Monthly performance report

MISSING IMAGE

Material Information

Title:
Monthly performance report Scattergood School
Series Title:
SOLAR ; 2003-79/05
Added title page title:
Scattergood School
Physical Description:
v. : ill. ; 28 cm.
Language:
English
Creator:
United States -- Dept. of Energy
Publisher:
Dept. of Energy
Place of Publication:
Washington, D.C
Publication Date:

Subjects

Subjects / Keywords:
Solar energy -- Iowa -- Cedar Rapids   ( lcsh )
Solar water heaters   ( lcsh )
Genre:
federal government publication   ( marcgt )
non-fiction   ( marcgt )

Notes

General Note:
MONTHLY CATALOG NUMBER: gp 80007788
General Note:
National solar heating and cooling demonstration program.
General Note:
National solar data program.

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 022607270
oclc - 05957499
System ID:
AA00013875:00002

Table of Contents
    Front Cover
        Page i
        Page ii
    Main body
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
    Back Cover
        Page 19
        Page 20
Full Text

SOLAR/2003-79/05


Monthly Performance Report



SCATTERGOOD SCHOOL
MAY 1979





j
I



U.S. Department of Energy

National Solar Heating and \Cooling Demonstration Program

National Solar Data Program


































NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy. nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy. completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.






MONTHLY PERFORMANCE REPORT
SCATTERGOOD SCHOOL
MAY 1979


I. SYSTEM DESCRIPTION


A solar energy system is installed at Scattergood School near Westbranch, which is located 35 miles southeast of Cedar Rapids, Iowa. The system is designed to supply approximately 75 percent of the annual space heating requirements for the gymnasium, as well as 75 percent of the hot water for the student locker room. This solar energy system is also used to dry grain in a modified grain silo located on the site adjacent to the gymnasium. The site has an array of 128 flat-plate collectors, manufactured by Solaron, with a gross area of 2,496 square feet. The collectors face south at an angle of 50 degrees from the horizontal. Collected solar energy is stored in a pebble bed containing 64 tons of stones for space heating and in two 120-gallon tanks to permit DHW preheating. Air is the medium used for transferring energy from the collector array to the pebble bed or directly to the gymnasium.


When solar energy is insufficient for space heating, two 250K Btu propane gas heaters furnish auxiliary energy. Auxiliary heating for hot water is provided by a 52-gallon domestic water heater containing standard electric resistance, immersion heater elements. The solar energy system is manually converted to summer mode operation by opening and closing slide gate dampers which isolate the storage from the solar energy system. The control system switch then is positioned to the summer mode.


The system, shown schematically in Figure 1, has five modes of solar operation.


Mode 1 Collector-to-Space Heating: This winter mode is entered when two conditions occur simultaneously. The first condition occurs when the collector outlet temperature exceeds the gymnasium temperature by at least 450F. The second condition occurs when there is a space heating




I























17







4r













r -------------------> :(,


0 0



w uw















Y~ -T

















InU

-~u 0 QX*L
a 07%L/7Cc
















__ _j FI

AL A K
0 *4-~- wI
,-IiC)o



Le
UJ -J

C) -D
' cc







demand indicated by the manually preset, two-stage thermostat. The air heated by the collector is circulated by the air-handling unit between the collector and the gymnasium through ducts containing motorized dampers. In this mode, the heated air bypasses the rock thermal storage as it returns to the collector. This mode continues until either the collector outlet temperature no longer exceeds the collector inlet temperature by at least 30'F, or the demand for space heating is satisfied. Stage one of the thermostat operates when solar energy is needed, and stage two operates in conjunction with stage one to activate the auxiliary heaters to supplement solar energy when the gynanzium temperature drops below a level determined by the thermostat setting.


Mode 2 Storage-to-Space Heating: This winter mode is entered when these three conditions occur simultaneously: 1) there is a demand for space heating, 2) the collector loop is not active, and 3) the temperature in the rock thermal storage is 90'F or higher. Air is drawn through the ducts from storage and circulated through the air-handling unit to the conditioned space and returned to storage; the air bypasses the collector.


Mode 3 Collector-to-Storage: This winter mode is entered when the collector outlet temperature exceeds the gymnasium temperature by at least 45'F, and Mode 1 is not required. Heated air is drawn from the collectors, via the air-handling unit, and is circulated between rock thermal storage and the collectors. This mode continues until the collector outlet temperature no longer exceeds the collector inlet temperature by at least 30"F.

Vo'de 4 Collector-to2 ,iter Preheating: This summer operation mode is entered wIher two conditions are met. The first condition is that there
ia request for hot water. The second condition occurs when the collector oljtlet temperature exceeds the gymnasium temperature by 45'F. H-eated air drawn from the collector is circulated via the air-handling unit through the ducts past an air-to-liquid heat exchanger and returned







3






to the collector (the air bypasses the rock thermal storage). Simultaneous to collector air flow, pump P1 is turned on and DHW preheat tank water is circulated through the air-to-liquid heat exchanger, where solar energy is obtained and used to increase the temperature of the DHW preheat tank. This mode continues until the temperature in the preheat tanks reaches 1400F, or until the collector outlet temperature no longer exceeds the collector inlet temperature by at least 30*F. This preheated water is stored in two 120-gallon tanks and delivered on demand to the 52-gallon DHW heater. Water can also be preheated in Modes 1 and 3 during the heating season, when energy collection is occurring and a hot water demand exists.


Mode 5 Grain Drying: This manually controlled winter mode is utilized to reduce the moisture of grain stored in a bin near the gymnasium. This mode operates in the fall and spring to utilize excess solar energy. Manual dampers D8 and D5 (Figure 1) are opened, and manual dampers D4, D6 and 07 are closed. This action provides a path for outside air to be drawn by the air-handling unit through the collectors, where it is heated, and then supplied to the grain bin. The mode is entered by raising the gymnasium thermostat to artificially produce a demand for space heating to the control system. The mode is terminated manually either after solar energy is exhausted, or after the grain reaches the desired dryness.


Il. PERFORMANCE EVALUATION


The system performance evaluations discussed in this section are based primarily on the analysis of the data presented in the attached computergen'erated monthly report. This attached report consists of daily site thermal and energy values for each subsystem, plus environmental data. The performance factors discussed in this report are based upon the definitions contained in NBSIR 76-1137, Thermal Data Requirements and Perfo-mance Evaluations Procedures for the National Solar Heating and Cooling Demonstration Program.





A. Introduction


During May, the Scattergood School solar energy system operated in the winter space heating modes. The system furnished 97 percent of the 14.34 million Btu required to satisfy the combined space heating and hot water demand. The operation of these subsystems resulted in a savings of 22.6 million Btu of fossil fuel energy (247 gallons of propane) at an expense of 0.33 million Btu of electrical energy (97 kwh).


B. Weather

The insolation available on the collector array during the month was an average of 1 ,549 Btu/ft -_day, which is near the 1 ,504 Btu/ft2_-day estimated for the month. This estimate is computed by using an algorithm to estimate the insolation on a tilted surface from long-term insolation data (on a horizontal surface) obtained from SOLMET Volume 1 User's Manual. The horizontal insolation data from Des Moines, Iowa and Moline, Illinois were used to estimate the horizontal insolation for Westbranch, Iowa.

The average measured outside ambient temperature was 61'F, which is the long-term prediction from the average of Des Moines, Iowa and Moline, Illinois temperature data obtained from Climatography of the United States No. 81 (B State).


C. System Thermal Performance

Collector Of the 119.88 million Btu of incident solar energy on the collector array during May, 64.88 miillion Btu were incident on the array when the collector was operating. The system collected 24.27 million Btu, or 20 percent of the available insulation at an expense of 0.33 million Btu of electrical operating energy. The system collected 37 percent of the insolation available during collector operation.







5






Frow collected energy, 2.91 million Btu were delivered to tVh hot water preheat tanks, 6.38 million Btu were delivered to storage. .j 7.44 million Btu were delivered directly to the loads. Consequently, there was an indicated loss of approximately 7.55 million Btu from the transport loops in the subsystem.


Storare The rock thermal storage subsystem received 6.38 million Btu of coiled solar energy. The subsystem furnished 6.13 million Btu to meet the sace heating demand. The energy imbalance indicated between the energy delivered to storage, the energy extracted from storage and change in rock bed energy is believed to be due to temperature bias error asso-iated with the rock bed temperatures. This condition results in an indic&t.ed energy gain of 0.72 million Btu and a rock bed efficiency of 111 pErcent. This condition will be checked when the temperature sensor weather neads are removed and the temperature sensors recalibrated during a planned visit in July.

Domestic Hot Water Load Hot water consumption for the month was 1,207 gallons, or 39 gallons per day. The hot water load was 0.78 million Btu, of w ich 40 percent was supplied by solar energy. In order to satisfy tris load and to maintain the DHW supply at an average temperature of 131F, 4.35 million Btu of thermal energy were supplied to the DHW and preheat tanks. The difference between the energy added to the tanks and the hot water load are thermal losses from the DHW subsystem. The total thermal loss from the subsystem was 3.58 million Btu. The 4.35 million Btu of energy transferred to the DHW heater and two preheat tanks were cvprised of 2.91 million Btu of solar energy, and 1.44 million Btu of 'x iarj therral energy supplied to the DHW heater. A septic tank failjr,, dt tirO /' : dormitory necessitated increased use of the domestic hot water bLsste- in the recreation center. This increased usage resulted in a pc(fcrmance increase of the subsystem during the month.





Space Heating Load To maintain an average indoor temperature of 73'F for the gymnasium, the solar energy system at Scattergood School provided 97 percent of the indicated space heating demand of 13.57 million Btu.


The space heating demand for May was expected to be 5.85 million Btu. However, the actual space heating demand was 13.57 million Btu. The discrepancy between the expected and actual space heating demands is due to excess solar energy contributions to the gymnasium. A motorized damper leak and natural convection transfer of energy from rock storage are the sources of the excess solar heating. This condition is discussed in detail in the observation section of this report.


D. Observations


The large transport loop energy losses may be caused by leakage through manual slide dampers. The leaky dampers could result from inadequate sealing of the manual dampers after the solar energy system was converted from the summer to winter operation in October 1978, and from grain drying operation to space heating in November 1978. Another source of transport loop lez kage is the collector plenums. As the system ages, the connections between the collectors and the plenums may begin to leak. An investigation will be performed to ascertain the cause of the collector transport leaks during checkout of the additional measurement sensors to be installed next month.


The excess solar energy delivered to the gymnasium was caused by two situations. First, the solar system was operated generally in the storage and hot water preheating modes due to the lack of a space heating load during the month. In the hot water or rock storage heating modes, a 12 percent leak rate in motorized damper MD-2 allowed energy to be transferred to the gymnasium. During these periods, the gymnasium temperature rises to approximately 80'F. An average gymnasium temperature of 730F illustrates the effect of the leak. This condition resulted in the transfer of 7.3 million Btu to the gymnasium, which alone was more than sufficient to satisfy the heating demand for this month.





7






\ second source of solar energy results from a continuous low-level natural or~vectionl transfer of energy from the rock thermal storage to the gymnasium. The natural convection flow results from a chimney effect produced by the corbinled effects of a tall gymnasium, cold gymnasium temperatures, and a iot storage which by design is open to the gymnasium when the solar energy systerv is dc-energized. This condition resulted in the transfer of 5.98 Million Btu to the gymnasium.


To create habitable conditions in the gymnasium, a propeller exhaust fan in combination with an open gymnasium access door was utilized to remove excess energy in the gymnasium. Thus, additional energy was utilized to run the rop 1 elr fan during the summer because of the excess solar energy added to the site.


Tie leaky motorized damper MD-2 should be adjusted to eliminate the air leak to the gymnasium and the rock thermal storage bypassed to prevent the excess thermal energy transfer to the building during the summer months.


E. Energy Savings


Solar energy space heating savings were 22.60 million Btu of fossil energy (247 gallons of propane) that was obtained at an expense of 0.33 million Btu of electrical energy. The low space heating operating expense is the result of two factors. First, a continuous low-level natural convection transfer of energy exists from the rock thermal storage to the gymnasium. Second, during the day when the solar energy system is heating hot water, a 12 percent leak rate in motorized damper MD-2 (Figure 1) is allowing solar energy to be transferred to the building. This reduces the requirement for controlled transfer using the circulation fan, thus reducing the operating expense.


Energy savings calculations are based on a comparison of the energy requirer: nts of a conventional propane-fired furnace, with an assumed burning efficiency o 60 percent, to the requirements of the solar energy system.






The hot water subsystem operation resulted in an electrical energy savings of 0.321 million Btu (94 kwh). The increased savings were accrued because of an increased hot water load this month. The energy saving calculations are based on a comparison of the projected energy requirements of a conventional electrical hot water tank to the energy requirement of the solar energy system. All energy requirements are based on the measured demand for hot water.


III. ACTION STATUS


Instrumentation designed to measure more accurately the hot water subsystem performance and to measure storage subsystem air flow has been specified. These additional sensors, along with the Materials Assessment Program package, have been sent to the site. Installation of the sensors, originally scheduled to occur in mid-April, has been tentatively rescheduled for early July. Sensor checkout and data system refurbishment will occur in July.


Grain drying air flow sensor W410 is inQperative. The sensor will be repaired in conjunction with the checkout of the additional instrumentation to be installed.


Storage return temperature sensor T151 and hot water heat exchange temperature T304 have malfunctioned numerous times since November 1978. During these periods, measurement T202 was substituted for measurement T151 and T352 substituted for T304. Sensors T151 and T304 will also be repaired during checkout of the additional instrumentation scheduled to be installed.

















9












0
w w LL U. mmm m mmmmmmw
Lh LL U.
z oz *Lnv) zzz Z -Zzzzzzz
ucuoww U00 JOZOUU00ou
U') W W < W

JDJDQQ jjj U-jujiji-iji
N 0.4 1.- W W """ W 0.4 . . .
N xwzwuu zxz : LL X 2 x 2L x
CL 7
ID V) Lu z I-- Y SCO eo\ a >-* '6900 09*
Z (P 4 T Q V) 'T Q 0 0 0 N
< .4 -4
0 <
/ W
Lr L Q (X
u I: w
U- .1 >IM o<
Lr ct --) < V) A
LU U LL 0 0 OD
Lt w I-Lt -4 t- 0
LL 3: v x q J.
Z) w 0
ui < -F u 0 co
u T u (Z N

w z V) CL >< LL U U) k.: < w Ui LX
0 4 < < (I x
CL Lr U U
CruLro LU (Z
4 LL Q w
u w Iq < V) ui QN.U00cuo CON N zw
LE >- LU L Z Q 0 M -0 Q OL 0 .4 V 11 q LL
Lli ux :E Ln Lt -LO.-4t[)00 00otf) OD X 0.
0 Li < _j LLI 0 w 0 0 0 OZ 6 # 0 Lt Z
w 2: CD V) N LL Z LL X X LU Y 0,4 W N LL LZ
Z C-) _j L) 0 3V) L.LJ -4 LLJ Q ww
> I-- UJ -4 4 LL LL
u -L W U:-) ui LL
I.- -- q LL Lli W >
4- LL X -j 4 ui
Li V) L W LU U.J
Li at at I- Uj LLJ
Z w V) ui 0 z ID
t-- >- Ll 4 .j 4 u
vi V) q UJ LE r- U 11) UJ V W -cz a LL
)- 4 LL LU 0.4 v UJ P- q 'cr ly) 11) ICL N < Iq
u U) Ui Li -1 LIJ Lr. Q Ex P- CF\ N 4* 17 0 P) 9 < w -i
L-) -L I-- I- LL -) w 0 0 0 0 *4 04 u L U
-t. Lr Uj LU I-- U- 4 s 0 N u Q V)
v k-\j -i k U- ui < LU U)
LL (f) \L) z LU L uj -j Li -j *
Q 0 >- Lr uj Q u Ll < w -- < Nk
V) U) v v uj (-L z u L u u < z ou
Fr L.J U'l 4 (\j Y ki Lt LL X U kJ o--l UJ t-- v ui 0 rki r Li w (f) C-) Lo LL LLJ :i LU LE I-- X V LLJ 0
wL V -L Lq Z 0 uj 4 Li -- V) ui < D V) < j
U Z ICL -V 4t 4 ui LT 4 a (1) u Lt W Q LL LL) 0 j q 0
(n V) LL X LU Q w w w Z ui >- w j -i z < (I to z 0
AL < Lr -4> O-U V) Q 4 U- ui w -i OM Im 0
M q Z-ZQOV >- ziaw D>w v -0 V) w N
Li :F "wv) WOUZ M 0 W ULL (-j V) Z 0 J L) I- -J U :T- >- < ) Z-J- V)z < >JO a <
D W U w W 0 0(-) V) W W :) X -Qw LE L) L U 0 U Z Lli >- V) ;- -) Lr q I-- LL 2: 1-) a z I-- LL z -j V) LL U
Uj L-1 L.) Z uj 0 Q aj < c_ V) w j < w tz LL U 0 < < u D 4 V) J 0 V)
< I-- LU -i uj >- 4 V) LL dc Z Lu W V) V V) LL w
P- Lt Uj Lt V) LJ > 4 wwuaww U- W -j Q I-q LL V) VO *#
1< W ?I- L- -, -j (1) ui Q ki Q V) u X w U. m j w wwu w
-) U V) u ui Iq < -i -i w LL Lt m 4 u
_j _j Lt IX W V) < < I Q q < -; ui ul V) V) - V) <-J IUJK> LL -1 0 Lt 4 u > > U L) U ki >- Q u u (I j D D.J -j ui LU uj (X
Li LIJ V) V) I- W Ick W W (1) -j (f) V) L) 14 < Iq w U- uce w
z aj (n < UL
Lij W D >- 0 ui
W %J V) V) (d 4 cx










U) V) V) (f) U) V) V) W V) (1) (1) (1) V) V)
0 ul ui w W LLJ w wwwwwww
j j jjj j iiiiiij
Z) 0 D D D D D DDDDDDD
N oxomwo OU0 OF-UUOUOUU
I S-) eww jnznnnnnn-)
m a fjww w
0 0 Q\Q\QQ QUQ 0QmQQQQuQQ
N "n"nww
Q Cvyco QQQ VILQQQQQVQ
(x I- V) x
< woooQm4rf-m- wNr--QWMv0Wv
-i Ix Nmoo-N-Q4u)
u 0 Lu 17 -* vi rl
W w z z ou) 00
M < Z u 4t tn 0 0 CX) Wo N-0--doon
-19 1% N Lf) C\J N
1.4
Z LU
J. U Q:
U 1w
L.L < >-
< j Lr. e <
cx LE ---) -CC (1) 39
Wv"(X
a -i w
cz < " 1.- 0
n -19 u x qCK J- j4zzzz4z4z
D LU 0
z fl- w < T Q 0 (X)
u U -L 6.4 (1 EX (v
T- I-- w F- u
LU Z W LL?It LL 0 V) w < w w EX
M 0 4 < < IL Z LE <
POO < LLUU D
LLJ M
W m u Ix 0 v aj
Z P- LL
W< x LL >1 2 ui -3 J. Z-00-0<0v4m q Alt U.
ui u cz V) LX I-- I-Oirf)w4moo $00co Co ZE
L) CL < WUM I- a 0 *z 0 0 0 0 (Z
w x 0 V) r-4 U. OCL-1 -100 00r) 9.4 u
Q Lr. x tz LIJ y Ui LL Ex
z :D Zc-J00 Lr- Q
V) W LU 0 ui u
ui -4 4 LL M
Li z w 4 U:D LU
u P- Omix wwa
V 40-4 LL a -j z w -i OIL
Li V) L w aj u -i M tu x ;E t-- aj Lu POO
4 W tn W u z
>- LL 4 u z w
V IV) 4z 1.0 ui LLv0j.),wqvv% OVI 0 41k a LL
v >- Z LL W k2 Lu W-4 4 V) w u F- w(xv Ir cu 0 N tf) U) 0 (7) 0 < LU -j
v LL -) P" w -CL 0 0 0 0 0 4 4 u L u
ui w -) I- LL 4 0 11) 0 1.4 V-4 P- U)
v < "i J t.-'Ck LL ui Oa ui w
w W-j OQYW < LL LU j u -i
L) 0 >- LL W Q) u < w I-- < N
J. V) U) -S u w (1 4 >- 4 u L u OCL zw
LL u 91 u (\j X w a LL Zt u v w v w u r< 0 r- L) W U) 0 U) m w xw-m -x w 0 I
T. (7 '-4 T. < z u 0 W 4 w 1-- 0 w < D -i V) j j Ar
u u .4 z < Sqr 4 w I-- Lr z LL V) w v w W
V) a CL -q x F- w QWWWZ ui > vj::) -i z <
> 0-4 0 >- 2: < .0 a -Z> mu .0 V) Q z U. w 1"4 ui J
0 4L Lt V) V) Q D >- OX a < Z-ZQOV > ZDMW D>w v V) w
0 x v b-, *-4 m w OX j WOUZ Lr w w vu- 0 0 Z 00 AX b-4).Zj" OZ Ok >JU a
QGf LU 0 w w C) o u v) ai" -Wv x -Qw Lt U u u 0 LL X w U) x -) m < m x VM Z -Ooj--- m 4 -? V) U. u
wu UD 0 (1 W 0 q w < ff V) w D < w v a vv),q Ox u -j Z 0 :D u V)
"" x v x 6-1 At t-l w _jw >- 4 V) LL Z z w w V) v V) LL uj
LL wmwww>1-4 4 w W Li M V) w U. w 014 x j w 6-4 EX U) (f) go
ui I., w LL Uj V) UJ U wvwo x F- t.- w U. m j W WWU w
Q LL V) > \0 V) U. -1 0 UJ < ot j j w LE a < 0-4 a_ U
V) >- v Z ti 4.0 -j 0.4 -1 LE CX (1) W < < 0<<(X evv) uuw z
I.- (O .OLE Nu-*MWD MZ U >>UQUU > 0wuQDD:;)J0 w ww cx
wu w V) 0 N W Q Iq 4Z W W t.- 0- 0 jwwu<< F- U- z ai U) < U.
LJ w D 0 uj
V) LL V) z m









U)
0 1

Ch I Lt z
I
I u V) uj 4 r) t- U)'Ou p -1 N ou rn 47 m U) P) U) 47 0 (P -- 0 0 47 r- U% 0 (1) 4*
1 V) Lt N f*- q 0 'r U) 4 4T t- Q 0 W 4T M 0 0 Q V 0 0 0 Q Ict 4 0 4 0 1 1 1 M
o 1 uj u N .4 v" -- .4 -4 -4 N 0 0 0 0 N N I
(V I V) > 0
Jv)ZLL IOOOOOOOOOOOOQOQOOOOO000000000001 101 1
(X I Q u LA.
I LLJ V ui

u
Lo



Q D I 40P.- qaaj-u 1 U) LE I I v w 1-1 m I
1 Lij Z -) I I z I z
X I LU Uj


U)
u
LL LLJ
LL 1 0 1
1 4 >- Ac I
z I U) D u 1 0 0 0 0 0 (P U) N NQ 0 0 0 0 0 (74 M r- 0% 14) N V M 0 u I V) a D 1 -0,1 q N N N N ") N 0'* 0 0 0 0 N -.4 r) 0 Mo C\j P) rq 0 (\I N N N -4 1 V) I N I (N 1
l i I LLJ Lr Z J M I I 1 9.4 1
< I LIJ UJ 0-4 1 0 1 0 1 0 1
Lt LL 2 1
LU u I



2 cr ui
aj u Q -i V) 4 1 /U 0- < < V) w
LLJ Lt X : u Z)
0 Lr u :.) LE LLJ -j 41 z 1 1
4 1q. LU -j tu
L LJ I



Z 4k
Li
L) 1 4 >- 4 ',V LO V) LIN -'AJ 0 --4 U) VI -0 LA N U) U) P) q r) rf) N N 0 Un UJ VN 11) rtj (f) L.J --4 0 w 4T w VN U) ICT m Q w Q w -4 N 17 Iq N F) r- \0 w N -4 U) U) (\j V) (%- .4
LL U L.) b-4 D V) U) r- U i) Q U) U I.U r9 U) r) r) (v 4r T r%. 4 r- m u) N N r N Q %0 u) r) 4T 1 u
LU t-- 't Q -j w Q ki Q (i tj 0 f-) Q Q u Q .j 0 qj 0 w j u 0 v u 0 .j u Q t.) Q (-,) Q 0 0
4 LU UJ 1 0-4


<
uj p<
u
Lr 4 LL I
Iq uj cl I I ui
J LIJ I :E Q I Nr)QOW MUJ QQA? \Q NaJf%*CU NLP P) -wQ -4 %U Q WU) NON UU)rf) f -i
u 4 1 Lij Ui LU 1 -1 Lf) U) U) U) U U r P- 1 4T U) Lf) U) 11) 14.) f- Q \0 Q U) \j) U) LO U) Ln Q Q r- r- v c I I-- uj
V) Lij 1 4 u 1 1 4k <
0 UN 4 1 u v
u
I uj
,) -4 1 0 CL
(n LU

c 3 4x 4 1 (X) rn u WL--, <1 k\J Q V) (\) V, v (v r) U) CU V W r- M V Oj(p
j Z I ui cz u t. kj .. I - LJ -J 1 6 0 0 0 & & 0 0 0 0 0 # 0 0 0 0 9 0 0 v 0 0 0 0 0 1 0 1 0 1 0 1 > -j z
Lr. L) I t ) q U) -1 t q m -7 1-) U) I (Ai U) AT -1 N 4T Al, U) 11) N 4T U) U) 'I rg V) V, I rf) -i
Ll I !_j I Z I -J V)
1 *.4 Z LU

V) vi Lj
u I LU Ui Z
I ui
M q 0 0 N W (P 0 M 4t U) o N CU 0 C) M -1 Lf) N 00 .A 0 0 f 000
J I > V) I z z
V) 4CE CU Uj Uj fl I z co
ui
V) LZ (d 4





















N 10>-Z
< LIJ I
1.) ct 0-4 1 0 T M -4 N N 0 M 0 0 0 0 V) N M 0 N 0 N N N 0 N N N 0
0 1 LU ct Q 1 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 # # 0 0 0 0 0 0 0
0 I-J C\l LL I
%% U- I
cx LU I



LL V) I LLI
ZZ U- I
z 6.4 LU CL I U)LOU)Lr)Qr-NCUa)CL),IU)tD4)%ODr-OD r-4JOQQQtnr-r-r- %0 %o I I
w I-W X 0 1 1 1
> m ui Li I
w I x Q I
Q <
Lr

V)
4 X L3
Li u La > 4 0 u Q N (U F) Q w 0 U) u 0 0 0 u N 0 V% w 0 r- UN v 0 N 47 T LIS (7 1 U) I I') I I
x Lr LL -Mwu 0 0 w v m N N Q U) N,4. a 0 0 0 m UN Q N w P 0 N 0 r- 0 -.4 M I Q I M I I
w u Q V a CL Ui l Li _j uj _j 1 0 0 a *1 9 1 Of
W CL -JOZJW q 0 1 --41
Q LL -J U) UJ N u I
u 1

-i -i Lt
u L LL
u I.- Iq
u e 4 z v 0 0 m ff) M 4T (.n 47 0 0 NO 0 0 0 Q r) N N v 0 T),j -40 0 W4 w U) 4 1 M I m I I u
u U. I u Z >- u U)-O (\j r- Ln cu v U) ui 0 r) U) 0 0 0 0 UN (-%i U) N (\I cu v 0 0 0 v 0 u I W %.;) D U Q 47 U) 'Ln,* V 0 N Q U) 0 0 0 0 N U) 0 N kv U) \0 0 U.) GJ QT 4 r 1 GJ 1 0 1 1 Uj
I CD L.L _j F- 0 1 0 1 1 -1
I <-WJW cu
w -j I LL U 4 Iq
-i u in I w 4 LU a U v
j u I U.

-i LL
< (n f ELJ < 4L
ui I I- Iq r- ICL
.L u < 1 4 > z ou r) %Q a.) U) vi r) 4T r- u -7 (\I 0 ry) N v v \u ('4 M U) Go \U u-) rg LT% N U% I 4T J <
.j z I WLLUU 1 -7 LU Q U) (7 U) N -4 \JU '(T (\I Q N -4 17) C\J 4T r- r- P- N Q\ Pl- 'T CO Q GJ r- I UJ V 0-4 a
j l 0 < L-L D U) v) gi tf) vi (Z) I') cu 47 tv cu cD c) 4m c\j t.- tf) r- 0 co 11) r) 47 LA u ON to ai I a) 0 1 41k Li
Q*$ I _j W _j 1.- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 > -) 4
Ix La I u 0 4 -1 ELJ I N Q -7 U) 4 F9 47 fv) -0 U) 4:r C\j U) 4T 'T (v 'I 'cr tD r-) N 0 LU U I z (j) w -.) 11)
U) 4 Ui

19E w (n V) U
v CL I wwz
V) I I-- P- LU
I.- I I N M q 0 V N M V\ 0 -4 N M 0 Q N 0 ON 0 N M -T U) Q N M V 0 Q I U00
EX I 4tt U. z 1 s-4 -o -4 q -4 4 (V N N N (V N C\j N C\j (V r1r) M > t V) zz
LLJ U I owu V) I qq I ELJ I LUW
I.- IL I x L3 0 gx
b-4 UJ 1 0
V) Lr (d z


















13



















U)



kq z rf)
1 4z w I OON o I-UW -M 4 (Pill- WoQoor*- P)f'-- Nww umvooo N -40 1 I aj
I L" 1 .4 r r. C\j 0 r C\j U) 0 1-41 0
0 JUQ tol..41
0 1 *- I r).-4 Q 0 0 0 U 0 0 N r. 0 4cr 0 0 fy) Z
N 1 0 LL
> I LL
< Lr I w
L'L <

L) u I
(t (1) w uj
Q LL I U) -,q I "I rl) rr) rr) 0 r- %0 r- VN 41 NU rl- U) 0 q 0 0 4? Q rf) U) Q 0 V) < (I I OD (X) 0 r) IT I LZ Lr Zo I
I uwuiw I
> 0

<
w Q
V) z
z ?- < I w uj >.- z cu r) N C\j 4T V) oj N r- Lo u \c) C\j U) m CL) Lo u P. w wo \0 U) U) 0 ui %0 (9 ai 0 q)
Q LL 2: 1 Q LX Q 0 LO Q Q Q 4r 4* V\ N U) C\j N a) %U I',- CU N LO 0 r9 0 r1r) Lf) --o C\J 4t --i C\J 0 Q rf)
x L) Lr I Z U LL D 0 0 tO Q U 0 0 Q 0 q 41 T (1) (\j U) U) (\j fir) -7 -4 C\j IT) Lf) N N 0 V) UN 1 0 N I
LU Ll 0 1 < LLJ -j f 0 0 0 0 0 0 0 0 0 9 9 0 e 0 0 0 0 6 9 a 0 0 1 0 1
L) LLJLL IT-U),ZJMIOO 400000000000000000000QOOQOOOOIVIOINI
LL a I Q LLJ I I I I I I I I I I I I I I I I I I I I U I
0 ui I z x I
z CL 0


u uj I
0 D Lij Z I u
< Q u (v N r- U) 0 C4 U) ou U) U-) Q Qj 4) w 0 P) 0 ou cu 0 -.4 7 G\ N u- cu JL LL I Q X,43-. D 'I 4r N w N Q 0 -4 Q r. U) N -.4 Ul N 0 \U UP VN r- V 0 0 OU UJ Q 1 11) 1 (P 1 0 LU
u u M U a J I-- Q 0 N M N N N (V N M (V N Q 0 Q 0 N N C\j N 0,4 N,;r N - 0 4cx -i
z ?- w cx u -i aj (\j LU
it V) -1 4 LL ?.- 0 Q IQ.
wv uj V) JL Li v
Lj r- 0-4
r- VN I ui -i
j LL
uj < LL
4k P- 4k
w C) I >- w 4 P) U 41 V% 4 0 47 \U U) Uj N U 0 0 0 u ;L I Q QU ujw %ON cocur- (\i 11) cqu QQ ouor- (VCL)\C)r-(\Jrf)p) coo 'I vorr)(\j r- 1 0 0 0
u I Lt u < -.) u c-) n r c\j n N (N rn v) t-) 4:T u o 4D 0 N Q -4 tr) u .4 c4 (Z k.: 0. 1 W cr. _j N >
< tzu lz
I wu I w V)
u I V) a z uj
(1) Lr I Iw (1) V) Li
0 1 ui uj Z
I - LU
t.- I (V m 'cr 0 Q II- w v Q N r) 4 0 Q 1 CC) LP 0 -4 (V ff) 47 10 \U f- CU 0% 0 2: 1 Q I I U00
LE I < LL Z -4 -4 -1 4 .4 .4 .4 N N N N (\j C\j C\j N C\j (\I rf) r) -,? I > V) 1 4 z
ui L..j cuu I V) lu I UJ LU
LL 0 q
UJ 0
V) LL z

















14






U)
0 r- U) 0 0 ON 0 0 1* rf) N Q 0 0 rr),7 V) rr) N 0 N Q OD CD f- (7%
0: 0 -1 In U) -1 Q (\j N Lf-j T c: CQ L0 0 M 0 rf) CO
UN Lij Lij N 0
?-- (L() <
<

0
0 0 (L CON NNNQOO P-4Q) N OQ) LD U) 0 Uqt (J\O WN NNCON Nm I I
N 2: 0 1 r) m T qr fir v, v 6 v "" m m r o m r) m Q m -4 44 T m T 4 m m 1 0 1
W W U- I
3c

CL 0 ON X Q W W r 0 M N M r- in M Q 'I L0 4T fr) Q U) it -7 1- Lf) Lf)
: 0 0 -t 4 %o r- 0 to U) Q t,-) (S) to Lo Lo Lo U) Lo U-) Lo V) Lr) Lo Lo Lo U) Q I I Lr) 1 0
D < w w U.
V) 3

V) z < I < I I
I-UOC ItIolm"
V) a z D z z I 1
V) w I-- t
f UZ>JW I
I U- Lij < I I


x N uj o \U Q 'I cu N 'I Q Q r) CU rf) U) r- CC) U) -1 N 0 Q (P 0 L0 Q -,7 N -7 1
< 0 z 1 0 Q N 0 0 0 0 L0 N U) rf) M 0 (D Ln 0 N f N

ury Z-D

I jz> Im I I I I I I I
CL I Li LIJ <

z

j z <
?-- 0
<
X
I tz U LL J w
Lf) I LL
fl- V)

X u 4) N 11) QU U) 0 U.) Lf) U-) 17 V) -,:r P) 0 N U) CU 0 q' I 4T ON U) 47 W V) N N V, I W I
Li cl m Z n q N M - - -- rl'-T Q 0\ V% D M M Q 0 T N Q N M N Q N M n 7 1 M 1 .0, 1 1
0 WD -_Ju 1000000000000000000000-0000000001 TIOlLf)I
L.L V) K -j W b-4 I

4 ?- Lr < -i LL -j w I U I
-i uj I UJ t I I
-i Tw ?-u Z A I C\J M OU L) 0 W U) W -7 LIN 4T M N Lf) W 0 <7 7 47 (J) U) t U.)
v Lj 4 1 T N r, 47 Q (J\ V V)r) V) "k) U) 7 (\i kNi m r- (\j 0) 11) -7 IT) 'T I
Xt- <0L.J
u u a LU 0-4 -j




47 0 \4d %A Q 0 w \j d 0 u Q u 0 0 -4 r- 17 uj U) U) Q UN w 0 -,q w I w I Q 0-4 V-4 4 4-4 0 4 0 Q 0 Q-4 0 -0 0 Q Q,.4..4 0 0 - 0 q 0 1
LL %;) tj 0 j 0 0 Q 0 Q 0 Q u Q 0 Q 0 Q Q d 0 Q u Q Q 0 Q Q 0 0 k\j u I I j
ui Uj LL 0.4 0 0 0 * a 0 0 0 0 0 * * 0 0 0 0 0 0 0 9 0 0 0 9 1 Q
.L luw -i -toooooooQOQOQQOOOOOQOOOOOOOOOO(DOIOIOIP)f
Li 4 -j cli U
LL uj b-, <
< aL
-j <
u 0 N rl-- ou 0 -1 w r) U) Lf) Q -4 VA uj rr) 11) U) (U LD LA 4T W v U) IT
11) 0 r) Q - N (.n w 0 uj -4 Lo C\j cu r- w U),* 0 N 0 CU r9 U) 4T 1 --4 ON I I Lr Q) 0 Ld 1 0 0 0 a 0 0 Q D 0 0 0 Q 0 0 0 0 N 0 (7A 0 1 1 0 w
< Lr Uj *4 D 1 0 0 0 0 0 0 0 0 0 # 0 0 0 9 9 0 0 0 9 1 0 1 < j
I-JLLIV)-J -100000000000000000000(.)OOOOOOOOOOIINIOIOI m
-j D -j w I I r1r) I <
I I v
JL I
ui -i
--4 1 LL U- 0 Q Q P) 0 -,c7 W<7 q) 0 (P CU Q 11) -4 U) U),T L0 Q \0 -.4,1 Qq Q \u -4 \w 0 1 0 -1 CL
I < L-) 0 M t M c\j i* N _4 P) N M M -t ct t 4t 4 0 4T N Q 0 4T 0 1 4 1 0 1 m (I
I _j 64xwz 1 1 1 V) I < <
o-q juxuawl 1 141 j<
CD 2t (r) I I -i 0 1-0 Oct 0
Q.. I M -4 0 0 0 M N 0 Q,(T 0,-4 UN o V) 0 0 N 0 r- Q Q M r- I f- 1 0 1 1 >.jz
cy u Z I N N 0 0 0 -o 0 0 Q -, T M rf) --0,* -4 0 Q CU M 11) fl) LO 0 0 rl) Q N r1r) I r- I C\l I I < -i
UJLJ (Xcu 100000000000000000000ooooooooooott,.iolNI Z Du)
0-4 1 1-- LI: q 1-4 D I z uj
-tx
w I -L < -i -j w I (i I V) Ln 0
wwz
w
ww"
z Z
uj w I >- LL Z I N M 4 0 Q r- co .A 0 N n -7 0 Q F- W 0\ 0 N M 0 In Z N M (p 0 X 10 1 0 1 ww
a I I Q 0 1 N m N N N N N N N N m > I m I oc<
LLJ C) < 1 0
(1) (x (-a z


15






0 1 G, I r- 1, 1 a o z r) up 4) o 4 Q (\I w r, aj (v Lp rr) ,u \p %o co u) c\j (p o Ln rr)
N, I (D I It U) L0 U) In %U r-- r- q 0 U) (r) LD C r, Q U) V Ln U) Lr) U)
X W LU L- I
I Z
1 0 LL 4 A) IUU 0 o (V kv 0 P) U) U) U) U) q N 11) If) k\j U) W r- 0 U)
1 C) X r- r.- r, J., r, r, r, J., CU r,
I _j Uj Uj LL rN I CD I.- U

LL It (NJ 4jr-1.0 O-CO -ko r- q (00 rf)C\JVN 4T 0 q -U-) AZ ff) No..* Oq
< I -j >- V) Z r, r- u) w rf) r- o r, o r- c\j N (\j o 6N c ;r \o r) 4* L %U 00 (N U) r) Q Lo 0 o tn o N
-j I -QQU 7 -r- Q0o0t%-ooQ 0,4)004.40U)o DQU-)o (PON CU cr)(Uku (n I W LLJ -J
lUZ>-jml 101
U-Ui<- I
V) a I




uLrz":D 1 0 0 0 0 0 0 e 0 0 0 9 0 1 0
X lww-i -1000000000000000000000000000000010101,01
< -JZ > -JCD I I I I I I 1 1 1 1 1 1 10 1
Lr UJLLJ Li
Lt
U. I z 1000000000000000000000000000000010101 1
I -j U 1000000000000000000000000000000010101 1
4 *00 too# *1 *101
w
U):D -I C0 I
U U.
I LL


V) V) z >- Z
U Lt V) U
x u a-i I XUUJ-") I
U.) (1Z) IDWDJ -l I I I
L.) Ui V) I IqJLL-jm I I I I
LL I Uj
Q)
4
looooooooouoooooooooo0000000000010101 I
j z loouooooooooooooooooo0000000000010101 I
Li -qct I U Z LU I X X LLJ 0.4. ) 0 1
v UX

U Uj


L.L N 0 0 Q 0 Q V 0 w 0 U 0 Q Q 0 -4 0 0 0 Q w I
V)

WM
IUw -i -10000QOQOQOQOQQOUOQOOOOOOQOOQOOOIOIolqI
< I Liz -jai 1 1 Jul
U.)
T

Lr U) ('4 N If) V IT) U) rf) Q Q U) (NJ qr V if) -4 0 a) ON r- U) 0 r- 0 Q CU M) I W 1 r- U
< Z wO00vUjr-Qq(0r- -Nor- t to I rr) 1 1
LLQUO I tf) o I Ui
(.0 Iiwv)-J -100000000000000000000OOOOOOOOQOOIMIOI-lI m
-j I uz-.-.)-Jw 1 41 4tt
U LA IV) W 1 0 v
U r- 1 0"
.L .n w -.1
V I LL LL IV I I -i OLL
V)* 1<00 10101 aj I)- I 1 0 4% 1 -1 -4 4.".4 --* -4 -4 --4 -4.-4 -4 --4 -4 -".1 --4.4 -0 -4 --,4 -4 --4 1 1 I Q I- ICE
C.) q UMU U 14t <
U AL U) LL I CL 1-011w q Li
Q.. I Q U) Q N U) \0 1Y) U) r1r) 14) O U) C\Il \0 U) 0 QJ ON P- U) U N 0 0 CU r") r- Uj > -i Z
Lr 0 1 ki 4 OU Q U) V Q u) N 0 -1 OD r- r- 0 r Ncr \() (4) o r) V) M q v."W --w r- I w I M 4k -i
wu wzUU N 4 Q 0 m 0 4 U) m n r9 M M In M 0 M I U) D 4 U ) L0 -,1 -1 IN U) I 4T C\j 4 ::) V)
I-- U < D 0 D Z w
i,- CX p v a I wwZ
V) I- w
Li U L)
LX I 1 1 4c Z
Lij U I N-LLZ -fNr) 4rw up- woo u-)\ur,,- cx)aio- I x I o I (n U.1 U.)
CL I < 0 C) N C\j C\j N C\j (N IN N N 04 1 1 r1r) D > M 004C
Uj I C) 7 1 V) 14 Z e
(n (x (a Z




16










0 IZW *I
0 1 -(1 Ll I
IN 1 3c V) 0 1 1 lZI
N 1
(x

J 0


0
jub-4 WIQOOOOOOOOOQOOOOOOOO0000000000001 10101
I Z LLJ I I 1 1-1
I _Q M I I 1 1-1
1 3c LLI u l I lZ I
I a wl
01
Cc

u
Ex
a.
I uj>U I-- UJ I
0 L) I
q (X I
-j 2: LLI
cr WZ) CL
t- LX LETz a
u U. a
u Z) I I
LLJ LL V) I W U. I
a ULJ I z Z LL I U) to u) Lf) Q r- r- aj (X) a) -1 LO Q Q U %Q r- OD N \,O Q %0 \0 \0 U) rl- N r- Q I I I
(Z -j I Lu 2L I
I o* LIJ Q I m ui
-j z 1 0
z
u
u zz
u Lj L) I uj
x (x I cl: I
u 0.4 1 ?- Z) I
z ;p 1 4 LL I
Iq z I wlq I 4T if) U) LO U) v V r- N r- cr U) tr) U) U) to r- \0 Q v U) %U U) U) Lf) LO \0 Q r- r- %u 1
LLJ I Lr. Q I
V 1 Uj LLJ uj 1 41
I a I <
I LLJ I
I
ui -q


LL UJL) U. I
,q V) 0 1 4utJ j 0 1 LLJ
u U- ck V) -i
I U- -j %% P.- aj
-j u j Iq
L) V% V) u
u r- z LU
v I LIJ -j
-i CL
1 z I ul Iq CL

1 LL I -cr ON NO N N W (P ON 0 N ry) co 0) r) N (14 N ry) N LO 0 \0 U) U) rf) 1 ON I I J Iq
ux I -j 0 1 N Lr) CO %0 q \L) L- C\j Cv I r- ork C\j r) 0 r- G OD M .4 P) M -1 if) V %0 U) (P 0 G M P) I -I I 1 0
u I < u 1 0 (j\ 0 cu uj %v to r- U) U) 0 ui 0 r- 0 aj VN 0 U) 0 N 0 0 0 0 N U) Q 0 1 0 1 0 1 u
V ot I J V) 1 "0 -4 C\l (\I (\j tj co 0 1 J z
mc I uw I
ui Q I VI
0-6 1 P- LZ I
< w V) V) 0
Q Ll I I u LLJ LU Z
V) I I: I #"- ui
1 (NJ rr),qr U) r- OD (JA 0 N M 4T U) u N UJ (JI 0 C\J P) 4t U) Q N OU V% 0 1 %2 1 1 Quo U. Z N N N N N (N N C\J N C\J r) rf) j I > 1 (1) 1 Z 4
LLJ 0 1 000 (1) Ox al Uj LLI
M I x z 00<
LU I I








17

*ils, (;OVT,:RNMFNT PRINTING OFFICE: 1979-040-189/4204. Region 4.
















UNIVERSITY OF FLORIDA 3 1262 09052 6699