University Press of Florida
What is Biodiversity
Buy This Book ( Related Link )
CITATION PDF VIEWER
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/AA00011645/00001
 Material Information
Title: What is Biodiversity
Physical Description: Book
Language: en-US
Creator: Bynum, Nora, Connexions, Rice University
 Subjects
Subjects / Keywords: Global Processes, Definition of Biodiversity, Spatial Gradients in Biodiversity, Biodiversity Hierarchy, Species Diversity, Alpha, Beta, Gamma Diversity, Utilitarian Valuation, Biodiversity over Time, Ecosystem Diversity, Population Diversity, Biogeographic Diversity, Community Diversity, Ecoregions, Extinction, Landscape Diversity, Ecological Value, OGT+ …
Biodiversity, Biological Sciences, Environmental Education, Evolution
Science / Biological and life sciences, Science / Biology
 Notes
Abstract: This text provides an overview of what is meant by "biodiversity", and how we measure it. It reviews the different levels of biodiversity; population diversity; species diversity; community diversity; ecosystem diversity; landscape diversity; and historical and ecological biogeographic diversity. It also includes a brief discussion of diversity over geological time.
General Note: Expositive
General Note: Community College, Higher Education
General Note: http://www.ogtp-cart.com/product.aspx?ISBN=9781616100865
General Note: Adobe PDF Reader
General Note: Nora Bynum
General Note: Textbook
General Note: http://cnx.org/content/col10639/latest/
General Note: http://florida.theorangegrove.org/og/file/1c2bea07-ffdd-fed8-0bd6-cc1c7e8b3320/1/biodiversity.pdf
 Record Information
Source Institution: University of Florida
Rights Management: Copyright 2008 Nora Bynum. This selection and arrangement of content is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Resource Identifier: isbn - 9781616100865
System ID: AA00011645:00001

Downloads

This item is only available as the following downloads:

( PDF )


Full Text

PAGE 1

WhatisBiodiversity CollectionEditor: NoraBynum

PAGE 3

WhatisBiodiversity CollectionEditor: NoraBynum Authors: RobertAhlnger JamesGibbs IanHarrison MelinaLaverty EleanorSterling Online: < http://cnx.org/content/col10639/1.1/ > CONNEXIONS RiceUniversity,Houston,Texas

PAGE 4

2008NoraBynum ThisselectionandarrangementofcontentislicensedundertheCreativeCommonsAttributionLicense: http://creativecommons.org/licenses/by/3.0/

PAGE 5

TableofContents 1GlobalProcesses ..................................................................................1 2DenitionofBiodiversity .........................................................................5 3SpatialGradientsinBiodiversity ................................................................7 4IntroductiontotheBiodiversityHierarchy .....................................................9 5WhatisBiodiversity?Acomparisonofspidercommunities .................................11 6SpeciesDiversity .................................................................................25 7Alpha,Beta,andGammaDiversity ............................................................31 8IntroductiontoUtilitarianValuationofBiodiversity .........................................33 9BiodiversityoverTime ..........................................................................35 10ABriefHistoryofLifeonEarth ..............................................................37 11EcosystemDiversity ............................................................................39 12PopulationDiversity ............................................................................41 13BiogeographicDiversity ........................................................................43 14CommunityDiversity ...........................................................................45 15Ecoregions .......................................................................................47 16Extinction .......................................................................................49 17LandscapeDiversity ............................................................................51 18EcologicalValue .................................................................................53 Glossary .............................................................................................55 Bibliography ........................................................................................59 Index ................................................................................................66 Attributions .........................................................................................67

PAGE 6

iv

PAGE 7

Chapter1 GlobalProcesses 1 1.1AtmosphereandClimateRegulation Lifeonearthplaysacriticalroleinregulatingtheearth'sphysical,chemical,andgeologicalproperties,from inuencingthechemicalcompositionoftheatmospheretomodifyingclimate. About3.5billionyearsago,earlylifeformsprincipallycyanobacteriahelpedcreateanoxygenated atmospherethroughphotosynthesis,takingupcarbondioxidefromtheatmosphereandreleasingoxygen Schopf1983 [87]; VanValen1971 [104].Overtime,theseorganismsalteredthecompositionoftheatmosphere,increasingoxygenlevels,andpavedthewayfororganismsthatuseoxygenasanenergysource aerobicrespiration,forminganatmospheresimilartothatexistingtoday. Carboncyclesontheplanetbetweentheland,atmosphere,andoceansthroughacombinationofphysical, chemical,geological,andbiologicalprocesses IPCC2001 [73].Onekeywaybiodiversityinuencesthe compositionoftheearth'satmosphereisthroughitsroleincarboncyclingintheoceans,thelargestreservoir forcarbonontheplanet GruberandSarmiento [36],inpress.Inturn,theatmosphericcompositionof carboninuencesclimate.Phytoplanktonormicroscopicmarineplantsplayacentralroleinregulating atmosphericchemistrybytransformingcarbondioxideintoorganicmatterduringphotosynthesis.This carbon-ladenorganicmattersettleseitherdirectlyorindirectlyafterithasbeenconsumedinthedeep ocean,whereitstaysforcenturies,oreventhousandsofyears,actingasthemajorreservoirforcarbon ontheplanet.Inaddition,carbonalsoreachesthedeepoceanthroughanotherbiologicalprocessthe formationofcalciumcarbonate,theprimarycomponentoftheshellsintwogroupsofmarineorganisms coccolithophoridsaphytoplanktonandforaminiferaasinglecelled,shelledorganismthatisabundantin manymarineenvironments.Whentheseorganismsdie,theirshellssinktothebottomordissolveinthe watercolumn.Thismovementofcarbonthroughtheoceansremovesexcesscarbonfromtheatmosphere andregulatestheearth'sclimate. Overthelastcentury,humanshavechangedtheatmosphere'scompositionbyreleasinglargeamountsof carbondioxide.Thisexcesscarbondioxide,alongwithother'greenhouse'gases,isbelievedtobeheating upouratmosphereandchangingtheworld'sclimate,leadingto'globalwarming'.Therehasbeenmuch debateabouthownaturalprocesses,suchasthecyclingofcarbonthroughphytoplanktonintheoceans,will respondtothesechanges.Willphytoplanktonproductivityincreaseandtherebyabsorbtheextracarbon fromtheatmosphere?Recentstudiessuggestthatnaturalprocessesmayslowtherateofincreaseofcarbon dioxideintheatmosphere,butitisdoubtfulthateithertheearth'soceansoritsforestscanabsorbthe entiretyoftheextracarbonreleasedbyhumanactivity Falkowskietal.2000 [25]. 1 Thiscontentisavailableonlineat. 1

PAGE 8

2 CHAPTER1.GLOBALPROCESSES 1.2LandUseChangeandClimateRegulation Theenergysourcethatultimatelydrivestheearth'sclimateisthesun.Theamountofsolarradiation absorbedbytheearthdependsprimarilyonthecharacteristicsofthesurface.Althoughthelinkbetween solarabsorption,thermodynamics,andultimatelyclimateisverycomplex,newerstudiesindicatethat vegetationcoverandseasonalvariationinvegetationcoveraectsclimateonbothglobalandlocalscales. Newgenerationsofatmosphericcirculationmodelsareincreasinglyabletoincorporatemorecomplexdata relatedtotheseparameters Sellersetal.1997 [90].Besidesregulatingtheatmosphere'scomposition,the extentanddistributionofdierenttypesofvegetationovertheglobemodiesclimateinthreemainways: aectingthereectanceofsunlight radiationbalance ; regulatingthereleaseofwatervapor evapotranspiration ;and changingwindpatternsandmoistureloss surfaceroughness Theamountofsolarradiationreectedbyasurfaceisknownasits albedo ;surfaceswithlowalbedoreect asmallamountofsunlight,thosewithhighalbedoreectalargeamount.Dierenttypesofvegetationhave dierentalbedos;foreststypicallyhavelowalbedo,whereasdesertshavehighalbedo.Deciduousforestsare agoodexampleoftheseasonalrelationshipbetweenvegetationandradiationbalance.Inthesummer,the leavesindeciduousforestsabsorbsolarradiationthroughphotosynthesis;inwinter,aftertheirleaveshave fallen,deciduousforeststendtoreectmoreradiation.Theseseasonalchangesinvegetationmodifyclimate incomplexways,bychangingevapotranspirationratesandalbedo IPCC2001 [73]. Vegetationabsorbswaterfromthesoilandreleasesitbackintotheatmospherethrough evapotranspiration ,whichisthemajorpathwaybywhichwatermovesfromthesoiltotheatmosphere.Thisreleaseof waterfromvegetationcoolstheairtemperature.IntheAmazonregion,vegetationandclimateistightly coupled;evapotranspirationofplantsisbelievedtocontributeanestimatedftypercentoftheannual rainfall Salati1987 [85].Deforestationinthisregionleadstoacomplexfeedbackmechanism,reducing evapotranspirationrates,whichleadstodecreasedrainfallandincreasedvulnerabilitytore Lauranceand Williamson2001 [56]. DeforestationalsoinuencestheclimateofcloudforestsinthemountainsofCostaRica.TheMonteverde CloudForestharborsarichdiversityoforganisms,manyofwhicharefoundnowhereelseintheworld. However,deforestationinlower-lyinglands,evenregionsover50kilometersway,ischangingthelocalclimate, leavingthe"cloud"forestcloudless Lawtonetal.2001 [57].Aswindspassoverdeforestedlowlands,clouds areliftedhigher,oftenabovethemountaintops,reducingtheabilityforcloudforeststoform.Removing thecloudsfromacloudforestdriestheforest,soitcannolongersupportthesamevegetationorprovide appropriatehabitatformanyofthespeciesoriginallyfoundthere.Similarpatternsmaybeoccurringin other,lessstudiedmontanecloudforestsaroundtheworld. Dierentvegetationtypesandtopographieshavevarying surfaceroughness ,whichchangetheow ofwindsintheloweratmosphereandinturninuencesclimate.Lowersurfaceroughnessalsotendsto reducesurfacemoistureandincreaseevaporation.Farmersapplythisknowledgewhentheyplanttreesto createwindbreaks Johnsonetal.2003 [50].Windbreaksreducewindspeedandchangethemicroclimate, increasesurfaceroughness,reducesoilerosion,andmodifytemperatureandhumidity.Formanyeldcrops, windbreaksincreaseyieldsandproductioneciency.Theyalsominimizestressonlivestockfromcoldwinds. 1.3SoilandWaterConservation Biodiversityisalsoimportantforglobalsoilandwaterprotection.Terrestrialvegetationinforestsandother uplandhabitatsmaintainwaterqualityandquantity,andcontrolssoilerosion. In watersheds wherevegetationhasbeenremoved,oodingprevailsinthewetseasonanddroughtin thedryseason.Soilerosionisalsomoreintenseandrapid,causingadoubleeect:removingnutrient-rich topsoilandleadingtosiltationindownstreamriverineandultimatelyoceanicenvironments.Thissiltation harmsriverineandcoastalsheriesaswellasdamagingcoralreefs TurnerandRabalais1994 [98]; van Katwijketal.1993 [103].

PAGE 9

3 Oneofthemostproductiveecosystemsonearth, wetlands havewaterpresentatornearthesurfaceof thesoilorwithintherootzone,allyearorforaperiodoftimeduringtheyear,andthevegetationthere isadaptedtotheseconditions.Wetlandsareinstrumentalforthemaintenanceofcleanwateranderosion control.Microbesandplantsinwetlandsabsorbnutrientsandintheprocesslterandpurifywaterof pollutantsbeforetheycanentercoastalorotheraquaticecosystems. Wetlandsalsoreduceood,wave,andwinddamage.Theyretardtheowofoodwatersandaccumulate sedimentsthatwouldotherwisebecarrieddownstreamorintocoastalareas.Wetlandsalsoserveasbreeding groundsandnurseriesforshandsupportthousandsofbirdandotheranimalspecies. 1.4NutrientCycling Nutrientcyclingisyetanothercriticalserviceprovidedbybiodiversityparticularlybymicroorganisms. Fungiandothermicroorganismsinsoilhelpbreakdowndeadplantsandanimals,eventuallyconvertingthis organicmatterintonutrientsthatenrichthesoil Pimenteletal.1995 [75]. Nitrogenisessentialforplantgrowth,andaninsucientquantityofitlimitsplantproductioninboth naturalandagriculturalecosystems.Whilenitrogenisabundantintheatmosphere,onlyafeworganisms commonlyknownasnitrogen-xingbacteriacanuseitinthisform.Nitrogen-xingbacteriaextract nitrogenfromtheair,andtransformitintoammonia,thenotherbacteriafurtherbreakdownthisammonia intonitrogenouscompoundsthatcanbeabsorbedandusedbymostplants.Inadditiontotheirrolein decompositionandhencenutrientcycling,microorganismsalsohelpdetoxifywaste,changingwasteproducts intoformslessharmfultohumans. 1.5PollinationandSeedDispersal Anestimated90percentofoweringplantsdependonpollinatorssuchaswasps,birds,bats,andbees, toreproduce.Plantsandtheirpollinatorsareincreasinglythreatenedaroundtheworld Buchmannand Nabhan1995 [13]; KremenandRicketts2000 [54].Pollinationiscriticaltomostmajorcropsandvirtually impossibletoreplace.Forinstance,imaginehowcostlyfruitwouldbeandhowlittlewouldbeavailableif itsnaturalpollinatorsnolongerexistedandeachdevelopingowerhadtobefertilizedbyhand. Manyanimalspeciesareimportantdispersersofplantseeds.Ithasbeenhypothesizedthattheloss ofaseeddispersercouldcauseaplanttobecomeextinct.Atpresent,thereisnoexamplewherethishas occurred.Afamousexamplethathasoftenbeencitedpreviouslyisthecaseofthedodo Raphuscucullatus andthetambalacoque Sideroxylongrandiorum .Thedodo,alargeightlessbirdthatinhabitedtheisland ofMauritiusintheIndianOcean,becameextinctduetooverhuntinginthelateseventeenthcentury.It wasoncethoughtthatthetambalacoque,anowendangeredtree,dependeduponthedodotogerminateits hard-casedseeds Temple1977 [96].Inthe1970s,only13treesremainedanditwasthoughtthetreehad notreproducedfor300years.Theseedsofthetreehaveaveryhardcoat,asanexperimenttheywerefed toaturkey;afterpassingthroughitsgizzardtheseedswereviableandgerminated.Thisexperimentled scientiststobelievethattheextinctionofthedodowascoupledtothetambalacoque'sinabilitytoreproduce. However,thishypothesishasnotstooduptofurtherscrutiny,astherewereseveralotherspeciesincluding threenowextinctspecies,alarge-billedparrot,agianttortoise,andagiantlizardthatwerealsocapable ofcrackingtheseed WitmarandCheke1991 [111]; Catling2001 [16].Thusmanyfactors,includingthe lossofthedodo,couldhavecontributedtothedeclineofthetambalacoque.Forfurtherdetailsofcauses ofextinctionseeHistoricalPerspectivesonExtinctionandtheCurrentBiodiversityCrisis.Unfortunately, declinesand/orextinctionsofspeciesareoftenunobservedandthusitisdiculttoteaseoutthecause oftheendresult,asmultiplefactorsareoftenoperatingsimultaneously.Similarproblemsexisttodayin understandingcurrentpopulationdeclines.Forexample,inagivenspecies,populationdeclinesmaybe causedbylossofhabitat,lossinpreyspeciesorlossofpredators,acombinationofthesefactors,orpossibly someotheryetunidentiedcause,suchasdisease. InthepineforestsofwesternNorthAmerica,corvidsincludingjays,magpies,andcrows,squirrels,

PAGE 10

4 CHAPTER1.GLOBALPROCESSES andbearsplayaroleinseeddispersal.TheClark'snutcracker Nucifragacolumbiana isparticularlywell adaptedtodispersalofwhitebarkpine Pinusalbicaulis seeds Lanner1996 [55].Thenutcrackerremoves thewinglessseedsfromthecones,whichotherwisewouldnotopenontheirown.Nutcrackershidethe seedsinclumps.Whentheuneatenseedseventuallygrow,theyareclustered,accountingforthetypical distributionpatternofwhitebarkpineintheforest. Intropicalareas,largemammalsandfrugivorousbirdsplayakeyroleindispersingtheseedsoftreesand maintainingtreediversityoverlargeareas.Forexample,three-wattledbellbirds Procniastricarunculata areimportantdispersersoftreeseedsofmembersoftheLauraceaefamilyinCostaRica.Becausebellbirds returnagainandagaintooneormorefavoriteperches,theytakethefruitanditsseedsawayfromthe parenttree,spreadingLauraceaetreesthroughouttheforest WennyandLevy1998 [107].

PAGE 11

Chapter2 DenitionofBiodiversity 1 Biodiversity,acontractionofthephrase"biologicaldiversity,"isacomplextopic,coveringmanyaspects ofbiologicalvariation.Inpopularusage,theword biodiversity isoftenusedtodescribeallthespecies livinginaparticulararea.Ifweconsiderthisareaatitslargestscale-theentireworld-thenbiodiversity canbesummarizedas"lifeonearth."However,scientistsuseabroaderdenitionofbiodiversity,designed toincludenotonlylivingorganismsandtheircomplexinteractions,butalsointeractionswiththeabiotic non-livingaspectsoftheirenvironment.Denitionsemphasizingoneaspectoranotherofthisbiological variationcanbefoundthroughoutthescienticandlayliteraturesee Gaston,1996:Table1.1 [32].Forthe purposesofthismodule, biodiversity isdenedas: thevarietyoflifeonEarthatallitslevels,fromgenestoecosystems,andtheecologicaland evolutionaryprocessesthatsustainit. Geneticdiversityisthefundamentalcurrencyofdiversity WilliamsandHumphires,1996 [110]thatis responsibleforvariationbetweenindividuals,populationsandspecies.Therefore,itisanimportantaspect ofanydiscussionofbiodiversity.Theinteractionsbetweentheindividualorganisms e.g. ,reproductive behavior,predation,parasitismofapopulationorcommunity,andtheirspecializationsfortheirenvironment includingwaysinwhichtheymightmodifytheenvironmentitselfareimportantfunctionalaspectsof biodiversity.Thesefunctionalaspectscandeterminethediversityofdierentcommunitiesandecosystems. Thereisalsoanimportantspatialcomponenttobiodiversity.Thestructureofcommunitiesandecosystems e.g. thenumberofindividualsandspeciespresentcanvaryindierentpartsoftheworld.Similarly, thefunctionofthesecommunitiesandecosystems i.e. theinteractionsbetweentheorganismspresentcan varyfromoneplacetoanother.Dierentassemblagesofecosystemscancharacterizequitediverselandscapes,coveringlargeareas.Thesespatialpatternsofbiodiversityareaectedbyclimate,geology,and physiography RedfordandRichter,1999 [79]. Thestructural,functional,andspatialaspectsofbiodiversitycanvaryovertime;thereforethereisatemporalcomponenttotheanalysisofbiodiversity.Forexample,therecanbedaily,seasonal,orannualchanges inthespeciesandnumberoforganismspresentinanecosystemandhowtheyinteract.Someecosystems changeinsizeorstructureovertime e.g. forestecosystemsmaychangeinsizeandstructurebecauseof theeectsofnaturalres,wetlandsgraduallysiltupanddecreaseinsize.Biodiversityalsochangesover alonger-term,evolutionary,time-scale.Geologicalprocesses e.g. platetectonics orogenesis ,erosion, changesinsea-levelmarinetransgressionsandregressions,andchangesinclimatecausesignicant,longtermchangestothestructuralandspatialcharacteristicsofglobalbiodiversity.Theprocessesofnatural selectionandspeciesevolution,whichmayoftenbeassociatedwiththegeologicalprocesses,alsoresultin changestolocalandglobaloraandfauna. Manypeopleconsiderhumanstobeapartofnature,andthereforeapartofbiodiversity.Ontheother hand,somepeople e.g. RedfordandRichter,1999 [79]connebiodiversitytonaturalvarietyandvariability, 1 Thiscontentisavailableonlineat. 5

PAGE 12

6 CHAPTER2.DEFINITIONOFBIODIVERSITY excludingbioticpatternsandecosystemsthatresultfromhumanactivity,eventhoughitisdiculttoassess the"naturalness"ofanecosystembecausehumaninuenceissopervasiveandvaried Hunter,1996 [40]; Angermeier,2000 [2]; Sandersonetal.,2002 [86].Ifonetakeshumansaspartofnature,thenculturaldiversity ofhumanpopulationsandthewaysthatthesepopulationsuseorotherwiseinteractwithhabitatsandother speciesonEarthareacomponentofbiodiversitytoo.Otherpeoplemakeacompromisebetweentotally includingorexcludinghumanactivitiesasapartofbiodiversity.Thesebiologistsdonotacceptallaspectsof humanactivityandcultureaspartofbiodiversity,buttheydorecognizethattheecologicalandevolutionary diversityofdomesticspecies,andthespeciescompositionandecologyofagriculturalecosystemsarepart ofbiodiversity.ForfurtherdiscussionseethemodulesonHumanevolutionandCulturalDiversity;in preparation.

PAGE 13

Chapter3 SpatialGradientsinBiodiversity 1 Generallyspeaking,warmtropicalecosystemsarericherinspeciesthancoldtemperateecosystemsathigh latitudessee GastonandWilliams,1996 [34],forgeneraldiscussion.Asimilarpatternisseenforhigher taxonomicgroupsgenera,families.Varioushypotheses e.g. ,environmentalpatchiness,solarenergy,productivity;see BlackburnandGaston,1996 [11]havebeenraisedtoexplainthesepatterns.Forexample,it isassumedthatwarm,moist,tropicalenvironments,withlongday-lengthsprovideorganismswithmoreresourcesforgrowthandreproductionthanharshenvironmentswithlowenergyresources Hunter,2002 [41]. Whenenvironmentalconditionsfavorthegrowthandreproductionofprimaryproducers e.g. ,aquaticalgae, corals,terrestrialorathenthesemaysupportlargenumbersofsecondaryconsumers,suchassmallherbivores,whichalsosupportamorenumerousanddiversefaunaofpredators.Incontrast,thedevelopment ofprimaryproducersincoldertemperateecosystemsisconstrainedbyseasonalchangesinsunlightand temperature.Consequently,theseecosystemsmaysupportalessdiversebiotaofsecondaryconsumersand predators. Recently, Allenetal.2002 [1]developedamodelfortheeectofambienttemperatureonmetabolism, andhencegenerationtimeandspeciationrates,andusedthismodeltoexplainthelatitudinalgradientin biodiversity.However,theseauthorsalsonotedthattheprinciplesthatunderliethesespatialpatternof biodiversityarestillnotwellunderstood. Speciesandecosystemdiversityisalsoknowntovarywithaltitude Walter [105]and Gastonand Williams:214-215 [34].Mountainousenvironments,alsocalled orobiomes ,aresubdividedvertically intoaltitudinalbelts,suchasmontane,alpineandnival,thathavequitedierent ecosystems .Climatic conditionsathigherelevations e.g. ,lowtemperatures,highariditycancreateenvironmentswhererelatively fewspeciescansurvive.Similarly,inoceansandfreshwatersthereareusuallyfewerspeciesasonemovesto increasingdepthsbelowthesurface.However,intheoceanstheremaybeariseinspeciesrichnesscloseto theseabed,whichisassociatedwithanincreaseinecosystemheterogeneity. Bymappingspatialgradientsinbiodiversitywecanalsoidentifyareasofspecialconservationinterest. Conservationbiologistsareinterestedinareasthathaveahighproportionof endemicspecies i.e. ,species whosedistributionsarenaturallyrestrictedtoalimitedarea.Itisobviouslyimportanttoconservethese areasbecausemuchoftheiroraandfauna,andthereforetheecosystemsso-formed,arefoundnowhere else.Areasofhighendemismarealsooftenassociatedwithhigh speciesrichness see GastonandSpicer, 1998 [33]forreferences. Someconservationbiologistshavefocusedtheirattentiononareasthathavehighlevelsofendemismand hencediversitythatarealsoexperiencingahighrateoflossofecosystems;theseregionsare biodiversity hotspots .Becausebiodiversityhotspotsarecharacterizedbylocalizedconcentrationsofbiodiversityunder threat,theyrepresentprioritiesforconservationaction Sechrestetal.,2002 [89].A terrestrialbiodiversityhotspot isdenedquantitativelyasanareathathasatleast0.5%,or1,500oftheworld'sca.300,000 speciesofgreenplants Viridiplantae ,andthathaslostatleast70%ofitsprimaryvegetation Myerset 1 Thiscontentisavailableonlineat. 7

PAGE 14

8 CHAPTER3.SPATIALGRADIENTSINBIODIVERSITY al.,2000 [70]; ConservationInternational,2002 [46]. Marinebiodiversityhotspots arequantitatively denedbasedonmeasurementsofrelativeendemismofmultipletaxaspeciesofcorals,snails,lobsters, sheswithinaregionandtherelativelevelofthreattothatregion Robertsetal.,2002 [81].According tothisapproach,thePhilippinearchipelagoandtheislandsofBioko,SaoTome,PrincipeandAnnobonin theeasternAtlanticGulfofGuineaarerankedastwoofthemostthreatenedmarinebiodiversityhotspot regions. Conservationbiologistsmayalsobeinterestedin biodiversitycoldspots ;theseareareasthathave relativelylowbiologicaldiversitybutalsoincludethreatenedecosystems KareivaandMarvier,2003 [51]. Althoughabiodiversitycoldspotislowinspeciesrichness,itcanalsobeimportanttoconserve,asitmaybe theonlylocationwhereararespeciesisfound.Extremephysicalenvironmentsloworhightemperatures orpressures,orunusualchemicalcompositioninhabitedbyjustoneortwospeciallyadaptedspeciesare coldspotsthatwarrantconservationbecausetheyrepresentuniqueenvironmentsthatarebiologicallyand physicallyinteresting.Forfurtherdiscussiononspatialgradientsinbiodiversityandassociatedconservation practicesseetherelatedmoduleson"Whereistheworld'sbiodiversity?"and"ConservationPlanningata RegionalScale."

PAGE 15

Chapter4 IntroductiontotheBiodiversity Hierarchy 1 Toeectivelyconservebiodiversity,weneedtobeabletodenewhatwewanttoconserve,determinewhere itcurrentlyoccurs,identifystrategiestohelpconserveit,andtrackovertimewhetherornotthesestrategies areworking.Therstoftheseitems,deningwhatwewanttoconserve,iscomplicatedbytheremarkable diversityoftheorganismsthemselves.Thisisaproductofthe geneticdiversity oftheorganisms,thatis, variationintheDNAdeoxyribonucleicacidthatmakesupthegenesoftheorganisms. Geneticdiversityamongorganismsexistsatthefollowingdierentlevels: withinasingleindividual; betweendierentindividualsofasinglepopulation; betweendierentpopulationsofasinglespecies populationdiversity ; betweendierentspecies speciesdiversity Itcanbedicult,insomecases,toestablishtheboundariesbetweentheselevelsofdiversity.For example,itmaybediculttointerpretwhethervariationbetweengroupsofindividualsrepresentsdiversity betweendierentspecies,orrepresentsdiversityonlybetweendierentpopulationsofthesamespecies. Nevertheless,ingeneralterms,theselevelsofgeneticdiversityformaconvenienthierarchyfordescribing theoveralldiversityoforganismsonEarth. Similarly,thefunctionalandspatialaspectsofbiodiversitycanalsobediscussedatanumberofdierent levels;forexample,diversitywithinorbetween communities ecosystems landscapes ,biogeographical regions,and ecoregions 1 Thiscontentisavailableonlineat. 9

PAGE 16

10 CHAPTER4.INTRODUCTIONTOTHEBIODIVERSITYHIERARCHY

PAGE 17

Chapter5 WhatisBiodiversity?Acomparisonof spidercommunities 1 5.1Objectives Toexplorethroughclassicationoflifeformstheconceptofbiologicaldiversityasitoccursatvarious taxonomiclevels. 5.2Procedures Spidersareahighlyspeciesrichgroupofinvertebratesthatexploitawidevarietyofnichesinvirtually alltheearth'sbiomes.Somespeciesofspidersbuildelaboratewebsthatpassivelytraptheirpreywhereas othersareactivepredatorsthatambushorpursuetheirprey.Givenspiders'taxonomicdiversityaswellas thevarietyofecologicalnichesbreadthalongwiththeeaseofcatchingthem,spiderscanrepresentuseful, fairlyeasilymeasuredindicatorsofenvironmentalchangeandcommunityleveldiversity. Thisexercisefocusesonclassifyingandanalyzingspidercommunitiestoexploretheconceptofbiological diversityandexperienceitsapplicationtodecisionmakinginbiologicalconservation.Theexercisecanbe undertakeninthreeparts,dependingonyourinterestlevel. Level -Youwillgainexperienceinclassifyingorganismsbysortingahypotheticalcollectionof spidersfromaforestpatchanddeterminingifthespidercollectionisadequatetoaccuratelyrepresent theoveralldiversityofspiderspresentintheforestpatch. Level -Ifyouwishtoexplorefurther,youcansortspidercollectionsmadeatfourotherforest patchesinthesameregionandcontrastspidercommunitiesintermsoftheirspeciesrichness,species diversity,andcommunitysimilarity.Youwillapplythisinformationtomakedecisionsaboutthe prioritythatshouldbegiventoprotectingeachforestpatchinordertoconservetheregionalpoolof spiderdiversity. Level -Ifyouwishtoexploretheconceptsofbiodiversityyetfurther,youwillnexttakeinto accounttheevolutionaryrelationshipsamongthefamiliesofspiderscollected.Thisphylogenetic perspectivewillaugmentyourdecisionmakingaboutprioritiesforpatchprotectionbyaccounting forevolutionarydistinctivenessinadditiontodiversityanddistinctivenessatthecommunitylevel. Onceyouhaveworkedthroughtheseconceptsandanalysesyouwillhaveamuchenhancedfamiliaritywith thesubtletiesofwhatbiologicaldiversityis. 1 Thiscontentisavailableonlineat. 11

PAGE 18

12 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES 5.3Level1:SortingandClassifyingaSpiderCollectionandAssessingitsComprehensiveness Obtainapapercopyofthespidercollectionforforestpatch"1."Thespiderswerecapturedbyabiologist travelingalongtransectsthroughthepatchandstrikingarandomseriesof100treebranches.Allspiders dislodgedthatfellontoanoutstretchedsheetwerecollectedandpreservedinalcohol.Theyhavesincebeen spreadoutonatrayforyoutoexamine.Thespidercollectionishypotheticalbutthespeciespicturedare actualspidersthatoccurincentralAfricaillustrationsusedarefrom Berland1955 [9]. Thenexttaskisforyoutosortandidentifythespiders.Todothisyouhavetoidentifyallthespecimens inthecollection.Toclassifythespiderslookforexternalcharactersthatallmembersofaparticulargroupof spidershaveincommonbutthatarenotsharedbyothergroupsofspiders.Forexample,leglength,hairiness, relativesizeofbodysegments,orabdomenpatterningandabdomenshapeallmightbeusefulcharacters. Lookforgroupsofmorphologicallyindistinguishablespiders,anddescribebrieythesetofcharactersunique toeachgroup.Theseoperationaltaxonomicunitsthatyoudenewillbeconsideredseparatespecies.To assistyouinclassifyingtheseorganisms,adiagramofkeyexternalmorphologicalcharactersofbeetlesis providedFigure5.1.Notethatmostspideridenticationdependsoncloseexaminationofspidergenitalia. Forthisexercise,however,wewillbeexamininggrossexternalcharacteristicsofmorphologicallydissimilar species.

PAGE 19

13 Figure5.1: Basicexternalcharacteristicsofspidersusefulforidentifyingindividualstospecies. Assigneachspeciesaworkingname,preferablysomethingdescriptive.Forexample,youmightcalla particularspecies"spottedabdomen,veryhairy"or"shortlegs,spikyabdomen"Justrememberthatthe moreusefulnameswillbethosethatsignifytoyousomethinguniqueaboutthespecies.Constructatable listingeachspecies,itsdistinguishingcharacteristics,thenameyouhaveappliedtoit,andthenumberof occurrencesofthespeciesinthecollectionFigure5.2.

PAGE 20

14 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES Figure5.2

PAGE 21

15 Last,askwhetherthiscollectionadequatelyrepresentsthetruediversityofspidersintheforestpatch atthetimeofcollection.Weremostofthespeciespresentsampledorweremanylikelymissed?Thisis alwaysanimportantquestiontoasktoensurethatthesamplewasadequateandhencecanbelegitimately contrastedamongsitesto,forexample,assignareasaslowversushighdiversitysites. Todothisyouwillperformasimplebutinformativeanalysisthatisstandardpracticeforconservation biologistswhodobiodiversitysurveys.Thisanalysisinvolvesconstructingaso-called collector'scurve ColwellandCoddington1994 [18].Theseplotthecumulativenumberofspeciesobservedy-axisagainst thecumulativenumberofindividualsclassiedx-axis.Thecollector'scurveisanincreasingfunctionwith aslopethatwilldecreaseasmoreindividualsareclassiedandasfewerspeciesremaintobeidentied Figure5.3.Ifsamplingstopswhilethecollector'scurveisstillrapidlyincreasing,samplingisincomplete andmanyspecieslikelyremainundetected.Alternatively,iftheslopeofthecollector'scurvereacheszero attensout,samplingislikelymorethanadequateasfewtononewspeciesremainundetected. Figure5.3: Anexampleofacollectorscurve.Cumulativesamplesizerepresentsthenumberof individualsclassied.Thecumulativenumberoftaxasampledreferstothenumberofnewspecies detected. Toconstructthecollector'scurveforthisspidercollection,chooseaspecimenwithinthecollectionat random.Thiswillbeyourrstdatapoint,suchthat X =1 and Y =1 becauseafterexaminingthe rstindividualyouhavealsoidentiedonenewspecies!Nextmoveconsistentlyinanydirectiontoanew specimenandrecordwhetheritisamemberofanewspecies.Inthisnextstep, X =2 ,but Y mayremain as1ifthenextindividualisnotofanewspeciesoritmaychangeto2iftheindividualrepresentsanew speciesdierentfromindividual1.Repeatthisprocessuntilyouhaveproceededthroughall50specimens andconstructthecollector'scurvefromthedataobtainedjustplot Y versus X .Doesthecurveatten out?Ifso,afterhowmanyindividualspidershavebeencollected?Ifnot,isthecurvestillincreasing?What

PAGE 22

16 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES canyouconcludefromtheshapeofyourcollector'scurveastowhetherthesampleofspidersisanadequate characterizationofspiderdiversityatthesite? 5.4Level2:Contrastingspiderdiversityamongsitestoprovidea basisforprioritizingconservationeorts Inthispartoftheexerciseyouareprovidedwithspidercollectionsfrom4otherforestpatches.Theforest patcheshaveresultedfromfragmentationofaoncemuchlarger,continuousforest.Youwillusethespider diversityinformationtoprioritizeeortsforthevedierentforestpatchesincludingthedatafromthe rstpatchwhichyouhavealreadyclassied.Herearetheadditionalspidercollections:SeeFigure5.4, Figure5.5,Figure5.6,andFigure5.7

PAGE 23

17 Figure5.4

PAGE 24

18 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES Figure5.5

PAGE 25

19 Figure5.6

PAGE 26

20 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES Figure5.7 Again,tallyhowmanyindividualsbelongingtoeachspeciesoccurineachsite'sspidercollectionuse yourclassicationofspiderscompletedforSite1Figure5.2duringLevel1oftheexercise.Specically,

PAGE 27

21 constructatableofspeciesrowsbysitecolumns.Inthetable'scellsputthenumberofindividuals ofeachspeciesyoufoundinthecollectionfromtheisland.Youcanthenanalyzethesedatatogenerate dierentmeasuresofcommunitycharacteristicstohelpyoutodecidehowtoprioritizeprotectionofthe forestpatches.Recallthatyouneedtorankthepatchesintermsofwhereprotectioneortsshouldbe applied,andyouneedtoprovidearationaleforyourranking. Youwillnditmostusefultobaseyourdecisionsonthreecommunitycharacteristics:speciesrichness andspeciesdiversitywithineachforestpatch,andthesimilarityofspidercommunitiesbetweenpatches. Speciesrichnessissimplythetallyofdierentspiderspeciesthatwerecollectedinaforestpatch.Species diversityisamorecomplexconcept.WewilluseastandardindexcalledSimpsonReciprocalIndex, 1 D where D iscalculatedasfollows: D = X )]TJ/F11 9.9626 Tf 4.566 -8.07 Td [(p i 2 where p i =thefractionalabundanceofthe i th speciesonanisland.Forexample,ifyouhadasampleof twospecieswithveindividualseach, D = 1 0 : 5 2 +0 : 5 2 =2 .Thehigherthevalue,thegreaterthediversity. Themaximumvalueisthenumberofspeciesinthesample,whichoccurswhenallspeciescontainanequal numberofindividuals.Becausethisindexnotonlyreectsthenumberofspeciespresentbutalsotherelative distributionofindividualsamongspecieswithinacommunityitcanreecthowbalancedcommunitiesare intermsofhowindividualsaredistributedacrossspecies.Asaresult,twocommunitiesmayhaveprecisely thesamenumberofspecies,andhencespeciesrichness,butsubstantiallydierentdiversitymeasuresif individualsinonecommunityareskewedtowardafewofthespecieswhereasindividualsaredistributed moreevenlyintheothercommunity. Diversityisonething,distinctivenessisquiteanother.Thusanotherimportantperspectiveinranking sitesishowdierentthecommunitiesarefromoneanother.Wewillusethesimplestavailablemeasure ofcommunitysimilarity,thatis,theJaccardcoecientofcommunitysimilarity,tocontrastcommunity distinctivenessbetweenallpossiblepairsofsites: CC j = c S where c isthenumberofspeciescommontobothcommunitiesand S isthetotalnumberofspeciespresent inthetwocommunities.Forexample,ifonesitecontainsonly2speciesandtheothersite2species,oneof whichisheldincommonbybothsites,thetotalnumberofspeciespresentis3andthenumbersharedis 1,so 1 = 3=33 %.Thisindexrangesfrom0whennospeciesarefoundincommonbetweencommunities to1whenallspeciesarefoundinbothcommunities.Calculatethisindextocompareeachpairofsites separately,thatis,compareSite1Figure5.2withSite2Figure5.4,Site1Figure5.2withSite3 Figure5.5, ::: ,Site4Figure5.6withSite5Figure5.7for10totalcomparisons.Youmightndit usefultodeterminetheaveragesimilarityofonecommunitytoalltheothers,byaveragingthe CC j values acrosseachcomparisonaparticularsiteisincluded. OnceyouhavemadethesecalculationsofdiversityspeciesrichnessandSimpson'sReciprocalIndex youcantackletheprimaryquestionoftheexercise:Howshouldyourankthesesitesforprotectionand why?Makinganinformeddecisionrequiresreconcilingyouranalysiswithconceptsofbiologicaldiversityas itpertainstodiversityanddistinctiveness.Whatdoyourecommend? 5.5Level3:Consideringevolutionarydistinctiveness Whencontrastingpatternsofspeciesdiversityandcommunitydistinctiveness,wetypicallytreateachspecies asequallyimportant,yetarethey?Whatifaspecies-poorareaactuallyisquiteevolutionarilydistinctfrom others?Similarly,whatifyourmostspecies-richsiteiscomprisedofaswarmofspeciesthathaveonlyrecently divergedfromoneanotherandarequitesimilartospeciespresentatanothersite?Thesequestionsallude toissuesofbiologicaldiversityathighertaxonomiclevels.Onlybylookingattheunderlyingevolutionary relationshipsamongspeciescanwegainthisadditionalperspective.WehaveprovidedinFigure5.8a phylogenyofthespiderfamiliesthatoccurinyourcollectionsagenuinephylogenyforthesefamiliesbasedin

PAGE 28

22 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES largeparton CoddingtonandLevi1991 [17].Inbrief,themorecloselyrelatedfamiliesandspeciestherein arelocatedonmoreproximalbrancheswithinthephylogeny.Basedontheevolutionaryrelationshipsamong thesefamilies,willyoumodifyanyoftheconclusionsyoumadeonprioritizingforestpatchesforprotection basedonpatternsofspeciesdiversityalone?Ifso,why?

PAGE 29

23 Figure5.8

PAGE 30

24 CHAPTER5.WHATISBIODIVERSITY?ACOMPARISONOFSPIDER COMMUNITIES

PAGE 31

Chapter6 SpeciesDiversity 1 Strictlyspeaking, speciesdiversity isthenumberofdierentspeciesinaparticulararea speciesrichness weightedbysomemeasureofabundancesuchasnumberofindividualsorbiomass.However,itis commonforconservationbiologiststospeakofspeciesdiversityevenwhentheyareactuallyreferringto speciesrichness. Anothermeasureofspeciesdiversityisthe speciesevenness ,whichistherelativeabundancewith whicheachspeciesisrepresentedinanarea.An ecosystem whereallthespeciesarerepresentedbythe samenumberofindividualshashighspeciesevenness.Anecosystemwheresomespeciesarerepresentedby manyindividuals,andotherspeciesarerepresentedbyveryfewindividualshasalowspeciesevenness.Table 6.1:EstimatedNumbersofDescribedSpecies,BasedonLecointreandGuyadershowstheabundance ofspeciesnumberofindividualsperhectareinthreeecosystemsandgivesthemeasuresofspeciesrichness S,evennessE,andtheShannondiversityindexH. Shannon'sdiversityindex H = )]TJ/F8 9.9626 Tf 9.409 0 Td [( P i ln i i istheproportionofthetotalnumberofspecimens i expressedasaproportionofthetotalnumber ofspeciesforallspeciesintheecosystem.Theproductof i ln i foreachspeciesintheecosystemis summed,andmultipliedby )]TJ/F8 9.9626 Tf 7.749 0 Td [(1 togive H .Thespeciesevennessindex E iscalculatedas E = H H max H max isthemaximumpossiblevalueof H ,andisequivalentto ln S .Thus E = H ln S See Gibbsetal.,1998:p157 [35]and Bealsetal. [8]fordiscussionandexamples. Magurran [61] alsogivesdiscussionofthemethodsofquantifyingdiversity. InTable6.1:EstimatedNumbersofDescribedSpecies,BasedonLecointreandGuyader,ecosystemAshowsthegreatestdiversityintermsofspeciesrichness.However,ecosystemBcouldbedescribedas being richer insofarasmostspeciespresentaremoreevenlyrepresentedbynumbersofindividuals;thusthe speciesevennessEvalueislarger.Thisexamplealsoillustratesaconditionthatisoftenseenintropical ecosystems,wheredisturbanceoftheecosystemcausesuncommonspeciestobecomeevenlesscommon,and commonspeciestobecomeevenmorecommon.DisturbanceofecosystemBmayproduceecosystemC, wheretheuncommonspecies3hasbecomelesscommon,andtherelativelycommonspecies1hasbecome morecommon.Theremayevenbeanincreaseinthenumberofspeciesinsomedisturbedecosystemsbut,as notedabove,thismayoccurwithaconcomitantreductionintheabundanceofindividualsorlocalextinction oftherarerspecies. Speciesrichnessandspeciesevennessareprobablythemostfrequentlyusedmeasuresofthetotalbiodiversityofaregion.Speciesdiversityisalsodescribedintermsofthe phylogeneticdiversity ,orevolutionary relatedness,ofthespeciespresentinanarea.Forexample,someareasmayberichincloselyrelatedtaxa, havingevolvedfromacommonancestorthatwasalsofoundinthatsamearea,whereasotherareasmay haveanarrayoflesscloselyrelatedspeciesdescendedfromdierentancestorsseefurthercommentsinthe sectiononSpeciesdiversityasasurrogateforglobalbiodiversityp.27. 1 Thiscontentisavailableonlineat. 25

PAGE 32

26 CHAPTER6.SPECIESDIVERSITY Tocountthenumberofspecies,wemustdenewhatconstitutesaspecies.Thereareseveralcompeting theories,or"speciesconcepts" Mayden,1997 [62].Themostwidelyacceptedarethemorphologicalspecies concept,thebiologicalspeciesconcept,andthephylogeneticspeciesconcept. Althoughthe morphologicalspeciesconcept MSCislargelyoutdatedasatheoreticaldenition,it isstillwidelyused.Accordingtothisconcept: speciesarethesmallestgroupsthatareconsistentlyandpersistentlydistinct,anddistinguishable byordinarymeans.Cronquist,1978 [ ? ] Inotherwords, morphologicalspeciesconcept statesthat"aspeciesisacommunity,oranumberofrelatedcommunities,whosedistinctivemorphologicalcharactersare,intheopinionofacompetentsystematist, sucientlydenitetoentitleit,orthem,toaspecicname" Regan,1926:75 [80]. The biologicalspeciesconcept BSC,asdescribedby MayrandAshlock [64],statesthat "aspeciesisagroupofinterbreedingnaturalpopulationsthatisreproductivelyisolatedfrom othersuchgroups". Accordingtothe phylogeneticspeciesconcept PSC,asdenedby Cracraft [19],aspecies: "isthesmallestdiagnosableclusterofindividualorganism[thatis,theclusteroforganismsare identiablydistinctfromotherclusters]withinwhichthereisaparentalpatternofancestryand descent". Theseconceptsarenotcongruent,andconsiderabledebateexistsabouttheadvantagesanddisadvantages ofallexistingspeciesconceptsforfurtherdiscussion,seethemoduleonMacroevolution:essentialsof systematicsandtaxonomy. Inpractice,systematistsusuallygroupspecimenstogetheraccordingtosharedfeaturesgenetic,morphological,physiological.Whentwoormoregroupsshowdierentsetsofsharedcharacters,andtheshared charactersforeachgroupallowallthemembersofthatgrouptobedistinguishedrelativelyeasilyandconsistentlyfromthemembersofanothergroup,thenthegroupsareconsidereddierentspecies.Thisapproach reliesontheobjectivityofthephylogeneticspeciesconcept i.e. ,theuseofintrinsic,shared,charactersto deneordiagnoseaspeciesandappliesittothepracticalityofthemorphologicalspeciesconcept,interms ofsortingspecimensintogroups Kottelat,1995 [52], 1997 [53]. Despitetheirdierences,allspeciesconceptsarebasedontheunderstandingthatthereareparameters thatmakeaspeciesadiscreteandidentiableevolutionaryentity.Ifpopulationsofaspeciesbecome isolated,eitherthroughdierencesintheirdistribution i.e. ,geographicisolationorthroughdierencesin theirreproductivebiology i.e. ,reproductiveisolation,theycandiverge,ultimatelyresultinginspeciation. Duringthisprocess,weexpecttoseedistinctpopulationsrepresenting incipientspecies -speciesin theprocessofformation.Someresearchersmaydescribetheseassubspeciesorsomeothersub-category, accordingtothespeciesconceptusedbytheseresearchers.However,itisverydiculttodecidewhena populationissucientlydierentfromotherpopulationstomerititsrankingasasubspecies.Forthese reasons,subspecicandinfrasubspecicranksmaybecomeextremelysubjectivedecisionsofthedegreeof distinctivenessbetweengroupsoforganisms Kottelat,1997 [53]. An evolutionarysignicantunit ESUisdened,inconservationbiology,asagroupoforganisms thathasundergonesignicantgeneticdivergencefromothergroupsofthesamespecies.Accordingto Ryder, 1986 [84]identicationofESUsrequirestheuseofnaturalhistoryinformation,rangeanddistributiondata, andresultsfromanalysesofmorphometrics,cytogenetics,allozymesandnuclearandmitochondrialDNA. Inpractice,manyESUsarebasedononlyasubsetofthesedatasources.Nevertheless,itisnecessary tocomparedatafromdierentsources e.g. ,analysesofdistribution,morphometrics,andDNAwhen establishingthestatusofESUs.IftheESUsarebasedonpopulationsthatare sympatric or parapatric thenitisparticularlyimportanttogiveevidenceofsignicantgeneticdistancebetweenthosepopulations. ESUsareimportantforconservationmanagementbecausetheycanbeusedtoidentifydiscretecomponentsoftheevolutionarylegacyofaspeciesthatwarrantconservationaction.Nevertheless,inevolutionary termsandhenceinmanysystematicstudies,speciesarerecognizedastheminimumidentiableunitof

PAGE 33

27 biodiversityabovethelevelofasingleorganism Kottelat,1997 [53].ThusthereisgenerallymoresystematicinformationavailableforspeciesdiversitythanforsubspeciccategoriesandforESUs.Consequently, estimatesofspeciesdiversityareusedmorefrequentlyasthestandardmeasureofoverallbiodiversityofa region. 6.1SpeciesDiversityasaSurrogateforGlobalBiodiversity GlobalbiodiversityisfrequentlyexpressedasthetotalnumberofspeciescurrentlylivingonEarth, i.e. itsspeciesrichness.Betweenabout1.5and1.75millionspecieshavebeendiscoveredandscientically describedthusfar LeCointreandGuyader,2001 [58]; Cracraft,2002 [20].Estimatesforthenumberof scienticallyvalidspeciesvarypartlybecauseofdieringopinionsonthedenitionofaspecies.Forexample, thephylogeneticspeciesconceptrecognizesmorespeciesthanthebiologicalspeciesconcept.Also,some scienticdescriptionsofspeciesappearinold,obscure,orpoorlycirculatedpublications.Inthesecases, scientistsmayaccidentallyoverlookcertainspecieswhenpreparinginventoriesofbiota,causingthemto describeandnameanalreadyknownspecies. Moresignicantly,somespeciesareverydiculttoidentify.Forexample,taxonomically"crypticspecies" lookverysimilartootherspeciesandmaybemisidentiedandhenceoverlookedasbeingadierentspecies. Thus,severaldierent,butsimilar-lookingspecies,identiedasasinglespeciesbyonescientist,areidentied ascompletelydierentspeciesbyanotherscientist.Forfurtherdiscussionofcrypticspecies,withspecic examplesofcrypticfrogsfromVietnam,see Inger [45]and Bainetal.,inpress [7]. Scientistsexpectthatthescienticallydescribedspeciesrepresentonlyasmallfractionofthetotalnumber ofspeciesonEarthtoday.Manyadditionalspecieshaveyettobediscovered,orareknowntoscientists buthavenotbeenformallydescribed.ScientistsestimatethatthetotalnumberofspeciesonEarthcould rangefromabout3.6millionupto117.7million,with13to20millionbeingthemostfrequentlycitedrange Hammond,1995 [37]; Cracraft,2002 [20]. Theestimationoftotalnumberofspeciesisbasedonextrapolationsfromwhatwealreadyknowabout certaingroupsofspecies.Forexample,wecanextrapolateusingtheratioofscienticallydescribedspeciesto undescribedspeciesofaparticulargroupoforganismscollectedfromaprescribedarea.However,weknowso littleaboutsomegroupsoforganisms,suchasbacteriaandsometypesoffungi,thatwedonothavesuitable baselinedatafromwhichwecanextrapolateourestimatedtotalnumberofspeciesonEarth.Additionally, somegroupsoforganismshavenotbeencomprehensivelycollectedfromareaswheretheirspeciesrichness islikelytoberichestforexample,insectsintropicalrainforests.Thesefactors,andthefactthatdierent peoplehaveuseddierenttechniquesanddatasetstoextrapolatethetotalnumberofspecies,explainthe largerangebetweenthelowerandupperguresof3.6millionand117.7million,respectively. WhileitisimportanttoknowthetotalnumberofspeciesofEarth,itisalsoinformativetohavesome measureoftheproportionalrepresentationofdierentgroupsofrelatedspecies e.g. bacteria,owering plants,insects,birds,mammals.Thisisusuallyreferredtoasthetaxonomicorphylogeneticdiversity. Speciesaregroupedtogetheraccordingtosharedcharacteristicsgenetic,anatomical,biochemical,physiological,orbehavioralandthisgivesusaclassicationofthespeciesbasedontheirphylogenetic,or apparentevolutionaryrelationships.Wecanthenusethisinformationtoassesstheproportionofrelated speciesamongthetotalnumberofspeciesonEarth.Table6.1:EstimatedNumbersofDescribedSpecies, BasedonLecointreandGuyadercontainsaselectionofwell-knowntaxa.

PAGE 34

28 CHAPTER6.SPECIESDIVERSITY EstimatedNumbersofDescribedSpecies,BasedonLecointreandGuyader Taxon TaxonCommon Name Numberofspecies described* Naspercentageof totalnumberofdescribedspecies* Bacteria truebacteria 9021 0.5 Archaea archaebacteria 259 0.01 Bryophyta mosses 15000 0.9 Lycopodiophyta clubmosses 1275 0.07 Filicophyta ferns 9500 0.5 Coniferophyta conifers 601 0.03 Magnoliophyta oweringplants 233885 13.4 Fungi fungi 100800 5.8 "Porifera" sponges 10000 0.6 Cnidaria cnidarians 9000 0.5 Rotifera rotifers 1800 0.1 Platyhelminthes atworms 13780 0.8 Mollusca mollusks 117495 6.7 Annelida annelidworms 14360 0.8 Nematoda nematodeworms 20000 1.1 Arachnida arachnids 74445 4.3 Crustacea crustaceans 38839 2.2 Insecta insects 827875 47.4 Echinodermata echinoderms 6000 0.3 Chondrichthyes cartilaginousshes 846 0.05 Actinopterygii ray-nnedbonyshes 23712 1.4 Lissamphibia livingamphibians 4975 0.3 Mammalia mammals 4496 0.3 Chelonia livingturtles 290 0.02 Squamata lizardsandsnakes 6850 0.4 continuedonnextpage

PAGE 35

29 Aves birds 9672 0.6 Other 193075 11.0 Table6.1 :*Thetotalnumberofdescribedspeciesisassumedtobe1,747,851.Thisgure,andthe numbersofspeciesfortaxaaretakenfrom LeCointreandGuyader [58]. Mostpublicattentionisfocusedonthebiologyandecologyoflarge,charismaticspeciessuchasmammals, birds,andcertainspeciesoftrees e.g. ,mahogany,sequoia.However,thegreaterpartofEarth'sspecies diversityisfoundinother,generallyoverlookedgroups,suchasmollusks,insects,andgroupsofowering plants.

PAGE 36

30 CHAPTER6.SPECIESDIVERSITY

PAGE 37

Chapter7 Alpha,Beta,andGammaDiversity 1 Whittaker [108]describedthreetermsformeasuringbiodiversityoverspatialscales:alpha,beta,and gammadiversity. Alphadiversity referstothediversitywithinaparticularareaorecosystem,andis usuallyexpressedbythenumberofspecies i.e. speciesrichness inthatecosystem.Forexample,ifwe aremonitoringtheeectthatBritishfarmingpracticeshaveonthediversityofnativebirdsinaparticular regionofthecountry,thenwemightwanttocomparespeciesdiversitywithindierent ecosystems ,suchas anundisturbeddeciduouswood,awell-establishedhedgerowborderingasmallpasture,andalargearable eld.Wecanwalkatransectineachofthesethreeecosystemsandcountthenumberofspecieswesee; thisgivesusthealphadiversityforeachecosystem;seeTable7.1:Alpha,betaandgammadiversityfor hypotheticalspeciesofbirdsinthreedierentecosystemsthisexampleisbasedonthehypotheticalexample givenby Meeetal.,2002;Table6.1 [66]. Ifweexaminethechangeinspeciesdiversitybetweentheseecosystemsthenwearemeasuringthe betadiversity .Wearecountingthetotalnumberofspeciesthatareuniquetoeachoftheecosystems beingcompared.Forexample,thebetadiversitybetweenthewoodlandandthehedgerowhabitatsis7 representingthe5speciesfoundinthewoodlandbutnotthehedgerow,plusthe2speciesfoundinthe hedgerowbutnotthewoodland.Thus,betadiversityallowsustocomparediversitybetweenecosystems. Gammadiversity isameasureoftheoveralldiversityforthedierentecosystemswithinaregion. Hunter:448[42] denesgammadiversityas"geographic-scalespeciesdiversity".Intheexamplein Table7.1:Alpha,betaandgammadiversityforhypotheticalspeciesofbirdsinthreedierentecosystems, thetotalnumberofspeciesforthethreeecosystems14,whichrepresentthegammadiversity. Alpha,betaandgammadiversityforhypotheticalspeciesofbirdsinthreedierent ecosystems Hypotheticalspecies Woodlandhabitat Hedgerowhabitat Openeldhabitat A X B X C X continuedonnextpage 1 Thiscontentisavailableonlineat. 31

PAGE 38

32 CHAPTER7.ALPHA,BETA,ANDGAMMADIVERSITY D X E X F X X G X X H X X I X X J X X K X L X X M X N X Alphadiversity 10 7 3 Betadiversity Woodlandvs. hedgerow:7 Hedgerowvs.open eld:8 Woodlandvs.open eld:13 Gammadiversity 14 Table7.1

PAGE 39

Chapter8 IntroductiontoUtilitarianValuationof Biodiversity 1 Determiningthevalueorworthofbiodiversityiscomplex.Economiststypicallysubdivideutilitarianor usevaluesofbiodiversityinto directusevalue forthosegoodsthatareconsumeddirectly,suchasfood ortimber,and indirectusevalue forthoseservicesthatsupporttheitemsthatareconsumed,including ecosystemfunctionslikenutrientcycling. Thereareseverallesstangiblevaluesthataresometimescalled non-useorpassivevalues ,forthings thatwedon'tusebutwouldconsiderasalossiftheyweretodisappear;theseinclude existencevalue ,the valueofknowingsomethingexistsevenifyouwillneveruseitorseeit,and bequestvalue ,thevalueof knowingsomethingwillbethereforfuturegenerations MoranandPearce1994 [69]. PotentialorOption value referstotheusethatsomethingmayhaveinthefuture;sometimesthisisincludedasausevalue, wehavechosentoincludeitwithinthepassivevaluesherebasedonitsabstractnature.Thecomponents includedwithinthecategoryof"utilitarian"valuesvarysomewhatintheliterature.Forexample,some authorsclassifyspiritual,cultural,andaestheticvaluesasindirectusevalues,whilesothersconsiderthem tobenon-usevalues,dierentiatedfromindirectusevaluessuchasnutrientcyclingbecausespiritual, cultural,andaestheticvaluesforbiodiversityarenotessentialtohumansurvival.Stillothersconsiderthese valuesasseparatecategoriesentirely.Seealso, Callicott1997 [15], Hunter2002 [44], MoranandPearce 1994 [69], PerlmanandAdelson1997 [74], Primack2002 [77], VanDyke2003 [102].Inthismodule,we includespiritual,culturalandaestheticvaluesasasubsetofindirectvaluesorservices,astheyprovidea servicebyenrichingourlivesTable8.1:CategoriesofValuesofBiodiversity. CategoriesofValuesofBiodiversity DirectUseValue Goods IndirectUseValue Services Non-UseValues Food,medicine,buildingmaterial,ber,fuel Atmosphericandclimateregulation,pollination,nutrientrecycling PotentialorOption Value Futurevalueeitherasa goodoraservice continuedonnextpage 1 Thiscontentisavailableonlineat. 33

PAGE 40

34 CHAPTER8.INTRODUCTIONTOUTILITARIANVALUATIONOF BIODIVERSITY Cultural,Spiritual,and Aesthetic ExistenceValue Valueofknowingsomethingexists BequestValue Valueofknowingthat somethingwillbethere forfuturegenerations Table8.1 note: SomeauthorschoosetodierentiateCultural,Spiritual,Aesthetic,andNon-UseValues fromthoseservicesthatprovidebasicsurvivalneedssuchastheairwebreathe.

PAGE 41

Chapter9 BiodiversityoverTime 1 ThehistoryoflifeonEarthisdescribedinvariouspublicationsandwebsites e.g. Speer,B.R.and A.G.Collins.2000 [92]; Tudge,2000 [97]; LecointreandGuyader,2001 [59]; Maddison,2001 [60] Eldredge, 2002 [24];itisalsodiscussedinthemoduleonMacroevolution:essentialsofsystematicsandtaxonomy.For thecurrentpurposeofunderstandingwhatisbiodiversity,itisonlynecessarytonotethatthatthediversity ofspecies,ecosystemsandlandscapesthatsurroundustodayaretheproductofperhaps3.7billion i.e. 3 : 7 10 9 to3.85billionyearsofevolutionoflifeonEarth Mojzsisetal.,1996 [67]; FedoandWhitehouse, 2002 [26]. Thus,theevolutionaryhistoryofEarthhasphysicallyandbiologicallyshapedourcontemporaryenvironment.AsnotedinthesectiononBiogeographyChapter13,platetectonicsandtheevolutionofcontinents andoceanbasinshavebeeninstrumentalindirectingtheevolutionanddistributionoftheEarth'sbiota. However,thephysicalenvironmenthasalsobeenextensivelymodiedbythesebiota.Manyexistinglandscapesarebasedontheremainsofearlierlifeforms.Forexample,someexistinglargerockformationsare theremainsofancientreefsformed360to440millionyearsagobycommunitiesofalgaeandinvertebrates Veron,2000 [47].Veryoldcommunitiesofsubterraneanbacteriamayhavebeenresponsibleforshaping manygeologicalprocessesduringthehistoryoftheEarth,suchastheconversionofmineralsfromoneform toanother,andtheerosionofrocks FredricksonandOnstott,1996 [30].Theevolutionofphotosynthetic bacteria,sometimebetween3.5and2.75millionyearsago Schopf,1993 [88]; Brasieretal.,2002 [12]; Hayes, 2002 [38],playedanimportantroleintheevolutionoftheEarth'satmosphere.Thesebacteriareleasedoxygenintotheatmosphere,changingit'scompositionfromtheformercompositionofmainlycarbondioxide, withothergasessuchasnitrogen,carbonmonoxide,methane,hydrogenandsulphurgasespresentinsmaller quantities.Itprobablytookover2billionyearsfortheoxygenconcentrationtoreachthelevelitistoday Hayes,2002 [38],buttheprocessofoxygenationoftheatmosphereledtoimportantevolutionarychanges inorganismssothattheycouldutilizeoxygenformetabolism.Theriseofanimalandplantlifeonlandwas associatedwiththedevelopmentofanoxygenrichatmosphere. 1 Thiscontentisavailableonlineat. 35

PAGE 42

36 CHAPTER9.BIODIVERSITYOVERTIME

PAGE 43

Chapter10 ABriefHistoryofLifeonEarth 1 Thediversityofspecies,ecosystemsandlandscapesthatsurroundustodayaretheproductofperhaps3.7 billion i.e. 3 : 7 10 9 to3.85billionyearsofevolutionoflifeonEarth Mojzsisetal.,1996 [68]; Fedoand Whitehouse,2002 [ ? ].Lifemayhaverstevolvedunderharshconditions,perhapscomparabletothedeepseathermalventswherechemo-autotrophicbacteriaarecurrentlyfoundtheseareorganismsthatobtain theirenergyonlyfrominorganic,chemicalsources. Asubterraneanevolutionoflifehasalsobeensuggested.Rocklayersdeepbelowthecontinentsand oceanoors,thatwerepreviouslythoughttobetoopoorinnutrientstosustainlife,havenowbeenfound tosupportthousandsofstrainsofmicroorganisms.Typesofbacteriahavebeencollectedfromrocksamples almost2milesbelowthesurface,attemperaturesupto75degreesCelsius.Thesechemo-autotrophic microorganismsderivetheirnutrientsfromchemicalssuchascarbon,hydrogen,ironandsulphur.Deep subterraneancommunitiescouldhaveevolvedundergroundororiginatedonthesurfaceandbecomeburied orotherwisetransporteddownintosubsurfacerockstrata,wheretheyhavesubsequentlyevolvedinisolation. Eitherway,theseappeartobeveryoldcommunities,anditispossiblethatthesesubterraneanbacteria mayhavebeenresponsibleforshapingmanygeologicalprocessesduringthehistoryoftheEarth e.g. theconversionofmineralsfromoneformtoanother,andtheerosionofrocks FredricksonandOnstott, 1996 [31]. Theearliestevidenceforphotosyntheticbacteria-suspectedtobecyanobacteria-isdatedatsometime between3.5and2.75billionyearsago Schopf,1993 [ ? ]; Brasieretal.,2002 [ ? ]; Hayes,2002 [ ? ].Theserst photosyntheticorganismswouldhavebeenresponsibleforreleasingoxygenintotheatmosphere. Photosynthesis istheformationofcarbohydratesfromcarbondioxideandwater,throughtheactionoflight energyonalight-sensitivepigment,suchaschlorophyll,andusuallyresultingintheproductionofoxygen. Priortothis,theatmospherewasmainlycomposedofcarbondioxide,withothergasessuchasnitrogen, carbonmonoxide,methane,hydrogenandsulphurgasespresentinsmallerquantities. Itprobablytookover2billionyears,fromtheinitialadventofphotosynthesisfortheoxygenconcentration intheatmospheretoreachthelevelitisattoday Hayes,2002 [ ? ].Asoxygenlevelsrose,someofthe earlyanaerobicspeciesprobablybecameextinct,andothersprobablybecamerestrictedtohabitatsthat remainedfreeofoxygen.Someassumedalifestylepermanentlylodgedinsideaerobiccells.Theanaerobic cellsmight,initially,havebeenincorporatedintotheaerobiccellsafterthoseaerobeshadengulfedthem asfood.Alternatively,theanaerobesmighthaveinvadedtheaerobichostsandbecomeparasiteswithin them.Eitherway,amoreintimatesymbioticrelationshipsubsequentlyevolvedbetweentheseaerobicand anaerobiccells.Inthesecasesthesurvivalofeachcellwasdependentonthefunctionoftheothercell. Theevolutionofthissymbioticrelationshipwasanextremelyimportantstepintheevolutionofmore complexcellsthathaveanucleus,whichisacharacteristicoftheEucaryaoreucaryoteseu=good,ortrue; andkaryon=kernel,ornucleus.RecentstudiesofrocksfromWesternAustraliahavesuggestedthatthe earliestformsofsingle-celledeucaryotesmightbeatleast2.7billionyearsold Anon,2001 [3].According 1 Thiscontentisavailableonlineat. 37

PAGE 44

38 CHAPTER10.ABRIEFHISTORYOFLIFEONEARTH tocontemporarytheories,therehasbeensucienttime,overthose2.7billionyears,forsomeofthegenes oftheinvadinganaerobetohavebeenlost,oreventransferredtothenucleusofthehostaerobecell.Asa result,thegenomesoftheancestralinvaderandancestralhosthavebecomemingledandthetwoentities cannowbeconsideredasonefromageneticstandpoint. TheevolutionaryhistoryoftheEucaryaisdescribedinvariousstandardreferencesandsoisnotcovered indetailhere.Briey,eucaryotesconstitutethreewellknowngroups-theViridiplantaeorgreenplants, theFungi,andtheMetazoaoranimals.Therearealsomanybasalgroupsofeucaryotesthatareextremely diverse-andmanyofwhichareevolutionarilyancient.Forexample,theRhodophyta,orredalgae,which mightbethesister-grouptotheViridiplantae,includesfossilrepresentativesdatingfromthePrecambrian, 1025billionyearsago.TheStramenopilesincludessmall,single-celledorganismssuchasdiatoms,funguslikespeciesofwatermouldsanddownymildews,andextremelylarge,multicellularbrownseaweedssuchas kelps. Theearliestknowngreenplantsaregreenalgae,datingfromtheCambrian,atleast500millionyears ago.BytheendoftheDevonian,360millionyearsago,plantshadbecomequitediverseandincluded representativessimilartomodernplants.Greenplantshavebeenextremelyimportantinshapingthe environment.Fueledbysunlight,theyaretheprimaryproducersofcarbohydrates,sugarsthatareessential foodresourcesforherbivoresthatarethenpreytopredatorycarnivores.Theevolutionandecologyof pollinatinginsectsiscloselyassociatedwiththeevolutionoftheAngiosperms,oroweringplants,sincethe JurassicandCretaceousperiods. Fungi,whichdatebacktothePrecambriantimesabout650to540millionyearsago,arealsoimportant inshapingandsustainingbiodiversity.Bybreakingdowndeadorganicmaterialandusingthisfortheir growth,theyrecyclenutrientsbackthroughecosystems.Fungiarealsoresponsibleforcausingseveralplant andanimaldiseases.Fungialsoformsymbioticrelationshipswithtreespecies,ofteninnutrient-poorsoils suchasarefoundinthehumidtropics,allowingtheirsymbionttreestheabilitytoourishinwhatwould otherwisebeadicultenvironment. Metazoa,whichdatetoover500millionyearsagohavealsobeenresponsibleforshapingmanyecosystems, fromthespecializedtubewormsofdeepsea,hydrothermalventcommunitiesoftheoceanoor,tothebirds livinginthehighaltitudesoftheHimalayas,suchastheimpeyanpheasantandTibetansnowcock.Many speciesofanimalsareparasiticonotherspeciesandcansignicantlyaectthebehaviorandlife-cyclesof theirhosts. Thus,theevolutionaryhistoryofEarthhasphysicallyandbiologicallyshapedourcontemporaryenvironment.Manyexistinglandscapesarebasedontheremainsofearlierlifeforms.Forexample,someexisting largerockformationsaretheremainsofancientreefsformed360to440millionyearsagobycommunities ofalgaeandinvertebrates Veron,2000 [48].

PAGE 45

Chapter11 EcosystemDiversity 1 An ecosystem isacommunityplusthephysicalenvironmentthatitoccupiesatagiventime.Anecosystem canexistatanyscale,forexample,fromthesizeofasmalltidepooluptothesizeoftheentirebiosphere. However,lakes,marshes,andforeststandsrepresentmoretypicalexamplesoftheareasthatarecompared indiscussionsofecosystemdiversity. Broadlyspeaking,thediversityofanecosystemisdependentonthephysicalcharacteristicsoftheenvironment,thediversityofspeciespresent,andtheinteractionsthatthespecieshavewitheachotherandwith theenvironment.Therefore,thefunctionalcomplexityofanecosystemcanbeexpectedtoincreasewiththe numberandtaxonomicdiversityofthespeciespresent,andtheverticalandhorizontalcomplexityofthe physicalenvironment.However,oneshouldnotethatsomeecosystemssuchassubmarineblacksmokers, orhotspringsthatdonotappeartobephysicallycomplex,andthatarenotespeciallyrichinspecies, maybeconsideredtobefunctionallycomplex.Thisisbecausetheyincludespeciesthathaveremarkable biochemicalspecializationsforsurvivingintheharshenvironmentandobtainingtheirenergyfrominorganic chemicalsources e.g. ,seediscussionsof RothschildandMancinelli,2001 [83]. ThephysicalcharacteristicsofanenvironmentthataectecosystemdiversityarethemselvesquitecomplexaspreviouslynotedforcommunitydiversityChapter14.Thesecharacteristicsinclude,forexample, thetemperature,precipitation,andtopographyoftheecosystem.Therefore,thereisageneraltrendfor warmtropicalecosystemstobericherinspeciesthancoldtemperateecosystemssee"Spatialgradientsin biodiversityChapter3".Also,theenergyuxintheenvironmentcansignicantlyaecttheecosystem. Anexposedcoastlinewithhighwaveenergywillhaveaconsiderablydierenttypeofecosystemthana low-energyenvironmentsuchasashelteredsaltmarsh.Similarly,anexposedhilltopormountainsideis likelytohavestuntedvegetationandlowspeciesdiversitycomparedtomoreprolicvegetationandhigh speciesdiversityinshelteredvalleyssee Walter,1985 [106],and Smith,1990 [91]forgeneraldiscussionson factorsaectingecosystems,andcomparativeecosystemecology. Environmentaldisturbanceonavarietyoftemporalandspatialscalescanaectthespeciesrichness and,consequently,thediversityofanecosystem.Forexample,riversystemsintheNorthIslandofNew Zealandhavebeenaectedbyvolcanicdisturbanceseveraltimesoverthelast25,000years.Ash-ladenoods runningdowntheriverswouldhaveextirpatedmostoftheshfaunaintherivers,andrecolonizationhas beenpossibleonlybyalimitednumberofdiadromousspecies i.e. ,species,likeeelsandsalmons,that migratebetweenfreshwaterandseawateratxedtimesduringtheirlifecycle.Oncethedisturbedrivers hadrecovered,thediadromousspecieswouldhavebeenabletorecolonizetheriversbydispersalthrough theseafromotherunaectedrivers McDowall,1996 [65]. Nevertheless,moderatelevelsofoccasionaldisturbancecanalsoincreasethespeciesrichnessofanecosystembycreatingspatialheterogeneityintheecosystem,andalsobypreventingcertainspeciesfromdominatingtheecosystem.SeethemoduleonOrganizingPrinciplesoftheNaturalWorldforfurtherdiscussion. Ecosystemsmaybeclassiedaccordingtothedominanttypeofenvironment,ordominanttypeof 1 Thiscontentisavailableonlineat. 39

PAGE 46

40 CHAPTER11.ECOSYSTEMDIVERSITY speciespresent;forexample,asaltmarshecosystem,arockyshoreintertidalecosystem,amangroveswamp ecosystem.Becausetemperatureisanimportantaspectinshapingecosystemdiversity,itisalsousedin ecosystemclassication e.g. ,coldwinterdeserts,versuswarmdeserts Udvardy,1975 [99]. Whilethephysicalcharacteristicsofanareawillsignicantlyinuencethediversityofthespecieswithin acommunity,theorganismscanalsomodifythephysicalcharacteristicsoftheecosystem.Forexample,stony coralsScleractiniaareresponsibleforbuildingtheextensivecalcareousstructuresthatarethebasisforcoral reefecosystemsthatcanextendthousandsofkilometers e.g. GreatBarrierReef.Therearelessextensive waysinwhichorganismscanmodifytheirecosystems.Forexample,treescanmodifythemicroclimateand thestructureandchemicalcompositionofthesoilaroundthem.Fordiscussionofthegeomorphicinuencesof variousinvertebratesandvertebratessee Butler,1995 [14]and,forfurtherdiscussionofecosystemdiversity seethemoduleonProcessesandfunctionsofecologicalsystems.

PAGE 47

Chapter12 PopulationDiversity 1 A population isagroupofindividualsofthesamespeciesthatshareaspectsoftheirgeneticsor demography morecloselywitheachotherthanwithothergroupsofindividualsofthatspecieswheredemography isthestatisticalcharacteristicofthepopulationsuchassize,density,birthanddeathrates,distribution, andmovementofmigration. Populationdiversitymaybemeasuredintermsofthevariationingeneticandmorphologicalfeatures thatdenethedierentpopulations.Thediversitymayalsobemeasuredintermsofthepopulations' demographics,suchasnumbersofindividualspresent,andtheproportionalrepresentationofdierentage classesandsexes.However,itcanbediculttomeasuredemographyandgenetics e.g. ,allelefrequencies forallspecies.Therefore,amorepracticalwayofdeningapopulation,andmeasuringitsdiversity,isby thespaceitoccupies.Accordingly,a population isagroupofindividualsofthesamespeciesoccupyinga denedareaatthesametime Hunter,2002:144 [42].Theareaoccupiedbyapopulationismosteectively denedbytheecologicalboundariesthatareimportanttothepopulationforexample,aparticularregion andtypeofvegetationforapopulationofbeetles,oraparticularpondforapopulationofsh. Thegeographicrangeanddistributionofpopulations i.e. ,theirspatialstructurerepresentkeyfactors inanalyzingpopulationdiversitybecausetheygiveanindicationoflikelihoodofmovementoforganisms betweenpopulationsandsubsequentgeneticanddemographicinterchange.Similarly,anestimateofthe overallpopulationsizeprovidesameasureofthepotentialgeneticdiversitywithinthepopulation;large populationsusuallyrepresentlargergenepoolsandhencegreaterpotentialdiversityseeGeneticdiversity 2 Isolatedpopulations,withverylowlevelsofinterchange,showhighlevelsofgeneticdivergence Hunter, 2002:145 [42],andexhibituniqueadaptationstothebioticandabioticcharacteristicsoftheirhabitat.The geneticdiversityofsomegroupsthatgenerallydonotdispersewell-suchasamphibians,mollusks,and someherbaceousplants-maybemostlyrestrictedtolocalpopulations Avise,1994 [4].Forthisreason, rangeretractionsofspeciescanleadtolossoflocalpopulationsandthegeneticdiversitytheyhold.Lossof isolatedpopulationsalongwiththeiruniquecomponentofgeneticvariationisconsideredbysomescientists tobeoneofthegreatestbutmostoverlookedtragediesofthebiodiversitycrisis Ehrlich&Raven1969 [23]. Populationscanbecategorizedaccordingtothelevelofdivergencebetweenthem.Isolatedandgenetically distinctpopulationsofasinglespeciesmaybereferredtoassubspeciesaccordingtosomebutnotallspecies concepts.Populationsthatshowlessgeneticdivergencemightberecognizedas variants or races. However, thedistinctionsbetweensubspeciesandothercategoriescanbesomewhatarbitraryseeSpeciesdiversity Chapter6. Aspeciesthatisecologicallylinkedtoaspecialized,patchyhabitatmaylikelyassumethepatchydistributionofthehabitatitself,withseveraldierentpopulationsdistributedatdierentdistancesfromeach other.Thisisthecase,forexample,forspeciesthatliveinwetlands,alpinezonesonmountaintops,particularsoiltypesorforesttypes,springs,andmanyothercomparablesituations.Individualorganismsmay 1 Thiscontentisavailableonlineat. 2 "GeneticDiversity" 41

PAGE 48

42 CHAPTER12.POPULATIONDIVERSITY periodicallydispersefromonepopulationtoanother,facilitatinggeneticexchangebetweenthepopulations. Thisgroupofdierentbutinterlinkedpopulations,witheachdierentpopulationlocatedinitsown,discrete patchofhabitat,iscalleda metapopulation Theremaybequitedierentlevelsofdispersalbetweentheconstituentpopulationsofametapopulation. Forexample,alargeorovercrowdedpopulationpatchisunlikelytobeabletosupportmuchimmigration fromneighboringpopulations;itcan,however,actasa source ofdispersingindividualsthatwillmoveaway tojoinotherpopulationsorcreatenewones.Incontrast,asmallpopulationisunlikelytohaveahigh degreeofemigration;instead,itcanreceiveahighdegreeofimmigration.Apopulationthatrequiresnet immigrationinordertosustainitselfactsasa sink .Theextentofgeneticexchangebetweensourceand sinkpopulationsdepends,therefore,onthesizeofthepopulations,thecarryingcapacityofthehabitats wherethepopulationsarefound,andtheabilityofindividualstomovebetweenhabitats.Consequently, understandinghowthepatchesandtheirconstituentpopulationsarearrangedwithinthemetapopulation, andtheeasewithwhichindividualsareabletomoveamongthemiskeytodescribingthepopulationdiversity andconservingthespecies.Formorediscussion,seethemoduleonMetapopulations.

PAGE 49

Chapter13 BiogeographicDiversity 1 Biogeography is"thestudyofthedistributionoforganismsinspaceandthroughtime".Analysesof thepatternsofbiogeographycanbedividedintothetwoeldsofhistoricalbiogeographyandecological biogeography Wiley,1981 [109]. Historicalbiogeography examinespasteventsinthegeologicalhistoryoftheEarthandusestheseto explainpatternsinthespatialandtemporaldistributionsoforganismsusuallyspeciesorhighertaxonomic ranks.Forexample,anexplanationofthedistributionofcloselyrelatedgroupsoforganismsinAfrica andSouthAmericaisbasedontheunderstandingthatthesetwolandmasseswereformerlyconnected aspartofasinglelandmassGondwana.Theancestorsofthoserelatedspecieswhicharenowfound inAfricaandSouthAmericaareassumedtohavehadacosmopolitandistributionacrossbothcontinents whentheywereconnected.Followingtheseparationofthecontinentsbytheprocessofplatetectonics, theisolatedpopulationsareassumedtohaveundergone allopatricspeciation i.e. ,speciationachieved betweenpopulationsthatarecompletelygeographicallyseparate.Thisseparationresultedintheclosely relatedgroupsofspeciesonthenowseparatecontinents.Clearly,anunderstandingofthesystematicsof thegroupsoforganisms i.e. ,theevolutionaryrelationshipsthatexistsbetweenthespeciesisanintegral partofthesehistoricalbiogeographicanalyses. Thesamehistoricalbiogeographichypothesescanbeappliedtothespatialandtemporaldistributions ofmarinebiota.Forexample,thebiogeographyofshesfromdierentoceanbasinshasbeenshownto beassociatedwiththegeologicalevolutionoftheseoceanbasinssee StiassnyandHarrison,2000 [95]for exampleswithreferences.However,wecannotassumethatallexistingdistributionpatternsaresolelythe productofthesepastgeologicalprocesses.Itisevident,forexample,thattheexistingmarinefaunaofthe Mediterraneanisaproductofthecomplexgeologicalhistoryofthismarinebasin,involvingseparationfrom theIndianandAtlanticOceans,periodsofextensivedesiccationfollowedbyoodingandrecolonizationfrom theAtlantic Por,1989 [76].However,thereisalsogoodevidencethattheeasternendoftheMediterranean hasbeencolonizedmorerecentlybyspeciesthathavedispersedfromtheRedSeaviatheSuezcanal. Thus,theeldof ecologicalbiogeography rstexaminesthedispersaloforganismsusuallyindividuals orpopulationsandthemechanismsthatinuencethisdispersal,andthenusesthisinformationtoexplain thespatialdistributionpatternsoftheseorganisms.Forfurtherdiscussionseethemoduleon"Biogeography" andsee Wiley,1981 [109],and HumphriesandParenti,1999 [39]. 1 Thiscontentisavailableonlineat. 43

PAGE 50

44 CHAPTER13.BIOGEOGRAPHICDIVERSITY

PAGE 51

Chapter14 CommunityDiversity 1 A community comprisesthepopulationsofdierentspeciesthatnaturallyoccurandinteractinaparticular environment.Somecommunitiesarerelativelysmallinscaleandmayhavewell-denedboundaries.Some examplesare:speciesfoundinoraroundadesertspring,thecollectionofspeciesassociatedwithripening gsinatropicalforest,thoseclusteredaroundahydrothermalventontheoceanoor,thoseinthespray zoneofawaterfall,orunderwarmstonesinthealpinezoneonamountaintop.Othercommunitiesare larger,morecomplex,andmaybelessclearlydened,suchasold-growthforestsofthenorthwestcoastof NorthAmerica,lowlandfencommunitiesoftheBritishIsles,orthecommunityoffreshwaterspeciesofLake Baikal. Sometimesbiologistsapplytheterm"community"toasubsetoforganismswithinalargercommunity. Forexample,somebiologistsmayrefertothe"community"ofspeciesspecializedforlivingandfeeding entirelyintheforestcanopy,whereasotherbiologistsmayrefertothisaspartofalargerforestcommunity. Thislargerforestcommunityincludesthosespecieslivinginthecanopy,thoseontheforestoor,andthose movingbetweenthesetwohabitats,aswellasthefunctionalinterrelationshipsbetweenallofthese.Similarly, somebiologistsworkingonecosystemmanagementmightdistinguishbetweenthecommunityofspeciesthat areendemictoanarea e.g. speciesthatareendemictoanislandaswellasthose"exotic"speciesthat havebeenintroducedtothatarea.Theintroducedspeciesformpartofthelarger,modiedcommunityof thearea,butmightnotbeconsideredaspartoftheregionsoriginalanddistinctivecommunity. Communitiesarefrequentlyclassiedbytheiroverallappearance,or physiognomy .Forexample,coral reefcommunitiesareclassiedaccordingtotheappearanceofthereefswheretheyarelocated, i.e. ,fringing reefcommunities,barrierreefcommunities,andatollcommunities.Similarly,dierentstreamcommunities maybeclassiedbythephysicalcharacteristicsofthatpartofthestreamwherethecommunityislocated, suchasriezonecommunitiesandpoolcommunities.However,oneoftheeasiest,andhencemostfrequent methodsofcommunityclassicationisbasedonthedominanttypesofspeciespresentforexample,intertidal musselbedcommunities,PonderosapineforestcommunitiesofthePacicnorthwestregionoftheU.S.,or Mediterraneanscrublandcommunities.Multivariatestatisticsprovidemorecomplexmethodsfordiagnosing communities,forexample,byarrangingspeciesoncoordinateaxes e.g. ,x-yaxesthatrepresentgradientsin environmentalfactorssuchastemperatureorhumidity.Formoreinformation,seethemoduleon"Natural communitiesinspaceandtime." Thefactorsthatdeterminethediversityofacommunityareextremelycomplex.Therearemanytheories onwhatthesefactorsareandhowtheydeterminecommunityandecosystemdiversity.Environmental factors,suchastemperature,precipitation,sunlight,andtheavailabilityofinorganicandorganicnutrients areveryimportantinshapingcommunitiesand ecosystems Hunter:81 [43]notesthat,generally speaking,organismscanpersistandevolveinplaceswheretherearesucientenvironmentalresourcesforthe organismstochannelenergyintogrowthandreproductionratherthansimplythemetabolicrequirements forsurvival.Inotherwords,organismsarelesslikelytothriveinaharshenvironmentwithlowenergy 1 Thiscontentisavailableonlineat. 45

PAGE 52

46 CHAPTER14.COMMUNITYDIVERSITY resources.Onewayofmeasuringcommunitydiversityistoexaminetheenergyowthroughfoodwebsthat unitethespecieswithinthecommunity;theextentofcommunitydiversitycanbemeasuredbythenumber oflinksinthefoodweb.However,inpractice,itcanbeverydiculttoquantifythefunctionalinteractions betweenthespecieswithinacommunity.Itiseasiertomeasurethegeneticdiversityofthepopulationsin thecommunity,andtocountthenumbersofspeciespresent,andusethesemeasuresofgeneticdiversity andspeciesrichnessasproxiesfordescribingthefunctionaldiversityofthecommunity.Theevolutionary ortaxonomicdiversityofthespeciespresentisanotherwayofmeasuringthediversityofacommunity,for applicationtoconservationbiology.

PAGE 53

Chapter15 Ecoregions 1 Sincethe1980s,therehasbeenanincreasingtendencytomapbiodiversityover"ecosystemregions"or "ecoregions".An ecoregion is"arelativelylargeunitoflandorwatercontainingageographicallydistinct assemblageofspecies,naturalcommunities,andenvironmentalconditions" WWF,1999 [28];thus,the ecosystemswithinanecoregionhavecertaindistinctcharactersincommon Bailey,1998a [6].Several standardmethodsofclassifyingecoregionshavebeendeveloped,withclimate,altitude,andpredominant vegetationbeingimportantcriteria Steinetal.,2000 [93].Bailey's,1998a,bclassicationisone ofthemostwidelyadopted.Itisahierarchicalsystemwithfourlevels:domains,divisions,provincesand sections. Domainsarethelargestgeographiclevelsandaredenedbyclimate, e.g. ,polardomain,drydomain, orhumidtropicaldomain.Domainsaresplitintosmallerdivisionsthataredenedaccordingclimate andvegetation,andthedivisionsaresplitintosmallerprovincesthatareusuallydenedbytheirmajor plantformations.Somedivisionsalsoincludevarietiesof"mountainprovinces".Thesegenerallyhavea similarclimaticregimetotheneighboringlowlandsbutshowsomealtitudinalzonation,andtheyaredened accordingtothetypesofzonationpresent.Provincesaredividedintosections,whicharedenedbythe landformspresent. Becauseecoregionsaredenedbytheirsharedbioticandabioticcharacteristics,theyrepresentpractical unitsonwhichtobaseconservationplanning.Moreover,thehierarchicalnatureofBailey'secoregionclassicationallowsforconservationmanagementtobeplannedandimplementedatavarietyofgeographicallevels, fromsmallscaleprogramsfocusedondiscretesections,tomuchlargernationalorinternationalprojectsthat targetdivisions.OlsonandDinerstein 2002 [72]identied238terrestrialoraquaticecoregionscalledthe "Global200"thattheyconsideredtobeprioritiesforglobalconservation.Theseecoregionswereselected becausetheyharborexceptionalbiodiversityandarerepresentativeofthevarietyofEarthsecosystems. ForfurtherdiscussionofecoregionsseethemodulesonLandscapeecologyandConservationplanningona regionalscale. 1 Thiscontentisavailableonlineat. 47

PAGE 54

48 CHAPTER15.ECOREGIONS

PAGE 55

Chapter16 Extinction 1 Extinction thecompletedisappearanceofaspeciesfromEarthisanimportantpartoftheevolutionof lifeonEarth.Thecurrentdiversityofspeciesisaproductoftheprocessesofextinctionandspeciation throughouttheprevious3.8billionyearhistoryoflife.Raup 1991 [78]assumedthattheremightbe40 millionspeciesalivetoday,butbetween5and50billionspecieshavelivedatsometimeduringthehistoryof theEarth.Therefore,Raupestimatedthat99.9%ofallthelifethathasexistedonEarthisnow extinct ;a speciesisassumedtobeextinctwhenthereisnoreasonabledoubtthatthelastindividualhasdied IUCN, 2002 [29].However,extinctionhasnotoccurredataconstantpacethroughtheEarth'shistory.Therehave beenatleastveperiodswhentherehasbeenasuddenincreaseintherateofextinction,suchthattherate hasatleastdoubled,andtheextinctionshaveincludedrepresentativesfrommanydierenttaxonomicgroups ofplantsandanimals;theseeventsarecalled massextinctions .Thetimingofthesemassextinctionsis showninFigure16.1. 1 Thiscontentisavailableonlineat. 49

PAGE 56

50 CHAPTER16.EXTINCTION Figure16.1 EachoftherstvemassextinctionsshowninFigure16.1representsasignicantlossofbiodiversitybutrecoveryhasbeengoodonageologictimescale.Massextinctionsareapparentlyfollowedbyasudden burstofevolutionarydiversicationonthepartoftheremainingspecies,presumablybecausethesurviving speciesstartedusinghabitatsandresourcesthatwerepreviously"occupied"bymorecompetitivelysuccessful speciesthatwentextinct.However,thisdoesnotmeanthattherecoveriesfrommassextinctionhavebeen rapid;theyhaveusuallyrequiredsometensofmillionsofyears Jablonski,1995 [49]. Itishypothesizedthatwearecurrentlyonthebrinkofa"sixthmassextinction,"butonethatdiers frompreviousevents.Theveothermassextinctionspredatedhumansandwereprobablytheultimate productsofsomephysicalprocess e.g. climatechangethroughmeteorimpacts,ratherthanthedirect consequenceoftheactionofsomeotherspecies.Incontrast,thesixthmassextinctionistheproductof humanactivityoverthelastseveralhundred,orevenseveralthousandyears.Thesemassextinctions,and theirhistoricandmodernconsequencesarediscussedinmoredetailinthemodulesonHistoricalperspectives onextinctionandthecurrentbiodiversitycrisis,andEcologicalconsequencesofextinctions..

PAGE 57

Chapter17 LandscapeDiversity 1 A landscape is"amosaicofheterogeneouslandforms,vegetationtypes,andlanduses" Urbanetal., 1987 [101].Therefore,assemblagesofdierentecosystemsthephysicalenvironmentsandthespeciesthat inhabitthem,includinghumanscreatelandscapesonEarth.Althoughthereisnostandarddenitionof thesizeofalandscape,theyareusuallyinthehundredorthousandsofsquaremiles. Speciescompositionandpopulationviabilityareoftenaectedbythestructureofthelandscape;for example,thesize,shape,andconnectivityofindividualpatchesofecosystemswithinthelandscape Noss, 1990 [71].Conservationmanagementshouldbedirectedatwholelandscapestoensurethesurvivalof speciesthatrangewidelyacrossdierentecosystems e.g. ,jaguars,quetzals,speciesofplantsthathave widelydispersedpollenandseeds Hunter,2002:83-85,268-270[42] Diversitywithinandbetweenlandscapesdependsonlocalandregionalvariationsinenvironmentalconditions,aswellasthespeciessupportedbythoseenvironments.Landscapediversityisoftenincorporated intodescriptions"ecoregionsChapter15," 1 Thiscontentisavailableonlineat. 51

PAGE 58

52 CHAPTER17.LANDSCAPEDIVERSITY

PAGE 59

Chapter18 EcologicalValue 1 Naturalcommunitiesarenely-tunedsystems,whereeachspecieshasan ecologicalvalue totheother speciesthatarepartofthatecosystem.Speciesdiversityincreasesanecosystem'sstabilityandresilience,in particularitsabilitytoadaptandrespondtochangingenvironmentalconditions.Ifacertainamount,ortype suchasakeystonespeciesofspeciesarelost,eventuallyitleadstothelossofecosystemfunction.Many ecosystemsthoughhavebuilt-inredundanciessothattwoormorespecies'functionsmayoverlap.Becauseof theseredundancies,severalchangesinthenumberortypeofspeciesmaynotimpactanecosystem.However, notallspecieswithinanecosystemareofthesameimportance.Speciesthatareimportantduetotheirsheer numbersareoftencalled dominantspecies .Thesespeciesmakeupthemostbiomassofanecosystem. Speciesthathaveimportantecologicalrolesthataregreaterthanonewouldexpectbasedontheirabundance arecalled keystonespecies .Thesespeciesareoftencentraltothestructureofanecosystem,removalof oneorseveralkeystonespeciesmayhaveconsequencesimmediately,ordecadesorcenturieslater Jacksonet al.2001 [ ? ].Ecosystemsarecomplexanddiculttostudy,thusitisoftendiculttopredictwhichspecies arekeystonespecies.Theimpactofremovinganindividualorseveralkeystonespeciesfromkelpforestsin thePacicisexaminedinExample18.1NorthernPacicKelpForests. Example18.1:NorthernPacicKelpForests Kelpforests,astheirnamesuggests,aredominatedbykelp,abrownseaweedofthefamily Laminariales.Theyarefoundinshallow,rockyhabitatsfromtemperatetosubarcticregions,and areimportantecosystemsformanycommerciallyvaluableshandinvertebrates. VastforestsofkelpandothermarineplantsexistedinthenorthernPacicOceanpriortothe 18thcentury.ThekelpwaseatenbyherbivoressuchasseaurchinsFamilyStrongylocentrotidae, whichinturnwerepreyeduponbypredatorssuchasseaotters Enhydralutris .Huntingduring the18thand19thcenturiesbroughtseaotterstothebrinkofextinction.Intheabsenceofsea otters,seaurchinpopulationsburgeonedandgrazeddownthekelpforests,attheextremecreating "urchinbarrens,"wherethekelpwascompletelyeradicated.Otherspeciesdependentonkelp suchasredabalone Haliotisrufescens wereaectedtoo.Legalprotectionofseaottersinthe20th centuryledtopartialrecoveryofthesystem. MorerecentlyseaotterpopulationsinAlaskaseemtobethreatenedbyincreasedpredation fromkillerwhales Orcinusorca Estesetal.1998 [ ? ].Itappearsthatwhalesmayhaveshifted theirdiettoseaotterswhenpopulationsoftheirpreferredprey,Stellarsealions Arctocephalus townsendi andHarborseals Phocavitulina declined.Theexactreasonforthedeclineinthe sealionandsealpopulationsisstillunclear,butappearstobeduetodeclinesintheirpreyin combinationwithincreasedshingandhigheroceantemperatures.Asaresultofthelossofsea otters,increasedseaurchinpopulationsaregrazingdownkelpbedsagain. 1 Thiscontentisavailableonlineat. 53

PAGE 60

54 CHAPTER18.ECOLOGICALVALUE Example18.2:SouthernCalifornianKelpForests Interestingly,asimilarscenarioinkelpforestsinSouthernCaliforniadidnotshowimmediate eectsafterthedisappearanceofseaottersfromtheecosystem.Thisisbecausethesystemwas morediverseinitially.OtherpredatorsCaliforniasheepheadsh, Semicossyphuspulcher ,andspiny lobsters, Panulirusinterruptus andcompetitorsabalone Haliotisspp oftheseaurchinhelped maintainthesystem.However,whenthesepredatorsandcompetitorswereover-harvestedaswell inthe1950s,thekelpforestsdeclineddrasticallyasseaurchinpopulationsboomed. Inthe1970sand1980s,aseaurchinsherydevelopedwhichthenenabledthekelpforestto recover.However,itleftasystemwithlittlediversity.Theinterrelationshipsamongthesespecies andthechangesthatreverberatethroughsystemsasspeciesareremovedaremirroredinother ecosystemsontheplanet,bothaquaticandterrestrial. Asthisexampleillustrates,biodiversityisincrediblycomplexandconservationeortscannot focusonjustonespeciesorevenoneventsoftherecentpast.

PAGE 61

GLOSSARY 55 Glossary A albedo theamountofsolarradiationreectedby asurface allopatricspeciation speciationachievedbetweenpopulations thatarecompletelygeographically separatedtheirrangesdonotoverlapor arenotcontiguous. Alphadiversity thediversitywithinaparticularareaor ecosystem;usuallyexpressedbythe numberofspecies i.e. ,speciesrichness inthatecosystem Areaofendemism anareaswhichhasahighproportionof endemicspecies i.e. ,specieswith distributionsthatarenaturallyrestricted tothatregion B bequestvalue thevalueofknowingsomethingwillbe thereforfuturegenerations Betadiversity acomparisonofofdiversitybetween ecosystems,usuallymeasuredasthe amountofspecieschangebetweenthe ecosystems Biodiversitycoldspots areasthathaverelativelylowbiological diversitybutarealsoexperiencingahigh rateofhabitatloss Biodiversityhotspots ingeneraltermstheseareareasthathave highlevelsofendemismandhence diversitybutwhicharealsoexperiencing ahighrateoflossofhabitat.This conceptwasoriginallydevelopedfor terrestrialecosystems.Aterrestrial biodiversityhotspotisanareathathas atleast0.5%,or1,500oftheworldsca. 300,000speciesofgreenplants Viridiplantae ,andthathaslostatleast 70%ofitsprimaryvegetation Myerset al.,2000 [ ? ].Marinebiodiversity hotspotshavebeendenedforcoralreefs, basedonmeasurementsofrelative endemismofmultipletaxaspeciesof corals,snails,lobsters,sheswithina regionandtherelativelevelofthreatto thatregion Robertsetal.,2002 [ ? ] Biodiversity thevarietyoflifeonEarthatallits levels,fromgenestoecosystems,andthe ecologicalandevolutionaryprocessesthat sustainit biogeography thestudyofthedistributionoforganisms inspaceandthroughtime Biologicalspeciesconcept aspeciesisagroupofinterbreeding naturalpopulationsunableto successfullymateorreproducewithother suchgroups,andwhichoccupiesa specicnicheinnatureMayr,1982; BisbyandCoddington,1995. C Community thepopulationsofdierentspeciesthat naturallyoccurandinteractina particularenvironment Community thepopulationsofdierentspeciesthat naturallyoccurandinteractina particularenvironment. D Demography thestatisticalcharacteristicsofthe populationsuchassize,density,birth anddeathrates,distribution,and movementormigration. directusevalue

PAGE 62

56 GLOSSARY referstoproductsorgoodswhichare consumeddirectlysuchasfoodortimber dominantspecies speciesthatareimportantduetotheir sheernumbersinanecosystem E Ecologicalbiogeography: thestudyofthedispersaloforganisms usuallyindividualsorpopulationsand themechanismsthatinuencethis dispersal,andtheuseofthisinformation toexplainspatialdistributionpatterns ecologicalvalue thevaluesthateachspecieshasaspartof anecosystem Ecoregion arelativelylargeunitoflandorwater containingageographicallydistinct assemblageofspecies,natural communites,andenvironmental conditions WWF,1999 [ ? ] Ecoregions arelativelylargeunitoflandorwater containingageographicallydistinct assemblageofspecies,natural communities,andenvironmental conditions WWF,1999 [ ? ].The ecosystemswithinanecoregionhave certaindistinctcharactersincommon Bailey,1998a [ ? ]. Ecosystem acommunityplusthephysical environmentthatitoccupiesatagiven time ecosystem acommunityplusthephysical environmentthatitoccupiesatagiven time. Ecosystem Endemicspecies thosespecieswhosedistributionsare naturallyrestrictedtoadenedregion evapotranspiration istheprocesswherebywaterisabsorbed fromsoilbyvegetationandthenreleased backintotheatmosphere Evolutionarysignicantunit agroupoforganismsthathasundergone signicantgeneticdivergencefromother groupsofthesamespecies.Identication ofESUsisbasedonnaturalhistory information,rangeanddistributiondata, andresultsfromanalysesof morphometrics,cytogenetics,allozymes andnuclearandmitochondrialDNA. Concordanceofthosedata,andthe indicationofsignicantgeneticdistance betweensympatricgroupsoforganisms, arecriticalforestablishinganESU. existencevalue thevalueofknowingsomethingexistseven ifyouwillneveruseitorseeit Extinct aspeciesisassumedtobeextinctwhen thereisnoreasonabledoubtthatthelast individualhasdied IUCN,2002 [ ? ] Extinction thecompletedisappearanceofaspecies fromEarth G Gammadiversity ameasureoftheoveralldiversitywithina largeregion.Geographic-scalespecies diversityaccordingto Hunter02:448 [42] GeneticDiversity referstoanyvariationinthenucleotides, genes,chromosomes,orwholegenomesof organisms. H Historicalbiogeography thestudyofeventsinthegeological historyoftheEarthandtheiruseto explainpatternsinthespatialand temporaldistributionsoforganisms usuallyspeciesorhighertaxonomic ranks I indirectusevalue referstotheservicesthatsupportthe productsthatareconsumed,thisincludes ecosystemsfunctionslikenutrientcycling K keystonespecies

PAGE 63

GLOSSARY 57 speciesthathaveimportantecological rolesthataregreaterthanonewould expectbasedontheirabundance L Landscape amosaicofheterogeneouslandforms, vegetationtypes,andlanduses Urbanet al.,1987 [ ? ] Landscapes amosaicofheterogeneouslandforms, vegetationtypes,andlanduses Urbanet al.,1987 [ ? ]. M MarineBiodiversityhotspots Massextinction aperiodwhenthereisasuddenincrease intherateofextinction,suchthatthe rateatleastdoubles,andtheextinctions includerepresentativesfrommany dierenttaxonomicgroupsofplantsand animals Metapopulation agroupofdierentbutinterlinked populations,witheachdierent populationlocatedinitsown,discrete patchofhabitat Morphologicalspeciesconcept speciesarethesmallestnatural populationspermanentlyseparatedfrom eachotherbyadistinctdiscontinuityin theseriesofbiotypeDuRietz,1930; BisbyandCoddington,1995. N nonuseorpassivevalue referstothevalueforthingsthatwedon't usebutwouldfeelalossiftheywereto disappear O Orobiome amountainousenvironmentorlandscape withitsconstituentecosystems Orogenesis theprocessofmountainbuilding. P Parapatric occupyingcontiguousbutnotoverlapping ranges. Photosynthesis theformationofcarbohydratesfrom carbondioxideandwater,throughthe actionoflightenergyonalight-sensitive pigment,suchaschlorophyll,andusually resultingintheproductionofoxygen Phylogeneticdiversity theevolutionaryrelatednessofthespecies presentinanarea. Phylogeneticspeciesconcept aspeciesisthesmallestgroupof organismsthatisdiagnosably[thatis, identiably]distinctfromothersuch clustersandwithinwhichthereisa parentalpatternofancestryanddescent Cracraft,1983;BisbyandCoddington, 1995. PlateTectonics theforcesactingonthelarge,mobile piecesor"plates"oftheEarth's lithospheretheupperpartofthemantle andcrustoftheEarthwheretherocks arerigidcomparedtothosedeeperbelow theEarth'ssurfaceandthemovementof those"plates". Population 1.agroupofindividualsofthesamespecies thatshareaspectsoftheirdemographyor geneticsmorecloselywitheachother thanwithothergroupsofindividualsof thatspecies 2.Apopulationmayalsobedenedasa groupofindividualsofthesamespecies occupyingadenedareaatthesame time Hunter,2002:144 [ ? ] potentialoroptionvalue referstotheusethatsomethingmayhave inthefuture S Sink apopulationpatch,inametpopulation thatdoesnothaveahighdegreeof emigrationoutsideitsboundariesbut, instead,requiresnetimmigrationinorder tosustainitself Source

PAGE 64

58 GLOSSARY apopulationpatch,inametapopulation, fromwhichindividualsdispersetoother populationpatchesorcreatenewones Speciesdiversity thenumberofdierentspeciesina particulararea i.e. ,speciesrichness weightedbysomemeasureofabundance suchasnumberofindividualsorbiomass. Speciesevenness therelativeabundancewithwhicheach speciesarerepresentedinanarea. Speciesrichness thenumberofdierentspeciesina particulararea Speciesrichness thenumberofdierentspeciesina particulararea. surfaceroughness theaverageverticalreliefandsmall-scale irregularitiesofasurface Sympatric occupyingthesamegeographicarea. T TerrestrialBiodiversityhotspots W watersheds landareasdrainedbyariverandits tributaries wetlands areaswherewaterispresentatornearthe surfaceofthesoilorwithintherootzone, allyearorforaperiodoftimeduringthe year,andwherethevegetationisadapted totheseconditions

PAGE 65

Bibliography [1]J.H.BrownAllen,A.P.andJ.F.Gillooly.Globalbiodiversity,biochemicalkinetics,andtheenergeticequivalencerule. Science ,297:1545,2002. [2]P.L.Angermeier.Thenaturalimperativeforbiologicalconservation. ConservationBiology ,14:373 381,2000. [3]Anonymous.Archaeanmicrobesshowwereolderthanwethink. AusGEONews 62August/September:7,2001. [4]J.C.Avise. Molecularmarkers,naturalhistory,andevolution .ChapmanandHall,NewYork,U.S.A., 1994. [5]R.G.Bailey.Ecoregions:mapofnorthamerica.miscellaneouspublication1548.In U.SDepartment ofAgriculture,ForestServices ,pagesMap1:15,000,000.1998. [6]R.G.Bailey. Ecoregions:theecosystemgeographyoftheoceansandcontinents .Springer-Verlag,New York,U.S.A.,1998a. [7]A.LathropR.W.MurphyN.L.OrlovBain,R.H.andHoThuCuc. Crypticspeciesofacascadefrog fromSoutheastAsia:taxonomicrevisionsanddescriptionsofsixnewspecies .AmericanMuseum Novitates,inpress. [8]L.GrossS.HarrellBeals,M.Diversityindices:Shannon'shande.InS.E.RiechertO.J.SchwarzM. BealsS.HarrellL.J.Gross,B.C.Mullin,editor, Alternativeroutestoquantitativeliteracyforthelife sciences-AprojectsupportedbytheNationalScienceFoundation .UniversityofTennessee,Knoxville, Knoxville,Tennessee,1998. [9]L.Berland. Lesarachnidesdel'Afriquenoirefrancaise .IFAN,Dakar,1955.p.130. [10]F.A.BisbyandJ.Coddington.Biodiversityfromataxonomicandevolutionaryperspective.In V.H.HeywoodandR.T.Watson,editors, GlobalBiodiversityAssessment ,pages27.Cambridge UniversityPress,Cambridge,U.K,1995. [11]T.M.BlackburnandK.J.Gaston.Asidewayslookatpatternsinspeciesrichness,orwhythereareso fewspeciesoutsidethetropics. BiodiversityLetters ,3:44,1996. [12]O.W.GreenA.P.JephcoatA.K.KleppeM.J.VanKranendonkJ.F.LindsayA.SteeleBrasier,M.D. andN.V.Grassineau.Questioningtheevidenceforearth'soldestfossils. Nature ,416:76,2002. [13]S.L.BuchmannandG.P.Nabhan. TheForgottenPollinators .IslandPress,Washington,D.C.,U.S.A., 1995. [14]D.R.Butler. Zoogeomorphology .CambridgeUniversityPress,Cambridge,U.K.,1995. 59

PAGE 66

60 BIBLIOGRAPHY [15]J.B.Callicott.Valuesandethicsinconservation.InMeeG.K.andC.R.Carrol,editors, Principles ofConservationBiology ,pages29.SinauerAssociates,Sunderland,Massachusetts,secondedition edition,1997. [16]P.M.Catling.Extinctionandtheimportanceofhistoryanddependenceinconservation. Biodiversity 2:1,2001.Availablefrom:http://www.tc-biodiversity.org/sample-extinction.pdfAccessedon March4,2003. [17]J.A.CoddingtonandH.W.Levi.Systematicsandevolutionofspidersaraneae. AnnualReviewof EcologyandSystematics ,22:565,1991. [18]ColwellandJ.A.Coddington.1994. [19]C.Cracraft.Speciesconceptsandspeciationanalysis. Ornithology ,1:159,1983. [20]C.Cracraft.Thesevengreatquestionsofsystematicbiology:anessentialfoundationforconservation andthesustainableuseofbiodiversity. AnnalsoftheMissouriBotanicalGarden ,89:127,2002. [21]ACronquist.Onceagain,whatisaspecies?InL.V.Knutson,editor, BiosystematicsinAgriculture pages3.AllenheldOsmin,Montclair,NewJersey,U.S.A,1978. [22]G.E.DuRietz.Thefundamentalunitsofbiologicaltaxonomy. SvenskBotaniskTidskrift ,24:3338, 1930. [23]P.R.EhrlichandP.H.Raven.Dierentiationofpopulations. Science ,165:1228,1969. [24]NEldredge. LifeonEarth.Volumes1and2 .ABCClio,SantaBarbara,California,U.S.A.,2002. [25]P.etal.Falkowski.Theglobalcarboncycle:Atestofourknowledgeofearthasasystem. Science 290:291,2000. [26]C.M.FedoandM.J.Whitehouse.Metasomaticoriginofquartz-pyroxenerock,akilia,greenland,and it'simplicationsforearth'searliestlife>. Science ,296:448,2002. [27]WorldwideFundforNature.Wwfinaction:Ecoregion-basedconservation.In GlobalConservation Programme1999/2000 .accessedJune19,2002,1999. [28][WWF]WorldwideFundforNature.Wwfinaction.ecoregion-basedconservation.Available from:http://www.panda.org/resources/publications/sustainability/global/eco-based.htmlaccessed June19,2002,1999.WWF'sGlobalConservationProgramme1999/2000. [29][IUCN]InternationalUnionfortheConservationofNatureandNaturalResources.Ucnredlistof threatenedspecies,2002.Availablefrom:http://www.redlist.orgaccessedMarch11,2003. [30]J.K.FredricksonandT.C.Onstott.Microbesdeepinsidetheearth. ScienticAmerican. ,pages68., 1996. [31]J.K.FredricksonandT.C.Onstott.Microbesdeepinsidetheearth. ScienticAmerican ,October:68 73,1996. [32]K.J.Gaston.Whatisbiodiversity?InK.J.Gaston,editor, Biodiversity:abiologyofnumbersand dierence ,pages1.BlackwellScienceLtd.,Oxford,U.K.,1996. [33]K.J.GastonandJ.I.Spicer.Mappingbiodiversity.InK.J.GastonandJ.I.Spicer,editors, Biodiversity: anIntroduction ,pages43.BlackwellScienceLtd.,Oxford,U.K.,1998. [34]K.J.GastonandP.H.Williams.Spatialpatternsintaxonomicdiversity.InK.J.Gaston,editor, Biodiversity:abiologyofnumbersanddierence ,pages202.BlackwellScienceLtd.,Oxford, U.K.,1996.

PAGE 67

BIBLIOGRAPHY 61 [35]M.L.HunterJr.Gibbs,J.P.andE.J.Sterling.Problem-solvinginconservationbiologyandwildlife management.In Exercisesforclass,eldandlaboratory. BlackwellScience,Massachusetts,U.S.A, 1998. [36]N.GruberandJ.L.Sarmiento. CarbonCyclinginOceanBiogeochemicalDynamics ,chapter Chapter8.PrincetonUniversityPress,Princeton,NewJersey,U.S.A.inpress.Available from:http://atmos.ucla.edu/ ~ gruber/teaching/teaching_fr_syllabus_as235.htmAccessedonApril 15,2003. [37]P.Hammond.Thecurrentmagnitudeofbiodiversity.InV.H.HeywoodandR.T.Watson,editors, GlobalBiodiversityAssessment ,pages113.CambridgeUniversityPress,Cambridge,U.K,1995. [38]J.M.Hayes.Alowdownonoxygen. Nature ,417:127,2002. [39]C.J.HumphriesandL.R.Parenti. Cladisticbiogeography:interpretingpatternsofplantandanimal distributions .OxfordUniversityPress,Oxford,U.K.,1999. [40]M.Jnr.Hunter.Benchmarksformanagingecosystems:arehumanactivitiesnatural? Conservation Biology ,10:695,1996. [41]M.JnrHunter. FundamentalsofConservationBiology .BlackwellScience,Massachusetts,U.S.A, secondeditionedition,2002. [42]M.Jnr.Hunter. FundamentalsofConservationBiology .BlackwellScience,Massachusetts,U.S.A., secondeditionedition,2002. [43]M.Jnr.Hunter. FundamentalsofConservationBiology.SecondEdition. BlackwellScience,Massachusetts,U.S.A.,2002. [44]M.L.Hunter. FundamentalsofConservationBiology .BlackwellScience,Malden,Massachusetts, U.S.A.,secondeditionedition,2002.Pages41-65inChapter3:SpeciesDiversity,Pages72-78in Chapter4:EcosystemDiversity,Chapter5:GeneticDiversity,Pages95-102,andChapter15:Pages 383-398. [45]R.F.Inger. DistributionofamphibiansofsouthernAsiaandadjacentislands. ,pages445.Johns HopkinsUniversityPress,Baltimore,Maryland,U.S.A.,1999. [46]ConservationInternational.Biodiversityhotspots,2002.Availablefrom: http://www.biodiversityhotspots.org/xp/HotspotsaccessedMay11,2003. [47]Veron.J. CoralsoftheWorld. AustralianInstituteofMarineScienceandCRRQldPtyLtd.,Townsville MC,Queensland,Australia.,2000. [48]Veron.J. CoralsoftheWorld .AustralianInstituteofMarineScienceandCRRQldPtyLtd.,Townsville MC,Queensland,Australia,2000. [49]D.Jablonski.Extinctionsinthefossilrecord.InJ.H.LawtonandR.M.May,editors, Extinctionrates pages25.OxfordUniversityPress,Oxford,U.K.,1995. [50]M.M.BeckJohnson,R.J.andJ.R.Brandle.Windbreaksandwildlife,2003.UniversityofNebraska Extension,No.EC91-1771-B.Availablefrom:http:www.ianr.unl.edu/pubs/forestry/ec1771.htmAccessedonApril16,2003. [51]P.KareivaandM.Marvier.Conservingbiodiversitycoldspots. AmericanScientist ,91:344,2003. [52]M.Kottelat.Systematicstudiesandbiodiversity:theneedforapragmaticapproach. Journalof NaturalHistory ,29:565,1995.

PAGE 68

62 BIBLIOGRAPHY [53]M.Kottelat.Europeanfreshwatershes:anheuristicchecklistofthefreshwatershesofeurope exclusiveofformerussr,withanintroductionfornon-systematistsandcommentsonnomenclature andconservation. BiologiaBratislava ,52Supplement5:1,1997. [54]C.KremenandT.Ricketts.Globalperspectivesonpollinationdisruptions. ConservationBiology 14:1226,2000. [55]R.M.Lanner. MadeforEachOther:AsymbiosisofBirdsandPines .OxfordUniversityPress,New York,NewYork,U.S.A.,1996. [56]W.F.LauranceandG.B.Williamson.Positivefeedbacksamongforestfragmentation,drought,and climatechangeintheamazon. ConservationBiology ,15:1529,2001. [57]U.S.NairR.A.PielkeSr.Lawton,R.O.andR.M.Welch.Climaticimpactoftropicallowlanddeforestationonnearbymontanecloudforests. Science ,294:584,2001. [58]G.LecointreandH.LeGuyader. Classicationphylogenetiqueduvivant .Belin,Paris,France,2001. [59]G.LecointreandH.LeGuyader. Classicationphylogenetiqueduvivant .Belin,Paris,France,2001. [60]D.RMaddison. TheTreeofLifeWebproject. D.R.Maddison,editor,http://beta.tolweb.org/tree accessedAugust20,2003. [61]A.E.Magurran.Ecologicaldiversityanditsmeasurement.PrincetonUniversityPress,Princeton,New Jersey,U.S.A,1998. [62]R.L.Mayden.Ahierarchyofspeciesconcepts:thedenouementinthesagaofthespeciesproblem.In H.A.DawahM.F.ClaridgeandM.R.Wilson,editors, Species:theunitsofbiodiversity ,pages381. ChapmanandHall,London,U.K.,1997. [63]E.Mayr. Thegrowthofbiologicalthought:diversity,evolution,andinheritance. HarvardUniversity Press,Cambridge,Massachusetts,U.S.A.,1982. [64]E.MayrandP.D.Ashlock. Principlesofsystematiczoology .McGraw-Hill,NewYork,NewYork, U.S.A.,1991. [65]R.M.McDowall.Volcanismandfreshwatershbiogeographyinthenortheasternnorthislandofnew zealand. JournalofBiogeography ,23:139,1996. [66]L.A.NielsenR.L.KnightMee,G.K.andD.A.Schenborn. Ecosystemmanagement:adaptive, community-basedconservation .IslandPress,Washington,D.C.,U.S.A,2002. [67]G.ArrheniusK.D.McKeeganT.M.HarrisonA.P.NutmanMojzsis,S.J.andC.R.L.Friend.Evidence forlifeonearthbefore3,800millionyearsago. Nature ,403:853,1996. [68]G.ArrheniusK.D.McKeeganT.M.HarrisonA.P.NutmanMojzsis,S.J.andC.R.L.Friend.Evidence forlifeonearthbefore3,800millionyearsago. Nature ,384:55,1996. [69]D.MoranandD.Pearce.Thevalueofbiodiversity,1994.WorldConservation Union,BiodiversityProgramme,EarthscanPublications,London,U.K.Availablefrom http://biodiversityeconomics.org/valuation/topic-608-00.htmAccessedonApril17,2003. [70]R.A.MittermeierC.G.MittermeierG.A.B.daFonsecaMyers,N.andJ.Kent.Biodiversityhotspots forconservationpriorities. Nature ,403:853,2000. [71]R.F.Noss.Indicatorsformonitoringbiodiversity:ahierarchicalapproach. ConservationBiology 4:355,1990.

PAGE 69

BIBLIOGRAPHY 63 [72]D.M.OlsonandE.Dinerstein.Theglobal200:priorityecoregionsforglobalconservation. Annalsof theMissouriBotanicalGarden ,89:199,2002. [73]IntergovernmentalPanelonClimateChangeIPCC.Chapteroneintroductiontotheclimatesystem,2001.inClimateChange2001:TheScienticBasis,WorkingGroupI: TheScienticBasis,IntergovernmentalPanelonClimateChange,UnitedNationsEnvironmentalProgrammeUNEP,WorldMeteorologicalOrganizationWMO.Availablefrom: http://www.grida.no/climate/ipcc_tar/twg/wg1/040.htmAccessedonApril15,2003.ReportsavailableinArabic,Russian,andSpanish. [74]D.L.PerlmanandG.Adelson. Biodiversity:ExploringValuesandPrioritiesinConservation .Blackwell Science,Malden,Massachusetts,U.S.A.,1997. [75]C.HarveryP.ResosudarmoK.SinclairD.KurzM.McNairS.CristL.ShpritzL.FittonR.Saouri Pimental,D.andR.Blair.Environmentalandeconomiccostsofsoilerosionandconservationbenets. Science ,267:1117,1995. [76]F.D.Por.Thelegacyoftethys:anaquaticbiogeographyofthelevant. MonographiaeBiologicae 13:75,1989. [77]R.B.Primack.Valuingbiodiversity.InR.BPrimack,editor, EssentialsofConservationBiology ,pages 85.SinauerAssociates,Sunderland,Massachusetts,thirdeditionedition,2002. [78]D.M.Raup. Extinction:badgenesorbadluck? W.W.NortonandCo.,NewYork,NewYork,U.S.A., 1991. [79]K.H.RedfordandB.D.Richter.Conservationofbiodiversityinaworldofuse. ConservationBiology 13:1246,1999. [80]C.T.Regan.Organicevolution.In ReportBritishAssociationforAdvancementofScience,1925 ,pages 75.1926. [81]C.J.McCleanJ.E.N.VeronJ.P.HawkinsG.R.AllenD.E.McAllisterC.G.MittermeierF.W.Schueler M.SpaldingF.WellsC.VynneRoberts,C.M.andT.B.Werner.Marinebiodiversityhotspotsand conservationprioritiesfortropicalreefs. Science ,295:1280,2002. [82]T.R.Roberts.Geographicaldistributionofafricanfreshwatershes. ZoologicalJournaloftheLinnean Society ,57:249,1975. [83]L.J.RothschildandR.L.Mancinelli.Lifeinextremeenvironments. Nature ,409:1092,2001. [84]O.A.Ryder.Speciesconservationandsystematics:thedilemmaofsubspecies. TrendsinEcologyand Evolution ,1:9,1986. [85]E.Salati.Theforestandthehydrologicalcycle.InR.Dickenson,editor, TheGeophysiologyof Amazonia ,pages273.JohnWileyandSons,NewYork,NewYork,U.S.A.,1987. [86]M.JaitehM.A.LevyK.H.RedfordA.V.WanneboSanderson,E.W.andG.Woolmer.Thehuman footprintandthelastofthewild. BioScience ,52:891,2002. [87]J.W.Schopf,editor. Earth'sEarliestBiosphere.ItsOriginandEvolution .PrincetonUniv.Press, Princeton,NewJersey,U.S.A.,1983. [88]J.WSchopf.Microfossilsoftheearlyarcheanapexchert:newevidenceoftheantiquityoflife. Science 260:640,1993.

PAGE 70

64 BIBLIOGRAPHY [89]T.M.BrooksG.A.B.daFonsecaW.R.KonstantR.A.MittermeierA.PurvisA.B.RylandsSechrest, W.andJ.L.Gittleman.Hotspotsandtheconservationofevolutionaryhistory. Proceedingsofthe NationalAcademyofSciences ,99:2067,2002. [90]R.E.DickinsonD.A.RandallA.K.BettsF.G.HallJ.A.BerryG.J.CollatzA.S.DenningH.A.Mooney C.A.NobreN.SatoC.B.FieldA.Henderson-SellersSellers,P.J.Modelingtheexchangesofenergy, water,andcarbonbetweencontinentsandtheatmoshpere. Science ,275:502,1997. [91]R.L.Smith. EcologyandFieldBiology .HarperCollins,NewYork,NewYork,U.S.A.,fourthedition edition,1990. [92]B.R.SpeerandA.G.Collins.UniversityofCaliforniaMuseumofPaleontologyTaxonLift, http://www.ucmp.berkeley.edu/help/taxaform.htmlaccessedAugust20,2003,2000. [93]L.S.KutnerStein,B.A.andJ.S.Adams. Preciousheritage:thestatusofbiodiversityintheUnited States .OxfordUniversityPress,Oxford,U.K.,2000. [94]L.S.KutnerStein,B.A.andJ.S.Adams. Preciousheritage:thestatusofbiodiversityintheUnited States .OxfordUniversityPress,Oxford,U.K.,2000. [95]M.L.J.StiassnyandI.J.Harrison.Notesonasmallcollectionofshesfromtheparcnationalde marojejy,northeasternmadagascar,withadescriptionofanewspeciesoftheendemicgenusbedotia atherinomorpha:Bedotiidae. FieldianaZoology ,97:143,2000. [96]S.A.Temple.Plant-animalmutualism:Co-evolutionwiththedodoleadstonearextinctionofplant. Science ,197:885,1977. [97]CTudge. Thevarietyoflife. OxfordUniversityPress,Oxford,U.K.,2000. [98]R.E.TurnerandN.N.Rabalais.Coastaleutrophicationnearthemississippiriverdelta. Nature 368:619,1994. [99]M.D.F.Udvardy.Aclassicationofthebiogeographicalprovincesoftheworld.TechnicalReport OccasionalPaperno.18,InternationalUnionfortheConservationofNatureandNaturalResources, Gland,Switzerland,1975. [100]R.V.O'NeillUrban,D.L.andH.HShugart.Landscapeecology.In BioScience ,pages37:119. 1987. [101]R.V.O'NeillUrban,D.L.andH.H.Shugart.Landscapeecology. BioScience ,37:119,1987. [102]F.VanDyke.Valuesandethics.InF.VanDyke,editor, ConservationBiology:Foundations,Concepts, Applications ,pages56.McGrawHill,2003. [103]N.F.MeierR.vanLoonE.M.vanHoveW.B.J.T.GiesenG.vanderVeldeVanKatwijk,M.N. andC.denHartog.Sabakiriversedimentloadandcoralstress:correlationbetweensedimentsand conditionofthemalindi-watamureefsinkenyaindianocean. MarineBiology ,117:439,1993. [104]L.VanValen.Thehistoryandstabilityofatmosphericoxygen. Science ,171:439,1971. [105]H.Walter. VegetationoftheEarthandecologicalsystemsofthegeo-biosphere .Springer-Verlag,New York,NewYork,U.S.A.,third,revisedandenlargededitionedition,1985.translatedfromthefth, revisedGermaneditionbyOwenMuise. [106]H.Walter. VegetationoftheEarthandecologicalsystemsofthegeo-biosphere .Springer-Verlag,New York,NewYork,U.S.A.,third,revisedandenlargededitionedition,1985.translatedfromthefth, revisedGermaneditionbyOwenMuise.

PAGE 71

BIBLIOGRAPHY 65 [107]D.G.WennyandD.J.Levy.Directedseecdispercalbybellbirdsinatorpicalcloudforest. Proceedings oftheNationalAcademyofSciences ,95:6204,1998. [108]R.H.Whittaker.Evolutionandmeasurementofspeciesdiversity. Taxon ,21:213,1972. [109]E.O.Wiley. Phylogenetics:thetheoryandpracticeofphylogeneticsystematics .JohnWileyandSons, NewYork,NewYork,U.S.A,1981. [110]P.H.WilliamsandC.J.Humphries.Comparingcharacterdiversityamongbiotas.InK.J.Gaston, editor, Biodiversity:abiologyofnumbersanddierence ,pages54.BlackwellScienceLtd.,Oxford, U.K.,1996. [111]M.C.WitmerandA.S.Cheke.Thedodoandthetambalacoquetree:anobligatemutualismreconsidered. Oikos ,61:133,1991.

PAGE 72

66 INDEX IndexofKeywordsandTerms Keywords arelistedbythesectionwiththatkeywordpagenumbersareinparentheses.Keywords donotnecessarilyappearinthetextofthepage.Theyaremerelyassociatedwiththatsection. Ex. apples,1.1 Terms arereferencedbythepagetheyappearon. Ex. apples,1 A albedo,2 allopatricspeciation,43 Alphadiversity,31 B bequestvalue,33 betadiversity,31 biodiversity,2,5,5,3,4,5, 6,7,10,11,12, 13,1445,15,16,17 biodiversitycoldspots,8 biodiversityhotspots,7 Biogeography,43 biologicalspeciesconcept,26 C collector'scurve,15 communities,9 community,45 D demography,41 directusevalue,33 dominantspecies,53 E E,25 ecologicalbiogeography,43 ecologicalvalue,53 ecoregion,47 ecoregions,9 ecosystem,25,39 ecosystems,7,9,31,45 endemicspecies,7 evapotranspiration,2,2 evolutionarysignicantunit,26 existencevalue,33 extinct,49 Extinction,49 G Gammadiversity,31 geneticdiversity,9 H H,25 Historicalbiogeography,43 I incipientspecies,26 indirectusevalue,33 K keystonespecies,53 L landscape,51 landscapes,9 M Marinebiodiversityhotspots,8 massextinctions,49 metapopulation,42 morphologicalspeciesconcept,26,26 N non-useorpassivevalues,33 O orobiomes,7 orogenesis,5 P parapatric,26 Photosynthesis,37 phylogeneticdiversity,25 phylogeneticspeciesconcept,26 physiognomy,45 platetectonics,5 population,41,41 populationdiversity,9 PotentialorOptionvalue,33 R races.,41 radiationbalance,2 S sink,42 source,42 speciesdiversity,9,25 speciesevenness,25 speciesrichness,7,25,31 surfaceroughness,2,2 sympatric,26 T terrestrialbiodiversityhotspot,7 V variants,41 W watersheds,2 wetlands,3

PAGE 73

ATTRIBUTIONS 67 Attributions Collection: WhatisBiodiversity Editedby:NoraBynum URL:http://cnx.org/content/col10639/1.1/ License:http://creativecommons.org/licenses/by/3.0/ Module:"GlobalProcesses" By:MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12159/1.1/ Pages:1-4 Copyright:MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"DenitionofBiodiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12151/1.2/ Pages:5-6 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"SpatialGradientsinBiodiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12173/1.2/ Pages:7-8 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"IntroductiontotheBiodiversityHierarchy" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12162/1.2/ Page:9 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"WhatisBiodiversity?Acomparisonofspidercommunities" By:JamesGibbs URL:http://cnx.org/content/m12179/1.1/ Pages:11-24 Copyright:JamesGibbs License:http://creativecommons.org/licenses/by/1.0 Module:"SpeciesDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12174/1.3/ Pages:25-29 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0

PAGE 74

68 ATTRIBUTIONS Module:"Alpha,Beta,andGammaDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12147/1.2/ Pages:31-32 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"IntroductiontoUtilitarianValuationofBiodiversity" By:MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12164/1.2/ Pages:33-34 Copyright:MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"BiodiversityoverTime" By:RobertAhlnger URL:http://cnx.org/content/m12148/1.2/ Page:35 Copyright:RobertAhlnger License:http://creativecommons.org/licenses/by/1.0 Module:"ABriefHistoryofLifeonEarth" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12146/1.2/ Pages:37-38 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"EcosystemDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12156/1.2/ Pages:39-40 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"PopulationDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12171/1.2/ Pages:41-42 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"BiogeographicDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12149/1.2/ Page:43 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"CommunityDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12150/1.2/ Pages:45-46 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0

PAGE 75

ATTRIBUTIONS 69 Module:"Ecoregions" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12155/1.2/ Page:47 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"Extinction" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12157/1.2/ Pages:49-50 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"LandscapeDiversity" By:IanHarrison,MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12165/1.2/ Page:51 Copyright:IanHarrison,MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0 Module:"EcologicalValue" By:MelinaLaverty,EleanorSterling URL:http://cnx.org/content/m12154/1.2/ Pages:53-54 Copyright:MelinaLaverty,EleanorSterling License:http://creativecommons.org/licenses/by/1.0

PAGE 76

WhatisBiodiversity Thiscollectionprovidesanoverviewofwhatismeantbytheterm`biodiversity,'andhowwemeasureit. Thecollectionreviewsthedierentlevelsofbiodiversity,orthe`biodiversityhierarchy'including:genetic andphenotypicdiversity;populationdiversity;speciesdiversity;communitydiversity;ecosystemdiversity; landscapediversity;andhistoricalandecologicalbiogeographicdiversity.Briefdenitionsofpopulations, species,communities,andecosystemsareprovided,withsomeintroductorydiscussionofdierenttypes of`speciesconcepts.'Thecollectiondenestheterms`speciesrichness'and`speciesevenness'asmethods formeasuringspeciesdiversity,anditdiscussestheuseofspeciesrichnessasasurrogatefordescribing overallglobalbiodiversity.Thecollectionreviewsthedistributionofbiodiversityinspace,explainingthe denitionsofalpha,betaandgammadiversityformeasuringdiversitywithinandbetweenecosystems.The environmentalfactorsthataectthesepatternsofspatialdiversityarebrieydiscussed.Thecollectionalso includesabriefreviewofthedierentwaysbywhichassessmentsofspatialdiversityareusedforconservation planningandmanagemente.g.,basedonecoregions,orbiodiversityhotspotsandcoldspots.Thecollection concludeswithabriefdiscussionofdiversityovergeologicaltime. AboutConnexions Since1999,Connexionshasbeenpioneeringaglobalsystemwhereanyonecancreatecoursematerialsand makethemfullyaccessibleandeasilyreusablefreeofcharge.WeareaWeb-basedauthoring,teachingand learningenvironmentopentoanyoneinterestedineducation,includingstudents,teachers,professorsand lifelonglearners.Weconnectideasandfacilitateeducationalcommunities. Connexions'smodular,interactivecoursesareinuseworldwidebyuniversities,communitycolleges,K-12 schools,distancelearners,andlifelonglearners.Connexionsmaterialsareinmanylanguages,including English,Spanish,Chinese,Japanese,Italian,Vietnamese,French,Portuguese,andThai.Connexionsispart ofanexcitingnewinformationdistributionsystemthatallowsfor PrintonDemandBooks .Connexions haspartneredwithinnovativeon-demandpublisherQOOPtoacceleratethedeliveryofprintedcourse materialsandtextbooksintoclassroomsworldwideatlowerpricesthantraditionalacademicpublishers.