ PHFKDQLFDO FRQWDFW RQO\ WR WKH VXEVWUDWH KHDWHU 7KLV ZDV LQ FRQWUDVW WR WKH W\SLFDO PHWKRG RI DWWDFKLQJ WKH VDPSOHV ZLWK VLOYHU SDVWH %HFDXVH RI WKH DOWHUQDWLYH PRXQWLQJ WHFKQLTXH WKHUH ZDV DQ LQFUHDVH LQ WKHUPDO ORVVHV DVVRFLDWHG ZLWK WKH VXEVWUDWH VR HYHQ WKRXJK WKH VXEVWUDWH KHDWHU LV FDSDEOH RI r& DQQHDOLQJ WHPSHUDWXUHV ZHUH OLPLWHG WR r& 2I WKH IRXU VDPSOHV WKH ILUVW VDPSOH ZDV QRW KHDW WUHDWHG LQ DQ\ ZD\ VR WKDW FRPSDULVRQ RI DQ DVGHSRVLWHG VDPSOH

PAGE 75

FRXOG EH FRQGXFWHG 7KH UHPDLQLQJ WKUHH VDPSOHV ZHUH DQQHDOHG IRU PLQXWH LQFUHPHQWV LQ YDFXXP XOWUD KLJK SXULW\ 8+3 bf KHOLXP DQG 8+3 R[\JHQ 7DEOH VKRZV WKH UHVSHFWLYH SDUWLDO SUHVVXUHV RI R[\JHQ IRU WKH YDULRXV ORZ PLG DQG KLJK FRQGLWLRQV 7DEOH 3DUWLDO SUHVVXUH RO nR[\JHQ IRU UHVSHFWLYH GHSRVLWLRQ DPELHQWV 6DPSOH $FWXDO 3UHVVXUH 7RUUf 2[\JHQ 3DUWLDO 3UHVVXUH 7RUUf $VGHSRVLWHG f§ f§ 9DFXXP DQQHDOHG [fE [OnOX +HOLXP DQQHDOHG [ 2n 2[\JHQ DQQHDOHG 2QFH WKH VDPSOHV ZHUH SURFHVVHG WKH\ ZHUH DQDO\]HG E\ YDULDEOH DQJOH VSHFWURVFRSLF HOOLSVRPHWU\ 9$6(f [UD\ UHIOHFWLYLW\ ;55f )RXULHU WUDQVIRUP LQIUDUHG VSHFWURVFRS\ )7,5f DQG [UD\ SKRWRHOHFWURQ VSHFWURVFRS\ ;36f $GGLWLRQDOO\ D FURVV VHFWLRQDO WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ ;7(0f LQYHVWLJDWLRQ RI WKH R[\JHQ DQQHDOHG VDPSOH ZDV SHUIRUPHG $ ƒ 62 RQ VLOLFRQ FDOLEUDWLRQ ZDIHU ZDV XVHG EHIRUH DQ\ GDWD ZDV FROOHFWHG WR YHULI\ WKH DFFXUDF\ RI WKH 9$6( SUREH VWDWLRQ :KHQ WKH VDPSOHV ZHUH PHDVXUHG D PRGHO ZLWK =2 RQ VLOLFRQ ZDV XVHG $GGLWLRQDO PRGHOV ZLWK DQ DGGLWLRQDO LQWHUIDFLDO OD\HU ZDV FRQVLGHUHG KRZHYHU LW ZDV IRXQG WKDW PRUH GHWDLOHG PRGHOV ZRXOG UHWXUQ WR D VLQJOH OD\HU PRGHO ZKHQ WKH ILWWLQJ LWHUDWLRQV ZHUH DOORZHG WR SURFHHG )URP WKH IRXU VDPSOHV WKH IROORZLQJ GDWD VKRZQ LQ 7DEOH ZDV FROOHFWHG E\ 9$6( 7KHUH LV DQ LQFUHDVH LQ RYHUDOO WKLFNQHVV RI WKH VDPSOH DV WKH DPRXQW RI R[\JHQ LQ WKH V\VWHP LQFUHDVHV 6LQFH DOO RI WKH VDPSOHV ZHUH JURZQ XQGHU LGHQWLFDO FRQGLWLRQV WKH

PAGE 76

7DEOH 9$6( WKLFNQHVV PHDVXUHPHQWV RI =U&! VDPSOHV DIWHU SRVWGHSRVLWLRQ KHDW WUHDWPHQWV LQ YDULRXV DPELHQWV 6DPSOH 7KLFNQHVV ƒf $VGHSRVLWHG 9DFXXP DQQHDOHG +HOLXP DQQHDOHG 2[\JHQ DQQHDOHG WKLFNQHVV RI WKH =2 OD\HU LV QRW H[SHFWHG WR LQFUHDVH +RZHYHU WKH RYHUDOO WKLFNQHVV PD\ LQFUHDVH LI WKHUH LV DQ DGGLWLRQDO VHFRQG OD\HU WKDW FDQQRW EH LQGLYLGXDOO\ GLVFHUQHG E\ WKH HOOLSVRPHWHU EXW GRHV H[LVW DQG DGGV WR WKH RYHUDOO WKLFNQHVV ;55 DQDO\VLV RI WKH IRXU VDPSOHV ZDV FRPSOHWHG 7KH GDWD IURP WKH 9$6( PHDVXUHPHQWV ZHUH XVHG DV VWDUWLQJ WKLFNQHVVHV IRU PRGHOLQJ RI WKH ;55 VSHFWUD 6LQFH ;55 GDWD WDNHV WKLFNQHVV URXJKQHVV DQG GHQVLW\ RI DQ\ QXPEHU RI OD\HUV LQWR FRQVLGHUDWLRQ LW LV RI XWPRVW LPSRUWDQFH WR KDYH DQ DSSUR[LPDWH LGHD RI WKH PRGHO DV LW SHUWDLQV WR WKH DFWXDO SK\VLFDO VDPSOH $V DQ H[DPSOH RI WKH LPSRUWDQFH RI D JRRG PRGHO WR GHVFULEH WKH H[SHULPHQWDOO\ DFTXLUHG GDWD WKH R[\JHQ DQQHDOHG VDPSOH LV VKRZQ LQ )LJXUH ZLWK D YDULHW\ RI PRGHOLQJ RSWLRQV )LJXUH VKRZV WKH DFTXLUHG f5DZ 'DWDf ;55 VFDQ DQG WKUHH GLIIHUHQW PRGHOLQJ SRVVLELOLWLHV 7KH ILUVW PRGHOLQJ SRVVLELOLW\ ODEHOHG f /D\HU 0RGHO :LWKRXW )LWf UHSUHVHQWV WKH VLWXDWLRQ ZKHUH WKH XVHU LQSXW YDOXHV IRU WKLFNQHVV URXJKQHVV DQG GHQVLW\ IRU D VLQJOH OD\HU RI =2 RQ WRS RI VLQJOH FU\VWDOOLQH VLOLFRQ 7KLV ZRXOG UHSUHVHQW WKH LGHDO FDVHf $IWHU LQSXWWLQJ WKH GDWD QR DGGLWLRQDO SURFHVVLQJ ZDV FRQGXFWHG $ YDOXH NQRZQ DV WKH PHDQ VTXDUH HUURU 06(f VHUYHV DV DQ LQGLFDWLRQ RI WKH TXDOLW\ RI ILW EHWZHHQ WKH PRGHO DQG WKH H[SHULPHQWDO GDWD 7KH 06( YDOXH IRU WKH f /D\HU 0RGHO :LWKRXW )LWf ZDV aO[O $V D UHIHUHQFH D SRRU 06( ZRXOG EH aO[O ZKHUHDV DQ H[FHOOHQW ILW ZRXOG EH DURXQG O[O2n 7KH QH[W PRGHOLQJ SRVVLELOLW\ ODEHOHG f /D\HU

PAGE 77

0RGHO :LWK )LWf LV LGHQWLFDO WR WKH SUHYLRXV PRGHO KRZHYHU DGGLWLRQDO SURFHVVLQJ VWHS LV DOORZHG WR RFFXU 7KH DGGLWLRQDO SURFHVVLQJ LV DQ LWHUDWLYH PRGHOLQJ VHTXHQFH ZKHUH WKH LQLWLDO YDOXHV LQSXW IURP WKH XVHU DUH DOORZHG WR YDU\ LQ DQ DWWHPSW WR GHYHORS D EHWWHU ILW LH D ORZHU 06( YDOXHf 7KH LWHUDWLYH VHTXHQFH PXVW EH FDUHIXOO\ PRQLWRUHG EHFDXVH LW LV SRVVLEOH WR REWDLQ D PDWKHPDWLFDOO\ ORZHU 06( YDOXH E\ ORVLQJ WKH SK\VLFDO UHDOLW\ RI WKH PRGHO )RU WKLV H[DPSOH WKH GHQVLW\ RI WKH =U OD\HU KDV YHHUHG IURP WKH LGHDO YDOXH RI JFP DQG EHFRPH D SK\VLFDOO\ XQUHDOLVWLF YDOXH RI JFP 7KH 06( DVVRFLDWHG ZLWK WKLV VHFRQG PRGHO ZDV a [ 7KH ILQDO PRGHO ODEHOHG f /D\HU 0RGHO :LWK )LWf VKRZV WKDW ZLWK WKH DGGLWLRQ RI D VHFRQG OD\HU EHWZHHQ WKH =U DQG WKH VLOLFRQ KDV D SURIRXQG SRVLWLYH HIIHFW E\ JHQHUDWLQJ D UHDOLVWLF PRGHO H[KLELWLQJ D YHU\ ORZ 06( YDOXH RI [ 2n 7KH GDWD IRU WKH WKUHH GLIIHUHQW PRGHOV DUH VKRZQ LQ 7DEOH 7DEOH 7KLFNQHVV URXJKQHVV DQG GHQVLW\ GDWD IRU WKH YDULRXV ;55 PRGHO RSWLRQV IRU WKH R[\JHQ DQQHDOHG =U /D\HU 0RGHO :LWKRXW )LW 7KLFNQHVV ƒf 5RXJKQHVV ƒf 'HQVLW\ JFPf 6LOLFRQ 6XEVWUDWH =U /D\HU /D\HU 0RGHO :LWK )LW 6LOLFRQ 6XEVWUDWH =U /D\HU /D\HU 0RGHO :LWK )LW 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU =U /D\HU :LWK UHVSHFW WR WKH WZR OD\HU PRGHO LQLWLDOO\ D GHQVLW\ IRU D SXUH DPRUSKRXV 6L JFPf >@ OD\HU ZDV LQSXW EXW WKLV SURYHG LQDGHTXDWH WR SHUIHFWO\ GHVFULEH WKH

PAGE 78

GHVLUHG GDWD XQWLO WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU ZDV DOORZHG WR YDU\ 8SRQ YDULDWLRQ WKH GHQVLW\ LQFUHDVHG WR D YDOXH RI JFP DQG DOORZHG IRU WKH YHU\ ORZ 06( YDOXH VKRZQ DERYH 7KH LPSDFW RI WKH KLJKHU GHQVLW\ YDOXH ZLOO EH GLVFXVVHG ODWHU DQG LW ZLOO EH H[SODLQHG ZK\ WKLV LV VWLOO DQ DFFHSWDEOH SK\VLFDOO\ UHDOLVWLF YDOXH 6LQFH WKH LPSRUWDQFH RI WKH f /D\HU 0RGHO :LWK )LWf KDV EHHQ VKRZQ DOO IXWXUH ;55 DQDO\VLV ZLOO LPSOHPHQW WKLV W\SH RI PRGHO )LJXUH VKRZV WKH IRXU ;55 VSHFWUD FRUUHVSRQGLQJ WR WKH DVGHSRVLWHG YDFXXP KHOLXP DQG R[\JHQ DQQHDOHG VDPSOHV DQG WKH PRGHOLQJ DVVRFLDWHG ZLWK HDFK 7KH PRGHOHG YDOXHV DUH VKRZQ LQ 7DEOH 7DEOH 0RGHOLQJ GDWD IRU WKH DVGHSRVLWHG YDFXXP KHOLXP DQG R[\JHQ DQQHDOHG VDPSOHV $VGHSRVLWHG 7KLFNQHVV ƒf 5RXJKQHVV ƒf 'HQVLW\ JFPf 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU =U 9DFXXP $QQHDO 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU =U +HOLXP $QQHDO 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU =U 2[\JHQ $QQHDO 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU =U )LJXUH VKRZV WKDW WKH WZR OD\HU PRGHO ZDV HIIHFWLYH LQ LQWHUSUHWLQJ DOO RI WKH GLIIHUHQW DQQHDO FRQGLWLRQV )URP 7DEOH WKHUH DUH WZR LPSRUWDQW IHDWXUHV WKDW VKRXOG EH QRWHG ZLWK UHVSHFW WR WKH LQWHUIDFLDO OD\HU )LUVW WKH LQWHUIDFLDO OD\HU LV WKH WKLQQHVW IRU

PAGE 79

WKH DVGHSRVLWHG VDPSOH DW ƒ DQG LQFUHDVHV WR DQG ƒ ZKHQ DQQHDOHG LQ YDFXXP KHOLXP DQG R[\JHQ UHVSHFWLYHO\ 6HFRQG D VLPLODU WUHQG LV VHHQ IRU WKH GHQVLWLHV RI WKH LQWHUIDFLDO OD\HU ,Q WKLV VLWXDWLRQ WKH GHQVLW\ LV JUHDWHVW IRU WKH DV GHSRVLWHG VDPSOH DW JFP DQG GHFUHDVHV WR DQG JFP ZKHQ DQQHDOHG LQ YDFXXP KHOLXP DQG R[\JHQ UHVSHFWLYHO\ )LJXUH VKRZV KRZ DV WKH SDUWLDO SUHVVXUH RI R[\JHQ LQ WKH V\VWHP LQFUHDVHG WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU GHFUHDVHG 6LQFH ;55 LQYHVWLJDWLRQV LQGLFDWHG WKDW DQ LQWHUIDFLDO OD\HU ZDV SUHVHQW DQ ;7(0 VDPSOH ZDV SUHSDUHG IURP WKH R[\JHQ DQQHDOHG VDPSOH 7KLV ZDV WR GHWHUPLQH LI WKH PLFURJUDSK ZRXOG VXSSRUW WKH LQWHUIDFLDO OD\HU GDWD H[KLELWHG LQ WKH ;55 $V VKRZQ LQ )LJXUH LW LV FOHDU WKDW WKH VDPSOH LV FRPSRVHG RI WZR GLVWLQFW OD\HUV DWRS WKH VLQJOH FU\VWDO VLOLFRQ 8QOLNH WKH LGHDO VWUXFWXUH WKDW ZRXOG H[KLELW D VLQJOH =U&! OD\HU DWRS WKH VLOLFRQ WKHUH LV D GLVWLQFW SRO\FU\VWDOOLQH =2 OD\HU DWRS DQ DPRUSKRXV OD\HU DWRS WKH VLQJOH FU\VWDOOLQH VLOLFRQ VXEVWUDWH )URP WKH PLFURJUDSK WKH WKLFNQHVV RI WKH SRO\FU\VWDOOLQH OD\HU LV ƒ DQG WKH WKLFNQHVV RI WKH DPRUSKRXV OD\HU LV DOVR aƒ 7KH QH[W VWHS LQ WKH LQYHVWLJDWLRQ OHG WR PHDVXUHPHQW RI WKH VDPSOHV E\ )7,5 ZLWK D 1LFROHW 0$*1$ LQVWUXPHQW LQ WUDQVPLVVLRQ PRGH ,Q WKLV FDVH WKH EDFNVLGH RI WKH VDPSOHV ZDV FOHDQHG DQG XQGHUZHQW D b K\GURIOXRULF +)f DFLG FOHDQVLQJ LPPHGLDWHO\ SULRU WR WKHLU SODFHPHQW LQWR WKH QLWURJHQ SXUJHG )7,5 EHQFK FKDPEHU %\ XVLQJ +) RQ WKH EDFNVLGH RI WKH VDPSOHV LPPHGLDWHO\ SULRU WR WKHLU PHDVXUHPHQW WKLV HQVXUHG WKDW DQ\ VLJQDO UHVSRQVH IURP WKH LQIUDUHG PHDVXUHPHQW ZRXOG EH QRW EH DWWULEXWHG WR 6Lf§2 ERQGV RQ WKH EDFNVLGH RI WKH R[LGL]HG VLOLFRQ VDPSOH DQG FRXOG RQO\ RULJLQDWH IURP WKH GLHOHFWULF VLGH RI WKH VDPSOH LH WKH LQWHUIDFLDO UHJLRQf )LJXUH LV D FRPSLODWLRQ RI

