Citation
Fate and transport of hydrazine through columns of saturated sandy soil

Material Information

Title:
Fate and transport of hydrazine through columns of saturated sandy soil
Creator:
Downs, Wayne C., 1949-
Publication Date:
Language:
English
Physical Description:
vii, 190 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Adsorption ( jstor )
Calcium ( jstor )
Flow velocity ( jstor )
Hydrazines ( jstor )
Ions ( jstor )
pH ( jstor )
Porosity ( jstor )
Soil horizons ( jstor )
Soils ( jstor )
Solutes ( jstor )
Dissertations, Academic -- Environmental Engineering Sciences -- UF
Environmental Engineering Sciences thesis Ph. D
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1993.
Bibliography:
Includes bibliographical references (leaves 122-131).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Wayne C. Downs.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001952312 ( ALEPH )
31274852 ( OCLC )
AKC8877 ( NOTIS )

Downloads

This item has the following downloads:


Full Text









FATE AND TRANSPORT OF HYDRAZINE
THROUGH COLUMNS OF SATURATED SANDY SOIL













By


WAYNE C. DOWNS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY



UNIVERSITY OF FLORIDA


1993













ACKNOWLEDGMENTS


I would like to thank Dr. Robert Mansell for his patience and persistence
during the data acquisition and document preparation for this manuscript. It
would never have happened without him. I would also like to thank Dr. Michael
Annable for agreeing to step in at a late date to supervise the document and Dr.
Joseph Delfino, Chairman of the Department of Environmental Engineering
Sciences, for devising a way to make it all possible. Thanks, too, go to Dr. Brian
McNeal who recently agreed to become a member of the committee, and to Dr.
Paul Chadik, who patiently waited things out. I would also like to thank Dr.
Stephen Bloom for his ion exchange discussions and modeling assistance, and
Dr. Wayne Huber for his example and guidance during my graduate career at
the University of Florida. He believed in me all along.

Several coworkers deserve special mention for their assistance in the
research described herein: Ana Moliner, for long and fruitful discussions of soil
chemistry, and Denie Augustyn and Robin Roberson for laboratory assistance.

Special thanks go to my wife Jill, for her love and patience during the
years of graduate school and the weeks of managing the family without me
during the preparation of this document. Truly, without her encouragement this
work would never have come to pass.
I would also like to acknowledge the faculty and technical staff of the Soil
and Water Science Department at the University of Florida for their kind
assistance and partial support. The U. S. Environmental Protection Agency's
Robert S. Kerr Environmental Research Laboratory in Ada, Oklahoma, deserves








particular recognition for allowing me the time and providing the equipment to
finish the laboratory experiments. Also, thanks go to EG&G Idaho, Inc. for partial
support in completing the writing of the manuscript. This work was initiated
under a grant to the Soil and Water Science Department of the University of
Florida by the U. S. Air Force Environics Division, Tyndall Air Force Base,
Florida (No. F08635-83-C-0136, CPT Floyd Wiseman, Project Officer).













TABLE OF CONTENTS

ACKNOW LEDGMENTS ............................................................................................ ii

ABSTRACT .................................................................................................................vi

CHAPTER 1. INTRODUCTION ......................................... ............... ..................... 1


CHAPTER 2. LITERATURE REVIEW ...................................... .................................. 7

Literature Review Objectives............................................................ ............... 7
Hydrazine Environmental Chemistry............................................... .............. 7
Hydrazine Fate and Transport Pathways........................................ ............ 10


CHAPTER 3. MATERIALS AND METHODS....................................... ............. 34

Research Objectives ......................................................................................... 34
Soil Characterization ........................................................................................35
Miscible Displacement...................................................................................... 43


CHAPTER 4. RESULTS ........................................................................................ 58

Soil Properties....................................................................................................58
Miscible Displacement......................................................................................78


CHAPTER 5. DISCUSSION ..................................................................................86

Introduction ............................................................................................................. 86
Environmental Variables ................................................................................... 87
Process Variables.............................................................................................. 97

CHAPTER 6. SUMMARY AND CONCLUSIONS..........................................................113

Introduction ........................................................................................................ 113
Summary of Experimental Design... .............................................................. 113
Summary of Experimental Results ................................................................ 115
Conclusions .......................................................................................................... 120









LIST O F R EFER EN C ES ....................................................................................... 122


APPEN D IX A ........................................................................................................... 132


A PPEN D IX B........................................................................................................... 138


A PPEN D IX C .......................................................................................................... 149


A PPEN D IX D ..................................................... .................................................... 160


APPEN D IX E...................................................... .................................................... 181


BIO G RA PH IC A L SKETC H ........................................................................................ 190
































V














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


FATE AND TRANSPORT OF HYDRAZINE
THROUGH COLUMNS OF SATURATED SANDY SOIL

By

Wayne C. Downs

December, 1993



Chairman: M. D. Annable
Cochairman: R. S. Mansell
Major Department: Environmental Engineering Sciences

The effects of environmental and process variables on the fate and
transport of hydrazine were investigated in laboratory columns of three
consecutive horizons of a saturated sandy soil. The investigation of
consecutive horizons containing successively less organic matter showed
hydrazine loss within soil columns to be closely correlated with percentage

organic matter. Percentage clay in each horizon was not well correlated with
hydrazine loss.

The influence of the ion-exchange process was investigated by
observing the ionic composition of column effluent. An effective cation
exchange capacity (CEC) was determined under column-saturated flow, and
found to be an order of magnitude less than CEC values determined from batch

studies. The column-determined value was used in computer simulations to








correctly predict observed hydrazinium breakthrough curves. Results indicated
that ion exchange and ion transport are primary mechanisms that describe the
transport of hydrazine during water flow in these calcium-saturated soils.

A hydrazine mass balance showed losses of 10 to 37 percent in the
columns, depending on the horizon. Losses were found to be correlated with
the duration of column experiments, implying a first-order degradation
mechanism.

Microbial activity also was observed for soil taken from completed
column experiments. Hydrazine concentrations as high as 16 mmol L-1 were
not observed to reduce active microbial populations. Plate counts of
approximately 107 organisms per gram of soil were observed, compared to 108
organisms per gram using acridine-orange counting methods.

Literature values of first order hydrazine degradation rates due to
microbial activity are similar to the rate-controlled losses observed in this study,

though specific experiments to isolate microbial activity were not performed.













CHAPTER 1
INTRODUCTION


Background

Hydrazine (N2H4) and its derivatives are extremely versatile compounds
that have found application for a wide variety of purposes. They are readily
oxidizable and endothermic, and for this reason have been used in fuel cells, as
propellant for gas turbines, as antioxidants, for the deoxygenation of boiler
water, in pharmaceuticals production, and as intermediates for the production of
explosives and propellants. The agricultural industry is a major user of
hydrazine in pesticide production. Hydrazine, along with its derivatives,
monomethyl (MMH) and unsymmetrical dimethylhydrazine (UDMH), also is
used by the defense industry as a liquid propellant in missiles, satellites, and
aircraft.

Hydrazine was first prepared by T. Curtius, a German chemist, in 1887. It
remained little more than a laboratory curiosity with few applications for several
decades (Schiessi, 1980). The first sample of anhydrous hydrazine was

prepared by Lorty DeBruyn in 1893. The method for preparation of hydrazine
hydrate by the Raschig process was discovered in 1907 and cleared the way for
its production in industrial quantities. Hydrazine did not enjoy significant use,
however, until its propellant capabilities were realized by the Germans during
World War II. An energetic propellant was needed for the rocket airplane, the
Me-163B, developed in 1937. A mixture of hydrazine hydrate and methanol

was used as a fuel, with hydrogen peroxide as the oxidizer in a bipropellant








rocket engine (Schmidt, 1987). The first use of hydrazine as a monopropellant
was demonstrated in 1954 at the Jet Propulsion Laboratory in Pasadena,
California The late 1950s saw a great increase in the production of anhydrous
hydrazine in the United States, and hydrazine production increased again in
the 1960s when a blend of UDMH and hydrazine was used to fuel the Titan
series rocket engines.
Development of the Shell 405 catalyst in 1963 allowed almost unlimited

restart capability and opened the way for new hydrazine applications. As a
result, most military, commercial, and scientific satellites in earth orbit use
hydrazine propulsion systems for attitude control and orbit maintenance. Many
unmanned space missions also have used hydrazine propulsion, such as the
Viking landers on Mars; the Pioneer and Voyager space probes to Jupiter,
Saturn, and Uranus; and the Giotto space probe to Haley's comet.
Hydrazine propellant is used extensively for upper-stage rocket

propulsion and for impulse corrections after rocket motor burn is complete. The
space shuttle uses both hydrazine and monomethyl-hydrazine for its second-
stage booster rockets and for orbital maneuvering. Anhydrous hydrazine is
used in the Auxiliary Power Unit on both the space shuttle orbiter and on its two

solid rocket boosters. Another widespread aviation use of hydrazine is in the
Emergency Power Unit on the F-16 fighter (Clewell et al., 1988).
Hydrazine decomposition gasses at high pressure are used to expel
ballast water from submarine ballast tanks in emergency situations. Such
systems are in use on several NATO submarines. Hydrazine systems weigh
only a fraction of comparable compressed-gas systems.

While hydrazine use was dominated by the military and aerospace

industry in the 1960s, by the 1980s other industrial applications were








consuming the major share of all hydrazine produced. The agricultural industry
is a major user of hydrazine in the manufacture of pesticides. Hydrazine is used
in the plastics industry as a chemical intermediate for plastic-foam blowing
agents, and hydrazine is used as an oxygen scavenger in boiler water for
power production.
In laboratory animals, exposure to hydrazine may produce either
immediate toxicity or delayed kidney and liver injury in animals that survive the
exposure. Via inhalation, the 4-hr LCso of hydrazine is 7.8 mmol L-1 for mice
and 18.1 mmol L-1 for rats (Clewell etal., 1988). In another study, the 1-hr LC50
in rats was 20 mmol L-1. A six-month inhalation study conducted with dogs,
monkeys, rats, and mice suggested that effects were dose related regardless of
whether the exposures were intermittent or continuous (WHO, 1987).
Hydrazine is a polar molecule, having a high affinity for water.
Consequently, it is extremely irritating to eyes and mucus membranes.
Hydrazine has also been shown to enter the body through the skin. In
anesthetized dogs, topical application of hydrazine in the 100 mg kg-1 range
produced detectable blood concentrations within 30 seconds and a chemical
burn at the site of application (Clewell et al, 1988).
A few instances of hydrazine toxicity in humans have been reported.
Dermal sensitization after exposure to hydrazine has been cited (WHO, 1987).
Accidental ingestion of a concentrated aqueous solution of hydrazine by a
workman caused prolonged unconsciousness and seizures; however, he was
considered reasonably recovered within two weeks (Clewell et al., 1988).
Hydrazine toxicity has been fatal in at least one case where an individual
experienced conjunctivitis, nausea, and tremors each time he handled








hydrazine. After six months of repeated exposure he was admitted to the
hospital and, after three weeks, died despite treatment (Clewell et al., 1988).

Hydrazine is classified as an environmental carcinogen and a suspected
human carcinogen (Stone and Wiseman, 1988). This toxicity has resulted in a
recommendation from the American Conference of Governmental Industrial
Hygienists of a threshold limit value for hydrazine of 0.003 mmol L-1 of air.
Because of uncertainty concerning the relative importance of skin exposure to
hydrazine vapor, it is commonly required that individuals working with
hydrazine wear a self-contained protective suit to provide full-body protection.
The widespread usage of this material provides the opportunity for spills
and subsequent contamination of the environment. In a report on hydrazine use
in the Space Shuttle program, Hudson (1982) indicated that, in addition to the

orbiter and the launch pad where it is fueled, ground facilities involved with
hydrazine activities that service the shuttle include fixed storage tanks, parked
tank trailers, portable service units, piping and vent lines, vent gas scrubbers,
waste tank trailers, contaminated fuel tanks, spill trenches, and ponds. Lewis
(1979) reported that hydrazine fuels are transported between Lake Charles,
Louisiana; Denver, Colorado; Cape Canaveral, Florida; and Vandenberg Air
Force Base, California, as well as Strategic Air Command sites throughout the
country, with an average of 5.2 million pounds of fuels shipped annually over

150,000 miles of rail and highway.

On July 28th, 1991 more than 400 gallons of hydrazine were spilled
when an overheated axle snapped, derailing 12 freight cars that crashed into

an overpass of the Ventura Freeway in Southern California. Three hundred
residents of Seacliff, California, were evacuated and 10 miles of freeway were








closed during the five-day cleanup. Eleven workers were treated for nausea

and respiratory problems during this operation (Reed, 1991).

The potential for leakage of hydrazine from storage tanks and other spills
from transportation accidents makes investigation of the environmental fate of

hydrazine a pressing need.


Research Objectives

This study has been proposed to evaluate the fate and transport of
hydrazine in laboratory columns of sandy soil. The transport of hydrazine below
the water table will be simulated using saturated soil columns. Also, saturated

conditions simplify the experimental design as well as the mathematics of

transport. The soils will be characterized with respect to particle size
distribution, organic matter content, elemental composition, pH, and buffering
capacity.

In addition to soil characteristics, the effect of several environmental
variables known to affect the transport of chemicals in ground water will be
examined, including: solution concentration, water velocity, and time of

hydrazine exposure to soil.

The study approach will be organized in the following manner:

* Through literature review, investigate the environmental chemistry of

hydrazine, and thus elucidate the possible mechanisms governing its fate in
the environment.
* Identify processes likely to control the fate and transport of hydrazine in soils.
* Identify the soil characteristics and environmental variables likely to impact


the fate and transport processes.





6


* Isolate the processes thought to be of greatest importance, and quantify

them through column and batch experiments.
* Evaluate the impact of the selected soil characteristics and environmental

variables on the significant fate and transport processes.
* Simulate the selected processes and environmental variables by computer

to confirm their significance and quantify processes difficult to evaluate in
independent laboratory experiments.













CHAPTER 2
LITERATURE REVIEW


Literature Review Objectives

Under saturated soil conditions (as in near-surface aquifers), the fate of
hydrazine is closely linked to its chemical nature and its involvement in a
number of potential degradation and transport pathways. This review will be
devoted to the environmental chemistry of the molecule and to pathways
thought to be available for hydrazine fate and transport.


Hydrazine Environmental Chemistry

Hydrazine is a clear, colorless liquid at ambient temperatures (b.p.
114.50C and m.p. 2.010C). Its vapor pressure is slightly lower than that of water

(10.4 vs 17.5 mm Hg), while its density is quite similar to that of water. It is
extremely soluble in water and, when mixed, an initial difference in refractive
index quickly disappears. Hydrazine vapors are only slightly more dense than
air. Some physical and chemical properties of environmental interest are
tabulated in Table 2-1.

Hydrazine is a symmetrical, yet polar, molecule. It is miscible with polar
solvents such as water, alcohols, ammonia, and amines, and is insoluble in

nonpolar solvents such as hydrocarbons and halogenated hydrocarbons. Its
polarity is due to the attraction of oppositely charged fields for one another; i.e.

the nitrogen molecules rotate internally to minimize electrical repulsion. This

rotation produces a cis-configuration (Audrieth and Ogg, 1951: Figure 2-1).








Due to its polarity, hydrazine most likely will interact with polar groups on the

solid surfaces of soils.


Table 2-1. Some physical and


chemical properties of hydrazine and its hydrate.


Property Anhydrous hydrazine Hydrazine hydrate
(100% N2H4) 1(64% N2H4)


Physical state at STP

Color

Odor

Odor perception

Melting Point

Boiling Point

Flash Point

Flammable Limits

Vapor Pressure

Relative vapor density

Density

Solubility in water

Surface tension


I.


Source: World Health Organization (WHO), 1987


The 2s2 shell of each nitrogen atom serves to establish the N-N bond. A

2sp3 hybridization is assumed to occur, in which one of the 2sp3 orbitals from

each nitrogen atom is occupied by a pair of lone electrons with opposite spins


liquid

colorless

ammonia, pungent

3-9 mg m-3

20C

113.50C

380C

1.8- 100%

10.4 mmHg at 200C

1.1

1008 g L-1 at 200C

extremely soluble

66.7 dyne cm-1


liquid

colorless

ammonia, pungent

3-9 mg m-3

-51.50C

120.1C

750C

3.4-100%

7.5 mmHg at 200C

UNK

1032 g L-1 at 200C

extremely soluble

74.2 dyne cm-1


.





9



HH H H
\ 110 -

"H


H H 60 H


Figure 2-1. Cis- configuration of the hydrazine molecule.


(Schmidt, 1984). These two electron pairs impart a very strong nucleophilic
character to the molecule. Due to this property, hydrazine can form a large
variety of complexes with metals (Dilworth, 1976). Schmidt (1984) stated that it
is difficult to determine whether a true complex with hydrazine exists or whether
hydrazine is simply included in the crystal lattice of some salts (e.g. calcium
salts) as a solvate analogous to water of crystallization.
The density of hydrazine is higher in the solid state than in the liquid
state. In this respect, it is different from water. The density of the liquid at
ambient temperature is 1.01 g cm-3 (Ahlert et al., 1962).
The use of hydrazine as a fuel is based on its endothermic nature
[(AH)f(l) = +12.1 Kcal mole-1]. However, anhydrous hydrazine is thermally quite
stable (250 C) in the ambient-temperature range (Schiessl, 1980). The
presence of certain metals and oxides can lower the decomposition
temperature.
Hydrazine is a base slightly weaker than ammonia (pKa=7.95, Condon et
al., 1974) and a strong reducing agent. As such it reduces many metal ions to
lower valence states or to the metal itself, depending on reaction conditions.
The standard redox potentials (Latimer, 1952) of hydrazine:









NH4 + 40H- N2 + 4H,0 + 4e-


and of hydrazinium ion:


Eo = +0.23V [2-2]


indicate that hydrazine is a better reducing agent in alkaline than in acidic

solution. Hydrazine can also act as an oxidizing agent, as indicated by the

following standard redox potentials:


NH4 + 2H20+ 2e- -> 20H- + 2NH3


E = +0.1V [2-3]


N2H,' + 3H+ + 2e- -> 2NH4+


S= +1.27V [2-4]


Hydrazine Fate and Transport Pathways


The fate of hydrazine in soils is determined by chemical, physical, and

biological relationships developed in the soil. Some environmental

relationships have been investigated, and are discussed below:


Oxidation in Solution

Some of the earliest work done with hydrazine was directed towards the
identification of reaction products expected upon reaction with various oxidizing
agents. Browne and Shetterly (1907, 1908, 1909) classified oxidizing agents

on the basis of their reactivity with hydrazine. Other work by Bray and Cuy


N2H5, -- N2 + 5H+ + 4e-


Eo =+1.16V [2-1]








(1924); Cuy et al. (1924); and Kirk and Browne (1928), identified three basic
oxidation reactions:


N2H 4e- + N2 + 5H+ [2-5]
N,H -> e- + N, + NH+ + H- [2-6]
N2H5 -- 2e- + I HN3 + NH + 2}H [2-7]


Higginson et al. (1953) grouped the oxidizing agents according to their
ability to oxidize hydrazine by one-electron or four-electron reactions. They
suggested that the ability of metal ions to adsorb hydrazine in their coordination
spheres determined the path of reaction. Later, Higginson and Sutton (1953),
Cahn and Powell (1954) and Higginson and Wright (1955) used 15N to verify
the oxidation mechanisms that had been proposed.
Cahn and Powell (1954) also did extensive work on the effect of cupric
ion on hydrazine. They noted that the cupric ion does not react appreciably with
hydrazine in acid solution, though its presence greatly increases the proportion
of four-electron oxidation.
Two-electron oxidation, yielding ammonia, was found to be greatest in
acidic solution (pH<3, Higginson, 1957). Subsequent work by Pagsberg (cited
by Sutherland, 1979) and by Adams and Thomas (1963), Atkinson and Bard
(1971), Smith et al. (1971), Haydon and Simic (1972), and Sutherland (1979)
confirmed the validity of the oxidation reactions and identified transient
intermediate reaction steps.








Autoxidation in Solution

Although the two adjacent nitrogen atoms of hydrazine should favor the
formation of nitrogen when the hydrogens are removed by oxidation, this simple

reaction is not usually the only path followed (Schmidt, 1984). In addition to
molecular nitrogen, the following compounds have been identified as reaction
products: ammonia, hydrazoic acid, diazene, and hydrogen peroxide.
Although they are thermodynamically favorable, especially in acidic solution,
there are few examples of such reactions in the literature. Hence, they are likely
very slow in the absence of an appropriate catalyst.
In 1924 Cuy and Bray examined the influence of pH and atmospheric
oxygen on the disappearance of hydrazine from aqueous solution. Hydrazine
solutions in 1.0 M sodium hydroxide were found to be unstable, though acidic
solutions were quite stable. Basic solutions kept under a nitrogen atmosphere
were not found to degrade. They assumed that decomposition was due to

oxidation in air. Gilbert (1929) also examined the effects of pH and oxygen on
hydrazine decomposition. He observed the formation of hydrogen peroxide in
dilute alkaline solutions in the presence of oxygen. Under an oxygen

atmosphere, sodium hydroxide concentrations above 0.03 M were seen to
correspond to a decrease in hydrogen peroxide formation, implying that
hydrazine autoxidation was optimal in dilute alkaline solution. Cuy and Bray

(1924) and Gaunt and Wetton (1966) also did not detect any hydrazine
degradation unless oxygen was present.

Ellis et al. (1960), attempting to determine the kinetics of hydrazine
degradation, found hydrazine to disappear faster than did oxygen. They
modeled the rate of hydrazine disappearance with a second-order empirical
relationship:









dc ac + bc [2-8]
dt

where a and b are functions of pH and temperature. The rate of reaction
increased by a factor of 1.2 per 10C rise in temperature. Ammonia was
detected when hydrazine was in excess, but no hydrogen peroxide was
detected. Autoxidation by atmospheric oxygen appears to be the most
important factor contributing to the disappearance of hydrazine in the
environment, since oxygen is in great supply.

Other research has shown hydrazine to be degraded in the absence of
oxygen. Gilbert's data (1929) suggested that hydrazine decomposition took
place on surfaces. The possibility of dust particles acting as the active surfaces
was mentioned, and the fritted glass he used to transmit oxygen was also
suspected. Brown (cited by Audrieth and Ogg, 1951) observed that traces of
copper exert a marked catalytic effect on the autoxidation of hydrazine.
Audrieth and Mohr (1951) tested several metallic ions for implication in the
catalysis of hydrazine decomposition. Dissolved copper was by far the most
active catalyst, followed by vanadium (VO-3). They used metal deactivators
which form insoluble salts or stable complexes with copper to inhibit the

catalytic effect, but no inhibitors were found that would totally neutralize the
effect of copper.

More recently, Lim and Fagg (1984) observed that manganese catalyzed
autoxidation of aqueous hydrazine. Schmidt (1984) also mentioned a survey
conducted by Eberstein and Glassman of metals that catalyzed hydrazine
decomposition. They noted that transition metals having incomplete d
subshells act as strong catalysts for hydrazine decomposition, whereas metals

having no dsubshells or completely-filled shells are not catalytic. It was








theorized that electrons from the lone electron pairs in hydrazine interact with
unfilled d orbitals during the early stages of adsorption and chemisorption of
hydrazine.
At least two basic equations can be used to describe the heterogeneous
decomposition of hydrazine in solution:


3N2H4 N2 +4NH3 [2-9]

N2H4 -- N2+ 2H, [2-10]


Any possible combination of both reactions has been found to occur,
depending on the catalyst used and the experimental conditions (Maurel and
Menezo, 1978; Oosawa, 1984).

This discussion of oxidation/autoxidation in solution is directly related to
the decomposition of hydrazine in soils, because of the omnipresence of
aqueous solutions even in unsaturated soils. The focus of the experimental
data presented in this dissertation is on hydrazine fate and transport under
saturated conditions, so hydrazine reactivity in solution is of major consequence
here.


Hydrazine Degradation in Natural Waters

Slonim and Gisclard (1976) studied the disappearance of hydrazine in
waters of different origin that varied in hardness, organic matter content, oxygen
content, OH, and temperature. Hydrazine at 5 mg L-1 was added to water
samples and analyses were done each day for five days. Within the first hours
the most polluted water (with the greatest amount of solids in suspension)

caused the greatest breakdown of hydrazine. Water from the same source but








taken under calm weather conditions showed no hydrazine breakdown initially,
though hydrazine was not detectable after four days. A correlation also was
found between the degree of hardness and the rate of hydrazine decay. In city
tap water which was softened and chlorinated, hydrazine concentration
remained approximately the same for 4 days. Slonim and Gisclard (1976)
stated that polluting material rich in organic matter was the leading contributor
to hydrazine degradation. However, they did not mention the possibility of
hydrazine adsorption to organic surfaces. Also, biological activity was not
considered as a possible factor in hydrazine degradation.

MacNaughton et al. (1978) studied sea water and pond water, evaluating
the effects of copper, dissolved organic, and oxygen concentration on
hydrazine behavior. Addition of copper at a concentration of 4x10-6 moles L-1
had a greater effect in sea water than in pond water. They suggested that the
copper was adsorbed to the greater dissolved organic fraction in pond water,

making it less available for subsequent catalysis. Filtered pond water resulted
in no change in oxidation rate, suggesting that suspended material was not
important in catalyzing hydrazine oxidation or complexation of the added

copper. No effect was observed, as well, by varying the oxygen concentration
between 0.5 and 40 mg L-1.

From the literature we can infer that the disappearance of hydrazine from
solution is highly dependent on reaction conditions. At low pH, hydrazine can
be oxidized (mainly to H2 and NH3) by many metals and other oxidizing agents.
At high pH, autoxidation also can take place, the main product being molecular
nitrogen. This reaction is pH dependent with metals, especially copper and
manganese, acting as catalysts.








Microbial Degradation

Some information is available on the effects of hydrazine and its
derivatives, monomethylhydrazine and dimethylhydrazine, on soil
microorganisms under pure and mixed-culture conditions. Since the
hydrazines are nitrogen compounds and may be degraded to NH3, Kane and
Williamson (1983) chose nitrifiers and denitrifiers as test bacteria for the toxicity
of hydrazine and its derivatives. They found that the activities of the autotrophic
nitrifiers Nitrosomonas and Nitrobacter, as well as of denitrifying bacteria, were
inhibited by the three chemicals. Gas production by anaerobic methanogens
was also inhibited by hydrazine. Mantel and London (1980) and London and
Mantel (1983) demonstrated that hydrazines at low concentrations (10 to 50 mg
kg-1) exerted bacteriostatic and bactericidal effects, resulting in prolongation of
the lag phase of growth for the soil bacterium Enterobacter cloaca. At higher

concentrations (100 mg kg-1) the overall growth of the bacteria was inhibited
(London et al., 1983).

Because of the diversity of microorganisms in soils and the buffering
capacity of soil, it has been suggested that toxicity of the compounds to soil
microorganisms would not be as great as to microorganisms maintained in
liquid media (Hollocher et al., 1982). Since hydrazine can be degraded to N2
by autotrophic bacteria such as Nitrosomonas (Kane and Williamson, 1983)

and to NH3 by N2-fixing heterotrophic bacteria (Stiefel et al., 1978), it was
thought likely that hydrazine would be detoxified by these soil bacteria and

possibly by other hydrazine-degrading microorganisms as well.

The microbial degradation of hydrazine in soils and the effect of
hydrazine on soil microbial activity was investigated by Ou (1987, 1988) and Ou

and Street (1987, 1988). They reported that hydrazine applied to Arredondo








soil at concentrations of 0.256 to 1.28 mmol 100 g-1 completely disappeared in
less than 1 and 8 days, respectively. Hydrazine was not observed to be
metabolized to ammonia, which could serve as a nitrogen source for growth. By
comparing degradation rates in sterile and nonsterile soils, they concluded that
biological degradation was responsible for about 20% of the disappearance of
the chemical in Arredondo soil. They also reported that, at 0.256 mmol 100 g-1,
soil respiration and total bacterial and fungal populations were not inhibited by
hydrazine. However, at 1.28 mmol 100 g-1, total bacterial populations in soil
were reduced by the presence of hydrazine (Ou and Street, 1987).
Ou (1987) also reported that three heterotrophic soil bacteria had the
capacity to degrade hydrazine in mixed culture. One of these organisms,
Achromobacter sp., degraded hydrazine at 3.2 mmol L-1 concentration to N2
gas. The organism was not able to grow on hydrazine as a sole source of
nitrogen, however, suggesting that the metabolic process for hydrazine was
cometobolic.
Ou and Street (1988) reported that monomethylhydrazine (MMH) was
microbially mineralized to CO2 in Arredondo fine sand. Ou (1988) reported that
two soil bacteria, Achromobacter sp. and Pseudomonas sp., accelerated the
degradation of MMH in culture media and soil samples despite the fact that they
could not utilize MMH as a sole source of carbon.


Surfaces

Soils contain a large variety of active surfaces that have the potential to
interact with hydrazine in a variety of ways. Furthermore, the ionic environment
surrounding soil colloidal particles is quite different from that in the bulk of the








solution. It is anticipated that the reaction taking place near particle surfaces
will be affected by this micro-environment.
Several authors have investigated the effect of added solids on the
autoxidation rate of hydrazine. Ellis and Moreland (cited by MacNaughton et
al., 1978) found that the reaction was dramatically accelerated by the addition of
activated carbon, copper sulfate, brick, or electrolytic carbon. MacNaughton et
al. (1978) also reported that additional surface area in the form of a-quartz,
alumina, or kaolinite did not increase the oxidation rate and, if anything, actually
caused a small reduction in the rate. The presence of small chips of concrete,
however, caused significant oxidation of the hydrazine. This result is in
agreement with findings of a rapid loss of hydrazine spilled on concrete
pavement during spill clean-up studies (Stauffer and Eyl, 1978).
Hayes et al. (1981, 1984, 1987), in an extensive study of the interactions
of hydrazine with soil constituents, found that degradation of hydrazine in the
presence of homoionic Na+-, K+-, Mg+2-, and Ca+2-montmorillonite occurred to
a greater extent than in the corresponding metal-chloride solutions. They
suggested that the higher pH values of the clay suspension contributed to the
enhanced degradation observed in these systems. They examined the effect of
copper in solution (CuC12, 320 mg L-1) and Cu-montmorillonite suspension on
hydrazine degradation, and found greater degradation in the suspension. They
attributed this to an increase in effective Cu+2 concentration at the clay surface
compared to that in the cupric chloride solution. Hydrazine would thus be
brought into closer contact with exchangeable Cu+2 ions, resulting in rapid
degradation in the supernatant solution.








From the data in the literature, several conclusions can be drawn:

* Hydrazine can be oxidized in the presence of clay irrespective of the cation
species on the exchange complex. In the case of ions that are not easily
reduced (K+, Na+, Mg+2, Ca+2), the amount of hydrazine degraded in the

suspension was identical for all cations.
* Hydrazine can also be oxidized by the cation on the exchange complex.
* Hydrazine can be adsorbed directly to clay by exchanging with cations from

the surface. The amount of sorbate held by montmorillonite saturated with
cations not in the transition series was similar for all except K+-
montmorillonite, which did not adsorb any hydrazine at all.
* Hydrazine can also be adsorbed to the clay by completing with the cation

on the exchange complex, with reduced iron in the clay structure, or with
electronegative groups on the surface of the clay.
* The pH of the suspension has a significant effect on the deg adation of

hydrazine in the supernatant solution.


Moliner (1988) examined the effect of Na-montmorillonite partially
saturated with Cu on hydrazine adsorption and degradation. The results then
were compared with the degradation of hydrazine in Cu+2 solutions containing

the same amount of Cu per unit volume. She reported that the clay had a

strong catalyzing effect on hydrazine degradation even when Cu was not
present. The presence of both Cu and clay in the suspension appeared to be

additive, and independent of one another. Degradation due to Cu in the clay
suspension was of the same magnitude as degradation in solution having only
one-tenth the amount of Cu added.








Supporting Moliner's observations, Hayes et al. (1984) reported that
degradation of hydrazine by homoionic clays was independent of the
exchangeable cation as long as the cation was not easily reducible. This
suggests that the clay itself was the active component in the oxidation or
catalytic autoxidation of hydrazine.


Adsorption

Determination of the extent of hydrazine adsorption by soil components
and stability of the complexes thus formed is critical to the study of the
compound's environmental fate. Adsorption depends on the reactivity of the
surface functional groups present on soil colloids (silicate clay minerals such as
montmorillonite and kaolinite, metal oxides and hydroxides such as goethite
and gibbsite, and organic matter such as humic and fulvic acids), and on the
chemical properties of the hydrazine itself.
Adsorption to silicate-clay materials is highly dependent on the physical
configuration of the colloids, and particularly on the charge imbalance in the
clay structure itself. If there is no cation isomorphic substitution, such as is the
case with kaolinite, the surface ditrigonal cavities of the silicate clay act like a
very soft Lewis base (Sposito, 1984), and are likely to complex only neutral
dipolar molecules like water or unprotonated hydrazine. Substitution in the

octahedral layer is able to form weak complexes with cations as well as with
dipolar molecules.
Cation substitution also may occur in the tetrahedral layer, in which the
surface charge is more localized and distributes itself over the three surface
oxygen atoms associated with a single tetrahedron. This makes possible the

establishment of much stronger bonds with dipolar molecules and cations, as








well as the formation of inner-sphere complexes between the siloxane surface
and selected cations (Moliner, 1988).
Hayes et al. (1984) reported that the factors which most strongly
influence the adsorption and/or decomposition of hydrazine and
monomethylhydrazine in homoionically-exchanged montmorillonite clay
suspensions included solution pH, oxygen status, and nature of the
exchangeable cation. They concluded that, in the absence of dissolved
oxygen, the primary interaction of hydrazine with K+-, Ca+2-, Fe+3- ,and AI+3
-montmorillonite and -kaolinite was adsorption rather than decomposition. The
exact mechanisms for hydrazine adsorption to clay minerals were postulated to
be the replacement of protons from water molecules coordinated to adsorbed
cations at low solution pH, and protonation of the more basic hydrazine
molecule by protons from the more acidic coordinated water at high pH.
The second type of surface functional group present in most inorganic
colloids is the hydroxyl group. The broken bonds found at the edges of most
silicate clays create hydroxyl groups which may be coordinated to one or two
cations. This charge imbalance is pH-dependent, and inner- and outer-sphere
complexes can form between the aluminol and silanol groups and available
cations in solution.

Hayes et al. (1984) found that, in studies with hydrous oxides of Fe and
Al, there was evidence of binding and decomposition of hydrazine similar to that
from the silicate clay mineral study. Their results for goethite suggested that the
formation of soluble hydrazine-iron(ll) complexes at pH values less than 8.0
was the primary reaction.
Johnson et al. (1988),using non-invasive Raman spectroscopy and x-ray
diffraction, showed expansion of the kaolinite lattice upon intercalation by








hydrazine. FT-IR spectra indicated that strong hydrogen bonds were formed

between the intercalated hydrazine species and inner-surface hydroxyl groups
on the kaolinite interlamellar surface.
The third soil-colloid group, organic humus, has been observed to
provide a strongly sorptive surface for metals and polar molecules. A variety of
functional groups, including CO, COOH, phenolic OH, enolic OH, lactone,
quinone, hydroxyquinone, ether, alcoholic OH, amino-N, and sulfonic-S, have
been reported for humic substances (Stevenson, 1982). The adsorptive ability
of these groups is a function of the pH of the suspension and depends largely
on the stereochemical configuration of the molecule.
In a study with humic acid preparations at pH 4, Isaacson and Hayes

(1984) found that hydrated hydrazine was more extensively held by H+-
saturated humic acid than by Ca+2- or Al+3- saturated humic substances. This
reflected the greater ability of the hydrazinium ion to exchange with H+, and to
disrupt hydrogen bonding, than to disrupt the divalent and polyvalent cation
bridges between polymer strands. They reported that, in humic acid systems,
exchange by hydrazinium ions, chemisorption through interaction of hydrazine

with humate carbonyl groups, and non-specific sorption involving weakly and

strongly held hydrazinium ions and hydrazine molecules are the major sorptive

processes. They concluded by reporting that decreasing solution pH tends to

increase the importance of ion exchange, but decreases the contribution of
chemisorption in the binding process.
Due to the polarity of the N-H bond, hydrazine can form hydrogen bonds
with electronegative groups on the surfaces of organic matter as well as clays.
Davis et al. (1988), using diffuse-reflectance spectroscopy, found that the








primary surface-hydrazine interaction with silica, silica-alumina, and alumina
surfaces was hydrogen bonding.
Unprotonated hydrazine is a strong nucleophile that can take part in
condensation reactions with carbonyl groups in humic substances to form
hydrazone. This is the basis of the procedure used by Schnitzer and Skinner
(1965) to determine the concentration of carbonyl groups in soil organic matter.
Isaacson and Hayes (1984) showed that this reaction takes place even at pH
4.0. They also pointed out that the maximum rates should occur when the pH of
the media is close to the pka of hydrazine (i.e. near pH 7.95). The condensation
complex is also subject to hydrolysis, and hydrazine can take part as well in
substitution reactions at positions activated by carbonyl groups (Szabo et a.,
1978; Isaacson and Hayes, 1984).


Ion Exchange

Ion exchange, and particularly cation exchange in soils, is a reversible
process whereby cations held on the surface of soil minerals and even within
the crystal framework of a few mineral species plus those which are held by
certain organic species can be reversibly replaced by those of salt solutions
and acids (Chapman, 1965). This process is often grouped and discussed with
several other processes collectively known as "adsorption." Special notice of its
importance is given here because experimental evidence indicates that it plays
a major role in the retention of hydrazine by soils.
Soils generally possess a negative electrostatic charge of a permanent
or pH-dependent nature. As previously discussed, the permanent charge is the
result of isomorphous substitution within the structures of layer-silicate minerals.

Cations of lower valence are substituted for octahedrally or tetrahedrally








coordinated cations, resulting in a net negative charge. The pH-dependent
charge results from broken bonds at mineral edges and external surfaces,
dissociation of acidic functional groups on organic compounds, and the
preferential adsorption (by chemical reaction) of certain ions on oxide-mineral
surfaces. The magnitude of such charge is dependent upon solution pH,
electrolyte level, valence of the counter-ion, dielectric constant of the medium,
and nature of the anion in the solution phase.
The permanent charge also may be partially neutralized by strongly
adsorbed hydroxy-aluminum polymers that carry a net positive charge. As the
pH rises, these polymers are retained as partially neutralized AI(OH)3,
progressively freeing more negative sites for participation in normal cation
exchange reactions. Negative sites can be similarly neutralized by the
adsorption of positively charged mineral particles, such as hydroxides. The
positive charges of such particles originate from the specific adsorption of
protons on oxide/hydroxide surfaces, with their magnitude depending on the
ionic strength and pH of the solution. Such charge is generally neutralized at
pH >7 (Rhoades, 1982).
The permanent and pH-dependent charges generate a net excess of
negative charge on soils. This excess charge can bring about the formation of a
diffuse layer of positively charged ions about the mineral or humic colloid, with
the density of this layer being greater at the surface and then decreasing
exponentially to the level of the bulk solution. This type of reaction has
important implications in the adsorption of inorganic ions and ionized organic
molecules (Roy et al, 1987).








Solute Transport

Published literature on the subject of hydrazine transport in soils is
extremely limited. Only one report (Braun and Zirrolli, 1983) of investigations
into hydrazine movement through soils could be located. That report and

extensive work by Hayes et al. (1984) on interactions of hydrazine with soil
components indicate that hydrazine is highly reactive in soil-water systems.
According to Hayes, hydrazine interactions in soil include at least four
processes:

* 1. In acidic soils, hydrazine is hydrolyzed to hydrazinium (N2H5+). This

reaction is at equilibrium at pH 7.96, the pKa of hydrazine. Hydrazinium

undergoes exchange with cations present on the soil surface.
* 2. Under alkaline conditions, hydrazine may be degraded by the process of

catalytic oxidation in the presence of such metals as Fe+3, Cu+2, AI+3, and
Mn+2. Degradation products are likely to include hydrazone, NH4+ ions and

N2 gas.
* 3. The formation of hydrazine complexes with adsorbed cations on the

surfaces of clay minerals, oxides, and organic matter may provide an
environment for reversible adsorption mechanisms.
* 4. Condensation reactions may provide an irreversible chemisorption of

hydrazine by humic components of the soil.


Mathematical models for describing the movement of hydrazine through
water-saturated soil must include components for ion exchange, catalytic
oxidation, and reversible and irreversible sorption. The net effect of these

interactions would be to retard the migration of hydrazine-type fuels (Braun and








Zirrolli, 1983) through natural soils. If the soil is not water-saturated,
volatilization of hydrazine would be an additional process for inclusion in the

model. Since investigations of the more complex case of hydrazine transport in
partially water-saturated soil have not been reported in the published literature,
such research would logically follow the work presented here for saturated soils.
Many investigators have given valuable insight into mechanisms of solute
transport in porous media (Rao et. al., 1980; Parker and Jardine, 1986;
Bouchard et al. 1988; Konikow and Mercer, 1988; Selim and Amacher, 1988;
Barnes, 1989; Baveye and Valocchi, 1989; Wierenga and van Genuchten,
1989). Mathematical models for the movement of reactive chemicals in soil
generally assume that transport occurs primarily by mass flow as part of the
mobile soil solution; that displaced and displacing solutions undergo mixing
due to hydrodynamic dispersion; that solute movement may be retarded due to
processes such as ion exchange, reversible adsorption, irreversible
chemisorption, formation of chemical complexes, and chemical precipitation;
and that the solute itself may be altered by microbial degradation, chemical
degradation, etc. (Mansell et al., 1990). Chemical and physical kinetic
processes can be critical to the movement of reactive solutes through

aggregated soil as liquid flow velocity is increased. Mathematical treatment of
many of these mechanisms has been discussed by Nielsen et al. (1986).

The transport of hydrazine under water saturated soil conditions may be
expected to conform to the principles of advective-dispersive transport, with the
chemical and microbial reactions acting as retardation or degradation terms.
The mathematical development of solute transport under steady, saturated flow
begins with the assumption that the solute is partitioned between the solution








and adsorbed phases. The total mass of solute, M, per unit volume of soil is the
sum of the amounts in the solution and adsorbed phases,


M= (9C+pS), [2-11]

where
8 = volumetric soil-water content (cm3 cm-3 soil),

C = solution-phase concentration (molc cm-3),

p = soil bulk density (g soil cm-3 soil), and

S = mass of solute adsorbed per gram of soil (mole g-1 soil).


Substitution of equation [2-11] into the continuity equation,


M= J [2-12]
t x '
in which
J, = solute flux (g s-1),


provides an appropriate generalized partial differential equation to describe

convective-dispersive transport of a reactive solute in porous media:


( C+ pS) = [2-13]
8t 5x


By expanding the solute-flux term in greater detail:


SC
J, = (-D-+qC), [2-14]
Sx









where
8C
-D- = dispersive flux (with D representing the hydrodynamic
Sx
dispersion coefficient (cm2 s-1)), and [2-15]
qC = convective flux (g s-1 cm-2), [2-16]


equation [2-13] becomes the nonlinear partial differential equation


S S SC S
-(C+ pS) =-( )D -(qC). [2-17]
St Sx Sx Sx


For the condition of steady, spatially uniform water flow in porous media, the
constants may be moved outside the partial differentials,


SC SS 52C SC
t + t = OD- q. [2-18]
St St x2 Sx


Equation [2-18] can be simplified by dividing through by 0. Thus,


SC
= rate of change of the solution-phase concentration,
8t


P08S = rate of change of the sorbed-phase concentration,
S8t


82C
D-- = dispersive (mixing) transport term, and
X2


q = vo = the average pore-water velocity which results in convective
transport.








In order to solve equation [2-18], a functional relationship must be
specified between S and C There are a number of ways to describe this
relationship, depending upon the physical process felt to be of predominant
importance. Observation of the adsorption isotherms and breakthrough curves
performed in conjunction with this investigation suggests that cation exchange
plays a major role in the fate and transport of hydrazine at the pH of these soil
horizons.
To describe convective-dispersive transport of n cation species in water-
saturated soil during steady liquid flow, a coupled system of n nonlinear partial
differential equations must be solved for C,(x,t)


sc, p 3S, S= c sCi
+ = D -vo [2-19]
8t 0 8t Sx ox
in which
C, = the concentration (mole m-3) of species i in the solution-phase,
Si = the concentration (mole m-3) of species i in the exchange-phase,

D = the hydrodynamic dispersion coefficient (m2 s-1), assumed
to be dependent on pore-water velocity,

v. = the Darcey flux (m s-1)

according to
D(v) = D + Dv, [2-20]

where
Do = the molecular diffusion coefficient (m2 s-1), and
D, = the dispersivity (m).


The expression for the exchange-phase concentration (8S,/8t) in

equation [2-19] may be related to the solution-phase concentration using an








approach similar to that of Valocchi et al. (1981), as described by Mansell et
aL.(1993):


-S hi [2-21]
St g,) St g St
where

h = I + rn JL, [2-22]




jo c, sc ,s,

and

= 1+S r [2-241

where
r = the valence of ion species i, and
r = the valence of any additional species.


The Gaines-Thomas binary exchange selectivity coefficient (K,), used in
equations [2-22] and [2-23], expresses the preferential relationship between
solution- and exchange-phases, and is given by


K ..=2 = [2-25]



where S, and S, represent equivalent fractions of ions i and j in the exchange
phase. The total concentration in the exchange phase is assumed constant, and
y7 and y7 are the activity coefficients for ions i and j in the solution phase.









Valocchi et al. (1981) stated that inclusion of solution-phase activity coefficients
is only necessary for the description and prediction of cation exchange if ionic
strengths corresponding to experimental isotherms differ from those used in
transport experiments.
A detailed numerical model which combines transient, unsaturated flow

and transport, including variable total solution concentration and binary
exchange selectivity coefficients that vary with total solution concentration and
with ion concentration within the solution phase, is presented by Mansell et al.

(1993).


Nonequilibrium Sorption

Most chemical fate and transport models are based on the assumption of
an instantaneous equilibrium established between solution-phase and sorbed-
phase solute concentrations. Such conditions are not always present.

Nonequilibrium, or rate-limited, sorptive processes have been well
documented, and have been grouped into two general classes: transport-
related and sorption-related (Brusseau and Rao, 1989; Brusseau et al.,1989).
Transport-related nonequilibrium, often referred to as physical nonequilibrium,

results from the existence of a heterogeneous flow domain. The influence of

macroscopic heterogeneities such as aggregates, macropores, and stratified

media on solute transport also has been well documented (Brusseau and Rao,
1989, 1990). Transport-related nonequilibrium affects both sorbing and non-
sorbing solutes.
Sorption-related nonequilibrium may result from chemical
nonequilibrium or from rate-limited diffusive mass transfer. Chemical

nonequilibrium is caused by rate-limited interactions between the sorbate and








sorbent. Specific sorbate-sorbent interactions may be relatively unimportant for

charge-mediated sorption (ion exchange), since such interaction is thought to
be electrostatically driven rather than chemically mediated. Electrostatically
charged sorbates, however, are known to react with organic components of the
sorbent (Isaacson and Hayes, 1984), and rate-limited diffusive mass transfer
within the organic phase may occur.
Three different processes involving diffusive mass transfer can cause

sorption-related nonequilibrium (Brusseau et a.,1991): film diffusion, retarded
intraparticle diffusion, and intrasorbent diffusion. Researchers have shown that
film diffusion is generally insignificant in comparison to other mechanisms

(Brusseau and Rao, 1989), and thus will not be discussed further here.
Retarded intraparticle diffusion involves aqueous-phase diffusion of
solute within pores of granular soil material, and is mediated by instantaneous

sorption to particle walls (Wu and Gschwend, 1986; Ball et al., 1990). Work by
Chantong and Massoth (1983) estimated that the pore diameter required to
produce appreciable diffusive hindrance was approximately 25 nm or less. The
pore-size distribution of a sandy aquifer material as measured by mercury
porosimetry and nitrogen desorption by Ball et al. (1990) revealed that 80% and
greater than 90% of the internal pore volume comprised pores whose diameters
exceeded 25 nm and 10 nm, respectively. Brusseau etal. (1991) concluded

that, if these results are at all representative of other sandy materials, it would
appear that intraparticle diffusion may not be important for many solutes of
interest as well.

Intraorganic diffusion involves the diffusive mass transfer of sorbate

within the organic matrix of the sorbent. Intraorganic diffusion was proposed as

the limiting mechanism for sorption of organic chemicals as early as 1966 by








Hamaker et aL(1966), and has since been embraced by Brusseau and Rao

(1989).
For the intraorganic diffusion model, the primary assumption is that

sorbent organic matter is a polymeric-type substance within which sorbate can
diffuse. The organic matter associated with natural sorbents has been reported
to be a flexible, cross-linked, branched, amorphous (noncrystalline),
polyelectrolytic substance (Hayes and Swift, 1978; Schnitzer, 1978;
Stevenson, 1982; Choudhry, 1983). Direct confirmation of the 'porous' nature
of organic matter has also been reported (Degens and Mopper, 1976;
Schnitzer, 1978). The conceptualization upon which the intraorganic diffusion

model is based is consistent with the generally accepted view of the process by
which sorbents are adsorbed by native organic matter (Brusseau et a., 1991).














CHAPTER 3
METHODS AND MATERIALS


Research Objectives

The experimental design of this study has as its purpose to identify the

transport processes applicable to hydrazine in water-saturated soils, and to

then quantify them through stirred batch suspensions and chemical analysis of
soil-column effluent. Pertinent soil characteristics were determined, and the

effects of solution concentration, water velocity, and time of hydrazine exposure
to soil were evaluated.
Three sequential horizons from a profile of coarse-textured soil were
obtained and characterized as to particle-size distribution, organic carbon
content, elemental composition, and mineralogy. Stirred batch suspensions
were used to determine soil buffering capacity, pH, and cation exchange

capacity. The influence of the organic fraction of the soil was evaluated by

comparing soils with and without appreciable organic carbon content. Rather
than remove the organic carbon by an oxidative process which might damage

microsurfaces, samples of three sequential horizons of the same soil were
obtained, each containing successively less organic carbon.
Flow experiments using saturated soil columns were performed to
determine the dispersion coefficient for saturated flow in each horizon and to
evaluate the effect of changes in pore-water velocity and hydrazine

concentration on hydrazine retention.








Two steady-state solute flux rates were evaluated, 0.5 cm h-1 and 5.0 cm
h-1. These fluxes correspond to Darcy velocities of 1.39x10-4 cm s-1 and
1.39x10-3 cm s-1 and to pore-water velocities of approximately 3.8x10-4 cm s-1
and 3.8x10-3 cm s-1, respectively, assuming a soil porosity of 0.37.
Three influent concentrations of hydrazine were evaluated for each fluid

flux. These were prepared as low (approximately 0.02 mmol L-1), medium

(approximately 6.0 mmol L-1), and high (approximately 20 mmol L-1) as
hydrazine hydrate. Column effluent fractions were analyzed for hydrazine,
cations and, in some cases, pH in order to provide data for analysis.
Data analysis was done by numerically integrating components of each

breakthrough curve for component mass. Experimental parameters and column
influent components were occasionally altered to more easily isolate the
effluent fraction in order to identify and quantify significant processes. The
timing of breakthrough and relative position of breakthrough components also
were examined, to prioritize the influence of various fate and transport

processes.


Soil Characterization

Samples of the Ap, El, and E2 horizons of an Arredondo fine sand were

obtained from a site in NW Alachua County, Florida, 0.4 miles east and 0.6
miles north of the intersection of State Roads 241 and 222, and 0.2 miles south

of a private paved road. Arredondo fine sand is classified as a loamy, siliceous,
hypothermic, Grossarenic Paleudult (Thomas et al., 1985), and is typical of the

well-drained soils of Florida. The Ap horizon at the collection site extended
from the surface to a depth of 20 cm, with the El horizon then extending to 80

cm, and the E2 horizon to 120 cm. The horizons were clearly distinguished








visually from one another in the soil profile. Samples of each horizon were
taken using a clean shovel from sufficiently far from the horizon boundaries to
preclude contamination from above or below. Separately, soil materials were

sieved through a 2-mm mesh screen, spread on a tray, air-dried for three days,
mixed, and stored in 3-gallon plastic buckets prior to use.


Particle-Size Distribution

The distribution of particle sizes in a soil matrix has a significant effect on
the retention of water and chemicals by the soil. Coarse-textured soils high in
percent sand tend to retain water ineffectively, and are relatively non-reactive
chemically when compared to soils higher in silt and clay content.
Particle-size analysis for mineral components was performed by the

pipette method of Gee and Bauder (1986). Organic matter was removed from

the Ap horizon prior to mechanical analysis by oxidation in 5% sodium
hypochlorite (bleach). Samples from each horizon were suspended in distilled

water and dispersed with sodium hexametaphosphate. The supernatant was
decanted and allowed to settle in a constant-temperature water bath from which
aliquots were removed by pipette at a depth and time corresponding to the
settling velocity determined by Stoke's Law. Samples were dried and weighed
to determine percent clay. Remaining material was washed, dried, and filtered
through 16-, 32-, 60-, 150-, and 325-mesh U.S.A. Standard Testing sieves, and
weighed to determine the various sand fractions. Percent silt was determined
by subtracting the weights of combined sand and clay fractions from the total.
Samples were analyzed in duplicate and averaged for reported values.








Mineralogy

X-ray diffraction analysis was performed to determine the principal mineral

species in each soil horizon. Approximately 500 grams of each horizon were
wet-sieved through a 0.0017 mm screen to remove sand particles, and
approximately 100 cm3 chlorox was added to the Ap horizon filtrate to oxidize
soil organic material which would interfere with the x-ray diffraction process.
After two days of oxidation time, 30 cm3 of 0.5 N HCI was added to flocculate
the clays. The suspension was then let stand for one day, and centrifuged at
16,000 rpm for six minutes. The centrifugation process was repeated six times,
each time collecting the supernatant and resuspending the sediment in distilled
water. Approximately 100 cm3 of saturated NaCI was then added to flocculate
all clay materials. An aliquot of clay suspension was placed on porous ceramic
tiles, and 1 N MgCI2, KCI, and/or glycerol were added to the tiles to allow
differentiation of kaolinite from smectite clays.


Organic Carbon Content

The soil organic fraction consists of the cells of microorganisms, plant and
animal residues in various stages of decomposition, stable humus synthesized
from residues, and highly carbonized compounds such as charcoal, graphite,
and coal (Nelson and Sommers, 1982). Determination of the amount of organic
material present in a soil is very important, since many groundwater
contaminants including hydrazine react with organic materials (Isaacson and
Hayes, 1984).
The percentage of organic carbon was determined for each soil horizon

by dry combustion in an induction furnace (LECO Model No. 523-300) following
the procedure of Nelson and Sommers (1982). Weighed samples were placed








in a ceramic crucible with iron and copper metal accelerators added. Samples

were heated inside an enclosed combustion tube through which oxygen was
passed. All of the carbon in the samples was oxidized to C02, small particles
were removed in a dust trap, and sulfur was absorbed in a sulfur trap, leaving
only C02 and oxygen. The CO2-oxygen volume was measured in a burette
held at constant temperature and corrected for pressure. The mixture then was
passed through a solution of KOH in another vessel, which absorbed all of the

CO2. The residual oxygen was brought back to the original burette, and the
volume of C02 determined by subtraction from the previous volume. Four
samples from each horizon were analyzed and averaged to give the reported
values.


Elemental Analysis


An analysis of the calcium, aluminum, magnesium, iron, sodium, and
potassium contents of the three soil horizons was made after acid extraction,
using flame atomic adsorption spectroscopy according to the procedure of
Baker and Suhr (1982). Samples of approximately 5 g each were placed in 50

cm3 polysulfone centrifuge tubes into which 20 cm3 of 0.01 M HNO3 was added.

The tubes were mechanically shaken for 4 hours at low speed, then centrifuged
for 10 minutes at 10C at 10,000 rpm with a 2,000 rpm per minute acceleration

rate. Following centrifugation, the supernatant in each tube was decanted into
an acid-washed glass scintillation vial and analyzed on an atomic adsorption
spectrometer (Perkin-Elmer Model No.460). All samples were run in duplicate.
Elemental standards were prepared from stock solutions and diluted until linear
in response over the sample range tested.








Elemental concentrations in oxide form were calculated by converting the
elemental concentration into molar form, and then stoichiometrically adding the
proper molar amount of oxygen. Oxide weight percentages were determined as
milligrams of elemental oxide per milligram of soil times 100.


Soil pH

In an acidic environment hydrazine (N2H4) is hydrolyzed to hydrazinium
(N2H5+). This reaction is at equilibrium at pH 7.96, the pKa of hydrazine. That
is, at pH 7.96 there are equal proportions of hydrazine and hydrazinium
present. The protonated hydrazinium molecule at lower pH may undergo ion
exchange reactions on soil particle surfaces, having a potentially significant
impact on the transport process.
The pH of each soil horizon was determined in a 2:1 (v:w) suspension of
0.01 N CaCI2, according to the method of McLean (1982). The pH
determination was made using a glass-calomel electrode (Ross combination
pH electrode No. 8103) on an Orion meter (No. 601A), in triplicate.


Buffering Capacity

The ability of the three horizons of Arredondo fine sand to resist changes
in pH was measured by preparing titration curves for each, using Ca(OH)2. Five

grams of soil and 25 cm3 of approximately 0.01 N Ca(OH)2 were added to a
beaker and allowed to stand for 3 minutes (with stirring) before the pH was
read. Ca(OH)2 was then added in 0.1 ml increments, allowed to equilibrate with
stirring, and the pH again was noted. The true normality of the Ca(OH)2 was
determined to be 0.0084 N by titration with 0.01 N potassium phthalate.








Cation Exchange Capacity (CEC)


The Soil Characterization Laboratory at the University of Florida
performed an extractable cation analysis on Arredondo fine sand which allowed
an estimate of its CEC (Thomas et al., 1985). Extractable bases (Ca, Mg, Na,
and K) and extractable acidity were summed to give a total of 6.27 cmolc Kg-1
for Ap horizon soil, 3.42 cmolc Kg-1 for El horizon soil, and 2.29 cmolc Kg-1 for
the E2 horizon.
This analysis was confirmed for our samples from the plateaus of the
adsorption isotherm obtained by plotting the amount of K+ adsorbed against the
amount added in exchange with Ca+2. Two grams of soil were placed in a
polysulfone centrifuge tube along with 10 ml of 0.01 N CaCI2 and shaken gently
for four hours, then centrifuged for 10 minutes at 10,000 rpm, and decanted.
Dilutions to 0.1 N were made from a stock solution of 0.1 N KCI, and the pH of
each solution was adjusted to the pH of the horizon with which it would be used.
Ten milliliters of each dilution were placed in a centrifuge tube containing the
two grams of drained soil, mixed on a vortex stirrer, and shaken gently for four
hours. The tubes were again centrifuged for 10 minutes at 10,000 rpm, and the
supernatant was analyzed for potassium. The decrease in potassium in the
supernatant was considered to be due to that adsorbed onto the soil surface,
and the plateau of the plot of adsorbed potassium versus potassium added was
considered to reflect the exchange capacity. The CEC determination was done
in duplicate.
A second approach to the determination of CEC was performed using a
colorimetric measurement of methylene blue adsorption, as described by Soon
(1988). Two grams of soil were weighed into a 250 cm-3 Erlenmeyer flask, 50
cm-3 of 0.5 mM methylene blue solution (buffered at pH 6.8 in 50 mM sodium








acetate) was added, and the flask and contents were allowed to settle for two
hours. A 0.25 cm-3 aliquot of the supernatant solution was then pipetted into a
test tube containing 12.25 cm-3 of distilled water, and mixed. Standards were
prepared containing 0 to 0.5 cm-3 of 0.5 mM methylene blue solution in a final
volume of 12.5 cm-3. Transmittance was measured at 550 nm in an optically

clear test tube using a Coleman 54B spectrophotometer. A straight line was
fitted through the standard curve (R2=0.997), and the equation of the line was
used to convert measured transmittance to concentration.


Adsorption Isotherms

The adsorption of hydrazine onto Arredondo soil was evaluated by
exposing samples of each horizon to incremental concentrations of hydrazine,
and then analyzing the solution for hydrazine loss. An assumption inherent in
determining adsorption isotherms is that loss of the sorbate from solution is a
valid measure of adsorption. However, this assumption may not be valid with

hydrazine, given its reactive nature. Studies by Moliner and Street (1989a)
indicated that, in aqueous systems with 02 present, hydrazine may undergo
autoxidation. This was especially true when a catalyst such as Cu+2 was
present. Bott and Rassoul (1970) suggested that there is no decomposition of
hydrazine in the absence of oxygen in contact with polyethylene,

polypropylene, or Pyrex glass. On the other hand, polyvinyl cholride (PVC)
interacted with hydrazine and was considered an unsuitable material for
containing hydrazine solutions. Hydrazine may also react with metals such as
Fe+3 and Mn+3, which are widely present in soils, reducing them to lower
valence states (Griffeth et al., 1980). Additionally, there may be hydrazine

losses due to volatilization and degradation.








Other than these losses, the remaining possibilities for hydrazine

disappearance from the supernatant include ion exchange and sorptive
reactions, both reversible and irreversible. It is the combined effect of all these
reactions which contributes to the proper interpretation of an adsorption
isotherm.
All adsorption isotherms described here were obtained in an anaerobic
glove box to eliminate hazards associated with the potential autoxidation of
hydrazine.
Adsorption isotherms were performed on each of the three horizons of
Arredondo fine sand, with two sets of isotherms being measured. In the first set,
measured at pH 4.8 and 8.0, five-gram samples of each Arredondo soil horizon
were placed in glass serum vials and washed five times with 0.1 N CaCI2
(maintained at the soil pH) to saturate the exchange complex with Ca+2.
Samples were shaken, equilibrated overnight, centrifuged, and the supernatant
decanted.
Ten cm3 of constant ionic strength solution with increasing hydrazine
concentration were added to each of the Ca+2-saturated soils The pH of the
hydrazine solution was adjusted with HCI or Ca(OH)2. Because N2H5+ Cl-
contributes to the solution salt content, its concentration was also taken into

account when preparing the solutions of constant ionic strength. After
incubation for 48 hours in an anaerobic glove box, samples were centrifuged
and hydrazine was measured in the supernatant.
The second set of isotherms was conducted at pH 4.0 and 8.0. Twenty
grams of soil were washed five times with 0.1 N NaCI at the desired pH to
saturate the exchange complex with a single cation. The procedure followed








was then identical to that described above. Afterwards. the soils were extracted
with 0.1 N KCI, and then with 0.1 N HCI.
Information from the isotherms was used to determine selectivity
coefficients and ratios of exchangeable hydrazinium to calcium in soil columns
under equilibrium conditions. The method used to obtain those coefficients is
described as follows:
At equilibrium, the relative proportions of hydrazinium and calcium on
exchange sites are determined by ionic concentrations, valence, and solution
normality. The Gaines-Thomas binary exchange selectivity coefficient (K,) may

be used to express this preferential relationship (Valocchi et al. ,1981):


K. =- S [3-1]
S( ) r c,) c


where S" and Sj represent the equivalent fractions of ions i and j on the
exchange phase, and C, and C, are the solution-phase concentrations. The
total quantity of sorbed phase is assumed constant, and y7 and are the

activity coefficients for ions i and j in the solution phase. Valocchi et al. (1981)

stated that inclusion of solution-phase activity coefficients is only necessary for
the description and prediction of cation exchange if ionic strengths
corresponding to experimental isotherms differ from those used in actual
transport experiments. Since the background ionic strengths for the exchange
isotherms and the transport experiments in this work were the same, y, and
y,were set to unity. However, had the ionic strengths not been equal, the ratio
of y, to y, could have been incorporated into the value of K. The relationship

between the solution-phase and sorbed-phase concentrations may be clarified
by rearranging equation [3-1]:










(Sc()Vj

(Cj)VI


[3-2]


The equivalent fractions of ions i and j in the solution-phase, C* and C, are
readily determined since the total solution concentration, CT (the solution
normality) is known, and the ionic solution-phase concentrations of interest, Ci
and Cj are readily measured:


c,

and
C.
ci=
CT


The denominator of equation [3-2] then becomes


(crc)v) CJj[(c~yI
(CTc)" = CT (F


K,, can thus be written as


Ki =

where


(S.*)Vi
(s=),,
(s;)"


[3-3]



[3-4]






[3-5]


[3-6]


[3-7]


and










S= CT- (CI)'(C)( [3-8]



The Rothmund-Kornfeld binary exchange equation (Bond and Phillips,
1990a,b),


= k V" [3-9]


is an empirical expression which provides a valuable mathematical means for
incorporating the characteristic shape of measured binary exchange isotherms
into a functional description of selectivity coefficients across a range of solution
concentration values (Mansell et al, 1993).
To determine the coefficients k and n the logs of both sides of the

equation [3-9] can be taken:


log T = k + n log i [3-10]


and the result regressed as log r against log p. Values for r and V are known
from information in the sorption isotherm (C, and S,). The intercept is k and
the slope n at the normality at which the isotherm was acquired.

When equation [3-9] is substituted into equation [3-6], sorbed-phase
concentrations drop out and K, can be expressed n terms of Cr and CT :


[3-11]








This expression shows that nonunity values for the Rothman-Komfeld
parameter n allow the selectivity coefficient Ki, to vary with local solution

concentration (C,) in the soil and with normality (C,), if ion valences are not
equal. When n =1, K, becomes a constant (k) for a given solution normality.




Miscible Displacement


Preliminary Column Studies

Glass columns packed with soils from each of the Ap, El, and E2 horizons

of Arredondo fine sand were used in the laboratory to examine the fate and
transport of hydrazine under saturated soil conditions. Soil characteristics were
determined through slurry studies and soil extraction and analysis. A number of
these studies (elemental composition, pH, particle-size distribution, organic
carbon analysis, etc.) have been described previously. Transport
characteristics were studied by packing the soil into a column in such a way as
to imitate its natural configuration, with fluid designed to simulate the aqueous
soil solution then being pumped through the column at natural flow rates.
The preliminary studies reported here were designed to determine how to

best bring the soil columns to a steady-state operation, mimicking natural

conditions prior to the addition of hydrazine. The packing, wetting-up process,
saturation, deoxygenation, and measurement of hydrodynamic dispersive
characteristics of the wetted columns are each described in turn.








Column Preparation

Glass chromatography columns 26.8 or 27.8 cm long by 5.08 cm i.d.
(Kontes No. 420800-3020) were hand-packed by sequentially adding
approximately 80 g of soil to the column and tamping with a plastic rod to a
maximum resistance (100 tamps, determined by prior experience to yield a bulk
density approximately of 1.6 g cm-3) before adding another 80 g. This
procedure was carefully followed when packing all columns for each horizon.

Column bulk densities were calculated by dividing the actual weight of soil in
each column by the column's volume.
Column porosities (r7) were estimated from the bulk density:


S= 100-p) [3-12]
(2.65)
where,

p, = soil bulk density, and
a soil particle density of 2.65 g cm-3 was assumed.


The saturated column water content was calculated by dividing the weight

of liquid in a column by the volume of the column, assuming a liquid density of 1

g cm-3-
The percent saturation of each column was determined by dividing the

water content by the porosity.
Ground water containing hydrazine is likely to be anoxic due to reduction

of 02 by the hydrazine, so packed soil columns were deaerated by introducing
a flowing stream of helium (or, in later experiments, nitrogen) into the bottom of
each capped column for two hours prior to saturation. Thus, oxygen originally









present was displaced by nonreactive gas to prevent oxidation in the column

and to be more representative of environmental conditions..

The soil columns were saturated from the bottom using deaerated CaCI2..

A CaCl2 solution was used to approximate the ionic solution of natural ground

water, which is dominated by the calcium cation in Florida. The CaCI2 solution

was prepared at 0.01 N, and deaerated by bubbling helium (or, in later

experiments, nitrogen) from compressed gas tanks through a 3-cm sparger into

continuously stirred flasks. The dissolved oxygen content of the CaCI2 solution

was monitored by the Winkler technique (Clesceri et al., 1989), and a standard

procedure was established to deaerate a new carboy of CaCI2 for at least four

hours prior to use (Figure 3-1).







?; 8-

z
LLJ 6

0
0
w 4


Q 2-


0
0 50 100 150 200 250 300 350
TIME (min.)


Figure 3-1. Deoxygenation of CaCI2 influent solution.








Influent CaCl2 solutions were acidified to the appropriate horizon pH by
adjustment with HCI. Columns were filled from the bottom and allowed to
continually flow for at least 24 hours. Soil water content was determined by
weighing each column before and after saturation.


Pumping Rates

Liquid material was transferred from unpressurized flasks to the soil
columns using a Gilson peristaltic pump through small-diameter Tygon tubing.
Constant pumping rates (Q) of 101.2 and 10.12 cm3 h-1 were used. These rates
correspond to Darcy velocities (q = Q/A) of 5.0 and 0.5 cm h-1 through a
completely saturated soil column, and represent a range typical of flow rates
expected in-situ for fine sands of North Florida. Flow-rate adjustment was made
initially by adjusting pump speed while collecting column effluent in a
graduated cylinder.


Dispersion Coefficients

Short-term transport of water and soluble chemicals through saturated soil
is dependent on both physical and chemical processes. The chemical
processes act to retard and/or transform the chemical in solution as it is moved
down-gradient under the influence of the physical processes. Hydrodynamic
dispersion is an important physical mixing process which occurs due to
diffusion gradients and velocity distributions among soil pores. Dispersion
coefficients at Darcy velocities of 0.5 cm h-1 and 5.0 cm h-1 were determined
using the derivation of Kirkham and Powers (1972) applied to data obtained by
passing a pulse of tritiated water (3H20) through soil columns of each horizon.

Approximately two pore volumes of tritiated water diluted to approximately








10,000 counts per minute in 0.01 N CaCI2 were pumped through separate soil
columns at the low and high flow rate, respectively. Columns had been
saturated with deaerated 0.01 N CaCI2 prior to each introduction of tritiated
water. Effluent fractions were collected at nine-minute intervals (13 tubes per
pore volume, 30 cm3 tubes) for the high flow rate and at two-hour intervals (10
tubes per pore volume) for the low flow rate. Small aliquots from each fraction
were suspended in scintillation fluid (Scintiverse II), shaken, and counted in an
automatic liquid scintillation counter. Background counts were determined by
counting aliquots of CaCI2 which had not passed through the soil column, and
were subtracted from the effluent fraction count before plotting. This procedure
was duplicated at each flow rate for each horizon.


Hydrazine Column Investigations

Miscible displacement studies were performed using soil columns,
pumping various concentrations of influent hydrazine solution for either a pulse
or continuous duration through hand-packed columns of soil. Effluent fractions
were collected and analyzed for hydrazine, calcium, pH, and other components
of interest. Graphic displays of results were examined by plotting the relative
concentration ratios of effluent (C) and influent (Co) concentrations against the
number of pore volumes. A diagram of the equipment configuration utilized for
the miscible displacement experiments is shown in Figure 3-2.


Influent Hvdrazinium Solutions


Influent hydrazinium solutions were prepared at low (approximately 0.2
mmol L-1), medium (approximately 6 mmol L-1), and high (approximately 20




















rd







O H
1J


uc u








mmol L-1) concentrations as hydrazine hydrate (m.w. 50.06) in 0.01 N CaCI2 for
use in the miscible displacement studies. Preliminary column work had shown
that 20 mmol L-1 pulses of hydrazine were concentrated enough to overwhelm
most soil sorption sites as well as any sorption/degradation processes in the
topsoil, while 6 mmol L-1 appeared to give definable results, and 0.2 mmol L-1
solutions were severely retarded/degraded by the topsoil. The pH of the
hydrazine solution was adjusted to the pH of the soil horizon in use by the
addition of HCI, since each of the three horizons was acidic. Acidification
protonated the hydrazine molecule to hydrazinium (N2H5+) cations, with the

relative proportions of hydrazine and hydrazinium then being determined at any
given pH by knowing the pKa of hydrazine. Thus, the hydrazine solution is
found to exist as approximately 99.9 % hydrazinium in the pH range (4.46 to
5.13) for the soils used.
Hydrazinium solutions at the two flow rates were pumped through the
columns as either an approximately two pore-volume pulse or a continuous
step-function input. Pulse inputs followed by the acidified 0.01 N CaCl2 solution
allowed an observation of both the ascending and descending limbs of the

breakthrough curve, which gives insight about sorption and desorption
processes. Breakthrough curves following continuous input provide information
in turn about the irreversible processes of chemisorption and degradation.


Column Effluent Collection


A fraction collector (TRIS Retriever II) was positioned to collect solute
emerging from small-diameter Tygon tubing connected to the top of the soil
column. During the high flow rate (5.0 cm hrl) studies, glass test tubes 10-mm

in diameter (20 cm3 capacity) were rotated under the emerging effluent at nine-








minute intervals, collecting approximately 15 cm3 of effluent per tube, or
approximately 13 tubes per pore volume of solute. One cm3 of 1 N HCI was
added to alternate test tubes to ensure acidic conditions, thus stabilizing the
hydrazinium molecule against further oxidation. Analyses for hydrazinium were
performed on the acidified effluent fractions, while non-acidified aliquots were
examined for pH and calcium. The pH determination was made using a glass-
calomel electrode (Ross combination pH electrode No. 8103 on an Orion meter,
No. 601A) as effluent fractions were collected. In later column studies an in-line
flow-through cell and pH probe (Cole-Parmer No. L-05662-49) was connected
to the column effluent line near the top of the column, interpreted on a calibrated
Orion Model EA940 pH meter, and recorded on a Varian strip-chart for analysis.
For the low flow rate (0.5 cm h-1) studies, 12-mm diameter test tubes (25
cm3 capacity) were used to collect fractions at 2-hour intervals. Each tube

contained approximately 20 cm3 of effluent, or about 10 tubes per pore volume.
Again, one cm3 of 1 N HCI was added to alternate test tubes, and non-acidified
tubes were examined for pH and calcium.


Sample Analysis

Hydrazine analysis was performed using a modification of the method of
Watt and Crisp (1952). Small aliquots of collected fractions were placed into
25-cm3 volumetric flasks along with 15 cm3 of 4-dimethylaminobenzaldehyde
(PDBA) solution. Hydrazine reacts with PDBA to form an intense orange color
which is proportional to the concentration of hydrazine present. The solution
was diluted and stabilized by the addition of 1 N HCI to bring the volume up to
25 cm3. Color intensity was read on a spectrophotometer (Coleman 54B) as
percent transmission, which was then converted to absorbence. Incremental








dilutions of the hydrazine stock solution were read at the time of the column
effluent fractions and used as the standard curve from which to interpolate
hydrazine concentrations. The data were entered on a computer spreadsheet,
and a linear regression was used to fit a straight line through the standard
curve. Only fits with R2 > 0.98 were accepted for interpretation. The equation of
the fitted line was used to calculate the hydrazine concentrations in the various
effluent fractions.
Calcium analysis was performed by atomic adsorption spectrometry on a
Perkin Elmer flame spectrophotometer Model No. 460. Effluent samples were
diluted 1 to 200, and absorbence was determined using a nitrous oxide flame.
Interpolation of calcium concentration was done from a standard curve made
from dilutions of a standard stock solution analyzed at the same time as the
samples. The standard solution was maintained under refrigeration in a Teflon
vial, and regularly compared to pure hydrazine solution for consistency.

Analysis of other elements in the column effluent (aluminum, potassium,
and sodium) was also performed on the atomic adsorption spectrophotometer,
using acetylene or nitrous oxide flame as appropriate. Interpolations of
elemental concentrations were again made from a standard curve prepared
from dilutions of a standard stock solution analyzed along with the effluent
fractions.


Data Management

Analysis of the data obtained from each column effluent fraction was
accomplished using a computer spreadsheet. The relative concentration of

each fraction was determined by dividing its measured concentration (C) by the

initial input concentration (Co) to establish a relative scale from 0 to 1. Analysis








of initial concentrations was done on solute saved from flasks containing input
solution.

These relative effluent-fraction concentrations were then plotted against
number of pore volumes. Pore volume is the volume of liquid contained in a
saturated column (determined by weighing the dry and saturated column,
assuming a liquid density of 1.0 g cm-3). The cumulative volume of effluent was
divided by the pore volume to establish the abscissa of the graph. This plot is
known as a breakthrough curve (BTC), and reveals important information about
the dynamics of physical and chemical interactions within a column.

The mass represented under portions of the breakthrough curves was
evaluated by numerical analysis of the spreadsheet data, with the trapezoidal
rule being used to integrate the area under portions of the breakthrough curve.
The computer spreadsheet lends itself well to this kind of analysis, since the
data may be entered by row and column. A trapezoidal rule expression can be
written on the spreadsheet to evaluate selected portions of the data.

Mass balances were computed for hydrazinium added to and detected in
the effluent from each soil column. Mass input was determined by the weight
difference of the flask containing hydrazinium input solution before and after the

column experiment, multiplied by the hydrazinium concentration (assuming a
solution density of 1.0 g cm-3). Hydrazinium mass out was determined by

multiplying the concentration associated with each trapezoid under the output
curve by the effluent volume of the fraction collected, and summing over all
trapezoids. The difference between hydrazinium input and output was
assumed to be either adsorbed to the soil or degraded. Soil from a completed
column experiment was also exposed to the PDBA colorimetric detector

solution, and was observed to turn the orange color characteristic of PDBA









reaction with hydrazinium. However, a quantitative analysis of residual

hydrazinium was not possible.


Microbial Activity

At the initiation of this work, no information was available on microbial

degradation of hydrazine in soils. Throughout the duration of this study, several

checks were made to observe any influence of microbial degradation in the soil
columns.

The column studies reported here were performed with either pulse or

continuous-duration input of aqueous hydrazine solutions. One purpose of the
continuous input was to observe a rate-controlled degradation process which

might be operative after all sorptive requirements were met.
Additionally, plate counts and direct acridine orange (A-O) counts were

made of microbial biomass within completed soil-column experiments. Plate
counts are an estimation of the number of viable cells able to reproduce on the
plate-culture media. Approximately 2.5 grams of soil obtained from a location

near the center of the soil column were diluted with 100 cm-3 of distilled water

and plated onto tryptone broth agar media following the procedure of Wollum

(1982). Tryptone agar is a general-purpose growth medium on which most
microorganisms will develop. Agar plates were incubated overnight or until

observable colony growth was noted at 24C.

A-O counts give a total microbial estimation, living or dead, of
microorganisms which will adsorb the acridine orange stain. The technique is a
microscopic direct-counting method in which 2.5 grams of soil are obtained,

diluted in 0.1% sodium pyrophosphate, fixed in 5% Noble agar solution, placed





57



in a 1 cm-2 depressed circle on a microscope slide, stained with 0.01% acridine
orange, and counted under a phase-contrast microscope (Trolldenier, 1973).













CHAPTER 4
RESULTS



Soil Properties

Particle-Size Distribution

Mineral components of the three upper horizons of Arredondo fine sand
were found to consist of a predominant sand fraction and relatively small
percentages of silt and clay (Table 4-1). From the standpoint of particle size, the

El and E2 horizons are more similar to one another than they are to the Ap

horizon. The 2.6 percent clay and 7.3 percent silt fraction in the Ap horizon set it

apart as somewhat different from the two lower horizons.


Table 4-1. Particle-size distribution.

Horizon % Sand % Silt % Clay
VC C M F VF Total Total Total
(2-1 mm) (1-.5) (.5-.25) (.25-.1) (.1-.05) (2-.05) (.05-.002) (<.002)
Ap 0.0 3.0 21.6 57.3 8.2 90.1 7.3 2.6
El 0.0 1.5 21.6 54.2 16.1 93.4 4.9 1.7
E2 0.0 3.3 29.6 50.1 11.5 94.5 3.7 1.8



Mineralogy

X-ray analysis of clay films on the ceramic tiles revealed peaks at angles
corresponding to the d-spacing of kaolinite. No smectite clays or significant

amounts of oxide minerals were found.








The finding of kaolinite as the dominant clay mineral in this soil has
important implications for the adsorption of charged ions such as hydrazinium.
Most of the surface functional groups of kaolinite consist of inorganic OH
groups, which may be coordinated to one or two cations. The charge is found
predominantly at the edges, arising from broken bonds, and is pH-dependent.
At these broken bonds, hydrazine could replace other cations from exchange
sites under acidic conditions. Under alkaline conditions, the siloxane ditrigonal
cavity on the outer planer surfaces of the kaolinite particles also would be
available for hydrogen bonding, thus allowing the adsorption of hydrazine at
sites not previously occupied by a cation (Moliner, 1988).


Organic Carbon Content

The analysis of Arredondo fine sand revealed that successively deeper
soil horizons contained less organic carbon. The topsoil, or upper horizon, was
found to contain 1.84 percent organic carbon, compared to 0.34 and 0.14
percent for the El and E2 horizons, respectively (Table 4-2). While all of these
percentages are low, it is significant to note that the Ap horizon contains
approximately five and a half times as much organic carbon as the underlying
horizons.

The dry combustion method described here determines total carbon
present in the soil, with total carbon being the sum of both organic and
inorganic carbon. Inorganic carbon is found in carbonate materials such as
calcite, dolomite, and soluble carbonate salts, and is not generally found in
well-leached soils of low pH (Nelson and Sommers, 1982) such as north
Florida Arredondo fine sand. In such acid soils, total carbon content can

generally be considered equivalent to organic carbon content.








Table 4-2. Organic carbon percentages.

Trial Horizon
Ap El E2
1 1.02 0.41 0.07
2 1.38 0.30 0.18
3 2.44 0.36 0.09
4 2.52 0.29 0.22
Average 1.840.75 0.340.06 0.140.07

Organic carbon has been observed to contribute significantly to the

adsorptive capacity of soils. A variety of functional groups, including carboxyl,
phenolic OH, enolic OH, lactone, quinone, hydroxyquinone, ether, alcoholic OH,
amino, and sulfonic, have been reported on humic substances (Stevenson,
1982). The ability of these groups to complex metals and polar molecules like
hydrazine is typically a function of the pH of the suspension and depends in part
on the stereochemical configuration, of the molecule.
Schnitzer and Skinner (1965) utilized the reactivity of hydrazine with the

carbonyl groups of humic substances as a procedure for determining the
concentration of carbonyl groups in soil organic matter. Isaacson and Hayes
(1984) showed that this reaction took place even at pH 4.0, and that hydrazine

can also take part in substitution reactions at positions occupied by carbonyl

groups.


Elemental Analysis

Soil samples from each of the Ap, El, and E2 horizons were analyzed for
Ca, Mg, Na, K, Fe, and Al. While the soils unquestionably contain other

elements as well, these are the prominent ones expected in soils such as









Arredondo fine sand (Thomas et al, 1985). Results of the analysis are shown in
Table 4-3:
Table 4-3. Elemental analysis.

Element Concentration
(mg kg-1 soil)
Ap El E2
Calcium 560.96 28.57 16.27
Magnesium 24.37 4.33 4.26
Sodium 23.94 7.48 8.36
Potassium 18.86 7.36 5.42
Iron 77.58 76.55 45.89
Aluminum 691.10 358.73 140.33
Total 1396.81 483.02 220.53
Total wt. % 0.14 0.048 0.022


Although the relative percentages of calcium and aluminum are high, the
weight percentages indicate that the total metal composition within each
horizon is low. For example, in the Ap horizon the elements analyzed account

for only 0.14 percent of the total weight, leaving the other 99.86 percent as sand

(SiO2), silt, clay, and organic matter. As previously mentioned, the organic
matter fraction in the Ap horizon accounts for 1.84 percent by weight, leaving
the remaining 98.02 percent as sand, silt, and clay.

The particle-size distribution for the Ap horizon indicated 90.1 percent
sand composition, 7.3 percent silt, and 2.6 percent clay. Thus, the elemental
analysis corroborates the particle-size analysis by identifying the relatively
small weight percentage of elemental components, and gives additional

information about the relative predominance of various elements.

The relatively high calcium concentration may be indicative of the calcitic

origin of this soil's parent material, and the relatively high percentage of








aluminum is not surprising, given the kaolin structure observed in the x-ray
diffraction analysis. Silicates weather to kaolin, which eventually breaks down
to oxide materials (especially aluminum-rich oxy-hydroxides and other oxide
materials). Aluminum bauxite ores are commonly found associated with kaolin
deposits.

Soil oH

The three horizons of Arredondo fine sand are each acidic (Table 4-4),
thus confirming the predominance of hydrazinium as the prevalent form of
hydrazine in these soil conditions.


Table 4-4. Soil pH

Trial Horizon
Ap El E2
1 4.46 5.05 5.09
2 4.43 5.06 5.10
3a 4.49 4.98 5.13
Average 4.460.03 5.030.04 5.130.05

Buffering Capacity

The buffering-capacity titration curves (Figure 4-1) are plotted as
centimoles of charge (as Ca(OH)2) per kilogram of soil versus pH. None of the
three curves show the characteristic sigmoid shape indicative of a truly buffered
plateau with less-buffered regions to either side. The titration curve of the Ap
horizon is seen to have a lower slope than that of the El horizon, indicating
greater resistance to pH change by increasing amounts of Ca(OH)2. The best-
fit lines for the titration curves, fitted by least squares, show the Ap curve to have








a slope of 2.32 (R2=0.96), the El curve to have a slope of 3.99 (R2=0.91), and
the E2 curve to have a slope of 6.96 (R2=0.95). Buffering capacities as

indicated by the slopes of the curves were also calculated for 0.1, 0.3, and 0.5
cmolc Kg-1 soil (Table 4-5). The order of buffering capacity for the three
horizons was Ap > El > E2, with none of the horizons possessing a strong
buffering capacity.


0.2 0.4 0.6 0.8
meq Ca(OH)2 per 100 g soil


Figure 4-1. Titration curves for three horizons of Arredondo fine sand.



Table 4-5. Curve slopes for various increments of Ca(OH)2 addition.

Horizon Curve Slope
(meq 100 g-1 soil)
.01 .03 .05
Ap 4.58 2.44 1.43
El 7.54 3.56 2.85
E2 11.30 5.60 2.85









Cation Exchange Capacity (CEC)

Cation exchange capacity, usually expressed in centimoles of charge per
kilogram of soil (formerly milliequivalents of charge per 100 g of soil), is a
measure of the quantity of readily exchangeable cations neutralizing negative
charge of the soil. While CEC is considered a soil property, its value also is

dependent upon the conditions under which it is measured. In these CEC
determinations, the soil material in each polysulfone tube was initially saturated
with 0.1 N CaCI2, and potassium (a monovalent cation like hydrazinium) was
used to exchange the calcium. The dilutions of 0.1 N KCI used for exchange
were adjusted to the pH of the corresponding soil.

Experimental results are plotted as potassium in the original solution
versus the difference between solution values before and after exchange
(assumed to reflect adsorption). The CEC was inferred from the plateau of this
adsorption isotherm. The procedure was performed in duplicate, with the data
displayed in Figures 4-2 and 4-3.

The colorimetric measurement of methylene blue adsorption also
produced estimations of CEC. These were similar to those obtained from the
exchange isotherm method. Data from the two approaches are shown in Table

4-6:


Table 4-6. Results of the exchange isotherm and methylene blue approaches
to CEC determination.

Horizon Cation Exchange Capacity
(cmolc kg-1)
Exchange1 Exchange2 Met Blue1 Met Blue2
Ap 8.0 8.05 8.57 8.0
E1 6.7 7.3 4.03 6.27
E2 5.2 5.2 3.57 4.35





























0 20 40 60 80 100


K+ in Solution (mmol(+) L-1)


0 20 40 60 80 100


120


K+ in Solution (mmol(+) L-1)

Figure 4-2 (top) and 4-3 (bottom). Duplicate exchange isotherms for the Ap, El,
and E2 horizons of Arredondo fine sand.








Adsorption Isotherms

Adsorption isotherms were plotted from the results of batch experiments
for Ca+2 saturated soils exchanged with hydrazinium (Figures 4-4 through 4-9).
Experiments were performed in an anaerobic glove box to minimize potential
oxidation, and also were performed at pH 4.8 and 8.0 to examine the effect of
pH on adsorption.
Examination of the isotherms shows that adsorption was higher at pH 8.0
than at 4.8 for all three horizons (Table 4-7), suggesting that both the neutral
hydrazine and the charged hydrazinium were adsorbed. (At pH 8,
approximately half of the hydrazine is protonated and half is in neutral form.)
The convex nature of the isotherms indicates that hydrazine is a relatively
strong competitor against calcium.


Table 4-7. Maximum hydrazinium adsorbed and percentage organic
carbon for three soil horizons.

Horizon Hydrazinium Sorbed Percentage
(plmol g-1) Organic
Carbon
pH 4.8 pH 8.0
Ap 24 42 1.84
E1 14 20 0.34
E2 11 15 0.14


Note that hydrazinium adsorption appears to correlate well with the
percentage of organic carbon in each horizon A correlation analysis was
performed in which percentage organic matter (independent variable) was
linearly regressed by least squares against hydrazinium sorption (dependent

variable). The regression statistics indicated a coefficient of determination (R2)





67



of 0.987 for the sorption at pH 4.8 versus percentage organic carbon

regression, and 0.996 for the sorption at pH 8.0 versus percentage organic

carbon regression.

A best-fit line determined from the regression statistics (y = 7.28x+ 10.70)

was plotted for the hydrazinium sorption versus percentage organic carbon

data at pH 4.8 (Figure 4-10). Only three soils were investigated so it is best not

to overly conclude information from the scant data. However, other researchers

have also noted the correlation between organic carbon and adsorption

capacity (Isaacson and Hayes, 1984; Brusseau et al, 1991).


S40 r ,40

30 30 -
E E
3 20 20

10 10 -
-o 0o
0 30 60 90 120 0 30 60 90 120
Supernatant Hz (mmol L-1) Supernatant Hz (mmol L-1)

Figures 4-4 (left) and 4-5 (right). Adsorption isotherms for the Ap horizon at pH
4.8 and 8.0, respectively. Soil initially saturated with Ca+2.


S20 20
S16 16
E 12 E 12
N 8 N 8
C II
,6 4 4
< 0' < 0
0 30 60 90 120 0 30 60 90 120
Supernatant Hz (mmol L-1) Supernatant Hz (mmol L-1)

Figures 4-6 (left) and 4-7 (right). Adsorption isotherms for the El horizon at pH
4.8 and 8.0, respectively. Soil initially saturated with Ca+2.






















0 30 60 90 120

Supernatant Hz (mmol L-1)


0 30 60 90 120

Supernatant Hz (mmol L-1)


Figures 4-8 (left) and 4-9 (right). Adsorption isotherms for the E2 horizon at pH
4.8 and 8.0, respectively. Soil initially saturated with Ca+2.


30
1-
S25


w 20
z

I 15
I
Qin


5c 5
0

0


AP





El
E2


0 0.2 0.4 0.6 0.8


1 1.2 1.4 1.6 1.8 2


PERCENTAGE ORGANIC MATTER


Figure 4-10. Regressed fit between sorbed hydrazinium
organic carbon. pH 4.8.


and percentage











These isotherms were converted to dimensionless isotherms in order to
derive dimensionless values for the relative sorbed and solution fractions of
hydrazinium and calcium for use in predicting the influence of ion exchange on
the hydrazinium transport process. Data from dimensionless isotherms were
used to determine the selectivity coefficients and ratios of exchangeable
hydrazine to calcium at equilibrium. Dimensionless isotherms are developed
by dividing measured solution concentrations by the total normality on the
abscissa, and inferred sorbed concentrations by the maximum sorbed value on
the ordinate (Figures 4-11 through 4-13). Exchange parameters developed
from the dimensionless isotherms are listed in tabular form in Table 4-8. The
equilibrium ratio is the equivalent fraction of hydrazine and equivalent fraction
of calcium on the soil exchange sites at 0.01 N. Two-thirds of the normality is
represented by hydrazine.


Table 4-8. Ion exchange coefficients from adsorption isotherms (Hz-Ca).


Horizon K, n k Equilibrium
Ratio (Hz:Ca)
Ap 73.53 0.91 55.30 0.79 to 0.21
El 61.42 0.88 42.22 0.76 to 0.24
E2 35.78 0.83 20.53 0.68 to 0.32


An additional set of isotherms was performed to evaluate the efficiency of
replacement with hydrazine for a monovalent cation. Soil from the Ap and E2
horizons was saturated with Na+, and exchanged with hydrazine at pH 4.0 and
8.0 (Figures 4-14 through 4-17). The supernatant was analyzed in each case
for both Na+ and hydrazine.
Analyzing the supernatant for displaced Na+ in the second set of
isotherms showed a difference between the amount of hydrazine adsorbed and












1.00


0.80


0.60


0.40


0.20


0.00 -
0.00


0.20 0.40 0.60 0.80


1.00


RELATIVE CONCENTRATION (C/CT)


1.0


0.8


0.6


0.4


0.2


0.0


0.2 0.4 0.6 0.8


RELATIVE CONCENTRATION (C/CT)




Figures 4-11 (top) and 4-12 (bottom). Dimensionless adsorption isotherms for
the Ap and El horizon, respectively, at pH 4.8. Soil initially saturated with Ca+2.











1.0 -


0 0.8

I-
I 0.6 -
S0.4

z
CC

< 0.2

0.0 I i

0.0 0.2 0.4 0.6 0.8 1.0
RELATIVE CONCENTRATION (C/CT)


Figure 4-13. Dimensionless adsorption isotherm for the E2 horizon at pH 4.8.
Soil initially saturated with Ca+2.



the amount of hydrazine retained on exchange sites. At low pH on the E2

horizon material (Figure 4-16), which had only a small percentage of clay and

organic carbon, the amount of hydrazine adsorbed was equivalent to the

amount of Na+ released at low hydrazine concentrations. This indicates that, at

pH 4.0 where the protonated form of hydrazine is dominant (99.9%), the primary

mechanism of adsorption is cation exchange.

Under alkaline conditions (pH 8) hydrazine was adsorbed even more

readily than at pH 4 (Figures 4-15 and 4-17), and there was an even greater

amount of adsorption at high concentrations. In addition, the amount of Na+

released from the soil was less than at pH 4.0, and there was little apparent

exchange between hydrazine and Na+.












9.00

8.00

7.00
6.00

5.00

4.00
3.00


2.00

1.00

0.00
0.00


12.00


10.00


8.00


6.00


4.00

2.00


2.00 4.00 6.00 8.00

SUPERNATANT HYDRAZINE (mmol L-1)


10.00


0.00 IF I I
0.00 2.00 4.00 6.00 8.0(

SUPERNATANT HYDRAZINE (mmol L-1)




Figures 4-14 (top) and 4-15 (bottom). Adsorption isotherms for the Ap horizon
at pH 4 and 8, respectively. Soil initially saturated with Na+.


0


| I | I











2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00
0.00


10.00 12.00


4.00 6.00 8.00
SUPERNATANT HYDRAZINE (mmol L-1)


10.00 12.00


Figures 4-16 (top) and 4-17 (bottom). Adsorption isotherms for the E2 horizon
at pH 4 and 8, respectively. Soil initially saturated with Na+.


--"- Adsorbed Hz

Released Na


2.00 4.00 6.00 8.00
SUPERNATANT HYDRAZINE (mmol L-1)


6.00

5.00


4.00

3.00

2.00

1.00


" Adsorbed Hz

-- Released Na


0.00 I-
0.00


2.00








Miscible Displacement

Preliminary Column Studies

In situ soil bulk density measurements recorded by Thomas et al. (1985)
for Arredondo fine sand were in the range of 1.7 g cm-3, so the columns
prepared for these studies were packed in this range. Tables A-1 and A-2 in
Appendix A report calculations of column bulk densities as well as porosity,
volumetric water content, and percent water saturation.
Percent water saturation was calculated for the columns after a full set of
experiments had been performed at the two flow rates and the three
concentrations for each of the three horizons. Results showed that the degree
of saturation varied between 70 and 89 percent, with an average of 76 percent
(Appendix A, Table A-1). Incomplete saturation of these columns was due to air
or flushing-gas entrapment in soil pores.

New experiments designed to improve the percentage water saturation
were performed by purging the columns with carbon dioxide gas (CO2) rather
than helium, and deaerating the CaCl2 influent solutions with nitrogen gas (N2).
The solubilities of carbon dioxide, oxygen, nitrogen, and helium in water are as
follows (Table 4-9):

Using CO2 as a purge gas and N2 to deaerate the influent solution,
percent saturation increased to an average of 94 percent in the 40 additional
column experiments (Appendix A, Table A-2). This appears due to the much
greater solubility of CO2 in water than for any of the other gases used.
A series of column experiments was performed to determine the length of
time necessary to saturate the columns at each horizon and flow rate with








Table 4-9. Solubility of four gasses in water.

Solubility
(cm3 gas per 100 cm3 H20
at 200C and 760 mmHg)
C02 88
02 3.1
N2 1.6
He 0.9

Source: Budavari, 1989.

CaCI2 prior to the introduction of hydrazine. This was necessary to ensure that
the column influent and effluent concentrations of CaCl2 were equal. That is,
that sorption/ion exchange processes within the columns were at steady state
with respect to Ca+2 Columns were packed and purged as previously
described before deaerated CaCI2 was introduced. Calcium was analyzed in
the effluent fractions and plotted as relative concentration (effluent
concentration (C) divided by influent concentration (Co)) versus pore volume.
Figures 4-18 through 4-22 display these results. Columns were saturated in 24-
hour increments so that experiments could begin early in the working day, and
equipment performance could be observed for an extended period of time.
Table 4-10 displays the saturation times for each horizon and flow rate.


Table 4-10. Selected saturation times prior to hydrazine addition.

Horizon Saturation Time (hrs.)
flow rate
0.5 cm hr1 5.0 cm hr-1
Ap 72 48
E1 48 24
E2 48 24











1
0
o 0.8

0 0.6

> 0.4

5 0.2
aI:


z
0
0
0
F>
LJ


a :


1.20
1.00
0.80
0.60
0.40
0.20
n nn


0 9 18 27 36 0 50 100 150 200

TIME (hours) TIME (hours)

Figures 4-18 (left) and 4-19 (right). Calcium breakthrough curves for the Ap
horizon. High and low flow rates, respectively.


1.2
O
Z 1
o 0.8
0.6
> 0.4
1 0.2
rr


1.2
1
0.8
0.6
0.4
0.2
A0


U -- U ------------
0 5 10 15 20 0 25 50 75 100

TIME (hours) TIME (hours)

Figures 4-20 (left) and 4-21 (right). Calcium breakthrough curves for the El
horizon. High and low flow rates, respectively.


1.2
0

O
o 0.8

W 0.6
S0.4
S0.2 _
cc- 0
0 25 50 75 100

TIME (hours)

Figure 4-22. Calcium breakthrough curve for the E2 horizon. Low flow rate.


I~ I


I I I I


L~c









Dispersion Coefficients

Data from the three breakthrough curves of each soil horizon at each flow
rate are displayed in Figures 4-23 through 4-34. From the scintillation counter,
tritium counts as counts per minute of each fraction were normalized by dividing
by the count of the input solution. These normalized counts were plotted
against their corresponding numbers of effluent pore volumes to produce a
breakthrough curve for each flow rate for each horizon.
Kirkham and Powers (1972) differentiated the solution to the convective-
dispersive transport equation for conditions of steady water flow and a step-
function input of non-reactive solute, to obtain the slope of the breakthrough
curve at the normalized concentration (C/Co) equal to 0.5 and approximately a
pore volume (p) of 1.0. The slope (Sp,)thus becomes a function of the

dispersion coefficient (D):


C = F 1-p
C= T erfc1--=p [4-1]
Co =/ 2DvL


p (C/C = 2 and [4-2]


vL2
D = [4-3]

where
erfc = complementary error function,
p= effluent volume, expressed as column pore volumes
D = dispersion coefficient (cm2 s-1),
v = pore water velocity, (cm s-1)
L = column length (cm), and
S = slope of the breakthrough curve at p=1 and C/Co=0.5










1.2
o 1
O 0.8
N
0.6 -
2 0.4
0 0.2
Z
0
0 1 2 3 4
PORE VOLUMES

Figures 4-23 (left) and 4-24 (right).
Ap horizon at low flow rate.


1.2
E

S0.8
N
| 0.6
S0.4
O 0.2
0
0 1 2 3
PORE VOLUMES

Figures 4-25 (left) and 4-26 (right).
Ap horizon at high flow rate.


1.2
E
I. 1
a 0.8
N
i 0.6
2 0.4
q:
0 0.2
0
Z 0

5 0.0 0.5 1.0 1.5 2.0 2.5
PORE VOLUMES

Replicate tritium breakthrough curves for the



1.2
E
I 1
a 0.8
0.6
S0.4
0 0.2
Z 0
4 0 1 2 3 4
PORE VOLUMES

Replicate tritium breakthrough curves for the


1.2
E
8 1.0
g 0.8
N
. 0.6
0.4
n-
O 0.2
z \ -


U --,j --
0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 2.5
PORE VOLUMES PORE VOLUMES

Figures 4-27 (left) and 4-28 (right). Replicate tritium breakthrough curves for the
El horizon at low flow rate.


r











1.2
E





S-2 _



PORE VOLUMES

Figures 4-29 (left) and 4-30 (right).
El horizon at high flow rate.


1.2
CI 1
O 0.8
N
:- 0.6









2 0.4
o 0.2
















Z 0
0
0 1 2 3 4









PORE VOLUMES

Figures 4-31 (left) and 4-32 (right).
E2 horizon at highlow flow rate.


1.2
E









S0.8
N








0 0.6
2 0.4









0 0.2
Z
0
0 1 2 3
PORE VOLUMES

Figures 4-31 (left) and 4-32 (right).
E2 horizon at low flow rate.


1.2

O 0.8
N
Z 0.6
0.4
o 0.2 -
z
0


1.2
E

S0.8
W
S0.6-
0.4 -
O 0.2 -
z
EJ 0
5 0 1 2 3 4 5
PORE VOLUMES

Replicate tritium breakthrough curves for the



1.2
E
0. 1
a 0.8
N
2 0.6
2 0.4
o 0.2
Z
U 0
4 0 1 2 3
PORE VOLUMES

Replicate tritium breakthrough curves for the



1.2
E

C 0.8
0.6
2 0.4
O 0.2
Z
-J 0


0 1 2 3 4 5 6 0 1 2 3 4

PORE VOLUMES PORE VOLUMES

Figures 4-33 (left) and 4-34 (right). Replicate tritium breakthrough curves for the
E2 horizon at high flow rate.








The slopes of all breakthrough curves were calculated from the data and
substituted into the analytical solution of Kirkham and Powers to determine a
dispersion coefficient for each horizon at each flow rate (Table 4-11):


Table 4-11. Experimental dispersion coefficients (cm2 h-1) for 2 water
flow velocities and 3 soil horizons.

Horizon Darcey Flow Rate
0.5 cm h-1 5.0 cm h-1
Ap 2.5x10-4 8.0x10-4
E1 3.0x10-4 4.5x10-4
E2 5.5x10-4 9.0x10-4



Hydrazine Column Studies

After saturation, hydrazine solutions were miscibly displaced for two flow
velocities through columns of soil materials from Ap, El, and E2 horizons.
Hydrazinium influent solutions were applied as finite pulses and as step
function inflows. As previously discussed, one full set of experiments was
performed with helium purging as the deaeration procedure, and another using
the carbon dioxide-nitrogen gas procedure. The carbon dioxide-nitrogen
procedure enabled column percent saturation values averaging approximately
18 percent higher.

Graphics depicting the experimental design and identifying the
breakthrough curve associated with each variable are shown in Figures 4-35
and 4-36. A number of replicate experiments were performed, and several
columns were intentionally omitted because experience at other flow rates and
for other horizons suggested that no useful additional information would be
gained from the omitted data.








Breakthrough curves were numbered 1 through 95 in consecutive order.
Early experiments to establish experimental protocol and refine analytical
technique have not been included in this discussion, and thus the first
breakthrough curve mentioned is number 17. Experimental results were
entered in a computer spreadsheet (Microsoft Excel), and are included on
diskette, rather than in hardcopy table form. The numerical data were used to
perform all analyses. The results of each column experiment are displayed in
graphical form in Appendices B through E. Two leading tables in each
appendix summarize the pertinent data used for analysis. Table 1 in each
appendix displays summary information focused on mass balance. Hydrazine

losses and rates of loss are presented for each column experiment. Table 2
summarizes information necessary to draw conclusions about the effects of ion
exchange on hydrazine loss. Having four appendices allowed the column
experiments to be grouped by method of preparation and duration:


Appendix B. Helium preparation, pulse duration (Tables B-1 and B-2,

Figures B-1 through B-16).
* Appendix C. Helium preparation, continuous duration Tables C-1 and C-2,

Figures C-1 through C-16).
* Appendix D. Carbon dioxide-Nitrogen preparation, pulse duration. (Tables

D-1 and D-2, Figures D-1 through D-32).
* Appendix E. Carbon dioxide-Nitrogen preparation, continuous duration

(Tables E-1 and E-2, Figures E-1 through E-11).









CONTINUOUS


0.5 cm hr-1


5.0 cm hr-1


0.5 cm hr"1


5.0 cm hr-1


^Ap

EEl
o
0
C1
J.5,E2


Ap

E1

E2


44 45

37 31


28 26





0.5 cm hr-1 5.0 cm hr-1

46 47

38 33


19 17





0.5 cm hr-1 5.0 cm hr-1




35 32


27 18


0.5 cm hr-1 5.0 cm hr1

42 --

36 39


21 20





0.5 cm hr-1 5.0 cm hr-1




30 40


22 24


Figure 4-35. Breakthrough curves associated with the variables of duration of
hydrazinium input, flow, concentration, and horizon. Helium preparation.
Numbers shown in the blocks are designations for specific column experiments.


43 41

29 34


23 25


Ap

E1

E2








Ap

E1

E2


LiZ- Ap
6 ^

D E1
Qu i,
W
* -


-I
"- Ap
E
C. E1
i


PULSE









CONTINUOUS


0.5 cm hr-1


5.0 cm hr"1


7 Ap 70 56
E
E El 69 55
0
C\
E2 54 66,60





0.5 cm hr-1 5.0 cm hr"1

SAp 74,76 57

E
E El 72,81 58,67
I.O
SE2 73,80 59





0.5 cm hr-1 5.0 cm hr-1

- Ap 75,79 61,63
E
c4 El 77 62,65

E2 78 64,68


Ap

El

E2


0.5 cm hr"1 5.0 cm hr-1

-- 87


94 88

93 85


0.5 cm hr1 5.0 cm hr-1

-- 84

-- 89


95 90


0.5 cm hr'1 5.0 cm hr-1




-- 91

-- 92


Figure 4-36. Breakthrough curves associated with the variables of duration of
hydrazinium input, flow, concentration, and horizon. Carbon dioxide and
nitrogen preparation. Numbers shown in the blocks are designations for
specific column experiments.


PULSE








Microbial Activity in Soil Columns

The presence of microbial populations in the soil of the column

experiments was examined by performing acridine orange (A-O) direct counts

on soil from a number of the completed soil column experiments. A
considerable microbial population was found in each soil examined (Table 4-
14). Since the acridine orange dye stains both active and inactive cells, a
number of plate counts for active microbial populations were also performed.
An average of the A-O counts by horizon from completed column
experiments showed soil from the Ap horizon to contain 7.6x108 organisms per

gram, with the El horizon containing 1.8x108, and the E2 horizon containing
1.2x108 organisms per gram of wet column soil. Plate counts averaged 1.9x107
organisms per gram, or approximately an order of magnitude less than the A-O

count performed on soil from the same column. Background counts of column
soil from experiments not containing hydrazine contained the following counts
per gram: Ap, 8.0x108; El, 6.1x106; and E2, 7.3x106.
One purpose of performing continuous duration column experiments was
to observe the plateau of the hydrazine output curve. It was anticipated that the
plateau observed in the effluent measurements of long-duration pulses might
be lowered by a process such as microbial degradation once the sorptive

demand of the soils was met, and that this effect might be observed by
normalizing the effluent hydrazine concentrations by dividing by the influent

concentration. Thus, a relative effluent concentration less than the value of 1
would be observed. However, this lowering of the effluent plateau was not
observed, even though a comparison of influent and effluent masses indicated
the loss of hydrazine. Apparently, the rate of hydrazine loss was sufficiently





85


small (subsequently measured as 0.05 to 0.1 mmol Hz kg-1 soil hr-), so as to be
masked by experimental scatter or diluted by the normalization process.














CHAPTER 5
DISCUSSION


Introduction


A review of published literature investigating the environmental fate of
hydrazine in soil and water suggests that the processes of greatest effect are
oxidation, autoxidation, microbial and chemical degradation, and sorption (both
reversible and irreversible, and ion exchange). The potential degradation
pathways of oxidation and autoxidation are minimized in this work by
performing experiments in the pH range in which hydrazine is stable. The
hydrazine influent for soil-column experiments was adjusted to the pH of the
soils, the acidic pH range of 4.46 to 5.13, in which hydrazine (N2H4), with a pKa
of 7.96, occurs as 99.99% hydrazinium (N2H5+). Hydrazinium in water has

been shown to be stable with respect to oxygen at acidic pH. Additionally, this
protonated condition suggests that ion exchange should be investigated as a
potentially significant fate and transport process.
Several environmental variables were studied in conjunction with this
examination, including variable hydrazine solution concentration, water
velocity, percentage of soil organic matter, and soil pH. Three successive
horizons of coarse-textured sand were used to investigate the effects of organic
matter without the necessity of subjecting a single soil to the oxidative treatment
necessary to remove humic material (Wolf et al., 1989).








Environmental Variables

Some general but significant qualitative conclusions can be made about
the effect of such environmental variables as percentages of organic matter and
clay, solution concentration, and pore water velocity by examining the column
mass input-output calculations shown in Tables B-1, C-1, D-1, and E-1 of their
respective appendices.


Percentage of Organic Matter and Clay

The influence of organic matter and clay within a soil horizon on the
disappearance, or loss, of solute from column effluent has been noted in the

literature review. "Hydrazine loss" is defined here as that portion of the influent
hydrazine which did not appear in the effluent. Since the soil columns were not

analyzed for residual hydrazine at the termination of miscible displacement,
hydrazine could have been "lost" by irreversible sorption, slow desorption by
soil solids, or by microbial degradation.

Hydrazine losses from the 27 column pulse experiments described in
Appendix D, Table 1 were determined by subtracting the mass of hydrazine
recovered in the column effluent from that introduced into the columns, and then
normalizing by the mass of soil in each column. Duplicate soil-column

experiments within the data-set were averaged to give one value of hydrazine

loss for each experimental configuration of flow rate and concentration. The
losses are summarized by horizon in Table 5-1, together with the percentage of
organic matter and clay determined from batch experiments (reported earlier in

Table 4-1 and 4-2). Percentage hydrazine loss was determined by summing
total hydrazine mass loss for the three experimental trials within each horizon,

and dividing by the total hydrazine mass input for those trials, times 100.








Twenty-seven column experiments are represented in the table, nine for each
horizon. Influent mass loadings for all columns within each horizon were within
20 percent of one another.

Table 5-1. Hydrazine losses, percentage organic matter, and percentage
clay by horizon for a total of 27 column experiments.


Horizon Hz Loss % Hz %OM % Clay
(mmol Hz Loss
Kg-1 soil)_
Ap 12.76 37.5 1.84 2.6
E1 4.12 14.4 0.34 1.7
E2 2.77 10.4 0.14 1.8


The percentage hydrazine losses for each horizon were regressed
against the percentage organic matter and percentage clay content of each
horizon in an attempt to establish a correlation, which is depicted graphically in
Figure 5-1. The best-fit line for the hydrazine loss versus percentage organic
matter has a correlation coefficient (R2) of 0.999, while the correlation of the
hydrazine loss versus percentage clay content has an R2 of 0.944.

The fit of the predicted hydrazine loss due to the percentage of organic
matter in each horizon [%Hz Loss = 15.74*(%OM) + 8.59] intersects the Y-axis

at a positive value, suggesting that there is hydrazine loss when there is no

organic matter present, or that the presence of organic matter does not account
for all hydrazine losses (a reasonable conclusion). While the fitted line is only
regressed through three points, the points each represent averages of many
values, lending confidence to the regression and to the conclusion that there is
a correlation between percentage organic matter and percentage hydrazine
loss.





89




4 0 -Pred.Loss (OM)
*Ap
35 -
------Pred. Loss (Clay) I
) 30 -
N- % Organic Matter
S25
2 Clay
0 20-

W 15 '
O El ,El
1 E2 E2
5 -
0.
0 0.5 1 1.5 2 2.5 3
PERCENTAGE ORGANIC MATTER AND CLAY


Figure 5-1. Linear regression of both percentage organic matter and
percentage clay against percentage hydrazine loss.


The best-fit line through the clay data crosses the Y-axis (representing

percentage hydrazine loss) at minus 37.82 percent [%Hz Loss = 28.81*(%Clay)

- 37.82]. Care should be taken here in assuming that a good correlation

coefficient (R2=0.944) implies a truthful relationship. The best-fit line implies the

negative loss, or unrealistic manufacture, of hydrazine when passing through a

soil column. Taken by itself, the line also indicates that the E2 horizon should

be more sorptive that the El horizon, a conclusion not supported by the data.

A multiple regression including both percentage organic matter and

percentage clay versus percentage hydrazine loss was observed to fit the data

with a correlation coefficient of 1.0, though the fitted line passed through none of

the data points. The equation [Hz loss = 17.91*(%OM) 4.18*(%Clay) + 15.42]

shows a negative correlation with percentage clay, as well as unreasonable








coefficients. It is simply a mathematical fit through too few data points to allow
realistic interpretation.
Thus, there appears to be a good correlation between the percentage of
organic matter and the percentage loss of hydrazine within soil columns. The
equation of the best-fit line also appears reasonable when interpreted with the
data. The correlation of percentage clay and percentage hydrazine loss, while
having a high correlation coefficient, does not appear reasonable.


Solute Concentration

An examination of the effect of variable hydrazine concentration on
hydrazine transport was included in the initial experimental protocol. Through
the course of the experimental studies, replicate experiments were performed at
each of the three targeted concentration ranges (0.20 mmol L-1, 5.0 mmol L-1,
and 20 mmol L-1). In the analysis of the data, an attempt was made to correlate
hydrazine solution concentration with percentage hydrazine loss from columns
receiving a pulse of hydrazine influent. To minimize the number of variables
which might affect the correlation, a separate linear regression was performed
on data from each horizon at each velocity, for a total of six regressions (three
horizons, two velocities in each). The data, equations of predicted linear
hydrazine loss best-fit lines, and correlation coefficients are shown on Table 5-
2. Correlation coefficients are observed to range from 0.63 to 0.99. With the
exception of the slow velocity data (R2=0.99) of the Ap horizon, the data appear
only sufficiently correlated to define a general trend. The single high correlation
coefficient appears fortuitous, given the relatively low correlation of the other
five.









The data and predicted best-fit line from the slow velocity E2 horizon is
felt to be typical of the data-set, and is shown graphically in Figure 5-2. Note the

negative slope of the best-fit line, indicating that greater percentage hydrazine

losses are associated with lower concentrations. This trend would be expected
if there existed a sink, or loss mechanism, of finite extent which exerted its
demand relatively early in the transport process. A low concentration (and thus

Table 5-2. Hydrazine loss as a function of soil-column influent concentration.


Horizon Flow Conc. % Hz Hz Predicted Loss R2
Rate (mmol Loss equation
Hz L-1)
Ap Fast 22.15 21.4
5.64 46.7
0.18 100 -3.10*(Conc.)+84.9 0.78
Slow 16.38 41.0
5.05 77.2
0.20 100 -3.57*(Conc.)+98.5 0.99
El Fast 15.00 12.6
5.48 16.3
0.19 100 -5.24*(Conc.)+79.1 0.63
Slow 18.14 9.0
4.45 28.1
0.23 100 -4.17*(Conc.)+77.4 0.66
E2 Fast 18.39 1.5
5.45 6.0
0.21 36.7 -1.63*(Conc.)+27.8 0.64
Slow 12.28 14.9
5.31 21.7
0.19 56.3 -3.28*(Conc.)+50.4 0.80


low total mass) input would be lost in the sink, whereas a higher concentration

input would fill the demand of a finite sink term, leaving excess solute to be

affected by other more slowly acting, perhaps rate-limited, loss/degradation
processes.





92



The concept of a finite-extent sink is well-known, and frequently modeled

as a sorptive loss. The data also support this concept. Note that, in slow-

velocity experiments, the solute input to the Ap and El horizons does not

emerge in the effluent, whereas hydrazine solute is observed in the effluent

fractions from the E2 horizon, implying that the sink term for the E2 horizon may

be smaller than for the other horizons. The same trend is also noted at similar

velocities in each horizon .


100
90
(n 80
70
-j 70--
N
M 60
0 50
I 40
0 30
W 20
10
10
0 I I I I
0 5 10 15 20
CONCENTRATION (mmol Hz L-1)

Figure 5-2. Hydrazine concentration versus percentage hydrazine lost in the El
horizon at slow flow-rate.


Pore-Water Velocity


The relationship between the rate of advective movement of a solute and

the rate of its interaction with the soil environment is a critical factor in assessing

its environmental fate and transport. The assumption is often made that

reactions occur instantaneously, or at least quickly with respect to solute

transport, and that process equilibrium has been established. Although this

assumption simplifies the conceptual understanding of the processes involved








as well as the mathematics utilized in fate and transport predictions, kinetic
processes commonly are associated with the fate and transport of chemicals in
soil.
Two factors were incorporated into the design of the hydrazine

experiments to evaluate transport equilibrium. The Darcy water velocity was
varied an order of magnitude as either 5.0 cm hr1 or 0.5 cm hr1, and the

hydrazine exposure time in the columns was varied using either pulse or
continuous solute input. The assumption was made that even slowly reacting
processes would eventually come to equilibrium over a long exposure.
Column experiments for each soil horizon were duplicated for each

velocity. Summary results are shown in Table 1 in appendices B and D, and
are condensed here in Table 5-3:

Table 5-3. Percentage hydrazine losses by flow rate for otherwise
replicate experiments (from Table 1 in Appendices B and D).

Horizon Percentage Hydrazine
Loss
5.0 cm hr1 0.5 cm hr1
Ap 36 63
E1 17 20
E2 5 17
Total 20 33


Percentage hydrazine losses shown in this table were determined by
taking the difference between input and output hydrazine masses from each
column trial, dividing them into groups by velocity, and then summing each

group and determining a percentage loss for each horizon. Thirty-six column

experiments are represented in the table, 18 for the nitrogen-CO2 prepared




Full Text

PAGE 1

)$7( $1' 75$163257 2) +<'5$=,1( 7+528*+ &2/8016 2) 6$785$7(' 6$1'< 62,/ %\ :$<1( & '2:16 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 ZRXOG OLNH WR WKDQN 'U 5REHUW 0DQVHOO IRU KLV SDWLHQFH DQG SHUVLVWHQFH GXULQJ WKH GDWD DFTXLVLWLRQ DQG GRFXPHQW SUHSDUDWLRQ IRU WKLV PDQXVFULSW ,W ZRXOG QHYHU KDYH KDSSHQHG ZLWKRXW KLP ZRXOG DOVR OLNH WR WKDQN 'U 0LFKDHO $QQDEOH IRU DJUHHLQJ WR VWHS LQ DW D ODWH GDWH WR VXSHUYLVH WKH GRFXPHQW DQG 'U -RVHSK 'HOILQR &KDLUPDQ RI WKH 'HSDUWPHQW RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV IRU GHYLVLQJ D ZD\ WR PDNH LW DOO SRVVLEOH 7KDQNV WRR JR WR 'U %ULDQ 0F1HDO ZKR UHFHQWO\ DJUHHG WR EHFRPH D PHPEHU RI WKH FRPPLWWHH DQG WR 'U 3DXO &KDGLN ZKR SDWLHQWO\ ZDLWHG WKLQJV RXW ZRXOG DOVR OLNH WR WKDQN 'U 6WHSKHQ %ORRP IRU KLV LRQ H[FKDQJH GLVFXVVLRQV DQG PRGHOLQJ DVVLVWDQFH DQG 'U :D\QH +XEHU IRU KLV H[DPSOH DQG JXLGDQFH GXULQJ P\ JUDGXDWH FDUHHU DW WKH 8QLYHUVLW\ RI )ORULGD +H EHOLHYHG LQ PH DOO DORQJ 6HYHUDO FRZRUNHUV GHVHUYH VSHFLDO PHQWLRQ IRU WKHLU DVVLVWDQFH LQ WKH UHVHDUFK GHVFULEHG KHUHLQ $QD 0ROLQHU IRU ORQJ DQG IUXLWIXO GLVFXVVLRQV RI VRLO FKHPLVWU\ DQG 'HQLH $XJXVW\Q DQG 5RELQ 5REHUVRQ IRU ODERUDWRU\ DVVLVWDQFH 6SHFLDO WKDQNV JR WR P\ ZLIH -LOO IRU KHU ORYH DQG SDWLHQFH GXULQJ WKH \HDUV RI JUDGXDWH VFKRRO DQG WKH ZHHNV RI PDQDJLQJ WKH IDPLO\ ZLWKRXW PH GXULQJ WKH SUHSDUDWLRQ RI WKLV GRFXPHQW 7UXO\ ZLWKRXW KHU HQFRXUDJHPHQW WKLV ZRUN ZRXOG QHYHU KDYH FRPH WR SDVV ZRXOG DOVR OLNH WR DFNQRZOHGJH WKH IDFXOW\ DQG WHFKQLFDO VWDII RI WKH 6RLO DQG :DWHU 6FLHQFH 'HSDUWPHQW DW WKH 8QLYHUVLW\ RI )ORULGD IRU WKHLU NLQG DVVLVWDQFH DQG SDUWLDO VXSSRUW 7KH 8 6 (QYLURQPHQWDO 3URWHFWLRQ $JHQF\fV 5REHUW 6 .HUU (QYLURQPHQWDO 5HVHDUFK /DERUDWRU\ LQ $GD 2NODKRPD GHVHUYHV

PAGE 3

SDUWLFXODU UHFRJQLWLRQ IRU DOORZLQJ PH WKH WLPH DQG SURYLGLQJ WKH HTXLSPHQW WR ILQLVK WKH ODERUDWRU\ H[SHULPHQWV $OVR WKDQNV JR WR (*t* ,GDKR ,QF IRU SDUWLDO VXSSRUW LQ FRPSOHWLQJ WKH ZULWLQJ RI WKH PDQXVFULSW 7KLV ZRUN ZDV LQLWLDWHG XQGHU D JUDQW WR WKH 6RLO DQG :DWHU 6FLHQFH 'HSDUWPHQW RI WKH 8QLYHUVLW\ RI )ORULGD E\ WKH 8 6 $LU )RUFH (QYLURQLFV 'LYLVLRQ 7\QGDOO $LU )RUFH %DVH )ORULGD 1R )& &37 )OR\G :LVHPDQ 3URMHFW 2IILFHUf

PAGE 4

7$%/( 2) &217(176 $&.12:/('*0(176 LL $%675$&7 YL &+$37(5 ,1752'8&7,21 &+$37(5 /,7(5$785( 5(9,(: /LWHUDWXUH 5HYLHZ 2EMHFWLYHV +\GUD]LQH (QYLURQPHQWDO &KHPLVWU\ +\GUD]LQH )DWH DQG 7UDQVSRUW 3DWKZD\V &+$37(5 0$7(5,$/6 $1' 0(7+2'6 5HVHDUFK 2EMHFWLYHV 6RLO &KDUDFWHUL]DWLRQ 0LVFLEOH 'LVSODFHPHQW &+$37(5 5(68/76 6RLO 3URSHUWLHV 0LVFLEOH 'LVSODFHPHQW &+$37(5 ',6&866,21 ,QWURGXFWLRQ (QYLURQPHQWDO 9DULDEOHV 3URFHVV 9DULDEOHV &+$37(5 6800$5< $1' &21&/86,216 ,QWURGXFWLRQ 6XPPDU\ RI ([SHULPHQWDO 'HVLJQ 6XPPDU\ RI ([SHULPHQWDO 5HVXOWV &RQFOXVLRQV ,9

PAGE 5

/,67 2) 5()(5(1&(6 $33(1',; $ $33(1',; % $33(1',; & $33(1',; $33(1',; ( %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ )$7( $1' 75$163257 2) +<'5$=,1( 7+528*+ &2/8016 2) 6$785$7(' 6$1'< 62,/ %\ :D\QH & 'RZQV 'HFHPEHU &KDLUPDQ 0 $QQDEOH &RFKDLUPDQ 5 6 0DQVHOO 0DMRU 'HSDUWPHQW (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV 7KH HIIHFWV RI HQYLURQPHQWDO DQG SURFHVV YDULDEOHV RQ WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH ZHUH LQYHVWLJDWHG LQ ODERUDWRU\ FROXPQV RI WKUHH FRQVHFXWLYH KRUL]RQV RI D VDWXUDWHG VDQG\ VRLO 7KH LQYHVWLJDWLRQ RI FRQVHFXWLYH KRUL]RQV FRQWDLQLQJ VXFFHVVLYHO\ OHVV RUJDQLF PDWWHU VKRZHG K\GUD]LQH ORVV ZLWKLQ VRLO FROXPQV WR EH FORVHO\ FRUUHODWHG ZLWK SHUFHQWDJH RUJDQLF PDWWHU 3HUFHQWDJH FOD\ LQ HDFK KRUL]RQ ZDV QRW ZHOO FRUUHODWHG ZLWK K\GUD]LQH ORVV 7KH LQIOXHQFH RI WKH LRQH[FKDQJH SURFHVV ZDV LQYHVWLJDWHG E\ REVHUYLQJ WKH LRQLF FRPSRVLWLRQ RI FROXPQ HIIOXHQW $Q HIIHFWLYH FDWLRQ H[FKDQJH FDSDFLW\ &(&f ZDV GHWHUPLQHG XQGHU FROXPQVDWXUDWHG IORZ DQG IRXQG WR EH DQ RUGHU RI PDJQLWXGH OHVV WKDQ &(& YDOXHV GHWHUPLQHG IURP EDWFK VWXGLHV 7KH FROXPQGHWHUPLQHG YDOXH ZDV XVHG LQ FRPSXWHU VLPXODWLRQV WR 9,

PAGE 7

FRUUHFWO\ SUHGLFW REVHUYHG K\GUD]LQLXP EUHDNWKURXJK FXUYHV 5HVXOWV ,QGLFDWHG WKDW LRQ H[FKDQJH DQG LRQ WUDQVSRUW DUH SULPDU\ PHFKDQLVPV WKDW GHVFULEH WKH WUDQVSRUW RI K\GUD]LQH GXULQJ ZDWHU IORZ LQ WKHVH FDOFLXPVDWXUDWHG VRLOV $ K\GUD]LQH PDVV EDODQFH VKRZHG ORVVHV RI WR SHUFHQW LQ WKH FROXPQV GHSHQGLQJ RQ WKH KRUL]RQ /RVVHV ZHUH IRXQG WR EH FRUUHODWHG ZLWK WKH GXUDWLRQ RI FROXPQ H[SHULPHQWV LPSO\LQJ D ILUVWRUGHU GHJUDGDWLRQ PHFKDQLVP 0LFURELDO DFWLYLW\ DOVR ZDV REVHUYHG IRU VRLO WDNHQ IURP FRPSOHWHG FROXPQ H[SHULPHQWV +\GUD]LQH FRQFHQWUDWLRQV DV KLJK DV PPRO / ZHUH QRW REVHUYHG WR UHGXFH DFWLYH PLFURELDO SRSXODWLRQV 3ODWH FRXQWV RI DSSUR[LPDWHO\ RUJDQLVPV SHU JUDP RI VRLO ZHUH REVHUYHG FRPSDUHG WR RUJDQLVPV SHU JUDP XVLQJ DFULGLQHRUDQJH FRXQWLQJ PHWKRGV /LWHUDWXUH YDOXHV RI ILUVW RUGHU K\GUD]LQH GHJUDGDWLRQ UDWHV GXH WR PLFURELDO DFWLYLW\ DUH VLPLODU WR WKH UDWHFRQWUROOHG ORVVHV REVHUYHG LQ WKLV VWXG\ WKRXJK VSHFLILF H[SHULPHQWV WR LVRODWH PLFURELDO DFWLYLW\ ZHUH QRW SHUIRUPHG 9,,

PAGE 8

&+$37(5 ,1752'8&7,21 %DFNJURXQG +\GUD]LQH 1+f DQG LWV GHULYDWLYHV DUH H[WUHPHO\ YHUVDWLOH FRPSRXQGV WKDW KDYH IRXQG DSSOLFDWLRQ IRU D ZLGH YDULHW\ RI SXUSRVHV 7KH\ DUH UHDGLO\ R[LGL]DEOH DQG HQGRWKHUPLF DQG IRU WKLV UHDVRQ KDYH EHHQ XVHG LQ IXHO FHOOV DV SURSHOODQW IRU JDV WXUELQHV DV DQWLR[LGDQWV IRU WKH GHR[\JHQDWLRQ RI ERLOHU ZDWHU LQ SKDUPDFHXWLFDOV SURGXFWLRQ DQG DV LQWHUPHGLDWHV IRU WKH SURGXFWLRQ RI H[SORVLYHV DQG SURSHOODQWV 7KH DJULFXOWXUDO LQGXVWU\ LV D PDMRU XVHU RI K\GUD]LQH LQ SHVWLFLGH SURGXFWLRQ +\GUD]LQH DORQJ ZLWK LWV GHULYDWLYHV PRQRPHWK\O 00+f DQG XQV\PPHWULFDO GLPHWK\OK\GUD]LQH 8'0+f DOVR LV XVHG E\ WKH GHIHQVH LQGXVWU\ DV D OLTXLG SURSHOODQW LQ PLVVLOHV VDWHOOLWHV DQG DLUFUDIW +\GUD]LQH ZDV ILUVW SUHSDUHG E\ 7 &XUWLXV D *HUPDQ FKHPLVW LQ ,W UHPDLQHG OLWWOH PRUH WKDQ D ODERUDWRU\ FXULRVLW\ ZLWK IHZ DSSOLFDWLRQV IRU VHYHUDO GHFDGHV 6FKLHVVO f 7KH ILUVW VDPSOH RI DQK\GURXV K\GUD]LQH ZDV SUHSDUHG E\ /RUW\ 'H%UX\Q LQ 7KH PHWKRG IRU SUHSDUDWLRQ RI K\GUD]LQH K\GUDWH E\ WKH 5DVFKLJ SURFHVV ZDV GLVFRYHUHG LQ DQG FOHDUHG WKH ZD\ IRU LWV SURGXFWLRQ LQ LQGXVWULDO TXDQWLWLHV +\GUD]LQH GLG QRW HQMR\ VLJQLILFDQW XVH KRZHYHU XQWLO LWV SURSHOODQW FDSDELOLWLHV ZHUH UHDOL]HG E\ WKH *HUPDQV GXULQJ :RUOG :DU ,, $Q HQHUJHWLF SURSHOODQW ZDV QHHGHG IRU WKH URFNHW DLUSODQH WKH 0H% GHYHORSHG LQ $ PL[WXUH RI K\GUD]LQH K\GUDWH DQG PHWKDQRO ZDV XVHG DV D IXHO ZLWK K\GURJHQ SHUR[LGH DV WKH R[LGL]HU LQ D ELSURSHOODQW

PAGE 9

URFNHW HQJLQH 6FKPLGW f 7KH ILUVW XVH RI K\GUD]LQH DV D PFQRSURSHOODQW ZDV GHPRQVWUDWHG LQ DW WKH -HW 3URSXOVLRQ /DERUDWRU\ LQ 3DVDGHQD &DOLIRUQLD 7KH ODWH V VDZ D JUHDW LQFUHDVH LQ WKH SURGXFWLRQ RI DQK\GURXV K\GUD]LQH LQ WKH 8QLWHG 6WDWHV DQG K\GUD]LQH SURGXFWLRQ LQFUHDVHG DJDLQ LQ WKH V ZKHQ D EOHQG RI 8'0+ DQG K\GUD]LQH ZDV XVHG WR IXHO WKH 7LWDQ VHULHV URFNHW HQJLQHV 'HYHORSPHQW RI WKH 6KHOO FDWDO\VW LQ DOORZHG DOPRVW XQOLPLWHG UHVWDUW FDSDELOLW\ DQG RSHQHG WKH ZD\ IRU QHZ K\GUD]LQH DSSOLFDWLRQV $V D UHVXOW PRVW PLOLWDU\ FRPPHUFLDO DQG VFLHQWLILF VDWHOOLWHV LQ HDUWK RUELW XVH K\GUD]LQH SURSXOVLRQ V\VWHPV IRU DWWLWXGH FRQWURO DQG RUELW PDLQWHQDQFH 0DQ\ XQPDQQHG VSDFH PLVVLRQV DOVR KDYH XVHG K\GUD]LQH SURSXOVLRQ VXFK DV WKH 9LNLQJ ODQGHUV RQ 0DUV WKH 3LRQHHU DQG 9R\DJHU VSDFH SUREHV WR -XSLWHU 6DWXUQ DQG 8UDQXV DQG WKH *LRWWR VSDFH SUREH WR +DOH\fV FRPHW +\GUD]LQH SURSHOODQW LV XVHG H[WHQVLYHO\ IRU XSSHUVWDJH URFNHW SURSXOVLRQ DQG IRU LPSXOVH FRUUHFWLRQV DIWHU URFNHW PRWRU EXUQ LV FRPSOHWH 7KH VSDFH VKXWWOH XVHV ERWK K\GUD]LQH DQG PRQRPHWK\OK\GUD]LQH IRU LWV VHFRQG VWDJH ERRVWHU URFNHWV DQG IRU RUELWDO PDQHXYHULQJ $QK\GURXV K\GUD]LQH LV XVHG LQ WKH $X[LOLDU\ 3RZHU 8QLW RQ ERWK WKH VSDFH VKXWWOH RUELWHU DQG RQ LWV WZR VROLG URFNHW ERRVWHUV $QRWKHU ZLGHVSUHDG DYLDWLRQ XVH RI K\GUD]LQH LV LQ WKH (PHUJHQF\ 3RZHU 8QLW RQ WKH ) ILJKWHU &OHZHOO HW DO f +\GUD]LQH GHFRPSRVLWLRQ JDVVHV DW KLJK SUHVVXUH DUH XVHG WR H[SHO EDOODVW ZDWHU IURP VXEPDULQH EDOODVW WDQNV LQ HPHUJHQF\ VLWXDWLRQV 6XFK V\VWHPV DUH LQ XVH RQ VHYHUDO 1$72 VXEPDULQHV +\GUD]LQH V\VWHPV ZHLJK RQO\ D IUDFWLRQ RI FRPSDUDEOH FRPSUHVVHGJDV V\VWHPV :KLOH K\GUD]LQH XVH ZDV GRPLQDWHG E\ WKH PLOLWDU\ DQG DHURVSDFH LQGXVWU\ LQ WKH V E\ WKH V RWKHU LQGXVWULDO DSSOLFDWLRQV ZHUH

PAGE 10

FRQVXPLQJ WKH PDMRU VKDUH RI DOO K\GUD]LQH SURGXFHG 7KH DJULFXOWXUDO LQGXVWU\ LV D PDMRU XVHU RI K\GUD]LQH LQ WKH PDQXIDFWXUH RI SHVWLFLGHV +\GUD]LQH LV XVHG LQ WKH SODVWLFV LQGXVWU\ DV D FKHPLFDO LQWHUPHGLDWH IRU SODVWLFIRDP EORZLQJ DJHQWV DQG K\GUD]LQH LV XVHG DV DQ R[\JHQ VFDYHQJHU LQ ERLOHU ZDWHU IRU SRZHU SURGXFWLRQ ,Q ODERUDWRU\ DQLPDOV H[SRVXUH WR K\GUD]LQH PD\ SURGXFH HLWKHU LPPHGLDWH WR[LFLW\ RU GHOD\HG NLGQH\ DQG OLYHU LQMXU\ LQ DQLPDOV WKDW VXUYLYH WKH H[SRVXUH 9LD LQKDODWLRQ WKH KU /& RI K\GUD]LQH LV PPRO /n IRU PLFH DQG PPRO /r IRU UDWV &OHZHOO HW DO f ,Q DQRWKHU VWXG\ WKH KU /& LQ UDWV ZDV PPRO /B $ VL[PRQWK LQKDODWLRQ VWXG\ FRQGXFWHG ZLWK GRJV PRQNH\V UDWV DQG PLFH VXJJHVWHG WKDW HIIHFWV ZHUH GRVH UHODWHG UHJDUGOHVV RI ZKHWKHU WKH H[SRVXUHV ZHUH LQWHUPLWWHQW RU FRQWLQXRXV :+2 f +\GUD]LQH LV D SRODU PROHFXOH KDYLQJ D KLJK DIILQLW\ IRU ZDWHU &RQVHTXHQWO\ LW LV H[WUHPHO\ LUULWDWLQJ WR H\HV DQG PXFXV PHPEUDQHV +\GUD]LQH KDV DOVR EHHQ VKRZQ WR HQWHU WKH ERG\ WKURXJK WKH VNLQ ,Q DQHVWKHWL]HG GRJV WRSLFDO DSSOLFDWLRQ RI K\GUD]LQH LQ WKH PJ NJ UDQJH SURGXFHG GHWHFWDEOH EORRG FRQFHQWUDWLRQV ZLWKLQ VHFRQGV DQG D FKHPLFDO EXUQ DW WKH VLWH RI DSSOLFDWLRQ &OHZHOO HW DO f $ IHZ LQVWDQFHV RI K\GUD]LQH WR[LFLW\ LQ KXPDQV KDYH EHHQ UHSRUWHG 'HUPDO VHQVLWL]DWLRQ DIWHU H[SRVXUH WR K\GUD]LQH KDV EHHQ FLWHG :+2 f $FFLGHQWDO LQJHVWLRQ RI D FRQFHQWUDWHG DTXHRXV VROXWLRQ RI K\GUD]LQH E\ D ZRUNPDQ FDXVHG SURORQJHG XQFRQVFLRXVQHVV DQG VHL]XUHV KRZHYHU KH ZDV FRQVLGHUHG UHDVRQDEO\ UHFRYHUHG ZLWKLQ WZR ZHHNV &OHZHOO HW DO f +\GUD]LQH WR[LFLW\ KDV EHHQ IDWDO LQ DW OHDVW RQH FDVH ZKHUH DQ LQGLYLGXDO H[SHULHQFHG FRQMXQFWLYLWLV QDXVHD DQG WUHPRUV HDFK WLPH KH KDQGOHG

PAGE 11

K\GUD]LQH $IWHU VL[ PRQWKV RI UHSHDWHG H[SRVXUH KH ZDV DGPLWWHG WR WKH KRVSLWDO DQG DIWHU WKUHH ZHHNV GLHG GHVSLWH WUHDWPHQW &OHZHOO HW DO f +\GUD]LQH LV FODVVLILHG DV DQ HQYLURQPHQWDO FDUFLQRJHQ DQG D VXVSHFWHG KXPDQ FDUFLQRJHQ 6WRQH DQG :LVHPDQ f 7KLV WR[LFLW\ KDV UHVXOWHG LQ D UHFRPPHQGDWLRQ IURP WKH $PHULFDQ &RQIHUHQFH RI *RYHUQPHQWDO ,QGXVWULDO +\JLHQLVWV RI D WKUHVKROG OLPLW YDOXH IRU K\GUD]LQH RI PPRO /n RI DLU %HFDXVH RI XQFHUWDLQW\ FRQFHUQLQJ WKH UHODWLYH LPSRUWDQFH RI VNLQ H[SRVXUH WR K\GUD]LQH YDSRU LW LV FRPPRQO\ UHTXLUHG WKDW LQGLYLGXDOV ZRUNLQJ ZLWK K\GUD]LQH ZHDU D VHOIFRQWDLQHG SURWHFWLYH VXLW WR SURYLGH IXOOERG\ SURWHFWLRQ 7KH ZLGHVSUHDG XVDJH RI WKLV PDWHULDO SURYLGHV WKH RSSRUWXQLW\ IRU VSLOOV DQG VXEVHTXHQW FRQWDPLQDWLRQ RI WKH HQYLURQPHQW ,Q D UHSRUW RQ K\GUD]LQH XVH LQ WKH 6SDFH 6KXWWOH SURJUDP +XGVRQ f LQGLFDWHG WKDW LQ DGGLWLRQ WR WKH RUELWHU DQG WKH ODXQFK SDG ZKHUH LW LV IXHOHG JURXQG IDFLOLWLHV LQYROYHG ZLWK K\GUD]LQH DFWLYLWLHV WKDW VHUYLFH WKH VKXWWOH LQFOXGH IL[HG VWRUDJH WDQNV SDUNHG WDQN WUDLOHUV SRUWDEOH VHUYLFH XQLWV SLSLQJ DQG YHQW OLQHV YHQW JDV VFUXEEHUV ZDVWH WDQN WUDLOHUV FRQWDPLQDWHG IXHO WDQNV VSLOO WUHQFKHV DQG SRQGV /HZLV f UHSRUWHG WKDW K\GUD]LQH IXHOV DUH WUDQVSRUWHG EHWZHHQ /DNH &KDUOHV /RXLVLDQD 'HQYHU &RORUDGR &DSH &DQDYHUDO )ORULGD DQG 9DQGHQEHUJ $LU )RUFH %DVH &DOLIRUQLD DV ZHOO DV 6WUDWHJLF $LU &RPPDQG VLWHV WKURXJKRXW WKH FRXQWU\ ZLWK DQ DYHUDJH RI PLOOLRQ SRXQGV RI IXHOV VKLSSHG DQQXDOO\ RYHU PLOHV RI UDLO DQG KLJKZD\ 2Q -XO\ WK PRUH WKDQ JDOORQV RI K\GUD]LQH ZHUH VSLOOHG ZKHQ DQ RYHUKHDWHG D[OH VQDSSHG GHUDLOLQJ IUHLJKW FDUV WKDW FUDVKHG LQWR DQ RYHUSDVV RI WKH 9HQWXUD )UHHZD\ LQ 6RXWKHUQ &DOLIRUQLD 7KUHH KXQGUHG UHVLGHQWV RI 6HDFOLII &DOLIRUQLD ZHUH HYDFXDWHG DQG PLOHV RI IUHHZD\ ZHUH

PAGE 12

FORVHG GXULQJ WKH ILYHGD\ FOHDQXS (OHYHQ ZRUNHUV ZHUH WUHDWHG IRU QDXVHD DQG UHVSLUDWRU\ SUREOHPV GXULQJ WKLV RSHUDWLRQ 5HHG f 7KH SRWHQWLDO IRU OHDNDJH RI K\GUD]LQH IURP VWRUDJH WDQNV DQG RWKHU VSLOOV IURP WUDQVSRUWDWLRQ DFFLGHQWV PDNHV LQYHVWLJDWLRQ RI WKH HQYLURQPHQWDO IDWH RI K\GUD]LQH D SUHVVLQJ QHHG 5HVHDUFK 2EMHFWLYHV 7KLV VWXG\ KDV EHHQ SURSRVHG WR HYDOXDWH WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH LQ ODERUDWRU\ FROXPQV RI VDQG\ VRLO 7KH WUDQVSRUW RI K\GUD]LQH EHORZ WKH ZDWHU WDEOH ZLOO EH VLPXODWHG XVLQJ VDWXUDWHG VRLO FROXPQV $OVR VDWXUDWHG FRQGLWLRQV VLPSOLI\ WKH H[SHULPHQWDO GHVLJQ DV ZHOO DV WKH PDWKHPDWLFV RI WUDQVSRUW 7KH VRLOV ZLOO EH FKDUDFWHUL]HG ZLWK UHVSHFW WR SDUWLFOH VL]H GLVWULEXWLRQ RUJDQLF PDWWHU FRQWHQW HOHPHQWDO FRPSRVLWLRQ S+ DQG EXIIHULQJ FDSDFLW\ ,Q DGGLWLRQ WR VRLO FKDUDFWHULVWLFV WKH HIIHFW RI VHYHUDO HQYLURQPHQWDO YDULDEOHV NQRZQ WR DIIHFW WKH WUDQVSRUW RI FKHPLFDOV LQ JURXQG ZDWHU ZLOO EH H[DPLQHG LQFOXGLQJ VROXWLRQ FRQFHQWUDWLRQ ZDWHU YHORFLW\ DQG WLPH RI K\GUD]LQH H[SRVXUH WR VRLO 7KH VWXG\ DSSURDFK ZLOO EH RUJDQL]HG LQ WKH IROORZLQJ PDQQHU f 7KURXJK OLWHUDWXUH UHYLHZ LQYHVWLJDWH WKH HQYLURQPHQWDO FKHPLVWU\ RI K\GUD]LQH DQG WKXV HOXFLGDWH WKH SRVVLEOH PHFKDQLVPV JRYHUQLQJ LWV IDWH LQ WKH HQYLURQPHQW f ,GHQWLI\ SURFHVVHV OLNHO\ WR FRQWURO WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH LQ VRLOV f ,GHQWLI\ WKH VRLO FKDUDFWHULVWLFV DQG HQYLURQPHQWDO YDULDEOHV OLNHO\ WR LPSDFW WKH IDWH DQG WUDQVSRUW SURFHVVHV

PAGE 13

f ,VRODWH WKH SURFHVVHV WKRXJKW WR EH RI JUHDWHVW LPSRUWDQFH DQG TXDQWLI\ WKHP WKURXJK FROXPQ DQG EDWFK H[SHULPHQWV f (YDOXDWH WKH LPSDFW RI WKH VHOHFWHG VRLO FKDUDFWHULVWLFV DQG HQYLURQPHQWDO YDULDEOHV RQ WKH VLJQLILFDQW IDWH DQG WUDQVSRUW SURFHVVHV f 6LPXODWH WKH VHOHFWHG SURFHVVHV DQG HQYLURQPHQWDO YDULDEOHV E\ FRPSXWHU WR FRQILUP WKHLU VLJQLILFDQFH DQG TXDQWLI\ SURFHVVHV GLIILFXOW WR HYDOXDWH LQ LQGHSHQGHQW ODERUDWRU\ H[SHULPHQWV

PAGE 14

&+$37(5 /,7(5$785( 5(9,(: /LWHUDWXUH 5HYLHZ 2EMHFWLYHV 8QGHU VDWXUDWHG VRLO FRQGLWLRQV DV LQ QHDUVXUIDFH DTXLIHUVf WKH IDWH RI K\GUD]LQH LV FORVHO\ OLQNHG WR LWV FKHPLFDO QDWXUH DQG LWV LQYROYHPHQW LQ D QXPEHU RI SRWHQWLDO GHJUDGDWLRQ DQG WUDQVSRUW SDWKZD\V 7KLV UHYLHZ ZLOO EH GHYRWHG WR WKH HQYLURQPHQWDO FKHPLVWU\ RI WKH PROHFXOH DQG WR SDWKZD\V WKRXJKW WR EH DYDLODEOH IRU K\GUD]LQH IDWH DQG WUDQVSRUW +\GUD]LQH (QYLURQPHQWDO &KHPLVWU\ +\GUD]LQH LV D FOHDU FRORUOHVV OLTXLG DW DPELHQW WHPSHUDWXUHV ES r& DQG PS r&f ,WV YDSRU SUHVVXUH LV VOLJKWO\ ORZHU WKDQ WKDW RI ZDWHU YV PP +Jf ZKLOH LWV GHQVLW\ LV TXLWH VLPLODU WR WKDW RI ZDWHU ,W LV H[WUHPHO\ VROXEOH LQ ZDWHU DQG ZKHQ PL[HG DQ LQLWLDO GLIIHUHQFH LQ UHIUDFWLYH LQGH[ TXLFNO\ GLVDSSHDUV +\GUD]LQH YDSRUV DUH RQO\ VOLJKWO\ PRUH GHQVH WKDQ DLU 6RPH SK\VLFDO DQG FKHPLFDO SURSHUWLHV RI HQYLURQPHQWDO LQWHUHVW DUH WDEXODWHG LQ 7DEOH +\GUD]LQH LV D V\PPHWULFDO \HW SRODU PROHFXOH ,W LV PLVFLEOH ZLWK SRODU VROYHQWV VXFK DV ZDWHU DOFRKROV DPPRQLD DQG DPLQHV DQG LV LQVROXEOH LQ QRQSRODU VROYHQWV VXFK DV K\GURFDUERQV DQG KDORJHQDWHG K\GURFDUERQV ,WV SRODULW\ LV GXH WR WKH DWWUDFWLRQ RI RSSRVLWHO\ FKDUJHG ILHOGV IRU RQH DQRWKHU LH WKH QLWURJHQ PROHFXOHV URWDWH LQWHUQDOO\ WR PLQLPL]H HOHFWULFDO UHSXOVLRQ 7KLV URWDWLRQ SURGXFHV D FLVFRQILJXUDWLRQ $XGULHWK DQG 2JJ )LJXUH f

PAGE 15

'XH WR LWV SRODULW\ K\GUD]LQH PRVW OLNHO\ ZLOO LQWHUDFW ZLWK SRODU JURXSV RQ WKH VROLG VXUIDFHV RI VRLOV 7DEOH 6RPH SK\VLFDO DQG FKHPLFDO SURSHUWLHV RI K\GUD]LQH DQG LWV K\GUDWH 3URSHUW\ $QK\GURXV K\GUD]LQH b QKf +\GUD]LQH K\GUDWH b 1+f 3K\VLFDO VWDWH DW 673 OLTXLG OLTXLG &RORU FRORUOHVV FRORUOHVV 2GRU DPPRQLD SXQJHQW DPPRQLD SXQJHQW 2GRU SHUFHSWLRQ PJ UUU PJ UUU 0HOWLQJ 3RLQW r& r& %RLOLQJ 3RLQW r& r& )ODVK 3RLQW r& r& )ODPPDEOH /LPLWV b b 9DSRU 3UHVVXUH PP+J DW r& PP+J DW r& 5HODWLYH YDSRU GHQVLW\ 81. 'HQVLW\ J /n DW r& J / DW r& 6ROXELOLW\ LQ ZDWHU H[WUHPHO\ VROXEOH H[WUHPHO\ VROXEOH 6XUIDFH WHQVLRQ G\QH FP G\QH FPn 6RXUFH :RUOG +HDOWK 2UJDQL]DWLRQ :+2f 7KH V VKHOL RI HDFK QLWURJHQ DWRP VHUYHV WR HVWDEOLVK WKH 11 ERQG $ VS K\EULGL]DWLRQ LV DVVXPHG WR RFFXU LQ ZKLFK RQH RI WKH VS RUELWDOV IURP HDFK QLWURJHQ DWRP LV RFFXSLHG E\ D SDLU RI ORQH HOHFWURQV ZLWK RSSRVLWH VSLQV

PAGE 16

+ + 1 + mRn + 0 2 )LJXUH &LV FRQILJXUDWLRQ RI WKH K\GUD]LQH PROHFXOH 6FKPLGW f 7KHVH WZR HOHFWURQ SDLUV LPSDUW D YHU\ VWURQJ QXFOHRSKLOLF FKDUDFWHU WR WKH PROHFXOH 'XH WR WKLV SURSHUW\ K\GUD]LQH FDQ IRUP D ODUJH YDULHW\ RI FRPSOH[HV ZLWK PHWDOV 'LOZRUWK f 6FKPLGW f VWDWHG WKDW LW LV GLIILFXOW WR GHWHUPLQH ZKHWKHU D WUXH FRPSOH[ ZLWK K\GUD]LQH H[LVWV RU ZKHWKHU K\GUD]LQH LV VLPSO\ LQFOXGHG LQ WKH FU\VWDO ODWWLFH RI VRPH VDOWV HJ FDOFLXP VDOWVf DV D VROYDWH DQDORJRXV WR ZDWHU RI FU\VWDOOL]DWLRQ 7KH GHQVLW\ RI K\GUD]LQH LV KLJKHU LQ WKH VROLG VWDWH WKDQ LQ WKH OLTXLG VWDWH ,Q WKLV UHVSHFW LW LV GLIIHUHQW IURP ZDWHU 7KH GHQVLW\ RI WKH OLTXLG DW DPELHQW WHPSHUDWXUH LV J FP $KOHUW HW DL f 7KH XVH RI K\GUD]LQH DV D IXHO LV EDVHG RQ LWV HQGRWKHUPLF QDWXUH >$+fILf .FDO PROHr@ +RZHYHU DQK\GURXV K\GUD]LQH LV WKHUPDOO\ TXLWH VWDEOH r&f LQ WKH DPELHQWWHPSHUDWXUH UDQJH 6FKLHVVO f 7KH SUHVHQFH RI FHUWDLQ PHWDOV DQG R[LGHV FDQ ORZHU WKH GHFRPSRVLWLRQ WHPSHUDWXUH +\GUD]LQH LV D EDVH VOLJKWO\ ZHDNHU WKDQ DPPRQLD S.D &RQGRQ HW DO f DQG D VWURQJ UHGXFLQJ DJHQW $V VXFK LW UHGXFHV PDQ\ PHWDO LRQV WR ORZHU YDOHQFH VWDWHV RU WR WKH PHWDO LWVHOI GHSHQGLQJ RQ UHDFWLRQ FRQGLWLRQV 7KH VWDQGDUG UHGR[ SRWHQWLDOV /DWLPHU f RI K\GUD]LQH

PAGE 17

1+ 2+a L9 + Ha e 9 > @ DQG RI K\GUD]LQLXP LRQ 1+ 1 + Ha ( 9 >@ LQGLFDWH WKDW K\GUD]LQH LV D EHWWHU UHGXFLQJ DJHQW LQ DONDOLQH WKDQ LQ DFLGLF VROXWLRQ +\GUD]LQH FDQ DOVR DFW DV DQ R[LGL]LQJ DJHQW DV LQGLFDWHG E\ WKH IROORZLQJ VWDQGDUG UHGR[ SRWHQWLDOV 1+ + Ha f§} +a 1+ ( 2$9 >@ 1+ + H 1+ ( 9 >@ +\GUD]LQH )DWH DQG 7UDQVSRUW 3DWKZD\V 7KH IDWH RI K\GUD]LQH LQ VRLOV LV GHWHUPLQHG E\ FKHPLFDO SK\VLFDO DQG ELRORJLFDO UHODWLRQVKLSV GHYHORSHG LQ WKH VRLO 6RPH HQYLURQPHQWDO UHODWLRQVKLSV KDYH EHHQ LQYHVWLJDWHG DQG DUH GLVFXVVHG EHORZ 2[LGDWLRQ LQ 6ROXWLRQ 6RPH RI WKH HDUOLHVW ZRUN GRQH ZLWK K\GUD]LQH ZDV GLUHFWHG WRZDUGV WKH LGHQWLILFDWLRQ RI UHDFWLRQ SURGXFWV H[SHFWHG XSRQ UHDFWLRQ ZLWK YDULRXV R[LGL]LQJ DJHQWV %URZQH DQG 6KHWWHUO\ f FODVVLILHG R[LGL]LQJ DJHQWV RQ WKH EDVLV RI WKHLU UHDFWLYLW\ ZLWK K\GUD]LQH 2WKHU ZRUN E\ %UD\ DQG &X\

PAGE 18

f &X\ HW DO f DQG .LUN DQG %URZQH f LGHQWLILHG WKUHH EDVLF R[LGDWLRQ UHDFWLRQV 1+ } $Ha 1 + >@ QK !HB_L9 QK IW >@ 1+ Ha s+1 s1+c _7 >@ +LJJLQVRQ HW DW f JURXSHG WKH R[LGL]LQJ DJHQWV DFFRUGLQJ WR WKHLU DELOLW\ WR R[LGL]H K\GUD]LQH E\ RQHHLHFWURQ RU IRXUHOHFWURQ UHDFWLRQV 7KH\ VXJJHVWHG WKDW WKH DELOLW\ RI PHWDO LRQV WR DGVRUE K\GUD]LQH LQ WKHLU FRRUGLQDWLRQ VSKHUHV GHWHUPLQHG WKH SDWK RI UHDFWLRQ /DWHU +LJJLQVRQ DQG 6XWWRQ f &DKQ DQG 3RZHOO f DQG +LJJLQVRQ DQG :ULJKW f XVHG 1 WR YHULI\ WKH R[LGDWLRQ PHFKDQLVPV WKDW KDG EHHQ SURSRVHG &DKQ DQG 3RZHOO f DOVR GLG H[WHQVLYH ZRUN RQ WKH HIIHFW RI FXSULF LRQ RQ K\GUD]LQH 7KH\ QRWHG WKDW WKH FXSULF LRQ GRHV QRW UHDFW DSSUHFLDEO\ ZLWK K\GUD]LQH LQ DFLG VROXWLRQ WKRXJK LWV SUHVHQFH JUHDWO\ LQFUHDVHV WKH SURSRUWLRQ RI IRXUHOHFWURQ R[LGDWLRQ 7ZRHOHFWURQ R[LGDWLRQ \LHOGLQJ DPPRQLD ZDV IRXQG WR EH JUHDWHVW LQ DFLGLF VROXWLRQ S+ +LJJLQVRQ f 6XEVHTXHQW ZRUN E\ 3DJVEHUJ FLWHG E\ 6XWKHUODQG f DQG E\ $GDPV DQG 7KRPDV f $WNLQVRQ DQG %DUG f 6PLWK HW DW f +D\GRQ DQG 6LPLF f DQG 6XWKHUODQG f FRQILUPHG WKH YDOLGLW\ RI WKH R[LGDWLRQ UHDFWLRQV DQG LGHQWLILHG WUDQVLHQW LQWHUPHGLDWH UHDFWLRQ VWHSV

PAGE 19

$XWR[LGDWLRQ LQ 6ROXWLRQ $OWKRXJK WKH WZR DGMDFHQW QLWURJHQ DWRPV RI K\GUD]LQH VKRXLG IDYRU WKH IRUPDWLRQ RI QLWURJHQ ZKHQ WKH K\GURJHQV DUH UHPRYHG E\ R[LGDWLRQ WKLV VLPSOH UHDFWLRQ LV QRW XVXDOO\ WKH RQO\ SDWK IROORZHG 6FKPLGW f ,Q DGGLWLRQ WR PROHFXODU QLWURJHQ WKH IROORZLQJ FRPSRXQGV KDYH EHHQ LGHQWLILHG DV UHDFWLRQ SURGXFWV DPPRQLD K\GUD]RLF DFLG GLD]HQH DQG K\GURJHQ SHUR[LGH $OWKRXJK WKH\ DUH WKHUPRG\QDPLFDOO\ IDYRUDEOH HVSHFLDOO\ LQ DFLGLF VROXWLRQ WKHUH DUH IHZ H[DPSOHV RI VXFK UHDFWLRQV LQ WKH OLWHUDWXUH +HQFH WKH\ DUH OLNHO\ YHU\ VORZ LQ WKH DEVHQFH RI DQ DSSURSULDWH FDWDO\VW ,Q &X\ DQG %UD\ H[DPLQHG WKH LQIOXHQFH RI S+ DQG DWPRVSKHULF R[\JHQ RQ WKH GLVDSSHDUDQFH RI K\GUD]LQH IURP DTXHRXV VROXWLRQ +\GUD]LQH VROXWLRQV LQ 0 VRGLXP K\GUR[LGH ZHUH IRXQG WR EH XQVWDEOH WKRXJK DFLGLF VROXWLRQV ZHUH TXLWH VWDEOH %DVLF VROXWLRQV NHSW XQGHU D QLWURJHQ DWPRVSKHUH ZHUH QRW IRXQG WR GHJUDGH 7KH\ DVVXPHG WKDW GHFRPSRVLWLRQ ZDV GXH WR R[LGDWLRQ LQ DLU *LOEHUW f DOVR H[DPLQHG WKH HIIHFWV RI S+ DQG R[\JHQ RQ K\GUD]LQH GHFRPSRVLWLRQ +H REVHUYHG WKH IRUPDWLRQ RI K\GURJHQ SHUR[LGH LQ GLOXWH DONDOLQH VROXWLRQV LQ WKH SUHVHQFH RI R[\JHQ 8QGHU DQ R[\JHQ DWPRVSKHUH VRGLXP K\GUR[LGH FRQFHQWUDWLRQV DERYH 0 ZHUH VHHQ WR FRUUHVSRQG WR D GHFUHDVH LQ K\GURJHQ SHUR[LGH IRUPDWLRQ LPSO\LQJ WKDW K\GUD]LQH DXWR[LGDWLRQ ZDV RSWLPDO LQ GLOXWH DONDOLQH VROXWLRQ &X\ DQG %UD\ f DQG *DXQW DQG :HWWRQ f DOVR GLG QRW GHWHFW DQ\ K\GUD]LQH GHJUDGDWLRQ XQOHVV R[\JHQ ZDV SUHVHQW (OOLV HW DO f DWWHPSWLQJ WR GHWHUPLQH WKH NLQHWLFV RI K\GUD]LQH GHJUDGDWLRQ IRXQG K\GUD]LQH WR GLVDSSHDU IDVWHU WKDQ GLG R[\JHQ 7KH\ PRGHOHG WKH UDWH RI K\GUD]LQH GLVDSSHDUDQFH ZLWK D VHFRQGRUGHU HPSLULFDO UHODWLRQVKLS

PAGE 20

f§ DF EF >@ GW ZKHUH D DQG E DUH IXQFWLRQV RI S+ DQG WHPSHUDWXUH 7KH UDWH RI UHDFWLRQ LQFUHDVHG E\ D IDFWRU RI SHU r& ULVH LQ WHPSHUDWXUH $PPRQLD ZDV GHWHFWHG ZKHQ K\GUD]LQH ZDV LQ H[FHVV EXW QR K\GURJHQ SHUR[LGH ZDV GHWHFWHG $XWR[LGDWLRQ E\ DWPRVSKHULF R[\JHQ DSSHDUV WR EH WKH PRVW LPSRUWDQW IDFWRU FRQWULEXWLQJ WR WKH GLVDSSHDUDQFH RI K\GUD]LQH LQ WKH HQYLURQPHQW VLQFH R[\JHQ LV LQ JUHDW VXSSO\ 2WKHU UHVHDUFK KDV VKRZQ K\GUD]LQH WR EH GHJUDGHG LQ WKH DEVHQFH RI R[\JHQ *LOEHUWnV GDWD f VXJJHVWHG WKDW K\GUD]LQH GHFRPSRVLWLRQ WRRN SODFH RQ VXUIDFHV 7KH SRVVLELOLW\ RI GXVW SDUWLFOHV DFWLQJ DV WKH DFWLYH VXUIDFHV ZDV PHQWLRQHG DQG WKH IULWWHG JODVV KH XVHG WR WUDQVPLW R[\JHQ ZDV DOVR VXVSHFWHG %URZQ FLWHG E\ $XGULHWK DQG 2JJ f REVHUYHG WKDW WUDFHV RI FRSSHU H[HUW D PDUNHG FDWDO\WLF HIIHFW RQ WKH DXWR[LGDWLRQ RI K\GUD]LQH $XGULHWK DQG 0RKU f WHVWHG VHYHUDO PHWDOOLF LRQV IRU LPSOLFDWLRQ LQ WKH FDWDO\VLV RI K\GUD]LQH GHFRPSRVLWLRQ 'LVVROYHG FRSSHU ZDV E\ IDU WKH PRVW DFWLYH FDWDO\VW IROORZHG E\ YDQDGLXP 92rf 7KH\ XVHG PHWDO GHDFWLYDWRUV ZKLFK IRUP LQVROXEOH VDOWV RU VWDEOH FRPSOH[HV ZLWK FRSSHU WR LQKLELW WKH FDWDO\WLF HIIHFW EXW QR LQKLELWRUV ZHUH IRXQG WKDW ZRXOG WRWDOO\ QHXWUDOL]H WKH HIIHFW RI FRSSHU 0RUH UHFHQWO\ 8UQ DQG )DJJ f REVHUYHG WKDW PDQJDQHVH FDWDO\]HG DXWR[LGDWLRQ RI DTXHRXV K\GUD]LQH 6FKPLGW f DOVR PHQWLRQHG D VXUYH\ FRQGXFWHG E\ (EHUVWHLQ DQG *ODVVPDQ RI PHW£LV WKDW FDWDO\]HG K\GUD]LQH GHFRPSRVLWLRQ 7KH\ QRWHG WKDW WUDQVLWLRQ PHWDOV KDYLQJ LQFRPSOHWH G VXEVKHOOV DFW DV VWURQJ FDWDO\VWV IRU K\GUD]LQH GHFRPSRVLWLRQ ZKHUHDV PHWDOV KDYLQJ QR G VXEVKHOOV RU FRPSOHWHO\ILOOHG VKHOOV DUH QRW FDWDO\WLF ,W ZDV

PAGE 21

WKHRUL]HG WKDW HOHFWURQV IURP WKH ORQH HOHFWURQ SDLUV LQ K\GUD]LQH LQWHUDFW ZLWK XQILOOHG G RUELWDOV GXULQJ WKH HDUO\ VWDJHV RI DGVRUSWLRQ DQG FKHPLVRUSWLRQ RI K\GUD]LQH $W OHDVW WZR EDVLF HTXDWLRQV FDQ EH XVHG WR GHVFULEH WKH KHWHURJHQHRXV GHFRPSRVLWLRQ RI K\GUD]LQH LQ VROXWLRQ 1+ f§} 1 1+ >@ 1+! 1 + >@ $Q\ SRVVLEOH FRPELQDWLRQ RI ERWK UHDFWLRQV KDV EHHQ IRXQG WR RFFXU GHSHQGLQJ RQ WKH FDWDO\VW XVHG DQG WKH H[SHULPHQWDO FRQGLWLRQV 0DXUHO DQG 0HQH]R 2RVDZD f 7KLV GLVFXVVLRQ RI R[LGDWLRQDXWR[LGDWLRQ LQ VROXWLRQ LV GLUHFWO\ UHODWHG WR WKH GHFRPSRVLWLRQ RI K\GUD]LQH LQ VRLOV EHFDXVH RI WKH RPQLSUHVHQFH RI DTXHRXV VROXWLRQV HYHQ LQ XQVDWXUDWHG VRLOV 7KH IRFXV RI WKH H[SHULPHQWDO GDWD SUHVHQWHG LQ WKLV GLVVHUWDWLRQ LV RQ K\GUD]LQH IDWH DQG WUDQVSRUW XQGHU VDWXUDWHG FRQGLWLRQV VR K\GUD]LQH UHDFWLYLW\ LQ VROXWLRQ LV RI PDMRU FRQVHTXHQFH KHUH +\GUD]LQH 'HJUDGDWLRQ LQ 1DWXUDO :DWHUV 6ORQLP DQG *LVFODUG f VWXGLHG WKH GLVDSSHDUDQFH RI K\GUD]LQH LQ ZDWHUV RI GLIIHUHQW RULJLQ WKDW YDULHG LQ KDUGQHVV RUJDQLF PDWWHU FRQWHQW R[\JHQ FRQWHQW 2+ DQG WHPSHUDWXUH +\GUD]LQH DW PJ /f ZDV DGGHG WR ZDWHU VDPSOHV DQG DQDO\VHV ZHUH GRQH HDFK GD\ IRU ILYH GD\V :LWKLQ WKH ILUVW KRXUV WKH PRVW SROOXWHG ZDWHU ZLWK WKH JUHDWHVW DPRXQW RI VROLGV LQ VXVSHQVLRQf FDXVHG WKH JUHDWHVW EUHDNGRZQ RI K\GUD]LQH :DWHU IURP WKH VDPH VRXUFH EXW

PAGE 22

WDNHQ XQGHU FDOP ZHDWKHU FRQGLWLRQV VKRZHG QR K\GUD]LQH EUHDNGRZQ LQLWLDOO\ WKRXJK K\GUD]LQH ZDV QRW GHWHFWDEOH DIWHU IRXU GD\V $ FRUUHODWLRQ DOVR ZDV IRXQG EHWZHHQ WKH GHJUHH RI KDUGQHVV DQG WKH UDWH RI K\GUD]LQH GHFD\ ,Q FLW\ WDS ZDWHU ZKLFK ZDV VRIWHQHG DQG FKORULQDWHG K\GUD]LQH FRQFHQWUDWLRQ UHPDLQHG DSSUR[LPDWHO\ WKH VDPH IRU GD\V 6ORQLP DQG *LVFODUG f VWDWHG WKDW SROOXWLQJ PDWHULDO ULFK LQ RUJDQLF PDWWHU ZDV WKH OHDGLQJ FRQWULEXWRU WR K\GUD]LQH GHJUDGDWLRQ +RZHYHU WKH\ GLG QRW PHQWLRQ WKH SRVVLELOLW\ RI K\GUD]LQH DGVRUSWLRQ WR RUJDQLF VXUIDFHV $OVR ELRORJLFDO DFWLYLW\ ZDV QRW FRQVLGHUHG DV D SRVVLEOH IDFWRU LQ K\GUD]LQH GHJUDGDWLRQ 0DF1DXJKWRQ HW DO f VWXGLHG VHD ZDWHU DQG SRQG ZDWHU HYDOXDWLQJ WKH HIIHFWV RI FRSSHU GLVVROYHG RUJDQLFV DQG R[\JHQ FRQFHQWUDWLRQ RQ K\GUD]LQH EHKDYLRU $GGLWLRQ RI FRSSHU DW D FRQFHQWUDWLRQ RI [f PROHV /n KDG D JUHDWHU HIIHFW LQ VHD ZDWHU WKDQ LQ SRQG ZDWHU 7KH\ VXJJHVWHG WKDW WKH FRSSHU ZDV DGVRUEHG WR WKH JUHDWHU GLVVROYHG RUJDQLF IUDFWLRQ LQ SRQG ZDWHU PDNLQJ LW OHVV DYDLODEOH IRU VXEVHTXHQW FDWDO\VLV )LOWHUHG SRQG ZDWHU UHVXOWHG LQ QR FKDQJH LQ R[LGDWLRQ UDWH VXJJHVWLQJ WKDW VXVSHQGHG PDWHULDO ZDV QRW LPSRUWDQW LQ FDWDO\]LQJ K\GUD]LQH R[LGDWLRQ RU FRPSOH[DWLRQ RI WKH DGGHG FRSSHU 1R HIIHFW ZDV REVHUYHG DV ZHOO E\ YDU\LQJ WKH R[\JHQ FRQFHQWUDWLRQ EHWZHHQ DQG PJ /r )URP WKH OLWHUDWXUH ZH FDQ LQIHU WKDW WKH GLVDSSHDUDQFH RI K\GUD]LQH IURP VROXWLRQ LV KLJKO\ GHSHQGHQW RQ UHDFWLRQ FRQGLWLRQV $W ORZ S+ K\GUD]LQH FDQ EH R[LGL]HG PDLQO\ WR + DQG 1+f E\ PDQ\ PHWDOV DQG RWKHU R[LGL]LQJ DJHQWV $W KLJK S+ DXWR[LGDWLRQ DOVR FDQ WDNH SODFH WKH PDLQ SURGXFW EHLQJ PROHFXODU QLWURJHQ 7KLV UHDFWLRQ LV S+ GHSHQGHQW ZLWK PHWDOV HVSHFLDOO\ FRSSHU DQG PDQJDQHVH DFWLQJ DV FDWDO\VWV

PAGE 23

0LFURELDO 'HJUDGDWLRQ 6RPH LQIRUPDWLRQ LV DYDLODEOH RQ WKH HIIHFWV RI K\GUD]LQH DQG LWV GHULYDWLYHV PRQRPHWK\OK\GUD]LQH DQG GLPHWK\OK\GUD]LQH RQ VRLO PLFURRUJDQLVPV XQGHU SXUH DQG PL[HGFXOWXUH FRQGLWLRQV 6LQFH WKH K\GUD]LQHV DUH QLWURJHQ FRPSRXQGV DQG PD\ EH GHJUDGHG WR 1+ .DQH DQG :LOOLDPVRQ f FKRVH QLWULILHUV DQG GHQLWULILHUV DV WHVW EDFWHULD IRU WKH WR[LFLW\ RI K\GUD]LQH DQG LWV GHULYDWLYHV 7KH\ IRXQG WKDW WKH DFWLYLWLHV RI WKH DXWRWURSKLF QLWULILHUV 1LWURVRPRQDV DQG 1LWUREDFWHU DV ZHOO DV RI GHQLWULI\LQJ EDFWHULD ZHUH LQKLELWHG E\ WKH WKUHH FKHPLFDOV *DV SURGXFWLRQ E\ DQDHURELF PHWKDQRJHQV ZDV DOVR LQKLELWHG E\ K\GUD]LQH 0DQWHO DQG /RQGRQ f DQG /RQGRQ DQG 0DQWHO f GHPRQVWUDWHG WKDW K\GUD]LQHV DW ORZ FRQFHQWUDWLRQV WR PJ NJf H[HUWHG EDFWHULRVWDWLF DQG EDFWHULFLGDO HIIHFWV UHVXOWLQJ LQ SURORQJDWLRQ RI WKH ODJ SKDVH RI JURZWK IRU WKH VRLO EDFWHULXP (QWHUREDFWHU FORDFD $W KLJKHU FRQFHQWUDWLRQV PJ NJf WKH RYHUDOO JURZWK RI WKH EDFWHULD ZDV LQKLELWHG /RQGRQ HWD f %HFDXVH RI WKH GLYHUVLW\ RI PLFURRUJDQLVPV LQ VRLOV DQG WKH EXIIHULQJ FDSDFLW\ RI VRLO LW KDV EHHQ VXJJHVWHG WKDW WR[LFLW\ RI WKH FRPSRXQGV WR VRLO PLFURRUJDQLVPV ZRXOG QRW EH DV JUHDW DV WR PLFURRUJDQLVPV PDLQWDLQHG LQ OLTXLG PHGLD +ROORFKHU HW DW f 6LQFH K\GUD]LQH FDQ EH GHJUDGHG WR 1 E\ DXWRWURSKLF EDFWHULD VXFK DV 1LWURVRPRQDV .DQH DQG :LOOLDPVRQ f DQG WR 1+DE\ 1IL[LQJ KHWHURWURSKLF EDFWHULD 6WLHIHO HW DO f LW ZDV WKRXJKW OLNHO\ WKDW K\GUD]LQH ZRXOG EH GHWR[LILHG E\ WKHVH VRLO EDFWHULD DQG SRVVLEO\ E\ RWKHU K\GUD]LQHGHJUDGLQJ PLFURRUJDQLVPV DV ZHOO 7KH PLFURELDO GHJUDGDWLRQ RI K\GUD]LQH LQ VRLOV DQG WKH HIIHFW RI K\GUD]LQH RQ VRLO PLFURELDO DFWLYLW\ ZDV LQYHVWLJDWHG E\ 2X f DQG 2X DQG 6WUHHW f 7KH\ UHSRUWHG WKDW K\GUD]LQH DSSOLHG WR $UUHGRQGR

PAGE 24

VRLO DW FRQFHQWUDWLRQV RI WR PPRO JB FRPSOHWHO\ GLVDSSHDUHG LQ OHVV WKDQ DQG GD\V UHVSHFWLYHO\ +\GUD]LQH ZDV QRW REVHUYHG WR EH PHWDEROL]HG WR DPPRQLD ZKLFK FRXOG VHUYH DV D QLWURJHQ VRXUFH IRU JURZWK %\ FRPSDULQJ GHJUDGDWLRQ UDWHV LQ VWHULOH DQG QRQVWHULOH VRLOV WKH\ FRQFOXGHG WKDW ELRORJLFDO GHJUDGDWLRQ ZDV UHVSRQVLEOH IRU DERXW b RI WKH GLVDSSHDUDQFH RI WKH FKHPLFDO LQ $UUHGRQGR VRLO 7KH\ DOVR UHSRUWHG WKDW DW PPRO JB VRLO UHVSLUDWLRQ DQG WRWDO EDFWHULDO DQG IXQJDO SRSXODWLRQV ZHUH QRW LQKLELWHG E\ K\GUD]LQH +RZHYHU DW PPRO Jr WRWDO EDFWHULDO SRSXODWLRQV LQ VRLO ZHUH UHGXFHG E\ WKH SUHVHQFH RI K\GUD]LQH 2X DQG 6WUHHW f 2X f DOVR UHSRUWHG WKDW WKUHH KHWHURWURSKLF VRLO EDFWHULD KDG WKH FDSDFLW\ WR GHJUDGH K\GUD]LQH LQ PL[HG FXOWXUH 2QH RI WKHVH RUJDQLVPV $FKURPREDFWHU VS GHJUDGHG K\GUD]LQH DW PPRO /n FRQFHQWUDWLRQ WR 1 JDV 7KH RUJDQLVP ZDV QRW DEOH WR JURZ RQ K\GUD]LQH DV D VROH VRXUFH RI QLWURJHQ KRZHYHU VXJJHVWLQJ WKDW WKH PHWDEROLF SURFHVV IRU K\GUD]LQH ZDV FRPHWREROLF 2X DQG 6WUHHW f UHSRUWHG WKDW PRQRPHWK\OK\GUD]LQH 00+f ZDV PLFURELDOO\ PLQHUDOL]HG WR &2 LQ $UUHGRQGR ILQH VDQG 2X f UHSRUWHG WKDW WZR VRLO EDFWHULD $FKURPREDFWHU VS DQG 3VHXGRPRQDV VS DFFHOHUDWHG WKH GHJUDGDWLRQ RI 00+ LQ FXOWXUH PHGLD DQG VRLO VDPSOHV GHVSLWH WKH IDFW WKDW WKH\ FRXOG QRW XWLOL]H 00+ DV D VROH VRXUFH RI FDUERQ 6XUIDFHV 6RLOV FRQWDLQ D ODUJH YDULHW\ RI DFWLYH VXUIDFHV WKDW KDYH WKH SRWHQWLDO WR LQWHUDFW ZLWK K\GUD]LQH LQ D YDULHW\ RI ZD\V )XUWKHUPRUH WKH LRQLF HQYLURQPHQW VXUURXQGLQJ VRLO FROORLGDO SDUWLFOHV LV TXLWH GLIIHUHQW IURP WKDW LQ WKH EXON RI WKH

PAGE 25

VROXWLRQ ,W LV DQWLFLSDWHG WKDW WKH UHDFWLRQ WDNLQJ SODFH QHDU SDUWLFOH VXUIDFHV ZLOO EH DIIHFWHG E\ WKLV PLFURHQYLURQPHQW 6HYHUDO DXWKRUV KDYH LQYHVWLJDWHG WKH HIIHFW RI DGGHG VROLGV RQ WKH DXWR[LGDWLRQ UDWH RI K\GUD]LQH (OOLV DQG 0RUHODQG FLWHG E\ 0DF1DXJKWRQ HW DO f IRXQG WKDW WKH UHDFWLRQ ZDV GUDPDWLFDOO\ DFFHOHUDWHG E\ WKH DGGLWLRQ RI DFWLYDWHG FDUERQ FRSSHU VXOIDWH EULFN RU HOHFWURO\WLF FDUERQ 0DF1DXJKWRQ HW DO f DOVR UHSRUWHG WKDW DGGLWLRQDO VXUIDFH DUHD LQ WKH IRUP RI DTXDUW] DOXPLQD RU NDROLQLWH GLG QRW LQFUHDVH WKH R[LGDWLRQ UDWH DQG LI DQ\WKLQJ DFWXDOO\ FDXVHG D VPDOO UHGXFWLRQ LQ WKH UDWH 7KH SUHVHQFH RI VPDOO FKLSV RI FRQFUHWH KRZHYHU FDXVHG VLJQLILFDQW R[LGDWLRQ RI WKH K\GUD]LQH 7KLV UHVXOW LV LQ DJUHHPHQW ZLWK ILQGLQJV RI D UDSLG ORVV RI K\GUD]LQH VSLOOHG RQ FRQFUHWH SDYHPHQW GXULQJ VSLOO FOHDQXS VWXGLHV 6WDXIIHU DQG (\O f +D\HV HW DO f LQ DQ H[WHQVLYH VWXG\ RI WKH LQWHUDFWLRQV RI K\GUD]LQH ZLWK VRLO FRQVWLWXHQWV IRXQG WKDW GHJUDGDWLRQ RI K\GUD]LQH LQ WKH SUHVHQFH RI KRPRLRQLF 1D 0J DQG &DPRQWPRULOORQLWH RFFXUUHG WR D JUHDWHU H[WHQW WKDQ LQ WKH FRUUHVSRQGLQJ PHWDOFKORULGH VROXWLRQV 7KH\ VXJJHVWHG WKDW WKH KLJKHU S+ YDOXHV RI WKH FOD\ VXVSHQVLRQ FRQWULEXWHG WR WKH HQKDQFHG GHJUDGDWLRQ REVHUYHG LQ WKHVH V\VWHPV 7KH\ H[DPLQHG WKH HIIHFW RI FRSSHU LQ VROXWLRQ &X&O PJ /Bf DQG &XPRQWPRULOORQLWH VXVSHQVLRQ RQ K\GUD]LQH GHJUDGDWLRQ DQG IRXQG JUHDWHU GHJUDGDWLRQ LQ WKH VXVSHQVLRQ 7KH\ DWWULEXWHG WKLV WR DQ LQFUHDVH LQ HIIHFWLYH &X FRQFHQWUDWLRQ DW WKH FOD\ VXUIDFH FRPSDUHG WR WKDW LQ WKH FXSULF FKORULGH VROXWLRQ +\GUD]LQH ZRXOG WKXV EH EURXJKW LQWR FORVHU FRQWDFW ZLWK H[FKDQJHDEOH &X LRQV UHVXOWLQJ LQ UDSLG GHJUDGDWLRQ LQ WKH VXSHUQDWDQW VROXWLRQ

PAGE 26

)URP WKH GDWD LQ WKH OLWHUDWXUH VHYHUDO FRQFOXVLRQV FDQ EH GUDZQ f +\GUD]LQH FDQ EH R[LGL]HG LQ WKH SUHVHQFH RI FOD\ LUUHVSHFWLYH RI WKH FDWLRQ VSHFLHV RQ WKH H[FKDQJH FRPSOH[ ,Q WKH FDVH RI LRQV WKDW DUH QRW HDVLO\ UHGXFHG 1D 0J &Df WKH DPRXQW RI K\GUD]LQH GHJUDGHG LQ WKH VXVSHQVLRQ ZDV LGHQWLFDO IRU DOO FDWLRQV f +\GUD]LQH FDQ DOVR EH R[LGL]HG E\ WKH FDWLRQ RQ WKH H[FKDQJH FRPSOH[ f +\GUD]LQH FDQ EH DGVRUEHG GLUHFWO\ WR FOD\ E\ H[FKDQJLQJ ZLWK FDWLRQV IURP WKH VXUIDFH 7KH DPRXQW RI VUEDWH KHOG E\ PRQWPRULOORQLWH VDWXUDWHG ZLWK FDWLRQV QRW LQ WKH WUDQVLWLRQ VHULHV ZDV VLPLODU IRU DOO H[FHSW PRQWPRULOORQLWH ZKLFK GLG QRW DGVRUE DQ\ K\GUD]LQH DW DOO f +\GUD]LQH FDQ DOVR EH DGVRUEHG WR WKH FOD\ E\ FRPSOH[LQJ ZLWK WKH FDWLRQ RQ WKH H[FKDQJH FRPSOH[ ZLWK UHGXFHG LURQ LQ WKH FOD\ VWUXFWXUH RU ZLWK HOHFWURQHJDWLYH JURXSV RQ WKH VXUIDFH RI WKH FOD\ f 7KH S+ RI WKH VXVSHQVLRQ KDV D VLJQLILFDQW HIIHFW RQ WKH GHJ DGDWLRQ RI K\GUD]LQH LQ WKH VXSHUQDWDQW VROXWLRQ 0ROLQHU f H[DPLQHG WKH HIIHFW RI 1DPRQWPRULOORQLWH SDUWLDOO\ VDWXUDWHG ZLWK &X RQ K\GUD]LQH DGVRUSWLRQ DQG GHJUDGDWLRQ 7KH UHVXOWV WKHQ ZHUH FRPSDUHG ZLWK WKH GHJUDGDWLRQ RI K\GUD]LQH LQ &X VROXWLRQV FRQWDLQLQJ WKH VDPH DPRXQW RI &X SHU XQLW YROXPH 6KH UHSRUWHG WKDW WKH FOD\ KDG D VWURQJ FDWDO\]LQJ HIIHFW RQ K\GUD]LQH GHJUDGDWLRQ HYHQ ZKHQ &X ZDV QRW SUHVHQW 7KH SUHVHQFH RI ERWK &X DQG FOD\ LQ WKH VXVSHQVLRQ DSSHDUHG WR EH DGGLWLYH DQG LQGHSHQGHQW RI RQH DQRWKHU 'HJUDGDWLRQ GXH WR &X LQ WKH FOD\ VXVSHQVLRQ ZDV RI WKH VDPH PDJQLWXGH DV GHJUDGDWLRQ LQ VROXWLRQ KDYLQJ RQO\ RQHWHQWK WKH DPRXQW RI &X DGGHG

PAGE 27

6XSSRUWLQJ 0ROLQHUfV REVHUYDWLRQV +D\HV HW DO f UHSRUWHG WKDW GHJUDGDWLRQ RI K\GUD]LQH E\ KRPRLRQLF GD\V ZDV LQGHSHQGHQW RI WKH H[FKDQJHDEOH FDWLRQ DV ORQJ DV WKH FDWLRQ ZDV QRW HDVLO\ UHGXFLEOH 7KLV VXJJHVWV WKDW WKH FOD\ LWVHOI ZDV WKH DFWLYH FRPSRQHQW LQ WKH R[LGDWLRQ RU FDWDO\WLF DXWR[LGDWLRQ RI K\GUD]LQH $GVRUSWLRQ 'HWHUPLQDWLRQ RI WKH H[WHQW RI K\GUD]LQH DGVRUSWLRQ E\ VRLO FRPSRQHQWV DQG VWDELOLW\ RI WKH FRPSOH[HV WKXV IRUPHG LV FULWLFDO WR WKH VWXG\ RI WKH FRPSRXQGfV HQYLURQPHQWDO IDWH $GVRUSWLRQ GHSHQGV RQ WKH UHDFWLYLW\ RI WKH VXUIDFH IXQFWLRQDO JURXSV SUHVHQW RQ VRLO FROORLGV VLOLFDWH FOD\ PLQHUDOV VXFK DV PRQWPRULOORQLWH DQG NDROLQLWH PHWDO R[LGHV DQG K\GUR[LGHV VXFK DV JRHWKLWH DQG JLEEVLWH DQG RUJDQLF PDWWHU VXFK DV KXPLF DQG IXOYLF DFLGVf DQG RQ WKH FKHPLFDO SURSHUWLHV RI WKH K\GUD]LQH LWVHOI $GVRUSWLRQ WR VLOLFDWHFOD\ PDWHULDOV LV KLJKO\ GHSHQGHQW RQ WKH SK\VLFDO FRQILJXUDWLRQ RI WKH FROORLGV DQG SDUWLFXODUO\ RQ WKH FKDUJH LPEDODQFH LQ WKH FOD\ VWUXFWXUH LWVHOI ,I WKHUH LV QR FDWLRQ LVRPRUSKLF VXEVWLWXWLRQ VXFK DV LV WKH FDVH ZLWK NDROLQLWH WKH VXUIDFH GLWULJRQDO FDYLWLHV RI WKH VLOLFDWH FOD\ DFW OLNH D YHU\ VRIW /HZLV EDVH 6SRVLWR f DQG DUH OLNHO\ WR FRPSOH[ RQO\ QHXWUDO GLSRODU PROHFXOHV OLNH ZDWHU RU XQSURWRQDWHG K\GUD]LQH 6XEVWLWXWLRQ LQ WKH RFWDKHGUDO OD\HU LV DEOH WR IRUP ZHDN FRPSOH[HV ZLWK FDWLRQV DV ZHOL DV ZLWK GLSRODU PROHFXOHV &DWLRQ VXEVWLWXWLRQ DOVR PD\ RFFXU LQ WKH WHWUDKHGUDO OD\HU LQ ZKLFK WKH VXUIDFH FKDUJH LV PRUH ORFDOL]HG DQG GLVWULEXWHV LWVHOI RYHU WKH WKUHH VXUIDFH R[\JHQ DWRPV DVVRFLDWHG ZLWK D VLQJOH WHWUDKHGURQ 7KLV PDNHV SRVVLEOH WKH HVWDEOLVKPHQW RI PXFK VWURQJHU ERQGV ZLWK GLSRODU PROHFXOHV DQG FDWLRQV DV

PAGE 28

ZHOO DV WKH IRUPDWLRQ RI LQQHUVSKHUH FRPSOH[HV EHWZHHQ WKH VLOR[DQH VXUIDFH DQG VHOHFWHG FDWLRQV 0ROLQHU f +D\HV HW DO f UHSRUWHG WKDW WKH IDFWRUV ZKLFK PRVW VWURQJO\ LQIOXHQFH WKH DGVRUSWLRQ DQGRU GHFRPSRVLWLRQ RI K\GUD]LQH DQG PRQRPHWK\OK\GUD]LQH LQ KRPRLRQLFDOO\H[FKDQJHG PRQWPRULOORQLWH FOD\ VXVSHQVLRQV LQFOXGHG VROXWLRQ S+ R[\JHQ VWDWXV DQG QDWXUH RI WKH H[FKDQJHDEOH FDWLRQ 7KH\ FRQFOXGHG WKDW ,Q WKH DEVHQFH RI GLVVROYHG R[\JHQ WKH SULPDU\ LQWHUDFWLRQ RI K\GUD]LQH ZLWK &D )H DQG $, PRQWPRULOORQLWH DQG NDROLQLWH ZDV DGVRUSWLRQ UDWKHU WKDQ GHFRPSRVLWLRQ 7KH H[DFW PHFKDQLVPV IRU K\GUD]LQH DGVRUSWLRQ WR FOD\ PLQHUDOV ZHUH SRVWXODWHG WR EH WKH UHSODFHPHQW RI SURWRQV IURP ZDWHU PROHFXOHV FRRUGLQDWHG WR DGVRUEHG FDWLRQV DW ORZ VROXWLRQ S+ DQG SURWRQDWLRQ RI WKH PRUH EDVLF K\GUD]LQH PROHFXOH E\ SURWRQV IURP WKH PRUH DFLGLF FRRUGLQDWHG ZDWHU DW KLJK S+ 7KH VHFRQG W\SH RI VXUIDFH IXQFWLRQDO JURXS SUHVHQW LQ PRVW LQRUJDQLF FROORLGV LV WKH K\GUR[\O JURXS 7KH EURNHQ ERQGV IRXQG DW WKH HGJHV RI PRVW VLOLFDWH FOD\V FUHDWH K\GUR[\O JURXSV ZKLFK PD\ EH FRRUGLQDWHG WR RQH RU WZR FDWLRQV 7KLV FKDUJH LPEDODQFH LV S+GHSHQGHQW DQG LQQHU DQG RXWHUVSKHUH FRPSOH[HV FDQ IRUP EHWZHHQ WKH DOXPLQRO DQG VLLDQRO JURXSV DQG DYDLODEOH FDWLRQV LQ VROXWLRQ +D\HV HW DO f IRXQG WKDW LQ VWXGLHV ZLWK K\GURXV R[LGHV RI )H DQG $O WKHUH ZDV HYLGHQFH RI ELQGLQJ DQG GHFRPSRVLWLRQ RI K\GUD]LQH VLPLODU WR WKDW IURP WKH VLOLFDWH FOD\ PLQHUDO VWXG\ 7KHLU UHVXOWV IRU JRHWKLWH VXJJHVWHG WKDW WKH IRUPDWLRQ RI VROXEOH K\GUD]LQHLURQOOf FRPSOH[HV DW S+ YDOXHV OHVV WKDQ ZDV WKH SULPDU\ UHDFWLRQ -RKQVRQ HW DO fXVLQJ QRQLQYDVLYH 5DPDQ VSHFWURVFRS\ DQG [UD\ GLIIUDFWLRQ VKRZHG H[SDQVLRQ RI WKH NDROLQLWH ODWWLFH XSRQ LQWHUFDODWLRQ E\

PAGE 29

K\GUD]LQH )75 VSHFWUD LQGLFDWHG WKDW VWURQJ K\GURJHQ ERQGV ZHUH IRUPHG EHWZHHQ WKH LQWHUFDODWHG K\GUD]LQH VSHFLHV DQG LQQHUVXUIDFH K\GUR[\O JURXSV RQ WKH NDROLQLWH LQWHUODPHOODU VXUIDFH 7KH WKLUG VRLOFROORLG JURXS RUJDQLF KXPXV KDV EHHQ REVHUYHG WR SURYLGH D VWURQJO\ VRUSWLYH VXUIDFH IRU PHWDOV DQG SRODU PROHFXOHV $ YDULHW\ RI IXQFWLRQDO JURXSV LQFOXGLQJ &2 &22+ SKHQROLF 2+ HQROLF 2+ ODFWRQH TXLQRQH K\GUR[\TXLQRQH HWKHU DOFRKROLF 2+ DPLQR1 DQG VXOIRQLF6 KDYH EHHQ UHSRUWHG IRU KXPLF VXEVWDQFHV 6WHYHQVRQ f 7KH DGVRUSWLYH DELOLW\ RI WKHVH JURXSV LV D IXQFWLRQ RI WKH S+ RI WKH VXVSHQVLRQ DQG GHSHQGV ODUJHO\ RQ WKH VWHUHRFKHPLFDO FRQILJXUDWLRQ RI WKH PROHFXOH ,Q D VWXG\ ZLWK KXPLF DFLG SUHSDUDWLRQV DW S+ ,VDDFVRQ DQG +D\HV f IRXQG WKDW K\GUDWHG K\GUD]LQH ZDV PRUH H[WHQVLYHO\ KHOG E\ + VDWXUDWHG KXPLF DFLG WKDQ E\ &D RU $, VDWXUDWHG KXPLF VXEVWDQFHV 7KLV UHIOHFWHG WKH JUHDWHU DELOLW\ RI WKH K\GUD]LQLXP LRQ WR H[FKDQJH ZLWK + DQG WR GLVUXSW K\GURJHQ ERQGLQJ WKDQ WR GLVUXSW WKH GLYDOHQW DQG SRO\YDOHQW FDWLRQ EULGJHV EHWZHHQ SRO\PHU VWUDQGV 7KH\ UHSRUWHG WKDW LQ KXPLF DFLG V\VWHPV H[FKDQJH E\ K\GUD]LQLXP LRQV FKHPLVRUSWLRQ WKURXJK LQWHUDFWLRQ RI K\GUD]LQH ZLWK KPDWH FDUERQ\O JURXSV DQG QRQVSHFLILF VRUSWLRQ LQYROYLQJ ZHDNO\ DQG VWURQJO\ KHOG K\GUD]LQLXP LRQV DQG K\GUD]LQH PROHFXOHV DUH WKH PDMRU VRUSWLYH SURFHVVHV 7KH\ FRQFOXGHG E\ UHSRUWLQJ WKDW GHFUHDVLQJ VROXWLRQ S+ WHQGV WR LQFUHDVH WKH LPSRUWDQFH RI LRQ H[FKDQJH EXW GHFUHDVHV WKH FRQWULEXWLRQ RI FKHPLVRUSWLRQ LQ WKH ELQGLQJ SURFHVV 'XH WR WKH SRODULW\ RI WKH 1+ ERQG K\GUD]LQH FDQ IRUP K\GURJHQ ERQGV ZLWK HOHFWURQHJDWLYH JURXSV RQ WKH VXUIDFHV RI RUJDQLF PDWWHU DV ZHOO DV FOD\V 'DYLV HW DW f XVLQJ GLIIXVHUHIOHFWDQFH VSHFWURVFRS\ IRXQG WKDW WKH

PAGE 30

SULPDU\ VXUIDFHK\GUD]LQH LQWHUDFWLRQ ZLWK VLOLFD VLOLFDDOXPLQD DQG DOXPLQD VXUIDFHV ZDV K\GURJHQ ERQGLQJ 8QSURWRQDWHG K\GUD]LQH LV D VWURQJ QXFOHRSKLOH WKDW FDQ WDNH SDUW LQ FRQGHQVDWLRQ UHDFWLRQV ZLWK FDUERQ\O JURXSV LQ KXPLF VXEVWDQFHV WR IRUP K\GUD]RQH 7KLV LV WKH EDVLV RI WKH SURFHGXUH XVHG E\ 6FKQLW]HU DQG 6NLQQHU f WR GHWHUPLQH WKH FRQFHQWUDWLRQ RI FDUERQ\O JURXSV LQ VRLO RUJDQLF PDWWHU ,VDDFVRQ DQG +D\HV f VKRZHG WKDW WKLV UHDFWLRQ WDNHV SODFH HYHQ DW S+ 7KH\ DOVR SRLQWHG RXW WKDW WKH PD[LPXP UDWHV VKRXOG RFFXU ZKHQ WKH S+ RI WKH PHGLD LV FORVH WR WKH SND RI K\GUD]LQH LH QHDU S+ f 7KH FRQGHQVDWLRQ FRPSOH[ LV DOVR VXEMHFW WR K\GURO\VLV DQG K\GUD]LQH FDQ WDNH SDUW DV ZHOO LQ VXEVWLWXWLRQ UHDFWLRQV DW SRVLWLRQV DFWLYDWHG E\ FDUERQ\O JURXSV 6]DER HW DO ,VDDFVRQ DQG +D\HV f ,RQ ([FKDQJH ,RQ H[FKDQJH DQG SDUWLFXODUO\ FDWLRQ H[FKDQJH LQ VRLOV LV D UHYHUVLEOH SURFHVV ZKHUHE\ FDWLRQV KHOG RQ WKH VXUIDFH RI VRLO PLQHUDOV DQG HYHQ ZLWKLQ WKH FU\VWDO IUDPHZRUN RI D IHZ PLQHUDO VSHFLHV SOXV WKRVH ZKLFK DUH KHOG E\ FHUWDLQ RUJDQLF VSHFLHV FDQ EH UHYHUVLEO\ UHSODFHG E\ WKRVH RI VDOW VROXWLRQV DQG DFLGV &KDSPDQ f 7KLV SURFHVV LV RIWHQ JURXSHG DQG GLVFXVVHG ZLWK VHYHUDO RWKHU SURFHVVHV FROOHFWLYHO\ NQRZQ DV fDGVRUSWLRQf 6SHFLDO QRWLFH RI LWV LPSRUWDQFH LV JLYHQ KHUH EHFDXVH H[SHULPHQWDO HYLGHQFH LQGLFDWHV WKDW LW SOD\V D PDMRU UROH LQ WKH UHWHQWLRQ RI K\GUD]LQH E\ VRLOV 6RLOV JHQHUDOO\ SRVVHVV D QHJDWLYH HOHFWURVWDWLF FKDUJH RI D SHUPDQHQW RU S+GHSHQGHQW QDWXUH $V SUHYLRXVO\ GLVFXVVHG WKH SHUPDQHQW FKDUJH LV WKH UHVXOW RI LVRPRUSKRXV VXEVWLWXWLRQ ZLWKLQ WKH VWUXFWXUHV RI OD\HUVLOLFDWH PLQHUDOV &DWLRQV RI ORZHU YDOHQFH DUH VXEVWLWXWHG IRU RFWDKHGUDOO\ RU WHWUDKHGUDOO\

PAGE 31

FRRUGLQDWHG FDWLRQV UHVXOWLQJ LQ D QHW QHJDWLYH FKDUJH 7KH S+GHSHQGHQW FKDUJH UHVXOWV IURP EURNHQ ERQGV DW PLQHUDO HGJHV DQG H[WHUQDO VXUIDFHV GLVVRFLDWLRQ RI DFLGLF IXQFWLRQDO JURXSV RQ RUJDQLF FRPSRXQGV DQG WKH SUHIHUHQWLDO DGVRUSWLRQ E\ FKHPLFDO UHDFWLRQf RI FHUWDLQ LRQV RQ R[LGHPLQHUDO VXUIDFHV 7KH PDJQLWXGH RI VXFK FKDUJH LV GHSHQGHQW XSRQ VROXWLRQ S+ HOHFWURO\WH OHYHO YDOHQFH RI WKH FRXQWHULRQ GLHOHFWULF FRQVWDQW RI WKH PHGLXP DQG QDWXUH RI WKH DQLRQ LQ WKH VROXWLRQ SKDVH 7KH SHUPDQHQW FKDUJH DOVR PD\ EH SDUWLDOO\ QHXWUDOL]HG E\ VWURQJO\ DGVRUEHG K\GUR[\DOXPLQXP SRO\PHUV WKDW FDUU\ D QHW SRVLWLYH FKDUJH $V WKH S+ ULVHV WKHVH SRO\PHUV DUH UHWDLQHG DV SDUWLDOO\ QHXWUDOL]HG $,2+f SURJUHVVLYHO\ IUHHLQJ PRUH QHJDWLYH VLWHV IRU SDUWLFLSDWLRQ LQ QRUPDO FDWLRQ H[FKDQJH UHDFWLRQV 1HJDWLYH VLWHV FDQ EH VLPLODUO\ QHXWUDOL]HG E\ WKH DGVRUSWLRQ RI SRVLWLYHO\ FKDUJHG PLQHUDO SDUWLFOHV VXFK DV K\GUR[LGHV 7KH SRVLWLYH FKDUJHV RI VXFK SDUWLFOHV RULJLQDWH IURP WKH VSHFLILF DGVRUSWLRQ RI SURWRQV RQ R[LGHK\GUR[LGH VXUIDFHV ZLWK WKHLU PDJQLWXGH GHSHQGLQJ RQ WKH LRQLF VWUHQJWK DQG S+ RI WKH VROXWLRQ 6XFK FKDUJH LV JHQHUDOO\ QHXWUDOL]HG DW S+ 5KRDGHV f 7KH SHUPDQHQW DQG S+GHSHQGHQW FKDUJHV JHQHUDWH D QHW H[FHVV RI QHJDWLYH FKDUJH RQ VRLOV 7KLV H[FHVV FKDUJH FDQ EULQJ DERXW WKH IRUPDWLRQ RI D GLIIXVH OD\HU RI SRVLWLYHO\ FKDUJHG ,RQV DERXW WKH PLQHUDO RU KXPLF FROORLG ZLWK WKH GHQVLW\ RI WKLV OD\HU EHLQJ JUHDWHU DW WKH VXUIDFH DQG WKHQ GHFUHDVLQJ H[SRQHQWLDOO\ WR WKH OHYHO RI WKH EXON VROXWLRQ 7KLV W\SH RI UHDFWLRQ KDV LPSRUWDQW LPSOLFDWLRQV LQ WKH DGVRUSWLRQ RI LQRUJDQLF LRQV DQG LRQL]HG RUJDQLF PROHFXOHV 5R\ HWD f

PAGE 32

6ROXWH 7UDQVSRUW 3XEOLVKHG OLWHUDWXUH RQ WKH VXEMHFW RI K\GUD]LQH WUDQVSRUW LQ VRLOV LV H[WUHPHO\ OLPLWHG 2QO\ RQH UHSRUW %UDXQ DQG =LUUROOL 6f RI LQYHVWLJDWLRQV LQWR K\GUD]LQH PRYHPHQW WKURXJK VRLOV FRXOG EH ORFDWHG 7KDW UHSRUW DQG H[WHQVLYH ZRUN E\ +D\HV HW DO f RQ LQWHUDFWLRQV RI K\GUD]LQH ZLWK VRLO FRPSRQHQWV LQGLFDWH WKDW K\GUD]LQH LV KLJKO\ UHDFWLYH LQ VRLOZDWHU V\VWHPV $FFRUGLQJ WR +D\HV K\GUD]LQH LQWHUDFWLRQV LQ VRLO LQFOXGH DW OHDVW IRXU SURFHVVHV f ,Q DFLGLF VRLOV K\GUD]LQH LV K\GURO\]HG WR K\GUD]LQLXP 1+f 7KLV UHDFWLRQ LV DW HTXLOLEULXP DW S+ WKH S.D RI K\GUD]LQH +\GUD]LQLXP XQGHUJRHV H[FKDQJH ZLWK FDWLRQV SUHVHQW RQ WKH VRLO VXUIDFH f 8QGHU DONDOLQH FRQGLWLRQV K\GUD]LQH PD\ EH GHJUDGHG E\ WKH SURFHVV RI FDWDO\WLF R[LGDWLRQ LQ WKH SUHVHQFH RI VXFK PHWDOV DV )H &Xr $O DQG 0Q 'HJUDGDWLRQ SURGXFWV DUH OLNHO\ WR LQFOXGH K\GUD]RQH 1+ LRQV DQG 1 JDV f 7KH IRUPDWLRQ RI K\GUD]LQH FRPSOH[HV ZLWK DGVRUEHG FDWLRQV RQ WKH VXUIDFHV RI FOD\ PLQHUDOV R[LGHV DQG RUJDQLF PDWWHU PD\ SURYLGH DQ HQYLURQPHQW IRU UHYHUVLEOH DGVRUSWLRQ PHFKDQLVPV f &RQGHQVDWLRQ UHDFWLRQV PD\ SURYLGH DQ LUUHYHUVLEOH FKHPLVRUSWLRQ RI K\GUD]LQH E\ KXPLF FRPSRQHQWV RI WKH VRLO 0DWKHPDWLFDO PRGHOV IRU GHVFULELQJ WKH PRYHPHQW RI K\GUD]LQH WKURXJK ZDWHUVDWXUDWHG VRLO PXVW LQFOXGH FRPSRQHQWV IRU LRQ H[FKDQJH FDWDO\WLF R[LGDWLRQ DQG UHYHUVLEOH DQG LUUHYHUVLEOH VRUSWLRQ 7KH QHW HIIHFW RI WKHVH LQWHUDFWLRQV ZRXOG EH WR UHWDUG WKH PLJUDWLRQ RI K\GUD]LQHW\SH IXHOV %UDXQ DQG

PAGE 33

=LUUROOL 6f WKURXJK QDWXUDO VRLOV ,I WKH VRLO LV QRW ZDWHUVDWXUDWHG YRODWLOL]DWLRQ RI K\GUD]LQH ZRXOG EH DQ DGGLWLRQDO SURFHVV IRU LQFOXVLRQ LQ WKH PRGHO 6LQFH LQYHVWLJDWLRQV RI WKH PRUH FRPSOH[ FDVH RI K\GUD]LQH WUDQVSRUW LQ SDUWLDOO\ ZDWHUVDWXUDWHG VRLO KDYH QRW EHHQ UHSRUWHG LQ WKH SXEOLVKHG OLWHUDWXUH VXFK UHVHDUFK ZRXOG ORJLFDOO\ IROORZ WKH ZRUN SUHVHQWHG KHUH IRU VDWXUDWHG VRLOV 0DQ\ LQYHVWLJDWRUV KDYH JLYHQ YDOXDEOH LQVLJKW LQWR PHFKDQLVPV RI VROXWH WUDQVSRUW LQ SRURXV PHGLD 5DR HW DO 3DUNHU DQG -DUGLQH %RXFKDUG HW DO .RQLNRZ DQG 0HUFHU 6HOLP DQG $PDFKHU %DUQHV %DYH\H DQG 9DORFFKL :LHUHQJD DQG YDQ *HQXFKWHQ f 0DWKHPDWLFDO PRGHOV IRU WKH PRYHPHQW RI UHDFWLYH FKHPLFDOV LQ VRLO JHQHUDOO\ DVVXPH WKDW WUDQVSRUW RFFXUV SULPDULO\ E\ PDVV IORZ DV SDUW RI WKH PRELOH VRLO VROXWLRQ WKDW GLVSODFHG DQG GLVSODFLQJ VROXWLRQV XQGHUJR PL[LQJ GXH WR K\GURG\QDPLF GLVSHUVLRQ WKDW VROXWH PRYHPHQW PD\ EH UHWDUGHG GXH WR SURFHVVHV VXFK DV LRQ H[FKDQJH UHYHUVLEOH DGVRUSWLRQ LUUHYHUVLEOH FKHPLVRUSWLRQ IRUPDWLRQ RI FKHPLFDO FRPSOH[HV DQG FKHPLFDO SUHFLSLWDWLRQ DQG WKDW WKH VROXWH LWVHOI PD\ EH DOWHUHG E\ PLFURELDO GHJUDGDWLRQ FKHPLFDO GHJUDGDWLRQ HWF 0DQVHOO HW DO f &KHPLFDO DQG SK\VLFDO NLQHWLF SURFHVVHV FDQ EH FULWLFDO WR WKH PRYHPHQW RI UHDFWLYH VROXWHV WKURXJK DJJUHJDWHG VRLO DV OLTXLG IORZ YHORFLW\ LV LQFUHDVHG 0DWKHPDWLFDO WUHDWPHQW RI PDQ\ RI WKHVH PHFKDQLVPV KDV EHHQ GLVFXVVHG E\ 1LHOVHQ HW DO f 7KH WUDQVSRUW RI K\GUD]LQH XQGHU ZDWHU VDWXUDWHG VRLO FRQGLWLRQV PD\ EH H[SHFWHG WR FRQIRUP WR WKH SULQFLSOHV RI DGYHFWLYHGLVSHUVLYH WUDQVSRUW ZLWK WKH FKHPLFDO DQG PLFURELDO UHDFWLRQV DFWLQJ DV UHWDUGDWLRQ RU GHJUDGDWLRQ WHUPV 7KH PDWKHPDWLFDO GHYHORSPHQW RI VROXWH WUDQVSRUW XQGHU VWHDG\ VDWXUDWHG IORZ EHJLQV ZLWK WKH DVVXPSWLRQ WKDW WKH VROXWH LV SDUWLWLRQHG EHWZHHQ WKH VROXWLRQ

PAGE 34

DQG DGVRUEHG SKDVHV 7KH WRWDO PDVV RI VROXWH 0 SHU XQLW YROXPH RI VRLO LV WKH VXP RI WKH DPRXQWV LQ WKH VROXWLRQ DQG DGVRUEHG SKDVHV 0 ^&S6f >@ ZKHUH G YROXPHWULF VRLOZDWHU FRQWHQW FP FPn VRLOf & VROXWLRQSKDVH FRQFHQWUDWLRQ PROF FPrf S VRLO EXON GHQVLW\ J VRLO FPn VRLOf DQG 6 PDVV RI VROXWH DGVRUEHG SHU JUDP RI VRLO PROF Jn VRLOf 6XEVWLWXWLRQ RI HTXDWLRQ >@ LQWR WKH FRQWLQXLW\ HTXDWLRQ 0 B >@ W [ f LQ ZKLFK -V VROXWH IOX[ J Vnf SURYLGHV DQ DSSURSULDWH JHQHUDOL]HG SDUWLDO GLIIHUHQWLDO HTXDWLRQ WR GHVFULEH FRQYHFWLYHGLVSHUVLYH WUDQVSRUW RI D UHDFWLYH VROXWH LQ SRURXV PHGLD >@ %\ H[SDQGLQJ WKH VROXWHIOX[ WHUP LQ JUHDWHU GHWDLO

PAGE 35

ZKHUH 6& 'f§ GLVSHUVLYH IOX[ ZLWK UHSUHVHQWLQJ WKH K\GURG\QDPLF [ GLVSHUVLRQ FRHIILFLHQW FP Vfff DQG T& FRQYHFWLYH IOX[ J VB FUUUf >@ >@ HTXDWLRQ >@ EHFRPHV WKH QRQOLQHDU SDUWLDO GLIIHUHQWLDO HTXDWLRQ A^H& 36f A'AfAT4 2W 2; 2; •; >@ )RU WKH FRQGLWLRQ RI VWHDG\ VSDWLDOO\ XQLIRUP ZDWHU IORZ LQ SRURXV PHGLD WKH FRQVWDQWV PD\ EH PRYHG RXWVLGH WKH SDUWLDO GLIIHUHQWLDOV D& 6 & & f§ Sf§ 'f§Df§ 6W + 6W [ T [ >@ (TXDWLRQ >@ FDQ EH VLPSOLILHG E\ GLYLGLQJ WKURXJK E\ 7KXV 6& f§ UDWH RI FKDQJH RI WKH VROXWLRQSKDVH FRQFHQWUDWLRQ W R 66 UDWH RI FKDQJH RI WKH VRUEHGSKDVH FRQFHQWUDWLRQ RW GLVSHUVLYH PL[LQJf WUDQVSRUW WHUP DQG WKH DYHUDJH SRUHZDWHU YHORFLW\ ZKLFK UHVXOWV LQ FRQYHFWLYH WUDQVSRUW

PAGE 36

,Q RUGHU WR VROYH HTXDWLRQ >@ D IXQFWLRQDO UHODWLRQVKLS PXVW EH VSHFLILHG EHWZHHQ 6 DQG & 7KHUH DUH D QXPEHU RI ZD\V WR GHVFULEH WKLV UHODWLRQVKLS GHSHQGLQJ XSRQ WKH SK\VLFDO SURFHVV IHOW WR EH RI SUHGRPLQDQW LPSRUWDQFH 2EVHUYDWLRQ RI WKH DGVRUSWLRQ LVRWKHUPV DQG EUHDNWKURXJK FXUYHV SHUIRUPHG LQ FRQMXQFWLRQ ZLWK WKLV LQYHVWLJDWLRQ VXJJHVWV WKDW FDWLRQ H[FKDQJH SOD\V D PDMRU UROH LQ WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH DW WKH S+ RI WKHVH VRLO KRUL]RQV 7R GHVFULEH FRQYHFWLYHGLVSHUVLYH WUDQVSRUW RI Q FDWLRQ VSHFLHV LQ ZDWHU VDWXUDWHG VRLO GXULQJ VWHDG\ OLTXLG IORZ D FRXSOHG V\VWHP RI Q QRQOLQHDU SDUWLDO GLIIHUHQWLDO HTXDWLRQV PXVW EH VROYHG IRU &c[Wf VF R6 e 6W 6W 6[ 6[ n LQ ZKLFK >@ &c WKH FRQFHQWUDWLRQ PROF QUf RI VSHFLHV L LQ WKH VROXWLRQSKDVH 6c WKH FRQFHQWUDWLRQ PROF UUUf RI VSHFLHV L LQ WKH H[FKDQJHSKDVH WKH K\GURG\QDPLF GLVSHUVLRQ FRHIILFLHQW P Vnf DVVXPHG WR EH GHSHQGHQW RQ SRUHZDWHU YHORFLW\ Y WKH 'DUFH\ IOX[ P Vf DFFRUGLQJ WR 'Yf 'Y >@ ZKHUH WKH PROHFXODU GLIIXVLRQ FRHIILFLHQW PVff DQG WKH GLVSHUVLYLW\ Pf 7KH H[SUHVVLRQ IRU WKH H[FKDQJHSKDVH FRQFHQWUDWLRQ 66-6Wf LQ HTXDWLRQ >@ PD\ EH UHODWHG WR WKH VROXWLRQSKDVH FRQFHQWUDWLRQ XVLQJ DQ

PAGE 37

DSSURDFK VLPLODU WR WKDW RI 9DORFFKL HW DO f DV GHVFULEHG E\ 0DQVHOO HW DO f 6 M B I X &W I .f 6&L 6W A b M 6W ZKHUH DQG t ; Lr I ? UB/ UL Lf ?AL ZKHUH Uc WKH YDOHQFH RI LRQ VSHFLHV L DQG U WKH YDOHQFH RI DQ\ DGGLWLRQDO VSHFLHV >@ >@ >@ >@ 7KH *DLQHV7KRPDV ELQDU\ H[FKDQJH VHOHFWLYLW\ FRHIILFLHQW XVHG LQ HTXDWLRQV >@ DQG >@ H[SUHVVHV WKH SUHIHUHQWLDO UHODWLRQVKLS EHWZHHQ VROXWLRQ DQG H[FKDQJHSKDVHV DQG LV JLYHQ E\ UU U-f @ UL nnf 8O &->@ ZKHUH 6n DQG 6n UHSUHVHQW HTXLYDOHQW IUDFWLRQV RI LRQV L DQG M LQ WKH H[FKDQJH SKDVH 7KH WRWDO FRQFHQWUDWLRQ LQ WKH H[FKDQJH SKDVH LV DVVXPHG FRQVWDQW DQG DQG \M DUH WKH DFWLYLW\ FRHIILFLHQWV IRU LRQV L DQG M LQ WKH VROXWLRQ SKDVH

PAGE 38

9DORFFKL HW DO f VWDWHG WKDW LQFOXVLRQ RI VROXWLRQSKDVH DFWLYLW\ FRHIILFLHQWV LV RQO\ QHFHVVDU\ IRU WKH GHVFULSWLRQ DQG SUHGLFWLRQ RI FDWLRQ H[FKDQJH LI LRQLF VWUHQJWKV FRUUHVSRQGLQJ WR H[SHULPHQWDO LVRWKHUPV GLIIHU IURP WKRVH XVHG LQ WUDQVSRUW H[SHULPHQWV $ GHWDLOHG QXPHULFDO PRGHO ZKLFK FRPELQHV WUDQVLHQW XQVDWXUDWHG IORZ DQG WUDQVSRUW LQFOXGLQJ YDULDEOH WRWDO VROXWLRQ FRQFHQWUDWLRQ DQG ELQDU\ H[FKDQJH VHOHFWLYLW\ FRHIILFLHQWV WKDW YDU\ ZLWK WRWDO VROXWLRQ FRQFHQWUDWLRQ DQG ZLWK LRQ FRQFHQWUDWLRQ ZLWKLQ WKH VROXWLRQ SKDVH LV SUHVHQWHG E\ 0DQVHOO HW DO f 1RQHDXLOLEULXP 6RUSWLRQ 0RVW FKHPLFDO IDWH DQG WUDQVSRUW PRGHOV DUH EDVHG RQ WKH DVVXPSWLRQ RI DQ LQVWDQWDQHRXV HTXLOLEULXP HVWDEOLVKHG EHWZHHQ VROXWLRQSKDVH DQG VRUEHG SKDVH VROXWH FRQFHQWUDWLRQV 6XFK FRQGLWLRQV DUH QRW DOZD\V SUHVHQW 1RQHTXLOLEULXP RU UDWHOLPLWHG VRUSWLYH SURFHVVHV KDYH EHHQ ZHOO GRFXPHQWHG DQG KDYH EHHQ JURXSHG LQWR WZR JHQHUDO FODVVHV WUDQVSRUW UHODWHG DQG VRUSWLRQUHODWHG %UXVVHDX DQG 5DR %UXVVHDX HW DO f 7UDQVSRUWUHODWHG QRQHTXLOLEULXP RIWHQ UHIHUUHG WR DV SK\VLFDO QRQHTXLOLEULXP UHVXOWV IURP WKH H[LVWHQFH RI D KHWHURJHQHRXV IORZ GRPDLQ 7KH LQIOXHQFH RI PDFURVFRSLF KHWHURJHQHLWLHV VXFK DV DJJUHJDWHV PDFURSRUHV DQG VWUDWLILHG PHGLD RQ VROXWH WUDQVSRUW DOVR KDV EHHQ ZHOO GRFXPHQWHG %UXVVHDX DQG 5DR f 7UDQVSRUWUHODWHG QRQHTXLOLEULXP DIIHFWV ERWK VRUELQJ DQG QRQn VRUELQJ VROXWHV 6RUSWLRQUHODWHG QRQHTXLOLEULXP PD\ UHVXOW IURP FKHPLFDO QRQHTXLOLEULXP RU IURP UDWHOLPLWHG GLIIXVLYH PDVV WUDQVIHU &KHPLFDO QRQHTXLOLEULXP LV FDXVHG E\ UDWHOLPLWHG LQWHUDFWLRQV EHWZHHQ WKH VUEDWH DQG

PAGE 39

VRUEHQW 6SHFLILF VRUEDWHVRUEHQW LQWHUDFWLRQV PD\ EH UHODWLYHO\ XQLPSRUWDQW IRU FKDUJHPHGLDWHG VRUSWLRQ LRQ H[FKDQJHf VLQFH VXFK LQWHUDFWLRQ LV WKRXJKW WR EH HOHFWURVWDWLFDOO\ GULYHQ UDWKHU WKDQ FKHPLFDOO\ PHGLDWHG (OHFWURVWDWLFDOO\ FKDUJHG VRUEDWHV KRZHYHU DUH NQRZQ WR UHDFW ZLWK RUJDQLF FRPSRQHQWV RI WKH VRUEHQW ,VDDFVRQ DQG +D\HV 6f DQG UDWHOLPLWHG GLIIXVLYH PDVV WUDQVIHU ZLWKLQ WKH RUJDQLF SKDVH PD\ RFFXU 7KUHH GLIIHUHQW SURFHVVHV LQYROYLQJ GLIIXVLYH PDVV WUDQVIHU FDQ FDXVH VRUSWLRQUHODWHG QRQHTXLOLEULXP %UXVVHDX HWD f ILOP GLIIXVLRQ UHWDUGHG LQWUDSDUWLFLH GLIIXVLRQ DQG LQWUDVRUEHQW GLIIXVLRQ 5HVHDUFKHUV KDYH VKRZQ WKDW ILOP GLIIXVLRQ LV JHQHUDOO\ LQVLJQLILFDQW LQ FRPSDULVRQ WR RWKHU PHFKDQLVPV %UXVVHDX DQG 5DR f DQG WKXV ZLOO QRW EH GLVFXVVHG IXUWKHU KHUH 5HWDUGHG LQWUDSDUWLFLH GLIIXVLRQ LQYROYHV DTXHRXVSKDVH GLIIXVLRQ RI VROXWH ZLWKLQ SRUHV RI JUDQXODU VRLO PDWHULDO DQG LV PHGLDWHG E\ LQVWDQWDQHRXV VRUSWLRQ WR SDUWLFOH ZDOOV :X DQG *VFKZHQG %DOO HW DO f :RUN E\ &KDQWRQJ DQG 0DVVRWK f HVWLPDWHG WKDW WKH SRUH GLDPHWHU UHTXLUHG WR SURGXFH DSSUHFLDEOH GLIIXVLYH KLQGUDQFH ZDV DSSUR[LPDWHO\ QP RU OHVV 7KH SRUHVL]H GLVWULEXWLRQ RI D VDQG\ DTXLIHU PDWHULDO DV PHDVXUHG E\ PHUFXU\ SRURVLPHWU\ DQG QLWURJHQ GHVRUSWLRQ E\ %DOO HW DO f UHYHDOHG WKDW b DQG JUHDWHU WKDQ b RI WKH LQWHUQDO SRUH YROXPH FRPSULVHG SRUHV ZKRVH GLDPHWHUV H[FHHGHG QP DQG QP UHVSHFWLYHO\ %UXVVHDX HW DO f FRQFOXGHG WKDW LI WKHVH UHVXOWV DUH DW DOO UHSUHVHQWDWLYH RI RWKHU VDQG\ PDWHULDOV LW ZRXOG DSSHDU WKDW LQWUDSDUWLFLH GLIIXVLRQ PD\ QRW EH LPSRUWDQW IRU PDQ\ VROXWHV RI LQWHUHVW DV ZHOO ,QWUDRUJDQLF GLIIXVLRQ LQYROYHV WKH GLIIXVLYH PDVV WUDQVIHU RI VUEDWH ZLWKLQ WKH RUJDQLF PDWUL[ RI WKH VRUEHQW ,QWUDRUJDQLF GLIIXVLRQ ZDV SURSRVHG DV WKH OLPLWLQJ PHFKDQLVP IRU VRUSWLRQ RI RUJDQLF FKHPLFDOV DV HDUO\ DV E\

PAGE 40

+DPDNHU VL DO> f DQG KDV VLQFH EHHQ HPEUDFHG E\ %UXVVHDX DQG 5DR f )RU WKH LQWUDRUJDQLF GLIIXVLRQ PRGHO WKH SULPDU\ DVVXPSWLRQ LV WKDW VRUEHQW RUJDQLF PDWWHU LV D SRO\PHULFW\SH VXEVWDQFH ZLWKLQ ZKLFK VUEDWH FDQ GLIIXVH 7KH RUJDQLF PDWWHU DVVRFLDWHG ZLWK QDWXUDO VRUEHQWV KDV EHHQ UHSRUWHG WR EH D IOH[LEOH FURVVOLQNHG EUDQFKHG DPRUSKRXV QRQFU\VWDOOLQHf SRO\HOHFWURO\WLF VXEVWDQFH +D\HV DQG 6ZLIW 6FKQLW]HU 6WHYHQVRQ &KRXGKU\ f 'LUHFW FRQILUPDWLRQ RI WKH fSRURXVf QDWXUH RI RUJDQLF PDWWHU KDV DOVR EHHQ UHSRUWHG 'HJHQV DQG 0RSSHU 6FKQLW]HU f 7KH FRQFHSWXDOL]DWLRQ XSRQ ZKLFK WKH LQWUDRUJDQLF GLIIXVLRQ PRGHO LV EDVHG LV FRQVLVWHQW ZLWK WKH JHQHUDOO\ DFFHSWHG YLHZ RI WKH SURFHVV E\ ZKLFK VRUEHQWV DUH DGVRUEHG E\ QDWLYH RUJDQLF PDWWHU %UXVVHDX HW DO f

PAGE 41

&+$37(5 0(7+2'6 $1' 0$7(5,$/6 5HVHDUFK 2EMHFWLYHV 7KH H[SHULPHQWDO GHVLJQ RI WKLV VWXG\ KDV DV LWV SXUSRVH WR LGHQWLI\ WKH WUDQVSRUW SURFHVVHV DSSOLFDEOH WR K\GUD]LQH LQ ZDWHUVDWXUDWHG VRLOV DQG WR WKHQ TXDQWLI\ WKHP WKURXJK VWLUUHG EDWFK VXVSHQVLRQV DQG FKHPLFDO DQDO\VLV RI VRLOFROXPQ HIIOXHQW 3HUWLQHQW VRLO FKDUDFWHULVWLFV ZHUH GHWHUPLQHG DQG WKH HIIHFWV RI VROXWLRQ FRQFHQWUDWLRQ ZDWHU YHORFLW\ DQG WLPH RI K\GUD]LQH H[SRVXUH WR VRLO ZHUH HYDOXDWHG 7KUHH VHTXHQWLDO KRUL]RQV IURP D SURILOH RI FRDUVHWH[WXUHG VRLO ZHUH REWDLQHG DQG FKDUDFWHUL]HG DV WR SDUWLFOHVL]H GLVWULEXWLRQ RUJDQLF FDUERQ FRQWHQW HOHPHQWDO FRPSRVLWLRQ DQG PLQHUDORJ\ 6WLUUHG EDWFK VXVSHQVLRQV ZHUH XVHG WR GHWHUPLQH VRLO EXIIHULQJ FDSDFLW\ S+ DQG FDWLRQ H[FKDQJH FDSDFLW\ 7KH LQIOXHQFH RI WKH RUJDQLF IUDFWLRQ RI WKH VRLO ZDV HYDOXDWHG E\ FRPSDULQJ VRLOV ZLWK DQG ZLWKRXW DSSUHFLDEOH RUJDQLF FDUERQ FRQWHQW 5DWKHU WKDQ UHPRYH WKH RUJDQLF FDUERQ E\ DQ R[LGDWLYH SURFHVV ZKLFK PLJKW GDPDJH PLFURVXUIDFHV VDPSOHV RI WKUHH VHTXHQWLDO KRUL]RQV RI WKH VDPH VRLO ZHUH REWDLQHG HDFK FRQWDLQLQJ VXFFHVVLYHO\ OHVV RUJDQLF FDUERQ )ORZ H[SHULPHQWV XVLQJ VDWXUDWHG VRLO FROXPQV ZHUH SHUIRUPHG WR GHWHUPLQH WKH GLVSHUVLRQ FRHIILFLHQW IRU VDWXUDWHG IORZ LQ HDFK KRUL]RQ DQG WR HYDOXDWH WKH HIIHFW RI FKDQJHV LQ SRUHZDWHU YHORFLW\ DQG K\GUD]LQH FRQFHQWUDWLRQ RQ K\GUD]LQH UHWHQWLRQ

PAGE 42

7ZR VWHDG\VWDWH VROXWH IOX[ UDWHV ZHUH HYDOXDWHG FP KB DQG FP IU 7KHVH IOX[HV FRUUHVSRQG WR 'DUF\ YHORFLWLHV RI [ 2n FP VB DQG [f FP Vf DQG WR SRUHZDWHU YHORFLWLHV RI DSSUR[LPDWHO\ [ 2f FP Vn DQG [ FP V UHVSHFWLYHO\ DVVXPLQJ D VRLO SRURVLW\ RI 7KUHH LQIOXHQW FRQFHQWUDWLRQV RI K\GUD]LQH ZHUH HYDOXDWHG IRU HDFK IOXLG IOX[ 7KHVH ZHUH SUHSDUHG DV ORZ DSSUR[LPDWHO\ PPRO /ff PHGLXP DSSUR[LPDWHO\ PPRO /rf DQG KLJK DSSUR[LPDWHO\ PPRO /Bf DV K\GUD]LQH K\GUDWH &ROXPQ HIIOXHQW IUDFWLRQV ZHUH DQDO\]HG IRU K\GUD]LQH FDWLRQV DQG LQ VRPH FDVHV S+ LQ RUGHU WR SURYLGH GDWD IRU DQDO\VLV 'DWD DQDO\VLV ZDV GRQH E\ QXPHULFDOO\ LQWHJUDWLQJ FRPSRQHQWV RI HDFK EUHDNWKURXJK FXUYH IRU FRPSRQHQW PDVV ([SHULPHQWDO SDUDPHWHUV DQG FROXPQ LQIOXHQW FRPSRQHQWV ZHUH RFFDVLRQDOO\ DOWHUHG WR PRUH HDVLO\ LVRODWH WKH HIIOXHQW IUDFWLRQ LQ RUGHU WR LGHQWLI\ DQG TXDQWLI\ VLJQLILFDQW SURFHVVHV 7KH WLPLQJ RI EUHDNWKURXJK DQG UHODWLYH SRVLWLRQ RI EUHDNWKURXJK FRPSRQHQWV DOVR ZHUH H[DPLQHG WR SULRULWL]H WKH LQIOXHQFH RI YDULRXV IDWH DQG WUDQVSRUW SURFHVVHV 6RLO &KDUDFWHUL]DWLRQ 6DPSOHV RI WKH $S ( DQG ( KRUL]RQV RI DQ $UUHGRQGR ILQH VDQG ZHUH REWDLQHG IURP D VLWH LQ 1: $ODFKXD &RXQW\ )ORULGD PLOHV HDVW DQG PLOHV QRUWK RI WKH LQWHUVHFWLRQ RI 6WDWH 5RDGV DQG DQG PLOHV VRXWK RI D SULYDWH SDYHG URDG $UUHGRQGR ILQH VDQG LV FODVVLILHG DV D ORDP\ VLOLFHRXV K\SRWKHUPLF *URVVDUHQLF 3DOHXGXOW 7KRPDV HW DL f DQG LV W\SLFDO RI WKH ZHOOGUDLQHG VRLOV RI )ORULGD 7KH $S KRUL]RQ DW WKH FROOHFWLRQ VLWH H[WHQGHG IURP WKH VXUIDFH WR D GHSWK RI FP ZLWK WKH ( KRUL]RQ WKHQ H[WHQGLQJ WR FP DQG WKH ( KRUL]RQ WR FP 7KH KRUL]RQV ZHUH FOHDUO\ GLVWLQJXLVKHG

PAGE 43

YLVXDOO\ IURP RQH DQRWKHU ,Q WKH VRLO SURILOH 6DPSOHV RI HDFK KRUL]RQ ZHUH WDNHQ XVLQJ D FOHDQ VKRYHO IURP VXIILFLHQWO\ IDU IURP WKH KRUL]RQ ERXQGDULHV WR SUHFOXGH FRQWDPLQDWLRQ IURP DERYH RU EHORZ 6HSDUDWHO\ VRLO PDWHULDOV ZHUH VLHYHG WKURXJK D PP PHVK VFUHHQ VSUHDG RQ D WUD\ DLUGULHG IRU WKUHH GD\V PL[HG DQG VWRUHG LQ JDRQ SODVWLF EXFNHWV SULRU WR XVH 3DUWLFOH6L]H 'LVWULEXWLRQ 7KH GLVWULEXWLRQ RI SDUWLFOH VL]HV LQ D VRLO PDWUL[ KDV D VLJQLILFDQW HIIHFW RQ WKH UHWHQWLRQ RI ZDWHU DQG FKHPLFDOV E\ WKH VRLO &RDUVHWH[WXUHG VRLOV KLJK LQ SHUFHQW VDQG WHQG WR UHWDLQ ZDWHU LQHIIHFWLYHO\ DQG DUH UHODWLYHO\ QRQUHDFWLYH FKHPLFDOO\ ZKHQ FRPSDUHG WR VRLOV KLJKHU LQ VLOW DQG FOD\ FRQWHQW 3DUWLFOHVL]H DQDO\VLV IRU PLQHUDO FRPSRQHQWV ZDV SHUIRUPHG E\ WKH SLSHWWH PHWKRG RI *HH DQG %DXGHU f 2UJDQLF PDWWHU ZDV UHPRYHG IURP WKH $S KRUL]RQ SULRU WR PHFKDQLFDO DQDO\VLV E\ R[LGDWLRQ LQ b VRGLXP K\SRFKORULWH EOHDFKf 6DPSOHV IURP HDFK KRUL]RQ ZHUH VXVSHQGHG LQ GLVWLOOHG ZDWHU DQG GLVSHUVHG ZLWK VRGLXP KH[DPHWDSKRVSKDWH 7KH VXSHUQDWDQW ZDV GHFDQWHG DQG DOORZHG WR VHWWOH LQ D FRQVWDQWWHPSHUDWXUH ZDWHU EDWK IURP ZKLFK DOLTXRWV ZHUH UHPRYHG E\ SLSHWWH DW D GHSWK DQG WLPH FRUUHVSRQGLQJ WR WKH VHWWOLQJ YHORFLW\ GHWHUPLQHG E\ 6WRNHnV /DZ 6DPSOHV ZHUH GULHG DQG ZHLJKHG WR GHWHUPLQH SHUFHQW FOD\ 5HPDLQLQJ PDWHULDO ZDV ZDVKHG GULHG DQG ILOWHUHG WKURXJK DQG PHVK 86$ 6WDQGDUG 7HVWLQJ VLHYHV DQG ZHLJKHG WR GHWHUPLQH WKH YDULRXV VDQG IUDFWLRQV 3HUFHQW VLOW ZDV GHWHUPLQHG E\ VXEWUDFWLQJ WKH ZHLJKWV RI FRPELQHG VDQG DQG FOD\ IUDFWLRQV IURP WKH WRWDO 6DPSOHV ZHUH DQDO\]HG LQ GXSOLFDWH DQG DYHUDJHG IRU UHSRUWHG YDOXHV

PAGE 44

0LQHUDORJ\ ;UD\ GLIIUDFWLRQ DQDO\VLV ZDV SHUIRUPHG WR GHWHUPLQH WKH SULQFLSDO PLQHUDO VSHFLHV LQ HDFK VRLO KRUL]RQ $SSUR[LPDWHO\ JUDPV RI HDFK KRUL]RQ ZHUH ZHWVLHYHG WKURXJK D PP VFUHHQ WR UHPRYH VDQG SDUWLFOHV DQG DSSUR[LPDWHO\ FP FKORUR[ ZDV DGGHG WR WKH $S KRUL]RQ ILOWUDWH WR R[LGL]H VRLO RUJDQLF PDWHULDO ZKLFK ZRXOG LQWHUIHUH ZLWK WKH [UD\ GLIIUDFWLRQ SURFHVV $IWHU WZR GD\V RI R[LGDWLRQ WLPH FP RI 1 +&, ZDV DGGHG WR IORFFXODWH WKH FOD\V 7KH VXVSHQVLRQ ZDV WKHQ OHW VWDQG IRU RQH GD\ DQG FHQWULIXJHG DW USP IRU VL[ PLQXWHV 7KH FHQWULIXJDWLRQ SURFHVV ZDV UHSHDWHG VL[ WLPHV HDFK WLPH FROOHFWLQJ WKH VXSHUQDWDQW DQG UHVXVSHQGLQJ WKH VHGLPHQW LQ GLVWLOOHG ZDWHU $SSUR[LPDWHO\ FP RI VDWXUDWHG 1D&, ZDV WKHQ DGGHG WR IORFFXODWH DOO FOD\ PDWHULDOV $Q DOLTXRW RI FOD\ VXVSHQVLRQ ZDV SODFHG RQ SRURXV FHUDPLF WLOHV DQG 1 0J&O .&, DQGRU JO\FHURO ZHUH DGGHG WR WKH WLOHV WR DOORZ GLIIHUHQWLDWLRQ RI NDROLQLWH IURP VPHFWLWH FOD\V 2UJDQLF &DUERQ &RQWHQW 7KH VRLO RUJDQLF IUDFWLRQ FRQVLVWV RI WKH FHOOV RI PLFURRUJDQLVPV SODQW DQG DQLPDO UHVLGXHV LQ YDULRXV VWDJHV RI GHFRPSRVLWLRQ VWDEOH KXPXV V\QWKHVL]HG IURP UHVLGXHV DQG KLJKO\ FDUERQL]HG FRPSRXQGV VXFK DV FKDUFRDO JUDSKLWH DQG FRDO 1HOVRQ DQG 6RPPHUV f 'HWHUPLQDWLRQ RI WKH DPRXQW RI RUJDQLF PDWHULDO SUHVHQW LQ D VRLO LV YHU\ LPSRUWDQW VLQFH PDQ\ JURXQGZDWHU FRQWDPLQDQWV LQFOXGLQJ K\GUD]LQH UHDFW ZLWK RUJDQLF PDWHULDOV ,VDDFVRQ DQG +D\HV f 7KH SHUFHQWDJH RI RUJDQLF FDUERQ ZDV GHWHUPLQHG IRU HDFK VRLO KRUL]RQ E\ GU\ FRPEXVWLRQ LQ DQ LQGXFWLRQ IXUQDFH /(&2 0RGHO 1R f IROORZLQJ WKH SURFHGXUH RI 1HOVRQ DQG 6RPPHUV f :HLJKHG VDPSOHV ZHUH SODFHG

PAGE 45

LQ D FDUDPLF FUXFLEOH ZLWK LURQ DQG FRSSHU PHWDO DFFHOHUDWRUV DGGHG 6DPSOHV ZHUH KHDWHG LQVLGH DQ HQFORVHG FRPEXVWLRQ WXEH WKURXJK ZKLFK R[\JHQ ZDV SDVVHG $OO RI WKH FDUERQ LQ WKH VDPSOHV ZDV R[LGL]HG WR &2 VPDOO SDUWLFOHV ZHUH UHPRYHG LQ D GXVW WUDS DQG VXOIXU ZDV DEVRUEHG LQ D VXOIXU WUDS OHDYLQJ RQO\ &2 DQG R[\JHQ 7KH &&!R[\JHQ YROXPH ZDV PHDVXUHG LQ D EXUHWWH KHOG DW FRQVWDQW WHPSHUDWXUH DQG FRUUHFWHG IRU SUHVVXUH 7KH PL[WXUH WKHQ ZDV SDVVHG WKURXJK D VROXWLRQ RI .2+ LQ DQRWKHU YHVVHO ZKLFK DEVRUEHG DOO RI WKH &2 7KH UHVLGXDO R[\JHQ ZDV EURXJKW EDFN WR WKH RULJLQDO EXUHWWH DQG WKH YROXPH RI &2 GHWHUPLQHG E\ VXEWUDFWLRQ IURP WKH SUHYLRXV YROXPH )RXU VDPSOHV IURP HDFK KRUL]RQ ZHUH DQDO\]HG DQG DYHUDJHG WR JLYH WKH UHSRUWHG YDOXHV (OHPHQWDO $QDO\VLV $Q DQDO\VLV RI WKH FDOFLXP DOXPLQXP PDJQHVLXP LURQ VRGLXP DQG SRWDVVLXP FRQWHQWV RI WKH WKUHH VRLO KRUL]RQV ZDV PDGH DIWHU DFLG H[WUDFWLRQ XVLQJ IODPH DWRPLF DGVRUSWLRQ VSHFWURVFRS\ DFFRUGLQJ WR WKH SURFHGXUH RI %DNHU DQG 6XKU f 6DPSOHV RI DSSUR[LPDWHO\ J HDFK ZHUH SODFHG LQ FP SRO\VXOIRQH FHQWULIXJH WXEHV LQWR ZKLFK FP RI 0 +12 ZDV DGGHG 7KH WXEHV ZHUH PHFKDQLFDOO\ VKDNHQ IRU KRXUV DW ORZ VSHHG WKHQ FHQWULIXJHG IRU PLQXWHV DW r& DW USP ZLWK D USP SHU PLQXWH DFFHOHUDWLRQ UDWH )ROORZLQJ FHQWULIXJDWLRQ WKH VXSHUQDWDQW LQ HDFK WXEH ZDV GHFDQWHG LQWR DQ DFLGZDVKHG JODVV VFLQWLOODWLRQ YLDO DQG DQDO\]HG RQ DQ DWRPLF DGVRUSWLRQ VSHFWURPHWHU 3HUNLQ(OPHU 0RGHO 1Rf $OO VDPSOHV ZHUH UXQ LQ GXSOLFDWH (OHPHQWDO VWDQGDUGV ZHUH SUHSDUHG IURP VWRFN VROXWLRQV DQG GLOXWHG XQWLO OLQHDU LQ UHVSRQVH RYHU WKH VDPSOH UDQJH WHVWHG

PAGE 46

(OHPHQWDO FRQFHQWUDWLRQV LQ R[LGH IRUP ZHUH FDOFXODWHG E\ FRQYHUWLQJ WKH HOHPHQWDO FRQFHQWUDWLRQ LQWR PRODU IRUP DQG WKHQ VWRLFKLRPHWULFDOO\ DGGLQJ WKH SURSHU PRODU DPRXQW RI R[\JHQ 2[LGH ZHLJKW SHUFHQWDJHV ZHUH GHWHUPLQHG DV PLOOLJUDPV RI HOHPHQWDO R[LGH SHU PLOOLJUDP RI VRLO WLPHV 6RLO S+ ,Q DQ DFLGLF HQYLURQPHQW K\GUD]LQH 1+f LV K\GURO\]HG WR K\GUD]LQLXP 1+f 7KLV UHDFWLRQ LV DW HTXLOLEULXP DW S+ WKH S.D RI K\GUD]LQH 7KDW LV DW S+ WKHUH DUH HTXDO SURSRUWLRQV RI K\GUD]LQH DQG K\GUD]LQLXP SUHVHQW 7KH SURWRQDWHG K\GUD]LQLXP PROHFXOH DW ORZHU S+ PD\ XQGHUJR LRQ H[FKDQJH UHDFWLRQV RQ VRLO SDUWLFOH VXUIDFHV KDYLQJ D SRWHQWLDOO\ VLJQLILFDQW LPSDFW RQ WKH WUDQVSRUW SURFHVV 7KH S+ RI HDFK VRLO KRUL]RQ ZDV GHWHUPLQHG LQ D YZf VXVSHQVLRQ RI 1 &D&O DFFRUGLQJ WR WKH PHWKRG RI 0F/HDQ f 7KH S+ GHWHUPLQDWLRQ ZDV PDGH XVLQJ D JODVVFDORPHO HOHFWURGH 5RVV FRPELQDWLRQ S+ HOHFWURGH 1R f RQ DQ 2ULRQ PHWHU 1R $f LQ WULSOLFDWH %XIIHULQJ &DSDFLW\ 7KH DELOLW\ RI WKH WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG WR UHVLVW FKDQJHV LQ S+ ZDV PHDVXUHG E\ SUHSDULQJ WLWUDWLRQ FXUYHV IRU HDFK XVLQJ &D2+f )LYH JUDPV RI VRLO DQG FP RI DSSUR[LPDWHO\ 1 &D2+f ZHUH DGGHG WR D EHDNHU DQG DOORZHG WR VWDQG IRU PLQXWHV ZLWK VWLUULQJf EHIRUH WKH S+ ZDV UHDG &D2+f ZDV WKHQ DGGHG LQ PO LQFUHPHQWV DOORZHG WR HTXLOLEUDWH ZLWK VWLUULQJ DQG WKH S+ DJDLQ ZDV QRWHG 7KH WUXH QRUPDOLW\ RI WKH &D2+f ZDV GHWHUPLQHG WR EH 1 E\ WLWUDWLRQ ZLWK 1 SRWDVVLXP SKWKDODWH

PAGE 47

&DWLRQ ([FKDQJH &DSDFLW\ &(&f 7KH 6RLO &KDUDFWHUL]DWLRQ /DERUDWRU\ DW WKH 8QLYHUVLW\ RI )ORULGD SHUIRUPHG DQ H[WUDFWDEOH FDWLRQ DQDO\VLV RQ $UUHGRQGR ILQH VDQG ZKLFK DOORZHG DQ HVWLPDWH RI LWV &(& 7KRPDV HWDO f ([WUDFWDEOH EDVHV &D 0J 1D DQG .f DQG H[WUDFWDEOH DFLGLW\ ZHUH VXPPHG WR JLYH D WRWDO RI FPROF .J IRU $S KRUL]RQ VRLO FPROF .J IRU ( KRUL]RQ VRLO DQG FPROF .J IRU WKH ( KRUL]RQ 7KLV DQDO\VLV ZDV FRQILUPHG IRU RXU VDPSOHV IURP WKH SODWHDXV RI WKH DGVRUSWLRQ LVRWKHUP REWDLQHG E\ SORWWLQJ WKH DPRXQW RI DGVRUEHG DJDLQVW WKH DPRXQW DGGHG LQ H[FKDQJH ZLWK &D 7ZR JUDPV RI VRLO ZHUH SODFHG LQ D SRO\VXOIRQH FHQWULIXJH WXEH DORQJ ZLWK PO RI 1 &D&O DQG VKDNHQ JHQWO\ IRU IRXU KRXUV WKHQ FHQWULIXJHG IRU PLQXWHV DW USP DQG GHFDQWHG 'LOXWLRQV WR 1 ZHUH PDGH IURP D VWRFN VROXWLRQ RI 1 .&, DQG WKH S+ RI HDFK VROXWLRQ ZDV DGMXVWHG WR WKH S+ RI WKH KRUL]RQ ZLWK ZKLFK LW ZRXOG EH XVHG 7HQ PLOOLOLWHUV RI HDFK GLOXWLRQ ZHUH SODFHG LQ D FHQWULIXJH WXEH FRQWDLQLQJ WKH WZR JUDPV RI GUDLQHG VRLO PL[HG RQ D YRUWH[ VWLUUHU DQG VKDNHQ JHQWO\ IRU IRXU KRXUV 7KH WXEHV ZHUH DJDLQ FHQWULIXJHG IRU PLQXWHV DW USP DQG WKH VXSHUQDWDQW ZDV DQDO\]HG IRU SRWDVVLXP 7KH GHFUHDVH LQ SRWDVVLXP LQ WKH VXSHUQDWDQW ZDV FRQVLGHUHG WR EH GXH WR WKDW DGVRUEHG RQWR WKH VRLO VXUIDFH DQG WKH SODWHDX RI WKH SORW RI DGVRUEHG SRWDVVLXP YHUVXV SRWDVVLXP DGGHG ZDV FRQVLGHUHG WR UHIOHFW WKH H[FKDQJH FDSDFLW\ 7KH &(& GHWHUPLQDWLRQ ZDV GRQH LQ GXSOLFDWH $ VHFRQG DSSURDFK WR WKH GHWHUPLQDWLRQ RI &(& ZDV SHUIRUPHG XVLQJ D FRORULPHWULF PHDVXUHPHQW RI PHWK\OHQH EOXH DGVRUSWLRQ DV GHVFULEHG E\ 6RRQ f 7ZR JUDPV RI VRLO ZHUH ZHLJKHG LQWR D FPn (UOHQPH\HU IODVN FPB RI P0 PHWK\OHQH EOXH VROXWLRQ EXIIHUHG DW S+ LQ P0 VRGLXP

PAGE 48

DFHWDWHf ZDV DGGHG DQG WKH IODVN DQG FRQWHQWV ZHUH DOORZHG WR VHWWOH IRU WZR KRXUV $ FUUU DOLTXRW RI WKH VXSHUQDWDQW VROXWLRQ ZDV WKHQ SLSHWWHG LQWR D WHVW WXEH FRQWDLQLQJ FUUU RI GLVWLOOHG ZDWHU DQG PL[HG 6WDQGDUGV ZHUH SUHSDUHG FRQWDLQLQJ WR FP RI P0 PHWK\OHQH EOXH VROXWLRQ LQ D ILQDO YROXPH RI FUUU 7UDQVPLWWDQFH ZDV PHDVXUHG DW QP LQ DQ RSWLFDOO\ FOHDU WHVW WXEH XVLQJ D &ROHPDQ % VSHFWURSKRWRPHWHU $ VWUDLJKW OLQH ZDV ILWWHG WKURXJK WKH VWDQGDUG FXUYH 5 f DQG WKH HTXDWLRQ RI WKH OLQH ZDV XVHG WR FRQYHUW PHDVXUHG WUDQVPLWWDQFH WR FRQFHQWUDWLRQ $GVRUSWLRQ ,VRWKHUPV 7KH DGVRUSWLRQ RI K\GUD]LQH RQWR $UUHGRQGR VRLO ZDV HYDOXDWHG E\ H[SRVLQJ VDPSOHV RI HDFK KRUL]RQ WR LQFUHPHQWDO FRQFHQWUDWLRQV RI K\GUD]LQH DQG WKHQ DQDO\]LQJ WKH VROXWLRQ IRU K\GUD]LQH ORVV $Q DVVXPSWLRQ LQKHUHQW LQ GHWHUPLQLQJ DGVRUSWLRQ LVRWKHUPV LV WKDW ORVV RI WKH VUEDWH IURP VROXWLRQ LV D YDOLG PHDVXUH RI DGVRUSWLRQ +RZHYHU WKLV DVVXPSWLRQ PD\ QRW EH YDOLG ZLWK K\GUD]LQH JLYHQ LWV UHDFWLYH QDWXUH 6WXGLHV E\ 0ROLQHU DQG 6WUHHW Df LQGLFDWHG WKDW LQ DTXHRXV V\VWHPV ZLWK 2 SUHVHQW K\GUD]LQH PD\ XQGHUJR DXWR[LGDWLRQ 7KLV ZDV HVSHFLDOO\ WUXH ZKHQ D FDWDO\VW VXFK DV &X ZDV SUHVHQW %RWW DQG 5DVVRXO f VXJJHVWHG WKDW WKHUH LV QR GHFRPSRVLWLRQ RI K\GUD]LQH LQ WKH DEVHQFH RI R[\JHQ LQ FRQWDFW ZLWK SRO\HWK\OHQH SRO\SURS\OHQH RU 3\UH[ JODVV 2Q WKH RWKHU KDQG SRO\YLQ\O FKROULGH 39&f LQWHUDFWHG ZLWK K\GUD]LQH DQG ZDV FRQVLGHUHG DQ XQVXLWDEOH PDWHULDO IRU FRQWDLQLQJ K\GUD]LQH VROXWLRQV +\GUD]LQH PD\ DOVR UHDFW ZLWK PHWDOV VXFK DV )H DQG 0Q ZKLFK DUH ZLGHO\ SUHVHQW LQ VRLOV UHGXFLQJ WKHP WR ORZHU YDOHQFH VWDWHV *ULIIHWK HW DO f $GGLWLRQDOO\ WKHUH PD\ EH K\GUD]LQH ORVVHV GXH WR YRODWLOL]DWLRQ DQG GHJUDGDWLRQ

PAGE 49

2WKHU WKDQ WKHVH ORVVHV WKH UHPDLQLQJ SRVVLELOLWLHV IRU K\GUD]LQH GLVDSSHDUDQFH IURP WKH VXSHUQDWDQW LQFOXGH LRQ H[FKDQJH DQG VRUSWLYH UHDFWLRQV ERWK UHYHUVLEOH DQG LUUHYHUVLEOH ,W LV WKH FRPELQHG HIIHFW RI DOO WKHVH UHDFWLRQV ZKLFK FRQWULEXWHV WR WKH SURSHU LQWHUSUHWDWLRQ RI DQ DGVRUSWLRQ LVRWKHUP $OO DGVRUSWLRQ LVRWKHUPV GHVFULEHG KHUH ZHUH REWDLQHG LQ DQ DQDHURELF JORYH ER[ WR HOLPLQDWH KD]DUGV DVVRFLDWHG ZLWK WKH SRWHQWLDO DXWR[LGDWLRQ RI K\GUD]LQH $GVRUSWLRQ LVRWKHUPV ZHUH SHUIRUPHG RQ HDFK RI WKH WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG ZLWK WZR VHWV RI LVRWKHUPV EHLQJ PHDVXUHG ,Q WKH ILUVW VHW PHDVXUHG DW S+ DQG ILYHJUDP VDPSOHV RI HDFK $UUHGRQGR VRLO KRUL]RQ ZHUH SODFHG LQ JODVV VHUXP YLDOV DQG ZDVKHG ILYH WLPHV ZLWK 1 &D&O PDLQWDLQHG DW WKH VRLO S+f WR VDWXUDWH WKH H[FKDQJH FRPSOH[ ZLWK &D 6DPSOHV ZHUH VKDNHQ HTXLOLEUDWHG RYHUQLJKW FHQWULIXJHG DQG WKH VXSHUQDWDQW GHFDQWHG 7HQ FP RI FRQVWDQW LRQLF VWUHQJWK VROXWLRQ ZLWK LQFUHDVLQJ K\GUD]LQH FRQFHQWUDWLRQ ZHUH DGGHG WR HDFK RI WKH &DVDWXUDWHG VRLOV 7KH S+ RI WKH K\GUD]LQH VROXWLRQ ZDV DGMXVWHG ZLWK +&, RU &D2+f %HFDXVH 1+Vr &K FRQWULEXWHV WR WKH VROXWLRQ VDOW FRQWHQW LWV FRQFHQWUDWLRQ ZDV DOVR WDNHQ LQWR DFFRXQW ZKHQ SUHSDULQJ WKH VROXWLRQV RI FRQVWDQW LRQLF VWUHQJWK $IWHU LQFXEDWLRQ IRU KRXUV LQ DQ DQDHURELF JORYH ER[ VDPSOHV ZHUH FHQWULIXJHG DQG K\GUD]LQH ZDV PHDVXUHG LQ WKH VXSHUQDWDQW 7KH VHFRQG VHW RI LVRWKHUPV ZDV FRQGXFWHG DW S+ DQG 7ZHQW\ JUDPV RI VRLO ZHUH ZDVKHG ILYH WLPHV ZLWK 1 1D&, DW WKH GHVLUHG S+ WR VDWXUDWH WKH H[FKDQJH FRPSOH[ ZLWK D VLQJOH FDWLRQ 7KH SURFHGXUH IROORZHG

PAGE 50

ZDV WKHQ LGHQWLFDO WR WKDW GHVFULEHG DERYH $IWHUZDUGV WKH VRLOV ZHUH H[WUDFWHG ZLWK 1 .&, DQG WKHQ ZLWK 1 +&, ,QIRUPDWLRQ IURP WKH LVRWKHUPV ZDV XVHG WR GHWHUPLQH VHOHFWLYLW\ FRHIILFLHQWV DQG UDWLRV RI H[FKDQJHDEOH K\GUD]LQLXP WR FDOFLXP LQ VRLO FROXPQV XQGHU HTXLOLEULXP FRQGLWLRQV 7KH PHWKRG XVHG WR REWDLQ WKRVH FRHIILFLHQWV LV GHVFULEHG DV IROORZV $W HTXLOLEULXP WKH UHODWLYH SURSRUWLRQV RI K\GUD]LQLXP DQG FDOFLXP RQ H[FKDQJH VLWHV DUH GHWHUPLQHG E\ LRQLF FRQFHQWUDWLRQV YDOHQFH DQG VROXWLRQ QRUPDOLW\ 7KH *DLQHV7KRPDV ELQDU\ H[FKDQJH VHOHFWLYLW\ FRHIILFLHQW .L`f PD\ EH XVHG WR H[SUHVV WKLV SUHIHUHQWLDO UHODWLRQVKLS 9DORFFKL HW DO f r B Z Vn@ 9Vff 8OF>@ ZKHUH 6f DQG r UHSUHVHQW WKH HTXLYDOHQW IUDFWLRQV RI LRQV L DQG M RQ WKH H[FKDQJH SKDVH DQG & DQG & DUH WKH VROXWLRQSKDVH FRQFHQWUDWLRQV 7KH WRWDO TXDQWLW\ RI VRUEHG SKDVH LV DVVXPHG FRQVWDQW DQG \ DQG \ DUH WKH DFWLYLW\ FRHIILFLHQWV IRU LRQV L DQG M LQ WKH VROXWLRQ SKDVH 9DORFFKL HW DO f VWDWHG WKDW LQFOXVLRQ RI VROXWLRQSKDVH DFWLYLW\ FRHIILFLHQWV LV RQO\ QHFHVVDU\ IRU WKH GHVFULSWLRQ DQG SUHGLFWLRQ RI FDWLRQ H[FKDQJH LI LRQLF VWUHQJWKV FRUUHVSRQGLQJ WR H[SHULPHQWDO LVRWKHUPV GLIIHU IURP WKRVH XVHG LQ DFWXDO WUDQVSRUW H[SHULPHQWV 6LQFH WKH EDFNJURXQG LRQLF VWUHQJWKV IRU WKH H[FKDQJH LVRWKHUPV DQG WKH WUDQVSRUW H[SHULPHQWV LQ WKLV ZRUN ZHUH WKH VDPH \ DQG \ZHUH VHW WR XQLW\ +RZHYHU KDG WKH LRQLF VWUHQJWKV QRW EHHQ HTXDO WKH UDWLR RI \ WR \ FRXOG KDYH EHHQ LQFRUSRUDWHG LQWR WKH YDOXH RI 7KH UHODWLRQVKLS EHWZHHQ WKH VROXWLRQSKDVH DQG VRUEHGSKDVH FRQFHQWUDWLRQV PD\ EH FODULILHG E\ UHDUUDQJLQJ HTXDWLRQ >@

PAGE 51

r LLOOLVU r B VU FU + .7 0 fn c@ 7KH HTXLYDOHQW IUDFWLRQV RI LRQV L DQG M LQ WKH VROXWLRQSKDVH &r DQG &r DUH UHDGLO\ GHWHUPLQHG VLQFH WKH WRWDO VROXWLRQ FRQFHQWUDWLRQ &7 WKH VROXWLRQ QRUPDOLW\f LV NQRZQ DQG WKH LRQLF VROXWLRQSKDVH FRQFHQWUDWLRQV RI LQWHUHVW &c DQG & DUH UHDGLO\ PHDVXUHG DQG >@ >@ 7KH GHQRPLQDWRU RI HTXDWLRQ >@ WKHQ EHFRPHV &Mn >@ FDQ WKXV EH ZULWWHQ DV 7 g ZKHUH >@ >@ DQG

PAGE 52

Y FU FU X LV@ >@ 7KH 5RWKPXQG.RUQIHLG ELQDU\ H[FKDQJH HTXDWLRQ %RQG DQG 3KLOOLSV DEf U N \ >@ LV DQ HPSLULFDO H[SUHVVLRQ ZKLFK SURYLGHV D YDOXDEOH PDWKHPDWLFDO PHDQV IRU LQFRUSRUDWLQJ WKH FKDUDFWHULVWLF VKDSH RI PHDVXUHG ELQDU\ H[FKDQJH LVRWKHUPV LQWR D IXQFWLRQDO GHVFULSWLRQ RI VHOHFWLYLW\ FRHIILFLHQWV DFURVV D UDQJH RI VROXWLRQ FRQFHQWUDWLRQ YDOXHV 0DQVHOO HW DO f 7R GHWHUPLQH WKH FRHIILFLHQWV N DQG Q WKH ORJV RI ERWK VLGHV RI WKH HTXDWLRQ >@ FDQ EH WDNHQ ORJ W N Q ORJ \ >@ DQG WKH UHVXOW UHJUHVVHG DV ORJU DJDLQVW ORJ\ 9DOXHV IRU U DQG \ DUH NQRZQ IURP LQIRUPDWLRQ LQ WKH VRUSWLRQ LVRWKHUP &r DQG 6ff 7KH LQWHUFHSW LV N DQG WKH VORSH Q DW WKH QRUPDOLW\ DW ZKLFK WKH LVRWKHUP ZDV DFTXLUHG :KHQ HTXDWLRQ >@ LV VXEVWLWXWHG LQWR HTXDWLRQ >@ VRUEHGSKDVH FRQFHQWUDWLRQV GURS RXW DQG .a FDQ EH H[SUHVVHG Q WHUPV RI &r DQG &U .cM&f&7f N YA >@

PAGE 53

7KLV H[SUHVVLRQ VKRZV WKDW QFQXQLW\ YDOXHV IRU WKH 5RWKPDQ.RUQIHLG SDUDPHWHU m DOORZ WKH VHOHFWLYLW\ FRHIILFLHQW WR YDU\ ZLWK ORFDO VROXWLRQ FRQFHQWUDWLRQ &f LQ WKH VRLO DQG ZLWK QRUPDOLW\ &Uf LI LRQ YDOHQFHV DUH QRW HTXDO :KHQ Q .WEHFRPHV D FRQVWDQW N f IRU D JLYHQ VROXWLRQ QRUPDOLW\ 0LVFLEOH 'LVSODFHPHQW 3UHOLPLQDU\ &ROXPQ 6WXGLHV *ODVV FROXPQV SDFNHG ZLWK VRLOV IURP HDFK RI WKH $S ( DQG ( KRUL]RQV RI $UUHGRQGR ILQH VDQG ZHUH XVHG LQ WKH ODERUDWRU\ WR H[DPLQH WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH XQGHU VDWXUDWHG VRLO FRQGLWLRQV 6RLO FKDUDFWHULVWLFV ZHUH GHWHUPLQHG WKURXJK VOXUU\ VWXGLHV DQG VRLO H[WUDFWLRQ DQG DQDO\VLV $ QXPEHU RI WKHVH VWXGLHV HOHPHQWDO FRPSRVLWLRQ S+ SDUWLFOHVL]H GLVWULEXWLRQ RUJDQLF FDUERQ DQDO\VLV HWFf KDYH EHHQ GHVFULEHG SUHYLRXVO\ 7UDQVSRUW FKDUDFWHULVWLFV ZHUH VWXGLHG E\ SDFNLQJ WKH VRLO LQWR D FROXPQ LQ VXFK D ZD\ DV WR LPLWDWH LWV QDWXUDO FRQILJXUDWLRQ ZLWK IOXLG GHVLJQHG WR VLPXODWH WKH DTXHRXV VRLO VROXWLRQ WKHQ EHLQJ SXPSHG WKURXJK WKH FROXPQ DW QDWXUDO IORZ UDWHV 7KH SUHOLPLQDU\ VWXGLHV UHSRUWHG KHUH ZHUH GHVLJQHG WR GHWHUPLQH KRZ WR EHVW EULQJ WKH VRLO FROXPQV WR D VWHDG\VWDWH RSHUDWLRQ PLPLFNLQJ QDWXUDO FRQGLWLRQV SULRU WR WKH DGGLWLRQ RI K\GUD]LQH 7KH SDFNLQJ ZHWWLQJXS SURFHVV VDWXUDWLRQ GHR[\JHQDWLRQ DQG PHDVXUHPHQW RI K\GURG\QDPLF GLVSHUVLYH FKDUDFWHULVWLFV RI WKH ZHWWHG FROXPQV DUH HDFK GHVFULEHG LQ WXUQ

PAGE 54

&ROXPQ 3UHSDUDWLRQ *ODVV FKURPDWRJUDSK\ FROXPQV RU FP ORQJ E\ FP LG .RQWHV 1R f ZHUH KDQGSDFNHG E\ VHTXHQWLDOO\ DGGLQJ DSSUR[LPDWHO\ J RI VRLO WR WKH FROXPQ DQG WDPSLQJ ZLWK D SODVWLF URG WR D PD[LPXP UHVLVWDQFH WDPSV GHWHUPLQHG E\ SULRU H[SHULHQFH WR \LHOG D EXON GHQVLW\ DSSUR[LPDWHO\ RI J FPrf EHIRUH DGGLQJ DQRWKHU J 7KLV SURFHGXUH ZDV FDUHIXOO\ IROORZHG ZKHQ SDFNLQJ DOO FROXPQV IRU HDFK KRUL]RQ &ROXPQ EXON GHQVLWLHV ZHUH FDOFXODWHG E\ GLYLGLQJ WKH DFWXDO ZHLJKW RI VRLO LQ HDFK FROXPQ E\ WKH FROXPQfV YROXPH &ROXPQ SRURVLWLHV f ZHUH HVWLPDWHG IURP WKH EXON GHQVLW\ >@ ZKHUH S% VRLO EXON GHQVLW\ DQG D VRLO SDUWLFOH GHQVLW\ RI J FPn ZDV DVVXPHG 7KH VDWXUDWHG FROXPQ ZDWHU FRQWHQW ZDV FDOFXODWHG E\ GLYLGLQJ WKH ZHLJKW RI OLTXLG LQ D FROXPQ E\ WKH YROXPH RI WKH FROXPQ DVVXPLQJ D OLTXLG GHQVLW\ RI J FPf 7KH SHUFHQW VDWXUDWLRQ RI HDFK FROXPQ ZDV GHWHUPLQHG E\ GLYLGLQJ WKH ZDWHU FRQWHQW E\ WKH SRURVLW\ *URXQG ZDWHU FRQWDLQLQJ K\GUD]LQH LV OLNHO\ WR EH DQR[LF GXH WR UHGXFWLRQ RI 2 E\ WKH K\GUD]LQH VR SDFNHG VRLO FROXPQV ZHUH GHDHUDWHG E\ LQWURGXFLQJ D IORZLQJ VWUHDP RI KHOLXP RU LQ ODWHU H[SHULPHQWV QLWURJHQf LQWR WKH ERWWRP RI HDFK FDSSHG FROXPQ IRU WZR KRXUV SULRU WR VDWXUDWLRQ 7KXV R[\JHQ RULJLQDOO\

PAGE 55

SUHVHQW ZDV GLVSODFHG E\ QRQUHDFWLYH JDV WR SUHYHQW R[LGDWLRQ LQ WKH FROXPQ DQG WR EH PRUH UHSUHVHQWDWLYH RI HQYLURQPHQWDO FRQGLWLRQV 7KH VRLO FROXPQV ZHUH VDWXUDWHG IURP WKH ERWWRP XVLQJ GHDHUDWHG &D&O $ &D&O VROXWLRQ ZDV XVHG WR DSSUR[LPDWH WKH LRQLF VROXWLRQ RI QDWXUDO JURXQG ZDWHU ZKLFK LV GRPLQDWHG E\ WKH FDOFLXP FDWLRQ LQ )ORULGD 7KH &D&O VROXWLRQ ZDV SUHSDUHG DW 1 DQG GHDHUDWHG E\ EXEEOLQJ KHOLXP RU LQ ODWHU H[SHULPHQWV QLWURJHQf IURP FRPSUHVVHG JDV WDQNV WKURXJK D FP VSDUJHU LQWR FRQWLQXRXVO\ VWLUUHG IODVNV 7KH GLVVROYHG R[\JHQ FRQWHQW RI WKH &D&O VROXWLRQ ZDV PRQLWRUHG E\ WKH :LQNOHU WHFKQLTXH &OHVFHUL HW DO f DQG D VWDQGDUG SURFHGXUH ZDV HVWDEOLVKHG WR GHDHUDWH D QHZ FDUER\ RI &D&AIRU DW OHDVW IRXU KRXUV SULRU WR XVH )LJXUH f R! ( //, D [ R R //, f§, R FQ &e R )LJXUH 'HR[\JHQDWLRQ RI &D&O LQIOXHQW VROXWLRQ

PAGE 56

,QIOXHQW &D&O VROXWLRQV ZHUH DFLGLILHG WR WKH DSSURSULDWH KRUL]RQ S+ E\ DGMXVWPHQW ZLWK +&, &ROXPQV ZHUH ILOOHG IURP WKH ERWWRP DQG DOORZHG WR FRQWLQXDOO\ IORZ IRU DW OHDVW KRXUV 6RLO ZDWHU FRQWHQW ZDV GHWHUPLQHG E\ ZHLJKLQJ HDFK FROXPQ EHIRUH DQG DIWHU VDWXUDWLRQ 3XPSLQJ 5DWHV /LTXLG PDWHULDO ZDV WUDQVIHUUHG IURP XQSUHVVXUL]HG IODVNV WR WKH VRLO FROXPQV XVLQJ D *LOVRQ SHULVWDOWLF SXPS WKURXJK VPDOOGLDPHWHU 7\JRQ WXELQJ &RQVWDQW SXPSLQJ UDWHV 4f RI DQG FP Kn ZHUH XVHG 7KHVH UDWHV FRUUHVSRQG WR 'DUF\ YHORFLWLHV T 4$f RI DQG FP KU WKURXJK D FRPSOHWHO\ VDWXUDWHG VRLO FROXPQ DQG UHSUHVHQW D UDQJH W\SLFDO RI IORZ UDWHV H[SHFWHG LQVLWX IRU ILQH VDQGV RI 1RUWK )ORULGD )ORZUDWH DGMXVWPHQW ZDV PDGH LQLWLDOO\ E\ DGMXVWLQJ SXPS VSHHG ZKLOH FROOHFWLQJ FROXPQ HIIOXHQW LQ D JUDGXDWHG F\OLQGHU 'LVSHUVLRQ &RHIILFLHQWV 6KRUWWHUP WUDQVSRUW RI ZDWHU DQG VROXEOH FKHPLFDOV WKURXJK VDWXUDWHG VRLO LV GHSHQGHQW RQ ERWK SK\VLFDO DQG FKHPLFDO SURFHVVHV 7KH FKHPLFDO SURFHVVHV DFW WR UHWDUG DQGRU WUDQVIRUP WKH FKHPLFDO LQ VROXWLRQ DV LW LV PRYHG GRZQJUDGLHQW XQGHU WKH LQIOXHQFH RI WKH SK\VLFDO SURFHVVHV +\GURG\QDPLF GLVSHUVLRQ LV DQ LPSRUWDQW SK\VLFDO PL[LQJ SURFHVV ZKLFK RFFXUV GXH WR GLIIXVLRQ JUDGLHQWV DQG YHORFLW\ GLVWULEXWLRQV DPRQJ VRLO SRUHV 'LVSHUVLRQ FRHIILFLHQWV DW 'DUF\ YHORFLWLHV RI FP Kr DQG FP KB ZHUH GHWHUPLQHG XVLQJ WKH GHULYDWLRQ RI .LUNKDP DQG 3RZHUV f DSSOLHG WR GDWD REWDLQHG E\ SDVVLQJ D SXOVH RI WULWLDWHG ZDWHU +f WKURXJK VRLO FROXPQV RI HDFK KRUL]RQ $SSUR[LPDWHO\ WZR SRUH YROXPHV RI WULWLDWHG ZDWHU GLOXWHG WR DSSUR[LPDWHO\

PAGE 57

FRXQWV SHU PLQXWH LQ 1 &D&O ZHUH SXPSHG WKURXJK VHSDUDWH VRLO FROXPQV DW WKH ORZ DQG KLJK IORZ UDWH UHVSHFWLYHO\ &ROXPQV KDG EHHQ VDWXUDWHG ZLWK GHDHUDWHG 1 &D&O SULRU WR HDFK LQWURGXFWLRQ RI WULWLDWHG ZDWHU (IIOXHQW IUDFWLRQV ZHUH FROOHFWHG DW QLQHPLQXWH LQWHUYDOV WXEHV SHU SRUH YROXPH FP WXEHVf IRU WKH KLJK IORZ UDWH DQG DW WZRKRXU LQWHUYDOV WXEHV SHU SRUH YROXPHf IRU WKH ORZ IORZ UDWH 6PDOO DOLTXRWV IURP HDFK IUDFWLRQ ZHUH VXVSHQGHG LQ VFLQWLOODWLRQ IOXLG 6FLQWLYHUVH ,,f VKDNHQ DQG FRXQWHG LQ DQ DXWRPDWLF OLTXLG VFLQWLOODWLRQ FRXQWHU %DFNJURXQG FRXQWV ZHUH GHWHUPLQHG E\ FRXQWLQJ DOLTXRWV RI &D&O ZKLFK KDG QRW SDVVHG WKURXJK WKH VRLO FROXPQ DQG ZHUH VXEWUDFWHG IURP WKH HIIOXHQW IUDFWLRQ FRXQW EHIRUH SORWWLQJ 7KLV SURFHGXUH ZDV GXSOLFDWHG DW HDFK IORZ UDWH IRU HDFK KRUL]RQ +\GUD]LQH &ROXPQ ,QYHVWLJDWLRQV 0LVFLEOH GLVSODFHPHQW VWXGLHV ZHUH SHUIRUPHG XVLQJ VRLO FROXPQV SXPSLQJ YDULRXV FRQFHQWUDWLRQV RI LQIOXHQW K\GUD]LQH VROXWLRQ IRU HLWKHU D SXOVH RU FRQWLQXRXV GXUDWLRQ WKURXJK KDQGSDFNHG FROXPQV RI VRLO (IIOXHQW IUDFWLRQV ZHUH FROOHFWHG DQG DQDO\]HG IRU K\GUD]LQH FDOFLXP S+ DQG RWKHU FRPSRQHQWV RI LQWHUHVW *UDSKLF GLVSOD\V RI UHVXOWV ZHUH H[DPLQHG E\ SORWWLQJ WKH UHODWLYH FRQFHQWUDWLRQ UDWLRV RI HIIOXHQW &f DQG LQIOXHQW &f FRQFHQWUDWLRQV DJDLQVW WKH QXPEHU RI SRUH YROXPHV $ GLDJUDP RI WKH HTXLSPHQW FRQILJXUDWLRQ XWLOL]HG IRU WKH PLVFLEOH GLVSODFHPHQW H[SHULPHQWV LV VKRZQ LQ )LJXUH ,QIOXHQW +YGUD]LQLXP 6ROXWLRQV ,QIOXHQW K\GUD]LQLXP VROXWLRQV ZHUH SUHSDUHG DW ORZ DSSUR[LPDWHO\ PPRO /nf PHGLXP DSSUR[LPDWHO\ PPRO /nf DQG KLJK DSSUR[LPDWHO\

PAGE 58

LXP )UDFWLRQ &ROOHFWRU 6RLO &ROXPQ 3HULVWDOWLF 3XPS 6ROXWLRQ )ODVN DQG 0DJQHWLF VWLUUHU )LJXUH (TXLSPHQW FRQILJXUDWLRQ IRU VRLO FROXPQ H[SHULPHQWV

PAGE 59

PPRO /nf FRQFHQWUDWLRQV DV K\GUD]LQH K\GUDWH PZ f LQ 1 &D&O IRU XVH LQ WKH PLVFLEOH GLVSODFHPHQW VWXGLHV 3UHOLPLQDU\ FROXPQ ZRUN KDG VKRZQ WKDW PPRO /B SXOVHV RI K\GUD]LQH ZHUH FRQFHQWUDWHG HQRXJK WR RYHUZKHOP PRVW VRLO VRUSWLRQ VLWHV DV ZHOO DV DQ\ VRUSWLRQGHJUDGDWLRQ SURFHVVHV LQ WKH WRSVRLO ZKLOH PPRO /n DSSHDUHG WR JLYH GHILQDEOH UHVXOWV DQG PPRO /B VROXWLRQV ZHUH VHYHUHO\ UHWDUGHGGHJUDGHG E\ WKH WRSVRLO 7KH S+ RI WKH K\GUD]LQH VROXWLRQ ZDV DGMXVWHG WR WKH S+ RI WKH VRLO KRUL]RQ LQ XVH E\ WKH DGGLWLRQ RI +&, VLQFH HDFK RI WKH WKUHH KRUL]RQV ZDV DFLGLF $FLGLILFDWLRQ SURWRQDWHG WKH K\GUD]LQH PROHFXOH WR K\GUD]LQLXP 1+Vf FDWLRQV ZLWK WKH UHODWLYH SURSRUWLRQV RI K\GUD]LQH DQG K\GUD]LQLXP WKHQ EHLQJ GHWHUPLQHG DW DQ\ JLYHQ S+ E\ NQRZLQJ WKH S.D RI K\GUD]LQH 7KXV WKH K\GUD]LQH VROXWLRQ LV IRXQG WR H[LVW DV DSSUR[LPDWHO\ b K\GUD]LQLXP LQ WKH S+ UDQJH WR f IRU WKH VRLOV XVHG +\GUD]LQLXP VROXWLRQV DW WKH WZR IORZ UDWHV ZHUH SXPSHG WKURXJK WKH FROXPQV DV HLWKHU DQ DSSUR[LPDWHO\ WZR SRUHYROXPH SXOVH RU D FRQWLQXRXV VWHSIXQFWLRQ LQSXW 3XOVH LQSXWV IROORZHG E\ WKH DFLGLILHG 1 &D&O VROXWLRQ DOORZHG DQ REVHUYDWLRQ RI ERWK WKH DVFHQGLQJ DQG GHVFHQGLQJ OLPEV RI WKH EUHDNWKURXJK FXUYH ZKLFK JLYHV LQVLJKW DERXW VRUSWLRQ DQG GHVRUSWLRQ SURFHVVHV %UHDNWKURXJK FXUYHV IROORZLQJ FRQWLQXRXV LQSXW SURYLGH LQIRUPDWLRQ LQ WXUQ DERXW WKH LUUHYHUVLEOH SURFHVVHV RI FKHPLVRUSWLRQ DQG GHJUDGDWLRQ &ROXPQ (IIOXHQW &ROOHFWLRQ $ IUDFWLRQ FROOHFWRU 75,6 5HWULHYHU ,,f ZDV SRVLWLRQHG WR FROOHFW VROXWH HPHUJLQJ IURP VPDOOGLDPHWHU 7\JRQ WXELQJ FRQQHFWHG WR WKH WRS RI WKH VRLO FROXPQ 'XULQJ WKH KLJK IORZ UDWH FP KUf VWXGLHV JODVV WHVW WXEHV PP LQ GLDPHWHU FP FDSDFLW\f ZHUH URWDWHG XQGHU WKH HPHUJLQJ HIIOXHQW DW QLQH

PAGE 60

PLQXWH LQWHUYDOV FROOHFWLQJ DSSUR[LPDWHO\ FP RI HIIOXHQW SHU WXEH RU DSSUR[LPDWHO\ WXEHV SHU SRUH YROXPH RI VROXWH 2QH FP RI 1 +&, ZDV DGGHG WR DOWHUQDWH WHVW WXEHV WR HQVXUH DFLGLF FRQGLWLRQV WKXV VWDELOL]LQJ WKH K\GUD]LQLXP PROHFXOH DJDLQVW IXUWKHU R[LGDWLRQ $QDO\VHV IRU K\GUD]LQLXP ZHUH SHUIRUPHG RQ WKH DFLGLILHG HIIOXHQW IUDFWLRQV ZKLOH QRQDFLGLILHG DOLTXRWV ZHUH H[DPLQHG IRU S+ DQG FDOFLXP 7KH S+ GHWHUPLQDWLRQ ZDV PDGH XVLQJ D JODVV FDORPHO HOHFWURGH 5RVV FRPELQDWLRQ S+ HOHFWURGH 1R RQ DQ 2ULRQ PHWHU 1R $f DV HIIOXHQW IUDFWLRQV ZHUH FROOHFWHG ,Q ODWHU FROXPQ VWXGLHV DQ LQOLQH IORZWKURXJK FHOO DQG S+ SUREH &ROH3DUPHU 1R /f ZDV FRQQHFWHG WR WKH FROXPQ HIIOXHQW OLQH QHDU WKH WRS RI WKH FROXPQ LQWHUSUHWHG RQ D FDOLEUDWHG 2ULRQ 0RGHO ($ S+ PHWHU DQG UHFRUGHG RQ D 9DULDQ VWULSFKDUW IRU DQDO\VLV )RU WKH ORZ IORZ UDWH FP WUf VWXGLHV PP GLDPHWHU WHVW WXEHV FP FDSDFLW\f ZHUH XVHG WR FROOHFW IUDFWLRQV DW KRXU LQWHUYDOV (DFK WXEH FRQWDLQHG DSSUR[LPDWHO\ FP RI HIIOXHQW RU DERXW WXEHV SHU SRUH YROXPH $JDLQ RQH FP RI 1 +&, ZDV DGGHG WR DOWHUQDWH WHVW WXEHV DQG QRQDFLGLILHG WXEHV ZHUH H[DPLQHG IRU S+ DQG FDOFLXP 6DPSOH $QDO\VLV +\GUD]LQH DQDO\VLV ZDV SHUIRUPHG XVLQJ D PRGLILFDWLRQ RI WKH PHWKRG RI :DWW DQG &ULVS f 6PDOO DOLTXRWV RI FROOHFWHG IUDFWLRQV ZHUH SODFHG LQWR FP YROXPHWULF IODVNV DORQJ ZLWK FP RI GLPHWK\LDPLQREHQ]DOGHK\GH 3'%$f VROXWLRQ +\GUD]LQH UHDFWV ZLWK 3'%$ WR IRUP DQ LQWHQVH RUDQJH FRORU ZKLFK LV SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI K\GUD]LQH SUHVHQW 7KH VROXWLRQ ZDV GLOXWHG DQG VWDELOL]HG E\ WKH DGGLWLRQ RI 1 +&, WR EULQJ WKH YROXPH XS WR FP &RORU LQWHQVLW\ ZDV UHDG RQ D VSHFWURSKRWRPHWHU &ROHPDQ %f DV SHUFHQW WUDQVPLVVLRQ ZKLFK ZDV WKHQ FRQYHUWHG WR DEVRUEHQFH ,QFUHPHQWDO

PAGE 61

GLOXWLRQV RI WKH K\GUD]LQH VWRFN VROXWLRQ ZHUH UHDG DW WKH WLPH RI WKH FROXPQ HIIOXHQW IUDFWLRQV DQG XVHG DV WKH VWDQGDUG FXUYH IURP ZKLFK WR LQWHUSRODWH K\GUD]LQH FRQFHQWUDWLRQV 7KH GDWD ZHUH HQWHUHG RQ D FRPSXWHU VSUHDGVKHHW DQG D OLQHDU UHJUHVVLRQ ZDV XVHG WR ILW D VWUDLJKW OLQH WKURXJK WKH VWDQGDUG FXUYH 2QO\ ILWV ZLWK 5 ZHUH DFFHSWHG IRU LQWHUSUHWDWLRQ 7KH HTXDWLRQ RI WKH ILWWHG OLQH ZDV XVHG WR FDOFXODWH WKH K\GUD]LQH FRQFHQWUDWLRQV LQ WKH YDULRXV HIIOXHQW IUDFWLRQV &DOFLXP DQDO\VLV ZDV SHUIRUPHG E\ DWRPLF DGVRUSWLRQ VSHFWURPHWU\ RQ D 3HUNLQ (OPHU IODPH VSHFWURSKRWRPHWHU 0RGHO 1R (IIOXHQW VDPSOHV ZHUH GLOXWHG WR DQG DEVRUEHQFH ZDV GHWHUPLQHG XVLQJ D QLWURXV R[LGH IODPH ,QWHUSRODWLRQ RI FDOFLXP FRQFHQWUDWLRQ ZDV GRQH IURP D VWDQGDUG FXUYH PDGH IURP GLOXWLRQV RI D VWDQGDUG VWRFN VROXWLRQ DQDO\]HG DW WKH VDPH WLPH DV WKH VDPSOHV 7KH VWDQGDUG VROXWLRQ ZDV PDLQWDLQHG XQGHU UHIULJHUDWLRQ LQ D 7HIORQ YLDO DQG UHJXODUO\ FRPSDUHG WR SXUH K\GUD]LQH VROXWLRQ IRU FRQVLVWHQF\ $QDO\VLV RI RWKHU HOHPHQWV LQ WKH FROXPQ HIIOXHQW DOXPLQXP SRWDVVLXP DQG VRGLXPf ZDV DOVR SHUIRUPHG RQ WKH DWRPLF DGVRUSWLRQ VSHFWURSKRWRPHWHU XVLQJ DFHW\OHQH RU QLWURXV R[LGH IODPH DV DSSURSULDWH ,QWHUSRODWLRQV RI HOHPHQWDO FRQFHQWUDWLRQV ZHUH DJDLQ PDGH IURP D VWDQGDUG FXUYH SUHSDUHG IURP GLOXWLRQV RI D VWDQGDUG VWRFN VROXWLRQ DQDO\]HG DORQJ ZLWK WKH HIIOXHQW IUDFWLRQV 'DWD 0DQDJHPHQW $QDO\VLV RI WKH GDWD REWDLQHG IURP HDFK FROXPQ HIIOXHQW IUDFWLRQ ZDV DFFRPSOLVKHG XVLQJ D FRPSXWHU VSUHDGVKHHW 7KH UHODWLYH FRQFHQWUDWLRQ RI HDFK IUDFWLRQ ZDV GHWHUPLQHG E\ GLYLGLQJ LWV PHDVXUHG FRQFHQWUDWLRQ &f E\ WKH LQLWLDO LQSXW FRQFHQWUDWLRQ &f WR HVWDEOLVK D UHODWLYH VFDOH IURP WR $QDO\VLV

PAGE 62

RI LQLWLDO FRQFHQWUDWLRQV ZDV GRQH RQ VROXWH VDYHG IURP IODVNV FRQWDLQLQJ LQSXW VROXWLRQ 7KHVH UHODWLYH HIIOXHQWIUDFWLRQ FRQFHQWUDWLRQV ZHUH WKHQ SORWWHG DJDLQVW QXPEHU RI SRUH YROXPHV 3RUH YROXPH LV WKH YROXPH RI OLTXLG FRQWDLQHG LQ D VDWXUDWHG FROXPQ GHWHUPLQHG E\ ZHLJKLQJ WKH GU\ DQG VDWXUDWHG FROXPQ DVVXPLQJ D OLTXLG GHQVLW\ RI J FPnf 7KH FXPXODWLYH YROXPH RI HIIOXHQW ZDV GLYLGHG E\ WKH SRUH YROXPH WR HVWDEOLVK WKH DEVFLVVD RI WKH JUDSK 7KLV SORW LV NQRZQ DV D EUHDNWKURXJK FXUYH %7&f DQG UHYHDOV LPSRUWDQW LQIRUPDWLRQ DERXW WKH G\QDPLFV RI SK\VLFDO DQG FKHPLFDO LQWHUDFWLRQV ZLWKLQ D FROXPQ 7KH PDVV UHSUHVHQWHG XQGHU SRUWLRQV RI WKH EUHDNWKURXJK FXUYHV ZDV HYDOXDWHG E\ QXPHULFDO DQDO\VLV RI WKH VSUHDGVKHHW GDWD ZLWK WKH WUDSH]RLGDO UXOH EHLQJ XVHG WR LQWHJUDWH WKH DUHD XQGHU SRUWLRQV RI WKH EUHDNWKURXJK FXUYH 7KH FRPSXWHU VSUHDGVKHHW OHQGV LWVHOI ZHOO WR WKLV NLQG RI DQDO\VLV VLQFH WKH GDWD PD\ EH HQWHUHG E\ URZ DQG FROXPQ $ WUDSH]RLGDO UXOH H[SUHVVLRQ FDQ EH ZULWWHQ RQ WKH VSUHDGVKHHW WR HYDOXDWH VHOHFWHG SRUWLRQV RI WKH GDWD 0DVV EDODQFHV ZHUH FRPSXWHG IRU K\GUD]LQLXP DGGHG WR DQG GHWHFWHG LQ WKH HIIOXHQW IURP HDFK VRLO FROXPQ 0DVV LQSXW ZDV GHWHUPLQHG E\ WKH ZHLJKW GLIIHUHQFH RI WKH IODVN FRQWDLQLQJ K\GUD]LQLXP LQSXW VROXWLRQ EHIRUH DQG DIWHU WKH FROXPQ H[SHULPHQW PXOWLSOLHG E\ WKH K\GUD]LQLXP FRQFHQWUDWLRQ DVVXPLQJ D VROXWLRQ GHQVLW\ RI J FPnf +\GUD]LQLXP PDVV RXW ZDV GHWHUPLQHG E\ PXOWLSO\LQJ WKH FRQFHQWUDWLRQ DVVRFLDWHG ZLWK HDFK WUDSH]RLG XQGHU WKH RXWSXW FXUYH E\ WKH HIIOXHQW YROXPH RI WKH IUDFWLRQ FROOHFWHG DQG VXPPLQJ RYHU DOO WUDSH]RLGV 7KH GLIIHUHQFH EHWZHHQ K\GUD]LQLXP LQSXW DQG RXWSXW ZDV DVVXPHG WR EH HLWKHU DGVRUEHG WR WKH VRLO RU GHJUDGHG 6RLO IURP D FRPSOHWHG FROXPQ H[SHULPHQW ZDV DOVR H[SRVHG WR WKH 3'%$ FRORULPHWULF GHWHFWRU VROXWLRQ DQG ZDV REVHUYHG WR WXUQ WKH RUDQJH FRORU FKDUDFWHULVWLF RI 3'%$

PAGE 63

UHDFWLRQ ZLWK K\GUD]LQLXP +RZHYHU D TXDQWLWDWLYH DQDO\VLV RI UHVLGXDO K\GUD]LQLXP ZDV QRW SRVVLEOH 0LFURELDO $FWLYLW\ $W WKH LQLWLDWLRQ RI WKLV ZRUN QR LQIRUPDWLRQ ZDV DYDLODEOH RQ PLFURELDO GHJUDGDWLRQ RI K\GUD]LQH LQ VRLOV 7KURXJKRXW WKH GXUDWLRQ RI WKLV VWXG\ VHYHUDO FKHFNV ZHUH PDGH WR REVHUYH DQ\ LQIOXHQFH RI PLFURELDO GHJUDGDWLRQ LQ WKH VRLO FROXPQV 7KH FROXPQ VWXGLHV UHSRUWHG KHUH ZHUH SHUIRUPHG ZLWK HLWKHU SXOVH RU FRQWLQXRXVGXUDWLRQ LQSXW RI DTXHRXV K\GUD]LQH VROXWLRQV 2QH SXUSRVH RI WKH FRQWLQXRXV LQSXW ZDV WR REVHUYH D UDWHFRQWUROOHG GHJUDGDWLRQ SURFHVV ZKLFK PLJKW EH RSHUDWLYH DIWHU DOO VRUSWLYH UHTXLUHPHQWV ZHUH PHW $GGLWLRQDOO\ SODWH FRXQWV DQG GLUHFW DFULGLQH RUDQJH $2f FRXQWV ZHUH PDGH RI PLFURELDO ELRPDVV ZLWKLQ FRPSOHWHG VRLOFROXPQ H[SHULPHQWV 3ODWH FRXQWV DUH DQ HVWLPDWLRQ RI WKH QXPEHU RI YLDEOH FHOOV DEOH WR UHSURGXFH RQ WKH SODWHFXOWXUH PHGLD $SSUR[LPDWHO\ JUDPV RI VRLO REWDLQHG IURP D ORFDWLRQ QHDU WKH FHQWHU RI WKH VRLO FROXPQ ZHUH GLOXWHG ZLWK FPr RI GLVWLOOHG ZDWHU DQG SODWHG RQWR WU\SWRQH EURWK DJDU PHGLD IROORZLQJ WKH SURFHGXUH RI :ROOXP f 7U\SWRQH DJDU LV D JHQHUDOSXUSRVH JURZWK PHGLXP RQ ZKLFK PRVW PLFURRUJDQLVPV ZLOO GHYHORS $JDU SODWHV ZHUH LQFXEDWHG RYHUQLJKW RU XQWLO REVHUYDEOH FRORQ\ JURZWK ZDV QRWHG DW r& $ FRXQWV JLYH D WRWDO PLFURELDO HVWLPDWLRQ OLYLQJ RU GHDG RI PLFURRUJDQLVPV ZKLFK ZLOO DGVRUE WKH DFULGLQH RUDQJH VWDLQ 7KH WHFKQLTXH LV D PLFURVFRSLF GLUHFWFRXQWLQJ PHWKRG LQ ZKLFK JUDPV RI VRLO DUH REWDLQHG GLOXWHG LQ b VRGLXP S\URSKRVSKDWH IL[HG LQ b 1REOH DJDU VROXWLRQ SODFHG

PAGE 64

LQ D FQU GHSUHVVHG FLUFOH RQ D PLFURVFRSH VOLGH VWDLQHG ZLWK b DFULGLQH RUDQJH DQG FRXQWHG XQGHU D SKDVHFRQWUDVW PLFURVFRSH 7UROOGHQLHU f

PAGE 65

&+$37(5 5(68/76 6RLO 3URSHUWLHV 3DUWLFOH6L]H 'LVWULEXWLRQ 0LQHUDO FRPSRQHQWV RI WKH WKUHH XSSHU KRUL]RQV RI $UUHGRQGR ILQH VDQG ZHUH IRXQG WR FRQVLVW RI D SUHGRPLQDQW VDQG IUDFWLRQ DQG UHODWLYHO\ VPDOO SHUFHQWDJHV RI VLOW DQG FOD\ 7DEOH f )URP WKH VWDQGSRLQW RI SDUWLFOH VL]H WKH ( DQG ( KRUL]RQV DUH PRUH VLPLODU WR RQH DQRWKHU WKDQ WKH\ DUH WR WKH $S KRUL]RQ 7KH SHUFHQW FOD\ DQG SHUFHQW VLOW IUDFWLRQ LQ WKH $S KRUL]RQ VHW LW DSDUW DV VRPHZKDW GLIIHUHQW IURP WKH WZR ORZHU KRUL]RQV 7DEOH 3DUWLFOHVL]H GLVWULEXWLRQ +RUL]RQ 9& & b 6DQG 0 ) 9) 7RWDO b 6LOW 7RWDO b &OD\ 7RWDO PPf f f ‘f f f f f $S ( ( 0LQHUDORJ\ ;UD\ DQDO\VLV RI FOD\ ILOPV RQ WKH FHUDPLF WLOHV UHYHDOHG SHDNV DW DQJOHV FRUUHVSRQGLQJ WR WKH GVSDFLQJ RI NDROLQLWH 1R VPHFWLWH FOD\V RU VLJQLILFDQW DPRXQWV RI R[LGH PLQHUDOV ZHUH IRXQG

PAGE 66

7KH ILQGLQJ RI NDROLQLWH DV WKH GRPLQDQW FD\ PLQHUDO LQ WKLV VRLO KDV LPSRUWDQW LPSOLFDWLRQV IRU WKH DGVRUSWLRQ RI FKDUJHG LRQV VXFK DV K\GUD]LQLXP 0RVW RI WKH VXUIDFH IXQFWLRQDO JURXSV RI NDRLLQLWH FRQVLVW RI LQRUJDQLF 2+ JURXSV ZKLFK PD\ EH FRRUGLQDWHG WR RQH RU WZR FDWLRQV 7KH FKDUJH LV IRXQG SUHGRPLQDQWO\ DW WKH HGJHV DULVLQJ IURP EURNHQ ERQGV DQG LV S+GHSHQGHQW $W WKHVH EURNHQ ERQGV K\GUD]LQH FRXOG UHSODFH RWKHU FDWLRQV IURP H[FKDQJH VLWHV XQGHU DFLGLF FRQGLWLRQV 8QGHU DONDOLQH FRQGLWLRQV WKH VLOR[DQH GLWULJRQDL FDYLW\ RQ WKH RXWHU SODQHU VXUIDFHV RI WKH NDROLQLWH SDUWLFOHV DOVR ZRXOG EH DYDLODEOH IRU K\GURJHQ ERQGLQJ WKXV DOORZLQJ WKH DGVRUSWLRQ RI K\GUD]LQH DW VLWHV QRW SUHYLRXVO\ RFFXSLHG E\ D FDWLRQ 0ROLQHU f 2UJDQLF &DUERQ &RQWHQW 7KH DQDO\VLV RI $UUHGRQGR ILQH VDQG UHYHDOHG WKDW VXFFHVVLYHO\ GHHSHU VRLO KRUL]RQV FRQWDLQHG OHVV RUJDQLF FDUERQ 7KH WRSVRLO RU XSSHU KRUL]RQ ZDV IRXQG WR FRQWDLQ SHUFHQW RUJDQLF FDUERQ FRPSDUHG WR DQG SHUFHQW IRU WKH ( DQG ( KRUL]RQV UHVSHFWLYHO\ 7DEOH f :KLOH DOO RI WKHVH SHUFHQWDJHV DUH ORZ LW LV VLJQLILFDQW WR QRWH WKDW WKH $S KRUL]RQ FRQWDLQV DSSUR[LPDWHO\ ILYH DQG D KDOI WLPHV DV PXFK RUJDQLF FDUERQ DV WKH XQGHUO\LQJ KRUL]RQV 7KH GU\ FRPEXVWLRQ PHWKRG GHVFULEHG KHUH GHWHUPLQHV WRWDO FDUERQ SUHVHQW LQ WKH VRLO ZLWK WRWDO FDUERQ EHLQJ WKH VXP RI ERWK RUJDQLF DQG LQRUJDQLF FDUERQ ,QRUJDQLF FDUERQ LV IRXQG LQ FDUERQDWH PDWHULDOV VXFK DV FDOFLWH GRORPLWH DQG VROXEOH FDUERQDWH VDOWV DQG LV QRW JHQHUDOO\ IRXQG LQ ZHOOOHDFKHG VRLOV RI ORZ S+ 1HOVRQ DQG 6RPPHUV f VXFK DV QRUWK )ORULGD $UUHGRQGR ILQH VDQG ,Q VXFK DFLG VRLOV WRWDO FDUERQ FRQWHQW FDQ JHQHUDOO\ EH FRQVLGHUHG HTXLYDOHQW WR RUJDQLF FDUERQ FRQWHQW

PAGE 67

7DEOH 2UJDQLF FDUERQ SHUFHQWDJHV 7ULDO $S +RUL]RQ ( ( $YHUDJH s s s 2UJDQLF FDUERQ KDV EHHQ REVHUYHG WR FRQWULEXWH VLJQLILFDQWO\ WR WKH DGVRUSWLYH FDSDFLW\ RI VRLOV $ YDULHW\ RI IXQFWLRQDO JURXSV LQFOXGLQJ FDUER[\O SKHQROLF 2+ HQROLF 2+ ODFWRQH TXLQRQH K\GUR[\TXLQRQH HWKHU DOFRKROLF 2+ DPLQR DQG VXOIRQLF KDYH EHHQ UHSRUWHG RQ KXPLF VXEVWDQFHV 6WHYHQVRQ f 7KH DELOLW\ RI WKHVH JURXSV WR FRPSOH[ PHWDOV DQG SRODU PROHFXOHV OLNH K\GUD]LQH LV W\SLFDOO\ D IXQFWLRQ RI WKH S+ RI WKH VXVSHQVLRQ DQG GHSHQGV LQ SDUW RQ WKH VWHUHRFKHPLFDO FRQILJXUDWLRU RI WKH PROHFXOH 6FKQLW]HU DQG 6NLQQHU f XWLOL]HG WKH UHDFWLYLW\ RI K\GUD]LQH ZLWK WKH FDUERQ\O JURXSV RI KXPLF VXEVWDQFHV DV D SURFHGXUH IRU GHWHUPLQLQJ WKH FRQFHQWUDWLRQ RI FDUERQ\O JURXSV LQ VRLO RUJDQLF PDWWHU ,VDDFVRQ DQG +D\HV f VKRZHG WKDW WKLV UHDFWLRQ WRRN SODFH HYHQ DW S+ DQG WKDW K\GUD]LQH FDQ DOVR WDNH SDUW LQ VXEVWLWXWLRQ UHDFWLRQV DW SRVLWLRQV RFFXSLHG E\ FDUERQ\O JURXSV (OHPHQWDO $QDO\VLV 6RLO VDPSOHV IURP HDFK RI WKH $S ( DQG ( KRUL]RQV ZHUH DQDO\]HG IRU &D 0J 1D )H DQG $O :KLOH WKH VRLOV XQTXHVWLRQDEO\ FRQWDLQ RWKHU HOHPHQWV DV ZHOO WKHVH DUH WKH SURPLQHQW RQHV H[SHFWHG LQ VRLOV VXFK DV

PAGE 68

$UUHGRQGR ILQH VDQG 7KRPDV HW DO f 5HVXLWV RI WKH DQDO\VLV DUH VKRZQ LQ 7DEOH 7DEOH (OHPHQWDO DQDO\VLV (OHPHQW $S &RQFHQWUDWLRQ PJ NJL VRLOf ( ( &DOFLXP 0DJQHVLXP 6RGLXP 3RWDVVLXP ,URQ $OXPLQXP 7RWDO 7RWDO ZW b $OWKRXJK WKH UHODWLYH SHUFHQWDJHV RI FDOFLXP DQG DOXPLQXP DUH KLJK WKH ZHLJKW SHUFHQWDJHV LQGLFDWH WKDW WKH WRWDO PHWDO FRPSRVLWLRQ ZLWKLQ HDFK KRUL]RQ LV ORZ )RU H[DPSOH LQ WKH $S KRUL]RQ WKH HOHPHQWV DQDO\]HG DFFRXQW IRU RQO\ SHUFHQW RI WKH WRWDO ZHLJKW OHDYLQJ WKH RWKHU SHUFHQW DV VDQG 6Lf VLOW FOD\ DQG RUJDQLF PDWWHU $V SUHYLRXVO\ PHQWLRQHG WKH RUJDQLF PDWWHU IUDFWLRQ LQ WKH $S KRUL]RQ DFFRXQWV IRU SHUFHQW E\ ZHLJKW OHDYLQJ WKH UHPDLQLQJ SHUFHQW DV VDQG VLOW DQG FOD\ 7KH SDUWLFOHVL]H GLVWULEXWLRQ IRU WKH $S KRUL]RQ LQGLFDWHG SHUFHQW VDQG FRPSRVLWLRQ SHUFHQW VLOW DQG SHUFHQW FOD\ 7KXV WKH HOHPHQWDO DQDO\VLV FRUURERUDWHV WKH SDUWLFOHVL]H DQDO\VLV E\ LGHQWLI\LQJ WKH UHODWLYHO\ VPDOO ZHLJKW SHUFHQWDJH RI HOHPHQWDO FRPSRQHQWV DQG JLYHV DGGLWLRQDO LQIRUPDWLRQ DERXW WKH UHODWLYH SUHGRPLQDQFH RI YDULRXV HOHPHQWV 7KH UHODWLYHO\ KLJK FDOFLXP FRQFHQWUDWLRQ PD\ EH LQGLFDWLYH RI WKH FDOFLWLF RULJLQ RI WKLV VRLOfV SDUHQW PDWHULDO DQG WKH UHODWLYHO\ KLJK SHUFHQWDJH RI

PAGE 69

DOXPLQXP LV QRW VXUSULVLQJ JLYHQ WKH NDROLQ VWUXFWXUH REVHUYHG LQ WKH [UD\ GLIIUDFWLRQ DQDO\VLV 6LOLFDWHV ZHDWKHU WR NDROLQ ZKLFK HYHQWXDOO\ EUHDNV GRZQ WR R[LGH PDWHULDOV HVSHFLDOO\ DOXPLQXPULFK R[\K\GUR[LGHV DQG RWKHU R[LGH PDWHULDOVf $OXPLQXP EDX[LWH RUHV DUH FRPPRQO\ IRXQG DVVRFLDWHG ZLWK NDROLQ GHSRVLWV 6RLO S+ 7KH WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG DUH HDFK DFLGLF 7DEOH f WKXV FRQILUPLQJ WKH SUHGRPLQDQFH RI K\GUD]LQLXP DV WKH SUHYDOHQW IRUP RI K\GUD]LQH LQ WKHVH VRLO FRQGLWLRQV 7DEOH 6RLO S+ 7ULDO $S +RUL]RQ ( ( D 0 $YHUDJH s s s %XIIHULQJ &DSDFLW\ 7KH EXIIHULQJFDSDFLW\ WLWUDWLRQ FXUYHV )LJXUH f DUH SORWWHG DV FHQWLPROHV RI FKDUJH DV &D2+ff SHU NLORJUDP RI VRLO YHUVXV S+ 1RQH RI WKH WKUHH FXUYHV VKRZ WKH FKDUDFWHULVWLF VLJPRLG VKDSH LQGLFDWLYH RI D WUXO\ EXIIHUHG SODWHDX ZLWK OHVVEXIIHUHG UHJLRQV WR HLWKHU VLGH 7KH WLWUDWLRQ FXUYH RI WKH $S KRUL]RQ LV VHHQ WR KDYH D ORZHU VORSH WKDQ WKDW RI WKH ( KRUL]RQ LQGLFDWLQJ JUHDWHU UHVLVWDQFH WR S+ FKDQJH E\ LQFUHDVLQJ DPRXQWV RI &D2+f 7KH EHVW ILW OLQHV IRU WKH WLWUDWLRQ FXUYHV ILWWHG E\ OHDVW VTXDUHV VKRZ WKH $S FXUYH WR KDYH

PAGE 70

D VORSH RI 5 f WKH (O FXQH WR KDYH D VORSH RI 5 f DQG WKH ( FXUYH WR KDYH D VORSH RI 5 f %XIIHULQJ FDSDFLWLHV DV LQGLFDWHG E\ WKH VORSHV RI WKH FXUYHV ZHUH DOVR FDOFXODWHG IRU DQG HPROH .Jr VRLO 7DEOH f 7KH RUGHU RI EXIIHULQJ FDSDFLW\ IRU WKH WKUHH KRUL]RQV ZDV $S (O ( ZLWK QRQH RI WKH KRUL]RQV SRVVHVVLQJ D VWURQJ EXIIHULQJ FDSDFLW\ )LJXUH 7LWUDWLRQ FXUYHV IRU WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG 7DEOH &XUYH VORSHV IRU YDULRXV LQFUHPHQWV RI &D2+f DGGLWLRQ +RUL]RQ &XUYH 6ORSH PHT JB VRLOf $S ( (

PAGE 71

&DWLRQ ([FKDQJH &DSDFLW\ &(&f &DWLRQ H[FKDQJH FDSDFLW\ XVXDOO\ H[SUHVVHG LQ FHQWLPROHV RI FKDUJH SHU NLORJUDP RI VRLO IRUPHUO\ PLOOLHTXLYDOHQWV RI FKDUJH SHU J RI VRLOf LV D PHDVXUH RI WKH TXDQWLW\ RI UHDGLO\ H[FKDQJHDEOH FDWLRQV QHXWUDOL]LQJ QHJDWLYH FKDUJH RI WKH VRLO :KLOH &(& LV FRQVLGHUHG D VRLO SURSHUW\ LWV YDOXH DOVR LV GHSHQGHQW XSRQ WKH FRQGLWLRQV XQGHU ZKLFK LW LV PHDVXUHG ,Q WKHVH &(& GHWHUPLQDWLRQV WKH VRLO PDWHULDO LQ HDFK SRO\VXOIRQH WXEH ZDV LQLWLDOO\ VDWXUDWHG ZLWK 1 &D&O DQG SRWDVVLXP D PRQRYDOHQW FDWLRQ OLNH K\GUD]LQLXPf ZDV XVHG WR H[FKDQJH WKH FDOFLXP 7KH GLOXWLRQV RI 1 .&, XVHG IRU H[FKDQJH ZHUH DGMXVWHG WR WKH S+ RI WKH FRUUHVSRQGLQJ VRLO ([SHULPHQWDO UHVXOWV DUH SORWWHG DV SRWDVVLXP LQ WKH RULJLQDO VROXWLRQ YHUVXV WKH GLIIHUHQFH EHWZHHQ VROXWLRQ YDOXHV EHIRUH DQG DIWHU H[FKDQJH DVVXPHG WR UHIOHFW DGVRUSWLRQf 7KH &(& ZDV LQIHUUHG IURP WKH SODWHDX RI WKLV DGVRUSWLRQ LVRWKHUP 7KH SURFHGXUH ZDV SHUIRUPHG LQ GXSOLFDWH ZLWK WKH GDWD GLVSOD\HG LQ )LJXUHV DQG 7KH FRORULPHWULF PHDVXUHPHQW RI PHWK\OHQH EOXH DGVRUSWLRQ DOVR SURGXFHG HVWLPDWLRQV RI &(& 7KHVH ZHUH VLPLODU WR WKRVH REWDLQHG IURP WKH H[FKDQJH LVRWKHUP PHWKRG 'DWD IURP WKH WZR DSSURDFKHV DUH VKRZQ LQ 7DEOH 7DEOH 5HVXOWV RI WKH H[FKDQJH LVRWKHUP DQG PHWK\OHQH EOXH DSSURDFKHV WR &(& GHWHUPLQDWLRQ +RUL]RQ &DWLRQ ([FKDQJH &DSDFLW\ HPROH NJrf ([FKDQJHf ([FKDQJH 0HW %OXHf 0HW %OXH $S ( (

PAGE 72

([FKDQJHDEOH FPROf NJf ([FKDQJHDEOH FPROf .Jf )LJXUH WRSf DQG ERWWRPf 'XSOLFDWH H[FKDQJH LVRWKHUPV IRU WKH $S ( DQG ( KRUL]RQV RI $UUHGRQGR ILQH VDQG

PAGE 73

$GVRUSWLRQ LVRWKHUPV $GVRUSWLRQ LVRWKHUPV ZHUH SORWWHG IURP WKH UHVXOWV RI EDWFK H[SHULPHQWV IRU &D VDWXUDWHG VRLOV H[FKDQJHG ZLWK K\GUD]LQLXP )LJXUHV WKURXJK f ([SHULPHQWV ZHUH SHUIRUPHG LQ DQ DQDHURELF JORYH ER[ WR PLQLPL]H SRWHQWLDO R[LGDWLRQ DQG DOVR ZHUH SHUIRUPHG DW S+ DQG WR H[DPLQH WKH HIIHFW RI S+ RQ DGVRUSWLRQ ([DPLQDWLRQ RI WKH LVRWKHUPV VKRZV WKDW DGVRUSWLRQ ZDV KLJKHU DW S+ WKDQ DW IRU DOO WKUHH KRUL]RQV 7DEOH f VXJJHVWLQJ WKDW ERWK WKH QHXWUDO K\GUD]LQH DQG WKH FKDUJHG K\GUD]LQLXP ZHUH DGVRUEHG $W S+ DSSUR[LPDWHO\ KDOI RI WKH K\GUD]LQH LV SURWRQDWHG DQG KDOI LV LQ QHXWUDO IRUPf 7KH FRQYH[ QDWXUH RI WKH LVRWKHUPV LQGLFDWHV WKDW K\GUD]LQH LV D UHODWLYHO\ VWURQJ FRPSHWLWRU DJDLQVW FDOFLXP 7DEOH 0D[LPXP K\GUD]LQLXP DGVRUEHG DQG SHUFHQWDJH RUJDQLF FDUERQ IRU WKUHH VRLO KRUL]RQV +RUL]RQ +\GUD]LQLXP 6RUEHG NLPRO Jf 3HUFHQWDJH 2UJDQLF &DUERQ S+ S+ $S ( ( 1RWH WKDW K\GUD]LQLXP DGVRUSWLRQ DSSHDUV WR FRUUHODWH ZHOO ZLWK WKH SHUFHQWDJH RI RUJDQLF FDUERQ LQ HDFK KRUL]RQ $ FRUUHODWLRQ DQDO\VLV ZDV SHUIRUPHG LQ ZKLFK SHUFHQWDJH RUJDQLF PDWWHU LQGHSHQGHQW YDULDEOHf ZDV OLQHDUO\ UHJUHVVHG E\ OHDVW VTXDUHV DJDLQVW K\GUD]LQLXP VRUSWLRQ GHSHQGHQW YDULDEOHf 7KH UHJUHVVLRQ VWDWLVWLFV LQGLFDWHG D FRHIILFLHQW RI GHWHUPLQDWLRQ 5f

PAGE 74

RI IRU WKH VRUSWLRQ DW S+ YHUVXV SHUFHQWDJH RUJDQLF FDUERQ UHJUHVVLRQ DQG IRU WKH VRUSWLRQ DW S+ YHUVXV SHUFHQWDJH RUJDQLF FDUERQ UHJUHVVLRQ $ EHVWILW OLQH GHWHUPLQHG IURP WKH UHJUHVVLRQ VWDWLVWLFV !f r f ZDV SORWWHG IRU WKH K\GUD]LQLXP VRUSWLRQ YHUVXV SHUFHQWDJH RUJDQLF FDUERQ GDWD DW S+ )LJXUH f 2QO\ WKUHH VRLOV ZHUH LQYHVWLJDWHG VR LW LV EHVW QRW WR RYHUO\ FRQFOXGH LQIRUPDWLRQ IURP WKH VFDQW GDWD +RZHYHU RWKHU UHVHDUFKHUV KDYH DOVR QRWHG WKH FRUUHODWLRQ EHWZHHQ RUJDQLF FDUERQ DQG DGVRUSWLRQ FDSDFLW\ ,VDDFVRQ DQG +D\HV %UXVVHDX HW DO f )LJXUHV OHIWf DQG ULJKWf $GVRUSWLRQ LVRWKHUPV IRU WKH $S KRUL]RQ DW S+ DQG UHVSHFWLYHO\ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK &D )LJXUHV OHIWf DQG ULJKWf $GVRUSWLRQ LVRWKHUPV IRU WKH ( KRUL]RQ DW S+ DQG UHVSHFWLYHO\ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK &D

PAGE 75

$'625%(' +<'5$=,1( XPRO Jf )LJXUHV OHIWf DQG ULJKWf $GVRUSWLRQ LVRWKHUPV IRU WKH ( KRUL]RQ DW S+ DQG UHVSHFWLYHO\ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK &D 3(5&(17$*( 25*$1,& 0$77(5 )LJXUH 5HJUHVVHG ILW EHWZHHQ VRUEHG K\GUD]LQLXP DQG SHUFHQWDJH RUJDQLF FDUERQ S+

PAGE 76

7KHVH LVRWKHUPV ZHUH FRQYHUWHG WR GLPHQVLRQOHVV LVRWKHUPV LQ RUGHU WR GHULYH GLPHQVLRQOHVV YDOXHV IRU WKH UHODWLYH VRUEHG DQG VROXWLRQ IUDFWLRQV RI K\GUD]LQLXP DQG FDOFLXP IRU XVH LQ SUHGLFWLQJ WKH LQIOXHQFH RI LRQ H[FKDQJH RQ WKH K\GUD]LQLXP WUDQVSRUW SURFHVV 'DWD IURP GLPHQVLRQOHVV LVRWKHUPV ZHUH XVHG WR GHWHUPLQH WKH VHOHFWLYLW\ FRHIILFLHQWV DQG UDWLRV RI H[FKDQJHDEOH K\GUD]LQH WR FDOFLXP DW HTXLOLEULXP 'LPHQVLRQOHVV LVRWKHUPV DUH GHYHORSHG E\ GLYLGLQJ PHDVXUHG VROXWLRQ FRQFHQWUDWLRQV E\ WKH WRWDO QRUPDOLW\ RQ WKH DEVFLVVD DQG LQIHUUHG VRUEHG FRQFHQWUDWLRQV E\ WKH PD[LPXP VRUEHG YDOXH RQ WKH RUGLQDWH )LJXUHV WKURXJK f ([FKDQJH SDUDPHWHUV GHYHORSHG IURP WKH GLPHQVLRQOHVV LVRWKHUPV DUH OLVWHG LQ WDEXODU IRUP LQ 7DEOH 7KH HTXLOLEULXP UDWLR LV WKH HTXLYDOHQW IUDFWLRQ RI K\GUD]LQH DQG HTXLYDOHQW IUDFWLRQ RI FDOFLXP RQ WKH VRLO H[FKDQJH VLWHV DW 1 7ZRWKLUGV RI WKH QRUPDOLW\ LV UHSUHVHQWHG E\ K\GUD]LQH 7DEOH ,RQ H[FKDQJH FRHIILFLHQWV IURP DGVRUSWLRQ LVRWKHUPV +]&Df +RUL]RQ .D Q N (TXLOLEULXP 5DWLR +]&Df $S WR ( WR ( WR $Q DGGLWLRQDO VHW RI LVRWKHUPV ZDV SHUIRUPHG WR HYDOXDWH WKH HIILFLHQF\ RI UHSODFHPHQW ZLWK K\GUD]LQH IRU D PRQRYDOHQW FDWLRQ 6RLO IURP WKH $S DQG ( KRUL]RQV ZDV VDWXUDWHG ZLWK 1D DQG H[FKDQJHG ZLWK K\GUD]LQH DW S+ DQG )LJXUHV WKURXJK f 7KH VXSHUQDWDQW ZDV DQDO\]HG LQ HDFK FDVH IRU ERWK 1D DQG K\GUD]LQH $QDO\]LQJ WKH VXSHUQDWDQW IRU GLVSODFHG 1D LQ WKH VHFRQG VHW RI LVRWKHUPV VKRZHG D GLIIHUHQFH EHWZHHQ WKH DPRXQW RI K\GUD]LQH DGVRUEHG DQG

PAGE 77

(48,9$/(17 625%(' )5$&7,21 6rf (48,9$/(17 625%(' )5$&7,21 6rf 5(/$7,9( &21&(175$7,21 &&7f 5(/$7,9( &21&(175$7,21 &&7f )LJXUHV WRSf DQG ERWWRPf 'LPHQVLRQOHVV DGVRUSWLRQ LVRWKHUPV IRU WKH $S DQG ( KRUL]RQ UHVSHFWLYHO\ DW S+ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK &D

PAGE 78

)LJXUH 'LPHQVLRQOHVV DGVRUSWLRQ LVRWKHUP IRU WKH ( KRUL]RQ DW S+ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK &D WKH DPRXQW RI K\GUD]LQH UHWDLQHG RQ H[FKDQJH VLWHV $W ORZ S+ RQ WKH ( KRUL]RQ PDWHULDO )LJXUH f ZKLFK KDG RQO\ D VPDLO SHUFHQWDJH RI FOD\ DQG RUJDQLF FDUERQ WKH DPRXQW RI K\GUD]LQH DGVRUEHG ZDV HTXLYDOHQW WR WKH DPRXQW RI 1D UHOHDVHG DW ORZ K\GUD]LQH FRQFHQWUDWLRQV 7KLV LQGLFDWHV WKDW DW S+ ZKHUH WKH SURWRQDWHG IRUP RI K\GUD]LQH LV GRPLQDQW bf WKH SULPDU\ PHFKDQLVP RI DGVRUSWLRQ LV FDWLRQ H[FKDQJH 8QGHU DONDOLQH FRQGLWLRQV S+ f K\GUD]LQH ZDV DGVRUEHG HYHQ PRUH UHDGLO\ WKDQ DW S+ )LJXUHV DQG f DQG WKHUH ZDV DQ HYHQ JUHDWHU DPRXQW RI DGVRUSWLRQ DW KLJK FRQFHQWUDWLRQV ,Q DGGLWLRQ WKH DPRXQW RI 1D UHOHDVHG IURP WKH VRLO ZDV OHVV WKDQ DW S+ DQG WKHUH ZDV OLWWOH DSSDUHQW H[FKDQJH EHWZHHQ K\GUD]LQH DQG 1D

PAGE 79

$'625%(' +<'5$=,1( XPRO Jf $'625%(' +<'5$=,1( XPRO Jf 683(51$7$17 +<'5$=,1( PPRO /f 683(51$7$17 +<'5$=,1( PPRO /f )LJXUHV WRSf DQG ERWWRPf $GVRUSWLRQ LVRWKHUPV IRU WKH $S KRUL]RQ DW S+ DQG UHVSHFWLYHO\ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK 1D

PAGE 80

$'625%(' +<'5$=,1( XUQRO Jf $'625%(' +<'5$=,1( XPRO Jf 683(51$7$17 +<'5$=,1( PPRO /f 683(51$7$17 +<'5$=,1( PPRO /f )LJXUHV WRSf DQG ERWWRPf $GVRUSWLRQ LVRWKHUPV IRU WKH ( KRUL]RQ DW S+ DQG UHVSHFWLYHO\ 6RLO LQLWLDOO\ VDWXUDWHG ZLWK 1D

PAGE 81

0LVFLEOH 'LVSODFHPHQW 3UHOLPLQDU\ &ROXPQ 6WXGLHV ,Q VLWX VRLO EXON GHQVLW\ PHDVXUHPHQWV UHFRUGHG E\ 7KRPDV HW DO f IRU $UUHGRQGR ILQH VDQG ZHUH LQ WKH UDQJH RI J FPn VR WKH FROXPQV SUHSDUHG IRU WKHVH VWXGLHV ZHUH SDFNHG LQ WKLV UDQJH 7DEOHV $ DQG $ LQ $SSHQGL[ $ UHSRUW FDOFXODWLRQV RI FROXPQ EXON GHQVLWLHV DV ZHOO DV SRURVLW\ YROXPHWULF ZDWHU FRQWHQW DQG SHUFHQW ZDWHU VDWXUDWLRQ 3HUFHQW ZDWHU VDWXUDWLRQ ZDV FDOFXODWHG IRU WKH FROXPQV DIWHU D IXOO VHW RI H[SHULPHQWV KDG EHHQ SHUIRUPHG DW WKH WZR IORZ UDWHV DQG WKH WKUHH FRQFHQWUDWLRQV IRU HDFK RI WKH WKUHH KRUL]RQV 5HVXOWV VKRZHG WKDW WKH GHJUHH RI VDWXUDWLRQ YDULHG EHWZHHQ DQG SHUFHQW ZLWK DQ DYHUDJH RI SHUFHQW $SSHQGL[ $ 7DEOH $f ,QFRPSOHWH VDWXUDWLRQ RI WKHVH FROXPQV ZDV GXH WR DLU RU IOXVKLQJJDV HQWUDSPHQW LQ VRLO SRUHV 1HZ H[SHULPHQWV GHVLJQHG WR LPSURYH WKH SHUFHQWDJH ZDWHU VDWXUDWLRQ ZHUH SHUIRUPHG E\ SXUJLQJ WKH FROXPQV ZLWK FDUERQ GLR[LGH JDV &2f UDWKHU WKDQ KHOLXP DQG GHDHUDWLQJ WKH &D&O LQIOXHQW VROXWLRQV ZLWK QLWURJHQ JDV 1f 7KH VROXELOLWLHV RI FDUERQ GLR[LGH R[\JHQ QLWURJHQ DQG KHOLXP LQ ZDWHU DUH DV IROORZV 7DEOH f 8VLQJ &2 DV D SXUJH JDV DQG 1 WR GHDHUDWH WKH LQIOXHQW VROXWLRQ SHUFHQW VDWXUDWLRQ LQFUHDVHG WR DQ DYHUDJH RI SHUFHQW LQ WKH DGGLWLRQDO FROXPQ H[SHULPHQWV $SSHQGL[ $ 7DEOH $f 7KLV DSSHDUV GXH WR WKH PXFK JUHDWHU VROXELOLW\ RI &2 LQ ZDWHU WKDQ IRU DQ\ RI WKH RWKHU JDVHV XVHG $ VHULHV RI FROXPQ H[SHULPHQWV ZDV SHUIRUPHG WR GHWHUPLQH WKH OHQJWK RI WLPH QHFHVVDU\ WR VDWXUDWH WKH FROXPQV DW HDFK KRUL]RQ DQG IORZ UDWH ZLWK

PAGE 82

7DEOH 6ROXELOLW\ RI IRXU JDVVHV LQ ZDWHU 6ROXELOLW\ FP JDV SHU FP +2 DW r& DQG PP+Jf FR Q +H 6RXUFH %XGDYDUL &D&O SULRU WR WKH LQWURGXFWLRQ RI K\GUD]LQH 7KLV ZDV QHFHVVDU\ WR HQVXUH WKDW WKH FROXPQ LQIOXHQW DQG HIIOXHQW FRQFHQWUDWLRQV RI &D&O ZHUH HTXDO 7KDW LV WKDW VRUSWLRQLRQ H[FKDQJH SURFHVVHV ZLWKLQ WKH FROXPQV ZHUH DW VWHDG\ VWDWH ZLWK UHVSHFW WR &D &ROXPQV ZHUH SDFNHG DQG SXUJHG DV SUHYLRXVO\ GHVFULEHG EHIRUH GHDHUDWHG &D&O ZDV LQWURGXFHG &DOFLXP ZDV DQDO\]HG LQ WKH HIIOXHQW IUDFWLRQV DQG SORWWHG DV UHODWLYH FRQFHQWUDWLRQ HIIOXHQW FRQFHQWUDWLRQ &f GLYLGHG E\ LQIOXHQW FRQFHQWUDWLRQ &Rff YHUVXV SRUH YROXPH )LJXUHV WKURXJK GLVSOD\ WKHVH UHVXOWV &ROXPQV ZHUH VDWXUDWHG LQ KRXU LQFUHPHQWV VR WKDW H[SHULPHQWV FRXOG EHJLQ HDUO\ LQ WKH ZRUNLQJ GD\ DQG HTXLSPHQW SHUIRUPDQFH FRXOG EH REVHUYHG IRU DQ H[WHQGHG SHULRG RI WLPH 7DEOH GLVSOD\V WKH VDWXUDWLRQ WLPHV IRU HDFK KRUL]RQ DQG IORZ UDWH 7DEOH 6HOHFWHG VDWXUDWLRQ WLPHV SULRU WR K\GUD]LQH DGGLWLRQ +RUL]RQ 6DWXUDWLRQ 7LPH KUVf IORZ UDWH FP KU FP KU r $S ( (

PAGE 83

7,0( KRXUVf )LJXUHV OHIWf DQG ULJKWf &DOFLXP EUHDNWKURXJK FXUYHV IRU WKH $S KRUL]RQ +LJK DQG ORZ IORZ UDWHV UHVSHFWLYHO\ )LJXUHV OHIWf DQG ULJKWf &DOFLXP EUHDNWKURXJK FXUYHV IRU WKH ( KRUL]RQ +LJK DQG ORZ IORZ UDWHV UHVSHFWLYHO\ )LJXUH &DOFLXP EUHDNWKURXJK FXUYH IRU WKH ( KRUL]RQ /RZ IORZ UDWH

PAGE 84

'LVSHUVLRQ &RHIILFLHQWV 'DWD IURP WKH WKUHH EUHDNWKURXJK FXUYHV RI HDFK VRLO KRUL]RQ DW HDFK IORZ UDWH DUH GLVSOD\HG LQ )LJXUHV WKURXJK )URP WKH VFLQWLOODWLRQ FRXQWHU WULWLXP FRXQWV DV FRXQWV SHU PLQXWH RI HDFK IUDFWLRQ ZHUH QRUPDOL]HG E\ GLYLGLQJ E\ WKH FRXQW RI WKH LQSXW VROXWLRQ 7KHVH QRUPDOL]HG FRXQWV ZHUH SORWWHG DJDLQVW WKHLU FRUUHVSRQGLQJ QXPEHUV RI HIIOXHQW SRUH YROXPHV WR SURGXFH D EUHDNWKURXJK FXUYH IRU HDFK IORZ UDWH IRU HDFK KRUL]RQ .LUNKDP DQG 3RZHUV f GLIIHUHQWLDWHG WKH VROXWLRQ WR WKH FRQYHFWLYH GLVSHUVLYH WUDQVSRUW HTXDWLRQ IRU FRQGLWLRQV RI VWHDG\ ZDWHU IORZ DQG D VWHS IXQFWLRQ LQSXW RI QRQUHDFWLYH VROXWH WR REWDLQ WKH VORSH RI WKH EUHDNWKURXJK FXUYH DW WKH QRUPDOL]HG FRQFHQWUDWLRQ &&Rf HTXDO WR DQG DSSUR[LPDWHO\ D SRUH YROXPH Sf RI 7KH VORSH 6S fWKXV EHFRPHV D IXQFWLRQ RI WKH GLVSHUVLRQ FRHIILFLHQW e!f f§ LHUIF OaS & A >-'SY/ >@ >@ >@ ZKHUH HUIF FRPSOHPHQWDU\ HUURU IXQFWLRQ S HIIOXHQW YROXPH H[SUHVVHG DV FROXPQ SRUH YROXPHV GLVSHUVLRQ FRHIILFLHQW FP Vrf Y SRUH ZDWHU YHORFLW\ FP Vnf / FROXPQ OHQJWK FPf DQG 6 VORSH RI WKH EUHDNWKURXJK FXUYH DW S DQG &&T

PAGE 85

325( 92/80(6 325( 92/80(6 )LJXUHV OHIWf DQG ULJKWf 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH $S KRUL]RQ DW ORZ IORZ UDWH 325( 92/80(6 )LJXUHV OHIWf DQG ULJKWf $S KRUL]RQ DW KLJK IORZ UDWH 325( 92/80(6 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH ( &/ R 2 81 '& 2 325( 92/80(6 325( 92/80(6 )LJXUHV OHIWf DQG ULJKWf 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH ( KRUL]RQ DW ORZ IORZ UDWH

PAGE 86

325( 92/80(6 325(92/80(6 )LJXUHV OHIWf DQG ULJKWf 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH ( KRUL]RQ DW KLJK IORZ UDWH e &O R 4 /8 1 FF R ] 325( 92/80(6 325( 92/80(6 )LJXUHV OHIWf DQG ULJKWf 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH ( KRUL]RQ DW ORZ IORZ UDWH ( Â’ /8 1 *& R 325(92/80(6 325(92/80(6 )LJXUHV OHIWf DQG ULJKWf 5HSOLFDWH WULWLXP EUHDNWKURXJK FXUYHV IRU WKH ( KRUL]RQ DW KLJK IORZ UDWH

PAGE 87

7KH VORSHV RI DLO EUHDNWKURXJK FXUYHV ZHUH FDOFXODWHG IURP WKH GDWD DQG VXEVWLWXWHG LQWR WKH DQDO\WLFDO VROXWLRQ RI .LUNKDP DQG 3RZHUV WR GHWHUPLQH D GLVSHUVLRQ FRHIILFLHQW IRU HDFK KRUL]RQ DW HDFK IORZ UDWH 7DEOH f 7DEOH ([SHULPHQWDO GLVSHUVLRQ FRHIILFLHQWV FP KUf IRU ZDWHU IORZ YHORFLWLHV DQG VRLO KRUL]RQV +RUL]RQ 'DUFH\ )ORZ 5DWH FP Kn FP Kn $S [ [ (O [ [ ( [ [ +\GUD]LQH &ROXPQ 6WXGLHV $IWHU VDWXUDWLRQ K\GUD]LQH VROXWLRQV ZHUH PLVFLEO\ GLVSODFHG IRU WZR IORZ YHORFLWLHV WKURXJK FROXPQV RI VRLO PDWHULDOV IURP $S ( DQG ( KRUL]RQV +\GUD]LQLXP LQIOXHQW VROXWLRQV ZHUH DSSOLHG DV ILQLWH SXOVHV DQG DV VWHS IXQFWLRQ LQIORZV $V SUHYLRXVO\ GLVFXVVHG RQH IXOO VHW RI H[SHULPHQWV ZDV SHUIRUPHG ZLWK KHOLXP SXUJLQJ DV WKH GHDHUDWLRQ SURFHGXUH DQG DQRWKHU XVLQJ WKH FDUERQ GLR[LGHQLWURJHQ JDV SURFHGXUH 7KH FDUERQ GLR[LGHQLWURJHQ SURFHGXUH HQDEOHG FROXPQ SHUFHQW VDWXUDWLRQ YDOXHV DYHUDJLQJ DSSUR[LPDWHO\ SHUFHQW KLJKHU *UDSKLFV GHSLFWLQJ WKH H[SHULPHQWDO GHVLJQ DQG LGHQWLI\LQJ WKH EUHDNWKURXJK FXUYH DVVRFLDWHG ZLWK HDFK YDULDEOH DUH VKRZQ LQ )LJXUHV DQG $ QXPEHU RI UHSOLFDWH H[SHULPHQWV ZHUH SHUIRUPHG DQG VHYHUDO FROXPQV ZHUH LQWHQWLRQDOO\ RPLWWHG EHFDXVH H[SHULHQFH DW RWKHU IORZ UDWHV DQG IRU RWKHU KRUL]RQV VXJJHVWHG WKDW QR XVHIXO DGGLWLRQDO LQIRUPDWLRQ ZRXOG EH JDLQHG IURP WKH RPLWWHG GDWD

PAGE 88

%UHDNWKURXJK FXUYHV ZHUH QXPEHUHG WKURXJK LQ FRQVHFXWLYH RUGHU (DUO\ H[SHULPHQWV WR HVWDEOLVK H[SHULPHQWDO SURWRFRO DQG UHILQH DQDO\WLFDO WHFKQLTXH KDYH QRW EHHQ LQFOXGHG LQ WKLV GLVFXVVLRQ DQG WKXV WKH ILUVW EUHDNWKURXJK FXUYH PHQWLRQHG LV QXPEHU ([SHULPHQWDO UHVXOWV ZHUH HQWHUHG LQ D FRPSXWHU VSUHDGVKHHW 0LFURVRIW ([FHOf DQG DUH LQFOXGHG RQ GLVNHWWH UDWKHU WKDQ LQ KDUGFRS\ WDEOH IFUP 7KH QXPHULFDO GDWD ZHUH XVHG WR SHUIRUP DOO DQDO\VHV 7KH UHVXOWV RI HDFK FROXPQ H[SHULPHQW DUH GLVSOD\HG LQ JUDSKLFDO IRUP LQ $SSHQGLFHV % WKURXJK ( 7ZR OHDGLQJ WDEOHV LQ HDFK DSSHQGL[ VXPPDUL]H WKH SHUWLQHQW GDWD XVHG IRU DQDO\VLV 7DEOH LQ HDFK DSSHQGL[ GLVSOD\V VXPPDU\ LQIRUPDWLRQ IRFXVHG RQ PDVV EDODQFH +\GUD]LQH ORVVHV DQG UDWHV RI ORVV DUH SUHVHQWHG IRU HDFK FROXPQ H[SHULPHQW 7DEOH VXPPDUL]HV LQIRUPDWLRQ QHFHVVDU\ WR GUDZ FRQFOXVLRQV DERXW WKH HIIHFWV RI LRQ H[FKDQJH RQ K\GUD]LQH ORVV +DYLQJ IRXU DSSHQGLFHV DOORZHG WKH FROXPQ H[SHULPHQWV WR EH JURXSHG E\ PHWKRG RI SUHSDUDWLRQ DQG GXUDWLRQ f $SSHQGL[ % +HOLXP SUHSDUDWLRQ SXOVH GXUDWLRQ 7DEOHV % DQG % )LJXUHV % WKURXJK %f f $SSHQGL[ & +HOLXP SUHSDUDWLRQ FRQWLQXRXV GXUDWLRQ 7DEOHV & DQG & )LJXUHV & WKURXJK &f f $SSHQGL[ &DUERQ GLR[LGH1LWURJHQ SUHSDUDWLRQ SXOVH GXUDWLRQ 7DEOHV DQG )LJXUHV WKURXJK 'f f $SSHQGL[ ( &DUERQ GLR[LGH1LWURJHQ SUHSDUDWLRQ FRQWLQXRXV GXUDWLRQ 7DEOHV ( DQG ( )LJXUHV ( WKURXJK (f

PAGE 89

38/6( &217,18286 FP KUn FP KUn FP KUr FP KUn RDS $S r L 8 I(O ; ( R [ A( ( FP KUn FP KU FP KUn FP KUn f§ 2 $S ( 4 P ( $S f§ ( ( FP KUn FP KUn FP KUn FP KUn G M LO$S f§ f§ $S f§ f§ e Z ( 2 2 ( ( ( )LJXUH %UHDNWKURXJK FXUYHV DVVRFLDWHG ZLWK WKH YDULDEOHV RI GXUDWLRQ RI K\GUD]LQLXP LQSXW IORZ FRQFHQWUDWLRQ DQG KRUL]RQ +HOLXP SUHSDUDWLRQ 1XPEHUV VKRZQ LQ WKH EORFNV DUH GHVLJQDWLRQV IRU VSHFLILF FROXPQ H[SHULPHQWV

PAGE 90

38/6( &217,18286 2 ] 2 R ; R [ $3 R ( ,( &0 a ( 2 2 /M $3 r ( 4 OR ( FP KUn FP KUn FP KUn FP KUn $S f§ ( ( FP KUn FP KUn FP KU FP KUn $S f§ ( f§ ( FP KUn FP KUn 2 f§ JO$S R ( A &9, ( 2 R ( FP KUn FP QUn $S f§ f§ ( f§ ( f§ )LJXUH %UHDNWKURXJK FXUYHV DVVRFLDWHG ZLWK WKH YDULDEOHV RI GXUDWLRQ RI K\GUD]LQLXP LQSXW IORZ FRQFHQWUDWLRQ DQG KRUL]RQ &DUERQ GLR[LGH DQG QLWURJHQ SUHSDUDWLRQ 1XPEHUV VKRZQ LQ WKH EORFNV DUH GHVLJQDWLRQV IRU VSHFLILF FROXPQ H[SHULPHQWV

PAGE 91

0LFURELDO $FWLYLW\ LQ 6RLO &ROXPQV 7KH SUHVHQFH RI PLFURELDO SRSXODWLRQV LQ WKH VRLO RI WKH FROXPQ H[SHULPHQWV ZDV H[DPLQHG E\ SHUIRUPLQJ DFULGLQH RUDQJH $2f GLUHFW FRXQWV RQ VRLO IURP D QXPEHU RI WKH FRPSOHWHG VRLO FROXPQ H[SHULPHQWV $ FRQVLGHUDEOH PLFURELDO SRSXODWLRQ ZDV IRXQG LQ HDFK VRLO H[DPLQHG 7DEOH f 6LQFH WKH DFULGLQH RUDQJH G\H VWDLQV ERWK DFWLYH DQG LQDFWLYH FHOOV D QXPEHU RI SODWH FRXQWV IRU DFWLYH PLFURELDO SRSXODWLRQV ZHUH DOVR SHUIRUPHG $Q DYHUDJH RI WKH $ FRXQWV E\ KRUL]RQ IURP FRPSOHWHG FROXPQ H[SHULPHQWV VKRZHG VRLO IURP WKH $S KRUL]RQ WR FRQWDLQ [ RUJDQLVPV SHU JUDP ZLWK WKH ( KRUL]RQ FRQWDLQLQJ [V DQG WKH ( KRUL]RQ FRQWDLQLQJ [ RUJDQLVPV SHU JUDP RI ZHW FROXPQ VRLO 3ODWH FRXQWV DYHUDJHG [ RUJDQLVPV SHU JUDP RU DSSUR[LPDWHO\ DQ RUGHU RI PDJQLWXGH OHVV WKDQ WKH $ FRXQW SHUIRUPHG RQ VRLO IURP WKH VDPH FROXPQ %DFNJURXQG FRXQWV RI FROXPQ VRLO IURP H[SHULPHQWV QRW FRQWDLQQJ K\GUD]LQH FRQWDLQHG WKH IROORZLQJ FRXQWV SHU JUDP $S [V ([ DQG ( [ 2QH SXUSRVH RI SHUIRUPLQJ FRQWLQXRXV GXUDWLRQ FROXPQ H[SHULPHQWV ZDV WR REVHUYH WKH SODWHDX RI WKH K\GUD]LQH RXWSXW FXUYH ,W ZDV DQWLFLSDWHG WKDW WKH SODWHDX REVHUYHG LQ WKH HIIOXHQW PHDVXUHPHQWV RI ORQJGXUDWLRQ SXOVHV PLJKW EH ORZHUHG E\ D SURFHVV VXFK DV PLFURELDO GHJUDGDWLRQ RQFH WKH VRUSWLYH GHPDQG RI WKH VRLOV ZDV PHW DQG WKDW WKLV HIIHFW PLJKW EH REVHUYHG E\ QRUPDOL]LQJ WKH HIIOXHQW K\GUD]LQH FRQFHQWUDWLRQV E\ GLYLGLQJ E\ WKH LQIOXHQW FRQFHQWUDWLRQ 7KXV D UHODWLYH HIIOXHQW FRQFHQWUDWLRQ OHVV WKDQ WKH YDOXH RI ZRXOG EH REVHUYHG +RZHYHU WKLV ORZHULQJ RI WKH HIIOXHQW SODWHDX ZDV QRW REVHUYHG HYHQ WKRXJK D FRPSDULVRQ RI LQIOXHQW DQG HIIOXHQW PDVVHV LQGLFDWHG WKH ORVV RI K\GUD]LQH $SSDUHQWO\ WKH UDWH RI K\GUD]LQH ORVV ZDV VXIILFLHQWO\

PAGE 92

VPDOO VXEVHTXHQWO\ PHDVXUHG DV WR PPRO +] NJ VRLO KUf VR DV WR EH PDVNHG E\ H[SHULPHQWDO VFDWWHU RU GLOXWHG E\ WKH QRUPDOL]DWLRQ SURFHVV

PAGE 93

&+$37(5 ',6&866,21 ,QWURGXFWLRQ $ UHYLHZ RI SXEOLVKHG OLWHUDWXUH LQYHVWLJDWLQJ WKH HQYLURQPHQWDO IDWH RI K\GUD]LQH LQ VRLO DQG ZDWHU VXJJHVWV WKDW WKH SURFHVVHV RI JUHDWHVW HIIHFW DUH R[LGDWLRQ DXWR[LGDWLRQ PLFURELDO DQG FKHPLFDO GHJUDGDWLRQ DQG VRUSWLRQ ERWK UHYHUVLEOH DQG LUUHYHUVLEOH DQG LRQ H[FKDQJHf 7KH SRWHQWLDO GHJUDGDWLRQ SDWKZD\V RI R[LGDWLRQ DQG DXWR[LGDWLRQ DUH PLQLPL]HG LQ WKLV ZRUN E\ SHUIRUPLQJ H[SHULPHQWV LQ WKH S+ UDQJH LQ ZKLFK K\GUD]LQH LV VWDEOH 7KH K\GUD]LQH LQIOXHQW IRU VRLOFROXPQ H[SHULPHQWV ZDV DGMXVWHG WR WKH S+ RI WKH VRLOV WKH DFLGLF S+ UDQJH RI WR LQ ZKLFK K\GUD]LQH 1+f ZLWK D S.D RI RFFXUV DV b K\GUD]LQLXP 1+f +\GUD]LQLXP LQ ZDWHU KDV EHHQ VKRZQ WR EH VWDEOH ZLWK UHVSHFW WR R[\JHQ DW DFLGLF S+ $GGLWLRQDOO\ WKLV SURWRQDWHG FRQGLWLRQ VXJJHVWV WKDW LRQ H[FKDQJH VKRXOG EH LQYHVWLJDWHG DV D SRWHQWLDOO\ VLJQLILFDQW IDWH DQG WUDQVSRUW SURFHVV 6HYHUDO HQYLURQPHQWDO YDULDEOHV ZHUH VWXGLHG LQ FRQMXQFWLRQ ZLWK WKLV H[DPLQDWLRQ LQFOXGLQJ YDULDEOH K\GUD]LQH VROXWLRQ FRQFHQWUDWLRQ ZDWHU YHORFLW\ SHUFHQWDJH RI VRLO RUJDQLF PDWWHU DQG VRLO S+ 7KUHH VXFFHVVLYH KRUL]RQV RI FRDUVHWH[WXUHG VDQG ZHUH XVHG WR LQYHVWLJDWH WKH HIIHFWV RI RUJDQLF PDWWHU ZLWKRXW WKH QHFHVVLW\ RI VXEMHFWLQJ D VLQJOH VRLO WR WKH R[LGDWLYH WUHDWPHQW QHFHVVDU\ WR UHPRYH KXPLF PDWHULDO :ROI HWDO f

PAGE 94

(QYLURQPHQWDO 9DULDEOHV 6RPH JHQHUDO EXW VLJQLILFDQW TXDOLWDWLYH FRQFOXVLRQV FDQ EH PDGH DERXW WKH HIIHFW RI VXFK HQYLURQPHQWDO YDULDEOHV DV SHUFHQWDJHV RI RUJDQLF PDWWHU DQG FOD\ VROXWLRQ FRQFHQWUDWLRQ DQG SRUH ZDWHU YHORFLW\ E\ H[DPLQLQJ WKH FROXPQ PDVV LQSXWRXWSXW FDOFXODWLRQV VKRZQ LQ 7DEOHV % & DQG ( RI WKHLU UHVSHFWLYH DSSHQGLFHV 3HUFHQWDJH RI 2UJDQLF 0DWWHU DQG &OD\ 7KH LQIOXHQFH RI RUJDQLF PDWWHU DQG FOD\ ZLWKLQ D VRLO KRUL]RQ RQ WKH GLVDSSHDUDQFH RU ORVV RI VROXWH IURP FROXPQ HIIOXHQW KDV EHHQ QRWHG LQ WKH OLWHUDWXUH UHYLHZ f+\GUD]LQH ORVVf LV GHILQHG KHUH DV WKDW SRUWLRQ RI WKH LQIOXHQW K\GUD]LQH ZKLFK GLG QRW DSSHDU LQ WKH HIIOXHQW 6LQFH WKH VRLO FROXPQV ZHUH QRW DQDO\]HG IRU UHVLGXDO K\GUD]LQH DW WKH WHUPLQDWLRQ RI PLVFLEOH GLVSODFHPHQW K\GUD]LQH FRXOG KDYH EHHQ fORVWf E\ LUUHYHUVLEOH VRUSWLRQ VORZ GHVRUSWLRQ E\ VRLO VROLGV RU E\ PLFURELDO GHJUDGDWLRQ +\GUD]LQH ORVVHV IURP WKH FROXPQ SXOVH H[SHULPHQWV GHVFULEHG LQ $SSHQGL[ 7DEOH ZHUH GHWHUPLQHG E\ VXEWUDFWLQJ WKH PDVV RI K\GUD]LQH UHFRYHUHG LQ WKH FROXPQ HIIOXHQW IURP WKDW LQWURGXFHG LQWR WKH FROXPQV DQG WKHQ QRUPDOL]LQJ E\ WKH PDVV RI VRLO LQ HDFK FROXPQ 'XSOLFDWH VRLOFROXPQ H[SHULPHQWV ZLWKLQ WKH GDWDVHW ZHUH DYHUDJHG WR JLYH RQH YDOXH RI K\GUD]LQH ORVV IRU HDFK H[SHULPHQWDO FRQILJXUDWLRQ RI IORZ UDWH DQG FRQFHQWUDWLRQ 7KH ORVVHV DUH VXPPDUL]HG E\ KRUL]RQ LQ 7DEOH WRJHWKHU ZLWK WKH SHUFHQWDJH RI RUJDQLF PDWWHU DQG FOD\ GHWHUPLQHG IURP EDWFK H[SHULPHQWV UHSRUWHG HDUOLHU LQ 7DEOH DQG f 3HUFHQWDJH K\GUD]LQH ORVV ZDV GHWHUPLQHG E\ VXPPLQJ WRWDO K\GUD]LQH PDVV ORVV IRU WKH WKUHH H[SHULPHQWDO WUL£LV ZLWKLQ HDFK KRUL]RQ DQG GLYLGLQJ E\ WKH WRWDO K\GUD]LQH PDVV LQSXW IRU WKRVH WULDOV WLPHV

PAGE 95

7ZHQW\VHYHQ FROXPQ H[SHULPHQWV DUH UHSUHVHQWHG LQ WKH WDEOH QLQH IRU HDFK KRUL]RQ ,QIOXHQW PDVV ORDGLQJV IRU DOO FROXPQV ZLWKLQ HDFK KRUL]RQ ZHUH ZLWKLQ SHUFHQW RI RQH DQRWKHU 7DEOH +\GUD]LQH ORVVHV SHUFHQWDJH RUJDQLF PDWWHU DQG SHUFHQWDJH FOD\ E\ KRUL]RQ IRU D WRWDO RI FROXPQ H[SHULPHQWV +RUL]RQ +] /RVV PPRO +] .Jf VRLOf b +] /RVV b 20 b &OD\ $S ( ( 7KH SHUFHQWDJH K\GUD]LQH ORVVHV IRU HDFK KRUL]RQ ZHUH UHJUHVVHG DJDLQVW WKH SHUFHQWDJH RUJDQLF PDWWHU DQG SHUFHQWDJH FOD\ FRQWHQW RI HDFK KRUL]RQ LQ DQ DWWHPSW WR HVWDEOLVK D FRUUHODWLRQ ZKLFK LV GHSLFWHG JUDSKLFDOO\ LQ )LJXUH 7KH EHVWILW OLQH IRU WKH K\GUD]LQH ORVV YHUVXV SHUFHQWDJH RUJDQLF PDWWHU KDV D FRUUHODWLRQ FRHIILFLHQW 5f RI ZKLOH WKH FRUUHODWLRQ RI WKH K\GUD]LQH ORVV YHUVXV SHUFHQWDJH FOD\ FRQWHQW KDV DQ 5 RI 7KH ILW RI WKH SUHGLFWHG K\GUD]LQH ORVV GXH WR WKH SHUFHQWDJH RI RUJDQLF PDWWHU LQ HDFK KRUL]RQ >b+] /RVV rb20f @ LQWHUVHFWV WKH
PAGE 96

)LJXUH /LQHDU UHJUHVVLRQ RI ERWK SHUFHQWDJH RUJDQLF PDWWHU DQG SHUFHQWDJH FOD\ DJDLQVW SHUFHQWDJH K\GUD]LQH ORVV 7KH EHVWILW OLQH WKURXJK WKH FOD\ GDWD FURVVHV WKH b+] /RVV rb&OD\f @ &DUH VKRXOG EH WDNHQ KHUH LQ DVVXPLQJ WKDW D JRRG FRUUHODWLRQ FRHIILFLHQW 5 f LPSOLHV D WUXWKIXO UHODWLRQVKLS 7KH EHVWILW OLQH LPSOLHV WKH QHJDWLYH ORVV RU XQUHDOLVWLF PDQXIDFWXUH RI K\GUD]LQH ZKHQ SDVVLQJ WKURXJK D VRLO FROXPQ 7DNHQ E\ LWVHOI WKH OLQH DOVR LQGLFDWHV WKDW WKH ( KRUL]RQ VKRXOG EH PRUH VRUSWLYH WKDW WKH ( KRUL]RQ D FRQFOXVLRQ QRW VXSSRUWHG E\ WKH GDWD $ PXOWLSOH UHJUHVVLRQ LQFOXGLQJ ERWK SHUFHQWDJH RUJDQLF PDWWHU DQG SHUFHQWDJH FOD\ YHUVXV SHUFHQWDJH K\GUD]LQH ORVV ZDV REVHUYHG WR ILW WKH GDWD ZLWK D FRUUHODWLRQ FRHIILFLHQW RI WKRXJK WKH ILWWHG OLQH SDVVHG WKURXJK QRQH RI WKH GDWD SRLQWV 7KH HTXDWLRQ >+] ORVV rb20f rb&OD\f @ VKRZV D QHJDWLYH FRUUHODWLRQ ZLWK SHUFHQWDJH FOD\ DV ZHOO DV XQUHDVRQDEOH

PAGE 97

FRHIILFLHQWV W LV VLPSO\ D PDWKHPDWLFDO ILW WKURXJK WRR IHZ GDWD SRLQWV WR DOORZ UHDOLVWLF LQWHUSUHWDWLRQ 7KXV WKHUH DSSHDUV WR EH D JRRG FRUUHODWLRQ EHWZHHQ WKH SHUFHQWDJH RI RUJDQLF PDWWHU DQG WKH SHUFHQWDJH ORVV RI K\GUD]LQH ZLWKLQ VRLO FROXPQV 7KH HTXDWLRQ RI WKH EHVWILW OLQH DOVR DSSHDUV UHDVRQDEOH ZKHQ LQWHUSUHWHG ZLWK WKH GDWD 7KH FRUUHODWLRQ RI SHUFHQWDJH FOD\ DQG SHUFHQWDJH K\GUD]LQH ORVV ZKLOH KDYLQJ D KLJK FRUUHODWLRQ FRHIILFLHQW GRHV QRW DSSHDU UHDVRQDEOH 6ROXWH &RQFHQWUDWLRQ $Q H[DPLQDWLRQ RI WKH HIIIHFW RI YDULDEOH K\GUD]LQH FRQFHQWUDWLRQ RQ K\GUD]LQH WUDQVSRUW ZDV LQFOXGHG LQ WKH LQLWLDO H[SHULPHQWDO SURWRFRO 7KURXJK WKH FRXUVH RI WKH H[SHULPHQWDO VWXGLHV UHSOLFDWH H[SHULPHQWV ZHUH SHUIRUPHG DW HDFK RI WKH WKUHH WDUJHWHG FRQFHQWUDWLRQ UDQJHV PPRO /r PPRO /r DQG PPRO /rf ,Q WKH DQDO\VLV RI WKH GDWD DQ DWWHPSW ZDV PDGH WR FRUUHODWH K\GUD]LQH VROXWLRQ FRQFHQWUDWLRQ ZLWK SHUFHQWDJH K\GUD]LQH ORVV IURP FROXPQV UHFHLYLQJ D SXOVH RI K\GUD]LQH LQIOXHQW 7R PLQLPL]H WKH QXPEHU RI YDULDEOHV ZKLFK PLJKW DIIHFW WKH FRUUHODWLRQ D VHSDUDWH OLQHDU UHJUHVVLRQ ZDV SHUIRUPHG RQ GDWD IURP HDFK KRUL]RQ DW HDFK YHORFLW\ IRU D WRWDO RI VL[ UHJUHVVLRQV WKUHH KRUL]RQV WZR YHORFLWLHV LQ HDFKf 7KH GDWD HTXDWLRQV RI SUHGLFWHG OLQHDU K\GUD]LQH ORVV EHVWILW OLQHV DQG FRUUHODWLRQ FRHIILFLHQWV DUH VKRZQ RQ 7DEOH &RUUHODWLRQ FRHIILFLHQWV DUH REVHUYHG WR UDQJH IURP WR :LWK WKH H[FHSWLRQ RI WKH VORZ YHORFLW\ GDWD 5 f RI WKH $S KRUL]RQ WKH GDWD DSSHDU RQO\ VXIILFLHQWO\ FRUUHODWHG WR GHILQH D JHQHUDO WUHQG 7KH VLQJOH KLJK FRUUHODWLRQ FRHIILFLHQW DSSHDUV IRUWXLWRXV JLYHQ WKH UHODWLYHO\ ORZ FRUUHODWLRQ RI WKH RWKHU ILYH

PAGE 98

7KH GDWD DQG SUHGLFWHG EHVWILW OLQH IURP WKH VORZ YHORFLW\ ( KRUL]RQ LV IHOW WR EH W\SLFDO RI WKH GDWDVHW DQG LV VKRZQ JUDSKLFDOO\ LQ )LJXUH 1RWH WKH QHJDWLYH VORSH RI WKH EHVWILW OLQH LQGLFDWLQJ WKDW JUHDWHU SHUFHQWDJH K\GUD]LQH LRVVHV DUH DVVRFLDWHG ZLWK ORZHU FRQFHQWUDWLRQV 7KLV WUHQG ZRXLG EH H[SHFWHG LI WKHUH H[LVWHG D VLQN RU ORVV PHFKDQLVP RI ILQLWH H[WHQW ZKLFK H[HUWHG LWV GHPDQG UHODWLYHO\ HDUO\ LQ WKH WUDQVSRUW SURFHVV $ ORZ FRQFHQWUDWLRQ DQG WKXV 7DEOH +\GUD]LQH ORVV DV D IXQFWLRQ RI VRLOFROXPQ LQIOXHQW FRQFHQWUDWLRQ +RUL]RQ )ORZ &RQH b +] +] 3UHGLFWHG /RVV 5 5DWH PPRO /RVV HTXDWLRQ +] /ff $S )DVW r&RQFf 6ORZ r&RQFf ( )DVW r&RQFf 6ORZ r&RQFf ( )DVW r&RQFf 6ORZ r&RQFf ORZ WRWDO PDVVf LQSXW ZRXOG EH ORVW LQ WKH VLQN ZKHUHDV D KLJKHU FRQFHQWUDWLRQ LQSXW ZRXOG ILOO WKH GHPDQG RI D ILQLWH VLQN WHUP OHDYLQJ H[FHVV VROXWH WR EH DIIHFWHG E\ RWKHU PRUH VORZO\ DFWLQJ SHUKDSV UDWHOLPLWHG ORVVGHJUDGDWLRQ SURFHVVHV

PAGE 99

7KH FRQFHSW RI D ILQLWHH[WHQW VLQN LV ZHOLNQRZQ DQG IUHTXHQWO\ PRGHOHG DV D VRUSWLYH ORVV 7KH GDWD DOVR VXSSRUW WKLV FRQFHSW 1RWH WKDW LQ VORZ YHORFLW\ H[SHULPHQWV WKH VROXWH LQSXW WR WKH $S DQG ( KRUL]RQV GRHV QRW HPHUJH LQ WKH HIIOXHQW ZKHUHDV K\GUD]LQH VROXWH LV REVHUYHG LQ WKH HIIOXHQW IUDFWLRQV IURP WKH ( KRUL]RQ LPSO\LQJ WKDW WKH VLQN WHUP IRU WKH ( KRUL]RQ PD\ EH VPDOOHU WKDQ IRU WKH RWKHU KRUL]RQV 7KH VDPH WUHQG LV DOVR QRWHG DW VLPLODU YHORFLWLHV LQ HDFK KRUL]RQ )LJXUH +\GUD]LQH FRQFHQWUDWLRQ YHUVXV SHUFHQWDJH K\GUD]LQH ORVW LQ WKH ( KRUL]RQ DW VORZ IORZUDWH 3RUH:DWHU 9HORFLW\ 7KH UHODWLRQVKLS EHWZHHQ WKH UDWH RI DGYHFWLYH PRYHPHQW RI D VROXWH DQG WKH UDWH RI LWV LQWHUDFWLRQ ZLWK WKH VRLO HQYLURQPHQW LV D FULWLFDO IDFWRU LQ DVVHVVLQJ LWV HQYLURQPHQWDO IDWH DQG WUDQVSRUW 7KH DVVXPSWLRQ LV RIWHQ PDGH WKDW UHDFWLRQV RFFXU LQVWDQWDQHRXVO\ RU DW OHDVW TXLFNO\ ZLWK UHVSHFW WR VROXWH WUDQVSRUW DQG WKDW SURFHVV HTXLOLEULXP KDV EHHQ HVWDEOLVKHG $OWKRXJK WKLV DVVXPSWLRQ VLPSOLILHV WKH FRQFHSWXDO XQGHUVWDQGLQJ RI WKH SURFHVVHV LQYROYHG

PAGE 100

DV ZHOO DV WKH PDWKHPDWLFV XWLOL]HG LQ IDWH DQG WUDQVSRUW SUHGLFWLRQV NLQHWLF SURFHVVHV FRPPRQO\ DUH DVVRFLDWHG ZLWK WKH IDWH DQG WUDQVSRUW RI FKHPLFDOV LQ VRLO 7ZR IDFWRUV ZHUH LQFRUSRUDWHG LQWR WKH GHVLJQ RI WKH K\GUD]LQH H[SHULPHQWV WR HYDOXDWH WUDQVSRUW HTXLOLEULXP 7KH 'DUF\ ZDWHU YHORFLW\ ZDV YDULHG DQ RUGHU RI PDJQLWXGH DV HLWKHU FP KU RU FP KU DQG WKH K\GUD]LQH H[SRVXUH WLPH LQ WKH FROXPQV ZDV YDULHG XVLQJ HLWKHU SXOVH RU FRQWLQXRXV VROXWH LQSXW 7KH DVVXPSWLRQ ZDV PDGH WKDW HYHQ VORZO\ UHDFWLQJ SURFHVVHV ZRXOG HYHQWXDOO\ FRPH WR HTXLOLEULXP RYHU D ORQJ H[SRVXUH &ROXPQ H[SHULPHQWV IRU HDFK VRLO KRUL]RQ ZHUH GXSOLFDWHG IRU HDFK YHORFLW\ 6XPPDU\ UHVXLWV DUH VKRZQ LQ 7DEOH LQ DSSHQGLFHV % DQG DQG DUH FRQGHQVHG KHUH LQ 7DEOH 7DEOH 3HUFHQWDJH K\GUD]LQH ORVVHV E\ IORZ UDWH IRU RWKHUZLVH UHSOLFDWH H[SHULPHQWV IURP 7DEOH LQ $SSHQGLFHV % DQG 'f +RUL]RQ 3HUFHQWDJH +\GUD]LQH /RVV FP KU FP KU $S ( ( e 7RWDO 3HUFHQWDJH K\GUD]LQH ORVVHV VKRZQ LQ WKLV WDEOH ZHUH GHWHUPLQHG E\ WDNLQJ WKH GLIIHUHQFH EHWZHHQ LQSXW DQG RXWSXW K\GUD]LQH PDVVHV IURP HDFK FROXPQ WULDO GLYLGLQJ WKHP LQWR JURXSV E\ YHORFLW\ DQG WKHQ VXPPLQJ HDFK JURXS DQG GHWHUPLQLQJ D SHUFHQWDJH ORVV IRU HDFK KRUL]RQ 7KLUW\VL[ FROXPQ H[SHULPHQWV DUH UHSUHVHQWHG LQ WKH WDEOH IRU WKH QLWURJHQ& SUHSDUHG

PAGE 101

FROXPQV WKUHH VRLOV WKUHH FRQFHQWUDWLRQV HDFK WZR YHORFLWLHVf DQG DQRWKHU IRU WKH KHOLXPSUHSDUHG FROXPQV $ FRPSRVLWH RI WRWDO SHUFHQWDJH K\GUD]LQH ORVV E\ YHORFLW\ ZDV GHWHUPLQHG E\ VXPPLQJ DOO LQSXWV DQG RXWSXWV E\ H[SHULPHQW EHIRUH GHWHUPLQLQJ D SHUFHQWDJH ORVV UDWKHU WKDQ E\ DYHUDJLQJ LQIRUPDWLRQ IURP WKH WKUHH KRUL]RQV )URP WKH WDEOH K\GUD]LQH ORVVHV GXULQJ WKH VORZ OLTXLG YHORFLW\ PLVFLEOH GLVSODFHPHQW H[SHULPHQWV ZHUH JHQHUDOO\ JUHDWHU WKDQ IRU WKRVH ZLWK KLJK YHORFLWLHV 7KH PRVW GUDPDWLF HIIHFWV ZHUH DVVRFLDWHG ZLWK KLJK DQG PHGLXP LQIOXHQW FRQFHQWUDWLRQV IRU FROXPQV RI WKH $S VRLO ZKLFK KDG WKH KLJKHVW FRQWHQW RI FOD\ DQG RUJDQLF PDWWHU $OO LQIOXHQW K\GUD]LQH GLVDSSHDUHG IRU ORZ LQIOXHQW FRQFHQWUDWLRQV DSSOLHG WR $S FROXPQV )RU ( FROXPQV ZLWK WKH ORZHVW FOD\ DQG RUJDQLF PDWWHU FRQWHQWV K\GUD]LQH ORVVHV IRU IDVW DQG VORZ ZDWHU YHORFLWLHV UHFHLYLQJ ORZ LQIOXHQW FRQFHQWUDWLRQ ZHUH RQO\ DQG b UHVSHFWLYHO\ $OO LQIOXHQW K\GUD]LQH GLVDSSHDUHG IRU ( FROXPQV LQWHUPHGLDWH FOD\ DQG RUJDQLF PDWWHUf UHFHLYLQJ WKH ORZHVW LQIOXHQW FRQFHQWUDWLRQ &DUH VKRXOG EH WDNHQ KRZHYHU LQ LQIHUULQJ WKDW WKHVH ORVVHV DUH WKH UHVXOW RI D NLQHWLF HIIHFW LQ ZKLFK WKH KLJKHU IORZ UDWH H[FHHGV WKH SURFHVV NLQHWLF UDWH ,W LV LPSRUWDQW WR QRWH WKDW WKH H[SRVXUH RI K\GUD]LQH WR VRLO DW WKH ORZ YHORFLW\ ZLWKLQ D VRLO FROXPQ ZDV DQ RUGHU RI PDJQLWXGH ORQJHU LQ WLPH WKDQ H[SRVXUH DW WKH KLJK IORZ UDWH $Q\ SRWHQWLDOO\ GHJUDGDWLYH SURFHVV DFWLQJ DW D FRQVWDQW UDWHf ZRXOG KDYH D PXFK ORQJHU WLPH RYHU ZKLFK WR UHPRYH K\GUD]LQH IURP VROXWLRQ 7KXV ORZHUYHORFLW\ FROXPQV ZRXOG KDYH KLJKHU SHUFHQWDJH ORVVHV QRW QHFHVVDULO\ IURP D ORQJHU H[SRVXUH JLYLQJ VORZ NLQHWLFV WLPH WR HTXLOLEUDWH EXW IURP JLYLQJ D GHJUDGDWLYH SURFHVV ORQJHU WLPH LQ ZKLFK WR UHPRYH K\GUD]LQH

PAGE 102

7LPH RI ([SRVXUH ,W ZDV QHFHVVDU\ WR UXQ ORZYHORFLW\ SXLVHGLQSXW FROXPQ H[SHULPHQWV IRU D ORQJHU WLPH WKDQ KLJKYHORFLW\ H[SHULPHQWV ,Q RUGHU WR REVHUYH FRPSOHWH VROXWH EUHDNWKURXJK 7KH ORZYHORFLW\ H[SHULPHQWV FRQWDLQHG DQ DYHUDJH K\GUD]LQH SXOVHZLGWK RI s KRXUV FRPSDUHG WR DQ DYHUDJH KLJK YHORFLW\ SXOVHZLGWK RI s KRXUV 7DEOH f ([SHULPHQWV ZHUH FRQWLQXHG DSSUR[LPDWHO\ WZLFH WKDW OHQJWK RI WLPH WR REVHUYH WKH H[LW RI WKH SXOVHV IURP WKH FROXPQ :LWKLQ KRUL]RQV ZKHQ K\GUD]LQH ORVVHV IURP FROXPQV RI FRPSDUDEOH FRQFHQWUDWLRQ ZHUH H[DPLQHG WKH WRWDO K\GUD]LQH ORVW SHU .J RI VRLO ZDV KLJKHU IRU H[SHULPHQWV ZLWK ORQJHU WLPHRIH[SRVXUH 7DEOH 5HODWLRQVKLS RI H[SRVXUH WLPH WR K\GUD]LQH ORVV IURP SXOVH H[SRVXUHV +RUL]RQ FP KU FP KU ([SRVXUH KUnf +] /RVV PPRO +] .Jn VRLOf ([SRVXUH KUf +] /RVV PPRO +] .Tf VRLOf $S ( ( e0 $YHUDJH s s s s 7KLV GDWD GRHV QRW UHVROYH WKH TXHVWLRQ RI ZKHWKHU HTXLOLEULXP FRQGLWLRQV H[LVW LQ FROXPQV UXQ DW ERWK FP KU DQG FP KU ,W GRHV KRZHYHU LOOXVWUDWH WKH GLIIHUHQFH LQ PDVV ORVV DW WKH WZR YHORFLWLHV DQG VXJJHVWV WKH SUHVHQFH RI D WLPHGHSHQGHQW FRQWLQXRXVO\ GHJUDGLQJ SURFHVV 0RUH LQIRUPDWLRQ RQ WKH TXHVWLRQ RI FROXPQ HTXLOLEULXP LV REWDLQHG E\ H[DPLQLQJ WKH UHVXOWV IURP WKH ORQJ RU FRQWLQXRXVGXUDWLRQ FROXPQ

PAGE 103

H[SHULPHQWV 7KHVH FROXPQ H[SHULPHQWV UHFHLYHG D VWHSIXQFWLRQ LQSXW RI K\GUD]LQH 7KDW LV WKH K\GUD]LQH LQSXW VROXWLRQ ZDV FRQWLQXRXVO\ DSSOLHG WKURXJK WKH HQG RI WKH H[SHULPHQW 7KHVH UHVXOWV ZHUH H[DPLQHG IRU WRWDO H[SRVXUHWLPH WLPH LQ ZKLFK K\GUD]LQH ZDV LQ FRQWDFW ZLWK VRLO PDWHULDOf DQG PDVV K\GUD]LQH ORVV 7KH H[SRVXUH WLPHV RI WKHVH H[SHULPHQWV ZHUH FRQVLGHUDEO\ ORQJHU WKDQ WKRVH RI WKH SXOVH H[SHULPHQWV 7KXV LI FRQGLWLRQV RI NLQHWLF HTXLOLEULXP ZHUH UHDFKHG DW D SDUWLFXODU VROXWH YHORFLW\ WKH ORVVHV LQ ORQJHUGXUDWLRQ H[SHULPHQWV VKRXOG EH WLPHPXOWLSOHV RI WKH ORVVHV LQ WKH VKRUWHUGXUDWLRQ H[SHULPHQWV 'HWDLOHG UHVXOWV DUH IRXQG LQ 7DEOH RI $SSHQGLFHV & DQG ( DQG DUH VXPPDUL]HG LQ 7DEOH 7DEOH 5HODWLRQVKLS RI H[SRVXUH WLPH WR K\GUD]LQH ORVV IURP FRQWLQXRXV H[SRVXUHV +RUL]RQ FP KU FP KU ([SRVXUH KUf +] /RVV PPRO +] .Jr VRLOf ([SRVXUH KUf +] /RVV PPRO +] .Jn VRLOf $S ( ( 4 $YHUDJH s s s s 7KH VWDQGDUG GHYLDWLRQV RI WKHVH GDWD DUH KLJK EHFDXVH H[SHULHQFH ZLWK WKH GLIIHUHQW VRLOV LQGLFDWHG WKDW XQLIRUP H[SRVXUH WLPHV DPRQJ VRLO KRUL]RQV ZHUH QRW QHHGHG WR DWWDLQ VWHDG\VWDWH HIIOXHQW FRQGLWLRQV +RZHYHU K\GUD]LQH ORVV ZDV IRXQG WR GLUHFWO\ FRUUHODWH ZLWK H[SRVXUH WLPH DQG DYHUDJHV ZHUH XVHG VXEVHTXHQWO\ DPRQJ WKH GLIIHUHQW KRUL]RQV VLQFH WKH H[SHULPHQWDO SURWRFRO ZDV VLPLODU IRU DOO H[SHULPHQWV

PAGE 104

7KH UDWLR RI DYHUDJH H[SRVXUH WLPHV IRU WKH SXOVH DQG FRQWLQXRXV GXUDWLRQ H[SHULPHQWV ZHUH FRPSDUHG WR WKH REVHUYHG SXOVH ORVVHV LQ DQ DWWHPSW WR SUHGLFW FRQWLQXRXVH[SRVXUH ORVVHV LQ WKH IROORZLQJ PDQQHU FRQWLQXRXV H[SRVXUH WLPH B SUHGLFWHG FRQWLQXRXV ORVV J A A SXOVH H[SRVXUH WLPH REVHUYHG SXOVH ORVV 'DWD IURP WKH KLJKYHORFLW\ FROXPQ H[SHULPHQWV ZDV XVHG WR SUHGLFW WKH FRQWLQXRXVH[SRVXUH ORVVHV DV IROORZV KRXUV B 3UHG FRQW ORVV UI KRXUV PPRO +] J 3UHG FRQW ORVV PPRO +] J >@ 7KH PHDVXUHG ORVVHV LQ WKH FRQWLQXRXVH[SRVXUH H[SHULPHQWV ZHUH s PPRO +] Jr D YDOXH ZHOO ZLWKLQ WKH SUHGLFWHG UDQJH $ VLPLODU FRPSDULVRQ EHWZHHQ WKH VORZYHORFLW\ H[SRVXUH WLPHV DQG K\GUD]LQH ORVVHV \LHOGHG D SUHGLFWHG FRQWLQXRXVH[SRVXUH ORVV RI PPRO +] JB DQG D PHDVXUHG ORVV RI s PPRO +] JB $JDLQ SUHGLFWHG ORVVHV ZHUH ZLWKLQ WKH UDQJH RI PHDVXUHG ORVVHV 7KXV DQ H[DPLQDWLRQ RI K\GUD]LQHORVV GDWD GRHV QRW LQGLFDWH WKH SUHVHQFH RI NLQHWLF HIIHFWV LQ WKH WUDQVSRUW RI K\GUD]LQH WKURXJK WKHVH VRLO FROXPQV

PAGE 105

3URFHVV 9DULDEOHV 0LFURELDO 'HJUDGDWLRQ 7KH ZRUN E\ 2X f DQG 2X DQG 6WUHHW f DV QRWHG HDUOLHU LQGLFDWHG WKDW K\GUD]LQH FRQFHQWUDWLRQV RI DQG LJ Jr WR PPRO .Jnf LQ $UUHGRQGR VRLO GLVDSSHDUHG XQGHU VWDWLF DHURELF FRQGLWLRQV LQ OHVV WKDQ DQG GD\V UHVSHFWLYHO\ 7KH UDQJH RI VROXWH FRQFHQWUDWLRQV XVHG LQ WKLV VWXG\ WR PPRO /nf FRXOG DOVR EH XVHG WR GHWHUPLQH D UDQJH RI VRLO H[SRVXUHV IRU HDFK FROXPQ H[SHULPHQW E\ PXOWLSO\LQJ WKH UHOHYDQW K\GUD]LQH FRQFHQWUDWLRQ E\ WKH SRUH YROXPH /f DQG WKHQ GLYLGLQJ E\ WKH VRLO PDVV SHU FROXPQ .Jf 2Q WKLV EDVLV WKH PLFURRUJDQLVPV LQ WKH FROXPQV ZHUH H[SRVHG WR DSSUR[LPDWHO\ WR PPRO +] .J RI VRLO FRQFHQWUDWLRQV ZHOO ZLWKLQ WKH UDQJH RI WKRVH GHVFULEHG E\ 2X DQG 6WUHHW IRU K\GUD]LQH GHJUDGDWLRQ $ FRXQWV SHUIRUPHG RQ PDWHULDO IURP FRPSOHWHG FROXPQ H[SHULPHQWV UHYHDOHG WRWDO PLFURELDO QXPEHUV DFWLYH DQG LQDFWLYH FHOOVf RQ WKH RUGHU RI FHOOV SHU JUDP IRU WKH $S KRUL]RQ DQG DQ RUGHU RI PDJQLWXGH OHVV IRU WKH ( DQG ( KRUL]RQV UHVSHFWLYHO\ 3ODWH FRXQWV RI DFWLYH FHOOV IURP WKH VRLOV VKRZHG SRSXODWLRQV DQ RUGHU RI PDJQLWXGH ORZHU 7KHVH QXPEHUV DUH W\SLFDO RI VRLO PLFURELDO FRXQWV LQ JHQHUDO DQG DUH VLPLODU WR FRXQWV SHUIRUPHG RQ WKHVH VRLOV SULRU WR K\GUD]LQH H[SRVXUH 7KXV LW DSSHDUV WKDW PLFURELDO SRSXODWLRQV ZHUH DFWLYH LQ WKHVH VRLO FROXPQV WKRXJK PLFURELDO QXPEHUV ZHUH QHLWKHU UHGXFHG QRU HQKDQFHG E\ H[SRVXUH WR K\GUD]LQH 2QH ZRXOG H[SHFW WKH SODWHDX RI K\GUD]LQH HIIIOXHQW FRQFHQWUDWLRQV LQ FRQWLQXRXVGXUDWLRQ H[SHULPHQWV WR EH DIIHFWHG E\ D FRQWLQXRXVO\ GHJUDGLQJ SURFHVV VXFK DV PLFURELDO GHJUDGDWLRQ +RZHYHU WKHUH LV QR REVHUYDEOH HYLGHQFH IURP WKH UHVXOWDQW EUHDNWKURXJK FXUYH SODWHDXV WKDW PLFURELDO DFWLYLW\ DSSUHFLDEO\ UHGXFHG WKH K\GUD]LQH FRQFHQWUDWLRQV LQ WKH PRGHUDWH DQG KLJK

PAGE 106

FRQFHQWUDWLRQ UDQJH EHORZ WKRVH RI WKH LQIOXHQW FRQFHQWUDWLRQ +RZHYHU WKH K\GUD]LQH PHDVXUHPHQW YDULDELOLW\ DQG WKH H[SHULPHQWDO VFDWWHU GR QRW DOORZ LQWHUSUHWDWLRQ LQ WKH ORZUDWH UDQJH /RZFRQFHQWUDWLRQ K\GUD]LQH LQIOXHQW ZDV VHYHUHO\ LPSDFWHG E\ SURFHVVHV ZLWKLQ WKH FROXPQ DV ZLOO EH VXEVHTXHQWO\ GLVFXVVHG ,RQ ([FKDQJH ,RQ H[FKDQJH ZDV DQWLFLSDWHG WR KDYH D SRWHQWLDOO\ VLJQLILFDQW LPSDFW RQ WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH LQ $UUHGRQGR ILQH VDQG RQFH LW ZDV UHDOL]HG WKDW WKH VRLO KDG DQ DFLGLF S+ DW ZKLFK K\GUD]LQH LV IRXQG DV b SURWRQDWHG K\GUD]LQLXP 7KXV LQ RUGHU WR LGHQWLI\ SRVVLEOH LRQ H[FKDQJH HIIHFWV WKH FROXPQ HIIOXHQW ZDV DQDO\]HG IRU FDOFLXP LRQ DV ZHOO DV K\GUD]LQH &ROXPQV ZHUH LQLWLDOO\ HTXLOLEUDWHG ZLWK 1 &D&O ERWK WR VLPXODWH JURXQG ZDWHU LRQLF FRPSRVLWLRQ DQG WR DVVXUH VDWXUDWLRQ RI WKH H[FKDQJH FRPSOH[ ZLWK FDOFLXP 7KDW FDOFLXP ZDV WKH GRPLQDQW LI QRW WKH H[FOXVLYH FDWLRQ LQ VDWXUDWHG FROXPQ HIIOXHQW ZDV YHULILHG E\ DQDO\]LQJ FROXPQ HIIOXHQW DIWHU D SHULRG RI FRQWLQXRXV &D&O DGGLWLRQ IRU UHVLGXDO OHYHOV RI 1D 0J )H DQG $, DV ZHOO DV &D 7KH FRQFHQWUDWLRQ RI WKHVH LRQV ZDV VHHQ WR GURS UDSLGO\ DV WKH FROXPQ EHFDPH VDWXUDWHG ZLWK FDOFLXP DQ LQGLFDWLRQ RI &D H[FKDQJH RQWR H[FKDQJH VLWHV 6RLO FRQFHQWUDWLRQV RI K\GUD]LQH DQG &D ZHUH QRW H[DPLQHG LQ FROXPQV SULRU WR K\GUD]LQH LQWURGXFWLRQ ,QFUHDVLQJ FDOFLXP FRQFHQWUDWLRQV ZHUH REVHUYHG LQ WKH FROXPQ HIIOXHQW DV K\GUD]LQLXP LRQV ZHUH LQWURGXFHG 7KHVH YDOXHV WHQGHG WR SHDN DURXQG RQH SRUH YROXPH DV PLJKW EH H[SHFWHG IRU DQ LRQGLVSODFHPHQW SURFHVV &DOFLXP FRQFHQWUDWLRQV WKHQ UHWXUQHG WR LQIOXHQW OHYHOV ZLWKLQ D IHZ SRUH YROXPHV VHH

PAGE 107

%7& IRU H[DPSOHf $OVR D GLS ,Q FDOFLXP FRQFHQWUDWLRQ ZDV TXDQWLWDWLYHO\ REVHUYHG WR FRLQFLGH ZLWK WKH HQG RI WKH K\GUD]LQH SXOVH 7KHVH REVHUYDWLRQV DUH FRQVLVWHQW ZLWK FXUUHQW XQGHUVWDQGLQJ RI LRQ H[FKDQJH SURFHVV +\GUD]LQLXP LRQV LQ WKH VROXWLRQ LQIOXHQW VKRXOG FRPSHWH ZLWK FDOFLXP LRQV IRU SRVLWLRQV DOUHDG\ RFFXSLHG E\ FDOFLXP RQ H[FKDQJH VLWHV 7KH DGVRUSWLRQ LVRWKHUPV SHUIRUPHG RQ VRLO IURP HDFK KRUL]RQ VXJJHVWV WKDW K\GUD]LQH FRPSHWHV ZHOO ZLWK FDOFLXP IRU H[FKDQJH VLWHV DQ LQWHUHVWLQJ REVHUYDWLRQ VLQFH PRQRYDOHQW PHWDO LRQV GR QRW XVXDOO\ FRPSHWH ZHOO DJDLQVW GLYDOHQW PHWDO LRQV 9DOXDEOH LQIRUPDWLRQ FDQ DOVR EH REWDLQHG IURP H[DPLQLQJ WKH HTXLYDOHQFH RI FKDUJH UHSUHVHQWHG E\ WKH DUHDV RI WKH FDOFLXP SHDNV DQG GLSV REVHUYHG LQ WKH EUHDNWKURXJK FXUYHV 7KH DUHD XQGHU WKH FDOFLXP SHDN UHSUHVHQWV WKH DPRXQW RI FDOFLXP UHPRYHG IURP FDWLRQ H[FKDQJH VLWHV E\ WKH HQWHULQJ K\GUD]LQLXP ,W GRHV QRW UHSUHVHQW WKH WRWDO H[FKDQJH FDSDFLW\ EHFDXVH K\GUD]LQLXP DQG FDOFLXP H[LVW RQ H[FKDQJH VLWHV LQ DQ HTXLOLEULXP UHODWLRQVKLS GHSHQGHQW XSRQ K\GUD]LQH FRQFHQWUDWLRQ $OVR VPDOO TXDQWLWLHV RI 0J 1D DQG + 5KXH DQG 0DQVHOO f ZHUH DOVR LQYROYHG LQ WKH FDWLRQ H[FKDQJH 7KH GDWD IURP EUHDNWKURXJK FXUYH %7& )LJXUH f LV IHOW WR EH UHSUHVHQWDWLYH RI WKH LQIRUPDWLRQ REWDLQDEOH IURP WKH H[SHULPHQWDO FROXPQ H[SHULPHQWV DQG LV DQDO\]HG KHUH LQ VRPH GHWDLO IRU WKH SXUSRVHV RI LOOXVWUDWLRQ 7KH LQWHJUDWHG FDOFLXP SHDN UHSUHVHQWV D FKDUJH RI PHT RU PHT SHU J VRLO FPROF .Jrf ZKHQ QRUPDOL]HG E\ WKH PDVV RI VRLO SUHVHQW LQ WKH SDFNHG FROXPQ 7KH HTXLOLEULXP GLVVROYHGSKDVH UDWLR RI K\GUD]LQH WR FDOFLXP ZDV DQG IURP WKH DGVRUSWLRQ LVRWKHUP RI WKH ( KRUL]RQ WKH UDWLR RI K\GUD]LQH WR FDOFLXP RQ VRUSWLRQ VLWHV DW HTXLOLEULXP ZDV FDOFXODWHG WR EH

PAGE 108

WR 7KXV HQWHULQJ K\GUD]LQLXP ZRXLG EH H[SHFWHG WR UHSODFH b RI WKH FDOFLXP RQ DGVRUSWLRQ VLWHV DW HTXLOLEULXP 7KH HIIHFWLYH &(& XQGHU WKHVH FRQGLWLRQV FDQ WKXV EH GHWHUPLQHG DV FPROF .Jr f FPRF .Jr VRLO 7KH &(& HVWLPDWHG IURP WKH SODWHDX RI WKH DGVRUSWLRQ LVRWKHUP D FRPPRQ PHWKRG RI HVWLPDWLQJ &(& ZDV FPROF .Jr FRQVLGHUDEO\ KLJKHU 7KXV LW DSSHDUV WKDW RQO\ D IUDFWLRQ RI WKH VRLOFROXPQ &(& PD\ KDYH EHHQ DFFHVVLEOH WR K\GUD]LQH GXULQJ WKH IORZ VWXGLHV RU DW OHDVW KDYH SDUWLFLSDWHG LQ WKH LRQ H[FKDQJH SURFHVV ZLWKLQ WKH IORZ V\VWHP $ FRPSXWHU VLPXODWLRQ ZDV SHUIRUPHG RQ %7& XVLQJ DQ LRQ H[FKDQJH PRGHO SUHYLRXVO\ VKRZQ WR DFFXUDWHO\ SUHGLFW WKH WUDQVSRUW RI PHWDO FDWLRQ &D 0J 1D HWFf VSHFLHV 0DQVHOO HW DW f ,QSXW SDUDPHWHUV IRU WKH PRGHO ZHUH REWDLQHG IURP WKH ODERUDWRU\ FROXPQ H[SHULPHQW 5HVXOWV XVLQJ D &(& RI FPROF .Jr ILW WKH REVHUYHG EUHDNWKURXJK FXUYH TXLWH ZHOO )LJXUH f HVSHFLDOO\ PDWFKLQJ WKH SHDN DQG GLS ZKLOH WKRVH XVLQJ D &(& RI FPROF .Jr QRW VKRZQf KDG QR FDOFLXP SHDN DQG DQ H[WUHPHO\ ORZ DQG ORQJ GLS 7KLV VLPXODWLRQ LOOXVWUDWHV WKH YDOXH RI GHWHUPLQLQJ WUDQVSRUW SDUDPHWHUV IURP FRQGLWLRQV VLPLODU WR WKRVH WR ZKLFK WKH\ ZLOO EH DSSOLHG $ VLPLODU HVWLPDWH ZDV PDGH RI WKH HIIHFWLYH &(& LQ HDFK VRLO E\ LQWHJUDWLRQ RI WKH DUHD XQGHU WKH FXUYH RI HDFK HOXWHG FDOFLXP SHDN LQ HDFK FROXPQ H[SHULPHQW &DOFLXPSHDN DUHDV PPROFf DQG WKH PDVV RI VRLO LQ HDFK FROXPQ Jf ZHUH DYHUDJHG IRU DOO FROXPQ H[SHULPHQWV SHUIRUPHG RQ WKH WKUHH VRLOV 7KH FKDUJH ZDV GLYLGHG E\ WKH VRLO PDVV WR JLYH DQ HIIHFWLYH FKDUJH SHU XQLW PDVV DQG WKLV UHVXOW ZDV GLYLGHG E\ WKH UDWLR RI VRUSWLRQ VLWHV H[SHFWHG WR EH SUHVHQW DV VROXWLRQSKDVH FKDUJH DW HTXLOLEULXP SUHYLRXVO\ GHWHUPLQHGf 8QLWV ZHUH DGMXVWHG WR WKH &(& FRQYHQWLRQ $YHUDJLQJ FKDUJH DQG PDVV YDOXHV DQG WKHQ SHUIRUPLQJ FDOFXODWLRQV ZDV HTXLYDOHQW WR DYHUDJLQJ HVWLPDWHG &(& YDOXHV

PAGE 109

)LJXUH 0HDVXUHG PDUNHUVf DQG SUHGLFWHG OLQHVf K\GUD]LQH DQG FDOFLXP YDOXHV IURP %7& LQGLYLGXDOO\ $YHUDJHV ZHUH XVHG WR JLYH D EHWWHU UHSUHVHQWDWLRQ RI WKH fWUXHf HIIHFWLYH &(& IRU D KRUL]RQ WKDQ DQ LQGLYLGXDO PHDVXUHPHQWLQ HIIHFW LW ZDV DQ DYHUDJH RI UHSOLFDWH H[SHULPHQWV 7KH SURFHVV XVHG WR GHWHUPLQH WKHVH HIIHFWLYH &(& YDOXHV LV LOOXVWUDWHG LQ 7DEOH IROORZHG E\ WKH FDOFXODWLRQV IRU WKH ( KRUL]RQ 7KLV SURFHGXUH ZDV XVHG WR HVWLPDWH WKH IROORZLQJ IORZV\VWHP HIIHFWLYH &(& YDOXHV IRU HDFK VRLO $S KRUL]RQ FPROF .Jr ( KRUL]RQ FPROF .Jn DQG ( KRUL]RQ FPROF .Jr ,Q YLHZ RI WKH JRRG FRUUHODWLRQ SUHYLRXVO\ REVHUYHG EHWZHHQ K\GUD]LQH ORVV DQG SHUFHQWDJH RUJDQLF PDWWHU LQ HDFK VRLO KRUL]RQ D OLQHDU FRUUHODWLRQ ZDV SHUIRUPHG RQ WKHVH HIIHFWLYH &(& YDOXHV DQG WKH SHUFHQWDJH RUJDQLF PDWWHU )LJXUH f 7KH WZR ZHUH IRXQG WR FRUUHODWH ZHOO 5 f ZLWK D OLQHDU ILW RI VORSH DQG &(& rb20f@

PAGE 110

7DEOH (IIHFWLYH &(& HVWLPDWLRQ IRU ( KRUL]RQ %7& 3HDN $UHD PPROf 0DVV 6RLO 4f $YJ PPRO J FPRO fLQFPR/ [ f§[ f§ 2,M J .J PPRO .J FPRO FPRO 7 >@ >@

PAGE 111

)LJXUH &RUUHODWLRQ RI HIIHFWLYH &(& DQG SHUFHQWDJH RUJDQLF PDWWHU %UHDNWKURXDK&XUYH 7LPLQJ $OWKRXJK LRQ H[FKDQJH LV XVXDOO\ DVVXPHG WR EH DQ LQVWDQWDQHRXV RFFXUULQJ SURFHVV VRPHWLPHV GLIIXVLRQ FRXSOHG ZLWK LRQ H[FKDQJH PD\ UHVXOW LQ UDWHOLPLWHG LRQ H[FKDQJH *DVWRQ HW DL f IRU VRLOV ZLWK RUJDQLF PDWWHU RU $OK\GUR[\ LQWHUOD\HUHG YHUPLFXOLWH 7KH ORFDOHTXLOLEULXP DSSURDFK LV XVXDOO\ IROORZHG LQ WKH PRGHOLQJ XVHG WR DUULYH DW VHOHFWLYLW\ FRHIILFLHQWV LQFOXGLQJ LRQ UDWLRV ([FKDQJH VLWHV QHDU WKH HQWU\ WR D VRLO FROXPQ H[FKDQJH ILUVW DQG WKH H[LW RI WKH VROXWH SXOVH LV FRUUHVSRQGLQJO\ GHOD\HG E\ WKH H[FKDQJH SURFHVV 7KH GHOD\ RU UHWDUGDWLRQ RI WKH HIIOXHQW SXOVH IRU D UHDFWLYH VROXWH LQ VRLO FROXPQV LV ZHOO NQRZQ 5DR HW DW 6HOLP DQG $PDFKHU f DQG LV WKH HIIHFW QRW RQO\ RI LRQ H[FKDQJH FDSDFLW\ EXW DOVR LV D IXQFWLRQ RI WKH H[FKDQJH VHOHFWLYLW\ FRHIILFLHQWV VRLO EXON GHQVLW\ DQG PXOWLSOH RWKHU PHFKDQLVPV ZKLFK UHIOHFW DGVRUSWLRQ RU GHJUDGDWLRQ RI K\GUD]LQLXP 7KH FRPELQHG HIIHFW RI WKHVH

PAGE 112

IDFWRUV ZDV H[DPLQHG E\ DQDO\VLV RI WKH WLPLQJ RI WKH K\GUD]LQLXP SXOVH H[LWLQJ WKH FROXPQV $ SXOVH RI QRQUHDFWLYH VRLXWH LQWURGXFHG LQWR D VRLO FROXPQ LV H[SHFWHG WR H[LW WKH FROXPQ ZKHQ D PDVV RI VROXWH HTXDO WR RQH SRUHYROXPH KDV EHHQ SXPSHG WKURXJK WKH FROXPQ $ UHDFWLYH VROXWH RQ WKH RWKHU KDQG XQGHUJRLQJ UHDFWLRQV VXFK DV WKH DIRUHPHQWLRQHG RQHV LV GHOD\HG LQ LWV H[LW RI WKH FROXPQ 7KH HIIHFW RI LRQ H[FKDQJH RQ WKH UHWDUGDWLRQ RI K\GUD]LQLXP WUDQVSRUW WKURXJK WKH WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG ZDV LQYHVWLJDWHG E\ HVWLPDWLQJ WKH QXPEHU RI H[FKDQJH VLWHV LQ FROXPQV RI HDFK VRLO DQG WKHQ E\ NQRZLQJ WKH FRQFHQWUDWLRQ DQG PDVV RI LQWURGXFHG K\GUD]LQLXP HVWLPDWLQJ WKH H[SHFWHG GHOD\ RI WKH EUHDNWKURXJK FXUYHfV DSSHDUDQFH LQ WKH FROXPQ HIIOXHQW ,Q PRUH GHWDLO f 7KH QXPEHU RI H[FKDQJH VLWHV LQ D FROXPQ RI VRLO ZDV HVWLPDWHG E\ PXOWLSO\LQJ WKH HIIHFWLYH &(& PPROF .Jnf E\ WKH PDVV RI VRLO SDFNHG LQ HDFK FROXPQ .Jf 7KLV WRWDO ZDV FRUUHFWHG WR HTXLOLEULXP FRQGLWLRQV E\ PXOWLSO\LQJ E\ WKH SHUFHQWDJH RI K\GUD]LQLXP RQ WKH VLWHV DW HTXLOLEULXP IURP WKH VRUSWLRQ LVRWKHUPVf WR JLYH WKH WRWDO H[FKDQJHDEOH K\GUD]LQLXP FDSDFLW\ RI WKH FROXPQ DW HTXLOLEULXP f ,Q WXUQ WKH DPRXQW RI K\GUD]LQLXP FKDUJH DYDLODEOH SHU SRUH YROXPH RI VROXWH PPRO +] SYf ZDV GHWHUPLQHG E\ PXOWLSO\LQJ WKH K\GUD]LQLXP FRQFHQWUDWLRQ LQ WKH LQIOXHQW PPRO +] /rf E\ WKH SRUH ZDWHU YROXPH / SYf f 7KH FDSDFLW\ PPRO +]f ZDV WKHQ GLYLGHG E\ WKH PDVV RI FKDUJH SHU SRUH YROXPH PPRO +] SYf WR GHWHUPLQH WKH QXPEHU RI SRUH YROXPHV RI LQIOXHQW QHFHVVDU\ WR RFFXS\ DOO DYDLODEOH H[FKDQJH VLWHV f 6LQFH D SRUH YROXPH ZDV H[SHFWHG WR H[LW WKH FROXPQ LQ RUGHU WR DOORZ DQRWKHU RQH WR HQWHU RQH SRUH YROXPH ZDV DGGHG WR WKH FDOFXODWLRQ DV ZHOO

PAGE 113

$Q H[DPSOH RI WKLV FDOFXODWLRQ IRU %7& ( KRUL]RQ KLJK FRQFHQWUDWLRQ KLJK YHORFLW\f IROORZV PPRO .J B BPPRO +] PPRO +] [ MF2 .J FROXPQ PPROF FROXPQ >@ / PPRO +] A QR PPRO +] SRUH YRO / SRUH YRO >@ K SRUH YROXPH GHOD\ >@ 7KH DFWXDO REVHUYHG GHOD\ RI WKH H[LWLQJ SXOVH RI K\GUD]LQLXP IRU %7& ZDV SRUH YROXPHV VXJJHVWLQJ WKDW WKH LRQ H[FKDQJH SURFHVV DORQH PLJKW DFFRXQW IRU PRVW RI WKH REVHUYHG GHOD\ LQ EUHDNWKURXJK 7KLV FDOFXODWLRQ ZDV SHUIRUPHG RQ GDWD IURP DOO EUHDNWKURXJK FXUYHV LQ WKH GDWD VHW DQG WKH UHVXOWV FRPSDUHG WR REVHUYHG EUHDNWKURXJK WLPLQJ 3UHGLFWHG DQG REVHUYHG YDOXHV ZHUH JURXSHG E\ FRQFHQWUDWLRQ VLQFH GHOD\ RU UHWDUGDWLRQ LV D IXQFWLRQ RI FRQFHQWUDWLRQ 7KH\ ZHUH WKHQ DYHUDJHG WR FRQGHQVH WKH GDWD 7DEOH f 1RWH WKDW SUHGLFWHG DQG REVHUYHG EUHDNWKURXJK DUH ZLWKLQ D VWDQGDUG GHYLDWLRQ RI RQH DQRWKHU DQG WKDW EUHDNWKURXJK FXUYHV RI PHGLXP FRQFHQWUDWLRQ DSSUR[LPDWHO\ PPRO +] /ff ZHUH GHOD\HG PRUH WKDQ WKRVH RI KLJK FRQFHQWUDWLRQ DSSUR[LPDWHO\ PPRO +] /Bf 7KLV LV WR EH H[SHFWHG VLQFH LQIOXHQW RI ORZHU FRQFHQWUDWLRQ ZLOO WDNH ORQJHU WR RFFXS\ DYDLODEOH H[FKDQJH VLWHV

PAGE 114

7DEOH 3UHGLFWHG DQG REVHUYHG VROXWH EUHDNWKURXJK +RUL]RQ +] &RQH PPRO /f 3UHGLFWHG %UHDNWKURXJK SRUH YROf 2EVHUYHG %UHDNWKURXJK SRUH YROf $S s s s s s s ( s s s s s s ( s s s s s s s s s 7KHVH GDWD ZHUH DOVR UHDUUDQJHG DQG FRPSDUHG E\ SRUHZDWHU YHORFLW\ FP KU DQG FP KUf 7KH UHWDUGDWLRQ RI ERWK IDVW DQG VORZYHLRFLW\ EUHDNWKURXJK FXUYHV ZDV QRW VHHQ WR EH GLIIHUHQW ZLWKLQ D FRPPRQ VRLO 7KLV FRPSDULVRQ VXJJHVWV WKDW SUHGLFWLQJ K\GUD]LQLXP UHWDUGDWLRQ LQ WKHVH VRLOV XVLQJ FDOFXODWLRQV EDVHG RQ FDWLRQ H[FKDQJH FDSDFLW\ DORQH JLYHV D UHDVRQDEO\ FORVH DSSUR[LPDWLRQ WR REVHUYHG YDOXHV DQG WKDW LRQ H[FKDQJH PD\ WKXV EH WKH GRPLQDQW UHDFWLYH SURFHVV DIIHFWLQJ K\GUD]LQH WUDQVSRUW LQ WKHVH VDWXUDWHG VRLOV 6RUSWLRQ 0HFKDQLVPV :RUN E\ ,VDDFVRQ DQG +D\HV f RQ WKH LQWHUDFWLRQ RI K\GUD]LQH ZLWK KXPLF DFLG SUHSDUDWLRQV LQGLFDWHG WKDW WKH PDMRU VRUSWLRQ SURFHVVHV LQ RUJDQLF V\VWHPV LQFOXGHG H[FKDQJH E\ K\GUD]LQLXP LRQV RI H[FKDQJHDEOH FDWLRQV LQLWLDOO\ SUHVHQW RQ WKH KXPDWHV LUUHYHUVLEOH FKHPLVRUSWLRQ E\ FRQGHQVDWLRQ UHDFWLRQV ZLWK FDUERQ\O JURXSV RQ KXPLF VWUXFWXUHV DQG RWKHU QRQVSHFLILF VRUSWLRQ RI OLPLWHG UHYHUVLELOLW\

PAGE 115

7KH LUUHYHUVLEOH QDWXUH RI D SRUWLRQ RI WKH VRUSWLRQ SURFHVV ZDV REVHUYHG LQ WKH K\GUD]LQLXPVRGLXP H[FKDQJH LVRWKHUPV UHSRUWHG HDUOLHU )LJXUHV WKURXJK f $W KLJKHU K\GUD]LQH FRQFHQWUDWLRQV IRU WKH ( KRUL]RQ PRUH K\GUD]LQLXP ZDV IRXQG DGVRUEHG WKDQ 1D UHOHDVHG 7KLV REVHUYDWLRQ ZDV DOVR VHHQ DW ORZ S+ IRU WKH $S KRUL]RQ $ SRVVLEOH H[SODQDWLRQ IRU WKLV REVHUYDWLRQ LV WKDW K\GUD]LQLXP ZDV DOVR DGVRUEHG E\ RUJDQLF VXUIDFH IXQFWLRQDO JURXSV VXFK DV FDUER[\O DQG FDUERQ\O JURXSV RU UHDFWHG ZLWK WKHP LQ FRQGHQVDWLRQ RU VXEVWLWXWLRQ UHDFWLRQV ,VDDFVRQ DQG +D\HV f 7KLV FRQFOXVLRQ LV IXUWKHU VXSSRUWHG E\ WKH LQDELOLW\ WR UHPRYH DQ\ RI WKH DGVRUEHG K\GUD]LQLXP DW S+ E\ UHSHDWHG ZDVKLQJV ZLWK .&, 3HUKDSV RQFH K\GUD]LQLXP KDV UHSODFHG 1D RQ DQ RUJDQLF H[FKDQJH VLWH LW PD\ IXUWKHU LQWHUDFW WKURXJK K\GURJHQ RU FRYDOHQW ERQGLQJ ZLWK QHLJKERULQJ JURXSV LQ WKH RUJDQLF VWUXFWXUH RU PD\ SHQHWUDWH IXUWKHU LQWR WKH RYHUDOO RUJDQLF VWUXFWXUH WKXV PDNLQJ LWV SRVLWLRQ PRUH VWDEOH DQG SUHYHQWLQJ LWV UHPRYDO E\ D VDOW VROXWLRQ 0ROLQHU f $GGLWLRQDO HYLGHQFH IRU DQ LUUHYHUVLEOH SURFHVV PD\ EH IRXQG E\ H[DPLQLQJ WKH LQWHJUDWHG SHDNV DQG GLSV RI WKH EUHDNWKURXJK FXUYHV IRU FDOFLXP ,Q WKH SUHYLRXV VHFWLRQ WKH FDOFLXP SHDN UHSUHVHQWHG E\ WKH HOXWLRQ RI FDOFLXP IURP VRLOV DIWHU LQWURGXFWLRQ RI K\GUD]LQLXP ZDV FRUUHODWHG ZLWK DQ HIIHFWLYH &(& PHDVXUHPHQW XQGHU VRLOFROXPQ IORZWKURXJK FRQGLWLRQV 7KH XVHIXOQHVV RI WKLV &(& YDOXH ZDV GHPRQVWUDWHG LQ QXPHULFDO PRGHO VLPXODWLRQV RI EUHDNWKURXJK FXUYH FRQILJXUDWLRQV DQG LQ WKH SUHGLFWLRQ RI VROXWH UHWDUGDWLRQ $ GLS LQ WKH FDOFLXP EUHDNWKURXJK FXUYH VHH )LJXUH IRU DQ H[DPSOHf LV REVHUYHG WR RFFXU DW WKH H[LW RI WKH K\GUD]LQLXP SXOVH DQG LV K\SRWKHVL]HG WR EH FDXVHG E\ DYDLODEOH VROXWLRQSKDVH FDOFLXP UHSODFLQJ K\GUD]LQLXP RQ H[FKDQJH VLWHV ,RQ H[FKDQJH WKHRU\ LQGLFDWHV WKDW H[FKDQJH LV DQ HTXLOLEULXP

PAGE 116

SURFHVV LQ ZKLFK HTXLYDOHQWV RI FDWLRQ LQLWLDOO\ H[FKDQJHG RII WKH VRLO FRPSOH[ ZLOO H[FKDQJH EDFN RQ ZKHQ WKH LQYDGLQJ FDWLRQ LV UHPRYHG IURP WKH VROXWLRQ SKDVH 7KXV RQH ZRXOG H[SHFW WKH PDVV RI SHDNV WR EH HTXDO WR WKDW RI GLSV +RZHYHU DQ LQVSHFWLRQ RI W\SLFDO K\GUD]LQLXPFDOFLXP EUHDNWKURXJK FXUYHV LQGLFDWHG WKDW WKH PDVV RI FDOFLXP LQLWLDOO\ H[FKDQJHG RII WKH VRLO SHDNVf DSSHDUHG ODUJHU WKDQ WKDW H[FKDQJHG EDFN RQ GLSVf DW WKH H[LW RI K\GUD]LQLXP $YHUDJLQJ WKH PDVV RI SHDNV DQG GLSV IRU DOO EUHDNWKURXJK FXUYHV LQ HDFK KRUL]RQ VKRZV WKH SHDNV WR EH FRQVLVWHQWO\ ODUJHU WKDQ WKH GLSV 7DEOH f 7DEOH 0DVV RI FDOFLXP H[FOXGHG IURP DQG UHVRUEHG WR VRLO FROXPQV +RUL]RQ &DOFLXP 0DVV PPROf 3HDN 'LS $S s s ( s s ( s s 5HDUUDQJLQJ WKH GDWD E\ SRUHZDWHU YHORFLW\ ZLWKLQ HDFK KRUL]RQ VKRZHG QR GLIIHUHQFH LQ WKH FDOFLXP PDVV LQ SHDNV DQG GLSV DW HLWKHU YHORFLW\ 2QH H[SODQDWLRQ IRU WKH PDVV GLIIHUHQFH EHWZHHQ SHDNV DQG GLSV LV WKDW IHZHU H[FKDQJH VLWHV PD\ EH DYDLODEOH DIWHU LQLWLDO DGVRUSWLRQ E\ K\GUD]LQLXP 3HUKDSV VRPH K\GUD]LQLXP DIWHU UHSODFLQJ FDOFLXP EHFRPHV VR WLJKWO\ ERQGHG LQ WKH RUJDQLF PDWUL[ WKDW LW LV HVVHQWLDOO\ LUUHYHUVLEO\ DGVRUEHG WKXV UHGXFLQJ WKH WRWDO QXPEHU RI H[FKDQJH VLWHV DYDLODEOH IRU UHVRUSWLRQ RI FDOFLXP $QRWKHU SRVVLEOH H[SODQDWLRQ LV WKDW WKH FDOFLXP REVHUYHG LQ WKH LQLWLDO SHDN PD\ QRW EH WRWDOO\ WKH SURGXFW RI LRQ H[FKDQJH DQG WKDW K\GUD]LQLXP PD\ KDYH GLVSODFHG FDOFLXP LRQ LQLWLDOO\ DGVRUEHG WR RUJDQLF PDWHULDO 7KH FDOFLXP PD\ QRW UHWXUQ DIWHU SDVVDJH RI WKH K\GUD]LQLXP SXOVH

PAGE 117

0DVV %DODQFH 7KH PDVV EDODQFH IRU K\GUD]LQH VKRXOG LQFOXGH WKH WRWDO K\GUD]LQLXP PDVV LQSXW LQWR WKH FROXPQ WKH PDVV RI K\GUD]LQH HOXWHG IURP WKH FROXPQV LQ HIIOXHQW WKH PDVV RI K\GUD]LQH LQLWLDOO\ ORVW RQ H[SRVXUH WR VRLO GXH WR LRQ H[FKDQJH RU VRUSWLRQ DQG WKH UDWHFRQWUROOHG PDVV RI K\GUD]LQH GHJUDGHG 0DVV LQ 0DVV RXW 0DVV UHWDLQHG >@ ZKHUH 0DVV UHWDLQHG ,QVWDQWDQHRXV ORVV 5DWH FRQWUROOHG ORVV >@ 7KH SURFHVVHV RI FKHPLVRUSWLRQ DQG LRQ H[FKDQJH DUH QRUPDOO\ FRQVLGHUHG DV LQVWDQWDQHRXVO\ RFFXULQJ SURFHVVHV WKDW LV DV EHLQJ PRUH TXLFNO\ UHDFWLYH WKDQ DGYHFWLYH WUDQVSRUW 7KH\ HIIHFWLYHO\ UHPRYH K\GUD]LQH IURP LQIOXHQW VROXWLRQ HIIHFWLQJ WKH GHOD\ RU UHWDUGDWLRQ RI VROXWH EUHDNWKURXJK ,RQ H[FKDQJH KDV EHHQ GHPRQVWUDWHG WR EH WKH GRPLQDQW SURFHVV HIIHFWLQJ WKH UHWDUGDWLRQ LQ WKHVH VRLOV ,Q IDFW LQ WKLV VWXG\ LW KDV QRW EHHQ SRVVLEOH WR GLIIHUHQWLDWH FKHPLVRUSWLRQ RQ WKH EDVLV RI WKH QHW HIIHFW RQ UHWDUGDWLRQ RI WKH DGYDQFLQJ VROXWH IURQW &RQYHQWLRQDO WUHDWPHQW RI WKH LRQ H[FKDQJH SURFHVV LPSOLHV WKDW WKH H[FKDQJHG LRQ LQ WKLV FDVH &Df ZLOO UHWXUQ WR H[FKDQJH VLWHV DIWHU SXOVHG DGGLWLRQ RI D FRPSHWLQJ FDWLRQ KDV SDVVHG WKURXJK WKH VRLO FROXPQ +RZHYHU DV KDV EHHQ H[SODLQHG REVHUYDWLRQV RI &DK\GUD]LQLXP H[FKDQJH RQ WKHVH VRLOV LQGLFDWH WKDW QRW DOO H[FKDQJH VLWHV UHPDLQ DYDLODEOH 7KXV VRPH K\GUD]LQH DSSHDUV WR UHPDLQ DWWDFKHG WR WKH VRLO VXUIDFH DIWHU WKH K\GUD]LQLXP SXOVH KDV OHIW WKH VRLO FROXPQ 7KH PDVV RI WKLV QRQH[FKDQJDEOH K\GUD]LQLXP

PAGE 118

ZDV FDOFXODWHG DV WKH GLIIHUHQFH EHWZHHQ WKH SHDNV DQG GLSV RI &D H[FKDQJH DQG ZDV LQFOXGHG LQ WKH PDVV EDODQFH (TXDWLRQ ZDV XVHG WR FDOFXODWH WKH UDWHFRQWUROOHG ORVV WHUP LQ WKH PDVV EDODQFH /RVVHV XQDFFRXQWHG IRU DIWHU VXEWUDFWLQJ WKH PHDVXUHG HIIOXHQW PDVV DQG LRQ H[FKDQJH ORVV ZHUH GLYLGHG E\ WKH FROXPQ UXQWLPH WR REWDLQ D ORVV UDWH ZKLFK ZRXOG VDWLVI\ WKH PDVV EDODQFH 7KH PDVV UHSUHVHQWHG LQ WKH UDWHFRQWUROOHG WHUP ZDV QRUPDOL]HG E\ WKH FROXPQ VRLO PDVV WR XQLWV RI PPRO +] NJn VRLO KU 7KLV SURFHGXUH ZDV DOVR IROORZHG IRU WKH FRQWLQXRXVGXUDWLRQ H[SHULPHQWV DVVRFLDWHG E\ KRUL]RQ WR WKH SXOVHG EUHDNWKURXJK FXUYHV 6LQFH &D VROXWLRQ ZDV QRW XVHG WR UHPRYH K\GUD]LQLXP IURP H[FKDQJH VLWHV WKH K\GUD]LQH RQ WKH VLWHV ZDV FRQVLGHUHG DV D ORVV WHUP LQ WKH PDVV EDODQFH 7KHVH FDOFXODWHG UDWHFRQWUROOHG ORVVHV DUH VKRZQ E\ VRLO KRUL]RQ LQ 7DEOH 7DEOH 5DWHFRQWUROOHG K\GUD]LQH ORVVHV QHFHVVDU\ WR VDWLVI\ WKH PDVV EDODQFH +RUL]RQ 5DWHFRQWUROOHG /RVVHV PPRO +] .J 3XOVHG ([SHULPHQWV ‘ VRLO KUf &RQWLQXRXV ([SHULPHQWV $S s ( s s ( s s 7KHVH UDWH ORVVHV DFFRXQW IRU WKH DSSUR[LPDWHO\ SHUFHQW ORVV RI K\GUD]LQLXP LQWURGXFHG LQWR WKH VRLO FROXPQV 1RWH WKDW WKH VWDQGDUG GHYLDWLRQV DUH VXIILFLHQWO\ ODUJH WKDW WKH UDWH ORVVHV FDQQRW EH GLVWLQJXLVKHG DPRQJ VRLO KRUL]RQV :HUH WKH UDWH ORVV D IXQFWLRQ RI WKH VRLO RUJDQLF PDWWHU RQH ZRXOG H[SHFW WR VHH D UDWLR RI UDWHORVV DPRQJ WKH VRLOV VLPLODU WR WKH VRLO RUJDQLF FDUERQ UDWLR

PAGE 119

2QH SRVVLEOH H[SODQDWLRQ IRU WKH REVHUYHG UDWHFRQWUROOHG K\GUD]LQH ORVVHV LV PLFURELDO GHJUDGDWLRQ 2X DQG 6WUHHW f UHSRUWHG WKDW K\GUD]LQH DSSOLHG WR $UUHGRQGR VRLO DW FRQFHQWUDWLRQV RI DQG SLJ JB KDG FRPSOHWHO\ GLVDSSHDUHG LQ OHVV WKDQ DQG GD\V UHVSHFWLYHO\ %\ FRPSDULQJ GHJUDGDWLRQ UDWHV IRU VWHULOH DQG QRQVWHULOH VRLOV ELRORJLFDO GHJUDGDWLRQ ZDV FRQFOXGHG WR EH UHVSRQVLEOH IRU DERXW b RI WKH GLVDSSHDUDQFH RI WKH FKHPLFDO +\GUD]LQH FRQFHQWUDWLRQV DSSLLHG WR VRLO LQ WKH VWXGLHV GHVFULEHG LQ WKLV GRFXPHQW UDQJHG IURP WR SLJ JB VRLO DQG ODUJH PLFURELDO SRSXODWLRQV ZHUH FRXQWHG LQ WKH VRLOV DIWHU FRPSOHWLRQ RI FRLXPQ H[SHULPHQWV +RZHYHU QR H[SHULPHQWV ZHUH FRQGXFWHG KHUH WR VSHFLILFDOO\ LVRODWH PLFURELDO DFWLYLW\ 'U 2X UHSRUWHG WR 'U 5REHUW 0DQVHOO XQSXEOLVKHG FRPPXQLFDWLRQf WKDW KH KDG GHWHUPLQHG D ILUVWRUGHU ORVV UDWH RI [ &K GD\ KUf LQ EDWFK VWXGLHV DW SLJ K\GUD]LQH SHU JUDP VRLO IRU VRLO IURP WKH $S KRUL]RQ RI $UUHGRQGR ILQH VDQG D UDWH ZKLFK LV VLPLODU WR WKDW GHVFULEHG DERYH +RZHYHU KLV ZRUN ZDV SHUIRUPHG XQGHU DHURELF FRQGLWLRQV ZKLOH WKLV ZRUN ZDV GRQH DQDHURELFDOO\ $QDHURELF GHJUDGDWLRQ UDWHV DUH W\SLFDOO\ VORZHU WKDQ DHURELF UDWHV ([SHULPHQWV VSHFLILFDOO\ GLUHFWHG WRZDUG HOXFLDWLQJ PLFURELDO HIIHFWV DUH QHHGHG EHIRUH WKH UDWH ORVVHV REVHUYHG LQ WKHVH FROXPQ VWXGLHV FDQ EH DWWULEXWHG WR PLFURELDO GHJUDGDWLRQ

PAGE 120

&+$37(5 6800$5< $1' &21&/86,216 ,QWURGXFWLRQ +\GUD]LQH 1+f DQG LWV GHULYDWLYHV DUH KLJKO\ UHDFWLYH HQGRWKHUPLF FKHPLFDOV XVHG LQ FKHPLFDO V\QWKHVLV DQG LQ WKH DJULFXOWXUDO DQG DYLDWLRQ LQGXVWULHV 5HDFWLYLW\ DQG R[LGDWLYH FKDUDFWHULVWLFV RI WKLV FODVV RI FKHPLFDOV FDQ FDXVH VHULRXV KHDOWK DQG HQYLURQPHQWDO HIIHFWV :KLOH VLJQLILFDQW UHVHDUFK LQWR KHDOWK HIIHFWV KDV EHHQ DFFRPSOLVKHG IHZ VWXGLHV H[LVW ZKLFK HYDOXDWH WKH HQYLURQPHQWDO IDWH RI K\GUD]LQH 7KLV VWXG\ KDV EHHQ GHVLJQHG WR HYDOXDWH WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH LQ ODERUDWRU\ FROXPQV RI VDQG\ VRLO $ UHYLHZ RI SXEOLVKHG OLWHUDWXUH LQGLFDWHG WKDW WKH SURFHVVHV PRVW OLNHO\ WR LQIOXHQFH WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH DUH R[LGDWLRQ DXWR[LGDWLRQ FKHPLFDO DQG PLFURELDO GHJUDGDWLRQ DQG VRUSWLRQ ERWK UHYHUVLEOH DQG LUUHYHUVLEOH DQG DOVR LRQ H[FKDQJHf 6XPPDU\ RI ([SHULPHQWDO 'HVLJQ /DERUDWRU\ EDWFK DQG FROXPQ H[SHULPHQWV ZHUH GHVLJQHG WR LQYHVWLJDWH WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH WKURXJK VDWXUDWHG VDQG\ VRLOV 7KUHH VXFFHVVLYH KRUL]RQV $S ( DQG (f RI $UUHGRQGR ILQH VDQG ZHUH LQYHVWLJDWHG VR WKDW WKH HIIHFWV RI RUJDQLF PDWWHU FRXOG EH REVHUYHG ZLWKRXW WKH QHFHVVLW\ RI

PAGE 121

VXEMHFWLQJ D VLQJOH VRLO WR WKH R[LGDWLYH WUHDWPHQW QHFHVVDU\ WR UHPRYH KXPLF PDWHULDO &RQYHQWLRQDO VRLO FKDUDFWHUL]DWLRQ WHFKQLTXHV ZHUH XVHG WR GHILQH WKH SDUWLFOH VL]H GLVWULEXWLRQ SHUFHQWDJH RI RUJDQLF PDWWHU DQG FOD\ DQG HOHPHQWDO FRPSRVLWLRQ IRU HDFK RI WKH WKUHH VRLOV %DWFK VWXGLHV ZHUH SHUIRUPHG WR HYDOXDWH WKH S+ EXIIHULQJ FDSDFLW\ DQG FDWLRQ H[FKDQJH FDSDFLW\ &(&f RI WKH VRLOV 6RLO FROXPQV ZHUH XVHG LQ IORZWKURXJK H[SHULPHQWV WR HYDOXDWH WKH HIIHFWV RI WKH SHUFHQWDJH RI RUJDQLF PDWWHU DQG FOD\ YDULDEOH VROXWH FRQFHQWUDWLRQ SRUHZDWHU YHORFLW\ DQG WLPH RI H[SRVXUH RI WKH VRLOV WR K\GUD]LQH 6RLO PDWHULDO IURP WKH FROXPQV ZDV DQDO\]HG IRU PLFURELDO DFWLYLW\ E\ WRWDO PLFURELDO DQG SODWH FRXQWV (DUO\ FROXPQ H[SHULPHQWV ZHUH GHDHUDWHG ZLWK KHOLXP WR UHPRYH R[\JHQ ZKLOH ODWHU FROXPQV ZHUH GHDHUDWHG ZLWK &2 6DWXUDWLQJ VROXWLRQV RI 1 &D&O ZHUH GHDHUDWHG DV ZHOO DQG FROXPQV ZHUH WKHQ VDWXUDWHG XQWLO LRQLF HTXLOLEULXP ZDV DFKLHYHG EHWZHHQ LQIOXHQW DQG HIIOXHQW VROXWLRQV SULRU WR K\GUD]LQH LQWURGXFWLRQ &ROXPQV GHDHUDWHG ZLWK KHOLXP SULRU WR ZHWWLQJXS ZHUH IRXQG WR EH DSSUR[LPDWHO\ SHUFHQW VDWXUDWHG ZKLOH FROXPQV GHDHUDWHG ZLWK &2 ZHUH IRXQG WR EH DSSUR[LPDWHO\ SHUFHQW VDWXUDWHG 7KH GLIIHUHQFH ZDV DWWULEXWHG WR WKH KLJKHU VROXELOLW\ RI &2 LQ ZDWHU ,QIOXHQW VROXWLRQV ZHUH SXPSHG DW FRQWUROOHG UDWHV LQWR WKH ERWWRP RI SDFNHG VRLO FROXPQV DQG FROXPQ HIIOXHQW ZDV FROOHFWHG LQ D IUDFWLRQ FROOHFWRU URWDWHG DW D UDWH GHVLJQHG WR FROOHFW DSSUR[LPDWHO\ WHQ IUDFWLRQV SHU SRUH YROXPH RI HIIOXHQW +\GUD]LQH LQIOXHQW VROXWLRQV ZHUH DGMXVWHG WR VRLO S+ S+ WR IURP EDWFK VWXGLHVf SULRU WR XVHLQ RUGHU WR VLPSOLI\ WKH LQWHUSUHWDWLRQ RI HIIOXHQW

PAGE 122

PHDVXUHPHQW GDWD 7KLV DGMXVWPHQW DOVR PLQLPL]HG WKH SRWHQWLDO GHJUDGDWLRQ SDWKZD\V RI R[LGDWLRQ DQG DXWR[LGDWLRQ E\ SHUIRUPLQJ H[SHULPHQWV LQ D S+ UDQJH LQ ZKLFK K\GUD]LQH LV VWDEOH ,Q WKLV S+ UDQJH K\GUD]LQH LQ ZDWHU LV IRXQG SULPDULO\ SHUFHQWf DV K\GUD]LQLXP 1+f LPSOLFDWLQJ LRQ H[FKDQJH DV D SURPLQHQW WUDQVSRUW SURFHVV (IIOXHQW IUDFWLRQV IURP WKH FROXPQ H[SHULPHQWV ZHUH DQDO\]HG IRU K\GUD]LQH DQG LRQLF FRPSRVLWLRQ %UHDNWKURXJK FXUYHV ZHUH SUHSDUHG IURP WKHVH GDWD DQG WKH HIIHFWV RI K\GUD]LQH DGVRUSWLRQ LRQ H[FKDQJH DQG UDWH OLPLWHG GHJUDGDWLRQ ZHUH HYDOXDWHG E\ DQ H[DPLQDWLRQ RI EUHDNWKURXJK FXUYH WLPLQJ PDVV EDODQFH DQG PRGHOLQJ VWXGLHV 6XPPDU\ RI ([SHULPHQWDO 5HVXOWV 6RLO FKDUDFWHUL]DWLRQ VWXGLHV VKRZHG WKH WKUHH KRUL]RQV RI $UUHGRQGR ILQH VDQG WR EH FRPSRVHG RI WR SHUFHQW VDQG DQG WR SHUFHQW FOD\ 7KH FOD\ IUDFWLRQ ZDV GHWHUPLQHG WR EH NDROLQLWH WKURXJK ;UD\ GLIIUDFWLRQ DQDO\VLV DQG QR VPHFWLWH FOD\V RU VLJQLILFDQW DPRXQWV RI PLQHUDO R[LGHV ZHUH LGHQWLILHG 7KXV D S+GHSHQGHQW FKDUJH ZRXOG EH H[SHFWHG RQ WKH FOD\ IUDFWLRQ DQG XQGHU DFLGLF FRQGLWLRQV K\GUD]LQH FRXOG UHSODFH RWKHU FDWLRQV RQ H[FKDQJH VLWHV $Q DQDO\VLV RI WKH VRLOV IRU WRWDO RUJDLQF FDUERQ UHYHDOHG WKH XSSHU KRUL]RQ WR FRQWDLQ SHUFHQW RUJDQLF PDWWHU ZLWK WKH ORZHU KRUL]RQV FRQWDLQLQJ DQG SHUFHQW UHVSHFWLYHO\ 7KHVH SHUFHQWDJHV ZHUH IRXQG WR FRUUHODWH FORVHO\ ZLWK K\GUD]LQH ORVVHV LQ FROXPQ VWXGLHV 5 f 3DFNHG VRLO FROXPQV ZHUH XVHG WR HYDOXDWH WKH HIIHFWV RI YDULDEOH VROXWH FRQFHQWUDWLRQV SRUHZDWHU YHORFLWLHV DQG VRLOWRK\GUD]LQH H[SRVXUH WLPHV RQ K\GUD]LQH WUDQVSRUW $GGLWLRQDOO\ WKH FROXPQ HIIOXHQW IUDFWLRQV ZHUH DQDO\]HG

PAGE 123

IRU K\GUD]LQH DQG FDWLRQ FRPSRVLWLRQ DQG WKH GDWD XVHG WR GHYHORS EUHDNWKURXJK FXUYHV 7KH EUHDNWKURXJK FXUYHV WKHPVHOYHV ZHUH DQDO\]HG ZLLK UHVSHFW WR WLPLQJ DQG FRPSRVLWLRQ WR UHYHDO LQIRUPDWLRQ DERXW VLJQLILFDQW WUDQVSRUW SURFHVVHV DQG G\QDPLFV RI K\GUD]LQH IDWH DQG WUDQVSRUW 7KURXJK WKH FRXUVH RI WKH VRLOFROXPQ VWXGLHV UHSOLFDWH H[SHULPHQWV ZHUH FRQGXFWHG DW HDFK RI WKUHH K\GUD]LQH FRQFHQWUDWLRQV PPRO /n PPRO /n DQG PPRO /rf LQ DQ DWWHPSW WR FRUUHODWH K\GUD]LQH ORVVHV ZLWK FRQFHQWUDWLRQ +\GUD]LQH ORVVHV IURP WKH FROXPQ H[SHULPHQWV ZHUH GHILQHG DV WKH SHUFHQWDJH RI LQIOXHQW K\GUD]LQH ZKLFK GLG QRW HPHUJH LQ WKH FROXPQ HIIOXHQW 7KH UHVXOWV LQGLFDWHG WKDW JUHDWHU SHUFHQWDJH ORVVHV RI K\GUD]LQH ZHUH DVVRFLDWHG ZLWK ORZHU FRQFHQWUDWLRQV 7KLV ILQGLQJ LV FRQVLVWHQW ZLWK WKH FRQFHSW RI D VLQN PHFKDQLVP RI ILQLWH H[WHQW ZKLFK LV H[SUHVVHG HDUO\ LQ WKH WUDQVSRUW SURFHVV /RZFRQFHQWUDWLRQ LQSXW SXOVHV ZHUH DSSDUHQWO\ ORVW LQ WKH VLQN ZKHUHDV KLJKHUFRQFHQWUDWLRQ SXOVHV RI VLPLODU GXUDWLRQ DQG YHORFLW\ ILOOHG WKH GHPDQG RI WKH VLQN OHDYLQJ H[FHVV VROXWH WR EH DIIHFWHG E\ RWKHU SURFHVVHV 'DUF\ ZDWHU YHORFLWLHV ZHUH YDULHG E\ DQ RUGHU RI PDJQLWXGH DV HLWKHU RU FP KU LQ DQ DWWHPSW WR REVHUYH NLQHWLF HIIHFWV RQ WKH IDWH RI K\GUD]LQH GXULQJ WUDQVSRUW WKURXJK WKH VRLO FROXPQV $OVR DW HDFK YHORFLW\ WKH H[SRVXUH RI VRLO WR K\GUD]LQH ZDV YDULHG LQ OHQJWK ZLWK WKH DVVXPSWLRQ WKDW HYHQ VORZO\ UHDFWLQJ SURFHVVHV ZRXOG FRPH WR HTXLOLEULXP RYHU D ORQJ H[SRVXUH /RZHU YHORFLW\ H[SHULPHQWV ZHUH REVHUYHG WR KDYH KLJKHU SHUFHQWDJH K\GUD]LQH ORVVHV +RZHYHU WKHVH H[SHULPHQWV ZHUH JHQHUDOO\ FRQGXFWHG IRU D ORQJHU SHULRG RI WLPH HQKDQFLQJ WKH HIIHFW RI UDWHGHSHQGHQW GHJUDGDWLYH SURFHVVHV 1R GLIIHUHQFH RQ K\GUD]LQH ORVVHV ZDV REVHUYHG ZKHQ ORZ DQG KLJKYHORFLW\ H[SHULPHQWV RI VLPLODU GXUDWLRQ ZHUH FRPSDUHG

PAGE 124

7KH WLPH RI H[SRVXUH RI VRLO WR K\GUD]LQH ZDV YDULHG E\ DQ RUGHU RI PDJQLWXGH DSSUR[LPDWHO\ WR KRXUVf WR H[DPLQH WKH NLQHWLFV RI GHJUDGDWLRQ +\GUD]LQH ORVVHV LQ WKH ORQJHUGXUDWLRQ H[SHULPHQWV ZHUH IRXQG WR EH WLPH PXOWLSOHV RI ORVVHV LQ WKH VKRUWHUGXUDWLRQ H[SHULPHQWV RI VLPLODU FRQFHQWUDWLRQ /RVVHV ZHUH JUHDWHU IRU H[SHULPHQWV SHUIRUPHG DW KLJKHU FRQFHQWUDWLRQ WKDQ DW ORZHU FRQFHQWUDWLRQ IRU VLPLODU SXOVH GXUDWLRQV 7KXV WKH GHJUDGDWLRQ REVHUYHG LQ WKHVH FROXPQ H[SHULPHQWV DSSHDUHG WR EH D IXQFWLRQ RI ERWK WLPH DQG FRQFHQWUDWLRQ /RQJGXUDWLRQ SXOVHV RI K\GUD]LQH ZHUH DSSOLHG WR KDOI RI WKH FROXPQ H[SHULPHQWV LQ DQ HIIRUW WR REVHUYH WKH SUHVHQFH RI D FRQWLQXRXV GHJUDGLQJ SURFHVV VXFK DV PLFURELDO GHJUDGDWLRQ ,W ZDV DQWLFLSDWHG WKDW WKH SODWHDX REVHUYHG LQ WKH HIIOXHQW PHDVXUHPHQWV RI ORQJGXUDWLRQ SXOVHV PLJKW EH ORZHUHG E\ VXFK D SURFHVV DQG WKDW WKLV HIIHFW PLJKW EH REVHUYHG E\ QRUPDOL]LQJ WKH HIIOXHQW K\GUD]LQH FRQFHQWUDWLRQV E\ GLYLGLQJ E\ WKH LQIOXHQW FRQFHQWUDWLRQ 7KXV D UHODWLYH HIIOXHQW FRQFHQWUDWLRQ OHVV WKDQ WKH YDOXH RI ZRXOG EH REVHUYHG +RZHYHU WKLV ORZHULQJ RI WKH HIIOXHQW SODWHDX ZDV QRW REVHUYHG HYHQ WKRXJK D FRPSDULVRQ RI LQIOXHQW DQG HIIOXHQW PDVVHV LQGLFDWHG WKH ORVV RI K\GUD]LQH $SSDUHQWO\ WKH UDWHV RI K\GUD]LQH ORVVHV ZHUH VXIILFLHQWO\ VPDOO VXEVHTXHQWO\ PHDVXUHG DV WR PPRO +] NJr VRLO KUf VR DV WR EH PDVNHG LQ H[SHULPHQWDO VFDWWHU RU GLOXWHG E\ WKH QRUPDOL]DWLRQ SURFHVV ,RQ H[FKDQJH ZDV DQWLFLSDWHG WR KDYH D SRWHQWLDOO\ VLJQLILFDQW LPSDFW RQ WKH IDWH DQG WUDQVSRUW RI K\GUD]LQH LQ $UUHGRQGR ILQH VDQG VLQFH K\GUD]LQH RFFXUV SUHGRPLQDWHO\ DV K\GUD]LQLXP LQ DFLG VRLOV 7KH &(& RI WKH VRLOV ZDV HYDOXDWHG LQ EDWFK H[SHULPHQWV DQG WKH HIIHFWV RI LRQ H[FKDQJH ZHUH REVHUYHG LQ WKH EUHDNWKURXJK FXUYHV SUHSDUHG IURP WKH LRQLF FRPSRVLWLRQ PHDVXUHPHQWV PDGH RQ FROXPQ HIIOXHQW IUDFWLRQV $ FDOFLXP SHDN ZDV REVHUYHG LQ WKH

PAGE 125

EUHDNWKURXJK FXUYHV ZKLFK FRUUHODWHG LQ WLPLQJ ZLWK WKH LQWURGXFWLRQ RI K\GUD]LQLXP DQG FDOFLXP ZDV REVHUYHG WR GHFUHDVH LQ HIIOXHQW IUDFWLRQV DV WKH K\GUD]LQLXP SXOVH HOXWHG IURP WKH FROXPQV 7KHVH REVHUYDWLRQV DUH FRQVLVWHQW ZLWK RXU FXUUHQW XQGHUVWDQGLQJ RI WKH LRQ H[FKDQJH SURFHVV ,QIOXHQW K\GUD]LQH GLVSODFHG FDOFLXP LQLWLDOO\ SUHVHQW RQ VRLO H[FKDQJH VLWHV DQG WKHQ FDOFLXP UHWXUQHG WR WKH VLWHV DV WKH K\GUD]LQH SXOVH H[LWHG WKH FROXPQ 7KH PDVV RI FDOFLXP LQ WKH LQLWLDO SHDN ZDV H[SHFWHG WR EH D IXQFWLRQ RI WKH H[FKDQJH FDSDFLW\ DQG D FDOFXODWLRQ ZDV PDGH RI WKH HIIHFWLYH &(& EDVHG RQ WKH FDOFLXP PDVV DQG VRLO PDVV LQ WKH FROXPQV 7KHVH YDOXHV RI HIIHFWLYH &(& GHWHUPLQHG IURP VRLOFROXPQ VWXGLHV DQG FPROF NJn VRLO IRU WKH $S ( DQG ( KRUL]RQV UHVSHFWLYHO\f ZHUH ORZHU WKDW YDOXHV GHWHUPLQHG HDUOLHU IURP EDWFK VWXGLHV DQG FPROF NJ VRLO IRU WKH $S ( DQG ( KRUL]RQV UHVSHFWLYHO\f 8VH RI WKH FROXPQGHWHUPLQHG YDOXHV LQ D VROXWH WUDQVSRUW FRPSXWHU PRGHO ZULWWHQ VSHFLILFDOO\ WR GHVFULEH WKH UROH RI LRQ H[FKDQJH SUHGLFWHG WKH EUHDNWKURXJK FXUYHV ZHOO 7KXV LQ IXWXUH FROXPQ WUDQVSRUW VWXGLHV LW PD\ EH ZHOO WR GHWHUPLQH WKH HIIHFWLYH &(& IURP WKH VWXGLHV WKHPVHOYHV 7KH HIIHFW RI LRQ H[FKDQJH RQ WKH WLPLQJ RI WKH DUULYDO RI WKH VROXWH SXOVH LQ WKH HIIOXHQW IUDFWLRQV ZDV H[DPLQHG E\ SUHGLFWLQJ WKH GHOD\ LQ K\GUD]LQLXP DSSHDUDQFH EDVHG RQ LRQ H[FKDQJH DORQH DQG WKHQ FRPSDULQJ WKDW SUHGLFWLRQ ZLWK REVHUYHG YDOXHV 7KH DVVXPSWLRQ ZDV PDGH WKDW LRQ H[FKDQJH UHDFWLRQV ZRXOG RFFXU TXLFNO\ ZLWK UHVSHFW WR K\GUD]LQLXP WUDQVSRUW DQG WKDW WKH UHPRYDO RI K\GUD]LQLXP LRQV IURP VROXWLRQ ZRXOG GHOD\ WKH DSSHDUDQFH RI K\GUD]LQLXP LQ HIIOXHQW IUDFWLRQV 7KLV GHOD\ RU UHWDUGDWLRQ RI UHDFWLYH VROXWHV LV ZHOO GHVFULEHG LQ WKH OLWHUDWXUH 7KH SUHGLFWHG UHWDUGDWLRQ RI K\GUD]LQLXP GXH WR LRQ H[FKDQJH DORQH ZDV IRXQG WR DJUHH ZLWK WKH REVHUYHG UHWDUGDWLRQ LQ HIIOXHQW

PAGE 126

IUDFWLRQV 7KLV VXJJHVWV WKDW LRQ H[FKDQJH PD\ EH WKH GRPLQDQW UHDFWLYH SURFHVV DIIHFWLQJ K\GUD]LQLXP WUDQVSRUW LQ WKHVH ZDWHUVDWXUDWHG VRLOV $QDO\VLV RI WKH EHKDYLRU RI WKH FDOFLXP LRQ LQ WKH EUHDNWKURXJK FXUYHV LQGLFDWHG WKDW PRUH FDOFLXP ZDV EHLQJ H[SHOOHG IURP WKH VRLO PDWHULDO LQLWLDOO\ WKDQ ZDV EHLQJ UHWXUQHG DW WKH SDVVLQJ RI WKH K\GUD]LQLXP SXOVH ,RQ H[FKDQJH LV FRQYHQWLRQDOO\ FRQVLGHUHG WR EH DQ HTXLOLEULXP SURFHVV LQ ZKLFK WKH QDWXUH RI H[FKDQJH VLWHV LV QRW DIIHFWHG E\ WKH LRQ LWVHOI 2QH H[SODQDWLRQ IRU WKH REVHUYHG GLIIHUHQFH LQ LRQLF PDVV REVHUYHG LQ WKHVH VWXGLHV LV WKDW K\GUD]LQLXP RQFH RQ H[FKDQJH VLWHV PD\ UHDFW LUUHYHUVLEO\ WKURXJK K\GURJHQ RU FRYDOHQW ERQGLQJ ZLWK QHLJKERULQJ IXQFWLRQDO JURXSV VXFK DV FDUER[\O RU FDUERQ\O FRPSRXQGV LQ WKH RUJDQLF VWUXFWXUH UHGXFLQJ WKH HIIHFWLYH FDSDFLW\ RI WKH VRLO WR FRPSHWH LQ IXUWKHU H[FKDQJH UHDFWLRQV $QRWKHU SRVVLEOH H[SODQDWLRQ LV WKDW WKH FDOFLXP REVHUYHG LQ WKH LQLWLDO SHDN PD\ QRW EH WRWDOO\ WKH UHVXOW RI LRQ H[FKDQJH DQG WKDW K\GUD]LQLXP PD\ KDYH GLVSODFHG FDOFLXP LRQ LQLWLDOO\ DGVRUEHG WR KXPLF PDWHULDO LQ WKH VRLO PDWUL[ 7KLV FDOFLXP PD\ QRW UHWXUQ DIWHU SDVVDJH RI WKH K\GUD]LQLXP SXOVH $ PDVV EDODQFH ZDV SHUIRUPHG RQ WKH K\GUD]LQH LQIOXHQW DQG HIIOXHQW IURP FROXPQ H[SHULPHQWV 7KH PDVV EDODQFH IRU K\GUD]LQH LQFOXGHG WKH WRWDO K\GUD]LQLXP PDVV LQSXW LQWR WKH FROXPQ WKH PDVV RI K\GUD]LQH HOXWHG IURP WKH FROXPQV LQ HIIOXHQW WKH PDVV RI K\GUD]LQH LQLWLDOO\ ORVW RQ H[SRVXUH WR VRLO GXH WR LRQ H[FKDQJH RU VRUSWLRQ DQG WKH UDWHFRQWUROOHG PDVV RI K\GUD]LQH GHJUDGHG $OO FRPSRQHQWV RI WKH PDVV EDODQFH ZHUH PHDVXUHG H[FHSW WKH UDWHFRQWUROOHG WHUP ZKLFK ZDV GHWHUPLQHG E\ VXEWUDFWLRQ IURP WKH PHDVXUHG WHUPV 7KH UDWHFRQWUROOHG ORVVHV DFFRXQWHG IRU DSSUR[LPDWHO\ SHUFHQW ORVV RI K\GUD]LQLXP LQWURGXFHG LQWR WKH VRLO FROXPQV $WWHPSWV WR GHVRUE K\GUD]LQH IURP VRLOV ZHUH QRW VXFFHVVIXO UHIOHFWLQJ WKH LUUHYHUVLELOLW\ RI K\GUD]LQH VRUSWLRQ

PAGE 127

'LYLGLQJ WKHVH ORVVHV E\ WKH VRLOWRK\GUD]LQH H[SRVXUH WLPH JDYH ORVV UDWHV UDQJLQJ IURP WR PPRO +] NJr VRLO KU DQG ZHUH LQGLVWLQJXLVKDEOH DPRQJ KRUL]RQV 7KHVH UDWHV ZHUH VLPLODU WR WKRVH UHSRUWHG E\ RWKHU UHVHDUFKHUV KUf LQYHVWLJDWLQJ WKH PLFURELDO GHJUDGDWLRQ RI K\GUD]LQH LQ EDWFK VWXGLHV SHUIRUPHG XVLQJ WKH $UUHGRQGR VRLO XQGHU DHURELF FRQGLWLRQV :KLOH WKH GHJUDGDWLRQ UDWHV ZHUH VLPLODU WKH H[SHULPHQWDO FRQGLWLRQV ZHUH GLIIHUHQW 7KXV IXUWKHU H[SHULPHQWDO ZRUN LV QHHGHG EHIRUH WKH UDWH ORVVHV REVHUYHG LQ WKH FROXPQ VWXGLHV FDQ EH DWWULEXWHG WR D VSHFLILF SURFHVV &RQFOXVLRQV 7KLV VWXG\ KDV LOOXPLQDWHG VHYHUDO VLJQLILFDQW DVSHFWV RI K\GUD]LQH IDWH DQG WUDQVSRUW LQ VDWXUDWHG VDQG\ VRLOV f 2UJDQLF PDWWHU KDV D VLJQLILFDQW HIIHFW RQ WKH IDWH RI K\GUD]LQH LQ WKHVH VRLOV /RVVHV ZHUH IRXQG WR EH OLQHDUO\ FRUUHODWHG ZLWK SHUFHQWDJH RUJDQLF PDWWHU IRU WKH WKUHH VRLOV $S b (b ( bf f 6RLO S+ PD\ DOVR KDYH D VLJQLILFDQW HIIHFW RQ WKH WUDQVSRUW RI K\GUD]LQH ,Q DFLGLF VRLOV K\GUD]LQH LV SURWRQDWHG WR K\GUD]LQLXP DQG LRQ H[FKDQJH ZLOO OLNHO\ EHFRPH WKH GRPLQDQW WUDQVSRUW SURFHVV ,Q WKHVH VWXGLHV PRVW RI WKH UHWDUGDWLRQ VHHQ LQ K\GUD]LQH WUDQVSRUW ZDV VKRZQ WR EH GXH WR LRQ H[FKDQJH f 7KH FRQYHQWLRQDO EDWFK VWXGLHV XVHG WR GHWHUPLQH &(& RYHUHVWLPDWHG WKH HIIHFWLYH &(& REVHUYHG LQ WKHVH VRLOFROXPQ VWXGLHV $ QHZ SURFHGXUH IRU GHWHUPLQLQJ WKH HIIHFWLYH &(& IURP WKH DUHD UHSUHVHQWLQJ WKH PDVV RI WKH H[FKDQJHG FDWLRQ REVHUYHG LQ WKH EUHDNWKURXJK FXUYH LV SUHVHQWHG LQ WKLV GRFXPHQW 7KLV &(& GHWHUPLQDWLRQ ZDV YHULILHG E\ PRGHOLQJ VWXGLHV

PAGE 128

f 7KHUH PD\ EH D UHGXFWLRQ LQ WKH &(& RI WKHVH VRLOV DIWHU H[SRVXUH WR K\GUD]LQH 7KH UHGXFWLRQ RU fSRLVRQLQJ RI &(& LV QRW D FRPPRQO\ KHOG FRQYHQWLRQ LQ FXUUHQW XQGHUVWDQGLQJ RI LRQ H[FKDQJH WKHRU\ DQG ZDUUDQWV IXUWKHU LQYHVWLJDWLRQ f $ PDVV EDODQFH H[DPLQDWLRQ RI WKH LQIOXHQW DQG HIIOXHQW GDWD IURP WKH FROXPQ VWXGLHV LQGLFDWHG WKH SUHVHQFH RI D UDWHFRQWUROOHG ORVV SURFHVV ZKLFK PD\ DFFRXQW IRU DQ DSSUR[LPDWHO\ b ORVV RI LQIOXHQW K\GUD]LQH 7KHVH VWXGLHV GLG QRW LVRODWH WKH PHFKDQLVP EXW WKH UDWH FRHIILFLHQWV DUH VLPLODU WR WKRVH GHVFULEHG E\ RWKHU UHVHDUFKHUV DV PLFURELDO GHJUDGDWLRQ 7KLV VKRXOG EH FRQVLGHUHG LQ IXWXUH UHVHDUFK DV RQH RI WKH SRVVLEOH GHJUDGDWLYH PHFKDQLVPV

PAGE 129

/,67 2) 5()(5(1&(6 $GDPV 4 DQG 7KRPDV 5 f (OHFWURQ SDUDPDJQHWLF UHVRQDQFH RI D K\GUD]LQH UDGLFDO LRQ &KHP )KYV $KOHUW 5 & %DXHUOH + DQG /HFFH 9 f 'HQVLW\ DQG YLVFRVLW\ RI DQK\GURXV K\GUD]LQH &KHP (QD 'DWD $WNLQVRQ 7 9 DQG %DUG $ f (OHFWURQ VSLQ UHVRQDQFH VWXGLHV RI FDWLRQ UDGLFDOV SURGXFHG GXULQJ WKH R[LGDWLRQ RI PHWK\OK\GD]LQHV 3KYV &KHP $XGULHWK / ) DQG 0RKU 3 + f $XWR[LGDWLRQ RI K\GUD]LQH (IIHFW RI GLVVROYHG PHWDOV DQG GHDFWLYDWRUV ,QG (QJ &KHP $XGULHWK / ) DQG 2JJ % $ f 7KH &KHPLVWU\ RI +\GUD]LQH 1HZ
PAGE 130

%RXFKDUG & :RRG $ / &DPSEHOO 0 / 1NHGL.L]]D 3 DQG 5DR 3 6 & f 6RUSWLRQ QRQHTXLOLEULXP GXULQJ VROXWH WUDQVSRUW &RQWDP +YGURO %UDXQ % $ DQG =LUUROOL $ f (QYLURQPHQWDO IDWH RI K\GUD]LQH IXHOV LQ DTXHRXV DQG VRLO HQYLURQPHQWV )LQDO 5HSRUW 1R (6/75f (QJLQHHULQJ DQG 6HUYLFHV /DERUDWRU\ 7\QGDOO $)% )ORULGD %UD\ : & DQG &X\ ( f 7KH R[LGDWLRQ RI K\GUD]LQH 7KH YROXPHWULF DQDO\VLV RI K\GUD]LQH E\ LRGLF DFLG LRGLQH EURPLQH DQG K\SRFKORURXV DFLG PHWKRGV $P &KHP 6RF %URZQH $ : DQG 6KHWWHUO\ ) ) f 2Q WKH R[LGDWLRQ RI K\GUD]LQH 3DUW $P &KHP 6RF %URZQH $ : DQG 6KHWWHUO\ ) ) f 2Q WKH R[LGDWLRQ RI K\GUD]LQH 3DUW ,, $P &KHP 6RF %URZQH $ : DQG 6KHWWHUO\ ) ) Df 2Q WKH R[LGDWLRQ RI K\GUD]LQH 3DUW ,,, $P &KHP 6RF %URZQH $ : DQG 6KHWWHUO\ ) ) Ef 2Q WKH R[LGDWLRQ RI K\GUD]LQH 3DUW ,9 $P &KHP 6RF %UXVVHDX 0 / -HVVXS 5 ( DQG 5DR 3 6 & f 0RGHOLQJ WKH WUDQVSRUW RI VROXWHV LQIOXHQFHG E\ PXLWLSURFHVV QRQHTXLOLEULXP :DWHU 5HVRXU 5HV %UXVVHDX 0 / -HVVXS 5 ( DQG 5DR 3 6 & f 1RQHTXLOLEULXP VRUSWLRQ RI RUJDQLF FKHPLFDOV (OXFLGDWLRQ RI UDWHOLPLWLQJ SURFHVVHV (QYLURQ 6FL 7HFKQR/ %UXVVHDX 0 / DQG 5DR 3 6 & f 6RUSWLRQ QRQLGHDOLW\ GXULQJ RUJDQLF FRQWDPLQDQW WUDQVSRUW LQ SRURXV PHGLD &5& &ULW 5HY (QYLURQ &RQWURO %UXVVHDX 0 / DQG 5DR 3 6 & f ,QIOXHQFH RI PDFURVFRSLF KHWHURJHQHLWLHV RQ WUDQVSRUW LQ SRURXV PHGLD *HRGHUPD e %XGDYDUL 6 (GLWRUf f 7KH 0HUFN ,QGH[ WK HGf 5DKZD\ 1HZ -HUVH\ 0HUFN DQG &R ,QF &DKQ : DQG 3RZHOO 5 ( f 2[LGDWLRQ RI K\GUD]LQH LQ VROXWLRQ $P &KHP 6RF e &KDQWRQJ $ DQG 0DVVRWK ) ( f $VSHFWV RI GLIIXVLRQ LQ FOD\ VRLOV $L&K(

PAGE 131

&KDSPDQ + f &DWLRQH[FKDQJH FDSDFLW\ ,Q & $ %ODFN (GLWRUf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $P 6RF RI $JURQRP\ ,QF DQG 6RLO 6FL 6RF RI $P ,QF &KRXGKU\ & f +XPLF 6XEVWDQFHV 1HZ
PAGE 132

*DXQW + DQG :HWWRQ ( $ 0 f 7KH UHDFWLRQ EHWZHHQ K\GUD]LQH DQG R[\JHQ LQ ZDWHU $GG, &KHP *HH : DQG %DXGHU : f 3DUWLFOHVL]H $QDO\VLV ,Q $ .OXWH (GLWRUf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $PHULFDQ 6RFLHW\ RI $JURQRP\ ,QF 6RLO 6FLHQFH 6RFLHW\ RI $PHULFD ,QF *LOEHUW ( & f 6WXGLHV RQ K\GUD]LQH 7KH DXWR[LGDWLRQ $P &KHP 6RF *ULIIHWK 6 0 6LOYHU DQG 6FKQLW]HU 0 f +\GUD]LQH GHULYDWLYHV DW )H VLWHV LQ KXPLF PDWHULDOV *HRGHUPD +DPDNHU : *RULQJ & $ DQG
PAGE 133

+LJJLQVRQ : & ( 6XWWRQ DQG :ULJKW 3 f 7KH R[LGDWLRQ RI K\GUD]LQH LQ DTXHRXV VROXWLRQ 1DWXUH RI DQG HLHFWURQ WUDQVIHU UHDFWLRQV &KHP 6RF +LJJLQVRQ : & ( DQG :ULJKW 3 f 7KH R[LGDWLRQ RI K\GUD]LQH LQ DTXHRXV VROXWLRQ ,,, 6RPH DVSHFWV RI WKH NLQHWLFV RI R[LGDWLRQ RI K\GUD]LQH E\ LURQ ,,,f LQ DFLG VROXWLRQ &KHP 6RF +ROORFKHU 7 & .XPDU 6 DQG 1LFKRODV ' f 5HVSLUDWLRQ GHSHQGHQW SURWRQ WUDQVORFDWLRQ LQ 1LWURVRPRQDV HQURSDHD DQG LWV DSSDUHQW DEVHQFH LQ 1LWUREDFWHU DJLOLV GXULQJ LQRUJDQLF R[LGDWLRQV %DFWHULR +XGVRQ 5 ) f (QYLURQPHQWDO LPSDFW SURFHVV DQG K\GUD]LQH IXHOV IRU $LU )RUFH VSDFH VKXWWOH SURJUDP ,Q $ 6WRQH DQG ) / :LVHPDQ (GLWRUVf 7KH 6HFRQG &RQIHUHQFH RQ WKH (QYLURQPHQWDO &KHPLVWU\ RI +\GUD]LQH )XHOV SS f 3DQDPD &LW\ )ORULGD +D]DUGRXV 0DWHULDOV 7HFKQLFDO &HQWHU 5RFNYLOOH 0DU\ODQG ,VDDFVRQ 3 DQG +D\HV 0 + % f 7KH LQWHUDFWLRQ RI K\GUD]LQH K\GUDWH ZLWK KXPLF DFLG SUHSDUDWLRQV DW S+ 6RLO 6FL -RKQVRQ & 7 6WRQH $ DQG $SSOHZKLWH / $ f 9LEUDWLRQDO VSHFWURVFRSLF VWXG\ RI WKH NDROLQLWHK\GUD]LQH LQWHUFDODWLRQ FRPSOH[ ,Q $ 6WRQH DQG ) / :LVHPDQ (GLWRUVf 7KH 7KLUG &RQIHUHQFH RQ WKH (QYLURQPHQWDO &KHPLVWU\ RI +\GUD]LQH )XHOV (6/75 SS f 3DQDPD &LW\ )ORULGD +D]DUGRXV 0DWHULDOV 7HFKQLFDO &HQWHU 5RFNYLOOH 0DU\ODQG .DQH $ DQG :LOOLDPVRQ f %DFWHULDO WR[LFLW\ DQG PHWDEROLVP RI K\GUD]LQH IXHOV $UFKLYHV RI (QYLURQPHQWDO &RQWDPLQDQW 7R[LFRORJ\ .LUN 5 ( DQG %URZQH $ : f 2[LGDWLRQ RI K\GUD]LQH 9,,, 0RQR GHOHFWURQDWRUV DQG GLGHOHFWURQDWRUV $P &KHP6RF .LUNKDP DQG 3RZHUV : / f $GYDQFHG 6RLO 3K\VLFV 1HZ
PAGE 134

/HZLV 6 6f 8VH RI K\GUD]LQH LQ WKH 86 $LU )RUFH DHURVSDFH SURJUDP ,Q $ 6WRQH DQG ) / :LVHPDQ (GLWRUVf 7KH 6HFRQG &RQIHUHQFH RQ WKH (QYLURQPHQWDO &KHPLVWU\ RI +\GUD]LQH )XHOV (6/75 3DQDPD &LW\ )ORULGD (QJLQHHULQJ DQG 6HUYLFHV /DERUDWRU\ 7\QGDOO $)% )ORULGD 8UQ 3 DQG )DJJ % 6 f 0DQJDQHVH FDWDO\]HG DXWR[LGDWLRQ RI DTXHRXV K\GUD]LQH .LQHWLFV PHFKDQLVP DQG FDWDO\VWLQKLELWRU FRQYHUVLRQ 7 3KYV &KHP /RQGRQ 6 $ DQG 0DQWHO & 5 f (IIHFW RI K\GUD]LQHV RQ VXEVWUDWH XWLOL]DWLRQ E\ D VWUDLQ RI (QWHUREDFWHU FORDFDH %XOO (QYLURQ &RQWDP 7R[LFRO /RQGRQ 6 $ 0DQWHO & 5 5RELQVRQ DQG /XNLQJ 6 f (IIHFWV RI VHOHFWHG K\GUD]LQHV RQ WKH HDUO\ GHDWK UDWHV RI (QWHUREDFWHU FORDFDH %XOO (QYLURQ &RQWDP 7R[LFRO 0DF1DXJKWRQ 0 8UGD $ DQG %RZGHQ 6 ( f 2[LGDWLRQ RI +\GUD]LQH LQ $TXHRXV 6ROXWLRQV 1R &(('275 &LYLO DQG (QYLURQPHQWDO (QJLQHHULQJ 'HYHORSPHQW 2IILFH 86 $LU )RUFH 7\QGDOO $LU )RUFH %DVH )ORULGD 0DQVHLO 5 6 %ORRP 6 $ DQG $\OPRUH / $ f 6LPXODWLQJ FDWLRQ WUDQVSRUW GXULQJ XQVWHDG\ XQVDWXUDWHG ZDWHU IORZ LQ VDQG\ VRLO 6RLO 6FL 0DQVHOO 5 6 %RQG : DQG %ORRP 6 $ f 6LPXODWLQJ FDWLRQ WUDQVSRUW GXULQJ ZDWHU IORZ LQ VRLO 7ZR DSSURDFKHV 6RLO 6FL 6RF $P 0DQWHO & DQG /RQGRQ 6 f $GDSWDWLRQ RI D VRLO EDFWHULXP WR K\GUD]LQH SURSHOODQWV %XOOHWLQ RI (QYLURQPHQWDO &RQWDPLQDWLRQ DQG 7R[LFRORJ\ 0DXUHO 5 DQG 0HQH]R & f &DWDO\WLF GHFRPSRVLWLRQ RI LV1ODEHOHG K\GUD]LQH RQ DOXPLQDVXSSRUWHG PHWDOV &DWDO\VLV 0F/HDQ ( 2 f 6RLO S+ DQG OLPH UHTXLUHPHQW ,Q $ / 3DJH 5 + 0LOOHU DQG 5 .HHQH\ (GLWRUVf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $P 6RF RI $JURQRP\ ,QF DQG 6RLO 6FL 6RF RI $P ,QF 0ROLQHU $ 0 f +\GUD]LQH &KHPLVWU\ LQ $TXHRXV DQG 6RLO (QYLURQPHQWV 3K 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD 0ROLQHU $ 0 DQG 6WUHHW Df 'HFRPSRVLWLRQ RI K\GUD]LQH LQ DTXHRXV VROXWLRQV (QYLURQ 4XDO 0ROLQHU $ 0 DQG 6WUHHW Ef ,QWHUDFWLRQV RI K\GUD]LQH ZLWK FOD\V DQG VRLOV (QYLURQ 4XDO

PAGE 135

1HOVRQ : DQG 6RPPHUV / ( f 7RWDO FDUERQ RUJDQLF FDUERQ DQG RUJDQLF PDWWHU ,Q $ / 3DJH 5 + 0LOOHU DQG 5 .HHQH\ (GLWRUVf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $P 6RF RI $JURQRP\ ,QF DQG 6RLO 6FL 6RF RI $P ,QF 1LHOVHQ 5 YDQ *HQXFKWHQ 0 7 DQG %LJJDU : f :DWHU IORZ DQG VROXWH WUDQVSRUW SURFHVVHV LQ WKH XQVDWXUDWHG ]RQH :DWHU 5HVRXU 5HV 66 2RVDZD < f 3KRWRFDWDO\WLF K\GURJHQ HYROXWLRQ IURP DTXHRXV K\GUD]LQH VROXWLRQ RYHU SUHFLRXVPHWDODQDWDVH FDWDO\VWV &KHP 6RF 2X / 7 f 0LFURELDO GHJUDGDWLRQ RI K\GUD]LQH %XOO (QYLURQ &RQWDP 7R[LFRO 2X / 7 f 'HJUDGDWLRQ RI PRQRPHW\KOK\GUD]LQH E\ WZR VRLO EDFWHULD %XOO (QYLURQ &RQWDP 7R[LFRO 2X / 7 DQG 6WUHHW f +\GUD]LQH GHJUDGDWLRQ DQG LWV HIIHFW RQ PLFURELDO DFWLYLW\ LQ VRLO %XOO (QYLURQ &RQWDP 7R[LFRO 2X / 7 DQG 6WUHHW f 0RQRPHWK\OK\GUD]LQH GHJUDGDWLRQ DQG LWV HIIHFW RQ FDUERQ GLR[LGH HYROXWLRQ DQG PLFURELDO SRSXODWLRQV LQ VRLO %XOO (QYLURQ &RQWDP 7R[LFRO 3DUNHU & DQG -DUGLQH 3 0 f (IIHFW RI KHWHURJHQRXV DGVRUSWLRQ EHKDYLRU RQ LRQ WUDQVSRUW :DWHU 5HVRXU 5HVHDUFK 5DR 3 6 & 5ROVWRQ ( -HVVXS 5 ( DQG 'DYLGVRQ 0 f 6ROXWH WUDQVSRUW LQ DJJUHJDWHG SRURXV PHGLD 7KHRUHWLFDO DQG H[SHULPHQWDO HYDOXDWLRQ 6RLO 6FL 6RF $P 5HHG 0 $XJXVW f $QDWRP\ RI D UDLO GLVDVWHU /RV $QJHOHV 7LPHV S 0HWUR 6HFWLRQ 5KRDGHV f &DWLRQ ([FKDQJH &DSDFLW\ ,Q $ / 3DJH 5 + 0LOOHU DQG 5 .HHQH\ (GLWRUVf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $P 6RF RI $JURQRP\ ,QF DQG 6RLO 6FL 6RF RI $P ,QF 5KXH 5 DQG 0DQVHOO 5 6 f 7KH HIIHFW RI S+ RQ VRGLXPFDOFLXP DQG SRWDVVLXPFDOFLXP H[FKDQJH VHOHFWLYLW\ IRU &HFLO VRLO 6RLO 6FL 6RF $P 5R\ : 5 .UDSDF &KRX 6 ) DQG *ULIILQ 5 $ f %DWFKW\SH SURFHGXUHV IRU HVWLPDWLQJ VRLO DGVRUSWLRQ RI FKHPLFDOV (3$6:) 86 (3$ 5LVN 5HGXFWLRQ (QJLQHHULQJ /DERUDWRU\

PAGE 136

6FKLHVVO + : f +\GUD]LQH 5RFNHW IXHO WR V\QWKHWLF WRRO $OGULFKLPLFD $FWD f 6FKPLGW ( : f +\GUD]LQH DQG LWV 'HULYDWLYHV 3UHSDUDWLFQ 3URSHUWLHV $SSOLFDWLRQV 1HZ
PAGE 137

6WRQH $ DQG :LVHPDQ ) / f 7KH EHKDYLRU RI K\GUD]LQH YDSRU LQ DQ HQYLURQPHQWDO FKDPEHU XQGHU VLPXODWHG DWPRVSKHULF FRQGLWLRQV ,Q $ 6WRQH DQG ) / :LVHPDQ (GLWRUVf 7KH 7KLUG &RQIHUHQFH RQ WKH (QYLURQPHQWDO &KHPLVWU\ RI +\GUD]LQH )XHOV -DQXDU\ (6/75 SS f 3DQDPD &LW\ )ORULGD +D]DUGRXV 0DWHULDOV 7HFKQLFDO &HQWHU 5RFNYLOOH 0DU\ODQG 6XWKHUODQG : f 3XOVH UDGLRO\VLV RI DTXHRXV K\GUD]LQH VROXWLRQV 7KH WULD]LQH VSHFLHV 3KYV &KHP 6]DER 9 %RUGD DQG 9HJK 9 f &OHDYDJH RI WKH KHWHURF\FOLF ULQJ RI LVRIODYRQRLGV E\ QXFOHRSKLOLF UHDJHQWV 9,,, 5HDFWLRQV RI LVRIODYRQH DQG LWV WKLRQH GHULYDWLYH ZLWK K\GUD]LQH DQG LWV GHULYDWLYHV $FWD &KLPLFD $FDGHPLDH 6FLHQWLDUXP +XQRDULFDH 7KRPDV % 3 &XPPLQJV ( DQG :KLWWVWUXFN : + f 6RLO 6XUYH\ RI $ODFKXD &RXQWY )ORULGD 8QLWHG 6WDWHV 'HSW RI $JULH 6RLO &RQVHUYDWLRQ 6HUY DQG 8QLY RI )ORULGD ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FL $JULH ([SW 6WDWLRQV 6RLO 6FL 'HSDUWPHQW 7UROOGHQLHU f 7KH XVH RI IOXRUHVFHQW PLFURVFRS\ IRU FRXQWLQJ VRLO PLFURRUJDQLVPV %XOO (FRO 5HVHDUFK &RPP 6WRFNKROPf 9DORFFKL $ 6WUHHW 5 / DQG 5REHUWV 3 9 f 7UDQVSRUW RI LRQn H[FKDQJLQJ VROXWHV LQ JURXQGZDWHU &KURPDWRJUDSKLF WKHRU\ DQG ILHOG VLPXODWLRQ :DWHU 5HVRXU 5HV :DWW : DQG &ULVS f $ VSHFWURSKRWRPHWULF PHWKRG IRU GHWHUPLQDWLRQ RI K\GUD]LQH $QDO\WLFDO &KHPLVWU\ :RUOG +HDOWK 2UJDQL]DWLRQ :+2f f ,Q (QYLURQPHQWDO KHDOWK FULWHULD +\GUD]LQH 9RO SS :RUOG +HDOWK 2UJDQL]DWLRQ *HQHYD 6ZLW]HUODQG :LHUHQJD 3 DQG YDQ *HQXFKHQ 0 7 f 6ROXWH WUDQVSRUW WKURXJK VPDOO DQG ODUJH XQVDWXUDWHG FROXPQV *URXQG :DWHU :ROI & 'DR 7 + 6FRWW + DQG /DY\ 7 / f ,QIOXHQFH RI VWHULOL]DWLRQ PHWKRGV RQ VHOHFWHG VRLO PLFURELRORJLFDO SK\VLFDO DQG FKHPLFDO SURSHUWLHV (QYLURQ 4XD/ :ROOXP $ f &XOWXUDO PHWKRGV IRU VRLO PLFURRUJDQLVPV ,Q $ / 3DJH 5 + 0LOOHU DQG 5 .HHQH\ (GLWRUVf 0HWKRGV RI 6RLO $QDO\VLV SS f 0DGLVRQ :LVFRQVLQ $P 6RF RI $JURQRP\ ,QF DQG 6RLO 6FL 6RF RI $PHULFD ,QF

PAGE 138

:X 6 DQG *VFKZHQG 3 0 f 6RUSWLRQ NLQHWLFV RI K\GURSKRELF RUJDQLF FRPSRXQGV WR QDWXUDO VHGLPHQWV DQG VRLOV (QYLURQ 6FL 7HFKQR/ f

PAGE 139

$33(1',; $ 62,/ &2/801 3523(57,(6 $1' 0,&52%,$/ &28176

PAGE 140

7DEOH $ 'HWHUPLQDWLRQ RI EXON GHQVLW\ SRURVLW\ ZDWHU FRQWHQW DQG SHUFHQW ZDWHU VDWXUDWLRQ IRU FROXPQV GHDHUDWHG ZLWK KHOLXP %7& 1R )LOOHG 'U\ :W Jf (PSW\ :W Jf )LOOHG :HW :W Jf 3RUH :DWHU Jf %XON 'HQVLW\ 3RURVLW\ 9ROXPHWULF :DWHU &RQWHQW 3HUFHQW 6DWXUDWLRQ

PAGE 141

7DEOH $ 2SHUDWLRQDO SDUDPHWHUV IRU VRLOFROXPQ H[SHULPHQWV GHDHUDWHG ZLWK KHOLXP %7& 1R +RUL]RQ 'DUF\ 9HORFLW\ FP KUnAf +] &RQH PPRO /f +] ,QIOXHQW PDVV PPROf 3XOVH /HQJWK KUVf 3XOVH 9ROXPH POf &ROXPQ 3RUH 9ROXPH POf &ROXPQ /HQJWK FPf ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

PAGE 142

7DEOH $ 'HWHUPLQDWLRQ RI EXON GHQVLW\ SRURVLW\ ZDWHU FRQWHQW DQG SHUFHQW ZDWHU VDWXUDWLRQ IRU FROXPQV GHDHUDWHG ZLWK FDUERQ GLR[LGH %7& 1R )LOOHG 'U\ :W Jf (PSW\ :W Jf KLOOHG :HW :W Jf 3RUH :DWHU Jf %XON 'HQVLW\ 3RURVLW\ n LROXPHWULF :DWHU &RQWHQW 3HUFHQW 6DWXUDWLRQ

PAGE 143

7DEOH $ 2SHUDWLRQDO SDUDPHWHUV IRU VRLOFROXPQ H[SHULPHQWV GHDHUDWHG ZLWK FDUERQ GLR[LGH %7& 1R +RUL]RQ 'DUF\ 9HORFLW\ FP KUnf +] &RQH PPRO /nf +] ,QIOXHQW PDVV PPROf 3XOVH /HQJWK KUVf 3XOVH 9ROXPH POf &ROXPQ 3RUH 9ROXPH POf &ROXPQ /HQJWK FPf ( ( $S $S ( ( ( $S ( $S ( ( ( ( ( ( $S ( ( $S $S $S ( ( $S ( ( $S ( $S ( ( ( ( ( ( ( (

PAGE 144

7DEOH $ 'LUHFW PLFURVFRSLF FRXQWV DQG SODWH FRXQWV RI VRLO PLFURRUJDQLVPV +RUL]RQ %7& +\GUD]LQH &RQH PPRO /fAf /HQJWK RI H[SRVXUH KUVf 3ODWH &RXQW PLFUR RUTDQLVPV Jnf $2 FRXQW PLFURn RUJDQLVPV $S [ 717&D [ [V [V [ [ [V [V QRQH [V ( [V [ [ [V [ [ [ [V [V [ [ QRQH [V QRQH [ ( [ [ [V [ [V [V [V [V QRQH [V D 7RR 1XPHURXV 7R &RXQW

PAGE 145

$33(1',; % %5($.7+528*+ &859(6 2) 38/6( :,'7+ )25 &2/8016 '($(5$7(' :,7+ +(/,80 $1' 6$785$7(' :,7+ &D&, :+,&+ :$6 ,76(/) '($(5$7(' :,7+ +(/,80

PAGE 146

7DEOH % 6XPPDU\ PDVV IOX[HV IURP SXOVH DGGLWLRQ RI K\GUD]LQLXP +HOLXP FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 0$66 3(5&(17 0$66 +=62,/ 5$7( /266 '(6&5,37,21 &21& += LQ += RXW /266 /266 (;32685( += PPRO/f PPROf PPROf PPRO += SHU .T VRLOf KUVf PPRO += SHU .TKUf $3 FPKU 1R QR GDWD QRQH REV QRQH REV $3 FPKU QR GDWD QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV ( FPKU ( FQ9KU QRQH REV QRQH REV

PAGE 147

L DEOH % &ROXPQ VXPPDU\ GDWD IURP SXOVH DGGLWLRQ RI K\GUD]LQLXP +HOLXP FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 %7& 0$66 &$ '(6&5,37,21 &21& += LQ )5217 &$ RXW 5(625%(' += PPRO/f PPROf SRUH YROXPHVf PHTf PHTf $3 FUUY7LU 1R QRQH REV QR GDWD QRQH REV QRQH REV QRQH REV $3 FPKU QRQH REV QR GDWD QRQH REV QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV QRQH REV ( FQ9KU QRQH REV QRQH REV QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV QRQH REV

PAGE 148

( KRUL]RQ SSP FPKU 7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 149

( KRUL]RQ SSP FPKU 7& 325( 92/80(6 )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 150

( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 151

( KRUL]RQ 6 SSP FPKU (7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 152

(O KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH (O KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZK FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 153

( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 154

$S KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 155

$S KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH % 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 156

$33(1',; & %5($.7+528*+ &859(6 2) &217,18286 :,'7+ )25 &2/8016 '($(5$7(' :,7+ +(/,80 $1' 6$785$7(' :,7+ &D&, :+,&+ :$6 ,76(/) '($(5$7(' :,7+ +(/,80

PAGE 157

7DEOH & 6XPPDU\ PDVV IOX[HV IURP FRQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP +HOLXP FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 0$66 3(5&(17 0$66 +=/ 5$7( /266 '(6&5,37,21 &21& += LQ += RXW /266 /266 (;32685( += PPRL/f PPROf PPROf PPRO += SHU .T VRLOf KUVf PPRO += SHU .TKUf $S FPKU 1R $S FQ9KU ( FPKU ( FPKU QRQH REV ( FPKU ( FPKU

PAGE 158

7DEOH & &ROXPQ VXPPDU\ GDWD IURP FRQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP +HOLXP FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 %7& 0$66 '(6&5,37,21 &21& += ,Q )5217 &$ RXW += PPRO/f PPROf SRUH YROXPHVf PHTf $S FPKU 1R $S FPKU QRQH REV QRQH REV ( FQ9KU QRQH REV QRQH REV ( FPKU QRQH REV QRQH REV ( FPKU QRQH REV ( FPKU QRQH REV QRQH REV

PAGE 159

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 160

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 161

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 162

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 163

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 164

( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 165

$S KFUL]FQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 166

$S KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH & &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 167

$33(1'L; %5($.7+528*+ &859(6 2) 38/6( :,'7+ )25 &2/8016 '($(5$7(' :,7+ & $1' 6$785$7(' :,7+ &D&, :+,&+ :$6 ,76(/) '($(5$7(' :,7+ 1,752*(1

PAGE 168

7DEOH 6XPPDU\ PDVV IOX[HV IURP SXOVH DGGLWLRQ RI K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 0$66 3(5&(17 0$66 +=62,/ 5$7( /266 '(6&5,37,21 &21& += ,Q += RXW /266 /266 (;32685( += PPRO/f PPROf PPROf PPRO += SHU .T VRLOf KUVf PPRO += SHU .TKUf $3 FPKU 1R QRQH REV QRQH REV $3 FQ9KU QRQH REV QRQH REV ( FPKU QRQH REV ( FPKU QRQH REV

PAGE 169

7DEOH &RQWLQXHGf 6XPPDU\ PDVV IOX[HV IURP SXOVH DGGLWLRQ RI K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ (7& ,1387 0$66 0$66 3(5&(17 0$66 +=62,/ 5$7( /266 '(6&5,37,21 &21& += LQ += RXW /266 /266 (;32685( += PPRO/f PPROf PPROf PPRO += SHU .T VRLOf KUVf PPRO += SHU .JKUf ( FUU9KU QR GDWD QR GDWD QR GDWD ( FPKU

PAGE 170

7DEOH &ROXPQ VXPPDU\ GDWD IURP SXOVH DGGLWLRQ RI K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 %7& 0$66 0$66 &$ '(6&5,37,21 &21& += LQ )5217 &$ RXW 5(625%(' += PPRO/f PPROf SRUH YROXPHVf PHTf PHTf $3 FUU9KU 1R QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV $3 FQ9KU QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV ( FQ9KU QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV QRQH REV ( FUU9KU QR GDWD QR GDWD QRQH REV QRQH REV QRQH REV

PAGE 171

7DEOH &RQWLQXHGf &ROXPQ VXPPDU\ GDWD IURP SXOVH DGGLWLRQ R K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ 7& ,1387 0$66 %7& 0$66 0$66 &$ '(6&5,37,21 &21& += LQ )5217 &$ RXW 5(625%(' += PPRO/f PUQROf SRUV YROXPHVf PHTf PHTf ( FPKU QR GDWD QR GDWD QRQH REV QRQH REV f QRQH REV QRQH REV QRQH REV ( FUU9KU QRQH REV QRQH REV QRQH REV

PAGE 172

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP (O KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 173

$S KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH 3XLVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 174

( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 175

( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 176

(O KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH $S KRUL]RQ SSP FPKU %7& R G P 6 e }f§ +\GUD]LQH f§ &DOFLXP 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 177

( KRUL]RQ SSP FPKU %7& Q +\GUD]LQH &DOFLXP 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 178

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH (O KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP (O KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 179

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 180

$S KRUL]RQ SSP FPKU 7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& D R G ] R R /8 /8 WU 325( 92/80(6 ff +\GUD]LQH &DOFLXP )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 181

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 182

$S KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH $S KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 183

( KRUL]RQ SSP FPKU %7& R nU 2 /8 S FF 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH 3XLVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 184

$S KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ /RZ FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 185

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ /RZ IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK ILRZ UDWH

PAGE 186

( KRUL]RQ SSP FPKU %7& B f +\GUD]LQH R R r &DOFLXP n7 2 325( 92/80(6 )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 187

( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH 3XOVH DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 188

$33(1',; ( %5($.7+528*+ &859(6 2) &217,18286 :,'7+ )25 &2/8016 '($(5$7(' :,7+ & $1' 6$785$7(' :,7+ &D&, :+,&+ :$6 ,76(/) '($(5$7(' :,7+ 1,752*(1

PAGE 189

7DEOH ( 6XPPDU\ PDVV IOX[HV IURP FRQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 0$66 3(5&(17 0$66 +=62,/ 5$7( /266 '(6&5,37,21 &21& += ,Q += RXW /266 /266 (;32685( += PPRO/f PPROf PPROf PPRO += SHU .T VRLOf KUVf PPRO +] SHU NTKUf $3 FPKU 1R ( FPKU ( FPKU ( FPKU ( FPKU

PAGE 190

7DEOH ( &ROXPQ VXPPDU\ GDWD IURP FRQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP &DUERQ GLR[LGH DQG QLWURJHQ FROXPQ SUHSDUDWLRQ %7& ,1387 0$66 %7& 0$66 '(6&5,37,21 &21& += ,Q )5217 &$ RXW += PPRO/f PPROf SRUH YROXPHVf PHTf $3 FPKU 1R ( FPKU QRQH REV QRQH REV ( FPKU ( FQ9KU QRQH REV QRQH REV ( FPKU

PAGE 191

$S KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 192

$S KRUL]RQ 6 SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP $S KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 193

( KRUL]RQ SSP FPKU %7& 325( 92/80(6 )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 194

( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ /RZ FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 195

( KRUL]RQ SSP FPKU 7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ +LJK IORZ UDWH ( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ +LJK FRQFHQWUDWLRQ /RZ IORZ UDWH

PAGE 196

( KRUL]RQ SSP FPKU %7& )LJXUH ( &RQWLQXRXV DGGLWLRQ RI K\GUD]LQLXP ( KRUL]RQ 0HGLXP FRQFHQWUDWLRQ +LJK IORZ UDWH

PAGE 197

%,2*5$3+,&$/ 6.(7&+ :D\QH &ROOLQV 'RZQV ZDV ERUQ ,Q 0RQURH *HRUJLD 'HFHPEHU +H JUHZ XS LQ $OEDQ\ *HRUJLD EXW DW DJH PRYHG ZLWK KLV IDPLO\ WR WKH PHWURSROLWDQ 6W /RXLV DUHD ZKHUH KH JUDGXDWHG IURP KLJK VFKRRO ,Q +H DWWHQGHG %ULJKDP
PAGE 198

L FHUWLI\ WKDW L KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0 $QQDEOH &RFKDLUPDQ $VVLVWDQW 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5 6r 0DQVHOO &RFKDLUPDQ 3URIHVVRU RI 6RLO DQG :DWHU 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HOILQR 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ nM"$ 3 $ &KDGLN $VVLVWDQW 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV

PAGE 199

 FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 4! 9RY % / 0F“HDL 3URIHVVRU RI 6RLO DQG :DWHU 6FLHQFH 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 3f§ 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 200

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EN59EPSHD_DZSV5W INGEST_TIME 2011-11-08T18:47:55Z PACKAGE AA00004735_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES