Citation
Continuing evolution of diamido-supported molybdenum imido organometallic chemistry

Material Information

Title:
Continuing evolution of diamido-supported molybdenum imido organometallic chemistry
Creator:
Cameron, Thomas M
Publication Date:
Language:
English
Physical Description:
xvi, 139 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Butadienes ( jstor )
Carbon ( jstor )
Ellipsoids ( jstor )
Ligands ( jstor )
Molybdenum ( jstor )
Pentanes ( jstor )
Protons ( jstor )
Pyridines ( jstor )
Reactivity ( jstor )
Spectroscopy ( jstor )
Chemistry thesis, Ph.D ( lcsh )
Dissertations, Academic -- Chemistry -- UF ( lcsh )
Molybdenum compounds ( lcsh )
Organometallic compounds -- Synthesis ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph.D.)--University of Florida, 2002.
Bibliography:
Includes bibliographical references.
General Note:
Printout.
General Note:
Vita.
Statement of Responsibility:
by Thomas M. Cameron.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
029641879 ( ALEPH )
51947315 ( OCLC )

Downloads

This item has the following downloads:


Full Text









CONTINUING EVOLUTION OF DIAMIDO-SUPPORTED MOLYBDENUM IMIDO
ORGANOMETALLIC CHEMISTRY













By

THOMAS M. CAMERON


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2002


























TO LUCILE, MELISSA, AND GERRY














ACKNOWLEDGMENTS

My undergraduate and Los Alamos experiences, shaped by Professor S. A.

Westcott and Dr. R. Tom Baker, respectively, were certainly memorable and will never

be forgotten. The skills I learned while working with Wesctcott and Baker have served

me throughout graduate school. The time and effort they put forth guiding and helping

me is evident in the work outlined in this dissertation, and were it not for these two

individuals, I would never have continued my education in chemistry on the graduate

level.

Los Alamos is where I first met Professor James M. Boncella, who was visiting on

sabbatical at the time. Based on our interaction, I decided to work for him as a graduate

student and followed him back to UF. It was an excellent decision. Professor Boncella,

with his never-ending knowledge of organometallic chemistry, has been responsible for

my growth as a chemist over the last five years. Together we have made some interesting

chemical discoveries and have published these results in leading journals in our field. I

have enjoyed the time spent with him. Perhaps our paths will cross again in the future.

Dr. Khalil Abboud has made great contributions to this dissertation. He has solved

all of the structures reported herein, and it was always a pleasure to work with him.

Without his hard work there would be, without a doubt, fewer structural studies in this

report.

Our work would not have been complete without the excellent support of Dr. Ion

Ghiviriga. Over the past years Ion has taught me a great deal about 2-D NMR and has








contributed to our work by characterizing several organometallic species. I will never

forget the seven-course dinners at Ion's place, his generosity, and his hospitality. I just

wish there were time to learn more from him. I thank Professor Michael Scott for all of

his help over the years and for access to his automatic coffee machine. I will always

remember the time spent with Tim Foley. He is a remarkable individual and things will

not be the same without him. Thanks also go to Jeff for happy drinking days and Bob

Shelton for setting up all of the DFT calculations mentioned in this work.

I could not have accomplished any of this work without my loving parents, Lucile

and Gerry. They have supported me unwaveringly for the last 27 years, never asking for

anything in return. Had it not been for their encouragement, I could never have lasted. I

do not know what I would have done without them. I love them both with all of my

heart.

Had I not made this journey to and through graduate school, I would never have

met Melissa. She alone has made this experience worthwhile and has given my life a

new meaning. Her strength, love, and support have helped me through difficult times. It

has often seemed like the world was trying to keep us apart, but I believe that destiny

brought us together, and together we will remain. I have missed her dearly since her

graduation, and it is as if a part of me left with her. But we will soon be together again.














TABLE OF CONTENTS
page
ACKNOWLEDGMENTS ................................................................................................. i

LIST O F TA B LE S ............................................................................................................. ix

LIST O F FIG U R E S ............................................................................................................ x

A B ST R A C T ..................................................................................................................... xiv

CHAPTER

1 METAL IMIDES AND AMIDES .................................................................................. 1

Nitrogen Donor-Based Ligands in Early Metal Chemistry............................................ 1
Im ido L igands .......................................................................................................... 2
A m ido L igands......................................................................................................... 6
Reactive Imido-Diamido Complexes....................................................................... 7
Group 4 imido-diamido complexes ................................................................... 9
Group 6 imido-diamido complexes ................................................................. 10
Scope of the D issertation .............................................................................................. 14

2 SYNTHESIS OF LEWIS BASE-STABILIZED MOLYBDENUM COMPLEXES:
SOURCES OF REACTIVE MOLYBDENUM(IV)...................................................... 16

Generation of Imido-Diamido Pyridine Complexes..................................................... 16
Synthesis and Characterization of [Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47)........ 16
Metal d2 vs. do Electronic Configuation and Diamido Ligand Folding ................. 20
Synthesis and Characterization of [Mo(NPh)trans(Py)2(CO)(o-(Me3SiN)2C6H4)]
(48 ) ............................................................................................................ 24
C-N Activation of an Amido Ligand: Synthesis of Imido-Bridged 49 from 47.... 30
Generation of Imido-Diamido P(OMe)3 Adducts......................................................... 31
Synthesis and Characterization of [Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)]
(50) ............................................................................................................ 3 1
Synthesis and Characterization of [Mo(NPh)(P(OMe)3)2CO(o-(Me3SiN)2C6H4)]
(5 1) ............................................................................................................ 33
Generation of Imido-Diamido PMe3 Adducts.............................................................. 35
Synthesis and Characterization of [Mo(NPh)(PMe3)3(o-(Me3SiN)2C6H4)] (52)... 35
Synthesis and Characterization of [Mo(NPh)(PMe3)2CO(o-(Me3SiN)2C6H4)I]
(54) ............................................................................................................ 36
Generation of Imido-Diamido PMe2Ph Adducts.......................................................... 41








Synthesis and Characterization of [Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)]
(55) ............................................................................................................ 4 1
Synthesis and Characterization of [Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)]
(56 ) ............................................................................................................ 4 3
Synthesis and Characterization of [Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-p,-
(DMPE)Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)] (57)......... ................ 44
Generation of an Imido-Diamido Arduengo Carbene (Imidazol-2-Ylidene) Adduct.. 46
Sum m ary ................................................................................................................... 5 1

3 SYNTHESIS AND REACTIVITY OF A MOLYBDENUM IMIDO-DIAMIDO
STRETCHED DIHYDROGEN COMPLEX................................................................. 53

Characterization of Dihydrogen Complexes................................................................. 54
Solution NMR Spectroscopy: dHH and JH-D ......................................................... 55
Solution NMR Spectroscopy: dHH and NMR Relaxation Time (Ti)...................... 55
Molybdenum Imido-Diamido Stretched Dihydrogen Complexes................................ 56
Characterization of [Mo(NPh)(PMe3)2(H2)(o-(Me3SiN)2C6H4)] (60)................... 57
Characterization of [Mo(NPh)(PMe2Ph)2(H2)(o-(Me3SiN)2C6H4)] (66) ............... 63
Bonding in Molybdenum Imido-Diamido Stretched Dihydrogen Complexes...... 65
Reaction of 50 and 57 with Dihydrogen Gas......................................................... 66
Reaction of 52 with Phenylsilane and Diphenylsilane........................................... 68
Sum m ary ................................................................................................................ 68

4 SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF A
MOLYBDENUM (IV), T4-BUTADIENE COMPLEX AND 112-ALKYNE
C O M P L E X E S ................................................................................................................ 7 1

Early Transition Metal Butadiene Complexes.............................................................. 71
Molybdenum Imido-Diamido Butadiene Complexes................................................... 73
Synthesis and Characterization of Ti 4-Butadiene Complex
[(Mo(NPh)-_14-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73).................. 74
Reactivity of [(Mo(NPh)-'q4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) with
2-B utyne.................................................................................................... 78
Reactivity of [(Mo(NPh)-l4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) with
Acetone: Formation of [(Mo(NPh)(CH2CH=CHCH2C(Me)20)
(o-(M e3SiN )2C6H4)] (77) .......................................................................... 84
Synthesis and Characterization of rj -MVK Complex [(Mo(NPh)-r4-
(0=C(Me)CH=CH2)(o-(Me3SiN)2C6H4)] (78)......................................... 85
Sum m ary ........................................................................................... .............. 88
Early Transition Metal Alkyne Complexes .................................................................. 88
Synthesis and Characterization of Molybdenum Imido-Diamido Alkyne
Complexes [(Mo(NPh)-ij2-(RCCR)(o-(Me3SiN)2C6H4)] (R = Me (75),
Ph (79), SiM e3 (80)).................................................................................. 89
Reaction of [(Mo(NPh)-fl2-(PhCCPh)(o-(Me3SiN)2C6H4)] (79) with tert-Butyl
Isocyanide .............................................................................. ... ....... 91
Sum m ary ................................................................................................................ 96








5 REACTIVITY OF MOLYBDENUM OLEFIN AND ARENE COMPLEXES
WITH UNSATURATED SUBSTRATES ....................................................................98
Reaction of Molybdenum Olefin Complexes with Imines: The Synthesis of
Molybdenum Imido-Diamido r2-Imine Complexes................................. 98
Reaction of Molybdenum Olefin Complexes with Acetone and Aldehydes: The
Synthesis of Oxametallacyclopentanes................................................... 105
Reactivity of Arene Complexes with Acetone............................................................ 109

6 EX PERIM EN TA L D A TA .......................................................................................... 112

G general M ethods....................................................................................................... 112
Synthesis and Characterization.................................................. ................... ............. 113
[Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47)............................................................ 113
[Mo(NPh)trans(Py)2(CO)(o-(Me3SiN)2C6H4)] (48)........................................... 114
Im ido-Bridged, Bim etallic 49 .......................................................................... .... 114
[Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)] (50) .................................................. 115
[Mo(NPh)(P(OMe)3)2CO(o-(Me3SiN)2C6H4)] (51)............................................. 115
[Mo(NPh)(PMe3)3(o-(Me3SiN)2C6H4)] (52)........................................................ 115
[Mo(NPh)(PMe3)3(o-(Me3SiN)(NH)C6H4)] (53)................................................. 116
[Mo(NPh)(PMe3)2CO(o-(Me3SiN)2C6H14)] (54)................................................... 116
[Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)] (55).................................................. 116
[Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)] (56).............................................. 117
[Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-i-(DMPE)Mo(NPh)(DMPE)
(o-(M e3SiN )2C6H4)] (57) ........................................................................ 117
[Mo(NPh)IMes(o-(Me3SiN)2C6H4)] (59)............................................................ 118
[Mo(NPh)(PMe3)2(H2)(o-(Me3SiN)2C6H4)] (60)................................................. 118
[Mo(NPh)(PMe2Ph)2(H2)(o-(Me3SiN)2C6H4)] (66)........................................... 119
[Mo(NPh)(PMe2Ph)2(o-(Me3SiN)(NH)C6H4)] (67) ......................................... 119
[Mo(NPh)(P(OMe3))3(o-(Me3SiN)(NH)C6H4)] (68)........................................... 119
Synthesis and Characterization of 71.............................................................. 119
[(Mo(NPh)-_4_(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) ............................. 120
[(Mo(NPh)-i14-(2,3-dimethyl-l,3-cyclohexadiene)(o-(Me3SiN)2C6H4)] (74)..... 121
[(Mo(NPh)-4 -(2,3-dimethyl-1,3-cyclohexadiene)(o-(Me3SiN)2C6H4)] (in situ)
(7 4 ) ............................................................................................ .............. 12 1
Intermediates [syn-(Mo(NPh)(C(Me)=C(Me)CH2CHCHCH2)
(o-(Me3SiN)2C6H4)] (76a) and [anti-(Mo(NPh)(C(Me)=C(Me)
CH2CHCHCH2)(o-(Me3SiN)2C6H4)] (76b)............................................ 121
[(Mo(NPh)(CH2CH=CHCH2C(Me)20)(o-(Me3SiN)2C6H4)] (77)....................... 122
[(Mo(NPh)-rl4-(O=C(Me)CH=CH2)(o-(Me3SiN)2C6H4)] (78)............................ 122
[(Mo(NPh)-r_2-(MeCCMe)(o-(Me3SiN)2C6H4)] (75)........................................... 122
[(Mo(NPh)-r12-(PhCCPh)(o-(Me3SiN)2C6H4)] (79)............................................. 123
[(Mo(NPh)-T2-(Me3 SiCCSiMe3)(o-(Me3SiN)2C6H4)] (80)................................. 123
Reaction of [(Mo(NPh)-lE2-(PhCCPh)(o-(Me3SiN)2C6H4)] (79) with tert-Butyl
Isocyanide: Synthesis and Characterization of 82.................................. 123







[Mo(NPh)-<2-PhN=C(H)Ar(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe) (83)....... 124
[Mo(NPh)-rj2-PhN=C(Me)Ph(o-(Me3SiN)2C6H4)] (84) ...................................... 124
[Mo(NPh)EtNC(H)ArC(H)ArNEt(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe)
(8 5 ) .......................................................................................................... 12 5
[Mo(NPh)BzNC(H)ArC(H)ArNBz(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe)
(8 6 ) .......................................................................................................... 12 5
[(Mo(NPh)(C(Me)2CH2C(Me)20)(o-(Me3SiN)2C6H4)] (88) ............................... 126
[(Mo(NPh)(C(H)PhCH2C(Me)20)(o-(Me3SiN)2C6H4)] (89) ............................... 126
[(Mo(NPh)(C(H)PhCH2C(Et)20)(o-(Me3SiN)2C6H4)] (90) ................................ 127
[(Mo(NPh)(C(H)PhCH2C(CH2)50)(o-(Me3SiN)2C6H4)] (91) ............................. 127
[(Mo(NPh)(C(Me)2CH2C(H)(C6H4- p-OMe)O)(o-(Me3SiN)2C6H4)] (92).......... 128
Reactivity of Arene Complexes with Acetone..................................................... 128

LIST O F REFEREN CES.................................................................................................129

BIO G RA PH ICA L SKETCH ........................................................................................... 139














LIST OF TABLES


Table page

2-1 X-ray data for crystal structures 19, 47, and 48.....................................................19

2-2 X-ray data for crystal structures 49, 50, and 51 .....................................................38

2-3 X-ray data for crystal structures 55, 57, and 59.....................................................50

4-1 X-ray data for crystal structures 73, 74, and 78.....................................................77

4-2 X-ray data for crystal structures 75 and 80............................................................94

5-1 X-ray data for crystal structures 84, 85, and 88................................................... 100














LIST OF FIGURES


Figure page

1-1 M etal-imido multiple-bond interactions ............................................................... 2

1-2 General valence bond description of possible metal-imido interactions ................. 3

1-3 Representation of a generic metal (dnt)-imido (p7r) multiple-bonding interaction.. .4

1-4 M o(N Ph)2(S2CN Et2)2 (1) ......................................................................................... 4

1-5 C p*2Ta(N Ph)H (2)...................................................................................................5

1-6 Current multidentate amido ligands in organometallic chemistry.......................... 9

1-7 Synthesis of Group 4 imido-diamido complexes................................................... 10

1-8 Reactivity of Group 4 imido-diamido complexes..................................................11

1-9 Molybdenum (17) and tungsten (18) imido-diamido dichlorides ........................ 11

1-10 Synthesis of molybdenum and tungsten dialkyl complexes .................................. 12

1-11 Reactivity of tungsten dialkyls with ButNC ......................................................... 12

1-12 Formation of molybdenum and tungsten alkylidene adducts ................................ 13

1-13 Formation and reactivity ofmetallacycle 36 .........................................................13

1-14 Molybdenum olefin complexes and the synthesis of arene complexes................. 14

2-1 Synthesis of [Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47)......................................... 17

2-2 Enlarged region of the 'H NMR spectrum of 47 at -20C ..................................... 17

2-3 Thermal ellipsoid plot of 47 (50% probability thermal ellipsoids)........................ 18

2-4 Space-filling model of 47. Steric crowding hinders pyridine ligand rotation...... 20

2-5 Thermal ellipsoid plot of 19 (50% probability thermal ellipsoids)........................21

2-6 Diamido ligand folding in molybdenum imido-diamido complexes..................... 23








2-7 Ligand-folding and a general 3 orbital 4e- interaction...........................................23

2-8 Model systems for DFT studies on 19 and 47 .......................................................24

2-9 Optimized geometries for 19a, 19b, and 19c, emphasizing ligand folding...........25

2-10 Important M O interactions for 19c ........................................................................26

2-11 Important M O interaction for 47c..........................................................................27

2-12 Synthesis of [(Mo(NPh)trans(Py)2(CO)(o-(Me3SiN)2C6H4)] (48),
Py = pyridine ..........................................................................................................28

2-13 Thermal ellipsoid plot of 48 (50% probability thermal ellipsoids)........................29

2-14 C-N activation of the o-(Me3SiN)2C6H4 ligand in 47.........................................31

2-15 Thermal ellipsoid plot of 49 (50% probability thermal ellipsoids)....................... 32

2-16 Synthesis of[Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)] (50).............................32

2-17 Thermal ellipsoid plot of 50 (50% probability thermal ellipsoids)....................... 34

2-18 Thermal ellipsoid plot of 51 (50% probability thermal ellipsoids)........................ 37

2-19 Thermal ellipsoid plot of 52 (50% probability thermal ellipsoids)....................... 39

2-20 Thermal ellipsoid plot of 53 (50% probability thermal ellipsoids) ....................40

2-21 Synthesis of[(Mo(NPh)(PMe3)2(CO)(o-(Me3SiN)2C6H4)] (54) ........................41

2-22 Synthesis of [Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)] (55)................................ 42

2-23 Thermal ellipsoid plot of 55 (50% probability thermal ellipsoids)....................... 43

2-24 Synthesis of [Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)] (56) ....................... 44

2-25 Synthesis of [Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-p.-(DMPE)
Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)] (57)..........................................................45

2-26 Thermal ellipsoid plot of 57 (50% probability thermal ellipsoids)........................46

2-27 Synthesis of [Mo(NPh)IMes(o-(Me3SiN)2C6H4)] (59) .......................................48

2-28 Thermal ellipsoid plot of 59 (50% probability thermal ellipsoids).......................49

2-29 Carbon monoxide complexes and vCO (cm-1) ......................................................52

3-1 General bonding in H2 complexes .........................................................................54








3-2 Generation and reactivity of H2 complex 60.......................................................... 57

3-3 No H/D exchange between N-D and Si-H sites at 20C........................................ 58

3-4 Spectra ('H NMR) of the H2 and H-D ligands of 60 and 60D (-20C).................. 59

3-5 Relaxation time vs. temperature plot for 60, In T, vs. K' ..................................... 60

3-6 Potential mechanism for the formation of 53 ........................................................ 61

3-7 Potential mechanism for the formation of 53 ........................................................ 62

3-8 H and D do not partition equally between N and Si sites ...................................... 62

3-9 Generation and reactivity of H2 complex 66.......................................................... 64

3-10 Spectra ('H NMR) of the H2 and H-D ligands of 66 and 661) (-20C).................. 64

3-11 Relaxation time vs. temperature plot for 66, In T, vs. K' ..................................... 65

3-12 Bonding scenario for H2 complexes 60 and 66...................................................... 66

3-13 Reaction of 50 and 57 with Dihydrogen Gas......................................................... 67

3-14 Possible H2 complex in the DMPE system............................................................ 67

3-15 Generation of cyclic 71 and 72 .............................................................................. 69

4-1 Synthesis of zirconocene butadiene complexes..................................................... 72

4-2 Possible 7t2 and a 2, nt structures for cis-butadiene complexes ............................... 72

4-3 Reactivity of Cp2Zr(butadiene) with a representative unsaturated substrate.........73

4-4 Synthesis of [(Mo(NPh)-7l4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) ..........74

4-5 Thermal ellipsoid plot of 73 (50% probability thermal ellipsoids)........................ 76

4-6 Reactivity of [(Mo(NPh)-T4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) with
2-butyne ................................................................................................................. 79

4-7 Thermal ellipsoid plot of 74 (50% probability thermal ellipsoids)........................ 80

4-8 Structure of intermediate (76a), showing selected carbon (underlined) and
proton chemical shifts, assigned by NMR spectroscopy ....................................... 82

4-9 Structure of intermediate (76b), showing selected proton chemical shifts,
assigned by N M R spectroscopy............................................................................. 82








4-10 Proposed mechanism for reaction of 73 with 2-butyne ......................................... 83

4-11 Formation of [(Mo(NPh)(CH2CH=CHCH2C(Me)20)(o-(Me3SiN)2C6H4)] (77)...84

4-12 Proposed structure for 77 showing selected carbon (underlined) and proton
chemical shifts, assigned by NMR spectroscopy................................................... 84

4-13 Possible methyl group exchange pathway............................................................. 86

4-14 Thermal ellipsoid plot of 78 (50% probability thermal ellipsoids)........................ 87

4-15 Bonding in transition metal alkyne complexes...................................................... 89

4-16 Synthesis of [(Mo(NPh)-TI2-(RCCR)(o-(Me3SiN)2C6H4)] (R = Me (75), Ph (79),
S iM e3 (80))............................................................................................................. 90

4-17 Thermal ellipsoid plot of 75 (50% probability thermal ellipsoids)........................ 92

4-18 Thermal ellipsoid plot of 80 (50% probability thermal ellipsoids)........................ 93

4-19 Reaction of [(Mo(NPh)-TI2-(PhCCPh)(o-(Me3SiN)2C6H4)] (79) with ButNC:
form ation of 82 ...................................................................................................... 95

4-20 Proposed structure of 82 showing selected carbon (underlined) and proton
chemical shifts, assigned by NMR spectroscopy................................................... 95

4-21 Proposed mechanism for the formation of 82........................................................ 97

5-1 Synthesis ofl 2-imine complexes 83 and 84.......................................................... 99

5-2 Thermal ellipsoid plot of 84 (40% probability thermal ellipsoids)...................... 101

5-3 Reductive coupling of im ines .............................................................................. 103

5-4 Thermal ellipsoid plot of 85 (50% probability thermal ellipsoids)...................... 104

5-5 General scheme for the reductive coupling of organic molecules....................... 106

5-6 Synthesis of oxametallacyclopentanes................................................................. 106

5-7 Thermal ellipsoid plot of 88 (30% probability thermal ellipsoids)...................... 108

5-8 Structural assignment of 89 including assigned proton chemical shifts.............. 109

5-9 Reaction of arene complexes with acetone.......................................................... 11

5-10 Possible equilibrium between an arene complex and a metallated species......... 111













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

CONTINUING EVOLUTION OF DIAMIDO-SUPPORTED MOLYBDENUM IMIDO
ORGANOMETALLIC CHEMISTRY

By

Thomas M. Cameron

December 2002

Chair: James M. Boncella
Department: Chemistry

We explore the synthesis and reactivity of diamido-supported molybdenum imido

complexes based on the parent complex [Mo(NPh)C12(o-(Me3SiN)2C6H4)]. Reaction of

olefin complexes [Mo(NPh)(propene)(o-(Me3SiN)2C6H4)] (37) or [Mo(NPh)(isobutylene)

(o-(Me3SiN)2C6H4)] (38) with Lewis bases Py pyridinee), P(OMe)3, PMe2Ph, DMPE, and

IMes (1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) gives the corresponding adducts

[Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47), [Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)] (50),

[Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)] (55), [Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-u-

(DMPE)Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)] (57), and [Mo(NPh)IMes

(o-(Me3SiN)2C6H4)] (59), respectively. In this study, we report the X-ray structures of

47, 50, 55, 57, and 59. We also discuss the reactivity of these complexes, as well as the

PMe3 adduct [Mo(NPh)(PMe3)3(o-(Me3SiN)2C6H4)] (52), with CO gas, generating

[(Mo(NPh)-trans-(Py)2(CO)(o-(Me3SiN)2C6H4)] (48), [Mo(NPh)(P(OMe)3)2CO

(o-(Me3SiN)2C6H4)] (51), [(Mo(NPh)(PMe3)2(CO)(o-(Me3SiN)2C6H4)] (54), and








[Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)] (56). We report the X-ray structures of 48

and 51. We also present a DFT study comparing the bonding in complexes 47 and

dialkyl complex [Mo(NPh)(Me)2(o-(lMeSiN)2C6H4)] (19). These results indicate that the

degree of ligand folding in complexes related to 19 may be influenced by steric factors.

We report the X-ray structure of 19. The unusual C-N activation reactivity of 47 is also

discussed.

Dihydrogen complexes [Mo(NPh)(PMe3)2(H2)(o-(Me3SiN)2C6H4)] (60) and

[Mo(NPh)(PMe2Ph)2(H2)(o-(Me3SiN)2C6H4)] (66) are formed by treatment of 52 and 55

with H2 gas, respectively. The dHH of compounds 60 and 66, as determined by TI(min) and

'JH-D, are in good agreement and indicate that the H2 ligand is slowly rotating. The

reactions of 50 and 57 with H2 gas are also presented.

Complexes 37 and 38 react with butadiene gas, generating [(Mo(NPh)

rTi 4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73). We report the solid-state structure of

73, showing that 73 is best described as a 7rt2-butadiene complex, and we discuss the

reactivity of 73 with 1.0 and 2.0 equiv of 2-butyne. Reaction of 73 with one equivalent

of 2-butyne gives a molybdenum 2,3-dimethyl-1,3-cyclohexadiene complex (74). The

X-ray structure of 74 is reported. Treatment of 73 with 2.0 equiv of 2-butyne gives

[(Mo(NPh)-ri2-(MeCCMe)(o-(Me3SiN)2C6H4)] (75) and l,2-dimethyl-l,4-

cyclohexadiene as products. Complex 75 as well as [(Mo(NPh)l2-(PhCCPh)

(o-(Me3SiN)2C6H4)] (79) and [(Mo(NPh)-_l2-(Me3SiCCSiMe3)(o-(Me3SiN)2C6H4)] (80)

are synthesized independently and X-ray structures of 75 and 80 are presented. The allyl

metallacycles [syn-(Mo(NPh)(C(Me)=C(Me)CH2CHCHCH2)(o-(Me3SiN)2C6H4)] (76a)








and [anti-(Mo(NPh)(C(Me)=C(Me)CH2CHCHCH2)(o-(Me3SiN)2C6H4)] (76b) are

identified as intermediates in the reaction of 73 with 2-butyne by NMR spectroscopy.

Reaction of 38 with aldimines and ketimines gives rl 2-imine complexes

[Mo(NPh)-rj2-PhN=C(H)Ar(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe) (83) and

[Mo(NPh)-_T2-PhN=C(Me)Ph(o-(Me3SiN)2C6H4)] (84). The X-ray structure of 84 is

reported. For less sterically demanding aldimines, the reductive coupling products

[Mo(NPh)EtNC(H)ArC(H)ArNEt(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe) (85) and

[Mo(NPh)BzNC(H)ArC(H)ArNBz(o-(Me3SiN)2C6H4)] (Ar = C6H4-p-OMe) (86) are

isolated, and the X-ray structure of 85 is reported. Olefin complexes react with ketones

and aldehydes, giving compounds [(Mo(NPh)(C(Me)2CH2C(Me)20)(o-(Me3SiN)2C6H4)]

(88) and [(Mo(NPh)(C(H)PhCH2C(Me)20)(o-(Me3SiN)2C6H4)] (89). The X-ray structure

of 88 is reported.













CHAPTER 1
METAL IMIDES AND AMIDES

Organometallic chemistry is ultimately concerned with bonding interactions

between transition metals and organic fragments through cr and/or nt-bonds.' Transition

metal fragments often stabilize reactive organic molecules and participate in catalytic

carbon-carbon, carbon-nitrogen, carbon-hydrogen, and various other bond-forming and

bond-breaking reactions. As such, modem organometallic chemistry has become an area

rich in diverse chemical structure as well as a versatile tool for the synthetic chemist in

the 21st century.

The reactivity observed at a metal center is highly dependent on the ancillary

ligands that support that particular metal species. Electronic effects, such as 't-loading

(more ligand nt-donor orbitals than metal it-acceptor orbitals), as well as the steric

requirement of an ancillary ligand set dictate reactivity at the metal-center. Thus, efforts

toward the derivitization of existing ancillary ligands and the discovery of new ligands

with the goal of "tuning" reactivity at a metal-center are a major part of organometallic

chemistry. Recent developments using this theme involve applications of imido and

diamido ligands in organometallic synthesis.

Nitrogen Donor-Based Ligands in Early Metal Chemistry

Nitrogen donor-based ligands are common to the coordination sphere of early

metals in organometallic chemistry and are prevalent in the literature. Ligands

representative of this class include amines,' I1 or 1 2 nitriles,2'3 r2-imino-acyl ligands,4,5

terminal or bridging nitrosyls,6 terminal or bridging dinitrogen,7 nitrides,8 and








poly(pyrazolyl)borates.9 It is beyond the scope of this introduction to review each of

these ligand types individually, and the reader is referred to the leading literature.

Organometallic complexes of rl2-imine ligands are also known and are discussed in

Chapter 5.

Imido Ligands

The area of transition-metal imido chemistry has experienced rapid and sustained

growth over the last 20 years, and several excellent review articles have been written on

the subject. The first major review to treat the topic was put forth by Nugent and

Haymore. 10 Wigley recently published an in-depth review," while Metal-Ligand

Multiple Bonds by Nugent and Mayer provides an excellent overview of imido

complexes. 12 An extensive review of this work is not possible here. The subsequent

discussion is limited to structural and bonding considerations in imido complexes.

The imido ligand is usually referred to as a closed-shell dianion, implying that the p

orbitals of the ligand are filled. From a general standpoint, the imido or NR-2 ligand can

coordinate to a metal center through a metal-nitrogen multiple bond involving one ac and

either one or two additional n-interactions. In this way, it is possible to have a

metal-nitrogen double-bond (A; one a and one nt-interaction) or triple-bond (B; one a and

two n-interactions) interaction (Figure 1-1).

N-_M R-N-M

A B

Figure 1-1. Metal-imido multiple-bond interactions. A) A metal-nitrogen double-bond
interaction; B) A metal-nitrogen triple-bond interaction. R = an organic
functionality such as alkyl or aryl.








These bonding interactions can be described by a simple localized valence bond

approach. In this treatment the hybridization at the imido nitrogen atom partially dictates

the structural parameters of the imido ligand (Figure 1-2). In C the nitrogen atom is sp2

hybridized implying, from a first approximation, a considerably bent R-N-M linkage

(125 to 140) with the lone pair occupying an N(sp2) hybrid orbital. 10'12 In such a

situation, the imido ligand is formally considered a 2e- donor for electron-counting

purposes (the neutral method of e" counting is used throughout this manuscript) and a

formal metal-nitrogen double bond exists. Type D represents a linear structure that can

arise when molecular orbital (MO) interactions do not allow for adoption of structure

type C. The linear imide, represented by E, can come about when two it-interactions are

present, forming a metal-nitrogen triple bond. Imides of type E contribute 4e- to the

electron count of a metal. For E the ni-interactions are best described, in MO terms, as

overlap between filled, imido, nitrogen-based px and py atomic orbitals and empty metal

dxz and dyz atomic orbitals, respectively, as shown for a general case in Figure 1-3.



NR M R--NM R-N-M


N sp (2e- donor) N sp (2e- donor) N sp (4e" donor)
C D E

Figure 1-2. General valence bond description of possible metal-imido interactions

Few complexes of type C contain strongly bent-imido ligands. Of these

compounds, the best known example is the molybdenum complex Mo(NPh)2(S2CNEt2)2

(1) (Figure 1-4), a compound with one bent (type C; C-N-Mo = 139.4(4); N-Mo =

1.789(4) A) and one linear (type E; C-N-Mo = 169.4(4); N-Mo = 1.754(4) A) imido







ligand (the 169.4(4) angle is not linear, however, and as discussed below, type E imido

linkages can have angles between 1500 and 180). 13 With a bent-imido structure, 1 is

formally considered an 18 e- complex with the bent imido contributing 2e" and the linear

imido contributing 4e" to the electron count. It has been proposed that the lone-pair

electron localization in C can be attributed to a pair of electrons residing in a

nitrogen-based MO on the bent-imido nitrogen, which is nonbonding with respect to the

Mo-N interaction in 1.

Z


Figure 1-3.


x
Pxc Y C: Py


d,, /y


F G

Representation of a generic metal (dni)-imido (pn) multiple-bonding
interaction. F) interaction of an imido-based px with a metal-based d,
orbital; G) interaction of an imido-basedpy with a metal-based dyz orbital.


'Et


Figure 1-4. Mo(NPh)2(S2CNEt2)2 (1)








Few examples of imido complexes conform to the limiting structure D in the

literature. The Cp*2Ta(NPh)H complex (2) reported by Bercaw14 may be the closest

related compound having a very long (1.831(10) A) Ta-N bond and a linear Ta-N-C

angle of 177.8(9) (Figure 1-5). With a 2e donor imido ligand, 2 is an 18e complex, and

the remaining imido electrons are not needed for bonding at the metal. The long Ta-N

bond length, coupled with sp hybridization at the imido nitrogen (implied by the linearity

of the imide), led most to conclude that the structure of 2 was best, although questionably

defined in valence bond terms, as occupying a position halfway between D and E.

Jorgensen15 put forth an accurate and elegant explanation of this bonding situation using

extended Htickel calculations to clear the matter up. Increasing the imido angle causes an

increase in the antibonding nitrogen-carbon (imido nitrogen-ipso carbon) overlap

population in the HOMO (highest occupied molecular orbital), which destabilizes the

bent-imido molecule (see Jorgensen15 for the full MO analysis). This example shows that

this valence bond description can often be improved upon, in some cases by a substantial

margin.


,Ta ,,TH


2

Figure 1-5. Cp*2Ta(NPh)H (2)

Most imido ligands encountered in organometallic and inorganic chemistry are

those described by the limiting structure E, and most examples in this dissertation fall

into this category. It is important to note that although E implies a linear R-N-M unit, in

practice this angle can vary from approximately 150 to 180. Experimental and








theoretical studies of complexes with metal-nitrogen triple-bond interactions have shown

a very soft bending potential associated with this angle. 16 It is therefore difficult to

correlate the overall bond order to an R-N-M bond angle, and although such general

approaches should be avoided, they still appear in the most current and respectable

journals.17

In summary, while the valence bond treatment put forth is useful in gaining a basic

understanding of metal-imido bonding, it is very limited. It seems that the best way to

determine the true character of an imido complex is through a combination of reactivity,

structural, and modem computational studies.

Amido Ligands

The widespread interest in amido ligands formulated as NH2", NHR', or NR2" stems

from their presence in a diverse array of compounds from the biologically significant,

such as chlorophyll, to the area of inorganic chemistry, with the synthesis of

amide-stabilized lanthanide metal centers. Putting aside the bioinorganic chemist's

interest in the biologically significant amido-based ligands, initial exploration of

metal-amides focused on structure and bonding as it compared to metal-carbon bonds of

the time. This initial foray into metal-amido chemistry took place in the 1960s and early

1970s, and excellent reviews on the subject have been written.18' 19 Researchers realized

that the metal-amido bond in early metal complexes was rather inert in comparison to the

metal-carbon bond; and they lost interest in the topic to pursue more interesting and

lucrative chemistry, such as the developing field of early metal, metallocene-mediated

polymerization.20 Research in the field slowed until the inertness of the amido ligand

was used to stabilize reactive early metal centers. Ironically, one such discovery

involved the application of chelating ansa-monocyclopentadienyl-amido ligands to early








metal-olefin polymerization.21 The ability of a chelating amide to stabilize an early metal

center, coupled with the synthetic ease and diversity of ligand design, led to a

resurrection of metal-multidentate amido chemistry in the 1990s that has continued into

this century.

Recent developments involving multidentate amido ligands have been

reviewed.20'22 A list of precursors to some of the most important multidentate amido

ligands in organometallic chemistry today is shown in Figure 1-6. These examples may

be used to point out properties that make multidentate amides so useful. The availability

of two substituent positions on an amide allow for the incorporation of this functionality

into podand (3)23'24-and macrocycle (4)25-like systems. They allow the chemist to exert

steric and electronic control during ligand design (5,22 6,26 727) and allow the amide to be

easily appended to other donor functionalities to better suit a metal center (8).28

Furthermore, several synthetic strategies can be used to introduce amides to the

coordination sphere of a metal.

These ligands are extremely useful in metal chemistry. For example, uranium

species of trianionic 3 form dinitrogen complexes under appropriate conditions,29 and

Group 4 complexes of 5 and 6 are practical precursors to cationic olefin polymerization

catalysts.22'26 Metal complexes of 7, 8, and related ligands are discussed in the next

section, which is devoted to imido-diamido chemistry.

Reactive Imido-Diamido Complexes

The metal-imido multiple bonds impart unique properties to the imide and metal

fragment, creating extremely reactive or stable molecules depending on the identity of the

metal, the oxidation state, the imido substituent, and other ancillary ligands.30

Multidentate amido ligands, when used as these ancillary ligands, should be key in tuning








reactivity at the metal center. It is thus reasonable to assume that one can create desired

reactivity at an early metal center through judicious choice of both the imido and

multidentate amido ligand. Some considerations must be taken into account here. For

the purposes of this discussion, we will consider only diamido and imido ligands. An

imide and a diamide contribute a total of +4 to the formal oxidation state of a metal

complex. Most imido complexes are of d, d', and d2 metal centers, and the metal-imido

multiple bonding requires that the d orbitals involved in bonding be empty. Furthermore,

the desired reactivity of the new compound must be considered; should the imide be

reactive or should both the imide and multidentate amide behave as ancillary ligands? If

Group 4 species are targeted, the metal in the resulting metal-imide-diamide, of the type

M(NR)2(NR2)2, will be in a formal +4 oxidation state. Useful functionalization will not

be possible unless achieved through reactivity of the imido functionality. Synthesis of

similar Group 5 complexes will suffer from the same disadvantages. Using a Group 6

metal in an analogous fashion could yield complexes of the type M(NR)2(NR2)2X2,

allowing the metal to be functionalized at X. While high oxidation states and imido

complexes are known for Groups 7 and 8, amides of these metals are rare. Appling the

same idea to Group 9 or 10 metals will be difficult, for amides are not extremely good

late-metal ligands, and most imido complexes must be of high-oxidation-state metal

centers that are usually not available this late in the transition metal series. Based on this

reasoning, efforts directed toward the synthesis of Group 6 imido-diamido complexes

seem the most plausible. We have taken the above-mentioned approach for Group 6

metals; others have explored the possibilities from Groups 4 through 6. The important

results are presented here.








Me Me
M iI I N S iM e I Si e 3
M Si-. N/SiMe3 rI
N ieNHH rNHN N--

NH N NH HNS
NMe-l^ Me Me3Si SiMe3
3 Me ^ Me5
3 4 5

Ar SiMe3 Me3SiNH
/ NH
N-SiMe3 NNNH N

N-SiMe3 C NH N
I NH
Ar SiMe3 Me3Si'
6 7 8

Figure 1-6. Current multidentate amido ligands in organometallic chemistry

Group 4 imido-diamido complexes

In general, the chemistry of Group 4 imido complexes is driven by reactive imido

functionalities. Recently Mountford and coworkers30 have made great strides in

nonmacrocycle-related developments in this area by focusing on the diamido ligands 5, 8,

and 9 (Figures 1-6 and 1-7). The synthesis of relevant Group 4 metal complexes is

shown in Figure 1-7. The reactivity of complex 13 with unsaturated organic compounds

has been extensively studied and usually involves coupling reactions between the

metal-imide and reactant. For example, 13 (M = Ti, R = butylt) reacted with

1-phenylpropyne at 80C to give 15 and with 2,6-diisopropylphenyl isocyanate to afford

16 (Figure 1-8).31

Similar chemistry has also been reported for titanium aryl or alkyl imido complexes

and tetraaza macrocyclic diamido ligands similar to 4 (Figure 1-6).25'32,33,34 Reactivity of

this nature at the imido functionality is indeed important and has most recently been

implicated in the metathesis of imines35 and the hydroamination of unsaturated organic

substrates.36'37'38 Perhaps the most remarkable imido reactivity has been observed by








Wolczanski and coworkers,39 who reported C-H activation of saturated and unsaturated

hydrocarbons by imido titanium species.


R
N SiMe3
-- Ti',N-SiMe3

11
t Li28
R
/
N
Cli,. 1. Py
CPy I ZC1l
Py
10
|Li29


^\
N

NH NH
Me3Si' \SiMe3
9


Li25


N/ 15/6
iN/ I Heat/10 mbar
Me3Si N NR
Me3Si py


SiMe3
-N

Me3Si-' |I=N-R
Me3Si' Py
12




N

Me3Si'NN -TiN-R
Me3Si


13 14

Figure 1-7. Synthesis of Group 4 imido-diamido complexes. For 10: when M = Ti, R =
butyl' or 2,6-C6H3Pr'2; when M = Zr, R = 2,6-C6H3Pr'2.

Group 6 imido-diamido complexes

The imido-diamido complexes of the Group 6 metals do not generally have reactive

imido functionalites. The imido and diamido ligands act as ancillary ligands and stabilize

unusual complexes for these high-oxidation-state species. Mountford30 has reported a

few complexes of Group 6 imide-diamides with the ligand precursor 9. In contrast,

Boncella27'40 has developed extensive chemistry in this area starting from the two metal

dichloride species shown in Figure 1-9.









NI NoI
N Me Ph -N=-1-
Me3S NjTi=N-But Me3Si' N
.e N Me3Si N
Me3Si Py Me3Si N -- Ph
Bu' H
13 15
Pr'
q\NCO
Pr'

NI
I- I Py
CN/T,' 1 t
Me3Si"N N-B
Me3Si 0-1, Pr'
N A
16 Pr' "

Figure 1-8. Reactivity of Group 4 imido-diamido complexes. Reactivity of 13 with
1-phenylpropyne and 2,6-diisopropylphenyl isocyanate.




N N
Me3Si' III Me3Si, III
N''"Mo'-"C Me3Si,, ,! k "zzCl Me~si-,/ 0Vi1
N N Cl

/^ /
17 18

Figure 1-9. Molybdenum (17) and tungsten (18) imido-diamido dichlorides

Molybdenum and tungsten alkyi and alkylidene complexes. The dichlorides 17

and 18 were easily converted to alkyl complexes upon treatment with

non-p-hydrogen-containing alkyl magnesium reagents (Figure 1-10).27,40 The reactivity

of tungsten alkyls 24 and 26 has been explored with tert-butyl isocyanide (Bu'NC)








(Figure 1-11).41 Complexes 24 and 26 inserted ButNC into each metal alkyl bond,

affording the ril 2-imino-acyl complexes 30 and 31. When heated, 30 underwent a

carbon-carbon coupling reaction giving 32. This insertion and coupling chemistry has

been well-documented for early metals with CO or isocyanides.4'5'41 Similar chemistry

has not been seriously explored with the molybdenum alkyls 19-23.

Ph
\
N
Et20 Me3Si, III
17 or 18 + 2.0 RMgX- "M R +2.0 XCI
-78 C-R.T. Me3Si--<. e M1R



M = Mo: R = Me (19), Ph (20), CH2CMe3 (21), CH2Ph (22), CH2SiMe3
(23); M = W: R = Me (24), Ph (25), CH2CMe3 (26), CH2Ph (27), CH2SiMe3
(28), CH2CMe2Ph (29); X = halide.

Figure 1-10. Synthesis of molybdenum and tungsten dialkyl complexes



Lz' But

ButNC NMeolu NN N But
24 oMe3Si \\\/ -R Toluene Me3Si II I
R.T WW8 hN Me
Me3S---,',R 85 0C 2h Me3S- d
N N (only 30) N N M
/ But / Bu Me

R = Me (30), CH2CMe3 (31) 32

Figure 1-11. Reactivity of tungsten dialkyls with ButNC

Treating complexes 21 and 26 with excess PMe3 resulted in the formation of PMe3

alkylidene adducts 33 and 34 through an a-abstraction process (Figure 1-12). Attempts

to generate the base-free tungsten analogue of 34 (35) by thermolysis of 26 gave rise to

36, mainly via metalation of the diamido ligand of 35 (Figure 1-13). When 36 was







treated with PMe3, 34 was produced by trapping 35 with phosphine. Small amounts of

36 were also formed via y-abstraction of the diamido ligand of 26 (see Vaughan et. al. 42

for a more detailed mechanistic analysis). Reactivity of the molybdenum alkylidene (33)

remains largely unexplored.27

H But
Me3Si .,,PMe3
PMe3 N ""''M,-
23 or 26 Me3 N >S N + CMe4
70C Me3 N C


M = Mo (33), W (34)

Figure 1-12. Formation of molybdenum and tungsten alkylidene adducts

H But H Bu t

70,C Me3Si | Me3Si H
Toluene Me3Si--- / NW
N -S i -


/ 35 36

Figure 1-13. Formation and reactivity of metallacycle 36
The P3-hydrogen-containing dialkyl complexes of tungsten are stable and have been

synthesized in a fashion analogous to 24-29.43 In general, coordinatively unsaturated

P-hydrogen-containing complexes decompose by P-abstraction or elimination. The

stability of these alkyl complexes is therefore surprising. Addition of PMe3 to some of

these species promoted P-abstraction and the formation of olefin complexes. This

behavior is clearly unexpected, as the dissociation of ligands to yield unsaturated species

usually induces p-abstraction.43'4445







Molybdenum and tungsten arene and molybdenum olefin complexes. Unlike

the tungsten analogues, P-hydrogen-containing molybdenum dialkyl complexes

decompose readily at 20C (room temperature) to yield olefin complexes.46 These

high-oxidation-state olefin complexes are rare and were hydrogenated in the presence of

arenes, forming high-oxidation-state arene complexes (Figure 1-14).47 High valent

Group 6 arene complexes, with the exception of the tungsten complex mentioned here,

are nonexistent; and generation of arene complexes in this way remains a rare process.

We recently synthesized related tungsten arene complexes that showed interesting

reactivity with phenylacetylene.48 Furthermore, several bis(pyridine) complexes49 were

generated from this arene complex and were used to activate the carbon-sulfur bond of

thiophenes.50

Phh
Ph Ph
N/ Pentane R.T. N
III R H2 15 psi Me3Si- ...Mo /
Me3Si" 'Mo "'N-R2 N / ///
N I 15 equiv Me3Si '-N
M e3Si T---N R3 -N R

/ 1(4 /^ JR
benzene (40)
RI = R2 = R3 = H, R4 = Me (37), C toluene (41)
R, = R2 = Me, R3 = R4 = H (38),- R = o-xylene (42)
R1 = R2 = R3 = H, R4 = CH2CH3 m-xylene (43)
and RI = R3 = Me, R2 = R4= H (39) p-xylene (44)
diphenylmethane (45)
bibenzyl (46)

Figure 1-14. Molybdenum olefin complexes and the synthesis of arene complexes

Scope of the Dissertation
The work embodied in this dissertation reports the latest results toward new

imido-diamido molybdenum complexes. Chapter 1 is a general introduction to metal








imides and amides. Chapter 2 discusses pyridine, phosphine, phosphite, and Arduengo

carbene Lewis base-stabilized imido-diamido complexes and carbon monoxide

derivatives. Chapter 3 is devoted to the discussion of dihydrogen complexes generated

from the phosphine complexes discussed in Chapter 2. In Chapter 4, imido-diamido

butadiene complexes and related reactivity involving the synthesis of alkyne complexes

are discussed. The reactions of molybdenum olefin and arene complexes with imines,

ketones, aldehydes, and azobenzene are discussed in Chapter 5. Experimental data are

recorded in Chapter 6.

In this work, we have taken advantage of the unique ability of our 7t-loaded

imido-diamido system to stabilize interesting and rare molybdenum complexes. In a

nt-loaded system, the excess 7t-donors can act as electron sinks, stabilizing

high-oxidation-state molecules through p-d overlap if necessary. Oftentimes the

reactivity observed resembles that of later metals in lower oxidation states. One

long-term goal of this project is to take advantage of this it-loaded system to develop

species that can replace expensive, later metals in chemical syntheses.













CHAPTER 2
SYNTHESIS OF LEWIS BASE-STABILIZED MOLYBDENUM COMPLEXES:
SOURCES OF REACTIVE MOLYBDENUM(IV)

The dissociation of labile Lewis bases from transition metal centers can generate

reactive molecules capable of interesting stoichiometric and catalytic reactions that often

proceed through oxidative-addition and reductive-elimination pathways.' We are

interested in exploring this avenue regarding our molybdenum imido-diamido system and

have thus prepared a (bis)pyridine complex, phosphine and phosphite complexes, and a

coordinatively unsaturated Arduengo carbene complex. In this chapter we report the

synthesis, structure, and initial reactivity studies of these complexes. Some of the

phosphine complexes reported here react with molecular hydrogen, generating stretched

dihydrogen complexes. Chapter 3 is devoted to the synthesis and properties of these

novel dihydrogen complexes.

Generation of Imido-Diamido Pyridine Complexes

Synthesis and Characterization of [Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)| (47)

Adding excess pyridine to a stirring pentane solution of olefin complex 37 or 38

resulted in the precipitation of [Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47) as a purple solid

that was isolated by filtration in high yield (Scheme 2-1).51 The 'H NMR spectrum of 47

displays a significant broadening of the pyridine protons in the 2 and 6 positions at 20C.

At low temperature (-20C), two distinct doublet resonances are observed in the 'H NMR

spectrum for these protons: one for the two protons syn to the imido group and the second

for two protons anti to the imido functionality. The proton resonances corresponding to








the pyridine ligand protons in the 2 and 6 positions, 3 and 5 positions, and 4 position are

labeled 2-6, 3-5, and 4, respectively, in the expanded 'H NMR spectrum shown in Figure

2-2. These observations are consistent with the slow rotation of the pyridine rings about

the Mo-N bond on the NMR time scale at -20C.

Ph Ph
/ /
N N
Me3Si. III III RI 2
N---Mo. R2- Pyridine MM -Si o'-- /
Me3Si-N + I -yrde Me3Si'N / \ N /
H- H Pentane RT Me3 Si--N N +
I / H H

R = Me, R2 = H (37), 47
RI = R2 = Me (38)

Figure 2-1. Synthesis of [Mo(NPh)(Py)2(o-(Me3SiN)2C6H4)] (47)






2-6 2-6 3-5 4



8.5 8.0 7.5 7.0 6.5 6.0 ppm

Figure 2-2. Enlarged region of the 'H NMR spectrum of 47 at -20C

An X-ray structural analysis was carried out on a single crystal of 47 grown at 20C

by layering a saturated toluene solution of 47 with pentane. The crystal data and details

of the structure refinement are summarized in Table 2-1. A thermal ellipsoid plot of 47 is

shown in Figure 2-3 with selected bond lengths and angles. The solid-state structure

reveals a square pyramidal geometry about the molybdenum atom, with the imido ligand

in the apical position. The Mo-N(4) and N(5) bond lengths of 2.1247(16) A and








2.1460(16) A, respectively, are consistent with Mo(IV)-pyridine Lewis acid-base

interactions. The Mo-N(l1) bond length of 1.7476(14) A and the C(l)-N(l1)-Mo angle of

166.35(13) are typical values for molybdenum imido triple-bond interactions.1127'47


C14





C12


C27


C23


Figure 2-3. Thermal ellipsoid plot of 47 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(1) 1.7476(14), Mo-N(2) 2.0779(16),
Mo-N(3) 2.0637(16), Mo-N(4) 2.1247(16), Mo-N(5) 2.1460(16),
C(l1)-N(l1)-Mo 166.35(13), N(3)-Mo-N(4) 88.22(6), N(5)-Mo-N(4)
80.43(6), N(2)-Mo-N(5) 88.72(6), N(2)-Mo-N(3) 78.30(6).

The space-filling model of 47, generated from the X-ray study, reveals a sterically

congested area around the pyridine ligands due to the presence of the SiMe3 groups

(Figure 2-4). This steric crowding hinders the rotation of these ligands.





Table 2-1. X-ray data for crystal structures 19, 47, and 48

19 47
Chemical formula C20H33N3MoSi2 C28H37N5MoSi2
Formula weight 467.61 595.75
Crystal system Monoclinic Orthorhombic
Space group P21/n Pna2,
,(Mo-Ka) (mm"') 0.652 0.547
a (A) 10.3212(4) 15.5947(8)
b (A) 18.0052(7) 10.3170(5)
c(A) 13.3662(5) 18.4572(9)
,8() 103.774(2)

V, (A3) 2412.5(2) 2969.6(3)
Z 4 4

max 27.50 27.49
Total reflections 21116 19478
Uniq. reflections 5508 6777
R(int) 0.0300 0.0272
RI [I 2o() data]b 0.0221 0.0218
wR2 (all data)c 0.0609 0.0530
Larg. diff. peak, hole 0.380, -0.336 0.231, -0.222


aObtained with monochromatic Mo Kcc radiation (X = 0.71073 A) at 173 K.' R1 = JFJ I
FJI/,JFJ. CwR = {1[w(Fo2 FcJ)2/'[w(F2)2]} 1/2


48

C29H37NsMoOSi2
623.76
Monoclinic
C2/c
0.542
16.2857(8)
16.9169(8)
22.086(1)
94.578(1)
6065.3(5)
8

27.50
21646
6965
0.0930
0.0475
0.1198
0.474, -0.637



















4SiMe3









Pyridine


Figure 2-4. Space-filling model of 47. Steric crowding hinders pyridine ligand rotation

Metal d2 vs. do Electronic Configuation and Diamido Ligand Folding

Although the synthesis of dialkyl complexes 19-23 has been reported,27 X-ray

structural studies on these compounds were not carried out at that time. We are interested

in the solid-state structures of these complexes, and an X-ray study was carried out on a

single crystal of 19 grown in a pentane solution at -30C. The thermal ellipsoid plot of 19

is shown in Figure 2-5. The crystal data and details of the structure refinement are

summarized in Table 2-1. The Mo-C(19) and Mo-C(20) bond lengths of 2.1911(19) A

and 2.2041(19) A, respectively, are within the range expected for metal-carbon single

bonds. The Mo-N(2) and Mo-N(3) bond lengths of 2.0117(14) A and 2.0182(14) A,

respectively, also fall within the expected range. The Mo-N(l) bond length of 1.7204(14)







A and the C(1l)-N(l)-Mo angle of 171.66(13) are consistent with a metal-nitrogen

triple-bond interaction.


Figure 2-5. Thermal ellipsoid plot of 19 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(1) 1.7204(14), Mo-N(2) 2.0117(14),
Mo-N(3) 2.0182(14), Mo-C(20) 2.2041(19), Mo-C(19) 2.1911(19),
C(l1)-N(l1)-Mo 171.66(13), N(2)-Mo-N(3) 82.73(5), N(2)-Mo-C(19)
84.86(7), N(3)-Mo-C(20) 85.85(7), C(20)-Mo-C(19) 79.49(8).

There is a significant difference between the structures of the do and d2 analogues

involving bonding of the diamide as born out by comparison of the solid-state structures

of 19 (d) and 47 (d2). In 47 the C6H4 ring, the diamido nitrogens (N(2) and N(3)), and








the metal center are nearly co-planar. This co-planarity is no longer present in 19, and

there is an angle of 45.6 between the planes defined by the C6H4 ring and the N(3), Mo,

and N(2) atoms, as depicted in Figure 2-6. This structural feature is referred to in the

literature as "ligand folding", and the above-mentioned angle for 19 is called the

fold-angle.

Recent density functional theory (DFT) studies attribute ligand folding to

it-donation from the NSiMe3 lone pairs to an appropriate metal-based atomic orbital at

the do metal-center for 19 and similar compounds.52 In these structures, the diamido

nitrogen atoms remain sp2 hybridized, and in order to achieve effective p-d overlap, the

diamido ligand must take on the folded configuration. This bonding situation, which may

simply be described as a 3 orbital 4e- interaction (Figure 2-7), contributes to the

it-loading of this molybdenum system. In contrast, there is no ligand folding in 47 (d2) in

order to avoid a filled-filled interaction between the p and d orbitals (the fold-angle for 47

is 4.5). The lack of ligand folding places the SiMe3 groups in proximity to the pyridine

rings, hindering their rotation as mentioned in the previous section. The term R-loaded

applies well to 47 for there are too many ligand 7i-donors and not enough metal-based

acceptors.

We have explored the structure in compounds 19 and 47 theoretically using DFT

in order to gain more insight into the bonding interactions in these compounds. DFT

calculations were performed using the Gaussian 98W program package (see Chapter 6 for

more details).53 The model systems consist of the structures shown in Figure 2-8. Steric

effects of the ligand set were investigated by varying the substitution pattern at the

diamido nitrogen. The optimized geometries were visualized with gOpenMol, and results








for cases 19a, 19b, and 19c are shown in Figure 2-9.54,55 Model system 19c is the most

accurate for reproducing the experimental structure of 19. The fold-angle increases in the

order 19a (18.5), 19b (26.0), 19c (40.3) (since there is no C6H4 moiety in the model

system, the N-C=C-N plane of the diamide was used to calculate the fold-angle). This

increase in angle can be attributed to the increase in the steric component of the diamido

ligand in going from model system 19a to 19c. These initial results indicate that attempts

to directly correlate ligand fold-angle to bond order should be avoided.

Ph Ph
//
Me3Si N Me3Si N

N N Me3S'-N' Me
Me3Si
47 / 19
fold-angle = 4.5 fold-angle = 45.6


fold-angle N-Mo-N (plane)

C6H4 plane -

Figure 2-6. Diamido ligand folding in molybdenum imido-diamido complexes

Z
Ph
N -y

Me3 i M. Ki x
^- Sie Janti-bonding--

non-bonding l

bonding I

Figure 2-7. Ligand-folding and a general 3 orbital 4e- interaction








H H H
/ / /
H N Me N Me3Si N
\ III III ill
N"-Mo"--L N" -MOL NM"LMo",MIL
H N-NV MeL Me3Si' /N'
H L HL
H H H

L = Me (19a), L = Py (47a) L = Me (19b) L = Me (19c), L = Py (47c)

Figure 2-8. Model systems for DFT studies on 19 and 47

The MOs involved in the 3 orbital 4e- interaction (Figure 2-7) for 19c have been

identified. The MO involved in the metal-diamide bonding interaction is the HOMO of

19c, represented graphically in Figure 2-10.54'5, This MO is best described as interacting

metal (predominately df-2 and d,) and diamido nitrogen py and pz atomic orbitals. The

lowest unoccupied molecular orbital (LUMO) of 19c corresponds to the anti-bonding

MO for this 3 orbital 4e- interaction as presented in Figure 2-7 (Figure 2-10). The

nonbonding MO, as depicted in Figure 2-7, has been lowered in energy due to other

interactions and is the HOMO-3 of 19c shown in Figure 2-10.

In contrast to the do system, the HOMO-1 orbital in 47c, which is predominately of

dx2.2 character, best represents the lone-pair d electrons on the metal-center. This MO is

represented graphically in Figure 2-11. The LUMO of 47c is localized on the pyridine

ligands as shown in Figure 2-11.

Synthesis and Characterization of [Mo(NPh)trans(Py)2(CO)(o-(Me3SiN)2C6H4)] (48)

Exposure of a toluene solution of 47 to dry carbon monoxide gas (ca. 15 psi)

resulted in the formation of the six-coordinate complex [(Mo(NPh)-trans-(Py)2(CO)

(o-(Me3SiN)2C6H4)] (48) (Figure 2-12). An X-ray crystallographic study was carried out

on single crystals of 48 grown from a concentrated toluene solution. The thermal





















19a, fold-angle = 18.5


19b, fold-angle = 26.0
















19c, fold-angle = 40.3


Figure 2-9. Optimized geometries for 19a, 19b, and 19c, emphasizing ligand folding




















HOMO of 19c


LUMO of 19c


HOMO-3 of 19c


Figure 2-10. Important MO interactions for 19c




















HOMO-1 of 47e












LUMO of 47e

Figure 2-11. Important MO interaction for 47c

ellipsoid plot of 48 is shown in Figure 2-13 along with selected bond lengths and angles.

The crystal data and details of the structure refinement are summarized in Table 2-1.

Complex 48 adopts a distorted octahedral geometry. The Mo-N(1) bond length of

1.778(3) A and the C(1)-N(l)-Mo angle of 162.5(3) are consistent with a

molybdenum-nitrogen triple-bond interaction. The Mo-N(4) and N(5) bond lengths of

2.207(3) A and 2.217(3) A, respectively, are within the expected range for a

six-coordinate molybdenum pyridine adduct. An important feature in 48 is the trans

geometry adopted by the two pyridine ligands as well as the trans arrangement of one

amide and the carbonyl ligand, presumably a result of combined steric and electronic








effects. For example, this trans arrangement of amido and CO ligand allows for a 3

orbital 4e- interaction between the filled amido p orbital, the appropriate metal d orbital,

and the CO n* orbital. Furthermore, the trans orientation of the pyridine ligands keeps

them away from each other and away from the steric bulk of the SiMe3 groups.
Ph
Ph /h
/
Me3Si N Me3Si N
N''t HI \I I )1
M o3 i Toluene N" M6"
/ N 1' M ^ I N o---_z 0^
.N CO 15 psi) y N CO
'Me3Si Me3Si


47 48

Figure 2-12. Synthesis of [(Mo(NPh)trans(Py)2(CO)(o-(Me3SiN)2C6H4)] (48), Py =
pyridine

Two resonances for the inequivalent SiMe3 groups are observed at 0.32 ppm and

0.37 ppm in the 'H NMR spectrum of 48, consistent with the solid-state structure. The

equivalency of the pyridine protons in the 2 and 6 positions in the 'H NMR spectrum at

20C indicate that rotation about the pyridine molybdenum bond is not hindered at this

temperature on the NMR time scale in this six-coordinate complex. This is interesting

when compared to the hindered rotation of the pyridine rings in five-coordinate 47 and is

an unusual example of a coordinatively saturated system (48) being less sterically

hindered than an unsaturated system (47). A stretching frequency of 1913 cm'1 in the IR

spectrum of 48 has been assigned to the CO ligand (free carbon monoxide has a C-O

stretch at 2143 cm-'), indicating a considerable amount of back bonding from the metal to

the carbon monoxide ligand.


















C17


,C26


C16


C21

C










Figure 2-13.


C14


Thermal ellipsoid plot of 48 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(l) 1.778(3), Mo-N(2) 2.128(3),
Mo-N(3) 2.136(3), Mo-N(4) 2.207(3), Mo-N(5) 2.217(3), Mo-C(29)
1.993(5), C(29)-O(29) 1.158(5), O(29)-C(29)-Mo 175.2(4), N(4)-Mo-N(5)
169.52(12), N(2)-Mo-N(3) 78.10(13), C(1)-N(1)-Mo 162.5(3).


C18








C-N Activation of an Amido Ligand: Synthesis of Imido-Bridged 49 from 47

Monomeric 47 is stable at 20C in the solid-state for extended periods. However,

when heated to 80C in toluene, 47 converted cleanly to bimetallic 49 with loss of

pyridine in 2 h (Figure 2-14).51 This air sensitive, diamagnetic complex is thermally

stable in solution for extended periods, even at the temperature required for synthesis. A

single crystal of 49 was grown from a pentane/dichloromethane solution at -30C.

Compound 49 crystallizes with two molecules of dichloromethane. An X-ray diffraction

study shows that 49 contains two molybdenum atoms bridged by two phenyl imido

groups as well as a Me3SiN-C6H4 ligand (Figure 2-15). This unusual Me3SiN-C6H4

group is apparently formed by cleavage of one NSiMe3 group from an o-(Me3SiN)2C6H4

ligand. The NSiMe3 group that was cleaved remains as an additional terminal imido

ligand on one of the molybdenum atoms. The formal oxidation state at each metal center

is best described as Mo(V). The Mo(l)-Mo(2) distance of 2.5669(4) A, although short

for a Mo-Mo single bond, indicates the existence of a metal-metal bond and accounts for

the observed diamagnetism of 49.5657 Four upfield resonances, assigned to the four

inequivalent Me3Si groups, are observed in the 'H NMR spectrum of 49, consistent with

the structure as determined by X-ray crystallography. The crystal data and details of the

structure refinement for 49 are summarized in Table 2-2.

The unusual aromatic C-N bond cleavage reaction that is observed during the

pyrolysis of 47 is presumably driven by the formation of the Mo-N triple bond and

demonstrates the reactivity of the Mo(IV) moiety towards oxidation. Reactions providing

a straightforward example of C-N single-bond activation, a most desirable

transformation, are rare.58 The metal-mediated rupture of C-N bonds is, for the most part,

limited to strained amines59 or amidines.60 Activation ofnonactivated substrates such as







aniline61 and the ring opening of pyridine62 have been observed with highly reactive,

trivalent, Group 5 metal complexes. A slight variation on this theme involves the

recently reported C-N bond cleavage reactivity of a Nb(II) cluster upon ligand

replacement by anionic amides.63 An observation related to this reaction type, made in

1985 by Chisholm,64 involved the isolation of a carbide/imide cluster that may have

arisen via degradation of an amido ligand.

Ph Ph Ph
/ .\ /
Me3Si N Me3SiN N N SiMe3
III Toluene /N N> \N
N1 ,"MO-,T O_-- o0
N'"Mo-Mo I + pyridine
NI I N 80 C, 2h NN /"N N-
Me3Si Me3Si/ \ SiMe3

47 49

Figure 2-14. C-N activation of the o-(Me3SiN)2C6H4 ligand in 47

Generation of Imido-Diamido P(OMe)3 Adducts
Synthesis and Characterization of [Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)] (50)

From a pentane solution of olefin complex 37 or 38 treated with 4.0 equiv of

P(OMe)3 precipitated a red-brown powder of [Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)]

(50), which was isolated in high yield (Figure 2-16). A single crystal X-ray study was

carried out on a suitable crystal of 50 grown from a toluene/pentane solution at low

temperature. The crystal data and details of the structure refinement are summarized in

Table 2-2. In the thermal ellipsoid plot of 50, the geometry about molybdenum is best

described as a distorted octahedron, and the olefin from the starting material has been

displaced by three trimethyl phosphite ligands (Figure 2-17). The phosphite ligands take

up a meridional bonding motif, and the Mo-P(1), Mo-P(2), and Mo-P(3) bond lengths of

2.5090(8) A, 2.4509(8) A, and 2.4972 A, respectively, are as expected for a complex of







this nature. The molybdenum imido interaction is consistent with a metal-nitrogen triple

bond.


Figure 2-15.


Thermal ellipsoid plot of 49 (50% probability thermal ellipsoids). The
solvating dichloromethane molecules have been omitted for clarity.
Selected bond lengths (A) and angles (): Mo(1)-Mo(2) 2.5669(4),
Mo(l)-C(34) 2.179(3), Mo(2)-N(7) 2.047(2), Mo(2)-N(6) 1.745(2),
Mo(2)-N(5) 2.285(3), Mo(1l)-N(1) 1.955(2), Mo(l1)-N(2) 1.866(2),
Mo(2)-N( 1l) 2.007(2), Mo(2)-N(2) 2.061(2), Mo( 1 )-N(l )-Mo(2) 80.74(9),
Mo(1l)-N(2)-Mo(2) 81.48(9), Mo(2)-N(6)-Si(3) 170.50(17).


Ph Ph
/ /
N Me3Si, N
Me3Si. III R r, Ill ,,P(OMe)3
Me3Si-N- 7/R2 4.0 P(OMe)3 (Me)3P Md6
Me3Si/N Mo-- R2- (MeO)3P N IP( e
H' Pentane RT / -NP(OMe)3
(/ //H/
\/ Me3Si
R, = Me, R2 = H (37), 50
R, = R2 = Me (38)

Figure 2-16. Synthesis of [Mo(NPh)(P(OMe)3)3(o-(Me3SiN)2C6H4)] (50)


R1 R2
+H H
H H








Although the SiMe3 groups of 50 are inequivalent in the solid-state, only one SiMe3

resonance is observed for these protons in the 'H NMR spectrum from 20C (0.62 ppm,

C7Dg) to -70C. A high degree of fluctionality in solution, most likely involving

phosphite dissociation and exchange, could be responsible for the formation of a

five-coordinate complex where the SiMe3 groups are equivalent, accounting for this

observation. In the (bis)pyridine complex (47), steric interactions hinder the rotation of

the pyridine ligands about the Mo-N bonds. The steric interactions in 50 should help

encourage phosphite exchange and, in this way, generate a coordinatively unsaturated

metal center. Steric interactions such as this one will become a recurring theme

throughout this chapter.

The phosphite complex is rather unstable and begins to decompose in solution at

20C within hours. Compound 50 even decomposes in the solid-state at -30C over

months. The decomposition product was isolated as an air and thermally sensitive, black,

toluene-insoluble powder. The thermal sensitivity and the insolubility of this compound

have made it very difficult to characterize. We have hypothesized that this compound

may be an oligomeric species with the formula [Mo(NPh)(o-(Me3SiN)2C6H4)]x, but have

no solid evidence with which to substantiate this claim other than a 'H NMR spectrum.46

This unknown material will be henceforth referred to as X.

Synthesis and Characterization of [Mo(NPh)(P(OMe)3)2CO(o-(Me3SiN)2C6H4)] (51)

When freshly generated 50 was dissolved in a minimum amount of toluene and

treated with CO gas (ca. 15 psi), [Mo(NPh)(P(OMe)3)2CO(o-(Me3SiN)2C6H4)] (51)

formed and was isolated in excellent yield. Single crystals of 51 were grown from a

toluene solution, and an X-ray study was carried out on a suitable crystal. The crystal

data and details of the structure refinement are summarized in Table 2-2. The thermal







ellipsoid plot of 51 is shown in Figure 2-18. The overall geometry around the metal is
distorted octahedral, and the structure type is similar to that of 48. In this instance, the
phosphite ligands are mutually trans, presumably for the same reasons discussed for the

pyridine ligands in 48.

004

C27 C(C3



C14


07 3 08C2











Figure 2-17. Thermal ellipsoid plot of 50 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (): Mo-N(l) 1.771(2), Mo-N(2) 2.161(2),
Mo-N(3) 2.190(2), Mo-P(1) 2.5090(8), Mo-P(2) 2.4509(8), Mo-P(3)
2.4972(8), N(l)-Mo-N(2) 174.40, C(l)-N(l)-Mo 163.2(3), N(3)-Mo-P(2)
C227













165.99(6), P(3)-Mo-P(l) 168.10(3).2







The 'H and lC NMR spectra of 51 are highly fluxional at 20C (7Dgs). In the 'H
2.492(8) N1-o N()17.0 P3)N()M 08163.() N()-o-(2












NMR spectrum at 20C, a single resonance is observed for the SiMe3 groups at 0.66 ppm
along with a doublet resonance at 3.09 ppm (3Jp.H = 6.5 Hz) for the P(OMe)3 ligands. At








low temperature (-50C, C7D8), two resonances are observed for the SiMe3 groups at 0.66

ppm and 0.75 ppm in the 'H NMR spectrum. Phosphite dissociation from 51 at 20C

could produce a five-coordinate species with equivalent SiMe3 groups, accounting for

this behavior.

The coalescence of the SiMe3 peaks in the 'H NMR spectrum takes place at 5C.

The activation energy for this process can be calculated using the simple two-site

exchange equation shown in Equation 2-1, where N is Avogadro's number, Tc is the

temperature of coalescence, and 8v is the maximum chemical shift difference between

the two resonances in question.65 Using Equation 2-1 a value of 58.73 KJ/mol (14.04

Kcal/mol) is calculated for this process, where 85v = 24 Hz.

AG I / RTc =In ( -2 (R / ntNh)) + In (Tc / 8v) Equation 2-1

A peak at 1959 cm' corresponding to the carbonyl ligand stretch was observed in

the IR spectrum of 51. The carbonyl stretching frequency for 51 is 46 cm'- higher than

that for 48, implying a stronger CO bond in 51. This is not surprising as the phosphite

ligands are weaker Lewis bases than pyridine, and 51 will therefore have less electron

density at the metal center available for back bonding to the carbonyl ligand.

Generation of Imido-Diamido PMe3 Adducts

Synthesis and Characterization of [Mo(NPh)(PMe3)3(o-(Me3SiN)2C6H4)] (52)

The [Mo(NPh)(PMe3)3(o-(Me3SiN)2C6H4)] (52) complex was synthesized by Dr.

Carlos Ortiz, a previous graduate student, through a route identical to that used in the

preparation of 50.66 The results of the X-ray crystal structure study on this complex are

included here, as they are relevant to structural discussions in this chapter. The thermal

ellipsoid plot of 52 is shown in Figure 2-19 along with selected bond lengths and angles.








The overall geometry is distorted octahedral and similar to that of 50. The bond lengths

and angles associated with the phenyl imido group are as expected for a metal-imido

triple-bond interaction (Mo-N(1) 1.7851(14) A, C(1)-N(1)-Mo 169.77(13)). The rest of

the bond lengths are unexceptional in that they all fall within the expected range. There

is, however, a significant difference of approximately 0.1 A between the Mo-N(2) and

Mo-N(3) bond lengths, 2.2325(14) A and 2.1408(14) A respectively, in this complex.

Elongation of Mo-N(2) has been attributed to a filled-filled interaction between a

nitrogen (N(2) in 52) p orbital and a metal d orbital of appropriate symmetry. This

filled-filled interaction is presumably alleviated in 48 due to the nt-accepting carbonyl

ligand, and the corresponding molybdenum nitrogen amide bond lengths in 48 differ by

approximately 0.01 A. However, such arguments should be made with caution as steric

effects may also have an impact on bond length. Consider, for example, complex 53 an

analogue to 52 where a SiMe3 group has been replaced with a proton (Figure 2-20). In 53

the Mo-N(3) bond length (2.0873(16)A) is 0.05 A shorter than the corresponding length

in 52 (2.1408(14)A), presumably due to loss of steric clout upon replacing SiMe3 with H.

The origin of complex 53 will be discussed in-depth in Chapter 3. The X-ray crystal

study of 53 was first reported by Dr. Carlos Ortiz. It is included here for the purposes of

this discussion.66

Synthesis and Characterization of [Mo(NPh)(PMe3)2CO(o-(Me3SiN)2C6H4)I (54)

Exposure of a toluene solution of 52 to dry carbon monoxide gas (ca. 15 psi)

resulted in the formation of the six-coordinate complex [(Mo(NPh)(PMe3)2(CO)

(o-(Me3SiN)2C6H4)] (54) (Figure 2-21). The structure of 54 has been assigned by 'H,









C3


C2 M-


C23


C22

















Figure 2-18.


SlC N1 C24

C14 P2, 06



04 P1


C20 02 C9 01

C10 )N3
C21 3 2



C18 C17


C16

Thermal ellipsoid plot of 51 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (): Mo-N(l) 1.7882(13), Mo-N(2) 2.1566(12),
Mo-N(3) 2.1242(13), Mo-C(19) 2.0112(16), Mo-P(l) 2.5291(4), Mo-P(2)
2.4784(4), 0(1)-C(19) 1.145(2), N(1l)-Mo-N(3) 166.33(5), N(2)-Mo-C(19)
162.00(6), P(1)-Mo-P(2) 170.451(15), C(1)-N(1)-Mo 161.78(12).









Table 2-2. X-ray data for crystal structures 49, 50, and 51
49 50 51
Chemical formula C41H59N7Mo2Si4-2CH2Cl2 C27H54N3MoO9P3Si2 C25H45N3MoO7P2Si2
Formula weight 1124.04 809.76 713.70
Crystal system Monoclinic Triclinic Monoclinic
Space group P21/n Pi P21i/c
g(Mo-Ka) (mm-') 0.805 0.578 0.581
a (A) 14.4655(8) 10.1800(5) 17.2665(6)
b (A) 23.572(1) 10.4700(5) 11.3438(4)
c (A) 15.9891(9) 18.6036(9) 18.3306(7)
a() 91.681(2)
f6() 104.390(1) 92.692(2) 104.640(2)
y (o) 104.317(2)
V, (A3) 5280.8(5) 1917.4(2) 3473.8(2)
Z 4 2 4

Omax 27.50 27.50 27.50
Total reflections 37951 17160 30213
Uniq. reflections 12085 8561 7876
R(int) 0.0512 0.0298 0.0328
RI [I2a((I) data]b 0.0384 0.0416 0.0222
wR2 (all data)c 0.0930 0.1021 0.0641
Larg. diff. peak, hole 0.807, -0.694 1.063, -0.864 0.326, -0.360
aObtained with monochromatic Mo Ka radiation (X = 0.71073 A) at 173 K.b R, = IFJ -
FJIl/FJ. CwR2 = {[w(Fo2 Fc2)2/Y[W(Fo2)2]} "2.
























C24


C14



C17


C26


Figure 2-19.


Thermal ellipsoid plot of 52 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(1) 1.7851(14), Mo-N(2) 2.2325(14),
Mo-N(3) 2.1408(14), Mo-P(1) 2.5280(5), Mo-P(2) 2.5461(5), Mo-P(3)
2.5534(5), C(l)-N(1)-Mo 169.77(13), N(1 )-Mo-N(3) 176.91(6),
P(3)-Mo-P(2) 169.383(16), N(2)-Mo-P(l1) 171.381(4).







C4

C5 C3


C6 C2
C1
C22 C19 C13



CC1
C2 3 N C14


P3 MOP
C12P2

C18



C7




Figure 2-20. Thermal ellipsoid plot of 53 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(1) 1.7972(1), Mo-N(2) 2.2176(15),
Mo-N(3) 2.0873(16), Mo-P(l1) 2.5385(6), Mo-P(2) 2.4612(6), Mo-P(3)
2.5204(5).








3C, and 31P NN MI R spectroscopy and is consistent with that shown in Figure 2-21. At

20C two resonances are observed for the inequivalent SiMe3 groups at

0.51 ppm and 0.60 ppm in the 'H NMR spectrum. One broad resonance at -15.2 ppm is

observed for the equivalent phosphines in the 31p{'H} spectrum of 54 at 20C and the

carbonyl carbon resonates at 260.2 ppm in the 13C NMR spectrum at that temperature.

The carbonyl stretch in the IR spectrum of 54 is observed at 1925 cm'1. The electron

density at the metal center, determined primarily by the PMe3 ligands, is thus somewhere

between that in 47 and 51.

Ph Ph
/ /
Me3Si, N Me3Si N
Nq,.,..I,,,PMe3 TNo.. I ,,PMe3
N/ Mo Toluene N" Mo+Pe
I + P^Pe
Me PMe3 CO (ca. 15 psi) eN> NCO
Me3Si // Me3Si
52 54

Figure 2-21. Synthesis of [(Mo(NPh)(PMe3)2(CO)(o-(Me3SiN)2C6H4)] (54)

Generation of Imido-Diamido PMe2Ph Adducts

Synthesis and Characterization of [Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)I (55)

The olefin fragment in complexes 37 and 38 was displaced with 2.0 equiv of

PMe2Ph. The product in this instance was the bis(phosphine) complex

[Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)] (55) that precipitated from solution as a green

solid, and was isolated by filtration (Figure 2-22). Single crystals of 55 were grown from

a concentrated toluene solution at low temperature. An X-ray study was carried out on a

suitable crystal, and the thermal ellipsoid plot of 55 is shown in Figure 2-23. The

relevant details of the structure refinement are summarized in Table 2-3.







The geometry about the molybdenum in 55 is best described as distorted square

pyramidal. The atoms N(2), N(3), P(2) and N(1) make up the base of the square pyramid,
as defined by the two biggest metal-centered angles in the molecule, N(l)-Mo(l)-N(3)
151.03(8) and N(2)-Mo(l)-P(2) 164.67(5). The remaining P(l) occupies the apical

position.
The formulation of the molecule as a bis(phosphine) complex is also supported by
integration of the SiMe3 and PMe2Ph resonances in the 'H NMR spectrum of 55. The

structure of complex 55 is fluxional in solution, and one resonance is observed for both

SiMe3 groups at 0.45 ppm along with one resonance for the two PMe2Ph ligands at 0.94

ppm (br) in the 'H NMR spectrum (-65C, C7H8).

When 55 was generated by treatment of an olefin complex with 2.0 equiv PMe2Ph,
X was simultaneously formed in small amounts. Using 4.0 equiv PMe2Ph helped

discourage, but did not completely eliminate the formation of X. Complex 55 was,

however, stable when stored for months at -30C under an inert atmosphere.
Ph Ph
/ /
N N
Me3Si. III R Me3Si N IM PMe2Ph RI R2
N--Mo V R 4.0PMe2Ph N-M
Me3 SiN" > H NMO
3 H Pentane RT N PMe2Ph +
N P
H SiMe3 H H


R1 = Me, R2 = H (37),
R, = R2 = Me (38) 55

Figure 2-22. Synthesis of [Mo(NPh)(PMe2Ph)2(o-(Me3SiN)2C6H4)] (55)







C32


C33


C20


!~C4
CC23
Me4M C14
C15 j C13^


Figure 2-23. Thermal ellipsoid plot of 55 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (o): Mo(l)-N(l) 1.768(2), Mo(l)-P(l)
2.3968(6), Mo(l)-P(2) 2.5113(6), Mo(l)-N(2) 2.174(2), Mo(l)-N(3)
2.073(2), N(l1)-Mo(l)-N(3) 151.03(8), N(l)-Mo(l)-N(2) 107.33(8),
N(3)-Mo(l)-P(l) 114.38(5), N(2)-Mo(1)-P(2) 164.67(5), C(l)-N(1)-Mo(l)
168.89(17), N(3)-Mo(I)-N(2) 77.15(7), N(I)-Mo(l)-P(l) 94.55(6),
N(2)-Mo(l)-P(l) 86.60(5), N(lI)-Mo(1)-P(2) 87.73(6), N(3)-Mo(lI)-P(2)
88.30(5), P(l)-Mo(l)-P(2) 95.20(2). Complex 55 crystallized with two
molecules in the asymmetric unit and only one is shown here.
Synthesis and Characterization of [Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)I (56)
When the coordinatively unsaturated 55 reacted with CO gas (ca. 15 psi), the
carbonyl adduct [Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)] (56) formed and was
isolated as a red/purple solid (Figure 2-24). Two resonances are observed for the








inequivalent SiMe3 groups in the 'H NMR spectrum of 56 at 0.19 ppm and 0.55 ppm

(C6D6, 20C). Only one resonance is observed for the four PMe2Ph ligand methyl groups

at 1.20 ppm in the 'H NMR spectrum (C6D6, 20C). A very broad resonance is observed

in the 3 1P NNIR spectrum at -7.0 ppm for the PMe2Ph phosphorus group. Based on these

observations, a phosphine exchange pathway at 20C can account for the equivalent

PMe2Ph methyl groups. A carbonyl stretching frequency of 1921 cm"' is observed in the

IR spectrum of 56. This frequency is slightly lower than that of complex 54 (1925 cm'),

and is surprising in that PMe2Ph is slightly more electron withdrawing than PMe3. We

would therefore expect the stretching frequency for 56 to be higher than that for 54.

Ph Ph
//
N N Me3Si, N
Me3Si\ I .PMe2Ph Toluene N I,..Il.,,PMe2Ph
N-MO Toluen IMo
PMe2Ph CO (ca. 15psi) N CO
/ SiMe3 / Me3Si

55 56

Figure 2-24. Synthesis of [Mo(NPh)(PMe2Ph)2CO(o-(Me3SiN)2C6H4)] (56)

Synthesis and Characterization of [Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-t-(DMPE)
Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)] (57)

When a pentane solution of olefin complex 37 or 38 was treated with 3.0 equiv of

DMPE (1,2-bis(dimethylphosphino)ethane), dimeric [Mo(NPh)(DMPE)

(o-(Me3SiN)2C6H4)-J-(DMPE)Mo(NPh)(DMPE)(o-(Me3SiN)2C6H14)] (57) precipitated

from solution as a red powder and was isolated by filtration (Figure 2-25). The dimeric

nature of 57 was confirmed by a single crystal X-ray study. The thermal ellipsoid plot 57

is shown in Figure 2-26 with selected bond lengths and angles. The details of the

structure refinement are summarized in Table 2-3. The metal-centers Mo and MoA are







related by an inversion center. The geometry at Mo in 57 is best described as distorted

octahedral and is very similar to that in 50 and 52. The phosphorus atoms are

coordinated to the Mo center in a meridional array, also similar to what is observed for

complexes 50 and 52. The smallest metal-centered angles are the P(2)-Mo-P(1) and

N(2)-Mo-N(3) angles of 78.170(15) and 77.67(5), respectively. The acuteness of these

angles can be attributed to the chelating nature of the ligands. All other bond lengths and

angles are unexceptional.



Ph Me3Si /
N \/ N -SiMe3
Me3Si,, 11 RI (P"". I N3 Ph
N-Mo R2 3.0 DMPE L MapI 'A \/ N \/
N / N A\ _0,I II
Ht PentaneR.T. /\O .1,
{ 3 H Ph I Si -N I ,
SiMe3 Ph e3 N

R = Me, R2 = H (37), /S SiMe3
RI = R2 = Me (38) 57 .


+


RIC^H
R2 H

Figure 2-25. Synthesis of [Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)-Li-(DMPE)
Mo(NPh)(DMPE)(o-(Me3SiN)2C6H4)] (57)

Complex 57 reacts with carbon monoxide gas giving a mixture of products by 'H

NMR spectroscopy. A CO stretch appears at 1927 cm' in the IR spectrum of the crude

reaction product. This confirms the presence of a metal carbonyl, however the exact

nature of the coordination environment about the metal-center is not known at this time.


























C23
iP


C12 C15 0 1



Figure 2-26. Thermal ellipsoid plot of 57 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(l) 1.7914(12), Mo-P(l) 2.4890(4),
Mo-P(2), 2.4887(4), Mo-P(3) 2.5710(4), Mo-N(2) 2.2061(12), Mo-N(3)
2.1422(12), C(1)-N(1l)-Mo 171.89(12), N(l)-Mo-N(3) 174.94(5),
P(2)-Mo-P(l1) 78.170(15), N(2)-Mo-N(3) 77.67(5), P(2)-Mo-N(2)
162.68(3), P(1)-Mo-P(3) 175.229(14). All atoms labeled A are symmetry
related to non A labeled atoms by a center of inversion.

Generation of an Imido-Diamido Arduengo Carbene (Imidazol-2-Ylidene) Adduct

Stable and isolable imidazol-2-ylidenes were first discovered by Arduengo in

1991.67 These carbenes display an uncanny ability to coordinate to transition metals

through o-donation from the carbene to the metal, and back bonding to the carbene is

negligible. Transition metals modified with imidazol-2-ylidene ligands have recently

found widespread use in catalytic transformations such as the Heck coupling reaction,

hydrogenation and hydroformylation of olefins, hydrosilation, olefin metathesis,

copolymerization of ethylene and CO, and polymerization of alkynes. Some recent








reviews have thoroughly treated this subject matter.68'69'7 Our molybdenum

imido-diamido fragment can stabilize Schrock-type carbene complex 33. We were

interested in exploring the structure of an imidazol-2-ylidene derivative of our

imido-diamido system. To this day only carbene complexes of low-valent molybdenum

in octahedral geometries have been described in the literature.68'71 We have been able to

synthesize a complex of this type, and the synthesis and initial structural studies will be

discussed here. This is both the first instance of a molybdenum imidazol-2-ylidene

complex with a tetrahedral-like structure and the first instance of a molybdenum (IV)

imidazol-2-ylidene complex.

When a benzene solution of 55 was treated with 1.0 equiv of imidazol-2-ylidene 58

(IMes) [Mo(NPh)IMes(o-(Me3SiN)2C6H4)] (59) formed in high yield as determined by

'H NMR spectroscopy (Figure 2-27). Although complex 59 was also generated by

treatment of 52 with 58 the crude reaction product was not as pure as when 55 was used

as the starting material. Single crystals of 59 grew from C6D6 NMR samples generated

by treatment of 52 and 55 with 58, and a single crystal X-ray study was carried out on an

appropriate crystal. The thermal ellipsoid plot of 59 and selected bond lengths and angles

are presented in Figure 2-28. The details of the structure refinement are summarized in

Table 2-3.

One interesting feature of 59 is the lack of phosphine coordination. The IMes

ligand is a strong a-donor and bulky enough to displace and inhibit phosphine

coordination. The geometry at the metal-center is best described as distorted tetrahedral.

The largest deviation from the ideal tetrahedral angle of 109.5 involves the metal

centered angle N(2)-Mo(l)-N(3) of 78.77(10). The chelating nature of the diamido







ligand is responsible for the acuteness of this angle. The C(l)-N(1)-Mo(l) angle of

161.6(2) and the N(1 )-Mo(l1) bond length of 1.740(3) A agree well with a metal-nitrogen

triple-bond interaction. The metal carbene (Mo(1)-C(19)) bond length of 2.178(3) A in

59 is approximately 0.1 OA shorter than in octahedral molybdenum (0) analogues and is

similar to that of Fisher carbene (CO)5Mo=C(OR)SiPh3 (2.15(2) A).72 While the metal to

carbene bond lengths of 59 and (CO)sMo=C(OR)SiPh3 are similar, we believe that the

short molybdenum to carbene length in 59 is a result of the high oxidation state and the

distorted tetrahedral geometry and not a result of substantial back bonding.

Complex 59 is paramagnetic as revealed by 'H NMR spectroscopy. All protons in

59 are represented by broad singlets via 'H NMR spectroscopy, and the number of peaks

and relative integration are consistent with the structure of 59 reported here. The

tentative assignment of the 'H NMR spectrum is included in the experimental section.

We attribute the paramagnetic nature of 59 to a very small energy difference

between the two lowest energy d orbitals, allowing for thermal population of both orbitals

at 20C giving a paramagnetic complex. Magnetic susceptibility measurements will shed

some light on this situation.



Ph Ph
N/\
N N
Me3Si I I -PMe2Ph N Benzene Me3S1\ III N.
N-Mo + N-MO
N PMe2Ph N PMe2/ N N
SSiMe3 5 SiMe3\
55 \6 58 59 \ /


Figure 2-27. Synthesis of [Mo(NPh)IMes(o-(Me3SiN)2C6H4)] (59)





























C0 C23 N5
C21
C24 C22
clloW C1 C25 971""( / S '


C30

C29 C26



Figure 2-28. Thermal ellipsoid plot of 59 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo(1)-C(19) 2.178(3), Mo(l)-N(1)
1.740(3), Mo(l1)-N(2) 2.074(2), Mo(1l)-N(3) 2.031(3), C(19)-N(4) 1.371(4),
C(19)-N(5) 1.369(4), C(20)-C(21) 1.334(4), N(1)-Mo(1)-N(3) 119.45(11),
N(1)-Mo(1)-N(2) 116.41(11), N(2)-Mo(1)-N(3) 78.77(10),
N(1)-Mo(1)-C(19) 107.31(11), N(3)-Mo(1)-C(19) 123.51(11),
N(2)-Mo(l)-C(19) 108.02(11). Complex 59 crystallized with two
molecules in the asymmetric unit and only one is shown here.





Table 2-3. X-ray data for crystal structures 55, 57, and 59

55 57
Chemical formula C34H49N3MoP2Si2 C54HI02N6Mo2P6Si4
Formula weight 713.82 1325.48
Crystal system Monoclinic Monoclinic
Space group P21/n P21/n
pt(Mo-Ka) (mm') 0.539 0.626
a (A) 26.355(2) 10.9359(4)
b (A) 10.3180(7) 16.6758(7)
c (A) 27.297(2) 18.8773(8)
fl() 100.475(2) 102.930(2)
V, (A3) 7299.4(9) 3355.3(2)
Z 8 2

max0 27.50 27.50
Total reflections 63955 29611
Uniq. reflections 16703 7668
R(int) 0.0447 0.0317
RI [I>2a(f) data]b 0.0312 0.0210
wRi (all data)' 0.0756 0.0542
Larg. diff. peak, hole 0.387,-0.407 0.323, -0.412


'Obtained with monochromatic Mo Kcu radiation (k = 0.71073 A) at 173 K.b Ri = :dIFJ I
FJI/IdFJ. CR2 = {Z[w(Fo2- FC2)2/y.[w(F2)2]} 1/2

Summary
The isolation of molybdenum imido-diamido adducts of pyridine, PMe3, PMe2Ph,

P(OMe3)3, DMPE, and IMes have been discussed. Through the study of these

compounds a general theme involving steric crowding at the metal center was mentioned


as was that concerning n7-loading.


59
C39H48N5MoSi2
738.94
Orthorhombic
Pbca
0.433
18.3689(8)
21.069(2)
40.047(2)


15499(2)
16

27.03
110986
15985
0.0812
0.0425
0.1016
0.963, -0.935








The DFT study on complex 19 revealed the nature of the diamido ligand folding in

this do system. In contrast, DFT studies showed that the absence of ligand folding in

complex 47 was due to a lack of empty d metal orbitals available for bonding. An

interesting effect of this lack of folding is the hindered rotation of the pyridine rings.

Complex 47 is also unique when compared to the tris complexes 50, 52, 53, and 57.

From a steric stand-point, we have no concrete explanation as to why bis and not tris

coordination of pyridine is preferred.

The structures of complexes 50, 52, 53, and 57 are very similar. All

phosphorus-based ligands bind to molybdenum in a meridional fashion, and the

coordination sphere of each is best described as distorted octahedral. Complex 57 stands

out in this group, for the two metal centers in the dimer are linked by a DMPE moiety.

Complexes 55 and 59 highlight the steric interactions in this system. The PMe2Ph

ligand used in the preparation of 55 has a larger cone angle73 (cone angle (0) PMe2Ph =

122) than the phosphine or phosphites used in the preparations of 50, 52, 53, and 57 (00

PMe3 = 118, 0 P(OMe)3 = 107, 0 DMPE = 107). This larger cone angle accounts for

the bis coordination of PMe2Ph in 55. Sterically, the IMes ligand in complex 59 is often

compared with P(Cy)3 (Cy = cyclohexyl, 0 P(Cy)3 = 170). The large steric clout of IMes

is responsible for the displacement of all phosphines from the starting material in the

preparation of 59.

Initial reactivity of complexes 47,50, 52, and 55 with carbon monoxide gas was

outlined, and a summary of these complexes and appropriate CO stretching frequencies

are included in Figure 2-29. The next chapter discusses the reactivity of these adducts








with dihydrogen gas. Hopefully, the complexes discussed in this chapter will find uses in

other bond activation reactions in the near future.


Ph
/


11 /IMe3Si

48 vCO = 1913 cm'-

Ph
/
Me3Si N
,,III.. PMe2Ph
PhMe2P''1 > 0
N3S
// Me3Si


Ph
/
Me3Si, N
.,. II PMe3
r ,.M6

\-,N C O
/ Me3Si

54 vCO = 1925 cm'1

Ph
/
Me3Si\ N
N,, lMI.,,, P(OMe)3
(MeO)3Pj Y
SCOMe3Si
\V Me3Si


56 vCO = 1921 cm-1 51 vCO = 1959 cm'-

Figure 2-29. Carbon monoxide complexes and vCO (cm'1)













CHAPTER 3
SYNTHESIS AND REACTIVITY OF A MOLYBDENUM IMIDO-DIAMIDO
STRETCHED DIHYDROGEN COMPLEX

The first literature report to describe the isolation of a dihydrogen complex

(referred to as r2-H2 or H2 complexes) was put forth by Gregory J. Kubas in 1984.74

Since this date, over 350 stable H2 complexes have been synthesized and characterized,

and roughly 100 additional reported examples are either thermally unstable, transient

species, or are proposed to contain H2 ligands. Dihydrogen complexes of every metal

from vanadium to platinum have been reported, and an example of a europium complex

is known. Most complexes are coordinatively saturated and are cationic in nature.

Several review articles have been written on the subject over the years.75'76'77'78'79'80'81

The most recent treatment of this area has taken the form of an excellent book written by

Kubas.82

Dihydrogen complexes are important species in metal-mediated catalysis, as they

represent "arrested" states along the path to dihydrogen bond-breaking or oxidative

addition of the dihydrogen molecule. Metal-bound dihydrogen also displays unique

chemical and physical properties, can be electrophilic or superacidic, and may exist in a

stretched or an unstretched mode.75-81 The unique properties displayed by dihydrogen

upon binding to a metal center are a result of the metal-hydrogen bonding interaction.

Bonding in H2 complexes involves a-donation from the H-H o-bond to the metal

and back bonding of electron density from a filled metal d orbital to the H-H a* orbital

(Figure 3-1). The back bonding interaction is primarily responsible for elongating the








H-H bond in an H2 complex. The oxidative addition process can be arrested at various

stages through variation of the metal and ligands, producing complexes with different

H-H distances (dHH). In general, true H2 complexes have dHH -= 0.8 A-0.9 A and stretched

(elongated) H2 complexes have dHH = 1.0 A-1.6 A. In comparison, the dHH in free

dihydrogen is 0.74 A while in metal dihydride species dHH > 1.6 A.82




H



s-donation back donation

Figure 3-1. General bonding in H2 complexes

Characterization of Dihydrogen Complexes

Characterization of Ha complexes is primarily carried out by measuring dHH in

related complexes. This value can be measured experimentally by diffraction methods,

solid state NMR spectroscopy, and solution NMR spectroscopy. We will briefly discuss

solution NMR methods here as it pertains to later discussions in this chapter. In general,

dMH (metal-hydrogen distance) are not measured for several reasons. There are no

general NMR spectroscopy techniques that can be used to measure this value. X-ray

diffraction techniques produce large uncertainties in dMH and are of limited use. There

are not enough dMH distances determined by neutron diffraction to draw useful

correlations. Finally, dMH cannot be easily used to determine the degree of H-H

activation in complexes with different metals because of differences in van der Waals

radii.








Solution NMR Spectroscopy: dHH and JH-D

The single most important spectroscopic parameter involved in the characterization

of an H2 complex is 'JH-D for the HD isotopomer of the H2 complex. Classical dihydrides

do not show any significant 'JH-D because there is no H-D bond present. In an H-D

complex, there is still H-D bonding, and an H-D coupling constant can be measured by

'H NMR spectroscopy. In general, the longer the H-D bond, the smaller the 1JH.D. The

value of IJH.-D, determined by solution NMR spectroscopy, can be correlated to dHH in the

solid state by using the empirical relationships developed by Morris83 and Heinekey84

(Equations 3-1 and 3-2, respectively).

dHH = 1.42 0.0167(JH-D)A [Morris] Equation 3-1

dHH = 1.44 0.0168(JH-D) [Heinekey] Equation 3-2

These relationships were created using dHH from neutron diffraction and solid-state NMR

measurements for complexes where JH-D was known. A plot of dHH vs. 'JH-D gave a

straight line with little deviation. Therefore, if 1JH.D for any H-D complex is known, dHH

can be calculated from the above relationships. The results obtained using Equations 3-1

or 3-2 do not usually differ significantly. Equations 3-1 and 3-2 will be used to

characterize H2 complexes in this chapter to verify this statement.

Solution NMR Spectroscopy: dHH and NMR Relaxation Time (Ti)

Measuring the minimum value of the relaxation time (TI (min)) for the H nuclei of the H2

ligand can provide a reasonable estimate of dHH. The dipolar relaxation of one H of the

H2 ligand by its neighbor is the dominant contribution to T\ for H2 complexes and is

generally < 50 ms, whereas T\ for hydrides is >> 100 ms. Furthermore, T, is proportional

to dHH6, and dipole-dipole relaxation theory states that T\ varies with temperature and

goes through a minimum at TI(min). Crabtree and Hamilton have shown that at TI(min), the








value of dHH can be determined.85'86 When using this approach, the researcher must be

aware that contributions to relaxation from other sources, such as proton-containing

ligands87'88 and metals with high gyromagnetic ratios (Co, Re, and Mn),89 can complicate

the interpretation of dHH from Ti(min). Another area of concern involves the effects of the

rotational motion of the H2 ligand on dHH. This rotational motion is described as H2

ligand rotation being slower or faster than molecular tumbling, and can affect dipolar

relaxation. Morris has addressed this and proposed two equations for the calculation of

dHH from Tl(min), one for slow rotation of H2 (Equation 3-3) and one for fast rotation of

H2, where v is the spectrometer frequency (Equation 3-4).90 Equation 3-3 will be used in

the characterization of the H2 complexes discussed in this manuscript.

dHH = 5.81 [Tl(mir)/V]0'/6) Equation 3-3 (slow rotation)

dHH = 4.61 [Timjin/V]0/6) Equation 3-4 (fast rotation)

Molybdenum Imido-Diamido Stretched Dihydrogen Complexes

The adducts presented in Chapter 2 were generated in order to explore their

potential for the oxidative addition of small molecules. Our initial interest in this area has

focused on the reactivity of these adducts with molecular hydrogen. Along these lines,

we have synthesized phosphine-stabilized H2 complexes from 52 and 55.91 Of the

various H2 complexes known, none, to our knowledge, contain metal-ligand multiple

bonds, and few contain amide functionalities.92 Furthermore, these are rare examples of

H2 complexes in nominal d2 configurations. Our initial studies concerning the synthesis

and characterization of these unique H2 complexes are reported herein.








Characterization of [Mo(NPh)(PMe3)2(H2)(o-(Me3SiN)2C6H4)] (60)

Exposure of a cold (-10C), toluene-d8 solution of [Mo(NPh)(PMe3)3

(o-(Me3SiN)2C6H4)] (52) to an atmosphere of molecular hydrogen (ca. 1 atm) resulted in

a rapid color change from purple to green. The H and 31P NMR spectra of this solution

indicate that 52 and the H2 complex [Mo(NPh)(PMe3)2(H2)(o-(Me3SiN)2C6H4)] (60) were

present in solution in a 1:3 ratio at -50C (Figure 3-2). When allowed to warm to 30C,

60 underwent an additional transformation to give a purple solution of [Mo(NPh)(PMe3)3

(o-(Me3SiN)(NH)C6H4)] (53) over a 1 h period. Thus, the net reaction of 52 with H2 is

addition of H2 across the Si-N bond of the diamide ligand. This addition is, to our

knowledge, unprecedented in the literature.


Ph Ph
/ /
Me3Si N Me3Si N
No- I I I,,,PMe3 M N13 I N,, PMe3
N'-x1"^^N-.1' 1-'P^
Mo Mo- / ^
SPMe3 +H2, -PMe3- MO '/H
Me3P N r~3 Me3P N H
// SiMe3 / SiMe3

52 60


Ph I h (30 C)
Me3Si, N +PMe3
/ I, II ,, PMe3
H-Si-- + M
\ \I PMe3
5e3PN
H
53


+ PMe3


Figure 3-2. Generation and reactivity of H2 complex 60

Dihydrogen complex 60 is stable for days under an atmosphere of molecular

hydrogen (1 atm) at -20C but will convert to 53 at this temperature over a period of








several weeks. Attempted isolation of 60 by concentration of toluene solutions in vacuo

resulted in isolation of the starting material (52). Although efforts to scavenge PMe3 with

tris(pentafluorophenyl)borane93 were successful, 60 remained reactive under these

conditions, generating HSiMe3 and unidentified metal-containing products. Presumably

lack of phosphine in solution compromises the formation of 53, and the (bis)phosphine

analogue of 53 is not stable under these conditions. Complex 60 can be observed in

degassed (H2 free), phosphine-scavenged solutions by IH NMR spectroscopy, but it

decomposes rapidly.

The conversion of 60 to 53 is shown as an irreversible step in Figure 3-2. This was

confirmed by reaction of the deuterated analogue of 53 (53 D) with HSiMe3 (Figure 3-3).

At 20C no H/D exchange was observed between the N-D and Si-H sites by 'H NMR

spectroscopy, demonstrating that this step is irreversible.

Ph
/
Me3Si, N
N", I I ,, PMe3
N+ Si no H/D exchange
p PMe3 H
Me3P PMe3 H
D
53 D

Figure 3-3. No H/D exchange between N-D and Si-H sites at 20C

A characteristic resonance in the 'H NMR spectrum of 60 is a broad triplet at 3.59

ppm (2p-H = 28 Hz, C7D8, -20C) (Figure 3-4). The dramatically different chemical shift

of these protons relative to the hydride protons of the tungsten analogue, [W(NPh)

(PMe3)2H2(o-(Me3SiN)2C6H4)],94 (9.26 ppm, br, t, 2Jp.H = 40 Hz, 18C, C6D6) prompted

us to investigate the metal-hydrogen interaction in more detail.








The H-D isotopomer of 60, 60D, was generated in order to determine dHH from

JH-D as discussed above. The isotopomer (60D) displays both coupling with

phosphorous (t, 1:2:1, 2Jp.H = 28 Hz) and deuterium (t, 1:1:1, 1JH-D = 15 Hz, C7D8, -20C)

(Figure 3-4). Using the IJH-D of 15 Hz in Equation 3-1 gives a value of 1.17 A for dHH,

which is typical of a stretched-H2 complex. A comparable value of 1.19 A is calculated

using Equation 3-2.



.59

r2 8.2 60






3.72 3.68 3.64 3.60 3.56 3.52 3.48 ppm


;.56

27.8
15.0 60D





3.70 3.66 3.62 3.58 3.54 3.50 3.46 ppm


Figure 3-4. Spectra ('H NMR) of the H2 and H-D ligands of 60 and 60D (-20C)

The determination of dHH using a TI(min) analysis is consistent with dHH as

determined via IJH-D. A plot of T, vs. temperature for 60 yields a TI(min) of approximately

36.99 ms, which is normal for an H2 complex (Figure 3-5). Using Equation 3-3, a value

of 1.19 A for dHH is calculated. Due to the good agreement between dHH, as determined








by 'JH.-D, and Ti(min), the H2 ligand in 60 is most likely slowly rotating and is significantly

stretched.
In TI vs. K"'
5


4.5


In T, 4


3.5 --- ---
3.5


3 --- .- .-....--- .
0.0037 0.0040 0.0041 0.0043 0.0047 0.0052
K'-1
Figure 3-5. Relaxation time vs. temperature plot for 60, In T1 vs. K'-

Two mechanisms can be proposed to account for the transformation of 60 to 53.

These mechanisms will be presented separately. Both mechanisms will be presented with

H-H(D) as the reactive molecule in order to represent reactions with H2 and H-D gas (D

will be written in bold for this discussion only). The D will always be placed in the

nonbridging position, as is expected from zero point energy arguments.95 In the first

mechanism, HSiMe3 is eliminated giving bent-imido 62 (Figure 3-6). The bent imido can

be converted to 53 by H(D) migration and coordination of PMe3. The direct elimination

of HSiMe3 can proceed through the five-centered transition state 61.

In the second mechanism (Figure 3-7), initial proton migration to an amide,

through a four-centered transition state (63), gives rise to 64. Elimination of H(D)SiMe3

then takes place through another four-centered species (65) ultimately giving 53.

When 52 is treated with deuterium hydride gas (H-D), an uneven distribution of H

and D is observed in the products, as shown in Figure 3-8. The H atoms prefer the N site








of 53 and the D atoms prefer the Si site of SiMe3. This H/D distribution corresponds to

an H/D isotope effect of approximately 2.0. The mechanism shown in Figure 3-7 is the

most consistent with this isotope effect, as it places more H at the N site while the

mechanism in Figure 3-6 does the opposite. These mechanisms assume that the rate

determining steps involve the initial proton transfers (61 to 62 in Figure 3-6 and 63 to 64

in Figure 3-7) and that all other steps are irreversible.


Ph
/
Me3Si N
N, ,,PMe3
/ I 'S H(D)
Me3P N H

S\SiMe3

60


Ph
/
Me3Si, N
N/, MI'OPMe3
'M6..
j: "'H(D)

'Si

61 -




Ph /
Me3Si N
I I\PMe3
M6
N,,.. PMe3


f/ VH(D)

53


Me3Si,


62
+
H-SiMe3


' +PMe3
H migration


Figure 3-6. Potential mechanism for the formation of 53

The mechanism presented in Figure 3-7 is also favored over that in Figure 3-6

based on the known reactivity of dihydrogen complexes. The H2 ligand protons are

known to become acidic once coordinated to a metal center (pKa's of 15-20 for neutral

complexes).82 The H-H(D) ligand in 60 could protonate an amido ligand giving rise to

64. Proton transfer from bound H2 to nitrogen-containing ancillary ligands has been








proposed in the literature.92'97 Elimination of H(D)SiMe3 can then occur as shown in

Figure 3-7. The mechanism shown in Figure 3-6 involves the formation of the

bent-imido species 62. Although bent imides are known, this species should be of high

energy and thus it is not very favorable.


Ph
/
Me3Si N
N,,,. I.,,PMe3
Mo
d I\ *1zH(D)
/ e3PN H
\ SiMe3


60


Ph
/
MeaSi N
N/1- IMI ,,PMe3
N'Mo:6
H(D)
Me3P
n/-N-
SiMe3
63


Ph
/
Me3Si, N
N 6I,,,,PMe3
.Mo"
SMe/ H(D)


" Me3Si
64
/


MeSi


Ph
/
N


N, III ,,PMe3 H(D)SiMe3 elimination
M .|p + PMe3
Me3PNN PMe3

H

53


Figure 3-7. Potential mechanism for the formation of 53


Ph
/
Me3Si N
Nh,, Ill ,,PMe3
Mo,
N, PMe3
(3P D
H(D)


(D)H-SiMe3


2H: ID 1H : 2D

Figure 3-8. H and D do not partition equally between N and Si sites








Characterization of [Mo(NPh)(PMe2Ph)2(H2)(o-(Me3SiN)2C6H4)] (66)

Complex 55 reacted with dihydrogen gas to give [Mo(NPh)(PMe2Ph)2(H2)

(o-(Me3SiN)2C6H4)] (66) (Figure 3-9). At 20C, 66 converted to 67 with loss of HSiMe3.

This reactivity is similar to that observed with H2 complex 60. The main difference

between the formation of 60 and 66 involves the phosphine starting materials. The

formation of 60 from 52 involves initial loss of PMe3, and at -50C an equilibrium

between 52 and 60 exists. Generation of 66 does not require loss of phosphine from 55,

as 55 is already coordinatively unsaturated. Furthermore, in reactions where 55 was

treated with H2, 66 was observed as the only metal species in solution by 'H and 31P

NMR spectroscopy.

The expanded region of the H2 and H-D ligand resonances in the 'H NMR spectra

of 66 and its H-D isotopomer, 66D, are shown in Figure 3-10 (C7D8, -20C). The H2

ligand resonance for 66 appears as a very broad triplet centered at 3.46 ppm in the 'H

NMR spectrum. A broad, five-line resonance is observed for the H-D ligand of 66D,

centered at 3.46 ppm. The isotopomer (66D) displays both coupling to phosphorous (t,

1:2:1, 2Jp.H = 21 Hz) and deuterium (t, 1:1:1, IJH-D = 21 Hz, C7D8, -20C) (Figure 3-10).

The identical 2Jp.H and IJH-D for 66D produce the 1:3:4:3:1 multiple observed in the 'H

NMR spectrum. Using Equation 3-1, a dHH value of 1.07 A is found for 66, and a value

of 1.09 A is calculated using Equation 3-2.

A T(min) analysis of 66 gives a dHH value of 1.10 A (Figure 3-11). This value is in

excellent agreement with the value found through use of IJH-D, indicating that the H2

ligand is slowly rotating.








Ph
/
N
Me3Si\ III IPMe2Ph
N-MO
N PMe2Ph
SSiMe3

55


H2


Ph
/
Me3Si, N
N. I 1,,PMe2Ph
Mo

I/ 'PMe2Ph
/ N 2H
(/ H


Ph
/
Me3Si N
T. II ,,PMeEPh
PhMt2P / H
N
\! \ SiMe3
66


H
+ Si
/1\


67

Figure 3-9. Generation and reactivity of H2 complex 66


I .' I I I I I I I I I. I. I I I I I I I .I I .'' 1I''I''1 1 'I ..I I II II 1' I .T'r1 '
3.75 3.65 3.55 3.45 3.35 3.25 ppm

3.46


20.9


66D


I I' I' I. I' II .I.. I. I' .. I ...III. I I I I l'I'I I ... I 'III I '-
3.75 3.65 3.55 3.45 3.35 3.25 ppm

Figure 3-10. Spectra ('H NMR) of the H2 and H-D ligands of 66 and 66D (-20C)





65



3.7

3.6 In vs. K-'

3.5
3.4
In T\ I
3.3

3.2

3.1

3
0.0047 0.0044 0.0041 0.0039 0.0037 0.0036 0.0033
K-1

Figure 3-11. Relaxation time vs. temperature plot for 66, In T, vs. K-'

Bonding in Molybdenum Imido-Diamido Stretched Dihydrogen Complexes

A general bonding scenario for H2 complexes 60 and 66 is shown in Figure 3-12.

The tn* MOs involved with metal-imido anti-bonding are shown at the highest energy in

Figure 3-12. The bonding combinations of these MOs are much lower in energy. The

metal-H2 interaction is shown at an intermediate energy. This interaction involves back

bonding from the metal dxy atomic orbital to the H2 &* atomic orbital. The back bonding

interaction is primarily responsible for lengthening the H-H bond due to population of the

H2 a* atomic orbital. If this is true, increasing back bonding by increasing the electron

density at the metal center should lengthen the H-H bond.

The dHH of 1.19 A for 60 is longer than the dHH of 1.09 A for 66 (using Equation

3-2). This difference in bond length reflects the difference in electron density at the

metal center. Since PMe2Ph is less electron donating than PMe3, dHH in 66 should be

shorter than dHH in 60, as there is less back bonding to the H2 &* orbital in 66.








Z


iii n* dxz,dyz
Y %Mo



Ph
/
Me3Si N dxy + H2 G*
I 1 ,,\PMe2X dxy+H2*
N ^' Mo
IN m H
XMe2P IH
// N\^ SiMe3I
/SiMe3 E E MEN nT-bonding

60, X = Me
66, X = Ph

Figure 3-12. Bonding scenario for H2 complexes 60 and 66

Reaction of 50 and 57 with Dihydrogen Gas

When samples of 50 and 57 were treated with H2 gas in NMR tubes (C6D6) no

initial change in the sample composition was observed by 'H NMR spectroscopy. The

samples did react with H2 gas over 1 week, in each case generating HSiMe3 and metal

complex (Figure 3-13). We have not fully characterized the metal-containing species 68

or 69 but have assigned tentative structures because of the similarities in 'H NMR spectra

with 53 and 67. Presumably, the less electron donating phosphite ligands in 50 hinder

formation of significant amounts of H2 complex in solution when 50 is treated with H2

gas. We propose that small concentrations of H2 complex exist in solution, allowing for

formation of HSiMe3 and 68 after one week of reaction time.

Small concentrations of H2 complex must also be present in solution when 57 is

treated with H2 gas in order to account for the formation of HSiMe3. The cis

coordination of the DMPE ligand may inhibit the large-scale formation of a species with








trans phosphines capable of coordinating H2. A possible H2 complex of this system

could be the "arm off' complex (70) shown in Figure 3-14. The chelate effect of DMPE

would certainly curtail the formation of large amounts of 70.


Ph
/
Me3Si, N
,, OI)IP I oP(OMe)3


\ Me3Si

50


Ph
/
Me3Si N
N III ,%P(OMe)3
H2 (ca. l5psi) N. 1MO' 3
-- HSiMe3 + (MeO)3P P(OMe)3

H

68


H2 (ca. 15psi)
---- HSiMe3 +


Figure 3-13. Reaction of 50 and 57 with Dihydrogen Gas


_rPMe2


70

Figure 3-14. Possible H2 complex in the DMPE system








Reaction of 52 with Phenylsilane and Diphenylsilane

Complex 52 reacted with phenylsilane and diphenylsilane in C6D6. The major

products of these reactions at 20C are cyclic silyl amines 71 and 72 (Figure 3-15). The

metal-containing products in these reactions have not yet been identified. The structures

of compounds 71 and 72 have been tentatively assigned using the following data. Cyclic

71 has been isolated and characterized by 'H NMR and mass spectroscopy. We propose

that 72 exists based on 'H NMNR data only. Further experiments to positively identify

these materials, especially 72, will be required.

When 52 reacted with H3SiPh at low temperature (-30C), 72 formed along with a

substantial amount of the dihydrogen complex 60. Complex 60 decomposed to 53 and

HSiMe3 when left to stand at 20C. The exact nature of the mechanism that generates 60

in this fashion is not known. A dehydrocoupling pathway does not seem to be active, as

the expected silicon-based dehydrocoupling products (for example: PhSi(H)2Si(H)2Ph)

are not observed by 'H NMR.96

Presumably, thermodynamics drives the formation of 72 when 52 is treated with

H3SiPh at 20C. In contrast, low temperatures favor the formation of 60, the kinetic

product of this reaction sequence. Very small amounts of HSiMe3 and 53 are observed in

the reaction mixture after treatment of 52 with H2SiPh2 at 20C. This reaction must be

explored at lower temperature in the future.

Summary

Reactions of molybdenum imido-diamido phosphine adducts of PMe3 (52) and

PMe2Ph (55) with CO gas were discussed in Chapter 2. In the case of 52 CO displaces

PMe3 to give a carbonyl complex, whereas CO coordinates to coordinatively unsaturated

55 to give the appropriate metal carbonyl. In this chapter we report that the phosphine








complexes 52 and 55 react with dihydrogen gas to give stretched dihydrogen complexes

60 and 66, respectively. The formation of 60 from 52 is interesting in that a PMe3 ligand

is displaced from the metal center by a much weaker H2 ligand. Steric crowding around

the metal center may help influence PMe3 dissociation from 52, allowing for the

generation of a (bis)phosphine complex that can coordinate H2. Displacement of

phosphine by H2 is a rare process, and to our knowledge, only one other example has

been reported in the literature.82

SiMe3
N> N'--Ph
/Ph NSi/ JPh
H2Si\ --N Ph
Ph Ph
Me3Si N / SiMe3
NO, ,,PMe3 71
M6
/Me3PN PMe3 SiMe3
/ // ~SiMe3 ^-
SiMe3 H3Si-Ph >N-.N H
52 SiN / Ph
:^~N
SiMe3
72
Figure 3-15. Generation of cyclic 71 and 72

We also discuss the reactivity of the dihydrogen complexes 60 and 66. These

reactions proceed by formal addition of H2 across the N-Si bond, liberating HSiMe3 and

giving metal complexes 53 and 67. While proton transfer from H2 ligands to amido and

amine ligands has been proposed in the literature92'97 and may play a role in the

mechanism of this reaction, elimination of H-SiMe3 from a metal center in this way is, to

our knowledge, unprecedented.





70

Preliminary results concerning the reaction of 52 with H2SiPh2 and H3SiPh are

reported here. Future efforts toward characterization of several products are required. In

the interim, we propose that thermodynamics drives the formation of 71 and 72 at 20C.

The dihydrogen complex formed when 52 and HaSiPh react at low temperature is most

likely a kinetic product of the system.













CHAPTER 4
SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF A MOLYBDENUM
(IV), r14-BUTADIENE COMPLEX AND l2-ALKYNE COMPLEXES

Early Transition Metal Butadiene Complexes

Low valent zirconium (0) butadiene complexes with bidentate phosphine ligands

were among the first well-characterized examples of Group 4 metal butadiene

complexes.98 The well-known, higher valent, base-free zirconocene butadiene complexes

were independently synthesized by both Erker99 and Nakamural (Figure 4-1). Among

the striking structural characteristics of these complexes is the ability of the butadiene

fragment to coordinate to the metallocene core in cis and trans-modes and the dynamic

envelope shift isomerization process associated with the cis-coordination mode.99"101

The structure and bonding of cis-butadiene complexes can vary between two

extremes, the 72 and the 72, t-designations (Figure 4-2).95'1 The bonding in n2

complexes is best described as donation of butadiene n -electron density to the metal

center. A number of n2 complexes have been characterized by X-ray crystallography,

and in these compounds the butadiene C-C bond lengths are very similar. In a2, rr-type

complexes, the butadiene ligand is considered a dianionic dialkyl, a result of considerable

back bonding. Solid-state structural studies have shown that the C(1)-C(2) and C(3)-C(4)

bond lengths are considerably longer than the C(2)-C(3) bond in a2, 7t-complexes (Figure

4-2). The substitution of the butadiene ligand and the identity and electronic structure of

the metal play a large role in dictating which structure type will be adopted. To date

there are several examples of structurally characterized Group 4 and 5 cisl01 and








trans102-butadiene metal complexes, with the cisoid conformation being the most

common.













^^ A Erker et al.

Figure 4-1. Synthesis of zirconocene butadiene complexes

C(2) C(3)
\ C(1) ^C(4)
M M
7I2 C2 7
Q Ph h
Ph Erker et al.

Figure 4-1. Synthesis of zirconocene butadiene complexes

C(2) C(3)

C(1)) C(4)
M M
7C2 2Y,7

Figure 4-2. Possible 7t2 and ar2, I structures for cis-butadiene complexes

Characteristic reactivity of Group 4 and 5 butadiene complexes involves reactions

with unsaturated substrates such as carbonyl compounds, nitriles, and alkynes.1'03 This

reactivity is typified by Cp2Zr(butadiene) where C-C coupling of the unsaturated

substrate with a terminal butadiene carbon results in metallacyclic complexes (Figure

4-3). In some cases, the interconversion of these metallacyclic compounds can be

observed experimentally. The metallacycles are generally stable, and hydrolysis

protocols are required to free useful acyclic organic products from the metal center. In

sharp contrast, later transition metals (Groups 9 and 10) catalyze the intermolecular 4+2

cycloaddition of nonactivated substrates,104 while related transition metal-catalyzed








cycloisomerization reactions constitute a rapidly developing area of research.'105 Recent

developments involving Group 4 butadiene complexes involve their applications as

catalysts in olefin polymerization reactions.106

Zr(CP)2(" ) + A=B





(CP)2Zr\ (Cp)Zr\B (CP)2Zr\
A-B AA-B
H I J
Figure 4-3. Reactivity of Cp2Zr(butadiene) with a representative unsaturated substrate

Reports concerning the synthesis and characterization of high valent Group 6

transition metal butadiene complexes are not as common as those of the earlier Groups.'07

Furthermore, reactivity of these Group 6 butadiene complexes differs from the

well-explored reaction chemistry associated with the Group 4 and 5 butadiene complexes

and the catalytic cycloisomerization reactions of the later metals.' 07

Molybdenum Imido-Diamido Butadiene Complexes

We have recently prepared a butadiene complex of our molybdenum

imido-diamido system. The synthesis, structural characterization, and reactivity of this

monomeric, diamagnetic, molybdenum (IV)-cis-butadiene complex,

[(Mo(NPh)-rl4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) is discussed below. 108 To

our knowledge, this is the first report of a molybdenum complex of this nature. While

structurally similar to other molybdenum butadiene complexes, the reactivity of 73

departs from these showing similarities to both early and late transition metal reactivity.







The synthesis of a related imido-diamido methylvinyl ketone (MVK) complex is also
discussed here.
Synthesis and Characterization of Tr4-Butadiene Complex
[(Mo(NPh)-r14-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)I (73)
Treatment of a pentane solution of 37 or 38 with molecular butadiene gave the

i 4-cis-butadiene complex [(Mo(NPh)-n4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) in
good yield (Figure 4-4). Decomposition of 73 occurred within 4 h at 20C, affording an
intractable mixture, as determined by 1H NMR spectroscopy. When kept at -30 C in the
solid-state, 73 did not decompose appreciably over several months, as noted by H NMR
spectroscopy. An X-ray crystallographic study was carried out on a single crystal of 73
grown from a -30C solution ofpentane/methylene chloride. The crystal data and details
of the structure refinement are summarized in Table 4-1.
Phh
Ph /Ph
N N R,
Me3Sl N-Mo Butadiene gas Me3SijN /-vA + 2
M3 N H R2 --N +
Me3Sir-N' 0-/ ------ N / ^
3 N H Pentane RT Me3Si-N /
// "H/ H HH

R = Me, R2 = H (37), 73
R, = R2 = Me (38)

Figure 4-4. Synthesis of [(Mo(NPh)- q4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73)
The butadiene complex crystallizes in a monoclinic unit cell with one molecule of
methylene chloride. The molecular structure of 73, accompanied by selected bond
lengths and angles, is shown in Figure 4-5. The butadiene fragment clearly adopts a
cis-arrangement when bound to the metal center. The metal to terminal butadiene carbon
distances of 2.254(3) A (Mo-C(19)) and 2.257(2) A (Mo-C(22)) and the Mo-C(20) and








2
Mo-C(21) bond lengths of 2.336(2) A and 2.355(2) A, respectively, support a t2,

r4-butadiene bonding motif for 73. Other molybdenum butadiene complexes adopt

similar bonding modes.107 Within the butadiene fragment, the similar C(19)-C(20),

C(20)-C(21), and C(21 I)-C(22) bond lengths of 1.401(4) A, 1.397(4) A, and 1.405(4) A,

respectively, also support a t 2, a4-bonding mode for 73. The Mo-N(1) length of

1.7517(19) A is typical of a Mo-N triple-bond interaction and is comparable to the

Mo-N(l1) lengths in similar complexes (see Chapter 2). 11,27,47

It is common practice to use the 'JC.H coupling constants to determine the relative

degree of sp2- sp3 hybridization of the coordinated diene carbons in metal butadiene

complexes. By determining the relative degree of hybridization of the diene carbon

atoms, the structure, in terms of butadiene bonding, can be assigned a position

somewhere between the two extremes 7t2 or a 7t. Using Newton's semi-empirical

rule, 09 it is possible to calculate the % s character of carbon atoms in the dienes and

hence the hybridization. The value of n for the carbons at diene termini reaches 2.8-2.9

(132-128 Hz) when the molecule adopts a a2, i-type structure while the value is in the

range of 2.1-2.3 (165-154 Hz) in the case of a n2-complex.110 We have assigned the

observed triplet in the 13C NMR spectrum of 73 at 75.0 ppm to the terminal butadiene

carbons, and the observed 1JC-H 158 Hz coupling constant is in good agreement with the

formulation of 73 as a E2-butadiene complex. In light of these results regarding 73, the

formal oxidation state at the metal center is best represented by Mo(IV).

Analogous tungsten imido-diamido complexes have been prepared in our

laboratories. These complexes are better described as adopting the a2, it-butadiene

bonding mode. This trend has been observed for Group 4 butadiene species where








zirconium complexes prefer 7t2-type bonding, while hafnium complexes prefer a2, n type

bonding. This is as expected and follows the general trend that metal-carbon a-bonds of

third row transition metal complexes are stronger than the corresponding bonds in the

isostructural second row complexes. l00(b), 112


C5 QC



C6


C16



C13


C8

C9 '


C15


C22


C12


C14


Thermal ellipsoid plot of 73 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(l) 1.7517(19), Mo-N(2) 2.0556(17),
Mo-N(3) 2.0536(18), Mo-C(19) 2.254(3), Mo-C(20) 2.336(2), Mo-C(21)
2.355(2), Mo-C(22) 2.257(2), C(19)-C(20) 1.401(4), C(20)-C(21) 1.397(4),
C(21)-C(22) 1.405(4), C(19)-C(20)-C(21) 124.4(2), C(20)-C(21)-C(22)
123.3(2), C(l1)-N(1l)-Mo 147.27(17), N(3)-Mo-N(2) 78.24(7).


Figure 4-5.









Table 4-1. X-ray data for crystal structures 73, 74, and 78
73 74 78
Chemical formula C22H33N3MoSi2'CH2Cl2 C26H39N3MoSi2 C22H33N3MoOSi2
Formula weight 576.56 545.72 507.63
Crystal system Monoclinic Monoclinic Monoclinic
Space group P2 i/n P21/c P2 i/n
l(Mo-Ka) (mm-) 0.775 0.590 0.641
a (A) 11.9736(6) 16.031(1) 10.0648(5)
b (A) 15.8844(8) 10.0300(8) 17.0457(9)
c (A) 14.5066(7) 16.906(1) 14.4866(8)
f,() 95.324(1) 93.351(1) 90.371(1)
Vc (A3) 2747.2(2) 2713.7(4) 2485.3(2)
Z 4 4 4

)max 27.50 27.50 27.50
Total reflections 16414 19246 16938
Uniq. reflections 6282 6216 5672
R(int) 0.0434 0.0638 0.0250
R [I 2o(j() data]' 0.0307 0.0356 0.0228
WR2 (all data)c 0.0815 0.0947 0.0616
Larg. diff. peak, hole 0.365, -0.425 0.582, -0.672 0.339, -0.291


A) at 173 K.b R1 = FJ-I


a Obtained with monochromatic Mo Kao radiation (X = 0.71073
FjlI/FJ. cwR2 = {[w(Fo2 F 2)2/K[w(Fo2)2]} 1/2.








Reactivity of [(Mo(NPh)-T14-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) with
2-Butyne

The reactivity of 73 with 1.0 or 2.0 equiv of 2-butyne was explored. Proton NMR

spectra of these reaction mixtures revealed the formation of two intermediates that

disappeared within 30 min at 20C, giving rise to the final products, as outlined in Figure

4-6. Reaction of 73 with 1.0 equiv of 2-butyne afforded the molybdenum

2,3-dimethyl-1,3-cyclohexadiene complex (74), as determined by 'H NMR spectroscopy,

while reaction with 2.0 equiv of 2-butyne gave 1,2-dimethyl-l,4-cyclohexadiene and the

molybdenum rj2-alkyne complex, [(Mo(NPh)-Ti 2-(MeCCMe)(o-(Me3SiN)2C6H4)] (75),

according to 'H NMR spectroscopy (this alkyne complex has been synthesized

independently, vide infra). Complex 74 was prepared independently by treatment of 38

with excess 1,2-dimethyl-l,4-cyclohexadiene (Figure 4-6). In addition, the

2,3-dimethyl-1,3-cyclohexadiene ligand in 74 was not displaced by 2-butyne at room

temperature, as observed by 'H NMR spectroscopy.

The identity of 74 was confirmed by X-ray crystal structure analysis, and the

thermal ellipsoid plot is shown in Figure 4-7. The crystal data and details of the structure

refinement are summarized in Table 4-1. In 74 the metal is bound to the

2,3-dimethyl-l,3-cyclohexadiene in an ri -mode reminiscent of 73. The C-C distances

between C(21)-C(20), C(20)-C(19), and C(19)-C(24) in 74 (1.418(3) A, 1.418(3) A, and

1.405(3) A respectively), as well as the metal-carbon bond lengths, are similar to the

corresponding distances in 73. The Mo-N(1) distance of 1.7686(18) A is consistent with

a molybdenum nitrogen triple-bond interaction. The Mo-N(2) and N(3) amide distances

of 2.0561(18) A and 2.0492(17) A, respectively, are within the range expected for Mo-N

single bonds.27'46'51'56'91 Complex 74 is stable in solution at 20C for weeks. We attribute





79

the difference in stabilities between 73 and 74 in part to steric crowding around the metal

center in 74.


+


Figure 4-6. Reactivity of [(Mo(NPh)-r14-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73)
with 2-butyne

When 73 was treated with 1.0 equiv of 2-butyne at -20 C, the accumulation of two

metal-containing species was observed by 'H NMR spectroscopy over 24 h. These

species are the fleeting intermediates observed during this reaction at 20C and are stable

at -20 C for extended periods (over 2 days). An array of two-dimensional NMR

spectroscopic techniques was used to elucidate the structures of these intermediates. The

intermediates consist of two isomeric complexes present in a 4:1 ratio. The major








intermediate has been characterized as [syn-(Mo(NPh)(C(Me)=C(Me)CH2CHCHCH2)

(o-(Me3SiN)2C6H4)] (76a), a syn-13-allyl metallacyclic system.

C3




,C2
C5


C6
C18 N

C17026

C15 C20 C25

C8 M ,O --










Figure 4-7. Thermal ellipsoid plot of 74 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (): Mo-N(1) 1.7686(18), Mo-N(2) 2.0561 (18),
Mo-N(3) 2.0492(17), Mo-C(21 ) 2.258(2), Mo-C(20) 2.342(2), Mo-C(19)
2.402 (2), Mo-C(24) 2.274(2), C(21)-C(20) 1.418(3), C(20)-C(19) 1.418(3),






C(24)-C(19) 1.405(3), C(24)-C(23) 1.518(3), C(23)-C(22) 1.542(3),
024

C 22
C12'

013


Figure 4-7. Thermal ellipsoid plot of 74 (50% probability thermal ellipsoids). Selected
bond lengths (A) and angles (0): Mo-N(1) 1.7686(18), Mo-N(2) 2.0561(18),
Mo-N(3) 2.0492(17), Mo-C(21) 2.258(2), Mo-C(20) 2.342(2), Mo-C(19)
2.402 (2), Mo-C(24) 2.274(2), C(21I)-C(20) 1.418(3), C(20)-C(1 9) 1.418(3),
C(24)-C(1 9) 1.405(3), C(24)-C(23) 1.518(3), C(23)-C(22) 1.542(3),
C(22)-C(21) 1.525(3), C(l1)-N(l)-Mo 142.47(16).

The results of the structural elucidation study are presented in Figure 4-8. The

metallacycle Ha-C and Hb-C 1Jc.-H of ca. 160 Hz are consistent with an sp2 hybridization

of the carbon resonance at 76.8 ppm. This along with the lack of resolved coupling

between Ha and Hb, support the existence of an r3-allyl functionality. The chemical








shifts of the remaining allyl proton and carbon nuclei also support the allyl fragment in

76a. The sequence of the protons which display multiplets was seen in the DQCOSY

spectrum. NOe's between the methyl at 1.58 ppm and the methylene protons at 2.59 ppm

and 2.67 ppm identified it as the one proximal to the methylene group. The protonated

carbons were assigned to the corresponding protons using a GHMQC spectrum. The

GHMBC spectrum displayed long-range couplings between the quaternary carbons at

177.5 ppm and 154.7 ppm and the protons of both the methylene and the methyl groups,

which confirm the metallacycle fragment. The relative sizes of the nOe's place Hb, Hd,

and He on one side of the ring and Ha, He, and Hf on the other side. In 76a Ha, He, and Hf

showed nOe's to aromatic proton Hg. We state that Hg is an ortho phenyl imido proton

and not a phenylene proton because in the DQCOSY spectrum they displayed a phenyl

coupling pattern (7.15 ppm (Hg) 6.98 ppm 6.79 ppm). Therefore He occupies a syn

relationship with respect to the phenyl imido group. This intermediate metallacyclic

n-allyl system most likely arises from C-C coupling at the conjugated diene terminus.

The minor species also consists of a metallacyclic t-allyl system,

[anti-(Mo(NPh)(C(Me)=C(Me)CH2CHCHCH2)(o-(Me3SiN)2C6H4)] (76b), that is very

similar to 76a (Figure 4-9). Metallacycle 76b differs from 76a in that in 76b the central

allyl proton Hc is anti with respect to the phenyl imido group as revealed by the nOe's

between Hg at 7.19 ppm and Ha, Ha, and Hf. The details of the structural elucidation of

76b are similar to those of 76a, however the low concentration of 76b in solution

prevented the assignment of the 13C chemical shifts of the metallacycle fragment from the

GHMQC and GHMBC spectra. The NOESY spectrum did not display any chemical

exchange peaks between 76a and 76b at -20 C.








177.5, 154.7


3.27 4.63
Figure 4-8. Structure of intermediate (76a), showing selected carbon (underlined) and
proton chemical shifts, assigned by NMR spectroscopy. The diamido
ligand has been omitted for clarity.



SHg 7.19

N 4.97 CH3 2 28
3.30 Ha "\\\ CH3 1.63
Mo -^
3.37 Hb,-29

He He 2.80
6.01
Figure 4-9. Structure of intermediate (76b), showing selected proton chemical shifts,
assigned by NMR spectroscopy. The diamido ligand has been omitted for
clarity.

There has been extensive mechanistic work by Erker et al. and Nakamura et al. on

the reactivity of Group 4 metallocene derivatives of 1,3-butadienes with unsaturated

substrates. The pathway favored for such reactions involves coupling of the unsaturated

moiety with one of the diene double bonds, producing a 2-vinylmetallacyclopentane

species (H) (Figure 4-3). This species can then isomerize as shown in Figure 4-3.







It thus seems reasonable to propose that 73 reacts with 2-butyne to give 76e, which
does not accumulate to any detectable levels by 'H NMR spectroscopy (Figure 4-10).
Intermediate 76e rapidly rearranges, affording 76a and 76b, which can be observed at
low temperature. At 20C 76a, 76b, or some combination of the two most likely
rearrange to form 76f, which rapidly generates 76g via reductive elimination.
Isomerization of 76g ultimately results in the formation of 74. The production of 74 from
treatment of olefin complex 38 with excess 1,2-dimethyl-1,4-cyclohexadiene (Figure 4-6)
gives evidence supporting the formation of 76g in the proposed mechanism.
10
-i IL.W/L
Mo/ M
Mo4Mo 1.0'-Mo\ --- Mo

73
76aand76b 76f
76e /

Mo- ---M---Mo- j 76g
Moa r\
H H

H
I i^ r II f
MoT- Mo

74 75
Figure 4-10. Proposed mechanism for reaction of 73 with 2-butyne. Ancillary ligands
have been omitted for clarity.
The difference in product distribution when 2.0 equiv of 2-butyne reacts with 73 is
consistent with the proposed mechanism in Figure 4-10. Excess 2-butyne competes for
the metal center with the 1,2-dimethyl-1,4-cyclohexadiene ligand in 76g, liberating free







1,2-dimethyl-l ,4-cyclohexadiene and forming 75 as the metal-containing product. In the
absence of excess 2-butyne isomerization of 76g to 74 occurs.

Reactivity of [(Mo(NPh)-ri4-(H2C=CHCH=CH2)(o-(Me3SiN)2C6H4)] (73) with
Acetone: Formation of [(Mo(NPh)(CH2CH=CHCH2C(Me)20)(o-(Me3SiN)2C6H4)]
(77)
When a green C6D6 solution of 73 was treated with 1.0 equiv of acetone, a red
solution containing 77 was generated (Figure 4-11). Organometallic, metallacycle 77
was characterized by an array of NMR spectroscopic techniques, including GHMBC,
GHMQC, TOCSY, NOESY, and COSY. The results of the structural elucidation are
shown in Figure 4-12.
Ph Ph
/ /
N N
Me3S). Mo
Me3Si M 1.0 Acetone Me3Si-N I
Me3Si N C6D6 RT MeSi N


73 77

Figure 4-11. Formation of [(Mo(NPh)(CH2CH=CHCH2C(Me)20)(o-(Me3SiN)2C6H4)]
(77)

/ 87.0
1.37, 32.1
N H3/C CH31.08, 27.4
N /C34
0.41, 1.8Me3Si II110o- ,
M0.41,"Me3Si 1.96,2.11,44.2
N'"7
0.42, 2.7Me3Si-/N 4.57, 130.2
3.62,70.8 \5.78, 134.1


Figure 4-12. Proposed structure for 77 showing selected carbon (underlined) and proton
chemical shifts, assigned by NMR spectroscopy




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ERCMXDIHJ_LZ0NYN INGEST_TIME 2014-04-30T16:44:13Z PACKAGE AA00020822_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

&217,18,1* (92/87,21 2) ',$0,'26833257(' 02/<%'(180 ,0,'2 25*$120(7$//,& &+(0,675< %\ 7+20$6 0 &$0(521 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

72 /8&,/( 0(/,66$ $1' *(55<

PAGE 3

$&.12:/('*0(176 0\ XQGHUJUDGXDWH DQG /RV $ODPRV H[SHULHQFHV VKDSHG E\ 3URIHVVRU 6 $ :HVWFRWW DQG 'U 5 7RP %DNHU UHVSHFWLYHO\ ZHUH FHUWDLQO\ PHPRUDEOH DQG ZLOO QHYHU EH IRUJRWWHQ 7KH VNLOOV OHDUQHG ZKLOH ZRUNLQJ ZLWK :HVFWFRWW DQG %DNHU KDYH VHUYHG PH WKURXJKRXW JUDGXDWH VFKRRO 7KH WLPH DQG HIIRUW WKH\ SXW IRUWK JXLGLQJ DQG KHOSLQJ PH LV HYLGHQW LQ WKH ZRUN RXWOLQHG LQ WKLV GLVVHUWDWLRQ DQG ZHUH LW QRW IRU WKHVH WZR LQGLYLGXDOV ZRXOG QHYHU KDYH FRQWLQXHG P\ HGXFDWLRQ LQ FKHPLVWU\ RQ WKH JUDGXDWH OHYHO /RV $ODPRV LV ZKHUH ILUVW PHW 3URIHVVRU -DPHV 0 %RQFHOOD ZKR ZDV YLVLWLQJ RQ VDEEDWLFDO DW WKH WLPH %DVHG RQ RXU LQWHUDFWLRQ GHFLGHG WR ZRUN IRU KLP DV D JUDGXDWH VWXGHQW DQG IROORZHG KLP EDFN WR 8) ,W ZDV DQ H[FHOOHQW GHFLVLRQ 3URIHVVRU %RQFHOOD ZLWK KLV QHYHUHQGLQJ NQRZOHGJH RI RUJDQRPHWDOOLF FKHPLVWU\ KDV EHHQ UHVSRQVLEOH IRU P\ JURZWK DV D FKHPLVW RYHU WKH ODVW ILYH \HDUV 7RJHWKHU ZH KDYH PDGH VRPH LQWHUHVWLQJ FKHPLFDO GLVFRYHULHV DQG KDYH SXEOLVKHG WKHVH UHVXOWV LQ OHDGLQJ MRXUQDOV LQ RXU ILHOG KDYH HQMR\HG WKH WLPH VSHQW ZLWK KLP 3HUKDSV RXU SDWKV ZLOO FURVV DJDLQ LQ WKH IXWXUH 'U .KDOLO $EERXG KDV PDGH JUHDW FRQWULEXWLRQV WR WKLV GLVVHUWDWLRQ +H KDV VROYHG DOO RI WKH VWUXFWXUHV UHSRUWHG KHUHLQ DQG LW ZDV DOZD\V D SOHDVXUH WR ZRUN ZLWK KLP :LWKRXW KLV KDUG ZRUN WKHUH ZRXOG EH ZLWKRXW D GRXEW IHZHU VWUXFWXUDO VWXGLHV LQ WKLV UHSRUW 2XU ZRUN ZRXOG QRW KDYH EHHQ FRPSOHWH ZLWKRXW WKH H[FHOOHQW VXSSRUW RI 'U ,RQ *KLYLULJD 2YHU WKH SDVW \HDUV ,RQ KDV WDXJKW PH D JUHDW GHDO DERXW 105 DQG KDV LQ

PAGE 4

FRQWULEXWHG WR RXU ZRUN E\ FKDUDFWHUL]LQJ VHYHUDO RUJDQRPHWDOOLF VSHFLHV ZLOO QHYHU IRUJHW WKH VHYHQFRXUVH GLQQHUV DW ,RQfV SODFH KLV JHQHURVLW\ DQG KLV KRVSLWDOLW\ MXVW ZLVK WKHUH ZHUH WLPH WR OHDUQ PRUH IURP KLP WKDQN 3URIHVVRU 0LFKDHO 6FRWW IRU DOO RI KLV KHOS RYHU WKH \HDUV DQG IRU DFFHVV WR KLV DXWRPDWLF FRIIHH PDFKLQH ZLOO DOZD\V UHPHPEHU WKH WLPH VSHQW ZLWK 7LP )ROH\ +H LV D UHPDUNDEOH LQGLYLGXDO DQG WKLQJV ZLOO QRW EH WKH VDPH ZLWKRXW KLP 7KDQNV DOVR JR WR -HII IRU KDSS\ GULQNLQJ GD\V DQG %RE 6KHOWRQ IRU VHWWLQJ XS DOO RI WKH ')7 FDOFXODWLRQV PHQWLRQHG LQ WKLV ZRUN FRXOG QRW KDYH DFFRPSOLVKHG DQ\ RI WKLV ZRUN ZLWKRXW P\ ORYLQJ SDUHQWV /XFLOH DQG *HUU\ 7KH\ KDYH VXSSRUWHG PH XQZDYHULQJO\ IRU WKH ODVW \HDUV QHYHU DVNLQJ IRU DQ\WKLQJ LQ UHWXUQ +DG LW QRW EHHQ IRU WKHLU HQFRXUDJHPHQW FRXOG QHYHU KDYH ODVWHG GR QRW NQRZ ZKDW ZRXOG KDYH GRQH ZLWKRXW WKHP ORYH WKHP ERWK ZLWK DOO RI P\ KHDUW +DG QRW PDGH WKLV MRXUQH\ WR DQG WKURXJK JUDGXDWH VFKRRO ZRXOG QHYHU KDYH PHW 0HOLVVD 6KH DORQH KDV PDGH WKLV H[SHULHQFH ZRUWKZKLOH DQG KDV JLYHQ P\ OLIH D QHZ PHDQLQJ +HU VWUHQJWK ORYH DQG VXSSRUW KDYH KHOSHG PH WKURXJK GLIILFXOW WLPHV ,W KDV RIWHQ VHHPHG OLNH WKH ZRUOG ZDV WU\LQJ WR NHHS XV DSDUW EXW EHOLHYH WKDW GHVWLQ\ EURXJKW XV WRJHWKHU DQG WRJHWKHU ZH ZLOO UHPDLQ KDYH PLVVHG KHU GHDUO\ VLQFH KHU JUDGXDWLRQ DQG LW LV DV LI D SDUW RI PH OHIW ZLWK KHU %XW ZH ZLOO VRRQ EH WRJHWKHU DJDLQ ,9

PAGE 5

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL /,67 2) 7$%/(6 L[ /,67 2) ),*85(6 [ $%675$&7 [LY &+$37(5 0(7$/ ,0,'(6 $1' $0,'(6 1LWURJHQ 'RQRU%DVHG /LJDQGV LQ (DUO\ 0HWDO &KHPLVWU\ ,PLGR /LJDQGV $PLGR /LJDQGV 5HDFWLYH ,PLGR'LDPLGR &RPSOH[HV *URXS LPLGRGLDPLGR FRPSOH[HV *URXS LPLGRGLDPLGR FRPSOH[HV 6FRSH RI WKH 'LVVHUWDWLRQ 6<17+(6,6 2) /(:,6 %$6(67$%,/,=(' 02/<%'(180 &203/(;(6 6285&(6 2) 5($&7,9( 02/<%'(180,9f *HQHUDWLRQ RI ,PLGR'LDPLGR 3\ULGLQH &RPSOH[HV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf3\fR0H6L1f&+f@ f 0HWDO G YV FW (OHFWURQLF &RQILJXDWLRQ DQG 'LDPLGR /LJDQG )ROGLQJ 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13KfWUDm3\f&2fR0H6L1f&+f@ f &1 $FWLYDWLRQ RI DQ $PLGR /LJDQG 6\QWKHVLV RI ,PLGR%ULGJHG IURP *HQHUDWLRQ RI ,PLGR'LDPLGR 320Hf $GGXFWV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf320HffR0H6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf320Hff&2R0H6L1f&+f@ f *HQHUDWLRQ RI ,PLGR'LDPLGR 30H $GGXFWV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30HfR0H6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30Hf&2R0H6L1f&+f@ f *HQHUDWLRQ RI ,PLGR'LDPLGR 30H3K $GGXFWV Y

PAGE 6

6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30H3KfR0H6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30H3Kf&20H6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf'03(fR0H6L1f&+fS '03(f0R13Kf'03(fR0H6L1f&+f@ f *HQHUDWLRQ RI DQ ,PLGR'LDPLGR $UGXHQJR &DUEHQH ,PLGD]RO0R13Kf30Hf+f0H6L1f&+f@ f &KDUDFWHUL]DWLRQ RI >0R13Kf30H3Kf+fR0H6L1f&+f@ f %RQGLQJ LQ 0RO\EGHQXP ,PLGR'LDPLGR 6WUHWFKHG 'LK\GURJHQ &RPSOH[HV 5HDFWLRQ RI DQG ZLWK 'LK\GURJHQ *DV 5HDFWLRQ RI ZLWK 3KHQ\OVLODQH DQG 'LSKHQ\OVLODQH 6XPPDU\ 6<17+(6,6 &+$5$&7(5,=$7,21 $1' 5($&7,9,7< 2) $ 02/<%'(180 ,9f Uf%87$',(1( &203/(; $1' S$/.<1( &203/(;(6 (DUO\ 7UDQVLWLRQ 0HWDO %XWDGLHQH &RPSOH[HV 0RO\EGHQXP ,PLGR'LDPLGR %XWDGLHQH &RPSOH[HV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI U_%XWDGLHQH &RPSOH[ >0R13KfW+& &+&+ &+fR0H6L1f&+f@ f 5HDFWLYLW\ RI >0R13Kf7L+& &+&+ &+fR0H6L1f&+f@ f ZLWK %XW\QH 5HDFWLYLW\ RI >0R13KfUf+& &+&+ &+fR0H6L1f&+f@ f ZLWK $FHWRQH )RUPDWLRQ RI >0R13Kf&+&+ &+&+&0Hff R0H 6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI U_09. &RPSOH[ >0R13KfU_ &0Hf&+ &+fR0H6L1f&+f@ f 6XPPDU\ (DUO\ 7UDQVLWLRQ 0HWDO $ON\QH &RPSOH[HV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 0RO\EGHQXP ,PLGR'LDPLGR $ON\QH &RPSOH[HV >0R13KfU_5&&5fR0H6L1f&+f@ 5 0H f 3K f 6L0H ff 5HDFWLRQ RI >0R13KfUL3K&&3KfR0H6L1f&+f@ f ZLWK WHUW%XW\O ,VRF\DQLGH 6XPPDU\ YL

PAGE 7

5($&7,9,7< 2) 02/<%'(180 2/(),1 $1' $5(1( &203/(;(6 :,7+ 816$785$7(' 68%675$7(6 5HDFWLRQ RI 0RO\EGHQXP 2OHILQ &RPSOH[HV ZLWK ,PLQHV 7KH 6\QWKHVLV RI n\ 0RO\EGHQXP ,PLGR'LDPLGR U_ ,PLQH &RPSOH[HV 5HDFWLRQ RI 0RO\EGHQXP 2OHILQ &RPSOH[HV ZLWK $FHWRQH DQG $OGHK\GHV 7KH 6\QWKHVLV RI 2[DPHWDOODF\FORSHQWDQHV 5HDFWLYLW\ RI $UHQH &RPSOH[HV ZLWK $FHWRQH (;3(5,0(17$/ '$7$ *HQHUDO 0HWKRGV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ >0R13Kf3\fR0H6L1f&+f@ f >0R13KfWUDUD3\f&2fR0H6L1f&+f@ f ,PLGR%ULGJHG %LPHWDOOLF >0R13Kf320HffR0H6L1f&+f@ f >0R13Kf320Hff&2R0H6L1f&+f@ f >0R13Kf30HfR0H6L1f&+f@ f >0R13Kf30HfR0H6L1f1+f&+f@ f >0R13Kf30Hf&2R0H6L1f&+f@ f >0R13Kf30H3KfR0H6L1f&+f@ f >0R13Kf30H3Kf&2R0H6L1f&+f@ f >0R13Kf'03(fR0H6L1f&+f_L'03(f0R13Kf'03(f R0H6L1f&+f@ f >0R13Kf,0HVR0H6L1f&+f@ f >0R13Kf30Hf+fR0H6L1f&+f@ f >0R13Kf30H3Kf+fR0H6L1f&+f@ f >0R13Kf30H3KfR0H6L1f1+f&+f@ f >0R13Kf320HffR0H6L1f1+f&+fM f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf7L+& &+&+ &+fR0H6L1f&+f@ f >0R13KfU_GLPHWK\OOF\FORKH[DGLHQHfR0H6L1f&+f@ f >0R13KfU_GLPHWK\OOF\FORKH[DGLHQHfR0H6L1f&+f@ LQ VLWXf f ,QWHUPHGLDWHV >V\L0R13Kf&0Hf &0Hf&+&+&+&+f R0H6L1f&+f@ Df DQG >DmW0R13Kf&0Hf &0Hf &+&+&+&+fR0H6L1f&+f@ Ef >0R13Kf&+&+ &+&+&0HffR0H6L1f&+f@ f >0R13Kf\ &0Hf&+ &+fR0H6L1f&+f@ f >0R13Kf7L0H&&0HfR0H6L1f&+f@ f >0R13Kf7L3K&&3KfR0H6L1f&+f@ f >0R13KfQ0H6L&&6L0H;R0H6L1f&+f@ f 5HDFWLRQ RI >0R13KfUL3K&&3KfR0H6L1f&+f@ f ZLWK WHUW%XW\O ,VRF\DQLGH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI YLL

PAGE 8

>0R13KfWL3K1 &+f$UR0H6L1f&+f@ $U &+"20Hf f >0R13Kf7L3K1 &0Hf3KR0H6L1f&+f@ f >0R13Kf(W1&+f$U&+f$U1(WR0H6L1f&+f@ $U &+S20Hf f >0R13Kf%]1&+f$U&+f$U1%]R0H6L1f&+f@ $U &+"20Hf f >0R13Kf&0Hf&+&0HffR0H6L1f&+f@ f >0R13Kf&+f3K&+&0HffR0H6L1f&+f@ f >0R13Kf&+f3K&+&(WffR0H6L1f&+f@ f >0R13Kf&+f3K&+&&+ffR0H6L1f&+f@ f >0R13Kf&0Hf&+&+f&+ S20HffR0H6L1f&+f@ f 5HDFWLYLW\ RI $UHQH &RPSOH[HV ZLWK $FHWRQH /,67 2) 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ 9OOO

PAGE 9

/,67 2) 7$%/(6 7DEOH SDJH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG L[

PAGE 10

/,67 2) ),*85(6 )LJXUH SDJH 0HWDOLPLGR PXOWLSOHERQG LQWHUDFWLRQV *HQHUDO YDOHQFH ERQG GHVFULSWLRQ RI SRVVLEOH PHWDOLPLGR LQWHUDFWLRQV 5HSUHVHQWDWLRQ RI D JHQHULF PHWDO LLfLPLGR SQf PXOWLSOHERQGLQJ LQWHUDFWLRQ 0R13Kf6&1(Wf f &Sr7D13Kf+ f &XUUHQW PXOWLGHQWDWH DPLGR OLJDQGV LQ RUJDQRPHWDOOLF FKHPLVWU\ 6\QWKHVLV RI *URXS LPLGRGLDPLGR FRPSOH[HV 5HDFWLYLW\ RI *URXS LPLGRGLDPLGR FRPSOH[HV 0RO\EGHQXP f DQG WXQJVWHQ f LPLGRGLDPLGR GLFKORULGHV 6\QWKHVLV RI PRO\EGHQXP DQG WXQJVWHQ GLDON\O FRPSOH[HV 5HDFWLYLW\ RI WXQJVWHQ GLDON\OV ZLWK %Xn1& )RUPDWLRQ RI PRO\EGHQXP DQG WXQJVWHQ DON\OLGHQH DGGXFWV )RUPDWLRQ DQG UHDFWLYLW\ RI PHWDOODF\FOH 0RO\EGHQXP ROHILQ FRPSOH[HV DQG WKH V\QWKHVLV RI DUHQH FRPSOH[HV 6\QWKHVLV RI >0R13Kf3\fR0H6L1f&+f@ f (QODUJHG UHJLRQ RI WKH + 105 VSHFWUXP RI DW r& 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6SDFHILOOLQJ PRGHO RI 6WHULF FURZGLQJ KLQGHUV S\ULGLQH OLJDQG URWDWLRQ 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 'LDPLGR OLJDQG IROGLQJ LQ PRO\EGHQXP LPLGRGLDPLGR FRPSOH[HV

PAGE 11

/LJDQGIROGLQJ DQG D JHQHUDO RUELWDO Hf LQWHUDFWLRQ 0RGHO V\VWHPV IRU ')7 VWXGLHV RQ DQG 2SWLPL]HG JHRPHWULHV IRU D E DQG F HPSKDVL]LQJ OLJDQG IROGLQJ ,PSRUWDQW 02 LQWHUDFWLRQV IRU F ,PSRUWDQW 02 LQWHUDFWLRQ IRU F 6\QWKHVLV RI >0R13KfUPV3\f&2fR0H6L1f&+f@ f 3\ S\ULGLQH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf &1 DFWLYDWLRQ RI WKH RA0HM6L1A&)/ OLJDQG LQ 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6\QWKHVLV RI >0R13Kf320HffR0H6L1f&+f@ f 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6\QWKHVLV RI >0R13Kf30Hf&2fR0H6L1f&+f@ f 6\QWKHVLV RI >0R13K;30H3KfR0H6L1f&+f@ f 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6\QWKHVLV RI >0R13Kf30H3Kf&2R0H6L1f&+f@ f 6\QWKHVLV RI >0R13Kf'03(fR0H6L1f&+fS'03(f 0R13Kf'03(fR0H6L1f&+f@ f 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6\QWKHVLV RI >0R13Kf,0HVR0H6L1f&(/@ f 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf &DUERQ PRQR[LGH FRPSOH[HV DQG Y&2 FPf *HQHUDO ERQGLQJ LQ + FRPSOH[HV [L

PAGE 12

*HQHUDWLRQ DQG UHDFWLYLW\ RI + FRPSOH[ 1R +' H[FKDQJH EHWZHHQ 1' DQG 6L+ VLWHV DW r& 6SHFWUD n+ 105f RI WKH + DQG +' OLJDQGV RI DQG r&f 5HOD[DWLRQ WLPH YV WHPSHUDWXUH SORW IRU ,Q 7? YV .n 3RWHQWLDO PHFKDQLVP IRU WKH IRUPDWLRQ RI 3RWHQWLDO PHFKDQLVP IRU WKH IRUPDWLRQ RI + DQG GR QRW SDUWLWLRQ HTXDOO\ EHWZHHQ 1 DQG 6L VLWHV *HQHUDWLRQ DQG UHDFWLYLW\ RI + FRPSOH[ 6SHFWUD n+ 105f RI WKH + DQG +' OLJDQGV RI DQG r&f 5HOD[DWLRQ WLPH YV WHPSHUDWXUH SORW IRU ,Q 7? YV .n %RQGLQJ VFHQDULR IRU + FRPSOH[HV DQG 5HDFWLRQ RI DQG ZLWK 'LK\GURJHQ *DV 3RVVLEOH + FRPSOH[ LQ WKH '03( V\VWHP *HQHUDWLRQ RI F\FOLF DQG 6\QWKHVLV RI ]LUFRQRFHQH EXWDGLHQH FRPSOH[HV 3RVVLEOH W DQG DQ VWUXFWXUHV IRU FVEXWDGLHQH FRPSOH[HV 5HDFWLYLW\ RI &S=UEXWDGLHQHf ZLWK D UHSUHVHQWDWLYH XQVDWXUDWHG VXEVWUDWH 6\QWKHVLV RI >0R13KfU_+& &+&+ &+fR0H6L1f&+f@ f 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 5HDFWLYLW\ RI >0R13KfU_+& &+&+ &+fR0H6L1f&+f@ f ZLWK EXW\QH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6WUXFWXUH RI LQWHUPHGLDWH Df VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ 6WUXFWXUH RI LQWHUPHGLDWH Ef VKRZLQJ VHOHFWHG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ [LL

PAGE 13

3URSRVHG PHFKDQLVP IRU UHDFWLRQ RI ZLWK EXW\QH )RUPDWLRQ RI >0R13Kf&+&+ &+&+&0HffR0H6L1f&+f@ f 3URSRVHG VWUXFWXUH IRU VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ 3RVVLEOH PHWK\O JURXS H[FKDQJH SDWKZD\ 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf %RQGLQJ LQ WUDQVLWLRQ PHWDO DON\QH FRPSOH[HV 6\QWKHVLV RI >0R13KfU_5&&5fR0H6L1f&+f@ 5 0H f 3K f 6L0H ff 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 5HDFWLRQ RI >0R13KfUf3K&&3KfR0H6L1f&+f@ f ZLWK %Xf1& IRUPDWLRQ RI 3URSRVHG VWUXFWXUH RI VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ 3URSRVHG PHFKDQLVP IRU WKH IRUPDWLRQ RI 6\QWKHVLV RI T LPLQH FRPSOH[HV DQG 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 5HGXFWLYH FRXSOLQJ RI LPLQHV 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf *HQHUDO VFKHPH IRU WKH UHGXFWLYH FRXSOLQJ RI RUJDQLF PROHFXOHV 6\QWKHVLV RI R[DPHWDOODF\FORSHQWDQHV 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6WUXFWXUDO DVVLJQPHQW RI LQFOXGLQJ DVVLJQHG SURWRQ FKHPLFDO VKLIWV 5HDFWLRQ RI DUHQH FRPSOH[HV ZLWK DFHWRQH 3RVVLEOH HTXLOLEULXP EHWZHHQ DQ DUHQH FRPSOH[ DQG D PHWDOODWHG VSHFLHV ,OO ;OOO

PAGE 14

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ &217,18,1* (92/87,21 2) ',$0,'26833257(' 02/<%'(180 ,0,'2 25*$120(7$//,& &+(0,675< %\ 7KRPDV 0 &DPHURQ 'HFHPEHU &KDLU -DPHV 0 %RQFHOOD 'HSDUWPHQW &KHPLVWU\ :H H[SORUH WKH V\QWKHVLV DQG UHDFWLYLW\ RI GLDPLGRVXSSRUWHG PRO\EGHQXP LPLGR FRPSOH[HV EDVHG RQ WKH SDUHQW FRPSOH[ >0R13Kf&OR0H6L1f&+fM 5HDFWLRQ RI ROHILQ FRPSOH[HV >0R13KfSURSHQHfR0H6L1f&+f@ f RU >0R13KfLVREXW\OHQHf R0H6L1f&+f@ f ZLWK /HZLV EDVHV 3\ S\ULGLQHf 320Hf 30H3K '03( DQG ,0HV O%LVWULPHWK\OSKHQ\OfLPLGD]RO\OLGHQHf JLYHV WKH FRUUHVSRQGLQJ DGGXFWV >0R13Kf3\fR0H6L1f&+f@ f >0R13Kf320HffR0H6L1f&+f@ f >0R13Kf30H3KfR0H6L1f&+f@ f >0R13Kf'03(fR0H6L1f&+fS '03(f0R13Kf'03(fR0H6L1f&+f@ f DQG >0R13Kf,0HV R0H6L1f&+f@ f UHVSHFWLYHO\ ,Q WKLV VWXG\ ZH UHSRUW WKH ;UD\ VWUXFWXUHV RI DQG :H DOVR GLVFXVV WKH UHDFWLYLW\ RI WKHVH FRPSOH[HV DV ZHOO DV WKH 30H DGGXFW >0R13Kf30HfR0H6L1f&+f@ f ZLWK &2 JDV JHQHUDWLQJ >0R13KfUUDA3\f&2fR0H6L1f&+f@f >0R13Kf320Hff&2 R0H6L1f&+f@ f >0R13Kf30Hf&2fR0H6L1f&+f@ f DQG ;,9

PAGE 15

>0R13Kf30H3Kf&2R0H6L1f&+f@ f :H UHSRUW WKH ;UD\ VWUXFWXUHV RI DQG :H DOVR SUHVHQW D ')7 VWXG\ FRPSDULQJ WKH ERQGLQJ LQ FRPSOH[HV DQG GLDON\O FRPSOH[ >0R13Kf0HfR0H6L1f&+f@ f 7KHVH UHVXOWV LQGLFDWH WKDW WKH GHJUHH RI OLJDQG IROGLQJ LQ FRPSOH[HV UHODWHG WR PD\ EH LQIOXHQFHG E\ VWHULF IDFWRUV :H UHSRUW WKH ;UD\ VWUXFWXUH RI 7KH XQXVXDO &1 DFWLYDWLRQ UHDFWLYLW\ RI LV DOVR GLVFXVVHG 'LK\GURJHQ FRPSOH[HV >0R13Kf30Hf+fR0H6L1f&+f@ f DQG >0R13Kf30H3Kf+fR0H6L1f&+f@ f DUH IRUPHG E\ WUHDWPHQW RI DQG ZLWK + JDV UHVSHFWLYHO\ 7KH KK RI FRPSRXQGV DQG DV GHWHUPLQHG E\ DQG -KG DUH LQ JRRG DJUHHPHQW DQG LQGLFDWH WKDW WKH + OLJDQG LV VORZO\ URWDWLQJ 7KH UHDFWLRQV RI DQG ZLWK + JDV DUH DOVR SUHVHQWHG &RPSOH[HV DQG UHDFW ZLWK EXWDGLHQH JDV JHQHUDWLQJ >0R13Kf U_+& &+&+ &+fR0H6L1f&+f@ f :H UHSRUW WKH VROLGVWDWH VWUXFWXUH RI fM VKRZLQJ WKDW LV EHVW GHVFULEHG DV D Q EXWDGLHQH FRPSOH[ DQG ZH GLVFXVV WKH UHDFWLYLW\ RI ZLWK DQG HTXLY RI EXW\QH 5HDFWLRQ RI ZLWK RQH HTXLYDOHQW RI EXW\QH JLYHV D PRO\EGHQXP GLPHWK\OF\FORKH[DGLHQH FRPSOH[ f 7KH ;UD\ VWUXFWXUH RI LV UHSRUWHG 7UHDWPHQW RI ZLWK HTXLY RI EXW\QH JLYHV >0R13KfS0H&&0H;R0H6L1f&+f@ f DQG GLPHWK\O F\FORKH[DGLHQH DV SURGXFWV &RPSOH[ DV ZHOO DV >0R13KfUf3K&&3Kf R0H6L1f&+f@ f DQG >0R13KfT0H6L&&6L0Hf0H6L1f&+f@ f DUH V\QWKHVL]HG LQGHSHQGHQWO\ DQG ;UD\ VWUXFWXUHV RI DQG DUH SUHVHQWHG 7KH DOO\O PHWDOODF\FOHV >\nm0R13Kf&0Hf &0Hf&+&+&+&+fR0H6L1f&+f@ Df [Y

PAGE 16

DQG 00R13Kf&0Hf &0Hf&+&+&+&+f0H6L1f&+f@ Ef DUH LGHQWLILHG DV LQWHUPHGLDWHV LQ WKH UHDFWLRQ RI ZLWK EXW\QH E\ 105 VSHFWURVFRS\ 5HDFWLRQ RI ZLWK DOGLPLQHV DQG NHWLPLQHV JLYHV U? LPLQH FRPSOH[HV >0R13KfU_3K1 &+f$UR0H6L1f&+f@ $U &+S20Hf f DQG >0R13KfS3K1 &0Hf3KR0H6L1f&+f@ f 7KH ;UD\ VWUXFWXUH RI LV UHSRUWHG )RU OHVV VWHULFDOO\ GHPDQGLQJ DOGLPLQHV WKH UHGXFWLYH FRXSOLQJ SURGXFWV >0R13Kf(W1&+f$U&+f$U1(WR0H6L1f&+f@ $U &+"20Hf f DQG >0R13Kf%]1&+f$U&+f$U1%]R0H6L1f&+f@ $U &+"20Hf f DUH LVRODWHG DQG WKH ;UD\ VWUXFWXUH RI LV UHSRUWHG 2OHILQ FRPSOH[HV UHDFW ZLWK NHWRQHV DQG DOGHK\GHV JLYLQJ FRPSRXQGV >0R13Kf&0Hf&+&0HffR0H6L1f&+f@ f DQG >0R13Kf&+f3K&+&0HffR0H6L1f&+f@ f 7KH ;UD\ VWUXFWXUH RI LV UHSRUWHG [YL

PAGE 17

&+$37(5 0(7$/ ,0,'(6 $1' $0,'(6 2UJDQRPHWDOOLF FKHPLVWU\ LV XOWLPDWHO\ FRQFHUQHG ZLWK ERQGLQJ LQWHUDFWLRQV EHWZHHQ WUDQVLWLRQ PHWDOV DQG RUJDQLF IUDJPHQWV WKURXJK D DQGRU ERQGV 7UDQVLWLRQ PHWDO IUDJPHQWV RIWHQ VWDELOL]H UHDFWLYH RUJDQLF PROHFXOHV DQG SDUWLFLSDWH LQ FDWDO\WLF FDUERQFDUERQ FDUERQQLWURJHQ FDUERQK\GURJHQ DQG YDULRXV RWKHU ERQGIRUPLQJ DQG ERQGEUHDNLQJ UHDFWLRQV $V VXFK PRGHUQ RUJDQRPHWDOOLF FKHPLVWU\ KDV EHFRPH DQ DUHD ULFK LQ GLYHUVH FKHPLFDO VWUXFWXUH DV ZHOO DV D YHUVDWLOH WRRO IRU WKH V\QWKHWLF FKHPLVW LQ WKH VW FHQWXU\ 7KH UHDFWLYLW\ REVHUYHG DW D PHWDO FHQWHU LV KLJKO\ GHSHQGHQW RQ WKH DQFLOODU\ OLJDQGV WKDW VXSSRUW WKDW SDUWLFXODU PHWDO VSHFLHV (OHFWURQLF HIIHFWV VXFK DV QORDGLQJ PRUH OLJDQG LGRQRU RUELWDOV WKDQ PHWDO LDFFHSWRU RUELWDOVf DV ZHOO DV WKH VWHULF UHTXLUHPHQW RI DQ DQFLOODU\ OLJDQG VHW GLFWDWH UHDFWLYLW\ DW WKH PHWDOFHQWHU 7KXV HIIRUWV WRZDUG WKH GHULYLWL]DWLRQ RI H[LVWLQJ DQFLOODU\ OLJDQGV DQG WKH GLVFRYHU\ RI QHZ OLJDQGV ZLWK WKH JRDO RI fWXQLQJf UHDFWLYLW\ DW D PHWDOFHQWHU DUH D PDMRU SDUW RI RUJDQRPHWDOOLF FKHPLVWU\ 5HFHQW GHYHORSPHQWV XVLQJ WKLV WKHPH LQYROYH DSSOLFDWLRQV RI LPLGR DQG GLDPLGR OLJDQGV LQ RUJDQRPHWDOOLF V\QWKHVLV 1LWURJHQ 'RQRU%DVHG /LJDQGV LQ (DUO\ 0HWDO &KHPLVWU\ 1LWURJHQ GRQRUEDVHG OLJDQGV DUH FRPPRQ WR WKH FRRUGLQDWLRQ VSKHUH RI HDUO\ PHWDOV LQ RUJDQRPHWDOOLF FKHPLVWU\ DQG DUH SUHYDOHQW LQ WKH OLWHUDWXUH /LJDQGV UHSUHVHQWDWLYH RI WKLV FODVV LQFOXGH DPLQHV T RU UI QLWULOHVf TLPLQRDF\O OLJDQGVn WHUPLQDO RU EULGJLQJ QLWURV\OV WHUPLQDO RU EULGJLQJ GLQLWURJHQ QLWULGHV DQG

PAGE 18

SRO\S\UD]RO\OfERUDWHV ,W LV EH\RQG WKH VFRSH RI WKLV LQWURGXFWLRQ WR UHYLHZ HDFK RI WKHVH OLJDQG W\SHV LQGLYLGXDOO\ DQG WKH UHDGHU LV UHIHUUHG WR WKH OHDGLQJ OLWHUDWXUH 2UJDQRPHWDOOLF FRPSOH[HV RI U? LPLQH OLJDQGV DUH DOVR NQRZQ DQG DUH GLVFXVVHG LQ &KDSWHU ,PLGR /LJDQGV 7KH DUHD RI WUDQVLWLRQPHWDO LPLGR FKHPLVWU\ KDV H[SHULHQFHG UDSLG DQG VXVWDLQHG JURZWK RYHU WKH ODVW \HDUV DQG VHYHUDO H[FHOOHQW UHYLHZ DUWLFOHV KDYH EHHQ ZULWWHQ RQ WKH VXEMHFW 7KH ILUVW PDMRU UHYLHZ WR WUHDW WKH WRSLF ZDV SXW IRUWK E\ 1XJHQW DQG +D\PRUH :LJOH\ UHFHQWO\ SXEOLVKHG DQ LQGHSWK UHYLHZ ZKLOH 0HWDO/LJDQG 0XOWLSOH %RQGV E\ 1XJHQW DQG 0D\HU SURYLGHV DQ H[FHOOHQW RYHUYLHZ RI LPLGR FRPSOH[HV $Q H[WHQVLYH UHYLHZ RI WKLV ZRUN LV QRW SRVVLEOH KHUH 7KH VXEVHTXHQW GLVFXVVLRQ LV OLPLWHG WR VWUXFWXUDO DQG ERQGLQJ FRQVLGHUDWLRQV LQ LPLGR FRPSOH[HV 7KH LPLGR OLJDQG LV XVXDOO\ UHIHUUHG WR DV D FORVHGVKHOO GLDQLRQ LPSO\LQJ WKDW WKH S RUELWDOV RI WKH OLJDQG DUH ILOOHG )URP D JHQHUDO VWDQGSRLQW WKH LPLGR RU 15n OLJDQG FDQ FRRUGLQDWH WR D PHWDO FHQWHU WKURXJK D PHWDOQLWURJHQ PXOWLSOH ERQG LQYROYLQJ RQH D DQG HLWKHU RQH RU WZR DGGLWLRQDO ALQWHUDFWLRQV ,Q WKLV ZD\ LW LV SRVVLEOH WR KDYH D PHWDOQLWURJHQ GRXEOHERQG $ RQH D DQG RQH ALQWHUDFWLRQf RU WULSOHERQG % RQH D DQG WZR ALQWHUDFWLRQVf LQWHUDFWLRQ )LJXUH f 1f§0 5f§1(0 5 $ % )LJXUH 0HWDOLPLGR PXOWLSOHERQG LQWHUDFWLRQV $f $ PHWDOQLWURJHQ GRXEOHERQG LQWHUDFWLRQ %f $ PHWDOQLWURJHQ WULSOHERQG LQWHUDFWLRQ 5 DQ RUJDQLF IXQFWLRQDOLW\ VXFK DV DON\O RU DU\O

PAGE 19

7KHVH ERQGLQJ LQWHUDFWLRQV FDQ EH GHVFULEHG E\ D VLPSOH ORFDOL]HG YDOHQFH ERQG DSSURDFK ,Q WKLV WUHDWPHQW WKH K\EULGL]DWLRQ DW WKH LPLGR QLWURJHQ DWRP SDUWLDOO\ GLFWDWHV WKH VWUXFWXUDO SDUDPHWHUV RI WKH LPLGR OLJDQG )LJXUH f ,Q & WKH QLWURJHQ DWRP LV VS K\EULGL]HG LPSO\LQJ IURP D ILUVW DSSUR[LPDWLRQ D FRQVLGHUDEO\ EHQW 510 OLQNDJH r WR rf ZLWK WKH ORQH SDLU RFFXS\LQJ DQ 1VSnf K\EULG RUELWDOf ,Q VXFK D VLWXDWLRQ WKH LPLGR OLJDQG LV IRUPDOO\ FRQVLGHUHG D Hn GRQRU IRU HOHFWURQFRXQWLQJ SXUSRVHV WKH QHXWUDO PHWKRG RI Hn FRXQWLQJ LV XVHG WKURXJKRXW WKLV PDQXVFULSWf DQG D IRUPDO PHWDOQLWURJHQ GRXEOH ERQG H[LVWV 7\SH UHSUHVHQWV D OLQHDU VWUXFWXUH WKDW FDQ DULVH ZKHQ PROHFXODU RUELWDO 02f LQWHUDFWLRQV GR QRW DOORZ IRU DGRSWLRQ RI VWUXFWXUH W\SH & 7KH OLQHDU LPLGH UHSUHVHQWHG E\ ( FDQ FRPH DERXW ZKHQ WZR QLQWHUDFWLRQV DUH SUHVHQW IRUPLQJ D PHWDOQLWURJHQ WULSOH ERQG ,PLGHV RI W\SH ( FRQWULEXWH Hf WR WKH HOHFWURQ FRXQW RI D PHWDO )RU ( WKH ALQWHUDFWLRQV DUH EHVW GHVFULEHG LQ 02 WHUPV DV RYHUODS EHWZHHQ ILOOHG LPLGR QLWURJHQEDVHG S[ DQG S\ DWRPLF RUELWDOV DQG HPSW\ PHWDO G[] DQG G\] DWRPLF RUELWDOV UHVSHFWLYHO\ DV VKRZQ IRU D JHQHUDO FDVH LQ )LJXUH r I 1U0 5f§1 0 5f§1 0 5 t 1 VS Hf GRQRUf 1 VS H GRQRUf 1 VS Hf GRQRUf & ( )LJXUH *HQHUDO YDOHQFH ERQG GHVFULSWLRQ RI SRVVLEOH PHWDOLPLGR LQWHUDFWLRQV )HZ FRPSOH[HV RI W\SH & FRQWDLQ VWURQJO\ EHQWLPLGR OLJDQGV 2I WKHVH FRPSRXQGV WKH EHVW NQRZQ H[DPSOH LV WKH PRO\EGHQXP FRPSOH[ 0R13Kf6&1(Wf f )LJXUH f D FRPSRXQG ZLWK RQH EHQW W\SH & &10R fr 10R f ƒf DQG RQH OLQHDU W\SH ( &10R fr 10R f ƒf LPLGR

PAGE 20

OLJDQG WKH fr DQJOH LV QRW OLQHDU KRZHYHU DQG DV GLVFXVVHG EHORZ W\SH ( LPLGR OLQNDJHV FDQ KDYH DQJOHV EHWZHHQ r DQG rf :LWK D EHQWLPLGR VWUXFWXUH LV IRUPDOO\ FRQVLGHUHG DQ Hn FRPSOH[ ZLWK WKH EHQW LPLGR FRQWULEXWLQJ Hn DQG WKH OLQHDU LPLGR FRQWULEXWLQJ Hf WR WKH HOHFWURQ FRXQW ,W KDV EHHQ SURSRVHG WKDW WKH ORQHSDLU HOHFWURQ ORFDOL]DWLRQ LQ & FDQ EH DWWULEXWHG WR D SDLU RI HOHFWURQV UHVLGLQJ LQ D QLWURJHQEDVHG 02 RQ WKH EHQWLPLGR QLWURJHQ ZKLFK LV QRQERQGLQJ ZLWK UHVSHFW WR WKH 0R1 LQWHUDFWLRQ LQ = ; 3\ \] )LJXUH 5HSUHVHQWDWLRQ RI D JHQHULF PHWDO WIDfLPLGR SQf PXOWLSOHERQGLQJ LQWHUDFWLRQ )f LQWHUDFWLRQ RI DQ LPLGREDVHG S[ ZLWK D PHWDOEDVHG G[] RUELWDO *f LQWHUDFWLRQ RI DQ LPLGREDVHG S\ ZLWK D PHWDOEDVHG RUELWDO )LJXUH 0R13Kf6&1(Wf f

PAGE 21

)HZ H[DPSOHV RI LPLGR FRPSOH[HV FRQIRUP WR WKH OLPLWLQJ VWUXFWXUH LQ WKH OLWHUDWXUH 7KH &Sr7D13Kf+ FRPSOH[ f UHSRUWHG E\ %HUFDZ PD\ EH WKH FORVHVW UHODWHG FRPSRXQG KDYLQJ D YHU\ ORQJ f ƒf 7D1 ERQG DQG D OLQHDU 7D1& DQJOH RI fr )LJXUH f :LWK D Hn GRQRU LPLGR OLJDQG LV DQ Hn FRPSOH[ DQG WKH UHPDLQLQJ LPLGR HOHFWURQV DUH QRW QHHGHG IRU ERQGLQJ DW WKH PHWDO 7KH ORQJ 7D1 ERQG OHQJWK FRXSOHG ZLWK VS K\EULGL]DWLRQ DW WKH LPLGR QLWURJHQ LPSOLHG E\ WKH OLQHDULW\ RI WKH LPLGHf OHG PRVW WR FRQFOXGH WKDW WKH VWUXFWXUH RI ZDV EHVW DOWKRXJK TXHVWLRQDEO\ GHILQHG LQ YDOHQFH ERQG WHUPV DV RFFXS\LQJ D SRVLWLRQ KDOIZD\ EHWZHHQ DQG ( -RUJHQVHQn SXW IRUWK DQ DFFXUDWH DQG HOHJDQW H[SODQDWLRQ RI WKLV ERQGLQJ VLWXDWLRQ XVLQJ H[WHQGHG +FNHO FDOFXODWLRQV WR FOHDU WKH PDWWHU XS ,QFUHDVLQJ WKH LPLGR DQJOH FDXVHV DQ LQFUHDVH LQ WKH DQWLERQGLQJ QLWURJHQFDUERQ LPLGR QLWURJHQLSVR FDUERQf RYHUODS SRSXODWLRQ LQ WKH +202 KLJKHVW RFFXSLHG PROHFXODU RUELWDOf ZKLFK GHVWDELOL]HV WKH EHQWLPLGR PROHFXOH VHH -RUJHQVHQn IRU WKH IXOO 02 DQDO\VLVf 7KLV H[DPSOH VKRZV WKDW WKLV YDOHQFH ERQG GHVFULSWLRQ FDQ RIWHQ EH LPSURYHG XSRQ LQ VRPH FDVHV E\ D VXEVWDQWLDO PDUJLQ m+ n1 )LJXUH &Sr7D13Kf+ f 0RVW LPLGR OLJDQGV HQFRXQWHUHG LQ RUJDQRPHWDOOLF DQG LQRUJDQLF FKHPLVWU\ DUH WKRVH GHVFULEHG E\ WKH OLPLWLQJ VWUXFWXUH ( DQG PRVW H[DPSOHV LQ WKLV GLVVHUWDWLRQ IDOO LQWR WKLV FDWHJRU\ ,W LV LPSRUWDQW WR QRWH WKDW DOWKRXJK ( LPSOLHV D OLQHDU 510 XQLW LQ SUDFWLFH WKLV DQJOH FDQ YDU\ IURP DSSUR[LPDWHO\ r WR r ([SHULPHQWDO DQG

PAGE 22

WKHRUHWLFDO VWXGLHV RI FRPSOH[HV ZLWK PHWDOQLWURJHQ WULSOHERQG LQWHUDFWLRQV KDYH VKRZQ D YHU\ VRIW EHQGLQJ SRWHQWLDO DVVRFLDWHG ZLWK WKLV DQJOH ,W LV WKHUHIRUH GLIILFXOW WR FRUUHODWH WKH RYHUDOO ERQG RUGHU WR DQ 510 ERQG DQJOH DQG DOWKRXJK VXFK JHQHUDO DSSURDFKHV VKRXOG EH DYRLGHG WKH\ VWLOO DSSHDU LQ WKH PRVW FXUUHQW DQG UHVSHFWDEOH MRXUQDOV ,Q VXPPDU\ ZKLOH WKH YDOHQFH ERQG WUHDWPHQW SXW IRUWK LV XVHIXO LQ JDLQLQJ D EDVLF XQGHUVWDQGLQJ RI PHWDOLPLGR ERQGLQJ LW LV YHU\ OLPLWHG ,W VHHPV WKDW WKH EHVW ZD\ WR GHWHUPLQH WKH WUXH FKDUDFWHU RI DQ LPLGR FRPSOH[ LV WKURXJK D FRPELQDWLRQ RI UHDFWLYLW\ VWUXFWXUDO DQG PRGHP FRPSXWDWLRQDO VWXGLHV $PLGR /LJDQGV 7KH ZLGHVSUHDG LQWHUHVW LQ DPLGR OLJDQGV IRUPXODWHG DV 1+f 1+5n RU 15r VWHPV IURP WKHLU SUHVHQFH LQ D GLYHUVH DUUD\ RI FRPSRXQGV IURP WKH ELRORJLFDOO\ VLJQLILFDQW VXFK DV FKORURSK\OO WR WKH DUHD RI LQRUJDQLF FKHPLVWU\ ZLWK WKH V\QWKHVLV RI DPLGHVWDELOL]HG ODQWKDQLGH PHWDO FHQWHUV 3XWWLQJ DVLGH WKH ELRLQRUJDQLF FKHPLVWfV LQWHUHVW LQ WKH ELRORJLFDOO\ VLJQLILFDQW DPLGREDVHG OLJDQGV LQLWLDO H[SORUDWLRQ RI PHWDODPLGHV IRFXVHG RQ VWUXFWXUH DQG ERQGLQJ DV LW FRPSDUHG WR PHWDOFDUERQ ERQGV RI WKH WLPH 7KLV LQLWLDO IRUD\ LQWR PHWDODPLGR FKHPLVWU\ WRRN SODFH LQ WKH V DQG HDUO\ V DQG H[FHOOHQW UHYLHZV RQ WKH VXEMHFW KDYH EHHQ ZULWWHQ 5HVHDUFKHUV UHDOL]HG WKDW WKH PHWDODPLGR ERQG LQ HDUO\ PHWDO FRPSOH[HV ZDV UDWKHU LQHUW LQ FRPSDULVRQ WR WKH PHWDOFDUERQ ERQG DQG WKH\ ORVW LQWHUHVW LQ WKH WRSLF WR SXUVXH PRUH LQWHUHVWLQJ DQG OXFUDWLYH FKHPLVWU\ VXFK DV WKH GHYHORSLQJ ILHOG RI HDUO\ PHWDO PHWDOORFHQHPHGLDWHG SRO\PHUL]DWLRQ 5HVHDUFK LQ WKH ILHOG VORZHG XQWLO WKH LQHUWQHVV RI WKH DPLGR OLJDQG ZDV XVHG WR VWDELOL]H UHDFWLYH HDUO\ PHWDO FHQWHUV ,URQLFDOO\ RQH VXFK GLVFRYHU\ LQYROYHG WKH DSSOLFDWLRQ RI FKHODWLQJ DUVDPRQRF\FORSHQWDGLHQ\ODPLGR OLJDQGV WR HDUO\

PAGE 23

PHWDOROHILQ SRO\PHUL]DWLRQ 7KH DELOLW\ RI D FKHODWLQJ DPLGH WR VWDELOL]H DQ HDUO\ PHWDO FHQWHU FRXSOHG ZLWK WKH V\QWKHWLF HDVH DQG GLYHUVLW\ RI OLJDQG GHVLJQ OHG WR D UHVXUUHFWLRQ RI PHWDOPXOWLGHQWDWH DPLGR FKHPLVWU\ LQ WKH V WKDW KDV FRQWLQXHG LQWR WKLV FHQWXU\ 5HFHQW GHYHORSPHQWV LQYROYLQJ PXOWLGHQWDWH DPLGR OLJDQGV KDYH EHHQ UHYLHZHG $ OLVW RI SUHFXUVRUV WR VRPH RI WKH PRVW LPSRUWDQW PXOWLGHQWDWH DPLGR OLJDQGV LQ RUJDQRPHWDOOLF FKHPLVWU\ WRGD\ LV VKRZQ LQ )LJXUH 7KHVH H[DPSOHV PD\ EH XVHG WR SRLQW RXW SURSHUWLHV WKDW PDNH PXOWLGHQWDWH DPLGHV VR XVHIXO 7KH DYDLODELOLW\ RI WZR VXEVWLWXHQW SRVLWLRQV RQ DQ DPLGH DOORZ IRU WKH LQFRUSRUDWLRQ RI WKLV IXQFWLRQDOLW\ LQWR SRGDQG fM DQG PDFURF\FOH f0LNH V\VWHPV 7KH\ DOORZ WKH FKHPLVW WR H[HUW VWHULF DQG HOHFWURQLF FRQWURO GXULQJ OLJDQG GHVLJQ f DQG DOORZ WKH DPLGH WR EH f f f 72 HDVLO\ DSSHQGHG WR RWKHU GRQRU IXQFWLRQDOLWLHV WR EHWWHU VXLW D PHWDO FHQWHU f )XUWKHUPRUH VHYHUDO V\QWKHWLF VWUDWHJLHV FDQ EH XVHG WR LQWURGXFH DPLGHV WR WKH FRRUGLQDWLRQ VSKHUH RI D PHWDO 7KHVH OLJDQGV DUH H[WUHPHO\ XVHIXO LQ PHWDO FKHPLVWU\ )RU H[DPSOH XUDQLXP VSHFLHV RI WULDQLRQLF IRUP GLQLWURJHQ FRPSOH[HV XQGHU DSSURSULDWH FRQGLWLRQV DQG *URXS FRPSOH[HV RI DQG DUH SUDFWLFDO SUHFXUVRUV WR FDWLRQLF ROHILQ SRO\PHUL]DWLRQ FDWDO\VWV 0HWDO FRPSOH[HV RI DQG UHODWHG OLJDQGV DUH GLVFXVVHG LQ WKH QH[W VHFWLRQ ZKLFK LV GHYRWHG WR LPLGRGLDPLGR FKHPLVWU\ 5HDFWLYH ,PLGR'LDPLGR &RPSOH[HV 7KH PHWDOLPLGR PXOWLSOH ERQGV LPSDUW XQLTXH SURSHUWLHV WR WKH LPLGH DQG PHWDO IUDJPHQW FUHDWLQJ H[WUHPHO\ UHDFWLYH RU VWDEOH PROHFXOHV GHSHQGLQJ RQ WKH LGHQWLW\ RI WKH PHWDO WKH R[LGDWLRQ VWDWH WKH LPLGR VXEVWLWXHQW DQG RWKHU DQFLOODU\ OLJDQGV 0XOWLGHQWDWH DPLGR OLJDQGV ZKHQ XVHG DV WKHVH DQFLOODU\ OLJDQGV VKRXOG EH NH\ LQ WXQLQJ

PAGE 24

UHDFWLYLW\ DW WKH PHWDO FHQWHU ,W LV WKXV UHDVRQDEOH WR DVVXPH WKDW RQH FDQ FUHDWH GHVLUHG UHDFWLYLW\ DW DQ HDUO\ PHWDO FHQWHU WKURXJK MXGLFLRXV FKRLFH RI ERWK WKH LPLGR DQG PXOWLGHQWDWH DPLGR OLJDQG 6RPH FRQVLGHUDWLRQV PXVW EH WDNHQ LQWR DFFRXQW KHUH )RU WKH SXUSRVHV RI WKLV GLVFXVVLRQ ZH ZLOO FRQVLGHU RQO\ GLDPLGR DQG LPLGR OLJDQGV $Q LPLGH DQG D GLDPLGH FRQWULEXWH D WRWDO RI WR WKH IRUPDO R[LGDWLRQ VWDWH RI D PHWDO FRPSOH[ 0RVW LPLGR FRPSOH[HV DUH RI G? DQG FI PHWDO FHQWHUV DQG WKH PHWDOLPLGR PXOWLSOH ERQGLQJ UHTXLUHV WKDW WKH G RUELWDOV LQYROYHG LQ ERQGLQJ EH HPSW\ )XUWKHUPRUH WKH GHVLUHG UHDFWLYLW\ RI WKH QHZ FRPSRXQG PXVW EH FRQVLGHUHG VKRXOG WKH LPLGH EH UHDFWLYH RU VKRXOG ERWK WKH LPLGH DQG PXOWLGHQWDWH DPLGH EHKDYH DV DQFLOODU\ OLJDQGV" ,I *URXS VSHFLHV DUH WDUJHWHG WKH PHWDO LQ WKH UHVXOWLQJ PHWDOLPLGHGLDPLGH RI WKH W\SH 015f15f ZLOO EH LQ D IRUPDO R[LGDWLRQ VWDWH 8VHIXO IXQFWLRQDOL]DWLRQ ZLOO QRW EH SRVVLEOH XQOHVV DFKLHYHG WKURXJK UHDFWLYLW\ RI WKH LPLGR IXQFWLRQDOLW\ 6\QWKHVLV RI VLPLODU *URXS FRPSOH[HV ZLOO VXIIHU IURP WKH VDPH GLVDGYDQWDJHV 8VLQJ D *URXS PHWDO LQ DQ DQDORJRXV IDVKLRQ FRXOG \LHOG FRPSOH[HV RI WKH W\SH 015f15f; DOORZLQJ WKH PHWDO WR EH IXQFWLRQDOL]HG DW ; :KLOH KLJK R[LGDWLRQ VWDWHV DQG LPLGR FRPSOH[HV DUH NQRZQ IRU *URXSV DQG DPLGHV RI WKHVH PHWDOV DUH UDUH $SSOLQJ WKH VDPH LGHD WR *URXS RU PHWDOV ZLOO EH GLIILFXOW IRU DPLGHV DUH QRW H[WUHPHO\ JRRG ODWHPHWDO OLJDQGV DQG PRVW LPLGR FRPSOH[HV PXVW EH RI KLJKR[LGDWLRQVWDWH PHWDO FHQWHUV WKDW DUH XVXDOO\ QRW DYDLODEOH WKLV ODWH LQ WKH WUDQVLWLRQ PHWDO VHULHV %DVHG RQ WKLV UHDVRQLQJ HIIRUWV GLUHFWHG WRZDUG WKH V\QWKHVLV RI *URXS LPLGRGLDPLGR FRPSOH[HV VHHP WKH PRVW SODXVLEOH :H KDYH WDNHQ WKH DERYHPHQWLRQHG DSSURDFK IRU *URXS PHWDOV RWKHUV KDYH H[SORUHG WKH SRVVLELOLWLHV IURP *URXSV WKURXJK 7KH LPSRUWDQW UHVXOWV DUH SUHVHQWHG KHUH

PAGE 25

$U ‘1f§6L0H 16L0H $U )LJXUH &XUUHQW PXOWLGHQWDWH DPLGR OLJDQGV LQ RUJDQRPHWDOOLF FKHPLVWU\ *URXS LPLGRGLDPLGR FRPSOH[HV ,Q JHQHUDO WKH FKHPLVWU\ RI *URXS LPLGR FRPSOH[HV LV GULYHQ E\ UHDFWLYH LPLGR IXQFWLRQDOLWLHV 5HFHQWO\ 0RXQWIRUG DQG FRZRUNHUV KDYH PDGH JUHDW VWULGHV LQ QRQPDFURF\FOHUHODWHG GHYHORSPHQWV LQ WKLV DUHD E\ IRFXVLQJ RQ WKH GLDPLGR OLJDQGV DQG )LJXUHV DQG f 7KH V\QWKHVLV RI UHOHYDQW *URXS PHWDO FRPSOH[HV LV VKRZQ LQ )LJXUH 7KH UHDFWLYLW\ RI FRPSOH[ ZLWK XQVDWXUDWHG RUJDQLF FRPSRXQGV KDV EHHQ H[WHQVLYHO\ VWXGLHG DQG XVXDOO\ LQYROYHV FRXSOLQJ UHDFWLRQV EHWZHHQ WKH PHWDOLPLGH DQG UHDFWDQW )RU H[DPSOH 0 7L 5 EXW\Of UHDFWHG ZLWK SKHQ\OSURS\QH DW r& WR JLYH DQG ZLWK GLLVRSURS\OSKHQ\O LVRF\DQDWH WR DIIRUG )LJXUH f 6LPLODU FKHPLVWU\ KDV DOVR EHHQ UHSRUWHG IRU WLWDQLXP DU\O RU DON\O LPLGR FRPSOH[HV DQG WHWUDD]D PDFURF\FOLF GLDPLGR OLJDQGV VLPLODU WR )LJXUH fff 5HDFWLYLW\ RI WKLV QDWXUH DW WKH LPLGR IXQFWLRQDOLW\ LV LQGHHG LPSRUWDQW DQG KDV PRVW UHFHQWO\ EHHQ LPSOLFDWHG LQ WKH PHWDWKHVLV RI LPLQHV DQG WKH K\GURDPLQDWLRQ RI XQVDWXUDWHG RUJDQLF VXEVWUDWHV 3HUKDSV WKH PRVW UHPDUNDEOH LPLGR UHDFWLYLW\ KDV EHHQ REVHUYHG E\

PAGE 26

:ROF]DQVNL DQG FRZRUNHUV ZKR UHSRUWHG &+ DFWLYDWLRQ RI VDWXUDWHG DQG XQVDWXUDWHG K\GURFDUERQV E\ LPLGR WLWDQLXP VSHFLHV 5 /L 5 1 &+OLI\ 3\A A& 3\ /L /L 6L0H 1 F$1A7L 15 0H6L 0H6L S\ +HDW r PEDU )LJXUH 6\QWKHVLV RI *URXS LPLGRGLDPLGR FRPSOH[HV )RU ZKHQ 0 7L 5 EXW\O RU &+3Uf ZKHQ 0 =U 5 &+3Un *URXS LPLGRGLDPLGR FRPSOH[HV 7KH LPLGRGLDPLGR FRPSOH[HV RI WKH *URXS PHWDOV GR QRW JHQHUDOO\ KDYH UHDFWLYH LPLGR IXQFWLRQDOLWHV 7KH LPLGR DQG GLDPLGR OLJDQGV DFW DV DQFLOODU\ OLJDQGV DQG VWDELOL]H XQXVXDO FRPSOH[HV IRU WKHVH KLJKR[LGDWLRQVWDWH VSHFLHV 0RXQWIRUG KDV UHSRUWHG D IHZ FRPSOH[HV RI *URXS LPLGHGLDPLGHV ZLWK WKH OLJDQG SUHFXUVRU ,Q FRQWUDVW %RQFHOOD KDV GHYHORSHG H[WHQVLYH FKHPLVWU\ LQ WKLV DUHD VWDUWLQJ IURP WKH WZR PHWDO GLFKORULGH VSHFLHV VKRZQ LQ )LJXUH

PAGE 27

)LJXUH 5HDFWLYLW\ RI *URXS LPLGRGLDPLGR FRPSOH[HV 5HDFWLYLW\ RI ZLWK SKHQ\OSURS\QH DQG GLLVRSURS\OSKHQ\O LVRF\DQDWH )LJXUH 0RO\EGHQXP f DQG WXQJVWHQ f LPLGRGLDPLGR GLFKORULGHV 0RO\EGHQXP DQG WXQJVWHQ DON\O DQG DON\OLGHQH FRPSOH[HV 7KH GLFKORULGHV DQG ZHUH HDVLO\ FRQYHUWHG WR DON\O FRPSOH[HV XSRQ WUHDWPHQW ZLWK QRQ3K\GURJHQFRQWDLQLQJ DON\O PDJQHVLXP UHDJHQWV )LJXUH f 7KH UHDFWLYLW\ RI WXQJVWHQ DON\OV DQG KDV EHHQ H[SORUHG ZLWK WHUWEXW\O LVRF\DQLGH %Xn1&f

PAGE 28

)LJXUH f &RPSOH[HV DQG LQVHUWHG %Xn1& LQWR HDFK PHWDO DON\O ERQG DIIRUGLQJ WKH UILPLQRDF\O FRPSOH[HV DQG :KHQ KHDWHG XQGHUZHQW D FDUERQFDUERQ FRXSOLQJ UHDFWLRQ JLYLQJ 7KLV LQVHUWLRQ DQG FRXSOLQJ FKHPLVWU\ KDV EHHQ ZHOOGRFXPHQWHG IRU HDUO\ PHWDOV ZLWK &2 RU LVRF\DQLGHVnf 6LPLODU FKHPLVWU\ KDV QRW EHHQ VHULRXVO\ H[SORUHG ZLWK WKH PRO\EGHQXP DON\OV RU 50J; (W r&A57 3K ? 0 0R 5 0H f 3K f &+&0H f &+3K f &+6L0H f 0 : 5 0H f 3K f &+&0H f &+3K f &+6L0H f &+&0H3K f ; KDOLGH )LJXUH 6\QWKHVLV RI PRO\EGHQXP DQG WXQJVWHQ GLDON\O FRPSOH[HV  %X RU %X1& 57 1 B 0H6OL ???U ?? Q A OYLYnnf 2, 1 :A RU RS 1OnAY1?An0H 0H6L $ ?A\! 5 &f K 0H6L[6 97 $1 1 RQO\ f $1 ? 1 7ROXHQH 0H VL 1 %X %X %X 0H 9 5 0H f &+&0H f )LJXUH 5HDFWLYLW\ RI WXQJVWHQ GLDON\OV ZLWK %XO1& 7UHDWLQJ FRPSOH[HV DQG ZLWK H[FHVV 30H UHVXOWHG LQ WKH IRUPDWLRQ RI 30H DON\OLGHQH DGGXFWV DQG WKURXJK DQ DDEVWUDFWLRQ SURFHVV )LJXUH f $WWHPSWV WR JHQHUDWH WKH EDVHIUHH WXQJVWHQ DQDORJXH RI f E\ WKHUPRO\VLV RI JDYH ULVH WR PDLQO\ YLD PHWDODWLRQ RI WKH GLDPLGR OLJDQG RI )LJXUH f :KHQ ZDV

PAGE 29

WUHDWHG ZLWK 30H ZDV SURGXFHG E\ WUDSSLQJ ZLWK SKRVSKLQH 6PDOO DPRXQWV RI ZHUH DOVR IRUPHG YLD \DEVWUDFWLRQ RI WKH GLDPLGR OLJDQG RI VHH 9DXJKDQ HW DO IRU D PRUH GHWDLOHG PHFKDQLVWLF DQDO\VLVf 5HDFWLYLW\ RI WKH PRO\EGHQXP DON\OLGHQH f UHPDLQV ODUJHO\ XQH[SORUHG &0H )LJXUH )RUPDWLRQ RI PRO\EGHQXP DQG WXQJVWHQ DON\OLGHQH DGGXFWV )LJXUH )RUPDWLRQ DQG UHDFWLYLW\ RI PHWDOODF\FOH 7KH 3K\GURJHQFRQWDLQLQJ GLDON\O FRPSOH[HV RI WXQJVWHQ DUH VWDEOH DQG KDYH EHHQ V\QWKHVL]HG LQ D IDVKLRQ DQDORJRXV WR ,Q JHQHUDO FRRUGLQDWLYHO\ XQVDWXUDWHG SK\GURJHQFRQWDLQLQJ FRPSOH[HV GHFRPSRVH E\ 3DEVWUDFWLRQ RU HOLPLQDWLRQ 7KH VWDELOLW\ RI WKHVH DON\O FRPSOH[HV LV WKHUHIRUH VXUSULVLQJ $GGLWLRQ RI 30H WR VRPH RI WKHVH VSHFLHV SURPRWHG 3DEVWUDFWLRQ DQG WKH IRUPDWLRQ RI ROHILQ FRPSOH[HV 7KLV EHKDYLRU LV FOHDUO\ XQH[SHFWHG DV WKH GLVVRFLDWLRQ RI OLJDQGV WR \LHOG XQVDWXUDWHG VSHFLHV XVXDOO\ LQGXFHV 3DEVWUDFWLRQ A

PAGE 30

0RO\EGHQXP DQG WXQJVWHQ DUHQH DQG PRO\EGHQXP ROHILQ FRPSOH[HV 8QOLNH WKH WXQJVWHQ DQDORJXHV SK\GURJHQFRQWDLQLQJ PRO\EGHQXP GLDON\O FRPSOH[HV GHFRPSRVH UHDGLO\ DW r& URRP WHPSHUDWXUHf WR \LHOG ROHILQ FRPSOH[HV 7KHVH KLJKR[LGDWLRQVWDWH ROHILQ FRPSOH[HV DUH UDUH DQG ZHUH K\GURJHQDWHG LQ WKH SUHVHQFH RI DUHQHV IRUPLQJ KLJKR[LGDWLRQVWDWH DUHQH FRPSOH[HV )LJXUH f +LJK YDOHQW *URXS DUHQH FRPSOH[HV ZLWK WKH H[FHSWLRQ RI WKH WXQJVWHQ FRPSOH[ PHQWLRQHG KHUH DUH QRQH[LVWHQW DQG JHQHUDWLRQ RI DUHQH FRPSOH[HV LQ WKLV ZD\ UHPDLQV D UDUH SURFHVV :H UHFHQWO\ V\QWKHVL]HG UHODWHG WXQJVWHQ DUHQH FRPSOH[HV WKDW VKRZHG LQWHUHVWLQJ UHDFWLYLW\ ZLWK SKHQ\ODFHW\OHQH )XUWKHUPRUH VHYHUDO ELVS\ULGLQHf FRPSOH[HV ZHUH JHQHUDWHG IURP WKLV DUHQH FRPSOH[ DQG ZHUH XVHG WR DFWLYDWH WKH FDUERQVXOIXU ERQG RI WKLRSKHQHV 3K 3HQWDQH 57 + SVL HTXLY 5 5 5 + 5 0H f 5 5 0H 5 5 + f 5 5 5 + 5 &+&+ DQG 5_ 5 0H 5 5 + f 3K 1 ,,, 0H6L 0H6LA1 5n EHQ]HQH f WROXHQH f R[\OHQH f P[\OHQH f [\OHQH f GLSKHQ\OPHWKDQH f ELEHQ]\Of )LJXUH 0RO\EGHQXP ROHILQ FRPSOH[HV DQG WKH V\QWKHVLV RI DUHQH FRPSOH[HV 6FRSH RI WKH 'LVVHUWDWLRQ 7KH ZRUN HPERGLHG LQ WKLV GLVVHUWDWLRQ UHSRUWV WKH ODWHVW UHVXOWV WRZDUG QHZ LPLGRGLDPLGR PRO\EGHQXP FRPSOH[HV &KDSWHU LV D JHQHUDO LQWURGXFWLRQ WR PHWDO

PAGE 31

LPLGHV DQG DPLGHV &KDSWHU GLVFXVVHV S\ULGLQH SKRVSKLQH SKRVSKLWH DQG $UGXHQJR FDUEHQH /HZLV EDVHVWDELOL]HG LPLGRGLDPLGR FRPSOH[HV DQG FDUERQ PRQR[LGH GHULYDWLYHV &KDSWHU LV GHYRWHG WR WKH GLVFXVVLRQ RI GLK\GURJHQ FRPSOH[HV JHQHUDWHG IURP WKH SKRVSKLQH FRPSOH[HV GLVFXVVHG LQ &KDSWHU ,Q &KDSWHU LPLGRGLDPLGR EXWDGLHQH FRPSOH[HV DQG UHODWHG UHDFWLYLW\ LQYROYLQJ WKH V\QWKHVLV RI DON\QH FRPSOH[HV DUH GLVFXVVHG 7KH UHDFWLRQV RI PRO\EGHQXP ROHILQ DQG DUHQH FRPSOH[HV ZLWK LPLQHV NHWRQHV DOGHK\GHV DQG D]REHQ]HQH DUH GLVFXVVHG LQ &KDSWHU ([SHULPHQWDO GDWD DUH UHFRUGHG LQ &KDSWHU ,Q WKLV ZRUN ZH KDYH WDNHQ DGYDQWDJH RI WKH XQLTXH DELOLW\ RI RXU LORDGHG LPLGRGLDPLGR V\VWHP WR VWDELOL]H LQWHUHVWLQJ DQG UDUH PRO\EGHQXP FRPSOH[HV ,Q D UORDGHG V\VWHP WKH H[FHVV UUGRQRUV FDQ DFW DV HOHFWURQ VLQNV VWDELOL]LQJ KLJKR[LGDWLRQVWDWH PROHFXOHV WKURXJK SG RYHUODS LI QHFHVVDU\ 2IWHQWLPHV WKH UHDFWLYLW\ REVHUYHG UHVHPEOHV WKDW RI ODWHU PHWDOV LQ ORZHU R[LGDWLRQ VWDWHV 2QH ORQJWHUP JRDO RI WKLV SURMHFW LV WR WDNH DGYDQWDJH RI WKLV UORDGHG V\VWHP WR GHYHORS VSHFLHV WKDW FDQ UHSODFH H[SHQVLYH ODWHU PHWDOV LQ FKHPLFDO V\QWKHVHV

PAGE 32

&+$37(5 6<17+(6,6 2) /(:,6 %$6(67$%,/,=(' 02/<%'(180 &203/(;(6 6285&(6 2) 5($&7,9( 02/<%'(180,9f 7KH GLVVRFLDWLRQ RI ODELOH /HZLV EDVHV IURP WUDQVLWLRQ PHWDO FHQWHUV FDQ JHQHUDWH UHDFWLYH PROHFXOHV FDSDEOH RI LQWHUHVWLQJ VWRLFKLRPHWULF DQG FDWDO\WLF UHDFWLRQV WKDW RIWHQ SURFHHG WKURXJK R[LGDWLYHDGGLWLRQ DQG UHGXFWLYHHOLPLQDWLRQ SDWKZD\V :H DUH LQWHUHVWHG LQ H[SORULQJ WKLV DYHQXH UHJDUGLQJ RXU PRO\EGHQXP LPLGRGLDPLGR V\VWHP DQG KDYH WKXV SUHSDUHG D ELVfS\ULGLQH FRPSOH[ SKRVSKLQH DQG SKRVSKLWH FRPSOH[HV DQG D FRRUGLQDWLYHO\ XQVDWXUDWHG $UGXHQJR FDUEHQH FRPSOH[ ,Q WKLV FKDSWHU ZH UHSRUW WKH V\QWKHVLV VWUXFWXUH DQG LQLWLDO UHDFWLYLW\ VWXGLHV RI WKHVH FRPSOH[HV 6RPH RI WKH SKRVSKLQH FRPSOH[HV UHSRUWHG KHUH UHDFW ZLWK PROHFXODU K\GURJHQ JHQHUDWLQJ VWUHWFKHG GLK\GURJHQ FRPSOH[HV &KDSWHU LV GHYRWHG WR WKH V\QWKHVLV DQG SURSHUWLHV RI WKHVH QRYHO GLK\GURJHQ FRPSOH[HV *HQHUDWLRQ RI ,PLGR'LDPLGR 3\ULGLQH &RPSOH[HV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf3\fR0H6L1f&+f@ f $GGLQJ H[FHVV S\ULGLQH WR D VWLUULQJ SHQWDQH VROXWLRQ RI ROHILQ FRPSOH[ RU UHVXOWHG LQ WKH SUHFLSLWDWLRQ RI >0R13Kf3\fR0H6L1f&+f@ f DV D SXUSOH VROLG WKDW ZDV LVRODWHG E\ ILOWUDWLRQ LQ KLJK \LHOG 6FKHPH Ofn0 7KH n+ 105 VSHFWUXP RI GLVSOD\V D VLJQLILFDQW EURDGHQLQJ RI WKH S\ULGLQH SURWRQV LQ WKH DQG SRVLWLRQV DW r& $W ORZ WHPSHUDWXUH r&f WZR GLVWLQFW GRXEOHW UHVRQDQFHV DUH REVHUYHG LQ WKH f+ 105 VSHFWUXP IRU WKHVH SURWRQV RQH IRU WKH WZR SURWRQV V\Q WR WKH LPLGR JURXS DQG WKH VHFRQG IRU WZR SURWRQV DQWL WR WKH LPLGR IXQFWLRQDOLW\ 7KH SURWRQ UHVRQDQFHV FRUUHVSRQGLQJ WR

PAGE 33

WKH S\ULGLQH OLJDQG SURWRQV LQ WKH DQG SRVLWLRQV DQG SRVLWLRQV DQG SRVLWLRQ DUH ODEHOHG DQG UHVSHFWLYHO\ LQ WKH H[SDQGHG n+ 105 VSHFWUXP VKRZQ LQ )LJXUH 7KHVH REVHUYDWLRQV DUH FRQVLVWHQW ZLWK WKH VORZ URWDWLRQ RI WKH S\ULGLQH ULQJV DERXW WKH 0R1 ERQG RQ WKH 105 WLPH VFDOH DW r& 3K 3K 5 5 9 ? + + )LJXUH 6\QWKHVLV RI >0R13Kf3\fR0H6L1f&+f@ f )LJXUH (QODUJHG UHJLRQ RI WKH n+ 105 VSHFWUXP RI DW r& $Q ;UD\ VWUXFWXUDO DQDO\VLV ZDV FDUULHG RXW RQ D VLQJOH FU\VWDO RI JURZQ DW r& E\ OD\HULQJ D VDWXUDWHG WROXHQH VROXWLRQ RI ZLWK SHQWDQH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH $ WKHUPDO HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH ZLWK VHOHFWHG ERQG OHQJWKV DQG DQJOHV 7KH VROLGVWDWH VWUXFWXUH UHYHDOV D VTXDUH S\UDPLGDO JHRPHWU\ DERXW WKH PRO\EGHQXP DWRP ZLWK WKH LPLGR OLJDQG LQ WKH DSLFDO SRVLWLRQ 7KH 0R1f DQG 1f ERQG OHQJWKV RI f ƒ DQG

PAGE 34

f ƒ UHVSHFWLYHO\ DUH FRQVLVWHQW ZLWK 0R,9fS\ULGLQH /HZLV DFLGEDVH LQWHUDFWLRQV 7KH 0R1Of ERQG OHQJWK RI f ƒ DQG WKH &Of1Of0R DQJOH RI fr DUH W\SLFDO YDOXHV IRU PRO\EGHQXP LPLGR WULSOHERQG LQWHUDFWLRQVn & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R1f f 0R1f f &Of1Of0R f 1f0R1f f 1f0R1f f 1f0R1f f 1f0R1f f 7KH VSDFHILOOLQJ PRGHO RI JHQHUDWHG IURP WKH ;UD\ VWXG\ UHYHDOV D VWHULFDOO\ FRQJHVWHG DUHD DURXQG WKH S\ULGLQH OLJDQGV GXH WR WKH SUHVHQFH RI WKH 6L0H JURXSV )LJXUH f 7KLV VWHULF FURZGLQJ KLQGHUV WKH URWDWLRQ RI WKHVH OLJDQGV

PAGE 35

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &+106 &+106 &+1026 )RUPXOD ZHLJKW &U\VWDO V\VWHP 0RQRFOLQLF 2UWKRUKRPELF 0RQRFOLQLF 6SDFH JURXS 3Q 3Pc &F S0R;Df PPnf R$f f f f E $f f f f F$f f f f 32 f f 9&$cf f f f ] kPD[r 7RWDO UHIOHFWLRQV 8QLT UHIOHFWLRQV 5 LQWf > !Df GDWD@E Z" DOO GDWDfF /DUJ GLII SHDN KROH D2EWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ ; ƒf DW .E 5? V,,II-,],IFZ" ^,>Z) )Ff,>Z)f@`

PAGE 36

6L0H 3\ULGLQH )LJXUH 6SDFHILOOLQJ PRGHO RI 6WHULF FURZGLQJ KLQGHUV S\ULGLQH OLJDQG URWDWLRQ 0HWDO G YV I (OHFWURQLF &RQILJXDWLRQ DQG 'LDPLGR /LJDQG )ROGLQJ $OWKRXJK WKH V\QWKHVLV RI GLDON\O FRPSOH[HV KDV EHHQ UHSRUWHG ;UD\ VWUXFWXUDO VWXGLHV RQ WKHVH FRPSRXQGV ZHUH QRW FDUULHG RXW DW WKDW WLPH :H DUH LQWHUHVWHG LQ WKH VROLGVWDWH VWUXFWXUHV RI WKHVH FRPSOH[HV DQG DQ ;UD\ VWXG\ ZDV FDUULHG RXW RQ D VLQJOH FU\VWDO RI JURZQ LQ D SHQWDQH VROXWLRQ DW r& 7KH WKHUPDO HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH 0R&f DQG 0R&f ERQG OHQJWKV RI f ƒ DQG f ƒ UHVSHFWLYHO\ DUH ZLWKLQ WKH UDQJH H[SHFWHG IRU PHWDOFDUERQ VLQJOH ERQGV 7KH 0R1f DQG 0R1f ERQG OHQJWKV RI f ƒ DQG f ƒ UHVSHFWLYHO\ DOVR IDOO ZLWKLQ WKH H[SHFWHG UDQJH 7KH 0R1Of ERQG OHQJWK RI f

PAGE 37

ƒ DQG WKH &Of1Of0R DQJOH RI fr DUH FRQVLVWHQW ZLWK D PHWDOQLWURJHQ WULSOHERQG LQWHUDFWLRQ )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV $f DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R&f f &Of1Of0R f 1f0R1f f 1f0R&f f 1f0R&f f &f0R&f f 7KHUH LV D VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH VWUXFWXUHV RI WKH I DQG G DQDORJXHV LQYROYLQJ ERQGLQJ RI WKH GLDPLGH DV ERUQ RXW E\ FRPSDULVRQ RI WKH VROLGVWDWH VWUXFWXUHV RI Grf DQG Gf ,Q WKH &)8 ULQJ WKH GLDPLGR QLWURJHQV 1f DQG 1ff DQG

PAGE 38

WKH PHWDO FHQWHU DUH QHDUO\ FRSODQDU 7KLV FRSODQDULW\ LV QR ORQJHU SUHVHQW LQ DQG WKHUH LV DQ DQJOH RI r EHWZHHQ WKH SODQHV GHILQHG E\ WKH &+ ULQJ DQG WKH 1f 0R DQG 1f DWRPV DV GHSLFWHG LQ )LJXUH 7KLV VWUXFWXUDO IHDWXUH LV UHIHUUHG WR LQ WKH OLWHUDWXUH DV fOLJDQG IROGLQJf DQG WKH DERYHPHQWLRQHG DQJOH IRU LV FDOOHG WKH IROGDQJOH 5HFHQW GHQVLW\ IXQFWLRQDO WKHRU\ ')7f VWXGLHV DWWULEXWH OLJDQG IROGLQJ WR UGRQDWLRQ IURP WKH 16L0H ORQH SDLUV WR DQ DSSURSULDWH PHWDOEDVHG DWRPLF RUELWDO DW WKH Gr PHWDOFHQWHU IRU DQG VLPLODU FRPSRXQGV ,Q WKHVH VWUXFWXUHV WKH GLDPLGR QLWURJHQ DWRPV UHPDLQ VSa K\EULGL]HG DQG LQ RUGHU WR DFKLHYH HIIHFWLYH SG RYHUODS WKH GLDPLGR OLJDQG PXVW WDNH RQ WKH IROGHG FRQILJXUDWLRQ 7KLV ERQGLQJ VLWXDWLRQ ZKLFK PD\ VLPSO\ EH GHVFULEHG DV D RUELWDO Hn LQWHUDFWLRQ )LJXUH f FRQWULEXWHV WR WKH ORDGLQJ RI WKLV PRO\EGHQXP V\VWHP ,Q FRQWUDVW WKHUH LV QR OLJDQG IROGLQJ LQ Gf LQ RUGHU WR DYRLG D ILOOHGILOOHG LQWHUDFWLRQ EHWZHHQ WKH S DQG G RUELWDOV WKH IROGDQJOH IRU LV rf 7KH ODFN RI OLJDQG IROGLQJ SODFHV WKH 6L0H JURXSV LQ SUR[LPLW\ WR WKH S\ULGLQH ULQJV KLQGHULQJ WKHLU URWDWLRQ DV PHQWLRQHG LQ WKH SUHYLRXV VHFWLRQ 7KH WHUP UUORDGHG DSSOLHV ZHOO WR IRU WKHUH DUH WRR PDQ\ OLJDQG UGRQRUV DQG QRW HQRXJK PHWDOEDVHG DFFHSWRUV :H KDYH H[SORUHG WKH VWUXFWXUH LQ FRPSRXQGV DQG WKHRUHWLFDOO\ XVLQJ ')7 LQ RUGHU WR JDLQ PRUH LQVLJKW LQWR WKH ERQGLQJ LQWHUDFWLRQV LQ WKHVH FRPSRXQGV ')7 FDOFXODWLRQV ZHUH SHUIRUPHG XVLQJ WKH *DXVVLDQ : SURJUDP SDFNDJH VHH &KDSWHU IRU PRUH GHWDLOVf 7KH PRGHO V\VWHPV FRQVLVW RI WKH VWUXFWXUHV VKRZQ LQ )LJXUH 6WHULF HIIHFWV RI WKH OLJDQG VHW ZHUH LQYHVWLJDWHG E\ YDU\LQJ WKH VXEVWLWXWLRQ SDWWHUQ DW WKH GLDPLGR QLWURJHQ 7KH RSWLPL]HG JHRPHWULHV ZHUH YLVXDOL]HG ZLWK J2SHQ0RO DQG UHVXOWV

PAGE 39

IRU FDVHV D E DQG F DUH VKRZQ LQ )LJXUH 0RGHO V\VWHP F LV WKH PRVW DFFXUDWH IRU UHSURGXFLQJ WKH H[SHULPHQWDO VWUXFWXUH RI 7KH IROGDQJOH LQFUHDVHV LQ WKH RUGHU D rf E rf F rf VLQFH WKHUH LV QR &)/ PRLHW\ LQ WKH PRGHO V\VWHP WKH 1& &1 SODQH RI WKH GLDPLGH ZDV XVHG WR FDOFXODWH WKH IROGDQJOHf 7KLV LQFUHDVH LQ DQJOH FDQ EH DWWULEXWHG WR WKH LQFUHDVH LQ WKH VWHULF FRPSRQHQW RI WKH GLDPLGR OLJDQG LQ JRLQJ IURP PRGHO V\VWHP D WR F 7KHVH LQLWLDO UHVXOWV LQGLFDWH WKDW DWWHPSWV WR GLUHFWO\ FRUUHODWH OLJDQG IROGDQJOH WR ERQG RUGHU VKRXOG EH DYRLGHG 3K 3K 0H6L 1 ? 1nf§0R0H 0HA6LA 1 10R1 SODQHf )LJXUH 'LDPLGR OLJDQG IROGLQJ LQ PRO\EGHQXP LPLGRGLDPLGR FRPSOH[HV )LJXUH /LJDQGIROGLQJ DQG D JHQHUDO RUELWDO Hn LQWHUDFWLRQ

PAGE 40

+ + + + 1 0H 1 “X 0R LL KAQ 9/ + + / 0H Df / 3\ Df ? 0HV6L 1 1 0R LU PHII ? Kn6 + / 0H Ef ? 1 02LL7 0H6LA 9/ + + / 0H Ff / 3\ Ff )LJXUH 0RGHO V\VWHPV IRU ')7 VWXGLHV RQ DQG 7KH 02V LQYROYHG LQ WKH RUELWDO Hn LQWHUDFWLRQ )LJXUH f IRU F KDYH EHHQ LGHQWLILHG 7KH 02 LQYROYHG LQ WKH PHWDOGLDPLGH ERQGLQJ LQWHUDFWLRQ LV WKH +202 RI F UHSUHVHQWHG JUDSKLFDOO\ LQ )LJXUH 7KLV 02 LV EHVW GHVFULEHG DV LQWHUDFWLQJ PHWDO SUHGRPLQDWHO\ G[ \ DQG G\]f DQG GLDPLGR QLWURJHQ S\ DQG S DWRPLF RUELWDOV 7KH ORZHVW XQRFFXSLHG PROHFXODU RUELWDO /802f RI F FRUUHVSRQGV WR WKH DQWLERQGLQJ 02 IRU WKLV RUELWDO Hn LQWHUDFWLRQ DV SUHVHQWHG LQ )LJXUH )LJXUH f 7KH QRQERQGLQJ 02 DV GHSLFWHG LQ )LJXUH KDV EHHQ ORZHUHG LQ HQHUJ\ GXH WR RWKHU LQWHUDFWLRQV DQG LV WKH +202 RI F VKRZQ LQ )LJXUH ,Q FRQWUDVW WR WKH FW V\VWHP WKH +202 RUELWDO LQ F ZKLFK LV SUHGRPLQDWHO\ RI G[\ FKDUDFWHU EHVW UHSUHVHQWV WKH ORQHSDLU G HOHFWURQV RQ WKH PHWDOFHQWHU 7KLV 02 LV UHSUHVHQWHG JUDSKLFDOO\ LQ )LJXUH 7KH /802 RI F LV ORFDOL]HG RQ WKH S\ULGLQH OLJDQGV DV VKRZQ LQ )LJXUH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 0R13KfWIOL3\f&2fR0H6L1f&+f@ f ([SRVXUH RI D WROXHQH VROXWLRQ RI WR GU\ FDUERQ PRQR[LGH JDV FD SVLf UHVXOWHG LQ WKH IRUPDWLRQ RI WKH VL[FRRUGLQDWH FRPSOH[ >0R13KfQPV3\f&2f R0H6L1f&+f@ f )LJXUH f $Q ;UD\ FU\VWDOORJUDSKLF VWXG\ ZDV FDUULHG RXW RQ VLQJOH FU\VWDOV RI JURZQ IURP D FRQFHQWUDWHG WROXHQH VROXWLRQ 7KH WKHUPDO

PAGE 41

F IROGDQJOH r )LJXUH 2SWLPL]HG JHRPHWULHV IRU D E DQG F HPSKDVL]LQJ OLJDQG IROGLQJ

PAGE 42

+202 RI F /802 RI F +202 RI F )LJXUH ,PSRUWDQW 02 LQWHUDFWLRQV IRU F

PAGE 43

/802 RI F )LJXUH ,PSRUWDQW 02 LQWHUDFWLRQ IRU F HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH DORQJ ZLWK VHOHFWHG ERQG OHQJWKV DQG DQJOHV 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH &RPSOH[ DGRSWV D GLVWRUWHG RFWDKHGUDO JHRPHWU\ 7KH 0R1Of ERQG OHQJWK RI f ƒ DQG WKH &Of1Of0R DQJOH RI fr DUH FRQVLVWHQW ZLWK D PRO\EGHQXPQLWURJHQ WULSOHERQG LQWHUDFWLRQ 7KH 0R1f DQG 1f ERQG OHQJWKV RI f ƒ DQG f ƒ UHVSHFWLYHO\ DUH ZLWKLQ WKH H[SHFWHG UDQJH IRU D VL[FRRUGLQDWH PRO\EGHQXP S\ULGLQH DGGXFW $Q LPSRUWDQW IHDWXUH LQ LV WKH WUDQV JHRPHWU\ DGRSWHG E\ WKH WZR S\ULGLQH OLJDQGV DV ZHOO DV WKH WUDQV DUUDQJHPHQW RI RQH DPLGH DQG WKH FDUERQ\O OLJDQG SUHVXPDEO\ D UHVXOW RI FRPELQHG VWHULF DQG HOHFWURQLF

PAGE 44

HIIHFWV )RU H[DPSOH WKLV WUDQV DUUDQJHPHQW RI DPLGR DQG &2 OLJDQG DOORZV IRU D RUELWDO Hn LQWHUDFWLRQ EHWZHHQ WKH ILOOHG DPLGR S RUELWDO WKH DSSURSULDWH PHWDO G RUELWDO DQG WKH &2 Qr RUELWDO )XUWKHUPRUH WKH WUDQV RULHQWDWLRQ RI WKH S\ULGLQH OLJDQGV NHHSV WKHP DZD\ IURP HDFK RWKHU DQG DZD\ IURP WKH VWHULF EXON RI WKH 6L0H JURXSV 3K 3K )LJXUH 6\QWKHVLV RI >0R13KfWUDUD3\f&2fR0H6L1f&+f@ f 3\ S\ULGLQH 7ZR UHVRQDQFHV IRU WKH LQHTXLYDOHQW 6L0H JURXSV DUH REVHUYHG DW SSP DQG SSP LQ WKH n+ 105 VSHFWUXP RI FRQVLVWHQW ZLWK WKH VROLGVWDWH VWUXFWXUH 7KH HTXLYDOHQF\ RI WKH S\ULGLQH SURWRQV LQ WKH DQG SRVLWLRQV LQ WKH n+ 105 VSHFWUXP DW r& LQGLFDWH WKDW URWDWLRQ DERXW WKH S\ULGLQH PRO\EGHQXP ERQG LV QRW KLQGHUHG DW WKLV WHPSHUDWXUH RQ WKH 105 WLPH VFDOH LQ WKLV VL[FRRUGLQDWH FRPSOH[ 7KLV LV LQWHUHVWLQJ ZKHQ FRPSDUHG WR WKH KLQGHUHG URWDWLRQ RI WKH S\ULGLQH ULQJV LQ ILYHFRRUGLQDWH DQG LV DQ XQXVXDO H[DPSOH RI D FRRUGLQDWLYHO\ VDWXUDWHG V\VWHP f EHLQJ OHVV VWHULFDOO\ KLQGHUHG WKDQ DQ XQVDWXUDWHG V\VWHP f $ VWUHWFKLQJ IUHTXHQF\ RI FP LQ WKH ,5 VSHFWUXP RI KDV EHHQ DVVLJQHG WR WKH &2 OLJDQG IUHH FDUERQ PRQR[LGH KDV D & VWUHWFK DW FPf LQGLFDWLQJ D FRQVLGHUDEOH DPRXQW RI EDFN ERQGLQJ IURP WKH PHWDO WR WKH FDUERQ PRQR[LGH OLJDQG

PAGE 45

& )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R1f f 0R1f f 0R&f f &ff f f&f0R f 1f0R1f f 1f0R1f f &Of1Of0R f

PAGE 46

&1 $FWLYDWLRQ RI DQ $PLGR /LJDQG 6\QWKHVLV RI ,PLGR%ULGJHG IURP 0RQRPHULF LV VWDEOH DW r& LQ WKH VROLGVWDWH IRU H[WHQGHG SHULRGV +RZHYHU ZKHQ KHDWHG WR r& LQ WROXHQH FRQYHUWHG FOHDQO\ WR ELPHWDOOLF ZLWK ORVV RI S\ULGLQH LQ K )LJXUH f 7KLV DLU VHQVLWLYH GLDPDJQHWLF FRPSOH[ LV WKHUPDOO\ VWDEOH LQ VROXWLRQ IRU H[WHQGHG SHULRGV HYHQ DW WKH WHPSHUDWXUH UHTXLUHG IRU V\QWKHVLV $ VLQJOH FU\VWDO RI ZDV JURZQ IURP D SHQWDQHGLFKORURPHWKDQH VROXWLRQ DW r& &RPSRXQG FU\VWDOOL]HV ZLWK WZR PROHFXOHV RI GLFKORURPHWKDQH $Q ;UD\ GLIIUDFWLRQ VWXG\ VKRZV WKDW FRQWDLQV WZR PRO\EGHQXP DWRPV EULGJHG E\ WZR SKHQ\O LPLGR JURXSV DV ZHOO DV D 0H6L1&+ OLJDQG )LJXUH f 7KLV XQXVXDO 0HM6L1&HA JURXS LV DSSDUHQWO\ IRUPHG E\ FOHDYDJH RI RQH 16L0H JURXS IURP DQ R0H6L1f&+ OLJDQG 7KH 16L0H JURXS WKDW ZDV FOHDYHG UHPDLQV DV DQ DGGLWLRQDO WHUPLQDO LPLGR OLJDQG RQ RQH RI WKH PRO\EGHQXP DWRPV 7KH IRUPDO R[LGDWLRQ VWDWH DW HDFK PHWDO FHQWHU LV EHVW GHVFULEHG DV 0R9f 7KH 0ROf0Rf GLVWDQFH RI f ƒ DOWKRXJK VKRUW IRU D 0R0R VLQJOH ERQG LQGLFDWHV WKH H[LVWHQFH RI D PHWDOPHWDO ERQG DQG DFFRXQWV IRU WKH REVHUYHG GLDPDJQHWLVP RI )RXU XSILHOG UHVRQDQFHV DVVLJQHG WR WKH IRXU LQHTXLYDOHQW 0H6L JURXSV DUH REVHUYHG LQ WKH n+ 105 VSHFWUXP RI FRQVLVWHQW ZLWK WKH VWUXFWXUH DV GHWHUPLQHG E\ ;UD\ FU\VWDOORJUDSK\ 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW IRU DUH VXPPDUL]HG LQ 7DEOH 7KH XQXVXDO DURPDWLF &1 ERQG FOHDYDJH UHDFWLRQ WKDW LV REVHUYHG GXULQJ WKH S\URO\VLV RI LV SUHVXPDEO\ GULYHQ E\ WKH IRUPDWLRQ RI WKH 0R1 WULSOH ERQG DQG GHPRQVWUDWHV WKH UHDFWLYLW\ RI WKH 0R,9f PRLHW\ WRZDUGV R[LGDWLRQ 5HDFWLRQV SURYLGLQJ D VWUDLJKWIRUZDUG H[DPSOH RI &1 VLQJOHERQG DFWLYDWLRQ D PRVW GHVLUDEOH WUDQVIRUPDWLRQ DUH UDUH 7KH PHWDOPHGLDWHG UXSWXUH RI &1 ERQGV LV IRU WKH PRVW SDUW OLPLWHG WR VWUDLQHG DPLQHV RU DPLGLQHV $FWLYDWLRQ RI QRQDFWLYDWHG VXEVWUDWHV VXFK DV

PAGE 47

, W W DQLOLQH DQG WKH ULQJ RSHQLQJ RI S\ULGLQH KDYH EHHQ REVHUYHG ZLWK KLJKO\ UHDFWLYH WULYDOHQW *URXS PHWDO FRPSOH[HV $ VOLJKW YDULDWLRQ RQ WKLV WKHPH LQYROYHV WKH UHFHQWO\ UHSRUWHG &1 ERQG FOHDYDJH UHDFWLYLW\ RI D 1E,,f FOXVWHU XSRQ OLJDQG UHSODFHPHQW E\ DQLRQLF DPLGHVM $Q REVHUYDWLRQ UHODWHG WR WKLV UHDFWLRQ W\SH PDGH LQ E\ &KLVKROP LQYROYHG WKH LVRODWLRQ RI D FDUELGHLPLGH FOXVWHU WKDW PD\ KDYH DULVHQ YLD GHJUDGDWLRQ RI DQ DPLGR OLJDQG 3K S\ULGLQH )LJXUH &1 DFWLYDWLRQ RI WKH R0H6L1f&+ OLJDQG LQ *HQHUDWLRQ RI ,PLGR'LDPLGR 320Hf $GGXFWV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf320HffR0H6L1f&+f@ f )URP D SHQWDQH VROXWLRQ RI ROHILQ FRPSOH[ RU WUHDWHG ZLWK HTXLY RI 320Hf SUHFLSLWDWHG D UHGEURZQ SRZGHU RI >0R13Kf320HffR0H6L1f&+f@ f ZKLFK ZDV LVRODWHG LQ KLJK \LHOG )LJXUH f $ VLQJOH FU\VWDO ;UD\ VWXG\ ZDV FDUULHG RXW RQ D VXLWDEOH FU\VWDO RI JURZQ IURP D WROXHQHSHQWDQH VROXWLRQ DW ORZ WHPSHUDWXUH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH ,Q WKH WKHUPDO HOOLSVRLG SORW RI WKH JHRPHWU\ DERXW PRO\EGHQXP LV EHVW GHVFULEHG DV D GLVWRUWHG RFWDKHGURQ DQG WKH ROHILQ IURP WKH VWDUWLQJ PDWHULDO KDV EHHQ GLVSODFHG E\ WKUHH WULPHWK\O SKRVSKLWH OLJDQGV )LJXUH f 7KH SKRVSKLWH OLJDQGV WDNH XS D PHULGLRQDO ERQGLQJ PRWLI DQG WKH 0R3Of 0R3f DQG 0R3f ERQG OHQJWKV RI f ƒ f ƒ DQG ƒ UHVSHFWLYHO\ DUH DV H[SHFWHG IRU D FRPSOH[ RI

PAGE 48

WKLV QDWXUH 7KH PRO\EGHQXP LPLGR LQWHUDFWLRQ LV FRQVLVWHQW ZLWK D PHWDOQLWURJHQ WULSOH ERQG & & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 7KH VROYDWLQJ GLFKORURPHWKDQH PROHFXOHV KDYH EHHQ RPLWWHG IRU FODULW\ 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0ROf0Rf f 0ROf&f f 0Rf1f f 0Rf1f f 0Rf1f f 0ROf1Of f 0ROf1f f 0Rf1Of f 0Rf1f f 0ROf1Of0Rf f 0R f1f0Rf f 0Rf1f6Lf f 3K 5 5 0H f 320Hf 3HQWDQH 57 3K 0H6L 1 -L/n320Hf ?r 0H2f3 0R  ?20Hf ? 0H6L + + )LJXUH 6\QWKHVLV RI >0R13Kf320HffR0H6L1f&+f@ f

PAGE 49

$OWKRXJK WKH 6L0H JURXSV RI DUH LQHTXLYDOHQW LQ WKH VROLGVWDWH RQO\ RQH 6L0H UHVRQDQFH LV REVHUYHG IRU WKHVH SURWRQV LQ WKH n+ 105 VSHFWUXP IURP r& SSP &'Jf WR r& $ KLJK GHJUHH RI IOXFWLRQDOLW\ LQ VROXWLRQ PRVW OLNHO\ LQYROYLQJ SKRVSKLWH GLVVRFLDWLRQ DQG H[FKDQJH FRXOG EH UHVSRQVLEOH IRU WKH IRUPDWLRQ RI D ILYHFRRUGLQDWH FRPSOH[ ZKHUH WKH 6L0H JURXSV DUH HTXLYDOHQW DFFRXQWLQJ IRU WKLV REVHUYDWLRQ ,Q WKH ELVfS\ULGLQH FRPSOH[ f VWHULF LQWHUDFWLRQV KLQGHU WKH URWDWLRQ RI WKH S\ULGLQH OLJDQGV DERXW WKH 0R1 ERQGV 7KH VWHULF LQWHUDFWLRQV LQ VKRXOG KHOS HQFRXUDJH SKRVSKLWH H[FKDQJH DQG LQ WKLV ZD\ JHQHUDWH D FRRUGLQDWLYHO\ XQVDWXUDWHG PHWDO FHQWHU 6WHULF LQWHUDFWLRQV VXFK DV WKLV RQH ZLOO EHFRPH D UHFXUULQJ WKHPH WKURXJKRXW WKLV FKDSWHU 7KH SKRVSKLWH FRPSOH[ LV UDWKHU XQVWDEOH DQG EHJLQV WR GHFRPSRVH LQ VROXWLRQ DW r& ZLWKLQ KRXUV &RPSRXQG HYHQ GHFRPSRVHV LQ WKH VROLGVWDWH DW r& RYHU PRQWKV 7KH GHFRPSRVLWLRQ SURGXFW ZDV LVRODWHG DV DQ DLU DQG WKHUPDOO\ VHQVLWLYH EODFN WROXHQHLQVROXEOH SRZGHU 7KH WKHUPDO VHQVLWLYLW\ DQG WKH LQVROXELOLW\ RI WKLV FRPSRXQG KDYH PDGH LW YHU\ GLIILFXOW WR FKDUDFWHUL]H :H KDYH K\SRWKHVL]HG WKDW WKLV FRPSRXQG PD\ EH DQ ROLJRPHULF VSHFLHV ZLWK WKH IRUPXOD >0R13KfR0H6L1f&+f@[ EXW KDYH QR VROLG HYLGHQFH ZLWK ZKLFK WR VXEVWDQWLDWH WKLV FODLP RWKHU WKDQ D n+ 105 VSHFWUXP 7KLV XQNQRZQ PDWHULDO ZLOO EH KHQFHIRUWK UHIHUUHG WR DV ; 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf320Hff&2R0H6L1f&+f@ f :KHQ IUHVKO\ JHQHUDWHG ZDV GLVVROYHG LQ D PLQLPXP DPRXQW RI WROXHQH DQG WUHDWHG ZLWK &2 JDV FD SVLf >0R13Kf320Hff&2R0H6L1f&+f@ f IRUPHG DQG ZDV LVRODWHG LQ H[FHOOHQW \LHOG 6LQJOH FU\VWDOV RI ZHUH JURZQ IURP D WROXHQH VROXWLRQ DQG DQ ;UD\ VWXG\ ZDV FDUULHG RXW RQ D VXLWDEOH FU\VWDO 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH WKHUPDO

PAGE 50

HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH 7KH RYHUDOO JHRPHWU\ DURXQG WKH PHWDO LV GLVWRUWHG RFWDKHGUDO DQG WKH VWUXFWXUH W\SH LV VLPLODU WR WKDW RI ,Q WKLV LQVWDQFH WKH SKRVSKLWH OLJDQGV DUH PXWXDOO\ WUDQV SUHVXPDEO\ IRU WKH VDPH UHDVRQV GLVFXVVHG IRU WKH S\ULGLQH OLJDQGV LQ )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R3Of f 0R3f f 0R3f f 1Of0R1f &Of1Of0R f 1f0R3f f 3f0R3Of f 7KH nLG DQG O& 105 VSHFWUD RI DUH KLJKO\ IOX[LRQDO DW r& &\'Jf ,Q WKH n+ 105 VSHFWUXP DW r& D VLQJOH UHVRQDQFH LV REVHUYHG IRU WKH 6L$IH JURXSV DW SSP DORQJ ZLWK D GRXEOHW UHVRQDQFH DW SSP -3+ +]f IRU WKH 320"f OLJDQGV $W

PAGE 51

ORZ WHPSHUDWXUH r& &'f WZR UHVRQDQFHV DUH REVHUYHG IRU WKH 6L$H JURXSV DW SSP DQG SSP LQ WKH n+ 105 VSHFWUXP 3KRVSKLWH GLVVRFLDWLRQ IURP DW r& FRXOG SURGXFH D ILYHFRRUGLQDWH VSHFLHV ZLWK HTXLYDOHQW 6L0H JURXSV DFFRXQWLQJ IRU WKLV EHKDYLRU 7KH FRDOHVFHQFH RI WKH 6L0H SHDNV LQ WKH n+ 105 VSHFWUXP WDNHV SODFH DW r& 7KH DFWLYDWLRQ HQHUJ\ IRU WKLV SURFHVV FDQ EH FDOFXODWHG XVLQJ WKH VLPSOH WZRVLWH H[FKDQJH HTXDWLRQ VKRZQ LQ (TXDWLRQ ZKHUH 1 LV $YRJDGURfV QXPEHU 7F LV WKH WHPSHUDWXUH RI FRDOHVFHQFH DQG 6Y LV WKH PD[LPXP FKHPLFDO VKLIW GLIIHUHQFH EHWZHHQ WKH WZR UHVRQDQFHV LQ TXHVWLRQ 8VLQJ (TXDWLRQ D YDOXH RI .-PRO .FDOPROf LV FDOFXODWHG IRU WKLV SURFHVV ZKHUH 6Y +] $*? 57& OQ 9 5 Q1Kff ,Q 7F 6Yf (TXDWLRQ $ SHDN DW FPn FRUUHVSRQGLQJ WR WKH FDUERQ\O OLJDQG VWUHWFK ZDV REVHUYHG LQ WKH ,5 VSHFWUXP RI 7KH FDUERQ\O VWUHWFKLQJ IUHTXHQF\ IRU LV FPn KLJKHU WKDQ WKDW IRU LPSO\LQJ D VWURQJHU &2 ERQG LQ 7KLV LV QRW VXUSULVLQJ DV WKH SKRVSKLWH OLJDQGV DUH ZHDNHU /HZLV EDVHV WKDQ S\ULGLQH DQG ZLOO WKHUHIRUH KDYH OHVV HOHFWURQ GHQVLW\ DW WKH PHWDO FHQWHU DYDLODEOH IRU EDFN ERQGLQJ WR WKH FDUERQ\O OLJDQG *HQHUDWLRQ RI ,PLGR'LDPLGR 30H $GGXFWV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30HfR0H6L1f&+f@ f 7KH >0R13Kf30HfR0H6L1f&+f@ f FRPSOH[ ZDV V\QWKHVL]HG E\ 'U &DUORV 2UWL] D SUHYLRXV JUDGXDWH VWXGHQW WKURXJK D URXWH LGHQWLFDO WR WKDW XVHG LQ WKH SUHSDUDWLRQ RI 7KH UHVXOWV RI WKH ;UD\ FU\VWDO VWUXFWXUH VWXG\ RQ WKLV FRPSOH[ DUH LQFOXGHG KHUH DV WKH\ DUH UHOHYDQW WR VWUXFWXUDO GLVFXVVLRQV LQ WKLV FKDSWHU 7KH WKHUPDO HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH DORQJ ZLWK VHOHFWHG ERQG OHQJWKV DQG DQJOHV

PAGE 52

7KH RYHUDOO JHRPHWU\ LV GLVWRUWHG RFWDKHGUDO DQG VLPLODU WR WKDW RI 7KH ERQG OHQJWKV DQG DQJOHV DVVRFLDWHG ZLWK WKH SKHQ\O LPLGR JURXS DUH DV H[SHFWHG IRU D PHWDOLPLGR WULSOHERQG LQWHUDFWLRQ 0R1Of f ƒ &Of1Of0R frf 7KH UHVW RI WKH ERQG OHQJWKV DUH XQH[FHSWLRQDO LQ WKDW WKH\ DOO IDOO ZLWKLQ WKH H[SHFWHG UDQJH 7KHUH LV KRZHYHU D VLJQLILFDQW GLIIHUHQFH RI DSSUR[LPDWHO\ ƒ EHWZHHQ WKH 0R1f DQG 0R1f ERQG OHQJWKV f ƒ DQG f ƒ UHVSHFWLYHO\ LQ WKLV FRPSOH[ (ORQJDWLRQ RI 0R1f KDV EHHQ DWWULEXWHG WR D ILOOHGILOOHG LQWHUDFWLRQ EHWZHHQ D QLWURJHQ 1f LQ f S RUELWDO DQG D PHWDO G RUELWDO RI DSSURSULDWH V\PPHWU\ 7KLV ILOOHGILOOHG LQWHUDFWLRQ LV SUHVXPDEO\ DOOHYLDWHG LQ GXH WR WKH LDFFHSWLQJ FDUERQ\O OLJDQG DQG WKH FRUUHVSRQGLQJ PRO\EGHQXP QLWURJHQ DPLGH ERQG OHQJWKV LQ GLIIHU E\ DSSUR[LPDWHO\ ƒ +RZHYHU VXFK DUJXPHQWV VKRXOG EH PDGH ZLWK FDXWLRQ DV VWHULF HIIHFWV PD\ DOVR KDYH DQ LPSDFW RQ ERQG OHQJWK &RQVLGHU IRU H[DPSOH FRPSOH[ DQ DQDORJXH WR ZKHUH D 6L0H JURXS KDV EHHQ UHSODFHG ZLWK D SURWRQ )LJXUH f ,Q WKH 0R1f ERQG OHQJWK fƒf LV ƒ VKRUWHU WKDQ WKH FRUUHVSRQGLQJ OHQJWK LQ fƒf SUHVXPDEO\ GXH WR ORVV RI VWHULF FORXW XSRQ UHSODFLQJ 6L0H ZLWK + 7KH RULJLQ RI FRPSOH[ ZLOO EH GLVFXVVHG LQGHSWK LQ &KDSWHU 7KH ;UD\ FU\VWDO VWXG\ RI ZDV ILUVW UHSRUWHG E\ 'U &DUORV 2UWL] ,W LV LQFOXGHG KHUH IRU WKH SXUSRVHV RI WKLV GLVFXVVLRQ 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30Hf&2R0H6L1f&+f@ f ([SRVXUH RI D WROXHQH VROXWLRQ RI WR GU\ FDUERQ PRQR[LGH JDV FD SVLf UHVXOWHG LQ WKH IRUPDWLRQ RI WKH VL[FRRUGLQDWH FRPSOH[ >0R13Kf30Hf&2f R0H6L1f&+f@ f )LJXUH f 7KH VWUXFWXUH RI KDV EHHQ DVVLJQHG E\ n+

PAGE 53

)LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R3Of f 0R3f f f&f f 1Of0R1f f 1f0R&f f 3Of0R3f f &Of1Of0R f

PAGE 54

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &L+10R6&+&O &+10236 &+10236 )RUPXOD ZHLJKW &U\VWDO V\VWHP 0RQRFOLQLF 7ULFOLQLF 0RQRFOLQLF 6SDFH JURXS 3Q 3? 3F S0R;Df PPnf D $f f f f $f f f f F$f f f f Drf f SQ f f f , !Df GDWD@E Z" DOO GDWDfF /DUJ GLII SHDN KROH D2EWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ N ƒf DW .E 5? V,,I)WLG)O FZ" ^=>Z) )Ff6>Z)f@`

PAGE 55

& & & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R3Of f 0R3f f 0R3f f &Of1Of0R f 1Of0R1f f 3f0R3f f 1f0R3Of f

PAGE 56

& & & & & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R3Of f 0R3f f 0R3f f

PAGE 57

O& DQG ,3 105 VSHFWURVFRS\ DQG LV FRQVLVWHQW ZLWK WKDW VKRZQ LQ )LJXUH $W r& WZR UHVRQDQFHV DUH REVHUYHG IRU WKH LQHTXLYDOHQW 6L$H JURXSV DW SSP DQG SSP LQ WKH n+ 105 VSHFWUXP 2QH EURDG UHVRQDQFH DW SSP LV f f f REVHUYHG IRU WKH HTXLYDOHQW SKRVSKLQHV LQ WKH 3^ +` VSHFWUXP RI DW r& DQG WKH W Q FDUERQ\O FDUERQ UHVRQDWHV DW SSP LQ WKH & 105 VSHFWUXP DW WKDW WHPSHUDWXUH 7KH FDUERQ\O VWUHWFK LQ WKH ,5 VSHFWUXP RI LV REVHUYHG DW FPn 7KH HOHFWURQ GHQVLW\ DW WKH PHWDO FHQWHU GHWHUPLQHG SULPDULO\ E\ WKH 30H OLJDQGV LV WKXV VRPHZKHUH EHWZHHQ WKDW LQ DQG 3K 3K )LJXUH 6\QWKHVLV RI >0R13Kf30Hf&2fR0H6L1f&+f@ f *HQHUDWLRQ RI ,PLGR'LDPLGR 30H3K $GGXFWV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30H3KfR0H6L1f&+f@ f 7KH ROHILQ IUDJPHQW LQ FRPSOH[HV DQG ZDV GLVSODFHG ZLWK HTXLY RI 30H3K 7KH SURGXFW LQ WKLV LQVWDQFH ZDV WKH ELVSKRVSKLQHf FRPSOH[ >0R13Kf30H3KfR0H6L1f&)/_f@ f WKDW SUHFLSLWDWHG IURP VROXWLRQ DV D JUHHQ VROLG DQG ZDV LVRODWHG E\ ILOWUDWLRQ )LJXUH f 6LQJOH FU\VWDOV RI ZHUH JURZQ IURP D FRQFHQWUDWHG WROXHQH VROXWLRQ DW ORZ WHPSHUDWXUH $Q ;UD\ VWXG\ ZDV FDUULHG RXW RQ D VXLWDEOH FU\VWDO DQG WKH WKHUPDO HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH 7KH UHOHYDQW GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH

PAGE 58

7KH JHRPHWU\ DERXW WKH PRO\EGHQXP LQ LV EHVW GHVFULEHG DV GLVWRUWHG VTXDUH S\UDPLGDO 7KH DWRPV 1f 1f 3f DQG 1Of PDNH XS WKH EDVH RI WKH VTXDUH S\UDPLG DV GHILQHG E\ WKH WZR ELJJHVW PHWDOFHQWHUHG DQJOHV LQ WKH PROHFXOH 1Of0ROf1f fr DQG 1f0R f3f fr 7KH UHPDLQLQJ 3 f RFFXSLHV WKH DSLFDO SRVLWLRQ 7KH IRUPXODWLRQ RI WKH PROHFXOH DV D ELVSKRVSKLQHf FRPSOH[ LV DOVR VXSSRUWHG E\ LQWHJUDWLRQ RI WKH 6L0H" DQG 30H3K UHVRQDQFHV LQ WKH n+ 105 VSHFWUXP RI 7KH VWUXFWXUH RI FRPSOH[ LV IOX[LRQDO LQ VROXWLRQ DQG RQH UHVRQDQFH LV REVHUYHG IRU ERWK 6$& JURXSV DW SSP DORQJ ZLWK RQH UHVRQDQFH IRU WKH WZR 30H3K OLJDQGV DW SSP EUf LQ WKH n+ 105 VSHFWUXP r& &+f :KHQ ZDV JHQHUDWHG E\ WUHDWPHQW RI DQ ROHILQ FRPSOH[ ZLWK HTXLY 30H3K ; ZDV VLPXOWDQHRXVO\ IRUPHG LQ VPDOO DPRXQWV 8VLQJ HTXLY 30H3K KHOSHG GLVFRXUDJH EXW GLG QRW FRPSOHWHO\ HOLPLQDWH WKH IRUPDWLRQ RI ; &RPSOH[ ZDV KRZHYHU VWDEOH ZKHQ VWRUHG IRU PRQWKV DW r& XQGHU DQ LQHUW DWPRVSKHUH 3K 30H3K 3HQWDQH 57 3K 0H6? OMOA30H3K 1f§0R 1 30H3K < nmc0H $ + + 5 0H 5 + f 5M 5 0H f )LJXUH 6\QWKHVLV RI >0R13Kf30H3KfR0H6L1f&+f@ f

PAGE 59

)LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0ROf1Of f 0ROf3Of f 0ROf3f f 0ROf1f f 0ROf1f f 1Of0ROf1f f 1Of0ROf1f f 1f0ROf3Of f 1f0ROf3f f &Of1Of0ROf f 1f0ROf1f f 1Of0ROf3Of f 1f0ROf3Of f 1Of0ROf3f f 1f0ROf3f f 3Of0ROf3f f &RPSOH[ FU\VWDOOL]HG ZLWK WZR PROHFXOHV LQ WKH DV\PPHWULF XQLW DQG RQO\ RQH LV VKRZQ KHUH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf30H3Kf&20H6L1f&+f@ f :KHQ WKH FRRUGLQDWLYHO\ XQVDWXUDWHG UHDFWHG ZLWK &2 JDV FD SVLf WKH FDUERQ\O DGGXFW >0R13Kf30H3Kf&2R0H6L1f&+f@ f IRUPHG DQG ZDV LVRODWHG DV D UHGSXUSOH VROLG )LJXUH f 7ZR UHVRQDQFHV DUH REVHUYHG IRU WKH

PAGE 60

LQHTXLYDOHQW 6L$ JURXSV LQ WKH n+ 105 VSHFWUXP RI DW SSP DQG SSP &' r&f 2QO\ RQH UHVRQDQFH LV REVHUYHG IRU WKH IRXU 3$A3K OLJDQG PHWK\O JURXSV DW SSP LQ WKH n+ 105 VSHFWUXP &' r&f $ YHU\ EURDG UHVRQDQFH LV REVHUYHG LQ WKH fn3 105 VSHFWUXP DW SSP IRU WKH ):A3K SKRVSKRUXV JURXS %DVHG RQ WKHVH REVHUYDWLRQV D SKRVSKLQH H[FKDQJH SDWKZD\ DW r& FDQ DFFRXQW IRU WKH HTXLYDOHQW PHWK\O JURXSV $ FDUERQ\O VWUHWFKLQJ IUHTXHQF\ RI FPn LV REVHUYHG LQ WKH ,5 VSHFWUXP RI 7KLV IUHTXHQF\ LV VOLJKWO\ ORZHU WKDQ WKDW RI FRPSOH[ FPnf DQG LV VXUSULVLQJ LQ WKDW 30H3K LV VOLJKWO\ PRUH HOHFWURQ ZLWKGUDZLQJ WKDQ 30H :H ZRXOG WKHUHIRUH H[SHFW WKH VWUHWFKLQJ IUHTXHQF\ IRU WR EH KLJKHU WKDQ WKDW IRU 3K 3K 0H"6L 1 ? 1,30H3K MTf§0R 1 30H3K )LJXUH 6\QWKHVLV RI >0R13Kf30H3Kf&2R0H6L1f&+f@ f 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI >0R13Kf'03(f0H6L1f&+fS'03(f 0R13Kf'03(fR0H6L1f&+f@ f :KHQ D SHQWDQH VROXWLRQ RI ROHILQ FRPSOH[ RU ZDV WUHDWHG ZLWK HTXLY RI '03( OELVGLPHWK\OSKRVSKLQRfHWKDQHf GLPHULF >0R13Kf'03(f R0H6L1f&+fS'03(f0R13Kf'03(fR0H6L1f&+f@ f SUHFLSLWDWHG IURP VROXWLRQ DV D UHG SRZGHU DQG ZDV LVRODWHG E\ ILOWUDWLRQ )LJXUH f 7KH GLPHULF QDWXUH RI ZDV FRQILUPHG E\ D VLQJOH FU\VWDO ;UD\ VWXG\ 7KH WKHUPDO HOOLSVRLG SORW LV VKRZQ LQ )LJXUH ZLWK VHOHFWHG ERQG OHQJWKV DQG DQJOHV 7KH GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH PHWDOFHQWHUV 0R DQG 0R$ DUH

PAGE 61

UHODWHG E\ DQ LQYHUVLRQ FHQWHU 7KH JHRPHWU\ DW 0R LQ LV EHVW GHVFULEHG DV GLVWRUWHG RFWDKHGUDO DQG LV YHU\ VLPLODU WR WKDW LQ DQG 7KH SKRVSKRUXV DWRPV DUH FRRUGLQDWHG WR WKH 0R FHQWHU LQ D PHULGLRQDO DUUD\ DOVR VLPLODU WR ZKDW LV REVHUYHG IRU FRPSOH[HV DQG 7KH VPDOOHVW PHWDOFHQWHUHG DQJOHV DUH WKH 3f0R3Of DQG 1f0R1f DQJOHV RI fr DQG fr UHVSHFWLYHO\ 7KH DFXWHQHVV RI WKHVH DQJOHV FDQ EH DWWULEXWHG WR WKH FKHODWLQJ QDWXUH RI WKH OLJDQGV $OO RWKHU ERQG OHQJWKV DQG DQJOHV DUH XQH[FHSWLRQDO 5 + )LJXUH 6\QWKHVLV RI >0R13Kf'03(fR0H6L1f&+fS'03(f 0R13Kf'03(fR0H6L1f&+f@ f &RPSOH[ UHDFWV ZLWK FDUERQ PRQR[LGH JDV JLYLQJ D PL[WXUH RI SURGXFWV E\ n+ 105 VSHFWURVFRS\ $ &2 VWUHWFK DSSHDUV DW FPn LQ WKH ,5 VSHFWUXP RI WKH FUXGH UHDFWLRQ SURGXFW 7KLV FRQILUPV WKH SUHVHQFH RI D PHWDO FDUERQ\O KRZHYHU WKH H[DFW QDWXUH RI WKH FRRUGLQDWLRQ HQYLURQPHQW DERXW WKH PHWDOFHQWHU LV QRW NQRZQ DW WKLV WLPH

PAGE 62

)LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R3Of f 0R3f f 0R3f f 0R1f f 0R1f f &Of1Of0R f 1Of0R1f f 3f0R3Of f 1f0R1f f 3f0R1f f 3Of0R3f f $OO DWRPV ODEHOHG $ DUH V\PPHWU\ UHODWHG WR QRQ $ ODEHOHG DWRPV E\ D FHQWHU RI LQYHUVLRQ *HQHUDWLRQ RI DQ ,PLGR'LDPLGR $UGXHQJR &DUEHQH ,PLGD]RO
PAGE 63

72 4 r$ UHYLHZV KDYH WKRURXJKO\ WUHDWHG WKLV VXEMHFW PDWWHU f f 2XU PRO\EGHQXP LPLGRGLDPLGR IUDJPHQW FDQ VWDELOL]H 6FKURFNW\SH FDUEHQH FRPSOH[ :H ZHUH LQWHUHVWHG LQ H[SORULQJ WKH VWUXFWXUH RI DQ LPLGD]RO\OLGHQH GHULYDWLYH RI RXU LPLGRGLDPLGR V\VWHP 7R WKLV GD\ RQO\ FDUEHQH FRPSOH[HV RI ORZYDOHQW PRO\EGHQXP f f W 2 r LQ RFWDKHGUDO JHRPHWULHV KDYH EHHQ GHVFULEHG LQ WKH OLWHUDWXUH r :H KDYH EHHQ DEOH WR V\QWKHVL]H D FRPSOH[ RI WKLV W\SH DQG WKH V\QWKHVLV DQG LQLWLDO VWUXFWXUDO VWXGLHV ZLOO EH GLVFXVVHG KHUH 7KLV LV ERWK WKH ILUVW LQVWDQFH RI D PRO\EGHQXP LPLGD]RO\OLGHQH FRPSOH[ ZLWK D WHWUDKHGUDOOLNH VWUXFWXUH DQG WKH ILUVW LQVWDQFH RI D PRO\EGHQXP ,9f LPLGD]RO\OLGHQH FRPSOH[ :KHQ D EHQ]HQH VROXWLRQ RI ZDV WUHDWHG ZLWK HTXLY RI LPLGD]RO\OLGHQH ,0HVf >0R13Kf,0HVR0H6L1f&+f@ f IRUPHG LQ KLJK \LHOG DV GHWHUPLQHG E\ n+ 105 VSHFWURVFRS\ )LJXUH f $OWKRXJK FRPSOH[ ZDV DOVR JHQHUDWHG E\ WUHDWPHQW RI Z LWK WKH FUXGH UHDFWLRQ SURGXFW ZDV QRW DV SXUH DV ZKHQ ZDV XVHG DV WKH VWDUWLQJ PDWHULDO 6LQJOH FU\VWDOV RI JUHZ IURP &' 105 VDPSOHV JHQHUDWHG E\ WUHDWPHQW RI DQG ZLWK DQG D VLQJOH FU\VWDO ;UD\ VWXG\ ZDV FDUULHG RXW RQ DQ DSSURSULDWH FU\VWDO 7KH WKHUPDO HOOLSVRLG SORW RI DQG VHOHFWHG ERQG OHQJWKV DQG DQJOHV DUH SUHVHQWHG LQ )LJXUH 7KH GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 2QH LQWHUHVWLQJ IHDWXUH RI LV WKH ODFN RI SKRVSKLQH FRRUGLQDWLRQ 7KH ,0HV OLJDQG LV D VWURQJ DGRQRU DQG EXON\ HQRXJK WR GLVSODFH DQG LQKLELW SKRVSKLQH FRRUGLQDWLRQ 7KH JHRPHWU\ DW WKH PHWDOFHQWHU LV EHVW GHVFULEHG DV GLVWRUWHG WHWUDKHGUDO 7KH ODUJHVW GHYLDWLRQ IURP WKH LGHDO WHWUDKHGUDO DQJOH RI r LQYROYHV WKH PHWDO FHQWHUHG DQJOH 1f0ROf1f RI fr 7KH FKHODWLQJ QDWXUH RI WKH GLDPLGR

PAGE 64

OLJDQG LV UHVSRQVLEOH IRU WKH DFXWHQHVV RI WKLV DQJOH 7KH &Of1Of0ROf DQJOH RI fr DQG WKH 1Of0ROf ERQG OHQJWK RI f ƒ DJUHH ZHOO ZLWK D PHWDOQLWURJHQ WULSOHERQG LQWHUDFWLRQ 7KH PHWDO FDUEHQH 0ROf&ff ERQG OHQJWK RI f ƒ LQ LV DSSUR[LPDWHO\ ƒ VKRUWHU WKDQ LQ RFWDKHGUDO PRO\EGHQXP f DQDORJXHV DQG LV VLPLODU WR WKDW RI )LVKHU FDUEHQH &2f0R &25f6L3K f ƒf :KLOH WKH PHWDO WR FDUEHQH ERQG OHQJWKV RI DQG &2f0R &25f6L3K DUH VLPLODU ZH EHOLHYH WKDW WKH VKRUW PRO\EGHQXP WR FDUEHQH OHQJWK LQ LV D UHVXOW RI WKH KLJK R[LGDWLRQ VWDWH DQG WKH GLVWRUWHG WHWUDKHGUDO JHRPHWU\ DQG QRW D UHVXOW RI VXEVWDQWLDO EDFN ERQGLQJ &RPSOH[ LV SDUDPDJQHWLF DV UHYHDOHG E\ f+ 105 VSHFWURVFRS\ $OO SURWRQV LQ DUH UHSUHVHQWHG E\ EURDG VLQJOHWV YLD + 105 VSHFWURVFRS\ DQG WKH QXPEHU RI SHDNV DQG UHODWLYH LQWHJUDWLRQ DUH FRQVLVWHQW ZLWK WKH VWUXFWXUH RI UHSRUWHG KHUH 7KH WHQWDWLYH DVVLJQPHQW RI WKH + 105 VSHFWUXP LV LQFOXGHG LQ WKH H[SHULPHQWDO VHFWLRQ :H DWWULEXWH WKH SDUDPDJQHWLF QDWXUH RI WR D YHU\ VPDOO HQHUJ\ GLIIHUHQFH EHWZHHQ WKH WZR ORZHVW HQHUJ\ G RUELWDOV DOORZLQJ IRU WKHUPDO SRSXODWLRQ RI ERWK RUELWDOV DW r& JLYLQJ D SDUDPDJQHWLF FRPSOH[ 0DJQHWLF VXVFHSWLELOLW\ PHDVXUHPHQWV ZLOO VKHG VRPH OLJKW RQ WKLV VLWXDWLRQ )LJXUH 6\QWKHVLV RI >0R13Kf,0HVR0H6L1f&+f@ f

PAGE 65

& & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0ROf&f f 0ROf1Of f 0ROf1f f 0ROf1f f &f1f f &f1f f &f&f f 1Of0ROf1f f 1Of0ROf1f f 1f0ROf1f f 1Of0ROf&f f 1f0ROf&f f 1f0ROf&f f &RPSOH[ FU\VWDOOL]HG ZLWK WZR PROHFXOHV LQ WKH DV\PPHWULF XQLW DQG RQO\ RQH LV VKRZQ KHUH

PAGE 66

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &+1036 &+1036 &+106 )RUPXOD ZHLJKW &U\VWDO V\VWHP 0RQRFOLQLF 0RQRFOLQLF 2UWKRUKRPELF 6SDFH JURXS 3Q 3Q 3EFD S0R;Df PPnf D $f f f f IW $f f f f F $f f f f 3rf f f $f f f f ] pPD[r 7RWDO UHIOHFWLRQV 8QLT UHIOHFWLRQV 5 LQWf 5c >,!Jf GDWD@E ZA DOO GDWDfF /DUJ GLII SHDN KROH DEWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ ; ƒf DW .E 5c L,,II-V,IFZ5 ^=>Z) )Ff,>Z)f@` 6XPPDU\n 7KH LVRODWLRQ RI PRO\EGHQXP LPLGRGLDPLGR DGGXFWV RI S\ULGLQH 30H 30H3K 320Hf '03( DQG ,0HV KDYH EHHQ GLVFXVVHG 7KURXJK WKH VWXG\ RI WKHVH FRPSRXQGV D JHQHUDO WKHPH LQYROYLQJ VWHULF FURZGLQJ DW WKH PHWDO FHQWHU ZDV PHQWLRQHG DV ZDV WKDW FRQFHUQLQJ QORDGLQJ

PAGE 67

7KH ')7 VWXG\ RQ FRPSOH[ UHYHDOHG WKH QDWXUH RI WKH GLDPLGR OLJDQG IROGLQJ LQ WKLV FI V\VWHP ,Q FRQWUDVW ')7 VWXGLHV VKRZHG WKDW WKH DEVHQFH RI OLJDQG IROGLQJ LQ FRPSOH[ ZDV GXH WR D ODFN RI HPSW\ G PHWDO RUELWDOV DYDLODEOH IRU ERQGLQJ $Q LQWHUHVWLQJ HIIHFW RI WKLV ODFN RI IROGLQJ LV WKH KLQGHUHG URWDWLRQ RI WKH S\ULGLQH ULQJV &RPSOH[ LV DOVR XQLTXH ZKHQ FRPSDUHG WR WKH WULV FRPSOH[HV DQG )URP D VWHULF VWDQGSRLQW ZH KDYH QR FRQFUHWH H[SODQDWLRQ DV WR ZK\ ELV DQG QRW WULV FRRUGLQDWLRQ RI S\ULGLQH LV SUHIHUUHG 7KH VWUXFWXUHV RI FRPSOH[HV DQG DUH YHU\ VLPLODU $OO SKRVSKRUXVEDVHG OLJDQGV ELQG WR PRO\EGHQXP LQ D PHULGLRQDO IDVKLRQ DQG WKH FRRUGLQDWLRQ VSKHUH RI HDFK LV EHVW GHVFULEHG DV GLVWRUWHG RFWDKHGUDO &RPSOH[ VWDQGV RXW LQ WKLV JURXS IRU WKH WZR PHWDO FHQWHUV LQ WKH GLPHU DUH OLQNHG E\ D '03( PRLHW\ &RPSOH[HV DQG KLJKOLJKW WKH VWHULF LQWHUDFWLRQV LQ WKLV V\VWHP 7KH 30H3K OLJDQG XVHG LQ WKH SUHSDUDWLRQ RI KDV D ODUJHU FRQH DQJOH FRQH DQJOH rf 30H3K f WKDQ WKH SKRVSKLQH RU SKRVSKLWHV XVHG LQ WKH SUHSDUDWLRQV RI DQG r 30H r 320Hf r '03( f 7KLV ODUJHU FRQH DQJOH DFFRXQWV IRU WKH ELV FRRUGLQDWLRQ RI 30H3K LQ 6WHULFDOO\ WKH ,0HV OLJDQG LQ FRPSOH[ LV RIWHQ FRPSDUHG ZLWK 3&\f &\ F\FORKH[\O r 3&\f f 7KH ODUJH VWHULF FORXW RI ,0HV LV UHVSRQVLEOH IRU WKH GLVSODFHPHQW RI DOO SKRVSKLQHV IURP WKH VWDUWLQJ PDWHULDO LQ WKH SUHSDUDWLRQ RI ,QLWLDO UHDFWLYLW\ RI FRPSOH[HV DQG ZLWK FDUERQ PRQR[LGH JDV ZDV RXWOLQHG DQG D VXPPDU\ RI WKHVH FRPSOH[HV DQG DSSURSULDWH &2 VWUHWFKLQJ IUHTXHQFLHV DUH LQFOXGHG LQ )LJXUH 7KH QH[W FKDSWHU GLVFXVVHV WKH UHDFWLYLW\ RI WKHVH DGGXFWV

PAGE 68

ZLWK GLK\GURJHQ JDV +RSHIXOO\ WKH FRPSOH[HV GLVFXVVHG LQ WKLV FKDSWHU ZLOO ILQG XVHV LQ RWKHU ERQG DFWLYDWLRQ UHDFWLRQV LQ WKH QHDU IXWXUH 3K 3K O 3K 3K )LJXUH &DUERQ PRQR[LGH FRPSOH[HV DQG Y&2 FPf

PAGE 69

&+$37(5 6<17+(6,6 $1' 5($&7,9,7< 2) $ 02/<%'(180 ,0,'2',$0,'2 675(7&+(' ',+<'52*(1 &203/(; 7KH ILUVW OLWHUDWXUH UHSRUW WR GHVFULEH WKH LVRODWLRQ RI D GLK\GURJHQ FRPSOH[ UHIHUUHG WR DV U_+ RU + FRPSOH[HVf ZDV SXW IRUWK E\ *UHJRU\ .XEDV LQ 6LQFH WKLV GDWH RYHU VWDEOH + FRPSOH[HV KDYH EHHQ V\QWKHVL]HG DQG FKDUDFWHUL]HG DQG URXJKO\ DGGLWLRQDO UHSRUWHG H[DPSOHV DUH HLWKHU WKHUPDOO\ XQVWDEOH WUDQVLHQW VSHFLHV RU DUH SURSRVHG WR FRQWDLQ + OLJDQGV 'LK\GURJHQ FRPSOH[HV RI HYHU\ PHWDO IURP YDQDGLXP WR SODWLQXP KDYH EHHQ UHSRUWHG DQG DQ H[DPSOH RI D HXURSLXP FRPSOH[ LV NQRZQ 0RVW FRPSOH[HV DUH FRRUGLQDWLYHO\ VDWXUDWHG DQG DUH FDWLRQLF LQ QDWXUH 6HYHUDO UHYLHZ DUWLFOHV KDYH EHHQ ZULWWHQ RQ WKH VXEMHFW RYHU WKH \HDUVfff 7KH PRVW UHFHQW WUHDWPHQW RI WKLV DUHD KDV WDNHQ WKH IRUP RI DQ H[FHOOHQW ERRN ZULWWHQ E\ .XEDV 'LK\GURJHQ FRPSOH[HV DUH LPSRUWDQW VSHFLHV LQ PHWDOPHGLDWHG FDWDO\VLV DV WKH\ UHSUHVHQW fDUUHVWHGf VWDWHV DORQJ WKH SDWK WR GLK\GURJHQ ERQGEUHDNLQJ RU R[LGDWLYH DGGLWLRQ RI WKH GLK\GURJHQ PROHFXOH 0HWDOERXQG GLK\GURJHQ DOVR GLVSOD\V XQLTXH FKHPLFDO DQG SK\VLFDO SURSHUWLHV FDQ EH HOHFWURSKLOLF RU VXSHUDFLGLF DQG PD\ H[LVW LQ D QF VWUHWFKHG RU DQ XQVWUHWFKHG PRGH n 7KH XQLTXH SURSHUWLHV GLVSOD\HG E\ GLK\GURJHQ XSRQ ELQGLQJ WR D PHWDO FHQWHU DUH D UHVXOW RI WKH PHWDOK\GURJHQ ERQGLQJ LQWHUDFWLRQ %RQGLQJ LQ + FRPSOH[HV LQYROYHV DGRQDWLRQ IURP WKH ++ DERQG WR WKH PHWDO DQG EDFN ERQGLQJ RI HOHFWURQ GHQVLW\ IURP D ILOOHG PHWDO RUELWDO WR WKH ++ Rr RUELWDO )LJXUH f 7KH EDFN ERQGLQJ LQWHUDFWLRQ LV SULPDULO\ UHVSRQVLEOH IRU HORQJDWLQJ WKH

PAGE 70

++ ERQG LQ DQ + FRPSOH[ 7KH R[LGDWLYH DGGLWLRQ SURFHVV FDQ EH DUUHVWHG DW YDULRXV VWDJHV WKURXJK YDULDWLRQ RI WKH PHWDO DQG OLJDQGV SURGXFLQJ FRPSOH[HV ZLWK GLIIHUHQW ++ GLVWDQFHV KKf ,Q JHQHUDO WUXH + FRPSOH[HV KDYH KK ƒ ƒ DQG VWUHWFKHG HORQJDWHGf + FRPSOH[HV KDYH KK ƒ ƒ ,Q FRPSDULVRQ WKH KK LQ IUHH GLK\GURJHQ LV ƒ ZKLOH LQ PHWDO GLK\GULGH VSHFLHV KK ƒ DGRQDWLRQ EDFN GRQDWLRQ )LJXUH *HQHUDO ERQGLQJ LQ + FRPSOH[HV &KDUDFWHUL]DWLRQ RI 'LK\GURJHQ &RPSOH[HV &KDUDFWHUL]DWLRQ RI + FRPSOH[HV LV SULPDULO\ FDUULHG RXW E\ PHDVXULQJ KK LQ UHODWHG FRPSOH[HV 7KLV YDOXH FDQ EH PHDVXUHG H[SHULPHQWDOO\ E\ GLIIUDFWLRQ PHWKRGV VROLG VWDWH 105 VSHFWURVFRS\ DQG VROXWLRQ 105 VSHFWURVFRS\ :H ZLOO EULHIO\ GLVFXVV VROXWLRQ 105 PHWKRGV KHUH DV LW SHUWDLQV WR ODWHU GLVFXVVLRQV LQ WKLV FKDSWHU ,Q JHQHUDO PK PHWDOK\GURJHQ GLVWDQFHf DUH QRW PHDVXUHG IRU VHYHUDO UHDVRQV 7KHUH DUH QR JHQHUDO 105 VSHFWURVFRS\ WHFKQLTXHV WKDW FDQ EH XVHG WR PHDVXUH WKLV YDOXH ;UD\ GLIIUDFWLRQ WHFKQLTXHV SURGXFH ODUJH XQFHUWDLQWLHV LQ L0K DQG DUH RI OLPLWHG XVH 7KHUH DUH QRW HQRXJK PK GLVWDQFHV GHWHUPLQHG E\ QHXWURQ GLIIUDFWLRQ WR GUDZ XVHIXO FRUUHODWLRQV )LQDOO\ 0K FDQQRW EH HDVLO\ XVHG WR GHWHUPLQH WKH GHJUHH RI ++ DFWLYDWLRQ LQ FRPSOH[HV ZLWK GLIIHUHQW PHWDOV EHFDXVH RI GLIIHUHQFHV LQ YDQ GHU :DDOV UDGLL

PAGE 71

6ROXWLRQ 105 6SHFWURVFRS\ -KK DQG -KG 7KH VLQJOH PRVW LPSRUWDQW VSHFWURVFRSLF SDUDPHWHU LQYROYHG LQ WKH FKDUDFWHUL]DWLRQ RI DQ + FRPSOH[ LV nKG IRU WKH +' LVRWRSRPHU RI WKH + FRPSOH[ &ODVVLFDO GLK\GULGHV GR QRW VKRZ DQ\ VLJQLILFDQW -KG EHFDXVH WKHUH LV QR +' ERQG SUHVHQW ,Q DQ +' FRPSOH[ WKHUH LV VWLOO +' ERQGLQJ DQG DQ +' FRXSOLQJ FRQVWDQW FDQ EH PHDVXUHG E\ n+ 105 VSHFWURVFRS\ ,Q JHQHUDO WKH ORQJHU WKH +' ERQG WKH VPDOOHU WKH -KG 7KH YDOXH RI -KG GHWHUPLQHG E\ VROXWLRQ 105 VSHFWURVFRS\ FDQ EH FRUUHODWHG WR -KK LQ WKH VROLG VWDWH E\ XVLQJ WKH HPSLULFDO UHODWLRQVKLSV GHYHORSHG E\ 0RUULV DQG +HLQHNH\ (TXDWLRQV DQG UHVSHFWLYHO\f KK -KGfƒ >0RUULV@ (TXDWLRQ -KK -KGf >+HLQHNH\@ (TXDWLRQ 7KHVH UHODWLRQVKLSV ZHUH FUHDWHG XVLQJ -KK IURP QHXWURQ GLIIUDFWLRQ DQG VROLGVWDWH 105 PHDVXUHPHQWV IRU FRPSOH[HV ZKHUH -KG ZDV NQRZQ $ SORW RI -+K YV -KG JDYH D VWUDLJKW OLQH ZLWK OLWWOH GHYLDWLRQ 7KHUHIRUH LI -KG IRU DQ\ +' FRPSOH[ LV NQRZQ -+K FDQ EH FDOFXODWHG IURP WKH DERYH UHODWLRQVKLSV 7KH UHVXOWV REWDLQHG XVLQJ (TXDWLRQV RU GR QRW XVXDOO\ GLIIHU VLJQLILFDQWO\ (TXDWLRQV DQG ZLOO EH XVHG WR FKDUDFWHUL]H + FRPSOH[HV LQ WKLV FKDSWHU WR YHULI\ WKLV VWDWHPHQW 6ROXWLRQ 105 6SHFWURVFRS\ -+K DQG 105 5HOD[DWLRQ 7LPH 7?f 0HDVXULQJ WKH PLQLPXP YDOXH RI WKH UHOD[DWLRQ WLPH 7LPcQff IRU WKH + QXFOHL RI WKH + OLJDQG FDQ SURYLGH D UHDVRQDEOH HVWLPDWH RI -+K 7KH GLSRODU UHOD[DWLRQ RI RQH + RI WKH + OLJDQG E\ LWV QHLJKERU LV WKH GRPLQDQW FRQWULEXWLRQ WR 7c IRU + FRPSOH[HV DQG LV JHQHUDOO\ PV ZKHUHDV 7c IRU K\GULGHV LV } PV )XUWKHUPRUH 7? LV SURSRUWLRQDO WR -+K DQG GLSROHGLSROH UHOD[DWLRQ WKHRU\ VWDWHV WKDW 7? YDULHV ZLWK WHPSHUDWXUH DQG JRHV WKURXJK D PLQLPXP DW &UDEWUHH DQG +DPLOWRQ KDYH VKRZQ WKDW DW U@PLQf WKH

PAGE 72

YDOXH RI GZZ FDQ EH GHWHUPLQHG :KHQ XVLQJ WKLV DSSURDFK WKH UHVHDUFKHU PXVW EH DZDUH WKDW FRQWULEXWLRQV WR UHOD[DWLRQ IURP RWKHU VRXUFHV VXFK DV SURWRQFRQWDLQLQJ OLJDQGV f DQG PHWDOV ZLWK KLJK J\URPDJQHWLF UDWLRV &R 5H DQG 0Qf FDQ FRPSOLFDWH WKH LQWHUSUHWDWLRQ RI KK IURP ULPcQf $QRWKHU DUHD RI FRQFHUQ LQYROYHV WKH HIIHFWV RI WKH URWDWLRQDO PRWLRQ RI WKH + OLJDQG RQ KK 7KLV URWDWLRQDO PRWLRQ LV GHVFULEHG DV + OLJDQG URWDWLRQ EHLQJ VORZHU RU IDVWHU WKDQ PROHFXODU WXPEOLQJ DQG FDQ DIIHFW GLSRODU UHOD[DWLRQ 0RUULV KDV DGGUHVVHG WKLV DQG SURSRVHG WZR HTXDWLRQV IRU WKH FDOFXODWLRQ RI KK IURP 7?P?Qf RQH IRU VORZ URWDWLRQ RI + (TXDWLRQ f DQG RQH IRU IDVW URWDWLRQ RI + ZKHUH Y LV WKH VSHFWURPHWHU IUHTXHQF\ (TXDWLRQ f (TXDWLRQ ZLOO EH XVHG LQ WKH FKDUDFWHUL]DWLRQ RI WKH + FRPSOH[HV GLVFXVVHG LQ WKLV PDQXVFULSW KK _7LPLQfY@Of (TXDWLRQ VORZ URWDWLRQf KK >7LPcQfY@Of (TXDWLRQ IDVW URWDWLRQf 0RO\EGHQXP ,PLGR'LDPLGR 6WUHWFKHG 'LK\GURJHQ &RPSOH[HV 7KH DGGXFWV SUHVHQWHG LQ &KDSWHU ZHUH JHQHUDWHG LQ RUGHU WR H[SORUH WKHLU SRWHQWLDO IRU WKH R[LGDWLYH DGGLWLRQ RI VPDOO PROHFXOHV 2XU LQLWLDO LQWHUHVW LQ WKLV DUHD KDV IRFXVHG RQ WKH UHDFWLYLW\ RI WKHVH DGGXFWV ZLWK PROHFXODU K\GURJHQ $ORQJ WKHVH OLQHV ZH KDYH V\QWKHVL]HG SKRVSKLQHVWDELOL]HG + FRPSOH[HV IURP DQG 2I WKH YDULRXV + FRPSOH[HV NQRZQ QRQH WR RXU NQRZOHGJH FRQWDLQ PHWDOOLJDQG PXOWLSOH ERQGV DQG IHZ FRQWDLQ DPLGH IXQFWLRQDOLWLHV )XUWKHUPRUH WKHVH DUH UDUH H[DPSOHV RI + FRPSOH[HV LQ QRPLQDO L FRQILJXUDWLRQV 2XU LQLWLDO VWXGLHV FRQFHUQLQJ WKH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI WKHVH XQLTXH + FRPSOH[HV DUH UHSRUWHG KHUHLQ

PAGE 73

&KDUDFWHUL]DWLRQ RI >0R13Kf30Hf+f0H6L1f&+f@ f ([SRVXUH RI D FROG r&f WROXHQHFJ VROXWLRQ RI >0R13Kf30Hf A,9A6L1A&)/}f@ f WR DQ DWPRVSKHUH RI PROHFXODU K\GURJHQ FD DWPf UHVXOWHG LQ D UDSLG FRORU FKDQJH IURP SXUSOH WR JUHHQ 7KH n+ DQG ,3 105 VSHFWUD RI WKLV VROXWLRQ LQGLFDWH WKDW DQG WKH + FRPSOH[ >0R13Kf30Hf+fR0H6L1f&+f@ f ZHUH SUHVHQW LQ VROXWLRQ LQ D UDWLR DW r& )LJXUH f :KHQ DOORZHG WR ZDUP WR r& XQGHUZHQW DQ DGGLWLRQDO WUDQVIRUPDWLRQ WR JLYH D SXUSOH VROXWLRQ RI >0R13Kf30Hf R0H6L1f1+f&+f@ f RYHU D K SHULRG 7KXV WKH QHW UHDFWLRQ RI ZLWK + LV DGGLWLRQ RI + DFURVV WKH 6L1 ERQG RI WKH GLDPLGH OLJDQG 7KLV DGGLWLRQ LV WR RXU NQRZOHGJH XQSUHFHGHQWHG LQ WKH OLWHUDWXUH 30H )LJXUH *HQHUDWLRQ DQG UHDFWLYLW\ RI + FRPSOH[ 'LK\GURJHQ FRPSOH[ LV VWDEOH IRU GD\V XQGHU DQ DWPRVSKHUH RI PROHFXODU K\GURJHQ DWPf DW r& EXW ZLOO FRQYHUW WR DW WKLV WHPSHUDWXUH RYHU D SHULRG RI

PAGE 74

VHYHUDO ZHHNV $WWHPSWHG LVRODWLRQ RI E\ FRQFHQWUDWLRQ RI WROXHQH VROXWLRQV LQ YDFXR UHVXOWHG LQ LVRODWLRQ RI WKH VWDUWLQJ PDWHULDO f $OWKRXJK HIIRUWV WR VFDYHQJH 30H ZLWK WULVSHQWDIOXRURSKHQ\OfERUDQHM ZHUH VXFFHVVIXO UHPDLQHG UHDFWLYH XQGHU WKHVH FRQGLWLRQV JHQHUDWLQJ +6L0H DQG XQLGHQWLILHG PHWDOFRQWDLQLQJ SURGXFWV 3UHVXPDEO\ ODFN RI SKRVSKLQH LQ VROXWLRQ FRPSURPLVHV WKH IRUPDWLRQ RI DQG WKH ELVfSKRVSKLQH DQDORJXH RI LV QRW VWDEOH XQGHU WKHVH FRQGLWLRQV &RPSOH[ FDQ EH REVHUYHG LQ GHJDVVHG + IUHHf SKRVSKLQHVFDYHQJHG VROXWLRQV E\ n+ 105 VSHFWURVFRS\ EXW LW GHFRPSRVHV UDSLGO\ 7KH FRQYHUVLRQ RI WR LV VKRZQ DV DQ LUUHYHUVLEOH VWHS LQ )LJXUH 7KLV ZDV FRQILUPHG E\ UHDFWLRQ RI WKH GHXWHUDWHG DQDORJXH RI 'f ZLWK +6L0H )LJXUH f $W r& QR +' H[FKDQJH ZDV REVHUYHG EHWZHHQ WKH 1' DQG 6L+ VLWHV E\ f+ 105 VSHFWURVFRS\ GHPRQVWUDWLQJ WKDW WKLV VWHS LV LUUHYHUVLEOH 3K QR +' H[FKDQJH )LJXUH 1R +' H[FKDQJH EHWZHHQ 1' DQG 6L+ VLWHV DW r& $ FKDUDFWHULVWLF UHVRQDQFH LQ WKH n+ 105 VSHFWUXP RI LV D EURDG WULSOHW DW SSP -SBK +] &' r&f )LJXUH f 7KH GUDPDWLFDOO\ GLIIHUHQW FKHPLFDO VKLIW RI WKHVH SURWRQV UHODWLYH WR WKH K\GULGH SURWRQV RI WKH WXQJVWHQ DQDORJXH >:13Kf 30Hf+R0H6L1f&+f@ SSP EU W -YK +] r& &'f SURPSWHG XV WR LQYHVWLJDWH WKH PHWDOK\GURJHQ LQWHUDFWLRQ LQ PRUH GHWDLO

PAGE 75

7KH +' LVRWRSRPHU RI ZDV JHQHUDWHG LQ RUGHU WR GHWHUPLQH KK IURP -KG DV GLVFXVVHG DERYH 7KH LVRWRSRPHU 'f GLVSOD\V ERWK FRXSOLQJ ZLWK SKRVSKRURXV W 9SQ +]f DQG GHXWHULXP W -KG +] &' r&f )LJXUH f 8VLQJ WKH f7KG RI +] LQ (TXDWLRQ JLYHV D YDOXH RI ƒ IRU FKK ZKLFK LV W\SLFDO RI D VWUHWFKHG+ FRPSOH[ $ FRPSDUDEOH YDOXH RI ƒ LV FDOFXODWHG XVLQJ (TXDWLRQ LLL_LLLL_LLLL_LLLL_PL_+LL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLLSLUL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_ SSP _PL_LLLL_LLLL_LLLL_LLLL_LLLL_KLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LKL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLL_LLLLMLLLL_LL SSP )LJXUH 6SHFWUD r+ 105f RI WKH + DQG +' OLJDQGV RI DQG r&f 7KH GHWHUPLQDWLRQ RI G??Z XVLQJ D 7?PQf DQDO\VLV LV FRQVLVWHQW ZLWK +K DV GHWHUPLQHG YLD f7+G $ SORW RI 7? YV WHPSHUDWXUH IRU \LHOGV D ULPMQf RI DSSUR[LPDWHO\ PV ZKLFK LV QRUPDO IRU DQ + FRPSOH[ )LJXUH f 8VLQJ (TXDWLRQ D YDOXH RI ƒ IRU GZZ LV FDOFXODWHG 'XH WR WKH JRRG DJUHHPHQW EHWZHHQ GZZ DV GHWHUPLQHG

PAGE 76

E\ f-+G DUG ALPLQf WKH + OLJDQG LQ LV PRVW OLNHO\ VORZO\ URWDWLQJ DQG LV VLJQLILFDQWO\ VWUHWFKHG ,Q 7? YV .f L f§f§ L )LJXUH 5HOD[DWLRQ WLPH YV WHPSHUDWXUH SORW IRU ,Q 7? YV .n 7ZR PHFKDQLVPV FDQ EH SURSRVHG WR DFFRXQW IRU WKH WUDQVIRUPDWLRQ RI WR 7KHVH PHFKDQLVPV ZLOO EH SUHVHQWHG VHSDUDWHO\ %RWK PHFKDQLVPV ZLOO EH SUHVHQWHG ZLWK ++'f DV WKH UHDFWLYH PROHFXOH LQ RUGHU WR UHSUHVHQW UHDFWLRQV ZLWK + DQG +' JDV ZLOO EH ZULWWHQ LQ EROG IRU WKLV GLVFXVVLRQ RQO\f 7KH ZLOO DOZD\V EH SODFHG LQ WKH QRQEULGJLQJ SRVLWLRQ DV LV H[SHFWHG IURP ]HUR SRLQW HQHUJ\ DUJXPHQWV ,Q WKH ILUVW PHFKDQLVP +6L0H LV HOLPLQDWHG JLYLQJ EHQWLPLGR )LJXUH f 7KH EHQW LPLGR FDQ EH FRQYHUWHG WR E\ +'f PLJUDWLRQ DQG FRRUGLQDWLRQ RI 30H 7KH GLUHFW HOLPLQDWLRQ RI +6L0H FDQ SURFHHG WKURXJK WKH ILYHFHQWHUHG WUDQVLWLRQ VWDWH ,Q WKH VHFRQG PHFKDQLVP )LJXUH f LQLWLDO SURWRQ PLJUDWLRQ WR DQ DPLGH WKURXJK D IRXUFHQWHUHG WUDQVLWLRQ VWDWH f JLYHV ULVH WR (OLPLQDWLRQ RI +'f6L0H WKHQ WDNHV SODFH WKURXJK DQRWKHU IRXUFHQWHUHG VSHFLHV f XOWLPDWHO\ JLYLQJ :KHQ LV WUHDWHG ZLWK GHXWHULXP K\GULGH JDV +'f DQ XQHYHQ GLVWULEXWLRQ RI + DQG LV REVHUYHG LQ WKH SURGXFWV DV VKRZQ LQ )LJXUH 7KH + DWRPV SUHIHU WKH 1 VLWH

PAGE 77

RI DQG WKH DWRPV SUHIHU WKH 6L VLWH RI 6L0H 7KLV +' GLVWULEXWLRQ FRUUHVSRQGV WR DQ +' LVRWRSH HIIHFW RI DSSUR[LPDWHO\ 7KH PHFKDQLVP VKRZQ LQ )LJXUH LV WKH PRVW FRQVLVWHQW ZLWK WKLV LVRWRSH HIIHFW DV LW SODFHV PRUH + DW WKH 1 VLWH ZKLOH WKH PHFKDQLVP LQ )LJXUH GRHV WKH RSSRVLWH 7KHVH PHFKDQLVPV DVVXPH WKDW WKH UDWH GHWHUPLQLQJ VWHSV LQYROYH WKH LQLWLDO SURWRQ WUDQVIHUV WR LQ )LJXUH DQG WR LQ )LJXUH f DQG WKDW DOO RWKHU VWHSV DUH LUUHYHUVLEOH )LJXUH 3RWHQWLDO PHFKDQLVP IRU WKH IRUPDWLRQ RI 7KH PHFKDQLVP SUHVHQWHG LQ )LJXUH LV DOVR IDYRUHG RYHU WKDW LQ )LJXUH EDVHG RQ WKH NQRZQ UHDFWLYLW\ RI GLK\GURJHQ FRPSOH[HV 7KH + OLJDQG SURWRQV DUH NQRZQ WR EHFRPH DFLGLF RQFH FRRUGLQDWHG WR D PHWDO FHQWHU S.DnV RI IRU QHXWUDO FRPSOH[HVf 7KH ++'f OLJDQG LQ FRXOG SURWRQDWH DQ DPLGR OLJDQG JLYLQJ ULVH WR 3URWRQ WUDQVIHU IURP ERXQG + WR QLWURJHQFRQWDLQLQJ DQFLOODU\ OLJDQGV KDV EHHQ

PAGE 78

SURSRVHG LQ WKH OLWHUDWXUHn (OLPLQDWLRQ RI +'f6L0H FDQ WKHQ RFFXU DV VKRZQ LQ )LJXUH 7KH PHFKDQLVP VKRZQ LQ )LJXUH LQYROYHV WKH IRUPDWLRQ RI WKH EHQWLPLGR VSHFLHV $OWKRXJK EHQW LPLGHV DUH NQRZQ WKLV VSHFLHV VKRXOG EH RI KLJK HQHUJ\ DQG WKXV LW LV QRW YHU\ IDYRUDEOH )LJXUH 3RWHQWLDO PHFKDQLVP IRU WKH IRUPDWLRQ RI 3K 'f+f§6L0H + )LJXUH + DQG GR QRW SDUWLWLRQ HTXDOO\ EHWZHHQ 1 DQG 6L VLWHV

PAGE 79

&KDUDFWHUL]DWLRQ RI >0R13Kf30H3Kf+fR0H6L1f&+f@ f &RPSOH[ UHDFWHG ZLWK GLK\GURJHQ JDV WR JLYH >0R13Kf30H3Kf+f R0H6L1f&+f@ f )LJXUH f $W r& FRQYHUWHG WR ZLWK ORVV RI +6L0H 7KLV UHDFWLYLW\ LV VLPLODU WR WKDW REVHUYHG ZLWK + FRPSOH[ 7KH PDLQ GLIIHUHQFH EHWZHHQ WKH IRUPDWLRQ RI DQG LQYROYHV WKH SKRVSKLQH VWDUWLQJ PDWHULDOV 7KH IRUPDWLRQ RI IURP LQYROYHV LQLWLDO ORVV RI 30H DQG DW r& DQ HTXLOLEULXP EHWZHHQ DQG H[LVWV *HQHUDWLRQ RI GRHV QRW UHTXLUH ORVV RI SKRVSKLQH IURP DV LV DOUHDG\ FRRUGLQDWLYHO\ XQVDWXUDWHG )XUWKHUPRUH LQ UHDFWLRQV ZKHUH ZDV WUHDWHG ZLWK + ZDV REVHUYHG DV WKH RQO\ PHWDO VSHFLHV LQ VROXWLRQ E\ n+ DQG n3 105 VSHFWURVFRS\ 7KH H[SDQGHG UHJLRQ RI WKH + DQG +' OLJDQG UHVRQDQFHV LQ WKH n+ 105 VSHFWUD RI DQG LWV +' LVRWRSRPHU DUH VKRZQ LQ )LJXUH &' r&f 7KH + OLJDQG UHVRQDQFH IRU DSSHDUV DV D YHU\ EURDG WULSOHW FHQWHUHG DW SSP LQ WKH n+ 105 VSHFWUXP $ EURDG ILYHOLQH UHVRQDQFH LV REVHUYHG IRU WKH +' OLJDQG RI FHQWHUHG DW SSP 7KH LVRWRSRPHU 'f GLVSOD\V ERWK FRXSOLQJ WR SKRVSKRURXV W -S+ +]f DQG GHXWHULXP W fKG +] &' r&f )LJXUH f 7KH LGHQWLFDO SK DQG nKG IRU SURGXFH WKH PXOWLSOHW REVHUYHG LQ WKH n+ 105 VSHFWUXP 8VLQJ (TXDWLRQ D + YDOXH RI ƒ LV IRXQG IRU DQG D YDOXH RI ƒ LV FDOFXODWHG XVLQJ (TXDWLRQ $ ULPLQf DQDO\VLV RI JLYHV D G++ YDOXH RI ƒ )LJXUH f 7KLV YDOXH LV LQ H[FHOOHQW DJUHHPHQW ZLWK WKH YDOXH IRXQG WKURXJK XVH RI LQGLFDWLQJ WKDW WKH + OLJDQG LV VORZO\ URWDWLQJ

PAGE 80

3K F 1 0HV? -,,30H3K + 1f§0R 1 30H3K < m0H 3K )LJXUH *HQHUDWLRQ DQG UHDFWLYLW\ RI + FRPSOH[ BB Ua )LJXUH 6SHFWUD n+ 105f RI WKH + DQG +' OLJDQGV RI DQG r&f

PAGE 81

.r )LJXUH 5HOD[DWLRQ WLPH YV WHPSHUDWXUH SORW IRU ,Q 7? YV .n %RQGLQJ LQ 0RO\EGHQXP ,PLGR'LDPLGR 6WUHWFKHG 'LK\GURJHQ &RPSOH[HV $ JHQHUDO ERQGLQJ VFHQDULR IRU + FRPSOH[HV DQG LV VKRZQ LQ )LJXUH 7KH Qr 02V LQYROYHG ZLWK PHWDOLPLGR DQWLERQGLQJ DUH VKRZQ DW WKH KLJKHVW HQHUJ\ LQ )LJXUH 7KH ERQGLQJ FRPELQDWLRQV RI WKHVH 02V DUH PXFK ORZHU LQ HQHUJ\ 7KH PHWDO+ LQWHUDFWLRQ LV VKRZQ DW DQ LQWHUPHGLDWH HQHUJ\ 7KLV LQWHUDFWLRQ LQYROYHV EDFN ERQGLQJ IURP WKH PHWDO G[\ DWRPLF RUELWDO WR WKH + FUr DWRPLF RUELWDO 7KH EDFN ERQGLQJ LQWHUDFWLRQ LV SULPDULO\ UHVSRQVLEOH IRU OHQJWKHQLQJ WKH ++ ERQG GXH WR SRSXODWLRQ RI WKH + Dr DWRPLF RUELWDO ,I WKLV LV WUXH LQFUHDVLQJ EDFN ERQGLQJ E\ LQFUHDVLQJ WKH HOHFWURQ GHQVLW\ DW WKH PHWDO FHQWHU VKRXOG OHQJWKHQ WKH ++ ERQG 7KH GP RI ƒ IRU LV ORQJHU WKDQ WKH GP RI ƒ IRU XVLQJ (TXDWLRQ f 7KLV GLIIHUHQFH LQ ERQG OHQJWK UHIOHFWV WKH GLIIHUHQFH LQ HOHFWURQ GHQVLW\ DW WKH PHWDO FHQWHU 6LQFH 30H3K LV OHVV HOHFWURQ GRQDWLQJ WKDQ 30H GP LQ VKRXOG EH VKRUWHU WKDQ GP LQ DV WKHUH LV OHVV EDFN ERQGLQJ WR WKH + Dr RUELWDO LQ

PAGE 82

FP VVH ,,, Lr G[] G\] 0R ; 0H ; 3K )LJXUH %RQGLQJ VFHQDULR IRU + FRPSOH[HV DQG 5HDFWLRQ RI DQG ZLWK 'LK\GURJHQ *DV :KHQ VDPSOHV RI DQG ZHUH WUHDWHG ZLWK + JDV LQ 105 WXEHV &'f QR LQLWLDO FKDQJH LQ WKH VDPSOH FRPSRVLWLRQ ZDV REVHUYHG E\ n+ 105 VSHFWURVFRS\ 7KH VDPSOHV GLG UHDFW ZLWK + JDV RYHU ZHHN LQ HDFK FDVH JHQHUDWLQJ +6L0H DQG PHWDO FRPSOH[ )LJXUH f :H KDYH QRW IXOO\ FKDUDFWHUL]HG WKH PHWDOFRQWDLQLQJ VSHFLHV RU EXW KDYH DVVLJQHG WHQWDWLYH VWUXFWXUHV EHFDXVH RI WKH VLPLODULWLHV LQ n+ 105 VSHFWUD ZLWK DQG 3UHVXPDEO\ WKH OHVV HOHFWURQ GRQDWLQJ SKRVSKLWH OLJDQGV LQ KLQGHU IRUPDWLRQ RI VLJQLILFDQW DPRXQWV RI + FRPSOH[ LQ VROXWLRQ ZKHQ LV WUHDWHG ZLWK + JDV :H SURSRVH WKDW VPDOO FRQFHQWUDWLRQV RI + FRPSOH[ H[LVW LQ VROXWLRQ DOORZLQJ IRU IRUPDWLRQ RI +6L0H DQG DIWHU RQH ZHHN RI UHDFWLRQ WLPH 6PDOO FRQFHQWUDWLRQV RI + FRPSOH[ PXVW DOVR EH SUHVHQW LQ VROXWLRQ ZKHQ LV WUHDWHG ZLWK + JDV LQ RUGHU WR DFFRXQW IRU WKH IRUPDWLRQ RI +6L0H 7KH FLV FRRUGLQDWLRQ RI WKH '03( OLJDQG PD\ LQKLELW WKH ODUJHVFDOH IRUPDWLRQ RI D VSHFLHV ZLWK

PAGE 83

WUDQV SKRVSKLQHV FDSDEOH RI FRRUGLQDWLQJ + $ SRVVLEOH + FRPSOH[ RI WKLV V\VWHP FRXOG EH WKH fDUP RIIf FRPSOH[ f VKRZQ LQ )LJXUH 7KH FKHODWH HIIHFW RI '03( ZRXOG FHUWDLQO\ FXUWDLO WKH IRUPDWLRQ RI ODUJH DPRXQWV RI 3K 3K 0H 6L 1 1 0R n30H! 0H273A ?! 99L 320Hf 0H"6L 1 + FD SVLf 1m nn 320Hf 0R 9 0HA +6L0H 0H2f3A ?! Sr0Hf )LJXUH 5HDFWLRQ RI DQG ZLWK 'LK\GURJHQ *DV 30H )LJXUH 3RVVLEOH + FRPSOH[ LQ WKH '03( V\VWHP

PAGE 84

5HDFWLRQ RI ZLWK 3KHQ\OVLODQH DQG 'LSKHQ\OVLODQH &RPSOH[ UHDFWHG ZLWK SKHQ\OVLODQH DQG GLSKHQ\OVLODQH LQ &t' 7KH PDMRU SURGXFWV RI WKHVH UHDFWLRQV DW r& DUH F\FOLF VLO\O DPLQHV DQG )LJXUH f 7KH PHWDOFRQWDLQLQJ SURGXFWV LQ WKHVH UHDFWLRQV KDYH QRW \HW EHHQ LGHQWLILHG 7KH VWUXFWXUHV RI FRPSRXQGV DQG KDYH EHHQ WHQWDWLYHO\ DVVLJQHG XVLQJ WKH IROORZLQJ GDWD &\FOLF KDV EHHQ LVRODWHG DQG FKDUDFWHUL]HG E\ n+ 105 DQG PDVV VSHFWURVFRS\ :H SURSRVH WKDW H[LVWV EDVHG RQ n+ 105 GDWD RQO\ )XUWKHU H[SHULPHQWV WR SRVLWLYHO\ LGHQWLI\ WKHVH PDWHULDOV HVSHFLDOO\ ZLOO EH UHTXLUHG :KHQ UHDFWHG ZLWK )A6L3K DW ORZ WHPSHUDWXUH r&f IRUPHG DORQJ ZLWK D VXEVWDQWLDO DPRXQW RI WKH GLK\GURJHQ FRPSOH[ &RPSOH[ GHFRPSRVHG WR DQG +6L0H ZKHQ OHIW WR VWDQG DW r& 7KH H[DFW QDWXUH RI WKH PHFKDQLVP WKDW JHQHUDWHV LQ WKLV IDVKLRQ LV QRW NQRZQ $ GHK\GURFRXSOLQJ SDWKZD\ GRHV QRW VHHP WR EH DFWLYH DV WKH H[SHFWHG VLOLFRQEDVHG GHK\GURFRXSOLQJ SURGXFWV IRU H[DPSOH 3K6L+f6L+f3Kf DUH QRW REVHUYHG E\ n+ 105 3UHVXPDEO\ WKHUPRG\QDPLFV GULYHV WKH IRUPDWLRQ RI ZKHQ LV WUHDWHG ZLWK )A6L3K DW r& ,Q FRQWUDVW ORZ WHPSHUDWXUHV IDYRU WKH IRUPDWLRQ RI WKH NLQHWLF SURGXFW RI WKLV UHDFWLRQ VHTXHQFH 9HU\ VPDOO DPRXQWV RI +6L0H DQG DUH REVHUYHG LQ WKH UHDFWLRQ PL[WXUH DIWHU WUHDWPHQW RI ZLWK +63, DW r& 7KLV UHDFWLRQ PXVW EH H[SORUHG DW ORZHU WHPSHUDWXUH LQ WKH IXWXUH 6XPPDU\ 5HDFWLRQV RI PRO\EGHQXP LPLGRGLDPLGR SKRVSKLQH DGGXFWV RI 30H f DQG 30H3K f ZLWK &2 JDV ZHUH GLVFXVVHG LQ &KDSWHU ,Q WKH FDVH RI &2 GLVSODFHV 30H WR JLYH D FDUERQ\O FRPSOH[ ZKHUHDV &2 FRRUGLQDWHV WR FRRUGLQDWLYHO\ XQVDWXUDWHG WR JLYH WKH DSSURSULDWH PHWDO FDUERQ\O ,Q WKLV FKDSWHU ZH UHSRUW WKDW WKH SKRVSKLQH

PAGE 85

FRPSOH[HV DQG UHDFW ZLWK GLK\GURJHQ JDV WR JLYH VWUHWFKHG GLK\GURJHQ FRPSOH[HV DQG UHVSHFWLYHO\ 7KH IRUPDWLRQ RI IURP LV LQWHUHVWLQJ LQ WKDW D 30H OLJDQG LV GLVSODFHG IURP WKH PHWDO FHQWHU E\ D PXFK ZHDNHU + OLJDQG 6WHULF FURZGLQJ DURXQG WKH PHWDO FHQWHU PD\ KHOS LQIOXHQFH 30H GLVVRFLDWLRQ IURP DOORZLQJ IRU WKH JHQHUDWLRQ RI D ELVfSKRVSKLQH FRPSOH[ WKDW FDQ FRRUGLQDWH + 'LVSODFHPHQW RI SKRVSKLQH E\ + LV D UDUH SURFHVV DQG WR RXU NQRZOHGJH RQO\ RQH RWKHU H[DPSOH KDV EHHQ UHSRUWHG LQ WKH OLWHUDWXUH )LJXUH *HQHUDWLRQ RI F\FOLF DQG :H DOVR GLVFXVV WKH UHDFWLYLW\ RI WKH GLK\GURJHQ FRPSOH[HV DQG 7KHVH UHDFWLRQV SURFHHG E\ IRUPDO DGGLWLRQ RI + DFURVV WKH 16L ERQG OLEHUDWLQJ +6L0H DQG JLYLQJ PHWDO FRPSOH[HV DQG :KLOH SURWRQ WUDQVIHU IURP + OLJDQGV WR DPLGR DQG DPLQH OLJDQGV KDV EHHQ SURSRVHG LQ WKH OLWHUDWXUHn DQG PD\ SOD\ D UROH LQ WKH PHFKDQLVP RI WKLV UHDFWLRQ HOLPLQDWLRQ RI +6L0H IURP D PHWDO FHQWHU LQ WKLV ZD\ LV WR RXU NQRZOHGJH XQSUHFHGHQWHG

PAGE 86

3UHOLPLQDU\ UHVXOWV FRQFHUQLQJ WKH UHDFWLRQ RI ZLWK +6L3K DQG +E6L3K DUH UHSRUWHG KHUH )XWXUH HIIRUWV WRZDUG FKDUDFWHUL]DWLRQ RI VHYHUDO SURGXFWV DUH UHTXLUHG ,Q WKH LQWHULP ZH SURSRVH WKDW WKHUPRG\QDPLFV GULYHV WKH IRUPDWLRQ RI DQG DW r& 7KH GLK\GURJHQ FRPSOH[ IRUPHG ZKHQ DQG +63, UHDFW DW ORZ WHPSHUDWXUH LV PRVW OLNHO\ D NLQHWLF SURGXFW RI WKH V\VWHP

PAGE 87

&+$37(5 6<17+(6,6 &+$5$&7(5,=$7,21 $1' 5($&7,9,7< 2) $ 02/<%'(180 ,9f U_%87$',(1( &203/(; $1' WL$/.<1( &203/(;(6 (DUO\ 7UDQVLWLRQ 0HWDO %XWDGLHQH &RPSOH[HV /RZ YDOHQW ]LUFRQLXP f EXWDGLHQH FRPSOH[HV ZLWK ELGHQWDWH SKRVSKLQH OLJDQGV ZHUH DPRQJ WKH ILUVW ZHOOFKDUDFWHUL]HG H[DPSOHV RI *URXS PHWDO EXWDGLHQH QR FRPSOH[HV 7KH ZHOONQRZQ KLJKHU YDOHQW EDVHIUHH ]LUFRQRFHQH EXWDGLHQH FRPSOH[HV ZHUH LQGHSHQGHQWO\ V\QWKHVL]HG E\ ERWK (UNHU DQG 1DNDPXUD )LJXUH f $PRQJ WKH VWULNLQJ VWUXFWXUDO FKDUDFWHULVWLFV RI WKHVH FRPSOH[HV LV WKH DELOLW\ RI WKH EXWDGLHQH IUDJPHQW WR FRRUGLQDWH WR WKH PHWDOORFHQH FRUH LQ FLV DQG $DUDPRGHV DQG WKH G\QDPLF HQYHORSH VKLIW LVRPHUL]DWLRQ SURFHVV DVVRFLDWHG ZLWK WKH F$FRRUGLQDWLRQ PRGHn 7KH VWUXFWXUH DQG ERQGLQJ RI F$EXWDGLHQH FRPSOH[HV FDQ YDU\ EHWZHHQ WZR H[WUHPHV WKH Q DQG WKH D AGHVLJQDWLRQV )LJXUH f 7KH ERQGLQJ LQ Q FRPSOH[HV LV EHVW GHVFULEHG DV GRQDWLRQ RI EXWDGLHQH LHOHFWURQ GHQVLW\ WR WKH PHWDO FHQWHU $ QXPEHU RI Q FRPSOH[HV KDYH EHHQ FKDUDFWHUL]HG E\ ;UD\ FU\VWDOORJUDSK\ DQG LQ WKHVH FRPSRXQGV WKH EXWDGLHQH && ERQG OHQJWKV DUH YHU\ VLPLODU ,Q FW LW\SH FRPSOH[HV WKH EXWDGLHQH OLJDQG LV FRQVLGHUHG D GLDQLRQLF GLDON\O D UHVXOW RI FRQVLGHUDEOH EDFN ERQGLQJ 6ROLGVWDWH VWUXFWXUDO VWXGLHV KDYH VKRZQ WKDW WKH &Of&f DQG &f&f ERQG OHQJWKV DUH FRQVLGHUDEO\ ORQJHU WKDQ WKH &f&f ERQG LQ D7LFRPSOH[HV )LJXUH f 7KH VXEVWLWXWLRQ RI WKH EXWDGLHQH OLJDQG DQG WKH LGHQWLW\ DQG HOHFWURQLF VWUXFWXUH RI WKH PHWDO SOD\ D ODUJH UROH LQ GLFWDWLQJ ZKLFK VWUXFWXUH W\SH ZLOO EH DGRSWHG 7R GDWH WKHUH DUH VHYHUDO H[DPSOHV RI VWUXFWXUDOO\ FKDUDFWHUL]HG *URXS DQG F$ DQG

PAGE 88

WUDQVPEXWDGLHQH PHWDO FRPSOH[HV ZLWK WKH FLVRLG FRQIRUPDWLRQ EHLQJ WKH PRVW FRPPRQ )LJXUH 6\QWKHVLV RI ]LUFRQRFHQH EXWDGLHQH FRPSOH[HV &f B &f .U &f2Ff 0 0 &7 W )LJXUH 3RVVLEOH L DQG D Q VWUXFWXUHV IRU FZEXWDGLHQH FRPSOH[HV &KDUDFWHULVWLF UHDFWLYLW\ RI *URXS DQG EXWDGLHQH FRPSOH[HV LQYROYHV UHDFWLRQV ZLWK XQVDWXUDWHG VXEVWUDWHV VXFK DV FDUERQ\O FRPSRXQGV QLWULOHV DQG DON\QHVn 7KLV UHDFWLYLW\ LV W\SLILHG E\ &S=UEXWDGLHQHf ZKHUH && FRXSOLQJ RI WKH XQVDWXUDWHG VXEVWUDWH ZLWK D WHUPLQDO EXWDGLHQH FDUERQ UHVXOWV LQ PHWDOODF\FOLF FRPSOH[HV )LJXUH f ,Q VRPH FDVHV WKH LQWHUFRQYHUVLRQ RI WKHVH PHWDOODF\FOLF FRPSRXQGV FDQ EH REVHUYHG H[SHULPHQWDOO\ 7KH PHWDOODF\FOHV DUH JHQHUDOO\ VWDEOH DQG K\GURO\VLV SURWRFROV DUH UHTXLUHG WR IUHH XVHIXO DF\FOLF RUJDQLF SURGXFWV IURP WKH PHWDO FHQWHU ,Q VKDUS FRQWUDVW ODWHU WUDQVLWLRQ PHWDOV *URXSV DQG f FDWDO\]H WKH LQWHUPROHFXODU F\FORDGGLWLRQ RI QRQDFWLYDWHG VXEVWUDWHV ZKLOH UHODWHG WUDQVLWLRQ PHWDOFDWDO\]HG

PAGE 89

F\FORLVRPHUL]DWLRQ UHDFWLRQV FRQVWLWXWH D UDSLGO\ GHYHORSLQJ DUHD RI UHVHDUFK 5HFHQW GHYHORSPHQWV LQYROYLQJ *URXS EXWDGLHQH FRPSOH[HV LQYROYH WKHLU DSSOLFDWLRQV DV FDWDO\VWV LQ ROHILQ SRO\PHUL]DWLRQ UHDFWLRQV =U&S $ % )LJXUH 5HDFWLYLW\ RI &S=UEXWDGLHQHf ZLWK D UHSUHVHQWDWLYH XQVDWXUDWHG VXEVWUDWH 5HSRUWV FRQFHUQLQJ WKH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI KLJK YDOHQW *URXS WUDQVLWLRQ PHWDO EXWDGLHQH FRPSOH[HV DUH QRW DV FRPPRQ DV WKRVH RI WKH HDUOLHU *URXSV )XUWKHUPRUH UHDFWLYLW\ RI WKHVH *URXS EXWDGLHQH FRPSOH[HV GLIIHUV IURP WKH ZHOOH[SORUHG UHDFWLRQ FKHPLVWU\ DVVRFLDWHG ZLWK WKH *URXS DQG EXWDGLHQH FRPSOH[HV DQG WKH FDWDO\WLF F\FORLVRPHUL]DWLRQ UHDFWLRQV RI WKH ODWHU PHWDOV 0RO\EGHQXP ,PLGR'LDPLGR %XWDGLHQH &RPSOH[HV :H KDYH UHFHQWO\ SUHSDUHG D EXWDGLHQH FRPSOH[ RI RXU PRO\EGHQXP LPLGRGLDPLGR V\VWHP 7KH V\QWKHVLV VWUXFWXUDO FKDUDFWHUL]DWLRQ DQG UHDFWLYLW\ RI WKLV PRQRPHULF GLDPDJQHWLF PRO\EGHQXP ,9fF]VEXWDGLHQH FRPSOH[ >0R13Kf7L+& &+&+&+fR0H6L1f&+f@ f LV GLVFXVVHG EHORZ 7R RXU NQRZOHGJH WKLV LV WKH ILUVW UHSRUW RI D PRO\EGHQXP FRPSOH[ RI WKLV QDWXUH :KLOH VWUXFWXUDOO\ VLPLODU WR RWKHU PRO\EGHQXP EXWDGLHQH FRPSOH[HV WKH UHDFWLYLW\ RI GHSDUWV IURP WKHVH VKRZLQJ VLPLODULWLHV WR ERWK HDUO\ DQG ODWH WUDQVLWLRQ PHWDO UHDFWLYLW\

PAGE 90

7KH V\QWKHVLV RI D UHODWHG LPLGRGLDPLGR PHWK\OYLQ\O NHWRQH 09.f FRPSOH[ LV DOVR GLVFXVVHG KHUH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI U_%XWDGLHQH &RPSOH[ >0R13Kf9+& &+&+ &+f0H6L1f&+f@ f 7UHDWPHQW RI D SHQWDQH VROXWLRQ RI RU ZLWK PROHFXODU EXWDGLHQH JDYH WKH SF$EXWDGLHQH FRPSOH[ >0R13KfS+& &+&+ &+fR0H6L1f&+f@ f LQ JRRG \LHOG )LJXUH f 'HFRPSRVLWLRQ RI RFFXUUHG ZLWKLQ K DW r& DIIRUGLQJ DQ LQWUDFWDEOH PL[WXUH DV GHWHUPLQHG E\ n+ 105 VSHFWURVFRS\ :KHQ NHSW DW r& LQ WKH VROLGVWDWH GLG QRW GHFRPSRVH DSSUHFLDEO\ RYHU VHYHUDO PRQWKV DV QRWHG E\ + 105 VSHFWURVFRS\ $Q ;UD\ FU\VWDOORJUDSKLF VWXG\ ZDV FDUULHG RXW RQ D VLQJOH FU\VWDO RI JURZQ IURP D r& VROXWLRQ RI SHQWDQHPHWK\OHQH FKORULGH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 5 5 0H f $ + + )LJXUH 6\QWKHVLV RI >0R13KfS)O& &),&+ &)OfR0H6L1f&+f@ f 7KH EXWDGLHQH FRPSOH[ FU\VWDOOL]HV LQ D PRQRFOLQLF XQLW FHOO ZLWK RQH PROHFXOH RI PHWK\OHQH FKORULGH 7KH PROHFXODU VWUXFWXUH RI DFFRPSDQLHG E\ VHOHFWHG ERQG OHQJWKV DQG DQJOHV LV VKRZQ LQ )LJXUH 7KH EXWDGLHQH IUDJPHQW FOHDUO\ DGRSWV D F$DUUDQJHPHQW ZKHQ ERXQG WR WKH PHWDO FHQWHU 7KH PHWDO WR WHUPLQDO EXWDGLHQH FDUERQ GLVWDQFHV RI f ƒ 0R&ff DQG f ƒ 0R&ff DQG WKH 0R&f DQG

PAGE 91

0R&f ERQG OHQJWKV RI f ƒ DQG f ƒ UHVSHFWLYHO\ VXSSRUW D L UfEXWDGLHQH ERQGLQJ PRWLI IRU 2WKHU PRO\EGHQXP EXWDGLHQH FRPSOH[HV DGRSW VLPLODU ERQGLQJ PRGHV :LWKLQ WKH EXWDGLHQH IUDJPHQW WKH VLPLODU &f&f &f&f DQG &f&f ERQG OHQJWKV RI f $ f $ DQG f $ UHVSHFWLYHO\ DOVR VXSSRUW D Q U_ERQGLQJ PRGH IRU 7KH 0R1Of OHQJWK RI f $ LV W\SLFDO RI D 0R1 WULSOHERQG LQWHUDFWLRQ DQG LV FRPSDUDEOH WR WKH 0R1Of OHQJWKV LQ VLPLODU FRPSOH[HV VHH &KDSWHU f ,W LV FRPPRQ SUDFWLFH WR XVH WKH -FK FRXSOLQJ FRQVWDQWV WR GHWHUPLQH WKH UHODWLYH GHJUHH RI VS VS K\EULGL]DWLRQ RI WKH FRRUGLQDWHG GLHQH FDUERQV LQ PHWDO EXWDGLHQH FRPSOH[HV %\ GHWHUPLQLQJ WKH UHODWLYH GHJUHH RI K\EULGL]DWLRQ RI WKH GLHQH FDUERQ DWRPV WKH VWUXFWXUH LQ WHUPV RI EXWDGLHQH ERQGLQJ FDQ EH DVVLJQHG D SRVLWLRQ VRPHZKHUH EHWZHHQ WKH WZR H[WUHPHV L RU D Q 8VLQJ 1HZWRQfV VHPLHPSLULFDO UXOH LW LV SRVVLEOH WR FDOFXODWH WKH b FKDUDFWHU RI FDUERQ DWRPV LQ WKH GLHQHV DQG KHQFH WKH K\EULGL]DWLRQ 7KH YDOXH RI Q IRU WKH FDUERQV DW GLHQH WHUPLQL UHDFKHV +]f ZKHQ WKH PROHFXOH DGRSWV D D QW\SH VWUXFWXUH ZKLOH WKH YDOXH LV LQ WKH UDQJH RI +]f LQ WKH FDVH RI D AFRPSOH[ :H KDYH DVVLJQHG WKH REVHUYHG WULSOHW LQ WKH & 105 VSHFWUXP RI DW SSP WR WKH WHUPLQDO EXWDGLHQH FDUERQV DQG WKH REVHUYHG n-FK +] FRXSOLQJ FRQVWDQW LV LQ JRRG DJUHHPHQW ZLWK WKH IRUPXODWLRQ RI DV D LEXWDGLHQH FRPSOH[ ,Q OLJKW RI WKHVH UHVXOWV UHJDUGLQJ WKH IRUPDO R[LGDWLRQ VWDWH DW WKH PHWDO FHQWHU LV EHVW UHSUHVHQWHG E\ 0R,9f $QDORJRXV WXQJVWHQ LPLGRGLDPLGR FRPSOH[HV KDYH EHHQ SUHSDUHG LQ RXU ODERUDWRULHV 7KHVH FRPSOH[HV DUH EHWWHU GHVFULEHG DV DGRSWLQJ WKH D UUEXWDGLHQH ERQGLQJ PRGH 7KLV WUHQG KDV EHHQ REVHUYHG IRU *URXS EXWDGLHQH VSHFLHV ZKHUH

PAGE 92

]LUFRQLXP FRPSOH[HV SUHIHU L W\SH ERQGLQJ ZKLOH KDIQLXP FRPSOH[HV SUHIHU D Q W\SH ERQGLQJ 7KLV LV DV H[SHFWHG DQG IROORZV WKH JHQHUDO WUHQG WKDW PHWDOFDUERQ DERQGV RI WKLUG URZ WUDQVLWLRQ PHWDO FRPSOH[HV DUH VWURQJHU WKDQ WKH FRUUHVSRQGLQJ ERQGV LQ WKH LVRVWUXFWXUDO VHFRQG URZ FRPSOH[HV,Effn & & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R&f f 0R&f f 0R&f f &f&f f &f&f f &f&f f &f&f&f f &f&f&f f &Of1Of0R f 1f0R1f f

PAGE 93

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &+10R6&+&O &+106 &+1026 )RUPXOD ZHLJKW &U\VWDO V\VWHP 0RQRFOLQLF 0RQRFOLQLF 0RQRFOLQLF 6SDFH JURXS 3Q 3F 3Q S0R;Df PPnf D $f f f f $f f f f &$f f f f 3rf f f f Y $f f f f ] kPD[r 7RWDO UHIOHFWLRQV 8QLT UHIOHFWLRQV 5^ LQWf 5? >!Df GDWD@ Z" DOO GDWDfF /DUJ GLII SHDN KROH 2EWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ $ ƒf DW .E 5? L,,II-L,IFZ" ^=>Z)IFf,>Z)f@`

PAGE 94

5HDFWLYLW\ RI >0R13KfWL+& &+&+ &+fR0H6L1f&+f@ f ZLWK %XW\QH 7KH UHDFWLYLW\ RI ZLWK RU HTXLY RI EXW\QH ZDV H[SORUHG 3URWRQ 105 VSHFWUD RI WKHVH UHDFWLRQ PL[WXUHV UHYHDOHG WKH IRUPDWLRQ RI WZR LQWHUPHGLDWHV WKDW GLVDSSHDUHG ZLWKLQ PLQ DW r& JLYLQJ ULVH WR WKH ILQDO SURGXFWV DV RXWOLQHG LQ )LJXUH 5HDFWLRQ RI ZLWK HTXLY RI EXW\QH DIIRUGHG WKH PRO\EGHQXP GLPHWK\O F\FORKH[DGLHQH FRPSOH[ f DV GHWHUPLQHG E\ n+ 105 VSHFWURVFRS\ ZKLOH UHDFWLRQ ZLWK HTXLY RI EXW\QH JDYH GLPHWK\OF\FORKH[DGLHQH DQG WKH PRO\EGHQXP UIDON\QH FRPSOH[ >0R13KfU_0H&&0HfR0H6L1f&)Of@ f DFFRUGLQJ WR n+ 105 VSHFWURVFRS\ WKLV DON\QH FRPSOH[ KDV EHHQ V\QWKHVL]HG LQGHSHQGHQWO\ YLGH LQIUDf &RPSOH[ ZDV SUHSDUHG LQGHSHQGHQWO\ E\ WUHDWPHQW RI ZLWK H[FHVV GLPHWK\OF\FORKH[DGLHQH )LJXUH f ,Q DGGLWLRQ WKH GLPHWK\OF\FORKH[DGLHQH OLJDQG LQ ZDV QRW GLVSODFHG E\ EXW\QH DW URRP WHPSHUDWXUH DV REVHUYHG E\ n+ 105 VSHFWURVFRS\ 7KH LGHQWLW\ RI ZDV FRQILUPHG E\ ;UD\ FU\VWDO VWUXFWXUH DQDO\VLV DQG WKH WKHUPDO HOOLSVRLG SORW LV VKRZQ LQ )LJXUH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH ,Q WKH PHWDO LV ERXQG WR WKH GLPHWK\OF\FORKH[DGLHQH LQ DQ TPRGH UHPLQLVFHQW RI 7KH && GLVWDQFHV EHWZHHQ &f&f &f&f DQG &f&f LQ f $ f $ DQG f $ UHVSHFWLYHO\f DV ZHOO DV WKH PHWDOFDUERQ ERQG OHQJWKV DUH VLPLODU WR WKH FRUUHVSRQGLQJ GLVWDQFHV LQ 7KH 0R1Of GLVWDQFH RI f $ LV FRQVLVWHQW ZLWK D PRO\EGHQXP QLWURJHQ WULSOHERQG LQWHUDFWLRQ 7KH 0R1f DQG 1f DPLGH GLVWDQFHV RI f $ DQG f $ UHVSHFWLYHO\ DUH ZLWKLQ WKH UDQJH H[SHFWHG IRU 0R1 VLQJOH ERQGVff &RPSOH[ LV VWDEOH LQ VROXWLRQ DW r& IRU ZHHNV :H DWWULEXWH

PAGE 95

WKH GLIIHUHQFH LQ VWDELOLWLHV EHWZHHQ DQG LQ SDUW WR VWHULF FURZGLQJ DURXQG WKH PHWDO FHQWHU LQ 1 )LJXUH 5HDFWLYLW\ RI >0R13KfW_+& &+&+&+fR0H6L1f&+f@ f ZLWK EXW\QH :KHQ ZDV WUHDWHG ZLWK HTXLY RI EXW\QH DW r& WKH DFFXPXODWLRQ RI WZR PHWDOFRQWDLQLQJ VSHFLHV ZDV REVHUYHG E\ n+ 105 VSHFWURVFRS\ RYHU K 7KHVH VSHFLHV DUH WKH IOHHWLQJ LQWHUPHGLDWHV REVHUYHG GXULQJ WKLV UHDFWLRQ DW r& DQG DUH VWDEOH DW r& IRU H[WHQGHG SHULRGV RYHU GD\Vf $Q DUUD\ RI WZRGLPHQVLRQDO 105 VSHFWURVFRSLF WHFKQLTXHV ZDV XVHG WR HOXFLGDWH WKH VWUXFWXUHV RI WKHVH LQWHUPHGLDWHV 7KH LQWHUPHGLDWHV FRQVLVW RI WZR LVRPHULF FRPSOH[HV SUHVHQW LQ D UDWLR 7KH PDMRU

PAGE 96

LQWHUPHGLDWH KDV EHHQ FKDUDFWHUL]HG DV >V!Z0R13Kf&0Hf &0Hf&+&+&+&+f R0H6L1f&+f@ Df D !nU_DOO\O PHWDOODF\FOLF V\VWHP & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R&f f 0R&f f 0R&f f &f&f f &f&f f &f&f f &f&f f &f&f f &f&f f &Of1Of0R f 7KH UHVXOWV RI WKH VWUXFWXUDO HOXFLGDWLRQ VWXG\ DUH SUHVHQWHG LQ )LJXUH 7KH PHWDOODF\FOH +D& DQG +E& n-FK RI FDA +] DUH FRQVLVWHQW ZLWK DQ VS K\EULGL]DWLRQ RI WKH FDUERQ UHVRQDQFH DW SSP 7KLV DORQJ ZLWK WKH ODFN RI UHVROYHG FRXSOLQJ EHWZHHQ +D DQG +E VXSSRUW WKH H[LVWHQFH RI DQ U_DOO\O IXQFWLRQDOLW\ 7KH FKHPLFDO

PAGE 97

VKLIWV RI WKH UHPDLQLQJ DOO\O SURWRQ DQG FDUERQ QXFOHL DOVR VXSSRUW WKH DOO\O IUDJPHQW LQ D 7KH VHTXHQFH RI WKH SURWRQV ZKLFK GLVSOD\ PXOWLSOHWV ZDV VHHQ LQ WKH '4&26< VSHFWUXP 12HfV EHWZHHQ WKH PHWK\O DW SSP DQG WKH PHWK\OHQH SURWRQV DW SSP DQG SSP LGHQWLILHG LW DV WKH RQH SUR[LPDO WR WKH PHWK\OHQH JURXS 7KH SURWRQDWHG FDUERQV ZHUH DVVLJQHG WR WKH FRUUHVSRQGLQJ SURWRQV XVLQJ D *+04& VSHFWUXP 7KH *+0%& VSHFWUXP GLVSOD\HG ORQJUDQJH FRXSOLQJV EHWZHHQ WKH TXDWHUQDU\ FDUERQV DW SSP DQG SSP DQG WKH SURWRQV RI ERWK WKH PHWK\OHQH DQG WKH PHWK\O JURXSV ZKLFK FRQILUP WKH PHWDOODF\FOH IUDJPHQW 7KH UHODWLYH VL]HV RI WKH Q2HfV SODFH +E +G DQG +H RQ RQH VLGH RI WKH ULQJ DQG +D +F DQG +I RQ WKH RWKHU VLGH ,Q D +D +F DQG +I VKRZHG Q2HfV WR DURPDWLF SURWRQ +J :H VWDWH WKDW +J LV DQ RUWKR SKHQ\O LPLGR SURWRQ DQG QRW D SKHQ\OHQH SURWRQ EHFDXVH LQ WKH '4&26< VSHFWUXP WKH\ GLVSOD\HG D SKHQ\O FRXSOLQJ SDWWHUQ SSP +Jf SSP SSPf 7KHUHIRUH +F RFFXSLHV D V\Q UHODWLRQVKLS ZLWK UHVSHFW WR WKH SKHQ\O LPLGR JURXS 7KLV LQWHUPHGLDWH PHWDOODF\FOLF LDOO\O V\VWHP PRVW OLNHO\ DULVHV IURP && FRXSOLQJ DW WKH FRQMXJDWHG GLHQH WHUPLQXV 7KH PLQRU VSHFLHV DOVR FRQVLVWV RI D PHWDOODF\FOLF WDOO\O V\VWHP >DmIW0R13Kf&0Hf &0Hf&+&+&+&+fR0H6L1f&+f@ Ef WKDW LV YHU\ VLPLODU WR D )LJXUH f 0HWDOODF\FOH E GLIIHUV IURP D LQ WKDW LQ E WKH FHQWUDO DOO\O SURWRQ +F LV DQWL ZLWK UHVSHFW WR WKH SKHQ\O LPLGR JURXS DV UHYHDOHG E\ WKH Q2HfV EHWZHHQ +J DW SSP DQG +D +G DQG +I 7KH GHWDLOV RI WKH VWUXFWXUDO HOXFLGDWLRQ RI E DUH VLPLODU WR WKRVH RI D KRZHYHU WKH ORZ FRQFHQWUDWLRQ RI E LQ VROXWLRQ SUHYHQWHG WKH DVVLJQPHQW RI WKH O& FKHPLFDO VKLIWV RI WKH PHWDOODF\FOH IUDJPHQW IURP WKH *+04& DQG *+0%& VSHFWUD 7KH 12(6< VSHFWUXP GLG QRW GLVSOD\ DQ\ FKHPLFDO H[FKDQJH SHDNV EHWZHHQ D DQG E DW r&

PAGE 98

)LJXUH 6WUXFWXUH RI LQWHUPHGLDWH Df VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ 7KH GLDPLGR OLJDQG KDV EHHQ RPLWWHG IRU FODULW\ )LJXUH 6WUXFWXUH RI LQWHUPHGLDWH Ef VKRZLQJ VHOHFWHG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\ 7KH GLDPLGR OLJDQG KDV EHHQ RPLWWHG IRU FODULW\ 7KHUH KDV EHHQ H[WHQVLYH PHFKDQLVWLF ZRUN E\ (UNHU HW DO DQG 1DNDPXUD HW DO RQ WKH UHDFWLYLW\ RI *URXS PHWDOORFHQH GHULYDWLYHV RI EXWDGLHQHV ZLWK XQVDWXUDWHG VXEVWUDWHV 7KH SDWKZD\ IDYRUHG IRU VXFK UHDFWLRQV LQYROYHV FRXSOLQJ RI WKH XQVDWXUDWHG PRLHW\ ZLWK RQH RI WKH GLHQH GRXEOH ERQGV SURGXFLQJ D YLQ\OPHWDOODF\FORSHQWDQH VSHFLHV +f )LJXUH f 7KLV VSHFLHV FDQ WKHQ LVRPHUL]H DV VKRZQ LQ )LJXUH

PAGE 99

,W WKXV VHHPV UHDVRQDEOH WR SURSRVH WKDW UHDFWV ZLWK EXW\QH WR JLYH H ZKLFK GRHV QRW DFFXPXODWH WR DQ\ GHWHFWDEOH OHYHOV E\ nOO 105 VSHFWURVFRS\ )LJXUH f ,QWHUPHGLDWH H UDSLGO\ UHDUUDQJHV DIIRUGLQJ D DQG E ZKLFK FDQ EH REVHUYHG DW ORZ WHPSHUDWXUH $W r& D E RU VRPH FRPELQDWLRQ RI WKH WZR PRVW OLNHO\ UHDUUDQJH WR IRUP I ZKLFK UDSLGO\ JHQHUDWHV J YLD UHGXFWLYH HOLPLQDWLRQ ,VRPHUL]DWLRQ RI J XOWLPDWHO\ UHVXOWV LQ WKH IRUPDWLRQ RI 7KH SURGXFWLRQ RI IURP WUHDWPHQW RI ROHILQ FRPSOH[ ZLWK H[FHVV GLPHWK\OF\FORKH[DGLHQH )LJXUH f JLYHV HYLGHQFH VXSSRUWLQJ WKH IRUPDWLRQ RI J LQ WKH SURSRVHG PHFKDQLVP )LJXUH 3URSRVHG PHFKDQLVP IRU UHDFWLRQ RI ZLWK EXW\QH $QFLOODU\ OLJDQGV KDYH EHHQ RPLWWHG IRU FODULW\ 7KH GLIIHUHQFH LQ SURGXFW GLVWULEXWLRQ ZKHQ HTXLY RI EXW\QH UHDFWV ZLWK LV FRQVLVWHQW ZLWK WKH SURSRVHG PHFKDQLVP LQ )LJXUH ([FHVV EXW\QH FRPSHWHV IRU WKH PHWDO FHQWHU ZLWK WKH GLPHWK\OF\FORKH[DGLHQH OLJDQG LQ J OLEHUDWLQJ IUHH

PAGE 100

GLPHWK\OF\FORKH[DGLHQH DQG IRUPLQJ DV WKH PHWDOFRQWDLQLQJ SURGXFW ,Q WKH DEVHQFH RI H[FHVV EXW\QH LVRPHUL]DWLRQ RI J WR RFFXUV 5HDFWLYLW\ RI >0R13Kf7+& &+&+ &+fR0H6L1f&+f@ f ZLWK $FHWRQH )RUPDWLRQ RI >0R13Kf&+&+ &+&+&0HffR0H6L1f&+fO f :KHQ D JUHHQ &' VROXWLRQ RI ZDV WUHDWHG ZLWK HTXLY RI DFHWRQH D UHG VROXWLRQ FRQWDLQLQJ ZDV JHQHUDWHG )LJXUH f 2UJDQRPHWDOOLF PHWDOODF\FOH ZDV FKDUDFWHUL]HG E\ DQ DUUD\ RI 105 VSHFWURVFRSLF WHFKQLTXHV LQFOXGLQJ *+0%& *+04& 72&6< 12(6< DQG &26< 7KH UHVXOWV RI WKH VWUXFWXUDO HOXFLGDWLRQ DUH VKRZQ LQ )LJXUH 3K 3K )LJXUH )RUPDWLRQ RI >0R13Kf&+&+ &+&+&0HffR0H6L1f&+f@ f )LJXUH 3URSRVHG VWUXFWXUH IRU VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\

PAGE 101

([FKDQJH SHDNV DUH REVHUYHG EHWZHHQ WKH PHWK\O JURXSV DW SSP DQG SSP LQ WKH 12(6< VSHFWUXP RI DW r& FRUUHVSRQGLQJ WR D G\QDPLF SURFHVV WKDW H[FKDQJHV WKHVH PHWK\O JURXS HQYLURQPHQWV )XUWKHUPRUH DW r& WKHUH DUH WZR UHVRQDQFHV FRUUHVSRQGLQJ WR LQHTXLYDOHQW 6L0HL JURXSV LQ WKH + 105 VSHFWUXP RI DW SSP DQG SSP $W r& WKHVH UHVRQDQFHV KDYH FRDOHVFHG DQG WKH $* IRU WKLV SURFHVV LV DSSUR[LPDWHO\ .-PRO .FDOPROf XVLQJ (TXDWLRQ 7KH HSLPHUL]DWLRQ SURFHVV VKRZQ LQ )LJXUH FRXOG DFFRXQW IRU WKLV EHKDYLRU ,Q )LJXUH WKH VTXDUH S\UDPLGDO HQDQWLRPHUV D DQG G FDQ LQWHUFRQYHUW WKURXJK D %HUU\ SVHXGRURWDWLRQ PHFKDQLVP LQYROYLQJ WKH WULJRQDO ELS\UDPLGDO LQWHUPHGLDWHV E DQG F 7KLV SURFHVV FOHDUO\ H[FKDQJHV WKH PHWK\O JURXSV ODEHOHG 0HD DQG 0HE LQ )LJXUH $W r& WKH HSLPHUL]DWLRQ SURFHVV FRXOG EH VORZ HQRXJK RQ WKH 105 WLPH VFDOH DV WR DOORZ REVHUYDWLRQ RI WZR 6L0H UHVRQDQFHV LQ WKH n+ 105 VSHFWUXP ,I DW r& WKH HSLPHUL]DWLRQ SURFHVV LV IDVW RQ WKH 105 WLPHVFDOH WKHQ RQO\ RQH 6L0H UHVRQDQFH ZLOO EH REVHUYHG E\ n+ 105 VSHFWURVFRS\ 'LIIHUHQW G\QDPLF 105 SURSHUWLHV KDYH EHHQ REVHUYHG IRU VLPLODU HDUO\PHWDO FRPSOH[HV,Ff 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI U_09. &RPSOH[ 0R13KfUf 2 &0Hf&+ &+f0H6L1f&+f@ f 7KH FRRUGLQDWLRQ FKHPLVWU\ RI *URXS PHWDOV ZLWK DF\FOLF FRQMXJDWHG GLHQHV RWKHU WKDQ EXWDGLHQH PRUH VSHFLILFDOO\ D SXQVDWXUDWHG FDUERQ\O FRPSRXQGV LV D WRSLF XQGHU FXUUHQW LQYHVWLJDWLRQ LQ WKH VFLHQWLILF FRPXQLW\ 5HFHQW GHYHORSPHQWV LQ WKLV DUHD LQYROYH WKH V\QWKHVLV RI D WULV PHWK\ODFU\ODWH PRO\EGHQXP FRPSOH[ >0R+& &+&220Hf 30Hf@ ZKHUH WZR PHWK\ODFU\ODWH JURXSV ELQG WR WKH PHWDO WKURXJK ERWK & & DQG & IXQFWLRQDOLWLHV DV TOR[D GLHQH OLJDQGV ZKLOH WKH WKLUG DVVRFLDWHV ZLWK WKH PHWDO WKURXJK WKH & & GRXEOH ERQG $ VHULHV RI UHODWHG FRPSRXQGV ZDV UHSRUWHG E\

PAGE 102

6FKPLGW HW D DQG D PRO\EGHQXPWXQJVWHQ ,,f K\GURWULVS\UD]RO\OfERUDWH V\VWHP WKDW ELQGV WR D SXQVDWXUDWHG DOGHK\GHV LQ U_ DQG U? PRGHV WKURXJK WKH FDUERQ\O PRLHW\ RQO\ LV DOVR NQRZQnn 7KH V\QWKHVLV DQG FU\VWDO VWUXFWXUH RI D WKHUPDOO\ VWDEOH EDVHIUHH PRQRPHULF PRO\EGHQXP ,9f GVU_PHWK\O YLQ\O NHWRQH FRPSOH[ >0R13KfU_ &0Hf&+ &+fR0H6L1f&+f@ f LV GLVFXVVHG EHORZ 3K 0H 3K 1 ,,82 0H6LY>Qn0R f 4 M 0H6LS1 D D 0HW 3K 1 3K 1 )LJXUH 3RVVLEOH PHWK\O JURXS H[FKDQJH SDWKZD\ 3HQWDQH VROXWLRQV RI RU UHDFWHG ZLWK HTXLY RI 09. DIIRUGLQJ LQ KLJK \LHOG &RPSOH[ ZDV LVRODWHG E\ UHPRYDO RI WKH SHQWDQH VROYHQW XQGHU UHGXFHG SUHVVXUH DQG FRXOG EH UHFU\VWDOOL]HG IURP D FRQFHQWUDWHG WROXHQHSHQWDQH VROXWLRQ DW r& $Q ;UD\ FU\VWDOORJUDSKLF VWXG\ RQ D VLQJOH FU\VWDO RI ZDV FDUULHG RXW 7KH WKHUPDO HOOLSVRLG SORW RI LV VKRZQ LQ )LJXUH DQG LV DFFRPSDQLHG E\ VHOHFWHG ERQG OHQJWKV DQG DQJOHV 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH 0R1Of ERQG OHQJWK RI f ƒ LV FRQVLVWHQW ZLWK D

PAGE 103

PHWDOQLWURJHQ WULSOH ERQG 7KH 0R2Of ERQG LV VOLJKWO\ ORQJHU FD ƒf WKDQ D 0R VLQJOH ERQG ZKLOH WKH UHPDLQLQJ 0R09. FDUERQ FRQWDFWV 0R&f f ƒ 0R&f f ƒ DQG 0R&f f ƒf DUH VLPLODU LQ OHQJWK WR DQDORJRXV 0RFDUERQ ERQG OHQJWKV LQ EXWDGLHQH FRPSOH[ VXSSRUWLQJ FRQVLGHUDEOH UfOR[D GLHQH FKDUDFWHU LQ 7KH IRUPDO R[LGDWLRQ VWDWH DW WKH PHWDO FHQWHU LV WKXV EHVW GHVFULEHG DV 0R,9f DQG WKH n+ 105 VSHFWUXP RI LV FRQVLVWHQW ZLWK WKH VROLGVWDWH VWUXFWXUH )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQJOHV rf DQG WRUVLRQ DQJOHV rf 0R2Of f 0R&f f 0R&f f 0R&f f f&f f &f&f f &f&f f 0R1Of f 0R1f f 0R1f f 2Of&f&f f &f&f&f f f&f&f f &f&f&f f &Of1Of0R f 2Of&f&f&f f

PAGE 104

6XPPDU\ 7KH V\QWKHVLV DQG UHDFWLYLW\ RI PRO\EGHQXP EXWDGLHQH FRPSOH[ KDV EHHQ GLVFXVVHG 6WUXFWXUDOO\ WKLV FRPSOH[ LV VLPLODU WR RWKHU PRO\EGHQXP EXWDGLHQH FRPSOH[HV 5HDFWLYLW\ ZLVH WKLV FRPSOH[ VKRZV SDUDOOHOV ZLWK HDUOLHU PHWDOV IRUPLQJ WUDQVLHQW W_DOO\O PHWDOODF\FOHV ZKHQ WUHDWHG ZLWK EXW\QH DQG PHWDOODF\FOLF ZKHQ WUHDWHG ZLWK DFHWRQH :KLOH WKLV UHDFWLYLW\ SODFHV LQ D JURXS ZLWK HDUOLHU PHWDO EXWDGLHQH FRPSOH[HV WKH && ERQGIRUPLQJ UHDFWLRQ WKDW RFFXUV GXULQJ WKH IRUPDWLRQ RI LV PRUH DNLQ WR WKH UHDFWLYLW\ RI ODWHU PHWDOV 7KXV FRPSOH[ RFFXSLHV D XQLTXH SRVLWLRQ DPRQJ RWKHU NQRZQ WUDQVLWLRQ PHWDO EXWDGLHQH FRPSOH[HV (DUO\ 7UDQVLWLRQ 0HWDO $ON\QH &RPSOH[HV 7KH VWXG\ RI HDUO\ WUDQVLWLRQ PHWDO FRPSOH[HV RI DON\QHV KDV EHHQ D PDLQVWD\ RI RUJDQRPHWDOOLF FKHPLVWU\ IRU PDQ\ \HDUV ,Q JHQHUDO DON\QH FRPSOH[HV DUH JHQHUDWHG E\ OLJDQG GLVSODFHPHQW UHDFWLRQV RU E\ UHGXFWLRQ RI D PHWDO KDOLGH VSHFLHV LQ WKH SUHVHQFH RI WKH DSSURSULDWH DON\QH $Q LPSRUWDQW GHYHORSPHQW LQ WKLV DUHD ZDV WKH GLVFRYHU\ WKDW UIDON\QH OLJDQGV KDYH WKH DELOLW\ WR DFW DV RU HOHFWURQ GRQRU OLJDQGV DQG WKDW & 105 VSHFWURVFRS\ FRXOG EH XVHG WR GHWHUPLQH WKH HOHFWURQ GRQDWLQJ FKDUDFWHU RI WKH DON\QH OLJDQG 7KH VLPSOH ERQGLQJ VFHQDULR IRU D WUDQVLWLRQ PHWDO DON\QH FRPSOH[ LV VKRZQ LQ )LJXUH %RWK DFHW\OHQH AERQGLQJ 02V FDQ LQWHUDFW ZLWK PHWDOEDVHG RUELWDOV WKURXJK D DQG 7GRQDWLRQ LQWHUDFWLRQV LI WKH PHWDO RUELWDOV DUH DYDLODEOH IRU ERQGLQJ %DFN ERQGLQJ UFDFFHSWDQFHf LQWHUDFWLRQV DUH RIWHQ FRPPRQ LQ DON\QH FRPSOH[HV DQG ZKHQ VXFK FRQWULEXWLRQV WR ERQGLQJ DUH VLJQLILFDQW WKH PHWDOODF\FORSURSHQH VWUXFWXUH LV D JRRG GHVFULSWLRQ RI WKH QHW DON\QHPHWDO LQWHUDFWLRQ )LJXUH f 7KH LQWHUDFWLRQ

PAGE 105

VKRZQ LQ )LJXUH GRHV QRW FRQWULEXWH PXFK WR WKH RYHUDOO ERQGLQJ SLFWXUH IRU LW LV D ZHDN LQWHUDFWLRQ :KLOH DQ H[WHQVLYH IRUD\ LQWR WKH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI *URXS DON\QH FRPSOH[HV KDV EHHQ PDGH RYHU WKH \HDUV EDVHIUHH KLJKYDOHQW H[DPSOHV RI VXFK DUH UDUH HQWLWLHV LQ WKH OLWHUDWXUH PHWDOODF\FORSURSHQH RS 02 RR &7GRQDWLRQ W WR 0Df QGRQDWLRQ Q WR 0G[\f n2 RR UDFFHSWDQFH 0G[] r WR f r DFFHSWDQFH r WR f )LJXUH %RQGLQJ LQ WUDQVLWLRQ PHWDO DON\QH FRPSOH[HV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 0RO\EGHQXP ,PLGR'LDPLGR $ON\QH &RPSOH[HV >0R13Kf7L5&&5fR0H6L1f&+f@ 5 0H f 3K f 6L0H ff :H KDYH UHFHQWO\ SUHSDUHG EDVHIUHH PRO\EGHQXP ,9f DON\QH FRPSOH[HV RI WKH W\SH >0R13Kf7L5&&5fR0H6L1f&+f@ 5 0H f 3K f 6L0H ff )LJXUH f 7KHVH FRPSOH[HV ZHUH SUHSDUHG E\ WUHDWLQJ SHQWDQH VROXWLRQV RI RU ZLWK WKH DSSURSULDWH DON\QH IROORZHG E\ UHPRYDO RI VROYHQW XQGHU UHGXFHG SUHVVXUH 7KH DON\QH UHDFWDQWV HIIHFWLYHO\ GLVSODFH WKH ERXQG ROHILQ RI RU ZLWK FRPSOHWH

PAGE 106

FRQYHUVLRQ WR SURGXFWV ZLWKLQ PLQ DW r& 7KH n+ 105 VSHFWUD RI DQG DUH FRQVLVWHQW ZLWK PRQRPHULF DON\QH FRPSOH[HV 7KH FDUERQV RI WKH DON\QH IUDJPHQW FRRUGLQDWHG WR WKH PHWDO LQ DQG UHVRQDWH DW SSP SSP DQG SSP UHVSHFWLYHO\ LQ WKH & 105 VSHFWUD VXJJHVWLQJ WKDW WKH DON\QH OLJDQGV DUH DFWLQJ DV HOHFWURQ GRQRU OLJDQGV &RPSRXQGV DQG DUH DLU VHQVLWLYH EXW VWDEOH LQ VROXWLRQ DQG LQ WKH VROLGVWDWH ,Q FRQWUDVW LV KLJKO\ XQVWDEOH DQG GHFRPSRVHV LQ VROXWLRQ DW r& RYHUQLJKW 5 0H 5 + f 5 5 0H f 3K 1 ,,, 5 0H f 3K f 6L0H f $ + + )LJXUH 6\QWKHVLV RI >0R13Kf7L5&&5fR0H6L1f&+f@ 5 0H f 3K f 6L0H ff 6LQJOH FU\VWDO ;UD\ DQDO\VHV ZHUH FDUULHG RXW RQ VLQJOH FU\VWDOV RI )LJXUH f DQG )LJXUH f 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH %RWK DQG DGRSW VTXDUH S\UDPLGDO JHRPHWULHV ZKHUH WKH LPLGR JURXSV RFFXS\ WKH DSLFDO SRVLWLRQV 7KH PHWDO LPLGR LQWHUDFWLRQV 0R1Of f ƒ 0R1Of f ƒf DUH FRQVLVWHQW ZLWK PHWDOQLWURJHQ WULSOH ERQGV DQG WKH PRO\EGHQXP DPLGH FRQWDFWV DUH FRQVLVWHQW ZLWK PHWDOQLWURJHQ VLQJOHERQG LQWHUDFWLRQVnfff 7KH 0R&f DQG 0R&f ERQG OHQJWKV RI f ƒ DQG f ƒ IRU UHVSHFWLYHO\ DUH FRQVLVWHQW ZLWK 0R& VLQJOH ERQGV DQG WKH &f&f ERQG OHQJWK RI

PAGE 107

f ƒ LV FORVH WR WKH JHQHUDOO\ DFFHSWHG YDOXH RI ƒ IRU D && GRXEOH ERQG 3URQRXQFHG EDFN ERQGLQJ LV UHVSRQVLEOH IRU WKH OHQJWKHQLQJ RI WKLV DON\QH ERQG DQG WKH VWUXFWXUH RI LV WKXV EHVW GHVFULEHG DV KDYLQJ D VWURQJ FRQWULEXWLRQ IURP D PHWDOODF\FORSURSHQH VWUXFWXUH )LJXUH f 7KH DON\QH OLJDQG FDQ EH FRQVLGHUHG DV D GLDQLRQLF OLJDQG DQG WKH IRUPDO R[LGDWLRQ VWDWH RI WKH PHWDO ZRXOG EH EHVW GHVFULEHG DV 0R9,f 6LPLODU VWUXFWXUDO SDUDPHWHUV KDYH EHHQ UHSRUWHG IRU KLJKYDOHQW *URXS DON\QH FRPSOH[HV DQG IRU LVRVWUXFWXUDO WXQJVWHQ FRPSOH[HV PDGH LQ RXU ODERUDWRULHV 6LPLODU DUJXPHQWV DSSO\ WR WKH VROLGVWDWH VWUXFWXUH RI 7KH &f&f ERQG OHQJWK RI f ƒ LQ LV YHU\ FORVH WR WKH &f&f OHQJWK RI f ƒ LQ &RPSOH[ LV WKXV DOVR EHVW GHVFULEHG E\ WKH PHWDOODF\FORSURSHQH VWUXFWXUH )LJXUH f 7KH XQLTXH ERQGLQJ LQWHUDFWLRQV LQ WKHVH FRPSOH[HV DUH FXUUHQWO\ EHLQJ VWXGLHG WKHRUHWLFDOO\ WKURXJK ')7 DQDO\VLV DQG WKHVH UHVXOWV ZLOO EH SXEOLVKHG LQ GXH FRXUVH 5HDFWLRQ RI >0R13Kf7L3K&&3KfR0H6L1f&+f@ f ZLWK WHUW%XW\O ,VRF\DQLGH :KHQ D VDPSOH RI ZDV WUHDWHG ZLWK HTXLY RI %Xn1& D QHZ PHWDOFRQWDLQLQJ FRPSOH[ IRUPHG DV REVHUYHG E\ n+ 105 VSHFWURVFRS\ 7KLV FRPSOH[ ZDV QRW IXOO\ FKDUDFWHUL]HG EXW ZH KDYH DVVLJQHG LW D SUHOLPLQDU\ VWUXFWXUH )LJXUH f ZKLFK LV FRQVLVWHQW ZLWK WKH f+ 105 VSHFWUXP VHOHFWHG f+ 105 IRU &' r&f EU & &3Kf+f G +] PHWDOODF\FOH PHWK\OHQH &+f G +] PHWDOODF\FOH PHWK\OHQH &ff &RPSOH[ FRQYHUWHG WR RYHU WKH FRXUVH RI VHYHUDO ZHHNV )LJXUH f &RPSOH[ ZDV FKDUDFWHUL]HG E\ 105 VSHFWURVFRS\ DQG WKH VWUXFWXUDO DVVLJQPHQW LV VKRZQ LQ )LJXUH 7KH FKHPLFDO VKLIW RI WKH LPLQRDF\O FDUERQ LV DW\SLFDO DQG DSSUR[LPDWHO\ SSP XSILHOG IURP ZKHUH H[SHFWHG 7KLV VKLIW FRXOG SRVVLEO\ EH H[SODLQHG E\ WKH XQXVXDO PHWDOODF\FOLF QDWXUH RI

PAGE 108

)LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R&f f &f&f f &f&f&f f &f&f&f f &Of1Of0R f 1f0R1f f 1f0R&f f 1f0R&f f

PAGE 109

& )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R&f f 0R&f f &f&f f &f&f6Lf f &f&f6Lf f &Of1Of0R f 1f0R1f f 1f0R&f f 1f0R&f f &RPSOH[ FU\VWDOOL]HG ZLWK WZR PROHFXOHV LQ WKH DV\PPHWULF XQLW DQG RQO\ RQH LV VKRZQ KHUH

PAGE 110

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &+106 &+106 )RUPXOD ZHLJKW &U\VWDO V\VWHP 7ULFOLQLF 7ULFOLQLF 6SDFH JURXS 3? 3? S0R;Df PPnf D $f f f $f f f Fƒf f f D f f 32 f f < f f $f f f ] kPD[r 7RWDO UHIOHFWLRQV 8QLT UHIOHFWLRQV 5LQWf 5 > !ROf GDWD@E Z" DOO GDWDfF /DUJ GLII SHDN KROH D2EWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ ; ƒf DW .E VOSM I-V,IFZ5 ^=>Z) )Ff;>Z)f@`

PAGE 111

fV )LJXUH 5HDFWLRQ RI >0R13KfU_3K&&3KfR0H6L1f&+f@ f ZLWK %Xn1& IRUPDWLRQ RI )LJXUH 3URSRVHG VWUXFWXUH RI VKRZLQJ VHOHFWHG FDUERQ XQGHUOLQHGf DQG SURWRQ FKHPLFDO VKLIWV DVVLJQHG E\ 105 VSHFWURVFRS\

PAGE 112

:H KDYH QR FRQFUHWH HYLGHQFH IRU D SRVVLEOH PHFKDQLVP EXW SURSRVH WKDW &+ DFWLYDWLRQ RI WKH 6L0H OLJDQG LV DQ LPSRUWDQW VWHS LQ WKH UHDFWLRQ DQG FRXOG EH UHVSRQVLEOH IRU JHQHUDWLQJ D VSHFLHV VXFK DV D )LJXUH f ,QWHUPHGLDWH D FRXOG FRPH DERXW E\ LQVHUWLRQ RI GLSKHQ\O DFHW\OHQH LQWR D PHWDO K\GULGH SURGXFHG E\ &+ DFWLYDWLRQ RI WKH 6L0H PHWK\O JURXS $ \DEVWUDFWLRQ SURFHVV FRXOG DOVR EH UHVSRQVLEOH IRU WKH IRUPDWLRQ RI D 7KH H[DFW UROH RI %XO1& LQ WKLV UHDFWLRQ LV XQNQRZQ EXW LW PRVW OLNHO\ SURPRWHV &+ DFWLYDWLRQ 5HODWHG /HZLV EDVH SURPRWHG D S DQG \DEVWUDFWLRQ SURFHVVHV KDYH EHHQ REVHUYHG ZLWK WKH DQDORJRXV WXQJVWHQ V\VWHP DV GLVFXVVHG LQ &KDSWHU ff 5HGXFWLYH HOLPLQDWLRQ IURP D ZRXOG UHVXOW LQ WKH IRUPDWLRQ RI DQG LQVHUWLRQ RI %Xn1& LQWR WKH PHWDOODF\FORSURSDQH IXQFWLRQ RI FDQ JLYH )XOO FKDUDFWHUL]DWLRQ RI DQG ZLOO FRQWULEXWH WR WKH IRUPXODWLRQ RI D PRUH FRPSOHWH PHFKDQLVP 6XPPDU\ 7R RXU NQRZOHGJH UHSRUWV RI RWKHU PHWDO LPLGRGLDPLGR DON\QH FRPSOH[HV DUH QRQH[LVWHQW 7KH GLVXEVWLWXWHG DON\QH FRPSOH[HV DQG KDYH LQWHUHVWLQJ ERQGLQJ SURSHUWLHV D UHVXOW RI WKH WORDGHG V\VWHP $ GHWDLOHG ')7 VWXG\ DLPHG DW XQGHUVWDQGLQJ WKH ERQGLQJ LQ WKHVH FRPSOH[HV LV XQGHUZD\ LQ RXU JURXS DV DUH UHDFWLRQV LQYROYLQJ PRQRVXEVWLWXWHG DQG XQV\PPHWULFDOO\ GLVXEVWLWXWHG DON\QH UHDFWDQWV ,QLWLDO UHDFWLYLW\ VWXGLHV KDYH VKRZQ WKDW FRPSOH[ LV D UHDFWLYH VSHFLHV :H KRSH WR IXUWKHU GHYHORS WKLV FKHPLVWU\ LQ WKH IXWXUH

PAGE 113

3K 1 &1%X %X )LJXUH 3URSRVHG PHFKDQLVP IRU WKH IRUPDWLRQ RI

PAGE 114

&+$37(5 5($&7,9,7< 2) 02/<%'(180 2/(),1 $1' $5(1( &203/(;(6 :,7+ 816$785$7(' 68%675$7(6 5HDFWLRQ RI 0RO\EGHQXP 2OHILQ &RPSOH[HV ZLWK ,PLQHV 7KH 6\QWKHVLV RI 0RO\EGHQXP ,PLGR'LDPLGR UI,PLQH &RPSOH[HV &XUUHQW V\QWKHWLF PHWKRGRORJLHV DIIRUGLQJ U_LPLQH FRPSOH[HV D]DPHWDOODF\FORSURSDQHVf FRQVLVW RI &+ DFWLYDWLRQ IURP PHWK\OPHWDOORFHQH DPLGHV f UHDUUDQJHPHQWV RI LPLQRDF\O FRPSOH[HV f UHDFWLRQ EHWZHHQ &S =U+ DQG $U1& UHGXFWLRQ RI D ORZYDOHQW FRPSOH[ ZLWK SKRVSKDD]DDOOHQH DQG YDULRXV LQ VLWX PHWKRGV RI U_ LPLQH FRPSOH[ IRUPDWLRQ n ,VRODWLRQ DQG FKDUDFWHUL]DWLRQ RI U_ LPLQH FRPSOH[HV JHQHUDWHG E\ GLUHFW UHDFWLRQ RI LPLQHV ZLWK PHWDO UHGXFWDQWV KDV IRU WKH PRVW SDUW EHHQ XQVXFFHVVIXO DQG DOWKRXJK WZR UHFHQW UHSRUWV GHWDLO WKH LVRODWLRQ DQG FKDUDFWHUL]DWLRQ RI \WWHUELXP DQG WDQWDOXP U? LPLQH FRPSOH[HV YLD VXFK GLUHFW PHWKRGV H[DPSOHV ZLWK RWKHU HDUO\ PHWDOV DUH WR RXU NQRZOHGJH QRQH[LVWHQW :H UHSRUW KHUHLQ VWUXFWXUDO FKDUDFWHUL]DWLRQ DQG GLUHFW V\QWKHVLV RI PRO\EGHQXP ,9f U_LPLQH FRPSOH[HV REWDLQHG E\ WUHDWPHQW RI WKH PRO\EGHQXP ,9f ROHILQ FRPSOH[ ZLWK DSSURSULDWH DOGLPLQHV DQG NHWLPLQHV )XUWKHUPRUH DOGLPLQH UHGXFWLYH FRXSOLQJ SURGXFWV DUH LVRODWHG IRU OHVV VWHULFDOO\ GHPDQGLQJ DOGLPLQHV 5HDFWLRQ RI WKH DU\O DPLQH GHULYHG DOGLPLQH 3K1 &+f$U $U &+AS20Hf DQG NHWLPLQH 3K1 &0Hf3K ZLWK DIIRUGHG WKH UILPLQH FRPSOH[HV >0R13KfU_ 3K1 &+f$UR0H6L1f&+f@ $U &+"20Hf f DQG >0R13KfUL 3K1 &0Hf3KR0H6L1f&+f@ f DV JUHHQ FU\VWDOV LQ b LVRODWHG \LHOG )LJXUH

PAGE 115

f 7KH PROHFXODU VWUXFWXUH RI ZDV GHWHUPLQHG E\ DQ ;UD\ FU\VWDOORJUDSKLF VWXG\ DQG VHOHFWHG ERQG GLVWDQFHV DQG DQJOHV IRU DUH VKRZQ LQ )LJXUH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 0H6L 1 0H6N ,-, 1f§0R 0H6LUf§Qn 3K 3K 1 F5 ? $U $ 0H 0H 5 + $U &+"20H f 5 0H $U 3K f )LJXUH 6\QWKHVLV RI U_ LPLQH FRPSOH[HV DQG &RPSOH[ DGRSWV D ILYHFRRUGLQDWH VTXDUH S\UDPLGDO JHRPHWU\ ZLWK WKH LPLGR OLJDQG RFFXS\LQJ WKH DSLFDO SRVLWLRQ 7KH VKRUW LPLGR 0ROf1f ERQG OHQJWK RI f ƒ LV W\SLFDO RI D 0R1 WULSOHERQG LQWHUDFWLRQ 7KH 0ROf1f 0ROf1f DQG 0ROf1Of ERQG OHQJWKV RI f ƒ f ƒ DQG f ƒ UHVSHFWLYHO\ DUH DOO FRQVLVWHQW ZLWK 0R1 VLQJOH ERQGV 7KH &fFHQWHUHG ERQG DQJOHV RI WKH LPLQH IUDJPHQW DUH DOO OHVV WKDQ r DQG VXSSRUW D FRQVLGHUDEOH DPRXQW RI D]DPHWDOODF\FORSURSDQH FKDUDFWHU LQ DV GRHV WKH 1f&f ERQG OHQJWK RI f ƒ 7KH LPLQH IUDJPHQW &1 ERQG OHQJWK IRU LV VLPLODU WR WKH UHODWHG ERQG OHQJWK RI f ƒ IRU WKH D]DWLWDQDF\FORSURSDQH FRPSOH[ >7L2$Uf%XW1&&)L3Kf 3\S3Kf@ $U GLWHUWEXW\OSKHQ\OfEf EXW PXFK ORQJHU WKDQ WKDW RI WKH ]LUFRQLXP D]DPHWDOODF\FORSURSDQH FRPSOH[ >&S=U3K&+f13KfWKLf@ f $fEf

PAGE 116

7DEOH ;UD\ GDWD IRU FU\VWDO VWUXFWXUHV DQG &KHPLFDO IRUPXOD &+106 &+1026 &+1026 )RUPXOD ZHLJKW &U\VWDO V\VWHP 0RQRFOLQLF 0RQRFOLQLF 7ULFOLQLF 6SDFH JURXS 3F 3 3L S0R;Df PPnf D $f f f f $ $f f f f F$f f f f D f 3rf f f f \ f 9&$f f f fƒ ] kPD[r 7RWDO UHIOHFWLRQV 8QLT UHIOHFWLRQV 5 LQWf QD 5? >,!ROf GDWD@E Z" DOO GDWDfF /DUJ GLII SHDN KROH 2EWDLQHG ZLWK PRQRFKURPDWLF 0R .D UDGLDWLRQ $ ƒf DW .E 5? V,,II-,V,IFZ" ^=>Z) )FI">Z)f@`P

PAGE 117

)LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0ROf1Of f 0ROf1f f 0ROf1f f 0ROf1f f 0ROf&f f 1f&f f 1f&f f &f&f f 0ROf1f&f f 1f0ROf1Of f 1f0ROf&f f 1f0ROf1f f 1Of0ROf&f f 1f&f0ROf f 1f&f&f f 1f&f&f f &f&f&f f 7KH n+ 105 VSHFWUD RI DQG DUH KLJKO\ IOX[LRQDO DW r& :H KDYH FDUULHG RXW YDULDEOH WHPSHUDWXUH f+ 105 VWXGLHV RQ $W r& FRQVLGHUDEOH EURDGHQLQJ RI UHVRQDQFHV LQ WKH DURPDWLF UHJLRQ DUH REVHUYHG LQ WKH n+ 105 VSHFWUXP 7KHVH UHVRQDQFHV EHFRPH ZHOO GHILQHG SURWRQ SHDNV DW r& :H SURSRVH WKDW WKH IOX[LRQDOLW\ REVHUYHG LV D UHVXOW RI WKH KLQGHUHG URWDWLRQ RI WKH SKHQ\O ULQJ DWWDFKHG WR WKH LPLQH FDUERQ 7KLV KLQGHUHG URWDWLRQ FDQ SURGXFH LQHTXLYDOHQW RUWKRSKHQ\O SURWRQV WKDW

PAGE 118

ZLOO DSSHDU DV GRXEOHWV LQWHJUDWLQJ IRU + LQ WKH DURPDWLF UHJLRQ RI WKH n+ 105 VSHFWUXP :H REVHUYH RQH RI WKHVH GRXEOHWV DW SSP -FK +]f LQ WKH + 105 VSHFWUXP 7KLV SURWRQ LV VKLIWHG VLJQLILFDQWO\ XSILHOG GXH WR WKH ULQJ FXUUHQW RI WKH QHDUE\ R0H6L1f&+f OLJDQG :H KDYH REVHUYHG VLPLODU XSILHOG VKLIWHG UHVRQDQFHV IRU WKH DURPDWLF SURWRQV RI WKH VW\UHQH IUDJPHQW IRU D UHODWHG VW\UHQH FRPSOH[ )XUWKHUPRUH DQDO\VLV RI WKH VSDFHILOOLQJ PRGHO RI VKRZV D VWHULFDOO\ FRQJHVWHG HQYLURQPHQW DURXQG WKH SKHQ\O JURXS LQ TXHVWLRQ VXSSRUWLQJ RXU FODLPV RI KLQGHUHG SKHQ\O JURXS URWDWLRQ 7ZR UHVRQDQFHV IRU WKH 6L0H JURXSV DUH REVHUYHG IURP r& WR r& E\ n+ 105 VSHFWURVFRS\ FRQVLVWHQW ZLWK RXU LQWHUSUHWDWLRQ RI WKH G\QDPLF SURSHUWLHV RI LQ VROXWLRQ 7KH LPLQH PHWK\O UHVRQDQFH LV REVHUYHG DV D EURDG VLJQDO DW SSP LQ WKH n+ 105 VSHFWUXP RI DW r& 7KLV EURDG PHWK\O UHVRQDQFH VKDUSHQV FRQVLGHUDEO\ DW ORZ r&f DQG KLJK r&f WHPSHUDWXUHV ZKLFK LV DOVR FRQVLVWHQW ZLWK RXU LQWHUSUHWDWLRQ 7KH VDPH G\QDPLFV DUH REVHUYHG IRU LQ VROXWLRQ DV REVHUYHG E\ YDULDEOH WHPSHUDWXUH + 105 VSHFWURVFRS\ &RPSOHWH FRQYHUVLRQ RI WR WKH FRUUHVSRQGLQJ RUJDQLF DPLQH 3K1+&A$Uf ZDV REVHUYHG E\ n+ 105 VSHFWURVFRS\ XSRQ H[SRVXUH RI D VROXWLRQ RI WR DQ DWPRVSKHUH RI SVL + JDV DW r& RYHU D ZHHN SHULRG 8QIRUWXQDWHO\ QR FDWDO\WLF DFWLYLW\ ZDV REVHUYHG XSRQ WUHDWPHQW RI ZLWK H[FHVV LPLQH XQGHU ORZ SUHVVXUHV FD SVLf RI + JDV &RPSOH[HV DQG GLG QRW UHDFW ZLWK DFHWRQH EXW\QH RU GLSKHQ\O DFHW\OHQH DV GHWHUPLQHG E\ n+ 105 VSHFWURVFRS\ 7KH UHDFWLRQ RI DOGLPLQHV GHULYHG IURP OHVV KLQGHUHG SULPDU\ DPLQHV ZLWK DIIRUGHG PRO\EGHQXP 9,f LPLGR ELVfGLDPLGR FRPSOH[HV DQG IURP UHGXFWLYH LPLQH FRXSOLQJ )LJXUH f &RPSOH[HV DQG ZHUH LVRODWHG LQ b \LHOG IURP FROG

PAGE 119

SHQWDQHWROXHQH VROXWLRQV ,QWHUHVWLQJO\ RQO\ WKH UDFFRXSOHG IRUP RI WKH PHWDO 7 FRPSOH[HV ZHUH LVRODWHG DV DVFHUWDLQHG IURP + DQG & 105 VSHFWURVFRS\ 3K 3K 1 1 ? 0H 0H 5 &+3K $U &+"20H f )LJXUH 5HGXFWLYH FRXSOLQJ RI LPLQHV $Q ;UD\ FU\VWDOORJUDSKLF VWXG\ ZDV SHUIRUPHG RQ D VLQJOH FU\VWDO RI 7KH PROHFXODU VWUXFWXUH DQG VHOHFWHG ERQG OHQJWKV DQG DQJOHV RI DUH VKRZQ LQ )LJXUH 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH RYHUDOO JHRPHWU\ DURXQG PRO\EGHQXP LV H[WUHPHO\ GLVWRUWHG DQG LV QRW EHVW GHVFULEHG DV WULJRQDO ELS\UDPLGDO RU VTXDUH S\UDPLGDO 'LVWRUWHG ILYHFRRUGLQDWH FRPSOH[HV VXFK DV WKLV RQH DUH EHVW GHVFULEHG XVLQJ D PHWKRG LQWURGXFHG E\ 5HHGLMN WKDW UHOLHV RQ FDOFXODWLQJ D [YDOXH IRU WKH FRPSOH[ LQ TXHVWLRQ 7KH [YDOXH FDQ WKHQ EH XVHG WR DVVLJQ WKH VWUXFWXUH D SRVLWLRQ EHWZHHQ WKH WZR H[WUHPHV LQ JHRPHWU\ WULJRQDO ELS\UDPLGDO DQG VTXDUH SODQDU $ [YDOXH RI FRUUHVSRQGV WR D SXUH VTXDUH S\UDPLGDO VWUXFWXUH ZKLOH D [YDOXH RI FRUUHVSRQGV WR D WUXH WULJRQDO ELS\UDPLG 7KH [YDOXH IRU LV 7KXV WKH VWUXFWXUH RI LV EHVW GHVFULEHG DV RFFXS\LQJ D SRVLWLRQ KDOI ZD\ EHWZHHQ WULJRQDO ELS\UDPLGDO DQG VTXDUH SODQDU 7KH 0R1Of ERQG OHQJWK RI f ƒ LV FRQVLVWHQW ZLWK D PRO\EGHQXP QLWURJHQ WULSOHERQG LQWHUDFWLRQ 7KH 0R1f 1f 1f DQG 1f DPLGH ERQG OHQJWKV RI f ƒ f ƒ f ƒ DQG f ƒ UHVSHFWLYHO\ DUH ZLWKLQ WKH UDQJH H[SHFWHG IRU 0R1 VLQJOH ERQGVnn

PAGE 120

7KH K\GURJHQ DWRPV ORFDWHG RQ WKH EDFNERQH RI WKH QHZO\ IRUPHG GLDPLGH OLJDQG DUH UHODWHG E\ DQ +&f&f+ WRUVLRQ DQJOH RI r $ FRQVHTXHQFH RI WKLV WRUVLRQ DQJOH LV WKH ODFN RI FRXSOLQJ EHWZHHQ WKHVH LQHTXLYDOHQW SURWRQV LQ WKH VROXWLRQ n+ 105 VSHFWUXP DW 0+] $QRWKHU LQWHUHVWLQJ IHDWXUH LQ WKH n+ 105 VSHFWUXP RI LV WKH IRXU GRXEOHW RI TXDUWHWV REVHUYHG IRU WKH IRXU LQHTXLYDOHQW PHWK\OHQH SURWRQV DW SSP SSP SSP DQG SSP )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R1f f 0R1f f 0R1f f 0R1f f 1f&f f 1f&f f &f&f f 0R1Of&Of f 1f0R1f f 1f0R1f f 1f0R1f f 1f0R1f f 7KH n+ 105 VSHFWUXP RI FRPSOH[ LV FRPSOLFDWHG GXH WR RYHUODSSLQJ UHVRQDQFHV 7KH UHVRQDQFHV LQ WKH n+ 105 VSHFWUXP KDYH EHHQ DVVLJQHG ZLWK WKH DLG RI

PAGE 121

*+0%& DQG *+04& VSHFWUD 7KH 105 SURSHUWLHV RI DUH VLPLODU WR WKRVH RI 7KH IRXU LQHTXLYDOHQW EHQ]\O PHWK\OHQH SURWRQV DSSHDU DV GRXEOHWV ZLWK +] JHPLQDO FRXSOLQJ FRQVWDQWV DQG UHVRQDWH DW SSP SSP SSP DQG SSP LQ WKH n+ 105 VSHFWUXP 7KH 3SURWRQV RI WKH QHZO\ IRUPHG GLDPLGH UHVRQDQWH DW SSP DQG SSP DQG DOWKRXJK WKHVH SURWRQV DUH LQHTXLYDOHQW QR FRXSOLQJ LV REVHUYHG DW 0+] LQ WKH n+ 105 VSHFWUXP ,Q VXPPDU\ ZH KDYH GHPRQVWUDWHG WKDW FKHODWHVXSSRUWHG 0R,9f U_LPLQH FRPSOH[HV DUH HDVLO\ SUHSDUHG YLD GLVSODFHPHQW RI ROHILQ IURP XSRQ UHDFWLRQ ZLWK 1DU\O LPLQHV ,Q FRQWUDVW LPLQH UHGXFWLYH FRXSOLQJ SURGXFWV DUH REVHUYHG IRU VWHULFDOO\ OHVV GHPDQGLQJ LPLQHV 5HDFWLRQ RI 0RO\EGHQXP 2OHILQ &RPSOH[HV ZLWK $FHWRQH DQG $OGHK\GHV 7KH 6\QWKHVLV RI 2[DPHWDOODF\FORSHQWDQHV 7UDQVLWLRQ PHWDOPHGLDWHG UHGXFWLYH FRXSOLQJ RI D SDLU RI XQVDWXUDWHG PROHFXOHV FDQ UHVXOW LQ WKH IRUPDWLRQ RI D PHWDOODF\FORSHQWDQH ZLWK FRQFRPLWDQW IRUPDWLRQ RI D FDUERQFDUERQ ERQG )LJXUH f 5HDFWLRQV RI WKLV W\SH SHUIRUPHG ZLWK LQ VLWXJHQHUDWHG HDUO\ PHWDO PHWDOORFHQHV HJ &S7L &S=U DQG &S+If DQG UHODWHG UHGXFHG PHWDO VSHFLHV KDYH EHHQ H[WHQVLYHO\ H[SORUHG 9DULRXV SURWRFROV KDYH EHHQ GHYHORSHG IRU VHOHFWLYH PHWDOODF\FOH FOHDYDJH JLYLQJ ULVH WR DQ RUJDQLF SURGXFW $OWKRXJK D QHZ RUJDQLF SURGXFW LV IRUPHG D E\SURGXFW PHWDOOLF VSHFLHV LQ WKH ZURQJ R[LGDWLRQ VWDWH WR HIIHFW IXUWKHU UHGXFWLYH FRXSOLQJ LV JHQHUDWHG GXULQJ WKHVH SURWHRO\WLF RU R[LGDWLYH FOHDYDJH SURFHVVHV 5HFHQW GHYHORSPHQWV LQ WKLV ILHOG WKDW FLUFXPYHQW WKLV SUREOHP LQYROYH WKH WLWDQLXPFDWDO\]HG F\FOL]DWLRQ RI HQRQHV PHGLDWHG E\ VLODQHV DQG WLWDQLXPEDVHG DSSOLFDWLRQV WRZDUG WKH V\QWKHVLV RI \EXW\URODFWRQHV

PAGE 122

7UHDWPHQW RI WKH PRO\EGHQXP ROHILQ FRPSOH[HV GLVFXVVHG DERYH ZLWK NHWRQHV DQG DOGHK\GHV UHVXOWV LQ FRXSOLQJ RI WKH PHWDOROHILQ IUDJPHQW DQG WKH FDUERQ\O PRLHW\ JLYLQJ ULVH WR R[DPHWDOODF\FORSHQWDQHV )LJXUH f 7KH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI VRPH UHSUHVHQWDWLYH PHWDOODF\FOHV DUH GLVFXVVHG KHUH 5HGXFWLYH % &RXSOLQJ $5 /f0 % 2[LGDWLYH RU 3URWHRO\WLF :RUNXS 2UJDQLF 3URGXFWV ; /Q0 ; 'n &DWDO\WLF &RQGLWLRQV 2UJDQLF 3URGXFWV /Q0 5HTXLUHG IRU &DWDO\VLVf )LJXUH *HQHUDO VFKHPH IRU WKH UHGXFWLYH FRXSOLQJ RI RUJDQLF PROHFXOHV 3K 3K 1 2 $ 0HR6) 3HQWDQH 0H6F1 5 55 5 5 3K 5 + f .HWRQH $FHWRQH SHQWDQRQH RU F\FORKH[DQRQH 5 5 0H 5 0H f 5 3K 5 + 5 0H f 5 3K 5 + 5 (W f 5@ 3K 5 + .HWRQH F\FORKH[DQRQH f )LJXUH 6\QWKHVLV RI R[DPHWDOODF\FORSHQWDQHV $GGLWLRQ RI DFHWRQH WR D VROXWLRQ RI LQ SHQWDQH UHVXOWHG LQ WKH H[FOXVLYH IRUPDWLRQ RI >0R13Kf&0Hf&+&0HffR0H6L1f&+f@ f DV GHWHUPLQHG E\ n+ DQG & 105 VSHFWURVFRS\ 6LQJOH FU\VWDOV RI ZHUH JURZQ IURP FROG WROXHQHSHQWDQH VROXWLRQV

PAGE 123

$ VLQJOH FU\VWDO ;UD\ VWXG\ RI UHYHDOV WKH VTXDUH S\UDPLGDO JHRPHWU\ DERXW PRO\EGHQXP )LJXUH f 7KH FU\VWDO GDWD DQG GHWDLOV RI WKH VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG LQ 7DEOH 7KH UHJLRVHOHFWLYLW\ RI WKLV SDUWLFXODU UHDFWLRQ ZLWK UHVSHFW WR WKH IRUPDWLRQ RI WKH PHWDOODF\FOH EHFDPH TXLWH FOHDU XSRQ H[DPLQDWLRQ RI WKH WKHUPDO HOOLSVRLG SORW RI 7KH PHWK\OHQH FDUERQ &ff KDV WDNHQ XS SRVLWLRQ EHWZHHQ ERWK WHUWLDU\ FDUERQV &f DQG &f 7KH SURSHQVLW\ IRU PRO\EGHQXP WR IRUP 0R ERQGV DORQJ ZLWK WKH PLQLPL]DWLRQ RI VWHULF UHSXOVLRQ EHWZHHQ WKH PHWK\O JURXSV RI DFHWRQH DQG WKH LVREXWHQH OLJDQG LQ GXULQJ WKH UHDFWLRQ H[SODLQ WKH REVHUYHG UHJLRVHOHFWLYLW\ 7KH 0R1Of GLVWDQFH RI f ƒ LV FRQVLVWHQW ZLWK D PHWDOQLWURJHQ WULSOH ERQG DQG WKH 0R1f DQG 1f DPLGH GLVWDQFHV RI f ƒ DQG f ƒ UHVSHFWLYHO\ DUH ZLWKLQ WKH UDQJH H[SHFWHG IRU 0R1 VLQJOH ERQGV 7KH 0R2Of GLVWDQFH RI f ƒ DQG WKH 0R&f GLVWDQFH RI f ƒ DUH ERWK FRQVLVWHQW ZLWK PHWDODWRP VLQJOH ERQGV :KHQ DFHWRQH ZDV DGGHG WR D GDUN JUHHQ VROXWLRQ RI LQ SHQWDQH WKH VROXWLRQ WXUQHG GDUN UHG LQ FRORU &RQFHQWUDWLRQ RI WKH SHQWDQH VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG D UHG VROLG 6ROXWLRQ n+ 105 VSHFWURVFRS\ RI WKLV VDPSOH FRQILUPHG WKH H[LVWHQFH RI RQO\ RQH PHWDOODF\FOHFRQWDLQLQJ SURGXFW >0R13Kf&+f3K&+&0Hff R0H6L1f&+f@ f 3XUH ZDV REWDLQHG YLD UHFU\VWDOOL]DWLRQ IURP SHQWDQH DW r& DQG WKH VWHUHRFKHPLVWU\ RI ZDV HOXFLGDWHG E\ 105 VSHFWURVFRS\ *+04& *+0%& DQG 12(6
PAGE 124

DWRP RI WKLV IUDJPHQW LV ERXQG WR WKH PRO\EGHQXP FHQWHU DQG WKH SKHQ\O JURXS RFFXSLHV D V\Q SRVLWLRQ LQ UHIHUHQFH WR WKH SKHQ\O LPLGR JURXS 6WHULF FRQVWUDLQWV GXULQJ WKH UHDFWLRQ RI ZLWK DFHWRQH PRVW OLNHO\ GLFWDWH WKH XOWLPDWH FRQILJXUDWLRQ RI WKLV PHWDOODF\FOH $V LV WKH RQO\ GLDVWHUHRPHU IRUPHG WKLV UHDFWLRQ GRHV SURFHHG ZLWK KLJK GLDVWHUHRPHULF H[FHVV & )LJXUH 7KHUPDO HOOLSVRLG SORW RI b SUREDELOLW\ WKHUPDO HOOLSVRLGVf 6HOHFWHG ERQG OHQJWKV ƒf DQG DQJOHV rf 0R1Of f 0R2Of f 0R1f f 0R1f f 0R&f f f&f f &f&f f &f&f f 0R&f&f f 0ROf&f f &f&f&f f &f&f&f f &f&f&f f

PAGE 125

)LJXUH 6WUXFWXUDO DVVLJQPHQW RI LQFOXGLQJ DVVLJQHG SURWRQ FKHPLFDO VKLIWV &RPSRXQGV DQG ZHUH QRW IXOO\ FKDUDFWHUL]HG E\ 105 VSHFWURVFRS\ LQ WHUPV RI VWHUHRFKHPLVWU\ 7KHLU VWUXFWXUHV DUH KRZHYHU PRVW OLNHO\ VLPLODU WR DQG WKH UHDFWLRQV SURFHHG ZLWK KLJK GLDVWHUHRPHULF VHOHFWLYLW\ DV GHWHUPLQHG E\ + 105 VSHFWURVFRS\ 7KH UHDFWLRQ RI ZLWK SDQLVDOGHK\GH UHVXOWV LQ WKH IRUPDWLRQ RI RQO\ RQH PHWDOODF\FOLF SURGXFW $OWKRXJK QRW \HW IXOO\ FKDUDFWHUL]HG YLD 105 WHFKQLTXHV RQO\ RQH GLDVWHUHRPHU LV IRUPHG LQ WKLV SDUWLFXODU UHDFWLRQ 5HDFWLRQ RI RU ZLWK DOGHK\GHV JLYHV ULVH WR R[DPHWDOODF\FORSHQWDQHV 7KH n+ 105 VSHFWUD RI WKHVH UHDFWLRQ PL[WXUHV DUH FRPSOH[ GXH WR WKH IRUPDWLRQ RI PXOWLSOH GLDVWHUHRPHUV LQGLFDWLQJ WKH ORZ GLDVWHUHRPHULF VHOHFWLYLW\ RI UHDFWLRQV EHWZHHQ PRQRVXEVWLWXWHG ROHILQ FRPSOH[HV DQG DOGHK\GHV %HFDXVH RI WKLV ORZ VHOHFWLYLW\ WKHVH UHDFWLRQV ZHUH QRW LQYHVWLJDWHG IXUWKHU 5HDFWLYLW\ RI $UHQH &RPSOH[HV ZLWK $FHWRQH :H KDYH REVHUYHG GLIIHULQJ UHDFWLYLW\ EHWZHHQ DUHQH FRPSOH[HV DQG ZLWK DFHWRQH 7KH EHQ]HQH FRPSOH[ UHDFWV ZLWK DFHWRQH DIIRUGLQJ UINHWRQH FRPSOH[

PAGE 126

DQG LQ D UDWLR )LJXUH f &RPSOH[ PRVW OLNHO\ DULVHV DV D UHVXOW RI D &+ DFWLYDWLRQ SDWKZD\ ,Q VKDUS FRQWUDVW UHDFWLRQ RI ZLWK DFHWRQH SURGXFHV RQO\ 7KH VWUXFWXUHV RI DQG KDYH EHHQ SURSRVHG EDVHG RQ VLPSOH n+ DQG O& 105 GDWD $ UHVRQDQFH DW SSP LQ WKH & 105 VSHFWUXP RI LV REVHUYHG DW r& DQG KDV EHHQ DVVLJQHG WR WKH FDUERQ RI DQ U_ FRRUGLQDWHG DFHWRQH PRLHW\ 7KH DFHWRQH PHWK\O JURXS SURWRQV RI DUH REVHUYHG DV D EURDG UHVRQDQFH DW SSP LQ WKH n+ 105 VSHFWUXP DQG WKH 6L0H SURWRQV UHVRQDWH DW SSP LQ WKH VDPH VSHFWUXP &KDUDFWHULVWLF UHVRQDQFHV LQ WKH n+ 105 VSHFWUXP RI DUH WKH VHSWHW DW SSP DVVLJQHG WR +D -FK +]f DQG WKH WZR GRXEOHWV DW SSP DQG SSP 9FK +]f DVVLJQHG WR +E DQG +F 7KH PHWK\O JURXSV WKDW FRXSOH WR +D DUH REVHUYHG DV RYHUODSSLQJ GRXEOHWV DW SSP -FK +]f &RPSOHWH FKDUDFWHUL]DWLRQ RI WKHVH SURGXFWV ZLOO EH UHTXLUHG :H FDQ RQO\ DVVXPH WKDW LV LQ HTXLOLEULXP ZLWK D PHWDOODWHG K\GULGH VSHFLHV f ZKLFK UHDFWV ZLWK DFHWRQH JLYLQJ )LJXUH f ,Q FRQWUDVW LV QRW LQ HTXLOLEULXP ZLWK D PHWDOODWHG VSHFLHV GXH WR VWHULF FRQVWUDLQWV

PAGE 127

,OO 3K 1 2 3K 1 ,,, 0H6LA 0R 0H6LA1 3K + 0HA6L &' r& )LJXUH 5HDFWLRQ RI DUHQH FRPSOH[HV ZLWK DFHWRQH 3K 1 3K )LJXUH 3RVVLEOH HTXLOLEULXP EHWZHHQ DQ DUHQH FRPSOH[ DQG D PHWDOODWHG VSHFLHV

PAGE 128

&+$37(5 (;3(5,0(17$/ '$7$ *HQHUDO 0HWKRGV $OO UHDFWLRQV ZHUH FRQGXFWHG XQGHU D GU\ DUJRQ DWPRVSKHUH XVLQJ VWDQGDUG 6FKOHQN WHFKQLTXHV DQG DOO FRPSRXQGV ZHUH KDQGOHG LQ D QLWURJHQILOOHG GU\ ER[ $OO VROYHQWV ZHUH GLVWLOOHG XQGHU QLWURJHQ IURP VRGLXP RU VRGLXP EHQ]RSKHQRQH NHW\O RU SDVVHG RYHU DFWLYDWHG DOXPLQD VWRUHG RYHU PROHFXODU VLHYHV DQG GHJDVVHG SULRU WR XVH 105 VSHFWUD ZHUH REWDLQHG RQ D 9DULDQ *HPLQL 9;5 RU 0HUFXU\ LQVWUXPHQW ZLWK &' &' RU &'&, DV VROYHQWV DV QRWHG DQG UHIHUHQFHG WR UHVLGXDO VROYHQW SHDNV $ 9DULDQ ,QRYD HTXLSSHG ZLWK DQ LQGLUHFW GHWHFWLRQ SUREH ZDV XVHG DV LQGLFDWHG IRU WKH *+04& *+0%& DQG 12(6
PAGE 129

DWP ZDV REWDLQHG XVLQJ IUHTXHQFLHV ZLWKRXW VFDOLQJ 6LQJOHSRLQW HQHUJLHV IRU HDFK VWUXFWXUH ZHUH FDOFXODWHG XVLQJ WKH %/<3 OHYHO RI WKHRU\ DQG WKH /$1/'= EDVLV VHW ZLWK UHVWULFWHG ZDYH IXQFWLRQV DJDLQ EHLQJ XVHG IRU WKH FORVHGVKHOO VSHFLHV &RPSOH[ ZDV V\QWKHVL]HG DFFRUGLQJ WR SXEOLVKHG SURFHGXUH DQG FU\VWDOV ZHUH JURZQ IURP D FROG WROXHQHSHQWDQH VROXWLRQ 7KH V\QWKHVLV GHWDLOV RI ;UD\ VWUXFWXUH GDWD DQG FKDUDFWHUL]DWLRQ RI DQG KDYH EHHQ UHSRUWHG HOVHZKHUH DQG DUH LQFOXGHG LQ WKLV &KDSWHU WR UHIOHFW UHFHQW XSGDWHV /LJDQG ZDV V\QWKHVL]HG IURP WKH LPLGD]ROLXP VDOW DFFRUGLQJ WR VWDQGDUG SURFHGXUH 7KH LPLGD]ROLXP VDOW ZDV SXUFKDVHG IURP 6WUHP &KHPLFDOV 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ >0R13Kf3\f0H6L1f&+f@ f $ UHSUHVHQWDWLYH V\QWKHVLV RI 7R D JUHHQ SHQWDQH VROXWLRQ RI IUHVKO\ JHQHUDWHG J PPROf ZDV DGGHG H[FHVV S\ULGLQH J PPROf 8SRQ DGGLWLRQ RI S\ULGLQH SUHFLSLWDWHG IURP VROXWLRQ DQG ZDV LVRODWHG E\ ILOWUDWLRQ LQ b \LHOG DV D SXUSOH SRZGHU n+ 105 &' r&f 6L0" +f W RIW +] +] S\ULGLQH SDUD SURWRQVf W EU +] S\ULGLQH PHWD SURWRQV +f YHU\ EU S\ULGLQH RUWKR SURWRQV +f W RI W +] +] SDUD SURWRQf W RI W +] +] PHWD SURWRQVf P R0H6L1f& SURWRQV +f G RUWKR SURWRQVf P R0H6L1f& SURWRQV +f YHU\ EU S\ULGLQH RUWKR SURWRQV +f f+ 105 &' r&f 6L$H +f W +] S\ULGLQH SDUD SURWRQV +f W +] S\ULGLQH PHWD SURWRQV +f W +] S\ULGLQH PHWD SURWRQV +f G +] S\ULGLQH RUWKR SURWRQV +f RY P +f P R0H6L1f& SURWRQV +f G +] S\ULGLQH RUWKR SURWRQV +f A&On+` 105 &' r&f

PAGE 130

EUf $QDO &DOHG IRU &+ 10R6L & + 1 )RXQG & + 1 >0R13KfUDmV3\f&2f0H6L1f&+f@ f 7R D GHJDVVHG IODVN FRQWDLQLQJ D WROXHQH VROXWLRQ RI J PPROf ZDV DGGHG FDUERQ PRQR[LGH JDV FD SVLf &RQFHQWUDWLRQ RI WKLV VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG DV D UHG VROLG LQ b \LHOG f+ 105 &' r&f 6L0H +f 6L0HM +f W +] S\ULGLQH PHWD SURWRQV +f W +] +f RY P +f G +] SKHQ\O LPLGR RUWKR SURWRQV +f G +] S\ULGLQH RUWKR SURWRQV +f &^n+` 105 &'V%U r&f RQH UHVRQDQFH REVFXUHG E\ VROYHQW ,5 FPn ,PLGR%ULGJHG %LPHWDOOLF $ WROXHQH VROXWLRQ RI J PPROf ZDV KHDWHG WR r& LQ D VHDOHG DPSXOH IRU K &RQFHQWUDWLRQ RI WKH UHDFWLRQ PL[WXUH XQGHU UHGXFHG SUHVVXUH DIIRUGHG DV D EODFN VROLG LQ b \LHOG f+ 105 &' r&f 6L$H +f 6L$IH +f 6L0H +f 6L0! +f EU +f W +] +f RY P +f W +] +f P +f G +] +f &^n+` 105 &'& r&f

PAGE 131

>0R13Kf320Hff0H6L1f&+f@ f $ UHSUHVHQWDWLYH V\QWKHVLV RI 7R D JUHHQ SHQWDQH VROXWLRQ RI IUHVKO\ JHQHUDWHG J PPROf ZDV DGGHG H[FHVV 320Hf P/ PPROf 8SRQ DGGLWLRQ RI 320Hf UHGEURZQ SUHFLSLWDWHG IURP VROXWLRQ DQG ZDV LVRODWHG E\ ILOWUDWLRQ LQ b \LHOG &RPSOH[ LV KLJKO\ XQVWDEOH DQG GHFRPSRVHV UDSLGO\ LQ VROXWLRQ DQG LQ WKH VROLGVWDWH n+ 105 & r&f 6L0H" +f G +] 320Hf +f P SKHQ\O LPLGR SDUD SURWRQf P +f P +f &^n+` 105&' r&f 3^n+` 105 &' r&f EUf EUf >0R13Kf320Hff&2R0H6L1f&+f@ f 7R D GHJDVVHG IODVN FRQWDLQLQJ D WROXHQH VROXWLRQ RI Jf ZDV DGGHG FDUERQ PRQR[LGH JDV FD SVLf &RQFHQWUDWLRQ RI WKLV VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG DV D UHG VROLG LQ b \LHOG f+ 105 &' r&f 6L0H +f 6L0H +f 30"f +f P +f RY P +f G +] +f G +] +f &^n+` 105 &' r&f EUf EUf EUf 3^f+` 105 &'r&f ,5 FPn >0R13Kf30HfR0H6L1f&+f@ f 7R D VWLUULQJ SHQWDQH VROXWLRQ RI J PPROf ZDV DGGHG 30H P/ PPROf $ SXUSOH VROLG SUHFLSLWDWHG IURP VROXWLRQ DQG ZDV LVRODWHG E\ ILOWUDWLRQ DQG ZDVKHG WZLFH ZLWK P/ RI SHQWDQH DIIRUGLQJ DQDO\WLFDOO\ SXUH &RPSOH[ LV EHVW VWRUHG DW r& XQGHU DQ LQHUW DWPRVSKHUH ;UD\ TXDOLW\ FU\VWDOV ZHUH JURZQ LQ WROXHQH DW r& f+ 105 &' r&f EU 6L0H +f EU 6L0H +f EU

PAGE 132

30" +f G EU +] "0H +f RY P +f G +] +f 3^n+` 105 W +]f EUf EUf $QDO &DOHG IRU &+0136 & + 1 )RXQG & + 1 0R13Kf30Hf0H6L1f1+f&+fO f $ WROXHQH VROXWLRQ RI ZDV ZDUPHG WR r& DQG VWLUUHG IRU K 6ROYHQW ZDV UHPRYHG IURP WKH UHVXOWLQJ SXUSOH VROXWLRQ XQGHU UHGXFHG SUHVVXUH JLYLQJ FUXGH DV D VROLG $QDO\WLFDOO\ SXUH ZDV REWDLQHG E\ ZDVKLQJ WKH FUXGH VROLG ZLWK SHQWDQH n+ 105 &' r&f RY 30H DQG 6L0H +f G +] 30H +f G EU +] 1+f RY P +f G +f &^n+` 105 &' r&f 6L0Hf EU 30Hf L3^n+` 105 &' r&f W +]f G +]f $QDO &DOHG IRU &+0136 & + 1 )RXQG & + 1 >0R13Kf30Hf&2R0H6L1f&+f@ f 7R D GHJDVVHG IODVN FRQWDLQLQJ D WROXHQH VROXWLRQ RI Jf ZDV DGGHG FDUERQ PRQR[LGH JDV FD SVLf &RQFHQWUDWLRQ RI WKLV VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG DV D UHG VROLG LQ b \LHOG >+ 105 & r&f 6L0H +f 6L0H +f 30H +f RY P +f RY P +f G +] +f G +] +f &^n+` 105 &' r&f 3^r+` 105 &' r&f ,5 FPn >0R13Kf30H3KfR0H6L1f&+f@ f $ UHSUHVHQWDWLYH V\QWKHVLV RI 7R D JUHHQ SHQWDQH VROXWLRQ RI IUHVKO\ JHQHUDWHG J PPROf ZDV DGGHG H[FHVV 30H3K J PPROf 8SRQ DGGLWLRQ

PAGE 133

RI30H3K JUHHQ SUHFLSLWDWHG IURP VROXWLRQ DQG ZDV LVRODWHG E\ ILOWUDWLRQ LQ b \LHOG n+ 105 &' r&f 6L0" +f EU 30"3K +f RY P +f G +] +f 6HOHFWHG &^f+` 105 &' r&f RY UHVRQDQFHVf RYf L3^f+` 105 &' r&f >0R13Kf30H3Kf&20H6L1f&+fO f 7R D GHJDVVHG IODVN FRQWDLQLQJ D WROXHQH VROXWLRQ RI Jf ZDV DGGHG FDUERQ PRQR[LGH JDV FD SVLf &RQFHQWUDWLRQ RI WKLV VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG DV D UHG VROLG LQ b \LHOG n+ 105 &' r&f 6L0H +f 6L0" +f 30!3K +f W +] +f RY P +f G +] +f &^n+`105&'r&f EUf RQH UHVRQDQFH REVFXUHG E\ VROYHQW 3^n+` 105 &' r&f ,5 FPn >0R13Kf'03(fR0H6L1f&+fS'03(f0R13Kf'03(f R0H6L1f&+fO f $ UHSUHVHQWDWLYH V\QWKHVLV RI 7R D JUHHQ SHQWDQH VROXWLRQ RI IUHVKO\ JHQHUDWHG J PPROf ZDV DGGHG H[FHVV '03( J PPROf 8SRQ DGGLWLRQ RI '03( UHG SUHFLSLWDWHG IURP VROXWLRQ DQG ZDV LVRODWHG E\ ILOWUDWLRQ LQ b \LHOG n+ 105 & r&f 6L0H +f FRPSOH[ P '03( & DQG 0H +f G RI G +] +] R0H6L1f& SURWRQV +f W +] +f RY P +f G RI G +] +] +f 3^n+` 105 &' r&f

PAGE 134

>0R13Kf,0HV0H6L1f&+f@ f 7R D &' VROXWLRQ RI ZDV DGGHG HTXLY RI LPLGD]RO\OLGHQH ,0HVf &RPSOH[ IRUPHG LQ KLJK \LHOG DV GHWHUPLQHG E\ n+ 105 VSHFWURVFRS\ 6LQJOH FU\VWDOV RI IRUPHG LQ WKH 105 WXEH DQG ZHUH LVRODWHG IRU FKDUDFWHUL]DWLRQ E\ n+ 105 VSHFWURVFRS\ DQG ;UD\ FU\VWDOORJUDSK\ n+ 105 &' r&f EU +f +f SKHQ\O LPLGRSDUD SURWRQf PHVLW\O 0H SURWRQV +f PHVLW\O 0H SURWRQV +f EU +f +f PHVLW\O SURWRQV +f +f 6L0" +f >0R13Kf30Hf+fR0H6L1f&+f@ f $ JHQHUDO V\QWKHVLV RI FRPSOH[ 7R D UHVHDODEOH 105 WXEH ZDV DGGHG J PPROf LQ &' DW r& 7KH VROXWLRQ ZDV IUR]HQ DQG WKH KHDGVSDFH RI WKH 105 WXEH ZDV HYDFXDWHG 7KH PL[WXUH ZDV EURXJKW WR r& DQG ILOOHG ZLWK PROHFXODU K\GURJHQ FD DWPf 7KH FRORU RI WKH VROXWLRQ FKDQJHG IURP SXUSOH WR JUHHQ XSRQ + JDV DGGLWLRQ $ UDWLR RI ZDV REVHUYHG E\ n+ DQG 3 105 VSHFWURVFRS\ DW r& f+ 105 &'J r&f 6L0! +f 6L0! +f YLUWXDO WULSOHW VHSDUDWLRQ +] 30"f W EU -3+ +] +f RY P +f G +f &^n+` 105 &' r&f 6L0! +f 6L0" +f W +] 3$H WZR UHVRQDQFHV DUH REVFXUHG E\ VROYHQW ,3 105^n+` &' r&f W EU +]f ,3 105 &' r&f 1RWH WKDW WKH SURFHGXUH IRU WKH V\QWKHVLV RI LV LGHQWLFDO EXW XVHV +' JDV

PAGE 135

>0R13Kf30H3Kf+f0H6L1f&+f@ f 7KH V\QWKHVLV RI LV LGHQWLFDO WR WKDW RI n+ 105 &' r&f 6L0" +f 6L0H +f 30H3K +f 30H3K +f EU +f RY P +f RY P +f G +] +f 3 105 &' r&f EUf ,3^n+` 105 &' r&f 1RWH WKDW WKH SURFHGXUH IRU WKH V\QWKHVLV RI LV LGHQWLFDO EXW XVHV +' JDV >0R13Kf30H3Kf0H6L1f1+f&+f@ f $ WROXHQH VROXWLRQ RI ZDV ZDUPHG WR r& DQG VWLUUHG IRU K 6ROYHQW ZDV UHPRYHG IURP WKH UHVXOWLQJ SXUSOH VROXWLRQ XQGHU UHGXFHG SUHVVXUH JLYLQJ FUXGH DV D SXUSOH VROLG f+ 105 &' r&f 6L0H +f G +] 30H3K +f EU 1+f RY P +f P +f >0R13Kf320Hff0H6L1f1+f&+fO f 7R D GHJDVVHG & 105 VDPSOH RI ZDV DGGHG PROHFXODU K\GURJHQ DW r& $IWHU ZHHN ZDV REVHUYHG LQ VROXWLRQ E\ n+ 105 VSHFWURVFRS\ n+ 105 &' r&f 6L0! +f G +] 320!f +f RY P +f G +] +f P +f 1+ UHVRQDQFH QRW REVHUYHG 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI 7R D r& WROXHQH VROXWLRQ RI J PPROf ZDV DGGHG +6L3K P/ PPROf 7KH PL[WXUH ZDV VWLUUHG RYHUQLJKW DQG FRQFHQWUDWHG XQGHU UHGXFHG SUHVVXUH 7KH UHPDLQLQJ VROLG ZDV GLVVROYHG LQ D PLQLPXP DPRXQW RI WROXHQH DQG FRROHG WR r& 6ROLG SUHFLSLWDWHG IURP VROXWLRQ DV D ZKLWH SRZGHU DQG ZDV LVRODWHG E\ ILOWUDWLRQ f+ 105 &' r&f 6L0H +f P R0H6L1f& SURWRQV +f

PAGE 136

P R0H6L1f& SURWRQV +f RY P +f RY P +f 06 /6,06f PH ): >0R13Kf7L+& &+&+ &+f0H6L1f&+f@ f )RU D W\SLFDO SURFHGXUH EXWDGLHQH JDV FD SVLf ZDV DGGHG WR D GHJDVVHG IODVN FRQWDLQLQJ D JUHHQ VROXWLRQ RI J PPROf LQ SHQWDQH 7KH PL[WXUH ZDV VWLUUHG IRU PLQ DQG FRQFHQWUDWHG LQ YDFXR DIIRUGLQJ DV D JUHHQ VROLG LQ b \LHOG &RPSOH[ GHFRPSRVHV UDSLGO\ LQ VROXWLRQ DW r& DQG LV EHVW VWRUHG DV D VROLG DW r& XQGHU DQ LQHUW DWPRVSKHUH f+ 105 &' r&f 6L0H +f RY EXWDGLHQH SURWRQV +f P EXWDGLHQH SURWRQV +f P EXWDGLHQH SURWRQV +f RY P +f P DURPDWLF SURWRQV +f &^n+` 105 &' r&f n+ 105 &'r& DVVLJQHG YLD *+04& 0+]f EU P WHUPLQDO EXWDGLHQH SURWRQV +f EU 6L0H +f EU P WHUPLQDO EXWDGLHQH SURWRQV +f EU P LQWHUQDO EXWDGLHQH SURWRQV +f W +] SDUD SURWRQf G +] RUWKR SURWRQVf W +] PHWD SURWRQf P R0H6L1f& SURWRQV +f P R0H6L1f& SURWRQV +f & 105 &\'J r& DVVLJQHG YLD *+04& DQG -&K LQ +] IURP WKH JDWHG GHFRXSOHG O& 105 VSHFWUXPf T +] 6L0HAf EU W +] EXWDGLHQH WHUPLQDO FDUERQf G +] EXWDGLHQH LQWHUQDO FDUERQf G +]f G RIG +] +]f G +]f W +]f W +]f 'XH WR WKH WKHUPDO LQVWDELOLW\ RI HOHPHQWDO DQDO\VLV ZDV QRW SRVVLEOH

PAGE 137

>0R13KfU_GLPHWK\OOF\FORKH[DGLHQHfR0H6L1f&+f@ f 'LPHWK\OF\FORKH[DGLHQH J PPROf ZDV DGGHG WR D VWLUULQJ VROXWLRQ RI J PPROf LQ SHQWDQH 7KLV PL[WXUH ZDV VWLUUHG IRU GD\V DQG WKHQ FRQFHQWUDWHG XQGHU UHGXFHG SUHVVXUH DIIRUGLQJ LQ b \LHOG DV D JUHHQ VROLG $QDO\WLFDOO\ SXUH FDQ EH REWDLQHG E\ ZDVKLQJ WKH VROLG ZLWK SHQWDQH DW r& n+ 105 &' r& 0+] DVVLJQHG E\ *+04& *+0%& DQG 12(60R13KfUfGLPHWK\OOF\GRKH[DGLHQHf0H6L1f&+f@ IL VLWXf f $Q 105 WXEH FRQWDLQLQJ PJV PPROf LQ &' ZDV FKDUJHG ZLWK EXW\QH S/ PPROf DW r& 7KH UHDFWLRQ ZDV FRPSOHWH DIWHU PLQ &RPSOH[ ZDV REVHUYHG LQ WKH n+ 105 VSHFWUXP RI WKH UHDFWLRQ PL[WXUH ,QWHUPHGLDWHV >[\L0R13Kf&0Hf &0Hf&+&+&+&+fR0H6L1f&+f@ Df DQG >Dm0R13Kf&0Hf &0Hf&+&+&+&+fR0H6L1f&+f@ Ef $Q 105 WXEH FRQWDLQLQJ PJV PPROf LQ FROG &' ZDV FKDUJHG ZLWK EXW\QH S/ PPROf 7KH PL[WXUH ZDV IUR]HQ ZLWK OLTXLG QLWURJHQ DIWHU PLQ DQG SODFHG LQ D FRROHG r&f 105 SUREH 7KH LQWHUPHGLDWHV DFFXPXODWHG WR

PAGE 138

GHWHFWDEOH OHYHOV ZLWKLQ KRXUV DQG ZHUH LGHQWLILHG E\ 105 VSHFWURVFRS\ $OO 105 VSHFWUD *+04& *+0%& 12(6< '4&26< DQG 72&60R13Kf&+&+ &+&+&0Hf2f0H6L1f&+f@ f $Q 105 WXEH FRQWDLQLQJ LQ &' ZDV FKDUJHG ZLWK HTXLY RI DFHWRQH &RPSOH[ IRUPHG DIWHU PLQ DQG ZDV FKDUDFWHUL]HG E\ 105 VSHFWURVFRS\ 7KH LVRODWLRQ RI FRPSOH[ KDV QRW EHHQ DWWHPSWHG DW WKLV SRLQW )RU VHOHFWHG 105 GDWD VHH )LJXUH _0R13Kf7 &0Hf&+ &+fR0H6L1f&+fO f 09. J PPROf ZDV DGGHG WR D VWLUULQJ SHQWDQH VROXWLRQ RI J PPROf &RQFHQWUDWLRQ RI WKH SHQWDQH VROXWLRQ XQGHU UHGXFHG SUHVVXUH DIIRUGHG VROLG LQ b \LHOG IROORZLQJ FU\VWDOOL]DWLRQ DQG ILOWUDWLRQ DW r& n+ 105 &' r&f 6L0H +f 6L0H +f G RI G +] +] ROHILQLF SURWRQf 0Hf fWf +] ROHILQLF SURWRQf G RI G +] +] ROHILQLF SURWRQf RY P DURPDWLF SURWRQV +f >0R13KfT0H&&0Hf0H6L1f&+f@ f 7R D VWLUULQJ VROXWLRQ RI J PPROf LQ SHQWDQH ZDV DGGHG EXW\QH J PPROf 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU PLQ DQG ZDV LVRODWHG DV D UHG VROLG XSRQ FRQFHQWUDWLRQ RI WKH UHDFWLRQ PL[WXUH XQGHU UHGXFHG SUHVVXUH \LHOG bf &RPSOH[ LV QRW VWDEOH LQ VROXWLRQ DW r& DQG DOVR GHFRPSRVHV LQ VROXWLRQ DW r& RYHUQLJKW n+ 105 &' r&f 6L0H +f 0H&&0H +f RY P +f &^n+` 105 &'r&f

PAGE 139

7ZR UHVRQDQFHV DUH RYHUODSSLQJ ZLWK VROYHQW 'XH WR WKH WKHUPDO LQVWDELOLW\ RI HOHPHQWDO DQDO\VLV ZDV QRW SRVVLEOH >0R13Kf93K&&3Kf0H6L1f&+f@ f 7R D VWLUULQJ VROXWLRQ RI J PPROf LQ SHQWDQH ZDV DGGHG GLSKHQ\O DFHW\OHQH J PPROf 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG RYHUQLJKW DQG ZDV LVRODWHG DV D UHG VROLG XSRQ FRQFHQWUDWLRQ RI WKH UHDFWLRQ PL[WXUH XQGHU UHGXFHG SUHVVXUH \LHOG bf f+ 105 &' r&f 6L0" +f • RY P +f &^n+` 105 &' r&f $QDO &DOHG IRU &+016 & + 1 )RXQG & + 1 _0R13KfU_0H6L&&6L0Hf0H6L1f&+f@ f 7R D VWLUULQJ VROXWLRQ RI J PPROf LQ SHQWDQH ZDV DGGHG ELVWULPHWK\OVLO\OfDFHW\OHQH J PPROf 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG RYHUQLJKW DQG ZDV LVRODWHG DV D JUHHQ VROLG XSRQ FRQFHQWUDWLRQ RI WKH UHDFWLRQ PL[WXUH XQGHU UHGXFHG SUHVVXUH \LHOG bf n+ 105 &' r&f +f 6L0H +f W RI W +] +] SKHQ\O LPLGR SDUD SURWRQf P R0H6L1f& SURWRQV +f W +] SKHQ\O LPLGR PHWD SURWRQV +f RY P R0H6L1f& SURWRQV DQG SKHQ\O LPLGR RUWKR SURWRQV +f &^n+` 105 &' r&f $QDO &DOHG IRU &+0R16L & + 1 )RXQG & + 1 5HDFWLRQ RI >0R13Kf7L3K&&3KfR0H6L1f&+f@ f ZLWK WHUW%XW\O ,VRF\DQLGH 6\QWKHVLV DQG &KDUDFWHUL]DWLRQ RI $Q 105 WXEH FRQWDLQLQJ LQ &' ZDV FKDUJHG ZLWK HTXLY RI %Xn1& &RPSOH[ IRUPHG DIWHU VHYHUDO ZHHNV DQG ZDV FKDUDFWHUL]HG E\ 105 VSHFWURVFRS\

PAGE 140

7KH LVRODWLRQ RI FRPSOH[ KDV QRW EHHQ DWWHPSWHG DW WKLV SRLQW )RU VHOHFWHG 105 GDWD VHH )LJXUH >0R13KfS3K1 &+f$U0H6L1f&+fO $U &+S20Hf f 7R D JUHHQ VROXWLRQ RI J PPROf LQ SHQWDQH DW r& ZDV DGGHG D SHQWDQH VROXWLRQ RI 3K1 &+f$U $U &+"20Hf J PPROf $IWHU VWLUULQJ IRU K WKH SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG JLYLQJ FU\VWDOV RI n+ 105 &' r&f 6L0H +f 6L0" +f 20Hf EU &+f RY P EU 3K +f f+ 105 &' r&f 6L0" +f 6L0" +f 20Hf LPLQH &+f G EU -&K +] RUWKR +f G EU -&K +] RUWKR +f • RY P 3K +f &^n+` 105 &' r&f RY 6L0Hf 20Hf EU LPLQH &+ff RYf RQH DURPDWLF UHVRQDQFH REVFXUHG E\ VROYHQW +506 FDOHG IRU >0@ PH )RXQG /6,06f PH ,5 FPn _0R13Kf7L3K1 &0Hf3K0H6L1f&+fO f 7R D JUHHQ VROXWLRQ RI J PPROf LQ SHQWDQH DW r& ZDV DGGHG D SHQWDQH VROXWLRQ RI 3K1 &+f$U $U &+"20Hf J PPROf $IWHU VWLUULQJ IRU K WKH SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG JLYLQJ FU\VWDOV RI f+ 105 &' r&f 6L$Hf 6L0"f EU 0Hf • RY P EU 3K +f f+ 105 &' r&f 6L0Hf 6L0"f 0Hf G EU M&K +] RUWKR +f W -&K +]SDUD +f G &K +] RUWKR +f W -&K +]SDUD +f • RY P 3K +f A&On+` 105 &' r&f 6L0!f 6L0Hf 0Hf EU LPLQH &f

PAGE 141

+506 FDOHG IRU >0 +@ PH )RXQG /6,06f PH ,5 FPn >0R13Kf(W1&+f$U&+f$U1(WR0H6L1f&+f@ $U &+S20Hf f 7R D JUHHQ VROXWLRQ RI J PPROf LQ SHQWDQH DW r& ZDV DGGHG D SHQWDQH VROXWLRQ RI (W1 &+f$U $U &)(S20Hf J PPROf $IWHU VWLUULQJ IRU K WKH SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG JLYLQJ FU\VWDOV RI n+ 105 &' r&f 6L0! +f 6L0H +f W -&+ +] 0Hf W 9FK +] 0Hf G RI T FK +] 9FK +] PHWK\OHQH &+f 20Hf 20Hf G RI T 9&+ +] 9&K +] PHWK\OHQH &+f G RI T -FK +] -FK +] PHWK\OHQH &+f G RI T -FK +] 9FK +] PHWK\OHQH &+f 1&ff 1&+ff • RY P 3K +f &^n+` 105 &' r&f 6L0"f 6L0Hf 0Hf 0Hf 20Hf 20Hf 1&+ff 1&+ff 1&+f 1&+f +506 &DOHG IRU >0 +@ PH )RXQG /6,06f PH >0R13Kf%]1&+f$U&+f$U1%]0H6L1f&+f$U &+S20Hf f 7R D JUHHQ VROXWLRQ RI J PPROf LQ SHQWDQH DW r& ZDV DGGHG D SHQWDQH VROXWLRQ RI %]1 &+f$U $U &+S20Hf J PPROf $IWHU VWLUULQJ IRU K WKH SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG JLYLQJ FU\VWDOV RI n+ 105 &' r& 0+]f 6L0 +f 6L0H +f 20Hf 20Hf 1&+ff G -FK +] EHQ]\OLF SURWRQf G -FK +] EHQ]\OLF SURWRQf 1&+ff G -&K +] EHQ]\OLF SURWRQf

PAGE 142

G -FK +] EHQ]\OLF SURWRQf RY P 3K +f 6HOHFWHG & 105 IURP *+0%& DQG *+04& &' r& 0+]f 6L0Hf 6L0"f RYHUODSSLQJ 20Hf EHQ]\OLF FDUERQf EHQ]\OLF FDUERQf 1&+ff 1&+ff +506 FDOHG IRU >0 +@ PH )RXQG /6,06f PH >0R13Kf&0Hf&+&0HffR0H6L1f&+f@ f $FHWRQH J PPROf ZDV DGGHG WR D VWLUULQJ JUHHQ VROXWLRQ RI J PPROf LQ P/ RI SHQWDQH DW r& 7KH FRORU RI WKH UHDFWLRQ PL[WXUH LPPHGLDWHO\ FKDQJHG IURP JUHHQ WR SXUSOH 7KH UHVXOWLQJ SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG DW r& IRU GD\V DIIRUGLQJ SXUSOH PLFURFU\VWDOV WKDW ZHUH LVRODWHG E\ ILOWUDWLRQ DQG GULHG LQ YDFXR $GGLWLRQDO FURSV FDQ EH FU\VWDOOL]HG IURP WKH PRWKHU OLTXRUV DIIRUGLQJ LQ b LVRODWHG \LHOG n+ 105 &'&, r&f 6L0HL +f 6L0" +f 0Hf 0Hf 0Hf 0Hf G +] &+ff G +] &ff DURPDWLF SURWRQV +f ,&^n+` 105 &'& r&f +506 FDOHG IRU >0 +@ PH )RXQG /6,06f PH _0R13Kf&+f3K&+&0Hf2f0H6L1f&+f@ f $FHWRQH J PPROf ZDV DGGHG WR D VWLUULQJ JUHHQ VROXWLRQ RI J PPROf LQ P/ RI SHQWDQH DW r& 7KH FRORU RI WKH UHDFWLRQ PL[WXUH LPPHGLDWHO\ FKDQJHG IURP JUHHQ WR UHG 7KH UHVXOWLQJ SHQWDQH VROXWLRQ ZDV FRQFHQWUDWHG LQ YDFXR DQG FRROHG DW r& IRU GD\V DIIRUGLQJ UHG PLFURFU\VWDOV WKDW ZHUH LVRODWHG E\ ILOWUDWLRQ DQG GULHG LQ YDFXR $GGLWLRQDO FURSV FDQ EH FU\VWDOOL]HG IURP WKH PRWKHU OLTXRUV DIIRUGLQJ LQ b LVRODWHG \LHOG n+ 105 &' 0+] IURP *+0%& DQG *+04&f

PAGE 143

6L0H +f 6L0H +f 0Hf 0Hf P +f fWf +] +f W RI W +] +] 13K LPLGR SDUD SURWRQf W RI W +] +] PHWDOODF\FOH SKHQ\O SDUD SURWRQf G RI G RI G +] +] +] R0H6L1f& SURWRQf W +] 13K LPLGR PHWD SURWRQVf RY R0H6L1f& SURWRQf W +] PHWDOODF\FOH SKHQ\O PHWD SURWRQVf G RI G +] +] PHWDOODF\FOH SKHQ\O RUWKR SURWRQVf G RI G +] +] R0H6L1f& SURWRQf G RI G R0H6L1f& SURWRQf G RI G +] +] 13K LPLGR RUWKR SURWRQVf ,& &' 0+] IURP *+0%& DQG *+04&f +506 FDOHG IRU >0@ PH )RXQG /6,06f O0R13Kf&+f3K&+&(WffR0H6L1f&+f@ f 7R D & VROXWLRQ P/f RI J PPROf LQ D YLDO ZDV DGGHG SHQWDQRQH J PPROf 7KH FRQWHQWV RI WKH YLDO ZHUH WKHQ WUDQVIHUUHG WR DQ 105 WXEH 7KH UHDFWLRQ ZDV PRQLWRUHG E\ n+ 105 IRU ZHHN 0HWDOODF\FOH ZDV QHYHU LVRODWHG DQG RQO\ f+ 105 KDV EHHQ FROOHFWHG n+ 105 &' r&f 6L0F +f 6L0H +f W +] 0Hf RY P PHWK\OHQH &+f +f W +] 0Hf P PHWK\OHQH &^+ff P PHWK\OHQH P PHWDOODF\FOH SURWRQV +f fWf +] PHWDOODF\FOH SURWRQf RY P +f >0R13Kf&+f3K&+&&+ffR0H6L1f&+f@ f &\FORKH[DQRQH J PPROf ZDV DGGHG WR D VWLUULQJ WROXHQH VROXWLRQ RI J PPROf DW r& 0HWDOODF\FOH ZDV LVRODWHG LQ b \LHOG E\ FU\VWDOOL]DWLRQ IURP SHQWDQH DW r& IROORZHG E\ ILOWUDWLRQ n+ 105 &'& r&f 6L0H +f 6L0H +f RY P F\FORKH[\O SURWRQVf G RI G

PAGE 144

+] +] PHWDOODF\FOH &ff G RI G +] +] PHWDOODF\FOH &+ff fWf +] PHWDOODF\FOH &ff RY P DURPDWLF SURWRQVf ,&^n+` 105 &'&, r&f +506 FDOHG IRU >0 +@ PH )RXQG /6,06f PH >0R13Kf&0Hf&+&+f&+ 20HffR0H6L1f&+fO f 7R D VWLUULQJ VROXWLRQ RI J PPROf LQ SHQWDQH DW r& ZDV DGGHG "DQLVDOGHK\GH J PPROf &RPSRXQG ZDV LVRODWHG LQ b \LHOG E\ FU\VWDOOL]DWLRQ IURP SHQWDQH DW r& IROORZHG E\ ILOWUDWLRQ f+ 105 &'& r&f 6L0" +f 6L0H +f 0Hf 0Hf G RI G +] +] PHWDOODF\FOH &ff fWf +] PHWDOODF\FOH &ff 20Hf G RI G +] +] PHWDOODF\FOH &ff G +] DURPDWLF SURWRQ +f DURPDWLF SURWRQV +f fA^f+` 105 &'& r&f +506 FDOHG IRU >0 +@ PH )RXQG /6,06f PH 5HDFWLYLW\ RI $UHQH &RPSOH[HV ZLWK $FHWRQH $ UHSUHVHQWDWLYH UHDFWLRQ 7R D &' VROXWLRQ RI DSSURSULDWH DUHQH FRPSOH[ ZDV DGGHG HTXLY RI DFHWRQH XVLQJ D S/ V\ULQJH 7KH SURSRVHG SURGXFWV DQG DQG VXSSRUWLQJ VSHFWURVFRSLF GDWD DUH GLVFXVVHG LQ WKH WH[W

PAGE 145

/,67 2) 5()(5(1&(6 f &ROLPDQ 3 +HJHGXV / 6 1RUWRQ 5 )LQNH 5 3ULQFLSOHV DQG $SSOLFDWLRQV RI 2UJDQRWUDQVLWLRQ 0HWDO &KHPLVWU\ 8QLYHUVLW\ 6FLHQFH %RRNV 0LOO 9DOOH\ &DOLIRUQLD f 6WRUKRII % 1 /HZLV + & &RRUG &KHP 5HY f /RUHQWH 3 &DUIDJQD & (WLHQQH 0 'RQQDGLHX % 2UJDQRPHWDOOLFV f 'XUIHH / 5RWKZHOO 3 &KHP 5HY f 6FRWW 0 /LSSDUG 6 2UJDQRPHWDOOLFV f 5LFKWHU$GGR % /HJ]GLQV 3 0HWDO 1LWURV\OVn 2[IRUG 8QLYHUVLW\ 3UHVV 1HZ
PAGE 146

f /RUEHU & &KRXNURXQ 5 'RQQDGLHX % ,QRUJ &KHP $6$3 $UWLFOH f /DSSHUW 0 ) 3RZHU 3 3 6DQJHU $ 5 6ULYDVWDYD 5 & 0HWDO DQG 0HWDOORLG $PLGHV 6\QWKHVHV 6WUXFWXUHV DQG 3K\VLFDO DQG &KHPLFDO 3URSHUWLHV +DOVWHG 3UHVV 1HZ
PAGE 147

f 6KL < &LV]HZVNL 7 2GRP $ / 2UJDQRPHWDOOLFV f 2QJ 7*
PAGE 148

1DQD\DNNDUD $ &KDOODFRPEH 0 *LOO 3 0 : -RKQVRQ % &KHQ : :RQJ 0 : $QGUHV / *RQ]DOH] & +HDG*RUGRQ 0 5HSORJOH ( 6 3RSOH $ *DXVVLDQ ,QF 3LWWVEXUJK 3$ f /DDNVRQHQ / 0RO *UDSKLFV f %HUJPDQ / /DDNVRQHQ / /DDNVRQHQ $ 0RO *UDSKLFV t 0RGHOOLQJ f $GDPV 5 &ROOLQV 0 &RWWRQ ) $ OQRUJ &KHP f .OLQJOHU 5 %XWOHU : &XUWLV 0 $P &KHP 6RF f &; ; 1 2f PXOWLSOH ERQG FOHDYDJH UHDFWLRQV DUH PRUH FRPPRQ 6HH Df +DOO $ 0D\HU 0 $P &KHP 6RF Ef 6X )0 %U\DQ & -DQJ 6 0D\HU 0 3RO\KHGURQ Ff 0LOOHU 5 / :ROF]DQVNL 3 7 5KHLQJROG $ / $P &KHP 6RF Gf 0H\HU ( :DOVK 3 %HUJPDQ 5 $P &KHP 6RF $ Hf 6FKURFN 5 5 /LVWHPDQQ 0 / 6WXUJHRII / $P &KHP 6RF f Df 3URXO[ %HUJPDQ 5 $P &KHP 6RF Ef $WDJL / 0 2YHU ( 0F$OLVWHU 5 0D\HU 0 $P &KHP 6RF Ff &XPPLQV & & 6FKURFN 5 5 'DYLV : 0 ,QRUJ &KHP f Df &RWWRQ ) $ 0DWRQLF + 0XULOOR & $ :DQJ ; %XOO 6RF &KLP )U Ef &RWWRQ ) $ 'DQLHOV / 0 0XULOOR & $ :DQJ ; OQRUJ &KHP Ff $JDGRUQ 5 $UQROG 2UJDQRPHWDOOLFV f %RQDQQR % +HQU\ 7 3 1HLWKDPHU 5 :ROF]DQVNL 3 7 /RENRYVNL ( % $P &KHP 6RF f Df .OHFNOH\ 7 6 %HQQHW / :ROF]DQVNL 3 7 /RENRZVNL ( % $P &KHP 6RF Ef *UD\ 6 :HOOHU %UXFN 0 $ %ULJJV 3 0 :LJOH\ ( $P &KHP 6RF f Df 7D\HEDQL 0 *DPEDURWWD 6
PAGE 149

f 2UWL] & 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ f $UGXHQJR $ ,OO +DUORZ 5 / .OLQH 0 $P &KHP 6RF f %RXULVVRX *XHUUHW 2 *DEEDL ) 3 %HUWUDQG &KHP 5HY f :HVNDPS 7 %RKP 9 3 : +HUUPDQQ : $ 2UJDQRPHW &KHP f $UGXHQJR $ ,,, $FF &KHP 5HV f /LX &< &KHQ '< /HH *+ 3HQJ 60 /LX 67 2UJDQRPHW DOOLHV f )LVFKHU ( 2 +ROOIHOGHU + )ULHGULFK 3 .UHLVVO 5 +XWWQHU &KHP %HU f 7ROPDQ & $ &KHP 5HY f .XEDV 5\DQ 5 5 6ZDQVRQ % / 9HUJDPLQL 3 :DVVHUPDQ + $P &KHP 6RF f .XEDV $FF &KHP 5HV f &UDEWUHH 5 + $FF &KHP 5HV f &UDEWUHH 5 + $QJHZ &KHP ,QW (G (QJO f -HVVRS 3 0RUULV 5 + &RRUG &KHP 5HY f +HLQHNH\ 0 2OGKDP : -U &KHP 5HY f 6DER(WLHQQH 6 &KDXGUHW % &RRUG &KHP 5HY f (VWHUXHODV 0 $ 2UR / $ &KHP 5HY f .XEDV 0HWDO 'LK\GURJHQ DQG D%RQG &RPSOH[HVn .OXZHU $FDGHPLF 3OHQXP 1HZ
PAGE 150

f %DXWLVWD 0 7 (DUO $ 0DOWE\ 3 $ 0RUULV 5 + 6FKZHLW]HU & 7 6HOOD $ $P &KHP 6RF f 0RUULV 5 + &DQ &KHP f 'HVURVLHUV 3 &DL / /LQ = 5LFKDUGV 5 +DOSHP $P &KHP 6RF f 0RUULV 5 + :LWWHERUW 5 0DJ 5HV &KHP f &DPHURQ 7 0 2UWL] & *KLYLULJD $EERXG $ %RQFHOOD 0 $P &KHP 6RF f 5HLG 6 0 1HXQHU % 6FKURFN 5 5 'DYLV : 0 2UJDQRPHWDOOLFV f :DQJ & )ULHGULFK 6
PAGE 151

+DJD 0 1DNDPXUD $ 2UJDQRPHWDOOLHV DQG UHIHUHQFHV WKHUHLQ Ff 6WUDXFK + & (UNHU )URKOLFK 5 2UJDQRPHWDOOLFV f 6HOHFWHG H[DPSOHV VHH 'DKOPDQQ 0 (UNHU )URKOLFK 5 0H\HU 2 2UJDQRPHWDOOLFV f Df +LOW GX 0HVQLO ); 7HWUDKHGURQ /HWW Ef 3DLN 66RQ 6 8 &KXQJ < 2UJDQLF /HWW Ff 0DWVXGD 6KLEDWD 0 6DWR 6 ,]XPL < 7HWUDKHGURQ /HWW Gf WRP 'LHFN + 'LHUFNV 5 $QJHZ &KHP ,QW (G (QJO Hf 0DFK $QWURSLXVRY£ + 3HWUXVRY£ / 7XUHFHN ) +DQXV 9 2UJDQRPHW &KHP If 0XUDNDPL 0 8EXNDWD 0 ,WDPL ,WR < $QJHZ &KHP ,QW (G (QJO Jf 0XUDNDPL 0 ,WDPL ,WR < $P &KHP 6RF f Df :HQGHU 3 $ -HQNLQV 7 ( $P &KHP 6RF Ef -ROO\ 5 6 /XHGWNH 6KHHKDQ /LYLQJKRXVH 7 $P &KHP 6RF Ff :HQGHU 3 $ 6PLWK 7 ( 2UJ &KHP Gf 0F.LQVWU\ / /LYLQJKRXVH 7 7HWUDKHGURQ Hf 2f0DKRQ\ 5 %HODQJHU % /LYLQJKRXVH 7 6\QOHWW If *LOEHUWVRQ 6 5 +RJH 6 7HWUDKHGURQ /HWW Jf *LOEHUWVRQ 6 5 +RJH 6 *HQRY 2UJ &KHP Kf .XPDU -ROO\ 5 6 7HWUDKHGURQ /HWW )RU D UHYLHZ RI WUDQVLWLRQ PHWDOPHGLDWHG F\FORDGGLWLRQ UHDFWLRQV VHH /DXWHQV 0 .OXWH : 7DP : &KHP 5HY f 6WUDXFK 0 3HWHUVHQ / 2UJDQRPHWDOOLFV DQG UHIHUHQFHV WKHUHLQ f +RPROHSWLF 0RGf EXWDGLHQH DQG GHULYDWLYH FRPSOH[HV V\QWKHVLV DQG VWUXFWXUHf Df 6NHOO 3 6 9DQ 'DP ( 0 6LOYRQ 0 3 $P &KHP 6RF Ef 6NHOO 3 6 0F*OLQFK\ 0 $QJHZ &KHP ,QW (G (QJO Ff *DXVLQJ : :LONH $QJHZ &KHP ,QW (G (QJO Gf %RJGDQRYLF % %RQQHPDQQ + *RGGDUG 5 6WDUWVHY $ :DOOLV 0 2UJDQRPHW &KHP Hf
PAGE 152

%URRNKDUW 0 &R[ &ORNH ) 1 *UHHQ & *UHHQ 0 / + +DUH 0 3 %DVKNLQ 'HURPH $ *UHEHQLN 3 &KHP 6RF 'DOWRQ 7UDQV Sf +XQWHU $ /HJ]GLQV 3 1XUVH & 5 (LQVWHLQ ) : % :LOOLV $ &$P &KHP 6RF f &DPHURQ 7 0 *KLYLULJD $EERXG $ %RQFHOOD 0 2UJDQRPHWDOOLFV f 1HZWRQ 0 6FKXOPDQQ 7 0 0DQXV 0 0 $P &KHP 6RF f
PAGE 153

&XPPLQV & & .ORRVWHU : 7 .RHW]OH 7 ) $P &KHP 6RF f Df &ODUN 5 )DQZLFN 3 ( 5RWKZHOO 3 2UJDQRPHWDOOLHV Ef 'XUIHH / +LOO ( )DQZLFN 3 ( 5RWKZHOO 3 2UJDQRPHWDOOLFV Ff 'XUIHH / )DQZLFN 3 ( 5RWKZHOO 3 )ROWLQJ +XIIPDQ & $P &KHP 6RF Gf &KLX : -RQHV 5 $ :LONLQVRQ *DODV $ 0 5 +XUVWKRXVH 0 % &KHP 6RF 'DOWRQ 7UDQV $P &KHP 6RF f :ROF]DQVNL 3 7 %HUFDZ ( $P &KHP 6RF f $OH[DQGHU % *OXHFN 6
PAGE 154

f Df 6WDWHV +DEHUNRP 5 $ 5XEHQ 0DJQ 5HVRQ Ef %RGHQKDXVHQ .RJOHU + (UQHVW 5 5 0DJQ 5HVRQ Ff :LGHU 0DFXUD 6 .XPDU $ (UQVW 5 5 :XWKULFK 0DJQ 5HVRQ f $LOHHQ )ULVK 0 ) *DXVVLDQ 8VHUnV 5HIHUHQFH QG (GLWLRQ HG *DXVVLDQ ,QF 3LWWVEXUJK

PAGE 155

%,2*5$3+,&$/ 6.(7&+ 7KRPDV 0LFKHO &DPHURQ ZDV ERP -XO\ LQ 6PLWKV )DOOV 2QWDULR WR SDUHQWV /XFLOH DQG *HUDOG &DPHURQ +LV \RXQJHU VLVWHU 'RPLQLTXH ZDV ERUQ WZR \HDUV ODWHU DQG WKH &DPHURQ IDPLO\ RI IRXU PRYHG IURP 3HUWK 2QWDULRf WR 2WWDZD 2QWDULRf WKHQ 3XHUWR 5LFR DQG ILQDOO\ WR 0RQWUHDO 7RP DWWHQGHG KLJK VFKRRO DQG FROOHJH LQ WKH 0RQWUHDO DUHD +H OHIW 0RQWUHDO WR DWWHQG VFKRRO DW 0W $OOLVRQ 8QLYHUVLW\ LQ 6DFNYLOOH 1HZ %UXQVZLFN IURP ZKLFK KH JUDGXDWHG LQ 7RP EHJDQ KLV ODERUDWRU\ H[SHULHQFH DW 0RXQW $OOLVRQ XQGHU WKH GLUHFWLRQ RI 3URIHVVRU 6WHYHQ $ :HVWFRWW $IWHU JUDGXDWLQJ 7RP ZHQW WR /RV $ODPRV 1DWLRQDO /DEV IRU RQH \HDU DQG JDLQHG YDOXDEOH ODE H[SHULHQFH ZKLOH ZRUNLQJ ZLWK 'U 5 7RP %DNHU 7RP OHIW /RV $ODPRV WR SXUVXH D JUDGXDWH GHJUHH DW WKH 8QLYHUVLW\ RI )ORULGD XQGHU WKH GLUHFWLRQ RI DGYLVRU 3URIHVVRU -DPHV 0 %RQFHOOD 7KH ZRUN LQ WKLV PDQXVFULSW LV D IDLUO\ FRPSOHWH UHFRUG RI ZKDW KDV EHHQ DFFRPSOLVKHG GXULQJ KLV \HDUV DW 8) 8SRQ KLV JUDGXDWLRQ 7RP ZLOO UHWXUQ WR /RV $ODPRV ZKHUH KLV ZLIH 0HOLVVD LV ZDLWLQJ IRU KLP

PAGE 156

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -DPHV 0 %RQFHOOD &KDLU 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DQLHO 5 7DOKDP 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ .Y$ V 6T/A .LUN 6 6FKDQ]H 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VD DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0LFKDHO 6FRWW $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (XJHQH *ROGEHUJ 3URIHVVRU RI 0DWHULDOV 6FU (QJLQHHULQJ LG

PAGE 157

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 158

/' / FLD