PAGE 80

WKH UHVXOWV UHFRUGHG IURP WKH DVGHSRVLWHG KHOLXP DQG R[\JHQ DQQHDOHG VDPSOHV ,QVSHFWLRQ RI WKH SORW UHYHDOV WKDW WKH DVGHSRVLWHG FRQWURO VDPSOH DOUHDG\ VKRZHG D SHDN ORFDWHG DURXQG FPn UHODWLQJ WR 6Lf§2f§6L ERQGLQJ LQ VWUHWFKLQJ PRGH 8SRQ DQQHDOLQJ LQ KHOLXP WKH DUHD XQGHU WKH FPn SHDN LQFUHDVHG E\ b :KHQ DQQHDOHG LQ R[\JHQ WKH DUHD XQGHU WKH SHDN LQFUHDVHG E\ b ZLWK UHVSHFW WR WKH DV GHSRVLWHG SHDN 3HDNV DW DQG FPn FRUUHVSRQGLQJ WR 6Lf§2f§6L EHQGLQJ DQG URFNLQJ PRGHV DOVR VKRZHG VLPLODU LQFUHDVHV LQ DEVRUSWLRQ > @ 7KH QH[W VWHS LQ WKH DQDO\VLV SURFHVV LQFOXGHG D GHWDLOHG LQYHVWLJDWLRQ RI WKH YDULRXV ;36 SHDNV )LJXUH VKRZV WKH 6L S SHDNV DV DFTXLUHG DW D WDNHRII DQJOH RI r ZLWKRXW DQ\ VSXWWHULQJ IRU WKH GLIIHUHQW DQQHDOLQJ FRQGLWLRQV 7KHUH DUH WZR SURPLQHQW SHDNV DVVRFLDWHG ZLWK WKH 6L S UHJLRQ 7KHUH LV RQH SHDN WKDW LV ORFDWHG DW H9 ZKLFK LV DWWULEXWHG WR WKH VLOLFRQ VXEVWUDWH DQG D VHFRQG SHDN WKDW ORFDWHG DW H9 ZKLFK LV DWWULEXWHG WR VLOLFRQ ERQGHG WR R[\JHQ LQ WKH LQWHUIDFLDO OD\HU :KLOH WKH SRVLWLRQ RI WKH SHDN ORFDWHG DW H9 UHPDLQV UHODWLYHO\ FRQVWDQW WKH SRVLWLRQ RI WKH KLJKHU ELQGLQJ HQHUJ\ SHDN LV FRQWLQXDOO\ FKDQJLQJ DV D IXQFWLRQ RI DQQHDOLQJ FRQGLWLRQ )RU WKH DVGHSRVLWHG VDPSOH WKH KLJKHU HQHUJ\ SHDN LV ORFDWHG DW H9 $QQHDOLQJ LQ YDFXXP KHOLXP DQG R[\JHQ UHVXOWHG LQ D FRQWLQXDO LQFUHDVH WR YDOXHV RI DQG H9 UHVSHFWLYHO\ 7KH YHUWLFDO OLQH ORFDWHG DW H9 VHHQ LQ )LJXUH FRUUHVSRQGV WR VLOLFRQ ERQGHG WR R[\JHQ LQ D SXUH WKLFN 62 OD\HU >@ $QDO\VLV RI WKH ;36 2 ,V SHDNV UHYHDOV D VLQJOH SHDN H[KLELWLQJ DQ DV\PPHWULF VKDSH LQGLFDWLYH RI PXOWLSOH FKHPLFDO VSHFLHV ,Q RUGHU WR DQDO\]H WKLV W\SH RI SHDN D ILWWLQJ SURJUDP LV XWLOL]HG ZKHUHE\ WKH VLQJOH DV\PPHWULF SHDN LV GHFRQYROXWHG LQWR WZR RU PRUH *DXVVLDQ SHDNV $Q H[DPSOH RI WKH ILWWLQJ SURFHVV FDQ EH VHHQ LQ )LJXUH ZKLFK

PAGE 81

VKRZV $f WKH UDZ GDWD SHDN %f SHDN ILW &f SHDN ILW DQG 'f SHDN ILWV 6LPLODU WR WKH ;55 ILWWLQJ SURJUDP WKH ;36 ILWWLQJ SURJUDP DOVR KDV DQ 06( YDOXH WKDW LW JHQHUDWHV DV D TXDOLW\ RI ILW IRU WKH GLIIHUHQW W\SHV RI PRGHOV )URP )LJXUH IRU WKH R[\JHQ DQQHDOHG VDPSOH LW LV FOHDU WKDW D VLQJOH SHDN ILW LV WRWDOO\ XQDFFHSWDEOH DV ZHOO DV H[KLELWLQJ DQ XQDFFHSWDEO\ ODUJH 06( YDOXH RI $V VHHQ LQ % WKH WZR *DXVVLDQ SHDN ILW KDV D PXFK EHWWHU 06( YDOXH RI EXW LV VWLOO QRW FRQVLGHUHG D JRRG ILW 7KLV LV EHFDXVH WKH IXOO ZLGWK DW KDOI PD[LPXP ):+0f DVVRFLDWHG ZLWK WKH SHDN UHDFKHV D YDOXH RI H9 7\SLFDO YDOXHV IRU D SHDN UHSUHVHQWLQJ WKLV W\SH RI OD\HU ZLOO EH PRUH LQ WKH H9 UDQJH 7KLV OHDGV WR WKH WKUHH SHDN ILW VKRZQ LQ & WKDW KDV D JRRG 06( YDOXH RI $GGLWLRQDOO\ HDFK RI WKH SHDNV H[KLELW UHDVRQDEOH YDOXHV IRU ):+0 DQG FDQ EH DFFRXQWHG IRU LQ D SK\VLFDO PDQQHU )RU WKLV H[DPSOH SHDN $ LV FRUUHVSRQGHG WR R[\JHQ ERXQG WR ]LUFRQLXP SHDN % FRUUHVSRQGHG WR R[\JHQ ERXQG WR VLOLFRQ DQG SHDN & LV DVVRFLDWHG ZLWK WUDSSHG SK\VLVRUEHG R[\JHQ SUHVHQW LQ WKH SXOVHG ODVHU GHSRVLWHG ILOPV 1RW DOO ;36 SHDNV FDOO IRU WKUHH SHDNV WR REWDLQ D JRRG ILW 7KH NH\ LW WR DOZD\V KDYH D SK\VLFDO PRGHO WKDW H[SODLQV WKH ILW ZHOO DQG DOVR UHPDLQV ZLWKLQ UHDVRQDEOH ERXQGDU\ FRQGLWLRQV )LJXUH VKRZV WKH WKUHH SHDN ILW IRU HDFK RI WKH IRXU DQQHDO FRQGLWLRQV 3HDNV DUH ORFDWHG DW $f %f DQG &f H9 FRUUHVSRQGLQJ WR R[\JHQ ERXQG WR ]LUFRQLXP VLOLFRQ DQG SK\VLVRUEHG R[\JHQ UHVSHFWLYHO\ 7KH ELQGLQJ HQHUJ\ RI WKH R[\JHQ ERQGHG WR ]LUFRQLXP 2 ,V SHDN PDWFKHV SHUIHFWO\ ZLWK LWV VWDQGDUG ORFDWLRQ RI H9 LQ DOO DQQHDOLQJ FRQGLWLRQV ZKLOH WKH ELQGLQJ HQHUJ\ RI WKH R[\JHQ ERQGHG WR VLOLFRQ 2 ,V SHDN LV H9 ORZHU WKDQ LWV SXUH EXON 62 YDOXH RI H9 >@ $V ZLWK WKH WUHQG VHHQ LQ WKH 6L S SHDNV )LJXUH VKRZV D VLPLODU WUHQG DOVR RFFXUV ZLWK

PAGE 82

WKH ELQGLQJ HQHUJLHV RI WKH R[\JHQ ERQGHG WR VLOLFRQ 2 ,V SHDN $JDLQ D FRQWLQXRXV VKLIW WKDW FRUUHVSRQGV GLUHFWO\ WR WKH DPRXQW RI R[\JHQ LQ WKH V\VWHP FKDQJHV WKH ELQGLQJ HQHUJLHV WR YDOXHV IDUWKHVW IURP SXUH 62 LQ ORZ R[\JHQ FRQGLWLRQV DQG QHDUHVW WR SXUH 62 LQ KLJK R[\JHQ FRQGLWLRQV ,Q DGGLWLRQ WR WKH VKLIWLQJ RI WKH SHDN WKHUH LV DQ DGGLWLRQDO FKDQJH WR QRWH 7KLV VHFRQG FKDQJH UHODWHV WR WKH VL]H RI SHDN & FRUUHVSRQGLQJ WR WUDSSHG R[\JHQ LQ WKH ILOP $QDO\VLV RI R[\JHQ FRQWHQW UHYHDOV WKDW WKH DPRXQW RI R[\JHQ WUDSSHG LQ WKH ILOP FRUUHVSRQGV WR ab IRU WKH DV GHSRVLWHG ILOP ZKLOH DOO RI WKH DQQHDOHG ILOPV UHGXFHG WR D YDOXH RI ab 7KLV LPSRUWDQW UHVXOW VKRZV D GHFUHDVH RI b RI WKH WUDSSHG R[\JHQ LQ WKH ILOP VWUXFWXUH ZKHQ DQQHDOHG ,QWHUSUHWDWLRQ RI WKH GDWD UHYHDOV VHYHUDO LPSRUWDQW UHVXOWV IURP WKLV VWXG\ )LUVW 9$6( PHDVXUHPHQWV ZHUH FRQGXFWHG DV DQ LQLWLDO PHDVXUH RI WKH WKLFNQHVV RI WKH VDPSOH :KLOH WKH 9$6( V\VWHP ZDV XQDEOH WR GLVFHUQ GLVFUHHW GLIIHUHQFHV LQ WKH OD\HU LW ZDV DEOH WR GHWHFW DQ LQFUHDVH RI WKH RYHUDOO OD\HU WKLFNQHVV 6LQFH WKH =2 ZRXOG QRW EH H[SHFWHG WR LQFUHDVH GXULQJ D SRVW GHSRVLWLRQ DQQHDO WKLV VHHPHG WR LQGLFDWH JURZWK RI D VHFRQG QRQ=U&! OD\HU 7KH GDWD IURP WKH 9$6( ZDV XVHG DV D ILUVW DSSUR[LPDWLRQ LQ WKH ;55 PRGHOLQJ ZKHUH WKH ILW UHYHDOHG WKDW D VLQJOH =2 OD\HU DWRS D VLOLFRQ VXEVWUDWH PRGHO ZDV LQVXIILFLHQW WR GHVFULEH WKH VKDSH RI WKH H[SHULPHQWDOO\ DFTXLUHG GDWD $V D UHVXOW DQ DGGLWLRQDO OD\HU ZDV DGGHG EHWZHHQ WKH =U&! DQG WKH VLOLFRQ VXEVWUDWH DV DQ LQWHUIDFLDO OD\HU 7KH LQWHUIDFLDO OD\HU ZDV LQLWLDOO\ JLYHQ D GHQVLW\ RI SXUH DPRUSKRXV 62 JFPf >@ ZKLFK UHSUHVHQWHG WKH WKHRUHWLFDO VFHQDULR ZKHUH WKH LQWHUIDFLDO OD\HU LV FRPSRVHG HQWLUHO\ RI 62 DQG QR RWKHU VSHFLHV RU FRPSRXQGV DUH SUHVHQW :LWKRXW DQ\ ILWWLQJ SURFHGXUHV WKLV ZDV VWLOO DQ LPSURYHPHQW RYHU WKH VLQJOH OD\HU PRGHO EXW E\ DOORZLQJ WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU WR YDU\ H[FHOOHQW ILWV ZLWK YHU\ ORZ

PAGE 83

06( YDOXHV ZHUH REWDLQDEOH IRU WKH DVGHSRVLWHG VDPSOH DQG DOO RI WKH DQQHDOHG VDPSOHV 7KH LPSRUWDQW UDPLILFDWLRQ RI WKH GHQVLW\ YDULDWLRQV ZDV WKDW WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU ZDV DOZD\V ODUJHU WKDQ WKDW RI SXUH DPRUSKRXV VLOLFRQ 7KH YDOXHV EHJDQ DW D YDOXH RI JFP DQG GHFUHDVHG WRZDUG D PRUH 62 OLNH GHQVLW\ DV DQQHDO FRQGLWLRQV LQFRUSRUDWHG PRUH R[\JHQ 7KH VDPSOH DQQHDOHG LQ SXUH R[\JHQ H[KLELWHG DQ LQWHUIDFLDO OD\HU RI JFP 7KLV LPSRUWDQW UHVXOW LQGLFDWHV WKDW WKH VWUXFWXUH RI WKH LQWHUIDFLDO OD\HU LV QRW D SXUH 62 EXW LQVWHDG PD\ LQFOXGH KLJKHU GHQVLW\ PDWHULDOV VXFK DV =U PHWDO LQ D VLOLFDWHOLNH VWUXFWXUH RU =2 LQ D SK\VLFDO PL[WXUH ZLWK 62 2WKHU RSWLRQV LQFOXGH D OD\HU WKDW FRQVLVW RI D SXUH 62 VLOLFDWH RU VLOLFLGH EXW WKLV FDQQRW EH WKH FDVH VLQFH WKH GHQVLW\ RI WKHVH OD\HUV DUH DQG JFP UHVSHFWLYHO\ >@ $V DQ DGGLWLRQDO FRQILUPDWLRQ RI WKH H[LVWHQFH RI WKH LQWHUIDFLDO OD\HU DQ ;7(0 PLFURJUDSK ZDV SUHSDUHG ,QGHHG IRU WKH R[\JHQ VDPSOH DQ DPRUSKRXV LQWHUIDFLDO OD\HU a ƒ LQ WKLFNQHVV DQG D SRO\FU\VWDOOLQH OD\HU RI a ƒ ZDV REVHUYDEOH 7KLV UHVXOW FRUUHODWHG ZHOO ZLWK WKH ;55 UHVXOWV 7KH )7,5 FRQGXFWHG RQ WKH VDPSOHV UHYHDOHG D VXEVWDQWLDO LQFUHDVH LQ DUHD XQGHU WKH FPn SHDN 6Lf§2f§6L VWUHWFKLQJ PRGHf ZKHQ WKH KHOLXP DQQHDO ZDV FRQGXFWHG DQG DQ HYHQ ODUJHU LQFUHDVH ZKHQ WKH R[\JHQ DQQHDO ZDV FRQGXFWHG 7KLV LQFUHDVH LQ DEVRUEDQFH LQGLFDWHV SK\VLFDOO\ PRUH 6Lf§2 ERQGLQJ DVVRFLDWHG ZLWK WKH VWUXFWXUH DQG DJUHHV ZHOO ZLWK WKH GHQVLW\ DQG WKLFNQHVV YDULDWLRQV VHHQ LQ WKH ;55 GDWD 7KDW LV DV WKH R[\JHQ FRQWHQW LQ WKH DQQHDO FRQGLWLRQV LQFUHDVH WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU EHFDPH PRUH OLNH 62 ;36 LQYHVWLJDWLRQV RI WKH 6L S DQG 2 ,V UHJLRQV IXUWKHU VXSSRUWHG WKH H[LVWHQFH RI WKH LQWHUIDFLDO OD\HU DQG PRUH LPSRUWDQWO\ WKDW LW ZDV QRW FRPSRVHG RI D SXUH 62 7KH IDFW WKDW WKH 6L S ORFDWHG DURXQG f§ H9 LQVWHDG RI H9 IRU SXUH 62f VKLIWV WR KLJKHU ELQGLQJ HQHUJLHV DV D

PAGE 84

IXQFWLRQ RI R[\JHQ FRQWHQW LQGLFDWHV WKDW WKHUH LV HLWKHU D PRUH FRPSOH[ ERQGLQJ HQYLURQPHQW IRU WKH VLOLFRQ ERQGHG WR R[\JHQ RU D WKLQ ILOP DUWLIDFW ;55 DQG )7,5 GDWD ERWK LQGLFDWH WKDW D PRUH FRPSOH[ ERQGLQJ HQYLURQPHQW PRUH DSWO\ H[SODLQ WKLV GLVFUHSDQF\ 2[\JHQ GLIIXVLQJ WR WKH LQWHUIDFH DQG UHDFWLQJ WR IRUP 62 H[SODLQV WKH FKDQJH LQ GHQVLW\ VHHQ E\ WKH ;55 VFDQV DQG WKH LQFUHDVH LQ 6Lf§2 ERQGV H[KLELWHG E\ WKH )7,5 VSHFWUD 7KH 2 ,V SHDN DVVRFLDWHG ZLWK R[\JHQ ERQGHG WR VLOLFRQ LV a H9 DZD\ IURP LWV SXUH EXON 62 YDOXH RI f§ H9 >@ 6LPLODU WR WKH 6L S SHDNV WKH ELQGLQJ HQHUJLHV RI WKH R[\JHQ ERQGHG WR VLOLFRQ FRQWLQXRXVO\ VKLIW IURP YDOXHV IDUWKHVW IURP SXUH 62 DW ORZ R[\JHQ FRQGLWLRQV WR YDOXHV QHDUHVW 62 IRU WKH SXUH R[\JHQ DQQHDOHG VDPSOH $OO RI WKH SURFHHGLQJ GDWD TXHVWLRQ WKH VRXUFH RI WKH R[\JHQ VSHFLHV WKDW PDNH XS WKH LQWHUIDFLDO OD\HU DQG WKH FRPSRVLWLRQ RI WKH LQWHUIDFLDO OD\HU 7KH R[\JHQ PD\ FRPH IURP WKH DPELHQW JDVHV WKDW DUH XVHG GXULQJ WKH KHDW WUHDWPHQWV >@ IURP WUDSSHG R[\JHQ ORFDWHG ZLWKLQ WKH JURZQ =U&! ILOP >@ RU IURP GLUHFW FKHPLFDO UHDFWLRQ EHWZHHQ WKH VLOLFRQ DQG WKH JURZQ OD\HU >@ 'XH WR WKH SUHGLFWHG WKHUPRG\QDPLF VWDELOLW\ RI =2 LQ GLUHFW FRQWDFW ZLWK VLOLFRQ DW r& >@ D FKHPLFDO UHDFWLRQ EHWZHHQ WKH JURZQ =U&! ILOP DQG WKH VLOLFRQ VXEVWUDWH LV XQOLNHO\ ;36 GDWD VXSSRUWV WKH PLJUDWLRQ RI WUDSSHG R[\JHQ LQ WKH =2 ILOP XQGHU KLJK WHPSHUDWXUH WUHDWPHQWV 7KH 2OV SHDN ORFDWHG DW a H9 DQG FRUUHVSRQGLQJ WR WUDSSHG R[\JHQ LV VHHQ WR GHFUHDVH IURP D FRQFHQWUDWLRQ RIb LQ WKH DVGHSRVLWHG FRQWURO VDPSOH WR YDOXHV LQ WKH b UDQJH IRU VDPSOHV WKDW XQGHUZHQW DQQHDOV *URZWK RI WKH LQWHUIDFLDO OD\HU GXULQJ GHSRVLWLRQ KDV SUHYLRXVO\ EHHQ FRQQHFWHG WR WKH DPRXQW RI WUDSSHG SK\VLVRUEHGf R[\JHQ SUHVHQW LQ WKH ILOPV >@ +RZHYHU WKH DPRXQW RI R[\JHQ

