Citation
Isolation and characterization of alpha-terpineol dehydratase from Pseudomonas gladioli

Material Information

Title:
Isolation and characterization of alpha-terpineol dehydratase from Pseudomonas gladioli
Creator:
Cadwallader, Keith R., 1963-
Publication Date:
Language:
English
Physical Description:
xi, 157 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Chemicals ( jstor )
Detergents ( jstor )
Enantiomers ( jstor )
Enzymes ( jstor )
Flavors ( jstor )
Gels ( jstor )
Molecular weight ( jstor )
pH ( jstor )
Purification ( jstor )
Solvents ( jstor )
Citrus fruit industry -- By-products ( lcsh )
Dissertations, Academic -- Food Science and Human Nutrition -- UF
Food Science and Human Nutrition thesis Ph. D
Food additives ( lcsh )
Limonene ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 150-156).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Keith R. Cadwallader.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001709267 ( ALEPH )
25526628 ( OCLC )
AJC1548 ( NOTIS )
AA00004757_00001 ( sobekcm )

Downloads

This item has the following downloads:


Full Text











ISOLATION AND CHARACTERIZATION OF ALPHA-TERPINEOL
DEHYDRATASE FROM Pseudomonas gladioli










by


KEITH R. CADWALLADER


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1990














ACKNOWLEDGEMENTS


It has been a privilege and pleasure to have studied

for the past five years under the direction of Professor

Robert J. Braddock. I very much appreciate his patience,

guidance, and support. I wish to acknowledge the other

members of my graduate committee, Dr. Murat Balaban, Dr.

Mickey Parish, Dr. George Sadler, and Dr. Richard Yost, for

their guidance, support, and encouragement throughout this

study.

Special appreciation is extended to Dr. Kenneth Fox and

the FMC Corporation for their financial support of my

graduate studies through a very generous fellowship.

I would like to thank Maria Osorio for her assistance

with experiments during the course of this study.

Finally, I must give credit to my wife Karen, son

Myles, and the rest of my family for their faith, support,

and encouragement.















TABLE OF CONTENTS


Page

ACKNOWLEDGEMENTS ..................................... ii

LIST OF TABLES ..... ................................... v

LIST OF FIGURES ....................................... vi

ABSTRACT ......................... ...... .......... .. ix

INTRODUCTION ............................. .......... 1

REVIEW OF LITERATURE .................................. 6

Limonene ........................................... 6
Physical Properties ............................... 6
Production .................................... 6
a-Terpineol ................. ....... .... .... ..... 7
Physical Properties ....... ..................... 7
Production ................................... 7
Biotransformation of Limonene ..................... 8
Bacteria .. ..... .................... .......... 9
Fungi ...................... ... ................... 14
Plants ........................................... 15
Enzymatic Production of Flavors and Aromas ......... 16
Hydrolases ..................................... 16
Dehyrogenases and Reductases ................... 17
Enzymatic-Catalyzed Eliminations and
Additions of Water ...................... ........ 19
Kinetics ........................................ 19
Nomenclature ......................... ... ...... 22
Solubilization of Particulate-Associated Enzymes ... 23

MATERIALS AND METHODS ................................. 26

Chemicals ............................................. 26
Microbiology ....................................... 27
Liquid Mineral Medium Preparation .............. 27
Enumeration of Bacteria ......................... 27
Growth and Collection of Bacteria .............. 28
Analytical ............................................. 29
Protein Determination ......................... 29
Enzyme Assays .......................... ....... 29
Gas Chromatography ............................. 30

iii








Enzyme Purification ............................... 31
Buffer Preparation ............................. 31
Isolation of Particulate-Associated Enzyme ..... 31
Sucrose Gradient Centrifugation ................ 33
Solubilization of Enzyme ...................... 34
Gel Filtration Chromatography ................ 35
Concentration of Gel Filtration Fractions ...... 35
Removal of Triton X-100 by Affinity
Chromatography ................................ 36
Enzyme Characterization ............................. 36
Molecular Weight Determination ................ 36
Isoelectric Focusing ............... ........ 38
pH Optimum and Stability ......... ....... .... 39
Temperature Optimum and Stability............... 40
Stereospecificity and Stereoselectivity ........ 41

RESULTS AND DISCUSSION ............................... 43

Microbiology ..................................... 43
Isolation of Particulate-Associated Enzyme ........ 46
Enzyme solubilization ............................ 52
Gel Filtration Chromatography ... ................ 54
Partial Purification of Enzyme ..................... 64
Characterization of a-Terpineol Dehydratase ....... 70
Enzyme Nomenclature .......................... 70
Molecular Weight .............................. 71
Isoelectric Point .................. ...... 82
Activity in Organic Solvents ................. 87
pH Optimum and Stability ...................... 97
Temperature Optimum and Stability ............ 100
Initial Velocity ............................. 106
Effect of Triton X-100 on K, and V ........... 109
Stereospecificity and Stereoselectivity ....... 118

CONCLUSIONS ......................................... 130

APPENDIX .......... ........................... ........ 133

REFERENCES ..........................*................. 150

BIOGRAPHICAL SKETCH ................................... 157














LIST OF TABLES


Table Page

1 Cell density and enzyme activity of E.
gladioli as a function of culture age ........... 47

2 Amount of enzyme activity in particulate
fraction as a function of extent of cell
disruption ..................................... 48

3 Fractionation of a-terpineol dehydratase
using Spectra/Gel AcA 44 chromatography ......... 68

4 Fractionation of a-terpineol dehydratase
using Spectra/Gel AcA 22 chromatography ........... 69

5 Results of the molecular weight determination
of native a-terpineol dehydratase in 1.0%
(w/v) Triton X-100 by Sepharose CL-6B gel
filtration chromatography ....................... 77

6 Results of linear regression analyses of
double reciprocal (1/v versus l/[S])
Lineweaver-Burk plots obtained at various
Triton X-100 concentrations .................... 116

7 Relative percent concentration of
a-terpineol enantiomers as a function
of time for the hydration of 0.2 mM
racemic limonene by a-terpineol
dehydratase at 250C ............................ 126














LIST OF FIGURES


Figure Page

1 Reaction sequence of pathway 3 for the
metabolism of limonene by Pseudomonas putida ... 11

2 Solubilization and purification of
particulate-associated enzymes using
detergent solutions .............. .............. 25

3 Growth curve of P. gladioli at 30*C in pH 6.5
liquid mineral medium containing 0.2% (v/v)
limonene ........... ........ ..................... 45

4 Sucrose gradient centrifugation of
particulate-associated enzyme .................. 51

5 Plot of Triton X-100 concentration versus
degree of solubilization of protein
and enzyme .................................. .... 56

6 Plot of sodium trichloroacetate
concentration versus degree of
solubilization of protein and enzyme
in 2.0% (w/v) Triton X-100 ..................... 58

7 Spectra/Gel AcA 44 gel filtration
chromatography of solubilized a-terpineol
dehydratase using two concentrations of
Triton X-100 in the elution buffer:
(a) 0.5% (w/v) Triton X-100 and (b) 1.0%
(w/v) Triton X-100 .............. .............. 60

8 Spectra/Gel AcA 22 gel filtration
chromatography of solubilized a-terpineol
dehydratase .......................... .......... 63

9 Triton X-100 concentration versus catalytic
activity of a-terpineol dehydratase .............. 66

10 Sepharose CL-6B gel filtration chromatography
of a-terpineol dehydratase .................... 74

11 Calibration curve for Sepharose CL-6B column ... 76








12 SDS-PAGE gradient (8-18%) gel of
enzyme fractions ............................. 79

13 Calibration curve for SDS-PAGE gradient
(8-18%) gel .............................. ..... 81

14 Agarose IEF gel of partially purified
a-terpineol dehydratase in 1.0% (w/v)
Triton X-100 and 2.5% (w/v) Servalyte
3-10 ampholytes ............................... 84

15 Calibration curve for agarose IEF gel .......... 86

16 Effect of glycerol, formamide, and N,N-di-
methylformamide concentration on the activity
of a-terpineol dehydratase ..................... 90

17 Effect of 2-propanol and acetonitrile
concentration on the activity of a-terpineol
dehydratase .................................... 93

18 Effect of ethanol concentration on activity
and stability of a-terpineol dehydratase.
Activity curve: activity versus ethanol
concentration. Stability curve: activity after
removal of indicated ethanol concentration ..... 96

19 Effect of pH on activity and stability
of a-terpineol dehydratase. Activity curve:
activity versus pH. Stability curve:
activity at pH 7.0 after 25C pre-incubation
of the enzyme at indicated pH values ........... 99

20 Effect of temperature on the activity of
a-terpineol dehydratase: (a) plot of activity
versus temperature and (b) Arrhenius plot of
10-25C activity-temperature data .............. 103

21 Temperature stability of a-terpineol
dehydratase: activity at 20C after
pre-incubating enzyme at indicated
temperatures for 2 min ......................... 105

22 Formation of a-terpineol versus time for
three concentrations of a-terpineol
dehydratase at 25C and 50 mM limonene ....... 108

23 Initial velocity as a function of
a-terpineol dehydratase concentration
at 25C and 50 mM limonene ...................... 111


vii








24 Effect of varying the concentration of
Triton X-100 on Henri-Michaelis-Menten
(v versus [S]) curves for a-terpineol
dehydratase at 25C ............................ 113

25 Lineweaver-Burk double reciprocal (1/v versus
1/[S]) plots of the data in Figure 24 for
limonene concentrations from 1 mM to 10 mM ..... 115

26 GC profile of the change in concentration
of limonene and a-terpineol enantiomers
during the course of the hydration of
0.2 mM racemic limonene by a-terpineol
dehydratase at 25*C ............................... 123

27 Change in concentration of limonene and
a-terpineol enantiomers during the
course of the hydration of 0.2 mM
racemic limonene by a-terpineol
dehydratase at 25'C ............................ 125

28 Formation of a-terpineol enantiomers
during the course of the hydration of
50 mM racemic limonene by a-terpineol
dehydratase at 25*C ............................ 128

29 Stereo-specificity and -selectivity of
a-terpineol dehydratase ....................... 129


viii














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


ISOLATION AND CHARACTERIZATION OF ALPHA-TERPINEOL
DEHYDRATASE FROM Pseudomonas gladioli


by

Keith R. Cadwallader

December 1990

Chairman: R. J. Braddock
Major Department: Food Science and Human Nutrition

The enzyme-catalyzed hydration of the citrus by-

product, limonene, to the important flavor and aroma

chemical, a-terpineol, was investigated. Particulate-

associated a-terpineol dehydratase was recovered from

Pseudomonas gladioli, solubilized, and partially purified

using detergent extraction and gel filtration

chromatography.

Results of gel filtration chromatography suggested that

a-terpineol dehydratase existed in two soluble forms in 1.0%

(w/v) Triton X-100: a monomer and dimer with apparent

molecular weights of 94,500 and 206,500 daltons,

respectively. SDS-polyacrylamide gel electrophoresis

revealed that a 92,000 dalton polypeptide was enriched

during purification of the enzyme. Activity of a-terpineol








dehydratase was low in non-aqueous solvents. The reaction

was not readily reversible, since enzyme-catalyzed

dehydration of a-terpineol to limonene could not be

demonstrated, even in media with reduced water

concentration.

a-Terpineol dehydratase was characterized in buffers

containing 0.1% (w/v) Triton X-100. In 10 mM MES, 10 mM

BIS-TRIS PROPANE buffer, the pH optimum was 5.5 and the

stability optimum was pH 8.0. The pi of the enzyme was

between 6.5 and 6.8. The temperature optimum at pH 7.0 was

25C in 10 mM HEPES buffer. Using temperature-activity data

for 10-25*C, Ea and Q10 of a-terpineol dehydratase were

determined to be 21.6 2.9 kJ-mol"1 and 1.37 0.07,

respectively. Activity was inhibited by Triton X-100. The

effects were an increase in apparent K and decrease in

apparent Vmx. Average apparent Km of a-terpineol

dehydratase was 2.18 0.19 mM in 10 mM HEPES buffer, pH 7.0

containing 0.1% (w/v) Triton X-100.

a-Terpineol dehydratase stereospecifically catalyzed

the hydration of (4R)-(+)-limonene to (4R)-(+)-a-terpineol

or (4S)-(-)-limonene to (4S)-(-)-a-terpineol. The enzyme

was also stereoselective, since the rate of hydration of

(4R)-(+)-limonene was approximately ten times faster than

the rate of hydration of (4S)-(-)-limonene.

Isolation and characterization of a-terpineol

dehydratase has not been previously reported. Results of

this study will increase the understanding of








microbiological hydrations of monoterpenes. Considerable

economic potential exists, since the use of a-terpineol

dehydratase to produce pure a-terpineol increases the value

of limonene by 25%. This important natural process has an

advantage over a chemical synthesis of being both stereo-

selective and -specific.














INTRODUCTION


In recent years there has been increasing consumer

preference for food products containing "natural" flavors

over those containing artificial (synthetic) flavors. This

preference has led to an increased demand for natural flavor

and aroma chemicals (Buchel, 1989; Welsh et al., 1989). The

increased demand for natural flavors has in turn placed more

pressure on the production of flavor and aroma compounds by

extraction processes from traditional raw materials such as

plants. Use of these materials presents several problems.

For instance, plants often contain low concentrations of the

desired flavor compound, therefore making extraction

expensive. Furthermore, the supply may be subject to

seasonal, climatic, and geographical variation, as well as

political and socio-economic stability of the producing

regions (Armstrong and Yamazaki, 1986; Welsh et al., 1989).

Such factors have caused an increase in the price of natural

flavors and aromas.

According to the Code of Federal Regulations, compounds

produced or modified by living cells or by their components,

including enzymes, may be designated as natural (Code of

Federal Regulations, 21 CFR 101.22.a.3.). In any case, the

products can be considered natural if they are derived from







2

natural starting materials. Biotechnological or biological

processes (processes involving the use of microorganisms,

plant cell cultures, or enzymes) offer many possibilities

for the production of natural flavor and aroma chemicals.

In addition to their use for production of flavor and

aroma compounds, biological processes provide simple systems

for studying the biosynthetic pathways involved in the

formation of many important flavors and aromas. These

processes have several advantages over alternate physical or

chemical processes, the most important advantage being their

ability to catalyze specific reactions, thereby avoiding

potentially undesirable side reactions which may occur with

less specific processing methods. Another advantage is that

biological processes generally can be accomplished under

mild conditions (i.e., ambient temperature, atmospheric

pressure, and pH values near 7). This automatically results

in lower energy consumption or decreased substrate and

product damage.

The suitability of a process for production of flavor

and aroma chemicals depends on the market demand (total

usage), commercial value (price) of the chemical, and the

technological state of the process. The use of a biological

process for production of a-terpineol from limonene has

economic potential because the annual consumption of

a-terpineol is high, while at the same time its price is

higher than limonene.







3

The monoterpene hydrocarbon limonene [l-methyl-4-

(1-methylethenyl) cyclohexene, chemical formula C1OH16], is

ubiquitous in the plant kingdom. Limonene exists as both

optically active and racemic mixtures (dipentene). Limonene

is the main constituent of the terpene fraction of a number

of essential oils, among which are citrus, caraway, dill,

and American pine (Arctander, 1969a-c; Simonsen, 1947a).

Citrus essential oils are unusual because they contain pure

(4R)-(+)-limonene at concentrations approaching 95% for

orange and grapefruit oils (Shaw, 1979). In addition to its

high chemical and enantiomeric purity, limonene derived from

citrus is in abundant supply, with 8.7 million kilograms

being recovered during the 1988-89 Florida processing season

(Anon, 1989). Limonene from citrus is also relatively

inexpensive, the price being approximately 25% lower than

the price of a-terpineol (Anon, 1990).

a-Terpineol [a,a,4-trimethyl-3-cyclohexene-l-methanol,

chemical formula C1OH180] occurs in nature in both optically

active and racemic forms; the (4R)-(+)-enantiomer has been

identified as a component of petigrain, neroli, and sweet

orange oils, the (4S)-(-)-enantiomer of camphor oils, and

the racemic mixture of American pine and cajuput oils

(Arctander, 1969d; Simonsen, 1947b). a-Terpineol is one of

the most commonly used of all flavor and aroma chemicals.

Its annual consumption for flavor purposes has been

estimated at over 13,000 kg, which places it among the top

30 most commonly used flavors (Welsh et al., 1989).







4

a-Terpineol is commonly used in flavors such as lemon, lime,

nutmeg, orange, ginger, peach, and spices (Arctander,

1969d).

Presently, a-terpineol is commercially available only

as a racemic mixture, which is primarily recovered as a by-

product from the pulp and paper industry. The properties of

flavor and aroma compounds often depend on their optical

purity. For example, (4S)-(+)-carvone has properties

resembling caraway oil, whereas the properties of (4R)-(-)-

carvone resemble spearmint oil. Biological processes are

usually stereospecific; therefore it may be possible to

produce pure (4R)-(+)-a-terpineol from (4R)-(+)-limonene by

using this type of process. Cadwallader et al. (1989)

demonstrated that Pseudomonas gladioli produces pure (4R)-

(+)-a-terpineol from (4R)-(+)-limonene; however, the yield

of a-terpineol was low due to the utilization of limonene by

the bacterium for metabolic purposes. One way of directing

the conversion of limonene toward the production of only

a-terpineol would be by use of an isolated enzyme.

Suitability of an enzyme for the production of flavor

and aroma chemicals depends on its physical and kinetic

properties. It is necessary to isolate and purify enzymes

to relate these properties to important parameters affecting

reactions. For example, stability of enzymes should be

relatively high under the process conditions. These

conditions may include extremes of pH and temperature, as

well as the presence of solvents or other common protein







5
denaturants. Enzymes should also be highly specific for the

reaction of interest so that side products are minimized.

When it is desirable to produce pure enantiomers from

enantiomerically pure substrates, then the stereospecificity

of the enzyme is important. Stereoselectivity is important

when inexpensive racemic compounds are used as substrates

instead of more expensive pure enantiomers.

The above discussion particularly relates to the

importance of this research, which has the major objectives

of (1) to isolate an enzyme from P. gladioli which catalyzes

the hydration of limonene to a-terpineol, (2) to

characterize some of its physical and kinetic properties,

and (3) to define reaction conditions necessary for

production of pure a-terpineol enantiomers.













LITERATURE REVIEW


Limonene

Physical Properties

Limonene (F.W. 136.24) is a colorless liquid with

boiling point 178C (CRC, 1986). It is practically

insoluble in water (13 ppm at 25*C, Massaldi and King,

1973), soluble in alcohol, miscible with oils, but is poorly

soluble in propylene glycol and glycerol (Arctander, 1969c).

Production

Limonene is produced in quantity as both racemic and

(4R)-(+)-limonene. Racemic limonene (commonly referred to

as dipentene) is isolated by fractional distillation of

American Pine oil and rosin oils. It is also recovered as a

by-product from the production of a-terpineol and from

various synthetic products made from a-pinene or turpentine

(Arctander, 1969a; Mattson, 1984).

(4R)-(+)-Limonene (commonly referred to as d-limonene)

is recovered as a by-product from the manufacture of citrus

molasses. Molasses refers to the concentrate produced from

the press liquor, which is expelled from citrus waste

residues after curing with small quantities of lime. Press

liquor, which contains from 0.20 to 0.50% limonene, is

normally passed through preheaters (115-140C) for







7
pasteurization and scale removal and flashed at atmospheric

pressure (100*C) to recover the limonene. The condensate

(60-80% limonene) is put into a closed florentine-type tank

which allows the limonene to float to the top of the tank

where it is continuously decanted into storage tanks or

drums (Kesterson and Braddock, 1976; FMC, 1976).

a-Terpineol

Physical Properties

a-Terpineol (F.W. 154.25) is a colorless, slightly

viscous liquid with melting point 40-41'C and boiling point

220-C (CRC, 1986). It is slightly soluble in water (1980

ppm at 15-20'C, Seidell, 1928), but is soluble in alcohol,

propylene glycol, and mineral oil (Arctander, 1969d).

Production

a-Terpineol is produced primarily in racemic form

either by isolation from American Pine oil or by chemical

synthesis from a-pinene via terpin hydrate (Arctander,

1969d) or directly to a-terpineol by hydration (Arctander,

1969d; Mattson; 1984). Non-commercial synthetic methods for

the production of a-terpineol from limonene include (1)

oxymercuration [aqueous tetrahydrofuran containing Hg(OAc)2

and limonene] followed by reduction with NaBH4 to give 70%

a-terpineol (Brown et al., 1972) and (2) hydration of (4R)-

(+)-limonene using chloroacetic acids to (4R)-(+)-

a-terpineol (Matsubara et al., 1975). Methods involving

acyclic starting materials include (1) cyclization of

pentane tricarboxylic acid followed by esterification, via






8

the hydroxyester to the unsaturated ester, and then reaction

with Grignard reagent to a-terpineol; and (2) by reaction of

isoprene and methyl vinyl ketone with methyl magnesium

iodide (Arctander, 1969d).

Biotransformation of Limonene

Biological approaches for the production of flavor and

aroma compounds can be divided into biosynthetic and

biotransformation methods. Biosynthesis refers to the

production of chemical compounds by cell metabolism

(fermentation or secondary metabolism by plant or microbial

cells), whereas biotransformation is defined as the use of

living cells or enzymes to perform specific modifications or

conversions of chemical compounds (Welsh et al., 1989).

Research concerned with the microbial metabolism of

terpenes was initiated by Bradshaw et al. (1959) and Seubert

(1960). Since that time there has been a great number of

publications in this area. Therefore, this section will be

devoted to discussion of those studies involving the

biotransformation of limonene.

Terpene flavor compounds are synthesized by a variety

of higher plants and microorganisms. Low yield of terpenes

produced by plant cell cultures or microbial fermentations,

in addition to the abundance of natural terpenes from

botanical sources, makes the development of biosynthetic

processes for flavor and aroma terpene production

unfavorable. Microorganisms and enzymes have the greatest

potential for production of natural terpene flavors and






9

aromas via transformations of inexpensive natural terpene

precursors to more valuable terpenes. Furthermore, microbes

can achieve highly selective biotransformations of readily

available substrates leading to products which are rare or

otherwise difficult to synthesize.

Some bacteria and fungi are capable of utilizing

terpenes as their sole source of carbon and energy. Terpene

biotransformations are most often carried out by

pseudomonads because these microbes have the ability to

synthesize a wide variety of oxygenases and related enzymes

necessary for the metabolism of many xenobiotics.

Bacteria and fungi differ in their metabolism of

limonene. Bacteria appear to metabolize limonene primarily

by progressive oxidation of the 7-methyl group. Generation

of small amounts of neutral products occurs to some extent.

The purpose of these "side" reactions is unknown, since

these compounds are not further metabolized. Fungi attack

limonene primarily by hydration of the double bond of the

isopropenyl substituent or by epoxidation-hydrolysis of the

1,2-double bond. a-Terpineol and 1,2-diols are the most

common products of fungal metabolism of limonene. Whether

these compounds are intermediates or end products of minor

pathways is uncertain.

Bacteria

The metabolism of limonene by a strain of Pseudomonas

putida was studied by Dhavlikar and Bhattacharyya (1966) and

Dhavlikar et al. (1966). The bacterium converted limonene






10

into several neutral and acidic products. The neutral

products carveol, carvone, dihydrocarvone, l-p-menthene-6,9-

diol, cis- and trans-8-p-menthene-l,2-diol, and 8-p-menthen-

l-ol-2-one were incapable of supporting the growth or

respiration of the bacterium; however, the acidic products

perillic acid, 2-hydroxy-8-p-menthen-7-oic acid,

B-isopropenyl pimelic acid, and 6,9-dihydroxy-l-p-menthen-7-

oic acid were readily metabolized. These researchers

proposed that P. putida metabolizes limonene by three

distinct pathways, involving (1) allylic oxygenation, (2)

oxygenation of the 1,2-double bond, and (3) progressive

oxidation of the 7-methyl group to perillic acid which

subsequently undergoes hydration, dehydrogenation, and

hydrolysis. The reaction sequence of pathway 3 is

illustrated in Figure 1.

The enzymes in pathway 3 were demonstrated in cell-free

sonicates of the bacterium. The NADPH- and oxygen-dependent

C-7 hydroxylation of limonene was shown to be associated

with the 100,000 x g sediment of the sonicated cells. All

other enzymes were present in the supernatant fraction. A

cytochrome P-450 mixed function oxidase system was isolated

from the same organism which catalyzes the C-7 hydroxylation

of p-cymene (Madhyastha et al., 1968). Similarities between

the structures of limonene and p-cymene suggest this

cytochrome P-450 system, or one which is similar,

catalyzes the C-7 hydroxylation of limonene to perillyl

alcohol.









0

U
+0
I >





A
0) O
O






o
o o 0
CL 0
^400 \ E rl
4r







t
0.0


0
44


ao










0 40
C 0


o ( / -- 5




i .



'I
-1 4 )






I '-I






12

An NAD-linked alcohol dehydrogenase, perillyl alcohol

dehydrogenase, was isolated from P. putida (Ballal et al.,

1966). Partially purified (6-7 fold) enzyme was examined

for its substrate specificity and cofactor requirement. The

enzyme was absolutely specific towards NAD, with NADP being

inactive. The enzyme demonstrated a broad substrate

specificity. The following structural features of the

substrate were found to favor dehydrogenation: (1) a

primary alcohol group, preferably allylic to an endocyclic

double bond, (2) a six-membered ring, and (3) an alkyl

substituent in the para position.

An aldehyde dehydrogenase, perillyl aldehyde

dehydrogenase, was also isolated from this organism (Ballal

et al., 1967). The partially purified (10 fold) enzyme was

highly specific towards NAD with relatively less activity

with NADP. Besides perillyl aldehyde, this enzyme showed

activity on several other aldehydes. No specific structural

requirements were observed with respect to the substrate

specificity of the aldehyde dehydrogenase as compared to

that of the alcohol dehydrogenase.

The metabolism of limonene by Pseudomonas incognita was

studied by Rama Devi and Bhattacharyya (1977a). Major

conversion products were perillic acid and B-isopropenyl

pimelic acid. Small amounts of neutral products were

recovered, but were not identified. Rama Devi and

Bhattacharyya (1977b) demonstrated that the pathway of

degradation of limonene by this bacterium occurred in the






13

following sequence: limonene perillyl alcohol perillic

acid B-isopropenyl pimelic acid -* -. CO2 + H20, i.e. same

as pathway 3 for the metabolism of limonene by P. putida

(see Figure 1).

Fermentation of limonene by an enterobacterium was

shown to result in the formation of dihydroperillic acid,

perillic acid, and traces of unidentified neutral products

(Dhere and Dhavlikar, 1970). The formation of perillic acid

suggests that this organism metabolizes limonene using a

similar pathway as P. putida.

Corynebacterium hydrocarboclastus has been reported to

oxidize limonene to carvone (Takagi et al., 1969). The lack

of proper controls (i.e., experiments to test for the

autoxidation of limonene) and the very low yield of carvone

(32 mg from 5.9 g limonene, in 30 hr) suggests that the

appearance of carvone in the medium may have been due to

chemical oxidation of limonene. Carvone has been shown to

be an autoxidation product of limonene (Buckholz and Daun,

1978).

Cadwallader et al. (1989) demonstrated that Pseudomonas

gladioli converts (4R)-(+)-limonene into (4R)-(+)-perillic

acid, (4R)-(+)-a-terpineol, and at least one other

unidentified acidic product. a-Terpineol was found to be

resistant to further degradation, whereas perillic acid was

readily degraded. This suggests that P. gladioli may

metabolize limonene using a similar pathway as that

described for P. putida.






14

P. gladioli is not the only bacterium capable of

converting limonene into a-terpineol. Murdock et al. (1967,

1969) and Murdock and Hunter (1970) demonstrated that in

some citrus oil emulsions limonene concentration diminished

in direct proportion to an increase in a-terpineol

concentration as a result of microbial growth. Several of

these microbes were isolated but were not identified.

Fungi

Cladosporium spp. (T12) has been shown to convert (4R)-

(+)-limonene into pure (4R)-(+)-a-terpineol (Kraidman et

al., 1969). Similarly, Penicillium digitatum (DSM 62840)

was shown to produce (4R)-(+)-a-terpineol from either (4R)-

(+)-limonene or racemic limonene (Abraham et al., 1985).

This could be explained by the exclusive hydration of (4R)-

(+)-limonene.

Epoxidation-hydrolysis of the 1,2-double bond of

limonene leads to 1,2-diols (p-menth-8-ene-l,2-diols).

Mukherjee et al. (1973) demonstrated that Cladosporium spp.

(T7) converts limonene to trans-l,2-diol plus a small amount

of the corresponding cis-1,2-diol.

Corynespora cassiicola (DSM 62475) and Diplodia

gossypina (ATCC 10936) were found to be stereospecific for

the conversion of limonene to 1,2-diols. (4R)-(+)-limonene

was converted to the (1S,2S)-diol, while (4S)-(-)-limonene

yielded the (lR,2R)-diol (Abraham et al., 1984; Abraham et

al., 1985).






15

The conversion of limonene by Penicillium italicum and

P. digitatum resulted in low yields of 1,2-diols with

respect to the other products isolated (Bowen, 1975). Cis-

and trans-carveol were in highest yield followed by cis- and

trans-p-mentha-2,8-diene-l-ol, carvone, p-menthena-2,8-

diene-l-ol, carvone, p-mentha-l,8-diene-4-ol, and perillyl

alcohol, respectively.

Plants

In addition to microorganisms, isolated plant enzymes

and plant cell cultures have been shown to convert limonene

to more important flavor compounds. Knorr et al. (1990)

described the biotransformation of limonene to carvone by

dill (Anethum graveolens) cultures. Maximum carvone

production occurred with 5 mM limonene after 4 days of

treatment. Prolonged treatment for 8 to 14 days resulted in

degradation of carvone. It was proposed that this technique

would be feasible for a continuous process involving

continuous product recovery.

Microsomal preparations containing limonene hydroxylase

activity were isolated from peppermint (Mentha piperita),

spearmint (Mentha spicata), and perilla (Perilla frutescens)

leaves (Karp et al. 1990). Each microsomal preparation

generated only one product from limonene: trans-

isopiperitenol from M. piperita, trans-carveol from M.

spicata, and perillyl alcohol from P. frutescens. These

compounds originated from hydroxylation of limonene at C-3,

C-6, and C-7, respectively. The three hydroxylases had an






16

absolute requirement for molecular oxygen and NADPH. Both

(4R)-(+)- and (4S)-(-)-limonene were. hydroxylated by the

three enzymes.

Enzymatic Production of Flavors and Aromas

Enzymes have traditionally been used as processing aids

in the food industry. Most widely used enzymes are

amylases, glucose oxidases, proteases, pectic enzymes, and

lipases. Reviews on production and utilization of food

enzymes are available (Wasserman, 1990; Whitaker, 1972).

Largest use of enzymes for flavor production is for the

production of syrups and sweeteners. Manufacture of glucose

syrup and high fructose corn syrup is done solely by

enzymatic means. This accounts for about 25% of the total

usage of enzymes worldwide (West, 1987). Hydrolases,

dehydrogenases and reductases have demonstrated the greatest

potential for the production of flavor and aroma compounds.

Excellent reviews of these enzymes are available (West 1987;

Welsh et al., 1989).

Hydrolases

Hydrolases perform reactions such as esterifications,

transesterifications, hydrolyses, and lactonizations

(internal ester formation). Lipases, esterases, and

proteases hydrolyze fat, carbohydrate, and protein

molecules, respectively. Some of the most potent flavor

compounds are esters. Natural esters retail at much higher

prices than their synthetic counterparts. Lipases have been

used to perform stereospecific hydrolyses and






17

esterifications to yield pure, optically active aliphatic

and aromatic esters, alcohols, acids, and lactones (Welsh,

1989).

Lipases have been shown to mediate esterifications and

transesterifications in organic media (Cambou and Klibanov

1984; Engel et al., 1989; Gerlach et al. 1988; Yokozeki et

al., 1982). Enzymatic resolution of enantiomers can be

achieved with some esterases and may represent an

alternative to traditional chemical purification techniques

(Engel et al., 1989; Omata et al., 1981)

Esterifications and transesterifications can be

mediated by proteases. Proteases have been used to create

unique hydrolyzed proteins which enhance or add flavors,

particularly savory flavors, to foods. Use of proteases to

produce modified food proteins has been recently reviewed

(Alder-Nissen, 1985). Catalytic behavior of proteases can

be modified by their use in organic solvents. Rate

enhancements afforded by subtilisin and a-chymotrypsin for

transesterification in octane were of the order of 100

billion-fold (Zaks and Klibanov, 1988). Similarly, peptide

synthesis was favored instead of hydrolysis when

a-chymotrypsin was reacted in ethanol or acetonitrile (Kisee

et al., 1988).

Dehydroqenases and Reductases

Only two oxido-reductases have been seriously

considered for flavor and aroma production (Welsh et al.,

1989). These enzymes, alcohol dehydrogenase and alcohol






18

oxidase, perform the oxidation of aliphatic alcohols to

their respective aldehydes. Alcohol dehydrogenase (ADH) can

potentially be produced in commercial quantities from yeasts

or plant cell cultures (West, 1987). The conversion of

geraniol to geranial stands out as a typical conversion

which can be mediated by ADH (Legoy et al., 1985).

The main drawback to using oxido-reductases is that

these enzyme require cofactors for their catalytic function.

Cofactors may act as either cosubstrates or active site

participants. For many cofactors, especially those which

are oxidized or reduced during the reaction, the initial

cost of the cofactor prevents one-time usage on a large

scale. High cost requires cofactor recycling if the process

is to be economical. Recycling of NADH can be achieved by

electrochemical means or substrate-driven reactions (Legoy

et al., 1985; Nakamura et al., 1988); however, cofactor

regeneration rates are not high enough for commercial

purposes.

To expand the range of possible processes and to

improve the economics of current enzyme processes, increased

knowledge is needed concerning enzyme isolation and

characterization, mechanisms of enzyme action, and

incorporation of enzyme processes for natural flavor and

aroma production. Specific needs are to understand the

mechanisms of enzyme activation/inactivation, and to utilize

enzymes in processes and redox reactions relevant to flavor

production, including low-cost production and recycling of

cofactors.







19

Enzyme-Catalyzed Eliminations and Additions of Water

Kinetics

Aconitase, fumarase, enolase, and crotonase are

examples of enzymes that catalyze reversible dehydration/

hydration reactions. This type of reaction can be

illustrated by the hydration of limonene to a-terpineol:






+ H20


OH


Limonene a-Terpineol

The biochemistry of enzymes is a subject of great depth

and complexity. This section will attempt to describe only

the aspects of enzyme kinetics applicable to the present

study. For additional information, the reader may find

greater detail elsewhere (Hammes, 1978; Segel, 1976; Walsh,

1979).

Kinetic equations can be readily derived assuming the

simplest mechanism, i.e. that involving a single substrate

and product. In fact, this mechanism is valid for the

hydration of limonene to a-terpineol if it is assumed that

water is always present in saturating amounts. The general

mechanism is as follows:

k, k2
E + S -- ES E + P
k.i k.2








d[ES]
------ = (k2 + k._) [ES] k,[E][S] k.2[E][P] (1-1),
dt

where S is the substrate, P is the product, E is the

free enzyme, and ES is the enzyme-substrate complex. Since

ES is rapidly destroyed, and therefore is present at very

low concentration, the steady state condition d[ES]/dt = 0

can be assumed. Also, conservation of mass requires that

[Et] = [E] + [ES] (1-2)

and

[St] = [S] + [P] + [ES] (1-3),

where Et and St represent total enzyme and total substrate,

respectively. Since [S] >> [ES] z [E], [ES] in equation

(1-3) can be neglected. The rate equation for the

disappearance of S or the appearance of P can be written as

follows:

d d
---[S] ----[P] = kI[E][S] k.,[ES] (1-4).
dt dt

Setting equation (1-1) equal to zero and substituting in

equation (1-4) gives

d d (klk2[S] k.lk_2[P])[Et]
--[S] = ----[P] =---------------- (1-5).
dt dt k1[S] + k-2[P] + k_1 + k

Measurements of the reaction velocity, v, are typically

carried out at initial times, when [S] >> [P]. Therefore,

the terms containing the concentration of product can be

neglected in equation (1-5) and

d k2[Et]
v ---S] = -----------------(1-6).
dt 1 + (k_1 + k2)/(k,[S])






21

Defining Vmx = k2[Et] and Km = (k_. + k2)/kl, then equation

(1-6) takes the form

Vx Vax [S]
V = ------- = ---(1-7),
1 + KO[S] K + [S]

which is known as the Henri-Michaelis-Menten equation.

Equation (1-7) shows dependence of v on [S], since as

[S] co, v Vmx, and also when [S] = Km, v = Vmx/2.

Michaelis constant, Km, is not an equilibrium constant but a

"steady-state" constant and measures the ratio of steady

state concentrations [E][S]/[ES]. Maximum initial velocity,

Vx, is directly proportional to [Et].
The numerical value of KY is important because it

represents an approximate value for the intracellular

concentration of the substrate. There would be little

advantage in maintaining a substrate concentration higher

than Km since activity cannot exceed Vax. The difference

between the activity at [S] equal to Km and at [S] equal to

1000Km is only two-fold. This property of YK can be

utilized when designing an enzymatic process. The K is

constant for a given enzyme and can be used to make

comparisons between enzymes from different sources. The K,

can also be used to indicate the relative suitability of

alternate substrates for a particular enzyme. The substrate

with the lowest K, would have the highest apparent affinity

for the enzyme. The "best" substrate is that which has the

highest Vax/K ratio (Segel, 1976).








Nomenclature

Nomenclature and classification of enzymes is

accomplished using rules and guidelines established by the

Nomenclature Committee of the International Union of

Biochemistry (1984). Enzymes which cleave C-C, C-O,

C-N and other bonds by elimination leaving double bonds or

rings, or conversely adding groups to double bonds, are

classified as lyases. The systematic name is formed

according to 'substrate group-lyase'.

Carbon oxygen lyases catalyze the breakage of C-O bonds

leading to unsaturated products. In the case of hydro-

lyases, this is by elimination of water or by elimination of

an alcohol from a polysaccharide. The name 'dehydratase' is

recommended for those enzymes which eliminate or add water

to double bonds. The name 'synthase' may be used instead

when it is desired to emphasize the synthetic aspect of the

reaction or when the reverse reaction is much more

important.

Where equilibrium warrants it, or where the enzyme has

traditionally been named after a particular substrate, the

reverse reaction may be used as the basis of the name using

'hydratase'. In the case of reversible reactions, the

direction chosen for naming should be the same for all the

enzymes in a given class, even when the direction has not

been demonstrated.






23

Solubilization of Particulate-Associated Enzymes

This section is devoted to methods of approaching the

problem of solubilizing enzymes or proteins which are

associated with insoluble parts of the cell, such as

membranes.

Particulate-associated proteins fall into two general

categories. The first of these includes those proteins

which, once solubilized, behave much like any other water-

soluble enzyme. This category consists of two types of

proteins: those which are present in a space surrounded by

a membrane, but are not true components of the membrane

itself; and those enzymes which are intrinsic components of

a membrane, but upon being released are water-soluble.

Procedures for the solubilization of these types of proteins

have been summarized by Penefsky and Tzagoloff (1971).

The second category includes those proteins which are

components of lipoprotein complexes. General procedures for

the solubilization and purification of these proteins have

been summarized by Tzagoloff and Penefsky (1971).

Solubilization can be accomplished using detergents, in

which the detergent binds to the protein and takes the place

of the lipid-containing membrane, thus solubilizing the

protein in the medium. During purification it is often

necessary to include detergent in solutions to maintain

protein solubility. Solubilization and purification of

proteins using detergents is illustrated in Figure 2.






24

The use of chaotropic agents for the isolation of

membrane-bound enzymes has been discussed by Hatefi and

Hanstein (1974). Chaotropic agents decrease water structure

thereby destabilizing membranes and enzyme complexes. Some

commonly used chaotropic agents include sodium

trichloroacetate, sodium and potassium perchlorate, and

guanidine hydrochloride.
















"I>?~
\I/ ,r "


'1"


"7 1

I 7'nz H


"7

N,


I-
z
U
0
U N
UJ

0


*%1-\7

'iN


I-

uJ
0
CC

UJ
L Ut
in


10

N
4)


4-)

0

It





*4
0




0

.p
(4

I

0



t0
0


.4o
U







0 4
-l



0




HO
0,
a)


Or





t0 *














MATERIALS AND METHODS


Chemicals

(4R)-(+)-Limonene was a gift from Hercules Inc.,
24
Lakeland, FL; [a]D +122.5 (neat), 99.0% pure by gas

chromatography (GC). (4S)-(-)-Limonene was obtained from
19
Aldrich Chemical Company Inc., Milwaukee, WI; [a]D -86.6

(neat), 97.1% pure by GC. a-Terpineol racemicc) was a gift
24
from International Flavors, Union Beach, NJ; [a]D -10.2

(c=5.1, chloroform), 98.7% pure by GC.

(4R)-(+)-a-Terpineol was prepared by fermentation of

(4R)-(+)-limonene by P. gladioli. Bacteria were grown in a

group of 9 flasks as described under Growth and Collection

of Bacteria, except that after an initial 24 hr incubation

period 1 mL of (4R)-(+)-limonene was added to each flask and

the flasks incubated for an additional 6 days. The culture

broth was centrifuged for 20 min at 15,000 x g to remove

bacteria. The bacterial pellet was resuspended in 200 mL

distilled water and centrifuged as described above. The

clarified culture broth and pellet wash supernatant were

pooled and then extracted with diethyl ether using the

method of Cadwallader et al. (1989). Crude a-terpineol

extract (65% pure by GC) was purified by silica gel column

chromatography. a-Terpineol in n-hexane (2.5 mL) was







27
applied to a slurry packed silica gel column (2.0 x 20 cm)

which was equilibrated in n-hexane. The column was

developed using the following sequence of solvents: 100 mL

n-hexane, 100 mL of 50% n-hexane/50% methylene chloride, and

200 mL methylene chloride. Fractions (20 mL) were collected

and analyzed by GC. Fractions containing the highest

amounts of a-terpineol were pooled and the solvent

evaporated under a stream of nitrogen to yield 0.2150 g of
24
purified (4R)-(+)-a-terpineol; [a]D +102.0 (c=l.l,

chloroform), 94.0% pure by GC.

Microbiology
Liquid Mineral Medium Preparation

Liquid mineral medium (Monod and Wollman, 1947) was

prepared by adding the following chemicals consecutively to

3 L of distilled water until completely dissolved: KH2PO4

(12 g), Na2HPO4 (108 g), MgSO4 (10.8 g), NH4C1 (16 g), CaCI2

(8 mL of a 1% (w/v) solution), and FeSO4*7H20 (4 mL of a

fresh 0.1% (w/v) solution). The solution pH was adjusted to

6.5 with 85% phosphoric acid and then diluted to 4 L to make

4X strength liquid mineral medium. To make single strength

liquid mineral medium 1 L of 4X liquid mineral medium was

diluted to 4 L with distilled water. The pH was measured

and adjusted if necessary to pH 6.5 with 85% phosphoric

acid.

Enumeration of Bacteria

Microbial populations (viable cells) were estimated

according to procedures described by the American Public







28

Health Association (1989) using Standard Methods agar (BBL

Microbiology Systems, Cockeysville, MD). Serial dilutions

were made in 0.1% peptone. Aliquots of each dilution (0.1

mL or 1 mL) were transferred to duplicate petri dishes and

pour plated with 15-20 mL of agar tempered at ca. 45*C.

Plates were incubated at 30C for 48 hr.

Bacterial growth was also monitored by measuring the

absorbance (660 nm) of the culture broth.

Growth and Collection of Bacteria

P. gladioli was grown in 1 L Erlenmeyer flasks

containing 250 mL liquid mineral medium, 0.5 mL sterile

(4R)-(+)-limonene, and 25 mL inoculum. Flasks containing

liquid mineral medium were sterilized at 121*C for 20 min.

Limonene was filter-sterilized using a 0.22 Am MSI membrane

filter (Micron Separations Inc., Westboro, MA). Flasks were

incubated for 24 hr at 30 10C on an Environ orbital shaker

(Lab-Line Instruments, Inc., Melrose Park, IL) at 200 rpm

with 2 cm orbit. Inoculum was grown under the same

conditions as described above. A total of 9 flasks were

incubated per batch with one flask from each batch being

used as the inoculum of the following batch.

Bacteria were collected by centrifuging the culture

broth for 20 min at 15,000 x g in a Sorvall RC-5B

refrigerated centrifuge (Dupont Co., Newtown, CT). The

yield of bacterial cells from 8 flasks (2.2 L of broth) was

about 6-7 g. Cells were stored at 4'C.







29

Analytical

Protein Determination

Protein concentrations were measured by the Coomassie

blue protein assay (Bradford, 1976) using bovine serum

albumin as the standard.

Enzyme Assays

In a typical enzyme assay the sample was transferred

into a test tube (13 x 100 mm) and the final volume of the

sample adjusted to 0.990 mL with 10 mM N-2-hydroxyethyl-

piperazine-N'-2-ethane sulfonic acid (HEPES) buffer, pH 7.0.

The reaction was started by addition of 10 AL of substrate

solution which contained 5 M limonene and 50 ppm decanol

(internal standard) in absolute ethanol. The tube was then

quickly sealed with a PTFE lined screw cap, mixed by

vortexing, and placed in a temperature-controlled water

bath. Unless otherwise stated, assays were done for 2 min

at 25*C. The reaction was stopped by addition of 1 mL of

n-hexane, which denatured the enzyme. Anhydrous sodium

sulfate (3 g) was added to break the hexane emulsion. The

hexane layer was transferred to a 1 mL vial and concentrated

to about 0.1 mL under a stream of nitrogen. A small amount

of anhydrous sodium sulfate was then added to the vial to

completely dry the concentrated hexane phase before GC

analysis.

Sample blanks were prepared by mixing 1 mL of n-hexane

with the sample to denature the enzyme before adding 10 gL

of substrate solution. Limonene blanks consisted of 0.990







30

mL buffer (typically 10 mM HEPES buffer, pH 7.0) and 10 pL

of substrate stock solution. Limonene blanks were incubated

under the same conditions as enzyme assays.

a-Terpineol concentration was determined by comparing

the a-terpineol/decanol GC area ratio of the unknown with a

calibration curve of a-terpineol/decanol GC area ratio

versus a-terpineol concentration (Amol.L'1 or nmol-mL'1).

A typical standard curve for a-terpineol is shown in Figure

A-l. The curve is linear for concentrations of a-terpineol

between 1.04 and 522 Amol*L'.

The enzyme activity (nmol.min'1.mL"1) was calculated by

dividing the concentration of a-terpineol (nmol.mL-')) by the

assay time (min). Specific enzyme activity (nmol-min'1.mg'1

protein) was calculated by dividing the enzyme activity

(nmol-min'l.mL'1) by the protein concentration (mg.mL'1).

Gas Chromatographv

The GC system consisted of an HP 5890 gas chromatograph

equipped with a flame ionization detector (FID) and

connected to an HP 3396A integrator (Hewlett-Packard Co.,

Avondale, PA). Chromatograms were analyzed using a computer

integration program (Chrom-Perfect, Justice Innovations,

Palo Alto, CA). Unless otherwise stated, a 0.53 mm i.d. x

15 m SE 54 fused silica capillary column (Alltech

Associates, Inc., Deerfield, IL) was used for the

separations. The film thickness of the liquid phase was

1.25 Am. Conditions were as follows: 5 AL injection with

1:3 split; helium carrier gas at 5.5 mL-min'1; injector port







31

at 175C; detector at 250*C; column temperature programmed

from 100"C to 200' at 10O'Cmin'1 with a final hold time of 5

min. A gas chromatogram of a typical enzyme assay extract

is shown in Figure A-2.

Enzyme Purification

Buffer Preparation

All buffers were prepared at room temperature (20-25C)

using double distilled water. The pH of each buffer was

adjusted with NaOH or HC1 before its final dilution. The pH

measurements were made at room temperature using an Accumet

915 pH meter (Fisher Scientific, Pittsburgh, PA) with

automatic temperature compensation.

Isolation of Particulate-Associated Enzyme

The first step in isolation of a bacterial intra-

cellular enzyme is to disrupt the organism. There are

several techniques available for the disruption of bacteria:

sonication, bead-milling, French press, and digestive

enzymes such as lysozyme. Initial attempts to disrupt the

bacterium involved a combined nonionic detergent-osmotic

shock-lysozyme treatment as described by Schwinghamer (1980)

and Scopes (1987). This technique was only partially

successful in disrupting the bacterium and required a long

incubation period. Ultrasonication was also attempted, but

the conditions required to obtain adequate disruption of the

bacterium were very vigorous and resulted in loss of enzyme

activity, possibly due to heat denaturation. Small scale

bead-milling resulted in adequate bacterial disruption and

was used for initial studies.







32

The general procedure used for small scale bead-milling

is described by Scopes (1987) and involves the use of small

glass beads (0.1 mm diameter), which when vigorously stirred

along with a suspension of bacteria disintegrate the

bacteria by grinding action. Glass beads (8 g) were added

to centrifuge tubes (28.5 x 104 mm) along with cell

suspensions (1 g wet cells in 5 mL of 20 mM potassium

phosphate buffer containing 5 mM MgSO4 and 100 jig-mL'1

DNaseI) and the mixtures vortex-mixed for 10-20 min.

Suspensions were centrifuged for 30 min at 20,000 x g in a

Sorvall RC-5B refrigerated centrifuge in order to sediment

the enzyme. All operations were carried out as close to 0C

as possible, except for centrifugation which was carried out

at 4-60C.

Large scale bacterial disruption was achieved using a

commercially available bead-mill. Bacterial cells (20-30 g)

were re-suspended in 200 mL of 50 mM HEPES buffer, pH 7.0

containing 0.2 mM dithioerythritol (DTE). The suspension

was transferred, along with 500 g of dry glass beads (0.1 mm

diameter), to a Bead-Beater (Biospec Products, Bartlesville,

OK) equipped with a stainless steel chamber. The bacteria

were disrupted for a total of 20 min (30 sec on, 60 sec off)

with the chamber immersed in an ice bath. The cell

homogenate was separated from the glass beads by vacuum

filtration through nylon mesh filter cloth and the beads

washed with an additional 50-100 mL of buffer. After adding

2.5 mL of 1 M MgSO4 and 1 mL of a DNaseI solution (2500







33

units*mL"' in distilled water) the cell homogenate was

centrifuged for 20 min at 15,000 x g in a Sorvall RC-5B

refrigerated centrifuge in order to sediment unbroken cells

and large debris. The supernatant was further clarified by

re-centrifuging under the same conditions. The purpose of

DNaseI was to reduce the viscosity of the cell homogenate.

Magnesium sulfate was added because Mg2 is a required

cofactor of DNaseI.

In order to sediment the membranous material containing

the enzyme, the clarified supernatant was re-centrifuged for

2 hr at 25,000 rpm in a Beckman Model L5-65 ultracentrifuge

using a Beckman SW28 rotor (Beckman Instruments, Inc., Palo

Alto, CA). The pellet from this centrifugation was re-

suspended and washed twice with 70-75 ml of 10 mM HEPES

buffer, pH 7.0 containing 0.2 mM DTE, with centrifugation

the same as previously described. All operations were

carried out as close to 0C as possible, except for

centrifugation which was carried out at 4-60C.

Sucrose Gradient Centrifugation

The method of Osborn and Munson (1971) was used for

sucrose gradient centrifugation with some modifications.

Sucrose step gradients were prepared in ultracentrifuge

tubes (14 x 89 mm) by layering 2.1 mL each of 50, 45, 40,

35, and 30% (w/v) sucrose over a cushion (0.5 mL) of 55%

(w/v) sucrose. Sucrose solutions were prepared in 5 mM

HEPES buffer, pH 7.0 containing 5 mM EDTA. Samples were

prepared by re-suspending washed membrane pellets in 25%







34

(w/v) sucrose solution to a protein concentration of 2.2

mg/mL. One mL of sample was layered onto each of three

tubes. One mL of 25% (w/v) sucrose was layered onto a forth

tube for buoyant density determinations. Tubes were

centrifuged for 18 hr at 35,000 rpm in a Beckman Model L5-65

ultracentrifuge using a Beckman SW 41 rotor (Beckman

Instruments, Inc.).

Gradients were fractionated using an ISCO Model 640

density gradient fractionator (ISCO Inc., Lincoln, NB).

Fractions (0.6 mL) were assayed for both enzyme activity and

protein concentration. Buoyant densities were determined by

measurements of refractive index using an Abbe Mark II

refractometer (Rehert Scientific Instruments, Buffalo, NY).

All operations were carried out as close to 0OC as possible,

except for centrifugation which was carried out at 4-60C.

Solubilization of Enzyme

Washed membrane pellets were re-suspended in 25-50 mL

of 10 mM HEPES buffer, pH 7.0 containing 2.0% (w/v) Triton

X-100, 0.5 M sodium trichloroacetate and 0.2 mM DTE.

Suspensions were kept on ice and stirred for 30-60 min, then

diluted with additional buffer until the protein

concentration was equal to 5-10 mg*mL-1. Suspensions were

centrifuged for 1 hr at 55,000 rpm (100,000 x g) in a

Beckman TL-100 ultracentrifuge using a Beckman TLA100.3

rotor (Beckman Instruments, Inc.). All operations were

carried out as close to *0C as possible, except for

centrifugation which was done at 4'C. Supernatants







35

containing the solubilized enzyme were decanted and kept at

4C.

Gel Filtration Chromatoaraphv

Solubilized enzyme (20-30 mL) was applied to a 5.0 x

50 cm Spectra/Gel AcA 44 or AcA 22 column (Spectrum Medical

Industries, Inc., Los Angeles, CA) which was equilibrated in

10 mM HEPES buffer, pH 7.0 containing 1.0% (w/v) Triton

X-100, 0.2 mM DTE, and 0.02% (w/v) sodium azide. The enzyme

was eluted from the column at a flow rate of 70-75 mL-hr"'

and 10 mL fractions were collected. Fractions were assayed

for enzyme activity (30 min at 25C) and protein

concentration. All operations were carried out in a 4C

cold room.

Concentration of Gel Filtration Fractions

Gel filtration fractions containing enzyme activity

were pooled and concentrated using a 150 mL capacity

Omegacell ultrafiltration (UF) unit (Filtron Technology

Corp., Clinton, MA) with a nominal molecular weight limit

(NMWL) of 10,000 daltons. Nitrogen at 30-40 psi was used to

pressurize the unit. Solutions containing the pooled

fractions were concentrated to 10 mL and then 100 mL of 10

mM HEPES buffer, pH 7.0 was added and the solution

reconcentrated to 10 mL. This procedure was repeated until

the UF permeate had an absorbance (275 nm) of less than 1.0.

All operations were carried out in a 4C cold room.







36
Removal of Triton X-100 by Affinity Chromatography

Enzyme concentrate (10-15 mL) was applied to a 1.6 x

6.5 cm Spectra/Gel D column (Spectrum Medical Industries,

Inc.) which was equilibrated in 10 mM HEPES buffer, pH 7.0.

The enzyme was eluted from the column at a flow rate of 5

mL*hr"1. An additional 10 mL of 10 mM HEPES buffer, pH 7.0

was applied to the column in order to elute any remaining

enzyme. The column was regenerated using the procedure

recommended by the manufacturer, as follows: Column was

washed with 1 bed volume distilled water, 1 bed volume of

ethanol, 2 bed volumes of butanol, 1 bed volume of ethanol,

1 bed volume of distilled water followed by equilibration in

buffer. All operations were carried out in a 40C cold room.

Triton X-100 concentration in the Spectra/Gel D treated

enzyme solution was estimated by measuring the absorbance

(275 nm) of the UF permeate. Standard curves of absorbance

versus Triton X-100 concentration for standard solutions and

their respective UF permeates are shown in Figure A-3. The

UF permeate curve was estimated by a straight line for

Triton X-100 concentrations between 0 and 0.05% (w/v) and

was used to estimate the Triton X-100 concentrations of

sample enzyme solutions.

Enzyme Characterization

Molecular Weight Determination

The molecular weight (MW) of the native enzyme was

determined by gel filtration chromatography. Solubilized

enzyme (0.75 mL) was applied to a 1.0 x 50 cm Sepharose







37

CL-6B column (Aldrich Chemical Company, Inc.) which was

equilibrated in 10 mM HEPES buffer, pH 7.0 containing 1.0%

(w/v) Triton X-100, 0.2 mM DTE, and 0.02 % (w/v) sodium

azide. The enzyme was eluted from the column at a flow rate

of 5 mL.hr"' and 0.4 mL fractions were collected.

Fractions were assayed for both enzyme activity (30 min at

250C) and protein concentration. The calibration curve was

prepared with bovine thyroglobulin (MW = 669,000 daltons),

horse spleen apoferritin (MW = 443,000), sweet potato

B-amylase (MW = 200,000), yeast alcohol dehydrogenase

(MW = 150,000), and bovine erythrocyte carbonic anhydrase

(MW = 29,000). Protein standards were obtained from Sigma

Chemical Company, St. Louis, MO. The void volume was

determined with Blue Dextran 2000. Protein standards

(5 mg.mL'') and Blue Dextran 2000 (10 mg.mL'1) were dissolved

in gel filtration buffer. Blue Dextran 2000 fractions were

monitored by measuring the absorbance (600 nm) after

dilution of each fraction with 2.5 mL of distilled water.

Gel filtration was carried out in a 4*C cold room.

The molecular weight of the enzyme in SDS denaturing

conditions was determined by horizontal SDS polyacrylamide

gel electrophoresis (SDS-PAGE) using ExcelGel SDS gradient

(8-18% acrylamide) precast gels and buffer strips (Pharmacia

LKB Biotechnology, Uppsala, Sweden). The electrophoresis

system consisted of an LKB 2217 Multiphor II horizontal

electrophoresis unit and an LKB 2297 Macrodrive S constant

power supply (Pharmacia LKB Biotechnology). The running







38

conditions were as follows: 15C; 50 mA constant current;

80 min. Gels were silver-stained using a PhastGel Silver

Kit (Pharmacia LKB Biotechnology). The calibration curve

was prepared using Bio-Rad SDS-PAGE high and low molecular

weight standards (Bio-Rad Laboratories, Richmond, CA).

Isoelectric Focusing

The isoelectric point of the enzyme was determined by

horizontal isoelectric focusing (IEF) using FisherBiotech

agarose IEF gels and electrode solutions for pH range 3 to

10 (Fisher Scientific). The electrophoresis system was the

same as that used for SDS-PAGE. Gels were equilibrated for

1 hr in a solution containing 2.5% (w/v) Servalyte 3-10

ampholytes (Fisher Scientific) and 1.0% (w/v) Triton X-100.

In order to remove any salt or buffer ions which would

disturb the pH gradient during focusing, enzyme solutions

were dialyzed against either distilled water or 1.0% (w/v)

glycine, pH 7.0 (Vesterberg, 1971). Enzyme concentrate (1

mL) was dialyzed against 2 x 250 mL of 1% (w/v) glycine

buffer, pH 7.0 containing 1% (w/v) Triton X-100 (using

dialysis tubing with MWCO 12,000-14,000 daltons) or against

2 x 250 mL distilled water containing 1.0% (w/v) Triton

X-100 (Vesterberg, 1971). Dialyzed samples were filtered

thru 0.2 Am Acrodisc filters (Gelman Sciences, Ann Arbor,

MI) to remove any debris before focusing. Samples were

applied at various regions of the gel using a large template

(1 x 1 cm wells), which was supplied with the IEF gels.

Calibration curves were prepared using Bio-Rad broad range







39

IEF standards (Bio-Rad Laboratories). Gels were focused at

10C using the following running conditions: 3 W/5 min, 5

W/30 min, 10 W/30 min, 15 W/30 min, and 25 W/5 min.

The gels were halved immediately after focusing. One

gel half, which contained one lane of focused enzyme sample

and two lanes of focused IEF standards, was soaked in a

solution of 15% (w/v) trichloroacetic acid to fix the

protein bands and then stained with Coomassie G-250. The

other gel half, which contained 4 lanes of focused enzyme

sample, was cut horizontally into 7.5 mm strips and each

strip immediately suspended in 2 mL of 50 mM HEPES buffer,

pH 7.0. The pH of each suspension was adjusted to 7.0 and

the activity assayed (2 hr at 250C).

pH Optimum and Stability

Enzyme concentrate (30 mL) was dialyzed against

distilled water (1 L) containing 0.1% (w/v) Triton X-100

for 12 hr at 4*C using dialysis tubing with molecular weight

cutoff (MWCO) of 12,000-14,000 daltons. The pH optimum of

the enzyme was determined as follows: Aliquots of dialyzed

enzyme (0.25 mL; 1.9 mg.mL'' protein) were diluted to 2.5 mL

in 10 mM 2-(4-morpholino)-ethane sulfonic acid (MES), 10 mM

1,2-bis[tris(hydroxymethyl)methylamino]-propane (BIS-TRIS

PROPANE) buffer, with pH values ranging from 4.0 to 9.0 by

increments of 0.5; The pH of each solution was measured and

adjusted if necessary with 0.5 M HCl or 0.5 M NaOH to within

0.02 units of the indicated pH; Each solution was incubated

for 30 min at 25*C and then assayed for activity (30 min at







40

25C). The combined MES/BIS-TRIS PROPANE buffer was

suitable for pH range 5.5 to 9.5.

The pH stability of the enzyme was determined using a

similar procedure as above except for the following:

Dialyzed enzyme aliquots (0.2 mL) were diluted to 2.0 mL in

each buffer; solutions were incubated for 30 min at 250C and

then assayed for activity after adjusting the pH to 7.0 by

addition of 0.5 mL of 1 M HEPES buffer, pH 7.0.

Temperature Optimum and Stability

Temperature optimum of the enzyme was determined by

assaying the enzyme (1.7 mg*mL"1 protein in 10 mM HEPES

buffer, pH 7.0 containing 0.1% (w/v) Triton X-100) for

activity at various temperatures (10-50C) after

equilibration for 2 min. The temperature-activity data

obtained from 10-25C was used to estimate the activation

energy (E,) using an Arrhenius plot (log enzyme activity

versus l/T, where T is the absolute temperature in degree

Kelvin). The slope of this plot is equal to -Eg(2.3R),

where R is the gas constant (8.31441 JK-'1-mol-1). The

activation energy (J.mol"') was calculated from the slope.

The Q10 (the factor by which the rate increases by

raising the temperature 10*C) of the enzyme was calculated

using the following equation:

Q10 = [activity at (X + 10) C]/[activity at XC].

The temperature stability of the enzyme was determined

as follows: Enzyme (2.0 mg-mL-1 protein in 10 mM HEPES

buffer, pH 7.0) was incubated for 2 min at various







41

temperatures (20-60C), immediately cooled on ice, and then

assayed for activity at 20'C.

Stereospecificity and Stereoselectivity

Enzyme assays were the same as described earlier except

that the substrate stock solution was composed of 0.02 M
25
racemic limonene ([Qa]D +0.7; neat) and 1000 ppm (1S)-(-)-

cis-pinane (internal standard) in absolute ethanol. Assays

were done at 25"C for 5, 10, 20, and 40 hr. The GC system

was the same as previously described except that a 0.254 mm

i.d. x 30 m Cyclodex B fused silica capillary column (J & W

Scientific, Inc., Folsom, CA) was used for the separation of

limonene and a-terpineol enantiomers. The film thickness of

the liquid phase was 0.25 Am. Conditions were as follows: 1

gL injection with 1:100 split; helium carrier gas at 1.26

mL'min''; injector port at 200"C; detector at 250'C; column

temperature programmed from 70C to 200'C at 5'C*min"1 with

an initial hold time of 10 min and a final hold time of 5

min.

For determination of initial kinetic rates, enzyme

assays were done using a substrate stock solution composed

of 5 M racemic limonene and 500 ppm n-decanol (internal

standard) in absolute ethanol. Assays were done at 250C for

2, 5, and 10 min. GC conditions were the same as above

except for the following: 1 AL injection with 1:10 split;

helium carrier gas at 0.92 mL*min'1; column temperature

isothermal at 115"C. A chiral gas chromatogram of a typical

enzyme assay extract is shown in Figure A-4.







42

A calibration curve of a-terpineol/decanol GC area

ratios versus a-terpineol concentration (pmol-L'') is shown

in Figure A-5. The actual concentration of each

a-tetpineol enantiomer was calculated from its relative

concentration (i.e. the GC peak area of each enantiomer

divided by the sum of the GC peak areas for both

enantiomers). Enzyme activity was calculated using the same

method previously described under Enzyme Assays.














RESULTS AND DISCUSSION


Microbiology

Pseudomonas gladioli, which was used throughout this

study, was the same bacterium described by Cadwallader et

al. (1989). The bacterium exhibited optimum growth at pH

6.5 and 300C in both tryptic soy broth and in liquid mineral

medium containing 0.2% (v/v) limonene (Figure A-4). The

concentration of limonene in the medium also affected the

growth of the bacterium, with optimum growth occurring at a

concentration less than 1.0% (v/v) (Cadwallader et al.,

1989).

In this study the bacterium was grown exclusively in pH

6.5 liquid mineral medium containing 0.2% (v/v) limonene

with incubation at 30C. A typical growth curve of the

bacterium under these conditions is shown in Figure 3. The

exponential growth phase of the bacterium occurred between 6

and 18 hr with maximum number of viable cells occurring at

about 24 hr. The ideal time for collecting cells is toward

the end of the log phase before the growth rate slows, since

this gives the highest yield of cells. The enzyme may not

be at maximum concentration at this time. Preliminary

studies determined which physiological state of the

bacterium contained the most enzyme. Cultures of various
































Figure 3. Growth curve of E. gladioli at 30'C in pH 6.5
liquid mineral medium containing 0.2% (v/v)
limonene.








10.4


10.0




9.6


9.2


8.8




8.4


8.0


0 12 24 36


...J
E

IL
0

0
0


48


60


Time (hr)







46
ages (24, 48, and 72 hr) were examined for cell density and

enzyme activity. Enzyme assays (12 hr at 30C) were

conducted on cells suspended in 20 mM potassium phosphate

buffer, pH 7.0 (1 g wet cells in 5 mL buffer). Results

(Table 1) showed no significant difference (a = 0.05) in

enzyme activity between the 24 hr and 72 hr cultures;

however, there was a significant decline (a = 0.05) in cell

density after 72 hr. It was concluded from these results

that 24 hr was the most suitable time for collecting the

bacteria.

Isolation of Particulate-Associated Enzyme

After centrifugation of the bacterial extract the

majority of the enzyme activity was found in the particulate

fraction. Initial small scale bead-mill experiments

demonstrated that the enzyme activity of the particulate

fraction was due to bound enzyme and not due to surviving

bacteria. Enzyme activity and viable cells were determined

before and after bead-milling for various times (Table 2).

After 10 min of bead-milling greater than 99.999% of the

bacteria were disrupted, while the amount of activity in the

particulate fraction did not decrease. The supernatant

fraction, which contained over 20 mg*mL'1 protein, showed

only 7.9% of the total activity. The high protein

concentration of the supernatant fraction was another

indication of efficient cell disruption. Bead-milling the

suspension for a total of 20 min resulted in an additional

99.98% reduction of viable cells over that observed at







47

TABLE 1

Cell density and enzyme activity of P. gladioli
as a function of culture age


Culture Cell Density Enzyme Activit
Age (hr) (mg.mL-1)a (nmol.min- mg'
wet cells)


24 3.44 0.16 0.68 0.06

48 3.53 0.09 0.52 0.06

72 2.79 0.29 0.65 0.07


average standard deviation (n = 2)

average standard deviation (n = 4)









TABLE 2

Amount of enzyme activity in particulate fraction
as a function of extent of cell disruption


Extraction Enzyme Activity Viable Cells
Time (min) (nmol.min' .mL ')a (Log CFU.mL"1)b


0 4.54 0.17 13.2

10 4.7 0.6 8.0

20 2.66 0.08 4.2


average standard deviation (n = 2)


average (n = 4)







49
10 min. The decrease in enzyme activity after 20 min was

possibly due to denaturation of the enzyme, since only 2.6%

of the total activity was found in the supernatant fraction.

Small scale bead-milling was very efficient, but the

sample processing capacity was low. The technique was

scaled up by utilizing a laboratory scale bead-mill. This

unit was capable of disrupting up to 100 g of cells (wet

wt.) in 200 mL medium. Disruption of 100 g of cells was not

feasible because of the low yield of cells (6-7 g) from each

batch of culture. The technique effectively disrupted

20-30 g of cells, but was apparently much more vigorous than

the small scale method, since a higher centrifugal force was

required to sediment the enzyme. This was not necessarily a

disadvantage since a lower centrifugal force could be used

to remove unbroken cells and large debris from the cell

homogenate prior to sedimentation of the enzyme.

Isolated particulate-associated enzyme was partially

purified by washing the pellet with a buffer which did not

solubilize the enzyme. The particulate material was

characterized by differential centrifugation. This

technique was also evaluated for its potential as an enzyme

purification step. Results of sucrose gradient

centrifugation are shown in Figure 4. Protein was

effectively fractionated into four bands. The intensity of

these bands was highest at the sucrose layer interfaces.

Enzyme activity was found in each band, with the majority of

the activity being found in the two bands of lowest density.



























N



4)
4,


0
u

02

C1





4-)
0












,4
O
m












-4



44
0















C)



0






*a)
An
4-4
104
Ow















(0

ty





oc
Lr












-,-- (_w.o-6) A,!sueQ


N 0 c D 0







0***..* (L-'LtU!Wit-oWuu) AI!IA~I*O


-- (L_.Wu--6u) u!ieOJd


I-




qL.

u-
.2




L0
U-


0 0 0 0 0 0 0 0
I O D I O O M 1 O- O
0 d d d d d0d






52

The results of this experiment suggest that the enzyme

was associated with particulate material of varying density

and size. One explanation that might account for these

results is that the enzyme was associated with a specific

membrane of the bacterium and during bead-milling the

membrane was sheared into smaller heterogeneous fragments.

On the other hand, the enzyme may not have been membrane-

bound, but instead became associated with its nearest

hydrophobic neighbor after being released into the

hydrophilic medium (buffer). The utility of sucrose

gradient centrifugation as a purification step was limited

by the low sample processing capacity and the time required

to achieve equilibrium (18 hr). In addition, the degree of

purification obtained was low (less than two-fold);

therefore it was decided to solubilize the enzyme without

any prior fractionation.

Enzyme Solubilization

Initial attempts to solubilize the enzyme involved

those techniques described by Penefsky and Tzagoloff (1971)

for water-soluble membrane proteins, but it was evident

after several experiments that the enzyme was not

characteristic of this type of protein. Extraction of the

particulate-associated enzyme with concentrated salt (2 M

NaCl and 6 M urea), alkali/EDTA, enzymes (phospholipase A2,

lysozyme, and pectolyase) and organic solvents (DMSO,

ethanol, acetone, n-butanol, and dioxane) had no effect on

the solubility of the enzyme. Extraction with organic

solvents actually denatured the enzyme.







53
Partial solubilization of the enzyme could be achieved

using detergents. Nonionic detergents, such as Triton

X-100, Nonidet P-40, and n-octyl a-D-glucopyranoside were

more effective then the ionic detergents; sodium cholate,

SDS, and 3-[(3-choramidopropyl)dimethyammonio]-l-

propanesulfonate (CHAPS). Triton X-100 was chosen for

further enzyme solubilization studies. The degree of

solubilization of the enzyme was found to be dependent on

the concentration of Triton X-100 with 2.0% (w/v) giving

more consistent results than 1.0% (w/v) (Figure 5).

Nonionic detergents have been reported to be more effective

when used in combination with salts (Tzagoloff and Penefsky,

1971); however, inclusion of various concentrations of NaCl,

KC1 or urea with 2% (w/v) Triton X-100 did not increase the

solubility of the enzyme. Inclusion of the chaotropic

agent, sodium trichloroacetate, in extraction buffers

greatly increased the effectiveness of Triton X-100 for

solubilizing the enzyme. Effect of including various

concentrations of sodium trichloroacetate in solutions of

2.0% (w/v) Triton X-100 on the solubility of the enzyme is

shown in Figure 6. Optimum concentration of sodium

trichloroacetate was found to be 0.5 M when the protein

concentration of the initial enzyme suspension was less than

10 mg.mL". Sodium trichloroacetate (0.5 M) alone had no

effect on the solubility of the enzyme.







54

Gel Filtration Chromatography

Initial attempts to purify the enzyme using anion

exchange (DEAE Spectra/Gel) and hydroxylapatite (Bio-Gel

HTP) chromatography were unsuccessful due to irreversible

adsorption of the enzyme, which occurred even when 1.0%

(w/v) Triton X-100 was included in the elution buffers. The

degree of success of gel filtration chromatography for

enzyme purification depended on the concentration of Triton

X-100 in the elution buffer. Gel filtration profiles of

solubilized enzyme using Spectra/Gel AcA 44 with 0.5 and

1.0% (w/v) Triton X-100 in the elution buffer are shown in

Figures 7a and 7b. With 0.5% detergent only 12-46% of the

enzyme activity was recovered, whereas with 1.0% detergent

yields close to 100% were obtained.

Low recovery of activity with 0.5% detergent was

apparently due to adsorption of the enzyme to the gel. This

is evident from the greater volume required to elute the

enzyme with 0.5% detergent compared to with 1.0% detergent.

With 0.5% detergent the enzyme eluted at the leading edge of

the last and largest peak. This was the inclusion volume of

the column and was composed mainly of excess detergent

originating from the solubilized enzyme solution. After

being adsorbed to the gel, the enzyme was apparently

partially re-solubilized by the concentrated detergent

volume. With 1.0% detergent the inclusion volume appeared

as a negative peak. This was probably composed of excess

sodium trichloroacetate originating from the solubilized

enzyme solution.

































Figure 5. Plot of Triton X-100 concentration versus degree
of solubilization of protein and enzyme. (Buffer
consisted of 50 mM HEPES, pH 7.0 and 0.2 mM DTE.)









60.0


55.0


50.0-..
5 0 .0 .................... ...... .. .


45.0


C 40.0
O

N o35.0


2 30.0
O
O)
S 25.0 ---- Protein


S 20.0 ......... Enzyme Activity
0)

15.0


10.0


5.0


0.0o ------I
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Triton X100 (% w/v)












100.0 ............................................
9 0.0 ..... ..... o. o **.

90.0



80.0--



- 70.0

O
0
-,I
4 60.0



S50.0 -


0
0 40.0-

L.

0 30.0
O Protein

0.0 ........ Enzyme Activity
20.0



10.0--

0.0


0.00 0.25 0.50 0.75 1.00

Sodium Trichloroacetate (M)






























Figure 7.


Spectra/Gel AcA 44 gel filtration chromatography
of solubilized a-terpineol dehydratase using two
concentrations of Triton X-100 in the elution
buffer: (a) 0.5% (w/v) Triton X-100 and (b) 1.0%
(w/v) Triton X-100. (Elution buffer consisted of
10 mM HEPES, pH 7.0, 0.2 mM DTE, and 0.02% (w/v)
sodium azide.)










1.00 1.25


0.80 -1.00

(a) 0
::-

S0.60-- 0.75 E


E 0.40- 0.50
S*CE
00

2 0.20 0.25 Z


0.00 I 0.00
0 100 200 300 400 500 600 700

Elution Volume (mL)



1.25 1.25

1.00- 1.00

0.75 (b) -0.75

0.50 -- --0.50
E C
1 0.25-- -- 0.25I
E 0.25
S0.00 0.00





0 100 200 300 400 500 600 700
Elution Volume (mL)







61
The purpose of gel filtration chromatography was not

only for purification of the enzyme, but also as a criterion

to establish the solubility of the enzyme in 1.0% (w/v)

Triton X-100. It is generally excepted that an enzyme

preparation is "soluble" if it remains in the supernatant

solution after centrifugation at 100,000 x g for one or more

hours (Penefsky and Tzagoloff, 1971); however, small

membrane fragments which do not sediment readily may appear

to be soluble. Additional evidence of solubility can be

obtained by passage of the enzyme preparation through a gel

filtration column (Eiberger and Wasserman, 1987). The

enzyme should elute within the linear fractionation range of

the column. This is because large insoluble material would

elute in the exclusion volume or void volume, unless it

precipitates in the column or adsorbs to the gel.

When passed through Spectra/Gel AcA 44 in 1.0% (w/v)

Triton X-100 the enzyme eluted in the void volume. The

linear fractionation range of AcA 44 is 10,000-130,000

daltons and the exclusion limit is 200,000 daltons.

Therefore, the enzyme either eluted as an insoluble enzyme-

particulate complex or its molecular weight was larger than

the exclusion limit of the gel. When the enzyme was

fractionated using Spectra/Gel AcA 22 (with 1.0% (w/v)

Triton X-100 in the elution buffer) it eluted as two peaks

(Figure 8). The linear fractionation range of AcA 22 is

100,000-1,200,000 daltons and the exclusion limit is

3,000,000 daltons. Both peaks eluted within the linear

































Figure 8.


Spectra/Gel AcA 22 gel filtration chromatography
of solubilized a-terpineol dehydratase. (Elution
buffer consisted of 10 mM HEPES, pH 7.0, 1.0%
(w/v) Triton X-100, 0.2 mM DTE, and 0.02% sodium
azide.)
























0.80 0.60

0.70 -
0-6-0.50
0.60 --

0.50 0.40
* I-

rE oooE
E 0.30 0.30

S: 0.20 E
S0.20 -
0
0.10 0.10
.0.100>
0.00 0.00
0 100 200 300 400 500 600 700 800 900
Elution Volume (mL)







64
fractionation range of the gel, thereby confirming that the

enzyme was soluble in 1.0% (w/v) Triton X-100. One

explanation for the occurrence of two activity peaks might

be that the enzyme existed as both a native monomer and

dimer in the presence of 1.0% (w/v) Triton X-100.

Alternatively, the two activity peaks may have been two

different enzymes (isozymes).

Partial Purification of Enzyme

Samples from various stages of enzyme fractionation

were analyzed for enzyme activity and protein concentration.

It was necessary for each sample to contain the same amount

of Triton X-100 because concentrations above 0.1% (w/v) had

an inhibitory effect on the enzyme (Figure 9). By adjusting

the detergent concentration to 0.5% it was possible to

compare enzyme activities of different samples.

Protein determinations were of high precision; however,

there was a high uncertainty in their accuracy. This was

because results obtained using the Coomassie blue protein

assay depend on the composition of the protein (Bradford,

1976). Much of the uncertainty could be eliminated by using

appropriate blanks to account for the sample matrix. For

example, Coomassie blue reacts with Triton X-100 as well as

protein. In order to use this method to monitor gel

filtration fractions, blanks consisting of the gel

filtration buffer were required. The background in the

presence of 1.0% detergent was relatively high; however,

this method was still preferable to monitoring the

































Figure 9. Triton X-100 concentration versus catalytic
activity of a-terpineol dehydratase. (Buffer
consisted of 10 mM HEPES, pH 7.0. Error bars
represent standard deviations, n = 4.)








110


100





- 90
o g






(I)
80





70 .-





60





50 -
0.0 1.0 2.0 3.0 4.0 5.0

Triton X-100 (% w/v)







67
absorbance (280 nm) of the gel filtration eluent. Triton

X-100 has a very high absorptivity at this wavelength.

Uncertainty associated with using bovine serum albumin as

the standard could not be eliminated, since this would

require using purified enzyme as the standard.

Results of the fractionation of the enzyme using

Spectra/Gel AcA 44 chromatography as the final purification

step are given in Table 3. The highest degree of

purification was obtained after solubilization of the enzyme

(5.0 fold). The final degree of purification depended on

the amount of particulate-associated enzyme recovered from

the 15,000 x g supernatant. Nearly 100% of the enzyme

activity was recovered after gel filtration; however, the

degree of purification obtained was only about two-fold over

the solubilized enzyme. Despite the low purification fold,

gel filtration removed much of the pigmented material and

appeared to lower the viscosity of the enzyme solution.

Results of the fractionation of the enzyme using

Spectra/Gel AcA 22 chromatography as the final purification

step are given in Table 4. Again, the highest degree of

purification was obtained after solubilization of the enzyme

(6.5 fold). The purification factor after gel filtration on

AcA 44 could not be accurately determined because the pooled

fractions contained an excessively high amount of Triton

X-100. This caused a high estimation of the protein

concentration. Inflated protein concentration values in

turn caused the calculated specific activities to appear


















.4
01
9-i

0
O



P4

0








N
a)



er






44






0

r,







0
0)
-)





a




0(


0



-sI


>o










.4 4. 00
S0





4Q)






0 >i.
44-17 C


-. 4 .
()341 0 0










410

.r4











C fi
00











O 0



0
.0



0.r


















S.'
0z


0
0
+1






0
0
H







0
0
+1
0
o
*






0\





0
+1
H

















0)
+1-
0,



H
o
+1







0\
H


.4'
H
0 '-0
0
0
+1 0
Nj +1
.4' Lo
(1) Lo

0 0


tU a)


U 0
I X
a) X M



M N
SH N


S+I
0
%D +1
N- N
* LA
cM in


co m oC







mr o
.n H 0
( 1 H 'O
~ CN (


a)



Ln
*





.U


0
-r 4



<-s













M .
00

w44'



4 -














,QM
0



."








'1








IV
40








0
0

H0

a)0



M04














>1


0
O

0

4.


N
4)


4-
0)



0

S-
0
4)












-L
I








el
0


0




Oi
o
0)


0
0)

5-I
-)

0)

-*
.4l
0,
cd
-H
&r


0>

40



H 7 "


rl -P 0
V 04o 4







4J

u>
0









**-1 *
o 04
--
VI

4-)










U


*cJ.
0







.>
O 0
S









0.
uO


0 1o
0 0
H H
*-4 .-


C*
0










*44








'r-4
0



140





















00
eI!e




































0
H0



















0

0
S'
O














Oa
t o
89

















k^0
<0OQ
O^2r
Q)'7

2^~


0









4)
04


0


























$.4
0






























41




O O

4J 4-)
-t -,fu
So
c



0)



0








































ON
4L
0)




0)




0(















0 0

0a 0


c c











0) 0

0 0









lower than the actual values. The main disadvantage of AcA

22 gel filtration chromatography was that the total volume

of fractions containing enzyme activity was about double

that from AcA 44 gel filtration chromatography. This meant

additional time was required to concentrate the fractions

and reduce the detergent concentration.

Characterization of a-Terpineol Dehydratase

Enzyme-catalyzed dehydration of a-terpineol to limonene

could not demonstrated. In fact, no change in limonene

concentration could be detected in the assay medium even

after 20 hr incubation of the enzyme with 50 mM racemic

a-terpineol or 5 mM (4R)-(+)-a-terpineol. The kinetic

properties of the enzyme were therefore determined only for

the hydration of limonene to a-terpineol. Furthermore,

(4R)-(+)-limonene was used as the substrate for all enzyme

assays, except for stereospecificity/stereoselectivity

studies.

Enzyme Nomenclature

It was decided that the enzyme would be named

a-terpineol dehydratase even though the dehydration of

a-terpineol to limonene could not be demonstrated. This

name was chosen because it was most descriptive of the

reaction. It is obvious that dehydration of a-terpineol

leads only to limonene. The name limonene hydratase was not

chosen because it is ambiguous in regards to which double

bond of limonene is hydrated. The name a-terpineol synthase

was not chosen because it describes only the product.








Molecular Weight

Initial attempts to determine the native molecular

weight of a-terpineol dehydratase involved nondenaturing

polyacrylamide gel electrophoresis (ND-PAGE). The method of

Doerner and White (1990) was used except that 0.1 or 1.0%

(w/v) Triton X-100 was included in all gels and buffers. In

0.1% detergent the sample proteins were unable to migrate

through the separating gels. In order to increase the

mobility of the proteins, 1.0% detergent was used. Several

components of the enzyme solution were partially resolved

with ND-PAGE in 1.0% detergent. Gels were composed of 5% or

6% acrylamide (with stacking gels composed of 4%

acrylamide). Gels were prepared from an acrylamide stock

solution containing 30%T and 2.7%C. It was difficult to

distinguish most of the protein bands because the gel

backgrounds were very dark due to the high concentration of

detergent. No enzyme activity was detected on either gel;

therefore it was not possible to identify the enzyme band.

It was not surprising that a-terpineol dehydratase could not

be separated by ND-PAGE, since the method is generally not

applicable to hydrophobic membrane proteins (Tzagoloff and

Penefsky, 1971).

The molecular weight of native a-terpineol dehydratase

in the presence of 1.0% (w/v) Triton X-100 was determined by

gel filtration. A profile for Sepharose CL-6B gel

filtration chromatography of a-terpineol dehydratase with

1.0% (w/v) Triton X-100 in the elution buffer is shown in







72

Figure 10. The linear fractionation range of Sepharose

CL-6B is 10,000-4,000,000 daltons. Enzyme activity eluted

as two peaks, as was also observed on Spectra/Gel AcA 22.

Molecular weights of the two forms of a-terpineol

dehydratase were estimated by comparing their VJ/V (where Ve

is elution volume of sample and Vo is void volume of column)

values with a calibration curve of molecular weight versus

Ve/V for protein standards (Figure 11). Results (Table 5)

suggest that a-terpineol dehydratase existed as two forms in

1.0% (w/v) Triton X-100; a monomer with an apparent

molecular weight of 94,500 daltons, and a dimer with an

apparent molecular weight of 206,500 daltons. Solubilized

membrane enzymes often exist as detergent-enzyme complexes

(Nalecz et al., 1986). It is possible that molecular

weights determined by this technique are those of detergent-

enzyme complexes and are not necessarily the actual

molecular weights of the enzyme monomer and dimer.

Several enzyme fractions were analyzed by SDS-PAGE

(Figure 12) to determine their protein subunit composition.

Molecular weights of protein subunits were determined by

comparing their migration distances with a calibration curve

of molecular weight versus migration distance for protein

standards (Figure 13). At least three bands were enriched

during the purification of the enzyme, corresponding to

polypeptides with molecular weights of 92,000, 38,000, and

28,000 daltons. The 92,000 dalton polypeptide had the

highest molecular weight of any other polypeptide in the

































Figure 10. Sepharose CL-6B gel filtration chromatography of
a-terpineol dehydratase. (Elution buffer
consisted of 10 mM HEPES, pH 7.0, 1.0% (w/v)
Triton X-100, 0.2 mM DTE, and 0.02% (w/v) sodium
azide.)































9



.,
*

0?
0i




I I I I~~J ~ I I I I


i I J I I1 1 1
5.0 10.0 15.0 20.0

Elution Volume (mL)


I 2
25.0


1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00 --
0.0


0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
).0


30


' '


































Figure 11. Calibration curve for Sepharose CL-6B column.
(Values represent means, n = 2.)








106



5x105





>


0) 10

5 105


o 5x104



Log Y -2.01(X) + 8.27
XSE= 0.08, YSE = 0.04
R Squared = 0.995



104 I I I I I I I I I
1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90

V/Vo, x








TABLE 5

Results of the molecular weight determination of native
a-terpineol dehydratase in 1.0% (w/v) Triton X-100 by
Sepharose CL-6B gel filtration chromatography


Peak Number Ve/Vo, Molecular Weight
(daltons)

1 1.4690.013b 206,5001800b

2 1.6380.003 94,500200


'V. = elution volume of sample, Vo = void volume of column
average standard deviation (n = 2)

























Figure 12. SDS-PAGE gradient (8-18%) gel of enzyme
fractions. [Lane 1, 10 AL of 1:100 diluted low
molecular weight standards. Lane 2, 10 gL of
recovered particulate-associated enzyme (0.25
mg-mL'' protein). Lane 3, 10 gL of solubilized
enzyme (0.25 mg-mL'" protein). Lane 4, 10 ML of
concentrated AcA 44 gel filtration fractions
(0.25 mg-mL-1 protein). Lane 5, 10 AL of 1:100
diluted high molecular weight standards.
Molecular weight standards were as follows:

a. Myosin (MW = 200,000)
b. E. coli B-galactosidase (MW = 116,250)
c. Rabbit muscle phosphorylase b (MW = 97,400)
d. Bovine serum albumin (MW = 66,200)
e. Hen egg white ovalbumin (MW = 45,000)
f. Bovine carbonic anhydrase (MW = 31,000)
g. Soybean trypsin inhibitor (MW = 21,500)
h. Hen egg-white lysozyme (MW = 14,400).]






79

















123 4 5





S ~-~
A b
c

S-d

e e

f-
h -
*"i'z ^"' '- W*



































Figure 13. Calibration curve for SDS-PAGE gradient (8-18%)
gel.









3X 105


2X 10-


5-



105



7X 104-



5X 104-


3X 10-


3 X 10


2X 104







104


0




















o





Log Y = -0.0184(X) + 5.793

XSE= 0.0005, YSE= 0.028
R Squared = 0.996


r I I I


20 30 40


50 60


70 80


Distance, X(mm)


Si
c*


(U
0)



0
0
j)
O







82

fractions and was essentially the same size as the native

a-terpineol dehydratase monomer. This implies that at least

some portion of the native monomer did not fractionate into

smaller subunits in SDS denaturing conditions. In order to

provide conclusive evidence this band represents a-terpineol

dehydratase, SDS-PAGE analysis of the purified enzyme would

be required.

Isoelectric Point

The isoelectric point (pI) of a protein is the pH at

which it has no net charge. One of the easiest and fastest

methods for determining the pi of a protein is by

isoelectric focusing (IEF), which involves setting up a pH

gradient (using ampholytes) and allowing the protein to

migrate in an electric field to a point in the system where

the pH equals its pI. The pi of a-terpineol dehydratase was

determined by agarose IEF in the presence of 1.0% (w/v)

Triton X-100 and 2.5% (w/v) ampholytes (Figure 14). Agarose

was used as the stabilizing medium instead of polyacrylamide

because of its greater porosity. Greater porosity was

required so that the high molecular weight proteins could

migrate unhindered. The IEF conditions used were suitable

for analyzing any protein with a pi between 3 and 10. The

pi of a-terpineol dehydratase was determined by comparing

its migration distance with a calibration curve of pi versus

migration distance for protein standards (Figure 15).

Enzyme activity was found throughout most of the gel, with

the majority being located in a zone where there were




























Figure 14.


Agarose IEF gel of partially purified
a-terpineol dehydratase in 1.0% (w/v) Triton
X-100 and 2.5% (w/v) Servalyte 3-10 ampholytes.
[Middle lane, 20 pL (50 Ag protein) enzyme
solution dialyzed in 1.0% glycine, pH 7.0,
containing 1.0% (w/v) Triton X-100. Outside
lanes, 10 PL of 1:4 diluted IEF standards.
IEF standards were as follows:

a. Phycocyanin (pI = 4.65)
b. B-Lactoglobulin B (pI = 5.10)
c. Bovine carbonic anhydrase (pI = 6.00)
d. Human carbonic anhydrase (pI = 6.50)
e. Human hemoglobin A (pI = 7.10)
f. Lentil lectin, 3 bands (pI = 7.80, 8.10,
8.20)]






84













4% f
i -a. b. c d. .
C- 0.2 g j "




% I I II 11l
0.0




1 2 3 4 5 6 7 8 9 10 11 12

Fraction Number

































Figure 15. Calibration curve for agarose IEF gel. (Values
represent means, n = 2.)















Y = 20.5(X) 94.4

XSE= 1.2, YE= 4.2

R Squared = 0.980


5I I I
5.0 5.5 6.0 6.5


Si I I I


7.0 7.5 8.0 8.5
7.0 7.5 8.0 8.5


pl, X


80.0


70.0




60.0


50.0




40.0




30.0


G)



(0


20.0


10.0


0.0 1
4.5







87

several protein bands. This zone actually represented the

0.75 mm gel fraction which had the highest activity. The

diffusion of enzyme activity throughout most of the gel was

probably due to the association of the enzyme with several

ampholyte components, those species having combined pi

values different from that of the native enzyme (Scopes,

1987). For the enzyme solution which was dialyzed against

1.0% glycine, the zone of highest activity was composed of

proteins with pi values between 6.5 and 6.8. The band of

highest intensity in this zone had a pi of 6.6. For the

enzyme solution which was dialyzed against distilled water,

the zone of highest activity was composed of proteins with

pi values between 6.0 and 6.8. The band of highest

intensity in this zone also had a pi of 6.6. It was

concluded, by comparing the overlap of the zones of highest

activity from these two experiments, that the pi of

a-terpineol dehydratase was between 6.5 and 6.8. There was

not enough evidence to determine which band actually

represented a-terpineol dehydratase. Such a determination

would require IEF of the purified enzyme.

Activity in Organic Solvents

Determination of the kinetic properties of an enzyme

becomes complicated when the substrate is insoluble in the

medium containing the enzyme. Indeed, classical enzyme

kinetic theory assumes that both enzyme and substrate(s) are

soluble in the same medium. Therefore, the potential of

using water-miscible organic solvents to dissolve limonene

in the enzyme reaction medium was examined.







88
Solvents used in the experiments were carefully

selected using the criterion of Khmelnitsky et al. (1988).

These researchers stated that hydrophobic interactions play

the dominant role in maintaining the catalytically active

conformation of enzymes. Thus, the most favored

conformation would be produced by solvents that can replace

water in the hydration shell of an enzyme molecule without

significantly distorting hydrophobic interactions (i.e.

solvents would maintain solvophobic interactions).

Ray (1971) classified organic solvents according to

their capacity for solvophobic interactions. Solvents were

classified into three groups, for example: (i) water,

glycerol, ethylene glycol, aminoethanol, and formamide, (ii)

methyl formamide and dimethyl formamide; and (iii) methanol,

ethanol, and toluene. According to Ray (1971), solvophobic

interactions are best realized in solvents of group (i),

much less so in solvents of group (ii), and are practically

absent in solvents of group (iii). This is because the

solvents of group (i) contain at least two groups capable of

forming hydrogen bonds. Among the solvents in class (i),

water and glycerol have the highest capacity for solvophobic

interactions.

Effect of several group (i) and (ii) solvents on

a-terpineol dehydratase activity is shown in Figure 16. The

effect of glycerol was examined for comparison purposes

only, since limonene is scarcely more soluble in glycerol

than in water. a-Terpineol dehydratase activity decreased

































Figure 16. Effect of glycerol, formamide, and N,N-dimethyl-
formamide concentration on the activity of
a-terpineol dehydratase. (Error bars represent
standard deviations, n = 4.)




Full Text

PAGE 1

,62/$7,21 $1' &+$5$&7(5,=$7,21 2) $/3+$7(53,1(2/ '(+<'5$7$6( )520 3VHXGRPRQDV JODGLROL E\ .(,7+ 5 &$':$//$'(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 ,W KDV EHHQ D SULYLOHJH DQG SOHDVXUH WR KDYH VWXGLHG IRU WKH SDVW ILYH \HDUV XQGHU WKH GLUHFWLRQ RI 3URIHVVRU 5REHUW %UDGGRFN YHU\ PXFK DSSUHFLDWH KLV SDWLHQFH JXLGDQFH DQG VXSSRUW ZLVK WR DFNQRZOHGJH WKH RWKHU PHPEHUV RI P\ JUDGXDWH FRPPLWWHH 'U 0XUDW %DODEDQ 'U 0LFNH\ 3DULVK 'U *HRUJH 6DGOHU DQG 'U 5LFKDUG
PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LL /,67 2) 7$%/(6 9 /,67 2) ),*85(6 YL $%675$&7 L[ ,1752'8&7,21 5(9,(: 2) /,7(5$785( /LPRQHQH 3K\VLFDO 3URSHUWLHV 3URGXFWLRQ D7HUSLQHRO 3K\VLFDO 3URSHUWLHV 3URGXFWLRQ %LRWUDQVIRUPDWLRQ RI /LPRQHQH %DFWHULD )XQJL 3ODQWV (Q]\PDWLF 3URGXFWLRQ RI )ODYRUV DQG $URPDV +\GURODVHV 'HK\URJHQDVHV DQG 5HGXFWDVHV (Q]\PDWLF&DWDO\]HG (OLPLQDWLRQV DQG $GGLWLRQV RI :DWHU .LQHWLFV 1RPHQFODWXUH 6ROXELOL]DWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PHV 0$7(5,$/6 $1' 0(7+2'6 &KHPLFDOV 0LFURELRORJ\ /LTXLG 0LQHUDO 0HGLXP 3UHSDUDWLRQ (QXPHUDWLRQ RI %DFWHULD *URZWK DQG &ROOHFWLRQ RI %DFWHULD $QDO\WLFDO 3URWHLQ 'HWHUPLQDWLRQ (Q]\PH $VVD\V *DV &KURPDWRJUDSK\ LLL

PAGE 4

(Q]\PH 3XULILFDWLRQ %XIIHU 3UHSDUDWLRQ ,VRODWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PH 6XFURVH *UDGLHQW &HQWULIXJDWLRQ 6ROXELOL]DWLRQ RI (Q]\PH *HO )LOWUDWLRQ &KURPDWRJUDSK\ &RQFHQWUDWLRQ RI *HO )LOWUDWLRQ )UDFWLRQV 5HPRYDO RI 7ULWRQ ; E\ $IILQLW\ &KURPDWRJUDSK\ (Q]\PH &KDUDFWHUL]DWLRQ 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ ,VRHOHFWULF )RFXVLQJ S+ 2SWLPXP DQG 6WDELOLW\ 7HPSHUDWXUH 2SWLPXP DQG 6WDELOLW\ 6WHUHRVSHFLILFLW\ DQG 6WHUHRVHOHFWLYLW\ 5(68/76 $1' ',6&866,21 0LFURELRORJ\ ,VRODWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PH (Q]\PH VROXELOL]DWLRQ *HO )LOWUDWLRQ &KURPDWRJUDSK\ 3DUWLDO 3XULILFDWLRQ RI (Q]\PH &KDUDFWHUL]DWLRQ RI D7HUSLQHRO 'HK\GUDWDVH (Q]\PH 1RPHQFODWXUH 0ROHFXODU :HLJKW ,VRHOHFWULF 3RLQW $FWLYLW\ LQ 2UJDQLF 6ROYHQWV S+ 2SWLPXP DQG 6WDELOLW\ 7HPSHUDWXUH 2SWLPXP DQG 6WDELOLW\ ,QLWLDO 9HORFLW\ (IIHFW RI 7ULWRQ ; RQ DQG 9 P 6WHUHRVSHFLIFLW\ DQG 6WHUHRVHOHFWLYLW\ &21&/86,216 $33(1',; 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

/,67 2) 7$%/(6 7DEOH 3DJH &HOO GHQVLW\ DQG HQ]\PH DFWLYLW\ RI 3 JODGLROL DV D IXQFWLRQ RI FXOWXUH DJH $PRXQW RI HQ]\PH DFWLYLW\ LQ SDUWLFXODWH IUDFWLRQ DV D IXQFWLRQ RI H[WHQW RI FHOO GLVUXSWLRQ )UDFWLRQDWLRQ RI DWHUSLQHRO GHK\GUDWDVH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ )UDFWLRQDWLRQ RI DWHUSLQHRO GHK\GUDWDVH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ 5HVXOWV RI WKH PROHFXODU ZHLJKW GHWHUPLQDWLRQ RI QDWLYH DWHUSLQHRO GHK\GUDWDVH LQ b ZYf 7ULWRQ ; E\ 6HSKDURVH &/% JHO ILOWUDWLRQ FKURPDWRJUDSK\ 5HVXOWV RI OLQHDU UHJUHVVLRQ DQDO\VHV RI GRXEOH UHFLSURFDO Y YHUVXV >6@f /LQHZHDYHU%XUN SORWV REWDLQHG DW YDULRXV 7ULWRQ ; FRQFHQWUDWLRQV 5HODWLYH SHUFHQW FRQFHQWUDWLRQ RI DWHUSLQHRO HQDQWLRPHUV DV D IXQFWLRQ RI WLPH IRU WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW r& Y

PAGE 6

/,67 2) ),*85(6 )LJXUH 3DJH 5HDFWLRQ VHTXHQFH RI SDWKZD\ IRU WKH PHWDEROLVP RI OLPRQHQH E\ 3VHXGRPRQDV SXWLGD 6ROXELOL]DWLRQ DQG SXULILFDWLRQ RI SDUWLFXODWHDVVRFLDWHG HQ]\PHV XVLQJ GHWHUJHQW VROXWLRQV *URZWK FXUYH RI 3 JODGLROL DW r& LQ S+ OLTXLG PLQHUDO PHGLXP FRQWDLQLQJ b YYf OLPRQHQH 6XFURVH JUDGLHQW FHQWULIXJDWLRQ RI SDUWLFXODWHDVVRFLDWHG HQ]\PH 3ORW RI 7ULWRQ ; FRQFHQWUDWLRQ YHUVXV GHJUHH RI VROXELOL]DWLRQ RI SURWHLQ DQG HQ]\PH 3ORW RI VRGLXP WULFKORURDFHWDWH FRQFHQWUDWLRQ YHUVXV GHJUHH RI VROXELOL]DWLRQ RI SURWHLQ DQG HQ]\PH LQ b ZYf 7ULWRQ ; 6SHFWUD*HO $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI VROXELOL]HG DWHUSLQHRO GHK\GUDWDVH XVLQJ WZR FRQFHQWUDWLRQV RI 7ULWRQ ; LQ WKH HOXWLRQ EXIIHU Df b ZYf 7ULWRQ ; DQG Ef b ZYf 7ULWRQ ; 6SHFWUD*HO $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI VROXELOL]HG DWHUSLQHRO GHK\GUDWDVH 7ULWRQ ; FRQFHQWUDWLRQ YHUVXV FDWDO\WLF DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH 6HSKDURVH &/% JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI DWHUSLQHRO GHK\GUDWDVH &DOLEUDWLRQ FXUYH IRU 6HSKDURVH &/% FROXPQ YL

PAGE 7

6'63$*( JUDGLHQW bf JHO RI HQ]\PH IUDFWLRQV &DOLEUDWLRQ FXUYH IRU 6'63$*( JUDGLHQW bf JHO $JDURVH ,() JHO RI SDUWLDOO\ SXULILHG DWHUSLQHRO GHK\GUDWDVH LQ b ZYf 7ULWRQ ; DQG b ZYf 6HUYDO\WH DPSKRO\WHV &DOLEUDWLRQ FXUYH IRU DJDURVH ,() JHO (IIHFW RI JO\FHURO IRUPDPLGH DQG 11GL PHWK\OIRUPDPLGH FRQFHQWUDWLRQ RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH (IIHFW RI SURSDQRO DQG DFHWRQLWULOH FRQFHQWUDWLRQ RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH (IIHFW RI HWKDQRO FRQFHQWUDWLRQ RQ DFWLYLW\ DQG VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH $FWLYLW\ FXUYH DFWLYLW\ YHUVXV HWKDQRO FRQFHQWUDWLRQ 6WDELOLW\ FXUYH DFWLYLW\ DIWHU UHPRYDO RI LQGLFDWHG HWKDQRO FRQFHQWUDWLRQ (IIHFW RI S+ RQ DFWLYLW\ DQG VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH $FWLYLW\ FXUYH DFWLYLW\ YHUVXV S+ 6WDELOLW\ FXUYH DFWLYLW\ DW S+ DIWHU r& SUHLQFXEDWLRQ RI WKH HQ]\PH DW LQGLFDWHG S+ YDOXHV (IIHFW RI WHPSHUDWXUH RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH Df SORW RI DFWLYLW\ YHUVXV WHPSHUDWXUH DQG Ef $UUKHQLXV SORW RI r& DFWLYLW\WHPSHUDWXUH GDWD 7HPSHUDWXUH VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ DW r& DIWHU SUHLQFXEDWLQJ HQ]\PH DW LQGLFDWHG WHPSHUDWXUHV IRU PLQ )RUPDWLRQ RI DWHUSLQHRO YHUVXV WLPH IRU WKUHH FRQFHQWUDWLRQV RI DWHUSLQHRO GHK\GUDWDVH DW r& DQG P0 OLPRQHQH ,QLWLDO YHORFLW\ DV D IXQFWLRQ RI DWHUSLQHRO GHK\GUDWDVH FRQFHQWUDWLRQ DW & DQG P0 OLPRQHQH ,OO YLL

PAGE 8

(IIHFW RI YDU\LQJ WKH FRQFHQWUDWLRQ RI 7ULWRQ ; RQ +HQUL0LFKDHOLV0HQWHQ Y YHUVXV >6@f FXUYHV IRU DWHUSLQHRO GHK\GUDWDVH DW r& /LQHZHDYHU%XUN GRXEOH UHFLSURFDO Y YHUVXV >6@f SORWV RI WKH GDWD LQ )LJXUH IRU OLPRQHQH FRQFHQWUDWLRQV IURP P0 WR P0 *& SURILOH RI WKH FKDQJH LQ FRQFHQWUDWLRQ RI OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW r& &KDQJH LQ FRQFHQWUDWLRQ RI OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW & )RUPDWLRQ RI DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW & 6WHUHRVSHFLILFLW\ DQG VHOHFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH YLLL

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ ,62/$7,21 $1' &+$5$&7(5,=$7,21 2) $/3+$7(53,1(2/ '(+<'5$7$6( )520 3VHXGRPRQDV JODGLROL E\ .HLWK 5 &DGZDOODGHU 'HFHPEHU &KDLUPDQ 5 %UDGGRFN 0DMRU 'HSDUWPHQW )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ 7KH HQ]\PHFDWDO\]HG K\GUDWLRQ RI WKH FLWUXV E\n SURGXFW OLPRQHQH WR WKH LPSRUWDQW IODYRU DQG DURPD FKHPLFDO DWHUSLQHRO ZDV LQYHVWLJDWHG 3DUWLFXODWH DVVRFLDWHG DWHUSLQHRO GHK\GUDWDVH ZDV UHFRYHUHG IURP 3VHXGRPRQDV JODGLROL VROXELOL]HG DQG SDUWLDOO\ SXULILHG XVLQJ GHWHUJHQW H[WUDFWLRQ DQG JHO ILOWUDWLRQ FKURPDWRJUDSK\ 5HVXOWV RI JHO ILOWUDWLRQ FKURPDWRJUDSK\ VXJJHVWHG WKDW DWHUSLQHRO GHK\GUDWDVH H[LVWHG LQ WZR VROXEOH IRUPV LQ b ZYf 7ULWRQ ; D PRQRPHU DQG GLPHU ZLWK DSSDUHQW PROHFXODU ZHLJKWV RI DQG GDOWRQV UHVSHFWLYHO\ 6'6SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV UHYHDOHG WKDW D GDOWRQ SRO\SHSWLGH ZDV HQULFKHG GXULQJ SXULILFDWLRQ RI WKH HQ]\PH $FWLYLW\ RI DWHUSLQHRO L[

PAGE 10

GHK\GUDWDVH ZDV ORZ LQ QRQDTXHRXV VROYHQWV 7KH UHDFWLRQ ZDV QRW UHDGLO\ UHYHUVLEOH VLQFH HQ]\PHFDWDO\]HG GHK\GUDWLRQ RI DWHUSLQHRO WR OLPRQHQH FRXOG QRW EH GHPRQVWUDWHG HYHQ LQ PHGLD ZLWK UHGXFHG ZDWHU FRQFHQWUDWLRQ D7HUSLQHRO GHK\GUDWDVH ZDV FKDUDFWHUL]HG LQ EXIIHUV FRQWDLQLQJ b ZYf 7ULWRQ ; ,Q P0 0(6 P0 %,675,6 3523$1( EXIIHU WKH S+ RSWLPXP ZDV DQG WKH VWDELOLW\ RSWLPXP ZDV S+ 7KH SL RI WKH HQ]\PH ZDV EHWZHHQ DQG 7KH WHPSHUDWXUH RSWLPXP DW S+ ZDV r& LQ P0 +(3(6 EXIIHU 8VLQJ WHPSHUDWXUHDFWLYLW\ GDWD IRU r& (D DQG 4 RI DWHUSLQHRO GHK\GUDWDVH ZHUH GHWHUPLQHG WR EH s N-PROn DQG s UHVSHFWLYHO\ $FWLYLW\ ZDV LQKLELWHG E\ 7ULWRQ ; 7KH HIIHFWV ZHUH DQ LQFUHDVH LQ DSSDUHQW .P DQG GHFUHDVH LQ DSSDUHQW 9A $YHUDJH DSSDUHQW .P RI DWHUSLQHRO GHK\GUDWDVH ZDV s P0 LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; D7HUSLQHRO GHK\GUDWDVH VWHUHRVSHFLILFDOO\ FDWDO\]HG WKH K\GUDWLRQ RI 5ffOLPRQHQH WR 5ffDWHUSLQHRO RU 6ffOLPRQHQH WR 6ffDWHUSLQHRO 7KH HQ]\PH ZDV DOVR VWHUHRVHOHFWLYH VLQFH WKH UDWH RI K\GUDWLRQ RI 5ffOLPRQHQH ZDV DSSUR[LPDWHO\ WHQ WLPHV IDVWHU WKDQ WKH UDWH RI K\GUDWLRQ RI 6ffOLPRQHQH ,VRODWLRQ DQG FKDUDFWHUL]DWLRQ RI DWHUSLQHRO GHK\GUDWDVH KDV QRW EHHQ SUHYLRXVO\ UHSRUWHG 5HVXOWV RI WKLV VWXG\ ZLOO LQFUHDVH WKH XQGHUVWDQGLQJ RI [

PAGE 11

PLFURELRORJLFDO K\GUDWLRQV RI PRQRWHUSHQHV &RQVLGHUDEOH HFRQRPLF SRWHQWLDO H[LVWV VLQFH WKH XVH RI DWHUSLQHRO GHK\GUDWDVH WR SURGXFH SXUH DWHUSLQHRO LQFUHDVHV WKH YDOXH RI OLPRQHQH E\ b 7KLV LPSRUWDQW QDWXUDO SURFHVV KDV DQ DGYDQWDJH RYHU D FKHPLFDO V\QWKHVLV RI EHLQJ ERWK VWHUHRn VHOHFWLYH DQG VSHFLILF [L

PAGE 12

,1752'8&7,21 ,Q UHFHQW \HDUV WKHUH KDV EHHQ LQFUHDVLQJ FRQVXPHU SUHIHUHQFH IRU IRRG SURGXFWV FRQWDLQLQJ QDWXUDO IODYRUV RYHU WKRVH FRQWDLQLQJ DUWLILFLDO V\QWKHWLFf IODYRUV 7KLV SUHIHUHQFH KDV OHG WR DQ LQFUHDVHG GHPDQG IRU QDWXUDO IODYRU DQG DURPD FKHPLFDOV %XFKHO :HOVK HW DO f 7KH LQFUHDVHG GHPDQG IRU QDWXUDO IODYRUV KDV LQ WXUQ SODFHG PRUH SUHVVXUH RQ WKH SURGXFWLRQ RI IODYRU DQG DURPD FRPSRXQGV E\ H[WUDFWLRQ SURFHVVHV IURP WUDGLWLRQDO UDZ PDWHULDOV VXFK DV SODQWV 8VH RI WKHVH PDWHULDOV SUHVHQWV VHYHUDO SUREOHPV )RU LQVWDQFH SODQWV RIWHQ FRQWDLQ ORZ FRQFHQWUDWLRQV RI WKH GHVLUHG IODYRU FRPSRXQG WKHUHIRUH PDNLQJ H[WUDFWLRQ H[SHQVLYH )XUWKHUPRUH WKH VXSSO\ PD\ EH VXEMHFW WR VHDVRQDO FOLPDWLF DQG JHRJUDSKLFDO YDULDWLRQ DV ZHOO DV SROLWLFDO DQG VRFLRHFRQRPLF VWDELOLW\ RI WKH SURGXFLQJ UHJLRQV $UPVWURQJ DQG
PAGE 13

QDWXUDO VWDUWLQJ PDWHULDOV %LRWHFKQRORJLFDO RU ELRORJLFDO SURFHVVHV SURFHVVHV LQYROYLQJ WKH XVH RI PLFURRUJDQLVPV SODQW FHOO FXOWXUHV RU HQ]\PHVf RIIHU PDQ\ SRVVLELOLWLHV IRU WKH SURGXFWLRQ RI QDWXUDO IODYRU DQG DURPD FKHPLFDOV ,Q DGGLWLRQ WR WKHLU XVH IRU SURGXFWLRQ RI IODYRU DQG DURPD FRPSRXQGV ELRORJLFDO SURFHVVHV SURYLGH VLPSOH V\VWHPV IRU VWXG\LQJ WKH ELRV\QWKHWLF SDWKZD\V LQYROYHG LQ WKH IRUPDWLRQ RI PDQ\ LPSRUWDQW IODYRUV DQG DURPDV 7KHVH SURFHVVHV KDYH VHYHUDO DGYDQWDJHV RYHU DOWHUQDWH SK\VLFDO RU FKHPLFDO SURFHVVHV WKH PRVW LPSRUWDQW DGYDQWDJH EHLQJ WKHLU DELOLW\ WR FDWDO\]H VSHFLILF UHDFWLRQV WKHUHE\ DYRLGLQJ SRWHQWLDOO\ XQGHVLUDEOH VLGH UHDFWLRQV ZKLFK PD\ RFFXU ZLWK OHVV VSHFLILF SURFHVVLQJ PHWKRGV $QRWKHU DGYDQWDJH LV WKDW ELRORJLFDO SURFHVVHV JHQHUDOO\ FDQ EH DFFRPSOLVKHG XQGHU PLOG FRQGLWLRQV LH DPELHQW WHPSHUDWXUH DWPRVSKHULF SUHVVXUH DQG S+ YDOXHV QHDU f 7KLV DXWRPDWLFDOO\ UHVXOWV LQ ORZHU HQHUJ\ FRQVXPSWLRQ RU GHFUHDVHG VXEVWUDWH DQG SURGXFW GDPDJH 7KH VXLWDELOLW\ RI D SURFHVV IRU SURGXFWLRQ RI IODYRU DQG DURPD FKHPLFDOV GHSHQGV RQ WKH PDUNHW GHPDQG WRWDO XVDJHf FRPPHUFLDO YDOXH SULFHf RI WKH FKHPLFDO DQG WKH WHFKQRORJLFDO VWDWH RI WKH SURFHVV 7KH XVH RI D ELRORJLFDO SURFHVV IRU SURGXFWLRQ RI DWHUSLQHRO IURP OLPRQHQH KDV HFRQRPLF SRWHQWLDO EHFDXVH WKH DQQXDO FRQVXPSWLRQ RI DWHUSLQHRO LV KLJK ZKLOH DW WKH VDPH WLPH LWV SULFH LV KLJKHU WKDQ OLPRQHQH

PAGE 14

7KH PRQRWHUSHQH K\GURFDUERQ OLPRQHQH >OPHWK\O PHWK\OHWKHQ\Of F\FORKH[HQH FKHPLFDO IRUPXOD &4+@ LV XELTXLWRXV LQ WKH SODQW NLQJGRP /LPRQHQH H[LVWV DV ERWK RSWLFDOO\ DFWLYH DQG UDFHPLF PL[WXUHV GLSHQWHQHf /LPRQHQH LV WKH PDLQ FRQVWLWXHQW RI WKH WHUSHQH IUDFWLRQ RI D QXPEHU RI HVVHQWLDO RLOV DPRQJ ZKLFK DUH FLWUXV FDUDZD\ GLOO DQG $PHULFDQ SLQH $UFWDQGHU DF 6LPRQVHQ Df &LWUXV HVVHQWLDO RLOV DUH XQXVXDO EHFDXVH WKH\ FRQWDLQ SXUH 5ffOLPRQHQH DW FRQFHQWUDWLRQV DSSURDFKLQJ b IRU RUDQJH DQG JUDSHIUXLW RLOV 6KDZ f ,Q DGGLWLRQ WR LWV KLJK FKHPLFDO DQG HQDQWLRPHULF SXULW\ OLPRQHQH GHULYHG IURP FLWUXV LV LQ DEXQGDQW VXSSO\ ZLWK PLOOLRQ NLORJUDPV EHLQJ UHFRYHUHG GXULQJ WKH )ORULGD SURFHVVLQJ VHDVRQ $QRQ f /LPRQHQH IURP FLWUXV LV DOVR UHODWLYHO\ LQH[SHQVLYH WKH SULFH EHLQJ DSSUR[LPDWHO\ b ORZHU WKDQ WKH SULFH RI DWHUSLQHRO $QRQ f D7HUSLQHRO >DDWULPHWK\OF\FORKH[HQHOPHWKDQRO FKHPLFDO IRUPXOD &+2@ RFFXUV LQ QDWXUH LQ ERWK RSWLFDOO\ DFWLYH DQG UDFHPLF IRUPV WKH 5ffHQDQWLRPHU KDV EHHQ LGHQWLILHG DV D FRPSRQHQW RI SHWLJUDLQ QHUROL DQG VZHHW RUDQJH RLOV WKH 6ffHQDQWLRPHU RI FDPSKRU RLOV DQG WKH UDFHPLF PL[WXUH RI $PHULFDQ SLQH DQG FDMXSXW RLOV $UFWDQGHU G 6LPRQVHQ Ef D7HUSLQHRO LV RQH RI WKH PRVW FRPPRQO\ XVHG RI DOO IODYRU DQG DURPD FKHPLFDOV ,WV DQQXDO FRQVXPSWLRQ IRU IODYRU SXUSRVHV KDV EHHQ HVWLPDWHG DW RYHU NJ ZKLFK SODFHV LW DPRQJ WKH WRS PRVW FRPPRQO\ XVHG IODYRUV :HOVK HW DO f

PAGE 15

D7HUSLQHRO LV FRPPRQO\ XVHG LQ IODYRUV VXFK DV OHPRQ OLPH QXWPHJ RUDQJH JLQJHU SHDFK DQG VSLFHV $UFWDQGHU Gf 3UHVHQWO\ DWHUSLQHRO LV FRPPHUFLDOO\ DYDLODEOH RQO\ DV D UDFHPLF PL[WXUH ZKLFK LV SULPDULO\ UHFRYHUHG DV D E\n SURGXFW IURP WKH SXOS DQG SDSHU LQGXVWU\ 7KH SURSHUWLHV RI IODYRU DQG DURPD FRPSRXQGV RIWHQ GHSHQG RQ WKHLU RSWLFDO SXULW\ )RU H[DPSOH 6ffFDUYRQH KDV SURSHUWLHV UHVHPEOLQJ FDUDZD\ RLO ZKHUHDV WKH SURSHUWLHV RI 5ff FDUYRQH UHVHPEOH VSHDUPLQW RLO %LRORJLFDO SURFHVVHV DUH XVXDOO\ VWHUHRVSHFLILF WKHUHIRUH LW PD\ EH SRVVLEOH WR SURGXFH SXUH 5ffDWHUSLQHRO IURP 5ffOLPRQHQH E\ XVLQJ WKLV W\SH RI SURFHVV &DGZDOODGHU HW DO f GHPRQVWUDWHG WKDW 3VHXGRPRQDV JODGLROL SURGXFHV SXUH 5f fDWHUSLQHRO IURP 5ffOLPRQHQH KRZHYHU WKH \LHOG RI DWHUSLQHRO ZDV ORZ GXH WR WKH XWLOL]DWLRQ RI OLPRQHQH E\ WKH EDFWHULXP IRU PHWDEROLF SXUSRVHV 2QH ZD\ RI GLUHFWLQJ WKH FRQYHUVLRQ RI OLPRQHQH WRZDUG WKH SURGXFWLRQ RI RQO\ DWHUSLQHRO ZRXOG EH E\ XVH RI DQ LVRODWHG HQ]\PH 6XLWDELOLW\ RI DQ HQ]\PH IRU WKH SURGXFWLRQ RI IODYRU DQG DURPD FKHPLFDOV GHSHQGV RQ LWV SK\VLFDO DQG NLQHWLF SURSHUWLHV ,W LV QHFHVVDU\ WR LVRODWH DQG SXULI\ HQ]\PHV WR UHODWH WKHVH SURSHUWLHV WR LPSRUWDQW SDUDPHWHUV DIIHFWLQJ UHDFWLRQV )RU H[DPSOH VWDELOLW\ RI HQ]\PHV VKRXOG EH UHODWLYHO\ KLJK XQGHU WKH SURFHVV FRQGLWLRQV 7KHVH FRQGLWLRQV PD\ LQFOXGH H[WUHPHV RI S+ DQG WHPSHUDWXUH DV ZHOO DV WKH SUHVHQFH RI VROYHQWV RU RWKHU FRPPRQ SURWHLQ

PAGE 16

GHQDWXUDQWV (Q]\PHV VKRXOG DOVR EH KLJKO\ VSHFLILF IRU WKH UHDFWLRQ RI LQWHUHVW VR WKDW VLGH SURGXFWV DUH PLQLPL]HG :KHQ LW LV GHVLUDEOH WR SURGXFH SXUH HQDQWLRPHUV IURP HQDQWLRPHULFDOO\ SXUH VXEVWUDWHV WKHQ WKH VWHUHRVSHFLILFLW\ RI WKH HQ]\PH LV LPSRUWDQW 6WHUHRVHOHFWLYLW\ LV LPSRUWDQW ZKHQ LQH[SHQVLYH UDFHPLF FRPSRXQGV DUH XVHG DV VXEVWUDWHV LQVWHDG RI PRUH H[SHQVLYH SXUH HQDQWLRPHUV 7KH DERYH GLVFXVVLRQ SDUWLFXODUO\ UHODWHV WR WKH LPSRUWDQFH RI WKLV UHVHDUFK ZKLFK KDV WKH PDMRU REMHFWLYHV RI f WR LVRODWH DQ HQ]\PH IURP 3 JODGLROL ZKLFK FDWDO\]HV WKH K\GUDWLRQ RI OLPRQHQH WR DWHUSLQHRO f WR FKDUDFWHUL]H VRPH RI LWV SK\VLFDO DQG NLQHWLF SURSHUWLHV DQG f WR GHILQH UHDFWLRQ FRQGLWLRQV QHFHVVDU\ IRU SURGXFWLRQ RI SXUH DWHUSLQHRO HQDQWLRPHUV

PAGE 17

/,7(5$785( 5(9,(: /LPRQHQH 3K\VLFDO 3URSHUWLHV /LPRQHQH ): f LV D FRORUOHVV OLTXLG ZLWK ERLOLQJ SRLQW r& &5& f ,W LV SUDFWLFDOO\ LQVROXEOH LQ ZDWHU SSP DW r& 0DVVDOGL DQG .LQJ f VROXEOH LQ DOFRKRO PLVFLEOH ZLWK RLOV EXW LV SRRUO\ VROXEOH LQ SURS\OHQH JO\FRO DQG JO\FHURO $UFWDQGHU Ff 3URGXFWLRQ /LPRQHQH LV SURGXFHG LQ TXDQWLW\ DV ERWK UDFHPLF DQG 5ffOLPRQHQH 5DFHPLF OLPRQHQH FRPPRQO\ UHIHUUHG WR DV GLSHQWHQHf LV LVRODWHG E\ IUDFWLRQDO GLVWLOODWLRQ RI $PHULFDQ 3LQH RLO DQG URVLQ RLOV ,W LV DOVR UHFRYHUHG DV D E\SURGXFW IURP WKH SURGXFWLRQ RI DWHUSLQHRO DQG IURP YDULRXV V\QWKHWLF SURGXFWV PDGH IURP DSLQHQH RU WXUSHQWLQH $UFWDQGHU D 0DWWVRQ f 5ff/LPRQHQH FRPPRQO\ UHIHUUHG WR DV GOLPRQHQHf LV UHFRYHUHG DV D E\SURGXFW IURP WKH PDQXIDFWXUH RI FLWUXV PRODVVHV 0RODVVHV UHIHUV WR WKH FRQFHQWUDWH SURGXFHG IURP WKH SUHVV OLTXRU ZKLFK LV H[SHOOHG IURP FLWUXV ZDVWH UHVLGXHV DIWHU FXULQJ ZLWK VPDOO TXDQWLWLHV RI OLPH 3UHVV OLTXRU ZKLFK FRQWDLQV IURP WR b OLPRQHQH LV QRUPDOO\ SDVVHG WKURXJK SUHKHDWHUV r&f IRU

PAGE 18

SDVWHXUL]DWLRQ DQG VFDOH UHPRYDO DQG IODVKHG DW DWPRVSKHULF SUHVVXUH r&f WR UHFRYHU WKH OLPRQHQH 7KH FRQGHQVDWH b OLPRQHQHf LV SXW LQWR D FORVHG IORUHQWLQHW\SH WDQN ZKLFK DOORZV WKH OLPRQHQH WR IORDW WR WKH WRS RI WKH WDQN ZKHUH LW LV FRQWLQXRXVO\ GHFDQWHG LQWR VWRUDJH WDQNV RU GUXPV .HVWHUVRQ DQG %UDGGRFN )0& f J7HUSLQHRO 3K\VLFDO 3URSHUWLHV D7HUSLQHRO ): f LV D FRORUOHVV VOLJKWO\ YLVFRXV OLTXLG ZLWK PHOWLQJ SRLQW r& DQG ERLOLQJ SRLQW r& &5& f ,W LV VOLJKWO\ VROXEOH LQ ZDWHU SSP DW r& 6HLGHOO f EXW LV VROXEOH LQ DOFRKRO SURS\OHQH JO\FRO DQG PLQHUDO RLO $UFWDQGHU Gf 3URGXFWLRQ D7HUSLQHRO LV SURGXFHG SULPDULO\ LQ UDFHPLF IRUP HLWKHU E\ LVRODWLRQ IURP $PHULFDQ 3LQH RLO RU E\ FKHPLFDO V\QWKHVLV IURP DSLQHQH YLD WHUSLQ K\GUDWH $UFWDQGHU Gf RU GLUHFWO\ WR DWHUSLQHRO E\ K\GUDWLRQ $UFWDQGHU G 0DWWVRQ f 1RQFRPPHUFLDO V\QWKHWLF PHWKRGV IRU WKH SURGXFWLRQ RI DWHUSLQHRO IURP OLPRQHQH LQFOXGH f R[\PHUFXUDWLRQ >DTXHRXV WHWUDK\GURIXUDQ FRQWDLQLQJ +J2$Ff DQG OLPRQHQH@ IROORZHG E\ UHGXFWLRQ ZLWK 1D%+ WR JLYH b DWHUSLQHRO %URZQ HW DO f DQG f K\GUDWLRQ RI 5f fOLPRQHQH XVLQJ FKORURDFHWLF DFLGV WR 5ff DWHUSLQHRO 0DWVXEDUD HW DO f 0HWKRGV LQYROYLQJ DF\FOLF VWDUWLQJ PDWHULDOV LQFOXGH f F\FOL]DWLRQ RI SHQWDQH WULFDUER[\OLF DFLG IROORZHG E\ HVWHULILFDWLRQ YLD

PAGE 19

WKH K\GUR[\HVWHU WR WKH XQVDWXUDWHG HVWHU DQG WKHQ UHDFWLRQ ZLWK *ULJQDUG UHDJHQW WR RWHUSLQHRO DQG f E\ UHDFWLRQ RI LVRSUHQH DQG PHWK\O YLQ\O NHWRQH ZLWK PHWK\O PDJQHVLXP LRGLGH $UFWDQGHU Gf %LRWUDQVIRUPDWLRQ RI /LPRQHQH %LRORJLFDO DSSURDFKHV IRU WKH SURGXFWLRQ RI IODYRU DQG DURPD FRPSRXQGV FDQ EH GLYLGHG LQWR ELRV\QWKHWLF DQG ELRWUDQVIRUPDWLRQ PHWKRGV %LRV\QWKHVLV UHIHUV WR WKH SURGXFWLRQ RI FKHPLFDO FRPSRXQGV E\ FHOO PHWDEROLVP IHUPHQWDWLRQ RU VHFRQGDU\ PHWDEROLVP E\ SODQW RU PLFURELDO FHOOVf ZKHUHDV ELRWUDQVIRUPDWLRQ LV GHILQHG DV WKH XVH RI OLYLQJ FHOOV RU HQ]\PHV WR SHUIRUP VSHFLILF PRGLILFDWLRQV RU FRQYHUVLRQV RI FKHPLFDO FRPSRXQGV :HOVK HW DO f 5HVHDUFK FRQFHUQHG ZLWK WKH PLFURELDO PHWDEROLVP RI WHUSHQHV ZDV LQLWLDWHG E\ %UDGVKDZ HW DO f DQG 6HXEHUW f 6LQFH WKDW WLPH WKHUH KDV EHHQ D JUHDW QXPEHU RI SXEOLFDWLRQV LQ WKLV DUHD 7KHUHIRUH WKLV VHFWLRQ ZLOO EH GHYRWHG WR GLVFXVVLRQ RI WKRVH VWXGLHV LQYROYLQJ WKH ELRWUDQVIRUPDWLRQ RI OLPRQHQH 7HUSHQH IODYRU FRPSRXQGV DUH V\QWKHVL]HG E\ D YDULHW\ RI KLJKHU SODQWV DQG PLFURRUJDQLVPV /RZ \LHOG RI WHUSHQHV SURGXFHG E\ SODQW FHOO FXOWXUHV RU PLFURELDO IHUPHQWDWLRQV LQ DGGLWLRQ WR WKH DEXQGDQFH RI QDWXUDO WHUSHQHV IURP ERWDQLFDO VRXUFHV PDNHV WKH GHYHORSPHQW RI ELRV\QWKHWLF SURFHVVHV IRU IODYRU DQG DURPD WHUSHQH SURGXFWLRQ XQIDYRUDEOH 0LFURRUJDQLVPV DQG HQ]\PHV KDYH WKH JUHDWHVW SRWHQWLDO IRU SURGXFWLRQ RI QDWXUDO WHUSHQH IODYRUV DQG

PAGE 20

DURPDV YLD WUDQVIRUPDWLRQV RI LQH[SHQVLYH QDWXUDO WHUSHQH SUHFXUVRUV WR PRUH YDOXDEOH WHUSHQHV )XUWKHUPRUH PLFUREHV FDQ DFKLHYH KLJKO\ VHOHFWLYH ELRWUDQVIRUPDWLRQV RI UHDGLO\ DYDLODEOH VXEVWUDWHV OHDGLQJ WR SURGXFWV ZKLFK DUH UDUH RU RWKHUZLVH GLIILFXOW WR V\QWKHVL]H 6RPH EDFWHULD DQG IXQJL DUH FDSDEOH RI XWLOL]LQJ WHUSHQHV DV WKHLU VROH VRXUFH RI FDUERQ DQG HQHUJ\ 7HUSHQH ELRWUDQVIRUPDWLRQV DUH PRVW RIWHQ FDUULHG RXW E\ SVHXGRPRQDGV EHFDXVH WKHVH PLFUREHV KDYH WKH DELOLW\ WR V\QWKHVL]H D ZLGH YDULHW\ RI R[\JHQDVHV DQG UHODWHG HQ]\PHV QHFHVVDU\ IRU WKH PHWDEROLVP RI PDQ\ [HQRELRWLFV %DFWHULD DQG IXQJL GLIIHU LQ WKHLU PHWDEROLVP RI OLPRQHQH %DFWHULD DSSHDU WR PHWDEROL]H OLPRQHQH SULPDULO\ E\ SURJUHVVLYH R[LGDWLRQ RI WKH PHWK\O JURXS *HQHUDWLRQ RI VPDOO DPRXQWV RI QHXWUDO SURGXFWV RFFXUV WR VRPH H[WHQW 7KH SXUSRVH RI WKHVH VLGH UHDFWLRQV LV XQNQRZQ VLQFH WKHVH FRPSRXQGV DUH QRW IXUWKHU PHWDEROL]HG )XQJL DWWDFN OLPRQHQH SULPDULO\ E\ K\GUDWLRQ RI WKH GRXEOH ERQG RI WKH LVRSURSHQ\O VXEVWLWXHQW RU E\ HSR[LGDWLRQK\GURO\VLV RI WKH GRXEOH ERQG D7HUSLQHRO DQG GLROV DUH WKH PRVW FRPPRQ SURGXFWV RI IXQJDO PHWDEROLVP RI OLPRQHQH :KHWKHU WKHVH FRPSRXQGV DUH LQWHUPHGLDWHV RU HQG SURGXFWV RI PLQRU SDWKZD\V LV XQFHUWDLQ %DFWHULD 7KH PHWDEROLVP RI OLPRQHQH E\ D VWUDLQ RI 3VHXGRPRQDV SXWLGD ZDV VWXGLHG E\ 'KDYOLNDU DQG %KDWWDFKDU\\D f DQG 'KDYOLNDU HW DO f 7KH EDFWHULXP FRQYHUWHG OLPRQHQH

PAGE 21

LQWR VHYHUDO QHXWUDO DQG DFLGLF SURGXFWV 7KH QHXWUDO SURGXFWV FDUYHRO FDUYRQH GLK\GURFDUYRQH OSPHQWKHQH GLRO FLV DQG WUDQVSPHQWKHQHOGLRO DQG SPHQWKHQ ORORQH ZHUH LQFDSDEOH RI VXSSRUWLQJ WKH JURZWK RU UHVSLUDWLRQ RI WKH EDFWHULXP KRZHYHU WKH DFLGLF SURGXFWV SHULOOLF DFLG K\GUR[\SPHQWKHQRLF DFLG %LVRSURSHQ\O SLPHOLF DFLG DQG GLK\GUR[\OSPHQWKHQ RLF DFLG ZHUH UHDGLO\ PHWDEROL]HG 7KHVH UHVHDUFKHUV SURSRVHG WKDW 3 SXWLGD PHWDEROL]HV OLPRQHQH E\ WKUHH GLVWLQFW SDWKZD\V LQYROYLQJ f DOO\OLF R[\JHQDWLRQ f R[\JHQDWLRQ RI WKH GRXEOH ERQG DQG f SURJUHVVLYH R[LGDWLRQ RI WKH PHWK\O JURXS WR SHULOOLF DFLG ZKLFK VXEVHTXHQWO\ XQGHUJRHV K\GUDWLRQ GHK\GURJHQDWLRQ DQG K\GURO\VLV 7KH UHDFWLRQ VHTXHQFH RI SDWKZD\ LV LOOXVWUDWHG LQ )LJXUH 7KH HQ]\PHV LQ SDWKZD\ ZHUH GHPRQVWUDWHG LQ FHOOIUHH VRQLFDWHV RI WKH EDFWHULXP 7KH 1$'3+ DQG R[\JHQGHSHQGHQW & K\GUR[\ODWLRQ RI OLPRQHQH ZDV VKRZQ WR EH DVVRFLDWHG ZLWK WKH [ J VHGLPHQW RI WKH VRQLFDWHG FHOOV $OO RWKHU HQ]\PHV ZHUH SUHVHQW LQ WKH VXSHUQDWDQW IUDFWLRQ $ F\WRFKURPH 3 PL[HG IXQFWLRQ R[LGDVH V\VWHP ZDV LVRODWHG IURP WKH VDPH RUJDQLVP ZKLFK FDWDO\]HV WKH & K\GUR[\ODWLRQ RI SF\PHQH 0DGK\DVWKD HW DO f 6LPLODULWLHV EHWZHHQ WKH VWUXFWXUHV RI OLPRQHQH DQG SF\PHQH VXJJHVW WKLV F\WRFKURPH 3 V\VWHP RU RQH ZKLFK LV VLPLODU FDWDO\]HV WKH & K\GUR[\ODWLRQ RI OLPRQHQH WR SHULOO\O DOFRKRO

PAGE 22

&22+ /LPRQHQH )LJXUH 3HULOO\O 3HULOO\O 3HULOOLF $OFRKRO $OGHK\GH $FLG 5HDFWLRQ VHTXHQFH RI SDWKZD\ SXWLGD +\GUR[\ $FLG .HWR 0VRSURSHQ\O $FLG 3LPHLLF $FLG &2 IRU WKH PHWDEROLVP RI OLPRQHQH E\ 3VHXGRPRQDV

PAGE 23

$Q 1$'OLQNHG DOFRKRO GHK\GURJHQDVH SHULOO\O DOFRKRO GHK\GURJHQDVH ZDV LVRODWHG IURP 3 XWLGD %DOODO HW DO f 3DUWLDOO\ SXULILHG IROGf HQ]\PH ZDV H[DPLQHG IRU LWV VXEVWUDWH VSHFLILFLW\ DQG FRIDFWRU UHTXLUHPHQW 7KH HQ]\PH ZDV DEVROXWHO\ VSHFLILF WRZDUGV 1$' ZLWK 1$'3 EHLQJ LQDFWLYH 7KH HQ]\PH GHPRQVWUDWHG D EURDG VXEVWUDWH VSHFLILFLW\ 7KH IROORZLQJ VWUXFWXUDO IHDWXUHV RI WKH VXEVWUDWH ZHUH IRXQG WR IDYRU GHK\GURJHQDWLRQ f D SULPDU\ DOFRKRO JURXS SUHIHUDEO\ DOO\OLF WR DQ HQGRF\FOLF GRXEOH ERQG f D VL[PHPEHUHG ULQJ DQG f DQ DON\O VXEVWLWXHQW LQ WKH SDUD SRVLWLRQ $Q DOGHK\GH GHK\GURJHQDVH SHULOO\O DOGHK\GH GHK\GURJHQDVH ZDV DOVR LVRODWHG IURP WKLV RUJDQLVP %DOODO HW DO f 7KH SDUWLDOO\ SXULILHG IROGf HQ]\PH ZDV KLJKO\ VSHFLILF WRZDUGV 1$' ZLWK UHODWLYHO\ OHVV DFWLYLW\ ZLWK 1$'3 %HVLGHV SHULOO\O DOGHK\GH WKLV HQ]\PH VKRZHG DFWLYLW\ RQ VHYHUDO RWKHU DOGHK\GHV 1R VSHFLILF VWUXFWXUDO UHTXLUHPHQWV ZHUH REVHUYHG ZLWK UHVSHFW WR WKH VXEVWUDWH VSHFLILFLW\ RI WKH DOGHK\GH GHK\GURJHQDVH DV FRPSDUHG WR WKDW RI WKH DOFRKRO GHK\GURJHQDVH 7KH PHWDEROLVP RI OLPRQHQH E\ 3VHXGRPRQDV LQFRJQLWD ZDV VWXGLHG E\ 5DPD 'HYL DQG %KDWWDFKDU\\D Df 0DMRU FRQYHUVLRQ SURGXFWV ZHUH SHULOOLF DFLG DQG %LVRSURSHQ\O SLPHOLF DFLG 6PDOO DPRXQWV RI QHXWUDO SURGXFWV ZHUH UHFRYHUHG EXW ZHUH QRW LGHQWLILHG 5DPD 'HYL DQG %KDWWDFKDU\\D Ef GHPRQVWUDWHG WKDW WKH SDWKZD\ RI GHJUDGDWLRQ RI OLPRQHQH E\ WKLV EDFWHULXP RFFXUUHG LQ WKH

PAGE 24

IROORZLQJ VHTXHQFH OLPRQHQH rf SHULOO\O DOFRKRO SHULOOLF DFLG rf LVRSURSHQ\O SL[QHOLF DFLG rrf & + LH VDPH DV SDWKZD\ IRU WKH PHWDEROLVP RI OLPRQHQH E\ 3 SXWLGD VHH )LJXUH f )HUPHQWDWLRQ RI OLPRQHQH E\ DQ HQWHUREDFWHULXP ZDV VKRZQ WR UHVXOW LQ WKH IRUPDWLRQ RI GLK\GURSHULOOLF DFLG SHULOOLF DFLG DQG WUDFHV RI XQLGHQWLILHG QHXWUDO SURGXFWV 'KHUH DQG 'KDYOLNDU f 7KH IRUPDWLRQ RI SHULOOLF DFLG VXJJHVWV WKDW WKLV RUJDQLVP PHWDEROL]HV OLPRQHQH XVLQJ D VLPLODU SDWKZD\ DV 3 SXWLGD &RUYQHEDFWHULXP KYGURFDUERFODVWXV KDV EHHQ UHSRUWHG WR R[LGL]H OLPRQHQH WR FDUYRQH 7DNDJL HW DO f 7KH ODFN RI SURSHU FRQWUROV LH H[SHULPHQWV WR WHVW IRU WKH DXWR[LGDWLRQ RI OLPRQHQHf DQG WKH YHU\ ORZ \LHOG RI FDUYRQH PJ IURP J OLPRQHQH LQ KUf VXJJHVWV WKDW WKH DSSHDUDQFH RI FDUYRQH LQ WKH PHGLXP PD\ KDYH EHHQ GXH WR FKHPLFDO R[LGDWLRQ RI OLPRQHQH &DUYRQH KDV EHHQ VKRZQ WR EH DQ DXWR[LGDWLRQ SURGXFW RI OLPRQHQH %XFNKRO] DQG 'DXQ f &DGZDOODGHU HW DO f GHPRQVWUDWHG WKDW 3VHXGRPRQDV JODGLROL FRQYHUWV 5ffOLPRQHQH LQWR 5ffSHULOOLF DFLG 5ff RFWHUSLQHRO DQG DW OHDVW RQH RWKHU XQLGHQWLILHG DFLGLF SURGXFW D7HUSLQHRO ZDV IRXQG WR EH UHVLVWDQW WR IXUWKHU GHJUDGDWLRQ ZKHUHDV SHULOOLF DFLG ZDV UHDGLO\ GHJUDGHG 7KLV VXJJHVWV WKDW 3 JODGLROL PD\ PHWDEROL]H OLPRQHQH XVLQJ D VLPLODU SDWKZD\ DV WKDW GHVFULEHG IRU 3 SXWLGD

PAGE 25

3 JODGLROL LV QRW WKH RQO\ EDFWHULXP FDSDEOH RI FRQYHUWLQJ OLPRQHQH LQWR DWHUSLQHRO 0XUGRFN HW DO f DQG 0XUGRFN DQG +XQWHU f GHPRQVWUDWHG WKDW LQ VRPH FLWUXV RLO HPXOVLRQV OLPRQHQH FRQFHQWUDWLRQ GLPLQLVKHG LQ GLUHFW SURSRUWLRQ WR DQ LQFUHDVH LQ DWHUSLQHRO FRQFHQWUDWLRQ DV D UHVXOW RI PLFURELDO JURZWK 6HYHUDO RI WKHVH PLFUREHV ZHUH LVRODWHG EXW ZHUH QRW LGHQWLILHG )XQJL &ODGRVSRULXP VSS 7f KDV EHHQ VKRZQ WR FRQYHUW 5f fOLPRQHQH LQWR SXUH 5ffDWHUSLQHRO .UDLGPDQ HW DO f 6LPLODUO\ 3HQLFLOOLXP GLJLWDWXP '60 f ZDV VKRZQ WR SURGXFH 5ffDWHUSLQHRO IURP HLWKHU 5f fOLPRQHQH RU UDFHPLF OLPRQHQH $EUDKDP HW DO f 7KLV FRXOG EH H[SODLQHG E\ WKH H[FOXVLYH K\GUDWLRQ RI 5f fOLPRQHQH (SR[LGDWLRQK\GURO\VLV RI WKH GRXEOH ERQG RI OLPRQHQH OHDGV WR GLROV SPHQWKHQHOGLROVf 0XNKHUMHH HW DO f GHPRQVWUDWHG WKDW &ODGRVSRULXP VSS 7f FRQYHUWV OLPRQHQH WR WUDQVGLRO SOXV D VPDOO DPRXQW RI WKH FRUUHVSRQGLQJ FLVGLRO &RUYQHVSRUD FDVVLLFROD '60 f DQG 'LSORGLD JRVV\SLQD $7&& f ZHUH IRXQG WR EH VWHUHRVSHFLILF IRU WKH FRQYHUVLRQ RI OLPRQHQH WR GLROV 5ffOLPRQHQH ZDV FRQYHUWHG WR WKH ,66fGLRO ZKLOH 6ffOLPRQHQH \LHOGHG WKH O55fGLRO $EUDKDP HW DO $EUDKDP HW DO f

PAGE 26

7KH FRQYHUVLRQ RI OLPRQHQH E\ 3HQLFLOOLXP LWDOLFXP DQG 3 GLTLWDWXP UHVXOWHG LQ ORZ \LHOGV RI GLROV ZLWK UHVSHFW WR WKH RWKHU SURGXFWV LVRODWHG %RZHQ f &LV DQG WUDQVFDUYHRO ZHUH LQ KLJKHVW \LHOG IROORZHG E\ FLV DQG WUDQVSPHQWKDGLHQHORO FDUYRQH SPHQWKHQD GLHQHORO FDUYRQH SPHQWKDGLHQHRO DQG SHULOO\O DOFRKRO UHVSHFWLYHO\ 3ODQWV ,Q DGGLWLRQ WR PLFURRUJDQLVPV LVRODWHG SODQW HQ]\PHV DQG SODQW FHOO FXOWXUHV KDYH EHHQ VKRZQ WR FRQYHUW OLPRQHQH WR PRUH LPSRUWDQW IODYRU FRPSRXQGV .QRUU HW DO f GHVFULEHG WKH ELRWUDQVIRUPDWLRQ RI OLPRQHQH WR FDUYRQH E\ GLOO $QHWKXP TUDYHROHQVf FXOWXUHV 0D[LPXP FDUYRQH SURGXFWLRQ RFFXUUHG ZLWK P0 OLPRQHQH DIWHU GD\V RI WUHDWPHQW 3URORQJHG WUHDWPHQW IRU WR GD\V UHVXOWHG LQ GHJUDGDWLRQ RI FDUYRQH ,W ZDV SURSRVHG WKDW WKLV WHFKQLTXH ZRXOG EH IHDVLEOH IRU D FRQWLQXRXV SURFHVV LQYROYLQJ FRQWLQXRXV SURGXFW UHFRYHU\ 0LFURVRPDO SUHSDUDWLRQV FRQWDLQLQJ OLPRQHQH K\GUR[\ODVH DFWLYLW\ ZHUH LVRODWHG IURP SHSSHUPLQW 0HQWKD SLSHULWDf VSHDUPLQW 0HQWKD VSLFDWDf DQG SHULOOD 3HULOOD IUXWHVFHQVf OHDYHV .DUS HW DO f (DFK PLFURVRPDO SUHSDUDWLRQ JHQHUDWHG RQO\ RQH SURGXFW IURP OLPRQHQH WUDQV LVRSLSHULWHQRO IURP 0 SLSHULWD WUDQVFDUYHRO IURP 0 VSLFDWD DQG SHULOO\O DOFRKRO IURP 3 IUXWHVFHQV 7KHVH FRPSRXQGV RULJLQDWHG IURP K\GUR[\ODWLRQ RI OLPRQHQH DW & & DQG & UHVSHFWLYHO\ 7KH WKUHH K\GUR[\ODVHV KDG DQ

PAGE 27

DEVROXWH UHTXLUHPHQW IRU PROHFXODU R[\JHQ DQG 1$'3+ %RWK 5f f§ DQG 6f fOLPRQHQH ZHUH K\GUR[\ODWHG E\ WKH WKUHH HQ]\PHV (Q]\PDWLF 3URGXFWLRQ RI )ODYRUV DQG $URPDV (Q]\PHV KDYH WUDGLWLRQDOO\ EHHQ XVHG DV SURFHVVLQJ DLGV LQ WKH IRRG LQGXVWU\ 0RVW ZLGHO\ XVHG HQ]\PHV DUH DP\ODVHV JOXFRVH R[LGDVHV SURWHDVHV SHFWLF HQ]\PHV DQG OLSDVHV 5HYLHZV RQ SURGXFWLRQ DQG XWLOL]DWLRQ RI IRRG HQ]\PHV DUH DYDLODEOH :DVVHUPDQ :KLWDNHU f /DUJHVW XVH RI HQ]\PHV IRU IODYRU SURGXFWLRQ LV IRU WKH SURGXFWLRQ RI V\UXSV DQG VZHHWHQHUV 0DQXIDFWXUH RI JOXFRVH V\UXS DQG KLJK IUXFWRVH FRUQ V\UXS LV GRQH VROHO\ E\ HQ]\PDWLF PHDQV 7KLV DFFRXQWV IRU DERXW b RI WKH WRWDO XVDJH RI HQ]\PHV ZRUOGZLGH :HVW f +\GURODVHV GHK\GURJHQDVHV DQG UHGXFWDVHV KDYH GHPRQVWUDWHG WKH JUHDWHVW SRWHQWLDO IRU WKH SURGXFWLRQ RI IODYRU DQG DURPD FRPSRXQGV ([FHOOHQW UHYLHZV RI WKHVH HQ]\PHV DUH DYDLODEOH :HVW :HOVK HW DO f +\GURODVHV +\GURODVHV SHUIRUP UHDFWLRQV VXFK DV HVWHULILFDWLRQV WUDQVHVWHULILFDWLRQV K\GURO\VHV DQG ODFWRQL]DWLRQV LQWHUQDO HVWHU IRUPDWLRQf /LSDVHV HVWHUDVHV DQG SURWHDVHV K\GURO\]H IDW FDUERK\GUDWH DQG SURWHLQ PROHFXOHV UHVSHFWLYHO\ 6RPH RI WKH PRVW SRWHQW IODYRU FRPSRXQGV DUH HVWHUV 1DWXUDO HVWHUV UHWDLO DW PXFK KLJKHU SULFHV WKDQ WKHLU V\QWKHWLF FRXQWHUSDUWV /LSDVHV KDYH EHHQ XVHG WR SHUIRUP VWHUHRVSHFLILF K\GURO\VHV DQG

PAGE 28

HVWHULILFDWLRQV WR \LHOG SXUH RSWLFDOO\ DFWLYH DOLSKDWLF DQG DURPDWLF HVWHUV DOFRKROV DFLGV DQG ODFWRQHV :HOVK f /LSDVHV KDYH EHHQ VKRZQ WR PHGLDWH HVWHULILFDWLRQV DQG WUDQVHVWHULILFDWLRQV LQ RUJDQLF PHGLD &DPERX DQG .OLEDQRY (QJHO HW DO *HUODFK HW DO
PAGE 29

R[LGDVH SHUIRUP WKH R[LGDWLRQ RI DOLSKDWLF DOFRKROV WR WKHLU UHVSHFWLYH DOGHK\GHV $OFRKRO GHK\GURJHQDVH $'+f FDQ SRWHQWLDOO\ EH SURGXFHG LQ FRPPHUFLDO TXDQWLWLHV IURP \HDVWV RU SODQW FHOO FXOWXUHV :HVW f 7KH FRQYHUVLRQ RI JHUDQLRO WR JHUDQLDO VWDQGV RXW DV D W\SLFDO FRQYHUVLRQ ZKLFK FDQ EH PHGLDWHG E\ $'+ /HJR\ HW DO f 7KH PDLQ GUDZEDFN WR XVLQJ R[LGRUHGXFWDVHV LV WKDW WKHVH HQ]\PH UHTXLUH FRIDFWRUV IRU WKHLU FDWDO\WLF IXQFWLRQ &RIDFWRUV PD\ DFW DV HLWKHU FRVXEVWUDWHV RU DFWLYH VLWH SDUWLFLSDQWV )RU PDQ\ FRIDFWRUV HVSHFLDOO\ WKRVH ZKLFK DUH R[LGL]HG RU UHGXFHG GXULQJ WKH UHDFWLRQ WKH LQLWLDO FRVW RI WKH FRIDFWRU SUHYHQWV RQHWLPH XVDJH RQ D ODUJH VFDOH +LJK FRVW UHTXLUHV FRIDFWRU UHF\FOLQJ LI WKH SURFHVV LV WR EH HFRQRPLFDO 5HF\FOLQJ RI 1$'+ FDQ EH DFKLHYHG E\ HOHFWURFKHPLFDO PHDQV RU VXEVWUDWHGULYHQ UHDFWLRQV /HJR\ HW DO 1DNDPXUD HW DO f KRZHYHU FRIDFWRU UHJHQHUDWLRQ UDWHV DUH QRW KLJK HQRXJK IRU FRPPHUFLDO SXUSRVHV 7R H[SDQG WKH UDQJH RI SRVVLEOH SURFHVVHV DQG WR LPSURYH WKH HFRQRPLFV RI FXUUHQW HQ]\PH SURFHVVHV LQFUHDVHG NQRZOHGJH LV QHHGHG FRQFHUQLQJ HQ]\PH LVRODWLRQ DQG FKDUDFWHUL]DWLRQ PHFKDQLVPV RI HQ]\PH DFWLRQ DQG LQFRUSRUDWLRQ RI HQ]\PH SURFHVVHV IRU QDWXUDO IODYRU DQG DURPD SURGXFWLRQ 6SHFLILF QHHGV DUH WR XQGHUVWDQG WKH PHFKDQLVPV RI HQ]\PH DFWLYDWLRQLQDFWLYDWLRQ DQG WR XWLOL]H HQ]\PHV LQ SURFHVVHV DQG UHGR[ UHDFWLRQV UHOHYDQW WR IODYRU SURGXFWLRQ LQFOXGLQJ ORZFRVW SURGXFWLRQ DQG UHF\FOLQJ RI FRIDFWRUV

PAGE 30

(Q]\PH&DWDO\]HG (OLPLQDWLRQV DQG $GGLWLRQV RI :DWHU .LQHWLFV $FRQLWDVH IXPDUDVH HQRODVH DQG FURWRQDVH DUH H[DPSOHV RI HQ]\PHV WKDW FDWDO\]H UHYHUVLEOH GHK\GUDWLRQ K\GUDWLRQ UHDFWLRQV 7KLV W\SH RI UHDFWLRQ FDQ EH LOOXVWUDWHG E\ WKH K\GUDWLRQ RI OLPRQHQH WR DWHUSLQHRO KR /LPRQHQH D7HUSLQHRO 7KH ELRFKHPLVWU\ RI HQ]\PHV LV D VXEMHFW RI JUHDW GHSWK DQG FRPSOH[LW\ 7KLV VHFWLRQ ZLOO DWWHPSW WR GHVFULEH RQO\ WKH DVSHFWV RI HQ]\PH NLQHWLFV DSSOLFDEOH WR WKH SUHVHQW VWXG\ )RU DGGLWLRQDO LQIRUPDWLRQ WKH UHDGHU PD\ ILQG JUHDWHU GHWDLO HOVHZKHUH +DPPHV 6HJHO :DOVK f .LQHWLF HTXDWLRQV FDQ EH UHDGLO\ GHULYHG DVVXPLQJ WKH VLPSOHVW PHFKDQLVP LH WKDW LQYROYLQJ D VLQJOH VXEVWUDWH DQG SURGXFW ,Q IDFW WKLV PHFKDQLVP LV YDOLG IRU WKH K\GUDWLRQ RI OLPRQHQH WR DWHUSLQHRO LI LW LV DVVXPHG WKDW ZDWHU LV DOZD\V SUHVHQW LQ VDWXUDWLQJ DPRXQWV 7KH JHQHUDO PHFKDQLVP LV DV IROORZV ( V (6 ( 3

PAGE 31

G >(6 @ GW N NBf >(6@ NA(@ >6@ N>(@>3@ f ZKHUH 6 LV WKH VXEVWUDWH 3 LV WKH SURGXFW ( LV WKH IUHH HQ]\PH DQG (6 LV WKH HQ]\PHVXEVWUDWH FRPSOH[ 6LQFH (6 LV UDSLGO\ GHVWUR\HG DQG WKHUHIRUH LV SUHVHQW DW YHU\ ORZ FRQFHQWUDWLRQ WKH VWHDG\ VWDWH FRQGLWLRQ G>(6@GW FDQ EH DVVXPHG $OVR FRQVHUYDWLRQ RI PDVV UHTXLUHV WKDW >(W@ >(@ >(6@ f DQG >6W@ >6@ >3@ >(6@ f ZKHUH (W DQG 6W UHSUHVHQW WRWDO HQ]\PH DQG WRWDO VXEVWUDWH UHVSHFWLYHO\ 6LQFH >6@ } >(6@ m >(@ >(6@ LQ HTXDWLRQ f FDQ EH QHJOHFWHG 7KH UDWH HTXDWLRQ IRU WKH GLVDSSHDUDQFH RI 6 RU WKH DSSHDUDQFH RI 3 FDQ EH ZULWWHQ DV IROORZV G G >6@ >3@ NA(+6@ N >(6@ f GW GW 6HWWLQT HTXDWLRQ f HTXDO WR ]HUR DQG VXEVWLWXWLQJ LQ HTXDWLRQ f JLYHV G G NA>6@ NN>3@`>(W@ >6@ >3@ f GW GW NM>6@ N>3@ N N 0HDVXUHPHQWV RI WKH UHDFWLRQ YHORFLW\ Y DUH W\SLFDOO\ FDUULHG RXW DW LQLWLDO WLPHV ZKHQ >6@ !! >3@ 7KHUHIRUH WKH WHUPV FRQWDLQLQJ WKH FRQFHQWUDWLRQ RI SURGXFW FDQ EH QHJOHFWHG LQ HTXDWLRQ f DQG G N>(W@ Y >6@ f GW N NAINA6@f

PAGE 32

'HILQLQJ N>(W@ DQG .P N NfN WKHQ HTXDWLRQ f WDNHV WKH IRUP 9PD[ 9D[&6@ Y f L 9>6@ ? >6@ ZKLFK LV NQRZQ DV WKH +HQUL0LFKDHOLV0HQWHQ HTXDWLRQ (TXDWLRQ f VKRZV GHSHQGHQFH RI Y RQ >6@ VLQFH DV >6@ RR Y 9A DQG DOVR ZKHQ >6@ .P Y 9A 0LFKDHOLV FRQVWDQW A LV QRW DQ HTXLOLEULXP FRQVWDQW EXW D VWHDG\VWDWH FRQVWDQW DQG PHDVXUHV WKH UDWLR RI VWHDG\ VWDWH FRQFHQWUDWLRQV >(@>6@>(6@ 0D[LPXP LQLWLDO YHORFLW\ 9 LV GLUHFWO\ SURSRUWLRQDO WR >(W@ 7KH QXPHULFDO YDOXH RI .P LV LPSRUWDQW EHFDXVH LW UHSUHVHQWV DQ DSSUR[LPDWH YDOXH IRU WKH LQWUDFHOOXODU FRQFHQWUDWLRQ RI WKH VXEVWUDWH 7KHUH ZRXOG EH OLWWOH DGYDQWDJH LQ PDLQWDLQLQJ D VXEVWUDWH FRQFHQWUDWLRQ KLJKHU WKDQ VLQFH DFWLYLW\ FDQQRW H[FHHG 9PD[ 7KH GLIIHUHQFH EHWZHHQ WKH DFWLYLW\ DW >6@ HTXDO WR DQG DW >6@ HTXDO WR .P LV RQO\ WZRIROG 7KLV SURSHUW\ RI .P FDQ EH XWLOL]HG ZKHQ GHVLJQLQJ DQ HQ]\PDWLF SURFHVV 7KH .P LV FRQVWDQW IRU D JLYHQ HQ]\PH DQG FDQ EH XVHG WR PDNH FRPSDULVRQV EHWZHHQ HQ]\PHV IURP GLIIHUHQW VRXUFHV 7KH .P FDQ DOVR EH XVHG WR LQGLFDWH WKH UHODWLYH VXLWDELOLW\ RI DOWHUQDWH VXEVWUDWHV IRU D SDUWLFXODU HQ]\PH 7KH VXEVWUDWH ZLWK WKH ORZHVW .P ZRXOG KDYH WKH KLJKHVW DSSDUHQW DIILQLW\ IRU WKH HQ]\PH 7KH EHVW VXEVWUDWH LV WKDW ZKLFK KDV WKH KLJKHVW 9A.A UDWLR 6HJHO f

PAGE 33

1RPHQFODWXUH 1RPHQFODWXUH DQG FODVVLILFDWLRQ RI HQ]\PHV LV DFFRPSOLVKHG XVLQJ UXOHV DQG JXLGHOLQHV HVWDEOLVKHG E\ WKH 1RPHQFODWXUH &RPPLWWHH RI WKH ,QWHUQDWLRQDO 8QLRQ RI %LRFKHPLVWU\ f (Q]\PHV ZKLFK FOHDYH && & &1 DQG RWKHU ERQGV E\ HOLPLQDWLRQ OHDYLQJ GRXEOH ERQGV RU ULQJV RU FRQYHUVHO\ DGGLQJ JURXSV WR GRXEOH ERQGV DUH FODVVLILHG DV O\DVHV 7KH V\VWHPDWLF QDPH LV IRUPHG DFFRUGLQJ WR nVXEVWUDWH JURXSO\DVHn &DUERQ R[\JHQ O\DVHV FDWDO\]H WKH EUHDNDJH RI & ERQGV OHDGLQJ WR XQVDWXUDWHG SURGXFWV ,Q WKH FDVH RI K\GURn O\DVHV WKLV LV E\ HOLPLQDWLRQ RI ZDWHU RU E\ HOLPLQDWLRQ RI DQ DOFRKRO IURP D SRO\VDFFKDULGH 7KH QDPH nGHK\GUDWDVHn LV UHFRPPHQGHG IRU WKRVH HQ]\PHV ZKLFK HOLPLQDWH RU DGG ZDWHU WR GRXEOH ERQGV 7KH QDPH nV\QWKDVHn PD\ EH XVHG LQVWHDG ZKHQ LW LV GHVLUHG WR HPSKDVL]H WKH V\QWKHWLF DVSHFW RI WKH UHDFWLRQ RU ZKHQ WKH UHYHUVH UHDFWLRQ LV PXFK PRUH LPSRUWDQW :KHUH HTXLOLEULXP ZDUUDQWV LW RU ZKHUH WKH HQ]\PH KDV WUDGLWLRQDOO\ EHHQ QDPHG DIWHU D SDUWLFXODU VXEVWUDWH WKH UHYHUVH UHDFWLRQ PD\ EH XVHG DV WKH EDVLV RI WKH QDPH XVLQJ fK\GUDWDVHn ,Q WKH FDVH RI UHYHUVLEOH UHDFWLRQV WKH GLUHFWLRQ FKRVHQ IRU QDPLQJ VKRXOG EH WKH VDPH IRU DOO WKH HQ]\PHV LQ D JLYHQ FODVV HYHQ ZKHQ WKH GLUHFWLRQ KDV QRW EHHQ GHPRQVWUDWHG

PAGE 34

6ROXELOL]DWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PHV 7KLV VHFWLRQ LV GHYRWHG WR PHWKRGV RI DSSURDFKLQJ WKH SUREOHP RI VROXELOL]LQJ HQ]\PHV RU SURWHLQV ZKLFK DUH DVVRFLDWHG ZLWK LQVROXEOH SDUWV RI WKH FHOO VXFK DV PHPEUDQHV 3DUWLFXODWHDVVRFLDWHG SURWHLQV IDOO LQWR WZR JHQHUDO FDWHJRULHV 7KH ILUVW RI WKHVH LQFOXGHV WKRVH SURWHLQV ZKLFK RQFH VROXELOL]HG EHKDYH PXFK OLNH DQ\ RWKHU ZDWHU VROXEOH HQ]\PH 7KLV FDWHJRU\ FRQVLVWV RI WZR W\SHV RI SURWHLQV WKRVH ZKLFK DUH SUHVHQW LQ D VSDFH VXUURXQGHG E\ D PHPEUDQH EXW DUH QRW WUXH FRPSRQHQWV RI WKH PHPEUDQH LWVHOI DQG WKRVH HQ]\PHV ZKLFK DUH LQWULQVLF FRPSRQHQWV RI D PHPEUDQH EXW XSRQ EHLQJ UHOHDVHG DUH ZDWHUVROXEOH 3URFHGXUHV IRU WKH VROXELOL]DWLRQ RI WKHVH W\SHV RI SURWHLQV KDYH EHHQ VXPPDUL]HG E\ 3HQHIVN\ DQG 7]DJRORII f 7KH VHFRQG FDWHJRU\ LQFOXGHV WKRVH SURWHLQV ZKLFK DUH FRPSRQHQWV RI OLSRSURWHLQ FRPSOH[HV *HQHUDO SURFHGXUHV IRU WKH VROXELOL]DWLRQ DQG SXULILFDWLRQ RI WKHVH SURWHLQV KDYH EHHQ VXPPDUL]HG E\ 7]DJRORII DQG 3HQHIVN\ f 6ROXELOL]DWLRQ FDQ EH DFFRPSOLVKHG XVLQJ GHWHUJHQWV LQ ZKLFK WKH GHWHUJHQW ELQGV WR WKH SURWHLQ DQG WDNHV WKH SODFH RI WKH OLSLGFRQWDLQLQJ PHPEUDQH WKXV VROXELOL]LQJ WKH SURWHLQ LQ WKH PHGLXP 'XULQJ SXULILFDWLRQ LW LV RIWHQ QHFHVVDU\ WR LQFOXGH GHWHUJHQW LQ VROXWLRQV WR PDLQWDLQ SURWHLQ VROXELOLW\ 6ROXELOL]DWLRQ DQG SXULILFDWLRQ RI SURWHLQV XVLQJ GHWHUJHQWV LV LOOXVWUDWHG LQ )LJXUH

PAGE 35

7KH XVH RI FKDRWURSLF DJHQWV IRU WKH LVRODWLRQ RI PHPEUDQHERXQG HQ]\PHV KDV EHHQ GLVFXVVHG E\ +DWHIL DQG +DQVWHLQ f &KDRWURSLF DJHQWV GHFUHDVH ZDWHU VWUXFWXUH WKHUHE\ GHVWDELOL]LQJ PHPEUDQHV DQG HQ]\PH FRPSOH[HV 6RPH FRPPRQO\ XVHG FKDRWURSLF DJHQWV LQFOXGH VRGLXP WULFKORURDFHWDWH VRGLXP DQG SRWDVVLXP SHUFKORUDWH DQG JXDQLGLQH K\GURFKORULGH

PAGE 36

'(7(5*(17 mnLnr fn,Vn A9 9 } 62/8%,/,=$7,21 %$&7(5,$/ 0(0%5$1( Y  nMY '(7(5*(17 n,Vr 385,),&$7,21 18 )LJXUH 6ROXELOL]DWLRQ DQG SXULILFDWLRQ RI SDUWLFXODWHDVVRFLDWHG HQ]\PHV XVLQJ GHWHUJHQW VROXWLRQV

PAGE 37

0$7(5,$/6 $1' 0(7+2'6 &KHPLFDOV 5ff/LPRQHQH ZDV D JLIW IURP +HUFXOHV ,QF /DNHODQG )/ >D@' QHDWf b SXUH E\ JDV FKURPDWRJUDSK\ *&f 6ff/LPRQHQH ZDV REWDLQHG IURP $OGULFK &KHPLFDO &RPSDQ\ ,QF 0LOZDXNHH :, >D@' QHDWf b SXUH E\ *& D7HUSLQHRO UDFHPLFf ZDV D JLIW IURP ,QWHUQDWLRQDO )ODYRUV 8QLRQ %HDFK 1>D@' F FKORURIRUPf b SXUH E\ *& 5ffD7HUSLQHRO ZDV SUHSDUHG E\ IHUPHQWDWLRQ RI 5ffOLPRQHQH E\ 3 JODGLROL %DFWHULD ZHUH JURZQ LQ D JURXS RI IODVNV DV GHVFULEHG XQGHU *URZWK DQG &ROOHFWLRQ RI %DFWHULD H[FHSW WKDW DIWHU DQ LQLWLDO KU LQFXEDWLRQ SHULRG P/ RI 5ffOLPRQHQH ZDV DGGHG WR HDFK IODVN DQG WKH IODVNV LQFXEDWHG IRU DQ DGGLWLRQDO GD\V 7KH FXOWXUH EURWK ZDV FHQWULIXJHG IRU PLQ DW [ J WR UHPRYH EDFWHULD 7KH EDFWHULDO SHOOHW ZDV UHVXVSHQGHG LQ P/ GLVWLOOHG ZDWHU DQG FHQWULIXJHG DV GHVFULEHG DERYH 7KH FODULILHG FXOWXUH EURWK DQG SHOOHW ZDVK VXSHUQDWDQW ZHUH SRROHG DQG WKHQ H[WUDFWHG ZLWK GLHWK\O HWKHU XVLQJ WKH PHWKRG RI &DGZDOODGHU HW DO f &UXGH DWHUSLQHRO H[WUDFW b SXUH E\ *&f ZDV SXULILHG E\ VLOLFD JHO FROXPQ FKURPDWRJUDSK\ D7HUSLQHRO LQ QKH[DQH P/f ZDV

PAGE 38

DSSOLHG WR D VOXUU\ SDFNHG VLOLFD JHO FROXPQ [ FPf ZKLFK ZDV HTXLOLEUDWHG LQ QKH[DQH 7KH FROXPQ ZDV GHYHORSHG XVLQJ WKH IROORZLQJ VHTXHQFH RI VROYHQWV P/ QKH[DQH P/ RI b QKH[DQHb PHWK\OHQH FKORULGH DQG P/ PHWK\OHQH FKORULGH )UDFWLRQV P/f ZHUH FROOHFWHG DQG DQDO\]HG E\ *& )UDFWLRQV FRQWDLQLQJ WKH KLJKHVW DPRXQWV RI DWHUSLQHRO ZHUH SRROHG DQG WKH VROYHQW HYDSRUDWHG XQGHU D VWUHDP RI QLWURJHQ WR \LHOG J RI SXULILHG 5ffDWHUSLQHRO >D@' r F OO FKORURIRUPf b SXUH E\ *& 0LFURELRORJ\ /LTXLG 0LQHUDO 0HGLXP 3UHSDUDWLRQ /LTXLG PLQHUDO PHGLXP 0RQRG DQG :ROOPDQ f ZDV SUHSDUHG E\ DGGLQJ WKH IROORZLQJ FKHPLFDOV FRQVHFXWLYHO\ WR / RI GLVWLOOHG ZDWHU XQWLO FRPSOHWHO\ GLVVROYHG .+3 Jf 1D+3 Jf 0J6 Jf 1+& Jf &D&O P/ RI D b ZYf VROXWLRQf DQG )H6r+ P/ RI D IUHVK b ZYf VROXWLRQf 7KH VROXWLRQ S+ ZDV DGMXVWHG WR ZLWK b SKRVSKRULF DFLG DQG WKHQ GLOXWHG WR / WR PDNH ; VWUHQJWK OLTXLG PLQHUDO PHGLXP 7R PDNH VLQJOH VWUHQJWK OLTXLG PLQHUDO PHGLXP / RI ; OLTXLG PLQHUDO PHGLXP ZDV GLOXWHG WR / ZLWK GLVWLOOHG ZDWHU 7KH S+ ZDV PHDVXUHG DQG DGMXVWHG LI QHFHVVDU\ WR S+ ZLWK b SKRVSKRULF DFLG (QXPHUDWLRQ RI %DFWHULD 0LFURELDO SRSXODWLRQV YLDEOH FHOOVf ZHUH HVWLPDWHG DFFRUGLQJ WR SURFHGXUHV GHVFULEHG E\ WKH $PHULFDQ 3XEOLF

PAGE 39

+HDOWK $VVRFLDWLRQ f XVLQJ 6WDQGDUG 0HWKRGV DJDU %%/ 0LFURELRORJ\ 6\VWHPV &RFNH\VYLOOH 0'f 6HULDO GLOXWLRQV ZHUH PDGH LQ b SHSWRQH $OLTXRWV RI HDFK GLOXWLRQ P/ RU P/f ZHUH WUDQVIHUUHG WR GXSOLFDWH SHWUL GLVKHV DQG SRXU SODWHG ZLWK P/ RI DJDU WHPSHUHG DW FD r& 3ODWHV ZHUH LQFXEDWHG DW r& IRU KU %DFWHULDO JURZWK ZDV DOVR PRQLWRUHG E\ PHDVXULQJ WKH DEVRUEDQFH QPf RI WKH FXOWXUH EURWK *URZWK DQG &ROOHFWLRQ RI %DFWHULD 3 JODGLROL ZDV JURZQ LQ / (UOHQPH\HU IODVNV FRQWDLQLQJ P/ OLTXLG PLQHUDO PHGLXP P/ VWHULOH 5ffOLPRQHQH DQG P/ LQRFXOXP )ODVNV FRQWDLQLQJ OLTXLG PLQHUDO PHGLXP ZHUH VWHULOL]HG DW r& IRU PLQ /LPRQHQH ZDV ILOWHUVWHULOL]HG XVLQJ D O[P 06, PHPEUDQH ILOWHU 0LFURQ 6HSDUDWLRQV ,QF :HVWERUR 0$f )ODVNV ZHUH LQFXEDWHG IRU KU DW s f& RQ DQ (QYLURQ RUELWDO VKDNHU /DE/LQH ,QVWUXPHQWV ,QF 0HOURVH 3DUN ,/f DW USP ZLWK FP RUELW ,QRFXOXP ZDV JURZQ XQGHU WKH VDPH FRQGLWLRQV DV GHVFULEHG DERYH $ WRWDO RI IODVNV ZHUH LQFXEDWHG SHU EDWFK ZLWK RQH IODVN IURP HDFK EDWFK EHLQJ XVHG DV WKH LQRFXOXP RI WKH IROORZLQJ EDWFK %DFWHULD ZHUH FROOHFWHG E\ FHQWULIXJLQJ WKH FXOWXUH EURWK IRU PLQ DW [ J LQ D 6RUYDOO 5&% UHIULJHUDWHG FHQWULIXJH 'XSRQW &R 1HZWRZQ &7f 7KH \LHOG RI EDFWHULDO FHOOV IURP IODVNV / RI EURWKf ZDV DERXW J &HOOV ZHUH VWRUHG DW r&

PAGE 40

$QDO\WLFDO 3URWHLQ 'HWHUPLQDWLRQ 3URWHLQ FRQFHQWUDWLRQV ZHUH PHDVXUHG E\ WKH &RRPDVVLH EOXH SURWHLQ DVVD\ %UDGIRUG f XVLQJ ERYLQH VHUXP DOEXPLQ DV WKH VWDQGDUG (Q]\PH $VVD\V ,Q D W\SLFDO HQ]\PH DVVD\ WKH VDPSOH ZDV WUDQVIHUUHG LQWR D WHVW WXEH [ PPf DQG WKH ILQDO YROXPH RI WKH VDPSOH DGMXVWHG WR P/ ZLWK P0 1K\GUR[\HWK\O SLSHUD]LQH1nHWKDQH VXOIRQLF DFLG +(3(6f EXIIHU S+ 7KH UHDFWLRQ ZDV VWDUWHG E\ DGGLWLRQ RI L/ RI VXEVWUDWH VROXWLRQ ZKLFK FRQWDLQHG 0 OLPRQHQH DQG SSP GHFDQRO LQWHUQDO VWDQGDUGf LQ DEVROXWH HWKDQRO 7KH WXEH ZDV WKHQ TXLFNO\ VHDOHG ZLWK D 37)( OLQHG VFUHZ FDS PL[HG E\ YRUWH[LQJ DQG SODFHG LQ D WHPSHUDWXUHFRQWUROOHG ZDWHU EDWK 8QOHVV RWKHUZLVH VWDWHG DVVD\V ZHUH GRQH IRU PLQ DW & 7KH UHDFWLRQ ZDV VWRSSHG E\ DGGLWLRQ RI P/ RI QKH[DQH ZKLFK GHQDWXUHG WKH HQ]\PH $QK\GURXV VRGLXP VXOIDWH Jf ZDV DGGHG WR EUHDN WKH KH[DQH HPXOVLRQ 7KH KH[DQH OD\HU ZDV WUDQVIHUUHG WR D P/ YLDO DQG FRQFHQWUDWHG WR DERXW P/ XQGHU D VWUHDP RI QLWURJHQ $ VPDOO DPRXQW RI DQK\GURXV VRGLXP VXOIDWH ZDV WKHQ DGGHG WR WKH YLDO WR FRPSOHWHO\ GU\ WKH FRQFHQWUDWHG KH[DQH SKDVH EHIRUH *& DQDO\VLV 6DPSOH EODQNV ZHUH SUHSDUHG E\ PL[LQJ P/ RI QKH[DQH ZLWK WKH VDPSOH WR GHQDWXUH WKH HQ]\PH EHIRUH DGGLQJ cL/ RI VXEVWUDWH VROXWLRQ /LPRQHQH EODQNV FRQVLVWHG RI

PAGE 41

P/ EXIIHU W\SLFDOO\ P0 +(3(6 EXIIHU S+ f DQG ]/ RI VXEVWUDWH VWRFN VROXWLRQ /LPRQHQH EODQNV ZHUH LQFXEDWHG XQGHU WKH VDPH FRQGLWLRQV DV HQ]\PH DVVD\V D7HUSLQHRO FRQFHQWUDWLRQ ZDV GHWHUPLQHG E\ FRPSDULQJ WKH DWHUSLQHROGHFDQRO *& DUHD UDWLR RI WKH XQNQRZQ ZLWK D FDOLEUDWLRQ FXUYH RI DWHUSLQHROGHFDQRO *& DUHD UDWLR YHUVXV DWHUSLQHRO FRQFHQWUDWLRQ PROr/n RU QPROrP/nf $ W\SLFDO VWDQGDUG FXUYH IRU DWHUSLQHRO LV VKRZQ LQ )LJXUH $f§ 7KH FXUYH LV OLQHDU IRU FRQFHQWUDWLRQV RI DWHUSLQHRO EHWZHHQ DQG ]PRO}/n 7KH HQ]\PH DFWLYLW\ QPRO f PLQn rP/nf ZDV FDOFXODWHG E\ GLYLGLQJ WKH FRQFHQWUDWLRQ RI DWHUSLQHRO QPROrP/nff E\ WKH DVVD\ WLPH PLQf 6SHFLILF HQ]\PH DFWLYLW\ QPROf PLQn mPJn SURWHLQf ZDV FDOFXODWHG E\ GLYLGLQJ WKH HQ]\PH DFWLYLW\ QPROrPLQn rP/nf E\ WKH SURWHLQ FRQFHQWUDWLRQ PJrP/nf *DV &KURPDWRJUDSK\ 7KH *& V\VWHP FRQVLVWHG RI DQ +3 JDV FKURPDWRJUDSK HTXLSSHG ZLWK D IODPH LRQL]DWLRQ GHWHFWRU ),'f DQG FRQQHFWHG WR DQ +3 $ LQWHJUDWRU +HZOHWW3DFNDUG &R $YRQGDOH 3$f &KURPDWRJUDPV ZHUH DQDO\]HG XVLQJ D FRPSXWHU LQWHJUDWLRQ SURJUDP &KURP3HUIHFW -XVWLFH ,QQRYDWLRQV 3DOR $OWR &$f 8QOHVV RWKHUZLVH VWDWHG D PP LG [ P 6( IXVHG VLOLFD FDSLOODU\ FROXPQ $OOWHFK $VVRFLDWHV ,QF 'HHUILHOG ,/f ZDV XVHG IRU WKH VHSDUDWLRQV 7KH ILOP WKLFNQHVV RI WKH OLTXLG SKDVH ZDV PP &RQGLWLRQV ZHUH DV IROORZV ]/ LQMHFWLRQ ZLWK VSOLW KHOLXP FDUULHU JDV DW P/APLQn LQMHFWRU SRUW

PAGE 42

DW r& GHWHFWRU DW r& FROXPQ WHPSHUDWXUH SURJUDPPHG IURP r& WR r DW O2n2PLQ ZLWK D ILQDO KROG WLPH RI PLQ $ JDV FKURPDWRJUDP RI D W\SLFDO HQ]\PH DVVD\ H[WUDFW LV VKRZQ LQ )LJXUH $ (Q]\PH 3XULILFDWLRQ %XIIHU 3UHSDUDWLRQ $OO EXIIHUV ZHUH SUHSDUHG DW URRP WHPSHUDWXUH r&f XVLQJ GRXEOH GLVWLOOHG ZDWHU 7KH S+ RI HDFK EXIIHU ZDV DGMXVWHG ZLWK 1D2+ RU +& EHIRUH LWV ILQDO GLOXWLRQ 7KH S+ PHDVXUHPHQWV ZHUH PDGH DW URRP WHPSHUDWXUH XVLQJ DQ $FFXPHW S+ PHWHU )LVKHU 6FLHQWLILF 3LWWVEXUJK 3$f ZLWK DXWRPDWLF WHPSHUDWXUH FRPSHQVDWLRQ ,VRODWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PH 7KH ILUVW VWHS LQ LVRODWLRQ RI D EDFWHULDO LQWUDn FHOOXODU HQ]\PH LV WR GLVUXSW WKH RUJDQLVP 7KHUH DUH VHYHUDO WHFKQLJXHV DYDLODEOH IRU WKH GLVUXSWLRQ RI EDFWHULD VRQLFDWLRQ EHDGPLOOLQJ )UHQFK SUHVV DQG GLJHVWLYH HQ]\PHV VXFK DV O\VR]\PH ,QLWLDO DWWHPSWV WR GLVUXSW WKH EDFWHULXP LQYROYHG D FRPELQHG QRQLRQLF GHWHUJHQWRVPRWLF VKRFNO\VR]\PH WUHDWPHQW DV GHVFULEHG E\ 6FKZLQJKDPHU f DQG 6FRSHV f 7KLV WHFKQLTXH ZDV RQO\ SDUWLDOO\ VXFFHVVIXO LQ GLVUXSWLQJ WKH EDFWHULXP DQG UHTXLUHG D ORQJ LQFXEDWLRQ SHULRG 8OWUDVRQLFDWLRQ ZDV DOVR DWWHPSWHG EXW WKH FRQGLWLRQV UHTXLUHG WR REWDLQ DGHTXDWH GLVUXSWLRQ RI WKH EDFWHULXP ZHUH YHU\ YLJRURXV DQG UHVXOWHG LQ ORVV RI HQ]\PH DFWLYLW\ SRVVLEO\ GXH WR KHDW GHQDWXUDWLRQ 6PDOO VFDOH EHDGPLOOLQJ UHVXOWHG LQ DGHTXDWH EDFWHULDO GLVUXSWLRQ DQG ZDV XVHG IRU LQLWLDO VWXGLHV

PAGE 43

7KH JHQHUDO SURFHGXUH XVHG IRU VPDOO VFDOH EHDGPLOOLQJ LV GHVFULEHG E\ 6FRSHV f DQG LQYROYHV WKH XVH RI VPDOO JODVV EHDGV PP GLDPHWHUf ZKLFK ZKHQ YLJRURXVO\ VWLUUHG DORQJ ZLWK D VXVSHQVLRQ RI EDFWHULD GLVLQWHJUDWH WKH EDFWHULD E\ JULQGLQJ DFWLRQ *ODVV EHDGV Jf ZHUH DGGHG WR FHQWULIXJH WXEHV [ PPf DORQJ ZLWK FHOO VXVSHQVLRQV J ZHW FHOOV LQ P/ RI P0 SRWDVVLXP SKRVSKDWH EXIIHU FRQWDLQLQJ P0 0J6 DQG '1DVHOf DQG WKH PL[WXUHV YRUWH[PL[HG IRU PLQ 6XVSHQVLRQV ZHUH FHQWULIXJHG IRU PLQ DW [ J LQ D 6RUYDOO 5&% UHIULJHUDWHG FHQWULIXJH LQ RUGHU WR VHGLPHQW WKH HQ]\PH $OO RSHUDWLRQV ZHUH FDUULHG RXW DV FORVH WR r& DV SRVVLEOH H[FHSW IRU FHQWULIXJDWLRQ ZKLFK ZDV FDUULHG RXW DW r& /DUJH VFDOH EDFWHULDO GLVUXSWLRQ ZDV DFKLHYHG XVLQJ D FRPPHUFLDOO\ DYDLODEOH EHDGPLOO %DFWHULDO FHOOV Jf ZHUH UHVXVSHQGHG LQ P/ RI P0 +(3(6 EXIIHU S+ FRQWDLQLQJ P0 GLWKLRHU\WKULWRO '7(f 7KH VXVSHQVLRQ ZDV WUDQVIHUUHG DORQJ ZLWK J RI GU\ JODVV EHDGV PP GLDPHWHUf WR D %HDG%HDWHU %LRVSHF 3URGXFWV %DUWOHVYLOOH 2.f HTXLSSHG ZLWK D VWDLQOHVV VWHHO FKDPEHU 7KH EDFWHULD ZHUH GLVUXSWHG IRU D WRWDO RI PLQ VHF RQ VHF RIIf ZLWK WKH FKDPEHU LPPHUVHG LQ DQ LFH EDWK 7KH FHOO KRPRJHQDWH ZDV VHSDUDWHG IURP WKH JODVV EHDGV E\ YDFXXP ILOWUDWLRQ WKURXJK Q\ORQ PHVK ILOWHU FORWK DQG WKH EHDGV ZDVKHG ZLWK DQ DGGLWLRQDO P/ RI EXIIHU $IWHU DGGLQJ P/ RI 0 0J6 DQG P/ RI D '1DVHO VROXWLRQ

PAGE 44

XQLWVfP/n LQ GLVWLOOHG ZDWHUf WKH FHOO KRPRJHQDWH ZDV FHQWULIXJHG IRU PLQ DW [ J LQ D 6RUYDOO 5&% UHIULJHUDWHG FHQWULIXJH LQ RUGHU WR VHGLPHQW XQEURNHQ FHOOV DQG ODUJH GHEULV 7KH VXSHUQDWDQW ZDV IXUWKHU FODULILHG E\ UHFHQWULIXJLQJ XQGHU WKH VDPH FRQGLWLRQV 7KH SXUSRVH RI '1DVHO ZDV WR UHGXFH WKH YLVFRVLW\ RI WKH FHOO KRPRJHQDWH 0DJQHVLXP VXOIDWH ZDV DGGHG EHFDXVH 0J LV D UHTXLUHG FRIDFWRU RI '1DVHO ,Q RUGHU WR VHGLPHQW WKH PHPEUDQRXV PDWHULDO FRQWDLQLQJ WKH HQ]\PH WKH FODULILHG VXSHUQDWDQW ZDV UHFHQWULIXJHG IRU KU DW USP LQ D %HFNPDQ 0RGHO / XOWUDFHQWULIXJH XVLQJ D %HFNPDQ 6: URWRU %HFNPDQ ,QVWUXPHQWV ,QF 3DOR $OWR &$f 7KH SHOOHW IURP WKLV FHQWULIXJDWLRQ ZDV UHn VXVSHQGHG DQG ZDVKHG WZLFH ZLWK PO RI P0 +(3(6 EXIIHU S+ FRQWDLQLQJ P0 '7( ZLWK FHQWULIXJDWLRQ WKH VDPH DV SUHYLRXVO\ GHVFULEHG $OO RSHUDWLRQV ZHUH FDUULHG RXW DV FORVH WR r& DV SRVVLEOH H[FHSW IRU FHQWULIXJDWLRQ ZKLFK ZDV FDUULHG RXW DW & 6XFURVH *UDGLHQW &HQWULIXJDWLRQ 7KH PHWKRG RI 2VERUQ DQG 0XQVRQ f ZDV XVHG IRU VXFURVH JUDGLHQW FHQWULIXJDWLRQ ZLWK VRPH PRGLILFDWLRQV 6XFURVH VWHS JUDGLHQWV ZHUH SUHSDUHG LQ XOWUDFHQWULIXJH WXEHV [ PPf E\ OD\HULQJ P/ HDFK RI DQG b ZYf VXFURVH RYHU D FXVKLRQ P/f RI b ZYf VXFURVH 6XFURVH VROXWLRQV ZHUH SUHSDUHG LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ P0 ('7$ 6DPSOHV ZHUH SUHSDUHG E\ UHVXVSHQGLQJ ZDVKHG PHPEUDQH SHOOHWV LQ b

PAGE 45

ZYf VXFURVH VROXWLRQ WR D SURWHLQ FRQFHQWUDWLRQ RI PJP/ 2QH P/ RI VDPSOH ZDV OD\HUHG RQWR HDFK RI WKUHH WXEHV 2QH P/ RI b ZYf VXFURVH ZDV OD\HUHG RQWR D IRUWK WXEH IRU EXR\DQW GHQVLW\ GHWHUPLQDWLRQV 7XEHV ZHUH FHQWULIXJHG IRU KU DW USP LQ D %HFNPDQ 0RGHO / XOWUDFHQWULIXJH XVLQJ D %HFNPDQ 6: URWRU %HFNPDQ ,QVWUXPHQWV ,QFf *UDGLHQWV ZHUH IUDFWLRQDWHG XVLQJ DQ ,6&2 0RGHO GHQVLW\ JUDGLHQW IUDFWLRQDWRU ,6&2 ,QF /LQFROQ 1%f )UDFWLRQV P/f ZHUH DVVD\HG IRU ERWK HQ]\PH DFWLYLW\ DQG SURWHLQ FRQFHQWUDWLRQ %XR\DQW GHQVLWLHV ZHUH GHWHUPLQHG E\ PHDVXUHPHQWV RI UHIUDFWLYH LQGH[ XVLQJ DQ $EEH 0DUN ,, UHIUDFWRPHWHU 5HKHUW 6FLHQWLILF ,QVWUXPHQWV %XIIDOR 1
PAGE 46

FRQWDLQLQJ WKH VROXELOL]HG HQ]\PH ZHUH GHFDQWHG DQG NHSW DW r & *HO )LOWUDWLRQ &KURPDWRJUDSK\ 6ROXELOL]HG HQ]\PH P/f ZDV DSSOLHG WR D [ FP 6SHFWUD*HO $F$ RU $F$ FROXPQ 6SHFWUXP 0HGLFDO ,QGXVWULHV ,QF /RV $QJHOHV &$f ZKLFK ZDV HTXLOLEUDWHG LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; P0 '7( DQG b ZYf VRGLXP D]LGH 7KH HQ]\PH ZDV HOXWHG IURP WKH FROXPQ DW D IORZ UDWH RI P/rKUn DQG P/ IUDFWLRQV ZHUH FROOHFWHG )UDFWLRQV ZHUH DVVD\HG IRU HQ]\PH DFWLYLW\ PLQ DW r&f DQG SURWHLQ FRQFHQWUDWLRQ $OO RSHUDWLRQV ZHUH FDUULHG RXW LQ D r& FROG URRP &RQFHQWUDWLRQ RI *HO )LOWUDWLRQ )UDFWLRQV *HO ILOWUDWLRQ IUDFWLRQV FRQWDLQLQJ HQ]\PH DFWLYLW\ ZHUH SRROHG DQG FRQFHQWUDWHG XVLQJ D P/ FDSDFLW\ 2PHJDFHOO XOWUDILOWUDWLRQ 8)f XQLW )LOWURQ 7HFKQRORJ\ &RUS &OLQWRQ 0$f ZLWK D QRPLQDO PROHFXODU ZHLJKW OLPLW 10:/f RI GDOWRQV 1LWURJHQ DW SVL ZDV XVHG WR SUHVVXUL]H WKH XQLW 6ROXWLRQV FRQWDLQLQJ WKH SRROHG IUDFWLRQV ZHUH FRQFHQWUDWHG WR P/ DQG WKHQ P/ RI P0 +(3(6 EXIIHU S+ ZDV DGGHG DQG WKH VROXWLRQ UHFRQFHQWUDWHG WR P/ 7KLV SURFHGXUH ZDV UHSHDWHG XQWLO WKH 8) SHUPHDWH KDG DQ DEVRUEDQFH QPf RI OHVV WKDQ $OO RSHUDWLRQV ZHUH FDUULHG RXW LQ D r& FROG URRP

PAGE 47

5HPRYDO RI 7ULWRQ ; E\ $IILQLW\ &KURPDWRJUDSK\ (Q]\PH FRQFHQWUDWH P/f ZDV DSSOLHG WR D [ FP 6SHFWUD*HO FROXPQ 6SHFWUXP 0HGLFDO ,QGXVWULHV ,QFf ZKLFK ZDV HTXLOLEUDWHG LQ P0 +(3(6 EXIIHU S+ 7KH HQ]\PH ZDV HOXWHG IURP WKH FROXPQ DW D IORZ UDWH RI P/rKUn $Q DGGLWLRQDO P/ RI P0 +(3(6 EXIIHU S+ ZDV DSSOLHG WR WKH FROXPQ LQ RUGHU WR HOXWH DQ\ UHPDLQLQJ HQ]\PH 7KH FROXPQ ZDV UHJHQHUDWHG XVLQJ WKH SURFHGXUH UHFRPPHQGHG E\ WKH PDQXIDFWXUHU DV IROORZV &ROXPQ ZDV ZDVKHG ZLWK EHG YROXPH GLVWLOOHG ZDWHU EHG YROXPH RI HWKDQRO EHG YROXPHV RI EXWDQRO EHG YROXPH RI HWKDQRO EHG YROXPH RI GLVWLOOHG ZDWHU IROORZHG E\ HTXLOLEUDWLRQ LQ EXIIHU $OO RSHUDWLRQV ZHUH FDUULHG RXW LQ D r& FROG URRP 7ULWRQ ; FRQFHQWUDWLRQ LQ WKH 6SHFWUD*HO WUHDWHG HQ]\PH VROXWLRQ ZDV HVWLPDWHG E\ PHDVXULQJ WKH DEVRUEDQFH QPf RI WKH 8) SHUPHDWH 6WDQGDUG FXUYHV RI DEVRUEDQFH YHUVXV 7ULWRQ ; FRQFHQWUDWLRQ IRU VWDQGDUG VROXWLRQV DQG WKHLU UHVSHFWLYH 8) SHUPHDWHV DUH VKRZQ LQ )LJXUH $ 7KH 8) SHUPHDWH FXUYH ZDV HVWLPDWHG E\ D VWUDLJKW OLQH IRU 7ULWRQ ; FRQFHQWUDWLRQV EHWZHHQ DQG b ZYf DQG ZDV XVHG WR HVWLPDWH WKH 7ULWRQ ; FRQFHQWUDWLRQV RI VDPSOH HQ]\PH VROXWLRQV (Q]\PH &KDUDFWHUL]DWLRQ 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ 7KH PROHFXODU ZHLJKW 0:f RI WKH QDWLYH HQ]\PH ZDV GHWHUPLQHG E\ JHO ILOWUDWLRQ FKURPDWRJUDSK\ 6ROXELOL]HG HQ]\PH P/f ZDV DSSOLHG WR D [ FP 6HSKDURVH

PAGE 48

&/% FROXPQ $OGULFK &KHPLFDO &RPSDQ\ ,QFf ZKLFK ZDV HTXLOLEUDWHG LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; P0 '7( DQG b ZYf VRGLXP D]LGH 7KH HQ]\PH ZDV HOXWHG IURP WKH FROXPQ DW D IORZ UDWH RI P/rKUn DQG P/ IUDFWLRQV ZHUH FROOHFWHG )UDFWLRQV ZHUH DVVD\HG IRU ERWK HQ]\PH DFWLYLW\ PLQ DW r&f DQG SURWHLQ FRQFHQWUDWLRQ 7KH FDOLEUDWLRQ FXUYH ZDV SUHSDUHG ZLWK ERYLQH WK\URJOREXOLQ 0: GDOWRQVf KRUVH VSOHHQ DSRIHUULWLQ 0: f VZHHW SRWDWR DP\ODVH 0: f \HDVW DOFRKRO GHK\GURJHQDVH 0: f DQG ERYLQH HU\WKURF\WH FDUERQLF DQK\GUDVH 0: f 3URWHLQ VWDQGDUGV ZHUH REWDLQHG IURP 6LJPD &KHPLFDO &RPSDQ\ 6W /RXLV 02 7KH YRLG YROXPH ZDV GHWHUPLQHG ZLWK %OXH 'H[WUDQ 3URWHLQ VWDQGDUGV PJrP/nf DQG %OXH 'H[WUDQ PJAP/nf ZHUH GLVVROYHG LQ JHO ILOWUDWLRQ EXIIHU %OXH 'H[WUDQ IUDFWLRQV ZHUH PRQLWRUHG E\ PHDVXULQJ WKH DEVRUEDQFH QPf DIWHU GLOXWLRQ RI HDFK IUDFWLRQ ZLWK P/ RI GLVWLOOHG ZDWHU *HO ILOWUDWLRQ ZDV FDUULHG RXW LQ D r& FROG URRP 7KH PROHFXODU ZHLJKW RI WKH HQ]\PH LQ 6'6 GHQDWXULQJ FRQGLWLRQV ZDV GHWHUPLQHG E\ KRUL]RQWDO 6'6 SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV 6'63$*(f XVLQJ ([FHO*HO 6'6 JUDGLHQW b DFU\ODPLGHf SUHFDVW JHOV DQG EXIIHU VWULSV 3KDUPDFLD /.% %LRWHFKQRORJ\ 8SSVDOD 6ZHGHQf 7KH HOHFWURSKRUHVLV V\VWHP FRQVLVWHG RI DQ /.% 0XOWLSKRU ,, KRUL]RQWDO HOHFWURSKRUHVLV XQLW DQG DQ /.% 0DFURGULYH 6 FRQVWDQW SRZHU VXSSO\ 3KDUPDFLD /.% %LRWHFKQRORJ\f 7KH UXQQLQJ

PAGE 49

FRQGLWLRQV ZHUH DV IROORZV r& P$ FRQVWDQW FXUUHQW PLQ *HOV ZHUH VLOYHUVWDLQHG XVLQJ D 3KDVW*HO 6LOYHU .LW 3KDUPDFLD /.% %LRWHFKQRORJ\f 7KH FDOLEUDWLRQ FXUYH ZDV SUHSDUHG XVLQJ %LR5DG 6'63$*( KLJK DQG ORZ PROHFXODU ZHLJKW VWDQGDUGV %LR5DG /DERUDWRULHV 5LFKPRQG &$f ,VRHOHFWULF )RFXVLQJ 7KH LVRHOHFWULF SRLQW RI WKH HQ]\PH ZDV GHWHUPLQHG E\ KRUL]RQWDO LVRHOHFWULF IRFXVLQJ ,()f XVLQJ )LVKHU%LRWHFK DJDURVH ,() JHOV DQG HOHFWURGH VROXWLRQV IRU S+ UDQJH WR )LVKHU 6FLHQWLILFf 7KH HOHFWURSKRUHVLV V\VWHP ZDV WKH VDPH DV WKDW XVHG IRU 6'63$*( *HOV ZHUH HTXLOLEUDWHG IRU KU LQ D VROXWLRQ FRQWDLQLQJ b ZYf 6HUYDO\WH DPSKRO\WHV )LVKHU 6FLHQWLILFf DQG b ZYf 7ULWRQ ; ,Q RUGHU WR UHPRYH DQ\ VDOW RU EXIIHU LRQV ZKLFK ZRXOG GLVWXUE WKH S+ JUDGLHQW GXULQJ IRFXVLQJ HQ]\PH VROXWLRQV ZHUH GLDO\]HG DJDLQVW HLWKHU GLVWLOOHG ZDWHU RU b ZYf JO\FLQH S+ 9HVWHUEHUJ f (Q]\PH FRQFHQWUDWH P/f ZDV GLDO\]HG DJDLQVW [ P/ RI b ZYf JO\FLQH EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; XVLQJ GLDO\VLV WXELQJ ZLWK 0:&2 GDOWRQVf RU DJDLQVW [ P/ GLVWLOOHG ZDWHU FRQWDLQLQJ b ZYf 7ULWRQ ; 9HVWHUEHUJ f 'LDO\]HG VDPSOHV ZHUH ILOWHUHG WKUX [P $FURGLVF ILOWHUV *HOPDQ 6FLHQFHV $QQ $UERU 0,f WR UHPRYH DQ\ GHEULV EHIRUH IRFXVLQJ 6DPSOHV ZHUH DSSOLHG DW YDULRXV UHJLRQV RI WKH JHO XVLQJ D ODUJH WHPSODWH [ FP ZHOOVf ZKLFK ZDV VXSSOLHG ZLWK WKH ,() JHOV &DOLEUDWLRQ FXUYHV ZHUH SUHSDUHG XVLQJ %LR5DG EURDG UDQJH

PAGE 50

,() VWDQGDUGV %LR5DG /DERUDWRULHVf *HOV ZHUH IRFXVHG DW r& XVLQJ WKH IROORZLQJ UXQQLQJ FRQGLWLRQV : PLQ : PLQ : PLQ : PLQ DQG : PLQ 7KH JHOV ZHUH KDOYHG LPPHGLDWHO\ DIWHU IRFXVLQJ 2QH JHO KDOI ZKLFK FRQWDLQHG RQH ODQH RI IRFXVHG HQ]\PH VDPSOH DQG WZR ODQHV RI IRFXVHG ,() VWDQGDUGV ZDV VRDNHG LQ D VROXWLRQ RI b ZYf WULFKORURDFHWLF DFLG WR IL[ WKH SURWHLQ EDQGV DQG WKHQ VWDLQHG ZLWK &RRPDVVLH 7KH RWKHU JHO KDOI ZKLFK FRQWDLQHG ODQHV RI IRFXVHG HQ]\PH VDPSOH ZDV FXW KRUL]RQWDOO\ LQWR PP VWULSV DQG HDFK VWULS LPPHGLDWHO\ VXVSHQGHG LQ P/ RI P0 +(3(6 EXIIHU S+ 7KH S+ RI HDFK VXVSHQVLRQ ZDV DGMXVWHG WR DQG WKH DFWLYLW\ DVVD\HG KU DW r&f S+ 2SWLPXP DQG 6WDELOLW\ (Q]\PH FRQFHQWUDWH P/f ZDV GLDO\]HG DJDLQVW GLVWLOOHG ZDWHU /f FRQWDLQLQJ b ZYf 7ULWRQ ; IRU KU DW r& XVLQJ GLDO\VLV WXELQJ ZLWK PROHFXODU ZHLJKW FXWRII 0:&2f RI GDOWRQV 7KH S+ RSWLPXP RI WKH HQ]\PH ZDV GHWHUPLQHG DV IROORZV $OLTXRWV RI GLDO\]HG HQ]\PH P/ UQJAP/n SURWHLQf ZHUH GLOXWHG WR P/ LQ P0 PRUSKROLQRfHWKDQH VXOIRQLF DFLG 0(6f P0 ELV>WULVK\GUR[\PHWK\OfPHWK\ODPLQR@SURSDQH %,675,6 3523$1(f EXIIHU ZLWK S+ YDOXHV UDQJLQJ IURP WR E\ LQFUHPHQWV RI 7KH S+ RI HDFK VROXWLRQ ZDV PHDVXUHG DQG DGMXVWHG LI QHFHVVDU\ ZLWK 0 +& RU 0 1D2+ WR ZLWKLQ XQLWV RI WKH LQGLFDWHG S+ (DFK VROXWLRQ ZDV LQFXEDWHG IRU PLQ DW r& DQG WKHQ DVVD\HG IRU DFWLYLW\ PLQ DW

PAGE 51

r&f 7KH FRPELQHG 0(6%,675,6 3523$1( EXIIHU ZDV VXLWDEOH IRU S+ UDQJH WR 7KH S+ VWDELOLW\ RI WKH HQ]\PH ZDV GHWHUPLQHG XVLQJ D VLPLODU SURFHGXUH DV DERYH H[FHSW IRU WKH IROORZLQJ 'LDO\]HG HQ]\PH DOLTXRWV P/f ZHUH GLOXWHG WR P/ LQ HDFK EXIIHU VROXWLRQV ZHUH LQFXEDWHG IRU PLQ DW r& DQG WKHQ DVVD\HG IRU DFWLYLW\ DIWHU DGMXVWLQJ WKH S+ WR E\ DGGLWLRQ RI P/ RI 0 +(3(6 EXIIHU S+ 7HPSHUDWXUH 2SWLPXP DQG 6WDELOLW\ 7HPSHUDWXUH RSWLPXP RI WKH HQ]\PH ZDV GHWHUPLQHG E\ DVVD\LQJ WKH HQ]\PH PJrP/n SURWHLQ LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ;f IRU DFWLYLW\ DW YDULRXV WHPSHUDWXUHV r&f DIWHU HTXLOLEUDWLRQ IRU PLQ 7KH WHPSHUDWXUHDFWLYLW\ GDWD REWDLQHG IURP & ZDV XVHG WR HVWLPDWH WKH DFWLYDWLRQ HQHUJ\ (Df XVLQJ DQ $UUKHQLXV SORW ORJ HQ]\PH DFWLYLW\ YHUVXV 7 ZKHUH 7 LV WKH DEVROXWH WHPSHUDWXUH LQ GHJUHH .HOYLQf 7KH VORSH RI WKLV SORW LV HTXDO WR (J5f ZKHUH 5 LV WKH JDV FRQVWDQW .r PROf 7KH DFWLYDWLRQ HQHUJ\ -rPROnf ZDV FDOFXODWHG IURP WKH VORSH 7KH 4 WKH IDFWRU E\ ZKLFK WKH UDWH LQFUHDVHV E\ UDLVLQJ WKH WHPSHUDWXUH r&f RI WKH HQ]\PH ZDV FDOFXODWHG XVLQJ WKH IROORZLQJ HTXDWLRQ 4 >DFWLYLW\ DW ; fr&@>DFWLYLW\ DW ;r&@ 7KH WHPSHUDWXUH VWDELOLW\ RI WKH HQ]\PH ZDV GHWHUPLQHG DV IROORZV (Q]\PH PJrP/n SURWHLQ LQ P0 +(3(6 EXIIHU S+ f ZDV LQFXEDWHG IRU PLQ DW YDULRXV

PAGE 52

WHPSHUDWXUHV r&f LPPHGLDWHO\ FRROHG RQ LFH DQG WKHQ DVVD\HG IRU DFWLYLW\ DW r& 6WHUHRVSHFLILFLWY DQG 6WHUHRVHOHFWLYLW\ (Q]\PH DVVD\V ZHUH WKH VDPH DV GHVFULEHG HDUOLHU H[FHSW WKDW WKH VXEVWUDWH VWRFN VROXWLRQ ZDV FRPSRVHG RI 0 UDFHPLF OLPRQHQH >D@' r QHDWf DQG SSP O6ff FLVSLQDQH LQWHUQDO VWDQGDUGf LQ DEVROXWH HWKDQRO $VVD\V ZHUH GRQH DW & IRU DQG KU 7KH *& V\VWHP ZDV WKH VDPH DV SUHYLRXVO\ GHVFULEHG H[FHSW WKDW D PP G [ P &\FORGH[ % IXVHG VLOLFD FDSLOODU\ FROXPQ t : 6FLHQWLILF ,QF )ROVRP &$f ZDV XVHG IRU WKH VHSDUDWLRQ RI OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV 7KH ILOP WKLFNQHVV RI WKH OLTXLG SKDVH ZDV MXP &RQGLWLRQV ZHUH DV IROORZV L/ LQMHFWLRQ ZLWK VSOLW KHOLXP FDUULHU JDV DW P/rPLQn LQMHFWRU SRUW DW r& GHWHFWRU DW r& FROXPQ WHPSHUDWXUH SURJUDPPHG IURP r& WR r& DW r&rPLQn ZLWK DQ LQLWLDO KROG WLPH RI PLQ DQG D ILQDO KROG WLPH RI PLQ )RU GHWHUPLQDWLRQ RI LQLWLDO NLQHWLF UDWHV HQ]\PH DVVD\V ZHUH GRQH XVLQJ D VXEVWUDWH VWRFN VROXWLRQ FRPSRVHG RI 0 UDFHPLF OLPRQHQH DQG SSP QGHFDQRO LQWHUQDO VWDQGDUGf LQ DEVROXWH HWKDQRO $VVD\V ZHUH GRQH DW & IRU DQG PLQ *& FRQGLWLRQV ZHUH WKH VDPH DV DERYH H[FHSW IRU WKH IROORZLQJ / LQMHFWLRQ ZLWK VSOLW KHOLXP FDUULHU JDV DW P/rPLQn FROXPQ WHPSHUDWXUH LVRWKHUPDO DW & $ FKLUDO JDV FKURPDWRJUDP RI D W\SLFDO HQ]\PH DVVD\ H[WUDFW LV VKRZQ LQ )LJXUH $

PAGE 53

$ FDOLEUDWLRQ FXUYH RI DWHUSLQHROGHFDQRO *& DUHD UDWLRV YHUVXV DWHUSLQHRO FRQFHQWUDWLRQ WPRO f /rf LV VKRZQ LQ )LJXUH $ 7KH DFWXDO FRQFHQWUDWLRQ RI HDFK DWHUSLQHRO HQDQWLRPHU ZDV FDOFXODWHG IURP LWV UHODWLYH FRQFHQWUDWLRQ LH WKH *& SHDN DUHD RI HDFK HQDQWLRPHU GLYLGHG E\ WKH VXP RI WKH *& SHDN DUHDV IRU ERWK HQDQWLRPHUVf (Q]\PH DFWLYLW\ ZDV FDOFXODWHG XVLQJ WKH VDPH PHWKRG SUHYLRXVO\ GHVFULEHG XQGHU (Q]\PH $VVD\V

PAGE 54

5(68/76 $1' ',6&866,21 0LFURELRORJ\ 3VHXGRPRQDV JODGLROL ZKLFK ZDV XVHG WKURXJKRXW WKLV VWXG\ ZDV WKH VDPH EDFWHULXP GHVFULEHG E\ &DGZDOODGHU HW DO f 7KH EDFWHULXP H[KLELWHG RSWLPXP JURZWK DW S+ DQG r& LQ ERWK WU\SWLF VR\ EURWK DQG LQ OLTXLG PLQHUDO PHGLXP FRQWDLQLQJ b YYf OLPRQHQH )LJXUH $f 7KH FRQFHQWUDWLRQ RI OLPRQHQH LQ WKH PHGLXP DOVR DIIHFWHG WKH JURZWK RI WKH EDFWHULXP ZLWK RSWLPXP JURZWK RFFXUULQJ DW D FRQFHQWUDWLRQ OHVV WKDQ b YYf &DGZDOODGHU HW DO f ,Q WKLV VWXG\ WKH EDFWHULXP ZDV JURZQ H[FOXVLYHO\ LQ S+ OLTXLG PLQHUDO PHGLXP FRQWDLQLQJ b YYf OLPRQHQH ZLWK LQFXEDWLRQ DW r& $ W\SLFDO JURZWK FXUYH RI WKH EDFWHULXP XQGHU WKHVH FRQGLWLRQV LV VKRZQ LQ )LJXUH 7KH H[SRQHQWLDO JURZWK SKDVH RI WKH EDFWHULXP RFFXUUHG EHWZHHQ DQG KU ZLWK PD[LPXP QXPEHU RI YLDEOH FHOOV RFFXUULQJ DW DERXW KU 7KH LGHDO WLPH IRU FROOHFWLQJ FHOOV LV WRZDUG WKH HQG RI WKH ORJ SKDVH EHIRUH WKH JURZWK UDWH VORZV VLQFH WKLV JLYHV WKH KLJKHVW \LHOG RI FHOOV 7KH HQ]\PH PD\ QRW EH DW PD[LPXP FRQFHQWUDWLRQ DW WKLV WLPH 3UHOLPLQDU\ VWXGLHV GHWHUPLQHG ZKLFK SK\VLRORJLFDO VWDWH RI WKH EDFWHULXP FRQWDLQHG WKH PRVW HQ]\PH &XOWXUHV RI YDULRXV

PAGE 55

)LJXUH *URZWK FXUYH RI 3 JODGLROL DW & LQ S+ OLTXLG PLQHUDO PHGLXP FRQWDLQLQJ b YYf OLPRQHQH

PAGE 56

/RJ &)8P/

PAGE 57

DJHV DQG KUf ZHUH H[DPLQHG IRU FHOO GHQVLW\ DQG HQ]\PH DFWLYLW\ (Q]\PH DVVD\V KU DW r&f ZHUH FRQGXFWHG RQ FHOOV VXVSHQGHG LQ P0 SRWDVVLXP SKRVSKDWH EXIIHU S+ J ZHW FHOOV LQ P/ EXIIHUf 5HVXOWV 7DEOH f VKRZHG QR VLJQLILFDQW GLIIHUHQFH D f LQ HQ]\PH DFWLYLW\ EHWZHHQ WKH KU DQG KU FXOWXUHV KRZHYHU WKHUH ZDV D VLJQLILFDQW GHFOLQH D f LQ FHOO GHQVLW\ DIWHU KU ,W ZDV FRQFOXGHG IURP WKHVH UHVXOWV WKDW KU ZDV WKH PRVW VXLWDEOH WLPH IRU FROOHFWLQJ WKH EDFWHULD ,VRODWLRQ RI 3DUWLFXODWH$VVRFLDWHG (Q]\PH $IWHU FHQWULIXJDWLRQ RI WKH EDFWHULDO H[WUDFW WKH PDMRULW\ RI WKH HQ]\PH DFWLYLW\ ZDV IRXQG LQ WKH SDUWLFXODWH IUDFWLRQ ,QLWLDO VPDOO VFDOH EHDGPLOO H[SHULPHQWV GHPRQVWUDWHG WKDW WKH HQ]\PH DFWLYLW\ RI WKH SDUWLFXODWH IUDFWLRQ ZDV GXH WR ERXQG HQ]\PH DQG QRW GXH WR VXUYLYLQJ EDFWHULD (Q]\PH DFWLYLW\ DQG YLDEOH FHOOV ZHUH GHWHUPLQHG EHIRUH DQG DIWHU EHDGPLOOLQJ IRU YDULRXV WLPHV 7DEOH f $IWHU PLQ RI EHDGPLOOLQJ JUHDWHU WKDQ b RI WKH EDFWHULD ZHUH GLVUXSWHG ZKLOH WKH DPRXQW RI DFWLYLW\ LQ WKH SDUWLFXODWH IUDFWLRQ GLG QRW GHFUHDVH 7KH VXSHUQDWDQW IUDFWLRQ ZKLFK FRQWDLQHG RYHU PJrP/f SURWHLQ VKRZHG RQO\ b RI WKH WRWDO DFWLYLW\ 7KH KLJK SURWHLQ FRQFHQWUDWLRQ RI WKH VXSHUQDWDQW IUDFWLRQ ZDV DQRWKHU LQGLFDWLRQ RI HIILFLHQW FHOO GLVUXSWLRQ %HDGPLOOLQJ WKH VXVSHQVLRQ IRU D WRWDO RI PLQ UHVXOWHG LQ DQ DGGLWLRQDO b UHGXFWLRQ RI YLDEOH FHOOV RYHU WKDW REVHUYHG DW

PAGE 58

7$%/( &HOO GHQVLW\ DQG HQ]\PH DFWLYLW\ RI 3 JODGLROL DV D IXQFWLRQ RI FXOWXUH DJH &XOWXUH $JH KUf &HOO 'HQVLW\ PJnP/rfD (Q]\PH $FWLYLW\ QPRO mPLQn rPJnr ZHW FHOOVf s s s s s s $YHUDJH s VWDQGDUG GHYLDWLRQ Q f EDYHUDJH s VWDQGDUG GHYLDWLRQ Q f

PAGE 59

7$%/( $PRXQW RI HQ]\PH DFWLYLW\ LQ SDUWLFXODWH IUDFWLRQ DV D IXQFWLRQ RI H[WHQW RI FHOO GLVUXSWLRQ ([WUDFWLRQ 7LPH PLQf (Q]\PH $FWLYLW\ QPRO f PLQn mP/nf D 9LDEOH &HOOV /RJ &)8rP/nfE s s s DDYHUDJH s VWDQGDUG GHYLDWLRQ Q f EDYHUDJH Q f

PAGE 60

PLQ 7KH GHFUHDVH LQ HQ]\PH DFWLYLW\ DIWHU PLQ ZDV SRVVLEO\ GXH WR GHQDWXUDWLRQ RI WKH HQ]\PH VLQFH RQO\ b RI WKH WRWDO DFWLYLW\ ZDV IRXQG LQ WKH VXSHUQDWDQW IUDFWLRQ 6PDOO VFDOH EHDGPLOOLQJ ZDV YHU\ HIILFLHQW EXW WKH VDPSOH SURFHVVLQJ FDSDFLW\ ZDV ORZ 7KH WHFKQLTXH ZDV VFDOHG XS E\ XWLOL]LQJ D ODERUDWRU\ VFDOH EHDGPLOO 7KLV XQLW ZDV FDSDEOH RI GLVUXSWLQJ XS WR J RI FHOOV ZHW ZWf LQ P/ PHGLXP 'LVUXSWLRQ RI J RI FHOOV ZDV QRW IHDVLEOH EHFDXVH RI WKH ORZ \LHOG RI FHOOV Jf IURP HDFK EDWFK RI FXOWXUH 7KH WHFKQLTXH HIIHFWLYHO\ GLVUXSWHG J RI FHOOV EXW ZDV DSSDUHQWO\ PXFK PRUH YLJRURXV WKDQ WKH VPDOO VFDOH PHWKRG VLQFH D KLJKHU FHQWULIXJDO IRUFH ZDV UHTXLUHG WR VHGLPHQW WKH HQ]\PH 7KLV ZDV QRW QHFHVVDULO\ D GLVDGYDQWDJH VLQFH D ORZHU FHQWULIXJDO IRUFH FRXOG EH XVHG WR UHPRYH XQEURNHQ FHOOV DQG ODUJH GHEULV IURP WKH FHOO KRPRJHQDWH SULRU WR VHGLPHQWDWLRQ RI WKH HQ]\PH ,VRODWHG SDUWLFXODWHDVVRFLDWHG HQ]\PH ZDV SDUWLDOO\ SXULILHG E\ ZDVKLQJ WKH SHOOHW ZLWK D EXIIHU ZKLFK GLG QRW VROXELOL]H WKH HQ]\PH 7KH SDUWLFXODWH PDWHULDO ZDV FKDUDFWHUL]HG E\ GLIIHUHQWLDO FHQWULIXJDWLRQ 7KLV WHFKQLTXH ZDV DOVR HYDOXDWHG IRU LWV SRWHQWLDO DV DQ HQ]\PH SXULILFDWLRQ VWHS 5HVXOWV RI VXFURVH JUDGLHQW FHQWULIXJDWLRQ DUH VKRZQ LQ )LJXUH 3URWHLQ ZDV HIIHFWLYHO\ IUDFWLRQDWHG LQWR IRXU EDQGV 7KH LQWHQVLW\ RI WKHVH EDQGV ZDV KLJKHVW DW WKH VXFURVH OD\HU LQWHUIDFHV (Q]\PH DFWLYLW\ ZDV IRXQG LQ HDFK EDQG ZLWK WKH PDMRULW\ RI WKH DFWLYLW\ EHLQJ IRXQG LQ WKH WZR EDQGV RI ORZHVW GHQVLW\

PAGE 61

)LJXUH 6XFURVH JUDGLHQW FHQWULIXJDWLRQ RI SDUWLFXODWHDVVRFLDWHG HQ]\PH

PAGE 62

3URWHLQ PJP/f 7 )UDFWLRQ 1XPEHU 'HQVLW\ JFUUIf

PAGE 63

7KH UHVXOWV RI WKLV H[SHULPHQW VXJJHVW WKDW WKH HQ]\PH ZDV DVVRFLDWHG ZLWK SDUWLFXODWH PDWHULDO RI YDU\LQJ GHQVLW\ DQG VL]H 2QH H[SODQDWLRQ WKDW PLJKW DFFRXQW IRU WKHVH UHVXOWV LV WKDW WKH HQ]\PH ZDV DVVRFLDWHG ZLWK D VSHFLILF PHPEUDQH RI WKH EDFWHULXP DQG GXULQJ EHDGPLOOLQJ WKH PHPEUDQH ZDV VKHDUHG LQWR VPDOOHU KHWHURJHQHRXV IUDJPHQWV 2Q WKH RWKHU KDQG WKH HQ]\PH PD\ QRW KDYH EHHQ PHPEUDQH ERXQG EXW LQVWHDG EHFDPH DVVRFLDWHG ZLWK LWV QHDUHVW K\GURSKRELF QHLJKERU DIWHU EHLQJ UHOHDVHG LQWR WKH K\GURSKLOLF PHGLXP EXIIHUf 7KH XWLOLW\ RI VXFURVH JUDGLHQW FHQWULIXJDWLRQ DV D SXULILFDWLRQ VWHS ZDV OLPLWHG E\ WKH ORZ VDPSOH SURFHVVLQJ FDSDFLW\ DQG WKH WLPH UHJXLUHG WR DFKLHYH HJXLOLEULXP KUf ,Q DGGLWLRQ WKH GHJUHH RI SXULILFDWLRQ REWDLQHG ZDV ORZ OHVV WKDQ WZRIROGf WKHUHIRUH LW ZDV GHFLGHG WR VROXELOL]H WKH HQ]\PH ZLWKRXW DQ\ SULRU IUDFWLRQDWLRQ (Q]\PH 6ROXELOL]DWLRQ ,QLWLDO DWWHPSWV WR VROXELOL]H WKH HQ]\PH LQYROYHG WKRVH WHFKQLJXHV GHVFULEHG E\ 3HQHIVN\ DQG 7]DJRORII f IRU ZDWHUVROXEOH PHPEUDQH SURWHLQV EXW LW ZDV HYLGHQW DIWHU VHYHUDO H[SHULPHQWV WKDW WKH HQ]\PH ZDV QRW FKDUDFWHULVWLF RI WKLV W\SH RI SURWHLQ ([WUDFWLRQ RI WKH SDUWLFXODWHDVVRFLDWHG HQ]\PH ZLWK FRQFHQWUDWHG VDOW 0 1D&O DQG 0 XUHDf DONDOL('7$ HQ]\PHV SKRVSKROLSDVH $ O\VR]\PH DQG SHFWRO\DVHf DQG RUJDQLF VROYHQWV '062 HWKDQRO DFHWRQH QEXWDQRO DQG GLR[DQHf KDG QR HIIHFW RQ WKH VROXELOLW\ RI WKH HQ]\PH ([WUDFWLRQ ZLWK RUJDQLF VROYHQWV DFWXDOO\ GHQDWXUHG WKH HQ]\PH

PAGE 64

3DUWLDO VROXELOL]DWLRQ RI WKH HQ]\PH FRXOG EH DFKLHYHG XVLQJ GHWHUJHQWV 1RQLRQLF GHWHUJHQWV VXFK DV 7ULWRQ ; 1RQLGHW 3 DQG QRFW\O D'JOXFRS\UDQRVLGH ZHUH PRUH HIIHFWLYH WKHQ WKH LRQLF GHWHUJHQWV VRGLXP FKRODWH 6'6 DQG >FKRUDPLGRSURS\OfGLPHWK\DPPRQLR@ SURSDQHVXOIRQDWH &+$36f 7ULWRQ ; ZDV FKRVHQ IRU IXUWKHU HQ]\PH VROXELOL]DWLRQ VWXGLHV 7KH GHJUHH RI VROXELOL]DWLRQ RI WKH HQ]\PH ZDV IRXQG WR EH GHSHQGHQW RQ WKH FRQFHQWUDWLRQ RI 7ULWRQ ; ZLWK b ZYf JLYLQJ PRUH FRQVLVWHQW UHVXOWV WKDQ b ZYf )LJXUH f 1RQLRQLF GHWHUJHQWV KDYH EHHQ UHSRUWHG WR EH PRUH HIIHFWLYH ZKHQ XVHG LQ FRPELQDWLRQ ZLWK VDOWV 7]DJRORII DQG 3HQHIVN\ f KRZHYHU LQFOXVLRQ RI YDULRXV FRQFHQWUDWLRQV RI 1D&O .& RU XUHD ZLWK b ZYf 7ULWRQ ; GLG QRW LQFUHDVH WKH VROXELOLW\ RI WKH HQ]\PH ,QFOXVLRQ RI WKH FKDRWURSLF DJHQW VRGLXP WULFKORURDFHWDWH LQ H[WUDFWLRQ EXIIHUV JUHDWO\ LQFUHDVHG WKH HIIHFWLYHQHVV RI 7ULWRQ ; IRU VROXELOL]LQJ WKH HQ]\PH (IIHFW RI LQFOXGLQJ YDULRXV FRQFHQWUDWLRQV RI VRGLXP WULFKORURDFHWDWH LQ VROXWLRQV RI b ZYf 7ULWRQ ; RQ WKH VROXELOLW\ RI WKH HQ]\PH LV VKRZQ LQ )LJXUH 2SWLPXP FRQFHQWUDWLRQ RI VRGLXP WULFKORURDFHWDWH ZDV IRXQG WR EH 0 ZKHQ WKH SURWHLQ FRQFHQWUDWLRQ RI WKH LQLWLDO HQ]\PH VXVSHQVLRQ ZDV OHVV WKDQ PJAP/n 6RGLXP WULFKORURDFHWDWH 0f DORQH KDG QR HIIHFW RQ WKH VROXELOLW\ RI WKH HQ]\PH

PAGE 65

*HO )LOWUDWLRQ &KURPDWRJUDSK\ ,QLWLDO DWWHPSWV WR SXULI\ WKH HQ]\PH XVLQJ DQLRQ H[FKDQJH '($( 6SHFWUD*HOf DQG K\GUR[\ODSDWLWH %LR*HO +73f FKURPDWRJUDSK\ ZHUH XQVXFFHVVIXO GXH WR LUUHYHUVLEOH DGVRUSWLRQ RI WKH HQ]\PH ZKLFK RFFXUUHG HYHQ ZKHQ b ZYf 7ULWRQ ; ZDV LQFOXGHG LQ WKH HOXWLRQ EXIIHUV 7KH GHJUHH RI VXFFHVV RI JHO ILOWUDWLRQ FKURPDWRJUDSK\ IRU HQ]\PH SXULILFDWLRQ GHSHQGHG RQ WKH FRQFHQWUDWLRQ RI 7ULWRQ ; LQ WKH HOXWLRQ EXIIHU *HO ILOWUDWLRQ SURILOHV RI VROXELOL]HG HQ]\PH XVLQJ 6SHFWUD*HO $F$ ZLWK DQG b ZYf 7ULWRQ ; LQ WKH HOXWLRQ EXIIHU DUH VKRZQ LQ )LJXUHV D DQG E :LWK b GHWHUJHQW RQO\ b RI WKH HQ]\PH DFWLYLW\ ZDV UHFRYHUHG ZKHUHDV ZLWK b GHWHUJHQW \LHOGV FORVH WR b ZHUH REWDLQHG /RZ UHFRYHU\ RI DFWLYLW\ ZLWK b GHWHUJHQW ZDV DSSDUHQWO\ GXH WR DGVRUSWLRQ RI WKH HQ]\PH WR WKH JHO 7KLV LV HYLGHQW IURP WKH JUHDWHU YROXPH UHJXLUHG WR HOXWH WKH HQ]\PH ZLWK b GHWHUJHQW FRPSDUHG WR ZLWK b GHWHUJHQW :LWK b GHWHUJHQW WKH HQ]\PH HOXWHG DW WKH OHDGLQJ HGJH RI WKH ODVW DQG ODUJHVW SHDN 7KLV ZDV WKH LQFOXVLRQ YROXPH RI WKH FROXPQ DQG ZDV FRPSRVHG PDLQO\ RI H[FHVV GHWHUJHQW RULJLQDWLQJ IURP WKH VROXELOL]HG HQ]\PH VROXWLRQ $IWHU EHLQJ DGVRUEHG WR WKH JHO WKH HQ]\PH ZDV DSSDUHQWO\ SDUWLDOO\ UHVROXELOL]HG E\ WKH FRQFHQWUDWHG GHWHUJHQW YROXPH :LWK b GHWHUJHQW WKH LQFOXVLRQ YROXPH DSSHDUHG DV D QHJDWLYH SHDN 7KLV ZDV SUREDEO\ FRPSRVHG RI H[FHVV VRGLXP WULFKORURDFHWDWH RULJLQDWLQJ IURP WKH VROXELOL]HG HQ]\PH VROXWLRQ

PAGE 66

)LJXUH 3ORW RI 7ULWRQ ; FRQFHQWUDWLRQ YHUVXV GHJUHH RI VROXELOL]DWLRQ RI SURWHLQ DQG HQ]\PH %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG P0 '7(f

PAGE 67

'HJUHH RI 6ROXELOL]DWLRQ bf 7ULWRQ ; b ZYf

PAGE 69

'HJUHH RI 6ROXELOL]DWLRQ bf

PAGE 70

)LJXUH 6SHFWUD*HO $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI VROXELOL]HG DWHUSLQHRO GHK\GUDWDVH XVLQJ WZR FRQFHQWUDWLRQV RI 7ULWRQ ; LQ WKH HOXWLRQ EXIIHU Df b ZYf 7ULWRQ ; DQG Ef b ZYf 7ULWRQ ; (OXWLRQ EXIIHU FRQVLVWHG RI P0 +(3(6 S+ P0 '7( DQG b ZYf VRGLXP D]LGHf

PAGE 71

3URWHLQ PJ POBf rf§ 3URWHLQ PJP/ff $FWLYLW\ QPRO PLQP/Bf fp $FWLYLW\ QPROPLQfP/Bf

PAGE 72

7KH SXUSRVH RI JHO ILOWUDWLRQ FKURPDWRJUDSK\ ZDV QRW RQO\ IRU SXULILFDWLRQ RI WKH HQ]\PH EXW DOVR DV D FULWHULRQ WR HVWDEOLVK WKH VROXELOLW\ RI WKH HQ]\PH LQ b ZYf 7ULWRQ ; ,W LV JHQHUDOO\ H[FHSWHG WKDW DQ HQ]\PH SUHSDUDWLRQ LV VROXEOH LI LW UHPDLQV LQ WKH VXSHUQDWDQW VROXWLRQ DIWHU FHQWULIXJDWLRQ DW [ J IRU RQH RU PRUH KRXUV 3HQHIVN\ DQG 7]DJRORII f KRZHYHU VPDOO PHPEUDQH IUDJPHQWV ZKLFK GR QRW VHGLPHQW UHDGLO\ PD\ DSSHDU WR EH VROXEOH $GGLWLRQDO HYLGHQFH RI VROXELOLW\ FDQ EH REWDLQHG E\ SDVVDJH RI WKH HQ]\PH SUHSDUDWLRQ WKURXJK D JHO ILOWUDWLRQ FROXPQ (LEHUJHU DQG :DVVHUPDQ f 7KH HQ]\PH VKRXOG HOXWH ZLWKLQ WKH OLQHDU IUDFWLRQDWLRQ UDQJH RI WKH FROXPQ 7KLV LV EHFDXVH ODUJH LQVROXEOH PDWHULDO ZRXOG HOXWH LQ WKH H[FOXVLRQ YROXPH RU YRLG YROXPH XQOHVV LW SUHFLSLWDWHV LQ WKH FROXPQ RU DGVRUEV WR WKH JHO :KHQ SDVVHG WKURXJK 6SHFWUD*HO $F$ LQ b ZYf 7ULWRQ ; WKH HQ]\PH HOXWHG LQ WKH YRLG YROXPH 7KH OLQHDU IUDFWLRQDWLRQ UDQJH RI $F$ LV GDOWRQV DQG WKH H[FOXVLRQ OLPLW LV GDOWRQV 7KHUHIRUH WKH HQ]\PH HLWKHU HOXWHG DV DQ LQVROXEOH HQ]\PH SDUWLFXODWH FRPSOH[ RU LWV PROHFXODU ZHLJKW ZDV ODUJHU WKDQ WKH H[FOXVLRQ OLPLW RI WKH JHO :KHQ WKH HQ]\PH ZDV IUDFWLRQDWHG XVLQJ 6SHFWUD*HO $F$ ZLWK b ZYf 7ULWRQ ; LQ WKH HOXWLRQ EXIIHUf LW HOXWHG DV WZR SHDNV )LJXUH f 7KH OLQHDU IUDFWLRQDWLRQ UDQJH RI $F$ LV GDOWRQV DQG WKH H[FOXVLRQ OLPLW LV GDOWRQV %RWK SHDNV HOXWHG ZLWKLQ WKH OLQHDU

PAGE 73

)LJXUH 6SHFWUD*HO $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI VROXELOL]HG DWHUSLQHRO GHK\GUDWDVH (OXWLRQ EXIIHU FRQVLVWHG RI P0 +(3(6 S+ b ZYf 7ULWRQ ; P0 '7( DQG b VRGLXP D]LGHf

PAGE 74

3URWHLQ PJUQ/f (OXWLRQ 9ROXPH POf $FWLYLW\ QPRO PLQnP/f r

PAGE 75

IUDFWLRQDWLRQ UDQJH RI WKH JHO WKHUHE\ FRQILUPLQJ WKDW WKH HQ]\PH ZDV VROXEOH LQ b ZYf 7ULWRQ ; 2QH H[SODQDWLRQ IRU WKH RFFXUUHQFH RI WZR DFWLYLW\ SHDNV PLJKW EH WKDW WKH HQ]\PH H[LVWHG DV ERWK D QDWLYH PRQRPHU DQG GLPHU LQ WKH SUHVHQFH RI b ZYf 7ULWRQ ; $OWHUQDWLYHO\ WKH WZR DFWLYLW\ SHDNV PD\ KDYH EHHQ WZR GLIIHUHQW HQ]\PHV LVR]\PHVf 3DUWLDO 3XULILFDWLRQ RI (Q]\PH 6DPSOHV IURP YDULRXV VWDJHV RI HQ]\PH IUDFWLRQDWLRQ ZHUH DQDO\]HG IRU HQ]\PH DFWLYLW\ DQG SURWHLQ FRQFHQWUDWLRQ ,W ZDV QHFHVVDU\ IRU HDFK VDPSOH WR FRQWDLQ WKH VDPH DPRXQW RI 7ULWRQ ; EHFDXVH FRQFHQWUDWLRQV DERYH b ZYf KDG DQ LQKLELWRU\ HIIHFW RQ WKH HQ]\PH )LJXUH f %\ DGMXVWLQJ WKH GHWHUJHQW FRQFHQWUDWLRQ WR b LW ZDV SRVVLEOH WR FRPSDUH HQ]\PH DFWLYLWLHV RI GLIIHUHQW VDPSOHV 3URWHLQ GHWHUPLQDWLRQV ZHUH RI KLJK SUHFLVLRQ KRZHYHU WKHUH ZDV D KLJK XQFHUWDLQW\ LQ WKHLU DFFXUDF\ 7KLV ZDV EHFDXVH UHVXOWV REWDLQHG XVLQJ WKH &RRPDVVLH EOXH SURWHLQ DVVD\ GHSHQG RQ WKH FRPSRVLWLRQ RI WKH SURWHLQ %UDGIRUG f 0XFK RI WKH XQFHUWDLQW\ FRXOG EH HOLPLQDWHG E\ XVLQJ DSSURSULDWH EODQNV WR DFFRXQW IRU WKH VDPSOH PDWUL[ )RU H[DPSOH &RRPDVVLH EOXH UHDFWV ZLWK 7ULWRQ ; DV ZHOO DV SURWHLQ ,Q RUGHU WR XVH WKLV PHWKRG WR PRQLWRU JHO ILOWUDWLRQ IUDFWLRQV EODQNV FRQVLVWLQJ RI WKH JHO ILOWUDWLRQ EXIIHU ZHUH UHTXLUHG 7KH EDFNJURXQG LQ WKH SUHVHQFH RI b GHWHUJHQW ZDV UHODWLYHO\ KLJK KRZHYHU WKLV PHWKRG ZDV VWLOO SUHIHUDEOH WR PRQLWRULQJ WKH

PAGE 76

)LJXUH 7ULWRQ ; FRQFHQWUDWLRQ YHUVXV FDWDO\WLF DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH %XIIHU FRQVLVWHG RI P0 +(3(6 S+ (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 77

7ULWRQ ; b ZYf

PAGE 78

DEVRUEDQFH QPf RI WKH JHO ILOWUDWLRQ HOXHQW 7ULWRQ ; KDV D YHU\ KLJK DEVRUSWLYLW\ DW WKLV ZDYHOHQJWK 8QFHUWDLQW\ DVVRFLDWHG ZLWK XVLQJ ERYLQH VHUXP DOEXPLQ DV WKH VWDQGDUG FRXOG QRW EH HOLPLQDWHG VLQFH WKLV ZRXOG UHTXLUH XVLQJ SXULILHG HQ]\PH DV WKH VWDQGDUG 5HVXOWV RI WKH IUDFWLRQDWLRQ RI WKH HQ]\PH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ DV WKH ILQDO SXULILFDWLRQ VWHS DUH JLYHQ LQ 7DEOH 7KH KLJKHVW GHJUHH RI SXULILFDWLRQ ZDV REWDLQHG DIWHU VROXELOL]DWLRQ RI WKH HQ]\PH IROGf 7KH ILQDO GHJUHH RI SXULILFDWLRQ GHSHQGHG RQ WKH DPRXQW RI SDUWLFXODWHDVVRFLDWHG HQ]\PH UHFRYHUHG IURP WKH [ J VXSHUQDWDQW 1HDUO\ b RI WKH HQ]\PH DFWLYLW\ ZDV UHFRYHUHG DIWHU JHO ILOWUDWLRQ KRZHYHU WKH GHJUHH RI SXULILFDWLRQ REWDLQHG ZDV RQO\ DERXW WZRIROG RYHU WKH VROXELOL]HG HQ]\PH 'HVSLWH WKH ORZ SXULILFDWLRQ IROG JHO ILOWUDWLRQ UHPRYHG PXFK RI WKH SLJPHQWHG PDWHULDO DQG DSSHDUHG WR ORZHU WKH YLVFRVLW\ RI WKH HQ]\PH VROXWLRQ 5HVXOWV RI WKH IUDFWLRQDWLRQ RI WKH HQ]\PH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ DV WKH ILQDO SXULILFDWLRQ VWHS DUH JLYHQ LQ 7DEOH $JDLQ WKH KLJKHVW GHJUHH RI SXULILFDWLRQ ZDV REWDLQHG DIWHU VROXELOL]DWLRQ RI WKH HQ]\PH IROGf 7KH SXULILFDWLRQ IDFWRU DIWHU JHO ILOWUDWLRQ RQ $F$ FRXOG QRW EH DFFXUDWHO\ GHWHUPLQHG EHFDXVH WKH SRROHG IUDFWLRQV FRQWDLQHG DQ H[FHVVLYHO\ KLJK DPRXQW RI 7ULWRQ ; 7KLV FDXVHG D KLJK HVWLPDWLRQ RI WKH SURWHLQ FRQFHQWUDWLRQ ,QIODWHG SURWHLQ FRQFHQWUDWLRQ YDOXHV LQ WXUQ FDXVHG WKH FDOFXODWHG VSHFLILF DFWLYLWLHV WR DSSHDU

PAGE 79

7$%/( )UDFWLRQDWLRQ RI DWHUSLQHRO GHK\GUDWDVH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ )UDFWLRQ 9ROXPH P/f 3URWHLQ &RQH PJrP/nf E $FWLYLW\ QPRO rPLQ rP/nf E 6SHFLILF $FWLYLW\ QPRO f PLQn f PJ SURWHLQfF 3HUFHQW 5HFRYHU\ 3XULILn FDWLRQ )DFWRU IROGf 'LVUXSWHG &HOOV s s [ J 6XSHUQ s (Q]\PH ([WUDFW s 6ROXELOL]HG (Q]\PH s *HO )LOWUDWLRQ s D6SHFWUD*HO $F$ FKURPDWRJUDSK\ LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; P0 '7( DQG b ZYf VRGLXP D]LGH IUDFWLRQV IURP UXQV P/ HDFK SRROHGf EDYHUDJH s VWDQGDUG GHYLDWLRQ Q f FDYHUDJH s VWDQGDUG GHYLDWLRQ SURSDJDWHG IURP SURWHLQ DQG HQ]\PH FRQFHQWUDWLRQ GDWDf

PAGE 80

7$%/( )UDFWLRQDWLRQ RI DWHUSLQHRO GHK\GUDWDVH XVLQJ 6SHFWUD*HO $F$ FKURPDWRJUDSK\ )UDFWLRQ 9ROXPH P/f 3URWHLQ &RQH PJrP/nfE QPRO $FWLYLW\ fPLQ rP/nf 6SHFLILF $FWLYLW\ QPRO rPLQn rPJn SURWHLQfF 3HUFHQW 5HFRYHU\ 3XULILn FDWLRQ )DFWRU IROGf 'LVUXSWHG &HOOV s [ J 6XSHUQ (Q]\PH ([WUDFW 6ROXELOL]HG (Q]\PH *HO )LOWUDWLRQ D6SHFWUD*HO $F$ FKURPDWRJUDSK\ LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; P0 '7( DQG b ZYf VRGLXP D]LGH IUDFWLRQV IURP UXQV P/ HDFK SRROHGf EDYHUDJH s VWDQGDUG GHYLDWLRQ Q f FDYHUDJH s VWDQGDUG GHYLDWLRQ SURSDJDWHG IURP SURWHLQ DQG HQ]\PH FRQFHQWUDWLRQ GDWDf

PAGE 81

ORZHU WKDQ WKH DFWXDO YDOXHV 7KH PDLQ GLVDGYDQWDJH RI $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ ZDV WKDW WKH WRWDO YROXPH RI IUDFWLRQV FRQWDLQLQJ HQ]\PH DFWLYLW\ ZDV DERXW GRXEOH WKDW IURP $F$ JHO ILOWUDWLRQ FKURPDWRJUDSK\ 7KLV PHDQW DGGLWLRQDO WLPH ZDV UHJXLUHG WR FRQFHQWUDWH WKH IUDFWLRQV DQG UHGXFH WKH GHWHUJHQW FRQFHQWUDWLRQ &KDUDFWHUL]DWLRQ RI D7HURLQHRO 'HK\GUDWDVH (Q]\PHFDWDO\]HG GHK\GUDWLRQ RI DWHUSLQHRO WR OLPRQHQH FRXOG QRW GHPRQVWUDWHG ,Q IDFW QR FKDQJH LQ OLPRQHQH FRQFHQWUDWLRQ FRXOG EH GHWHFWHG LQ WKH DVVD\ PHGLXP HYHQ DIWHU KU LQFXEDWLRQ RI WKH HQ]\PH ZLWK P0 UDFHPLF DWHUSLQHRO RU P0 5ffDWHUSLQHRO 7KH NLQHWLF SURSHUWLHV RI WKH HQ]\PH ZHUH WKHUHIRUH GHWHUPLQHG RQO\ IRU WKH K\GUDWLRQ RI OLPRQHQH WR DWHUSLQHRO )XUWKHUPRUH 5ffOLPRQHQH ZDV XVHG DV WKH VXEVWUDWH IRU DOO HQ]\PH DVVD\V H[FHSW IRU VWHUHRVSHFLILFLW\VWHUHRVHOHFWLYLW\ VWXGLHV (Q]\PH 1RPHQFODWXUH ,W ZDV GHFLGHG WKDW WKH HQ]\PH ZRXOG EH QDPHG DWHUSLQHRO GHK\GUDWDVH HYHQ WKRXJK WKH GHK\GUDWLRQ RI DWHUSLQHRO WR OLPRQHQH FRXOG QRW EH GHPRQVWUDWHG 7KLV QDPH ZDV FKRVHQ EHFDXVH LW ZDV PRVW GHVFULSWLYH RI WKH UHDFWLRQ ,W LV REYLRXV WKDW GHK\GUDWLRQ RI DWHUSLQHRO OHDGV RQO\ WR OLPRQHQH 7KH QDPH OLPRQHQH K\GUDWDVH ZDV QRW FKRVHQ EHFDXVH LW LV DPELJXRXV LQ UHJDUGV WR ZKLFK GRXEOH ERQG RI OLPRQHQH LV K\GUDWHG 7KH QDPH DWHUSLQHRO V\QWKDVH ZDV QRW FKRVHQ EHFDXVH LW GHVFULEHV RQO\ WKH SURGXFW

PAGE 82

0ROHFXODU :HLJKW ,QLWLDO DWWHPSWV WR GHWHUPLQH WKH QDWLYH PROHFXODU ZHLJKW RI DWHUSLQHRO GHK\GUDWDVH LQYROYHG QRQGHQDWXULQJ SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV 1'3$*(f 7KH PHWKRG RI 'RHUQHU DQG :KLWH f ZDV XVHG H[FHSW WKDW RU b ZYf 7ULWRQ ; ZDV LQFOXGHG LQ DOO JHOV DQG EXIIHUV ,Q b GHWHUJHQW WKH VDPSOH SURWHLQV ZHUH XQDEOH WR PLJUDWH WKURXJK WKH VHSDUDWLQJ JHOV ,Q RUGHU WR LQFUHDVH WKH PRELOLW\ RI WKH SURWHLQV b GHWHUJHQW ZDV XVHG 6HYHUDO FRPSRQHQWV RI WKH HQ]\PH VROXWLRQ ZHUH SDUWLDOO\ UHVROYHG ZLWK 1'3$*( LQ b GHWHUJHQW *HOV ZHUH FRPSRVHG RI b RU b DFU\ODPLGH ZLWK VWDFNLQJ JHOV FRPSRVHG RI b DFU\ODPLGHf *HOV ZHUH SUHSDUHG IURP DQ DFU\ODPLGH VWRFN VROXWLRQ FRQWDLQLQJ b7 DQG b& ,W ZDV GLIILFXOW WR GLVWLQJXLVK PRVW RI WKH SURWHLQ EDQGV EHFDXVH WKH JHO EDFNJURXQGV ZHUH YHU\ GDUN GXH WR WKH KLJK FRQFHQWUDWLRQ RI GHWHUJHQW 1R HQ]\PH DFWLYLW\ ZDV GHWHFWHG RQ HLWKHU JHO WKHUHIRUH LW ZDV QRW SRVVLEOH WR LGHQWLI\ WKH HQ]\PH EDQG ,W ZDV QRW VXUSULVLQJ WKDW DWHUSLQHRO GHK\GUDWDVH FRXOG QRW EH VHSDUDWHG E\ 1'3$*( VLQFH WKH PHWKRG LV JHQHUDOO\ QRW DSSOLFDEOH WR K\GURSKRELF PHPEUDQH SURWHLQV 7]DJRORII DQG 3HQHIVN\ f 7KH PROHFXODU ZHLJKW RI QDWLYH DWHUSLQHRO GHK\GUDWDVH LQ WKH SUHVHQFH RI b ZYf 7ULWRQ ; ZDV GHWHUPLQHG E\ JHO ILOWUDWLRQ $ SURILOH IRU 6HSKDURVH &/% JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI DWHUSLQHRO GHK\GUDWDVH ZLWK b ZYf 7ULWRQ ; LQ WKH HOXWLRQ EXIIHU LV VKRZQ LQ

PAGE 83

)LJXUH 7KH OLQHDU IUDFWLRQDWLRQ UDQJH RI 6HSKDURVH &/% LV GDOWRQV (Q]\PH DFWLYLW\ HOXWHG DV WZR SHDNV DV ZDV DOVR REVHUYHG RQ 6SHFWUD*HO $F$ 0ROHFXODU ZHLJKWV RI WKH WZR IRUPV RI DWHUSLQHRO GHK\GUDWDVH ZHUH HVWLPDWHG E\ FRPSDULQJ WKHLU 9H9R ZKHUH 9H LV HOXWLRQ YROXPH RI VDPSOH DQG 9R LV YRLG YROXPH RI FROXPQf YDOXHV ZLWK D FDOLEUDWLRQ FXUYH RI PROHFXODU ZHLJKW YHUVXV 9H94 IRU SURWHLQ VWDQGDUGV )LJXUH f 5HVXOWV 7DEOH f VXJJHVW WKDW DWHUSLQHRO GHK\GUDWDVH H[LVWHG DV WZR IRUPV LQ b ZYf 7ULWRQ ; D PRQRPHU ZLWK DQ DSSDUHQW PROHFXODU ZHLJKW RI GDOWRQV DQG D GLPHU ZLWK DQ DSSDUHQW PROHFXODU ZHLJKW RI GDOWRQV 6ROXELOL]HG PHPEUDQH HQ]\PHV RIWHQ H[LVW DV GHWHUJHQWHQ]\PH FRPSOH[HV 1DOHF] HW DO f ,W LV SRVVLEOH WKDW PROHFXODU ZHLJKWV GHWHUPLQHG E\ WKLV WHFKQLTXH DUH WKRVH RI GHWHUJHQW HQ]\PH FRPSOH[HV DQG DUH QRW QHFHVVDULO\ WKH DFWXDO PROHFXODU ZHLJKWV RI WKH HQ]\PH PRQRPHU DQG GLPHU 6HYHUDO HQ]\PH IUDFWLRQV ZHUH DQDO\]HG E\ 6'63$*( )LJXUH f WR GHWHUPLQH WKHLU SURWHLQ VXEXQLW FRPSRVLWLRQ 0ROHFXODU ZHLJKWV RI SURWHLQ VXEXQLWV ZHUH GHWHUPLQHG E\ FRPSDULQJ WKHLU PLJUDWLRQ GLVWDQFHV ZLWK D FDOLEUDWLRQ FXUYH RI PROHFXODU ZHLJKW YHUVXV PLJUDWLRQ GLVWDQFH IRU SURWHLQ VWDQGDUGV )LJXUH f $W OHDVW WKUHH EDQGV ZHUH HQULFKHG GXULQJ WKH SXULILFDWLRQ RI WKH HQ]\PH FRUUHVSRQGLQJ WR SRO\SHSWLGHV ZLWK PROHFXODU ZHLJKWV RI DQG GDOWRQV 7KH GDOWRQ SRO\SHSWLGH KDG WKH KLJKHVW PROHFXODU ZHLJKW RI DQ\ RWKHU SRO\SHSWLGH LQ WKH

PAGE 84

)LJXUH 6HSKDURVH &/% JHO ILOWUDWLRQ FKURPDWRJUDSK\ RI DWHUSLQHRO GHK\GUDWDVH (OXWLRQ EXIIHU FRQVLVWHG RI P0 +(3(6 S+ b ZYf 7ULWRQ ; P0 '7( DQG b ZYf VRGLXP D]LGHf

PAGE 85

$FWLYLW\ QPRO PLQP/ff rprnr

PAGE 86

)LJXUH &DOLEUDWLRQ FXUYH IRU 6HSKDURVH &/% FROXPQ 9DOXHV UHSUHVHQW PHDQV Q f

PAGE 87

0ROHFXODU :HLJKW < 9H9 ;

PAGE 88

7$%/( 5HVXOWV RI WKH PROHFXODU ZHLJKW GHWHUPLQDWLRQ RI QDWLYH DWHUSLQHRO GHK\GUDWDVH LQ b ZYf 7ULWRQ ; E\ 6HSKDURVH &/% JHO ILOWUDWLRQ FKURPDWRJUDSK\ 3HDN 1XPEHU : 0ROHFXODU :HLJKW GDOWRQVf sE sE s s D9H HOXWLRQ YROXPH RI VDPSOH 94 YRLG YROXPH RI FROXPQ EDYHUDJH s VWDQGDUG GHYLDWLRQ Q f

PAGE 89

)LJXUH 6'63$*( JUDGLHQW bf JHO RI HQ]\PH IUDFWLRQV >/DQH / RI GLOXWHG ORZ PROHFXODU ZHLJKW VWDQGDUGV /DQH ML/ RI UHFRYHUHG SDUWLFXODWHDVVRFLDWHG HQ]\PH PJrP/n SURWHLQf /DQH RI VROXELOL]HG HQ]\PH PJrP/n SURWHLQf /DQH / RI FRQFHQWUDWHG $F$ JHO ILOWUDWLRQ IUDFWLRQV PJrP/f SURWHLQf /DQH L/ RI GLOXWHG KLJK PROHFXODU ZHLJKW VWDQGDUGV 0ROHFXODU ZHLJKW VWDQGDUGV ZHUH DV IROORZV D 0\RVLQ 0: f E ( FROL %JDODFWRVLGDVH 0: f F 5DEELW PXVFOH SKRVSKRU\ODVH E 0: f G %RYLQH VHUXP DOEXPLQ 0: f H +HQ HJJ ZKLWH RYDOEXPLQ 0: f I %RYLQH FDUERQLF DQK\GUDVH 0: f J 6R\EHDQ WU\SVLQ LQKLELWRU 0: f K +HQ HJJZKLWH O\VR]\PH 0: f@

PAGE 91

)LJXUH &DOLEUDWLRQ FXUYH IRU 6'63$*( JUDGLHQW bf JHO

PAGE 92

0ROHFXODU :HLJKW < ; ; ; ; ; ; R 'LVWDQFH ;PPf

PAGE 93

IUDFWLRQV DQG ZDV HVVHQWLDOO\ WKH VDPH VL]H DV WKH QDWLYH DWHUSLQHRO GHK\GUDWDVH PRQRPHU 7KLV LPSOLHV WKDW DW OHDVW VRPH SRUWLRQ RI WKH QDWLYH PRQRPHU GLG QRW IUDFWLRQDWH LQWR VPDOOHU VXEXQLWV LQ 6'6 GHQDWXULQJ FRQGLWLRQV ,Q RUGHU WR SURYLGH FRQFOXVLYH HYLGHQFH WKLV EDQG UHSUHVHQWV DWHUSLQHRO GHK\GUDWDVH 6'63$*( DQDO\VLV RI WKH SXULILHG HQ]\PH ZRXOG EH UHTXLUHG ,VRHOHFWULF 3RLQW 7KH LVRHOHFWULF SRLQW SLf RI D SURWHLQ LV WKH S+ DW ZKLFK LW KDV QR QHW FKDUJH 2QH RI WKH HDVLHVW DQG IDVWHVW PHWKRGV IRU GHWHUPLQLQJ WKH SL RI D SURWHLQ LV E\ LVRHOHFWULF IRFXVLQJ ,()f ZKLFK LQYROYHV VHWWLQJ XS D S+ JUDGLHQW XVLQJ DPSKRO\WHVf DQG DOORZLQJ WKH SURWHLQ WR PLJUDWH LQ DQ HOHFWULF ILHOG WR D SRLQW LQ WKH V\VWHP ZKHUH WKH S+ HTXDOV LWV SL 7KH SL RI DWHUSLQHRO GHK\GUDWDVH ZDV GHWHUPLQHG E\ DJDURVH ,() LQ WKH SUHVHQFH RI b ZYf 7ULWRQ ; DQG b ZYf DPSKRO\WHV )LJXUH f $JDURVH ZDV XVHG DV WKH VWDELOL]LQJ PHGLXP LQVWHDG RI SRO\DFU\ODPLGH EHFDXVH RI LWV JUHDWHU SRURVLW\ *UHDWHU SRURVLW\ ZDV UHTXLUHG VR WKDW WKH KLJK PROHFXODU ZHLJKW SURWHLQV FRXOG PLJUDWH XQKLQGHUHG 7KH ,() FRQGLWLRQV XVHG ZHUH VXLWDEOH IRU DQDO\]LQJ DQ\ SURWHLQ ZLWK D SL EHWZHHQ DQG 7KH SL RI DWHUSLQHRO GHK\GUDWDVH ZDV GHWHUPLQHG E\ FRPSDULQJ LWV PLJUDWLRQ GLVWDQFH ZLWK D FDOLEUDWLRQ FXUYH RI SL YHUVXV PLJUDWLRQ GLVWDQFH IRU SURWHLQ VWDQGDUGV )LJXUH f (Q]\PH DFWLYLW\ ZDV IRXQG WKURXJKRXW PRVW RI WKH JHO ZLWK WKH PDMRULW\ EHLQJ ORFDWHG LQ D ]RQH ZKHUH WKHUH ZHUH

PAGE 94

)LJXUH $JDURVH ,() JHO RI SDUWLDOO\ SXULILHG DWHUSLQHRO GHK\GUDWDVH LQ b ZYf 7ULWRQ ; DQG b ZYf 6HUYDO\WH DPSKRO\WHV >0LGGOH ODQH >;/ L[J SURWHLQf HQ]\PH VROXWLRQ GLDO\]HG LQ b JO\FLQH S+ FRQWDLQLQJ b ZYf 7ULWRQ ; 2XWVLGH ODQHV [/ RI GLOXWHG ,() VWDQGDUGV ,() VWDQGDUGV ZHUH DV IROORZV D 3K\FRF\DQLQ SL f E %/DFWRJOREXOLQ % SL f F %RYLQH FDUERQLF DQK\GUDVH SL f G +XPDQ FDUERQLF DQK\GUDVH SL f H +XPDQ KHPRJORELQ $ SL f I /HQWLO OHFWLQ EDQGV SL f@

PAGE 95

$FWLYLW\ QPROPLUUf )UDFWLRQ 1XPEHU

PAGE 96

)LJXUH &DOLEUDWLRQ FXUYH IRU DJDURVH ,() JHO UHSUHVHQW PHDQV Q f 9DOXHV

PAGE 98

VHYHUDO SURWHLQ EDQGV 7KLV ]RQH DFWXDOO\ UHSUHVHQWHG WKH QXQ JHO IUDFWLRQ ZKLFK KDG WKH KLJKHVW DFWLYLW\ 7KH GLIIXVLRQ RI HQ]\PH DFWLYLW\ WKURXJKRXW PRVW RI WKH JHO ZDV SUREDEO\ GXH WR WKH DVVRFLDWLRQ RI WKH HQ]\PH ZLWK VHYHUDO DPSKRO\WH FRPSRQHQWV WKRVH VSHFLHV KDYLQJ FRPELQHG SL YDOXHV GLIIHUHQW IURP WKDW RI WKH QDWLYH HQ]\PH 6FRSHV f )RU WKH HQ]\PH VROXWLRQ ZKLFK ZDV GLDO\]HG DJDLQVW b JO\FLQH WKH ]RQH RI KLJKHVW DFWLYLW\ ZDV FRPSRVHG RI SURWHLQV ZLWK SL YDOXHV EHWZHHQ DQG 7KH EDQG RI KLJKHVW LQWHQVLW\ LQ WKLV ]RQH KDG D SL RI )RU WKH HQ]\PH VROXWLRQ ZKLFK ZDV GLDO\]HG DJDLQVW GLVWLOOHG ZDWHU WKH ]RQH RI KLJKHVW DFWLYLW\ ZDV FRPSRVHG RI SURWHLQV ZLWK SL YDOXHV EHWZHHQ DQG 7KH EDQG RI KLJKHVW LQWHQVLW\ LQ WKLV ]RQH DOVR KDG D SL RI ,W ZDV FRQFOXGHG E\ FRPSDULQJ WKH RYHUODS RI WKH ]RQHV RI KLJKHVW DFWLYLW\ IURP WKHVH WZR H[SHULPHQWV WKDW WKH SL RI DWHUSLQHRO GHK\GUDWDVH ZDV EHWZHHQ DQG 7KHUH ZDV QRW HQRXJK HYLGHQFH WR GHWHUPLQH ZKLFK EDQG DFWXDOO\ UHSUHVHQWHG DWHUSLQHRO GHK\GUDWDVH 6XFK D GHWHUPLQDWLRQ ZRXOG UHTXLUH ,() RI WKH SXULILHG HQ]\PH $FWLYLW\ LQ 2UJDQLF 6ROYHQWV 'HWHUPLQDWLRQ RI WKH NLQHWLF SURSHUWLHV RI DQ HQ]\PH EHFRPHV FRPSOLFDWHG ZKHQ WKH VXEVWUDWH LV LQVROXEOH LQ WKH PHGLXP FRQWDLQLQJ WKH HQ]\PH ,QGHHG FODVVLFDO HQ]\PH NLQHWLF WKHRU\ DVVXPHV WKDW ERWK HQ]\PH DQG VXEVWUDWHVf DUH VROXEOH LQ WKH VDPH PHGLXP 7KHUHIRUH WKH SRWHQWLDO RI XVLQJ ZDWHUPLVFLEOH RUJDQLF VROYHQWV WR GLVVROYH OLPRQHQH LQ WKH HQ]\PH UHDFWLRQ PHGLXP ZDV H[DPLQHG

PAGE 99

6ROYHQWV XVHG LQ WKH H[SHULPHQWV ZHUH FDUHIXOO\ VHOHFWHG XVLQJ WKH FULWHULRQ RI .KPHOQLWVN\ HW DO f 7KHVH UHVHDUFKHUV VWDWHG WKDW K\GURSKRELF LQWHUDFWLRQV SOD\ WKH GRPLQDQW UROH LQ PDLQWDLQLQJ WKH FDWDO\WLFDOO\ DFWLYH FRQIRUPDWLRQ RI HQ]\PHV 7KXV WKH PRVW IDYRUHG FRQIRUPDWLRQ ZRXOG EH SURGXFHG E\ VROYHQWV WKDW FDQ UHSODFH ZDWHU LQ WKH K\GUDWLRQ VKHOO RI DQ HQ]\PH PROHFXOH ZLWKRXW VLJQLILFDQWO\ GLVWRUWLQJ K\GURSKRELF LQWHUDFWLRQV LH VROYHQWV ZRXOG PDLQWDLQ VROYRSKRELF LQWHUDFWLRQVf 5D\ f FODVVLILHG RUJDQLF VROYHQWV DFFRUGLQJ WR WKHLU FDSDFLW\ IRU VROYRSKRELF LQWHUDFWLRQV 6ROYHQWV ZHUH FODVVLILHG LQWR WKUHH JURXSV IRU H[DPSOH Lf ZDWHU JO\FHURO HWK\OHQH JO\FRO DPLQRHWKDQRO DQG IRUPDPLGH LLf PHWK\O IRUPDPLGH DQG GLPHWK\O IRUPDPLGH DQG LLLf PHWKDQRO HWKDQRO DQG WROXHQH $FFRUGLQJ WR 5D\ f VROYRSKRELF LQWHUDFWLRQV DUH EHVW UHDOL]HG LQ VROYHQWV RI JURXS Lf PXFK OHVV VR LQ VROYHQWV RI JURXS LLf DQG DUH SUDFWLFDOO\ DEVHQW LQ VROYHQWV RI JURXS LLLf 7KLV LV EHFDXVH WKH VROYHQWV RI JURXS Lf FRQWDLQ DW OHDVW WZR JURXSV FDSDEOH RI IRUPLQJ K\GURJHQ ERQGV $PRQJ WKH VROYHQWV LQ FODVV Lf ZDWHU DQG JO\FHURO KDYH WKH KLJKHVW FDSDFLW\ IRU VROYRSKRELF LQWHUDFWLRQV (IIHFW RI VHYHUDO JURXS Lf DQG LLf VROYHQWV RQ DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ LV VKRZQ LQ )LJXUH 7KH HIIHFW RI JO\FHURO ZDV H[DPLQHG IRU FRPSDULVRQ SXUSRVHV RQO\ VLQFH OLPRQHQH LV VFDUFHO\ PRUH VROXEOH LQ JO\FHURO WKDQ LQ ZDWHU D7HUSLQHRO GHK\GUDWDVH DFWLYLW\ GHFUHDVHG

PAGE 100

)LJXUH (IIHFW RI JO\FHURO IRUPDPLGH DQG 11GLPHWK\O IRUPD[QLGH FRQFHQWUDWLRQ RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 101

b &DWDO\WLF $FWLYLW\

PAGE 102

RQO\ VOLJKWO\ LQ WKH SUHVHQFH RI JO\FHURO HYHQ DW FRQFHQWUDWLRQV DV KLJK DV b YYf )RUPDPLGH DQG GLPHWK\OIRUPDPLGH HIIHFWLYHO\ ORZHUHG WKH DFWLYLW\ ZLWK WRWDO LQDFWLYDWLRQ RI WKH HQ]\PH RFFXUULQJ DW VROYHQW FRQFHQWUDWLRQV DERYH b YYf 6LQFH ZDWHU LV RQH RI WKH VXEVWUDWHV RI DWHUSLQHRO GHK\GUDWDVH LW ZDV RULJLQDOO\ WKRXJKW WKDW WKH VOLJKW GHFUHDVH LQ DFWLYLW\ REVHUYHG LQ RU b YYf JO\FHURO ZDV GXH WR D GHFUHDVH LQ WKH ZDWHU DFWLYLW\ DQG VXEVHTXHQW VKLIW LQ HTXLOLEULXP RI WKH UHDFWLRQ D7HUSLQHRO GHK\GUDWDVH GLG QRW FDWDO\]H WKH UHYHUVH UHDFWLRQ XQGHU WKHVH FRQGLWLRQV XVLQJ P0 UDFHPLF DWHUSLQHRO DV VXEVWUDWHf WKHUHIRUH WKH GHFUHDVH ZDV SUREDEO\ QRW GXH WR D VKLIW LQ HTXLOLEULXP 7KH DSSDUHQW GHFUHDVH LQ DFWLYLW\ PD\ KDYH EHHQ GXH WR GLIIXVLRQ OLPLWDWLRQV FDXVHG E\ WKH KLJK YLVFRVLW\ RI WKH JO\FHURO VROXWLRQV $OWHUQDWLYHO\ WKH KLJKHU FRQFHQWUDWLRQV RI JO\FHURO PD\ KDYH FDXVHG VRPH WHFKQLFDO SUREOHPV VXFK DV D GHFUHDVH LQ WKH UHFRYHU\ RI DWHUSLQHRO GXULQJ KH[DQH H[WUDFWLRQ IURP WKH DVVD\ VROXWLRQV (IIHFWV RI WKH JURXS LLLf VROYHQWV SURSDQRO DQG DFHWRQLWULOH RQ WKH DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ ZHUH VLPLODU WR WKRVH REVHUYHG IRU IRUPDPLGH DQG GLPHWK\O IRUPDPLGH )LJXUH f H[FHSW WKDW WKHUH ZDV DQ LQFUHDVH LQ DFWLYLW\ LQ b YYf VROYHQW 7KH DSSDUHQW HQ]\PH DFWLYDWLRQ ZDV SUREDEO\ GXH WR LQFUHDVHG GLVSHUVLRQ RI WKH OLPRQHQH LQ WKH PHGLXP /RZ DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH DW WKH KLJKHU VROYHQW FRQFHQWUDWLRQV FRXOG KDYH

PAGE 103

)LJXUH (IIHFW RI SURSDQRO DQG DFHWRQLWULOH FRQFHQWUDWLRQ RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 104

b &DWDO\WLF $FWLYLW\

PAGE 105

EHHQ GXH WR LUUHYHUVLEOH GHQDWXUDWLRQ RU D UHYHUVLEOH SKHQRPHQRQ VXFK DV FRQIRUPDWLRQDO FKDQJHV ,Q RUGHU WR HOXFLGDWH WKH PHFKDQLVP WKH DFWLYLW\ DQG VWDELOLW\ RI WKH HQ]\PH ZDV GHWHUPLQHG LQ YDULRXV FRQFHQWUDWLRQV RI HWKDQRO )LJXUH f 7KH VWDELOLW\ RI WKH HQ]\PH ZDV GHWHUPLQHG E\ HYDSRUDWLQJ WKH HWKDQRO XVLQJ D VWUHDP RI QLWURJHQ DQG WKHQ PHDVXULQJ WKH UHVLGXDO DFWLYLW\ 7KH HIIHFW RI HWKDQRO RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH ZDV HVVHQWLDOO\ WKH VDPH DV WKDW REVHUYHG IRU WKH RWKHU JURXS LLLf VROYHQWV SURSDQRO DQG DFHWRQLWULOH 7KH VWDELOLW\ FXUYH VKRZHG WKDW HYHQ DW b YYf HWKDQRO QRW DOO WKH HQ]\PH ZDV GHQDWXUHG D7HUSLQHRO GHK\GUDWDVH GLG QRW FDWDO\]H WKH UHYHUVH UHDFWLRQ XQGHU WKHVH FRQGLWLRQV XVLQJ P0 UDFHPLF DWHUSLQHRO DV VXEVWUDWHf 7KHUHIRUH WKH GHFUHDVH LQ DFWLYLW\ DW KLJKHU HWKDQRO FRQFHQWUDWLRQV ZDV SUREDEO\ GXH WR D FRQIRUPDWLRQDO FKDQJH ZLWK VRPH GHJUHH RI GHQDWXUDWLRQ RFFXUULQJf UDWKHU WKDQ D VKLIW LQ HTXLOLEULXP ,W ZDV QRW SRVVLEOH WR UHPRYH DOO RI WKH HWKDQRO IURP WKH VROXWLRQV EHFDXVH RI HWKDQROZDWHU D]HRWURSH IRUPDWLRQ 7KLV PLJKW DFFRXQW IRU WKH H[FHVVLYHO\ KLJK UHVLGXDO DFWLYLWLHV REVHUYHG IRU DQG b HWKDQRO (IIHFWV RI YDULRXV QRQSRODU VROYHQWV RQ DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ ZHUH VLPLODU WR WKH HIIHFWV REVHUYHG ZLWK ZDWHUPLVFLEOH VROYHQWV (Q]\PH DFWLYLW\ ZDV DVVD\HG LQ PL[WXUHV FRQVLVWLQJ RI QRQSRODU VROYHQW SOXV DTXHRXV HQ]\PH VROXWLRQ (PXOVLRQV ZHUH EURNHQ E\ WKH DGGLWLRQ RI HWKDQRO DQG WKH SURGXFWV DQDO\]HG E\ *& 1R DFWLYLW\ ZDV

PAGE 106

)LJXUH (IIHFW RI HWKDQRO FRQFHQWUDWLRQ RQ DFWLYLW\ DQG VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH $FWLYLW\ FXUYH DFWLYLW\ YHUVXV HWKDQRO FRQFHQWUDWLRQ 6WDELOLW\ FXUYH DFWLYLW\ DIWHU UHPRYDO RI LQGLFDWHG HWKDQRO FRQFHQWUDWLRQ (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 107

b &DWDO\WLF $FWLYLW\ (WKDQRO b PPf

PAGE 108

GHWHFWHG LQ DQ\ RI WKH VROYHQWV WHVWHG QKH[DQH GLHWK\O HWKHU GLFKORURPHWKDQH FKORURIRUP DQG OLPRQHQH ,Q IDFW HQ]\PH UHDFWLRQV FRXOG EH VWRSSHG E\ DGGLWLRQ RI HTXDO YROXPHV RI QRQSRODU VROYHQWV WR HQ]\PH VROXWLRQV 7KH KLJK LQVWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH LQ RUJDQLF VROYHQWV VKRXOG QRW QHFHVVDULO\ HOLPLQDWH LW IURP EHLQJ XVHG LQ QRQ DTXHRXV ELRFDWDO\WLF V\VWHPV 7HFKQLTXHV VXFK DV HQ]\PH IL[DWLRQ LPPRELOL]DWLRQf RU VSDWLDO VHSDUDWLRQ RI WKH HQ]\PH IURP WKH RUJDQLF VROYHQW FRXOG EH XVHG WR LQFUHDVH HQ]\PH VWDELOLW\ %ULQN HW DO .KPHOQLWVN\ HW DO .OLEDQRY DQG =DNV DQG .OLEDQRY f 8VH RI VXFK WHFKQLTXHV VKRXOG EH SUHFHGHG E\ SUHOLPLQDU\ FKDUDFWHUL]DWLRQ RI WKH NLQHWLF SURSHUWLHV RI DWHUSLQHRO GHK\GUDWDVH LQ D OHVV FRPSOH[ V\VWHP .LQHWLF SURSHUWLHV RI DWHUSLQHRO GHK\GUDWDVH ZHUH GHWHUPLQHG LQ DTXHRXV PHGLXP FRQWDLQLQJ b ZYf 7ULWRQ ; 'HWHUJHQW ZDV LQFOXGHG LQ WKH PHGLXP WR PDLQWDLQ WKH VROXELOLW\ RI WKH HQ]\PH D7HUSLQHRO GHK\GUDWDVH DFWLYLW\ LQ b GHWHUJHQW ZDV OHVV VHQVLWLYH WR VPDOO GLIIHUHQFHV LQ GHWHUJHQW FRQFHQWUDWLRQ WKDQ DW YHU\ ORZ GHWHUJHQW FRQFHQWUDWLRQV VHH )LJXUH f 'HWHUJHQW FRQFHQWUDWLRQV KLJKHU WKDQ b ZHUH QRW XVHG GXH WR GLIILFXOW\ LQ EUHDNLQJ WKH KH[DQH HPXOVLRQ DW WKH KLJKHU FRQFHQWUDWLRQV S+ 2SWLPXP DQG 6WDELOLW\ 7KH S+ SURILOH RI DWHUSLQHRO GHK\GUDWDVH LQ P0 0(6 P0 %,675,6 3523$1( EXIIHU FRQWDLQLQJ b ZYf 7ULWRQ ; LV VKRZQ LQ )LJXUH 7KH DSSDUHQW S+ RSWLPXP RI

PAGE 109

)LJXUH (IIHFW RI S+ RQ DFWLYLW\ DQG VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH $FWLYLW\ FXUYH DFWLYLW\ YHUVXV S+ 6WDELOLW\ FXUYH DFWLYLW\ DW S+ DIWHU r& SUHLQFXEDWLRQ RI WKH HQ]\PH DW LQGLFDWHG S+ YDOXHV %XIIHU FRQVLVWHG RI P0 0(6 P0 %,675,6 3523$1( DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 110

$FWLYLW\ QPRO PLQ f ‘ PJn SURWHLQf S+

PAGE 111

DWHUSLQHRO GHK\GUDWDVH RFFXUUHG DW S+ ZKLOH WKH DSSDUHQW VWDELOLW\ RSWLPXP RFFXUUHG DW S+ 7KH S+ DQG VWDELOLW\ RSWLPD RI DQ HQ]\PH GHSHQG RQ VHYHUDO IDFWRUV LQFOXGLQJ WHPSHUDWXUH LRQLF VWUHQJWK QDWXUH RI WKH EXIIHU FRQFHQWUDWLRQ RI SUHVHUYDWLYHV DQG FRQFHQWUDWLRQ RI WKH HQ]\PH DV ZHOO DV RWKHU SURWHLQV 6HJHO :KLWDNHU f ,Q JHQHUDO SURWHLQV DUH OHDVW VWDEOH DW S+ YDOXHV QHDU WKHLU LVRHOHFWULF SRLQWV 6FRSHV f 7KHUHIRUH WKH KLJKHU VWDELOLW\ DW S+ ZDV QRW VXUSULVLQJ VLQFH WKLV S+ LV VRPHZKDW KLJKHU WKDQ WKH SL f RI DWHUSLQHRO GHK\GUDWDVH 7KH ORZ DFWLYLW\ REVHUYHG EHORZ S+ ZDV SUREDEO\ GXH WR HQ]\PH LQDFWLYDWLRQ UDWKHU WKDQ WKH IRUPDWLRQ RI DQ LPSURSHU LRQLF IRUP RI WKH HQ]\PH VLQFH WKH HQ]\PH ZDV YHU\ XQVWDEOH EHORZ WKLV S+ $W WKH S+ RI KLJKHVW HQ]\PH VWDELOLW\ WKH DFWLYLW\ ZDV DERXW RQHWKLUG DV KLJK DV WKDW REVHUYHG DW WKH DSSDUHQW S+ RSWLPXP ,W LV DSSDUHQW WKDW D VOLJKWO\ DFLGLF HQYLURQPHQW LQFUHDVHG WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH DW WKH VDPH WLPH ORZHULQJ LWV VWDELOLW\ )URP WKHVH UHVXOWV LW ZDV GHFLGHG WKDW DOO RWKHU NLQHWLF H[SHULPHQWV ZRXOG EH SHUIRUPHG DW S+ VLQFH DW WKLV S+ ERWK WKH DFWLYLW\ DQG VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH ZHUH UHDVRQDEO\ KLJK 7HPSHUDWXUH 2SWLPXP DQG 6WDELOLW\ (IIHFW RI WHPSHUDWXUH RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH LQ P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; LV VKRZQ LQ )LJXUH D 7KH DSSDUHQW

PAGE 112

WHPSHUDWXUH RSWLPXP RFFXUUHG DW & 7KH WUXH RSWLPXP LV WKH PD[LPXP WHPSHUDWXUH DW ZKLFK WKH HQ]\PH H[KLELWV D FRQVWDQW DFWLYLW\ RYHU D WLPH RI DW OHDVW DV ORQJ DV WKH DVVD\ WLPH 6HJHO f 7KLV ZDV GHWHUPLQHG E\ SUHn LQFXEDWLQJ WKH HQ]\PH DW YDULRXV WHPSHUDWXUHV IRU WKH VDPH DPRXQW RI WLPH DV WKH DVVD\ WLPH DQG WKHQ DVVD\LQJ IRU DFWLYLW\ DW r& 5HVXOWV RI WKLV H[SHULPHQW DUH VKRZQ LQ )LJXUH 7KH HQ]\PH DSSHDUHG WR EH FRPSOHWHO\ VWDEOH WR r& EXW EHJDQ WR GHQDWXUH DW & 7KHUHIRUH WKH WUXH WHPSHUDWXUH RSWLPXP RI WKH DWHUSLQHRO GHK\GUDWDVH XQGHU WKHVH FRQGLWLRQV ZDV r& LQVWHDG RI r& 6RPH FRUUHODWLRQ PD\ EH PDGH EHWZHHQ WKH DSSDUHQW PROHFXODU ZHLJKW RI DWHUSLQHRO GHK\GUDWDVH DQG LWV ORZ KHDW VWDELOLW\ +LJK PROHFXODU ZHLJKW SURWHLQV ZLWK FRPSOH[ VWUXFWXUHV DUH JHQHUDOO\ PRUH KHDW ODELOH WKDQ ORZ PROHFXODU ZHLJKW SURWHLQV FRPSRVHG RI VLQJOH SRO\SHSWLGHV ZLWK GLVXOILGH ERQGV 6HJHO DQG :KLWDNHU f 7HPSHUDWXUH VWDELOLW\ RI SURWHLQV LV DOVR D IXQFWLRQ RI D QXPEHU RI RWKHU IDFWRUV LQFOXGLQJ WKH S+ DQG LRQLF VWUHQJWK RI WKH PHGLXP 7HPSHUDWXUHDFWLYLW\ GDWD REWDLQHG IURP r& ZHUH XVHG WR HVWLPDWH WKH $UUKHQLXV DFWLYDWLRQ HQHUJ\ (Df RI DWHUSLQHRO GHK\GUDWDVH )LJXUH Ef $YHUDJH (J IURP GXSOLFDWH GHWHUPLQDWLRQV ZDV s N-rPROf 7KH (J RI DWHUSLQHRO GHK\GUDWDVH IDOOV ZLWKLQ WKH UDQJH RI (D YDOXHV N-rPROnf UHSRUWHG IRU RWKHU HQ]\PHV :KLWDNHU :KLWH HW DO f $FWLYLW\WHPSHUDWXUH GDWD XVHG WR

PAGE 113

)LJXUH 7KH HIIHFW RI WHPSHUDWXUH RQ WKH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH Df SORW RI DFWLYLW\ YHUVXV WHPSHUDWXUH DQG Ef $UUKHQLXV SORW RI & DFWLYLW\WHPSHUDWXUH GDWD %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 114

7 ;.af [ $FWLYLW\
PAGE 115

)LJXUH 7HPSHUDWXUH VWDELOLW\ RI DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ DW r& DIWHU SUHLQFXEDWLQJ HQ]\PH DW LQGLFDWHG WHPSHUDWXUHV IRU PLQ %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 116

7HPSHUDWXUH r&f $FWLYLW\ QPROPLUI PJ SURWHLQf

PAGE 117

HVWLPDWH (D DVVXPH WKDW WKH HQ]\PH ZDV IXQFWLRQLQJ DW PD[LPXP DFWLYLW\ RU YHORFLW\ 9Af +RZHYHU WKLV ZDV SUREDEO\ QRW WKH FDVH %HFDXVH YDULHV ZLWK WHPSHUDWXUH LW VKRXOG QRW EH DVVXPHG WKDW D JLYHQ FRQFHQWUDWLRQ RI VXEVWUDWH ZDV VDWXUDWLQJ DW DOO WHPSHUDWXUHV ,GHDOO\ (D VKRXOG EH HVWLPDWHG IURP 9 YDOXHV GHWHUPLQHG DW HDFK WHPSHUDWXUH 7KH DYHUDJH 4 IRU WKH WHPSHUDWXUH UDQJH r& ZDV s 7KH 4 RI DWHUSLQHRO GHK\GUDWDVH ZDV VPDOOHU WKDQ 4 YDOXHV IRU PRVW FKHPLFDO DQG HQ]\PDWLF UHDFWLRQV ZKLFK JHQHUDOO\ IDOO LQ UDQJH IURP :KLWDNHU f /RZHU 4 LQGLFDWHV WKDW DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH ZDV QRW DV VHQVLWLYH WR LQFUHDVHV LQ WHPSHUDWXUH DV VRPH RWKHU HQ]\PHV ,QLWLDO 9HORFLW\ 6LQFH HQ]\PH UHDFWLRQ YHORFLW\ YDULHV ZLWK WKH VXEVWUDWH FRQFHQWUDWLRQ DVVD\ WLPHV VKRXOG EH VKRUW HQRXJK WR LQVXUH WKDW RQO\ D VPDOO IUDFWLRQ RI WKH VXEVWUDWH LV XWLOL]HG $SSHDUDQFH RI DWHUSLQHRO DV D IXQFWLRQ RI WLPH IRU WKUHH FRQFHQWUDWLRQV RI DWHUSLQHRO GHK\GUDWDVH LV VKRZQ LQ )LJXUH 5DWH RI DWHUSLQHRO IRUPDWLRQ ZDV FRQVWDQW ]HUR RUGHUf IRU DOO WKUHH FRQFHQWUDWLRQV RI HQ]\PH XS WR PLQ 7KHUHIRUH DVVD\ WLPHV OHVV WKDQ PLQ VKRXOG JLYH OLQHDU UHVSRQVHV IRU FDWDO\WLF FRQFHQWUDWLRQV RI HQ]\PH 8QOHVV RWKHUZLVH VWDWHG HQ]\PH DVVD\V ZHUH FRQGXFWHG XVLQJ PLQ LQFXEDWLRQ WLPHV ,QLWLDO YHORFLW\ DV D IXQFWLRQ RI FRQFHQWUDWLRQ RI DWHUSLQHRO GHK\GUDWDVH LV

PAGE 118

)LJXUH )RUPDWLRQ RI DWHUSLQHRO YHUVXV WLPH IRU WKUHH FRQFHQWUDWLRQV RI DWHUSLQHRO GHK\GUDWDVH DW r& DQG P0 OLPRQHQH %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 119

7LPH PLQf

PAGE 120

VKRZQ LQ )LJXUH D7HUSLQHRO GHK\GUDWDVH ZDV SUHVHQW LQ FDWDO\WLF DPRXQWV DW DOO SURWHLQ FRQFHQWUDWLRQV H[DPLQHG (IIHFW RI 7ULWRQ ; RQ DQG (IIHFW RI YDU\LQJ WKH 7ULWRQ ; FRQFHQWUDWLRQ RQ +HQUL0LFKDHOLV0HQWHQ Y YHUVXV >6@ ZKHUH Y LV DFWLYLW\ RU YHORFLW\ DQG >6@ LV OLPRQHQH FRQFHQWUDWLRQf FXUYHV LV VKRZQ LQ )LJXUH $OO FXUYHV DSSHDU WR IROORZ +HQUL0LFKDHOLV 0HQWHQ NLQHWLFV LH WKHLU FXUYDWXUH LV FRQVWDQWf KRZHYHU WKH DFWLYLW\ ZDV LQKLELWHG E\ WKH SUHVHQFH RI DQG b ZYf 7ULWRQ ; .LQHWLF SDUDPHWHUV DQG 9 ZHUH GHWHUPLQHG XVLQJ /LQHZHDYHU%XUN GRXEOH UHFLSURFDO Y YHUVXV >6@f SORWV )LJXUH f 4XDQWLWDWLYH UHVXOWV DUH SUHVHQWHG LQ 7DEOH 7KH GRXEOH UHFLSURFDO SORW LV EDVHG RQ WKH UHDUUDQJHPHQW RI WKH +HQUL0LFKDHOLV0HQWHQ HTXDWLRQ WR D OLQHDU \ P[ Ef IRUP Y .A9A >6 @f 9_QD[ 7KH .P ZDV GHWHUPLQHG IURP WKH VORSH .A9Af DQG WKH 9PD[ IURP WKH LQWHUFHSW RI WKH Y D[LV 9Af 7KH .P DQG 9>QD[ GHWHUPLQHG XQGHU WKH FRQGLWLRQV RI WKLV VWXG\ DUH DSSDUHQW YDOXHV VLQFH WKH HQ]\PH DQG OLPRQHQH ZHUH QRW DFWXDOO\ VROXEOH LQ WKH PHGLXP EXW LQVWHDG ZHUH VXVSHQGHG LQ GHWHUJHQW PLFHOOHV $V D FRQVHTXHQFH RI LQFOXGLQJ 7ULWRQ ; LQ WKH PHGLXP WKH 9PDY GHFUHDVHG DQG WKH LQFUHDVHG 7KH HIIHFW RI 7ULWRQ ; ZDV XQFKDUDFWHULVWLF RI FODVVLFDO HQ]\PH LQKLELWLRQ HJ FRPSHWLWLYH QRQFRPSHWLWLYH XQFRPSHWLWLYH RU LUUHYHUVLEOH LQKLELWLRQf VLQFH QRQH RI WKHVH UHVXOW LQ D VLPXOWDQHRXV GHFUHDVH LQ 9 PD[

PAGE 121

)LJXUH ,QLWLDO YHORFLW\ DV D IXQFWLRQ RI DWHUSLQHRO GHK\GUDWDVH FRQFHQWUDWLRQ DW r& DQG P0 OLPRQHQH %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 122

$FWLYLW\ QPROPLQnP/Bf

PAGE 123

)LJXUH 7KH HIIHFW RI YDU\LQJ WKH FRQFHQWUDWLRQ RI 7ULWRQ ; RQ +HQUL0LFKDHOLV0HQWHQ Y YHUVXV >6@f FXUYHV IRU DWHUSLQHRO GHK\GUDWDVH DW r& %XIIHU FRQVLVWHG RI [Q0 +(3(6 S+ (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 124

$FWLYLW\ QPRO PLQ PJn SURWHLQf

PAGE 125

)LJXUH /LQHZHDYHU%XUN GRXEOH UHFLSURFDO Y YHUVXV >6@f SORWV RI WKH GDWD LQ )LJXUH IRU OLPRQHQH FRQFHQWUDWLRQV IURP P0 WR P0 (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 126

Y PLQUQJ SURWHLQQPROnf

PAGE 127

7$%/( 5HVXOWV RI OLQHDU UHJUHVVLRQ DQDO\VHV RI GRXEOH UHFLSURFDO Y YHUVXV >6@f /LQHZHDYHU%XUN SORWV REWDLQHG DW YDULRXV 7ULWRQ ; FRQFHQWUDWLRQV 7ULWRQ &RQH ; /LQHDU 5HJUHVVLRQ b ZYf 2XWSXW P0f APD[ QPRO fPLQn mPJn SURWHLQf R f R 6@ &;6( VWDQGDUG HUURU RI ; FRHIILFLHQW G<( VWDQGDUG HUURU RI < FRQVWDQW

PAGE 128

DQG LQFUHDVH LQ A 7KH GHJUHH RI LQKLELWLRQ ZDV QRW SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI GHWHUJHQW LQ WKH PHGLXP 7KH YDOXH RI LQ WKH DEVHQFH RI GHWHUJHQW ZDV DSSUR[LPDWHO\ KDOI WKH YDOXH RI .P LQ RU b GHWHUJHQW 7KH 9 LQ WKH DEVHQFH RI GHWHUJHQW ZDV WZLFH DV ODUJH DV WKH 9QD[ LQ RU b GHWHUJHQW 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH D f EHWZHHQ WKH RU 9PJ[ YDOXHV GHWHUPLQHG LQ DQG b GHWHUJHQW 6LPLODU UHVXOWV ZHUH REVHUYHG ZKHQ VWXG\LQJ WKH HIIHFW RI 7ULWRQ ; FRQFHQWUDWLRQ RQ WKH FDWDO\WLF DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH )LJXUH f ,Q WKLV VWXG\ HQ]\PH DFWLYLW\ ZDV VKRZQ WR EH LQVHQVLWLYH WR FKDQJHV LQ GHWHUJHQW FRQFHQWUDWLRQV EHWZHHQ DQG b ZYf 7KLV W\SH RI LQKLELWLRQ LV VLPLODU WR WKDW REVHUYHG IRU VRPH RWKHU HQ]\PHV DIWHU LPPRELOL]DWLRQ :RRGZDUG f 7KH LQKLELWLRQ FDQ EH DWWULEXWHG WR PLFURHQYLURQPHQWDO HIIHFWV LQ WKH YLFLQLW\ RI WKH HQ]\PH )RU H[DPSOH VXSSRVH WKDW HDFK HQ]\PH PROHFXOH RU HQ]\PH DJJUHJDWHf ZDV VXUURXQGHG E\ D GHWHUJHQW PLFHOOH LQ ZKLFK WKH OLPRQHQH FRQFHQWUDWLRQ ZDV ORZHU WKDQ LQ WKH EXON VROXWLRQ &RQVHTXHQWO\ D KLJKHU OLPRQHQH FRQFHQWUDWLRQ ZRXOG EH UHTXLUHG LQ WKH EXON VROXWLRQ WR VDWXUDWH WKH HQFORVHG HQ]\PH LQFUHDVLQJ WKH DSSDUHQW .P 7KH GHFUHDVH LQ DSSDUHQW 9PD[ LQ WXUQ ZRXOG KDYH UHVXOWHG IURP WKH ORZHU GLIIXVLRQ UDWH RI OLPRQHQH WKURXJK WKH VXUIDFH RI WKH GHWHUJHQW PLFHOOH 7KH DFWXDO V\VWHP ZDV SUREDEO\ PRUH FRPSOLFDWHG WKDQ GHVFULEHG DERYH VLQFH OLPRQHQH ZDV DOVR

PAGE 129

HQFORVHG LQ GHWHUJHQW PLFHOOHV 2QH PLJKW FRQVLGHU WKH SRVVLELOLW\ RI WKH HQ]\PH DQG OLPRQHQH EHLQJ HQFORVHG LQ GLIIHUHQW GHWHUJHQW PLFHOOHV 7KHQ WKH GLIIXVLRQ RI DYDLODEOH OLPRQHQH WR WKH HQ]\PH ZRXOG EH HYHQ VORZHU 7KH UHVXOWLQJ REVHUYHG FDWDO\WLF UDWH ZRXOG EH OHVV GHFUHDVLQJ WKH DSSDUHQW 9 5HSOLFDWLQJ LQ WKH DEVHQFH RI 7ULWRQ ; ZDV GLIILFXOW EHFDXVH WKH SDUWLDOO\ SXULILHG HQ]\PH VROXWLRQV YDULHG LQ WKHLU FRPSRVLWLRQ $OWKRXJK WKHVH VROXWLRQV FRQWDLQHG OHVV WKDQ b ZYf 7ULWRQ ; VOLJKW GLIIHUHQFHV LQ GHWHUJHQW FRQFHQWUDWLRQ KDG D GUDPDWLF HIIHFW RQ WKH UHVXOWV 7KH PRVW FRPPRQ SUREOHP HQFRXQWHUHG ZDV WKDW WKH YHORFLW\ EHFDPH FRQVWDQW DW OLPRQHQH FRQFHQWUDWLRQV KLJKHU WKDQ P0 LQGLFDWLQJ VXEVWUDWH VDWXUDWLRQ $V GLVFXVVHG HDUOLHU DWHUSLQHRO GHK\GUDWDVH LQ WKH SUHVHQFH RI b ZYf 7ULWRQ ; ZDV OHVV VHQVLWLYH WR VOLJKW GLIIHUHQFHV LQ GHWHUJHQW FRQFHQWUDWLRQ $YHUDJH RI WKUHH UHSOLFDWHV RI LQ WKH SUHVHQFH RI b ZYf 7ULWRQ ; ZDV s P0 &RPSDULVRQ RI DSSDUHQW 9_QD[ YDOXHV REWDLQHG IRU GLIIHUHQW HQ]\PH VROXWLRQV ZDV QRW SRVVLEOH EHFDXVH WKH H[DFW FRQFHQWUDWLRQ RI WKH HQ]\PH LQ HDFK VROXWLRQ ZDV XQNQRZQ 6WHUHRVSHFLILFLWY DQG 6WHUHRVHOHFWLYLW\ ,GHDOO\ WKH VWHUHRVHOHFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH VKRXOG EH GHWHUPLQHG E\ FRPSDULQJ WKH 9A,A UDWLRV IRU ERWK OLPRQHQH HQDQWLRPHUV 7KLV DSSURDFK ZDV QRW SUDFWLFDO EHFDXVH SXUH 6ffOLPRQHQH LV QRW FRPPHUFLDOO\

PAGE 130

DYDLODEOH &RPPHUFLDO 6ffOLPRQHQH FRQWDLQHG RYHU b RI WKH 5 HQDQWLRPHU 7KH VWHUHRVHOHFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH ZDV DOWHUQDWLYHO\ GHWHUPLQHG E\ LQFXEDWLQJ WKH HQ]\PH ZLWK UDFHPLF OLPRQHQH DQG PHDVXULQJ WKH FRQYHUVLRQ UDWH RI HDFK OLPRQHQH HQDQWLRPHU 7KHVH VWXGLHV GHWHUPLQHG WKDW DWHUSLQHRO GHK\GUDWDVH FDWDO\]HG WKH K\GUDWLRQ RI 5ffOLPRQHQH DW D IDVWHU UDWH WKDQ 6ffOLPRQHQH ,Q LQLWLDO VWXGLHV HQ]\PH VROXWLRQV P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ;f ZHUH LQFXEDWHG ZLWK P0 UDFHPLF OLPRQHQH DW r& IRU YDULRXV WLPHV DQG WKH UHODWLYH FRQFHQWUDWLRQ RI HDFK OLPRQHQH HQDQWLRPHU ZDV GHWHUPLQHG E\ FKLUDO *& XVLQJ D /LSRGH[ & FROXPQ 5HVXOWV RI WKHVH VWXGLHV )LJXUHV $ DQG $f§f VKRZHG WKDW 5ffOLPRQHQH ZDV K\GUDWHG DW D IDVWHU UDWH WKDQ WKH 6HQDQWLRPHU %HFDXVH RI WKH SRRU UHVROXWLRQ RI WKH OLPRQHQH HQDQWLRPHUV RQ WKLV FROXPQ WKH GDWD FRXOG QRW EH XVHG WR DFFXUDWHO\ HVWLPDWH WKH UDWLRV RI WKH WZR OLPRQHQH HQDQWLRPHUV )XUWKHUPRUH WKH IDWH RI HDFK OLPRQHQH HQDQWLRPHU FRXOG QRW EH GHWHUPLQHG VLQFH DWHUSLQHRO HQDQWLRPHUV ZHUH QRW VHSDUDWHG 7KHVH SUREOHPV ZHUH RYHUFRPH E\ XVLQJ D &\FORGH[ % FKLUDO *& FROXPQ 7KLV FROXPQ QRW RQO\ DFKLHYHG EHWWHU UHVROXWLRQ RI WKH OLPRQHQH HQDQWLRPHUV EXW DOVR VHSDUDWHG DWHUSLQHRO HQDQWLRPHUV $ *& SURILOH RI WKH FKDQJH LQ FRQFHQWUDWLRQ RI WKH OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH HQ]\PDWLF K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH LV VKRZQ LQ )LJXUH 5HVXOWV ZHUH

PAGE 131

VLPLODU WR WKRVH REVHUYHG HDUOLHU H[FHSW HQDQWLRPHU FRPSRVLWLRQ ZDV GHWHUPLQHG PXFK PRUH DFFXUDWHO\ 7KH HQ]\PH VWHUHRVSHFLILFDOO\ FRQYHUWHG 5ffOLPRQHQH WR 5ff DWHUSLQHRO DQG 6ffOLPRQHQH WR 6ffDWHUSLQHRO 7KHVH UHVXOWV ZHUH H[SHFWHG VLQFH &DGZDOODGHU HW DO f UHSRUWHG WKDW 3 JODGLROL SURGXFHV SXUH 5ffDWHUSLQHRO IURP 5ffOLPRQHQH 3ORWV RI UHODWLYH DPRXQWV RI HDFK OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHU DV D IXQFWLRQ RI WLPH )LJXUH f ZHUH XVHG WR FDOFXODWH WKH UHODWLYH SHUFHQW FRQFHQWUDWLRQ RI HDFK DWHUSLQHRO HQDQWLRPHU DW WKH LQGLFDWHG WLPHV 7DEOH f ,W LV DSSDUHQW IURP WKH LQFUHDVH LQ WKH UHODWLYH SHUFHQW FRQFHQWUDWLRQ RI 5ffDWHUSLQHRO WKDW WKH UDWH RI K\GUDWLRQ RI 5ffOLPRQHQH GHFUHDVHG DV D UHVXOW RI LWV GHFUHDVLQJ FRQFHQWUDWLRQ ,Q RUGHU WR REWDLQ D PRUH DFFXUDWH HVWLPDWLRQ RI WKH VWHUHRVHOHFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH LQLWLDO NLQHWLF UDWHV ZHUH XVHG $SSHDUDQFH RI DWHUSLQHRO HQDQWLRPHUV DV D IXQFWLRQ RI WLPH DW D FRQVWDQW FRQFHQWUDWLRQ RI UDFHPLF OLPRQHQH P0f LV VKRZQ LQ )LJXUH 7KH UHODWLYH SHUFHQW FRQFHQWUDWLRQ RI 6ffDWHUSLQHRO DW DQG PLQ ZDV DQG UHVSHFWLYHO\ $W PLQ WKH UHODWLYH SHUFHQW FRQFHQWUDWLRQ ZDV )URP WKH FXUYDWXUH RI ERWK SORWV LW DSSHDUHG WKDW WKH FRQFHQWUDWLRQ RI WKH 6HQDQWLRPHU ZDV RYHUHVWLPDWHG 5HSOLFDWLRQ RI WKH H[SHULPHQW XVLQJ D GLIIHUHQW HQ]\PH VROXWLRQ JDYH D UHODWLYH SHUFHQW FRQFHQWUDWLRQ RI IRU 6ffDWHUSLQHRO DW PLQ ,W ZDV FRQFOXGHG IURP WKHVH

PAGE 132

UHVXOWV WKDW DWHUSLQHRO GHK\GUDWDVH VWHUHRVHOHFWLYHO\ FDWDO\]HG WKH K\GUDWLRQ RI 5ffOLPRQHQH DSSUR[LPDWHO\ WHQ WLPHV IDVWHU WKDQ 6ffOLPRQHQH )LJXUH f

PAGE 133

)LJXUH *& SURILOH RI WKH FKDQJH LQ FRQFHQWUDWLRQ RI OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW & %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; *& FRQGLWLRQV DUH JLYHQ LQ 0DWHULDOV DQG 0HWKRGVf

PAGE 134

VROYHQW R

PAGE 135

)LJXUH &KDQJH LQ FRQFHQWUDWLRQ RI OLPRQHQH DQG DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ D WHUSLQHRO GHK\GUDWDVH DW r& %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 136

*& $5($ 5$7,2 VDPSOHFLVSLQDQHf S S R R R R R S R E /D N! E $ E &2 R R R R R R R R R 6ffOLPRQHQH

PAGE 137

7$%/( 5HODWLYH SHUFHQW FRQFHQWUDWLRQ RI DWHUSLQHRO HQDQWLRPHUV DV D IXQFWLRQ RI WLPH IRU WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW r& 7LPH KUf 5HODWLYH 3HUFHQW &RQFHQWUDWLRQ 6ffD7HUSLQHRO 5f f7HUSLQHRO

PAGE 138

)LJXUH )RUPDWLRQ RI DWHUSLQHRO HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW & %XIIHU FRQVLVWHG RI P0 +(3(6 S+ DQG b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 139

D7HUSLQHRO QPROHVf WR 1L &2 Z $ 2O E E E E EL R R R R R R R R &6&2

PAGE 140

5ff/LPRQHQH N 5ffDWHUSLQHRO 6ff/LPRQHQH KR N 6ffmWHUSLQHRO )LJXUH 6WHUHRVSHFLILFLW\ DQG VHOHFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH 1RWH WKDW N UHSUHVHQWV WKH UDWH FRQVWDQW IRU WKH K\GUDWLRQ RI 6ff§f§fOLPRQHQHf

PAGE 141

&21&/86,216 ,Q WKLV VWXG\ WKH HQ]\PHFDWDO\]HG K\GUDWLRQ RI OLPRQHQH WR DWHUSLQHRO ZDV LQYHVWLJDWHG XVLQJ DWHUSLQHRO GHK\GUDWDVH IURP 3 JODGLROL $IWHU VROXELOL]DWLRQ DQG SDUWLDO SXULILFDWLRQ RI WKH HQ]\PH VHYHUDO RI LWV SK\VLFDO DQG NLQHWLF SURSHUWLHV ZHUH FKDUDFWHUL]HG 7KH IROORZLQJ FRQFOXVLRQV ZHUH GUDZQ IURP WKH UHVXOWV RI WKLV VWXG\ f $IWHU GLVUXSWLRQ RI 3 JODGLROL FHOOV DWHUSLQHRO GHK\GUDWDVH UHPDLQV DVVRFLDWHG ZLWK KHWHURJHQHRXV LQVROXEOH SDUWLFXODWH PDWHULDO f D7HUSLQHRO GHK\GUDWDVH FDQ EH HIIHFWLYHO\ VROXELOL]HG IURP WKH SDUWLFXODWH PDWHULDO E\ H[WUDFWLRQ ZLWK P0 +(3(6 EXIIHU S+ FRQWDLQLQJ b ZYf 7ULWRQ ; DQG 0 VRGLXP WULFKORURDFHWDWH f D7HUSLQHRO GHK\GUDWDVH LV D K\GURSKRELF SURWHLQ VLQFH LQFOXVLRQ RI b ZYf 7ULWRQ ; LQ WKH JHO ILOWUDWLRQ EXIIHU LV UHTXLUHG IRU PD[LPXP UHFRYHU\ RI HQ]\PH DFWLYLW\ f 7ZR VROXEOH IRUPV H[LVW LQ b ZYf 7ULWRQ ; SUHVXPDEO\ D QDWLYH HQ]\PH PRQRPHU DQG D GLPHU ZLWK DSSDUHQW PROHFXODU ZHLJKWV RI DQG GDOWRQV UHVSHFWLYHO\ 6'63$*( DQDO\VLV RI HQ]\PH IUDFWLRQV UHYHDOHG WKDW D GDOWRQ SRO\SHSWLGH ZDV

PAGE 142

HQULFKHG E\ SDUWLDO SXULILFDWLRQ RI WKH HQ]\PH VXJJHVWLQJ WKDW DW OHDVW VRPH SRUWLRQ RI WKH DWHUSLQHRO GHK\GUDWDVH PRQRPHU ZDV QRW FRPSOHWHO\ IUDFWLRQDWHG LQWR VPDOOHU VXEXQLWV LQ 6'6 GHQDWXULQJ FRQGLWLRQV HQ]\PH f 7KH UHDFWLRQ OLPRQHQH DWHUSLQHRO LV QRW UHDGLO\ UHYHUVLEOH VLQFH WKH HQ]\PHFDWDO\]HG GHK\GUDWLRQ RI DWHUSLQHRO WR OLPRQHQH FRXOG QRW EH GHPRQVWUDWHG HYHQ LQ PHGLD ZLWK UHGXFHG ZDWHU FRQFHQWUDWLRQ f D7HUSLQHRO GHK\GUDWDVH DFWLYLW\ LV ORZ LQ QRQ DTXHRXV VROYHQWV GXH WR GHQDWXUDWLRQ DQG FRQIRUPDWLRQDO FKDQJHV DQG QRW EHFDXVH RI XQIDYRUDEOH HTXLOLEULXP FRQGLWLRQV $ VOLJKWO\ DFLGLF HQYLURQPHQW LQFUHDVHG DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ DQG DW WKH VDPH WLPH GHFUHDVHG LWV VWDELOLW\ ,W ZDV FRQFOXGHG WKDW WKH DFWLYLW\ GHFUHDVH DW ORZ S+ ZDV GXH WR GHQDWXUDWLRQ LQVWHDG RI LPSURSHU HQ]\PH LRQL]DWLRQ f D7HUSLQHRO GHK\GUDWDVH LV KHDW ODELOH SRVVLEO\ UHIOHFWLQJ LWV KLJK PROHFXODU ZHLJKW 7KH DFWLYLW\ RI DWHUSLQHRO GHK\GUDWDVH LV LQVHQVLWLYH WR FKDQJHV LQ WHPSHUDWXUH DV LQGLFDWHG E\ WKH ORZ (J s N-nPROnf DQG 4 s f YDOXHV f 7ULWRQ ; LQKLELWV DWHUSLQHRO GHK\GUDWDVH DFWLYLW\ FDXVLQJ DQ LQFUHDVH LQ WKH DSSDUHQW DQG GHFUHDVH LQ DSSDUHQW 9A 7KH DSSDUHQW .P RI DWHUSLQHRO GHK\GUDWDVH LQ b ZYf 7ULWRQ ; ZDV s P0 7KH QXPHULFDO YDOXH RI .P LV LPSRUWDQW IRU GHVLJQ RI DQ HQ]\PDWLF FRQYHUVLRQ SURFHVV VLQFH DQ HQ]\PH LV PRVW HIILFLHQW DW VXEVWUDWH FRQFHQWUDWLRQV QHDU A

PAGE 143

f D7HUSLQHRO GHK\GUDWDVH VWHUHRVSHFLILFDOO\ FDWDO\]HV WKH K\GUDWLRQ RI 5ffOLPRQHQH WR 5ffD WHUSLQHRO DQG WKH K\GUDWLRQ RI 6ffOLPRQHQH WR 6ffDWHUSLQHRO 7KH HQ]\PH LV VWHUHRVHOHFWLYH IRU 5ffOLPRQHQH ZLWK WKH UDWH IRU K\GUDWLRQ RI 5ffOLPRQHQH EHLQJ DSSUR[LPDWHO\ WHQ WLPHV IDVWHU WKDQ WKH UDWH IRU WKH K\GUDWLRQ RI 6ffOLPRQHQH ,Q UHFHQW \HDUV WKHUH KDV EHHQ DQ LQFUHDVHG GHPDQG IRU QDWXUDO IODYRU DQG DURPDV 8VH RI D QDWXUDO SURFHVV IRU WKH SURGXFWLRQ RI 5ffDWHUSLQHRO IURP 5ffOLPRQHQH KDV HFRQRPLF SRWHQWLDO EHFDXVH WKH DQQXDO FRQVXPSWLRQ RI DWHUSLQHRO LV KLJK ZKLOH DW WKH VDPH WLPH LW KDV JUHDWHU FRPPHUFLDO YDOXH WKDQ OLPRQHQH &RPPHUFLDO YDOXH RI SXUH 5ffDWHUSLQHRO LV XQNQRZQ EHFDXVH LW LV QRW DYDLODEOH $Q DGGLWLRQDO XVH RI DWHUSLQHRO GHK\GUDWDVH FRXOG EH IRU WKH UHVROXWLRQ RI FRPPHUFLDO UDFHPLF OLPRQHQH GLSHQWHQHf LQWR SXUH 6ffOLPRQHQH ZKLOH DW WKH VDPH WLPH SURGXFLQJ b SXUH 5ffDWHUSLQHRO

PAGE 144

$33(1',;

PAGE 145

)LJXUH $O 6WDQGDUG FXUYH IRU DWHUSLQHRO XVLQJ SSP QGHFDQRO DV LQWHUQDO VWDQGDUG (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 147

)LJXUH $ *DV FKURPDWRJUDP RI D W\SLFDO HQ]\PH DVVD\ H[WUDFW XVLQJ D PP LG [ P 6( IXVHG VLOLFD FDSLOODU\ FROXPQ

PAGE 148

5HFRUGHU 5HVSRQVH R UR UR @ VROYHQW H[

PAGE 149

)LJXUH $ $EVRUEDQFH QPf YHUVXV 7ULWRQ ; FRQFHQWUDWLRQ IRU VWDQGDUG VROXWLRQV DQG WKHLU UHVSHFWLYH 8) SHUPHDWHV 1RWH WKDW WKH UHJUHVVLRQ OLQH IRU WKH 8) SHUPHDWH H[FOXGHV WKH GDWD IRU b ZYf 7ULWRQ ; (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 150

$EVRUEDQFH < QPf 7ULWRQ ; ;b ZYf

PAGE 151

)LJXUH $ &KLUDO JDV FKURPDWRJUDP RI [/ HQ]\PH DVVD\ H[WUDFW IURP VWHUHRVSHFLILFLW\ VWHUHRVHOHFWLYLW\ LQLWLDO UDWH VWXG\f XVLQJ D PP LG [ P &\FORGH[ % IXVHG VLOLFD FDSLOODU\ FROXPQ

PAGE 152

7LPH PLQf 5HFRUGHU 5HVSRQVH 7IU7

PAGE 153

)LJXUH $ 6WDQGDUG FXUYHV IRU 5ffDWHUSLQHRO DQG 6ffDWHUSLQHRO XVLQJ SSP QGHFDQRO DV LQWHUQDO VWDQGDUG (UURU EDUV UHSUHVHQW VWDQGDUG GHYLDWLRQV Q f

PAGE 154

*& $5($ 5$7,2
PAGE 155

)LJXUH $ *URZWK FXUYHV RI 3 JODGLROL DW r& LQ OLTXLG PLQHUDO PHGLXP FRQWDLQLQJ b YYf OLPRQHQH DW YDULRXV S+ YDOXHV

PAGE 157

)LJXUH $ *& SURILOH RI FKDQJH LQ FRQFHQWUDWLRQ RI OLPRQHQH HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW r& >%XIIHU FRQVLVWHG RI P0 +(3(6 S+ FRQWDLQLQJ b ZYf 7ULWRQ ; 6HSDUDWLRQV ZHUH SHUIRUPHG RQ D PP LG [ P /LSRGH[ & JODVV FDSLOODU\ FROXPQ ZLWK D ILOP WKLFNQHVV RI [P 0DFKHUH\1DJHO 'UHQ *HUPDQ\f *& FRQGLWLRQV ZHUH DV IROORZV / LQMHFWLRQ ZLWK VSOLW KHOLXP FDUULHU JDV P/APLQn LQMHFWRU SRUW DW r& GHWHFWRU DW r& FROXPQ WHPSHUDWXUH LVRWKHUPDO DW r&@

PAGE 158

7LPH PLQf

PAGE 159

)LJXUH $ 'LVDSSHDUDQFH RI OLPRQHQH HQDQWLRPHUV GXULQJ WKH FRXUVH RI WKH K\GUDWLRQ RI P0 UDFHPLF OLPRQHQH E\ DWHUSLQHRO GHK\GUDWDVH DW r&

PAGE 160

*& $5($ 5$7,2 VDPSOHFMVSLQDQHf S R R R S f§L BN BN f§L UR ,2 E N! $ E E E Nf E E E UR R R R R R R R R R R R R 5ff/LPRQHQH

PAGE 161

5()(5(1&(6 $EUDKDP :5 +RIIPDQQ +05 .LHVOLFK 5HQJ DQG 6WXPSI % 0LFURELDO WUDQVIRUPDWLRQ RI VRPH PRQRWHUSHQRLGV DQG VHVTXLWHUSHQRLGV ,Q &,%$ )RXQGDWLRQ 6\PSRVLXP ,,, (Q]\PHV LQ 2UJDQLF 6\QWKHVLV 3LWPDQ /RQGRQ SS $EUDKDP :5 .LHVOLFK 5HQJ DQG 6WXPSI % )RUPDWLRQ DQG SUHSDUDWLRQ RI WUDQVJO\FROV IURP YDULRXV PRQRWHUSHQHV ZLWK PHQWKHQH VNHOHWRQV E\ PLFURELDO WUDQVIRUPDWLRQV ZLWK 'LRORGLD TRVVYSLQD 7KLUG (XU &RQJU %LRWHFKQRO 9RO 0XQLFK 6HSW 9HUODJ &KHPLH 'HHUILHOG %HDFK )/ SS $OGHU1LVVHQ (Q]\PDWLF +\GURO\VLV RI )RRG 3URWHLQV (OVHYLHU /RQGRQ $PHULFDQ 3XEOLF +HDOWK $VVRFLDWLRQ 6WDQGDUG 0HWKRGV IRU WKH ([DPLQDWLRQ RI :DWHU DQG :DVWHZDWHU WK HG &OHVFHUL /6 *UHHQEHUJ $( DQG 7UXVVHO 55 (GVf $PHULFDQ 3XEOLF +HDOWK $VVRFLDWLRQ :DVKLQJWRQ '& $QRQ 7RWDO SURGXFWLRQ RI GOLPRQHQH ,Q 6WDWLVWLFDO 6XPPDU\ 6HDVRQ )ORULGD &LWUXV 3URFHVVRUV $VVRFLDWLRQ :LQWHU +DYHQ )/ S ,' $QRQ &KHPLFDO SULFHV ,Q &KHPLFDO 0DUNHWLQJ 5HSRUWHU 9RO f 9DQ + 'H\UXS &$ DQG 0F&R\ 0 (GVf 6FKQHOO 3XEOLVKLQJ &R /WG 1HZ
PAGE 162

$UFWDQGHU 6 G D7HUSLQHRO ,Q 3HUIXPH DQG )ODYRU &KHPLFDOV $URPD &KHPLFDOVf 9RO 6WHIIHQ $UFWDQGHU 0RQWFODLU 1$UPVWURQJ ': DQG
PAGE 163

&DPERX % DQG .OLEDQRY $0 3UHSDUDWLYH SURGXFWLRQ RI RSWLFDOO\ DFWLYH HVWHUV DQG DORFKROV XVLQJ HVWHUDVH FDWDO\]HG VWHUHRVSHFLILF WUDQVHVWHULILFDWLRQ LQ RUJDQLF PHGLD $P &KHP 6RF &5& &5& +DQGERRN RI &KHPLVWU\ DQG 3K\VLFV WK HG &5& 3UHVV ,QF %RFD 5DWRQ )/ 'KDYOLNDU 56 DQG %KDWWDFKDU\\D 3. 0LFURELRORJLFDO WUDQVIRUPDWLRQV RI WHUSHQHV 3DUW 9,,, )HUPHQWDWLRQ RI OLPRQHQH E\ D VRLO SVHXGRPRQDG ,QGLDQ %LRFKHP 'KDYOLNDU 56 5DQJDFKDUL 31 DQG %KDWWDFKDU\\D 3. 0LFURELRORJLFDO WUDQVIRUPDWLRQV RI WHUSHQHV 3DUW ,; 3DWKZD\V RI GHJUDGDWLRQ RI OLPRQHQH LQ D VRLO SVHXGRPRQDG ,QGLDQ %LRFKHP 'KHUH 6* DQG 'KDYOLNDU 56 0LFURELDO WUDQVIRUPDWLRQV RI WHUSHQRLGV OLPRQHQH 6FL &XOW 'RHUQHU .& DQG :KLWH %$ 'HWHFWLRQ RI JO\FRn SURWHLQV VHSDUDWHG E\ QRQGHQDWXULQJ SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV XVLQJ WKH SHULRGLF DFLG6FKLII VWDLQ $QDO %LRFKHP (LEHUJHU // DQG :DVVHUPDQ %3 3DUWLDO SXULILFDWLRQ RI GLJLWRQLQVROXELOL]HG %JOXFDQ V\QWKDVH IURP UHG EHHW URRW 3ODQW 3K\VLRO (QJHO .+ %RKQHQ 0 DQG 7UHVVO 5 .LQHWLF UHVROXWLRQ RI KHSWDQROHQDQWLRPHUV E\ OLSDVH FDWDO\VHG HVWHULILFDWLRQ LQ RUJDQLF VROYHQW = /HEHQVP 8QWHUV )RUVK )0& G/LPRQHQH %URFKXUH 1R 6$ )0& &RUSRUDWLRQ /DNHODQG )/ *HUODFK 6FKQHLGHU 6 *OOQHU 7 .OLP .6 DQG 6FKUHLHU 3 6FUHHQLQJ RI OLSDVHV IRU HQDQWLRPHU UHVROXWLRQ R VHFRQGDU\ DOFRKROV E\ HVWHULILFDWLRQ LQ RUJDQLF PHGLXP ,Q %LRIODYRUn 6FKUHLHU 3 (Gf :DOWHU GH *UX\WHU t &R 1HZ
PAGE 164

,QWHUQDWLRQDO 8QLRQ RI %LRFKHPLVWU\ (Q]\PH 1RPHQFODWXUH :HEE (& ('f $FDGHPLF 3UHVV ,QF 2UODQGR )/ .DUS ) 0LOKDOLDN '$ +DUULV DQG &URWHDX 5 0RQRWHUSHQH ELRV\QWKHVLV VSHFLILFLW\ RI WKH K\GUR[\ODWLRQV RI fOLPRQHQH E\ HQ]\PH SUHSDUDWLRQV IURP 0HQWKD SLSHULWDf VSHDUPLQW 0HQWKD VSLFDWDf DQG 3HULOOD IUXWHVFHQVf OHDYHV $UFK RI %LRFKHP DQG %LRSK\V .HVWHUVRQ -: DQG %UDGGRFN 5%\SURGXFWV DQG VSHFLDOW\ SURGXFWV RI )ORULGD FLWUXV )OD $JU ([S 6WD %XOO .KPHOQLWVN\
PAGE 165

0DWVXEDUD < 7DQDND 8UDWD 0 )XNXQDJD 7 .XZDWD 0 DQG 7DNDKDVKL +\GUDWLRQ RI WHUSHQHV 9, 1RYHO V\QWKHVLV RI RSWLFDOO\ DFWLYH DWHUSLQHRO DQG GLPHWK\ORFWHQRO 1LSSRQ .DJDNX .DLVKL 0DWWVRQ 5+ 7XUSHQWLQH D E\SURGXFW RI WKH NUDIW SDSHU LQGXVWU\ 3DUW 1DYDO 6WRUHV 5HY f 0RQRG DQG :ROOPDQ ( /nLQKLELWLRQ GH OD FURLVVDQFH GH nDGDSWLRQ HQ]\PDWLTXH FKH] OHV EDFWHULHV SDU OH EDFWHULRSKDJH $QQ ,QVW 3DVWHXU 0XUGRFN ', DQG +XQWHU */. %DFWHULRORJLFDO FRQWDPLQDWLRQ RI VRPH FLWUXV RLOV GXULQJ SURFHVVLQJ )RRG 6FL 0XUGRFN ', +XQWHU */. %XFHN :$ DQG %UHQW -$ 5HODWLRQVKLS RI EDFWHULDO FRQWDPLQDWLRQ LQ RUDQJH RLO UHFRYHU\ V\VWHP WR TXDOLW\ RI ILQLVKHG SURGXFW 3URF )OD 6WDWH +RUW 6RF 0XUGRFN ', +XQWHU */. %XFHN :$ DQG %UHQW -$ 5HODWLRQVKLS RI EDFWHULDO FRQWDPLQDWLRQ LQ RUDQJH RLO UHFRYHU\ V\VWHP WR TXDOLW\ RI ILQLVKHG SURGXFW )RRG 7HFKQRO f 0XNKHUMHH %% .UDLGPDQ DQG +LOO ,' 6\QWKHVLV RI JO\FROV E\ PLFURELDO WUDQVIRUPDWLRQ RI VRPH PRQRF\FOLF WHUSHQHV $SSO 0LFURELRO 1DNDPXUD $L]DZD 0 DQG 0L\DZDNL 2 %LRWHFKQRORJ\ 0RQRJUDSKV (OHFWURHQ]\PRORJ\ &RHQ]\PH 5HJHQHUDWLRQ 9RO 6SULQJHU9HUODJ 1HZ
PAGE 166

3HQHIVN\ +6 DQG 7]DJRORII $ ([WUDFWLRQ RI ZDWHU VROXEOH HQ]\PHV DQG SURWHLQV IURP PHPEUDQHV 0HWK (Q]\PRO 5DPD 'HYL DQG %KDWWDFKDU\\D 3. D 0LFURELRORJLFDO WUDQVIRUPDWLRQV RI WHUSHQHV 3DUW ;;,,, )HUPHQWDWLRQ RI JHUDQLRO QHURO DQG OLPRQHQH E\ D VRLO SVHXGRPRQDG 3VHXGRPRQDV LQFRJQLWD OLQDORRO VWUDLQf ,QGLDQ %LRFKHP %LRSK\V 5DPD 'HYL DQG %KDWWDFKDU\\D 3. E 0LFURELRORJLFDO WUDQVIRUPDWLRQV RI WHUSHQHV 3DUW ;;,9 3DWKZD\V RI GHJUDGDWLRQ RI JHUDQLRO QHURO DQG OLPRQHQH 3VHGRPRQDV LQFRJQLWD OLQDORRO VWUDLQf ,QGLDQ %LRFKHP %LRSK\V 5D\ $ 6ROYRSKRELF LQWHUDFWLRQV DQG PLFHOOH IRUPDWLRQ LQ VWUXFWXUH IRUPLQJ QRQDTXHRXV VROYHQWV 1DWXUH 6FKZLQJKDPHU ($ $ PHWKRG IRU LPSURYHG O\VLV RI VRPH JUDPQHJDWLYH EDFWHULD )(06 0LFURELRO /HWW 6FRSHV 5. 3URWHLQ 3XULILFDWLRQ 3ULQFLSOHV DQG 3UDFWLFH QG HG 6SULQJHU9HUODJ 1HZ
PAGE 167

7]DJRORII $ DQG 3HQHIVN\ +6 ([WUDFWLRQ RI OLSRSURWHLQ FRPSOH[HV IURP PHPEUDQHV 0HWK (Q]\PRO 9HVWHUEHUJ 2 ,VRHOHFWULF IRFXVLQJ RI SURWHLQV 0HWK (Q]\PRO :DOVK & (Q]\PDWLF 5HDFWLRQ 0HFKDQLVPV :+ )UHHPDQ DQG &R 6DQ )UDQVLFR :DVVHUPDQ %5 (YROXWLRQ RI HQ]\PH WHFKQRORJ\ 3URJUHVV DQG 3URVSHFWV )RRG 7HFKQRO f :HOVK ): 0XUUD\ :' DQG :LOOLDPV 5( 0LFURELRORJLFDO DQG HQ]\PDWLF SURGXFWLRQ RI IODYRU DQG IUDJUDQFH FKHPLFDOV &ULW 5HY %LRWHFKQRO :HVW 6 )ODYRULQJ ZLWK HQ]\PHV )RRG 1RYHPEHU SS :KLWDNHU -5 3ULQFLSOHV RI (Q]\PRORJ\ IRU WKH )RRG 6FLHQFHV 0DUFHO 'HNNHU ,QF 1HZ
PAGE 168

%,2*5$3+,&$/ 6.(7&+ .HLWK 5 &DGZDOODGHU ZDV ERUQ RQ $SULO LQ $WKHQV *HRUJLD +H ZDV UDLVHG LQ $WKHQV DQG UHFHLYHG KLV KLJK VFKRRO GLSORPD LQ -XQH IURP &HGDU 6KRDOV +LJK 6FKRRO +H JUDGXDWHG LQ -XQH IURP WKH 8QLYHUVLW\ RI *HRUJLD UHFHLYLQJ KLV %DFKHORU RI 6FLHQFH GHJUHH LQ IRRG VFLHQFH ,Q $XJXVW KH EHFDPH WKH UHFLSLHQW RI D IHOORZVKLS IURP WKH )0& &RUSRUDWLRQ DQG HQUROOHG DV D JUDGXDWH VWXGHQW LQ WKH )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ 'HSDUWPHQW 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD ,Q $XJXVW KH JUDGXDWHG IURP WKH 8QLYHUVLW\ RI )ORULGD UHFHLYLQJ KLV 0DVWHU RI 6FLHQFH $W WKDW WLPH KH ZDV DGPLWWHG LQWR WKH GRFWRUDO SURJUDP RI WKH )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ 'HSDUWPHQW 8QLYHUVLW\ RI )ORULGD +H DQWLFLSDWHV UHFHLYLQJ KLV 'RFWRU RI 3KLORVRSK\ GHJUHH LQ 'HFHPEHU

PAGE 169

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5 (KAGGRFN &KDLUPDQ 3URIHVVRU RI )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0 $VVLVWDQW 3URIHVVRU RI )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0 ( 3DULVK $VVLVWDQW 3URIHVVRU RI )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'n6DGOHU $VVLVWDQW 3URIHVVRU RI )RRG 6FLHQFH DQG +XPDQ 1XWULWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ n5 $
PAGE 170

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHJXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ OHJH RI $JULFXOWXUH 'HDQ *UDGXDWH 6FKRRO

PAGE 171

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E9S7E4H7A_G20QI8 INGEST_TIME 2011-10-06T21:51:09Z PACKAGE AA00004757_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES