<%BANNER%>
  • TABLE OF CONTENTS
HIDE
 Front Cover
 Title Page
 Dedication
 Table of Contents
 The Calusa Domain: An Introduction,...
 Recent Archaeological and Paleoenvironmental...
 Stratigraphy of Indian "Mounds"...
 Technological Investigation of...
 Shell Artifacts from the Caloosahatchee...
 Bone Artifacts from Josslyn Island,...
 Calendars of the Coast: Seasonal...
 The Zooarchaeology of Charlotte...
 A Modern Midden Experiment, Elizabeth...
 Archaeobotanical Research in the...
 Skeletal and Dental Analysis of...
 Prehistoric Burials from Buck Key,...
 Calusa Culture and Environment:...
 Index







PAGE 1

CultureandEnvironmentintheDomainoftheCalusa

PAGE 3

Culture and Environtnentinthe Dotnainofthe CalusaEditedbyWILLIAM H.MARQUARDTwiththeassistanceofCLAUDINEPAYNEMonograph1InstituteofArchaeologyandPaleoenvironmentalStudiesUniversityofFlorida Gainesville1992

PAGE 4

COPYRIGHT1992BYINSTITUTE OF ARCHAEOLOGYANDPALEOENVIRONMENTAL STUDIES FloridaMuseumofNaturalHistoryUniversityofFlorida Gainesville, Florida 32611-2035ALL RIGHTS RESERVED. PRINTEDINTHEu.s.A.ONACID-FREE PAPER00LibraryofCongressCataloging-in-PublicationDataCultureandEnvironmentinthe Domainofthe CalusaIeditedbyWilliamH.Marquardt,withtheassistance ofClaudinePayne. p. cm. -(MonographIInstitute of ArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida ;1)Includesbibliographical referencesandindex. ISBN 1-881448-00-2 (alk.paper): $25.001.CalusaIndiansEthnobotany.2.CalusaIndiansEthnozoology.3.CalusaIndiansAntiquities.4.PaleoethnobotanyFlorida CharlotteHarbor(Bay).5.Paleontology Florida -CharlotteHarbor(Bay).6.CharlotteHarbor(Fla : Bay) Antiquities.I.Marquardt,WilliamH.II. Payne, Claudine. III. Series:Monograph(UniversityofFlorida, Institute of ArchaeologyandPaleoenvironmental Studies) :1.E99.C18C85 1992 975.9'48 dc20 92-36427CIP

PAGE 5

For Don andPatRandell

PAGE 7

Contents1TheCalusaDomain:AnIntroduction1WILLIAMH.MARQUARDT2RecentArchaeologicalandPaleoenvironmentalInvestigationsinSouthwestFlorida9WILLIAM H.MARQUARDT3StratigraphyofIndian"Mounds"intheCharlotteHarborArea,Florida:Sea-levelRiseandPaleoenvironments59SAMB.UPCHURCH,PLINY JEWELL IV,ANDERICDEHAVEN4TechnologicalInvestigationofPotteryVariabilityinSouthwestFlorida105ANNS.CORDELL5ShellArtifactsfromtheCaloosahatcheeArea191WILLIAM H.MARQUARDT6BoneArtifactsfromJosslynIsland,BuckKeyShellMidden,andCashMound:APreliminaryAssessmentfortheCaloosahatcheeArea229KAREN JO WALKER7CalendarsoftheCoast:SeasonalGrowthIncrementPatternsinShellsofModernandArchaeologicalSouthernQuahogs,Mercenaria campechiensis,fromCharlotteHarbor,Florida247IRVYR.QUITMYERANDDOUGLASS.JONESvii

PAGE 8

viiiCONTENTS8The ZooarchaeologyofCharlotte Harbor's Prehistoric Maritime Adaptation: Spatial and Temporal Perspectives 265KAREN JO WALKER9AModernMiddenExperiment 367ELIZABETHS.WINGANDIRVYR.QUITMYER10 Archaeobotanical Research in the Calusa Heartland 375C.MARGARET SCARRYANDLEE A. NEWSOM11Skeletal andDentalAnalysisofBurials from the Collier Inn Site,UseppaIsland 403MICHAELJ.HANSINGER12 Prehistoric Burials from Buck Key 411DALE1.HUTCHINSON13Calusa Culture and Environment: What Have We Learned? 423WILLIAMH.MARQUARDTINDEX 437

PAGE 9

1The Calusa Domain: An IntroductionWilliamH.Marquardt 1L-j"L Ona dayfourhundredtwenty-sixyearsagoinCharlotteHarbor,thenknownastheBay of Carlos,PedroMenendezdeAvilesstoodface to facewithparamountchief Carlos,king.. 0.lhe_c:..alw;!aan..s!...10Ld_obLoutlLEorida (Figure 1).Justfivemonthsbefore, in September,1565,the 47-year-oldSpanishnoblemanhadwrestedcontrolofFortCarolinefrom theFrenchandfoundedanewtownnamedSt.Augustine.MenendezheldtheSpanishtitle "Adelantado," sig nifyingthatherepresentedthekingofCastilian Spain in thisnewfrontier inwhattotheSpaniardswasanewworld.HewasalsogovernoroftheSpanishcolonyofFloridaandcommanderofa smallandoftencontentiousbandofafewhundredmercenarysoldiers,sailors,settlers,craftspersons,andpriests(Lyon1983:38-130).InthepersonofCarlos,sonofSenquene,restedtheauthorityoftheCalusa state, theprerogativeoflifeordeathoverthousandsofsubjects,therigh.t to receiveaymentoftributefrom scoresoftowns ower tousesacredknowlede to commandt e-winds andwaters.Hispeople built_ earthworks,temples,andwaterways;carved,paintedandengraved.Theypracticedritualsthatincludedreverenceforancestorsandaconcept 0 .aft..er1iie.provic!.eci forthenoble.s and forthemilitary,whowerenotrequiredtowork.On th'!LFebruary dayCarlos'ssoldiersstoodreadyto enforce his.J:Y:ill,_o dietrying.// ------Butwhilebothmenheldauthorityandcontrolledformidableresources,eachneededtheother. For thiswasnochanceencounter,buta carefullyorchestratedceremonyinwhichCarloswouldoffer his allegianceFigure1.Artist'sconceptionofthemeetingbetweenPedroMenendezdeAvilesandCalusaparamountchiefCarlos,February,1566.(Drawingcopyright1990byHermannTrappman,usedbypermission.)1

PAGE 10

2toMenendezandCastileinthe expectation of receivingMenendez'sassistanceindefeatinghis enemiesandsolidifyinghisownpoliticalpower(Marquardt1987b; Solisde Menis 1964).Whathistorical processeshadledtotheencounterbetweenMenendezandCarlosthatwinterdayin1566?Whatcombinationsofenvironmentalconditionsandhumandecisions,manygenerationsbefore CarlosandMenendez,hadproducedthefiercelyindependentCalusa,whonowbelievedittotheiradvantagetonegotiatewithsomeofthestrangeoutsiderswhohadsofundamentallychangedthecircum-CaribbeanworldduringMenendez'sandCarlos'sownlifetimes? Theanswersarenotobvious,andinfact theCalusa/aresomethingofananthropologicalmystery. For ex4J ample, sedenta comple" stratified,and illbutary, theCalusawerenotfarmersbutfisher folk.Almostalltheknownpeoplewhoachievesuchameasureofcomplexityareagriculturalistswhodependononeormorestaplecropsfortheirsubsis tenceandarethusabletoproduceanddistributeasurplus.So faraswecantell fromourstudyofbothhistoricalandarchaeologicaldata,theCalusaandtheirsouthFlorida neighborsraisednocropswhatsoever.IftheCalusadidnotachievecomplexityandpowerbycontrollingagriculturalsurpluses,howdidtheyachieve them?Oneartoftheanswertothe k' the r southwestFlorid's estuarine arinemeadows.Infact,somescholarsbelievethatthe pch inshore food_were entirelsufficient to ulf.ill-the roleusuall _Elay.edJ2y (GogginandSturtevant1964: 207). Thismaybetrue,butitdoesnotexplaintheprocessbywhichtheCalusabecamesoremarkablycomplex.Manymaritimecultures,eventhose inenvironmentsofabundance,didnot. It is possiblethatthesixteenth-centuryCalusapoliti calcomplexityobservedbytheSpaniardswasnottheresultoftheslowandsteadyprocessthatWidmersuggests.Instead, beena recentdeveloment,stimulatedbysixteenth-centuryBuroean presence Inte regionthatweow as thesoutheastern tatesandthecircum-Caribbean CultureandEnvironment in the Domainofthe Calusa(Marquardt1991).SouthFlorida wereindirectandindirectCQactwithBuroeansearlyin the slxteentcentur(Marquardt1988b:176-179),anditisausiblethatimortantchangesinCalusa n politicalorganizationoccurredasSouthFloridawas cantile/imerialeconomy(Marquardt1987b:103-110;1991.---.... _Widmerfirstproposedhismodelina Ph.D.dissertationcompletedin1983, thesameyearwebeganworkinsouthwestFlorida. AsWidmerstatedthen(1983:145),thechronologicalunderstandingoftheCaloosahatchee/CharlotteHarborregion(Figure 2),heartlandofthehistoricCalusa,waswoefullyinadequate.IfWidmer'soranyalternativeexplanatorymodelsweretobetested,newandbetterarchaeologi caldatawereneeded.Inshort,welacked themostbasicchronologicalandenvironmentalunderstandingsthatwouldallowuseventobeginto testmodelsofCalusadevelopment(Marquardt1986:66 67). ....-----.......(ill;-;;UTHWEST FLORIDA PROJECT ._--TheSouthwestFlorida Projectbeganin1983whenImappeda shellmiddensiteonJosslynIsland(Marquardt1984),assistedbyAlanMay(SchieleMuseum,Gastonia, N.C.)andmembersoftheSouthwestFlorida Archaeological Society,andfundedbyJosslyn'slandowners,DonaldandPatricia Randell.Preliminaryvisitingandsurface collectingofvarioussitesontheislandsofCharlotteHarbor/PineIslandSoundweredoneintermittentlyoverthe nexttwoyears,withthe helpofvolunteersandlimiteduniversityresources.Supportedmainlybythecontributionsofprivatecitizens (seeMarquardt1987a:14, 1988a:15;MarquardtandBlanchard1989:14;BlanchardandMarquardt1990:9-10)andassistedbynumerousvolunteersfrom Lee, Collier,andCharlottecounties,wetested(andremovedcolumnsamplesfrom) anumberofCharlotteHarborsitesbetween1985and1988.(Detaileddescriptionsanddiagramsof these test excavationsarefoundinChapter2ofthis volume.)OurfirstopportunitycameinMarchandMay, 1985,againatJosslynIsland(8LL32).Supportedbyanadditionalgift fromtheRandells,weexcavatedthreetest pits,oneto adepthof3.8 minanareapreviouslydisturbedbyunauthorizedexcavators.InJune,withthecooperationof theDingDarlingNationalWildlife Refuge,whichhasjurisdictionthere,weremovedcolumnsamplesfromanerodingbeach-sidedepositatCashMound(8CH38). Athirdopportunitywaspresentedwhenwewereinvitedbyowner/developerGarfield Beckstead tosalvageinformationfrom amiddenneartheCollierInnonUseppaIslandthathadbeeninadvertentlydisturbedbya backhoe. Analysisofthesematerialswassupportedbyagrantfrom theRuthandVernonTaylorFoundationandbygifts fromprivatedonors(Marquardt1987a, 1988a).

PAGE 11

Calusa Domain3 .",..e I. .",. .",..",. .10Miles5CALEoFigure2.SouthwestFlorida,showingtheareafromCharlotteHarbortotheTenThousandIslands.(DrawingbyCorbettTorrence.)

PAGE 12

4In February, 1986, agrantfromtheNational ScienceFoundation(BNS85-19814)enabledus to begingatheringseasonalityandpaleoenvironmentaldata.Underthedirection of SamB.Upchurch(University ofSouthFlorida), geological coresweretakeninandneararchaeologicalsites.StephenHale,IrvQuitmyer,Douglas Jones, KarenJoWalker, Elizabeth Wing,andImademonthlycollections ofmarinesamples(clams, otoliths fromthreespeciesoffish) forpurposesofestablishingwaystoreadpaleoclimaticandpaleo seasonalitydatafrom ancient faunal remains (Marquardt1987a:12).MargaretScarryandLeeNewsomcollectedplantseeds,wood,andfibers to formthefirstcomprehensivearchaeobotanicalcomparativecollectionforthearea(Marquardt1987a:13, 1988a:13). WingandQuitmyerconductedtwomiddenexperiments(Marquardt1987a:12, 1988a:10).AnnCordell searched for sotircesofclayusedfor prehistoricpottery-making.RaymondHintz,thenwiththeUniversityof Florida's SurveyandMappingdepartment,SchoolofEngineering,undertookphotogrammetricmappingofsomeofthelarger sites.InMarchandMayof1986 a combinationstudentandvolunteercrewtested sites 8LL722and8LL55onBuck Key. Analysiscontinuedonmaterialswehadexcavatedin1985-1986, as well asonmaterials from apitfeaturepreviouslyexcavatedatBigMoundKey (8CHIO)byGeorge Luer(Marquardt1987a:ll).Since 1987, JanandRobin Brownhaveprovideda furnishedhouseforourproject's useinFt. Myers. Thanks to their hospitality,andto assistance from theRuthandVernonTaylorFoundation,DonaldandPatricia Randell,RobertandCorinneSchultz,andanumberofotherprivatedonors,1987sawthe comple tion ofmonthlyecological collection trips, excavation of thetwoexperimentalmiddens,assistance to Robert Edic's oralhistoryproject intheBocaGrandearea(Marquardt1987a:13, 1988a:5),thetranscriptionofdocumentsfromSpanisharchivesinSpain,supportedbytheWentworthFoundation(Marquardt1988a:4),andtest excavations at GaltIsland(8LL27)byamostlyvolunteercrew(Marquardt1987c, 1988a:2). Small test excavationswereconductedatanearlytwentiethcenturysitenearBokeelia (8LL1431A;MarquardtandWalker 1988),fundedbytheSubonCorporation,andagainatCashMound(8CH38) in April, 1988.InMaytest excavationswereundertakenatPineland(8LL33), assistedby84 local volunteers (MarquardtandBlanchard 1989: 1-3). Analysisandwritingcontinuedin 1988and1989.ClaudinePaynebeganworkingaseditorinthefallof1988, concentratingonthenewtranslationsofSpanishdocumentsbyJohnHann(nowpublished:Hann1991). MeraldClarkjoined the project asartist/illustratorin January, 1989,fundedinitiallybytheUniversityofFlorida's Division of Sponsored Research.InFall, 1989,webegananambitiousarchaeology/educationprojectincooperationwiththeNatureCenterofLeeCounty,theFortMyersHistoricalMuseum,andtheLeeCountyschool system. The projectwascalled "The YearoftheIndian: Archaeol-CultureandEnvironmentintheDomainoftheCalusaogyoftheCalusa People"andwasfundedbya SpecialCategorygrantfromtheBureauof Histdric Preserva tion, FloridaDepartmentofState. Itfeaturedtwoeight-weekexcavationseasonsatUseppaIsland(8LL51)andPineland(8LL33),makinguseofover11,000hoursofsupervisedvolunteerlabor;twomuseumexhibits; asummerprogramfor children; amulti-mediaslide show;hands-onclassroomdemonstrationsandsite visits forelementaryschoolstudents;teachertraining;curriculumdevelopment;artifactreplication research;oralhistoryresearch;andapopularbook.Underthe field direction of Michael Russo, excavationswerealsoundertakeninCollierCountyonHorr'sIsland(sites 8CR201, 205, 206, 207,208,209,211,and696),fundedbyagrantfrom Ronto Developments Marco.Threemonthsofexcavationsinlate 1989 focusedonextensive shellmiddensofthepreceramic Archaicperiod,as well as apottery-bearingsiteandthehomesiteofplantationownerJohn FoleyHorr(Russo 1991a, 1991b).MoundsAandBatHorr's Is landcontainburialsandextensive layersofsandandshells. Thesedateto ca. 3300-2500B.COurdatasuggestthatHorr'sIslandwasoccupiedorvisitedthroughoutthe year,andthatLate Archaic coastalpopulationsweremakinggooduseofa fully estab lishedestuaryduringthethirdmillenniumB.C,asituationmirroredatUseppaIsland. AtUseppa(8LL51) excavationsinlate 1989undermydirectionconcentratedona 32 m2areawherewefoundevidenceofa shell toolmanufacturingindustry,ca. 1900B.CAs atHorr'sIsland, sea level seems tohavebeensufficientlyhightohaveprOVidedampleestuarineresourcesbythethirdmillenniumB.Corearlier.Inearly1990,underthefield directionofKarenJoWalker, excavationswereresumedatthePinelandsite. Excavations concentratedonanareaneara largemoundknownas Brown'sMound,wheredarkorga nic horizonsthatappeartobefloorswerediscovered forthefirst time. We also identified late sixteenthcenturyartifacts from adisturbedburialmoundandtestedapreviouslyundocumentedlowmoundnearby(8LL1612).Pinelandwasalsothelocationforourbroadestpublicoutreacheffort to date. The publicwasallowedandencouragedto visittheexcavations.OverthreehundredvolunteershelpedwiththePinelandexcava tions.Aneducationprogram,coordinatedbyCharlesBlanchard,directlyinvolved2,810students,180 teachers,and45schoolsandothereducationalorganizations.Thirty-nineclassroomlecturesweregivenand27classes offourthandfifthgraders,a total of950children, visitedthePinelandsite forhands-onarchaeological activities (BlanchardandMarquardt1990). Analysisandwritingcontinuedin 1990,supportedinpartbyincome fromanendowmentestablishedbyagrantfromtheKnightFoundationas well as gifts tothatendowmentfromDonaldandPatricia Randell

PAGE 13

Calusa DomainandtheRuthandVernonTaylorFoundation.By1991,mostchaptersfor thisbookwereindraftform,andhadbeeneditedbymeandbyClaudinePayne.Paynedesignedthemonographformat, inconsultationwithme,thensheandSamChapmanpreparedthecamerareadytextusingcomputers,a scanner,anda laser-jetprintercontributedto the ProjectbyHewlett-Packardthanksto amatchinggift fromPaulandWarrenMiller,andusingdesktoppublishingsoftwareVentura Pub lisher,version3.0.In1991CorbettTorrenceservedasdraftsperson-cartographer,andMeraldClarkasartist-illustrator.Wefinishedtheeditingandtypographyin 1992, assistedbyagrantfrom the Division ofSponsoredResearch,UniversityofFlorida. Patricia Bartlett, DirectoroftheFt. Myers HistoricalMuseum,kindlyservedasanoutsideproofreaderoftheentirebook.Printingcosts for thisbookweredefrayedinpartbyagrantfrom the KnightFoundation.WHAT TOEXPECTFROM THIS BOOKCulture and Environment in the Domain of the Calusacoversonlythosedatarecoveredthrough1988. As thisbookgoes to press,wehavecompletedanalysisofmaterialsexcavatedin1989and1990atUseppaIslandandPineland(forpreliminarysummaries,see Blanchard 1989; BlanchardandMarquardt1990),andarenowanalyzingmaterialcollectedduringa twelveweekseasonatthePinelandsitein1992(Marquardt,Payne,andWalker1992). DetailedreportsontheHorr'sIslandworkarenowavailable(Russo 1991a, 1991b).Inpreparationaremonographson IslandandPineland,aswellasasummaryvolumefopopularaudiences'J Ina sense,a,llarchaeologicalreportsarepreliminary,andthisseemsespeciallytrueinanareasuchassouthwestFlorida,whereso littleindetailwasknownpriortothe1980s. Wefullyexpectthefindingsreportedhereto beaugmentedandsupersededbyourownresearchandthatof others. Nevertheless,wehavegatheredenoughdatato feelthatwehavea basic,workingunderstandingoftheculturalandpaleoenvironmentalrecordofCharlotteHarbor,ca. 4500 B.C. A.D. 1600.Theinformationreportedinthisvolumewillbecomplementarytoothermaterialsalreadyinprint,suchas apaperonthe project's researchagenda(Marquardt1986)andtwopapersonwhatisknownfromhistoricalsourcesaboutCalusacultureandpolitics(Marquardt1987b, 1988b). TranslationsanddetailedexegesisofJesuitandFranciscan mission accountsandotherrecordsandcorrespondenceofthe sixteenth,seventeenth,andeighteenthcenturiespertainingtosouthwestFloridacanbefoundinMissionstothe Calusa,byJohnHann(1991).InChapter2ofthis book, I describe the excavations of 1984-1988anddiscuss excavation strategiesandstratigraphyfor each. InChapter 3, Upchurch,Jewell,andDeHavenpresenttheresultsofcoringnearandwithinarchaeological sites,aswellasaconsiderationofsedimentaryprocessesandhowtheyhaveaffectedandbeenaffectedbyhumanoccupationoftheharbor.5Theauthorspresentinformationbearingonquestions of Holocene sea-level fluctuations, a topic also takenupbyWalkerinChapter8.InChapter 4, AnnCordellreportsresultsofherdetailedanalysesofCaloosahatcheeareaceramics,presentsa refinedpotterychronologybasedonthenewanalyses,andrelatesthenewfindings to traditionaltypologies.Byundertakingaconstituentanalysis, Cordell goesbeyondtraditionalconsiderationsoftemper,color,andhardnessto establish amoretemporallyandspatiallysensitivetypologyforCaloosahatcheeareaceramics.Chapters5and6reportstudiesofshellandboneartifacts, respectively,andincludediscussionsof the rolesofshellandboneinthefishing technologyofCharlotteHarbor.InChapter 5, I firstreviewthehistoryofshell artifact analysisinsouthFlorida,thenintroduceanewtypology,onederivedfromthepioneeringworkofGogginandothers,butwithasmuchemphasisonmanufacturing/usetrajectory asonfunction. Shell artifactscanbequiteuseful instudiesofspatialandtemporalvariationandcanplaytheroles forsouthwestFloridathatceramicandchert artifactsoftendoelsewhere.WalkerconsiderssouthwestFloridaboneartifactsinChapter 6, basedonourexcavationsin1984-1988. She hasexaminedtheroleofshell,bone,andturtlecarapaceartifacts inanotherpaperas well (Walker 1991),basedonbothourexcavatedmaterialsandcomparativeresearchundertakenincollectionsattheUniversityofPennsylvaniaMuseumof ArchaeologyandAnthropologyandattheNationalMuseumofNaturalHistory,SmithsonianInstitution.InChapter 7, QuitmyerandJonespresentthedetailedresultsof clamseasonalitystudiesandtheir implications forresearchonCharlotteHarborsettlement.Theannualgrowthofbivalves (such asMer cenariasp.) is afunctionofseasonalvariationsintemperatureandotherenvironmentalfactors.Growthcurvesmustbediscernedforeachlocal researcharea,however.AcurveforMercenariaonthe Atlantic coastofNorthCarolinawill lookverydif ferent fromonefortheGulfcoastatCharlotteHarbor.QuitmyerandJonesexplaintheirmethodsandpresenta convincing casethatMercenaria campechiensisis a reliableindicatorofseasonalityfortheCharlotteHarborestuary.WalkerdemonstratesinChapter8thepotentialofzooarchaeologytocontributenotjustto subsistencestudies,buttoabroadrangeof archaeologicalandpaleoenvironmentalresearchtopics.Walkersummarizestheanalysisof17fine-screenedcolumnsamplesrepresentingavarietyof localconditionsinCharlotteHarborandderivesfromthempatternsofprehistoricfoodprocurement,environmentalcharac teristics,andHolocenesea-level fluctuation.Herdataconfirm Late Holocene sea-levelcurvesrecently obtainedbyStaporandothers(1991) fromstudiesofbarrierislandbeachdeposits.

PAGE 14

6InChapter9,WingandQuitmyerpresentthe resultsoftheirpreliminaryexperimentsinmiddenformation/deformation.Theauthorsdiscuss the materials lost fromandgainedbytheexperimentalmiddens,andsuggestthatfurtherandmoresophisticatedexperimentswillgiveusabetterappreciationfordiageneticprocessesandthedynamismofzooarchaeological sites.InChapter10,ScarryandNewsomsummarizetheresultsofthe firstcomprehensivearchaeobotanicalworkinsouthwestFloridaanddocumentprehistoricfoods as well asdomesticandtechnologicalusesofplantresources forprehistoricCharlotteHarbor.Theauthorscomparetheirfindings tothosefromothersouthFloridaandCaribbeansites,anddiscuss the rolesofplantsinahighlydiverseareathatstraddlestemperateandtropical biomes.Althoughwehavenotfocusedonburialexcavations,Chapters 1.1 and12presentdescriptionsofburialsencounteredwhiletesting sitesonUseppaIsland(8LL51)andBuck Key (8LL55).Twolevels ofburials,onepreceramic,theotherfromthelaterceramicperiod,werenotedin the CollierInnsalvageexcavationsonUseppaIsland. MichaelHansinger,whoassistedinthose excavations,providesdescriptiveinformationonthe physicalremainsinChapter11. TheburialsfoundatBuck KeyaredescribedbyDaleHutchinsoninChapter12. Finally,Chapter13summarizesthe findingsandreviewswhatwenowknow,comparedtowhatwasknownwhenthe projectbeganin1983. Thisbookdoes not,noris itintendedto, solvethequestionsoftheemergenceofCalusacomplexity.Beforethosequestionscanbeansweredwithanydegreeofassurance,wewillneedadditionalsurveyanddating,aswell as extensivetestingandintensiveexcavationsatanumberofkeysites. These activitiesarepresentlyunderway,butitwouldhavemadenosensetoconducttoday'sfocused investigations before establishinga basic tool kit of chronologicalandpaleoenvironmentalunderstandings.Thishadtobedoneatthebroadscale oftheCharlotteHarborestuarinesystemandovertheentire6,000-year time scaleofprehistoric coastaloccupationoftheCaloosahatcheearea. This firstphaseofchronologicalandpaleoenvironmentalbackgroundstudiesisnowfinished,andthese findingsarethe subjectofthis book. REFERENCES CITED Blanchard, Charles1989CalusaNewsNo.4.InstituteofArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida, Gainesville. Blanchard, CharlesandWilliam H.Marquardt1990CalusaNewsNo.5.InstituteofArchaeologyandPaleoenvironmentalStudies,Universityof Florida, Gainesville.Culture and Environment in the Domainofthe Calusa Goggin, JohnM.andWilliamT.Sturtevant1964TheCalusa: A StratifiedNon-AgriculturalSociety(withNotesonSibling Marriage).InExplorationsinCultural Anthropology:Essays in Honor ofGeorgePeter Murdock,editedbyW.H.Goodenough,pp.179-219. Mc Graw-Hill,NewYork.Hann,John H.1991MissionstotheCalusa.Universityof Florida Press, Gainesville. Lyon,Eugene1983TheEnterprise ofFlorida:PedroMenendezde Aviles andtheSpanish Conquest of1565-1568.UniversityPressesofFlorida,Gainesville [originallypublished1976).Marquardt,William H.1984TheJosslyn Island Mound and its RoleintheInvestigation of Southwest Florida'sPast.Mis cellaneous ProjectReportSeries 22,DepartmentofAnthropology,FloridaMuseumofNaturalHistory,Gainesville. /' 1986TheDevelopmentofCulturalComplexityinSouthwestFlorida: Elements of a Criti que.Southeastern Archaeology5 (1):63-70. 1987aCalusaNewsNo.1.InstituteofArchaeologyandPaleoenvironmentalStudies,Universityof Florida, Gainesville. 1987bTheCalusaSocialFormationinProtohistoricSouthFlorida. InPowerRelations and State Formation,editedbyT.C.PattersonandC.W.Gailey,pp.98-116. ArcheologySection,AmericanAnthropologicalAs sociation,Washington,D.C. 1987cPreliminaryArchaeologicalSurveyandTestingonGaltIsland(8LL27, 8LL81), LeeCounty,Florida.Reportsubmittedto WilliamM. Mills. Ms.onfile,DepartmentofAnthropology,FloridaMuseumofNaturalHistory,Gainesville. 1988aCalusaNewsNo.2.InstituteofArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida, Gainesville. 1988b PoliticsandProductionamongtheCalusaofSouthFlorida.InHunters and Gatherers,vol. 1:History, Evolution, andSocialChange,editedby1.Ingold,D.Riches,andJ.Woodburn,pp.161-188. BergPublishers,London. 1991Introduction.InMissionstotheCalusa,byJohn H.Hannpp.xv-xix.UniversityofFlorida Press, Gainesville.Marquardt,William H.andCharles Blanchard1989CalusaNewsNo.3.InstituteofArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida, Gainesville.

PAGE 15

Calusa DomainMarquardt,William H., ClaudinePayne,andKarenJoWalker1992CalusaNewsNo.6.Instituteof ArchaeologyandPaleoenvironmentalStudies,Universityof Florida, Gainesville.Marquardt,WilliamH.andKaren Jo Walker1988 Archaeological Site Assessment SurveyfortheProposedSeagullBayDevelopment,PhaseI.Reportsubmittedto Subon, Inc. Ms.onfile,DepartmentofAnthropology,FloridaMuseumofNaturalHistory,Gainesville. Russo, Michael 1991aArchaic SedentismontheFloridaCoast:ACase ft StudyfromHorr's Island.Ph.D. dissertation,DepartmentofAnthropology,Universityof Florida.UniversityMicrofilms,AnnArbor. 1991bFinal ReportonHorr'sIsland:TheArchaeol ogyofGladesSettlementandSubsistence Pat terns.(WithchaptersbyAnnCordell, LeeNewsom,andSylviaScudder.)FloridaMuseumofNaturalHistory.Reportsubmittedto Key MarcoDevelopments,Key Marco, Florida. SoIlsde Meras, Gonzalo1964PedroMenendezde Aviles, Adelantado,Governor,andCaptain-GeneralofFlorida: Memorial.Facsimilereproductionof15707edition.UniversityPressesofFlorida,Gainesville. Stapor,F.W.Jr.,ThomasD.Mathews,andFondaE.Lindfors-Kearns 1991 Barrier-IslandProgradationandHoloceneSea-levelHistoryinSouthwestFlorida.Journal ofCoastalResearch7(3):815-838.Walker,KarenJo1991ArtifactsofaFishyNature:CharlotteHarbor'sPrehistoricEstuarineFishingTechnology. Ms.submittedfor publication.Widmer,RandolphJ.1983TheEvolutionoftheCalusa:A Non-Agricul tural Chiefdomonthe SouthwestFloridaCoast.Ph.D.dissertation,DepartmentofAnthropology,PennsylvaniaStateUniversity.UniversityMicrofilms,AnnArbor. 1986TheEvolutionof Calusa Complexity.Paperpresentedatthe 43rdannualmeetmgoftheSoutheasternArchaeologicalConference,Nashville.1988TheEvolutionoftheCalusa:A Non-Agricul tural ChiefdomontheSouthwestFloridaCoast.UniversityofAlabamaPress, TuscaloosaandLondon.

PAGE 17

2Recent Archaeological and Paleoenvironmental InvestigationsinSouthwest FloridaWilliamH.MarquardtIn thischapterIsummarizetheresultsofmapping,surface collecting,andtest excavationsundertakenbetween1983and1988atfive localities intheCharlotteHarbor/PineIslandSoundarea: JosslynIsland,UseppaIsland,CashMound,Buck Key,andPineland(Figure 1). I alsoincludesomeobservationsonBigMoundKeyandBoggess Ridge. Foreachofthe five siteswetest-excavated, I describethelocalenvironmentalsettingandpreviousarchaeological investiga tions, discuss thestratigraphyandchronology,andplace the sitewithinthebroaderresearchgoalsof the project.Environmentalcharacteristics oftheCharlotteHarborareaas awholearediscussedbyWalker(Chapter8)andScarryandNewsom(Chapter10).Whenwebeganourwork,thechronologyfor theCaloosahatcheeareawasverypoorlyunderstood,andsubsistenceandenvironmentalcharacteristicshadbeeninvestigatedonlyina superficialway.For example,fine-screenzooarchaeologicalanalysishadbeenundertakeninsouthwestFloridaonlyrarely(Fradkin 1976; Milanich et al. 1984)priortoourresearch,andnoflotationorotherfine-screenrecoveryofplantremainshadeverbeendone.Ourinitialresearchobjectivesweresimplytobecomefamiliarwiththemakeupofthesites,ascertaintheagesofthedeposits,andevaluatetheirfloralandfaunalremains.Fieldmethodsweresimilaratall sites. Foreachsite, eachseparateexcavation area, calledan"operation," isgivenaromanletter, e.g.,OperationA.Test pitswithineachoperationaregivenarabicnumerals,e.g., Test Pit A-I. ExcavationwasusuallydoneinarbitraryIO-cm levels,numberedconsecutively fromtoptobottom. Thus, A-I-10designatesthetenthlevelinTest Pit A-I.Whenthereis aneedtosubdivideanexcava tionintotwoormorediscrete loci, a third-level arabicnumeralisadded.Thus,"A-1-10-2" is the second locus ofthetenthlevelofthefirst testpitinOperationA.Artifactsorsamplesforwhichexactprovenience(horizontalandvertical) isrecordedaregiven"slash"numbersandbaggedseparately. Forexample,anartifact labeledA-I-10/4isthefourthmeasureditemrecordedinLevel 10ofTest Pit A-I. Similarly, A-I-102/3is thethirdspecial itemmeasuredinlocus 2ofLevel 10ofTestPitA-I.Wedonotusethe"field specimen"and"feature"numbersfavoredbymanyarchaeologists.9Itakepainstoexplainthissimplebuteffectiverecordingsystembecausea few colleagues(includingtwoanonymouspeerreviewersofmygrantproposals!)haveformedthemistakenimpressionthatI excavateshellmiddensinarbitrarylevelswithoutregardtotheirstratification.Onthecontrary,thelevel/locussystemallowsbothhorizontalandverticalcontrolsothatvariouscombinationsofdiscretedepositionalunitscanbecompared.The hierarchicalnumberingsystemfacilitatescomputerizedcomparisonsatseveral levels.Andsince the artifactnumberscarryprovenienceinformation,thereis littlechanceofconfusingareasduringexcavationoranalysis. Allexcavateddepositswerepassedminimallythrough 1/.1 inch(6.4mm)meshhardwarecloth, unlessotherwiseindicated.Column-sampleexcavations for archaeobiologicaldatarecoverytypicallymeasured50x 50 emandwereexcavatedin IO-cm levels,thuseachcolumnlevelideallycontainsavolumeof0.025 m3 .Waterflotation of thesedepositswasundertakenfirstina screenboxdevice Iconstructedto fit intothesinkinmylaboratoryatthe FloridaMuseum.Later,whena SMAP-type (Watson 1976) flotationbarrelbecameavailable,wewereableto floatsedimentsinthefield,whichallowedustoavoidthechoreoftransportingheavybagsofexcavatedsedimentsbackto Gaines ville.Duringflotation inboththesinkandSMAPmachinesystems,theheavyfractionswerecaughtinV16inch(1.6mm)windowscreen.FurtherdetailsofzooarchaeologicalandarchaeobotanicallabmethodsarefoundinChapters8and10, respectively.Radiocarbondatesarereportedthroughoutthisbookinone-standard-deviationdaterangesandare13C-adjustedandcalibratedunlessotherwiseindicated.Inadditionto thecalibrateddates,Table 1presentsrawdatesinradiocarbonyearsforthosewhoprefertoworkwiththeminstead. Table 2presentsanabbreviatedchronologychartfortheCaloosahatcheearea.Forothertreatmentsofregionalchronology,seeCarrandBeriault (1984),MilanichandFairbanks(1980:15-33et passim),Widmer(1988:55-97),andespeciallyGriffin (1988:111 166). The "Caloosahatchee area" isanarchaeologicalzonethatrunsfromsouthernSarasotaCountysouth

PAGE 18

10Culture and Environmentinthe DomainoftheCalusao o2345 MILESi i81KILOMETERS246.... (" ............ \).....,..C.McP.T. Figure1.Theresearcharea,showingthesitesdiscussedinthischapter.Keytosites: 10=8CH10, BigMoundKey; 16 = 8CH16,BoggessRidge;38 = 8CH38,CashMound;51= 8LL51,UseppaIsland;32 = 8LL32,JosslynIsland;33 = 8LL33,Pineland;55= 8LL55,BuckKeyBurialMound;722=8LL722,BuckKeyShellMidden.

PAGE 19

Recent Archaeological InvestigationsTable 1. RadiocarbonDates.11RadiocarbonCalendarSiteNumberSite NameProvenienceMaterial" AgeinYears Year l3C-adjusted LaboratoryCalibratedDatedBefore A.D.EquivalentbAgeNumberDateRangeC1950b8LLSIUseppaIsland, Test 6, midden5117575RP.dA.D.7751565 B.P! UM-I840AD.747-925 east "ramp" underlying "ramp" 8LLSIUseppaIsland, Test 6, lower5136065B.pdA.D. 5901750 B.P! UM-I839AD.608-704 east "ramp"portionof "ramp" 8LLSIUseppaIsland, Op. A (1985),HB127070B.P. A.D.6801410B.P.Beta-45824 A.D. 595-666 CollierInnBurial 2 8LLSIUseppaIsland, Test 5, midden5170075B.P.dAD.2502090 B.P! UM-I841 A.D. 193-392 backhoe test 8LLSIUseppaIsland, Test 3, midden5184590B.pdA.D.1052235 B.P! UM-I837 A.D. 14-230 backhoe test 8LLSIUseppaIsland, Test 3, midden5226075Rpd310B.C.2650 B.P! UM-I838 454-334B.C.backhoe test 8LLSIUseppaIsland, Test A-4, Level 25252060B.P.570RC.2930RP.Beta-38495 805-740B.C.CollierInn8LLSIUseppaIsland, Test A-4, Level 35349080B.P.1540RC.3880 RP! Beta-I7336 2011-1778 Collier InnRC.8LLSIUseppaIsland, clam shell just5409070B.P.2140RC.4480 RP! Beta-14142 2858-2598 Collier Inn below Burial IB.C.8LLSIUseppaIsland, clam shell5413080B.P. 2180B.C.4520 B.P! Beta-14152 2880-2652 CollierInntouching Burial IRC.8LLSIUseppaIsland, Test 2, midden549351002985 B.C. 5325 B.P! UM-I836 3890-3640 backhoe testRpdRC.8LLSIUseppaIsland, Test 2, midden556251003675 B.C.6015 B.P! UM-I835 4610-4370 backhoe testRP.dB.C. 8L132 Josslyn Island Test A-I, LevelS575060B.P.AD.12001140 B.P! Beta-17332AD.1225-13048L132 Josslyn Island Test A-2, Level 85101060B.P.A.D.9401400 B.P! Beta-21292 A.D. 961-1054 8L132 Josslyn Island Test A, profile, C [112075 [A.D.830]1120RpfBeta-12924 A.D. 819-996asharea B.P.]! 8L132 Josslyn Island Test A-I, Level135113070B.P.AD.8201520 B.P! Beta-17333 A.D. 801-978 8L132 Josslyn Island Test A-I, Level 175175060B.P.AD.2002140 RP! Beta-45880AD.143-292 8L132 Josslyn Island Test A-I, Level235207070B.P.120B.C. 2460 RP." Beta-17334 240-67B.C.8L132 Josslyn Island Test A-I, Level 335208090B.P.130B.C.2470 B.P! Beta-17335 324-53B.C.8LL722 Buck Key, shell TestB-1,LevelS560080RP.AD.1350990 B.P! Beta-16283 A.D. 1306-midden14398LL722 Buck Key, shell Test A-I, Level 6562070B.P.A.D.13301010 B.P! Beta-16285 A.D. 1301-midden1424 8LL722 Buck Key, shell Test A-I, Level 6, 570070B.P.AD.12501090 B.P." Beta-16286AD.1260-middenlocus 313458LL722 Buck Key, shell TestB-2,Level 9570060B.P.AD.12501090 B.P." Beta-16282 A.D. 1267-midden1334 8LL722 Buck Key, shell Test C-I, Level 3571060RP.AD.12401100 B.P! Beta-16284 A.D. 1260-midden1326 8LL722 Buck Key, shell Test A-I, Level 9591080B.P.AD.10401300 B.P! Beta-16287AD.1027-midden12108LLS5Buck Key, Burial I-A HB75070B.P.AD.1200gBeta-2547Igburialmound8CH38 CashMoundTest A-I, Level 45127070B.P.A.D.6801660 RP." Beta-16281 A.D. 672-806 8CH38 CashMoundTest A-I, Level205168060B.P.AD.2702070 RP." Beta-16278AD.238-398 8CH38 CashMoundTestA-I,Level175176080B.P. A.D.1902150 RP! Beta-16279AD.118-322 8CH38 CashMoundTest A-I, level 85180090B.P.AD.ISO2190 RP! Beta-16280 A.D. 67-266

PAGE 20

12Table1.RadiocarbonDates,continued.Culture and Environment in the Domainofthe CalusaRadiocarbonCalendarSiteNumberSiteNameProvenienceMaterial"agein years l3C-adjusted LaboratoryCalibratedDatedbeforeA.D.yearNumberDateRangeC1950 bequivalentbageBigMoundWest profile,1070 140 A.D. 780-106018CH10 Key, West pit feature, CAD.880SUM-2676MoundhLayer 1RP.BigMoundWest profile, 8CH10 Key, West pit feature, S108070RP.AD.8701470RP."UM-2679 A.D. 871-1018MoundhLayer 7 BigMoundWest profile, 8CH10 Key, West pit feature, C 1090 80RP.AD.860SUM-2685AD.840-10001MoundN100/E99.4hLayer 8b 8LL33 Pineland Test C-1, S 490 60B.P.A.D.1460880RpBeta-27993 A.D. 1420Level 91491Pineland, Test B-1, A.D. 13018LL33 Brown's S 620 70B.P.A.D.13301010RP."Beta-27988MoundLevel 61424Pineland, Test B-1, A.D. 12358LL33Brown'sprofile; S 740 60RP.AD.12101130 B.P." Beta-279891309Moundelev. = 6.35 m Pineland, A, profile; A.D. 108881133 Randell S 830 60RP.AD.11201220B.P." Beta-27990Moundelev. = 4.05 m 1250 Pineland, A, profile; A.D. 107381133 Randell S 850 70RP.AD.11001240B.P." Beta-27986Moundelev. = 3.05 m 1257 Pineland, TestA-I,A.D. 10328LL33 Randell profile; S 910 70RP.AD.10401300RP."Beta-27992 1198Moundelev. = 6.10 m Pineland, A, profile; 8LL33 Randell5105060B.P.A.D. 9001440B.P." Beta-27987 A.D. 906-1030Moundelev. = 3.40 m Pineland, TestB-1,8LL33 Brown's profile; S116080B.P.AD.790 1550 B.P." Beta-27985AD.762-956Moundelev. = 7.91 m Pineland, A, profile; 8LL33 Randell S1350 50RP.AD.6001740RP."Beta-27984 A.D. 631-701Moundelev. =2.55m 8LL33 Pineland Test0-1,S167060RP.AD.2802060 B.P." Beta-27991AD.247-408 Level 7 "Code: C=charcoal; S=marine shell;HB=humanbone. bAll dates in this column are uncalibrated; half-life = 5568 years. cCalibrations calculated usingprogramCALIB, version2.0(StuiverandReimer 1986). Calculations basedonPearson et al. 1986; Pearson and Stuiver 1986; StuiverandPearson 1986; Stuiver, PearsonandBraziunas 1986), using reservoir correction factor ofdeltaR=-5 for shell assays. Dates on charcoalandbonewerecalibratedusingfile ATM20.14C, those on marine shell using MARlNE.14C. Only 13C-adjusteddateswerecalibrated usingprogramCALIB. Thedaterangeshownisstandarddeviation. dSource: Milanichetal. 1984:269-270. "This shelldateadjusted for isotopic fractionation byadding390 years torawradiocarbon years before calibration.fAMSdate, adjusted for isotopic fractionation.sNo13C-adjusted age is available for this sample.to apointapproximately40kmnorthofMarcoIsland(Collier County),andfrom thebarrierislandsonthewestto apointapproximately90kmeastwardinto the interior (CarrandBeriault 1984:4,12; Griffin 1988:121;Widmer1988:79). In thisbooktheterms"southwestFlorida"and"Calusa region" refer informally to the coastalzonefrom CharlotteHarborsouthto the TenThousandIslands. Archaeological excavations describedinthisbookaredatedfromthelatterpartoftheMiddleArchaicperiod(CollierInnexcavationsatUseppaIsland, ca. 2750 B.C.) toearlyCaloosahatcheeIV (Buck Key, 8LL722, Tests AandB,ca. A.D. 1375). ThechronologyofTable 2showsanearlyPaleo-Indianoccupation from ca. 11500B.C.to 8500 B.C.,butthis timehorizonisrepresentedonlyatLittle SaltSpringinsouthernSarasotaCounty(Clausenetal. 1975, 1979), asinkhole site. The Late Paleo-Indian horizon, ca. 8500 B.C.-6500 B.C., isrepresentedlocallyatLittle SaltSpringandWarmMineralSprings,alsoininteriorsouthern

PAGE 21

Recent Archaeological Investigations13Table2.GeneralizedChronologyforCaloosahatcheeAreaandImmediateEnvirons,BasedonOurOwnResearchandonSummariesbyGriffin(1988),MilanichandFairbanks(1980),andWidmer(1988). (CeramicchronologyisdiscussedindetailbyCordellinChapter4,thisvolume.)DatePeriodPresentatSomeDiagnosticArtifacts BigMoundKey,MoundEuropeanartifacts (e.g., A.D. 1500-1750 Caloosahatchee V Key, GaltIslandandmetal,beads,olive jarPinelandburialmounds,sherds)UseppaIslandSafetyHarbor,Glades A.D. 1350-1500 CaloosahatcheeIVPineland, John Quiet, Buck Tooled,andPinellas Plain Keypotterypresent;BelleGladePlaindiminishesBuck Key,GaltIsland, St. JohnsCheckStamped,A.D. 1200-1350 Caloosahatchee III Josslyn Island,PinelandEnglewoodceramics; BelleGladePlainprominentBigMoundKey,GaltBelle GladeRedpresent;A.D.800(?)-1200 CaloosahatcheeIIBIsland, Josslyn Island, Belle Glade PlainprominentPineland,UseppaIslandCashMound,Galt Island, Beginning of BelleGladeA.D. 650-800(?) Caloosahatchee IIA Josslyn Island, Pineland, PlainandSPCB ceramics;UseppaIslandGlades Red;thinnerceramics CashMound,Josslyn Thicksand-temperedplain500 B.C.-A.D. 650 Caloosahatchee I Island,UseppaIsland,potterywithroundandPinelandchamferedlips1200 B.C.-500 B.C.TerminalArchaicUseppaIsland,Wightman,Fiber-temperedpottery;("Transitional") 8CR107 semi-fiber-temperedpotteryPalmer,UseppaIsland,OrangePlain,Orange2000 B.C.-1200 B.C. Late Archaic 8CR107, 8CRllO,8CRllI,Incised, Perico Incised, 8CR112 Perico Plain, St. Johns Plain; steatite Bay West,Horr'sIsland, Coastal sites,butno5000 B.C.-2000B.c.MiddleArchaic Little Salt Spring,Useppaceramics;broad-stemmedIslandbifaces, e.g.,Newnan;mortuarypondsSites on coastalduneridges6500 B.C.-5000 B.C. Early ArchaicHorr'sIsland,WestCoralca. 5000 B.C.; earlier coastal Creek sitesprobablyinundatedbyrisingsealevel DaltonandBolen bifaces, Little Salt Spring,Warmbonepoints,non-returning8500 B.C.-6500 B.C. Late Paleo-IndianMineralSprings,Westboomerang,socketed Coral Creekwoodenpoint,oakmortar,atlatlspur11500 B.C.-8500 B.C. Early Paleo-Indian Little SaltSpringOnlywoodentoolsknownSarasotaCounty(CockrellandMurphy1978),andatthe WestCoralCreeksite (8CH74). At thelattersite, Bolen bifaces,thoughttodateto ca. 8000-7000S.c.(Hazeltine1983),alongwithnumerouschertandsilicified coral toolsanddebitageconsistentwithLate Paleo-Indian technologyelsewhereinFlorida, were found. Lithic artifactsoftheArchaicperiodwerealso collected,butnoceramicsofanykindwerenoted. The artifactsat8CH74werefoundmainlyindredgespoil fromtheexcavationofcanalsnearalargeslough. This suggeststhattheLate Paleo-IndianandArchaic componentsof this sitemayhavebeenclusteredaroundadependablewatersource,andnowlieburiedundermorerecent deposits. The Early Archaic, ca. 6500-5000 B.c., isunknownintheCaloosahatcheeareawiththeexceptionoftheWest CoralCreeksite,butthismaybedueto coastal Archaic siteshavingbeeninundatedbyrisingseas (Ruppe

PAGE 22

141980:33).FromHorr'sIsland(seeRusso1991a, b)datesof5199-4851 B.C.and5337-5207 B.C.havecomefrom shellsdeepinasandyoystershellmiddenknownasMoundB (8CR206).Horr'sIslandisnotwithintheCaloosahatcheeareaproper,beingsituatedinCollierCountynearMarcoIsland(seeFigure2ofChapter1).TheHorr'sdepositsaccumulatedontopofhighPleistocenedunes,whichmayaccountfortheirpreservationevenifothersimilarlyearlymaritimesiteshavebeencoveredbyrisingwater.TheMiddleArchaic, ca. 5000-2000 B.C., isrepresentedinsouthwestFloridabysubstantialcoastalmiddendepositsatHorr'sIsland(Russo 1991a, b)andthemortuarypondsiteatBayWest(8CR200; BeriaultetaI. 1981)andintheCaloosahatcheeareaproperbyrecentexcavationsonCalusaRidge,UseppaIsland(BlanchardandMarquardt1990:4-5).Analysisoffindingsfromthelatterexcavationisongoing,butisnotdiscussedinthisbook.ThebeginningoftheLateArchaic (ca. 2000-1200 B.C.) ismarkedbytheintroductionofceramics.OrangePlainandOrangeIncisedfiber-temperedpottery,aswellassteatite(soapstone)bowlfragments,werefoundattheCollierInnsiteonUseppaIsland(seebelow).FloridaarchaeologistsalsorecognizeaTerminalArchaic,or"Transitional"periodfromca. 1200 B.C. to 500 B.C.,characterizedliterallybyagradualtransitionfromfiber-temperedpotterytosand-temperedpottery(MilanichandFairbanks1980:152,154).Both"Orange"(plainandincised)and"Norwood"(plainandsimplestamped)refertofiber-temperedpottery,theformerthoughttohaveoriginatedinnortheastFlorida(Griffin1945:222),thelatterinnorthandcentralGulfcoastalFlorida(Phelps1965).AlthoughOrangeIncised(andPlain)potteryisfoundintheCaloosahatcheearea,IdonotknowofanyNorwoodSimpleStamped.Theterm"semi-fiber-tempered,"firstsuggestedbyBullenandBullen, issometimesusedto refer tothemixtureoffibersandsandinthetemperingofpotteryfromtheso-called"Transitional"period.TheBullens(1953)notedsimple-stampedsemi-fiber-temperedpotteryas farsouthasHernandoCounty.Cordell'sFBT2category(seeChapter4)wouldprobablybeconsidered"semi-fiber-tempered"bysome. IthasyettobedemonstratedforsouthwestFloridathatthetransitionfromfiber tosandtemperinginceramicswasaccompaniedbyanysignificantchangesinsubsistenceorsettlementpatterns.Theperiodfromca. 500 B.C. tothetimeofSpanishcontacthasbeendividedbyWidmer(1988:83-87)intofiveperiods.Widmer'sbasicchronologyisfollowedhere,butwehaveadjusteditinresponsetonewradiocarbondatesandtonewpotterystudiesdiscussedindetailbyCordellinChapter 4, thisvolume.Cordell'sconclusionsarebasedonmicroscopicexaminationofconstituentsinSand-temperedPlainpottery,observedchangesinrimandlipformsandvesselwallthickness,andproportionsofBelleGladePlain,SPCBPlain(seeChapter4), BelleGladeRed,andotherpotteryfoundinwell-dateddeposits.LargersamplesCulture and Environment in the Domainofthe CalusaandmoredetailedstudiesinthefutureareexpectedtoleadtofurtherrefinementsintheCaloosahatcheeareachronology.Widmer'sinitiationofCaloosahatcheeIIonthebasisofthebeginningofBelleGladePlainpottery,andofCaloosahatcheeIIIonthebasisofSt.JohnsCheckStamped,areadopted,withtheexceptionthatourcalibrateddateofA.D. 595-666onthemixedSandtemperedPlainandBelleGladePlainpotteryatUseppaIsland(discussedbelow)pushesthelocaladventofBelleGladePlainpottery,andthustheCaloosahatcheeIIperiod,backintothemid-seventhcenturyA.D. (Table 2). Also,ourexcavationsatBuckKeyindicatethatGladesTooledceramics,usedbyWidmerto signalthebeginningofCaloosahatcheeIVatA.D. 1400,mayactuallydatetotheBOOs,notthe1400s.SafetyHarborpottery,includingPinellasPlain,mayalsodateearlierthan1400;thesemattersarecurrentlyunderstudy.BelleGladePlainseemstodeclineinimportanceintheCaloosahatcheeIVperiod,basedonstratifieddepositsatBuckKey(8LL722;seeChapter4)andJohnQuietMound(8CH45;seeBullenandBullen 1956:43).InthisbookwebegintheCaloosahatcheeIIperiodatA.D. 650andtheCaloosahatcheeIVperiodatA.D. 1350. Finally,WidmerproposesA.D. 1513 forthebeginningofCaloosahatchee V, theperiodofEuropeancontact,presumablybecausethis iswhenJuanPoncedeLeonissaidtohavefirstlandedinFlorida.Iprefertobeginitat1500insteadbecauseIbelievethatEuropeanforaysintoCuba,theBahamas,andprobablyFloridawerewellunderway,ifunofficialandunreported,bytheearliestyearsofthesixteenthcentury(Marquardt1988:176-178). JOSSLYNISLAND(8LL32) We firstvisitedtheJosslynIslandsitein1983attheinvitationoftheowners,DonaldandPatriciaRandellofPineland.TheRandellshadoriginallyplannedtodeveloptheisland,butwhentheyrealizedtheextentandsignificanceofthearchaeologicalsitethereon,theyabandoneddevelopmentplansandnominatedtheislandtotheNationalRegisterofHistoricPlaces.TheislandwasboughtbytheStateofFloridain1989,andisnowpartoftheCharlotteHarborStateReserve.FundedbyagrantfromtheRandells,AlanMayandImappedthesite,withtheassistanceofseveralmembersoftheSouthwestFloridaArchaeologicalSociety.Themapwaspublished,alongwithadiscussionofthesite'stopographyandsignificance(Marquardt1984). AcrewvisitedJosslyninthespringof1985 to excavateacolumnsampleforarchaeobotanicalandzooarchaeologicalanalysis,andagaininthespringof1987 toexcavateanashandcharcoalconcentrationthatwehadobservedin1985intheprofileofalooter'sexcavation.Resultsoftheclam-seasonality,zooarchaeological,andarchaeobotanicalstudiesarereportedinChapters 7, 8,and10.GeoarchaeologiststookcoresamplesfromneartheislandinJune,1986,and

PAGE 23

Recent Archaeological Investigations15SCALEKEY:iIExcavations,1985and 1987AteamofUniversityofFloridastudentsandI journeyedto JosslynIslandfor aweekinMarchandagainfor aweekinMay,1985,withtheobjectiveofremovingacolumnsamplefromtheprofileofDisturbedArea8. Afterclearingthespoilpileandbrushbackfromthehole,weexcavatedandtroweleduntila profileofthedepositscouldbeseen. Alargeashandcharcoal concentrationabout140cmlongappearedabout75cmbelowthesurface(seeMarquardt1987:2).Charcoalcollectedfromityieldedadateof A.D. 819-996(14CdatesaresummarizedinTable 1).Wedrewa profilediagramofthisashyarea,aswellasoftheprofile fromwhichthecolumnsamplewastobetaken(Figures 3and4). trees,stranglerfig trees,andgumbolimbotrees, aswellas anumberofshrubs,cacti,andvines,especiallygrape(Vitissp.).Varioussmallmammals,suchasraccoonandmarshrabbit,as wellassnakes,skinks,gophertortoises,andnumerousbirdsarepresent.Theislandissurroundedbyveryshallow(lessthan0.5 m)waterandextensivemeadowsofmarineseagrasses,whichsupportlargepopulationsoffishandshellfish. Asmalloysterbarisfoundatthesouthwesternendoftheisland.Previous Archaeological InvestigationsFrankHamiltonCushingcameto JosslynIslandinthelatespringof1896(Cushing1897:337).Henotedthattheislandhadoncebeenclearedofvegetationandcultivatedinfruitandvegetablesbutwasonceagainovergrown.Hementionedfivehighandsteepeleva tionscappedbyshellmoundsonthesouthernandwesternperimeters,theseheightsbeingsurroundedby"deep,straightchannels"leadingtothesurroundingwatersofPineIslandSound.Tothenorthandeast,heobservedtwo"extensiveplatforms"withcanalsleadingtothenorth,intothemangroves.Intoacourtresembling"the cellarofanenormouselongatedsquarehouse,"Cushingexcavatedasmalltestpit,recoveringsinkersofcoralandshell,pottery,charcoal,andahaftedgastropodshelltoolwithaportionofitshandlestill intact.Theonlyotherprofessionalvisit tothesitewasthatofCarlosMartinezin June, 1976,whonotedthattheisland'svegetationhadreturnedto amaturestateandthatthesiteheld"greatpotentialforfuturearcheologicalstudies"(Martinez1976).Whilemappingin 1983,AlanMayandInotedeightlooters'excavations,whichwenumberedfrom 1 to 8(Figure2). Mostoftheseunauthorizedexcavationswereshallow,nomorethanameterdeep.DisturbedArea6wasthemostextensive. Locatednearthetopofoneofthehigherelevations, itappearedtohavebeenduginorderto collectlargeconchandwhelkshells,possiblyfor sale tosouvenirshops(seeMarquardt1984:Figure 8).Byfarthedeepest,thoughnotthelargest,excavationwasDisturbedArea 8 (see Figure2), anarrow,oval,trench-likeexcavationabout5 mlong,1mwide,andover3mdeep. MNt CONTOUR INTERVAL',METER ELEvATIONINMETERSA .... SL 2550M SOURCE: MARQUARDT 1984S.W.FPROJECTFlo.N.N.H.TESTUNITCORESAMPLEFigure2.JosslynIslandMound,showingareastestedin1985and1987.theirresultsarefoundinChapter3.Ceramic,shell,andboneartifactsarediscussedinChapters4, 5,and6.Environmental SettingJosslynIslandissituatedabout3.8kInsouthofPineland(Figure 1).Thearchaeologicalsite itself occupiesabout3.0ha(6.7 acres)andreachesamaximumelevationof6.02meters(19.75 feet)abovesea level (Figure2).SedimentsunderlyingtheJosslyn shellmidden are-' composedofshelly,muddysandandshellysand.Analysisshowsthatthemiddenaccumulatedonmarinedeposits,notonpeatsorothermangrovematerials.Themiddenseemstohavehaditsoriginonshoalsorsmall,exposedoysterbars,whichthen-grewoutwardontotheadjacentbaysediments.Theleeenvironmentscreatedbythemiddensthenproducedquietwaterconditions,allowingmangroveformation.Thus,themangroveswampsare,atleastinitially, aconsequenceofthemiddens,ratherthantheotherwayaround.Thearchaeologicalsite is geologicallytheoldestpartoftheisland,thenortheasternextenthavingbeenformedas aprogradinglobe. JosslynIslandprovidesaremarkableexampleoftheeffectofprehistorichumansonislandformationintheCharlotteHarborestuarinesystem(seeChapter3).Theisland's19.4ha(47.9 acres)arevegetatedbyred,black,andwhitemangroves,buttonwoods,stopperJ4.

PAGE 24

16Culture and Environment in the Domainofthe Calusa8LL32JOSSLYNISLAND1985.'{.'.".' -3.80NE..[..l....-"..[.....:\ ..':-3.60 .)...'.(. ....'.[. ........ \ .[...[.NI ( ...."...... ( .. ... ( ',(.NW-.---3.80_...3.60 2.80--2.60-UNEXCAVATEDI0.250.5METERLEGEND L/;>0::j:::::;::;':1[JJ IIVERYDARKGRAYISHBROWNDARKGRAYLIGHTYELLOWISHBROWNLIGHTGRAY 1>=-=1 I((((IE d I IIoBONESHELLCHARCOALRADIOCARBONSAMPLEC,MeP.T.Figure3. Acircumscribedzoneofalternatinglayersofash,shellmidden,charredwoodandtinyfishbonesappearedinthenorthernprofileofDisturbedArea8(OperationA)atJosslynIsland.Keytostratigraphy:a=whiteash;b=smallbones;c=charcoal; d=verydarkgrayishbrowndenseshellmidden;e=darkgraysparseshellmidden;f=darkgraysand;h=lightgrayash.DisturbedArea 8 isreferredtohereasOperationA,withTest PitA-Ibeinga50x50emcolumnsampletakenfromtheeasternendoftheenlargedandstraightenedlooter'shole. Thirty-eight ten-centimeterlevelswereremovedintheir entireties for possible flotation. Westoppedonlywhengroundwaterintrusionmadefurtherworkimpossible. Level 38wasalmostentirelysubmerged.Shellmiddendepositsextend65embelowthepresent-daywaterlevel accordingtooursoilprobe,whichencounteredatthatdepthanimpenetrablelayerofnon-shellsediment.The3.8-mprofilepresentsanintriguingstratigraphichistoryofaportionofJosslyn Island. AsFigure4shows,thedensity,size,andspecies of shellsvarydramaticallyat differentdepths.Movingfrom the surface tothebottomoftheprofile,thelayersaredescribedas follows.ZoneI, thetop5 to 7 em, is adarkbrownlayerofhumusandleaf litter.ZoneII, fromanelevationof3.82 m toabout3.66,includesallofarbitraryLevel 1 (3.81 to 3.71)andhalfofLevel 2.Itiscomposedofhighlyorganicbrownsandwithnumerousrootsand

PAGE 25

Recent Archaeological Investigations17TestPitA-ILEGEND:14,1985MAY81132ISLAND SHELL JOSSlYNColumnSample VERYDARKGRAYISHBROWN 1'-':<;:;:::':,1 DARKBROWN I':.::::'."J DARKGRAYISHBROWN C=:J WHITEI cJ}j) IREFERENCESHELLI ISCALLOPSHELL CRUSHEDSHELL RADIOCARBONDATE POTTERYSHERD c:=:J BONE1.8I1.6I3.2I3.41 3.6 I1.2I3.0I1.0I1.4I2.6I2.412.812.2I2.0108I0.41 0.610.2I0.0IELV. 3.8 IUNEXCAVATED/6/0226184824 20303428263238360.25I0.50METERSC.McP.TFigure 4.ProfilediagramandcompositephotographofthestraightenedeasternendofDisturbedArea 8 (OperationA-I,columnsample),JosslynIsland.

PAGE 26

18occasional piecesofbrokenmolluskshells.ZoneIIIextendsfrom 3.66 m toabout3.53 m,andincludesthebottomhalfof Level 2andall of Level 3.Itconsists ofgrayishbrownsandandfinelycrushedshell frag ments.ZoneIV,whichextendsfromabout3.53 m to 3.33m,is similar toZoneIIIincolor,butitcontainsnot just smallcrushedshell fragments,butanumberof small tomedium-sizedwholeshellsandlargefragments,mostlyBusycon contrarium(lightning whelk). The con sistencyofZoneIV ismuchfirmerandtheshellsmorecompactthanthatofZoneIII.ZoneIVincludesLevels 4andmostof 5andisradiocarbon-datedto A.D. 1225-1304.ZoneV extendsapproximatelyfrom 3.38-3.33 m to 2.86-2.80m,andincludesthelowerpartofLevelSdownthroughthebottomofLevel 10.Itis similar in color toZoneIV,buthas fewercrushedshell frag ments. It alsocontainsagreaterpercentageoflargewhelkshells,mostlyBusycon contrarium,butalsoFasciolariatulipa(truetulip)andotherconchs,andtheoccasionalMercenaria campechiensis(quahogclam). An especiallydenselensofmedium-sizedconchandwhelkshells,dominatedbyBusycon contrarium,characterizes thelowerpartofthe profile(approximately3.10 m to 2.80 m)onthesouthernextremityjustabovethemaindepositofZoneVI'sash(Figure 4).ZoneVI ischaracterizedbylayersofunconsolidatedbrownsandcontainingmanytinybonesalternatingwithlayersofwhiteashandburnedshells.Onthesouthernside ofthe50em-wideprofile,theashandbonezoneextendsasdeepas 2.54 m,butittrendsupwardsto intersectwithadenseconcentrationofscallop shells(Argopecten irradians)andwhelksonthenorthernsideatca. 2.82-2.66 m (seeFigure4).Twomajorash-and-burned-shelllayersareseparatedbya 5-8 em thicklayerofloosebrownsandwithmanyhundredsoftinybones(Figure 4). A shell from thelowerpartof thewhite-ash-and-burned-shelllayerdatesto A.D. 801-978. Beneath thelowerash-andburned-shelllayeris a second, 2-3 em-thicklayerofloosebrownsandwithtinybones(Figure 4).ZoneVIIextendsfromthebottomoftheundulatingashandbonelayerdowntoapproximately2.42-2.39 m, thebottomofLevel 14. It isgrayishbrownsandwithboneandshell,thelatterpredominantlywholeandfragmentedlightningwhelkshells ofvarioussizes.Tulipandscallop shellsarealso common:someofthetulipsareunusuallylarge; the scallopsaremorecommontowardthelowerpartofZoneVII. A concentrationoffighting conch(Strombus alatus/pugilis)shellsappearsatthetopofZoneVIIonthenorthernedge,extendingfrom 2.72 to 2.67 m (Figure 4).ZoneVIIIextendsfrom2.41to 2.30 monthesouthernedgeandfrom 2.39 to 2.26 monthenorthern.Itis adarkgrayishbrownsandwithonlyafewsmall shell fragments. Thisrelativelyshallowstratumisintermediatebetweentwomuchdenserstrataofshellmidden.Culture and Environment in the Domainofthe CalusaZoneIXis adenseshellmiddencomposedofdarkgrayishbrownsandwithmanywholeandbrokenshells of different sizes. Whelks, conchs, clams,andoystersarerepresentedinquantity.Thezoneextendsfromabout2.26-2.30 mdownto 1.96-1.94 m (Figure 4),themiddleofarbitraryLevel 19. ShellsfromLevel 17,thecenterofZoneIX,dateto A.D. 143-292.ZoneX is astratumofdarkgrayishbrownsiltysandwithonlya fewsmallshellfragmentsandoneareaofdiffuselightgrayashysandnearthebottomofthezone(Figure 4). Itextendsfrom 1.96 mdownto 1.41 m,thebottomofLevel 24. A14Cdateona shell from Level 23 is240B.C.-67 B.C.ZoneXIextendsfrom 1.41 mdownto 1.10-1.04 m. It is astratumofdarkgrayishbrown,unconsolidatedsandwithasparsebutvariedshell content. Oyster, clam, tulip,lightningwhelk,andscallopsarerepresented. Thelower10-15emof thiszonecontainmanysmall shell fragments,butthematrixappearsidentical to theupperpart.InZoneXIIthemiddenbecomesverydenseindeed.Thereisalmostnosedimentotherthanmolluskshells,thoughminoramountsofdarkgrayishbrownsandarepresent.Thereis anotableincrease in scallop shellsinZoneXII,butshells ofotherspecies-thefamiliarwhelks,conchs,oysters,andclams-arepresentingreatnumbersandall sizes. Thisdensezoneofshellsextendsfromabout1.10 mdownto 0.77 em.ZoneXIII issimilartoZoneXIIinthesizesandvarietiesofshellspresent,butinZoneXIIIthereismoreofthedarkgrayishbrownsand.Thezoneextendsfrom 0.77downto 0.61 m, thebottomof Level 32.ZoneXIVextendsfrom0.61 mdowntothelimitoftheexcavationat0.01 m,thebottomofarbitraryLevel 38.Itiscomposedofverydarkgrayishbrownsandwithsomewholeshellsofvarioussizesandsomefinelycrushedshell. Thiszonewasquitedampanddifficult to excavateanddescribe. Thewaterroseupto 0.08 mduringexcavation, sothelast 7emofthe final levelwere"excavated"byreachingunderthewaterto recoverthesample.A14Cdateof324 B.C.-50B.C.wasobtainedfrom a shellfromLevel 33,nearthe topofZoneXIV.An Oakfieldsplit-spoonsoilprobewasusedtoascertaintheextentofthemiddenbelowtheexcavation. Themiddenextendsto65embelowthebottomof Level 38,orto -0.64 m.Insum,theexcavationofColumnSampleA-Irevealed4.45 mofstratifieddepositdatingfromaboutthethirdcenturyB.C.to thethirteenthcenturyA.D.JudgingfromthedatesofLevel 33 (324-53 B.C.), Level23(240-67 B.C.),andLevel 17 (A.D. 143-292), thelowerhalfofthemidden-ZonesIXtoXIV-appearstohaveaccumulatedrapidly,perhapsin as little as 300 years.Thenext availabledatefrom the profile is A.D. 801-978 from theashconcentrationofZoneVI,some650 yearslaterthanthedepositlessthanameterbelowit. TheashconcentrationofZoneVI iscontemporaneouswith

PAGE 27

Recent Archaeo logical Investigations19ThedeepA-I excavationshowedusthevarietyindepositsandestablishedatimerangefor Josslyn Island,butshallowtest pitsB-1andC-lshowedthatquitedifferentdeposits,i.e.,concentratedwhelkshellsandmuckyscallopmiddens,weretobefoundnearby.The1985 excavationssucceededinestablishinga timerangefor Josslynandobtainingcontrolledsamplesfor archaeobiological analysis. Levels 4, 12, 22,and32wereselected for flotation,representingZones IV, VI,X,andXIII.Thearchaeobotanicalandzooarchaeologicalanalysesundertakenonselected levelsoftheA-Icolumnsamplewereinformative(seeChapters8and10 for details). MostoftheseedsidentifiedintheA-I. columnsamplewereofruderal(weedy)taxa,includingchenopod,mallow,grass,purslane,pokeweed,andtrianthemaseeds.Sawpalmettoseedsandredmangrovesproutswerealsoidentified,anda few masticseedswerefoundintheuppermostanalyzedlevel.OnlyinLevel 22wereseedsreasonablyabundant;again,ruderaltypes(chenopod,purslane)dominated.Redandblackmangroveandpinewerethemostcommonlyusedfuelwoods.The zooarchaeologicalanalysisoftheA-Icolumn revealeda richanddiverseassemblageoffauna.Anaverageof29vertebrate(mostly fish)and45invertebratespecieswereidentifiedinthefouranalyzedlevels,overtwo-thirdsofwhichliveinshallowseagrassmeadowhabitats.Pinfish,pigfish(grunt), silverperch,andhardheadcatfishwerethemostabundantfishes. Birds,reptiles,mammals,andcrustaceanswererepresentedinfrequently.Figure5.Straightenedprofileoflooter'spit(DisturbedArea6,orOperationB),JosslynIsland,showingabundanceoflightningwhelks.thehigherashdepositnotedinthenorthprofile,whichisdatedto A.D. 819-996. The absenceofBelleGladePlainpotterybelowZoneVIaddscredibility to thesedatesbecauseitisnotknowntoappearinsouthwestFloridasitespriorto ca. A.D. 650.Intheabsence of14CdatesfromZonesVIIandVIII,wecannotbecertainthatJosslynwasoccupiedfromca. A.D. 300 to 800. AdateofA.D. 1225-1304 fromthebottomofZoneIV placesthestratumintheearlyCaloosahatchee IIIperiod.WestraightenedtheprofileofDisturbedArea6, the "shellquarry"pit,andplaceda 50 x 50emtest excava tion, called B-1,adjacenttotheprofile. Itwascarriedto adepthof40embelowthesurface. As Figure 5shows,theareaiscomposed,atleastnearthe surface,almostentirelyoflightningwhelk(Busycon con trarium)shells ofvarioussizes.Therewerealsosparsefishbonesandflecksofcharcoal,andaverysmallamountofsand.Welocatedathirdtest excavation,C-l,nearthemiddleofCushing'sso-called "central court." Thesandymatrixwasverydarkbrowntoblackincolorandverydenseinmarineshells.GroundwaterseepagebeganatthebottomofLevel 3,30embelowthesurface,andexcavationbecameimpossiblebelowLevel4.This excavationrevealedfew artifacts,andtheshellswerealmostexclusively scallops(Argopecten irradians).Single BelleGladePlainsherdsfrom Levels 1and3implya post-A.D. 650dateforthescallop-shellmiddenofOperationC.Thethree test pitsexcavatedinourbrieffieldseasoninSpring, 1985,contrastedsharplywithoneanother.

PAGE 28

20Wereturnedto JosslynIslandinMayof1987 to excavatetheashandcharcoal concentrationthatwehadobservedin1985inthenorthprofileofOperationA. Theashandcharcoal area,thoughnotasdeepastheashseeninZoneVIofTestA-I,hadbeenshowntobeapproximatelycontemporaneouswithit. Iwasintriguedbothbythecomplex layeringofdiscrete ash, bone,andsparseshellysedimentsandbytwovertical,post-moldlike depositsofdarkgraysand(see Figure 3).Wantingaplanviewoftheashcomplex,ratherthansimplya profile, Idecidedtoplacea3x2m excavationunitadjacent tothenorthernprofileoftheoldlooter'spitinorderto investigatethearea. The objectivesweretodetermineif astructureorevidenceofdomestic activitiescouldbediscoveredatthis loca tionand,if possible, toinferthefunctionoftheactivity area. The 3x2m excavationwascalled A-2. Excavationwasdonebytrowelandshovel,andsedimentwassiftedthroughV4-inchhardwarecloth. Weremovedthefirstfourlevels untilthetopofthelightgrayashzonebegantoappearat3.37 m. Thezoneabovetheash(Levels 1-4)wasadarkgraysand,withsparseshells. Shellswerevariedbothinsizeandspecies,andnumerousfishbonesandotheranimalbones, especiallyofdeerandduck,werefound. Thepotteryoftheupperfour levels suggests theCaloosahatcheeIIIperiod,ca. A.D. 1200-1350,withthepresenceofSt. JohnsCheckStampedpotteryandamplequantitiesofBelleGladePlaininall four levelsCulture and Environment in the DomainoftheCalusa(see Table21inChapter4).NoSt. Johns CheckStampedpotterywasfoundbelowLevel 4 (elevation=3.35 m). Theupperfour levelsofA-2areprobablycontemporaneouswithZoneVofA-I (i.e.,A-I,Levels 6-10). The fifth levelofA-2containedmostlyBelleGladePlainpottery,butnoSt. Johns Check Stamped. Thenon-ashypartofLevels6,7,and8wascomposedofverydarkgrayishbrownsandwithshells farmorecommonthanintheupperfive levels. This leadsmetoventurethatit iscontemporaneouswithZoneVIIofA-I,also characterizedbygrayishbrownsandwithdensedepositsofbonesandshells,mostcommonlywhelkandtulipshellsofvarioussizes,andalsopartiallyunderlyinganashandcharcoalstratum.Ashandcharcoal increased, as expected,below3.35 m,confirmingthattheashzoneidentifiedatthatelevation intheprofileofthelooter'spithadbeenlocated.AtthebeginningofLevel 6 (3.21 m)theexcavationwasdividedintotwoloci,theashareabeingcalled A-2-6-1 (i.e., Locus 1ofLevel 6ofTest Pit A-2). AtthebottomofLevel 6 in Locus 1 itwaspossible to see fourverydistinctcircularareasofdarkgraysandcontaining a few smallcrushedshell fragments(Figure 6). Theseappeartooregulartoberootstains,althoughthatpossibilitycannotberuledout.Ifthey aretheremainsofpostmolds,theymayrepresenta cooking rackorfish-smoking rack associatedwiththeasharea. But sincetheyintrudeintotheashandbonelayers from above, it seemsmorelikelythatFigure6.AshareaatbottomofLevel 6,TestA-2,JosslynIsland;notedistinctcircularareasofdarkgraysandintrudingintotheash.

PAGE 29

Recent Archaeological Investigations21Table3.SummaryofVertebrateFaunalRemains(MinimumNumberofIndividuals)IdentifiedfromAshandCharcoalStratum,}osslynIsland,TestExcavation A-2-6-l(screensize=2.0mmiZooarchaeologyAccessionNumber0446).TaxonCommonNameMNId.Peromyscus gossypinusCottonMouse1Procyon lotorRaccoon 1Odocoileus virginianusWhite-tailedDeer1AnatidaeDucks 4TestudinesTurtles 1Anolis carolinensisGreenAnole 2CarcharhinidaeRequiemSharks 4Aetobatus narinariSpottedEagle Ray 1 Rajiformes SkatesandRays 1ClupeidaeHerrings2AriopsisfelisHardheadCatfish8AriidaeSea Catfish 64 aOpsanussp. Toadfish8Strongylurasp.Needlefish1SerranidaeGroupers1Orthopristis chrysopteraPigfish 10Archosargus probatocephalusSheepshead3LagodonrhomboidesPinfish222Sparidae(d.Lagodonrhomboides)Porgies 19Bairdiella chrysouraSilverPerch5Cynoscion nebulosusSeatrout8Leiostomus xanthurusSpot 1Scianops ocellatusRedDrum4Mugilsp.Mullet1Paralichthyssp.Flounder2Chilomycterus schoepfiStripedBurrfish 1aSea catfishMNIbasedon64rightotoliths;couldsubsumetheMNIrecordedforAriopsisfelisbasedon8dorsalspinefragments.theypost-datetheashdeposit.Theymayhavebeenpostsassociatedwithahousestructure,net-mendingornet-makingstructure,orsomeotherfabrication. Theashdepositprovedtobeascomplexas ex pected. Distinct layersofashandcharcoalandpock etsandlayersoffishboneswerefound. Someofthe fishboneswereburnedandhighlyfragmented.Most ofthefishrepresentedwerepinfishandsea catfish (see Table 3),indicatingexploitation of the seagrass flat habitat. Thebottomoftheashwasreachedat2.80m,thebottomofLevel8.A shellfromthebottomofthedepositdatestoA.D. 961-1054,somewhatmorerecentthanexpected.Figure7 proVides a profilediagramoftheashyarea,whichextendedintothewesternprofileofA-2. Asnotedbefore, layersofcharcoal,whiteash,graysand,andconcentrationsof fishboneswerequitedistinct fromoneanother.ScarryandNewsom(see Table12inChapter10)reportthatmangrove(60%)andpine(40%)arerepresentedin the charcoalofthe A-2ashy

PAGE 30

22Culture and Environment in the Domainofthe Calusa8LL32SE0.000.20 0.400.60.(0.801.00JOSSLYNA-2SWISLANDA-2MAY29l1987NW0.00 0.200.40 0.60 0.801.00LEGEND:UNEXCAVATED r?xz>:'iI1.::':<:
PAGE 31

Recent Archaeological Investigationsmostwillhaveleft theestuarytospawnindeeperwaters. InFigure8thehatchedbarsshowthedistributionofpinfishsizesthatwouldbeexpectedifharvestedfromAprilthroughSeptember; the solid blackbarsrepresentlengthdataderivedfrommeasurementson222 pinfish atlases from Josslyn Island, A-2 6-1 (Le., Test Pit A-2, Level 6ofLocus 1, theashzone).Thevisualfit allowsonetoinferexploitationofpinfish inthespringandsummer.AlthoughthepotteryofA-2 indicates atransitionfrom lateCaloosahatcheeII toearlyCaloosahatcheeIIIperiods,thenumerousotherartifactsfoundinthe23depositsvarylittle from level to level (see Table 4). Shell artifacts, especiallyperforatedNoetiaponderosanetweights,werecommonthroughout.Severalbonepoints,shellsinkers,andnetmeshgaugesaddevidencethattheareawasthelocation of activities connectedwithfishing.Thelarge(l.46 kg),waistedsandstoneartifactfoundinLevel 7ofA-2 (Figure9)couldbeinterpretedasananchor,butitcouldhavefunctionedas ahaftedsledgehammerwieldedbyaprehistoricversionofthelegendaryJohnHenry.Anumberof shellhammers,potsherds,bonepins,andbonebeadssuggestarangeof activitiesotherthanthoseconnectedcloselywithfishing. Several frag-Table4.SelectedArtifactCountsfromTestPitA-2,JosslynIsland.GastropodProvenienceaPotterybPerforatedCutting-GastropodColumellaSinkersdNetMeshBone BonePinsBoneBivalves'edgedHammersHammersGauges'PointsBeadsToolsA-2-1SIP155N(Level1)BGP181 0 1 1 Sh 0 0 0 0 BGR 0 SJC 6 A-2-2SIP1018N (Level2)BGP260 3 2 1 Sh 0 2 0 0 BGR 0SJC3 A-2-3SIP2015N (Level 3) BGP151 1 1 01 Sh 2 1 0 BGR 5SJC8 A-2-4SIP179N(Level4)BGP39 1D 1 2 0 0 0 4 1 1 BGR 9 SJC 2 A-2-5SIP136N (LevelS) BGP191D 2 3 11Sh1Bo1 0 0 BGR 2SJC0 A-2-6SIP1614N (Level6)BGP32 1D 3 5 01 St 0 3 0 0 BGR 55ASJC0 A-2-7SIP3913N (Level 7) BGP403 4 01 Sh 1Bo3 1 3 BGR101 ShSJC0 A-2-6-1SIP73N(Level6,BGP72D 0 0 0 0 0 1 0 1 Locus1)BGR 5 2ASJC0 A-2-7-1SIP71N (Level 7,BGP11A 0 1 1 0 0 0 0 0 Locus1)BGR 1SJC0A-2-B-lSIP134N(Level 8,BGP01D 0 0 0 0 0 0 0 0 Locus1)BGR 0SJC0Totals41010211196541635"Locus 1 (i.e., A-2-6-1, A-2-7-1,andA-2-B-l)is theashyarea. bSIP=Sand-temperedPlain; BGP=Belle Glade Plain;BGR=Belle Glade Red;SJC=St. Johns Check Stamped.'N=Noetiaponderosa;D=Dinocardium robustum;A=Argopectenirradians.dSt=stone; Sh=shell. 'Bo=bone; Sh=shell.

PAGE 32

24Culture and Environment in the Domainofthe CalusaSUMMER/EARLY FALL o June-October_8LL32,A-2-6-11-4041-80StandardLength(mm)mentsofsandstoneshowingevidenceofgrinding,polishing,orsharpeningwerefoundintheA-2 excavation(see Table 5). That thisdomesticareawasextensiveissuggestedbytheroughlycontemporaneousash/charcoal/bonedepositsofZoneVI, PitA-IandofA-2. Theashydepositsdateto ca. A.D. 800-1050basedonthree14C assays: A.D. 801-978fromA-I,ZoneVI; A.D. 819-996 from theashareainthestandingprofileofthelooter'soriginal pit;andA.D. 961-1054 from thebottomofthe 1987 excavationofthatsameasharea. Theremaybe adepositofconsiderableextentin thissoutheasternportionofJosslynIsland,perhapstheremainsofapermanentvillage,thoughthis ishypotheticalin the absenceoffurtherexcavations.'81908070605040302010 100Figure8.HistogramcomparingpercentagesofThepreliminarytestingofJosslynIslandin1985andstandardlengthsofpinfish(Lagodonrhomboides),1987accomplishedtheobjectives ofdatingthedegroupedin40mmintervals:modernCharlotteHarbor,n=2130(WangandRaney1971), vs. aposits,learningsomethingoftheirstructure,andsamplebasedonatlasmeasurementsfromTestPitobtainingdetailedzooarchaeologicalandar-A-2, Level 6, LocusI,JosslynIsland,n=242.Seechaeobotanicaldata.ThetestingalsoshowedhowRusso1991a:227-229, 232forexplanationoftheverylittlewereallyknowaboutJosslyn.Farmorealgorithm.extensiveexcavations will be necessary,andin severalTable5.StoneArtifactsandOtherStoneObjectsFoundatJosslynIsland,1984-1987.Small,Grinding!FossilRoundSharpeningBonesandOtherProvenienceSinker"Bolo"PolishingStoneSharkSandstoneLimestoneStoneStonesStoneTeethSurface I 3 3 A-I-2 2A-I-3IA-I-4I I 2I A-I-5 I A-I-6 I I A-I-8 IA-I-9I A-I-IO IA-I-llI A-I-12 IA-I-IS6 A-I-22 I A-I-32 7 A-2-I I I I A-2-2 I I I A-2-4 2 I I A-2-S I 2 A-2-6 I I A-2-6-I I I A-2-7 2 I I 2 2Totals2 2 6 5411266

PAGE 33

Recent Archaeological Investigations25THE COLLIERINNSITE, USEPP A ISLAND(8LL51)differentpartsoftheisland,beforewewillbeable tointerpretconfidentlyitsroleintheprehistoric socialandeconomic lifeofPineIslandSound.Figure9. AlargewaistedsandstoneartifactfoundinLevel 7 ofTestPitA-2,JosslynIsland,mayhavebeenusedasananchor.TestB,the2x2mexcavation,wascutintoastratifiedshelldepositonthesoutheasternpartofthe island. Thedepositdatedfrom ca. A.D. 193-392 to themullettomarketsinCuba(Hammond1973; Williams 1962). Atop theeasternduneridgeis a shellmiddencontainingcomponentsdatingfromthethirdmillenniumB.C.throughtheCaloosahatcheeIIperiod,cappedwithashallowhistoricperiodmidden.Ontopof thedune-middencomplex Barron Collierbuiltahomeforhimselfandhis familyin1912 (Figure 10),alongwithseveralguestcottages forinvitedvisitors. A 22-room hotel,builtearlierbystreetcartycoonJohnRoach,wasa mecca for the richandfamousthroughthe1920sand1930s,buttheisland'sbuildingsfellintoruinfollowingCollier'sdeathin1939. Theislandwasusedbrieflyformilitarypurposesinthe1960sasatrainingsite forCubanexpatriatespreparingfortheBay of Pigs invasion. Garfield Becksteadpurchasedtheislandin 1976,completelyrestoringtheremainingbuildingsandlandscape.Theislandistodayhometoaboutonehundredfamilies,andthearchaeologicaldepositsandhistoricbuildingsareprotectedfromdisturbancebyrigidrestrictions.Previous Archaeological InvestigationsAlthoughUseppaIslandismentionedinearlyac countsofshellmiddensites (e.g., Simons 1884:794796),noknownexplorationsweremadeofitsimpressivedeposits. TheislandwasvisitedbrieflyinOctober, 1947,byJohnW. GriffinandHaleG. Smithwhenworkersexpandingthetenniscourtencounteredhumanburials(GriffinandSmith1947). Shelldeposits,dominatedbyconchandwhelk, anumberofhumanbones,andpotteryrepresentinga long time range,werefoundin aone-hundred-foot(ca. 30 m)disturbedprofilewestofthetenniscourtthatis locatedsouthandwestofthe CollierInn(Figure 11). Thehumanboneswereconcentratedinthenorthernten feetoftheexposedface. The visitorsconcludedthat"UseppaIslandwouldappearto offergoodprospects for astratigraphicpicturerangingfrom fibertemperedtimes tothefull historic period" (Griffin 1949).UseppawasnotagainvisitedbyarchaeologistsuntilMay, 1979,whenJeffersonChapmanandJerald Mil anich excavated severalbackhoetestsinvariouspartsoftheisland. These testswerefollowedin1980bytwohand-dugexcavations, a3x3m test inanArchaicmiddenanda2x2m testinamorerecentdeposit(Milanich et al. 1984). Test A, the 3x3m test,revealedapreceramicshellmidden.MilanichandChapmanobtainedradiocarbondatesof 4610-4370 B.C.and3890-3640 B.C. (Table 1)andinterpretedthe site asanArchaiccampandcolumella-toolmanufacturingsite. Zooarchaeological analysisofa fine-screened(l.6mm)sampleofthemiddendemonstratedexploitationofbonyfish,sharksandrays,turtle,andshellfish (Milanich et al. 1984:271-278).10 ;:.... ;em ;". oEnvironmental SettingUseppaIslandis located innorthwesternPineIslandSound,about5.6kInwestofPineIslandand2.4kmeastofCayoCostaIsland(Figure 1).UseppaIslandislongandnarrow,approximately1.7kInlongand0.5kmwide.Itrunsroughlynorth-southalongits long axis.TheeasternedgeoftheislandismarkedbyaduneridgeofPleistocene agethatrises toanelevationofover6mabovesea level (seeChapter3). Theislandissurroundedbyshallowestuarinewaterswithampleseagrassmeadowsandoysterhabitats,butwatersofnearbyBocaGrandePass (over 10 mdeep)exertin fluenceonthefishpopulationsthatfrequentthearea.Historic SettlementA significantpartofUseppa'sremarkableelevation canbeaccountedforbythousandsofyearsofaccumulatedprehistoricandhistoric archaeologicaldeposits,whichextendoverapproximately4 haoftheisland. HistoricalrecordsindicatethatoccupationofUseppacontinuedafter thedemiseofnativeIndiangroups.InthenineteenthcenturyUseppawashometoSpanishfishing families,whoshippedbountifulharvestsof

PAGE 34

26 CultureandEnvironment in the Domainofthe Calusa KEY' INTERvAL' 1.0 NTER[LEV"T'ON IN ",HERS4,,,".5.c. Figure11.UseppaIslandasitappearedin1985;severalhouseshavebeenbuiltsincethismapwasdrawn.Figure10.TheCollierInnonUseppaIsland,formerlytheresidenceofBarronCollier.Nowarestaurant,thebuildingisconstructedontopofaprehistoricmiddendepositedonanancientPleistocenedune.historicperiod.Again,thezooarchaeological analysisrevealedaprincipalrelianceonfish,sharksandrays,andshellfish(Milanichetal. 1984:278-287).AnnCordell'smicroscopic analysisofasmallsampleofplainpotteryfrom Test BdemonstratedthattheapparenthomogeneityofsouthwestFloridaplainwaresbelies significantvariationinaplasticconstituentsandcolor.TheseobservationsontheUseppapottery,togetherwithvariationsinrimformandthicknessalreadyrecognizedforplainwaresbyLuerandAlmy(1980, 1982),laidthefoundationforCordell'smoredetailedstudies,reportedin thisvolume(seeChapter4).ExcavationsattheCollier Inn, 1985InAugust,1985, IwasinvitedtoUseppaIslandtoexaminesomeartifactsandbonesthathadbeeninadvertentlydisturbedbyabackhoeduringtherelocation of apalmtree justsouthandeastoftheCollier Inn.UponmyarrivalIobservedasquarishholeabout3.3 mona sideandabout80 cmdeeplitteredwithhumanbonefragmentsandprehistoricpotsherds.Aftershovelingouttheloosedirt,Icuta vertical faceintothenorthandwestsidesoftheexcavation.Thisrevealedanupperlayerofdarkgrayishbrown,highlyorganicsandwithmanyshellsextendingapproximately60to70cmbelowthesurface,andanunderlyinglightbrownsandlayerwithsparseoysterandclam shellsextendinganother20cmtothebottomofthe excavation.

PAGE 35

Recent Archaeological InvestigationsTrowel-scrapingof thebottomofthepitexposedthebadly-disturbedremainsofa juvenilehumanin a flexed position,lyingonits left side (Burial 1). Thecraniumwaslargelyabsent,apparentlyhavingbornetheimpactofthebackhoe'sshovel. Apartofthemandible,theoutlineofthevertebralcolumn,andpartsofthe legbonescouldstill bediscerned(Figure 12). IcoveredtheburialremainsandmadearrangementstoreturntoUseppainSeptember. AssistedbyMichaelHansinger,whoexcavated theremainsof Burial 1, severalUsepparesidentsandvisitors,andislandowner/developerGarfield Beckstead,whoprovidedfoodandlodgingandhisownphysicallabor, Iconductedadditionalexcavationsatthe CollierInnSeptember22-28, 1985. Toinvestigatefurtherthestratigraphyof thispartofthe island, Iopeneda1xlm test pit,numberedA-I, inthewestprofile of thebackhoeexcavation (Figure 12). De positswereremovedin lO-cm levelsandscreenedthrough V2-inch screen.Inthe first level justbeneaththegrasslawnwerefoundachampagnecork, a golf ball,andacompletehaftedbifacemadeofanoff-white chert. Thegolfballmaybea relic oftheBarron Collier era, for Collierhadcreateda nine-hole golfcourseontheisland. The biface fits thedescriptionof aColumbiapoint,thoughtbyBullen (1975:19) todateto ca. A.D. 200-1250,butbelievedbyJ.T.Milanich (personalcommunication,1989) toberestricted to ca. A.D. 300 900.About5cminto Level 2, or15 cmbelowthe surface,weencounteredaconcentrationofSand-temperedPlainandBelleGladePlainpottery.ThequantityofpotterydecreasedbelowLevel 3. Bothplainandin cisedfiber-temperedpotteryoftheOrangeserieswasfoundinLevel 7, belowthedarkorganicshellmiddenbutabovethelevelofBuriall.Toinvestigatethepotteryconcentrationfurther, a1xlm testpitnumberedA-2wasplacedadjacent toandsouthofA-Iandalsoexcavatedin 10-cm levels. The thicklayerofplainpotsherdswasagainencounteredbetween10and15 cmbelowthesurface,andsowasahumantibiaandcranium(Burial 2).OperationAwasagainenlargedbyaddingathird1x1m pit, A-3, to theeastofA-2 (Figure 12),inordertoobservetheextentofthehumanremains.Almostimmediatelyanotherhumanburialwasdiscovered(Burial 3). Threethingsbecameapparentas excavationproceededaroundthehumanbones. First,thematrixcontainingtheburialswasadarkgraysandwithfew shells,whilethemiddenintowhichtheburialshadbeenplacedwasthepreviously-describeddarkgrayishbrownsandwithdenseshells. Second, ceramic vesselfragmentshadbeenapparentlyplacedontopof theburials,particularlynearthecrania. The "blanket"ofpotterydidnotextendmorethana few centimetersbeyondthe burials.Third,theburialswerepartlyarticulated,butseemedhaphazardlyplaced. For example,theleftarmof Burial 2wasfoundtouchingitscranium,butthewristandhandbonesweremissing. Burial 2waslyingonitsrightside, itscraniumsituatedalmostvertically. Burial 3's craniumwaspractically27facedown,havingapparentlyintrudedintoandreplacedthelowerhalfofBurial2.As Burial 3wasbeingremoved,twoadditionalarticulatedlegs ofanadultsizedindividualwerediscoveredbeneathBurial3.Theseboneswereleftinplace,andcoveredbyathinlayerofwhitesand.Anisolatedmandiblewasalsofoundin theburialfillnearBurial3.Thispartofthe CollierInnsiteappearstobeacemeterywithmanyburialsplaced in closeproximitytooneanother.Such asmallpartoftheburialareawasuncoveredthatit isimpossibletodeterminewhethertheburialsarepartofamassgrave,orsimplytheaccumulationofmanyyears'intermentofindividuals,someofwhichdisturbedandcontortedburialsthathadprecededthem. There is nostratigraphicconnec tionbetweenBurial 1, locatedinthe lightbrownsandypreceramicmidden,andBurials 2and 3, associatedwiththelayerofplainpotteryintheupper,darkgrayishbrownshellmidden.After thebonesof Burials 1,2, and3hadbeenremoved(seeChapter11fordescriptionsofthehumanremains), a50x50cmcolumnsample, A-4, wasexcavatedinlO-cm levels inthewestprofileofA-I (Figure 12). Burial 1 isdatedindirectlyby14C assaysonclam shellsfoundjustaboveandbelowit (2880-2652B.C.and2858-2598 B.C.). Burial 1predatesthefibertemperedpotteryfoundin Level 7 oftheA-Iexcava tion,whichis from astratumapproximately25to30cm higher. Dates of 2011-1778B.C.and805-740B.C.from shellsfoundin Test Pit A-4, Levels 3and 2, respectively,indicatea Late Archaic toCaloosahatchee IperiodtimerangefortheupperCollierInnshellmidden.Theupperburialsandtheir associatedpotteryareintrusiveintothis earliermiddendeposit.Evidenceforintrusionincludes(1)thesignificantquantityofBelleGladePlainpotteryinimmediatecontactwithBurials 2and3 (seeChapter 4, AppendiX E), (2) the characteristicsoftheburialfill,whichdiffers in colorandcompactionfrom thedarkerandmoreconsolidatedmatrixofthemiddenintowhichtheburialswereplaced,and(3)a14Cdateof A.D. 595-666onbonesfrom Burials 2and3.Theflotationsampleanalyzed-Level2'ofcolumnsample A-4, datedto 805-740B.C.-provedtocontainveryfewplantremains. A fewfragmentsofcharredbuttonwoodandblackmangrovewerefound,aswerea few seedsofruderals(chenopod,purslane,pokeweed)andgrasses. Asmallquantityof fruit seedsindicatedthepresenceofhackberry,cocoplum,andmastic.Zooarchaeologicalanalysisofthesameflotationsampleyieldedtheremainsofatleast 208vertebratesand895 invertebrates. Almostequallydividedbetweenoysterbedandmangrove/seagrasshabitats,thespeciessuggestexploitationofanenvironmentsimilartothatof today. Samplesofclams from the CollierInnexcavationsprovedtoo small for reliableseasonalityinference,buttheonesanalyzedindicatethatclamswereat leastharvestedtherein the spring.

PAGE 36

28Culture and Environment in the Domainofthe CalusaUSEPPAISLAND-8LL51COLLIERINN, 1985SALVAGEEXCAVATION-Edgeofbackhoe disturbanceNeMa100 clam shell4.62m1/BurialI
PAGE 37

Recent Archaeological InvestigationsInsum,thebriefsalvageandtest excavationsatthe CollierInnin1985revealedanintact, stratifieddepositdatingfromatleasttheearlythirdmillenniumB.C.throughtheCaloosahatcheeIIperiod.Fiber-temperedpotteryoftheOrangeseries isnotpreciselydated,butitliesintheuppermostlayerof the lightbrown,sparseoyster-and-clammidden,belowastratumthatdatesto ca. 2011-1778 B.C. TheuppermiddendatesmainlytotheCaloosahatcheeIperiod.A steatitebowlfragmentwasfoundinthedisturbedfill from thebackhoeexcavation(Table 6),suggestingthepossibilitythattheentireknownsequencefrompre-potteryto steatitepotteryandfiber-temperedceramics,thentosand-temperedceramicsmayberepresentedattheCollierInnlocality.Theburialsjustunderthepresent-daygroundsurfacedatetotheearlyCaloosahatcheeIIperiod,andareintrusiveintotheearlierCaloosahatcheeIperiodmidden.AswiththetestingatJosslynIsland,theCollierInnworkwasfartoolimitedtoallowforconfidentinterpretations.The excavationsdodemonstratethepresenceofa significant sitebetweentheoldtenniscourtand,theCollierInncomplexonUseppaIsland,onespanningatleastintermittentoccupationfor aperiodofover4,000years.Shouldresources for abroadscale excavationmaterializeinthefuture, I am confidentthatthis localityhasthepotentialtoyieldimportantinformationonalittle-knowntimeperiodinsouthwestFloridaprehistory. --_-MN KEYTESTUNITCORESAMPLE o GUMBOLIMBOTREEKERND.S.R.AERIALCARTOGRAPHiesOFAMERICAS.W.F.PAOJECT FIG.M.N. H.29 ," ii 2550M CONTOURINTERVAL:1 METEA ELEVATIONINMETERSA.M.S,LTable6.StoneArtifactsandOtherStoneObjectsFoundatUseppaIsland,CollierInnSite,1985.ProvenienceHaftedSteatiteSandstoneLimestoneBiface Surface 1 3 1A-l-l1A-I-41 A-2-3 1Totals1 1 5 1 CASHMOUND(8CH38)Environmental SettingCashMoundisfoundinthesouthwesterncornerofTurtleBay(Figure1).Itjutsoutintothebayfrom theCapeHazepeninsulainaneast-southeasterlydirec tion,connectingto themainlandbyanarrow,mangrove-coveredneckofland.Geomorphologistsrefertosuchafeatureas a tombolo: aspitoflandaccumulatedbythenaturaltransportofsedimentsbywaveaction (seeChapter3).Cash"Mound"isactuallyanelliptical shellmiddenapproximately200 mlongby125 mwideandrisingtoanelevationofover6m (Figure 13).Largequantitiesofthepredominantlyoyster-shellmiddenwereremovedbydraglineanddepositedinvariouspartsofFigure13.CashMound(8CH38),showingareasdiscussedinthischapter.CharlotteHarborinanambitiousbutunsuccessfulattempttoprovideconditionsappropriate for thegrowthofoystersincommercialquantities.Heavilyimpactedbythis shellremovalwastheeasternendandaportionnearthecenteroftheshellmidden.Portions ofthemiddenwerealsousedforroadfill.Until1985 aremnantoftheoriginalmiddenstillremainedisolatedontheeasternextremity,anditwastherethatourfirstexcavationeffortsweredirectedin 1985 (see below).Previous ExcavationsJohnGogginandsomeUniversityofFloridastudentsvisitedtheCapeHazepeninsulaareain1954,recordingseveral sites. RipleyandAdelaideBullentestedCashMoundandfiveothersites intheareainFebruaryof1954 (BullenandBullen 1956).Theyexcavated a 10 x10footpitinthemachine-excavatedeasternareaanda5x 15 foottrenchonhighergroundtothewest.Inbothexcavationsgroundwaterintrudedbeforethebottomof themiddencouldbe reached.Theyreportedabundantlayersofcrushedshells,ashes,brown-coloreddeposits(probablytinyfishbones),andsignificantnumbersofmostlysandtemperedpotsherds(BullenandBullen 1956:15-25).

PAGE 38

30Oystersand"fresh-waterbivalves"(probablyribbedmussel)werethemostcommonshellfishremainsnotedbytheSullens.Withoutthebenefitofthefine screenrecoverytechniquesconsideredessential today,theSullens(1956:24)inferredthat"shellfishwasthemajorsourceoffood."TheysuggestedthatasCashMound'shumanpopulationexceededthesupplyof bivalves,smallgroupswouldbudoff to formtheirownvillageswheretheshellfishweremoreplentiful,accountingforsuchsmallersitesas8CH12,theVanderbiltsite(SullenandSullen1956:12, 24).Excavations in1985and 1988AblyassistedbySob EdicandDonCyzewski,IvisitedCashMoundonJune28, 1985, toremovea 50 x 50emcolumnsamplefromanerodingremnantoftheeasternpartoftheshellmiddenstillstandingonthebeach(Figure 14).Wefirsttroweleda section ofthestandingprofileabout80emwide,thenremoved2210-cm levelsofa 50 x 50emcolumnsample,calledA-l.AstheSullenshadexperienced,waterintrudedintotheexcavationnearsealevel,andexcavationhadtobeterminated.Theopportunitytoexcavatethiscolumnsamplewasfortunatebecauseahurricanewashedawaythefree-standingmiddenremnantinthefall of 1985 (seeFigure15). ShellsfromLevels4,8,17,and20wereradiocarbondatedto A.D. 672-806, A.D. 67-266, A.D. 118-322,andA.D. 238-398,respectively(Table 1).Thedaterangesfrom Levels 8, 17,and20overlapwithoneanotheranddatetothelatterpartoftheCaloosahatcheeIperiod,Culture and Environment in the Domainofthe CalusawhileLevel 4datestotheearlyCaloosahatcheeIIperiod.Cordell'sanalysisofthe32sherdsfoundinthecolumnsamplesedimentsshowsnothingbutsand-temperedpotteryintheCaloosahatcheeI levels,whereastheCaloosahatcheeIIstratumhasasmallquantityofSPCSPlainsherds(see Table22inChapter4). Surface collections fromCashMoundincludeSelleGladePlainsherds,aswell(see Table23inChapter4). SPCS isanabbreviationfor Spicule-S.Itrefers to apastevariety,definedbyCordell(seeChapter4),thatischaracterizedbycommontoabundant,predominantlyfine toveryfinequartzsandandcommonminutespongespiculeswithpreferredorientation(see Table 2andFigure2inChapter4). Withtheaidofa microscope, SPCSPlainpotterycanbedistinguishedfrom SelleGladePlain(Spicule-A,abbreviatedSPCA)andtwovarietiesofsandypastethatcontainfew to nospongespicules(seeChapter4 for details). AscanbeseenfromFigure14,themiddenremnantcontainedmanylayersofshells, fishbones,charcoal,andashes.Theshellfishremainsarepredominantlyoyster(Crassostrea virginica)andribbedmussel(Geukensia demissa).Thebrownlayerswerecomposedofmillionsoftinybonesof fish,predominantlysea catfishandpinfish. Relative toothersitesanalyzed,CashMoundsampleswerelowinfaunaldiversity,averaging18vertebratesand24invertebratesper0.025 m3sample.Thismayindicateaspecializedpartofthesite,oneusedforoysterandmusselprocessing,ratherthanthetypicaldietofthesite'sinhabitants.AFigure14.Free-standingremnantoftheshellmiddenfromwhichColumnSampleA-1wasremoved,CashMound;photographtakenJune28, 1985.

PAGE 39

Recent Archaeological InvestigationsFigure15.CashMoundBeachafterahurricanewashedawaythemiddenremnantpicturedinFigure14;photographtakenJanuary23,1986;objectsinforegroundareafieldpackandcameracase.31significantportionofthemeatrepresentedbyanalyzedfaunalremains-38%to64%-isaccountedforbyAriopsis felis,thehardheadcatfish.Botanicalremainswerescarceintheanalyzedsamples.Identifiedwoodsincludedmangroves,buttonwood,pine,andrapanea.Thetwodeepestlevelscontainedmorewoodthantheuppertwo.Mangrovescomprised83% ofthewoodidentifiedinLevel 17and47%inLevel 20. Seedswereequallyscarce:only12identifiableseed fragmentswerefoundin all four levelscombined.Allwereofruderalsexcept for fivesawpalmettoseedfragmentsfoundinLevel8.Althoughtwentyfragmentsofchert,acompletebiface (aHillsboroughpointof theMiddleArchaicperiod),andeightfragmentsofsharpeningstonesareknownfrom surface collections,onlya fewlimestonechunkswerefoundinthe 1985columnsampleexcava tions.Assistedbyseveralvolunteers,IrevisitedCashMoundApril 20-21, 1988,inresponsetoreportsfrom localinformantsthatnumerouspotsherdsandboneartifactswereerodingoutofadark,richlyorganicdepositonthebeach.Hightidesandastrongwindhadconspiredtoproduceexceptionallyhighwaves,leadingto acceleratederosionof theancientmiddendeposits.Althoughthetideandwindconditionswereanythingbutfavorable for excavationatthebeach, I obtainedpermissionfor abrieftestingproject fromtheJ.N. "Ding" DarlingNationalWildlife Refuge,whichhas jurisdictionoverCashMound.(CashMoundisnowunderfederal jurisdiction,andcollecting artifactsandexcavatingthereis strictlyforbiddenwithoutapermit.)Thedatumstake fromthe1985 excavation of thecolumnsamplewasrelocated,anda1x1m test excavation,OperationB,wasplaced2mnorthofthe sitedatum.OperationC, a1x1munit,wasplaced5 meastofthe sitedatum(Figure 13).Withdifficulty,three10-cm levelswereexcavated in the Bpit,usingamakeshiftplywoodcofferdamandgasoline-poweredpump.The top levelwascomposedof loose shellsandwasdisturbedbyrecenttidalfluctuations,butinLevel 2weencounteredthehighlyorganic,blackmiddendeposit.This blacklayerwasonly10 cm thick. ThelowerportionofLevel 3wasadenseshellmiddendominatedbyoystershells. ExcavationwasterminatedatthebottomofLevel 3duetowaterintrusion.TheCpitwasplacedpurposelyintheedgeofthewateratlowtidebecausethe blackdepositcouldbe seenerodingactivelyatthatlocation. Dense, blackmiddenwasfoundintwo10-cm levelsinPit C before excavationhadtobestoppedduetowaterintrusion. Again,theblackmiddenwasnomorethan10-15 cm thick.PotteryfoundinOperationsBandC ispredominantlythick,Sand-temperedPlain.Ofthe590sherdsfound,588areSand-temperedPlainandonly2areBelleGladePlain(Table 7). Alsonotedfromtheblackmiddenwereseveralwell-usedBusycon contrariumhammers,asandstonesharpeningstone,andseveralchunksoflimestone(Table 8).Over600 artifactswerefoundinapproximately0.5 m3ofexcavateddeposit.InmyexperiencewithsouthwestFlorida shellmid-

PAGE 40

32CultureandEnvironment in the Domainofthe CalusaTable7.PotteryFoundinLimitedExcavationsonCashMoundBeach, 1988.CatalogueNumberProvenienceSand-temperedBelleGladePlainTotalPlain88-1-7B-1,sump1912088-1-8B-1,Levell120 0 120 88-1-10 B-1, Level 27517688-1-13 B-1, Level 37207288-1-15, C-1, surface7907988-1-16 88-1-17, C-1,Levell116 0 116 88-1-18 88-1-19, C-1, Level 24604688-1-20 88-1-21 C-2, surface 5 0 5 88-1-22,5605688-1-24, C-2,Levell88-1-25Totals5882590 dens, 1200 artifactspercubicmeterisanunusuallyhighdensityofartifacts,confirmingmyinformants'observationsthatthedarkmiddenthenerodingintoTurtleBaywasthesourceofmuchofthepotteryandotherartifactsseenontheshoreline. ThedarkmiddenmaycorrespondtoBullenandBullen's(1956:17) "shellsandpotterymixedwithblack dirt," astratumencounteredbetween28and66 inchesbelowsurfaceintheir Testpit1.Inthatexcavation, BullenandBullenreportonlyaveryfew BelleGladePlainsherds(lessthan1%inanylevel),andnonebelowthe48" level (BullenandBullen 1956:21).Insum,ourbrieftest excavationsatCashMoundin 1985and1988succeededinobtainingcontrolledsamplesforfine-screenanalysis,augmentingandcounterbalancingtheobservationsmadebytheBul lens inthe1950s,andindocumentingthestateoferosionofthebeachatCashMound.This site is stillbeinglost towaveactionandsteadilyrisingsea levels,aswell as to recent (1991)depredationsoflooters,whohaveuprootedtreesanddugseveralgapingholes insearchoftreasureleftbythemythicalpirate Jose Gaspar.Such lootersapparentlybelievethatpiratesburiedtheirtreasureundertrees,prominentlymark-Table8.Stone Artifacts andOtherStoneObjectsFoundatCashMound(8CH38).FossilProvenienceHaftedDebitageSinkerHammerstoneSharpeningBonesandSandstoneLimestoneOtherBifaceStoneSharkStoneTeethSurface2 20 6 184 1 22 A-1-10 1 A-1-11 1 A-1-17 2 B-1-1 1 B-1-2 1 B-1-3 2 C-1-1 1 C-1-2 2 C-2-1 1Totals2 206194 1 132

PAGE 41

Recent Archaeological Investigationsingthespotwithcarvingsinthetreetrunks.Theunlikelihoodofone'sconspicuouslymarkingthespotwhereonesecretlyburiesmoneyislostontheseenthusiasts.TheGasparfablehasledtothedisturbanceofnumerousprehistoricsitesandthedemiseofmanyagumbo-limbotreewhoseonlycrimewasfindingfavorablesoilanddrainageconditionsatoponeoftheancientshellmiddensofCharlotteHarbor.SurfacecollectionsandlimitedexcavationshavedemonstratedatimerangefromatleasttheTransitionalperiodthroughCaloosahatcheeIII (BullenandBullen1956).TheBullensfoundsemi-fiber-temperedsherdsonthesurface,thicksand-temperedpotteryinlowerlevels,thinnersand-temperedpotteryinmorerecentlevels,someBelleGladePlainsherds,andasingleGladesTooledsherdintheuppermostleveloftheirsecondtestpit. Thissuggestsaminimaltimerangeofca. 1000 B.C. to A.D. 1350.CashMoundis adeeplystratifiedoysterandmussel-shellmiddenwithextensive,intactdepositsofartifactsandplantandanimalremains.Ithasalreadyproducedanextraordinarycollectionofshellandboneartifacts(seeChapters5and6),butunfortunatelytheseareall fromtheerodedbeachdeposits,hencewithoutcontextualinformation.Its significance liesinitsstratigraphicintegrity,degreeofpreservation,andtimerangerepresented.Thesitecontainsevidencefortransitionsinceramicsfromsemi-fiber-temperedtothicksand-temperedtothinnerandmorespiculitebearingvarietiestodecoratedwareswithtooledrims(BullenandBullen 1956;Chapter4,thisvolume).It is also anaturallaboratoryforthestudyofthepastdynamicsofCharlotteHarbor'senvironment.Ourpreliminarytests,andthoseoftheBullens,confirmthesignificanceofCashMound,butonlyextensiveandsystematicexcavationscanbegintorevealthevolumesofinformationitcontains.BUCK KEY SHELLMIDDEN(8LL722)ANDBURIALMOUND(8LL55)Environmental SettingBuck Key isanislandlyingjusteastofthenorthernpartofCaptivaIsland(Figure1). AformerbarrierislandnowshieldedfromtheGulfofMexicobyCaptiva(Staporetal. 1987:167),the141haislandisabout2300 mlongand600 mwide.BuckKeyisabout1,200 to 1,500yearsold(Staporetal. 1987:167,169). Beachderiveddepositscharacterizetheisland(Chapter3),andvegetationrunsthegamutfromxericinopensunnyareasinthecenteroftheislandtomangroveforestsatitsedges.BuckKeyisanislandofremarkablebioticdiversity.Over80birdspecieshavebeendocumented,andmammals,amphibians,fishes,andreptilesabound.Tropicalhardwoodhammocksincluderare,endangered,andthreatenedspeciesofbothplantsandanimals,andspecimensofcertaintropicalplantsexceeddimensionsofthesamespeciesintheFlorida33Keys(KathleenBoone,personalcommunication,1985;RichardWorkman,personalcommunication,1983). Asystemofmosquitocontrolditchesexcavatedthroughtheislandinthe1960snowaffordsaccess totheisland'sinteriorbycanoe.Oneithersideofthesepicturesque,nowmangrove-linedcanals,pilesofdredgespoiltestifytothebeachderivationofmostofBuckKey'ssediments.Exceptionstothebeachderivedtopographyarethreearchaeologicalsitesthatinplacesexceed3minelevationabovesealevel. Sites 8LL721and8LL722areshellmiddensonthenortheasternpartoftheisland,while8LL55 is asandburialmoundnearitscenter.Previous Arc1uleological Explorations andHistoricSettle mentAccordingtouncalibrated14Cdatesobtainedbygeologists(Staporetal. 1987:198),theBuckKeylandformprobablyaccumulatedmainlybetweenca. A.D. 450and750aspartofadepositionalepisodeknownastheBuckKeytime-stratigraphicunit(ca. A.D. 450 to 950)(Staporetal. 1987:167).Calibrated,Staporetal.'sdatesforBuckKeychangefromA.D. 450-750 to A.D. 440-1010(Stuiveretal. 1986),extendingtheestimatedactiveformationprocessabout260yearsforward.Ifthisestimateisaccurate,onewouldnotexpectsubstantialarchaeologicaldepositsanyolderthanca. A.D. 1000 tohavesurvivedwaveandstormactivity.Infact,therangeofprehistoricoccupationdocumentedthusfarinourlimitedtestingis ca. A.D. 1027-1439 (TableI),thoughtheburialmoundandlower,now-inundatedlevelsoftheshellmiddenmaydatesomewhatearlier(seebelow).InthelatenineteenthcenturytheislandwaspopulatedbyAmericansettlerswhomadealivinggrowingcitrusfruitandothercrops.Bytheearly1900s asettlementontheislandincludedseveralhousesanda school(Dormer1987:188-192etpassim).This settlementwaswipedoutinthehurricanesof1921and1926,andtheislandwasneverresettled.Presentownershipoftheislandisbestenvisionedbydividingtheislandroughlyintofourthsfromnorthtosouth.Thenorthernquarterandsouthernhalfoftheislandaregovernment-ownedandprotected.Theremainingnorth-centralportionisprivately-ownedwiththeexceptionoftheareaimmediatelyaroundsite8LL55,theburialmound,whichisfederallyprotected.OurinvestigationsonBuckKeyweregraciouslypermittedandfacilitatedbypropertyownerTedWatrousandbyrepresentativesoftheCharlotteHarborStateReserveandtheJ.N."Ding"DarlingNationalWildlife Refuge. Sofaras Iknow,nopreviousworkbyprofessionalarchaeologistshadtakenplacebeforeour1985expedition.However,theBuckKeyBurialMound(8LL55)hadbeenlootedbyskullhuntersformanyyears.Localinformantsindicatethatdozensifnothundredsofskeletonshavebeendugoutofthemound.Onelocalinformantwhoobservedsomeofthediggingyearsagoreportsthattwoepisodesofburialsseemtohavebeenrepresentedinthemound,separatedfromoneanotherbyathinlayerofbeach-derivedsands.

PAGE 42

34Culture and Environment in the Domainofthe CalusaseA l. KEY:TESTUNITCORESAMPLE ............. MOSQUITOCONTROLDITCHnorth-southrunningshellmiddenridge;itwascarriedto adepthof140 ernbelowsurface(Figure 17). Thetop4-10 ernwerecomposedofadarkbrownhumuswithleaflitterandmanyroots.Thenext 10 to25ernconsistedmainlyofadarktoverydarkgraysandwithamoderateamountofcrushedshell,butatadepthof 12 to25erninthesouthernhalfofthepitwerefoundlensesoflightyellowash,an8-10 ern-thickconcentrationofshellsandbones,and4-6 ern-thick lenses of lightgraysandwithsparseshells. BeginninginLevel 3 (20-30 ernbelowsurface)andextendingwell into Level 8 (70-80 ern), anumberofroughlycircularconcentrationsofcrushedsurfclamswerenoted.Thesurfclam shellconcentrations,ranginggenerallyfrom 12 to 18 ernbutasmuchas24 em across,extendedvertically toabout80ernbelowsurface.ClustersoflargeBusycon contrariumwhelkshellswerefoundaroundsomeofthesurfclam shell concentrations.Eachsuchconcentrationwasgivena locusdesignationandexcavatedseparately.Theyprovedtocontainverylittlesandandto becomposedofabout90%byvolumeofdarkbrown-coloredsurfclam shellfragments,theother10%beingvarioussmallwhelk,conch, oyster,andotherbivalveshellsandassortedsmall bones. Aclose-upviewofoneofthesesurfclam shellconcentrationsisgivenin Figure 18. Severalothersmallcircularpatternsoflightgrayanddarkgraysandwerefound,andtheseseemto be associatedwiththesurfclam shellconcentrations(see profilediagram,Figure17).Ifthegraysandpatternsrepresentposts,itmaybethatthecrushedsurfclam shellswereplacedaroundtheposts toenhancelon gevity,increasestability,orimprovedrainage.Ifonewishedto placewoodenposts verticallyintothecompactshellmidden,drivingtheminwithastoneorshellhammerwouldbedifficult.Instead,perhapsthebuildersexcavatedaholelargerthanthatneededfor thepost,putthepostin,thenpouredcrushedsurfclam shellsintotheholenext tothepost.Whelkshellsmayhavebeenusedalso to stabilizeorstraightenthepostonceitwasinplace. Thisinterpretationis conjectural,butitdoesaccountforthepatchesofconcentratedsurfclamshellfragments.Theshellfragmentswouldhavefacilitateddrainageofpercolatingwaterawayfrom the posts,presumablyaddingto their longevity. Evidenceofnumerousepisodesof charcoaldepositioncanbeseeninthesouthprofileatabout50 to70ernbelowsurface. To conjecturefurther,ifthegraysandandsurf-clam shellconcentrationsvisibleinthenorthandwestprofilesrepresentpostsofahousewallorpilingsforanelevatedstructure,thenthe layersofcharcoalandashtotheeastandsouthmayrepresentcooking activitiestakingplaceoutsidethestructure.Needlessto say, a single 1xlmtestpitis far too small to solve thisquestion.Thecircularstainsandshell-fragmentconcentrationsextendeddownintoamatrixcomposedpredominantlyofwhitecrushedandcrystallizedmolluskshellswithamplebones,charcoal,andconchandiii 50 100 zooM CONTOUR INTERVAL' 1 METER ELEVATION 11'1METERS,JKERN D.S.R.AERIALCARTOGRAPHIesOF AMERICA S.W,F.PROJECTFla.M.N.HInvestigations atBuck Key, 1986I led acrewofstudentsandvolunteersinpreliminarytestingofsites 8LL722and8LL55March23-29andMay4-13, 1986.Three1xlm test pits,A-I,B-1,andC-l,wereplacedinitiallyinthe8LL722 shellmidden,andafourth1x 1, called 1-1,wasaddedlaterbetweenA-IandB-1(seeFigure16). TestD-l,also a 1x1m pit,wasplacednearthecenterof theislandto confirmthattherewasnoaboriginaloccupationinthe lower,butstill relativelywell-drainedpartof the island.TestsE-l,F-l,andG-lwereplacedinandaroundtheburialmound,8LL55,inordertostudythe stratificationandtodetermineifanyundisturbedportionsremained;allwere1xl's.Finally, 1xlm Test PitH-lwasduginanelevatedareanorthwestofC-linorderto ascertainwhethertherewasanyculturaldepositinanareaofdensesurfclam shells(Spisula solidissima)thatappearedonthe surface.Buck Key Shell Midden Excavations(8LU22).TestPit A-IwasplacedinthenorthernendofaroughlyFlexed burials,bothadultsandchildren,aresaidtohavebeenfoundinbothstrata.Onlyminordisturbancetothemoundseemstohaveoccurredinthepastfewyears,probablyduetovigilantmonitoringofthesitebyfederalemployees,natureconservationgroups,andlocalguideandnaturalistMark"Bird" Westall,whoconductsnaturetoursto theislandbycanoe.Figure16.Thenorth-centralportionofBuckKey,showinglocationsof1985testexcavations.

PAGE 43

Recent Archaeological Investigations358LL722BUCKKEYSHELLMIDDENMAY9,19860.801.40 1.200.400.601.00A1NEA1NWA1SWA1SE0.00 ;:%,f;;I(.. A2SE0.00 0.20 OAO 0.600.801.001.20 1.40 UNEXCAVATEDLEGEND: C2i5JLZ.ZJ...CJ DARKGRAY-DARKGRAYISHBROWNGRAYLIGHTGRAYWHITE L:JLd' I,,,I STRATUMaONESHELLCRUSHE0SHELLCRYSTALIZEDSHELL HUMUS EJ CHARCOAL ASHi,ii0.00.2 0,4 0.60.81.0METERC.McP.T.Figure17.ProfilediagramofTestPitsA-IandA-2, 8LL722,BuckKeyShellMidden.KeytostratigraphyforBuckKeyprofilediagrams:1 =darkbrownhumus,leaflitterandroots;2 =darkgrayishbrownsandwithmoderatelydenseshells,mostlywhelkandconch,andmanybones;3 =lightgrayishbrownsandwithmanysmallbones,mostlyfish;4=verydarkgrayishbrownsandwithsparseshells(whelksandconchsofvarioussizes)andmanybones;5=grayashwithburnedshellandafewbones;6=blackcharcoalconcentration;7=lightbrownishgrayash;8=lightbrowntograydenseburnedshellandbones;9=browndenseboneconcentration;10=blacksandwithsparseshells;12=verydarkgrayishbrownsandwithdenseshells,includingmanylargewhelksandconchs,i.e., 15-25emlong,andmuchbone,mostlyfish; 13=whitecrushedandcrystalizedshellwithbones,charcoal,conchs,andwhelks;13A=whitecrushedandcrystalizedshellwithbones,charcoal,andmanyverylargeconchsandwhelks(i.e., 15-25emlong);13B=graycrushedandcrystalizedshellwithbones,charcoal,andmanyverylargeconchsandwhelks(Le., 15-25emlong); 14 =darkgraysandwithmoderatelydensecrushedshell;15 =darkbrowndenseconcentrationofsurf-clamshellfragments;16=lightgraysand;17=darkgraysand;18=lightgraysandwithsparseshells;19 =yellowash.whelkshells.Thenumerousneedle-likestructuresthatpervadethedeeper,wetterpartof themiddenareprobablyaragonitecrystals, a formofcalcium car bonate.Ispeculatethattheyaccumulatein a process of illuviation,inwhichthecalciteandaragoniteofpenshells(Atrina rigida)areleached out.lLevels 8through12 (ca.80to 120embelowsurface)appearedidentical totheupperzoneofwhitecrushedandcrystallized shells,bone,andcharcoal,withthe exception ofthedominantpresence ofnumerousverylarge(15-25 em long)lightningwhelkshells (Figure 19). Wellover100suchshellswereexcavatedin Levels 8-12 alone.Observationof asampleof 100 ofthelargewhelkshellsshowedthat41wereunbroken,38werebrokenacross theposterior(spire)end,6hadwhorlsbrokenbelowtheshoulder,and15hadboththespireandthewhorlbelowtheshoulderbroken. Below thewhelkshellzoneweremorewhitecrushedandcrystallized shellswithnumerousbones,charcoal, conchs,andwhelksinanincreasinglymoistdeposit.Waterlevelwasreachedat136embelowsurface,andexcavationswerehaltedatthebottomof Level 14 (140 em). A50x 50emcolumnsampleexcavated in 10-cm levelswascutintothesouthernhalfof the east profile, called TestPitA-2.Itwasexcavated to adepthof 110embelowsurface.ThestrataofOperationAaredatedbythreeradiocarbonassays. Shells from Level 6,nearthelayeredcharcoal,dateto A.D. 1301-1424. Shells close to theputativepostsandcrushedsurf-clam shells, also in Level 6,dateto A.D. 1260-1345. Thesedatesoverlap,andaredistinctlylaterthananA.D. 1027-1210date

PAGE 44

Figure18.Close-up,crushedsurf-clamshellconcentrationinprofileofTestPitA-l,BuckKeyShellMidden.Horizontaldistanceis 34 em.36fromLevel 9withintheunderlyingzoneoflargewhelkshells.Sand-temperedPlainis themostcommonpotteryinTest Pit A. There is littlepotteryofanykindbelowLevel 6(only25sherds,orlessthan10% of thepotteryfrom Test Pit A,comefrom Levels 7-14). BelleGladePlainpotteryisprominentinLevels 6andCulture and Environment in the Domainofthe Calusa7butdeclinesinpercentageintheupperlevels.SpeBPlainispresentinsmallquantitiesdowntoLevel 9. Test PitB,a1xlmpitexcavatedjustafewmeterstothesouthofA,wassimilarto Ainsomewaysbutdifferentinothers. Both pitshada fewcentimetersofdarkbrownhumus,leaf lit ter,androotsatthetop. Belowthehumiczone,Test Pit Bexhibited34 to 40cmofdarkgrayishbrownsandwithmoderatelydenseshells,mostlywhelkandconch,andmanybones(Figure 20). BeginninginLevel 5 (34-44cmbelowsurface)andcontinuingintoLevel 6 (44-54 cm),thesouthernhalfoftheunitbecamedominatedbymottledgrayashwithburnedshellanda few bones.Thelighter-coloredashyareawasexcavatedseparatelyas Locus1.TheashconcentrationextendedtothebottomofLevel 7,withalternatinglayersoflightbrownishgrayashes,lightbrowntoFigure19.SouthprofileandbottomofLevel 10,TestPitA-l,BuckKeyShellMidden,showinglargeBusycon contrariumshells.

PAGE 45

Recent Archaeological Investigationsgraydenseburnedshellsandbones,andblackchar coal (Figure 21). Somepotsherdshadbeenburnedinthefire,resultingintheirbeingrefiredto abrightorangecolor. Evidence of the refiringcanbeseen inFigure22,whichshowsthatfourre-firedsherdsfrom Level 6 of Locus 1,theashandburnedshell area, cross-mendwithtwonormally-firedsherdsfrom Level 7oftheunburnedverydarkgrayishbrownsand.The crossmendedsherdsareGladesTooled,andtheystratigraphicallyunderlieunburnedshells from Level5datedto A.D. 1306-1439. Inturn,theburnedshellandashareaisstratigraphicallysuperiorto shells from Level9,whichdateto A.D. 1267-1334. Thebottomof themostintenselyburned part oftheashyareawasobservedat66 cmbelowsurface,thoughsmalllenses of charcoalwereencounteredasdeepas80cm(Figure 20). Smallpocketsofbrown-coloredboneswerealsonotedamongtheburnedshellandashlayers (Figure 20). Theash,bone,andcharcoalconcentrationatBuck Key isreminiscentoftheoneexcavated in TestPitA-2atJosslynIsland(see above).Over,under,andbetweentheash,bone,andcharcoallayerswasinterspersedverydarkgrayishbrownsandwithsparseshellsandmanybones; the shellswerepredominantlyof whelksandconchs.37Beneaththeburnedareawasa 10-14-cm-thick stratumofblacksandwithsparseshells(Figure20). Below the blacksandlayerwasaverydarkgrayishbrownsandwithdensely-concentratedshells,manyofwhichwerewhelksaslargeasthosenotedinthelowerlevels of Buck Key Test Pit A-I.However,therewasmuchlessofthe crystallizedandcrushedshellthatcharacterizedtheA-Ideposits,andnoconcentrationsofcrushedsurf-clamshellsorpost-likedepositswerenoted.ThedepositbecameverywetinLevell0 (74-84 cm),andLevel 11wasmostlyunderwaterduringits excavation.Thedense,darkmiddenwithwhelksandconchscontinuedtothelowerlimitoftheexcavation,thoughthenumberoflargewhelksdiminishedappreciablyin Level 11. Acolumnsample,B-2,wascutintothesouthernhalfofthewestprofile,and10 10-cm levelswereexcavatedfor possible flotation.ThedateofA.D. 1306-1439 from Level5,justabovethetopoftheashstratum,overlapswiththedaterangeofthetoppartof Buck Key Test Pit A-I. BelleGladePlainpotteryisfoundfromthelowesttothehighestlevelsinTestPitB,asis SPCBPlainpottery(seeTable 17inChapter4).GladesTooled,thoughttobeamarkerfor theCaloosahatcheeIVperiod,beginningatA.D. 1400, isplentifulinTest PitB,mostlyintheLevels 4-7. A14Cassayof A.D. 1306-1439datesLevel 5andpostdatestheburningepisodeinwhichtheGladesTooledpotterypicturedin Figure22wasrefired.Thus,the8LL722BUCKKEYSHELLMIDDENMAY10,1986sw818181 8182sw0.00NWNESE0.000.200.200.400.400.600.600.800.801.001.001.201.20UNEXCAVATEDLEGEND: B LAC K VERYDARKGRAYISHBROWN [<'.:'\\"/.:d DARKGRAY-DARKGRAYISHBROWN GRAY -LIGHTGRAY STRATUM LJ BONE--c:::=:J SHELL ,,[Z] CRUSHEDSHELL<<< HUMUS CHARCOAL ASH:i;iii0.00.20.40.60.81.0METERFigure20.ProfilediagramofTestPitsB-1andB-2, 8LL722,BuckKeyShellMidden.Forkeytostratigraphy,seeFigure17.

PAGE 46

38Figure21.NorthprofileofTestPitB-1,showingstrataofash,bones,charcoal,andburnedshell.GladesTooledpotteryfrom Buck KeymaydateeithertotheBOOsorto theearly1400s (seeChapter4 forfurtherdiscussion). Level 9ofTest Pit B isdatedto A.D. 1267-1334,immediatelyabovea levelthatproduceda single St. JohnsCheckStampedsherd.St. JohnsCheckStampedisconsideredamarkerfor thebeginningoftheCaloosahatcheeIIIperiod,ca. A.D. 1200. ThecontrastsbetweenBandA-e.g., theburnedareainBandthecrushedshells,aragonitecrystals,andpossiblepostmoldsinA-ledmeto place Test Pit I-Imid-waybetweenA-IandB-1.Itsstratigraphyprovedsimpler, relative to AandB,withonlyoneminorashyareaandasequenceofmiddendepositsresemblingthatofA-I (Figure 23). A 6-12 cmdeeplayerofdarkbrownleaflitter,humus,androotswasunderlainbya 24-36 cmdeepzoneof blacksandwithsparseshells. Beneath thelatterwasa 10-22 cmdeeplayerofblacksandwithverylarge(ca. 15-25 cm long)whelkshells.From36to 77 cmbelowsurfaceover100verylargewhelkshellswereexcavated.Examinationof arandomsampleof100 of theselargeshellsshowedthat31 % wereunbroken,13%werebrokenacross theposterior(spire)end,30%hadwhorlsbrokenbelowtheshoulder,and26%hadboththespireandthewhorlbelowtheshoulderbroken.Thebottomreaches of theexcavatedareawerecomposedofwhitetograycrushedandcrystallized shells,withbones, charcoal,andverylargewhelkshells (Figure 23).From77 to90CultureandEnvironment in the Domainofthe CalusacminI-I,observationofanadditionalsampleof50 ofthelargewhelkshellsshowedthat60%wereunbroken, 20%werebrokenacrosstheposterior(spire)end,14%hadwhorlsbrokenbelowtheshoulder,and6%hadboththespireandthewhorlbelowtheshoulderbroken. The testpitwascarriedonlyto adepthof90cmbelowsurface. ThepotteryofTest Pit I-IwaspredominantlySandtemperedPlainbutincludedBelleGladePlaindownto the 65-cm levelandGladesTooledfrom0 to 36 cmbelowsurface. SPCBPlainwasfoundthroughouttheexcavatedlevels (see Table 18inChapter4).No14Cdateswereobtainedfor TestPitI-I,butbasedonthepotteryandstratigraphy,there is noreasontodoubtthatit isgenerallycontemporaneouswithAandB.Tosumup,themiddenridgeonwhichA,B,andIwereexcavateddatesto ca. A.D. 1027-1439. This includesadeeperzoneofthelateCaloosahatcheeIIIearlyCaloosahatcheeIII-periodmidden,characterizedbytheverylargewhelkshells,bone,andwhitetograyto blacksands,andashallowerlayerdatingtoCaloosahatcheeIIIandthebeginningofCaloosahatchee N. ThesedimentsofTest Pit B seem tohavebeguntoaccumulatelaterthanthoseofA,butthiscannotbeestablishedwithcertaintybecauseexcava tionswerehaltedbywaterintrusioninbothpits. Test Pit C-1wasplacedsome50 mnorthandeastof Test Pit Aandwascarriedonlyto adepthof52cmduetowaterintrusion(Figure 24). Alayerof4-10 cm ofdarkbrownhumus,leaf litter,androotswasfoundatthe top.Underlyingthishumiczonewasa 16-32 cm thickstratumofdarkgrayishbrownsandwithdenseshellsandmuchanimalbone,mostlyfish. The shellsincludedawidevarietyofbivalvesandgastropods,includingseveralverylargehorseconch,lightningwhelk,andtulipshells. At 35cmbelowsurface, thematrixbecameincreasinglywet,withwaterintrusionfluctuatingwiththe tidesbetweenabout40and50 cmbelowsurface. Thewetterpartofthe test pit,fromca. 35 cm toterminationofexcavationat 52 cm,wasmuchliketheupperstratumwiththeexceptionsthatthelowerpartwasslightlylighterin color,bestdescribed asgrayishbrown,therewaslesspottery,andtherewasmoreofwhatappearedtobecrushedshells. Thedenseboneandvariedmolluskshellscontinuedto thebottomoftheexcavation. In Level 3 (24-34 cm),thesherdsofanearlycompleteSand-temperedPlain ceramic vesselwerefound(seeFigure10 inChapter4). Thisopenbowlis11cmhigh,witharimdiameterof 30 cm.Thelip iscutatananglereminiscentof astyleoftenseenonBelleGladePlainbowls,butthepasteisnotthatofthe BelleGladetype. Except for thenear-completebowl,potterywasscarceinTest Pit C;otherthanSand-temperedPlainpottery,onlyfivesherdsofSPCB Plain,oneofSt.John'sPlain,andoneofBelleGladePlainwerefound,allinLevel 1.Columnsamplelevels A-2-6, A-2-7, A-2-11, B-2-5,andB-2-9werefloatedandunderwentdetailedzooarchaeologicalandarchaeobotanicalidentification. The

PAGE 47

39Recent Archaeological InvestigationsFigure22.Cross-mendedGladesTooledrim.ThetwodarkersherdstotheleftarefromLevel7ofTestPitB-2;thefourlightercoloredonestotherightarefromLocus1(theburnedarea)ofLevel6intheadjacentTestPitB-1.Thelightercolorisduetothesherds'havingbeenrefiredprehistorically.Noteholesoneithersideofthecross-mend(centerofphoto),presumablyanattempttorepairacrackbytyingthevesseltogether.(PhotographbyRobinC.Brown.)A-2samplescontainedrelativelyfewerfishremainsthanthoseofB-2.B-2-5, frominandneartheashy,burnedarea,hadthehighestspeciesdiversityofallofthe17samplesanalyzedinourzooarchaeologicalstudies(seeChapter8): 37vertebrateand49invertebratetaxaarerepresented.AnalysisshowsthattheBuckKeyinhabitantsmadegooduseofthemangrove/seagrasshabitatbutalsoexploitedoyster-bedandlittoralzones.LargerfisharerepresentedatBuckKeythanareseeninmanysitesamples,butthemostabundantfishwerecatfish,pinfish,burrfish,sheepshead,andsilverperch.Snook,jack, seatrout,reddrum,blackdrum,andmulletwerealsoimportant.Inaddition,crabs,turtles,andmammalswereeaten(seeChapter8fordetails). Seedremainsweresparse;onlyafewcabbagepalm,cocoplum,andchenopodseedswereidentified.WoodcharcoalfromTestPitAwascomposedmostlyofmangroves,buttonwood,andrapanea.Pineandseagrapewerealsoburned.TheburnedwoodintheashandburnedshellareainTestPitBwasmostlymangrovesandbuttonwood,woodswithahighspecificgravitythatproducesteadyandintenseheatwhenburned(seeChapter10).AlthoughsomeoftheBuckKeyShellMiddendepositsresembledthoseexcavatedatJosslynIsland,thefrequencyofboneartifactsseenatJosslynwasnotduplicatedatBuck Key.Threeboneartifacts,anengravedexpanded-headpin,atubularbonebead,andanunusualcarvedboneartifactofunknownfunction(seeFigures3, 9,and12inChapter6), allfromTestPitB,werefound.StoneobjectswereequallyuncommonintheBuckKeyexcavations(Table 9).Theyincludedoneunutilizedchertflake, asharpeningstonefragment,fourchunksofsandstone,onechunkoflimestone,twopebbles,andonesmallpieceoflimonite.ShellartifactsincludedtwoTypeAcutting-edgedtools from 1-1,LevelS;aTypeBcutting-edgedtoolfromCol, Level2;aTypeDhammerfoundonthesurface;andanotchedgastropodshellhandlefromCol,Level2 (seeChapter5forshellartifacttypedescriptions). A1x1mtestpit,H-l,wasplacedabout50 mnorthwestofTest C,anareaonlyafewcentimetersabovesealevel,inordertoinvestigateanextensiveareaofdensesurfclamshells(Spisula solidissima)onthesurface.Thesurfclamshellsweresoconcentratedthatthedepositappearedtobestorm-derived,butthepossibilityofitsbeingaccountabletohumanagencyprompteda test pit.Thematrixwascharacterizedalmostentirelybydensely-packedsurfclamshells,

PAGE 48

40Culture and Environment in the Domainofthe Calusa8LL722BUCKKEYSHELLMIDDENMAY9,19860.800.60 1.00 0.20DADSE0.00I1 I1. I.( I\.. (. \ \.. \ \ S I ( I'_' '.\.' sl-S \ ..I \' 13A\ \"\(.\.'\\ ( \','.\\{I.\ I .\ ( . 1 \\. \,"..\I1I1SE0.000.201.000.800.40 0.60UNEXCAVATEOLEGEND: BLACK VERYDARKGRAYISHBROWN :",':::. GRAY WHITE STRATUM L:8 BONE c==J SHELL\, [8 CRUSHEDSHELL\I\ [2J CRYSTALIZEDSHELL + HUMUS CHARCOAL ASHjiii:0.00.2 0.4 0.60.81.0METERFigure23.ProfilediagramofTestPit1-1,BLL722,BuckKeyShellMidden.Forkeytostratigraphy,seeFigure17.Table9.StoneArtifactsandOtherStoneObjectsFoundattheBuckKeyShellMidden(BLL722).ProvenienceDebitageSharpeningSandstoneLimestoneOtherStoneStoneA-1-5 2A-2-21 B-1-3 1 B-1-5-1 1 B-1-8-1 1 B-1-9-1 1 B-2-9 1 1 11Totals21413withonlyasmallamountofverydarkgrayishbrownsand.TenSand-temperedPlainandtwoBelle GladePlainsherdswerefoundonthe surface,andeightSand-temperedPlainandoneBelleGladePlainsherdwerefoundinLevel 1 (0-15 em),whichwaspartiallyinundated.Weattemptedto excavate a second levelunderwater,withlittle satisfaction.Bydiggingintothe dense,resistantshellswitha shovel,thengropingunderthewater,wewereabletodiscoveranapparentunderlyingmiddenbeginningatroughly30-35 embelowsurface.Thismiddencontainssomesurfclam shells, flecksofcharcoal, occasionalwhelk,oyster,andseaurchinshells,andquitea lotofbone(mostly of fish). I believethatthearearepresentedbyTest PitH-lisanaboriginalmiddenoftheCaloosahatchee IIperiodthatmayhavebeenpartiallyerodedawayandlargelycoveredoverbymanythousandsofstorm-derivedsurfclamshells.However,surfclamsfoundinthemiddeninassociationwithbones, shells,andpotteryareprobablyprehistoricfood refuse.Theintrusivewaterprohibiteda well controlled excavationofTestPitH-l,butifthewatertablecouldbelocallyloweredenoughtopermitexcavation, Isuspectthatthemiddenunderlyingthesurfclam shelllayerwouldbefoundtorepresentoneoftheoldestoccupations (ca. A.D. 1000orearlier)onBuck Key. Test PitD-lwasplacedabout50msouthof a chickeestructure(see "shelter,"Figure16)inanareathatappearedtobenaturalsanddeposits. Excavation confirmedthis assessment. Thetop20emconsistedofadarkgrayishbrownsandwithverysmallfragments of sea shells.Theunderlyinglayer, tothelimitofthe excavationsat34 em,wascomposedoflightbrown

PAGE 49

Recent Archaeological Investigations418LL722BUCKKEYSHELLMIDDENMARCH28,19860.00SWC1NWC1NEC1SE0.00 0.200.40 0.600.80LEGEND:UNEXCAVATED0.80SHELLCRUSHED SHELL HUMUS fr."}':::::'1 DARKGRAYISHBROWN 1<:-.::':1 DARKGRAY c=:=::J' {(,,(( c:=J' \I\ , JII0.00.2 F=4 0.40.6 F=4 0.81.0METEAC.Me?T.Figure24.ProfilediagramofTestPitC-1, 8LL722,BuckKeyShellMidden.Forkeytostratigraphy,seeFigure17.sandwithpowderedsea shells.Noartifactswerefound.Excavations at Site 8LL55, BuckKeyBurial Mound.Tests E-1, F-1,andG-1wereplacedinanorth-southline,Smapart,nearthenorthernperipheryoftheburialmound,8LL55 (Figure 16). Themainobjectivewastodocumentthestratificationandtodetermineifanyundisturbedportionsofthemoundremained;all pitswereinitially 1xl's.Test PitE-1hadabout13cmofdarkreddishbrownhumus,leaf litter,androotsatthetop (Figure 25). Thisstratumwasunderlainbyabout20cm ofgraysand.Nextcame20cmofwhitesand.Finally, astratumofwhitesandwithfinelycrumbledsea shellswasencountered.Thissedimentextendedto65cmbelowsurface,whereexcavationwasstopped.Noartifactswerefound. Test PitF-lwasverysimilartoE-1(Figure 25). Athin(1-4 cm)layerofdarkreddishbrownhumus,leaflitter,androotswasunderlainby18-19cmofgraysand,then17-19cmoflightgraysand,then15 cm ofwhitesandwithfinelycrumbledsea shells. Excavationwasterminatedat55cmbelowsurface. SevenGrog-temperedPlainsherdswerefoundinLevel 1 (0-15 cm);eightGrog-tempered Plain andnineSt. JohnsPlainsherdswerefoundinLevel 2 (15-30 cm).NoartifactswerefoundbelowLevel2.Test PitG-1wasexcavatedintheedgeofwhatappearedto begentlyslopingnorthernedgeof theburialmound.Thetoplayerwasathin(1-2 cm)layerofdarkreddishbrownhumus,leaf litter,androots.Underlyingthehumuswasa 20cm-deepzoneofdarkgraysandwithmanyroots. A relativelythinlens oflightgraysandwithsmallbeach-derivedshellswasobservedbetween22and30cmbelowsurface, apatternthatdeviatesfrom thestrataofE-1andF-1(Figure 25).Underlyingthelightgraysandwasayellowishwhitesandwithmanysmallbeach-derivedshells. Atabout46cmbelowsurface,thenumberof shells in theyellowishwhitesanddecreasedappreciably. Excavationwasstoppedat62 cm. Thecraniumofanarticulated,semi-flexed,adulthumanburialwasencounteredat 27.5 cmbelowsurfaceinthesouthwestquadrantof Test PitG-l.Immediatelybehinditscraniumandafewcentimetersdeeperwasdiscoveredacraniumofa juvenilehuman.Excavationrevealedthatthebonesofthefirstindividualextendedintothesouthwestcornerofthepit, so the pitwasexpandedtothesouthwest,the extensionbeingcalled G-2. ExcavationofG-2downto the levelofthe first-discoveredburialrevealedthepartiallyarticulatedbonesofatleastthreeadditionalindividuals.ThefiveburialswerenumberedI-Athrough1-E (see Figures 26Aand268).

PAGE 50

42Culture and Environment in the Domainofthe Calusa8LL55BUCKKEYBURIALMOUNDMAY12,1986swF1NWSWE1NW0.000.000.000200200.200.400.400.40 .... 0.600.600.60 I .S.\0.800.800.80UNEXCAVATEDUNEXCAVATEDNWG 1NEG1SE0.000.000.200.200.40 0.40. .-..... .."... .0.60 0.60UNEXCAVATEDLEGEND:CRUSHED SHELL 1:',:/:1 DARKGRAY !;.:::I GRAY 1:
PAGE 51

Recent Archaeological Investigations43NrThebonesofthecentraladultindividual(Burial 1 A)provedtobethoseofanadultfemale,perhaps30yearsorolder(seeChapter12fordetails).Individual1-B,representedbythecraniumandclusterofbonesbehindtheheadofBurial 1-A,wasa 4-6yearoldchildofundeterminedsex.OnlyportionsofthelongbonesandotherpostcranialbonesofIndividual1-Bwerefound.AcompletecraniumwithmandibleandafewpostcranialbonescomprisedIn-dividual1-C,foundjusttotheeastofIndividual1-A(Figure26A).Individual1-Cwasanadultmale,butageo50100couldnotbemore rl-------------,I -------------"preciselyes-emtimated.TheFigure26A.PlanviewofexcavatedBurials1-A, 1-B, 1-C,1-0,and1-E, 8LL55,BuckKeyremainsofIn-BurialMound.(DrawingbyKarenJoWalker.)dividual1-0,foundnearthefeetof1-A,includedacranium,mostofamandible,ascapula,ahumerus,someribs,somevertebrae,andpossiblyotherpostcranialbones.Individual1-0wasa femaleapproximately18 to 24yearsold.Individual1-Ewasnotexcavatedduetotimeconstraints.Hutchinson'sanalysis(Chapter12)revealednogrosspathologies,thoughenamelhypoplasiamayindicateperiodicshortagesofresources.Noartifactswerefoundwiththeburials.Theburialsdonotexhibitseparateordiscretepitoutlines.Scrupulousattentiontodetailinthefield failed torevealanyevidencethattheburialswereinterredatseparatetimes.All liedirectlyonsterilelightyellowish-whitesandwithafewsmallwholeandfragmentedbeachshells.Thesedimentdirectlyincontactwiththeburialsis alightgraysandwithasimilarquantityandsizeofshellstotheyellowish-whitesandbelow.Thefoursurroundingburialsdonotappeartobe"bundles"ofbonesbutarepartial,articulatedskeletons,eachwithmostorallofitscraniumintact.Figure26B.Planviewofbonesofcentralindividualonly(Burial1-A),8LL55,BuckKeyBurialMound(comparewithFigure26A).(DrawingbyKarenJoWalker.)

PAGE 52

44Thereareatleasttwopossibleinterpretationsoftheburialpractice.Inthefirst,whichI favor,thecentralindividualwaslaiddownina semi-flexedpositionshortlyafterdeath.Thenportionsofotherindividualswhohaddiedpreviously,perhapskinfolk,werearrangedaroundher.Finally, allremainswerecoveredwithlightgraysand.It isunclearwhetherBurial1-Eisconnectedwiththeotherfour,givenitsgreaterspatialseparation.Infavorofthisinterpretationarethesimilarityindepthofallfourburials(Burial 1-Ewasnotexcavated)andthelackofdiscerniblepitoutlinesthatwouldsuggestintrusionofBurialI-Aintotheremainsofpreviouslyinterredindividuals.Thepartialarticulationoftheperipheralburialssuggeststhattheywereonlypartiallydefleshedatthetimeofburial.Thealternative,andsimpler,interpretationisthatBurialI-Arepresentsonlythemostrecentofseveralinterments,andthattheremainsoftheotherindividuals(l-B, 1-C,I-D)werepartiallyscatteredandlostwhenBurialI-Awasputintheground.Infavorofthismodelisthefactthatthebonesof1-B, 1-C,and1-Darepartiallyarticulatedbutincomplete;againstit isthecompleteabsenceofanyindicationofprehistoricpitexcavation.Itappearsasthoughtheburialswereplacedonthegroundandcoveredoverwithlightgraybeachsand.Bonesfromthecentralindividualareradiocarbondatedto 75070yearsB.P.: A.D. 1200.Unfortunately,thisdatecannotbecalibratedbecausethedatewasnotl3C-adjustedwhentheassaywasobtained.Inmyexperiencewithsixl3C-adjustedandcalibratedhumanbonedatesfromsouthwestFlorida,allbecamemoreancientwhenl3C-adjusted(+140, +200,+219, +240, +250, +250;average=+217 years).Thus,ifoneadds217yearstotherawageofBuckKeyBurialI-A,thenanestimateofitsl3C-adjustedagewouldbe96770radiocarbonyears,anditsestimatedcalibrateddaterangewouldbeA.D. 1001-1161. ThiswouldplaceitsomewhatolderthantheearliestdatesweobtainedfortheBuck Key ShellMidden(Le., 'A.D. 1260-1345, A.D. 1260-1326, A.D. 1267-1334; seeTable1).Thelimitedtestsof1986areinsufficienttodeterminetheexactagerangeofthemoundorthedetailsofburialpractices.Whatisclearfromourlimitedexcavationsat8LL55 isthatatleastaportionoftheBuckKeyBurialMoundstillremainsundisturbedbymodernlooting,andthesite'sresearchsignificanceisthusreaffirmed.Summary.PreliminarytestexcavationsattheBuck Key ShellMiddenandBuckKeyBurialMoundin1986revealedintact,stratifieddepositsdatingtotheCaloosahatcheeII, III,andIVperiods.Investigationsat8LL722uncoveredanomalouscrushedsurfclamshellconcentrationsandpossiblepostmoldsthatmaybeevidenceofstructures.AlateCaloosahatcheeIImiddenwithnumerousandunusuallylargewhelksisoverlainbylaterdepositsthatincludeGladesTooledandSt.JohnsCheckStampedpotteryoftheCaloosahatcheeIIIandIVperiods.Aburnedashandshellzoneprovidedwell-preservedboneandwooddata,Culture and Environment in the Domainofthe CalusaandGladesTooledpotteryfoundindirectassociationwiththeburnedarealikelydatestothefourteenthcenturyA.D. ACaloosahatcheeIIperiodburialmoundnearthecenteroftheisland(8LL55)hasbeenseverelydisturbed,butsomeportionsarestill intact. Burialsencounteredinthesmallpartofthemoundweexcavated(Test Pits G-1andG-2)probablypre-datethemiddenswetestedontheeasternsideoftheisland.Moreextensiveexcavationsinsite 8LL722 willbenecessarytoinvestigatethepossiblestructures.ControlledexcavationsbelowthewatertableareessentialtolearningmoreabouttheearliestoccupationsofBuck Key.BIGMOUNDKEY(8CHIO)ANDBOGGESSRIDGE(8CH16,8CH19,8CH34)Previous Investigations and Disturbance of the SitesThe158-haBigMoundKey/BoggessRidgeArchaeological District islistedintheNationalRegisterofHistoricPlacesandisstate-owned.It is arestrictedarea,andaccess isregulatedbytheCharlotteHarborStateReserve,DepartmentofNaturalResources(DNR). It islocatedatthesouth-centralextremityoftheCapeHazePeninsulaabout15.5kmnorthofUseppaIslandand5.5kmsoutheastofthetownofPlacida(Figure1).Thedistrictincludesthesitesknownas BigMoundKey, amound/midden/shellworkcomplexthatextendsovera 15haareaandrisesover7minelevation,andBoggess Ridge, along,low,twometerhighsandridgeabout400 mnorthofBigMoundKey. BigMoundKeyisextraordinaryinsizeanduniqueinshape.Notonlyisitanexceptionallylargeshellmound/middencomplex,butitsbilateralsymmetryandfinger-likeprojectionshaveledsomeobserverstosuggestthatthestructureis agiganticeffigymound(EdicandFraser1982;Fraseretal. 1982).Thespideroroctopus-like'appearanceisparticularlystrikingfromtheair, astheinfra-redaerialphotographinFigure27shows.BigMoundKeyandBoggessRidgewerefirstrecordedasarchaeologicalsitesinthe1950sbyUniversityofFloridaarchaeologistJohnGoggin;BigMoundKeywasvisitedandsurface-collectedbyRipleyandAdelaideBullenin1954 (BullenandBullen1956:50-51).TheBullensfoundshellhammers,pounders,anvils,andperforatedOlivashells,aswellasasandstonegrinderfragmentandnumeroussherds.ThepotteryindicatedoccupationofBigMoundKeyduringtheWeedenIsland-related(ca. A.D. 300-1000),SafetyHarbor(ca. A.D. 1000-1600),andhistoricLeon-Jefferson (ca. A.D. 1633-1704)periods.EvidenceofthelastincludedsherdsofSpanisholivejarsaswellas Jeffersonware.TheBullensinterpretedthepresenceoftheJeffersonware,whichtheyfeltwasidenticalinsurfacehardnessandtempertothatfoundinthe'Tallahasseearea,tobeevidencethatrefugeesfromtheApalacheemissionshadfled to

PAGE 53

Recent Archaeological InvestigationsFigure27.Black-and-whiteprintofafalsecolorinfra-redphotographshowingBigMoundKeyandBoggessRidge.Viewistowardthenorth-northwest.(PhotographbyRobertPelham,1975,MoteMarineLaboratory,Sarasota.Reproducedbypermission.)45southwestFloridaafter1704 (BullenandBullen 1956: 51).ThetopographyofBigMoundKey (Figure28)includesarectangular,flat-toppedmoundapproximately35 x 30 x7 m,knownasthe"westernplatformmound";arectangularmoundabout30 x25x6 m,knownasthe"southwestmound";anotherplatformmoundofuncertaindimensions,calledthe"fortmound,"nowlargelydestroyed;andaverylargeelevatedarea,knownasthe "eastmound,"withoveralldimensionsof75x75x6metersandcontainingtwoprominentpeaks(Weisman 1990).Nineormorelinearshellridges,eachonenomorethan50erninelevation,runfor 100 to 150 mandgivethestructureits "spider"-likeappearancefrom the air (Figure 27). Twoofthemoundsarebelievedtohavebeencon-structedca. A.D. 800-1000andathirdmoundsoon after,basedonstratigraphicevidenceandradiocarbondatesobtainedbyGeorgeLuerandhiscolleagues (Luereta1.1986:103).In1975and1980 BigMoundKeywasseverelydamagedbytreasurehunterswhousedbulldozersandabackhoetocutmassivetrenchesthroughtheshellworkandmiddendeposits.Itisestimatedthatabout30%ofthe sitewasdestroyedbythisvandalism(Weisman1990).In1982,withastateresearchpermit,GeorgeLuermadea schematicdrawingofthestrat ification inoneofthebulldozedtrenchesinthewesternplatformmound.Dates from thetop6mofthemoundindicatethatitwasconstructedbetweenca. A.D. 700and1000 (Luer eta1.1986:103). Anapparentcacheoffivelightningwhelkshell toolblankswas

PAGE 54

46Culture and Environment in the DomainoftheCalusaKEY:.--.SHEllMIDDENTESTUNITCORESAMPLEmiscellaneousbivalves,thenalayerofcompactedshellandcrushedpenshellwithsomeoyster, conch,ash,bones,andartifacts. Finally,atthebottomofthedepositjust afewcentimetersabovesea level, astratumofsmalloysterandbandedtulipshells isencountered.Weismanbelievesthelattertobea basal, possiblynon-culturaldeposit,theoverlyingshell, ash,andbonedepositsbeingprimarymiddenmaterial. Finally,themainupperstratum-themediumtolargeoysters,whelks,andotherbivalves-isasecondarymounddeposit,withacapofhumusandblack sedimentwasheddownfrom erosionupslope(Weisman 1991:3-4andFigure4).Potterycollected fromthebackhoetrenchandsurroundingareasin1991waspredominantlyBelleGladePlain. LesseramountsofSand-temperedPlain,unidentifiedcomplicatedstamped,PinellasPlain,SafetyHarbor,andSpanisholivejarsherdswerefound.OnlyBelleGladePlainwasidentifiedinsituinthe profile;itoccursinboththe"primary"middenandtheoverlying"secondary"moundfill,suggestingaCaloosahatcheeIIdateforthegreaterpartoftheprofileddeposit. TheCaloosahatcheeIII,N,andVperiodsarerepresentedinmiscellaneoussurfacecol lections(Weisman1991:5). Anumberofshell artifactswerealsocollectedbyWeisman(1991:4); these includeTypeCandDhammers,adipper/vessel,a columellahammer,aquahoghammer-anvil-chopper,andperforatedbivalves. Boggess Ridge is alinearsandridgeforming thesouthernandeasternrimofa saltwaterpondknownas BoggessHole(Figure 27). Theridge'smaximumelevationisonlyabout2mabovemeanhightide. Three differentsitenumbersareassignedto Boggess Ridge (8CH16,8CH19,and8CH34).Humanburialsin associationwithWeedenIsland-relatedpotteryandchalkyplainwarehavebeenfoundin thepartknownas 8CH16.Theburialswereseverelydisturbedin 1982,1984,and1985bypothunters.Statelawnowmakes it a felony todisturbsuchburialsites. IvisitedBoggess RidgeonJune29, 1985,withstatepermission,andcollectedsomeofthechalkyplainwaresherdsleftbehindbythepothunters(cataloguenumberA27616, FloridaMuseum).MycollectionswerefromapartofthesiteknownasMoundB.GeorgeLuerhasmonitoredthesite totrytopreventfurtherdestruction,andhemadeseveralsurfacecol lectionsinthemid1980s. SomeofthesalvagedmaterialhecollectedinMay, 1985, also fromMoundB,wasdeliveredto the FloridaMuseumofNaturalHistory(cataloguenumbersA27617, A27618, A27619).LuerandArchibaldconductedlimitedsalvageandexploratorytestingoftheeasternedgeofMoundAattheBoggessRidgesite in 1988. Their excavations revealedthathumanburialswereinterredwithwhelkshell vesselsandwithintentionallybroken,andfrequentlycarefullyarrangedandstacked,potsherds.Mostofthesesherdsareplainwares,andincludesand-tempered,chalky,andBelleGladepastes.WeedenIslandpotteryis alsorepresented,butmuchless frequently. ThehumanbonewasscatteredandinMN I CONTOURINTERVAL:1METERELEVATIONINMETERS A.M.S.L io50roo ZOOM SOURCE:KERND.S.R.AERIALCARTOGRAPHieSOFS.W.F.PROJECTFla.M.N.H.Figure28. BigMoundKey,showingareaofGeorgeLuer'ssalvageexcavationoftheburnedarea.AportionofthesedimentsexcavatedbyLuerunderwentarchaeobiologicalanalysis,reportedinChapters8and10ofthisvolume.discoveredinthelooters'trenchthroughthesamemound;another14blankswerefoundinthebulldozerspoilofthesouthwestmound(Luer et al. 1986:103 104).Lueralsoobtainedastatepermittoconductsalvageexcavation of alargeburnedshell, charcoal,andashpitfeaturedatingtothetenthcenturyA.D. fromnearthesummitofthewesternplatformmound(Weisman 1990:Figure 5).Hemadeavailableto us aportionoftheexcavatedsedimentsfromtheburnedareaforarchaeobiologicalanalysis,theresultsofwhicharereportedinChapters8and10. Astimeandresourcesallow,DNR officialsintendtorestoreBigMoundKey to itspre-vandalizedappearancebybackfilling thedangerous,opentrenchesandremovingexoticvegetationfrom the area.InearlyJanuary,1991, BrentR.Weisman,archaeologistwiththeFloridaBureauofArchaeological Research, assistedbyChristineNewman,WilliamMarquardt,Robert Edic,RobertRep"enning,andBarbaraandReed Toomey,troweledandrecordedaportionofthenorthprofileofthebackhoetrenchcutbythetreasurehunters(Weisman 1991).Thebackhoetrenchhadbeencutinapproximatelyaneast-westdirectionsouthofthemainelevatedareasbutnorthofthefinger-like ridges. Alayerofhumus,topsoil,andslopewashisunderlainbyalayerofmediumtolargeoyster, whelk,and

PAGE 55

Recent Archaeological Investigations47BCh10Big Mound Key"FirePitFture,W.,tWell,MlIlnBulldozlrCui,Wt.rnPlatformMound"Figure29.Sketchofprofile,showingpitfeatureneartopofWestMound,BigMoundKey.Afterfieldnotes,GeorgeM.Luer,1982. (Source:Weisman1989:Figure5.) Woodsofpine,blackmangrove,buttonwood,live oak,andpossiblyseven-yearappleandwildcottonwereburnedintheBigMoundKey fire pit. Pineaverages86%ofthewoodfragmentsrepresentedin the foursamplesanalyzed.Seeds from fleshy fruits,suchasseagrape,hogplum,andcabbagepalm,aremoreabundantlyrepresentedthanthose ofruderalspecies in fiveofthesixsamplesanalyzedbythearchaeobotanists(Chapter10).Charcoal.AshConchShellsCrushedShell,BtackDirlPossiblePoslmoldIntrusionsRedrawn fromG.Luerfieldnotes,1May1982 Shell,Charcoal,o Mound Fill(Shell) ScallopandConchShells [E Shell.Black Dir!.[';;]I:tlGJ o100emRadiocarbonSample2676:AD '920 RadiocarbonSample2681; AD440RadiocarbonSample2679:AD870RadiocarbonSampre2685. AD920ofthe 150-cmwidepit(Figure29)includeda majorepisodeofcharcoalandashdepositionandoneofcrushedshells,blackdirt,andash. Bothofthesedarkcoloreddepositsshowedevidenceofpossiblepostmoldintrusions.Between thesezoneswerefoundlayersofcrushedshell, blackdirt,andconch shells.Zooarchaeologicalanalysisofmaterialsfrom theburnedshell/charcoal/ashpitfeatureshowsanexploitationmainlyofmangrove,mangroveedge,seagrass,andoysterbedhabitats,butsomeremainsofsiren, frog,andsnappingturtlesuggestthatfreshwateraquaticresourceswerealsotargeted.Remains ofdeer,especially intwoofthefourpitstratarepresentedinouranalysis, as well as sea turtle,grouper,andjack fish,wereunusuallywellrepresented.Cat fish bones,generallyverycommonthroughouttheCharlotteHarborsampleswehaveanalyzed,wererelatively scarce.Itis possiblethattheBigMoundKey firepitrepresentsa special feast,ortheareaofpreparationoffood forhigh-statuspersons(seeChapter8).Researchbythe Southwest Florida ProjectOurinvolvementwithBigMoundKeyandBoggess Ridge hasbeenlimitedtotheaforementionedsurface collections, assistinginWeisman'srecordingproject,makingatopographicmapofBigMoundKey,takingvibrocoresamples,andundertakingzooarchaeologi calandarchaeobotanicalanalysisonthesedimentsexcavatedbyLuerin1982.Thegeological coreswereplacedspecifically toinvestigatetheoriginof BigMoundKeyandascertainthenatureof the finger-like ridges.CoresinBoggess RidgeandBoggessHolewereplacedtoshedlightontheculturalandnon-culturalprocessesresponsiblefor thesandburialmound.BigMoundKey seems clearly tohaveaccumulatedonandprogradedoverestuarinesediments.Thefinger-like,lowshellridgescannotbeaccountedforbynon-culturalprocesses,suchasstorms,andseem tohavebeenconstructedbypurposefuldeposition,thoughthiscannotyetbedemonstratedunequivocally(seeChapter3).ThesedimentsinBoggessHoleareHoloceneinage,andincludea surficiallayerofgraytogreenmuddysandincludingtheremainsofmangroves.Shell-free, lightbrowntowhite,highlybioturbatedsandsarefoundbeneaththemangrove/estuary-derivedsedi ments. Cores in theadjacentsandridgeshowthatit ismadeofaeoliansandaccumulatedthroughnon-culturalprocesses. BoggessHolemaybe a relict sinkhole,andthedunesandsmayhaveaccumulatedbywinderosionduringaloweredsea-levelstand.DuringtheearlyCaloosahatcheeIIperiod,prehistoricpeopleinterredtheirdeadintheeasily-excavateddunesandsof Boggess Ridge,butprehistoricpeoplearenotinanysubstantialwayresponsiblefor thepresenceof thelandformknownas Boggess Ridge,nordidtheyexcavatesedimentsfrom BoggessHoletobuildmounds(seeChapter3 for details).Cordell'sanalysisofthechalkyplainpotteryI recoveredfromthedisturbedMoundBshowsitspastetobecharacterizedbyabundantspongespiculesandoccasional tocommonveryfine to finequartzsand,typical ofthechalkywaresknownas St. Johns,butwiththeadditionof occasional tocommonreddishorferruginouslumpsorstains. Thisvarietyofchalkypotteryis sometimes called Tomokaware(GriffinandSmith 1949:349).Fourdifferentpartsoftheburnedshell, charcoal,andashfeatureexcavatedbyLuerwereanalyzedbyzooarchaeologistKaren JoWalkerandarchaeobotanistsMargaretScarryandLeeNewsom.Stratificationpoorcondition. Thesemortuaryactivitiesdateto theearlyCaloosahatcheeIIperiod(LuerandArchibald 1988). This isroughlycontemporaneouswiththeburialsfoundatthe CollierInnonUseppaIsland(see above),whicharedatedto A.D. 595-666andwhichwerealsoaccompaniedbylargepotsherdsclusteredaroundthehumanbones.NoWeedenIslandpotterywasfoundinourlimitedtestingattheCollier Inn,however.

PAGE 56

48Insum,BigMoundKeyandBoggess Ridgeareextraordinarybutpoorlyunderstoodsites.Substantialmiddensandevidenceofpurposefulmoundconstructioncharacterize the BigMoundKey site,whichhascomponentsstretchingfromtheCaloosahatcheeIthroughCaloosahatcheeVperiods.AWeedenIslandrelatedburialmoundwasimposedintothenaturaldunesandsofnearbyBoggess Ridge. Both siteshavesufferedprofounddamagefrom looting, especially inthe1970sandearly1980s. It isanunderstatementtonotethatthese sitesarehighlysignificant.ControlledexcavationsatBigMoundKeymightwellprovidetheanswerstomanyquestionsconcerningthefirst influencesofBelleGladecultureca. A.D. 650orearlier,theperiodofintensivemound-buildingobservedthroughoutCharlotteHarborafter ca. A.D. 500, therelationshipbetweenindigenousculturesandthemortuarypracticesassociatedwiththeWeedenIslandandSafetyHarborcultures,andthepoliticalandeconomicdynamicsoftheprotohistoricandhistoricperiods,ca. A.D. 1500 1750. THE PINELAND SITE, 8LL33Oneofthelargestandmostcomplexofthesites visitedbyFrankCushingduringhis 1895expeditiontoPineIslandSoundwasthePinelandsite,thenknownas Battey'sLanding(MarquardtandBlanchard 1989:1-3).Cushingobserved:Thefoundations,mounds,courts,gradedways,andcanalshereweregreater,andsomeofthemevenmoreregular,thananyIhadyet seen....Thesamesortsofchannel-waysasoccurredontheouterkeysleduptothesamesortsofterracesandgreatfoundations,withtheircoronetsofgiganticmounds.Theinnerorcentralcourtswereenormous....Thissettlementhadanaveragewidthof aquarterofa mile;...Itshigh-builtportionsalone,includingofcoursethefivewatercourts,coveredanareaofnotlessthanseventy-fiveoreightyacres.(Cushing1897:341-342)PartofthesitecomplexthatsoimpressedFrankCushingstill exists,althoughtheundisturbedportionstodaycovernot30,butabout8 ha.Cushingalsodescribedamidmostinnercourtthatwasconnected to PineIslandSoundbymeansofa canal. The canal (8LL34),whichextendedeastwardfromthecourt,wasthen9mwideand2mdeep.Itraninastraightlineintothepinewoods,passingnexttotheAdamsMound(8LL38)andreachingIndianField (8LL39)ontheoppositeshoreofPineIsland. Itwasalignedwithanothercanalonthemainland,whichranfor severalmoremiles,ultimatelyconnectingwiththeCaloosahatcheeRiver (Luer 1989). Acrewofvolunteerworkersunderthesupervisionof William H.MarquardtandKarenJoWalkerundertooktest excavations atPinelandovera12-dayperiodinMay, 1988,withtheobjectivesofsecuringradiocarbondatesfromsomeofthedeposits,exploringthe stratification of thetwohighestremainingshellmiddens,andexaminingasquare,flatareathatsurelyisoneofthe"enormouscourts"describedbyCushing.Culture and Environment in the Domainofthe CalusaFourtest pitswereopened,oneinthetop of thesouthernmosthighmound,nowknownas the RandellMound;oneinthetopofthehighestmound,called Brown'sMound;onebetweenBrown'sMoundandthe canal;andoneina large, flatarea(Figure 30). The 1988Pinelandtestingoccurredlastintheperiodofresearchreportedinthisvolume(1983-1988),andanalysishadbarelybegunwhenthevolumewasassembled.Iincludehereonlyabriefstratigraphicdescriptionofthe1988testingandsomeresults of ceramic analysis,basedontheworkofAnnCordell.Charredwoodfragmentsrecoveredfrom the1/4"screeneddepositsin1988arediscussedinChapter10 of thisvolume.Aseparatemonographwillreporttheresultsofthe 1988and1989testingatPineland,as well as the excavation seasons of 1990and1992. A profilewascutinto anorthwest-facingerodededgeoftheRandellMound,providinga 2.75 mhighsection (Figure 31). Theoriginaledgeofthemoundwasapparentlycloser tothecanal,butpartofthemoundwasbulldozedinthe1960s toprovidefill forlowareasofthesite (EdicandTorrence1990). Alayerofverydarkgrayishbrownsandwithabundantshell atanelevationofabout2.25 to 2.75 mabovesea leveldatesto A.D. 631-701,butalldatesfromabovethatstratumfallbetweenA.D. 906and1257 (Table 1). Alayerofdenseshellandbonedatingto A.D. 1073-1257 isoverlainbyalayerofverydarkgrayishbrownsandwithdenseshelldatingto A.D. 906-1030.Abovethelatterlies alayerofverydarkgraysandwithmoderatelydenseshelldatingto A.D. 1088-1250. Weopeneda1x1mtestpit,TestA-I,2.0 msoutheastof theexposedface,insuchawaythatthe profile of Test A-Iwouldbeparallel to the centralexposedface. This testpitwascarriedto adepthof 1.38cmbelowthesurfaceinorderto intersect the elevation of 5.00 matthetopoftheexposedface (Figure 32).Itis likelythatthestratumofdensegrayshellthatcharacterizesthebottom70centimetersofTestPitA-I (Stratum FinFigure 32) iscontinuouswiththedensegrayshellnearthetopof theexposedface,PINEISLANDSOUNDCONTOURINTERVAL= 2"4ETERS Figure30.ThePinelandsite,showinglocationsof1988testexcavations.

PAGE 57

Recent Archaeological InvestigationsFigure31.StraightenedprofileofRandellMound,Pinelandsite,May,1988.althoughthiscannotbeknownwithcertainty.Aradiocarbonassayfromabovethedensegrayshell in Test Pit A-Iresultedin adateofA.D. 1032-1198.Thepotteryfrom Test Pit A-I (n=238) ispredominantlySand-temperedPlain(63.4%ofall levels com-49bined)andSPCBPlain(24.4%ofall levels combined). Five BelleGladePlainsherdsoccurintheupperfour levels,anda singlesherdofGladesTooledwasfoundinlevel 3 (Table 10). Reckoningonestandarddeviationfromthemeans,fourofthe fivedatesinOperationA fallintherangeA.D. 906-1257 for the top 3.6 mofthe RandellMound(lateCaloosahatcheeII).Thefifthdateis A.D. 631-701,fromthebottomof theexposedfaceatanelevationof2.80 mabovepresent-daysea level (earlyCaloosahatcheeII).A 1.0 x 4.5 mtrench(units A-2, A-3, A-4,andA-5)wasplacedperpendiculartotheexposedfaceandexcavated to adepthofapproximately50cm.Muchmiddenshellwasencountered,butsowereiron pipesandfragmentsofmodernconcrete,probablyremnantsof thetwentiethcenturydisturbance.OperationBwasa2x2m testpitlocatednearthecenterofBrown'sMound.Thetopmost15cmofthedepositcontainedcharcoal,muchbrokenandburnedglass,androundironnails,presumablytheremainsof the historicperiodstructurethatoncestoodonthemound'speak. The excavation,whichwascarriedto 215 cmbelowsurface,revealeda series of distinctdepositsofmiddensediment.The layerswereapproximatelylevelwiththecurrentgroundsurfacedowntoabout60-70 cm,butthenbeganto slopedownwardtowardthewest, atrendthatcontinuedtothelimitsofourexcavation (Figure 33).Thestrataareallcomposedofsandysedimentswithsmallanimalbones(principallyfish)andshells (mostlywhelks,conchs,andoysters),butvaryfromoneanotherin shellsizeanddegreeofshellcrushing,incolorvalue(relativewhiteness/blackness),andinproportionofbonesmixedwiththe shells. A distinctlayerofgrayashwithmanyanimalbonesappearsabout30-45 cmbelowthesurface(Stratum CinFigure 33), as if amajorfire, feast,orashdumpingepisodehadoccurred.Overlyingthegrayashis a relativelyTable10.PotteryfoundinTestA-I,8LL33,Pineland,1988.LevelTypeTotalS&PC'12345678910111213Sand-tempered(21)851210145511390 1 11151PlainGladesTooled(0)00 1 0000 0000001SPCBPlain(6)2452532555572 58 BelleGladePlain(l)02 0 2000 0000 00 5 St. Johns Plain(0)20110 00 0010005 Pinellas Plain(2)00 1 012301000010(laminated paste)Grog-tempered(2)0001022 000 0 0 07Plain Ticked rims,(0)0 1b 000 00 0000001 miscellaneous Total(32)121220162062188156683 238'Surfaceandprofile cleaning. bSPCB paste.

PAGE 58

50LEGEND:Culture and Environment in the Domainofthe CalusaA1 STRATUMVERYDARKGRAYISHBROWNVERYDARKGRAY6.256.005.755.50 5.25 LIT]F71LJDo[7"";l[(C(lL.=.J PALEBROWN-GRAYLIGHTGRAYWHITERADI0CARBONDATEREFERENCESHELLCRUSHEDSHELLSHELLBONE5.004.75 4.504.254.003.753.503.25 3.002.752.50 2.25UNEXCAVATEDC.Me:P.T.0.00.51.0METERFigure32.ProfilediagramofTestPitA-1andstraightenedprofileofRandellMoundatPineland,May,1988(comparewithFigure31). Key tostratigraphy:A=darkbrownhumus,leaflitter,androots;B=blackrootmatwithdenseshell;C=lightgraytowhitewholeandcrushedshell,withlittletonoothersediment;D=palebrownwholecrushedshell,withlittletonoothersediment;E=graysandwithdenseshell;F=graydenseshell;G=verydarkgrayishbrown,highlyorganicsandwithdenseshell;H=verydarkgraysandwithmoderatelydenseshell;I=palebrowndenseshellwithmuchbone;J=whitedenseshell;K=verydarkgrayishbrownsandwithmoderatelydenseshell;L=lightgraydenseshellandbone.

PAGE 59

Recent Archaeological InvestigationsNWB1NE51UNEXCAVATED D GLASSANDIRONNAILS .;>I (, ISHELL 0 CRUSHEDSHELL \D BONE 0 RADIOCARBONDATELEGEND:STRATUMVERYDARKGRAYDARKGRAYGRAYLIGHTGRAY-WHITE0.00.20.40.60.81.0METERC.MeP.T.Figure33.ProfilediagramofTestPitB-1, 8LL33,Pineland,Brown'sMound.Keytostratigraphy:A=graysandwithpoorly-sortedconch,whelk,andcrushedshell,charcoal,brokenglass,andironnails;B=graysandwithdense,medium-sizedwhelkandconchandsomeoystershell;C=grayashwithmanysmallbones;D=lightgrayashwithmuchburnedsmallandcrushedshell;E=verydarkgraysandwithverysmallcrushedshell;F=lightgraysandwithmedium-sizedwhelk,conch,andoystershell,withmanysmallbones;G=darkgraysandwithsmallbonesandsmallcrushedshell;H=lightgraysandwithdense,poorly-sortedwhelkandconchshell,smallcrushedshell,andmuchsmallbone;I=graysandwithdense,medium-sizedwhelkandconchshellandverysmallcrushedboneandshell;J=white,densesmalltomedium-sizedwhelkandoystershellwithlittleothersediment.

PAGE 60

52Culture and Environment in the Domainofthe CalusaTable11.PotteryFoundinTestB-1, 8LL33,Pineland,1988.LevelTypeTotalS&PC'12 3 45 6 789101112131415161718Sand-tempered(35)22212244241922 262726253113221713214 434 Plain Glades Red(0)aaaaa1aaa1a1baa1a116 Sand-tempered,(0)a2'aaaaaal'1a1 daIeIeaaa7 decoratedSPCBPlain(5)9739712a64 432aa2212 78 SPCB, decorated(0)aaaaIeaaa a1 daaaaaaaa2 Belle Glade(26)294537 5846481824212424 251218911226 503 Plain Belle Glade(0)aa1aaaa1 221 1a1aaaa9 Check Stamped Belle Glade Red0)a127632322a32a1a2a37 Goodland Red(0)aaaaa aaa aaaaaaaa1a1SI.Johns Plain0)aa522211aaa a152a3a25SI.Johns Check0)aaa313 13 2a11a1a21a20StampedSI.Johns, misc. o)"'P aaaIeaa a2'I"1al"Pa2",qaa aa9 decorated Pinellas Plain(0)1212aa aa aa1aa1aaaa8 (laminated paste) Safety Harbor(0)a aaaaaaaa1aaaaaaaa1 period, misc. Weeden Island(0)aa11aaaaa1 8aaaaa1bIiaa4 period, misc. Weeden Island,(0)a2iaaa aaa1 kaaa11lIDaaaa5 chalky paste Micaceous Plain(0)1a aaaaa11aa a2a2a1a8 Pasco Plain(0)aaa1a1aa aaaaaaaa aa2 Grog-tempered(2)11a31aaa1211aaIa aa14Plain Grit-tempered(0)1a aaaaaaaaaaaaaaaa1 Stamped Total(72)64817213088894467646556673152 372953131174 'Surfaceandprofile cleaning.bSPCBpaste.'Cordmar ked. dUnidentified incised. eSimple stamped. IWeeden Island Plain,sandypaste. 8Weeden Island Red, micaceous paste. hWeeden Island Plain, grog-tempered. IRuskin Dentate Stamped, Belle Glade paste. IUttle Manatee Zoned Stamped. kpapys Bayou Plain. lUttle Manatee Stamped. mpapys Bayou Plain."Dunn'sCreek Red. Unidentifiedstamped.PRed-pigmented.qSt.Johns Scored.thick (25-35 em)layerofgraysandwithmanymedium-sizedwhelks/conchsandverysmallfragmentsofcrushedbonesandshell(StratumI inFigure33).Fromthelayerofcrushedshelloverlyingtheashlayercomes aradiocarbondateof A.D. 762-956,butdatesfrom shells welldowninthedepositdateto the

PAGE 61

Recent Archaeological InvestigationsTable12.PotteryFoundinTestC-1, 8LL33,Pineland,1988.53LevelTypeTotalS&PC1234567891011121314Sand-tempered(13)14322328184117211220 313784 35 426 PlainGladesRed(0)0000020000 0 0 0 0 2GladesTooled(0)0010000 1110 000 4 SPCB Plain(9)919103491181177230112SPCB,decorated(0)00000004b02<0 0006 Belle Glade(2)8241513682101359314123Plain BelleGlade(0)000000010000001 CheckStampedBelleGladeRed(0)0 00 00000 002 0002 St. Johns Plain(0)2335200112000019St. Johns Check(0)0032 010 1000001 8StampedPinellas Plain(1)04311 00 13 d 01 03018(laminatedpaste)SafetyHarbor(0)00 0 0 0000000 I" 001period,misc.WeedenIsland(0)00000 00011IS0 0002period,misc.Grog-tempered(0)1 0 1 0000201000 0 5 Plain Ticked rims,(0)00I h 0 Ii 2 h 0Ii00000 05 misc. Total (25) 34 826052 32 63 30514239 50 439140734Surfaceandprofile cleaning. brwo sherdsMatecumbeIncised,twounidentifiedincisedandpunctated. Incised. dOneofthe three isanunidentifiedpunctatedsherd."SafetyHarborIncised, Belle Glade paste. IRuskin LinearPunctated,grog-tempered.SWeeden Island Incised, micaceous paste. hSandy paste,withincising. ('Pinellas") paste.JSPCBpaste.thirteenthandfourteenthcenturiesA.D. Level 17,about2.05 mbelowthesurface,datesto A.D. 1235 1309,whilelevel 6, about70cmbelowsurface,datesto A.D. 1301-1424.Thelowerlevels (below the ash)containminorbutconsistentamountsofSt. Johns CheckStampedpottery(Table 11),butthere isnoSt. Johns CheckStampedabovethe ash. AsWidmer(1988:85)hasnoted,St. JohnsCheckStampedappearsintheCaloosahatchee regionaboutA.D. 1200. ThissuggeststhatmiddenmaterialdatingtotheninthcenturyA.D.washeapedontopoftheashlayerso as tobuildthemoundupevenhigher. Thetwolinesofevidencetheradiocarbondateandtheabsence of St. JohnsCheckStamped-leadtothehypothesisthatBrown'sMoundwaspurposefullyaugmentedafter A.D. 1200. It is possiblethatthiscappingwithearliermiddenmaterialwasdonein historic times,perhapsto level off themoundforhouseconstruction,butif so, no historic artifactsweredepositedduringthis process. Historicmaterialsarelimitedtotheupperfew cmoftheexcavation. BelleGladePlainisthedominantplainware ill Operation B, accountingfor 42.8%ofallsherds com., bined.Sand-temperedPlainrepresents37.0%"SPCBPlain6.6%. This isconsistentwiththeCaloosahatchee IIIperiod,assuggestedbythe14Cdates(Cordell,Chapter4,this volume).OperationCwasa2x2m testpitplacedsoutheastofOperationBatanelevationof 3.83 mabovesea level. Itwascarriedto adepthof1.35 mbelowsurface,oranelevation ofabout2.48 m. Mostofthematrixislooselypackedsedimentwith abundant, mostlymedium-sizedwhelkandconch shells.About85cmbelowsurface begins adarkgray,highlycompactshellmiddenwithabundantcrushedshells. From Level 9inthis25-40 cm-thick,darkstratumcomes aradiocarbondateofA.D. 1420-1491. BelleGladePlainoutnum-

PAGE 62

54CultureandEnvironmentinthe DomainoftheCalusaTable13.PotteryFoundinTest0-1,8LL33,Pineland,1988.LevelTypeTotalS&PC'12 3 4 5 67891011Sand-tempered(15)2020414743312814482013340 Plain Glades Red(0)00000 000 002 b 2 Glades Tooled(0)00010 00 00001 Sand-tempered,(0) 1< 0000 000 00 0 1 decorated SPCB Plain(6)512204 8 0 3262068SPCB, decorated(0)000I d 00 000001 Belle Glade(1)18212015747 61114115PlainSI.Johns Plain(0)143 00 0000 0 08 Pinellas Plain(0)0033400 000 010(laminated paste) SafetyHarbor(0)0 0 I" 00 000000 1 period, misc. Weeden Island(0)00000011000 01 period, misc. Pasco Plain(0)0030 0 0000003 Grog-tempered(0)1 02101 10000 6 Plain Total(22)4657937262364022652319557 Surfaceandprofile cleaning. bOnesandypaste,oneSPCBpaste.
PAGE 63

Recent Archaeological Investigationsmationaccomplishedwhatitapparentlyhadbythefifteenthcentury(seeChapter1).Simplyput,weneededarefinedchronology,abetterunderstandingofthearea'sartifacts,anappreciationfortheenvironmentalheterogeneityoftheareathroughoutitspast,andmorefamiliaritywiththenatureofthesitesandwithwhatwasneededtoinvestigatethem.Weneededtodevelopa toolkitforthetaskahead.Thankstotheassistanceofseveralprivatefoundationsandbothstateandfederalfundingagencies,thesupportoftheUniversityofFlorida,thecooperationofstateandfederalpersonnel,whohaveprovidedbothpermissionandlogisticalassistanceinourworkongovernment-managedlands,andgiftsofinformation,money,materials,andlaborbyliterallyhundredsofpeople,wehavemadeenoughprogressinthisdirectiontobegintopursuethebroaderanthropologicalquestionsthatfirstbroughtsouthwestFloridatoourattention.InthischapterIhaveprovidedanintroductiontoourpreliminaryexcavationsandotherdata-gatheringprojects.Archaeologytodayisandmustbemorethanexcavationsandartifacts.Thefollowingtenchapterscontainsupplementaryandcomplementarydatathatareessentialtoallowonetoplacetheartifactsandexcavationsintoameaningfulcontext. Ihopethatthenewinformationourteamhascompiledwillbeusefultoothers.But,likeallpreliminaryreports,thisoneisputforwardintheexpectationofcriticalresponseandcorrectionfrominterestedcolleagues.Exceptwhereotherwisenotedinthisbook,allartifacts,sedimentsamples,analyzedarchaeobiologicalcollections,photographs,notes,maps,andotherdocumentationarecuratedattheDepartmentofAnthropology,FloridaMuseumofNaturalHistory,andareavailabletointerestedscholarsforstudyaccordingtonormalFloridaMuseumpoliciesandprocedures.NOTES1ShellsofthesuperfamilyPinnacae,towhichAtrinasp.belongs,haveanouterprismaticlayerofcalciteoverlyinganinnernacreouslayerofaragonite.The calcite issofterthanthearagoniteandtendstobreakalongwell-definedcleavageplanes(Carter1980:72-73, 91-93). Thisstructuralfeatureisthoughttoprovidetheanimalanadvantagebytendingto localize fractures.ACKNOWLEDGMENTSLiterallyhundredsofpeoplecontributedinmanywaystotheresultsreportedinthischapter.Theyhavebeenidentifiedbynameinpastissuesofourprojectnewsletter,Calusa News.InthepreparationofChapter2, Iextendspecialthanksto MelissaMassaro,Michael Russo, ScottSwan,andBarbaraToomey,whoassistedmebyprovidingidentificationsandcalculatingseasonalitymeasures.Numerousundergraduateandgraduatestudentsassistedwithartifactanalysis,55underthegeneralsupervisionofEliseLeCompteBaer.CorbettTorrenceisresponsibleformostofthefinedraftingandcartographyinthischapter.KarenJoWalkerdrewFigure26.AnnS.Cordell,GeorgeM.Luer,Lee A.Newsom,ClaudinePayne,andKarenJoWalkerprovidedmanyhelpfulcommentsonanearlierdraft.REFERENCES CITEDBeriault,John,RobertCarr,JerryStipp,RichardJohnson,andJackMeeder1981TheArchaeologicalSalvageoftheBayWestSite,CollierCounty,Florida.The Florida Anthropologist 34:39-58.Blanchard,CharlesandWilliamH.Marquardt1990 CalusaNewsNo.5.InstituteofArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida,Gainesville. Bullen,RipleyP.1975 A Guide to the IdentificationofFlorida Projec tile Points.Revisededition.KendallBooks,Gainesville,Florida.Bullen,RipleyP.andAdelaideK.Bullen 1953TheBatteryPointSite,Bayport,HernandoCounty,Florida.The Florida Anthropologist6:85-92.1956 Excavations on Cape Haze Peninsula, Florida.ContributionsoftheFloridaStateMuseum,Social Sciences1.Gainesville.Carr,RobertS.andJohnG. Beriault 1984PrehistoricManinSouthernFlorida.In En vironmentsofSouth Florida: Present and Past,editedbyP.J.Gleason,pp.1-14.2nded.MiamiGeological Society.CoralGables,Florida.Carter,JosephGaylord1980EnvironmentalandBiologicalControlsofBivalve ShellMineralogyandMicrostructure.InSkeletalGrowthofAquaticOrganisms,editedbyD.C.RhoadsandR.A.Lutz,pp.69-113.PlenumPress,NewYork.Clausen,Carl L H.K.Brooks,andA.B.Wesolowsky1975 FloridaSpringConfirmedas10,000 Year OldEarlyManSite.Publication7,FloridaAnthropologicalSociety. Gainesville.Clausen,Carl L A.D.Cohen,CesareEmiliani,J.A.Holman,andJ.J.Stipp1979 Little SaltSpring,Florida: AUniqueUnderwaterSite.Science 203:609-614.Cockrell,WilburnA.andLarryMurphy1978PleistoceneManinFlorida.ArchaeologyofEastern North America 6:1-13.Cushing,FrankHamilton1897ExplorationofAncientKeyDwellerRemainsontheGulfCoastofFlorida.American Philosophical Society, Proceedings35:329-448.Philadelphia.

PAGE 64

56Dormer, ElinoreM.1987 TheSeaShell Islands: A History of Sanibel and Captiva.Revisededition.RosePrintingCompany,Tallahassee, Florida. Edic,BobandRonFraser1982 BigMoundKey.BocaBeacon,May, 1982. BocaGrande,Florida. Edic, RobertF.andCorbettMcP. Torrence 1990TranscriptoftapedinterviewwithG.W.Hyatt,March8, 1990.Onfile,DepartmentofAnthropology,FloridaMuseumofNaturalHistory,Gainesville. Fraser, Ron,BobEdic,andKay Ellis 1982OneYear AftertheBulldozers.BocaBeacon,May, 1982. BocaGrande,Florida. Griffin, JamesB.1945 The Significance oftheFiber-temperedPotteryoftheSt. Johns Area in Florida.Journal of the Washington Academy of Sciences 35:218223. Griffin, JohnW.1949 NotesontheArchaeologyofUseppaIsland.TheFloridaAnthropologist 2:92-93. 1988TheArcheology of Everglades NationalPark:A Synthesis.NationalParkService,SoutheastArcheological Center, Tallahassee. Griffin, JohnW.andHaleG.Smith1947ReconnaissancetoUseppaIsland,LeeCounty(SiteL-3),October2,1947.Typescript, 3pp.Photocopyonfile, FloridaMuseumofNaturalHistory,Gainesville. 1949 Nocoroco, aTimucuaVillageof1605,nowinTomokaStatePark.Florida Historical Quarterly 27:340-361.Hammond,E.A.1973 TheSpanishFisheriesofCharlotteHarbor.FloridaHistorical Quarterly 51:355-380.Hazeltine,Dan1983 A LatePaleo-IndianSite,CapeHazePeninsula,CharlotteCounty,Florida.TheFlorida Anthropologist 36:98-100.Luer, George M. 1989CalusaCanalsinSouthwesternFlorida:Routes ofTributeandExchange.TheFloridaAnthropologist 42:89-130.Luer, George M.andMarionM.Almy1980 TheDevelopmentofSome Aboriginal PotteryoftheCentralPeninsulaGulfCoast of Florida.TheFloridaAnthropologist33:207 225. 1982 A Definition of theManasotaCulture.TheFloridaAnthropologist 35:34-58.Luer, George M.andLaurenC. Archibald1988 Archaeological Data Recovery at MoundA,Boggess Ridge (8CH16), Charlotte Harbor State Reserve, Winter Field Season,1988.ArchaeologicalandHistoricalConservancy,Miami.Culture and Environment in the Domainofthe CalusaLuer, G.,D.Allerton,D.Hazeltine,R.Hatfield,andD.Hood1986WhelkShell Tool Blanks fromBigMoundKey (8CH10),CharlotteCounty,Florida: With NotesonCertainWhelk Shell Tools.InShells and ArchaeologyinSouthern Florida,editedbyG.M. Luer,pp.92-124. Publication12,FloridaAnthropologicalSociety.Talla hassee.Marquardt,William H.1984TheJosslyn Island Mound and its Role in the InvestigationofSouthwest Florida's Past.FloridaStateMuseum,DepartmentofAnthropology,MiscellaneousProjectReportSeries 22. Gainesville.1987 Calusa NewsNo.1.InstituteofArchaeologyandPaleoenvironmentalStudies,Universityof Florida, Gainesville. 1988 PoliticsandProductionamongthe Calusa of South Florida.InHunters and Gatherers,1:History, Evolution, and Social Change,editedbyT.Ingold,D.Riches,andJ.Woodburn,pp.161-188. BergPublishers,London.Marquardt,William H.andCharlesBlanchard1989 Calusa NewsNo.3.Instituteof ArchaeologyandPaleoenvironmentalStudies,FloridaMuseumofNaturalHistory,Gainesville.Martinez,CarlosA.1976 Trip Report-JosslynIslandField Inspection. Ms.onfile, Florida Division of Historical Resources,DepartmentofState, Tallahas see. Milanich, JeraldT.andCharles H. Fairbanks1980FloridaArchaeology.Academic Press,NewYork. Milanich, Jerald T., JeffersonChapman,AnnS.Cor dell,StephenHale,andRochelleA.Marrinan1984 PrehistoricDevelopmentofCalusaSocietyinSouthwestFlorida: ExcavationsonUseppaIsland.InPerspectivesonGulf Coast Prehistory,editedbyD.D.Davis,pp.258 314.UniversityPressesofFlorida, Gaines ville.Pearson,G. W.andM.Stuiver1986High-precisionCalibrationofthe RadiocarbonTime Scale, 500-2500B.C.Radiocarbon28:839-862.Phelps,DavidSutton1965TheNorwoodSeriesofFiber-temperedCeramics.Southeastern ArchaeologicalConference, Bulletin 2:65-69. Ruppe, ReynoldJ.1980Introductionto the Five Articles DealingwithUnderwaterArchaeological ResearchattheVenice Site.Bureau of Historic Sites and Properties, Bulletin6:33-34. Tallahassee.

PAGE 65

Recent Archaeological InvestigationsRusso, Michael 1991aArchaic SedentismontheFloridaCoast:ACaseStudy from Horr's Island.Ph.D. dissertation,DepartmentofAnthropology,University of Florida.UniversityMicrofilms,AnnArbor, Michigan. 1991bFinal ReportonHorr'sIsland:TheArchaeology ofGladesSettlement and Subsistence Patterns(withchaptersbyAnnCordell, LeeNewsom,andSylviaScudder).Reportsubmittedto Key Marco DevelopmentsbytheFloridaMuseumofNaturalHistory,Gainesville, Florida. Simons,M.H.1884 Shell-heapsofCharlotteHarbor,Florida. InAnnual Report oftheSmithsonian Institutionfor1882,pp.794-796. Washington, D.C. Stapor,FrankW.Jr.,ThomasD.Mathews,andFondaE.Lindfors-Kearns 1987 Episodic BarrierIslandGrowthinSouthwestFlorida: A Response to FluctuatingHoloceneSeaLevel?Miami Geological Society, Memoir 3:149-202.Stuiver,M.andG.W.Pearson1986High-precisionCalibrationofRadiocarbon Time Scale.Radiocarbon28:805-838.Stuiver, M.,G.W.Pearson,andT.Braziunas 1986 Radiocarbon Age DeterminationofMarine Samples Back to 9000 Cal Yr B.P.Radiocarbon28:980-1021.Stuiver,M.andP.J.Reimer 1986 AComputerProgramfor Radiocarbon Age Determination.Radiocarbon28:1022-1030. 57Wang,JohnsonC.S.andEdwardC. Raney1971Distribution and Fluctuations in the FishFaunaoftheCharlotteHarborEstuary,Florida.CharlotteHarborEstuarineStudies, MoteMarineLaboratory,NewCityIsland,Sarasota, Florida. Watson,PattyJo1976InPursuitofPrehistoric Subsistence: AComparativeAccountofSomeContemporaryFlotation Techniques.Midcontinen tal Journal of Archaeology 1:77-100.Weisman, BrentR.1990NationalRegisterofHistoricPlacesRegistration Form: BigMoundKey/Boggess Ridge Archaeological District.BureauofArchaeologicalResearch,FloridaDivision of Historic Resources, Tallahassee. 1991 Archaeological Investigationsatthe"BackhoeTrench,"BigMoundKey (8CH10). Reportonfile, C.A.R.L. Archaeological Sur vey, FloridaBureauofArchaeological Re search, Tallahassee.Widmer,RandolphJ.1988TheEvolution oftheCalusa:A Nonagricul tural ChiefdomontheSouthwestFloridaCoast.UniversityofAlabamaPress, TuscaloosaandLondon. Williams, John Lee1962TheTerritoryofFlorida:Or, Sketches oftheTopography, Civil and Natural History oftheCountry, Its Climate,andtheIndianTribesfromtheFirst DiscoverytothePresent Time.Facsimileoftheoriginal1837edition.UniversityofFlorida Press, Gainesville.

PAGE 67

3StratigraphyofIndian "Mounds" in the Charlotte Harbor Area, Florida: Sea-level Rise and PaleoenvironmentsSamB.Upchurch,PlinyJewellIV,andEricDeHavenINTRODUCTIONThemanyarchaeological sitesintheCharlotteHarborarearecordarichanddiverseculture,whichisthesubjectofthis text. TheIndianswhoconstructedthesites "engineered" theirenvironment,withconstructionof effi iesandotherfeatures.Theearl sta esofsite "enineerin"arenot environmentsinwhich the siteswereinitiatedandtherelationofthesites to sea level. Themoundsdescribedin thispaperincludeatleastthreecategoriesofmound-shapedfeatures. Themajoritythathavebeenidentifiedareshellmoundsormiddens.Thesearelocatedthroughouttheareaandrangefromterrestrialsitesinlandfromthepresentdayshorelinetopartlysubmergedsitesthatform the nucleiofmanyoftheislandsintheestuary.While lesscommonandlesswell-known,othertypes havebeendescribed. Theseinclude whichhave 1ie'eiiusecroyearlylMTcms asburialsitesandassubstratesfor shellmiddenaccumulation.Someofthemoundsarecomplexeswithshell-middenveneerslyinguponbeach-ordune-ridgesubstrates.Thesecomplexesmayhaveattached,smaller,linearmoundsthathavebeencalled fingerridgesandattributedtohumanconstruction.Inonesite (BigMoundKey)thesefingerridgesarearrayedinsucha fashion as to givethemoundcomplex theappearanceofaspiderorcrab effigy. Thediversityof thesemound-shapedstructuresandtheapparentpreferenceforthembythecoastalIndianpopulationleadsoneto severalarchaeologically-importantquestions,whichareaddressedinthischapter.Thepurposeofthischapteris tosummarizetheresultsofa coringprogramundertakentoanswerfourfundamentalquestionsabouttheoriginofthesediversemoundtypes. Weconstructedthesamplingandanalysisplantoanswerthefollowing:(1)InwhatenvironmentdidtheIndiansbuildtheshellmounds?Manyofthelittoralmoundsarepartlysubmerged.Weretheybuiltondrylandandlaterinundatedbysea-level riseormoundsubsidence,orweretheybuiltinanaqueousenvironment?(2)Aretheburialmoundsofhumanoriginornatural?Theburialmoundsconsist of fine,homogeneous59sand.DidtheIndiansconstructthemoundspriorto,orduringburials,ordidtheyselectburialsitesthatconsistedofnatural,easilydugsand?(3)Arethelinearridges (finger ridges)ofhumanoriginornatural?WeknowthattheinhabitantsofCharlotteHarborsitescreatedcanalsandotherwisemodifiedtheirlandscape.The so-called fingersmayrepresentadetailofsiteconstruction,ortheymaybenatural.Ifthelatteristhecase,aretheycontemporaneouswiththeculturalmodifications,anddotheytellussomethingabouttheenvironmentduringoccupation?(4)HowdothemoundtypesrelatetotheHolocenesea-levelrise?Sea-levelriseaffects littoral sites in threeways.First,thedesignandutilityofthe siteatthetimeofoccupationmayhavebeenaffectedbysea-level rise. Second,ouranalysisoftheculturethatproducedthesite is affectedbyconceptsofproximityofthesea as a food source,meansoftravel,andlimitingfactorwithrespecttofreshwater.Third,preservationofthesiteandestimationsofthe original extentandplanof the sitemaybeobscuredbyinundation.Thisquestionis, therefore, crucial tounderstandingtheoccupationalandpost-occupationalhistories of littoral sites.METHODSStudy SitesThesamplingplaninvolvedcollectionofvibrocoreslatmoundsitesunderarchaeological investigationinthestudyarea.Thesitescored(Figure1)include:(1)Boggess Ridge (8CH16, 8CH19, 8CH34), (2) BigMoundKey (8CH10), (3)CashMound(8CH38), (4)UseppaIsland(8LL51),(5)JosslynIsland(8LL32),and(6)Buck Key (8LL55, 8LL722). These sitesarethoroughlydescribedelsewhereinthis text, soonlythebasis for selectionofthesitesandcores therefromarediscussedhere.Site ClassificationThesitescanbeconvenientlysubdividedinto threegroupstoaddresstheabovequestions.

PAGE 68

60MN I Figure1.CoringlocationsinPineIslandSound.I,BoggessHoleandBoggessRidge;2, BigMoundKey; 3,CashMound;4,UseppaIsland;5,JosslynIsland;6,BuckKey.Littoral Shell Mounds.The BigMoundKey,CashMound,andJosslynIslandsitesarelittoralshellmounds.There isnoobviousterrestrialsubstrateandtheyaremoreorlessdetachedfromthemainlandorobvious pre-existing islands. We selected these sites toaddressthequestion"Inwhatenvironmentwerethe shellmoundsconstructed?"Inaddition,BigMoundKeyandJosslynIslandhavefingerridges,theoriginofwhichis a concern.Ridge-type Burial Mounds.Boggess Ridgeandsite 8LL55onBuck Keyareburialmoundslocatedinlinearridgesconsisting of finesand.Ithaslongbeenthoughtthattheseridgeswereconstructedbypeopleas a locus for burials. We chose these sites, therefore, toaddressthe origin of themoundsinwhichtheburialsarelocated.Terrestrial Shell Mounds.Finally, thenorthernsiteatBuck Key (8LL722)andthe siteonUseppaareshellmiddenslocatedonpre-existing islands.Useppais a pre-Holocenedune-ridgecomplex (Stapor et al. 1987),andthe Buck Key site is locatedonwhatappeartobewash-overfansonthe lagoon sideofanoldbarrierisland. Radiocarbondatesfrom Buck Keybeachridgesrangefrom 1,200 to 3,000yearsB.P.,withsignificantridgedevelopmentfrom 1,500 to 1,000 years B.P. (Staporet al. 1987). These siteswereselected, therefore, to confirm thesubstratesuponwhichtheyarelocated.CultureandEnvironment in the Domainofthe CalusaAssuch,these sitesservesomewhatas controls for theothersites.Core CollectionInconjunctionwithproject archaeologists,wevisitedeachsiteandchose specific core locations toaddressthequestions.Coresiteswereselectedtopenetratethemoundsinquestionandtosamplemodernandancientsedimentsadjacentto themounds.Vibrocorescannotpenetratethickshellaccumulations, so forcorelocationsintendedtoidentifythesubstratesuponwhichthemoundsarelocatedweselectedareaswherewethoughtthe shellwasthinorpreviouslydisturbed.Thisintroducesa biasinthatnocoresarefromthethickestaccumulationsof shell. The archaeological staffprovidedelevationandlocationdatafor each site. Wecoredthesiteswith7.6 em(3inch)aluminumirrigationpipe(Figures 2and3).Thecoreswerelabeledandsealedinthefield. In thelaboratory,atleasttwopersonscutthecoreslongitudinallyandloggedthem.Sedimenttexture,sedimentarystructures,andmacrofaunawerenoted. Thisinformationallowedus toidentifydepositionalenvironmentsrepresentedbythesedimentstrata.Corerecoveryandpreservationwereexcellent,andpaleoenvironmentalidentifica tionsdidnotrequireadditionalgranulometricanalysis.Corelogsarepresentedintheappendix.Cross sectionsofselectedmoundsprovideathree-dimensionalperspectiveofplacementofthemounds.RESULTSLittoral Shell MoundsThelittoral shellmoundsareisolated frompresentmainland.Theirbasesareatsea levet so a majorconcerniswhethertheywereconstructedina littoralenvironmentoronaterrestrialsubstrate.BigMoundKey.BigMoundKey isseparatedfrom themainlandbyalowcoastalswampofmangroveandsaltmarsh.Ofthethreelittoral shellmounds,it has themostobviouspossibleconnectionwiththemainland.Wewerenotable to placethecoresinBigMoundKey (Figure4)insucha fashion as toconstructa cross section.However,theindividualcorescanbeusedtodeterminethedepositionalhistoryofthe area.CoreBMK-1(diagramsanddetailedsedimentologicaldatafor all coresaregivenin theappendix)wastakenin themangroveswampoutsideofthemoundcomplex.Itrecordsashoaling-upwardssequencetypical ofprogradationof amangroveswampcom plex.Thelower,shellyorganicsandis anearshorebaydepositsimilartothematerialaccumulatinginGasparillaSoundtoday. Themuddysandandsandandmuddepositsaccumulatedatthemarginsofthemodernmangroveswamp.All thedepositsappeartohaveaccumulatedduringtheHolocenesea-level rise,andto adepthof2.8 mthereis noindicationofsoil

PAGE 69

StratigraphyofIndian "Mounds"Figure2.VibrocoringatBigMoundKey.Figure3.Drivinga coreintothesedimentwithamalletatBoggess Hole.61

PAGE 70

62CultureandEnvironmentintheDomainoftheCalusaCORESAMPLEKEY'.....SHELLMIDDENmoundinhabitants.Surfaceexaminationoftheadjacent fingerridgeshowsthatit isconstructedof thesamematerial. Therefore,stratigraphicdataindicatethatthe sedimentundertheestuarinesideofBigMoundKeyis Holoceneandthatthemoundhasprogradedoutwardovertheestuarinesediments.Thereisnoevidencefortheestuarinesideofthemoundhavingbeenconstructedonsoilsorothersubaerialfeatures.Thereis alsonostrongphysicalevidencefor afluctuatingsea level. Thepreservedsedimentsequenceindicatesagradual,shoaling-upwardpatterntypical of infillingofabasinsubsequenttosea-level rise. Stormreworkingandcoast-wisetransportof shellmayhavecreatedthefingerridges,butcorrelationofcanalandfingerridgesedimentsandridgegeometrysuggestthatthis is unlikely. Itappears,therefore,thatthefinger ridgesandcanalarerelated,andareculturalin origin.Cash Mound.CashMoundisconnectedtothemainlandbyapeninsulathatresembles a tombolo, awave-orcurrent-constructedspitthatconnectsanislandtothemainland.Thepeninsulaisatsea levelandis coveredbymangroves.Sedimentsaremuddy,organic, finesands.Thespitappearstohavedevelopedlaterthanthemoundasaresultofcoast-wisesedimenttransportbywavesinTurtle Bay. CoresatCashMoundwereselected tocutacross theeasternmarginofthemound(Figure 5). We collectedMNCONTOURINTERVAL:1METERELEVATIONINMETERS 1I.M.S.Lr-----=I i io50JOO200M Il:ERN a.S.RAERIALCARTOGRAPHiesOFS.W.F.PROJECT flcr.hLN.H. Figure4.CorelocationsatBigMoundKey.Figure5.CorelocationsatCashMound.CORESAMPLE o GUMBO LIMBO TREEdevelopmentorsubaerialexposure.BMK-4wastakenin"Mud Pond"onthesouthwestedgeofthemound.It,too, records ashoaling-upwardssequencetypicalofaprotectedpondinamangroveswamp.Therewasmuchshell in thelowercoreandpenetrationwasonlyto 1 m. Wewerenotabletodeterminetheoriginofthepond,butthesharptransitionfromthenearshore,estuarinemuddysandto the non-shelly,sandymudsuggeststhatearlyinhabitantsmayhavepartlyexcavatedit. Cores BMK-2andBMK-3werecollectedfroma canal-likeditchandthe fingerridges,respectively, locatedonthesouthsideofthemound.BMK-2 in cludes athin(0.4 m),modernaccumulationofmuddysandtypicalofoutermangrovefringeoverlyingashoaling-upwardssequence.Thissequencebeginswithalower,open-estuarysandyshellbedandthenprogressesupwardto amuddysand.Overlyingthemuddysandis a 0.2 m shell bed. This shellbedisfragmentalandcanbetracedintoCoreBMK-3. The shellybedappearstobethefloorofthecanalandmayhaveprovideda trafficable surface for themoundbuilders.The shellbedseemstobeofculturaloriginormodification. The "canal"doesnotappeartohavebeenexcavatedbutratherformedbydepositionoftheslightlyhigherridgesoneach side.CoreBMK-3wasin ashallowswalebetweenthefinger ridges. It, too,wasfilledbyrecentmangrove-fringedepositsoverlyinga shell bed. Thisbedhasaffinitieswiththemiddenmaterialandcouldeasilyhavebeencreatedbythe KEY'AERIALCARTOGRAPHiesOFAMERICAS.W.F.PROJECTFler.M.N.H.ii2550 M CONTOURINTERVAL:1METERELEVATIONINMETERSA.M.S.L

PAGE 71

StratigraphyofIndian "Mounds"630 eM3 -,A-2-3-4-5LEGEND:A-8-C-DE-M-oDarkgrayshellysandEstuarineshellysandPeatShallowwater,shellysandOrganicmudtomuddysandSheIImiddencRELATIVEWATERDEPTHSHALLOWDEEP MiddenEmplacedProtected BoyOpenBay Shallow NearshoreSoilArea Ekposed Figure6.CrosssectionofCashMoundshowingrelativesea-levelpositionasinterpretedfromsedimentdepositionalenvironment.three cores;twowereoffshore,andthethirdwasin thebottomofaborrowpitthatisnowflooredbya small saltpond.Approximately1mofshellmiddenisexposedattheedgesof,andhasbeenremovedfrom, theborrowpit,sothatcore CM-2ineffectpenetratesoverameterofmoundbeforeenteringthesubstrate.Figure6 is a cross sectionoftheeasterntip of themound.ThesequenceofsedimentationatCashMoundrecordstheHolocene sea-level rise (seethediagramsuggestingrelativewaterdepthontherightsideofFigure6).Thelowestfaciespenetrated(Facies D, Figure6)restsona paleosol in coreCM-I.This soilispresently4mbelowsea level.Sedimentationoverlyingthesoil reflectsthelagbetweensea-level riseandsedimentation(Figure 6). Facies D, C,andB reflectdeepeningwaterfromaninitialshallow,shellysand(Facies D)andpeat(FaciesC)todeeperwater,estuarinesand(FaciesB).Sedimentationthenbegantocauseshoalingandadarkgraysand(FaciesA)accumulatedtomodernsea level.SCALEKEY'iIFigure7. CorelocationsatJosslynIsland. 25 50 M CONTOURINTERVAL:1METEAELEVATION IN METERSA.M.S.LSOURCE;MARQUAROT 1584 S.W.FPROJECTFlo,M. N. H.TESTUNITCORESAMPLETherecordatthebaseofthemoundshowsabayward,organicmudtomuddysand(FaciesE,Figure 6).InCM-2themoundrestsonFacies A,thedarkmarinetoestuarinesand.There isnoevidenceof exposedconditionsorintertidalsedimentationatthebaseofthemound.Therefore, itappearsthattheeasternpartofCashMoundwasbuiltintomarineorestuarineshallowwater,notontoaterrestrialsubstrate.

PAGE 72

64Josslyn Island.JosslynIslandiscompletelyisolated fromthenearest"mainland," Pine Island. It has amangroveswampinthelee (northeast)ofthemoundthat, like thepeninsulaatCashMound,appearssubsequent. Inotherwords,theswampformedinthe lee of,andafter, themound.CoringonJosslynIslandincludeda coreonthewestedgeofa fingerridgeontheeastsideofthe island (Core J-2,Figure7), a core in the "courtyard" (J-I), a coreinthe"northcanal" (J-3),andtwocoresattheedgeof the island (J-4andJ-6). Core J-5wasnevertaken. J-landJ-3includepenetrationofmiddenmaterialandarelocatedinteriorto themoundperiphery.CoresJ-2andJ-3potentiallyaddressthequestionsoftheoriginsoffingerridgesandcanal-likestructures.Cores J-4andJ-6arecontrols todeterminethenormalsedimentationpatterninthe vicinity. Two cross sections (Figures 8and9)illustratethethree-dimensionalstructureofthemound.Core J-2bottomedoutinagravelofroundedandstainedrock fragments. Thisappearstobeahigh-energy,shallow-waterdeposit,perhapsreworkedbywavesfrom fluviallytransportedclasts (see Evans [1989) for adiscussionofPleistocene fluvial systems). J-lbottomsinanequivalent,bleached, beachsand.CoreJ-6includesa possiblestormdeposit(FaciesF)of dense, imbricated shells. Therefore, itappearsthatthebaseoftheHolocenesection ispreservedin the cores. AswasthecasewithCashMound,subsequentdeposition recordsaninitialdeepeningandthenin-filling of thebay(seetherelative sea-levelcurveonrightsideofFigure 9). Facies AandBarethesameasatCashMound.Theyconstituteshelly tomuddysandswithvaryingproportionsofshell.Theunnamedhorizonimmediatelyunderlyingthemoundis a transitionalzoneofmuddy,organic-richmiddenmaterial. Themudandorganics in thetransitionzonemayhavebeenintroducedatthe timeofemplacementorbysubsequentilluviationbypercolatinggroundwater. The coverageatJosslynIslandis thebestofthethreelittoral shellmounds.The coresarearrayedtoprovidegood,three-dimensionalcoverage. It isimportantto notethatmuddy,organicsandandpeatunderliethemangrovefringe tothenorthofthemound.There is noevidencethatthemoundwasbuiltonmangroveswampsedimentoronsubaeriallyexposedsubstrate.There is noevidencefromcoreJ-2tosuggestthatthe fingerridgeisculturalinorigin. It isbroad(Figure7)andconsistsofbrokenmiddenmaterial, whichmayindicatehumanactivity. Itmayalsoindicatetransportofmiddenmaterialoff theexposedsouthernendofthemoundduringstorms.Theorganiccontentoftheshell is not diagnosticbecausethesite is tidalandsurroundedbymangroves,whichgeneratesignificanthumus.RidgeType Burial MoundsBoggessRidge.BoggessRidgeincludesaburialcomplex located in alinearridgethatforms thesouth-Culture and Environment in the Domainofthe Calusaernandeasternrimofa circular,mangrovepondknownas BoggessHole(LuerandArchibald 1988). Five coresweretakenatBoggess Ridge (Figure 10). Two (BR-landBR-4)weretakenoffshoreoftheridgeinBoggess Hole. Theothersweretakenatlocationswithinandadjacenttoknown,disturbedburialsontheridge. ThesedimentsinBoggessHole(Cores BR-landBR-4)includea surficiallayerofgraytogreenmuddysandwithmangroveremains. This layer,whichrangesfrom 1.5 to 2.2 m in thickness, iscontemporarywiththesurroundingmangroveswamp.It is Holocene inageandreflects themostrecenttransgressionofestuarinesedimentsoverpre-Holocenesedimentsandsoils.Underlyingtheestuarinesandis a complex ofsandlayersthatis shell free,highlybioturbated,andlightbrownto white. Thesesandsareequivalenttosandsexposedinlandatthepresenttimeandsuggestleachingandincipientpedogenesisinasubaerialenvironment.Itis possiblethatthis paleosolwasexposedatthe timethatthenearbyBigMoundKeydwellersoccupiedtheirmound;however,the loss of shellmaterialthroughleachingsuggestsan earlierextendedperiodof exposure.Ifoneaccepts thegradualisticsea-level rise curves of SchollandStuiver(1967)andScholl et al. (1969) for thearea,thetransgressionat-2mwouldcoincidewithapre-occupationdateandprovidealongperiodduringwhichleachingwouldhaveoccurred.Alternatively,thelocal sea-levelcurveofStaporet al. (1987)includesalowstandcontemporaneouswithoccupation. Thislowseastandmaycoincidewiththe leached, paleosol atthebaseoftheBoggessHolecores. ThisviewissupportedbythezooarchaeologicaldatapresentedinChapter8, thisvolume.However,the physical evidence,largelybasedontimeneededfor shell leaching,supportsthegradualisticsea-level interpretation.Theridgesediments(CoresBR-2,BR-3,BR-5)includehomogeneous,cleansandswithferrichydroxidestainingfrom incipientpedogenesis.Thesandsarehighlysorted,andsomegrainsarefrostedandpittedthroughaeolian abrasion. Thesearebioturbateddunesandsthatappeartohavebeenderivedfrom adjacent areasbyaeolian activity.Theyarelaterallyequivalenttothecleansands(the paleosols)buriedin Boggess Hole,andthereis noevidenceofastratigraphicorsedimentologicalnaturetosuggestthatpeopleconstructedthe ridge. Indevelopinghypothesestoexplainthe Boggess Ridge complex,wehypothesizedthatBoggessHolewasaborrowsite for thesandusedinconstructingthe ridge.Coringoftheholerevealedanormalmarinesequenceto adepthofatleast-2m MSL,andthereis nosimilaritybetweenthe surficialsedimentsofthe holeandsurroundingareastothoseintheridge. The cleansandofthepaleosolbelowthemarinesequenceinBoggessHoleresembles thesedimentsofthedunes,butthe BoggessHolesoilsaremorepoorlysortedandcontainfewer frostedgrainsthandothedunesands.Thus,itappearsthatthedunesandwasderivedfrom

PAGE 73

StratigraphyofIndian"Mounds"654oMMEJlcA BFSCALEI 1030m -5LEGEND:A-Darkgrayshellysand B EstuarineshellysandC-PeatF-Dense,imbricatedshellandsandyshell M -ShellmiddenME-Sandy,organic,shellmiddentransitionFigure8.East-westcrosssectionofJosslynIsland.5 4 2o-2-5 -8 F5CALEI1020 30",. LEGENO:A-DarkgrayshellysandB-EstuarineshellysandF-Dense.imbricatedshellandsandyshellM-ShellmiddenRELATIVEWATEROEPTHDEEPFigure9.Northeast-southwestcrosssectionwithinterpretationofrelativesea-levelpositionatJosslynIsland.

PAGE 74

66 and Environment in the Domainofthe CalusaMN I KEY.CORESAMPLE. J\\).., .,KEYCORESAMPLE ............ MOSQUITOCONTROLDITCHi200i 400 M F4 io50100i200 M SOURCE:R.PELHAMAERIAlPHOTOGRAPHU.S.G.S.1957SOURCE:KERND.S.A.AERIALCARTOGRAPHiesOFAMERICAS,W.F.PROJECTFlo. M. N.H.CONTOURINTERVAL:1METEAELEVATIONINMETERSA.M.S.LFigure10.CorelocationsatBoggessRidge.thepaleosolbyaeolianaction,notbyhumantransport.It is possiblethattheholeis a relict sinkhole.Therearemanysuchsinkholesonthepeninsulanorthofthe site.Infact, the holeandsurroundingduneridgeis reminiscent ofthe"Carolina Bays"thatarecommononthe Atlantic coastalplain.Theoriginof the Bays isproblematical,butitappearsthatsimilarfeaturesformedelsewhereinFloridabywinderosionofdrysandoveracircularsinkhole. It is possible that,whilesea levelwaslowered,the BoggessHolesinkwasa siteofground-waterrechargeand,therefore, surface soilsweredryanderodible.BuckKey.Buck Keyincludestwosites (Figure 11),thesouthern-mostofwhich(8LL55) is a linearridgewithburials. Buck Key isanoldbarrierisland(Staporetal. 1987)withwell-definedbeachridgesandwashoverfansonthePineIslandSoundsideofthe island. Theburialridgeiscontiguoustoandslightlyeast(inlandrelative tothebeachfacies) of the shelly,sandybeachridges.Threecores (B-1, B-2,andB-3)werecollected fromtheridge. CoreB-4isfromHurricaneBayou, a small inletonthewestsideoftheisland. This core serves as a control as tonormalsedimentationunitsinthe area. Itincludes3.3 mofmarinemuddysandandsand.Thesandlayerfrom 1.1-1.6 mmayrepresentaccretionofthe Sanibel-Captivabarrierislandcomplex to theimmediatewestofBuck Key.Otherwise,thesedimentinthecoreindicates near-Figure11.CorelocationsatBuckKey.shoremarinesedimentationinasomewhatprotectedenvironment.CoreB-3is fromthecrestofa linear, shelly beachridgejustwestoftheburialsite.Only1mwaspenetratedanditcontainsonlybeachridgedeposits(shellysandandshellbeds)analogoustothemoderndepositsonthebeachfaceofCaptivaandSanibel Islands.CoreB-1is fromthemarginof amosquitocontrolditchjusteastoftheburialsite.Itincludespeatysands,shellysands,andsandwithshells. Thesearelightcoloredandincludebeach-typeshells. Thesedepositsareproximalwash-overdepositstransportedfromthebeachfaceduringstormsandbeach-ridgedepositsthataccumulatedastheislandaccreted. CoreB-2wastakenfrom a back-filled testpit0.5 mindepth.Belowthedisturbedmaterialwasaeoliansand,followedbyshorefaceandbeachridgematerial. Clearly, theburialsite is asmallforedunecomplex associatedwiththebeach-ridgecomplex.Terrestrial Shell MoundsTheterrestrialmoundsdiffer fromtheothersitesonlyinthattheirsubstrateswereobvioustousatthetimeofsampling.ThenorthernsiteatBuck Key (8LL722)includesa shellmiddenonadistalwashoverfan. The siteonUseppaincludesshellmiddenandburialsinsandlocatedonpre-existingdunes.Useppa Island.UseppaIsland(Figure12)wascoredalongatraversefromthenearshoreto a testpit

PAGE 75

StratigraphyofIndian "Mounds"67CORESAMPLEDISCUSSIONFigure12.CorelocationsatUseppaIsland.(1)InwhatenvironmentdidtheIndiansbuildtheshellmounds?Corecollection fromthelittoral shellmoundsissomewhatflawedbythe lack of cores from the centersoftheshellmounds.However,cores from theborrowpitatCashMoundandfromtheplazaandnorthcanalatJosslynIslandgiveagoodindicationofmoundsubstrate.In all cases,thereis no physicalevidencethatthemoundsaccumulatedondryland.Therearethreepossibleexplanationsfortheabsence of soilsorobvious,subaeriallyexposedmarinesedimentsunderthemounds.Oneexplanationisthatthemoundswerebegunondrylandandprogradedoutward,overmarine/estuarinesediment.Ifthis sce nario is correct,thecoresdidnotsamplethesubaerialmaterial,onlytheprogradedmarine/estuarinesediment.Thesecondscenario isthattheIndianssoughtoutshallowbarsorshoals,whicharecommoninmodernCharlotteHarbor/PineIslandSound,andbuiltthemoundsinshallowwater.Thisinterpretationis consistentwiththephysicaldataofthecores. Thethirdscenario isthattheIndiansbuiltthemoundsonsubaeriallyexposedmarinesediments,andthatthesesedimentshadbeenexposedfor toobriefatimefor leaching, bleaching,orpedogenesistobepreservedinthestratigraphicrecord. Thislatterscenarioappearsconsistentwithsomeofthearchaeologicaldatapresentedelsewhereinthis text.Itis clearthatthemoundswerebuiltincontactwithwaterinsomeoftheareassampledandthattheothercoresthatpenetratemiddenmaterialsmaybe locatedonbrieflyexposedmarine/estuarinesediments.Thesemoundsdonotappeartohavebeenbuiltwhollyondrylandabovesea levelandtheninundated.Manyofthelittoralmoundsarepartlysubmerged,andtheirbasesarebelowmodernsea level. This ispartlyaresultofconstructionsimultaneouswithsea level riseandpartlyaresultofsubsidenceandcompactionundertheweightofthemidden.Sea-level rise is clearlydocumentedinmanyof the cores.Itis alsoapparentthattherehasbeenconsider ablelate-Pleistocene/Holocenesedimentationintheestuarinesystem.Some of this iscontemporaneouswithhumanoccupationoverthelast 2,000 years. In thedatasetpresentedinthispaper,themaximumpost-occupationsea-level risethatcanbedocumentedisapproximately1m,assumingnosubsidenceof themounds.Maximumsedimentaccumulationthatcanbedocumentedis thesame,1 m.Evans(1989)usedseismicmethodstoevaluatesedimentationintheCharlotteHarbor/PineIslandSoundsystem.Hedocumentedlithologicindicators(soils, fluvialsediments,etc.)anda seismic reflectorthatheconcludedrepresentsthepre-Holoceneexposuresurface.Fromhisdata,it is clearthatsig nificantsedimentationhasinfilledthebayduringtheHolocenetransgression.Maximumthicknessesrangefrom lessthan3 toover6mofmarineandestuarinemuddytoshellysands.InPineIslandSoundthesedimentwedgecamefromthesouth,from San Carlos Bay.Additionalsedimentwedgescamethroughthe inlets, especially BocaGrande.CharlotteHarborcon-MN r----1 io100200300 MCO,lTOUR INTERVAL =2 METERSELEVATION'NMETERSA.M.S.L KERN D.S.R.JOHNSONENGINEERING19B1S.W.f.PROJECTfla.M.N.H.ThefolloWingdiscussionisstructuredaroundthe fourquestionslistedatthebeginningofthispaper.justbelowtheCollier Inn.U-lincludes0.8 mofapparentfillovertypicalestuarinesandandshellysand.U-2,fromapproximately0.5 mabovetheshore, con tainsalternatinglayersofhumus-richdunesandandshellmidden.U-3,whichwastakenfromthebaseof a testpitexcavatedthroughashell-middenveneer,iscompletelydunesand.Thissandis lightbrowntopaleyellowandappearstobepre-Holocene. Therefore, it is clearthatthismiddencomplexaccumulatedonasubaerialdune.Thelayerofdunesandbetweenthemiddenlayersincore U-2mayverywellhavebeenplacedtherebyprehistoricpeopleorbycontemporaneousaeolianprocesses.It isstratified,withhumusnearthetop,whichsuggestsaninceptisolandsometimeintervalbetweenthetwomiddenlayers.BuckKey.Thenorthernsite (8LL722)onBuck Key (Figure 10) is a shellmiddenoverlyingpeatsandnormalwash-overdeposits.Two cores(B-6andB-7)weretakenfromthemiddenarea. Both clearlyindicatethatthemiddenaccumulatedonasubstratesimilartothatwhichexiststoday-apeaty,muddysand.Therearealso finger-ridge-like featuresnearthemidden.Thesearedistributedinsuchawayas tosuggestformationduringstorms.Theywerenotcored.KEY-

PAGE 76

68tains a significantwedgethathasprogradedsouthwardfromthemouthsofthePeaceandMyakkaRivers.(2)Arethe burialmoundsofhumanoriginornatural?Theburialmoundswetestedconsist of finesandthatapparentlyaccumulatedin aduneenvironment. There is noevidencetosuggestthatthe featuresonBuck KeyandBoggessRidgeareofhumanorigin. TheIndianssimplyselectedburialsitesthatconsisted of easilydugdunesand.TheUseppaIslanddataindicatethatthemiddenandassociatedburialsareona pre-Holocenedune.Athinlayerofdunesandwithinthemiddencomplexmayhavebeentransportedbytheoccupantsorbyaeolianreactivationoftheolderdunematerialasvegetationwaseliminatedattheoccupationsite. Thisthindunelayerincludessomeindicationsofpedogenesis.(3)Arethe linear, finger ridgesofhumanoriginornatural?Theoriginofthe fingerridgescannotbeunequivocallyattributedtohumanactivity. The finger ridgesandcentral canal at BigMoundKeyappeartoberelated.Theyareprobablyofhumanorigin, althoughtheevidenceiscircumstantial.Thefingerridgesarecomposedofmiddenmaterialandcorrelatewithsedimentsin the canal.Itishighlypossiblethatbothcanalandfingerridgeswereconstructedsimultaneously.Thestrongestevidenceforthehumanoriginofthe BigMoundKey finger ridges is theirdistribution.It isunlikelythatstormsorothernaturalagentscoulddistributethe finger ridges in asymmetricalpatternfanningawayfrom the central canal. The canalandfingerridgesface the directionofmaximumfetch,whichcouldleadtowavemodificationandcouldindicatethattheyhada practicalpurposeasprotectionfromwavescomingupthebay. Possiblehumanorigin ofthefingerridgeonJosslynIslandis problematical,atbest. Theridgejoins themoundwhereit facesthemaximumfetch direction. Therefore,theridgelocation iscomparabletothatexpectedifstormserodeandtransportmiddenmaterialawayfromtheexposed,southernedgeofthemound.Thestratigraphynearthefingerridgedoes not helpininterpretation.Inthe absence ofbetterdata,wecannotconcludethatthe fingerridgeis ofhumanorigin.Althoughsomeof the fingerridgesappeartohavebeencreatedbydesign, not all small shell ridgesarecultural;mostareprobablynatural.Ifthelatteris the case, the ridgescouldstill becontemporaneouswithIndianoccupation.Afterthemangrovefringedevelopsonthe littoralmoundsandaftertheshellframeworkofthemiddenis settledandfilledwithdetritus,themiddenisrelativelyresistantto erosion. Theoptimaltimeforerosionandfinger-ridge forma tion isduringoccupation,whenthemiddenmaterial is looseandnotprotectedbylittoral vegetation. Knowles (1983)andDavis et al. (1989)foundevidenceofpowerfulhurricaneactivityonthe coast of SarasotaCounty,just to thenorthofthestudyarea.Culture and Environment in the Domainofthe CalusaRadiometricdatesonstormdeposits,whichconsist of layersofshelltransportedoverthebarrier-islandsystemintoSarasota Bay,showstormsat 2,270, 1,320,and240yearsB.P.(approximately320 B.C., A.D. 630,andA.D. 1710). TheselargestormsarecontemporaneouswithoccupationintheCharlotteHarborarea.Nohis toricalstormshavecreateddepositsthatarenearlyas extensive.ItisinterestingtonotethatCaptivaPass, thetidalinletbetweenLa CostaandNorthCaptivaIslands,apparentlydevelopedbetween1,300and600years B.P. (Staporetal. 1987). Amajorcauseofinletdevelopmentisbreachingofbarrierislandsduringmajor storms. Wewouldexpectevidenceofreworkingofexposed,unvegetatedmiddenmaterialandnaturalsedimentsas aresultof these,orsimilar,stormsinthestudyarea.(4)Howdo themoundtypesrelatetothe Holocene sea-level rise?Therewerethreeimpactsof the Holo cene sea-level riseontheearlyinhabitants.First, it directly affectedthesiteplananduse. Second,itaf fected availabilityoffoodandmaterialsresources. Finally, it affected the availability of fresh water. Also, sea-level rise affected sitepreservationandlaterar chaeologicalinterpretationofthesite.Mostmodernsea-levelcurves(Fairbridge 196I; SchollandStuiver 1967; Scholl et al. 1969;Marner1969)showarapid,steadyrise toapproximatelyanelevation of mbyabout5,000 years B.P. Afterapproximately5,000yearsB.P., sea level rosemoregradually.There isdisputeas tothepatternofthisrise.Manyworkers(Fairbridge1961;Marner1969) believethatsea levelfluctuatedgreatlyas it rose,withepisodeswhensea levelwashigherthanit istodayandwithepisodesofsmallsea-leveldrops.ThispatterncanbetermedtheFairbridgiancurve. Others,notablySchollandStuiver(1967)andScholletal. (1969), believethatthe riseinsea levelwasessentially asmooth,gradualisticcurve.Partofthisdiscrepancyin sea-levelcurveinterpretationresultsfrom thedatausedtoconstructthe curve. Coresofnearshoremarineandcoastal sedimentsrarelysupportaFairbridgianinterpretation.Examinationofthedataof SchollandStuiver (1967)andScholletal. (1969) fromtheEvergladesandTenThousandIslandsareaofsouthFlorida indicatesthattheir sea-levelcurveis a "best fit" tothedataset,andthat, whilethereissomeroomforimpositionofaFairbridgian-typecurve,theychose a simplisticinterpretationinkeepingwiththe level ofdetailpreservedintheircores.Ourownwork(reportedinthispaper),theworkofEvans (1989),andtheworkofotherGulfcoastsedimentologists(R.A. Davis, Jr.,personalcommunication,1990) alsoindicateagradualisticrise intheabsenceofdatato the contrary. This isbecausethe fluctuations, ifany,ofaFairbridgiancurveareshortterm,andtheresultingshallow-watersedimentrecordmaynotreflect the sea-level change. The shallow, offshoresedimentaryrecordismorecompletethanthatofanintertidaltosupratidalsequence,butthe sensitivity to small-scale fluctuations is less.

PAGE 77

StratigraphyofIndian "Mounds"ThosewhoconcludethatFairbridgian-typesea levelcurvesexistoftenmaketheirinterpretationsfromshallow-water,intertidal,andsupratidalsedimentarysequences.Inthese sequences,therecordis sensitive to small-scaleorshort-termfluctuations,butit is alsosensitive tostormsandsubject tolatermodificationordestruction.Missimer (1973)andStaporetal. (1987)haveconstructedsea-levelcurvesfromdatesofshellsfoundinbeachridgesoftheCharlotteHarborbarrierislands. TheircurvesarecomplexandresembletheFairbridgeMarnercurves.Staporet al. (1987)pointout,however,thathighbeachridgesmayrepresentincreasesinwaveactivityratherthanhighersea levels. Thedataof Missimer (1973)andStaporet al. (1987)aresupportedbysomeof the archaeologicaldatapresentedin this text (seeChapter8),butnotbyourdata.Applicationofanysea-levelcurveto theCharlotteHarborarea iscomplicatedbytheHolocenesedimentationintheestuarysystem.Themoreconservative,gradualisticcurveofSchollandStuiver(1967)andScholl et al. (1969)showssea levelat-1matabout2,000yearsB.P.,andapproximately-0.2m 1,000 years ago. TheFairbridgiancurveismoredifficult to generalizefrom,butnet sea-level rise isroughlysimilar. Therefore, sea-level riseduringthelast2,000yearsofoccupationhasbeenminor(1m)andequivalentto thedepthofthe basesofthemiddensbelowmodernsea level. TheseassumptionsarealsosupportedbythedataonbarrierislanddevelopmentandCharlotteHarborsedimentation.Missimer (1973)studiedbeachridgesonSanibel Island.Hisoldestdate, thesecondhighestbeachridgeontheisland,was2,375yearsB.P.Staporet al. (1987)compiledanexhaustivesetofradiocarbondatesfrom allofthebarrierislandsfrom Gasparilla to Sanibel. Theoldestislandcoresare3,000 years B.P. Sanibel isoneoftheislandsthatbegantodevelopapproximately3,000yearsB.P. Buck Key is abarrierislandthathasbeenisolated from theGulfbygrowthofCaptiva Island.RadiocarbondatesfromBuck Keyrangefrom 3,000yearsB.P.,buttheBuck Keybeachridges formed69intheintervalfrom 1,500 to 1,000yearsB.P. (Stapor et al. 1987). Evans (1989)obtaineda series ofdatesonshells fromCharlotteHarbor/PineIslandSound. The Holocenedates,obtainedbytheamino-acidracemizationtech nique,aregiveninTable1.Theoldestdate,lessthan8,000yearsB.P., is fromjustaboveareddish-brownroot zone,whichrepresentsthepre-Holocene surface. Theotherdatesclearlyrecordarapidsedimentationrate. The coredatatakeninthepresentstudyindicatethatsedimentationnearthemoundslaggedbehindsea-level rise, soaverageratesofsedimentationandsea-level rise fromEvans's(1989)datescanonlybeconsideredasapproximations.Even so,theyarein structive.InPineIslandSound,theratesfromEvans'sdatarangefrom 0.4 to 1m/1000yrs.Highestratesarenearthe tidal inlets. In GasparillaSoundtherateofsedimentationis 0.4-1.3m/1000yrs. ThedatafromourcoresandsedimentaryfeaturesdescribedbyEvans (1989)showthatsea levelrosemorerapidlythansedimentfilledintheestuary.This ismostclearlyshownbythedatafromJosslynIslandandCashMound,wheretheHolocenetransgressionismarkedbysomewhatdeeperwatersedimentsoverlainbyshallow-watersediments.Giventhatsedimentationlaggedbehindsea-level rise, significantsedimentationoccurredduringthetime ofhumanoccupation. It is alsoevidentthat,whilemostof the rise in sea levelwaslongbeforehumanoccupation,muchoftheHolocenesedimentnearthemoundsaccumulatedwithinthe last fewthousandyears.Littoral siteinundationhasoccurred,therefore,butit is difficult toarguethatithadanysignificantimpactonthesiteoccupants.Sea-levelrisewasaccompaniedbyincreasingsedimentation,whichwouldhavethe beneficial effectsofreducingimpactsofstormsandincreasinghabitatdiversity.Theshorelineconfigurationhas certainlychanged,predominantlybyaggradationofmangroveswamps.TheseshorelinechangesaremarkedatJosslyn Island,whereamangroveswamphasdoubledthesizeofthe island.Alongwithchangesinshorelineconfiguration,Table1.Amino-acidRacemizationDatesforHoloceneShellsinCharlotteHarbor/PineIslandSound(modifiedfromEvans1989).GenusDepthAge LocationDated(mbelow(1,OOOsofBottom) Years) PineIslandSound,southof Blind PassChione3.4<8PineIslandSound,southof Blind PassChione5.0<5CenterPineIslandSound,offCaptivaPassMercenaria1.8<3PineIslandSound,nearCabbageKeyChione3.2 5 GasparillaSound,offGasparillaPassChione1.7 4 GasparillaSound,southof Gasparilla PassMercenaria3.9<3

PAGE 78

70therewasincreaseddiversityoffoodsourcesowingtogrowingareaandcomplexityofshallow-waterenvironments,especiallythosewithemergentplantcommunities.Availabilityoffreshwaterwascritical totheIndians.Evans(1989)hasshownthattheancestralPeace/MyakkaandCaloosahatcheeriversformedfluvialvalleysandsedimentationunitsintheCharlotteHarbor/PineIslandSoundcomplex.Priortofloodingbytheseaorduringlowseastands,theseriverscouldhavebeensourcesoffreshwater.However,muchofthetimethatthemoundbuildersoccupiedtheareasealevelwasnearitspresentlevel,andtheriverswereonlyaccessiblebyboatfromthebarrierislandsandothersitesthatwerestudied.IntheearlyHolocenetheground-watersystemwouldreflectlowersealevelsanddrierclimates.Cenotes,suchas Little SaltSpringandWarmMineralSprings,weredistantsourcesofwater,andpresentdayoffshorespringsmayhavebeenavailable. ThepeninsulanorthofCapeHazeischaracterizedbymanysinkholes,mostofwhichhavebeenfilledbysediment.Theremayhavebeenwatersourcesthereas well.Springsintheareaofthepresent-daycoastwereprobablyrareintheearlyHolocene.Thesmall,discontinuous,modern-dayaquifersoftheHawthornGroupwereexposedinthearea,buttheymaynothavecarriedwater.However,assea level rose,ground-waterlevelsroseaswell,andcoastalground-waterdischargemigratedinlandwiththesea.Therewereundoubtedlyspringsintheimmediateareaatthis time.ThekarstareanorthofBigMoundKeyprobablydevelopedspringsbymid-Holocenetime,andflowingwellsarestillpresentintheareatoday.Withincreasedprecipitation,small,fresh-waterlensesdevelopedonthelargeislands.UseppaIsland,forexample,hassmallseepspringsinseverallocationsontheeastsideoftheislandtoday.Becauseofinterceptionofgroundwaterbywells,landdrainage,andotherfactors,wecannotassumethatthepresent-daylackoffreshwaterintheareawastypicala fewhundredtotwothousandyearsago.Archaeologicalinterpretationoflittoralsitesmustaccountfor sea-level rise.Analysisoftheculturethatproducedthesiteinvolvesdevelopmentofconceptsofassetsrelatedtoproximitytothesea,suchas foodsources,meansoftravel,andhealthyhabitationsites.Theanalysismustalsoconsiderlimitingfactorswithrespectto access to freshwaterandinlandresources.Preservationofthesite,estimationsoftheoriginalextentandplanofthesite,andidentificationofrelationshipsofthesitetoadjacentlandareasmaybeobscuredbyinundation.Therefore,understandingthesitestratigraphyincontextofsedimentationandsea level rise iscrucialtounderstandingtheoccupationalandpost-occupationalhistoriesoflittoralsites.Itappearsfromourdatathatsea levelhasnotrisenappreciablysinceoccupationofthesitesbegan.SedimentationhasreducedwaterdepthsneartheCulture and Environment in the Domainofthe Calusasites,however.Thelittoralmoundsextendtoabout1 mbelowsea level.Someofthismaybearesultofcompaction,butthesubstratesofthemoundsaresandyandlargelygrainsupported,socompactionshouldhavebeenminimal.Sea-level rise,therefore,couldaccountforperhaps0.5-0.8 mofinundation.Owingtothechangesintopographyandgeomorphologythroughfloodingandsedimentation,thebasinhaschangedindetails,butnotingrossmorphology.Dramaticchangesinwateravailabilityanddistributionoffoodsourceshaveoccurredbecauseofsea-levelrise. Finally, itappearsthatthesiteshavebeenmodifiedbystorms,aswellasbyflooding.Someofthefingerridges(JosslynIsland,Buck Key)appeartobestormridges.Formationofthesewasprobablyataboutthesametimeasoccupationbecausepost-occupationvegetation,especiallybymangroves,shouldinhibitdevelopmentofsuchridges.CONCLUSIONSTwenty-eightcoresweretakenatsevenIndianmoundsatsixlocationsintheCharlotteHarbor/PineIslandSoundarea.Thesitescanbesubdividedaccordingto geologicalsetting.Three(BigMoundKey,CashMound,andJosslynIsland)canbeclassified aslittoralshellmoundsthatareatmodernsealevelandcannotbeshownbyfieldexaminationtohavebeenconstructedondryland.Two(BoggessRidgeandsouthBuckKey)aresandy,linearburialmounds.Two(UseppaIslandandnorthBuck Key)areshellmoundslocatedonterrestrialsubstratesthatareeasilyrecognizedinthefield.Theseareaduneridge(UseppaIsland)andabarrier-islandwash-overfan(northBuck Key).Threesites (BigMoundKey, JosslynIsland,andnorthBuck Key)havesmall,linearshellridges,calledfingerridges,ofproblematicalhumanorigin.Thepurposesofthestudyweretodetermine(1)thegeologicalcontextofthethreemoundtypes,(2)theenvironmentinwhichthelittoralshellmoundswereconstructed,(3)theoriginofthesandyburialmounds,and(4)theoriginofthefingerridges.Thelittoralshellmoundsshownoevidenceofhavingbeendepositedondryland.Theyareunderlainbyshallowmarine/estuarinesedimentsandareoverlappedbythesamesediments.Theyhavesubsidedslightlyintotheunderlyingsediment(ca. 0.2-0.5 m),andsea-levelrise(0.5-0.8 m)haspartlyinundatedthemounds.Thelinear,sandyburialmoundsarenaturalduneridgesintowhichtheIndiansexcavatedforburialpurposes.BoggessRidgeis asmalllunatedunelocatedontheleesideofBoggess Hole, aprobabledeflationzoneoverlyinganoldersinkhole.ThesouthBuckKeysiteisinabarrier-islandforedune.The shellmoundsonUseppaaresuperimposedonmucholder,highdunes.The shellmoundatnorthBuck Key islocatedonanolderwash-overfan.Thefingerridgeshavetwoprobableorigins.ThesymmetricalridgesatBigMoundKeyappeartobeof

PAGE 79

StratigraphyofIndian "Mounds"humanorigin.Theyspreadoutlaterallyfromthecentralcanal.Thecanalis flooredbycrushedtowholemiddenmaterialasarethelineardepressionsbetweenfingers.Thefingersareconstructedofthesamematerial.Itappearsfromthelimited coredatathattheentirecomplexisconstructedofshell. The fingerridgeatJosslynIslandcannotbeattributedtohumanaction. Itappearstobeastormridgethatwasprobablyformedduringthetimeofhabitation,butadditionaldataareneededtoconfirmthis conclusion. The fingerridgeatBuck Key alsoappearsfrom fieldexaminationtobeastormridge.Additionalworkneedstobedoneinseveral areas. First,andmostimportant,weneedtoemploya fulldrillingrigto corethroughthecenterofleastoneshellmidden.BigMoundKey istheobviouscandidateasanaccessroadanddisturbedareacreatedby"pothunters"alreadyexists. Thecoringshouldbeinasimpletraversefromthelandwardedgeofthemoundtotheseawardedge. Second, atrench-typeexcavationshouldbedoneacross a fingerridgeatBigMoundKeyandatJosslynIslandsothatdetailedstratigraphycanbeobtainedtodeterminetheculturaloriginofthe fingers. Finally,detailedradiometricdatingofshells from selected cores isneededinordertounderstandtheapparentinconsistenciesinsea-levelcurveinterpretationsfromgeologicalandarchaeological con texts. ACKNOWLEDGMENTS ThisstudywasfundedbyNationalScienceFoundationGrantNo. BNS-85-19814.WethankPeteKwiat kowski, Bob Edic,andGeorge Luer,whocontributedtoourunderstandingofthearchaeologyoftheareaandassisted in the coringprogram.JanandRobinBrownprovideduswithlodgingandagreatmeal. Karen JoWalkerandClaudinePayneprovidedseveralusefuleditorialcomments,andCorbettTorrencedraftedthemapsandgraphs.Finally,theprojectcouldnothavebeencompletedwithoutthetremendoushelpof BillMarquardt.Billtaughtus archaeology,helpedobtainthefunds,didthelogisticalsupport,and"bugged"usfor thispaper.NOTES1.Technicaltermsaredefinedinthe Glossary. GLOSSARYAggradation.The processofbuildingupasurfacebydeposition.Bioturbation.Mixingofsedimentbyburrowingorganisms.Bioturbationdestroysbeddingandotherprimarysedimentarystructures.Cenote.A vertical-sidedsinkholefromwhichwatercanbeobtained.Clasts.Sedimentaryparticlesthathavebeentransported.71Deflation.Theprocess oferosionofalandsurfacebywindaction.Distal.Portionsofasedimentarydepositthataredistantfromthesourceofthesediment.Theoppositeofproximal.Facies.Thegeneralappearanceornatureofonepartofasedimentarybodyasdistinguishedfromanother.Agroupofphysicallyorbiologicallysimilarsedimentarylayers.Fetch.Thecontinuousdistanceoverwaterinwhichwindcangeneratewaves.Fluvial.Of,orrelatingto,riversandstreams.Streamtransportedanddepositedmaterials asusedinthispaper.Foredune.Wind-depositedsanddunesthataccumulatelandwardofa beach.Hawthorn Group.A thickdepositofsand,mud,andcarbonaterocksthatunderliesthe Plio-Pleistocene to Holocenesedimentsofthe area. Itcontainsseveralimportantwater-bearinghorizonsinLeeCounty.Imbricated.Shinglingoroverlappingof inclinedsubplanarsedimentaryparticlesinsuchawaythatthe topspointinthedirectionofthecurrent.Imbricationrequiresmoderatelyhighwaveorcurrentenergy.Illuviation.The processofdownwardtransportofparticlesbypercolatinggroundwaterin soils.Inceptisol.Ageologicallyyoungsoilinwhichweatheringhasbeenminimal.LeeandLeeward.Areasthatareprotectedfromwavesandwindbyabarrier,suchasabarrierisland,aresaidtobeinthe lee ofthebarrier.Theoppositeofwindward.Littoral.Belonging to,ortakingplace,neartheshore. Theenvironmentfromjustaboveto justbelowsea level.Paleosol.Anancient,buriedsoil.Pedogenesis.Theprocessofsoil formation.Progradation.Theseawardadvanceofashorelinebysedimentaccumulation.Proximal.Theoppositeofdistal. Relates to thoseportionsofa clasticsedimentaryunitthatareclose tothesourceofthesediment.Seismic.Ageophysicalexplorationtoolinwhichenergyfromasourceisdirectedthroughsedimentorrockandreflectedorrefractedfromcontactsbetweendifferent rock units. It isusedtodeterminethethick nessandgeometryofsubsurfacesedimentarystrata.Shoaling-upwardssequence.Adiagnosticsequenceofsedimentsindicatedbyanupwardincreaseinsedimentgrainsizeorotherindicators.Coarseningofsedimentindicatesanincreaseinwaveorcurrentenergy,suchaswouldoccurwithdecreasingwaterdepth.Shoaling-upwardssequences, therefore, indi cate agradualdecreaseinwaterdepthassedimentaccumulated.Subaerial.Formed,existing,ortakingplaceonthelandsurface, asopposedtosubaqueous.

PAGE 80

72Substrate.Thesurfaceuponwhichanorganismlives.Inthis case, thesurfaceuponwhichamoundwasbuilt.Terrestrial.Of,orpertainingto, theland.Theoppositeofaqueous.Vibrocore.A cylindricalsedimentcoreobtainedbymechanicallyvibratingatubeintothesediment.Culture and Environment in the Domainofthe CalusaWash-over fans.Sedimentarybodiesonbarrierislandsthatareproducedbystormssweepingsedimentovertheseawardbeachanddunesandontotheleewardmarginoftheisland, facing theprotectedlagoon.Wash-overfans formthelow, fanto lobateshapedmangroveswampsontheestuarinesidesoftheCharlotteHarborbarrierislands.

PAGE 81

StratigraphyofIndian "Mounds"APPENDIX ACoreLogsKEY TO SYMBOLS USED IN CORE LOGS73 ,} ,))/'/ ) ,} )), G(;"(;"Gb "II:-"G"': ..... -,_.'. .;..;....' :;;;--////////'// SHELL. Including MIDDEN materials. BIVALVES GASTROPODS SAND. Quartz sand. MUDDY SANDSHELLYSAND MUD. Includingsiliciclasticmud and organics.SHELLYMUDSANDYMUDGRAVEL(L1THICLASTS) WOOD FRAGMENTS ROOTS PEAT/MUCKSANDYPEAT/MUCK MUDDY PEAT/MUCK BIOGENICSTRUCTURESBIOTURBATION BURROWS INORGANIC STRUCTURES LAMINATIONS MOTTLES IMBRICATIONSOILHORIZON

PAGE 82

74Culture and Environment in the Domainofthe CalusaCORE LOGCore No.: BMK-1 Site: Big Mound Key (8CH10) Elevation (MSL): 0.00 m Location:Atsea level on edge of mangrove fringe, approximately 3.5 m NW of posted sign at foot of path running E-W into mound; on W side of mound. Penetration: 2.76 m Recovery: 2.21 m Percent Compaction: 19% SAND AND MUD. Organic-rich sand with mud; grades into peat locally; rootlets and pieces of wood very common; bioturbation features common; no shells; 0.00-0.47m.MUDDY SAND. Grayish mUddy sand;noshells; bioturbated; mot tled; rootlets common; 0.47-0.94m.SHELLY ORGANIC-RICH SAND. Grayish-black sand with abun dant shell and organics; shells are both fragmented and whole; whole shells include Chione sp., Bulla sp., Crassostrea sp., Donax sp., Dosinia discus, Crepidula sp., Nuculana concentrica, Modulus sp., etc.; there is a concentration ofN.concentrica at 1.27-1.46m;bioturbation and mottling variable; 0.94-2.76m.)'. 'u'-.'/.,.-.)...I )....).. (; 2.0'./).' )...I.'. ../)25-.').'.-'J-' '..

PAGE 83

StratigraphyofIndian "Mounds"75CORE LOGSite:Big Mound Key (8CH10)Percent Compaction: 48% Recovery:1.06 mCore No.:BMK-2Elevation (MSL):-0.70 mLocation:Inshallow water (approx.2-2.5feet deep) at N end of "canoe canal" on SE side of mound.Penetration:2.04 mmeters-'-. :-7"" "-.'. -:-.-;---'. -:---. -..-. "-'-'.MUDDY SAND. Gray fine-grained muddy sand; extensively biotur bated; some shells, including small, burrowing clams,Bullasp.,Crassostreasp.; abundant shell fragments; 0.00-0.40m.SHELL. Densely packed oyster(Crassostreasp.) with dark gray mUddy sand matrix; shells highly fragmented; some of the compac tion is in this unit; 0.40-0.61m.MUDDY SAND. Gray fine-grained muddy sand; small fragmented shells; content is much lower than units above or below; gradation al contact with unit below; shells include unidentified, burrowing clams andBullasp.; significant mud decrease from 0.61-1.06m;0.61-1.41m. J)))(,) 1.5-)) )GJ)J J )),J.N)),)) ) > b) I J(;J)) )1,1 H}l ,J1 Co ,)2.0-),)))SANDY SHELL. Densely packed shell with a gray fine-grained sand matrix; shells includeBullasp.,Cerithiumsp.,Nuculana concentrica, Polinices sp., Modulussp.,Crepidula sp., Donax sp.,etc.; 1.41-2.04m.

PAGE 84

76Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:BMK-3Site:Big Mound Key (8CH10)Elevation (MSL):0.00 mLocation:In furrow between "fingers," in red mangroves; approximately 90 m WSW of BMK-2; between 2nd and 3rd "fingers" on SW side of mound.Penetration:2.20 mRecovery:1.93 mPercent Compaction: 13%meters0.01_'_ 'S 5 J _I) 0f-l1 } .J J TJ ,,I} } )J ) )_ 1))-) ))).}I} }}f')')J J!) ), }J J1.0-1 '.,'J..!/ J ) '1 I)}}J .J ).J)} '/) ./.)... ): .. !,:. ) )J',\)}),OJ J) 1.I. 1.5-}} })"I})}.I'J:1,1 '. ),,-.11/'..) :::"':":') 2.0u....:}.!-j....J SHELLY MUD. Abundant oyster(Crassostreasp.) shells in or ganic-rich mud; mangrove roots; 0.00-0.65m.SHELL. Dense oyster(Crassostreasp.) bed; some mangrove roots; some fragmented shells; MIDDEN(?); 0.65-1.15m.MUDDY SAND. Gray fine-grained muddy sand; abundant shells, includingNuculana concentrica, Modulussp.,Cerithiumsp.,Cras sostreasp., etc.; bioturbated; from 1.35-1.61 misa dense layer of shells; 1.15-2.20m.

PAGE 85

StratigraphyofIndian "Mounds"77Percent Compaction: 5%CORE LOGSite:Big Mound Key (8CH1 0)Core No.:BMK-4Elevation (MSL):0.35 mLocation:In "Mud Pond" on SW side of mound; coredrivenwith sledge and pulledbyhand; seebelowfordescriptionof conditions.Penetration:0.97 mRecovery:0.92 mmeters o.o-=---'---SANDYMUD. 90% mud, 10% sand;noshells; no structures; black; 0.00-0.18m.MUDDYSAND.Grayishmuddysand; some shells,includingNuculana concentrica, Crassostreasp.,Anomiasp.,Cerithiumsp.,unidentifiedburrowing clams, etc.;bioturbated;lenses ofcleanersand; organics are lessthanotherunits;0.18-0.74m.SANDYMUD.Grayish-greensandy mud (70% mud,30%sand); few small shell fragments; wood piecesevidentneartopof unit;probablybioturbated; 0.74-0.97m.Coretakenfrom middleofpond. Water at surface was hot and clear. 0-3or4 cmclearwater30-35 cm reddish-brown,suspendedorganics 30-35 40-45 cm shell and mud 40-45 cm softsediment

PAGE 86

78CultureandEnvironmentintheDomainoftheCalusaCORE LOGCore No.:CM-1Site:Cash Mound (8CH38)Elevation (MSL):-1.00 mLocation:Approximately10moffshoreofsmall shell pit on E sideofmound.Penetration:4.50 mRecovery:2.77 mPercent Compaction: 38%meterso.o .......--=-. 1.0-',.''.)':... \ .. 6. ... t). '.': i .','... (0:. )'.1.5-'.''...).'.. : .. '.\ ... CJ...'.: ... '). 2.0-'.1''..;.' '.'.', )"d ........2.5-'.'.-).) _:';:)" ORGANICMUD. Black cohesiveorganic-richmud;Spisulasp. present; 0.00-0.56m.SHELL. Dense shell bed;includesArcidae,Chionesp.,Anomiasp.,Crassostreasp.,Donaxsp.,Corbulasp.,Modulussp., etc.; many shellfragments;0.56-0.90m.SAND. Dark grayfine-grainedquartzsand; highlybioturbated;shells includeTellina alternata, Bullasp., etc; many shell frag ments;0.90-2.64m.PEAT. Black todarkbrown;plastic;boundariesindistinct;shells at bothtopand bottom boundaries;2.64-2.78m.SAND TOSHELLYSAND. Atbottomis agrayfine-grainedsand; mottled;abundantChionesp. shells; near toptheChionesp. isverydenseandappearsimbricated;extensivebioturbationthroughout;2.78-4.00m.continued on next page

PAGE 87

StratigraphyofIndian "Mounds"continued from previous page793.5,)' .J :;, if :.',. #-. ". SAND. Gray to yellow fine-grained sand; yellow sand appears to be a soil zone; bioturbated; no shells; 4.00-4.50m.4.0-'. :(S ...,: 4.5....L..:.......;,.----'

PAGE 88

80CultureandEnvironmentinthe DomainoftheCalusa Percent Compaction: 7.8% Recovery: 3.18 mCORE LOGSite: Cash Mound (8CH38) Core No.: CM-2 Elevation (MSL): 0.50 m Location: On E side of small pond in shell borrow pit in approximately 0.10 m of water; E fringe of Cash Mound. Penetration: 3.45 mmeters0.0) __ .:::o.2.5-: .:.SAND. Clean, brown fine sand; few shells; organic content in creases upward; numerous large roots and pieces; contact grada tional to upper unit; 1.86-3.10 m.. c .....).. "f '. \ .. ( .3.0: ,.1',:J.' SAND. Mottled;noshells; some roots; bioturbated; 3.10-3.45m.

PAGE 89

StratigraphyofIndian "Mounds"81CORE LOGCore No.: CM-3 Site: Cash Mound (8CH38) Elevation (MSL): -1.00 m(?)Location: Offshore of mound approximately10m;on S side of the E extent. Penetration: 2.68 m Recovery: 1.52 m Percent Compaction: 43%meters0.0 "'-r'-:"').-S.. .. 0.5.:.. .. 1.0-.-.-,. .-C')', .-:-' :'y .)... c;.::..:....--; .. 1.5-7"0:"':-..'-....'.. '-.:.....).-'..2.0-.-.) .-=-' '. Cr MUDDY SAND. Black, sandy mud to muddy sand; heavily biotur bated, mottled; shells not common, include Modulus sp., Arcidae, Spisula, Chione sp., Melongena sp., Crassostrea sp., etc.; roots present near top; 0.00-2.29m.SANDY SHELL. Sandy shell hash; densely packed shells are somewhat imbricated; both sand matrix and shell fragments arewhite;shellspredominantlyChionesp.,articulatedandfragmented; upper contact is sharp; 2.29-2.68m.

PAGE 90

82Culture and Environment in the Domainofthe CalusaPercentCompaction: 32% Recovery:1 .87 mCORE LOG Site:Josslyn Island (8LL32)Core No.:J-1E/evation (MSL):0.00 mLocation:At bottomofsmall amphitheater, called the "court";nearsurveymarker80S, 120E.Penetration:2.75 mmetersSHELLBED (MIDDEN). Large shells,includingBusyconsp.,Fas cio/ariasp., etc.; matrix isdarkgray toblackorganic-richfine sand; 0.00-0.55m.SHELLYMUDDY SAND. Muddy sand; mottled; largeoystershells areinterlayeredwith muddy sand; shellsappearto be onset of midden;organiccontent increasesupward;0.55-0.81m.MUDDY SAND. Muddy fine sand; mottled;verylow shellcontent(approximately2%); burrowed, estimated 60%compactionin this horizon; 0.81-1.43m.-) ,1.5_',"_",'. -=-r ,..,..:.'"-",,-:-:r: ,. ,,'\J..') ,) Jco'-! 2.0-eJ,):).'.),.,),'J :,),.. ,",,:)':) {.I') '. ,. ).'.I.j..}"' ..,I:.J' '>., .j: ) ',),2.5-'.J.':J:";." ,.. :)..' .).. ): /"IS : '.>;. SHELLYMUDDY SAND.Abundantsmall shells and shell frag ments; shell contentdecreasesfrom bottom totop;mudfractionhigh;olive-greencolor; mottled;1.43-2.39m.SHELLYSAND.Transitionaltounitbelow; abundant shells, includingbivalvesand largegastropodfragments;sandisfinegrained,white;2.39-2.62m.FINE SAND. Finemoderatelysorted white sand; small shell frag ments, andarticulatedChionesp.; estimated 60%ofcompactioninthisunit; 2.62-2.75m.

PAGE 91

StratigraphyofIndian "Mounds"83Percent Compaction: 14% Recovery:1.91 m CORE LOGSite:Josslyn Island (8LL32)Core No.:J-2Elevation (MSL):0.00 mLocation:Immediately W of small "finger" on E side of mound,nearthe tip of the "finger"; near 50S, 150E.Penetration:2.21 mmetersSHELL (MIDDEN). Large, whole molluscs, includingBusyconsp.,Fasciolariasp.,Mercenariasp., etc.; many shells are fractured and disarticulated, suggesting transport; matrixisorganic-rich mangrove mud; estimated 10% of compaction here; 0.00-0.60m.FINE SAND. Fine sand; olive-green to light brown; mottled and extensively bioturbated; few shells%);large burrowneartop of interval; mud increases upward; estimated 90% compaction in this horizon; 0.60-1.49m...'.): '.' ..SHELLY SAND. Abundant shell fragments in fine sand; olive green to light brown; mottled and bioturbated;lowershells show faint imbrication; shell content decreases upward from 60% to 5%; root traces; 1.49-2.16m.L1THOCLASTIC GRAVEL. Lithoclast is discolored from exposure; minor shell and muddy sand; sediment is olive-green, fine grained; shells areChionesp. and minor small gastropods; 2.16-2.21 m.

PAGE 92

84Culture and Environment in the Domainofthe CalusaCORE LOGSite:Josslyn Island (8LL32)Core No.:J-3Elevation (MSL):0.00 mLocation:In "north canal" at sea level.Penetration:2.60 mRecovery:Low spot N of old cistern. 1.62 mPercent Compaction: 38%metersPEATY MUD. Mangrove peat in cohesive sand matrix; some shell fragments; most of compaction (approximately 50%) here; 0.00 0.32m.SHELL BED (MIDDEN). Abundant articulated shells with medium brown sand matrix; becomes more organic-rich neartop(0.32 0.43 m); 0.32-0.90m.SHELL BED (MIDDEN). Abundant shells(Strombussp.,Busyconsp.,Crassostreasp., etc.); lower part has an olive-green mud matrix, at 0.90-0.97 m matrix istransitionaltodarkorganics; 0.90-1.14m.FINE SAND. Light brown tograyto olive-green; mud prominent; mottled with organics at 1.74, 1.41, and 1.31m;verydarklayers (peaty) at 1.18 and 1.27 m; small shell fragments make up 2-5% of sediment;Ficussp. at 1.38 m; burrowed; 1.14-1.85m.VERY SHELLY, FINE SAND. Abundant small shells; approxi mately 50% sand and mud, 50% shell; olive-green to gray; or ganic-rich layers at 2.34,2.25, 2.15, 2.09, and 1.99 m;fewerorganics and less mud near top; 1.85-2.43m.SANDY SHELL HASH. Many juvenile shells, includingMelongenasp.; olive-green/gray; approximately 25% sand, 75% shell debris; some mud; 2.43-2.6m.

PAGE 93

StratigraphyofIndian "Mounds"85PercentCompaction: 16% Recovery: 3.10 mCORE LOGSite: Josslyn Island (8LL32) Core No.: J-4 Elevation (MSL): -0.50 m Location:Inshallowwateron NW side of island approximately 15 miles NW of 0,0 survey marker. Penetration: 3.69 mmeters0.5-0.0 """"""-r--;5'-" '-.-r"-' ") ..,'c ,)',," --'--: '), ','SAND. Fine-grained sand with small mud fraction; bioturbated; Busycon sp. andotherlarge molluscs well preserved; shell frag ments common; thin layer of organics (roots, leaf litter) at top; 0.00-1.31m.), .C. 1.0'.tYC', ,,"),)". ,f)' 1.5-,_.'_, --:)./") .._J.'MUDDY SANDY SHELL. Dark green sandy mud to muddy sand; shell content decreases upward from 65% to 15%; shells are small and fragmented; some large shells (scallops, etc.); mottled; extensivelybioturbated; 1.31-3.00m,"J,) .;/--'" '-",' -'-u2.0--'-._:' :: .\ '....,I ,,').Ji"---L,."'). "(j'. ,-,SHELL. Densely packed Chione sp.; possible imbrication; matrix is fine-grained grayish sand; most shells are fragmented and disarticulated;noorganicsorbioturbation; sharp contacts; 3.00 3.35m.MUDDY SAND. Fine-grained muddy sand; less than 1% shell; grayish-green; mottled; bioturbated; roots present; estimated 40% compaction here; 3.35-3.69m.

PAGE 94

86 Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:J-6Site:Josslyn Island (8LL32)Elevation (MSL):-1.00 mLocation:Onoutside of mangrove fringe at small channel on S side of mound.Penetration:1.81 mRecovery:0.90 mPercent Compaction: 50%metersMUDDY SHELLY SAND. Fine-grained; mottled;highlybiotur bated; olive-green; abundant shells are fragmented and reworked;gradationalwithunitbelow;0.00-0.34m.(NOTE: unknown mangrove peat thickness removed from top). MUDDY SAND. Fine grained; bioturbated; mottled; olive-green; low shell content; estimated 100% of compaction in this horizon; gradational with unit below; 0.34-0.75m.MUDDY SANDY SHELL. Shells areChionesp.,Crassostreasp., etc.; shells are small and fragmented; several largeoystershells; shells are hard and packed at bottom and become less abundant upward; matrix is fine sand and organic-rich mud; olive-green; highly bioturbated; 0.75-1.72m.SHELL. Dense, hard-packed bed ofChionesp., etc.; matrix is olive-green fine sand; less than 1% mud; bioturbated; 1.72-1.81m.

PAGE 95

StratigraphyofIndian "Mounds"87Compaction is uniformPercent Compaction: 24% Recovery:2.41 mCORE LOGCore No.:BR-1Site:Boggess Ridge (8CH16, 8CH19, 8CH34)Elevation (MSL):-0.50 m(?)Location:Core located in Boggess Holenear"Mound A". throughout.Penetration:3.16mmeters 0.5-....:... .. -t:; '.) ........; ..J. SAND AND MUD. Gray sandinterlayeredwith mudlaminations;roots (mangrove?) at base of unit;fewsmall shells, inclUdingCrepidulasp., Arcidae,Cerithiumsp.,Crassostreasp., etc.; 0.00 2.22m.-"-',:.1.0-. --:-::. ... 'C')."-,.. -? .. .:.j .''-','-1.5-. :.j;' Y.'.',-' .:-.:...). . :....:. .. ,.......,'2..:......'(f.5-,'{.' ..2.5-J:.:SAND. Light brown to light gray, cleanfine-grainedsand; somewhat.bioturbated;no shells;2.22-2.82m...3.0-....'..'. li:: :.SAND.Lightbrownfine-grainedsandinterlayeredwithdarkbrownlaminationsofsand; no shells; at base is averyclean, reddish-orange sand;2.82-3.16m.

PAGE 96

88Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:BR-2Site:Boggess Ridge (8CH16, 8CH19, 8CH34)Elevation (MSL):about 1.00 mLocation:Mound "A," in palmettos on steep slopeoverlookingBoggess Pond.Penetration:1.98 mRecovery:1.76 mPercent Compaction:11%meters0.0 ..... f ..: ,('.' .., (' ...,..,(.:.' f .::'. f: 1.0 .,"..:0.5.=-S. :It ...,.... '. f' ','-'. .'.. ,. ( ,'':. ...,ORGANIC SAND. Light gray todarkgray fine sand; abundantorganics;organics are soilaccumulations;palmetto roots; 0.00 0.60 m. SAND. Clean,well-sortedfine-grainedquartzsand; some roots;0.60-1.06m.'..,....1.5-..'.'#. 'it .'.':'., : it.'."0'" ::jj:.' ..,'.'.,' .,:tj;: .....2.0 ..........------' SAND. Reddishfine-grainedsand; clean, white sand at1.06-1.58m; 1.06-1.98m.

PAGE 97

StratigraphyofIndian "Mounds"CORE LOGCore No.:BR-3Site:Boggess Ridge (8CH16, 8CH19, 8CH34)Elevation (MSL):about 1.00 mLocation:Mound "B," at the intersection oftheN-S and E-W paths nearsurveymarker.Penetration:1.71 mRecovery:1.45 mPercentCompaction: 15%meters890.0 -.#...,......., ..'... ...-:;..'."... .... v ...0.5-.'.'.\.'.":.,', <. :.'..' '.:'.'<.( ... f', '....1.0 .. :/1: ...',.... -It :: .:#: '....1.5-SAND. Organic-rich fine sand;gradesinto soil attop(A horizon); organics abundant, black matrix; roots;verytopis mucky sand; 0.00-0.33m.SAND.Cleanfinesand;brownish-white;roots;minorcolorchanges due tovariationsinorganiccontent; 0.33-1.05m.SAND. Clean fine sand; reddish-orange; no shells;nostructuresevident; 1.05-1.71 m.

PAGE 98

90Culture and Environment in the Domainofthe CalusaCORE LOGSite:Boggess Ridge (8CH16, 8CH19, 8CH34)Percent Compaction: 24% Recovery:2.73 mCore No.:BR-4Elevation (MSL):0.00 mLocation:Core inveryshallowwaterin Boggess Hole atdockingsite at"Fred's"camp;justoppositetrailer.Penetration:3.59 mmeters1.50.0 -Gl(L.;-:: U.,.-"_.' <-\. '. ). v)f7'. ."',.'-'.. 2.:::. 0.5.(; ..-' -,..). ...!-,"7'-'--')' -. .)..-. 1.0 -.-' l.:J -:--:.. )'-V--''. ry .ST(; MUDDYSAND. Green tograymuddyfine sand;extensivebiotur bation; some shells, small, mostly fragmented;identifiedshells includeCrepidulasp.,Modulussp., etc.;well-preservedburrow(clam?) attopofunit; roots at baseofunit;0.00-1.49m..',.SAND. Clean white fine sand; some largeburrows;no shell; 1.49-1.81m.SANDYMUD. Dark brownorganic-richsandy mud; sand laminationsand faint mudlaminations;fewshells; 1.81-2.41m.--. :...,.;. SAND.Cleanwhite fine sand with layersofbrown sand; biotur bated; no shells; 2.41-2.90m."f"','"SAND.Browntowhitefine-grainedsand;sandisslightlylaminated; extensivebioturbation;lack of shells;2.90-3.59m. :'u.:JJ.:"u.:: 3.5....:.= .::::' v .

PAGE 99

CORE LOGSite:Boggess Ridge (8CH16, 8CH19, 8CH34)StratigraphyofIndian "Mounds"Core No.:BR-5Elevation (MSL):0.50 mLocation:Neartrailerat "Fred's" camp, in bare spot.Penetration:0.83 mRecovery:NAmetersPercent Compaction:NA910.50.0 -r---=,..,..,...:)I;S::-.:-: . 1:-:.::+=6.-....,........ I-:.. .. : ...iL;. ORGANIC-RICH SAND. Dark-brown, organic-rich sand; roots; soil zone; 0.00-0.30m.SAND. Light-brown, laminated, fine-grained sand; roots; bioturba tions evident; no shells; 0.30-0.56m.MUCKY SAND. Dark brown organic-rich sand; some roots; peaty fabric suggests a mangrove deposit; 0.56-0.83m.

PAGE 100

92Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:U-1Site:Useppa Island (8LL51)Elevation (MSL):0.00 mLocation:At shore line,immediatelysouth ofCollierInndock;E side of island.Penetration:3.70 mRecovery:1.68 mPercent Compaction: 54.6%meters0.0):",.).>:.,'" i ),:I',".J ,n;;'.f).<) ....).....,' ').' .'.'..).,..,.'0.5:.\0':' ....': ). '..>.' rc. J 1 r .. '"1.0-': :,','.'.)" '):/... ..') ..V )) :,' 1.5_.).)',.,'>'>J')' ,. ,) ) J.) ) "),l'.l.",." -::.(p..;., 2.0:'-."...2.5-3.0-3.5-""SAND. Clean white tolight-graysand; few shells; shellsincludeCardiidae,Chionesp.,Crassostreasp., etc.; most shells are frag mented; somewhat bioturbated; from 0.15-0.22 mthereis a distinctlight-brownlayerwith abundant shellfragments;abovethislayerisChionesp. rich; 0.00-0.79 m. FINE SAND. Gray to green fine sand;bioturbatedshells includeChionesp.,Crassostreasp., Arcidae,Plicatulasp.,Spisulasp., etc., many arefragmented;rootfragmentsneartopofunit; 0.79 1.56m.SANDY SHELL. Shells are fragmented, includeStrombussp.,Crassostreasp.,Chionesp., Arcidae, etc.; matrix is fine sand;1.56-1.73m.SAND. Fine-grained well-sorted sand; white atthebase to brown at top; shells are absent;woodneartop,organicsincreasefrom1.73-2.01 m;1.73-3.70m.

PAGE 101

Stratigraphya/Indian"Mounds"CORELOGCore No.: U-2 Site: Useppa Island (8LL51) Elevation (MSL): 0.50 m(?)Location:Onterrace approximately 0.5 m above beach; in line withU-1and U-3 and approximately halfway between; approximately 50 m SE of Inn. Penetration: 0.84 m Recovery: 0.41 m Percent Compaction: 51%meters93'",,"ORGANIC-RICH SAND. A soil horizon; some fragmented shells, including Chione sp.; 0.00-0.05m.MIDDEN AND SAND. Upper portion is grayish sand; bioturbated; some fragmented shells; some organics; lower portion is midden material; 0.05-0.26m.SAND. Blackish-gray organic-rich sand; no shell fragments; roots and wood pieces present; lower 25% of unit has fewer organics; 0.26-0.69m.MIDDEN. Coarse shells, including Crassostrea sp., Mercenaria sp., Busycon sp., etc,; shell preventedfurtherpenetration; 0.69 0.84m.

PAGE 102

94Culture and Environment in the Domainofthe CalusaCORE LOGCore No.: U-3 Site: Useppa Island (8LL51) Elevation (MSL): 3.00 m(?)Location: Starts at base of test pit where the palm was removed; 5m SE of the terrace of the Collier Inn; upper part missing. Penetration: 1.83 m Recovery: 1.65 m Percent Compaction: 9.8%meters0.0 -..-----, :-:If:.' SAND. Fine-grained well-sorted clean sand;noshells; pale yel low-whiteatbottom grades upward to brownish-orange at top; 0.00-1.83m.0.5-.... ....'.1.0-1.5-

PAGE 103

StratigraphyofIndian "Mounds"CORE LOGCore No.:B-1Site: Buck Key (8LL55) Elevation (MSL): 0.00 m Location: E of burial mound, in a small mosquito-control ditch at a canoe landing. Penetration: 3.16 m Recovery: 2.16 m Percent Compaction: 32%meters950.0 k:<-.".... .. z 0.5-.'.:...... :) .,'-"..."...PEATY SAND. Transition from sand to mangrove peaty sand; sand content decreases upward;darkbrown; mottled; at 0.40-0.62 m there is a sandy layer; abundant rootlets and fibrous material; estimated 100% compaction in this layer; 0.0-1.03 m. SAND. Fine sand; white; shells include Spisula sp., Chione sp., Noetia sp.; shells are imbricated; some heavy minerals (phos phate?); lower boundary shows sharpcolorchange, textures are similar; 1.03-1.47m.SAND. Grayish-white, fine sand; beds of imbricated shell at 2.57-2.60, 2.63-2.65, 2.68-2.70, and 2.03-2.08m;shell content decreases upward; organic content increases upward; lower part is grayish white, but color grades to dull, grayish green upwards; burrows in upper part; some mottling; shells in sand portions include Spisula sp., Chione sp., Noetia sp.; shell beds include Anomia sp. and Chione sp., all fragmented;uppercontact is sharp; 1.47-2.87m.SHELL. Poorly sorted, disarticulated and fragmented; includes Crepidula sp., Donax sp., Busycon sp., Dosinia sp., Arcopsis adamsi, Trachycardium egmontianum, etc.; matrix is minor quartz sand; 2.87-3.0m.SAND. Fine-grained gray to white quartz sand; minor shells and shelldebris;Bulla sp., Echinochama, andsmallerfragments; 3.00-3.16m.

PAGE 104

96Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:B-2Site:Buck Key (8LL55)Elevation (MSL):about 2.25 mLocation:In backfilled test pit at burial mound.Penetration:1.73 mRecovery:0.66 mmetersPercent Compaction: 61.9%0.0 -r-c)-: .-. ,:,{ .'..'". .. ....C-!.: .. 0,5 fi::=f'.C>. '.j'.'.''.'.'.' :: .::'DISTURBED ZONE. Brown sand in backfilledtestpit; human bones; roots; 0.00-0.46m.SAND. Fine sand; white to light brown to gray; mottled; biotur bated; minor shell debris, all fragmental; at 0.58-0.61 m there is an organic "pan"; roots at top of unit; sand is cemented by organics in pan; 0.46-0.83m.MUDDY SAND. Brown, organic-rich,semi-cohesive;minorpeatyzones; from 1.05-1.09 m is a zone with abundantNoetiasp.; some shell fragments throughout unit, some whole shells; shells includeNoetiasp.,Chionesp., etc.; roots present; 0.83-1.19m.SAND. Clean white fine quartz sand; shell fragments throughout; densely packed shell bed at 1.45-1.58m,shells are imbricated, and include Arcidae,Donaxsp.,Anomiasp., etc.; 1.19-1.73m.

PAGE 105

StratigraphyofIndian "Mounds"CORE LOGCore No.:B-3Site:Buck Key (8LL55)Elevation (MSL):about 2.25 mLocation:South end of "racetrack" (xeric, shelly flat with halophytes); near survey pie plate.Penetration:1.00 mRecovery:0.68 mPercent Compaction: 32%meters970.00.51.0 1..,..,"' '{\ ,:), ,"I.'/':?)),""' I ) ) ."",,) )" ; ))"\,",,) 1", "" ,"'.,;1 "1 .,,'.,,, .",'.. :-,,,,,",'"..,'","').,""",","\.. .,'./ .. ) ..).: c..'., .,.).SANDY SHELL. Medium-grained shell "hash,"noarticulated shells; fine sand content is greater than below (approximately 30%); some organics near top; 0.00-0.21m.SHELL. Coarse shell "hash," imbricated;Chionesp.,Donaxsp.,Aequipectensp.?,Anadarasp.,Noetiasp., etc.; low sand content (10%), matrix is mostly shell sand; roots at top of unit; 0.21-0.84m.SHELLY SAND. White fine sand with abundant shells; phos phate "heavies";Donaxsp.,Macrocallistasp.,Chionesp.,Anomalocardiasp.,Anadarasp.,Carditasp., etc.; 0.84-1.00m.

PAGE 106

98CultureandEnvironmentintheDomainoftheCalusaCORE LOGCore No.:B-4Site:BuckKey (8LL722)Elevation (MSL): -1.00 mLocation:NE sideofHurricane Bayou near canal intopicnicarea on NsideofBuckKey.Penetration:3.30 mRecovery:2.75 mPercent Compaction: 16.6%meters0.0 ,t;.':;:("t-.'iJ. .....:'.:.). G '. .)-'--07 u.0.5-,c'. 'rr.: ... l.11,:: u_ ';-:,. '. .'&--7" >-v.'SJ: ,,:'" "' 1.0-..' ','.,).'. c. .' .. .(..: "\.. .' .','.v':.1.5. .:.,:'. -.)-lJ' -'-'-JJ-:-b' -:2.0.: if ''.CT2.5'1,c0.':)5'_._ '-"-'-MUDDY SAND. Fine sand withorganic-richmud;darkgreen;extensivelyburrowed;shellsarebothfragmentedandwhole;Modulussp.,Anomiasp.,Crassostreasp.,Marginellasp.,Donaxsp.,Cerithiumsp.?,Crepidulasp., etc.;charcoalfragments;0.001.07m.SAND. Somewhatsimilarto above, mud layers; shells arebothfragmentedand articulated; some shelllayersareimbricated;shells includeAnadarasp.,Crepidula plana, Anomiasp.,Chionesp.,Tellinasp., andotherburrowingbivalves;mostcompactionhere;1.07-1.62m.SANDYMUD. Dark green; whole shells;extensivelyburrowed;1.62-3.20m.MUDDY SAND. Brown; few shells; most arefragmented;small rootfragment;3.24-3.30m.

PAGE 107

StratigraphyofIndian "Mounds"CORE LOGCore No.:B-5Site:Buck Key(8ll722)Elevation (MSL):0,00mLocation:Inthe water at the NE edge of the Buck Key shell midden at edge of a "finger."Penetration:3,80mRecovery:3.44mPercent Compaction: 9.5%99meters0,0 "---;::-0) ,), '),'.0.5.)',i-,-;,,'...2..: .. )." ."1.0--', .rb'V' -':'-,,,: ).) ,. ,),' ,. ., .J -'-'-,1.5,_:_,")." .:J,.'" .dii' ."..) ,. '.2.0-, ,,).'..)."'.),.:.,J .-,-.-)2.5.?(J2:.,:)...., ,:.-._._. ) ,) '.'-')-).30-")". "' -'-' 'i'M-'" c'o ) .j L,..3.5'0'Jt: .)., --'-, L-.:-. ) ..... SHEllY,MUDDY SAND, Dark green; organic-rich sand; abun dant whole and fragmental shells, some shells articulated; shell types includeChionesp.,Bullasp.,Modulasp"several Arcidae,Donaxsp.,Tellinasp.,Spisulasp.,Crassostreasp., etc.;Dosinia elegansat top of core; bioturbation intense; core is homogenous; 0.00-3.80m.

PAGE 108

100Culture and Environment in the Domainofthe CalusaCORE LOGCore No.:B-6Site:Buck Key(8ll722)Elevation (MSL):0.50 mLocation:OnBuck Key shell mound; in first canal; near Test Pit C.Penetration:3.83 mRecovery:3.53 mPercent Compaction: 7.8%MANGROVE MUD. Sandy peat; roots; most ofcompaction here; 0.00-0.31m.SAND AND SHELL. Fine sand, dark gray to brown; very fine grained shell "hash"; unconformable with unit below; significant organic content; 0.31-0.39m.MUDDY SAND. Muddy, gray sand; abundant mud includes or ganics; bioturbated; plant roots;peatyzone near top; contact with unit belowisgradational; 0.39-1.16m.MUDDY SAND. Fine sand with organic-rich mud; bioturbated; mottled; coarse shell at base, includesChionesp.,Aequipectensp.,Bullasp.,Anadarasp.,Anomiasp.,Crassostreasp., etc.; 1.16-1.59m.SANDY MUD. Dark green, cohesive, organic-rich silt/clay; ap proximately 50% fine to very-fine sand; articulated shells, includingDonaxsp.,Cerithiumsp.,Arcaauriculata, Tellina lintea, Modulussp.,Anomiasp.,Chionesp., etc; extensively bioturbated and homogeneous; root fragments; 1.59-3.83m.

PAGE 109

StratigraphyofIndian "Mounds"101CORE LOGCore No.: B-7 Site: Buck Key (8LL722) Elevation (MSL): + 1.00 m Location:Insmall, mosquito-control canal next to Test PitA;at shell mound. Penetration: 4.33 m Recovery: 4.28 mPercentCompaction: 1.2%metersSHELLY, MUDDY SAND. Dark gray muddy fine sand; shell debris, some whole Arcidae shells; roots at top; 0.00-0.29m.SHELLY SAND. Dark gray to light brown, fine sand; abundant shell debris; bioturbated; somewhat mottled; Arcidae, Crepidula sp.,Arcinellasp., etc.; 0.29-0.56m.PEAT. Fine sand in peat/muck; mangrove debris; contact at bottom is conformable; 0.56-1.10m.MUDDY SAND. Fine sand with considerable mud; rootsattop; lower contactisgradational; 1.10-1.61 m...1.5-'."_'_" SAND AND SHELL. Shelly deposit at base grades upward into gray sand; most compaction here; 1.61-2.11m.MUDDY SAND. Dark green; abundant fragmented and whole shells; extensively biotu rbated; Barnea sp. to top of unit; 2.11-4.33m.continued on next page

PAGE 110

102continuedfrompreviouspage)'----:-'). 3.5 ----.-. -)--:,-::; 4.0.:.';c.-O.to:-,>'...,... '-'-'Culture and Environment in the Domainofthe Calusa

PAGE 111

StratigraphyofIndian"Mounds"REFERENCES CITED Davis,KA.,Jr., S.c.Knowles,andM.J. Bland 1989 RoleofHurricanesinthe Holocene StratigraphyofEstuaries: Examples fromtheGulfCoastofFlorida.Journal of Sedimentary Petrology 59:1052-1061. Evans, M.W.1989 Late MiocenetoQuaternary Seismic and Lithologic Sequence Stratigraphy oftheCharlotteHarborArea:SouthwestFlorida.Ph.D. dissertation,DepartmentofMarineScience,UniversityofSouthFlorida,Tampa.Fairbridge, R.W. 1961 EustaticChangeinSea Level.PhysicsandChemistry oftheEarth 4:99-185.Knowles, S.c.1983 HoloceneGeologicHistory of Sarasota Bay, Florida.Master'sthesis,DepartmentofGe ology,UniversityofSouth Florida,Tampa.Luer, G.M., andL.c.Archibald1988 ArchaeologicalDataRecovery at Mound A,BoggessRidge (8CH16), CharlotteHarborState Reserve,WinterField Season1988.ArchaeologicalandHistorical Conservancy, Miami.103Missimer, T.M. 1973GrowthRates of Beach RidgesonSanibel Island, Florida.Transactions oftheGulfCoastAssociation ofGeologicalSocieties 23:383-393. Marner, N.A. 1969 The LateQuaternaryHistoryofKattegattSeaandSwedishWestCoast.SverigesGeologiskaUndersokninSer. C, no.640.Scholl, D.W., andM. Stuiver 1967 Recent SubmergenceofSouthernFlorida: AComparisonwithAdjacentCoastsandOtherEustatic Data.Bulletin oftheGeologicalSociety of America 78:437-454.Scholl, D.W.,FC.Craighead, Sr., andM. Stuiver 1969FloridaSubmergenceCurveRevised: Its Relation to CoastalSedimentationRates.Science 163:562-564.Stapor, FW.,Jr., T.D.Matthews,andFE.Lindfors Kearns 1987 Episodic BarrierIslandGrowthinSouthwestFlorida:AResponsetoFluctuatingHoloceneSeaLevel?Miami Geological Society Memoir 3:149-202.

PAGE 113

4Technological InvestigationofPottery VariabilityinSouthwest FloridaAnnS.CordellINTRODUCTION: THE CHRONOLOGICAL POTENTIAL OF SOUTHWEST FLORIDA POTTERYFromasearlyas 500B.C.to as late asthetimeofEuropeancontactinthesixteenthcentury,themostabundantpotteryofsouthwestFlorida consistedofanundecorated,sandy-texturedwarecommonlyreferredtoasGlades PlainorsimplySand-tempered Plain(BullenandBullen 1956;Goggin1954;LuerandAlmy1980; Sears 1967;Widmer1988).Thelongevityandapparenthomogeneityofthisplainpotteryhavelimiteditsroleas a chronological toolinthisarea,andthisremarkableplainpotterytraditionhasrenderedsouthwestFlorida"oneofthemostperplexingchronological situations" intheSouthFloridaregion(Widmer1988:83).Consequently,regionalchronolog ical divisionsaredesignatedbyothercriteria. Theseincludepresence/absenceofsmallquantitiesoftemporallydiagnosticdecorated,andpresumednonlocal,potterysuchas St.JohnsCheckStamped,GladesTooled,andEnglewoodandSafetyHarbortypes(see Table 1).Carefulconsiderationofthearchaeological literatureforsouthwestFloridaandadjacentareasrevealsthatthissituationisprobablyduemoreto thelackof systematicquantificationandstandardizationofobservationsoftemporaldifferencesinplainpotterythanto the absence ofsuchdifferences. Forexample,BullenandBullen (1956)observeintheCapeHazeareathatdeeper,presumedolder,potteryis "thicker,"with"greater"quantitiesofsandthanthepotteryrecoveredfromhigher,morerecentlevels (1956:22). Thesetrendswerealsonotedforsand-temperedplainpotteryfromtheinlandFt.Centersite (Sears 1982:23). Sears also notesthatsand-temperedplainpotteryex hibitstemporaldifferencesinpastecolorandrimform (Sears 1982:23).GladesPlainpotteryfrom sites in the EvergladesNationalParkissaidto exhibit "consider ablechangethroughtime" in vesselandrimformandintechnological traitsofthickness, surface finish,andhardness(Goggin 1950:238).LuerandAlmy(1980)notetemporaldifferences inrimthicknessandvessel formofsand-temperedplainpotteryfromtwocoastal sitesinSarasotaCounty,andtheysuggestthattheobservedtrendsmighthave105broadgeographicalapplication(1980:217-220). Althoughtheirobservationsweremadeonasmallsample,theirstudyisnoteworthyfor its explicit goal ofdocumentingchangethroughtimeinplain,sandtemperedpottery.Microscopicexaminationofa smallsampleofpotteryfromUseppaIslanddocumentedconsiderableTable1.Widmer'sCaloosahatcheeAreaCeramicSequence.aTimeRangePeriod/CharacteristicsCaloosahatcheeV A.D. 1513-1750EuropeangoodsMissionperiodaboriginalpotteryCaloosahatcheeIVA.D. 1400-1513 SafetyHarborPinellas Glades TooledCaloosahatcheeIIIA.D. 1200-1400Englewoodceramics St. JohnsCheckStampedCaloosahatcheeII firstappearanceofBelleGladePlainA.D. 700-1200 increase in BelleGladePlainthroughtimedecreaseinSand-temperedPlainthroughtimeCaloosahatcheeISand-temperedPlainpredominant500 B.C.-A.D. 700 BelleGladePlainabsentlaminated/contortedpastesmallamountsofSt. JohnsPlainand"Hopewellian"decoratedpotteryaAdaptedfromWidmer1988:83-86, Table2.

PAGE 114

106variationsinthepastesofsand-temperedplainpottery,someofwhichappeartohavechronological sig nificance (Milanichetal. 1984:287-311). This isanimportantobservation,becausetotheunaidedeye, thepasteappearsto beveryhomogeneous.Thetemporalvariationnotedin theaboveexamplesinvolveattributesofpaste,amountandsizeofaplasticsor"temper," color,hardness,wall thickness,rimformandthickness,andvessel form.Manyoftheobservationsappear,however,tohavebeenbasedonsmallorundefinedsamples,and/ortheyarepoorlyquantified. Clearly,therehasbeenno concerted effort tostandardizeobservationsoftemporaldifferencesnortodocumenttheirapplicabilityona regional level. Nonetheless,thepreviousstudiesdoconveyanappreciation forthechronologicalpotentialofplainpottery. Closerscrutinyandmoresystematicobservationshouldallowthispotentialtoberealized,therebyincreasingtheutilityofplainpotteryfortemporalidentificationandchronology-buildinginsouthwestFlorida. CURRENT INVESTIGATIONS Ihaveattemptedtoimproveourunderstandingof variabilityinsouthwestFloridabyanalyzingphysical, mineralogical, technological,andformalpropertiesofpotteryrecoveredbytheSouthwestFlorida Project(Cordell1987, 1989;Marquardt,Chapter2,thisvolume). Analysesweredirectedspecificallytoward:(1)characterizationanddescriptionofpastevariability;(2)determinationofnumbersorkindsof claysusedinmanufacture;(3)assessmentanddescriptionoftheprojectarea's"ceramicenvironment"intermsof available clay resources, inordertoascertainif thepastevariabilitycanbeexplainedbyvariationinlocalresources;(4)preliminaryassessmentofmanufacturingoriginsofsouthwestFloridapottery;(5)refinementoftheexistingchronologythroughevaluationofthechronological significanceofpastevariability;(6)refinementof the existingchronologythroughobjectivedescriptionofvariabilitywithinparticularpastecategoriesintermsofotherattributesofthepotterysuchas color, thickness,andrim form,traditionallyviewedastemporallysensitive. The ultimategoaloftheseinvestigationsistheformulationof a rigorous, objectively-derivedtypologyforplainpotteryinsouthwestFloridafromwhichpotteryproductionovertimeandspacecanbebetterunderstood,andwithwhichtheexistingsketchychronologycanberefined.Description of Pottery SamplesThepotterysamplesexaminedconsistof4,005sherdsrecovered from test excavationsand/orsurface collectionsmadeat16 sitesinLeeandCharlottecounties.Oftheentirecollection,95%(n=3,822)ofthepotteryisundecorated,andofthisnumber,81% (n=3,108)wouldprobablybeclassifiedasSandtemperedPlain. Thedatapresentedherearebasedprimarilyonexcavatedpotteryfromfourmiddens:CultureandEnvironment in the Domainofthe Calusa8LL722-BuckKeyShellMidden(1,541sherds),8LL32-JosslynIslandMound(567sherds),8LL51CollierInnSite,UseppaIsland(1,425sherds),and8CH38-CashMound(79sherds)(Figure1). Thepotteryfrom these four sites accounts for 88% (n=3,612)ofthe tota1collection. Thetimeframerepresentedbythepotteryfrom these sites, asdeterminedbyradiocarbondatingof associated contexts,includesA.D. 1027-1439 for Buck Key; 324 B.C.A.D. 1304 for Josslyn Island; A.D. 67-806 forCashMoundand2011 B.C. A.D. 666 for theupperlevelsofthe CollierInnsiteonUseppaIsland. INVESTIGATION OF SOUTHWEST FLORIDA PASTE VARIABILITYMethods: CharacterizingPastePrecisecharacterizationofpastevariabilityis the logicalstartingpointfor analysisbecausepastemaydirectlyorindirectlyaffectvariationinothermorereadily-identifiablepropertiesusedinclassificationandchronology-building.Characterizationofpastevariationandinterpretationintermsofnumbersorkindsofclaysusedinmanufacturerequiresmethodsofclassificationmorerigorousthantraditionalmacro scopic observation.Inthepresentstudy"paste" isMN I..."".,,'"",,'f"" iti! I
PAGE 115

Pottery Variabilitycharacterizedbykind,size,andrelativeabundanceofaplasticconstituentsand/ortemper,andabinocularmicroscopewasusedroutinelytosortallsherdsofsufficientsizeintocategoriesdefinedbytheseattributes.Themicroscopewasequippedwithaneyepiecemicrometerand70Xmagnification. Relativeabundanceofaplasticswasratedasabundant,common,occasional,rare,ornone.Estimatedpercentabundanceofaplasticsthatisthoughttocorrespondtotherelativeabundancescale is as follows:rare<1%,occasional 1-5%,common10-20%,abundant20-30%. ForillustrationsofestimatedpercentparticleabundancefordifferentparticlesizesandshapesseeFigure12.2inRice (1987:349). Size ofaplasticswasestimatedwithreference to theWentworthScale (Rice 1987:38). Allobservationsweremadeonfresh breaks. Thisprocedurerequiredsherdstobelargeenoughtoexposea freshbreakwithoutcausingtotaldestructionofthe piece, a criterionthateliminatedverysmallsherdsfromanalysis. Aminimumacceptable sizewasdeterminedbyusingacontainerwitha 1.5cmdiameteropeningtoobjectivelysort"small"from"large"sherds;allsherdspassingthroughthisopeningwerecountedandweighed,buteliminatedfrommicroscopicexamination.Therationaleforexcludingsmallsherdsfromanalysis isthatminutesherdsyield littleinformationbeyondthatcontainedin thelargersherds.Inaddition,verysmallsherdswereusuallyimpossibletoidentifyconfidentlywithoutbeingdestroyedintheprocess,andwithoutgreattimeandeffort. Exceptions to thisminimumsizecriterionwerecasesinwhichallormostofthesherdsinaprovenienceweresmall,orinwhichtherewereonlya fewsherdsinaprovenience.For thesecircumstances, allsherdslargeenoughtohavecataloguenumberswrittenonthemwereusedinthemicroscopic examination.Preferredorientationofspongespicules,oneofthecommonaplastics,requiredthatbreaksbemadeparallelto thisorientationwheneverpossibleinordertoexposelongitudinalsectionsofthespicules. Thispreferredorientationisparalleltohorizontalplanesorfeaturesofsherds(e.g.,rimsandcoilfractures).Breaksmadeperpendiculartothepreferredorienta tion expose cross-sectionsofthespicules,thusmakingpositiveidentificationofspicules unreliable. Amicroscopewasusedroutinelyinanalysis becauseitlendsaccuracyandspeedtotheidentificationofvariationwithinseeminglyhomogeneousundecoratedpottery: accuracy,becauseitilluminatessig nificant differencesinpasteandtemperconstituentsandtexturethatcannototherwisebedetected;andspeed,becauseiteliminatestime-consumingguessworkinherentinpasteidentificationmadeinunmagnifiedhandsample.Thismethodis especiallyappropriateinthisinvestigationbecauseithasbeendocumentedthatsignificantvariationinpasteofsandtemperedplainpotterysimplycannotbedetectedbytheunaidedeye.Inaddition,theresultscan beused107toaddressquestionsnotonlyofchronology,butalso ofpotteryproductionandresourceutilization. Forpurposesofcomputeranalysis, Irecordeddataformanyvariablesincludingprovenience,paste,decoration,numberofsherds,sherdweightingrams,andnumberofrimsherds(AppendixA).TheStatis tical Analysis System (Ray 1982)wasusedfor all computeranalyses.Interpretationofpastegroupingsintermsofnumbersorkindsofrawmaterialswasaidedbypetrographicanalysisofsherdthinsectionsandrefiringexperimentswithsherdsrepresentingthepredominantpastecategories.Eightthinsectionswereexaminedwithapolarizingmicroscope for identifica tionofmineralinclusionsotherthanquartz(AppendixB).Inaddition,point-countsofquartzinclusions asobservedinthethinsectionsweremadetoobtainobjective estimatesoftheproportionoffineandveryfinequartzinthepottery.Thecountsweremadeusingabinocularmicroscopewith70Xmagnificationandtransmittedlight. Theareaofobservationconsistedofa 1.45mmx 1.45mmgrid. Refiring experimentswereundertakentoeliminatecolorvariationcausedbytheoriginalfiring,oruse,orpost-depositional alteration, inorderto revealtheinherentfired colorsoftheclaysused.Sherdswererefiredunderoxidizingconditionsinanelectricfurnaceatatemperatureof800C for aperiodof 15minutes.Samplingfor refiringwasjudgmental.Iattemptedto includeexamplesofthemostabundantoriginal colors as well astherangeof original colors.MunsellSoil ColorChartswereusedtomakebefore-andafter refiringmeasurementsofsurfaceandcore color (AppendixC).Results: Description of PredominantPasteCategoriesIdefined14pastegroupingsfrom initial micro scopicexaminationofthepotterycollection (Table 2).Onlyfour categories,accountingfor94%ofthesherdsexamined,wereconsistentlyrecognizedatmostof the sitesincludedintheinvestigation(Table 3). Twoarecharacterizedbyabundantquartzsandandfewornoacicularspongespiculeinclusions,andtwoarecharacterizedbycommontoabundantquartzsandandcommontoabundantacicularspongespicules.PhotographsofthinsectionsofthefourpredominantpastecategoriesarepresentedinFigure2.Thefirstpastecategory,sandypasteA(abbreviated SANDA),representing58%oftheentirecollection (n=2,313), ischaracterizedbyabundantquantitiesofquartzsandveryfine toverycoarseinsize (fineandveryfinepredominant)andporous,mediumto coarsepastetexture(Table 2andFigure2).Point-countsofquartzinclusionsobservedinthinsectionsindicatethatfineandveryfine sizesarenearlyequalinabundance(Table 2andAppendixB).Thisgroupingispredominantinall collections fromnearlyall sitesinvestigated(Table 3).Onthebasisofinitial microscopicexamination,thesecondpastecategorysandy pasteB(abbreviated

PAGE 116

Table2. SummaryDescriptionofPaste Categories.PasteCategoryFrequencyGeneral Paste Characteristics TraditionalTypeNameThinSectionResultsRefiredColorsResource Groupingsabundant very finetomediumquartz occasional randomly orienoccasional coarsetovery coarse quartzn=3 tedspongespicules;widen=26samesource(s) forsandymediumto coarse paste texturesandy/grittytactualqualitySand-temperedPlainrangeofaccessory mineralscoring eliminated;lORtopasteAandB; 1-2 basedor10YR; yellowishbrowntoon subtle color variation: abundant very finetomediumquartzGladesPlainaverage total quartz point-reddishyellow toclays moderate and San'1 Paste Boccasional coarse toverycoarse quartzcount: 40yellowishred, redmoderate-ta-highiniron(SNOB) n=593rare to occasionalspongespicules veryfine: 45%; fine: 48%; compoundsmediumto coarse paste texturesandy/grittytactualqualitymedium:6%abundant very finetomediumquartz San'1 Paste C occasional coarse quartzGoodlandPlainnodatanodata calcereousclaysource(SNOC)occasional white acicular spiculesmediumtexture;sandytactual qualitycommonto abundantspongespicules narrow rangeofaccessoryn=8 10YRto7.5YR;verypale2spongespiculate sources;Spicule A Pastecommonveryfinetomediumquartzminerals;averagetotalbrown to reddish yellow; similar but differ in(SPCA) occasional coarse quartzBelle Glade Plain n=2quartzpoint-count:31amountsofiron fine, compact paste textureveryfine: 65%; fine: 28%; 2.5YRtolOR;reddishcompoundsandorganicchalkytogrittytactualqualitymedium: 7% graytoreddishbrownmaterialscommonspongespicules narrow rangeofaccessorycommontoabundantveryfinetomediumSand-temperedPlain minerals; totalquartzpoint-1spongespiculate source quartzretentionofcoring; 5Yto occasional coarse quartzorn=1 count:26 characterizedbyabundantmediumpaste textureGlades Plainveryfine: 46%; fine: 46%; 5YR;darkgraytoblackorganic materials?sandy/grittytactualqualitymedium: 8% abundantspongespiculesn=210YR-verypalebrowntovariable;spongespiculate occasional tocommonveryfinetofine quartzlight yellowishbrownsources differing inn=111 SI. Johns Chalky Wareno data amountsofironveryfine paste texturen=llOR-redtolightredchalleytactualqualityn=1 I OYR-dark grayishbrowncompoundsand organic materialsabundantspongespiculessimilartoCHKA,butoccasional tocommonveryfine to finequartztempered(?)with Chalkr. Paste B occasionaltocommonmediumto coarseTomokaWareno data I OYR-very palebrowntoyellowish-brownto(CHKB ,CHKB2)reddish"lumps"thatalsocontainspongelight yellowishbrownreddish, irregular-te>spicules round "lumps" that alsoveryfine texture; chalkytactualqualitycontainspongespiculesLaminatedPastevariable frequencyandsize Pinellas Plain? (LAMIN) extremely aminated paste texture no datanodatavariable;mostfrom8LL722variabletactualqualitynospongespicules; occasional to common fine to coarse "lumps" narrow rangeofaccessory variablequartzfrequencyandsize 1f::0g-tempered n=lminerals; total quartzn=3 7.5YR, 2.5YR;strongvariable( ROGvariable to laminatedcontorted texture s erd-tempered point-count: 45 brown, grayish brownvariabletactualqualityveryfine: 82%; fine: 16%; medium:2% occasional to common limestone "lumps" Pasco Plainatleasttwosourcesvariablequartzfrequencyandsizeorno datanodata calcareous and non variabletextureandtactualqualityPerico Plain calcareous Shell-tem)er abundantmediumto coarse crushed shell PensacolaPlain?no datanodatanodata(SHELLno other data collectedcommonspongespiculesOrange Fiber-temJjer I n-4 variable quartz frequencyandsizeor(FBTvesicular paste textureNorwood2 sources; differ invariabletactualqualityno data no data presenceand/orvariable quartz frequencyandsize Orange orNorwoodfrequency ofsponge Fiber-tem5'er 2n=3none to occasionalspongespicules spicules(FBTIvesicular paste textureorvariable tactualqualitySemi-fiber-temperedcommonmica flecks Micaceous Pasten=3commonto abundant very fine to fine quartzvariable(see text)no datanodata no data(MICA)fine texture variaIetactual quality

PAGE 117

Pottery Variability109Figure2.Photographsofthinsectionviewsofpredominantpastecategories.AllfoursherdsarefromBuckKeyShellMidden(8LL722).Upperleft:SANDA,rim148,FlaMNHcatalogueno.A27554;upperright:SANDB,rim108,FlaMNHcatalogueno.A27550;lowerleft:SPCA,rim165,FlaMNHcatalogueno.A27510;lowerright:SPCB,rim84,FlaMNHcatalogueno.A27514(approximately75Xmagnification).SANDB)differs fromthefirstonlyintermsofhavingrareto occasional occurrence ofrandomlyorientedacicularspongespicules (Table 2andFigure2).Thispastecategoryrepresents15%of the collection (n=593)andisusuallyencounteredwhereversandypasteAsherdsarepresent(Table 3).Intraditionalclassifica tion,sandypasteAandBgroupingswouldnotbedifferentiated,andundecoratedsherdsofbothpasteswouldmostlikely bereferredto asSand-tempered Plain(Table 4).Thinsection analysisofsandypasteAandBsherdsrevealedthatoccasionalfragmented,randomlyorientedspongespiculesarepresentinbothsandypastecategories (seeFigure2andAppendixB).It isnotknownifthisobservationmaybeusedto general ize totheentiresampleofsandypasteAsherds,however,becauseof the smallnumberofthinsectionsexamined.Inanycase,thereappearsto be a lack of consistencyintheability todiscern(exceptinthinsection)presenceofspongespiculesthatarefragmentaryandverylowinfrequency. Therefore, failure toobservespiculesundermicroscopicexaminationwithreflected lightmaynotalwaysindicatetheirabsence.SandypasteAandBsamplesarealso similar intermsofrangeofobservedaccessory minerals (Table 2andAppendixB)andinrefiredpastecolors.Twen-ty-foursandypasteAsherdsand11sandypasteBsherdswererefired. Refired Munsell colorsrangefromreddishyellowstoyellowishreds(Munsellhuesrangingfrom 10YR to lOR),andrefiringeliminatedall tracesofcoringinmostcases (Table 2andAppendixC). The refired colorsindicatethattheclaysrepresentedbysandypastepotteryfire toreddishcolorswhenconstituentcarbonaceousmaterialsandironcompoundsareoxidized. SlightlyredderhueswereobservedinBuck Keysamples(lOR to 5YR)thaninUseppasamples(5YRto 10YR). This indicatesthatthesourceorsources of clayusedformakingsandypastepotteryfrom Buck Keymaybesomewhathigherinironcompoundsthanthesource(s)usedformakingtheUseppasamples.AsmallpercentageofsandypasteAandBsherdsfrom Buck Key exhibited slightlylaminatedpastetex ture. Thesesherdsareotherwiseidentical tosandypasteAandBsherdsintermsofaplastic compositionandrefired colorsandthusdonotrepresentaseparatepastecategoryintermsofclayresources.Thelaminatedtexturecanprobablybeattributedtohasteorcarelessnessinpreparationofthepasteorin constructionofthevessels. Forexample,poorwedgingorlackofthoroughbondingof coilsinmanufacture,orsomeaction offinishingorsmoothingmightresultinpreferredorientationofporespacesinthepaste,

PAGE 118

110Culture and Environment in the Domainofthe CalusaTable3.DistributionofPasteCategoriesbySiteNumber(rowpercentagesbasedonsherdcountsandweights). 'tl 'tl'tl"''tl'tl;.,<;.,=;.,U'"'"'"c='"'"'"...l01)'"... ... o ... ..."< Site 'tl'"'tl'"'tl'""'""'" o '"'" '" '" '""-'t;v_ v_...'"'"'"'"'"'"'"' Number '"'"..c=..c='"" Ei iZS Ei C;; Ei 0 "''' "'''v",,,-",,,-u"-'"'"'"'...l'"' '"''"' 49 15 212a1 8CH38 62% 19%a3% 15%aaa1%aaaa79 54% 18%4%18%6%1009 95 202 100 9b 6< 3 1 8LLSI 71% 7%a14% 7% 1%aaa<1% <1%a<1% 1425 74% 7% 12%6%<1% <1% <1% <1% 191 45 273 22nd18 3 2 8L132 34% 8%a48% 4% 4%a<1%1%a1%a<1% 567 25% 7% 59% 3% 3% <1%2%1%<1% 894 405861385'138LL722 58% 26%a6%9%<1%aa1%aaaa1541 58% 26%6%8% 1%1%3118CHI75%a aaa25%aaaaaaa4 18% 82% 238CH940% 60%a a a aaa aaaa a5 16% 84%162 1 4 11 8CHlO 64% 8%a a4%aaa16%a4%4%a25 39% 28%1%16%12%4%723 46 47 g 49h8CH16 40% 2%a2%3% 26%27%aaaaaa181 34% 1%2%2%29% 31% 38CH37100%aaaa aa aaaaa a3 100% 1 8CH44 100%aa a a aaaaaaaa1 100% 28CH48a100%a aaa a aaaaa a2 100% 1 1 8LL2 50%a aa50%aa aaaa aa2 45% 55%154 328L13362.5% 17%a12.5%8%aaaaaaa a24 59% 27% 10% 3% 94 1 2 Ii 1 8L144 50% 22%a6%11%aaaa6%6%aa18 49% 27%6%2%10%6%1 9i158LLS5aaa4%a36%aa60%aaa a254%14%82%481531218k61 8LL81 47% 14% 3% 12%a17%a6%1%aaa a103 51% 13%2%11%16%7%1%TOTAL2313 593 3 584 28411149 7 42 7 813 4005alSPCBsherdwithwhitish"lump" inclusions(notlimestone).b8veryfine(CHKAl)and1fine(CHKA2)chalkypasteA. <4 PBIland2 PBT2paste.d18veryfine(CHKAl)and4fine(CHKA2)chalkypasteA(lCHKA2withraremica).'4veryfine(CHKAl)and1fine(CHKA2)chalkypasteA.Ivery fine chalkypasteA(CHKAl).g40veryfine(CHKAl)and7fine chalkypasteA (CHKA2).h46veryfine(CHKBl)and3fine(CHKB2)chalkypasteB(with ferruginous "lumps").ipBT 2paste.18veryfine(CHKAl)and1fine(CHKA2)chalky paste.k15veryfine(CHKAl)and3fine(CHKA2)chalky paste.

PAGE 119

PotteryVariabilityandhence,laminatedorlayeredtexture(PrudenceRice,personalcommunication,1991).Manyofthesherdshadalsobeensubjected topostdepositionalfiring (infeaturecontextsofTestB).Thismayalsohavecontributedto thelaminatedtexturethroughoxidation(hence, removal)oforganicmaterials. Theorganiccomponentofthepasteseemstoexerta cohesive effect. Thissuppositionissupportedbythe factthatsandypastesherdsbecomebrittleandfriablewhenrefired.Potteryinthethirdpastegroup,spicule A(abbreviatedSPCA),representsaverydistinctive categorycharacterizedbycommontoabundantminutespongespiculesandcommonquartzsandveryfine to coarseinsize(very fineandfinepredominant)(Table 2andFigure2). The sizeofspongespiculesobservedinthinsection (twosherds)rangeswithinsilt size indiameterandveryfine in length.Inadditionthe spicules ex hibitpreferredorientation(Figure 2).Approximately65%ofthequartzisveryfineinsize (Table 2andAppendixB)asindicatedbypoint-counts.Thetextureof thesesherdsisgenerallycompactandfine-grainedincomparisontosandypastepottery.Thispastegrouprepresents15%ofthetotalcollection (n=584), occursatoverhalfofthesitesinvestigated(Table 3),andwithexperience,canoftenbecorrectlyrecognizedwiththeunaidedeye.Intraditionalclassification, thisgroupingwouldprobablybereferred toasBelleGladePlain(Willey 1949a:25-26) (Table 4). The majorityofrimsherdsexhibitscraped,faceted exterior surface finish, atraditionalcriterion for recognitionofthistype(Sears 1982:20-22).However,thepasteshouldbeconsideredamorereliablecriterionthansurface finish asmeanstorecognizeBelleGladepottery.SpongespiculeshavebeennotedpreviouslyinBelleGladePlainpotteryfromsouthernFlorida (RuhI1983; BorremansandShaak1986; JeraldT.Milanich,personalcommunication,1987). The BelleGladelabel isusedtoreferto thispastegroupinsubsequentdiscussions. BelleGladepastethinsectionsfromBuck KeyandUseppaIslandweresimilarto eachother,anddiffer fromsandypastesamplesintermsofhavinganarrowerrangeofaccessoryminerals(see Table 2andAppendixB).Refiringof11BelleGladepastesherdseliminatedall tracesofcoringinmostsherds.TheUseppaandJosslynIslandsamplesrefiredtolightyellowishbrowntoverypalebrown("buff")colors,whilesamplesfrom Buck Keyrefiredtoreddish-graycolors (Table 2andAppendixC).This color differenceindicatesthatat leasttwospiculiteclay sources,differinginamountsofconstituentironcompoundsandor ganicmaterials,arerepresented.Thefourthpastegroup,spicule B(abbreviatedas SPCB), ischaracterizedbycommontoabundantquartzsandintheveryfinetocoarse sizerange(fineandveryfinepredominant),andcommonminutespongespiculeswithpreferredorientation(Table 2andFigure2). Thiscategorymakesup7%ofthetotal collection (n=284),andoccursatoverhalfofthesitesrepresentedinthesample(Table 3).Inunmagnified111handsample,sherdsofthispastegroupresembleothersandypastepotteryandcannotbedistinguishedsuccessfullywithouttheaidofa microscope. The differencesaresubtleandincludeslightlylowerrelativefrequencyofquartzsand,andsomewhatlaminatedpastetexture,butintraditionalclassification,theSPCBpasteandthetwosandypastegroupswouldprobablynotbedifferentiated.Inthinsection, thiscategoryismoresimilarto the BelleGladesamplesthantosandypastesamplesintermsofrangeofmineralspresent(Table 2andAppendixB).However,point-countsofquartzinclu sionsindicatethattheproportionof fine toveryfinequartzismoresimilartosandypastesherdsthanto BelleGladepaste(Table 2andAppendixB).SPCBpastesherdsdiffer fromothersandypastepotteryintermsofretainingsignificantamountsofcoringuponrefiring (see Table 2andAppendixC).Thismaybeattributedtoaclaybodycontainingabundantorganics,and/oronethatisslowtogiveuporganicsin firing.SignificanceofPasteGroupingsasResource GroupingsOnthebasisofthesedata,it is likelythatsandypasteAandBsubsampleshavethesamegeneralsourceororigin:reddish-yellowfiringsandyclaysorclaytemperedwithabundantveryfine tomediumquartzsand.Thisinterpretationisbasedonsimilaritiesofgeneralpastecharacteristics,refiredcolor,andpetrographicidentification.ThesubtlecolorvariationbetweenBuck KeyandUseppasamplesmayindicategeographicvariationinamountsofironcompoundspresentintheavailableclays,and/orpossible temporalvariationintheselectionofclay resources.Atleasttwospongespiculeclay sourcesappeartoberepresentedbytheBelleGladepastegrouponthebasisofrefiredcolorvariation:reddish-andbuff firingspiculateclays. Thesehypotheticalclay sourcesotherwiseappeartobeverysimilarintermsofaplastic composition, texture,andpetrographicidentification.Thecolorvariationmayreflectgeographicvariationinamountofironcompoundsandorganics,and/ortemporalvariationintheselectionofresources. Finally, a distinctive,highlyorganicspiculate claysourceispostulatedformanufactureoftheSPCBpastesubsample.Thisbringsto five thetotalhypotheticalminimumnumberofclaysorresourcegroupingsrepresentedbythesepastecategories(summarizedin Table 2). These conclusionsarenotintendedtosuggestthatonlyfive discrete clay sourcesarerepresented;rather,eachhypotheticalresourcegroupingisinterpretedasrepresentingclayshavingsimilarproperties.Results: Description of RemainingPasteCategoriesTheremaining6%ofthecollection (n=231sherds)isrepresentedbytenpastegroupings:twochalkypastecategories,laminatedpaste,grog,limestone,shell, mica,andcalcareouspastecategories.Thefirstchalkypastecategory,chalkypasteA(abbreviatedCHKA) is

PAGE 120

112representedby111sherdsandispresentinsevenof18 site collections (Table 3). Thisgroupis characterizedbyabundantspongespiculeswithpreferredorientationandoccasional tocommonveryfine to finequartzsand(see Table 2).ThespongespiculesaregenerallylargerinsizethanthoseobservedinmostBelle Glade, SPCB,andsandypasteB categories.Pastetextureisgenerallyveryfineandcompact,butwitha distinctivechalkytactual quality.Inmostcases thischalkypotterycanbedistinguishedfromtheotherpotterycategorieswithoutmagnification,onthebasisoftactual chalkiness. Thiscategorycanbedividedintoveryfine (n=94,designatedCHKA1)andfine(n=17,designatedCHKA2) SUbgroupsonthebasisofdifferencesinfrequencyandsizeofquartzsandinclusions. Thelattersubgroupgenerallyhasgreaterfrequencyofquartz,predominantlyfine in size. Micawasalsoobservedas arareconstituentofonesherd.Itis difficult todistinguishveryfineandfineSUbgroupssuccessfullywithouttheaidofamicroscope,however.ComparablechalkypastecategoriesarealsofoundintheUpperSt. Johns River Basinarea(Cordell 1985).Intraditionalclassification,Biscayne ware(GogginandSommer1949:44-45; Willey 1949a:30),Okeechobeeseries(Willey 1949a: 29-30),andmostrecently,St. Johnsware(Widmer1988:143; Sears 1982:22)refertothechalkypastepotteryinsouthwestFlorida (Table 4).Fourrefiredchalkypastesherdsshowedcolorsrangingfromdarkgrayishbrownandredandverypaleto lightyellowishbrowncolors (Table 2andAppendixC).Thisrangeofrefired colorsindicatesvariationintheamountofprimarycolorants(organicsandironcompounds)intheclaysrepresented.This categorywasnotsampledforfurthermineralogicalanalysis,butotherwiseappearstorepresentahomogeneouscategoryintermsofgeneralpastecharacteristics. The secondchalkypastecategory,designatedchalky paste B(abbreviatedCHKB),wasdefinedonthe basis ofthepresenceofoccasional tocommonreddishorferruginous"lumps"and/orstainsinthepaste(Table2).Thiscategoryiscomposedof49sherdsfromBog gess Ridge (8CH16), aWeedenIslandperiodburialmound(Table 3).Veryfine (n=46,designatedCHKB1)andfine (n=3,designatedCHKB2)chalkysherdscanalsobedistinguished.Theferruginouslumpsorstainsvaryfromyellowishbrowntoreddishbrownin color,mediumtoverycoarseinsize,andirregulartoroundedinshape. Closescrutinyofa fewsherdsrevealedthatspongespiculesarepresentintheselumps.Detailedstudyandcomparisonoflumpversusmatrixcompositiontodocumentfurthersimilar itiesordifferences(throughpetrographicanalysis, for example)werenotcarriedoutinthisstudy.Refiringofonesherdrevealedthatthematrixandlumpsdiffer inamountofironcompounds.Thematrixrefiredto averypaletolight yellowish browncolor (Table 2andAppendixC),butthelumpsorstainsrefired todarkredtoredcolors (2.5YRhues-seeAppendixC).It isunknownwhethersuch"lumps"wereaddedintentionally astemper(crushedsherdsorcrushedclayCulture and Environment in the Domainofthe Calusalumps)orifiron-richconcentrationsoccurnaturallyinsomespiculateclaydeposits.Thereddishin clusionsrepresenttheonlycharacteristicthatdistinguisheschalkypasteBpotteryfromchalkypasteApottery;thespiculateclays ofbothcategoriesappearotherwisetobeverysimilar. ThisparticularvariantofchalkypastewasnamedTomokaware(Table4)byGriffinandSmith(1949:349). Goggin,however,suggeststhatthispotterylacksgeographical/temporalsignificanceandthatitshouldbesubsumedunderSt. Johnsware(Goggin 1952:101).Groginclusions,definedas fine to coarseroundtoirregular"lumps,"werenotedin42sherds(Tables 2and3).Grogisusuallyconsideredtobecrushedpotterysherdsorcrushedfired clay (Rice 1987:74, 409).Inmostcases, theseinclusionsdonotappeartobediagnosticofsherdtempering(e.g., Lake Jackson Plain [Willey 1949b:458-459; Scarry 1985:220-221])butmaybelumpsof clayorpastenotthoroughlymixedduringpreparation.Inaddition,pastetextureisgenerallycontortedtosomewhatlaminated(Table 2).Intraditional classification, severaldescriptivelabelshavebeenusedtodesignatepotterywithgrog-likein clusions,butaformaltypedefinitiondoesnotexist (seediscussionsbyLuerandAlmy1980:212andMitchem1986:71). RefiredsherdsfromBuck Key exhibit colorsrangingfromstrongbrowntograyishbrown(Table 2andAppendixC).PetrographicexaminationofonethinsectionfromBuck Keyshowedanarrowrangeofaccessorymineralsinthe matrix,matchingonesobservedinsandypastesamples,butnotthe BelleGlade/SPCBsubsamples(AppendixB).Veryfine-sizedquartzwaspredominant,asrevealedbythepoint-count(Table 2andAppendixB).Veryfinequartzinclusionswerealsopresentinthemediumto coarse grog-likelumps(AppendixB).Thissamplediffers frombothsandypasteandspiculepastesubsamplesinthatspongespiculeswerenotobserved.Thesedataindicatethataseparateclaysourceand/ortemperingmaterial(s)mayberepresentedbythissherd,butthis single casemaynotberepresentativeoftheothers. Thispastecategoryisprobablyheterogeneousintermsofnumbersorkindsofrawmaterialsrepresented.Grogpastesherdswerepresentatsixofeighteensites (Tables 3and4).Mediumtocoarselimestonelumpswereconspicuousaplasticsineightsherdsfromfoursites (Tables 3and4).Limestoneinclusionsweredistinguishedfromother"grog"-likelumpsonthebasisofeffervescentreactiontohydrochloricacid. TestswithHClalsoindicatethattwooftheeightsherdsmayrepresentcalcareous claysourcesbecausethe effervescent reac tioninvolvedtheentiresherdmatrix,notjust thecarbonateinclusions. Thisindicatesthatatleasttwokindsofclay sources (calcareousandnon-calcareous)arerepresentedbythelimestone-temperedpotteryatthesesites.Intraditionalclassification,limestonetemperedpotteryhasbeencalledPascoPlain(Goggin 1948:8-9; Willey 1949b:446-447)andPericoPlain(Willey1948:215; 1949b:364-365). Thecurrentpotterychronologyspecifies a Perico Plaindesignationfor all

PAGE 121

Pottery Variabilitylimestone-temperedpotteryfromsouthwestFloridaunlessaWeedenIslandperiodcontextcanbedocumented,inwhichcase a PascoPlainlabel isused(Widmer1988:70). A singleshell-temperedsherdwasalso identified.Sevensherdsfromtwositesexhibitextremelylaminatedpastetexture(abbreviatedLAMIN) (Tables2,3,and4).Thesesherdshavevariablecompositionintermsof frequencyandsize ofquartz(veryfine to fineandfine tomediumsize ranges)andwerenotsampledforfurthertechnological analysis.Intraditionalclassification,thiscategorymightbecalledPinellasPlain(Willey 1949b:482; Jeffrey Mitchem,personalcommunication,1988). This is adubiousattribution,however,becauseofthesubjectivityinherentinrecognizing"lamination."ThePinellasPlainlabelmaynotbeappropriatewithoutcarefulstudyandcomparisonwithknownPinellas Plainsamples(type specimens). Therelationshipof thisgrouptoanearlylaminatedpastedescribedbyFradkin(1976:54-56),Widmer(1988:83-84),andSears (1982:24-25)andto a late "local" Pinellas-likelaminatedpastedescribedbyLuer(1989:100) is alsounknown.Sevenfiber-temperedsherdswereidentifiedintwoofeighteensite collections (Tables 3and4).Foursherds,designatedFBT1,containcommontoabundantspongespicule inclusionsandcommonquartzsand,andthree,designatedFBT2,containabundantquartzsandandfewornospongespicules (Table2).Thiskindofvariationinaplastics in fiber-temperedpotteryis alsoobservedin theUpperSt. Johnsareaof BrevardCounty,Florida (Cordell 1985).Intraditionalclassification,FBT1sherdswouldbeclassified asOrange(Griffin 1945)orNorwood(Phelps 1965);FBT2sherdsmightbelabeledeitherOrangeorNorwoodorsemi-fiber-tempered(Bullen 1972).Althoughnosherdsweresampledforfurtheranalysis,atleasttwoclay sourcesareindicatedonthe basisofthevariationin aplastics.Threesherdsfromtwoofeighteensiteshavea micaceouspastecharacterizedbycommonmica in clusionsandcommontoabundantveryfine to finequartzsandinclusions (Tables 2and3).OnesherdwouldprobablybecalledWeedenIslandIncised intraditionalclassification;anothersherdis a basal fragmentwithsmall Deptford-likepodalsupports;andthethirdis a checkstampedsherdofprobableWeedenIslandperiodaffiliation(WakullaCheckStamped[Willey 1949:437-438J)(Table 4). Threesherdsfrom 8LL81aredesignatedassandypasteC (abbreviatedSANDe).This category ischaracterizedbyabundantfine tomediumquartzsandandoccasional tocommonwhitishacicular inclusions,someofwhichresemblespongespiculesinshape(Table 2).Fragments.ofsherdmatrixas well as the inclusions effervesceduponapplicationof HCI, indicatinga calcareous clay source.Theacicular inclusionsmayrepresentshellfragments.Inunmagnifiedhandsample,it is difficult todistinguishthiscategoryfromothersandypastepottery.ComparisonwithFlaMNHpotterytypespecimensindi-113catesthatthiscategorymayrepresentthetypeGoodlandPlain(Goggin 1950),butthis isnotconclusive. Thiscategorywasnotsampledforfurthermineralogi cal analysis,butapparentlyrepresentsa calcareoussandyclay,orcalcareous claytemperedwithquartzsand.Onenon-aboriginalceramics category,notlisted in the tables,designatesaSpanisholivejarfragmentfrom a surface contextat8LL33andonemodern(20th century)whitewaresherdfrom a surface contextat8LL32.SOUTHWEST FLORIDA CERAMIC ENVIRONMENTThe"ceramicenvironment"ofaregion,froma "ceramic ecological"perspective,is described in terms of theavailabilityandqualityoflocal ceramicresources (e.g., clays,tempers,andfuels), accessibility tothoseresources,andotherfactorssuchasclimatologi cal variability,whichmayinfluenceseasonand/orfrequencyofpotterymanufacture(seeArnold1975, 1985;Matson1965; Rice 1976, 1987). This investiga tionofthesouthwestFlorida "ceramicenvironment"islimitedtoconsiderationofavailableclay resourcesintheareaofpresent-dayCharlotte, Collier,andLee counties. This effort focusesoninformationgleanedfrom the geologicalandsoilsliteratureandtestingofclaysamplescollected fromtheregion.SouthwestFloridaGeologyMost discussions of thegeologyofsouthwesternFlorida focusuponthesedimentaryrocksequencerangingfrom Eocene to Recentinage. ThissequencegenerallyconsistsofEoceneandOligocene marine limestones, MioceneandPleistocene limestones, clays,andsands,andRecentalluvium,peats,muds,andmarinesediments(Dubar1958, 1962; Estevez 1984; McCoy 1962;PuriandVernon1964; Sutcliffe 1975;VernonandPuri1965).ClaysaredescribedasconstituentsofthelateMioceneTamiamiFormationandPleistoceneageCaloosahatcheeMarlandFortThompsonformations(Dubar1958, 1962; Estevez 1984; McCoy 1962; Pecketa1.1979).DetaileddescriptionsrevealthattheTamiamiFormationmayprovidethemostabundant,consistent,orreliablegeologicsourceofclayeymaterialsinthestudyarea.ExposuresalongtheCaloosahatcheeRiveroutsidethestudyarea(inHendryandGlades counties), for example,include"calcareoussandyclays"and"greenish-grayplasticsandyclay"(Dubar1958:47, 48).ExposuresalongShellCreekinCharlotteCountyarecharacterizedbyargillaceousmarlsandcalcareousclays(Dubar1962:7). ExposuresalongAlligatorCreekinCharlotteCountyincludeclays, marls,sands,andlimestones,withclaysbeingmorecommontothewest(Dubar1962:17). A lithological section for central LeeCountyshowsthattheformationis rich in clays,sandyclays,phosphatic clay,andcalcareousclays (Peck eta1.1979:332),butdepthoftheunits(mostbelowap-

PAGE 122

Table4.DistributionofPotteryCategories(definedbypasteanddecoration)bySiteNumber(rowpercentagesbasedonsherdcountsandweights). U),,;,,;", ",".;"",,,; 0 ,,;".;,,;,.\oi",,;"",",",,;c;:;",U)_'"c=:",.;",,;".;"U)...c;:;,,;';.;c=:"",';U),,; o '""';"",,.\oi"'0"c;:;",.;.;c;:;"",,;"c;:;e"c;:;c=:" 0 c=:""-c;:;c;:;'""I:>.c;:;", ",.sc;:;'" -; Site 8.;",U)"'"'"'"f-.-,,; 0 '"G 0 "",0,,;10...:;tilVi-,,; 0 f-.,,;'"QiVi"f-<"til U0 "::!:til"'" 0 I:>.::!:"'"0I:>....til" 64 211I'18CH3881%3%14% 0 0 00 00 00 0 0 1% 01%0 0 0 0 0 79 72% 4% 16% 2% 6% 1098 202 100 9 6b2 4 3 1< 8LL51 77% 14% 7%1%0 000 0 00 0 <1% 0 0 0 <1% <1% <1% 0 <1% 1425 80% 12%6%<1% <1% <1% <1% <1% <1% 226 237d20 2 20 36 6 4' 211 8 3 288LL32 40% 42% 3.5% <1% 3.5% 0 006%01%01%<1% <1%1%0 0 1% 0 <1% 567 30% 50% 3% <1% 3% 10%1%0.5% 0.5% <1% 1.5% 1% 0.5% 1239 85 135 2 3 1 49h11 11 Ii138LL722 80% 6%9%<1% <1% 00 0 <1%3%1%0 <1% <1% 01%0 0 00 0 1541 78% 6% 8% <1% <1% <1% 6%1%<1% <1%1%1 1 2k8CH1 25% 0 0 25% 0 00 00 0 00 50% 0 00 0 00 0 0 47%82%11%58CH9100% 00 0 00 00 0 00 0 0 00 0 0 00 0 05 100% 18 1 4 1 1 8CH10 72% 0 4% 00 0 00 0 00 0 0 00 16% 004%4% 0 25 67%1%16% 12% 4% 75 4 6 351238118CH16 41% 2% 3% 19% 0 7% 21%6%0 00 0 00 0 0 00 0 0018135% 2%2% 18% 11% 24% 8% 38CH37100% 00 00 0 00 0 00 0 0 00 0 0 00 00 3 100% 18CH44100% 00 00 0 00 0 00 0 0 0 00 0 0 00 01 100% 28CH48100% 00 0 00 00 0 0 00 0 0 00 0 0 00 02 100%

PAGE 123

Table 4.DistributionofPottery Categories, continued. '"l:i l:i'tl=.;'tl'tll:i 0 '".;l:i""'"l:i'"'tl 'tl'"cE:'tl"'-E:c.;".;'tl'"'tl.;'".;l:i'"l:i='"'" '"'0"'tl.;'" o co'".;.l:l'tl""'"E:'tl.;E:""cE: E:'"'" '"E:'"E:'v",Cl.'"E: u '"'"'tl 0 ""-".=E:"01 Site 'tl'"""co cocoE--'"'tlIIl'S ]'"co co ""'"'0'0=l:i U ""5'"'"'" 0 '" 0 ""Oll'" 0=0 5 0 'tl Number ";'Cl. U .l:l 0 '":;:EljIIl:iOll" "'" '"E-0 .l:l_'"II II'tlcoQj'"co" "'tlCl.-.c 0 co5 0 ]0=0l:i2l'Sco'"'"col:i'" c 0 E--Qj5 0 coc:: 0 Cl.ccoQj'"til=E-0 '"'"="'" U0 Cl.=0Cl."'"" 1 1 8LL250%0 50% 0000000000000 000 0 0245%55%1932 8LL3379%13%8%0000000000000 000 002486%10%3%1312 1 18LL4472%6%11%00000000000006%06%0 0 1876%6%2%10%6%1 9158LL55 04%036%0000000000060%0 00 00254%14%82%6312126 316m1"8LL8161%11.5% 011.5%6%0000003%006%1%000 0010364%11%10%6%2%7%1%Total 2828 547 278702912381137491731447423 48 13 4005 'SPCB sherdwithpossible incising.b2 possible Ft.DrumIncised; 2plainsherdswithpunctatedorticked lips (see Figure 12); Isherdwithunidentified possibletexturedsurface;andIsherdwithundiagnostic,perhapsunintentional incising.'WeedenIsland Incised (see Figure12).dlworkedBelle Glade Plainsherd(see FigureII)."I Crooked River ComplicatedStampedand3 unidentified incisedsherds(see FigureII).IRuskin LinearPunctated(see Figure11).slcheckstampedand Iplainpodalbase fragment (see FigureII).h2 Glades TooledonSPCB paste. SafetyHarborIncisedandIstraphandlefragment (see Figure9).IUnidentified incisedandpunctatedsherd(see Figure9).kl Safety harbor Incisedand1 unidentifiedpunctatedsherd.il Goodland Red.m2withticked lips. "Pinellas Incised?

PAGE 124

116proximately6mbelowsurface) indicatesgeneralin accessibility.Sandyclaysmay,however,beaccessibleinexposuresalongmuchoftheCaloosahatcheeRiver, asindicatedbytheGladesandHendrycountyex posures. TheTamiamiFormationalsounderliesnearlyallofCollierCountyandisexposedatornearsurfaceinsouthernandeasternpartsofthecounty(McCoy 1962:12). The flattopographyofthestudyarea(Cooke 1939;ParkerandCooke 1944) issuchthataccess to geologi cal clay resources is restricted toexposuresofferedbyriverandstreamcutsorotherdrainagefeatures.PrincipaldrainageincludestheMyakkaandPeace rivers, ShellandHornecreeks inCharlotteCounty,andtheCaloosahatcheeRiveranditstributariesinLeeCounty(Dubar1958:19-22). Rivers, creeks,andstreamsin CollierCountyarerestrictedto the coastalmargin(Leighty et al. 1954:5-6; McCoy 1962:8).SoilsI alsoconsultedSoilConservationService (USDA) soilsurveysforCharlotte(Henderson1984a), Lee(Henderson1984b),andCollier (Leighty et al. 1954) counties todocumentthenatureanddistributionofpotentialceramic resources inthestudyarea.Modernlandusepatternsmayhavealteredthe characteristics of the soils,butthe soilsurveydescriptionsmayoffersomeusefulindicationsof thecurrentorrecent distributionofpotentialclayeysoils. The soils inthestudyareawereformedmainlyfromsandyandclayeymarinesediments(Henderson1984a:99,1984b:99).Instudiesoftheceramicenvironment,potentiallyusableclay resourcesaredefinedasmoderatelyfine-texturedorloamysoils (clay loam,sandyclayloam,silty clay loam)andfine-texturedorclayeysoils(sandyclays,siltyclay, clay) (USDA 1951:213).Loamysubsoilsinthestudyarearangeintexturefromloamysandto finesandyloamtosandyclayloamaccordingtodescriptionsofUSDAtexture(Table 14inHenderson1984a:150-156, 1984b:150-156; Table 2inLeightyetal. 1954:14-15).Sandyclayloamtexture(SCL) is theonlycategorylikely torepresentpotentialclay resourceswithinthisstudyarea.Mucksoilsarealsoofinterestbecausemuckdepositshavebeenpostulatedas sources forsomeFloridapottery(seeEspenshade1983).CharlotteandLeeCounties.Twenty-sevenofthe63soil typesdescribedfor LeeandCharlottecountieshaveloamysubsoilsthatincludeSCL texturesand/orexhibitgreaterthan10%ofclay-sized particles (Tables14,15,and18inHenderson1984a:150-161, 167-172). The soilsurveytablesindicatethattheSCLhorizonsaverageabout50cmin thicknessandoccurprimarilybelow0.5to1.25 mbelowgroundsurface. Textdescriptions(Henderson1984a:15-48, 1984b:13-47) in dicate,however,thatonly11will consistently exhibit SCL subsoils.Theseelevensoils(summarizedinTable5)accountfor 12.1 %and23.6% ofthelandareain LeeandCharlottecounties, respectively,andallbutonearecomponentsofthepredominantsoil associa tionsinthese counties.Culture and Environment in the Domainofthe CalusaSoil associationswithSCL subsoilsarerestricted to onesdescribedforthe"FlatwoodsandSloughs"and"Swamps,Marshes,andSloughs"physiographiczones(Henderson1984a:5-11, 1984b:5-9).OneLeeCountyFlatwoodsandSloughs association exhibits a SCL subsoil. ThePineda-Boca-Wabasso associationmakesup15.9%ofthelandareaandoccursmostfrequentlyinthenorthandnortheasternpartofthecounty(Figure 3).FourCharlotteCountyFlatwoodsandSloughs associations exhibit SCL subsoils:Hallandale-Wabasso-Boca, Wabasso-Pineda-Boca,HeightsFelda-Oldsmar,andWabasso-Isles-Boca. These asso ciationscomprise1.5%, 28.0%, 2.2%,and3.9%, respec tively,ofthelandareainCharlotteCounty.The firstthreeassociations occurinthe east-centralpartofthecounty,andthelastoccursinthenorthwesternpartof thecounty(Figure4).The "Swamps,Marshes,andSloughs" soil associa tionswitha SCL subsoilincludetheIsles-Boca-PompanoassociationinsoutheasternLeeCounty;andtheChobee-Felda-PinedaassociationwhichoccursinsloughsanddepressionsthroughoutCharlotteCounty. These associationsmakeuponly8.5%and3.0% ofthelandareainLeeandCharlottecounties,respective ly.Fromexaminationofsoilsurveyinformationfor these associations itappearsthatclayresourceopportunities,whenpresent,willbecharacterizedbyasandyclayloamtexture,with10-30% clay-sizedparticlesandwillberestrictedprimarilytothinstratabelow0.5-1.0 mbelowgroundsurface. Inaddition,kaolinite willgenerallybethepredominantmineralintheclay-sized fine fractionofthesandyclayloamhorizons(Henderson1984a:167-172).InLeeCounty,suchsoilsarelimitedinoccurrenceandwillbefoundmostfrequentlyinthenorth,northeastern,andsoutheasternpartsofthecounty.CharlotteCountyhasmuchlargerareaswithpotentialsandyclayloamresourcesincludinglargeareasinthecentral-easternpartof thecountyextendingtheentirelengthof thecounty.SevenmucksoilsarealsodescribedforCharlotteandLee counties. DescriptionsoftheseareincludedinTable6.ThreearedescribedasSwamp,Marshes,andSloughs soil types,andfouraresoilsoftheTidalareasandBarrierIslands(Henderson1984a:9-13, 1984b:8-12).Thethreemucksoils intheSwampsandSloughsmakeup0.1 %and1.7%ofthelandareain LeeandCharlottecounties,respectively,butonlyone(Chobee Muck) islistedashavingasandyclayloamsubsoil (Table 6).Mucksoilsinthe TidalareasandBarrierIslandsaccountfor 6.2%and5.8% of thelandareainLeeandCharlottecounties, respectively.Onlyoneofthefour(Isles Muck) is listedassometimeshavingasandyclayloamsubsoilbutthewrittendescriptiondoesnotspecifysandyclayloamsubsoiltexture(Henderson1984a:40; 1984b:37-38). The claymineralogyofthe fine fractionofmucksoils is characterizedgenerallybytheabundanceofmontmorillonite (Table 18inHenderson1984a:167-172). Writtenandtabledescriptionsindicate,however,thatmuck

PAGE 125

Pottery Variability117GulfofMexicoCharlotte County LEE COUNTY10 km Pineda-Boca-Wabasso soil association Isles-Boca-Pompano soil association Collier County Z'C:::J o() i::'"0C CD I Figure3.DistributionofsoilassociationsinLeeCountyandlocationofsampleclaycollectionsites.GulfofMexicoLeeCounty Z' C :::J ooIf) Q)"0ro(5 CHARLOTIE COUNTY10 km Wabasso-Pineda-Boca soil association Hallandale-Wabasso-Boca soil association [,){-}l Heights-Felda-Oldsmar soil association Wabasso-Isles-Boca soil association Chobee-Felda.Pineda soil associationFigure4.DistributionofsoilassociationsinCharlotteCountyandlocation oJ sampleclaycollectionsites.

PAGE 126

118CultureandEnvironment intheDomainoftheCalusaTable5.SoilswithSandyClayLoamSubsoilsofLeeandCharlotteCounties. '"...'"8'"...'"."o..c::= o 8ol>s::>.6 0 '" IJX IJ='"82N SoilSymbol '"s::.."'-'".. 0 :as::8c="'1::f-<0'"'"'0 Soil Name ..c::'"IJ oU '"UlUN o0 ..(..c::..::E'"..% AcreageIJ-"I::;>:.:001""..0"'''I::Ule-='" 0=;>OUl;> Ul FLATWOODS AND SLOUGHS120-200.15.8 72.1 18.81.02.212781Felda Fine Sand 20-280.34.6 70.5 21.91.11.60.9 LeeCounty0-22FS1-3 28-56 0.2 5.0 69.719.01.64.5 1.7 CharlotteCounty22-38SL,FSL,SCL13-30 56-96 0.4 3.8 53.824.210.37.5 38-80 S,FS,151-1096-1520.14.8 65.618.62.9 8.0 37 9 54 152-168 0.2 4.2 65.2 20.0 2.6 7.8 168-203 0.49.166.5 15.71.76.67442235 0-15 3.8 37.6 44.513.00.7 0.4 01288 Wabasso Sand 0-24 S<515-43 2.9 31.1 48.615.61.40.4 2.0 LeeCounty24-28 S, FS,LS1-1243-61 2.7 31.8 48.315.51.40.310.7 CharlotteCounty28-62SL,FSL,SCL12-30 61-71 2.9 27.7 48.0 16.82.52.101655 62-80 S, FS,LS2-1271-91 2.2 24.8 31.013.23.0 25.8 0 501691-157 3.4 28.2 33.611.62.2 21.0 157-203 0.5 8.5 68.1 8.51.413.0 0459450-8SL3-12 Copeland Sandy8-20SL,FSL,SCL 15-30 Loam 20-28 Marl 10-181.3LeeCounty28 Weathered 0.5 CharlotteCountyBedrock 50 0-34 S1-3OldsmarFine Sand 34-49FS1-3 0.8 LeeCounty49-60SL,FSL,SCL15-350.1CharlotteCounty60UnweatheredBedrock630-17FS1-3 Malabar Fine Sand 17-37 S, FS1-51.2LeeCounty37-49 S, FS1-36.1CharlotteCounty49-68FSL,SCL 15-30 68-80 S, FS1-3 SWAMPS, MARSHES,ANDSLOUGHS 780-4MuckChobeeMuck4-16LFS0-15<0.1LeeCounty16-53SL,FSL, SCL 10-301.0CharlotteCounty53-80FS,LS0-1538 0-6FS1-2Isles Fine Sand 6-33S,FS2-3<0.1Lee County 33-51 FSL,SCL 15-23 0.6 Charlotte Cou nty 51UnweatheredBedrock490-35FS1-3Felda Fine Sand 35-52SL,FSL,SCL13-30 2.4 LeeCounty2.4 CharlotteCounty52-80 S, FS,151-10740-3FS1-2Boca Fine Sand 3-33FS1-21.6LeeCounty33-38FSL,SCL 15-25 0.2 CharlotteCounty38UnweatheredBedrock 77 0-27FS1-3Pineda Fine Sand 27-52FSL,SCL 17-35 1.6 LeeCounty52Unweathered0.2 CharlotteCountyBedrocksoilsgenerallywillnotcontainenoughclay-sizedparticlestobeconsideredapotentiallyusableclayresource.Collier County.ThesoilsinCollierCounty(Figure5)aredividedintodeepsands,shallowsandsoverlimestoneandmarl,marlsandsandymarls, mixed soils,and"miscellaneouslandtypes" (Leighty et al. 1954:12-15).Ofthese soils,onlytheshallowsandsandsandymarlshaveloamysubsoilswithfinesandyclayloamtextures(Table7).Sandyclayloamsubsoils

PAGE 127

Pottery VariabilityTable6.MuckSoilsofLeeandCharlotteCounties.119 "e "I.."."o..c::" o ed.<=" SoilSymbol ....'"x....'".e"NN "<=",,0 0:....;;III!-<0III"."i:'Vi....e-aa SoilName ..c::"= oU "UN U i:'::s" o0 0 % Acreage -'"0",'t>::s=001"'t"""0"'"0'"> '";:J 150-5 Muck 0-13 Estero Muck 5-13 FS,S1-613-211.920.5 58.7 12.9 0 6.06117231.2 LeeCounty13-33 FS,S 2-7 21-33 2.6 20.1 60.5 12.2 2.8 1.8 1.2 Charlotte County33-55 FS,S 2-7 33-49 2.3 21.6 61.7 11.0 2.5 0.9 55-80 FS,S1-449-84 2.4 19.4 60.6 11.2 5.7 0.7 84-99 2.2 18.9 62.8 10.7 3.0 2.4141832 99-109 2.6 19.8 62.1 10.0 3.1 2.4 109-1402.319.965.19.7 1.8 1.2 41539160-9 MFS1-30-10 PeckishMuckyFine 9-36 S,FS1-510-15 Sand 36-48 S,FS 2-8 15-23 2.4 LeeCounty48-61 S,FS1-423-31 2.2 17.8 65.59.51.13.9 481123 2.0 Charlotte County31-642.117.4 65.7 10.3 1.8 2.7 64-91 2.0 18.4 66.2 9.4 1.6 2.4 91-1091.916.4 66.89.10.15.7 01750 109-1222.118.7 66.9 7.9 0.8 3.6 122-1551.612.7 72.8 9.8 1.71.4 01855190-29 Muck 0-2 GatorMuck29-34FS2-70.1LeeCounty34-80FS-FSL3-12 0.5CharlotteCounty20 0-53Muck0-20TerraCeiaMuck53-80 S,FS, LS2-10 20-89 <0.1 LeeCounty89-112 0.2CharlotteCounty112-135 135-142 1.4 10.2 57.3 9.4 19.1 2.776222142-150 1.2 12.9 70.8 11.6 2.3 1.2 150-1601.112.4 61.5 11.4 4.6 9.09028 160-180 1.0 11.0 55.1 10.7 5.9 16.3 180-203 0.9 9.9 56.2 13.9 5.5 13.69208 23 0-12Muck0-1 0-5 Wulfert Muck 12-36Muck1-5 5-30 2.1 LeeCounty36-80 S, FS2-5 30-91 1.5CharlotteCounty91-152 0.5 4.4 79.3 5.5 8.1 2.273151256 0-5Muck0-1 0-10 IslesMuck5-11 S, FS,MFS1-210-25 3.3 15.8 61.4 16.3 0.2 3.0 98 75 0.5 LeeCounty11-39 S, FS2-4 25-96 2.9 14.5 62.0 13.2 3.6 3.81.1CharlotteCounty39-47 FSL, SCL 15-22 96-117 3.0 12.1 54.3 12.4 3.0 15.22538 8 47UnweatheredBedrock 78 0-4MuckChobeeMuck4-16LFS0-15 <0.1 LeeCounty16-53 SL, FSL,SCL 10-30 1.0 Charlotte County53-80 FS, LS0-15occurbetween25-50cmbelowsurfaceorbetween50-100cmbelowsurface.Theapplicableshallowsandysoils (Table7)makeup7.5% of thelandareaofthecounty. The soilmapsshowthatsuchsubsoilsmaybefoundthroughoutthecountybutin isolatedpatchesassociatedwithdrainagefeatures (sloughs,marshes)(Leighty et al. 1954). Somearerestricted totheFlatlandsphysiographicareainthenorthwesttonortheastpartofthecounty,whileothersoccurmainlyinthe BigCypressSwampphysiographicarea (Figure5).Muckysoilsarelistedas"miscellaneouslandtypes" (see Table7).Miscellaneouslandtypesoccurprimari-lyintheBigCypressSwampandSouthwestCoast/TenThousandIslandphysiographicregions (Leightyetal. 1954). Dataonparticle sizeandproportionarenotavailableforevaluatingtheirsuitability aspossible ceramic resources,however.Sample Clay AnalysesClayeysoilsamplesfromthesouthwestFloridaregionwereexaminedtogainafirst-handunderstandingofthenatureandvariabilityofsomeofthearea'sclay resources,andforcomparisonwiththesouthwestFloridapotterysamples.Ilookedatphysicalpropertiessuchas particle sizeandproportion,

PAGE 128

120NaplesCulture and Environment in the Domainofthe Calusa :::J o ()"0iii:: o Z'C:::J o () Ql "0IIIo GulfofMexico10kmCOLLIER COUNTY Monroe County o Flatlands W Big Cypress Swamp Southwest Coast and Ten Thousand Islands Sloughs and MarshesFigure5.PhysiographicregionsinCollierCountyandlocationofsampleclaycollectionsites(numbers1-8representsoilmapunitnumbersspecifiedbyLeightyetal. 1954). texture, plasticity, workability,shrinkage,andfiring behavior.Knowinghowthesepropertiesvarypermits identificationofdifficultiesorconstraintsthatcouldaffectpotterymanufacture.AllanalyseswerecarriedoutintheFloridaMuseumofNaturalHistoryCeramicTechnologyLaboratory.Description of Samples.Sixteensoil/sedimentsamplesareconsideredinthisinvestigation.WilliamMarquardtandI collectedelevenLeeCountysamplesandoneCharlotteCountysample,andJohn Beriault collected five CollierCountysamples.We collected thesesamplesthroughbucketaugertestingand/orfromexposuresresultingfromconstruction, excava tion,orcreeksorstreams. The collectedsampleswereassignednumberswithaprefixconsisting oftheabbreviatedcountyname(e.g.,LLl,the firstsamplecol lected from Lee County).TheLeeCountysamplingareaswerechosen fortheirproximitytoparticulararchaeological sitesortosampleparticularsoil seriesandreportedclay deposits. Sampleswerecollectediftheyappearedto exhibitsomedegreeofplasticity. LeeCountysampleswerecollectedfromUseppaIs-land,CayoCosta, JosslynIsland,LittlePineIsland,PineIsland,andinlandLeeCountyalongHickeyCreek.CharlotteCountyisrepresentedbya singlesamplecollected from Catfish Creek.inCharlotteHarbor,andnorthwesternCollierCountyisrepresentedbyfivesamples.Beriault collectedmostoftheCollierCountysamplesfrom spoil piles, sotheoriginalcon textofthesesamplesissomewhatquestionable.Informationpertainingtocontextofcollection,form, thicknessandextentofthedeposits,charac teristicsinsitu(e.g.,sandinessorstickiness)andotherdetailswererecordedforeachsample(AppendixD).Figures 3,4,and5showtheapproximatecollection sites forthesesamples.Mostofthesamplescollectedcanberelatedtoparticularsoiltypes(especiallymuckysoils)orgeological formations; this issummarizedinTable8.Particle Size/proportion, TextureandAplastic Composi tion.Portions ofeachsampleweresieved formeasurementof particlesizeandproportionoftheaplastic constituents. Sampleswerefirstair-dried(the CollierCountysampleswerealreadydrywhensentto the

PAGE 129

PotteryVariabilityTable7.CollierCountySoilswithSandyClayLoamSubsoilsandMuckSoils. '" SHALLOW SANDS AND MARLS Flatlands Physiographic Area Copeland Fine Sand(Cc)0-16FS0.2%(1 a,2a ,4, S)16-22FSCL22+LimestoneorMarl Felda Fine Sand (Fa) 0-18FS0.7%(1 a,2a ,4, 5) 18-30 FSCL 30-48 FSCL with limestone concretions Suniland Fine Sand(Sc)0-10FS1.9%(1 a,2a ,3, 4)10-18FS18-22FSL22-36 FSCL 36-48+ FSCLwithlimestone concretions Big CypressSwampPhysiographic Area Broward Fine Sand(Bc)0-10FS2.1% (3,4a 5)6-10 FSCL 12-24 LimestoneMatmonLoamy Fine Sand (Mc) 0-8LFS0.8% (3, 4a )8-14 FSCL 14+ LimestoneorMarl Tucker Marl (Tb) 0-16CLMarl0.7% (1,2, 4a Sa)16+Limestone All Physiographic Areas Keri Fine Sand (Kb) 0-12FS1.8% (1,2,3,4,7, 8)12-16FS16-26CLMarl26-48FS48+ Limestone MISCELLANEOUS LANDTYPESBig CypressSwampPhysiographic Area CypressSwamp(Cf)0-3MuckyFSto Peaty18.6% 0,2,3,4,5,6,7,8) Muck to Peat 3+FSFlatlands Physiographic Area Fresh WaterMarsh(Fb)0-12FS4.1%(la, 2a ,3,4,5,6) 15-30FS36-48 Calcereous Clayey Marl or LimestoneSouthwestCoastandTen Thousand Islands MangroveSwamp(Mb)upperPeat 6.4% (3,7,8) lowerFSorMarl or Limestone Tidal Marsh (Ta)upperFSto Muck or Peat 2.8% (3,7,8) lower Sandsaindicates the mapunitnumberor numbers in which these soil typesappearto occur most frequently (see Figure 5).lab)andcrushedwitha mallet. Thesievingprocessinvolvedsoaking100 gquantitiesofdrycrushedsamplesinwaterfor a fewdays,thenwashingeachthroughagraduatedseries of U.S.A.StandardTesting121Sieves.Oncedried,thecapturedsedimentswereweighedandbagged.Table 9 liststheresultsof siev ing.The16samplesrepresentfourtexturalclassesonthebasisoftherelativeproportionsof clay, silt,andsandparticlesizes, asdefinedintheSoilSurveyManual(USDA 1951:209).Thetexturalcategoriesconsistofsandyloam(n=l);silttosiltyloam(n=8);siltyclaytosiltyloam(n=2);andclaytosiltyclay(n=5).ThepredominantWentworthsizecategory(intermsof relativeweightofthesievedsediments;see Table 9)ineachtexturalcategoriesincludes:granule(#5) inthesandyloamsample;fine(#120)inthesilttosiltyloamsamples;andsilttoclay(i.e.,the"fine fraction",ortheportionofsedimentsthatpassedthroughthefinest sieve [#325])inthe siltyclayto siltyloamandclayto siltyclaysamples.Theaplasticcompositionofthe"coarse fraction" (i.e., allsedimentsexceptthosethatpassedthroughthefinest sieve [#325]) ofsoil!sedimentsampleswasdeterminedthroughmicroscopicexamination(70X) ofthesievedsediments.Aplasticcompositionis recordedin Table 10.Thesamplesarecharacterizedbyavarietyofaplasticsincludingquartz,shelland/orlimestone,plantremains,claylumps,phosphatelumps,andacicularinclusions.Theclaylumpsprobablyresultedfromlackofthoroughhydrationof thesamplespriorto sieving.Glassy-lookingacicularinclusions,resemblingspongespicules,wererareto occasionalconstituentsofnineof the sixteensamples(Table 10) inthesedimentscapturedbyvery fine(#170and#230)andsilt (#325) sieves.Usingapetrographicmicroscope,mostof theacicularinclusionswereidentifiedas a carbonatemineral,probablyfragmentedaragonite(listed as Ca spiculesinTable 10).Otheracicular inclusionswerecomposedofsilicaandprobablyrepresentspongespicules(listed asSispiculesinTable 10).Plasticity and Handling Characteristics.Plasticityisthepropertyof claysthatallowsthemtobeformedunderpressurewhenwaterisaddedandtoretainformwhenpressureisrelaxedandwaterisevaporated(Rice 1987:58).Observationsofplasticityandhandlingcharacteristicsweresubjectivelynotedforeightofthesixteensamples.SevenLeeCountysamplesandoneCollierCountysamplewereexcludedfromtheseobservationsdueto excessivequantitiesofsiltandcoarseraplastics; thesesamplesdidnotpossess sufficientplasticityto form testbarsforfurtheranalysis.Theeightremainingsamplesrangedfrom"moderatelyplastic"orsomewhat"lean"or"short" (n=4) to"veryplastic"or"fat" (n=4) (Table 11). The"moderatelyplastic to lean"samplesincludethesiltyclay to siltyloamsamplesandonewithclayto siltyclaytexture.Inthesesamplescracksformedeasilywhenworkingtheclaypriortoformationoftestbars,butnotseverelyenoughtoprecludesuccessfulformationoftestbars.All "very plastic"sampleshaveclay to silty clay tex tures.Fewercracksformedinthesesamplesduring

PAGE 130

122CultureandEnvironment in the Domainofthe CalusaTable8.RelationshipbetweenClay/SoilSamplesandSoilTypes.SampleLocation/County SoilNamelSoil Association SoilSurveyTextureTexturalNumber Catejtorya LLl Useppa Island Kessonfine sandsandyloam I LeeCountyWulfert/Kesson/CaptivaLL2UseppaIsland St. Augustinesandsilty loam 2 Lee CountyWulfert/Kesson/CaptivaLL3Useppa Island Wulfert muck silt to silty loam 2 LeeCountyWulfert/Kesson/CaptivaLL4Cayo Costa Wulfert muck silt to silty loam 2 Lee CountyCanaveral/Captiva/KessonLL5Josslyn Island Wulfertmucksilty loam 2 LeeCountyWulfert/Kesson/CaptivaLL6Josslyn Island Wulfertmucksilty clay loam to silty loam 3 LeeCountyWulfert/Kesson/CaptivaLL7Little Pine Island Estero muck silty loam 2 LeeCountyPeckish/Estero/IslesLL8Pine Island Immokaleesandsilt 2 Lee CountyImmokalee/MyakkaLL9Hickey Creek Tamiami Formation clay to silty clay 4 inland LeeCountyLLlO Hickey Creek Tamiami Formation clay 4 inland LeeCountyCHICa tfish Creek "lime mud" silty loam 2 CharlotteHarborCRICollierCountyCaloosahatchee Marl? clay 4 CR2 CollierCountyunknownclay 4 CR3 CollierCountyFortThompsonFormation?clay 4 CR4 CollierCountyCaloosahatchee Marl? silty clay 3CRSCollierCountyMangroveSwampsoil silty loam 2 "Textural Categories: I=sandyloam 2=silt to silty loam 3=silty clayto silty loam 4=clay to sil ty clayworkingthantheprevioussamples,meaningthatless effortorcarewouldberequiredinformingpotteryvessels from thesesamplesthanwiththeprevioussamples. TestbarsweremadedirectlyfromundriedinlandLeeCountysampleswithminimalprocessing. Theyweremadebyrolling a ballofclay into ashortropeandpressingit into a6xIx 3;8 inchplastictemplateormold.Thecompletelydriedsamplesof these clays (usedinsieving for particle sizedata)becamerockhardandwouldrequiremucheffort tocrushfineenoughto achieveevenpasteconsistencyinpastepreparation.Largefossil, limestone,andphosphateinclusionswerepickedoutbyhandfromLL9to even the consistency ofthepastepriortoformationof test bars.Inaddition,itwasnecessarytoair-drythissamplefor a fewdaysbecauseits insituconditionwastoowettobeworkable. Conversely, IhadtoaddsomewatertoLLIOtoreducestiffnessandincreaseworkability. Occasionallargeshellsorrootswerehandpickedfromtheothersamplespriorto working.SampleCHI,a silt to siltyloamsample,wassubjected tomoreextensive processing. Thissampleappearedtobeveryplasticandfine-textured in situ,butproveddifficult tosamplewithoutalso collecting thesurroundingsiltandshell. I believethatthissamplerepresents"limemud,"anaturalaccumulationof sedimentsinshallowwater,derivedfrom thegrowthofalgae. Thissamplewaslevigated toremoveexcessivequantitiesofshellsandfinequartzsandandtoapproximatewhatmaybeconsidereda cleanoruncontaminatedsample.Levigationinvolvesmixingthesamplewithwaterandallowingthecoarserparticles towashandsettleoutof the finersuspension.Excesswaterwasdecantedoff this finer fractionanda testbarwasmoldedwhensufficientwaterwasremoved.Nearly80%bydryweightofthematerialwasremoved.TheCollierCountysamples,whichwerealreadydrywhensenttothelab,werecrushedwitha malletandsievedthrougha #25 sieve (coarseparticlesize,accordingto theWentworthScale) toeliminatecoarseandlargerparticlesandto achieve a fairlyuniformparticle size.Twosamples(CRIandCR3)wererockhardandrequiredmoreeffort tocrushthantheothersamples.Itis likelythatthewet,insituconditionwouldrequireless effortinpastepreparationthandriedsamples. Alldriedsampleswerepreparedformakingtestbarsbyaddingwatertotwohundred-gramquantitiesofeachsample.Waterwasaddeduntilplastic,workable masseswereachieved. Eachsamplewasthenagedfor fivedaysinsealed plasticbagsto activateanybacteriathatmightbepresentinthesamplesbecausebacterialactiontendstoincreaseplasticity.Onesampledidhaveaveryunpleasantodorafteraging,indicatingthepresenceofbacteria,butnochangesinhandlingcharacteristicswerenotedinitoranyof the

PAGE 131

Pottery VariabilityTable9.SievingResults.123>GranuleVeryCoarseMediumFineVeryFineSiltSilt-ClayTexturalSampleCoarseCategory'Number4.0mm2.0mm1.0mm0.5mm0.25mm0.125mm0.09mm0.063mm0.045mm<0.045mm#5 #10#18#35#60 #120 #170 #230 #325 1LLl23.8g 17.5g 10.8g 7.7g 6.7g 19.9g 6.2g 0.7g0.2g 2.8g 96.3gb25% 18%11%8%7%21%6%1%<1% 3% LL2 20.0g 1.9g1.6g 6.0g 49.2g 14.7g 2.0g 0.3g 0.2g 1.5g 97.4g20%2%2%6%50%15%2%<1% <1% 2% LL3 2.7g 2.1g 1.9g 2.4g 1O.2g 49.1g 14.8g 2.8g 2.0g 6.1g 94.1g 3%2%2%3%11%52% 16% 3%2%6%LU0.8g 0.3g 0.7g 1.7g 15.8g 65.8g3.7g0.5g 1.5g 5.8g 96.6g1%<1%1%2%16%68% 4% <1%2%6% LL5 9.9g 3.9g 4.4g 5.9g 7.0g 24.1g 13.7g 2.5g 1.6g 22.5g 2 95.5g10%4%5%6%7%25% 14% 3% 2% 24% LL7 0.6gl.4g2.2g 4.3g 12.5g 46.2g1O.7g2.2g 0.7g 10.4g 91.2g1%1%2%5%14%51% 12%2%1%11%LL8 0 00LOg1.8g 75.1g 14.5g 0.3g 0 5.4g 98.1g1%2%77%15%<1% 5%CHI2.4g 5.1g 6.6g7.1g 6.3g 48.3g 13.4g 0.9gO.4g6.5g 97.0g2%5%7%7%6%50% 14%1%<1% 7% CRS 0 0.2g 3.5g 4.1g 12.2g 56.7g4.6g1.9gl.4g14.5g 99.1g <1% 4%4%12%57% 5%2%1%15%LL64.9g2.9g 2.9g 3.2g 19.1g 4.1g 13.0g 4.5g 5.9g 33.1g 93.6g 5% 3% 3%3%20%4% 14% 5%6%35% 3 CR4 0 00 0.2g 9.5g 30.6g 11.0g 6.7g 4.8g 35.3g 98.1g <1%10%31% 11%7%5% 36% LL9 7.9g 3.0g 2.1g 4.3g 8.7g 7.1g 1.7g 0.3g0.3g 63.0g 98.4g8%3%2%4%9%7%2%<1% <1% 64% LLlO 0 0.2g 0.3g 0.8g 1.6g 3.3g 2.2g 0.6gl.4g87.8g 98.2g <1% <1%1%2%3%2%1%1%89% 4 CR1 0 0.2g O.4g 0.5g 1.8g 4.1g 2.6g 1.6g 3.2g 81.0g 95.4g <1% <1%1%2%4%3%2%3%85%CR2 00 O.lgl.4g6.8g 14.0g 1.6g 0.3g0.3g 73.4g 97.9g <1%1%7%14%2%<1% <1% 75% CR3 00 0.2gO.4g0.8g 2.1g 1.9g 1.2g1.6g 88.8g 97.0g <1%<1%1%2%2%1%2%92%"Textural Categories: 1=sandyloam 2=silt to silty loam 3=silty clay to silty loam 4=clay to silty clay J>weights undersamplenumbersaretotal weights recovered after seiving.othersamples.Allsampleswerewedgedandkneadedimmediatelypriorto theformationofthe test bars.Plasticity and Drying Behavior.WaterofPlasticity is asomewhatmoreaccuratemeasureofplasticity,calculatedusingwetanddryweightsofclay testbarsortiles (Rice 1987:62). Eachbarwasweighedonadigitalbalanceimmediatelyafterbeingformedtoobtainwetweights,andthenmarkedwith10cmdistances formeasurementof LinearDryingShrinkage(Rice 1987:71).Air-dryingofthesampleswasslowandcontrolled toreduceriskofwarpingandcracking. Thewettestbarswerecoveredwithpapertowelingforthefirst fewdaysof drying, sothatdirectexposuretoairwhilethebarswereverywetwaslimited.Inaddition,barsortileswereturnedoverdailytoallowevenexposureonbothsides.Withtheseprecautions,noappreciablewarpingoccurredandnocracksformedduringdrying. Afterthetileshadair-driedthoroughly(a few weeks), theywerereweighedandthemarkeddistancesremeasured.WaterofPlasticity (WP)wascalculatedbytheformula:WPwettesttileweight dry test tile weight100dry testtileweight xWaterof Plasticityrangedfromalowof24%to ahighof60%(see Table 11). Clay to silty claysamplesgenerallyshowedthehighestvalues.LinearDryingShrinkage(%LDS)wascomputedbytheformula:

PAGE 132

124Table10.AplasticCompositionofClay/SoilSamples.TexturalSampleAplasticConstituentsCategory"Number1LUshell b ,quartzb plant, Ca spiculesLL2shell b ,quartzb plant, CaandSispicules, uid. rockLL3plant, shell,quartzb Ca spiculesLL4shell, plant,quartzb CaandSispicules 2LL5shell, plant,quartzb Ca spiculesLL7plant,quartzb shell,SispiculesLL8shell, plant,quartzb concretionsCHIshell,quartzb ,plant,Ca spiculesCRSshell, plant, limestone 7, quartzb uid. lumpsb, concretionsLL6shell, plant,quartzb Ca spicules 3 CR4quartzb plant, clay lumpsLL9fossils, limestone,phosphatelumps, plant,quartzb claylumpsLUOquartzb plant, limestone, clay lumps,phosphatelumps, fossils 4 shell b ,plantb ,quartzb CaandSiCR1spiculesCR2plant,quartzb concretions, claylumpsCR3plantb ,quartzb clay lumpsb "Textural Categories: 1=sandyloam 2=silt to silty loam 3=silty clay to silty loam 4=clay to silty clay bprimary constituent(s)%LDS=length wet-lengthdryx100length wetLinearDryingShrinkagerangedfromalowof5.2% to ahighof 14.2% (Table 11). Mostofthevaluesfellbetweenabout8%and10%.Thesampleswith%LDSvaluesof lessthan10%usuallyalsoexhibitedthe lowestWaterofPlasticitymeasurements(24%to 35%); thosesampleswith%LDSvaluesofgreaterthanorequalto10%exhibitedWPvaluesofgreaterthan43%.Firing Behavior.AftermeasurementsofWPand%LDSwererecorded,barswerecutintosmallbriquettes(approximately1by3/4inchinsize) for firing experiments. Briquetteswerefired torecordthefiringbehavioroftheclaysthroughchangesinMunsellcolorandcoring,Mohs'ScratchHardness,andrelativestrength.Inaddition,aplasticcompositionofthefiredbriquetteswasdeterminedusingabinocularmicroscope(70X magnification) forcomparisonwiththecompositionofthesievedsamplesand,later, tothatofthesouthwestFloridapotterysamples.Briquetteswerefiredatfive differenttemperaturelevels (400C,SOOoC,600C,700C,and800C)underoxidizingconditions;eachtemperaturelevelwasCulture and Environment in the Domainofthe CalusaTable11.WaterofPlasticityandLinearDryingShrinkage.SampleTextural O/OWP%LDS NumberCategory" CategoryCHI2 1 60.0 10.6, 10.0 LL6-1 3 1 44.3 10.2,9.0, -2 44.8 10.7,10.4LL9-1 4 2 49.7 14.8,14.8 -2 50.1 13.5,13.9 LUO-1 4 2 38.8 12.2,12.5-2 38.7 12.8,12.8 CR1-1 4 2 35.3 8.4, 9.2 -2 35.5 10.0,9.0 CR2-1 4 2 35.0 5.0,5.4 -2 35.3 5.3,5.3 CR3-1 4 2 43.0 9.7, 10.0 -2 43.0 9.8, 10.4 CR4-1 3 1 24.0 8.4,8.0 -2 23.9 7.5,8.4"TexturalCategories: 1=sandyloam 2=silt to silty loam 3=silty clay to silty loam 4=clay to silty claybHandling/plasticityCategories: 1=moderately plastic to "lean" or "short" 2=veryplasticor"fat"maintainedfor 15minutes.Plierswereusedtobreakthebriquettesafter firing toexposea fresh cross sec tion formeasurementofcore colorandaplastic compositionandforevaluatingchangesinrelativestrengthwithfiring. Colorchangeswithincreasingtemperatureof firingarerecordedinTable 12. Fiveofthesamplesarewhitetopalebrownor"buff"-firing (10YRand7.5YRhues)andthreearereddish-firing(5YRhues) atthe800Ctemperaturelevel. The color ofpotteryisdeterminedprimarilybytheamountoforganicmaterialsandironcompoundspresentintheclayandfiringconditions(duration,temperatureandatmosphereoffiring).Palebrowntowhitecolorscanindicatea relativelylowpercentageofironcompounds(probablylessthan3%;Shepard1976:150; Rice 1987:335). Thus,thesebuff-firing claysareprobablylowerinironcompoundsthantheredfiring samples.Othercolorantssuchas calcium carbonatemaycontributeto color of fired clays,however,bysuppressingthedevelopmentofredcolors. Calciumcarbonateis,infact,presentinmostofthesampleclays(rawandfiredbriquettesofallbutonesampleeffervescedvigorouslywhentestedwithHCI),butits effectsareusuallyevidentathigherfiringtemperatures(above 800C [Rice 1987:336]).Thesurfaceandcoreofthe800Cbriquetteofonesampleclay(CR2)changedfromredtoyellowishbrown,indicatingpossiblythecontributionofCaC03tothecolordevelopmentof thisparticularsampleclay (see Rice 1987:336). Surfacesandcoresorcross sectionsofmostofthesampleclaysturnedgraytodarkgrayafterthe400C

PAGE 133

Pottery VariabilityTable12. EffectsofIncreasingTemperatureonColor.125SampleUnfired400' C500'C600'C700'C800'CNumber Surface verydkgrayverydkgraydkgrayItbrownishgrayItbrownishgray very palebrown10YR3/110YR3/110YR4/1IOYR-2.SY6/2IOYR-2.SY6/210YR8/3LL6verydkgrayblackblack,dkgrayItbrownishgrayItbrownishgrayIt brownish grayCore 10YR3/110YR2/110YR2/1,IOYR-2.SY6/2IOYR-2.5Y6/210YR6/22.SY2/0IOYR4/1ItgraytoItoliveverydkgray,dkverydkgray,dkItbrownishgraypalebrownpink Surface graygraygraytopalebrown10YR6/37.SYR7/4SY6.5/1.5 10YR3/1,4/110YR3/1,4/110YR6/2.5LL9ItgraytoItolive olive gray,dkgray,It Itbrownishgraypalebrownpinkgraygrayishbrowntobrownishgraytotopalebrown10YR6/37.SYR7/4CoreSY6.5/1.5Itgrayishbrownpalebrown10YR6/2.5SY4/2,2.SY4/0,10YR5.5/210YR6/2.5SurfacegrayverydkgraygraywhitetoItgraypinkishwhitepin kishwhiteSY5.5/110YR3/110YRS/110YR7.5/27.SYR8/27.SYR8/2CHIblackdkgraywhitetoItgraypinkishwhitepinkishwhitegrayCoreSY5.5/110YR2/110YR4/1-10YR7.5/27.SYR8/27.SYR8/27.SYR4/0graytograyishgrayItgrayItgraywhitetoItgraywhiteto v. pale Surface brown10YRS/110YR7/210YR7/1.510YR7.5/1.5brownSY5/1-10YR8/2.52.5Y5/2CRIgraytograyishdkgray, verydkverydkgrayblack,Itgrayverydkgray,whiteto It gray, browngray10YR3/1SY2.5/1,whitetoItgraywhiteto v.paleCoreSY5/1-10YR4/1,10YR7/1.52.SY3/0,brown2.SY5/22.SY3/010YR7.5/1.5SY7.5/1,IOYR8/2.5ItbrownishgrayItbrownishgraypaleyellowtoItpaleyellowverypalebrownvery palebrownSurface 10YR6/21OYR-2.SY6/2yellowishbrown2.SY7/4IOYR7/410YR7/3.52.SY6.5/3CR4ItbrownishgrayItbrownishgraypaleyellowtoItpale yellowverypaIebrownverypalebrownCore 10YR6/210YR5.5/2,6/2yellowishbrown2.SY7/410YR7/410YR7/3.52.SY6.5/3paleyellowtoverydkgray,browntodkyellowish redreddishyellowtoreddishyellowyellow blackbrown,dkbrownSYR5/7yellowish redSYR6.5/7Surface2.SY7/510YR3/1,tobrownSYR5.5/610YR2/110YR3/3,7.SYR4/4LUOpaleyellowtobrowntodkdkgrayishbrown-dkgrayishreddishyellowto reddishyellowyellowbrown,strongbrowntodkbrown,yellowish yellowish redSYR6.5/72.SY7/5brownbrown,reddishredSYR5.5/6Core 10YR4/3,yellow to10YR4/2,7.SYRS/6yellowish redSYR5/710-7.SYR4/2,SYR5.5/6Ityellowish red red redreddishbrowntobrownto Surface brownto olive2.SYR5/62.SYR5/72.SYR5/7redyellowishbrownyellow2.SYR5/510YR5.5/3.52.SY6/5CR2Ityellowishreddishbrown,red redreddishbrowntoreddishbrownCorebrowntoolive red2.SYR5/72.SYR5/7redSYR5/3.5yellowSYR4/4,2.SYRS/S2.SY6/52.SYR5/6grayishbrowndkbrownto yellowish red redd ishyellowto yellowish redreddishyellow2.SY5/2brown,verydkSYR5/6yellowish redSYR6/7SYR6.5/7SurfacegraySYR5.5/77.SYR4/4,IOYR3/1CR3grayishbrownverydkgray verydkgrayblack,reddishverydarkgray,Ityellowish2.SY5/2IOYR3/110YR3/1yellowtoyellowishred,Itbrown,reddishyellowishred,yellowishbrownyellowCoreyellow2.SYR3/0,10YR6/4,2.SYR2/0,SYR617,SYR6.5/7SYR5.5/7,10YR6/410YR7/6firing (Table 12).Completeoxidizationoforganicswasapparentattemperaturesrangingfrom 500C to 700C.Twosamplesretainedsignificantamountsofdarkcoringuntillateinthefiringsequence(Table 12). Vestigesofcoringwerestillpresentafterthe800C firing. Thisindicatesthatorganicmaterialswerenotcompletelyoxidizedbythe800Cfiringandmaymeanthatthetwosamplesarehigherinorganicmaterialsthantheothersamples.Alternatively,theremaybecharacteristicsofthepaste(composition

PAGE 134

126and/ortexture)suchthatthesesampleswereslowerto giveuporganicsinfiringthantheothersamples(seediscussionin Rice 1987:334-335).Theeffectsoffiringonthe relativestrengthofthesampleswerealsonotedbymakingsubjective observationsoftherelative ability to resistbreakage(howharditwastobreakthebriquetteswithpliers). Inaddition,Mohs'MineralHardnessScalewasusedtomeasurescratchhardnessoffiredbriquettes.Mohs'Hardnesswasconsideredtoevaluatethe effectsoffiringonrelativestrengthindirectlyintermsofhowwell a surface resists abrasion. Theseobservationsarerecordedin Table 13. Thesedatawereinterpretedtosuggestthatthreesamples(theextremelyweakandweaksamples(LL6,CHI,CR2)wouldnothavemadeserviceablepotterycontainersatanytemperatureoffiring. Silt-sizedparticlesprobablyconstitutethelargestproportionofsilt to clay-sized particlesinthefine fraction. Vesselsmadefrom these sourceswouldsurelyhavecollapsedwithminimalhandling,anditisdoubtfulthattheycouldevenhavesurvivedanopenfiring. I believethattheothersamplescouldhavemadeserviceablepotterycontainers. TheamountofquartzsandinCR4 is excessive,however,andcouldpotentiallyshortenthe use-life ofpotteryvesselsmadeusingthis source.Potterymadefromtheremainingsampleclays (LL9, LLlO,CRl,andCR3)wouldhavemademoredurablecontainers.Infact, severalexperimentalpotsweremadefromtheHickeyCreeksource(LLlO)andhavebeenusedsuccessfullyincookingandstorageac tivities (Robin Brown,personalcommunication,1990). Aplasticcompositionofthesampleclayswasalsodetermined(binocularmicroscope, 70X) fromthefiredCulture and Environment in the Domainofthe Calusabriquettes(800C) forpurposesofcomparisonwiththepotterysamples.Themagnificationandmethodsforratingsizeandabundancewerethesameasthosedescribedforcharacterizingthepottery(see p. 99). Theseobservationsarerecordedin Table 14.PetrographicexaminationofathinsectionrepresentingLLlO (600Cbriquette)alsorevealedthepresenceofabundantsilt toveryfine calcite crystalsthroughoutthe claymatrix(Table 14andAppendixB).Summaryand Conclusions: The Effective Ceramic EnvironmentThe effectiveoroperational"ceramicenvironment"isdefinedas"therangeofceramicresourcesthatwere/areprobablyrecognizedandusedbypotters,pastandpresent"(Rice 1987:314).Ethnographicstudiesoftraditionalpottery-makingindicatethatthisrangeofresourceswillmostoftenoccurwithinaradiusof 7kmof asettlement(Arnold1985:38-50). ThispreliminaryassessmentofclayresourcesfromsouthwestFlorida indicatesthattheeffective ceramicenvironmentfortheinhabitantsofCharlotteHarbor/PineIslandSoundareaarchaeological sitesmayinvolveamuchbroaderarea. The soilsurveydescriptionsindicatethatclayeysoilsorsubsoilsarenotpresentinthebarrierislands,thereforesuitableclaysourcesmaynotbeaccessibleintheimmediatevicinityofsomeofthearchaeological sites.Calcareousclays,suitableforpotterymaking,areprovidedbysomeoftheregion'scommongeological formations,inparticularthelate MioceneTamiamiFormation.InCharlotteandLee counties,Tamiamiclaysareexposedalongriversandstreams,andeasyaccess totheseclayswouldberestricted tosuchfor-Table13.FiringBehavior:RelativeStrengthandMohs'ScratchHardness.SampleMohs'ScratchHardnessNumberRelativeStrengthCommentsUnfired 400CSOOC600C 700CBOOCNochange in resistance toCHI<2<2 <2<2<2<2Extremelyweakbreakagewithfiring; crumbles to apowdereasily.Nochange in resistance toLL62<2<2 <2<2NAExtremelyweakbreakagewithfiring; crumbles to apowdereasily;BOOCbriquette disintegrated.Nochange in resistance toCR2<2 <2<2<2<2<2Veryweakbreakagewithfiring; crumbles less easilythanLL6andCHI.CR423 34 4 4 ModeratelyweakSlight increase in resistance to breakagethrough400C.LL9<344 44 4StrongSlight increase in resistance to breakagewithfiring. Slight increase in resistance to LLlO33-43-43-443-4Strongbreakagewithfiring; strongest sample. CRI344 44 4 Strong Slight increase in resistance to breakagewithfiring. CR32<3<333-43-4Strong Slight increase in resistance to breakagewithfiring.

PAGE 135

Pottery VariabilityTable14.SummaryDescriptionsofSampleClay"Paste"Characteristics.127SampleClayGeneralPaste CharacteristicsFiredColor-800'Cabundantvery fine to fine quartz; occasional to common claylumpsand"buff" colors; 7.5YR hues; pinkishwhiteCHIshell; occasional spicules;mediumto coarse paste texture;silty/sandytactual qualityLL6abundantveryfine to fine quartz;commonshellandcharred remains; "buff" colors;lOYRhues;verypale brown, rare spicules;mediumto coarse paste texture;silty/sandytactual qualitylightbrownishgraycommonfine to coarse quartz; commonmediumto coarse black "buff" colors; 7.5YR hues; pinkLL9(phosphate)lumpsand limestone/fossils; rare clay lumps;mediumpaste texture;grittytactual quality occasionalveryfine to fine quartz; raremediumto coarse quartz; "reddish" colors; 5YR hues;reddishyellow occasional black (phosphate)andwhite (limestone)lumpsandclay LLlO lumps; finepastetexture;chalky/sandytactual quality(abundantvery fineto silt-sized calcite crystals observed in thin section) CRI occasionalveryfine sized tomediumsized quartz; common shell, "buff" colors;lOYRand 5Y hues;whitetowhitishclay or limestone lumps; fine paste texture; chalky tactual qualityverypale brown;whiteto lightgraycommonfine to coarse quartz; occasional claylumpsandferruginous "reddish" colors; 5YR andlOYRhues; CR2lumpsor stains; fine paste texture; chalky tactual qualityreddishbrownandbrown to yellowishbrownCR3 occasionalveryfine to fine quartz; raremediumquartz; occasional fine "reddish" colors; 5YR andIOYRhues; toveryfine clay lumps; finepastetexture; chalky tactualqualityreddishyellowandlight yellowishbrownCR4abundantveryfine tomediumquartz;mediumto coarsepastetexture; "buff" colors;IOYRhues;verypalebrownsandytactualqualitytuitousexposures.TheTamiamiFormationisatornearthesurfaceonlyinthesouthernandeasternpartsofCollierCounty.Onthebasisofobservationsmadeinthepresentstudy,itwouldprobablyhavebeeneasier toworkwithsuchclayswhentheywerewet,straightfromtheground,ratherthanfirstdryingandprocessingthem,becausedriedsamplesbecomerockhardandrequireagreatdealoftime tocrushfineenoughto achieveevenpasteconsistency.Mucksoilsareabundantandreadilyaccessible inthebarrierislands, in theimmediatevicinityofsomeofthe archaeological sites of interest.Manyof thesoil/claysamplesthatwerecollectedrepresentmucksoils (see Table 8).Mucksoilswereofparticularinterestbecausetheyhavebeenproposedas sources forsomeFloridapottery(seeEspenshade1983).Thesoilsurveydescriptionsindicate,however,thattheclaycontentmightnotbesufficient forpottery-making.This iscorroboratedbytheplasticityandparticle size testsofcollectedsamples.Thesamplesthatwerecol lecteddocontaintoomuchsiltandclasticcarbonatematerialtomakeserviceablepotteryvessels.Mucksoils frominlandswampandsloughenvironments,whichwerenotsampledin thisstudy,shouldbeconsideredapotentialresourceforfurtherdocumentinglocations ofandvariabilityinclay resources. The soiltypesdescribedashavingsandyclayloamsubsoilsarealso locatedininlandareasofthesouthwestFlorida region. Because initialsamplingwasrestrictedprimarilytothevicinityofcertainbarrierislandarchaeological sites,noneofthe soil typeswithSCL subsoilsweresampledfor analysisinthepresentstudy.These soiltypesandothermucksoilsshouldbeconsideredas significantpotentialresources forpurposesoffurtherandmorethoroughdocumentation oftherangeof clayresourceopportunitiesavail able totheaboriginalinhabitantsofsouthwestFlorida.ORIGINOF MANUFACTURE: A PRELIMINARY ASSESSMENTTheStudyofManufacturing OriginsAtraditionalapproachtothequestionofpotterymanufacturingorigins reliesuponspatialoccurrence ofparticularceramic stylesorthe"criterionof relativeabundance"(Rice 1987:177). This criterionsuggeststhatpotterywasprobablymanufacturedinthe regionwhereitoccursingreatestfrequency.Thepresenceofsuchpotteryinotherregionsorcultureareasis explainedbytrade.Asecondandmoreprecisemethodinvolvesidentifyingactualsitesofmanufacturebylocatingartifactsorfeaturesrelatedtoceramicproduction(e.g., concentrationsofrawmaterials, toolsandequipmentusedinpotterymaking,unfiredves sels, firingwasters[Rice 1987:177 -180; Stark 1985: 167 177]). Suchevidenceisoftenarchaeologically invis ible,however,especiallywhenthescaleofproductionisatthehouseholdlevel(Rice1987:178;Stark1985:162-167). Athirdwaytostudymanufacturingoriginsisthroughphysiochemicalprovenienceorsourcingstudies(Rice 1987:181)orotherceramic

PAGE 136

128ecologically-orientedcharacterizationstudies(Rice 1987:309-329). Thesearedirectedtowardlocatingpotterysourcesthroughcomparisonsofpotteryandlo cally availablerawceramic resources.Manufacturing Origins of PotteryTraditionally,wehaveviewedthemanufacturingoriginsofpotteryfoundinSouthwestFlorida sitesonlyintermsofthecriterionofrelativeabundanceof ceramic styles. MaterialindicatorsofpotterymakingatsiteshaveapparentlynotbeenobservedorrecognizedinsouthwestFlorida sites,anduntilnow,thequestionoforiginshasneverbeenaddressedsys tematicallythroughprovenienceorcharacterizationstudies.Thecriterionofrelativeabundanceofceramic styles implicitlyequatestheboundariesforpotteryhaving"local" originswiththeboundariesofarchaeologicalcultureareasorsubareas.Inthepresentstudy,the local areaofinterestis theCaloosahatcheearea,asdefinedbyWidmer(1988).PotterythatismoreabundantintheCircum-Glades, BelleGlade,andnorthernSt. Johns areas,thecentralpeninsularGulfcoast,andelsewhere, is, therefore,consideredbydefaultto be "nonlocal"whenfoundintheCaloosahatcheearea.Productionofthelocally-madepotteryintheCaloosahatcheeareaisassumedtohavebeenatthehouseholdlevel,withproducersandconsumersgenerallycoinciding.ThatspecializedproductionhasneverbeenconsideredapossibilityforsouthwestFloridapotteryis implicitinstatementsmadebyearlyresearcherscharacterizingthepotteryofsouthernFlorida as "adequate"but"simple"intechnologyandform(Gogginn.d.;Holmes1903:127-128;Stirling1968:353).Additionalevidencefor localhouseholdproductionandconsumptionconsistsofthe factthatpotteryhasneverbeenlistedasanitemoftributeinCalusa society (GogginandSturtevant1964: 188;Marquardt1987:98)andpresumedlocal (Caloosahatchee area)potteryisnotlistedamongitemsofprehistoricinterregionalexchange(seeLuer1989:116-121).Traditionally,researchersintheCaloosahatcheeareahavepresupposeda localoriginformuchoftheundecoratedsandypastepotteryandnonlocal origins for justabouteverythingelse. The followingdiscussion issummarizedin Table 15.Theundecoratedsandypaste,orsand-temperedplainpottery(sandypasteA/B)insouthwestFlorida isassumedtohavebeenlocallymadeonthebasisofthecriterionofrelativeabundance.Infact,researchersinsouthwestFlorida(BullenandBullen 1956:8; Sears 1967:101)andadjacent BelleGlade(Sears 1982:23)andcentralpeninsularGulfcoastareas(LuerandAlmy1980:207-209) rejected theformerGladesPlainlabel inordertoeliminatetheconnotationsofnonlocal (GladesorCircum-Gladesarea)originforsandypastepotteryfromthesesubareas.BelleGladeareaorLakeOkeechobeeoriginsfor BelleGladepastepotteryarepresumedbyanumberofresearchers(LuerandAlmy1980:212;Luer1989:Culture and Environment in the Domainofthe Calusa116-121; Sears 1967:101, 1982:22;Widmer1988: 84-85).TheBelleGladeareaisdescribedasyieldingthehighestrelativepercentageofthispottery(Luer 1989: 119).Lueroffersthemostrecent, explicitstatementaboutBelleGladepotteryorigins;hesuggeststhatthispotterywasbroughtintotheCaloosahatcheeareaaspartofinterregionalexchange(Luer 1989:116-121). SPCBpaste,anewlydefinedpaste/potterycategory,wouldprobablybesubsumedunderthesandtemperedplainlabelintraditionalclassification;hence, a localoriginwouldprobablyalsobeassumed.Thesimilarityto BelleGladepasteintermsofspongespicule frequencymightarguefor BelleGladeorigins.TheoriginofchalkywarepotteryinsouthFlorida,variouslycalled Biscayneware,Okeechobeeware,andfinally, St. Johnsware,hasbeendebatedoverthe years.Goggin(1940:30) initiallysuggestedasouthFlorida origin,inthe formofsaltwatermarls, for thispottery.Muckorigins,unspecifiedasto localornonlocal source,werealsosuggestedimplicitlybyStirling (1935:389)andWilley (1949a:29-30).Untilrecently,theconsensuswasthatchalkywarepotteryfoundinsouthernFloridahadanortheastFloridaornorthernSt. Johnsorigin(Goggin 1952:78; Sears 1982:26-28).Nonlocalstatuswassupportedonthebasis of the absence of St. JohnsCheckStampeddesignsonthepresumedlocalsandypottery,andabsenceofGlades series inciseddesignsonchalkypottery(Goggin n.d.; Griffin 1988:75-76). In recentyears,thenorthernSt. Johnsoriginhasbeenchallengedbythefactthatthegeneraofspongesrepresentedbythespongespiculesinthepotterymayhaveastate-widedistribution(BorremansandShaak 1986:128). Thiscanbeinterpretedtosuggestthatsuchspiculescouldbecomeincorporatedintheclayeysedimentsinanyriverineorlacustrineenvironment(BorremansandShaak1986:128). With thispossibilityinmind,muckoriginshaveonceagainbeenproposed,this time for chalkypotteryin theIndianRiverarea(Espenshade1983).State-widedistributionofspongespicule-bearingclays impliesthepotentialofstate-widemanufactureofchalkypottery.However,untilunequivocalevidenceisfoundtosupportstate-widemanufactureofchalkypottery,thetraditionalassumptionofnorthernSt. Johns origins willprobablybeperpetuated.TampaBayorcentralpeninsularGulfcoast originsareproposedtraditionallyfor PinellasPlainandotherSafetyHarborseriespotterytypes (Willey 1949b:482; Sears 1982:26-29;Gogginn.d.).Widmer,however,suggeststhatSafetyHarborpotteryis also typicalofCalusamaterialculture(1988:86); thisimpliesthepossibilityoflocalmanufactureofthepottery.IthasalsobeensuggestedthatnotallofthelaminatedpastepotteryfoundinsouthwestFloridarepresentsthetype"Pinellas Plain." Anearly(Caloosahatchee Iperiod)andperhapslocallaminatedpaste(not Pinellas Plain)hasbeendescribedbySearsatFortCenter(Sears 1982:24-25)andbyFradkinandWidmerintheCaloosahatcheearea(Fradkin1976:54-56;Widmer1988:83-84)butwasnotobservedinthisstudy.Luerhasalsodescribedan"apparentlocal Pinellas Plain-

PAGE 137

Table 15. Traditional and Reconsidered Manufacturing OriginsofPotteryinSouthwestFlorida.Paste Category TraditionalTypeTraditional OriginConspicuousPresenceinSimilarity to Colors Calcareous Reconsidered Name Aplastics Local ResourcesofFired Clays Paste? OriginSandyPaste ASand-temperedPlain localabundantsimilarbutredderpresumedlocalquartznoSandy Paste BSand-temperedPlain SafetyHarbor types nonlocal (Tampa Bay)unknownnounknownSandyPaste Glades Tooledquartzabundantsimilarbutredder(SANDA or SANDB) localifSTP is Glades Red nonlocal (Circum-Gladesarea)(Glades Tooled only;nolocal FortDrumIncisedothersunknown)SandyPaste C Goodland PlainunknownquartzabundantunknownlocalGoodlandRed acicular shell?abundantyes Spicule A Paste Belle Glade Plain nonlocal (Lake Okeechobee)spongespiculespresentsimilarunknownnoBelle Glade RedquartzabundantSpicule B PasteSand-temperedPlain localquartzabundantsimilarbutredderandunknownspongespiculespresentmorecoringnoChalky Paste A St. Johns chalkywarespongespiculespresentnonlocal(NorthernSt. Johns)spongespiculessimilarnounknownChalky Paste B TomokawarepresentferruginouslumpspresentLaminated Paste Pinellas Plain nonlocal (Tampa Bay)quartzabundantunknownnounknownGrog-temper variable, variablegrogpresentunknownunknownLake Jackson PlainNorthFloridaquartzabundantnoLimestone-temper Pasco Plain north-centralpeninsularGulflimestoneabundantunknownvariablesomelocal,othercoastquartzabundantunknownShell-temper Pensacola Plain? nonlocal(panhandleFlorida) shellabundantunknownnounknownOrangePlain, fiber castspresentFiber-temper 1OrangeIncised, orspongespiculespresentnonlocalNorwoodnonlocal (St. Johns River)unknownno(St. Johns River) Fiber-temper 2Orange,semi-fiberfiber castspresenttempered,orNorwoodquartzabundantvariable:WeedenIsland Incisedmicaabsentnonlocal Micaceous Paste Wakulla Check nonlocal (Northwest Florida)abundantunknownno(northwestStampedquartzFlorida)Deptfordpodalbase

PAGE 138

130like ware"fromlate (post-A.D. 1000) contextsintheCaloosahatcheearea(Luer 1989:100). TraditionalassumptionsregardingtheotherpotterycategoriesincludeaGladesorCircum-Gladesarea origin for Glades Tooledpottery(Widmer1988:86)andprobablyalso Ft.DrumIncisedandGlades Red;northeast(LuerandAlmy1980:213)andnorthFlorida origins (e.g., "Lake Jackson Plain" [Willey 1949b:458 459; Scarry 1985:220-221]) forgrog-temperedpottery;central tonorthernpeninsularGulfcoast origins forlimestone-temperedPascoPlainpottery(Goggin1948:8-9; Sears 1982:26-29);panhandleoriginsforshell-temperedpottery(PensacolaPlain-Willey1949b:463); St. Johns Riveroriginsfor fiber-temperedpottery(Griffin 1945);andnorthwestFloridaorsouthwest Georgia origins forhighlymicaceouspastepottery(Bullen 1971:8; Sears 1973:33;cf.Mitchem1986: 68-69). InthepresentstudymicaceouspastepotteryconsistsofWeedenIslandIncised,WakullaCheckStamped,andaDeptfordperiodpodalbasefragment,allofwhichhavepresumednonlocal originsanyway,onthe basis of style (see Goggin n.d.; Sears 1982: 26-29).Origin of Manufacture: The PresentStudyToinvestigatemanufacturingoriginsonemustreplace "traditionalassumptions"with"noassumptions"inordertoexplorealternativeexplanationsthoroughly.Wemustconsiderthepossibilityofbroadinterregionalcomparabilityinclay resources. Thishasalreadybeensuggestedforspongespicule-bearingclays. Astate-wideoccurrenceofparticular(anddis tinctive) clay resources implies that thesamekind(s) ofpotterycan bemadeanywhere,thusmakingthe taskofdistinguishingbetweenlocalandnonlocalpotterymoredifficultandcomplicated. For example, ifpotteryfrom differentareascannotbedistinguishedonthebasis of relatively easilyandcheaplymeasuredphysicalproperties(such asgeneralaplasticcompositionandcolor),thenperhapsothercriteria,suchas physiochemicaldata,whicharemorecostly to obtain, willhaveto beconsideredforinvestigatingmanufacturingorigins.Althoughthesolutionto thequestionofbroadinterregionalcomparabilityinclay resources isbeyondthescopeofthedatainthepresentstudy,thisinvestigationdoescontributeadatabaseondistributionofclayresourcesandpotteryvariabilityinsouthwestFlorida.Inthepresentstudy,Iputasidetraditionalassumptionsregardingpotteryorigins, ifonlytemporarily,toallowforsystematicinvestigationofpotteryoriginsthroughcomparativeanalysisofpotteryandlocally availableclayresources.Thecomparisonswithlocal resourceswereconductedontwolevels. First,aplasticvariationinthepotterywascomparedinageneralwaytovariationin local resources.Onamorespecific level,physicalpropertiesofthepotterycategorieswerecomparedtophysicalpropertiesoftheclay / soilsamplesdescribedintheprevioussection. These comparisonsweredirectedtowardassessinghowmuchvariationinthepotterycouldbeexplainedbyvaria-Culture and Environment in the Domainofthe Calusationinlocal resources,andtoascertaintheexistenceoflikely "matches"betweenpastecategoriesandclaysamples.The ability toascertainsuchmatcheswithinthepresentdatasetis limited,however,becausenotallpottery/pastecategoriesweresampledfor refiringandthinsectioning,andonlyonesampleclaywasthinsectioned. Inaddition,similaritiesanddifferenceswithinandbetweenpotterycategoriesandothercon siderationsareexaminedinevaluatingthevalidityofsomeofthetraditionalpotteryorigins.General ComparisontoLocal Resources.Inceramicecologicalstudies,onegoal is toascertainwhetherornotvariationinlocallyavailablematerialscanexplainobservedvariationinpottery(Matson1965; Rice 1987:314).Thepredominantaplasticconstituentsinthepotterysamplesusedinthepresentstudyarequartzsandandspongespicules.Otherconspicuousaplastics inthepotterysamplesincludelimestone, shell,grog,plantfibers (casts),andmica.TheprecedingdescriptionoftheceramicenvironmentofsouthwestFloridashowsthatmostofthese aplasticsareabundant,atleastpresentinthestudyarea.Quartzsand,a significantconstituentinmostofthepotterycategories,isanabundantcomponentofPamlicosandswhichcovermuchofthestudyarea(Dubar1958)aswell as ofalmostanyofthepredominantsoil associations(Henderson1984aand1984b).Spongespicules,whicharepredominantconstituentsinBelle Glade, SPCB, St. Johns,andfiber-tempered(FBTl)pastecategories,andminorconstituentsinsomesandypasteandfiber-temperedpottery(FBT2), dooccurinsouthwestFlorida soils (see Table 10).Thepresenceofspongespiculesinthestudyareaisnotsurprisinginlightofthefactsthatspongespiculesarecited ascommonconstituentsofmuckysoils (Davis 1946)andthatspongesthrivein avarietyofaquatichabitats(Johnson 1945:19-29).Thus,it is likelythatspongespiculesarenaturalconstituentsofsomesouthwestFlorida clays. Alternatively,oradditionally,spiculescouldbeincidentalinclusionsinsomepotteryas theresultoftemperingwithmuckysands,orthroughpastepreparation,intermsofmiXingwithspicule-bearingwatersources. Thesepossibilitiesmayexplainthepresenceofsmallamountsofspongespicules insandypastepotteryandFBT2 fiber-temperedpottery,butnotthefrequencyofspiculesobservedinchalkypaste,Belle Glade, SPCB,andFBTlpottery.Althoughthequantityofspiculesobservedinthesedimentsamplesdoesnotapproachthatobservedintheselatterpotterycategories, thenumberoftestedsedimentsis toosmalltodismissthepossibilitythatsoils/clayswithabundantspongespiculesmayoccurinthe area. Most oftheotherconspicuousaplastics inpotterycanalso beexplainedbylocal resources. Limestoneandshellareabundantconstituentsofthegeologicalformationsandsoil typesinthestudyarea. Grog, intheformofcrushedsherdsorcrushedclayorclaylumps,is also plentiful.Spanishmossandpalmetto,postulatedtemperingagentsoffiber-temperedpottery(SimpkinsandAllard1986)arealsocommonin

PAGE 139

PotteryVariabilitythestudyarea(Wunderlin1982:128, 119). Mica isnotaconstituentofsouthwestFlorida soilsandmaybetheonlyconspicuousaplastic inthepotterythatcannotbeexplainedbyvariationinlocal resources.Broadlyconsidered,then,itisapparentthatmuchof the aplasticvariationinthepotterycanbeexplainedbyvariationinlocallyavailableresources (see Table 15). While thisdiscussionshouldnotbeconstruedas offeringpositiveproofthatmostofthepotterywaslocallymade,itshouldbeconsideredascompellingevidenceforreconsiderationandsystematic investiga tionoftraditionaloriginsformanyofthepotterycategories.ComparisontoSample Clays.Icomparedthefired colorofsampleclaybriquettesto the refired color ofpotterysamples.Thesherdswererefiredatatemperatureof800DCunderoxidizingconditionsfor aperiodof 15minutes.The 800DCbriquettes,whichwerefiredunderthesameconditionsastherefiredsherds,wereusedtoequalizethebasisforcomparison.In general, the fired colors ofthelocalsampleclayscanexplainmuchofthevariationinrefired colorsofthepottery.Thesampleclays exhibit buff firingandreddish-firingcolors (see Tables 12and14).The"buff" colorsrangefromverypalebrowntoreddishyellow(10YRand7.5YR hues),andthereddishfiring colorsrangefromreddishyellows toreddishbrowns(5YRhues;seeTable 12). Refired colors ofsandypastepotteryandtheoxidizedportionsofSPCB (see Table 2andAppendixC)pasterangefromreddishyellows/yellowishbrowntoyellowishredsandreddishbrowns(5YRtolORhues), a colorrangethatoverlapsthatofthereddish-firingclays. The yellowishredandreddishbrowncolors (lOR to 2.5YR hues) are,however,somewhat"redder"thanthe fired colorsoftheclaysamples.Theretentionofdarkcoringin SPCBpastesherdsis afeaturethatis also characteristicofthreeoftheclay samples: CR1,CR3,andLLlO. Refired colorsofBelleGladeandchalkypastesherds(Table 2andAppendixC)rangefromverypalebrowntoreddishyellow(10YRand7.5YR hues),andresemblethecolorrangeof the buff-firing clays.Potteryandsampleclayswerealsocomparedintermsofaplasticpastecomposition(Tables 14and15).Fourofthefivesampleclaysthatwerefoundto besuitableforpottery-makingarecalcareous (LL9, LLlO, CR1, CR3);rawandfiredbriquetteseffervescedstronglyinreaction to HCI.Limestoneand/orshellfragmentsareoccasionalconstituentsofthree of these clays (see Tables 10and14),buttheeffervescent reac tion to HCIinvolvedtheentirematrixofthebriquettes,notjustthecarbonateaplastics. The calcareouscompositionofoneclay(LL10)wasalsorevealedthroughpetrographicexaminationof athinsectionmadefroma firedbriquette(600DC).Abundantsilt-sized toveryfinesand-sizedcalcium carbonatecrystalswereobservedthroughouttheclay matrix.Inaddition,occasionalphosphatelumps,andoccasionalveryfine to finequartzinclusionswereobserved(seeAppendixB).Microscopicexamination131(binocular microscope, 70X)offiredbriquettesindicatesthatveryfine to finequartzsandis alsopresentinCR1andCR3. LL9 ischaracterizedbycommonfine to coarsequartzwithcommonphosphatelumpsandfossils(limestone).Thesedescriptionsaresummarizedin Table 14.Thepastecategoriesthatshowaneffervescent reac tion to HCIincludesandypasteC,whichmaycontainsomeshellfragments(n=3;GoodlandPlainandRed),limestone-tempered(n=8;PascoPlain),andshelltempered(n=l;Pensacola Plain?).Theeffervescent reaction to HCIinvolvedtheentiresherdmatrixforsandypasteCandtwolimestone-temperedsherds.Intheotherlimestone-temperedsherdsandtheshelltemperedspecimen,thereactionwasrestricted to thelimestoneorshell inclusions. Theseobservationsindicatethatcalcareous claysmayhavebeenusedtomakethesandypasteCpotteryandperhapssomeofthelimestone-temperedpottery.Non-calcareousclaysarerepresentedbytheotherlimestone-andshell-temperedsherds.Althoughnopetrographicorrefired colordataareavailableatthis time,sandypasteCandsomelimestone-temperedpotterymatch the local claysamples,atleastintermsofcalcareouscompositionandpresenceofshellandlimestonein clusions. Iconclude,atleastprovisionally,thatsandypasteCandsomelimestone-temperedpotterymayhavebeenlocallymadeintheCaloosahatcheearea (see Table 15).Theclay sourcesrepresentedbythepredominantpastecategoriesandmostoftheminoritycategoriesarethoughttohavebeennon-calcareous incomposition. This conclusion issupportedbythe factthatthesubsampleofsherdstestedwithHCl(refiring)didnoteffervesce.Inaddition,nocarbonatemineralswereobservedinthepotterythinsectionsrepresentingthepredominantpastecategories(sandypasteA/B,Belle Glade,andSPCB paste).Thesingle non-calcareoussampleclay (CR4) ischaracterizedbyabundantveryfinetomediumquartzandverypalebrownfired color (Table 14).Abundantquartzis also a characteristicofthepottery,butthequantityinthesampleclayappearstobegreaterthanthatobservedinthesandypastepotterysamples. Intermsoffired color, thissampleclay islowerinironcompoundsthanthesandypastecategories (Table 15).Althoughthiscolordifferenceprecludesthepossibilityofa "match"betweenthissampleclayandthesandypastepottery,thesampleitselfdocumentsthe existence of non-calcareous claysinthestudyareaandoffershopefor findingothermoresuitablenoncalcareousclaysinthestudyarea.Other Considerations.ComparisonsweremadebetweenGladesTooledandSand-temperedPlainsherds(sandypasteA/B)inordertoevaluatetraditional"originsofGladesTooledpottery.Ifoundthatthetwocategoriesaresimilaringeneralaplasticvariation (alsosandypasteAandB)andinobservationsmadepetrographically(seeAppendixB).Inaddition,subsamplesoftheplainandGladesTooled categoriesaresimilarinrefired colors (seeAppendixC).These

PAGE 140

132findingssupportacommonorsimilaroriginforSandtemperedPlainandGladesTooledpottery(seeTable 15)andmaycall forreconsiderationofthetraditionalCircum-GladesoriginforGladesTooledpottery.Al ternatively,thepossibilityofbroadinterregionalcomparabilityof clayresourcesmustbeinvestigated.Inconsideringtheproposedorigins forspiculatepasteandfiber-temperedpottery,certain factsmustbereemphasized.Imentionedthatthespongespiculesobservedin BelleGladeandSPCBpastesaresmallerthanthoseobservedin thechalkypotterysamples(see discussiononpp.111-112andTable 15). This dif ferencemaybe significant fordistinguishingbetweenspiculateclay sources,butcannotat this timebeconsideredasanindicatoroflocalornonlocal origin.Recallthataplasticvariationobservedinfibertemperedpotteryinthepresentstudymatchesvariationobservedinfiber-temperedpotteryfromtheupperSt. Johnsarea(see discussion, p. 113andTable 15); thisobservationmaybesignificantintermsofsupportinga nonlocaloriginforfiber-temperedpotteryfoundinsouthwestFlorida. Wemustalso consideralternativeormultipleoriginsinevaluatingthemanufacturingorigins ofothercategories.Forexample,grog-temperedandlimestone-tempered,andlaminated/Pinellaspastecategoriesmaybeheterogeneousintermsofpasteorresources.Understandingthisheterogeneityintermsof thenumberandkindsofclaysusedinmanufactureisnecessaryforconsiderationofpossiblemanufacturingorigins.Conclusions and RecommendationsThegeographicoriginoftheclaysusedformanufactureofthesouthwestFloridapotterysamplesis stillpoorlyunderstood.Preliminaryefforts toaddressthis topichavenotbeenverysuccessful. Most ofthesedimentsamplescollectedthusfar forcomparisonwiththepotteryareunsuitableforuseinpottery-makingowingto excessivequantitiesofsiltandcoarseraplastics.Inaddition,mostofthesamplesthatweresuitableforpotterymanufacturearecalcareousincomposition,whilemostofthepotterywasmadefromnon-calcareous clays. Thisinvestigationhasyieldedevidence for reconsiderationofcertaintraditionalassumptionsandtentative confirmationofothers(see Table 15). Ingeneral,muchofthe aplasticandcolorvariationinthepotterycanbeexplainedbylocal resources,butthisdoesnotconstitute definiteproofoflocalmanufacture.Directevidenceoflocalmanufactureofpresumedorsuspectedlocalpottery,intheformofmatchinglocal clays, is limited.Comparisonsto local resourcesdoindicatethatmicaceouspastepotteryfoundinthe Caloosahatchee areamayindeedbe nonlocal,whilesandypasteC ("Goodland"pottery)andpossiblysomelimestone-temperedpotterymaybelocal.Comparisonsbetweenpotterysamplesindicatethatlocal originsmightbeextendedtoincludeGladesTooledpottery,assuming,ofcourse,thatthepresumedlocal origin forSand-temperedPlainpotteryis correct.Inaddition,nonlocaloriginoffiber-temperedpotteryisCultureandEnvironment in the Domainofthe CalusasupportedonthebasisofsimilaritiesbetweenthesouthwestFloridasamplesandsherdsfromtheUpperSt. Johns area. Thetraditional,presumednonlocalstatusformanyofthepotterycategories,includingBelleGladeandSt. Johnspaste,willprobablystanduntilunequivocalevidenceoflocalmanufacturecanbedocumented.Inorderto resolvethequestionofpotteryorigins satisfactorily, anumberofavenuesofinvestigationmustbeconsidered.First,theremustbefurthercol lectionandanalysisofclayeysedimentsfromtheproject area inorderto assessmoreadequatelythenatureandvariabilityofceramic resources,andtolocatenon-calcareousclayeysedimentsforcomparisonwiththepottery.Ideally,furthereffortsshouldincludecollectionandanalysisofclayey sedimentsfromthehypotheticalnonlocal areas,suchastheBelleGladeareaandthenorthernSt. Johns. Dataonclayeyresourcesfromdifferingarchaeologicalareaswillprovidethe basis forevaluatingthe pos sibilityofbroadinterregionalsimilarityinclayresources,andhence,foreliminatingthepossibilityofmultipleoriginsofotherwiseindistinguishablepotterycategories. Acomprehensiveassessmentofpotteryoriginsmustalsoincorporatecomparativeanalysisofpotteryfrom "nonlocal"areas(i.e.,potteryfromBelleGladesites,orfrom SafetyHarborareasites,orfrom theCircum-GladesandnorthernSt. Johns areas) for comparisonwiththepotteryfoundintheCaloosahatcheearea. Barringbroadinterregionalsimilaritiesinclayresources,suchcomparisonswillsurelydisclosecriteria fordistinguishingbetweendefiniteorprobable nonlocalpotteryandpossible local copiesand,hence,evidenceforassessingthedegreetowhichthetraditionalcriterionofrelativeabundanceofceramic styles canberelieduponfordistinguishinglocal from nonlocalpotteryinsouthwestFlorida.CHRONOLOGICAL SIGNIFICANCE OF POTTERY VARIABILITYIendeavoredtodocumentchronological differencesinsouthwestFloridapotteryinorderto refine the existingpotterychronology. Theultimatesuccess of thisundertakingdependsuponexaminationoflargenumbersofpotteryfromcontrolled,independentlydated,stratifieddeposits(Widmer1988:83). These criteriaaresatisfied tovaryingdegreesbyexcavatedpotterysamplesfromtheBuck Keyshellmidden(8LL722), JosslynIslandMound(8LL32),CashMound(8CH38),andtheCollierInnsiteonUseppaIsland(8LL51).Description of Pottery AssemblagesStratigraphiccomparisonsofpotterytypefrequencies fromeachsitewereexaminedtodetectchangethroughtimeinpotteryassemblages. Significant dif ferencesbetweenstrataorexcavatedlevelsareinterpretedasindicatingchangesinthemanufacture,acquisition,and/oruseofparticularkindsofpottery

PAGE 141

Pottery Variabilityduringthecourseofoccupationata site.Potterycategoriesor"types"usedinthesecomparisonsaredesignatedbypaste,asdefinedinthepreviouspages, as well asbytraditionallyconsideredsurface charac teristics (decoration).SandypasteAandB categorieswerecombinedonthebasisofevidencepresentedintheprevioussection,andbecausepreliminarycomparisonsrevealednotemporalsignificance intheirdistributions. Inaddition,fiber-temperedcategories(FBIlandFBT2)werecombinedbecauseofsmallsamplesize,aswerechalkypasteAcategories(CHKA1andCHKA2).Thecomparisonsofrelative frequenciesintablesarebasedonsherdweightsas well ascountsandreferonlytodatafrom Buck Key, JosslynIsland,CashMound,andCollier Inn.BuckKeyShellMidden(8LL722).Test excavationsatBuck Keyyielded1,541 fragmentsofpottery,ofwhich96%(n=1,474)areundecorated.The time framerangesfromapproximatelyA.D. 1027 to 1439, asdeterminedbyradiocarbondates(see Table 1inChapter2, this volume).Potterywasobtainedfrom six 1x1metertestunits(A-I,B-1,C-1,F,H,andI),butmostof thedescriptionsanddiscussionsrefer topotteryfrom three tests:A-I,B-1(plustheircontiguous50x50cmcolumnexcavations, A-2,andB-2),andI.Test A (A-1andA-2combined)wasexcavated in10cmincrementsto adepthof140 cmbelowsurface (Table 16).Thepredominantpotterycategories includeSand-temperedPlain(sandypastepottery),undecoratedspiculepasteBpottery(hereafter referred toas"SPCB Plain"),andBelleGladePlain(spiculepasteA).Approximately90%of thepottery(bycountandbyweight) occurs in thetop70cmofdeposits.Thelowerlevels (70-140 cm)arerepresentedbyonly25sherds(8.5%bycountand11%byweight)includ-133ingSand-temperedPlain, BelleGladePlain,andSPCB Plain.Sand-temperedPlainappearsto bepredominantinthelowerlevels,butthefrequenciesshouldnot beconsideredreliableestimatesoftherelativecontributionofindividualcategoriestotheassemblage,owingtosmallsamplesize. The timeframeforthelowerlevels issuppliedbyaradiocarbondateof A.D. 1027-1210 froman80-90 cm context.Upper(0-30 cm)andmiddle(30-70 cm) levels differ intermsofproportionsofSand-temperedPlainversusBelleGladePlainandSPCB Plain. BelleGladePlainiscommonbetween50and70cmandSPCB Plain iscommonbetween30and60cm levels (Table 16). The time frame formiddlelevels isprovidedbyradiocarbondatesofA.D. 1260-1345and1301-1424 from 50-60 cm contexts.Sand-temperedPlainisthepredominantcategoryintheupper30 cm (0-30 cm) ofdeposits,accountingfor 83% (by count) ofthepottery.BelleGladePlainandSPCBPlainhavedecreasedsignificantlyintheselevels.However,BelleGladePlainisalmostentirelyabsentinthese levels, while SPCB Plaincontinuestooccurinsmallamounts.Thetemporalsignificanceofthe differencebetweenmiddleandupperlevels intermsofamountsofSand-temperedPlainversusBelleGladeandSPCBPlainisuncertain,however,inthe absenceofindependentdatingofupperlevel deposits.Otherpotteryfrom Test AincludesfourGlades Red(sandypastesherdswithresidualredpigmentoninteriorsurfaces),onepossible BelleGladeRed,andoneGrog-temperedPlain.TheGlades RedandBelleGladeRedsherdsoccurinmiddlelevels (30-60 cm),andthegrog-temperedsherdis from 20-30 cm. Test B(B-1andB-2),excavatedto adepthof 110 cm,encounteredatrashfeaturebetween40and90cmTable16.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestA,8LL722,BuckKeyShellMidden(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight). '"... Ei '" Ei '" Ei ... Ei II'> Ei 'C Ei Ei '" Ei '" EioEi ... Ei '" Ei '" Ei ... Ei ..."..."..."..."'"'"-;" " " " " _0 co'" 0 "'0'" 0 '" 0 '" 0 '" 0 "'0'" 0 -0 '0 Depth 1::'" 0 '"'"'>",> '" > ...>11'>>'C> ">'">'"'"'>'"'>...> ... >...;:l'" '" '" '" '" '" '" '" '"0"'0'"0'"0E-<..Jo..Jo..Jo..J o ..J o ..J o..Joen'"...II'>'C"..Jo..J .....J",..J",'"...'"''"'... 34 68 362594 10 4662 2 206Sand-O89% 79% 86%53%64% 20% 48% 100% 67% 100% 100% 00 100% 70%tempered Plain88% 77% 84% 46% 67%9%47% 100% 53% 100% 100% 100% 66% 6 1179 2 1128Belle Glade00 7% 0 2% 7% 35% 43% 0 22% 00 100% 100% 0 10%Plain10%6%6% 43% 49% 14% 100% 100% 14% 1 1Belle Glade00000 7% 000000000<1%Red15%<1%1494203 62 150SPCBPlain100% 10% 10%10% 43% 21% 30% 10% 0 11% 0000 0 17% 100% 11%9%6% 48% 12% 28% 4% 33% 16% 1 3 4Glades Red00 00 2% 0 15% 0000000 0 1% <1% 20% 1% 32 5Grog-00 3% 5% 0 0000 00000 0 2%tempered Plain4% 10%3%Total1388642471420214962112 294

PAGE 142

134Culture and Environment in the Domainofthe CalusaTable17.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestB,BLL722,BuckKeyShellMidden(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight). ..: s'"s'"s""SII'>S'"S....SaoS0-SC>S....S1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1....1.1....1.1'a'"..1.1Ql1.1..II'>.."""","",""""II'> II'> Depth 't:>11'> >11'>>'">"">11'>>....>ao'0"........ J,"J,.. .. "J>.. ...'"...lJ,...l.......l",...l"" ...l"" ...lJ>...l",...l"" ...lao...lJ,'"""II'>....0Sand-1979 3638378659 43 27823822 575temperedPlain59% 77% 69% 74% 72% 89% 84% 76% 84% 84% 97% 88% 80% 65% 70% 60% 80% 76% 82% 76% 68% 75% 79% 97% 94% 75% BelleGlade4254831 24 1 34Plain12%2%10%8%16%3%1%a6%4%a4% 5%9%1%6%3% 8%2%4%11%6%1%4%214872 328 1 47 SPCBPlain6%14%15%14%4%aa4%6%8%a4%7%11%7%29% 17% 4%4%7%10%2%8%StJoh nsCheck11 1 3 3%1%aaaaa aaa3%a<1%Stamped5%2%3%1%23 2148101012 b 43GladesTooled"6%3%4%2%8%8% 14%15% 3%2%aa6% 7%4%3% <1%12%16% 20%25%7%2%10% 4 3 7GladesRed 12%a a a aa a4%aaaa1%3% 3%1%Grog-41 1 17a4%2%aa a aaa1%a4%1%temperedPlain6%3% 3% 3%1%Total 32 103 525151 97 70 67 32 97 39 25 716"GladesTooledsherdsareillustratedinFigures6-8. bOneGladesTooledrimwithSPCBpaste.(levels 5-9)belowsurface(Table 17).Radiocarbondatesof A.D. 1267-1334andA.D. 1306-1439wereobtainedfrom thefeaturebottom(80-90 cm)andtop(40-50 cm), respectively.ThepredominantpotterycategoriesincludeSand-temperedPlain, SPCB Plain, Glades Tooled rims(predominantlysandypaste),andBelleGladePlain.Sand-temperedPlainispredominantthroughoutthedeposit,apatternmatchingtheupperlevelsofTestA.GladesTooledsherdsoccurprimarilyinfeaturelevels (5-9: 40-90 cm),butarealsopresentin Levels 1-4 (0-40 cm). BelleGladePlainpotteryoccursinlowfrequencythroughoutthe test pit. SPCBPlainalso occursthroughouttheunit,butismorecommonintheupperlevels. Eighteen different vesselsarerepresentedbythe43Glades Tooled rims recoveredfromthis testunit.AllsherdsbutonearemadeofsandypasteAandB;onesherdisofSPCB paste. The Glades Tooleddecorationis restricted to thetoplipareaoftherimandconsists ofregularlyspacedpunctationsorimpressions(seeFigures6,7,and8;alsoseeGogginandSommer1949:35).Theimpressionsweremadewithvarioustoolsincludingfingernails,bluntdowels,andpointedimplementsincludingtheapexesofmarinegastropodshells (MeraldClarkandKurtAuffenberg,personalcommunication,1990; see Figures 6gand7g). Vesselsweredecoratedwhilethepastewasstill relatively plastic,producingacrimpedor"pie crust" effect, typicalofthispotterytype(Griffin 1976). This effect is manifestinregularvariationinrimthickness.Meanrimthicknessrangesfrom 6.6 to 7.6mm,dependinguponwhetherthemeasurementismadebetweenimpressionsorcoincidingwiththeimpressions,respec tively.OtherpotterycategoriesincludesevenGrogtemperedPlain,sevenGladesRed (from a single ves sel),andthree St. JohnsCheckStamped(seeFigure9).TheGladesRedsherdsoccurprimarilyinfeaturelevels; St. JohnsCheckStampedandgrog-temperedsherdsoccursporadically. Test I (Table 18)wasexcavated to adepthof105 cminincrementsofvariabledepth.ThepredominantpotterycategoriesincludeSand-temperedPlain, SPCBPlainsherds,andBelleGladePlain. Thelowerlevels (4-6: 70-105 cm)arerepresentedbyonly32sherds(13%bycount,21 % byweight). BelleGladePlainandSPCBPlainoccuronlyrarelyin theselowerlevels.Sand-temperedPlainpotteryispredominantthroughouttheunit.BelleGladePlainiscommononlyinLevel 3anddecreasessignificantlyinsubsequentlevels. SPCBpotteryismorecommoninupperthanlowerlevels,buttherelativefrequencyneverexceeds11%.Six Glades Tooled (seeFigure7)alsooccurintheupperlevels.

PAGE 143

Pottery Variability135, ,, 5 ". emo Figure6.GladesTooledrimprofilesfromTestB,BLL722,BuckKeyShellMidden(allSANDAorSANDBpaste)(seeAppendixFforexplanation).TablelB.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestI,BLL722,BuckKeyShellMidden(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight). "'"'e.....e'"e...eIIIeI III > ....>0--=","," E-
PAGE 144

136CultureandEnvironment intheDomainoftheCalusa5emfo,-I.. i h m Figure7.GladesTooledandrelatedrimprofilesfrom8LL722,BuckKeyShellMidden(dand1areSPCBpaste;allothersSANDAorSANDBpaste)(seeAppendixFforexplanation).GladesTooledA27526,rim145oem5Figure8.PartiallyreconstructedGladesTooledvesselfrom8LL722,BuckKeyShellMidden(FlaMNHcataloguenumberA27526,rim145,SANDApaste).OtherpotteryfromTestIincludesoneGrogtemperedPlain,oneSt. Johns Plain,andoneundiagnostic incisedandpunctatedSPCBsherd.Alloccurin the firsttwolevels.ThesurfacecollectionincludesoneSafetyHarborIncisedrimandafragmentofaLakeJackson Plain-stylestraphandle(bothsandypaste). ThesespecimensandtheundiagnosticdecoratedSPCBpastesherdareillustratedinFigure9.Othertestpitswereonlypartiallyexcavated. Tests C-1andHwereexcavatedto40cmand10 cmbelowsurface,respectively(seeAppendixE).ThepotteryconsistsprimarilyofSand-temperedPlain,including

PAGE 145

Pottery VariabilitySt.Johns Check StampedA27515,rim178St.Johns Check StampedA27549,rim177Safety Harbor IncisedA27562,rim160137UnidentifiedSPCS paste, incised and punctatedA27564 IFigure9.Decoratedpotteryfrom8LL722,BuckKeyShellMidden.oem5St.Johns Cheek StampedA27500Strap handle fragment(twoviews)A27562anearlycomplete,reconstructiblebowl(from C-1; seeFigure10),andlesseramountsofBelleGladePlain, SPCB Plain,andplainlaminatedpastepottery. Aradiocarbondateof A.D. 1260-1326wasobtainedfrom Level 3inTestC-l.Notemporallydiagnosticpotterytypeswereencountered,butthismaybeduetosmallsizeandlimitednatureoftheexcavations. Preliminarytestingin8LL55,theburialmound(TestF;AppendixE), recoveredGrog-temperedPlain, St. JohnsPlain,andBelleGladePlainpottery.TheburialmounddatestoapproximatelyA.D. 1200.Comparisonof Buck Key test excavationsshowsthatpotterydistributionsfromTests AandIaresimilar.Althoughnoradiocarbondateswereobtainedfrom TestI,thelowfrequency ofpotteryin thelowerlevels theremayindicatecontemporaneitywiththeearlyorlowerdepositsinTestA.Level 3 of Test Imaycorrespondto Levels 6and7 (50-70 em)ofTest Aonthe basis of relativefrequencyofBelleGladePlain;andLevels 1and2maycorrespondto theupperandmiddlelevelsofTestA(0-50em)basedonthepredominanceofSand-temperedPlain,andincreaseinSPCB Plain. ThepresenceofGlades Tooledpotteryintheupperlevels of Test ImayindicatecontemporaneitywithTest Bdeposits.RadiocarbondatesestablishcontemporaneitybetweenTest B depositsandatleastmiddleportionsof Test A deposits, althoughtherearedifferences in relativecontributionofpotterycategoriesbetweentest pits. Thediscrepancies,particularlytheabsenceofGladesTooledpotteryinTest A,mayreflectpatternsofuseand/ordiscardofparticularkindsofpotteryatthesite,ratherthana chronological difference.Potterysamplesfrom tests C, H,andtheburialmound(TestF)areinsufficient forpurposesofidentifyingtemporalrelationshipsbetweenthesedepositsandthoseencounteredintheothertest excavations.Josslyn IslandMound(8LL32).TestexcavationsatJosslynIslandMoundrecovered567fragmentsof aboriginalpottery,ofwhich87%areundecorated.Ageneralsurface collectionof69sherds(Table 19) con sistsprimarilyof BelleGladePlainandSand-temperedPlain.OthercategoriesincludetwoGrogtemperedPlain,oneSt. Johns CheckStamped,oneTable19.Paste/DecorativeVariabilityintheMiscellaneousSurfaceCollectionfrom8LL32,JosslynMound(figuresshownineachcellarecountandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight).PastelDecorationCountfPercentage34Sand-temperedPlain49%38%29BelleGladePlain42%54%ISt. JohnsCheckStamped1%<1%2"Sand-temperedDecorated3% 3%2Grog-temperedPlain3%2%IbMiscellaneousMicaceousPaste1%2%Total69"ICrookedRiverComplicatedStampedsherdandIundiagnosticincisedrimsherd(Figu reII).bDeptfordpodalbasefragment(Figure 11).

PAGE 146

138Culture and Environmentinthe Domainofthe CalusaFigure10.PhotographandlinedrawingofareconstructedSand-temperedPlainbowl(showingtypicalBelleGladePlainvesselform)fromTestC,BLL722,BuckKeyShellMidden(FlaMNHcataloguenumberA27537,rim176).Table20.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestA-I,BLL32,]osslynMound(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight).DepthLevel 4 Level 12 Level 17 Level 20 Level 22 Level38Total37-47 em 117-127em167-177 em 197-207 em 217-227 em 377-387 emSand-tempered6 9I2153350%75%100% 100%100%077%Plain11%57%100% 100%100%65%Belle Glade6"3 9Plain50%25%0 0 0 021%89%43%33%I1St. Johns Plain0 0 0 0 0100%1%100%2%Total12 121 215I43"I Belle Glade Plainsherdisworked(see Figure11).

PAGE 147

Pottery VariabilityCrookedRiverComplicatedStamped(sandypaste),onesandypastesherdwithanundiagnosticinciseddecoration,andamicaceouspastebasesherdwithDeptford-likepodalsupports.Onepieceofmodernwhitewarewasalsorecoveredbutisnotincludedinthecounts.MostofthedecoratedsherdsareillustratedinFigure11.Radiocarbondatesrangingfrom324 B.C. to A.D. 1304wereobtainedfromA-I(Marquardt,Chapter2, thisvolume),a 50by50emtestunitexcavatedto adepthof380em.Althoughonly43sherdswererecovered,astratigraphicdivisionisevidentonthebasisoftheoccurrenceofBelleGladePlainandSand-139temperedPlainpottery(seeTable20).Potteryfromthelowerlevels(belowlevel 12)consistsalmostexclusivelyofSand-temperedPlain.Oneexceptionis asingleSt.JohnsPlainsherd.Datesof240-67 B.C., A.D. 143-292,and324-53 B.C.wereobtainedfromLevels 17 (167-177 em),23(227-237 em),and33 (327-337 em),respectively.Althoughsamplesizesareextremelysmall,stratigraphiccomparisonsdocumenttheappearanceandincreasethroughtimeofBelleGladePlain. BelleGladepotteryfirstoccursinLevel 12andappearstohaveincreasedinfrequencybyLevel 4.ThetimeframefortheearliestoccurrenceandincreaseinBelleGladepotteryissuppliedbyradiocarbondatesTable21.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestA-2, 8LL32,JosslynMound(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight). "....S'"S..,S=:e'"s'"s::;e..,s'3;;l-v v v_v v v"'" "'" "'"'"...."0 "0 "0 Depth 1:>",>..,>'" > ....>..,>a0= "oJ, "oJ, "oJ," E-o'"...l.......l",...l..,...l",...If;; Sand-tempered21510201713234613159 67% 29% 23% 39% 23% 36% 30% 44% 100% 35%Plain17%22% 13% 27%14%33% 18% 42% 100% 27% BelleGlade18 261539193941197 0 35% 59% 29% 53% 53% 51% 39% 0 43%Plain44% 73% 44% 47% 56% 63% 39% 49% 5 9 2 91136BelleGladeRed 0 0 010%12%6%12%11%08%7%29% 4% 11%15%12%3 4 2 3 1 4 3 20SPCBPlain06%9%4%4%3%5% 3% 0 4%2%7%1%3% 3%6%2% 3% 1 1 St.JohnsPlain 0 0 2% 0 0 0 0 0 0 <1%2%<1% St.JohnsCheck 6 3 8 219012%7%16%3% 0 0 0 0 4%Stamped15%5%15%1%3%Sand-temperedI b 1b 2 0 2% 0 0 0 01%0 0 <1%Decorated1%1%<1% 4 2 6GladesRed 08%0 0 0 0 02%01%11%1% 1% 1< 1< 2 SPCBDecorated0 0 02%0 0 01%0 <1%6%1%1%2 I 3PascoPlain 0 0 0 0 3%3%0 0 01%3%3%1%Grog-tempered1 3 2 6 33%6%0 0 3% 0 0 0 01%Plain83% 4% 3%2%1 1 PinellasPlain02%0 0 0 0 0 0 0 <1%2%<1% I d IMiscellaneous0 0 0 0 0 01%0 0 <1%MicaceousPaste1%<1%Total3 51 44 51 74 36 77 10413453SomeSt.JohnsCheckStampedsherdsareillustratedinFigure11.bUndiagnosticincisedsandypastesherds(Figure11).
PAGE 148

140 CultureandEnvironment in the Domainofthe CalusaUnidentified sandy paste, incised A27575, rim 1 Unidentified sandy paste, incised 87-28-12, rim79SI.Johns Check Stamped 87-28-7, rim97... ,.o!.''''", 'I ,,' Unidentified sandy paste, incised 87-28-3 SI.Johns Check Stamped 87-28-5 Belle Glade Plain, worked sherd A27578 SI.Johns Check Stamped 87-28-3 Plain micaceous paste, basal sherd with pedal supportsA224105Ruskin Linear Punctated 87-28-15 Wakulla Check Stamped 87-28-12ocm Ruskin Linear Punctated, with drilled hoie 87-28-8 Crooked River Complicated StampedA22410Figure11.DecoratedsherdsfromStL32,JosslynIslandMound.ofA.D. 801-978 from Level 13 (127-137 em)andA.D. 1225-1304fromLevel 5 (47-57 em), respectively.OneBelleGladePlainsherdhasbeenworked.This piece (illustratedinFigure11) resemblesworkedsherdsillustratedbyWilley (1949a:Plate2IandD.Test A-2, a 2x3 munit,wasexcavatedto adepthof80embelowsurface (Table 21). Level 8, forwhichadateofA.D. 961-1054wasobtained,differsfromsubsequentlevelsintheexclusive occurrenceofsandtemperedplainpottery.SubsequentlevelsshowtheappearanceandpredominanceofBelleGladepottery.Theseupperlevels (1-7)canbedividedintotwopossiblecomponentsonthebasisoftwominoritycategories:BelleGladeRedandSt.JohnsCheckStamped(Figure 11). St. JohnsCheckStampedoccurs consistentlyinLevels 1-4 (mostfrequentlyinLevels 1-3),whileBelleGladeRedpotteryoccursconsistentlyinLevels 3-7 (mostfrequentlyinLevels 4-7). Thepredominantcategories in Levels 4-7includeBelleGladePlain,Sand-temperedPlain,andBelleGladeRed. Mostofthe BelleGladeRedsherdsarecharacterizedbyaverythin,almostephemeralcoatingofredpigmentontheirinteriors. Thepredominantpotterycategoriesinlevels 1-3includeBelleGladePlain,Sand-temperedPlain,andSt. JohnsCheckStamped.OverhalfoftheSt. JohnsCheckStampedsherdsappearto be from a single vessel.Otherpotteryfrom this testunitincludes20SPCB Plainsherds,sixGladesRed, sixGrog-temperedPlain,threePasco Plain,twopossibleRuskinLinearPunctated(probablyfromsamevessel),twoundiagnosticincisedsandy.pastesherds,onepossiblePinellasPlain,oneWakullaCheckStamped(micaceous paste),andoneSt. Johns Plain. The SPCBPlainsherdsoccurinsmallamountin Levels 1-7;mostoftheothersherdslistedoccursporadically. The incised,punctated,andstampedsherdsareillustratedinFigure11.StratigraphiccomparisonsandradiocarbondatesfromthetwotestpitsindicatethatA-2depositsarecontemporarywiththeupperportionof A-I.Level8from A-2probablycorrespondstodepositsoccurringimmediatelybelowlevel 12inTest A-I. Levels 1-7ofTest A-2probablycorrespondtosurfacethroughLevel 12 of A-I.Anotherexcavationunittest, C,yieldedtwoBelleGladePlainsherds(seeAppendixE).

PAGE 149

Pottery Variability141Table22.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforTestA,8CH38,CashMound(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight).DepthLevel 4 Level 8 Level 15 Level 17 Level 19 Level 20Total30-42em70-80 em 140-150 em 160-170 em 180-190 em 190-200emSand-temperedII5I7 1 5 30 Plain 85% 100% 100% 100% 100% 100%94%74%100% 100% 100% 100% 100% 89% 2 2 SPCB Plain15%0 0 0 0 06%26%11%Total135 1 7 1 5 32Table23.Paste/DecorativeVariabilityintheMiscellaneousSurfaceCollectionfrom8CH38,CashMound(figuresshownineachcellarecountsandcolumnpercentages;toppercentageisbycountandbottompercentageisbyweight).PastelDeeorationCountlPereentage34Sand-temperedPlain 72%69%2 BelleGladePlain4%4%9 SPCB Plain 20%17%I" SPCB Decorated2%3% 1Grog-temperedPlain2%7%Total 47 "Undiagnostic,andperhapsunintentionalincising.CashMound(8CH38).A single 50x50 em test pitexcavatedto adepthof220cmattheCashMoundsiteencounteredstratifieddepositsthatweredatedA.D. 67-806(Marquardt,Chapter2, this volume). This testunityieldedonly32potsherds(Table 22);anadditional 47sherdswererecoveredbysurfacecollection (Table 23). Allsherds,withonepossible exception,areundecorated.Despitesmallsamplesize, there is astratigraphicdivisiononthebasisofpotterycate gories.Sand-temperedPlainpotterywasrecoveredfromLevels8-20totheexclusionofanyothercategory.Radiocarbondatesrangingfrom A.D. 67 to 398wereobtainedfrom these contexts. Level4,whichyieldedaradiocarbondateof A.D. 672-806, differs fromlowerlevels intheadditionof asmallamountof SPCB Plain.Thesurfacecollection contains awidervarietyofpotterycategoriesincludingSand-temperedPlain, SPCB Plain, BelleGladePlain,Grog-temperedPlain,andanundiagnostic,andprobablyunintentionally, incised SPCBsherd.Collier Inn Site, Useppa Island (8LL51).SalvageexcavationsattheCollierInnsiteyielded1,425 frag-mentsofpottery,ofwhich99%areundecorated.Threecontiguouslxlmunitswereexcavatedtovaryingdepthswithinthemiddenand97%ofthepotterywasrecoveredfromthefirst threeexcavatedlevels. Most ofthepotteryappearstohavebeendepositedintentionallyasacaporpavementofsherdscoveringhumanskeletonsinterredinthemidden.SkeletalTable24.StratigraphicComparisonofPotteryPaste/DecorativeCategoriesforCombinedTestExcavationsandLevelsat8LL51,CollierInnSite,UseppaIsland(figuresshownineachcellarecountsandpercentages;toppercentageisbycountandbottompercentageisbyweight).LevelsLevels LevelDepthSurface1-3 4-5 7Total0-30em30-50 em 60-70 emSand-247 823 28 1098tempered78% 77%82% 0 77% Plain 81% 80%90%80% Belle Glade 47 153 2 202 15%14%6%0 14% Plain11%13%5% 12%1582 3 100 SPCB Plain 5%8%9%07%5%6%4%6%St. Johns 1 7 1 9<1%1%3% 01%Plain<1%1%1%<1%Sand-2"4b6tempered1%<1%0 0<1%Decorated<1% <1% <1%1 2 3 Pasco Plain<1%<1%0 0<1% <1% <1% <1%OrangeFiber2 c 4d61%00 100%<1%tempered1%100%<1%Miscellaneous Ie 1 Micaceous<1%0 00<1%Paste2%<1%Total 316107134 4 1425"Undiagnostictickedrimsherds(Figure 12).b2 possible Ft.DrumIncisedrimsherds(Figure12)and2undiagnosticandperhapsunintentionallytexturedandincised sherds. clOrangePlain (FBT2)and1OrangeIncised (FBT2)(Figure 12).d3OrangeIncised (FBTl)(Figure 12)and1OrangePlain (FBTl). "Weeden Island Incisedrimsherd(Figu re12).

PAGE 150

142CultureandEnvironment in the DomainoftheCalusaSandy paste, with ticking A20379, rim 125 0:"""""""11\ .\'Fort Drum Incised A20396, rim85Weeden Island Incised A20379, rim 1 Orange Incised A20379 Orange Incised A20387Figure12.Decoratedsherdsfrom8LL51,CollierInn,UseppaIsland.cm 5ocme5Figure13.RimprofilesofpartiallyreconstructedSand-temperedPlainvesselsfrom8LL51,CollierInn,UseppaIsland(seeAppendixFforexplanation).materialsonwhichthesherdswereplaceddateto A.D. 595-666.CrossmendingofsherdsfromLevels 1through3withinandbetweentestunitsA-I,A-2,andA-3supportsthissuppositionandindicatescontemporaneityatleastintermsoffinal deposition. Forpurposesofstratigraphicandtemporalcomparisons,potteryfromthefirstthreelevels in all testpitswascombined(Table24;separatepotterydistributionsbylevel for each testpitarerecordedinAppendixE).Fiber-temperedsherds(threeOrangeIncised [seeFigure12]andoneOrangePlain)wererecoveredin Level 7andobviouslypredatethehigherdeposits.PotteryfromLevels 4 (n=31)and5 (n=3) consistsprimarilyofSand-temperedPlain.OthercategoriesincludeSPCB Plain, BelleGladePlain,andSt. Johns Plain. Thispotteryisalsointerpretedaspredatingdepositionoflevels 1-3onthebasisofsuperposition,lowsherdfrequency,andonthefactthatonlyone

PAGE 151

Pottery Variability143 ,...."-........................ .................. ---------------temperedPlain, BelleGlade,andSPCBPlain;oneBelleGladePlainand16Sand-temperedPlainsherds,representingthreeindividualvessels,crossmendwithseveralsherdsfromnearbycontexts. Thesurfacecollection consistsprimarilyofSand-temperedPlain,BelleGladePlain,andSPCB Plain.Othercategories includeoneWeedenIslandIncised (micaceous paste),oneSt. JohnsPlain,onePascoPlain,oneOrangePlain,oneOrangeIn cised,andtwosandypasterimsherdswithundiagnostictick ing.ThedecoratedspecimensareillustratedinFigure12. ExcavatedpotteryfromCashMounddatesbetweenA.D. 67and806andfallswithintheCaloosahatcheeIAssemblage Variability and Tradi tional Site ChronologyWidmer'stemporalframeworkforsouthwestFlorida, referred toastheCaloosahatcheeareaceramicsequence(Widmer1988: 56-57),improvesuponearlieronesproposedbyBullenandBullen(1956:2)andLuerandAlmy(1982:52-53). Thissequencerangesfrom500B.C.toA.D. 1750,andisdividedintofivesubperiodsofvaryingduration.SubperiodjassemblagedefinitionswereformulatedonthebasisofdatafromtheWightmansite(8LL54;Fradkin1976),theSolanasite(Widmer1986;1988:83)andsitesintheCapeHazearea(BullenandBullen 1956;Widmer1988:83-87).CaloosahatcheeI (500 B.C.A.D. 700) ischaracterizedbythenearlyexclusive occurrenceofSand-temperedPlainpottery.CaloosahatcheeII (A.D. 700-1200) is characterizedbythefirstappearanceofBelleGladePlainpottery.Luersuggests,however,thatthebeginningdatefor thissubperiodmaybeclosertoA.D. 500 (Luer 1989:121).TherelativeabundanceofBelleGladepotteryis alsosaidtoincreaserelative toSand-temperedPlaininCaloosahatcheeII.CaloosahatcheeIII (A.D.1200-1400)isrecognizedbythepresenceofEnglewoodIncisedandSt.JohnsCheckStamped.CaloosahatcheeIV (A.D. 1400-1513) isdesignatedbythepresenceofGlades Tooled, SafetyHarbor,andPinellasPlaintypes.CaloosahatcheeV (A.D. 1513 1750) isrecognizedbythepresenceofEuropeanartifacts.Widmer'sCaloosahatcheeceramicsequenceis alsosummarizedinTable1.\\\\, ,"""" """ """................................,........................ :--------------Figure14.HypotheticalreconstructedshapeoftwopartiallyreconstructedSand-temperedPlainvesselsfrom8LL51,CollierInn,UseppaIsland(top=FlaMNHcataloguenumberA20400,rim115,crossmendedvesselG;bottom=FlaMNHcataloguenumberA20399,rim116,crossmendedvesselM).sherdfrom Level 4canbecrossmendedtopotteryinhigherlevels. Thepotteryassemblagefrom Levels 1-3includesportionsoffive reconstructible vessels (Figures 13-15)andlargerimandbodysherdsrepresentingseveralothervessels. Thepredominantpotterycategories includeSand-temperedPlain,BelleGladePlain,andSPCB Plain.Thereis astratigraphicincreaseinBelleGladePlainandSPCBPlaininTestsA-IandA-3 (see AppendiX E),butthe significance of this increase isquestionableowingto theabundanceofcrossmendingsherds.MinoritycategoriesincludesevenSt. Johns Plain,twosandypastesherdswithundiagnosticandperhapsunintentionaldecoration,twosandypasterimsherdsthatresembleFortDrumIncised (Figure 12) (Goggin 1950:Fig.78KandL;Willey 1949a:Plate 3GandJ),andtwoPasco Plain.Potteryinimmediatecontactwithburials(see AppendiXE)includesSand-

PAGE 152

144Culture and Environment in the Domainofthe Calusa '-.........-----------------emFigure15.PhotographandlinedrawingofareconstructedSand-temperedPlainbowlfrom8LL51,CollierInn,UseppaIsland(FlaMNHcataloguenumberA20382,rim128,crossmendedvesselT).

PAGE 153

Pottery Variabilitytime frame.Althoughthesamplesize isverysmall, SPCBPlainwasrestricted to theupperexcavatedlevelandsurfacecollection,andBelleGladePlainwaspresentonlyinthe surface collection. ThepresenceofBelleGladepotteryinthesurface collection indi catesthataCaloosahatcheeII (or later)occupationis alsopresentatCashMound,butnotrepresentedbyexcavatedmaterials.TheCaloosahatcheeIIperiodis wellrepresentedbytest excavations at Josslyn Island.Thedepositsshowthe increaseandpredominanceofBelleGladePlainpotteryrelative toSand-temperedPlain. Thistrendandtheradiocarbondatesindicatea Caloosahatchee IIdesignationfor at least aportionofthedeposit. BelleGladeRedpotteryoccurs in significantquantitiesduringtheestimatedtimeframe of A.D. 961 1304. BelleGladeRed isnota formally describedpotterytype.Itisreportedwithrareoccurrenceat the Marcomidden(Van BeckandVanBeck 1965)andatGoodlandPoint(Goggin 1949). Its chronological posi tion isnotdefined,althoughitoccurswithGlades IIAandIlIA typesatGoodlandPoint(Goggin 1949)andwithGlades IIA typesatMarco (Van BeckandVan Beck 1965). Josslynrepresentsthe first well-documentedoccurrenceof significantquantitiesofBelleGladeRedpotteryinstratigraphiccontext.ACaloosahatcheeIIIdesignationisindicatedfor theupperlevels (1-3)bythepresenceofSt. JohnsCheckStampedpottery.CaloosahatcheeIdepositsarealsopresentatJosslyn,butthepotterysampleis insuffi cient for reliabledescriptionanddetectionofchangesthroughtime. The CollierInncollectionrepresentsabroadbutunevenlyrepresentedtemporalspan.Fiber-temperedpotteryin alowerleveldesignatesa "pre Glades I late" occupation,withanestimatedtime frame of 2550-1850B.C.(Widmer1988:69). Most of theotherpotteryismuchmorerecent in age,datingto A.D. 595-666onthe basisofaradiocarbondateonhumanbonesindirect association. The presenceofBelleGladepastepotteryandabsence ofdiagnosticCaloosahatcheeIIIandIVdecoratedpottery,suchas St. Johns CheckedStamped,GladesTooled,orSafetyHarbortypesindicateaCaloosahatcheeII occupation. Thestratigraphiein creaseinBelleGladePlainsupportsaCaloosahatcheeIIdesignation,butcrossmendingindicatesthatthelevelsmaybecontemporaneous,withthepotterydepositedas acapoverburials.Theinclusionof ear lier materialsinthe CollierInnassemblageisindicatedbythepresenceof Ft.DrumIncised, a Glades I latetype(A.D. 500-700 [Caloosahatchee II) intheadjacentsouthFloridaCircum-Gladessequence. Test excavations at Buck Keyyieldedthemostrecentpotteryassemblagein the collection,datingbetweenA.D. 1027and1439.CaloosahatcheeIIthroughIVperiodsarerepresentedonthe basis ofthesedatesandthepresenceofdiagnosticCaloosahatcheeIVpotterytypes (Glades TooledandSafetyHarborIncised). The initialCaloosahatcheeII occupation,representedbythelowerlevelsofTests AandI, is sodesignatedonthebasis oftheA.D. 1027-1210radiocarbondate.The145potterysamplesizedoesnotallowus toestimateassemblagecompositionreliablyandprecludesvalidcomparisontoWidmer'sCaloosahatcheeII definition. Irecommendfurthertestingofthisportionof themiddento clarifypotteryuseandmanufactureand/oracquisitionduringthis time,andforcomparisonto theCaloosahatcheeII definition.Temporaldivisionsamongtheremaininglevels are not clear-cut. Thetraditionalindicatorsof CaloosahatcheeIIIoccupationsareabsent(Englewoodpottery)orrare(St. JohnsCheckStamped).ThestratigraphicdifferencesinproportionsofSand-temperedPlainversusBelleGladeandSPCBPlainobservedinmiddleversusupperlevels of Tests AandImaycorrespondto atemporaldivision.MiddlelevelsdatebetweenapproximatelyA.D.1250and1400,aCaloosahatcheeIIItimeframe,accordingtoWidmer'schronology.Thetemporalrelationshipbetweenupperandmiddlelevelsisuncertain.However,GladesTooledpotteryintheupperlevels of Test I indicates aCaloosahatcheeIVtimeframefortheupperlevels; this issupportedbytheoccurrenceof SafetyHarbortypesinthe surface collection. Mostofthe Glades Tooledsherdsfrom this site come fromtheTest Bfeaturecontext,datingbetweenA.D. 1267and1439,however.Thesedates,whichareearlierthanthose specified for theCaloosahatcheeIVperiod,maycallforreevaluationofthetimeframeforsubperioddivisions,orforreconsiderationof the Caloosahatchee IIIandIVsequencedefinitions.Observationsor"trends"ofchangeduringtheoccupationof Buck KeyincludeadecreasethroughtimeinBelleGladePlain (it iscommononlyinthemiddlelevels-CaloosahatcheeIII?);andanapparentincrease in SPCB Plain (generally,morecommoninmiddle-upperlevels of thedeposits-CaloosahatcheeIV?).Thuswemayrankthefour sites from earliest tomostrecent:CashMound,Collier Inn, JosslynIsland,andBuck Key.TheCashMoundpotteryoffersthebestrepresentationofaCaloosahatcheeIoccupation,despitesmallsamplesize. Most of the CollierInnpotteryrepresentsaCaloosahatcheeII occupation. The JosslynIslandmaterialsdateprimarilyto CaloosahatcheeIIandCaloosahatcheeIII periods. Most of the Buck KeypotteryappearstorepresentCaloosahatcheeIII to IVtimeperiods.Chronological Significance of Paste VariationStratigraphiccomparisonsrevealthatcertainpastecategoriesaremoreusefulthanothersintermsofchronologicalidentification.Sand-temperedPlainhaspredominanceandtemporallongevity, atrendalreadyestablishedfor this region. ThispotteryisparticularlyabundantinCaloosahatcheeIandIVas semblages, asobservedatCashMoundandBuck Key.Sand-temperedPlain is alsopredominantearlyin theCaloosahatcheeIIperiodbutdecreasesthroughtime relative to BelleGladePlain. Thisobservationissupportedbythelowerlevelsatthe JohnQuietMound(8CH45) in theCapeHazepeninsula(BullenandBul len 1956:43).Itisunknownwhetherthesubtlecolor

PAGE 154

146differencebetweenBuck KeyandUseppasamplesnotedpreviously(p.111)canbeattributedtogeographicvariationinsandypasteclaycomposition(i.e.,amountofironcompounds)ortotemporalvariation in selection of resources. Untilwecollectadditional regionaldata,Sand-temperedPlaincanbeusedmostreliably foridentifyingpost-500B.C.occupation. BelleGladepastetraditionallyindicates CaloosahatcheeIIassemblages(Widmer1988:56, 84). RadiocarbondeterminationsandstratigraphicoccurrencesofBelleGladePlainatCashMound,CollierInn,andJosslynIslandindicateanestimateddateof A.D. 650 to 800 for the firstmanufactureand/oracquisitionof BelleGladepotteryinthearea.Inaddition,BelleGladePlain ispredominantduringtheCaloosahatchee IIandIIIsubperiodsatJosslyn.ObservationsatBuck Keyindicatethatastratigraphicdecreasein BelleGladePlainmayidentifythetransitionbetweenCaloosahatcheeIIIandIVperiods.Thedecreasein Belle GladePlainpotteryintheCaloosahatcheeIVperiodiscorroboratedbyfrequencyofshiftsinBelleGladePlainandSand-temperedPlainintheupperlevelsattheJohnQuietMound(BullenandBullen 1956:43). MerepresenceofBelleGladePlainas aminoritycategorymaynotdistinguishbetween,for example,earlyCaloosahatcheeIIandCaloosahatcheeIVperiods,intheabsenceofstratigraphiccontextand/ordiagnosticdecoratedpottery.It isunknowniftemporalsignificancecanbeattributedtothepastecolor differencenotedpreviouslybetweenBelleGladepotteryfromCaloosahatcheeIII-IV contextsatBuck KeyandBelleGladepotteryfromCaloosahatcheeII III contextsatJosslynandUseppa.SPCBpastehas also restricted chronological distributionin thepresentstudy.ThispastecategorywasobservedonlyinassemblagesdatingtoCaloosahatchee IIandlaterperiods.The firstappearanceofSPCBpotterygenerallycoincideswiththe firstappearanceof Belle Glade Plain. Inaddition,SPCBpasteoccurredingreatestrelativefrequencyinCaloosahatchee III-IV contextsatBuck Key.ThusSPCBpastemayalsobeusefulfordistinguishingbetweenCaloosahatcheeIIandlater(IIIorIV) occupations.MinoritypastecategoriesincludeSt. Johnschalkypaste,PascoPlain(limestone-tempered),grogtempered,fiber-tempered,micaceouspastepotteryandlaminatedorPinellas paste.AlthoughobservedprimarilyinCaloosahatcheeII contextsinthepresentstudy,St. JohnsPlainandlimestone-temperedpotteryoccurinavarietyoftemporalcontexts(Widmer1988: 68-73, 84-85).Thusthesetypescannotbeconsideredastemporallyusefuloutofcontext. Thetemporalrelationshipoflimestone-temperedpotteryisknownonlyif the contextcanbedatedbysomeothermeans(e.g.,radiocarbondates,diagnosticdecoratedpottery,orpresenceorabsence oftemporallydiagnosticpastetypessuchas BelleGladePlain).Grog-temperedpotteryisreportedas a "late"typein the centralpeninsularGulfcoast (LuerandAlmy1980). Grog-temperedpotterywasidentifiedatBuck KeyinCaloosahat-Culture and Environment in the Domainofthe Calusachee III-IV contextsandatJosslyninCaloosahatcheeIII contexts,andmayeventuallybecomeanacceptedindicatoroflateoccupationinSouthwestFlorida sites,pendingdocumentationofcomparableoccurrencesatcontemporaneoussites.Laminatedpasteintheform of PinellasPlainisanacceptedCaloosahatcheeIVindicator(Widmer1988:56, 86).Onelaminatedpastesherd,identifiedtentativelyasPinellas Plain,occurredinanupperorCaloosahatcheeIII levelatJosslyn. Iemphasize,however,thatidentificationofthispotteryas PinellasPlainis tentative. Therelationshipsbetweenthevariouslaminatedpastesthathavebeendescribed(Fradkin1976;Luer1989; Sears 1982; Widmer1986, 1988)arepoorlyunderstood.Until all theserelationshipsareclarified(bymeansofcomparativetechnologicalstudy),laminatedpasteshouldnotbeconsideredatemporalindicator. Thetemporalutilityoffiber-temperedpotteryisalreadywellestablishedforthearea(Widmer1988:68-73).Inthepresentstudy,micaceouspasteappearstobetemporallyuse ful,butonlybecauseofanapparentassociationwithWeedenIslandpotterytypesatCollierInnandJosslyn(probablyCaloosahatcheeII).Chronological Significance of DecorationSmallquantitiesoftemporallydiagnosticdecoratedpotterycontinuetoprovideatleastpartialbasis fortemporalcontrolinthis area.GladesTooled isanacceptedCaloosahatcheeIVmarker,withthesuggestedtimeframeofA.D. 1400-1513. Itsoccurrenceinsomewhatearlier(Caloosahatchee III)timeframeatBuck Key calls forreevaluationofsequencedefinitionsand/orreconsiderationofthetimeframeforperioddivisions. St. JohnsCheckStampedisanacceptedCaloosahatcheeIIImarker,withthesuggestedtime frameofA.D. 1200-1400. This iscorroboratedbyits occurrenceatJosslyninlevelsbelievedtobestratigraphicallyabovea contextdatingto A.D. 1225-1304. BelleGladeRedwascommoninCaloosahatcheeII contextsatJosslyndatingbetweenA.D. 800and1300. Thisrepresentsthe first welldocumentedoccurrence of significantamountsofBelleGladeRedsherdsin astratigraphiccontext. The A.D. 800-1300timeframeis relatively lateintheCaloosahatcheeIIperiod.Thus,BelleGladeRedmayproveusefulformakingatemporaldivisionwithintheCaloosahatcheeIIperiod.SomeoftheWeedenIslandpottery(Ruskin LinearPunctatedandWakulla CheckStamped)from Josslyn occurs in associationwithCaloosahatcheeII contexts;theotherexamples(CrookedRiverComplicatedStampedandWeedenIslandIncised)occurinsurface collections from JosslynandCollier Inn.WeedenIslandtypesmaybeusefulminorityindicatorsofCaloosahatcheeII occupations,butthis willrequirecorroborationintheformofcomparableoccurrencesincontemporaneouscontextsatothersites. Glades RedwasobservedinCaloosahatcheeIIthroughIVcontextsinthepresentstudy.ThusGladesRedcannotbeconsideredtemporallysensitive,butcanbeaddedtothelistofpotterytraitsusedtodescribeCaloosahatcheeII-IV assemblages.

PAGE 155

PotteryVariabilityTable25.Modifications/AdditionstotheCaloosahatcheeCulturalSequenceontheBasisofPasteandDecoration.SubperiodModifications/AdditionsCaloosahatchee VNonewdata. Increase in Sand-tempered CaloosahatcheeIVPlainpottery(predominant)(AD.1350-1500) Decrease in Belle Glade Plain Increase in SPCB Plain ContinuedpredominanceofBelle Glade Plain Caloosahatchee III Continued occurrence of Sand(A.D. 1200-1350)temperedPlainandSPCBPlain Small quantitiesofGlades Red, Grog-tempered,andBelle Glade RedpotteryPredominanceofBelle Glade PlainContinuedoccurrence of SandCaloosahatchee lIB tempered Plain andSPCBPlain (A.D.800?-1200) Belle Glade Red Continued occurrence of Weeden Islandandrelated pottery? First occurrence of SPCB pottery CaloosahatcheeITASmall quantitiesofWeeden(AD.650-800?) Island seriesandrelated decoratedpotteryAbsence of Belle Glade Red? Caloosahatchee I Absence of SPCBpaste(500 B.C-AD.650)Potential Chronological Refinements:PasteandDecorationSeveraladditionsormodificationstoWidmer'sCaloosahatcheeareachronologycanbemadefrom thestratigraphiccomparisons.AsummarylistofobservationsortrendsisoutlinedinTable 25.Inevaluatingtheseobservationsintermsofconcreteand/ortestableimprovementstotheexistingchronology,itisreadilyapparentthattheCaloosahatcheeItimeperiodispoorlyrepresentedinthecollectionsexamined.CashMoundandJosslynIslandbothyieldedmaterialsdatingto thisbroadtimeperiod,butsamplesizesareinsufficient toobtaina reliablerepresentationofpasteanddecorativevariability. As a result,thereisnobasisforrefiningtheCaloosahatcheeIsequencedefinition intermsofimprovingtemporalcontrolwithinthe1200-yeartimeframe. ThelimiteddataindicatetentativelythattheCaloosahatchee Idefinitioncanbemodifiedbyspecifyingtheabsence ofpotterymadeofSPCBpasteinpotteryassemblages. TheCaloosahatcheeIIdefinitioncanbemodifiedbyspecifyingthefirst occurrenceofSPCBpasteinpotteryassemblages.OtherpossibleadditionsincludesmallamountsofdiagnosticWeedenIslandpotteryandGlades Red.Inaddition,thepresenceofBelleGladeRedmayprovidethebasisformakingan"early"and"late"temporaldivisionwithintheCaloosahatcheeIIsubperiod,withBelleGladeRedoccurringin "late,"or147CaloosahatcheellB assemblages.Suggesteddatesfor "early,"orCaloosahatcheeIIAareA.D. 650-800,andA.D. 800-1350 forCaloosahatcheelIB.TheCaloosahatcheeIIIdefinitioncanbemodifiedbyspecifyingthecontinuedabundanceofBelleGladePlainpottery,continuedpresenceofSand-temperedPlainandSPCB Plain,andpossiblyBelleGladeRed. TheCaloosahatcheeIVdefinitioncanbemodifiedbyspecifying adecreaseinBelleGladePlain,anincreaseinSPCBPlainpotteryandincrease/predominanceofSand-temperedPlain. BoththeCaloosahatcheeIIIandIV definitionscanbemodifiedbythepresenceofsmallamountsofgrog-temperedpotteryandcontinuedoccurrenceofsmallamountsofGladesRed. The timeframeforCaloosahatcheeIVhasbeenchangedinlight oftheearliertemporalpositionofGlades TooledpotteryatBuck Key.Chronological SignificanceofTechnological andFormalVariabilityToevaluatepossible chronological differences in technologicalandformalattributesofthepottery,Iconsideredthefollowing: corecolor/degreeofcoring(colorvariationinfreshlybrokencross section),surface color, thickness, surface finishing,rim/lipshape,vesselwallorientation,meanrimandbodythickness,andvesselmouthdiameter.Theseattributesareonesthatareknownorsuspectedtohavechronological significanceinsouthwestFloridaoradjacentareas(seediscussionintheintroductionofthis chapter). Irecordedvariabilityincorecolorandthickness for theentiresherdsampleduringinitial classificationofthe collection. Surface finishingmethodandsurface colorwererecordedonlyonthesubsampleofrimsherds.CORE COLOR DEGREE OF CORING(Coding Value)NOCORINGUGHTCORINGup to 30% ofcross-sectionIsdarkMODERATECORING30% 1060%ofcross-sectionIsdarkHEAVY MEDIUM CORING -atleasl 60% ofcross-section isdarkHEAVY DARK CORING -atleast 60%01cross-sectionIsdarkWhite zonesdenote"light",oroxidized colors; Munsell hues rangefrom10VR102.5YA with Munsellvalues 5.Shaded zonesdenote'medium"grayish and brownish colors; Munsell hues range from lOYR105Y with values>3 :: 5.Black zonesdenote"dark" gray10black colors; Munsell hues are mainly 2.5Y and 5Y with values <: 3 andchromas <: 2.Figure16.Stylizedillustrationofcorecolor/degreeofcoringcategories.

PAGE 156

Table26.SurfaceColorCategories.'Munsellcolor measurementsweremadeongrabsamplesof rimsherdsfrom rim subsamples defined by site,pasteandexterior surface color. Sample size ofthegrab samples consisted of nomorethanfivesherdspersite/paste/colorcategory, totaling116rim sherds.CodingMunsellColors'GeneralandMunsellDescriptionValuewell-oxidized "buff" andreddishcolors; "buff"colors (lOYR hues)hues5YRtolOYRinclude: light yellowish brown, pale 1 values >4 brown, brown;reddishcolors (5YR, chromas 4-6 7.5YR hues) include;reddishbrown, yellowish red, brown,strongbrown, light yellowishbrownhueslOYRto5Ymoderately-oxidizedgrayand brown 2 (mostlylOYR)colors including:darkbrown,brownvalues 4-5 todarkbrown,grayish brown,grayto chromas1-2grayish brown, gray,graytodarkgrayhueslOYRto5Ypoorly-oxidized, mottled colors (mostly10YR)including:darkgray,darkgrayto 3 values 3-4darkgrayish brown,darkgraytoverychromas1-2darkgray,darkbrownto verydarkgrayishbrownhueslOYRto5Yverypoorly-oxidizedorreduced black 4 values<3toverydarkgraycolors chromas<2148Definition of attributes/methods ofdatacollection.The color ofpotteryis aproductoftheinteractionofpastecomposition(amountofironcompoundsandorganicsin clays)andtemperature,duration,andatmosphereof firing.Whensomedegreeofcontroloverpastevariabilityisobtained,colorcanbeusedtomakeinferencesaboutfiringtechnologies.Irecordedvariabilityincorecolor/degreeofcoringwithreferencetofivenominalcategories,rangingfrom"no coring" (light, clear,orwell-oxidized colorsinsherdcross section) to"heavydarkcoring" (black todarkgray,verypoorly-oxidizedcolors formostofthecross section) (seeFigure16 forillustrationofcore color categories). These categorieswerebasedongrossvisualcolor/coringdifferences.Ispecifiedfournominalcategoriesofsurface color forrecordingex teriorandinteriorsurface coloroftherimsubsample,rangingfrom'light,clearorwell-oxidized colors todarkgrayishbrownto black,orverypoorly-oxidized colors (listedinTable 26). These categorieswerealso specifiedonthebasisofgrossvisualcolor differences. TherangeofMunsellcolors for coreandsurface color is listedinFigure16andTable 26, respectively. Thicknessofpotteryisrelatedto factorssuchaspastecomposition(claysandsizeandfrequencyofaplastics), vessel sizeandshape,intendedfunction,andperhapsskilloreffort inmanufacture.I specifiedfourordinalcategories of wall thickness forrecordingvariabilityinthickness fromtheentiresherd sample:::; 5mm,>5 ::; 7mm,>7< 10mm, 10.Intervalmeasurementsofbodyandrimthicknessweremadeoneachrimsherdintherimsubsample.Surface finish referstosurfacecharacteristicsresultingfromthemethodbywhicha vessel issmoothedandevenedduringandaftertheshapingorconstruc tion process (Rice 1987:136-138;Shepard1976:187). Surface finish isidentifiedbyclassoftoolused(pliableoryielding,non-yielding,andedgedtools)andstateofplasticityordrynessofthe claybodywhenfinished (e.g., plasticorwet, leatherhard,dry). Thesetool/plasticitycombinationstranslateintodescriptivenominalcategoriessuchas "scraped,partiallysmoothed," "scraped, well smoothed,""burnished," etc. These surface finishing categoriesaredescribedinmoredetailinTable 27. Irecordedexteriorandinteriorsurface finishesfromtherimsubsample.Variabilityinrim/lipshapeandvesselwallorientationwasrecordedfromtherimsubsamplewithreferencetonominalcategories.Possiblevaluesforrimorlipshapeincluderound,flat/squared,flat/beveled,thickenedorexpandedflat/squaredorflat/beveled(designatedwhenrimthickness isatleast 2mmgreaterthanbodythickness),rounded,thinned,etc. Possiblevaluesfor vesselwallorientationincludeincurving,outslanting,verticalorstraightsided,etc. Inaddition,vesselmouthdiameterwasestimatedforeachapplicablerimsherdwitharimdiametertemplate.NotethatnotallrimsherdswerelargeenoughfordeterminingvesselCulture and Environment in the Domainofthe Calusawallorientation,andnotallrimsthatwerelargeenoughfordeterminingvesselwallorientationwerelargeenoughforestimatingmouthdiameter.Corecolorandthicknessdatawererecordedforcomputeranalysiswiththelargerdatasetdiscussedabove(see AppendiX A).Individualcolorandthicknessmeasurementsofindividualsherdswerenotrecorded.Nominalandordinalcategorieswerespecified sothatthesedatacouldbeeasilyandquicklyrecordedonalargesample.Surface color, surfacefinish,andformaldatafromtherimsubsampleformedaseparatedataset forcomputeranalysis(seeAppendixA).Provenience,paste,anddecorationwerealsorecordedsothatvariationinformandtech nologicalattributescouldbeevaluatedanddescribedwhilecontrollingforspatial,chronological,andtypological aspects.TheStatistical Analysis System (Ray 1982)wasusedfor allcomputeranalyses.Evaluation ofChronologicalSignificanceIevaluatedchronological differencesintechnologi calandformalvariabilitybymakingintersitecomparisonsofdata.Smallsamplesizeand/oruneventemporalrepresentationprecludedevaluationofchronological differenceswithinindividualpotterycategoriesatparticularsites,withthe exceptionofBelleGladePlainfromJosslyn Island.Thefollowingdiscussionsconsistofintersitecomparisonofthethreepredominantpotterycategories:Sand-temperedPlain(allfoursites), BelleGladePlain (excludesCashMound),andSPCBPlain(all four sites). The objective is toidentifyanddefine testabletemporaltrendsintechnologicalandformalvariabilitywithinthesepotterycategories.Chi-squarestatisticswereoftencomputedtoevaluatethestatisti cal significance ofthetemporaltrendssuggestedby

PAGE 157

PotteryVariabilityTable27.DescriptionofSurfaceFinishingCategories.149CodingTechniqueToolTypeandConditionofPasteDescriptionValueSurfacewasscrapeduniformlybutnotAScraped,unsmoothedEdged tool, plasticstatesmoothedover,showinggrainanddraglines, pitting,andsomeplastic flow. PartiallydrysurfacewasprobablyBUnscraped,smoothedPliable tool,leatherhardstatesmoothedwithawet,pliable toolwithoutpriorscraping,resulting in alumpy,unevensurface.Edgedandplia ble tools, plastic to Surfacewasscrapedto a uniform levelCScraped, partiallysmootherdleatherhardandpartiallysmoothedoverbutnotall evidence ofscrapingwas obliterated. Wet, pliable toolwasused tofinish aDScraped, wellsmoothedPliable tool, plastic to leatherhard level, uniform surface (probably scraped), obliteratinganyevidenceofprior finishing. Smooth,hardtool wasusedto finish a uniform surface (probably previously E Scraped, well finishedNon-yieldingtool, plastic to leatherhardscraped), resulting insomesmoothstreaksbutnoluster;evidenceofpriortreatmentswasobliterated. Smooth,hardtool wasusedto burnish a level, uniform surface (probably F Scraped,bu rn ishedNon-yieldingtool,leatherhardtodrypreviouslyscraped),resultinginsmoothstreakingandsomeluster; evidenceofpreviousfinishing was obliterated.GUnknown(stamped/textured)Plastic to leatherhardEvidence of surface finishing prior tostampingortexturingwasobliterated.HUnknownUnknownEvidence of surface finishes obliterated oreroded.observeddifferencesbetweensites forthenominaltechnologicalandformalvariables.Whennecessary,IincorporatedYates'correctionforcontinuityintothecalculationsinordertomeettheexpectedcellfrequencyrequirementsoftheChi-squarestatistic(Thomas1976:279-282).Thenullhypothesesforthecomparisonsarethattherearenostatisticallysignificantrelationshipsbetweensites (hence,timeperiods)andvariationintechnologicalandformalcharacteristics.Rejectionofthenullhypotheseswillenableustoeliminatesmallsamplesizeand/orchanceassourcesoftheproposedtemporalrelationships.Inaddition,z-scoreand/ort-score test statisticswerecomputedtoevaluatethestatisticalsignificanceofdifferencesbetweensites (hence,timeperiods)intermsofmeanbodyand/ormeanrimthickness.Sand-tempered Plain.Thiscategoryhasthegreatestrepresentationintermsofsamplesizeandtemporalduration,andallfoursitesareconsideredinthecomparisons.The JosslynsamplewasnotdividedintoCaloosahatcheeIIandIIIsubsamplesbecausethemajorityofsherds,especiallyrims,wererecoveredfromtheCaloosahatcheeII context.Intersitecomparisons(Table 28 A-I)showamarkeddivisionbetweenpotteryfromCashMoundandtheothersitesintermsofformalattributesofrimshapeandvesselwallorientationandtechnologicalattributesofcolor,thickness,andsurfacefinishing.Formanyofthecomparisons,CashMoundandBuck KeysamplesoccupyoppositeendsofacontinuumwithCollierInnandJosslynmaterialsfallinginbetween.BuckKeyandCashMoundoccupyoppositeendsinvariationinrimshape,withCollierInnandJosslynsamplesoccurringinbetween(see Table 28A).CashMoundhasthehighestproportionof"chamfered"lipssimilartothoseillustratedbyLuerandAlmy(1980: 214; 217-218) for "early"rimshapes;thevariationexhibitedbytheCashMoundsubsampleissimilartothevariationobservedbyLuerandAlmy.Roundedandflat/squaredlipsarepredominantinCollierInnandJosslynsubsamplesandoccurinnearlyequalproportions.BuckKeyhasthehighestproportionofflat/squaredrimsandlowestproportionofroundedrims,relativetotheothertwosites. Inaddition,a fewSand-temperedPlainrimsfrom BuckKeyhavethickorexpandedflat lips,similartosomeBelleGladePlainrims(oneexampleispicturedinFigure10). The observeddifferencesbetweenCashMoundversusCollierInnplusJosslyn(combined),betweenCashMoundversusBuck Key,andbetweenCollierInnplusJosslyn(combined)versusBuck Keyaresta-tisticallysignificant(p < .01, .001,and.05, respectively).Thesecomparisonsdocumentanincreasethroughtimeinmanufactureofsandypastepotswithflat/squaredrims(andexpandedrims)attheexpenseofpotswithroundedrimsandcorroboratetheregionalimplicationsregardingchangethroughtimeinrimformsuggestedbyLuerandAlmy(1980:218) forthecentral

PAGE 158

150Culture and Environment in the Domainofthe CalusaTable 28. Intersite Formal and Technological Variability in Sand-tempered Plain.Site# 8LL722 8LL32 8LLSI 8CH38TotalA.RIM/LIPSHAPE (Rim Subsample) Thick-Flat&Beveled7/6%1/3%1/1%0 9Flat/Squared61/54% 11/37% 40/40% 2/14%114Flat/Beveled7/6%2/7%1/1%010Rounded 30/27% 13/43% 41/41%5/36%89Round/Beveled6/5%2/7%5/5%1/7%14Chamfered 0 03/3%5/36%8 Thinned2/2%1/3%8/8%011Other 0 0 01/7%1 Total 113 309914256B.VESSEL WALL ORIENTATION (Rim Subsample)Incurving/lnslanting16/31%6/26%9/17%5/62.5% 36 Vertical 17/33%6/26%19/36% 2/25%44Slightly Outslanting3/6%1/4%2/4%0 6 Outslanting 16/31%9/39%19/36% 1/12.5%45Compound01/4%4/8%0 5 Total 522353 8136C.CORE COLOR/DEGREE OF CORING (Entire Sample)(I)NoCoring 130/10%9/4%48/4% 11/17%198(2)Light Coring7/<1%2/1%20/2%2/3%31(3)Moderate Coring 170/14% 15/7% 257/23% 10/16%452(4)HeavyMedium74/6%14/6% 106/10% 12/19%206Coring(5)HeavyDark 858/69% 186/82% 667/61% 29/45%1740Coring Total 12392261098642627D.EXTERIOR SURFACE COLOR (Rim Subsample)(l)Well Oxidized 10/9%4/13%12/12%3/21%29(2)Moderately8/7%1/3%8/8%3/21%20Oxidized(3)Poorly Oxidized 26/23% 10/33% 33/34%5/36%74(4)Very Poorly 69/61% 15/50% 45/46%3/21%132Oxidized Total113309814255E.INTERIOR SURFACE COLOR (Rim Subsample)(I)Well Oxidized 17/15%2/7%16/16%3/21%38(2)Moderately 12/11% 0 31/31% 2/14%45Oxidized(3)Poorly Oxidized 34/30%9/31%16/16%5/36%64(4)Very Poorly 49/44% 18/62% 36/36% 4/29%107Oxidized Total 112299914254

PAGE 159

Pottery VariabilityTable28.IntersiteFormalandTechnologicalVariabilityinSand-temperedPlain,continued.151Site # 8LL722 8LL32 8LLSI 8CH38TotalF.EXTERIOR SURFACE FINISH (Rim Subsample)(A)Scraped,2/2%1/4%0 0 3 Unsmoothed(B)Unscraped,4/4%4/1S% 10/12%5/38%23Smoothed(C)Scraped, Partially 20/19% 4/15% 13/15%1/8%38 Smoothed(D)Scraped, Well 61/59% 12/46% 54/63%7/54%134Smoothed(E)Scraped, Well 17/16%5/19%9/10%031Finished Total104268613229G.INTERIOR SURFACE FINISH (Rim Subsample)(A)Scraped, 0 1/4% 0 0 1 Unsmoothed(B)Unscraped,1/1%2/7%6/7.5% 2/14%11Smoothed(C)Scraped, Partially8/8%3/11%9/11%5/36%25Smoothed (D) Scraped, Well 84/82% 18/67%59/74%6/43%167Smoothed(E)Scraped, Well9/9%3/11%6/7.5%1/7%19Finished Total102278014223H. BODY/WALL THICKNESS (Entire Sample) :s;5mm 130/11% 20/9%62/6%1/2%213 >5:S;7mm 710/58% 100/45% 475/45%8/12%1293>7<10mm376/30% 94/42% 403/39% 35/55%908 mm. 17/1%8/4%105/10% 20/31%150Total12332221045642564 L MEANBODYAND RIM THICKNESS (Rim Subsample) Mean Body Thickness6.5mm6.9mm7.2mm8.8mmnot applicable Mean Rim Thickness6.3mm 6.0mm6.1mm8.3mm'not applicable Mean Difference (Rim-0.2mm-1.0 mm -1.1mm-0.5mm'not applicable Body) Mean Diameter 22.7 cm 21.3 cm 25.1 cm21.0cmnotapplicable Sample Size #Body/#Rim/113/113/3429/30/1698/99/3514/13/6notapplicable # Diameter An extreme rim thickness value of 20.7mmwasexcluded from the calculations.peninsularGulfcoast.RimprofilesofSand-temperedPlainpotteryareillustratedinFigures10, 17, and18 (8LL722),Figure19 (8LL32),Figures13, 20,and21(8LL51),andFigure22 (8CH38).Thesites alsoshowamarkeddivisionintermsofvesselwallorientation(Table 28B).TheidentifiableCashMoundrimsareprimarilyincurving/inslantingandverticalinorientation.Thosefromtheothersitesexhibitoutslanting,vertical,andinslanting/incurvingorientations.AnidenticaltrendofchangeinvesselshapethroughtimeisalsosuggestedbyLuerandAlmy(1980:218) forcentralpeninsularGulfcoastpotterysamples.Thisadditionalevidenceiscorroborativeandstrengthensconfidenceinthevalidityofthisproposedtemporaltrend.TheCashMoundsamplehasamorevariabledistributionofvaluesforcorecolor/degreeofcoringthantheothersamples,withnearlyhalfofthecases fallingintowell-andmoderately-oxidizedcategories(seeTable28C).Theobservationsfortheothersitesaremorestronglypeaked,withdarkgraytoblack/poorly-oxidizedcolorsaccountingforthemajorityofob-

PAGE 160

152Culture and Environmentinthe Domainofthe Calusa . .5em ,II.., \, . Figure17.Sand-temperedPlainrimprofilesfrom8LL722,BuckKeyShellMidden(roundedrimsHseeAppendixFforexplanation).servations. Arankingofsitesintermsoftheproportion ofbetter-versuspoorly-oxidizedcolors placesCashMoundandJosslynIslandatoppositeends,withCollierInnandBuck Keyinthemiddle.Post-depositional refiringmayhaveaffected theplacementof Buck Keyinthisranking,however;about40%of the welltomoderately-oxidizedsherdscomefrom featurelevelsinTest Bandweresubjected toalterationthroughpost-depositionalfiring. Isuspectthatanunaltered(byrefiring)distributionofobservationswouldapproximatethatfrom JosslynIsland.The observeddifferencesincore colorvariabilitybetweenCashMoundversusCollierInnplusJosslyn (com bined)andbetweenCashMoundversusBuck Keyarestatistically significant (p< .001). Theseobservationsofintersitevariabilityin core colorshouldnotbeinterpretedasmeaningthat"ear lier"sand-temperedplainpotterywas"better" firedthanlaterpottery,because"poorly oxidized"doesnotequatewithpoororinsufficient firing. Rather, thedistributionsmaydocumentatrendofincreasingcon sistencyofmanufacturing/firingof thepottery.Atendencyfor "early"sand-temperedplainpotterytohavereddishbrown(better-oxidized?)colorswasnotedbySearsattheFortCentersite (1982:23).CashMoundsamplesalso exhibitthehighestproportionof welltomoderately-oxidizedsurface color,andamorevariabledistributionofobservations(Table 28DandE).Buck Key, themostrecent site,exhibitspredominantlyverypoorly-oxidizedex teriors; JosslynandCollierInndistributionsareintermediatebetweenthese extremes,butaremoresimilar to Buck KeysamplesthantoCashMound.Interiorsurfacestendtobesomewhatbetter-oxidizedthanexteriorsintermsofthepercentageofwell-tomoderate-versuspoorly-oxidizedcolors,regardlessofsite/timeperiod(Table 28E). Thisvariationmaybeduetohowvesselswerearrangedfor firing,ratherthanchangesthroughtimeandthismayindicatethatexterior surface color ismoreusefulthaninteriorcolor fordocumentingtemporaltrends,oratleast for corroboratingtrendsobservedinotherattributes.Theobserveddifferencesinexteriorsurfacecolorvariabilitybetweenthesiteshavelittleorno statistical significance,however.CashMoundsamplesalso differfromtheothersitesinterms ofsurfacefinishes. TheCashMoundsampleexhibitsmorepoorly-finishedsurfaces (categories B and'C)andfewerwell-smoothedsurfaces(categoryD)relativetotheobservationsattheothersites (Tables 28FandG).Theobserveddifferences in exteriorsurface finishbetweenCashMoundversusCollierInnplusJosslynandbetweenCashMoundversusBuck Keyhavestatistical significancewithp<.10and.005, respectively;thedifferences forinteriorsurfacefinisharesignificantwithp<.20and.01, respectively. Thismaydocumentanincreaseinconsistencyofmanufac-

PAGE 161

Pottery Variability153,,,q \a \\,,5xemo,\FigurelB.Sand-temperedPlainrimprofilesfromBLL722,BuckKeyShellMidden(flat/squaredrims)(seeAppendixFforexplanation).turethroughtimeintermsof increaseinlaborinputorcareandtimein execution of surface finish. ThedivisionbetweenCashMoundandtheothersites is alsoevidentforthedistributionofthicknessmeasurementsandmeanrimandbodythickness(Table 28HandI).Thirty-onepercentofCashMoundsherdsare mmthick,versusonly1%atBuck Key.Thedistributionsfor JosslynandCollierInnareintermediatebetweenthesetwosites.Theobserveddif ferencesinthicknessvariabilitybetweenCashMoundversusCollierInnplusJosslyn,betweenCashMoundversusBuck Key,andbetweenCollierInnplusJosslynversusBuck Keyarestatistically significant (p < .001). Thesedistributionsarereflectedbymeanbodythick nessmeasurementsfrom therimsubsamples:CashMoundwith8.8mmversus6.5mmfor Buck Key,andJosslynandCollierInnwith6.9mmand7.2mm,respectively. Inaddition,rimsaregenerallythinnerthanbodysherdsinallsubsamples.ThedifferencesinmeanbodythicknessbetweenCashMoundversusCollierInn,CashMoundversusJosslyn,CashMoundversusBuck Key, CollierInnversusBuck Key,andJosslynversusBuck Keywereallfoundtobestatisti cally significant(p<.OOIto .05). Thesedistributionsandmeanmeasurementsdocumentareductionin thicknessthroughtimeandcorroboratetheobservations oftheBullens (1956) fortheirCashMoundinvestigation,thoseofLuerandAlmy(1980) for "early" contexts inthecentralpeninsularGulfcoast,andthoseofSears (1982) for "early" contextsatFort Center.Onthebasisofthesedistinctions, IsuspectthatseveralCaloosahatcheeIperiodsherdsmaybeincludedin the CollierInnsite collection. This suspicion isbasedontechnologicalandformalvariationwithinasubsampleofSand-temperedPlain rimshavingabodythicknessof8mmorgreater(Table 29A-I). Thissubsampleconsistsof29rimsherdsor29%of theentireCollierInnSand-temperedPlainrimsubsample.Thirty-onepercentof thissubsamplehavethicknessvaluesthatare mm(Table 29HandI),whichiscomparabletothepercentageof rimswith mmbodythickness fromCashmound(entiresample-seeTable 28H).Roundedrimsarepredominantinthis CollierInnsubsample,buttherangeofvariationinrim/lipshapeis similar toCashMound(Table 29A),anditincludesthe occurrenceof"chamfered"rims,similartothosefromCashMound(roundedrimexamplesfrom CollierInnareillustratedinFigure20Ii,k,0,vD.Mostoftheidentifiable rims exhibit incurving/inslantingandvertical vessel wallorientation(Table 29B).Inaddition,thissubsampleissimilartosand-temperedplainpotteryfromCashMoundinvariationinsurfaceandcore colorandsurface finishing (Table 29C-G).

PAGE 162

154Culture and Environment in the Domainofthe Calusa\. \, bef9 ,.'. 0.0 0, .,\\ 0 ,\ 0 ..\.k\ .. 1 n 1 pq :( r '\' \ o ,.. \\ \\ ,\. ., \.:'.. IuVw.1X .,.,0., .\.I ,aem5Figure19.Sand-temperedPlainrimprofilesfrom8LL32,JosslynIslandMound(seeAppendixFforexplanation).BelleGladePlain.ComparisonsofBelleGladePlainpotteryincludesamplesfromBuck Key, Josslyn,andCollier Inn. Sample sizesfromJosslynweresufficient fordistinguishingbetweenCaloosahatchee IIandIII time periods.IntersitecomparisonsarelistedinTable 30A-I. Thecomparisonsshowthattherearenoclearcutdifferencesbetweensites/timeperiodsinterms ofvesselwallorientation,coring,surfacecolorandfinishing (see Tables 30B-G). BelleGladepotteryisgenerallycharacterizedbywellto poorly-oxidized colors,scraped,unsmoothedorpartiallysmoothedexteriorsurfacefinish(categories AandC),wellsmoothedorwell-finishedinteriorsurfacefinish(categoriesDandE),andoutslantingvesselwallorientation.Sears observesatFortCenterthatcolorschangefromdarkorgraycolors tolightercolorsthroughtimeandproposedincreaseincontroloffiring (1982:21). Isawnosuchtrendinthepresentstudyanditmaybethatsome"temporaltrends"aresite-specificandcannotbeappliedtobroaderregional manifestationsofthepottery.Thestrongestevidencefor atemporaldifferencebetweensubsamplesis inrimshape,the differencebetweenrimandbodythickness,andbodythickness (Tables 30A, H,and1).Buck KeyandtheCaloosa-hatcheeIII J osslynsubsamplehavethehighestproportionof thickorexpandedflat lips,andhence, thelargestdifferencebetweenrimandbodythickness (average difference of 3.0and2.6 for Buck KeyandJosslyn-Caloosahatchee IIIversus1.3 forbothJosslynCaloosahatcheeIIandCollierInnsubsamples,respectively).RimprofilesofBelleGladepotteryareillustratedin Figures23(8LL722), 24and25(8LL32),and26(8LL51).ThedifferencesinthedistributionsofrimshapebetweenCollierInnplusJosslyn (CaloosahatcheeIIsubsample)versusBuck KeyplusJosslyn (Caloosahatchee IIIsubsample)haveveryweakstatis tical significance (p<.20).However,the differences inmeanrimthicknessbetweenCollierInnversusJosslyn-Caloosahatchee IIIandversusBuck Keysubsamples,andJosslyn-CaloosahatcheeIIversusJosslyn-Caloosahatchee IIIandversusBuck Keywereallfoundtohavestrongerstatistical significance,withsignificance levelsrangingbetweenp< .005and.10.TheBuck Keysampleshavethegreatestproportionofextremelythin-walledvessels(48% S 5mm;see Table 30H).ThedifferencesinthedistributionofbodythicknessbetweenBuck Keyversuseach of theothersubsamplesarestatistically significant (p <.001 to .01). The differencesbetweenthesesitesindicateatenden-

PAGE 163

155e \.,,1 \h "'"" ,\ '..." \ ,,, , lmn,\,\\, ,,\\\\\\\\ \ \\ ,,, 5emoI\PotteryVariabilityFigure20.Sand-temperedPlainrimprofilesfrom8LL51,CollierInn,UseppaIsland(roundedrims)(seeAppendixFforexplanation>.cytowardmakingslightlythinner-walledvesselswithextrathickenedlips.AtFortCenter,Sears notes adecreaseinbodythickness(1982:21)andanincreaseinfrequencyof"expandedflat"lips(1982:112)throughtime;thepresentstudycorroboratesthesetrendsonaregionallevel.SPCB Plain.Theintersitecomparisons(Table 31A-1)ofSPCBPlainpotteryshouldbeconsideredwithcautionduetosmalltotalsamplesizesfromCashMound(probablyCaloosahatcheeIIinage)andJosslynIsland(probablyCaloosahatcheeII-IIIinage),andsmallrimsubsamplesizefromall sites. Sometrendsseemtobeevidentdespitesmallsamplesize,however,andtheycansuggesttrendstobetestedwithfuturework.SPCBpotteryisintermediatebetweenSand-temperedPlainandBelleGladePlaincategoriesintermsof technologicalandformalattributesas wellaspastecharacteristics.Intermsofattributesofbodythickness,rimversusbodythickness,andrim/lipshape,theCashMoundandCollierInnsubsamples(probablyCaloosahatcheeIIinage)aresimilartoCaloosahatcheeIISand-temperedPlainsubsamples(i.e.,samplesfrom CollierInnandJosslyn).TheSPCBPlainsubsamplesfrom JosslynIslandandBuck Key(probablyCaloosahatcheeII-IIIandIII-IV inage,respectively)resemblesomeBelleGladepotteryintermsofhavingrimthicknessthatexceedsbodythicknessandintheproportionsofflat/squaredorflat/beveledandexpandedflatrimshapes.Thedif ferencesbetweenCaloosahatcheeIIandIIIorIV con textsintermsofmeanbodythicknessandrim-bodythicknessarestatistically significant (p<.02S to .10). TheseobservationsindicatethatperhapsthroughtimethemanufactureofSPCBpotterybeginsto mimic BelleGladePlainpotteryinformandshape.Rim profilesofSPCBPlainpotteryareillustratedinFigures22(8CH38),23(8LL722), 24 (8LL32),and26(8LLS1).Potential Chronological Refinements: Technological and Formal VariabilityIntersitecomparisonsoftechnologicalandformaldatashowthatthereareseveralpotentialrefinementsthatcanbeaddedtotheexistingpotterychronology.Thesearelistedin Table 32andsummarizedinthe followingdiscussion.AlthoughtheCaloosahatchee Itimeperiodispoorlyrepresentedbythecollectionsexamined,thereareseveraltestableimprovementsthatcanbeaddedtoWidmer'sperioddefinition.Sand-temperedPlainpotteryfromCaloosahatcheeI contexts, asidentified

PAGE 164

156CultureandEnvironment intheDomainoftheCalusao ,, \' .. ... \,"'t .....t5em ,, a ".". ThedifferenceinvesselformbetweenCaloosahatcheeIandlatertimeperiodsmayhavesignificancebeyondthetemporaldistinctiondescribedabove.TheattributesthataremostusefulfordistinguishingbetweenCaloosahatcheeIandlaterSand-temperedPlainpotteryincluderimshape,vessel wallorientation,wallthickness,corecolor, exterior surface color,andsurfacefinishing (exteriorandinterior).TheattributesthatcontinuetobeusefulformakingtemporaldistinctionsbetweenCaloosahatcheeIIversus IIIorIVSand-temperedPlainpotteryincluderimshape,vesselwallthickness,andrimthickness.Sand-temperedPIainpotteryfromCaloosahatchee IIIIVcontexts, as identified from Buck Key, issimilartoCaloosahatcheeIIpotteryintermsofsurfaceandcore color,surfacefinishing,andvesselwallorientation.Differencesincludea slightdecreaseinbodythicknessandincreaseinrimthickness relative tobodythick ness,andincreaseinoccurrenceofflat/squaredrims.Meanbodythickness is 6-7mm,withmostofthepotteryrangingbetween5and7mm;flat/squaredlipshapesarepredominant.Inaddition,somerimsareexpanded/flatinshapeandappeartomimicBelleGladePlaininrimshapeandvessel form.Figure21.Sand-temperedPlainrimprofilesfrom8LL51,CollierInn,UseppaIsland(flat/squaredrims)(seeAppendixFforexplanation).fromCashMound,canbecharacterizedbymeanves selbodythicknessofaround9mm(withmostpotteryrangingbetweenabout7mmto 12 mm), extremelyvariablesurfaceandcore colors,witha significantproportionofcaseshaving"better-oxidized" colors,variablesurfacefinishing,incurving/inslantingandverticalvesselwallorientation,andvariablerimshapeswithroundedandchamferedlipsbeingespecially common.Sand-temperedPlainpotteryfromCaloosahatchee IIcontexts, asidentifiedfrom CollierInnandJosslyn, exhibits adecreaseinvessel wall thicknessandlessvariablecolorsandsurfacefinishing.Thissandtemperedpotteryischaracterizedbymeanbodythicknessofabout7mm(withmostpotteryrangingbetween5mmand10 mm),predominantlydarkorgray,poorly-toverypoorly-oxidizedsurfaceandcore colors,andmostlywell-smoothedsurface finishing (category D). Vessel form is variable,withoutslanting,vertical,andincurving/inslantingorientationsoccurringinapproximatelyequalproportions.Flat/squaredandroundedrimshapesarealso typical, occurringinapproximatelyequalproportions.

PAGE 165

Pottery Variability157e ,'. oIk..\. , em5Figure22.Sand-temperedPlain(a-h)andSPCBPlain(i-I)rimprofilesfrom8CH38,CashMound(seeAppendixFforexplanation).FromCaloosahatcheeI to IIperiods,thereis a shift frompredominantlyincurvingorinslantingforms(thatis, formswithrestricted vesselopenings)to anabundanceofbothrestrictedandunrestrictedforms.Thischangemayindicatethatpotterycontainersplayedanincreasedroleintheactivitiesofthemakers/usersduringCaloosahatcheeIIandlaterperiods.Domesticpotterygenerallyservesascon tainers for storage, cookingorprocessing,andservingortransfer(Rice 1987:208).Ethnographically,potterycontainersusedforstoragegenerallyhavesmallerormorerestricted vessel orificesthandocontainersusedincooking/processingandserving/transfer.Vesselsusedinservingortransferhavelarger,evenmoreunrestrictedorificesthancooking/processingvessels (seediscussioninRice 1987:236-240). Therefore,wecanhypothesizethatCaloosahatcheeIpotteryvesselsmayhaveservedprimarilyascontainersfor storage,whileCaloosahatcheeIIandlatervesselsmayhaveservedawiderrangeof functions,perhapstheentiregamutofdomesticfunctions.However,therelationshipsbetweenvessel formandfunctiondonotalwaysholdtrueethnographically,andtheyaredifficult todocumentarchaeologically(Rice 1987:236-242, 210 211, 224-236). ThecomparisonsregardingBelleGladePlainpotteryprovidethebasisforfurthermodifyingtheCaloosahatcheeIIandIII-IVsequencedefinitions.BelleGladePlainfromCaloosahatcheeII contexts, asidentifiedfrom Josslyn (Caloosahatchee IIsubsample)andCollier Inn, ischaracterizedbymeanbodythick nessof5.8mm(withmostofthepotteryrangingbetween4and8mm),meanrim thicknessranging1-2mmgreaterthanmeanbodythickness,andflat/squaredrimshapes.BelleGladePlainpotteryfrom Caloosahatchee III toIVcontexts, as identifiedatBuck Key (Caloosahatchee III-IV)andJosslynIsland(CaloosahatcheeIIIsubsample),showsaslightdecreaseinbodythickness,andanincreaseinrimthickness. Theincreaseinrim thickness is reflected intheincreaseandpredominanceofexpandedflatrim/lipshapes.Meanbodythickness is 5.7mm,butrangesprimarilybetween3and7mm;rimsaverage2 to 4mmgreaterthanbodythickness. Characteristicscommontobothtimeperiodsincludevariablesurfaceandcorecolors,scraped,unsmoothedorpartiallysmoothedexteriorsurfacefinishing,well-smoothedorwell-finishedinteriorsurface finishing,andoutslantingvessel wallorientation.Theattributesconsistentlyusefulformakingtemporaldistinctions in BelleGladePlainpotteryincluderimthickness,thedifferencebetweenrimandbodythicknessand,to a lesserdegree,bodythickness. Ves sel form, color,andsurface finishingdonotexhibittemporallydiagnosticvariation.The differencebetweenBelleGladePlainandSandtemperedPlainpotteryintermsofvessel formdeservessomemention.Inthepresentstudy,outslantingformsarepredominantfor BelleGladePlainversus avarietyofvesselshapesforSand-temperedPlain pottery. Followingtheabovediscussionregardingpossible functional differencesthroughtimeinSandtemperedPlainpottery,wecanhypothesizethatBelle

PAGE 166

158Culture and Environment in the Domainofthe CalusaTable 29. Intersite Formal and Technological Variability in Early Sand-tempered Plain.Site Number8LL518CH38TotalA.RIM/LIPSHAPE (Rim Subsample)Thick/FlatBeveled 1/3% 0 1Flat/Squared6/21% 1/9% 7 Rounded 18/62%3/27%21Round/Beveled01/9%1 Chamfered 2/7%5/45%7 Thinned 2/7% 0 2 Other 0 1/9% 1 Total291140B.VESSEL WALL ORIENTATION (Rim Subsample) Incurving/Inslanting 4/24%5/83%9 Vertical5/29%1/7% 6 Slightly Outslanting 1/6% 0 1 Outslanting5/29%0 5Compound2/12% 0 2 Total17623C.CORE COLOR/DEGREE OF CORING (Rim Subsample)(l)NoCoring2/7%0 2(2)Light Coring 4/14%1/9%5(3)ModerateCoring3/10%0 3(4)HeavyMediumCoring5/17%3/27%8(5)HeavyDark Coring 15/52%7/64%22Total291140D.EXTERIOR SURFACE COLOR (Rim Subsample)(1)Well Oxidized8/28%3/27%11(2)Moderately Oxidized 1/3%3/27%4(3)Poorly Oxidized 10/34.5%3/27%13(4)Very Poorly Oxidized 10/34.5% 2/18%12Total291140E.INTERIOR SURFACE COLOR (Rim Subsample)(l)Well Oxidized 11/38% 2/18%13(2)Moderately Oxidized5/17%2/18% 7(3)Poorly Oxidized 6/21%4/36%10(4)Very Poorly Oxidized 7/24%3/27%10Total291140F.EXTERIOR SURFACE FINISH (Rim Subsample)(B)Unscraped, Unsmoothed 4/17%3/30%7 (C) Scraped, Partially Smoothed 6/25% 1/10% 7(0)Scraped, Well Smoothed 13/54%6/60%19(E)Scraped, Well Finished 1/4% 0 1 Total241034

PAGE 167

Pottery Variability159Table 29. Intersite Formal and Technological VariabilityinEarly Sand-tempered Plain, continued.Site Number8LLSl8CH38TotalG.INTERIOR SURFACE FINISH (Rim Subsample)(B)Unscraped, Smoothed3/14%2/18% 5(C)Scraped, Partially Smoothed3/14%4/36%7 (D) Scraped, Well Smoothed 14/67%4/36%18(E)Scraped, Well Finished1/5% 1/9%2 Total211132 H. BODY/WALL THICKNESS (Rim Subsample) mm20/69%6/55%26 9/31%5/45%14Total2911401.MEANBODYAND RIM THICKNESS (Rim Subsample) Mean Body Thickness9.5mm9.6mmnot applicable Mean Rim Thickness7.9mm8.8mmanotapplicable Mean Difference (Rim-Body) -1.7mm-0.7mmanotapplicable Mean Diameter 25.9 cm21.0cmnotapplicable Sample Size -# Body/#Rim/#Diameter29/29/1411/10/4not applicableaAn extreme rim thicknessvalueof 20.7mmwasexcluded from the calculations.\ \ \,...CC ,'-,, .. r ..sIt, ,\, 5em \\ II,Io\\\ \Figure 23. Belle Glade Plain (a-j) and SPCB Plain (k-cc) rim profiles from 8LL722, BuckKeyShellMidden (seeAppendixF for explanation).

PAGE 168

160Culture and Environment in the Domainofthe CalusaTable 30. Formal and Technological VariabilityinBelleGlade Plain.SiteNumber8LL722 8LL32 8LL32 8LL51Total CaloosahatcheeIIICaloosahatchee 1IA.RIM/LIP SHAPE (Rim Subsample) Thick/Flat&Beveled 8/67% 13/59% 7/33% 4/27%32Flat/Squared2/17% 7/32% 10/48%5/33%24Flat/Beveled 2/17% 1/5%3/14%5/33%11Rounded 0 1/5% 1/5% 1/7% 3 Total1222211570B.VESSELWALL ORIENTATiON (Rim Subsample)Incurving/lnslanting1/10% 0 0 0 1 Vertical3/30%4/22% 4/25% 1/11%12Slightly Outslanting 2/20% 0 4/25% 1/11% 7 Outslanting 4/40% 14/78% 8/50% 7/78%33Total101816953C.CORE COLOR/DEGREE OF CORING (Entire Sample)(1)NoCoring5/6%16/18% 19/13%2/1%42(2)Light Coring 0 2/2% 11/7%4/2%17(3)Moderate Coring 10/12% 17/19% 34/23% 19/9%80(4)Heavy Medium 35/41% 20/22% 19/13% 77/38%151Coring(5)Heavy Dark 35/41% 35/39% 64/44% 100/50%234Coring Total8590147202524D.EXTERIOR SURFACE COLOR (Rim Subsample)(1)Well Oxidized 0 6/29% 0 0 6(2)Moderately 2/17% 0 4/19% 6/40%12Oxidized(3)Poorly Oxidized 6/50% 10/48% 11/52% 6/40%33(4)Very Poorly 4/33%5/24%6/29%3/20%18Oxidized Total1221211569E.INTERIOR SURFACE COLOR (Rim Subsample)(1)Well Oxidized 05/23%1/5% 0 6(2)Moderately 2/17% 7/32% 6/29%5/33%20Oxidized(3)Poorly Oxidized 9/75% 7/32% 11/52% 8/53%35(4)Very Poorly1/8%3/14%3/14% 2/13% 9 Oxidized Total1222211570F.EXTERIOR SURFACE FINISH (Rim Subsample)(A)Scraped, 6/50% 16/84% 11/52% 6/55%39Unsmoothed(B)Unscraped, 0 2/11% 4/19%1/9%7 Smoothed(C)Scraped, Partially 6/50% 1/5% 5/24%3/27%15Smoothed(D)Scraped, Well 0 0 01/9%1 Smoothed(F)Scraped, 0 0 1/5% 0 1 Burnished Total1219211163

PAGE 169

Pottery VariabilityTable30.FormalandTechnologicalVariabilityinBelleGladePlain,continued.161SiteNumber8LL7228LL328LL32Caloosahatchee III Caloosahatchee II8LL51TotalG.INTERIOR SURFACE FINISH (Rim Subsample)(B)U nscraped, 0 0 0 2/14% 2 Smoothed(C)Scraped, Partially 0 0 2/10% 0 2 Smoothed(D)Scraped, Well7/64%5/26%6/29% 11/79%29Smoothed(E)Scraped, Well4/36%14/74% 13/62%1/7%32Finished Total1119211465H.BODYWALLTHICKNESS (Entire Sample) s:5mm 41/48% 23/26%35/24%66/33%165 <5s:7mm 33/39%54/61% 81/55% 112/57%280<7<10mm11/13% 12/13% 32/22% 17/9%72 mm. 0 0 02/1%2 Total85 89148 197519I.MEANBODYAND RIM THICKNESS (Rim Subsample) Mean Body Thickness4.9mm6.1mm6.0mm5.4 mm not applicable Mean Rim Thickness7.9mm8.6mm7.3mm6.7 mm not applicable Mean Difference (Rim-3.0mm1.7mm1.3mm1.3mm not applicable Body) Mean Diameter 29.5 cm31.8cm29.4 cm 26.2 cm not applicable Sample Size#Body/#Rim/12/12/822/22/921/21/1415/15/5not applicable#DiameterGladecontainershadamorerestricted role in the activities of theusersthandidSand-temperedPlainpottery.Onealternativeexplanationfor thispatternisrelatedtothesuggestionthatBelleGladepotterywasbroughtintotheCaloosahatcheeareafrom the LakeOkeechobeeareathroughinterregionalexchange(Luer 1989). Instudiesofarchaeologicalpotterydistributionandtradeithasbeensuggestedthatnestabilityorstackabilityofvesselsisanimportantcharacteristicofpotteryvesselsthatweretransportedoverlargedistances (seediscussioninRice 1987:202, 236-242).Theshallow,unrestrictedformsandrangeinmouthdiameterexhibitedbythe BelleGladePlainrimsexaminedinthisstudywouldbe well-suited to stackingornesting; thismightargueinsupportof a nonlocaloriginfor BelleGladepotteryinsouthwestFlorida.Withthisinmind,regardlessof possible functional differences,perhapstheabundanceofshallowopenbowlformsinthesesouthwestFlorida sites canbeexplainedintermsofrepresentinganeasilytransportablecommodity.Determiningtheoriginofmanufacturefor BelleGladepotterywillallowthispropositiontobetested.Althoughsamplesizes of SPCBPlainareextremelysmall,someprovisionalstatementsoftemporaldif ferencescanbemade.SPCBPlainfromCaloosahatchee II contexts,asidentified from CollierInnandCashMound,shouldresembleCaloosahatcheeIISand-temperedPlainin technologicalandformal attributes,whilesomeSPCBpotteryfromCaloosahatcheeIII-IV contexts (as identifiedfromBuck KeyandJosslyn)shouldapproachBelleGladePlain in characteristicsofbodyversusrimthickness,rimform,andvessel form. Theattributesusefulformakingpossibletemporaldistinctionsincluderimshapeandthedifferencebetweenrimandbodythickness. SUMMARYANDRECOMMENDATIONS IninvestigatingpotteryvariabilityIhaveattemptedtoimproveourunderstandingofpotteryproductionthroughtimeandspaceinsouthwestFlorida. Six specificresearchobjectiveswereaddressed,beginningwithcharacterizationanddescriptionofpastevariability. We cansaywithconfidencethatthepotterysamplesexaminedin thisstudyareclearlycharacterizedbygreaterpastevariationthanhadbeentraditionallyassumedfor this area.Under70Xmagnification,fourcategoriesofpastecanbedistinguishedandconsistentlyrecognized,accountingfor94%ofthesherdsexamined:sandypastesAandB,characterizedbyabundantquartzsandandfewornoacicularspongespicules;andspiculepastesAandB,characterizedbycommontoabundantquartzsand

PAGE 170

162Culture and Environment in the DomainoftheCaZusaTable 31. Intersite Formal and Technological Variability in SPCB Plain.SiteNumber8LL7228LL328LL518CH3BTotalA.RIM/LIPSHAPE (Rim Subsample)Thick/Flat&Beveled5/23%1/17%a a6Flat/Squared8/36%5/83%3/33%2/40%18Flat/Beveled5/23%a2/22% 1/20% 8 Rounded3/13%a2/22% 1/20% 6Round/Beveled1/5%a1/11%a2 Thinneda a1/11%a1 Othera a a1/20% 1 Total226 9 542B.VESSEL WALL ORIENTATION (Rim Subsample) Incurving/Inslanting 4/21%a2/25%a6 Slightly Incurving or1/5%a a a1 Inslanting Vertical7/37%1/25% 1/12.5% 1/33%10Outslanting7/37%3/75%5/62.5% 2/67%17Total194 8 3 34C.CORE COLOR/DEGREE OF CORING (Entire Sample)(1)NoCoring3/2%a a1/9%4(2)Light Coringa a a a a(3)ModerateCoring8/6%a10/10%1/9%19(4)HeavyMedium3/2%a1/1%a4 Coring(5)Heavy Dark 121/90% 20/100% 89/89% 9/82%239Coring Total1352010011266D.EXTERIOR SURFACE COLOR (Rim Subsample)(1)Well Oxidized1/5%a a1/20% 2(2)Moderately2/9%a1/11% 1/20% 4 Oxidized(3)Poorly Oxidized7/32%1/17% 4/44% 1/20%13(4)Very Poorly 12/55%5/83%4/44% 2/40%23Oxidized Total226 9 542E.INTERIOR SURFACE COLOR (Rim Subsample)(1)Well Oxidizeda a a2/40% 2(2)Moderately6/27%a2/22%a8 Oxidized(3)Poorly Oxidized4/18%3/50%5/56%2/40%14(4)Very Poorly 12/55%3/50%2/22% 1/20%18Oxidized Total226 9 542

PAGE 171

Pottery VariabilityTable31.IntersiteFormalandTechnologicalVariabilityinSPCBPlain,continued.163SiteNumber8LL722 8LL32 8LL518CH38TotalF.EXTERIOR SURFACE FINISH (Rim Subsample) (A) Scraped, 0 1/17% 1/11% 0 2 Unsmoothed(B)Unscraped, 0 1/17%4/44%1/20% 6 Smoothed (C) Scraped, Partially 4/18% 1/17% 1/11% 0 6 Smoothed (D) Scraped, Well 13/59% 2/33% 2/22%3/60%20Smoothed(E)Scraped, Well5/23%1/17% 1/11% 1/20% 8 Finished Total226 9 542G.INTERIOR SURFACE FINISH (Rim Subsample)(B)Unscraped, 0 0 0 1/20% 1 Smoothed (C) Scraped, Partially3/14%1/17% 1/11%2/40%7 Smoothed(D)Scraped, Well 17/81% 4/67%7/78%2/40%30Smoothed(E)Scraped, Well1/5%1/17% 1/11% 0 3 Finished Total216 9 541H.BODY/WALLTHICKNESS (Entire Sample) 23/19%5/25%2/2%1/9%31 >5$7mm 57/47% 10/50% 69/69%3/27%139>7<10mm34/28%4/20%24/24%6/55%68 7/6%1/5%5/5%1/9%14Total1212010011252I.MEANBODYAND RIM THICKNESS (Rim Subsample) Mean Body Thickness6.7mm6.0mm6.9mm7.4 mm not applicable Mean Rim Thickness7.2mm 6.6mm6.1mm6.4 mm" not applicable Mean Difference (Rim-1.4mm1.3mm-0.9mm-1.0 mm" not applicable Body) Mean Diameter 24.2 cm22.0cm 28.2 cm 27.0 cm not applicable Sample Size # Body/#Rim/#22/22/146/6/19/9/55/4/2notapplica ble Diameter "An extreme rim thicknessvalueof 20.6mmwasexcluded from the calculations.andcommontoabundantacicularspongespicules.Intraditionalclassification,onlytwocategorieswouldprobablyhavebeendistinguished:sandypastepottery,whichwouldsubsumesandypasteAandBandspiculepasteB categories,andBelleGladepottery,whichwouldsubsumespiculepasteA.Withrespectto thesecondresearchobjective,thatis, thedeterminationofnumbersorkindsofclaysusedinmanufacture,petrographicexaminationandrefiringofsubsamplesofthesecategories revealsthatfive clayorresourcegroupsarerepresented:oneaccountingforthesandypasteAandB categories from Buck KeyandoneforsandypasteAandB fromUseppa;twofor BelleGladejspiculepasteA;andoneforSpeB.This isnotintendedtosuggestthatonlyfivediscreteclaysourcesarerepresented;instead,eachhypotheticalresourcegroupingrepresentsclayshavingsimilarphysicalproperties.Assessmentanddescriptionofthe projectarea's"ceramicenvironment"intermsofavailableclayresourceswasthethirdobjectiveofstudyandonethatrequiresfurtherinvestigation.Mostofthesedimentsamplescollectedthusfar forcomparisonwiththepotteryareunsuitableforuseinpottery-makingdueto excessivequantitiesof siltandcoarser aplastics. Inaddition,mostof thesamplesthatweresuitablefor

PAGE 172

164CultureandEnvironment intheDomainoftheCalusa .... \,kt,\ \,, .. \0em5\Figure24.BelleGladeRed(a-e), SPCBPlain(f-h),andmiscellaneousrimprofiles(i-j=Grog-temperedPlain,k=PinellasPlain,I=St.JohnsPlain)from8LL32,JosslynIslandMound(seeAppendixFforexplanation).potterymanufacturearecalcareous in composition,whilemostofthepotterywasmadefrom non-cal careous clays. Thepreliminaryassessmentofclay resourcesfromsouthwestFloridadoesindicate,however,thattheeffective ceramicenvironmentfor theinhabitantsofCharlotteHarborjPineIslandSoundarea archaeological sitesmayinvolve abroadgeographicalarea. Soilsurveydescriptionsindicatethatclayey soilsorsubsoilsarenotpresentinthebarrierislands, thereforesuitableclay sourcesmaynotbeaccessibleintheimmediatevicinity ofsomeofthe archaeological sites. SoiltypeswithsandyclayloamsubsoilsarelocatedininlandareasofthesouthwestFloridaregion.Becauseinitialsamplingwasrestrictedprimarilyto the vicinityofcertainbarrierislandarchaeologicalsites,noneoftheseweresampledfor analysisinthepresentstudy.These soil typesandcertaininlandmucksoilsshouldbeconsideredas significantpotentialresources forpurposesoffurtherandmorethoroughdocumentationoftherangeofclayresourceopportunitiesinsouthwestFlorida.Thefourthresearchgoalfocuseduponassessing thegeographicmanufacturingoriginofthepotterysamples.Preliminaryefforts toanswerthisquestionhavenotbeenverysuccessful. Thisinvestigationhas,however,yieldedevidenceforreconsiderationofcertaintraditionalassumptionsandtentativeconfirma tionofothers. Ingeneral,muchofthe aplasticandcolorvariationinthepotterycanbeexplainedbylocal resources,butthisdoesnotconstitutedefiniteproofoflocalmanufacture.Directevidenceoflocalmanufactureofpresumedorsuspectedlocalppttery,in theformofmatchinglocal clays, is limited.ComparisonstolocalresourcesdoindicatethatsandypasteC(Goodlandpottery)andpossiblysomelimestonetemperedpotterymaybelocal.Comparisonsbetweenpotterysamplesindicatethatlocal originscanbeextendedto Glades Tooledpotteryiftheassumptionof localoriginforSand-temperedPlainpotteryis avalidone. Inaddition,nonlocaloriginoffiber-temperedandmicaceouspastepotteryissupported.Thetraditional,presumednonlocalstatusforotherpotterycategories,includingBelleGladeandSt. Johnspaste,willprobablystanduntilunequivocalevidenceoflocalmanufacturecanbedocumented.Furthercollectionandanalysisofclayeysedimentsandpotterysamplesfromtheprojectareaandadjacentregionsarenecessaryinorderto resolve satisfactorilythequestionofpotteryorigins.

PAGE 173

Pottery Variability1655 .. 9.. \ \ \\\.\\. \\. \. '.n '..... .. \.\ . '., .,, \ l,t 'w. V, .. \\. \\\,\,,\aemr\ '. , Figure25.BelleGladePlainrimprofilesfrom8LL32,JosslynIslandMound(a-iCaloosahatcheeIII,j-wCaloosahatcheeII)(seeAppendixFforexplanation).The fifth goal,refinementofWidmer'schronologybyevaluationofthechronologicalsignificanceofpastevariability,wasinvestigatedbymakingstratigraphiccomparisonsofpotterytypefrequencies.Thesecomparisonsrevealedthatcertainpastecate goriesaremoreusefulthanothersfor chronologicaldetermination.Theobservedtrendsinclude(1)generalpredominanceandlongevityofmanufactureand/oruseofsandypastepotteryfromCaloosahatcheeI to IV; (2)absenceofBelleGlade/spiculepasteApotterypriortoaboutA.D. 650 (beginningofCaloosahatcheeII)andincreaseinmanufacture/acquisitionand/orusebetweenaboutA.D. 650and1350 (Caloosahatchee II-III);(3)decreaseinBelleGladepotteryinCaloosahatcheeIV;(4)absenceofmanufacture/acquisitionand/oruseof SPCBpotterypriortoaboutA.D. 650 (CaloosahatcheeII);and(5) increase in SPCBpotterythroughtimeinlatecontexts(CaloosahatcheeIV). The firsttwotrendsarewell establishedfortheregion,butthelatterthreemayprovesignificantinmakingusefulrefinements to the existingsouthwestFlorida chronology. Asummarylist ofotherobservationsortrendsrecognizedfromstratigraphiccomparisonincludesBelleGladeRedasa possibleindicatoroflate CaloosahatcheeII,reconsiderationof thetimeframe forsubperioddivisionsonthe basisofGladesTooledpottery,WeedenIslandseriestypesrestrictedtoCaloosahatcheeIIcontexts,occurrenceofgrog-temperedpotteryinCaloosahatcheeIIIandIV con texts,andoccurrenceofGlades Red in Caloosahatchee II-IV assemblages.Thesixth goal,refinementoftheexistingchronologythroughdescriptionofvariabilityintechnologicalandformalattributestraditionallyviewedastemporallysensitive,wasinvestigatedbymakingintersitecomparisonsofdata.Thepotterytypeorcategorydescriptionspresentedarebasedoncarefulandobjectivemeasurementorobservationoftechnologicalandformalcharacteristics. Themethodsandstandardsofmeasurementorobservationaredescribedexplicitly, so thereshouldbenoambiguityinusingthesedataforcomparativepurposes.Severalpotentialrefinementswereidentified.Sand-temperedPlainpotteryshowschangesintechnologyandformthroughtime. Specific characteris ticsincludedecreaseinthicknessandincreaseincon sistencyofmanufactureintermsoffiringandfinishing,andchangeinrimshapeandvesselform.CaloosahatcheeIsamplesarecharacterizedby"thick" vessel walls,variablefiringandfinishingmethods,roundedandchamferedlips,andincurvingorinslantingvessel wallorientation.Sand-temperedPlainpotteryfromlatercontexts ischaracterizedbydecreasedthicknessofvessel walls,increasein consistency offiringandfinishing,increaseinflat/squaredrimshapes,andincreaseinvariabilityinvessel wall orien tation.Inaddition,someSand-temperedPlainpottery

PAGE 174

166Culture and Environmentinthe Domainofthe Calusa,. ,q\,\\\5emon , ...'. ., , ,Figure26. BelleGladePlain(a-i)andSPCBPlain(j-p)rimprofilesfrom8LL51,CollierInn,UseppaIsland(q = St.JohnsPlainHseeAppendixFforexplanation).inlate contexts (Caloosahatchee III-IV) mimics BelleGladePlainpotteryin rimshapeandvessel form.Manyof theseobservationscorroboratesimilarbutpoorlyquantifiedobservationsmadeonpotterysamplesfromtheCapeHazeareaandthecentralpeninsularGulfcoast.FromCaloosahatcheeIItoIII-IVcontexts,BelleGladePlainpotteryundergoesaslightdecreaseinbodythicknessandmarkedincreaseinrimthicknessandhenceinthe differencebetweenrimandbodythickness. Thesechangesarerelatedtoanincreaseintheproportionofexpanded,flatrim/lipshapes.ThesetrendscorroborateobservationsmadeonpotteryfromtheLakeOkeechobeeareaandmaythereforehaveregional utility. SPCBPlainpotteryalsoappearstochangethroughtime,butthisobservationisbasedonanextremelysmallsamplesize. SPCBpotteryfrom Caloosahatchee II contextstendsto resembleSand-temperedPlainpotteryfromCaloosahatcheeII contexts,whileSPCBpotteryfromlatercontextstendsto resemble BelleGladePlain pottery.Duetothesmallsamplesize, theseobservationsrepresenttentativerefinementsandshouldbeusedcautiously.Furtherdocumentationofcomparableobservationsatmoresitesisrecommendedto establishtheirapplicabilityona regional scale. Theseobservationsoftemporalvariationinpaste,technological,andformalattributesprOVidethebasisforrevisingWidmer'sCaloosahatcheeceramicse quence.Therevised ceramicsequenceissummarizedinTable 33. In this revision, IredefinetheCaloosahatcheeperiodsbyspecifyingvariabilityinpaste,andintechnologicalandformalattributesofplainpottery,aswell astraditionalminoritydecoratedwares.ThisstudyclearlydemonstratesthechronologicalpotentialofplainpotteryinsouthwestFlorida.Intheabsenceofdiagnosticdecoratedpottery,it is possible togaintemporalcontroloverundated,undecoratedpottery,butthisdependsuponaccuratecharacterizationofpasteandcarefulexaminationoftech nologicalandformalvariabilityattheregionalscale.Manypreviousbutpoorly-quantifiedtemporaltrendsforpotteryfromthisareaandadjacentareaswerecorroboratedbythepresentstudy.Thiscorroborationsupportsthe utilityofthesetrends,whenadequatelyquantified,forgainingchronological controloverundatedplainpotteryassemblagesinthebroaderSouthFloridaregion. Alsoimportantis the factthatminoritypasteand/ordecoratedcategories,includingBelleGladeRed,werefoundtohavechronological significance,atleastinthe contextofthefour sitesinvestigated.

PAGE 175

Pottery VariabilityInconsideringtherevisedceramic sequence, it isevidentthattherearestillgapsinourunderstandingofsouthwestFloridapotteryvariability. While this efforthassucceededinembellishingtheCaloosahatcheeIperioddefinition,ithasfailed toprovideanybasis forimprovingtemporalcontrolwithinthe1200yearCaloosahatcheeItimespan.Althoughthisisdisappointing,itisprobablyduetoinadequatesamplesizeratherthantolackofobservabletemporaldif ferencesinCaloosahatcheeIpottery.Thissituationcanberemediedbycomparablestudyofpotteryfromindependentlydated,stratifiedCaloosahatcheeIdeposits.PreViously excavated sitesthatmeetthesecriteriainclude:Wightman(Fradkin1976), Solana(Widmer1986),andearliertestingatUseppa(Milan ich et al. 1984).PotterydatingtotheCaloosahatchee Vperiodalsoneedstobestudiedtoascertainthenatureofvariabilityinplainpotteryduringpost-con tact times. Theultimategoalofthisinvestigationwastheformulationofamorerigorous,objectively-derivedtypologyforplainpotteryinsouthwestFlorida. Thishasbeenaccomplishedprimarilybymicroscopic examinationof paste.Ofthefourpastecategoriesthatwereconsistentlyrecognized,Iconsiderthreetobesignificant forformulatingapastetypologyforplain167pottery.The firstcategoryconsists ofsandypasteAandB categories (combined);thesecondis spiculepasteAorBelleGladepottery;andthethirdconsistsofspiculepasteBorSPCBpottery.Inthecontext of the four sitesinvestigated,thesecategoriesaresig nificantintermsofclaysusedinmanufacture;aspastecategories,theyhavechronological significance;andeachchangesthroughtimeintechnologicalandformalcharacteristics. While BelleGladepotterycanberecognizedfairlyconsistentlywiththeunaidedeye, correct identification isinsuredbymicroscopic examination.ItshouldbeemphasizedthatsandypasteandSPCB categoriescannotbesuccessfullydistinguishedunlessa microscope isused.Theutilityofthispastetypologyinfuturepotterystudieswilldependuponuseofmethodscomparabletothosedescribedhere.Thekeytocomparabilitywillinvolvetheroutineuseofamicroscopeininitialcharacterizationandclassificationofmaterials. ThisinvestigationhasmadesignificantprogresstowardbetteringourunderstandingofsouthwestFloridapotteryproductionovertimeandspace.Clearly,however,thereismuchworktobedone,especiallyinthestudyofpotterymanufacturingorigins. Recentand/orongoingexcavationsatthePinelandsite,GaltIsland,Horr'sIsland,andUseppaTable32.SummaryListofPotentialChronologicalRefinementsbasedonTechnologicalandFormalVariationinthePredominantPotteryCategories.SubperiodSand-temperedPlainBelleGladePlainSPCBPlainPoorly-oxidized surfaceandcore Variable topoorly-oxidizedsurfaceandResembles BelleGladecolorsandwell-smoothedsurfacecore colors Plain inrim/formfinishingpredominantScraped,unsmoothedorpartiallycharacteristics Decrease in vesselwallthicknesssmoothedexteriors; well(range=5-7 mm, mean=6.5mm)smoothed/finishedinteriorsSlight increase inrimthickness relative Slightdecreasein vesselwallthicknessCaloosahatchee111-tobodythickness (rimandbody(range=3-7 mm, mean=5.7mm)IVthicknessnearlyequal) Increase inrimthickness (rims 2-4 mmIncreasein occurrenceofflat/squaredthickerthanwalls;meanrimrims(predominant)thickness=8.4mm)Slight increase in occurrenceofIncrease in occurrenceofthick/expandedthick/expandedflatrimsflatrims(predominant)Outslanting,vertical,andOutslantingvessel wallorientationinslanting/incurvingvesselwallpredominantorientationsequallycommonIncreasein consistency ofmanufactureVariable topoorly-oxidizedsurfaceandResemblesSand-Poorly-oxidized surfaceandcore colors core colorstemperedPlain inandwell-smoothedsurfacefinishingScraped,unsmoothedorpartiallytechnologyandformpredominantsmoothedexteriors; wellDecrease inwallthickness (range=5-10smoothed/finishedinteriors mm, mean=7mm);VesselwallsthickerThinvesselwalls(range=4-8 mm, CaloosahatcheeIIthanrims(meanrimthickness=6mm)mean=5.8mm)Increase in occurrence of flatlips(flat/Rimsl-2mmthickerthanvessel wallssquaredandroundedshapesequally(meanrimthickness=7mm)common)Flat/squaredrimspredominantIncreaseinoutslantingandverticalOutslantingvesselwallorientationvesselwallorientation(outslanting,predominantvertical,andinslanting/incurvingformsequallycommon)Variable colorsandsurfacefinishing Thick vesselwalls(range=7-12 mm, mean=9mm)CaloosahatcheeI Vesselwallsthickerthanrims(meanrimthick,ness=8mm)Roundedandchamferedlips typicalIncurving/inslantingvesselwallorientationtypical

PAGE 176

168Culture and Environment intheDomainofthe CalusaTable33.RevisedCaloosahatcheeAreaCeramicSequence.PeriodrrimeRangeGeneralCharacteristicsPotteryDescriptionsCaloosahatcheeVEuropeangoodsNonewdataAD.1500-1750 Mission period aboriginal ceramicsNonewdataSafetyHarbor,Pinellas, Glades Tooled Caloosahatchee III-IV Increase in Sand-tempered PlainpotterySand-temperedPlainCaloosahatcheeIV (predominant) Poorly-oxidizedandcore colors and wellA.D. 1350-1500 Decrease in Belle Glade Plainsmoothedsurface finishing Increase in SPCB Plain Decrease in vessel wall thickness (range=5-7 Small quantities of Glades RedandGrogmm; mean=6.5 mm) temperedpotterySlight increase inrimthickness ( rim,bodythickness nearly equal) Increase in occurrence offlat/squaredrims (predominant) Slight increase in occurrence ofthick/ex-pandedflat rims Outslanting, vertical,andinslanting/incurv-ing vessel wall orientationsBelleGladePlainVariable to poorly-oxidized surfaceandcore colors Englewood ceramics Scraped,unsmoothedorpartiallysmoothedCaloosahatcheeIII St. Johns Check Stamped exteriors;well-smoothed/finishedinteriorsAD.1200-1350 Continued predominance of Belle Glade Plain Slight decrease in vessel wall thickness Small quantities of Glades RedandGrog(range=3-7 mm, mean=5.7 mm) tempered PlainandBelle GladeRed Increase in rim thickness (mean rim Continued occurrence of Sand-tempered thickness=8.4 mm; rims average2-4mmPlainandSPCB Plain thicker than walls) Increase in occurrence ofthick/expandedflat rims (predominant) Outslanting vessel wall orientationpredominantSPCBPlainResemblance to Belle Glade Plain inrim/formcharacteristics Belle Glade PlainpredominantCaloosahatcheeIIBelle Glade RedSand-temperedPlainCaloosahatcheeliBSmallamountsof Weeden Island seriesandIncrease in consistencyofmanufacture AD.800?-1200 related pottery? Poorly-oxidized surfaceandcore colorsandSmall quantities of Glades Red well-smoothed surface finishing Continued occurrence ofSand-temperedDecrease in wall thickness: range=5-10 mm, PlainandSPCB Plain mean=7 mm; vessel walls thickerthanrims (mean rim thickness=6 mm) Increase in occurrence offlat/squaredlips(flat/squaredandroundedshapesequally common) Increase inoutslantingand vertical vessel First appearance of Belle Glade Plain wall orientation (outslanting,inslanting/in-curvingforms equally common) Increase in Belle Glade PlainthroughtimeBelleGladePlainDecrease inSand-temperedPlain Variable to poorly-oxidized surfaceandcore First occurrence of SPCBpotterycolorsCaloosahatcheeIIA SmallamountsofWeeden Island seriesandScraped,unsmoothedorpartiallysmoothedAD.650-800? related decoratedpotteryexteriors;well-smoothed/finishedinteriors Small quantities of Glades Red Thin vessel walls (range=4-8 mm; mean=5.8 AbsenceofBelle Glade Red? mm) Rims average1-2mmthicker than vessel walls (mean rim thickness=7 mm)Flat/squaredrimspredominantOutslantingvessel wallspredominantSPCBplainResemblance toSand-temperedPlain in technology and form Caloosahatchee I Sand-tempered PlainpredominantSand-temveredPlainLaminated/contortedpastepresentVariable colorsandsurface finishing SmallamountsofSt. Johns PlainandThick vessel walls (range=7-12 mm, mean=9CaloosahatcheeI "Hopewellian" decoratedpotterymm) 500 B.C.-AD.650Belle Glade Plain absent Vessel walls thicker than rims (mean rim SPCBpasteabsent thickness=8 mm)Roundedand chamfered lips typicalIncurving/inslantingvessel wall orientation typical

PAGE 177

Pottery VariabilityIslandarefurnishingadditionalpotterysamplesthatpromiseto test the chronological refinementsputforthinthischapter.However,furthercollectionandanalysisofclaysandpotterysamples from the project areaandadjacent regions willbenecessary ifweare toadvanceourunderstandingofpotteryorigins,andhence,ourunderstandingofthemakersand/orusers of thispottery.ACKNOWLEDGMENTS All analyseswerecarriedoutinthe Ceramic TechnologyLaboratoryoftheFloridaMuseumofNaturalHistory. ThischapterhasbenefittedfromtheconstructivecriticismsofWilliamMarquardt,JeraldMilanich, LeeNewsom,ClaudinePayne,PrudenceRice,DonnaRuhl,andMichael Russo.MeraldClarkproducedthe illustrations.FrankBlanchard, Univer sityofFloridaDepartmentofGeology, is gratefullyacknowledgedforcorroboratingcertain mineralidentificationsandfor theloanof apolarizingmicroscope forthepetrographicanalysis.169

PAGE 178

170Culture and EnvironmentintheDomainoftheCalusaAPPENDIX A. EXAMPLE OF RAWDATAPRINT-OUTSHOWINGCODINGFORMATE E E E E I'E EVIVE0 '"'"I'vi/I /I/II ,9"'"'"' "'0"' "' "'"'OJ OJ OJ OJQ;c c c cX.>c .>c.>c .>cE 0 0 0 0W:c:c :c :c"0"0l-I-l-I-Q;OJOJ>->->->-.D(5 (5"8"8"8 "8 E0 0 :J CJ) CJ) "'aJaJaJ aJ Z ;.e E .e.e; ;OJOJ 0 C''':JC C 0 0 "'"' "'"'"'"'OJ ,-0 c 0> VJC>-"0"E ,"E "E"E"EliJOJc o Q;155cOlcOJ OJ1:OJ OJ OJOJC;;:JOl'0;OJ.e.eOl.e.e.e .eU.DalOJC"c'0;:J CJ)CJ) 'iii CJ) CJ) CJ) CJ) OJ 0 OJ E c..cIi:OJ 0 C" '0$:'0 '0 '0 '0I:Jii:(J)coco 0 0z z>,OJ"EOJOlL1.E E"EE E E E :Jrl 000 c:::!:OJ"' 0 OJ"'OJ 0 Ui0 E :J :JOJ:J :J:J:JcoOJ 0X C. ,.eOJco 0 0 .e 0 0 0 0 u:I-..JwCJ):::!: CJ)0 c..uii:u u CJ) u u uU 8728038LL32A2012CHECKCHKAI1 11. 3 11 8728038LL32A2012CHECKCHKA13 117.92 8728038LL32A2012CHECKCHKA2537.61 8728038LL32A2011INCSDSANDA53.8&728038LL32A20110PLAINSANDA5 249.313 5 8728038LL32A2012PLAINSANDA414.02 8728038LL32A2012PLAINSANDA327.18728038LL32A2011PLAINSANDA14.98728038LL32A2011REDSANDA315.91 8728038LL32A2013REDSANDA5 131.63 8728038LL32A2013PLAINSPCS5110.83 8728038LL32A2012PLAINGROG3 213.22 8728038LL32A2011PLAINGROG42.61 8728038LL32A2011PLAIN LAMIN 5 17.11 8728038LL32A2012PLAINSPCA118.111 8728038LL32A2013PLAINSPCA31 2 14.1 11 8728038LL32A2015PLAINSPCA4 1151.62 2 8728038LL32A2018PLAINSPCA521112.326FlaMNHcataloguenumber:87-28-03Provenience:8LL32OosslynMound),TestA2, Level 1PotteryInventory:4 SI.JohnsCheckStamped(veryfinepaste)2 St,JohnsCheckStamped(finepaste)1unidentifiableincised,sandypaste15Sand-temperedPlain(2rims)4GladesRed(onerim)3 SPCBPlain(onerim)3Grog-temperedPlain(2 rims) 1PinellasPlain(rim)18 BelleGladePlain(3 rims)CodedDataforOneRimShowingFormatforRimSUbsample Q;.D E c:J 0E E Ez OJ E0 OJ 0E c:JCEc c6"-,5 ,-.Ola;,!l1OJ"' 0 Q;88g> 0> c0"' "'Ii:';::OJCIl"'OJcQi88888Q;..J15CIlcOl E OJual0::OJliJc.>cc'0;coI...........D.DC..>c 00E E $: 0 :cOJ(5:J't: :J't:...Ijg:c 0 :J:J Z a;l-I-.e(;(; z z :::!:Uii3rl CJ) "'>0 CIlss'i$'i! E "' E "8 0 Ui E CIlcoOJ 0X OJ OJco 0 .t:u:ii: ii::::!:tl1.ll.E8ii: CJ) I-..JWCJ) > aJ 0 c.. 398LL32872810A204.THICKFLATOUTS9.24.6PLAINSPCA28.0AD334

PAGE 179

APPENDIXB.PETROGRAPHIC ANALYSIS QuartzPointCounts Q. AccessoryMinerals 70 X, 1.45 X 1.45mm '"... PasteCategory .a TypeNameN ....tl.. SiteNumberQuartzSpongeSpicules " " PrimaryConstituents "a'".5c:...."".... FlaMNHCatalogueNo. RelativeAbundanceRelativeAbundance c:..c:;;c:"..ii:"..i:lY 0 "'0c:01c::0 0 e'0l:::Ii:;;:a RimNumber(ifape-ii:'5il""';"vii:iN>."'Q..f-< plicable) "....E'0>0 :.:"-If-
PAGE 180

172Culture and Environment in the Domainofthe CalusaAPPENDIXC.ORIGINALANDREFIREDCORE COLORSTableC-l.OriginalandRefired Core ColorsofSherdsafromBLL722andBLL55.FlaMNH Original Original Refired Site Number Catalogue Rim Number Paste Refired Coring Number CoringMunsellColor Munsell Color8LL722 A-27568r-75SANDA 52.5Y2/0310YR4.5/6,7.5YR2.5/08LL722 A-27533 r-43 SANDA 3lOYR3/1,1 2.5YR4.5/8,5YR5/4lOR4.5/48LL722 A-27543 r-45 SANDA 5 2.5Y2/015YR5/78LL722 A-27564 r-72 SANDA 5 2.5Y2/01 7.5YR5.5/6,5YR5/88LL722 A-27514r-21SANDA 5lOYR2/12lOR4/8,7.5YR5/l,3/08LL722 A-27531 r-148SANDA5 2.5Y2/01 7.5YR4.5/6 GLADES TOOLED 8LL722 A-27526 r-145SANDA3lOYR3.5/1,12.5YR5/6,GLADES TOOLED10YRS/4,5/27.5YR4.5/68LL722 A-27529 r-146SANDA52.5Y2/01 2.5YR4/8GLADES TOOLED 2.5Y3/02.5YR4/8to 8LL722 A-27523-SANDA 3 5YR4.5/6,IlOR4/8,10YR5/2.55YR5/78LL722 A-27564-SANDA 5 2.5Y2/015YR4/3,2.5YR4/78LL722 A-27550 r-l08 SANDB 5 2.5Y2/03 2.5YR4.5/8,7.5YR3.5/0 8LL722 A-27536 r-104 SANDB 5 2.5Y2/0,1 2.5YR4.5/8,7.5YR3.5/210R5/78LL722 A-27537 r-176 SANDB 5 2.5Y2/04lOR3.5/1,2.5YR4.5/58LL722 A-27503 r-78 SANDB 5 2.5Y2/0,15YR5/6,10YR3/25YR4/2-3/18LL722 A-27516 r-28 SANDB 52.5Y2/02lOYR4.5/8,2.5YR3/08LL722 A-27567 r-127 SANDB 52.5Y2/012.5YR5/6,5YR5/62.5YR5/6,8LL722 A-27551-SANDB 5 2.5Y2/015YR5/6,5YR4/llOR4/2,4/1,8LL722 A-27510 r-165 SPCA 5 2.5Y3.5/04lOR6/8,10YR7.5/42.5YR5/3,8LL722 A-27565 r-l72 SPCA 510YR3/1110R5/4,lOYR5.5/6 8LL722 A-27533 r-169 SPCA 5 2.5Y3/012.5YR5/4,2.5YR5.5/8 8LL722 A-27514r-84SPCB 52.5Y2/037.5YR2/0,2.5YR5/78LL722 A-27517 r-133 SPCB 52.5Y2/02 5YR 2.75/1,10R4.5/6

PAGE 181

Pottery VariabilityTableC-l.OriginalandRefired Core ColorsofSherdsafrom 8LL722 and 8LL55,continued.173FlaMNHSiteNumberCatalogue Rim Number Paste Original Coring Original Refired Coring RefiredNumberMunsellColorMunsellColor5YR4/1.4lOR5/6,6/8,8LL722 A-27500-CHKA1 4 7.5YR2/0,3 1l0R4.5/3,5YR4.5/3.5 7.5YR4/08LL722 A-27534-CHKA1 5 2.5Y2/0410YR3.5/1.5,5YR7/68LL55 A-27559-GROG 4 IOYR3.5/2 27.5YR7/4,7.5YR4.5/08LL722 A-27503-GROG 3 IOYR5/2.5,I7.5YR5/5,10YR3/110YR5/18LL722 A-27515-GROG 5 2.5Y2/04 2.5Y6/2,2.5Y4/0aAllsherdsareundecoratedexcept for those labeled Glades Tooled.TableC-2.OriginalandRefired Core ColorsofSherdsafrom 8LL32.FlaMNH Original Refired Site Number Catalogue Rim Number Paste Original Coring Refired CoringNumberMunsellColorMunsellColor8L132 87-28-15 r-91 SANDA 5 2.5Y2/017.5YR5/68L132 87-28-15 r-90 SANDA 5 2.5Y2.5/045Y3.5/18L132 A-27575 r-5 SANDA 5 2.5Y2/015YR4/62.5Y2/0,7.5YR5.5/6,8L132 87-28-10 r-67 SANDB 510YR3/237.5YR2.5/0,7.5YR5.5/4 8L132 87-28-4 r-33 SPCA 110YR5/3,6/215YR7/6,2.5YR6/85YR7/3.5,10YR7.5/4,8L132 87-28-1 r-22 SPCA 3 10YR4/l, 1 2.5YR6/8,10YR6.5/2.55YR7/48L132 A-22410r-14 SPCA 510YR2/1110YR7/4,7/38L132 87-28-15 r-55 SPCA 55Y2.5/1 17.5YR5.5/68L132 87-28-15 r-76 SPCB 5 2.5Y2/045Y4/1.5,7.5YR5/6aAllsherdsareundecorated.TableC-3.OriginalandRefired Core ColorsofSherds a from 8CH38 and 8CH16.FlaMNH Original Original Refired Site Number Catalogue RimNumberPaste Refired CoringNumberCoringMunsellColorMunsellColor5YR5/3,8CH38 A-27604r-llSANDA52.5Y2/045YR3.5/1,5YR4/2,4/4lOYR4/2,5/2,8CH38 A-27604 r-107SANDB210YR 3/l, 1 2.5YR5/82.5Y3/08CH38 A-27604 r-102 SPCB 5 2.5Y2/0510YR3/18CH16 A-27616 CHKA1 110YR6/3,7/4,110YR8/3,7/4-DUNNSCRK.REDIOYR5/38CH16 A-27616-CHKB1 310YR5.5/3.5, 1lOYR7/52.5Y3/0aAllsherdsareundecoratedexcept for the one labeledDunnsCreek Red.

PAGE 182

174Culture and EnvironmentintheDomainoftheCalusaTableC-4.OriginalandRefiredCoreColorsofSherdsafrom8LL51.FlaMNH Vessel Numbel OriginalRefired SiteNumberCataloguePasteOriginal Coring Refired CoringNumberRimNumberMunsellColorMunsellColor8LLSI A-20383v-BSANDA 5 10YR3/1 17.5YR5/6r-110 8LLSI A-20384 v-C SANDA 510YR3/1.5,45YR5/6,r-lll7.5YR3.5/25YR4/2.58LLSI A-20382 v-D SANDA 4 lOYR3/2.5 15YR5.5/5,r-1l210YR5/48LLSI A-20382 v-F SANDA 32.5Y2/0,110YR7/4,r-1l4 lOYR5/4 5YR6/68LLSI A-20397 v-G SANDA 510YR2/1,15YR5/6r-1l57.5YR4/48LLSI A-20382 v-K SANDA 52.5Y2/03 7.5YR4/0,6/4r-122 8LLSI A-20399 v-M SANDA 5lOYR2.5/1.5 15YR5/6,r-1l610YR5/4v-M7.5YR2/0,2.5YR6/7,8LLSI A-20398 SANDA 3 42.5Y5/2,r-1l610YR4/3,5/310YR4/28LLSI A-20382v-ISANDA 5lOYR2.5/1 1 7.5YR5.5/6 r-128 8LLSI A-20382 v-U SANDA 52.5Y2/027.5YR6.5/5, r-126 7.5YR4/08LLSI A-20382 v-U SANDA 52.5Y2/01 7.5YR5.5/6 r-126 8LLSI A-20382 v-V SANDA 510YR2.5/11 7.5YR6/5,r-12710YR7/48LLS1A-20382 v-A SANDB 52.5Y2/01 7.5YR6.5/6tor-10910YR7/48LLS1A-20395 v-J SANDB 5lOYR2/11 7.5YR6.5/6r-1218LLS1A-20381 r-8 SPCA 52.5Y2/0to 1lOYR7.5/45Y2.5/1 8LLSI A-20382 r-10 SPCA 52.5Y2/0to 1lOYR7/4,8/45Y2.5/1 8LLSI A-20398 v-N SPCA 52.5Y2.5/0110YR6.5/48LLS1A-20398 v-W SPCA 55Y3/1to1lOYR7/5to2.5Y3/07.5YR7/58LLSI A-20396 v-H SPCB 52.5Y2/03 7.5YR5.5/6,r-1l87.5YR3.5/0v-I 7.5YR2/0,8LLS1A-20393 r-119 SPCB 52.5Y2/03 lOYR5.5/4 to7.5YR5.5/67.5YR2/0,v-L5YR6/6to8LLS1A-20381 r-120SPCB52.5Y2/05 7.5YR6/6,7.5YR7/5to10YR7/410YR7.5/3.5, lOYR7/5,8LLS1A-20399-CHKA1 2 lOYR5/1, 1lOR6/6,2.5YR6/5 2.5YR6/6Allsherdsareundecorated.bCrossmended vessel designation.

PAGE 183

APPENDIX D. CONTEXTUALDATAFORTHECLAY/SOIL SAMPLESSample#Collection AmounUDateLocationThicknessofForm and ExtentHowIn SituOverlyingSurrounding CulturalVolumeOther Remarks Collector-Township/Sec-DepositofDepositExposed Characteristics Material Natural Features FeaturesSampledRecorder tion/Rangelocated in areaofSt.AugustineSandwithinthe Lee County,FL-unknown;Wulfert/Kesson/L11UseppaIsland;samplecollected bucket lightgray-tansouthofonebag Captiva soilsoutherntip of fromwetsandandtansandandassocia tion 3-27-86unknownauger not recorded Collier (1.5 according to Lee Cordell islandnearareaapproximatelytesting shells; felt shellsInnquarts)CountySoil of formerspring22"belowgroundslightly sticky Survey,but44S/9/2IEsurface characteristics resemble descriptionofKesson Fine Sand areamayhavebeendisturbed;located inareaof slightly stickySt.AugustineLee County,FL-unknown;SandwithintheLL2UseppaIsland;samplecollected bucket feeling,darksouthofWulfert/Kesson/approximately20frombrown,dampmangroves andonebag Captiva soil 3-7-86unknownaugerdarkbrownsandCollier association CordellyardssouthofapproximatelytestingsandwithshellsdunesInn(1quart) to Lee L11 collection site18"belowgroundandunidentifiedCountyoil44S/9/21Esurface greenish rocks Survey; characteristics resemble description of St. Augustine Sand loca ted in areaofKesson Fine Sandwithinthe LeeCountyFL-darkgrayishWulfert/Kesson/UseppaIsland; Captiva soil L13brownwetonebag associationwesternsideofnot3-7-86 island inunknownunknownat surfacemuckymaterial none not recordedrecorded(1.5 to Lee Cordellwithshellsandquarts)Countyoildisturbedarea roots Survey, but44S/9/21Echaracteristics resemble descriptionofWulfert Muckthoughtsamplemightexhibit rclasticity if wet; ocated m areaofLee County,FL-Widespreaddarkbrownto Wulfert Muckwithinthe L14CayoCosta;occurrenceinthe bucketgraysandwithonebagCanaveral/Captivanot3-7-86southcentralapproximately12"mangroveaugercrushedshells;nonethick vegetation recorded (1.5/Kessonsoil Cordellportionofisland islands; overlies testingdrybutslightly quarts) association 44S/19-20/21Eoldbeachdepositmuckyfeeling according to LeeCountySoil Survey; characteristics resemble Wulfert Muck

PAGE 184

AppendixD.Contextual Data for the Clay/Soil Samples, continued.Sample # Collection Amount!DateLocationThicknessofForm and ExtentHowInSituOverlyingSurrounding CulturalVolumeOther Remarks Collector-Township/Sec-DepositofDepositExposed Characteristics Material Natural Features FeaturesSampledRecorder tion/Rangeloca ted inareaofKesson FineSanddepositwithintheWulfert/Kesson/CLee County, FL.-apparentlyoccurs east ofaptivasoil L15 Josslyn Island,inover the entire blackmuckyJosslynonebag association 3-27-86areaof lIwa terunknownsurface oftheat surface plasticsedimentnonenotrecorded(3 accordin!c to Lee Cordell court"watercourtandwithmanyshellsMound,quarts)Countyoil45S/?/22Eotherlowlying 8L132 Survey,butcharacteristics areas resemble description of Wulfert Muck eobably sameas15,butfiner; loca ted inareaofKesson FineSandLee County, FL-depositwithinthe blackmuckyveryeast ofWulfert/Kesson/LL6J osslyn Island,apparentlyoccurs plasticsedimentJosslynonebag Captiva soil 3-7-86eastof the "waterunknownover the entire at surfacenonemangroveswamp(3association Cordell court" surface oflowwithfewer shellsMound,quarts) accordin!c to LeethanL15 8L132Countyoil45S/?/22Elying areas Survey,butcharacteristics resemble description of Wulfert Muck located inareaofEstero Muckwithinthe Lee County, FL-Peckish/Little Pine Island,verywetreddish-Estero/Islessoil LL7 east-centralextensive, inblackmuckysedi-notonebag association 3-8-86unknownsurface (1.5 accordin!c to Leeportionof thementwithmanynonemangroveswamprecorded Cordell mangroveswampquarts)Countyoil islandrootsandshells Survey;44S/25/22Echaracteristics resemble description of Estero Muckthoughtthe samble mightex hi it plasticity Lee County, FL-whenwet; Pine Island, locatedwithineast of area of Randell'sunknown;samplepossiblemiddenRandell's ImmokaleeSandLL8propertycollected from 80bucketdarkbrownishmaterialhouseonebag within the 4-19-86 apprOXimatelyunknownauger black finesandy,pastureImmokalee/MyakkCordell150yardseast of 100cm below testing slightly silty soil overlying to 40cmand(lquart)a soil associ a tion surface below surface 8L133 accordin!c to LeemoundsinmoundsCountyoil former "canal" Survey;44S/7/22Echaracteristics resemble descrition of Immo aleeSand

PAGE 185

AppendixD.Contextual Data for the Clay/SoilSamples,continued.Sample#CollectionAmount/DateLocationThicknessofForm and ExtentHowInSituOverlyingSurrounding CulturalVolumeOther Remarks Collector-Township/Sec-DepositofDepositExposed Characteristics Material Natural Features FeaturesSampledRecorderlion/RangeLeeCountyFL-light olive-graybankof Hickey's unknown;wetplasticsandyCreekontheprobablyprobablyLL9alongnorthclay;sandynearonebag 4-19-86propertyof Robin extensiveunknownbankoffeelingduetosandhammockBrown's(3represents late CordellandJan Brown in horizontallyandcreekabundantfossilsvegetationhousequarts) MioceneTamiamicentral-eastern vertically;andphosphateFormation clay LeeCountyoverliesLLlOpebbles43S/31/27ELee County,FL-unknownbankofHickey'sprobablyalongsouthlight yellowish Creekonthebrownwet,twoprobably LLlO extensive bankofnear4-19-86propertyof Robinhorzontallyandunknowncreekunderdense, sticky-stiffLL9depositandhammockBrown'sbags(2-represents late CordellandJan Brown in vertically;about IS plastic clay; finersandvegetationhouse3quartsMioceneTamiamicentral-easternunderliesLL9ofwaterintexturethaneach) Formation clay LeeCountydepositLL943S/31/27ECharlotte County,FL-Catfish Creekprobably"limeCHIin Charlottemud"deposit, shovelwet,plastic,butonebagHarboratsiteoftypical in shallow contains not 4-18-86 SWFL projectunknownwater sea floors testing forabundantshellsnoneshallowwaterrecorded(1.5Cordell clam collection clamsandfinesandquarts)station"B"42S/18/21EinassociationCollier County,withunknown/notCaloosahatchee CRIFL-spoil pileat7 recorded; spoil MarlorFt. 7 mile 10-9-88 milemarkerof pilewasthoughtThompsonmarker,onebag Alligator Alley(l"shel\1;" (Chionespoil pilenotrecordednot recorded not recordedJohnG.75construction) to originateateaneeala)marls Alligator(1quart)Beriault 49S/SE1/4depthof 360cm formations from Alley below surfaceestimateddepth35/27Eof 360cm below the surface

PAGE 186

AppendixD.ContextualDatafortheClay/SoilSamples,continued.Sample#CollectionFormandSurroundingAmount/DateLocationThicknessofInSituOverlyingCulturalCollector-Township/Sec-DepositExtentofHowExposedCharacteristicsMaterialNaturalFeaturesVolumeOtherRemarksRecordertion/RangeDepositFeaturesSampledCollier County, original FL200 m east at least 30cm;depositionformer slash CR2ofEast-West collected from athoughtto havepine/sawonebag(l3-8-79runwayofdepthof30been "hard pan"drainageditchnotrecorded yellow-tansandpalmettoscrub NaplesAirportquart)JohnG.BeriaultNaplesAirport60cmbelowlayer below a 49S/SE1/4surfacesurficial yellow-area35/25Etansandlayer associatedwithsurficial limestone Collier County, cagrock 0-12cmbelowCR3FL-roadbed ofgroundsurface; "flakes" fromonebag(l7-21-81Airport/Pullingupto 120cm(?)alsoassociatedroadcutdriedpuddlesnotrecordednotrecorded Pulling Road JohnG.Beriault Roadwithshelly in theroadbedquart)49S/13/25Emarl(with PliestoceneChionecancel/ala-Ft. Thompson Formation)unknownornotclay associatedwithstratafrom recorded;whichasampleGomhholheriumCR4 Collier County, collected fromtootwasclay refined 3-29-80 FLBay West "dredgings" recovered; this excavation "marly clay-likenotrecordednotrecorded BayWestsiteonebag(lfrom shelly site (8CR200)wasassociated material" (8CR200)quart)marl-probablyJohnG.Beriault 48S/22-27/26E fromdepthofwithunderlying early 300-350cm Caloosahatcheebelowgroundeneathburials Formationsurfacein a solution hole Collier County,probablyaFL-percolationmangrove60cm(?); swamcL soilCRStest hole at collected from percolation test one half bag (1,''2 accor to the 5-18-88northbank of 60-120cm belownotrecorded hole not recordednotrecorded Rock Creeknotrecordedquart)CollierountyJohnG.Beriault Rock Creek SoilSurvey50S/SW1/4surface2/25E

PAGE 187

Pottery Variability179APPENDIXE.STRATIGRAPHIC COMPARISONS OF POTTERYIPASTE DECORATIVE CATEGORIES (FIGURESSHOWNARE ROW PERCENTAGES;INEACH CELL,TOPPERCENTAGE ISBYCOUNT, BOTTOM PERCENTAGE ISBYWEIGHT)TableEI.StatigraphicComparisons,BuckKeyShellMidden,8LL722,TestPitsC-IandC-2, Combined.BelleSand-SPCB St.JohnsLevelGladetemperedTotalPlainPlain PlainPlainI355I12%83%12%2%421%84%11%1%1320100%0 013100%14130100%00141100%1 40100%001100%Total11905 1197TableE2.StratigraphicComparisons,BuckKeyShellMidden,8LL722,TestPitH-I.Belle SandLevelGladePlaintemperedSPCBPlainTotalPlain210Surface17%83%01241%59%1 8 1 110%80%10%1022%57%21%Total318122TableE3.StratigraphicComparisons,Buck KeyBurialMound,8LL55,TestPitF-I.Belle GrogSt.JohnsLevelGladePlaintemperedPlainTotalPlain1Surface100%0 0 1100%7 1 0100%0 7100%8 9 2 078%22%1747%53%Total115925TableE4.StratigraphicComparisons,JosslynIslandMound,8LL32,TestPitC-I.Level BelleGladePlainTotal1 1100%1100%1 3100%1100%Total2 2TableE5.StratigraphicComparisons,UseppaIsland,CollierInn,8LL5I,TestPitA-I.Level BelleGladeOrangePlainOrangeIncisedSand-temperedSPCBPlainSt. J ohnsPlainTotalPlainPlain5111Surface29%0 065%06%1725%75%1%365426131%0 047%22%011630%46%23%4636414211%0 086%3%04249%87%3%1383 32%0 090%07%42<1%98%2%2253 1 46%0 081%10%3%316%89%4%1%3 5 0 0 0100%0 0 3100%1 3 7 025%75%0 0 0 49%91%Total901 3495435637

PAGE 188

180CultureandEnvironment in the DomainoftheCalusaTableE6.StratigraphicComparisons,UseppaIsland,CollierInn,8LL51,TestPitA-2.Level BelleGladePlainFortDrumIncisedPascoPlainSand-temperedSPCBPlainToPlain3388 16%0 0 78% 16% 49 5% 79%17%4I41 5 2 8% 02%80%10%51 10%1%84% 5% 7I46 7 3 11.5%2%0 75% 11.5%617%2%81% 11% Total14I1 125 20 161TableE7.StratigraphicComparisons,UseppaIsland,CollierInn,8LL51,TestPitA-3.BelleGladeSand-temperedMiscellaneousLevel PascoPlainSand-temperedSPCBPlainSt.JohnsPlainTotalPlain PlainDecorated3121111 11% 0 44%4%41% 0 27 7% 36%2%54% 6 51 4 210%0 84% 06%0616%86%7%191 68 2 3 3 3 20%1%71%2%3%2%9619%1%70% 3% 5% 3% Total 28 11313183 184TableE8.SherdCounts,UseppaIsland,CollierInn,TestPitsA-2andA-3Combined:SherdsinDirectAssociationwithBurials(datedca. A.D. 595-666).Levels BelleGladePlainSand-temperedPlainSPCBPlainSt.JohnsPlainTotal2and328III4I19% 77% 3%1%144combined20% 75% 3%2%

PAGE 189

Pottery VariabilityAPPENDIXF.EXPLANATION OF RIM PROFILESFigure6.GladesTooledRimProfilesfromTestB,8LL722,BuckKeyShellMidden.181RimNumberFlaMNHRim/LipShapeVesselWallMouthDiameterPasteCatalogueNo.Orientationa=r-148A27531flat/beveledoutslanting32.0 em SANDA b= r-175A27531round/beveledoutslanting32.0 em SANDBc=r-153A27518flat/squaredoutslanting20.0 em SANDA d= r-146A27529fla t/squaredoutslanting26.0 em SANDA e= r-179A27554thick/beveledslightlyoutslanting---SANDA=r-147A27522fla t/squaredoutslanting30.0 em SANDA g= r-149A27515flat/squaredvertical---SANDA h= r-145A27526fla t/beveledslightlyincurving22.0 em SANDAFigure7.GladesTooledandRelatedRimsfrom8LL722,BuckKeyShellMidden.RimNumberFlaMNHRim/LipShapeVesselWallMouthPasteTestPitCatalogueNo.OrientationDiametera=r-161A27519flat/squaredvertical 24.0 cm SANDA Test B b= r-144A27533flat/squaredinslanting---SANDB Test Bc=r-156A27551flat/squaredvertical 28.0 cm SANDA Test B d= r-141A27563flat/squaredvertical 17.0 cm SPCB Test Ie=r-155A27520roundedvertical 24.0 cm SANDA Test B=r-154A27520flat/squaredinslanting---SANDA Test B g= r-157A27563flat/squaredunknown---SANDA Test I h= r-152A27517flat/squaredunknown---SANDA Test Bi=r-143A27564flat/squaredunknown---SANDA Test Ij=r-159A27570flat/squaredunknown---SANDA Test B k= r-158A27564flat /squaredunknown---SANDA Test Il=r-142A27569flat/squaredunknown---SPCB Test I m= r-31A27518flat/squaredunknown---SANDA Test Bn=r-151A27516flat/squaredunknown---SANDA Test B0=r-150A27515flat/squaredunknown---SANDA Test BFigure13.RimProfilesofPartiallyReconstructedSand-temperedPlainVesselsfrom8LL51,CollierInn,UseppaIsland.FlaMNHVesselWallCrossmendedRimNumberCatalogueNo.Rim/LipShapeOrientationMouthDiameterVesselDesignationa= r-128 A20382flat/squaredvertical31.0cmvessel T b= r-126 A20382 fla t/squaredvertical 26.0 cm vessel U c= r-115 A20400flat/squaredvertical21.0cmvessel G d= r-114 A20382round/beveledoutslanting28.0 em vessel Fe=r-127A20382flat/squaredvertical-compound16.0 cm vessel V=r-116A20399flat/squaredincurving17.0 em vessel M

PAGE 190

182Culture and Environment in the Domainofthe CalusaFigure17.Sand-temperedPlainRimProfilesfrom8LL722,BuckKeyShellMidden(roundedrims).RimNumberFlaMNHRim/LipShapeVesselWallMouthPasteDecoratedCatalogueNo.OrientationDiameterSherdsa= r-12 A27503roundedoutslanting---SANDA b= r-32 A27520roundedoutslanting22.0cmSANDA c= r-19 A27514roundedoutslanting18.0 cm SANDA d= r-140 A27507round/beveledoutslanting---SANDA Glades Red e= r-10 A27502roundedvertical22.0cmSANDAf= r-67 A27563round/beveledoutslanting27.0cmSANDA g= r-43 A27533roundedvertical 16.0 cm SANDA h= r-36 A27526roundedvertical 20.0 cm SANDA i= r-139 A27531roundedslightlyoutslanting16.0 cm SANDA Glades Redj= r-49 A27550roundedinslanting --SANDA k= r-76 A27570roundedinslanting---SANDA 1= r-15 A27510roundedincurving18.0 cm SANDA m= r-74 A27565roundedinslanting---SANDA n=r-llA27503round/beveledinslanting26.0cmSANDA0=r-64 A27562roundedvertical 21.0 cm SANDA p= r-102 A27535roundedvertical28.0cmSANDB q= r-78 A27503roundedoutslanting32.0cmSANDBr=r-lOOA27533roundedvertical 18.0 cm SANDB s= r-80 A27504roundedincurving22.0cmSANDE t=r-ll0A27556thick/roundedin curving---SANDB u= r-81 A27505roundedinslanting---SANDE v= r-107 A27550thinned/pointedincurving28.0cmSANDBw= r-104 A27536round/beveledinslanting --SANDBFigure18.Sand-tempreredPlainRimProfilesfrom8LL722,BuckKeyShellMidden(flat/squaredrims).RimNumberFlaMNHRim/LipShapeVesselWallMouthDiameterPasteCatalogueNo.Orientationa= r-75 A27568 fla t/squaredoutslanting26.0 em SANDA b= r-70 A27564flat/beveledoutslanting---SANDA c= r-54 A27553flat/squaredoutslanting30.0 em SANDA d= r-46 A27549 fla t/squaredoutslanting26.0 em SANDA e= r-71 A27564 fla t/squaredoutslanting---SANDAf= r-40 A27527 thick /squaredslightly outslanting---SANDA g= r-39 A27527flat/squaredvertical 20.0 em SANDA h= r-34 A27520flat/squaredvertical 20.0 em SANDA i= r-63 A27562 fla t/squaredvertical---SANDAj= r-30 A27518 fla t/squaredslightlyoutslanting20.0 em SANDA k= r-37 A27527 fla t/squaredvertical 20.0 em SANDA 1= r-52 A27552flat/squaredvertical---SANDA m= r-69 A27564flat/squaredincurving --SANDA n= r-61 A27555flat/squaredinslanting 14.0 em SANDA 0= r-47 A27549 fla t/squaredin sIan ting---SANDA P= r-48 A27549 fla t/squaredinslanting 26.0 em SANDA q= r-9 A27502 fla t/squaredinslanting---SANDA r= r-59 A27555flat/beveledvertical 32.0 em SANDA s= r-58 A27554thick/squaredoutslanting28.0 em SANDA t= r-127 A27567thick/beveledoutslanting30.0 em SANDE u= r-95 A27531flat/beveledoutslanting13.0 em SANDB v= r-126 A27565 fla t/squaredoutslanting---SANDBw= r-115 A27562flat/squaredoutslanting19.0 em SANDB x= r-1 A27501flat/squaredvertical---SANDB Y= r-28 A27516flat/squaredvertical 18.0 em SANDE z= r-108 A27550flat/squaredslightly outslanting---SANDEaa= r-98 A27533flat/squaredvertical 18.0 em SANDBbb= r-96 A27531 fla t/squaredvertical 17.0 em SANDB cc = r-83 A27510 fla t/squaredinslanting 20.0 em SANDB

PAGE 191

PotteryVariabilityFigure19.Sand-temperedPlainRimProfilesfrom8LL32,JosslynMound.183RimNumberFlaMNHRim/LipShapeVesselWallMouthDecoratedCatalogueNo.OrientationDiameterPasteSherdsa= r-3A27575flat/squaredoutslanting 24.0 cm SANDA b= r-83 87-28-05 flat /squaredoutslanting 18.0 cm SANDA c= r-94 87-28-18flat/squaredslightlyoutslanting22.0cmSANDA d= r-90 87-28-15flat/squaredvertical 21.0 cm SANDA e= r-89 87-28-12flat/squaredvertical 18.0 cm SANDAf= r-5A27575flat/squaredinslanting16.0cmSANDA g= r-6A27575flat/squaredcompound---SANDA h= r-93 87-28-18round/beveledoutslanting18.0cmSANDA i= r-4A27575round/beveledincurving12.0 cm SANDAj= r-8A27575roundedoutslanting---SANDA k= r-87 87-28-11roundedoutslanting---SANDA1=r-80 87-28-02roundedoutslanting18.0 cm SANDA m= r-84 87-28-05roundedoutslanting---SANDA n= r-88 87-28-11roundedvertical 34.0 cm SANDA0=r-7A27575roundedvertical --SANDA P= r-91 87-28-15roundedincurving38.0 cm SANDA q=r-2A27575roundedincurving --SANDA r= r-85 87-28-05thinned/pointedincurving14.0cmSANDA s= r-66 87-28-15flat/squaredoutslan ting---SANDB t= r-69 87-28-15flat/beveledoutslanting22.0cmSANDB u= r-70 87-28-19 flat /squaredvertical14.0cmSANDB v= r-67 87-28-10 flat /squaredinslanting30.0 cm SANDBw= r-68 87-28-10roundedvertical 22.0cmSANDB x= r-77 87-28-15roundedinslanting18.0 cm SANDB GladesRedFigure20.Sand-temperedPlainRimProfilesfrom8LL51,CollierInn,UseppaIsland(roundedrims).RimNumberFlaMNHRimlLipShapeVesselWallMouthPasteCrossmendedVesselCatalogueNo.OrientationDiameterDesignationa=r-l13A20382roundedoutslanting---SANDAcrossmendedvessel E b= r-117A27379roundedoutslanting28.0 cm SANDAcrossmendedvessel P c= r-112 A20382roundedoutslanting18.0cmSANDAcrossmendedvessel D d= r-97 A20399roundedoutslanting34.0cmSANDA e= r-98 A20399roundedoutslanting --SANDAf= r-71 A20384roundedoutslan ting --SANDA g= r-88 A20397round/beveledoutslanting---SANDA h= r-92 A20398round/beveledoutslanting---SANDA i= r-104 A20401roundedvertical 26.0 cm SANDAj= r-110 A20383roundedvertical 28.0 cm SANDAcrossmendedvessel B k= r-65 A20382roundedvertical 28.0 cm SANDA1=r-36 A20379roundedvertical 30.0cmSANDA m= r-102 A20399roundedvertical 46.0cmSANDA n= r-75 A20393thin/roundedvertical 20.0 cm SANDA0=r-103 A20400roundedincurving20.0cmSANDA p= r-38 A20379rounded'incurving---SANDA q= r-45 A20379roundedinslanting---SANDA r= r-77 A20393roundedincurving---SANDAs=r-101A20399roundedincurving17.0 cm SANDA t= r-21 A20379roundedoutslanting---SANDB u =r-33 A20401roundedoutslanting28.0 cm SANDB v= r-20 A20379roundedincurving32.0 cm SANDBw= r-121 A20383roundedvertical 34.0cmSANDBcrossmendedvesselJ

PAGE 192

184Culture and Environment in the Domainofthe CalusaFigure21.Sand-temperedPlainRimProfilesfrom8LL51,CollierInn,UseppaIsland(flat/squaredrims).FlaMNHRim/LipVesselWallMouthCrossmendedVesselRimNumberCataloguePasteNo.ShapeOrientationDiameterDesignationa= r-122 A20382flat/squaredoutslanting24.0 cm SANDAcrossmendedvessel K b= r-42 A20379flat/squaredoutslanting34.0 cm SANDA c= r-35 A20379flat/thinnedoutslanting18.0 cm SANDA d= r-60 A20382flat/squaredoutslanting22.0 cm SANDA e= r-64 A20382flat/squaredoutslanting14.0 cm SANDAf=r-108A20379flat/beveledoutslanting---SANDA g= r-68 A20382flat/squaredoutslanting20.0 cm SANDA h= r-59 A20382 flat /squaredoutslanting34.0cmSANDA i= r-57 A20381flat/squaredvertical 20.0 cm SANDAj= r-69 A20383flat/squaredvertical 32.0 cm SANDA k= r-123 A20394 flat /squaredvertical 15.0cmSANDAcrossmendedvessel R1=r-39 A20379 flat /squaredvertical 18.0 cm SANDA m=r-ll1A20382flat/thinnedcompound---SANDAcrossmendedvessel C n= r-79 A20394flat/squaredcompound---SANDA0=r-44 A20379flat/squaredcompound32.0 cm SANDA p= r-96 A20398flat/squaredvertical---SANDA q= r-90 A20397flat/squaredvertical---SANDA r= r-66 A20382flat/squaredvertical---SANDA s= r-48 A20379flat/squaredvertical---SANDA t= r-62 A20382flat/squaredinslanting---SANDA u= r-19 A20379flat/squaredslightlyoutslanting28.0 cm SANDBv= r-22 A20379flat/squaredslightlyoutslanting26.0 cm SANDBw= r-23 A20379flat/squaredincurving12.0 cm SANDBFigure22.Sand-temperedPlain(a-h)andSPCBPlain(i-I)RimProfilesfrom8CH38,CashMound.RimNumberFlaMNHRim/LipShapeVesselWallMouthDiameterPasteCatalogueNo.OrientationSANDTEMPERED PLAIN a= r-lO A27605round/beveledinslanting---SANDA b= r-116 A27604roundedincurving20.0 em SANDA c=r-llA27604chamferedincurving22.0 em SANDA d= r-111 A27604roundedincurving22.0 em SANDA e= r-9 A27608thick/roundedvertical 18.0 em SANDA f= r-113 A27604L-shapedvertical---SANDA g= r-107 A27604roundedincurving20.0 em SANDB h= r-13 A27604flat/squaredoutslanting24.0 em SANDB SPCB PLAINi=r-104A27604flat/beveledoutslanting30.0 em SPCBj= r-102 A27604roundedoutslanting---SPCB k= r-103 A27604flat/squaredvertical 24.0 em SPCBl=r-105A27604T-shapedunknown---SPCB

PAGE 193

Pottery Variability185Figure23.BelleGladePlain(a-j)andSPCBPlain(k-cc)RimProfilesfrom8LL722,BuckKeyShellMidden.RimNumberFlaMNHRim/LipShapeVesselWallMouthDiameterCatalogueNo.OrientationPasteBELLE GLADE PLAIN a= r-173 A27570thick/beveledoutslanting30.0 em SPCA b= r-168 A27532thick/beveledoutslanting30.0 em SPCAc=r-163A27504thick/beveledoutslanting20.0 em SPCA d= r-167 A27517thick/beveledoutslanting---SPCAe=r-164A27507 thick /squaredvertical---SPCAf=r-170A27533 fla t/squaredslightlyoutslanhng30.0 em SPCA g= r-162 A27500 fla t/squaredslightlyoutslanhng38.0 em SPCAh=r-165A27510 thick /squaredvertical 24.0 em SPCA i=r-l72A27565thick/beveledvertical 34.0 em SPCAj=r-169A27533flat/beveledinslanhng30.0 em SPCA SPCB PLAIN k= r-133 A27517flat/beveledoutslanting17.0 em SPCB1=r-86 A27515flat/squaredoutslanting30.0emSPCB m= r-134 A27517 fla t/squaredoutslanting---SPCBn=r-135A27517thick/beveledoutslanting14.0 em SPCB 0= r-132 A27501flat/squaredvertical 28.0 em SPCB p= r-123 A27564flat/squaredoutslanting26.0 em SPCB q= r-124 A27564flat/squaredoutslanting32.0 em SPCB r= r-87 A27516flat/squaredvertical---SPCB s=r-l12A27562flat/squaredvertical 18.0 em SPCB t= r-89 A27516 fla t/squaredvertical---SPCB u= r-84 A27514round/beveledvertical 23.0 em SPCB v=r-l09A27551thick/beveledslightlyincurving18.0 em SPCBw= r-79 A27504flat/beveledvertical 30.0 em SPCBx=r-125A27565thick/beveledvertical 25.0 em SPCB y= r-136 A27545flat/beveledinslanhng14.0 em SPCBz=r-137A27562flat/beveledinslanhng30.0 em SPCBaa= r-116 A27562thick/beveledinslanhng34.0 em SPCB bb = r-128 A27568roundedinslanhng---SPCBcc=r-138A27564roundedoutslanting---SPCBFigure24.BelleGladeRed,SPCBPlain,andMiscellaneousRimProfilesfrom8LL32,JosslynMound.FlaMNHVesselWallMouthMiscellaneousSherdRimNumberCatalogueRimlLipShapeOrientationDiameterPasteTypesNumberBELLE GLADEREDa= r-61 87-28-12thick/squaredoutslanting36.0 cm SPCA b= r-59 87-28-10thick/beveledoutslanting30.0 cm SPCA c= r-60 87-28-10flat/squaredoutslanting34.0 cm SPCA d= r-62 87-28-15thick/squaredoutslanting26.0 cm SPCA e= r-63 87-28-15flat/beveledoutslanting26.0 cm SPCA SPCB PLAIN f= r-73 87-28-10thick/squaredoutslanting22.0 cm SPCB g= r-72 87-28-04flat/squaredoutslanting---SPCB h= r-75 87-28-14flat/squaredoutslanting---SPCB MISCELLANEOUSi=r-l0l87-28-03roundedincurving---GROGGrog-temperedPlainj=r-lOO87-28-03roundedoutslanting24.0 cm GROGGrog-temperedPlain k= r-99 87-28-03thick/squaredoutslanting20.0 cm LAMIN Pinellas Plain(?)1=r-98 87-28-04flat/squaredvertical 20.0 cm CHKAI St. Johns Plain

PAGE 194

186Culture and Environment in the Domainofthe CalusaFigure25.BelleGladePlainRimProfilesfrom8LL32,]osslynMound.RimNumberFlaMNHRim!LipShapeVesselWallMouthDiameterPasteCatalogueNo.OrientationCALOOSAHA TCHEE III RIMS a= r-30 87-28-04 thick /squaredoutslanting28.0 em SPCA b= r-22 87-28-01thick/beveledoutslanting26.0 em SPCA c= r-36 87-28-09thick/beveledoutslanting50.0 em SPCA d= r-33 87-28-04thick/beveledoutslanting30.0 em SPCA e= r-21 87-28-01 thick/beveledoutslanting24.0 em SPCAf=r-15A22410thick/roundedoutslanting28.0 em SPCA g= r-28 87-28-04flat/squaredoutslanting28.0 em SPCA h= r-35 87-28-05flat/squAredoutslanting40.0 em SPCA i= r-26 87-28-04flat/squaredvertical 32.0 em SPCA CALOOSAHA TCHEE II RIMSj= r-38 87-28-10thick/beveledoutslanting40.0 em SPCA k= r-39 87-28-10 thick /squaredoutslanting28.0 em SPCA1=r-56 87-28-15thick/squaredoutslanting38.0 em SPCA m= r-55 87-28-15 thick /squaredslightlyoutslanting22.0 em SPCA n= r-47 87-28-11 thick /squaredslightlyoutslanting26.0 em SPCA0=r-48 87-28-11thick/beveledvertical 30.0 em SPCA p= r-43 87-28-10 thick /squaredvertical 26.0 em SPCA q= r-42 87-28-10 fla t/squaredoutslanting28.0 em SPCA r= r-52 87-28-15flat/beveledoutslanting34.0 em SPCA s= r-40 87-28-10 fla t/squaredslightlyoutslanting32.0 em SPCA t= r-54 87-28-15 fla t/squaredoutslanting30.0 em SPCA u= r-53 87-28-15flat/beveledoutslanting26.0 em SPCA v= r-51 87-28-12flat/squaredslightlyoutslanting32.0 em SPCAw= r-57 87-28-15flat/squaredvertical 20.0 em SPCAFigure26. BelleGladePlain(a-i)andSPCBPlain(j-p)RimProfilesfrom8LL51,CollierInn,UseppaIsland.FlaMNHRimILipVesselWallMouthCrossmendedVesselRimNumberCataloguePasteDesignation!NumberShapeOrientationDiameterMiscellaneousBELLE GLADE PLAIN a= r-5 A20379flat/beveledoutslanting---SPCA b= r-12 A20394thick/beveledoutslanting28.0 cm SPCA c= r-9 A20382flat/beveledoutslanting---SPCA d= r-8 A20381thick/beveledoutslanting 28.0 cm SPCA e= r-6 A20379flat/beveledoutslanting---SPCA f= r-4 A20379flat/squaredoutslanting28.0cmSPCA g= r-7 A20379thick/beveledoutslanting---SPCA h=r-l0A20382flat/beveledslightlyoutslanting25.0cmSPCA i= r-17 A20401thick/squaredvertical 22.0 cm SPCA SPCB PLAINj= r-120 A20381flat/thinnedoutslanting---SPCBcrossmendedvessel L k= r-119 A20393flat/beveledoutslanting26.0 cm SPCBcrossmendedvesselI1=r-25 A20382flat/beveledoutslanting25.0 cm SPCB m= r-18 A20379roundedoutslanting32.0 cm SPCB n= r-118 A20396round/beveledvertical 30.0 cm SPCBcrossmendedvessel H0=r-32 A20399roundedinslanting---SPCB P= r-28 A20382flat/squaredinslanting28.0 cm SPCB MISCELLANEOUS q= r-2 A20398flat/thinnedvertical---CHKAISt. Johns Plain

PAGE 195

Pottery VariabilityREFERENCES CITEDArnold,Dean1975CeramicEcology oftheAyacucho Basin,Peru.Current Anthropology 16:183-194.1985Ceramic Theory andCultureProcess.CambridgeUniversityPress. Borremans,NinaT.andGraigD.Shaak1986 APreliminaryReportofInvestigationsofSpongeSpiculesinFlorida "Chalky"PastePottery. InCeramicNotesNo.3,editedbyP.M. Rice,pp.125-140 Occasional Publica tionsoftheCeramicTechnologyLaboratory, FloridaStateMuseum,Gainesville. Bullen, Ripley P. 1971TheSarasotaCountyMound,Englewood,Florida.TheFloridaAnthropologist 24:1-30.1972TheOrangePeriodofPeninsularFlorida.Florida Anthropological Society PublicationsNo. 6:9-33. Bullen, RipleyP.andAdelaideK.Bullen1956ExcavationsonCapeHazePeninsula,Florida.Contributionsof theFloridaStateMuseum,Social SciencesNo.1. Gainesville. Cooke, C.W.1939Scenery ofFloridaInterpreted by a Geologist.Bulletin No. 17, Florida Geological Survey, Tallahassee. Cordell,AnnS.1985PotteryVariabilityandSiteChronologyintheUpperSt.John'sRiver Basin.InAr chaeological Site Types, Distribution, and Preservation withintheUpperSt. John's River Basin,Florida,editedbyB.Sigler-Eisenberg,pp.114-134. Miscellaneous ProjectReportSeriesNo.27,FloridaStateMuseumDepartmentofAnthropology,Gainesville. 1987PreliminaryReportonTechnologicalInvestigations ofPotteryVariabilityinSouthwestFlorida.Paperpresentedatthe 44thAnnualSoutheasternArchaeologicalConference,Charleston,SouthCarolina. 1989ChronologicalPotentialofPlainPotteryinSouthwestFlorida.Paperpresentedat the 46thAnnualSoutheasternArchaeological Conference,Tampa,Florida. Davis,JohnH., Jr.1946ThePeatDeposits ofFlorida:Their Occurrences,Development andUses.Bulletin No. 30, Florida Geological Survey, Tallahassee.Dubar,J.R.1958 Stratigraphy and Paleontology of the Late Neogene Strata of the Caloosahatchee River Area of Southern Florida.BulletinNo.40,FloridaGeologicalSurvey,Tallahassee.1962Neogene Biostratigraphy oftheCharlotteHarborAreainSouthwesternFlorida.Bulletin No. 43, Florida Geological Survey, Tallahassee.187Espenshade,Christopher1983Ceramic Ecology and Aboriginal Household Productionatthe Gauthier Site,Florida.M.A.thesis,DepartmentofAnthropology,UniversityofFlorida, Gainesville. Estevez, E.D.,J.Miller,andJ.Morris1984 CharlotteHarborEstuarine EcosystemComplex andthePeaceRiver.SouthwestFlorida RegionalPlanningCouncil.Fradkin,Arlene1976TheWightman Site: a Study of Prehistoric Cul ture and EnvironmentonSanibel Island,LeeCounty,Florida.M.A. thesis,DepartmentofAnthropology,UniversityofFlorida,Gainesville.Goggin,JohnM. 1940 TheDistributionofPotteryWares in theGladesArchaeologicalArea.New Mexico Anthropologist 4:22-23.1948 SomePotteryTypes fromCentralFlorida. Ms.onfile,FloridaMuseumofNaturalHis tory, Gainesville. 1949CulturalOccupationatGoodlandPoint,Florida.TheFloridaAnthropologist 2:65-90.1950StratigraphicTestsintheEvergladesNational Park.American Antiquity 15(3):228246.1952Spaceand Time PerspectiveinNorthern St. Johns Archeology, Florida.PublicationsinAnthropologyNo.47,Yale University,NewHaven.1954 TheArchaeologyoftheCapeHazeArea. Ms.onfile,FloridaMuseumofNaturalHis tory, Gainesville. n.d.TheArcheologyoftheGladesArea,SouthernFlorida.Ms.onfile,FloridaMuseumofNaturalHistory,Gainesville. Goggin,JohnM.andFrankH.Sommer1949ExcavationsonUpperMatecumbe Key,Florida.PublicationsinAnthropologyNo. 41. Yale University,NewHaven.Goggin,JohnM.andWilliam C.Sturtevant1964TheCalusa:aStratifiedNonagriculturalSociety.InExplorationsinCulturalAnthropology: EssaysinHonor ofGeorgePeterMurdock,editedbyW.H.Goodenough,pp.179-219. McGraw-Hill,NewYork. Griffin, JamesB.1945 The SignificanceoftheFiber-temperedPotteryoftheSt. Johns Area in Florida.Journalofthe WashingtonAcademyofSciences35(7):218-223. Griffin, JohnW.1976SouthFlorida Archaeology, A.D. 500-Con tact. Ms.onfile,FloridaMuseumofNaturalHistory,Gainesville.

PAGE 196

1881988TheArcheology of Everglades NationalPark:A Synthesis.NationalParkService. Southeast Archeological Center, Tallahassee. Griffin, JohnW.andHaleG.Smith 1949 Norococo, ATimucuanVillage of 1605,nowin Tomoka State Park.TheFloridaHistorical Quarterly 27:340-361.Henderson,WarrenG.Jr. 1984aSoil Survey of Charlotte County, Florida.USDASoilConservationService,U.S.GovernmentPrintingOffice, Washington. 1984bSoil Survey ofLeeCounty,Florida.USDA SoilConservationService, U.S.GovernmentPrintingOffice, Washington. Holmes, William H.1903Aboriginal Pottery of Eastern United States.AnnualReportNo. 20, BureauofAmerican Ethnology, U.S.GovernmentPrintingOf fice, Washington. Johnson,MargaretCrile1945TheFreshwater Sponges of Alachua County, with a Survey of KnownFloridaForms.M.S. thesis,DepartmentofBiology,Universityof Florida, Gainesville.Leighty,R.G.,M.B.Marco,G.A.Swenson,R.E. Caldwell, J.R.Henderson,O.c.Olson,andG.S. Wil son, Jr.1954 Soil Survey ofCollierCounty,Florida.USDA SoilConservationService, U.S.GovernmentPrintingOffice, Washington. Luer, George M. 1989CalusaCanalsinSouthwesternFlorida:Routes of TributeandExchange.TheFloridaAnthropologist 42:89-130.Luer, GeorgeM.andMarion M.Almy1980 TheDevelopmentofSome Aboriginal PotteryoftheCentralPeninsularGulf Coast of Florida.TheFloridaAnthropologist 33:207225. 1982 A Definition oftheManasotaCulture.TheFloridaAnthropologist 35:34-58.Marquardt,William H. 1987 TheCalusaSocial Formation in Protohis toricSouthFlorida. InPowerRelations and State Formation,editedbyT.C.PattersonandC.W. Gailey,pp.98-116. ArcheologySection,AmericanAnthropologicalAs sociation, Washington, D.C. Matson, F.R. 1965 Ceramic Ecology:anApproachtotheStudyoftheEarlyCulturesoftheNearEast. InCeramicsand Man,editedbyF.R. Matson,pp.202-217. Aldine, Chicago. McCoy, H,J. 1962Ground-water Resources of Collier County,Florida.ReportofInvestigationsNo. 31, Florida Geological Survey, Tallahassee.Culture and Environment intheDomainoftheCalusaMilanich,J.I.,J.Chapman,AS.Cordell,S.Hale,andR.Marrinan1984TowardanUnderstandingofthePrehistoricDevelopmentofCalusaSocietyinSouthwestFlorida-ExcavationsonUseppaIsland, Lee County. InPerspectivesonGulfCoastPrehistory,editedbyD.Davis,pp.258-314.UniversityPressesofFlorida,Gainesville. Mitchem, Jeffrey M. 1986CommentsonSome Ceramic PastesoftheCentralPeninsularGulfCoast.TheFloridaAnthropologist39:68-74. Parker, G.G.andC.W. Cooke1944LateCenozoicGeologyofSouthernFloridawith a Discussion of Groundwater.Bulletin No. 27, Florida Geological Survey, Tallahassee. Peck, D.M., D.H. Slater, T.M. Missimer, S.W. Wise Jr.,andI.H.O'Donnel1979StratigraphyandPaleoecologyoftheTamiamiFormationinLeeandHendryCounties, Florida.Transactions oftheGulfCoastAssociation ofGeologicalSocieties 29:328-341.Phelps, David Sutton 1965TheNorwoodSeriesofFiber-temperedCeramics.BulletinNo.2,Proceedings of the 20thAnnualSoutheasternArchaeological Conference,pp.65-69.Puri,H.S.andR.O.Vernon1964Summaryofthe GeologyofFlorida andGuidebooktotheClassicExposures.Special PublicationNo.5,Florida Geological Survey,Tallahassee. Ray, Alice A., ed.1982Statistical Analysis System User'sGuide:Sta tistics.SAS Institute, Cary,NorthCarolina. Rice,PrudenceM.1976CeramicContinuityandChangeinthe Valley ofGuatemala:A Study of Whiteware Pottery Production.Ph.D. dissertation,DepartmentofAnthropology,PennsylvaniaStateUniversity.UniversityMicrofilms,AnnArbor.1987 Pottery Analysis: aSourcebook.Universityof Chicago Press, Chicago. Ruhl, DonnaL.1983 APreliminaryCeramicTechnologicalAnalysisofSherds fromMound3MFt.Center(8GL13), GladesCounty,Florida. Ms.onfile,DepartmentofAnthropology,FloridaMuseumofNaturalHistory, Gainesville. Scarry, JohnF.1985 AProposedRevision oftheFort Walton Ceramic Typology: aType-varietySystem.TheFloridaAnthropologist 38:199-233.Sears, William H. 1967 Archaeological Survey in theCapeCoral AreaattheMouthofthe Caloosahatchee River.TheFloridaAnthropologist 20:93-102.

PAGE 197

Pottery Variability1973 The SacredandtheSecularinPrehistoricCeramics.InVariationinAnthropology,editedbyD.LathropandJ.Douglass,pp.323-42. I1linois Archaeological Survey, Ur bana,I1linois.1982FortCenter:AnArchaeological Site intheLakeOkeechobee Basin.UniversityPressesofFlorida, Gainesville.Shepard,AnnaO.1976CeramicsfortheArchaeologist.PublicationNo. 609,CarnegieInstitutionofWashington,Washington,D.C. Simpkins, D.L.andD.l.Allard1986 Isola tionandIdentifica tionofSpanishMoss Fiber from aSampleofStallingsandOrangeSeries Ceramics.American Antiquity 51:102117. Stark, BarbaraL.1985ArchaeologicalIdentificationofPotteryproductionLocations: EthnoarchaeologicalandArchaeological DatainMesoamerica.InDecoding PrehistoricCeramics,editedbyB.A.Nelson,pp.158-194.SouthernI1linoisUniversityPress,Carbondale,I1linois. Stirling,MathewW.1935SmithsonianArchaeological ProjectsConductedundertheFederalEmergencyReliefAdministration,1933, 34.Smithsonian In stitution Annual Reportfor1934,pp.371-400.Washington.1968 FloridaCulturalAffiliationinRelation toAdjacentAreas. InEssays in Anthopology PresentedtoA.L.KroeberinCelebrationof his Sixtieth Birthday,pp.351-357. Books for Libraries Press,NewYork. Sutcliffe, H. Jr.1975AppraisaloftheWater Resources of Charlotte County,Florida.ReportoflnvestigationsNo. 78, Florida GeologicalSurvey,Tallahassee.189Thomas,DavidHurst1976Figuring Anthropology.Holt,RinehartandWinston,NewYork. Van Beck, John C.andLindaM.1965TheMarcoMidden,MarcoIsland,Florida.TheFloridaAnthropologist 18:1-20.Vernon, R.O.andB.S.Puri1965Geologic Map of Florida.MapSeries18, Florida Geological Survey, Tallahassee.UnitedStatesDepartmentofAgriculture1951Soil Survey Manual.USDAHandbook18.U.S.GovernmentPrintingOffice,Washington.Widmer,RandolphJ.1986Prehistoric Estuarine AdaptationattheSolanaSite, Charlotte County, Florida.FloridaDivision of Archives,History,andRecordsManagement,BureauofArchaeological Re search, Tallahassee.1988TheEvolution oftheCalusa, a Non-agricultural Chiefdomonthe Southwest Florida Coast.UniversityofAlabamaPress, TuscaloosaandLondon. Willey,GordonR.1948CultureSequence fortheManateeRegion ofWestFlorida.American Antiquity 13:209218. 1949aExcavationsinSoutheastFlorida.PublicationsinAnthropologyNo. 42. Yale University,NewHaven.1949bArcheology of theFloridaGulfCoast.SmithsonianMiscellaneous Collections No. 113.SmithsonianInstitution,Washington.Wunderlin,RichardP.1982GuidetotheVascular PlantsofCentralFlorida.UniversityPressesofFlorida, Gainesville.

PAGE 199

5Shell Artifacts from the Caloosahatchee AreaWilliamH.MarquardtIn thischapterIprovidea shell artifacttypologybaseduponananalysisofcertainitems fromsouthwestFloridainthe collectionsofthe FloridaMuseumofNaturalHistory(FlaMNH). I alsoreportonthe shell artifactswerecoveredinthecourseofourinves tigations inCharlotteHarborandenvironsbetween1984and1988. Thetypologyisbasedonmaterialswehavecollectedandexcavated,aswell assomefromCashMound(8CH38), KeyMarco(8CR49),andtheso calledCushingCollection (FlaMNHcataloguenumber91900). Thelattercontains artifactsgatheredbyFrankHamiltonCushingin the 1890sinthe TenThousandIslandsareanearMarco Island. Iwanttostateattheoutsetthatinsettingforth thistypologyIamsummarizingthecollaborative researchofanumberofprofessionalandavocationalarchaeol ogistswhoareatworkonshell artifactsthroughoutsouthFlorida. I refer totheirworkfrequentlyinthischapter.PREVIOUS RESEARCHONSOUTH FLORIDA SHELL ARTIFACTSShell artifactshavelongbeenrecognizedinsouthwestFlorida,perhapsallthemorebecausesouthwestFloridapotteryisunremarkable,at least tothecasualobserver. (AsAnnCordell'sworkshowsinChapter4,thisvolume,southwestFlorida'splainpotteryalsohasastoryto tell ifwelook closelyenough.)Ourpredecessors,suchasCushing(1897)andClarenceB.Moore(1900, 1905,1907, 1921),describedshellartifactsintheirwritings,andJohnM.Gogginestablishedatypologythatis stillthepointofdepartureforstudiestoday.Inthe1940sGogginwroteamanuscript(Goggin n.d.)ofover700pagesprovidinganartifacttypologyfor all ofsouthFloridaandasummaryofwhatwasthenknownof itsprehistory.Althoughtheworkwasneverpublished,themanuscriptis stillfrequentlyconsulted.Itincludesdetaileddescriptionsofshell artifact types,basedinpartontheworkofGordonWilley (1949b). AsGogginnotes (n.d.:476),groupingartifactsbymaterialofmanufactureisnotverysatisfactorybecausedifferentmediaaresometimesusedtomakethesameartifact. Forexample,in thisbookonewill find sinkersmentionedinthreedifferent places,namely191withdiscussionsof ceramics, stone,andshell.Netmeshgaugesweremadeofgastropodshells,turtlecarapace,andwood(Walker 1991),andaredescribedinChapters5, 6,and8.A singlecompositeartifact canbemadeoftwomaterials, say,boneandshell, as in the fishhooksdescribedbyWalker(seeChapters6and8). Itreatshell artifactsseparatelyherebecauseI believe this will facilitate theuseofthistypologybythosewhowishtocomparetheirmaterialswiththosewehavefoundinsouthwestFlorida. Forotherpurposes,agroupingbymorphologyorfunctionmaybepreferred. Likemanyofhiscontemporaries,Gogginclassified his artifactsasmuchbyfunction asbyform. Forexample,hereferredtocertainhaftedgastropodsas "picks,"whentheycouldhavebeenusedinavarietyofpicking,cutting,chopping,andchippingtasks.Goggin'snon-ceramic artifact categories include: ves sels;cuttingandpicking tools;hammeringandpoundingtools;piercingtools;grinding,scraping,andsmoothingtools;weapons;weights;ornaments;andceremonial objects. Functionaltypeshavetheadvantageofbeingeasytoremember,butmustbecarefullyconsidered.Ul timately,onecannotbereasonablycertainthatthe correct functionhasbeeninferredintheabsenceofindisputablefunctional context or, attheveryleast, extensiveexperimentation.Inthe recentpast,shell-artifact researchershavefocusedmoredirectlyonmanufacturingsequencesthanontheattributionoffunction. Forexample,JohnBeriault (1986:162)proposesadescriptivealgorithmandclassificationsystemthatmovesfromunmodifiedshell to finished tool,withcategories fordebitagefromboththemanufacturingandreworkingprocesses.MarilynMasson(1988)borrowsterminologyfromlithic analysis to describemanufactureanduseofshell celts.ArthurLee (1989)measuresthehaftingangleandworkingedgeangleofwhelkshell tools.GeorgeLuer(Luer et al. 1986:114)considersindetailthecontinuumofmodificationofthelightningwhelk(Busycancontrarium)fromselectionofrawmaterialthroughmodification,toolproduction,andreworkingintoothertool forms.Overthecourseofourarchaeologicalsurfacecollec tionandtest excavations intheCharlotteHarbor/PineIslandSoundarea(Chapter2, thisvolume)wedis-

PAGE 200

192coveredanumberofshell artifacts. UsingGoggin's(n.d.)typologyas abeginningpointandconferringwithothersinvolvedinshell artifact research, Idevelopedanexpandedshell tooltypologythatIhopewillbeuseful formostassemblagesinsouthFlorida.Althoughit ispreliminaryandwillsurelybeaugmentedandalteredinthefuture,I believeitimprovesonGoggin'sworkbysubsumingmultiplemolluskspeciesunderindividualtypesandindecreasing,thoughnotcompletelyeliminating,functionalattribution. Idousefunctionalnameswhentheyareparticularlydescriptiveofshapeandsize,orwhenthe functionseemsreasonablycertain.Byreferringtoanartifact as a "saucer," forexample,IdonotmeanthatIthinkthatprehistoricsouthFloridiansplaceddiskshapedshellsundertheir teacups,butsimplythatthese artifactsaresaucer-like inshapeandsizeandthattheycouldhavebeenusedfor avarietyofpurposes.Goggin'sbroadfunctional categories forcedhimtodeterminearatherspecificuseforeachartifact type,denyingthepossibilitythatsomeartifactsmayhavehadmultiplefunctions.Mytypesareundoubtedlybiasedtowardthe Ca loosahatchee area,withwhichIammostfamiliar. Iusetheterm"Caloosahatchee area" tomeanthearchaeological zone,recognizedbynumerousauthors(CarrandBeriault 1984:4,12; Griffin 1988:121;Widmer1988:79),thatstretchesfromapproximatelythepresent-daySarasota-Charlottecountylinesouthto apointapproximately40 km.northofMarcoIsland(Collier county),andfrom thebarrierislandsonthewestto apointapproximately90kmeastwardintothe interior.By"Calusa region" I refermoregenerallyandinformally to the coastalzonefromCharlotteHarborsouthtotheTenThousandIslands.Myresearch intoCalusa-regionshell artifactswasaidedimmeasurablybythedonationofnumerousshell artifacts collected from 8CH38,theCashMoundsite.RemnantsoftheeasternedgeofCashMoundhavebeenerodingformanyyears,andanumberofbone, ceramic,andshell artifactswerefoundtherebyDonCyzewski, JaniceKemp,andRobert Edic,whocarefullycuratedthespecimenstheyfound. Realizingtheresearchvalueoftheirassembledcollection, the threedonatedthese artifactsin1988 to theFlaMNH,wheretheyserveasavaluableteachingandresearch resource (cataloguenumbers88-1-1,88-1-2,88-1-3,88 1-4, 88-1-5,88-1-6,and88-1-26).CashMoundwastestedbyRipleyandAdelaideBullen in the 1950s (BullenandBullen 1956:15-25). Ivisitedthesite in June, 1985, toremoveacolumnsampleforzooarchaeological analysis from aremnantofthemoundstillstandingonthebeach(Marquardt1987a:3),andreturnedtodosomelimitedtest excavations in April, 1988(BlanchardandMarquardt1989:13).CashMoundisnowunderfederalprotectionaspartofIslandBayNationalWildlife Refuge.CultureandEnvironment intheDomainoftheCalusaSHELL ARTIFACTSFROMTHE CALOOSAHATCHEE AREAProminentinthe Cyzewski-Kemp-Edic collection fromCashMound,andindeedthroughoutsouthwestFlorida,aretoolsmadefrom theleft-handed,orlightningwhelk(Busycon contrarium).This isthesamemolluskthatcontributedtherawmaterialforthefamousMississippianceremonialgorgetsknownineasternNorthAmericainlateprehistory,andthesameonethatisthoughttohaveprovidedthe vesselusedin the BlackDrinkceremonythroughoutthesoutheasternUnitedStates. IntheCalusaregionthewhelkwasfashionedintohaftedandunhaftedhammersandcutting-edgedtools,adzes/celts, vessels,net-makingandspinningtools,weights,sinkers, anchors,beads,andgorgets. Thecarnivorouslightningwhelk(Figure1)wasit self a foodsourceforhumans.Some shellmiddenmoundsintheCharlotteHarborestuarinesystem,suchasJosslynIsland(8LL32),arecomposedpredominantlyoflightningwhelkshells,withavarietyofsizesrepresented(Marquardt1984).AtCashMound,however,wherelargelightningwhelkshellswereusedas tools, themiddenshellsarepredominantlyoyster(Crassostreavirginica)andribbedmussel(Geuk ensia demissa)(seeChapter8, this volume).Anothergastropodfrequentlychosenfortoolmanufacturewasthehorseconch,Pleuroplocagigantea.Althoughthewhorlsofthehorseconchdonotattainthethicknessofthelargestofthelightningwhelks,thehorseconch does possess adenseandhighlyresilient columella.Itwashaftedas ahammerand,rarely, as acutting-edgedtool.Theunhaftedhorseconch (posterior end)shoulderbody whorl basal portionofcolumeJIa base (anterior end)Figure1.Thelightningwhelk,Busycon contrarium,showingdescriptivetermsandpointsofreference.Referencepoint"X"iswheretheouterlipoftheshellcomesclosesttothecolumella.

PAGE 201

Shell Artifacts193ure5.7 A; Luer et al. 1986:Figure 8; Moore 1900:Figure 36; Moore 1905:Figure 39; Reiger 1981:Figures 4-7Discussion:Theworkingedgesofgastropodtoolsmaybedividedintotwobasic configurations. Thosehavingabluntworkingsurfaceperpendicularto the columella'slongaxisarecalled "hammers." It is assumedthatthebluntnessistheresultofattritionfromrepeatedpounding.Infact,spallingis often observednearthehammertip,wherechips of the shellhavebeendrivenoffparallel tothecolumella'slongaxis.Gastropodshellswithworkingedgesandbevelsplacedobliquelytothelongaxisarecalled "cuttingedgedtools," atermsuggestedbyLueret al. (1986:106) to replaceGoggin'soverlyrestrictiveterm"pick." FollowingGoggin'soriginal typology,modifiedbyLuerandothers, ahaftedgastropodcutting-edgedtool is calledType Aifthereis a notchcutintothelip for haftingthrougha holeintheoppositesideofthe shell (Figure 3). GeorgeLuer(personalcommunication, 1991) observesthatthenotch inTypeA toolswasgenerallycuthigher(moretowardtheapex,orposteriorendofthewhelk)inCharlotteHarborandnorthward,whilefurthersouththenotchwascutlower. Thehaftedgastropodsweresecuredto theirhandleswithlashing,probablyarawhidethongorastoutcord.AttheKey Marco siteCushing(1897:368)foundsuchhaftedtoolswithremnantsofthehandlesandresiduesofrawhidethongs ("nowmerejelly") still columellawasusedbothas ahammeranda cuttingedgedtool,anditwasalsomadeinto sinkers. Some shellswereperforatedforuseas weightsoranchors. Shellsofsmallerconchsandwhelks,suchasStrom bus alatus/pugilisandMelongena corona,alsoservedashammers.Shellsofbivalves,suchasthequahogclamMercenaria campechiensis,wereusedas anvils,choppers,knives, scrapers,andweights. Inowpresentsystematic descriptionsofeachof52 shell artifacttypesidentified fromsouthwestFlorida collectionsattheFlaMNH.CataloguenumbersofrepresentativeartifactsarefoundinAppendixAofthis chapter. SHELL ARTIFACTS FROM THE CALOOSAHATCHEE AREA: A TYPOLOGY1.HAFTEDGASTROPODTOOLBLANKSpeciesObserved:Busycon contrariumReferences: Gilliland 1975:190,192; Luer et al. 1986: 92-106Illustrations,Photographs:Gilliland 1975:Plate 112L;Lueret al. 1986:93,97 2.GASTROPODCUTTING-EDGEDTOOLADiscussion:The prehistoricpeoplechose massive whelksandconchs for toolproduction.Luerandothers(1986:106-112)describethesequenceofpreparationandworkingofthelightningwhelkintoa finishedcutting-edgedtool. This includesperforating thespire'sbodywhorlabovetheshoulder,removingpartofthebodywhorl,shorteningtheFigure2.ABusyconcontrariumblank(104860).siphonalcanal,andmodifyingthecolumella tip toproduceablank.Caches ofsuchblankswerefoundatBigMoundKey (8CH10) (Lueretal. 1986:92-98)andat8CH35 (LuerandArchibald 1988:23).Luerandhiscolleagues(1986:112-120) alsorecognizedthatthewhelktoolspassedthrougha sequenceofreshapingandreuse, accounting forsomeofthe typesthathadbeenrecognizedbyGogginandothers. SpecimensintheKeyMarcocollectionidentifiedbyGilliland(1975:190,192andPlate 112L) as "Busycon PickX"areprobablyblanks forhaftedtools. Occasionallythetopperforationismissing(seeLueretal. 1986:Figure 4),butbodywhorlremoval,siphonalcanal shortening,cutting-edgegrinding,orside-hole perforation indi catethattheshellwasintheprocessofbecoming acutting-edgedtool. Iincludeallsuchitemsintheblankcategory.Anexampleis aFlaMNHspecimenfrom 8CR1, Chokoloskee Island; see Figure2.SpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:Cushing1897:368; Gilliland 1975:187, 190;Gogginn.d.:486-490; GogginandSommer 1949: 54-55;Lueret al. 1986:106-112,114Illustrations,Photographs:Figure3, this chapter;Gilliland1975:Plate 120;Goggin1950:Figure 79X; GogginandSommer 1949:Plate 5C; Griffin 1988:Fig-

PAGE 202

194present. Reiger (1981:10-16) describes aBusyconcutting-edgedtoolhefoundwithareddishstainindicatingwherethelashinghadbeenstretchedacross the shell.Figure3.TypeAgastropodcutting-edgedtool(A-6381).Reiger(1981 :15) callshiscutting-edgedtoolan"adze"becausethebladeisatarightangle to thehandle.Goggin(n.d.:488) saysthatforTypeA cutting-edgedtools, "theplaneofthebladeismostcommonlyatrightangles tothehaft"andthat"as aresultofreworkingthespecimen,thecuttingedgeofthebladeisusuallyturnedsothatit isnolong[er]atrightangles tothehaft." I believe Gogginwasmistakeninassumingthatahaft/edgeangleof 90wasprimaryorpreferred.ForTypeAcutting-edgedtools,thepreferredhaft/edgeanglewasneitherperpendicularnorparallel,butatanobtuseangle,morespecificallyatabout120 to 130. Theimportanceofthehaft/edgeanglehasbeenrecognizedbyArthurLee (1989),whoinventedameasuringdevice torecordit. Imeasuredthehaft/edgeangles (see Figure4)tothenearest5intervalfor asampleof39TypeAcutting-edgedtoolsandfoundonlyonewithacuttingedgeparallelto thehaftandnonethatis strictlyperpendicular(see Table 1,Figure5,andAppendixB).Thirty-eightofthespecimensrangefrom 105 to 155;themeanangleis 129.Twentysevenofthethirty-ninespecimensfallbetween120and130(11are120,8are125,and8are130). Thehaft/edgeangleisnotsignificantlycorrelatedwiththelength,weight,cutting-edgewidth,ormaximumlip thickness, thelattermeasuredatthepointwherethebodywhorlcomes closest tothecolumella(point"X"onFigure1.)Pleuroplocagiganteawasinfrequentlyhaftedas acutting-edgedtool,anditis farmorecommoninhammerform.Culture and Environment in the Domainofthe Calusa3.GASTROPODCUTTING-EDGEDTOOLBSpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:Gogginn.d.:490, 492; Gilliland 1975:190;Lueretal. 1986:106-112,114Illustrations,Photographs:Busycon contrarium:figure6, thischapter;Cushing1897:Plate 32, Figure 1;Goggin1949:Figure 21A;Lueret al. 1986:Figure9;Moore1900:Figures 31-35;Moore1905:Figure41;Pleuroplocagigantea:Moore1905:Figure43;Moore1907:Figure21Discussion:Ahaftedgastropodtool isTypeBifthehaftingisaccomplishedusingtwoholesratherthana lipnotchandahole(Figure 6). Thehaftingholesarecirculartoslightlyovateandwell-made.Onehole(onBusycon contrarium,theoneontherightasoneholdsthe shellwithapexupandapertureto the left) isalmostinvariablylargerthanthe other. The typicalBusycon contrariumcutting-edgedtool Bhasacurved,gouge-likeworkingedge,whileTypeA'stendtohaveflatter,narrowercuttingedges.TypeBcuttingedgesfrequentlyextendto theedgeoftheouterwhorladjacent tothecolumella.OnmanyoftheBusycon con trariumTypeBcutting-edgedtools,thewidthofthesecondaryworkingedge(onthewhorl)approachesandsometimesequalsthesizeoftheprimaryworkingedge(ontheendofthecolumella) (Figure 7). Thebroadworkingedgeis also reflected in themeasurementofcutting-edgewidth,whichaveragesalmosthalfagainaswideasthecuttingedgesofTypeABusycontools,inspiteofthefactthatoverall toollengthsof Types AandBarecomparable(Table 1).TheStudent'ststatisticshowsthatthemaximumcuttingedgewidthforTypeB is significantlysmallerthanthatforTypeA (t=3.93,P <.001).(Thetstatisticprovidesawaytocomparethemeansoftwosamplestojudgehowsimilartheyare, Le., todetermineifthetwosamplescouldhavebeendrawnfromthesamepopulation.Inthecase just described, a calculatedtvalueof3.93showsthatthereis a significant differencebetweenthemeancutting-edgewidthsfor Types AandB,andthattheprobability(p)is lessthan1 in 1000thatsucha differenceinthemeancutting-edgewidthscouldoccurbychance.)Thehaft/edgeangleofTypeBcutting-edgedtools differs fromthatofTypeA.Althoughthere isquitearangeofhaft/edgeanglesamongTypeB's(AppendixB),noneexceeds 105andmost(10outof15) fallbetween40and80 (Figure 5). Thehaft/edgeangledifferencebetweenTypeAandTypeB is statistically significant (t=13.95,p<.001).I recognizetwomajorvarietiesofTypeBcuttingedgedtools (Figure 6).TypeBlhastheouterwhorlpresent,butinTypeB2aportionofthewhorladjacenttotheaperturehasbeencutaway.Removalofthisportionofthewhorlmadethehaftedtoolnarrowerandpresumablyeasier touseinchoppingoutachannelorgroove,orindeepeningacutagainsta verticalplane,perhapsthegunwaleofa canoe.VarietyB2issomewhatshorterandthinnerthanvarietyBl (Table

PAGE 203

Shell Artifacts1\.Handle endType ACutting-edge angle Cutting-edge axisType BCutting-edge angle Handle end195A.Rest the shell tool on a table, aligning the columella vertically.B.Insert a pencil through the hafting holes (or notch-and-hole) to determine thehafting axis.Picture the axis projected onto the table surface along a perpendicular.C.Lay another pencil on the table, tucked up against the cutting-edge surface, to determine thecutting-edge axis.D.Thecutting-edge angleisthe angle between the cutting-edge axis and the handle-end of the hafting axis (around the open side of the shell tool).Figure4.Measurementofthehaft/edgeangle.Left:TypeAiright:TypeB.Table1.DescriptiveStatisticsforBusyconcontrariumCutting-edgedTools(seeAppendixBforrawdata).MeansandMaximumMaximumHaft/EdgeWeightinNumberofNumberofNumberofStandardLengthCuttingDeviationsThicknessEdgeWidthAngleGramsTopHolesSideHolesNotchesTypesA& x= 153.1 x= 8.8 x= 23.3 x= 107.9 x= 406.9B,combineds= 26.3 s= 2.3 s=7.1s=36.5 s= 195.6-(n=56) Type A x= 154.8 x= 9.0 x= 21.1 x= 129.0 x= 441.1Mode=1Mode=1Mode=1 (n=39) s= 28.0s=2.6s=6.6s=13.7 s= 197.0TypeB x= 149.2 x= 8.5 x= 28.3 x= 59.4x=328.4Mode=1Mode=2Mode=0(n=l7)s=22.1s= 1.5 s= 5.7s=23.4 s= 172.2 VarietyB1 x= 161.0 x= 9.5 x= 32.2 x= 61.8 x= 479.2Mode=1Mode= 2.5Mode=0(n=5) s= 31.0 s=2.1s= 6.3 s= 18.5 s= 235.1 VarietyB2 x= 143.8 x= 7.9 x= 28.0 x= 62.0 x= 242.5Mode=1Mode=2Mode=0 (n=10) s= 17.2 s= 0.9 s= 3.4s=27.2 s= 61.7 VarietyB3 x= 147.0 x= 9.3 x= 10.6 x= 42.5 x= 380.5Mode=0.5Mode= 2.5Mode=1 (n=2)

PAGE 204

1961210 UJ 08 f2 -06 ....Q) ..0E4 ::J Z2oCulture and Environment in the Domainofthe Calusa2030405060708090100110120130140150160170180Haft/EdgeAngles..TypeA III TypeBFigureS.Histogramofhaft/edgeanglesforallTypeAandBcutting-edgedtools.AngleswereroundedtonearestSOinterval.em5Figure6.TypeBgastropodcutting-edgedtools.Left:TypeB1(A-6381);right:TypeB2 (91900).

PAGE 205

ShellArtifacts197emFigure7.AcomparisonofthecuttingedgesofTypeA (left)andTypeBcutting-edgedtools.I),andit is significantlylighter(t==3.0B,p<.01).IhaveobservedthistypeonlyforBusycon contrarium,butMoore(l905:Figure 43) illustrates aTypeB2PleuroplocagiganteaspecimenfoundatGoodlandPoint(8CR45). Athird,minorvariety,B3,occurswhenaTypeAcutting-edgedtool isreworkedbyaddinga secondhaftingholeandadjustingtheworking-edgeangle. Ihavenotedonlytwosuchspecimensthusfar (Table 1).Moore(1905:Figure 37)showsaBusycon contrariumTypeB3cutting-edgedtool from ChokoloskeeIsland.4.GASTROPODCUTTING-EDGEDTOOLCSpeciesObserved:Busycon contrariumReferences:Gilliland 1975:190; Goggin n.d.:491Illustrations,Photographs:Gilliland 1975:Plate 112J;Moore1900:Figure 37.Discussion:GoggindefinedaTypeC,whichhebe lievedwasderivedfrom the A form (n.d.:491). Thecuttingedgeendofthe columella isshortenedfurther,andthewhelkshellispeeledbackalmostto thepenultimatewhorl,atwhichpointa notch is fashioned. Aperforationornotch isthenmadeoppositethefirst notch. Acuttingedgeisfashionedonthecolumella. Goggin notesTypeC'satten sites, allintheCalusaregion. Becausehedoesnotidentifythesites,itisimpossibletoreevaluatehis specimens.HedoesciteMoore's(l900:Figure 37)illustrationasanexample,andMoore'sspecimenlooks like aTypeA cuttingedgedtoolthathasbeenpurposelytrimmed.Goggin'sdefinitionofTypeC'sisnotveryprecise,andI feelthattheycanbeconfusedwithtypeB2'sthathavebrokenholesandwithre-workedTypeA's. Thistypeshouldbeusedwithcaution.5.GASTROPODCUTTING-EDGEDTOOLDSpeciesObserved:Busycon contrariumReferences:Gilliland 1975:190;Gogginn.d.:491Illustrations,Photographs:Gilliland1975:Plate112K;Luer1977a:Figure 7ADiscussion:Goggin'sTypeDissimilartoTypeC,butTypeDhasalongercolumella (n.d.:491).Gogginknewofonlyonespecimen.TypeCandDhammers(seebelow)areverycommon,butCandDcuttingedgedtoolsarerare. IhaveneverobservedaTypeDcutting-edgedtool.Intuitively,itseemsmorereasonablethatabrokenAorBcutting-edgedtoolwouldbereworkedinto aCorDhammerthanintoaCorDcutting-edgedtool.Luerandhis colleagueswouldapparentlyagree,becausetheymentionthereworkingoftypes AandBcutting-edgedtoolsintohammers,butnotintoothercutting-edgedtools (Luer et al. 1986: 112andFigure13).6.GASTROPODCUTTING-EDGEDTOOLESpeciesObserved:Busycon contrariumReferences:Bullen et al. 1978:12;Gogginn.d.:491a; Griffin 1988:83-84;Lueret al. 1986:121;Moore1921 :14 15Illustrations,Photographs:Figure8,thischapter;Bullen et al. 1978:Figure 11;Moore1921:Figures 8-9Discussion:TypeEcutting-edgedtoolshaveneitheranotchinthelipnoraholethroughthebodywhorl.Instead,thereareoneortwoperforationsinthetopoftheshellandhaftingwasapparentlyaccomplishedthroughtheaperture(Figure 8).OnepossiblemethodofhaftingtheseimplementsissuggestedbyCharlesWilloughby(seeMoore1921:14-16).Itismorphologi-

PAGE 206

198cally similar toLuer's"blank"butitpossesses acuttingedge(seeLueretal. 1986:108).TypeE'sareknowninnortheastFloridaandalongthecoastofGeorgia (e.g.,OatlandPlantationonSt. Simons Island),buttheretheright-handedknobbedwhelk(Busyconcarica)isusedinsteadoftheleft-handedlightningwhelk(Busycon contrarium).Moorevisiteda sitenearChokoloskeeIslandthat"abounded"withshellimplements.HefoundthatvirtuallyallwereTypeE.Bullen et al. (1978)foundcutting-edgedtoolshaftedboththroughthetopandthroughthesideattheCantonStreet site (8PI55).TheyhypothesizedthatthetophaftingmethodbelongedtotheArchaicperiod,andthatthetypeAandBmethodswereadoptedca. A.D. 1. In the CaloosahatcheeareatheyarefoundinsomequantityatCalusaIsland(8LL45). 7,8,9.GASTROPODCUTTING-EDGEDTOOLS,OTHERVARIETIESSpeciesobserved:Busycon contrariumReferences:thischapterIllustrations:Figure8, thischapterCultureandEnvironmentintheDomainofthe CalusaDiscussion:Variousresearchershavenotedotherhaftingforms forBusycon contrariumcutting-edgedtools. Thesearerare,andneedfurtherstudy.Gogginnamedfivetypesofcutting-edgedtools. HistypesAandBarewell-documented,andIsuggestasubdivisionofhisTypeB'sintothreevarieties (see above).InFigure8Iillustratethreeadditionalvarieties: H, I,andJ.Idonotusetheletters FandG forcutting-edgedtoolsinordertoavoidconfusionwithhammertypes FandG,discussedbelow.TypeHwasbroughttomyattentionbyRobert Edic. It is similar toTypeEinthatthehaftseems tohaveenteredthroughtheaperture,butinsteadofexitingabovetheshoulder,itpassedthroughtheouterwhorlbelowtheshoulder.AgoodexampleintheFlaMNHcollections is 88-23(3),foundat8CH10, BigMoundKey; asmallerspecimenis 88-1-5(113), fromCashMound(8CH38).TypeIisrepresentedbya singlespecimenfrom the Key Marco site (8CR49):FlaMNHnumberA-6381. The artifact resemblesinmanywaysaTypeB2cutting-edgedtool,completewithcut-awaywhorl,acuteFigure8.Fourunusualtypesofgastropodcutting-edgedtools:Fromupperleft,clockwise:TypesE (88-1-5), H (88-23), I (A-6381),andJ(A-6381).

PAGE 207

Shell Artifactshaft/edgeangle,andawideworkingedge,includingbothaprimary(onthe columella)andasecondary(onthewhorl)workingedge.However,haftingseems tohavebeenaccomplishedfrom asidehole to a holeabovetheshoulder.TypeJis alsorepresentedbya singlespecimenfrom Key Marco:FlaMNHnumberA-6381.Thehaftwentthrougha holeintheouterwhorl,passednext to the columella,andcameto restagainsttheinnersurfaceoftheshell'souterwhorl.Evidencethatthehaftrestedagainsttheinnersurfaceis ahighly-polishedcircularspotabout20mmindiameterthathasapparentlybeenproducedbyfrictionduringthe tool's use.Haftingmusthavebeenaidedbyusinglashingthroughoneor(probably)bothoftwoholesplacedabovetheshoulder.10.GASTROPODCUTTING-EDGEDTOOL,UNHAFTEDSpeciesObserved:Busycon contrariumReferences:thischapterDiscussion:Rarely,onefinds agastropodshellwithanobliqueworkingendbutnoholesornotches for hafting. I callsuchanartifact agastropod cutting-edgedtool,unhafted.11.CUTTING-EDGEDTOOL,INDETERMINATESpeciesObserved:Busycon contrarium,Pleuroplocagigantea199References:thischapterDiscussion:Sometimescutting-edgedtoolscanbe identified,butnotisolated to aparticulartypedueto breakage. Suchanartifact is acutting-edgedtool,in determinate.Thesearedistinguishedfrom columellacuttingedged-tools(see below),whichdonotshowsignsofbreakage.12.GASTROPODHAMMERASpeciesObserved:Busycon contrarium,PleuroplocagiganteaReferences:Gilliland 1975:192; Goggin n.d.:505; Lueretal. 1986:112,114Illustrations,Photographs:Figure9, thischapterDiscussion:LikeTypeAcutting-edgedtools,TypeAhammersarehaftedbymeansofa notchanda hole.Insteadof asmoothed,beveledcuttingedge,however,hammersexhibitabluntworkingsurfacewornsmoothbyrepeatedpounding.Sometimessmallspa lIsofshellaredrivenoffduringuse,andthis isreadilyevidentonthespecimens. Theworkingendsofhammerscanbefurtherclassified asstraight(Le.,parallelto the haft),acute(Le.,atanacuteanglewiththehaft),andshattered.13.GASTROPODHAMMERBSpeciesObserved:Busycon contrarium,PleuroplocagiganteaFigure9.Gastropodhammers.Left:Busyconcontrarium,TypeA (A22410);center:Pleuroploca giganteaTypeA (89-7-200);right:PleuroplocagiganteaTypeB (88-4-4).

PAGE 208

200References:Gilliland1975:192;Gogginn.d.:505;Lueretal. 1986:112,114Illustrations,Photographs:Figure 9, thischapter;Moore1900:Figure41Discussion:Gogginnamedthistypeonthebasisoftwospecimens,onefromGoodlandPointandonefrom Little Marco.Theyarehaftedhole-to-hole. AlthoughIhavenotdoneaquantitativecomparison,myimpressionisthattherearemorePleuroplocagiganteaTypeBhammersthanthereareBusycon contrariumTypeBhammers.14.GASTROPODHAMMERCSpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:Gilliland1975:192-193;Gogginn.d.:505 506;Lueretal. 1986:112-120Illustrations,Photographs:Figure 10, thischapter;Lueretal. 1986:Figure 15;Moore1907:Figure 24Discussion:TypeChammersarewelldescribedbyLueretal. (1986:112-120),whobelievethattheyarefashionedfromthecentralportionsoflargewhelks,almostsurelyhavingbeenmadefromcutting-edgedtools (Lueretal. 1986:118).Haftingwasaccomplishedbypassingthehandlethroughonenotch,pastthecolumella,andintoasecondnotch(Figure10). This is acommonartifactintheCaloosahatcheearea.AlthoughmostweremadefromBusycon contrarium, Pleuroploca giganteaspecimensarenotuncommon(Moore1907:Figure 24).GoggindistinguishedTypeC fromTypeDbylength;the D's havealongercolumel-Culture and Environment in the Domainofthe CalusalathanC's."Long"and"short"arequalitativeterms,soI calltheseartifactsTypeDifthedistancebetweentheworkingedgeextremityandthepointwheretheouterlipoftheshellcomesclosest tothecolumella(referencepoint"X"inFigure1)is 1Il ormoreoftheartifactheight(measuredparalleltothecolumella),otherwiseitisTypeC. 15.GASTROPODHAMMERDSpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:Gilliland1975:193;Gogginn.d.:506;Lueretal. 1986:112-120Illustrations,Photographs:Figure 11, thischapter;Lueretal. 1986:Figure 14.Discussion:SeeGastropodHammer C, above.GogginbelievedTypeDhammerswerelimitedtotheCalusaregion,fromChokoloskeeIslandtoPuntaGorda,butLuer(1977a:Figure 7 A)illustratesaTypeDBusycon"pick"fromtheOldOaksiteinSarasotacountythatcouldbeclassifiedasaTypeDhammer.16.GASTROPODHAMMERESpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:thischapterIllustrations,Photographs:Figure 12, thischapterDiscussion:LikeTypeEcutting-edgedtools,TypeEhammerswerehaftedfromtheapertureto aholeabovetheshoulder.GoggindidnotdiscussTypeEhammers,butfourspecimensareintheCyzewski-Figure10.Gastropodhammers,TypeC. Left:Busyconcontrarium(88-1-5);center:Busyconcontrarium(88-1-5);right:Pleuroploca gigantea (88-1-26).

PAGE 209

ShellArtifacts201Figure11.Gastropodhammers,TypeD.Left:Busyconcontrarium(88-1-5);center:Busyconcontrarium(88-1-26);right:Pleuroplocagigantea(88-1-26).Kemp-EdiccollectionfromCashMound(8CH38).TheyarealsoknownfromHookerKey (8LL30)inLeecounty(LuerandArchibald1988). 17.GASTROPODHAMMERFSpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:thischapterIllustrations,Photographs:Figure12, thischapterDiscussion:In1988RobertEdicandI identifiedtwonewgastropodhammerforms,whichwecall FandG.HammerFmaybeafurtherstageofthereductionprocessdocumentedbyLuerinthe caseofBusycon contrarium.InTypeFtheupperpartofthecolumellaandmostto allofthespireareremoved.Twoshallownotchesarecutintoeitherside ofthewhorlfor hafting. Theanteriorendshowssigns ofhavingbeenusedas ahammer.Thelengthvariesconsiderably,as does thedepthofthenotches (Figure 12).18.GASTROPODHAMMERGSpeciesObserved:Busycon contrarium, Melongena corona, Strombus alatus/pugilisReferences:thischapter;Gogginn.d.:507 -508;Lueret al. 1986:121;Moore1900:360; Reiger 1981:16-19Illustrations,Photographs:Figure13, thischapter;Melongena corona:Karklins1968:Figure26;Reiger1981:Figures8-9;5trombusalatus/pugilis:Bullen1951:Plate3M;Bullen1971:FigurellJ-K;Luer1977b:Figure41-JDiscussion:HammerG isnotapartofLuer'sreduction process. G'saresma1lerandlighterthanhammersA-F.Theyaremostoftenmadefrom she1ls ofnormal(asopposedto massive) size,andmayhavebeenintendedforexpedientuse.A1lhaveat least one hole,usuallyoblong,oppositetheaperture,andmayormaynothavea sha1lownotchintheouterwhorl.LuerrecognizedthisformatAddisonKey intheTenThousandIslands(Lueretal. 1986:118),butdidnotgiveit aseparatetypedesignation.TheyarediscussedbyReiger (1981:16-19)andMoore(1900:360).InviewofthefactthatHammerG isnotthoughttobepartoftheoverallwhelk/conchtoolreductionprocess, it seemsreasonabletodesignateitaseparatetype.TypeGhammersaremadefromStrombus alatus/5trombus pugilis(fightingconch),Melongena corona(crown conch),andBusycon contrarium(lightningwhelk).Strombus alatus/Strombus pugilishammersoccurinquantityatCashMound(8CH38)aswellasatthePalmersite (8502). Fighting conchhammersarecommonintheManasotaperiod(ca. 500 B.C.A.D. 800)inManateeandSarasota counties,butapparentlydonotoccurthereafter(LuerandAlmy1982:44).Fightingconchhammerswere"themostcommontoolatthe AbelMidden"onTerra CeiaIsland,ManateeCounty(Bullen 1951:15), a sitedatingtotheManasotaperiod.Goggin (n.d.:507-508) statesthat"hundreds"ofcrownconchhammersareknowfromtheCedarKeyarea(LevyCounty,onthecoastsouthwestof Gainesville).Karklins(1970:74)reportsMelongena coronahammersfromthesurfaceoftheFishCreeksite

PAGE 210

2025Culture and Environment in the Domainofthe CalusaFigure12.Gastropodhammers,TypesEandF.Toprow:TypeE (twoviews,88-1-5);bottomrow:TypeF (allare88-1-26).(8HIl05)aswell as fromtheSafetyHarbor-periodPalmRiverMidden(8HIl08)inHillsboroughcounty(Karklins 1968:70).NinaBorremans (1990) excavatedMelongenacoronahammersrecentlyintheCedarKeysareadatingto theWeedenIslandperiod(ca. A.D. 300-900).19.GASTROPODHAMMER,UNHAFTEDSpeciesObserved:Busycon contrarium, Pleuroploca gigantea,Cassissp.,Strombus gigasReferences:Gilliland 1975:195;Gogginn.d.:508Illustrations,Photographs:Figure14, thischapter;GogginandSommer1949:Plate61(Strombus gigas).Discussion:Rarely agastropodshell exhibitshammerwear,butshowsnosignofhavingbeenhafted.Goggincalled this artifact a"handhammer."I refer to it as agastropod hammer, unhafted.20.HAMMER,INDETERMINATESpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:thischapter

PAGE 211

ShellArtifacts203andreductionofthesize ofnodules.Apounderisquiteappropriateforthetaskofknockingindividualoystersloosefromacluster.Both Robert EdicandIhaveusedsuchshells for thispurposeforseveralyears,andtheyshowlittleornosignsofwear.Thissuggeststhatpoundersmayhavebeenusedprehistoricallytobatterevenharderobjectsthanoystershells,orthattheywereusedformuchlongerperiodsoftimethanEdicorIhaveusedthem.22.GASTROPODHAMMER/POUNDERSpeciesObserved:Busycon contrariumReferences:thischapterIllustrations,Photographs:Figure15, thischapterDiscussion:Somepoundershaveobvioushammerwearontheanterioraswellaspoundingwearontheposteriorend.I call these artifactshammer/pounders.23.GASTROPODGRINDER/PULVERIZERSpeciesObserved:Busycon contrariumReferences:thischapter524.NOTCHEDGASTROPODSHELLHANDLEIllustrations,Photographs:Figure15, thischapterDiscussion:This artifactwasfirstrecognizedin1988atthePinelandsite (8LL33), specificallyinOperationB of excavationsinBrown'sMound.Itismadeof alargewhelkwhichhashaditsentireposteriorendremoveddownto theshoulderanditscutedgesgroundsmooth(Figure 15).Smoothingisevidentontheposteriorendofthe columella as wellasontheextremityofthebodywhorl.Its function isunknown,butitwouldhaveworkedwell as ahand-heldmasher,pulverizer,ortenderizerofvegetableoranimalmatter. I refer to this tool as agrinder/pulverizer.SpeciesObserved:Busycon contrarium,PleuroplocagiganteaReferences:thischapterIllustrations,Photographs:Figure16, thischapteremoDiscussion:Whenafragmentofa columellashowshammerwearbutis toofragmentarytodeterminewhetheritwashaftedornot,thetermhammer, indeter minateisused.Figure13.Gastropodhammers,TypeG(all88-1-5).Toprow:Busycon contrarium;middlerow:Melongena corona;bottomrow:Strombus alatuslpugilis.21.GASTROPODPOUNDERSpeciesObserved:Busycon contrarium, Pleuroploca gigantea, Strombus gigasReferences:Gilliland 1975:195;Gogginn.d.:509,509a; Griffin 1988:84-85Illustrations,Photographs:Gilliland1975:Plate122A,B;Moore1907:Figure23Discussion:Poundersarelargegastropodshellsthathavehadtheirouterwhorlsstrippedoff,thenusedtobatterotherhardobjectswiththeposteriorendoftheshell,apparentlybygrippingthe long, columellaportion oftheshell.Theyshowobviouseffectsofpoundingonhardobjectsintheformofpitting,rounding,

PAGE 212

204Culture and Environment in the Domainofthe Calusa25. COLUMELLACUTTINGEDGEDTOOLSpeciesObserved:Busyconcon trarium,PleuroplocagiganteaReferences:Gilliland 1975:197; Gogginn.d.:501; Griffin 1988:87; thischapterIllustrations,Photographs:Figure17,thischapter;BullenandBullen1976:Plate 3N; Gilliland 1975:Plate 122Discussion:Somecolumellas,apparentlyunhafted,alsohadbevelededges. GogginandGillilandrecognizeatypetheycall a columella chiselmadefromPleuroplocagigantea.Goggin(n.d.:501)notesboth"chisel"and"gouge-like" blades.Theoppositeendis "usuallytapered,cutoffsquare,andgroundsmooth,butmanyshowconsiderablewearasiftheendhasbeenpoundedin use." Followingtheprecedentset fortoolswithsimilarworkingedges,I refer to this artifactasacolumella cut ting-edgedtool.ItoccursonBusycon contrariumas well asPleuroplocagigantea,asshowninFigure17A.ThetwopicturedBusyconspecimensfromUseppaIsland(8LL51)arequitesimilarinthatbothhavebeveledcuttingedgesononeendandasmoothed,straightsurfaceontheother.Notethatthespecimeninthecenter(Figure 17B)hasitscuttingedgeplacedontheanteriorendofthewhelk'scolumella,whilethatontheright(Figure17C)hasitscuttingedgeplacedontheposteriorend.26. COLUMELLAPERFORATOR27. COLUMELLAHAMMERSpeciesobserved:Busycon contrariumReferences:Gilliland 1975:197;Gogginn.d.:514; Willey1949b:49Illustrations,photographs:Gilliland 1975:Plate 122DDiscussion:Inthis artifact,oneorbothendsofthe columellahavebeensharpenedto apointratherthana bevel. Thesearecommonlycalled "awls," atermthatgenerallyconnotes a tool formakingholesinleatherorwood.Ipreferthesomewhatless restrictive termperforator.Discussion:GogginincludesaPleuroplocagiganteacolumellahammerinhistypology(n.d.:510). I recog-SpeciesObserved:Busycon contrarium,PleuroplocagiganteaReferences:Gogginn.d.:51O; thischapterIllustrations,Photographs:Figure 18, thischapter;BullenandBullen 1976:Plate 3L-M; Karklins 1968:Figure2M;Luer1977b:Figure 4B-C; Willey 1949b:Plate11K5emoFigure14.Gastropodhammers,unhafted.Left:Cassissp. (88-1-26);right:Pleuroploca gigantea (88-8-80).Discussion:This artifact issimilartoaBusyconhammerFinthatmuchofthebodywhorlhasbeenstrippedaway,sometimesevenincludingtheapex, yet theanteriorendoftheshellhasbeenleftintact(Figure 16). Somespecimenshavelongnotches in theposteriorsection,othersshallowones.Theartifactsappearatfirst glance tohavebeenhaftedfor use, yet there is noobviousworkingedgeontheanteriorendofthecolumella. Some,however,appeartohaveevidenceofhammeringontheposteriorend.These artifacts resembleHammerF'sexcept for the lackofhammeruse-wearontheanteriorend.IftheseartifactsareHammerF'sthathavebeenlittleused,then theycouldnotbepartofthereductionprocess fromHammersA,B,andD.The function oftheartifact isunknown.Onespeculationisthatthesewereexpedienttoolshaftedandusedtodigfor clams.Anothersuggestionisthatperhapsseveralwerehaftedinparalleltoformtines of a rake-like device,perhapsusedas apitchforkorraketomovequantitiesofshellfishorfishexpediently,as iscommonlydoneincommercial fishhousestoday. AsuggestionIputforwardherefor the firsttimeisthatthe artifact is ahandle,designedtoholdsomeotherstone,bone,antler,orshell artifact,perhapsahammer.Iprovisionallycallthistoolanotched gastropod shell handle.

PAGE 213

Shell Artifacts20528. COLUMELLASINKER5Intheliteraturetheseartifactsaregenerallyknownaspendantsorplummets.Willey's(l949b:50-51)typologywasextendedby Gog gin(n.d.:549-552) to includeseveralvarieties.AshadMoore(1907:458-459)beforehim,Gogginconsideredandrejectedthenotionthatthestone,potsherd,andshell artifactsvariouslyknownasplummets,plumb-bobs,andpendantsareactually fish ingsinkers.ApparentlybothGogginandMoorewereconvincedthatcarefullymanufactureditemscouldnotbeutilitarianartifactsandthereforemusthavebeenitemsofadornment.In1894Moore(1894:151-152) refers tothreeshellartifactsas sinkers,butinhis1900publicationMoore(p. 369ff.) callstheobjects "sinkers,"butwritesthatsomeofthemare"too carefullymadetohaveservedforotherthanornamentalpurposes."Willey is equivocal;hestates(194%:51)that"these shell objectsmayhavebeenornamentsortheymayhavebeensinkersofsomesort."Walker(1991)arguesthatthefunctionofthemajorityofsuchshell, stone,andceramic objectswasinfishing,citingethnographicdatafromtheSouthPacificaswell aswell-preservedarchaeologicalmaterialsfoundincoastal ChileandPeru.I believethatWalkeris correctinattributinga fishing function to objectsheretoforecalledpendantsandplummets.This isnottosaythatallsuchobjectswereintendedforactualuseinthewater,orthatnonewerewornasornaments.Irefertotheseartifacts assinkers.I list five varietiesbaseduponWilleyandGoggin'swork,butIdonotfindtheirtypologysatisfactory. Themainproblemwiththe Willey-Gogginschemeisthatitaccountspoorlyforvariationinshapeandsizebymixingattributesofsuspensionmethod(e.g., singlegrooved,double-grooved)withthoseofoverallshape(e.g.,plummetandeffigy varieties). Ibelievethatamuchbettertypologycouldbederivedifthese aremFigure15.Busyconcontrariumtools.Left:Hammer/Pounder(88-1-26);right:Grinder/Pulverizer(88-8-267). nizetwovarietiesofthis artifact,onesingle-ended,theotherdouble-ended.Inasingle-endedspecimen,onlyoneoftheendsissmoothedandstraight.Numeroussingle-endedhammersmadefromthe columellasofBusycon contrariumwerefoundrecently at LateArchaic sitesonUseppaandHorr'sIslands(Marquardt,fieldandlaboratorynotes,Useppaexcavations, 1989; Russo 1991a: 368-369, 372).Thehammersurfaceisalmostinvariablyontheanteriorendofthewhelk'scolumella. AtUseppaall stagesofthemanufacturingprocess, fromvirtuallyunmodifiedmassivewhelkshells to finishedandusedcolumellahammers,canberecognizedinthedeposits(Milanicheta1.1984:271 273).ThereisnoevidencethusfarfromUseppaforthehaftingofBusycon contrariumshellsinthemannerdescribedabove(seegastropodhammers,Types A-G), suggestingthatthelargegastropodswerenotsohaftedinthesouthwestFlorida Late Archaic. It iscertainlypossiblethatcolumellahammerswerehaftedinsomeothermanner,perhapsin a socketedhandle.Columellahammersarenotlimited to the Archaicperiod,for KarklinsfoundtheminanearlySafetyHarborperiodsiteinHillsboroughcounty(Karklins 1968:Figure2M).

PAGE 214

206Culture and Environment in the Domainofthe CalusaAoemBcFigure16.Notchedgastropodshellhandles.A:89-7-205;B:88-1-26;C:88-1-26. tifactswereto bestudiedsystematically. Karen Jo Walker (personalcommunication,1991)hasalreadybegunsucha project. 28a. COLUMELLASINKER,PLUMMETVARIETYSpeciesObserved:Pleuroplocagigantea, Busycon con trariumReferences:Gogginn.d.:548, 550-551; Walker 1991; Willey 1949b:50-51Illustrations,Photographs:Bullen 1951:Plate 2D-E; Bullen 1971:Figure 8J-M; Gilliland 1975:Platell1B,M;Griffin 1985:Plate 5H-I; Griffin 1988:Figure5.71;Moore 1900:Figure 8F,M,N;Moore1905:Figure24Discussion:Thesinkershaveatear-shapedorpearshapedform,butvarywidelyinproportions.Goggin'sstatementis apt: "Theymayvaryfrom long,tapering,tear-shapedspecimenstosquat,globular,almostsphericalforms.Almosteveryconceivableshapebetweenthetwois recognizable,includingatoporplumb-bobshapewhichmightbeconsideredas themeanofthetwoextremesinform."Notethatthemoresquatandglobularsinkersareusuallymadeofstone,whilethosemadeofcolumellasofgastropodshellsaremorelikely tobecylindrical. 28b. COLUMELLASINKER,SINGLE-GROOVEDVARIETYSpeciesObserved:Pleuroplocagigantea, Busycon con trariumReferences:Gogginn.d.:551; Willey 1949b:51Illustrations,Photographs:Figure 19A-D, thischapter; Bullen 1951:Plate 2A-C; Bullen 1971:Figure 8H,L; BullenandBullen 1976:Plate 6A; Gilliland 1975:Plate ll1A,C-E,H,J-L;Goggin1949:Figure 22A,B; Goggin 1950:Figure 79U; Griffin 1985:Plate 5K,L,N; Griffin1988:Figure5.7F;Moore1900:Figure 8A,B,E,G-J,L;Moore1907:Figures3,16;Willey 1949a:Plate 15B; Willey1949b:Plate 12A-D

PAGE 215

Shell ArtifactsFigure17.Columellacutting-edgedtools.A:Pleuroploca gigantea(89-27-260);B:Busyconcontrariumwithcuttingedgeonanteriorend(89-37-5);C:Busyconcontrariumwithcuttingedgeonposteriorend(89-39-2/1).Discussion:These sinkersaregenerallycylindrical,andoftenhaveblunttips. A singlegroovehasbeencutaroundoneend.28c. COLUMELLASINKER,DOUBLE-GROOVEDVARIETYSpeciesObserved:Pleuroplocagigantea, Busycon con trarium,Cassissp.References:Gogginn.d.:551;Walker1991; Willey 1949b:50Illustrations,Photographs:Figure19G-H, thischapter;Bullen1971:Figure81;Moore1900:Figure8K;Moore1905:Figure26;Moore1907:Figure4;Willey 1949a:Plate 16G,24A; Willey 1949b:Plate 12F-HDiscussion:Thisartifactissimilartothesinglegroovedformexceptthatanencirclinggrooveisfoundatbothends.Anunusualspecimenmadefromthelipofahelmetconch isillustratedbyWilley (l949b:Plate 12H). 28d. COLUMELLASINKER,EFFIGY VARIETYSpeciesObserved:Busycon contrariumReferences:Gogginn.d.:552;Walker1991Illustrations,Photographs:Figure19E, thischapter;Moore1907:Figure 14Discussion:Some sinkerswerecarvedto resembleotherobjects.OneBusycon contrariumspecimenfromCashMoundwasmadetoresemblea fish (Figure 19E),perhapsintendedtoinvokesympatheticmagic in attractinga fish to its likeness.Moore(l896a:Figure 22; 1907:Figure 14)illustratesa shellspecimenthathas207beencarvedtoresemblethetoothof acarnivore,atypethatGoggin (n.d.:552) refers to as "imitation tooth" form. 28e. COLUMELLASINKER,PERFORATED VARIETYSpeciesObserved:Busycon contrarium,PleuroplocagiganteaReferences:thischapter;WilliamsandMowers 1977:65Illustrations,Photographs:Figure19F, thischapter;BullenandBullen 1956:19; Moore 1905:Figure22;Wil liamsandMowers1977:Figure 4CDiscussion:Twospecimensareknownofthistypeinthe Caloosahatcheearea(Figure 19F, thischapter;Bul lenandBullen 1956:Plate 4D). Aspecimenfrom the surface ofUseppaIslandis 64mmlong,22mmindiameteratitswidestpoint,andweighs34 g. BullenandBullenillustrateanexcavatedspecimenfromCashMoundthatappearstobeabout85mmlongand23mmindiameter(see BullenandBullen 1956:Plate 4D). WilliamsandMowers(l977:Figure 4C)foundaperforatedshellsinkerattheMarkhamParkMoundNo.2Site inBrowardcounty,a sitethoughttodatetotheTransitionalperiod(ca. 1200 B.C. 500 B.C.).Moore(l905:Figure22)illustrates asinkerthatisbothperforatedandsingle-grooved.OtherperforatedsinkersreportedfromcentralFloridanearTavaresaremadeofbothigneousandsedimentaryrock(Moore 1896b:Figures 82, 83, 86). Similar items from the TickIslandsite(8V024),northeastFlorida,wereinterpretedas "PovertyPointtype" bolaweights(JahnandBullen 1978:Figure 50A-B, I-J,L,N, P-Q,B'-C).Theperforatedsinkerisindeedsimilarto objectsknownfrom thePovertyPointculture(ca. 2000B.C. -750 B.C.)inLouisiana(Neuman1984:103,105),whichisatleastpartiallycontemporaneouswiththeTransitionalperiodinFlorida. 29. COLUMELLA PLANESpeciesObserved:PleuroplocagiganteaReferences:LuerandAlmy1979:39,41.Illustrations,Photographs:Figure20, thischapterDiscussion:The columellaofthehorseconch,Pleuroplocagigantea,wassometimesmadeintoa specializedtoolusuallycalled aplaneinthe literature. Themaincharacteristic oftheartifact is averysmoothandflat surfaceparallelto thelongaxisofthecolumella. Ispeculatethattheso-called columellaplanewasa specializedwoodworkingtool.Manycolumellasthatexhibitoneormoreplanarsurfacesmaybeunfinishedcolumellasinkers,notplanes.Suchobjectswouldbe classifiedas"workedcolumellas" (see below). 30.SHOULDEREDGASTROPODADZESpeciesObserved:Busycon contrariumReferences:thischapterIllustrations,Photographs:Figure21A, this chapter; Willey 1949a:Plate 15C-D

PAGE 216

208Culture and Environment in the Domainofthe CalusaFigure18.ColumellaHammers(Top row: 88-1-26,88-1-26,88-1-26,89-38-151/7,89-38-87/5,89-38-15111;bottomrow:89-38-146/1, 89-38-6012,89-38-14116,89-38-195/1,89-38-53-111,89-38-55/1;allareBusyconcontrariumexceptthethreeleftmostartifactsinrow1.). acrosstheentirewidthoftheimplement,oppositetheendwiththeremnantofthewhelk'sshoulder.Theshoulderendwaspresumablysetintoahandleinsuchawaythatthe long axisofthewhelkwasapproximatelyatrightangleswiththehaft. IhaveobservedtheseartifactsonlyfromsouthwestFlorida coastal sites oftheLate Archaicperiod(UseppaIsland,8LL51,andHorr'sIsland,8CR208, 8CR209).Willey(l949a:Plate15C-0)illustratesaBusyconshoulderedadzefromthePericoIslandsite (8MA6). 31.SHOULDEREDGASTROPODADZEBLANKSpeciesObserved:Busycon con trariumReferences:thischapterDiscussion:This artifact isidentical totheshoulderedgastropodadzeexceptthattheworkingedgehasnotbeenplacedontheanteriorendofthewhelkshell fragment. Tobeclassified as ashoulderedgastropodadzeblank,the objectmustberectangularandmadeofamassivewhelkshellthatextendstoorincludesthewhelk'sshoulder.It isdistinguishedfromirregularpiecesofwhelkwhorlfragments,whichI classify asdebitage(see below). 32.GASTROPODADZEICELTSpeciesObserved:Busycon con trarium, Strombus gigasReferences:Bullen 1978:94;CarrandReiger1980;Keegan1984;Masson1988; Willey 1949b:47-48Discussion:Theouterbodywhorlofsomeverymassivewhelks,fromtheshoulderorjustabovetheshoulderdowntoneartheanteriorend,wasusedtoproducearectangulartoolwitha single-bevelworkingedge. Thesearedistinguishedfromthesmaller, lighter,andmoretriangular-to-trapezoidalBusycon contrariumadze/celtsdescribedbelow.Theword"shouldered" refers tothefactthattheadzeextends toandincludespartoftheshoulderareaofthelightningwhelk(Busycon contrarium).Thenaturalshapeofthegastropodgivestheartifact agentlecurvealongitslongaxis. Ameasuredsampleof14shoulderedgastropodadzesrangesinlengthfrom89to 153mm,andinwidthfrom 36 to85mm.ThebladeissituatedIllustrations,Photographs:Busycon contrarium:Figure21B-C, thischapter;Gilliland 1975:Plate 119B;Luer1977b:Figure40;Willey 1949a:Plate 15C-O, 16C; Willey1949b:Plate 11F-G;Strombusgigas:Figure210,thischapter;CarrandReiger 1980:Figures 2-4; Gilliland 1975:Plate 119A,C;Goggin1949:Figure20B;Masson1988:Figures11-16;Moore1900:Figure11;Willey1949a:Plate 15A,16A-B; Willey 1949b:Plate 11A-EDiscussion:TheBusycon contrariumwhorlwassometimesmadeintoanadzeorcelt,probablyhaftedin thesamemannersuggestedbyMasson(1988) forStrombus gigastoolsfromsoutheastFloridaandtheWest Indies.Anartifact isusuallycalledanadzewhenithasa

PAGE 217

Shell Artifacts209ABcoEFGH5emaFigure19.ColumellaSinkers.A-D:Single-groovedvariety(89-7-282, 89-7-289,89-7-63, A27594);E:Effigyvariety(88-1-1);F:Perforatedvariety(89-40-1); G, H:Double-groovedvariety(87-72-111, 88-8-162).Figure20.Pleuroploca giganteaColumellaPlanes.A:89-7-393;B:89-7-304. unifacialworkingedgeanda celtwhentheedgeis bifacial.Althoughthis seemsunambiguous,applyingthedistinctioninpractice isnoteasy, especiallywithBusyconspecimens. For thisreason,thetermadze/celtisusedtocharacterizetheartifacts. CloseexaminationoftheBusyconceltsfromtheCashMoundcollection (seeFigure21,middlerow)showswearandspallingofthekinddescribedbyMasson(1988:Figure 13) forhersoutheastFloridaspecimens.TheBusyconspecimensarecutfrom theouterwhorl,andrangefromroughlyrectangulartotrapezoidalinshape,withtheworkingedgebeingplacedonthelongerof thetwoshortsides of thetrapezoid.Incontrastto theshoulderedgastropodadze,theworkingedgeofBusyconadze/celts isplacedontheposterior,nottheanteriorend.TheStudent's tstatisticcanbecalculated todeterminewhethertheBusycon contrariumshoulderedadzesdescribedabovearesignificantlylargerthanBusycon contrariumadze/celts. Theshoulderedadzesaresignificantlylonger(t=4.91,p<.0001),wider(t=8.20,p<.0001),andheavier(t=7.77,p<.0001),buttheyarenotsignificantly thicker(t=0.10).ThemaximumthicknessoftheshoulderedandunshoulderedBusycontypes isvirtuallyidentical,averaging6.90and6.85mm,respectively.TheprocessofmanufactureofStrombus gigasadze/celtsiswellunderstoodthankstotheexperimentalworkofKeegan(1984). Similar replicativeexperimentationwiththemanufactureanduseofBusycon contrariumadze/celtsisneeded.IncontrasttoBusyconadze/celts,Strombus gigasadze/celtsaremadefrom the lipoftheshell.Adze/celtsofbothBusycon contrariumandStrombus gigaswerefoundatCashMound,buttheyarenotcommonatothersitesintheCaloosahatcheearea.AlthoughStrombus gigasconchs livenaturallyonlyas farnorthasextremeB5emAa

PAGE 218

210Culture and Environment in the Domainofthe CalusaABc o '"<.-:'-:r.:J-;:oem5Figure21.AdzesandAdze/Celts,obverseandreversesides.A:BusyconcontrariumShoulderedAdze(89-38-45/1);H,C:BusyconcontrariumAdze/Celts(both88-1-1);D:StrombusgigasAdze/Celt(88-1-1).

PAGE 219

Shell Artifacts211SpeciesObserved:Mercenaria campechiensisReferences:Luer1986:141-145Illustrations,photographs:BullenandBullen 1956: Plate5HDiscussion:Quahogclams alsoshowprobableuseaschoppers,recognizedbyseverebluntingandchippingoftheposterioredgeof theventralmargin.Again,suchwearmustbedistinguishedfromthesmallchippingthatcanbeobservedonthelips ofmanyclams.Thelatterarescars leftbypredators,suchas crabsandcarnivorouswhelks(Luer 1986:130-131).Discussion:Sometimesshellsshowevidenceofhavingservedasasurfaceonwhichahammerorotherbluntinstrumentwastappedorground,hencesuchartifactsarecalledanvils.Thequahogclam(Mercenariacampechiensis)oftenshowsevidenceofhavingservedasananvil. Excavationsofa Late Archaic shell columellatool-manufacturingareaatUseppaIslandin1989showedthatlargelightningwhelksdriveninto thegroundalsoservedasanvils(Figure 22). 37.CHOPPER38.ANVIL/CHOPPERSpeciesObserved:Mercenaria campechiensisReferences:Luer1986:141-145Illustrations,Photographs:Luer1986:Figure 10.Discussion:Somequahogclam valvesshowevidenceof haVingbeenusedbothasananvilandachopper;thesearecalledanvil/choppers.39.BIVALVE KNIFE/SCRAPERSpeciesObserved:Macrocallista nimbosa, Spisula solidissimaReferences:Goggin1950:241; Griffin 1988:88Illustrations,Photographs:Macrocallistanimbosa:Gilliland1975:Plate 119G;Goggin1950:Figure 79DD;Discussion:Somequahogvalveshaveslightnotches,suggestingthattheywerehaftedandperhapsusedasdiggingimplements(Luer 1986:134-137). I call these artifactsnotched bivalve shells.AccordingtoLuer(1986:134),theartifactsarefoundinbothmiddenandburialcontextsalongthelowerpeninsularGulfcoastanddatefrom ca. 300B.C.to A.D. 1200.Theyarealsoknowninburialcontextfrom alootedWeedenIsland-periodburialmound(8CH16, Boggess Ridge)intheCharlotteHarborarea.SpeciesObserved:Mercenaria cam pechiensis, Busycon contrariumReferences:Luer1986:141-145; thischapterIllustrations,Photographs:Figure22,Figure22.Busycon contrariumAnvils,insitu,inLateArchaicthischaptermiddenatUseppaIsland,1989excavation.SpeciesObserved:Busycon contrarium, Strombus gigasReferences:Masson 1988:320-322Illustrations,Photographs:Keegan1984:Figure9;Masson1988:Figures 9-10Discussion:Gastropod adze/celt blanksareshell fragmentstheedgesofwhichhavebeenshapedintoarectangulartotrapezoidalform,withroundedandsmoothededges.However,theworkingedgehasnotbeengroundontheendofthe artifact. 36.ANVIL34.BIVAL VE ADZE/CELTSpeciesObserved:Mercenaria campechiensisReferences:Reiger 1981 :4-7Illustrations,Photographs:Reiger 1981:Figures 1-2Discussion:Segmentsofthequahogclam,Mercenariacampechiensis,werealsousedasadzes!celts. Reiger describes asampleofthese tools from ChokoloskeeIsland(8Cr1)andMarcoIsland(8CR107).Theyareroughlytriangularinshapeandmayhaveserratedworkingedgesalongtheventralmargins.Luercautions (1986:125-132)thatrandomchippinginthelips ofquahogclams is anaturaloccurrencedueto theactionofpredators.Thetriangulartorectangularclam shellfragmentswouldserveanumberofpurposes,andIthinkitquitelikelythattheywereusedasexpedientchoppingtools. 35.NOTCHEDBIVALVE SHELLSpeciesObserved:Mercenaria campechiensisReferences:Luer1986:134-135Illustrations,Photographs:Luer1977b:Figure 4E;Luer1986:Figures 7-8southFloridaandtheKeys,Strombus gigasadze!celtsarefoundas farawayasnortheastFlorida in thepreceramicfreshwater-shellmiddensofthe St. Johns River (Bullen 1978:94). 33.GASTROPODADZE/CELT BLANK

PAGE 220

212Griffin 1988:Figure 5.7H;Spisula solidissima:Gilliland 1975:Plate 119H-IDiscussion:Thesunrayvenusclam(Macrocallista nimbosa)wassometimesusedas aknifeorscraper,obtainingadistinctivewearpattern.Less frequently,thesurfclam(Spisula solidissima)wassimilarlyused.WilliamsandMowers(1977:68)report57Macrocallistaknives from theMarkhamParkMoundNo.2,aTransitional-periodtreeislandsiteinBrowardcounty.IhaveusedaMacrocallistaknife/scraperto scale fish,anditworksverywellindeed.40. PERFORATEDGASTROPODSpeciesObserved:Busycon contrarium, Conussp.,Olivasp.,Pleuroplocagigantea, Vermiculariasp.References:Gilliland 1975:199,201; Reiger 1981:4-7Illustrations,Photographs:Busycon contrarium:BullenandBullen 1976:Plate 3Q;Gilliland1975:Plate1170; Olivasp.: BullenandBullen 1976:Plate31;Gilliland1975:Pl. 112H;Goggin1950:Figure 79L; Griffin 1985:Plate 5E; Willey 1949b:Plate 12L-M;Pleuroplocagigantea:Reiger 1981:Figure 3;Vermiculariasp.: Moore 1900:Figure 28Discussion:Busycon contrariumshellsperforatedbelowtheshouldermayhaveservedasnetanchorsor,tiedtogetheringroups,ascanoeanchors(Gilliland1975:199,201).Clustersofmassive,perforatedBusyconshellswereobservedbyJohn Beriaultonthe surfaceofalowareaatGaltIslandin 1987(MarquardtandBeriault1988).Reiger(1981:7-10)describessimilarlyperforatedPleuroplocagiganteashells from several sitesinsouthFlorida. Sometimesfragmentsofcementedwormsnail(Vermiculariasp.)wereperforatedandpresumablyusedasweightsoranchors. Most scholars (e.g., Willey 1949b:51, 108)assumeperforatedOlivashells tobebeads,buttheymayhaveservedasweightsorsinkers. 41. PERFORA TED BIVALVESpeciesObserved:Argopectensp.,Codakiaorbicularis,Crassostreavirginica, Mercenaria campechiensis, Noetiasp.,Dinocardiumsp.References:Bullen 1971:22;Cushing1897:366; Gilliland1975:187;Gogginn.d.:532-534;Luer1986:137 141; Reiger 1981:7-10.Illustrations,Photographs:Argopecten irradians:Figure23E, thischapter;Bullen 1971 :Figure11O-E; BullenandBullen1956:Plate4I-J;BullenandBullen1976:Plate3J;Bullenetal. 1978:Figure lOP; Gilliland 1975:Plate 116A;Codakiaorbicularis:Griffin 1985:Plate 8F-G;Moore1907:Figure 26;Crassostrea virginica:Figure23A, thischapter;Mercenaria campechiensis:Figure230,thischapter;Gilliland 1975:Plate 124A; GriffinandBullen 1950:Plate 3G;Luer1986:Figure9;Noetiasp.: Figure 23C, thischapter;Bullen 1971:Figure 11F H; Gilliland 1975:Plate 117F;Goggin1949:Figure 23A C; Moore 1907:Figure 25;Dinocardiumsp.:Figure23B,this chapter; Bullen 1971:FigureIll;Bullenetal. 1978:Figure10Q; Gilliland 1975:Plate 118;Moore1907:Figure27Culture and Environment in the Domainofthe CalusaDiscussion:Anumberofshellshaveperforationsinthem,perhapshavingservedas netweights(Figure 23).Perforatedarkshells(Noetia ponderosa)werefoundstillattachedtonettingfoundattheKey Marco site (Gilliland 1975:184(187).Figure15inChapter8, thisvolume,isanartist'sconceptionofa gillnetwithperforatedNoetiaponderosashellsusedasweightsinthemanneroftheKey Marco specimens. Bullen et al. (1978:15)mentionaperforatedoystershellattheTransitional-periodCantonStreet site (8PI55). 42.NOTCHED/WAISTEDSHELLSpeciesObserved:Mercenaria campechiensisReferences:Gilliland 1975:184;Gogginn.d.:535-536Illustrations,Photographs:Gilliland1975:Plate 117C;Goggin1949:Figure 230-1; Moore 1900:Figure29Discussion:Thequahogclamvalveismadeexpedientlyintoaweightorreelbysimplychippingawaypartsofit to form anotchorpairofnotches.Whennotchesarechippedfromoppositesides of the shell, aroughlyhourglass,or"waisted"shapeis ob tained. Gilliland (1975:184)interpretsthese as netweights,butillustrates(1975:Plate 117C)onlyonespecimenthatlooks asthoughitmayhavebeentiedforsuspension.Threeotherartifactsinherphotographhavecordage,possiblyfishing line, stillwrappedaroundthem.Hence,theymayalsobeinterpretedas reels forhandfishing linesorsimplyas spools, forstorageofline. 43. NETMESHGAUGESpeciesObserved:Busycon contrarium, Mercenaria campechiensisReferences:Walker1991;Chapters6and8, thisvolume;d.Gilliland 1975:201-202, Griffin 1985:Plates 6E-F;Gogginn.d.:604-605,Moore1900:374,andWilley 1949b:51Illustrations,Photographs:Figure24, thischapter;Gilliland 1975:Plate 119D-E;Moore1900:Figures 12 14; Willey 1949b:Plate120;turtlecarapaceandfossilmammalbone: Figure 10 inChapter6, this volume;Figure16inChapter8, thisvolumeDiscussion:Shell rectangles,variouslycalled "bars," "cut shell sections," "tablets," "spatUlas,"and"narrowoblongstrips"intheliterature,areidentifiedbyWalkerasnet mesh gauges(Walker 1991).ContemporarysouthwestFlorida fishingpeoplecall theseartifacts "paddles."Thetool isusedtokeepthe size ofthenetuniformasthenetknotsarebeingtied. As eachknotis tied,itis slidalongthelengthofthegauge(Figure16inChapter8, this volume),assuringuniformityofthenetopening.A possible shellnetmeshgaugeidentifiedasaspatulabyGilliland (1975:Plate 11ge, right)apparentlystillhadcordageadheringtoitwhenrecovered. Suchanartifactworksverywell as anetshuttle(RobinC.Brown,personalcommunication, 1992).Walkerdemonstratesthatthereweresev eralstandardsizesofgauge,andthatthegaugewidthsareremarkablyconsistentfrom site to site. Thegauges

PAGE 221

Shell ArtifactsABc213oEoem5Figure23.PerforatedBivalves.A:Crassostrea virginica(89-7-292);B:Dinocardiumrobustumvanhyningi(88-8-293); C:Noetiaponderosa(A22410); D:Mercenaria campechiensis(88-1-2);E:Argopecten irradians (89-7-46).aremadenotjustofshell,butalsoofturtlecarapaceandwood(Walker1991). SeeChapters6and8, thisvolume,forfurtherdiscussionofthisartifacttype.44.SPINDLEWHORLSpeciesObserved:d.Busycon contrariumReferences:Walker1991Illustrations,Photographs:Moore1900:Figures 15-16Discussion:Undecorated,centrally-perforatedshelldiskssuchastheoneillustratedbyMoore(1900:374)arerare,butprobablyfunctionedasspindle whorlsfordropspindlesusedinthespinningofyarn(Walker1991). Bullen (1971:17)interpretedacentrally-perforatedstonediskfromtheSarasotaCountysite(85023)as aspindlewhorl,butsofarasIknow,centrally-perforatedshelldiskshavenotbeensimilarlyinterpreted.45.GORGETSpeciesObserved:d.Busycon contrarium, Cassissp.

PAGE 222

214Culture and Environment in the Domainofthe CalusaA Bcooem5Figure24.ShellNetMeshGauges.A: 87-28-15;B:87-28-6;C:88-8-97; D: 87-28-19.Figure25. Beads. A-B:Diskvariety(89-7-292,89-7-156);C:Squarevariety(88-8-6); D:Tubularvariety(89-7-141).2oBem Aco @ tionin fishing,muchas the glassandplasticbeadsonefinds intoday'sfishing tackleshops.Iftheydidservea functioninfishing,ratherthanasornaments,thenit isnotsosurprisingto findtheminassociationwithotherfishing artifacts,suchasnetweights. For example,for theGranadasite (80A11), Griffin (1985:72)reportsanincrease fromPeriodII toPeriodIII in "beads,pendants,andnet weights."Ifoneinterpretsso-calledpendantsas fishingsinkers(see above)andbeadsasfishingequipment,thenthe factthatthese 46. SHELL BEADSReferences:Gilliland 1975:175,179;Gogginn.d.:540 541; Willey 1949b:51Illustrations,Photographs:Figure25, thischapter;Gilliland 1975:Plate 112E; Griffin 1985:Plate 5B-O, F-G; Willey 1949b:Plate 12J-KDiscussion:Shellbeads,indeedbeadsofanymaterial,arerareintheCalusaregion.Gogginsaysthatthey"occurinrelativelylargenumbersandforms"atAddison'sKey,andWilley (1949b:51)reportshundredsfrom the BelleGladesites. Shellbeadsmayhavebeenornamental,ortheymayhaveservedsomefunc-References:Gilliland 1975:175;Gogginn.d.:543-545;Luer1977b:123Illustrations,Photographs:Bullenetal. 1978:Figure lOA; Gilliland 1975:Plate 112B-C,G, Plate 113A,Plate114;Griffin1985:Plate6A-C;Moore1900:Figure9,lower right;Moore1907:Figure 10Discussion:Althoughtheshell carversofsouthwestFloridadidnotreachthelevelofartistryknownamonglaterMississippianperiodpeopleoftheAmerican Southeast, anumberofperforatedandsmoothedshell objectshavebeenfoundinsouthFlorida.Goggindiscusses several varieties,butmostarecircular,withoneormorewell-drilledholes,presumablyfor sus pension. Griffin (1985:Plate6B)illustrates a rectangularspecimenfromtheGranadasite (80A11).Luer(1977b:123) discusses"apolishedandperforatedpiece ofbodywhorl,alsocutfromtheshellofaleft-handedwhelk" fromtheRoberts Bay site in Sarasotacounty.Althoughthesemaywellhavebeenwornattheneck, as theterm"gorget" implies, it isentirelypossiblethattheyservedautilitarianpurpose,suchas asaucerfor mixingbodypaintorservingfood.Thesuspensionholesmayhaveservedtoattachthe object to ahookortoone'sclothingwhiletraveling.Althoughmostso called gorgetswereprobablymadefromtheBusycon contrarium,GeorgeLuer(personalcommunication,1991)knowsofagorgetfashionedfrom ahelmetshell(Cassissp.) from a site inManateecounty.

PAGE 223

Shell Artifactsthree artifactsarefoundin association is nolongerenigmatic(d.Griffin 1985:72). WilleyandGogginrecognizedseveral shellbeadforms,whichIadopthereas varieties ofthegeneralcategoryshellbeads.46a.Bead,SeedVariety.Thesesmallbeadsrangefrom 2 to 3mmindiameter,withproportionatelylargeperforations(Goggin n.d.: 540).About750werefoundatthe BelleGladesite (Willey 1949b:51). 46b.Bead,DiskVariety.Thesebeadsaredisk-shaped,withthe flat sidesbeingwellsmoothed.Iclassifybeadsas "disk"iftheyareatleast 3mmindiameterandhavealengthlessthanthemaximumdiameter;ifthelengthisequaltoorgreaterthanthediameter,I call them "tubular" (see below). Willey (1949b:51)reportsthatdisk-shapedbeadsare3 to 4mmindiameter,withalengthof1 to 3mm.About750werefoundatthe BelleGladesite. Adisk-shapedbeadfrom theOpaLocka 1 site is12mmindiameterand6mmlong.Onlya fewbeadshavebeenfoundinourexcavations intheCaloosahatcheearea. Thetwodisk-shapedbeads shown inFigure25(A,B)are6 to 7mmindiameterand3 to 5mmlong.TheyarefromPineland(8LL33). A diskshapedbeadfromthesurfaceofCashMound(8CH38)measures6mmlongand9mmindiameter. 46c.Bead,SquareVariety.Goggin(n.d.:540) describessquareto slightly rectangularbeadsfromAddison'sKey.Theytypicallyrangeinsize from 4 to 9mmwideand7 to 10mmlong,butlargerspecimensmaybeupto 14mmlong.OnebeadfromPineland(8LL33) (Figure 25C)hasasquarishcross section,withalengthof9mmandamaximumwidthof9mm.46d.Bead,TubularVariety.Onehundredthirty-ninetubularbeadswerefoundbyWilleyinsoutheastFlorida(Willey1949b:51). Thesebeadsaremostlycylindrical,butsomehaveoneortwoplanarsurfaces.Theytypicallyrangeindiameterfrom4 to 6mmandinlengthfrom 8 to 19mm.ThetubularbeadshowninFigure250is 7mmindiameterand9mmlong;itis fromthePinelandsite (8LL33). 46e.Bead,ExpandedEndsVariety.Cylindricalbeadsthatflareoutattheendsarereferred tobyWilley (1949b:51) as"tubularbeads,expandedendsvariety." Thesearequitelong,rangingfrom21to45mminlength,withacenterdiameterofabout7mm.IknowofnonefromtheCaloosahatcheearea. 46f.Bead,FacetedVariety.According toGoggin(n.d.:541), thissmallbeadhasroughlyfaceted sides,givingitanapproximateoctagonalshape.Onlyonespecimenisknown,fromMatecumbeKey; itmeasures9mmlong. 46g.Bead,IrregularVariety.215AtAddison'sKeytworoughlyrectangularbeadswithroundedcornerswerefound(Goggin n.d.:541). Theirdiametersare14mm,theirlengths16and17mm. 46h. Bead,MassiveVariety.AlargeandheavyshellbeadfromChokoloskeeKey isillustratedbyMoore(1907:Figure 17). It is43mmlongand26mmindiameter.46i.Bead,OtherVariety.Beadsthatdonotfit inoneoftheeightcategoriesabovemaybeplacedin thisresidualcategory. 47. DIPPER/VESSELSpeciesObserved:Busycon contrarium,PleuroplocagiganteaReferences:Bullen 1978:94-95; Gilliland 1975:169 172;Gogginn.d.:478;GogginandSommer1949:54;Lueret al. 1986:119-120;Webster1970; Willey 1949b:50Illustrations,Photographs:Figure 26, thischapter;Bullen 1971:Figure 12; BullenandBullen 1976:Plate6G;Gilliland 1975:Plates 108, 109,1l0A;Goggin1949:Figure20A; Griffin 1988:Figure 5.6A; Webster 1970: Figures 1-2("Busyconcooking vessels")Discussion:TheusefulnessofthelargegastropodsBusycon contrariumandPleuroplocagiganteadidnotendwithhaftedhammers,cutting-edgedtools,adze/ celts,andothertools. The shellswerea Iso fashionedintowhatappeartobevessels,dippers,saucers,andspoonsorscoops,andthesearewell-describedbyGoggin. The so-calleddipperismadebycarefullychippingouttheBusycon contrarium'scolumellawithoutremovingtheposterior(apex)endofthe shell. These vesselsaresometimesfoundinburialcontexts,andsomehavebeenperforated,suggestingritualkillingofthevessel. A "killed" ceramic vesselreportedbyMoore(1896a:Plate 74) fromtheGrantMoundseems tohavebeenmadeintheshapeofagastropoddipper/vessel.Willey (1949b:50)reportsa large, well finishedPleuroplocagiganteadipperfromsouthwestFlorida.Anothersuggestionistheirhavingbeenusedas cooking vessels,placeddirectlyinfiresoronhotcoals.Webster(1970:3-4)hypothesizesthatBusycon con trariumcooking vesselswereassociatedwiththepreceramicArchaicperiod,duringwhichtimetheyservedapurposelatertobefulfilledbyceramic ves sels. Bullen (1978:94) refers to these cooking vessels as "kettles." Thetermdipperisprobablytoo restrictive, as is theattributionof acookingfunction.Theshellscouldhavebeenusedtoholdavarietyof materials,henceIapplythetermdipper/vessel.48. CUPSpeciesObserved:Busycon contrarium, Pleuroploca giganteaReferences:Gogginn.d.:480;GogginandSommer1949:53-54;Lueretal. 1986:119-120

PAGE 224

216Culture and Environment in the Domainofthe Calusa51.WORKEDCOLUMELLASpeciesObserved:Busycon contrarium, Pleuroploca gigantea5emIllustrations,Photographs:Gilliland1975:Plate112F;GogginandSommer1949:Plate7G;Moore1900:Figure 9,lowerleftDiscussion:Asauceris acircularornear-circularsectionoftheouterwhorlof awhelkshellthathasasmoothlyground,flat lip. Becauseofthecurveofthewhorl,theinteriorofthesauceris concave.Goggin(n.d.:482)notesthattheusualsizeis 50to75mmindiameter,thoughspecimensas smallas37mmandaslargeas 100mmareknown.Again,one cannotbe certainofthe artifact'sfunction.Somesmoothed,circularwhorlfragmentsmaybeblanksforspindlewhorlsorgorgets.GogginhypothesizesthattheBusyconsaucerisconfinedtotheGlades IIIperiod(n.d.:483). 50.SPOON/SCOOPSpeciesObserved:Busycon con trarium,CypraeazebraReferences:Gogginn.d.:483-484Illustrations,Photographs:Figure28B-C, thischapter;Bullen 1971:Figure 9M; Gilliland 1975: Plate 110B-D;GogginandSommer1949:Plate 6D; Griffin 1988:Figure5.7D;Moore1900:Figures 17and18Discussion:Shellspoon/scoopsarecutfromthewhorlofthelightningwhelk,Busycon contra rium,andthemeasledcowrie,ormickory-mockshell,Cypraeazebra.Theyvaryinsizeandshape,butallhavesmoothedlips.Theydiffer fromsaucersindeviatingfrom acircularshape.Tobeclassified as aspoon/scoop,theitemmustpossesssomeconstrictedareatoserveasa "handle." Grif fin (1988:82) notessuchshapesas "ovoidwithroundedbowlend"(Griffin 1988:Figure 5.7D)and"rectanguloidwithsquareend"(GogginandSommer1949:Plate 6D).Cypraeaspoon/scoopsareapparentlylimitedtosoutheastFlorida(Goggin n.d.:483). A rectangularBusyconspecimenwasfoundinLate Archaic contextin1989atUseppaIsland(Marquardt,fieldandlaboratorynotes, 1989); seeFigure28C, thischapter.o49. SAUCERFigure26.Dipper/Vessel(88-1-26).Illustrations,Photographs:Figures27and28A, this chapter;GogginandSommer1949:Plate5H(Busycon contrarium)andPlate 5E(Pleuroplocagigantea)Discussion:Cupsmadeofwhelkandconch shellsareoccasionallyfound.Goggin(n.d.:480)describeswhelkcups,butthespecimenpicturedinFigure27, thischapter,ismadefromaPleuroplocagigantea(horse conch). Acupissmallerthanadipper,rangingfrom 35 to60mmhigh,andit possessesno"handle"asdoes thedipper/vessel.The lipsareoftensmoothed,buttheoutsideofthe vesselshowsnonoticeablepolishing.GogginnotesthatBusyconcupsrangefrom95 x83mmto 110 x 105mm.SpeciesObserved:Busycon contrariumReferences:Gogginn.d.:482; GogginandSommer1949:55References:thischapterIllustrations,Photographs:Gilliland 1975:Plate 117E

PAGE 225

Shell Artifacts21752.DEBITAGEFigure27.Pleuroploca giganteaCup(87-28-15).Discussion:Sometimesonefindscolumellasofwhelksandconchsthathavebeenreducedfrom theparentwhelkorconchbytrimmingoff allwhorls,butnotfurtherworkedintoa recognizable artifact form. Some columellasshowevidenceofabrasionononeormoresurfaces,butit isimpossibleto classifytheresultas a specific type. I call allsuchitemsworked columel las.SHELL ARTIFACTSFROMRESEARCHINTHE CALOOSAHATCHEE AREA, 1984-1988Ourrecent (1988-1992)workatGaltIsland,Pineland,andUseppaIslandinLeecountyandHorr'sIslandinColliercountywillbereportedinfuturepublications. Thisbookreportsonlyonourtesting of sites intheCharlotteHarborareafrom 1984through1988, focusingmainlyonpreliminaryworkatJosslynIsland(8LL32),UseppaIsland(8LL51),CashMound(8CH38),andBuck Key (8LL722),butalsoincludingsurfacecollections from several sites,includingCashMound(8CH38),CalusaIsland(8LL45), TheCape(8CH44), BigMoundKey(8CH10),TurtleBay 2 (8CH37),andJohnQuietMound(8CH45).However,theshell artifacttypologyset forthaboveisbasedonspecimensknownfrom allofourresearch(1984-1992)inLee, Charlotte,andCollier counties, as well asonothersouthFlorida collectionshousedattheFlaMNH. Thepurposeofthis final sectionofthechapteris tosummarizeshell artifactsfoundintheearlier (1984 1988)phaseofourwork.Theorderofthediscussion follows theorderof the 52typesdescribedabove.1.Blanks forcutting-edgedtoolswerenotfrequentlyfound. ThreewerefoundatJosslynIsland,onefromthesurfaceandtwoina contextdatingto the CaloosahatcheeIIperiod.Afourthblankis from the surface ofCashMound.2.Ofthe17Busycon contrariumTypeA cuttingedgedtoolsfound,14arefrom Josslyn Island. Theninespecimensfoundin contextsuggesta CaloosahatcheeII timeperiod,whiletheothereightaresurface finds. Twospecimensarefrom the Buck Key ShellMidden(8LL722),datingprobablytolateCaloosahatcheeIIorearlyCaloosahatcheeIII.Onespecimenis fromthesurfaceofCashMound.3.SixBusycon contrariumTypeBcutting-edgedtoolswerefound,butfivearefrom the surfacesofCashMound(3),JosslynIsland(1),andCalusaIsland(8LL45) (1).Onespecimenwasexcavatedfrom Level 2ofSquareC-1atBuck Key (8LL722),datingto ca. A.D. 1300.4.TypeCcutting-edgedtoolsareveryinfrequentlyfound.OnespecimenisknownfromthesurfaceofCashMound.5.TypeDcutting-edgedtoolsarealso rare.Ofthetwowefound,onewasfromthesurfaceofCashMound,theotherfromthesurfaceofJosslyn Island.6.ElevenTypeEcutting-edgedtoolswerefound,andfiveofthosearefromthesurfaceofCalusaIsland(8LL45). Threeeacharefromthesurfaces ofCashMoundandJosslyn Island. 10.Oneunhaftedcutting-edgedtool isknownfromCashMound.11.Indeterminatecutting-edgedtoolsnumbereighteenspecimens.TheyarefromCashMound(7), JosslynIsland(10),andCalusaIsland(1). 12.ThirteenTypeAgastropodhammerswerefound.ThreearefromthesurfaceofCashMound,sevenarefrom the surfaceofJosslyn Island,andthree5emaSpeciesObserved:Busycon contrariumReferences:Lueret al. 1986:120;Marquardt,fieldandlaboratorynotes,UseppaIslandexcavations, 1989Illustrations,Photographs:Gilliland 1975:Plate 124B;GogginandSommer1949:Plate 6GDiscussion:Large,oftenroughlytriangularfragmentsofthewhorlsofBusycon contrariumareprobablythediscardedpieces fromthereductionofawhelkto its columella. I call these rejectedfragmentsdebitage,a Frenchwordusedbyspecialistsinlithicanalysistorefertoby-productsfromthemanufactureofchippedstoneartifacts.

PAGE 226

218ACulture and Environment in the Domainofthe CalusaBcoem5Figure28. A:Cup(87-28-12);B:Spoon/Scoop(88-1-26); C:Spoon/Scoop(89-38-128/12).arefromexcavatedcontextatJosslyndatingtothelateCaloosahatcheeIandCaloosahatcheeIIperiods.AllareBusycon contrariumexceptforonespecimenfromJosslynIslandTestA-I,level 10(CaloosahatcheeIIperiod).14.TypeChammersarecommonintheCaloosahatcheearea.OnehundrednineteenareknownfromthesurfaceofCashMound,ofwhich116areBusycon contrariumand3arePleuroplocagigantea.OtherBusycon contrariumTypeChammersareonefromthesurfaceofTheCape(8CH44)andfivefromJosslynIsland.OfthefiveJosslynspecimens,twoaresurfacefindsandthreearefromCaloosahatcheeIIandIIIcontexts.Finally,asinglePleuroploca gigantea

PAGE 227

ShellArtifactsspecimenwasfoundonthesurfaceofBigMoundKey (8CH10). 15.TypeDhammersarecommon,butnot as commonasTypeC.Thirty-fourarefromCashMound,sevenarefrom Josslyn Island,andoneis from Buck Key ShellMidden.Allaresurfacefinds except for fivespecimensfrom lateCaloosahatcheeIIandCaloosahatcheeIII contexts at Josslyn.Ofthe42specimens,40areBusycon contrariumand2arePleuroplocagigantea.OneofthePleuroplocagiganteaspecimensis from aCaloosahatcheeIII contextatJosslyn. 16.TypeEhammersnumberonlyfive specimens.FourarefromthesurfaceofCashMound,onefromthesurfaceofJosslyn Island. AllareBusycon con trarium.17.Thereare15TypeFhammers,allBusycon con trarium.ThirteenarefromthesurfaceofCashMound,oneis from thesurfaceofTheCape(8CH44),andoneis from a lateCaloosahatcheeII,possiblyCaloosahatcheeIII context at Josslyn Island. 18. The62TypeGhammersareall from the surfaceofCashMound.Ofthe62, 39areStrombusalatus/pugilis,17areBusycon contrarium,and6areMelongenacorona.19.Ofsix artifacts classifiedasunhaftedhammers,fourareBusycon contrarium,oneisPleuroplocagigantea,andoneisCassissp.Thelatteris from thesurfaceofCashMound.AtJosslynIslandwerefoundonehammerinCaloosahatcheeII contextandoneonthesurface,bothBusycon contrarium.Fromthesurface of CalusaIsland(8LL45)cameonePleuroplocagiganteaandtwoBusycon contrariumartifacts of this type. 20. Fifty-three artifactsareclassified asindeterminatehammers.Ofthese, 33arefrom the surfaceofCashMound,including20Busycon contrariumand13Pleuroplocagigantea.OthersurfacefindsincludeonespecimeneachfromTurtleBay 2 (8CH37)andJohnQuiet(8CH45),twoeachfromUseppaIslandandCalusaIsland,andfivefromJosslynIsland(allBusycon).SevenBusyconhammerswerefoundin late CaloosahatcheeII-earlyCaloosahatcheeIII contextatJosslynIsland,andtwocomefrom the CollierInnexcavationsatUseppaIslanddatingtotheCaloosahatcheeIperiod.22.TwoBusycon contrariumhammer/pounderswerefoundonthesurfaceofCashMound.23. Twogrinder/pulverizerswerefoundonthe surface ofCashMound,andonecomes from CaloosahatcheeII/IIIcontextatJosslyn Island. 24.Fournotchedgastropodshellhandlescorne fromCashMoundsurfaceandoneeachwerefoundatJosslynIsland(CaloosahatcheeII/III)andBuck Key ShellMidden(CaloosahatcheeII/III).25.Onecolumellacutting-edgedtoolwasfoundonthesurfaceatUseppaIsland. 26.Twoperforatorswerefound,oneonthesurface ofCashMound,theotherfromCaloosahatcheeII/IIIcontextatJosslynIsland.21927.Ofthirty-twocolumellahammers,eighteenarefrom the surfaceofCashMound:elevenBusyconcontrarium,sevenPleuroplocagigantea.TwoPleuroplocaspecimenswerefoundonthesurfaceof Turtle Bay 2 (8CH37)andthreeBusyconspecimensarefromthe surfaceofUseppaIsland.OneBusyconspecimenisfrom aCaloosahatcheeI contextatthe CollierInnexcavations atUseppaIsland.OneBusycon contrariumandsevenPleuroplocagiganteaspecimenscorne from Josslyn Island,datedtoCaloosahatcheeII/III.28.Columellasinkerscorneprimarilyfrom Josslyn Island,wheresixarefromCaloosahatcheeII/IIIcon text. Aseventhspecimenwasfoundonthesurface ofCashMound.29.OnePleuroplocagiganteaplanewasfoundonthe surface ofCashMound.32.Twenty-ninegastropodadze/celtscomefromthesurfaceofCashMound.Ofthese, 19areofBusycon contrariumand10areofStrombusgigas.33.Sixartifactsareclassifiedasgastropodadze/celt blanks. Allaresurfacefinds: four fromCashMound,oneeachfrom CalusaIslandandJosslyn Island. 34.ThreeMercenaria campechiensisadze/celtswerefound:twofromthesurfaceofCashMound,onefromthesurfaceofTurtleBay 2 (8CH37). 36.SevenMercenaria campechiensisanvilswerefound:twofromCashMoundsurface,onefrom JosslynIslandsurface,andtwoeachfromCaloosahatcheeIandIII contexts at Josslyn Island. 37.ThreeMercenaria campechiensischopperswerefoundonthesurfaceofCashMound.38.ThreeMercenaria campechiensisanvil/chopperswereidentified:twofrom thesurfaceofCashMound,onefrom thesurfaceofJosslyn Island. 39.Twobivalveknife/scraperswereidentified,onefromCashMoundsurface,theotherfromCaloosahatcheeII contextatJosslyn Island. 40.PerforatedOlivashellshavebeenfoundonthe surface ofCashMound(43 specimens),onthesurfaceofJosslynIsland(3specimens),andinCaloosahatcheeIIandIII contextsatJosslynIsland(4specimens). 41.PerforatedNoetiaponderosashellswerefoundinabundanceatJosslynIsland,especiallyintheupperlevelsofthetest excavations of 1987,datedto ca. A.D. 819-1054. There, 88Noetianetweightswerefoundin levels 1-7ofTest A-2. Alsofoundinthissameexcavationwere6perforatedDinocardiumshells, 8perforatedArgopecten irradiansshells,and2 small,perforatedshells ofthefreshwaternaiad,Elliptio.FourperforatedNoetiashellswerealsofoundinTest UnitA-IatJosslynIsland,datingfromCaloosahatcheeIthroughCaloosahatcheeII.FromthesurfaceofJosslyncameanadditionalnineNoetiaandoneArgopectenspeci mens. AperforatedMercenaria campechiensisshellwasfoundonthesurfaceofCashMound.EightperforatedCrassostreavirginicashellswerefoundonthesurface of CalusaIslandandonecomes from level 1ofTest Pit A-2attheCollierInnexcavationsatUseppaIsland.

PAGE 228

22042.Onlyonenotched/waistedMercenariacampechiensisshellwasnoted;itwasfoundonthesurface ofCashMound.Being AV-shapedfragment, it ismorenotchedthanwaisted.43.Fournetmeshgaugeswereidentified.Oneis fromthesurfaceofCashMound,theotherthreefromthe A-2 excavationsatJosslynIsland,datingto ca. A.D. 819-1054. 46b. Twodisk-shapedbeadswerefound,onefromTest Pit A-2, level 6, locus 1atJosslynIslandandonefrom thesurfaceofCashMound.47. Twodipper/vesselswereidentified.Oneis from the surface ofCashMound,theotherfrom level 8ofTest Pit A-2 JosslynIsland,a leveldatedtoA.D.961-1054. 48. Bothcupsarefrom Test A-2 at Josslyn Island. ABusycon contrariumspecimenis from Level6,whileaPleuroplocagiganteaexampleisfromLevel7.Bothdateto theCaloosahatcheeIIperiod.50. Allthreespoon/scoopsaresurfacefinds.TwoarefromCashMound,oneis fromCalusaIsland. 51-52.WorkedcolumellasanddebitageofBusycon contrariumandPleuroplocagiganteawerefrequentlynoted,butcollectedunsystematicallyinour1984-1988work.Asourunderstandingoftheshellartifactmanufacturingprocess hasimproved,wehavebeguntoobservepatternswithinworkedcolumellaanddebitageforms,andresearch iscurrentlyunderwayonthismatter.SUMMARYANDCONCLUSIONS Ihavepresentedatentativetypologyandreportedourfindsofshell artifactsbetween1984and1988,butthereismuchmoreresearchto be done. The 1984-1988workincludedfew excavations,andthosetestswerelimitedin extent. As thisbookgoes to press, laboratoryworkisongoingonmaterialsfrom 1987-1992testexcavationsatGaltIsland(8LL27),Pineland(8LL33),andUseppaIsland(8LL51),andadetailedreportontheextensiveHorr'sIslandexcavations isnowcomplete(Russo 1991b). These analyses willprovidemuch-neededstratigraphicandcontextualdatathatwillhelpelucidatetheculturalandtemporalposi tionofanumberoftheCaloosahatcheeareashell artifacts.Preliminaryobservationsaretendingtoconfirmthoseofothersaboutsomeoftheartifacts. For example,thereseems tobea cleartemporaldifference inhammerandcutting-edgedtool forms fromtheLateArchaicthroughtheCaloosahatcheeIIperiod.ColumellahammersweremuchmoreprevalentinlateArchaic/Transitionaltimes.Althoughcolumellatoolsdoextendintosubsequenttimeperiods,Ispeculatethatsomeofthefunctionsformerlyperformedbycolumella toolswerelaterservedbyhaftedgastropodhammersandcutting-edgedtoolsand,atleastthroughtheCaloosahatcheeIperiod,bysmallhaftedgastropodhammers(Type G).Shoulderedgastropodadzesalso seem tohavebeenlimitedtotheLate Ar-Culture and Environment in the Domainofthe CalusachaicthroughCaloosahatcheeIperiodsontheGulfCoast,butnosystematicstudyofthis artifacthasyetbeendone,noroftheBusycon contrariumandStrombus gigasadze/celts.Giventhelimitedareaoforiginfor these shellfish, especiallyStrombus gigas,nativeto theFloridaKeys,suchartifactswouldlendthemselvesreadilyto astudyoftradepatterns.Anideaadvancedbyanumberofresearchers(e.g., Bullenetal. 1978) isthatTypeEcutting-edgedtoolswereancestralto AandB forms,whichemergeaboutA.D. 1onthecentralandsouthwestFloridaGulfcoast.IftheBusycon contrariumTypeE toolswerelocalversionsoftheBusyconcaricacutting-edgedtoolsfoundinnortheastFlorida, thiscouldlendsomesupporttothelong-discussednotionsthatpeoplefrom the St. Johns RiverdrainageareamayhavemigratedintosouthFlorida,bringingwiththemapreferencefor "chalky"pottery(St. Johnsor"Biscayne" ware),orthatinter-regionaltradeincreasedinpost-Transitionalperiodtimes. (SeeLuerandAlmy1980 for adiscussionoftemporalchangesincentral-Gulf-Coastpottery,bothinrimcharacteristicsandtempering,includingaconsiderationoftheSt.Johnschalkywares.)Indeed,certainsiteshaveapreponderanceofTypeE tools, e.g.,CalusaIslandinLeeCountyandMoore'sunnamedsite(Moore1921:14-15)nearChokoloskeeIslandinCollierCounty,andthiscouldbespeakatemporalhorizonfor these artifacts.AnartifactthatmayhavechangedinfunctionandcontextofuseistheBusycon contrariumdipper/vessel.Itmayhavebeenusedas a cooking vessel in ArchaicandperhapsTransitionaltimes,thenlaterbeenadoptedforuseas adipper/drinkingvessel for the BlackDrinkceremony,leadingto itsdisposalinburialmounds.Oneimportantresultofresearchonshell artifacts isthattheywillshedlightonthecomplexmaritimeadaptationofsouthwestFloridaprehistoricpeoples. Objectsthathaveprovedenigmaticandhencebeenrelegated to "decorative"or"ceremonial" categoriesbypreviousresearchersmakemoresensewhenreinterpretedas fishinggear(Walker 1991).IfOliva"beads"areinterpretedasnetweights,smallshell "beads"asspacers for fishing line leaders, "rectangles"asnetmeshgauges,and"pendants"as sinkers,thensuchassociationsastheconcentrationof these artifactsinTest Pit A-2atJosslynIslandandattheGranadasite (Griffin 1985:72)makesenseforthefirst time. The nextstepistobegintointerpretassociationsofthesehypothesizedfishing artifacts in the context of the localenvironmentalcharacteristicsofthe sites. Forexample,wemightexpectdifferentkindsoffishinggearin shallow,grassysituationsthanwedowherethesitehasclose access to adeepwaterchannel. It goeswithoutsayingthatmanyoftheseobservationsarenowonlyhypothesesandeducatedguesses. Butfurtherandmoreextensive excavationsinsouthFlorida sitesshouldbegintoprovidesomeanswers.Iconcludethatshell artifactstudiesarehighlyrelevanttotheanthropologicalandecologicalquestionsmanyofusareattemptingtoanswerinsouthFlorida. The

PAGE 229

ShellArtifactsworksofJohnM.Goggin,ClarenceB.Moore,andGordonR.Willeyprovideanimportantfoundationforourresearch,buttheirtypologiesmustbeaugmentedandrefined tobeuseful fortoday'squestions. Wemustlearnto see shell artifactsintheirecological, technological, economic,andsocial contexts ifwearetomakeprogressinunderstandingsouthFloridamaritimeadaptations.Ihopethatthispreliminarystudyis a stepinthatdirection. ACKNOWLEDGEMENTS IthankJohnBeriault,CharlesBlanchard,RobinBrown,RobertCarr,DonCyzewski,RobertEdic,JaniceKemp,ArthurLee,GeorgeLuer,KarenJoWalker,andRichardWorkmanforsharingwithmemanyinsightsintotheworldofsouthFlorida shell artifacts. I alsothanktheUniversityof Floridastudentlaboratoryworkers,especiallyChuckAlleeandlaboratorysupervisorElise LeCompte-Baer, for con scientioussorting,cataloging,andanalytical assis tance.MeraldClarkdidasuperbjobwiththelinedrawingsofthe artifactsinthischapter.George Luer,ClaudinePayne,andKarenJo Walkermademanyhelpfuleditorialsuggestions.221

PAGE 230

222Culture and Environment in the Domainofthe CalusaAPPENDIX A. CATALOGUE NUMBERSOFREPRESENTATIVESHELLARTIFACT TYPES, FLORIDA MUSEUM OF NATURAL HISTORYTypeNameFloridaMuseumCatalogueNumbersI. Hafted Gastropod Tool BlankBusyconcontrarium:A-6381; A-200422.Gastropod Cutting-edged Tool ABusyconcontrarium:A-6381; A-27567 3. Gastropod Cutting-edged Tool BBusyconcontrarium:91900; 88-1-264.Gastropod Cutting-edged Tool CBusyconcontrarium:A-6381 5. Gastropod Cutting-edged Tool DBusyconcontrarium:A-63816.Gastropod Cutting-edged Tool EBusyconcontrarium:88-1-57.Gastropod Cutting-edged Tool HBusyconcontrarium:88-1-5; 88-23; 88-39-18.Gastropod Cutting-edged Tool IBusyconcontrarium:A-63819.Gastropod Cutting-edged ToolJBusyconcontrarium:A-638110.Gastropod Cutting-edged Tool, UnhaftedBusyconcontrarium:88-1-5; 88-40-1II.Gastropod Cutting-edged Tool, IndeterminateBusyconcontrarium:88-1-5; 88-1-26Pleuroplocagigantea:88-1-512.GastropodHammerABusyconcontrarium:84497; 91900; 98739; A-6151; A-I0726;A-2241O;88-1-5Pleuroplocagigantea:98487; 98488; A-6340A; 88-1-5; 89-7-20013.GastropodHammerBPleuroplocagigantea:91900; 98497; 88-8-414.GastropodHammerCBusyconcontrarium:88-1-5; 88-1-26Pleuroplocagigantea:98591; 88-1-5; 88-1-2615.GastropodHammerDBusyconcontrarium:88-1-5; 88-1-26Pleuroplocagigantea:88-1-2616.GastropodHammerEBusyconcontrrarium: 88-1-517.GastropodHammerFBusyconcontrarium:88-1-5; 88-1-26Pleuroplocagigantea:88-38-118.GastropodHammerGBusyconcontrarium:88-1-5; 88-1-26Melongenacorona:98473; 98474; 88-1-5Strombus alatus/pugilis:88-1-5; 88-1-2619.GastropodHammer,Un haftedBusyconcontrarium:88-1-5Cassis sp.: 88-1-26Pleuroplocagigantea:88-39-120.GastropodHammer,IndeterminateBusyconcontrarium:88-1-5; 88-1-26Pleuroplocagigantea:88-1-5; 88-1-26 2I. GastropodPounderBusyconcontrarium:40393Pleuroplocagigantea:40391; 7779422.GastropodHammer/PounderBusyconcontrarium:88-1-2623.Gastropod Grinder/PulverizerBusyconcontrarium:88-1-26; 88-8-267; 88-8-25624.Notched Gastropod ShellHandleBusyconcontrarium:88-1-26Pleuroplocagigantea:A-2753525.Columella Cutting-edged ToolBusyconcontrarium:89-27-36; 89-27-108; 89-27-110; 89-27-122; 89-27-138;89-27-278; 89-27-260Pleuroplocagigantea:A-611026.Columella Perforatorcf.Busyconcontrarium:A-6125; 89-27-89Pleuroplocagigantea:A-611027.ColumellaHammer,Single-endedBusyconcontrarium:single-ended-88-1-5;88-1-26; 89-27-93; 89-27-122; 89-27-127; 89-27-214; 89-27-260;double-ended-88-1-5;88-1-26Pleuroplocagigantea:single-ended-88-1-5;88-1-26; 89-27-127; double-ended-98499;87-28-18; 88-1-5; 88-1-6; 88-1-26; 89-30-452 28a. Columella Sinker,PlummetVarietycf.Pleuroplocagigantea:A-6528B; 87-28-3 28b. Columella Sinker, Single-grooved Varietycf.Pleuroplocagigantea:80836; 89-7-63; 89-7-282; 89-7-289; 89-38-101/10 28c. Columella Sinker, Double-grooved VarietyPleuroplocagigantea:87-72-111; 88-8-162 28d. Columella Sinker, Effigy VarietyPleuroplocagigantea:88-1-1

PAGE 231

ShellArtifacts223AppendixA. Catalogue NumbersofRepresentativeShellArtifact Types, FloridaMuseumofNatural His tory, continued.Type Name FloridaMuseumCatalogue Numbers28e. Columella Sinker, Perforated VarietyBusyconcontrarium:89-40-129.Columella PlanePleuroplocagigantea:89-7-304;89-7-393; 90-3-230.Shou ldered Gastropod AdzeBusyconcontrarium:89-27-36; 89-27-108; 89-27-141;89-27-166; 89-38-45/1 31. Shouldered GastropodAdzeBlankBusyconcontrarium:89-27-209; 89-38-49/4 32. GastropodAdze/CeltBusyconcontrarium:88-1-1; 88-1-26; 898-27-90; 89-27-96; 89-27-147; 89-27-189;89-27-199; 89-27-278Strombusgigas:84502; 98499; 88-1-133.GastropodAdze/CeltBlankBusyconcontrarium:88-1-1; 88-1-3Strombusgigas:88-1-26; A-2002434.BivalveAdze/CeltMercenariacampechiensis:88-1-2635.NotchedBivalve ShellMercenariacampechiensis:89-27-14136. AnvilMercenariacampechiensis:88-1-637.ChopperMercenariacampechiensis:A-2241O;88-1-6 38.Anvil/ChopperMercenariacampechiensis:88-1-6; 88-1-26 39. Bivalve Knife/ScraperMacrocallistanimbosa:A-1l149, 92-17-2/240.Perforated GastropodBusyconcontrarium:A-6381Olivasp.: 88-1-1PleuraplDcagigantea:A-6340A41.Perforated BivalveArgapectensp.: 87-28-12CrassDstreavirginica:88-39-1; 89-7-292DinDcardiumsp.: A-6346; 87-28-10; 88-8-293ElliptiDsp.: 87-28-10Mercenariacampechiensis:88-1-2NDetiasp.: A-6551; 87-28-5 42.Notched/WaistedShellMercenariacampechiensis:98477; 98478; 98492; 362389; A-10725; A-20008 43.NetMesh GaugeBusycDncontrarium:98550; A-6077; 87-28-15;87-28-19; 88-1-3; 88-8-97Mercenariacampechiensis:89-24-348;89-30-544; 89-38-26/10; 898-38-77; 89-38-157; 89-38-17245.Gorgetcf.Busyconcontrarium:A-6107 46b. Bead, Disk Variety 87-28-14;89-7-156; 89-7-292 46c. Bead, Square Variety 88-8-6 46d. Bead, Tubular Variety 89-7-141 47.Dipper/VesselBusyconcontrarium:96190; A-5115; A-6381; A-6564; 88-1-26 48.CupBusyconcDntrarium:87-28-12PleuraplDcagigantea:87-28-1549. SaucerBusyconcontrarium:A-6108 50.Spoon/ScoopBusyconcDntrarium:95083; 88-1-26; 89-38-128/2 51. Worked ColumellaBusyconcDntrarium:88-1-6; 88-1-26PleuraplDcagigantea:88-1-5; 88-1-6; 88-1-26 52. DebitageBusyconcontrarium:88-1-1; 88-1-26

PAGE 232

224Culture and Environment in the Domainofthe CalusaAPPENDIXB.MEASUREMENTSON56BUSYCON CONTRARIUMCUTTING-EDGED TOOLSINTHE COLLECTIONSOFTHEFLORIDA MUSEUMOFNATURAL HISTORYMaximum Catalogue Length in Maximum Cutting HaftJEdgeWeightinNumberofNumberofNumberof Thickness Edge Type Number mminmmWidthinAnglegrams TopHolesSideHolesNotches mm9190017110.0 30.61050A 675 2 1 1 91900 117 7.5 17.7 1100A1822 I 1 91900 160 6.9 14.81150A 478 I 1 1 A-6381 175 10.5 20.3 1200A 620 I 1 1 A-638 I 16711.026.8 1200A 643 1 1 1 91900 108 5.7 18.9 1200A 163 1 1 1 91900 129 19.1 25.41200A 405 1 1 1 91900 150 8.7 29.2 1200A 563 1 1 1 91900 180 8.8 19.71200A 552 I I I 91900 194 8.7 20.6 1200A 562 2 1 1 91900 199 8.2 22.2 1200A 302 I 1 I 91900 200 10.4 8.71200A 605 1 1 1 A-6306 153 15.7 25.71200A 755 I 1 1 A-6563 153 8.7 31.11200A 578 1 1 1 90-3-45/3 90 5.6 5.41250A 116 I 1 1 91900 130 6.4 16.01250A 190 0 1 1 91900 147 9.4 23.91250A 468 0 1 1 91900 167 8.3 22.61250A 508 1 1 1 91900 186 8.4 24.61250A 485 1 1 1 985711058.1 17.41250A 219 1 1 1 98571 123 8.1 17.41250A 208 1 1 1 A-638114611.1 31.81250A 605 1 1 1 A-6381 185 12.5 29.51300A 656 1 1 1 A-6381 173 10.0 21.81300A 683 1 1 1 84497 128 7.2 11.01300A 255 1 1 1 919001518.0 14.71300A 341 2 1 1 919001518.8 21.51300A 358 1 1 1 919001719.5 29.41300A 609 2 1 1 91900 182 7.7 22.91300A 615 1 1 1 A-27567 178 10.8 24.01300A 651 1 1 1 91900 164 6.7 19.81350A 432 1 1 1 90-6-21/1 152 7.1 29.21400A 402 1 3 1 91900 210 7.8 20.01400A 773 1 1 1 91900 130 9.7 23.51450A 239 0 1 1 A-0316 131 7.5 19.11450A 277 1 1 1 A-6381 145 7.5 12.6 1500A1710 1 1

PAGE 233

Shell Artifacts225AppendixB.Measurementson56BusyconcontrariumCutting-edgedToolsintheCollectionsoftheFloridaMuseumofNaturalHistory,continued.MaximumCatalogueLengthinMaximumCuttingHaftlEdgeWeightinNumberofNumberofNumberofThicknessEdgeTypeNumbermminmmWidthinAnglegramsTopHolesSideHolesNotchesmmA-62801315.7 12.3 150 A 173 1 1 1 A-6381 138 6.7 12.3 155 A 135 1 1 1 91900 168 11.2 28.9 180 A 552 1 2 1 88-1-26 169 10.8 38.7 45Bl646 0 3 0 A-6381 188ILl33.6 45Bl723 1 2 0 A-20003 108 6.6 23.1 60Bl116 1 3 1 91900 164 10.9 36.7 65Bl436 1 4 0 A-6381 176 8.0 28.7 90Bl475 1 2 0 98481 162 8.5 24.4 20B2352 1 2 0 A-6381 160 8.5 27.8 30B2266 1 2 0 91900 152 6.9 23.7 35B2189 0 2 0 A-20003 135 6.8 30.3 50B2243 1 2 0 A-63811417.128.7 65B2270 0 2 0 A-6381 158 8.1 25.6 75B2274 1 2 0 91900 104 7.7 26.1 80B2118 1 2 0 91900 149 8.0 28.7 80B2269 1 2 0 A-6295 144 9.8 28.7 80B2218 1 2 0 A-6381 133 7.6 35.6 105B2226 1 2 0 92-37-1 160 10.6 25.6 35B3501 1 3 1 A-15008 134 8.0 15.5 50 B3 260 0 2 1REFERENCES CITEDBeriault, JohnG.1986ObservationsConcerningShellMoundsanda System for Classifying Shell Material.InShells and Archaeology in Southern Florida,editedbyGeorgeM.Luer,pp.160-163. FloridaAnthropologicalSociety, Publica tion 12. Tallahassee. Blanchard,ChuckandBillMarquardt1989 Shell ToolsinSouthwestFloridaandtheImportanceofCashMound.InCalusaNewsno. 3,editedbyWilliam H.Marquardt,p. 13.Instituteof ArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida, Gainesville. Borremans,NinaT.1990 A Prehistoric-Site Surveyofthe Cedar KeysRegionofCoastalLevyCounty,Florida.ReportsubmittedtotheFlorida Division of Historical Resources, Tallahassee. Bullen, Ripley P. 1951TheTerraCeiaSite,ManateeCounty,Florida. Florida Anthropological Society, Publication3.Gainesville. 1971 The SarasotaCountyMound,Englewood, Florida.The Florida Anthropologist 24:1-30.1978Pre-ColumbianTradeinEasternUnitedStates As Viewed From Florida.The Florida Anthropologist 31(3):92-108.Bullen, Ripley P.,WalterAskew, Lee M. Feder,andRichard1.McDonnell1978 The Canton Street Site, St. Petersburg, Florida.FloridaAnthropologicalSociety, Publica tion9.Bullen, Ripley P.andAdelaideK.Bullen1956 ExcavationsonCape Haze Peninsula, Florida.Contributionsofthe Florida StateMuseum,Social Sciences1.Gainesville.1976 The Palmer Site.Florida Anthropological Society, Publication 8. Gainesville.

PAGE 234

226Carr,RobertS.andJohnG.Beriault 1984 PrehistoricManinSouthernFlorida. InEn vironmentsofSouth Florida: Present and Past,Second Edition,editedbyPatrickJ.Glea son,pp.1-14.MiamiGeological Society,CoralGables, Florida. Carr, RobertS.andJohnF.Reiger1980 StrombusCelt Caches inSoutheastFlorida.The Florida Anthropologist 33(2):66-74.Cushing,FrankHamilton1897ExplorationofAncientKeyDwellerRemainsontheGulfCoastofFlorida.American Philosophical Society, Proceedings35:329-448.Philadelphia.Gilliland,MarionS.1975 The Material CultureofKey Marco, Florida.UniversityPressesofFlorida, Gainesville. Goggin,JohnM.1949CulturalOccupationatGoodlandPoint,Florida.The Florida Anthropologist 2:65-90.1950StratigraphicTestsintheEvergladesNational Park.AmericanAntiquity15:228-246.n.d.TheArchaeologyoftheGladesArea,SouthernFlorida.Unpublishedms.onfile, FloridaMuseumofNaturalHistory,Gainesville. Goggin,JohnM.andFrankSommer1949 Excavations on Upper Matecumbe Key, Florida.Publications inAnthropologyNo. 41, Yale University,NewHaven.Griffin, JohnW.1985 Shell ArtifactsfromtheGranadaSite.InArchaeology and Historyofthe Granada Site,vol. 1,JohnW.Griffin,generaleditor,pp.71-82. Florida Division of Archives, His tory,andRecordsManagement,Tallahas see.1988 The ArcheologyofEverglades National Park: A Synthesis.NationalParkService,SoutheasternArcheologicalCenter,Tallahassee, Florida. Griffin, JohnW.andRipleyP. Bullen1950TheSafetyHarborSite,PinellasCounty,Florida.FloridaAnthropologicalSociety, Publication2.Gainesville. Jahn, Otto1.andRipley P. Bullen1978 The TickIsland Site,St.Johns River, Florida.FloridaAnthropologicalSociety, Publica tion 10. Gainesville. Karklins, Karlis 1968ThePalmRiverMidden,HillsboroughCounty,Florida.The Florida Anthropologist21:67-73. 1970TheFishCreekSite,HillsboroughCounty,Florida.The Florida Anthropologist 23:62-80.CultureandEnvironmentinthe Domainofthe CalusaKeegan, WilliamF.1984PatternandProcessinStrombus gigasTool Replication.JournalofNewWorld Archaeol ogy 6(2):15-24.Lee,ArthurR.1989InstrumentstoMeasureHaftingAngles ofWhelkShell Tools in BoththeVerticalandHorizontalPlanes.The Florida Anthropol ogist42:155-157. Luer, George M. 1977a ExcavationsattheOldOakSite, Sarasota, Florida: A LateWeedenIsland-SafetyHarborPeriodSite.The Florida Anthropologist30(2):37 -55. 1977b The Roberts Bay Site, Sarasota, Florida.The Florida Anthropologist 30(3):121-133.1986 SomeInterestingOccurrences ofQuahogShellsontheGulfCoastofCentralandSouthernFlorida.InShells and ArchaeologyinSouthern Florida,editedbyGeorgeM. Luer,pp.125-159. FloridaAnthropologicalSociety,Publication12. Tallahassee. Luer, George M.andMarionM.Almy1979ThreeAboriginalShellMiddensonLongboatKey, Florida:ManasotaPeriodSitesofBarrierIslandExploitation.The Florida Anthropologist 32(2):34-45.1980TheDevelopmentofSome Aboriginal PotteryoftheCentralPeninsulaGulfCoast ofFlorida.TheFloridaAnthropologist33(4):207-225. 1982 A DefinitionoftheManasotaCulture.The Florida Anthropologist 35(1):34-58.Luer, George M.andLaurenC. Archibald1988AnAssessmentofKnown Archaeological Sitesinthe Charlotte Harbor State Reserve.ReportpreparedforDepartmentofNaturalResources,CharlotteHarborState Reserve. ArchaeologicalandHistoricalConservancy, Miami. Luer, George,DavidAllerton,DanHazeltine,RonHatfield,andDardenHood1986WhelkShell Tool Blanks from BigMoundKey (8CHlO),CharlotteCounty,Florida: With NotesonCertainWhelkShell Tools.InShellsandArchaeology in Southern Florida,editedbyGeorgeM.Luer,pp.92-124.FloridaAnthropologicalSociety, Publication12. Tallahassee.Marquardt,William H.1984 The Josslyn IslandMoundanditsRole in theInvestigationofSouthwestFlorida'sPast.FloridaMuseumofNaturalHistory,DepartmentofAnthropology,MiscellaneousProjectReportSeries 22. Gaines ville.

PAGE 235

Shell Artifacts1987OystersandMusselsGalore.InCalusaNewsNo.1,editedbyWilliamH.Marquardt,p. 3.InstituteofArchaeologyandPaleoenvironmentalStudies,UniversityofFlorida,Gainesville.Marquardt,WilliamH.andJohnG. Beriault 1988RecentInvestigationsatGaltIsland(8LL27/8LL81), LeeCounty,Florida.PaperpresentedattheannualmeetingoftheFloridaAnthropologicalSociety,WinterPark,Florida,May8, 1988.Masson,MarilynA. 1988 ShellCeltMorphologyandReduction:AnAnalogytoLithicResearch.TheFlorida Anthropologist41(3):313-335. Tallahassee.Milanich,JeraldT.,JeffersonChapman,AnnS.Cordell,StephenHale,andRochelle A.Marrinan1984PrehistoricDevelopmentofCalusaSocietyinSouthwestFlorida:ExcavationsonUseppaIsland.InPerspectivesonGulfCoastPrehistory,editedbyDaveD.Davis,pp.258 314.UniversityPressesofFlorida,Gainesville.Moore,ClarenceB.1894CertainSandMoundsoftheSt.JohnsRiver,Florida,PartII.Journal of the Academy of Natural Sciences of Philadelphia 10(2):129246. 1896aCertainRiverMoundsofDuvalCounty,Florida.Journal oftheAcademy of Natural Sciences of Philadelphia 10(4):448-502.1896bCertainSandMoundsoftheOklawahaRiver,Florida.Journal of the Academy of Natural Sciences of Philadelphia 10(4):518543. 1900CertainAntiquitiesoftheFloridaWestCoast.Journal of the Academy of Natural Sciences of Philadelphia11:350-394. 1905MiscellaneousInvestigationsinFlorida.JournaloftheAcademy of NaturalSciencesof Philadelphia 13:296-325.1907NotesontheTenThousandIslands,Florida.Journal oftheAcademy of Natural Sciences of Philadelphia 13:458-470.1921NotesonShellImplementsfromFlorida.American Anthropologist 23:12-18.227Neuman,RobertW.1984AnIntroductiontoLouisiana Archaeology.LouisianaStateUniversityPress,BatonRougeandLondon.Reiger,JohnF.1981 AnAnalysisofFourTypesofShell Artifacts fromSouthFlorida.TheFloridaAnthropol ogist 34(1):4-20.Russo,Michael1991aArchaic SedentismontheFloridaCoast:ACaseStudyfromHorr's Island.Ph.D.dissertation,DepartmentofAnthropology,UniversityofFlorida.UniversityMicrofilms,AnnArbor. 1991 bFinalReportonHorr'sIsland:TheArchaeology ofGladesSettlementandSubsistence Patterns.(WithchaptersbyAnnCordell,LeeNewsom,andSylviaScudder).ReportsubmittedtoKeyMarcoDevelopmentsbytheFloridaMuseumofNaturalHistory,Gainesville,Florida.Walker,KarenJo 1991ArtifactsofaFishyNature:CharlotteHarbor'sPrehistoricEstuarineFishingTechnology.Ms.submittedforpublication.Webster,WilliamJ.1970 ANewConceptfortheBusyconShellReceptacle.TheFloridaAnthropologist23:17.Widmer,RandolphJ.1988TheEvolution oftheCalusa:A Non-Agricul tural ChiefdomontheSouthwestFloridaCoast.UniversityofAlabamaPress,TuscaloosaandLondon.Willey,GordonR.1949aArcheology oftheFloridaGulfCoast.SmithsonianMiscellaneousCollections113.SmithsonianInstitution,Washington,D.C. 1949bExcavationsinSoutheastFlorida.Yale University PublicationsinAnthropology42.NewHaven.Williams,WilmaB.andBertMowers1977MarkhamParkMoundNo.2,BrowardCounty,Florida.TheFloridaAnthropologist30(2):56-78.

PAGE 237

6Bone Artifacts from Josslyn Island, Buck Key Shell Midden, and Cash Mound: A Preliminary Assessment for the Caloosahatchee AreaKarenJoWalkerSOUTHFLORIDA BONE ARTIFACT STUDIESPrehistoricboneartifactshavenotbeensystematicallystudiedintheCaloosahatcheearea. Comparativeworksbasedonlargecollectionsdoexist,however,forsoutheastcoastal Florida (GogginandSommer1949;RichardsonandPoh11985)andthe Lake Okeechobeearea(Steinen 1982; Willey 1949). Descrip tivereportsofculturally-modifiedbonefortheKeyMarcoSite(Gilliland1975)andthesouthwesternEvergladesarea (Goggin 1950; Griffin 1988),bothtothesouthoftheCharlotteHarborarea, alsoareavail able.WithanincreaseinsamplesizesfromFlorida'ssouthwestcoast, archaeologistssoonwillhavegreaterpotentialtounderstandspatialandtemporalvariationinboneartifactsatthebroaderscaleofsouthFlorida. ThisstudyrepresentsabeginningtowardthereportingandsynthesizingofworkablesamplesfortheCaloosahatcheearea.ManyofsouthFlorida'sboneartifacttypeshavelongpresentedproblemsfor archaeologistsintermsoffunctionalinterpretation.Insuchinstances,interpretationsfor thegreaterSoutheastareoftenappliedbutarenotalwaysappropriate.Florida'sfewethnohistoricsourcesareconsultedfrequently,buttheserecordsaresketchy. Forcomparativestudy,IsuggestthatamoveoutoftheSoutheast, focusinginsteadonthecommondenominatorof fishing technology, will solvesomeproblemsandprovidetestablehypothesesforothers(Walker 1991). THE CALOOSAHATCHEE COLLECTIONThecollectionofboneartifactspresentedin thischapterresultsfromthelimitedtest excavationsthatwereperformedbetween1985and1988(Chapter2, thisvolume)atJosslynIsland(8LL32), Buck Key ShellMidden(8LL722),andCashMound(8CH38).Inaddition, anumberofspecimensarefromtheCyzewskiKemp-EdicCashMoundsurface collection, recentlydonatedto theFloridaMuseumofNaturalHistory(FlaMNH). The collection fromthethree sites is small.Ofthetotal88 artifacts,66arefrom Josslyn Island, 19arefromCashMound,and3arefromtheBuck Key229ShellMidden.Associatedradiocarbondatesrangefrom 240 B.C. to A.D. 1439andarepresentedindetailinChapter2,thisvolume.Stratigraphicandothercontextualinformationalso isfoundinChapter2.Thepreservationoftheboneartifacts isvariableduetocontrastingmiddenmatrices.Forexample,the Buck Keyspecimensandmanyofthose from JosslynIslandarefrom shell matriceswithlittleornosandysediment(Chapter2, thisvolume)andthereforearewellpreservedduetothedensecalcium-carbonateburialcontext. Alargenumberofboneartifacts from Josslynwererecoveredfrom adomesticarea(Chapter2, thisvolume),withmuchless shellpresent.Intermsofpreservation,theseitemsshowacidpittingandthus,area "step below"thoseofthedenseshellmiddencontexts.However,eventheliving-floor artifactsarefairly wellpreserved,probablyduetothepercolationofcalciumcarbonatefromoverlyingdenseshellmidden.TheCashMoundartifactsarefrom averydifferentpreservationalcontext;theywerecollected from thecontinuouslyerodingedge(referredtoas"CashMoundBeach")ofalargeshellmidden.Thus,preservationvarieswithlengthofexposuretotheelements. Forexample,afewspecimensshowevidence(stain ing) ofanalgalgrowth.AtCashMoundBeach(Chapter2, this volume), a thin, organic,sedimentstratumis believed tobethesourceofmanyofthebone ar tifacts collected there (DonCyzewski,personalcommunication1988). Thisstratummaycorrespondto the2"thick (at12"belowsurface),pottery-richlayerorthelower(36" to 48")areaof"intense occupation"reportedbyBullen and Bullen (1956:17, 21) fortheirTestI.Whicheveroneis thesourceoftheconcentrationofboneartifacts,bothareasprovidea contextoforganicrichsedimentwithoverlyingdenseshellmidden.Conservationofthecollectioninvolveddrycleaningwithbrushes,cleaningwithacottonswaband am monia,andmendingwithElmer'swhitegluewhenappropriate.Cataloguenumberswereinkedoneach piece. Allcataloguenumbersusedinreference tospecimensdescribedbelowareFlaMNHnumbers,andall artifactsarecuratedthere.AppendixA lists all

PAGE 238

230specimensinthepresentstudybysite,provenience,andcataloguenumber.Thepresentationofthesmallcollection ofboneartifactsinthischapterappropriatelydrawsontheworkofpreviousresearchers(Gilliland 1975;Gogginn.d.;GogginandSommer1949; Griffin 1988;Purdy1973;RichardsonandPoh11985; Steinen 1982; Willey 1949). Artifactsarepresentedheresimplyascategories,attimesinvokingfunction. A few modifications totraditionalinterpretationsareforwardedthatinlargepartcomefromafishing-technologyperspective,thusdepartingfromdominantSoutheasttheoretical con structs. Assuch,theyexistashypothesestobetestedwithfuturecollectionsresearchandexcavatedsamples.BONE POINTSNumerousformsofthebonepointareknownfromsouthFlorida. This is themostabundantcategoryofboneartifactsfortheCaloosahatcheearea.Previously,someresearcherssuggestedtheabsenceofbonepointsfor thisarea(Goggin n.d.; Griffin 1988:94).Itnowappearsthattheabsencewasduesimplytoearlysamplingbias.Ofthecollection athand,14wholeand32fragmentedspecimensareassignedto the "bone point" category.Thecategoryof "bone point" is averydynamicone,presumablyduetomultifunctionaluseandcontinualrecycling. This processofuseandreusesurelywouldhaveincludedpins(the following type) as well. Bothpins(see "Bone Pin" below)andpointsweremadefromcutbone,usuallyofthemetapodialsfromwhitetaileddeer,Odocoileus virginianus(see"Point/PinDebitage"below),whenelementalidentificationis possible. It isreasonabletohypothesizethataspinsandlargepointsbrokeduringuse, pieceswouldhavebeenrecycledintosmallersingle-pointedandbipointedpoints. Thiswouldaccount,inpart,for thegreatamountofvariationseen inthelengthandshapeofbonepoints. Bonepoints,then,mightbetterbe conceivedofas acontinuumofuse/reuse,andthereforeoffunction.However,withinthiscontinuum,twopreliminarymorphologicaldivisionscanbemade:the"singlepointedbonepoint"andthe"bi-pointedbonepoint." TheformeristakenfromGoggin(n.d.)andWilley's (1949:102)"single-pointedprojectilepoint."InFlorida,thelattervarietyhasbeenlong-recognizedandvariouslynamed"bi-pointedprojectilepoint"(Purdy1973:146; Willey 1949:39, 102), "short point"(Gogginn.d.;GogginandSommer1949:50),and"simplebonepoint"(Purdy1973:146). Adisturbingmoderntrendseenintheliteratureistheindiscriminatelabellingofallpointsas"pins" (see "Bone Pin" below). Isuggestthatuseofthenames"bipointedbonepoint"oreven"bone bi-points" ismoreappropriate;thesenamesallowdistinctionfromthesingle-pointedbonepointaswellasfleXibilityoffunctionalinterpretation(e.g.,droppingthedubious"projectile") .Culture and Environment in the Domainofthe CalusaTheprecisefunctionofeachofthese varieties isnotyetclear,althoughworkisunderwaytostudythewearpatternsexhibitedonbonepointsoftheCaloosahatcheearea(Mitchell1991).InanearlyAmericanAntiquityarticle,E.E.Tyzzer(1936) concludedthatthebonepointsfromcoastal shellmiddensinMainehadbeenusedas projectile points. Thiswasbasedonsystematicstudyoflargeartifactualsamplesandexperimentationwithterminalfracturingofreproducedpointsmadefrom freshcowbone. WhileTyzzerconvincinglydemonstratedthatuseofbonepointsas projectilepointscouldhaveproducedthefracturepatternsseenonthearchaeologicalbonepointsandthatthesepointscouldhavebeenhaftedontowoodenarrowshafts,hedidnotconsiderwhetherthesamecouldbetrueofuseas fishhooks. Imentionthis articlebecauseitis citedinvarioussouthFloridaboneartifactstudies.Anumberoffisheshaveverypowerfulmouthparts(e.g., thepharyngealgrindingplatesofblackdrumandredfish)thatcouldpotentiallyfracturebonepoints.Additionally,thesebonepointscouldeasilyhavebeenhaftedtoshanksofwoodorshell to create effectivecompositehooks. Tomyknowledge,noexperimenthasbeenundertakentoobserveattritiononbonepointsduetouseinfishing.Perhapstheparallelstriationsthatfrequentlyoccuronbonepointsandareattributedtomanufacturer'smarks(e.g.,sharktooth tooling)wereproducedbyfish teeth.Manysuchmarkingsareatanglesthatdonotsuggestboneworking.Perhapsthefrequentchipsorflakedareasseenatthebaseofsingle-pointedpointswereproducedbythepressureexertedattheV-shapedhaftingjunctureofacompositefishhook.Orperhapsthesewerepurposelyproducedto facilitatehaftingthepointatanangletotheshank.Muchworkisneededhere. Historically, Florida archaeologistshaveuncriticallyacceptedtheassumptionthatbonepointsinsouthFloridarepresentprojectilepointsthatwereoncehaftedontoarrowshaftsandusedforhuntingorwarfare. Afewresearchersmentionthepossibility ofcompositehooktechnology, yetconsistentlycling tothemoreacceptedprojectilepointinterpretation.Thistraditionisladenwithaterrestrialwoodlandbiasandisinhibitivetounderstandingprehistoriccoastal,lacustrine,andriverineadaptationsinFlorida (Walker 1991). Amuchmoretenablehypothesisisthatthemajorityofthesebonepointswerecomponentsofnativefishing technologies (Larson 1980:117; Walker 1991).Theassociationbetweenaquatic-relatedsitesandbonepointsissurelynotcoincidental.Single-pointed Bone PointsThesepointsvaryinlengthandcross-sectionshape;oneendisgenerallylargerandblunter(andsometimesbeveledduetochipping)thanthesharpenedpointend.Avarietyofevidenceforuseandnaturalmodificationisexhibitedonthese artifacts,includingstainingpatterns(hafting?),incisedstriations(fishtoothmarkings?ormanufacturemarks?),andacidpitting(acidic sediments?).

PAGE 239

Bone ArtifactsTwo testablehypothesesare(1)thatthese pointswerecomponentsofcompositefishinggear(compositehooks,spears,orleisters)and(2)thattheywereprojectilepointsthatwerehaftedtoarrowshafts.Muchcomparativeethnographicandarchaeologicalsupportfortheformerinterpretationexistsinliteratureconcerningworldwidefishingcultures(e.g., Bell, Specht,andHain1986:49; Croes 1988:134; Dauelsberg 1985:19;Llagostera1989:62;Stewart1977:43). WeshouldkeepinmindthatCushingdiscoveredarrowsofunnamednumberinthe Key Marco muck,andthatthesearrowswerepointedwithahardwood(Cushing1897:43-44),suggestingthatbonepointsneednotbeattributedto projectiles.RoundedBase, cf.Odocoileusvirginianus,White tailed Deer Metapodial.TwocompletepointsofthisvarietycomefromCashMound(cataloguenumber88-1-1)andJosslynIsland(cataloguenumber87-28 11)(Figure1, firstrow).Athirdspecimen,from Josslyn (cataloguenumber87-28-10), consistsofonlythebasalportionofabrokenpoint(Figure 1, first row). ThecompleteJosslynexampleis 116.1mminlengthandistrough-likeincross-sectionduetothemetatarsal'svasculargroove.TheJosslynpointsareassociatedwithlateCaloosahatcheeIIdeposits(Chapter 2, this volume). ThecompleteCashMoundexample(four fragments,mended)is 134.5mminlengthandsomewhattriangularatthe midsection. A trace of thevasculargrooveis seentowardthebase. Bothwholespecimensexhibit achippedorflakedareaonthebasalsurfaceoppositethevasculargroove.RoundedBase,Dasyatissp.,StingraySpine.Onecompletespecimen(cataloguenumber89-8-9) comes fromCaloosahatcheeIIdepositsatJosslynandmeasures128.3mminlength(two fragments,mended) (Figure 1,secondrow). Twobasalfragments (Figure1,secondrow)arefromJosslyn,onefromaCaloosahatcheeIII context (cataloguenumber87-28-5)andonefromCaloosahatcheeII (cataloguenumber87-28-14).Onebasalfragment(cataloguenumber88 1-1) is fromCashMound(Figure 1, second row).Itis notablethatthebreaksonall four specimens occuratapproximatelythesamepoint,46to 54mmupfromthebase. This iswherethebarbnaturallybecomesmoreslender.Rayspinepoints,althoughneverabundant,areknownfromnumeroussites (e.g., Gilliland 1975:212-213,Plate125; GogginandSommer1949:51,Plate4e;RichardsonandPohI1985:98-99).Squared Base, cf.Odocoileusvirginianus,White-tailed Deer Metapodial.Threewholespecimens (cataloguenumber87-28-12;twowithcataloguenumber87-28 15)arefrom Josslyn (Figure 1,thirdrow).Lengthsare63.7mm,38.9mm,and30.8 mm.Fourbasalfragments(cataloguenumber87-28-5;twowithcataloguenumber87-28-10;cataloguenumber87-28-13)comefrom Josslyn (Figure 1,thirdrow),indudingalargeonemeasuring99.7mm,representingatleasthalfofthe specimen.Ofthetotalsevenspecimens, six exhibit thevasculargroove.FouroftheJosslyn artifactsdatetoCaloosahatcheeII. Two(numbers87-28-5and87-28 10)datetoCaloosahatcheeIII.231Figure1.Single-pointedbonepoints.Firstrow:roundedbase,d.Odocoileusvirginianus;88-1-1, 88 28-11,87-28-10.Secondrow:roundedbase,d.Dasyatissp.;89-8-9,87-28-5,87-28-14,88-1-1.Thirdrow:squaredbase,d.Odocoileusvirginianus;87-28-12,87-28-15,87-28-15,87-28-5,87-28-10,87-28-10,87-28-13.

PAGE 240

232Bi-pointed Bone PointsThesepointsvaryinlengthandcross-sectionshape,andalthoughnowdulled,mustoncehavebeensharpenedto apointonbothends.This iscommonlyreportedasthemostabundantvarietyofbonepoints,althoughit isunclearintheliteraturetowhatextentsomeof thesingle-pointedpoints,as described above,mayhavebeenincludedasbi-pointedpoints.Onlywholespecimenscouldbeassignedto this category. Theexamplesofuseevidenceandnaturalmodifica tion listedabovealsoapplyto thispointvariety. The twohypothesesaboveapplyherealso, exceptthatmanyofthebi-pointsweresurelyusedasthroatgorges, asimplevarietyoffishhookethnographicallyassociatedwithshallow-waterenvironments(Tartaglia1976:105;Roth1924:193,Plate46). Also, apointedendcombinedwiththenaturalgrooveprovidedbysiphonalcanalsofwhelks(Busycon con trarium),andparticularlyhorseconchs(Pleuroploca gigantea),wouldhavefacilitatedthehaftingofbipoints to shell columellashanks(Walker 1991).Symmetrical, cf.Odocoileusvirginianus,White-tailed Deer.Roughlysymmetrical, these pointsaresometimesthickestinthemidsectionregion.Somespecimens,however,haveroughlyparallel sidesuntiltheverypointis reached. Five pointsarefromJosslyn (cataloguenumberA27582;twowithcataloguenumber87-28-4;cataloguenumber87-28-10;cataloguenumber87-28-15) (Figure 2),andtwoarefromCashMound(bothwithcataloguenumber88-1-1) (Figure 2).Theyrangeinlengthfrom 53.5mmto 99.5mm.TwooftheJosslynpoints(numbersA27582and87-28 15)arefromCaloosahatcheeII contexts;theotherthreedatetoCaloosahatcheeIII.Asymmetrical,cf.Odocoileusvirginianus,White tailed Deer.Oneexample(cataloguenumber87-28 12) of thisdescriptionexistsinthe collection (Figure 2, far right).Itis from Josslynandmeasures52.9mminlength.Thespecimenissurprisinglythick (9.0mmatits thickest) for itsshortlengthandisasymmetricallyproportionedsothatonesideisobliquelyangled.Suchananglewouldfacilitate hafting to ashank.ThepointisfromJosslyn'sCaloosahatcheeII context.Otherexamplesofasymmetricalbi-pointedbonepointsareillustratedbyGilliland (1975:Plate 125F)andbyGoggin(1951:62,Figure9E, F).Midsections and Pointed FragmentsIt is oftenimpossibletodeterminewhetheramidsectionorpointedbonefragmentisofapointorpin. Thepresenceofeitherarounded/squaredbase,indicatingasingle-pointedbonepoint,orapinhead,indicatingapin,isnecessaryforconfidentidentifica tion.Intheabsenceofthesefeatures, thefragmentsremainunclassified.However,theyareincludedunderthebonepointtypebecausebonepointsfaroutnumberbonepinsinthecollectionandsotheprobability ishighthatmostofthese fragmentsareofbonepointsandnotpins.Fragmentsofthis category total23andarefrom JosslynIsland(21)andCashMoundCulture and Environment intheDomainofthe Calusaoin2j---o5Figure2.Bi-pointedbonepoints,d.Odocoileusvirginianus.Symmetrical,lefttoright,A27582,87-28-4,87-28-4,87-28-10,87-28-15,88-1-1,88-1-1.Asymmetrical,farright,87-28-12.(2).MostoftheJosslynspecimensarefromtheCaloosahatcheeIImidden.BONE PINSThetypename"bone pin" oftenhasbeenusedto refer towhathasmoretraditionallybeentermed"bone point" (e.g.,Dunbareta1.1990:485,490; Larson 1980: 117). This isunfortunatebecauseoftheconfusionitcreates in semantics. Willey (1949)andGoggin(n.d.; GogginandSommer1949), intheirseminalresearchwithsouthFloridaboneartifacts, clearlymadethedistinctionbetweenthetwocategories; this distinction is stillvalidtoday. Pinswereusuallycutfrommetapodialsofwhite-taileddeer,Odocoileus virginian us,andoccasionallyfromothermammalbones(e.g., see "small,articular-headedpins"). Themaximumlengthofthenaturalboneshaftwasoftenused,oneendbeingworkedintoa "head"ofmanyvariousformswhiletheoppositeendwassharpenedto apoint.Withonlyoneexception ("T-shaped pin"), the varietiesbelowfollowconvention(Gogginn.d.:555-559;RichardsonandPohI1985:122-126; Willey 1949:40-42).Peg-topped PinsTheheadsof thisvarietyofpinarecuttoformpegs.Oneexample(cataloguenumber87-28-10) (Figure 3), from Josslyn,datestoCaloosahatcheeIII. It consistsofonlytheheadandsmallportionofthe shaft.Itismadefromthedeermetatarsalasevidencedbya traceofthevasculargroove.Jordan(1963:31, 39, 43,PlateVI)reportedararecollectionofcompletepeg-ortenon-toppedpinsfrom a St. Johns IIcburialcontextnearJacksonville, Florida. Thesepinsincludedcarvedboneringsthatfitoverthepegsortenons,formingcompositeobjectsinterpretedbyJordan(1963:43) as featherholdersbasedonLeMoyne'sdepictionofafeatheredhairornament(Lorant 1946:57-63, 109). ThemostabundantpinvarietyinthelargeGranadacollec-

PAGE 241

BoneArtifacts233 ..C7 :' :f "' ..' ::.: ..:.... ;.: :., :::;.: ","" ( rj:: .oem5Figure3.Bonepins,d.Odocoileus virginianus; Procyon lotor(A27579only).Lefttoright:peg-topped,87-28-10;spike-topped,87-28-5;expandedhead,89-8-18;expandedhead,87-28-15;expandedhead,engraved,A27517;small,articular-headed,A27579;T-shaped(frontandbackviews),A27582.

PAGE 242

234tion isthepeg-ortenon-toppedpin(RichardsonandPohI1985:123-124).Spike-topped PinsOnepinheadfragment(cataloguenumber87-28-5)(Figure3) fitsWilley's(1949:41)descriptionofavarietywithtab-like,near-circularheadssimilar to a nailorspikehead.Theheadis 7mminwidth.Thepinfragmentis fromCaloosahatcheeIII contextatJosslyn.ExpandedHeadPinsThispinvarietygraduallyexpandsatthetopwheretheboneiscutandsmoothed.Onenear-complete(six fragments,mended,tipmissing)specimencamefrom Josslyn'sCaloosahatcheeIImidden(Figure 3). Thepin(cataloguenumber89-8-18)measures167mmandmayhavebeenasmuchas10mmlongerwithits tip. Itsslendershaftisroundincross section. A second Josslynspecimen(cataloguenumber87-28-15) alsodatingtoCaloosahatcheeII, consistsofonlytheupperportionofthepin(Figure 3).ExpandedHead,Engraved PinsAnear-completepin(cataloguenumberA27517) of thisvarietycamefromCaloosahatcheeIII contextsattheBuck Key ShellMidden(Figure 3). It isinthreepieces,glued,andthetipismissing(anestimated10 mm). Itmeasures168mmwithoutthetip. Thepinhasaroundcross-sectionandismadefromthedeermetatarsalasevidencedbya traceofthevasculargrooveonthe"backside." The "front" exhibitsthreelinesengravedaroundthethickeneduppermidsection of the shaft. Justbelowtheexpandedhead,the shaft is slightly constricted.Small, PinsOnespecimen(cataloguenumberA27579) is fromJosslyn,datingtolateCaloosahatcheeIIorearlyCaloosahatchee III,andis a complete,unbrokenartifact (Figure 3). Itwasfashionedfromtherightulnaofa raccoon(Procyonlotor).Theproximalarticularsurfaceswereworkedsmoothandthedistalendwascutandpointed.NumeroussimilarexampleswererecoveredfromtheBelleGladesitenearLakeOkeechobee (Willey 1949:41,Plate10).T-shapedPinsWilley (1949:41) describesbutdoesnotillustratetwopeg-toppedpinsfromBelleGladethatwerecarvedintotheshapeof aT.T-shapedpins,alsodescribedunderthecategory"peg-topped,"wererecovered fromtheGranadasite (RichardsonandPohl 1985:123, Plate 31). Iproposethattheseexamplesaredistinctenoughfromthetypicalpeg-toppedpinstowarrantthecategoryname,"T-shaped pin"asusedhere.Onecompletespecimen(cataloguenumberA27582) comes from JosslynIsland,measures82mminlength,anddatestoCaloosahatcheeII (Figure 3).Culture and Environment in the Domainofthe CalusaPOINTIPIN DEBITAGEBonedebitageproducedviathemanufactureofbonepointsandpinsfromdeermetapodialshasbeenfoundfrequentlyinsouthFlorida sites (e.g., Gilliland 1975:218-219;RichardsonandPohl 1985:164).Figure4presentsanindividualdeer's(Zooarchaeologycataloguenumber5973)unmodifiedsetoftwometacarpals(fromlowerforelegs)andtwometatarsals(fromlowerhindlegs). Together,thefourbonesarereferredto as "metapodials."Ifarchaeologicalfragmentscannotbeidentified aseitherametacarpalorametatarsal,thenthemoregeneralterm"metapodial"canbeused.The artifactualdebitagehasallowedareconstructionofthemanufactureprocess,onethatappearstohavebeenconventional.Inthe collectionathand,alleightexamplescomefromtheunproveniencedCashMoundcollection.Proximal Metacarpal,Odocoileusvirginianus,White tailedDeerOneexample(cataloguenumber88-1-6) is a fragmentfromtherightmetacarpalandisdeeplyscoreddowntheanteriorsurfaceandminimallyscoredperpendiculartothat(Figure 5).Proximal Metatarsal,Odocoileusvirginianus,White tailedDeerOneexample(cataloguenumber88-1-14) is a fragmentfromtherightmetatarsalandisdeeplyscored(Figure 5)inthesamemannerastheproximalmetacarpaldescribedabove.Proximal Metapodial,cf.Odocoileusvirginianus,White-tailedDeerTwosmallfragments(cataloguenumbers88-1-22and91-57-1) exhibit scoringmarks.Distal Metapodial,Odocoileusvirginianus,White tailedDeerFourcompleteornear-completedistalendsexhibitthehorizontalscoringusedfortheirremoval.Threespecimens(cataloguenumber88-1-26,Figure5,andtwowithcataloguenumber91-57-1,Figure5)werescoredandsnappedoff cleanlywhilethefourthpiece (cataloguenumber88-1-6)wasscoredandsnappedirregularly.HOLLOW-SHAFTED, POINTED IMPLEMENTSThemorewidely-acceptednamesare"socketedprojectilepoint"(Willey1949:38)and"socketedpOints" (Goggin n.d.: 526-527;RichardsonandPohl1985:117;Purdy1973:147),bothimplyingthattheimplementwashaftedbytheinsertionofashaftintothehollowcavity. Theseimplementsweremadefrom acutsection ofmammallongboneshaft,oneendbeingcutperpendiculartothenaturallengthofthebonewhiletheoppositeendwascutobliquelyandsharpenedto apoint(Willey 1949:38).

PAGE 243

Bone Artifacts235Twonear-completespecimensinthepresentcollec tion fit this description.However,enoughcancellousmaterialremainsinthecavityofeachof these artifacts tosuggestthatshaftswerenotinsertedintothem. Taxonomic identificationbeyond"Mammalia"cannotbedetermined.Willey's (1949:38) varietiesbasedonsizeareadopted.Short,30-70mmOneexample(cataloguenumber88-1-1) is from theCashMoundsurface collection,measuring57.6mm(Figure 6).missing)(Figure6).ThespecimenisfromtheCaloosahatcheeIImidden.DAGGERSBonedaggers,asdescribedbyWilley (1949:40)andGoggin (n.d.:531),wereusuallymadefrommammal(deerandhuman)longbonesandintwoinstances from alligatormandibles(Willey 1949:Plate 9). Themammalboneswerecutalongthe shaftdiagonallyto form apointfor use,whileretainingtheunmodifiedarticularendasthehandle.MODIFIED TEETHPerforatedanimalteeth,particularlythoseofvariousspeciesofsharks,arecommonartifactsinsouthFlorida(Kozuch 1991;Richardsonand Pohl 1985:93-94)andunderstandablyso,consideringtheiravailabilityandeffectivenessasnaturallysharptools(RichardsonandPohl1985:98).Thedistributionofmodifiedteethisnotwellknownfor theCaloosahatcheelocaleduetolackofexcavation. The consensusisthatthemodifiedteethwerehaftedtoprovideavarietyofsharptools,anuncantestedinterpretationinlightofcompositetool findingsatKeyMarco(GillilandDistal Radius,Odocoileusvirginianus,White-tailed DeerIhavenotfoundthisvariety(distalradius)else-whereintheliterature. Moreover,thetwoexamples(cataloguenumbers87-28-4and87 28-5)fromJosslynIslandarenotentirelyconvincing in theirculturalmodificationstatus.Yettheyarecompellinginthattheiroverallmorphologyandroundededgessuggestusage(Figure 7). Both specimensaremadefromtheleftradius,oneindividual(cataloguenumber87-28-4)beingmorerobustthantheother.Onespecimen(cataloguenumber87-28-4)measures120mminlength.Theother(cataloguenumber87-28-5)measures168mminlengthandisbrokenandglued.Both "daggers"dateto CaloosahatcheeIII.Figure4.Unmodifiedmetapodials,white-taileddeer,Odocoileusvirginianus(Zooarchaeology5973):twometacarpals(lowerforelegs)andtwometatarsals(lowerhindlegs).Large,70100mmOneexample(cataloguenumberA27585) is from JosslynIsland,measuringanestimated85mm(tip is

PAGE 244

236CultureandEnvironment intheDomainoftheCalusa5emaFigure6.Hollow-shafted,pointedimplements.Left,shortvariety,88-1-1;right,largevariety,A27585. : ','Figure5.Bonepoint/pindebitage,Odocoileus virginianus.Topleft,proximalmetacarpal,88-1-6;topright,proximalmetatarsal,88-1-14;bottomleft,distalmetapodial,88-1-26(posteriorview),andbottomright,88-1-6(anteriorview).aem5Edge-worn Shark's TeethExamplesshowsmoothedgesoftheteethwheretheserrationshavebeenworn.It isnoteasilydetermined,however,whetherthewearoccurredduringtheanimal'slife (Kozuch 1991:8)orduringsubsequentculturaluse. Galeocerdo cuvieri,Tiger Shllrk. Thisspecimen(cataloguenumber87-28-19) (Figure8)is from Josslyn'sCaloosahatcheeIIperiod.Aportionoftheroot isfragmentedandthedistalcuspletis missing. 1975:123,Plate80; 133-135,Plate82; Willey 1949:Plate 15).Drilled Shllrk's TeethA singledrilledholeinthebaseofthetoothis acommonmodification(RichardsonandPohlI985:95). Galeocerdo cuvieri,Tiger Shllrk. Onefragmentedtigershark'stooth (cataloguenumber87-28-14)hasbeencentrallydrilledfromthelingualsurface (Figure 8).Noothermodification isevident.Thisspecimenis from theCaloosahatcheeIIdepositatJosslyn Island.Cf.Carcharhinusleucas/Carcharhinusobscurus,Bull Shark/Dusky Shark.Oneartifact (cataloguenumber88-1-10) is afragmented,single-perforated,upperrighttooth (Figure 8). Itsbasalwidthis 21.8mm.It is fromCashMound.Fossilized Shark's TeethFossilteeth,drilledandotherwisemodified,havebeenfoundatsouthFlorida sites (e.g., Steinen 1982:71, 74; Willey 1949:45).However,culturalmodificationoffossilteeth(unless drilled)oftencannotbedeterminedbecausephysicalprocessescanproduceconsiderablewearbefore collectionbyhumans.Yet,suchmaterialsareclearlyfoundinculturalcontextsandsoareincludedhere.Unidentified Shark.Onespecimen(cataloguenumber87-28-15)measures18.5mminlength(or height)andexhibitsextremelysmoothedsurfacesprecludingtaxonomic identification (Figure 8). Itsbasalwidthis 19.4 mm.Itis from Josslyn'sCaloosahatcheeIIperiod.Carcharodonmegalodon,Giant White Shark.Onetooth(cataloguenumber87-28-10)(Figure8)wasrecoveredfrom JosslynIsland.Teeth of this extinct

PAGE 245

Bone Artifacts237BEADSANDBEADWORKDisc-shapedBeadsUnidentified FossilizedBone.Onespecimen(cataloguenumber87-28-14(Figure9)is7.5mmindiameterand2.9mmthick.Thebonehas atwo-layeredappearanceto it,reminiscentoffossilized blackdrum(Pogoniascromis)teeth.Itis from JosslynIslanddatingtoCaloosahatcheeII.Figure8.Modifiedsharkteeth.Topleft,drilledGaleocerdocuvieritooth87-28-14;topcenter,drilledd.Carcharhinus leucaslobscurustooth88-1-10;topright,edge-wornGaleocerdocuvieritooth87-28-19;bottomleft,fossilizedunidentifiedtooth,87-28-15;Bottomright,fossilizedCarcharodontooth,87-28-10. As is typicalofsouthFlorida artifact inventories, few "beads"areincludedintheCaloosahatcheecollec tion. Beadsareusuallythoughtofas objectsofadornmentusedinassociationwithmanyotherbeads,forming necklacesandbracelets. BecausebonebeadsaresoinfrequentinsouthFlorida sites,perhapstherearealternativeexplanationsfortheirexistence. Thepeg-toppedpin(seediscussionabove)withits "ring" (or "bead?")attachmentis agoodexample. Three finishedbone"beads"comefromJosslynandonefrom Buck Key. Inaddition,twoworkedlongboneshaftfragmentssuggesttheprocessofbeadworking..' r \1; aem5Figure7.Daggers,Odocoileusvirginianus.Leftdistalradius,left,87-28-4,right,87-28-5. speciesareassociatedwiththeMiocenethroughPleistoceneepochs(Brown1988:76)andarecommonlyfoundinFlorida.TheJosslynspecimenwasfoundinaCaloosahatcheeIIImidden,associatedwithnumerousotherartifacts.Itmeasures47.3mminlengthand42.1mmalongitsbasalwidth.It iswornsmoothonall edges.Whetheranyofthiswearwasproducedthroughculturaluseisundetermined.TubularBeadsUnidentified Animal LongBone.Oneundecoratedfinishedbead(cataloguenumber87-28-10)(Figure9)comes from Josslyn'sCaloosahatcheeIIIperiod.It iscutfromathin-walledanimallongbone,possiblybird.Itsnear-circularcross sectionmeasures7mm,andit is20.2mminlength.Theendsareroughlycutandsmoothed.Althoughthere isnoclear association, it is ofnotethatthis "bead"wasrecoveredfromthesameprovenienceasthepeg-toppedpinhead(cataloguenumber87-28-10)describedabove.

PAGE 246

238CultureandEnvironment intheDomainofthe CalusaTubular, Waisted Beads UnidentifiedAnimalLong Bone.Onefinishedbead(cataloguenumberA27555) (Figure 9) is from a Buck Key Caloosahatchee III context.Onesurface is fragmented.Thebeadhascutandsmoothedends,an8mmdiameter,andis 30.6mminlength.Itmightbedescribedasa two-sectionedbead,havinga thin, in cised lineseparatingtwowaistedportions.Willey (1949:51) describesthreeshellbeadsofsimilarshapefrom the BelleGladesite. f;;;;;:i3@ Figure9.Beadsandbeadwork.Topleft,disc-shaped,fossilizedbonebead,87-28-14;bottom,lefttoright:tubular,unidentifiedanimalbonebead,87-28-10;tubular,waisted,unidentifiedanimalbonebead,A27555;tubular,beadwork,Gavia immerhumerus,87-28-15.35mm(13/8")GaugesThewidthofthenet-meshgaugeis35mmwhichwouldhaveproducednetopeningsof70mm(2 314"). Unidentified Fossilized Mammal Bone.Onlyonespecimen(cataloguenumber88-1-26),fromCashMound(Figure 10),ofthiscategoryisknown.Ifthis artifactwasindeedusedasanet-meshgauge,thenitshouldbeconsideredacompleteexample. It is fromtheCyzewski-Kemp-Edicsurfacecollectionandso hasnodatablecontext.Theboneisnotidentifiable totaxonandis 167mmin length. It is from alongboneofalargemammal.AlthoughfragmentsoffossilizedboneoftenturnuponsouthwestFlorida sitesandcorrespondstoopeningsinthenet(Chapter8, this volume). Thus,gaugewidthscanbeusedto define varietiesofthecategory,"net-meshgauge." Assamplesincrease,widthsmightbebetterexpressedasrangesofvariation.Further,theresourcematerialcanbeusedtodefinesubvarieties.Workisunderwayto incorporatemanyotherspecimensinto amuch-expandedtypology.ComparativesouthFloridabonenet-meshgaugesareillustratedinGilliland (1975:217,Plate130, b, c,d,possiblye-g),GogginandSommer(1949:53andPlate4 k),andGriffin et al. (1985:135-136, Plate21a). AlsoseeMarquardt(Chapter5, thisvolume)forexamplesofshellgaugesintheliterature.5emo [] oTubular Beadwork Humerus, cf.Gaviaimmer,Common Loon.Three longboneshaft sections,tentativelyidentifiedas commonloonhumeri,areremarkablysimilarinlength(61.7mm,59.1mm,61.8mm)andcross-sectionwidth(9.5mm,9.5mm,10.3 mm).Theyareall fromthesameCaloosahatcheeIIprovenience(cataloguenumber87 28-15).Onespecimenisnotworked,anditsendsarenotsmoothed.Anothersegmenthasbeenroughlyscoredandsnappedattheendsbutshowsnosmoothing. Thethirdlongbonetubeexhibitsneatlycutandsmoothedendsandanadditionalscoringseeminglyforthepurposeofproducingsmaller(17.2mmlength)beads(Figure 9). Allthreetubesareprobablymadefrom loonhumeribasedonmorphologyof the shaft (allowingtheeliminationofmedium-sizedmammalssuchasraccoon), thepresenceofa distinctiveforamen,the associationoftheseartifactswithtwocompleterightfemursandoneproximalhumerusfragmentcon fidentlyidentifiedascommonloon (cataloguenumbers87-28-2, 87-28-12, 87-28-15),andfinally, a long shaft sectionofa lefthumerustentativelyidentifiedas loon. NET-MESH GAUGESNet-meshgauges(Chapter8, thisvolume)appearinnumeroussouthFloridaarchaeologicalcollectionsandoftenareincludedinpublishedphotographicplateswithinsite reports.However,theidentificationofthese objectshadnotbeenrecognizedinFloridauntilrecently(Walker1991).Archaeologicalexamplesofnet-meshgaugesassociatedwithotheraquaticadaptationsoccursparselyintheliterature(e.g.,Marcus1987:73;Ritzenthaler1985:17).Net-meshgaugesfromFloridaaremadefrombone, shell,andwood.Onlythebonevarietiesaredescribedbelow. Shellnet-meshgaugesareincludedwiththeshellartifacttypology(Chapter5,Figure24,thisvolume). Therawmaterialisshapedinto a flat rectangleofaspecifiedwidthandofanunspecifiedlengththatperhapsisdictatedbythe limits of the material. Alledgesandsurfacesonwell-usedgaugesaresmoothedto a finepolishacquiredthroughintensivehand-helduseofthetoolinassociationwithnetcordage.Thecornersoftherectanglesareoftenroundedoff.Inuse,thegaugeisheldlaterallywhilethenetcordageistiedarounditswidthwiththeaidofanettingneedleorothercord-holdingdevice.Doubled,thewidthmeasurementofthegaugeclosely

PAGE 247

Bone Artifactsaem I.. 5239Figure10. Left, 35mmnet-meshgauge,fossilizedmammalbone,88-1-26;center,30mmnet-meshgauge,Pseudemyssp., 87-28-11;right,18mmnet-meshgauge,unidentifiedturtle,87-28-15.usuallyexhibitsmoothed,water-wornsurfaces, thisspecimenhastwolongparallelsidesanditswidthcorrespondswithatleastoneothergaugeexample(cataloguenumberA6081)(Busycond.contrarium)fromtheKeyMarcosite (8CR49).30mm(13/8")GaugesThewidthofthenet-meshgaugeis 30mm,whichwouldhaveproducedmeshopeningsof60mm (23;'t"). Pseudemyssp., Cooter/Slider Turtle.Onlyoneexample(cataloguenumber87-28-11) (Figure 10),fromJosslynIsland,of this size isknown.It isbrokensothatitsentirelengthisunknown.Itisidentifiedfromthepresenceofthescutelines,indicatingthatitis apleuralboneofacooter/sliderturtlecarapace.ThisgaugewasrecoveredfromtheCaloosahatcheeIImidden(Chapter2,thisvolume).18mm (314 ")GaugesThewidthofthenet-meshgaugeis 18mm,whichwouldhaveproducednetopeningsof36mm(l l,Iz"). Unidentified Turtle.Onlyoneboneexample(cataloguenumber87-28-15) (Figure 10),fromJosslynIsland,ofthissizeispresentinthecollection.Itwasmadeofturtlecarapace,andoneendisbrokensothatthelengthisunknown.ThegaugeisassociatedwithCaloosahatcheeII.UNCLASSIFIED ITEMSCarved, Knobbed Bone ObjectThisintriguingobject(cataloguenumber87-28-11) isillustratedinFigure11. It isbrokenonbothends,butisotherwisewellpreserved.Theartifactexhibits skilledworkmanshipinitscomplexcarvedfeatures.Thefragmentis 26.9mminlengthand16.2mmatitsgreatestwidth(or height). Taxonomicidentificationof theboneisunknownas alldiagnosticfeaturesarealtered.Thefunctionalidentificationisunknown,andIknowofnocomparableartifacts. Thisspecimenwasrecoveredfrom Josslyn'sCaloosahatcheeII context inassociationwithnumerousandvariedartifactsandsubsistenceremains.Carved, Twisted Bone ObjectIllustratedinFigure12 (top),thisitem(cataloguenumberA27524) isremarkablein itsmorphologyandworkmanship.Theboneishighlymodifiedsothatconfidentspeciesidentificationmaynotbepossible.Oneofthewrist/ankleelementsofalargeloggerhead(Caretta caretta)orgreenseaturtle(Chelonia mydas mydas)is so farthebestcandidate.Aconsiderablequantityofseaturtleremainswererecoveredfrom theassociatedmidden.Theobject iscompleteandwellpreserved.Thetwistinthebonemustbebasedonthenaturalmorphologyoftheresourcebone.Itmeasures60.1mminlengthand24.4mmatitsgreatestwidth.

PAGE 248

240Culture and Environment in the Domainofthe Calusa5emoFigure11.Carved,knobbedboneobject,threeviews,87-28-11. .'....:..... .. ; virginianus.Specifically,thefourmetapodials(twometacarpalsandtwometatarsals)ofthedeerwereCut Plastron,Pseudemyssp., Cooter/Slider TurtleThisplastronof afreshwatercooter/slider(cata loguenumberA27589) iscutonthebottomandtwosides (Figure 12). The "top"orroundededgeis thenaturalmarginoftheanimal'splastronthatwouldhaveformeda tight closurewiththecarapace. The14piecesoftheartifactwereassembledandgluedtogether. Theseareoldbreaksandsomedifferentialpreservationcanbedetectedbetweenfragments. The artifactmeasures59.6mmacross thebottomcutand70.8mmfromtoptobottomatitsmidpoint.Onemightinterpretthe object asrepresentingastepinthemanufactureofplastronrectanglessuchas thelargecollectionfoundatKey Marco (Gilliland 1975:217, Plate 130). The scutepatternonthis object is similar to the Key Marco examples.Thecutsonthetwosidesofthe artifact,however,flareoutwardinsteadofformingrightangles tothebottom.Thecutplastronis from Josslyn,oneofthe fewartifacts toberecovered from Josslyn's earlierCaloosahatcheeIperiod.perforatedlWorkedMammal LongBonePresumablymadefromdeerbone, thisspecimen(cataloguenumber87-28-4) (Figure 12) is asplitsec tionoflongbonethathashaditsedgesandatleastoneend(theotheris missing)workedsmooth.The artifact isnotcomplete(65.2mmlength)andisbrokenintotwopiecesandmended.Twoholes,5.5mmindiameter,aredrilledthroughthebone8.3mmapart.Numerousparallelmarkingsareobservedoverthe surfaces. The object isofunknownuse. It is fromtheCaloosahatcheeIIIperiodat Josslyn Island. A similar artifactappearsin Bullen'sreportonthePaulsonPointsite in SarasotaCounty(1971:Figure 9j).MiscellaneousWorkedBoneOneitem(cataloguenumber87-28-3) is asmallfragmentofaworkedmammallongbone.Another(cataloguenumber87-28-4) is a smallfragmentofcutturtle(unidentified)bone. ThesetwoartifactsarefromCaloosahatcheeIIIstrataat Josslyn. Athirdartifact (cataloguenumber87-28-11) is afragmentofanalligator(Alligator mississippiensis)mandiblethatex hibits a scorealongthelength(75.1mm)ofthe fragment.Two piecesfromCashMound(bothnumbered88-1-10)aresmallfragmentsof unclassifiedworkedbone,probablyof deer. Its surfacesareallbeautifullysmoothed,evenwherecancellousmaterialappears.Thefunctionalidentificationoftheartifact isunknownandmoreover,nothingevenremotelysimilartoitisknownintheliterature(at least to thisauthor).Thecarvedobject is from Buck KeydatedtoCaloosahatcheeIII. CULTURAL PATTERNSoem5 Patterns of MaterialAs is typical ofsouthFlorida sites, the majority ofboneartifactsinthepresentcollectionweremanufacturedfromboneofthewhite-taileddeer,OdocoileusFigure12.Top,carved,twistedboneobject,A27524;center,cutplastron,Pseudemyssp., A27589;bottom,perforated,workedmammallongbone,87-28-4.

PAGE 249

Bone Artifactsconsistentlyselectedastheprimaryresourcematerial forpointsandpins.Includedinthecollectionarespecimensofdebitage,namelythecutproximalanddistalendsofthemetapodials.Intwounusualcases, thedeerradiuswasusedto form aroughdagger-likeimplement.Non-marineturtlebone(Pseudemyssp.)isthesecondmostcommonlyusedmaterial,indicatingitsimportance.Turtlecarapacesandplastronsprovidedthenecessaryflatbonesfortheproductionofnet-meshgauges.Onepinwasformedfroma raccoon(Procyonlotor)ulna,theonlyexampleofraccoonuseinthe collection.Onemandiblefragmentofanalligator(Alligator mississippiensis)wasscoredforanunknownpurpose.Althoughthesampleissmall,theseartifactsdemonstratetheimportanceofnon-marineanimalbones asrawmaterialfortheproductionofeverydaytechnologicalneedsdespitetheunimportanceof thesesameanimalsfromadietaryperspective(Chapter8, this volume). The lessfrequentlyusedmarineboneinthecollectionincludesstingray(Dasyatissp.) spines,shark(Galeocerdocuvieri, Carcharhinus leucas/Cachar hinus obscurus, Carcharodon megalodon)teeth,loon(Gaviaimmer)humeri,andpossiblya seaturtlecar Pill/tarsal (tentative identification forcataloguenumberA27524).Vertebratefossil materialswerefoundatJosslynIslandandCashMound.Luer(1989:117-118)suggeststhatevidencemightbefoundforaninterior/coastaltributeandexchangenetworkinthematerialusepatternsofdeer,fish,andturtlebones.Thesampleofdeerremainsfortheex cavationsreportedin thisvolumeis too small fordeterminationofelementaldistribution,astudythatmightaddressatradehypothesis.Essentiallynofreshwaterfishspeciesareincludedinthezooarchaeologicalsamples(Chapter8, this volume). Thepresenceofnon-marineturtleremainsis notable for JosslynIsland(Chapter8, this volume)becausethesamespeciesrepresentedtherewereallabundantandintensivelyexploitedintheprehistoricOkeechobee Basin(Hale1984:175)suggestinga possible connec tion. Alternatively, Josslyn's "center court"atonetimemayhaveprovidedafreshwaterhabitat(groundwaterrunoffandseepage) forthoseturtles.Additionally,theturtlesmayhavebeencapturedonnearbyPineIsland.Patterns of SpatialandTemporal VariationMeaningfulpatternsofspatialandtemporalvariation ofboneartifactswithinsites,betweensites,andbetweenareasofsouthFloridacannotbesubstantiatedonthebasisoflimitedcollections from JosslynIsland,Buck Key,andCashMound.Patternsofvariationbasedonsmallsamplesmayreflectnothingmorethanthesamplingitself. The followingsummarycommentsandhypotheses,then,mustbetemperedwithacknowledgmentofthis situation.Thespatialcontexts,inenvironmentalterms,ofJosslynIsland,BuckKey,andCashMoundare241describedindetail inChapter8ofthisvolumeandwillnotberepeatedhere.Insummarizingthetemporalcontextsoftheartifactsdescribedinthischapter,theradiocarbondatesreferredtoaretabulatedinChapter2ofthisvolume.ThetemporaldivisionsfollowWidmer's(1988:83-87)andCordell's(Chapter4,thisvolume)ceramic sequences. Also,AppendixA lists artifactsbysiteandprovenience.Test excavationofJosslyn'sdeeplystratifieddepositsproducedtheearliestdates,240-67 B.C.and324-53 B.C., for thecombinedJosslyn, Buck Key,andCashMoundboneartifact collection.OnlytwoboneartifactscamefromtheseCaloosahatcheeI (500 B.C. to A.D. 650) contexts.Onebonepointfragmentandonecutturtle(Pseudemyssp.)plastroncamefromdenseshellmiddenproveniencesA-1-22andA-1-32, respec tively. TheA-Iexcavationunitconsistedofonlya50em x 50 emarea(Chapter2,this volume). A small test excavationonthebeachatCashMoundproducednoboneartifacts,butradiocarbondatesrangefromA.D. 67toA.D. 806(Chapter2,thisvolume). The Cyzewski-Kemp-Edic surface collec tion,includingthe19boneartifacts describedinthischapter,probablyrelate to theCaloosahatcheeI time frame.CaloosahatcheeII (A.D. 650 to 1200) isrepresentedbytheJosslyn collectionbeginningwitharadiocarbondateofA.D. 801-978 (A-1-l3). AssociatedproveniencesincludeA-I,levels 6throughatleast13andA-2, levels 5through8 (excavationofA-2endedhere). In A-2,boneartifactsconcentratedinlevels 5through8,correlatingwiththepresenceofBelleGladeRedceramicsherds(Chapter4, this volume). Theboneartifacts-includingpoints,pins,"daggers,"shark'steeth,beadsandbeadwork,andnet-meshgaugeswereassociatedwithabundantsubsistenceremains,alargestoneanchor/weight,numerousNoetiaponderosanetweights,shell columella sinkers,andothershellimplements(Chapter2,this volume). JosslynandBuck KeybothhaveCaloosahatcheeIII (A.D. 1200 to 1350)middendeposits.Theupperfew levels of Josslyn's A-IandA-2 excavationsdatetoatleast A.D. 1200. Buck Key's threeboneartifactsarefrom ca. A.D. 1267-1334andA.D. 1306-1439 contexts.Perhapsdueto agreatdisparityofsampling,no sig nificant differences inboneartifactscanbedetectedbetweenCaloosahatcheeI,II,andIII timeperiods.ThebonepointsintheJosslynandCashcollectionsappearsimilartothoseoftheGranadasite(RichardsonandPohI1985:115, Plates 25, 26), the BelleGladesite(Willey1949:39-40,Plate7),UpperMatecumbeKey(GogginandSommer1949:50-51;Plate4),andtheEverglades(NationalPark) (Goggin 1950:242-243).TheFortCentercollection (Steinen1982:71,87 -89,95)showssomesubstantialdifferencesintermsofmorphology,use-wear,andhaftingpattern,butatleast aportionoftheFortCenterbonepoints(curatedatthe FloridaMuseumofNaturalHis tory) resemblepointsfromothersouthFlorida sites.

PAGE 250

242Theseareashaveincommontheexploitationofbothaquaticandterrestrialanimals.The KeyMarcocollection(Cushing1897; Gilliland 1975) ismissingacomponentofsingle-pointedandbi-pointedbonepointsonthe scaleoftheseothersites. AsurveyofCushing'sKey Marco materialsattheFloridaMuseumofNaturalHistory,theNationalMuseumofNaturalHistory,andtheUniversityMuseum(UniversityofPennsylvania)bytheauthorsurprisinglyresultedinnoadditionalspecimens.OnemightarguethatCushingoverlookedsmallbonepoints,butIdoubtthis.Rather,IhypothesizethatenvironmentaldifferencesbetweentheMarco Island,Caloosahatchee,andsoutheasternFloridacoastalareasmayexplainthevariationseeninfishing tech nologies (e.g.,bonepoints).Insteadofproducingsmall,pointedfishhooksandcomplementarysmalllineweights/shanksadaptedforshallowwater en vironments(asintheCaloosahatcheeandMiamiareas),perhapsthepeopleofMarcoIslandandislandsto thesouthproducedlargebonepoints,manyofwhichwerebarbed(Gilliland 1975:Plate 125, 129),andcomplementarylargelineweights/shanks(Gilliland 1975:Plate 111, 133;Moore1900:370),bothadaptedforrelativelydeeperandswifterwaterenvironments(morecharacteristicoftheTenThousandIslandsarea).Anothersubsistence-related artifact, thenet-meshgauge,alsohaspotentialforinvestigatingspatialandtemporalvariabilityinsouthFlorida. Thelargestgaugesknownareoflargegillnetsizeandarefrom the Key Marco site (Walker 1991). Thesearemadefromwood,surelytheonlymateriallargeandflatenoughtoproducepropergaugesfor themanufactureofgillnetswithlargemesh.Largegauges,then,wouldbemissingfrom siteswherewet-preservationdoesnotoccur. SmallerspecimensofshellorboneareknownfromtheKeyMarcosite (Gilliland 1975:201 202, Plate 119D-E), BelleGladesite(Willey 1949:51,Plate12-0),UpperMatecumbeKey (GogginandSommer1949:53,Plate4K),Goodlandsite(Moore1900:Figs. 12-14),andpossiblytheGranadasite(Grif fin 1985:Plate 6E, F). CONCLUSIONS Clearly, astudybasedona smallsamplesizesuchashasbeenpresentedherecanrepresentonlyalimitedcontributionto theknowledgeofboneartifacts for theCaloosahatcheearea.Perceivedintersitevariationthroughtimemayactuallyreflectenvironmentalspatialvariationwhereasintrasitevariationthroughtimemayreflectpaleoenvironmentalchangeorjustchangein site use. Ihaveventured,however,to offersomeCultureandEnvironment intheDomainoftheCalusahypothesesforpotentialresearchconcerningtheboneartifactsofsouthFlorida.Ongoingexcavationsonthesouthwesterncoastwillprovidedatato test thesehypotheses.Assamplesizes increase,eventuallywewilloutgrowourneedtousedescriptivetypologiesbasedonresourcematerial. AreviewofsouthFlorida artifact typologies revealsconsiderablevariationintermsoforganization,asGriffin has alsonoted(1988:91). AllbutGoggin'sunpublishedmanuscript(n.d.)organizeartifactsbymaterial(ceramic, shell,bone,stone) as theprimarydivision.Goggin(n.d.)attemptedtointegrateshell,bone,andstonespecimenswhereheinterpretedsimilarfunction.AlthoughIdisagreewithanumberofGoggin's(n.d.) functionalinterpretations,Iamconfidentthatforsomeartifact categoriesanintegrationisnecessaryifwearetomoveahead.The fishing artifacts, incorporatingbone, shell, stone,andwoodobjects, discussedinChapter8 (thisvolume)provideanexample.While typologiesbasedonresourcematerialareconvenientspringboardsforstudy,atsomepointtheybecomeabarriertofurtheringresearch.Thus,the functionofobjectsmayeasilybeoverlookedbyarchaeologists.Furthermore,typologiesareartificialconstructsthattendtode-emphasizevariationwithincategories,thusimplyingunrealistic, static systems.Multipleuseandrecycling ofbrokenimplementsillustratethedynamismthatmightbeinvolved.Withtheincreaseofsamplesizes forsouthFloridaandabroaderuseofcomparativeethnographic/archaeologicalexamples(Le.,beyondtheSoutheast),wecanrecognizemoremeaningfulcategories of artifacts. Thisrecognitionshouldallowtheformulationandtestingofappropriatehypothesesconcerningartifactspatialandtemporalvariationof these artifacts. ACKNOWLEDGMENTS IgratefullyacknowledgethecontributionsofDonandPatRandell,previousownersofJosslyn Island;DonCyzewski,JaniceKemp,andBob Edic,previousownersoftheCashMoundsurface collection;andTedWatrous,ownerofBuck Key site 8LL722.ManysouthwestFloridafriendsprovidedhoursofvolunteerassistance,whichmadethisresearchpossible.MeraldClarkproducedtheexcellentlinedrawings,LauraKozuchhelpedidentifythesharkremains,CorbettTorrenceandRobinBrownassistedwiththephotographs,andClaudinePayneandBillMarquardtprovidedcriticaleditorialassistance.

PAGE 251

Bone Artifacts 243APPENDIX A. BONE ARTIFACT INVENTORYBYSITEANDPROVENIENCEProvenience Catalogue No. Quantity Description JOSSLYN ISLAND (8LL32)A-I-6 A27579 I Small, Articular-headed pin,Procyonlotor(Figure 3). A-I-9 A27582 I Hi-pointed bone point, symmetrical,cr.Odocoileusvirginianus(Figure2).I T-shaped pin,cr.Odocoileusvirginianus(Figure 3). A-I-9 89-8-18 IExpandedhead pin,cr.Odocoileusvirginianus(Figure3).A-I-IO 89-8-9 I Single-pointed bone point,roundedbase,Dasyatissp.spine(Figure I). A-I-13 A27585 I Hollow-shafted, pointed implement, unidentifiedmammal(Figure6).A-I-22 A27588 I Pointed bone fragment,cr.Odocoileusvirginianus.A-I-32 A27589 ICutPlastron,Pseudemyssp. (Figure12).A-2-1 87-28-3 I Miscellaneous worked bone fragment, unidentified mammal. A-2-2 87-28-4 2 Hi-pointed bone point, symmetrical,cr.Odocoileusvirginianus(Figure2).2 Pointed bone fragments, cf.Odocoileusvirginianus.I Dagger, distal radius,Odocoileusvirginianus(Figure7).I Perforated,workedmammal long bone,d.Odocoileusvirginianus(Figure12).I Miscellaneousworkedbone fragment, unidentified turtle. A-2-3 87-28-5 I Single-pointed bone point fragment,roundedbase,Dasyatissp.spine(Figure I). I Single-pointedbone point fragment,squaredbase,cf.Odocoileusvirginianus(Figure I). I Spike-toppedpinhead fragment,d.Odocoileusvirginianus(Figure 3). I Dagger, distal radius,Odocoileusvirginianus(Figure7).A-2-4 87-28-10 I Single-pointed bone point fragment,roundedbase,cr.Odocoileusvirginianus(FigureI).2 Single-pointed bone point fragment,squaredbase,d.Odocoileusvirginianus(Figure I). I Hi-pointed bone point, symmetrical,cr.Odocoileusvirginianus(Figure 2). 2 Midsection bone fragments,cr.Odocoileusvirginianus.I Peg-topped pin head fragment,cr.Odocoileusvirginianus(Figure 3). I Fossilizedshark'stooth,Carcharodonmegalodon(Figure8).I Tubular bead, unidentified animal bone (Figure9).A-2-5 87-28-11 I Single-pointed bone point,roundedbase, cf.Odocoileusvirginian us(FigureI).I Midsection bone fragment,cr.Odocoileusvirginianus.I Pointed bone fragment,d.Odocoileusvirginianus.I Net-mesh gauge, 30 mm,Pseudemyssp. (FigurelO). I Carved, knobbed bone object, unclassified (Figure11).I Miscellaneous worked bone fragment,Alligator mississippiensis.A-2-6 87-28-12 I Single-pointed bone point, squared base,cr.Odocoileusvirginianus(Figure I). I Hi-pointed bone point, asymmetrical,d.Odocoileusvirginianus(Figure2).2 Pointed bone fragments,d.Odocoileusvirginianus.A-2-6/1 87-28-13 I Single-pointed bonepointfragment, squared base,d.Odocoileusvirginianus(Figure I). I Pointed bone fragment,cf.Odocoileusvirginianus.

PAGE 252

244Culture and Environment in the Domainofthe CalusaAppendixA. Bone Artifact InventorybySite and Provenience, continued.Provenience Catalogue No.QuantityDescriptionA-2-6-1 87-28-14 1 Single-pointed bone point fragment,roundedbase,Dasyatissp.spine(Figure1).2 Pointed bone fragments,cf.Odocoileusvirginianus.1 Drilledshark'stooth,Caleocerdocuvieri(Figure8).1 Disc-shaped bead, fossilized bone (Figure 9). A-2-7 87-28-15 2 Single-pointed bone point,squaredbase,cf.Odocoileusvirginianus(Figure1).1 Bi-pointed bone point, symmetrical,cf.Odocoileusvirginianus(Figure2).1 Midsection bone fragment,cf.Odocoileusvirginianus.5 Pointed bone fragments,cf.Odocoileusvirginianus.1 Expanded head pin fragment,cf.Odocoileusvirginianus(Figure 3). 1 Fossilizedshark'stooth, unidentified (Figure8).3 Tubular bead work,humerus,Caviaimmer(Figure9).1 Net-mesh gauge,18mm, unidentified turtle (Figure10).A-2-7-1 87-28-18 1 Pointed bone fragment,cf.Odocoileusvirginianus.A-2-8-1 87-28-19 1 Edge-wornshark'stooth,Caleocerdocuvieri(Figure 8). 1 Pointed bone fragment,cf.Odocoileusvirginianus.Lost provenience 1 Midsection bone fragment, cf.Odocoileusvirginianus.BUCKKEYSHELL MIDDEN (8LL722)B-1-3A27517 1Expandedhead, engraved pin, tip broken (Figure 3). B-I-5-1/1 A27524 1 Carved, twisted bone object, undecorated (Figure12).B-2-8 A27555 1 Tubular, waisted bone bead, unidentified animal (Figure 9).CASHMOUND(8CH38)Surface 88-1-1 1 Single-pointed bone point,roundedbase,cf.Odocoileusvirginianus(Figure1).Surface 88-1-1 1 Single-pointed bone point,roundedbase, Dasyatidae,spinefragment (Figure1).Surface 88-1-1 2 Bi-pointed bone point, symmetrical,cf.Odocoileusvirginianus(Figure 2). Surface 88-1-1 2 Bone point, midsectionsandpointed fragments,cf.Odocoileusvirginianus.Surface 88-1-1 1 Hollow-shafted, pointedimplement(Figure 6). Surface 88-1-6 1Point/pindebitage, proximal metacarpal,Odocoileusvirginianus(Figure 5). Surface 88-1-6 1Point/pindebitage, distal metapodial,Odocoileusvirginianus(Figure 5). Surface 88-1-10 1 Drilledshark'stooth,cf.Carcharhinusleucasfobscurus(Figure8).Surface 88-1-10 2 Miscellaneousworkedbone fragments. Surface 88-1-14 1Point/pindebitage, proximalmetatarsal,Odocoileusvirginianus(Figure 5). Surface 88-1-22 1Point/pindebitage, proximal metapodial,Odocoileusvirginianus.Surface 88-1-26 1Point/pindebitage, distal metapodial,Odocoileusvirginianus(Figure 5). Surface 88-1-26 1 Net-mesh gauge,35mm, fossilized mammal bone (Figure10).Surface 91-57-1 1Point/pindebitage, proximal metapodial,Odocoileusvirginianus.Surface 91-57-1 2Point/pindebitage, distal metapodial,Odocoileusvirginianus.

PAGE 253

Bone ArtifactsREFERENCESCITEDBell, David, Jim Specht,andDavidHain1986 BeyondtheReef:CompoundFishhooks intheSolomon Islands.InTraditional Fishing in thePacific:Ethnographical and ArchaeologicalPapersfromthe15thPacificScienceCongress,editedbyA.Anderson,pp.45-63. PacificAnthropologicalRecords No. 37.DepartmentofAnthropology,BernicePauahiBishopMuseum,Honolulu,Hawai'i.Brown, RobinC.1988Florida's Fossils: GuidetoLocation, IdentificationandEnjoyment.PineapplePress,Sarasota, Florida. Bullen, RipleyP.1971 The SarasotaCountyMound,Englewood, Florida.TheFloridaAnthropologist 24:1-30.Bullen, Ripley P.andAdelaideK.Bullen1956ExcavationsonCapeHazePeninsula,Florida.ContributionsoftheFlorida StateMuseum,Social Sciences 1. Gainesville. Croes, DaleR.1988 The Significance of the 3000 B.P.HokoRiver Waterlogged FishingCampinourOverallUnderstandingofSouthernNorthwestCoastCulturalEvolution.InWetSite Archaeology,editedbyB.A.Purdy,pp.131 152. TheTelfordPress,Caldwell,NewJersey.Cushing,FrankHamilton1897ExplorationofAncientKeyDwellerRe mainsontheGulf Coast of Florida.Proceedings oftheAmerican Philosophical Society35:329-448. Philadelphia. Dauelsberg, Percy H. 1985 FaldasdelMorro: FaseCulturalAgro-al fareraTemprana.Revista Chungara 14:7-44.Dunbar,JamesS.,S.David Webb,andDanCring1990CulturallyandNaturallyModified Bones from aPaleoindianSiteinthe Aucilla River,NorthFlorida. InBoneModification,editedbyR.Bonnichsen,pp.473-497.CenterforEarlyManStudies,Universityof Maine, Orono. Gilliland,MarionS.1975TheMaterial Culture ofKeyMarco,Florida.UniversityPressesofFlorida, Gainesville. Goggin, JohnM.1950 Stratigraphic TestsintheEvergladesNational Park.American Antiquity 15:228-246.1951 Archaeological NotesonLowerFisheating Creek.TheFloridaAnthropologist 4:50-66.n.d. The Archaeology of the Glades Area, SouthernFlorida.Ms.onfile,DepartmentofAnthropology,FloridaMuseumofNaturalHistory, Gainesville.245Goggin, John M.andFrankSommer1949 ExcavationsonUpperMatecumbe Key,Florida.PublicationsinAnthropologyNo. 41. Yale University,NewHaven. Griffin, JohnW.1988TheArcheologyofEverglades NationalPark:A Synthesis.NationalParkService, SoutheasternArcheological Center, Tallahassee, Florida. Griffin, John W., SueB.Richardson,MaryPohl, CarlD.McMurray,C.MargaretScarry,SuzanneK.Fish, ElizabethS.Wing,1.Jill Loucks,andMarciaK.Welch1985ExcavationsattheGranadaSite: ArchaeologyandHistory oftheGranadaSite, VolumeI.DivisionofArchives,HistoryandRecordsManagement,Tallahassee. Hale, H.Stephen1984PrehistoricEnvironmentalExploitationAroundLake Okeechobee.Southeastern Archaeology3:173-187.Jordan,DouglasF.1963 TheGoodmanMound.InPapersontheJungermanandGoodmanSites, Florida.Contributions oftheFloridaState Museum,SocialSciences10:24-49.Universityof Florida, Gainesville. Kozuch,Laura1991Useof Shark Products by PrehistoricPeoplesin SouthFlorida.M.A. Thesis,DepartmentofAnthropology,UniversityofFlorida,Gainesville. Larson, Lewis H.1980 Aboriginal Subsistence Technologyonthe Southeastern Coastal Plain During theLatePrehistoricPeriod.UniversityPresses of Flo rida, Gainesville. Llagostera,AgustinM. 1989 Caza y PescaMaritima(9.000 a 1.000 A.C.). EnCulturasdeChile:PrehistoriaDesdeSus OrigenesHastalosAlboresdelaConquista,editedbyJorgeHidalgo1.,Virgilio Schiap pacasse F.,HansNiemeyerF.,Carlos AIdunatedelS.,andIvanSolimanoR. EditorialAndresBello, pp. 57-79. Santiago. Lorant, Stefan (editor)1946TheNewWorld:TheFirst Pictures of America.Duell, Sloan,andPearce,NewYork. Luer, George M. 1989CalusaCanalsinSouthwesternFlorida:Routes of TributeandExchange.TheFloridaAnthropologist 42:89-130.Marcus, Joyce 1987 Prehistoric Fishermen intheKingdom ofHuarco.American Scientist 75:393-401.Mitchell, Scott1991An Analysis of SurfaceWearand MorphologicalVariationinRelationtoPossibleFunction:TheBonePoints oftheCaloosahatcheeRegion.

PAGE 254

246B.A.honorsthesis,DepartmentofAnthroopology,UniversityofFlorida, Gainesville. Moore, ClarenceB.1900CertainAntiquitiesoftheFloridaWestCoast.Journal of the Academy of Natural Sciences of Philadelphia11:350-394.Purdy,BarbaraA.1973 TheTemporalandSpatial DistributionofBone Pointsinthe StateofFlorida.TheFloridaAnthropologist 26(4):143-152.Richardson, SueB.andMaryPohl1985 The Bone ToolIndustryfromtheGranadaSite.InArchaeology and History of theGranadaSite,vol. 1,JohnW.Griffin, general editor, pp. 83-170. Florida DivisionofAr chives,HistoryandRecordsManagement,Tallahassee. Ritzenthaler, RobertE.1985Prehistoric Indians of Wisconsin.Thirdedi tion, revisedbyLynneG.Goldstein. MilwaukeePublicMuseum.Roth, WalterEdmund1924AnIntroductory Study of the Arts, Crafts, and Customs of the Guiana Indians.JohnsonReprintCorporation,NewYork. Steinen, KarlT.1982OtherArtifacts. In Fort Center:AnArchaeologicalSite intheLakeOkeechobeeBasin,byW.H. Sears,pp.68-110.Universityof Florida Presses, Gainesville.Culture and Environment in the Domainofthe CalusaStewart,Hilary1977 Indian Fishing: Early MethodsontheNorth westCoast.UniversityofWashingtonPress, Seattle. Tartaglia, LouisJ.1976Prehistoric Maritime AdaptationsinSouthern California.UnpublishedPh.D. Dissertation,DepartmentofAnthropology,Universityof California, Los Angeles. Tyzzer,E.E.1936 The Simple BonePointofthe Shell-HeapsoftheNortheasternAlgonkianAreaandits Probable Significance.American Antiquity1:261-279. Walker, KarenJo1991ArtifactsofaFishyNature:SouthwestFlorida'sPrehistoricMarineFishing Tech nology. Ms.submittedfor publication.Widmer,RandolphJ.1988TheEvolution oftheCalusa:A Non-Agricul tural ChiefdomontheSouthwestFloridaCoast.UniversityofAlabamaPress, TuscaloosaandLondon. Willey,GordonR.1949 Excavations in Southeast Florida.Publica tionsinAnthropologyNo. 42. Yale Univer sity,NewHaven.

PAGE 255

7Calendarsofthe Coast: Seasonal Growth Increment PatternsinShellsofModern and Archaeological Southern Quahogs, Mercenaria campechiensis, from Charlotte Harbor, FloridaIrvyR.QuitmyerandDouglass.JonesThat while the shell deposits ofthesouthwesterncoastofFloridaareofgreat interestasmonumentsoftheaborigines, their contents offer littlerewardtotheinvestigator.-ClarenceB.Moore(1905:304)INTRODUCTIONTheshellmiddensthatdotthelandscapealongthesoutheasterncoast oftheUnitedStatesrepresentalong-termrecordofhumanhistorythatspansnearly6000 years. InthedaysofC.B.Moore,thepotentialofarchaeologicalshelldepositshadnotbeenrecognizednordidtechniquesexist toextractinformationabouthumanadaptationtothemarineenvironment.Recently,methodsbasedinbiologicalandarchaeological sciencehavebeendevelopedtoanalyzetheshell,bone,andplantmaterialscontainedin shellmiddensandprovideimportantinformationaboutpeoplepracticingamaritimeeconomy.Onetechniquethathasshownpromiseindeterminingseasonaloccupationpatternsatarchaeologicalsites isthestudyofmolluscanshellgrowth(e.g.,Claassen1986;Clark1979;Deith1983, 1986;Koike1980;Miller1980;O'BrienandPeter1983;Quitmyereta1.1985,1986).Studiesofgrowthincrementsintheshells ofmodernbivalvesshowthemtobeaccuraterecordersoftheanimal'slifehistory(DoddandStanton1981:189-221;Petersoneta1.1985;RhoadsandLutz1980). Inadditiontoontogeneticinformation,chemicalandmicrostructuralvariationwithintheirshellscanalsorecordchangeintheaquaticenvironment,muchliketree-ringsrecordannualeventsintheterrestrialbiotope(Baillie 1982;Jones1983).Thesouthernquahog,Mercenaria campechiensis,is acommoncomponentofsouthwestFloridashellmiddensandrepresentsonesuchchronometerofenvironmentalchange.Quahogshellsgrowbyaccretionalongtheshellmarginandperiodicallyformanalternatingpatternoflightanddarkincrements.Theseincrementsrepresentchangesinshellchemistry,microstructure,andgrowthratethatareassociatedwithseasonalenvironmentalcyclesthroughouttheyear(Baker 1964;Claas-247sen1986;Clark1979:165;Kennish1980;Petersoneta1.1985;Quitmyereta1.1985, 1986).Itistheprimarypurposeof thisresearchtoconstructachronologicalprofileofthesechangesintheshellsoflivingspecimensandcomparetheresultswithshellsofquahogexcavatedfromarchaeologicalcontexts.Insodoing,thisstudyshouldprovidefurtherdocumentationthatMercenariacampechiensisformsannualshellgrowthincrementsmuchlikethenorthernquahogMercenaria mercenaria(e.g.,Clark1979;Kennish1980; FritzandHaven1983;Petersoneta1.1985;Quitmyereta1.1985, 1986).Thesedatamaythenbeusedtoestimateseasonofquahogharvest,whichisanimportantfirststepintheeventualassessmentofseasonofsiteoccupation(oftenreferredtointhearchaeologicalliteratureasseasonalityorpaleoseasonality).Differencesintherateofmolluscanshellgrowthhavebeendocumentedamongpopulationslivingindissimilarhabitats(e.g., Joneseta1.1978;RhoadsandPannella1970;WalkerandTenore1984).Forexample,Mercenarialivinginmuddysubstratesgrowatslowerratesthanindividualslivinginsandysubstrates(RhoadsandPannella1970;WalkerandRawson1985;WalkerandTenore1984). Asecondarygoalofthis projectinvolvedthedeterminationofageandgrowthratecharacteristicsforboththemodernandarchaeologicalpopulationswhichweresampled.Reconstructionsofsuchlifehistoryinformationmayhelptoassesstheconditionofmodernandarchaeologicalquahogbeds.METHODSANDMATERIALSInordertocorrelatetheannualcycleofshellgrowthincrementformationwiththeseasonsof theyear,alongitudinalstudyoflivingsouthernquahogfromtheCharlotteHarborEstuarineSystemwasundertaken.Anaverageof66livequahogswerecollected eachmonthfor aone-yearperiod(March 1986-February 1987)fromtwolocalities: Bokeelia (n=367)andCatfishCreek(n=420). Shells ofindividualsliving in thesetwodifferenthabitatswerethenusedtodeter-

PAGE 256

248Culture and Environment in the Domainofthe CalusaView of leM-hand valveFigure2.Thepositionoftheradialcutmadeto exposetheinternalgrowthincrements.View of radial cross-sectionUmboAEnvironmental MeasurementsMeasurementsofairtemperature(DC),watertemperature(DC),substratetemperature(DC),salinity (%0), anddissolvedoxygen (oAlo )wererecordedatbothstudyareasonthedayof collection. These observationsrepresenta singlepointintimeateachstudyareaanddonotreflect theaverageovera24hourperiod.Thevalueof thesemeasurementsis intheirrepresentationofbroadscaleenvironmentalchangesthattakeplacethroughtheseasons. easily found. Asaninformalmeasureofthisobservationwerecordedthenumberofpeople(n=25) inourcollectingpartyandthetimeittookto collect the 180specimensduringsix collecting trips.At Bokeeliaittook16.2hoursto collect the 180 specimens,whileatCatfishCreekthesamenumberofspecimenswerecollected in 8.6hours.Age and Growth Rate DeterminationManybivalvespeciesareknownto exhibit"growthrings"ontheexternalsurfaceoftheirshells,andthequahogscollectedduringthisstudyareno different (Figure2).However,theexternalgrowthringpatternsdonotalwayscorrelatewiththeannualcycleofmicrostructuralchangeobservedinshell cross-sec tions,andmaynotberelatedtotheseasonalcycle (Claassen 1982:151; Jones eta1.1978:63-64; Kennish 1980:269). Oftenexternalgrowthringsresultfromshort-term,aperiodicphenomenasuchasstorms(Kennish 1980).The"false rings"producedundersuchconditionsobfuscatetheshellgrowthrecordanddictatethe necessity ofexaminingtheinternalshell record. Themostaccuratemethodofobservinginternalshellgrowthfeatures is to cross-sectionradiallyalongthegreatestgrowthaxis, fromtheumboto theventralmargin(Figure 2). This isbestaccomplishedHarbor Charlotte10mi1 Catfish Creek 2 Bokeeliaminetimingandperiodicityofincrementalgrowth,rateofgrowth,andtoidentifydifferencesingrowthpatternsthatmayexist as a functionofhabitat.Collection Sites:MexicoFigure1.Thetwostudyareassampled,Charlotte Harbor, Florida(1=Catfish Creek; 2=Bokeelia).10ki ofGulfModern Study AreasTheCatfishCreekstudyareais locatedinashallowbaythathasformedatthemouthofCatfishCreekinthenorthernpartofCharlotteHarbor(Figure1).Quahogsarenumerousatthis locationandit is a favoritespotfor local clamharvesters.Thesubstrateissandy,lightlycoveredwithmud,andmarinegrassesareabundant.Specimenswerecollectedby"tread ing"linareaswherewatercoversthesubstratethroughoutthetidal cycle. The Bokeeliastudyareais locatedinthesouthernpartofCharlotteHarbor,nearthenorthendofPineIsland(Figure 1).Long-timeislandresidentsreportthatthislocationwasonce agoodspotto collectquahogs,butovertime asandbarhasformedandthedensityofquahogshasdeclined(Robert Knight,personalcommunication1986). Thesubstrategradesfrom awhite,hard-packedsandbarto asurroundingarea of thickmudthatsupportssomesea grasses. Collections,outofnecessity,weremadefrom placeswherethesubstratewascoveredbyveryshallowwaterorexposedatlowtide. Itwasnotedinthe fieldthatittooklongerto collectourmonthlyquahogsampleatBokeelia(minimumn=30)thanatCatfishCreekwherequahogsweremore

PAGE 257

CalendarsoftheCoastwithahighspeed,water-cooled,lapidarysawequippedwiththindiamond-impregnatedblade. The cross-sectionedsurfaceofthevalvecanbeexaminedmicroscopically (lOxor20x)orwiththeunaidedeye.Oncetheshell is cross-sectioned,alternatingdark(translucent)andlight(opaque)incrementsareexposed(Figure 3). ThecombinationofoneopaqueandonetranslucentincrementrepresentsoneannualcycleofgrowthinMercenaria(e.g.,Kennish1980;Petersonet al. 1985). Hence, acountofthenumberoftranslucentincrementsalongthegrowthaxis (Figure3)providesthe age oftheanimal. The sizeversusagehistorywasreconstructedbymeasuringthe shellheight(mm)achievedateachsuccessiveannualgrowthincrementinthe shell cross sectionsof100quahogscollected fromeachstudyarea(Figure 3). Similarly,smallersetsofarchaeologicalspecimenswereusedfromJosslynIsland(n = 31)andUseppaIsland(n=8).FowlerMax-Cal electronic digi tal calipers,connectedto aZenith181computer,usingIncall.5software(Russo 1986),wereusedtomakethe shellheightmeasurementstothenearesthundredthof a millimeter. Descriptive statisticswereobtainedbyimportingtheIncaltext files to Lotus 1-2-3 (2.01)spreadsheetsoftware. AvonBertalanffygrowthfunction,H(t)= Hoo {1 exp{-K[t to]}}wasfitted totheannualmeanofthemeasuredshellheight,usingnonlinearleastsquaresregressionemployingMarquardt'sAlgorithm(Saila et al. 1988;vonBertalanffy 1938)whereH 00= thetheoretical maximumshellheight(mm)atinfinity,to=thetheoretical sizeoftheorganismattimezero,andK= the theoreti calgrowthconstant.ThevonBertalanffygrowthfunc-249tionprovidestheidealrelationshipofgrowthachievedatagivenagethroughoutontogeny.Modern Seasonal Growth ProfileTemporalcontrolofthealternatingtranslucentandopaquegrowthincrementswasestablishedbyevaluatingtheincrementsfoundinthecross-sections ofmodernquahogsusingaconvenientsix-partsubdivisionof theannualshellgrowthcycle (Figure 4), (Jones 1980;Quitmyeret al. 1985). Eachsubdivisionisreferredtoasagrowthphase.Theformationofthetranslucentgrowthincrementwasdividedintothreegrowthphases:(a)Translucent1(Tl)-translucentgrowthjuststarting;(b)Translucent2(T2)-translucentincrementapproximatelyhalfthe sizeofthepreviousyear'stranslucentincrement;(c)Translucent3(T3)-translucentgrowthisequaltoorgreaterthantheprevioustranslucentincrement.Theformationoftheopaquegrowthincrementwassimilarlydividedintothreegrowthphases: (a)Opaque1(Ol)-opaquegrowthjust starting; (b)Opaque2(02)-opaqueincrementapproximatelyhalfthesizeofthepreviousyear'sopaqueincrement;(c)Opaque3(03)-incrementnearlycompleted,almostequalinsizeto thepreviousyear'sopaquegrowth.Twoimportantpointsabouttheapparentlyequaldivisionofthegrowthincrements(growthphases)shouldbemadeatthis time. First, theuseofgrowthphasesfortemporalcontrol isnotmeanttoimplythatgrowthis alinearprocessthroughontogeny.Growthrateisexponentialthroughoutlifeandhighlyseasonalinnature.Furthermore,thereissomeindividualvariationamongquahogslivinginthesamebedas wellasindifferent habitats.Umbo Outer shell layer Middle shell layer-------J Inner shell layer-------' Ventral margin 5emFigure 3.Theintemaltranslucent(dark)andopaque(light)growthincrementsandthepositionofthemeasurementofshellheightattainedannually.

PAGE 258

250Culture and Environment in the Domainofthe CalusaFigure4.Thesix-partsubdivisionusedfortemporalcontrolofannualincrementalshellgrowth.RadialCross-SectionGrowthPhaseT-tTranslucentincrementformingonthemarginaledgesT-2Translucentincrementone-halfcompleteT-3Translucentincrementcomplete0-1OpaqueincrementformingonthemarginaledgesHinge-PlateMarginVentralMargin0-2Opaqueincrementone-halfcomplete0-3Opaqueincrementcomplete

PAGE 259

Calendarsofthe CoastSecond,thepracticeofcomparingthemostrecentgrowthincrementwiththepreviousannualgrowthincrementis a concern.Throughoutthecourseof ontogeny,theannualgrowthincrementsbecomeprogressivelysmaller,especiallyduringtheinitialyearsoflife (Figure 3);thusthereexists achanceofnotassigningthepropergrowthphaseforyoungindividuals.In thisstudyourcategorizationconsidersthepreviousgrowthof theindividualquahog,as wellastheincrementalgrowthofallindividualsintheone-yearsample.Thefrequency(percentage)ofindividualsinthevariousphasesofincrementalgrowthestablishes apattern,orprofilethatcanbepresentedmonthly,seasonally,andyearly. It is thisgrowthfrequencyprofileofthelivingquahogpopulationthatisusedtoestimatetheaboriginalharvestperiod(paleoseason)ofquahogsexcavatedfrom archaeological contexts.Archaeological ContextDeterminationofseasonalquahogexploitationpatterns for archaeological sites inCharlotteHarborislimitedatthisstageofourresearchbecauseintensivearchaeologicalinvestigationhasnotbeencompleted. AsuitablenumberofarchaeologicalquahogsthatcouldbeusedforestimatesofseasonalharvestwererecoveredfromtestexcavationsatJosslynIsland(8LL32),however.AsecondandsmallersampleexcavatedfromUseppaIsland(8LL51)providessomeadditionalinformation.Quahogswereidentifiedfromothersitestestedin this research (Walker, thisvolume),butsamplesizeswerenotlargeenoughto beusedwithanyconfidence.Thearchaeologicalspecimenswerepreparedandanalyzedinaccordancewiththemethodsoutlinedearlierinthis section for the living specimens.Josslyn Island (8LL32).Quahogs(n= 159) excavated from Test Pit A-2 (Levels A-2-1, A-2-2, A-2-3, A-2-4, A-2-5, A-2-6, A-2-7)wereusedinthis analysis. The left valves (n = 133, 84%)werethemostnumerous;therefore,theyweresectionedandanalyzed.Test Pit A-2(2x3 m)wasexcavated fromaroundFeatureA-2-6-1. Thefeaturehastwodates: A.D. 819 996 (acceleratordateoncharcoal)andA.D. 961-1054 from shell excavated fromnearthebottomofthefea ture. Theupperlevels of Test Pit A-2containedSt. JohnsCheckStampedceramicswhichindicatesthatthese levelspostdateA.D. 1200(Marquardt,Chapter 2, this volume).Marquardt(personalcommunication,1988)suggeststha t thelowerlevelsofthetestpitcouldbeasoldasA.D. 800,butno earlier.FeatureA-2-6-1 seems tohavefunctionedas atrashpitinwhichash, fish,molluskandotherrefuseweredumped.Test Pit A-2containedceramicsandahigherthanusualnumberofbonepointsthatarebelieved tobeassociatedwithfishingactivities(Marquardt,Chapter 2, this volume). Useppa Island Collier Inn site (8LL51).Quahogs(n = 23)wereexcavatedfrom Test pits A-I, A-2, A-3(lxl m), andA-4(50x 50 cm). These archaeological test pits251arepoorlydated,buttheceramicsanda single stone projectilepointexcavatedfromtheupperlevelsindicate atentativedateofA.D. 100-900 (WilliamMarquardt,personalcommunication,1988).Theleft valves(n= 15, 65%)wereagainthemostnumerousandselected for analysis.Thesamplesizewastoo small for thereconstructionofsizeversusage relation ship.RESULTSGrowth Frequency Profiles of Living QuahogsGrowthfrequencyprofiles fortheshellsofquahogscollected from CatfishCreekandBokeeliahavebeenconstructedforeachmonth,eachseason,andsummedfor theentireyear. Agrowthfrequency profile isconstructedbydeterminingthepercentage(frequen cy) ofindividualsineachofthe sixgrowthphasesandpresentingtheresults intheformofhistograms.Each levelofanalysis(month,season, year)providesdataimportantforinterpretingseasonalquahogharvestpatterns.Thelevelatwhicharchaeologicalpaleoseasonscanbeconfidentlyassessedusingthemodelofmoderngrowthfrequencyprofiles restsontheamountofvariabilitythatexistswithinthemonthlyandseasonalprofiles aswellasbetweenyearsandhabitats.Throughthecourseofthisstudy368 livingquahogswerecollected fromtheBokeeliastudyarea. Thegrowthphasesof140 (38%)individualscouldbedetermined.AtCatfishCreek,412quahogsweresampledandthegrowthphasesof259 (63%)individualswerereadable.Monthly Growth Frequency Profiles.Figure5showsthegrowthfrequencyprofiles ofthespecimenscol lectedeachmonthfrom the BokeeliaandCatfishCreekstudyareas.InDecember,January,andFebruarythere is apredominanceofT3growthphase,andto a lesser extentT2and01growthphasesarepresent,albeit inlowfrequency.ByMarch,thefrequency ofT3growthphasestartstodiminishwiththeemergenceof01and02growthphasesformingin thequahogshells. TheimportanceofT3growthphasedeclineswiththeincreasedfrequencyof 01,02, and03growthphasesduringApril. ThepatternofopaquegrowthcontinuesintoMay, yetthereisare-emergenceofT2andT3growthphases.In June,thereis a decline in the frequenciesofallopaquegrowthphases,while II,T2, andT3growthphasesdominatethegrowthfrequencyprofiles. TheopaquegrowthphasesarenearlygonebyJuly,andallthreephasesofthetranslucentgrowthincrementarestronglyrepresented,inparticularII.ThispatternisfurtherseenintheAugustandSeptembergrowthfrequencyprofileswhereT1growthphasegiveswaytogreateramountsofT2andT3incrementalshell formation. It is by OctoberthatIIgrowthphasedisappearsfrom thegrowthfrequencyprofilesandT2andT3growthphasesdominate.Notably,T3growthphasebecomes

PAGE 260

0.003a0.00.0 0.00.00.0T1T2T3010203T1T2T3010203T1T2T30102Figure5.Monthlygrowthfrequencyprofiles comparingthequahogsamplescollectedfromtheBokeeliaandCatfishCreekstudyareas.dominantin October,anditstronglyincreasesinimportanceintoNovember.SeasonalGrowth Frequency Profiles.Whenthemonthlygrowthfrequencyprofilesarecombinedbyseasonandthencompared,muchlessvariabilitybetweenthetwostudyareasisobserved(Figure 6). Theseasonalcycleofgrowthincrementformationis seen to proceed in the followingmanner.Winterquarter(DecemberthroughFebruary):T3growthphasedominatesthegrowthfrequencyprofiles ofbothstudyareaswithlowfrequenciesofT2and01.GrowthphasesTl,02,and03arenotpresentinthewintergrowthprofiles.Springquarter(MarchthroughMay):thefrequencyofT3growthphaseislowerthantheprevious(winter) season,andagreaterfrequencyof allopaquephasesisobservedthanatanyothertimeofthe year.Summerquarter(JunethroughAugust):thegrowthprofilesmaybecharacterizedbythestrongpresenceofallphasesoftranslucentgrowthwithTlbeingmoreapparentduringthisseason.Opaquephasesarepresent,butinlowfrequency. Fallquarter(SeptemberthroughNovember):Tlgrowthphaseis

PAGE 261

October1986November 1986n23n1460.902030.00.064.30.00.00.0T2T3010203100.0n455.0n200.00.00.00.00.00.00.00.00.00.00.0T1T2T3010203T2T3010203T1T2T3010203Figure5.Monthlygrowthfrequencyprofiles comparingthequahogsamples collectedfromtheBokeeliaandCatfish Creekstudyareas, continued.muchdiminishedfromthepreviousseason (summer),andthereis amarkedincreaseinT2andT3 phases.Opaquegrowthphases,withtheexceptionof01(1.8%)atCatfish Creek,areabsentfromthegrowthprofiles.OneYear Growth Frequency Profile.Whenalloftheobservedgrowthphasesforthe12monthcollectionperiodarecombinedintoa singlegrowthfrequency profile, theamountofvariabilitybetweenthetwostudyareasisminimal(Figure 7). Translucentgrowthphases,inparticularT3,dominatethegrowthfrequen-cyprofile (Figure 7).Opaquegrowthislowinfre quency,apparentlyreflecting ashortertimeof formationthroughtheyearthanthetranslucentphases.Growth HistoryofLiving QuahogsTheaveragegrowthcurves(meanshellheightversusage)arebasedupon100southernquahogsfrombothstudyareas (Table 1andFigure 8). ThemeanshellheightattainedatageonebytheBokeeliaquahogswas35.6mm,s=8.5mm.Byage20thesamplecontains a singleindividualthathadreached

PAGE 262

254a shellheightof93.8mm.Quahogscollected from CatfishCreekattainedameanshellheightof36.8 mm, s =9.5, atageone. Byage15a singleindividualhadreacheda shellheightof100.7mm.ThebestfitvonBertalanffygrowthfunctionpredictsthe theoretical shellheightatageoneoftheBokeeliaquahogstobe39.6 mm, andtheyattainedamaximumshellheight of 95.6mm(Figure 9). Their theoreti calgrowthconstant(K)was0.19. At CatfishCreekthequahogsreachedapredictedtheoretical shellheightatageoneof39.4 mm, whiletheirmaximumshellheight was96.7mm.Thegrowthconstant(K)for thesespecimenswas0.33.Environmental MeasurementsFigure10presentstheenvironmentalmeasurementstakenovertheone-yearstudyperiod. Air,water, andsubstratetemperaturefrombothstudyareasform a consistent seasonalpatternthroughouttheyear. Thewatertemperaturewasthe coldestinFebruaryandMarch(17C-16C),whilethewarmesttemperatureswererecordedbetweenJulyandSeptember(29C30C). Aseasonalcycle is alsorecordedinthesalinityvalues.ThelowestvalueswereobservedduringMarch(11.0 0/00), whilethehighestvalueswererecordedinMay(29.0-30.0 0,..00). Tidal fluctuations,weatherpatterns,andlocationintheharborcombine toproducesecondarycomplications totheprimarycycle.Archaeological Quahogs-Josslyn Island (8LL32)Seasonof Harvest.Determinationof theseasonofquahogdeathcouldbemadefor 38% (n=50)ofthe left valves cross-sectioned fromthesampleof133 leftvalves collected from Josslyn Island, Test Pit A-2. ThegrowthfrequencyprofilepresentedinFigure11showsthatnoneofthequahogswereintheT1growth phase, but10%wereconsideredT2and52%werecategorizedasT3.Allphasesofopaquegrowthwereobserved: 01=16%, 02=8%;03=14%. Forreasonsdiscussedbelow, this profilesuggestsaquahogharvestduringlatewinter-earliestspring.Growth History of the Archaeological Quahogs.Thir ty-onearchaeologicalsouthernquahogshellswereusedtoreconstructthegrowthhistoryoftheJosslynIslandspecimens.Afterthefirstyearof life, theaverageshellheightattainedwas39.6 mm, s=6.0mm(Table 2andFigure8).Byage17 a singleindividualattaineda shellheightof 103.9 mm. AbestfitvonBertalanffygrowthcurveappliedto thesedata(Figure 9) reveals apredictedtheoretical shellheightatageoneof38.1 mm, a theoretical maximumshellheight of108.8 mm, andagrowthconstant(K)of0.27.Archaeological Quahogs-UseppaIsland (8LL51)Seasonof Harvest.DeterminationofseasonofdeathfortheUseppaIslandquahogsisbasedon8 (53%) ofthe15 left valves cross-sectioned from theCulture and Environment in the DomainoftheCalusageneralexcavation levelsofthis site (Figure 12).Duetothesmallsample size, seasonalestimatesfromthissamplemaynotberepresentativeoftheshellsdepositedinthemidden.ThesamplewasvoidofanyindividualsintheT1 phase, butT2growthphasewaspresent (25%), aswasT3growthphase(13%). Asubstantialpercentageofindividualswereintheopaquegrowthphases;01= 25%, 02= 25%, and03= 13%.Sucha profile, forreasonsdiscussed below, suggeststhequahogswereharvestedduringthespring.Growth History of the ArchaeologicalQuahogs.Figure8presentstherelationshipofaverageshellheightversusageforthequahogsexcavatedfromUseppa.Theaverageshellheight(n =7)attheendofthefirstyearoflife is 30 mm, s= 5.3andthegreatestshellheight(n = 1) is 144mm.Because ofthesmallsamplesizeandthedominanceofoneverylargeindividualafterage three, avonBertalanffygrowthfunctioncouldnotbecalculatedwithconfidence.DISCUSSIONGrowth Frequency Profiles andSeasonof Quahog HarvestMonthlycollectionsofsouthernquahogs,Mer cenaria campechiensis,fromthe BokeeliaandCatfishCreekstudyareashavehelpedtodocumentannualchangesinshellmicrostructureandchemistrythatcanbeseeninthe cross-sectionsoftheirvalves.Intheradiallycross-sectioned shellsofMercenaria,themicrostructureoftheopaqueincrementismoreporous,lesstightlypacked,andreflectslightwhenviewedinthinsection. Thisincrementiswiderthanthetranslucentgrowthincrementandrepresentstheperiodwhenshellformationismostrapid.Thetranslucentincrementiscomposedofwellorganized,tightlypackedaragoniticcrystallitesthattransmitlightwhenviewedinthinsection(Figure3)(LutzandRhoads1977; Koike 1986). It is thisincrementthatmarksaslowperiodofshellgrowth.Theexactmechanismbywhichtheopaqueandtranslucentincrementsform isnotwellknownandtheenvironmentaleventsthattriggerthesechangesarenotwellunderstood(DoddandStanton1981 :216-217). Genetic (physiological)andenvironmentalconditionsrepresentthetwoelementsinvolvedwiththeperiodicityofincrementalshell formation.Studiesofincrementalgrowthintheshells ofMercenariashowthatthereis littlevariabilityinthetimingoftheappearanceoftheshellgrowthincrementsamongindividualslivingindifferenthabitatswithinthesameregion (e.g., Ansell 1968;Petersoneta1.1985;Quitmyereta1.1986).Incrementalshellformationisanannualeventthatconsistentlymarkstheseasonsoftheyear(Petersoneta1.1985:676).Thetimewhenthegrowthincrementsforminquahogshells is consistentwithinagivenregion,butitis notuniversalalongthegeographicdistribution(Ansell 1968;Petersoneta1.1985).MercenariarangesfromtheGulfof St.LawrencetotheGulfofMexico

PAGE 263

Calendarsofthe Coast255CATFISH CREEK BOKEELIA100 100n6188.5n4082.5-80 800 W>60 60140 -:::::J 40 ....LL 20200.0 0.00.0 0.00.00.0a aT1T2T3010203T1T2T3010203100100n76n40-80 80 60 Z>60 _0a:c 4032.940 (/)g....LL 20 201.30.00.02.5a aT1T2T3010203T1T2T3010203100100n66n26-80 80 w>6060 48.5 42.3 40 LL 201.56.10.0 0.0aT1T2 T3010203T1T2T3010203100100n56n34-80 80 #.....J>6051.860.....J044.1 c 4040 0"CD....LL 20 201.8 1.80.0 0.0 0.00.00.0a aT1T2T3010203T1T2T3010203Figure6.SeasonalgrowthfrequencyprofilescomparingthequahogsamplescollectedfromtheBokeeliaandCatfishCreekstudyareas.

PAGE 264

256Culture and Environment in the Domainofthe Calusa 100,-------------------, CATFISHCREEKFigure7.Annualgrowthfrequencyprofiles comparingthequahogsamplescollected fromtheBokeeliaandCatfish Creekstudyareas. Themajorityofthesouthernquahogscollected fromtheBokeeliaandCatfishCreekstudyareaswereformingtheopaquegrowthincrement(fastgrowthrate) intheirshellsduringthespring,MarchthroughMay(Figures5and6). Thisoccurredwhenthewatertemperaturewasbetween170Cand250C (Figure 13).Initiationofthetranslucentgrowthincrement(slowgrowthrate)beganinthesummerwhenthewatertemperaturewasconsistentlyabove290C.Formationofthetranslucentgrowthincrementin the shells of theCharlotteHarborspecimensbeginssomewhatearlierthaninpopulationsofMercenaria(summerfearlyfall) liVingalongthesouthGeorgia,northFlorida coasts (Petersonetal. 1985;Quitmyeret al. 1985,1986).EventhoughtheperiodicityofincrementalshellformationinMercenariaappearstobeconsistentwithinbroadregionsofitsrange(Ansell 1968:375),uniquepatternsofshellgrowthneedtobedeterminedforlocalpopulations(FritzandHaven1983:697).Growthfrequencyprofilesconstructedwiththearbitrarysix-partsubdivisionofincrementalshellgrowthfor thequahogslivingatBokeeliaandCatfishCreekestablish amodelagainstwhicharchaeologicalspecimensfrom sites intheCharlotteHarborregioncanbecompared.Several factorsmayinhibitorevennegatetheability tointerpret,ormeasure,theperiodicgrowthincrementsfoundinsomequahogshells.Notallquahogshellsaresuitableforstudy.Aperiodicgrowthlinesmayoccurintheshellsofsomeindividuals.These linesmayresultfromstormsurges,predatoractivity,orotherenvironmentalconditions,andcancompli cateinterpretationsofthegrowthrecord(LutzandRhoads1980:222-223).Throughontogenytheamountofincrementalshellgrowthexponentiallydecreasesandapproacheszero(Figure 9). As thegrowthincrementsbecomemorenarrowtheyreachapointwheretheycanonlybeexaminedunderhighmagnificationandmaynotalwaysbe clear totheviewer. As aresult,onlyaportionofthequahogshellssampledduringthisstudycouldberead: 38% from Bokeeliaand63%from Catfish Creek.Thenarrowgrowthincrementsseeninsenilequahogswerethesinglegreatestcauseoftheinabilityto assess the shellgrowthincrementsinthecontemporaryspecimens.Theanalysis ofthegrowthfrequencyprofilesconstructedfor eachmonth,season,andfor theentireyearhelptodetermineatwhatresolutionthetimingofquahogharvestcanbeconfidentlyestimated.At themonthlylevelthegrowthfrequencyprofilesofaquahogpopulationcanbequitesimilarduringadjacentmonths(e.g.,Figure5,JanuaryandFebruaryatCatfishCreek).Thegrowthfrequencyprofilesofquahogslivingindifferenthabitatsmayalsohavesimilarpatternsduringadjacentmonths.Forexample,theJanuarygrowthfrequencyprofileof the BokeeliaquahogpopulationissimilartotheNovemberprofileatCatfishCreek(Figure 5). Basedontheseobservations,the timeofaboriginalquahogharvestcannotbeconfidentlyseparatedonamonthlybasis.44.4n .. 25980 60 cQ)::JC"Q)....l.L 0T1T2 T3 010203BOKEELIA100n .. 140-80 0 ->. 6052.9 0cQ)::JC"Q)....l.L 202.92.10T1T2 T3010203(Abbott1974:523).Inthenorth-centralpartof itsrangethetranslucentgrowthincrementformsduringthewinter(Peterson et al. 1985:671)andrepresentsadistinctcessationofgrowthonceitishasformed(Loosanoff 1939).Incontrast,populationsliving insoutherntemperatewatersformthetranslucentshellincrementduringsummerandearlyfall (Petersonetal. 1985:671;Quitmyeret al. 1985, 1986).Growthin thesepopulationsisprobablycontinualthroughtheyear(Menzel 1963, 1964; Walker 1985:127, 1984:118),andthereforethetranslucentgrowthincrementreflects aslowgrowthphenomenon.Watertemperature,orfactorsrelatingtowatertemperature,seem tohavethegreatestinfluenceonthetimingofincremental shellformation(Loosanoff 1939; Ansell 1968:377 378;Kennish1980; FritzandHaven1983;LutzandJablonski 1978). Ansell (1968:377-378) hasshownthattheoptimumtemperatureforgrowth(opaquegrowthincrement) ofM.mercenariacollected from sitesalongthecoastsofNorthAmericaandPooleHarbor,Englandis200C.Growthdecreasedsymmetricallyaboveandbelowtheoptimumgrowthtemperatureandtherewasnogrowthattemperaturesbelow90Corabove310C(translucentgrowthincrement).o -

PAGE 265

CalendarsoftheCoastTable1.MeasuredShellHeight(mm)ofModernQuahogsbyAge(years).AgeNumberMeanStandardRangeDeviationBokeeliaStudyArea1 100 35.6 8.5 20.5-55.1 2 97 50.3 8.7 31.3 73.6 3 87 60.5 10.3 34.2 94.0 4 77 66.8 11.0 42.4 102.7 5 74 70.5 10.3 48.3 106.6 6 68 74.0 8.9 55.4-91.2 7 52 76.7 8.8 59.8-94.2 8 35 77.7 7.5 62.9-91.6 92179.1 6.6 67.3-90.61018 82.3 6.8 72.2-91.9111685.3 6.3 74.5-92.7121287.1 5.8 75.6-93.21310 88.8 5.8 76.2-96.6147 91.2 7.2 76.4-99.5154 94.9 5.4 87.1-101.4164 96.2 5.4 88.8-103.1 17 2 95.2 4.3 90.9-99.5 18 1 91.7 191 92.5-201 93.8-CatfishCreekStudyArea1 100 36.8 9.5 16.5-59.8 29956.78.137.8-82.1 38170.4 8.6 45.1-92.7 47179.3 9.1 51.3 102.6 5 40 83.0 9.7 56.4-99.9 6 20 84.6 12.2 58.7-104.2 71584.5 10.1 61.6-103.3 81386.0 8.8 66.1-99.5 91288.1 8.1 73.7-99.5109 92.2 7.5 79.8-101.5119 94.9 7.5 81.4-104.4126 96.1 9.6 81.8-107.5133 97.7 8.7 88.4-109.4141 98.1-151 100.7-Growthfrequencyprofilesconstructedforeachseason(winter,spring,summer,fall)andfortheoneyearcycle establish the clearestmodelagainstwhichthearchaeologicalspecimenscanbecompared(Figures 6and7).Growthfrequencyprofiles ofarchaeologicalquahogsthatshowapatternsimilar tothatoftheone-yearcycle (Figure7)wouldindicatethatquahogsweresteadilyharvestedthroughoutthe year.Patternsdeviatingfromtheone-yeargrowthfrequencyprofilewouldrepresentaseasonalharvestortheunevencollectionofquahogsthatcanbeexplainedbytheseasonalgrowthprofiles (Figure 6). Thiswouldbeanalogoustoourmonthlycollectionof30quahogseachfromthetwostudyareas. Three factorshavetobeconsideredwhenanalyzingthegrowthfrequencyprofilesofarchaeologicalspecimens. First, thevariabilityin thetimingofincrementalshellformationobservedinthecontemporaryspecimens(Figure6)indicatesthatthesamplesizes for archaeological assemblageshaveto be suffi cientlylargetoaccountfor thisnaturalvariability. A singleindividualorevenasmallsampleofquahogs257(modernorarchaeological)maynotberepresentativeofthegrowthfrequencyprofilesofa localpopulation.Second,interpretationoftheseasonof aboriginalquahogharvestdirectlyrelates to theprovenienceofthearchaeological specimens.Anaboriginaltrashpitthatwasconstructed,filledwithgarbage,andcoveredoverinashortperiodoftimemaycontainquahogswhoseshellgrowthincrementsrepresenta seasonal event.Quahogsfromsuchadepositwouldnotnecessarilyindicatethatthesitewasoccupiedduringa single season.Generalexcavationlevels of a shellmidden,ontheotherhand,arethelikelyformationofdebrisfromoveralongperiodoftime,perhapscen turies. These levelsaresubject to avarietyof vectorsthatpotentiallydispersefaunalandbotanicalmaterialsoverawideareaofthesite (WingandQuitmyer,Chapter9, this volume).Quahogshells fromsuchprovenienceswouldreflectthecombinedcollectionstrategies ofpeoplelivingata siteovertimeinsteadofa singlehumanbehavior.Third,since shellfishareavailableyear-round,molluskcollectioncouldrepresentanactivitythatmightgivewaytotheexploitationofseasonallyabundant,highbiomassresources.Aggregatesofmullet(Mugilspp.) inCharlotteHarborduringthe fallareagoodexample.Indeterminingseasonofsite occupation,therefore,onecannotrelyonasingleindicator.Samplesofquahogsshouldbeanalyzedfrom avarietyofsiteproveniences(e.g., featuresandgenerallevels ofthesite). The results ofsuchananalysisthenhavetobecomparedtootherindicatorsofseasonofsiteoccupationidentified in these deposits: for example, (a) thepresenceorabsenceofplantandanimaltaxa; (b)thesizeclasses of fishesthatusetheestuaryasanursery;(c)thesizeclasses ofmolluscanspeciesthatareknownto live foronlyashortperiodoftime(e.g.,Donaxspp.); (d)thegrowthincrementsof anumberofbivalvespecies;and(e)thegrowthincrementsfoundintheotolithsoffishes.QuahogshellsexcavatedfromJosslynIslandandUseppaIslandrepresentthefirstassemblageof ar chaeologicalspecimensthatcanbecomparedto thecontemporarymodelofincrementalshellgrowthinCharlotteHarbor.The JosslynIsland(8LL32, Test Pit A-2)sampleappearstobesufficientlylargetoaccountfor thenaturalvariabilityseenintheshellsofcontemporaryspecimens.Thearchaeologicalgrowthfrequencyprofile(Figure11)doesnotresembletheone-yeargrowthfrequencyprofileofthemodernspecimens(Figure 7). This isindicativeof aseasonalperiodofquahogharvest. Thebestfit fortheseasonofharvestoftheJosslynIslandquahogs(TestPitA-2) isbetweenlatewinterandearliestspring(Figures 5and6). This iswhentheT1growthphaseisabsentfrom thegrowthfrequencyprofile. MostindividualswereattheendoftheT3growthphase,andallopaquegrowthphases(01,02and03)wereforming. AtUseppaIsland(8LL51),quahogsamplesize issmall(n=8)andmaynotaccountforthenaturalvariabilityseenintheshellsofcontemporaryspecimensfromCharlotteHarbor;therefore thesedataare

PAGE 266

258 Culture and Environment intheDomainofthe Calusa19201817161514101112 13(years)89AGE76543230 1150-E E-130lI(!) -110W I ....J....J90W IC/) W70 ----l::r-BOKEELIA (!)--BUSEPPAISLAND a: CATFISH CREEKW50 JOSSLYNISLANDFigure 8. Averageannualmeasuredgrowth of quahogs collectedfromtheBokeeliastudyarea,theCatfish Creekstudyarea,JosslynIsland,andUseppaIsland.presentedwithcaution. TheUseppaIsland(Figure 12)andmodernyearlycomparativegrowthfrequency profiles differ (Figure 7),suggestinga seasonalperiodofquahogharvest. AspringharvestperiodisindicatedbythelowfrequencyofT2andT3growthphasesand tire highfrequencyofindividualsforming thethreephasesofopaquegrowthintheir shells (Figures 5and6). Thequestionthenarises,dothesedataindicatethattheCalusawerelivingatJosslynandUseppaIslandsonlyduringthelatewinterandearlyspring?Atthis levelofresearchtherearenotenoughdatafrom avarietyof sitesorproveniencestodrawconclusionsaboutstrategiesofquahogharvestatCharlotteHarbor.Otherindicatorsofseasonof siteoccupationarealso lacking fromthoseproveniencescontaining thequahogsusedinthis analysis.Ageand Growth RateDeterminationofseasonofquahogharvestis justonekindofdataabouthumanbehaviorthatcanbeobtainedfromtheshellsofMercenaria.Anotherareaofinterest is the relationshipbetweenageandgrowth.Manyenvironmentalfactors affectthegrowthrateofindividualsinaquahogpopulation.Amongthemoreimportantare: (a) food availability; (b)populationdensity;and(c)aspectsofwaterquality,suchastemperature,salinity,dissolvedoxygen,turbidity,andpollution. Thegrowthcurves (average shellheightvs. age)oftheBokeeliaandCatfishCreekquahogpopulations(Table 1andFigure8)suggestthatthespecimensfrom eachstudyareareach thesameapproximatesize atageone. Thereafter,thequahogsfrom CatfishCreekgrowmorerapidlythantheircounterpartsatBokeelia. This isevidentfrom themoreconvexgrowthcurveoftheCatfishCreeksample. Ultimately,theindividualsatbothsitesreachapproximatelyequalsizes;however,theBokeeliapopulationtakeslongerandontheaverageappearstobelonger-lived.TheapparentgreaterlongevityoftheBokeeliapopulationisprobablynotarealphenomenon.Aswenotedabove, the CatfishCreekquahogsgrowmorerapidly,withshellgrowthapproachingzerosoonerthanthe Bokeelia specimens. TheverynarrowincrementsoftheolderCatfish Creek specimenscouldnotbeeasilymeasuredwithhand-heldcalipers, whilemeasurementsofshellgrowthincrementsina few senilequahogsfrom Bokeeliawerewideenoughtobeincludedinthe analysis.

PAGE 267

Calendarsofthe Coast259-EE --130I-110 I(!) W90 I ...J ...JW70 IC/) 50 -6BOKEELIA --BUSEPPAISLAND -4CATFISHCREEKJOSSLYNISLAND1920181716 151410111213(years)89AGE76543230 '--------'-----------'----'---"-------'---L.------l..--L-----..I---.L_..l.-------L----.J_--l------.L_L-----.l.-------l----.J 1Creekenvironmentsupportsaquahogpopulationthatgrowsata fasterratewhencomparedtotheintertidal,sandflatenvironmentoftheBokeeliastudyarea.Thefittedgrowthcurvesofthecontemporaryquahogsserveas amodelagainstwhichthearchaeologicalspecimenscanbecompared.QuahogsfromJosslynIslandattainapredictedshellheightatageonethatissimilartothatcalculatedforthemodernCharlotteHarborspecimens(Figure9).Themaximumshellheight(H 108.8mm)oftheJosslynIslandquahogsexceedsthepredictedvaluesforbothofthemodernpopulations.EventhoughthetheoreticalgrowthconstantrateoftheJosslynIslandquahogs(K=0.27) fallsbetweenthevaluescalculatedforthetwocontemporaryassemblages,specimensattainagreatersizethroughouttheirliveswhencomparedtobothofthemodernpopulations.Itishardtodeterminewhatthegrowthhistoriesofthearchaeologicalquahogsmeanintermsofprehistoric collectingstrategieswithoutgrowthstudiesfrom agreaternumberofhabitatsintheCharlotteHarborregion.TheJosslynIslandquahoggrowthstatisticsdescribeapopulationwhosemembersattaingreatersize(shellheight)thanthemodernquahogscollectedduringthisstudy(Table 2andFigure8). ThiscouldFigure9.VonBertalanffygrowthfunctioncalculatedforquahogscollectedfromtheBokeeliastudyarea,CatfishCreekstudyarea,andJosslynIsland.Insomeyearstheaverageshellheightattainedisnotasgreatasinearlieryears(Table 1andFigure8).Therefore,thegrowthcurvesfrombothstudyareasarenotuniformlyconvex.Therearetworeasonsfor thisapparentanomaly.First,thelargestquahogsmaynotnecessarilybetheoldestduetoindividualresponsetoenvironmentalconditions(SalomanandTaylor1969:48;Quitmyeretal. 1985:38).Second,thesampleof100quahogsusedinthegrowthanalysisfromeachstudyareadoesnotcontainindividualsofthesameage,thuswiththeprogressionofyearsthenumbersofmeasuredspecimensdiminish(Table 1).Theolderageclassescontainfewerspecimens,andthefullrangeofsizeclassesarenotrepresented.TherelationshipofshellgrowthtoageismoreeasilyappreciatedbyconsideringvonBertalanffygrowthcurvesappliedtothedata(Figure9). AbestfitvonBertalanffygrowthfunctionforeachstudyareaillustratestheobservationsmadeearlier.Whenthequahogsfromthetwositesreachtheirmaximumshellheight(H =maximumshellheight),itwillbenearlyequal.Themostrevealingstatisticisthegrowthconstant(K).AtCatfishCreek,specimensgrowmorerapidlyandapproachtheirmaximumsizeearlierthantheircounterpartsatBokeelia. Thisseemstosuggestthatthesubtidal,seagrassmeadowoftheCatfish

PAGE 268

260Culture and Environment in the Domainofthe CalusaDNS0A M A M F 34 U3230 28 26 ii 24 22 2I-18 ffi 16 14 s: 1210 L-_'----------'_-----'-_---'--_---'---_-'-_-'----_L------'_---'__JDNosA M A M F 36,-------------------------; 34 32 30W28 26 !< 24 ffi 22 20Wl e: 16 < 141210 L------'_---'-_-'-_-L_--'-_--'----_-'--_'----------'_-----'-_---.J JDNS0A M A M F 2 L------'_---'-_-'-_-L_---'---_--'----_-'--_'----------'_----'__J 13 g 12 .....311 ZW X 8o Cl 7W6 o5 (/)(/) 4 o 3DNS0A M A M F 36,---------------------343230 028 26o 24 >22I Z 20 ::::i 18 (/)1 141210 L------''--------'-_-'-_---'--_---'---_-'-_-'--_'----------'_-----'-_---.J JFigure 10.Annualairtemperature(0C),watertemperature(0C),salinity (oAJo), anddissolved oxygen (oAJo) measurementstakenattheBokeeliaandCatfish Creekstudyareas(.=Catfish Creek;+=Bokeelia).representthenon-randomselectionofverylargequahogsfrombedsthatcontainindividualsofgreatersizethanthoseobservedattheBokeeliaorCatfishCreekstudyareas. AbestfitvonBertalanffygrowthfunctionwasnotcalculated forquahogsexcavatedfromUseppaIsland. Afteragethreethesampleisdominatedbya singleindividualthatwaslargerthananymeasuredduringthisstudy.Agrowthcurveconstructedwithsuchdatawouldnotrepresenttheaveragegrowthofapopulationfromage4 to 11, andwouldbeskewedinfavorofthe singlelargeindividual(Table 2). CONCLUSIONS Thisstudyconfirms aconsiderableamountof researchthatshowshowtheperiodicityofincrementalshellformationmarkstheseasonsoftheyearinMercenaria.Thearbitrarysix-partsubdivisionoftheopaqueandtranslucentshellgrowthincrementsestablishes acomparativemodel(growthfrequencyprofiles)thatcanbeusedtoevaluatearchaeological assemblagesofquahogsexcavatedfromtheCharlotteHarborregion. Thiswastheprimarygoalof this research.100 100n50n8-80 80 -0 -0>6052.0 >60 c.> c c.>Q) c :::s 40 Q)0-:::s 40 Q)0-...Q) 25.025.025.0 LL... 2016.0 14.0 LL 200.0 0.00 0T1T2T3010203T1T2T3010203Figure 11.GrowthfrequencyprofileofthequahogsFigure 12.Growthfrequencyprofileofthequahogsexcavatedfrom]osslynIsland. excavatedfromUseppaIsland.

PAGE 269

Calendarsofthe Coast261Table2.MeasuredShellHeight(mm)ofArchaeologicalQuahogsVersusAge(years).AgeNumberMeanStandardRangeDeviationBokeeliaStudy Area1 31 39.6 6.0 29.6-49.7 2 26 55.3 5.9 40.2-67.4 3 17 66.7 7.2 48.2-75.7 41274.7 10.3 52.5-88.3 59 82.8 14.6 55.8-103.1 69 88.8 16.7 60.5-116.3 79 94.0 17.9 64.6-126.2 89 99.4 18.5 67.5-132.5 9 8 102.6 18.5 72.0-136.3 10 5 110.7 20.7 76.3-139.2113 113.7 24.1 83.0-141.8 12 2 103.1 15.8 87.3-118.9 13 2 105.0 17.0 88.0-122.0 14 2 106.7 16.8 89.8-123.5 15 2 109.1 15.3 93.8-124.4161 99.7-17 1 103.9CatfishCreekStudyArea1 7 30.1 5.3 20.0-36.0 27 52.1 6.0 41.8-59.7 3 5 63.5 7.6 52.4-75.0 41 61.7-51 77.9-61 94.5-71 107.4-81 121.9-91 126.7-10 1 135.4-111 141.4-ThemodelofincrementalshellgrowthmaybegenerallyappropriateforsouthwestFlorida,butdis crete differencesbetweenvariousestuarieshavetobedetermined.Thesestudiesshouldbebasedonlargenumbersofquahogs,systematically collected from avarietyofhabitats,onamonthlybasis. Thishelpstoidentifymonthly,seasonal,andyearlyvariationsinincrementalshellformationwithinagivenlocality.Consistencyintheperiodicityofincrementalshellgrowthbetweenhabitatscanalsobeverified. PreviousresearchinmorenorthernlatitudeshasshownthatthetimewhentheMercenariashellgrowthincrementsformis consistentbetweenyears.ThisneedstobeverifiedbyasecondyearstudyofMercenariainthesouthwestFloridaregion.Monthlygrowthfrequencyprofilesconstructedforquahogsliving atbothCharlotteHarborstudyareasform apatternrevealingclose similaritiesbetweenadjacentmonths.These similaritiesindicatethates timates of archaeologicalquahogharvestcannotbeaccuratelydeterminedonamonthlybasisorwitha smallnumberofspecimens.Oncethemonthlygrowthfrequencyprofilesarecombined,seasonalandyearlypatternsbecomeevident.Seasonalgrowthfrequencyprofilesaredistinct for adjacent seasons.Correspondingseasonsandtheone-yeargrowthprofilesaresimilarbetweenthetwostudyareas.ThewintergrowthfrequencyprofileshowsagreaterpercentageofT3growththanatanyothertimeoftheyear. AsmallpercentageofT2and01growthphasesarepresentandII,02and03areabsentfromthewintergrowthfrequencyprofile.Springrepresentstheperiodwhenquahogsareintheirfastgrowthcycle. This isevidentfromthediminishedimportanceoftheT3growthphaseandthedominanceof01,02,and03growthphases. Formationoftheopaquegrowthincrementis short-livedwiththeapproachofsummer.Thesummergrowthfrequencyprofile has averylowpercentageofshellsDNosA-t-Bokeelia CatfishCreekJJMAMF 36,-----_34 32-w30 (( 28 :::> 26 (( 24wa.22 20 .18 ffi 16 14 :s: 12 10'-------'-----'----------' JFigure 13.RelationshipoftheperiodofopaquegrowthincrementformationtotheannualtemperaturecycleatCharlotte Harbor,measuredMarch 1986 FebruaI)' 1987.ShadedareaofthegraphshowstheperiodofmaximumformationofopaqueshellgrowthinMercenariafromCharlotte Harbor.Thedashedvertical linesmarkthespringquarter.

PAGE 270

262forming theopaquegrowthphasesandcontains ahighpercentageofindividualsinthe Tl,T2, andT3growthphases.Tlgrowthphaseisatits greatestannualpercentageduringthesummerquarterandmarksthe initiationoftheslowgrowthcycle. TheimportanceofTlgrowthphasediminishesby fall, whileT2andT3are attheirannualmaximumpercent age. Thedominanceoftranslucentgrowthphases, inparticular T3, intheyearlygrowthfrequencyprofilefurthershowsthattheopaquegrowthincrementis a short-livedphenomenonintheoverallannualgrowthcycle.Whenthemoderncycle ofincrementalshellgrowthiscomparedtothequahogsexcavated from Josslyn Island, a late winter-earliestspringperiodofharvestissuggestedfor Test Pit A-2. This isidentifiedbythestrongpresenceofallopaquegrowthphasesandT3growthphaseinthegrowthfrequencyprofile. Aspringperiodofquahogharvestissuggestedfor specimens excavated from thegenerallevelsoftheUseppaIsland, CollierInnSite. Thegrowthfrequencyprofile contains averylowpercentageofT2andT3growthphasesandahighfrequencyofallphasesofopaquegrowth.Determinationofseason(s)ofsiteoccupationfor JosslynIslandandUseppaIslandmustawaittheex cavationoflargenumbersofarchaeologicalquahogsfrom avarietyofproveniencesandthecomparisonofthesedatatootherindicatorsofpaleoseason(s). This willprovidethewidestrangeofseasonal activitiesrepresentedatthe archaeological sites. Theserepresent goals forthenext levelofresearch. Asecondarygoalofthis research has been to assess the relationshipofgrowth(shell height) toageofthemodernquahogscollectedfrombothstudyareas. The best fitvonBertalanffygrowthfunctionshowsthatbothpopulationsattainnearlythesamemaximumshell height,buttheCatfishCreekquahogsgrowatafasterrate.ThisindicatesthattheCatfishCreekhabitatsupportsa faster-growingquahogpopulationwhencomparedtotheBokeeliastudyarea.Incon trast,thearchaeological specimens from Josslyn Islandappeartohavebeencollected from apopulationthatgrewata slightlyslowerratethanthequahogsfrom either CatfishCreekorBokeeliastudyareas,butattainedagreatersizethroughouttheirlives. Thegrowthcurvesconstructedforthemodernandarchaeologicalquahogpopulationsseemto confirmthatgrowthratesandthemaximumattainedsizes ofquahogpopulationsdifferamonghabitats.Trendsinthe relationshipbetweenageandgrowthandhabitatmustbeestablishedbycollecting liVingquahogsfrom avarietyof sites intheCharlotteHarborregion. Thesemodernprofiles ofgrowthhavethepotentialto beusedasameansofevaluatingthestatusofarchaeologicalquahogbeds.CultureandEnvironment in the DomainoftheCalusaACKNOWLEDGMENTSWethankthe followingpeoplefor theirhelpwiththefieldandlaboratoryworkthatresultedinthepublication of this chapter:KurtAuffenberg, Lee Bloom camp, Jan Brown,RobinBrown,CherylClaassen,CherryFitzgerald,GeorgeFitzgerald,Christopher Hale, Stephen Hale, HarveyHamilton,EdenLa Graves, WilliamMarquardt,J.B.Miller, TomNutter,GuyPrentice, JaniceQuitmyer,Elizabeth Reitz, Robert Taylor, Karen Walker,RandyWalker, Elizabeth Wing. Specialthanksgoto Bobby Knight,whoservedasourresidentboatcaptainandguide.His able assistanceassuredoursafetyandhelpedthefieldworkproceedeffectively.Ourprojectbenefittedfromhisknowledgeofthenaturalenvironmentandhistoryoftheregion. NOTES ITreading refers tosearchingforquahogswith one's feet. REFERENCES CITED Abbott,R.Tucker1974 American Seashells.VanNostrandReinhold, Co. Ansell,A.D.1968 The RateofGrowthoftheHard Clam, Mer cenaria mercenaria(L.)ThroughouttheGeographicRange.Journal du Conseil, Con seil Permanent International pour l'Exloration delaMer 31:364-409.Baker,R.M.1964MicrotexturalVariationinPelecypodShells.Malacologia 2:69-86.Baillie, M.G.1.1982Tree-RingDatingandArchaeology.TheUniversityofChicago Press, Chicago. Bertalanffy,1.von1938 AQuantitativeTheoryofOrganicGrowth.Human Biology 10(2):181-213.Claassen,CherylP.1982 ShellfishingPatterns:AnAnalyticalStudyof PrehistoricShell from North Carolina Coastal Middens.Ph.D. dissertation,DepartmentofAnthropology,HarvardUniversity,Cambridge.1986ShellfishingSeasonsinthePrehistoricSoutheasternUnitedStates.AmericanAntiquity 51:21-37.Clark, George C. II 1979SeasonalGrowthVariationsinShellsofRecentandPrehistoric SpecimensofMer cenaria mercenariafromSt.CatherinesIs-

PAGE 271

CalendarsoftheCoast263PaleoseasonalityDeterminationBasedontheIncrementalShellGrowthintheHardClam,Mercenaria mercenaria,andItsImplications fortheAnalysis ofThreeSoutheastQuitmyer,IrvyR.,DeborahCannon,andDouglasJones 1986 Lutz,RichardA.,andDonaldC.Rhoads1977AnaerobiosisandaTheoryofGrowthLineFormation.Science 198:1222-1227.1980GrowthPatternsWithinMolluscanShell:AnOverview.InSkeletal Growth of Aquatic Organisms,editedbyDonaldC.RhoadsandRichardA.Lutz,pp.203-248.PlenumPress,NewYork.Menzel,R.W. 1963 SeasonalGrowthoftheNorthernQuahog,Mercenaria mercenaria,andtheSouthernQuahog,Mercenaria campechiensis,inAlligatorHarbor,Florida.Proceedings oftheNational Shellfisheries Association 52:37-46.1964SeasonalGrowthoftheNorthernQuahog,Mercenaria mercenaria,andtheSouthernQuahog,Mercenaria campechiensis,andTheirHybridsinFlorida.ProceedingsoftheNational Shellfisheries Association 53:111119.Miller,James1980CoquinaMiddensontheFloridaEast Coast.TheFloridaAnthropologist 32:2-16.Moore,ClarenceB.1905MiscellaneousInvestigationsinFlorida.JournaloftheAcademy of Natural Sciences of Philadelphia 13:298-325.O'Brien,DeborahMayer,andDebraPeter1983PreliminaryReportontheAnalysisofPotteryandShellSeasonalityfromthePrehistoricSettlementPatternProjectonSt.CatherinesIsland,Georgia.Paperpresentedatthe40thannualSoutheasternArchaeologicalConference,Columbia,SouthCarolina.Peterson,CharlesH.,P. BruceDuncan,HenryC.Summerson,andBrian F. Beal 1985AnnualBandDepositionWithinShells oftheHardClamMercenaria mercenaria:ConsistencyAcrossHabitatNearCapeLookout,NorthCarolina.Fisheries Bulletin83(4):671-677.PaleoseasonalityDeterminationBasedonIncrementalShellGrowthintheHardClam,Mercenariamercenaria,andItsImplicationsforFutureAnalysisofCoastalShellMiddensFoundAlongtheGeorgia Coast.Paperpresentedatthe43rdannualSoutheasternArchaeologicalConference,Nashville,Tennessee.Quitmyer,IrvyR., H.StephenHale,andDouglasS.Jones 1985land,Georgia.AnthropologicalPapersoftheAmericanMuseumofNaturalHistory56(1):161-172. Deith,MargretR.1983MolluscanCalendars:TheUseofGrowthLine Analysis to EstablishSeasonalityofShellfishCollectionattheMesolithic Site ofMorton,Fife.Journal of Archaeological Science 10:423-440.1986SubsistenceStrategiesata MesolithicCampSite:EvidencefromStableIsotopeAnalysisofShells.Journal of Archaeological Science13:61-78.Dodd,J.RobertandRobertJ.Stanton,Jr. 1981Paleoecology,Concepts and Applications.JohnWileyandSons,NewYork. Fritz, Lowell W.andDexterS.Haven1983HardClam,Mercenariamercenaria:ShellGrowthPatternsinChesapeakeBay.Fishery Bulletin 81(4):697-708.Jones,DouglasS.1980AnnualCycleofShellGrowthIncrementFormationinTwoContinentalShelf Bivalvesandits Paleoecological Significance.Paleobiology6(3):311-340.1983 Sclerochronology:ReadingtheRecord oftheMolluscanShell.American Scientist7:384-391. Jones,D.S.,I.Thompson,andW.Ambrose1978AgeandGrowthRateDeterminationsfortheAtlanticSurfClamSpisula solidissima(Bivalvia:Mactracea),basedonInternalGrowthLinesinShellCross-sections.Marine Biology 47:63-70.Kennish,MichaelJ.1980ShellMicrogrowthAnalysis,Mercenariamercenaria,asaTypeExampleforResearchinPopulationDynamics.InSkeletal Growth of Aquatic Organisms,editedbyDonaldC.RhoadsandRichardA.Lutz,pp.255-294.PlenumPress,NewYork. Koike,Hiroko1980SeasonalDating by Growth Line Counting of the Clam,Meretrixlusoria:Toward a ReconstructionofPrehistoric Shell-Collecting Activities inJapan.UniversityMuseum,Universityof Tokyo, Bulletin 18. 1986MicrostructureofGrowthIncrementsintheShellofMercenaria mercenaria(Linne).Transactions and Proceedings ofthePalaentologicalSociety ofJapan141:289-295.Loosanoff,V.L.1939 EffectsofShellMovementsofClams,Venusmercenaria(L.).Biological Bulletin 76:171182.Lutz,RichardA.andDavidJablonski 1978LarvalBivalveShellMorphometry:A Paleoclimatic Tool?Science202:51-53.

PAGE 272

264GeorgiaCoastalShellMiddens.SoutheasternArchaeology 4:27-40.Rhoads, Donald CandRichardA.Lutz1980 Skeletal GrowthofAquaticOrganisms.PlenumPress,NewYork. Rhoads,D.CandG.Pannella1970 TheUseofMolluscan ShellGrowthPatternsin EcologyandPaleoecology.Lethaia3:143161. Russo,J.1.1986INCAL1.5:AGeneralPurposeDataEntryandDigitalCaliperDriverProgramfortheIBMPC.OfficeofResourceManagment,SmithsonianInstitution,WashingtonD.C.Saila, SaulB.,ConradW. Recksiek,andMichael H.Prager1988BasicFishery SciencePrograms:A Compen dium of MicrocomputerProgramsandManual of Operation.Elsevier SciencePublishers,NewYork. Saloman,CarlH.andJohn1.Taylor 1969AgeandGrowthofLargeSouthernQuahogsfroma Florida Estuary.Proceed-Culture and Environment in the Domainofthe Calusaings oftheNational Shellfisheries Association59:46-51. Walker,RandalL.1984 Effects of DensityandSamplingTimeontheGrowthoftheHardClam,Mercenaria mercenaria,PlantedinPredator-FreeCages inCoastalGeorgia.TheNautilus 98(3):114119. 1985GrowthandOptimumSeeding Time for theHardClam,Mercenaria mercenaria(L.), inCoastalGeorgia.TheNautilus 99(4):127133.Walker,RandalL.andMacV.Rawson1985SubtidalHardClam,Mercenaria mercenaria(Linne),ResourcesinCoastalGeorgia.Georgia Marine Science Center Technical Report85-1. SeaGrantCollegeProgram,Grant#04-7-158-44126.TheUniversityofGeorgiaMarineExtension Service, Savannah,Georgia. Walker,RandalL.andKennethR.Tenore1984TheDistributionandProductionoftheHardCalm,Mercenaria mercenaria,in WassawSound,Georgia.Estuaries 7(1):19-27.

PAGE 273

8The ZooarchaeologyofCharlotte Harbor's Prehistoric Maritime Adaptation: Spatial and Temporal PerspectivesKarenJoWalkerINTRODUCTION The Maritime Calusa Thecenteroftheworldformuchofthe Calusa\populationinthesixteenthcenturywassouthwest\ Florida'shighlyproductiveCharlotteHarborestuarinesystem(Figure 1). Itwasreportedin1564 "thatIthe [Calusa]kingwasheldingreatreverencebyhis subjectsandthathemadethembelievethathis sor-'IceriesandspellswerethereasonwhytheearthI,broughtforthherfruit"(Laudonniere1975:110). Thequoteimpliesthatthecontinuedproductivityandstabilityofthenaturalworld(Le.,CharlotteHarbor)wereintegraltothemaintenanceoftheCalusa --Environmental productivityandstabilitymay have' beenparticularlycrucial factorsofeverydaylife fortheculturallycomplexCalusaandtheirpredecessorsbecausetheydidnotrelyonagriculturalproducts(GogginandSturtevant1964;Marquardt1986, 1987, 1988;Widmer1988).Instead,asindicatedbyvariousSpanishreportsandtheexistence ofenormousmiddens,estuarine/marinefoodsweretheprimarysubsistence focusofthesesedentarycoastal residents.ThenotionthatmaritimesocietiessuchastheCalusacoulddevelopcomplexsocialandpolitical formationswithoutthe blefi! ofcropagriculturehas IQ!!g been especiallyinthe caseofcoastal 1975; MoseleyandFeldman1988;Osborn1977; Wilson 1981). Prehistoric,non-agricultural,complexpeoplesareindeedassociatedwithmaritimesettingsinvariouslocales of theworld(e.g.,NorthAmericanNorthwestCoast,southernCalifornia,coastalPeru,southwestFlorida,NorwayandSweden). This association isincreasinglybeingacknowledgedbyresearchersasadvancesaremadein archaeologicalmethod(e.g.,useof fine-mesh screens)andastheoretical biases (e.g.,unilinearevolutionistschemes)arebrokendown(MoseleyandFeldman1988;Walker1991). AlthoughCharlotteHarboristechnicallyanestuarineenvironmentratherthanoneof strictly vye,let.s...(i&,_35OAJ.lLS.alinity), I perceiveestuarineadaptationsin prehistory asaspecializedtypeofthebroadermaritimeculturalpattern(see Yesner 1980:265728).Furthermore,muchoftheinshorewaters,suchasthoseofPineIslandSound(Figure 1),maintain high salinities of 28.5 to 32.8 o,-uo (Alberts et al. 1969:1).Additionally,mostspeciesof"estuarine"fishexploitedbyCharlotteHarbor'sprehistoricinhabitantsatsomepointintheirlife cyclesmigratetomarinewaters.Theseestuarine/marinefishescomposedthebulkoftheaboriginalproteinintake.Widmer(1988) convincinglyarguesforextremelyhighproductivityinCharlotteHarbor'sestuarineenvironment-productivitycapableofsupportingalarge,sedentary,prehistorichumanpopulation.However,wecannotassumethattheseestuarine/marinefood resources relieduponinprehistoryremaineduniformlyproductiveandstablethroughspaceandtime. ThequestionthenbecomeshowtoinvestigateCharlotteHarbor'senvironment,itsfluctuations,anditsrelationshiptoprehistorichumaninhabitantsthroughspaceandtime. Zooarchaeologi calevidence(Le.,vertebrateandinvertebrateskeletalremains)representsananalyticmediumofgreatrelevance to this question. Thestudypresentedinthischapterhasas its researchuniversetheareathatI calltheCharlotteHarborestuarineecosystem,orsimply"CharlotteHarbor." It isbroadlydefinedasthesubtropicalcoas tal areaextendingfromCharlotteHarborproperinthenorthto Estero Bayinthesouth(Figure 1). For thepurposesof thisstudy,then,thegreaterCharlotteHarborareaconstitutes a "region"(southFlorida is also a region,althoughbroaderinscale). TheCharlotteHarborregionisanarbitrarydelineationbasedona coastal ecosystemandthusservesonlyas abeginningpointtowardtheunderstandingofhuman-environmentrelationshipsina"dynamicregion"(MarquardtandCrumley1987:7-9). For example, theroughchopofwatersseparatingthePineIslandSoundandCharlotteHarbor-CapeHazeareas(Figure 1)mayhaverepresentedamorerealisticculturalboundaryintheprehistoricpast.Pointlocations (e.g., archaeologi cal sites)withintheregionconstitute"localities." Thestudyfocusesonthesetwospatialscales,designatedbyDincauze (1987:261-262) as "meso-scale" (regional)and"micro-scale" (local).

PAGE 274

266Culture and Environment in the Domainofthe CalusaBLINDGASPARILLAMNSOURCE'FLORIDAATLAS8GAZETEERS.W. F.PROJECT10KMCAPEHAZEPENINSULACAPTIVAPASS "v-0..;"'v 5CALEBOCA GRANDE PASSoC. McP. T.Figure1.TheCharlotteHarborstudyarea,showinggeographicalfeaturesandarchaeologicalsitelocationsdiscussedinthetext. (Key: 1=8CH67,Solanasite; 2=8CH10, BigMoundKey; 3=8CH38,CashMound;4=8LL51,UseppaIsland;5=8LL33,Pineland;6=8LL32,JosslynIsland;7=8LL722,BuckKeyShellMidden;8=8LL54,Wightmansite.)

PAGE 275

ZooarchaeologyofCharlotte HarborThetimeframeunderstudyislimitedtoapproximately600 B.C.toA.D. 1400,encompassingCaloosahatcheeIthrough N periods(seeChapter2,thisvolume).The2000-yearspanfallswithinDincauze's(1987:262) "meso-scale"temporalclas sificationandButzer's(1982:24) "third order" scale of climaticvariability.Withinthesetemporalscales,othersofa finerresolutionalsoarerecognizedfromwhichmeaningis inferred;anysuchscale istermedan "effective scale"(MarquardtandCrumley1987:2, 16;Marquardt1985:69-70).Theuseofeffective scaleasanorganizingconceptisessentialto atemporalstudyoftheCharlotteHarborregion. I recognizeshort-term(i.e., fromonedaytooneyear),medium-term(i.e.,year-to-year),andlong-term(i.e.,onehundredtoseveralhundredsofyears)effective scalesinthedynamicsof theregion'spaleoenvironmentalvariation.ResearchGoaland ObjectivesTheintentofthisresearchis toprovideregionalbaselinezooarchaeologicaldatafromwhichto initiate aspatialandtemporalunderstandingofhuman-environmentrelationshipsinprehistoricCharlotteHarbor.Suchunderstandingisalsothegoalofenvironmentalarchaeology(Butzer 1982; Evans 1978), apursuitforwhichzooarchaeologyisonlyoneavenueofinquiry.Zooarchaeologicalremainsassociatedwithsedentary,coastalfisher-gatherer-huntergroupssuchastheCharlotteHarborpeopleconstituteavaliddatabasefromwhichtobegintomodelpaleoenvironmentsandthehumanresponsestothemthroughspaceandtime.Independent,supportivedataareessential tosuchmodel-building(Dincauze 1987:318; KingandGraham1981:136-137;RhoadsandLutz1980:7,11-12)andso I alsodrawonestuarineecologi cal, climatic,andgeological research. TheCharlotteHarborstudy,nonetheless,ispreliminaryandhypothesesremaintobetestedandmodifiedwithnewdatasets.Logically,onecannottruly"reconstruct"paleoenvironments(Dincauze1987:292),butonecanconstructamodelofapastenvironmentata specifiedspatialandtemporalscale. Becauseofthe interactiveandinterdependentnatureofenvironments,circularityinreasoning,attimes, becomes practicallyunavoidableinthisendeavor(Dincauze1987:291 292). Despite thisdrawback,I believethatthepresentstudyholdspromiseforresearchintheCharlotteHarborregion.Thenatureofmodel-buildingistogeneralize(Levins 1966:421-422) forheuristicoroperativepurposes.IntheCharlotteHarbormodel,itis necessarytosimplifyenvironmentalvariationsothatarchaeologistscanaskandanswerquestionsata scale of, say, 100to 200-yearincrements(congruentwithradiocarbondating).Inotherwords,Iattempt,wherepossible,toobtaindatasetsthatmediatepotentialshort-andmedium-termvariationduetointra-annualandyear-to-yearchange;forexample,thespatialperspectiveisbasedon"averaged" sitesamples(exceptfor Useppa).However,intra-annualandyear-to-267yeardiscontinuitiesdorequireconsiderationwhentemporalinterpretationsareinferred. AwarenessofenvironmentalcontinuityandchangeinspaceandtimeatmultiplescalesshouldeventuallyallowCharlotteHarborarchaeologiststo focusonhypothesesmorespecific toculturalchange. Inotherwords,wecannotmakevalidinferencesaboutculturalchangebasedonfaunalpatternsifwefail to recognizeoperativeenvironmentalparametersatspecificspatialandtemporalscales. heterogeneityinits bygeophysical dynamismrhr9...,!gh time;bothattriutesare ypicalofmost environmental systems. Ifis-Urese opel'ative factorsthat dictate thecomparabilityofinter-siteandintra-sitezooarchaeologicalsamplesandprovidecontextforhumanenvironmentrelationships.Toillustrate,withinaregionsuchasCharlotteHarbora zooarchaeologicalassemblagefromonesitemaybeverydifferentfromthatofanothersitedueto differences(i.e.,qualitativeorquantitative)inthehabitatsthatsurroundeachsite. Therefore,betweensitesanassemblagefromonetimeperiodmaybe different fromthatofanotherperiodbecauseof a difference in locationratherthanadiachronicculturalchange.Withina site,anassemblagefromonetimeperiodmaybedifferent fromoneofanothertimeperioddueto a geophysicalchangesuchas aminorfluctuationinsea levelorthecreationof anearbyoceaninletratherthanadiachronicculturalchange. Idonotmeantoimplythatsociohistorical factorswereabsentfromCharlotteHarbor'sprehistorictrajectory offaunause. Forexample,anapparentdiachronic, intra-sitevariationcouldbesimplyexplainedbyvariationinsitedeposits(e.g.,middenversusdomesticfloor)basedonpatterningof artifacts,postholes, etc. Clearly,humanagencyintroducesa complex webofvariablesthatinteractwiththe bioticandphysicalenvironments.Wecanbegintoidentifythiscomplexityonlythroughfamiliaritywithenvironmentalcontext. In thischapter,IproposethatCharlotteHarbor'srecentestuarinepaleoenvironmentcanbemodeledfrombothspatialandtemporalperspectivesatlocalandregionalscales. Such amodel,withcontinuedadjustments,couldserveas acomparativebasebywhichtomeasurehuman-environmentinteraction.Myapproachhingesonthe existenceofa prehistoricfaunalexploitationpatternthatfocusesonnearbyresources. Thispatternis typicalofmaritimepopulations (Yesner 1980:730)andIarguethattheCharlotteHarborzooarchaeologicaldataalsoreflectthisstrategy.TheCharlotteHarbormodelbuildingexercise con sistsofthe following five objectives:(1)thespatialmodelingofmodernestuarineheterogeneityvia agradientanalysis;(2)thespatialmodelingofprehistoricestuarineheterogeneity(usingindependentzooarchaeologicaldata)also via agradientanalysis,whichserves as a test ofenvironmentalcomparability

PAGE 276

268betweenpresentandpast;(3and4)theoverlayofpotentialshort-,medium-,andlong-termtemporalvariationontoeachofthesetwogradientmodels;(5)theintegrationofthespatialandtemporaldimensionsatbothlocalandregional scales.A SPATIAL PERSPECTIVEONRESOURCE HETEROGENEITYThePresent-day Clmrlotte HarborEstuarine EcosystemAnexaminationofthepresent-daynaturalenvironmentoftheCharlotteHarborarea,alongwithoursociety's recentimpactonthatenvironment,is a necessaryfirststeptowardunderstandingpastsituations. Aspatialmodeloftoday'senvironmentserves as abeginningstandardforpaleoenvironmentalmodeling.IntheCharlotteHarborregion,threemajor rivers,extensiveinshorelagoons,saltmarshes,mangroveforests,anda seriesofbarrierislandscomposea com plexanddynamicestuarineecosystemofanunusuallyhighlevelofbiologicalproduction(Taylor 1974:207).CampandSeaman(1985:337)generallydefinees tuaries as "semi-enclosedbodiesofwaterthat(1)havea free connectionwiththesea, (2) receivefreshwaterinflowthroughbothoverlandrunoffanddefinedsourcessuchas rivers, creeks,andsprings,and(3)containameasurablesalinitygradient."ThePeaceandMyakkariversconvergetoformtheCharlotteHarborestuaryproper,whiletothesouth,theCaloosahatcheeRiveremptiesintoSan Carlos Bay, forming thesecondmajorestuary(Figure 1). To the west,barrierislands"enclose" thesebodiesofwater,thusdefiningthegreaterestuarinesystemata regional scale. Thetwomajoropeningsto theGulfareBocaGrandePassandSanCarlosBay;secondaryin letsareBlind, Redfish,Captiva,andGasparillaPasses. Terrestrial ecologicalcommunitiesintheregionincludemangroveforest, saltmarsh,coastalstrand,saltbarren,sabal-juniperhammock,oak-perseahammock,andpinewoods(Taylor 1974:210).Ofthese, themangrovecommunityismostclosely associatedwiththeestuarinecomplex.Mangroveforestsextendover22,927hain thestudyareaandarelargelystructuredbyzonesofred(Rhizophora mangle),black(Avicennia germinans),andwhite(Lagunculariaracemosa)mangrovevarieties(Harris eta1.1983:129; Taylor 1974:210). The salttolerantredmangrovedominatesthewater'sedgethroughouttheestuarinesystem. Asonemovesinland,the blackandwhitevarietiesbecomemixedwithbuttonwood(Conocarpus erectus)andotherplantspecies(Odumeta1.1982:2).Mammalsusingmangroveforests feedonfruits, berries, insects, smallreptiles,seeds,mast,crabs,grasses,fish,birdeggs,mussels,andothermammals.Thewhite-taileddeeristheonlymammalknowntoincludemangroveleavesinitsdiet(Odumeta1.1982:143-144). Themangrovefringe(primarilyred)andinshoreseagrass(primarilyturtlegrasses)meadowaretheCulture and EnvironmentintheDomainoftheCalusatwomostproductivehabitatsintheestuarinecom plex.Ofsomewhatlesserimportancearetheoysterbar,the littoralzone,andtheopenGulfwater. Thedistributionandinterrelationshipsof all thesehabitatsandtheiranimalcomponentslargelydefinetheecologicalstructureoftheestuarinecomplex.Mangroveandseagrass ecosystemsareamongthemostproductivebiologicalsystemsintheworld,evenrivalingagriculture(Odumeta1.1982:19;Zieman1982:1). Thesetwoestuarineplantgroupsproduceenormousamountsofleaf/bladedetritus,supportingextensiveaquaticfood webs.Inaddition,theyprovideprotectionfrompredatorsformanyfishandinvertebratespecies.Theyarecloselyinterrelated,the seagrassareasoftenextendingrightuptomangroveshorelines(Odumeta1.1982:50). SeagrassesoftheCharlotteHarborareahavenotbeenadequatelystudied(Estevezeta1.1984:5-22)eventhoughtodaytheyaccountfor 23,682ha(Harriseta1.1983:133).Primarilyoccurringinbroadshallowwater"meadows,"turtlegrasses (Tlmlassia testudinumandHalophila engelmanni),shoalgrass(Halodule wrightii),widgeongrass(Ruppia maritima),andmanateegrass(Syringodium filiforme)arethefive commonseagrassvarieties(Taylor1974:210;Zieman1982:8). Thesehaveslightlyvaryingsalinityrequirements,withtheturtlegrassesbeingthemostabundantandformingthemostexpansivemeadows.Thesemeadowssupportgreatdensities of sessileandmigratorymolluscs, as well as fishesandcrabsthatspendallorpartoftheirlifecycles there. Inaddition,largepredatorspeciesfrequenttheinshoregrassesinsearch of food.Ifwearetousethepresent-dayenvironmentofCharlotteHarborasananalogyfortheinterpretationof itspastenvironment,wemustbeawareofchangeresultingfrommodernhumanactivity. Thewidelycitedlossofscalloppopulationsduetoreducedsalinitiesandincreasedturbidityasaresultofcausewayconstructionis a familiarexample(Estevez eta1.1984:PM90-PM91).Moreimportantforourpurposes, 9,904haofseagrasses (29%)and128haofoysterbarcommunities(39%)havedisappearedfrom theregionsince 1945(HaddadandHarris1985:668;HaddadandHoffman1986:175). Researchers(HaddadandHoffman1986:184;Harriseta1.1983:134)attributethestartlinglosses tothecombinedeffectsofdredgingfortheIntracoastalWaterway,constructionoftheSanibelcauseway,channelingoftheCaloosahatcheeRiver,anduplandpollution. Finally,asearlyas1884,thenaturalflowoftheCaloosahatcheeRiverwaschangedwhenthewaterwaywaslinkedtoLakeOkeechobee(GunterandHall1965:4). Amodernreductioninhabitatstranslatesintoareductionofbiologicalproductivity.Thus,acknowledgementoftheexistenceofaprehistoricbioticproductivitythatwasmuchgreaterthanthatoftoday(atleastatcertaintimes) is critical toourunderstandingofthatpastenvironment.

PAGE 277

ZooarchaeologyofCharlotte Harbor269.... :\\\\ \ \ \\ \", \ I ;\ ".\ ";, \ \\:.... :. .... /-.-.. /'.I \ / /\// i---I \. // /...../\/ ./-'"./1__Boca Grande Pass "' / ----Bokeelia \// Charlotte Harbor\ i _._._Peace River "' /-VIoJUNJULAUG SEP OCT NOV DEC JAN FEB MAR APR MAY1030 0o ......820 :5iiiIJl 40 r-,------,-.----,----,--r----,--,-------r-.---,----,---, Figure2.MonthlysalinityprofilesoffouraquaticlocationsinthenorthernpartoftheCharlotteHarborestuarinecomplex,illustratingthefreshtosaltwatergradient.DataarefromWangandRaney(1971:18).therecanbegreatsalinitydifferencesbetweenebbandflood position,andbottomandtopwaters(Estevez et al. 1984:CH113-CH118).However,tides intheCharlotteHarborareaareofamixeddiurnalandsemidiurnaltypewithanaverageamplitudeofonlyabout0.60 m (Estevezetal. 1984:CH96).Theimplicationofsucha micro-tidalpatternisthatdailyfluctuations insalinityareminorcomparedtomostoftheworld'sestuaries. This isadvantageousforgradientmodelingata scaleusefulto archaeologists. The factthatmostsitesareassociatedwithveryshallowwaters(0.3 to 1.2 meters)furthermediatesverticalsalinitydifferences for the archaeologist.Figure2 exhibits apatternofseasonalsalinityfluctuationforthe1968-1969period.Basedonrainfalldatafor 1965through1969 (JoynerandSutcliffe 1976, citedinEstevezetal. 1984:CHI7), theonlydeparturefromanaverageyearlypatternistheheavyMarch rain,showninFigure2 asloweredsalinitiesatall four stations.Periodicdeviationsfrom theaveragepattern,whetherseasonalorofseveralyearsduration,implyshort-ormedium-termalterationsinfaunaldistributionand/orproductivity.Distribution of Vertebrates.Literatureconcerningaquaticvertebratecommunities(primarilyfishes) inmangroveenvironmentsisreadilyavailable(e.g.,Odumetal. 1982)andseveralsystematic fishstudiesexist forCharlotteHarbor(see Estevez et al. 1984;Taylor1974:213).Inparticular,GunterandHall(1969)andWangandRaney(1971)presentadatabaseusefulfor archaeological research. To describethedistributionofvertebrates,Iborrowfourmangrove/fishcommunitydesignationsfromOdumetal. (1982:50-51)andadda fifth classificationtocompletethesalinitygradient.Theseare(1)mangrovebasin,(2)mangrove-fringedstreams,(3)mangrove-fringedestuarinebaysandlagoons,(4)mangrove-fringedoceanicbaysandlagoons,and(5)thelittoralzoneandGulfwaters. Types 3and4areassociatedwithseagrassmeadows.The Present-day Estuarine GradientTheecologicalconceptofanenvironmental"gradient" (KingandGraham1981:129) isusefulwhenappliedtoestuarinesituationsforthepurposeofdeterminingfaunaldistributionandabundance(Boesch 1977; Wells 1961). Analysisoftheestuarinegradientinvolvestherecognitionofdifferent ecologi cal"zones"orhabitatcategories("communities")rangingfromfreshtooceanicwaterandtheextenttowhichdifferentaquaticspeciesinhabittheseareas(Boesch 1977:245;Odumet al. 1982:51,57).Thezonesandtheirassociatedfaunalgroupshavenosharpboundariesinspace. Rather,theyexist as agradedcontinuumattheregionalscale.Thehabitatcategoriesnonethelessallowdescription,andthusanoperativeunderstandingoftheheterogeneousdistributionoffaunaalongtheestuarinegradient.Althoughnumerouslimiting factorsareinvolvedingradientdistributionsofestuarinefauna,averagesalinityisprominentamongthem(Boesch 1977:246; Wells 1961:239)andprovidesausefulorganizationaltoolatoneormoreeffective scales. For example, theoysterbedorbarcommunity(i.e., oystersandall associate fauna) exhibits a certainrangealongtheestuarine(regional)gradient;withinthatrange(also acontinuum,in reality),pointlocationscanbeclas sifiedaslow,mid,orhighsalinityoysterbars.Thedistributionofassociatefaunawillvaryaccordingtothedesignation(Wells 1961).Unfortunately,IknowofnopublishedgradientstudyofCharlotteHarboraquaticbiota.However,baseduponwhatisavailablefortheareaandcomparativedatafromotherestuarineenvironments,IattemptinformallytomodelCharlotteHarbor'smoderndistributionofaquaticvertebrateandinvertebratefaunafor archaeologicalpurposes.Becausemobilitypatternsofvertebratesandinvertebratesaredramaticallydifferent, thesetwogroupsaredescribedseparately.Thedescriptionsarenotmeantto be comprehensive;insteadtheyemphasizeanimalswhoseremainsarecommonlyfoundinprehistorichumanmiddens.Figure2 illustratesmonthlysalinity profilesthatcloselytypifythesalinitygradientofthenorthernproject area. ThesedataarefromWangandRaney(1971:18)andrepresentreadingstakenatfouroftheircollectionstations(numbers33, 29, 13,and15), chosen toillustratethegeneralgradientmovingfromnearfreshwater(Peace River) to oceanic (BocaGrandePass) conditions. SalinityreadingsforPineIslandSoundshowvariancedependingonproximitytoCaptivaPass,RedfishPass,orBlindPass(WangandRaney1971:18).Additionally,Albertsandhis col leagues (1969:1)reportthattheGasparillaSoundandPineIslandSoundwatersmaintainmarinesalinitiesrangingfrom 28.5 to 32.8 0AJo. Similarly,theSanCarlos Bayareagenerallyrangesfrom 25.0 to 35.0 0AJo (GunterandHall1969:5). Tidal stagesandthusvertical stratificationshouldbeconsideredforanygivenestuarinelocationbecause

PAGE 278

270Type 1 is abackwaterarea,largelyoffreshwatercontent,supportingspeciessuchas killifishes (FamilyCyprinodontidae),thegreatersiren(Siren lacertina),frogs(Ranaspp.),andfreshwaterturtles. The areaimmediatelytothenorthofBigMoundKey (8CH10) isanexampleofamangrovebasin(Figure1).These areasareknowngenerallyto exhibitlowspeciesdiversity,butsometimeshighdensities of fishesdooccur(Odumeta1.1982:50).Type2includesmajortributaries(e.g.,Myakka,Peace,andCaloosahatchee rivers),smallstreams (e.g.,WhiddenCreek,AlligatorCreek),andassociatedpools. Thesestreamsaretidal-influenced,havesparsegrass beds,andshowseasonalvarianceintermsofsalinityand,thus,species composition(Odumeta1.1982:52;WangandRaney1971).Duringrainymonths,such asMarchandJuly (seeFigure2,Peace River line),freshwaterfishes sometimesmoveinto theestuary.ExamplesincludeFloridagar(Lepisosteus platyrhincos),sunfishes(Lepomisspp.),freshwatercat fishes (Family Ictaluridae),andthelargemouthbass(Micropterus salmoides)(Estevezeta1.1984:PR342 PR354;GunterandHall1969:20, 23, 31). Conversely,marinepredatoryfishessuchas needlefishes (Family Belonidae), jacks (Family Carangidae),andstingrays (Family Dasyatidae)invadethetidal streamsinsearch of foodduringdryperiods(Odumeta1.1982:52). Fishessuchastheblackmullet(Mugil cephalus),graysnapper(Lutjanus griseus),sheepshead(Archosargus probatocephalus),spottedseatrout(Cynoscion nebulosus),reddrumor"redfish"(Sciaenops ocellatus),andsilverperch(Bairdiellachrysoura)usetidalstreamsandpoolsonlyas juveniles(GunterandHall1969;Odumeta1.1982:52). Mostofthese speciesarerepresentedinCharlotteHarbor'sstreamsduringsomepartoftheyear(WangandRaney1971).EnvironmentTypes3and4combineextensivemangroveshorelinesandseagrassmeadows.The relationshipbetweenthesetwohabitatsintermsof faunal use isunclear(Zieman 1982:75),perhapsduetotheproximityofthe two. Types 3and4rangehigherinsalinitythan1and2 (seeFigure2,CharlotteHarborandBokeelia lines), exhibit coarser,sandiersediments,andsupportagreaterabundanceanddiversityof fish assemblages.IntheCharlotteHarborsystem, examplesofType3,estuarinebaysandlagoons,areTurtle Bay, Bull Bay, Matlacha Pass,andtheeasternpartofPineIslandSound. The oceanic bays,Type4,tendtohavethe clearest water,thehighestsalinitiesofinshorewaters,andperhapsthehighest species diversity. ExamplesincludeSan Carlos Bay, GasparillaSound,andthe inshore lagoonsofPineIslandSoundbehindBlind, Redfish,andCaptivaPasses. Because ofthecon figurationoftheCharlotteHarborsystem, it is difficult toseparatethespeciesofTypes 3and4andso I describethemasoneunit. Speciessuchas pipefishesandsea horses (FamilySyngnathidae),gobies(Gobiidae),andtheinshorelizardfish(Synodus foetens)spendtheirentirelife cycleswithinthegrassbeds. A secondgroupoffishesCulture and Environment in the Domainofthe Calusalargelyusesthemeadowsas anurseryground,spendingtheir juvenile life stagesinthenurturinggrasshabitat.Spottedseatrout,spot(Leiostomus xanthurus),silver perch,reddrum,pigfish(Orthopristis chrysop lera),pinfish(Lagodonrhomboides),sheepshead,andgaggrouper(Mycteroperca microlepis)areallcommontoabundantfishesamongthegrassbeds(Zieman1982:50).Adultscommonlyinhabitthemangrovefringe. Inaddition,anchoviesareknownto concentrateinseagrasses, especiallywhilejuveniles (CarrandAdams1973:515).WangandRaney(1971:22-23; 24)reportthatthree speciesofanchovy(Anchoa mitchilli, Anchoa hepsetus,andAnchoacubana)andthehardheadcatfish(Ariopsis felis)frequentgrass flatsbutareabundantinallpartsoftheCharlotteHarborsystem. Pinfish,althoughdenselyassociatedwithseagrassesinjuvenileandadultforms,haveavariablehabitatdistribution(Darcy 1985:3-6). Mulletaggregateona seasonal basisingrassareas,feedingdirectlyongrassblades(Zieman 1982:64). Larger,predatoryfishes such assharks(Lamniformes),barracudas(FamilySphyraenidae),andjacks occasionallymigrateinshoreto feedinthemangrove/grassbays.Type5 includes littoralzonesofthebarrierislands (e.g., Sanibel, Captiva, Cayo Costa,andGasparilla), oceanic passes (e.g., Gasparilla, BocaGrande,Captiva,Redfish, Blind),andopenGulfwaters.Mostfishesthatareprimarilyassociatedwiththeseareasalsofrequenttheoceanicandestuarinebays. Examples arenumeroussharks(HoeseandMoore1977:107-116; Larson 1980:81-95), jewfish(Epinephelus itajara),sawfish(Pristisspp.),Floridapompano(Trachinotus carolinus),largejacks,Spanishmackerel(Scom beromorus maculatus),barracuda,andwhiting(Men ticirrhusspp.)(HoeseandMoore1977;WangandRaney1971).Distribution of Invertebrates.Little systematicsur-veyofaquatic invertebrateshasbeenundertakenintheCharlotteHarborstudyarea(seeVirnstein1987:Figure 1). Basedoncomparativeliteratureandmyownfield observations, I chose fivezonesto examineinvertebrates(primarilymolluscs)alongthesalinitygradient.These are:(1)tidalstream,(2)estuarinemangroveedge,(3)oysterbed,(4)seagrassmeadow,and(5)littoral/Gulf.The classificationsarelargelyrelatedtothelimitedmobilityofaquaticmol luscs. Aswiththevertebratecategories, all types over lap, creating acontinuumofdistribution.Fewmarineinvertebratesareknowntoventurefarintothetidal streams (Wells 1961:262)andthesearehighlymobile animalsthatspendasmallpercentageoftheirlife cycle there. Thebluecrab(Callinectes sapidus),for instance, travelsupstreamto the tidal-in fluencedmarsheswherematingoccurs,andreturnstotheestuarinebaysandlaterto the Gulf (Durako eta1.1985:250-251). Bedsofthemarshclam,Rangiacuneata,areassociatedwiththeMyakkaandPeacerivers(Woodburn1965:6), aswellastheCaloosahatchee(GunterandHall 1969:63-64).Otherthanthebluecrab,themarshclam,andmangroveproproot/mud

PAGE 279

ZooarchaeologyofCharlotte Harborflatcommunitiesofsmallgastropodsandbivalves,littleisknownaboutinvertebratesinuppertidalstreams(Estevezetal. 1984:CH160-CH163).Type2, formypurposes,islimitedtoareasofthemangrove-fringedlowertidalstreamsandestuarinelocations.Molluscscommonlyassociatedwithmangroveproprootsandadjacentintertidalmudsincludetheeasternoyster(Crassostreavirginica),At lanticribbedmussel(Geukensia demissa granosissima),easternwhiteslipper-shell(Crepidula plana),Gulfoysterdrill(Urosalpinx perrugata),scorchedmussel(Brachidontes exustus),worm-shell(Turritellaspp.),crownconch(Melongenacorona),semiplicatedoveshell(Anachis semiplicata),Atlanticbubble(Bulla striata),broad-ribbedcardita(Carditamera f'oridana),coffeemelampus(Melampus coffeus),andseveralceriths(Cerithiumspp.)(Abbott1974;Odumet al. 1982:48-49).Themangrovetree crab(Aratuspisonii) isanabundantresident.Oysterbedcommunities(Type 3)areimportantandfrequentfeaturesinsomepartsoftheCharlotteHarborestuarinesystem(Woodburn1965).TurtleBay, Bull Bay, Matlacha Pass,andSan Carlos Bayareexamplesofsuchareas.Theeasternoysteris welladaptedtoestuarinesituations,toleratingconstantsalinityfluctuations(Butler1954:479).Itismostproductiveinmid-tolow-salinityestuarinewatersbecausepredators,suchasoysterdrills(Urosalpinxspp.)andodostomes(e.g.,Booneaimpressa),requiresomewhatsaltierwaters(Wells 1961:239,249-250).Oysterbarssupportalargevarietyoffaunainandamongbothliveanddeadshellsbyprovidingahardandprotectivesubstrateas well as a food resource.CommunityprofilesconstructedinaNorthCarolinastudybyWells(1961:252)demonstratevaryingspeciescompositionandadecreaseindiversityasoneapproachesfresh water.InsouthwestFlorida, thecommoncrownconch isabundantlyassociatedwithoysterbars.Experimentshaveshownthatthisanimalpreferssalinitiesof20 o;f)o andabovebuttolerates 15.2 to 12.8 o;f)o forshortperiods(HathawayandWoodburn1961:49).Othercommonorganismsofthebarcommunityarethecrestedoyster(Ostrea equestris),barnacles(Balanusspp.), scorchedmussel,odostomes,boringsponges(Clionaspp.),oysterdrills,commonjingleshell(Anomia simplex),andslippershells(Crepidulaspp.) (Butler 1954:486; Wells 1961:249-250;SouthwestFloridaProject field observations).Migratorypredatorsotherthanthecrownconchincludewhelks(Busyconspp.),blackdrum(Pogoniascromis),stingrays,andbluecrabs (Butler 1954:486;Carriker1951; Galtsoff 1964:435, 439).Shallow-waterseagrassmeadows,thefourthtype,provideextensivehabitatareasfornumerousmobileandsessile molluscs. Theabundanceofinvertebratessurpasseseventhe fishesinareasofheavyshoalandturtlegrasses(Zieman1982:49).Commongastropodsincludethelightningwhelk(Busycon contrarium),Say'spearwhelk(Busycon spiratum pyruloides),truetulip(Fasciolariatulipa),Floridahorseconch(Pleuroplocagigantea),crownconch (especially juveniles), fly-271speckedcerith(Cerithium muscarum),doveshells(Anachisspp.), Atlanticmodulus(Modulus modulus),andlunardove-shell(Mitrella lunata).Bivalvessuchassouthernquahogclam(Mercenaria campechiensis),rigidpenshell(Atrina rigida),andcross-barredvenusareoftenembeddedinlargenumbersinthegrassbottoms.Otherorganismsincludepinkshrimp(Penaeusduorarum),corals (e.g.,Manicimiaareolata,Porites furcata),hermitcrabs(Pagurusspp.),andseaurchins(e.g.,Lytechinus variegatus, Tripneustes ventricosus)(Zieman1982:45-49).Althoughnostudiesareknown,itispresumedthatseagrassinvertebratecompositionvariesalongthesalinitygradientinmuchthesamemannerastheoysterbedcommunity.Anumberofspeciesofinvertebratesappeartoberestricted to thebeachzoneandGulf waters. Others,althoughpreferringhabitatsinthese areas,arealsofoundinthe oceanicandestuarinebays.Thesetwogroupscomprisethefifthinvertebratecategory. Representativeanimalsincludesunrayvenus(Macrocallistanimbosa),southernsurfclam(Spisulasolidissima similis),stonecrab(Menippe mercenaria),sanddollars(Family ScuteIlidae),andmanysmallgastropodsandbivalves (Abbott 1974;WangandRaney1971:21). Iemphasizethattheforegoingvertebrateandinvertebratedivisionsrepresentroughsegmentsofthesalinitygradient.In reality,nospecies restricts itself totheseartificial types.Nonetheless,the typesallowanoperabledescriptionofthecontinuum.FuturebiologicalstudiesinCharlotteHarborwillimprovethisbriefdescriptivedistributionmodel.InferredLocalDistributionofResourcesinPrehistoryIhaveestablishedthatpresent-dayCharlotteHarborisheterogeneousandIhaveconceptualizeditsspatialvariabilityintermsofabstracthabitatcategor ies.However,thismodelcannotbeprojecteddirectlyintothepastwithoutindependentconfirmation.Ifoneassumes,as Ido,thattheprehistoricpeopletargetedresourcesneartheirhabitationsandthatfaunalevidencefoundata siterepresentsanimalsprocessedorconsumedatthatsite,thenzooarchaeologicaldatacanbeusedtotestwhethertheheterogeneityofthepresentwasalso characteristicofthepast. Seventeensamplesofarchaeologicalfaunafrom fivesitesBigMoundKey(8CH10),CashMound(8CH38),UseppaIsland(8LL51),JosslynIsland(8LL32),andBuck Key ShellMidden(8LL722) (Figure 1) -wereselected for zooarchaeologicalstudy.These sitesandtheirtest excavationsaredescribedinChapter2ofthisvolume.The sitesarelocated invariouspartsofthegreaterCharlotteHarborestuarinesystemrepresentingtheareaofgreatestsitedensityandthere foredonotcovertheentirerangeoflocalenvironmental settings.Valuableadditions,for example,wouldbefaunalassemblagesfrom sites located in Estero BayandatthemouthsofandalongtheCaloosahatchee, Peace,andMyakkarivers. Formodelingpurposes,Iassumethatthesamplesgenerallyarefromprimarydepositsandthattheyare

PAGE 280

272representativeofsitemiddens.The lackofintra-sitehorizontalsamplingneednotbeviewedas debilitatingto astudythatserves as aregionalbaseline,onethatis subject tocontinualmodificationwitheachadditionofnewdata.Descriptionsofspecific proceduresanddiscussionsofmethodarepresentedinAppendixA.Compositesitedata(i.e.,combinedleveldatawithina site,thuscombiningtimeperiods),withtheexceptionofUseppaIsland,prOVide thebasisforzooarchaeologicalspatialinterpretation.Thecompositedatasetsarepresentedinthetextonlyinsummarizedform.However,theyaregeneratedfromrawdata,allofwhicharepresentedinAppendixB.Compositedatafor BigMoundKey,CashMound,andJosslynIslandconsistoffour levels each. TheUseppafauna is fromonlyonelevel, A-4-2. The Buck KeycompositeincludestwoTest B levels, B-2-5andB-2-9.Eachpresent-daylocalsettingofthefivearchaeological sitesisdescribedbelowinconcertwithsummarizedresultsofzooarchaeological analyses. Iassumethatarchaeofaunaldata(AppendixB)representthefaunalexploitationbyprehistorichumanoccupantsof each site.Forcompositedatasets, then, these zooarchaeologicaldatacanbetranslatedintoinferredlocaldistributionof resources,summarizedinFigure3.ThedataforUseppaareonlytentativelyofferedasrepresentativeofthatsiteduetotheavailabilityofonlyonesample.BigMoundKey, 8CH10.BigMoundKeytodayissituatedat themouthofWhiddenCreek, astreamthatdrainspartsoftheCapeHazewetlands(Figure 1). Patchesofshallowseagrass(0.3 to 0.9 mdepthatmeanlowtide)occuramongsmallmangroveislandsto thesouthandwestinGasparillaSound.Oysters concentratearoundthemanysmallmangroveislandsin thesoundandadjacentbays(Woodburn1965:24-25). Directlynorthofthesite is Boggess Hole, alargeestuarine"pond."Fartherwestarethebarrierislands, GasparillaandLittle Gasparilla,separatedfromeachotherbytheshallow(0.3 mdeepatmeanlowwater) Gasparilla Pass.Faunafromeachoftheseareasarerepresentedinthe BigMoundKey archaeologicalsamples(AppendixB,TablesB1throughB4;Figure3).Cottonrat, rac coon,white-taileddeer,andboxturtleareallcommontomangroveforestsandpalmetto/pineforests. Thepresenceofthegreatersiren,snappingturtle(Chelydra serpentina),mudturtle(Kinosternonspp.),andfrogs suggestsexploitationofafreshwaterenvironment.Theribbedmusselistheprimarymangroveedgemol lusc,representing15%oftotalMinimumNumberofIndividuals(MNI)(Figure3).ThesebivalvesarefoundtodayimbeddedinswampyareasofblackmangrovesuchasonthewesternsideofBigMoundKey.Themangrove/seagrasshabitatcategoryisrepresentedby36%MNI(Figure 3),largelyconsistingofthree fishes (pinfish; toad fish,Opsanusspp.;andkil lifish)andahostofinvertebrates(TablesB1throughB4).Unlikeothersitearchaeofaunas,BigMoundKey contains a significantnumberofthesharkeyesnail,Culture and Environment in the Domainofthe CalusaPolinices duplicatus.Theoysterbedcommunitycontributesapproximately34%ofthesample(Figure 3). Finally, severalvertebrateandinvertebratespeciespreferringoceanicwaters(11%)areincludedinthe assemblage.Cash Mound, 8CH38.CashMoundissituatedinTurtleBay (Figure 1),anareawithwaterdepthsof0.6 to 1.8 matmeanlowtideandrichinproductiveoysterbeds(Woodburn1965:23-24). Seagrassesoccurintheimmediatevicinityandfreshwatermarshesexist inlandtothenorth.Theonlyterrestrialfaunarecordedinthearchaeologicalsamples(TablesB5throughB8)is rac coonandanunidentifiedlargemammal(presumablydeer). Theoysterbedcommunityconstitutes38%ofthesample(Figure 3). Ribbedmussels,probablycol lected fromintertidalmangroveswamps,followwith36%.Othermangroveedgeinvertebratesoccur,butin smallnumbers.Hardheadcatfishandpinfish,bothcommontomangrove/seagrassareas,aretheonlyfishesthatoccurinabundanceinthesamples.Themangrove/seagrasshabitatisrepresentedbyonly9%MNI(Figure3)ofthefaunalsamples.CashMound'sfaunalassemblagereflects alimitedexploitationstrategycomparedtotheotherfourstudysites.Useppa Island, 8LL51.EstuarinewaterssurroundingUseppaIslandtodayvaryfrom 0.3 to 3.9 mdeepatmeanlowtide.Theareais influenced tosomedegreebyBocaGrandePass (10 matmeanlowtide)butmorebyCaptivaPass (5.7 matmeanlowtide)duetothenorthwardmovementofcurrentsin PineIslandSound(Figure 1). Seagrassandoysterhabitatsinthe vicinityhavedecreasedinareaduetomodernhumanimpact,particularlythedredgingoftheIntracoastalWaterway.Mangrove/seagrassandoysterhabitatswereheavilyexploitedbyUseppa'sinhabitantsofca. 570 B.C.(Figure3).Thefivemostabundantfishesinthesamplearehardheadcatfish, pinfish, pigfish,spottedseatrout,andstripedburrfish(Chilomycterus schoepji),allcommonto themangrove/seagrasshabitat(TableB9).Oystersandtheirassociatesareprominentlyrepresentedwith46%MNI(Figure 3).Thecross-barredvenusispresentinhighnumberscomparedtoothersitesamples(TableB9).Thecottonrat,white-taileddeer,andgophertortoise alsoarepresentinthearchaeological sample.Josslyn Island, 8LL32.JosslynIslandis located ashortdistancewestofPineIsland(Figure 1)andissurroundedbyextensiveandextremelyshallowbedsof seagrass.Waterdepthsare0.3 to 0.6 matmeanlowtideinall directions. Thissituationis reflectedinthefaunalsamples(TablesB10throughB13),asthesemangrove-fringedgrassmeadowsarerepresentedby68%ofthetotalMNI(Figure 3).Ninefishesareabundant(morethan20MNI).Thetopfour fishesarepinfish,pigfish, silverperch,andhardheadcatfish. Josslyn exhibitsthegreatestinvertebratediversityofallthesites (composite totalof67 taxa). These results

PAGE 281

ZooarchaeologyofCharlotte Harbor273MN o MangroveEdge _OtherSOURCEFLORIDAATLAS8GAlETEERSWFPROJECT"'" Man9rove/Seagrass OysterBed Barnacle ITIIJ] Littoral/GulfCAPEHAZEPENINSULABLIND10 KM C'""-u...;,"''" 5CALE15BOCAGRANDEPASSJosslynIsland4919UseppaIsland46GASPARILLA34Figure 3. Comparative percentagesofzooarchaeological MNIbysite, representingexploitedhabitats (basedondata presentedinAppendixB).

PAGE 282

274attesttothehighproductivityoftheseagrasshabitat(Zieman1982:49).Althoughoystersandtheirassociatescomprise19%ofthesamples(Figure 3),todayonlyonesmalloystercommunityisobservedintheJosslynenvirons.Aquaticbirdssuchasred-breastedmerganser(Mergus serrator),bayducks(Aythyaspp.),andotherducks(FamilyAnatidae)favorshallowseagrassmeadowsandalsoappearinthemiddenfauna. Terrestrialareassuchasmangroveforests,marshlands,andpalmetto/pineflatlandsarerepresentedbythecotton rat, raccoon,white-taileddeer,warbler,boxturtle,andskink.BuckKeyShel/ Midden,BLL722.BuckKeyis lo-catedto theeastofandadjacenttoCaptivaIsland(Figure 1). Buck Key ShellMiddenisontheeasternshoreoftheisland.Ofthefivestudysites,itis theoneclosest to theopenGulf,thesouthernportionoftheislandpresentlyborderingshallowBlind Pass (0.0 matmeanlowtide).Surroundingtheisland,waterdepthsvaryfrom0.1to 2.1 matmeanlowtide,andseagrassmeadowslie totheeastandnorth. Also to thenortharethedeeperocean-influencedwatersofRedfish Pass (2.1 to 10.0 matmeanlowtide).Mangrove/seagrassfaunaarepredominant(62%) in the archaeologicalsamples(TablesB14throughB17;Figure3). Thelittoral/Gulfareasfollowwith17%(Figure3).Hardheadcatfish,sheepshead,silverperch,pinfish,andstripedburrfish,allcommonseagrass fishes,areabundantinthemiddensamples.ArandomsampleofBuck Key fishvertebrae,relative tosamplesfromCashMoundandJosslynIsland(Figure4), reflectstheproximityofBuck Key toanocean inletduringprehistoricoccupation. Becauseofthegeographicconstrictionofinletwaters,tidalcycling,anddailymovementsoffish,thedensityoflarger,predatoryfishes isgreateratinletlocations. Whelks, conchs,andtulipsareabundant.Fishesandmolluscswithhigh-salinitypreferences identifiedCultureandEnvironment in the DomainoftheCalusafromthemiddenincludeahostofsharks,gaggrouper,redsnapper(Lutjanus campechanus),searobin(Prionotusspp.),barracuda,whiting,letteredolive(Oliva sayana),tellin(Tel/inaspp.),coquina(Donax variabilis),stonecrab,andsouthernsurfclam. Stone crabs favortheestuarinesideofoceanic passesaswell asGulfwaters.Productiveoysterbedsarenotknownintheimmediateareatodaybutsmall,scatteredbedshavebeennotedontheeastsideofBuck Key close to themangroveshoreline.Inferred Regional Distribution of ResourcesinPrehistoryJustasthepresent-dayestuarinefaunaldistributioncanbemodeledintermsofagradient,socantheheterogeneityobservedinthezooarchaeological assemblagesdescribedabove.Establishingsucha"zooarchaeologicalgradient"involvestwoprocedures.First,completelists ofaquaticvertebrates(AppendixC,TableC1)andinvertebrates(Table C2)representedinthearchaeofaunalassemblagesofAppendixBarecompiled.Thespeciesarethenroughlyseriatedbytheirknownpreferencefor theestablishedhabitatcategories sothatthelistingsinAppendixC follow asalinityprogression,orgradient,from freshwatertooceanic water. I onceagainstressthatthegradientconcepttreatsfaunaldistributionasacontinuuminthatitrecognizesgreatoverlapinuseofavarietyofhabitatsbyaquaticfauna.Anappropriatesystemofgraphicsymbolsrepresentingknown"preference"illustratesthispoint(AppendixC).Forexample,sharksaredepictedasgenerallyoccurringintheinshoremangrove/seagrasshabitats{"estuarineandoceanicmangrove"areas) as well asontheGulfshelf,but"prefer"thelatterenvironment(Table C1).Figure5 is a schematicillustrationofthegradientdistributionbasedontheprocedurejustdiscussedandpresented(in detail)inAppendixC.Thepatternis informative. It clearly indicates (bythegreatoverlap2010o 20Zw ::;) 010w c:: u.o2010oI II II I 111111111111...1..CASH MOUND ..I.-.I I III1111111.111...1...JOSSLYN ISLAND f..111..I... .IIBUCKKEY....1111111111111111111_1...I_____-----2 3 4 5 6 7 8FISH VERTEBRA WIDTH(mm)Figure4.ThoracicvertebraewidthsofbonyfishesasanindicatorofoverallfishsizeforCashMound,JosslynIsland,andBuckKey.

PAGE 283

ZooarchaeologyofCharlotte Harbor275Mangroveoceanlcl littorallGulf Figure5.Schematicillustrationoftherelationshipbetweenaquaticvertebratesandinvertebratesrecoveredfromthefivestudysitesandtheestuarinegradient(basedondetaileddatapresentedinAppendixC).A TEMPORAL PERSPECTIVEONRESOURCE HETEROGENEITYsettingoflow-tomid-salinitybasedonthehighlevelofoysterexploitationandlowdiversityoffishes(twenty-threespeciesfromthefoursamples).UseppaandJosslynislandsfall into themid-tohigh-salinityrange,withdecreasingoysterbedsandincreasingdensitiesofseagrassmeadow(AppendixC).Thesesitemiddensamples,particularlythose of Josslyn,producedthegreatestabundanceofseagrass fishes. A totalofthirty-one fish specieswasidentified from the four Josslynsamples.TheBuck KeyfaunalremainsindicatethehighestMNIofanimalsfromlittoral/Gulfareas,placing Buck Keynearestthehigh-salinityendoftheestuarinescale. Theprehistoricecologicalsettingfor Buck Keymayhavebeensimilar toOdumandhis colleagues' oceanicbaysituation(1982:56),supportingagreaterdiversityof fishesthandootherenvironments.Ofthe fivestudysites,indeed,the Buck Key faunalremains(B-2-5, TableB14)producedthehighestnumberof taxaforbothvertebrate(37)andinvertebrate(49)groupsforanysinglesample.LookingatBuck Key's foursamplesasaunit,a total of40fish specieswasidentified. As adescriptivetool, agradientanalysisbreaksdowna complexenvironmentsuchasCharlotteHarborintounderstandablesegmentsthatarchaeologistscanrelate toprehistorichumanadaptation.Salinity,usedhereroughlytodefinethosesegmentsforCharlotteHarbor,isofcourseonlyoneofmanyvariablesdeterminingfaunaldistributionalonganestuarinegradient.It is,however,perhapsthemostappropr
Culture and environment in the domain of the Calusa
CITATION THUMBNAILS DOWNLOADS PDF VIEWER PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/AA00006131/00001
 Material Information
Title: Culture and environment in the domain of the Calusa
Series Title: Monograph / Institute of Archaeology and Paleoenvironmental Studies, University of Florida ;
Physical Description: viii, 440 p. : ill. ; 28 cm.
Language: English
Creator: Marquardt, William H
Payne, Claudine
Publisher: Institute of Archaeology and Paleoenvironmental Studies, University of Florida
Place of Publication: Gainesville
Publication Date: 1992
 Subjects
Subjects / Keywords: Calusa Indians -- Ethnobotany   ( lcsh )
Calusa Indians -- Ethnozoology   ( lcsh )
Calusa Indians -- Antiquities   ( lcsh )
Paleoethnobotany -- Florida -- Charlotte Harbor (Bay)   ( lcsh )
Paleontology -- Florida -- Charlotte Harbor (Bay)   ( lcsh )
Calusa (Indiens) -- Ethnobotanique   ( ram )
Calusa (Indiens) -- Ethnozoologie   ( ram )
Calusa (Indiens) -- Antiquités   ( ram )
Paléoethnobotanique -- États-Unis -- Charlotte Harbor (Fla. ; Baie)   ( ram )
Paléontologie -- États-Unis -- Charlotte Harbor (Fla. ; Baie)   ( ram )
Antiquities -- Charlotte Harbor (Fla. : Bay)   ( lcsh )
Antiquités -- Charlotte Harbor (Etats-Unis ; Fla. ; Baie)   ( ram )
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
 Notes
Bibliography: Includes bibliographical references and index.
Statement of Responsibility: edited by William H. Marquardt with the assistance of Claudine Payne.
 Record Information
Source Institution: University of Florida
Rights Management: Permissions granted by William H. Marquardt.
Resource Identifier: oclc - 26854633
lccn - 92036427
isbn - 1881448002 (alk. paper) :
ocm26854633
sobekcm - AA00006131_00001
Classification: lcc - E99.C18 C85 1992
ddc - 975.9/48
System ID: AA00006131:00001

Downloads

This item has the following downloads:

( PDF )


Table of Contents
    Front Cover
        Page i
        Page ii
    Title Page
        Page iii
        Page iv
    Dedication
        Page v
        Page vi
    Table of Contents
        Page vii
        Page viii
    The Calusa Domain: An Introduction, William H. Marquardt
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
    Recent Archaeological and Paleoenvironmental Investigations in Southwest Florida, William H. Marquardt
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
    Stratigraphy of Indian "Mounds" in the Charlotte Harbor Area, Florida: Sea-level Rise and Paleoenvironments, Sam B. Upchurch, Pliny Jewell IV, and Eric Dehaven
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
        Page 95
        Page 96
        Page 97
        Page 98
        Page 99
        Page 100
        Page 101
        Page 102
        Page 103
        Page 104
    Technological Investigation of Pottery Variability in Southwest Florida, Ann S. Cordell
        Page 105
        Page 106
        Page 107
        Page 108
        Page 109
        Page 110
        Page 111
        Page 112
        Page 113
        Page 114
        Page 115
        Page 116
        Page 117
        Page 118
        Page 119
        Page 120
        Page 121
        Page 122
        Page 123
        Page 124
        Page 125
        Page 126
        Page 127
        Page 128
        Page 129
        Page 130
        Page 131
        Page 132
        Page 133
        Page 134
        Page 135
        Page 136
        Page 137
        Page 138
        Page 139
        Page 140
        Page 141
        Page 142
        Page 143
        Page 144
        Page 145
        Page 146
        Page 147
        Page 148
        Page 149
        Page 150
        Page 151
        Page 152
        Page 153
        Page 154
        Page 155
        Page 156
        Page 157
        Page 158
        Page 159
        Page 160
        Page 161
        Page 162
        Page 163
        Page 164
        Page 165
        Page 166
        Page 167
        Page 168
        Page 169
        Page 170
        Page 171
        Page 172
        Page 173
        Page 174
        Page 175
        Page 176
        Page 177
        Page 178
        Page 179
        Page 180
        Page 181
        Page 182
        Page 183
        Page 184
        Page 185
        Page 186
        Page 187
        Page 188
        Page 189
        Page 190
    Shell Artifacts from the Caloosahatchee Area, William H. Marquardt
        Page 191
        Page 192
        Page 193
        Page 194
        Page 195
        Page 196
        Page 197
        Page 198
        Page 199
        Page 200
        Page 201
        Page 202
        Page 203
        Page 204
        Page 205
        Page 206
        Page 207
        Page 208
        Page 209
        Page 210
        Page 211
        Page 212
        Page 213
        Page 214
        Page 215
        Page 216
        Page 217
        Page 218
        Page 219
        Page 220
        Page 221
        Page 222
        Page 223
        Page 224
        Page 225
        Page 226
        Page 227
        Page 228
    Bone Artifacts from Josslyn Island, Buck Key Shell Midden, and Cash Mound: A Preliminary Assessment for the Caloosahatchee Area, Karen Jo Walker
        Page 229
        Page 230
        Page 231
        Page 232
        Page 233
        Page 234
        Page 235
        Page 236
        Page 237
        Page 238
        Page 239
        Page 240
        Page 241
        Page 242
        Page 243
        Page 244
        Page 245
        Page 246
    Calendars of the Coast: Seasonal Growth Increment Patterns in Shells of Modern and Archaeological Southern Quahogs, Mercenaria campechiensis, from Charlotte Harbor, Florida, Irvy R. Quitmyer and Douglas S. Jones
        Page 247
        Page 248
        Page 249
        Page 250
        Page 251
        Page 252
        Page 253
        Page 254
        Page 255
        Page 256
        Page 257
        Page 258
        Page 259
        Page 260
        Page 261
        Page 262
        Page 263
        Page 264
    The Zooarchaeology of Charlotte Harbor's Prehistoric Maritime Adaptation: Spatial and Temporal Perspectives, Karen Jo Walker
        Page 265
        Page 266
        Page 267
        Page 268
        Page 269
        Page 270
        Page 271
        Page 272
        Page 273
        Page 274
        Page 275
        Page 276
        Page 277
        Page 278
        Page 279
        Page 280
        Page 281
        Page 282
        Page 283
        Page 284
        Page 285
        Page 286
        Page 287
        Page 288
        Page 289
        Page 290
        Page 291
        Page 292
        Page 293
        Page 294
        Page 295
        Page 296
        Page 297
        Page 298
        Page 299
        Page 300
        Page 301
        Page 302
        Page 303
        Page 304
        Page 305
        Page 306
        Page 307
        Page 308
        Page 309
        Page 310
        Page 311
        Page 312
        Page 313
        Page 314
        Page 315
        Page 316
        Page 317
        Page 318
        Page 319
        Page 320
        Page 321
        Page 322
        Page 323
        Page 324
        Page 325
        Page 326
        Page 327
        Page 328
        Page 329
        Page 330
        Page 331
        Page 332
        Page 333
        Page 334
        Page 335
        Page 336
        Page 337
        Page 338
        Page 339
        Page 340
        Page 341
        Page 342
        Page 343
        Page 344
        Page 345
        Page 346
        Page 347
        Page 348
        Page 349
        Page 350
        Page 351
        Page 352
        Page 353
        Page 354
        Page 355
        Page 356
        Page 357
        Page 358
        Page 359
        Page 360
        Page 361
        Page 362
        Page 363
        Page 364
        Page 365
        Page 366
    A Modern Midden Experiment, Elizabeth S. Wing and Irvy R. Quitmyer
        Page 367
        Page 368
        Page 369
        Page 370
        Page 371
        Page 372
        Page 373
        Page 374
    Archaeobotanical Research in the Calusa Heartland, C. Margaret Scarry and Lee A. Newsom
        Page 375
        Page 376
        Page 377
        Page 378
        Page 379
        Page 380
        Page 381
        Page 382
        Page 383
        Page 384
        Page 385
        Page 386
        Page 387
        Page 388
        Page 389
        Page 390
        Page 391
        Page 392
        Page 393
        Page 394
        Page 395
        Page 396
        Page 397
        Page 398
        Page 399
        Page 400
        Page 401
        Page 402
    Skeletal and Dental Analysis of Burials from the Collier Inn Site, Useppa Island, Michael J. Hansinger
        Page 403
        Page 404
        Page 405
        Page 406
        Page 407
        Page 408
        Page 409
        Page 410
    Prehistoric Burials from Buck Key, Dale L. Hutchinson
        Page 411
        Page 412
        Page 413
        Page 414
        Page 415
        Page 416
        Page 417
        Page 418
        Page 419
        Page 420
        Page 421
        Page 422
    Calusa Culture and Environment: What Have We Learned? William H. Marquardt
        Page 423
        Page 424
        Page 425
        Page 426
        Page 427
        Page 428
        Page 429
        Page 430
        Page 431
        Page 432
        Page 433
        Page 434
        Page 435
        Page 436
    Index
        Page 437
        Page 438
        Page 439
        Page 440
Full Text
Culture and Environment in the Domain of the Calusa




Culture and Environment in the Domain of the Calusa
Edited by
WILLIAM H. MARQUARDT
with the assistance of CLAUDINE PAYNE
Monograph 1
Institute of Archaeology and Paleoenvironmental Studies
University of Florida
Gainesville
1992
UNIVERSITY QFFLC^ Uw


COPYRIGHT 1992 BY
INSTITUTE OF ARCHAEOLOGY
AND PALEOENVIRONMENTAL STUDIES
Florida Museum of Natural History
University of Florida
Gainesville, Florida 32611-2035
ALL RIGHTS RESERVED.
PRINTED IN THE U.S.A. ON ACID-FREE PAPER ~
Library of Congress Cataloging-in-Publication Data
Culture and Environment in the Domain of the Calusa / edited by William H. Marquardt, with the assistance of Claudine Payne.
p. cm. (Monograph / Institute of Archaeology and Paleoenvironmental Studies, University of Florida ; 1) Includes bibliographical references and index. ISBN 1-881448-00-2 (alk. paper) : $25.00
1. Calusa Indians Ethnobotany. 2. Calusa Indians Ethnozoology. 3. Calusa Indians Antiquities. 4. Paleoethnobotany Florida Charlotte Harbor (Bay). 5. Paleontology Florida Charlotte Harbor (Bay). 6. Charlotte Harbor (Fla : Bay) Antiquities. I. Marquardt, William H. II. Payne, Claudine. III. Series: Monograph (University of Florida, Institute of Archaeology and Paleoenvironmental Studies) : 1.
E99.C18C85 1992 975.9'48 dc20
92-36427 CIP


For Don and Pat Randell




Contents
1 The Calusa Domain: An Introduction 1
WILLIAM H. MARQUARDT
2 Recent Archaeological and Paleoenvironmental Investigations in Southwest Florida 9
WILLIAM H. MARQUARDT
3 Stratigraphy of Indian "Mounds" in the Charlotte Harbor Area, Florida: Sea-level Rise and Paleoenvironments 59
SAM B. UPCHURCH, PLINY JEWELL IV, AND ERIC DEHAVEN
4 Technological Investigation of Pottery Variability in Southwest Florida 105
ANN S. CORDELL
5 Shell Artifacts from the Caloosahatchee Area 191
WILLIAM H. MARQUARDT
6 Bone Artifacts from Josslyn Island, Buck Key Shell Midden, and Cash Mound: A Preliminary Assessment for the Caloosahatchee Area 229
KAREN JO WALKER
7 Calendars of the Coast: Seasonal Growth Increment Patterns in Shells of Modern and Archaeological Southern Quahogs, Mercenaria campechiensis, from Charlotte Harbor, Florida 247
IRVY R. QUITMYER AND DOUGLAS S. JONES
vii


Vili
8 The Zooarchaeology of Charlotte Harbor's Prehistoric Maritime Adaptation: Spatial and Temporal Perspectives 265
KAREN JO WALKER
9 A Modern Midden Experiment 367
ELIZABETH S. WING AND IRVY R. QUITMYER
10 Archaeobotanical Research in the Calusa Heartland 375
C. MARGARET SCARRY AND LEE A. NEWSOM
11 Skeletal and Dental Analysis of Burials from the Collier Inn Site, Useppa Island 403
MICHAEL J. HANSINGER
12 Prehistoric Burials from Buck Key 411
DALE L. HUTCHINSON
13 Calusa Culture and Environment: What Have We Learned?
WILLIAM H. MARQUARDT
INDEX 437


1
The Calusa Domain: An Introduction
William H. Marquardt
On a February day four hundred twenty-six years ago in Charlotte Harbor, then known as the Bay of Carlos, Pedro Menndez de Aviles stood face to face with paramount chief Carlos, king of the Calusa and lord of south Florida (Figure 1). Just five months before, in September, 1565, the 47-year-old Spanish nobleman had wrested control of Fort Caroline from the French and founded a new town named St. Augustine.
Menndez held the Spanish title "Adelantado," signifying that he represented the king of Castilian Spain in this new frontier in what to the Spaniards was a new world. He was also governor of the Spanish colony of Florida and commander of a small and often contentious band of a few hundred mercenary soldiers, sailors, settlers, craftspersons, and priests (Lyon 1983:38-130).
In the person of Carlos, son of Senquene, rested the authority of the Calusa state, the prerogative of life or death over thousands of subjects, the right to receive payment of tribute from scores of towns across the peninsula, the power to use sacred knowledge to command the winds and waters. His people built earthworks, temples, and waterways; carved, painted, and engraved. They practiced rituals that included reverence for ancestors and a concept of afterlife. Commoners provided for the nobles and for the military, who were not required to work. On that February day Carlos's soldiers stood ready to enforce his will, or die trying. "
But while both men held authority and controlled formidable resources, each needed the other. For this was no chance encounter, but a carefully orchestrated ceremony in which Carlos would offer his allegiance
Figure 1. Artist's conception of the meeting between Pedro Menendez de Aviles and Calusa paramount chief Carlos, February, 1566. (Drawing copyright 1990 by Hermann Trappman, used by permission.)
1


2
Culture and Environment in the Domain of the Calusa
to Menendez and Castile in the expectation of receiving Menendez's assistance in defeating his enemies and solidifying his own political power (Marquardt 1987b; Solis de Meras 1964).
What historical processes had led to the encounter between Menendez and Carlos that winter day in 1566? What combinations of environmental conditions and human decisions, many generations before Carlos and Menendez, had produced the fiercely independent Calusa, who now believed it to their advantage to negotiate with some of the strange outsiders who had so fundamentally changed the cir-cum-Caribbean world during Menendez's and Carlos's own lifetimes?
The answers are not obvious, and in fact the Calusa are something of an anthropological mystery. For ex-. ample, although sedentary, complex, stratified, and tributary, the Calusa were not farmers but fisher folk. Almost all the known people who achieve such a measure of complexity are agriculturalists who depend on one or more staple crops for their subsistence and are thus able to produce and distribute a surplus. So far as we can tell from our study of both historical and archaeological data, the Calusa and their south Florida neighbors raised no crops whatsoever.
If the Calusa did not achieve complexity and power by controlling agricultural surpluses, how did they achieve them? One part of the answer to the Calusa puzzle is surely the extremely high productivity of southwest Florida's estuarine marine meadows^ In fact, some scholars believe that the rich inshore food resources were entirely sufficient to fulfill the role usually played by agriculture (Goggin and Sturtevant 1964: 207). This may be true, but it does not explain the process by which the Calusa became so remarkably complex. Many maritime cultures, even those in environments of abundance, did not.
Randolph Widmer has proposed a cultural materialist model for Calusa development. Widmer (1986; 1988:262-263) believes that Calusajjohtical complexity resulted mainly from efforts to provide subsistence fgr_a_grovving population. He thinks that the period between 500 B.C. and A.D. 800 saw steadily increasing populations, until by about A.D. 800 the limits of the bountiful environment had finally been reached. This led to the establishment of a centralized political struc-turjn order to resolve. disagreements and to dis-tribute food and other materials effectively. Widmer believes that this situation remained essentially unchanged until the European era (Widmer 1988: 261-276). In other words, the Calusa had become complex by A.D. 800, and they stayed that way.
It is possible that the sixteenth-century Calusa political complexity observed by the Spaniards was not the result of the slow and steady process that Widmer suggests. Instead, it may have been a recent develop-ment, stimulated by sixteenth-century European^ presence in the region that we know today as the southeastern United States and the circum-Caribbean
(Marquardt 1991). South Florida natives__were in direct and indirect contact with Europeans early in the sixteenth century (Marquardt 1988b:176-179), and it is plausible that important changes in Calusa social and political organization occurred as South Florida was drawn inexorably into the European-dominated mercantile/imperial economy (Marquardt 1987b:103-110; 1991).
Widmer first proposed his model in a Ph.D. dissertation completed in 1983, the same year we began work in southwest Florida. As Widmer stated then (1983:145), the chronological understanding of the Caloosahatchee/Charlotte Harbor region (Figure 2), heartland of the historic Calusa, was woefully inadequate. If Widmer's or any alternative explanatory models were to be tested, new and better archaeological data were needed. In short, we lacked the most basic chronological and environmental understandings that would allow us even to begin to test models of Calusa development (Marquardt 1986:66-67).
THE SOUTHWEST FLORIDA PROJECT
The Southwest Florida Project began in 1983 when I mapped a shell midden site on Josslyn Island (Marquardt 1984), assisted by Alan May (Schiele Museum, Gastonia, N.C.) and members of the Southwest Florida Archaeological Society, and funded by Josslyn's landowners, Donald and Patricia Randell. Preliminary visiting and surface collecting of various sites on the islands of Charlotte Harbor/Pine Island Sound were done intermittently over the next two years, with the help of volunteers and limited university resources.
Supported mainly by the contributions of private citizens (seeMarquardt 1987a:14,1988a:15; Marquardt and Blanchard 1989:14; Blanchard and Marquardt 1990:9-10) and assisted by numerous volunteers from Lee, Collier, and Charlotte counties, we tested (and removed column samples from) a number of Charlotte Harbor sites between 1985 and 1988. (Detailed descriptions and diagrams of these test excavations are found in Chapter 2 of this volume.)
Our first opportunity came in March and May, 1985, again at Josslyn Island (8LL32). Supported by an additional gift from the Randells, we excavated three test pits, one to a depth of 3.8 m in an area previously disturbed by unauthorized excavators. In June, with the cooperation of the Ding Darling National Wildlife Refuge, which has jurisdiction there, we removed column samples from an eroding beach-side deposit at Cash Mound (8CH38). A third opportunity was presented when we were invited by owner/developer Garfield Beckstead to salvage information from a midden near the Collier Inn on Useppa Island that had been inadvertently disturbed by a backhoe. Analysis of these materials was supported by a grant from the Ruth and Vernon Taylor Foundation and by gifts from private donors (Marquardt 1987a, 1988a).


Figure 2. Southwest Florida, showing the area from Charlotte Harbor to the Ten Thousand Islands. (Drawing by Corbett Torrence.)


4
Culture and Environment in the Domain of the Calusa
In February, 1986, a grant from the National Science Foundation (BNS85-19814) enabled us to begin gathering seasonality and paleoenvironmental data. Under the direction of Sam B. Upchurch (University of South Florida), geological cores were taken in and near archaeological sites. Stephen Hale, Irv Quitmyer, Douglas Jones, Karen Jo Walker, Elizabeth Wing, and I made monthly collections of marine samples (clams, otoliths from three species of fish) for purposes of establishing ways to read paleoclimatic and paleo-seasonality data from ancient faunal remains (Mar-quardt 1987a:12). Margaret Scarry and Lee Newsom collected plant seeds, wood, and fibers to form the first comprehensive archaeobotanical comparative collection for the area (Marquardt 1987a:13, 1988a:13). Wing and Quitmyer conducted two midden experiments (Marquardt 1987a:12, 1988a:10). Ann Cordell searched for sources of clay used for prehistoric pottery-making. Raymond Hintz, then with the University of Florida's Survey and Mapping department, School of Engineering, undertook photogrammetric mapping of some of the larger sites.
In March and May of 1986 a combination student and volunteer crew tested sites 8LL722 and 8LL55 on Buck Key. Analysis continued on materials we had excavated in 1985-1986, as well as on materials from a pit feature previously excavated at Big Mound Key (8CH10) by George Luer (Marquardt 1987a:ll).
Since 1987, Jan and Robin Brown have provided a furnished house for our project's use in Ft. Myers. Thanks to their hospitality, and to assistance from the Ruth and Vernon Taylor Foundation, Donald and Patricia Randell, Robert and Corinne Schultz, and a number of other private donors, 1987 saw the completion of monthly ecological collection trips, excavation of the two experimental middens, assistance to Robert Edic's oral history project in the Boca Grande area (Marquardt 1987a:13, 1988a:5), the transcription of documents from Spanish archives in Spain, supported by the Wentworth Foundation (Marquardt 1988a:4), and test excavations at Gait Island (8LL27) by a mostly volunteer crew (Marquardt 1987c, 1988a:2).
Small test excavations were conducted at an early twentieth century site near Bokeelia (8LL1431A; Marquardt and Walker 1988), funded by the Subon Corporation, and again at Cash Mound (8CH38) in April, 1988. In May test excavations were undertaken at Pineland (8LL33), assisted by 84 local volunteers (Marquardt and Blanchard 1989:1-3). Analysis and writing continued in 1988 and 1989. Claudine Payne began working as editor in the fall of 1988, concentrating on the new translations of Spanish documents by John Hann (now published: Hann 1991). Merald Clark joined the project as artist/illustrator in January, 1989, funded initially by the University of Florida's Division of Sponsored Research.
In Fall, 1989, we began an ambitious archaeology/education project in cooperation with the Nature Center of Lee County, the Fort Myers Historical Museum, and the Lee County school system. The project was called "The Year of the Indian: Archaeol-
ogy of the Calusa People" and was funded by a Special Category grant from the Bureau of Historic Preservation, Florida Department of State. It featured two eight-week excavation seasons at Useppa Island (8LL51) and Pineland (8LL33), making use of over 11,000 hours of supervised volunteer labor; two museum exhibits; a summer program for children; a multi-media slide show; hands-on classroom demonstrations and site visits for elementary school students; teacher training; curriculum development; artifact replication research; oral history research; and a popular book.
Under the field direction of Michael Russo, excavations were also undertaken in Collier County on Horr's Island (sites 8CR201,205,206,207,208,209,211, and 696), funded by a grant from Ronto Developments Marco. Three months of excavations in late 1989 focused on extensive shell middens of the preceramic Archaic period, as well as a pottery-bearing site and the home site of plantation owner John Foley Horr (Russo 1991a, 1991b). Mounds A and B at Horr's Island contain burials and extensive layers of sand and shells. These date to ca. 3300-2500 B.C. Our data suggest that Horr's Island was occupied or visited throughout the year, and that Late Archaic coastal populations were making good use of a fully established estuary during the third millennium B.C., a situation mirrored at Useppa Island.
At Useppa (8LL51) excavations in late 1989 under my direction concentrated on a 32 m2 area where we found evidence of a shell tool manufacturing industry, ca. 1900 B.C. As at Horr's Island, sea level seems to have been sufficiently high to have provided ample estuarine resources by the third millennium B.C. or earlier.
In early 1990, under the field direction of Karen Jo Walker, excavations were resumed at the Pineland site. Excavations concentrated on an area near a large mound known as Brown's Mound, where dark organic horizons that appear to be floors were discovered for the first time. We also identified late sixteenth century artifacts from a disturbed burial mound and tested a previously undocumented low mound nearby (8LL1612).
Pineland was also the location for our broadest public outreach effort to date. The public was allowed and encouraged to visit the excavations. Over three hundred volunteers helped with the Pineland excavations. An education program, coordinated by Charles Blanchard, directly involved 2,810 students, 180 teachers, and 45 schools and other educational organizations. Thirty-nine classroom lectures were given and 27 classes of fourth and fifth graders, a total of 950 children, visited the Pineland site for hands-on archaeological activities (Blanchard and Marquardt 1990).
Analysis and writing continued in 1990, supported in part by income from an endowment established by a grant from the Knight Foundation as well as gifts to that endowment from Donald and Patricia Randell


Calusa Domain
5
and the Ruth and Vernon Taylor Foundation. By 1991, most chapters for this book were in draft form, and had been edited by me and by Claudine Payne. Payne designed the monograph format, in consultation with me, then she and Sam Chapman prepared the camera-ready text using computers, a scanner, and a laser-jet printer contributed to the Project by Hewlett-Packard thanks to a matching gift from Paul and Warren Miller, and using desktop publishing software Ventura Publisher, version 3.0. In 1991 Corbett Torrence served as draftsperson-cartographer, and Merald Clark as artist-illustrator. We finished the editing and typography in 1992, assisted by a grant from the Division of Sponsored Research, University of Florida. Patricia Bartlett, Director of the Ft. Myers Historical Museum, kindly served as an outside proofreader of the entire book. Printing costs for this book were defrayed in part by a grant from the Knight Foundation.
WHAT TO EXPECT FROM THIS BOOK
Culture and Environment in the Domain of the Calusa covers only those data recovered through 1988. As this book goes to press, we have completed analysis of materials excavated in 1989 and 1990 at Useppa Island and Pineland (for preliminary summaries, see Blanchard 1989; Blanchard and Marquardt 1990), and are now analyzing material collected during a twelve-week season at the Pineland site in 1992 (Marquardt, Payne, and Walker 1992). Detailed reports on the Horr's Island work are now available (Russo 1991a, 1991b). fIn preparation are monographs on Useppa Island and Pineland, as well as a summary volume for popular audiences. f"""
In a sense, all archaeological reports are preliminary, and this seems especially true in an area such as southwest Florida, where so little in detail was known prior to the 1980s. We fully expect the findings reported here to be augmented and superseded by our own research and that of others. Nevertheless, we have gathered enough data to feel that we have a basic, working understanding of the cultural and paleoen-vironmental record of Charlotte Harbor, ca. 4500 B.C.-A.D. 1600. The information reported in this volume will be complementary to other materials already in print, such as a paper on the project's research agenda (Marquardt 1986) and two papers on what is known from historical sources about Calusa culture and politics (Marquardt 1987b, 1988b). Translations and detailed exegesis of Jesuit and Franciscan mission accounts and other records and correspondence of the sixteenth, seventeenth, and eighteenth centuries pertaining to southwest Florida can be found in Missions to the Calusa, by John Hann (1991).
In Chapter 2 of this book, I describe the excavations of 1984-1988 and discuss excavation strategies and stratigraphy for each. In Chapter 3, Upchurch, Jewell, and DeHaven present the results of coring near and within archaeological sites, as well as a consideration of sedimentary processes and how they have affected and been affected by human occupation of the harbor.
The authors present information bearing on questions of Holocene sea-level fluctuations, a topic also taken up by Walker in Chapter 8.
In Chapter 4, Ann Cordell reports results of her detailed analyses of Caloosahatchee area ceramics, presents a refined pottery chronology based on the new analyses, and relates the new findings to traditional typologies. By undertaking a constituent analysis, Cordell goes beyond traditional considerations of temper, color, and hardness to establish a more temporally and spatially sensitive typology for Caloosahatchee area ceramics.
Chapters 5 and 6 report studies of shell and bone artifacts, respectively, and include discussions of the roles of shell and bone in the fishing technology of Charlotte Harbor. In Chapter 5, I first review the history of shell artifact analysis in south Florida, then introduce a new typology, one derived from the pioneering work of Goggin and others, but with as much emphasis on manufacturing/use trajectory as on function. Shell artifacts can be quite useful in studies of spatial and temporal variation and can play the roles for southwest Florida that ceramic and chert artifacts often do elsewhere. Walker considers southwest Florida bone artifacts in Chapter 6, based on our excavations in 1984-1988. She has examined the role of shell, bone, and turtle carapace artifacts in another paper as well (Walker 1991), based on both our excavated materials and comparative research undertaken in collections at the University of Pennsylvania Museum of Archaeology and Anthropology and at the National Museum of Natural History, Smithsonian Institution.
In Chapter 7, Quitmyer and Jones present the detailed results of clam seasonality studies and their implications for research on Charlotte Harbor settlement. The annual growth of bivalves (such as Mer-cenaria sp.) is a function of seasonal variations in temperature and other environmental factors. Growth curves must be discerned for each local research area, however. A curve for Mercenaria on the Atlantic coast of North Carolina will look very different from one for the Gulf coast at Charlotte Harbor. Quitmyer and Jones explain their methods and present a convincing case that Mercenaria campechiensis is a reliable indicator of seasonality for the Charlotte Harbor estuary.
Walker demonstrates in Chapter 8 the potential of zooarchaeology to contribute not just to subsistence studies, but to a broad range of archaeological and paleoenvironmental research topics. Walker summarizes the analysis of 17 fine-screened column samples representing a variety of local conditions in Charlotte Harbor and derives from them patterns of prehistoric food procurement, environmental characteristics, and Holocene sea-level fluctuation. Her data confirm Late Holocene sea-level curves recently obtained by Stapor and others (1991) from studies of barrier island beach deposits.


6
Culture and Environment in the Domain of the Calusa
In Chapter 9, Wing and Quitmyer present the results of their preliminary experiments in midden formation/deformation. The authors discuss the materials lost from and gained by the experimental middens, and suggest that further and more sophisticated experiments will give us a better appreciation for diagenetic processes and the dynamism of zooar-chaeological sites.
In Chapter 10, Scarry and Newsom summarize the results of the first comprehensive archaeobotanical work in southwest Florida and document prehistoric foods as well as domestic and technological uses of plant resources for prehistoric Charlotte Harbor. The authors compare their findings to those from other south Florida and Caribbean sites, and discuss the roles of plants in a highly diverse area that straddles temperate and tropical biomes.
Although we have not focused on burial excavations, Chapters 11 and 12 present descriptions of burials encountered while testing sites on Useppa Island (8LL51) and Buck Key (8LL55). Two levels of burials, one preceramic, the other from the later ceramic period, were noted in the Collier Inn salvage excavations on Useppa Island. Michael Hansinger, who assisted in those excavations, provides descriptive information on the physical remains in Chapter 11. The burials found at Buck Key are described by Dale Hutchinson in Chapter 12. Finally, Chapter 13 summarizes the findings and reviews what we now know, compared to what was known when the project began in 1983.
This book does not, nor is it intended to, solve the questions of the emergence of Calusa complexity. Before those questions can be answered with any degree of assurance, we will need additional survey and dating, as well as extensive testing and intensive excavations at a number of key sites. These activities are presently underway, but it would have made no sense to conduct today's focused investigations before establishing a basic tool kit of chronological and paleoen-vironmental understandings. This had to be done at the broad scale of the Charlotte Harbor estuarine system and over the entire 6,000-year time scale of prehistoric coastal occupation of the Caloosahatchee area. This first phase of chronological and paleoenviron-mental background studies is now finished, and these findings are the subject of this book.
REFERENCES CITED
Blanchard, Charles
1989 Calusa News No. 4. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
Blanchard, Charles and William H. Marquardt
1990 Calusa News No. 5. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
Goggin, John M. and William T. Sturtevant
1964 The Calusa: A Stratified Non-Agricultural Society (with Notes on Sibling Marriage). In Explorations in Cultural Anthropology: Essays in Honor of George Peter Murdock, edited by W. H. Goodenough, pp. 179-219. McGraw-Hill, New York.
Hann, John H.
1991 Missions to the Calusa. University of Florida Press, Gainesville.
Lyon, Eugene
1983 The Enterprise of Florida: Pedro Menendez de Aviles and the Spanish Conquest of1565-1568. University Presses of Florida, Gainesville [originally published 1976].
Marquardt, William H.
1984 The fosslyn Island Mound and its Role in the Investigation of Southwest Florida's Past. Miscellaneous Project Report Series 22, Department of Anthropology, Florida Museum of Natural History, Gainesville.
f 1986 The Development of Cultural Complexity in Southwest Florida: Elements of a Critique. Southeastern Archaeology 5 (l):63-70.
1987a Calusa News No. 1. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
1987b The Calusa Social Formation in Protohis-toric South Florida. In Power Relations and State Formation, edited by T. C. Patterson and C. W. Gailey, pp. 98-116. Archeology Section, American Anthropological Association, Washington, D.C.
1987c Preliminary Archaeological Survey and Testing on Gait Island (8LL27, 8LL81), Lee County, Florida. Report submitted to William M. Mills. Ms. on file, Department of Anthropology, Florida Museum of Natural History, Gainesville.
1988a Calusa News No. 2. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
1988b Politics and Production among the Calusa of South Horida. In Hunters and Gatherers, vol. 1: History, Evolution, and Social Change, edited by T. Ingold, D. Riches, and J. Wood-burn, pp. 161-188. Berg Publishers, London.
" 1991 Introduction. In Missions to the Calusa, by John H. Hann pp. xv-xix. University of Florida Press, Gainesville.
Marquardt, William H. and Charles Blanchard
1989 Calusa News No. 3. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.


Calusa Domain
7
Marquardt, William H., Claudine Payne, and Karen Jo Walker
1992 Calusa News No. 6. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
Marquardt, William H. and Karen Jo Walker
1988 Archaeological Site Assessment Survey for the Proposed Seagull Bay Development, Phase I. Report submitted to Subon, Inc. Ms. on file, Department of Anthropology, Florida Museum of Natural History, Gainesville.
Russo, Michael
1991a Archaic Sedentism on the Florida Coast: A Case J)( Study from Horr's Island. Ph.D. dissertation,'' Department of Anthropology, University of Florida. University Microfilms, Ann Arbor.
1991b Final Report on Horr's Island: The Archaeology of Glades Settlement and Subsistence Patterns. (With chapters by Ann Cordell, Lee Newsom, and Sylvia Scudder.) Florida Museum of Natural History. Report submitted to Key Marco Developments, Key Marco, Florida.
Solis de Meras, Gonzalo
1964 Pedro Menendez de Aviles, Adelantado, Governor, and Captain-General of Florida: Memorial. Facsimile reproduction of 1570
edition. University Presses of Florida, Gainesville.
Stapor, F. W. Jr., Thomas D. Mathews, and Fonda E. Lindfors-Kearns
1991 Barrier-Island Progradation and Holocene Sea-level History in Southwest Florida. Journal of Coastal Research 7(3):815-838.
Walker, Karen Jo
1991 Artifacts of a Fishy Nature: Charlotte Harbor's Prehistoric Estuarine Fishing Technology. Ms. submitted for publication.
Widmer, Randolph J.
1983 The Evolution of the Calusa: A Non-Agricultural Chiefdom on the Southwest Florida Coast. Ph.D. dissertation, Department of Anthropology, Pennsylvania State University. University Microfilms, Ann Arbor.
1986 The Evolution of Calusa Complexity. Paper presented at the 43rd annual meeting of the Southeastern Archaeological Conference, Nashville.
1988 The Evolution of the Calusa: A Non-Agricultural Chiefdom on the Southwest Florida Coast. University of Alabama Press, Tuscaloosa and London.




2
Recent Archaeological and Paleoenvironmental Investigations in Southwest Florida
William H. Marquardt
In this chapter I summarize the results of mapping, surface collecting, and test excavations undertaken between 1983 and 1988 at five localities in the Charlotte Harbor/Pine Island Sound area: Josslyn Island, Useppa Island, Cash Mound, Buck Key, and Pineland (Figure 1). I also include some observations on Big Mound Key and Boggess Ridge. For each of the five sites we test-excavated, I describe the local environmental setting and previous archaeological investigations, discuss the stratigraphy and chronology, and place the site within the broader research goals of the project. Environmental characteristics of the Charlotte Harbor area as a whole are discussed by Walker (Chapter 8) and Scarry and Newsom (Chapter 10).
When we began our work, the chronology for the Caloosahatehee area was very poorly understood, and subsistence and environmental characteristics had been investigated only in a superficial way. For example, fine-screen zooarchaeological analysis had been undertaken in southwest Florida only rarely (Fradkin 1976; Milanich et al. 1984) prior to our research, and no flotation or other fine-screen recovery of plant remains had ever been done. Our initial research objectives were simply to become familiar with the makeup of the sites, ascertain the ages of the deposits, and evaluate their floral and faunal remains.
Field methods were similar at all sites. For each site, each separate excavation area, called an "operation," is given a roman letter, e.g., Operation A. Test pits within each operation are given arabic numerals, e.g., Test Pit A-l. Excavation was usually done in arbitrary 10-cm levels, numbered consecutively from top to bottom. Thus, A-l-10 designates the tenth level in Test Pit A-l. When there is a need to subdivide an excavation into two or more discrete loci, a third-level arabic numeral is added. Thus, "A-l-10-2" is the second locus of the tenth level of the first test pit in Operation A. Artifacts or samples for which exact provenience (horizontal and vertical) is recorded are given "slash" numbers and bagged separately. For example, an artifact labeled A-l-10/4 is the fourth measured item recorded in Level 10 of Test Pit A-l. Similarly, A-l-10-2/3 is the third special item measured in locus 2 of Level 10 of Test Pit A-l. We do not use the "field specimen" and "feature" numbers favored by many archaeologists.
I take pains to explain this simple but effective recording system because a few colleagues (including two anonymous peer reviewers of my grant proposals!) have formed the mistaken impression that I excavate shell middens in arbitrary levels without regard to their stratification. On the contrary, the level/locus system allows both horizontal and vertical control so that various combinations of discrete depositional units can be compared. The hierarchical numbering system facilitates computerized comparisons at several levels. And since the artifact numbers carry provenience information, there is little chance of confusing areas during excavation or analysis.
All excavated deposits were passed minimally through V\ inch (6.4 mm) mesh hardware cloth, unless otherwise indicated. Column-sample excavations for archaeobiological data recovery typically measured 50 x 50 cm and were excavated in 10-cm levels, thus each
3
column level ideally contains a volume of 0.025 m Water flotation of these deposits was undertaken first in a screen box device I constructed to fit into the sink in my laboratory at the Florida Museum. Later, when a SMAP-type (Watson 1976) flotation barrel became available, we were able to float sediments in the field, which allowed us to avoid the chore of transporting heavy bags of excavated sediments back to Gainesville. During flotation in both the sink and SMAP-machine systems, the heavy fractions were caught in Vi6 inch (1.6 mm) window screen. Further details of zooarchaeological and archaeobotanical lab methods are found in Chapters 8 and 10, respectively.
Radiocarbon dates are reported throughout this book in one-standard-deviation date ranges and are 13C-adjusted and calibrated unless otherwise indicated. In addition to the calibrated dates, Table 1 presents raw dates in radiocarbon years for those who prefer to work with them instead.
Table 2 presents an abbreviated chronology chart for the Caloosahatchee area. For other treatments of regional chronology, see Carr and Beriault (1984), Milanich and Fairbanks (1980:15-33 et passim), Wid-mer (1988:55-97), and especially Griffin (1988:111-166). The "Caloosahatchee area" is an archaeological zone that runs from southern Sarasota County south
9


10 Culture and Environment in the Domain of the Calusa
| __^_ C.McP.T. J
Figure 1. The research area, showing the sites discussed in this chapter. Key to sites: 10 = 8CH10, Big Mound Key; 16 = 8CH16, Boggess Ridge; 38 = 8CH38, Cash Mound; 51 = 8LL51, Useppa Island; 32 = 8LL32, Josslyn Island; 33 = 8LL33, Pineland; 55 = 8LL55, Buck Key Burial Mound; 722 = 8LL722, Buck Key Shell Midden.


Recent Archaeological Investigations 11
Table 1. Radiocarbon Dates.
Site Number Site Name Provenience Material3 Dated Radiocarbon Age in Years Before A.D. 1950b Calendar Year Equivalent15 13C-adjusted Age Laboratory Number Calibrated Date Rangec
8LL51 Useppa Island, east "ramp" Test 6, midden underlying "ramp" S 1175 75 B.P.d A.D. 775 1565 B.P.e UM-1840 A.D. 747-925
8LL51 Useppa Island, east "ramp" Test 6, lower portion of "ramp" S 1360 65 B.P.d A.D. 590 1750 B.P.e UM-1839 A.D. 608-704
8LL51 Useppa Island, Collier Inn Op. A (1985), Burial 2 HB 1270 70 B.P. A.D. 680 1410 B.P. Beta-45824 A.D. 595-666
8LL51 Useppa Island, backhoe test Test 5, midden s 1700 75 B.P.d A.D. 250 2090 B.P.e UM-1841 A.D. 193-392
8LL51 Useppa Island, backhoe test Test 3, midden s 1845 90 B.P. A.D. 105 2235 B.P.e UM-1837 A.D. 14-230
8LL51 Useppa Island, backhoe test Test 3, midden s 2260 75 B.P.d 310 B.C. 2650 B.P.e UM-1838 454-334 B.C.
8LL51 Useppa Island, Collier Inn Test A-4, Level 2 s 2520 60 B.P. 570 B.C. 2930 B.P. Beta-38495 805-740 B.C.
8LL51 Useppa Island, Collier Inn Test A-4, Level 3 s 3490 80 B.P. 1540 B.C. 3880 B.P.e Beta-17336 2011-1778 B.C.
8LL51 Useppa Island, Collier Inn clam shell just below Burial 1 s 4090 70 B.P. 2140 B.C. 4480 B.P.e Beta-14142 2858-2598 B.C.
8LL51 Useppa Island, Collier Inn clam shell touching Burial 1 s 4130 80 B.P. 2180 B.C. 4520 B.P.e Beta-1415 2 2880-2652 B.C.
8LL51 Useppa Island, backhoe test Test 2, midden s 4935 100 B.P.d 2985 B.C. 5325 B.P.e UM-1836 3890-3640 B.C.
8LL51 Useppa Island, backhoe test Test 2, midden s 5625 100 B.P.d 3675 B.C. 6015 B.P.e UM-1835 4610-4370 B.C.
8LL32 Josslyn Island Test A-l, Level 5 s 750 60 B.P. A.D. 1200 1140 B.P.e Beta-17332 A.D. 1225-1304
8LL32 Josslyn Island Test A-2, Level 8 s 1010 60 B.P. A.D. 940 1400 B.P.e Beta-21292 A.D. 961-1054
8LL32 Josslyn Island Test A, profile, ash area [1120 75 B.P.]' [A.D. 830]f 1120 B.P.f Beta-12924 A.D. 819-996
8LL32 Josslyn Island Test A-l, Level 13 s 1130 70 B.P. A.D. 820 1520 B.P.e Beta-17333 A.D. 801-978
8LL32 Josslyn Island Test A-l, Level 17 s 1750 60 B.P. A.D. 200 2140 B.P.e Beta-45880 A.D. 143-292
8LL32 Josslyn Island Test A-l, Level 23 s 2070 70 B.P. 120 B.C. 2460 B.P.e Beta-17334 240-67 B.C.
8LL32 Josslyn Island Test A-l, Level 33 s 2080 90 B.P. 130 B.C. 2470 B.P.e Beta-17335 324-53 B.C.
8LL722 Buck Key, shell midden Test B-l, Level 5 s 600 80 B.P. A.D. 1350 990 B.P.e Beta-16283 A.D. 1306-1439
8LL722 Buck Key, shell midden Test A-l, Level 6 s 620 70 B.P. A.D. 1330 1010 B.P.e Beta-16285 A.D. 1301-1424
81X722 Buck Key, shell midden Test A-l, Level 6, locus 3 s 700 70 B.P. A.D.1250 1090 B.P.e Beta-16286 A.D. 1260-1345
8LL722 Buck Key, shell midden Test B-2, Level 9 s 700 60 B.P. A.D. 1250 1090 B.P.e Beta-16282 A.D. 1267-1334
8LL722 Buck Key, shell midden Test C-l, Level 3 s 710 60 B.P. A.D. 1240 1100 B.P.e Beta-16284 A.D. 1260-1326
8LL722 Buck Key, shell midden Test A-l, Level 9 s 910 80 B.P. A.D. 1040 1300 B.P." Beta-16287 A.D. 1027-1210
8LLS5 Buck Key, burial mound Burial 1-A HB 750 70 B.P. A.D. 1200 8 Beta-25471 g
8CH38 Cash Mound Test A-l, Level 4 s 1270 70 B.P. A.D. 680 1660 B.P.e Beta-16281 A.D. 672-806
8CH38 Cash Mound Test A-l, Level 20 s 1680 60 B.P. A.D. 270 2070 B.P." Beta-16278 A.D. 238-398
8CH38 Cash Mound Test A-l, Level 17 s 1760 80 B.P. A.D. 190 2150 B.P.e Beta-16279 A.D. 118-322
8CH38 Cash Mound Test A-l, level 8 s 1800 90 B.P. A.D. 150 2190 B.P.e Beta-16280 A.D. 67-266


12
Culture and Environment in the Domain of the Calusa
Table 1. Radiocarbon Dates, continued.
Site Number Site Name Provenience Material3 Dated Radiocarbon age in years before A.D. 1950b Calendar year equivalentb 13C-adjusted age Laboratory Number Calibrated Date Rangec
8CH10 Big Mound Key, West Moundh West profile, pit feature, Layer 1 1070 140 B.P. A.D. 880 8 UM-2676 A.D. 780-1060'
8CH10 Big Mound Key, West Mound11 West profile, pit feature, Layer 7 S 1080 70 B.P. A.D. 870 1470 B.P.e UM-2679 A.D. 871-1018
8CH10 Big Mound Key, West Mound N100/E99.4h West profile, pit feature, Layer 8b 1090 80 B.P. A.D. 860 g UM-2685 A.D. 840-1000'
8LL33 Pineland TestC-1, Level 9 s 490 60 B.P. A.D. 1460 880 B.P.e Beta-27993 A.D. 1420-1491
8LL33 Pineland, Brown's Mound Test B-l, Level 6 s 620 70 B.P. A.D.1330 1010 B.P.e Beta-27988 A.D.1301-1424
8LL33 Pineland, Brown's Mound Test B-l, profile; elev. = 6.35 m s 740 60 B.P. A.D. 1210 1130 B.P.e Beta-27989 A.D.1235-1309
8LL33 Pineland, Randell Mound A, profile; elev. = 4.05 m s 830 60 B.P. A.D.1120 1220 B.P.e Beta-27990 A.D. 1088-1250
81X33 Pineland, Randell Mound A, profile; elev. = 3.05 m s 850 70 B.P. A.D. 1100 1240 B.P." Beta-27986 A.D. 1073-1257
8LL33 Pineland, Randell Mound Test A-l, profile; elev. = 6.10 m s 910 70 B.P. A.D.1040 1300 B.P.e Beta-27992 A.D.1032-1198
8LL33 Pineland, Randell Mound A, profile; elev. = 3.40 m s 1050 60 B.P. A.D. 900 1440 B.P.e Beta-27987 A.D. 906-1030
81X33 Pineland, Brown's Mound Test B-l, profile; elev. = 7.91 m s 1160 80 B.P. A.D. 790 1550 B.P.e Beta-27985 A.D. 762-956
8LL33 Pineland, Randell Mound A, profile; elev. = 2.55 m s 1350 50 B.P. A.D. 600 1740 B.P.e Beta-27984 A.D. 631-701
8LL33 Pineland Test D-l, Level 7 s 1670 60 B.P. A.D. 280 2060 B.P.e Beta-27991 A.D. 247-408
"Code: C=charcoal; S=marine shell; HB=human bone.
bAll dates in this column are uncalibrated; half-life = 5568 years.
Calibrations calculated using program CALIB, version 2.0 (Stuiver and Reimer 1986). Calculations based on Pearson et al. 1986; Pearson and Stuiver 1986; Stuiver and Pearson 1986; Stuiver, Pearson and Braziunas 1986), using reservoir correction factor of delta R=-520 for shell assays. Dates on charcoal and bone were calibrated using file ATM20.14C, those on marine shell using MARINE. 14C. Only 13C-adjusted dates were calibrated using program CALIB. The date range shown is 1 standard deviation. dSource: Milanich et al. 1984:269-270.
This shell date adjusted for isotopic fractionation by adding 390 years to raw radiocarbon years before calibration. fAMS date, adjusted for isotopic fractionation. No 13C-adjusted age is available for this sample.
to a point approximately 40 km north of Marco Island (Collier County), and from the barrier islands on the west to a point approximately 90 km eastward into the interior (Carr and Beriault 1984:4,12; Griffin 1988:121; Widmer 1988:79). In this book the terms "southwest Florida" and "Calusa region" refer informally to the coastal zone from Charlotte Harbor south to the Ten Thousand Islands.
Archaeological excavations described in this book are dated from the latter part of the Middle Archaic
period (Collier Inn excavations at Useppa Island, ca. 2750 B.C.) to early Caloosahatchee IV (Buck Key, 8LL722, Tests A and B, ca. A.D. 1375). The chronology of Table 2 shows an early Paleo-Indian occupation from ca. 11500 B.C. to 8500 B.C., but this time horizon is represented only at Little Salt Spring in southern Sarasota County (Clausen et al. 1975,1979), a sink hole site. The Late Paleo-Indian horizon, ca. 8500 B.C.-6500 B.C., is represented locally at Little Salt Spring and Warm Mineral Springs, also in interior southern


Recent Archaeological Investigations
13
Table 2. Generalized Chronology for Caloosahatchee Area and Immediate Environs, Based on Our Own Research and on Summaries by Griffin (1988), Milanich and Fairbanks (1980), and Widmer (1988). (Ceramic chronology is discussed in detail by Cordell in Chapter 4, this volume.)
Date Period Present at Some Diagnostic Artifacts
A.D. 1500-1750 Caloosahatchee V Big Mound Key, Mound Key, Gait Island and Pineland burial mounds, Useppa Island European artifacts (e.g., metal, beads, olive jar sherds)
A.D. 1350-1500 Caloosahatchee IV Pineland, John Quiet, Buck Key Safety Harbor, Glades Tooled, and Pinellas Plain pottery present; Belle Glade Plain diminishes
A.D. 1200-1350 Caloosahatchee III Buck Key, Gait Island, Josslyn Island, Pineland St. Johns Check Stamped, Englewood ceramics; Belle Glade Plain prominent
A.D. 800(?)-1200 Caloosahatchee IIB Big Mound Key, Gait Island, Josslyn Island, Pineland, Useppa Island Belle Glade Red present; Belle Glade Plain prominent
A.D. 650-800(?) Caloosahatchee IIA Cash Mound, Gait Island, Josslyn Island, Pineland, Useppa Island Beginning of Belle Glade Plain and SPCB ceramics; Glades Red; thinner ceramics
500 B.C.-A.D. 650 Caloosahatchee I Cash Mound, Josslyn Island, Useppa Island, Pineland Thick sand-tempered plain pottery with round and chamfered lips
1200 B.C.-500 B.C. Terminal Archaic ("Transitional") Useppa Island, Wightman, 8CR107 Fiber-tempered pottery; semi-fiber-tempered pottery
2000 B.C.-1200 B.C. Late Archaic Palmer, Useppa Island, 8CR107, 8CR110, 8CR111, 8CR112 Orange Plain, Orange Incised, Perico Incised, Perico Plain, St. Johns Plain; steatite
5000 B.C.-2000 B.C. Middle Archaic Bay West, Horr's Island, Little Salt Spring, Useppa Island Coastal sites, but no ceramics; broad-stemmed bifaces, e.g., Newnan; mortuary ponds
6500 B.C.-5000 B.C. Early Archaic Horr's Island, West Coral Creek Sites on coastal dune ridges ca. 5000 B.C.; earlier coastal sites probably inundated I by rising sea level
8500 B.C.-6500 B.C. Late Paleo-Indian Little Salt Spring, Warm Mineral Springs, West Coral Creek Dalton and Bolen bifaces, bone points, non-returning boomerang, socketed wooden point, oak mortar, atlatl spur
11500 B.C.-8500 B.C. Early Paleo-Indian Little Salt Spring Only wooden tools known
Sarasota County (Cockrell and Murphy 1978), and at the West Coral Creek site (8CH74). At the latter site, Bolen bifaces, thought to date to ca. 8000-7000 B.C. (Hazeltine 1983), along with numerous chert and silicified coral tools and debitage consistent with Late Paleo-Indian technology elsewhere in Florida, were found. Lithic artifacts of the Archaic period were also collected, but no ceramics of any kind were noted. The artifacts at 8CH74 were found mainly in dredge spoil
from the excavation of canals near a large slough. This suggests that the Late Paleo-Indian and Archaic components of this site may have been clustered around a dependable water source, and now lie buried under more recent deposits.
The Early Archaic, ca. 6500-5000 B.C., is unknown in the Caloosahatchee area with the exception of the West Coral Creek site, but this may be due to coastal Archaic sites having been inundated by rising seas (Ruppe


14
Culture and Environment in the Domain of the Calusa
1980:33). From Horr's Island (see Russo 1991a, b) dates of 5199-4851 B.C. and 5337-5207 B.C. have come from shells deep in a sandy oyster shell midden known as Mound B (8CR206). Horr's Island is not within the Caloosahatchee area proper, being situated in Collier County near Marco Island (see Figure 2 of Chapter 1). The Horr's deposits accumulated on top of high Pleistocene dunes, which may account for their preservation even if other similarly early maritime sites have been covered by rising water.
The Middle Archaic, ca. 5000-2000 B.C., is represented in southwest Florida by substantial coastal midden deposits at Horr's Island (Russo 1991a, b) and the mortuary pond site at Bay West (8CR200; Beriault et al. 1981) and in the Caloosahatchee area proper by recent excavations on Calusa Ridge, Useppa Island (Blanchard and Marquardt 1990:4-5). Analysis of findings from the latter excavation is ongoing, but is not discussed in this book.
The beginning of the Late Archaic (ca. 2000-1200 B.C.) is marked by the introduction of ceramics. Orange Plain and Orange Incised fiber-tempered pottery, as well as steatite (soapstone) bowl fragments, were found at the Collier Inn site on Useppa Island (see below).
Florida archaeologists also recognize a Terminal Archaic, or "Transitional" period from ca. 1200 B.C. to 500 B.C., characterized literally by a gradual transition from fiber-tempered pottery to sand-tempered pottery (Milanich and Fairbanks 1980:152, 154). Both "Orange" (plain and incised) and "Norwood" (plain and simple stamped) refer to fiber-tempered pottery, the former thought to have originated in northeast Florida (Griffin 1945:222), the latter in north and central Gulf coastal Florida (Phelps 1965). Although Orange Incised (and Plain) pottery is found in the Caloosahatchee area, I do not know of any Norwood Simple Stamped. The term "semi-fiber-tempered," first suggested by Bullen and Bullen, is sometimes used to refer to the mixture of fibers and sand in the tempering of pottery from the so-called "Transitional" period. The Bullens (1953) noted simple-stamped semi-fiber-tempered pottery as far south as Hernando County. Cordell's FBT2 category (see Chapter 4) would probably be considered "semi-fiber-tempered" by some. It has yet to be demonstrated for southwest Florida that the transition from fiber to sand tempering in ceramics was accompanied by any significant changes in subsistence or settlement patterns.
The period from ca. 500 B.C. to the time of Spanish contact has been divided by Widmer (1988:83-87) into five periods. Widmer's basic chronology is followed here, but we have adjusted it in response to new radiocarbon dates and to new pottery studies discussed in detail by Cordell in Chapter 4, this volume. Cordell's conclusions are based on microscopic examination of constituents in Sand-tempered Plain pottery, observed changes in rim and lip forms and vessel wall thickness, and proportions of Belle Glade Plain, SPCB Plain (see Chapter 4), Belle Glade Red, and other pottery found in well-dated deposits. Larger samples
and more detailed studies in the future are expected to lead to further refinements in the Caloosahatchee area chronology.
Widmer's initiation of Caloosahatchee II on the basis of the beginning of Belle Glade Plain pottery, and of Caloosahatchee III on the basis of St. Johns Check Stamped, are adopted, with the exception that our calibrated date of A.D. 595-666 on the mixed Sand-tempered Plain and Belle Glade Plain pottery at Useppa Island (discussed below) pushes the local advent of Belle Glade Plain pottery, and thus the Caloosahatchee II period, back into the mid-seventh century A.D. (Table 2). Also, our excavations at Buck Key indicate that Glades Tooled ceramics, used by Widmer to signal the beginning of Caloosahatchee IV at A.D. 1400, may actually date to the 1300s, not the 1400s. Safety Harbor pottery, including Pinellas Plain, may also date earlier than 1400; these matters are currently under study. Belle Glade Plain seems to decline in importance in the Caloosahatchee IV period, based on stratified deposits at Buck Key (8LL722; see Chapter 4) and John Quiet Mound (8CH45; see Bullen and Bullen 1956:43). In this book we begin the Caloosahatchee II period at A.D. 650 and the Caloosahatchee IV period at A.D. 1350.
Finally, Widmer proposes A.D. 1513 for the beginning of Caloosahatchee V, the period of European contact, presumably because this is when Juan Ponce de Leon is said to have first landed in Florida. I prefer to begin it at 1500 instead because I believe that European forays into Cuba, the Bahamas, and probably Florida were well underway, if unofficial and unreported, by the earliest years of the sixteenth century (Marquardt 1988:176-178).
JOSSLYN ISLAND (8LL32)
We first visited the Josslyn Island site in 1983 at the invitation of the owners, Donald and Patricia Randell of Pineland. The Randells had originally planned to develop the island, but when they realized the extent and significance of the archaeological site thereon, they abandoned development plans and nominated the island to the National Register of Historic Places. The island was bought by the State of Florida in 1989, and is now part of the Charlotte Harbor State Reserve.
Funded by a grant from the Randells, Alan May and I mapped the site, with the assistance of several members of the Southwest Florida Archaeological Society. The map was published, along with a discussion of the site's topography and significance (Marquardt 1984).
A crew visited Josslyn in the spring of 1985 to excavate a column sample for archaeobotanical and zooarchaeological analysis, and again in the spring of 1987 to excavate an ash and charcoal concentration that we had observed in 1985 in the profile of a looter's excavation. Results of the clam-seasonality, zooarchaeological, and archaeobotanical studies are reported in Chapters 7, 8, and 10. Geoarchaeologists took core samples from near the island in June, 1986, and


Recent Archaeological Investigations
15
m n
KEY: TEST UNIT CORE SAMPLE
SCALE
I I I
Figure 2. Josslyn Island Mound, showing areas tested in 1985 and 1987.
their results are found in Chapter 3. Ceramic, shell, and bone artifacts are discussed in Chapters 4, 5, and 6.
Environmental Setting
Josslyn Island is situated about 3.8 km south of Pineland (Figure 1). The archaeological site itself occupies about 3.0 ha (6.7 acres) and reaches a maximum elevation of 6.02 meters (19.75 feet) above sea level (Figure 2).
Sediments underlying the Josslyn shell midden are composed of shelly, muddy sand and shelly sand. Analysis shows that the midden accumulated on marine deposits, not on peats or other mangrove materials. The midden seems to have had its origin on shoals or small, exposed oyster bars, which then grew outward onto the adjacent bay sediments. The lee environments created by the middens then produced quiet water conditions, allowing mangrove formation. Thus, the mangrove swamps are, at least initially, a consequence of the middens, rather than the other way around. The archaeological site is geologically the oldest part of the island, the northeastern extent having been formed as a prograding lobe. Josslyn Island provides a remarkable example of the effect of prehistoric humans on island formation in the Charlotte Harbor estuarine system (see Chapter 3).
The island's 19.4 ha (47.9 acres) are vegetated by red, black, and white mangroves, buttonwoods, stopper
trees, strangler fig trees, and gumbo limbo trees, as well as a number of shrubs, cacti, and vines, especially grape (Vitis sp.). Various small mammals, such as raccoon and marsh rabbit, as well as snakes, skinks, gopher tortoises, and numerous birds are present. The island is surrounded by very shallow (less than 0.5 m) water and extensive meadows of marine seagrasses, which support large populations of fish and shellfish. A small oyster bar is found at the southwestern end of the island.
Previous Archaeological Investigations
Frank Hamilton Cushing came to Josslyn Island in the late spring of 1896 (Cushing 1897:337). He noted that the island had once been cleared of vegetation and cultivated in fruit and vegetables but was once again overgrown. He mentioned five high and steep elevations capped by shell mounds on the southern and western perimeters, these heights being surrounded by "deep, straight channels" leading to the surrounding waters of Pine Island Sound. To the north and east, he observed two "extensive platforms" with canals leading to the north, into the mangroves.
Into a court resembling "the cellar of an enormous elongated square house," Cushing excavated a small test pit, recovering sinkers of coral and shell, pottery, charcoal, and a hafted gastropod shell tool with a portion of its handle still intact. The only other professional visit to the site was that of Carlos Martinez in June, 1976, who noted that the island's vegetation had returned to a mature state and that the site held "great potential for future archeological studies" (Martinez 1976).
While mapping in 1983, Alan May and I noted eight looters' excavations, which we numbered from 1 to 8 (Figure 2). Most of these unauthorized excavations were shallow, no more than a meter deep. Disturbed Area 6 was the most extensive. Located near the top of one of the higher elevations, it appeared to have been dug in order to collect large conch and whelk shells, possibly for sale to souvenir shops (see Mar-quardt 1984:Figure 8). By far the deepest, though not the largest, excavation was Disturbed Area 8 (see Figure 2), a narrow, oval, trench-like excavation about 5 m long, 1 m wide, and over 3 m deep.
Excavations, 1985 and 1987
A team of University of Florida students and I journeyed to Josslyn Island for a week in March and again for a week in May, 1985, with the objective of removing a column sample from the profile of Disturbed Area 8. After clearing the spoil pile and brush back from the hole, we excavated and troweled until a profile of the deposits could be seen. A large ash and charcoal concentration about 140 cm long appeared about 75 cm below the surface (see Marquardt 1987:2). Charcoal collected from it yielded a date of A.D. 819-996 (14C dates are summarized in Table 1). We drew a profile diagram of this ashy area, as well as of the profile from which the column sample was to be taken (Figures 3 and 4).


16
Culture and Environment in the Domain of the Calusa
8LL32 JOSSLYN ISLAND
1985
NW
NE
e '
.Vh
mt ~~~~ o --c
' ^s>^ ; : .. e : -: .: v.
UNEXCAVATED
3.60
3.40
2.80
LEGEND:
VERY DARK GRAYISH BROWN
DARK GRAY
LIGHT YELLOWISH BROWN
LIGHT GRAY
BONE
SHELL
CHARCOAL
RADIOCARBON SAMPLE
0.5 meter
Figure 3. A circumscribed zone of alternating layers of ash, shell midden, charred wood and tiny fish bones appeared in the northern profile of Disturbed Area 8 (Operation A) at Josslyn Island. Key to stratigraphy: a = white ash; b = small bones; c = charcoal; d = very dark grayish brown dense shell midden; e = dark gray sparse shell midden; f = dark gray sand; h = light gray ash.
Disturbed Area 8 is referred to here as Operation A, with Test Pit A-l being a 50 x 50 cm column sample taken from the eastern end of the enlarged and straightened looter's hole. Thirty-eight ten-centimeter levels were removed in their entireties for possible flotation. We stopped only when ground water intrusion made further work impossible. Level 38 was almost entirely submerged. Shell midden deposits extend 65 cm below the present-day water level according to our soil probe, which encountered at that depth an impenetrable layer of non-shell sediment.
The 3.8-m profile presents an intriguing stratigraphic history of a portion of Josslyn Island. As Figure 4 shows, the density, size, and species of shells vary dramatically at different depths. Moving from the surface to the bottom of the profile, the layers are described as follows.
Zone I, the top 5 to 7 cm, is a dark brown layer of humus and leaf litter. Zone II, from an elevation of 3.82 m to about 3.66, includes all of arbitrary Level 1 (3.81 to 3.71) and half of Level 2. It is composed of highly organic brown sand with numerous roots and


Recent Archaeological Investigations
E LV.
-3.81
" w4@ v
! o
uvr, u.
12 J
*$'-., ::-.;:'r v.
fc-X 11:75* (.Y.o-w;
f:ii,> ,'<.i> vi.- ('.(
f.rir.f'vi'--; 'i-
32
34
36
38
UNEXCAVATED
0.25 0.50 meters
8LL32
JOSSLYN ISLAND
MAY 14 1985
Test Pit A-l Column Sample
LEGEND
o
VERY DARK GRAYISH BROWN
DARK BROWN
DARK GRAYISH BROWN
WHITE
REFERENCE SHELL SHELL
SCALLOP SHELL CRUSHED SHELL RADIOCARBON DATE POTTERY SHERD BONE
Figure 4. Profile diagram and composite photograph of the straightened eastern end of Disturbed Area 8 (Operation A-l, column sample), Josslyn Island.


18
Culture and Environment in the Domain of the Calusa
occasional pieces of broken mollusk shells. Zone III extends from 3.66 m to about 3.53 m, and includes the bottom half of Level 2 and all of Level 3. It consists of grayish brown sand and finely crushed shell fragments.
Zone IV, which extends from about 3.53 m to 3.33 m, is similar to Zone III in color, but it contains not just small crushed shell fragments, but a number of small to medium-sized whole shells and large fragments, mostly Busycon contrarium (lightning whelk). The consistency of Zone IV is much firmer and the shells more compact than that of Zone III. Zone IV includes Levels 4 and most of 5 and is radiocarbon-dated to A.D. 1225-1304.
Zone V extends approximately from 3.38-3.33 m to 2.86-2.80 m, and includes the lower part of Level 5 down through the bottom of Level 10. It is similar in color to Zone IV, but has fewer crushed shell fragments. It also contains a greater percentage of large whelk shells, mostly Busycon contrarium, but also Fas-ciolaria tulipa (true tulip) and other conchs, and the occasional Mercenaria campechiensis (quahog clam). An especially dense lens of medium-sized conch and whelk shells, dominated by Busycon contrarium, characterizes the lower part of the profile (approximately 3.10 m to 2.80 m) on the southern extremity just above the main deposit of Zone VI's ash (Figure 4).
Zone VI is characterized by layers of unconsolidated brown sand containing many tiny bones alternating with layers of white ash and burned shells. On the southern side of the 50 cm-wide profile, the ash and bone zone extends as deep as 2.54 m, but it trends upwards to intersect with a dense concentration of scallop shells (Argopecten irradians) and whelks on the northern side at ca. 2.82-2.66 m (see Figure 4). Two major ash-and-burned-shell layers are separated by a 5-8 cm thick layer of loose brown sand with many hundreds of tiny bones (Figure 4). A shell from the lower part of the white-ash-and-burned-shell layer dates to A.D. 801-978. Beneath the lower ash-and-burned-shell layer is a second, 2-3 cm-thick layer of loose brown sand with tiny bones (Figure 4).
Zone VII extends from the bottom of the undulating ash and bone layer down to approximately 2.42-2.39 m, the bottom of Level 14. It is grayish brown sand with bone and shell, the latter predominantly whole and fragmented lightning whelk shells of various sizes. Tulip and scallop shells are also common: some of the tulips are unusually large; the scallops are more common toward the lower part of Zone VII. A concentration of fighting conch (Strombus alatus/pugilis) shells appears at the top of Zone VII on the northern edge, extending from 2.72 to 2.67 m (Figure 4).
Zone VIII extends from 2.41 to 2.30 m on the southern edge and from 2.39 to 2.26 m on the northern. It is a dark grayish brown sand with only a few small shell fragments. This relatively shallow stratum is intermediate between two much denser strata of shell midden.
Zone IX is a dense shell midden composed of dark grayish brown sand with many whole and broken shells of different sizes. Whelks, conchs, clams, and oysters are represented in quantity. The zone extends from about 2.26-2.30 m down to 1.96-1.94 m (Figure 4), the middle of arbitrary Level 19. Shells from Level 17, the center of Zone IX, date to A.D. 143-292.
Zone X is a stratum of dark grayish brown silty sand with only a few small shell fragments and one area of diffuse light gray ashy sand near the bottom of the zone (Figure 4). It extends from 1.96 m down to 1.41 m, the bottom of Level 24. A 14C date on a shell from Level 23 is 240 B.C.-67 B.C.
Zone XI extends from 1.41 m down to 1.10-1.04 m. It is a stratum of dark grayish brown, unconsolidated sand with a sparse but varied shell content. Oyster, clam, tulip, lightning whelk, and scallops are represented. The lower 10-15 cm of this zone contain many small shell fragments, but the matrix appears identical to the upper part.
In Zone XII the midden becomes very dense indeed. There is almost no sediment other than mollusk shells, though minor amounts of dark grayish brown sand are present. There is a notable increase in scallop shells in Zone XII, but shells of other speciesthe familiar whelks, conchs, oysters, and clamsare present in great numbers and all sizes. This dense zone of shells extends from about 1.10 m down to 0.77 cm.
Zone XIII is similar to Zone XII in the sizes and varieties of shells present, but in Zone XIII there is more of the dark grayish brown sand. The zone extends from 0.77 down to 0.61 m, the bottom of Level 32.
Zone XIV extends from 0.61 m down to the limit of the excavation at 0.01 m, the bottom of arbitrary Level 38. It is composed of very dark grayish brown sand with some whole shells of various sizes and some finely crushed shell. This zone was quite damp and difficult to excavate and describe. The water rose up to 0.08 m during excavation, so the last 7 cm of the final level were "excavated" by reaching under the water to recover the sample. A 14C date of 324 B.C.-50 B.C. was obtained from a shell from Level 33, near the top of Zone XIV.
An Oakfield split-spoon soil probe was used to ascertain the extent of the midden below the excavation. The midden extends to 65 cm below the bottom of Level 38, or to -0.64 m.
In sum, the excavation of Column Sample A-l revealed 4.45 m of stratified deposit dating from about the third century B.C. to the thirteenth century A.D. Judging from the dates of Level 33 (324-53 B.C.), Level 23 (240-67 B.C.), and Level 17 (A.D. 143-292), the lower half of the middenZones IX to XIVappears to have accumulated rapidly, perhaps in as little as 300 years. The next available date from the profile is A.D. 801-978 from the ash concentration of Zone VI, some 650 years later than the deposit less than a meter below it. The ash concentration of Zone VI is contemporaneous with


Recent Archaeological Investigations
19
Figure 5. Straightened profile of looter's pit (Dis showing abundance of lightning whelks.
the higher ash deposit noted in the north profile, which is dated to A.D. 819-996. The absence of Belle Glade Plain pottery below Zone VI adds credibility to these dates because it is not known to appear in southwest Florida sites prior to ca. A.D. 650. In the absence of 14C dates from Zones VII and VIII, we cannot be certain that Josslyn was occupied from ca. A.D. 300 to 800. A date of A.D. 1225-1304 from the bottom of Zone IV places the stratum in the early Caloosahatchee III period.
We straightened the profile of Disturbed Area 6, the "shell quarry" pit, and placed a 50 x 50 cm test excavation, called B-l, adjacent to the profile. It was carried to a depth of 40 cm below the surface. As Figure 5 shows, the area is composed, at least near the surface, almost entirely of lightning whelk (Busycon contrariant) shells of various sizes. There were also sparse fish bones and flecks of charcoal, and a very small amount of sand.
We located a third test excavation, C-l, near the middle of Cushing's so-called "central court." The sandy matrix was very dark brown to black in color and very dense in marine shells. Ground water seepage began at the bottom of Level 3, 30 cm below the surface, and excavation became impossible below Level 4. This excavation revealed few artifacts, and the shells were almost exclusively scallops (Argopecten irradians). Single Belle Glade Plain sherds from Levels 1 and 3 imply a post-A.D. 650 date for the scallop-shell midden of Operation C.
The three test pits excavated in our brief field season in Spring, 1985, contrasted sharply with one another.
jed Area 6, or Operation B), Josslyn Island,
The deep A-l excavation showed us the variety in deposits and established a time range for Josslyn Island, but shallow test pits B-l and C-l showed that quite different deposits, i.e., concentrated whelk shells and mucky scallop middens, were to be found nearby. The 1985 excavations succeeded in establishing a time range for Josslyn and obtaining controlled samples for archaeobiological analysis. Levels 4, 12, 22, and 32 were selected for flotation, representing Zones IV, VI, X, and XIII.
The archaeobotanical and zooarchaeological analyses undertaken on selected levels of the A-l column sample were informative (see Chapters 8 and 10 for details). Most of the seeds identified in the A-l.column sample were of ruderal (weedy) taxa, including chenopod, mallow, grass, purslane, pokeweed, and trianthema seeds. Saw palmetto seeds and red mangrove sprouts were also identified, and a few mastic seeds were found in the uppermost analyzed level. Only in Level 22 were seeds reasonably abundant; again, ruderal types (chenopod, purslane) dominated. Red and black mangrove and pine were the most commonly used fuel woods.
The zooarchaeological analysis of the A-l column levels revealed a rich and diverse assemblage of fauna. An average of 29 vertebrate (mostly fish) and 45 invertebrate species were identified in the four analyzed levels, over two-thirds of which live in shallow sea-grass meadow habitats. Pinfish, pigfish (grunt), silver perch, and hardhead catfish were the most abundant fishes. Birds, reptiles, mammals, and crustaceans were represented infrequently.


20
Culture and Environment in the Domain of the Calusa
We returned to Josslyn Island in May of 1987 to excavate the ash and charcoal concentration that we had observed in 1985 in the north profile of Operation A. The ash and charcoal area, though not as deep as the ash seen in Zone VI of Test A-l, had been shown to be approximately contemporaneous with it. I was intrigued both by the complex layering of discrete ash, bone, and sparse shelly sediments and by two vertical, post-mold like deposits of dark gray sand (see Figure 3). Wanting a plan view of the ash complex, rather than simply a profile, I decided to place a 3 x 2 m excavation unit adjacent to the northern profile of the old looter's pit in order to investigate the area. The objectives were to determine if a structure or evidence of domestic activities could be discovered at this location and, if possible, to infer the function of the activity area.
The 3 x 2 m excavation was called A-2. Excavation was done by trowel and shovel, and sediment was sifted through VHnch hardware cloth. We removed the first four levels until the top of the light gray ash zone began to appear at 3.37 m. The zone above the ash (Levels 1-4) was a dark gray sand, with sparse shells. Shells were varied both in size and species, and numerous fish bones and other animal bones, especially of deer and duck, were found.
The pottery of the upper four levels suggests the Caloosahatchee III period, ca. A.D. 1200-1350, with the presence of St. Johns Check Stamped pottery and ample quantities of Belle Glade Plain in all four levels
(see Table 21 in Chapter 4). No St. Johns Check Stamped pottery was found below Level 4 (elevation = 3.35 m). The upper four levels of A-2 are probably contemporaneous with Zone V of A-l (i.e., A-l, Levels 6-10).
The fifth level of A-2 contained mostly Belle Glade Plain pottery, but no St. Johns Check Stamped. The non-ashy part of Levels 6, 7, and 8 was composed of very dark grayish brown sand with shells far more common than in the upper five levels. This leads me to venture that it is contemporaneous with Zone VII of A-l, also characterized by grayish brown sand with dense deposits of bones and shells, most commonly whelk and tulip shells of various sizes, and also partially underlying an ash and charcoal stratum.
Ash and charcoal increased, as expected, below 3.35 m, confirming that the ash zone identified at that elevation in the profile of the looter's pit had been located. At the beginning of Level 6 (3.21 m) the excavation was divided into two loci, the ash area being called A-2-6-1 (i.e., Locus 1 of Level 6 of Test Pit A-2). At the bottom of Level 6 in Locus 1 it was possible to see four very distinct circular areas of dark gray sand containing a few small crushed shell fragments (Figure 6). These appear too regular to be root stains, although that possibility cannot be ruled out. If they are the remains of post molds, they may represent a cooking rack or fish-smoking rack associated with the ash area. But since they intrude into the ash and bone layers from above, it seems more likely that
8 LL 32 5 27 87 A 2 6 1
Figure 6. Ash area at bottom of Level 6, Test A-2, Josslyn Island; note distinct circular areas of dark gray sand intruding into the ash.


Recent Archaeological Investigations
21
Table 3. Summary of Vertebrate Faunal Remains (Minimum Number of Individuals) Identified from Ash and Charcoal Stratum, Josslyn Island, Test Excavation A-2-6-1 (screen size = 2.0 mm; Zooarchaeology Accession Number 0446).
Taxon Common Name MNI
cf. Peromyscus gossypinus Cotton Mouse 1
Procyon lotor Raccoon 1
Odocoileus virginianus White-tailed Deer 1
Anatidae Ducks 4
Testudines Turtles 1
Anolis carolinensis Green Anole 2
Carcharhinidae Requiem Sharks 4
Aetobatus narinari Spotted Eagle Ray 1
Rajiformes Skates and Rays 1
Clupeidae Herrings 2
Ariopsis felis Hardhead Catfish 8
Ariidae Sea Catfish 64a
Opsanus sp. Toadfish 8
Strongylura sp. Needlefish 1
Serranidae Groupers 1
Orthopristis chrysoptera Pigfish 10
Archosargus probatocephalus Sheepshead 3
Lagodon rhomboides Pinfish 222
Sparidae (cf. Lagodon rhomboides) Porgies 19
Bairdiella chrysoura Silver Perch 5
Cynoscion nebulosus Sea trout 8
YLeiostomus xanthurus Spot 1
Scianops ocellatus Red Drum 4
Mugil sp. Mullet 1
Paralichthys sp. Flounder 2
| Chilomycterus schoepfi Striped Burrfish 1
aSea catfish MNI based on 64 right otoliths; could subsume the MNI recorded for Ariopsis felis based on 8 dorsal spine fragments.
they post-date the ash deposit. They may have been posts associated with a house structure, net-mending or net-making structure, or some other fabrication.
The ash deposit proved to be as complex as expected. Distinct layers of ash and charcoal and pockets and layers of fish bones were found. Some of the fish bones were burned and highly fragmented. Most of the fish represented were pinfish and sea catfish (see Table 3), indicating exploitation of the seagrass flat habitat. The bottom of the ash was reached at 2.80
m, the bottom of Level 8. A shell from the bottom of the deposit dates to A.D. 961-1054, somewhat more recent than expected.
Figure 7 provides a profile diagram of the ashy area, which extended into the western profile of A-2. As noted before, layers of charcoal, white ash, gray sand, and concentrations of fish bones were quite distinct from one another. Scarry and Newsom (see Table 12 in Chapter 10) report that mangrove (60%) and pine (40%) are represented in the charcoal of the A-2 ashy


22
Culture and Environment in the Domain of the Calusa
8LL32 JOSSLYN ISLAND MAY 29 1987
A-2
A-2
t \ { t I' \ i TTT" "1r--r... ._- 1__ f^-~T 1
111 1 Cmrrrn.rj.;iJ1 1 1 ,-j-t..|ai TT~rg(^?

UNEXCAVATED
LEGE N D:
VERY DARK GRAYISH BROWN
DARK GRAY
LIGHT YELLOWISH BROWN
SESBEg HUMUS
O O
WHITE
POTTERY
RADIOCARBON SAMPLE
CHARCOAL
1.0 meter
Figure 7. Profile diagram of the southwestern corner of Test Pit A-2, Josslyn Island, 1987 excavations. Key to stratigraphy: a = white ash; b = small bones; c = charcoal; d = very dark grayish brown dense shell midden; e = dark gray sparse shell midden; f = dark gray sand; g = white sand.
area. I suggest that this and similar activity areas represent domestic areas where cooking activities took place. The white ash and charcoal probably indicate cooking fires, connected either with the boiling and roasting of fish or mollusks or both. If fish such as catfish and pinfish were cooked in a stew, the dumped residue from the cooking pot might well contain many small bones, accounting for the layers and pockets of deposited fish bones. The fact that many of the fish bones are burned may simply mean that garbage from the stew pots was being burned at this locality. Roasting of fish directly on or above a fire would be expected to char the skin and outer flesh of the fish, but not necessarily their bones.
Using multiple data sets from zooarchaeological and archaeobotanical studies, one can cautiously hypothesize seasonality of site occupation (see Russo [1991a:154-238] for a critical discussion of this process). For example, nine different seed taxa were identified by Scarry and Newsom in the A-2 ash and bone concentration (see Table 22 in Chapter 10); they establish that this area was occupied in fall and winter, although this finding does not imply exclusion of other seasons. Walker's (Chapter 6) identification of loon bones in A-2 implies a winter occupation. Quit-myer and Jones's analysis of Mercenaria campechiensis clams from A-2 (see Figure 11 in Chapter 7) suggests
occupation in late winter/early spring. Finally, an analysis of the atlas bones of pinfish (Lagodon rhom-boides) from the A-2 excavation, based on an algorithm developed by Russo (1991a:227-229, 232), indicates a summer and early fall occupation (Figure 8; identifications by Melissa Massaro; measurements and calculations by Michael Russo and Scott Swan). The four data sets taken in combination suggest year-round use of this area of Josslyn Island.
Seasonality inference based on the analysis of incremental growth structures, such as those of clams, odostomes, scallops, herrings, catfish, and pinfish, are generally more rigorous than mere presence/absence of certain species (Russo 1991a:160-167). A technique for inferring seasonality from quahog clams is discussed in detail by Quitmyer and Jones in Chapter 7. Russo's pinfish algorithm is based on estimating the modal size of the pinfish represented in archaeological deposits by means of a regression formula. The modal size data are known from modern surveys of fish populations in Charlotte Harbor (Wang and Raney 1971). The independent variable in the regression is the width of the atlas bone, the dependent one the standard length of the fish. A cohort of zero-age pinfish will increase in length from ca. 13 mm to 50 mm between January and July; by the fall/early winter, the pinfish will have grown to over 80 mm in length, but


Recent Archaeo logical Inves tigations
23
most will have left the estuary to spawn in deeper waters. In Figure 8 the hatched bars show the distribution of pinfish sizes that would be expected if harvested from April through September; the solid black bars represent length data derived from measurements on 222 pinfish atlases from Josslyn Island, A-2-6-1 (i.e., Test Pit A-2, Level 6 of Locus 1, the ash zone). The visual fit allows one to infer exploitation of pinfish in the spring and summer.
Although the pottery of A-2 indicates a transition from late Caloosahatchee II to early Caloosahatchee III periods, the numerous other artifacts found in the
Table 4. Selected Artifact Counts from Test Pit A-2, Josslyn Island.
Provenience3 Potteryb Perforated Bivalves' Gastropod Cutting-edged Tools Gastropod Hammers Columella Hammers Sinkers'1 Net Mesh Gauges6 Bone Points Bone Pins Bone Beads
|a-2-1 (Level 1) STP 15 BGP 18 BGR 0 SJC 6 5 n 1 0 1 1 Sh 0 0 0 0
a-2-2 (Level 2) STP 10 BGP 26 BGR 0 SJC 3 18 n 0 3 2 1 Sh 0 2 0 0
a-2-3 (Level 3) STP 20 BGP 15 BGR 5 SJC 8 15 n 1 1 1 0 1 Sh 2 1 0
a-2-4 (Level 4) STP 17 BGP 39 BGR 9 SJC 2 9 n 1 d 1 2 0 0 0 4 1 1
a-2-5 (Level S) STP 13 BGP 19 BGR 2 SJC 0 6 n 1 d 2 3 1 1 Sh 1 Bo 1 0 0
a-2-6 (Level 6) STP 16 BGP 32 BGR 5 SJC 0 14 n 1 d 5 a 3 5 0 1 St 0 3 0 0
a-2-7 (Level 7) STP 39 BGP 40 BGR 10 SJC 0 13 n 3 4 0 1 Sh 1 Bo 1 Sh 3 1 3
a-2-6-1 (Level 6, Locus 1) STP 7 BGP 7 BGR 5 SJC 0 3 n 2 d 2 a 0 0 0 0 0 1 0 1
a-2-7-1 (Level 7, Locus 1) STP 7 BGP 1 BGR 1 SJC 0 1 n 1 a 0 1 1 0 0 0 0 0
a-2-8-1 (Level 8, Locus 1) STP 13 BGP 0 BGR 0 SJC 0 4 n 1 d 0 0 0 0 0 0 0 0
Totals 410 102 11 19 6 5 4 16 3 5
"Locus 1 (i.e., a-2-6-1, a-2-7-1, and a-2-8-1) is the ashy area.
bSTP = Sand-tempered Plain; BGP = Belle Glade Plain; BGR = Belle Glade Red; SJC = St. Johns Check Stamped. cn = Noetia ponderosa; d = Dinocardium robustum; a = Argopecten irradians. dSt = stone; Sh = shell. eBo = bone; Sh = shell.
deposits vary little from level to level (see Table 4). Shell artifacts, especially perforated Noetia ponderosa net weights, were common throughout. Several bone points, shell sinkers, and net mesh gauges add evidence that the area was the location of activities connected with fishing. The large (1.46 kg), waisted sandstone artifact found in Level 7 of A-2 (Figure 9) could be interpreted as an anchor, but it could have functioned as a hafted sledge hammer wielded by a prehistoric version of the legendary John Henry. A number of shell hammers, potsherds, bone pins, and bone beads suggest a range of activities other than those connected closely with fishing. Several frag-


24
Culture and Environment in the Domain of the Calusa
merits of sandstone showing evidence of grinding, polishing, or sharpening were found in the A-2 excavation (see Table 5).
That this domestic area was extensive is suggested by the roughly contemporaneous ash/charcoal/bone deposits of Zone VI, Pit A-l and of A-2. The ashy deposits date to ca. A.D. 800-1050 based on three 14C assays: A.D. 801-978 from A-l, Zone VI; A.D. 819-996 from the ash area in the standing profile of the looter's original pit; and A.D. 961-1054 from the bottom of the 1987 excavation of that same ash area. There may be a deposit of considerable extent in this southeastern portion of Josslyn Island, perhaps the remains of a permanent village, though this is hypothetical in the absence of further excavations.
The preliminary testing of Josslyn Island in 1985 and 1987 accomplished the objectives of dating the deposits, learning something of their structure, and obtaining detailed zooarchaeological and ar-chaeobotanical data. The testing also showed how very little we really know about Josslyn. Far more extensive excavations will be necessary, and in several
Table 5. Stone Artifacts and Other Stone Objects Found at Josslyn Island, 1984-1987.
[ Provenience Sinker Small, Round "Bolo" Stones Grinding/ Polishing Stone Sharpening Stone Fossil Bones and Shark Teeth Sandstone Limestone Other Stone
Surface 1 3 3
A-l-2 2
A-l-3 1
A-l-4 1 1 2 1
A-l-5 1
A-l-6 1 1
A-l-8 1
A-l-9 1
J A-l-10 1
| A-l-11 1
| A-l-12 1
A-l-15 6
A-l-22 1
A-l-32 7
A-2-1 1 1 1
A-2-2 1 1 1
A-2-4 2 1 1
A-2-5 1 2
A-2-6 1 1
A-2-6-1 1 1
A-2-7 2 1 1 2 2
Totals 2 2 6 S 4 11 26 6
summer/early fall
1-40 41-80 >81
Standard Length (mm)
? June-October WM 8LL32: A-2-6-1
Figure 8. Histogram comparing percentages of standard lengths of pinfish (Lagodon rhomboides), grouped in 40 mm intervals: modern Charlotte Harbor, n=2130 (Wang and Raney 1971), vs. a sample based on atlas measurements from Test Pit A-2, Level 6, Locus 1, Josslyn Island, n=242. See Russo 1991a:227-229,232 for explanation of the algorithm.


Recent Archaeological Investigations
25
I_i i i i i ?
0 cm 10
Figure 9. A large waisted sandstone artifact found in Level 7 of Test Pit A-2, Josslyn Island, may have been used as an anchor.
different parts of the island, before we will be able to interpret confidently its role in the prehistoric social and economic life of Pine Island Sound.
THE COLLIER INN SITE, USEPPA ISLAND (8LL51)
Environmental Setting
Useppa Island is located in northwestern Pine Island Sound, about 5.6 km west of Pine Island and 2.4 km east of Cayo Costa Island (Figure 1). Useppa Island is long and narrow, approximately 1.7 km long and 0.5 km wide. It runs roughly north-south along its long axis. The eastern edge of the island is marked by a dune ridge of Pleistocene age that rises to an elevation of over 6 m above sea level (see Chapter 3). The island is surrounded by shallow estuarine waters with ample sea grass meadows and oyster habitats, but waters of nearby Boca Grande Pass (over 10 m deep) exert influence on the fish populations that frequent the area.
Historic Settlement
A significant part of Useppa's remarkable elevation can be accounted for by thousands of years of accumulated prehistoric and historic archaeological deposits, which extend over approximately 4 ha of the island. Historical records indicate that occupation of Useppa continued after the demise of native Indian groups. In the nineteenth century Useppa was home to Spanish fishing families, who shipped bountiful harvests of
mullet to markets in Cuba (Hammond 1973; Williams 1962).
Atop the eastern dune ridge is a shell midden containing components dating from the third millennium B.C. through the Caloosahatchee II period, capped with a shallow historic period midden. On top of the dune-midden complex Barron Collier built a home for himself and his family in 1912 (Figure 10), along with several guest cottages for invited visitors. A 22-room hotel, built earlier by streetcar tycoon John Roach, was a mecca for the rich and famous through the 1920s and 1930s, but the island's buildings fell into ruin following Collier's death in 1939. The island was used briefly for military purposes in the 1960s as a training site for Cuban expatriates preparing for the Bay of Pigs invasion. Garfield Beckstead purchased the island in 1976, completely restoring the remaining buildings and landscape. The island is today home to about one hundred families, and the archaeological deposits and historic buildings are protected from disturbance by rigid restrictions.
Previous Archaeological Investigations
Although Useppa Island is mentioned in early accounts of shell midden sites (e.g., Simons 1884:794-796), no known explorations were made of its impressive deposits. The island was visited briefly in October, 1947, by John W. Griffin and Hale G. Smith when workers expanding the tennis court encountered human burials (Griffin and Smith 1947). Shell deposits, dominated by conch and whelk, a number of human bones, and pottery representing a long time range, were found in a one-hundred-foot (ca. 30 m) disturbed profile west of the tennis court that is located south and west of the Collier Inn (Figure 11). The human bones were concentrated in the northern ten feet of the exposed face. The visitors concluded that "Useppa Island would appear to offer good prospects for a stratigraphic picture ranging from fiber-tempered times to the full historic period" (Griffin 1949).
Useppa was not again visited by archaeologists until May, 1979, when Jefferson Chapman and Jerald Mil-anich excavated several backhoe tests in various parts of the island. These tests were followed in 1980 by two hand-dug excavations, a 3 x 3 m test in an Archaic midden and a 2 x 2 m test in a more recent deposit (Milanich et al. 1984).
Test A, the 3 x 3 m test, revealed a preceramic shell midden. Milanich and Chapman obtained radiocarbon dates of 4610-4370 B.C. and 3890-3640 B.C. (Table 1) and interpreted the site as an Archaic camp and columella-tool manufacturing site. Zooarchaeological analysis of a fine-screened (1.6 mm) sample of the midden demonstrated exploitation of bony fish, sharks and rays, turtle, and shellfish (Milanich et al. 1984:271-278).
Test B, the 2 x 2 m excavation, was cut into a stratified shell deposit on the southeastern part of the island. The deposit dated from ca. A.D. 193-392 to the


26
Culture and Environment in the Domain of the Calusa
m
IM
mm
Figure 10. The Collier Inn on Useppa Island, formerly the residence of Barron Collier. Now a restaurant, the building is constructed on top of a prehistoric midden deposited on an ancient Pleistocene dune.
historic period. Again, the zooarchaeological analysis revealed a principal reliance on fish, sharks and rays, and shellfish (Milanich et al. 1984:278-287). Ann Cordell's microscopic analysis of a small sample of plain pottery from Test B demonstrated that the apparent homogeneity of southwest Florida plainwares belies significant variation in aplastic constituents and color. These observations on the Useppa pottery, together with variations in rim form and thickness already recognized for plainwares by Luer and Almy (1980, 1982), laid the foundation for Cordell's more detailed studies, reported in this volume (see Chapter 4).
Excavations at the Collier Inn, 1985
In August, 1985, 1 was invited to Useppa Island to examine some artifacts and bones that had been inadvertently disturbed by a backhoe during the relocation of a palm tree just south and east of the Collier Inn. Upon my arrival I observed a squarish hole about 3.3 m on a side and about 80 cm deep littered with human bone fragments and prehistoric potsherds. After shoveling out the loose dirt, I cut a vertical face into the north and west sides of the excavation. This revealed an upper layer of dark grayish brown, highly organic sand with many shells extending approximately 60 to 70 cm below the surface, and an underlying light brown sand layer with sparse oyster and clam shells extending another 20 cm to the bottom of the excavation.
1979 -1990 TEST EXCAVATION [9B5 TEST EXCAVATION
Figure 11. Useppa Island as it appeared in 1985; several houses have been built since this map was drawn.


Recent Archaeological Investigations
27
Trowel-scraping of the bottom of the pit exposed the badly-disturbed remains of a juvenile human in a flexed position, lying on its left side (Burial 1). The cranium was largely absent, apparently having borne the impact of the backhoe's shovel. A part of the mandible, the outline of the vertebral column, and parts of the leg bones could still be discerned (Figure 12). I covered the burial remains and made arrangements to return to Useppa in September.
Assisted by Michael Hansinger, who excavated the remains of Burial 1, several Useppa residents and visitors, and island owner/developer Garfield Beck-stead, who provided food and lodging and his own physical labor, I conducted additional excavations at the Collier Inn September 22-28, 1985. To investigate further the stratigraphy of this part of the island, I opened a 1 x 1 m test pit, numbered A-l, in the west profile of the backhoe excavation (Figure 12). Deposits were removed in 10-cm levels and screened through V5-inch screen. In the first level just beneath the grass lawn were found a champagne cork, a golf ball, and a complete hafted biface made of an off-white chert. The golf ball may be a relic of the Barron Collier era, for Collier had created a nine-hole golf course on the island. The biface fits the description of a Columbia point, thought by Bullen (1975:19) to date to ca. A.D. 200-1250, but believed by J. T. Milanich (personal communication, 1989) to be restricted to ca. A.D. 300-900.
About 5 cm into Level 2, or 15 cm below the surface, we encountered a concentration of Sand-tempered Plain and Belle Glade Plain pottery. The quantity of pottery decreased below Level 3. Both plain and incised fiber-tempered pottery of the Orange series was found in Level 7, below the dark organic shell midden but above the level of Burial 1.
To investigate the pottery concentration further, a 1 x 1 m test pit numbered A-2 was placed adjacent to and south of A-l and also excavated in 10-cm levels. The thick layer of plain potsherds was again encountered between 10 and 15 cm below the surface, and so was a human tibia and cranium (Burial 2). Operation A was again enlarged by adding a third 1 x 1 m pit, A-3, to the east of A-2 (Figure 12), in order to observe the extent of the human remains. Almost immediately another human burial was discovered (Burial 3).
Three things became apparent as excavation proceeded around the human bones. First, the matrix containing the burials was a dark gray sand with few shells, while the midden into which the burials had been placed was the previously-described dark grayish brown sand with dense shells. Second, ceramic vessel fragments had been apparently placed on top of the burials, particularly near the crania. The "blanket" of pottery did not extend more than a few centimeters beyond the burials. Third, the burials were partly articulated, but seemed haphazardly placed. For example, the left arm of Burial 2 was found touching its cranium, but the wrist and hand bones were missing. Burial 2 was lying on its right side, its cranium situated almost vertically. Burial 3's cranium was practically
face down, having apparently intruded into and replaced the lower half of Burial 2. As Burial 3 was being removed, two additional articulated legs of an adult-sized individual were discovered beneath Burial 3. These bones were left in place, and covered by a thin layer of white sand. An isolated mandible was also found in the burial fill near Burial 3.
This part of the Collier Inn site appears to be a cemetery with many burials placed in close proximity to one another. Such a small part of the burial area was uncovered that it is impossible to determine whether the burials are part of a mass grave, or simply the accumulation of many years' interment of individuals, some of which disturbed and contorted burials that had preceded them. There is no stratigraphic connection between Burial 1, located in the light brown sandy preceramic midden, and Burials 2 and 3, associated with the layer of plain pottery in the upper, dark grayish brown shell midden.
After the bones of Burials 1, 2, and 3 had been removed (see Chapter 11 for descriptions of the human remains), a 50 x 50 cm column sample, A-4, was excavated in 10-cm levels in the west profile of A-l (Figure 12).
Burial 1 is dated indirectly by 14C assays on clam shells found just above and below it (2880-2652 B.C. and 2858-2598 B.C.). Burial 1 predates the fiber-tempered pottery found in Level 7 of the A-l excavation, which is from a stratum approximately 25 to 30 cm higher. Dates of 2011-1778 B.C. and 805-740 B.C. from shells found in Test Pit A-4, Levels 3 and 2, respectively, indicate a Late Archaic to Caloosahat-chee I period time range for the upper Collier Inn shell midden. The upper burials and their associated pottery are intrusive into this earlier midden deposit. Evidence for intrusion includes (1) the significant quantity of Belle Glade Plain pottery in immediate contact with Burials 2 and 3 (see Chapter 4, Appendix E), (2) the characteristics of the burial fill, which differs in color and compaction from the darker and more consolidated matrix of the midden into which the burials were placed, and (3) a 14C date of A.D. 595-666 on bones from Burials 2 and 3.
The flotation sample analyzedLevel 2- of column sample A-4, dated to 805-740 B.C.proved to contain very few plant remains. A few fragments of charred buttonwood and black mangrove were found, as were a few seeds of ruderals (chenopod, purslane, poke-weed) and grasses. A small quantity of fruit seeds indicated the presence of hackberry, cocoplum, and mastic.
Zooarchaeological analysis of the same flotation sample yielded the remains of at least 208 vertebrates and 895 invertebrates. Almost equally divided between oyster bed and mangrove/seagrass habitats, the species suggest exploitation of an environment similar to that of today. Samples of clams from the Collier Inn excavations proved too small for reliable seasonality inference, but the ones analyzed indicate that clams were at least harvested there in the spring.


Culture and Environment in the Domain of the Calusa
USEPPA ISLAND 8LL5I
Figure 12. Sketch of the positions of Burials 1-4, Test Pits A-l, A-2, and A-3, and Column Sample A-4, Useppa Island, Collier Inn, 1985.


Recent Archaeological Investigations
In sum, the brief salvage and test excavations at the Collier Inn in 1985 revealed an intact, stratified deposit dating from at least the early third millennium B.C. through the Caloosahatchee II period. Fiber-tempered pottery of the Orange series is not precisely dated, but it lies in the uppermost layer of the light brown, sparse oyster-and-clam midden, below a stratum that dates to ca. 2011-1778 B.C. The upper midden dates mainly to the Caloosahatchee I period. A steatite bowl fragment was found in the disturbed fill from the backhoe excavation (Table 6), suggesting the possibility that the entire known sequence from pre-pot-tery to steatite pottery and fiber-tempered ceramics, then to sand-tempered ceramics may be represented at the Collier Inn locality. The burials just under the present-day ground surface date to the early Caloosahatchee II period, and are intrusive into the earlier Caloosahatchee I period midden.
As with the testing at Josslyn Island, the Collier Inn work was far too limited to allow for confident interpretations. The excavations do demonstrate the presence of a significant site between the old tennis court and the Collier Inn complex on Useppa Island, one spanning at least intermittent occupation for a period of over 4,000 years. Should resources for a broad scale excavation materialize in the future, I am confident that this locality has the potential to yield important information on a little-known time period in southwest Florida prehistory.
29
----mn
A v
<<, f o 7 \ .../
)M\ I J J ( \- * 1 h / f 1>
cm 3 "\ V *" /' K {' I- ^ );. ; ^
KEY." >^^- 'cm i ""
TEST UNIT
CORE SAMPLE
Q GUMBO LIMBO TREE SCALE
SOURCE: KERN D.S.R. AERIAL CAR.TOGHAPHICS OF AMERICA 5.W. F. PROJECT Fin, M.N. H. |-h-=-1 0 2 5 50 m CONTOUR INTERVAL i METER ELEVATION IN METERS A.M.SvL
CASH MOUND (8CH38)
Environmental Setting
Cash Mound is found in the southwestern corner of Turtle Bay (Figure 1). It juts out into the bay from the Cape Haze peninsula in an east-southeasterly direction, connecting to the mainland by a narrow, mangrove-covered neck of land. Geomorphologists refer to such a feature as a tombolo: a spit of land accumulated by the natural transport of sediments by wave action (see Chapter 3).
Cash "Mound" is actually an elliptical shell midden approximately 200 m long by 125 m wide and rising to an elevation of over 6 m (Figure 13). Large quantities of the predominantly oyster-shell midden were removed by dragline and deposited in various parts of
Table 6. Stone Artifacts and Other Stone Objects Found at Useppa Island, Collier Inn Site, 1985.
Figure 13. Cash Mound (8CH38), showing areas discussed in this chapter.
Charlotte Harbor in an ambitious but unsuccessful attempt to provide conditions appropriate for the growth of oysters in commercial quantities. Heavily impacted by this shell removal was the eastern end and a portion near the center of the shell midden. Portions of the midden were also used for road fill. Until 1985 a remnant of the original midden still remained isolated on the eastern extremity, and it was there that our first excavation efforts were directed in 1985 (see below).
Provenience Hafted Biface Steatite Sandstone Limestone
Surface 1 3 1
A-l-1 1
A-l-4 1
A-2-3 1
Totals 1 1 5 1
Previous Excavations
John Goggin and some University of Florida students visited the Cape Haze peninsula area in 1954, recording several sites. Ripley and Adelaide Bullen tested Cash Mound and five other sites in the area in February of 1954 (Bullen and Bullen 1956). They excavated a 10 x 10 foot pit in the machine-excavated eastern area and a 5 x 15 foot trench on higher ground to the west. In both excavations ground water intruded before the bottom of the midden could be reached. They reported abundant layers of crushed shells, ashes, brown-colored deposits (probably tiny fish bones), and significant numbers of mostly sand-tempered pot sherds (Bullen and Bullen 1956:15-25).


30
Culture and Environment in the Domain of the Calusa
Oysters and "fresh-water bivalves" (probably ribbed mussel) were the most common shellfish remains noted by the Bullens. Without the benefit of the fine-screen recovery techniques considered essential today, the Bullens (1956:24) inferred that "shellfish was the major source of food." They suggested that as Cash Mound's human population exceeded the supply of bivalves, small groups would bud off to form their own villages where the shellfish were more plentiful, accounting for such smaller sites as 8CH12, the Vanderbilt site (Bullen and Bullen 1956:12, 24).
Excavations in 1985 and 1988
Ably assisted by Bob Edic and Don Cyzewski, I visited Cash Mound on June 28, 1985, to remove a 50 x 50 cm column sample from an eroding remnant of the eastern part of the shell midden still standing on the beach (Figure 14). We first troweled a section of the standing profile about 80 cm wide, then removed 22 10-cm levels of a 50 x 50 cm column sample, called A-l. As the Bullens had experienced, water intruded into the excavation near sea level, and excavation had to be terminated. The opportunity to excavate this column sample was fortunate because a hurricane washed away the free-standing midden remnant in the fall of 1985 (see Figure 15).
Shells from Levels 4,8,17, and 20 were radiocarbon dated to A.D. 672-806, A.D. 67-266, A.D. 118-322, and A.D. 238-398, respectively (Table 1). The date ranges from Levels 8,17, and 20 overlap with one another and date to the latter part of the Caloosahatchee I period,
while Level 4 dates to the early Caloosahatchee II period. Cordell's analysis of the 32 sherds found in the column sample sediments shows nothing but sand-tempered pottery in the Caloosahatchee I levels, whereas the Caloosahatchee II stratum has a small quantity of SPCB Plain sherds (see Table 22 in Chapter 4). Surface collections from Cash Mound include Belle Glade Plain sherds, as well (see Table 23 in Chapter 4).
SPCB is an abbreviation for Spicule-B. It refers to a paste variety, defined by Cordell (see Chapter 4), that is characterized by common to abundant, predominantly fine to very fine quartz sand and common minute sponge spicules with preferred orientation (see Table 2 and Figure 2 in Chapter 4). With the aid of a microscope, SPCB Plain pottery can be distinguished from Belle Glade Plain (Spicule-A, abbreviated SPCA) and two varieties of sandy paste that contain few to no sponge spicules (see Chapter 4 for details).
As can be seen from Figure 14, the midden remnant contained many layers of shells, fish bones, charcoal, and ashes. The shellfish remains are predominantly oyster (Crassostrea virginica) and ribbed mussel (Geukensia demissa). The brown layers were composed of millions of tiny bones of fish, predominantly sea catfish and pinfish. Relative to other sites analyzed, Cash Mound samples were low in faunal diversity, averaging 18 vertebrates and 24 invertebrates per 0.025 m3 sample. This may indicate a specialized part of the site, one used for oyster and mussel processing, rather than the typical diet of the site's inhabitants. A
Figure 14. Free-standing remnant of the shell midden from which Column Sample A-l was removed, Cash Mound; photograph taken June 28,1985.


Recent Archaeological Investigations
31
Figure 15. Cash Mound Beach after a hurricane Figure 14; photograph taken January 23, 1986; c case.
significant portion of the meat represented by analyzed faunal remains38% to 64%is accounted for by Ariopsis felis, the hardhead catfish.
Botanical remains were scarce in the analyzed samples. Identified woods included mangroves, but-tonwood, pine, and rapanea. The two deepest levels contained more wood than the upper two. Mangroves comprised 83% of the wood identified in Level 17 and 47% in Level 20. Seeds were equally scarce: only 12 identifiable seed fragments were found in all four levels combined. All were of ruderals except for five saw palmetto seed fragments found in Level 8.
Although twenty fragments of chert, a complete biface (a Hillsborough point of the Middle Archaic period), and eight fragments of sharpening stones are known from surface collections, only a few limestone chunks were found in the 1985 column sample excavations.
Assisted by several volunteers, I revisited Cash Mound April 20-21, 1988, in response to reports from local informants that numerous pot sherds and bone artifacts were eroding out of a dark, richly organic deposit on the beach. High tides and a strong wind had conspired to produce exceptionally high waves, leading to accelerated erosion of the ancient midden deposits.
Although the tide and wind conditions were anything but favorable for excavation at the beach, I obtained permission for a brief testing project from the J. N. "Ding" Darling National Wildlife Refuge, which has jurisdiction over Cash Mound. (Cash Mound is now under federal jurisdiction, and collecting artifacts and
ashed away the midden remnant pictured in jects in foreground are a field pack and camera
excavating there is strictly forbidden without a permit.) The datum stake from the 1985 excavation of the column sample was relocated, and a 1 x 1 m test excavation, Operation B, was placed 2 m north of the site datum. Operation C, a 1 x 1 m unit, was placed 5 m east of the site datum (Figure 13).
With difficulty, three 10-cm levels were excavated in the B pit, using a makeshift plywood coffer dam and gasoline-powered pump. The top level was composed of loose shells and was disturbed by recent tidal fluctuations, but in Level 2 we encountered the highly organic, black midden deposit. This black layer was only 10 cm thick. The lower portion of Level 3 was a dense shell midden dominated by oyster shells. Excavation was terminated at the bottom of Level 3 due to water intrusion.
The C pit was placed purposely in the edge of the water at low tide because the black deposit could be seen eroding actively at that location. Dense, black midden was found in two 10-cm levels in Pit C before excavation had to be stopped due to water intrusion. Again, the black midden was no more than 10-15 cm thick.
Pottery found in Operations B and C is predominantly thick, Sand-tempered Plain. Of the 590 sherds found, 588 are Sand-tempered Plain and only 2 are Belle Glade Plain (Table 7). Also noted from the black midden were several well-used Busycon contrarium hammers, a sandstone sharpening stone, and several chunks of limestone (Table 8). Over 600 artifacts were found in approximately 0.5 m3 of excavated deposit. In my experience with southwest Florida shell mid-


32 Culture and Environment in the Domain of the Calusa
Table 7. Pottery Found in Limited Excavations on Cash Mound Beach, 1988.
Catalogue Number Provenience Sand-tempered Plain Belle Glade Plain Total
88-1-7 B-l, sump 19 1 20
88-1-8 B-l, Level 1 120 0 120
88-1-10 B-l, Level 2 75 1 76
88-1-13 B-l, Level 3 72 0 72
88-1-15, 88-1-16 C-l, surface 79 0 79
88-1-17, 88-1-18 C-l, Level 1 116 0 116
88-1-19, 88-1-20 C-l, Level 2 46 0 46
88-1-21 C-2, surface 5 0 5
88-1-22, 88-1-24, 88-1-25 C-2, Level 1 56 0 56
Totals 588 2 590
dens, 1200 artifacts per cubic meter is an unusually high density of artifacts, confirming my informants' observations that the dark midden then eroding into Turtle Bay was the source of much of the pottery and other artifacts seen on the shoreline. The dark midden may correspond to Bullen and Bullen's (1956:17) "shells and pottery mixed with black dirt," a stratum encountered between 28 and 66 inches below surface in their Test pit I. In that excavation, Bullen and Bullen report only a very few Belle Glade Plain sherds (less than 1% in any level), and none below the 48" level (Bullen and Bullen 1956:21).
In sum, our brief test excavations at Cash Mound in 1985 and 1988 succeeded in obtaining controlled samples for fine-screen analysis, augmenting and counterbalancing the observations made by the Bul-lens in the 1950s, and in documenting the state of erosion of the beach at Cash Mound. This site is still being lost to wave action and steadily rising sea levels, as well as to recent (1991) depredations of looters, who have uprooted trees and dug several gaping holes in search of treasure left by the mythical pirate Jose Gaspar. Such looters apparently believe that pirates buried their treasure under trees, prominently mark-
Table 8. Stone Artifacts and Other Stone Objects Found at Cash Mound (8CH38).
Provenience Hafted Biface Debitage Sinker Hammerstone Sharpening Stone Fossil Bones and Shark Teeth Sandstone Limestone Other Stone
Surface 2 20 6 1 8 4 1 2 2
A-l-10 1
A-l-11 1
A-l-17 2
B-l-1 1
B-l-2 1
B-l-3 2
C-l-1 1
C-l-2 2
1 C-2-1 1
Totals 2 20 6 1 9 4 1 13 2


Recent Archaeological Investigations
33
ing the spot with carvings in the tree trunks. The unlikelihood of one's conspicuously marking the spot where one secretly buries money is lost on these enthusiasts. The Gaspar fable has led to the disturbance of numerous prehistoric sites and the demise of many a gumbo-limbo tree whose only crime was finding favorable soil and drainage conditions atop one of the ancient shell middens of Charlotte Harbor.
Surface collections and limited excavations have demonstrated a time range from at least the Transitional period through Caloosahatchee III (Bullen and Bullen 1956). The Bullens found semi-fiber-tempered sherds on the surface, thick sand-tempered pottery in lower levels, thinner sand-tempered pottery in more recent levels, some Belle Glade Plain sherds, and a single Glades Tooled sherd in the uppermost level of their second test pit. This suggests a minimal time range of ca. 1000 B.C. to A.D. 1350.
Cash Mound is a deeply stratified oyster and mussel-shell midden with extensive, intact deposits of artifacts and plant and animal remains. It has already produced an extraordinary collection of shell and bone artifacts (see Chapters 5 and 6), but unfortunately these are all from the eroded beach deposits, hence without contextual information. Its significance lies in its stratigraphic integrity, degree of preservation, and time range represented. The site contains evidence for transitions in ceramics from semi-fiber-tempered to thick sand-tempered to thinner and more spiculite-bearing varieties to decorated wares with tooled rims (Bullen and Bullen 1956; Chapter 4, this volume). It is also a natural laboratory for the study of the past dynamics of Charlotte Harbor's environment. Our preliminary tests, and those of the Bullens, confirm the significance of Cash Mound, but only extensive and systematic excavations can begin to reveal the volumes of information it contains.
BUCK KEY SHELL MIDDEN (8LL722) AND BURIAL MOUND (8LL55)
Environmental Setting
Buck Key is an island lying just east of the northern part of Captiva Island (Figure 1). A former barrier island now shielded from the Gulf of Mexico by Captiva (Stapor et al. 1987:167), the 141 ha island is about 2300 m long and 600 m wide. Buck Key is about 1,200 to 1,500 years old (Stapor et al. 1987:167,169). Beach-derived deposits characterize the island (Chapter 3), and vegetation runs the gamut from xeric in open sunny areas in the center of the island to mangrove forests at its edges.
Buck Key is an island of remarkable biotic diversity. Over 80 bird species have been documented, and mammals, amphibians, fishes, and reptiles abound. Tropical hardwood hammocks include rare, endangered, and threatened species of both plants and animals, and specimens of certain tropical plants exceed dimensions of the same species in the Florida
Keys (Kathleen Boone, personal communication, 1985; Richard Workman, personal communication, 1983).
A system of mosquito control ditches excavated through the island in the 1960s now affords access to the island's interior by canoe. On either side of these picturesque, now mangrove-lined canals, piles of dredge spoil testify to the beach derivation of most of Buck Key's sediments. Exceptions to the beach-derived topography are three archaeological sites that in places exceed 3 m in elevation above sea level. Sites 8LL721 and 8LL722 are shell middens on the northeastern part of the island, while 8LL55 is a sand burial mound near its center.
Previous Archaeological Explorations and Historic Settlement
According to uncalibrated 14C dates obtained by geologists (Stapor et al. 1987:198), the Buck Key landform probably accumulated mainly between ca. A.D. 450 and 750 as part of a depositional episode known as the Buck Key time-stratigraphic unit (ca. A.D. 450 to 950) (Stapor et al. 1987:167). Calibrated, Stapor et al.'s dates for Buck Key change from A.D. 450-750 to A.D. 440-1010 (Stuiver et al. 1986), extending the estimated active formation process about 260 years forward. If this estimate is accurate, one would not expect substantial archaeological deposits any older than ca. A.D. 1000 to have survived wave and storm activity. In fact, the range of prehistoric occupation documented thus far in our limited testing is ca. A.D. 1027-1439 (Table 1), though the burial mound and lower, now-inundated levels of the shell midden may date somewhat earlier (see below).
In the late nineteenth century the island was populated by American settlers who made a living growing citrus fruit and other crops. By the early 1900s a settlement on the island included several houses and a school (Dormer 1987:188-192 et passim). This settlement was wiped out in the hurricanes of 1921 and 1926, and the island was never resettled. Present ownership of the island is best envisioned by dividing the island roughly into fourths from north to south. The northern quarter and southern half of the island are government-owned and protected. The remaining north-central portion is privately-owned with the exception of the area immediately around site 8LL55, the burial mound, which is federally protected. Our investigations on Buck Key were graciously permitted and facilitated by property owner Ted Watrous and by representatives of the Charlotte Harbor State Reserve and the J. N. "Ding" Darling National Wildlife Refuge.
So far as I know, no previous work by professional archaeologists had taken place before our 1985 expedition. However, the Buck Key Burial Mound (8LL55) had been looted by skull hunters for many years. Local informants indicate that dozens if not hundreds of skeletons have been dug out of the mound. One local informant who observed some of the digging years ago reports that two episodes of burials seem to have been represented in the mound, separated from one another by a thin layer of beach-derived sands.


34
Culture and Environment in the Domain of the Calusa
Flexed burials, both adults and children, are said to have been found in both strata. Only minor disturbance to the mound seems to have occurred in the past few years, probably due to vigilant monitoring of the site by federal employees, nature conservation groups, and local guide and naturalist Mark "Bird" Westall, who conducts nature tours to the island by canoe.
Investigations at Buck Key, 1986
I led a crew of students and volunteers in preliminary testing of sites 8LL722 and 8LL55 March 23-29 and May 4-13, 1986. Three 1 x 1 m test pits, A-l, B-l, and C-l, were placed initially in the 8LL722 shell midden, and a fourth lxl, called 1-1, was added later between A-l and B-l (see Figure 16). Test D-l, also a 1 x 1 m pit, was placed near the center of the island to confirm that there was no aboriginal occupation in the lower, but still relatively well-drained part of the island. Tests E-l, F-l, and G-l were placed in and around the burial mound, 8LL55, in order to study the stratification and to determine if any undisturbed portions remained; all were 1 x l's. Finally, 1 x 1 m Test Pit H-l was dug in an elevated area northwest of C-l in order to ascertain whether there was any cultural deposit in an area of dense surf clam shells (Spisula solidissima) that appeared on the surface.
Buck Key Shell Midden Excavations (8LL722). Test Pit A-l was placed in the northern end of a roughly
figure 16. The north-central portion of Buck Key, showing locations of 1985 test excavations.
north-south running shell midden ridge; it was carried to a depth of 140 cm below surface (Figure 17). The top 4-10 cm were composed of a dark brown humus with leaf litter and many roots. The next 10 to 25 cm consisted mainly of a dark to very dark gray sand with a moderate amount of crushed shell, but at a depth of 12 to 25 cm in the southern half of the pit were found lenses of light yellow ash, an 8-10 cm-thick concentration of shells and bones, and 4-6 cm-thick lenses of light gray sand with sparse shells.
Beginning in Level 3 (20-30 cm below surface) and extending well into Level 8 (70-80 cm), a number of roughly circular concentrations of crushed surf clams were noted. The surf clam shell concentrations, ranging generally from 12 to 18 cm but as much as 24 cm across, extended vertically to about 80 cm below surface. Clusters of large Busy con contrarium whelk shells were found around some of the surf clam shell concentrations. Each such concentration was given a locus designation and excavated separately. They proved to contain very little sand and to be composed of about 90% by volume of dark brown-colored surf clam shell fragments, the other 10% being various small whelk, conch, oyster, and other bivalve shells and assorted small bones. A close-up view of one of these surf clam shell concentrations is given in Figure 18.
Several other small circular patterns of light gray and dark gray sand were found, and these seem to be associated with the surf clam shell concentrations (see profile diagram, Figure 17). If the gray sand patterns represent posts, it may be that the crushed surf clam shells were placed around the posts to enhance longevity, increase stability, or improve drainage. If one wished to place wooden posts vertically into the compact shell midden, driving them in with a stone or shell hammer would be difficult. Instead, perhaps the builders excavated a hole larger than that needed for the post, put the post in, then poured crushed surf clam shells into the hole next to the post. Whelk shells may have been used also to stabilize or straighten the post once it was in place. This interpretation is conjectural, but it does account for the patches of concentrated surf clam shell fragments. The shell fragments would have facilitated drainage of percolating water away from the posts, presumably adding to their longevity.
Evidence of numerous episodes of charcoal deposition can be seen in the south profile at about 50 to 70 cm below surface. To conjecture further, if the gray sand and surf-clam shell concentrations visible in the north and west profiles represent posts of a house wall or pilings for an elevated structure, then the layers of charcoal and ash to the east and south may represent cooking activities taking place outside the structure. Needless to say, a single 1 x 1 m test pit is far too small to solve this question.
The circular stains and shell-fragment concentrations extended down into a matrix composed predominantly of white crushed and crystallized mollusk shells with ample bones, charcoal, and conch and


Recent Archaeological Investigations
35
8LL722 BUCK KEY SHELL MIDDEN MAY 9 1986
A 2
19
1 Vi HTtTTT (Hill f fTTTTTT-r-
19 1
18 :"' "' 1 \ '17 $i 19 .. 1 tuft . 14
Mm
mm
3
?00ml--;r>
;^0m0 0
li
I1
...
unexcavated
stratum
humus
dark gray- dark grayish brown
charcoal
light gray
crushed shell
crystalized shell
0.0 0,2 0,4 0.6 0.8 1.0 METER
Figure 17. Profile diagram of Test Pits A-l and A-2, 8LL722, Buck Key Shell Midden. Key to stratigraphy for Buck Key profile diagrams: 1 = dark brown humus, leaf litter and roots; 2 = dark grayish brown sand with moderately dense shells, mostly whelk and conch, and many bones; 3 = light grayish brown sand with many small bones, mostly fish; 4 = very dark grayish brown sand with sparse shells (whelks and conchs of various sizes) and many bones; 5 = gray ash with burned shell and a few bones; 6 = black charcoal concentration; 7 = light brownish gray ash; 8 = light brown to gray dense burned shell and bones; 9 = brown dense bone concentration; 10 = black sand with sparse shells; 12 = very dark grayish brown sand with dense shells, including many large whelks and conchs, i.e., 15-25 cm long, and much bone, mostly fish; 13 = white crushed and crystalized shell with bones, charcoal, conchs, and whelks; 13A = white crushed and crystalized shell with bones, charcoal, and many very large conchs and whelks (i.e., 15-25 cm long); 13B = gray crushed and crystalized shell with bones, charcoal, and many very large conchs and whelks (i.e., 15-25 cm long); 14 = dark gray sand with moderately dense crushed shell; 15 = dark brown dense concentration of surf-clam shell fragments; 16 = light gray sand; 17 = dark gray sand; 18 = light gray sand with sparse shells; 19 = yellow ash.
whelk shells. The numerous needle-like structures that pervade the deeper, wetter part of the midden are probably aragonite crystals, a form of calcium carbonate. I speculate that they accumulate in a process of illuviation, in which the calcite and aragonite of pen shells {Atrina rigida) are leached out.1
Levels 8 through 12 (ca. 80 to 120 cm below surface) appeared identical to the upper zone of white crushed and crystallized shells, bone, and charcoal, with the exception of the dominant presence of numerous very large (15-25 cm long) lightning whelk shells (Figure 19). Well over 100 such shells were excavated in Levels 8-12 alone. Observation of a sample of 100 of the large whelk shells showed that 41 were unbroken, 38 were broken across the posterior (spire) end, 6 had whorls broken below the shoulder, and 15 had both
the spire and the whorl below the shoulder broken. Below the whelk shell zone were more white crushed and crystallized shells with numerous bones, charcoal, conchs, and whelks in an increasingly moist deposit.
Water level was reached at 136 cm below surface, and excavations were halted at the bottom of Level 14 (140 cm). A 50 x 50 cm column sample excavated in 10-cm levels was cut into the southern half of the east profile, called Test Pit A-2. It was excavated to a depth of 110 cm below surface.
The strata of Operation A are dated by three radiocarbon assays. Shells from Level 6, near the layered charcoal, date to A.D. 1301-1424. Shells close to the putative posts and crushed surf-clam shells, also in Level 6, date to A.D. 1260-1345. These dates overlap, and are distinctly later than an A.D. 1027-1210 date


36
Culture and Environment in the Domain of the Calusa
Figure 18. Close-up, crushed surf-clam shell concentration in profile of Test Pit A-l, Buck Key Shell Midden. Horizontal distance is 34 cm.
from Level 9 within the underlying zone of large whelk shells. Sand-tempered Plain is the most common pottery in Test Pit A. There is little pottery of any kind below Level 6 (only 25 sherds, or less than 10% of the pottery from Test Pit A, come from Levels 7-14). Belle Glade Plain pottery is prominent in Levels 6 and
7 but declines in percentage in the upper levels. SPCB Plain is present in small quantities down to Level 9.
Test Pit B, a 1 x 1 m pit excavated just a few meters to the south of A, was similar to A in some ways but different in others. Both pits had a few centimeters of dark brown humus, leaf litter, and roots at the top. Below the humic zone, Test Pit B exhibited 34 to 40 cm of dark grayish brown sand with moderately dense shells, mostly whelk and conch, and many bones (Figure 20).
Beginning in Level 5 (34-44 cm below surface) and continuing into Level 6 (44-54 cm), the southern half of the unit became dominated by mottled gray ash with burned shell and a few bones. The lighter-colored ashy area was excavated separately as Locus 1. The ash concentration extended to the bottom of Level 7, with alternating layers of light brownish gray ashes, light brown to
Figure 19. South profile and bottom of Level 10, Test Pit A-l, Buck Key Shell Midden, showing large Busycon contrarium shells.


Recent Archaeological Investigations
37
gray dense burned shells and bones, and black charcoal (Figure 21). Some pot sherds had been burned in the fire, resulting in their being refired to a bright orange color.
Evidence of the refiring can be seen in Figure 22, which shows that four re-fired sherds from Level 6 of Locus 1, the ash and burned shell area, cross-mend with two normally-fired sherds from Level 7 of the unburned very dark grayish brown sand. The cross-mended sherds are Glades Tooled, and they strat-igraphically underlie unburned shells from Level 5 dated to A.D. 1306-1439. In turn, the burned shell and ash area is stratigraphically superior to shells from Level 9, which date to A.D. 1267-1334. The bottom of the most intensely burned part of the ashy area was observed at 66 cm below surface, though small lenses of charcoal were encountered as deep as 80 cm (Figure 20).
Small pockets of brown-colored bones were also noted among the burned shell and ash layers (Figure 20). The ash, bone, and charcoal concentration at Buck Key is reminiscent of the one excavated in Test Pit A-2 at Josslyn Island (see above). Over, under, and between the ash, bone, and charcoal layers was interspersed very dark grayish brown sand with sparse shells and many bones; the shells were predominantly of whelks and conchs.
Beneath the burned area was a 10-14-cm-thick stratum of black sand with sparse shells (Figure 20). Below the black sand layer was a very dark grayish brown sand with densely-concentrated shells, many of which were whelks as large as those noted in the lower levels of Buck Key Test Pit A-l. However, there was much less of the crystallized and crushed shell that characterized the A-l deposits, and no concentrations of crushed surf-clam shells or post-like deposits were noted. The deposit became very wet in Level 10 (74-84 cm), and Level 11 was mostly underwater during its excavation. The dense, dark midden with whelks and conchs continued to the lower limit of the excavation, though the number of large whelks diminished appreciably in Level 11. A column sample, B-2, was cut into the southern half of the west profile, and 10 10-cm levels were excavated for possible flotation.
The date of A.D. 1306-1439 from Level 5, just above the top of the ash stratum, overlaps with the date range of the top part of Buck Key Test Pit A-l. Belle Glade Plain pottery is found from the lowest to the highest levels in Test Pit B, as is SPCB Plain pottery (see Table 17 in Chapter 4). Glades Tooled, thought to be a marker for the Caloosahatchee IV period, beginning at A.D. 1400, is plentiful in Test Pit B, mostly in the Levels 4-7. A 14C assay of A.D. 1306-1439 dates Level 5 and postdates the burning episode in which the Glades Tooled pottery pictured in Figure 22 was refired. Thus, the
8LL722 BUCK KEY SHELL MIDDEN MAY 10, 1986
B 1
B 1
B2
S.Vj.v.i:
" 2 .. * ,. '
H:/nTn?inYr'>'.<'-^''1!;r
unexcavated
12 stratum
very dark grayish brown
dark gray-dark grayish brown
gray light gray
crushed shell
0.0 0.2 0.4 0.6 0.8 1.0 METER
Figure 20. Profile diagram of Test Pits B-l and B-2, 8LL722, Buck Key Shell Midden. For key to stratigraphy, see Figure 17.


38
Figure 21. North profile of Test Pit B-l, showing strata of ash, bones, charcoal, and burned shell.
Glades Tooled pottery from Buck Key may date either to the 1300s or to the early 1400s (see Chapter 4 for further discussion). Level 9 of Test Pit B is dated to A.D. 1267-1334, immediately above a level that produced a single St. Johns Check Stamped sherd. St. Johns Check Stamped is considered a marker for the beginning of the Caloosahatchee III period, ca. A.D. 1200.
The contrasts between B and A e.g., the burned area in B and the crushed shells, aragonite crystals, and possible post molds in Aled me to place Test Pit 1-1 mid-way between A-l and B-l. Its stratigraphy proved simpler, relative to A and B, with only one minor ashy area and a sequence of midden deposits resembling that of A-l (Figure 23). A 6-12 cm deep layer of dark brown leaf litter, humus, and roots was underlain by a 24-36 cm deep zone of black sand with sparse shells. Beneath the latter was a 10-22 cm deep layer of black sand with very large (ca. 15-25 cm long) whelk shells. From 36 to 77 cm below surface over 100 very large whelk shells were excavated. Examination of a random sample of 100 of these large shells showed that 31% were unbroken, 13% were broken across the posterior (spire) end, 30% had whorls broken below the shoulder, and 26% had both the spire and the whorl below the shoulder broken. The bottom reaches of the excavated area were composed of white to gray crushed and crystallized shells, with bones, charcoal, and very large whelk shells (Figure 23). From 77 to 90
Culture and Environment in the Domain of the Calusa
cm in 1-1, observation of an additional sample of 50 of the large whelk shells showed that 60% were unbroken, 20% were broken across the posterior (spire) end, 14% had whorls broken below the shoulder, and 6% had both the spire and the whorl below the shoulder broken. The test pit was carried only to a depth of 90 cm below surface.
The pottery of Test Pit 1-1 was predominantly Sand-tempered Plain but included Belle Glade Plain down to the 65-cm level and Glades Tooled from 0 to 36 cm below surface. SPCB Plain was found throughout the excavated levels (see Table 18 in Chapter 4). No 1 C dates were obtained for Test Pit 1-1, but based on the pottery and stratigraphy, there is no reason to doubt that it is generally contemporaneous with A and B.
To sum up, the midden ridge on which A, B, and I were excavated dates to ca. A.D. 1027-1439. This includes a deeper zone of the late Caloosahatchee II/early Caloosahatchee Ill-period midden, characterized by the very large whelk shells, bone, and white to gray to black sands, and a shallower layer dating to Caloosahatchee III and the beginning of Caloosahatchee TV. The sediments of Test Pit B seem to have begun to accumulate later than those of A, but this cannot be established with certainty because excavations were halted by water intrusion in both pits.
Test Pit C-l was placed some 50 m north and east of Test Pit A and was carried only to a depth of 52 cm due to water intrusion (Figure 24). A layer of 4-10 cm of dark brown humus, leaf litter, and roots was found at the top. Underlying this humic zone was a 16-32 cm thick stratum of dark grayish brown sand with dense shells and much animal bone, mostly fish. The shells included a wide variety of bivalves and gastropods, including several very large horse conch, lightning whelk, and tulip shells. At 35 cm below surface, the matrix became increasingly wet, with water intrusion fluctuating with the tides between about 40 and 50 cm below surface. The wetter part of the test pit, from ca. 35 cm to termination of excavation at 52 cm, was much like the upper stratum with the exceptions that the lower part was slightly lighter in color, best described as grayish brown, there was less pottery, and there was more of what appeared to be crushed shells. The dense bone and varied mollusk shells continued to the bottom of the excavation.
In Level 3 (24-34 cm), the sherds of a nearly complete Sand-tempered Plain ceramic vessel were found (see Figure 10 in Chapter 4). This open bowl is 11 cm high, with a rim diameter of 30 cm. The lip is cut at an angle reminiscent of a style often seen on Belle Glade Plain bowls, but the paste is not that of the Belle Glade type. Except for the near-complete bowl, pottery was scarce in Test Pit C; other than Sand-tempered Plain pottery, only five sherds of SPCB Plain, one of St. John's Plain, and one of Belle Glade Plain were found, all in Level 1.
Column sample levels A-2-6, A-2-7, A-2-11, B-2-5, and B-2-9 were floated and underwent detailed zooar-chaeological and archaeobotanical identification. The


Recent Archaeo logical Inves tigations
39
Figure 22. Cross-mended Glades Tooled rim. The two darker sherds to the left are from Level 7 of Test Pit B-2; the four lighter colored ones to the right are from Locus 1 (the burned area) of Level 6 in the adjacent Test Pit B-l. The lighter color is due to the sherds' having been refired prehistorically. Note holes on either side of the cross-mend (center of photo), presumably an attempt to repair a crack by tying the vessel together. (Photograph by Robin C. Brown.)
A-2 samples contained relatively fewer fish remains than those of B-2. B-2-5, from in and near the ashy, burned area, had the highest species diversity of all of the 17 samples analyzed in our zooarchaeological studies (see Chapter 8): 37 vertebrate and 49 invertebrate taxa are represented. Analysis shows that the Buck Key inhabitants made good use of the man-grove/seagrass habitat but also exploited oyster-bed and littoral zones. Larger fish are represented at Buck Key than are seen in many site samples, but the most abundant fish were catfish, pinfish, burrfish, sheep-shead, and silver perch. Snook, jack, sea trout, red drum, black drum, and mullet were also important. In addition, crabs, turtles, and mammals were eaten (see Chapter 8 for details).
Seed remains were sparse; only a few cabbage palm, cocoplum, and chenopod seeds were identified. Wood charcoal from Test Pit A was composed mostly of mangroves, buttonwood, and rapanea. Pine and seagrape were also burned. The burned wood in the ash and burned shell area in Test Pit B was mostly mangroves and buttonwood, woods with a high specific gravity that produce steady and intense heat when burned (see Chapter 10).
Although some of the Buck Key Shell Midden deposits resembled those excavated at Josslyn Island,
the frequency of bone artifacts seen at Josslyn was not duplicated at Buck Key. Three bone artifacts, an engraved expanded-head pin, a tubular bone bead, and an unusual carved bone artifact of unknown function (see Figures 3, 9, and 12 in Chapter 6), all from Test Pit B, were found.
Stone objects were equally uncommon in the Buck Key excavations (Table 9). They included one unutilized chert flake, a sharpening stone fragment, four chunks of sandstone, one chunk of limestone, two pebbles, and one small piece of limonite.
Shell artifacts included two Type A cutting-edged tools from 1-1, Level 5; a Type B cutting-edged tool from C-l, Level 2; a Type D hammer found on the surface; and a notched gastropod shell handle from C-l, Level 2 (see Chapter 5 for shell artifact type descriptions).
A 1 x 1 m test pit, H-l, was placed about 50 m northwest of Test C, an area only a few centimeters above sea level, in order to investigate an extensive area of dense surf clam shells (Spisula solidissima) on the surface. The surf clam shells were so concentrated that the deposit appeared to be storm-derived, but the possibility of its being accountable to human agency prompted a test pit. The matrix was characterized almost entirely by densely-packed surf clam shells,


40
Culture and Environment in the Domain of the Colusa
8LL722 BUCK KEY SHELL MIDDEN may 9, i986
11
s i 1 W N w -rnTlTTTTT
IIPI : (' -" te;; TT rr ototttt rrrraiTmrrniT1 Hill!! t! 1, /. v.
i 1
i 1
13 b ,
13 a
Ai
liiililBi
?s.K:r^':v>>;t::-t'-.;;>;i.:'v'-t::vt:-t'
unexcavated
STRATU M
^15333^ HUMUS
VERY DARK GRAYISH BROWN
charcoal
CRUSHED SHELL
crystal1zed SHELL
0.0 0.2 0,4 0.6 0.8 1.0 METER
Figure 23. Profile diagram of Test Pit 1-1, 8LL722, Buck Key Shell Midden. For key to stratigraphy, see Figure 17.
with only a small amount of very dark grayish brown sand. Ten Sand-tempered Plain and two Belle Glade Plain sherds were found on the surface, and eight Sand-tempered Plain and one Belle Glade Plain sherd were found in Level 1 (0-15 cm), which was partially inundated. We attempted to excavate a second level underwater, with little satisfaction. By digging into the dense, resistant shells with a shovel, then groping under the water, we were able to discover an apparent underlying midden beginning at roughly 30-35 cm
that the midden underlying the surf clam shell layer would be found to represent one of the oldest occupations (ca. A.D. 1000 or earlier) on Buck Key.
Test Pit D-l was placed about 50 m south of a chickee structure (see "shelter," Figure 16) in an area that appeared to be natural sand deposits. Excavation confirmed this assessment. The top 20 cm consisted of a dark grayish brown sand with very small fragments of sea shells. The underlying layer, to the limit of the excavations at 34 cm, was composed of light brown
below surface. This midden contains some surf clam shells, flecks of charcoal, Table 9. Stone Artifacts and Other Stone Objects Found at the occasional whelk, oyster, and sea urchin Buck Key Shell Midden (8LL722). shells, and quite a lot of bone (mostly of fish).
I believe that the area represented by Test Pit H-l is an aboriginal midden of the Caloosahatchee II period that may have been partially eroded away and largely covered over by many thousands of storm-derived surf clam shells. However, surf clams found in the midden in association with bones, shells, and pottery are probably prehistoric food refuse. The intrusive water prohibited a well-controlled excavation of Test Pit H-l, but if the water table could be locally lowered enough to permit excavation, I suspect
Provenience Debitage Sharpening Stone Sandstone Limestone Other Stone
A-l-5 2
A-2-2 1
B-l-3 1
B-l-5-1 1
B-l-8-1 1
B-l-9-1 1
B-2-9 1 1 1 1
Totals 2 1 4 1 3


Recent Archaeological Investigations
41
8LL722 BUCK KEY SHELL MIDDEN
MARCH 28 1986
c 1
c 1
NE
C 1
TTrrrrr7TT7nrnTT7:Tt-rrn irm
rmtrm n-rTT-iTm-fv,n,i:f..'.i.-'^
e
- 0.00
14
unexcavated
. E G E N D
HUMUS
^":| dark
grayish brown
' 1 '
crushed shell
dark gray
I-1 I-1
0.0 0.2 0.4 0.6
0.8 1.0 meter
Figure 24. Profile diagram of Test Pit C-l, 8LL722, Buck Key Shell Midden. For key to stratigraphy, see Figure 17.
sand with powdered sea shells. No artifacts were found.
Excavations at Site 8LL55, Buck Key Burial Mound. Tests E-l, F-l, and G-l were placed in a north-south line, 5 m apart, near the northern periphery of the burial mound, 8LL55 (Figure 16). The main objective was to document the stratification and to determine if any undisturbed portions of the mound remained; all pits were initially 1 x l's.
Test Pit E-l had about 13 cm of dark reddish brown humus, leaf litter, and roots at the top (Figure 25). This stratum was underlain by about 20 cm of gray sand. Next came 20 cm of white sand. Finally, a stratum of white sand with finely crumbled sea shells was encountered. This sediment extended to 65 cm below surface, where excavation was stopped. No artifacts were found.
Test Pit F-l was very similar to E-l (Figure 25). A thin (1-4 cm) layer of dark reddish brown humus, leaf litter, and roots was underlain by 18-19 cm of gray sand, then 17-19 cm of light gray sand, then 15 cm of white sand with finely crumbled sea shells. Excavation was terminated at 55 cm below surface. Seven Grog-tempered Plain sherds were found in Level 1 (0-15 cm); eight Grog-tempered Plain and nine St. Johns Plain sherds were found in Level 2 (15-30 cm). No artifacts were found below Level 2.
Test Pit G-l was excavated in the edge of what appeared to be gently sloping northern edge of the burial mound. The top layer was a thin (1-2 cm) layer of dark reddish brown humus, leaf litter, and roots. Underlying the humus was a 20 cm-deep zone of dark gray sand with many roots. A relatively thin lens of light gray sand with small beach-derived shells was observed between 22 and 30 cm below surface, a pattern that deviates from the strata of E-l and F-l (Figure 25). Underlying the light gray sand was a yellowish white sand with many small beach-derived shells. At about 46 cm below surface, the number of shells in the yellowish white sand decreased appreciably. Excavation was stopped at 62 cm.
The cranium of an articulated, semi-flexed, adult human burial was encountered at 27.5 cm below surface in the southwest quadrant of Test Pit G-l. Immediately behind its cranium and a few centimeters deeper was discovered a cranium of a juvenile human. Excavation revealed that the bones of the first individual extended into the southwest corner of the pit, so the pit was expanded to the southwest, the extension being called G-2. Excavation of G-2 down to the level of the first-discovered burial revealed the partially articulated bones of at least three additional individuals. The five burials were numbered 1-A through 1-E (see Figures 26A and 26B).


42
Culture and Environment in the Domain of the Calusa
8LL55 BUCK KEY BURIAL MOUND
MAY 12 1986
sw
F 1
0.00
o.?o
0.80
NW SW 0.00 -
UNEXCAVATED
0.20 -
0.40
- 0.80
lappi
E 1
UNEXCAVATED
NW
- 0.00
0.60
0.80
NW
G 1
NE
G 1
0.00
0.40
0.60
SE
0.00
UNEXCAVATED
- 0.40
0.60
LEGEND
DARK GRAY
GRAY
LIGHT GRAY
EiJEHjEQ HUMUS
i i I
SHELL
CRUSHED SHELL
YELLOWISH WHITE WHITE
1 I-1 r
0.0 0.2 0.4 0.6 0.8 1.0 meter
c. McP. T
Figure 25. Profile diagrams of Test Pits E-l, F-l, and G-l, 8LL55, Buck Key Burial Mound.


Recent Archaeological Investigations
43
iliflSf iff- SS i.b S:; M
Figure 26A. Plan view of excavated Burials 1-A, 1-B, 1-C, 1-D, and 1-E, 8LL55, Buck Key Burial Mound. (Drawing by Karen Jo Walker.)
Figure 26B. Plan view of bones of central individual only (Burial 1-A), 8LL55, Buck Key Burial Mound (compare with Figure 26A). (Drawing by Karen Jo Walker.)
Thebones of the central adult individual (Burial 1-A) proved to be those of an adult female, perhaps 30 years or older (see Chapter 12 for details). Individual 1-B, represented by the cranium and cluster of bones behind the head of Burial 1-A, was a 4-6 year old child of undetermined sex. Only portions of the long bones and other postcranial bones of Individual 1-B were found. A complete cranium with mandible and a few postcranial bones comprised Individual 1-C, found just to the east of Individual 1-A (Figure 26A). Individual 1-C was an adult male, but age could not be more precisely estimated. The remains of Individual 1-D, found near the feet of 1-A, included a cranium, most of a mandible, a scapula, a humerus, some ribs, some vertebrae, and possibly other postcranial bones. Individual 1-D was a female approximately 18 to 24 years old. Individual 1-E was not excavated due to time constraints. Hutchinson's analysis (Chapter 12) revealed no gross pathologies, though enamel hypoplasia may indicate periodic shortages of resources.
No artifacts were found with the burials. The burials do not exhibit separate or discrete pit outlines. Scrupulous attention to detail in the field failed to reveal any evidence that the burials were interred at separate times. All lie directly on sterile light yellowish-white sand with a few small whole and fragmented beach shells. The sediment directly in contact with the burials is a light gray sand with a similar quantity and size of shells to the yellowish-white sand below. The four surrounding burials do not appear to be "bundles" of bones but are partial, articulated skeletons, each with most or all of its cranium intact.
100


44
Culture and Environment in the Domain of the Calusa
There are at least two possible interpretations of the burial practice. In the first, which I favor, the central individual was laid down in a semi-flexed position shortly after death. Then portions of other individuals who had died previously, perhaps kinfolk, were arranged around her. Finally, all remains were covered with light gray sand. It is unclear whether Burial 1-E is connected with the other four, given its greater spatial separation. In favor of this interpretation are the similarity in depth of all four burials (Burial 1-E was not excavated) and the lack of discernible pit outlines that would suggest intrusion of Burial 1-A into the remains of previously interred individuals. The partial articulation of the peripheral burials suggests that they were only partially defleshed at the time of burial.
The alternative, and simpler, interpretation is that Burial 1-A represents only the most recent of several interments, and that the remains of the other individuals (1-B, 1-C, 1-D) were partially scattered and lost when Burial 1-A was put in the ground. In favor of this model is the fact that the bones of 1-B, 1-C, and 1-D are partially articulated but incomplete; against it is the complete absence of any indication of prehistoric pit excavation. It appears as though the burials were placed on the ground and covered over with light gray beach sand.
Bones from the central individual are radiocarbon-dated to 750 70 years B.P.: A.D. 1200. Unfortunately, this date cannot be calibrated because the date was not
C-adjusted when the assay was obtained. In my experience with six 13C-adjusted and calibrated human bone dates from southwest Florida, all became more ancient when 13C-adjusted (+140, +200, +219, +240, +250, +250; average = +217 years). Thus, if one adds 217 years to the raw age of Buck Key Burial 1-A, then an estimate of its 1 C-adjusted age would be 967 + 70 radiocarbon years, and its estimated calibrated date range would be A.D. 1001-1161. This would place it somewhat older than the earliest dates we obtained for the Buck Key Shell Midden (i.e.,'A.D. 1260-1345, A.D. 1260-1326, A.D. 1267-1334; see Table 1).
The limited tests of 1986 are insufficient to determine the exact age range of the mound or the details of burial practices. What is clear from our limited excavations at 8LL55 is that at least a portion of the Buck Key Burial Mound still remains undisturbed by modern looting, and the site's research significance is thus reaffirmed.
Summary. Preliminary test excavations at the Buck Key Shell Midden and Buck Key Burial Mound in 1986 revealed intact, stratified deposits dating to the Ca-loosahatchee II, III, and IV periods. Investigations at 8LL722 uncovered anomalous crushed surf clam shell concentrations and possible post molds that may be evidence of structures. A late Caloosahatchee II midden with numerous and unusually large whelks is overlain by later deposits that include Glades Tooled and St. Johns Check Stamped pottery of the Caloosahatchee III and IV periods. A burned ash and shell zone provided well-preserved bone and wood data,
and Glades Tooled pottery found in direct association with the burned area likely dates to the fourteenth century A.D.
A Caloosahatchee II period burial mound near the center of the island (8LL55) has been severely disturbed, but some portions are still intact. Burials encountered in the small part of the mound we excavated (Test Pits G-l and G-2) probably pre-date the middens we tested on the eastern side of the island.
More extensive excavations in site 8LL722 will be necessary to investigate the possible structures. Controlled excavations below the water table are essential to learning more about the earliest occupations of Buck Key.
BIG MOUND KEY (8CH10) AND BOGGESS RIDGE (8CH16, 8CH19, 8CH34)
Previous Investigations and Disturbance of the Sites
The 158-ha Big Mound Key/Boggess Ridge Archaeological District is listed in the National Register of Historic Places and is state-owned. It is a restricted area, and access is regulated by the Charlotte Harbor State Reserve, Department of Natural Resources (DNR). It is located at the south-central extremity of the Cape Haze Peninsula about 15.5 km north of Usep-pa Island and 5.5 km southeast of the town of Placida (Figure 1). The district includes the sites known as Big Mound Key, a mound/midden/shellwork complex that extends over a 15 ha area and rises over 7 m in elevation, and Boggess Ridge, a long, low, two meter-high sand ridge about 400 m north of Big Mound Key.
Big Mound Key is extraordinary in size and unique in shape. Not only is it an exceptionally large shell mound/midden complex, but its bilateral symmetry and finger-like projections have led some observers to suggest that the structure is a gigantic effigy mound (Edic and Fraser 1982; Fraser et al. 1982). The spider-or octopus-like appearance is particularly striking from the air, as the infra-red aerial photograph in Figure 27 shows.
Big Mound Key and Boggess Ridge were first recorded as archaeological sites in the 1950s by University of Florida archaeologist John Goggin; Big Mound Key was visited and surface-collected by Ripley and Adelaide Bullen in 1954 (Bullen and Bullen 1956:50-51). The Bullens found shell hammers, pounders, anvils, and perforated Oliva shells, as well as a sandstone grinder fragment and numerous sherds. The pottery indicated occupation of Big Mound Key during the Weeden Island-related (ca. A.D. 300-1000), Safety Harbor (ca. A.D. 1000-1600), and historic Leon-Jefferson (ca. A.D. 1633-1704) periods. Evidence of the last included sherds of Spanish olive jars as well as Jefferson ware. The Bullens interpreted the presence of the Jefferson ware, which they felt was identical in surface hardness and temper to that found in the Tallahassee area, to be evidence that refugees from the Apalachee missions had fled to


Recent Archaeological Investigations
45
Figure 27. Black-and-white print of a false color infra-red photograph showing Big Mound Key and Boggess Ridge. View is toward the north-northwest. (Photograph by Robert Pelham, 1975, Mote Marine Laboratory, Sarasota. Reproduced by permission.)
southwest Florida after 1704 (Bullen and Bullen 1956: 51).
The topography of Big Mound Key (Figure 28) includes a rectangular, flat-topped mound approximately 35 x 30 x 7 m, known as the "western platform mound"; a rectangular mound about 30 x 25 x 6 m, known as the "southwest mound"; another platform mound of uncertain dimensions, called the "fort mound," now largely destroyed; and a very large elevated area, known as the "east mound," with overall dimensions of 75 x 75 x 6 meters and containing two prominent peaks (Weisman 1990). Nine or more linear shell ridges, each one no more than 50 cm in elevation, run for 100 to 150 m and give the structure its "spider"-like appearance from the air (Figure 27). Two of the mounds are believed to have been con-
structed ca. A.D. 800-1000 and a third mound soon after, based on stratigraphic evidence and radiocarbon dates obtained by George Luer and his colleagues (Luer et al. 1986:103).
In 1975 and 1980 Big Mound Key was severely damaged by treasure hunters who used bulldozers and a backhoe to cut massive trenches through the shell-work and midden deposits. It is estimated that about 30% of the site was destroyed by this vandalism (Weisman 1990). In 1982, with a state research permit, George Luer made a schematic drawing of the stratification in one of the bulldozed trenches in the western platform mound. Dates from the top 6 m of the mound indicate that it was constructed between ca. A.D. 700 and 1000 (Luer et al. 1986:103). An apparent cache of five lightning whelk shell tool blanks was


46
Culture and Environment in the Domain of the Calusa
saspK"
key: test unit core sample shell midden
SCALE 0 50 100
SOURCE: KERN O.S.R
Figure 28. Big Mound Key, showing area of George Luer's salvage excavation of the burned area. A portion of the sediments excavated by Luer underwent archaeobiological analysis, reported in Chapters 8 and 10 of this volume.
discovered in the looters' trench through the same mound; another 14 blanks were found in the bulldozer spoil of the southwest mound (Luer et al. 1986:103-104). Luer also obtained a state permit to conduct salvage excavation of a large burned shell, charcoal, and ash pit feature dating to the tenth century A.D. from near the summit of the western platform mound (Weisman 1990:Figure 5). He made available to us a portion of the excavated sediments from the burned area for archaeobiological analysis, the results of which are reported in Chapters 8 and 10.
As time and resources allow, DNR officials intend to restore Big Mound Key to its pre-vandalized appearance by backfilling the dangerous, open trenches and removing exotic vegetation from the area. In early January, 1991, Brent R. Weisman, archaeologist with the Florida Bureau of Archaeological Research, assisted by Christine Newman, William Marquardt, Robert Edic, Robert Repenning, and Barbara and Reed Toomey, troweled and recorded a portion of the north profile of the backhoe trench cut by the treasure hunters (Weisman 1991). The backhoe trench had been cut in approximately an east-west direction south of the main elevated areas but north of the finger-like ridges. A layer of humus, topsoil, and slope wash is underlain by a layer of medium to large oyster, whelk, and
miscellaneous bivalves, then a layer of compacted shell and crushed pen shell with some oyster, conch, ash, bones, and artifacts. Finally, at the bottom of the deposit just a few centimeters above sea level, a stratum of small oyster and banded tulip shells is encountered. Weisman believes the latter to be a basal, possibly non-cultural deposit, the overlying shell, ash, and bone deposits being primary midden material. Finally, the main upper stratumthe medium to large oysters, whelks, and other bivalvesis a secondary mound deposit, with a cap of humus and black sediment washed down from erosion up slope (Weisman 1991:3-4 and Figure 4).
Pottery collected from the backhoe trench and surrounding areas in 1991 was predominantly Belle Glade Plain. Lesser amounts of Sand-tempered Plain, unidentified complicated stamped, Pinellas Plain, Safety Harbor, and Spanish olive jar sherds were found. Only Belle Glade Plain was identified in situ in the profile; it occurs in both the "primary" midden and the overlying "secondary" mound fill, suggesting a Caloosahatchee II date for the greater part of the profiled deposit. The Caloosahatchee III, IV, and V periods are represented in miscellaneous surface collections (Weisman 1991:5). A number of shell artifacts were also collected by Weisman (1991:4); these include Type C and D hammers, a dipper/vessel, a columella hammer, a quahog hammer-anvil-chopper, and perforated bivalves.
Boggess Ridge is a linear sand ridge forming the southern and eastern rim of a salt water pond known as Boggess Hole (Figure 27). The ridge's maximum elevation is only about 2 m above mean high tide. Three different site numbers are assigned to Boggess Ridge (8CH16,8CH19, and 8CH34). Human burials in association with Weeden Island-related pottery and chalky plain ware have been found in the part known as 8CH16. The burials were severely disturbed in 1982, 1984, and 1985 by pot hunters. State law now makes it a felony to disturb such burial sites.
I visited Boggess Ridge on June 29, 1985, with state permission, and collected some of the chalky plain-ware sherds left behind by the pot hunters (catalogue number A27616, Florida Museum). My collections were from a part of the site known as Mound B. George Luer has monitored the site to try to prevent further destruction, and he made several surface collections in the mid 1980s. Some of the salvaged material he collected in May, 1985, also from Mound B, was delivered to the Florida Museum of Natural History (catalogue numbers A27617, A27618, A27619).
Luer and Archibald conducted limited salvage and exploratory testing of the eastern edge of Mound A at the Boggess Ridge site in 1988. Their excavations revealed that human burials were interred with whelk shell vessels and with intentionally broken, and frequently carefully arranged and stacked, pot sherds. Most of these sherds are plain wares, and include sand-tempered, chalky, and Belle Glade pastes. Weeden Island pottery is also represented, but much less frequently. The human bone was scattered and in


Recent Archaeo logical Inves tigations
47
poor condition. These mortuary activities date to the early Caloosahatchee II period (Luer and Archibald 1988). This is roughly contemporaneous with the burials found at the Collier Inn on Useppa Island (see above), which are dated to A.D. 595-666 and which were also accompanied by large potsherds clustered around the human bones. No Weeden Island pottery was found in our limited testing at the Collier Inn, however.
Research by the Southwest Florida Project
Our involvement with Big Mound Key and Boggess Ridge has been limited to the aforementioned surface collections, assisting in Weisman's recording project, making a topographic map of Big Mound Key, taking vibrocore samples, and undertaking zooarchaeologi-cal and archaeobotanical analysis on the sediments excavated by Luer in 1982.
The geological cores were placed specifically to investigate the origin of Big Mound Key and ascertain the nature of the finger-like ridges. Cores in Boggess Ridge and Boggess Hole were placed to shed light on the cultural and non-cultural processes responsible for the sand burial mound. Big Mound Key seems clearly to have accumulated on and prograded over estuarine sediments. The finger-like, low shell ridges cannot be accounted for by non-cultural processes, such as storms, and seem to have been constructed by purposeful deposition, though this cannot yet be demonstrated unequivocally (see Chapter 3).
The sediments in Boggess Hole are Holocene in age, and include a surficial layer of gray to green muddy sand including the remains of mangroves. Shell-free, light brown to white, highly bioturbated sands are found beneath the mangrove/estuary-derived sediments. Cores in the adjacent sand ridge show that it is made of aeolian sand accumulated through non-cultural processes. Boggess Hole may be a relict sinkhole, and the dune sands may have accumulated by wind erosion during a lowered sea-level stand. During the early Caloosahatchee II period, prehistoric people interred their dead in the easily-excavated dune sands of Boggess Ridge, but prehistoric people are not in any substantial way responsible for the presence of the landform known as Boggess Ridge, nor did they excavate sediments from Boggess Hole to build mounds (see Chapter 3 for details).
Cordell's analysis of the chalky plain pottery I recovered from the disturbed Mound B shows its paste to be characterized by abundant sponge spicules and occasional to common very fine to fine quartz sand, typical of the chalky wares known as St. Johns, but with the addition of occasional to common reddish or ferruginous lumps or stains. This variety of chalky pottery is sometimes called Tomoka ware (Griffin and Smith 1949:349).
Four different parts of the burned shell, charcoal, and ash feature excavated by Luer were analyzed by zooarchaeologist Karen Jo Walker and archaeobotan-ists Margaret Scarry and Lee Newsom. Stratification
of the 150-cm wide pit (Figure 29) included a major episode of charcoal and ash deposition and one of crushed shells, black dirt, and ash. Both of these dark-colored deposits showed evidence of possible post-mold intrusions. Between these zones were found layers of crushed shell, black dirt, and conch shells.
Zooarchaeological analysis of materials from the burned shell/charcoal/ash pit feature shows an exploitation mainly of mangrove, mangrove edge, sea-grass, and oyster bed habitats, but some remains of siren, frog, and snapping turtle suggest that freshwater aquatic resources were also targeted. Remains of deer, especially in two of the four pit strata represented in our analysis, as well as sea turtle, grouper, and jack fish, were unusually well represented. Catfish bones, generally very common throughout the Charlotte Harbor samples we have analyzed, were relatively scarce. It is possible that the Big Mound Key fire pit represents a special feast, or the area of preparation of food for high-status persons (see Chapter 8).
Woods of pine, black mangrove, buttonwood, live oak, and possibly seven-year apple and wild cotton were burned in the Big Mound Key fire pit. Pine averages 86% of the wood fragments represented in the four samples analyzed. Seeds from fleshy fruits, such as seagrape, hog plum, and cabbage palm, are more abundantly represented than those of ruderal species in five of the six samples analyzed by the archaeobotanists (Chapter 10).
8Ch10 Big Mound Key 'Fire Pit Feature, West Wall, Main Bulldozer Cut, Western Platform Mound"
Figure 29. Sketch of profile, showing pit feature near top of West Mound, Big Mound Key. After field notes, George M. Luer, 1982. (Source: Weisman 1989: Figure 5.)


48
Culture and Environment in the Domain of the Calusa
In sum, Big Mound Key and Boggess Ridge are extraordinary but poorly understood sites. Substantial middens and evidence of purposeful mound construction characterize the Big Mound Key site, which has components stretching from the Caloosahatchee I through Caloosahatchee V periods. A Weeden Island-related burial mound was imposed into the natural dune sands of nearby Boggess Ridge. Both sites have suffered profound damage from looting, especially in the 1970s and early 1980s.
It is an understatement to note that these sites are highly significant. Controlled excavations at Big Mound Key might well provide the answers to many questions concerning the first influences of Belle Glade culture ca. A.D. 650 or earlier, the period of intensive mound-building observed throughout Charlotte Harbor after ca. A.D. 500, the relationship between indigenous cultures and the mortuary practices associated with the Weeden Island and Safety Harbor cultures, and the political and economic dynamics of the protohistoric and historic periods, ca. A.D. 1500-1750.
THE PINELAND SITE, 8LL33
One of the largest and most complex of the sites visited by Frank Cushing during his 1895 expedition to Pine Island Sound was the Pineland site, then known as Battey's Landing (Marquardt and Blanchard 1989:1-3). Cushing observed:
The foundations, mounds, courts, graded ways, and canals here were greater, and some of them even more regular, than any I had yet seen. ... The same sorts of channel-ways as occurred on the outer keys led up to the same sorts of terraces and great foundations, with their coronets of gigantic mounds. The inner or central courts were enormous. ... This settlement had an average width of a quarter of a mile; ... Its high-built portions alone, including of course the five water courts, covered an area of not less than seventy-five or eighty acres. (Cushing 1897:341-342)
Part of the site complex that so impressed Frank Cushing still exists, although the undisturbed portions today cover not 30, but about 8 ha. Cushing also described a midmost inner court that was connected to Pine Island Sound by means of a canal. The canal (8LL34), which extended eastward from the court, was then 9 m wide and 2 m deep. It ran in a straight line into the pine woods, passing next to the Adams Mound (8LL38) and reaching Indian Field (8LL39) on the opposite shore of Pine Island. It was aligned with another canal on the mainland, which ran for several more miles, ultimately connecting with the Caloosahatchee River (Luer 1989).
A crew of volunteer workers under the supervision of William H. Marquardt and Karen Jo Walker undertook test excavations at Pineland over a 12-day period in May, 1988, with the objectives of securing radiocarbon dates from some of the deposits, exploring the stratification of the two highest remaining shell middens, and examining a square, flat area that surely is one of the "enormous courts" described by Cushing.
Four test pits were opened, one in the top of the southernmost high mound, now known as the Randell Mound; one in the top of the highest mound, called Brown's Mound; one between Brown's Mound and the canal; and one in a large, flat area (Figure 30). The 1988 Pineland testing occurred last in the period of research reported in this volume (1983-1988), and analysis had barely begun when the volume was assembled. I include here only a brief stratigraphic description of the 1988 testing and some results of ceramic analysis, based on the work of Ann Cordell. Charred wood fragments recovered from the 1/4"-screened deposits in 1988 are discussed in Chapter 10 of this volume. A separate monograph will report the results of the 1988 and 1989 testing at Pineland, as well as the excavation seasons of 1990 and 1992.
A profile was cut into a northwest-facing eroded edge of the Randell Mound, providing a 2.75 m high section (Figure 31). The original edge of the mound was apparently closer to the canal, but part of the mound was bulldozed in the 1960s to provide fill for low areas of the site (Edic and Torrence 1990).
A layer of very dark grayish brown sand with abundant shell at an elevation of about 2.25 to 2.75 m above sea level dates to A.D. 631-701, but all dates from above that stratum fall between A.D. 906 and 1257 (Table 1). A layer of dense shell and bone dating to A.D. 1073-1257 is overlain by a layer of very dark grayish brown sand with dense shell dating to A.D. 906-1030. Above the latter lies a layer of very dark gray sand with moderately dense shell dating to A.D. 1088-1250.
We opened a 1 x 1 m test pit, Test A-l, 2.0 m southeast of the exposed face, in such a way that the profile of Test A-l would be parallel to the central exposed face. This test pit was carried to a depth of 1.38 cm below the surface in order to intersect the elevation of 5.00 m at the top of the exposed face (Figure 32). It is likely that the stratum of dense gray shell that characterizes the bottom 70 centimeters of Test Pit A-l (Stratum F in Figure 32) is continuous with the dense gray shell near the top of the exposed face,
Figure 30. The Pineland site, showing locations of 1988 test excavations.


Recent Archaeo logical Inves tigations
49
bined) and SPCB Plain (24.4% of all levels combined). Five Belle Glade Plain sherds occur in the upper four levels, and a single sherd of Glades Tooled was found in level 3 (Table 10). Reckoning one standard deviation from the means, four of the five dates in Operation A fall in the range A.D. 906-1257 for the top 3.6 m of the Randell Mound (late Caloosahatchee II). The fifth date is A.D. 631-701, from the bottom of the exposed face at an elevation of 2.80 m above present-day sea level (early Caloosahatchee II).
A 1.0 x 4.5 m trench (units A-2, A-3, A-4, and A-5) was placed perpendicular to the exposed face and excavated to a depth of approximately 50 cm. Much midden shell was encountered, but so were iron pipes and fragments of modern concrete, probably remnants of the twentieth century disturbance.
Operation B was a 2 x 2 m test pit located near the center of Brown's Mound. The topmost 15 cm of the deposit contained charcoal, much broken and burned glass, and round iron nails, presumably the remains of the historic period structure that once stood on the mound's peak. The excavation, which was carried to 215 cm below surface, revealed a series of distinct deposits of midden sediment. The layers were approximately level with the current ground surface down to about 60-70 cm, but then began to slope downward toward the west, a trend that continued to the limits of our excavation (Figure 33).
The strata are all composed of sandy sediments with small animal bones (principally fish) and shells (mostly whelks, conchs, and oysters), but vary from one another in shell size and degree of shell crushing, in color value (relative whiteness/blackness), and in proportion of bones mixed with the shells. A distinct layer of gray ash with many animal bones appears about 30-45 cm below the surface (Stratum C in Figure 33), as if a major fire, feast, or ash dumping episode had occurred. Overlying the gray ash is a relatively
Table 10. Pottery found in Test A-l, 8LL33, Pineland, 1988.
Type Level Total
S&PCa 1 2 3 4 5 6 7 8 9 10 11 12 13
Sand-tempered Plain (21) 8 5 12 10 14 55 11 3 9 0 1 1 1 151
Glades Tooled (0) 0 0 1 0 0 0 0 0 0 0 0 0 0 1
SPCB Plain (6) 2 4 5 2 5 3 2 5 5 5 5 7 2 58
Belle Glade Plain (1) 0 2 0 2 0 0 0 0 0 0 0 0 0 5
St. Johns Plain (0) 2 0 1 1 0 0 0 0 0 1 0 0 0 5
Pinellas Plain (laminated paste) (2) 0 0 1 0 1 2 3 0 1 0 0 0 0 10
Grog-tempered Plain (2) 0 0 0 1 0 2 2 0 0 0 0 0 0 7
Ticked rims, miscellaneous (0) 0 lb 0 0 0 0 0 0 0 0 0 0 0 1
Total (32) 12 12 20 16 20 62 18 8 15 6 6 8 3 238
aSurface and profile cleaning. bSPCB paste.
Figure 31. Straightened profile of Randell Mound, Pineland site, May, 1988.
although this cannot be known with certainty. A radiocarbon assay from above the dense gray shell in Test Pit A-l resulted in a date of A.D. 1032-1198.
The pottery from Test Pit A-l (n=238) is predominantly Sand-tempered Plain (63.4% of all levels com-


50
Culture and Environment in the Domain of the Calusa
legend:
a 1
I s S* S
g STRATUM
VERY DARK GRAYISH BROWN
VERY DARK GRAY
PALE BROWN GRAY
LIGHT GRAY
WHITE
A RADIOCARBON DATE
REFERENCE SHELL
CRUSHED SHELL
SHELL
BONE
'< ( t:<- i- < C C ''<<
tf(';(,( F .(.<;'< .0 cvi w.i,i-.v
h 6.25 6.00 5.7 5 5.50 5.25
7". < < ':-t-
^^(..k.((> : / 'a.; j '
c ( c ^.Ut', Ce ili
UNEXCAVATED
- 5.00 4.7 5 4.50 4.25 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.2 5
Figure 32. Profile diagram of Test Pit A-l and straightened profile of Randell Mound at Pineland, May, 1988 (compare with Figure 31). Key to stratigraphy: A = dark brown humus, leaf litter, and roots; B=black root mat with dense shell; C=light gray to white whole and crushed shell, with little to no other sediment; D=pale brown whole crushed shell, with little to no other sediment; E=gray sand with dense shell; F=gray dense shell; G=very dark grayish brown, highly organic sand with dense shell; H=very dark gray sand with moderately dense shell; I=pale brown dense shell with much bone; J=white dense shell; K=very dark grayish brown sand with moderately dense shell; L=light gray dense shell and bone.


Recent Archaeological Investigations
NW
B 1
8.40
8.20
8.00
7.80
7.60
7.40
7.20
7.00
6.80
6.60
6.40
..vi!:^ 8.20
8.00
7.80
0T0mMHm0M':S
/ s. ;V-xr-:-'>: (A < -, s V, i-7.
- c g > 5 'VC -c 1 (
.( <-U(_ ;<< -5 h 5- ^*tep
- >-.->. -Vf A c.; s ; P.r V"' '
UNEXCAVATED
7.40
'.20
6.60
6.40
legend:
g STRATUM
VERY DARK GRAY
DARK GRAY
5 >
GLASS AND IRON NAILS
SHELL
CRUSHED SHELL
GRAY
LIGHT GRAY WHITE
BONE
RADIOCARBON DATE
0.0 0.2 0.4 0.6 0.8 1.0 METER
Figure 33. Profile diagram of Test Pit B-l, 8LL33, Pineland, Brown's Mound. Key to stratigraphy: A=gray sand with poorly-sorted conch, whelk, and crushed shell, charcoal, broken glass, and iron nails; B=gray sand with dense, medium-sized whelk and conch and some oyster shell; C=gray ash with many small bones; D=light gray ash with much burned small and crushed shell; E=very dark gray sand with very small crushed shell; F=light gray sand with medium-sized whelk, conch, and oyster shell, with many small bones; G=dark gray sand with small bones and small crushed shell; H=light gray sand with dense, poorly-sorted whelk and conch shell, small crushed shell, and much small bone; I=gray sand with dense, medium-sized whelk and conch shell and very small crushed bone and shell; J=white, dense small to medium-sized whelk and oyster shell with little other sediment.


52 Culture and Environment in the Domain of the Calusa
Table 11. Pottery Found in Test B-l, 8LL33, Pineland, 1988.
Type Level Total
S&PC" 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Sand-tempered Plain (35) 22 21 22 44 24 19 22 26 27 26 25 31 13 22 17 13 21 4 434
Glades Red (0) 0 0 0 0 0 1 0 0 0 1 0 lb 0 0 1 0 1 1 6
Sand-tempered, decorated (0) 0 2C 0 0 0 0 0 0 Ie 1 0 ld 0 Ie Ie 0 0 0 7
SPCB Plain (5) 9 7 3 9 7 12 0 6 4 4 3 2 0 0 2 2 1 2 78
SPCB, decorated (0) 0 0 0 0 Ie 0 0 0 0 ld 0 0 0 0 0 0 0 0 2
Belle Glade Plain (26) 29 45 37 58 46 48 18 24 21 24 24 25 12 18 9 11 22 6 503
Belle Glade Check Stamped (0) 0 0 1 0 0 0 0 1 2 2 1 1 0 1 0 0 0 0 9
Belle Glade Red (1) 0 1 2 7 6 3 2 3 2 2 0 3 2 0 1 0 2 0 37
Good land Red (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
St. Johns Plain (1) 0 0 5 2 2 2 1 1 0 0 0 0 1 5 2 0 3 0 25
St. Johns Check Stamped (1) 0 0 0 3 1 3 1 3 2 0 1 1 0 1 0 2 1 0 20
St. Johns, misc. decorated 0 0 0 Ie 0 0 0 2C 1" 1 0 jC,p 0 0 0 0 0 9
Pinellas Plain (laminated paste) (0) 1 2 1 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 8
Safety Harbor period, misc. (0) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
Weed en Island period, misc. (0) 0 0 lf 0 0 0 0 0 1 0 0 0 0 0 l" l1 0 0 4
Weeden Island, chalky paste (0) 0 2' 0 0 0 0 0 0 lk 0 0 0 l1 r 0 0 0 0 5
Micaceous Plain (0) 1 0 0 0 0 0 0 1 1 0 0 0 2 0 2 0 1 0 8
Pasco Plain (0) 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
Grog-tempered Plain (2) 1 1 0 3 1 0 0 0 1 2 1 1 0 0 1 0 0 0 14
Grit-tempered Stamped (0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Total (72) 64 81 72 130 88 89 44 67 64 65 56 67 31 52 37 29 53 13 1174
aSurface and profile cleaning. bSPCB paste. cCord marked. dUmdentified incised. "Simple stamped.
'Weeden Island Plain, sandy paste. gWeeden Island Red, micaceous paste. hWeeden Island Plain, grog-tempered. 'Ruskin Dentate Stamped, Belle Glade paste. 'Little Manatee Zoned Stamped. kPapys Bayou Plain. 'Little Manatee Stamped. mPapys Bayou Plain. "Dunn's Creek Red. Unidentified stamped. pRed-pigmented. qSt. Johns Scored.
thick (25-35 cm) layer of gray sand with many medi- From the layer of crushed shell overlying the ash
um-sized whelks/conchs and very small fragments of layer comes a radiocarbon date of A.D. 762-956, but crushed bones and shell (Stratum I in Figure 33). dates from shells well down in the deposit date to the


Recent Archaeological Investigations
Table 12. Pottery Found in Test C-l, 8LL33, Pineland, 1988.
53
Type Level Total
S&PC" 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Sand-tempered 1 Plain (13) 14 32 23 28 18 41 17 21 12 20 31 37 84 35 426
| Glades Red (0) 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2
Glades Tooled (0) 0 0 1 0 0 0 0 1 1 1 0 0 0 0 4
SPCB Plain (9) 9 19 10 3 4 9 11 8 11 7 7 2 3 0 112
SPCB, decorated (0) 0 0 0 0 0 0 0 4b 0 2C 0 0 0 0 6
Belle Glade Plain (2) 8 24 15 13 6 8 2 10 13 5 9 3 1 4 123
Belle Glade Check Stamped (0) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Belle Glade Red (0) 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
St. Johns Plain (0) 2 3 3 5 2 0 0 1 1 2 0 0 0 0 19
St. Johns Check Stamped (0) 0 0 3 2 0 1 0 1 0 0 0 0 0 1 8
Pinellas Plain (laminated paste) (1) 0 4 3 1 1 0 0 1 3d 0 1 0 3 0 18
Safety Harbor period, misc. (0) 0 0 0 0 0 0 0 0 0 0 0 le 0 0 1
Weeden Island period, misc. (0) 0 0 0 0 0 0 0 0 lf 1 0 0 0 0 2
Grog-tempered Plain (0) 1 0 1 0 0 0 0 2 0 1 0 0 0 0 5
Ticked rims, misc. (0) 0 0 lh 0 l' 2" 0 1' 0 0 0 0 0 0 5
Total (25) 34 82 60 52 32 63 30 51 42 39 50 43 91 40 734
"Surface and profile cleaning.
bTwo sherds Matecumbe Incised, two unidentified incised and punctated. cMatecumbe Incised.
dOne of the three is an unidentified punctated sherd. "Safety Harbor Incised, Belle Glade paste. fRuskin Linear Punctated, grog-tempered. 8Weeden Island Incised, micaceous paste. hSandy paste, with incising. 'Laminated ('Pinellas") paste. 'SPCB paste.
thirteenth and fourteenth centuries A.D. Level 17, about 2.05 m below the surface, dates to A.D. 1235-1309, while level 6, about 70 cm below surface, dates to A.D. 1301-1424.
The lower levels (below the ash) contain minor but consistent amounts of St. Johns Check Stamped pottery (Table 11), but there is no St. Johns Check Stamped above the ash. As Widmer (1988:85) has noted, St. Johns Check Stamped appears in the Caloosahatchee region about A.D. 1200. This suggests that midden material dating to the ninth century A.D. was heaped on top of the ash layer so as to build the mound up even higher. The two lines of evidence the radiocarbon date and the absence of St. Johns Check Stamped lead to the hypothesis that Brown's Mound was purposefully augmented after A.D. 1200. It is possible that this capping with earlier midden material was done in historic times, perhaps to level off the mound for house construction, but if so, no historic artifacts
were deposited during this process. Historic materials are limited to the upper few cm of the excavation.
Belle Glade Plain is the dominant plainware in Operation B, accounting for 42.8% of all sherds combined. Sand-tempered Plain represents 37.0%, SPCB Plain 6.6%. This is consistent with the Caloosahatchee III period, as suggested by the 14C dates (Cordell, Chapter 4, this volume).
Operation C was a 2 x 2 m test pit placed southeast of Operation B at an elevation of 3.83 m above sea level. It was carried to a depth of 1.35 m below surface, or an elevation of about 2.48 m. Most of the matrix is loosely packed sediment with abundant, mostly medium-sized whelk and conch shells. About 85 cm below surface begins a dark gray, highly compact shell midden with abundant crushed shells. From Level 9 in this 25-40 cm-thick, dark stratum comes a radiocarbon date of A.D. 1420-1491. Belle Glade Plain outnum-


54 Culture and Environment in the Domain of the Calusa
Table 13. Pottery Found in Test D-l, 8LL33, Pineland, 1988.
Type Level Total
S&PCa 1 2 3 4 5 6 7 8 9 10 11
Sand-tempered Plain (15) 20 20 41 47 43 31 28 14 48 20 13 340
Glades Red (0) 0 0 0 0 0 0 0 0 0 0 2b 2
Glades Tooled (0) 0 0 0 1 0 0 0 0 0 0 0 1
Sand-tempered, decorated (0) lc 0 0 0 0 0 0 0 0 0 0 1
| SPCB Plain (6) 5 12 20 4 8 0 3 2 6 2 0 68
j SPCB, decorated (0) 0 0 0 ld 0 0 0 0 0 0 0 1
Belle Glade Plain (1) 18 21 20 15 7 4 7 6 11 1 4 115
St. Johns Plain (0) 1 4 3 0 0 0 0 0 0 0 0 8
Pinellas Plain (laminated paste) (0) 0 0 3 3 4 0 0 0 0 0 0 10
Safety Harbor period, misc. (0) 0 0 le 0 0 0 0 0 0 0 0 1
Weeden Island period, misc. (0) 0 0 0 0 0 0 lf 0 0 0 0 1
Pasco Plain (0) 0 0 3 0 0 0 0 0 0 0 0 3
Grog-tempered Plain (0) 1 0 2 1 0 1 1 0 0 0 0 6
Total (22) 46 57 93 72 62 36 40 22 65 23 19 557
"Surface and profile cleaning.
bOne sandy paste, one SPCB paste.
linear check stamped.
dUnidentified incised.
"Pinellas Incised, sandy paste.
fWeeden Island Incised, micaceous paste.
bers Sand-tempered Plain, and there are minor but consistent numbers of St. Johns Check Stamped and Glades Tooled sherds (Table 12). The excavation appears to date to late Caloosahatchee III /early Caloosahatchee IV.
Operation D was placed near the southern edge of the "court" area. The "court" is very flat even today, with less than a 10-cm variation in elevation across its 400 m extent. The elevation of the surface is just slightly above 1 m above sea level. Excavation revealed a layer of humus, roots, and crushed shell 10 to 15 cm beneath the surface. Below this is a layer of very dark grayish brown sand with abundant poorly sorted shells. The latter 20 cm-deep layer is underlain by a thin (5-10 cm) stratum of very fine crushed shell, then a 25 to 35 cm thick stratum that can be described as dark gray dense shell midden with abundant crushed shells. Another thin stratum of very fine crushed shell follows, and it is underlain by another layer of very dark grayish brown midden with fine crushed shell. The crushed shell layer ends just below the ground water level, and it is underlain by dark gray sand.
The main component of Operation D was highly crushed shells. A single radiocarbon date of A.D. 247-408 comes from level 7, 70 cm below the surface.
The date, on a Mercenaria campechiensis (quahog clam) shell, seems too early for the pottery found in Operation D. Although Sand-tempered Plain dominates, Belle Glade Plain is represented in every level, including Level 7, from which the date was obtained (Table 13). Belle Glade Plain is not expected on the coast until the seventh century A.D., even though it was made in the Lake Okeechobee area by ca. A.D. 200-400 (Sears 1982:112). This question needs further study.
In sum, our 1988 test pits and ten radiocarbon dates demonstrated that Pineland was inhabited by ca. A.D. 600, perhaps as early as A.D. 300, and that midden-mounds were still accumulating as late as the fifteenth century A.D. Test excavations in the so-called "court" were inconclusive.
SUMMARY AND CONCLUSION
From 1983 to 1988 members of the Florida Museum of Natural History's Southwest Florida Project visited and tested several shell middens and mounds in the Charlotte Harbor/Pine Island Sound region. Our purpose was to investigate the zone known to archaeologists as the Caloosahatchee area in order to provide baseline data that would enable us to pursue the question of how the formidable Calusa social for-


Recent Archaeological Investigations
55
mation accomplished what it apparently had by the fifteenth century (see Chapter 1).
Simply put, we needed a refined chronology, a better understanding of the area's artifacts, an appreciation for the environmental heterogeneity of the area throughout its past, and more familiarity with the nature of the sites and with what was needed to investigate them. We needed to develop a tool kit for the task ahead. Thanks to the assistance of several private foundations and both state and federal funding agencies, the support of the University of Florida, the cooperation of state and federal personnel, who have provided both permission and logistical assistance in our work on government-managed lands, and gifts of information, money, materials, and labor by literally hundreds of people, we have made enough progress in this direction to begin to pursue the broader anthropological questions that first brought southwest Florida to our attention.
In this chapter I have provided an introduction to our preliminary excavations and other data-gathering projects. Archaeology today is and must be more than excavations and artifacts. The following ten chapters contain supplementary and complementary data that are essential to allow one to place the artifacts and excavations into a meaningful context. I hope that the new information our team has compiled will be useful to others. But, like all preliminary reports, this one is put forward in the expectation of critical response and correction from interested colleagues. Except where otherwise noted in this book, all artifacts, sediment samples, analyzed archaeobiological collections, photographs, notes, maps, and other documentation are curated at the Department of Anthropology, Florida Museum of Natural History, and are available to interested scholars for study according to normal Florida Museum policies and procedures.
NOTES
1 Shells of the superfamily Pinnacae, to which Atrina sp. belongs, have an outer prismatic layer of calcite overlying an inner nacreous layer of aragonite. The calcite is softer than the aragonite and tends to break along well-defined cleavage planes (Carter 1980:72-73, 91-93). This structural feature is thought to provide the animal an advantage by tending to localize fractures.
ACKNOWLEDGMENTS
Literally hundreds of people contributed in many ways to the results reported in this chapter. They have been identified by name in past issues of our project newsletter, Calusa News. In the preparation of Chapter 2,1 extend special thanks to Melissa Massaro, Michael Russo, Scott Swan, and Barbara Toomey, who assisted me by providing identifications and calculating seasonality measures. Numerous undergraduate and graduate students assisted with artifact analysis,
under the general supervision of Elise LeCompte-Baer. Corbett Torrence is responsible for most of the fine drafting and cartography in this chapter. Karen Jo Walker drew Figure 26. Ann S. Cordell, George M. Luer, Lee A. Newsom, Claudine Payne, and Karen Jo Walker provided many helpful comments on an earlier draft.
REFERENCES CITED
Beriault, John, Robert Carr, Jerry Stipp, Richard Johnson, and Jack Meeder
1981 The Archaeological Salvage of the Bay West Site, Collier County, Florida. The Florida Anthropologist 34:39-58.
Blanchard, Charles and William H. Marquardt
1990 Calusa News No. 5. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
Bullen, Ripley P.
1975 A Guide to the Identification of Florida Projectile Points. Revised edition. Kendall Books, Gainesville, Florida.
Bullen, Ripley P. and Adelaide K. Bullen
1953 The Battery Point Site, Bayport, Hernando County, Florida. The Florida Anthropologist 6:85-92.
1956 Excavations on Cape Haze Peninsula, Florida. Contributions of the Florida State Museum, Social Sciences 1. Gainesville.
Carr, Robert S. and John G. Beriault
1984 Prehistoric Man in Southern Florida. In Environments of South Florida: Present and Past, edited by P. J. Gleason, pp. 1-14. 2nd ed. Miami Geological Society. Coral Gables, Florida.
Carter, Joseph Gaylord
1980 Environmental and Biological Controls of Bivalve Shell Mineralogy and Microstruc-ture. In Skeletal Growth of Aquatic Organisms, edited by D. C. Rhoads and R. A. Lutz, pp. 69-113. Plenum Press, New York.
Clausen, Carl J., H. K. Brooks, and A. B. Wesolowsky 1975 Florida Spring Confirmed as 10,000 Year Old Early Man Site. Publication 7, Florida Anthropological Society. Gainesville.
Clausen, Carl J., A. D. Cohen, Cesare Emiliani, J. A. Holman, and J. J. Stipp
1979 Little Salt Spring, Florida: A Unique Underwater Site. Science 203:609-614.
Cockrell, Wilburn A. and Larry Murphy
1978 Pleistocene Man in Florida. Archaeology of Eastern North America 6:1-13.
Cushing, Frank Hamilton
1897 Exploration of Ancient Key Dweller Remains on the Gulf Coast of Florida. American Philosophical Society, Proceedings 35:329-448. Philadelphia.


56
Culture and Environment in the Domain of the Calusa
Dormer, Elinore M.
1987 The Sea Shell Islands: A History of Sanibel and Captiva. Revised edition. Rose Printing Company, Tallahassee, Florida.
Edic, Bob and Ron Fraser
1982 Big Mound Key. Boca Beacon, May, 1982. Boca Grande, Florida.
Edic, Robert F. and Corbett McP. Torrence
1990 Transcript of taped interview with G.W. Hyatt, March 8, 1990. On file, Department of Anthropology, Florida Museum of Natural History, Gainesville.
Fraser, Ron, Bob Edic, and Kay Ellis
1982 One Year After the Bulldozers. Boca Beacon, May, 1982. Boca Grande, Florida.
Griffin, James B.
1945 The Significance of the Fiber-tempered Pottery of the St. Johns Area in Florida. Journal of the Washington Academy of Sciences 35:218-223.
Griffin, John W.
1949 Notes on the Archaeology of Useppa Island. The Florida Anthropologist 2:92-93.
1988 The Archeology of Everglades National Park: A Synthesis. National Park Service, Southeast Archeological Center, Tallahassee.
Griffin, John W. and Hale G. Smith
1947 Reconnaissance to Useppa Island, Lee County (Site L-3), October 2, 1947. Typescript, 3 pp. Photocopy on file, Florida Museum of Natural History, Gainesville.
1949 Nocoroco, a Timucua Village of 1605, now in Tomoka State Park. Florida Historical Quarterly 27:340-361.
Hammond, E. A.
1973 The Spanish Fisheries of Charlotte Harbor. Florida Historical Quarterly 51:355-380.
Hazeltine, Dan
1983 A Late Paleo-Indian Site, Cape Haze Peninsula, Charlotte County, Florida. The Florida Anthropologist 36:98-100.
Luer, George M.
1989 Calusa Canals in Southwestern Florida: Routes of Tribute and Exchange. The Florida Anthropologist 42:89-130.
Luer, George M. and Marion M. Almy
1980 The Development of Some Aboriginal Pottery of the Central Peninsula Gulf Coast of Florida. The Florida Anthropologist 33:207-225.
1982 A Definition of the Manasota Culture. The Florida Anthropologist 35:34-58.
Luer, George M. and Lauren C. Archibald
1988 Archaeological Data Recovery at Mound A, Boggess Ridge (8CH16), Charlotte Harbor State Reserve, Winter Field Season, 1988. Archaeological and Historical Conservancy, Miami.
Luer, G., D. Allerton, D. Hazeltine, R. Hatfield, and D. Hood
1986 Whelk Shell Tool Blanks from Big Mound Key (8CH10), Charlotte County, Florida: With Notes on Certain Whelk Shell Tools. In Shells and Archaeology in Southern Florida, edited by G. M. Luer, pp. 92-124. Publication 12, Florida Anthropological Society. Tallahassee.
Marquardt, William H.
1984 The Josslyn Island Mound and its Role in the Investigation of Southwest Florida's Past. Florida State Museum, Department of Anthropology, Miscellaneous Project Report Series 22. Gainesville.
1987 CalusaNews No. 1. Institute of Archaeology and Paleoenvironmental Studies, University of Florida, Gainesville.
1988 Politics and Production among the Calusa of South Florida. In Hunters and Gatherers, 1: History, Evolution, and Social Change, edited by T. Ingold, D. Riches, and J. Wood-burn, pp. 161-188. Berg Publishers, London.
Marquardt, William H. and Charles Blanchard
1989 Calusa News No. 3. Institute of Archaeology and Paleoenvironmental Studies, Florida Museum of Natural History, Gainesville.
Martinez, Carlos A.
1976 Trip Report-Josslyn Island Field Inspection. Ms. on file, Florida Division of Historical Resources, Department of State, Tallahassee.
Milanich, Jerald T. and Charles H. Fairbanks
1980 Florida Archaeology. Academic Press, New York.
Milanich, Jerald T., Jefferson Chapman, Ann S. Cor-dell, Stephen Hale, and Rochelle A. Marrinan
1984 Prehistoric Development of Calusa Society in Southwest Florida: Excavations on Useppa Island. In Perspectives on Gulf Coast Prehistory, edited by D. D. Davis, pp. 258-314. University Presses of Florida, Gainesville.
Pearson, G. W. and M. Stuiver
1986 High-precision Calibration of the Radiocarbon Time Scale, 500-2500 B.C. Radiocarbon 28:839-862.
Phelps, David Sutton
1965 The Norwood Series of Fiber-tempered Ceramics. Southeastern Archaeological Conference, Bulletin 2:65-69.
Ruppe, Reynold J.
1980 Introduction to the Five Articles Dealing with Underwater Archaeological Research at the Venice Site. Bureau of Historic Sites and Properties, Bulletin 6:33-34. Tallahassee.


Recent Archaeological Investigations
Russo, Michael
1991a Archaic Sedentism on the Florida Coast: A Case Study from Horr's Island. Ph.D. dissertation, Department of Anthropology, University of Florida. University Microfilms, Ann Arbor, Michigan.
1991b Final Report on Horr's Island: The Archaeology of Glades Settlement and Subsistence Patterns (with chapters by Ann Cordell, Lee New-som, and Sylvia Scudder). Report submitted to Key Marco Developments by the Florida Museum of Natural History, Gainesville, Florida.
Simons, M. H.
1884 Shell-heaps of Charlotte Harbor, Florida. In Annual Report of the Smithsonian Institution for 1882, pp. 794-796. Washington, D.C.
Stapor, Frank W. Jr., Thomas D. Mathews, and Fonda
E. Lindfors-Kearns
1987 Episodic Barrier Island Growth in Southwest Florida: A Response to Fluctuating Holocene Sea Level? Miami Geological Society, Memoir 3:149-202.
Stuiver, M. and G. W. Pearson
1986 High-precision Calibration of Radiocarbon Time Scale. Radiocarbon 28:805-838.
Stuiver, M., G. W. Pearson, and T. Braziunas
1986 Radiocarbon Age Determination of Marine Samples Back to 9000 Cal Yr B.P. Radiocarbon 28:980-1021.
Stuiver, M. and P. J. Reimer
1986 A Computer Program for Radiocarbon Age Determination. Radiocarbon 28:1022-1030.
57
Wang, Johnson C. S. and Edward C. Raney
1971 Distribution and Fluctuations in the Fish Fauna of the Charlotte Harbor Estuary, Florida. Charlotte Harbor Estuarine Studies, Mote Marine Laboratory, New City Island, Sarasota, Florida.
Watson, Patty Jo
1976 In Pursuit of Prehistoric Subsistence: A Comparative Account of Some Contemporary Flotation Techniques. Midcontinen-tal Journal of Archaeology 1:77-100.
Weisman, Brent R.
1990 National Register of Historic Places Registration Form: Big Mound Key/Bog-gess Ridge Archaeological District. Bureau of Archaeological Research, Florida Division of Historic Resources, Tallahassee.
1991 Archaeological Investigations at the "Back-hoe Trench," Big Mound Key (8CH10). Report on file, C.A.R.L. Archaeological Survey, Florida Bureau of Archaeological Research, Tallahassee.
Widmer, Randolph J.
1988 The Evolution of the Calusa: A Nonagricul-tural Chiefdom on the Southwest Florida Coast. University of Alabama Press, Tuscaloosa and London.
Williams, John Lee
1962 The Territory of Florida: Or, Sketches of the Topography, Civil and Natural History of the Country, Its Climate, and the Indian Tribes from the First Discovery to the Present Time. Facsimile of the original 1837 edition. University of Florida Press, Gainesville.




3
Stratigraphy of Indian "Mounds" in the Charlotte Harbor Area, Florida: Sea-level Rise and Paleoenvironments
Sam B. Upchurch, Pliny Jewell TV, and Eric DeHaven
INTRODUCTION
The many archaeological sites in the Charlotte Harbor area record a rich and diverse culture, which is the subject of this text. The Indians who constructed the sites "engineered" their environment, with construction of mound.complexes, canals, effigies, and other features. The early stages of site "engineering" are not clear, especially the environments in which the sites were initiated and the relation of the sites to sea level. The mounds described in this paper include at least three categories of mound-shaped features. The majority that have been identified are shell mounds or middens. These are located throughout the area and range from terrestrial sites inland from the present-day shoreline to partly submerged sites that form the nuclei of many of the islands in the estuary. While less common and less well-known, other types of moundlike structures have been described. These include linear ridges, which have been used by early Indians as burial sites and as substrates for shell midden accumulation. Some of the mounds are complexes with shell-midden veneers lying upon beach- or dune-ridge substrates. These complexes may have attached, smaller, linear mounds that have been called finger ridges and attributed to human construction. In one site (Big Mound Key) these finger ridges are arrayed in such a fashion as to give the mound complex the appearance of a spider or crab effigy. The diversity of these mound-shaped structures and the apparent preference for them by the coastal Indian population leads one to several archaeologically-important questions, which are addressed in this chapter.
The purpose of this chapter is to summarize the results of a coring program undertaken to answer four fundamental questions about the origin of these diverse mound types. We constructed the sampling and analysis plan to answer the following:
(1) In what environment did the Indians build the shell mounds? Many of the littoral mounds are partly submerged. Were they built on dry land and later inundated by sea-level rise or mound subsidence, or were they built in an aqueous environment?
(2) Are the burial mounds of human origin or natural? The burial mounds consist of fine, homogeneous
sand. Did the Indians construct the mounds prior to, or during burials, or did they select burial sites that consisted of natural, easily dug sand?
(3) Are the linear ridges (finger ridges) of human origin or natural? We know that the inhabitants of Charlotte Harbor sites created canals and otherwise modified their landscape. The so-called fingers may represent a detail of site construction, or they may be natural. If the latter is the case, are they contemporaneous with the cultural modifications, and do they tell us something about the environment during occupation?
(4) How do the mound types relate to the Holocene sea-level rise? Sea-level rise affects littoral sites in three ways. First, the design and utility of the site at the time of occupation may have been affected by sea-level rise. Second, our analysis of the culture that produced the site is affected by concepts of proximity of the sea as a food source, means of travel, and limiting factor with respect to fresh water. Third, preservation of the site and estimations of the original extent and plan of the site may be obscured by inundation. This question is, therefore, crucial to understanding the occupational and post-occupational histories of littoral sites.
METHODS
Study Sites
The sampling plan involved collection of vibro-cores1 at mound sites under archaeological investigation in the study area. The sites cored (Figure 1) include: (1) Boggess Ridge (8CH16, 8CH19, 8CH34), (2) Big Mound Key (8CH10), (3) Cash Mound (8CH38), (4) Useppa Island (8LL51), (5) Josslyn Island (8LL32), and (6) Buck Key (8LL55, 8LL722). These sites are thoroughly described elsewhere in this text, so only the basis for selection of the sites and cores therefrom are discussed here.
Site Classification
The sites can be conveniently subdivided into three groups to address the above questions.
59


60
Culture and Environment in the Domain of the Calusa
Figure 1. Coring locations in Pine Island Sound. 1, Boggess Hole and Boggess Ridge; 2, Big Mound Key; 3, Cash Mound; 4, Useppa Island; 5, Josslyn Island; 6, Buck Key.
Littoral Shell Mounds. The Big Mound Key, Cash Mound, and Josslyn Island sites are littoral shell mounds. There is no obvious terrestrial substrate and they are more or less detached from the mainland or obvious pre-existing islands. We selected these sites to address the question "In what environment were the shell mounds constructed?" In addition, Big Mound Key and Josslyn Island have finger ridges, the origin of which is a concern.
Ridge-type Burial Mounds. Boggess Ridge and site 8LL55 on Buck Key are burial mounds located in linear ridges consisting of fine sand. It has long been thought that these ridges were constructed by people as a locus for burials. We chose these sites, therefore, to address the origin of the mounds in which the burials are located.
Terrestrial Shell Mounds. Finally, the northern site at Buck Key (8LL722) and the site on Useppa are shell middens located on pre-existing islands. Useppa is a pre-Holocene dune-ridge complex (Stapor et al. 1987), and the Buck Key site is located on what appear to be wash-over fans on the lagoon side of an old barrier island. Radiocarbon dates from Buck Key beach ridges range from 1,200 to 3,000 years B.P., with significant ridge development from 1,500 to 1,000 years B.P. (Stapor et al. 1987). These sites were selected, therefore, to confirm the substrates upon which they are located.
As such, these sites serve somewhat as controls for the other sites.
Core Collection
In conjunction with project archaeologists, we visited each site and chose specific core locations to address the questions. Core sites were selected to penetrate the mounds in question and to sample modern and ancient sediments adjacent to the mounds. Vibrocores cannot penetrate thick shell accumulations, so for core locations intended to identify the substrates upon which the mounds are located we selected areas where we thought the shell was thin or previously disturbed. This introduces a bias in that no cores are from the thickest accumulations of shell. The archaeological staff provided elevation and location data for each site.
We cored the sites with 7.6 cm (3 inch) aluminum irrigation pipe (Figures 2 and 3). The cores were labeled and sealed in the field. In the laboratory, at least two persons cut the cores longitudinally and logged them. Sediment texture, sedimentary structures, and macrofauna were noted. This information allowed us to identify depositional environments represented by the sediment strata. Core recovery and preservation were excellent, and paleoenvironmental identifications did not require additional granulometric analysis. Core logs are presented in the appendix. Cross sections of selected mounds provide a three-dimensional perspective of placement of the mounds.
RESULTS
Littoral Shell Mounds
The littoral shell mounds are isolated from present mainland. Their bases are at sea level, so a major concern is whether they were constructed in a littoral environment or on a terrestrial substrate.
Big Mound Key. Big Mound Key is separated from the mainland by a low coastal swamp of mangrove and salt marsh. Of the three littoral shell mounds, it has the most obvious possible connection with the mainland.
We were not able to place the cores in Big Mound Key (Figure 4) in such a fashion as to construct a cross section. However, the individual cores can be used to determine the depositional history of the area.
Core BMK-1 (diagrams and detailed sedimentologi-cal data for all cores are given in the appendix) was taken in the mangrove swamp outside of the mound complex. It records a shoaling-upwards sequence typical of progradation of a mangrove swamp complex. The lower, shelly organic sand is a nearshore bay deposit similar to the material accumulating in Gasparilla Sound today. The muddy sand and sand and mud deposits accumulated at the margins of the modern mangrove swamp. All the deposits appear to have accumulated during the Holocene sea-level rise, and to a depth of 2.8 m there is no indication of soil


Figure 3. Driving a core into the sediment with a mallet at Boggess Hole.


62
Culture and Environment in the Domain of the Colusa
key:
core sample shell midden
Figure 4. Core locations at Big Mound Key.
development or subaerial exposure. BMK-4 was taken in "Mud Pond" on the southwest edge of the mound. It, too, records a shoaling-upwards sequence typical of a protected pond in a mangrove swamp. There was much shell in the lower core and penetration was only to 1 m. We were not able to determine the origin of the pond, but the sharp transition from the nearshore, estuarine muddy sand to the non-shelly, sandy mud suggests that early inhabitants may have partly excavated it.
Cores BMK-2 and BMK-3 were collected from a canal-like ditch and the finger ridges, respectively, located on the south side of the mound. BMK-2 includes a thin (0.4 m), modern accumulation of muddy sand typical of outer mangrove fringe overlying a shoaling-upwards sequence. This sequence begins with a lower, open-estuary sandy shell bed and then progresses upward to a muddy sand. Overlying the muddy sand is a 0.2 m shell bed. This shell bed is fragmental and can be traced into Core BMK-3. The shelly bed appears to be the floor of the canal and may have provided a trafficable surface for the mound builders. The shell bed seems to be of cultural origin or modification. The "canal" does not appear to have been excavated but rather formed by deposition of the slightly higher ridges on each side. Core BMK-3 was in a shallow swale between the finger ridges. It, too, was filled by recent mangrove-fringe deposits overlying a shell bed. This bed has affinities with the midden material and could easily have been created by the
mound inhabitants. Surface examination of the adjacent finger ridge shows that it is constructed of the same material.
Therefore, stratigraphic data indicate that the sediment under the estuarine side of Big Mound Key is Holocene and that the mound has prograded outward over the estuarine sediments. There is no evidence for the estuarine side of the mound having been constructed on soils or other subaerial features. There is also no strong physical evidence for a fluctuating sea level. The preserved sediment sequence indicates a gradual, shoaling-upward pattern typical of infilling of a basin subsequent to sea-level rise. Storm reworking and coast-wise transport of shell may have created the finger ridges, but correlation of canal and finger-ridge sediments and ridge geometry suggest that this is unlikely. It appears, therefore, that the finger ridges and canal are related, and are cultural in origin.
Cash Mound. Cash Mound is connected to the mainland by a peninsula that resembles a tombolo, a wave- or current-constructed spit that connects an island to the mainland. The peninsula is at sea level and is covered by mangroves. Sediments are muddy, organic, fine sands. The spit appears to have developed later than the mound as a result of coast-wise sediment transport by waves in Turtle Bay.
Cores at Cash Mound were selected to cut across the eastern margin of the mound (Figure 5). We collected
i MN




3 A\
\

/ \- K
1 /-'' f
^

cm 3 :'\ K
t Or



'^rM;cm 1
key:
CORE sample
Q gumbo limbo TREE
SCALE 1 f-1
SOURCE: KER A E R N P.S.R. AL CAHTOGRAPHICS OF AME RICA CONTOUR INTERVAL = 1 METER
S.W. F. PROJECT Flo.M.N. H. ELEVATION IN METERS A.M.S.L
Figure 5. Core locations at Cash Mound.


Stratigraphy of Indian "Mounds"
1 RELATIVE WATER DEPTH
0 CM3 / \CM2 \ CM 1 DRY SHALLOW DEEP
-. M \ Midden Emplaced
E \
A -----\ Protected Boy
XT
- 2 N. Open Bay
-3 B

D J Shallow Neorshore
-4 J
SCALE Soil Area Enposed
0 1 z 3 m
-5
LEGEND: A Dark gray sheliy sand
B Estuarine shelly sand
C Peat
0 Shallow water, shelly sand
E Organic mud to muddy sand
M Shell midden
Figure 6. Cross section of Cash Mound showing relative sea-level position as interpreted from sediment depositional environment.
three cores; two were offshore, and the third was in the bottom of a borrow pit that is now floored by a small salt pond. Approximately 1 m of shell midden is exposed at the edges of, and has been removed from, the borrow pit, so that core CM-2 in effect penetrates over a meter of mound before entering the substrate. Figure 6 is a cross section of the eastern tip of the mound.
The sequence of sedimentation at Cash Mound records the Holocene sea-level rise (see the diagram suggesting relative water depth on the right side of Figure 6). The lowest facies penetrated (Facies D, Figure 6) rests on a paleosol in core CM-1. This soil is presently 4 m below sea level. Sedimentation overlying the soil reflects the lag between sea-level rise and sedimentation (Figure 6). Facies D, C, and B reflect deepening water from an initial shallow, shelly sand (Facies D) and peat (Facies C) to deeper water, estuarine sand (Facies B). Sedimentation then began to cause shoaling and a dark gray sand (Facies A) accumulated to modern sea level.
The record at the base of the mound shows a bay-ward, organic mud to muddy sand (Facies E, Figure 6). In CM-2 the mound rests on Facies A, the dark marine to estuarine sand. There is no evidence of exposed conditions or intertidal sedimentation at the base of the mound. Therefore, it appears that the eastern part of Cash Mound was built into marine or estuarine shallow water, not onto a terrestrial substrate.
KEY: TEST UNIT CORE SAMPLE
SOURCE: MARQUAROT 1984
SWF PROJECT Flo. M N.l
CONTOUR INT----
ELEVATION I
Figure 7. Core locations at Josslyn Island.


64
Culture and Environment in the Domain of the Calusa
]osslyn Island. Josslyn Island is completely isolated from the nearest "mainland," Pine Island. It has a mangrove swamp in the lee (northeast) of the mound that, like the peninsula at Cash Mound, appears subsequent. In other words, the swamp formed in the lee of, and after, the mound.
Coring on Josslyn Island included a core on the west edge of a finger ridge on the east side of the island (Core J-2, Figure 7), a core in the "courtyard" (J-l), a core in the "north canal" (J-3), and two cores at the edge of the island (J-4 and J-6). Core J-5 was never taken. J-l and J-3 include penetration of midden material and are located interior to the mound periphery. Cores J-2 and J-3 potentially address the questions of the origins of finger ridges and canal-like structures. Cores J-4 and J-6 are controls to determine the normal sedimentation pattern in the vicinity. Two cross sections (Figures 8 and 9) illustrate the three-dimensional structure of the mound.
Core J-2 bottomed out in a gravel of rounded and stained rock fragments. This appears to be a high-energy, shallow-water deposit, perhaps reworked by waves from fluvially transported clasts (see Evans [1989] for a discussion of Pleistocene fluvial systems). J-l bottoms in an equivalent, bleached, beach sand. Core J-6 includes a possible storm deposit (Facies F) of dense, imbricated shells. Therefore, it appears that the base of the Holocene section is preserved in the cores. As was the case with Cash Mound, subsequent deposition records an initial deepening and then in-filling of the bay (see the relative sea-level curve on right side of Figure 9).
Facies A and B are the same as at Cash Mound. They constitute shelly to muddy sands with varying proportions of shell. The unnamed horizon immediately underlying the mound is a transitional zone of muddy, organic-rich midden material. The mud and organics in the transition zone may have been introduced at the time of emplacement or by subsequent illuviation by percolating ground water.
The coverage at Josslyn Island is the best of the three littoral shell mounds. The cores are arrayed to provide good, three-dimensional coverage. It is important to note that muddy, organic sand and peat underlie the mangrove fringe to the north of the mound. There is no evidence that the mound was built on mangrove-swamp sediment or on subaerially exposed substrate.
There is no evidence from core J-2 to suggest that the finger ridge is cultural in origin. It is broad (Figure 7) and consists of broken midden material, which may indicate human activity. It may also indicate transport of midden material off the exposed southern end of the mound during storms. The organic content of the shell is not diagnostic because the site is tidal and surrounded by mangroves, which generate significant humus.
Ridge-Type Burial Mounds
Boggess Ridge. Boggess Ridge includes a burial complex located in a linear ridge that forms the south-
ern and eastern rim of a circular, mangrove pond known as Boggess Hole (Luer and Archibald 1988). Five cores were taken at Boggess Ridge (Figure 10). Two (BR-1 and BR-4) were taken offshore of the ridge in Boggess Hole. The others were taken at locations within and adjacent to known, disturbed burials on the ridge.
The sediments in Boggess Hole (Cores BR-1 and BR-4) include a surficial layer of gray to green muddy sand with mangrove remains. This layer, which ranges from 1.5 to 2.2 m in thickness, is contemporary with the surrounding mangrove swamp. It is Holocene in age and reflects the most recent transgression of es-tuarine sediments over pre-Holocene sediments and soils. Underlying the estuarine sand is a complex of sand layers that is shell free, highly bioturbated, and light brown to white. These sands are equivalent to sands exposed inland at the present time and suggest leaching and incipient pedogenesis in a subaerial environment. It is possible that this paleosol was exposed at the time that the nearby Big Mound Key dwellers occupied their mound; however, the loss of shell material through leaching suggests an earlier extended period of exposure.
If one accepts the gradualistic sea-level rise curves of Scholl and Stuiver (1967) and Scholl et al. (1969) for the area, the transgression at -2 m would coincide with a pre-occupation date and provide a long period during which leaching would have occurred. Alternatively, the local sea-level curve of Stapor et al. (1987) includes a low stand contemporaneous with occupation. This low sea stand may coincide with the leached, paleosol at the base of the Boggess Hole cores. This view is supported by the zooarchaeological data presented in Chapter 8, this volume. However, the physical evidence, largely based on time needed for shell leaching, supports the gradualistic sea-level interpretation.
The ridge sediments (Cores BR-2, BR-3, BR-5) include homogeneous, clean sands with ferric hydroxide staining from incipient pedogenesis. The sands are highly sorted, and some grains are frosted and pitted through aeolian abrasion. These are bioturbated dune sands that appear to have been derived from adjacent areas by aeolian activity. They are laterally equivalent to the clean sands (the paleosols) buried in Boggess Hole, and there is no evidence of a stratigraphic or sedimentological nature to suggest that people constructed the ridge.
In developing hypotheses to explain the Boggess Ridge complex, we hypothesized that Boggess Hole was a borrow site for the sand used in constructing the ridge. Coring of the hole revealed a normal marine sequence to a depth of at least -2 m MSL, and there is no similarity between the surficial sediments of the hole and surrounding areas to those in the ridge. The clean sand of the paleosol below the marine sequence in Boggess Hole resembles the sediments of the dunes, but the Boggess Hole soils are more poorly sorted and contain fewer frosted grains than do the dune sands. Thus, it appears that the dune sand was derived from


Stratigraphy of Indian "Mounds"
LEGEND: A Dark gray shelly sand
B Estuarine shelly sand
C Peat
F Dense, imbricated shell and sandy shell
M Shell midden
ME- Sandy, organic, shell midden transition
Figure 8. East-west cross section of Josslyn Island.
Figure 9. Northeast-southwest cross section with interpretation of relative sea-level position at Josslyn Island.


66
Culture and Environment in the Domain of the Calusa
the paleosol by aeolian action, not by human transport.
It is possible that the hole is a relict sinkhole. There are many such sinkholes on the peninsula north of the site. In fact, the hole and surrounding dune ridge is reminiscent of the "Carolina Bays" that are common on the Atlantic coastal plain. The origin of the Bays is problematical, but it appears that similar features formed elsewhere in Florida by wind erosion of dry sand over a circular sinkhole. It is possible that, while sea level was lowered, the Boggess Hole sink was a site of ground-water recharge and, therefore, surface soils were dry and erodible.
Buck Key. Buck Key includes two sites (Figure 11), the southern-most of which (8LL55) is a linear ridge with burials. Buck Key is an old barrier island (Stapor et al. 1987) with well-defined beach ridges and wash-over fans on the Pine Island Sound side of the island. The burial ridge is contiguous to and slightly east (inland relative to the beach facies) of the shelly, sandy beach ridges. Three cores (B-l, B-2, and B-3) were collected from the ridge. Core B-4 is from Hurricane Bayou, a small inlet on the west side of the island. This core serves as a control as to normal sedimentation units in the area. It includes 3.3 m of marine muddy sand and sand. The sand layer from 1.1-1.6 m may represent accretion of the Sanibel-Captiva barrier island complex to the immediate west of Buck Key. Otherwise, the sediment in the core indicates near-
shore marine sedimentation in a somewhat protected environment.
Core B-3 is from the crest of a linear, shelly beach ridge just west of the burial site. Only 1 m was penetrated and it contains only beach ridge deposits (shelly sand and shell beds) analogous to the modern deposits on the beach face of Captiva and Sanibel Islands. Core B-l is from the margin of a mosquito-control ditch just east of the burial site. It includes peaty sands, shelly sands, and sand with shells. These are light colored and include beach-type shells. These deposits are proximal wash-over deposits transported from the beach face during storms and beach-ridge deposits that accumulated as the island accreted. Core B-2 was taken from a back-filled test pit 0.5 m in depth. Below the disturbed material was aeolian sand, followed by shore face and beach ridge material. Clearly, the burial site is a small foredune complex associated with the beach-ridge complex.
Terrestrial Shell Mounds
The terrestrial mounds differ from the other sites only in that their substrates were obvious to us at the time of sampling. The northern site at Buck Key (8LL722) includes a shell midden on a distal wash-over fan. The site on Useppa includes shell midden and burials in sand located on pre-existing dunes.
Useppa Island. Useppa Island (Figure 12) was cored along a traverse from the nearshore to a test pit


Stratigraphy of Indian "Mounds"
67
Figure 12. Core locations at Useppa Island.
just below the Collier Inn. U-l includes 0.8 m of apparent fill over typical estuarine sand and shelly sand. U-2, from approximately 0.5 m above the shore, contains alternating layers of humus-rich dune sand and shell midden. U-3, which was taken from the base of a test pit excavated through a shell-midden veneer, is completely dune sand. This sand is light brown to pale yellow and appears to be pre-Holocene. Therefore, it is clear that this midden complex accumulated on a subaerial dune. The layer of dune sand between the midden layers in core U-2 may very well have been placed there by prehistoric people or by contemporaneous aeolian processes. It is stratified, with humus near the top, which suggests an inceptisol and some time interval between the two midden layers.
Buck Key. The northern site (8LL722) on Buck Key (Figure 10) is a shell midden overlying peats and normal wash-over deposits. Two cores (B-6 and B-7) were taken from the midden area. Both clearly indicate that the midden accumulated on a substrate similar to that which exists todaya peaty, muddy sand. There are also finger-ridge-like features near the midden. These are distributed in such a way as to suggest formation during storms. They were not cored.
DISCUSSION
The following discussion is structured around the four questions listed at the beginning of this paper.
(1) In what environment did the Indians build the shell mounds? Core collection from the littoral shell mounds is somewhat flawed by the lack of cores from the centers of the shell mounds. However, cores from the borrow pit at Cash Mound and from the plaza and north canal at Josslyn Island give a good indication of mound substrate. In all cases, there is no physical evidence that the mounds accumulated on dry land.
There are three possible explanations for the absence of soils or obvious, subaerially exposed marine sediments under the mounds. One explanation is that the mounds were begun on dry land and prograded outward, over marine/estuarine sediment. If this scenario is correct, the cores did not sample the subaerial material, only the prograded marine/estuarine sediment. The second scenario is that the Indians sought out shallow bars or shoals, which are common in modern Charlotte Harbor/Pine Island Sound, and built the mounds in shallow water. This interpretation is consistent with the physical data of the cores. The third scenario is that the Indians built the mounds on subaerially exposed marine sediments, and that these sediments had been exposed for too brief a time for leaching, bleaching, or pedogenesis to be preserved in the stratigraphic record. This latter scenario appears consistent with some of the archaeological data presented elsewhere in this text. It is clear that the mounds were built in contact with water in some of the areas sampled and that the other cores that penetrate midden materials may be located on briefly exposed marine/estuarine sediments. These mounds do not appear to have been built wholly on dry land above sea level and then inundated.
Many of the littoral mounds are partly submerged, and their bases are below modern sea level. This is partly a result of construction simultaneous with sea-level rise and partly a result of subsidence and compaction under the weight of the midden.
Sea-level rise is clearly documented in many of the cores. It is also apparent that there has been considerable late-Pleistocene/Holocene sedimentation in the estuarine system. Some of this is contemporaneous with human occupation over the last 2,000 years. In the data set presented in this paper, the maximum post-occupation sea-level rise that can be documented is approximately 1 m, assuming no subsidence of the mounds. Maximum sediment accumulation that can be documented is the same, 1 m.
Evans (1989) used seismic methods to evaluate sedimentation in the Charlotte Harbor/Pine Island Sound system. He documented lithologic indicators (soils, fluvial sediments, etc.) and a seismic reflector that he concluded represents the pre-Holocene exposure surface. From his data, it is clear that significant sedimentation has infilled the bay during the Holocene transgression. Maximum thicknesses range from less than 3 to over 6 m of marine and estuarine muddy to shelly sands. In Pine Island Sound the sediment wedge came from the south, from San Carlos Bay. Additional sediment wedges came through the inlets, especially Boca Grande. Charlotte Harbor con-


68
Culture and Environment in the Domain of the Calusa
tains a significant wedge that has prograded southward from the mouths of the Peace and Myakka Rivers.
(2) Are the burial mounds of human origin or natural? The burial mounds we tested consist of fine sand that apparently accumulated in a dune environment. There is no evidence to suggest that the features on Buck Key and Boggess Ridge are of human origin. The Indians simply selected burial sites that consisted of easily dug dune sand.
The Useppa Island data indicate that the midden and associated burials are on a pre-Holocene dune. A thin layer of dune sand within the midden complex may have been transported by the occupants or by aeolian reactivation of the older dune material as vegetation was eliminated at the occupation site. This thin dune layer includes some indications of pedogenesis.
(3) Are the linear, finger ridges of human origin or natural? The origin of the finger ridges cannot be unequivocally attributed to human activity. The finger ridges and central canal at Big Mound Key appear to be related. They are probably of human origin, although the evidence is circumstantial. The finger ridges are composed of midden material and correlate with sediments in the canal. It is highly possible that both canal and finger ridges were constructed simultaneously. The strongest evidence for the human origin of the Big Mound Key finger ridges is their distribution. It is unlikely that storms or other natural agents could distribute the finger ridges in a symmetrical pattern fanning away from the central canal. The canal and finger ridges face the direction of maximum fetch, which could lead to wave modification and could indicate that they had a practical purpose as protection from waves coming up the bay.
Possible human origin of the finger ridge on Josslyn Island is problematical, at best. The ridge joins the mound where it faces the maximum fetch direction. Therefore, the ridge location is comparable to that expected if storms erode and transport midden material away from the exposed, southern edge of the mound. The stratigraphy near the finger ridge does not help in interpretation. In the absence of better data, we cannot conclude that the finger ridge is of human origin.
Although some of the finger ridges appear to have been created by design, not all small shell ridges are cultural; most are probably natural. If the latter is the case, the ridges could still be contemporaneous with Indian occupation. After the mangrove fringe develops on the littoral mounds and after the shell framework of the midden is settled and filled with detritus, the midden is relatively resistant to erosion. The optimal time for erosion and finger-ridge formation is during occupation, when the midden material is loose and not protected by littoral vegetation.
Knowles (1983) and Davis et al. (1989) found evidence of powerful hurricane activity on the coast of Sarasota County, just to the north of the study area.
Radiometric dates on storm deposits, which consist of layers of shell transported over the barrier-island system into Sarasota Bay, show storms at 2,270,1,320, and 240 years B.P. (approximately 320 B.C., A.D. 630, and A.D. 1710). These large storms are contemporaneous with occupation in the Charlotte Harbor area. No historical storms have created deposits that are nearly as extensive. It is interesting to note that Captiva Pass, the tidal inlet between La Costa and North Captiva Islands, apparently developed between 1,300 and 600 years B.P. (Stapor et al. 1987). A major cause of inlet development is breaching of barrier islands during major storms. We would expect evidence of reworking of exposed, unvegetated midden material and natural sediments as a result of these, or similar, storms in the study area.
(4) How do the mound types relate to the Holocene sea-level rise? There were three impacts of the Holocene sea-level rise on the early inhabitants. First, it directly affected the site plan and use. Second, it affected availability of food and materials resources. Finally, it affected the availability of fresh water. Also, sea-level rise affected site preservation and later archaeological interpretation of the site.
Most modern sea-level curves (Fairbridge 1961; Scholl and Stuiver 1967; Scholl et al. 1969; Morner 1969) show a rapid, steady rise to approximately an elevation of -5 m by about 5,000 years B.P.
After approximately 5,000 years B.P., sea level rose more gradually. There is dispute as to the pattern of this rise. Many workers (Fairbridge 1961; Morner 1969) believe that sea level fluctuated greatly as it rose, with episodes when sea level was higher than it is today and with episodes of small sea-level drops. This pattern can be termed the Fairbridgian curve. Others, notably Scholl and Stuiver (1967) and Scholl et al. (1969), believe that the rise in sea level was essentially a smooth, gradualistic curve.
Part of this discrepancy in sea-level curve interpretation results from the data used to construct the curve. Cores of nearshore marine and coastal sediments rarely support a Fairbridgian interpretation. Examination of the data of Scholl and Stuiver (1967) and Scholl et al. (1969) from the Everglades and Ten Thousand Islands area of south Florida indicates that their sea-level curve is a "best fit" to the data set, and that, while there is some room for imposition of a Fairbridgian-type curve, they chose a simplistic interpretation in keeping with the level of detail preserved in their cores. Our own work (reported in this paper), the work of Evans (1989), and the work of other Gulf coast sedimentologists (R.A. Davis, Jr., personal communication, 1990) also indicate a gradualistic rise in the absence of data to the contrary. This is because the fluctuations, if any, of a Fairbridgian curve are short term, and the resulting shallow-water sediment record may not reflect the sea-level change. The shallow, offshore sedimentary record is more complete than that of an intertidal to supratidal sequence, but the sensitivity to small-scale fluctuations is less.


Stratigraphy of Indian "Mounds"
69
Those who conclude that Fairbridgian-type sea-level curves exist often make their interpretations from shallow-water, intertidal, and supratidal sedimentary sequences. In these sequences, the record is sensitive to small-scale or short-term fluctuations, but it is also sensitive to storms and subject to later modification or destruction.
Missimer (1973) and Stapor et al. (1987) have constructed sea-level curves from dates of shells found in beach ridges of the Charlotte Harbor barrier islands. Their curves are complex and resemble the Fairbridge-Morner curves. Stapor et al. (1987) point out, however, that high beach ridges may represent increases in wave activity rather than higher sea levels. The data of Missimer (1973) and Stapor et al. (1987) are supported by some of the archaeological data presented in this text (see Chapter 8), but not by our data.
Application of any sea-level curve to the Charlotte Harbor area is complicated by the Holocene sedimentation in the estuary system. The more conservative, gradualistic curve of Scholl and Stuiver (1967) and Scholl et al. (1969) shows sea level at -1 m at about 2,000 years B.P., and approximately -0.2 m 1,000 years ago. The Fairbridgian curve is more difficult to generalize from, but net sea-level rise is roughly similar. Therefore, sea-level rise during the last 2,000 years of occupation has been minor (1 m) and equivalent to the depth of the bases of the middens below modern sea level. These assumptions are also supported by the data on barrier island development and Charlotte Harbor sedimentation.
Missimer (1973) studied beach ridges on Sanibel Island. His oldest date, the second highest beach ridge on the island, was 2,375 years B.P. Stapor et al. (1987) compiled an exhaustive set of radiocarbon dates from all of the barrier islands from Gasparilla to Sanibel. The oldest island cores are 3,000 years B.P. Sanibel is one of the islands that began to develop approximately 3,000 years B.P. Buck Key is a barrier island that has been isolated from the Gulf by growth of Captiva Island. Radiocarbon dates from Buck Key range from 3,000 years B.P., but the Buck Key beach ridges formed
in the interval from 1,500 to 1,000 years B.P. (Stapor et al. 1987).
Evans (1989) obtained a series of dates on shells from Charlotte Harbor/Pine Island Sound. The Holocene dates, obtained by the amino-acid racemization technique, are given in Table 1. The oldest date, less than 8,000 years B.P., is from just above a reddish-brown root zone, which represents the pre-Holocene surface. The other dates clearly record a rapid sedimentation rate. The core data taken in the present study indicate that sedimentation near the mounds lagged behind sea-level rise, so average rates of sedimentation and sea-level rise from Evans's (1989) dates can only be considered as approximations. Even so, they are instructive. In Pine Island Sound, the rates from Evans's data range from 0.4 to 1 m/1000 yrs. Highest rates are near the tidal inlets. In Gasparilla Sound the rate of sedimentation is 0.4-1.3 m/1000 yrs. The data from our cores and sedimentary features described by Evans (1989) show that sea level rose more rapidly than sediment filled in the estuary. This is most clearly shown by the data from Josslyn Island and Cash Mound, where the Holocene transgression is marked by somewhat deeper water sediments overlain by shallow-water sediments. Given that sedimentation lagged behind sea-level rise, significant sedimentation occurred during the time of human occupation. It is also evident that, while most of the rise in sea level was long before human occupation, much of the Holocene sediment near the mounds accumulated within the last few thousand years.
Littoral site inundation has occurred, therefore, but it is difficult to argue that it had any significant impact on the site occupants. Sea-level rise was accompanied by increasing sedimentation, which would have the beneficial effects of reducing impacts of storms and increasing habitat diversity.
The shoreline configuration has certainly changed, predominantly by aggradation of mangrove swamps. These shoreline changes are marked at Josslyn Island, where a mangrove swamp has doubled the size of the island. Along with changes in shoreline configuration,
Table 1. Amino-acid Racemization Dates for Holocene Shells in Charlotte Harbor/Pine Island Sound (modified from Evans 1989).
Location Genus Dated Depth (m below Bottom) Age (1,000s of Years)
Pine Island Sound, south of Blind Pass Chiane 3.4 <8
Pine Island Sound, south of Blind Pass Chione 5.0 <5
Center Pine Island Sound, off Captiva Pass Mercenaria 1.8 <3
Pine Island Sound, near Cabbage Key Chione 3.2 5+2 j
Gasparilla Sound, off Gasparilla Pass Chione 1.7 42
Gasparilla Sound, south of Gasparilla Pass Mercenaria 3.9 <3


70
Culture and Environment in the Domain of the Colusa
there was increased diversity of food sources owing to growing area and complexity of shallow-water environments, especially those with emergent plant communities.
Availability of fresh water was critical to the Indians. Evans (1989) has shown that the ancestral Peace/Myakka and Caloosahatchee rivers formed fluvial valleys and sedimentation units in the Charlotte Harbor/Pine Island Sound complex. Prior to flooding by the sea or during low sea stands, these rivers could have been sources of fresh water. However, much of the time that the mound builders occupied the area sea level was near its present level, and the rivers were only accessible by boat from the barrier islands and other sites that were studied.
In the early Holocene the ground-water system would reflect lower sea levels and drier climates. Cenotes, such as Little Salt Spring and Warm Mineral Springs, were distant sources of water, and present-day offshore springs may have been available. The peninsula north of Cape Haze is characterized by many sinkholes, most of which have been filled by sediment. There may have been water sources there as well.
Springs in the area of the present-day coast were probably rare in the early Holocene. The small, discontinuous, modern-day aquifers of the Hawthorn Group were exposed in the area, but they may not have carried water. However, as sea level rose, ground-water levels rose as well, and coastal ground-water discharge migrated inland with the sea. There were undoubtedly springs in the immediate area at this time. The karst area north of Big Mound Key probably developed springs by mid-Holocene time, and flowing wells are still present in the area today. With increased precipitation, small, fresh-water lenses developed on the large islands. Useppa Island, for example, has small seep springs in several locations on the east side of the island today. Because of interception of ground water by wells, land drainage, and other factors, we cannot assume that the present-day lack of fresh water in the area was typical a few hundred to two thousand years ago.
Archaeological interpretation of littoral sites must account for sea-level rise. Analysis of the culture that produced the site involves development of concepts of assets related to proximity to the sea, such as food sources, means of travel, and healthy habitation sites. The analysis must also consider limiting factors with respect to access to fresh water and inland resources. Preservation of the site, estimations of the original extent and plan of the site, and identification of relationships of the site to adjacent land areas may be obscured by inundation. Therefore, understanding the site stratigraphy in context of sedimentation and sea-level rise is crucial to understanding the occupational and post-occupational histories of littoral sites.
It appears from our data that sea level has not risen appreciably since occupation of the sites began. Sedimentation has reduced water depths near the
sites, however. The littoral mounds extend to about 1 m below sea level. Some of this may be a result of compaction, but the substrates of the mounds are sandy and largely grain supported, so compaction should have been minimal. Sea-level rise, therefore, could account for perhaps 0.5-0.8 m of inundation.
Owing to the changes in topography and geomor-phology through flooding and sedimentation, the basin has changed in details, but not in gross morphology. Dramatic changes in water availability and distribution of food sources have occurred because of sea-level rise.
Finally, it appears that the sites have been modified by storms, as well as by flooding. Some of the finger ridges (Josslyn Island, Buck Key) appear to be storm ridges. Formation of these was probably at about the same time as occupation because post-occupation vegetation, especially by mangroves, should inhibit development of such ridges.
CONCLUSIONS
Twenty-eight cores were taken at seven Indian mounds at six locations in the Charlotte Harbor/Pine Island Sound area. The sites can be subdivided according to geological setting. Three (Big Mound Key, Cash Mound, and Josslyn Island) can be classified as littoral shell mounds that are at modern sea level and cannot be shown by field examination to have been constructed on dry land. Two (Boggess Ridge and south Buck Key) are sandy, linear burial mounds. Two (Useppa Island and north Buck Key) are shell mounds located on terrestrial substrates that are easily recognized in the field. These are a dune ridge (Useppa Island) and a barrier-island wash-over fan (north Buck Key). Three sites (Big Mound Key, Josslyn Island, and north Buck Key) have small, linear shell ridges, called finger ridges, of problematical human origin.
The purposes of the study were to determine (1) the geological context of the three mound types, (2) the environment in which the littoral shell mounds were constructed, (3) the origin of the sandy burial mounds, and (4) the origin of the finger ridges.
The littoral shell mounds show no evidence of having been deposited on dry land. They are underlain by shallow marine/estuarine sediments and are overlapped by the same sediments. They have subsided slightly into the underlying sediment (ca. 0.2-0.5 m), and sea-level rise (0.5-0.8 m) has partly inundated the mounds. The linear, sandy burial mounds are natural dune ridges into which the Indians excavated for burial purposes. Boggess Ridge is a small lunate dune located on the lee side of Boggess Hole, a probable deflation zone overlying an older sinkhole. The south Buck Key site is in a barrier-island foredune. The shell mounds on Useppa are superimposed on much older, high dunes. The shell mound at north Buck Key is located on an older wash-over fan.
The finger ridges have two probable origins. The symmetrical ridges at Big Mound Key appear to be of


Stratigraphy of Indian "Mounds"
71
human origin. They spread out laterally from the central canal. The canal is floored by crushed to whole midden material as are the linear depressions between fingers. The fingers are constructed of the same material. It appears from the limited core data that the entire complex is constructed of shell. The finger ridge at Josslyn Island cannot be attributed to human action. It appears to be a storm ridge that was probably formed during the time of habitation, but additional data are needed to confirm this conclusion. The finger ridge at Buck Key also appears from field examination to be a storm ridge.
Additional work needs to be done in several areas. First, and most important, we need to employ a full drilling rig to core through the center of least one shell midden. Big Mound Key is the obvious candidate as an access road and disturbed area created by "pot hunters" already exists. The coring should be in a simple traverse from the landward edge of the mound to the seaward edge. Second, a trench-type excavation should be done across a finger ridge at Big Mound Key and at Josslyn Island so that detailed stratigraphy can be obtained to determine the cultural origin of the fingers. Finally, detailed radiometric dating of shells from selected cores is needed in order to understand the apparent inconsistencies in sea-level curve interpretations from geological and archaeological contexts.
ACKNOWLEDGMENTS
This study was funded by National Science Foundation Grant No. BNS-85-19814. We thank Pete Kwiat-kowski, Bob Edic, and George Luer, who contributed to our understanding of the archaeology of the area and assisted in the coring program. Jan and Robin Brown provided us with lodging and a great meal. Karen Jo Walker and Claudine Payne provided several useful editorial comments, and Corbett Torrence drafted the maps and graphs. Finally, the project could not have been completed without the tremendous help of Bill Marquardt. Bill taught us archaeology, helped obtain the funds, did the logistical support, and "bugged" us for this paper.
NOTES
1. Technical terms are defined in the Glossary. GLOSSARY
Aggradation. The process of building up a surface by deposition.
Bioturbation. Mixing of sediment by burrowing organisms. Bioturbation destroys bedding and other primary sedimentary structures.
Cenote. A vertical-sided sinkhole from which water can be obtained.
Clasts. Sedimentary particles that have been transported.
Deflation. The process of erosion of a land surface by wind action.
Distal. Portions of a sedimentary deposit that are distant from the source of the sediment. The opposite of proximal.
Facies. The general appearance or nature of one part of a sedimentary body as distinguished from another. A group of physically or biologically similar sedimentary layers.
Fetch. The continuous distance over water in which wind can generate waves.
Fluvial. Of, or relating to, rivers and streams. Stream transported and deposited materials as used in this paper.
Foredune. Wind-deposited sand dunes that accumulate landward of a beach.
Hawthorn Group. A thick deposit of sand, mud, and carbonate rocks that underlies the Plio-Pleistocene to Holocene sediments of the area. It contains several important water-bearing horizons in Lee County.
Imbricated. Shingling or overlapping of inclined sub-planar sedimentary particles in such a way that the tops point in the direction of the current. Imbrication requires moderately high wave or current energy.
Illuviation. The process of downward transport of particles by percolating ground water in soils.
Inceptisol. A geologically young soil in which weathering has been minimal.
Lee and Leeward. Areas that are protected from waves and wind by a barrier, such as a barrier island, are said to be in the lee of the barrier. The opposite of windward.
Littoral. Belonging to, or taking place, near the shore. The environment from just above to just below sea level.
Paleosol. An ancient, buried soil.
Pedogenesis. The process of soil formation.
Progradation. The seaward advance of a shoreline by sediment accumulation.
Proximal. The opposite of distal. Relates to those portions of a clastic sedimentary unit that are close to the source of the sediment.
Seismic. A geophysical exploration tool in which energy from a source is directed through sediment or rock and reflected or refracted from contacts between different rock units. It is used to determine the thickness and geometry of subsurface sedimentary strata.
Shoaling-upwards sequence. A diagnostic sequence of sediments indicated by an upward increase in sediment grain size or other indicators. Coarsening of sediment indicates an increase in wave or current energy, such as would occur with decreasing water depth. Shoaling-upwards sequences, therefore, indicate a gradual decrease in water depth as sediment accumulated.
Subaerial. Formed, existing, or taking place on the land surface, as opposed to subaqueous.


72
Culture and Environment in the Domain of the Calusa
Substrate. The surface upon which an organism lives. In this case, the surface upon which a mound was built.
Terrestrial. Of, or pertaining to, the land. The opposite of aqueous.
Vibrocore. A cylindrical sediment core obtained by mechanically vibrating a tube into the sediment.
Wash-over fans. Sedimentary bodies on barrier islands that are produced by storms sweeping sediment over the seaward beach and dunes and onto the leeward margin of the island, facing the protected lagoon. Wash-over fans form the low, fan- to lobate-shaped mangrove swamps on the estuarine sides of the Charlotte Harbor barrier islands.


Stratigraphy of Indian "Mounds"
73
APPENDIX A Core Logs
t J J > ) 6 ce
c 6 <
KEY TO SYMBOLS USED IN CORE LOGS
SHELL. Including MIDDEN materials. BIVALVES GASTROPODS
SAND. Quartz sand.
MUDDY SAND SHELLY SAND
MUD. Including siliciclastic mud and organics. SHELLY MUD SANDY MUD
o o
fs(ti
GRAVEL (LITHICLASTS) WOOD FRAGMENTS ROOTS
PEAT/MUCK
SANDY PEAT/MUCK MUDDY PEAT/MUCK
BIOGENIC STRUCTURES BIOTURBATION BURROWS
INORGANIC STRUCTURES LAMINATIONS MOTTLES IMBRICATION SOIL HORIZON


74
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: BMK-1 Site: Big Mound Key (8CH10)
Elevation (MSL): 0.00 m
Location: At sea level on edge of mangrove fringe, approximately 3.5 m NW of posted
sign at foot of path running E-W Into mound; on W side of mound.
Penetration: 2.76 m Recovery: 2.21m Percent Compaction: 19%
meters
o.o
0.5
1.0-
1.5-
2.0-
2.5-
IM
;;)TT>) > '))>?:) ',)
v
0-
-A
/ ;
SAND AND MUD. Organic-rich sand with mud; grades into peat locally; rootlets and pieces of wood very common; bioturbation features common; no shells; 0.00-0.47 m.
MUDDY SAND. Grayish muddy sand; no shells; bioturbated; mottled; rootlets common; 0.47-0.94 m.
SHELLY ORGANIC-RICH SAND. Grayish-black sand with abundant shell and organlcs; shells are both fragmented and whole; whole shells include Chione sp., Bulla sp., Crassostrea sp., Donax sp., Dosinia discus, Crepidula sp., Nuculana concentrica, Modulus sp., etc.; there is a concentration of N. concentrica at 1.27-1.46 m; bioturbation and mottling variable; 0.94-2.76 m.


Stratigraphy of Indian "Mounds"
75
CORE LOG
Core No.: BMK-2 Site: Big Mound Key (8CH10)
Elevation (MSL): -0.70 m
Location: In shallow water (approx. 2-2.5 feet deep) at N end of "canoe canal" on SE side of mound.
Penetration: 2.04 m Recovery: 1.06 m Percent Compaction: 48%
meters
o.o-
0.5-
1.0-
1.5-
2.0-
0_1)_6.
or; y>
JrJ Jj.y. y J.J Jj.J. J J-JJjyJ. J.J.I JJ.J-
) > >t> >
J ) > > c
J J))>J> ) 6 ) > >)J 6J }) )><.> H;)
t J > G i) ) J J J
MUDDY SAND. Gray fine-grained muddy sand; extensively biotur-bated; some shells, including small, burrowing clams, Bulla sp., Crassostrea sp.; abundant shell fragments; 0.00-0.40 m.
SHELL. Densely packed oyster (Crassostrea sp.) with dark gray muddy sand matrix; shells highly fragmented; some of the compaction is in this unit; 0.40-0.61 m.
MUDDY SAND. Gray fine-grained muddy sand; small fragmented shells; content is much lower than units above or below; gradation-al contact with unit below; shells include unidentified, burrowing clams and Bulla sp.; significant mud decrease from 0.61-1.06 m; 0.61-1.41 m.
SANDY SHELL. Densely packed shell with a gray fine-grained sand matrix; shells include Bulla sp., Cerithium sp., Nuculana concntrica, Polinices sp., Modulus sp., Crepidula sp., Donaxsp., etc.; 1.41-2.04 m.


76
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: BMK-3 Site: Big Mound Key (8CH10)
Elevation (MSL): 0.00 m
Location: In furrow between "fingers," in red mangroves; approximately 90 m WSW of BMK-2; between 2nd and 3rd "fingers" on SW side of mound.
Penetration: 2.20 m Recovery: 1.93 m Percent Compaction: 13%
meters 0.0
0.5-
1.0-
1.5-
2.0-
>_i- ) ) > i
j_>__! >_
i j .J ) ;
> 1 > I > ) J S ) ); j
> ; j .
) ) )})) > > ')'''''
SHELLY MUD. Abundant oyster (Crassostrea sp.) shells in organic-rich mud; mangrove roots; 0.00-0.65 m.
SHELL. Dense oyster (Crassostrea sp.) bed; some mangrove roots; some fragmented shells; MIDDEN(?); 0.65-1.15 m.
MUDDY SAND. Gray fine-grained muddy sand; abundant shells, including Nuculana concentrica, Modulus sp., Cerithium sp., Crassostrea sp., etc.; bioturbated; from 1.35-1.61 m is a dense layer of shells; 1.15-2.20 m.


Stratigraphy of Indian "Mounds"
77
CORE LOG
Core No.: BMK-4 Site: Big Mound Key (8CH10)
Elevation (MSL): 0.35 m
Location: In "Mud Pond" on SW side of mound; core driven with sledge and pulled by hand; see below for description of conditions.
Penetration: 0.97 m Recovery: 0.92 m Percent Compaction: 5%
meters 0.0
0.5-
SANDY MUD. 90% mud, 10% sand; no shells; no structures; black; 0.00-0.18 m.
MUDDY SAND. Grayish muddy sand; some shells, including Nuculana concentrica, Crassostrea sp., Anomia sp., Cerithium sp., unidentified burrowing clams, etc.; bioturbated; lenses of cleaner sand; organics are less than other units; 0.18-0.74 m.
SANDY MUD. Grayish-green sandy mud (70% mud, 30% sand); few small shell fragments; wood pieces evident near top of unit; probably bioturbated; 0.74-0.97 m.
Core taken from middle of pond. Water at surface was hot and clear. 0-3 or 4 cm Clearwater
30-35 cm reddish-brown, suspended organics
30-35 40-45 cm shell and mud
40-45 cm soft sediment


78
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: CM-1 Site: Cash Mound (8CH38)
Elevation (MSL): -1.00 m
Location: Approximately 10 m offshore of small shell pit on E side of mound. Penetration: 4.50 m Recovery: 2.77 m Percent Compaction: 38%
meters 0.0
0.5 -
1.0 -
1.5
2.0 -
2.5 -
3.0 -
3.5 -
.v.-v
civ.
ORGANIC MUD. Black cohesive organic-rich mud; Spisula sp. present; 0.00-0.56 m.
SHELL. Dense shell bed; includes Arcidae, Chione sp., Anomia sp., Crassostrea sp., Donax sp., Corbula sp., Modulus sp., etc.; many shell fragments; 0.56-0.90 m.
SAND. Dark gray fine-grained quartz sand; highly bioturbated; shells include Tellina alternata, Bulla sp., etc; many shell fragments; 0.90-2.64 m.
PEAT. Black to dark brown; plastic; boundaries indistinct; shells at both top and bottom boundaries; 2.64-2.78 m.
SAND TO SHELLY SAND. At bottom is a gray fine-grained sand; mottled; abundant Chione sp. shells; near top the Chione sp. is very dense and appears imbricated; extensive bioturbation throughout; 2.78-4.00 m.
continued on next
page


Stratigraphy of Indian "Mounds"
79
continued from previous page
3.5
4.0 -
4.5
SAND. Gray to yellow fine-grained sand; yellow sand appears to be a soil zone; bioturbated; no shells; 4.00-4.50 m.


80
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: CM-2 Site: Cash Mound (8CH38)
Elevation (MSL): 0.50 m
Location: On E side of small pond in shell borrow pit in approximately 0.10 m of water; E fringe of Cash Mound.
Penetration: 3.45 m Recovery: 3.18 m Percent Compaction: 7.8%
meters 0.0
0.5 -
MIDDEN. Top includes muddy sand mixed with midden shell; bottom is coarse shell midden; Crassostrea sp. and Busycon sp. present; vermetid reef rock at bottom section; all organic-rich; 0.00-0.65 m.
1.0 -
SAND AND MUCKY SAND. Organic-rich fine quartz sand at bottom grades upward into a sandy muck or mucky sand; mottled; bioturbation; few shells, one large clam (Mercenaria sp.?) near top; 0.65-1.86 m.
1.5 .
2.0 -
SAND. Clean, brown fine sand; few shells; organic content Increases upward; numerous large roots and pieces; contact grada-tional to upper unit; 1.86-3.10 m.
2.5 -
3.0 -
SAND. Mottled; no shells; some roots; bioturbated; 3.10-3.45 m.


Stratigraphy of Indian "Mounds"
81
CORE LOG
Core No.: CM-3 Site: Cash Mound (8CH38)
Elevation (MSL): -1.00 m (?)
Location: Offshore of mound approximately 10 m; on S side of the E extent. Penetration: 2.68 m Recovery: 1.52m Percent Compaction: 43%
meters 0.0 -
0.5
1.0 -
1.5
2.0 -
2.5 -
_) :
''
) r
MUDDY SAND. Black, sandy mud to muddy sand; heavily biotur-bated, mottled; shells not common, include Modulus sp., Arcidae, Spisula, Chione sp., Melongena sp., Crassostrea sp., etc.; roots present near top; 0.00-2.29 m.
SANDY SHELL. Sandy shell hash; densely packed shells are somewhat imbricated; both sand matrix and shell fragments are white; shells predominantly Chione sp., articulated and fragmented; upper contact is sharp; 2.29-2.68 m.


82
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: J-1 Site: Josslyn Island (8LL32)
Elevation (MSL): 0.00 m
Location: At bottom of small amphitheater, called the "court"; near survey marker 80S, 120E.
Penetration: 2.75 m Recovery: 1.87 m Percent Compaction: 32%
meters 0.0 -
0.5 -
> > i-
1.0 -
1.5 -
2.0 -
2.5 -
-ir-' .'.
V Ti
.i >c>.
X") : ft:
SHELL BED (MIDDEN). Large shells, including Busycon sp., Fas-ciolaria sp., etc.; matrix Is dark gray to black organic-rich fine sand; 0.00-0.55 m.
SHELLY MUDDY SAND. Muddy sand; mottled; large oyster shells are interlayered with muddy sand; shells appear to be onset of midden; organic content increases upward; 0.55-0.81 m.
MUDDY SAND. Muddy fine sand; mottled; very low shell content (approximately 2%); burrowed, estimated 60% compaction in this horizon; 0.81-1.43 m.
SHELLY MUDDY SAND. Abundant small shells and shell fragments; shell content decreases from bottom to top; mud fraction high; olive-green color; mottled; 1.43-2.39 m.
SHELLY SAND. Transitional to unit below; abundant shells, including bivalves and large gastropod fragments; sand is fine grained, white; 2.39-2.62 m.
FINE SAND. Fine moderately sorted white sand; small shell fragments, and articulated Chione sp.; estimated 60% of compaction in this unit; 2.62-2.75 m.


Stratigraphy of Indian "Mounds"
83
CORE LOG
Core No.: J-2 Site: Josslyn Island (8LL32)
Elevation (MSL): 0.00 m
Location: Immediately W of small "finger" on E side of mound, near the tip of the "finger"; near 50S,150E.
Penetration: 2.21m Recovery: 1.91m Percent Compaction: 14%
meters
o.o
0.5 -
1.0 -
1.5
2.0 -
y
c'y. )]
fry Of -?J > :? '
y 'y .
J.
SHELL (MIDDEN). Large, whole molluscs, Including Busycon sp., Fasciolaria sp., Mercenaria sp., etc.; many shells are fractured and disarticulated, suggesting transport; matrix is organic-rich mangrove mud; estimated 10% of compaction here; 0.00-0.60 m.
FINE SAND. Fine sand; olive-green to light brown; mottled and extensively bioturbated; few shells (<1%); large burrow near top of interval; mud increases upward; estimated 90% compaction in this horizon; 0.60-1.49 m.
SHELLY SAND. Abundant shell fragments in fine sand; olive-green to light brown; mottled and bioturbated; lower shells show faint imbrication; shell content decreases upward from 60% to 5%; root traces; 1.49-2.16 m.
LITHOCLASTIC GRAVEL. Lithoclast is discolored from exposure; minor shell and muddy sand; sediment is olive-green, fine grained; shells are Chione sp. and minor small gastropods; 2.16-2.21 m.


84
Culture and Environment in the Domain of the Colusa
CORE LOG
Core No.: J-3 Site: Josslyn Island (8LL32)
Elevation (MSL): 0.00 m
Location: In "north canal" at sea level. Low spot N of old cistern.
Penetration: 2.60 m Recovery: 1.62 m Percent Compaction: 38%
meters
o.o
0.5 -
1.0 -
1.5 -
2.0 -
2.5 -
> >
c <-.
AJ.
) 5 )2L&'
.5 >>'
> i > j t.
PEATY MUD. Mangrove peat in cohesive sand matrix; some shell fragments; most of compaction (approximately 50%) here; 0.00-0.32 m.
SHELL BED (MIDDEN). Abundant articulated shells with medium brown sand matrix; becomes more organic-rich near top (0.32-0.43 m); 0.32-0.90 m.
SHELL BED (MIDDEN). Abundant shells (Strombus sp., Busycon sp., Crassostrea sp., etc.); lower part has an olive-green mud matrix, at 0.90-0.97 m matrix is transitional to dark organics; 0.90-1.14 m.
FINE SAND. Light brown to gray to olive-green; mud prominent; mottled with organics at 1.74, 1.41, and 1.31 m; very dark layers (peaty) at 1.18 and 1.27 m; small shell fragments make up 2-5% of sediment; Ficus sp. at 1.38 m; burrowed; 1.14-1.85 m.
VERY SHELLY, FINE SAND. Abundant small shells; approximately 50% sand and mud, 50% shell; olive-green to gray; organic-rich layers at 2.34, 2.25, 2.15, 2.09, and 1.99 m; fewer organics and less mud near top; 1.85-2.43 m.
SANDY SHELL HASH. Many juvenile shells, including Melongena sp.; olive-green/gray; approximately 25% sand, 75% shell debris; some mud; 2.43-2.6 m.


Stratigraphy of Indian "Mounds"
85
CORE LOG
Core No.: J-4 Site: Josslyn Island (8LL32)
Elevation (MSL): -0.50 m
Location: In shallow water on NW side of island approximately 15 miles NW of 0,0 survey marker.
Penetration: 3.69 m Recovery: 3.10 m Percent Compaction: 16%
meters 0.0
0.5 -
1.0 -
1.5 -
2.0 -
2.5 -
3.0
3.5 -
: ) -4- . .
,.>.y )
1- :
tt
) I -r-
J
7 >
SAND. Fine-grained sand with small mud fraction; bloturbated; Busycon so. and other large molluscs well preserved; shell fragments common; thin layer of organics (roots, leaf litter) at top; 0.00-1.31 m.
MUDDY SANDY SHELL. Dark green sandy mud to muddy sand; shell content decreases upward from 65% to 15%; shells are small and fragmented; some large shells (scallops, etc.); mottled; extensively bioturbated; 1.31-3.00 m.
SHELL. Densely packed Chione sp.; possible imbrication; matrix is fine-grained grayish sand; most shells are fragmented and disarticulated; no organics or bloturbation; sharp contacts; 3.00-3.35 m.
MUDDY SAND. Fine-grained muddy sand; less than 1% shell; grayish-green; mottled; bioturbated; roots present; estimated 40% compaction here; 3.35-3.69 m.


86
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: J-6 Site: Josslyn Island (8LL32)
Elevation (MSL): -1.00 m
Location: On outside of mangrove fringe at small channel on S side of mound. Penetration: 1.81 m Recovery: 0.90 m Percent Compaction: 50%
meters
o.o
0.5 -
1.0 -
1.5 -
)
_0
> , > 1 i. 4-'>
, ) ">.
i),
MUDDY SHELLY SAND. Fine-grained; mottled; highly biotur-bated; olive-green; abundant shells are fragmented and reworked; gradational with unit below; 0.00-0.34 m. (NOTE: unknown mangrove peat thickness removed from top).
MUDDY SAND. Fine grained; bioturbated; mottled; olive-green; low shell content; estimated 100% of compaction in this horizon; gradational with unit below; 0.34-0.75 m.
MUDDY SANDY SHELL. Shells are Chione sp., Crassostrea sp., etc.; shells are small and fragmented; several large oyster shells; shells are hard and packed at bottom and become less abundant upward; matrix Is fine sand and organic-rich mud; olive-green; highly bioturbated; 0.75-1.72 m.
SHELL. Dense, hard-packed bed of Chione sp., etc.; matrix is olive-green fine sand; less than 1% mud; bioturbated; 1.72-1.81 m.


Stratigraphy of Indian "Mounds"
87
CORE LOG
Core No.: BR-1 Site: Boggess Ridge (8CH16, 8CH19, 8CH34)
Elevation (MSL): -0.50 m (?)
Location: Core located in Boggess Hole near "Mound A". Compaction is uniform throughout.
Penetration: 3.16 m Recovery: 2.41 m Percent Compaction: 24%
meters
o.o
0.5 .
3
1.0 -
J
1.5
2.0 -
2.5 -
6-
3.0
#- *'.
SAND AND MUD. Gray sand interlayered with mud laminations; roots (mangrove?) at base of unit; few small shells, including Crepidula sp., Arcldae, Cerithium sp., Crassostrea sp., etc.; 0.00-2.22 m.
SAND. Light brown to light gray, clean fine-grained sand; somewhat bioturbated; no shells; 2.22-2.82 m.
SAND. Light brown fine-grained sand interlayered with dark brown laminations of sand; no shells; at base is a very clean, reddish-orange sand; 2.82-3.16 m.


88
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: BR-2 Site: Boggess Ridge (8CH16, 8CH19, 8CH34)
Elevation (MSL): about 1.00 m
Location: Mound "A," in palmettos on steep slope overlooking Boggess Pond. Penetration: 1.98 m Recovery: 1.76 m Percent Compaction: 11%
meters
o.o
0.5 -
1.0 -
x." j
1.5 -
2.0
ORGANIC SAND. Light gray to dark gray fine sand; abundant organics; organics are soil accumulations; palmetto roots; 0.00-0.60 m.
SAND. Clean, well-sorted fine-grained quartz sand; some roots; 0.60-1.06 m.
SAND. Reddish fine-grained sand; clean, white sand at 1.06-1.58 m; 1.06-1.98 m.


Stratigraphy of Indian "Mounds"
89
CORE LOG
Core No.: BR-3 Site: Boggess Ridge (8CH16, 8CH19, 8CH34)
Elevation (MSL): about 1.00 m
Location: Mound "B," at the intersection of the N-S and E-W paths near survey marker. Penetration: 1.71m Recovery: 1.45 m Percent Compaction: 15%
meters
0.0
SAND. Organic-rich fine sand; grades into soil at top (A horizon); organics abundant, black matrix; roots; very top is mucky sand; 0.00-0.33 m.
0.5 .
SAND. Clean fine sand; brownish-white; roots; minor color changes due to variations in organic content; 0.33-1.05 m.
1.0 -
SAND. Clean fine sand; reddish-orange; no shells; no structures evident; 1.05-1.71 m.
1.5 -


90
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: BR-4 Site: Boggess Ridge (8CH16, 8CH19, 8CH34)
Elevation (MSL): 0.00 m
Location: Core in very shallow water in Boggess Hole at docking site at "Fred's" camp; just opposite trailer.
Penetration: 3.59 m Recovery: 2.73 m Percent Compaction: 24%
meters 0.0
0.5 -
1.0
1.5
2.0 -
2.5 -
3.0 -
mo --
m
Mtr-
m.
Is
:..
-.
MUDDY SAND. Green to gray muddy fine sand; extensive biotur-bation; some shells, small, mostly fragmented; identified shells Include Crepidula sp., Modulus sp., etc.; well-preserved burrow (clam?) at top of unit; roots at base of unit; 0.00-1.49 m.
SAND. Clean white fine sand; some large burrows; no shell; 1.49-1.81 m.
SANDY MUD. Dark brown organic-rich sandy mud; sand laminations and faint mud laminations; few shells; 1.81-2.41 m.
SAND. Clean white fine sand with layers of brown sand; biotur-bated; no shells; 2.41-2.90 m.
SAND. Brown to white fine-grained sand; sand Is slightly laminated; extensive bloturbation; lack of shells; 2.90-3.59 m.


Stratigraphy of Indian "Mounds"
91
CORE LOG
Core No.: BR-5 Site: Boggess Ridge (8CH16, 8CH19, 8CH34)
Elevation (MSL): 0.50 m
Location: Near trailer at "Fred's" camp, in bare spot.
Penetration: 0.83 m Recovery: NA Percent Compaction: NA
meters 0.0
0.5 --If)
f-.f.
r)-'
TZ.
ORGANIC-RICH SAND. Dark-brown, organic-rich sand; roots; soil zone; 0.00-0.30 m.
SAND. Light-brown, laminated, fine-grained sand; roots; bloturba-tions evident; no shells; 0.30-0.56 m.
MUCKY SAND. Dark brown organic-rich sand; some roots; peaty fabric suggests a mangrove deposit; 0.56-0.83 m.


92
Culture and Environment in the Domain of the Calusa
CORE LOG
Core No.: U-1 Site: Useppa Island (8LL51)
Elevation (MSL): 0.00 m
Location: At shore line, immediately south of Collier Inn dock; E side of island. Penetration: 3.70 m Recovery: 1.68 m Percent Compaction: 54.6%
meters 0.0
>:>.>) >
\.:: y?
0.5 -
1.0 -
1.5 -
2.0
2.5 -
- TO-
So:?:
>. >
SAND. Clean white to light-gray sand; few shells; shells include Cardiidae, Chione sp., Crassostrea sp., etc.; most shells are fragmented; somewhat bloturbated; from 0.15-0.22 m there is a distinct light-brown layer with abundant shell fragments; above this layer is Chione sp. rich; 0.00-0.79 m.
FINE SAND. Gray to green fine sand; bioturbated shells include Chione sp., Crassostrea sp., Arcidae, Plicatula sp., Spisula sp., etc., many are fragmented; root fragments near top of unit; 0.79-1.56 m.
SANDY SHELL. Crassostrea sp., 1.56-1.73 m.
Shells are fragmented, include Strombus sp., Chione sp., Arcidae, etc.; matrix is fine sand;
SAND. Fine-grained well-sorted sand; white at the base to brown at top; shells are absent; wood near top, organlcs increase from 1.73-2.01 m; 1.73-3.70 m.