PAGE 85

WKDW LV DYDLODEOH LQ WKH WUDSSHG VWDWH LV OLPLWHG 7KH VLJQLILFDQW JURZWK RI WKH LQWHUIDFLDO OD\HU UHTXLUHV DQ DGGLWLRQDO R[\JHQ VRXUFH 7KH VRXUFH LV R[\JHQ IURP WKH DPELHQW GLIIXVLQJ WKURXJK WKH JURZQ VDPSOH PLJUDWLQJ WR WKH LQWHUIDFH DQG UHDFWLQJ ZLWKLQ WKH LQWHUIDFLDO UHJLRQ 7KLV LV HDVLO\ DQ DFFHSWDEOH QRWLRQ VLQFH FU\VWDOOLQH =U&! LV D UHODWLYHO\ RSHQ VWUXFWXUH WKDW LV D JRRG R[\JHQ FRQGXFWRU 8OWUDWKLQ =2 ILOPV ZHUH GHSRVLWHG RQ VLOLFRQ DQG WKHQ KHDW WUHDWHG LQ GLIIHUHQW DWPRVSKHUHV UHSUHVHQWLQJ GLIIHUHQW R[\JHQ FRQGLWLRQV 9$6( ;55 ;7(0 )7,5 DQG ;36 ZHUH XWLOL]HG WR GHWHUPLQH $f LI DQ LQWHUIDFLDO OD\HU ZDV SUHVHQW DQG %f LI WKHUH ZDV ZKDW UROH R[\JHQ SOD\HG LQ WKH RULJLQ DQG FRPSRVLWLRQ RI WKH OD\HU ,W ZDV IRXQG WKDW WKH YDULRXV FKDUDFWHUL]DWLRQ WRROV GLG LQGHHG VXSSRUW WKH H[LVWHQFH RI DQ LQWHUIDFLDO HYHQ IRU WKH DVGHSRVLWHG VDPSOH 7KH FRPSRVLWLRQ ZDV GHWHUPLQHG WR EH D SK\VLFDO PL[WXUH RI =U&! DQG 62 WKDW FRXOG EH DIIHFWHG E\ R[\JHQ LQ WKH V\VWHP ,W ZDV DOVR GHWHUPLQHG WKDW R[\JHQ LQ WKH V\VWHP RULJLQDWHG IURP WZR VRXUFHV 7KH ILUVW RI WKHVH ZDV WUDSSHG R[\JHQ LQ WKH ILOP DQG WKH VHFRQG ZDV IURP GLIIXVLRQ RI DPELHQW JDVHV WKURXJK WKH ILOP WR WKH LQWHUIDFLDO UHJLRQ 'XH WR WKHVH WZR PHFKDQLVPV LW KDV EHHQ FRQFOXGHG WKDW LW ZRXOG EH YHU\ GLIILFXOW WR DFKLHYH DQ R[LGH EDVHG DOWHUQDWLYH KLJKN GLHOHFWULF RQ VLOLFRQ ZLWKRXW IRUPLQJ DQ LQWHUIDFLDO OD\HU E\ FRQYHQWLRQDO 3/'

PAGE 86

&RXQWV &RXQWV &RXQWV &RXQWV )LJXUH ;55 VSHFWUD RI $f UDZ GDWD %f OD\HU PRGHO ZLWKRXW ILW &f OD\HU PRGHO ZLWK ILW DQG 'f OD\HU PRGHO ZLWK ILW LOOXVWUDWLQJ WKH LPSRUWDQFH RI D JRRG PRGHO ZKHQ DQDO\]LQJ ;55 GDWD

PAGE 87

&RXQWV &RXQWV &RXQWV &RXQWV )LJXUH ;55 VSHFWUD RI $f DVGHSRVLWHG %f YDFXXP DQQHDOHG &f KHOLXP DQQHDOHG DQG 'f R[\JHQ DQQHDOHG =U&! WKLQ ILOPV DV PRGHOHG ZLWK WKH f OD\HU PRGHO ZLWK ILWf

PAGE 88

'HQVLW\ JFPf )LJXUH 3ORW RI LQWHUIDFLDO OD\HU GHQVLW\ DV GHWHUPLQHG E\ ;55 DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH

PAGE 89

)LJXUH &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH =U&! WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS VLQJOH FU\VWDOOLQH VLOLFRQ

PAGE 90

:DYH 1XPEHU FPf )LJXUH )7,5 VSHFWUD RI $f R[\JHQ DQQHDO %f KHOLXP DQQHDO DQG &f DVGHSRVLWHG =U&! WKLQ ILOPV VKRZLQJ WKH LQFUHDVH LQ 6Lf§2 ERQGLQJ DEVRUSWLRQ LQ VWUHWFKLQJ EHQGLQJ DQG URFNLQJ PRGHV

PAGE 91

&RXQWV %LQGLQJ (QHUJ\ H9f )LJXUH ;36 GDWD RI 6L S UHJLRQ RI DQ DVGHSRVLWHG =U&! WKLQ ILOP DQG DIWHU YDULRXV SRVW GHSRVLWLRQ DQQHDOV

PAGE 92

%LQGLQJ (QHUJ\ H9f )LJXUH 3ORW RI 6L S ELQGLQJ HQHUJ\ RI R[\JHQ ERQGHG WR VLOLFRQ DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH

PAGE 93

)LJXUH ;36 VSHFWUD RI $f UDZ GDWD %f SHDN ILW &f SHDN ILW DQG 'f SHDN ILW ILW LOOXVWUDWLQJ WKH LPSRUWDQFH RI D JRRG PRGHO ZKHQ DQDO\]LQJ ;36 GDWD

PAGE 94

&RXQWV &RXQWV )LJXUH ;36 VSHFWUD ZLWK f SHDN ILWf RI $f DVGHSRVLWHG %f YDFXXP DQQHDOHG &f KHOLXP DQQHDOHG DQG 'f R[\JHQ DQQHDOHG =U&!

PAGE 95

%LQGLQJ (QHUJ\ H9f %XON 6 2[\JHQ +HOLXP 9DFXXP $VGHSRVLWHG )LJXUH 3ORW RI 2 ,V ELQGLQJ HQHUJ\ RI R[\JHQ ERQGHG WR VLOLFRQ DV D IXQFWLRQ RI R[\JHQ FRQWHQW LQ WKH DQQHDOLQJ V\VWHP %XON 62 KDV EHHQ DGGHG DV D UHIHUHQFH

PAGE 96

&+$37(5 8/75$9,2/(7 352&(66,1* $PRQJ WKH UHVXOWV IURP WKH H[SHULPHQWDWLRQ ZLWK =U SRVW GHSRVLWLRQ DQQHDOV LW ZDV GHWHUPLQHG WKDW HYHQ WKH DVGHSRVLWHG VDPSOH ZKLFK GLG QRW XQGHUJR DQ\ DGGLWLRQDO SURFHVVLQJ DOUHDG\ H[KLELWHG DQ LQWHUIDFLDO OD\HU $W WKDW VWDJH WKH LQWHUIDFLDO OD\HU ZDV GHWHUPLQHG WR KDYH WKH VPDOOHVW IUDFWLRQ RI GHWULPHQWDO 62 PL[HG ZLWK =U FRPSDUHG WR DQ\ ODWHU VWDJHV RI SURFHVVLQJ EXW H[KLELWHG WKH JUHDWHVW DPRXQW RI WUDSSHG R[\JHQ 6LQFH DQDO\VLV RI WKH LQWHUIDFLDO OD\HU UHYHDOHG WKDW IXUWKHU KHDW WUHDWPHQWV UHVXOWHG LQ WKH PLJUDWLRQ RI WKH WUDSSHG R[\JHQ WR WKH LQWHUIDFH WKLV SRUWLRQ RI H[SHULPHQWV DLPHG WR LQYHVWLJDWH WKH SRVVLELOLW\ RI UHGXFLQJ WKH DPRXQW RI WUDSSHG R[\JHQ LQ DQ DV GHSRVLWHG GLHOHFWULF ILOP WKURXJK WKH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQV VRXUFHV $GGLWLRQDOO\ WKLV H[SHULPHQWDWLRQ VRXJKW WR GHWHUPLQH LI WKHUH ZHUH DQ\ RWKHU HIIHFWV WKDW RFFXUUHG ZKHQ XOWUDYLROHW UDGLDWLRQ ZDV XWLOL]HG LQVLWX GXULQJ GHSRVLWLRQ $ ORZ SUHVVXUH PHUFXU\ ODPS DUUD\ ZDV DGGHG WR WKH FRQYHQWLRQDO 3/' V\VWHP IRU LQVLWX XOWUDYLROHWDVVLVWHG GHSRVLWLRQ ,QVLWX 8OWUDYLROHW 3/' $ FRQYHQWLRQDO 3/' V\VWHP ZDV ILWWHG ZLWK DQ DUUD\ RI ORZ SUHVVXUH PHUFXU\ ODPSV %RWK EDULXP VWURQWLXP WLWDQDWH %67f DQG \WWULXP R[LGH <2f VDPSOHV ZHUH GHSRVLWHG IRU WKLV VWXG\ %DULXP VWURQWLXP WLWDQDWH LV DQ H[WUHPHO\ KLJK GLHOHFWULF FRQVWDQW PDWHULDO ZLWK UHSRUWHG EXON YDOXHV UDQJLQJ IURP DV ORZ DV WR DV KLJK DV LQ EXON PDWHULDO GHSHQGLQJ RQ FU\VWDOORJUDSKLF RULHQWDWLRQ >@ 7R GDWH %67 KDV EHHQ UHMHFWHG DV D SRVVLEOH FDQGLGDWH IRU 026 DSSOLFDWLRQV GXH WR LWV SUHGLFWHG XQVWDEOH LQWHUIDFH DQG WKH

PAGE 97

SUHGLFWHG QHJDWLYH FRQGXFWLRQ EDQG OLQHXS ZKHQ LQ GLUHFW FRQWDFW ZLWK VLOLFRQ +RZHYHU LW VWLOO KDV EHHQ VWXGLHG KHUH GXH WR SUHYLRXV UHVXOWV WKDW LQGLFDWH SRVLWLYH 026 UHVXOWV DQG EDVHG RQ LWV PHULW DV D SRVVLEOH KLJKN GLHOHFWULF PDWHULDO LQ D GHYLFH WKDW GRHV QRW KDYH VXFK VWULQJHQW LQWHUIDFLDO UHTXLUHPHQWV DV D 026 GHYLFH GRHV <2 KDV DOVR EHHQ LGHQWLILHG DV D SRVVLEOH FDQGLGDWH IRU DQ DOWHUQDWH GLHOHFWULF PDWHULDO EXW QRW IXOO\ HPEUDFHG EHFDXVH RI LWV PRGHUDWHO\ KLJK GLHOHFWULF FRQVWDQW RI a ,I SXUVXHG LW ZRXOG RQO\ SURYLGH D VROXWLRQ IRU D OLPLWHG QXPEHU RI GHYLFH JHQHUDWLRQV EHIRUH HQFRXQWHULQJ WKH VDPH SUREOHPV 62 LV IDFLQJ QRZ ,Q WKLV VWXG\ WKH SDUDPRXQW PDWWHU ZDV WR LQYHVWLJDWH SRVVLEOH HIIHFWV WKH XOWUDYLROHW UDGLDWLRQ PD\ KDYH ZLWK UHVSHFW WR SURSHUWLHV RI WKH GHSRVLWHG ILOP DQG VSHFLILFDOO\ KRZ R[\JHQ LV SUHVHQW LQ WKH V\VWHP %DULXP 6WURQWLXP 7LWDQDWH %67f 7ZR %67 WKLQ ILOP VDPSOHV ZHUH GHSRVLWHG IRU WKLV VWXG\ 2QH VDPSOH ZDV GHSRVLWHG LQ WKH FRQYHQWLRQDO 3/' VHWXS ZKLOH WKH VHFRQG ZDV GHSRVLWHG XQGHU WKH 893/' FRQGLWLRQV ZKHUH WKH ORZ SUHVVXUH PHUFXU\ ODPS DUUD\ ZDV XWLOL]HG )RU HDFK FDVH WKH VDPSOHV ZHUH GHSRVLWHG DW D VXEVWUDWH WHPSHUDWXUH RI r& DW D SXOVH FRXQW RI DQG D ODVHU IOXHQFH RI a -FP 7KH RSWLPXP SUHVVXUH ZDV GHWHUPLQHG IRU HDFK RI WKH WZR VDPSOHV E\ JURZLQJ VHYHUDO VDPSOHV DW GLIIHUHQW SUHVVXUHV SHUIRUPLQJ [UD\ GLIIUDFWLRQ ;5'f DQG WKHQ FRPSDULQJ WKH IXOO ZLGWK DW KDOI PD[LPXP ):+0f YDOXHV RI WKH SULPDU\ f SHDNV 7KH SUHVVXUH WKDW UHVXOWHG LQ WKH VPDOOHVW YDOXH IRU ):+0 RI WKH PDMRU ;5' SHDN ZDV GHWHUPLQHG WR EH WKH PRVW FU\VWDOOLQH DQG XVHG IRU DOO VXEVHTXHQW H[SHULPHQWDWLRQ )RU %67 WKH VDPSOH GHSRVLWHG ZLWKRXW XOWUDYLROHW UDGLDWLRQ KDG DQ RSWLPXP R[\JHQ GHSRVLWLRQ SUHVVXUH RI P7RUU ZKLOH WKH RSWLPXP SUHVVXUH IRU WKH VDPSOH GHSRVLWHG ZLWK XOWUDYLROHW UDGLDWLRQ KDG DQ RSWLPXP SUHVVXUH RI RQO\ P7RUU 7KLV WXUQV RXW WR EH D YHU\ LPSRUWDQW UHVXOW WKDW ZLOO EH GLVFXVVHG LQ PRUH GHWDLO ODWHU

PAGE 98

8QGHU WKH DERYH PHQWLRQHG GHSRVLWLRQ FRQGLWLRQV VDPSOHV ZHUH GHSRVLWHG DQG PHDVXUHG E\ 9$6( XVLQJ D VLQJOH OD\HU PRGHO RI EDULXP WLWDQDWH RQ VLOLFRQ 7KRXJK WKH GHSRVLWHG VDPSOHV ZHUH DFWXDOO\ %D6UR7LR2 WKH PRGHO IRU EDULXP WLWDQDWH ZDV WKH FORVHVW PRGHO DYDLODEOH DQG ZRXOG H[KLELW VLPLODU RSWLFDO SURSHUWLHV WR WKH %67 $Q\ DWWHPSW WR XVH D WZR OD\HU PRGHO ZLWK DQ DGGLWLRQDO LQWHUIDFLDO OD\HU UHWXUQHG WR D VLQJOH OD\HU PRGHO ZKHQ WKH ILWWLQJ SURJUDP ZDV H[HFXWHG 7KH UHVXOWLQJ RYHUDOO WKLFNQHVV YDOXHV IURP WKH VLQJOH OD\HU PRGHO ZHUH ƒ DQG ƒ IRU 893/' DQG 3/' GHSRVLWHG VDPSOHV UHVSHFWLYHO\ 7KHVH YDOXHV ZHUH XVHG DV WKH ILUVW DSSUR[LPDWLRQV LQ ;55 PRGHOLQJ 7KH ;55 SORWV IRU WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV DUH VKRZQ LQ )LJXUH DQG WKH GDWD IRU HDFK LV VKRZQ LQ 7DEOH 7DEOH ;55 GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV 3/' 6DPSOH 7KLFNQHVV ƒf 5RXJKQHVV ƒf 'HQVLW\ JFP-f 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU %67 6XUIDFH /D\HU 893/' 6DPSOH 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU %67 6XUIDFH /D\HU 7KH ILUVW LPSRUWDQW DVSHFW WR QRWH LQ IURP 7DEOH LV WKDW SURSHU ILWWLQJ RI WKH %67 UHTXLUHG D f /D\HU 0RGHOf WR ILW WKH H[SHULPHQWDOO\ DFTXLUHG GDWD ,Q LQVWDQFHV ZKHUH D JRRG ILW FDQQRW EH UHDGLO\ IRXQG ZLWK D f /D\HU 0RGHOf DQ DGGLWLRQDO ORZHU GHQVLW\ OD\HU PD\ EH DGGHG WR WDNH LQWR DFFRXQW IRU VXUIDFH LPSXULWLHV DQG URXJKQHVV HIIHFWV 7KH VKDSH RI WKH ;55 SORWV RI WKH %67 VKRZQ LQ )LJXUH UHYHDOHG FRPSHOOLQJ HYLGHQFH

PAGE 99

IRU WKH H[LVWHQFH RI DQ LQWHUIDFLDO OD\HU IRU ERWK WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH SORW ODEHOHG f893/' 5DZ 'DWDf VKRZV D GDPSHQHG UHJLRQ IURP WR r DORQJ WKH WKHWDWKHWD D[LV ZKHUH WKH DPSOLWXGH RI WKH RVFLOODWLRQV GLG QRW PDWFK DOO RI WKH RWKHU YDOXHV DORQJ WKH WKHWDWKHWD D[LV 7KH RQO\ PHWKRG WR DFFRXQW IRU WKLV W\SH RI GDPSHQLQJ LV ZLWK WKH DGGLWLRQ RI DQ LQWHUIDFLDO OD\HU H[KLELWLQJ D SDUWLFXODU WKLFNQHVV DQG GHQVLW\ FRPELQDWLRQ 7KH SORW ODEHOHG f893/' /D\HU 0RGHOf VKRZV KRZ WKH RVFLOODWLRQV UHPDLQ FRQVWDQW DORQJ WKH HQWLUH WKHWDWKHWD D[LV ZLWKRXW WKH DGGLWLRQ RI WKH LQWHUIDFLDO OD\HU 6HFWLRQV & DQG RI )LJXUH VKRZ WKH EHVW ILWV WKDW FRXOG EH DFKLHYHG ZLWK WKH f /D\HU 0RGHOf IRU WKH 893/' DQG 3/' GHSRVLWHG VDPSOHV UHVSHFWLYHO\ ,Q WKH FDVH RI WKH 3/' GHSRVLWHG VDPSOH WKH WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU ZDV ƒ ZKHUHDV WKH 893/' VDPSOH ZDV ƒ 0RUH LPSRUWDQWO\ WKH GHQVLW\ RI WKH 3/' GHSRVLWHG VDPSOH ZDV JFP ZKHUHDV WKH 893/' ZDV JFP 7KLV YDOXH LV JUHDWHU WKDQ WKDW RI D SXUH DPRUSKRXV 62 EXW VWLOO PXFK OHVV WKDQ D SXUH VLOLFDWH RU VLOLFLGH $QRWKHU LPSRUWDQW FKDUDFWHULVWLF WR QRWH LQFOXGHG WKH KLJK VXUIDFH URXJKQHVV RI ƒ DVVRFLDWHG ZLWK WKH 893/' VDPSOH YHUVXV WKH RQO\ ƒ IRU WKH 3/' VDPSOH )LQDOO\ WKH RYHUDOO WKLFNQHVVHV IURP ;55 DUH LQ JRRG DJUHHPHQW ZLWK WKH HDUOLHU YDOXHV GHWHUPLQHG IURP 9$6( ,Q RUGHU WR YHULI\ WKH H[LVWHQFH RI WKH LQWHUIDFLDO OD\HU VHHQ LQ WKH ;55 UHVXOWV DQ ;7(0 PLFURJUDSK RI D %67 ILOP ZDV REWDLQHG DQG LV VKRZQ LQ )LJXUH 7KH IHDWXUHV RI WKH PLFURJUDSK LQFOXGH D WZR OD\HUHG VWUXFWXUH FRPSRVHG RI D SRO\FU\VWDOOLQH %67 OD\HU DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS WKH VLQJOH FU\VWDOOLQH VLOLFRQ 7KRXJK WKH SRO\FU\VWDOOLQLW\ RI WKH %67 OD\HU LV QRW DSSDUHQW LQ )LJXUH OHVV PDJQLILHG LPDJHV GR LQ IDFW UHYHDO WKH SRO\FU\VWDOOLQH PRUSKRORJ\

PAGE 100

,Q DQ HIIRUW WR YHULI\ WKH ODUJH URXJKQHVV GLIIHUHQFHV IRXQG EHWZHHQ WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV DWRPLF IRUFH PLFURVFRS\ $)0f PHDVXUHPHQWV ZHUH PDGH RQ WKH VDPSOHV 6HHQ LQ )LJXUH LW ZDV IRXQG WKDW WKH $)0 PHDVXUHPHQWV PDGH RYHU DQ DUHD RI LP [ OmQ YHULILHG WKH ;55 UHVXOWV VKRZLQJ 506 YDOXHV RI ƒ WR ƒ IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV UHVSHFWLYHO\ 7KH $)0 PHDVXUHPHQWV DOVR UHYHDOHG D JUHDW GHDO RI VXUIDFH WH[WXULQJ DVVRFLDWHG ZLWK WKH 893/' GHSRVLWHG VDPSOH ZLWK DQ DYHUDJH JUDLQ VL]H RI QP 7KLV LV LQ FRQWUDVW WR WKH 3/' VDPSOH ZKLFK H[KLELWV QHLWKHU VXUIDFH WH[WXULQJ QRU ODUJH JUDLQV 7KH GDWD IRU WKH ;5' LQYHVWLJDWLRQ RI ERWK WKH 893/' DQG 3/' GHSRVLWHG VDPSOHV DUH VKRZQ LQ 7DEOH 7DEOH ;5' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV 3/' 6DPSOH 7KHWD 3HDN /RFDWLRQ rf ):+0 rf 3HDN 2ULHQWDWLRQ 3HDN f 3HDN f 893/' 6DPSOH 3HDN f 3HDN f 7KH ;5' VSHFWUD ZHUH FRPSRVHG RI WZR GLVWLQFW SHDNV IRU HDFK 7KH PDLQ GLIIHUHQFH EHWZHHQ WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV ZDV WKH VOLJKWO\ VPDOOHU r OHVVf ):+0 YDOXH LQ WKH f SHDN IRU WKH 893/' GHSRVLWHG VDPSOH $Q DGGLWLRQDO GLIIHUHQFH EHWZHHQ WKH WZR VDPSOHV LV D VOLJKW VKLIW LQ WKH WKHWD YDOXHV EHWZHHQ WKH 3/' DQG 893/' VDPSOHV 7KHVH GLIIHUHQFHV ZHUH DWWULEXWHG WR ERWK WKH JUDLQ VL]H LQFUHDVH VHHQ LQ WKH 893/' VDPSOH DV ZHOO DV VWUHVVHV LQKHUHQW LQ WKH WKLQ ILOP V\VWHP $ YDULDWLRQ RI ;5' JUD]LQJ LQFLGHQFH [UD\ GLIIUDFWLRQ *,;'f ZDV DOVR FRPSOHWHG IRU

PAGE 101

WKH WZR VDPSOHV 7KH *,;' SORWV DUH VKRZQ LQ )LJXUH DQG WKH GDWD LV VKRZQ LQ 7DEOH 7DEOH *,;' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG %67 VDPSOHV 3/' 6DPSOH 7KHWD 3HDN /RFDWLRQ rf ):+0 rf 3HDN 2ULHQWDWLRQ 3HDN f 3HDN f 3HDN f 3HDN f 3HDN f 3HDN f 893/' 6DPSOH 3HDN -LP 3HDN +' 3HDN f 3HDN f 3HDN c77U 3HDN f 'XH WR WKH GLIIHUHQW PDQQHU LQ ZKLFK D *,;' SORW LV DFTXLUHG WKHUH DUH GLVWLQFW SHDNV DVVRFLDWHG ZLWK WKH VFDQ 0DWFKLQJ WKH VFDQV WR WKH -&3'6 GLIIUDFWLRQ ILOH WKH VFDQ LQGLFDWHV D JRRG TXDOLW\ FXELF %DR 6URV7L&A ZLWK DOO OLVWHG SHDNV LQ WKH -&3'6 EHLQJ DFFRXQWHG IRU LQ WKH VSHFWUXP ,QVSHFWLRQ RI WKH WKHWD SRVLWLRQV RI WKH SHDNV LQGLFDWHV VOLJKW VKLIWLQJ RI WKH SHDNV WR KLJKHU YDOXHV IRU IRXU RXW RI WKH VL[ RULHQWDWLRQV ZKHQ XOWUDYLROHW UDGLDWLRQ ZDV XVHG GXULQJ SURFHVVLQJ 7KLV VKLIW ZDV DOVR DFFRPSDQLHG E\ ORZHU ):+0 YDOXHV IRU DOO RI WKH DVVRFLDWHG RULHQWDWLRQV 7ZR RI WKH VL[ RULHQWDWLRQV WKH f DQG f VKLIWHG WR ORZHU WKHWD YDOXHV DQG ZHUH DFFRPSDQLHG E\ KLJKHU YDOXHV RI ):+0 7KH ;36 GDWD ZDV WDNHQ ZLWKRXW DQ\ VSXWWHULQJ DQG DW D WDNHRII DQJOH RI r 7KH SORWV RI WKH 2 ,V UHJLRQ UHYHDOHG D QHHG IRU WKUHH SHDNV WR SURSHUO\ ILW WKH H[SHULPHQWDOO\

PAGE 102

DFTXLUHG GDWD 7KH ELQGLQJ HQHUJLHV DVVRFLDWHG ZLWK WKH SHDNV DUH $f a %f a DQG &f H9 IRU R[\JHQ ERXQG WR EDULXP R[\JHQ SK\VLFDOO\ WUDSSHG DQG RWKHU VXUIDFH LPSXULWLHV UHVSHFWLYHO\ $ GHWDLOHG LQVSHFWLRQ RI SHDN % VKRZV WKH NH\ GLIIHUHQFH EHWZHHQ WKH 3/' DQG WKH 893/' WHFKQLTXH $V VHHQ LQ )LJXUH ZLWK WKH DSSOLFDWLRQ RI WKH 89 UDGLDWLRQ WKH DPRXQW RI WUDSSHG R[\JHQ LV UHGXFHG IURP D YDOXH RI b WR D YDOXH RI RQO\ b 7KLV LV RI SDUWLFXODU LPSRUWDQFH VLQFH WKH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ GXULQJ GHSRVLWLRQ UHVXOWV LQ OHVV WUDSSHG R[\JHQ DYDLODEOH LQ WKH PDWHULDO WKDW LV DYDLODEOH WR PLJUDWH WR WKH LQWHUIDFH DQG UHDFW 7ZR DGGLWLRQDO VDPSOHV ZHUH GHSRVLWHG XQGHU LGHQWLFDO FRQGLWLRQV ZLWK WKH H[FHSWLRQ RI D ORZHU SXOVH FRXQW RI 7KH UHVXOWLQJ WKLFNQHVV DV GHWHUPLQHG E\ 9$6( DQG ;55 ZHUH ƒ DQG ƒ IRU 893/' DQG 3/' GHSRVLWHG VDPSOHV UHVSHFWLYHO\ 7KLV SDLU RI VDPSOHV ZDV PDGH LQWR 026 GHYLFHV VR GLIIHUHQFHV LQ WKH HOHFWULFDO SURSHUWLHV FRXOG EH GHWHUPLQHG 7R SURSHUO\ GHWHUPLQH D JRRG GHYLFH IRU WHVWLQJ FXUUHQWYROWDJH PHDVXUHPHQWV ZHUH PDGH RQ WKH WZR VDPSOHV )LJXUH VKRZV D SORW RI FXUUHQW GHQVLW\ YHUVXV YROWDJH DQG WKDW ERWK RI WKH VDPSOHV H[KLELWHG YHU\ ORZ OHDNDJHV RI O[O 2n $FP RYHU D ZLGH UDQJH RI YROWDJHV IURP PLQXV WR SRVLWLYH YROWV 7KH KLJK IUHTXHQF\ FDSDFLWDQFH YHUVXV YROWDJH SORW LV VKRZQ LQ )LJXUH ,W VKRZV KRZ WKH DFFXPXODWLRQ FDSDFLWDQFH DVVRFLDWHG ZLWK WKH 893/' GHSRVLWHG VDPSOH LV HQKDQFHG FRPSDUHG WR WKDW RI WKH 3/' GHSRVLWHG VDPSOH :LWK D GRW VL]H RI [n P WKH FDSDFLWDQFHV DVVRFLDWHG ZLWK WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV DUH S) DQG S) UHVSHFWLYHO\ 8VLQJ HTXDWLRQ WKH HTXLYDOHQW R[LGH WKLFNQHVV RI WKH FRQYHQWLRQDOO\ JURZQ 3/' VDPSOH LV UHGXFHG IURP DQ DFWXDO WKLFNQHVV RI ƒ WR DQ (27 RI ƒ 0RUH LPSRUWDQWO\ WKH 893/' VDPSOH UHGXFHG IURP DQ DFWXDO WKLFNQHVV RI ƒ WR DQG

PAGE 103

(27 RI ƒ 7KHVH UHODWLYHO\ ORZ (27 YDOXHV DUH D UHVXOW RI RYHUDOO GLHOHFWULF FRQVWDQW FDOFXODWLRQV RI DQG IRU WKH 3/' DQG 893/' GHSRVLWHG VDPSOHV UHVSHFWLYHO\ 7KLV UHSUHVHQWV D b LQFUHDVH LQ GLHOHFWULF FRQVWDQW ZLWK WKH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ )RU WKH LQVLWX 893/' VWXG\ RI %67 9$6( PHDVXUHPHQWV ZHUH FRPSOHWHG IRU D EDVH PHDVXUHPHQW RI WKLFNQHVVHV WKDW ZHUH LQSXW DV D VWDUWLQJ YDOXH IRU ;55 PRGHOLQJ 7KH ;55 UHYHDOHG WZR LPSRUWDQW ILQGLQJV 7KH ILUVW ZDV WKH H[LVWHQFH RI DQ LQWHUIDFLDO OD\HU ZLWK D GHQVLW\ JUHDWHU WKDQ WKDW RI SXUH 62 DQG WKH VHFRQG ZDV D ODUJH VXUIDFH URXJKQHVV DVVRFLDWHG ZLWK WKH 893/' GHSRVLWHG VDPSOH EXW QRW WKH 3/' GHSRVLWHG VDPSOH $Q ;7(0 LQYHVWLJDWLRQ YHULILHG WKDW LQGHHG WKHUH ZDV DQ DPRUSKRXV LQWHUIDFLDO OD\HU ZKLOH $)0 YHULILHG WKDW WKH 893/' GHSRVLWHG VDPSOH H[KLELWHG D JUHDW GHDO RI WH[WXULQJ ZLWK ODUJH a ƒ JUDLQV 7KH LQFUHDVHG WH[WXULQJ ZDV DOVR LQGLFDWHG LQ WKH ;5' DQG *,;' WKURXJK PRUH LQWHQVH SHDNV ZLWK ORZHU ):+0 YDOXHV IRU FHUWDLQ SHDNV ZKLOH RWKHUV EHFDPH OHVV LQWHQVH ZLWK ODUJHU ):+0 YDOXHV ;36 ZDV DEOH WR GLVFHUQ D UHGXFWLRQ LQ WKH DPRXQW RI SK\VLFDOO\ WUDSSHG R[\JHQ DVVRFLDWHG ZLWK WKH 893/' GHSRVLWHG VDPSOH 5HDVRQLQJ IRU WKLV ORZHU DPRXQW RI WUDSSHG R[\JHQ VWHPV IURP WKH ORZHU R[\JHQ SUHVVXUH WKDW LV HQDEOHG GXULQJ D 893/' GHSRVLWLRQ DV D UHVXOW RI WKH DGGLWLRQ RI WKH XOWUDYLROHW UDGLDWLRQ VRXUFHV 7KLV ORZHU DPRXQW RI R[\JHQ FDQ DOVR H[SODLQ WKH JUHDWHU GHQVLW\ VHHQ LQ WKH LQWHUIDFLDO OD\HU IRU WKH 893/' GHSRVLWHG VDPSOH VLQFH WKH UDWLR RI 62 WR %67 ZRXOG EH OHVV )LQDOO\ FDSDFLWDQFH YROWDJH PHDVXUHPHQWV UHYHDOHG DQ HQKDQFHG GLHOHFWULF FRQVWDQW DQG ORZ (27 YDOXHV IRU WKH 893/' GHSRVLWHG VDPSOH :KLOH WKH ORZ (27 YDOXHV ZHUH QRW OHVV WKDQ WKH FXUUHQW ƒ 62 OD\HU XVHG LW GLG FOHDUO\ LOOXVWUDWH WZR LPSRUWDQW QRWLRQV )LUVW LW VKRZV KRZ D KLJK GLHOHFWULF FRQVWDQW FDQ

PAGE 104

WDNH D WKLFN UHODWLYHO\ VSHDNLQJf OD\HU QRW VXEMHFW WR WXQQHOLQJ OHDNDJH LVVXHV DQG DOORZ LW WR SHUIRUP OLNH DQ XOWUDWKLQ OD\HU 6HFRQGO\ LW LOOXVWUDWHV WKH LPSRUWDQW UROH WKDW XOWUDYLROHW UDGLDWLRQ FDQ SOD\ LQ DFKLHYLQJ KLJK TXDOLW\ GLHOHFWULFV ZKHQ GHSRVLWHG XQGHU PRUH UHDFWLYH R[\JHQ FRQGLWLRQV $OO RI WKH DERYH PHQWLRQHG UHVXOWV TXHVWLRQ WKH FODLP WKDW %67 LV D SRRU VHOHFWLRQ DV DQ DOWHUQDWLYH GLHOHFWULF PDWHULDO EHFDXVH RI LWV WKHUPRG\QDPLF LQVWDELOLW\ ZLWK VLOLFRQ DQG LWV ODFN RI D FRQGXFWLRQ EDQG EDUULHU 7KH DQVZHUV WR WKHVH WZR TXHVWLRQV DUH DV IROORZV 7KH FDOFXODWLRQV IRU EDQG RIIVHWV JHQHUDWHG E\ 5REHUWVRQ >@ ZHUH PDGH IRU D JLYHQ GLHOHFWULF ZKHQ LQ DQ LGHDO GLUHFW FRQWDFW ZLWK VLOLFRQ +RZHYHU LW ZDV PHQWLRQHG WKDW LI WKHUH ZHUH VRPH W\SH RI EXIIHU OD\HU EHWZHHQ D GLHOHFWULF DQG WKH VLOLFRQ WKDW WKLV ZRXOG FKDQJH WKH EDQG RIIVHW SURSHUWLHV 7KLV LV ZKDW KDG KDSSHQHG ZLWK WKH %67 $V VHHQ LQ WKH ;7(0 LPDJH RI %67 WKHUH LV FOHDUO\ DQ LQWHUIDFLDO OD\HU WKDW KDG IRUPHG $V DQ H[WHQVLRQ RI WKH UHVXOWV IURP WKH =U&! VWXG\ LW LV UHDVRQDEOH WR FRQFOXGH WKDW WKH %67 KDG DOVR JHQHUDWHG DQ LQWHUIDFLDO OD\HU WKDW ZDV FRPSRVHG RI D SK\VLFDO PL[WXUH RI 62 DQG %67 :LWK WKLV H[WHQVLRQ WKH EDQG RIIVHW DVVRFLDWHG ZLWK WKH VWUXFWXUH ZRXOG EH LQWHUPHGLDWH EHWZHHQ WKH YDOXH RI %67 LQ GLUHFW FRQWDFW ZLWK VLOLFRQ DQG WKDW RI 62 LQ GLUHFW FRQWDFW ZLWK VLOLFRQ WKXV HOLPLQDWLQJ WKDW LVVXH 6LPLODUO\ WKH ODFN RI WKHUPRG\QDPLF VWDELOLW\ RI %67 LQ GLUHFW FRQWDFW ZLWK VLOLFRQ LV DOVR TXHVWLRQDEOH VLQFH WKH LQWHUIDFH LV LQ IDFW DQ LQWHUIDFLDO OD\HU WKDW LV SDUWLDOO\ 62 ,W LV WKH XQXVXDOO\ KLJK GLHOHFWULF FRQVWDQW RI %67 WKDW VWLOO DOORZHG WKH PXOWLOD\HUHG V\VWHP WR JHQHUDWH VXFK JRRG GLHOHFWULF FRQVWDQW YDOXHV DQG ORZ HTXLYDOHQW R[LGH WKLFNQHVVHV ,W DOVR IROORZV WKDW LI WKH LQWHUIDFLDO OD\HU KDG HYHQ OHVV 62 RU ZDV SK\VLFDOO\ WKLQQHU WKH HIIHFW RI WKH ORZ N OD\HU ZRXOG EH OHVV SURQRXQFHG DOORZLQJ HYHQ EHWWHU UHVXOWV :LWK UHVSHFW WR WKH

PAGE 105

VWUXFWXUDO FKDQJHV VHHQ LQ WKH GDWD HQHUJHWLF SKRWRQ ERPEDUGPHQW RI WKH VXUIDFH ZRXOG PRVW UDWLRQDOO\ H[SODLQ WKHVH UHVXOWV 0RUH LPSRUWDQWO\ WKH IDFW WKDW WKH XOWUDYLROHW UDGLDWLRQ LV DFWLQJ LQ DQ LQVLWX PDQQHU DOORZV WKH SKRWRQV WR FRQWLQXDOO\ LQWHUDFW ZLWK HDFK DWRPLF OD\HU DV WKH VWUXFWXUH LV GHSRVLWHG 7KLV DGGHG HQHUJ\ FRXOG DFFRXQW IRU WKH VWUXFWXUDO GLIIHUHQFHV QRWHG )RU WKH %67 XOWUDYLROHW UDGLDWLRQ KDV EHHQ XVHG WR PRGLI\ FKHPLFDO SURSHUWLHV RI WKH WKLQ ILOP V\VWHP E\ UHGXFLQJ WKH DPRXQW RI WUDSSHG R[\JHQ LQ WKH GHSRVLWHG OD\HU /HVV WUDSSHG R[\JHQ LQ WKH VWUXFWXUH GXULQJ GHSRVLWLRQ DQG FRROGRZQ GLFWDWHV OHVV SRVVLEOH PLJUDWLRQ RI R[\JHQ VSHFLHV WR WKH LQWHUIDFH GXULQJ GHSRVLWLRQ DQG SRVW GHSRVLWLRQ SURFHVVHV UHVXOWLQJ LQ OHVV QHJDWLYH HIIHFWV ZLWK UHVSHFW WR WKH LQWHUIDFLDO OD\HU 7KH HIIHFW RI HQHUJHWLF SKRWRQV WKDW LPSLQJH HDFK OD\HU RI WKH PDWHULDO GXULQJ GHSRVLWLRQ FDQ DFFRXQW IRU WKH VWUXFWXUDO FKDQJHV WKDW ZHUH QRWHG LQ WKH FU\VWDOOLQLW\ DQG URXJKQHVV 7KH FRPELQHG HIIHFW RI WKH FKHPLFDO DQG VWUXFWXUDO FKDQJHV UHVXOWHG LQ HQKDQFHG HOHFWULFDO SURSHUWLHV ZLWK JRRG OHDNDJH FXUUHQWV DQG ORZ (27 YDOXHV ,W LV FRQFOXGHG WKDW GXH WR D PRUH FRQWUROOHG R[\JHQ HQYLURQPHQW DV D UHVXOW RI DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ KLJKHU TXDOLW\ VDPSOHV FDQ EH GHSRVLWHG ZKLFK H[KLELW VXSHULRU VWUXFWXUDO FKHPLFDO DQG HOHFWULFDO SURSHUWLHV
PAGE 106

UDGLDWLRQ RQ DQ DGGLWLRQDO R[LGH PDWHULDO WKDW VDWLVILHV WKH FULWHULD IRU D JRRG FDQGLGDWH 7R VWDUW WKH LQYHVWLJDWLRQ VDPSOHV ZHUH JURZQ LQ D VLPLODU PDQQHU DV WKH %67 ZKHUHE\ RSWLPXP JURZWK SUHVVXUHV ZHUH GHWHUPLQHG IRU D JLYHQ JURZWK WHPSHUDWXUH ,Q WKLV FDVH WKH <2 WKLQ ILOPV ZHUH JURZQ IRU D SXOVH FRXQW RI DW D WHPSHUDWXUH RI r& DQG DQ R[\JHQ SUHVVXUH RI P7RUU DQG P7RUU IRU 893/' DQG 3/' UHVSHFWLYHO\ 2QFH DJDLQ DQ DUUD\ RI ORZ SUHVVXUH PHUFXU\ ODPSV ZDV XVHG LQVLWX GXULQJ WKH GHSRVLWLRQ IRU WKH 893/' GHSRVLWHG VDPSOH 9$6( LQYHVWLJDWLRQV RI WKH 893/' DQG 3/' GHSRVLWHG VDPSOHV PHDVXUHG RYHUDOO WKLFNQHVVHV RI a ƒ DQG a ƒ UHVSHFWLYHO\ 0XFK OLNH WKH =2 DQG %67 VDPSOHV D VLQJOH OD\HU PRGHO ZDV WKH PRVW DSSURSULDWH IRU PRGHOLQJ WKH GDWD 7KLV LV RQFH DJDLQ DWWULEXWHG WR WKH LQDELOLW\ RI 9$6( WR GLVFHUQ DGGLWLRQDO OD\HUV ZLWKRXW UHWXUQLQJ WR D VLQJOH OD\HU DSSUR[LPDWLRQ EXW QRW QHFHVVDULO\ DQ LQGLFDWLRQ WKDW WKHUH LV QRW DFWXDOO\ D VHFRQG OD\HU SUHVHQW 7KH ;55 SORWV DUH VKRZQ LQ )LJXUH DQG WKH GDWD IURP WKH PRGHO LV VKRZQ LQ 7DEOH 7DEOH ;55 GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG <2 VDPSOHV 3/' 6DPSOH 7KLFNQHVV ƒf 5RXJKQHVV ƒf 'HQVLW\ JFP-f 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU <2 6XUIDFH /D\HU 893/' 6DPSOH 6LOLFRQ 6XEVWUDWH ,QWHUIDFLDO /D\HU <2 6XUIDFH /D\HU

PAGE 107

$ OD\HU PRGHO ZDV XVHG WR ILW WKH H[SHULPHQWDO GDWD 7KLV FUHDWHG LQ VLPLODU UHVXOWV WR WKH %67 VWXG\ ZLWK WKH QHHG IRU DQ LQWHUIDFLDO OD\HU LQ WKH PRGHOLQJ WR DSSURSULDWHO\ GHVFULEH WKH DFTXLUHG GDWD 7KH LQWHUIDFLDO OD\HU IRU WKH 893/' GHSRVLWHG VDPSOH H[KLELWHG D GHQVLW\ RI JFP ZKHUHDV WKH GHQVLW\ RI WKH 3/' GHSRVLWHG VDPSOH ZDV D ORZHU YDOXH RI JFP %RWK RI WKHVH LQWHUIDFLDO OD\HUV KDG D GHQVLW\ JUHDWHU WKDQ WKDW RI SXUH DPRUSKRXV 6L DQG OHVV WKDQ WKDW RI DQ\ W\SH RI \WWULXP VLOLFDWH RU VLOLFLGH $Q ;7(0 PLFURJUDSK ZDV REWDLQHG IRU WKH <2 V\VWHP WR GHWHUPLQH LI DQ LQWHUIDFLDO OD\HU ZDV SUHVHQW $V VKRZQ LQ )LJXUH WKH <2 H[KLELWHG D SRO\FU\VWDOOLQH <2 OD\HU DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS WKH VLQJOH FU\VWDOOLQH VLOLFRQ 7KLV UHVXOW LV FRPSDUDEOH WR WKH =U DQG %67 UHVXOWV SUHYLRXVO\ VKRZQ 7KH ;7(0 LPDJH DOVR VKRZHG D FROXPQDU VWUXFWXUH DVVRFLDWHG ZLWK WKH SRO\FU\VWDOOLQH <2 ILOP 7KLV ZDV WKH FDVH IRU ERWK 3/' DQG 893/' JURZQ VDPSOHV $Q LQYHVWLJDWLRQ RI WKH FU\VWDOOLQLW\ RI WKH WZR VDPSOHV E\ *,;' VHHQ LQ )LJXUH UHYHDOHG D VLQJOH SHDN DVVRFLDWHG ZLWK <2 WKDW LV GHVFULEHG LQ 7DEOH 7DEOH *,;' SHDN GDWD IRU WKH 3/' DQG 893/' GHSRVLWHG <2 VDPSOHV 3/' 6DPSOH 7KHWD 3HDN /RFDWLRQ rf ):+0 rf 3HDN 2ULHQWDWLRQ 3HDN f 893/' 6DPSOH 3HDN f *,;' ZDV FKRVHQ RYHU ;5' IRU WKLV VHW RI H[SHULPHQWV VLQFH WKH WKLFNQHVV RI WKH OD\HU ZDV TXLWH ORZ DQG *,;' ZRXOG EH D PRUH HIIHFWLYH PRGH WR REVHUYH PHDQLQJIXO GLIIHUHQFHV LQ WKH UHVXOWLQJ SHDNV $ VLQJOH SHDN WKDW FRUUHVSRQGHG WR D f RULHQWHG FXELF <2 OD\HU ZDV SUHVHQW 7KH ):+0 YDOXH IRU WKH 893/' GHSRVLWHG VDPSOH ZDV VPDOOHU WKDQ WKH 3/' GHSRVLWHG E\ r ZKLFK LV RQFH DJDLQ DQ LQGLFDWLRQ RI ODUJHU

PAGE 108

JDLQ VL]HV $GGLWLRQDOO\ WKH SRVLWLRQ RI WKH f SHDN VKLIWHG r LQGLFDWLQJ VWUHVVHV DVVRFLDWHG ZLWK WKH WKLQ ILOP V\VWHP ,QVSHFWLRQ RI )LJXUH ZLOO UHYHDO WKDW WKHUH DUH DGGLWLRQDO SHDNV ORFDWHG DURXQG r EXW WKHVH SHDNV KDYH DOO EHHQ DWWULEXWHG WR VLOLFRQ SHDNV VXFK DV WKH f ,QVSHFWLRQ RI WKH ;36 GDWD DOVR UHYHDOV D VLPLODU UHVXOW DV WKH %67 ,Q WKH FDVH RI WKH <2 WKH 2 ,V SHDNV VKRZQ LQ )LJXUH WKH DV\PPHWULF SHDN FDQ EH GHFRQYROXWHG LQWR WZR GLVWLQFW SHDNV 3HDN $ LV ORFDWHG DW H9 DQG SHDN % LV ORFDWHG DW a H9 3HDN $ ORFDWHG DW H9 FRUUHVSRQGV WR \WWULXP ERXQG WR R[\JHQ ZKLOH SHDN % ORFDWHG DW H9 FRUUHVSRQGV WR WUDSSHG R[\JHQ LQ WKH OD\HU 6LPLODU WR WKH %67 WKHUH LV D FOHDU UHGXFWLRQ LQ WKH DPRXQW RI WUDSSHG R[\JHQ ZLWK WKH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ 7KH YDOXH UHGXFHV IURP b WUDSSHG LQ WKH FRQYHQWLRQDO 3/' JURZQ VDPSOH WR b LQ WKH 893/' VDPSOH ,W LV WKXV VKRZQ RQFH DJDLQ KRZ XOWUDYLROHW UDGLDWLRQ SOD\HG D GLUHFW UROH LQ DOWHULQJ WKH FKHPLFDO SURSHUWLHV RI WKH R[LGH V\VWHP UHGXFLQJ WKH DPRXQW RI WUDSSHG R[\JHQ ZLWKLQ WKH <2 VWUXFWXUH 2QFH DJDLQ VLPLODU WR %67 ;55 LQYHVWLJDWLRQV UHYHDOHG WKH QHHG IRU DQ LQWHUIDFLDO OD\HU ZLWK D JUHDWHU GHQVLW\ WKDQ SXUH DPRUSKRXV 62 WR SURSHUO\ ILW WKH ;55 VSHFWUD 7KH LQWHUIDFLDO OD\HUV H[LVWHQFH ZDV YHULILHG E\ ;7(0 ZKLOH *,;' LQGLFDWHG PDUJLQDO GLIIHUHQFHV LQ JUDLQ VWUXFWXUH DQGRU LQWHUQDO ILOP VWUHVVHV ;36 LQYHVWLJDWLRQV VKRZHG KRZ XOWUDYLROHW UDGLDWLRQ GXULQJ GHSRVLWLRQ DOORZHG IRU ORZHU DPELHQW R[\JHQ SUHVVXUHV ZKLFK UHVXOWHG LQ D PDUNHG UHGXFWLRQ RI WUDSSHG R[\JHQ LQ WKH ILOPV

PAGE 109

&RXQWV &RXQWV &RXQWV &RXQWV )LJXUH ;55 VSHFWUD RI $f 893/' UDZ GDWD %f 893/' OD\HU PRGHO &f 893/' OD\HU PRGHO DQG 'f 3/' OD\HU PRGHO IRU %67 VDPSOHV

PAGE 110

,QWHUIDFLDO /D\HU 6LOLFRQ UXQ )LJXUH &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH %67 WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS D VLQJOH FU\VWDO VLOLFRQ VXEVWUDWH

PAGE 111

3/' )LJXUH $)0 RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' GHSRVLWHG VDPSOH H[KLELWV LQFUHDVHG URXJKQHVV ODUJHU JUDLQ VL]HV

PAGE 112

&RXQWV $UELWUDU\f )LJXUH *,;' RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' GHSRVLWHG VDPSOH H[KLELWV LQFUHDVHG f WH[WXULQJ

PAGE 113

&RXQWV D Xf &RXQWV D Xf 3/' )LJXUH 2OV ;36 RI %67 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 3HDN % FRUUHVSRQGV WR WKH DPRXQW RI SK\VLFDOO\ WUDSSHG R[\JHQ LQ WKH WKLQ ILOP VWUXFWXUH DQG LV UHGXFHG LQ WKH 893/' GHSRVLWHG VDPSOH

PAGE 114

&XUUHQW 'HQVLW\ $FPf 9ROWDJH 9f )LJXUH &XUUHQW GHQVLW\ YHUVXV YROWDJH SORW IRU %67 RI 3/' DQG 893/' GHSRVLWHG VDPSOHV

PAGE 115

&DSDFLWDQFH )f 9ROWDJH 9f )LJXUH +LJK IUHTXHQF\ FDSDFLWDQFH YHUVXV YROWDJH SORW IRU %67 RI 3/' DQG 893/' GHSRVLWHG VDPSOHV

PAGE 116

&RXQWV &RXQWV &RXQWV &RXQWV ( ( ( ( ( ( ( ( 7KHWD7KHWD 2PHJD ( O(I ( ( ( ( O(IO ( 2PHJD 7KHWD7KHWD a 2PHJD 7KHWD7KHWD )LJXUH ;36 VSHFWUD RI $f 893/' UDZ GDWD %f 893/' OD\HU PRGHO &f 3/' UDZ GDWD DQG 'f 3/' OD\HU PRGHO IRU <2 VDPSOHV

PAGE 117

*OXH )LJXUH &URVV VHFWLRQDO 7(0 RI D SRO\FU\VWDOOLQH <2 WKLQ ILOP DWRS DQ DPRUSKRXV LQWHUIDFLDO OD\HU DWRS D VLQJOH FU\VWDO VLOLFRQ VXEVWUDWH

PAGE 118

&RXQWV U f $ 3/' cM O 893/' n n n n n f‘L S _7I Q U L I L L L L L L nU nL L L L U L L L L L L L L WL @L r7KHWD )LJXUH *,;' RI <2 IRU 3/' DQG 893/' GHSRVLWHG VDPSOHV 7KH 893/' VDPSOH H[KLELWV LQFUHDVHG f WH[WXULQJ

PAGE 119

)LJXUH 2V ;36 RI <2 IRU 3/' 893/' GHSRVLWHG VDPSOHV 3HDN % FRUUHVSRQGV WR WKH DPRXQW RI SK\VLFDOO\ WUDSSHG R[\JHQ ZLWKLQ WKH WKLQ ILOP VWUXFWXUH

PAGE 120

&+$37(5 3267 '(326,7,21 8/75$9,2/(7 $11($/,1* 7KH ILQDO DUHD RI UHVHDUFK UHODWHG WR WKH SRVW GHSRVLWLRQ DQQHDOLQJ RI +2 WKLQ ILOPV ,Q WKLV H[SHULPHQWDWLRQ WKH JRDO ZDV WR GHWHUPLQH LI WKHUH ZHUH DQ\ XOWUDYLROHW HIIHFWV WKDW UHVXOWHG IURP DGGLQJ DQ XOWUDYLROHW UDGLDWLRQ VRXUFH WR SRVW GHSRVLWLRQ R[\JHQ DQQHDO 6LQFH WKH ILOPV ZHUH DPRUSKRXV DQG SDUWLFXODUO\ WKLQ WKHUH ZHUH VHYHUDO SRVVLELOLWLHV WKDW FRXOG RFFXU 7KH ILUVW ZDV WKDW WKH R[\JHQ ZRXOG GLUHFWO\ UHDFW ZLWK WKH +I' DPRUSKRXV QHWZRUN WR EHWWHU R[\JHQDWH WKH ILOP 7KH QH[W ZDV WKH SRVVLELOLW\ RI WKH KLJK HQHUJ\ SKRWRQV EHLQJ HPLWWHG IURP WKH ODPS FKDQJLQJ WKH VWUXFWXUDO FKDUDFWHULVWLFV DPRUSKRXV WR FU\VWDOOLQHf RI WKH ILOPV )LQDOO\ WKHUH ZDV WKH SRVVLELOLW\ RI R[\JHQ SDVVLQJ GLUHFWO\ WKURXJK WKH ILOPV DQG UHDFWLQJ ZLWK WKH VLOLFRQ DW WKH LQWHUIDFH DQG JURZLQJ DQ 62 LQWHUIDFLDO OD\HU 8OWUDYLROHW$VVLVWHG 2[LGDWLRQ RI 6LOLFRQ 6LQFH WKH XOWUDYLROHW UDGLDWLRQ VRXUFH IRU WKLV SRUWLRQ RI WKH H[SHULPHQWDWLRQ ZDV WKH KRPH EXLOW VLOHQW EDUULHU GLVFKDUJH H[FLPHU ODPS D SUHOLPLQDU\ WHVW WR YHULI\ WKH HIIHFW RI XOWUDYLROHW UDGLDWLRQ DQG LWV DELOLW\ WR JHQHUDWH DWRPLF R[\JHQ DQG R]RQH ZDV FRPSOHWHG ,Q WKLV VWXG\ D VHULHV RI VDPSOHV KDG WKHLU QDWLYH 62 OD\HU UHPRYHG E\ D GLS LQ b K\GURIOXRULF DFLG IRU PLQXWHV 7KH\ ZHUH WKHQ LPPHGLDWHO\ ORDGHG LQWR D KLJK YDFXXP V\VWHP HTXLSSHG ZLWK WKH H[FLPHU XOWUDYLROHW UDGLDWLRQ VRXUFH 7ZR VHWV RI IRXU VDPSOHV ZHUH SURFHVVHG ZKHUHE\ WKH VDPSOHV ZHUH R[LGL]HG IRU DQG PLQXWHV LQ P7RUU RI R[\JHQ DW r& ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ SUHVHQW $W WKLV WHPSHUDWXUH GU\ R[\JHQ DQQHDOLQJ ZDV QRW H[SHFWHG WR JHQHUDWH D 62 OD\HU RI

PAGE 121

DQ\ DSSUHFLDEOH WKLFNQHVV ,Q FRQWUDVW SUHYLRXV ZRUN E\ %R\G HW DO >@ LQGLFDWHG WKDW LI LQWHQVH XOWUDYLROHW UDGLDWLRQ ZDV EHLQJ HPLWWHG IURP WKH H[FLPHU VRXUFH GU\ R[\JHQ ZRXOG EH FRQYHUWHG LQWR DWRPLF R[\JHQ DQG R]RQH ZKLFK ZRXOG OHDG WR DSSUHFLDEOH R[LGDWLRQ RI WKH VLOLFRQ 7KH UHVXOWV DUH GLVSOD\HG LQ 7DEOH DQG VKRZQ JUDSKLFDOO\ LQ )LJXUH 7DEOH 9$6( WKLFNQHVV PHDVXUHPHQWV IRU VLOLFRQ R[LGL]HG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ DW r& 7LPH PLQXWHVf 7KLFNQHVV ƒf 89 7KLFNQHVV ƒf 9$6( PHDVXUHPHQWV YHULILHG WKDW LQGHHG WKHUH ZDV QRW DSSUHFLDEOH R[LGDWLRQ RI WKH VLOLFRQ ZLWK GU\ R[\JHQ DQQHDOLQJ ZKHUH WKH JUHDWHVW WKLFNQHVV RI 62 ZDV RQO\ ƒ IRU WKH ORQJHVW GXUDWLRQ DQQHDO $V D FRPSDULVRQ WKH VDPSOH DQQHDOHG LQ WKH SUHVHQFH RI XOWUDYLROHW UDGLDWLRQ IRU WKH VDPH WLPH GXUDWLRQ ZDV R[LGL]HG WR ƒ 7KLV QLQHIROG LQFUHDVH LQ WKLFNQHVV YHULILHG WKDW WKH H[FLPHU VRXUFH ZDV ZRUNLQJ SURSHUO\ +I2] 3RVW 'HSRVLWLRQ $QQHDO 6LQFH WKH R[LGL]LQJ HIIHFWLYHQHVV RI WKH XOWUDYLROHW VRXUFH KDG EHHQ SURYHQ +IO&K VDPSOHV ZHUH DQQHDOHG DW YDULRXV WHPSHUDWXUHV ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ 7KH JRDO ZDV WR GHWHUPLQH WKH UROH WKDW 89 UDGLDWLRQ FRXOG SOD\ LQ D SRVW GHSRVLWLRQ DQQHDO YHUVXV XVLQJ D GU\ R[\JHQ DQQHDO 7KH VDPSOHV ZHUH JURZQ E\ 0RWRUROD &RUSRUDWLRQ E\ D FKHPLFDO YDSRU GHSRVLWLRQ VHWXS DQG GHOLYHUHG GLUHFWO\ IRU DQDO\VLV LH WKH VDPSOHV GLG QRW XQGHUJR DQ\ RI WKH fW\SLFDOf GHQVLILFDWLRQ DQQHDOVf 7KH VDPSOHV ZHUH DPRUSKRXV DQG JURZQ WR D WKLFNQHVV RI aƒ RI ZKLFK aƒ ZDV DWWULEXWHG WR DQ LQWHUIDFLDO OD\HU 7KLV GDWD ZDV VXSSOLHG E\ 0RWRUROD ZLWKRXW DGGLWLRQDO HODERUDWLRQ

PAGE 122

DERXW WKHLU GHSRVLWLRQ RU PHDVXUHPHQW WHFKQLTXHV 6HYHQ VDPSOHV ZHUH SURFHVVHG IRU WKLV H[SHULPHQWDWLRQ 2QH VDPSOH ZDV VHW DV DQ DVGHSRVLWHG FRQWURO VDPSOH ZKLOH WKH RWKHU VL[ VDPSOHV ZHUH DQQHDOHG DW DQG r& LQ P7RUU RI R[\JHQ ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ ;5' *,;' $)0 9$6( ;55 DQG FDSDFLWDQFHYROWDJH PHDVXUHPHQWV ZHUH FRQGXFWHG RQ WKHVH VDPSOHV ;5' RI WKH DVGHSRVLWHG FRQWURO VDPSOH VKRZHG WKDW WKH VWUXFWXUH RI WKH ILOPV ZDV DPRUSKRXV 7KDW LV WKHUH ZHUH QRW DQ\ GLVWLQJXLVKDEOH SHDNV W\SLFDOO\ DVVRFLDWHG ZLWK D FU\VWDOOLQH +I VWUXFWXUH 0RUH LPSRUWDQWO\ QRQH RI WKH VDPSOHV WKDW XQGHUZHQW SRVW GHSRVLWLRQ KHDW WUHDWPHQWV VKRZHG DQ\ GLIIUDFWLRQ SHDNV 7KLV LQGLFDWHV WKDW DOO RI WKH +I' ILOPV UHJDUGOHVV RI ZKHWKHU XOWUDYLROHW UDGLDWLRQ ZDV SUHVHQW UHWDLQHG WKHLU DPRUSKRXV FKDUDFWHU *,;' ZDV DOVR FRQGXFWHG DV D VHFRQGDU\ FKHFN WR WKLV ILQGLQJ VLQFH WKH ILOPV ZHUH TXLWH WKLQ *,;' DOVR UHYHDOHG UHWHQWLRQ RI WKH DPRUSKRXV VWDWH WKURXJKRXW DOO DQQHDO FRQGLWLRQV ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ $)0 PHDVXUHPHQWV ZHUH FRQGXFWHG DQG XQOLNH LQVLWX 89 LUUDGLDWLRQ WKHUH ZHUH QR FKDQJHV IRXQG VXFK DV WH[WXULQJ LQ WKH VXUIDFH PRUSKRORJ\ $OO VDPSOHV H[KLELWHG D UDQGRP PRUSKRORJ\ ZLWK 506 URXJKQHVV YDOXHV LQ WKH ƒ UDQJH 7KLV ZDV FRQVLVWHQW ZLWK WKH ODFN RI FU\VWDOOLQLW\ QRWHG LQ WKH VDPSOHV IURP WKH ;5' DQG *,;' GDWD $OO RI WKHVH ILQGLQJV LQGLFDWH WKDW WKHUH ZHUH QRW DQ\ VWUXFWXUDO FKDQJHV DVVRFLDWHG ZLWK WKH +I' V\VWHP 9$6( PHDVXUHPHQWV ZHUH PDGH IRU HDFK RI WKH DQQHDO FRQGLWLRQV DQG DUH VKRZQ LQ 7DEOH )URP )LJXUH LW FDQ EH VHHQ WKDW GU\ R[\JHQ DQQHDOLQJ GLG QRW UHVXOW LQ DQ LQFUHDVH RI WKH RYHUDOO WKLFNQHVV RI WKH +I OD\HU IRU DQ\ RI WKH DQQHDO WHPSHUDWXUHV

PAGE 123

7DEOH 9$6( WKLFNQHVV PHDVXUHPHQWV IRU +' DQQHDOV ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ 7HPSHUDWXUH r&f 7KLFNQHVV ƒf ([FLPHU 8OWUDYLROHW 5DGLDWLRQ 6DPSOH $VGHSRVLWHG f§ 6DPSOH 12 6DPSOH 12 6DPSOH 12 6DPSOH <(6 6DPSOH <(6 6DPSOH <(6 2Q WKH RWKHU KDQG WKH DQQHDOV FRQGXFWHG ZLWK H[FLPHU XOWUDYLROHW UDGLDWLRQ FRQWLQXDOO\ LQFUHDVHG LQ WKLFNQHVV IURP D VWDUWLQJ YDOXH RI aƒ IRU WKH DVGHSRVLWHG VDPSOH WR D YDOXH RIƒ IRU WKH r& DQQHDO 7KHVH YDOXHV ZHUH XVHG DV D ILUVW DSSUR[LPDWLRQ LQ WKH ;55 PRGHOLQJ ;55 PHDVXUHPHQWV RI WKH VDPSOHV LQGLFDWHG VOLJKW GLIIHUHQFHV LQ WKH WKLFNQHVV RI WKH WRWDO ILOP WKLFNQHVV WKDW FRPSDUHG ZHOO ZLWK WKH YDOXHV VHHQ LQ WKH 9$6( PHDVXUHPHQWV $ f /D\HU 0RGHOf ZDV XVHG IRU WKH LQWHUSUHWDWLRQ VLQFH DQ LQWHUIDFLDO OD\HU ZDV UHTXLUHG IRU JRRG PRGHO ILWV WR EH IRXQG 7KH WKLFNQHVV RI WKH +IO OD\HU UHPDLQHG UHODWLYHO\ FRQVWDQW EXW WKHUH ZHUH GLVWLQFW YDULDWLRQV LQ WKH WKLFNQHVV DQG GHQVLW\ RI WKH LQWHUIDFLDO OD\HU 7KHVH YDULDWLRQV DUH SUHVHQWHG LQ 7DEOH DQG VKRZQ LQ )LJXUHV DQG )LJXUH FOHDUO\ VKRZV WKDW WKH VDPSOHV DQQHDOHG LQ GU\ R[\JHQ KDG RQO\ D PDUJLQDO LQFUHDVH LQ WKH WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU EXW RQO\ IRU WKH VDPSOH WKDW ZDV DQQHDOHG DW WKH KLJKHVW WHPSHUDWXUH +RZHYHU WKRVH VDPSOHV DQQHDOHG LQ WKH SUHVHQFH RI XOWUDYLROHW UDGLDWLRQ KDG DQ LQFUHDVH LQ WKH LQWHUIDFLDO OD\HU WKLFNQHVV HYHQ IRU WKH r& DQQHDO 7KH VDPSOHV WKDW ZHUH DQQHDOHG DW KLJKHU WHPSHUDWXUHV KDG PRUH VXEVWDQWLDO LQFUHDVHV LQ WKH WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU )LJXUH VKRZV WKDW WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU LV DW LWV KLJKHVW YDOXH IRU WKH DVGHSRVLWHG VDPSOH DQG WKDW DQ\ VXEVHTXHQW

PAGE 124

7DEOH ;55 F DWD IRU WKH WKLFNQHVV DQG GHQVLW\ RI W UH DPRUSKRXV LQWHUIDFLDO OD\HU 7HPSHUDWXUH r&f ([FLPHU 8OWUDYLROHW 5DGLDWLRQ ,QWHUIDFLDO /D\HU 7KLFNQHVV ƒf ,QWHUIDFLDO /D\HU 'HQVLW\ JFPf 6DPSOH $VGHSRVLWHG f§ 6DPSOH 12 6DPSOH 12 6DPSOH 12 6DPSOH <(6 6DPSOH <(6 6DPSOH <(6 KHDW WUHDWPHQWV FRUUHVSRQGHG WR GHFUHDVHV LQ WKH GHQVLW\ 7KH VDPSOHV WKDW ZHUH DQQHDOHG LQ WKH SUHVHQFH RI XOWUDYLROHW UDGLDWLRQ GHFUHDVHG LQ GHQVLW\ IDVWHU WKDQ WKH GU\ R[\JHQ DQQHDO VDPSOHV IRU DOO RI WKH DQQHDO WHPSHUDWXUHV )RU H[DPSOH WKH GHQVLW\ RI WKH VDPSOH DQQHDOHG DW r& ZLWKRXW XOWUDYLROHW UDGLDWLRQ KDG D GHQVLW\ RI JFP ZKLOH WKH VDPSOH DQQHDOHG ZLWK XOWUDYLROHW UDGLDWLRQ DW WKH VDPH WHPSHUDWXUH KDG GHFUHDVHG WR JFP &DSDFLWDQFH YROWDJH PHDVXUHPHQWV ZHUH PDGH RQ DOO VDPSOHV $V PHQWLRQHG SUHYLRXVO\ WKH DFFXPXODWLRQ FDSDFLWDQFH ZLOO EH D IXQFWLRQ RI WKH +I DQG DQ\ LQWHUIDFLDO OD\HUV WKDW DUH SUHVHQW LQ WKH V\VWHP ,I WKHUH LV D FKDQJH LQ WKH R[\JHQ HQYLURQPHQW LQ WKH V\VWHP WKLV ZLOO EH UHIOHFWHG LQ WKH DFFXPXODWLRQ FDSDFLWDQFH RI WKH ZKROH V\VWHP &DSDFLWDQFHYROWDJH UHVXOWV IRU WKH V\VWHP DUH VKRZQ LQ )LJXUH ,W FDQ EH VHHQ WKDW WKH DV GHSRVLWHG VDPSOH H[KLELWHG WKH JUHDWHVW YDOXH RI DFFXPXODWLRQ FDSDFLWDQFH $OO VXEVHTXHQW DQQHDOV UHVXOWHG LQ D GHFUHDVH LQ WKH DFFXPXODWLRQ FDSDFLWDQFH 7KH DFFXPXODWLRQ FDSDFLWDQFH RI WKH VDPSOHV WKDW ZHUH DQQHDOHG LQ WKH SUHVHQFH RI XOWUDYLROHW UDGLDWLRQ GHFUHDVHG PRUH TXLFNO\ WKDQ WKH GU\ R[\JHQ DQQHDOHG VDPSOHV IRU DQ\ JLYHQ WHPSHUDWXUH

PAGE 125

,Q VXPPDU\ VWUXFWXUDO DQDO\VLV ZDV FRPSOHWHG LQ WKH IRUP RI ;5' *,;' DQG $)0 )RU HDFK RI WKHVH DQDO\VHV WKHUH ZHUH QRW DQ\ PHDVXUDEOH GLIIHUHQFHV EHWZHHQ WKH DV GHSRVLWHG VDPSOH DQG DQ\ RI WKH DQQHDOHG VDPSOHV ;5' DQG *,;' YHULILHG UHWHQWLRQ RI WKH DPRUSKRXV VWDWH RI WKH +I' DQG $)0 VKRZHG QR FKDQJHV LQ WKH PRUSKRORJ\ RI WKH VXUIDFH 9$6( ZDV XVHG WR GHWHUPLQH DQ RYHUDOO WKLFNQHVV WKDW ZDV XVHG DV WKH VWDUWLQJ SRLQWV IRU ;55 LQYHVWLJDWLRQV ;55 YHULILHG WKH H[LVWHQFH RI DQ LQWHUIDFLDO OD\HU DQG VKRZHG WKDW DV WKH DQQHDOLQJ WHPSHUDWXUHV LQFUHDVHG YDULDWLRQV LQ WKH GHQVLW\ DQG WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU RFFXUUHG 7KH LPSRUWDQW UDPLILFDWLRQ RI WKLV ILQGLQJ ZDV WKDW WKH VDPSOHV DQQHDOHG LQ WKH SUHVHQFH RI XOWUDYLROHW UDGLDWLRQ GHFUHDVHG LQ GHQVLW\ PRUH UDSLGO\ WKDQ WKH GU\ R[\JHQ DQQHDOHG VDPSOHV ZKLOH WKH WKLFNQHVV RI WKH LQWHUIDFLDO OD\HU LQFUHDVHG PRUH UDSLGO\ WKDQ WKH GU\ R[\JHQ DQQHDOHG VDPSOHV &DSDFLWDQFHYROWDJH PHDVXUHPHQWV H[KLELWHG WKH KLJKHVW DFFXPXODWLRQ FDSDFLWDQFH IRU WKH DV GHSRVLWHG VDPSOH DQG DOO VXEVHTXHQW DQQHDOV UHVXOWHG LQ ORZHU DFFXPXODWLRQ FDSDFLWDQFHV DV D IXQFWLRQ RI WHPSHUDWXUH DQG XOWUDYLROHW LOOXPLQDWLRQ 7KH H[SODQDWLRQ IRU WKHVH UHVXOWV UHODWHV WR WKH DELOLW\ RI WKH XOWUDYLROHW UDGLDWLRQ WR FRQYHUW GU\ R[\JHQ WR DWRPLF R[\JHQ DQG R]RQH 7KH DWRPLF R[\JHQ FDQ PLJUDWH PRUH HDVLO\ ZLWKLQ WKH +I VWUXFWXUH 7KLV DELOLW\ WR HDVLO\ PLJUDWH DFFRPSDQLHG E\ LQFUHDVLQJ WHPSHUDWXUH DOORZV WKH R[\JHQ WR PLJUDWH WR WKH VLOLFRQ LQWHUIDFH UHDFW DQG IRUP 62 ,Q WKH DVGHSRVLWHG VDPSOH WKH GHQVLW\ RI WKH LQWHUIDFLDO OD\HU LV JUHDWHVW VLQFH WKHUH KDV QRW EHHQ DQ\ DGGLWLRQDO R[\JHQ DGGHG WR WKH V\VWHP 7KDW LV WKH PL[WXUH RI 62 DQG +' WKDW H[LVWV KDV WKH VPDOOHVW IUDFWLRQ RI 62 DW WKLV VWDJH $Q\ DGGLWLRQDO DQQHDOV LQFUHDVHV WKH 62 IUDFWLRQ UHVXOWLQJ LQ GHFUHDVLQJ WKH GHQVLW\ WR YDOXHV WKDW DUH FORVHU WR SXUH 62 DV ZHOO DV FRQWULEXWLQJ WR WKH JURZWK RI WKH LQWHUIDFLDO OD\HU

PAGE 126

,OO RYHUDOO 7KLV JURZWK RI WKH LQWHUIDFLDO OD\HU PDQLIHVWV LWVHOI UHDGLO\ LQ WKH HOHFWULFDO FKDUDFWHUL]DWLRQ ZKHUH WKH ORZN GLHOHFWULF OD\HU SOD\V DQ LQFUHDVLQJO\ LPSRUWDQW UROH 7KH PDLQ FRQFOXVLRQV IURP WKLV VWXG\ DUH WKDW SRVW GHSRVLWLRQ DQQHDOLQJ LQ DQ R[\JHQ DPELHQW ZLOO KDYH D GHWULPHQWDO HIIHFW RQ WKH HOHFWULFDO SURSHUWLHV RI WKH GHYLFH 7KH DSSOLFDWLRQ RI XOWUDYLROHW UDGLDWLRQ DPSOLILHV WKH SUREOHP E\ FUHDWLQJ PRUH PRELO KLJKO\ UHDFWLYH R[\JHQ VSHFLHV WKDW FDQ PRYH HDVLO\ WR WKH LQWHUIDFH DQG UHDFW ZLWK VLOLFRQ ,I WKHUH DUH DQ\ EHQHILFLDO R[\JHQDWLRQ HIIHFWV WKDW RFFXU ZLWKLQ WKH +I OD\HU WKHLU EHQHILW LV TXLFNO\ QXOOLILHG E\ WKH GHWULPHQWDO HIIHFWV RI WKH ORZN LQWHUIDFLDO OD\HU WKDW GHYHORSV GXULQJ WKH KHDW WUHDWPHQWV

PAGE 127

)LJXUH 9$6( WKLFNQHVV YHUVXV WLPH UHVXOWV IRU R[LGDWLRQ RI VLOLFRQ ZLWK DQG ZLWKRXW H[FLPHU UDGLDWLRQ LQ R[\JHQ

PAGE 128

7KLFNQHVV ƒf 7HPSHUDXWUH r&f )LJXUH 9$6( WKLFNQHVV RI WKH RYHUDOO )+2 IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ

PAGE 129

-! 7HPSHUDWXUH r&f )LJXUH ;55 WKLFNQHVV PHDVXUHPHQWV RI WKH +I LQWHUIDFLDO OD\HU IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ

PAGE 130

'HQVLW\ JFP f %ODFN 89 7HPSHUDWXUH r&f )LJXUH ;55 GHQVLW\ PHDVXUHPHQWV RI WKH +IWf LQWHUIDFLDO OD\HU IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ

PAGE 131

9ROWDJH 9f )LJXUH &DSDFLWDQFHYROWDJH PHDVXUHPHQWV RI +I 026 GHYLFHV IRU VDPSOHV DQQHDOHG ZLWK DQG ZLWKRXW XOWUDYLROHW UDGLDWLRQ

PAGE 132

&+$37(5 &21&/86,216 6LQFH 62 ZLOO EH XQDEOH WR FRQWLQXH DV WKH GLHOHFWULF PDWHULDO RI FKRLFH LQ 026)(7 GHYLFH VWUXFWXUHV WKHUH H[LVWV D GULYLQJ IRUFH WR UHSODFH WKH H[LVWLQJ 62 OD\HU ZLWK DQ DOWHUQDWLYH OD\HU ZLWK D KLJKHU GLHOHFWULF FRQVWDQW 7KRXJK PDQ\ UHVHDUFK WHDPV KDYH LQYHVWLJDWHG QXPHURXV GLIIHUHQW PDWHULDOV LQ DQ DWWHPSW WR DFFRPSOLVK WKLV JRDO WR GDWH QRQH KDYH VXFFHHGHG GXH WR QHZ SUREOHPV DVVRFLDWHG ZLWK WKH LQVHUWLRQ RI WKH DOWHUQDWLYH OD\HU 7KH PRUH SURPLQHQW RI WKHVH LVVXHV LQFOXGH WKH IRUPDWLRQ RI DQ XQZDQWHG ORZN LQWHUIDFLDO OD\HU WKDW IRUPV EHWZHHQ WKH VLOLFRQ VXEVWUDWH DQG WKH GLHOHFWULF PDWHULDO DV ZHOO DV H[FHVVLYH OHDNDJH FXUUHQWV 7KH VWXGLHV DVVRFLDWHG ZLWK WKLV GLVVHUWDWLRQ DGGUHVVHG WKH LVVXHV UHODWHG WR WKHVH WZR SUREOHPV DV WKH\ DUH UHODWHG WR R[\JHQDWLRQ LQ WKH JURZWK V\VWHP )LUVW H[SHULPHQWDWLRQ ZDV FRQGXFWHG ZKHUHE\ XOWUDWKLQ =2 VDPSOHV ZHUH GHSRVLWHG DQG H[SRVHG WR ORZ PHGLXP DQG KLJK R[\JHQ DQQHDOLQJ FRQGLWLRQV DW r& )URP WKH YDULRXV FKDUDFWHUL]DWLRQ WHFKQLTXHV LW ZDV GHWHUPLQHG WKDW WKH ILOPV GHSRVLWHG E\ SXOVHG ODVHU GHSRVLWLRQ H[KLELWHG DQ LQWHUIDFLDO OD\HU HYHQ IRU VDPSOHV WKDW ZHUH QRW SRVWn GHSRVLWLRQ DQQHDOHG $GGLWLRQDOO\ SRVW GHSRVLWLRQ DQQHDOLQJ XQGHU KLJK YDFXXP FRQGLWLRQV UHVXOWHG LQ GHYHORSPHQW RI WKH LQWHUIDFLDO OD\HU DQG UHGXFWLRQ RI SK\VLFDOO\ WUDSSHG R[\JHQ LQ WKH ILOP VWUXFWXUH )7,5 DQDO\VLV RI SRVW GHSRVLWLRQ DQQHDOHG VDPSOHV LQ KHOLXP DQG R[\JHQ UHVXOWHG LQ VXEVWDQWLDO LQFUHDVHV LQ WKH 6Lf§2 ERQGLQJ 7KH ILQDO FRQFOXVLRQ IURP WKLV SRUWLRQ RI H[SHULPHQWDWLRQ ZDV WKDW WKH LQWHUIDFLDO OD\HU LV DOUHDG\ IRUPHG GXULQJ GHSRVLWLRQ 6XEVHTXHQW DQQHDOLQJ UHVXOWV LQ D PLJUDWLRQ RI SK\VLFDOO\

PAGE 133

WUDSSHG R[\JHQ LQ WKH ILOP WR WKH LQWHUIDFH WKDW UHDFWHG ZLOK VLOLFRQ DQG LQFUHDVHG WKH 62 FRQWHQW LQ WKH LQWHUIDFLDO UHJLRQ 6LQFH WKLV DPRXQW RI R[\JHQ ZDV OLPLWHG LW ZDV DOVR FRQFOXGHG WKDW R[\JHQ LQ WKH DPELHQW GHSRVLWLRQ JDVHV DOVR PLJUDWHG WR WKH LQWHUIDFH WR UHDFW ZLWK WKH LQWHUIDFH ,Q WKH VHFRQG SRUWLRQ RI H[SHULPHQWDWLRQ XOWUDYLROHW UDGLDWLRQ IURP D ORZ SUHVVXUH +J ODPS ZDV DGGHG WR WKH FRQYHQWLRQDO SXOVHG ODVHU GHSRVLWLRQ V\VWHP 7KH DGGLWLRQ RI XOWUDYLROHW UDGLDWLRQ WR WKH JURZWK V\VWHP ZDV VHOHFWHG EHFDXVH RI LWV DELOLW\ WR UHDFW ZLWK GU\ R[\JHQ WR FUHDWH DWRPLF R[\JHQ DQG R]RQH 7KHVH VSHFLHV DUH PRUH UHDFWLYH WKDQ GU\ R[\JHQ DQG LQ WKH FDVH RI WKH DWRPLF R[\JHQ FDQ PRYH HDVLO\ WKURXJK WKH ODWWLFH RI D GLHOHFWULF ILOP ,W ZDV IRXQG IURP WKH RSWLPL]DWLRQ SURFHVV IRU GHSRVLWLRQ RI WKH %67 DQG <2 WKDW 89 UDGLDWLRQ DOORZHG IRU ORZHU R[\JHQ SUHVVXUHV WR EH XVHG GXULQJ GHSRVLWLRQ ZKLOH VWLOO DWWDLQLQJ KLJK TXDOLW\ VDPSOHV 7KH LPSDFW RI WKLV ILQGLQJ LV RI VLJQLILFDQW UHOHYDQFH EHFDXVH LW UHVXOWV LQ OHVV SK\VLFDOO\ WUDSSHG R[\JHQ LQ WKH GHSRVLWHG VWUXFWXUHV DQG OHVV R[\JHQ DYDLODEOH IRU UHDFWLRQ GXULQJ GHSRVLWLRQ $GGLWLRQDOO\ LW ZDV IRXQG WKDW VHYHUDO RWKHU SURSHUWLHV VXFK DV WH[WXULQJ DQG HOHFWULFDO FKDUDFWHULVWLFV ZHUH DOWHUHG ZLWK WKH DSSOLFDWLRQ RI 89 UDGLDWLRQ ,W ZDV IRXQG WKDW WKHUH VWLOO H[LVWHG DQ LQWHUIDFLDO OD\HU IURP GHSRVLWLRQ DORQH EXW WKH FKDUDFWHULVWLFV RI WKDW LQWHUIDFLDO OD\HU ZHUH DOWHUHG DV D UHVXOWV RI WKH GLIIHUHQW R[LGL]LQJ VSHFLHV JHQHUDWHG E\ WKH XOWUDYLROHW UDGLDWLRQ 7KLV SOD\HG DQ LPSRUWDQW UROH LQ WKH JURZWK RI JRRG TXDOLW\ ILOPV ,Q WKH ILQDO SRUWLRQ RI H[SHULPHQWDWLRQ DOUHDG\ GHSRVLWHG +I WKLQ ILOPV UHFHLYHG IURP 0RWRUROD &RUSRUDWLRQ ZHUH H[SRVHG WR H[FLPHU XOWUDYLROHW UDGLDWLRQ ,Q GRLQJ VR ,W ZDV IRXQG WKDW WKH FKDQJHV LQ VWUXFWXUH WKDW ZHUH VHHQ IRU WKH LQVLWX LUUDGLDWLRQ GLG QRW RFFXU IRU WKH SRVW GHSRVLWLRQ DQQHDOHG VDPSOHV &DSDFLWDQFH YROWDJH PHDVXUHPHQWV

PAGE 134

LQGLFDWHG WKDW WKHUH ZHUH PRUH UHDFWLYH VSHFLHV SUHVHQW LQ WKH XOWUDYLROHW DQQHDOHG VDPSOHV FRPSDUHG WR WKH VDPSOHV SURFHVVHG ZLWKRXW XOWUDYLROHW UDGLDWLRQ E\ WKH IDFW WKDW WKH RYHUDOO DFFXPXODWLRQ FDSDFLWDQFHV RI WKH &9 SORWV FRQWLQXDOO\ GHFUHDVHG ,Q WKLV VFHQDULR WKH R[\JHQ VSHFLHV PLJUDWH LPPHGLDWHO\ WKURXJK WKH +I OD\HU WR WKH LQWHUIDFH DQG DGG WR WKH JURZWK RI WKH LQWHUIDFLDO OD\HU 6WXGLHV LQ WKLV GLVVHUWDWLRQ LQGLFDWHG WKDW WKHUH LV GHYHORSPHQW RI DQ LQWHUIDFLDO OD\HU GXULQJ GHSRVLWLRQ DQG WKDW XOWUDYLROHW UDGLDWLRQ FRXOG EH EHQHILFLDO WR WKH JURZWK V\VWHP 7KH DGGLWLRQ RI 89 UDGLDWLRQ HQKDQFHG WKH SURSHUWLHV RI WKH WKLQ ILOP LI XVHG IRU LQVLWX GHSRVLWLRQ KRZHYHU LW FDQ DOVR EH GHWULPHQWDO ZLWK UHVSHFW WR GHYLFHV LI PLJUDWLQJ VSHFLHV DUH DOORZHG WR PLJUDWH HLWKHU IURP WKH ILOP RU IURP WKH DPELHQW WR WKH LQWHUIDFH DQG UHDFW ZLWK VLOLFRQ WR IXUWKHU GHYHORS WKH ORZN LQWHUIDFLDO OD\HU

PAGE 135

$33(1',; (/(&75,&$/ '$7$ (;75$&7,21 0(7+2' :KHQ FRQGXFWLQJ HOHFWULFDO FKDUDFWHUL]DWLRQ RQFH WKH SURSHU PRGHO KDV EHHQ FKRVHQ IRU WKH ZLWK WKH 0HWULFV ,&6 VRIWZDUH PHDVXUHPHQWV PD\ EH DFTXLUHG DQG D VLJQLILFDQW DPRXQW RI LQIRUPDWLRQ PD\ EH H[WUDFWHG IURP WKLV GDWD )RU H[DPSOH E\ FDOFXODWLQJ WKH WRWDO IL[HG FKDUJH LQ D 026 VWDFN QXPHURXV RWKHU LPSRUWDQW GDWD DUH JHQHUDWHG IURP WKH SURFHVV 7KH GHULYDWLRQ RI WKH IL[HG FKDUJH ZLOO EH GRQH DV DQ H[DPSOH ,W LV LPSRUWDQW WR ILUVW JHW D FXUUHQWYROWDJH PHDVXUHPHQW IURP RQH RI WKH 026 GHYLFHV WR GHWHUPLQH DQ DSSURSULDWH GLRGH WR PDNH FDSDFLWDQFHYROWDJH PHDVXUHPHQWV RQ 7KDW LV D GLRGH ZLWK D KLJK EUHDNGRZQ YROWDJH DQG WXUQ RQ FKDUDFWHULVWLFV 2QFH WKLV LV GHWHUPLQHG D KLJK IUHTXHQF\TXDVLVWDWLF RXWSXW IURP WKH :LQ V\VWHP PD\ EH JHQHUDWHG $ W\SLFDO UHVXOW IRU D SW\SH ZDIHU LV VKRZQ LQ )LJXUH :KLOH ERWK FXUYHV DUH LPSRUWDQW IRU WKLV SURFHVV WKH FDOFXODWLRQV ZLOO EH EDVHG RII WKH KLJK IUHTXHQF\ FXUYH 7KH ILUVW VWHS LV WR XVH WKH &9 FXUYH WR FDOFXODWH GRSLQJ FRQFHQWUDWLRQ LQ WKH VXEVWUDWH 7KLV LV GRQH E\ SORWWLQJ WKH UHFLSURFDO RI WKH VTXDUH RI WKH FDSDFLWDQFH YHUVXV WKH JDWH YROWDJH 7KH QHZ SORW VKRXOG H[KLELW D OLQHDU UHJLRQ %\ WDNLQJ WKH VORSH RI WKH OLQHDU UHJLRQ LW LV SRVVLEOH WR FDOFXODWH WKH GRSLQJ LQ WKH VHPLFRQGXFWRU ,W LV LPSRUWDQW WR QRWH WKDW FXUYDWXUH LQ WKLV UHJLRQ PD\ UHSUHVHQW QRQXQLIRUP GRSLQJ LQ WKH VHPLFRQGXFWRU 7KH HTXDWLRQ IRU GHWHUPLQLQJ WKH GRSLQJ LV VKRZQ EHORZ 1 $Of THV$ VORSHf

PAGE 136

ZKHUH T LV WKH HOHFWULF FKDUJH VV LV WKH VHPLFRQGXFWRU GLHOHFWULF FRQVWDQW $ LV WKH JDWH DUHD DQG 1 LV WKH GRSLQJ DFFHSWRU RU GRQRUf :LWK WKH YDOXH LW LV QRZ SRVVLEOH WR FDOFXODWH WKH 'HE\H OHQJWK /'f $f ZKHUH N LV WKH %ROW]PDQQ FRQVWDQW DQG 7 LV WHPSHUDWXUH LQ .HOYLQ :LWK WKLV YDOXH WKH VHPLFRQGXFWRU IODWEDQG FDSDFLWDQFH FDQ EH FDOFXODWHG $f 7KH QH[W VWHS LV WR FDOFXODWH RU H[SHULPHQWDOO\ GHWHUPLQH WKH FDSDFLWDQFH RI WKH GLHOHFWULF OD\HU &cf ,Q WKH VFHQDULR GHVFULEHG KHUH WKH FDSDFLWDQFH KDV EHHQ PHDVXUHG DQG UHSUHVHQWV WKH YDOXH RI FDSDFLWDQFH RI WKH KLJK IUHTXHQF\ FXUYH LQ WKH DFFXPXODWLRQ UHJLRQ 7KLV W\SLFDOO\ LV WDNHQ DW D YDOXH RI PLQLPDO OHDNDJH FXUUHQW DV DVFHUWDLQHG E\ WKH SUHYLRXV ,9 PHDVXUHPHQWV ,I RQH ZDV XQDEOH WR PHDVXUH WKH FDSDFLWDQFH EXW KDG NQRZOHGJH VXFK DV WKH WKLFNQHVV RI WKH GLHOHFWULF OD\HU G DUHD RI WKH 026 VWDFN $ DQG WKH GLHOHFWULF FRQVWDQW Hc RI WKH GLHOHFWULF OD\HU WKHQ LW LV SRVVLEOH WR FDOFXODWH WKH FRUUHVSRQGLQJ FDSDFLWDQFH RI WKH LQVXODWRU 7KH UHODWLRQVKLS LV VKRZQ DV IROORZV $f 7KH QH[W LPSRUWDQW SDUDPHWHU LQ WKH SURFHVV LV FDOFXODWLRQ RI WKH RYHUDOO IODWEDQG FDSDFLWDQFH & & A )%6 $f DQG WKH UDWLR

PAGE 137

$f 7KH QH[W VWHS LV WR FDOFXODWH WKH 9VKcIW WKLV LV GRQH E\ SORWWLQJ &&c YHUVXV JDWH YROWDJH 7KHQ XVH WKH UDWLR RI &IE&8f WR YLVXDOO\ GHWHUPLQH WKH IODWEDQG YROWDJH VKLIW $96KPf ,Q DQ LGHDO 026 FDSDFLWRU WKH IODWEDQG YROWDJH FRQGLWLRQ FRUUHVSRQGV WR D $96KcQ WKHUHE\ DOORZLQJ WKH FRQFOXVLRQ WKDW DQ\ YROWDJH VKLIW VKRXOG EH UHODWHG WR WRWDO IL[HG FKDUJH 7KLV FKDUJH PD\ FRPH IURP PDQ\ GLIIHUHQW VRXUFHV 4P 0RELOH &KDUJHV ORFDWLRQ GHSHQGHQW RQ ELDV 4R 2[LGH 7UDSSHG GLVWULEXWHG LQ WKH R[LGH 4I )L[HG 2[LGH QHDU VXUIDFH FKDUJH 4LW ,QWHUIDFLDO 7UDSV DW WKH LQWHUIDFH 7KH ILUVW WKUHH RI WKHVH FKDUJHV FDXVHV VKLIWV RI WKH RYHUDOO &9 FXUYH WR WKH OHIW RU ULJKW ZKLOH WKH IRXUWK FKDUJH PDQLIHVWV LWVHOI DV FKDQJHV LQ VORSH VWUHWFKLQJf RI WKH RYHUDOO &9 FXUYH 7KH QH[W VWHS LV WR GHWHUPLQH WKH YDOXH !PV ZKLFK LV WKH ZRUN IXQFWLRQ RI WKH PHWDO PLQXV WKH ZRUN IXQFWLRQ RI WKH VHPLFRQGXFWRU 'HSHQGLQJ RQ WKH ZDIHU W\SH XVHG WKLV ZRXOG EH GRQH DV IROORZV SW\SH 06 A $f QW\SH % $f ZKHUH (J LV WKH LQWULQVLF )HUPL OHYHO P LV WKH PHWDO ZRUN IXQFWLRQ V LV WKH VHPLFRQGXFWRU ZRUN IXQFWLRQ ; LV WKH HOHFWURQ DIILQLW\ RI WKH VHPLFRQGXFWRU DQG r)% LV WKH )HUPL OHYHO GLIIHUHQFH EHWZHHQ WKH )HUPL OHYHO DQG WKH LQWULQVLF )HUPL OHYHO

PAGE 138

)LQDOO\ WKH WRWDO R[LGH FKDUJH PD\ EH FDOFXODWHG ZLWK WKH IROORZLQJ HTXDWLRQ E\ FROODWLQJ DOO RI WKH SUHYLRXVO\ GHWHUPLQHG YDOXHV DV $f QW\SH $QRWKHU LPSRUWDQW HOHFWULFDO YDOXH WKDW LV FRPPRQO\ FLWHG LQ OLWHUDWXUH LV WKH YDOXH RI WKH LQWHUIDFH WUDSV 4LW 7KHUH DUH VHYHUDO SRVVLELOLWLHV IRU GHWHUPLQLQJ WKLV YDOXH f FRPSDULVRQ RI WKH KLJK IUHTXHQF\ FDSDFLWDQFH WR D WKHRUHWLFDO FDSDFLWDQFH ZLWKRXW DQ\ LQWHUIDFH WUDSV f FRPSDULVRQ RI D ORZ IUHTXHQF\ FDSDFLWDQFH WR D WKHRUHWLFDO FDSDFLWDQFH ZLWKRXW DQ\ LQWHUIDFH WUDSV RU f FRPSDULVRQ RI D KLJK IUHTXHQF\ FDSDFLWDQFH WR D ORZ IUHTXHQF\ FDSDFLWDQFH 7KH WKLUG RSWLRQ ILUVW GHYHORSHG E\ &DVWDJQ DQG 9DSDLOOH FRQVLVWHG RI FRPELQLQJ WKH ORZ DQG KLJK IUHTXHQF\ FXUYHV LH WKH RXWSXW RI WKH :LQ V\VWHPf WR GHWHUPLQH WKH VLOLFRQ VXUIDFH FDSDFLWDQFH SHU XQLW DUHD &V 8QOLNH WKH 7HUPDQ PHWKRG ZKHUH RQO\ WKH KLJK IUHTXHQF\ FDSDFLWDQFH &KIf LV PHDVXUHG RU WKH %HUJOXQG PHWKRG ZKHUH RQO\ ORZ IUHTXHQF\ FDSDFLWDQFH &OIf LV PHDVXUHG WKLV PHWKRG PHDVXUHV ERWK &OI DQG &KI 7KLV HOLPLQDWHV WKH QHHG IRU WKH JHQHUDWLRQ RI DQ\ RI WKH WKHRUHWLFDO FRPSXWDWLRQV QHHGHG IRU WKH RWKHU PHWKRGV $V RXWOLQHG LQ PRUH GHWDLO E\ 1LFROODQ DQG %UHZV >@ WKH EDVLF UHVXOW LV WKDW LQWHUIDFH WUDS OHYHO FDQ EH GHWHUPLQHG DW D JLYHQ YROWDJH DV D IXQFWLRQ RI SRVLWLRQ LQ WKH EDQGJDS E\ VLPSOH LQSXW RI PHDVXUHG SDUDPHWHUV LQWR WKH IROORZLQJ HTXDWLRQ DF[ F\$F\nU F $f ZKHUH 'LW LV WKH LQWHUIDFH WUDS GHQVLW\ &R[ LV WKH FDSDFLWDQFH SHU XQLW DUHD DQG $& &+) &/) $O f 7KLV HTXDWLRQ LV XVHG WR PDNH D SORW LI 'cW YHUVXV &KI&R[ ZKHUH

PAGE 139

$ '8R $f r DQG [ LV WKH WKLFNQHVV RI WKH R[LGH LQ TXHVWLRQ &RPELQDWLRQ RI WKH GLUHFWO\ PHDVXUHG &9 GDWD DQG WKH DERYH HTXDWLRQ LW LV WKHUHIRUH SRVVLEOH WR GHWHUPLQH WKH 'LWR ,W LV LPSRUWDQW WR UHDOL]H KRZHYHU WKDW DFFXUDWH YDOXHV RI 'LW FDQQRW EH GHWHUPLQHG RYHU WKH HQWLUH UDQJH RI JDWH ELDVf GXH WR D YDULHW\ RI UHDVRQV LQFOXGLQJ URXQGRII HUURUV HUURUV GXH WR XVH RI D 0K] &9 FXUYH DQG HUURU IURP &OI (DFK RI WKHVH HUURUV LV DGGUHVVHG LQ GHWDLO LQ 1LFROOLDQ DQG %UHZV

PAGE 140

/,67 2) 5()(5(1&(6 6 0 6]H 3K\VLFV RI 6HPLFRQGXFWRU 'HYLFHV QG HG :LOH\ 1HZ
PAGE 141

' /LQGDX + ) 'REHOH 5HY 6FL ,QVWUXP f $SULO f 0 6XSSO@ 6 f $ 6ULYDVWDYD 9 &UDFLXQ 0 +RZDUG 5 6LQJK $SSO 3K\V /HWW f f $ 5D]RU : %R\G $SSO 3K\V /HWW f f 3 %HUJRQ]R 3 3DWHO : %R\G 8 .RJHOVFKDW] $SSO 6XUI 6FL f 3 %HUJRQ]R : %R\G $SSO 3K\V /HWW f f -< =KDQJ : %R\G (OHFWU /HWW f f -< =KDQJ : %R\G $SSO 3K\V /HWW f f -< =KDQJ % /LP : %R\G 9 'XVDVWUH $PHU ,QVW 3K\V f f -< =KDQJ : %R\G $SSO 3K\V f -XO\ f : %R\G 0DWHU 6FL )RUXP f 6 .XERGHUD 0 .LWDKDUD .DZDQDND : 6DVDNL .XURVDZD $SSO 3K\V /HWW f f 5 6 7D\ORU ( /HRSROG 2 7DQ $SSO 3K\V /HWW f & 0DQIUHGRWWL ) )L]]RWWL 0 %RHUH 3LDWWL $SSO 6XUI 6FL f )OLFVWHLQ < 9LWHO 2 'XODF & 'HEDXFKH < 1LVVLP & /LFRSSH $SSO 6XUI 6FL f 2 % 3RVWHO 0 $ &DSSHOOL $SSO 3K\V /HWW f f $
PAGE 142

' $PSHWHSH 'LJJV 0 0DQRV 0 .HOOH\ $SSO 3K\V f f -< =KDQJ 6 / .LQJ : %R\G 4 )DQJ $SSO 6XUI 6FL f -< =KDQJ + (VURP : %R\G $SSO 6XUI 6FL f -< =KDQJ : %R\G + (VURP6XUI t ,QWHUIDFH $QDO f -< =KDQJ : %R\G (OHFWU /HWW f f $ .D]RU : %R\G $SSO 6XUI 6FL f + ,PDL $ZD]X 0
PAGE 143

' .XPDU 6DQNXU &KR 9 &UDFLXQ 5 6LQJK $SSO 3K\V /HWW f f + :HQJHQPDLU : *HUODFK 8 3UHFNZLQNHO % 6WULW]NHU % 5DXVFKHQEDFK $SSO 6XUI 6FL f &5 %UXQGOH & $ (YDQV 6 :LOVRQ (QF\FORSHGLD RI 0DWHULDOV &KDUDFWHUL]DWLRQ %XWWHUZRUWK+HLQHPDQQ %RVWRQ f &5& +DQGERRN RI &KHPLVWU\ DQG 3K\VLFV WK HG HGLWHG E\ 5 /LGH &5& 3UHVV %RFD 5DWRQ f $ 1HXPD\HU DQG ( &DUWLHU $SSO 3K\V f : 6 /DX ,QIUDUHG &KDUDFWHUL]DWLRQ IRU 0LFURHOHFWURQLFV :RUOG 6FLHQWLILF 6LQJDSRUH f +DQGERRN RI ;UD\ 3KRWRHOHFWURQ 6SHFWURVFRS\ HGLWHG E\ ) 0RXOGHU : ) 6WLFNOH 3 ( 6RERO DQG %RPEHQ 3K\VLFDO (OHFWURQLFV ,QF (GHQ 3UDLULH 0LQQHVRWD f + 2QR < +RVRNDZD 7 ,NDUDVKL 6KLQRGD 1 ,NDUDVKL .R\DQDJL DQG +
PAGE 144

%,2*5$3+,&$/ 6.(7&+ -RVKXD 0LFKDHO +RZDUG ZDV ERP -XO\ WK LQ 3DUN 5LGJH ,OOLQRLV +H JUHZ XS LQ &U\VWDO /DNH ,OOLQRLV D VPDOO QRUWKZHVW VXEXUE RI &KLFDJR 8SRQ JUDGXDWLRQ IURP &U\VWDO /DNH &HQWUDO +LJK 6FKRRO LQ KH EHJDQ DQ XQGHUJUDGXDWH FXUULFXOXP DW WKH 8QLYHUVLW\ RI 0LVVRXUL5ROOD LQ &HUDPLF (QJLQHHULQJ ,Q DIWHU FRPSOHWLQJ D EDFKHORU RI VFLHQFH LQ &HUDPLF (QJLQHHULQJ DQG D PLQRU LQ 6SDQLVK -RVKXD PRYHG WR *DLQHVYLOOH )ORULGD WR EHJLQ KLV JUDGXDWH FDUHHU DW WKH 8QLYHUVLW\ RI )ORULGD LQ WKH 'HSDUWPHQW RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ +H MRLQHG 'U 5DMLY 6LQJKfV UHVHDUFK WHDP LQ WKH VSULQJ RI DQG EHJDQ D SURMHFW WR GHYHORS D QRYHO KLJK LQWHQVLW\ H[FLPHU EDVHG YDFXXP XOWUDYLROHW UDGLDWLRQ VRXUFH DQG WKHQ DSSO\ WKH WHFKQRORJ\ WR SXOVH ODVHU GHSRVLWLRQ RI KLJK GLHOHFWULF FRQVWDQW WKLQ ILOPV RQ VLOLFRQ +H UHFHLYHG KLV PDVWHUfV GHJUHH LQ DQG FRQWLQXHG RQ LQ SXUVXLW RI D 3K' 3RVW JUDGXDWLRQ SODQV LQFOXGH ZRUNLQJ DV D SRVW GRFWRUDO UHVHDUFKHU ZLWK 'U 6LQJK RQ DGGLWLRQDO H[FLPHU EDVHG VWXGLHV

PAGE 145

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6\ 9 W O 5DMLY 6LQJK &KDLPLDQ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6WHSKHQ @ 3HDUWRQ f§ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ / L cW ‘WA? &DPP\ $EHUQDWK\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 8 'DYLG 3 1RUWRQ $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 146

/' œf§ 81,9(56,7< 2) )/25,'$ LOOOOOOOOOOO:LOOOOO


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EUBUN82EK_BF242E INGEST_TIME 2014-05-23T23:49:01Z PACKAGE AA00020830_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES