A review of the physical and thermodynamic properties of boric oxide

MISSING IMAGE

Material Information

Title:
A review of the physical and thermodynamic properties of boric oxide
Series Title:
NACA RM
Physical Description:
25 p. : ill. ; 28 cm.
Language:
English
Creator:
Setze, Paul C
Lewis Research Center
United States -- National Advisory Committee for Aeronautics
Publisher:
NACA
Place of Publication:
Washington, D.C
Publication Date:

Subjects

Subjects / Keywords:
Thermodynamics -- Research   ( lcsh )
Aerodynamics -- Research   ( lcsh )
Genre:
federal government publication   ( marcgt )
bibliography   ( marcgt )
technical report   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
Abstract: The properties of boric oxide (B₂O₃) are presented in tabular and graphical form and include specific latent heat of vaporization, and vapor pressure, (for the crystal, liquid, and vapor states) and specific gravity, surface tension, viscosity, and electrical resistivity. In addition, basic molecular and structural data are included. The data presented are discussed, and the reasons are given for choosing one set of data in preference to another.
Bibliography:
Includes bibliographic references (p. 11-12).
Statement of Responsibility:
by Paul C. Setze.
General Note:
"Report date April 24, 1957."

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 003853251
oclc - 154232398
System ID:
AA00009192:00001


This item is only available as the following downloads:


Full Text


P~A-
E510,'1

,,

?Iwr 'EliJ
:i.
Cl;!ii~, ;I;;:tl;l. xI;
gli;!:;R;. ;1' '9;~ rr'.L;'~:

ci r:;~14';' rfre

.1. i?,'?;'i il; ; ;r:::::!!i. ,.:i!.l:;;:li:;:i;I:jCls;
; .;'
IsJ'ilr!J
:; ~~I:i:.....:i: :t.
irfU
""~~i"~' ~
;i
!L s; kl" '''"""
qiii;i~~~jr al!:i'l':i~d i!~;ti~;~il..; i(L;; ;~; ;i~'i::;ll ~:::;.; ~..3.1;
iii' ';
: : :;.i. r; i, ,, .i.. i
iiarrr-i :i :x :
i; ; .i: i,i;l.; Ir,ll :a '!I.;'
'; "'
I
...;i;i
r 'i~%J~~'~' 8';i Iffr;;i:
WD
!":. :.' 'i i.:;;;i
i ;- ;;i; 1 .i
;i 'i;' T ::li: : :i: i: I
iir:F.l:i!
:.: .;''
i~~:;';: al~i~l;,i~:!Li;~ ':"'';?r.;I:l~ ; ;;; ; 1
~t~$~p [L.. "
.' i. .;~ : ?... i ;, ;iii;::
: i.:i ":fr::i:;~!
fi. ;I; ; I: ?'::; : i: :':~
I .:! :
:r"' ..1. .
'cl'yI:~Lir .:;; '!.:;"
.ir ;;;;~ I'!: ii'' r ; !i;i ;j,,(!~. I i,i
"'i'""'"'i'''JXQ;i;!.i~,:'I ;; i i i;
.rr .:.. i
1;i ;I
i
;!.
.\I ;3;'i i,:,:~,i-
v I; i
.; '
": i .'; i"; "
ni~~-... :;`. ;.II.;'
ii .'.....i..i~' i

:; '; ;; i: ;I.
::
i. ;
;!.:i;~ i ;:i: i:;i; ;:;
;;
~aRiZ~'''"l''t''i";'::;" :;:;;;;;!'l;i
:'i:;i
';;:
~~ibl ,il
.. ; ;i
..;..i ( ;;
Sfii~;
::,.
L1'i.~i
i' i:t:'
It i ,ii.
;;; I.i:. ''.. i~:ji:':. ;(. i i .I i... ''; ii~ 6Yf'
I; ;; ;'' .......ti
'i? na : ; ;;..;;l:!"i;!;I. i?
ij:ii; ~ ;;:
,li.;;, ;iirr:;. i;I ij~;,l
~~i; i
.i." I:..I. ;
*:;..;;;i.."~" t;" ; :;i; ,:.l~'iijifi il
ai~ai;ilall'..l ;i;ili''l4i"Ii; -.i.i~ ;--; ; ;;;;~.iT .;:~ i
;i:; I'"' i'.;;:
*~; ,;::
;.;.: Il"",~~i';:";"I;;''':L:Ix. ;t;";. :'-:~l.i~.l.;i ';. ".
;;'''' liriiii
1_~ ~~A-M;Lnjt!
:I"C'~irlr.;; ?I'4.i :i il':4.i li'iiii*
':;": : "i:li;;i..)~'I i: i; ,::i;;l~ Ili : ;i'';i:li;igliy
'::;isP i)'r,a:il
ii~i~6"''~ ~!:b








































; ti :; ir: .
I
jr:

i;

liil;' :I:':i /';II::il





I


I:.
r
:: :;
'1.::~~.. ;I':il:
;I:;r~~ ~ .i
~i;





:



";; i.:; .i :ii:. ; ;;:':;F'

;:::;
i;, ; ;









:...:




t. ii~;~;:;:..
:il
C'ii
I;..
""i
": "



lil; ''
""''

'';'
r i''t
''' : t. "'


'.II
)" ...
~;; ;I
r il.


.;r

iii ~:



:'"., '; i"


il..

";'.I



;' ii
I : ~: ::..;.i. .. .;i);
il'. ill'ii.') ;:


k i;l";

li~l;







ii;;







f I
":





; i; i ;




I -I ""


NACA RM E57Bl4


:NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


RESEARCH MEMORANDUM


A REIEW OF THIE PHYSICAL AND THE~RMDDYNAMIC

PROPERTIES OF `BORIC OXIDE

By Paul C. Setze


SUMMARY

A review of the current literature on the thermodynamic
and physical properties of boric oxide (B203) was made. What
-were considered to be the most accurate data available on each
of the following properties are presented in tabular and graph-
ical form: specific heat, sensible enthal-py, total enthalpy,
entropy, latent heat of vaporization, and vapor pressure for
th~e crystal, liquid, and vapor states. Also given are data
on specific gravity, surface tension, viscosity, and electri-
cal" res istivity. In addition, basic molecular and structural
data are presented.

A discussion of each property is included, and reasons
are stated for choosing one set of data in preference to another.


INTRODUCTION

In 1951 reference 1 was published giving tabulated data
on the thermodynamic properties of a number of chemical ele-
ments and compounds. Among these compounds was boric oxide.
Since that time new data on the properties of boric oxide have
become available. This report reviews the published literature,
presents what are believed to be the most accurate data now
available on both the thermodynamic and physical properties
of boric oxide, an~d extends the data where possible. This re-
view is especially important in the light of some unreported
experimental observations which maake the extrapolation of
existing data questionable. These cases will1 be discussed.

A_ search of the literature was made, and the data are
presented in both graphical and tabular form. Each property







NACA RMJ E"57Bl4


is briefly discussed and the reasons for choosing one set of
data in preference to another vindicated.

A list of the symbols used in this report is given in
appendix A.


THERMl~ODY IJAMIIC PROEPER~TIES

An extensive review of the literature on the therm~o-
dynalmic properties of borie oxide is presented in reference
1, which provides tabulated data on specific heat, sensible
enthalpy, total enthalpy, entropy, and equilibrium constants
for the crystalline, liquid, and gaseous states. These data
are being extensively used at the present time. However, more
recent data on the vapor pressure, specific heat, enthalpy,
and entropy of boric oxide make it desirable to recalculate
the data of reference 1. This recalculation has been done,
and a summary of the revised thermodynamic data is given in
figure 1 and table I. A discussion of each of the separate
thermodynamic properties follows.


Specific Heat

The specific heat data for boric oxide crystal_, glass, and
liquid are taken from a private commniation received from thie
National Bureau of Standards. These values are based on experi-
me~ntal data which have a good order of accuracy. The glass and
liquid data hatve been faired to a smooth curve in the range )000
to 18000 K and extrapolated to 25000 K. New values of the vapor
specific heat were calculated using the method presented in ref-
erence 2. This method assumes the molecule to be a rigid
harmonic oscillator, and the thermodynamic functions are calcu-
lated using the fundamental frequencies of oscillation given
in reference 2. The equation used in calculating the specific
heat is


C = 7.94872 + 4 Cvvi (1)


where 11C(vi) is the sum of the vibrational contributions of
a rigid harmonic oscillator, -with frequencies vi, to specific
heat. This term was evaluated at each temperature from the
tables of reference 3. Th~e frequencies of the B203 molecule
as calculated in reference 2 are presented in table II.







NACA fiRM E57B1_4


Sensible Enthalpy

The sensible enthalpies of the crystal, glass, and liquid were
supplied by the National Burea~u of Standards.

The sensible enthal-py of the vapor was calculated using the follow-
ing equation, which was taken from reference 2:

~H=T H = T7.9472+ H(Vi)] (2)
where CH(vi) is the vibrational contribution to sensible enthalpy cal-
culated from reference 3.


Total Enthalpy

The values for total enthalpy for the crystal, liquid, and vapor
states were calculated using the sensible enthalpies from the preceding
section and values of the standard-state total enthalpy at 00 K: chosen
to be consistent with the tables of reference 1 and the vapor pressure
data of reference 4.


Entropy

The crystal, glass, and liquid entropies are taken from the National
Bureau of Standards data.

The vaor entropy was calculated using the following equation
(ref. 2):

SIp = 2.3472 + 6.863476 log M + 18.302602 log TI +

2.287825 log(I,IyIzXI0ll7) 4.57565 log o + S(vi) 3


Latent Heat of Vaporization

The value for the latent heat of vaporization of boric oxide from
the liquid was computed by taking the difference between the total en-
thalpy of th~e vapor and the total enthalpy of the liquid.


Vapor Pressure

Speiser, Naiditch, and Johnston (ref. 4) give experimentally deter-
minzed values for the vapor pressure of boric oxide. Soulen, Sthapitanonda,
an M'argrave (ref. 5) verified these data within the accurcy of the method
used, and Soulen indicated in reference 6 that extrapolationr of the data
of reference 4 was :feasibDle.







NACA RM E57Bl4


The enthalpies for thne liquid and vaporr show that the latent heat of
vaporization LV~y varies with temperature. The data presented rin refer-
erence 4 do not take this change into account. Therefore, a new vapor-
pressure temperature relation was calculated from the following expres-
sion:

RT In pt = hFo

= (T TT)- 8 TT) (4)

With a value for the vapor pressure at 15000 KC (about the .midpoint of the
experimentlll= I~al datla) fromn refer~lence: 4 a value: of (@500)v was calculated
fro equaton 4).This calculation fixed the value of (H )v and, there-
fore, the remaining values of (HT)v. From these values, the vapor pres-
sure was calculated from equation (4).

The results of this calculation (shown in fig. 1(e)) agree with the
results given in reference 4 to within the expeerimental error.

Heat of Formation

The heats of formation of boric oxide vapor and crystal at 298.160
and OO K are calculated in appendix B.

Miscellaneous Thcermrod;7nami~c Functions

The infrared and diffraction studies by Soulen (ref. 6) indicate that
the structure of the B205 molecule is a symmetrical bipyrramid as illus-
trated in figure 2. In this structure the three oxygen. atoms form. an equi-
lateral triangle with one boron atom above and one below the plane of the
triangle. Each boron atom is bonded to each of the oxygen atoms. Doubt
exists as to the exact interatomic distances. Inasmuch as no recent ac-
curate determinations have been mlade, the distances used in the calcula-
tions of reference 2 will be assumed to be correct until more data are
available. These data are presented in table II.

PHYSICAL PROPERTIES

The physical properties of boric oxide are fairly well defined up to
temperatures approaching 18000 K. Above this temperature materials prob-
lems make experimental determinations of physical properties very difficult
if not impossible. Consequently, if data are needed at temperatures great-
er thanm 18000 K, extrapolation of the existing data is necessary, a pro-
cedure which leads to uncertainties in the value of the property.
The physical properties of boric oxide are presented in table III and
figure 3. A discussion of each. of the separate physical properties follows.

Specific Gravity

Reference 7 gives a plot of the coefficient of thermal expansion
for B203 against temperature. Reference 8 gives a value of 1.85 for the







NACA FRM E57iB14


specific gravity of boric oxide at 298.160 K:. Using the coefficient of
expansion a and the specific gravity at 298.160 K gives the following
expression:

P Tr
In .1 =I a dT (6)
PT 298.16

where

a = 1+ C2T+ c3T2 (7)

The values of c1, c2, and c3 were computed using the thermal expansion
data of reference 7.

Substitution. of equation (7) into equation (6) and integration gives


in 1 85 = 15.90558X10'4 T 1.095738X10-6 T2 + 2.59248X10-10 T3 3.837X(10-1

(8)

as an expression for the specific gravity of B203 as a function of tem-
perature.

The data of reference 7 (a plotted against temperature) are given
to about 16000 K; therefore extrapolation for equation (8) above this
temperature would be beyond the range of the data. These data are plotted
in figure 3(a).


Surface Tension

References 9 and 10 report consistent experimental determinations
of the surface tension of boric oxide. The data of reference 9 were
run up to 17000 K and give quite reproduceable results. The equation
thatt fits these data is

P = 37.9 + 0.0354 T (9)

where T is in. OK. The vTalues calculated from this equation. are plotted
in figure 5(b).

From the experimental data it can be seen that the surface tension
of boric oxide increases with temperature. This is not an uncommon oc-
currence when considering glasses. However, at same point the suraee
tension must begin to decrease with increasing temperature because at
the critical temperature the liquid and vapor phases became indistinguish-
able and the surface tension approaches zero.








NACA RM E5 7Bld


According to ~Freundlich (ref. 11) a positive temperature coefficient
of surface tension can be explained by picturing a molecular species
(different from the main body of the liquid) on. the surface of the liquid
that tends to lower the surface tension. As the temperature increases
this species becomes more soluble in the body of the liquid, resulting
in a net increase in surface tension. Because of this property, extra~po-
lation of the surface tension data above 17000 K would present a great
uncertainty.


Viscosity

References 1_2 through 14 give values of the viscosity of li quid
boric oxide over a temperature range from 7730 to 13730 K. The data are
shown in figure 3(c). In general, all the data agree fairly well, but
toward the lower temperatures some discrepancy exists. To arrive at
some mean values for the viscosity, a curve was drawn through all the
data. The values taken from this curve are presented in table III.


Electrical Resistivity

The electrical resistivity of boric oxide was taken from reference
15 and is presented in table III. and figure 3(d). Also shown in the
figure is a curve of some previously unpublished NACA data.


Miscellaneous Physical Properties

Solubility and index: of refraction data were taken from reference
16 and are presented in the following table:

Colorless glass or colorless white crystal
Index of refraction .. .. .. .. .. .. .. 1.464
Solubility, g/100 ml a20 at
273.160 K .. .. .... .. .. 1.1
373.160 K .. .. .. .. .. .. .. .. .. .. .. .. 15.7
Solubl~e in acids and alcohols


CONC'LUDING REMARKS

This report presents what are believed to be the most accurate data
available on the properties of boric oxide. Whereas there may be some~
question as to thie exactness of the data recommnded, it is felt to be
consistent.






NAC RM E57Bl4


The largest voids in the data exist when dealing with the species
present in, a vapor phase in equilibrium with B203 liquid. Experimental
observations have been made that show increases in B203 vaporization
rates due to water vapor in the surrounding atmosphere.

In a system containing B203 and elemnental boron. in the liquid state,
B203 appears to be the predominant vapor species.

Dr. John L. Mvargrave and his coworkers at the University of Wisconsin
are presently involved in the most complete study of these phenomena.
Their work is reported in references 5., 6, and 17.

In reference 17 the data, indicate that the presence of small quanti-
ties of water vapor in, the inert gas passing over liquid B203 greatly in-
ereased the vaporization rate of the oxide. The following reaction. has
been proposed to explain this phenome~na:

H20(vapor) + B203(11quid) -+ 2HBO2(vapor)

~At about 13000 K with a water vapor partial pressure of 4 millimeters
in nitrogen the B203 vaporization rate is increased about tenfold.


Lewis F~light Propulsion Laboratory
National Ardvisory Committee for Aeronautics
Cleveland, Ohio, November 8, 1956







NACA RM E5 7Bl4


APPENIX A


SYMBOLS


C(v)

cl~c2,...cy

FT
HT




H( v)


CH,





M

p

R


ST )


T

a

0


standard-state specific heat at constant pressure,
cal/(mole)(OK)

vibrational specific heat function

constants in power series

standard-state free energy, kcal/mole

standard-state total enthalpy, keal/mole

sensible enthalpy, kcal/mole

vibrational enthalpy function

heat of formation, kcal/mole

latent heat of vaporization, kcal/mole

moments of inertia with, respect to the x-, y-, and z-axes,
(g)(em2)

molecular weight, g/mole

pressure, atm

universal gas constant, 1.98718 cal/(mole)(qK)

standard-state entropy, cal/(mole)(oK)

vibrational entropy functiion

absolute temperature, OK

volume coefficient of expansion, OK-1

surface tension, dynes/cm







NACA RM E57Bl4


p specific gravity

a symmetry number


Subscripts:










Superacript :


liquid

00 K

temperature

vapor


standard state (1 atm pressure)






NACA RM E5'TBl4


APPENDIX B


GALLCULATION OF TH HEA OF FORRTON

The heat of formtion of B203 was calculated by

(1) 2B(C,298.16)+ 3/2 02 >,298.16) *B203(C,298.16)

(2) B203(C, 298.16)--* B203(C, O)

(3) B203(C, O) +, B203(V, O)

(4) B203(V, 0) *+B203(V, 298.16)

(5) 2B(C,298.16) +3/2 02(V,298.16) -B203(V,298.16)


(6) 2B(C, 0) -* 2B(C, 298.16)

(7) 3/2 02(V, O) 3/2 02('V, 298.16)

(8) 2B(C, O) + 3/2 02(V, 0) B203(C, 0)


(9) 2B(C, O) + 3/2 02(V, O) -*B203(V, 01


Therefore,

dB/tfB2031 vapor, 00 K) = -214.2756 kcal/mole

CIBE(B203, vapor, 298.160 K) = -214.9949 kcal/mole

Ldff(B203, crystal, 00 K) = -303.898 kcal/mole

6B(B203t crystal, 298.160 K) = -305.35 keal/mole


OF BORIC OXIDE

the following procedue:

aE1 = -305.35 kcal (ref. 4)

AB: -2.241 kCal (ref. 1)

6013? = 89.6224 kecal tablee I)

684 = 2.9737 kCahl (table I)

655 = L~I + 652[ + AB+ E3
60@5 = -214.9949 kcal

Ahg = 0.588 keal (ref. 20)

AH11~ = 3.105 kcal (ref. 21)

d~g = aH + AH2 + 7~g+ ~~
a5Ig = -303.8980 keal

659I = 6EI5 + a6E6 + 60g dB[4
dB9g = -214.2756 kcal







I\ACA R E57Bld


REFERENCES

1. Huf, Vearl N., Gordon, Sanford, and Morrell_, Virginia E.: Gleneral
N~ethod and Thermodynamic Tables for Computation of Equilibrium Cam-
position and Temperature of Chemical Reactions. NACA Rep. 1037,
1951. (Su-persedes NACA TN's 21_13 and 2161.)

2. Kallmann, H. Kf., and Krieger, F. J.: The Thermodynamic Properties of
Borie Oxide and of Aluminu Oxide in the Ideal Gaseous State. Rep.
P-120, U.S.A.F. Proj. RAND, The Rand Corp., Feb. 1, 1949.

3. Krieger, F. J.: A Table of Vibrational Contributions of a Harmonic
Oscillator to Thermodynamic Fnctions. RA-15088, Proj. RAND,
Douglas Aircraft Co., Inc., July 1_, 1948.

4. Speiser, Rudolph, Naiditch, Sam, and Johnston, Herrick L.: The Vapor
Pressure of Inorganic Substances. II B3203. Jour. Am. them. Soc.,
vol. 72, no. 6, June, 1950, pp. 2578-2580.

5. Soulen, John R., Sthapitanonda, Prason, and Margrave, John L.: Vapor-
ization of Inorgarnic Substances: B203, TeO2> and Mg3N2. Jour.
Phys. Chem., vol. 59, no. 2, Feb. 1955, pp. 132-136.

6. Soulens, J. R.: Vaporization of B203 and Other Group 3 Oxides. Ph.D.
Thesis, Univ. of Wisconsin, 1955.

7. Fajans, Kasimer, and Barber, Stephen W.: Properties and Structure of
Vitreous and Crystalline Boron Oxide. Jour. Am. Chem. Soc., vol,
74, no. 11, June 5, 1952, pp. 2761-2768.

8. Latimner, Wendell M., and H-ildebrand, Joel H.: Reference Book of In-
organic Chetmistry. Fourth ed., Macmillian Co., 1944.

9. Shartsis, Le~oI and Smock, Alden W.: Surface Tensions of Same Optical
Glasses. Jour. Am. Ceramic Soc., vol. 30, 1947, Ipp. 130-136.

10. Brdley, C. A., Jr.: Me~asure~ment of Surface Tension of Viscous
LIquids. Jour. Am. Ceramics Soc., vol. 21_, 1938, pp. 339-344.

11. Freurndlich. Herbert: Colloid a~nd Capillary Chermistry. Me~thuen &
Co., Ltd. (London), 1926.







NAC RM E57Bl4


12. Slavyanskii, V. T., and Krestnikova, E. `N.: Viscosity of Boron
Anhydride as a Substance for the Graduation of Viscosinters.
Zhurnal Fizicheskroi Khimii. (USSIR), vol_. 26, 1952, pp. 1844-1846.

13. Washburn, Edward W., ed.: International Critical Tales. V~ol. VII.
McGraw-Hill Book Co., Inc., 1_930, p. 212.

14. K~ruh, R. F`.: The Effect of Additives on the Viscosity of Boric Acid.
Re~p. No. CCC-1024-TR-44, Univ. Arkansas, Sept. 28, 1954.

15. Arndt, Kurt, and Gessler, A3lbert: Le itf~higkeitsme ssungen an
Greschmolzenen Salzen. Zs. f. Elektrochemie, Bd. 14, Nr. 39, Sept.
25, 1908, pp. 662-665.

16. Hodgman, Charles D., ed.: H~andbook of Chemistry and Physics.
Thirty-second ed., Chem. Rubber Pub. Co., 1950-1951.

1_7. Margrave, John L.: Gaseous Molecules of Geochemical Significance.
Jour. Phys. Chem., vol. 60, no. 6, June 1956, pp. 715-717.

18. Wacker, Paul F., Woolley, Harold W., and Fair, Myron F.: Thermody-
namic Properties and Gaseous Equilibria of Boron, Oxygen, and the
Oxides of Boron. Tech. Rep. to Bur. Aero., Navy Dept., submitted
byr Heat and Power Div., Nat. Bur. Standards, Jan. 25, 1945.

19. Ano~n.: Selected Values of Chemical Thermodynamic Properties. Ser.
I, 59-2, Nat. Bur. Standards, Sept. 30, 1949.

































Glass and liquida Vapor






b)(b) Irl
------ ~~ ~~ -- -- -- --- O 139.297
6.586 55.270 19.05 13.0703 2.9757 142.271
6.612 55.296 19.11 113.10801 2.9978 142.295
8.238 56.920 23.76 115.1839 4.4123 143.709
10.180 58.864 28.00 17.1316 6.0301 145.327

12.7741 61.458 32.70 18.7700 7.8281 147.125
15.848 64.532 37.42 120.07541 9.7730 149.0070
16.584 65.248 38.30 ---- --------
18.992 67.676 41.65 21.0957 11.8336 151.131
22.149 70.833 45.34 21.8916 13.9847 153.282

25.264 73.948 48.62 22.5163 16.2062 155.503
28.334 77.018 51.54 23.0116 18.4836 157.781
31.369 80.053 54.18 23.4086 20.8053 160.102
34.384 83.068 56.59 23.7304 25.1628 162.460
37.589 86.073 58.82 23.9942 25.5494 164.047
40.394 89.078 60.89 24.2127 27.9602 167.257
43.419 92.103 82.84 24.3953 30.3908 169.688
46.474 95.158 84.69 124.5494 32.8383 172.135
49.559 98.243 66.36 24.6804 35.2999 174.597
52.669 101.353 68.04 24.7927 37.7737 1177.071

55.799 104.483 69.84 24.8895 40.2579 179.555
58.944 1107.628 71.17 124.9737 42.7512 182.048
62.099 110.783 72.84 1.-..1'4 5.252 In a-
65.269 1113.955 74.05 i-.5 .11 7.7603 i. .
88.454 117.138 75.41 25.1688 50.2745 m*1 1

71.649 120.333 78.71 25.2194 52.7939 192.091
25.2644 55.3181 194.615
25.3047 57.8466 1i7- ?:
25.3410 80.3734 .r
25.3736 62.9148 /202.212


204.751
207.292
209.837
212.383
214.932

217.482
220).035
222.589
225.143
227.701

230.260
232.819




243.0568
245.632
248.197
250.765
253.330

255.997
258.465
261.034
263.603
266.173

268.743
271.313




Latent Vapor
r. pressure,








60.9804 ------ ------
61.0609 i------ -----
65.1158 -- -- --
68.7179 -- -- --

^i ** 4 -- -- -- -


77.7370 8545 ------
80.2696 82449 -----


.1 : e: 1.65x10^9
.86. 7998 /80.049 ims.

'. 1 4.13x10-6
92.1183 /78.179 2.718x10-5
95.6869 77585 1.39x10^4
95.1708 76.977 5.85x10-f
96.5776 176,354 2 .16x10-3
97.9152 75.718 6.60x10-3

99.1894 7.072 1.80X10-2
100.4058 14.420 4.41x10-2
101.5693 "J 9.87x10-2
102.6842 ** 2.05x10-1
103.7542 .: :." 3.97x10-1

104.7826 n1.758 7.28x10-1
105.7726 1.30
106.72691 2.31
107.64178 4.03
108 5376 7.00

109 1984 1- 1.9


/1 18232




14 7422
i1"



17 3677
17 9847
18 5875
191766

197527
203164

121 4083
21 9375




239528


249046
53e680


05 14
98 14.

420,E

4 30.E
5 51.(
8 31.2


, Tie~Lr-l Crystal








0 I---- iD 0 48 8859 -
298.16 15.04 2.2231 50.9070 12.9
OO15.12 2.2509 50.9348 12.9
I~1 18.6 3.956 52.640 17.8
3)3 21.0 5.910 54.594 22.1

ai 23.2 8.058 56.742 126.1
;0 128.4 j inl 59.282 30.0
723 30.2 11: 59.956 30.9
800
900

1000
100
1200
1500
1400
1500
1600
1700
1800
1900

2000
2100
2200
2300
2(00

2500
2600
2700
2800
2900 .

3000
3100
5200
5300
3400 :

3500
3800
3700
3800
3900


4100
4200
4300
4400

4500
4600


4900

5000
5100
5200
5300
5400

5500
5600


.*

aolass below 7230 K; liquid above 723" K.
bffelative to borle oxide crystal at Oo K.
C~xtr~apolated from 25000 to 30000 K.


65.4536
67.9952
70.5395
73.0861
75.6347

78.1853
80.7378
83.2918
85.84162
88.4044

90.9627
93.5223
96.0829
98.6448
101.2072

103.7707
108.3552
108.9004
111.4662
114.0530

116.6004


124.5059
126.8755

129.4457
132.0162


-i :

25.5155
25.5327
25.5485
25.5631
25.5766

25.5892
25.6008
25.6118
25.6217
25.6312

25.6400

: :
25.6632
25.6700

25.6764
25.6625
25.6882
25.8938
25.6987

25.7035
25.7081


- -


NACA RM E5'(BL4
















TABIEL I. REOMENE THERMODYNAMIC PROPERTIES OF BORIC OXIDIE~











































. . .








frequencies, em-1.
* * *
. . .
. . .
. . .
. .
. . .


MACA RM E5 7Bl4









TABLE II. RECOMMENDED BASIC D1ATA ON THIE BORIC OXIDE MOLECULE


Ref.


Formula .......

Molecular weight ..

Interatomnic distances,
B-B ..... .. .
B-0 ....
0-0 .... ... .
Electronegativity:



Symrmetry number ...
Force constant, dynes/c
B-0 ....
0-0 ...... ..
Moment of inertia, g/cm

Ig .. .

Iy,Is ....
Calculated fundamental

VI *

V2 3 .. .....
v4'. .
v5 . .
v6.7 .
vg .


. .

. .


. .. B203
. .. .69.64


... 1.72r
...1.36
.. 1.825


...1.90
...3.45
... 6


6.809X(10-3
1.240X10-5


88.463X(10-40

70.805X10-40


. .1363.6
..1240.8
..1525.1
..466.3
..1371.0
..382.7


. .
. .
. .


. .
. .


.
.
.





















TAL;E III. RECOMMENDED PHYSICAL PROPERTIES

OF BORIC OXDE

Temper- Specific Surface Viscosity, Electrical
ature, gravity tension, poises resistivity,
OK dynes/cm ohm/cm

298.16 1.85 48.5 ---- ----
400 1.69 52.1 ---- ----
500 1.56 55.6 --- ----
600 1.47 59.1 --- ----
700 1.59 62.7 > 1X104 ...
750 ----- ---- ------- 4.5xl105
800 1,34 66.2 7.OX103 1.5X105
900 1.30 69.8 1.6X103 4.8X1~04r
1000 1 .28 73.3 5 .OXIO2 2 .2 X104
1100 1.26 76.8 2.0x102 ..
1200 1.25 80.4 9.7X1017...
1300 1.24 83.9 5.4X101 ...
1400 1. 25 87.5 3.3X101 ...
1500 1.226 91.0 2.2X101 ..
1600 1.218 94.5 1.6X101 ...
1700 1.208 98.1 ---- ----
1800 1.191 101.6 ---- ---
1900 ----- 105.2 --- ----
2000 ----- 106.7 --- ----


NACA RMI E57B14














Ga s, liquid






Crystal












Va .r


NACA RM E57Bl4


30






2O






2C
o

r-I








o







*rd
20


3000


2000 3000 4000
Absolute temperature, oK

(a) Spetcific heat.

Recommended thermodynamic properties


5000


6000


Figure 1. -


of boric oxide.
























Vapor






















Glass, liquid


NACA RM E57Bl4


100





140






a, 120





S100

O
o 0





m 8


F 4


1000


2000 3000 4000
absolute temperature, oK


5000


6000U


(b) Sensible enthalpy. To convert to total enthalpy, add 48.6839 kilo-
calories per mole to the glass or liquid sensible enthalpy and 139.297
kilocalories per mole to the vapor sensible enthalpy.
Figure 1. Continued. Recommended thermodynamic properties of boric
oxide.


































































































Figure 1. Continued.


NJACA RM E57Bl4


40








.00

Vapor






00













co






Glass, liquid













Crystal


1








1

o






\1
rl
ar
u

a,
a
rl
x
o
o

t;
P
k
O
X
a
o
~
c
a,
a,
ol
c,
v,
I




al
~
m
k


1000


2000 3000 4000 5000 8000
Absolute temperature, oK

(c) Entropy.

Recommended thermodynamics properties of boric oxide.







NACA RM E57Bl4


cu 82












~ o


p. 7 C
4-e

O


S71















70
800 1200 1600 2000 2400 2800
Absolu se temperatu 'e, oK

(d) Latent heat of vaporization.
Figure 1. Cont inue-d. Recommended thermodynamic properties
of boric oxide.











20 NACA fi~EI E57B14

2





lol

a

6


4





2




8
10

8

6


4





2
B
a
n


to

8
o

6
e

4




e
2

p

r,

la
d
u 6


(e) Calculated vapor pressure.


Figure 1. Concluded. Recomedd thermodynamic properties
of boric oxide.








NACA RM E57Bl4


.+.4*


Fiigure 2. Model of boric oxide molecule.








22 NACA RM E57Bl4









o




~t


r*4p


O M:
O O







6 h
He


O vt






























\


171~T


o





\o


NACA RM E57Bl4


cO

*O

N rl
k0

OMMA


O





ON

03

O O
OE
(1D













a~


m~/sarurp 'uaysuarl. aog~~mg


























































(c) Viscosity. of liqud.

Figure 3. Continued. Recommnded physical
properties of boric oxide.


o Slavyaskii and Kriestnikova
(ref. 12, pp. 1844-1846) 13
D Volarovich and Tolstoi (ref.
12, p. 1845)
O Volarovich and Fridma (ref.
12, p. 1845)
^ Arndt (ref. 12, p. 1845)
. Arndt (ref. 13)
C0 Kruh (ref. 14) o







Recommended curve-


'NAC"A RM E57Bl4


103
8


4



2



102
8






2


06


10
.1


.14>10-2!


.08 .10 .12
Reciprocal of absolute temperature,






























\ Recommended curve





\ 0o NACA'
D Ref 15

















3O 800 900 1000 1100
Absolute temperature, oK

(d) Electrical resistivity.

Figure 3. Concluded. Recommended physical
properties of boric oxide.


N~ACA RM E57B14


106


NACA Langley Field. Va.








-R





fi .1 "e


N


I

a U
'C15 b
~~)U ~ -


E;. ', (o
a 88 2
mtaoL Sdg





0~0 .Ci
.9 o


5. o mec
a~X~
to 8





.s"se %so


cr
103~
P:
~w d
e~W-
g~ec"
0-
Ue
e~~~M
~de
~Y~~E*d.
E~ Our
BT CV
o~vl
UWW .,
c-a
-~~a~rs
mo w~r
r-ma u,
In ~PI W
wgVO~

3'P: p:arp:

do~rz~q
(d (OZ
XZ~*Zm~


.s d
S m d~





"o


i;i
9~,"e~)
mScljerd
o, W
c ~me? ,

OE L W
~ol ~tipa3
P~ ~rd ~E
~d P~Da~
pp~ m1~~4
O myU
~= 9%..4
a Mamz

c; k


a
ui, n
,9
&SCiw d ~
-e om m
~U
,, U,
'~ ~4~a
d
O mmu,(
A ,omNu
PI L*MPrnZ

N


L
~~!U
M
o
-e"~z~
~o
~
Oo~c P
e, UIPg
at, p~
P cm 0
~O~pOL~~L
err
r ag~oe~
dh s~
,_a YL.Cr:
om
P~Ag ~O
~98~ sS
m9~-c~~~,dge
e*o
~Elaoommom,
4ars
'ji: oo cp~m~
o~h-aSc PP
,oane "ad C
.e rd P1 n'c. "e~
Ea 7: a
~ aC C~ ~p 0,
of orr
ca rdoS~S~
Meal" .~j
m ~aue Z~ g
y'E1P) =~c~Oe
Eso ~ ~*~
D O gm~~b
ad~ ,e
*e~" 5a m,
23 PD C h~
ap ,,a
~9 -eU c
;ii ~ eo,
~.53~~ac P~1
MC~ 'CIO


rr ,O
SU
"~"-"~a
a"X
m'o~aY9Po
eat c
*m mm; "
pe
~~~UC~OCL~L~
~s La9~~" o
,~~,4"UIS
e,~
a~~ a "
o r o
'hEiSmnr
N~P 5 g e
mg~ O
~sro d~o
asassl!
~ooE 111 id "i
ac o'
-- Eedo
~.uaaE m
""",~".S"E~
o,, err
~r* ~ ~i 1
~ od
OLCP LdUCC
LLU,~O, ~j
m ,cr~q 'LI id
~pO)
C90 L~ ~d~
rab
~Pg O O
.1. m,
o
~x -LI m0
a~ L
le cr m- Im
rdQ m
e ,
~gUdCc~C1 E:
C Mr.


Cllrd
uEp,
1W o
,~a,
cCIRa


~~~~dM
"'oa
~Um
BEe d.
BEO~
oPim
UWW
a ReC~ur
~~P~o~m
mo ,
rml* u,
m rrPI
Y O ~Z W
rr Z
Pla~
~" U -*
Y9, UC

ZZ*Zm


CI m
m0~9
uEp,
~w d
~ow
o~.EIO
4 ,C

4 a



~ r* d.
~EO"
N
oP~vr
UWW .,
ro~
~ ~TC~n
L~L~cam
mo ,,,
EOPLI. y)
yr ha
wgVor;W

r'&g ag:
*~ io
q.p~:,
ZZ~Zm





fRR



Cga us a
so So 3P


rd =4
fid' .
* *SS
mu .5m-V


ELC


c~ ,o u
Jr U"e M
OUP~U: .~
mo 0-''C~
~P C. ~ ,a~!~8 cO
P
e ~L C
~CI L~
esr~a
a
c p,
"?8,,S?:~f
,~g om upO
q! aoA
wa 6 la ~ E
Mrd
caPPoq ~g
6a~LO
o~r"a~
c.a~d c
goe *p~m u
,% s~
YJh'~BC I.
r. P~e Opld
oc a Ij ~ a~ P'~ ~
BpSQ3u~
Ea
M~~d~O .g
m ,aoe cr
L"
e~o 4 ~~~
~~cla~~5;"
I~PP ab
~sc~!O O
,~m hR'dm
a~ '* m o
cg~~e PP
0~
rd" em~~o
0,
~~~Od-E O~ e
r: ~* ~O


3
a
L.
""oa~~~pm o
C
mp, 1 93
~,a~,aX O
Lm ~la~ u
~ e ,, e
~~""~ L
r. e~dP)
1 ~~3004
u
nB 8 s
o ,YRO,~~
~4~E 90 B~M
orJroy uo
dsa~""
Op~ a~
e~d e

U~Rld~er~eo
-,~ "~E:
02
~'iiSLbSp ga
a~ea rdo~e
Mld~UeI D
~'9
spO 8C~
e~l~o ~~id
~aasm ,o
B~phh'~m-
L~a 4'
~ eO~m-C~PP
(dye~eu
c ~dr:M~~1'CIO
~9 e


'ri
0 3 B
oEa9


esa
oCIF~ a




r~Ed.
~xoS
oPim
UWW
ep~a~
~R2t~ rr
*CP~~PI
mo ,,
P-~C*W
ur ~PI "
wdVo';; W
E"~~~r
WPI(
rr;a
~6 do
Ya~~:,
i4Z*Zm~


3d

'IP:
w d
~mwB
~C~~c
c C~ X ~'
(ZO :
~"oe
c~~M

"~r*d.
B ,,
Ell N
oPim
OWW .,
e-a
CCP;OPI
mo ,,
c-PI*W
Y,
W g on urw
E~ L~ PZ
Pl(p:
"~u *
*5 dU
dN*
ZZ*Zm


W
cr
"" 9"
~pna ~ P
c cl~r cP
L~U gP)
U
dC~
a~ 4 ~W
4 ~Bm~
a ~~uk
~s c~
S o
~O ~m
rlarr
u
E~ Mamz


(D eg a
a5 8 4.0
48 2 g m L


* a &&5,4
Ugaq~ ~c=.g
^a llil Joit
.ag Pl
*S u aP .
.523e heSp,




pl +# ; i




UI VESIY F LOID




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EG16JHMKG_P5JG3V INGEST_TIME 2012-03-02T23:16:40Z PACKAGE AA00009192_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES