Wind-tunnel investigation of control-surface characteristics

MISSING IMAGE

Material Information

Title:
Wind-tunnel investigation of control-surface characteristics
Alternate Title:
NACA wartime reports
Physical Description:
14, 46 p. : ill. ; 28 cm.
Language:
English
Creator:
Spearman, M. Leroy
Langley Aeronautical Laboratory
United States -- National Advisory Committee for Aeronautics
Publisher:
Langley Memorial Aeronautical Laboratory
Place of Publication:
Langley Field, VA
Publication Date:

Subjects

Subjects / Keywords:
Airplanes -- Wings -- Testing   ( lcsh )
Flaps (Airplanes)   ( lcsh )
Aeronautics -- Research   ( lcsh )
Genre:
federal government publication   ( marcgt )
bibliography   ( marcgt )
technical report   ( marcgt )
non-fiction   ( marcgt )

Notes

Summary:
Summary: Wind-tunnel tests have been made to determine the aerodynamic section characteristics of an NACA 0009 airfoil with a plain flap having a chord 25 percent of the airfoil chord and a balancing tab having a chord 50 percent of the airfoil chord or 200 percent of the flap chord so linked that the tab would deflect at a given rate with respect to the flap. Three linkage ratios were tested on the model. The tests indicated that the flap and tab could be linked to give hinge-moment balance with flap deflection and with angle of attack and yet have greater lift effectiveness than a plain flap of similar size with a conventional balancing tab having a chord 20 percent of the flap chord linked to give hinge-moment balance with flap deflection only.
Bibliography:
Includes bibliographic references (p. 12).
Statement of Responsibility:
by M. Leroy Spearman.
General Note:
"Report no. L-47."
General Note:
"Originally issued September 1945 as Advance Restricted Report L5G25."
General Note:
"Report date September 1945."
General Note:
"NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution."

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 003616148
oclc - 71296066
sobekcm - AA00006276_00001
System ID:
AA00006276:00001

Full Text

,L q1


NpAc


NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS





IWAR lTI lE REPORT
ORIGINALLY ISSUED
September 1945 as
Advance Restricted Report L5G25

WIND-TUOMEL INVESTIGATION OF CONTROL-SURFACE CHARACTERISTICS
mIII A 0.25-AIRFOIL-CHORD FLAP WITH TAB HAVING A
CHORD TWICE THE FLAP CHORD ON AN NACA 0009 AIRFOIL
By M. Leroy Spearman


Langley Memorial Aeronautical
Langley Field, Va.


Laboratory


31




WASHINGTON
NACA WARTIME REPORTS are reprints of papers originally Issued to provide rapid distribution of
advance research results to an authorized group requiring them for the war effort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without change In order to expedite general distribution.


L 47


DOCUMENTS DEPARTMENT


i.a..sS' ka*~s~k ..ttU1..;;~ wc~.'e......;


ARR No. L5G25


V









































Digilized by Ihe Iniernel Archive
in 2111 wilh lundIng Irom
University ol Florida, George A. Smathers Libraries wilh support Iroin LYRASIS and the Sloan Foundaiion





























9


hlp: www.archive.org details windlunneliives






-l I

ITACA Ar, No. L 'G25

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


ADVANCE TRSTRICT:,E REPORT


,WITD-TUNMTEL INVESTIGATION OF CC;TROL-5URFACE CHARACTERISTICS

XXIII A 0.25-AIRFOIL-CTiYOD FLAP -VITH TAB EAVTI G A

CHORD TNICE THE FLAP CHORD O0 AN ''ACA 0009 AIRFOIL

By M. Leroy Spearman




Wind-tunnel tests have been made to determine
the aerodynamic section characteristics of an UIACA 0009
airfoil with a plain flap having a chord 25 percent of
the airfoil chord and a balancing tab having a chord
50 percent of the airfoil chord or 20.1 percent of the
flap chord so linked that the tab would deflect at a
given rate with respect to the flsp. Three linkage
ratios were tested on the model.

The tests indicated that the flap .and tab could be
linked to give hinge-moment balance with flap deflection
and with angle of attack end yet have greater lift
effectiveness than a plain flap of similar size with a
conventional balancing tab having a chord 20 percent
of the flare chord linked to cive hine-e-moment balance
with flap deflection only.


INTRO DUCTION


The problem of closely balancing control surfaces
to reduce the hinge moments, and consequently the stick
forces, with a minimum loss in lift due to the action of
the balancing device is becoming iLc-1i'Eisr.gly inmort-.r.t.
An extensive investigation of control-surface character-
istics is beinp conducted at the Langley Laboratory of
the National Advisory Committee for Aeronautics in an
attempt to solve this problem. A brief summary of the
characteristics of some of the balaecing-tab arrangements
investigated to date is presented in the following
paragraphs.








tACA ARR 10o. L5G25


It is 3 sfested n reference 1 that a control surface
overbalicnced by. a l-rag3 overnang with a tb deflecting in
the same direction as the flap might produce hif-h lift at
smv.ll deflecti1ons. This errreinement iws tested in the
L-nrlev 7- by 10-foot tunnel or. a i inite-span tail (refer-
,nce 2) and the results indicated that satisfactory
crntrril-surface characteristics could be obtained over
only a small fleo-deflection ran-e. Tne flap deflection
w.?s limited by the sir-flow separation when the overhang
protruded into the air stre2iIm.

Previous tests (: fer-ence 5) h:.ve shown that smEll-
chord ol, in flaps at htlr fl ap deflections can produce
as much lift as large.-cdicrd bt.Jlance,- flips at normal
de elections. The hidh defl.etions of tl z..-1ll-ci rd
fl p'-os r-ve )xcessi"e h.ino"i m.,mrri nts for 1 '.T ir l'-ni es,
howe jv.:.r, and r .n--lll -chc J i fiL..p comblin.-'! wi:' th a balancing
device tht ,would not nrc.tru.lT in o the uir stream or
limit flip deflections thee .-'cr -e :>ear..i to be pos'sibli
solution of this ,,rcbleim.

An .nal-:sis -res-3rited in rfe fenc0, 2 inrlicFsted that
hinve-iionment b1a lence w i:th fl-.~n deflection P:- well as with
an.-le of attr.c' co-;]d b4 obt'--ned by li!ning two fIeps to
co:-rrt. e in o.t-p, .ite .ir t. ctlio s 'wih the chjril of the
larger f.': twice the chc:d oV the smaller flp. V/i th
thfit a lrr.n."el,:ent the smaller flap wovul.- ?rrcduce the lift
and, the3 larger fl.-2a, linked to move only sli-htly, would
serve as e bSalanciin tab &nd trirm.in, surface Eini would
not prcotrud.c into the ?ie streemn .s would a8n overhang
bal n .e, The cslculeti.rns indicated th.-t this fl-.p
arringe.,.ent, linilcd to :.ive ccr.plece balance, would have
greater lift effectiveness than a olain flap of similar
size with a conventional balnncin, tab having a chord
20 percent of the flop chorj. (See table I.) iiother
9dv antat.-e of this tyoe of flap ariran'plinemnt is that the
weight ci' the forward fl:p mitiht be utilized as a m.ss
basl.nce for the system, rand ti.us the Oi-d for acLLddtional
conrcentrated w'ei.rghts -niiht be elirinsted.

The purpose of the present invcstirrtion is to
determine thr- characteristics of a plain flap with a t-b
having & chord twice the fl-.n chord through -. wid,; ran e
of flso deflection and .ngle of attack, and thus to provide
a check' on the analysis of .i'Gerence 2.









NACA A;' ITo. L5G25


COr.I''IMIENTS KAID S'-I.-OLS


T.e coefficients and symbols used are defined as
follows:

oC airfoil section lift coefficient 'c)

Chf flq-l section hircre-mIoment coe ficient (q \
-. \qcf2-/
ht \
Cht tab section 'i1nre-imonaent coefficient i'_
"\qct2)
ch section hn-i!cmont coefficilsnt of fl!.. end tab
combine tion --, i


where

I airfoil section lift

h1' flap section ':.Jr e moment about i: int at 6'stance d
from tab hire :.-.is (fi 1)

ht t-.b section hi:r. e monent e.out tab ]1n.-e axis

h section hinge moment of flap and tab combination
about point at distance d from tab "ir.e axis
(fiq. 1)

c chord of basic airfoil

Cf flap cord (0.25c)

ct tab chc-d (0.50c)

q dynami c '1 Ess3ure

and

ao angl of ttc for of rttc nfri te ao of ec ratio

6f flap deflectiorn with respect t t tb

Ct tab deflection with respect to line from t-b hinge
line to pivot pri:it of flPip








NACA ARir No. L5325


5t, tsb election i.itth r'esenct to rfirfoil when yf = 0
d distance from hine line of tab to hinre line of flap

(iI distm.nce from hirng line cf tib to pivot point of"


an J.


c, = 'c


= o













APP,"ATLZ A1D "RCB.DV.hE
Ch"oJ.













describe-. in reference 4 sri *r"vas rc.6 of l.mi.njted
Th sucriny to the IACA 000js.' t r ofile. he rcdel wr s equipntd






Vith n 0.25c fipp anr e O..Oc ':. 2.00cf tab. Foer- the
factp-os n tecnst th dur n he s bet n the .suirf'niln ond the tab
and r1:eteen the d the f w The fl







and tab were deflected in c;om:os i.e directions in a mannerer
APPAIB.ATLTZ 121R3. IDDE








tsiiltd t ttn foLr c bnv ntion-l balo vncrti tunbs by :el
d-e;ciribad in r if'erence 4 Pr.- *.1 es roaqs of l-minrited
rrn h-eny to the ':ACA GOO' .. profi~le. "The model via- equ-ipr)Ed
witli a 0.2cc .l.!p andl e 0.0c --r 2.00cf tab. For the
gasn-ooen tests the Bees between tze airf.l anId the tab
and b--etlveen the t-b -nd the fla-) woope O.0C0rc. The flap
and tab were d;flacted in cdcocsite directions in a manner
similar to thant for ccnvantionpil balancin- tabs by i:!3ans
of the linkrag-. systter. shown schematically in figure 1.
The nmdel was so arranvsed tnat the p:osiiuon of the fl:p
pivot point could be moved upward, which in effect
deflected the tab upwverd 50, 100, or 150 (measured in
ench case wh:;n cf = CO) for trimrmii-n. The ranga of flap








I"ACA AR,- No. L5G25 5


deflection available was not affecte.i by chanm-irn the
position of the flat pivot point.

The flap c-flection for any :iven tab deflection
can be obtained analytically for each li'n:s :. If d
and dt are as Indic-ted in fl-u*-i 1,

sin 6t
tan 6f = (1)
.d + cos Ft
d.I

and the ratio of tab deflection to f 1- deflection is

'-6 1 d 2
.:6t [cos bt -
= (2)
(1 7 cos 6t cJES u)'
\ d 2,


FReardless of Lte 1 r:' ..3 system used, the -in -e
moment of the flap and tab cmrihination will be U:nc-.-r~.cd
56 t
rrjovided the value of remains _.1.cnr. -13. In order
C.) f
to test different rates of tab Jl'iection, the distance d'
was v'.ri,-l. Trb deflection "I-l the ratio of tab deflection
to flap deflection, as calculated by equations (1) and (2),
ar.: plotted .inpt fl'-- inflectionn .'cr three link: -s in
fi.ur-t 2.


Test Ccnulitions and Eqi-:T..-nt

The tests were r-dc st s ~-.-na.ic pressure of 15 pounds
rer qu Pre foot, wn'c. co-r'3 :.,ords ve-locit ;,. of
71 miles L.-.'r : ,.ur uri:Lcr st.a-nd."r crn .itiO:.s. 2:~h efs ective
R-n'nclds n'i:ibe for .m-Lim'ir.. lif'f coflicrienr s for these
test:c was rp ro:.in:;.t i:,- 2.57 x 10b (ffl'" tive he:r.-olda
lnum.ib'- = test ',.:.n'ltl s '.i',br x tu. bilence factor. The
turbulence frct'or for thle T,nl--'l- 4- Ub, c-foot verLical
tunnel is 1 .? )

The airfoil r:oi .l whn imcunred in th.- tnnri-'l *:-rr-
pletely s.3 srnnerd the test section. '"-. tiis type of
ins t oll -ti n, trwo-dc iner tr: l i flc- I.s 'i-roxi:er'.ei:e and
section char acteristc- o1* the r3ol cmn bj det1rrr.ineDd.,








INACA AR3 ITo. L5G25


T13;;:. werrn rr-.' cf tlre conrfi'i ur tions indicated in
table. II. The defi'.ction rat.-s are rive-n tor zero flE-
d.!..ection. iesuretnts were made of the lift, dra-,
pit hin 1m'ln.me-it anl@d j'l h'line- rnToirar-t but, since tiie
ri.'.-.e-'t In ?esori.~Ltion i.3 c.once."ned :rinl- 'ith lift mnd
hi]leR-.:o,.i.-mnt chGr'cteri:itics, only varluec of' lift and hings
mc.,:ent arc presented.


Corr"cc tions

An exferim1cr- t1., deL3Lr:ined t.inr.el correction was
a:pli-ed to the lift. The nle cf at-tc:: and hinge
rmo.,'.nts w'yre c-'rrected Co:' t n- c. f!elt'. of street prii-ne
c.rv:i. tufrec induce(, by the r.r.nel walls in .,iccorla rncI C with
a theoretical arn:l::'s si ilar to th'-it prc:.ent..,l in
refr. ence 5 for t'inite-se-n models.

The tunnel-wall co'rr'ctions3 v'e'e aI, pill6o .It the
follow'in r ,cr.nnar:

ao = QoT + (0.21c, 0.lb6cL

cL = (0.- 5 E 0o.oo7 i.) c0

Ch = Chm + 0.1052Fc c

wI ere

aT nme-suricd n,:le of attack

c .T riepsLurEie lI.t coeff'iclent

C7mf inMaeiured lift coefficient c'-.used by fl r di'lecticn
(!nm.sue'1 erbitrsr:'.iy t n = -3)

Chm r1'.Siosum'd hinge-mt omznt ccefi' c-: ]:. i:

and 9 is a cor:stent tht is a function of each lin'age
nrr.-nn -,ment and 1is ,.,Lver in the fo'llo-'..ng t;ble:

63t,/o6f F'

-0.10 -0.0352
I-.15 -.o0090
-.20 .0056
-4








NACA AT1' Io. L5f25


DISCUSSICT: A.D QE'ULTS3

Th !or y


T.i follc.:ini; analysis was ori finally --.resented in
reference 2 but is repeat-ed here, in sl.-:itly different
f ir., for clarity.

In selecti.-_ the :,-timum size of balancing s if'ace
to use in connection ::;th a fl- .*, the lift as well as the
hin.;:e moments of the balrr.ct.,- surface and 0. flap must
be consic e::.; '. It is shown in reference 2 that the
r-r:atest lift effectiveness is obtained from a O.-_-,c fl--r
with a 0.50c tab. L.fsrence 2 indicates also "!L' =, with
this arrangement, the ri n e-moment parameters could bo
male almost zero.

The following general relations can be shown to hold
for ny two flys hin7-d in s.:ies where the subs -rits t
and f are u-iec for the former.' and reErward fl- s,
re., actively:

dao o 0o 6 t

d6f 5f c6-, C,
2
day _chf cht lot\ :-

d a, 6 oo 0 ,\c/ of ,

dch ch /2t2 ht 't tt 6c6t Chf 6it
d6 e5 \c5/ fl f it r6-1 E 0. ^ fct b6L
+-, _'__ t. : + i+ (5)


The solutlor. for fror. e..-:tion (5) that results
dch
in 0 fieldss t'.'o rots. Thi.:. result indicates that
dof
there are two v-luess of --.tio o-f tb ,-.ieflection to flap
deflection vnich vwil give d*- =- One root -ives a
negative v-lue of a which ccrrsp-onds to the- a.r".r-e-
irment test ; the oItneie root gi'v7es a u1oslti've a,, vich
indica. es that the lift zo,::es fr.i::, che for:":': l fl.sp nnd
the balance from the re-r fi; ---,s is the case -ith a
conventional balancing tab. ('or tfhe arrni;,e:r.nnt tested,
the normal t'ob -nd flr- positions are reve s--".)








NACA ARR Ko. L5G25


The results obtinud with equations (5) and (4) are
presented in figure 5 for various values of the tab-to-
flap linkage rati.. The hinge-moment data as presented
in reference 2 were not corrected for the effect of
strz,.l1ne curvature resulting fro., the jet boundaries.
Th.is s CLrear..line-curvatu-'e correction wer s ap.:lied to the
oats of' ir-eerence 2, how ever, for the cor.putea curves in
figure 5. The ratio t3 was varied from 0 to -0.25 in
order to compiLte the serodynclic characteristics presented
A. bt t
68t
in figure 3. On the rmodtl t,-steA, the ratio = -0.10,

-0.15, and -0.20 w..ee usi to ensure that th,3 rtio ra
v(nIch Ch and ch6 bacorre .to could be fo:-.und.


Test Resul's

Lift.- The lift chsrrcteriist ics are presented in
figurrEs 4 to 7 for O.OC'0c ga-.s and figures 8 to 11 for
S6e81d aoDs. The lift :lr.o;.. t.'r are? given i. table III
!ni are r lotted cvreinr t link1 i-p. r:.tio in figure 12. The
parameters nwere. r:es.red at c7 = 0 since deflecting the
tab for triniuring shir'ted the curves so th t the linear
ran.::e of coefficients cc _L--r-Vd t 9a i..ghr Fnle: of attack.
For all tab trim rrsiticns tl e r.ate of ch:nre of
lift coefficient 'with flan deflection c;6 increased es
the linked e ratio decreased. As would be expected, the
slope of the lift curve.: ce r-'.IFiie alTrost unchlin.-.ed
and consequently the lift effectiveness of the flip a6
increased .as tho linkage r-tio decre.sed. The flop was
fairly effective up to deflections of bout 200 end the
effectiveness at larazr deflection was improved as the
linkage ratio decreserd. Secallni the caps increased cla,
c L5, and aF.
Deflecting the tab for trinc.ring h-d no effect on ca,
cbg, or a6, but the lift curv3S becameri increasingly
nonlinear in the negative lift rvn.:e as the tab was
deflected more negatively. This effect is the result of
air-flow separation that is probably caused by the break
in the airfoil contcur at ths 0.50c st-=.ion, which results
from defleccing the tab. The sa,. effect on the lift
curves can be seen PS the csmj!ber increases for airfoils
having maximur, camber at the 0.500 p-oint (reference 6).
Moving the tab train position negatively shifted the
lift cur-ves so that greater ncpetivr; lirt, which is
desired for a horizontal tail near t.h ground, could be









ITACA A?R I:o. L5G25


obtained in thje i,1 n.-7 t,? ttl bn:e. ihic. method of trij nming
i .l o t 75 p i ce!lt s 'fri;ecr.j vs t2 !I- rj austable st ,':,i-
l'-. .. Wi t t!he tab d' f'lec tea : p. L.;:i l;l te ly -10' or ri. )"e
the:. elev.t:tor rr.ntr',l t!Yr'OL' n., u-e d,:'ele,2t. ca n 1'r:r i t i. t ,
i. jPsr.s ic ien t for: cb r.. ir. ir :'e .-, ift for tl1e ',);1 Co.i L.:,
t. il, u'iless 2e x.".'fe" .: s .r:t a )o:i.tivcr. .!e .';' 5 tt9.-'k
('., vren r, 'e the ,:roundL .'his .ect L .cul I ino L t
in the c~se -:q e-.' c ;i i since Ct t t tL '. tri'
-D..3 tionri vo- ld :prob'l be1 ch -'.'i CI .,' '1r. 1,l/ iow
m chTan ic :]. : '1 .c 'n.' t-. L:... t l .1' t not h s ,- rpIl- *] *L"
elev tor C c1 .:-rl.

Ti-, chr.w- cte.:' i ti .- i r. O. f'cc cor.v.n .irc1l
b 1-rci i tab ,.era c or.)i t,:d C.:-'r. ".u. ti-nu (t), (1 ),
-. -"j ., ( ( ,) ,
and (5) d "-r'- c e,:',Jr J 'riTh t-he c''r *c i t cs '.. -. icted
f r tD d."'c1 b-. -r:c. ..- t.o in ta.l-: is3 ir I ct.d
by t-.,e ,lTz"s, f, f h: 2 .CO6.., I rl- c.1 te i
ao-lut 2 ,5 na.rc'int r. c.tC, h -i .0' t ..... Oc c:.'-n'. i:. :u-l
bt l. .r-.ci'in' tEb ]in',,3 1 to- .'ve h r' -. '.- -.i 'L L -l rce jit :
f! ,._ '- Zi, ct .io o_ on 1nl, .

Fin -'e S ,.-.-I. r.t .- lin -,!-m'!,,l" t c'-. r Ect r:i t lcS ,i:
pr,..er, t-;d in .' ,':r' 4 to 7 1" c .-c !'-,.: .-'d fi -, r. ,
to 11 fo.r -o a.,J eps. l.-t of '-.jr; -..r..-nt r rri, t.'s
is ; iven in a .1e III and the v-'ri ,; in .,.' i ,-in ,o'':.rib
r. :r'i' .et. rs vwitih lin.:.. 'tjo ? .. .:t' r, in .u,:re 1-l for
ei.! tab trim dierfl'-cl ion irjith tle -. s o".,-n '-:a sa -'e .
Tq-,e vr. .'-ition -;f .i'b..-Ie--',:.unt coe'.'S Ici c ni: v' ti I' ft c '-
ficirent fori verious :n.:le: cf c ttE,: twoC c I' tr' .:i
sett.irnjs e rnd L-.vo r t~ es cf tab I-el] -cio j Io I'].p
defrlection with the O.00C,, ep? ari t}.e ,' ;ils ~ r's js
sho"/n, in 'fi _.ur, 13.

T,'. hl :0;j C-.-lorrrtl cur'.'es d ifrt Iro. c t!-" m iiil i.ir. -
rrc.nx-nt curve in that c', b- c,,mrn .'o01 :n--'rl.y ..:&cro !',r.nd
in s.r-. c'- :es .::vcn nor itiv) ) 'Itli tL:- J1'.'' def:'lr ct d L:a'
with the flop neutral. Tiih v-;ines of cha trenced tu
bcon: rrore nes'-tive as thieu link. r"tio 6t/I'Ef
apor'o '.ch.--d ztro. Nearly cc-r.,n l b .Ltnco :'3 nerally
obtained --t a r.tio of tsb deflection to tflo dillection
of -0.15, which is in areCrien witn che anrIlys1 ,r.-r-nted
in reference 2 rind 'w.jth the re-.ults .-h.:vn herein in
fijcuri 5.

The decree_ e in chg .s the liniag., rntio sprc aches
zero is to be e-opected because the aE.iolunt of baLllanrcing
moment contributed to the fl p by th- tab I ; rtieduceid -s









IA.CA AR' Ilo. L5 25


trih pivot po fi.;, move forwarJ. F')r ee link-: e; r.tio t., hi -e
mi..:-nr t asusE. by il.-:p lef"ectic n bocconer. more rnert tive
rel-',"ol0 t deflections of' goout 100 for t13 0.005.O- wap
ai *.bit 150 for Lthe s -.ld sps. This effect is
prob' bi. c s-uscd by -:,i--'] .se pa -t io. n over- .e fl.i, s
h.' b .rin 7 nern r lli C bser'3,Jed or ot: ,'' p iin'cils h '-virij
hi. hly '.b.snced fll;fp.s. For a lin::' r-tio ci -0.15 ovith
thl'; t b t riitj'd .i 2. ; ., th--' in-e' mrc.ne. ts ?.-e .
cl,:.~-ely b liic.nlc -d fcr .i l:';.ez t. ns 1.i., to about l10 or 150
t '. r-Lou.7 lho t ch c.Sn Lh j e-cI t L : r- c.

Tni. v-lie of chQ be cons ,or-e nei-3,tii o s the
lin;-. i cttio LEcr C.sr Thi:s. f's ct i t i ,; result of
tne- deci -st Irn or larTnc 'tr, rr-.'.ei.t ;",*' uced: oni the fla:
by thn tab and sl-io of h-.e d.ci-. se In ti-?e 1u.i uint of
flr:.:, _-r e ai-':ad o- thi? i'iXe p;ivor ;c. int. The bal'jncing
mnrciIents decree se as th.. '-ivot pcint -:-. t1iu f1'so moves
forrrard and the efftc t zs sinill i" to that of rlec. re3sin,~i
the size of 'n oCver'h'-lIT b' lncs.

D--flectinr the tab for tru..,.:. had little ef.'ect
on cha and chb .measure-d "_.t the tngle; cCf ero lj.ft.
As the tab is deflected nesI'rtiv.l"T, however, the hinge
nionrnts become r n,,rJ cloJel.; bal.enced at 'ii-h.'i* positive
at ;,les of att.ck. W'.th this :-r.?n-ement, bhiher lifts at
lari e a-ianles of c.ttck could be obtained with less hinge
o:r.r.-n i; chan could he obt.jined with thi t cit t :nfreJ t
Z3ro. Such a vri-t ionD i1 j d-sir i'a fo lnding whMen the
p.t. ent : te. is ui I 3s on e.L--v -:.r, or for trir"1:d:inn
the: 7y" 'vlric r.tomnt ue to slipstr,-:. L. rotation wrien it is
usei as a rudder D n s i --lu- n-in. ir''-lniLe3 ,1 th: A'r d.cr
deflecticonr ant an_-le or Ltt c': r' _- cf o:.po:;ite si-:n.

Seal3 n tlie s a-.ps (fir. 12) re : r'-lly i-s :-3 niore
po-titive volu.. cf chE fcr ir nitiil ts: trim reflections
of both 00 and -150. Th.e sffct on cha of sL.li:u the
gais was not consistent, ho'wev...r, ."1.irce the inc.'m:t was
n; ativV for oto = 0o :nd positive for 6to = -150.


7C Cl.3 SI (:-i


Tstsu '.wl made of ar UACA 000-) airfoil with a flap
hsvinr a chord 25 crcent of the c-irfoil chor:d (0.25c)








I'AI' A A'I: o. TTL5G2


ai a tbt h b'.tpi a chord 20') recent of the flap chord
(2.rC'cf). The follwv. conclusions were in.l-cated:

1. A flap with a 2.'"Gc balancin- tab could
pi-rouc' : hlin~--moment balance with ..rth :.n.le of attack
rin fl.- d- d-'floction and yet 'vo greater lift effectiveness
th'n a fl-:-:, f s'l-:ilar size equ.i-'d 'ith a 0.20cf con-
ver.tional bal'nci.'i tab linked to -ive hinge-moment
Snrlnrc- with fl.", deflection onl,.

2. rtflectin the tab for t-..::-..., was -bout
75 percent as e:'fctive as an :-.justable stabilizer.

5. The most neerl" cc:r. lee balance was obtained
at ratio rf' tab deflection to fl election equal
to -0,15, as had been indicated b': .viousl,: published


4. '-: i 0 bo ..-. rally' irncre ase the c o-.
of L,. l Pift clu-ve c ..nd th. liftL if: cti.v'.-nc ss -c
to f -?a,, n ".nd ....',i :i; ...:, .. ,, i iv, v .. ,,_ r t h r .,t,!
of c. -- r -- of ri :; nc, i t c : .j. c i i 'i ;' th I' ',
defle action Ch16

5. :iit to 'r L b J.t;i ,1 t d r:-. t .) .oy tri., t'".
hin.:_j ac.ii.-,nt'S *".'-.r-'c cl -.'. -- 1 oC'l'nc ,'. ::.t. h r :. Lirv,-
. .'- es O "tr .1'ck, wi c!c- i'C ,: il; i'.Tbl: fc.r tu,.. 1'-, inr
condi t ion.


Lan-l .y or* :. Arlnl A: 'rcinauti cl 1 L :-,beo, tc.".,:
';at ;on l Advi ,.,- r/ Cor i lvt--- for. A.:-c iLt. c
Ling] y ,'i' ll, '".








T'ACA ARR No. L53"25


REFERS'CE3


1. e33irs, Richard I., cnd HI-~g'1rd, H. PE',, Jr.: Wind-
Tunnsl In :eeti -rat cn of Contr,'l-Surface Char. cter-
iL.tics. IT A Lr.:e 1 A.rl..ynamic E alaEnce of
a'r'ious Uoe Sii-opes 'ith a .'-Percenc--Chord Flan
oP an NACA OC39 Airfoil. NTAA ARr-, Aug. 19';1.

2. Sesra, LRchlard I.: ;vindTuJ3-',unrl D.3ta on t-ie Atrro-
dynaini c Chnrti''cti '.ri of Airnrlar, Control Surfaces.
iTACA ACR Ho. 3L'S, l1.

3. S3 P s R ch 1. I. an-i .uirser, Paul u'.. : ini-TL'unn-el
Inve-tl it~-icn o-,f Con 1rol-Surface Char"ct:-rtl3tic;.
XIV !'ACA 0C0" Airfoil ,ith a 20-Percr'nt-Chord
Double Pla.in Flt. 'iACA A! ,P ..2., 12IJ.

4. W-n.in Re J .n 1r hi'.rri s T'ions.. A. i'h r:
V,'ertic l ';ln':T T.ir-n.n; l nf the Nt^ i on rl Advlsory
Con.Trttee icr Atronnatice. ITACA Rep. NI.. 3'7, 1i31.

5. Svncn-cn, .cter t !nd 'oll, Thomn s A.: Jet-P.oundary
Corrections for irefi'ction-Pianv ,Lo:l.-'J. in Rec-
tan;ular Wir.d T unnel.. ,IA A; :. io'. E22, i '1 5.

o. Jacobs, Easta iar ., .srdJ, Kernnt.th a3., and Pinker.ton,
Robert Mi.: Th.o Chsracteritics of 73 Related
Airfoil Sectionki from Tests in the Variable-
Densit7y Win' Taruiel. NA'CA Ep:. Ho. 4oA, 19)7.








NACA A"R IFo. L5-?25
TABLE I

C'i.FPUTTED cH,';AC'T :.Srl=CS: OF A 0.25c PLAP 'Ii'Fl

A 2.003f AiNT A 0.2Ccf TAB


ct/cf. /d5rf F "Chct ih

0.20 -0.9 -0. -0.".C.o3 0

S2.00 -.16 -.i0 .0001 0


T/A ?L II

TA T I- TITIC'"1 A':D 2 FL"'I ,T I.A'! T7E TED


-0.10
-.15
-.20
-.10

-.15


-.I0

-.10


-.10
-.15
-.20
-.10
-.10
-.10
-.15
-.20


a ',sS Fi ure


Oj-n .( )
S(b)
5(s)
(b)
I,' ( )


Si ( ) I

s I '(c)
\( )
,()
i ( -)
1(b)





"*/ \ c) ,(,


HiAT'IC:AL ADV1IS3FOR
CGC.':IT1TE FOi AEiOL.TAi'TICS


(a e


0
0

-5
-5
-10
-10
-10
-15
-1i
-15

0
0
-lO
-10
-15
-15
-i5


I








1!L TABLE III .'.. A., 'o. L5;'S
r.I'?T I:D HTINGE-U0?~rT PARTETE S '0R A O.25c PL',IN

'LAPF .ITT A 2.00cy TA3 0O;. Ali TACA 0009 AIRFOIL




C1 6 Lu c- I
IN THE LANGL, Y 6-FOOT TICAL iRTIEL



,-_ *' a" c%.2
(deg) ,
&srs c.pn
j CIO
0 -0.10 ,.0o 0..370 -0.)pJ -0.0015 -0.0058
0 -.2 .0'5 -JL o'
I I -.c- DI) 7) i I'L
-5 -.10 .09 .u'jt -. 1 -.C.Du -.0d02
-5 -. 15 .01 .'o -. o i -.0'` -.c'0 -
.-5 -.I .0 .--75 -. .C.,i .C,44
-10 -.10 .09 0 .7 -. iO -.l -.0040
-10 -.1 .1 .0 0 -.1 7 I. t .0010
-io I -.20 .091 .0270 -.o I .4 i .o 4
-15 -.10 .o, ,6 -. 1 -.0 i -.,00 o




o0 -0.10 0.0 0.010 -
c -.15 j.097 .055 -.LO .o 7 .Coi
0 -.20 .09 i b .3 i .
-5 -.10 .o07 .CoU -i -.40 -.0 016o -.0032
-10 -.10 .i .04,, o -., 0 -.O
-15 -.lO .099 .' -. -.0 I -.C .o
I I I T .OD 0 -YC~a I
-15 -.15 .o97 .030 2 -. .0 012 .00C 0
-15 -.'0 99 I .,l5" i -. .00- .0 '49


--IT "TAL AD'IS0 Y
(CO""i/ j' O F0R A; .-'AUTAICS






NACA ARR No. L5G25


(a) Chord dirnernsio-s of airfoil.
d S
dSp
cJ^


(b) Position of tab


U.ZO\

-./0 (deg)
SF- S/olo t
d
-/5
_-5

.-Pivot points


when used for trimming. 9f=00.


Pivot point
fixed relative
-: to main part
r, of airfoil


(c) Definition of defection


symbols.


NATIONAl ADVISORY
COMMITTEE FOR AERONAUTICS


Figure 1.-Arrangement of 2.00 cf tab mode/ for
various deflection rates ond tab trim
Vost/ions NACA 0009 _-nfoil


Fig. la-c






NACA ARR No. L5G25


Flap deflection, f, deg


FQgure 2.-


Characteristics of linkage tested


on the NACA 0009 airfoil with a 0.25c

flap and a 2.00cf tab.


Fig. 2













-C
Q) c




co
-4-












4t
-Q Q







-r
so











9,





-Q






NACA ARR No. L5G25


dc*,
dox,
0 -


dSf
-4


T6





dcS
d6f


-24 ZO -/6
66t
af


-/2 -08 -04 0


F9qure 3. Comparison of the aerodynam/i char-
ac/er/shcs of /he 2.00c, /ab on NACA 0009 airfoil
obtained from experiment and from calculations.


Fig. 3






NACA ARR No. L5G25


-20 -16 -12 -8 -4 0 4 8 12 16
Angle ofattack, co, deg
(a) Caps, 0005 c; Sto- 0, st/a&f =0.10 .
Figure 4.- Aerodynamic section characteristics of
an NACA 0009 airfoil having a 025c flap and a 2 OOcf
tab with various linkages.


Fig. 4a







NACA APR No. L5G25




6f
(deg)
o 20
10
5
.20 0-

-10-
.162 -
-0
< ---3
.12

| .08


.0




S-.04


.08


.12


-.16


Fig.-4a Cone.


-20 -16 -12 -8 -4 0 4 8 /2 16 20
Angle of attack c>o,, deq
(a) Caps, 0.005c ; t. 00 dat/h= -0/0. Concluded.
Figure 4 Continued.





Fig. 4b NACA ARR r'o. L5G25

-06

V5Cz -I J
0 -- _
C,


.0 -----.0



AComm


l55

15







COM1 1 D11
-' l --- ? ?-- -





~ Z L '- --


-16 -12 -8 -f 0 4 8 2 16
A ng/e of o/ock, oc, de9
(b) Gaps, OOSc, 6to= 0; a6t/r = -0/5.
F7yure 4.- Conti/ened







NACA ARR No. L5G25




6f
(de9)
o 20
a 10
A 5
5-
-10
.16 -20-


.12

.08

.04

0

-.04

-.08

-.12

-,16


Fig. 4a Cone.


-20 -/6 -12 -8 -4 0 4 8 /2 16 20
Angle of attack xo, deq
(a) Caps, 0.005c ; At.=o O ~t/blr -0/0. Concluded.
Figure 4 Continued.





Fig. 4b NACA ARR No. L5G25

( eg).t


30 --- -
Co

i-08
-\I f
1.+ -

(deg / "
.2 :30/--5
,.z -/ 0 t+-/ O, 15
1.0 0Oo --

*^15 ^ ^^ /- --
o :o jr/]i],'!l '
6 --/,o





6* 4
,0iI


-/6 -12 -8 -4 0 4 8 /2 16
A1y/e of o tock, oa, de
(b) Gaps, O.OSc,6to- 0 ; St -05.
F/5are 4.- Continued







NACA ARR No. L5G25 Fig. 4c




a .08




;z'

.oz

,oe.---




.06 --- -- ---- -----




/ / ,




-.0. ----- ,--
-c





3O
o !
t 0 5,/o
I4 ^ .^ -






c, JM T -- -


Angle of attack ,co, deg
(c)Caps,O.005c ; ,-o= 0"; At/ldb -0.20.
figure 4 Concluded






Fig. 5a NACA ARR No. L5G25


SF
1.2 (de )
o 20
,.o~ --- _j--------.-- *
1.0 5 / '
5
-- 0-o ---
.8 -5 -
S-10 / / /
S-20
0 -30





00
-O .4" 0 ..
;2 .' i -. Ii,-




/ ------e,---
.2/





















Angle ofattack ,oco, deg

Figure 5.- Aerodynamic section characteristics of an
NACA 0003 airfoil having a 0.25c flap and a 2.00c tab with
various linkages.
< -.8 /-l- .o- --- -

-10O- ------=' -- -------- --

-/.2~~~. ----- /- -I-O ----- /------

6.,,


-20 -lc -12 -6 -4 0 4 8 12 16 20






NACA ARR No. L5G25


f(d)
(deg)


-20 -16 -12 -8 -4 0 4 8 /2 16 20
Angle of attack, co, deg
(a) Caps, 0.005 c; Sto -5- 61t/f = -./0l. Concluded
Figure 5. Continued.


.20

.16


-04

.12
*0 .04











-.12


Fig. 5a Cone.






NACA ARR No. L5G25


N




N.

"K=


-16 -/2 -8 -4 0 4- 6 /2 /6 O0
Ang/e of a-oacl, c;o deg
(6) Gaps, 0.005c; 6to= -5"; kt/ )/ = -0.15.
figure 5 Continuedo


Fig. 5b






NACA ARR No. L5G25


40-4oQ.,
C> 0 3 CI


8 co
--- --y-o .






I I
Lo



















- -a0 (S o



L 'a./, I)Jaoo puwow

UL /r Uoi40,q '
~ ~ ~ ^ m~ ~ d ^
-^~~u '/T / -^ S
QS^? ^^----- "O^
-- ^ V d --- ^ Q
-^ 3^_ _^ ^

| r T -- ~ i -- -
rE _E__ ^ ^
t^~~~ 0




~ ~ ~ I 9 il )UO


Fig. 5b Cone.





Fig. 5c NACA ARR No. L5G25








So-






-0 / ,





S0-5
,V/f, o o o-


-"1 -~ -0 -" V Tr [ f- U
A l9/e of attac (, o,dey
(c) Gaps, 0005c; 6to =-5" ; dSt/ = -0.20.
rl,re 5.- Confrer/e







NACA ARR No. L5G25


-- --0 A









__^-^_ O^^- --- ---|-
-- -^ T 1^^- -


r4 r, IL-/T-I
_L ^-_.^ _

--tYT0-"-"""
r'V - -

o^ ^ -^c- 05- p-.- -.


o -
13

(Tt
O
K)
N!


- B
or,4




OZT)
o I


II
0 .
N ^


C '

\-^



'sa





I K
0l1





II
1 o
tw (<


o- I
!" ~.UyjI\jaJo90 JuU9WOu-F6ulq uo l4a?


Fig. 5c Cone.






NACA ARR No. L5G25


10


.8


.6


.4


.2
(-J




-.2
0










-8
-.2





-10


-1. 2


Angle of attack, c, ,deg
(a) Gaps.0005c, Sfro -10' ; mt/f = -O 0.

Figure 6.- Aerodynamic section characteristics of
an NACA 0009 airfoil hang a 0.25c flap and a
2.00cf tab with various linkages.


Fig. 6Ea






NACA ARR No. L5G25


(deg)
o 20


-.20 --1 I ------



0 -3












--.- ---------- ------_- -
S12






-I"-2




-.16 04 -- --- FOR R






Angle of attack o%,deg
(a) Gacs, .005c ;t =-10"; M t/cr= -0.0. Conclded .
Figure 6. Continued
-20 -16 -12 -8 -4- 0 4 8 /2 16 20

(a) -a-s, 0005c ; to=- I/0 ; -t/- -r-=--0l/. Concluded.

Figure 6. Continued


Fig. 6a Cone.







NACA ARR No. L5G25


- fs
^>
9,
,s:
.'^
.^
cU
;Z
r<>
3 *



C3


-/2 -8 -4 0 4 8 /Z /6 20
Ang/e of oflock, oc,dej
(b) Gaps,0005c; 6Sfo -/0 j 6t/arf=-0.15.
Figure 6.- Cont/nued.


Fig. 6b






NACA ARR No. L5G25


Sf
(deg)
o 20
o 10
S5
S20
-5

- .-2 -0
5-20


.Of

0i -/Sf-








(b) Gaps,0005c; S6t--iO"; t/sp- -0.15. Concluded.
(b) 6aps, O005c ; Sto=-IO0 at/ Sf= -0.15. Concluded.


ig-ure 6.- Contfimed


Fig. 6b Cone.






NACA ARR No. L5G25


-/2 -6 -4 0 4- 8 /2 /6 20
An/le of aHlacH, oco, deg
(c) Gaps, 0005c, 6to= 0"; bt/'Sf = -0.20.
Figure 6.- Continued.


Fig. 6c






NACA ARR No. L5G25


'31


~-4




0Z

sz=


.08

,04

0

.04
-04

-oa


-/2 -8 -4 0 4 8 /2 /6 ZO 24
Angle of aoHack, or,,dey
(C) Gaps, 0005c; 6to= -/0'; Stl/as -0.20. Concluded.

Filure 6.- Concluded.


Fig. 6c Cone.





Fig. 7a NACA ARR No. L5G25

10

.8 7


02 --------- f-



-------- -4-
------------ -,----



S// /
.4 -
.6 ---------

-:2/ /




./ ,8 5 / /,
-4



(j 2 0
-15
I / i/. -2
.-4 ,-----..5 ,--/-------





-,.2 AYO QO. -/0 -
S------- --15
-6 4 -------/-" "--------- -20


-,2 -6 -4 0 4 8 12 16 20 24
Angle of attack Oo, deg
(a) Gaps,0005c ; 6to= -15",; s/A = -0.10.
Figure 7- Aerodynamic section characteristics of
an NACA 0009 airfoil having a 0.25c flop and a
2.00cr tab with various linkages.






NACA ARR No. L5G25


(deg)
e 20
S15


0 0
OQ


.28

.24


.08

.04

0

-04

-O0


-/2 -8 -4- 0 4 ( /2 /6 20 24
Ayle &-/' cif ack, c .cVey
(a) Caps, 0005c to = -150; d6t/dSf--0.10 Concluded.
Fi ure 7.- Con tinted


Fig. 7a Cone.





Fig. 7b NACA ARR No. L5G25




c


.04E








S(d,
V 1--








: I-

Ad 20
_. in



S--1.0 l
20
I-2 -3 0-


--V

SZ[Tr -


-12 -8 -+ 0 o 8 /1 /6 20
Ang/e of ato/c/f,4o, de
(b) Gaps 0005c, to -515" ; a't/f = -0.15.
Figure 7.- Con twied.






NACA ARR No. L5G25 Fig. 7c

/.O








"3 // ,
u// 2

6 ( -'--)- --
7zI V / '/,, /




Sf-
SX o20
S -- / /15

,,_/ .,. ,

'J ,. z o ,, ,_ ,

.1' */ -/0"


-12 -8 -4 0 4 8 12 16 26
Angle of' attack ,o, deg
(c) Gaps ,0.005c. to 15,lb Stff = -0.2 0.
Figure 7-Continued .






NACA ARR No. L5G25


Fig. 7c Cone.


(deq)

o 20
x 15

A, 5
o 10
- 5
o O
- -5
d -10


.04


0


-.04


-.08


-.12


-.16


-12 -8 -4 0 4 8 12 16 20 24
Angle of attack, cr,deg


(c) Gaps,0.005c; 6to-15"; 61t/a=-0.20.


7. Concluded.,,.


0
3-
C)
cj


(s
0






--,


C-)
I
.


Concluded.


Figure







NACA ARR No. L5G25


(deg)
O 0
M 5
S10
- 15
o 20
* 25
* 30


Sr ,
- --(de g) v--


-I


5 A
H---- -T-- ^---
_L____ //-









Y//5A /I
1/1A y Vw/ I
L/_ _

----------- ------













-- '-- 1T1010 AD R-
CDM ~TEE PRA NAJ IKS
__ _I// 1 ,_ ,[ ._ _




/,// i


'--,J.-^ I/ ,, _--___--__--
s. ]l / i mm
__~ ~ / i__ euTHOA UU


-16 -12 -8 -4 0 4 8 12 16
Angle of attack ,oco, deg
(a) Caps sealed Sto = 0; dt/f = 0.10
Figure 8.- Aerodynamic section characteristics
of an NACA 0009 airfoil having a 025c flap and a 200cf
iab with various linkages.


Fig. 8a






NACA ARR No. L5G25


Sf
(deg)
S0

0 10
15
N /5
o 20
S.08 v 25

-.04










.12
0 (de)




v 01
.0 --A------- ----




-<-- .. c25
(i .4161 I I I I

-16 -12 -8 -4 0 4 8 12 /6
Angle of attack, oc, deg NOA DISORY
COMMITTEE FOR AERONAUTICS
(a) Caps sealed to= 0"; 6 ft/ --010. Concluded.


Figure 8 Continued.


Fig. 8a Cone.






Fig. 8b


NACA ARR No. L5G25


.08

.04

0

-.04

1.4

1.2


.4

.2




0

-.4


Figure 8.-


-20 -12 -8 -4 0 4 8 12 16
Angle of attack c.o deg
(b) Gaps sealed; St,= 0 ; 6St//6f = -0.15


Continued .






Fig. 8c NACA APR No. L5G25


.12


o"

.04
s-s .04

6 0


.. -.04
1.4


12


10




S.6

.4


0


o
.2
.4


:2
g


I I I I- I


Sd -2



15
o-

o I0
15 /
20
__. 25/
+ 30









---Z






-. Z/ A z ---- -




O ,M TTI FOR at It
i. 1 1


f
-06e


-. -4 lm I


-20 -16 -12 -8 -4 0 4 8 12.
Angle of attack ,Oco, deg
(c) Gaps sealed; &to= O; dt/'tf = -0.20
Figure 8.- Concluded.


16 20


A


u

J^51
O2f 511







NACA ARR No. L5G25


0

O


.2
0


< -.6

-8

-10

-1.2

-'.4


-16


20 -16 -12 -8 -4 0 4
Angle of attack, o.0, deq


F/~ure Aerodynam/ic sec/ion charac/erns/ics of
an /VACA 0009 0a/foi/ having a 0.25C flap and
a 2.00c /ab. Gaps sealed; 6e,=-5 6/t68 f=-O010


(deg) X
20
D -10

00
2---------------------/^ --

6 o G/5

-5
S--10-/





















-20
-w WEE---- um / --









M FOfAE AUIl
,I I(.z








- 0 */ -


12 16 20


Fig. 9






NACA ARR No. L5G25


fdeg)


.24

.20

i .16




I .08




cO
Z .04


0

S-.04

.08

-.12


Figure 9. Conc/lded.


-20 -16 -12 -8 -4 0 4 8 12 16 20
Angle of attack oc,, deg


Fig. 9 Cone






NACA ARR No. L5G25


.2

O0

-.2

-.4

-.6

-.8

-10


-1.4

- 1.6


(deg)-- -~---
20-------_-----^-- -- -
o 20


-5
-10
-- ------- -----------2



S _/"--20



(de- ,
S-3 / / // --------
-- -----------










0,


10/0
i-- -- -- -- 4- ^ --- --_J--,&- --|-------- ------- ------- -------



COMM 40 OAF Ct
===^=,. ?<=.


-20 -16 -12 -8 -4 0 4 8
Angle of attack oco, deg


12 16


Filure/O. Aerodynamic 3ection characleristhcs of an
NACA 0009 airfoil having a 025c flap anda 2.0Ocl lab.
Gaps sealed; 6to -- /0; a6t/65 =-0.10.


Fig. 10






NACA ARR No. L5G25


Fig. 10 Cone


.24

20
c

.16

8 .12
4-
Q .08

I .04


9 0

-.04

--08


-20 -16 -12 -8 -4 0 4 8 12 16 20
Angle of attack, xo deg

Figure /O Conc/uded.







NACA ARR No. L5G25


c.)
0
.
o,
c

I
c


,
*^


.2

0

-.2












-12

-1.4

- 1.6


-201""" i
-20 -I1 -12 -8 -4 0 4 8 12 16 20
Angle of attack, oco, deg
(a) Gaps sealed ; Sto= /5 ; )dt/f -0.10

Figure I/ Aerodynamic section characteristics of an
KACA 0009 airfoil having a 025c flap and a 2.00cf tab with
various linkages.


Fig. lla






Fig. lla Conc.




(de )
o 20
o 10
.2 5
.24 0 Or


.20

.16

.12

.08

.04

0

-.04

-,08

-.12


NACA ARR No. L5G25


-/6
-20 -16 -12 -8 -4 0 4 8 12. 16 20
Angle ofattack, cxo, de9
(a) Gaps sealed Sto=-150; t/af~-0. 10. Concluded.
Figure 1 Continued.






NACA ARR No. L5G25


1.0
LO

.8

.6

.4


I=


"".2

.4






-o.0

-12

-1,4

-16


(deg)
> 20

A 5
o 0
" -5
-10
, -20
<-30


V y
- ----{-----

Ai II


~ ~ 4~I;i-i


(de)
------------20 -^rrrr'








------ 5

I----A--

------ ^/--^ ---- ----




,.C)MMIT F0 AEROt AUTC
--~~ 7 -- -- -- ---,yh- -- ---- ----- --


-20 -16 -12 -8 -4 0 4 8 12 16
Angle of attack co deg
(b) Gaps sealed; sto -15; agt/6f = -0o15.
Figure II. Continued.


_


Fig. llb






NACA ARR No. L5G25


o0 n o


ot
SQ)
-I


C
O





0

S ..

Vo
- \j ''


Q D


0
cl
<-1
rJ


0)


SI-
'-b *uaa! Ja Ot ) *Laawow-abu!


LO

II



43



CO
0.



-o


Fig. 11b Cone.








NACA ARR No. L5G25


~0"
0


-,

S-4

S -6




S-10


-12

-14-


-20 -16 -12 -8 -4 0 4 8 12 16 20
Angle of attack, oco, deq
(c) Gaps sealed ; sto= -15, ; 6t/agf = -0.20.
Figure II.- Continued.


Fig. 11c






Fig. lic Cone.




.24 -


.20

.16

.12


.04

0

-04


NACA ARR No. L5G25


-.12 ------------- -.--

- / 6 mco m. u S O R
-20 -16 -12 -8 -4 0 4 8 12 16 20
Angle of attack, OCo, deg
(c) Gaps sealed, to 15" a-t/M = -020 Concluded
Figure II. Concluded.







NACA ARR No. L5G25





.040


cl .030

.020




-.20




-.40
-




.0060


.0040-

Ch .0020 -
and
ch


Fig. 12a


-20 -15 -.
fit/asf
(a) to- 0"; gaps open and sealed

Figure 12. Variatron of parameters with
rat o of'ab deflection fo flap deflection. cl-O.






NACA ARR No. L5G25


.040


c?8 .030


,020






-.30


-40


-.20 -.15
astd/Sf
(b) to -50 gap, 0.005c.
Figure 12 Continued.


Cho4
and
ChS


.0060


.0040


.0020


0


-.0020


-.0040


0 -
__- -Ai


--------^ cys
-- --.- ,-....-FM
flMTABKU


I0


Fig. 12b






NACA ARR No. L5G25


.040

CIS .030

020


-.30
Oc6
.40





.0060

.0040


ChA .0020
Qand
ChJ 0

.0020

-0040


-20 -15 -.10
d6t/a6f
(c) 6o.0-100; gaps,O.005c.
Figure 12. Continued.


Fig. 12c






NACA ARR No. L5G25


.040

c8l .030

.020





-20

oS& -.30


-.40


Chct
and
ChS


.0060

.0040

.0020

0

-.0020

-.0040


Gaps
0005c
-- Sealed









M CS c


-.20 -./5 -.10
,st/a, f
(d) 6to=-15; gaps open and sealed.
Figure 12. Concluded .


Fi g. 12d







NACA ARR No. L5G25 Fig. 13a





--- co O Z CID 0 $

IIi-1- oa:)
a A a I
0 -7- -


1--0




So_, _8
--- -- --[---?-9 |
..-'




4--------- --- --^-0 c
~ 1 -
-----O()O-----------------------=!- -



r ,

-- -- -- -- -- __O-,L- U0-
o o
or




7Q) *
a





----o--o-------- u- u o
O-- o r
-- -- I- I c

---------"Q-V ------------- ( Z^
b 4-




0O s0 *

--------- J- 4------ -o


I_ I l


o o 0u

'4D ')ua101JJa0 luawuouw-a66ufL uoyl~aQ







NACA ARR No. L5G25


O ( N d
.- 0


o ~t a
cO


-i
O


00












OJ



I.
cc


-ci



ci

Li


(N


143'ua ILouawoLL-86uw1 uop(g


Fig. 13b








UNIVERSITY OF FLORIDA

3 1262 08104 998 2


UNIVERSITY OF FLORIDA
OOJCUMENTS DEPARTMENT
.0 MARSTON SCIENCE LIBRARY
."2. BOX 117011
C. './r-, LLE. FL 32611-7011 USA

G I E"".. L E ,' (_ '- "

'. ; .; L .. .
17. ,< i. ;'.;
G ,iNrE..', !,' j ,- -.. ,
GN. ..,..LL .. i-, ,. .. ,,U .,.