The effect of high wing loading on landing technique and distance, with experimental data for the B-26 airplane

MISSING IMAGE

Material Information

Title:
The effect of high wing loading on landing technique and distance, with experimental data for the B-26 airplane
Alternate Title:
NACA wartime reports
Physical Description:
17, 45 p. : ill. ; 28 cm.
Language:
English
Creator:
Gustafson, F. B
O'Sullivan, William J
Langley Aeronautical Laboratory
United States -- National Advisory Committee for Aeronautics
Publisher:
Langley Memorial Aeronautical Laboratory
Place of Publication:
Langley Field, VA
Publication Date:

Subjects

Subjects / Keywords:
Bombers   ( lcsh )
Aeronautics -- Research   ( lcsh )
Genre:
federal government publication   ( marcgt )
bibliography   ( marcgt )
technical report   ( marcgt )
non-fiction   ( marcgt )

Notes

Summary:
Summary: An analysis of the effect of wing loading on the landing flare (that is, the leveling-off part of the landing) indicated an important effect on landing technique and distance. In order to check this analysis, flight tests were made with a Martin B-26 airplane loaded to 50 pounds per square foot. It was found that, for reasonable accuracy and safety, the pilots used power to maintain the desired speed margin and to limit the rate of descent at the start of the flare to about 25 feet per second.
Statement of Responsibility:
F.B. Gustafson, and William J. O'Sullivan, Jr.
General Note:
"Report no. L-160."
General Note:
"Originally issued January 1945 as Advance Restricted Report L4K07."
General Note:
"Report date January 1945."
General Note:
"NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution."

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 003595869
oclc - 71003976
System ID:
AA00009370:00001


This item is only available as the following downloads:


Full Text


ARR No. LAK07


NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS






WARTIIMIE REPORT
ORIGINALLY ISSUED

January 1945 as
Advance Restricted Report IA0D7

THE EFFECT OF HIGH VING LADING ON LANDING
TECHNIQUE AND DISTANCE, WITH EXPERIMENTAL

DATA FOR THE B-26 AIRPLANE
By F. B. Gustafson, and William J. O'Sullivan, Jr.
*


Langley Memorial Aeronautical
Langley Field, Ya.


Laboratory


WASHINGTON


NACA WARTIME REPORTS are reprints of papers originally Issued to provide rapid distribution of
advance research results to an authorized group requiring them for the war effort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without change in order to expedite general distribution.


L 160


POCUSENS DEPARTMENT







































Digitized by Ihe Inlernel Archive
in 2011 Wilh landing Irom
University of Florida, George A. Smalhers Libraries with support from LYRASIS and Ihe Sloan Foundation


http:/ www.aichive.org details elleclolhigrwingOOlang





3' 9 < I '- 7 ;/ f


EACA ARR No. LL'07

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


ADVANCE RESTRICTED REPORT


THE EFFECT OF HIGH W'I,1S LOADING 1'iO LANDING

TECHI'T ,UE AND DISTANCE, WITH EXPEEIE. TAL

DATA FOR THE B-26 AIRPLAIIE

V;, F. B. Gustafson and William J. O'Sullivan, Jr.


SUMi.'ARY


An analysis nf the effect of wing loading on the
landing flare (that is, the leveling-off oart of the
landing) indicated an rrportant effect cn landing teofhnique
and distance. In order to check this rinlysis, flight
tests were ,ade with i.'artin B-26 airplane loaded to
50 pounds per square foot. It was fund that, for reason-
able accuracy and safety, the pilots used nower to main-
tain 1he desired seed rmrgi-n and to lirit the rte )f
descent at the start of the flare to about 5 feet per
second. Other me&sa,'red values essential to flare callu-
lati -ns include th; frllow.'in:: mini rUim .crnslstent value
of excess speed at start of flare, 25' percent; mayimnu:i
ratio of lift coefficient CL to maximum lift coeffi-
ient CL consistently reached, d' percent; time
'iay
required to reach this CL, 2 seconds; time required to
reduce the CL value to that for level flight at the end
of the flare, 1 second. Since these allowances do n't
differ widely from those needed at low vjing' loadings (with
the exception of the definite limitation of vertical
velocity), it is concluded that the effect cf an increase
in win[ loading on the flare path, for any airplar.e
reasonably similar to the one tested, can be satisfac-
torily calculated.


I NTRODUCTIO N


Increesed wing loading, for purposes of landing-
distance studies, requires primarily an increase in the










I4ACA A7R 1io. TL4KO7


value of stallin, speed used, v'wth consequent increase
in the a-oroach seed and the sped at ground con-
tact. 'or the oov.er-off condition, changes in lift-
.-", ratio L/D or maxirmum lIft coeffi-ient C ,. are
srroni! i-ry. If t.h' Isndng technique remains uncnianged,
therefore, the sl-f of field needed' will increase irarkedly
because of the -hTher horiznttal velocities. The dl'-
ficulty of exercisAin s.iffi.,cent judgment in executing
th_- ln:iLrn..n flare (tr e levelVng-off' part of the landing),
in orcd-r to avoil esnzerous -ertia.l velocities at the
instant of contact, will also in-re-se becose ?o the
increased vertical velocity in the o&: -" T.he
analysis reported in reference 1 .hcv-ved that the tech-
ni-..uP required for the shor-teLt ..ound run 'wa not
fected by wing lot ng and thst the l -rn-th of the
run increases in alnrost er.';t cr'o-.ortion tD the w.ng
loadin:. A.- analysis of the effect of load&lc o n the
l;a-r:dln- fleire, however, shov-:ed not cnl.y an .r re r e
in the horizontal distar.ce from-, aiin .ltLtucie or 53 feet
to the end of the flare but also an increase in tahe
hight at :.'hch the flare mnst be stsrtr=. It was
appr_.rent fromr. this analysis l ntt scrr.e chv.nril.e in the tec.h-
nique used, either in the approsci. or in the flare or in
both, was to be expected. In order to determine whether
the t. ore cal flare calculations ade.quatel' reoe--
sented the changes that the pilots founa ne 7esssr;,,
1-nu.!r', tests with an airrlare of hi.-h ving loadln'i
were considered desirable. A E-2a med'iu.-bomber air-
liane was used for these tests.


TTORETICAL TrTEAT:.EIT PTCOF TO TESTS


Sten-b,--ste-, calculations of thI flr-re npth were
.".-de for four stalling sneeds a:n for tour amounts of
excess srpe",' at the st..rt of the flare, with the ?are
,:l.de :r-.l, the same L/D, :r. ti:e .'-.e lift c, efficients
assumed in all c' es. .e 'nitt l c1 'lculat'.ons were
r.tle on the assumption of in ir.t-rntnecous chsrng
in Ir fro, the value used in the s-onroac to a con-
st-:,nt value maintained throutrhcut the flare. A study of










NACA ARR No. LL rO7


data on actual landings resulted in the modification of
these calculations on the assumption that the lift-
coefficient change occurred during an interval of
2 seconds and that the change occurred in the form of
a sine wave.

These theoretical calculations indicated that
increase in wing loading produces the following signi-
ficant changes:

(1) The height at which the flare must be started
increases almost directly with the wing loading.

(2) The time required for the maneuver increases
as the square root of the wing loading.

;5) The loss in speed during the flare is a con-
stant percentage of the stalling speed.

(4) The horizontal distance from a height of
50 feet to the end of the flrse (that is, to the point
at wnich zero vertical velocity is reached) increases
about 5 percent if the wing loading is increased from
25 pounds per square foot to 50 pounds per square foot.

It was further obvious from general -nnsiderations
that an error in the judgment of the pilot in executing
the flare with an airplane of high *A.ing loading would
bring much more serious consequences than the same per-
centage error in technique with an airplane of low wing
loading.


APPAFATUS ATD TESTS


The appearance and general arrangement of the
i.artin B-26 medium-bomber .irplane may be noted in
figures 1 to 5. The longitudinal axis of this air-
plane is identical with the thrust axis; dimensions
and other details are as follows:










h NACA ARR No. LUKO7


Attitude c.m:le of lonritudinal axis, static
position, de. . . ... 0


Are:, total (including ailerons and fuselage),
Sft .. . .602. 0
Sp-? ft" . . 65.0
T'Per ratio (ratio cf root chord to tio
chord) . ........ 3 5:1
M.A.C., ft . . 10.2
Distance of lededing edkc cf chord ( .A.C.,
rotated to pErallel w'.th trust ax.is about
quarter-chord pirt)
Eth'nd n--se of &irplane, ft 20.1
Ab-.ve loniitit-dinal ayxis, ft .
A- rfol (r t.) . HNA A 0017-64
A'rfil (ti . ... ACA 0013-6L
..m:-le of 3in2*er.e froot and tip), de: 3.5
Ithedral (lendilng edge), des .. ... 1.3

''"An9 (Tlciqcred solit)
AreP, total effect ve i(cxcluding projected
.:r=as through fureluge End rnciei'l), sq ft 58.1
Span, rctuul f including 7. ft thr.u.:
fusel.e .e and 5.2 ft th'irouhi es.ae nacelle),
ft .. . . 5 .2
Chord constantt vdlcth), it ........ 2.7
,silecticn from retracted position,
L.-xirmu', 5e; . . 55 .0

Ailerons I(rise)
Ar.a, total (one ilerin including, tab), sq ft d.,
SnIn ,ne a leron), ft .. .. 15..
Chord 'hinge sxis to trailing edge), percent
v:ing chord .. . .20.2
Deflecticn from position cont!r.uous with wing,

I7xi-rurn 'o. . ... l. 1.
a i u do n . 14.
T'eutral positl r. ('n) . 0.

usel -re
Length,over-all, ft . 2
D. tr'eter, y.xinumn (c rcular), ft 7
.n-le l with rsryect to longitudinal axis, deg -1.0










NACA ARR No. I4KO7 5


Horizontal tail surface
Area (including fuselage ahead of elevator
hinge axis), sq ft . 11 .5
Span, ft . . 2 7
Angle of incidence of stabilizer, deg 1.0
Dihedral, deg . 8.0
Elevator
Area behind hinge axis (both elevators
including tab), sq ft ......... 1.1
Area ahead of hinge axis (both
elevators), sq ft . 12.9
Distance of hinge axis fat plane of
symmetry)
Behind nose of airplane, ft .. 51.4
Above longitudinal axis, ft .... 2.0
Maximum deflection, deg
Up . ... 20.0
Down . ... 12.0

Vertical tail
Area, total (excluding fuselage), sq ft .. 62.7
Span (excluding fuselage), ft 9.5
Pudder
Ares behind hinge axis 'including tab),
sq ft . . 26.2
Area ahead of hinge axis, sq ft .5
Distance of hinge axis behind nose of
airplane (at root), ft . .8
*'aximum deflection, deg ... 2 .0

Landing gear (retractable tricycle)
Distance between center lines of main wheels,
ft . . 21.9
heel axle location (airplane static load,
28,512 Ib)
Main wheels
Behind nose, ft . .
Below longitudinal axis, ft .. .d
1'ose wheel
Behind nose, ft . 5.1
Below longitudinal axis, ft b.4

Engines: Two engines, power rating (normal, one engine)
1500 bhp at 2.00 rpm at 7500 ft

Propellers: L blades, 15.5-ft diameter; constant speed
or manual pitch control; full feathering









NACA ARR No. L4K07


..ght .nd center of grnvity position
Normal loading
Weight, lb . 23,512
Center of gravity (landing gear retracted)
Crew at flight stations, percent ':.A.C. 14.E
Crew at battle stations, percent M.A.C. b1.5
''axirrum loading
Sht, lb . . 3. 1, 21
Center of gravity (landing gear retracted
and crew at flight stations), percent
:i.. .. . . 16.9
DiStn7ce of e.g. below longitudinal axis
ra p roxi.Tate; all conditid ns), ft 0.3
HeiyL.t of e.,7. above ground, a rplane at
rest, ft. . . 7.2
Hr riz .ntl tt -1 nce from c. to .m.in rheels,
airclane at rest, ft . 2.6

.foments of nert a( approximate), slug-ft2
Pitch . . 76,000
ol . . 70,000
Sw . . 142,000


The airplane, as ballasted for most of the tests,
had a ving loading of 50 pounds per square foot and a
ncwer losaJng of about 10 pounds per horsepower. In the
first part of the tests, the airplane was somewhat lighter
than these values indicate. The weight corresponding to
each landing is shown in the summary table (table I).

All landings were made by INACA test pilots having
wide experience ;ith other types of airplane but no
experience vath the B-26 airplane prior to these tests.
Although an otteirpt was made to cover a fair range of
power settings and speed margins for the approach con-
dit-rn, the orimlrry objective was to produce abrupt
flares after an approach at the steepest angle and the
lowest soced considered by the pilots to be reasonably
safe; thit is, the pilots attempted to use technique con-
duciv'. to the shortest possible total run from a height
of 50 feet. A number of landings also were recorded in
vhicri the personal choice of the pilots determined the
technique used.

All landin-s were rode ad t Lanal y Field, Va. Some
t-sts v.ere made between November 14, 1961, and December 7,
1941; the remainder of the tests were made between July 4,
194.2, and August 15, 19l2. All land ngs in the first
series (referred to herein as the 1941 series) were made








NACA ARR No. ILv07


on bare, dry, concrete runway:. Tests of the second series
referredd to herein as the 1i42 series) were made or. con-
crete runways coated with camouflage material consistin,
of sawdust spread on an asphalt binder. The surface of the
r.ur..ays wss sometimes moist from rains on previous days
,it was covered with water only in the instance. noted in
t'iE sum:.,ary table (table I).

..cording instruments installed during the 19Ll series
of t-sts included the following:

:ACA three-component accelerometer
r'rCA rolling-velocity recorder
.NAA pitching-velocity recorder
HIACA sirspeed recorder
NACA i echanical-optical control-position
recorders arranged to record position of elevators,
ailerons, rudder,throttles, and all three shock
struts

mhe horizontal and vertical disslaceT.ents and the attitude
angle of the eirolene v.,re recorded by two phototheodolites
stationed on the landinC field. The phototheodolites and
their uses are fully Jescribod in reference 2.

In the 1,42 series of tests the following additional
instruments were installed in the airplane:

NACA two-component accelerometer, normal and lonji-
tudinal eleur.ents (of uirest3r sensitivity tha;n cie
i'ACA three-component accelerometer)
Statoscope
Hydraulic pressure recorder conre2ted to brake lines
C ne-Wodak motion-picture camera for obtaining tire-
deflection data in impact

The =ontrol-oosition recorders for ailerons, rudder, and
shock struts were omitted during the 19l2 series of tests.

The accelerometers and the angular-velocity recorders
were placed at (or close to) the center of gravity of the
, Lr.lane. All instruments in the airplane received timing
impulses from a single NACA timer. Synchronization of the
two phototheodolites vith the instruments was effected by
firing a flash bulb (visible in the phototheodolite records)
in th- nose of the alrplane and simultaneously operating a
solenoid that produced a break in a record line on one of
the instruments.

PRECI EI O

The Dr-cision of the measurements is believed to be
within the following limits:









8 NACA ARR No. L4K07


'Jert!cal 'dLplacement from phototheodolite, ft t3
:-riznntal di.-placement from phototheodolite, ft .. 10


.'er-tical displacement from statoscope, ft
Attitude anile, deg . .
l.?i ic>l velocity, ft/ ec .
A l.CsJe j, miles/hir . .
:,nriifold pressure, in. TIg .
-.ntrol surface angles, de .
Pitch'n[E velocity, rs-'ian/sc .
7.lling velocity, radian/sec .
normal l acceleration, g .......
:ri zontal accel'?rltimn (two-comoonent
i :t r. ent), g. .
4r'rizontal acceleration (three-corponent
ir.str'.'r.ent), g . .
mrT.nvrL erse acceleration, .
2rake-!ire pressure, lb/sq In. .


* 10
. +1.0
. ?
+*
. .. .02
.0.5
. O. O.
. .0.005
. .. 0.01
. 0.05

. 0.03

. 1.0
. 10
11


'These values are based on scatter of ooints,
differences tetr,:een original and rereaci values, -nd in
some cases on comparison 1f results from different
instruments or results obtained by different methods.


RESULTS


The results of the measurements are summarized in
t itle T. The data are presented as time histories in
i .ures h to 21. The time histories have been grouped
accordric to the amount of data presented arid the groups
are introduced in the order of their significance to the
7tudy of the air runs. The time histories that are of
Srim-ry interest in studies of landing- aporot.ch and flare
are rivern 'n figures 4 to 1l. For convenience, the figure
rnuroberp correspornding tc the various landings are listed
in table I. At the speeds covered in these tests, the
effects of ccomoesFib1l!it-, re so small that the air-
sr'eeds given may be considered as either the observed
uirsnred corrected for installation and instrument errors
or Vol/ vhero 'I is the true airspeed and 0 is the
In;nity ratio.

E:-.z-rnation of the time histories indicates that
msany of the records teen during the glide and flare,
inclu'in, the normal acceleration and the elevator posi-
tion, are rather unsteady. Such unsteadiness is common










NACA ARR No. LLT<07


in landing records. The degree of unsteadiness has been
shown, in some previous tests, to be much greater in r..u-h
ai.r than in smooth sir. The degree of unsteadiness is
also undoubtedly dependent to some extent on the degree
of Ctab-'lity and the type of the control balance and the
nature of the response of the particular airplane.

Pcsults of glide-test measurements of the L/D of
the airplane over a range of conditions appropriate to
the various landings are given in figure 30. The values
are termed "equivalent" L/D's because they include the
effect of propeller thrust. Measurements of this kind
were necessary for the theoretical treatment shown in
figure 31.


DISCUSS ONl

Approach and Flare Path


Vertical velocity in approach.- It became apparent
esrly in the tests that steady power-off approaches would
result in vertical velocities, at the beginning of the
flare, that equaled or exceeded the vertical velocity
which the pilots could consistently handle with safety.
The choice of a specific vertical velocity for the
approach, above which too much safety and accuracy are
lost, is necessarily somewhat arbitrary. Consideration
of the comments of the pilots together with study of the
data obtained, however, led to the choice of a value of
25 feet oer second. The basis for the choice is most
readily understood if the landings are considered in
three separate groups.

(1) Power-off landings: Under the proper conditions
and cifter sufficient experience had been obtained, the
pilots made several landings in which the throttles were
closed long before the end of the approach and were not
reopened. In one instance, the throttles were closed at
an altitude of 1503 feet and were not reopened. Values
of vertical velocity up to 57 feet per second resulted
at the start of the flare. These landings are considered
exhibitions of piloting skill. The records indicate that,
for these landings, the airplane tended to level cff too
high and to "balloon" (rise) at the end of the flare. This
condition necessitated a second approach and flare of
smaller proportions. (See figs. 4 and 9.)










NACA ARR No. 14K07


(2) Power-on landings: For comparison with po.er-
off landings, a number of landings were recorded in which
the pilots used considerable power (manifold pressure,
about 20 inches of mercury) and started the flare with
vertical velocities of about 15 to 20 feet per second.
During these landings there was no tendency to balloon
and in several instances ground contact was made without
completing the flare but without any abnormal shock in
impact. (See figs. 7, 21, and 24 and table I.) These
landing. include landings in which the pilot was not
following any special instructions and was using the
technique that he felt provided the greatest safety.

(5) Landings with moderate power: In the majority
of landings the pilots made the approach with the highest
vertical velocity consideredd reasonably safe. 7.oanifold
pressures of about 10 to 12 inches of mercury were used
in the approach and the flare was started with a vertical
velocity of 20 to 50 feet per second. The accuracy with
which the flare was completed appears marginal in these
landing; that is, some records showed a tendency for
the airplane to level off too high and to balloon, while
others did not, with no definite correlation with the
vertical velocity apparent.

Consideration of these three groups of landings
Indicates the following conclusions: The power-off
landings, with vertical velocities of 30 to 40 feet per
second, are in no sense practicable or common maneuvers.
The power-on landings, with vertical velocities of
20 feet per second and less, produce accurate flares
that cause no necessity for an additional maneuver before
making ground contact. The accuracy and practicability
of the landings with intermediate power settings and
vertical velocities between 20 and 30 feet per second
are marginal. The average of the marginal values,
25 feet per second, is considered a rational limiting
value for use in flare calculations.

Speed margin in appro*-h.- Calculations of the flare
path require also an assumed speed margin. The excess
need maintained in the approach during the various
landin-s is given in table I as a percentage of the
stalling speed (as obtained from measurements at altitude)
fnr the corresponding nowor and flap settings. If allowance
is made for the fact that the landings made at the highest
power settings were not strictly test landings and that
the pilot was allowing a greater margin of safety than










NACA ARR No. L4F07


in the other landings, a tendency toward the reduction
of the speed r-argin with increase in power setting and
!.scr, nce in vertical velocity is then apparent. The
t'-ict that the power-on approaches, with low vert-ical
'*.loi.t.,, were made with outstandingly low horizontal
: locities results to a large extent fromr the higher
raxi'mum lift coefficients which apply to the pow.r-on
condition. It is common in piloting experience to find
t--it the stalling speed is much lower with power on than
with power off and is immediately increased when the
inover is reduced. Application of power in making landings
therefore makes possible both a slower approach and a
more rapid lift reduction for a "spot" landing than could
be ohtained witn power off.

Consideration of the purpose and the conditions for
the v..rious landings resulted in the selection of a value
of ;25 percent of the stellSng speed as a logical value
of excess seed for use with an assumed vertical velocity
of 25 feet rer second. It is noteworthy in this connection
that, when a flare was begun with 21 percent excess speed,
the airolane stalled prior to completion of the flare
(landing 7, l`) see fig. 6).

Percent of CL, used in landing flare.- The maximum
ratio of CL to C- used in the leveling-off period
S'Cmax
has been tabulated in table I for the various landings.
Because the power setting usually was changed during the
flare, the values used for Cn often do not correspond
to the stalling speeds used in calculating the speed rsraT.in
in the approach. No correlation of ratio of CL to CLm
vwith vertical velocity of approach, or any other factor,
is apparent. Values of this ratio of about 90 percent
usually were reached in the tests. These values are peabk
values: inspection of the time histories indicates '5 per-
cm::t to be a logical value for use in any calculations
which require that the value be- sustained for an appreci-
able period. This value of 35 percent is slightly less
thin the actual average but, in view of the obvious
seriousness of stalling during. e flare started at high
vertical velocity, a margin of 15, percent would seem
the lowest value that should be suggested for consistent
use.










12 NACA ARR No. L4 07


Tine required to change CL.- Inspection of the time
histories leads to an assumDtion of 2 seconds for the
ti.e required to increase ,L from the value used in the
a- :roa:h to the maximum value used in the flare and
1 second for the time required to reduce CL to the
v'tlue for steady level flight at the end of the flare.

Exarnles of theoretical calculations.- A theoretical
fl'-re time history based on the assumptions for vertical
velocity, excess speed, and time required to change Cr is
s:mown as conr-ition (a) on figure 31. The value of L/D
used is based on the approach anile as determined by the
rate of descent and approach velocity. Glide tests made
at altitude with the same power and flap settings (see
f2g. 30) gave a value irn ood agreement with this value
and sno,^ed the L/D to be nearly constant over the full
range of lift coefficients usad in the flare. For com-
nnrison with the theoretical time history, values taken
from the experimental data of figures t and S have been
lDotted on the figure.

In order to show the extent to which the pilots' use
of a value of CO less than Cjr affects the path, a
I 'max
theoretical time history for the same approach conditions
but with the entire flare made at CLma is given in
figure 31 (ccnditicn (b)).

because the margins of speed and lift coefficient
found in these tests are consistent vith those experienced
with airplanes of lighter londinr, it Is believed that
the effect of a moderate further increase in loading can
be calculatfcr with fair accuracy. Tn order to illustrate
the application of the theoretical treatment to higher
."ing loadings, the share assumptions as used in condi-
tion i'o) of figure 51 for vertical velocity, excess speed,
CL, and time required to change C have been applied
to a hypothetical airplane with 50 percent higher loading.
The- resultlnt tiime history is shorn as condition (c) in
the sare figure.

pnss'ble variation of assumptions.- The applicability
of the- assumptions based on these tests to any particular
case s conditioned by the following considerations:










NACA ARR No. 1.K07


The maximum practicable rate of descent will vary
somewhat according to the degree of experience and ability
of the pilot.

The percentage of excess speed needed in the approach
may be reduced slightly with further increase in loading,
s-nce the vertical velocity to be checked will not be
increased further. This result follows frorr. the fact
that, when the vertical velocity is assumed to increase
irn rroortion t- the loading, tno percentage of excess
soDed required remains constant.

The maximum lift coefficient reached in the flare
rwll vary with the pilots' experience and conservatism.
The pilot, in addition, must allow a greater margin if
he is flying an airplar.e thst rolls une::petedlly, has a
;..pid decrease in L/D as the stall is approached, or
othervnse his unfavorable characteristics at ?r near the
stall.

The 2-second interval used to reach the maximum
value of CT attained in the flare has previously been
observed with airplanes of lower loading than the air-
plane'used in the present tests and widely different
general characteristics. Since the records of elevator
movement show that only a fraction of the available eleva-
tor travel is used, the length of the interval appears
to be determined by the preference of the pilot rather
then by any limitation of available pitching moment.
Since these data include landings made by three different
pilots, the value would seem to be reasonably general.

The tirne used to reduce CT to thst for steady level
flight ot lhe end of the flare Varied r-ore than any other
factor. This result might be expected sin2e this period
providess the final opportunity to correct for errors or
th2 .effect of unpredisctbl' changes in wind conditions.
in some cases the flare was terminated by ground contact
without the need of the 1-L3cond period of adjustment,
but this terrination cnnr.ot be ciurnted upon as a reGular
procedure following an abrupt flare. The chief effect
of the period of edjj~tn-ent used in ending the flare is
t- increase the horizrontsl distance consumed; the effect
of thiLS period of adjustment on the height at which the
the flare must be started is neglligible.









NACA ARR No. L4K07


T chn.ique for shortest total landing run.- It should
not .:.e c -.n f- r -ianted that the use o! th3 maxinurm value
of rate of descent which the pilot is willing to use will
result in the shortest practicable landing. Inspection
of the data obtained indicates that the shortest total
distance from a height of 50 feet to a stop, even under
ererJency conditions, will be obtained by the use of more
povwr, an21 hence lower vertical velocity, than the amount
which corresponded to what the pilots considered reasonable
l-.itations. The use of more power and lower vertical
velocity shows t-o advantages: (1) greater accuracy in
cormleting the flare and (2) lower speed at the end of
the flare. The exact point at which the effect of these
qs'vanta.-es -eases to offset the effect of the flattening
of the glide path would, of course, be very difficult to
determine even for a given airplane, pilot, and runway
s rf act.


Ground Run

The data presented for the ground runs have not been
artral'yzed in detail but eyam'nation indicates that treat-
ment similar to that given in reference 1, including the
2-second transition time between ground contact and brake
srl:.llc.tion 'used in the examples), would provide reason-
able values for the length of the shortest possible ground
run. The experience _s.ined in the tests served, however,
to emphasize the fact that maxiumrr braking is strictly an
emer-cuncy procedure rather than a practicable routine
pro c rure and that the bra es must be in proper condition
if such a -top is to be made. During the second series
of tests an unequal braking actiori existed, the cause of
which was not determined and corrected uncil after
landing 1i.

The brakes showed a lag of approximately 1 second upon
Initial uoplication. Since the pilots do not apply the
brakes prior to nose-wheel contact with an airolans of
this type (particularly when the nose is already descending
rar.idly), the effect of t-is 1lg is to increase the minimum
length of run by bo-.it 150 feet.










NACA APR No. L1KO7


CONC LUSI0 NS


Plight te.ts, vhich were made to verify an analysis
of the effect of wing loading on the landing flare (the
].veling-off part of a landing), indicated the following
.onc lu io ns:

1. Considerations of safety and accuracy limit the
rate of descent used in the landing approa-h to about
. : ~t nePr 3ec:)nd.

2. Vhen the wing loading and lift-drag ratio are such
as to 'rod;ce a value in excess of 25 feet per second in
a power-off gliie at the minimum speed considered safe,
the r.te of descent is reduced to 25 feet per second or
less by application of power ty the pilot.

5. For the 3-26 airplane operated at a v'ing loading
of ')0 pounds per square foot, the height at which the
pilot n.must begin the flare, the horizontal distance from
50 feet altitude to the end of the flare, and the excess
speed at ground contactt can be determirnd satisfactorily
by simple calculations based on a rate of descent of
25 feet per second and including normal speed, time, and
lift-coefficient margins.

). The results obtained in the investigation are
believed to be applicable for calculations of the effect
on the approach and flare path of further increases in
wing loading.


Langley 'Memorial Aeronoutical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.










16 NACA ARR No. LK07


E FE RENICES


1. Gust[I'son, F. 3.: Tire friction Coefliients and Their
Relation to Ground-Run Distance in Landing. LACA
AFi', Tulne 19l2.

2. 'etnore, J. VI.: NACA Apparatus and i:ethids for Take-
Off snd Lnding r.leasurements. NACA C3, Jan. 19k3.









NACA ARR No. L4K07


Z





o 0~
A















I.










a
p





* act..
B~ ~



.1 I 0
8 L:
* c-c0 -
i E'

t aa1
O ^ *

a. a._



lilt



eu au__
0 --











lc~l
fl I







I;
o *u
EI J .<(.*
* aD '
B k o* *
PJ *o
^ j
i SE



h: rq 0^-
rrt S



B g- B.0




?r 1

9-s


is


---- I -- I


a














i ji 0' ;
a 01 I -


















,,881 I tt.ti g-8-
-a a N































a1' 0 0
L= s e


O1 ac C S'I

















































-ala i "a*




ma-n a. or. ,a.o.oa.a..c
:.Dd S t:




,-5 8 SRASc
N flt .40s



























N N N NN b N-a

0 an. .. .... ,r
Ij i i %nS I i oQ 1 I 1~ 'O


!Sl oo Io o






ir>^ i4 CIn r* i-eoh-' r-r




Si i i ~ 9ai~sto'$~ i



I i i i 00 f0 ifr*' o
Ij I I ^Trn -r w


SS? 5 i ) S~




(TTO m o 0 4 ."*r M





^o.r; i D ^ i'^'o-?^wff. o !n


-jjo c ly o'o'ooa






odd d odddddo~doc


iOB8 R 8 KSR~0^000

j~~\ii i R /tErE tt^>~n*r'f
ifYnh ly Ty <\T'V f~n*1 Mf


'i !i i0i rlj -^'fwu-
Ill-PC 1 f^^^^ ^


VII 95

- 0-- a



-I C
jj 0-8 5S



00 0 80l 0 0I
















91
o: oo____ d a.~~


,aO.aS anj a .0 3 C-,aa


*''000*!0. 00 0 ca *0*
-- -i i ---

JI53zggg5 gS 30*;;















*aOra 0 0:.0






-j:
i i i???- &g & 28?
wi~i^ ni*4 i~3~s 6R^ n*v


























gqgoo888 o88
a1 .11 .P a. 1 :



NNN. C 2- o a c -
*^ ^a* a* 1'a-'lf T|fl ^ *I




so o ** cr$ i^~-;. '^^^ MV T -r
ao oo.a a aa u a m'
6I *C0' O "' '00 0J C .'






"" "' "3

d-1 :Y0a- -- --i




flJ al-C r.00f o C '. an owftc.

coo I.JO r
C -&J.f~- '.j0r, *j.0L 0I S .

Lana..2 I"
*a~n ok j- c^n





a0 .. -.c-ao t. ^C


.OaN-f'r~o0 0 0 ~d0 J'J 0f 1 .1000f w


!0 1' _J J^
[L_-l-t-oco~t.Ma'a ~OJLG I a i^'^








000O0000000~ 00 0 COQOnO
SSSOlS^S^08 8 S08








1- a 1 4 > Ci a O
!;-- ^;" ^ ^ ,- ''**"*


iM_ ra -o o '

it
o.0




a :A
0 -
15 ,i

li| E:S
ries
M f 0B







NACA ARR No. L4K07 Fig. 2




$1: 4i'J



Ii ':I









tt
'4







iOi
i4 "
t .'.' !





I !2 "

Fri C!)r



F..:
-i



dir N


.
Cs.






NACA ARR No. L4K07 Fig. 3

















.0







R ~t1 J
4!-

c.
jij




t fbV







NACA ARR No. L4K07


I I



.T --


EE+E4ii


C *-- -- -1--K- i -- -i---






-1-










W- cc I I I I -
___ .5 __ _









*" II -

i __
=--4 '
S T3 U_ ^ ^ ^ : ^ _
: C ,, i.-. _r ^ ^ __ r 5==, ^ -_ : ^
^ <;G - .- ^ ^ -=;=- = = ^ ==^=-" -( -^


4-i ri


zL~jt4~+z44 !1: ~i~K ~Vt-


F1l ire L.- T1.e r.ni sor :,f landLng ai.ri caL- and flare. -2b aBir l-. ; land ring 1 7141 serel .


---t 1 -I i ------ ----. +---4--- t i-


I I I I I I : I I I I I i I I Ii-r--clJ-c~l I r .I-rrwll~.~--;


Fig. 4


-4


4Y








NACA ARR No. L4K07


AI 71 I

i jL
H" J"1




'In

--i .' ---- -













-I-I
| I I ;I I
9 ~ ~ ~ I 1 r.'1 ^ 'r -----" 1 T^^^'-'\ --------





;! L Li ^ r' ; '. 1 1 '^ 1 ^ J -
T- -- -^^ ^ -'^ -- ^- .^ 3 ^
p U-T l-^, -.^ -- -H l -- j r 't^i.- M'- E -< -^ --
E i^ ,|'* '' '' 0i _


I^JLZIIZ^"^"-^^-^'^^^ 3^'"!!.
S~~~ ~ ~ ; )**' ,* ..i* --




__ __ __ __ __ __ __ __ __ _. __ __ __ __ __ __ _




_^ 'r=^5:ed ===- *!_-== =___ __
"c E irQ_ '^rlcdl elx i i_--- --
A ^ -^ ^ 1- -- '- - t *- -n
l|==:::==Z^==^=^:lb:,--=:^::Z:::::^



4- -I- -, I I I I I I I I F .. .---


L ~


It- i


FI -re 5.- ...e I lrtory c.f l rI. r,r. rc.ct .. l fIlare. :--.'. .ri l.a ; lbn '_- 1'_ rules.


:


Fig. 5






NACA ARR No. L4O707


1 1 rt-1

I I-.- --it--


.TJf*-L-


;


L--


-i.
'I'
I

t,

- 1


,l'
2"


Sre '..- ,e .l- -r" *-- r l-.ding approach and flare. B-26 airplane landing 7, 14i2 series.


514


~It-'r P


I L '':1[' l l l l l l l l


t


_.. .. .D
IE F -". -- .--I


1, .. -
_-_ _.-_ .... t~I i K --j- --_ ._ I- I-__;- Y ^
E.___ __L--3 or


Fig. 6






NACA ARR No. L4K07


-li~~


14+11 z VF FE[ EITL


] _
tt
.. -!_. --


-7



12-
I- -- -
.._-C -I -i ----J---- -


'th













---
(I






'4i

Il-


L


I j
Ji;
'i-i-


I--

1-L

LI ,
:z I I __

4-ii Ij'/l'!'e


..4


Ii
I


Ui

01-
J-I




ill
Ftl


S .- )' :r f landing approach and ilare. I-2i airplane; lanlin- 11, 1012 series.


- ..-- _. _... : h:


T '
rir..-J-


-41--- i- -


I 1 I .l -l .


I I I I r I I I I .-'''''''


1


-I


Fig. 7






NACA ARR No. L4K07


Fig. 8


ro ---- --':- :I ^ ^
E1 7

.- -






--





-14 L-













FM d
I_ T

-4--^^41
.=^ .=^ ^r^ _^^ .|q|g^ |i^ ::



lEEEEEEEU^ ^^ ^


^ --> ^ I; ^ ^ ^ ^Ls. II ii
[?l- - i^ ^ **rhl IL j ^


-44-


I L4t4.'44-1


Figre 0.- Tirre ;Etry :I lIndIng approach and flare. B-26 airplane; landing 12, 1942 aeries.


- 1T TrIB.K"L1UJ1JT1- _VTTLFI


-Q






NACA ARR No. L4K07


S- -


IT


t---
1 zz- -4- -.--
{ :
I a7.-7 -T







-77- ---z



--- -- t..t ---
--7
..- I- -
















9- I I P -F T ,ill
,,,, ~~~~ ~ -h-- ._,;ti-


I --


--7
T hw....[ L _


Fig. 10


UA Pf3-CP~IFt~l)~






NACA ARR No. L4K07 Fig. 11








I I -
I -}]--f- I z-41 4| -- 4
S- -'- -




-r-1






SI I -
ai .
t-j-I.-.^ --- ______ j
-- i 1 -- --j z- -- --~ -- -







S. ------
--^-- -- o
I ,






,- -- ^ -- ------- ^ (Q
I --- ,----- ,

i i~i T ,


I -
+ --- -- I--- ,,_ I.I
2 .- oi



IHI
-1-- ----I __ ,----



i 1 i _o i E
I i LuJ 'i'pFj4b3 ipPYI) I i i \ Et







NACA ARR No. L4K07


I

--------- ---- __- -4- -

















SI I



F--







ti_ E

S____i _













-2 _-+ FI__ ___ __ I __
I ..... ..
I --








41 4 11
I IjA~ '-.---d---- --,7-.^Ii I---
.. I --- -...
, I ,
'-^Ljl-U j--^'-i^--rli--^ 1^^' ^r


~ILAtl 4 Ij I -tjl) W~
.L -_ -c-- ____. .


I
t,
-4

i-4
1-4
l-4



as



.-
a,

-1

cd






-4
rCI
0
N




4)


a)










E-a
0
a.
a,
as

-4

4-l



c,

0)


Fig. 12






NACA ARR No. L4K07


Fig. 13


S_ IT | |i L I i

-aa
K -1 v _
L- [Ij -I -f- 1
















co
,4
I -

I I
,--+-+- --

____-_ _i '





-- -|
i-i



I I I
I--- ---




I Iri

1----_ ,--,-- ,---- --
i i i L I 1 I

i l ,
L i- I ___ _-2____ & I




_L.II "' '. I i_ .
I- -'I--
I -1 t--^ L11







NACA ARR No. L4KO7


S I-


I pI
k-f-c>-f -ei-. ---u-i-----'*- --* -









I -i


----_---___ --













El R
--,... ----- -V-- --
.-....... 4 ;4- _J --















I i I | '
__ ___- _















it ---. : I i7
K- -7


-- -- .2 / -- ^ -- _e Li -l-


II I 1 1?___7


[


Fig. 14


-4
01
04

(i


La
-4







0








0
,-
'.-








4-.



C)
-l
a'







I-
















rl
as


a*-
.r








NACA ARR No. L4K07


I -Ic


IfffTit l-.t.il


-Mint- ,I,,, T. V f -f".qt :1-


I


..IJ- -- U M




.; i'" t ,I






ijl! .... -.i o|^ g ||^Ea^ || i im ii,,g|


I ..


ii! i
_1, 1. : ; .. -, it. 1l -
i, '' t









: .
d' i'" 't i' 1 4 I






IIi'
,,








All J" 'U, I: i "10 -1 '





7igure 1 5 K p ad e i l ig -- r- - s-eies.
W IN I.
{1-Bt^^ ^^^ ^S^ --- -- -- --- --- -- --- ---------- -
m^^^i^ .Z^ E^ ^ ^Z E^-_E^ _^ S


c
:nlarrurma .m+t!l


t~-' lft MI Ut~ifct


EtieifHmrf-a


Fig. 15








NACA ARR No. L4K07


mangfl-a


-t a w


".' l4. v t|; il';- i' I-i ; l


19ff1t1f&t'it d


Hallbilr 4M-4


1..:


:J~t~5L+S~~L~i**11l~FS.:1Dj fl4f~~!flt~~i~- 4-r .1-I' t'44-


: *~tF~~2j


iMMihFca#tdiBW :y-ll


* ... '-.i1A 3~- -.-:3 -t t


'l -11 Ir :FI r i


Ek i 4& rfi- -T ;f- ff., f t t rr
' Tti~~ ii iivv fv r thlti


ure .- t pth nd tme hstor landing run. -6 rplne land 10, series.


Figure 16.- F1IEht path end time history of lending run. 5-26 aLrplane: endlneg 10, 1?j4 series.


iiui*4iiriiiiir ..-m -i-mu


T=ir


tr'Tn'HT:TTITIE3W3rEPiri .


K '" nnm"' n nm


Itl.tftlltmtcc~t~ ~n;m~mntr:tt~ ~rittm mtt-nrtmb


WIH'l titF,


-Alu I 1:r E-


^^^afr;ififf-w~


inati


,i -w- .- -jT_-m- ,ft .-^.--. t T-,-' :f-H-'. -1-- T+ hj *i',! -'i l I I t"1 :i ':..:! -. .-- --nF-t!!:


RIrtifHJ' U 4 mri rEi1t it


t?


-.JA-iS 131RTIl .9-A -4Wt-'f


TMfaamertf


:i ,. -1r'l.^ :f


.--,1 *i--;.^!:


.-.-'UJ H-i-' ;..lr


, ;--l I- i'lt~t41 t


E -Iit.-'.irl-".'. '-lt, ':A. ".|


Fig. 16







NACA ARR No. L4K07


Fig. 16-Cone.


Stitt I K



r A," :i .








7.1

E1 :
T 1



S-4 -





I- J
1 _5 :.p i l is l:7
., g I; i





.-- Z1117i411rc










* 1. -

7 rBLi r I I I "==

t. II






"L 11 I lIr
| .-,|:_.r-t^ "IT_ __ ^- r ^ :: ^r :--
^ !*i^i; ^;. ** j,, '^* .^ H~c ^i fe f*n .g \ '. .


Figure 16.- Concluded.







NACA ARR No. L4K07




"HilIf7 LWIPhomil


rir-r 4


-p IMP


.. .... .. .... ..






V ,- -.,. ...... ,
:+ "

'
| ; .i M- "i F-_ I I

1 19 .,,liA .14 .
;T 3 ,, .1 j7: ...













'- i] :' I: F ^ 'i V
4 i
.4 "A _.T .











l| @ il !-:^ :: !^i3 r :-: i',i-' ^ |
P, T! .., _.

IF. tI

t1 J- it i :j IL 4 1.





r*U E-: j, r- '.'r 1'.'^* '- *-" "*- 1 i, 1' ', i L I. i *i 2 4 ^ .
-T -i
7.- .) j 9




4, RIF-:










jf .-^r "--^ ^^-^ ^^ ^^ ^' m zz'm -
I L,_'-",; ._ -_i





'! ^ ^ ^^K '-~ fi ^' .-"1"^~
P_ 1 9..; T, :,)
,f :t


V F

FT. i_, ..4
,,:-" u : .U'


Fig. 17


m .ta L, t,, .itiiT i. .n p


MEt~fS


t ms ifIL'


1- 11- 1. -,itI







NACA ARR No. L4K07


=7 ,r p
S ^ s~i~i|
Kp ^ | ?|[
C -.lll


Fig. 17-Conc.


A1, A"A.'1- J-- -T.H ['F'*-r,' n -fl 4 : -' ,


SY4a'Iti f ;4 42 i- 4ii 7;- '4I'lif41:tr ,T il -


IIw
Ti' -1 .l 4


iTI4TTrEWN


B --C : ,H^ ga'M'-' B^-^L'^&actlB^ -^'^."c^^ugsg

I




I S i i :'!afaii ,li'aic flnsbFes.is.lti .t[s~siit
''[








-T ,':. M- a ,
T.' I J J7j 1

;,__. 7[-7
+ 74 P 73s1S^ ;i~a c^ ^
~ ~ ~ ~ ~ F.** .y ; ** i :i r '




z^^^EE^EE^^^E^l~7

T- 1 + 4-. -- ^ ;
^ -^ ^ 1- ^1-^ 01 ^' ? -,2^J,- ^ 1 ^ i'
B~b p~~p-d* -i s ~-l-a7 *~ ~d ^ ?*^ 0r"- += R lR
"B ~ P 0 ^ 7 ^ E ~ a^ l ^^ ? '< s ^ B ^ fo p { B ^ ^^ B^J< ai 7-t


t] I - ikZ:


i:Sir; -I"


E:i-Ta tB fft- .: i .t







Fig. 18


"iimTli'T


S1 1.
t-A







11







erj


T 10


s it tE, L,4


.R-Ml 9jPi'


I.
0



E-
m*


NACA ARR No. L4K07


T -TI

- lgj~l


.1


U'r


* T,:4 g I

44A
I E||t i gl! -Lfttl'cl
SI E:.


111-lrr


~/E~if~j~f~I~ff~i;f~


^^ari^-^
^-l;ia-^<


nmi-ffapri pir:a


RTM 9 'IT, M M, r 9-3. A
15, Ml AU:4- M


4S:~ MUM M.^ MWMI: jja ;3:





.i 71


40 4T!


1 .11 -f-
.47-m-M-5-W


EU;


C$~t~fi~


.'a'-t


fc3i144-i&f-r ft. 1 ;:


1* 9 u^


-isrw-aniii:~t't~ t-'







NACA ARR No. L4K07


Fig. 18-Conc.


!9 t:itfill'-. iF^llrisyiil f~ll~frgi#f~l:

lHN 11,i I I 11 i
"U n; "gn Wi -f -r pnar ; .S-S -It R, tp -i **
1- 41
.' r ii n l I
|@i~n.^rr^?F I1! isRiB^


H44.Wi AISR Ar M ,"oA.!dmv i -1PpP 414






+- !!i t ,,
3U
:S ; ;l *! RI r7lilLll i: Ilifflil lig Im





Bif[t]- ll iglllt bgiils ^-? ^ !-:! !
IT~ ~~~~nr^ :^~a: a^ 41:^ : sunn "M^ ^ ^ .'H^ Bj


cu It, it !
512H F.-%' V7 1 :!oI
p -i ..1g
1p '.*h! I r1 vtfft T ~ -; a}:Th F r. 5 (i- ; U l): L; ,: T ? -, -;; ........... I- ,- 4.*

12 L'F l f 4 ,: J 1 1; Ii -


1 -*. .'ri 3l, '.,::1
_1-*Uj u 1-i-L i t -- r-1 MJ ^- ^~"-- --+ Q1^n-^- IT^' --*'-- ^*- ^~ ~~~*~1 r^- **' '* -* "T *- **T T 1 4 '++ PJi-.
p ^ i- tq^ .-.. ,'.R ,:!^ ;~i :; T-.F g ^- ^ 7 -i Tt 104 ? '.n '-'

5^fi~i"t--4-^- rt--K. I^4 f No -i vaI f-i:'0 5 -y i-:irtt --Hd 4'i- -^-


'7 L
?itK 1'; r r~ ~^ ~~ ~~ r^ :
R ON -- EY ;. -=:? I-. ... .' .*: .! ** .4 *c i. it *ji K l "
|ii, Ti1t
F 14. f d 7Tt7.44 P-. 1ff t- -, 7I fI -4 0
311




ld IUWi S'' .l LT j if l *w :
-, 1 i.14q i1 .. -1.;4 4: T
11 Q Q I L IA1 fi 1
4,:




I.

ri ~s~f.u. ~ I


- -- 1 -


~ms


Uvvsatt"


:'::- l It-, i LJ U" .J


P-tftt-^-^' ;I, F '.-M t-a







NACA ARR No. L4KO7


2 i0;i~ i;41


4 .5

E..I.E:IIIE:I~hIT~1:" .4;


-ttlt


^i'4iir^^Zkt4
i t


~4~1l4 1


w41-1H4m i1f


1T MI1W V jjt


-P Iti *, t4-'t 4 -. i1 wi44 .- t. ..


4- a t: nnrm+fLm 't i il~li *ll z" :rl m '.ua t ". '*i i* -T 'T -


4If-A4L +


1-IF- l~-:A'


i iB-FfI-I


ctjj i ME3LiR:f#fla1 *iS


;w$If ": tki { 41


.M I I ;I.


ff.


j 4II r


n.


H H 4i
N a

I:J S i :t~ ^ i a P


'Itn==i


91 "ra.-FaMR1.
-I A


C414L


F I... -M v If


^a^tj


11H., Awi~ ^- ~ ^ ^ ^ ^ ^ i~ i; + ell
^11 1^ 1: ^ '1^1 S||^S l~r~lf^! -*r: | ; '11
'4 '

if-, rili E-14 il 94 IlT
-.'t.7. '"'. ,' *!'R t ~mit ~ ~ 1~f. '. t.--* 1: f :~~ L 1EiW 1.- ': .- i ; : 7
"I^- ^ ^ -^ ^ ^ ^ ^ ^ ^ 37 ^ TT'i T 'at.
7.


7--ih*--J--~~~~~j--7- r^- ^: r lt ^^ 1aI
t I L

'I'LL
affc J/ 1; I~'.R I IPB .~ B L I~


LAE FtArIP


I LL -. *!


-i *_y --


17J-


amtHi~iaintfc-ia


Mt4# WW1t it i


1 136,~i-


ff fW4#W


1;4 ll 11 .-~


1frigil- q


Fig. 19








NACA ARR No. L4KO7


-M'


I I
p ;q,~. i;* m 4~i~It. ~ ',4:


M IJI ...... .
rl | i [Ii |- t{ ^ u ij ftt |p |



.1 4g,;|

Bs^l SJl lEl^^ i^^1^^ :
tS : I
M-f I th v.. jE.rVMSbtrW
: ....
44:I



4 1N

h- 4M -t








F.~-- A-: -










.i*I
.1~ 'a _
t.^ F^ ^ ^ ^ ^ -l^ --T- 7r1 ^^^!:-
; 4:il r jr i- m'-7 t


7t J= "..


nF'.'


r ~"'r
li Sl i

SS lI t !




l *- ....,. :f :f ^; .: ai ^ *:-Q
ta is:ihl^ Si : : I j!:
l^^^^r^S i ^ ::






^ tr, ; ; ; i--, ^ i f r j e'^ ^ ^ ^
^^^L I*- ; L-^ -2 i^:^L. -i :-- -*.L~~ I


1=tt


si^?pasf-Lqtig
|^||i~li"l


- .-- 1.~


Fig. 19-Cone.


&wIl8.


I-,]-.. 14a'*-A P-*:r-A 1;4: i


R;lMUtikd








NACA ARR No. L4K07


Fig. 20-Conc.


KTErik al


osy ....... 4 1 #a: .tl........T...


K'rffT Ai.3rL a


*'frrahTw ~:iw -


f:. .i....

I T

f K 4*#i ,1 .I
i mi


Br-mif-a


&qwtnyti-I


4bW^^is


ai L li j


* P P.2


i I lll It FlUl.SIflu I lsE
.-1A n ....w+ .4
: _. .

S-SI Isiili, li| +;||!+ i+ il'lE Bl:- ^ l
ki 6A..4 ;'"
4 4i 1 ~ 1 ^ : ; iA4 3 I r;- c 3 ^ p ~ n t ; ^ ^ S
||| K| V P.1 _f i : WIN



r:--- ---mi^g p+ j+:', !- 1^ -- -
S_ .. .I .1 ..,_ _







Igi----^^ii II+ |iEt i '.'-te --- --S+ .L :'
:- -- -_! '






KpF, :-- i ;..1* ', .. *<* i r .J i -, 'h ; --. :
.i.

[Ti i i. it
II fI_4_ I 41 1+:












;lr^p^p+^ ii-^.^z^^i iz^^l il^ !
,t n +0 xf4.




.,.









+-+ -ERT N Wt j





ttr n'jr|l+ -:-+ i':titg ^ ^t g~
++ M.. W.R..
1-. J1_ I

-_, t W. 7


7-, 4





L=: i-i a
7
fx~i Ii. 14C t. 1 ,.











r, .,I-. z. 7 .

,- ,' .,


r


Wi.,,_,+


M lf~i


H C + -,iL1i 1-u14i- W11-4H : z


ffit ? .-,P


.+ ~ ~ -


-- -- ~~-


~ ~'







NACA ARR No. L4K07


1 1 t
-Jw
S^~~~~~~i 7 llSl^^^i~ iI
i: ~ ~ ~ 1 4 i^ ^ tl E ~ ""^^:?3


t~FIfTEEW4-'It't


sl'tltlljtitW.tni tnt


VfWl; : in vpW-cthi


44 -!- .4' 1
fill
Um fip |gp 11 A ^ | 1 i ||


JrON





IT IT-N. P
j7I: i
.,-];



7- :1:.77-!

.41
kltl
i|IEI|~~i |lil| '-^ j |.^ ai-g l|i^ :. p j
BV | *Jti e~t^ -^ **~--^ftr -,Sh-T% l' I F -*;^ *I ^









T V7'
414 T| FT 1' 7- ^ | L 4i| |'|4;








4::

-4-2

( :i i +







'CJ71 tt~
,7- .-- .S ,


-71 .
|||||| e :! |:gr: a^i^ ^ g |
I: ^l -^i^ S^b i ""g l || lll












Ti
1 11 1. 11 T,
g lis+l ...s ^ i. |: i|, |s -g i ,








.47
Tj, :3S isl^ ie ys I mts






-Or(
l! t|tS"i -3






Elf.
r-r "G f ; V "["


Fig. 21


rf


i~f~i~ltiYl~fffj~f~fE~-!'~'-'! :''''"L '" '~!-1"':1"!-'- "":'y'mt; tt.+t~ -Isttl ttl+~ri+t+tt-n


Imp


*;-i it '* .31;.7Rtiifc~; iijfi mtt~H t;~tttll;









NACA ARR No. L4K07


Fig. 21-Conc.


SIII
.1 I ., t l '


EM 1 tI, IIII, j 4,- I 2 I .


, "-- -M Niil



2. ..: -. ; i
"-- i 'J-U




71 -






'4 T -
r I-----------------^j. 4--. -- -_ _-(-- 2 ^ -J:. ^^ _3








I_. I I .I..:T :: .:
A" r .- ":-




I AI


"" -I- -*: ] C- r ''*'



------F4- '
- +- --- :|






'


"-, .:i=I: ,: r

-"



-. .. ....
^ l t S ; s i .
(B 7 y> t .Kt OiO iil ?5-f(t?^^ i
^ ^ ^ ^ ^ ^ -^ ^ ^ ^ ^ _- ^ ^ ^ -


:I
I'
r


~LH~E;il~rS~~W~l~h~m'ml-;:rr:lr. -rrrr-r,-:l-r,-,r;lnr .,,r~iRrr~m
~II~~CL*IILW'--~II IIIIWI 1)~ill Cll~ll~rlllliS(CL~C~-~i~(WI(I-~*IW


. -- ~ ~ .. .. ; 1- ~ ... -


--


-t~Hhimc~tt~'t;Y~~'t-~c~' :"';-- ;'~~'--' ';"I"' '";~~


- lpf


1!j i I;*rt ^-i. ISW% 'US-5Ff







NACA ARR No. L4K07


; i7 js 00 6 Nw RA i! il :; fi, i. E" ; 0 4



IIii I I --
47 17 3 w

S' :,


143~......... ..



E^ ^ : W K Milhr.!..~ii, d |



... 7 7 T

"i ., -1 2 ? r .. l.. &

: i I i "I- : t11 1".






i||| ||}||i |. iJ| | :i| iji "








4a r a n 4 _

t"t : lg






4: I,
z:2:,0 !-!4.! z^ IWA 'JIz":: C41 !!: ik!
^ __~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~1 j. I_ __ l i _&


Fig. 22


-LI I..IlrYL' '-~ '


S-.. ^ -L.LAN
[Go^c j > p ~ "iv",r|/i -4








NACA ARR No. L4K07


... 1 '. ..




-] ~r 1
i '
1 ':-^il







1 7 T
--. -E E- 1
4 :. 4 i







0 I ,' .










t : -alt-






-..








- -
i 7I
c: 1 t~t4.ar


I TT T TEi- i ---


Fig. 22-Cone.








NACA ARR No. L4K07


-7-


T j
,: : n. \ *'7
--- -----



i L. U. z 4 : I I I 'I

PI
,

I I -l i 1t1



I_ .j | T






-- -- --_ -- -- -;-L-
:7-









, -. ,, ,







l I .. 1.



















t
Si-- -- ----- --
-- [










__ ~ ~ -


__--- -- T






I .1 __ ,
r ---. _.- _r __ _^ :__^
:IIri^ ji ^ :':^ ""^ '':^ : :''':


Fig. 23


/Mp f W f/ : / v-.p/
Nd^ 5Nl


OIMDRT









NACA ARR No. L4K07


.4 ..4 .. .. .2 .. .. .
.. ..... .4 1 1
.44+
















It^



41 .II
f3


I. -. zr~t-r4?t4ii'n4.-44i~ _~Y4itLt t 'r 't -tf ~iitt~t~~tt~r~l~tm~tzW44rrnf~fpWI


T.F.T 4.. .. .. .
+'


;izl
4L i





fi:


:71:
tT


.J1.


or Z.
-77 |:..
1 7:1 ..... -:7 :



^^^lAl (77 dadiilIIt
lyll-ill Iill pl~lijjllllll
||l(^~~~~;ii||?j^Si'6l~^ Ii |I^









; U O 3 /^ |' l^ >~>91 3 a d DIWs .._; *6 j -L ^ '
}:[*-' ~'uc.' fw':~_II ~9.y t ~DPrl j~-oa Swjc '^'sifit.o^B ^ ^j


Fig. 23-Conc.







NACA ARR No. L4K07


7-11 FI Nt I1ft{I5


-V' Z4


*i-1j fr
^ Ti 3 *; l:t^^ ^7s 'r !t' irt'p:- ^ :; Ct+-' ;ri;t!t" ^



iS S iT-r- T-r 7S t --j ;''l t t f ^
-Il : =; rt





,1~ A g]; ^ ^ ^ r^ ^ H ^ ^ ^ i 71- F.4iIn
A A.







4g *^ -I F; -.--A.- r -^ ^ t
Y ~ t.7! 44]
1:


14 -,












F U.=a: tc-t -- -


A^ ^ ^ ^ ^ *r' ^;rr 'in..,'--^ sp '*
Tf t-


-i ~ ~ 4,3ft lt:t-4^ 11 2 ltzzt :.T' dL^ -- _^ ^:
ti$9
pi


7









T 7 1'i *i p wit
T-t-












T i'Wi;5 -^ n! r--- i ; T ^ ^ ^ ^
1114I ,











.. S 4
W: _
^^a^^^F^Il^"!:: ^^^^ fll^I
|l||||,i3:|L ^:D^!]|L||||p
^*-5 ^Fl~ i--lt l-Lre -ti r- i^ -*'- -t- :~-- -:.T -;=i -{:^ S a w ft O
^;: ^ ^ _^ _]^ __ ; ^ .p ^ ^
;- ^ -- -- Z J ^ -; -; |
^^-rr^"; ,:;^^^^^^^ !":^ !"^^ ^^'^^^^5!!
i33to^^^ i^~ ^a r; _"_ !J SU t'^'^
^ ||,]..;. ii Sii^ ^o~i ""''^^AA j/" ~ ~ ~ Ij iws.oh~3Ln3L!r~sK f'


Fig. 24


A rl I I .tv

: R r t *;,t** *^ *.*; l-.:,-t J:^ ^ F ^ t'47;
7-1 ^ r^ S ^s'S ^ s^i n







NACA ARR No. L4K07


Fig. 24-Conc.


~fi~hJ~WI~


r r : flTTUfl7Tfl~T~ ~ 1? 1 U I


iI si L y 'I~JI II g -*. .


4T19l iEE;


IT:' '7irP lI


4, .|git .4.M, t-||
.... M-, i+:;< 1-




! lu Ss i' : I,. 'I ff;: :s .^* 4"-.:,', : ;*^'li ^ U- i" |
ii -





Lr:~ !.7
=,oH t.+ ii ] I, { :i
~ ~ ~ i '44 .- .:
14:




"V





,- 4: t tf i -- i l -I' :: -- ;*j : -1- <- -'- -t!- -: -
;,.-a A .......... ".. -











'glr I:^g ~ gr~ l l l l g '- 6 s "11:' ,
Sit -1 ;:::^?";!1 : "'r:i -se ^ i s : hli,-^1 1 --^ t ^

i
TI Li .., :- "'"-7 "
R






,A : 4 .1 4 :1t # :, !
t,: :,T, L: 42i "-i m 'f'"

tj I t-
I IT
-I I .l v _


RIX'41 Tt t













P%::" :, P t .4 : t' j5
1:1 7
IT ,-1





4 tt.Zl I ''1 -: 4; i il- qzo/; s3.. .
nT- ^- -^ -^ rE ^-li All F ^ ili~

llib4 p-'lg^ il t 7 -7
ji_ 7tr~r ^ "" ^ "" ^ ^ "^ ^ ^
'; !L .IT ,- ^ ^ ^. (_ ;. l;_ ^ll --j.a '- .= =1^ -

- i 4 f -- L - i:j
L _.^ -;-L ~ ~ ~ 4-_ ._ ,
^ ^_^i __ i___ _oi __5 __ S 5l_ _L~ f-^T--*
i.i-. IS i~ :iz--- -?^" ^ .- 7 r;^ ?^
^".' ** T~i a eie Ta~u: ^^ D/.^S-f/-^ ^'^ "( 3 1 ify^-2,J


t.1ihtt1L


~-iii~i~Fi~


Iif~tKP!


t-w


iHEEnff"H













tT! t


Fig. 25


4 fl~f~ tWi'4 4P41 444~Wet4kk-z-t4t;.44ti4 144 ~jfl-j2'ftt4 hi- 4, 4UM4444.#4 ~ q~ 'J~4j45jj: 1:14~WPPAJr'U;fP ~r TVN71:1~I14~ JjVfj


LIL


it- 1A : :,






_, i.1-- lliX ri,'2 { 2
A1







-It


*1 ..__- ^ T : ::. 1 -_ L.^'- 2^ "*:


a" S.. i wiy:i f-: 3 .J -,-
ST .,I _
r h'-: ite-- '-- r2.?^ ^



t- I f .
1: .7


..H .
I 1 F b i: F.T I





,' i ::- --W *;;;.,. I I ;


L ': t-:l --' t4it7777 ,


NACA ARR No. L4KO7


E i f :'FBi4' p IJ7ii t.,,
r.7 I ;~~~iB~B~RI 1:'I~L1 t:


7#i~j~i


: fjt14-4,


tHttt







Fig. 25-Conc.


NACA ARR I;o. L4K07


'11
^ ..tf ;^ ^^ l!:^ ^ ^(g
-j T -1: pl,
LrIil,^^L~r^ii~l~e^ i i
ii .B r lilSS B lS ^ I



4.4
F ..T %' .-.. 'I~" :I.




+E
z '172 ---

' 1 j I I '" 'I


T -.















r^ T-i;-r -: -; -^* --- -r-t- -^ -+ ----*-
T4 .t :1 4.I







ll~lllll liilli!
T I -



tr '1'

































Tu T
i:? '- **' *.- '"; .** I T
^- ~ ^:JE|E E^ ^ ^C El-`EErE"J E : EE


^I ^'ti-^ ^ "! Di' ^ '^" "E -- "1: .
:* ty:j~i7a/p~ w *_ -* ~'^ i wf/fa'tf ^ 1 ^ u~cpuw^ --.*-







NACA ARP No. L4K07


I
--7-
14- i.t s .i -,:.: I I:-I
|lta7R.IFd IIIl~R~iR 5:3Eaa B2|iti|


*IP lt-,41<,


4j;:WIf-R-


1| Ifc^^,' ,,
tt..-_ "it '. -,
1 T



!rEfdI~f~li .:- : .l' ..::.-;


-^ i^~~;-^SSI~iBfill ^^ lllllil:illl II~t
": j


46 i



^lii i'tBia^S43^l
t "-! r t-' -- n tt i !-u "





:t||I~ ll:l|=?I:^|!::^ii||||
-ff!!
j.7
iz- I+@!- :II-
--, :Ah







l; :.. :.. r. 4 11,,t
+.I q-'. t',i;: .: a r'
`71 7-t: t, t !




---_J : :!' L -.^^,^j :--i uf. ^ ^ ^


'^-- ^^ ;: :iii:!^ l 4 4 ^ L Tii |d |i
." ..
.ii
0ii



r~^^ g^ ^ .49""i^ s"^ ^ 0 ^
7f T


Fig. 26


~t~.~tt~~. l~-. I I f., H -1 t Ell" "" ;-'"`'~


ET'mint imm









NACA ARR No. L4K07


LA L..,.. SI; V- I .... *ZIIit [-1:Vt,%T:I I.t- :l:. l i-


a. IA'4 Is]i


i~ii
V' f,, 11 : t I : -l I .
4k 14 Ej-. lLL ~ A. Pj i4 .l i. .1 4


44RfflifLLTrat^'


Z 4 i
A:'l


Hi A .f... 1- f1t TPA". i;":.: E


-ITF T.FT :-t i :--


:1-JT ]Ti i; 1: l.:41-:i


. . .-

: .

.- -,t -.:, "''-.



-T




4j 7-
: I I


3 ^ ; > ^ 1 ^ | |w
ii _

", Iii ,



., .. .





y A
,. l







2 2Ilh l 22
i-F----^ ^ ^- ^ "- : -4 ^T-i^ ^ ;













46-- -IR
"t-l- -- _- l a --- r- -? -- r- -- - ~






I--- ---











II l --
^::E:::^::F!::~r^-:::::^IEEE-l:::*:::E


^I::^ ^: ^--:^-:" ^: ^ ^^^^ :!:^


;..:ii !- ..ail .U:;,tt. :i !.


- '1


~f~Fff~f~F~~:-;-~ti -1 I ii t-~%-f;t-f~flf~-~t-f~-t;-~"-L;~+i~;~cl


j-, .. I ; ; 1, J .-


:!:'iai :i *t i~fft~.n'-


t


Fig. 26-Cone.







NACA ARR No. L4K07


Fig. 27


M. SI i t "I r 5T 1iir



W A Y, I ---t *I- -







,i}i iV-.-i -T .^ : ".m
It1 I ''"









4-n T IrI 1M14 fi fV i

qI J j; T1, iPi ~ : i' 1 0
-L



Sd:- 15 1 -: ,4 0 ff R ,",



- .- .i 4 ," --
117

1 i i. l I',,I l 4 I 44' r l


`4 I ......... .







. i;, J Il*': Mir u .. 1Ii ,4
t i -Al t'







r r .~.AI ~F~itji1 .44.I-
14 -11ki 71 7I 1A





17. T1 l, _








NACA ARR No. L4K07


Fig. 27-Conc.


!-l ilia T: 1-1
-7lI tIt







h a l l -1-| IBr : l| l i
4144 i if p -tAzi tI













S. -. ii
--.I

















--- Fh


. I 1 i i + -1 1-


k1cp L L9p2 _L\ I I II I PAIj4 | | 'iA


41,P I 1If'ytm -1- m to!" -L.


*'d\ I \ '- + .h-.M ^ W


-w


I

r
r
I









































0T7 I 'B


~tltr 1,1* ft r I ": t ';"~' t 41 t t fl rfrtfrfd 4 .l.tt ...I.t..


44 ; 14


*I' .' ..
IFR II Jr
4VI "1 =t P .; .I ....
ir
i~ ; 4 7 =71 f ;fi 11 1'i

; I ;- ,:: ^ a t gt~ ~ ~iiS E;-i n:~:~'.rp: ,1. if:.,. ; [? ^ giy i. h--^ ;it!?!;--; ill.i.- ***: ^
514rta li lis g z;1:l;ait sB.1ijy1il






il~]MiI -All ^^^n;^ti7ii~iggtiF ifl
zfci~i~s^^idi^^i~iils-iT^
T _^ ^ r ^ ^ ~ ~ ^ ^ ^ ^ ^ '7: l f r "T i s ^ 'I
^r^ ^ ^L~ -^-^-"* --;- |i? ,,:?~i;|7.
-T, ^^^^ ^ ^^^ T^^
^^^~a ^^ "?^^ *'' "C Lj'^ ^iS^^Pl


NACA ARR No. L4K07


Fig. 28


^Bl clit






a-
M ji
............. ir r _

^ nti '^T'"


rf ~ ~ ., E-lll 1 !





I gglll^ ^li -lf~gl,~: gl ?
it S I|H'IBl .4


t m -



15..

i .? : : 5 r L i4, i Us : 4 ,? S y ^ :
i !l|i1 i


.-..




'+I
`1;i p 1 "T. A Ml; 4. -, :

l~~~M Sls~ii~i 11
r 7 40


u m
41


~tt~Ft~t~:~'~t~;l~tm~t~ -~j;k~t~I~i~;i;


I'Fwni l


UftP, 4t" k. r-t .. ,TVf "fP


'~"'~


9 MIt'at114M4


"":


fivhwif


NIUL-OF:li^-t








NACA ARR No. L4K07


Fig. 28-Conc.


71. M ,
I, ::- I:- i: :-g^ l ^ ^ ~ i il~ 1 ^ ^ 1 ? ^
II | I


I | l l ...| "1t i" T14.... .i .
A: ;J


II-




.. 4- t7 .. I

'-. .-- 'L i _,
-i l: -I ; ",- Hi





.-- .,|! '.|r- r-^ ^^ i :^ n
illl~lBlH pi;iE E^._
T 4' 1
41 47, z t- 'M















_f^-.- i ? ---" --
... ... --.
T ii










r. r -I



[ ii EE -
: f N. A-











.: ~ ~ ~ ~ c : ..- T-: ..: M E /.y 0 .B ap~ \ ~ ~ .
tiw s ~W
tzi mmd
rn;






Vol







I a
:; 7iI ~~~ Y, 7 j
"' 'w
19 a yj itI Fj aj-r 11 1 1 I


f -L L _


.24 -A~


''


;FRPi~







NACA ARR No. L4K07


4 F,. 1 Ui


.- -411- 414 1+4F-41:1

I;" ; .
-034 M. IM


a Il


4f;i


I dA ;t' t i. 4 i 1 if. 4 T-2 --IT .3 [- i" L 4 ^

7I

t-, FM, '. "




4i 2 i4.-. rt Ki .t


.4|' .. II

,.- -I T



I' 4 ...

iJ "" *:i "~-.1 i6 +P
T-;1.. fit Ti;-, --






-7 7
M. ? A :: 1-i
I:'~'~ lrlP I ..-^!..|Y~caTj -11 4-ISA 1 : ^tll; al.1-- I -J^^.- I -

te ~^ ^^~ r^ -" -^-1 -T--^4^ -+ ^-f:!>-T r^* w t --' -- -;-g^ *}- i
il't|Hir .7t .1177 t
!;flit :i.^ l i l ^ d ^
iliilgll~iili J4,s.i ^-i-
-A r!q^E^^ ^ E^ ^EE
^^^l~ll^Q~~r::":!^^;IF.
^^atgE^- ;^raer^^^s^^^wri
T7 --^ D ^ L .-S ^ -- ?!-^."?^ ^L


9"M M.A t[W ii^atqMd f!


I:!i i.Rl'ifff8fn:il
tiSlnlK;f~H1!


3-u .3 BBf.i f.!,I


Fig. 29







NACA ARR No. L4K07


.. ... ..
|ii r ^:ip
if i|| j| -,

L r I


Hi;L^


-- f* .P* : 1 *.-.l *, -.;* : '. ; ...t" tI
Thr


illJI


- tlj1dd tJJit -it:tii~i:1f'tM.i; IA.


I ii'


4H,
WI




l,||m~i^X-"-VIlgR!


f'l:pi1'~itf-l::Lti l 7j. 7f 4



Ic
TT

7Lt rL

Lici


17



?:p4
S^S V.p~ t|i jSli^:!!^!^:






i i :4|i. 1- .;., ., 1i i .j- 't *j.|_ ,* 4f T !* .-
ITI






MlU I ^1j [ 4TIfI
7T. _-7S



; ^r to ia /j ji^ '-B '" .4i ,2i Is,~ O~x w i 20, Afr' S
^^Sgi~i^^PS~iS~^^^g^SS^^^^^^^t ^giII


f W-" ilI,,.


I t r


-StMrt


ACMI


E'I


B.M


Fig. 29-Conc.


nfr~fir'ati m







NACA ARR No. L4K07


rt -
--- -- --- ^ ^ FO11-A &^



S- -








(a) Flaps deflected 35.

..7





---- I- I







(b) Flaps deflected 550 (full down). --






_/ _
-.. ., If--* -----_ --. --_ ,-_- -

4 1 1 1- + _- --_._ -
:- -- r -i-:'-t : T -:,1 17 .----+ ---- : .,I










.-1


Figure '0.- Equivalent ratios of lift to drag
of the Martin B-26 airplane.


Fig. 30







* ., 4
J* i


LNIVERS!TY OF FLORIDA
DOCUMENTS DEPARTMENT

120 MARSTON SCIENCE LIBRAF
P-O. BOX 117011

GAINESVILLE, FL 32611-7011 U


UNIVERSITY OF FLORIDA



3 1262 08103 298 8


r II






"* ;I', .
v ^ ,' ..,
il





.', *-

f ,, "" "
-,.' '. I
',* ; I I fi3


,! i
,., .;... ,

,' .



F *


I
8"




1i











*r
.:*




















s


. ".*. v,
-:s|

.,,







.. :i
;if


i:


.,;


Nj


~.
.
:


d '




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EKLKU2VBY_CD9N57 INGEST_TIME 2012-02-29T18:27:13Z PACKAGE AA00009370_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES