Ecology of a Salt Marsh at Havelock, New Zealand, Dominated by the Invasive Spartina Anglica
CITATION PDF VIEWER
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/AA00004350/00001
 Material Information
Title: Ecology of a Salt Marsh at Havelock, New Zealand, Dominated by the Invasive Spartina Anglica
Physical Description: Archival
Creator: Knox, George A.
Odum, Howard T.
Campbell, Daniel E.
Publisher: Center for Wetlands
Place of Publication: Gainesville, FL
Publication Date: 1983
 Record Information
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution.
System ID: AA00004350:00001

Downloads

This item is only available as the following downloads:

( PDF )


Full Text

PAGE 1

THEECOLOGYOFA SALT Jl,IARSH AT HAVELOCK, NEW ZEAlAND, OOMINATEDBYTHE 1l\'VASIVE SPARTINA ANGLICA GeorgeA. Knax.::IlawardT.Odum"DanielE.Campbell!WithaidofAndrewBaxter,# ElisabethC.Odum,I'hlilpReed,# Kathleen Trimmer,I-Iudson Dean,a andRoger Walte# "Environmental Engineering SCiences,Unlv,offlorida,USA tfDept. ofZoology,Unlv,ofCanterbury,Christchurch, New Zealand EnvironmentalPrOlectlon Agency, Narragansett, RhodeIsland.... Resuhs ofNew Zealand-U..S.A.lnlernational bThange Programof th{ National ScienceFoundation, 11\'T-81220 I 0, ChangesInEstuarine Ecosystems InInteractionwithDevelopment.

PAGE 2

TABlE OFCONTENTS ABSTRACT STUDYAREA J\II;TIlODS Biomass Regrowth Chemical Sediment l.ight PenetrationandVegetationAnimalSlUdiesTideTrapRESULTSBiomassof theMarsh GrassesNumberofStems Flowers VerticalPatternofBiomass wilh Optical Density VerticalPatternof the RootsintheSediment Vertical Distributionof the St-'diment OxidationPotential Vertical Distribution of5ediment pH PercolationThroughSediments Vertical DistributionofPine-sporesalinityAnimalPopulationsTideTrapCrab Iioles Growth Regro\\th fromClippedQuadrats Colonization ExchangeSludies O;..ygen5eston Organic BalanceMineralBalance andSimulationComparison withSp...rtina InOtherAreas Exotic Im'asion. Power. and t-1acroc\'olution,

PAGE 3

Value ACKNQ\V1..EIX;;\18\'1"SRI::T-ERFN('P.\

PAGE 4

ABSTRACTThisisastudyoftheself organizationofa newmarsh L'Cosystem invading mudnatsInNewZealand with increasing biological productivity. Areas of invading Sparlina angllca marsh grass were studiedat Havelock andAvon lIealhcote, N.Z.andcompared withourprevious workonSoaninaallCrniOora at Crystal Rher, Florida.andwith the workofothersonSparlina angllcaIn Europe. China.andNorth America. Although the Invading Sparllna ecosystem is less thanSOyearsold it has transformed 80haofmudnatsto canal distributary patternswith typical tall, robust Soarlina along canalsandshortermore numerous plants on the pans. Summer abovegroundSparllna biomass averaged 998.5 gdrywtpermeter sq. Meansummernet growth was 2.63 gdry wt perm 2 The average root biomass was3092and7327 g drywt perm 2 on levees andpans. reSpeCli\c1y. Potamop)lrgus. a minute snail. averaged -l-5.765 animals per m 2In Soarlin". Seveml commercially valuable fish were found using the marshin a supporlornursery capaCity. Preliminary observations indicalCd that themarshsupportswaterfowlInabundance comparable to the replaced mud Oats albeit with species changes. There was a general absence ofthe many crab holes foundInsoutheastern United Statesapparentlyimportantin water exchange there. Fine Sparllna rootlets wereconcentratednearthe mud surface with coarse roots down to 30 cm. Oxidation potentials weregreaterinSpaninathaninalgal coveredor bare mud areas. (Xlre space salinity was greatestin this zone. of water enteringandleaVingmarshesallowed some inferencesabout metabolism

PAGE 5

,oftheunderv:atercommunity. Adiverse marsh floraconsistingof Srartina. [uncus, [,cptocarous, (..oSler..!. EnlcrornorDhaandepiphyticBoslrjchia demonstrates a wide spcClral rangeofenergyfilteringcapacH)formaintaininghighproductivity.AsimulationmodelofSnanlnagcneratt's growth curvesandseasonal pallerns consistent withtherate 0: spreadofSparljml.Simulation showed the importanceoflowfrequency.highenergy phenomena to marshfunctionand growth. t-Iajor changes in a coastal ecosystem substltlng marsh for mud flats progress increasing productivityandecological organizationbygeneticrecombinationofmicrocvo[utlonaryInnovationsaccumulatedearlier.[n spiteofNew Zealand'sdifferentevolutionaryhistoryS.angllca ecosystemissimilarlOlhoseinthespreadofthehybridin Europe, Asia,andNorthAmerica. MarshvaluesandbenefilsaresimilartothoseofSpartlnaaHerniflorij insoutheasternUnItedSlates.There is littlejustlflcationfor a policyoferadIcationwIth poison.

PAGE 6

INTRODUCIlONWithdispersalof species and changedenvironmental conditions caused byhuman society new ecosystems are appearingallovertheworldasselforganization provides nt.'W associations and adaptations. Whereasmanyfear andattemptto defeat the new paHerns,othersseetheprocessasnormalfittingoflifetomaintainmaximumproduClivltyIn new (onditlonsofenergy, materials,andgenetic recombination. OfworldwIdeInterestIs the invasIve spreadofsail marshhybrid,Sparllna angllcaonthemudflatsofmanycontinents. This is astudyoftheselforganization observed Inthe new Spartina marshesofNew Zealand. Salt marsh species ofcordgrass belonging10the genusSoanlnaarc widespread throughouttheworld.Soanin"alterolOoraIsthedominantnative species inNorthAmerica where it forms dense. monospeclf1c standsthatdominatethe lowerportionoftheIntertidalzonealongthe eastern seaboardfromsouthern CanadatonorthernFlorida.andIntheGulfofMexico,fromFloridatosouthernTexas (Thompson, 1991). [t has been introduced and naturalizedInWashington. Oregon. California. England, France,NewZealand. and China (Frankel 1982; SpicherandJosselyn. 1985; RanweJl, 1 'J6 7). A smaller specIesS.maritimawasoriginallythe sole speciesin Europe. On NC\'.' Zealand shores the originally was noSpanina spt'Cles and theIntenidalarea below meanhighwaterneaps was devoidofemergent macrophytes. After the accidentalintroducllontoEnglandS,alterntnorahybridized with Its European cogencrS,maritima.TheresultwastheFIhybrid

PAGE 7

townsendJ1. which asaresultof subsequent chromosomedoubling proouced a newspedes S.anglica (GraY etal.. 1990). S.x {{m-nscndii and/orS.anglica havebeen transplantedextensivelyaroundthe world. Itcurrentlygrows in England, France, Germany,Denmark.theNetherlands.Ireland. Wales, New Zealand, Australia, China.andtheUnitedStales(Ranwell. 1967; Frankel, 1987; SpicherandJosselyn, 1985; Asher, 1990; Saycc. 1990; Thompson,19(1).Soarlinalownsendij was first inlroouced to New Zealand from EnglandIn1913Inordertoassist inthereclamationofusefulpastureandlatertohelpprotectshorelinesand stopbanks fromerosion (Hascand, 1976; Partridge.1(87).SuccessiveplantingsfromtheoriginalstandsandfurtherInputsofS.angllqfrom Englandaccelerationduringthe1940-50sthroughoutNewzealand.S.anglica is now Widespread. especially intheSouth Island.andit is notknown ifchromosomedOUblingInthe townscndll originally Introouced alsooccurredin New Zealand. WiththespreadofS.anglkaandincreasedawarenessofthe\'aluesofestuaries legislation was passedin1963prohibitingfurtherplantingofSoanina. Subsequently ithasbeengazettedasa noxious weed. Variousattemptshave been madetoeradicateS.anglica,especiallybythe use ofherbicides. with mixed success.S.angliG!isaninvasiveplant species. I.e.. a specieswhichcolonizeshabitats where they have never occurred (r-tack. 1(85).An invasive species can be consideredsuccessful if itcolonizesa wide geographic range. exists over arangeoflocalized em'lronment conditions.

PAGE 8

, and/orforms adominantcomponentorthehabitat intowhich Itspreads(Thompson, 1991).Thespreado[S,angllcaIn new Zealand satisf1cs these criteria.Asa resultofexchange visits between GeorgeKnox,Unh"crsilyofCanterbury, and H.T.Odum,UniversityofFlorida.andacommoninterestIntheecologyof estuaries andtheirwetlands. plans were developed for a comprehensivestudyofaninvasive Sp.1rtlna marsh at Havelock, PelorusSound,NewZealand.Theobjectives were: (I)10gaininformationonlhe ecology andproductionofthe marsh:(2)tocomparelheproduction ors.. angllca with thatoftwonativemarshplants.[uncusmariUmaandl.eptocarous;(3)10elucidatetheroleofSoarUnainthe coastal ecosystem:and(4)todevelop a modelofthemarsh ecosystem processes.and(5) to determine if theSpartlnaangllcamarshesin Nev.' Zealandhadbeneficia attributes of the Spartlna alterntnorJ.in the southeastern United States. Although thereisa widespread belief in New ZealandthatthepresenceofS,anglicaisharmful to the coastal ecosystem in which itoccursthis viewisnot based onsoundsclenUfic data, Todatethe ecologyofthese marshes has rCt:eh'cd little attention. Questionsthat rl .. "'
PAGE 9

,StudyAreaThe salt marshstudyareaat havelock,N.Zisatthejuncllonof the PclorusandKaitunaRivers oolh withSpaninainvastlonattheir seward dehas infrontofthevillage (Figure 2-4}. In New Zealandtheoriginal saltmarshvegetation in sites such as thoseatHavelock was confined to twodominantspecies, Juncusmarjtimusvar.australiensisandLeptocarnus simplex,bothconfinedtoshore levels above meanhighwalerncap(?). In general LCDlocarous occurshigherintheshorewith[uncuslowerdown. However.thereisconsiderable overlap between thetwOspecies, and, as canbeseeninTables Iand2,oftenconsiderablequantitiesof LeQlQ('ijrpus occursinthemarsh areadominatedbyJuncusandviceversa.TheintroducedSpaninaangllcawhile overlapping withthelo ..... crmostluncus extendsdown10aboutmidtide Jevel,()(xupying azonc ..... hichformerlywasdevoidofemergentmacrophytes,hutoftcncovcredinpatchcs wi!h Enteromoroha, ZOstera andRuppia.The marsh area along theKailuna Riverin1982coveredsome 82 ha. A comparisonofphotographsin1981 (figure 2)withthatin1979 (Figure 3) showsS.Angllca ..... as actively spreadingnonhward.A recent vIsittothe areabyG.S.Knoxin!997foundthataconsiderablefunherexpansionoftheSwrtinamarsh has takenplacc. Almost enclosedbylandthe Pelorus Lagoon(Figure5and6) was a microcosmofthclargerestuary.regularlyfiushedbytidalexchange. The lagoon was \'cgetatedwithSpanina,Leptocarpus.andJuncusaroundthe sides and Ruppiainthc OJX'n water(FigureSb),!nfiowsand outnows of

PAGE 10

thls lagoon were monitored for studyofmetabolismbymeasurements of temperature. oxygen,pH.salinity. sestonandash through a day-night pcrlOO.

PAGE 11

HI'>n:rnODS Studies in thesummerof 1982were carriedoutbyH,T.Odum,ElisabethOdum.D.CampbellandG.A.Knox with financial assistancefromtheNSFInternational Exchange Program,Ne ..... Zealand United StatesandtheUniversityofCanterbury.Christchurch.New Zealand.SubsequentinvestigationsinJune,AugustandNovember were undertakenbyGeorge Knox Biomass Five 0.1 m 2quadratswere rmp'ed inboth creekside (tallSpartlna)andnats(low Sparllna),and 3uadralswere sampled in eachofthe marsh areasdominated by't.cotocarDus and!uncus. Steel quadratframes0.1and0.25 m Zwereusedtodelimitareasfrom whichgrass was clipped.animalsremoved,orsoil-rootmatremoved wilh shovel for washingandweighing.Theframewasworkedtothebottom,movingbladesinoroutsidetheframeaccordingtolhepositionoftheirpointofgrowthfromthemudsurface. Floweringspikes were counted.root malS were measured.stems were counled.androotpatterns were phOlographed. Vegetationcomponenls were dividedbyhandintoliveanddeadfractions,roots(without live-dead separation).anddriedat80 degrees (toaconstantweight (2ormoredays). Grasssamples wereashL-'d in amumefurnaceat500degrees( for 2hoursinordertodelerminetheircarboncontent. Regrowth(apacityforregrowth was measuredbyclipping againatalatertime those plotsclippedforabovegroundbiomass.These were measured.weighed

PAGE 12

andgraphedas a functionofshoot length increments. Shoot length was measured as the longest segment from base to leaf tip. This calibration graph was then used to estimate regrowth weightsofotherquadratsInwhich shootshad been measured wllh a centimeter rule. Chemical Ox)'gen was measuredwith aYSIoxygen probe. Salinity was measured with an optical refractometer. Oxidation potential was measured with a platinum electrode, fromanAgC!referenceandpHmeasurements wcre made with a portable metaohmpHmeterInthe neldinsitu. Vertical measurementsofpll, redox potential,and pore-water salinity were madeInandoutSldctheSpartlna. Pore waters were obtainedfrommuds with a centrifuge to locate the level of salt accumulationIfanyassociated with transpiration. Sediment l'olcthods Cores from the marsh were taken with a small piston corer. These were divided into segmentsandapproximately 10 ccofmud was centrifugedtoseparatesedimentfrom pore water. Pore water sallnilles weredetenninedwithanoptical refractometer. Core segments werethenwashedandthe roots removedand weighed. Innltration was measured by setting 500 ml plastic lX)llomless bottles Into the marsh.Thebollies were calibrated sothatthevolumedrainedcould beobtainedby measuringtheheightofwaterInthe boHle.

PAGE 13

(Note \0 George:Ifthis was notdone, remove the following paragraph): Particle size analysisofsediments from the variousstudysHesis 10be performedbythe Geology DepartmentoftheUniversity of Canterbury using a rapid sediment analyzer. Seston samples were obtainedfrom the surface water with a bucket. The samples were refrigerated withinanhourandn1teredonto prewelghed glass fiber filters within 12 hours. The nIlers weredriedat80degrees C for 48 hours. weighedand subsequcmlyashed Inamufnefurnace al 500 degrees C for I hours. Total seston w\lh Its mineralandvolatile organic components were lhendeterminedby weight difference. Samplesofthesuspendedmatter were n1lered Inlo 0.45 I'm mllliporeHAnItersandcleared with polyethylene glycol for optical examination. Light PenetrationandVegetation Measurementsofpercent transmissionoflight were made using equipment available: Above the marsh a "solamcter" Insolation metcr Mark VISol-a-mctcr (MatrixCo.. Mesa. Arizona), was used.Itwas solar cell driven. linear light meter calibratedInenergy units for the spectrumofdaylight. This meter was fairly sensitiveathigh IIghl Intensllies.andhad been calibrated agalnSlanotherradiometer. Under the vegtetatlon at the mud surface a non-linear light meier wllh null resistance balance madebythe UniversityofCamerburyforlowlight Intensities was usedinthe lightIntensity range whereitwas accurate.Thetwo Instruments were calibrated together by piotted simultaneous readings ofoutputIndaylighl onthesame graph showing reasonable agreement Incalibration. See

PAGE 14

"Appendix FigureAtof ReIXlrt toNationalSclenceFoundation(Odum.KnoxandCampbell, 1983)Verticalllght curves were obtainedandcorreeled trigonometrically for angle of sun, also measured. After collccllngandarrangingmarsh grass Ina \loc, biomass foreachhclghllc"clwasmeasuredbycuttlnganddryingsegments of grass according to the distance from the base ofeach clump.Lightpenetrationdata were graphedonsemi-logarithmiC plOtasafunctionof biomass. Optical density.theslopeofthelog llght vs. biomass graphIndicatedthedensityofthe above-ground vegetation.ThereafteroncInstrument wasreadontopofthemarshandoncalthebottomtoobtainpercent transmissionandthenconverted to optlca density by taking thenegativelogarithm.For eachkindofgrassand/orgrowthformthere was anappropriateextinctioncoefficientthatwasobtainedfromscmllogplotofthelightwithdepthIntothebedofplants.Theopticaldensitymeasuremen!sarefairlyquickand allowed moresites tobe measured than couldbedonewiththeclipquadratmethodandthusabetterIdeaofvariationinbiomass wasfound.AnimalStudies Anumberofstudiesofanimaldistrlbutlonswithinandoutsideofthemarsh were carriedout.Thenumberofburrowingcrabholeswerecountedinthe biomass andregrowthquadrats.Countsweremadeoftheenormousedensityofthesmallsnal! PotamopvrgusestuarinusandthemudsnailAmphibolacrenata. Estimates oftheassociated Insect faunawere madeon tv.'o occasions. A few diversitycountsweremadeofanimals.Preliminarybirdcountsperhour were obtainedby observing a

PAGE 15

marshofapproximately known area. One rail was observedandothersheard,but were toosecretive tocensus accurately. TideTrapAthigh tideatnight a1.5meter deep tidalcanal was blocked wilh a fist netandafter the tide was out.thefishtrappedinthepoolin front of thE net were seinedout.Themarshdrainingintothetrapwasmappedand jgarea measured.

PAGE 16

RFSULTS $partlna Fosystem Themeasurememsof$partlnaatHavelockandAvon-HeathcoteestuariesofNewZealandare gl\'en ingraphsandtablesthai follow: Biomassof r-,.'Iarsh Grasses Data comparing aboveandbelowgroundsummerbiomassaregivenInTable1.Much more biomass was found inrootsthanInabovegroundfractionsofliveanddead.Very llttledeadmass was found above ground.apparentlybeing removed at a fasterratethanunderground.Ashcontentswere substantial to 20% for Soartil1a (Table 1and3). Marshes in well Circulatedareasnearcanalsandontheporousfill whereIIformsdwarfgrass "reefs"hadsmallerrootmasses,perhapsreflectingbetteroxidationona firmer more poroussubstrate.Biomass from clippedquadratsthroughtheyear(Table 2)areplottedInFigure 7 for marshespredominamly(a)$oartina;(b) !uncus;and(c) Lertocarpus, These show nel growthduringthis periodandsome increases in percentageofdead. Thegraphsprovideonewayofestimating net production sincethesamples weretakenfromthesame areas. nC\\' quadratsinterfingering old ones. DataonbiomassofLeptocarpusandluncus (Table 2andFigure 7) showed growth was not obseryed as lateinthesummeras for Soartlna,Insummerthe percentageofdeadmass aboYe groundwas small.

PAGE 17

NumbersofStems CountsofstemsIn clipped quadratsaregiven as frequency diagramsIn Tables Iand4. Near canals Soart!na was taller with fewer larger stems whereasshorterandmorcnumerousstems were found away from channels. Flowers Table 5 has countSofflowers averaging 16-42persquaremeter. Vertical PallernofBiomass with OptIcal Density Graphsofsunllght penetration Into grass corrected tothevertical for sun angle are givenIn Figure 8 wherepercenttransmission wasplo11edonsemi-logarithmic scale withdepthintothemarsh grass. Leptocarpus had more than 10% reachinggroundwhereas luncusandSoartlnaabsorbedmorc.Lineswerenotperfectlystraightsince the marsh grass was not entirely uniform. Vertical PatternsofRootInMud Figures 9and10 show verticalstructureofliveanddeadroots underground. Mature plants from marsh flats (Figure 9) have enormous matsofdead roots when washed free ofmulch. Hgure 10 has a young plant from the creek margin. Along main creeks onthe natural levees where floodingIslessandcirculation better. smallrootswere deeply distributed.whereasin the backmarshwherecirculation was les.... andconditions morc anaerobic (sec below), small rootlets curled upward

PAGE 18

I'forming abrush near thesurface. These rootlets werered, possibly Indicating ferr1c Iron, whereas thedeeper roots were bluishandwhite.Venlcal Prop<;'rtles ofOxidation PotentialGraphs of vertical dlstrlbuUonofoxidation potentialpi-Iarc given in Figureto,comparing profiles InSpartina with thoseunderalgal matsorInbarespots.Thosewithinthe Srortina werenotaslowInoxidationpotentialasthoseunderalgal matsonbare mud. These measurcmcms reinforced theob\iousdifferenceInfieldobservationsofodorofhydrogen sulfide. \', hleh wasstrongwhenthe bare mudsunderalgae were disturbedbutnotvcryapparentIn diSturbing Soortlna foolsediment.Vertical DistributionofpHDataonvertical distributionofpHaregiven In Figure12.ThepHwasgenerally lessthanthe8.2foundinhightidewater.andthepH decreased withdepth.I..Dwervalues were roundInmudunderalgal malS thanIn marsh mud. PercolationthroughSediments Infiltration rates (Table 6) were0.036 to 0.082 milliliters per square centlmeter per minute. The sedImentsarenneclays,anda shovel hole nils at hightideanddocs notdrainoutatlowIlde. Unlike the sandy marshesor Florida. the seepages and percolations throughthemarsh sediment arenot rapid. Even though there .... asconsiderable heterogeneityor Infiltratlon overthemarsh, percolation measurementson creek levee sites averaged almost tWleC therate observed In pans.

PAGE 19

"Vertical PatternofPore-space salinityInSedimentsThesalinitiesdeterminedoncentrifuged sediment samples collected after three hourswithoutUdearegivenInFigures 13and14. salinities were higher In the zone ofsmall roots. In conlTaSt, the salinities outside theSpartlna were less andwithout a maximum. Thesepatterns are consistent wllh the conceptoftranspiration draWingwaterfromthesmall root zone. leaving salt lx'hlnd. Animal PopulationsThe e:\(lremely abundantcarpetofsmall snails (Potamopyrgus)underthe marsh weremeasuredInquadratsandgivenInTable 7.Therewere vcryfewAmphlbolaInthemarsh.Onbare mud. however,therewereAmphlbola,butfewofthe Potamopyrgus (Table 8).Afew Insects wereobtainedwith sweep nets (29 Individualsand6 speciesIn1000sweeps). On twO oftheOclddayswhenwinds stopj'X'd, marshes were alive withbitingsandmidges.agreathindrance\0 researchers. Someexploratorybirdcountsare glvcn in Table9. Indkaling abundant ducks and New Zealand Gallinules (Pukeko)usingthe marshes. 'I1deTrapResultsofthe fish trapping experiment aregivenInTable10. On a v.eight basis, whenthis collection wascomparedwiththe mappedarea InFigure 5 thebiomassonFebruary17 was0.24g/m2fresh weight, a minimal eSllmatebecauseofholesfoundInthcnetafterthetldchad passed out.

PAGE 20

The species list Indicates the marsh Is serving as a nursery for flounders, mullet, whitebait,andothers. A species diversitycountmade in the fleld January 18, 1982 among the visible animalsatgroundlevel yielded 7 species cumulatively when1000individuals had been counted. ThisIsa fairlylowdiversity,onecharacteristicoffluctuating estuaries. Crab Holes Dataoncrab holesaregivenIn Tables IIand12. Numbersofholes were much less thanInSoartlna alternll10raInFlorida where lhere may be300persquare meter. There were only afewcrabholescountedInSpartlna,bUlmore were found In the mud outside. Tv.'o small crabs HeliceandMlcroDlhalamus burrowonthe luncus marshandmudflats but InfrequentlyInSpartlna. The fiddlercrabniche was essentlally unoccupied, although a fe.' crab holes were foundnearthe edgeofthe Spartlna marshandIn re<:ently harvested plots along the canals. Growth Net growth of Soartlna may be Inferred from the changesinbiomassInFigure 7 with about1.46grams per m2per day along canalsand8.46gperm 2 perdayaway from canals in January-February.Net losses were exhibitedallhlstimeIntheIuncus I.e01ocarpus marshes sampled.Theaverage rateofchangeofbiomass forsummermOnlhs wasanIncreaseof1.02gm-2da-I in the Juncos marshand2.68gm-2da-1IntheLeptocarpus marsh.

PAGE 21

Regrowth from ClipDed QuadratsRegrowthsofpreviously clipped plotsaregivenInTable13.Thegraphofdry weight of clipped stemsversusshootlengthmadebyweighing size classesInFigure 15. Onthesamegrapharetheweightsofclippedstemsnotfrom regrowth plots.Thosefromthe regrowth arenotasheavy,asmightbe expected foryoungertissues growingwllhlessphotosyntheticreserve.Thelower line in FIgure 17 was used todetermineweightsofregrowth tips whichweremeasuredbutnotclipped. See Figures18.Regrowth was most rapidIndwarfSpartlnaInthechannels,nextIntheplotsnear creeksideand least Inplots away fromthemargins. Variables associated with thesesitedifferencesaregreatercirculation,moreoxidized sediment, moreporous sediment, andbetterlight. Percent transmissionconvertedtothevertical In creek regrowthplotswas21,21.21,and25%,whereaspercentlransmlssionconvertedtoverticalinplotsaway fromquadratswas 8, 9, 10,and11%.UghtindwarfplOlSwasevengreater. MarshColonlzatlon Active colonization wasdocumentedbyaerialphotographsin Figures 2and3. Roughestimatesofmarshspreading were madebylraclngmarshareasfrom aerialphotographsongraphpaperandcountingthesquares.Estimateoftheexpansionfortheentiremarshfrontwas96,403m 2peryear. The SparUnamarsh increased Its totalareaby25% fromFebruary1979toFebruary 1981. However,thearea Wilh scatteredSpartinaclumps

PAGE 22

Inadvanceofthemarsh (Figures 2and3)quadrupledinareaoverthesame time. The obselVed rapid growth for theSpartlnamarsh wasprobablyfueledInpartby sediment dredged from the marina. shownInFigure 2 almost half fullofslitandInFigure 3 dredged to a uniformdepth.Grass biomassandratesofgrowth were larger near tidalcanalsthatseemedto be operating like Sparlina alternlflor.l. in FloridaorGeorgia, althoughtheSparlinain these New Zealand areas has beentherelessthanSO years andin some places less than 2 years. ElsewhereIn New ZealandIntheNewRiver EstuaryInIm'ercargill, lee andPartridge (1983) found a spreadof5.3 metersperyearwith12mm/yrsediment accumulationinquietareasand3rom/yearInsandyturbulent areas. Exchange Studies Results ofthecomparisonofIngolngandoutgoing tide are giveninTable14andIS. which Includes two marshareasandthe Pelorusmarshylagoon. Oxygen Results of the measurementsof oX'ygen througha 24hourperiod are given in Figure 19 for a Spartinamarsharea(figure4b)andInFigure 20 for lhe Pelorus marshy lagoon (Figure 5).Theday was clear.Inthe marsh ox)'gens andpH'sweregenerally highonIncoming tideandlower on outgoing tide.

PAGE 23

2J InthePclorus lagoon, which has algaeandRuppla beds occupyingthesmallcemrallagoon.oxygen ..... asraised while ....'Ollerwas Inthelagoonduringthedayand lowered atnight. Both areas hadvery lillie movementInwaterwhileitwas SlaJ1dlng Inthe marsh andthelagoon sothatIIwasapparentthattheeddy reaeratlon exchange with theairwasminorcomparedto metabolic rates. ThechangesInoxygencontentduetothemeLabolismoftheunderwater pan oftheecosystem(muds.roots.animalswhilecoveredwllh water) were estimatedInTable 8 bysubtractinglnnowpropertyfromQutnowpropertyand prorating overthearea.Therates obtainedare qullecomparable withotheraquatic ecosystems. Scston. The weightsofparticulatemaHerandashInparticulatematterarcgiven In Figure 18,whichshowsthevariationduringthedayandUdalcycle. Thc dIfference between IncomingandoutgoingIsIncludedInTable8.Qrganlc Maltcr Balance. IncludedInTable 8aredataonorganicmatterInInnowlngandoutllowlng waters fortwOmarsh areas. The differences arenot large andnet effects Ifanyareconclusl\"e. r-1ineral Balance. Mineral mailer(slit) residualafterashlng filters provided someIndkatlon ofsedimentaryerosion exceeding deposilion duringtheperiod.

PAGE 24

DISCUSSIONModelsandSimulation Modelsare useful for synthesizingandsummarizing what has been observedto beimportant inanenvironmentalsystem. Main features of the Spartina angllca e<:osystcmobserved In New Zealandaredrawnasanenergy systems diagramInFigure 23. Notetheabovegroundandundergroundcomponentsandthewaytheyare conne<:ted by processesoforganic production, dispersaloforganicmaner,thefood chainandanaerobic metabolism.Computersimulationofa modeldeterminestheevents over timethatfollow from a model'sstructureandIts numerical values.Ifthepatternsovertime resemble theannualsequenceofeventsInthe estuary, thenthemodel becomes a useful. though simplifiedwaytopresentandrememberthe essence ofthe system. Previous work modelingandsimulatingofsalt marsh e<:osystems Isextensl\e. muchofItofSpartlna alternlflora, for example, Young. 1974: WiegertandWetzel, 1979; PomeroyandWiegert, 1981; TlngandWiegert, 199_. Randerson (1986) developedanoverview simulation modelofaSpartina anglica ecosystemIn SCvern EstuaryInGreat Britain.Hismodelandsteadystatevaluesoforganiccarbonflowarereproducedhereas Figure 24a anddiagrammed wllh energysystems proceduresInFigure 24b. Productlon was processedthroughsloragecompartments for live biomass(ShOOlS),rootsunderground,deadbiomass abovegroundandsoil carbon.Byvarying the way organicproductionwas washed OUIor allowed

PAGE 25

" to stayonshefor local consumption, his simulations were able to account forthewide rangeofvalues observed IntheneldIndifferent locations and access to water exchange. In Ihlsstudya highlyaggregatedoverviewsimulationminimodelwascalibratedwithdataonorganic proouction ofSparlinaanglicaIn NC\\' Zealand(Figure 25).Themodelincludesthelive biomass,deadorganicmatterandtheavallable inorganicnutrientscallbrated as nitrogen. The simulaLlon resultInFigure 26 has the seasonal varlallonofthe marsh andtheeffectofstorms In generallng surgeofInflowandoutflow. Whereas electronic circuits are sometimesdesignedto nIteroutvariation as unwanted noise, the ecosystemthatdevelopsappropriateturnoverlimesofItsmainstoragescanfilter usefulcontributionsto Ils productivity.Plantsandanimalsthusadaptedtothepulsingrhythmsoccupy"frequency niches." ThesimulationInFigure27Includestheseasonal changes insealevel, thespringfloodsoftheriverandthelargedifferencesInsolarenergyfromwintertosummer.Campbell(1984)simulatedvariallonsoflhemodelwithmoredetails, shOWingthewaythebiomassoflheecosystcmwasadaptedtoabsorbandthususethecnergyoftheseveral pulSing inputs.ComparisonswithSpartinaMarshesElse,vhereComparatlvedatafrompreviousstudiesin Floridamarshesare gh'en InTable17includingproperllesofbiomassandgrowth.TheexlremedifferenceInthecrabholenumbers,beingmuchlargerin FloridaSoartina altcrniOora.mayindicatedifferent rolc ofexchangeofwalerswith roots.

PAGE 26

flushingoutofconcentratedsalt, etc. Total biomass aboveandbelowgroundarecomparable, although net growth observedIn new Zealandsummer was faster. 50artlna marshes were visited byH.T.OdumInSwansea, WalesInDecember 1981andin Holland at Yerseke (Delta Institute) InSeptember, 1982.TheInvasion of the hybridInboth places resemblesthatInNewZealand.TheWales situation had the same mat ofminute \lvlng snallsbutofdifferent spe
PAGE 27

However, the invasionofSparUnatownsendliisdisplacing previously established ecosystem patternswhich haveapparentlynot been alreadydisruptedbyhumanImpact. WhereasItIstruethattheerosionratesinNewZealanddueto overgrazing have been Increased,mudflatshaveapparentlyalways been a characteristicoftheestuarineareasbecauseoftherapid geologic upUftrateofthemountains(Immperyear). Itisalso true thatNewzealand rivers havehighernutrientsthanearlierbecausethenaturally lowphosphoruslevels(duetolowphosphorusInrocks) have been augmentedbyhumanwastes, extensive aerialphosphatefertllizatlonof sheep paddocks, etc. SoItIs possible thatcondillonsfavoring marshdevelopmenthave Increased somewhat. These flatsarenow being Invaded by a new species thatentirelychangesthecirculationandsedimentdepositionanderosionpanernandIsapparentlyofhigher proouctlvltythanthesystem replaced. Thisisapparentlyanexampleofmaximum power selection with newselforganization displacingtheold making possiblepatternsfor url1lzlng more oftheavailable energiesofthesun,river,andlIde.Thatahybridachieves apalternthatmaximizes power overthatofIts predecessors in someenvironmentsmay beanexampleoftheway accumulationsofmlcroevolutloncanfinally achieve an innovationthathasthe ability tospreadwidely,addingproductivityandrapidly reorganizing animalandmicrobialcomponentstoform communitiesofconsiderable value. The Invading new organization still maynotbe as diverse as it may be eventually whenthereisfurtherIncorporatlonofnativeorexotic species. PreHmlnary efforts to find insects were mostly negative.Further

PAGE 28

" samplinganddocumentationofthiSmaybedesirable as a base line forlatertestingof diversification. Thehigh ratesofnetphotosynthesisobservedIn the fieldareconsistentwllhtheobservationsofSmith et a!.(1982)and long etal.(1978)that$partlna angllcaIsa(4plant with less recyclingandbest adapted to a neInpulofnutrients.Thelackof insects may also explain high nct yields.TheseauthorsrefertothefcrllicformofthehybrIdunderthe nameSpanIna angllca with amphlblploldchromosome set of122 chromosomes compared todiploidInfertileformwith62 chromosomes.Marsh ValueThevalueofthe marshes In New7..caland ascoastal buffers, producers oforganicmalter,ashabitatsfor birdsand nurseries for seem similartothosepropertiesregardedhighlyIntheUnited States. The Nev lea.land gowrnment policyfor eracncation ofthe marsh docs not seem valid.

PAGE 29

REfERENCES B. 1990. Thebiology,controlanderadicationofintroducedSpartlna(cordgrass)worldwideand rIXommendalions for itscontrolIn Washington.WashingtonSlateDepartmentofNatural Resources(draft), 87 pp.Alkamade, Ro, A.Wlelemaker,M.A. StimulationofdecompositionofSoartlnaanglica leaves by nematode Dlplolalmellolde" brusdel{?) [oumalof Fxoerlments inMarineBiologyandEcology159 (2):267-278. Alkamade,R.,A.Wielemaker,SA Dc Jong,A.,1.J.sanlee. 1992. Marine f:eology Progressseries90(2):149-155.Alkemade, R, A.Wlelcmaker, A lIemmen6 1993.Correlallon nemalodeabundanceand decompositionmte ofSoartinaangllca leaves.Marine [:eology ProgressSeries99(3):293-300.Asher,R.1990.SoartlnaIntroducllonIn New ZCaland.pp. 43-24 in T.F. Mumford,Jr..1'. !'cyton, j.R.sayceandS.Harbell (eds.),SpartinaWorkshopRecord, Seallle, Wa"hington, Nov. 14-15,1990.WashingtonSeaGrantProgram, UniverltyofWashington, Seattle. Bascand, LD. 1976.TherolesofSpartlnaspecies In NOnd. ProceedingsoftheNewzealandEcological Society 17, 3-.>,'?,

PAGE 30

30B,lick,C.M. 1965. Tidalflatscanbeproductive.NewZealand ]ourn
PAGE 31

Crothers,K.].1990. Comrol andEradicationmethodsforSpartinainSouthland,Newzealand.pp.31-32in T.F. Mumford,jr.,P. Peyton, j.R.sayceandS.Harbell(OOs.),SpartinaWorkshopRecord, seattle Washington,Nov. 14-15,1990.WashinglOn SeaGrant Program, UniversityofWashlnglOn, seattle. Dunn,R"S.P.LongandS.M.Thomas, 1980.Theeffects oftemperatureonthegrowthandphotosynthesisofatemperateC4 grass:Sparlinatownsendi\. pp.303-311InP.G.jarvls,].Grace,andE.D. Ford (cds.), PlantsandTheirAtmosphericEnvironment.Blackwell SClentlfic Publishers, Oxford, United Kingdom. Evans,P.R.1986. Usc ofherhiddeDelaponforconlrolofSpartinaencroachingonIntertidalmudflats,Waterbirds9(2): 171-175. R.E.1987.IntroductionandspreadofcordgrassSoartlna Imothe Pacific Northwest. NorthwestEnvironment3: 152-1 54,Goodman,P.),1960. Investigations Intodie-backInSpartlnalownsendilAgg. 2.Themorphologicalstructureandcompositionofthel.ymlngtonsward.JournalofF.cology48:711-724.Goodman,P.)"E.M.Bragbrookes,Co].Marchant,j.M. Limbert. 1969.SpartinalOwnsendll.Hen].Grovessensulato. JournalofEcology57:298313.

PAGE 32

Goss-Custard, J.D.andM.E.Moser. 1988. Rateofchangein thenumbers ofdunlinCalidrlsalplnaInteractingInBritishestuariesin relation tothespreadofSpartlnaangllca. JournalofApplied Ecology 25( 1 ):95-109. Gray,A.J.,P.E.M.Benham,andA.R.Raybould. 1990.Soartinaanglica -theevolutionaryand ecological background. pp.5-10InA.J.GrayandP.E.M.Benham (cds.),Spartlnaangllca + A Research Review. H.M.S.a., London. Groenendljk,A.M.1983. PrimaryproductionoffourdominantsaltmarshangiospermsintheSW-Netherlands. Manuscript.24pp. Gross. M.P., V.Klemas, J.r. Levasseur. 1988. Remote sensingofmarshvegetationInFrance.lournalofRemote Sensing 9(3 ):397+408. Guencgaa.M.C.,J.E.Levasseur,C.BonnetCounes,LR. Lafond,J.LeRhun. 1991. GeomorphologicalandbotanicalchangesInKernic Bay (Brltanny, France) inOuencesoncoastalmanagement.journalofCoastal Research 7(2):331-339. Hemminger,M.S.,A.II.L Hulskes.M.SteegelllaandJ.vanSolen. 1996. Assessmentofcarbonallocationandbiomassproductionin anaturalstandofthesaltmarshplantSpaninaangllca using C13. Marine Ecology Progress Series 130( 1-3): 169-178.

PAGE 33

Hicks, B.j.,W.B.Sllvester. 1990. Acetylenereduction tedwith Zostera newLelandia sitesandSpartlnaalternifloraLois(?)iWhangatea '1 Harbor, North Island, Nt.'W zealand.New Zealandlournal0 MarineandFreshwaterResearch 24(4):481-486. Homer,M.1974. Seasonalabundance,biomass,diversityandtrophicstructureoffishInasaltmarshtidalcreekaffectedbyacoastal power plant.pp.259-266in C.W. EschandR.W.McFarland (eds.) ,ThermalEcologyII.TcchnicallnformatlonCenter, Energy Researchand Dt."Velopment Administration. 404 pp. Hornbeck,D.1979.Metabolismofsaltmarshesandtheir roles In theeconomyof cQill;tal region.M.S.ThesIs,EnvironmentalEngineering Sciences, UniversityofFlorida, GalnesvHle.174pp.Ilubbard, C.Eo 1991.Spartina gmmincae, originandgeneticvarlablilty. BiologicalloumaloflhelinneanSociety 44(4):360-380. Jiang,F.,W.Wang,Y.Huang,Q,Zhaoandj.Xu. (check spellings).1992.Prelimstudn lntcmctions Ilea C.E. Hubbardad PerinereisarhuhltenslsGrube. 12(I):84-88 tai Xuchao "-tit johnson,D.,S.P.Long,and c.P. Mason.1986. Net primaryproduction,decompositionandexportofSpartlnaanglicaona Sulfolk sailmarsh.lournalofEcology74(3):647 -662.

PAGE 34

JointCentreforEnvironmentalSCiences.1980.OpenSpace, Resource UseandManagementin the MarlboroughSounds.RES603termstudy.106pp+appendices. UniversityofCanterbury,Christchurch,New Zealand. Knox,GA1983.The ecology oftheKaituna Marsh, PelorusSound.withspecialreferencetotheintroducedcordgrassSpartlna.WaterandSoilMiscellaneous Puhlication60:32-36.Lcbaseur,J.E..Guenegou,M.C,C.Bonot-Courtois. I.R.lafond.J.LeRhun. 1993. ImpactoftheInvasionofa coastal lagoon (Kernlc Bay)bytheclonal ,. neophyteSoartina angllcQRech. Oceanogr}8(1-2):39-41. I.ee, W.G.andT.R. Partrlge.1983.RatesofspreadofSpartinaangllcaandsedimentaccretioninthenewriverestuary,InvercargiH, New Zealand. New ZealandlournalofBotany 21 (3 ):231-236. Leeuw,J.andC,J. Buth. 1991. SpatlalandtemporalvariationIn peak. Slandlng cropof I::uropean Lldalmarshes. pp.133-137inM.1'.111011andJ.P. Ducrotoy (l:..'<1s.), andCoasts. OlsenandOlsen,Fredensborg, Denmark. Lenssen, G.M.,J.Lamers,M.Stroctenga,J.Rozema 1991 Interactive effect ofatmosphericC02enrichment,sallnlty,andOoodlngongrowthofC3 species. Vegetatlo104-105:379-388.

PAGE 35

long,S.P.andH.W.Woolhouse.1978.TheresponseofnetphotosynthesistovapourpressuredeficitandC02concentrationInSpartinatownsendii, a C4 species from a cooltemperatureclimate.JournalofExperimental Botany 29,567-577._ se,H.W.1983.PrimaryproductionInSpartlnamarshes.pp. 3In.J.JeffriesandA.J. Davy (eds.), Ecological Processes in Blackwell SClenlinc, Oxford. Lugo.A.E.,S.Snedaker,etal.1976.Mangrove Ecosystems. Report toUnlledSlatesFishandWlldllfe Service. Mack, R.N.1985.Invadingplants:theirpotentialcontributiontopopulationbiology.pp.127-142InT. White (ed.). StudiesonPlantDemography-a FestschrifttoJohn I. Harper. Academic Press,london.Marchant, e.J. 1967. EvolutionofSpartlna(Gramlneae).l. The historyandmorphologyofthegenusInBritain.JournaloftheLlnnean Society London, Botany60:i.(7)Mu11ins,P.HandT.e.Marks. 1987. Flov,'erlng phenologyand seed productionofSpartinaanglica. JournalofEcology 25( 4):1037-1048.Nairn,R.G.W.1986.Spartlna anglira inIrelandand ils potential impaCl onwlldllfeandwaders.IrelandBirds3(2):215-228.

PAGE 36

36 Odum,II.T. andE.e.Odum.1979. Energy Basisfor Man and Nature. McGraw11111,New York. Odum, ILT.,G.Knox.andD.Campbell.1983. Organization ofa new ecosystem.exoticSoanIna Marsh In Ne.'7..ealand. Report10 National Science Foundtlonon Project INT-81220 10.ChangesIn BauarlneEcosystems Interacting .... llh Dcvclopmcnl. 106 pp.Partridge,T.R1987.SoarUnaInNew zealand.New ZealandlournalofBotany 25(4):567-575. Pomeroy,LR.andR.C.Wiegert. 1981.TheEcologyofa Salt Marsh. Springer-Verlag. Nev.' York.Quln, P.M .. M. Xle,Y.JiangandC.ll, Chung. 1997. E.<;llmalionof theecologlcal-economic henenloftwoSpanlna allernlnora plantationsInNorth Talngsu. China. Ecological EnglneeMng8:5.Randcrson.P.F.1979. Aslmullationmodelofsalt-marsh d(!'\.clopmcnt andplantecology.pp. 48 InB.KnightsandA.j.Phillips (cds.),Estuarine andCoastallandReclamationandWaterStorage.saxonHouse. Teakfield Lmt. Wcstmead.Farmoorogh.llants.England.

PAGE 37

J7Randerson,P.F.1985.AmodelofcarbonnowintheSpartlnaangUcamarshesof the Sl'vernestuary,UnitedKingdompp.427-446InEstuarineVariability, Pnxx..'edings oftheEighthBlennlelInternationalEstuarine Research Conference,UniversityofNew Hampshire.DurhamAcademicPress, Orlando, Florida.Raybould,A.F.,A.j. Gray, M.J. LawrenceandD.F. Marshall. 1991. Theevolutionof$partinaanglicac.E.Hubbard(gramlnae),originandgeneticvariability.BiologicalJournaloftheLinnea"Society43(2):111-126;44(4):360-380.Salter,j.H.1931.Sparlina lownsendli in wesLern Wales.NorthWesternNaturalist6:229-230.Sayee,K.1990.JdcnlfylngSpartinaspecies.pp. <)-14 In T.F.Mumford,Jr.,P.Peyton,J.R.sayeeandS.Harbell(eds.),$partlnaWorkshopRecord,SeattleWashing lon, Nov.14-15, 1990. WashingtonSea Grant Program,UniversityofWashington,Seattle. Sell,M.1977. MooeHing theresponseofmangroveecosystemstoherbicidespraying,hurricanes,nutrientenrichmentand economic development.Ph.D.Dissertation.EnvironmenlalEngineeringSCiences.UniversityofFlorida, Gainesville.389pp.Smith, A.M., H.W.Woolhouse,andD.A.Jones. 1982. Photosyntheticcarbonmetabolismofthecool-temperatureC4grassSpartlnaAnglicaHubbard QTlniY56:441-448.

PAGE 38

38 Spicher.D.and M. Tosselyn.1985. Spart!na(Gramine-.l.C) In northern california: Distributionandtaxonomic rdtes.Madrono 332:1580-1209.Stapf, O. .1913. Townsend's grassor rice grassSpan I"" lownsendll. Hournemouth Natural SCience Society. Proceedings, G. ReviewedinJournal of&:ology 2:192-193.Stephenson, R.L 1982. Aspects oftheenergetKsofthecockle (ChioneIAuslnxlemus)stutchburyllntheAvon-Ilcalhcoteestuary.Christchurch. Ph.D.Thesis. DepartmentofZoology,UnlvcrsllyofCanlerbury,Christchurch, New Zealand 163pp.Sllller, J.W., A.LDenton.1995.OnehundredyearsofSpaTU"a alternlflorJ. InWillapaBay.Washington.RandomampllnedpolymorphDNAanalysisofan inYd..'ilvc populatJon.li:ology4(30):355. Thompson,j.D.,AJ.Gray, T. McNeill. 1990. TheefTcctofden.. .. ltyonthepopulationdynamics orSoonlnaanglq.ActaDerologli! 11(50):669-682.Thompson,J.e.1991. The blQlogyoran Invasiveplant. Blosdcn,e 1(6):393-400.Tlng,D.andR.G.Wlegen.19. Erography19(4):410-423.

PAGE 39

Vlnk-lJevaart, MA 1983.Bepalinavandeondergrond.seBlomassaen ProduckticV
PAGE 40

Zieman,J.e.andW.E Odum. 1977. Modeling of ecological succession all( productioninestuarinemarshes, l\.,,<'hnlcal Report0-77-35.Army Engineer Waterways F..xperiment Slatlon, Vicksburg Mississippi.

PAGE 41

Table 1 Biomassofmarsh above and below ground, 1982 ,,-Date,,Orv weiaht. per 1112AboveAe'Above groundinground -, livelive deedLeptocarpusJon24701471 ,08' 8041 ,JuncusJ= 2000 1122,." 7328Stl!rtinaalongcanals Jen A 1130 932 13836'2681B2040 136821171. 2414 C1550 1035'10 '"3829 D 1590'"174 31. 3442Spartinaawaycanals Jen A 2150,..167 2U6582 B11106BJ123 m 8072 Dwaefspartina Jen A920 27S 52B1560JIOBJ Feb10502lS,1101876 Entecc.orohaut on IOBteea A 91.8B 129.\lg.e on A Jen 2U B JS4

PAGE 42

Table 2LivebIomass,deadbIomass,andashoflive biomassInKaltuna Marsh, N.Z.In1982, means aboveandstandarderrorofthe mean belowLocation TypeN"-r Jan. 10Feb. 16 March 16June25-]0 '"' 28-]0 Nov 2]-26Spartina,CreeksideILive,1090.0 11]1.2 1147.6695.14526.58404.1273.470/8124.2 79.037 .078.5De,.,420.4]19.8347.6]24.92423.]322.5677.457.416.5]4.258.]]0.5 Live.... h,170.8210.0204.2125.6289.]4 74.74 ,..13.5 19.115.7].1875.4SpartinaFlat.Live,716.]95].]954.5482.42671.82450.5240.]112.6120.069.8]11].]62.4De,.,299.5 197.0 297.6446.54419.6]17 .6 24.1n.642.757.5 46.96 ]6.6Live Ash ,114.8162.71]5.568.94120.78 6].86 10.8 18.614].0 10.221.]6.78

PAGE 43

Table 2 (cOntinued) LocationTypeN-', Jan. Feb.16March16June25_30Aug28-30 Nov 23-26JuncUIHarlh Live Juncul517.9609.0409.5415.52512.1400.9375.226.314.994.934.162.4LiveLeptocarpul613.6469.0 6U.l 944.75 956.63952.08222.9106.2233.8308.4230.8188.5 DeadTotal 446.2 542.0540.4575.35543.65609.9329.357.3118.465.669.9104.2 Total Live1131.51079.9953.61360.2 1f66.7 1353.067.996.0217.2233.0220.7153.0 :t,.ePtOClltpUIManhLiveLeptocatpUl 1284.21189.2117701062.61210.651228.4516.3 142.1 107.0 '" 91.3 U.8 Live JUncul 86.125.2 4J6 263.1114.1516.4122.525.111.0 197 56.830.5DeadTotal116.1127.8819.1937.95 956.32655.3316.2149.3106.053.612.974.6TotalLive1370 1214.4 1220.61325.71325.31302.881.2127.1160.3 "46.9 65.3

PAGE 44

Table 3 WeightsofashIngramslm2 in live salt marsh biomass In the Kaltuna Marsh.N.Z.In 1982, means above and standard errorsofthe mean belowLoc::a.tionTypeN..-,Jan.19 Feb.16 March 16June28-30 '" 28-30 Nov 23-26 Sptlrtina.Cr_bide ,170.8210,0204.2125/6489.3474.74,.,13.519.1 15.73.1875.4Spartin ..Fbu 114.8 162.7135.568.9120.863.8610.8 19.6 '" 10.1621.36.78 LeptOCa.rpulHa.rlhLeptOCarpul 35.1 49.9 50.652.5572.8272.281.' '"' 10.0 5.49 4.53Juneul'.22.22.'16.56.934,360.]o.]0.1311.83.571.92 All 41.352.153.568.779.7576.412.27.7 4.93 3.23 4.916.14 Juneua Ha.rlhJuncul 36.954.527.4 27.2 33.725.8 1.9 ..,1.26.731.11 3,84Leptocarpu. 16.819.723.452.653.951.70.'2.'2.117.613.6 10.5 All 53.774.250.879.8287.677.52.8,..].]13.213.27.76

PAGE 45

Table 4 Stem countsInindivlduals/m 2 in marshstudyareasIn1982, means aboveandstandarderrorofthe means belowLocation Type Jan.19Feb."March16June25-30 Aug 28-30NOv23-26 Spartina Creekside514161148130661'.981004 142 142 215107,576.2108.5SpartinaFlats5165112841414726'461230281 199 24682.753.7187.4teptocarpusMarshteptocarpus184116481598 1997.5 2345135511230193192.6124.7384.8Juncus1112.566,627.25247.5177.55.52.52.3113120,265.4JuncusMarshJuncus92.101866569110971002.5 99 119121117.6156.4180,1teptocarpus10009509601555 1445 1547.5476154 316.86 .06 233

PAGE 46

Table 5 Flower counts, Kaltuna Marsh Feb. 18, 1992. Flowersat5 pace Intervals along a transect from C2b loward Kaltuna Bridge. *Flowers 1.5m 2 0-' 23218-121312-16,16-20 ; 20-24 24-28Mean # offlowersfromdifferentareasintheKaitunaMarshLocationTransectnearchannelTransectawayfromchannelTransectWhole Creek quadratareaFlatquadratareaMean # F1owers/m211.8 3.32**17.4 1.58**16.3 0.72**34.2 6.8* 41.611.9* *March1982**Feb.1982 FlowercOuntstaken inquadratareas,Kaituna Marsh March16,1982LocationandDate Creek quadratareaMarch16,1982FlatquadratareaMarch16,1982Flowers/O.1m27,7,2,6,2,3,2,2,5,0,1,417,3,2,0,1,3,3,9,2,0,0,6,0,0,11,15,2,1Mean #F1owers/m2 34,26,8n '" 12 41.6 11.9 n '" 19

PAGE 47

Table 6 Infiltration rateson levee andOatareasat Kaituna Marsh, Havelock,N.Z.March17.1982*LocationSamplevolume drained TimeRate.1min.ml/min/cm2Natural levee# 1205**150.1366295 2" 0.00363952670.0036 205 .... 150.13665 1<52" 0.0054Mean S.E.0.057 1. 0.032Flatnearlevee 3m# 1 '" 2550.01332205 .... 150.136631152550.0045 ,'" 2550.01845 '" 2550.0094Mean S.E.0.036 !:. 0.025 Creel< quadratsC1b95 0.0194in regrowth plotsC2b " 0.0094C3b95 0.0211 COb 25 0.0058 OSb'" 1.750.3535Mean1.S.E.0.082+0.068FlatquadratsF1b0520inregrowthplots m 0530 "b 0530 Nb 0 0f'5b0550 '> ( C .., .. Drainagewasmeasuredthroughaplasticbottlecontaining10cm100cm 2ofH20atareaenclosedthestartby Nearlocationof reductionmeasurementsinFigure10.Pressureheadatthestart..gh=1.020g/em3 x980cm/sec2 x10em-100cm 2=9996g/cmsec2 -100cm 2 100dynes/cm2 ** Pressureheadatstart .. 1.020g/cm3 980cm/sec2 4.1cm-100cm..41.0g/cmsec2_100em2 .. 41.0dynes/cm2

PAGE 48

Table7 Biomass ofPommopyrgus snails In marsh ipeciesSpartinaNUllIber perm 241,92071,91025,06056,890 56,55022,261Ashtreedry #9/m155.52411.11 51. 2132.3 190.0 35.4 See Figure 2,Transect2 ,,organic .atter oftotal dryweight-

PAGE 49

Table8 ofAmphibolacrenatasnallsinthedifferentmarshtypes.Numberm-2 .SamplenumberInbrackets.;partina marsh Tall(creekside)Short(flats)runcusMarsh,eptocarousMarsh,June2942.6(23)17.6(25)0.2(15)0(16)Sep2035(26)42.4(21)3.2(22)2.1(19)Nov23 11.6(22) 0(20)6.3(24)0.4(24) Mean 29.820.00.75

PAGE 50

Table 9ExploratorybirdcountsInKaltuna River marshandmudflat,11-12amFeb.19,1982 AreaArea ha SpeciesBirdsper ha ;Qartinaeast ofriver;partina west ofriver {ud areanorthofmarsh24.55.7 Gallinules Ducks Herons HarrierGullsandternsGallinulesDuckSGullsandternsDucksHeronsGullsandterns0.29 0.650.045 0.021 0.0041.000.88 0.170.141.190.910.480.191.58lasedonfractionoftimeoverareadividedby area

PAGE 51

Table 10 Fish collected from a blocked tidal creek, Kaltuna marsh. Drainage area _2535mo2. (see Hgure 4.) NullberTotalnet wight, gra!! Gr ... I.-2 Speci r.bllApr24Aug28 F..b17 Harl6Apr24Aug28_26P ..b11 Apr24AU'l28 lIov26"tropiA"";etropin. S_lt .. ", no 116.3 172.61 .. O.llO 0.0680.0190.021 8h2P2RtQl.. r.t.iri.Bl.ck lloon
PAGE 52

Table11Crabholes InsedimentInandoutside$partlna,number/mZ 'ype ofsituationDateNumberofMeanStandardquadratserrorof mean3are mud Jan." 21 '.2 1.77 2.5 away,<= Spartina Jan. 206 2.' 0.6410nearSpartina Jan. 2010 3.' 0.60nearJuncus Jan. 201024.8 4.54 Ruppia Zostera63partinanearchannelsFeb. 5185.' Jan. 205 0 0centerFeb. 9 "'" edgeFeb. 723.4 '.1regrowth plotsFeb.15 532'.6away from channelsFeb.17 5 0 0 Jan. 205 0 0dwarfareas-edgeFeb.17 6 '.6L3 centerFeb. ", 1.50.73LepotocarpusFeb. "12.5.., Jon10 15 '.0 Juncus 1025 3.' Feb.17 352.2710 ., 6.6 , 2511.9

PAGE 53

Table 11. Crab holes Inmarshquadrats.Number0.1 m 2 sample numberInbracket.Feb16 l1ar 16 JUM"Aug 28 Nov"Mean;t!!rtinaMar.h Tall (creek.ide)18(5)50(5) 21.3(23) 51.2(26)11.5(22) 30.4Short (flats) o (5)0(5)0(15) 0(15)0(15) 0 luncu.Mar.h12.5(4) o (5) 0.7(22)( 106(15)55.8(21)15.9.eptocarpu.Har.h12.5(4) o (5) 1.9(16)13.7(19)42(24)11.7

PAGE 54

Table13Marsh vegetation regrowth afterharvest. Kalluoa marsh, lIavclock. N.Z. .1982 Locationotregrowth andtypevegetation regrowth rates tor.June19_P'eb1527"....16_1'Iar16 28da9/ril/day 9/ril/day period shown19-K&r16 55 da9/ril/day Creek areaSpartina Cl0.85 0.51 0.45C21.470.85 1.29 C30.80 0.840.87C'0.43 1.06 0.52C'0.26 0.670.48 Kean. S.E.O.76 0.210.79+0.090.72 0.16Flat area5partina Fl0.720.400.17F20.42 0.41 0.97F30.46 0.590.95F40.681.251.49 F> 0.910.68 0.80Mean+5.E.0.64 0.090.67 ..l6 0.89 0.21 Juncu. area 0.360.68 0.51J2---0.27J300.360.064J'0.065Mean 5.E.0.360.52 0.160.23+0.11 Juncu. Ll0.0970.041Lepto. area L20.104 0.064L30.220.0240.42 L4 0.034 Means:. 5.E.0.140 0.040.006 0.0060.14+0.09

PAGE 55

Table 14 Mean tidal concentrations of suspended maHerInthree creeks oftheKaltuna RIver Marsh over a15hrsampling, March 16, 1982 neaptlde.Creekareaandlocation Mean floodg/m3 5SestonMineralvolatileMeanebbg/m3 5SestonMineralVolatileNet g/m-2* Totalsestontransport Causeway 77,350 m2 16.53in22.4out13.303.34in18.553.90outMarsh6871m2 25.3,!2.33.8.218.73in15.9 io 2.77 '0 21.24out18.46out2.77out Fish area535m261.3.852.0+11.010.0.2122+34105.916.2.834.6in 29.4io 5.7 io 89out77.3out11.83outAssumed 29% moreebbwaterthanfloodifebbis7.33 hr. andflood is 5.67hrs

PAGE 56

Table IS Esllmateofnetsuspendedmaller, erosion,andsedimentation at Kaituna Marsh,March16.1982 ..oc:ationper tide SestonMineral volatile :auseway 277,350 66,871-5.96-2.52-5.2502.54-0.57o 2,535-54.4-47.9-6.13 ofaverageheightoftideprism taken from76measures )ver thisarea at hightidefor March 16-0.566 metersn 3water exchangesxg/m3 9erodedordeposited

PAGE 57

Table16Oxygenexchangewith tide In Pelorus LagoonVariableSite,areaand voluroe exchangedPelorusLagoon(Figure 5) 5100m2600m 3exchanged d=k light Mean ofMeanof Change incomingoutgoingperm 2tidetidepertide8.93g/m34.7g/m3-0.5g/m26.4g/m313.2g/m3+0.8g/m2

PAGE 58

Table17Comparisonof Span Ina marshes In FloridaandNew zealandBiocallil in IlummerAboveground LiveDe.d Below ground SteaNetproductiong/a2/day 3Crab holell11m 2 Aniaalpopulations Filh trapped5 Numberl/m2Winter Summer Prelervedweight g/m2 WinterSummerFootnotesFloridal 453-1136555-518 120-1700.'319-6340.496.77'.3,.,1090 '" 2631-9072920-21502.60-3222,261-71,9100.004-0.0740.078-0.241. SDlI.rtina alterniflora marlhCaldwell, J.W.andH.T. OdUlll. 1979. Annual recordof 1Iletabolilm of eatuaxineecosystemsat CryatalRiver, Florida.Annual reporttoFlorida Power Corporation. SyatemaEcologyand Energy Analyaill Group,Env.Engr.Sci.,Univ.of Florida, Gainesville.323pp.2 Spartina anqlica aarlh.datafrc.this report3 Abovegroundbicaallllchan941frc.JanuarythroughMarch in Table 1.2. Back ofcreek,1.02;flata, 4.25.4 Young,D.L.(1976)5 Homer, M.(1976)

PAGE 59

LISTOF FigureI. Map showingthe location ofthestudyarea. Figure 2.AerialphOlographoftheKalluna Marsh alHavelock,February26, 1979. A, causeway creek; B,marsh creek; C,fish crock. Figure 3. AerialpholOgraphofSoanlnamarshat Havelock. N.Z. h'bruary 4. 1981. Linesare IranS(."Cts T1andT2.Figure4. Viewsofthe KaHuna marsh. (a)ColonizingSpanlnaathalfUde;(b)marsh used Inexchangeandfishsampling;(c)Pelorus lagoon (see mapsin Figure 5). Figure 5. Map ofthe Pclorus Lagoon(situatedInthefrontofthe Havelock vl11age)February19, 1982. (a)Depthcontours;(b) vegetation map; (c) cross sectional sketches; (d)hypsographiccurvederivedfromcontoursIn(a).Figure6.Approximatemapsofmarshareas usedforeSllmatesofflsh,birdsandmelabolic processes IntheKallunaMarsh. (a) Fish trapareaandmarshexchange(fishcreek)January15, 1982;(b)marsh exchange(marshcreek)February16.1982. Figure 7.Abovegroundbiomassfor1982. (a)Sparllnamarsh;(b)luncusmarshcontainingsome Leplocarous;(c)Leptocarnus marsh (containingsome Juncos);(d)insolationdatafor pre\iousyears. Figure 8.LightpenetrationgraphsInmarshcorrecledforsun angie tothevenlcal.(a)l..cotocarous,February18. 1982;(b)Juncus,February18, 1982;(c)Sparlina;(d)luncus; (e) luncu.<;. Figure 9.PhotographofthewashedrootsystemofamalureSoartlna angllcaplantfromtheflals.Figure10. PhOlographofthewashedrootsystemofayoungcreeksideSpanlnaanglicaplant.

PAGE 60

Figure 11. VerticaldistributionofoxidationpotentialinsedlmenlSInandoutsideSoanioabeds,KaUuna Marsh, r-ebruary 16,1982(observedvoltagebetweenplatinumandsliverchloride electrodes). (a)In lallSpartlnaonnaturallevees; (b) inshortSpaninaa ..... ayfrom creekbanks; (c) Inbaremud;(d)inalgalmatonmudat10 ..... tide; (e)onSpartinaIsland ..... Ith coarser sedimentandsU'Qng tidalcirculation. Figure 12. Vertkal distributiOnofpllinshortand tall (creekside) ScartlnaoutsideScaninaInbaremudandalgalmat areas. Figure 13. Vertl<:al distributionofsalinityandrootdry ..... eightInSpanInabedsafter 5e\'eral hours ..... lthouttide(lowtide). Figure 14. Comparison of three salinityprofiles;(--,Scanlna creekbanks; ----,Scanina flats; -.-.-,baremud).Figure IS.DryweighlScartlnatipsasa fumtlonoflengthoflongestcomponentabovethemud;comparingnormalregro ..... thandregro ..... thaftercUppingquadrats.1:lgurc 16. Rc>(ord ofdiurnalpatternInvariablesatmouthof Soortlna mashareaasIndicatedonFigure IandFigure4b,February16-17, 1982. Figure 17. RecordofdiurnalpaltcrnInvariablesatmouthofPclorus lagoonFebruary16-17,1982.Figure 18.Diurnal record ofthe particulate mailerand ashed contentoftheparticulatematteron InflCM'lng andoutflowlngtide. Figure 19. Model ofcomponentsandprocesses InSpanInamarshecosystem.Figure 20.SimulationmodelofSoartlna anglka systemInBritainfromRanderson(1986). Hgure 2I.Simulationmodelof mainorganic matterbalanceinsail marshecosystem. calibrationdetailsareInAppendixTableA3ofthereportOdum,Knox,andcampbell(1983).Figure 22. Simulation records oforganicmanerandnulrlentlevelsofthemodellnFigure26includingeffectofstorms.

PAGE 61

MOIJ
PAGE 62

ChristchurchNEWZEALANDIStudy Area ,... -----c::----\-, PelorusRiver --.. FIgure1.Mapshowingthelocationofthestudyarea.

PAGE 63

flgure2. AerIalphowgraph or theKaitunaI>larsh at Ha\elock,February 26, 1979.A, e
PAGE 64

--', ". l'lgure3. Aerial photogl-aph of $wrtIna marsh atllavdock, NL February 4,1981. Llnesarc transects TIand'1'2.

PAGE 65

(.), "),oj Figure 4. Views of the Kaitunamarsh. (a)ColonizingSpartina at haIr tide;(b)marsh used inexchangeandfishsampling;(c) Pelorus lagoon (see mapsinFigure5).

PAGE 67

""j" 'i> >'i Sections:1 5CC"'1 I SCkm] I SOu<"".,, ""'I....., I SOc_I ,I I I I II I I,I I I I I I --)=I I : I .... Il :/ I , -,Vegetation: L LeptocarPJs1900 high tide JJuncus Feb 19.1982S Pe:lorus LagoonFigureS.Mapofthe Pclorus (situatedIn the frontofthe 11avelock village) February 19, 1982. (a) Depth contours; (b)vcgclallonmap; (e) cross sectional sketches;(d)hypsographiccurve dcrlvt.'d fromcontoursIn(a). ss l .,"'" 0 , , floatong ..... ,, ,,, ,-0 ,I

PAGE 68

{O} q.j .p'. (panunum) S ;unSHm."0 0o"O ; ,OW"'"IOA 010 00"

PAGE 69

TIDAL CHANNELFISH TRAP --.. ,,, ,,RIDGE MARSH ,LINE \) ,,, , , , BARE MUD 0 (, ) , ,,I,IIIII I,,ISPARTINA,I GROUNDWATERI :----: ,, ----(b)Hgure 6.Approximatemapsofmarsh areas used forestimatesoffish,birdsand metabolic processesintheKaltuna t-Iarsh. (a) Fishtrapareaandmarsh exchange(fish creek) January15, 1982;(b)marsh exchange (marsh creek) February 16, 1982.

PAGE 70

1500 +--+-f-+-+--+-f-+-l----i-f-+--1 SpartinaMarsh1000500Live Spartina at CreeksideLive SpartinaonFlatsDeadSpartina at Creeksideead Spartina on Flats 0f-:-t-:-t-:-:-t-:-+c:-+c+c+++++:.--IJFMAMy D('JFigure7.Abovegroundbiomassfor1982.(a)Sparllnamarsh;(b)luncusmarshcontainingsomeLcplocarpus; (e) Lcptocarous marsh(containingsomeIuncus);(d)insolationdataforpreviousyears.

PAGE 71

1500,---------------, Juncus MarshliveLeptocarpus 1000 ,j!"/live Juncus II 500 TotalDeadJF M A My JuJyASON0Month(b) Figure 7(continued)

PAGE 72

1>00,-------------------,LeptocarpusMarsh leptocarpus ft----e, 1000 -1, , ;r TotalDead ,> ,500JF M A My Ju JyASON0 Month(0)Figure 7(cOntinued)

PAGE 73

(panunUO:J) L
PAGE 74

VERTICAL TRANS..ISS10N,% ,1000 ." ZOOO'00 30ooL --'Figure 8. LightpenetrationgraphsIn marsh correctedforsun anglelOthevertical.(al LCDtocarpus, February 18. 1982; (b) luncus,February18, 1982; (c) Soartina: (d) luncus; (e) {uncus.

PAGE 76

'lURid lDll'llUt!r.UIUl.:dS;}PIS'{ilaJ,)8uno,(r. JO W;}lS,(S lOOJ pa4SC.....;)ll.l JO 4dllJ80l04d '0I aJn'll\:l

PAGE 77

(0) 0 /..-..DEPTH, .. ...,.,,'00000'00roo.00"'"(0)7 I ",' ...DEPTH t,., .'00'000'00'00'00<00""'00 (0' /:-" ..,.,DEPTH ,., -100 0'00'00.00='00(0):,/ .. / ,DEPTH ,. '.,.' .... '000'00'00'00<00 POTE,"TIAL ,mVFigure1 L VerticaldistributionofoxidationpotentialInsedimentsInandoutsideSpanIna beds,Kalluna Marsh,february16, 1982 (observedvoltage between platinumandsliverchlorideelectrodes).(a) In tall Sparlina on nalurallcvecs; (b) inshortSpaninaawayfromcreekbanks;(el Inbaremud;(d)inalgalmatonmudallowtide;(elanSpartlnaisland withcoarsersL'dimcnt andstrongtidal circulation.

PAGE 78

0 0 , ""'0' ." I ,,-" ;;.20 ,, ,!'. ,", ,,, 0 0 !,,.,j!' -,""' 0 " ,. ".I, -, ,,, , 0 / l' s_, ......t,_. ,fJ",, Figure12.Vertical dlSlrlbulionofpHinshort and lall (creekside) Spartlna outside $oartlna In bare mud and algal mal areas.

PAGE 79

o 10) Cono'" RO." S.'ini'yo. "o ooSOllnl'1% ,, ROO'O,y-----------------., "ROO"Sol,n"l 0,09" Figure13. VerticaldistributionofsalinityandrOOldryweightinSpartinabedsafterseveralhourswithouttide(lowtide).

PAGE 80

/'/ //'".-/,,", ,"/,"cT,,""0 0 ,0 20" 0 , ,""""SALINITY %'igure14.ComparIsonof three sallnlty proOles: (__. Spartlnacreek lanks;u__,Sparlinanats;-.-.-,baremud).

PAGE 81

----ec. --ilCrH.s._611'>0'.,... ,,. ---.....f.D ;; 0.10o2 ,p n..IIIIII .. :Igurc IS.Dry weight Spartina tipsasa functionoflengthof longest omponentabovethemud;comparingnormal regrowth and regrowlh afler lippingquadrals.

PAGE 82

" To',,' _tOOl ,-"FII16,'Il1S2---'2001800l400"""OD"!d"""< " T ..._o,. .. 0 , " 00 ,",,, '00 , I '00.00 '00., FIgure 16. Record ofdiurnalpatternin variables atmouthofSnartlna m .. sh area asindiCdled on Hgurc I .mdHgure4b,February 16-17,1982.

PAGE 83

"" ,,f'nltAfE8.160...,/""-"'-01/" 0/ \ ,"Y'\"-./' -" I >-0r.......,ot"'. ",-. ,1"'-,.-'. .. o' ,,FIgure L7. Rcnm.l of Jiurn..llp;lllcrn Invariables at mouthofl'cloruslagoon February 16-17, 1982.

PAGE 84

lia.'00 '00 olinil1adrl ,EI""0"0'QI"lI>oloH'. orgOOl<,Q(m'0 0Wns..CFlEEk"00,10fj."I0 0lBl......RSH CREEKo"-'0600 1200 (ClCMJSEWAY CREEkTIME,hr .Figure 18. Diurnal record of the particulatemaHerand ashe
PAGE 85

!PopuLBirds Fish RecycleSealank. BenthicAlgaeChemosynthetic Microbes otosyn. Spartina anglicJ Winds r-._ NewZealand I'lgurc19. ofcomponentsand processes In Soartlna marsh

PAGE 86

SpartinaAngHca Model (Randerson,1986)GramsOrganic Carbon per m2 per year Photosynthesis157030Shoots220II110 ,600 Dead270ICarb.10 Soil;" 260Carb.Water'0Roots 237Soil21.21450Hetero-183-Trophs154Grazers 5.2,4.8 Respiration (.) tIPhotosyn..Spartina anglica(b)SoilHetero ',..6 trophs -'---=R=RespirationFigure 20.Simulation model ofSparlina anglica syslCm inBritainfromRanderson(1986).

PAGE 87

"RiverStorm "-;'./ Tide "/<::, 0.39/"... yQ,/RecycJe -1..''\29 0.09utrientsOAI '523/ '->1 t0.730.21, SO',/'-./ 159Biomass Microbes4Deady15232.1Organics L-----:\..5226/"-/ J '" 3450+2250Cos((6+Z9)/365)JR= lI(l +ko*Q,>Figure 21. Simulalion modelofmain organic maHer balanceinsaltmarshecosystem. Calibrationdetailsarcin Appendix TableA3ofthereportOdum,Knox,andCampbell(1983).

PAGE 88

SOLAR INSOLATION o"-', SEDIMENT CARBON ,.---".------_J"'----"'--------1o-f-----------------------l SPARTINA BIOMASS-1---::====------------..., SEDIMENT NITROGENz '0'----------':;::===:+,;==:::'::::;: o STORMS"5 TIME,YEARS Figure 22.Simulation records of organirmatter andnutrientlevelsofthe mooel in figure26 includingeffectofSlorms.

PAGE 89

'MOt Ja/\pPUI?',a/\al cas 'unsJOslndUl 3'uIlCl1PSO41\MuO]lclnW!S'lamlJ],s Z1)'3/\11/'_____'pe / ",/,, , / ,,,,, sseWOl8 <1/\<'11J

University of Florida Home Page
© 2004 - 2011 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated May 24, 2011 - Version 3.0.0 - mvs