The effect on stability and control of a pusher propeller behind conventional tail surfaces as determined by tests of a ...

MISSING IMAGE

Material Information

Title:
The effect on stability and control of a pusher propeller behind conventional tail surfaces as determined by tests of a powered model in the free-flight tunnel
Series Title:
NACA WR
Alternate Title:
NACA wartime reports
Physical Description:
20 p., 16 leaves : ill. ; 28 cm.
Language:
English
Creator:
Campbell, John P
Hollingworth, Thomas A
Langley Aeronautical Laboratory
United States -- National Advisory Committee for Aeronautics
Publisher:
Langley Memorial Aeronautical Laboratory
Place of Publication:
Langley Field, VA
Publication Date:

Subjects

Subjects / Keywords:
Propellers, Aerial   ( lcsh )
Aerodynamics -- Research   ( lcsh )
Genre:
federal government publication   ( marcgt )
bibliography   ( marcgt )
technical report   ( marcgt )
non-fiction   ( marcgt )

Notes

Summary:
Summary: The effects on stability and control of a pusher propeller behind conventional horizontal and vertical tail surfaces have been determined in the NACA free-flight tunnel by tests of a 1/10-scale model of an NACA submerged-engine pusher airplane design. The investigation consisted of flight and balance tests at windmilling and high-power conditions with a partial-span Zap extensible flap extended and retracted. The effects of changes in vertical-tail area, horizontal-tail incidence, and center-of-gravity location were also determined.
Bibliography:
Includes bibliographic reference (p. 17).
Statement of Responsibility:
by John P. Campbell and Thomas A. Hollingworth.
General Note:
"Originally issued January 1943 as Advance Confidential Report."
General Note:
"NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution."

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 003805344
oclc - 123919219
System ID:
AA00009437:00001


This item is only available as the following downloads:


Full Text

{f!fV


.


NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS





WAlRTIME REPORT
ORIGINALLY ISSUED
January 1943 as
Advance Cnfidential Report

THE EFFECT GK STABILITY WD CITROL OF A PUBHE PRBPELLR
BEilD CCOIVTICIAL TAIL SURFACES AS DElMEMIED BY
TESTS aF A POWEED MODEL I THE FREE-FLIBE TfU
By John P. Campbell and Thomas A. Hlllngwoth

Langley Memrial Aeronautical Laboratory
Langley Field, Va.












WASHINGTON
NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of
advance research results to an authorized group requiring them for the war effort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without change in order to expedite general distribution.


L 220


Uip
pA;~
i;;

i-






































Digitized by the Internei Archive
in 2011 itll funding Iroi
University of Florida, George A. Smathers Libraries wilh supporL Irom LYRASIS and Ihe Sloan Foundaion






























hllp: www.archive.org details ellectonslabililCCllilang




-


NATIONAL ADVISORY 01,1.:ITTEE FOR AER0A-AtTICS


ADVA.'Z C 0;; o: .Z.'IAL L'7FOT


TME TEF _CT ON STABILITY AiiD CONTROL S? A 2PUIR '.CP -LLZP.

BE:-:ITD 00C.:V:rTIO::AL TAIL SURF..CS S AS D ELM I::D Y

TTS OF P 01-'.1?.-J iDC3L I "1; T FZREEB-FLI 'tT T:,1.(:L

By John P, Canbell uln Th:omas A. Hollin,:worth


SU.;:.TARY


The effects on stability and control of a pusher ,'o-
peller beo.:m co-ventional horizontal and vertical tail
surfaces have been determined in the ITACA free-flight tun-
nel b.' tests of a 1/10-scale moiel -" an .:.... submer -:d-
er .ine pusher air.,lane desitr, The invest nation consisted
of flight and 3al:-.ce tests at vi... killing and high-power
conditions ,:ith a ..-rtial-s .:n Z-1 extensible flap extended
Pri. retracted. The effects of c>a. .es in vertical-tail area,
horizontal-tail incidence, and center-of--ravit" location were
also 1.etermined.

The tests showed that, with a pusher propeller located
behind tih: tail .urf :.c :6" ? caus.jd onl', minor ch-i..-L in
stability .id co;:trol. T'h. .-dillin;, propeller provided
slig t incrces.s in lon -ita 1.: 'nd directional stability.
Application cf po'--r only slig.htly affecte.i the longitudinal
stability, increa.R d t..e directionel stability, r-? necesssi-
ttetei n sall animunt of aileron trim. The iil'ed-'al effect,
stalling behavior, an.' raiier trim were not affected j;"
power.

This particular :ptsher ,esign -,ith the propeller behind
the tail surfaces is rco.:siered ver;' promising as a means Df
elimiiitin- tna uniesiracbl2 slipstream effects of tractor
propell rs.


I:TT ODL AUCTION


The trend to'-'ard more -c2'er'ul cn-;ines in sin-le-uxr-ine
military airplanes his c -usc. the propeller-slipstream -.'ffects
on stability ani cn':r:l to become izr;asingly important.








2


3:caus~ e ~ ,..s L~ipstream effects are, on the -'hol: con-
si.ered und&csiratle, .c-ons ar: being: souTiht to eliminate
th m. One apo.I.rcnt olation to the problem is the a 3C-e of
pusher propellers. Various designs to permit the u_ .e of
pusher proFellers ha.ve been proposed, such as the tail-
less and tailfirst qirplal.es. The :IACA h.as recently sug-
r e-, ted r sub-,n ered- e .gi.e ruslhr d- i gn 'i th the propeller
directi-" behind coni'enti .nal '"criz ntal and vertical tail
su-'.fces. A 1/l0-scple power-d model of this idsi-n has
been test.:d in the 'iACA frce- l ight tunnel tc determine
th eCffect o.L' v.cn a; pro: Cllr arrangement on stability
and control ch.r' cteristics. During, the investigation,
a special -ffort w E'. l-c' r- ai to ojicerv;, an: cihn ;s
in stability -;L, control that r.iht, have tee.: caused by
th. s;ort t.il1 n h in':r rent. in the design.


APPAA.TT..S i'- iKTEOD3

.i rd T -.:. n n 1


The inve sti as. ion ,".s carri i out in the I.ACA free-
flic-.t tL.nn:l dcsc-ibo-i in r.-:-rncc 1. Photoraphs of the
t st s s ction .-f t..: t un. I s.io\ m.od..ls 'bL.in tcst:ed in flight
in fig arc 1 -L. on thn ualanoe i. figure 2.

In the fii-ht test the z.od.el flice frjrly in the tun-
n'l un i.. tt remote control of a pilot seated. at the bottom
arn. r;ar of t'.e tun.nel. An ornr.ntor at the side of the tun-
n-l adjusts the .airspz. d, turn l angle, ;..nd mower to the
motor i, t h mrodel to corres-pond to the desired flight con-
dit.io.; b. After the- l:t.-i -ral -r.d lor.n itudinal trim of tih
model h-s beon .djustcd for the :: i'rticular conditions, the
st.abilit- of t h. model in uncontr-.ll d flight is observed
and tn: .ff tctiv :n ss of t'n controls is determined. In
order to su'l'-lemaent the pilot observations, moving-picture
records of ili hts -re Lrken by tl'ree camera mounted at the
top, sie, r%-d rear of the tunnel.

The balance ts. ts --Ere run on. the free-j'lirht tunnel
six-cor1j.,c ei a t balance. The balance rotates riith the model
in yaw so t'.at all fo ce.s an<. moments are menrsurer. -'ith
r.;spect t t tht: st.ability e x.as.












Mod el

The 1/1.0-scnalc mnoacl f thi ?:'.CA :ubn- :-ze -cd-ion in
pusher airplane design used in th. t ?st t contruct-..
and prepar-a for the testing by t+h:- .TACA. A thr.-.- -vi,_-
'.rawing. of the iodel i' pro: .. ::2 s "'iur_ 3 and photo-
graphs of tne mo. -el ar. sh:B i' fir.r0s 4 ind 5. T1.1
dime -,sion, L ch '..a ct :r tics f t.i: ir lan:- a sc;il d up
from t,.-. nolel values are :iven i!. table I.

In :iditi: n to t.,- vrticai tail- cpecifie-I for the
airpl. n (tails i and 2 of fi:. 3), a l.r.:r vertical tail
(tail 3) wvs in;ta.ll j on t'.: model1 for so!:is of the t ,ts.
Only the upper vertic.". tail ".;as provided ,rith movabic
rudd ar.

A si,mio.l wii're l-.ading r7e;o r -.as inst ll d o0- the model
-.s s.inwn ii fi; ir-- 3 t: pFrovide :uffizicnt e'round angle for
take-off an- t1L zso b short in l'r.diji. .

ThE wi.:'t of t?3 nodel after fin-.i ..ren .r't i io n In
b,:l..c in- ',r:.s 'bou-t 5.80 po unds i.vhich co rr I, a ri- d. t
5600 poun.,s for t"' irpl-in.,. h.-. canircr 3f -.-~v ty of
the m lucl *.- ."idj st2d to 2-!.2 p.rcnt of tnc :.:-.n r ..ro-
Cynami ic chord. T'.c ,aoi..nts of ii. rti- of th, mod.: l corre-
spon1'.d to t-.ose of -"oic.l. -odern. fi-htcr -irpl-r. s -.s in-
dic -tc. by the r tios of vin ;s)nr. to r-adii of .r-ation
show in t-ble I.

Zlectroragnet s 'ere i~n: allied in th'e -o.el to provide
abrupt deflections of the allero: s, rudder, '.nd elevator.
-he allerons wer ipe' lecte '',ith .nr eqral u -end-aowa move-
ment v:ryin.: fro:. 12': to ~lo Fudier deflections. varying:
from 100 to 20- wer-j used in :z-.iunction -'5 ,th he ail'.rons
to provide prop-r control c- i'tion. For loni tudinal
control abrupt elevator de il~tio s of 20 or 70 -.ere used.

The mni.a l w-.s po'.,ered b: a i: rect-current contraila le-
spee.. cle;tric motcr r.taed 1/5 horseno:.err a- 15,000 rapn a :l
pc-cr.d --rith P ratio of 2.54:1 to a pusher n 'mpellr. 7he
motor w' s )1eced for -.rd of E..e "inz r .= w.'as conn;ct2d to
the propeller b: a 5/16-inch-diar -tor hollo'-, aluminum
drive sh.ft about 19 inches lons.

Ar aijust-ble-pitch, t'.-ro-blade, 11-inch wooa propeller
was used an th3 :,odel. For all tlhei power t.sts, the bl0de
angle at 0.75 r-dius rwa set -t 240 in ord..r to absorb full
power at maximum efficiency with the desired prop, ilr tpocod
of 6000 rpm.











T~e s t; Con. it ion

The pcwe:'r rar':.ct er i t ics of t'.: roda-. mo or a, D. tg ar
boo unit .r, d t ier-ir d u," P ..ry br'ke t sts nc "n the char-
acteristics of th r cprcpelI r L.th v .rious r 31..1l ts of pitch
ware Psc rta-incd at d~:, A;n ic : -.'.. ur. : of 0, 1.90, i.d 4.09
poand- p-r squ-itre fu.t. These te;, indic-.td that : blode
rnf lu of 24 -it 0.75 r.-ii:.s u .would :a t n -rl: .r.t.i sf: the
requiir.d conditions For e.ch of tA: flight and bl.] ir.c
tes s the po'.-ir sup lieEl -c the modilj' was a.dju:tc.d to th:
desired condition o:D v rir.ing tih input voltn.-e.

The Ili.ht te: u covered rsnre of A:ir speed from 25
to 50 niles cer hour, v.ich co'rresT 3nC.ed to 80 to 160 miles
per hour for the irpl].ane representat. The e-o j'er rwas varied
frOu inumill in tj 0.235 brake h rsepowder, '.nich was tne
maximum obtainable "rc:n th miotr usod. in th3 .:.odel. The
thrust la-eloned in te 'iiaht t ests waa 'et-rmuined from the
differ,;.ici e between th flie ht--ath .- n-1., or tunnel angle,
with- po-.'or on and tn c 3sn:gle ith prop,:ll r off at the same
lift coefficient. *The :hih-ipo':ar condition in the flight
tests cor. so jnLCe tc about 5,C brke.- ho-7,zpowr for the
ai'r- ani..

4ost of the b.:al'ncc tcsts werj run at. a '.yr.aaic pras-
sure of 4.09 pound- r.,r s;uarc foot, which corresponds to a
velocity of about !Iu miles p:-r hoar under st-andard sca-level
condition and to ".. to.;: R.cinolc'. number of about 209,000
baved oa the mn,-:n c! c. i 1 0.5 8 foot. The hii h-pouer tests
were run t .L d;yn'r.ic pr'.-Zur: cf 1.9O0 pounds jper square foot
in order. to repr:it gr -ter irplrna S'Fpoer and thecre-
by e-xt i d t'he po'e-r rin : .- of th: ta- ts. For .ch ba'ile.nce test,
the po-.er t the m c'..el *:a. a i just .-' to Currespond to 1100 brake
har : cpo'-..r 'or t ae nir-pl-ne. .i po',er -djus itment w.as made
b; vrr,fing t' voltage to igiv. t :. pro opr values of thrust
co fficier t T .at e. .h lift co~dffC i cient The desired thrust
hor epoo.e.r (.an, thiaii t :.- tlhru. t co) -f fi- i .lt) for e"ch lift
3ooffici nt w.s o: 7- p-uteo~ by nultipl:'in; the rr.tol .irpljane
h r-cp3wc-r (1100 bh'i) b;r a propeller f"f ic i2nc corresponding
to 'the r:.rticular lift coefficient. Propellir efficiencies
o:f an airpl-nl with speed ran c3 c ililar to that of this
airpl -nc w.-cr us. ed in making these comnratrti,.ns. The varia-
tions o' thrast coefficient, torque coefficient, and propeller
efficiency with lift coefficient are shown in figure 6.











SYMBOL S


CL lift coefficient (L/qS)

CD drng coefficient (D/qS)

Cy lateral-force co~-.ficient (Y/qS)


On .vwin.-T-noment coefficient (ywin- moment
QbS /


01 rollin-n-moment coefficient rolling -"oment
qb3


0m pitchin-mno:.,ent coefficient (pitch,ng .,romr.nt)
qcS

L liit, pouund-

D d r a Ijound .

Y lat er 1 ior p-iiund

q dynpmi. f'r. ur.:-, ,ou.L p r squa'e ff t (-pV2)

C f, r c i 1 f .. i': L

3 ri. r u : re i t

b L n- i';., f .ct

0C rat.-. o. ch ;.'-, o' iol i -mi i... erLt c',,-ffi'ient with
c.i'c.1.lip, per r'adia,'.


sid -.1-, 1ip, p-r radi"..i

p --.i11 of sid-a slip, r'd.drin s

a lo f y y.'/, de,'-.:es

a an lo ojf rttqck of fu.r.,:.-- r.-.ferco li. do, degreeo

T thrust coeffici.-.t fV---
c pY Da};3











T thru-.st pourdi.

p air dconsity', lu s r cubic foot

V7 ir.-p ..pJ L-d, f t et ,r s cc d

D I r pell- 2 li a.nct r, "cet

Qc to. e : ff ic t


Q toro-u, : und -f at


r s
5 .l.:"-.to- ; fl ctic*in ,-'it'.i rc"^s .c t tj PtrJi!iz-r chi rd,


p rollin- v i: o .ity, .'"*-. i '.!: :r c ',n

po
- h- ix r..- A ;r. tc.' b: win : t i. i:n roil ra .ic ns







4 .n'
? "















Th1L ,-bnbiit;,' Tn't c atr:.l 2."_rs-rct-ris tic :,f 'he mdiil
wir i.'.Vc at gatc..i t t 'in'i 11 inS a:.I hi h-pvi er c z!dit ion
r. .rit h : .riclle: icm v d. ?.-ts 'icrO rnrde it h titc
p. r ti l- C ,...i anj fI-F rctr'o t ~. d uii f'ily xt :n d d with
'-n.ri s 1 :,;-: i i n-t i s f the '-crt1icr trils sh'trwn in figure 3.


A few i-relimina.'- tests ere mrEe to i-prove the longi-
tv.di al st 'l. lit of .e T..odel with flips do,.. During these
tests the, -.-nter of 'vit;.' as moved f c'r rnrd front 24.2 to
1.? p rc) r L of th-e m.en aerody'.'nmir chorA and the horizontal-
tail ii.ci.I-nce -ra: c: r. a ei from t5' to OC' Tuft tests were
mad to datermia: the MtalliAlk chinratctristics of the wing
ar d horizontal tail.












Flight tests.- lr:;e lon,'itndinal data obtained in the
flight teJts r'e pri, sented in figure 7 in the form of
elevator deflections required for trim at different lift
coefficients. The curves of figure 7 show the effect of
flLJ deflection and power on lonitudinal trim. The ef-
fectiveness of the ailerons for lateral control was deter-
mined by notini. the deflections required for .,.od control
in the tunnel fliihts and by measure ,- from movi:.;-picture
records the rollin velocities produced both in abrupt
aileron maneuvers with ruider fixed aLnd in the recoveries
frol these maneuvers. The values of pb/.2V obtained in
these tests are presented in table II.

PTJnce teFts.- The results of the balance tests are
:-ivyon il fi.o r:. -3 to 11. The curves of fi:-ure 8 show the
effects of T~wer a.id flaps on the aerodynamic characteris-
tics of the model. T e lo.gitudiral data from this figure
are replotted in figure 9 to show more clearly the effects
of r:o-rer ild flap deflection on longitudinal stability and
trim. The cha:' i.es in lo.i -itudinal stabili+'. caused by va-
riation of horizontal-tail incidence r:d center-of-g.ravity
location are shown in figure 10. The results of balance
tests male to determine the elevator effectiveness are
shown in figure 11. The lateral-stabilit,. characteristics
of the molel as affected by power, fln s, and fin area are
fiven in fir'res 12 _d 13 in the form of rolling-moment,
yawir.--moment, and lateral-force coefficients plotted
against n,,le of yav at a lift coefficient of 0.75. The
slopes of the rolln _-monent an'? yawir.,-moment curves of
fi-ires 12 and 13 are shown in figure 14 on a -lot of Ci
a,-ai.:st Ono t,<-et'-er wil a..,roximate bo-.riaries for
neutra-l -:plir.l tnbilitj (E = 0) and for neutral oscilla-
tory .taoi iitj (? 0). T.e effectiveness of the lateral
control .i- ci :rrin.aL by balance tests is shown in figure
15 ir. t ..:' -..i of r ll in:;-i.oment a.1i yawii -mo.:ient coeffi-
cient ,: .1 t a i. t r i ,,t aileron deflection.

T. T'- res.its of tu i. tests r.ade to deter-
mine t.-: .., .'nactP ristics o2 the wir.- and horizon-
tal tai r,: 1 re: e.r c. in fi-gure 15,












DI 30USSIni1

Prelimn, n ry Teste


e v:...':0 of t'ie short tail length of the model, the
h r izoni '.l toil wa: originally; set nt an inr ;le of inci-
d.;ace of -5 to av:'id e':cessivF un-clev-:tor travel for
trim. wit] flaps io'L W. ",ith this tail incidence, deflec-
tion of the ,ajrti l-spia Tap tflp caused the mondel to be-
c)j re st 'i ca ll I ia: itudinally lnstable. SJ ined
flii .ts c.re ii. ooasible a.t any 1 ir;n3p ed because of iver-
geicE s in pitch tA: t c c oild n be c ntr rolled b; elevator
defltcti n,. :iuvi ri the coIn- teL ,:.f gravi t: for'rarl frcm
21.2 to; 19.?7 percoe.t of the mern a~'od-clr uamic c h:rd made
t.e rrm-l l 1 o1 -zitudin .l l, utablce at lift coefficients ab)ve
0. 0 anl Loui flight i-, ould b.e mald.: without ia u in. elvator
con .tro,. At J.lwezr ift cocffici ient hI wcver, sustained
f Li-ht:; c-ull Le .niJe o l," bM c continual applyi,-in. alter-
ni tP 1,;up-and-[lron e l. c- t .r defl-ct io:s to prev'int the model
f o r-: d i er in,-. A lift c oeff~icie,'ts below 0 C moreover,
thc: stability" '-.: s .,ot sa.t'lic ient to permit flights to be
m a : e ven in this ,ian ,ier.

Th:- cliin cter of this Jinstability n ye ted a form of
tail stalling '.i'hn ti2 horizont li tail 'as :et at -5,
the do'rnr ash at loj an -los of etta',:: was believed to be
suf i ciernt to cau;, the lower surir -cr of the teil to tall.
This belief iz sa!bstoa; ti .ted by the be'ria"ior of the model
on t)le .L'ocr before take--off. The mod.-l often assuiei a
n';;'t ivre an i e of ittac": before tikii- f off an.' from this
attitule' the no e could nc.t be broui.i_1t upi by elevator con-
trol. I: these c .:es tiie lo..irr s:r. nce of the tail was
ev'iaentl.y fully stallcl i steild of int.rmittent.ly stalled
as it a ~pearod. to be in flight.

The tut't tes L male t.o d.ter inr e the stalling c carac-
toristi of the wins and of the -apper and lo.-rer surfaces
of the *'urizo)ntal t.il pr."ed thit the na .um.i tions regard-
in r; t i'. sta l ing wj ere c rre :t. T'ie results of these tests,
pr:scnt dt in figure 16, indicate that the lo'.er surface of
the tail !:ns almost co..nletel:, stalled at an anple of attack
of -4' and th.t th- outer portion ,as sttnlled at 0. This
tail stallin; accounts for the difficulty- encountered. in
fli,,hts .t lift co-fficients belo.a 0.80. The installed con-
liti in ':it an&,les of attack of 40 and 6'0 explains the im-
provc.u Inrn. itludinal boha ipr .-i tho rod.31 at hi,.her lift
coifficieuts. It i6 realized that the tail stalling of the











airplane would oczur at much higher negative angles of
attack of the tail and that the molel test results cannot
be used quantitatively but ai.r be taken only as an indica-
tion of an unsatisfactory condition that would be encouns
tered by the airplane if too great a negative tail inci-
dence were used.

Chan in- the horizontal-tail incidence to 0 elimi-
nated the tail stalling (fig. 16) and made the model lon-
.itudinally stable with flay.s doown at all lift coefficients
with the 24.2 percent center-of-gravity location. The
flight-test longitudinal-trim curves of figure 7 indicate
that the stability was sli-htly less for the flaps-lown
condition than for the flaps-up condition. No difficulty
was experienced in inak'in; fli :'-ts with flaps down, however,
ani the stability vaC considered entirely adequate.

The results of bleaice tests (figs. 8 and 10) show
the changes in stability with flabp deflection. In fi ure
10, the unstable pitchiing-romonent slopj for the flr'ps--".'wn
condition with the oriL,in.l tail inci, e d:e a.ni center-of-
gravity position explains the inability to obtain flights
at this condition. The manner in which the forward shift
in center-of--.r .vity position increased the st-bility is
also shown in this figure. As indicated b-" the flight
tests at this con.diLion, the stability; is -ositive at the
high lift coefficients but only about neutral at lift coef-
ficieet.; belo- 0.80. Th'e ron?'.i.cei stabilizing effect
caused b,,' the c:,-' e to 0'- tail i.'nideice i' as evident in
the results of bcla- ce ts't ( 'ig. 10) as i;. the flight
te3,.

LJ irtud ilal Stability

Increasi:i the power cais.ed only a s i -h t change in
the static lon itudiial stability,: for bot. the flaps-up
ani flaps-down coiditionn, as s..own by the curves of fig-
uris 7, R, and 9. It appears from the lo,-witudinal trim
data obtained in the fli4'it test- (fig. 7) that the static
stability as indicated by the elevator do.flections required
to trim at different lift coefficients .s sli 'htly in-
creased by power with flaps up -nd v,-ry s.ic.htly decreased
by power with flaps down. Tho balance test results pre-
sented in figures 8 and 3 ; fnirl-" well with the flight
results in this respect and .low c-erv smaller changes in
stability with power. The windmilling )ro.eller appears
to have provided a sli ;ht increase in lon.-itudinal stabil-
ity for all conrditio-is.











Application of power caused opposite changes in loin:i-
tudlin.l trim for the flaps-up and flaps-Iown conditions.
The trim chnn:es were ap,.?are.nt in the flight tests when
successive flights were cmJa at tih winr.cnril iz- and hi ;h-
powa er co:.dit ions -rith a consbtnt o v'.av'atr setting. Appli-
cation or.' K-oer caused t-he trim airs,: e to increase uith
flaps up and to decrease with fla'.-, do'-'.r T.ebe trim
chan?~)s ;pre shown b: the cur"e oif fi-'gures 7 and 9.

The damnin, of the nph:aoid os-lllation was satisfac-
tory:' far all -ow-er co.liiti.s5 ani .pn eared to be 3ii.htly
better .t hi;l poa.'er.


Lc n i i inal Control

T'. 1on itu.di.el cc r.tr:1- apoer-rei. to ba gojd'i in all
rc'-:ec't: dc s: ite the .:'ort tail .' e;.gtF h f tL -. :odcl an
tha n ri.r e s :f the :.:"-".eller to the j- ri .t'1 tail.
Abruot ele .' tor .i 1 ? n.' : -' 1 or +- :.0 ,ere rt -
q.ir.. to.:. *-rr ct for i _-;it:'ii. i a! di.;. r.r .--:.cs and to
mi..neu -r t -o i :. in t .e ti.i el ,..~ de.: irei. Sl i t ht.1
-.rcat=r el -ator dcefle:tion 7. ? "een: req'aired on most
rather models tc.-tcJ in th- fre -f liz i tua.i l.

The elov:ator-tri m characters ics as i:. iic aed b:- the
fli_1ht dat.p; in figure 7 apeer to be v-ry g zod. Trin for
the hi..:h-s oed co d i i ti:n to the stall ups aLtai-ed w ,it'-out
exceasi-'e eplevaator tra-el b st a fairly lar:e increase in
elev-atur i e-.- ent .wa- required to produce t. e st.ll. These
clev:ator c..nracteristics 2 L c a.nidered de irabin.

The ba lan e-tes t result s in fi ure 11 chow that, with

*nower on, t:.e -.riua1s of aer3 about -O.C017 ith flaps

up and -0.015 with flaps do'-n. These values divided by

dCm for the corresponding conditions ;i'i values of ICL
SCL d5e
of 0.084 with flaps au ani 0.177 with flans down. T:ieso
dC,
values of __, '-iich are in fairl- good atremoent with
de
the flight-test results, in'.icate adequate elevator efiec-
tiveness for the particul-r ie. rees Of static stPbility

C--'\ afforded by the 24. "pr percent center-of-gravity

location.












StallinT "h, racteristics


The behavior o: the model at the stall was not notiee-
ably affected by power anil was considered. satisfactory at
all conditions of flaps and dower.

With the flaps up, the b h.nvior at the stall was not
consistent. At times a definite waruin. of the stall was
observed in the form of a sli:Ot pitching motion, but at
other times the model would roll off to either side at the
stall without warning. Tlhe stall wac, however, gentle in
all cases and caused, no great t difficulty.

When the flaps were down, the stalliu,- characteristics
were excellentt. A-'nple warning of the stall was afforded by
a noticeable pitching motion, :nd t'.e stall itself was evi-
denced b;:, a slow dropping of te model to the floor of the
tunnel. E'en with the stall sufficiently advanced to cause
this fradr:.ql -,:ss of Fltitude, the ailerons were still ef-
fective in ic.: .i -I~T a low win.;, Ti.e results of -the tu't
tests shnirn in fi ire 15 provide a plausible explanation
for the ord st" llin,- bjhrivior with flios down. The stall
diaor..ns ,. lirte t*~it the uprr surfi'ace of the large par-
tial-spii :,' flap Pn1d t'ie portion of the wing ai-eaA of it
stall wel1 before the ailero.is. T.ie apparent stalling of
the horizontal taiL at hi :l :n.a-les of attack as indicated
by the tuft tests .,*'ar actually / a form of tail buffeting
and was probably r sp.onaible for thn* pitchin;i motions that
warned of the stall.

Lateral St.oility

Eff ct of Podrr.- Pow'cr .r,-,vid a noticeable increase
in directional stability -.!i Li sli--:it increase in dihedral
effect. In t;ie flight beits, ticse stability changes were
evidenced by the smoother, stea'.Ler fli.iits obtained with
power o-. When, iurin a sin-le continuous flight, the
power was increased gradually from ,,ind:aillini; to high
power, a definite steadying of the nodei, especially in
yaw, could be observed. This effect of power, which was
noted in flights with flaps either up or down, was consid-
ereu beneficial in improv-ing the flight behavior of the
model.

The spiral stability, which w.as satisfactory with
power off, did not appear to be affected b:' power. Vith
the flaps up and only the upper vertical tail on, power
definitely improved the oscillatory stability and reduced
the adverse yawing caused by the ailerons.











The balance-test results in figures 13, 13, and 14
substantiate the obsarvatio:s male in; the flight tests in
regard to t'-e effect of poo'er on the l teral-stability
characteristics of the model. The vawing-moment curves
of fi-ure 12 have greater slopes with power on and, in
addition, the curves are straigntened out by power at the.
higher anles of yaw. This straightening oit with power on
su-e.-ts that the propeller was actit- in such a manner as
to delay tne stalling of the vertical tails. At the low
angles of yaw, however, th3 effect of power in increasing
the directional stability cannot be credited to the change
in air flo' over tne tail surfaces because, as shown in
figure 13, most of the increase :as obtained with the tails
removed. :=either can the majorr portion of the increase in
directional stability witn ow-er on be attributed to the
propeller normal force. The balance t.sts with tails re-
moved indicated a much larger increase in lateral force in
changi!nr from t'ie propeller-off to t 'ir.imilling condition
taan in chiinin- front the w-i ndmil ing to th:e high-power con-
dition. In this respect th, t. s t agrca e '.rell with propeller
theory. On the other Land, t.,o i.creaze in directional sta-
bility (Ca8) provided by the wi::duilling propeller wva less
than one-:ialf as great as the p, increase produced by the
spplicatiou of power. These results indicate that the inflow
to the powered w.lshqr propeller might have Pffected the air
flow over the fuselage in such a '.ay as to reduce its unstable
yawi-i momiit without appreciably changing its side force.
It is interestin- to note in figures 13 and 14 that, with
nll tails removed, po."rr provided anou-h fin effect to bal-
ance the unstable mo-i.ent o' the inr;-an.d-f'us el e combina-
tion bra there/ :.!:te t:.- ..odel n utr.lly directionally
stable.

The curves of fie 'ras 12 a.i 13 show tae slight increase
in dihedral cffjct provided by po'rar. The i:,crease ..ppeoars
to be substantially the same for flaps up or down and is
almost negligible in either case.

Thie summary of the balance results gi-er in firu-re 14
indicates the reasons for t':e flight-test observations s re-
gardi:.i the. effects of power on spiral -. 1 oscillatory sta-
bilit;y. Inasmuch as power increases ooth Cn and -CIO
it causes a shift on the ;stbility plot (r to H or E to F)
approximately parallel to the spiral-stability boundary and
therey:r affects the s;.iral st.-;bilit", very little. The im-
provement in oscillatory stability caused by power with flaps












up and only the upprr vrtic-l1 t.il on is hbo-'rn ."rnh-
icall," in f'i -iur: -1 by the shlift. fro, co:,, ti t 1 J.L 3, .'r
t.: oC ill tory-s ability boau i."r;,/, to con a ti J I, .i11
-w -' fr :m t h':-t boun ry .- --.r;ent L t in ''r t l .?
r o 1 CI 1i.

In generall, t::e effects of jo',er o01 the int.ral -sto-
bility o' tli's model ere coa i*i era.b; t.-'. the ef-
facts of power on t:he st.1ilit;,' of c nlventi:nal tra -t:r-
molels testee in th, free-fli _nt tuin el. '. :,ar *-',
moreover, ei'c i. nr. ceS 3 c etri i'c n L 1 .-' u .- C.'Ie
cas3s defiritely t;f, f i i.i11 to tr i '.h b e .vior of the
model. In t i- r- es ct t his r t ic lar 1:h.: r d:si.;n
app,-rs t-. be c A pl: -t l- t I.: i..d .

Effect :,f fla s.- T.:.. rz'i. ts -'f h- .:.:-. it -iven
in fi -ur: 12 :n:.. c.,-.t fi e ii : t It n.) c u ,ii a c- .- i s :r ble
reiucti '. i n di;.edr.-. e f.'-c t 6,. ex.-ctt 1--t "i nott epff ct
the ir: eti :na sta', 1 it'. I t ,. : r .. fi i-.r: 14 t i.t
this rc.lucti .n in di:-. r- 1 -f:' ct :.' .uli i."v: ': ..j -i t h.
mi) o 1 tj b -c pir 1ilv. 1r. t.. t_ .

An an:l'. 1 i f t ,- / '-*i i. : i,. t? l II -*.1--
roveals 'r' d.: c :' li i.;1 spi:,- l i t -b l li tt .ith fi p
d3 .n. For t f 1 -p.'-d anj liti: t i. s z.of t.,2"
obtt ine.i '. r in r c: ri r. b .. t : r :. r.-n .". ..r
were son. i a t 1 :ar t '..i t'. r/.lu:3 -bt .i .' *.ri t.i
maneuvers themnsclvs. T.I~ rT C cj ;:il r n .i t i v n ;n
a.; be t. ken -s -n i-. i A ti: i >ir '. .:t- ilit;', o,-
cause the ailer.:n rol l in velocity: rsF .-)v id C 'I :.t r i:fj rce -d
by an unstable rolling: in r: brpt "-neuvcr starting, 'rj. .
wing-level attitude '.r.I ); c s.-d by t .e -ae roll. .r i. r
recoveries. IrasTauc: .-s th.e r ri -tin ,e b,'? "' l i.
with flaps up v'Ps the- reverse f t.:- t vit2: fl-.: I: ,, t;.3
model i-, by the s-aie re-c--r r. n ju- .r.e; t :je s;ir i. ': stable
for the flaps-up c and it i :n

The spiri l i.: stV- ili -- 'rlt'-. fil s.. '.:n, .. ,. rlati
very slir-ht, as no : fi ite i...f c t i ns ,:-f i t c :uld %O. t ed
in the unc.:ntr31ll d-t1li :.t te. At '-n" ratio, til co:-...it ion
was certain" nr:.t ?:bjec i: .E b r-.n'. t.o :li .1: z t3hn.i .? 1 of
the model .it : f1i-i : d- in c n zn i :c r d *e nt i;rly 1 .ti f. .ct or'r.

In re-ard t : th: 4u ti ini f .ij lr l :ra'- ilitc it wouldl d
be pointed oat th t tests of seve-ral m rli i the free-fli -.t
tunnel nave shorn t.iat sli ht spiral i il ilir i- :t bjec-
tionable. The rates of spir-a di rer'- .nce w it'. ::.o.er: te fi:!
area and only siightl. pIositive di'-iu ral effect are uEa. 117











so small as to cause no difficulty in free-flight tunnel
tests. The pronounced spiral instability usually caused
by negative iihedral effect is, however, considered def-
initel;' undesirable.

Tff-'ct of' vertical-tail area.- In spite of the short
tail le--thr o th.- nodel, adequate directional stability
was obtained with r:-l tively smaLll vertical tails (tails 1
and 2 of fie. 3). For all condit ins of power end fli.ps,
no obj.ctinn- ble adverse ynwin.; was noted when nilearns
..l; e were ut ..i fnr nlas r l c .ntrzl. 7h.: dimping 3of the
l-I teral 3 1c il t i :'-s '''.- is L t is factory.

ihe' l the tail area i'as increased 60 percent b:r replacing
tne upyer tail w'itai a larger tail of the samee aspect ratio
(tail .5 of fits. 3 and a), only a zlighi iminprovement in the
fl-I a a caracte r i sics "'as noted. This improvement waP not
coia.: ider'e suffici ent t3o justify the increase in area.

',hien the tail area '"as decreased 50 percent by removing
the lo.:er tail, t:ie noc.el ret.Ainad a small a.nc.unt of direc-
tional stabil.ity. ;I:1 .:i.dm'illin -,oJ or fli-.its vith the
flaps up, and 'ith the i.ilerons 33s.d alone for control, the
small upper toil alone '.id not, however, provide enough fin
eff-ect tc kjep t'he ::.ve:. e vawin; firom beco.:iii- ca-cessive.
Wlheni thl- prolp llaer ',as removed su-st inied flights ':ith the
single til -'rera almost impossible. because o' the pronounced
ef -ec s of r dvers y-ig. Durin- a- coutinu d application
of vil.ron control in flights with propcll.-r off and ruader
fixcd, th.- model woul. rat ti-es yaw advrerseal to l'reo
rn:..10, roll agr inst the ,-ilerons, a:'id drop to the floor.
Thi- st ability nt both thi propi311r-uin.milling :'nd propellur-
off conditions was consnid:rd uns.atisf "ctory -,ith the single
tail "ith fl-,ps up. ':ith th : fl ..p do'rn or with power on,
the fli ht behavior of the 1imo1 l writh the single tail was
much iriproved and the adverse yawing was never great enough
tc cause loss of aileron control.

The balance t:-st results in figures 13 and 14 sho'wr the
increase in dire?.tionn i astability provided by the small var-
tical tails. Together Yhe tails increased Cna by about
0.075, which resulted in a Cn9 value of about 0.055 for
the comp leat airplane w''it power off.


Lateral Control

The lateral control of the model was not noticeably
affected by power, ex ,pt tht i slight amount of aileron








15



trim "'.s r-quir'--d to bol nce p-opellr .r tor ue. For the- hiph-
rO ier condition in the fli.::t te ts, tt-..l -1ileron .e4cflI.c-
tio-. of 5J ri. cit .'as required for 1 itral Lri.o. Po r.-r .n-- r-
Lntl, did i ;ot niffe2t +h. d irectic on 1 trin:. i .' 'ch .'- n
ch' i. ru.ilor sett1 n. w: s 'ie? .:s 1 : oC in fro 'i :inl-
millin p:-.'cr to hi h po icr. T:.e rudder control '.i1 s not
notice-ably ff 3ctc by c.o' L r d s- sit the .a roximit:, o' th1
propeller to the vjrticil t-ilz.

On :hu ba is of the abr i -il..ron 'l 1 ect i ons r.- quired
for s-.t i f ctory .' control in the flight te .ts, the l t -t ral
control of tne mo-el was consider rel ntir ly -dpqu .tc. Ir.
f-ct, conSid-erabl y rm ll r -il--ron ufl c tion. '' er nee iel
duri,,- z.h t a t, t i-n mro rcju. r.: for the pv.r:-rg mi.-dul
flo-'r ini the fr.c-a iip.: ttin.iel. I: sho. .d be .point, ouit,
h ':v. r, th ..t t..e ,tro. those plai: r-i l.rons is 3.d pcr-
coC L 01 thr '". 'L : r -,7 r.:, which i.s o. -.c h '.t -:r t r th .n th
-v r- 1o ile.'0. 're', cf prts ?nt-d-, tirpl:.ncs. A r,.,.uction
in ti.is ..rc-. -orll prob uly be m-i '.'iit ;o t r nde-ri n t'he
ni lero n c ontr i) i ..dc; u.ti :.

The valu.-, of lb/2" shT.' i table II ir-et fr:-t :er
prr uf of t'ie a'equ-a'y of ths -ailer n c?.t rol of t .' .1 .;.91.
With th' rssJi,:- d t )t l alleron i r.ove ent I' 4. -. r.ni tn e
ru. Er fixed, the b/2" values T.'e :-'. i bo'-r tn rinimix m
required v lu.ei cf 0.070. Fl-in o f l: c t i. c a 2. .d a ..bt-a .-
tial i rove i-i.i v the:r r.lt ilit -, v c lo iti.. obt -inr a it th3
ail.rrons. i_. s lij_ t r_-iucti n i: ;iileror effi'ctivcness
dur;ir r6cov-:ric s icr. i.i. ido.,n, 'i:. cl. hl: s '-.en attributed
to li ht'.. s ;.. r--1 I tabilit .-, '.-. .. t c r:. ii u s' ori ous
inasrrucue .as t h,. pb/ 2V s t s -till at..r th'1. fir ar.r flop-
tn coniti i n. It can :c a! f-: ir m r b:.lanc.-. reu .alt: of
figr.re if th:.t a r:11iii .- .: meant e.co,-ff i 2ient n" about 0.0.'6
was pr ') i .l i.by th. qu~.LL al---i t-don il.: ron J cfl : t i n of
1?2 -s t ..t ia us a in 1 tc -' t t: -' .3t..rnr in : th1 -1il.ron
rolling velocity ijc. A C1 Ilu. -f 0.:4 f.r t'. .m t, it'

fl.:ps u,. i-; cbtain-ed b- div .ii::. t:.i v. lu.; jf C (O.02C) by
th e c o r socn L i ng pb/ V viv.~ (C'. ) .

Abr upt rudil:er dofl ctin v.t't i r: .,' ~ =10 to +i 0
were required for -ood co,'ntr-l c r.rr. i.i ti:n d 'pc ndin- uron
thu pTrticular flight c'nditi. n. Th lI.r__r : rudder dcflcc-
tions were- u- cd '.ith thi' 1.r-cr il ran d -'l ati.n-b it lc'-
e.irsp.eeds. Thos. ruidu.-r .-. tfl'.cti .n3 '-cre -;ily slit htl;
largr th. n th soe requireti -n th- riverr .oe c ..vonti .nnl trac-
tor models trs;td in tin frco-flight tunnel, -ven thu- h
only th.- upupr t-il of the m-.del -as cquipp.d with ,-. rudder.











Thm short tail length of this design does not appear to
nec.essit*te large rudder areas or rudder defle" tio.1- In
fa-t, sTamaller rudier erea~. ant deflecti c',s mi.-fit ,well be
por.ible inam-'uch a, no r-udder tri. is requireL far high-
po rer flight.

,'iithi t'he a ilerons fixed, the r'Ldder provi ed a fair
a io.irnt o- late- ral c trol *.-it'- th-, fllap: up. Fecov-ry from
anci es of ca.il: as .i2 h a- 80 or 10' could, be accomplished
*,it hcut i .-tce.-_:iv ec-ani a in heading. With the flaop do.rn,
ho'iervr, the rud.idr a..-a virtually ineffective in rolling the
molel a~i- coula not ri': up i low win- e'er. at ver small
an. les of tank.


CC' T',i. 7 I'- E .A .r S


Tho el-ects iof por. r on th.- abilityy -nnL co.-trol
ch.a.ract4 riztics o: tt uv.sh !r r.3i -1 with t '. orop,)ller be-
hind t-.s t il Aur. 'fac :Z: y ; tu.in: ri. a llc'. s:

I, L i t- iri .l a bi tii. .t1 ty-i- wL rc; only slightly
afiect:-d b., r '.c, r.

-.. ?o'-r cauj2.i a substenr i..l increase in i'.rectional
etability. bt t did not ar.ra'cirbl:r cian ie the effect ivea ihe-
dral.

The st.slling characteristics "-ere -.ot effect?d by
i. ow e r.

4. Inr po ,er-on flicsilt. a a.all r..ount cf aileran trim
wac required, but no rudder tri.: **e. n.ces~ ,ry,.

T ?T .rdindmil 1 i pr,.'pell r pro- ide sli'.ht increases
in lo. itudirnal and d irec t i.onal stability.

I; z .ite of the .kort tail len ;th that '-as necessary
..,i t. o this. u lihear-pro el ler .: rran em .nt, tin:- .e ineral fliizh'
beh-vior of the mc iel 1 s considered U7cellenrt. A hori-
zontal tail onl, slightly larger than norm%2 provided setis-
fact ory- lon.i it:ia final -tability; erplj directional st.-bility
Pnl control were affordd oi by vertic-l tEil: of normal size.
These t st t-herefore, indicated thait the usea of ,1 short
tail length. did not nnterially increase th. difficulty of
obtaining &ood stability and control char-.cteristics.
9











Cn the basis of the free-flig-ht tunnel tests, it
appears that the undesirable effects of power on stability
and control can be eliminated by placing a pusher propojller
behind conventional horizontal and vertical tail surfaces.


Lar iley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Zield, Va.



RErIHGECE


1. Shortal, Joseph A., and Osterhout, C01'ton J.: Pre-
liminary Stability and Coatrol Tests in the "'AOA
Free-Fli-:it Wi'l Tun!.el and Correlation with Full-
Scale Fli'l;t Tests. ,.N. 1o. 810, .. 1941.








18



TAILF. I

DIl!ETSIO:CIL C3-ARACTERIS2I1S OF KACA CzUJ::iERGED-GINE PUSSER

AIRPLAIIE AS REBR:.SIE.D BY 1/10-SCAL' LODEL

TLSTED IN :'ACA _RZE-WLI?'T 'TU.:.:L


Enaine:
Horsepower, rate ... .
Propeller:
Diameter, feet . .
Number of blades .
Weiht, p-s .... ....
IWing:
Area, s Lu.re feet .
Sp feet . .
Aspect ratio . .
Airfoil section-
T oot .
Dih..-'rel break .
Tip . .. .
Incidence -
.oot, de. rees .. .
Dih'dral break, decrees .
Tip, de re. s .
Dihedral of nut er p inal, de ;r'.es


. 0 a .


* .

* 0 0


1100

9
2


226
39
6.73


!ACA 67,1-116
NACA 67,1-116
.At"A 67,1-115


S\i. ep i-'J ck, 50 per: nt "r li;-.c, g. rac 5 .
-apLr r tio . . .
:.ican acrolivnamic chori -
L;,i ti inch j . .
Loc.tion ba.c'- ci le- din d- of r oot chord,
irchn s . . .
Root cord, inch.:-~ .. . ..
Ti1: c.:. rd, i ch. . .
Wini, loindn-, :1'/S, oioundl; r .quare foot ..
Center of -ravity:
-? ck c! of 1 di .i ... ,d? J!' root chord, i;ch:s .
e*clor rtfjr.. nz iino, inch'i .. .
rer:jr.t 3o r~a acro lynami c'ord .
Ratio of win- span to radius o'f *y7atio-:
L/ . . .
i/k *- . . .
b/k . .
b / k


3
3
1
6
0
2.5:1


. 74.50


12.75
100
40
2L.7

30.80
0.70
24.2

7.43
6.79
5.13


r r



r














TABLE I (Continued)

DIMErTSIOilAL CHARACWtRISTICS OF :TACA SU r.,EL.Ei..ED-iT I:.2 PUSHER

AIPPLAIIE AS -EFRESZ1TEJD BY 1/10-SCALE i40DEL

T'ETED II NA3A FRZE-FLII.:T u ,JiI '


lap z:
Type -
Zap extenzible, partial .pan
Span -
F eat . . .
Percent b .
Perconi c'lo.d . .
Aileron:
Type -
Plain
Area


S'iarlre ?eet .
Fi recent 3 .


16.77
43.5
36.0


. . S 20
. . 3.8


Slpan
e t . .
P s' bb.Jlt . .
ii:
hcrizontl -
Area (inc ]ii sL fu '.tili -
5qu;., r : ? t . .
Pl- r .- nt 3 . .
euiLtjr uf sr vit:t t. L levatjr ;in lin
In id 'en e, d r .
'e t . .
El evatur .re,., squ re t .
Above r.f1Erc !.e 14 ue, inch:. .
Verticral (tails 1 an 2) -
2otel eo (..nt i.icludi4 .n, fu'-clnta2)
So i.'.- fe ot . .
Son'1,- 6 fe t.. ........ ....
Perc nt S . .
C nt'r oif ?;n'vit, to rudder ..in: l i:-e,
Sp,.n (urch t.il), t .
?.u ier :.rea (tail 1), -: .jt ; .


* 15.6
. 40


* S S

., feet


* S .






fz- et.
* .
*. *


54
24
13.5
0
13
16.2
13


16.16
7.2
1,.72
*.75
',". :57


Tai








20


TAFLE II

AIILERO. EFFECTIVE:.ESS OF 1'A.DA UB:!ERGCD-EG-.: IE PUSH1.R

MODEL T3STZD IIT FRE2.-FLIGHT TTUIUEL


Flap






S.r. .c d


cnd;&d
lU*?)


pb' 27

. tot -.1 il rin 45) tut.l il :I ro
.l 1 t on dci d l action
(- ) I (b)


L. v f li.rit,
(c) '


. .4


S .j r', I L vc1 f i, 1It ( RecoverY
( ) (c ) ( )


9.0C52


0.023


0.094


. 031 .121 .110


DL.fl tio L in abr .pt n.illron rr.an:uver.:. ( nunl
ui-~ni--do'.n .'Icfl.': hion of 12.0.) Eu .dcr fi.ead.

Sis surmed! m : imu.r ."il. ron tr .vc;l (+k 21-+ -T lu s oattaincd
by direct ex;trapoiiation. from value? for 250 deflection.
c
Values obtained in .abrupt nil.:-ron r.neuvers starting from
'in -level ti tule.
dVaiues obLaind., during recoveries from abrupt alleron
uiranct dari rs.


(CL

E :t
3^,
L j


i







NACA


Fig. 1











0
m
H





a-4
4-2


CH -




Ii







0)
a,
rti
bd



I

i-l

I E








NACA


Fig. 2










o
.c








I-1




cr








o
r.- r-z











0





Ii'
0




u






0 E











L ->1







NACA Fig. 3

V)~QV
r~ss



Iq 65

-,*?W 4.1
*^1 Z^ M 2/1sJi





nj
-Z i--i-z -

















bi ,jli K
I / ^Q?'^ 1
K 3 T V-K
~~~~,_ ^ v ^


--*^J ^ )^ -^> '^s||
















x0
44

-L oZ
1--- -, ^ ------^ ^





I-
Vf OC---1 g







l--30 -'--S -I-- Q


~c 1-I--- -
4 .\- ^, is ^
f~rl r


N' jf v pA\*^





C-,
;35 SI \- --- : o ^


a 0
I^ H'?o -I ;


M67 js r *j
j s( r)


L








SAC A


Fig. 4










40
1-4 -r

41-











0 iq
k+
Co





DM


00
a,










OH C





m a)
a






HO '-4



-I 0
bo

3 -H
















a da
14


40 1
-A1

0 r4 a,

0) .-}


(d H
0 rtil
1- d
rl' o
1- v)T







Fig. 5


+-


1-*


,-4
a-












A
0














.4 a

0
a,



e.
4r*
e










o
I




a






O


Od
re
r rl




04


a-Ia
OO
3


o a












1I





rZ.


*1


a -


O


NACA






Fig.6


-Model f,/gh r,es4s _I
-M/ e; /olrce fes/s
SI o /r/o /r e (.,,'o ).se_


Lifl coefflcent, C
F/GURE 6 .-Pbwer chorocter.xs'cs of ,VACA sutmerQ Y'-
er/gne Dolsher nroe/ testeo' .,o /VACA ,ree-/."' tunnel


NACA











'. CA


I F-


II

~ n fl C-'. -
.?- F r_ C 0
,




ri



.. _F -





eI


I.I
I I


I I i

I .








I


'. Li



I---







1--- -4--- ---.-: --
i I
'I 0 *r '
I 1- *: i '

1*i ..... .. --
< J -. 4' I-



















I I I
I 1



I I
L----- .- -- -- I


I I r- -


I i _




ri I
I 1 I"


S' II



I I

















I -I
I I I








I
II I









- 4- ,- ; -A-- ----4 4
t-4'
I i






S" -- i.---....-- --
.











i I







... .. .- .


C,




























r-I


N -


F2i. 7




-,' ,

.r.
.-' r4

r., .










44-

'-~ 'j-t
.r-i
;.. r













.41
S'T









4))
I.-' '. .












. .4


4 .1:-
I*) *-J








4.- 4
3









r
,r-4 ".







"I




C- (
I-, '-. I.












In 0
r

c:.

I
'- "-
'












:'i, -i
I'J ," .}
,i .




NACA Fbps ,,,Ker F
ol up orcp6e'er off
+- bw. prCp.r Off
x___-- ro
S_--- down fraed













S -L

















o C O /
.5 / -i -






-8 I I ,6 -








t



iC "'


F/SUlE 8 -E-e o. .e o ools o? !eroy om I r ,t s

.6lorce 1ests.0-- --e /& A 1-r- -- -- -- -t -
.... ''- '-7- _- ': -





_ __ I _ZI_..._._ TJ _1 __: _I
CII


'1A. 9


I I ,'.




I IL


- I I '
1- -..-. --- -.. -- r-


I I '




Si i II
I I I
.- 4 '

iI '
_... .... .. -, .. I '











SI ,
,i r' '
S I', / j i



I/




.4 -

Oi/ I-- --





i I I
SI I ,i. I i ',





--- ------


t- -" oI


.- .. 4


-1




. O
r 'J



' -'- I
-I












Iji

C. ,r-I
. -













Tig. 10


- -- .

S- -i- -.
I












"-- I-
I-I


,-1


71


-i-L
i

....







_ -i ._
*- (--


* ,_ ;4, .i- _- '
I I

-- F--- 7 I --





4 ,i I: I



'1,' I

_- _. I --, -,._" .


'* >l .*-' ..i
I /



I-.i i I i i


I. I. '
I

-. _-_ _
i -. I

:I I iI


1j-..1 -1~
.V.1


no


4 ,

r ,


* r-



o 4







C -
.-4
C-I I











I J1
r.a

rr.
{ ,,








1}1
I *
1 I I Q









**
rl I

. r
*u
1 r.

cI., j




r--I Ur i
+ '-I
'C r)

rj ., I
I rC .
; o j


r
r


.J
r-4
'H


I I __ _
I I .

'7' |T -' C ,


IIi
- -- I-- 4-) i .--
I '- I I ", .,



I i '
I I_- I i_ i |






.... .- ,
... J' I- L --- ... ..- I .


II














I I I
I


SiI








r~- 1 -4-+ -*---r--------- -
i --' "- ; '' i -


i i







i I i
-I r ; I" I I t




'I -
I
I I
SI I /9






- -- -- -- ------ 4








1 1





I I I
' I I Ir CI















1 I
I I '?1C7;1) r"' c- *-
I /-







j ,.,-h- I-,-










i'z 7l
t .. .. ..'- .. ... .. I .. ... .
; .t 4


F-':. 11

o
0
rl


ci


--1





, )



0
C-4










rr
eI

- I



(*' ,'Lj Ir'
:-
) 1. i'


H r
'.'i -1.





l -
'f)
(2 .r- l











*r H I)-





NACA




" 2


o
.0/


























2 c



rb
I .0


'-Ku ,
N^ -'"
I.

Q -L


-C2 -6 -2 -4 0 4 8 ? .6 20
Ary of Yaw, W;, alg
FIC, -E 12- Ef/~e of/ flaps a.no' power on lo/terol-sf/ab'ty c'arac/er/sls of
,,ACA 5c,,'erfo'-eng/, pusher or/oe' fels,' n tr Ne 4ACA fro -.,'fg:
/unrei k-lrI/col/ cat /I on 2 on. (Balao P t;tal


o I I 'Fobps
o -U-P-
+-- up
X own
o- o- bwn





NACA




S03

.O2










.02
-s
AZZ 0


I I1 /, '
0 off
+ ---off
x -----off

0-----ndz /
A6-----/anda'2


. -. .. ... ... _.- _A. _-
-.- 4' 5 -_ .

A pe cf .Ok O':


F/W.'5 ffA 5i h.,9ei2-en7Qfnle asre- .'roaxe' .s
{erm/rkXtr C cx Ctj /es'5s in- tf6e NACA 0'0 'ree-4/ .l '
Forcs re/roclec: cx c'.


Fig. 13












-K










- gz
-I
.2






-0





NACA
0 Testco'0s/ Co-Cc'r FOcG5 P ne-
'-- A o r'.-- e off
/ '5f ld pO/7n/S B up ',- n,7,r '" -g
C up rated
ArIrowts how direction ofoO .j t up D P 1- "- 7
chtane caused oad/y aot/orn E (up n-.,o, C" ^'
/var, c factors. F up rate/
G down *. '* T
SQabli/ty bouroarbes are H down rated
esl/nalfe' for vwr-.arn '.tq coL.e- / up fated
condt/hon at CL= 0.75 J down wirnm///n~
K down /ated
L up propeller off


Fig. 14
v'- L. I tail
none


/arnd
/and2
/and12
/
/
/
/


.. .. ^--- ... .
I -





+ : --





_ ___... "^


-o .I ,. .
_Z, ,- i~

0 O/ .02 .03 .-'4 05 C .07 ,, .9i

F ,L7-,C /4.- Lff:' Off~t .r/'f$o2rr~ CWll i.' CC' \ L i
or t/ lo/erol S/lbY//,l, of ,f .. \'AA sCuornerrceY- 1ngrie 0o ,Srer
..; t" .estle in re free f-/'glf unre/. CL-- 75.







Fig. 15


.05



04



.03



.02



.0/



0



.0/


-20


0 ,O 20


/(eaosure
, W/H', >/o)


Othi0O~'LI def~/kfor', 6ar, deg~


FU, /5-A e;:r effectrweiss of /!ACA subr-eGe eIqi79ee

L %-"c
,c/.,s *me'c os *2eie"'7''e.J bj bo'':ire fes's5/n the ^ee-
r tj vr'-re' P"'ijj.'^- Ai "L&*"'" --j.; fcic^ 'e^r.,t'ej.


NACA


0 I 1 ci,cg

x --/0





N\







NI
+~----- 5













31




N .

===_^^=-_


-02


.0/


30






r


*AGA Fig. 16



*. Ii
0

L1II I










*o



II- I l I,
0 0










T


*1.1.








l<

M-i







UNIVERSITY OF FLORIDA

1262 08106 52 1




UNIVERSITY OF FLORIDA
DOCUMENTS DEPARTMENT
120 MARSTON SCIENCE LIBRARY
P.O. BOX 117011
GAINESVILLE, FL 32611-7011 USA


































9




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ECPXH3AWE_0ZGMRL INGEST_TIME 2012-03-02T23:13:24Z PACKAGE AA00009437_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES