Concepts and Techniques for Evaluation of Energy-Related Water Problems

MISSING IMAGE

Material Information

Title:
Concepts and Techniques for Evaluation of Energy-Related Water Problems
Physical Description:
Report
Language:
English
Creator:
Wang, Flora Chu
Lehman, Melvin E.
Publisher:
Center for Wetlands
Publication Date:

Subjects

Subjects / Keywords:
simulation modeling
water use
land use
energy analysis
net energy
energy quality
Spatial Coverage:
United States -- Florida

Notes

General Note:
65 Pages

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
System ID:
AA00004286:00001


This item is only available as the following downloads:


Full Text

















5000


400H-


*o


300-


2001-


100o


I I I I I I I I I I I


OCT
1974


NOV DEC JAN
1975


FEB MAR APR MAY JUN JUL AUG SEPT

TIME


Figure 5. Seasonal changes in insolation at the campus of the University of Florida


<


4000~

_J
o

z
3000


0
-,
z
2000 -
0



1000


1 1 r


500





PAGE 1

CONCEPTS AND TECHNIQUES FOR EVALUATION OF ENERGY-RELATED WATER PROBLEMS Flora Chu Wang and Melvin E. Lehman FINAL REPORT (DRAFT) Grant No. 14-34-0001-6326 June 1, 1976 -May 31, 1977 The work upon which this publication is based was supported by funds provided by the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, as amended Center for Wetlands University of Florida Phelps Lab Gainesville, Florida 32611 June, 1977

PAGE 2

ABSTRACT CONCEPTS AND TECHNIQUES FOR EVALUATION OF ENERGY-RELATED WATER PROBLEMS This report describes our research effort in applying the newly evolving theory and the classical operational research techniques (linear programming) towards a procedure of energy analysis that may serve the resource manager in decision making. The theory being investigated involves the concepts of net energy, energy quality, and energy amplifier value. Based on these concepts, an attempt has been made to estimate the energy value of water. The energy value of water is equal to the flow that it facilitates in a specific use. This is so because of its role as an amplifier that makes more energy available in different systems when used as a limiting factor. The objective function in the linear programming analysis is structured in terms of net productivity of the subsystem measured at its boundary. Maximum power principle is chosen as a valid criteria rather than the more commonly used profit maximization criteria. Although the research effort should be further extended or modified to the development of practical procedure for application, a simple hypothetical model considered representative of the major land-use subsystems is given to illustrate 'such application. Sensitivity analysis is performed for testing the stability of the model, and consequently, the stability of a resource plan should the results of the model be adopted as guidelines for such a plan. Wang, F.C., and Lehman, M.E. CONCEPTS AND TECHNIQUES FOR EVALUATION OF ENERGY RELATED WATER PROBLEMS Center for Wetlands, University of Florida, Gainesville, Florida 32611 KEYWORDS: computer simulation/energy analysis/energy value/ land-use planning/linear programming/water resource/water management

PAGE 3

ACKNOWLEDGEMENTS The research effort reported here was conducted by the project principal investigator, Flora Chu Wang. Some aspects of this study also constituted parts of the Ph.D. research study of co-author Melvin E. Lehman, a Graduate Research Assistant. The authors wish to thank Dr. Howard T. Odum, Director of the Center for Wetlands, for his special contribution on sections of energy value of water, and relationship of energy effort to energy cost; and his stimulating discussions. Thanks are also extended to Dr. Richard C. Fluck of the Agricultural Engineering Department for his comments and advice through a review of earlier progress reports; to George M. Gardner and Robert Costanza for their helpful suggestions; and to staff and graduate students for sharing their data and ideas with us. The work, upon which this report is based, was supported by funds provided by the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, as amended, Grant No. 14-34-0001-6326. The research was conducted under the Center for Wetlands, University of Florida. The assistance of Margaret K. Johnston in administering the fiscal aspects of this project is greatly appreciated. Appreciation also goes to Vicki Dudley for her care in typing this report. Without the help of these and others, this project could not have been accomplished on time. ii

PAGE 4

TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENTS LIST OF FIGURES LIST OF TABLES CHAPTER I II III IV V INTRODUCTION Objective of the Study Scope of the Study ENERGY ANALYSIS Concept of Net Energy Concept of Energy Quality Concept of Energy Amplifier Value METI-lOD AND DATA SOURCES Simplified Closed Area Approach Regional Linked Area Approach General Areal Data Base TECHNIQUE AND PROBLEM FORMULATION Systems for Man and Nature Basis for Energy Maximization Linear Programming for Land Use Model MODEL SIMULATION AND DISCUSSION Results of Hypothetical Land Use Model Sensitivity Analysis and Conclusion Recommendation for Future Study REFERENCES APPENDICES iii i ii iv v 1 1 2 4 4 8 14 17 17 25 26 30 30 32 34 36 38 42 43 46 49

PAGE 5

Figure 1 2 3 4 5 LIST OF FIGURES Input-output balance for an energy production sector Energy diagram for an energy production sector Energy quality factor in decreasing order Energy intensity coefficient in a single sector energy balance Seasonal changes in insolation at the campus of the University of Florida 6 Corn yield and fuel energy input during different 7 8 9 10 years Energy flow diagram for an agricultural system of a single corn crop Modern agricultural systems interact with natural, human, and fuel energies Corn yield and yield ratio as a function of fertilizer Energy flow diagram for a hypothetical land use model 11 Land use Modell's formulation and its base solution 12 Land use distribution due to changes in constraints iv 5 7 9 12 18 22 24 31 33 36 40 41

PAGE 6

Table 1 2 3 4 5 B-1 B-2 B-3 LIST OF TABLES Energy quality factors and fossil fuel equivalents for typical energy sources Energy intensity coefficients for primary energy sectors Estimation of consumptive use of water for a single corn crop Sample computation of energy values based on regional Lee County input-output model Estimation of energy values of water and land for different production systems Appendix Tables Relationship between solar energy input and crop production Estimation of fossil fuel equivalents for major crops of south Florida Examples of economic expansion effects on productivity and resource use v 10 13 20 27 28 58 59 61

PAGE 7

Objective of the Study CHAPTER I INTRODUCTION The main objective of this study is to apply the newly evolving energetic theory and the classical operations research technique in arriving at decisions on use of regional land and water resources. However, additional research will be needed to examine the methodology in defining and estimating the erngy value of resources; to acquire a good areal data base in evaluating the input and output relations; and to extend the proposed method to practical procedures that would be applied to the river basin or regional resources planning. The theory being investigated involves the concepts of net energy, energy quality, and energy amplifier value. Odum and Odum (1976) define net energy to society as the amount of energy that remains for consumer use after the energy costs of finding, producing, upgrading, and deliver-ing the energy have been subtracted. Energy quality concept implies that different energy sources have different attributes. Their concentrations, uses, and ability to do work differ. The concept of energy amplifier value (Odum, 1970) suggests that water, because of its ability as an amplifier to make more energy available in different systems when used as a limiting factor, has an energy value equal to the power flow that it 1

PAGE 8

2 facilitates in a specific use. Thus, the true value of water to society is that water use which maximizes the total flow of energy for useful purposes. The technique being used is the standard linear programming (Gass, 1964), so analyses are made without recourse to sophisticated computer techniques. Unit model and input-output methods are used in estimating the coefficients of mathematical programming. The objective function is structures in terms of net productivity of the subsystem measured in energy units. The Lotka (1922) maximum power principle is chosen as a valid criterion which states that the system that maximizes its useful energy will be the one that prevails both energetically and economically. Parametric and sensitivity analyses are performed for testing the stability of the resource allocation model. The effects of water and energy limitations are studied so that the results of applying the proposed technique will be closer to the real world situation. Scope of the Study The scope of this study is reported in subsequent chapters. Chapter II discusses the newly developing energy analysis theory and its related concepts. In the chapter, a method of energy analysis will be briefly described. In order to transfer its utility, concepts of net energy, energy quality, and energy amplifier value are introduced. As for illustration, energy language symbols (Odum, 1971) are adopted in the study.

PAGE 9

3 Chapter III covers the procedure and assumption for evaluating energy value. In the chapter, estimation of model parameters based on discrete system and linked system are presented. A sample computation is provided in that chapter, and the supporting data is included in the appendix. Some of the potential limitations of the parameters derived from data problems are discussed. Chapter IV presents the technique of formulating resources alloca tion problems. The common base for man and nature is first described. Energy criterion is introduced as a measure of overall environmental quality (Butkovich and Heaney, 1975). Then land use management is translated into a standard linear programming problem. Land acreages of subsystems are formulated as decision variables in the land use model. Chapter V contains the results of the land use model and its base solution. Model simulations for constrained efficiency are also presented. Parametric and sensitivity analyses have provided insight to model stability as well as its implication. Future study is recommended. Sections written by Dr. Odum on the energy value of water and the relationship of energy effect to energy cost are also included. The report is concluded with a list of references and appendices.

PAGE 10

Concept of Net Energy CHAPTER II ENERGY ANALYSIS Energy is thought to be essential to all activity. Thus energy provides us a way to project and plan the future. Energy analysis, in some ways parallel to economic analysis, is a relatively new developing discipline. Currently researchers are using a variety of concepts to assess energy problems and rank alternatives. There are two remarkable teams of energy analysis: (1) Leach and Slesser, Herendeen and Bullard; (2) Odum Leach and Slesser (1973), and Herendeen and Bullard (1974) treat energy analysis as the determinations of energy resource sequestered in the process of making goods and services within a preset system boundary. They define net energy as the output of an energy production system determined by taking full account of the energy required for inputs to the process. Energy used both directly and indirectly are considered. Figure 1 s hows the nature of all energy inputs i to and output from an energy production sector j. Since the sector's output is needed to provide the intermediate input to the process, feedback loop is accounted for in the diagram. A simple linear Leontief Input-Output model (1966) is chosen and expressed as: 4

PAGE 11

FEEDBACK LOOP ENERGY FINAL ENERGY INPUT E NERGY OUTPUT CONSUMPTION PRODUCTION (GROSS) Xj FROM SECTOR j: La .. X (NET) Yj i IJ J SECT OR j Ul EN ERGY EXTRACTED FROM EARTH DIRECT ENERGY COST INDIRECT ENERGY COST = FINAL DEMAND Xj La" X i IJ J = Yj Figure 1. Input-output balance 'for an energy production sector

PAGE 12

where: x. J E a .. X. Y. i lJ J J 6 (1) X. gross output of sector j, J a .. X. lJ J amount of output from sector i needed as an intermediate input by sector j and, Y. portion delivered for final consumption considered as J the net output of sector j It should be noted that the system of equations (1) are interpreted in purely physical terms, where all transactions are measured in physical units unique to each sector, and the linear nature of the input-output coefficients are assumed Odum (1977), see Appendix A, postulates that the relationship of energy cost to energy effect may not be linear but may follow a limiting factor hyperbola curve. Thus, the yield of the production sector is proportional to the interaction function of the inflows. Odum, Kylstra, and Alexander, et al. (1976) define net energy as the difference between energy yield and energy feedback, since the energy feedback is the fraction of the economy that must be returned to the processing of energy. Figure 2 displays energy flows where a feedback F from the main economy interacts and facilitates an inflow of energy I from an external source E. The feedback F includes some of yield Y which has made the cycle through the economy and is returned. Net energy is expressed as: Net Energy Y F (2) and yield ratio, defined as the output from an energy source divided by the feedback energy required to produce it, is represented by: Yield Ratio Y F (3)

PAGE 13

" Energy Production Sector Feedback Work External Source E Inflow I Net Energy = Yiel d Ratio = Yie ld -Feedback Yield Feedback Figure 2 Energy diagram for an energy production sector F Yield Y Moin Ec onomy -oJ

PAGE 14

8 It is noted that a good production sector is one which has a small return relative to yield, and that the relationship of yield to inflows is neither a simple nor a direct correlation. Also, for comparability, the terms in Equations (2) and (3) have to be reduced to equivalent forms of energy as conceptualized in the following section. Energy Quality Concept Bullard (1975) comments that several net energy analyses are not consistent due to differences in value judgements implied by the addition of qualitatively different energy resource inputs. Various kinds of energy sources differ in quality. Heat contents of different sources have different abilities to perform work. Odum and Odum (1976) provide one conceptual mechanism to accomodate these differences. They postulate that there is an inherent thermodynamic minimum energy required as input, in order for one type of energy to be upgraded into another type of energy, with a necessary dispersal of used energy has heat. This degraded, dispersed heat cannot do any further work. By analyzing operating systems competing successfully in the real world, and by examining the energy cost of the processes necessary to convert one form of energy into another, the ratios of inflow of lower quality energy to outflow of upgraded energy have been approximately determined. These are termed energy quality factors (Odum and Odum, 1976). Figure 3 shows a series of transformations from diluted sunlight to concentrated electricity. For example, it takes about 2,000 Calories of sunlight to generate 1 Cal of coal. Table 1 gives the coal equivalents (CE) of the type of energy listed, defined as the reciprocal of the energy

PAGE 15

2000 Gross Production 20 Net 2 1------+1-11 Leaves ) Trees kcal/time ..l Energy Flow in a Chain of Increasing Quality: Sunlight Gross Production Net Production: Cool 2000 20 2 Figure 3. Energy quality factor in an decreasing arder Cool Electricity 0.25 Electricity r---, .25
PAGE 16

10 Table 1. Energy quality factors and coal equivalents for typical energy sources Type of Energy Heat from sun's rays, uncollected Sunlight Gross plant production Wood, collected Coal and oil, delivered for use Energy in elevated water Electrici ty Money flow (1970) DATA SOURCE: Odum and Odum (1976). Calorie Cost (Calories of hea t to make on CE Cal) 10,000 2,000 20 2 1 0.33 0.25 Coal Equivalents (CE Cal/Heat Cal) 0.0001 0.005 0.05 0.5 1.0 3 4 25,000 Cal/$

PAGE 17

11 quality factors. The dollar equivalents shown in the table are used to convert dollars of final demand, as measured by the gross national product, into the amount of energy consumed by the United States in generating the goods and services purchased by the final demand. In 1970, the ratio used is 25,000 Cal of coal equivalents p e r dollar of Gross National Product. These conc epts result in a qualitative comparison of the contributions of various systems. Herendeen and Bullard (1974) have employed the large data base of input-output economics to develop values for the fossil fuel embodied in the products of the U.S. economic sectors. Energy intensity is defined as the sequestered energy per unit of output. They assumed that energy embodied in inputs to one particular sector j, plus the energy consumed in that sector, is passed on as part of j's output. The basis for their concept of energy balance is diagrammed in Figure 4, and is expressed as: :;; E X. J J (4 ) where: X .. ; the transaction from sector i to sector j; 1J Eo the embodied energy intensity per unit of output X j ; and J E. ; the energy extracted from the earth by sector j ] The total energy cost of the whole spectrum of consumer goods and services was computed and they obtained energy intensity coefficients for 357 sectors of the U.S economy Table 2 lists the energy intensity coefficients for the primary energy sectors for the years 1963 and 1967, respectively. It should be noted tha t the primary energy required to produce one BTU electricity is about 3.8 BTU, which is very close to

PAGE 18

<" X 4. I IJ PROJECTION .SECTOR E j earth ., Ej X j ENERGY EMBODIED + ENERGY CONSU M ED = ENERGY PRODUCED r Ej X j j E j earth = Ii j X j Figure 4. Energy intensity coefficient in a single sector energy balance ... N J

PAGE 19

Table 2. Energy intensity coefficients for primary e n ergy sectors Energy Sector ... E nergy Intensity Coefficients (Primary BTU/Unit Energy Output BTU) 1963 1967 Coal 1.01 1.00 Crude 1. 04 LOS Refined 1.20 1.20 Electric 3.88 3 .79 Gas 1.16 1.10 DATA SOURCE: Herendeen and Bullard (1974).

PAGE 20

14 Odum's coal equivalent of electricity equal to 4; however, the natural renewable energy source, such as sunlight, has not been considered in Herendeen and Bullards' energy analysis. Concept of Energy Amplifier Value An amplifier is a structure with two or more energy inflows that interact to produce an energy output. Odum (1971) suggests that in work interaction the inflowing material has two energy values; one is the potential energy inflowing along its pathway; the second is its ability as an amplifier. For example, water has slight potential energy due to its low elevation in Florida, and its magnitude is calculated as: = pg h (5) where: = the gravitational potential energy; the density of water = 1 gm/cm 3 p = ; the acceleration of gravity = 980 cm/sec 2 and g = ; h = the average height of land in Florida = 6 meters above MSL. Substituting these values into Equation (5), it gives: = (1 gm/cm3 ) (980 cm/sec2 ) (600 cm) (2.39 x 10-8 cal/erg) = 0.014 calories per gram of water (6) Water also has potential chemical energy due to its purity relative to the dissolved solids concentration of sea water. For example, the energy value of rain water as a reactant for cleaning can be estimated by the formula of:

PAGE 21

where: 15 (7) = the chemical potential energy due to dissolved solids concentration gradient; n = the number of moles of solids at concentration C 1 = 1/35 mole; R = the gas constant = 1 .99 cal/oK-mole; T = the temperature in degree Kelvin = 300 oK; C l = the dissolved solids concentration of sea water = 35,000 ppm; and Cz = the dissolved so lids concentration of rain water = 10 ppm. Substituting these numbers into Equation (8) it shows that rain water has a chemical potential of: = (1/35 mOle) (1 .99 cal/oK-mole) (3000K) in(10/35000) = 139 calories per gram of salt water (8) or: = (139 cal/grn) (0.035) (453 grn/lb) (8 33 lb/gal) = 18 Calories per gallon of water (9) The second kind of energy value of water is in its contribution to biological processes of forest or agriculture. For example, in the natural system, expression of water's potential as work is fully realized when the water is used to amplify and match the sunlight in the ratio of about ZOOO Cal of sunlight to 3 Cal of water (Odurn, 1975). When waters are used to irrigate a desert when sunlight is in excess, water becomes a limiting factor and thus the main source in that process. Its value is the power flow that it facilitates. Odurn (1977), see Appendix A, comments that the effect of water depends on its ratio as limiting factor. Using water for high effect involves using it in

PAGE 22

16 interaction with coal-based activity, such as urban or industry. It is complicated when the water is part of solar energy transformation that attracts and interacts with the fuels. However, an attempt has been made to analyze and estimate the energy value of water. The following chapter presents the procedure and assumptions made.

PAGE 23

CHAPTER III METHOD AND DATA SOURCES Simplified Closed Area Approach There are several methods for evaluating the energy value of resources. A simplified closed area unit model for an agriculture subsystem is presented. In this simplified approach, three forms of energy inputs are considered to be important to the agricultural system; solar, water and fossil fuel energies. A single crop, corn which typifies the energy inputs for crops in general, is selected as a representative production unit. Modern agriculture is thought of as a partnership of solar energy and fossil fuel energy. Traditionally, the sun's energy is considered as a free energy and is commonly ignored in economic analysis. The solar energy incidence on U.S. cropland varies from a high of 5,200 2 2 Cal/m /day to a low of 3,000 Cal/m /day (Heichel, 1976). The seasonal change in insolation at the University of Florida campus measured by Dr. Farber's Solar Energy Center are shown in Figure 5. The total yearly 6 2 solar energy is approximately 1.24 x 10 Cal/m. Using the quality factor 2000 to 1, the value of solar energy based on an equivalent form of fossil fuel energy becomes: Solar Energy 6 2 2 = (1.24 X 10 Cal/m /yr) (4050 m /acre) = 5022 x 106 Solar Cal/acre/year = 2.51 x 106 Coal Cal/acre/year (10) 17

PAGE 24

> o "-5001-4001-...J Z ...J 25 300 t ...J o (f) z w a:: w 20011001-I I I I I I I I I 0 ______ 0 0 0..____\ / / 0 o --15000 > o "-"...J u 300025 t ...J o (f) z -12000 ;;; -11000 a:: w > 0 1 I I I I I I I I 10 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEPT 1974 1975 T IME Figure 5. Seasonal changes in insolation at the campus of the University of Florida ..... 00 F,' :

PAGE 25

19 The solar energy incidence on cropland tends to be degraded into heat energy. It is estimated (Odum, E.P., 1971) that only 5 % of solar energy (see Appendix B, Table B-1) is transformed into crop production, and the remaining 95% is dispersed into uncollected heat. In terms of CE, using the quality factor 10,000 to 1, the energy loss is: Energy Loss 6 = (5022 x 10 Cal/acre/year) (95%) = 4770 x 106 Cal/acre/year = 0.48 x 106 CE Cal/acre/year (11) Crop water needs are varied by plant, soil and environmental factors. These needs change with change in growth, such as leaf area and rooting characteristics. Soil modifiers include texture, structure, and fertility; and environmental factors such as rainfall, temperature, and humidity all influence crop water needs. An empirical formula developed by Blaney-Criddle (Criddle, 1958) is used to estimate the consumptive use for corn, and is expressed as: U = l:(ktp/lOO) (12) w here: U = the consumptive water use in inches; k = the empirical monthly consumptive use coefficient; t = the average monthly temperature in of; and p = the monthly daytime hours as percent of the year. Table 3 shows the total consumptive use by corn is about 21.5 inches per growing season. America Society of Civil Engineers (1973) esti-mates that the field irrigation requirement for corn is 27.4 inch/growing season. An average water need of about 2 feet per growing season is used in the unit model.

PAGE 26

Table 3. Estimation of consumptive use of water for a singl e corn crop Month Coefficient Temperatrlre Daytime Hours Consumptive Use k t P u of % inch (1) (2) (3) (4) May 0.47 54.4 10.39 2.66 June 0.67 63.8 10.54 4.24 July 0.78 70.8 10.64 5.88 Aug. 0.79 69.2 9.79 5.35 Sept. 0.70 57.5 8.42 3.39 Consumptive Use U = 21.51 DATA SOURCE: Chow (1964, Table 21-2 and Table 21-3, p. 21-7).

PAGE 27

21 Modern agricultural production requires considerable quantities of fossil fuel inputs, whether directly in the form of petroleum fuel and electricity for tractors and harvesters, or indirectly to manufacture chemical fertilizers a nd pesticides. It is estimated (Heichel, 1976) that, in 1970, 500 x 106 Cal fuel, or 2.6% of the total U.S. energy, is used in producing agricultural output, about half of this energy in direct usage, the other half in indirect usage. For the U.S. corn crop, Pimentel, et al. (1973) comments that corn yield has increased from about 34 to 81 bushels per acre from 1945 to 1970, while the fossil fuel energy inputs has increased from 0.9 to 2.9 x 106 Cal during the same period of time, as shown in Figure 6. This implies that corn production has been gained through large inputs of fossil fuel energy. A bushel of corn is considered to be 56 pounds, and each bushel of corn contains 1800 food Cal (Pimentel, et al., 1973), then the corn yield in 1970 was: Corn Yield = (81 bushels/acre/year) (56 lb/bushel) (1800 Cal/lb) 6 = 8.16 x 10 Food Cal/acre/year (13) The conversion coefficient for food calorie of crop to fossil fuel equivalent has been studied by DeBellevue (1976). His listing of the CE of four major crops for South Florida are 0.02, 0.03, 0.34, and 1.25 for pasture, vegetables, citrus, and sugarcane, respectively (see Appendix B, Table B-2). In the corn unit model, if a conversion factor of 1.25 is assumed, since corn and sugarcane both have similar food energy productions per unit of fuel energy (Heichel, 1976), then the corn yield in terms of CE becomes:

PAGE 28

x 1120 / 3.01 '" "" "--i 100 / 2.51'" u Q "x '" ,"EC 80 u "-'" 2 .ol '" .<: U '" / + '" 60 .a N <0 N 0 x / 0 f-" -' W ::J ,/ 'IELD a.. >-z 40 1.5 z >-0:: 0 C!) U 0:: / -+ W Z + -w x __ 1.0 -' + W ::J "--' -i 20 (f) 0.51(f) 0 "o! 10 1945 1950 1955 1960 1965 1970 YEAR Figure 6. Corn yield and fuel energy input during different years o

PAGE 29

23 Corn Yield = (8.16 x 10 6 Food Cal/acre/year) (1.25) = 10.20 x 10 6 CE Cal/acre/year (14) It is further assumed that, in the unit model, there is not net loss or gain in energy flow during the growing season. This is a version of t h e law of conservation of energy. Figure 7 displays the energy flow diagram for a single corn crop. In the diagram, if energy inflows balance outflows, as required by the first law of thermodynamics, and the energy transfer in respiration is accompanied by dispersion of energy into uncollected heat as stated by second law, then the energy value of water inputs for a single corn crop may be obtained quantitatively from the energy balance based on fossil fuel equivalents: giving or Solar Energy 2.51 + + Energy Input = Energy Output Fuel Energy 2.89 + + Water Energy Water Energy = = Crop Yield + Energy Loss (15) 10.20 + 0.48 (10 6 CE) Water Energy = 5.28 x 10 6 CE Cal/acre/year W ater Energy = 2.64 x 10 6 CE Cal/acre-ft On the basis of the above data for a simplified closed area unit model, it is estimated that the energy value of water for a single corn 6 crop is about 2.6 x 10 CE Cal/acre-ft. In the study of Pimentel, et al. 6 (1975), it is i ndicated that 2.1 x 10 Cal of fuel energy is required to irrigate an acre of corn with an acre-ft of water for one growing season. The value of water can be dramatized by giving the energy value its approximate dollar equivalent in the overall economy. Harrison (1975) estimates irrigation cost is about $85/acre-ft for citrus production in Florida. Converting this to calories of energy, using an energy-dollar ratio of 25,000 Cal/$, results in a value of 2.1 x 10 6 CE Cal/acre-ft.

PAGE 30

2 Acre-It Solar 5032 x 106 Solar Cal (2.5IxI06 CE Cal) 2.89 x 106 CE Cal Agriculture System 4770xl06 Cal (0.48 x 106 CE Co I) Corn Energy loss Fuel Energy 8.16x106 FoodCol Crop Yields ENERGY FLOW: PER ACRE PER GROWING SEASON Figure 7. Energy flow diagram for an agricultural system of a single corn crop N ... r ..

PAGE 31

2S Regional Linked Area Approach It is felt that energy value evaluated from the simplified closed area approach is experimental in nature. Problems may exist in the potential evaluation of the Coal equivalents of agricultural products. For instance, there is a question raised as to whether identical products, produced by two different systems with different inputs, will have the same CEo The spacial energy effects on calculations of this type are not fully understood at this time; also, the respective energy value for an area is dependent on how the system boundary is defined. It is thought that the energy value resulting from manipulation of the large data base of input-output economics may be more appropriate for regional evaluations. A regional linked area model utilizing the procedure developed by Leontief (1966) is furnished. The basic identity of the input-output model is that total sales of a sector are the sum of intermediate sales to other sectors and sales to final demand. The interdependencies among various sectors are expressed as the result of chain reactions and are termed multiplier effects by economists. Data sources, from which energy values of water and land for the regional linked area are calculated, are based on the Lee County InputOutput model developed by Loehman and McElroy (1976). The economic and environmental mUltipliers derived from their studies are used to estimate the sector's production and resource needs. For example, the output multiplier expresses how much value of total output, of all sectors in the regional economy, will increase due to a change in output in a given production sector. The basic resources used as inputs into the production process include land, water, and energy. The resource multiplier indicates

PAGE 32

26 how much demand for these resources will increase when economic expansion occurs. Table 4 typifies the effects of a one million dollar expansion in exports of agricultural crops (Sector 3) Detailed computations are explained and included in Appendix B-3. Table 4 shows the average energy value of water for average crops, based on regional linked area approach, is 5 .8 x 10 6 CE Cal/acre or 2.1 x 10 6 CE Cal/acre-ft. Three other sectors: grain and sugar products (Sector 11), bottling and canning (Sector 12), and building construction (Sector 7) are also analyzed (see Appendix B. Table B-3). The energy value of water and land generated from these three sections is one to two orders of magnitude larger than from the agricultural crop sector. The contribution of solar energy as an input source to industry and the urban sector also is less significant than coal energy. General Areal Data Base The major limitations i n the regional linked area approach is the use of constant multipliers. This implies a fixed production technology with constant return to scale. An independent search of energy value of resources from general area i s attempted. Their values are obtained, or estimated directly from available literature, so a comparison is made of the differences in values generated by the closed and linked area approaches. Table 5 summarizes the results estimated from different methods. In general, the energy values of water and land are evaluated from the energy used in transformation within the sector and from the production yields.

PAGE 33

27 Table 4. Sample computations of energy values based on regional Lee County input-output model Economic Account Increase in Export ($) Total Output ($) Import ($) 6 Net Production ($ ... 10 CE Cal) Regional Product ($ ... 10 6 CE Cal) Environmental Account 6 Increase in Land (acres ... 10 CE Cal/acre) Coal (tons ... 10 6 CE Cal) Increase in Increase in Fuel Oil (bbls ... 10 6 CE Cal) Gas (10 3 ft3 ... 10 6 CE Cal) Increase in Increase in Electricity (10 3 kwh'" 10 6 CE Increase in 10 6 CE Fuel Inputs ( (10 6 CE Cal/acre) Increase in Waste Water (10 3 gal) Increase in Water Intake (10 3 gal) Increase in Public Intake (10 3 ) Water Inputs (10 3 gal) (ac-ft ... acre-ft/acre) Energy Balance 6 Yield Energy (10 CE Cal/acre) Solar Energy (10 6 CE Cal/acre) Fuel Energy (10 6 CE Cal/acre) Water Energy (10 6 CE Cal/acre) Cal) Cal) Sector 3 Agricultural Crops (cotton, grains, etc.) 1,000,000 1,377,800 259,100 1,118,700 ... 27,967(1) 740,900 ->18,522 2,971 ... 6 ... 1,873 ... 372 ... 22 ... 2,368,015(7) 219,372 108 2,587,495 7,961 ... 9.41(1) 26(2) 2,997gj 119(5) 74 3,216(6) 1.08 2.68 9.41 2.51 1.08 5.82 (8) DATA SOURCE: Loehman and McElroy (1976) (see Appendix B-3, for detailed computations).

PAGE 34

Table S. Estimation of energy values of water and land for different production systems Energy InEuts Energy Value Production System Land Inputs Water Inputs Solar Fuel Water Land Data Source (acres) (acre-ft7acre) (lOG CE Ca17ac) (loo CE CaI/aC) Agricultural Corn 62 2.0 2.5 2.9 5.3 10.2 Pimentel e t al., 1973 Crops 2,971 2.7 2.5 1.1 5.8 9.4 Loehman & McElroy, 1976 Citrus 150,000 1.5 2.5 7.2 2.1 11.1 Harrison, 1975 DeBellevue, 1976 Natural Cypress Dome 2 7' 2.4 2.5 6.5 9.0 Wang & Heimburg, 1976 Marshes, Sloughs 386,900 2.5 5.5 8.0 DeBellevue, 1 976 and Pine lands c \ Industrial Grain and Sugar 453 5.7 2.5 12.0 l3.5 28.0 Appendix B, Table B-3 Products Bottling, Canning 410 5.2 2.5 9.4 24.7 36.6 Appendix B, Table B-3 Urban Building (Residential 42 2.1 2.5 63.2 302.8 Appendix B, Table B-3 and Nonresidential)

PAGE 35

29 It is noted that no single energy value can be regarded as an exact magnitude. Also, not much reliance can be placed on the numerical values themselves because of the assumptions involved in computations; however, the range of energy values, as displayed in Table 5, can be used as a basis in relative comparisons for competing water and land uses. This leads to the problem of resources allocation, a subject for the following chapters.

PAGE 36

CHAPTER IV TECHNIQUE AND PROBLEM FORMULATION Systems for Man and Nature Man's activities are usually based on dollar evaluations, whereas the services of the natural systems are often excluded from cost evalua-tions because the natural sectors of our society are silent trades where great services are not noticed until they are lost. For example, the ancient Egyptian decision makers had little concern for the effects of their actions on fish and wildlife, and other unquantifiable aspects of natural systems; but their modern counterparts must determine the con-flicting demands of resource management, recycling, and conservation (Hall and Dracup, 1970). Energy is the source of all things; thus, it serves as a valve to control all activities of man and nature. Energy flow is used as the common base for nature and man (Odum and Odum, 1976). Energy analysis of the systems, based on energy flow, provides understanding into the inter-dependency and linkage between man's coal-powered systems and the natural ecosystems. Figure 8 conceptualizes the interdependency of various com-ponents for a modern agricultural system. The diagram shows that the production of a crop requires the steady interaction of inflows of natural energies, fuel energies, and inputs from human work using machinery. Each pathway represents a different kind of energy flow. Potential work comes 30

PAGE 37

NATURAL ENERGIES /--....... ( \ IRRIGATION .. SOLAR RADIATION I SUNLlGH"'---TO HEAT GRADIENTS, \ / OTHER PROCESSES \ / ....... _", ENERGIES TO. MARKET a WEED CONTROL Figure 8. Modern agricultural systems interact with natural, human, and fuel energies "" ..... -

PAGE 38

32 from all resources, nature and man. Analysis of energy flow was recently advanced into an energy evaluation procedure, which serves as a basis to assess resource management alternatives (Bayley et al., 1976). Basis for Energy Maximization Resource availability is a large part of the balance-of-nature concept of natural theology (Mayr, 1977) The competition for existence, a beneficial feedback device, functions to maintain the balance of nature. Lotka's maximum power principle (1922) elaborates that the system which maximizes its useful energy is the one that survives. This principle gives before-the-fact criteria which determines the surviving system (Kylstra, 1974). During times of growth, survival depends on maximizing growth; when growth has reached its saturation point, maximizing power means making more effective use of all energies. Figure 9 typifies a production function of corn yields. In an investigation of crop production, Munson and Doll (1959) applied various amounts of fertilizers to a cornfield. It appears that when nitro gens are increased from 150 to 200 pounds per acre, corn production is not nearly as efficient as when nitrogens are increased from 100 to 150 pounds per acre. In the same graph the ratio of food Calorie to coal Calorie input is also plotted (Pimentel et al., 1973). It reflects a maximum return of 3 Cal of food energy for each Cal of coal energy at 120 pounds of nitrogen per acre. This phenomenon indicates that the maximum efficiency is achieved through the effective interaction of all energies under the best agricultural management practice. It further implies that, depending on energy inputs, at first power is maximized by growth, then

PAGE 39

12, ___ x x 13.0 YIELD RATIO (!) 10 x _o ____ 2.5 a:: w d> Z W u 0 "...J W 0 ::J U lL. c.o 0 0 I>-6r /0 1.5 (!) 0 a:: 0 ...J lJJ U W Z '" >-w "-'" 0 z 4r +.0 o U a:: 0 0 0 U \J.. \J.. 0 2r -j 0.5 0 Ia:: 0' ,0 0 40 80 120 160 200 240 280 320 NiTROGDI, pounds per acre Figure 9. Corn yield and yield ratio as a function of fertilizer

PAGE 40

34 power is maximized by crops characteristic transitions, and finally, production declines and a steady state is reached. Linear Programming for Land Use Model Based on inference from production function, it is hypothesized that when external energy sources become constant, the energy flows to the system and the structure within the system also tend to be constant. Thus, for a long-range land use plan, the strategy for the steady state is implied. The land use management is formulated to an optimization problem (Day, 1973), and simulated as a linear programming model. The problem, or alternative, revolves around the question of balancing agricultural, urban, and industrial expansion with natural land. Each system is functioned under its best management practice. The planning objective for the selection of land is the utilization of an energy criteria rather than the more commonly used profit maximization criteria. The energy value of land is defined as the total work done, or the net productivity of the subsystem measured at its boundary. Productivity, in units of energy Cal/acre, serves as a measure of value of the useful work that each subsystem does for the whole Energy provides a parameter for the assessment of the natural system, its productivity is a measure of the photosynthesis produced which eventually enters the foodchains of man and animal. For the urban and industrial sectors, productivity is measured as goods and services in terms of dollars and is converted to Calories of energy using an energy-dollar ratio. For the agricultural system, the productivity is measured by both the photosynthesis energy conversion, and goods and services of purchased energy dollar conversion.

PAGE 41

35 In energy maximization, the coefficients thus delineate the total useful energy production per unit of land. Estimates of the energy value of land for different production systems are summariezed in Table 5. Evaluation of the data source and computational methods have led to the selection of those considered representative for use in the problem formulati on. A hypothetical land use model is formed The selective values for this model are diagrammed in Figure 10. Figure 10 offers an aggregate view of the relationship of the production sectors to major inputs and outputs. The diagram displays nonlinear processes within each system, which determine the coefficients of each pathway. Water, fuel, and sunlight coefficients are calculated from the unit model. Technical coefficients for land resources are set at a value of 1 .0, indicating a one-to-one correspondence between resource input and production output. The pollutant contributor, nitrogen, is incorporated as a constraint and corresponding to the degradation of the environment, and their values are obtained from the study done by Loehr (1974) The approximation of input-output interdependency for a linear assignment among all sectors lends to standard linear programming technique. The decision variables, X's, represent land acreage, and the objective is to maximize the total useful energy and is expressed as: Maximize: ROBJ = CAXA + CNXN + CIXr + CUXU (16) where: X A = units of land allocated to agricultural sector, acres; X N = units of land allocated to natural sector, acres; XI = units of land allocated to industrial sector, acres; and Xu = units of land allocated to urban sector, acres.

PAGE 42

2.1 (4.1)* SECTOR 63.2 2.5 // .............. INDUSTR IA L "j) ..... SECTOR ........ L.----I............... I Land I' Gross Production ............ Net Production Figure 10 \ Xl J "t 1 1.0 I ( I '" s S -.. Heat a Was te Dispersed to Environment I ........................ ..... // / I I --1-------f"'''''':::--' I \L"d I \ ...... /2.7 1.1 2.5 2 A ---------'----........ -...-..... r 1-;'", J \ \ XN / \ \ I I I / 1-/ L..__ NATURAL ___ 1 ___ ---/ SECTOR \ I / / / --_ .......... AGRICULTURAL SECTOR Energy flow diagram for a hypothetical land use model Toto I Productivity ( Col x 10 ) Water Flows Energy a Production F lowsCO!{Jd06 ) CE!ocre-yr Pollut ion Flows -Kg/acre-yr .. Values geooroied throuQh simula1ion "" a. : .. -

PAGE 43

and 37 ; the energy value of productivity of the Cal/acre. land as measured by the net corresponding sectors, CE Requirements are resources constraints or availabilities, and are written as: Land Constraint: ROWL ; Water Constraint: ROWW ; Fuel Constraint: ROWF ; Solar Constraint: ROIVS ; Pollutant: ROWP ; where: aLAXA + aLN\; + aLrXr + aLUXU ; b L (17) aWAXA + aWNXN + aWrXr + aWUXU ; b W (18) aFAXA + aFN\; + aFrX r + aFUXU ; b F (19) aSAXA + aSN\; + aSrX r + aSUXU ; b S (20) apAXA + apNXN + aprX r + apUXU ; b p (21) ; the availability of land, water, fuel, solar, and pollutant in acres, acre-ft, Cals, Cals, and kg per year respectively, and = the number of units of resources required for each sector.

PAGE 44

CHAPTER V MODEL SIMULATION AND DISCUSSION Results of Hypothetical Land Use Model The hypothetical model, formulated in the previous section, is used to allocate land to four sectors under a variety of changing conditions while satisfying certain constraints. Constraints are added or removed, and conditions are altered to approximate changes in energy limitation, water availability, and pollutant contributor. Simulations are done on an in-house IBM System 370/165 computer, using a Mathematical Programming Systems Extended Program MPSX (IBM, 1971) written specifically for problems of this type. Data are entered into this program in matrix form. The decision variables are identified by columns of the matrix, and the rows of the matrix are used to identify the resource requirements and availabilities. First-run coefficients for the model are those calculated from the unit model. Preliminary model simulation yields knowledge through the use of parametric analysis (will be discussed under the section of sensitivity analysis) toward evaluating the first-run coefficients. Slight adjustment has been made as noted in Figure 10. A base solution is achieved which allocates land to four sectors expressed as percentages of total land (Figure 11). The results are within the range of Lee County land use distribution (Brown, 1976) Figure 11 displays both the land use modell's formulation and its base solution. Computer program control 38

PAGE 45

39 statement and matrix input data for land use model I are given in Appendices C-l and C-2. The base condition of water-use in land-use model I approximates that an area has a minimum water requirement which continues to increase as long as there is no upper limit imposed to the water available. This condition yields a base solution of land-use distribution of 15%, 62%, 15%, and 8% to agricultural, natural, industrial, and urban areas respectively, and contributes a total useful work of 41 x 10 9 Cal from approximately 1000 acres of land. The effect of changing fuel condition is also examined. Generally, decreased fuel availability brings about reduction in the urban sector, which has the largest fuel requirement. Figure 12(a) delineates the land-use distribution for four sectors due to 20% of fuel reduction, and the total energy productivity has decreased 19%, from 41 x 10 9 to 33 x 10 9 Cal. Changes in water resources reveal that rather small reductions bring about significant changes in land use. The industrial sector, which has the highest water needs, shows the greatest changes among other sectors. For example, as shown in Figure 12(b), when water is decreased to 12% of the base condition, the industry activity is completely ruled out. However, the total work done by the remaining sectors contributes 9 to 45 x 10 Cal, and increase of 9% compared to base solution. It is likely that pollution control laws may be relaxed in the near future. To simulate this situation, pollutant restriction has been loosened 33%. Figure 12(c) shows the response of the model to change in the pollutant constraint. The largest pollutant contributor, nitrogen, comes from the agricultural sector, and the subsequent changes in the constraint have the greatest effect on this sector. But, the total work

PAGE 46

o z < .-J .-J < f o f-,-'.. o <.;) < fZ l" o c:: u CL 40 Land Use Type: units of natural land Lee County X A ; units of agricultural land Natural 58-67% XI ; units of industrial land Agricultural 15-16% Xu ; units of urban land Urban & Indus. 17-27% Problem Formulation: Objective: Maximize l2.0XA + 8.0X N + 36.6X I + 368 .5XU Constrain: Land X A + X N + XI + Xu ; 1000 acre Water 2.7X A + + 5.2X I + 4.1X U .::. 3000 ac-ft Fuel 1.1XA + + 9 .4XI + 63.2X u .::. 6500 Cal Sun 2.5X A + + 2.5X I + .::. 2500 Cal Pollutant 5.47X A+ 2 .43XN+ 3.04X I+ 3. 24 Xu.::. 3040 Kg Solution: (XA X N XI' XU) ; (149.6, 621.5, 151.0, 77.8) acre Energy Productivity ; 40958 x 106 Cal 75r----------. .--50 -25 -XA 15% XI 15% o L .. __ Figure 11. Land use Modell's formulation and its base solution

PAGE 47

41 (0) FUEL REDUCED 20% 50 25 XI 16% OL-__ __ __ __ o Z (b) WATER DECREASED 12%
PAGE 48

42 done has increased slightly to 41 x 10 98al plus, 0.3% larger than the base solution. Sensitivity Analysis and Conclusion Intuitivity, energy production values calculated from the unit model may change as new assignments of land activity are added. This interdependency among land use activities implies that each object row coefficient is a function of the set of variables that influences the productivity of land; many of these variables are relate d to the quality of other land uses. Thus, in reality, the land resource allocation problem is nonlinear. In order to test the interaction and the stability of the problem solutions, the parametric linear programming technique (Gass, 1964) was used. Sensitivity analysis deals with the changes in solutions due to changes in data. The range through which values of the energy production coefficient can be varied for the solution to remain optimal and feasible were investigated. For example, the base condition of water-use in land-use model II simulates that water resource is the limiting factor in the area. The base condition differs in formulation from that of the land-use model I only in the objective row coefficients assigned to the productivities of the agricultural and industrial sectors. In the land-use model I, productivities of agricultural and industrial sectors are 12 x 10 6 and 36.6 x 10 6 Cal/acre, respectively (see Figure 11), while sensitivity analysis shows the number necessary for a base solution under the criteria of

PAGE 49

43 6 limited water resources (ROWW 2 3000 ac-ft) are 14.3 x 10 and 61.7 x 6 10 Cal/acre, respectively. Appendix C-3 lists land-use model II's formulation and its base solution. The results are similar to that of land-use model I. Since solar constraint is binding, it becomes intuitive that solar constraint is redundant to land constraint. Effects of changes in fuel, water, and pollutant constraints also show similar results to model I. For the purpose of determing if land allocations would change when water constraint changes from a physical unit (acre-ft/acre) to one using energy values of water (Cal/acre) estimated for each sector from the unit model, the land-use model I is reformulated by changing only the water requirement. In this simulation, no land is allocated to the urban sector. It appears that the energy value of water used in the urban sector is much higher than other sectors; thus, the urban sector is not able to compete with other sectors. This suggests that further evaluation on the energy value of water is needed, and some recommenda-tions follow. Recommendation for Future Study It has been stated in the beginning of this report that the present study is to investigate the energetic theory and its related concept; and to develop an analytic technique to aid in decisions on use of regional land and water resources. Further research is therefore needed on the application of the proposed procedure to practical problems, and on the modification of the scheme as a result of the future applied research.

PAGE 50

44 The immediate extension of the study on energetic theory would be the need of a uniform definition and evaluation on energy value. Currently, researchers are using a variety of concepts to assess energy problems and rank alternatives. There are some controversies over methodologies. The relationship between energy value of water and the marginal product value of water needs to be studied. The hypothesis which states that energy and economic analyses would yield similar results if inputs are priced according to their energy content alone needs t o be tested. If this is so, then energy and economic technology may be transferable and complement one another to the advantage of both. For the utilization of the procedures developed in this study, a good areal data base in evaluating the resource input and production output relationship would be required. Adequate algorithms should be developed by including natural energies, such as solar and water, into the data base to obtain input-output coefficients for optimization. Energy quality factor and coal equivalent factor could be generated by the conventional matrix inversion procedure of input-output economics. The results should be compared numerically with energy intensities derived by other researchers to see whether accounting for natural energies would introduce any significant changes in resource allocations. The direct application of linear programming technology in resources management is limited by constant assignment among competing demands. This implies a fixed production technology with constant return to scale. The assumption is valid in the short-run close to the time period in which coefficients are measured. This problem would be overcome with frequent data collection efforts. Thus, the dynamic impact resulting from temporal effects would be reflected in new objective function coefficients

PAGE 51

45 for the relevant time intervals. A recursive linear programming approach, which separates linear programming problems for each of a sequence of short planning periods, could be employed to the management aspect of the spatial and temporal resources allocation. The above recommendations and suggestions are made in the realization that this study, within the time and financial budget limitations, does not permit investigation of all the possible improvements and extensions that could be made to the proposed approach and its application to real situations. A realistic model for water should have it contributing to attract outside investment from urban and industrial systems as an interaction with basic production in agricultural and natural systems. The principle conclusion at this stage of the research is that it is possible to construct an operational resource allocation model based on energy analysis theory. Coupling of nonlinear energetic models with linear resource allocation models would allow one to look forward when analog computers programmed with unit models generate coefficients that could be sent to digital partners that simulate resource allocation problems.

PAGE 52

REFERENCES American Society of Civil Engineers, 1973. Consumptive Use of Water and Irrigation Water Requirements, Irrigation and Drainage Division. Bayley, S.E., H.T. Odum, and W.M. Kemp, 1976. Energy Evaluation and Management Alternatives for Florida's East Coast, Transactions of the 41st North American Wildlife and Natural Resources Conference, Wildlife Management Institute, Washington, D.C. Brown, M.T., 1976. Lee County: An Area of Rapid Growth, The South Florida Study, Department of Administration, Division of State Planning, Tallahassee, Florida. Bullard, C. W., III, 1975. Energy Costs, Benefits, and Net Energy. CAC Document No. 174, Center for Advanced Computation, University of Illinois at Urbana-Champaign, Urbana, Illinois. Butkovich, G., and H.P. Heaney, 1975. MUlti-Objective Analysis of the Upper St. Johns Water Resources Project, paper presented at the ORSA/TIMS Joint National Meeting, Chicago, Illinois. Chow, V.T., 1964. Handbook of Applied Hydrology, McGraw-Hill Book Company, New York. Criddle, W.D., 1958. Methods of Computing Consumptive Use of Water, Proceedings of the American Society of Civil Engineers, Journal of Irrigation and Drainage Division, Vol. 84, No. IR1, pp. 1-27. Day, J.C., 1973. A Linear Programming Approach to Floodplain Land Use Planning in Urban Areas, American Journal Agricultural Economics, pp. 165-173. DeBellevue, E.B., 1976. Energy Basis for an Agricultural Region: Hendry County, Florida, M.S. Thesis, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida. Gass, S.L, 1964. Linear Programming: Methods and Applications, 2nd Edition, McGraw-Hill Book Company, New York. Hall, W.A., and J.A. Dracup, 1970. Water Resources System Engineering, McGraw-Hill Publishing Company, New York. Harrison, D.S., 1975. Irrigation Systems for Agricultural Crop Production in Florida, Agricultural Engineering, Extension Report 75-2, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida. 46

PAGE 53

47 Heichel, G.H., 1976. Agricultural Production and Energy Resources, American Scientist, Vol. 64, No.1, Jan-Feb., pp. 64-72. Herendeen, R.A., and C.W. Bullard, III, 1974. Energy Costs of Goods and Services, 1963 and 1967. Document No. 140, Center for Advanced Computation, University of Illinois at Urbana Champaign, Urbana, Illinois. IBM, 1971. MPSX Multiple Programming System Extended, Control Language User's Manual, Program Number S-734-xm4, International Business Machines, Inc., First Edition. Kylstra, C.D., 1974. Eriergy Analysis as a Common Basis for Optimally Combining Man's Activities and Nature, Energy Center, University of Florida, Gainesville, Florida. Leach, G., and M. Slesser, 1973. Energy Equivalents of Network Inputs to Food Production Processes, University of Strath-Clyde, Glasgow. Leontief, W., 1966. Input-Output Economics, Oxford University Press, New York Loehman, E.T., and R. McElroy, 1976. Input-Output Analysis as a Tool for Regional Development Planning, Economics Report 77, Food and Resource Economics Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida. Loehr, R.C., 1974. Characteristics and Comperative Magnitudes of Nonpoint Sources, Water Pollution Control Federal; 46 (8), pp. 18491872. Lotka, A.J., 1922. Contribution to the Energetics of Evolution, Proceedings of the National Academy of Sciences, 8: 147-155. Mayr, E., 1977. Darwin and Natural Selection, American Scientist, Vol. 65, No.3, May-June, pp. 321-327. Munson, R.D., and J.P. Doll, 1959. Advanced Agriculture, Vol. II, p. 133. Odum, E.P., 1971. Fundamentals of Ecology, 3rd Edition, W.B. Saunders Company, Philadelphia. Odum, H.T., 1970. Energy Value of Water Resources, Proceedings, 19th Southern Water Resources and Pollution Control Conference, Duke University, Durham, North Carolina. Odum, H. T., 1971. Environment, Power, and Society, WileyInterscience, New York. Odum, H.T., 1975. Energy Quality Interactions of Sunlight, Water, Fossil Fuel, and Land, Proceedings of the Conference on Water Requirements for Lower Colorado River Basin Energy Needs, University of Arizona, Tucson, Arizona.

PAGE 54

48 Odum, H. T., and E.C. Odum, 1976 Energy Basis for Man and Nature, McGraw-Hill Publishing Company, New York. Odum, H.T., C. Kylstra, J. Alexander, et al., 1976. Net Energy Analysis of Alternatives for the United States, Hearing before the Sub committee on Energy and Power of the Committee on Interstate a nd Foreign Commerce, House of Representatives, 94th Congress, Washington, D.C. Pimentel, D., L.E. Hurd, A.C. Bellotti, M.J. Forster, I.N. Oka, O.D. Sholes, and R.J. Whitman, 1973. Food Production and the Energy Crisis, Science, 189, pp. 443-449. Pimentel, D., W. Dritschilo, J. Krummel, and J. Kutzman, 1975. Energy and Land Constraints in Food Protein Production, Science 190, pp. 754-761. Wang, F.C., and K.F. Heimburg, 1976. Hydrologic Budget Model, pages 68-109 in Cypress Wetlands for Water Management, Recycling and Conservation, Third Annual Report to NSF and The Rockefeller Foundation, Center for Wetlands, University of Florida, Gainesville, Florida.

PAGE 55

APPENDIX A Research Contribution From: Dr. Howard T. Odum, Director Center for Wetlands University of Florida May, 1977 Energy Value of Water Relationship of Energy Effect to Energy Cost

PAGE 56

ENERGY VALUE OF WATER H.T. Odum May 1977 The flow of water carries several forms of energy including thermal energy of its heat content, potential energy of its elevation against gravity, potential chemical energy of its purity relative to a state full of salts. These are evaluated in heat equivalents. Energy of water also includes the energy costs and effects of special dissolved or sus-pended substances. The energy effect of these can be estimated from their amplifier action, positive or negative, on production processes of known quality. Potential energies of water are generated by the solar heat engines in the main processes of the biosphere. From energy analysis of this system, energy cost of these processes are estimated. Human efforts to duplicate the process are systems such as desalination, water pumping into elevated storages, and heating of water. The energy costs of storing water energies, from data looked at so far, are higher with human devices than with solar energy. This may turn out to be a general characteristic of our times, having a high ratio of high quality fossi l fuels interacting with renewable process, as compared with times before fossil fuels were used very much. The human system, by using fuel storages fast, gains more speed and power in exchange for loss of efficiency. Power is maximized. The human system gains control at the expense of good conversion. Thus, the energy replacement cost in human porcesses may be higher than the energy cost of the natural process. so

PAGE 57

51 It may be reasoned that energy uses should feedback with amplifier action equivalent to their cost or potential effects are lost. If, however, there is a generally high ratio of fuel-based investments to solar processes, then the ratio of feedback to effect obtained may be less and still be competitive, since higher ratios go with winning competition under times of greater investments from storage (greater power flow). The effect of water depends on its ratio as a limiting factor, and when fairly limiting it can have an effect equal to cost or at least an effect which is in ratio to cost, as is the investment ratio. Using water so it has a high effect involves using it in interaction with energy of lesser quality, which includes use of water with fossil fuel-based activity or organic production. The situation is more complicated when the water is part of solar energy transformation that attracts and interacts with the fuels. A unit of water seems to amplify fuel-based economic activity more, but only if the economic activity has already been attracted. Thus, some water must go rural to attract and some must go to facilitate the fuel attracted. See model in Figure 1. A model for water should have it contributing to attracting outside investment as an interaction with basic production in agriculture and natural systems. The model should have water being adjusted so as to maximize the attraction of external energy investment and also supplying this investment with enough water so as not to limit the attraction's need for water in direct use (pathway 3). Linear programming model should use this relation of renewable and purchased energy rather than a single adding on the assumption that the purchased energy is automatically there. See examples and regions given in Colorado Basin paper by Odum (1975).

PAGE 58

/ I / / :./ 113 k Agriculture Natural -=--A B ... c">/ / / / l, $ { l -Fig. 1. Relation of water to economic development. To maximize $ and total power, A + i so that C is largest but with enough water at #3 pathway. '" N

PAGE 59

RELATIONSHIP OF ENERGY EFFECT TO ENERGY COST WHEN HIGH QUALITY ENERGY IS IN EXCESS H.T. Odum May 1977 A general graph of effect in terms of energy cost may be used based on the principle that effect will be a limiting factor hyperbole. As more B is added as from fossil fuels, cost on both arms (1 and 1 in Figure 1) where the high quality arm can be generated as a by-product of the process as a feedback. The graph (Figure 2) shows the point where the investment ratio of high quality excess is 2.S to 1. Finally, an asymptote is reached beyond which one cannot go. For controlling a renewable flow the pumping is also proportional to the intersection function (i.e., in this example: k AB). o Thus, the addition of external B in excess in competition with self-generated B (upper diagram) takes energy from the looped process. In Figure 3 the action of controls Fl and F2 are to compete for renewable flow J and each draws in proportion to its high quality o effect. The effect produced, however, is not linear but follows a limiting factor hyperbola curve as given in Figure 2. Fl draws more, but has proportionately less effect. Therefore, the ratio of energy diverted into the process dominated by excess high quality energy is in ratio as Fl and F 2 a ratio of the cost equivalents of the energy used; the productions, however, PI and P 2 are in lesser ratio since P 2 is less effective than PI' because it is not matching its arms of interaction. The relationships in the tropical ecology paper (Odum, 1976) deal with use of solar energy according to Fl and F2 but the energy effect of S3

PAGE 60

54 the production processes was taken as proportional to solar cost equivalents used. Actually, the output of PI is somewhat greater than that fraction of solar energy diverted at Jl

PAGE 61

I A-----J Fig. 1. -.. asymptote when B is very __ B is rela tive tal I A. ;1---7f Effect equivalents 1. 55 I quality arm p I B A----J B (Cost equivalents in Calories of sunlight} high quality arm from p -Fig. 2. Energy effect for energy cost equivalents of excess feedback arm.

PAGE 62

56 cost equivalents F2 = P 2 in cost equivalents --Fig. 3. Division of energy according to effect of self developed control and external controls in excess.

PAGE 63

APPENDIX B DATA SOURCE INFORMATION AND COMPUTATION

PAGE 64

Table B-1. Relationship between solar energy input and crop production Crop Sugarcane (Hawaii) Irrigated Maize (Israel) Sugar Beets (England) Solar Radiation cal/m2/day 4000 6000 2650 Gross Production 2 Cal/m /day % = Gross/Solar 306 7.6 405 6.8 202 7.7 DATA SOURCE: Odum, E.P. (1971, Table 2-4, p. 45) Net Production 2 Cal/m /day % = Net/Solar 190 4.8 190 3.2 144 5.4 U1 00

PAGE 65

Table B-2. Estimation of fossil fuel equivalents for major crops of south Florida Solar Energy Fossil Fuel Crop. Fuel Energy CE CroE Yiela Energy Quality Equivalence 106 Cal/ac/yr 106 Cal/ac/yr 106 Cal/ac/yr Factor Factor (1) (2) (3) (4) = [(1) + (2)]/(3) (5) -1/(4) Vegetables 32.3 1.0 1.1 29.4 0.03 Tomato Cucumber Bell Pepper Watermelon '" Citrus 7.2 4.1 3.8 2.9 0.34
PAGE 66

60 B-3. Notes and computations for Table 4 1 A $1,000,000 increase in exports will require 2971 acres of land, and will yield a sector's net produCtion of $1,118,700 = 27,967 x 106 Cal (energy money ratio, 25,000 CaliS is used, Odum & Odum, 1976), the energy value of land for agricultural crops is about (27,967 x 10 6 Cal) /2971 acres = 9.41 x 10 6 Cal/acre. 2 One pound of coal = 8,500 BTU = 2125 Cal (Bureau of Mines, 1972), 6 tons of coal = (6 tons) (2000 Ibs/ton) (2125 Cal/lb) = 26 x 10 6 Cal. 3 One barrel of oil = 1.6 x 10 6 Cal (leach, 1975), 1873 bbls of fuel oil = (1873 bbls) (1.6 x 10 6 Cal/bbl) = 2997 x 10 6 Cal. 4 One cubic feet of gas = 275 Cal, and the energy intensity of natural gas = 1.16 BTU/BTU (Herendeen & Bullard, 1974), 372 x 10 3 cubic feet = (372 x 10 3 ft3 ) (275 Cal/ft3 ) (1.16) = 119 x 10 6 Cal. 5 One Kwh of electricity = 860 Cal, and the energy intensity of electricity = 3.89 BTU/BTU (Herendeen & Bullard, 1974), 22 x 10 3 Kwh = (22 x 10 3 Kwh) (860 Cal/Kwh) (860 Cal/Kwh) (3.89) = 74 x 10 6 Cal. 6 Total fossil fuel energy = coal + fuel oil + gas + electricity = 3216 x 106 Cal CE = (3216 x 10 6 Cal)/(2971 acres) = 1.08 x 10 6 Cal/acre. 7 Assuming 50% of waste water is reCYCled, the total water consumed is the sum of waste water, water intake, and public intake: 3 3 3 3 2,368,015 x 10 gal + 219,372 x 10 gal + 108 x 10 gal = 2,587,495 x 10 gal = (2,587,495 x 103 gal)/(3.25 x 105 gal/acre-ft) = 7961 acre-ft = (7961 acre-ft)/(2971 acres) = 2.68 acre-ft/acre. 8 Solar energy is estimated as 2.51 x 10 6 CE Cal/acre; energy value of water is computed from the energy balance based on fossil fuel equivalents: Water energy = yield energy -solar = (9.41 -2.51 1.08) energy -fuel energy 6 x 10 Cal/acre = 5.82 6 x 10 Cal/acre.

PAGE 67

Table B-3. Examples of economic expansion effects on productivity nnd resource use Economic Account Increase in Export ($) Total Output ($) Import ($) Regional Product (10 6 Cal) Environment Account Increase in Land (acres 106 Cal/ac) Increase in Coal (tons 106 Cal) Increase in Fue l Oi! (bbls 10 6 Cal) Increase in Gas (10 ft3 + !06 Cal) Increase in Electricity (10 kwh + 106 Cal) Increase in Fuel Inputs ( 106 Cnl) (10 6 Cal/acro) lnCreD-S6 in Waste Water (103 gal) Increase in Water Intake (l033ga 1) Increase in Public Intake (10 gal) Water Inputs (10 3 gal) (ae-ft .... nC-ft/acrc) Energy Balanco Yield Energy (10 6 Cal/acre) Solar Energy (10 6 Cal/aere) Fuel Energy (10 6 Cal/acro) Water Energy (106 Cal/acre) DATA SOURCE; Lochman and McElroy (1976) Sector 11 & Sugar Products (flour, cereal, sugar) 1,000,000 1,418,400 493,000 507,000 12,675 453'" 27.98 246 1,045 570... 512 10,914 ... J,481 116... 388 5,426 II. 98 89,330 4,510 745,669 833 ,s09 2,565 + 5.66 27.98 2.51 11.98 13.49 Sector 12 Bottling 8 Canning (beverages, etc) 1,000,000 1,435,300 398,900 601,100 15,028 410... 36.65 106... 451 482... 771 5,174 + 1,650 293... 980 3,852 9.40 634,353 51,846 7,433 693,632 2,134+ 5.21 36.65 2.51 9 .40 24.74 Sector 7 Building Construction (Residential & .Non-res.) 1,000,000 1,367,500 380,900 619,100 15,475, 42 ... 368;50 84 ... 357 145 .... 232 4,320'" 1,378 205 .... 686 2,6'53 16,498 10,722 998 "28,'21'8 86.8 + 63.20 2 .07 368.50 2.51 63.20 302.79 a->-'

PAGE 68

APPENDIX C COMPUTER PROGRAM INPUT INFORMATION AND ADDITIONAL RESULTS

PAGE 69

Appendix C-l: Computer Program Control Statement The computer system control cards for executing MPSX program ... are listed as follows: IIENERGY JOB (1006, 0010, 1, 1, 0), 'WANG/LEH}IA.'l', CLASS=S I*PASSWORD 001, WATER II EXEC MPS I IICONTROL. SYSIN DD PROGRAM INITIALZ MOVE (XDATA, 'RESOURCEALLOCATIONl') MOVE (XPBNAME, 'PBFILE') CONVERT (' SUMMARY' ) SETUP PICTURE MOVE (XOBJ, 'ROBJ') MOVE (XRHS, 'RHSl') PRIMAL SOLUTION RANGE EXIT PEND 1* IIPROBLEM.SYSIN DD

PAGE 70

64 Appendix C 2: Input Data of Land-Use Model I The following listing is the entire input data deck needed to solve Land-Use Model I, the base condition problem, using MPSX: NAME ROWS N ROBJ E ROWL G ROWW L ROWF L ROWS L ROWP COLUMNS RHS XA XA XA XA XA XA XN XN XN XN XN XI XI XI XI XI XI XU XU XU XU XU XU RHSl RHSl RHSl RHSl RHSl E NDATA /*EOJ RESOURCEALLOCATIONl ROBJ ROWL ROWW ROWF ROWS ROWP ROBJ ROWL ROWW ROWS ROWP ROBJ ROWL ROWW ROWF ROWS ROWP ROBJ ROWL ROWW ROWF ROWS ROWP ROWL ROWW ROWF ROWS ROWP -12.0 1.0 2.7 1.1 2.5 5.47 -8.0 1.0 2.4 2.5 2.43 -36.6 1.0 .5.2 9.4 2.S 3.04 -368.5 1.0 4.1 63.2 2.5 3.24 1000.0 3000.0 6500.0 2500.0 3040.0

PAGE 71

0 z -l -l to t-tL. 0 w <.? I-z W U c::: w c... 65 Appendix C -3: Land-Use Model II's Formulation and Its Base Solution LandUse Type: X N = acres of natural land ... X A = acres of agricultural land XI = acres of industrial l an d Xu = acres of urban land Problem Formulation: Objective: Maximize 14.3X A + + 61.7X I + 368.5X U Constraint: Land X A + X N XI + = 1000 Water 2.7X A + + 5.2X I + 4.1X U < 3000 Fuel 1.1X A + + 9.4Xr + 63.2X U 6500 acre acre-ft Cal Pollutant 5.5X A + 2.4X N + 3.0X I + 3040 Kg Solution: ': (XA X N XI' XU) = (149.6, 621.5, 150.0, 77.8) acre Energy Productivity = 45093 x 10 6 Cal 75 XN 62% 50 25 X A IS% XI 15% Xu BO/o 0 rim

































APPENDIX B
DATA SOURCE INFORMATION AND COMPUTATION








Odum, H.T., and E,C. Odum, 1976. Energy Basis for Man and Nature,
McGraw-Hill Publishing Company, New York.

Odum, H.T., C. Kylstra, J. Alexander, et al., 1976. Net Energy Analysis
of Alternatives for the United States, Hearing before the Sub-
committee on Energy and Power of the Committee on Interstate and
Foreign Commerce, House of Representatives, 94th Congress, Washington,
D.C.

Pimentel, D., L.E. Hurd, A.C. Bellotti, M.J. Forster, I.N. Oka, O.D.
Sholes, and R.J. Whitman, 1973. Food Production and the Energy
Crisis, Science, Vol. 189, pp. 443-449.

Pimentel, D., W. Dritschilo, J. Krummel, and J. Kutzman, 1975. Energy
and Land Constraints in Food Protein Production, Science 190,
pp. 754-761.

Wang, F.C., and K.F. Heimburg, 1976. Hydrologic Budget Model, pages 68-
109 in Cypress Wetlands for Water Management, Recycling and
Conservation, Third Annual Report to NSF and The Rockefeller
Foundation, Center for Wetlands, University of Florida, Gainesville,
Florida.








B-3. Notes and computations for Table 4


A $1,000,000 increase in exports will require 2971 acres of land,
and will yield a sector's net production of $1,118,700 = 27,967 x 106
Cal (energy money ratio, 25,000 Cal/$ is used, Odum & Odum, 1976), the
energy value of land for agricultural crops is about (27,967 x 106 Cal)
/2971 acres = 9.41 x 106 Cal/acre.
2 One pound of coal = 8,500 BTU = 2125 Cal (Bureau of Mines 1972),
6 tons of coal = (6 tons) (2000 Ibs/ton) (2125 Cal/lb) = 26 x 106 Cal.

3One barrel of fuel oil = 1.6 x 10 Cal (leach, 1975), 1873 bbls
of fuel oil = (1873 bbls) (1.6 x 106 Cal/bbl) = 2997 x 106 Cal.

One cubic feet of gas = 275 Cal, and the energy intensity of
natural gas = 1.16 BTU/BTU (Herendeen & Bullard, 1974), 372 x 103 cubic
feet = (372 x 103 ft3) (275 Cal/ft3) (1.16) = 119 x 106 Cal.

One Kwh of electricity = 860 Cal, and the energy intensity of
electricity = 3.89 BTU/BTU (Herendeen 6 Bullard, 1974), 22 x 103 Kwh =
(22 x 103 Kwh) (860 Cal/Kwh) (860 Cal/Kwh) (3.89) = 74 x 106 Cal.
6Total fossil fuel energy = coal + fuel oil + gas + electricity
= 3216 x 106 Cal CE = (3216 x 106 Cal)/(2971 acres) = 1.08 x 106 Cal/acre.

Assuming 50% of waste water is recycled, the total water consumed
is the sum of waste water, water intake, and public intake:
2,368,015 x 103 gal + 219,372 x 103 gal + 108 x 103 gal = 2,587,495 x 103 gal
= (2,587,495 x 103 gal)/(3.25 x 105 gal/acre-ft) = 7961 acre-ft
= (7961 acre-ft)/(2971 acres) = 2.68 acre-ft/acre.

8Solar energy is estimated as 2.51 x 106 CE Cal/acre; energy value
of water is computed from the energy balance based on fossil fuel
equivalents:
Water energy = yield energy solar energy fuel energy
= (9.41 2.51 1.08) x 106 Cal/acre = 5.82 x 106 Cal/acre.





PAGE 1

Development of Natural and Planted Vegetation and Wildlife Use in the Lake Apopka Marsh Flow-Way Demonstration Project FINAL REPORT by John Stenberg', Mark Clark'and Roxanne Center for Wetlands University of Florida Gainesville, Florida and 2St. Johns River Water Management District Palatka, Florida edited by Joseph Prenger Prepared for: St. Johns River Water Management District Palatka, Florida Contract # 89B005 (SWIM 1O-43-6420-3103-DIST-31500) 1997

PAGE 2

I. INTRODUCTION This research project provides information about vegetation and wildlife community development and control of vegetation community development in the Lake Apopka Marsh Flow-Way Demonstration Project. Information from this study will be used to help guide the design, construction and management of a full scale Lake Apopka Marsh Flow-Way. VEGETATION COMPONENT Until this project little information was available about "old-field" succession in wetland ecosystems. The successional process occurring in the study area is defined as secondary rather than primary because the site was not devoid of organisms (GlennLewin and van der Maarel 1992). Previous site manipulation drastically changed the site, but not to the extent that it was beginning a successional process without propagules or on a newly formed substrate. There exists a long history of studies on upland old-field succession in northern temperate areas within recovering agricultural lands (Bazzaz 1976, Odum 1960, Wiegert and Evans 1964, and Zedler and Zedler 1969). Much of the early theoretical work in ecology centered around observations of abandoned farmland in North America. Many familiar paradigms in today's ecology originated from these studies. They include: Succession begins with the establishment of an annual plant community that rapidly shifts to a shrub community which then is replaced by a forest. The forest is stable and remains intact for a long period of time unless it is distuIbed by some exogenous force such as wind or fire, and The successional pattern is predictable and generally driven by local climate. In other words, if the ecosystem is left alone it will return to a "normal" state (peet 1992). Contemporary successional paradigms don't accept a simplistic view of plant community succession. McCook (1994) provides a useful analysis of the various successional theories in use today. He suggests that there are generally accepted patterns of succession including: initial conditions are important, species replacements occur over time, and successional theories tend to be incomplete and somewhat fragmented. His statement, which is a condensation of past theory and a guide for the study and management of plant community succession, consists of three conditions: Life history strategies employed by various species will determine how they respond to the available environmental conditions; Competitive interactions determine the relative success of species within an ecosystem; 1

PAGE 3

Sorting of species along environmental gradients will result from the interplay of life history strategies and competitive interactions. This theoretical statement says that species with the ability to establish, survive and compete with other species along an environmental gradient will determine the character of successional patterns. Understanding these various components may lead to a moderately correct prediction of successional patterns. This study was initiated before the publication of McCook's paper, but included many of its criteria for predicting successional patterns. Life history strategies may be inferred from long-term measurements of species presence/absence, cover, density, height, and phenology, and measurements of seed bank, and seed dispersal. Competitive interactions may be inferred from measurements of species performance under conditions of manipulated (e.g. planted) versus un-manipulated (e.g. unplanted) sites within the developing marsh. Sorting along environmental gradients may be addressed by the downstream placement of study plots. With this information we can generate a conceptual model of how ecosystem development may occur on this site. WILDLIFE COMMUNITIES AND mGH NUTRIENT ENVIRONMENTS Constructed Wetlands and Habitat Ouality Many studies have been conducted on the most effective methods of designing and managing constructed wetlands to enhance habitat qUality. Marble (1992) discussed methods that may enhance wetland dependent bird diversity. She suggested the use of complex/cluster wetlands to create a variety of habitats. Suggestions for vegetation class interspersion, richness, and canopy also were given that focus on enhancing bird populations. Knight (1992) explained that significant losses of vegetation and animals may occur as a result of high loadings of pollutants. He suggested that water flow and depth control may affect primary productivity of the wetland and the ability of the wetland to effectively treat nonpoint source pollution. He suggested that greater flows in shallow water provide higher dissolved oxygen levels leading to higher secondary productivity. Deeper water can limit oxidation of organic matter and plant growth. The wetland design should include a flexible hydroperiod to allow for maximum growth of emergent vegetation over submerged vegetation and algae. Hammer (1992a) predicted that high loading of nutrients into a system would allow Typha spp., Salix spp., or other woody shrubs to dominate and reduce the ecosystem's diversity. Hammer (1992b) also found that manipulation of the water level alone can sustain a diverse, complex, and productive marsh for many years. Furthermore, fluctuations of water levels may create more ecological niches. Wildlife production is generally high for constructed wetlands receiving high concentrations of nutrients (Hammer 1992a, Hammer 1992b, McAllister 1993a, 2

PAGE 4

McAllister 1993b, Streever and Crisman 1993, Kale 1992, McAllister 1992, Knight 1992, Rader and Richardson 1992, Kerekes 1990, Maehr 1984). Edelson and Collopy (1990) conducted a study of wading bird utilization of a hypereutrophic lake, and concluded that the abundance of fish stimulated a large population of egrets and herons. Van Home (1983) correlated habitat diversity and wildlife species by the ratio of generalist to specialist species in managed areas. A positive correlation between habitat quality and species density cannot be assumed without supporting demographic data. Home defined habitat quality as the relative importance of a certain habitat type in maintaining wildlife. He suggested that management plans should not be adopted on the basis of species surveys or censuses conducted for one year or less. Factors Affecting Avian Community Structure Based on studies of marshes in Iowa, Weller and Spatcher (1965) suggested that the majority of common marsh birds preferred a combination of dry and open areas, and areas of extreme coverage or extreme openness were not preferred by anyone marsh bird species. "Edge" areas were attractive only when open pockets of water were present. Interspersion of open areas that could be connected by animal trails were determined to be more important than cover to open water ratios in determining habitat suitability for marsh birds. Joyner (1980) found that pond selection by ducks in Ontario was partially determined by invertebrate density. Voigts (1976) determined that invertebrate abundance increased as submergent vegetation replaced emergent vegetation and that marshes with submerged vegetation (suggesting openness) interspersed with emergent vegetation (suggesting cover) maintained the greatest invertebrate abundance. Nesting birds preferred marshes with the highest numbers of invertebrates. Murkin (1982) discovered that on experimental plots of various cover:water ratios, dabbling ducks preferred the 50:50 plots. This study supported the theory that maximum avian use and production occurs during the "herni-marsh" phase of the marsh cycle. Invertebrate abundance also was positively correlated with marsh usage by waterfowl. However, invertebrate abundance was not affected by cover removal. Visual cues of openness may be the primary factor used by waterfowl to select areas of greatest invertebrate abundance. Leschisin et al. (1992) suggested that vegetative factors such as cover, species diversity, and wetland age may affect waterfowl usage of wetlands. Their study revealed that breeding waterfowl may select a marsh based only on physical characteristics, with preference to submerged vegetation. This study did not include an analysis of water quality, or the macroinvertebrate and fish populations. Wilcox and Meeker (1992) found that structural complexity and species diversity of the plant community was important to providing habitat for invertebrates, thus affecting the availability of a food source for fish and birds in marshes. Water depth fluctuation affected both plant structure and diVersity. No, or infrequent, water fluctuation reduced the plant diversity and negatively affected invertebrate populations 3

PAGE 5

However, large aquatic macrophytes tended to dominate their study sites. It was suggested that large fluctuations in water depth could lead to a lack of larger canopy plants resulting in reduced habitat for invertebrates and protective cover for fish and birds. In a study of plant-macroinvertebrate associations with waterfowl, one gram of animal biomass was associated with every 100 grams of plant life (Krull 1970). Although there was no differentiation between overall percent cover types, it was noted that plants considered to be poor waterfowl food can harbor large quantities of macroinvertebrates, thereby increasing the area's utility for waterfowl. OBJECTIVES Awssment of ExJ;!erimental Planting Areas and Natura! Succession Transects. This assessment introduces studies that were designed to provide information about the succession of agricultural land to freshwater marsh after flooding and to determine if the inclusion of preferred species will enhance the succession of this new marsh. Assesgpent of Experimental Planting Treatments. The objective of this subtask was to determine the nature of plant community development within three Experimental Planting areas. In 1991 a contractor selected by the SJRWMD completed planting in three five-acre experimental blocks located within the marsh flow-way. The successional development of these three areas containing a variety of experimental treatments was monitored. Each site contained planted, seeded, mulched, and control treatments. These treatments were chosen to test the survivability, competitiveness, and colonization potential of a suite of wetland species. The experimental planting sites provided information about the feasibility of enhancing plant community succession to a desirable species composition. These sites also provided insights into plant community development in the presence of cattail (Typha latifolia), an invasive, potentially site dominating plant species. Assessment of Natural Succession -Structure and Composition This subtask provided an assessment of successional development of the natural marsh and was compared to succession in the experimental planting areas. This assessment was undertaken to determine successional development without site manipulation or succession enhancement through planting. Assesgpent of Natural Succession Aboye-and Below-ground Biomass Dynamics This assessment provided insights into the vegetation biomass dynamics in the natural succession area of the marsh. Above and below ground biomass data were collected in order to determine the partitioning of biomass in the ecosystem over time. 4

PAGE 6

The vegetation samples provided material for tissue nutrient analysis conducted by the University of Florida Department of Soil and Water Sciences. Reproductiye Potential from seed for plant commnnities in the Lake ADOJ.)ka Marsh The purpose of this task was to determine phenology of seed production (presence of flowers and fruits); assess the effect of water depth on seed germination; assess the role of air and water in seed dispersal in the marsh; determine the potential role of the seed bank in plant community dynamics; and determine seasonal patterns of flowering and fruiting in the marsh. Literature related to seed resources can be found in Leek, et aI. (1989) and Fenner (1992). Regenerative capabilities of vegetative communities are dependent on two strategies: sexual reproduction from seed, and asexual reproduction (clonal) from rhizomes, stolons, or other means of vegetative growth. Wetland ecosystems tend to contain a preponderance of species that use clonal growth to increase and maintain population sizes. Seeds are an important part of the reproductive potential of a wetland community, but seeds make their greatest contribution to community regeneration or expansion during the periods when water levels recede to a low enough point to allow seed germination (van der Valk 1992). Understanding the regenerative potential of plant species found in the marsh will help managers devise management strategies for promoting or retarding these species. Reproductiye Phenology Reproductive phenology was studied to provide information on flowering and fruiting phenology in the marsh in the natural succession areas and planting sites. Seed Germination This assessment was designed to provide information about the seed germination requirements of various plant species (preferred and nuisance) in the marsh, including the effects of shallow flooding on germination of target species within the marsh. Species of interest included: (1) dominant species found in the natural marsh, (2) planted species in the experimental planting site, and (3) obligate hydrophyte species (as defined by Reed 1989) found in the local area. Seed Dispersal The seed dispersal assessment was designed to provide information about seed dispersal to and from the Planted Sites. This information will provide insights into the understanding the seed flow patterns in the marsh. Soil Seed Bank Soil seed banks have been identified as sources of propagules for the regeneration of disturbed ecosystems. In some cases seeds have remained viable in the soil for long periods of time and have provided an opportunity to contribute to vegetation community restoration (van der Valk, A.G. and R.L. Pederson. 1989, van der Valk, 5

PAGE 7

A.G and J.T.A. Verhoeven 1988, and van der Valk, A.G., R.L. Pederson, and C.B. Davis. 1992). In the case of the Lake Apopka Marsh, with anticipated management strategies including long hydroperiod and water depth greater than 50 cm, the seed bank may not contribute favorable wetland species to restoration of preferred species because farming activities have included intensive site management techniques to remove competing plant species and reduce water levels Clonal Growth Clonal growth, an asexual reproductive strategy common to many wetland species, was studied to determine its contribution to the development of the marsh. Wetland species use this strategy to take advantage of environmental conditions that often are not acceptable for seed germination (e.g. deep flooding for long periods). This study was designed to compare the growth rates of rhizomes from a set of target species in the Planted area, including P01l1edaria cordata, Sagiltaria lancifolia, Scirpus californicus, and Typha latifolia. Wildlife Component This portion of the Apopka Demonstration Project Report identifies the population dynamics of the emerging wildlife communities utilizing the marsh from August 1991 through November 1993. Avian communities were used as the primary indicators of habitat quality for this study for the following reasons : 1) birds are easy to observe; 2) they engage in community dynamics; and 3) other studies have shown that birds are often sensitive to changes in wetland structure and function (Edelson and Collopy 1990, Cable et al. 1989, Frederick and Collopy 1988, Kroodsma 1978). In addition, Edelson and Collopy (1990) determined that constructed wetlands can provide suitable habitat for many avian species. A limited fish survey is included in this report to supplement the avian surveys in the description of the wildlife communities using the project site. Only the south and unmanaged marshes of the demonstration project were sampled. 6

PAGE 8

II. STUDY SITE The study marsh is located on the northwest shore (28 40'N Latitude, 80 39W Longitude) of Lake Apopka in Lake County, Florida (Figure I). Lake Apopka is located in the headwaters of the Ocklawaha River basin, downstream and northeast of the Green Swamp. Before it was farmed, the site was a sawgrass/roixed shrub marsh (1940 USGS Aerial Photograph, 1842 Surveyers Map). Landscape changes began in the 1880s with the digging of the Apopka-Beauclair Canal. The canal connected Lake Apopka to Lake Beauclair Prior to the canal, Lake Apopka probably drained overland through a hardwood swamp forest to the northwest into Little Lake Harris The canal seems to have reduced the water level in Lake Apopka based on observations of a present day difference in water level between Lake Apopka and downstream lakes (USGS hydrodata) Conversion of marsh into agricultura1land began during the late 1940s. Most of the marsh area was converted to farmland by the middle 1950s. Lake eutrophication progressed as a result of oxidized soil releasing nutrients into drainage water, fertilizer application in farming, discharge from a nearby citrus processing plant, and sewage effluent discharge from the community ofWmter Garden. Lake Apopka restoration plans began in the 1970s as water quality degraded and the lake's recreational fishery declined. Restoration efforts have continued with land acquisitions and the establishment of the Lake Apopka Marsh Demonstration Flow-Way Project. PHYSICA L CHARACTERISTICS Climate in this region is transitional between subtropical and temperate (Chen and Gerber 1991). This pattern is evident from the cool, slightly rainy winters, dry fall and spring seasons, and hot wet summers (Figures 2 and 3). Wmter temperatures below freezing are infrequent, resulting in a nearly continuous growing season for vegetation Soil at the site is a 10 cm to 1 m thick veneer ofhistosol over clay and sand (Lake Co. Soil Survey; Pers Obs.). Fifty years offarming has resulted in soil oxidation The soil surface elevation reduction due to oxidation is approximately one meter (unpublished data, SJRWMD Soil Elevation Survey). Farming practices included plowing to an approximate depth of 50 crn, applying pesticides, and repeated planting of a seasonal rotation of primarily com and carrots. These practices removed all wetland plants from the crop areas of the farm fields. The rapidly growing wetland plants, Eichhomia crassipes, Hydrocotyle rammculoides and '/ypha spp. maintained populations along drainage canals in spite of herbicide applications. Lake Apopka water enters the marsh along the eastern levee of the south marsh. It flows westward through a water control weir, into a connecting flow-way, then into the north marsh through a series of culverts along its western levee. Water is pumped back into Lake Apopka at the northeastern comer of the north marsh (Figure 1). 7

PAGE 9

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT NORTH MARSH TRAN 5 TRAN 6 TRAN 7 i I CLAY I StANO TRAN 9 TRAN -4 TRAN 3 TRAN 2 TRAN 1 SOUTH MARSH TRAN 8 I INLET OUTFLOW PUMPS LAKE APOPKA sao M Figure 1 Plan view of Apopka Marsh Flow-Way Demonstration Project 8

PAGE 10

30 6 0 Air Temperature 0 Pan Evaporation 25 00 '6 5 o 00 '0 00 0 8 cfi 00'0 0 c: c: .. .. ., ., 20 o r:8 0 /?J cf)0 4 :< :< cfo 0 o 0 OOc9cg 0 'c o'O"fo0o "0 0 o 0 E 0 o QIQ"@o 0 g 15 000& 3 c: .a ij9 2 E ., E 0-0 0E .. ., 10 2 > IW c: .. 0.. 5 1 # Time (Daily, with Monthly Labels) Figure 2. Mean daily air temperature (Clermont, Florida) and pan evaporation (lisbon, Florida) from nearby the Apopka Marsh Flow-way Demonstration Project. 9

PAGE 11

Rainfall Time Series (Clermont Florida) 120 100 80 ---1 I 60 I Rainfall ( ,m 40 II I 1 ,II i l l 1 I l l 20 o ... .... IAp ..... __ P'k .. .... u .. P'k ... ..a.oJIdHMlo .... .. per.;trfolDec 18110 1118 15182 1ii 3 11M Time (Days from 1 Jan 1990 -31 Dec 1994) Figure 3. Rainfall time series from Clermont, F l orida 10

PAGE 12

Lake Apopka has been descnl>ed as hypereutrophic with a mean total phosphorus of 0.22 mg I-I and a mean soluble reactive phosphorus of 0.035 mg I-I (Lowe, etaI., 1992). The lake water is high in suspended solids resulting in low water clarity. The lake surface level is usually above the marsh soil surface level due to soil oxidation. Stage within the marsh remained above the sediment level during most of the sample period (Figure 4). Exceptions to this pattern occurred in August 1991 during planting of the Experimental Planting Sites and again in August 1993 during repair of the weir at the exit from the south marsh. These stage data also show the downstream elevation gradient from the marsh inlet to the easternmost stage recorder in the north marsh (Figure 4). The physical environment may control vegetation dynamics of the Apopka Marsh in a number of ways. High nutrient levels in lake water and soils may promote the rapid growth ofEichhornia crassipes and Typha spp (DeBusk, et aI., 1995; Newman, et aI., 1996; Davis, 1984; Urban, et aI., 1993; Grace, 1988) Rapid growth of Hydrocotyle ranunculoides is probably promoted by increased nutrient loading. Growth measurement under varying nutrient loadings are not evident in the literature, but the absence of this species in low nutrient environments provides an inference about its habitat requirements (Loveless, 1959; Gunderson, 1989). High levels of suspended solids in the water limit the deVelopment of shade intolerant submersed plants and increase the burial rate of seeds in the soil seed bank as a result of increased sedimentation rates. Increased sedimentation rates may lead to isolation of the older seed bank while the recent seed bank becomes more likely to be exposed and activated when conditions are favorable for seed germination. If the recent seed bank is dominated by the most aggressive, high nutrient adapted plant species, a perpetuation of the dominant overstory may be expected. BIOLOGICAL CHARACfERISTICS Land use on the site has eliminated the perennial wetland plant community. Before the site was farmed it was dominated by a rhizomatous sedge, sawgrass (Cladium jamaicense) and mixed shrub (probably Baccharis halimifolia and Myrica cerifera) communities. Aerial photographs from 1941 reveal that the sawgrass marsh extended from the edge of the upland ridge system to the edge of Lake Apopka, a distance of about 5 km. At present sawgrass is only sporadically common along the Apopka-Beauclair Canal and around the lake fringe. Since 1941 a swamp forest dominated by Acer rubrum and Fraxinus pennsylvanica has become established on the lake fringe (1940 USGS aerial photography) The biological environment may be described as highly disturbed and devoid of historically dominant perennial vegetation 11

PAGE 13

20.75 o South Marsh, East Platform 6 South Marsh, West Platform o North Marsh, West Platform o North Marsh, East Platform 20.50 20.25 -l ..... F e 2 @ ",1\ "" 1 E iiIIi> i 19.75 SOIL EXPOSURE 19.50 -l .. rp",W I \ f1 19.25 o 19.00 ",<8 ,,'" ,,'l-,,'l",<8 ,," "" !!} '" Time (Date) "'" ",'<) Figure 4. Apopka Marsh stage time series (m, NGVD), Apopka Marsh Flow-Way Demonstration Project. 12 ,,<'

PAGE 14

m METHODS RESEARCH PROGRAM MANUAL A research program manual was completed in October 1991. The manual, which descnoed research methods, was used on a regular basis during field work at the Apopka Marsh. VEGETATION COMPONENT Development of Naturai and Planted Vegetation and Mechanisms for Enhancing Marsh Establishment Objectives of this study were to assess the development of plant communities within the Apopka Marsh Demonstration Project area (Figure 1). This part of the study was divided into three subsections: Experimental Planting Sites-Structure and Composition, Natural Succession Transects-Structure and Composition, and Natural Succession Transects-Above and Below Ground Biomass. This task deals with the fundamental measurements of succession within the marsh. See Figures 5 and 6 for overviews of Experimental Planting Sites (Figure 5) and Natural Succession Transects (Figure 6) Procedures for sampling community structure and biomass can be found in Bonham and Ahmed (1989) and Mueller-Dombois and Ellenberg (1974) A method for extracting roots using a sharpened PVC plastic corer inserted into the soil and sieving the extracted soil to separate roots was used. This method, along with other more complicated and time consuming methods are reported in Pearcy et al. (1991) and Boehm (1979). Within each planting treatment plot and natural succession transect plot a suite of qualitative and quantitative data were taken from each species encountered. These data included: vegetative cover (%), stem density (# m-2), maximum height (cm), and phenology (canopy index) Cover was estimated in 5% increments, except for trace levels (<5%) Trace cover estimates were assigned a 1 % cover value. A phenological index was generated by estimating the state of flowering and fruiting (immature and mature) using a canopy dominance index (1=113 of canopy, 2=2/3 of canopy, and 3=total canopy). Within each subplot three water depth measurements estimated to the nearest 1 cm were made. To account for changes in water depth resulting from floating mat formation, additional vertical measurements were made through the mat surface to hard soil below These measurements revealed mat formation in progress As the mat floated to the surface over time it could be seen as a hard soil surface suspended in the water column. This resulted in a single vertical measurement while the soil was anchored, two vertical measurements after the mat had detached, and rarely, three vertical measurements if the mat had two layers. Stage measurements were made at the nearest continuous recording station 13

PAGE 15

Site 1 & +Site 2 z o w a: is u. a: w Site 3 ... C41.1 C41.2 C41. 3 C41 4 C41.5 C41 6 EXPERIMENTAL PLANT ING AREA Is1lIs2lIs3l [dB bJ9 D PAN"" PONCOR MIX39 rP14l PIS D[;J20 MIX40 SelVAl P26 I M331 Mulch fM4lfSslls6l fP16lfP11l I P291 fP30l ElL.NT N C42. 1 Mulch l.d C42. 2 S AGLAN b] C42. 3 5CICAL C42. 4 S AGLAN bJ C42. S PO NCO I M3BI C42. 6 Mulch Figure 5 Plan view of Experimental Planting Site, Apopka Marsh Flow-Way Demonstration Project Plot assignments were changed sli ghtly at Site 2. S1 and S37 contained Pontederia cordata (ponCor) not Sclrpus va/idus (SelVal) 53 and S37 contained Sclrpus va/idus (5cNaQ not Pontederia cordata (ponCor) See Tables 1-3 for plant code Information 14

PAGE 16

NATURAL SUCCESSION TRANSECT WATER FLOW DIRECTION 1 1 1 ...-N 88888888 TRANSECT L. 350 m South Marsh 490 m North Marsh SAMPLE NODE 40 m DIAMETER Figure 6. Plan view of Natural Succession Transect. Apopka Marsh Flow-Way Demonstration Project. 15

PAGE 17

Botanical nomenclature followed a number of sources. These included wetland species (Godfrey and Wooten 1981a, 1981b), upland (Radford et al. 1968), grasses (Hitchcock 1971), and ferns (Lak.ela and Long 1976). Assessment ofExperimentai Planting Treatments. Two experimental planting sites were located in the south marsh and one site was located in the north marsh (Figure 1). Each site was prepared for planting by mowing, herbicide application (RODEO), and burning to remove the established plant community. Experimental treatments consisted of Planted-Single Species, Planted-Mixed Species, Mulched and Seeded (Figure 5 and Table 1 and 2). Single species plots were planted at low (3' centers) and high (2' centers) densities. The mulch treatment consisted ofapplying an approximate 5 cm thick layer of wetland donor soil collected from a site near Sebring, Florida (Table 3). Treatment plots were delineated at each corner by 0.102 m diameter by 1.5 m white PVC posts Treatment plots were separated by 4.5 m wide In all but the Mixed Species plots a single, permanent, randomly positioned Imsubplot was established. In the Mixed Species plots, two subplots were established. Vegetative cover (%) by species data were taken from the larger treatment plots and from the Im2 subplot(s) These data are reported as Overall Cover and Subplot Cover, respectively. Assessment of Natural Marsh Development. Using nine established permanent transects (Stenberg et al. 1991) (Figure 1), we collected community structure and composition, and biomass data. An assessment of the influence of hydrology (depth and duration) and distance from the marsh inlet on community development was conducted. Vegetation community structure data were collected from within each sample node at three permanent plots and one temporary plot. Data were collected according to the sample schedule in Table 4. These data consisted of species composition, percent cover, density (numbers of stems, culms, bunches), height (tallest leaf), phenology index (canopy dominance of flowers, immature fruit, and mature fruit in increments of 1=113 2=2/3 3=FulI Canopy), and water depth (nearest cm). Vegetative biomass was collected along the Natural Succession Transects Within each temporary (biomass) plot (plot #4 per sample node) we collected above-ground and below-ground biomass. The above-ground component was collected as follows: (I) From within the Im2 subplot #4 all plant material was clipped to soil surface level. Vegetation hanging into the plot was clipped through a vertical plane that intersected the plot boundaries. (2) Clipped plant material was stored in large plastic bags with a numbered aluminum identification tag. (3) Material was processed immediately or stored at 40C up to one week prior to processing. (4) Plant material was separated into live (by species) and standing dead (all species combined) portions 16

PAGE 18

Table 1. Experimental Treatment Plot Descriptions and Sample Collection Schedule. Name Treatment Description a Dimensions em) per Site Mulch (M) Wetland soil from sites near 15.2x15.2 4 Mixed Spp.(X) Planted (P) Seeded (S) Control CC) TOTAUSITE Sebring, Florida added to soli surface. Planted sprigs of an 24.4x24.4 assortment of species Planted sprigs of a single species. b Seeded by a single species Site Preparation onlv 15 2x15.2 15.2x15.2 18.3x18.3 GRAND TOTAL (3 sites) 2 24 10 12 52 152 a. All treatment plots received site preparation to remove competing vegetation b 12 plots planted at LOW DENSITY=1.2m centers yielding 1.56 plants m-2 and 12 plots planted at HIGH DENSITY=0.6m centers yielding 6.25 plants m2 Sample Collection Schedule Initial Conditions (sprigged plots only) First Winter Season First Spring Season First Summer Season Second Winter Season Second Summer Season Third Spring Season Sep 1991 Jan 1992 May 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 17

PAGE 19

Table 2. Planted plot treatment species and codes. plant Species List and Codes Treatment Codes 1. Sagittarla lancifolia (SAG LAN) (p S.X) 2 Pontedaria cordata (PONCOR) (P.S.X) 3. Scirpus validus (SCIVAL) (P.S.X) 4. S. califomicus (SCICAL) (P.-.X) 5. Panicum hamitomom (PANHEM) (P.S.X) 6. E/eocharis intersIincta (ELEINT) (P.-.X) 7. Pe/tandra virglnica (PELVIR) (-.-.X) 8. C/adiumjamaicense (CLAJAM) (-.-.X). 9 Kos/e/etzkya spp (KOSSPP) (-.-.X) 10. ThaDa geniculata (THAGEN) (-.. X) 11. Po/ygonum punctatum (pOLPUN) Treatment Code Explanat jon (P.S) = SPRIGS AND SEEDS (X) = MIXED SPECIES PLOTS (P) = SPRIGS () = SEEDS ONLY (-) = SPECIES NOT INCLUDED IN TREATMENT M = MULCHED PLOT C/adium jamaicensis replaced by Juncus effusus after initial planting. 18

PAGE 20

Table 3. Vegetation species composition from donor soli sites for solis applied to mulch treatments In Experimental Planting Areas, Apopka Marsh Flow-Way Demonstration Project Soil A: Depressional wetland. Species Name Andropogon virginicus Drosera blevifo/ia Erianthus strictus Eriocau/on spp. Hyparicum fascicu/atum Lacnanthes carollniana Lear:sia spp Panicum hemitomon Xyrisspp. Soil B: Bayhead Species Name Gordonia /asianthus Hyparicum fascicu/afum //ex gabra Lear:sia spp. Lyonia /ucida Magno/la virginiana Myrica cerifara Osmunda cinnamomea Panicum absclssum Parsea paluslris Pontederia cordata Rhexia cubensis Sagittaria lanelfolia Woodwardia areo/afa Common Name Bushy Beardgrass Sundew Beard Grass Hat Pins St. Johns Wort Redroot Cutgrass Maidencane Yellow-Eyed Grass Common Name Loblolly Bay St. Johns Wort Gallbeny Cutgrass Fetterbush Sweetbay Waxmyrtle Cinnamon Fem Cutthroat Grass Redbay Pickerel Weed Meadow Beauty Arrowhead Chain Fem 19

PAGE 21

Table 4 Sampling schedule for Natural SuccessIon Transects. Table entries are nodes sempled, "= aU nodes sampled, numbers=specific nodes, NS=no sample. Lower case a and b next to transect number represent type of data collected: a=structure and CompositIon, and b=Blomass. SAMPLE DATES TRANSECT NQV90 AUG91 JAN92 AUG92 FEB93 AUG93 MAR94 18 .. .. .. b 2, 4, 6, 8 1, 3, 5, 7 2 a 1-2, 6-8 1-2, 6-8 1-2, 6-8 1-2,6-8 NS 1-2, 7 b NS NS NS NS NS NS 1-2, 7 38 .. .. .. .. .. .. b 2, 4, 6 8 1, 3, 5, 7 4 a NS 1.3.5.7 b NS NS NS NS NS NS 1,3,5,7 6 a .. .. b 2, 4, 6, 8 1, 3, 5, 7 8 a .. b .. 2, 4, 6, 8 1, 3, 5, 7 20

PAGE 22

(5) Material was dried at 700C to constant mass, then weighed to nearest 0.1 g Above-ground plant material was submitted to the Soil Science Wetland Soils Laboratory, University of Florida for nutrient analysis. Preparation for above-ground nutrient analysis was conducted as follows: (1) From the dried and weighed biomass sample we removed two replicates each of three dominant species and one composite from the above-ground biomass collected per transect (40 samples). (2) Material was ground to a coarse particle size using a Wlley Mill. (3) Ground plant material (at least 1 g) was stored in 12 ml vials and submitted to the Soil Science Department for nutrient analysis. Below-ground biomass was collected from each biomass subplot (#4) in the following manner: (1) Three soil cores (10 cm dia. X 20 cm long) were extracted using a section of sharpened PVC pipe. Soil and an aluminum i dentification tag were placed in a plastic sealable bag for transport (2) Soils were stored in cooler at 40C for up to one month until processing (3) Biomass was separated from soil by washing through a 2 mm (No. 10, USA Standard Testing Sieve) sieve. (4) Biomass was dried at 700C to a constant mass, then weighed to nearest 0.001 g Below-ground biomass was prepared for nutrient analysis and submitted to the Soil Science Department, Wetland Soils Laboratory for nutrient analysis. Preparation was as follows: (1) Root material from every two nodes per transect was combined (21 samples). (2) The composite sample was ground to a coarse particle size using a Wiley Mill. (3) Ground material was stored in 12 ml vials and submitted to the Soil Science Department for nutrient analysis. 21

PAGE 23

Detennination of Potential Seed Production. We collected phenology data while we were conducting structure and composition, and biomass data collections During Phenology Only sampling (see sample schedule below) all nodes were visited with phenological sampling from one randomly chosen plot per node We estimated the percentage of each species' canopy that was in a state of flowering and fruiting (unmature and/or mature). Data collected included (1) species composition and (2) phenology (estimate of canopy dominance of flowers. immature fruit, and mature fruit in increments of1=II3, 2=213, 3=Full Canopy). Sample scheduling was as follows: SampleDate Description First May-Jun 1991 Phenology Only Second Aug-Sep 1991 Vegetation and Phenology Third Jan 1992 Vegetation and Phenology Fourth May 1992 Phenology Only Fifth Aug 1992 Vegetation and Phenology Sixth Feb 1993 Vegetation and Phenology Phenology of vegetation within the Apopka Demonstration Marsh was observed along Natura\ Succession Transects; and within planted, seeded, mulched and control treatments. States of flowering, immature and mature fruit were identified in the natural succession plots from November 1990 to March 1994 and from August 1991 to March 1994 in the Experimental Planting Site treatments. Analysis of the data included identification of unique phenology characteristics ofa species under different treatments as well as classification of the phenology into four general groups These groups included seasonality, time lag of phenological developmental stages. reduction or increase in phenology activity and distance to inlet effects on phenology between the north and south cells. Seasonality of a species was determined qualitatively by identification of a sine wave pattern within the data for either flowering, immature fruiting or mature fruiting phenology regardless of the amplitude or timing within the year of the peaks Time lag of developmental stages was classified as any species that showed a peak of one developmental stage followed by a peak of a later developmental stage in the next sampling period. Distance to inlet effects. presumably of water quality parameters. were identified by comparing the phenology index: activity in the four treatment sites or for natural succession in the eight transects perpendicular to the predominant flow path in the marsh. Detailed results for each treatment and target species as well as a summary table for each treatment type will follow. Phenology of TYpha 1ali/olia under natural succession as well as within the treatment plots will be addressed separately due to its predominant influence within most areas of the marsh. 22

PAGE 24

Determination of the Effect of Hydrology on Seed Germination. In a growth chamber, seeds were placed in petri dishes on filter paper. Treatments consisted of moist soil and flooded (1 cm above filter paper). The growth chamber was used because it was easier to measure seed germination earlier in the process (Zheng, et al. 1994). Using this method allowed the opportunity to screen more species in a shorter period of time. The method has been used successfully (Morinaga 1926a, 1926b, 1926c, Sifton 1959, Zheng et al. 1994, Benvenuti and Macchia 1995). Methods consisted of: (I) Seeds of target species were collected as they became available. (2) Seeds were placed on filter paper in 3 petri dishes/trt, at least 30 seeds/dish, seeds and paper were moistened (MOIST TRT), or flooded to Icm depth (FLOODED TRT). (3) Seeds were maintained in a growth chamber for 12 hour light/dark cycle under a bank offour 40 watt fluorescent and four 60 watt incandescent bulbs. (4) Each trial ran for about 60 days under ambient temperature conditions (271320). (5) Seeds exhibiting signs of germination (splitting of the seed coat and extension of the root tip beyond the seed) were periodically counted. (6) Water was added as needed. Assessment of Seed Dispersal Mechanisms. Seed traps (Figure 7) designed to trap water-and air-borne seeds were placed in positions upstream and downstream of each planting area. Seeds floating in the water or wind dispersed from surrounding vegetation were trapped, thus, providing an indication of propagule movement within the marsh. The seed traps were built with 1.3 cm dia. PVC pipe. Fiberglass netting with a Imrn2 mesh size was stretched loosely over the top (1 m x 0.5 m) for airborne seeds. To trap water-borne seeds a bag made from the same net material was attached to the leading edge of the trap (Figure 7). Four seed traps per upstream and downstream side were placed at Experimental Planting Sites 1 and 3. Traps were collected at one month intervals four times and replaced with clean netting during each visit. Nets were stored in a cooler at 40 C for less than 7 days until processed Nets from the water-borne position were washed into a germination tray filled to a depth of 2 cm with sterile Metro-Mix soil mix. The trays were then placed in the greenhouse under twice per day misting until seedlings could be identified. Germination trials were run for two months per trap sample. The traps captured large amounts of organic matter resulting in the need to use the seed germination method instead ofa seed identification method. 23

PAGE 25

MESH 1 mm' Figure 7. Seed trap design used for seed capture In Experimental Planting Sites, Apopka Marsh Flow-Way Demonstration Project. 24

PAGE 26

Assessment of the Soil Seed Bank. The purpose of this subtask was to provide information about the contribution of the soil seed bank to plant community development. The factors influencing seed bank response were site treatment and, where possible, hydrology (e g depth and duration of inundation). This subtask was accomplished by the following procedure : (1) Collected and composited 10 (10 cm dia. X 5 cm deep) soil cores from every other node along transects 1, 2, 6, and 7; Experimental Sites 1 and 3, "control" subplots 1, 3, 4, and 6, and the mulched plots. Soil was stored in sealable plastic bags until processed. Total number of plots = Natural (16) + "Control" (16) + Mulched (8) = 40 Plots (Fig. 2). (2) Soil was stored at 40C up to two weeks prior to processing (3) Soil moisture treatments prepared by mixing soil together, removing rhizomes and roots, spreading soil into germination flats. (4) A thin layer of soil was spread in germination flats (filled to 1 cm depth with METRO-MIX sterile soil mix) (5) At the same time as (4) flats with Metro-Mix only were established to provide a contamination indicator (6) Trays were misted twice daily. (7) Treatments consisted of Moist Soil and Flooded Soil (3-4 cm depth). (8) Seedlings were identified to species or genus, counted and removed. (9) When seedlings were depleted, the soil was turned over and (8) was repeated Soil was collected and the experiment run twice : ( 1 ) Nov 1991 and (2) Nov 1992. Each trial was conducted for 9 months in a forced-air ventilation greenhouse on the University of Florida campus. Therefore, light and temperature conditions were similar to that of Gainesville, Florida. Statistical analysis consisted of a t-test for the moist ( # seeds m-2 ) versus flooded soil (# seeds m 2 ) greenhouse treatment, an ANOVA with multiple ranges test for the site treatment effects (Natural Succession = Mulch = Control seeds m-2 ) and a Cluster Analysis using normalized data (Vegetation % cover m-2 and Seed Bank seed number m-2) to determine if a relationship existed between the seed bank species composition and that of the established vegetation Clonal Recruitment. Production and Dispers al Growth rate was defined as a measure of the distance ofa rhizome's growth over time. Plants were chosen in areas where the rhizome could be marked and it's growth followed. Pontederia cordata, Sagittaria lancifolia, and Scirpus val idus planted plots were used Typha latifolia was measured in seeded and mulched plots The seeded and mulched plots were used because they contained sufficient T. latifolia to allow measurements. For each species a numbered PVC post was driven into the soil, marking the position of the rhizome at the initial time. Distance to the nearest competitor was measured at the initial time. Eight rhizomes per planting site per species were marked. The sites were revisited at the end of the sample period. For the final sample the distance grown from the PVC post and the distance to the nearest competition was measured. 25

PAGE 27

Water depth at the initial and final measurement was recorded. These measurements were made during the May 1992-1993 time period. For each species, growth rates were estimated by calculating the distance between the initial and final measurements. Using a two-way ANOVA (species and distance from marsh inlet) the possible influence of high nutrient lake water on clonal growth was evaluated. An additional two-way ANOVA (Distance To Competition and Distance to Marsh Inlet) was used to help explain growth rates. WILDLIFE COMPONENT Wildlife community patterns were monitored every six weeks over the period August 1991 through June 1993. Avian surveys were conducted using two different surveying methods. In addition, general information was collected about other animals observed in the project area. The techniques used in the wildlife sampling are outlined in the research program manual for Phase IT of the Demonstration Project (Best et al. 1991). Avian sampling was performed in the two marshes used for the flow-way demonstration project, and the unmanaged marsh (Figures 8 and 9). An agricultural field adjacent to the north marsh was also surveyed. The avifauna surveys were conducted using the Emlen strip technique (Emlen 1977), a timed drive-through survey (Best et al. 1991), a technique for counting congregating red-winged blackbirds, and a supplemental direct counting method. These are described below. Only minor changes were made from the program manual surveying methods including the rejection of use of radio transceivers, spotting scopes (binoculars were used), and documentation of flushes by photography These procedures were intended to supplement other documentation and verification efforts, but were not needed. Avifauna population sampling Emlen strip technique. Avian sampling along transects established for vegetation and wildlife studies began in August 1991. For wildlife studies each transect had an approximate fixed width of35 meters on either side of the transect center line. Four transects were established in each of the north and south marshes (Tl through T8, Figure 8). All transects were oriented north-south. The south marsh transects were each 440 meters long, and the north marsh transects were each 600 meters long Two transects were established in the unmanaged marsh, each 750 m long (T10 and TIl, Figure 8). Surveying began on TlO and Tll in November 1992. Two persons walked transects. One maintained trueness on the transect, watching for obstructions and assisting in data collection, while the other concentrated only on data collection. This method reduced the difficulty in passage through the marsh and improved the census qUality. Binoculars were used on transect walks. Observations were recorded directly on a map of the transect complete with gridded distances from the center line. Vegetation, by species, was also included on the map. Up to three dominant vegetation species were included in every somewhat homogeneous locale. The parameters recorded 26

PAGE 28

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT NORTH MARSH RTI\Y TRAN 5 TRAN IS TRAN 7 TRAN 8 --=-------rl "" CL,o,V I&L""I>IO UNMANAGED MARSH TRAN 4 TRAN 3 TRAN 2 TRAN 1 SOUTH MARSH OUTFLOW PUMPS LAKE APOPKA sao M Figure 8. Wildlife survey transects (TRAN 1-8, 10, 11), Apopka Marsh Flow-way Demonstration Project 27

PAGE 29

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT AGRICULTURAL FIELDS .... ---------------------------... --'/7-/ I NORTH MARSH OUTFLOW PUMPS / CLAY ISLAND UNMANAGED MARSH SOUTH MARSH -_ .... -_ ... --1 INLET LAKE APOPKA 500 M Figure 9. Paths (heavy dashed lines) used during drive-through wildlife surveys, Apopka Marsh Flow-way Demonstration Project. 28

PAGE 30

were: (1) position of the birds from the center line; (2) dominant vegetation; (3) type of cue given (visual or auditory); and (4) time of observation. Only birds observed within thirty-five meters from the transect center line were recorded. An additional observer was positioned at an elevated, fixed point on a levee. The purpose of this observer was to record birds flushed from dense vegetation stands that would have been missed from the transect center line. Flying birds such as raptors which were actively using the marsh and were within the vertical bounds of the transects were recorded in addition to the dominant vegetation of the area they used. Observers assigned to each transect compiled their collected data at the completion of the survey. By keeping accurate records on the time of observation, fixed observer and transect walker data redundancy was reduced. Sampling order for the transects revolved from one sampling event to the next. The rotation decreased sampling bias by surveying each transect during different morning hours. Sampling was begun within thirty minutes of sunrise Avifauna population sampling drive-through method. Access roads upon the levees were used in a drive-through survey methodology in all three marshes (north, south, and unmanaged); and the adjacent agricultural field (Figure 9). Drive-through surveys occurred in the early afternoon after completion of the transect surveys. Observers with binoculars were positioned atop a slowly driven vehicle (van or full-sized four-wheel-drive) The vehicle was equipped with a platform on which the observers sat. The sitting observer's eyes reached a height of -3m above the levee surface. Multiple observers (3-4) using binoculars were employed. This facilitated sighting, counting, and identification of birds. All birds sighted, as well as brief vegetation information, were recorded on a map of the area being surveyed. Supplement direct counting. While performing Emlen strip and/or drive-through counts, observers recorded soaring species and species using areas near the marshes within the project site. These data completed the site species list. Technique for red-winged blackbirds. Red-winged blackbirds congregating in high numbers within the dense vegetation stands were deliberately flushed before counting. This methodology was necessary only during the breeding seasons. Avian species similarities (Sorensen's Similarity Index) were used to compare the north versus south marsh (transect 1 versus transect 4 within the south, and transect 5 versus transect 8 within the north; Sorensen 1948). Species similarity described the percentage of avian species each survey had in common as compared to the total number of species found in each marsh. The following equation was used to determine the similarity of species between the survey areas: 29

PAGE 31

where s = [2C I (A + B)] x 100 S = similarity % A = number of species in sample 1 B = number of species in sample 2 C = number of species common to samples 1 and 2 Changes in density among taxonomic groups were compared for each survey area Table 5 lists both the species identified during the surveys and their taxonomic group used for this study. The species in the category labeled "other" were grouped together due to the low number of species represented by the remaining taxonomic groups counted. Avian density estimates for the transect survey method were calculated by dividing the total number of birds counted in each taxonomic group on one transect by the area of that transect: where D'=N I A 1 1J"'1 Di = density of transect i Nij = number of birds in taxonomic group j on transect i Ai = area of transect i (ha) Total area of transects 1 through 4 in the south marsh was 3.08 ha each (440 m x 70 m), and transects 5 through 8 in the north marsh each contained an area of 4.20 ha (600 m x 70 m). In the unmanaged marsh, transects 10 and 11 each were 5 .25 ha (750 m x70m). Estimates of overall avian density for each marsh were calculated by dividing the total number of birds in each taxonomic group by the total area of a\l surveyed transects in that marsh as follows: Dm=Nmj/Am where Dm = density of marsh m Nmj = number of birds in taxonomic group j in marsh m Am: = area of marsh m (transects only) The total combined area of the four transects in the south marsh was 12. 32 ha, and the total area offour transects in the north marsh was 16. 8 ha. The total area of the two transects in the unmanaged marsh was 10.50 ha. The survey results were averaged over three six month time periods to provide a more general representation of short-term temporal changes in density. 30

PAGE 32

Table 5. Avian species found on Apopka Marsh Flow-way Demonstration Projed. by taxonomic group. Taxonomic Group Gallinules Wading Birds Black Birds Passerines Passerines Scienlifjc Name Fu/ica americana Gallinu/a cho/orpus Rallus e/egans Porphyrula marlinica Porzana carolina Botaurus Ientiginosus Nydicorax nydicorax Bubulcus ibis Ardea herodias Casmerodius albus Butorides striatus Ixobrychus exilis Euetta caeru/ea Euetta thula Euetta tricolor Nycticorax vialaeaus Quiscalus major Qulscalus quisca/us Agjaius phoeniceus Hirundo rustica Poliopb7a caeru/ea Guiraca caerru/ea Cyanocitta oris/ala Thryothorus ludovicianus Chaetura pelagica Geoth/ypls trichas Tyrannus tyrannus Sayormis phoebe Sterna forsteri Columbina pesserina Passerrina cyanea Charadrius vociferus Cistothorus pelustris Zenaida macroura Cardinalis cardinatis Mimus polyglottos Dendroica palmarum Cistohorus platensis Me/ospiza me/odia Me/ospiza georgiana Tachycinela biocolor 3 1 Common Name American coot Common moomen King rail Purple gallinule Sora rail American bittem Black crown night heron Catt l e egret Great blue heron Great white egret Green back heron Least bittern Little blue heron Snowy egret Tri-color heron Yellow crown night heron Boat tall grackle Common grackle Red wing black bird Bam swallow Blue-gray gnatcatcher Blue grosbeak Blue jay Carolina wren Chimney swift Common yellow throat Eastem kingbird Eastern phoebe Foresters tern Ground dove Indigo bunling Kill deer Marsh wren Mouring dove Northem cardinal Northem mocking bird Palm warbler Sedge wren Song sparrow Swamp sparrow Tree swallow

PAGE 33

Table 5. Avian species found on Apopka Marsh Flow-way Demonstration Project (continued). Ducks Ibis other Oendrocla coronata Oendroica petechia Ana americana Anas discors Oendrocygna bicolor Anas strepera Lophodytes cucullatus Anas platyrhynchos Anas fulvigu/a Anasacuta Anas c/ypeata Aixsponsa P/egadis faJcjnellus Eudocimus albus Falco sparver/us Anhinga anhinga Hia/iaeetus feucocephs/us Ceryle alcyon Himantopus mexicanus Coragyps atratus Gallinago galDnago Pha/scrocorax pe/agicus Tr/nga me/ano/euca Lanius ludovic/anus Circus cyaneus Pandion ha/isetus Podilymbus podioops Buteo lineatus Cathartes aUlll Catoptrophorus semipalmatus 32 Yellow rumped warbler Yellow warbler American widgeon Blue wing teal Fulvous whistling duck Gadwall Hooded merganser Mallard duck Mottled duck Northem pintail Northem shoveler Wood duck Glossy ibis White ibis American kestrel Anhinga Bald eagle Belted kingfisher Black neck stilt Black vulture Common snipe Double-crested cormorant Greater yellow legs Logger headed shrike Northem herrier Osprey Pied billed grebe Red shoulder hawk Turkey vulture Willet

PAGE 34

IV. RESULTS General Overview: This general overview has been included to introduce the species list, species codes, growth habits and life history types, hydrology. and some general observations. This study found a total of 109 plant species during the duration of the project. These species were not found simultaneously. but entered and departed the species sample as the project progressed The assemblage is depicted in a cumulative list that reflects the history of the site varying from a moist, abandoned farm to a deeply flooded, early successional marsh (Table 6). Species richness from the Natural Succession treatment varied from a high of65 early (August 1991) to a low of36 late (March 1994) in the sample period Species richness tended to decline with time. Species richness in the Planted treatments varied from 30 (May 1992) to 47 (August 1993). The change in species richness over time was not clearly defined Both the Natural Succession and Planted treatments seemed to be approaching similar species richness late in the sample set. Both treatments seemed to be responding in a similar manner to the drawdown of Summer 1993 and the development of floating mats with an increase in species richness (planting=47. Natural Succession=44) (Figure 4 ; Table 6). The relationship between water level and species responses will be explored in subsequent sections of this report. Due to the sampling strategy species richness may be underestimated for the Natural Succession treatment versus the Planting Sites (t{atural Succession= 296 m 2 /visit vs Planted= 40488 m 2 /visit from overall plots and 164 m 2 /visit from subplots). In spite of differences in total sample area these estimates seem reliable, because the samples were distributed over the study area, and we found few unrecorded species in our sample plots. For example, Carex albotuscens and Hydrolea corymbosa were very rare on the site and not found in any sample. The site treatment method seems to have had a slight persistent effect on the comparative species assemblage over time. Site treatment species similarity based on Sorensen's Similarity Index (SI) tended to increase from a low value after planting site establishment to a set of values that didn't change much overtime (pielou 1984). Sorensen's SI was calculated with and without the planted species in the data set. Thi s was done to determine how the addition of species through planting affected the "community" similarity. SI values varied from 53.1 % (August 1991) to 62.9% (February 1993) with planted species included in the sample set. Similarity index values tended to be lower in the data set without planted species. With planted species removed from the SI calculation, values varied from 48.4% (August 1991) to 62.5% (August 1993) (Table 6). Results of the two calculation methods approached similar values during August 1993 (With Planted= 62.2% vs Without Planted= 62.5%). This suggests that the seed bank was activated by the Summer 1993 drawdown and had contributed a large species pool to the entire ecosystem, thus diluting the planting influence (Table 6). The seed bank linkage will be explored in the Seed bank section 33

PAGE 35

Table 6. Plant Species List with Codes and Presence Data For Apopka Marsh Species Codes Plantb c Saml!le Dale' A9] J92 M92 A92 F93 A93 M!M ACERUB= Acerrubrom TRP -IN -IN -IN -/--IN -/-/-PIN AL TPHI= Altemanthera phi/oxeroides RH -IN PIN PIN P/PIN PIN PIN PIN AMAAUS= Amaranthus australis RHA -IN PIN PIN -/-PIN PIN PIN PIN ANDSPP= Andropogon spp. GRA -/-/--IN -/-/--IN -IN -/AMBART= Ambrosia Iirlemissllb/ia RHA -/--IN -/-/-/-/-/P/AMMCOC= Ammania coccinea RHA -/--IN P/-/-/-/P/-/APILEP= Apium teplophytlum RHA -/-/-/-/-/-PIN -/-PIN ASTELL = Aster el/iotii RHA -IN -IN -/-/--IN -IN -IN -IN ASTSPP= Aster spp. RHA -/--IN -IN -/-IN -/-/-/-ASTSUB= Aster subulata RHA -IN PIN PIN -/-/-/--IN -/-ASTTEN= Aster tenuilb/ia RHA -/--IN -IN -/-/-/-/-/-I>Z.OCAR= Azol/a caroliniana FF -/-IN PIN P/PIN PIN -/-/BACCAR= Bacopa caroliniana RHP -/P/-/-/--/--/-/--/BACHAL= Baccharis ha/imifo/ia SHP -IN -IN -IN -/--IN -IN -IN -IN BIDLAE= Bidens taevis RH -/--IN -IN -/--IN -IN -IN -IN BRAPUR= Brachiara purplXascens GR -/--IN PIN -/-IN P/PIN -IN CALAME= Cal/icarpa americana RHA -IN -/-/--/--/--/-/-/CARPEN= Cardamine pansytvanica RHA -/-/-/-/-/--/-/P/CARSPP= Carex spp. SE -IN -/-/--/--/--IN -/-/-CASOBT= Cassia obtusllb/ia RH -/--IN -/--/-/-/--IN -/-CICMEX= Cicuta mexicana RH -/-/-/-/-/-/--IN -/CYNDAC= Cynodon dactyton GRP -IN -IN -IN -/-/-/-/-/-COMDIF= Comma/ina diffusa RH -IN PIN PIN -/--IN -/--IN -IN CYPCOM= Cyperus compressus SE -IN -/-/-/--/--/P/-/-CYPESC=Cyperusescutentus SE -/--IN -/--/-/-/-/-/-CYPHAS= Cyperus haspans SE -IN -IN PIN P/-IN -/--/-/-CYPIRI= Cyperus /ria SE -/-PIN -/--/--/-/-PIN -/CYPODO= Cyperus odoratus SE -IN -IN -IN -/-PIN -/-PIN -IN CYPSPP= Cyperus spp. SE -IN PIN P/P/PIN PIN PIN PIN CYPSUR= Cyperus surinamensls SE -/-/--/--/P/-/-/-/-DIGSER= Oigtaria serotina GR -/--IN -IN -/-/-IN -/--/ECHCOL= Echinochloa co/onum GR -IN PIN PIN -/--/-/-PIN -/Continued

PAGE 36

Table 6. Plant Species List (Cont.) Species Codes Plantb C Saml1le Date" TvDe J:i90 621 M92 A9'/" t,,93 ECHCRU= Echinochloa crus-gal/i GR -/-/-/-/-/--/-P/P/ECHSPP1= Echinoch/oa spp1 GR -/--/-/-/-/-/P/-/ECLALB= Eclipla alba RH -IN PIN P/-P/PIN -IN PIN PIN EICCRA= Eichhomia crassipes FH" -/PIN PIN P/PIN PIN PIN PIN ELEIND= E/eusine indica GR -IN -IN -/-/-IN -/-P/-P/ELEINT-Eleocharis Intetstincta SE -/-P/-P/P/P/-P/PI -P/ELEVIV= E/eocharis vivipara SE -/-IN -IN -/-IN -IN -IN -IN ERISPP= Eriocau/on spp. RH -IN -/--/-/--/--/--/-/EUPCAP= Eupatorium capil/ifolium RH -IN -IN -IN -/-IN PIN P/PIN EUPSER= Eupatorium serotinum RH -IN -IN P/--/--/-/--/-P/EUPSPP= Eupatorium spp. RH -IN -//--/-/-/-/-/GAL TIN= Ga/ium tinclorium RH -IN -IN PIN /-/PIN PIN PIN GERCAR= Geranium caro/in/ana RH -IN -1--1--/--/--/-/-/HYDRAN= Hydrocotyle ranunculoides RH" -//--1--/-/--/PIN PIN HYDSPP= Hydtocoty/e spp RH" -IN PIN PIN P/PIN PIN P/-/HYDUMB= Hydtocoty/e umbel/ala RH" -/-/--/-/-/--/-IN P/-HYGLAC= Hygrophi/a Iscustris RH -IN -/-/-/--/-/--/-/-IPOSPP= Ipomoea spp VI -IN -IN -/--//-/--/-/JUNEFF= Juncus effusus SE" -IN PIN PIN P/PIN -/-P/-/-LEMSPP= Lemna spp. FH -/PIN P/-P/PIN PIN PIN PIN LEPFAS= Leptocarpa fascicularis GR -/--/-/-/-/-/-P/-/-L1MSPO= Umnobium spongia RH" -/-IN PIN P/PIN PIN -/-/LUDLEP= Ludwigia /eptocarpa SH -IN PIN -IN -/PIN PIN PIN PIN LUDOCT= Ludwigia ociovalvis SH -IN P/PIN -/-IN PIN PIN P/LUDPER= Ludwigia peruviana SH -IN -/-PIN -/-IN PIN PIN PIN LUDPAL= Ludwigia palustTis RH -IN PIN PIN P/P/--/--/-/-LUDSPP= Ludwigia spp. SH -IN -/-/-/-/-P/-/--/-MELCOR= Me/ochia corchorifolia RH -IN -/-/--/--/-/--/-/MELPEN= Melothria pandu/osa RH -1-IN -/--/--/--/-/-/-MIKSCA= Mikania scandens VI -IN -IN -IN -/-PIN PIN PIN PIN MOMCHA= Momotdica charantia VI -/-/-/--/--1--/-IN -/PANDiC= Panicum dichotomiflorum GR -IN PIN -IN -/--/-/PIN -/PAN HEM" Panlcum hemltomon GR -/-P/-P/-PI-P/-PI-P/-P/PANSPP= Pan/cum spp GR -IN -IN -/--/-/-/-P/--/PASDIS= Paspalum dissectum GR -/-/-/-/-/-/-PIN -IN PASSPP= Paspalum spp. GR -/-IN -IN -/-IN -/ --/--/35

PAGE 37

Table 6. Plant Species List (Cont.) Species Codes Plantb C Samule Date" Tvoe 691 122 622 1:23 A93 PASURV= Paspalum urvi//ei GR -/-IN -IN P/-IN -IN -/--1-PElVIR-Peltandra vlrg/n/cus RH -1-P/P/P/P/P/P/P/PHYANG= Physalis angu/ata RH -IN -IN -/--/-/--/-/--1-PlUROS= Pfuchea rosea RH -/-/--1--/--1--1--IN -1-POLDEN= Polygonum densiflorum RH -/--/--1--/--1--/--IN -IN POLPUN= PoIygonum punctatum RH -IN PIN PIN P/PIN PIN PIN PIN RH -IN PIN PIN P/PIN PIN PIN PIN POROlE= Portulaca o/eracea RH -/-IN -/--/--1--/-/--1-RAPRAP= Raphanus raphanistrum RH -/-/-PIN -/--/-/-/--1-ROTRAM= Rotala ramosior RH -/--/--/-/-/-/-P/--1-RUMCRI= Rumex crispus RH -/--IN -IN -/--/--IN -/--IN SAGLAN .. Saglttaria lanclfolla RHP -IN PIN PIN P/PIN PIN PIN PIN SAGLA T= Sagittaria latifolia RH -/--IN PIN P/PIN -IN PIN PIN SALCAR= Salix caroliniana TRP -IN PIN PIN P/-IN -IN -IN -IN SALROT= Salvinia rotundifolia FF -/-PIN PIN P/PIN PIN PIN PIN SAMCAN= Sambucus canadensis SH -IN -IN -IN -1-P/-IN -/--IN SAMPAR= Samolus parviflorus RH -IN -/-/--1--/--/-/-P/-SCICAl-Sc/rpus ca/lfomlcus SEP -/-P/P/P/P/P/P/P/SCISPP= Scirpus spp SEP -/--/-/--1-P/P/--/-/-SCISPP4= Scirpus spp4 SEP -/-/-/--1-1-P/P/--1-SCIVAl-Sc/rpus valldus SEP -1-PI-P/P/P/P/P/P/SESMAC= Sesbanla macrocarpa RHA -IN -IN -/--1--/-/-PIN P/SETMAG= Setaria magna GRA -/--IN -/--1--/-/--/--/-SOLAME= Solanum americanum RHA -IN -IN -/-P/--/--/-/--IN SOL TOR= Solidago Iorlifolia RHA -IN -/-/-/-/-/-/-/-SPIPOl= Spirodella po/yrhiza FH -/-PIN PIN P/PIN PIN PIN P/STAFLO= stachys fIoridana RH -IN -/-/-/-/--/--/--/THAGEN .. Thalia gen/cu/ata RHP -/-PI-P/P/P/P/P/PIN TYPDOM= Typha domingensis SEP -/--/--/--1-1--/--IN -IN TYPLA T= Typha latifolia SEP -IN PIN PIN P/PIN PIN PIN PIN UTRBIF= utricularia biflora FH -/--1--/-P/PIN P/--1--/-UTRCOR= utricularia comuta RH -/--IN -/--1--/-/-/-/-UTRSPP= utricularia spp. RH -/--1--/--/-/-/-P/-/WOLFLO= Wolffiella fIoridana FH -1--IN -IN P/PIN PIN PIN PIN WOLSPP= Wo/IIia spp. FH -1-PIN P/--/--IN -IN PIN -1-WOOVIR= Woodwardia virginiana RFP -IN PIN -IN -1-1-1--/-/36

PAGE 38

Table 6 Plant Species List (Cont.) Species Codes Plantb C Sample Date" Tvoe N90 A91 J92 M92 A92 F93 A93 M94 cyperac= Cyperaceae SE -IN -IN fem= pteridophyte RF -IN -/poaceae= Poaceae GR -IN PIN udicot= Unknown Dlcot 11 -IN PIN uvlne= Vine VI -IN -/# SPECIES PLANTING SITES (1215 34 # SPECIES NATURAL MARSH (296 m2j 54 65 # SPECIES COMMON TO ALL SITES 26 SORENSEN'S SIMILARI1Y INDEX % PLANTED SPECIES INCLUDED 53 PLANTED SPECIES EXCLUDED 48 = Not present. Bold Characters = Planted Species "SAMPLE DATE CODES NATURAL CODE PLANTED (P) SUCCESSION IN) N90 A91 SEP 1991 J92 JAN 1992 M92 MAY 1992 NOV 1990 AUG 1991 JAN 1992 A92 AUG 1992 AUG 1992 F93 FEB 1993 FEB 1993 A93 AUG 1993 AUG 1993 M94 MAR 1994 MAR 1994 CPLANT LIFE 1YPE= AlP ANNUAL or PERENNIAL -IN P/-IN -/--/--/--/--/--/-/--/--/PIN -/-PIN -/-/-/--IN -/-/-IN -IN -/--/--/--/-/--/--/38 30 33 33 47 37 48 41 37 44 36 26 23 22 28 22 61 62 63 62 60 59 59 56 63 56 = Plant may not fit category easily 37 CODE FF FH RF RH GR SE SH ST TR VI b pLANT 1YPE CODES DESCRIPTION FLOATING FERN FLOATING HERB ROOTED FERN ROOTED HERB GRASS SEDGE,RUSH,1YPHA SHRUB SMALL TREE TREE VINE

PAGE 39

As mentioned above, some species, such as Carex albotuscens. Habenaria repens. and Hydro/ea corymbosa were found in the marsh, but not in sample plots Carex albotuscens was found most frequently along canal banks in areas surrounding the marsh. The sedge may increase it's presence in the marsh over time Hydrolea corymbosa was found only once in the South Marsh. It's environmental requirements include shallow water and access to light. The loss of these requirements (flooding >50 em and overstory dominance by TYpha Tali/olia) over time seem to have caused it's demise. A single plant of the orchid Habenana repens was found along transect 6 (North Marsh) The plant was growing on a floating mat of Eleocharis vivipara The increasing area of floating mats may lead to increased presence of species such as Habenaria repens. This species is commonly found in the nearby lake fringing swamp forest. In contrast, Polygomlm densijlorum was found in small patches in the North Marsh during Summer 1991. Patch sizes increased until P. densijlornm was found in sample plots in August 1993 (Table 6). Hydrology Hydrology is an important driving force in any ecosystem A number of conditions in the Apopka Marsh may cause unique hydrologic conditions in different parts of the marsh. Two conditions that may alter hydrology include the indirect connection between the North and South Marshes; soil surface elevation gradients that are perpendicular to the axis of the stage recording network; and the tendency to form floating mats. The long-term stage record showed that water surface fluctuations across the marsh were well correlated (Fig. 4). The stage record also provided information about the timing and duration of soil surface exposure during August 1993 and March 1994. The water depth record from measurements at plots provided information about soil surface elevation gradients and elevation changes brought on by floating mat formation over the duration of the project. The topographic survey conducted in August 1992 provided information about soil surface elevation for a short time and was not linked to this study. other than to provide inferences about soil oxidation. As mat formation progressed its presence was revealed as an increase in variation associated with water depth measurements. Finally. developing an understanding of how vegetation succession has been driven requires an understanding of the relationship between the abiotic and biotic components. In this case relating water depth patterns measured at vegetation plots to long-term stage records should provide information about the hydrologic components: depth, duration, and timing. Unfortunately. floating mat development results in a loss in the information value oflong-term stage records. A correlation analysis between daily stage and vegetation plot water depth revealed differences over time and between the natural succession and planting sites (Table 7). The relationship between stage and water depth tended to be closer in the planted sites than in the natural succession sites. 38

PAGE 40

Table 7. Correlation analysis of Water Depth and Recorded Stage Data No correlation estimate due to insufficient numbers of stage measurements. (A) NATURAL SUCCESSION TRANSECTS SPEARMAN CORRELATiON ANALYSIS SOUTH MARSH NORTH MARSH DATE COEF. 0 N COEF. 0 N NOV 90 -0.26 0.0003 166 -0.17 0.0527 126 AUG 91 0.60 0.0001 155 0.72 0.0001 124 JAN 92 0.52 0.0001 155 -0.15 0 .0917 126 AUG 92 0.70 0.0001 156 -0.21 0.0169 126 FEB 93 0 .52 0.0001 155 -0.30 0.0007 126 AUG 93 -0.35 0.0052 64 0.36 0.0022 62 MAR 94 -0.02 0 6140 92 -0.04 0.7512 63 (B) PLANTING SITE PLOTS SPEARMAN CORRELATION ANALYSIS SOUTH MARSH NORTH MARSH COMBINED DATE COEF. Q N COEF. Q N COEF p N SEP 91 0.65 0.0001 56 0.66 0.0001 64 JAN 92 0.71 0.0001 106 0.56 0.0001 159 MAY 92 0.60 0.0001 106 0.36 0.0077 54 0.41 0.0001 162 AUG 92 0.75 0.0001 106 0.67 0.0001 162 FEB 93 0.60 0.0001 106 0.53 0.0001 162 AUG 93 0.55 0 .0001 107 0 .05 0.7445 53 0 .56 0.0001 160 MAR 94 0.51 0 .0001 106 0 .55 0.0001 162 39

PAGE 41

In the south marsh natural succession sites the relationship tended to weaken or become negative during drawdowns or as mat formation reached maximum. In most cases north marsh natural succession sites tended to have positive or negative relationships with no discernable pattern. Drawdown did seem to result in breakdown in the relationship in the March 1994 sample (Table 7). In the south marsh planting site, the relationship between stage and water depth seemed to decline late in the sample period. In contrast, the north marsh planting site analysis was mared by the lack of stage measurements because sites were measured in one day. A correlation analysis with the sites combined revealed little difference among sample dates. Combining sites lead to an overall reduction of correlation coefficients (Table 7). Within vegetation plot water depth measurements were highly correlated. This result held for all sample dates in both north and south marsh planting sites (Table 8). Correlation analysis of natural succession plots also revealed similar within plot measures (Table 8). ASSESSMENT OF EXPERIMENTAL PLANTING SITES Hydrology Hydrology will be reported first to lay the groundwork for understanding the vegetation dynamics of the site. The site remained flooded for most of the time since it was established (Figure 4). The first drawdown of the north marsh (Site 3) occurred during spring 1993. The soil surface was exposed during the drawdown event. The south marsh remained flooded during this drawdown. During spring 1994 both the north and south marshes were drawn down leading to soil exposure. Hydrology on the site was linked to vegetation dynamics and floating mat development. The Pontederia cordata planting treatment exhibited the greatest mat formation A slowly declining water depth pattern over time reflects mat formation (Figure 10). The Panicum hemitomon planting treatment was vegetated (primarily by Typha latifolia) later than the other planted treatments. This later vegetation development resulted in the least mat formation and deeper water depths (Figure 10). The remaining treatments showed a linkage to surface water intermediate between Pontederia and Panicum (Figure 10, 11). A Scheffe' Multiple Ranges test (a=O 05) revealed that water depth in the Pontederia cordata planted treatment tended to be shallowest while the Panicllm hemitomon treatment was deepest. Water depths in the remaining treatments did not differ (Table 9). Floating Mats Floating mats were as diverse in the Planting Sites as they were in the Natural Succession areas. Mats were formed by Eleocharis interstincta, Pontederia cordata, Sagittaria lancifolia, ScirptlS valid!IS, and Typha latifolia rhizomes; Hydrocotyle spp. 40

PAGE 42

Table 8. Water depth measurement correlation analysis from within vegetation plots. (A) NATURAL SUCCESSION TRANSECTS SPEARMAN CORRELATION COEFFICIENTS SOUTH MARSH NORTH MARSH DATE WL1xWl2 WL1xWL3 WL2xWL3 WL1xW!.2 WL1xWL3 WL2xW!..3 NOV 90 0 95 0.96 0 96 0.87 0 88 0.92 AUG 91 0.95 0.91 0 95 0 94 0.86 0.90 JAN 92 0.95 0.92 0 95 0 90 0.78 0.84 AUG 92 0.93 0.92 0 94 0 86 0.84 0.86 FEB 93 0 .91 0.92 0 94 0 77 0.74 0.76 AUG 93 0.90 0.87 0.91 0.82 0 84 0.83 O. Q94 0 94 0 84 (6) PLANTING SITE PLOTS SPEARMAN CORRELATION COEFFiCIENTS SOUTH MARSH NORTH MARSH DATE WL1xWl2 WL1xWL3 WL2xWL3 WL1xW!.2 WL1xWL3 WL2xW!.3 SEP 91 0.88 0.85 0.81 0.90 0 87 0 88 JAN 92 0.92 0.86 0.90 0.95 0 93 0 94 MAY 92 0.92 0.86 0 90 0.93 0 90 0 90 AUG 92 0.92 0.90 0 93 0.90 0 90 0.87 FEB 93 0 .91 0.80 0 86 0.85 0 75 0.82 AUG 93 0 .91 0.86 0 83 0.80 0.72 0.83 W 0.96 Q96 41

PAGE 43

Experimental Planting Treatment Planted Plots -SITE 1 ---SITE 2 SITE 3 ELEINT 80 '" _________ I o>-----...... .... 1" ...... ... -----------f.-_ 20 --__ ---108 h L 80 PANHEM "' ............ ",...... 20 -----:r----.. -:r 80 PONCOR T -= .......... ::.:t:: 80 SAGLAN I .", ................. .............. :::. .. ::::.:: .:.:..;:;:--. '" 20 .:E---___ ----::.-::-.:::"' .", .... :---r 80 SCIVAL 601 -___ __. ...... 2 4 0 0 .. ":I; __ ...... -... $ .... __ r ---r...... Time (Months) Figure 10. Water depth from Experimental Planting Treatment Sites, Planted Plots. 42

PAGE 44

w CI) :i: z w ::2: .c a. (I) Cl Experimental Planting Treatment Seeded, Mulch and Control Plots -SITE 1 --SITE 2 SITE 3 aD PANHEM 60 .. _____ :.-::-:::::::-.::-::: ..... H._.. ................. .......... :.. .... aD PONCOR T --________ .;.:. ...... ...... x ......... ___ 20 1 aD 60 40 SAG LAN 1:.. -= .' I .. ... .... .. '. I '" 20 aD SCIVAL 60 40 .f ................. 20 aD r MULCH 60 40 20 __ T ., __ -----_--'r----__ _-------_ ;r..:::::::.::-.::-::::....... ,. .................... _--r........... I .... ----J ...... l ..... aD 60 40 20 CONTROL --"'----.. -... ___ ........ ... '" ______ _J ________ ______ -L ________ ______ ______ SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 11. Water depth from Experimental Planting Treatment Sites, Seeded, Mulch, and Control Plots. 43

PAGE 45

Table 9 Comparison of mean water depths (em) among planted plot treatments, Experimental Planting Sites, Apopka Marsh Flow-way Demonstration Project. General Linear Model procedure with a Scheffe' Multiple Ranges test. 1 Similar letters denote no significant difference Wate[ DeRth 1 Scheffe' MultiRle Ranges Panicum hemitomon 45 7 a Scirpus validus 40.6 b Scirpus califomicus 39.9 b c Elaocharis interstincta 39.9 b c Mixed Species 38 5 b c Pontederia cordate 35 7 c 44

PAGE 46

stolons; dead vegetation; and Eichhomia crassipes colonies. We observed that most mat areas formed as vegetation grew into shallow soil (i.e. agricultura1 plow zone), followed by disconnection of the soil-root/rhizome matrix and flotation. Hydrocotyle spp. and Eichhomia crassipes tended to develop floating colonies which spread across canals and into established planted treatments. Minimal invasion of planted Scirpus califomicus plots by either Hydrocotyle spp. or Eichhomia crassipes was found. This is an unusual situation with colonization up to the edge of the S. califomicus and little or no invasion inside the treatment plot. This pattern may represent a form of competitive exclusion. Other treatments exhibited similar patterns, but not to the extent of the S califomicus treatment. Vegetation Treatment Plots Flora-Overall. Fluctuations in species richness were similar among the various treatments over time (Table 10). An increase in species richness coinciding with the August 1993 drawdown in the south marsh was detected (Table 10). Flora-Subplot. Fewer species were found in the subplots than in the overall plots This results from the smaller sample area of the subplot. Common species found included the floating plants: Azolla caroliniana, Lemna spp Salvinia rohmdijolia, Spirodella polyrhiza, Wolffia spp. and Wolffiellafloridana. Similarities in vegetation dynamics of dominant species between subplots and overall plots suggests that the subplots were representative of vegetation dynamics over time. Cover Percent. The first sampling (August 1991) of the planted sites was limited to a presence/absence species list for the overall estimates and detailed data collection from the subplots. The seeded, mulched, and control plots were visited but not intensively sampled during this sample period The plots were nearly devoid of plants as a result of the site preparation (Table 11). Little evidence of planted sprigs were found during this visit. Apparently leaf die-back had occurred, leaving viable rhizomes in the soil. The dark brown stained water color restricted our view of living plants. As the plant community developed it became obvious that the planted treatment had achieved a high survival rate. Each species behaved in a way that reflects its adaptation to its environment. Each species exhibited varying degrees of survival and colonization effectiveness in the face of interand intra-specific competition. Hydrocotyle ranunculoides and Typha latifolia were the most frequent invading species from the natura1 succession marsh. These species tended to provide competition in two ways. Hydrocotyle rammcllioides, a low growing, stoloniferous, perennial plant was found to grow into the understory of many other taller species. After cold weather reduced overstory cover it seemed as if H. rammcllioides increased its cover into the formerly shaded space. In contrast, Typha latifolia tended to establish from seed, then colonize nearby areas by growing mUltiple rhizomes into available spaces. It tended to increase shade and expand into a large fraction of the rhizosphere. It was outcompeted by planted species in many cases 45

PAGE 47

Table 10. Total plant species richness per treatmentfrom Experimental Planting Sites. Values In parenthesis (X 0.001) are species richness values normalized to' spp. m"' to allow comparisons among treatments. TREATMENTS SAMPLE DATES PLANTED (n;12) ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED (n;6) SEEDED (n;6) PANHEM POLPUN PONCOR SAGLAN SCIVAL MULCH (n;12) JAN92 MAY92 AUG92JEB93 __ __ MAR94 17 (6.13) 23 (8.30) 12 (4.33) IS (S. 41) 22 (7 .94) 13 (4.69) 17 (6 .13) 18 (6 49) 19 (6.85) IS (S.41) 26 (9.38) 21 (7.57) 19 (6 .85) 28(10.10) 19 (6.85) 19 (6.85) 24 (8.66) 19 (6.85) 18 (6.49) 23 (8.30) 17 (6.13) 16 (s.n) 24 (8 .66) 18 (6.49) IS (S.41) 18 (6.49) 19 (6.85) 13 (4.69) 21 (7 57) 12 (4.33) 19 (6.85) 16 (S.77) 22 (7.94) 12 (4.33) 27 (9 74) 17 (6.13) 23 (6 55l 18 (SI2) 23 (6 55l 21(S 98) 28 (7 9D 20 (S 69l 7 (S.OS) 14(10. 10) 14(10. 10) 12(8.66) 21 (IS. IS) 18(12. 98) 11(7.94) IS (10.82) 13(9.38) 11(7.94) 21 (IS. IS) 12(8.66) 11 (7 .94) 11 (7 .94) IS (10.82) 14(10.10) 25(18.03) 14(10.10) 12(8.66) 14(10. 10) 14(10.10) 11 (7.94) 19(13. 71) 16(II.S4) 10(721) 14(1010) 13(938) IS(1082) 19(1371\ 18(1298) 14 (S 05) IS (S.41) 14 (S 05) IS (S.41) 26 (9.38) 13 (4.69) CONTROLln;36) 22 (1 89) 26 (2 23) 25 (2 14) 24 (2 06) 40 (3 43) 28 (2 49) 46

PAGE 48

Table 11. Overall vegetation cover measurements (% plor' MEAN SE) from planted plots, Experimental Planting Sites, Apopka Marsh Flow Way Demonstration Project. Species Codes: Upper case six character are abbreviated species codes. Lower case codes represent plant families or unknowns. Codes ending with D represent dead, while S represent seedlings. Overall cover measurements in August 1991 sample were presence/absence, therefore numeric entries are frequency of occurrence, not mean cover. SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP MEAN SE MEAtl E SE MEAN SE MEAN SE MEAN SE MEAN ... SE AUGUST 1991 SITE 1 ALTPHI 0.25 0 25 0 25 AMMAUS 0.25 0.25 BACSPP 0.25 COMDIF 0.25 0 50 0 25 0 25 CYPSPP 0.25 ECLALB 0.25 0 .2 5 0.25 LEMSPP 1.00 1 .00 1 .00 1 00 1 00 1 00 0 50 PANHEM 0 25 0 25 POLPUN 0.50 0 .75 0 50 0 .5 0 0.50 0.50 PONCOR 0 .2 5 0 25 SAGLAN 0 .2 5 0 .25 1 00 0 25 SALROT 0.25 SCICAL 0.25 0 25 0.25 0 25 SCISPP SCIVAL 0 .2 5 0 .25 0 25 0.25 SPIPOL 1 .00 1.00 1 00 1 00 1.00 0 75 0 50 THAGEN TYPLAT 0 .25 WOLFLO 0 25 0 .2 5 WOLSPP 0.25 0 75 0.25 0.25 0 25 0 75 0.50 AUGUST 1991 SITE2 ALTPHI 0.25 0 25 0.50 0 50 0 25 AMMAUS 1 .00 0 .75 0 .75 0.25 1 .00 0 75 0 50 ASTSUB 0 25 0.50 0.25 COMDIF 0 25 0 50 CYPIRI 0.25 CYPODO CYPSPP 0 25 0 25 ECHCOL 0.50 0.25 0 50 ECLALB 0.25 0 50 0 50 0 25 0 50 0 50

PAGE 49

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEIND 0.25 ELEINT 0.25 0.50 0.50 HYDUMB 0.25 0.25 KOSSPP 0.50 LEMSPP 1 00 1.00 1.00 1.00 1.00 1 00 0.50 LUDLEP 0.2 5 0 25 LUDOCT 0 25 0.25 0.50 LUDPAL 0 25 0.25 0.25 PANDIC 0.25 0 25 0.50 0.25 0.25 0 25 PANHEM 0.50 0.25 0 25 0 50 POLPUN 0.25 PONCOR 0.25 0 25 0.50 SAG LAN 0 25 0.75 0.25 0.50 SCICAL 0.25 0 25 0.25 0.25 SCISPP 0 50 SCIVAL 0.25 0.25 0.25 0.25 SPIPOL 1.00 0 50 0.75 0.75 0.75 1.00 0.50 THAGEN 0.50 TYPLAT 0.25 UGRASS 0.25 WOLSPP 0 75 0 50 0.25 1 00 0 25 0.50 0.50 AUGUST 1991 SITE3 ALTPHI 0.25 0.75 0.25 0 25 AMMAUS 0 .25 0.50 0 25 0 25 BACCAR 0.25 COMDIF 0.25 0.25 EICCRA 0.25 0.25 ELEINT 0.25 0.25 0.50 0.50 LEMSPP 0.25 0.75 0.25 0.75 LUDLEP 0.25 LUDOCT 0 .25 0.25 LUDPAL 0.75 0 50 0 25 0 .25 0 25 PAN HEM 0.25 0.25 0.25 0.50 POLPUN 0.25 PONCOR 0.25 0.50 0 25 0.25 0.50 SAGLAN 0.50 0.25 0.50 SAL CAR 0.25 SCICAL 0.25 0 25 0.25 0.25 SCISPP 0.25 0 50 SCIVAL 0 25 0.25 0.25 0 25 SPIPOL 0.25 THAGEN 0 50 TYPLAT 0 25 48

PAGE 50

Tabl e 11. O verall vegetation cover measurements (Cant.). SPP JANUARY ALTPHI AMAAUS AMMCOC ECHCOL ELEINT HYDRAN LUDOCT LUDPAL PAN HEM POLPUN PONCOR SAGLAN SAGMON SCICAL SClsPP SCIVAL THAGEN TYPLAT umana unknon JANUARY ALTPHI AMMCOC AsTsUB AZOCAR COMDIF CYPHA S CYPODO CYPSPP ECLALB ELE I N T ELESPP EUPSER HYDRAN LEMSPP LlMsPO LUDOCT LUDPAL PANHEM ELEINT MEAN 1992 2 00 5.25 0 .2 5 0 50 0 25 0 25 199 2 0 75 0 75 0 25 16 25 7 75 16 25 1 00 PANHEM SE MEAN SE SITE 1 1.00 1.50 1.19 1 .84 0 25 0.25 0 25 0.25 0 25 1 00 0 29 2 75 1 .31 0 25 0 25 0 25 0 25 SITE 2 0 25 0.50 0.29 0 25 0.25 0.25 0 25 3 15 0 25 0 25 7.42 1 25 1.25 5 54 6 50 2 99 0 75 0 25 1 00 PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE M EAN sE MEAN SE MEAN sE MEAN SE 3 00 2 35 1 50 1 19 1 00 0 75 0 25 0 50 0.50 0 25 0 25 1.00 0 50 0 29 0.50 0 29 1 25 1.25 1 00 1 50 1.19 1 75 1.11 0 75 0.25 0 50 0 29 1 00 28 75 10 87 0 50 0 29 7 50 7 50 0 25 0 25 38 25 11. 43 0 25 0 25 1 00 1 5 00 3 54 10 00 10 00 15 00 5 00 37 50 14 38 5 00 5 00 35 00 5 00 0 25 0 25 1 25 1 25 1 50 1 19 1 25 1 25 1 25 1 25 1 75 1 .11 3 75 3 75 0 25 0 25 7 75 4 19 18. 75 7 18 43 75 15 33 0 50 0.50 0.25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 5 00 5 00 0 25 0 25 2 50 2 50 0 25 0 25 1 50 1 19 0 25 0.25 0 25 0 25 1.00 46 .25 8 .51 52 50 11. 27 7.75 3 04 35 00 4 08 40 50 39 50 0 25 0 25 0 50 0 50 0 25 0 25 0 25 0 25 0.25 0 25 0 25 0.25 49

PAGE 51

Table 11. OVerall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAGLAN SCICA L SCIVAL MIXEO SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PO L PUN 0.25 0 25 O .SO 0 29 0 25 0.25 PONCOR 0 25 0.25 0 25 0.25 43 .75 14.91 5 00 5 00 RHARHA 0.25 0.25 0.25 0 .25 SAGLAN 0 25 0.25 60 .00 9.13 0 .25 0.25 5 00 SAGMON SALROT 0 75 0 25 O .SO 0 29 0 25 0 25 O .SO 0 29 0 25 0.25 0 50 0.50 SCI CAL 21. 25 8 .51 SCISPP 10 00 1 0 .00 SCIVAL 0 25 0 25 0 25 0 25 10.00 10.00 76.25 1.25 10.00 10 00 SPIPOL 1 75 1.11 0.75 0.25 2 .00 1 00 1.00 1 00 4.25 3.59 1 .00 THAGEN 27.50 7 50 TYPLAT 1 75 1.11 0 75 0.25 3.00 1.15 0 25 0 .2 5 0 25 0 25 0 .50 0 50 WOLFLO 4 25 2 .14 2 00 1.00 5 25 1 .84 4 .2 5 2 14 3 .00 1.15 6 50 2 18 5 50 4.50 WOLSPP ugrass 0 .2 5 0 .25 0 25 0 25 0 25 0.25 JANUARY 1992 SITE3 ALTPHI 0 .25 0 25 AZOCAR 47 50 24.62 15 25 11.62 52 50 18 87 33 .75 15 99 18 75 10 48 62 50 9.46 52 50 22 50 BRAPUR CLAJAM 0.50 0.50 COMDIF EICCRA 0 75 0 25 0 25 0 25 0 .75 0 25 0 50 0 .29 0 25 0 25 1.00 0 50 0.50 ELEINT 33.75 10.28 7 50 2 50 GALTIN LEMSPP 4 .00 1 00 0 .75 0.25 4.25 1 .11 4 00 2 27 1 00 1.00 3.00 2 00 LUOOCT LUOPAL 3 25 2.25 4 .25 2.14 0.5 0 0 29 0.75 0 25 2 00 1.00 2 00 1.00 0.50 0.50 LUOPER POLPUN 0 50 0 29 0 25 0 25 0 25 0 25 0 .50 0 50 PONCOR 1 50 1.19 51. 25 17 12 0 25 0 25 0 .25 0 25 0 25 0.25 5 00 5 00 SAGMON 32 50 14. 36 1.00 SALROT 0 50 0 29 0 50 0 29 0 .25 0 25 0.50 0.29 0 75 0.25 1.00 SCICAL 10 00 10.00 35 00 10.00 SCISPP SCIVAL 1.25 1.25 15 .00 5.40 81.25 9 66 2 50 2 .50 SPIPOL THAGEN 0 25 0 .25 25 00 5 00 TYPLAT 1 .75 1 .11 2 .00 1 00 0 50 0.29 2 .75 2 43 1.25 1 25 0.50 0.29 WOLFLO 1.00 1 .00 1.75 1.11 4.00 2 27 1.00 0 75 0.2 5 3 00 2.00 50

PAGE 52

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MAY 1992 SITE 1 ALTPHI 10 25 3.30 10 00 6 n 6.25 2 39 3 00 2 35 9 25 4 87 6 50 2.99 ELEINT 41. 25 9.66 HYDRAN 0 50 0 29 0 25 0 25 0 25 0 25 0.50 0 29 0 50 0 29 LEMSPP 0 75 0 25 0 50 0 29 1 00 1.00 0 25 0 25 1 00 PANHEM 1 00 POLPUN 1 00 2 75 1 .31 1 25 1 25 0.50 0 29 0 75 0 25 0 75 0 25 PONCOR 62 50 8 .29 1 25 1 25 SAGLAN 5 25 3.42 2 75 2 43 72.50 5 20 0 50 0.29 1 25 1 25 SAGMON 0.25 0 25 SALROT 0 25 0.25 SCI CAL 51.25 5 15 16 25 16 25 SCIVAL 18 75 18. 75 52 50 17 62 SPIPOL 0 75 0.25 0 75 0 25 1 00 1 00 0 25 0 25 2 00 1.00 TYPLAT 1 25 1 25 1 50 1 .19 0 25 0 25 0 25 0.25 0 25 0.25 UTRBIF 5 00 2 89 2 50 1.44 0 25 0 25 2.50 2 50 0 25 0.25 UTRSPP 0 50 0.29 0 50 0 29 3 75 2 39 6.25 3 75 5 00 3 54 6 25 2 39 MA Y 1992 SITE 2 ALTPHI 7 75 3 .04 0 25 0 25 5 25 4 92 5.25 4.92 1 25 1 25 0 75 0 25 0 50 0.50 AMAAUS 0 25 0 25 0 25 0 25 APILEP 0 25 0 25 0 25 0 25 ASTELL 0 25 0 25 AZOCAR 1 50 1.19 0 25 0 25 3 75 2 39 7.50 7 .50 12 75 7 36 2 75 2 43 CYPHAS CYPODO CYPSPP ECHCRU 0.25 0 25 ECLALB 2 50 2 .50 EICCRA 0 25 0.25 0 .50 0 50 ELEINT 63 75 3 75 0 25 0 25 3 00 2 00 EUPCAP 0 25 0.25 EUPSER 0 25 0 25 0.25 0.25 GALTIN 0.25 0 25 HYDRAN 7 50 7 50 2 50 2.50 1 25 1 .25 6.50 6 17 5 00 3 54 5 50 4 50 HYDUMB 2 75 2 43 3.75 3 75 0 25 0 25 JUNEFF 7 50 2 50 LEMSPP 3 25 2 25 9 00 5.Q2 47 50 7 50 30 00 8 16 30 50 17 03 37 75 12 .91 35 00 15.00 LlMSPO 0 25 0 25 2 50 2 50 LUDPAL PANDIC 0 25 0.25 PANHEM 4 00 1 00 PELVIR 1 00 51

PAGE 53

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVA L M I XED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE POLPUN 1.25 1 25 0 25 0 .25 3 75 2 39 PONCOR 0 50 0 29 52 50 17 97 2 .50 2 50 RUMOBO 0 25 0 25 SAGLAN 1 25 1 25 75 00 11. 73 0 25 0 25 8 00 7 .00 SAGMON SAGSTA SALROT 6 50 4 63 7 .75 3 .04 1 50 1.19 25 00 21.70 17 50 7 50 13 75 9.44 2 50 2 50 SAM C AN SCI CAL 0 25 0 25 0 25 0 25 70 00 7 .91 2.50 2 50 SCIVAL 0 25 0.25 0.25 0.25 0 25 0 25 92 50 2 50 17 .50 12.50 SENGLA 0 25 0 25 SOLSPP SPIPOL 1 75 1.11 2 50 2 50 5 00 2 89 0 25 0 .25 6 25 3 75 5 25 2 .75 THAGEN 32 .50 2 50 TYPLAT 17 50 6 .61 26 25 12 48 15 00 8 90 0 25 0 25 1 50 1 19 40 00 30.00 WOLFLO 0 25 0 25 7 .75 7.42 8 .75 7 18 17 50 4 79 2 75 2 43 5 .50 4.50 MAY 1992 SITE3 ALTPHI 0.75 0 25 0 25 0 25 1.25 1.25 0.50 0 29 AMAAUS AZOCAR 2.00 1 00 0 50 0 29 0 50 0 29 0 75 0 25 2 00 1 .00 1 75 1 .11 10 50 9 50 EICCRA 1 75 1 .11 0 25 0 25 1 50 1.19 1 50 1 19 1.75 1. 1 1 2 00 1 00 ELEINT 48 75 3 15 0 25 0 .25 11.50 1 1. 17 5 50 4 50 EL E VIV 0 25 0 25 JUNEFF 0 25 0 25 0 50 0 50 LEMSPP 1 00 0 50 0 29 5 75 4 75 0 75 0 25 2 00 1 .00 15 75 14 .75 15 50 14 50 LUDPAL 1.75 1 .11 2 .75 1.31 0 .2 5 0.25 1 50 1 19 1.50 1 19 1.50 1 19 1 .00 PANHEM 0.25 0 .25 1 .00 PASURV PELVIR 0 50 0 50 POLPUN PONCOR 0 25 0 25 2 50 1.44 56 25 18 .86 2 .50 2 50 0 50 0 29 2 50 1 44 15 00 15 00 SAGLA N 0 25 0 25 30.00 17 80 3 00 2 00 SAGMON 5 .00 5 00 SAG S TA 0 25 0 25 SAL CAR SALROT 1 00 0 25 0 25 2 00 1.00 0 50 0 .29 2.00 1 .00 4.25 2 .14 10 50 9.50 SCICAL 0 50 0.29 37.50 13 15 15 .00 15 00 5 00 5.00 SCIVAL 1 25 1.25 63.75 14 .34 35. 00 5 .00 SPIPOL 0 25 0 25 0 50 0 29 0.25 0 25 THAGEN 1 .25 1.25 35 00 5.00 TYPLAT 10 .00 2 04 4 .00 2 27 0 50 0.29 1.25 1 25 0 25 0 25 0 50 0 29 WOLFLO 1.00 0 50 0 29 2 .00 1 .00 0.75 0 25 2 00 1 00 1.00 10 50 9 50 52

PAGE 54

Tab l e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL S CIVAL MIXED SPP MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1992 SITE 1 ALTPHI 4 00 2 27 2 50 1 44 0 50 0 29 3 00 1 15 4 00 1 00 3 75 2 39 5 00 5 .00 AMAAUS 0 25 0 25 0 25 0 .25 CYPODO 0 25 0 25 0 25 0 25 CYPSPP ECHCRU EICCRA 0 25 0.25 0 25 0 25 ELEINT 78. 75 10 68 7.50 7.50 HYDRAN HYDUMB 0 25 0 25 0 25 0 25 LEMSPP 1 25 1 25 0 25 0 25 1.50 1 19 0 25 0 25 5 00 5.00 LUDREP PANHEM 0 20 5 .00 0 50 PASURV 2. 50 1 40 PELV I R 2 50 2 50 POLPUN 0 25 0 25 PO N COR 70 00 23 .36 0 25 0 25 5 00 5 00 SAGLAN 5 00 2 89 3 70 5 00 2 .90 81.2 5 5 15 8 00 7 00 S AGMON 0 .25 0 25 SALROT S CICAL 81.25 5 .91 2 50 2 50 SCISPP4 0 25 0 25 0 50 0.50 SCIVAL 2 50 2 50 87 50 5 95 10 00 5 .00 SPIPOL 0 25 0 .2S 0 25 0 25 0 25 0 25 0 .2 5 0 25 5 00 5 00 THAGEN 55.00 15 00 TYPLAT 1 50 1 .19 1 50 1 90 1 .00 1 19 7 .75 4 66 0 25 0 25 0 25 0 25 5 00 5 00 UTR81F 3 .75 2 .39 0 20 5.00 0 50 1.00 1 19 1 25 1.25 2 75 2.43 22 50 16 52 7 50 2 .50 AUGUST 1992 SITE2 ALTPH I 0 25 0 25 1 00 AMAAUS 1 25 1 25 CYPODO CYPSUR ECLALB EICCRA 1 25 1 25 ELEINT 88 75 5 .15 6 25 3 .75 0 25 0 .2 5 0 .25 0 25 7 50 2 50 EUPCAP 0 25 0 25 2 50 1.44 2 50 2 50 0 50 0 50 HYDRAN 0 25 0 25 HYDUMB 0 25 0 25 JUNEFF 0.50 0 50 LEMSPP 0 25 0 25 30.00 11.73 7 50 4 .79 32 50 11.09 17.50 11.09 0 25 0 25 30.00 30 00 LlMSPO 1 25 1 25 1 25 1 25 1 25 1 25 0 50 0 29 1 00 53

PAGE 55

Tabl e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDLEP LUDOCT 0 25 0 25 2 50 1 44 2 50 2 50 LUDPER PANDIC 0 50 0.29 PAN HEM 4 25 2.14 PELVIR 0 50 0.50 POLPUN 0 50 0.50 PONCOR 2 50 2 50 61.25 18 53 2 50 2 50 10. 00 10.00 SAGLAN 0 25 0.25 0 25 0 25 0.25 0.25 66.25 3.75 0 50 0.29 22.50 17.50 SAGMON SALROT 2 .75 2.43 3 .75 3 .75 8.75 3.15 0.25 0.25 5.00 5 .00 SCI CAL 0 25 0 25 0 25 0 25 56 25 20.14 2 50 2.50 SCISPP SCISPP4 10 00 4 08 SCIVAL 2 50 2.50 22.50 22 50 78 75 10.68 12 50 2 50 SPIPOL 0.25 0.25 5.25 3.42 2.50 2 50 7.75 4 66 2 50 2 50 0.25 0.25 THAGEN 0.25 0.25 35.00 25.00 TYPLAT 7 .50 2.50 43.75 12 .81 15 .00 6 45 8.75 3 75 2.50 2 50 4 .00 3.67 35.00 15.00 WOLFLO 3 .75 2 39 3.75 2 39 5 .00 5.00 AUGUST 1992 SITE3 ALTPHI 0 25 0 25 0.50 0 29 0 50 0.29 1 00 AZOCAR 0 25 0.25 0 25 0 25 2 50 2 50 5 00 5 00 BRA PUR CYPSUR EICCRA 2 00 1.00 12 50 4 79 8.75 5 15 19.00 9.50 7 75 2.25 5.00 ELEINT 87.50 4.33 35.00 5.00 HYDRAN 2 75 2 43 1.25 1 25 1 25 1 25 0.25 0.25 1.50 1 19 2 50 2 50 HYDUMB 0 25 0 25 LEMSPP 15 25 8.52 40 .00 7 07 10 00 3 54 25.00 6 45 37 50 8 54 32 50 9.46 25 00 5 00 LUDLEP 0 50 0 29 0 25 0.25 LUDPER 0 50 0 50 MIKSCA PANHEM 0.50 0 29 0.25 0 25 PELVIR 7 50 2.50 POLPUN 0.25 0 25 0 50 0 29 0 25 0.25 PONCOR 7 75 4 19 65 .00 21. 79 2.50 2 50 1 25 1.25 8 75 5 15 5 00 5 00 SAGLAN 0.25 0.25 0 50 0 29 72. 50 4 33 10.00 SALROT 0 50 0.29 10.00 10.00 5 00 2 89 SCI CAL 1.50 1.19 70.00 9.79 7.50 7.50 5.00 5.00 SCISPP4 3.00 1.15 SCIVAL 33. 75 9 44 15 00 5.00 SPIPOL 4 00 2 27 22 .75 10 13 3 .00 1 .15 12.50 2 50 8 75 1 25 8 75 1 25 15 00 5.00 54

PAGE 56

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 3 .75 2 39 1 25 1 25 10 00 10 00 TYPLAT 6 50 2 .99 16. 25 6 25 5 .25 2 75 3 00 2 35 2 .50 2 50 6 25 3 .75 2 50 2 50 WOLFLO 1 50 1 19 1 .75 1 .11 0 .75 0 25 4 00 2 27 5 .00 2 89 0 50 0 29 5 00 5 00 uaquatic 0 25 0.25 FEBRUARY 1993 SITE 1 ALTPHI 0 50 0 29 0 50 0 29 0 50 0 .29 0 50 0 29 0 .50 0 29 0 50 0.50 AMAAUS 0 25 0.25 0 50 0.50 CYPSPP 0 25 0 25 EICCRA 0.50 0.50 ELEINT 66 25 9 44 12 .50 2 50 EUP C AP 0 25 0 25 GALTIN HYDRAN 0 .25 0 25 2 50 2 50 LUDLEP 0.50 0 50 LUDOCT LUDSPP PANHEM 0 .75 0 25 PELVIR 10 00 POLP U N 0 25 0 25 0 50 0 50 PONCOR 0 25 0.25 28 .75 16 63 1 50 1.19 2 50 1 44 2 50 2 50 SAGLAN 7 75 7.42 7 50 4 .79 1 50 1 19 46 .25 15 46 0 25 0 25 2 50 2 50 10 00 SAGMON 15 .00 15 00 SALROT 0 25 0 25 0 25 0 25 0 25 0 .2 5 SCICAL 0 25 0 25 55.00 2 .89 5 50 4.50 SCIVAL 53.75 9 44 7 50 7 50 SPIPO L 0.25 0 25 THAGEN 10 00 10.00 TYPLAT 0 50 0 29 3 00 2 .35 4.00 3 67 1 00 0.25 0 25 0 25 0 25 2 50 2 .50 UTRBIF FEBRUARY 1993 SITE 2 ALTPH I 2 75 1 .3 1 0.25 0 25 1 25 1 .2 5 1 50 1 19 1 25 1 25 0 25 0 25 0 .50 0 50 AP I LEP 0 25 0 25 0 .50 0 50 EICCRA ELEINT 67 50 7 50 5 .00 3.54 0 .75 0 25 3 00 2 00 GALT I N 0 25 0 25 HYDRAN 3 75 2 .39 5 .00 5 00 0 50 0 50 HYDUMB 0 25 0 25 1.25 1 25 LEMSPP 23 75 18 75 16. 75 13 90 16.75 14 45 21. 50 9.47 33 75 15 73 4 00 2 27 10 00 LlMSPO 1 25 1 25 1 25 1 25 5 50 4.50 LUDLEP 55

PAGE 57

Table 11. Overall vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDPER PAN HEM 0 .75 0.25 5 .00 5.00 PELVIR 7 50 2 50 POLPUN 0.25 0 25 0 50 0.50 PONCOR 0 25 0 25 30.00 10. 80 7 50 7.50 SAGLAN 0 25 0 .25 0 25 0 25 63 .7 5 3 75 1.25 1 25 17 50 7 50 SAGMON SALROT 2 50 2.50 0 50 0 29 12. 75 12.42 3 25 2 25 5.25 2 .75 4.00 2 27 10 .00 10.00 SCICAL 0 25 0.25 0.25 0.25 1 50 1 19 48 75 4 27 5.50 4.50 SCIVAL 0.25 0 25 7 50 7 50 30.00 10.80 12 50 7 50 SPIPOL 0.25 0 25 0.50 0.29 0 25 0 25 0 25 0 .2 5 1 00 THAGEN 27 50 2.50 TYPLAT 4 .00 2 .2 7 36. 67 6.67 20 .00 7 .07 6 25 2 39 1.50 1 19 15.00 8 .90 3 00 2 .00 WOLFLO 0 25 0 25 0 50 0 29 0 25 0 .2 5 0 25 0 25 0.25 0 .2 5 0 25 0.25 1 00 FEBRUARY 1993 SITE 3 ALTPHI 1 25 1.25 0 25 0.25 0 25 0.25 0 25 0 25 AZOCAR 0 50 0.29 0 25 0 .2 5 BRAPUR EICCRA 0.50 0 .2 9 11.25 8 26 5.25 3.42 22 50 7 22 1.50 1.19 ELEINT 80 .00 5.40 0 50 0 29 0 25 0 25 12. 50 2 50 GALTIN 0 25 0 25 HYDRAN 3.75 2.39 23.75 12.Bl 17 50 11.2 7 15 00 7.07 10 .00 2 89 31. 25 8 26 30 00 20 .00 LEMSPP 11.25 3 15 29 00 12 12 24 00 11.26 so.oo 16 20 26 25 8 98 23 75 8 98 5 00 LUDLEP 0 25 0 25 LUDOCT MIKSCA PAN HEM 0.50 0 29 PELVIR 17 50 7.SO POLPUN 0 50 0.29 PONCOR 0.25 0 25 5 00 2 .8 9 53 .75 17 .98 5 .00 5 00 1 25 1 25 2 .SO 1 44 20 00 20 00 SAGLAN 0.25 0 25 0 25 0 25 0 75 0 25 63 .75 4 73 1 .SO 1 19 25 00 15 00 SAGMON SALROT 0 25 0 .2 5 0 25 0.25 11. 50 9 56 16 25 9 44 1.25 1 25 7 .SO 7 .SO SCICAL 1 50 1.19 0 25 0 25 40 .00 4 56 3 75 3.75 10 00 SCIVAL 0 25 0 25 0 25 0.25 1.25 1 25 33.75 10 28 12.SO 2 .SO SPIPOL 0.50 0 29 0.25 0.25 1 50 1 .19 o .so 0 29 1 .00 THAGEN 1 50 1.19 25 00 5.00 TYPLAT 3.75 1.25 12.SO 4 .79 6 25 1.25 2 .SO 1.44 2.75 1 .31 15 00 7 36 WOLFLO 0 25 0 25 0 25 0.25 o .so 0.50 AUGUST 1993 SITE 1 56

PAGE 58

Tabl e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MI X ED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0 50 0 29 0 25 0 25 1 .00 5 00 2.00 1 00 2.00 1 00 0 50 0,50 AMAAUS 0.50 0 29 0 25 0 25 1 .75 1 .11 1 ,50 1 19 0 25 0 25 4 00 1 00 CYPIRI CYPODO 0 50 0 29 0 25 0 25 CYPSPP 0 25 0 25 ECLALB 0 25 0.25 0 50 0 29 EICCRA 0 25 0 25 ELE INT 91. 25 3 .75 12 50 12. 50 EUPCAP 0.25 0 25 0 25 0 25 0 50 0 29 HYDRAN 2 50 1,44 0,25 0 25 0 50 0.50 HYDUMB 0,25 0 25 LEM S PP 0.25 0 25 LUDLEP 2 .75 2 43 2 .75 2 43 3 75 2 39 1.75 1 .11 3 25 2 25 PANHEM 2 .50 1 44 PELVIR 5 00 5 00 POLPUN 0 25 0 ,25 0 50 0 29 0 50 0 29 PONCOR 0 25 0 .2 5 0 25 0 25 73 .75 24 .61 0 25 0 25 1 50 1 19 10 00 10.00 SAG LAN 1 25 1 25 6 25 3 75 60 00 7 36 0 50 0 29 0 25 0.25 8 00 7 00 SAGMON SALROT 0.25 0 25 0 50 0.50 SCICAL 0 25 0.25 36. 25 9 44 5.00 5 00 S C ISPP4 0 25 0 25 0 50 0 50 SCIVAL 2 50 2 50 30 00 14.14 5 .00 5 00 SP I POL 0 25 0 25 0 25 0 25 0.25 0 25 THAGEN 25 00 25 .00 TYPLAT 4 00 3 67 9 ,00 5 ,79 4 .00 2 27 5 00 0 ,25 0 25 2 75 2 43 5 00 5 .00 AUGUST 1993 SITE 2 ALTPHI 0.75 0 25 0 25 0.25 0 ,50 0 29 0.25 0 25 0 25 0 25 AMAAUS 0.25 0 25 0 .50 0 29 0 .25 0 25 CYPODO 4 25 2 14 0 50 0 29 0 25 0 25 1 75 1 .11 3.00 2 .35 0 50 0 50 ECHCOL ECH CRU 0 50 0 50 ECLALB 0 50 0 .29 0 50 0 29 E I CCRA ELEINT 50.00 12 25 4 00 2 27 2 .75 2 43 7 50 7.50 EUPCAP 0.25 0 25 0.25 0 25 GALTIN 0.25 0 ,25 HYDRAN 4.25 3.59 2 50 2 50 3 75 2 39 4.00 2 27 1 00 HYDUMB 2 75 2 43 0 25 0.25 0 25 0 25 JUNEFF 7 50 7 50 LEMSPP 1.00 15 25 6 26 0 75 0 25 10 00 3 54 9 25 6 98 1 75 1 .11 3 00 2 00 LEPFAS LlMSPO 0 25 0 25 57

PAGE 59

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL M IXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDLEP 31.25 6.25 2 .00 1.00 10 .00 1 0 .00 7 50 1 .44 1.25 1 25 21. 25 7 .18 2 50 2 50 LUDOCT 0 .25 0 .25 0 .25 0 .25 LUDPER PANDIC PAN HEM 0 .75 0.25 PANSPP 0 50 0.50 PELVIR 0 50 0 50 POLPUN 0.25 0.25 1 .25 1.25 PONCOR 1.50 1.19 45 .00 13.23 2 .50 2.50 20.00 20 00 SAGLAN 0.25 0 25 0.25 0 25 60 .00 1.5 0 1.19 1.25 1.25 15.00 15.00 SAGMON 1 25 1 .2 5 SALROT 0.50 0.29 35. 00 6.45 2.75 2 43 37 50 4 .79 22.50 7 50 17.50 10.31 3.00 2.00 SCICAL 1 50 1.19 1.25 1.25 0 .2 5 0.25 27.50 8 .54 2.50 2.50 SCISPP4 0.50 0.29 SCIVAL 0 .25 0 .2 5 0 .2 5 0 25 2.50 2.50 20.00 4 56 2 50 2.50 SPIPOL 0 .75 0 25 0 .25 0 .2 5 0 50 0 29 0 50 0 29 1 00 THAGEN 20 00 20.00 TYPLAT 8 .7 5 5 15 52.50 6.29 28 .75 4 .2 7 18 75 7 18 10 25 4 .3 9 30. 00 9 35 45 00 25.00 WOLFLO 0 50 0.29 0 50 0 .29 0.50 0.29 0 50 0 50 AUGUST 1993 SITE3 ALTPHI 0 50 0 .29 4 .00 2.27 1 75 1 .11 2 75 1 .31 1.50 1 19 3 00 1.15 15 50 14 50 AMAAUS 0 .25 0 25 AMMCOC 0 .75 0.25 0 25 0 .25 0 25 0.25 0 50 0 .29 BRAPUR 0 50 0.50 CYPCOM 0 .2 5 0.25 CYPIRI 0.25 0 25 0 75 0.25 0 .2 5 0 25 0 .25 0 25 0.25 0.25 0 .5 0 0 29 CYPODO 0.75 0.25 0 .25 0 25 0 .25 0.25 0.25 0 25 1.00 CYPSPP 0 .2 5 0 25 0.50 0.29 0.25 0 .2 5 ECHCOL 0.25 0 26 0 50 0.50 ECHCRU ECLALB 0.25 0 25 0 .25 0 .2 5 0 25 0.25 0.25 0 25 1 25 1 .25 0 50 0 50 EICCRA 0 25 0 25 27.50 10.51 0 .2 5 0 .25 2.75 1.31 12 50 3 23 11. 50 6 .44 10 00 10.00 ELEIND ELEINT 83 .75 5 .91 0 25 0 25 2 .75 2 43 1 25 1 25 0 .2 5 0.25 7 50 7 50 HYDRAN 1 75 1.11 2.50 2 50 1 .50 1 19 2.50 1.44 4.25 3 59 8 .7 5 1 25 5.00 HYDUMB 0 .25 0 25 7 .50 7 50 JUNEFF LEMSPP 1 .75 1 .11 31. 25 10.08 15 .25 11. 80 33 75 10. 68 12 75 5 .01 27 .75 9 .22 3 .00 2.00 LEPFAS LUDLEP 1.25 1 .25 1 .50 1.19 1 .00 0 25 0 .25 3 00 2 35 2 .00 1 .00 30.50 29 50 LUDOCT 0 25 0.25 0 .50 0.29 0 50 0 29 0 .25 0 .25 5 .00 5 .00 MIKSCA PANDIC 0.25 0 .26 58

PAGE 60

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL M I XED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PANSPP 0.25 0.25 PASOIC PELVIR 2.50 2.50 POLPUN 0.25 0.25 1 25 1.25 0 25 0 .25 4 00 3 67 0.25 0 25 0.50 0.50 PONCOR 13.75 8.00 40.00 14.14 2.50 2.50 6.25 3.75 2 50 2.50 ROTRAM SAGLAN 0.25 0.25 0.50 0.29 72.50 4.33 10.00 10.00 SAGMON SALROT 10 25 9.92 0 50 0.29 10.00 5.77 10.00 5.77 10 00 10.00 SCICAL 2.50 1 .44 0 25 0.25 63.75 2.39 7.50 7.50 SCISPP4 1.25 1.25 11.25 11. 25 SCIVAL 0.25 0.25 17.75 17.42 0.25 0.25 40.00 10.80 5 00 5.00 SESMAC 0.50 0.50 SPIPOL 0.50 0 29 3.00 2 35 3.25 2 25 1.00 3.00 2.35 0.75 0.25 1.00 THAGEN 1.25 1.25 2 50 1.44 0.25 0.25 3.75 2.39 20.00 20.00 TYPLAT 11. 50 5.38 17.50 6.29 30.00 7.38 13.75 2.39 5.00 3.54 28.75 12.31 12.50 2.50 UTRSPP 0.25 0.25 WOLFLO 0 .75 0.25 0.25 0.25 0 25 0.25 0.50 0 29 0.50 0.29 0.50 0.50 WOLSPP 0.25 0 25 MARCH 1994 SITE 1 ACERUB ALTPHI 0.50 0.29 0 75 0.25 0.75 0 25 5.75 4.75 0.75 0.25 7.50 2.50 AMAAUS 0.25 0.25 0.25 0.25 0.25 0 25 1.25 1.25 0.50 0.50 APILEP CARPEN 0.25 0.25 EICCRA 0.25 0.25 ELEINT 51.25 11.61 2.50 2 50 EUPCAP 0 50 0 50 GALTIN HYORAN 5.25 1.84 2.75 2.43 0.50 0.29 21.25 11.61 1.75 1.11 5.00 5.00 LEMSPP 0.25 0.25 LUOLEP 0.50 0.29 0.50 0.29 0.25 0.25 1.00 LUOPER 2.50 2.50 PAN HEM 0.25 0.25 PELVIR 0.25 0.25 22.50 7.50 POLPUN 0.50 0.29 0.25 0.25 1.00 PONCOR 56.50 18.95 1.25 1.25 4.00 2.27 15.00 15.00 SAGLAN 8.75 7.18 6.50 3.62 0 .50 0.29 53 75 3 75 0.50 0.29 1.25 1 25 10.50 9.50 SAGMON SALROT 0 25 0 25 SAM PAR SCICAL 0.25 0 25 83 75 5 15 17.50 17 50 5.00 SCIVAL 52.50 17 85 5 00 59

PAGE 61

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR sAGLAN SCI CAL sCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN sE MEAN SE MEAN SE MEAN SE SPIPOL THAGEN 15.00 TYPLAT 2.75 2.43 9.00 4 10 4 .00 2.27 8 .00 5.74 3.00 2 .35 3.75 3 75 1 00 MARCH 1994 SITE2 ACERUB 0 50 0 50 ALTPHI 0.75 0 25 0 50 0.29 0.25 0 25 0.25 0.25 0.25 0 25 0.50 0 50 APILEP 0.25 0 .25 0.25 0 25 0.75 0.25 0 .25 0.25 0.50 0.50 CYPSPP 0 25 0.25 0.25 0.25 0 50 0.50 ECLALB 0.25 0 25 0 25 0.25 0.25 0.25 0 50 0.50 EICCRA 0 25 0 25 ELEINT 63.75 3.75 3 .00 2.35 3 75 3 .75 0.25 0 25 10.00 EUPCAP 0 25 0 25 GALTIN 0.75 0 .2 5 0 75 0 25 0 25 0 25 1 .00 HYDRAN 6.50 2.99 0.50 0.29 1 50 1 19 1.75 1.11 1.25 1 25 4.00 2 .2 7 3 00 2.00 LEMSPP 0.50 0.29 0 50 0 29 0 25 0.25 0.25 0 25 LUDOCT LUDPER 0 25 0 .25 PELVIR 8 00 7 00 POLPUN 0.25 0 .2 5 PONCOR 0 .75 0 .25 32.50 14.93 5 .00 5.00 SAGLAN 0.25 0 .2 5 47 50 12 99 0 50 0 29 0 50 0 29 10.00 5.00 SAGMON SALROT 1 .2 5 1.25 0 .25 0.25 1.00 1 00 0 50 0 .29 2 50 2 50 SCICAL 1 50 1 19 1 25 1.25 1 .75 1 .11 60. 00 7 .07 2.50 2.50 0.50 0.50 SCIVAL 0.25 0 .25 0 75 0 .2 5 0 25 0 25 17.50 14.22 3 00 2 00 THAGEN 5 00 TYPLAT 10.25 4 .3 9 76 25 5.91 38 75 13.75 36.25 12 .14 18.75 5.15 47.50 10.31 35.00 30.00 MARCH 1994 SITE 3 ACERUB ALTPHI 0.25 0 .2 5 6.50 3.62 0 75 0.25 1 50 1 19 1 00 0.75 0 .2 5 0 50 0 50 AMAAUS 0 50 0.29 AM BART 0 25 0.25 CYPSPP 0.25 0.25 0 50 0.50 ECHCRU ECLALB 0.25 0.25 EICCRA 14.00 6 72 2.75 2 43 9.00 3 56 5.25 2 75 ELEINT 51.25 8 26 2 .75 2.43 1.25 1 25 17.50 2 50 EUPCAP 0 25 0 25 0.50 0 29 GALTIN 0.50 0.29 3.00 2.35 0 50 0 50 HYDRAN 37. 50 4 33 17.50 1.44 1.50 1.19 26 25 7.47 11. 25 3 15 10.00 3 54 1.00 60

PAGE 62

Table 11. Overall vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE HYDUMB 0 25 0.25 LEMSPP 1 75 1.11 0 50 0.29 0 25 0 25 0 25 0.25 0 25 0 25 LUDLEP 0.25 0 25 MIKSCA PELVIR 12.50 2 50 POLPUN 0.25 0 25 0.25 0 25 PONCOR 11. 50 4 05 42.50 14 36 1.25 1.25 0.25 0 25 2.50 2.50 7.50 2 50 SAGLAN 0 25 0 25 0 25 0 25 76 25 5 15 0 25 0 25 5 00 SAGMON SALROT 0.50 0.29 0.25 0.25 13.25 12.25 2 50 1 .19 1.75 1.11 0 50 0 .50 SCI CAL 5 00 2 89 1 25 1 25 67 50 5 95 5 25 4 92 7 50 7 .50 SCIVAL 0 50 0 29 0 25 0 25 0 25 0 .25 27.75 14 92 0 50 0 50 SPIPOL 0.25 0.25 0 25 0 25 0.25 0 25 THAGEN 1 25 1 25 0 25 0 25 1 50 1 19 17 50 7 50 TYPLAT 8 00 4 .04 13 75 5 15 13 75 5.54 8 75 3 75 0 75 0 25 23 75 13.75 15 00 15 00 WOLFLO 0 25 0 25 0 25 0.25 61

PAGE 63

(e.g Eleocharis imerstincla, Ponlederia cordala, Sagittaria Ianci/olia, and Scirpus cali/omicus) (fables 11,12). Planted Treatments Overal l and Subplot Cover Percent Eleocharis ittterstittcta. This species was successful in terms of colonizing the treatment plot and resisting invasion by other species (Figure 12) It also was a successful invader of pathways and adjacent treatment plots Colonization at all three sites followed a similar pattern (Figure 12) Coverage in the treatment plots reached maximum (75%-90%) by the August 1992 sample collection. With time the cover values varied, but remained near 75% Cover at Sites 1 and 3 began to decline between August 1993 and March 1994 (Figure 12). Declines in live leaf cover were matched by increased coverage of dead vegetation. Vegetation dynamics at Site 2 were slightly different. Cover peaked at the August 1992 sample date, declined slightly until August 1993, then increased by the March 1994 sample. Dead vegetation cover followed this pattern as well between February 1993 until March 1994. This treatment experienced a dramatic die-off of Eleocharis inlerslincla during the winter of 1994/1995 (Stenberg Pers Obs March 1995) The competitor species, Typha lali/olia, was limited by its competition with Eleocharis int erstincla (Figures 12, 13, 14) At Site 1 Typha lali/olia was suppressed (<5% cover) while at Sites 2 and 3 it slowly increased cover (0 33% month1 and 0 5% month-I, Sites 2 and 3, respectively) Pan;cum hemitomott. This species was largely unsuccessful at site colonization and resistance to invasion by other species This species did not completely die out in spite of its inability to compete. It was found at low levels in at least a few of the plots during each sample (Figure 15) Early in the vegetative development of these plots they tended to be dominated by open water. Eventually the plots were colonized by Typha lali/olia. Colonization rates varied among the sites (Figure 16) Sites 1 and 3 were similar with low cover values (<20%). Site 2 was substantially different with a rapid rate ofincrease (2.5% month-I) following invasion in January 1992 (Figure 17). Potttetieria cordata. This species was highly successful at colonization and resisting invasion by other species. The P cordala vegetation community formed dense floating mats consisting of rhizomes and attached soil. The species was sensitive to cold and showed leaf die-back after severe freezes. Live vegetation reached maximum cover at approximately the same time for all sites (August 1992) (Figures 18, 19) This pattern was followed by cover oscillation around 75% at Site 1 and a slow decline in cover at S i tes 2 and 3 Typha !ali/olia was suppressed at Site 1 (cover <10%). Typha latifolia cover at Sites 2 and 3 increased over time (1.07% month1 and 0.65% month-I, respectively (Figures 18-20). Sagittaria lattcifolia. This treatment tended to be successful at surviving during 62

PAGE 64

Table 12. Vegetalion cover measurements (% m' MEAN SE) from subplots In planted plots, experimental Planting Species Codes: Upper case six character are abbreviated species codes. lower case codes represent plant families or unknowns. Codes ending with D represent dead, while S represent seedlings. SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1991 SITE 1 ALTPHI 0.25 0. 25 0 25 0 .25 COMDIF 1 .25 1 .25 6 25 3 75 0.25 0.25 1 25 1 .25 ECLALB 0.50 0.29 LEMSPP 4 .25 2 .14 3.25 2 .25 1 00 3.00 2 35 2 .00 1 .00 1 .00 3. 25 2 25 POLPUN 2.50 2.50 10.00 7.07 1.25 1 25 0 .25 0. 25 1.25 1.25 PONCOR 0. 50 0 29 SAGLAN 1.75 1 .11 SCICAL 1.50 1.19 SCIVAL 1 75 1.11 SPIPOL 5. 00 2 04 4 25 2 14 2 .00 1 00 7 .50 3.23 3. 00 1.15 1 00 3.00 1.15 WOLSPP 0 .25 0. 25 0.50 0 29 0 50 0.29 0.50 0.29 0 50 0.29 0 .50 0. 29 0. 50 0.29 AUGUST 1991 SITE 2 ALTPHI 0.25 0. 25 AMMAUS 0. 25 0 .25 2 .50 2.50 0.50 0.29 2 .50 2 .50 ASTSU B 0 .25 0.25 COMDIF 0.25 0. 25 CYPI R I 0.25 0.25 CYPSPP 0.50 0.29 ECHCOL 0 .25 0.25 ECLALB 0.25 0.25 0.25 0.25 0 25 0 25 LEMSPP 13.67 6 .33 13.25 12.25 10.50 5 85 33.75 6.88 17.75 14.11 8.00 5.74 13. 00 8 .04 PANDIC 0 .25 0. 25 Poaceae 0.25 0.25 PONCOR 5. 00 2 89 SAGLAN 2 50 1 .44 SCICAL 0 .25 0.25 SCISPP 0 25 0.25 SCIVAL 1 .00 SPIPOL 22. 00 12. 74 0 .75 0.25 9 00 5 02 6 75 6 09 1 50 1 .19 0.75 0.25 21. 75 16.42 THAGEN 2 .50 1 .44 WOLSPP 10. 00 5. 77 12.75 12.42 0.25 0. 25 17.50 11.27 9.00 8 .67 5.25 4 92 9. 00 5. 02 AUGUST 1991 SITE3 AMMAUS 1 25 1 .25 ELEINT 0 .25 0.25 0. 50 0. 29

PAGE 65

Table 12 Vegetation cover measurements (Cont.) SPP ElEINT PANHEM PONCOR SAGLAN SCICAl SCIVAl MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE lEMSPP 0 25 0.25 PONCOR 3 .75 3 .75 SAGLAN 0.50 0 29 SAL CAR 0 .25 0.25 SCI CAL 0 25 0 25 SCIVAl 0 25 0.25 JANUARY 1992 SITE 1 AlTPHI 1.25 1 25 0 25 0 25 0 25 0 25 0 25 0 25 ElEINT 1 00 1.50 1.19 HYDRAN 0.25 0.25 PAN HEM 0 25 0 .25 POlPUN 0 .25 0.25 1 75 1 .11 0 .25 0.25 0 25 0 25 0 25 0 .25 PONCOR 8 00 5.74 0.25 0 25 SAGLAN 10.25 4 39 SCI CAL 1 50 1 19 0 50 0 29 SCIVAl 8.75 5 .91 THAGEN 2.50 2 50 TYPLAT 0 25 0 25 JANUARY 1992 SITE2 A l TPHI 1 25 1.25 0 25 0 .25 0 25 0 25 0 25 0 .25 AZOCAR 0.25 0 25 1 .25 1 25 0 50 0.29 18.75 14.20 0 25 0 25 21. 25 8.26 0 25 0 25 ElEINT 1 00 H YDRAN 3 75 3 .75 2 .50 2 .50 lEMSPP 5 25 1 .84 6 .75 4 52 26 .25 12. 48 27 50 19 20 4 00 1 00 30 00 10 80 19.00 8 57 lUDPAl 0.25 0 25 PANHEM 0 50 0 29 POlPUN 0 25 0 25 0 25 0 25 PONCOR 22. 50 12 .99 0.25 0 25 SAGLAN 6 75 3.47 SAlROT 0 25 0 25 0 25 0 25 SCICAl 0 25 0 25 S CISPP 0 25 0 25 SCIVAl 0 25 0 25 38 75 7 .74 5 00 3 .54 S P IPOl 0.50 0.29 0 .75 0 .25 0 75 0 25 1.00 0 50 0 29 4 00 2 27 0.75 0.25 THAGEN 16 25 9 87 TYPLAT 0 25 0 25 0 25 0 25 WOlFlO 2.00 1 00 2 00 1.00 6 .50 2 18 2.00 1 00 1 .00 5 25 1.84 2.00 1 .00 JANUARY 1992 SITE 3 AlTPHI 0.50 0.29 0 .25 0 25 0.50 0 50 0 25 0 25 64

PAGE 66

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AZOCAR 73 75 19 72 30 25 20.29 27.SO 11.09 61. 25 11.61 6.75 4.52 47 75 22 69 42 75 19 13 EICCRA 0.25 0 25 0 25 0.25 ELEINT 21.50 13.16 3 .75 3 .75 0 25 0 25 3 .7 5 2.39 LEMSPP 2 .00 1 .00 0 .75 0.25 3.00 1.15 11. 50 9 .56 1.75 1 .11 1 .00 3 00 1.15 LUDPAL 2 00 1.00 1.25 1.25 1.25 1.25 1 25 1 .25 0 .75 0.25 0.50 0.29 1.SO 1 19 POLPUN 0 50 0.29 0 25 0 25 0 25 0.25 PONCOR 16 25 14. 63 0 75 0 75 o .so 0 29 SAGLAN 11. 25 5 54 SALROT 0.75 0 25 0 50 0.29 o .so 0 29 0 75 0 .25 SCICAL 12.50 12.50 SCIVAL 0.25 0 25 60 00 16 83 1 25 1.25 THAGEN 17 50 11.81 TYPLAT 0.50 0 29 WOLFLO 1 .00 2.00 1.00 1.75 1.11 1 75 1 .11 0.75 0 25 1 00 2 00 1 00 MAY 1992 SITE 1 ALTPHI 5 25 4.92 0 50 0 .29 0 .2 5 0 .2 5 0 50 0 29 ELEINT 13.75 5 54 HYDRAN 0.25 0 25 0 25 0 25 LEMSPP 0 25 0 25 0 25 0 25 1.00 0 50 0 29 PANHEM 0 50 0 29 POLPUN 0.50 0 .29 2 75 1 .31 0 25 0.25 0.25 0 25 PONCOR 67.50 17.97 SAGLAN 60 00 11. 73 SALROT 0 25 0 25 SCICAL 41.2 5 18.41 SCIVAL 53.75 16 38 SPIPOL 0.25 0 25 1.25 1 25 0 25 0.25 2 00 1.00 0 25 0.25 1 .00 TYPLAT 2 .SO 2 50 URTBIF 15 .00 15 00 3 75 2 39 1 25 1 25 1 25 1 .25 1 25 1 25 UTRSPP 0 25 0 .2 5 5 00 5 .00 MAY 1992 SITE2 ALTPHI 1.25 1 25 2 50 2 50 0 25 0 25 0 25 0 25 1.50 1 19 AZOCAR 1 25 1 25 3 75 3.75 0 25 0 25 2 .SO 2 50 2 50 2 50 ELEINT 38 75 9 66 HYDRAN 7.50 7 50 6 25 6 25 2 50 2 50 HYDUMB 0 25 0 25 JUNEFF 1.25 1 25 LEMSPP 8 .00 4 53 3 .00 2 35 67.50 11.09 22 50 17 62 11.75 9.46 SO. 25 20 62 25.25 11.73 PANHEM 1 25 1 25 PELVIR 2 50 2.50 POLPUN 2 50 2 50 65

PAGE 67

Table 12. Vegetation cover measurements (Cont.) SPP ElEINT PANHEM PONCOR SAG LAN SCICAl SCIVAl MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PONCOR 87 .50 5 95 12. 50 9 46 SAGLAN 41.25 11. 25 7 50 7 .50 SAlROT 6.50 3 62 4 00 2 27 1 50 1 19 31. 50 20 12 14 00 10.58 5 00 5 00 8 75 7 18 SCICAl 0.25 0 25 48 75 15 .33 18 75 18 75 SCIVAl 1.25 1.25 85.00 8.90 SPIPOl 3.00 2 35 1 25 1 25 0.50 0 29 0 25 0 25 1 50 1.19 6.50 3 62 0 .2 5 0 25 THAGEN 58.75 19 83 TYPLAT 1 .50 1 19 2 50 2 50 5 .2 5 4 .92 WOlFlO 2.50 2 50 15 25 14 92 18. 75 14 .20 7 50 2 50 1.25 1.25 5 50 4 .84 MAY 1992 SITE 3 AlTPHI 0.25 0 .2 5 1.25 1.25 0 .25 0 25 AZOCAR 1 50 1 .19 0 50 0.29 0.50 0 .29 1.50 1.19 0.25 0 25 8 00 7.34 EICCRA 2.50 1 44 3 75 2.39 2.50 1.44 ElEINT 30.00 15 55 10 00 10. 00 17. 50 10 .31 JUNEFF 7 50 7 50 lEMSPP 2.00 1 00 3 00 2 35 0 75 0 25 0 75 0 25 16 75 14 45 14 25 11. 95 lUDPAl 0.25 0 25 lUDREP 2.50 2.50 PANHEM 0 50 0 .29 PONCOR 47 50 17. 97 6 25 6 .2 5 18 75 17.12 SAGLAN 7 50 7 50 1 .2 5 1 25 SAGLAT 7.50 4 .33 SAlROT 0.75 0.25 1 .7 5 1.11 0.25 0 25 1 75 1.11 5.00 2 04 5.00 SCICAl 7 .7 5 7.42 10 00 10.00 SCIVAl 17 50 17 50 67 .50 12. 50 17.50 17 50 SPIPOl 0 .50 0 .29 0.50 0 29 0 25 0 25 THAGEN 12 50 12 50 TYPLAT 5.00 3 54 6 25 6.25 1.25 1 25 WOlFlO 1 00 1 00 0 .50 0 .2 9 1 00 1.50 1 19 15 25 11. 62 AUGUST 1992 SITE 1 AlTPHI 2 75 2.43 0 25 0 25 0 50 0 29 3 75 2 39 0 .25 0 25 ElEINT 71. 25 19.08 40 00 23 09 HYDRAN 0 .2 5 0 25 lEMSPP 1.25 1.25 0 25 0.25 0.25 0 25 0 .25 0 25 PONCOR 93 75 1.25 2.50 1.44 SAGLAN 76 25 10 28 1.25 1.25 SCICAl 58. 75 22 .11 SCIVAl 1 25 1 25 81. 25 8 .51 2 .50 2 .50 SPIPOl 0.25 0 .25 0 25 0 25 0 .25 0.25 0 25 0 25 1 50 1 19 THAGEN 45 00 25 98 TYPLAT 5 00 5 00 2 50 2 .50 66

PAGE 68

Table 12. Vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE UTRBIF 1.25 1 25 0 50 0 29 0 25 0 25 0 25 0.25 20 .00 12.25 5 25 1 .84 SCIVALD 3.75 3 75 AUGUST 1992 SITE 2 ALTPHI 1.25 1 25 1.25 1.25 10.25 9 92 ELEINT 86 25 12 .14 0.25 0 25 1.25 1.25 HYDSPP 0 25 0 25 LEMSPP 3 25 2.25 25 50 14. 72 21.25 8.26 48 75 17 12 14.00 8 86 8 .75 1.25 35 00 11. 90 L1MSPO 3.75 3.75 0.25 0.25 LUDLEP 5.00 5.00 PANHEM 1 .2 5 1 25 PELVIR 2 .50 2 50 POL PUN 2.50 2.50 PONCOR 95.00 3.54 18 .75 18 75 SAGLAN 67 50 17 38 SALROT 8 .75 7 18 1.50 1.19 0.25 0 25 11.25 4.27 15 00 11.90 1.25 1.25 3.00 2.35 SCICAL 2.50 2 .SO 65.00 23.63 SCISPP4 0.75 0 25 SCIVAL 0.25 0 25 25.00 25 00 98 .75 1 25 4 00 2.27 SPIPOL 3.67 1 33 5 25 3.42 20.00 10.80 16 50 14.54 21.25 16.63 47 .SO 6 .29 22.SO 13.15 THAGEN 43.75 23.57 TYPLAT 40.00 16 83 35 00 21.11 7 .SO 4 79 1 25 1.25 WOLFLO 0 25 0 25 2 75 1.31 0 25 0 25 12 .SO 6 .61 10 .2 5 9 92 3 .75 3 75 6 25 2 39 WOLSPP 0 .5 0 0 29 1 25 1.25 1.25 1 25 0.25 0 25 AUGUST 1992 SITE 3 ALTPHI 0 25 0.25 EICCRA 1.25 1 25 25 00 21.79 1 25 1.25 ELEINT 100 .00 27.SO 24 28 HYDSPP 0 25 0 25 LEMSPP 14 25 11.95 40 .00 9.13 6 .SO 2 18 36 .2 5 15 .99 60 .00 15 .81 so.oo 17.32 37.50 16 52 PELVIR 2 .50 2 50 POLPUN 0 .2 5 0 25 PONCOR 100 00 23 75 23.75 6.00 4 .71 SAGLAN 56 25 13.44 SALROT 1.50 1 19 10 00 10 00 1 25 1.25 2.50 2 50 12.50 12.50 SCICAL 32 .SO 23.58 SCISPP4 0 25 0.25 SCIVAL 20.00 20.00 62 50 16.52 20 00 20.00 SPIPOL 1 50 1 19 25 25 8.42 2 .75 1.31 36 25 19.93 31.25 16.75 32.50 14.36 20 00 13.54 THAGEN 25 00 9.57 TYPLAT 31.25 18 53 15 00 15 .00 15 .00 15.00 uaquatic 2.SO 2 .SO WOLFLO 0.25 0 25 2.SO 2.SO 20.00 12.25 30.00 21.21 67

PAGE 69

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL M I XED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCIVALD 25 00 15 00 FEBRUARY 1993 SITE 1 ALTPHI 0 25 0.25 0 50 0 29 0 25 0 25 ELE INT 65 00 17 56 21. 25 19 62 LEMSPP 0 25 0.25 PELV I R 2 .50 2 50 POLPUN 0.25 0 25 PONCOR 58.75 11.97 21. 25 19 62 SAGLAN 43 75 16 .25 1.25 1.25 SAGLAT 6 25 6 25 SALROT 0 25 0 25 0 50 0.29 0.25 0 25 SCICAL 37 50 12.99 SCIVAL 62 50 15 07 SPIPOL 0 25 0 25 THAGEN 31. 25 18.75 TYPLAT 0 25 0 25 3 75 3 75 0 25 025 ELEINTD 30.00 15.81 PONCORD 13 75 5 .54 S AGLAND 1 25 1.25 SCICA L D 34 00 12 25 S CIVALD 23 75 8 98 THAGEND 11.25 6.57 TYPSPPD 0 25 0 25 FEBRUARY 1993 SITE 2 ALTPHI 1.25 1.25 1 25 1.25 0 25 0 25 0 25 0.25 APILEP 1 25 1 25 ELE INT 37 50 10.31 2 75 2 43 0 25 0 25 GALTIN 0 25 0 25 HYDRAN 1.25 1.25 5.00 5 00 1.25 1.25 HYDSPP 1.25 1.25 HYDUMB 1.25 1.25 LEMSPP 2 50 2 50 16 50 11. 3 2 6 75 4 52 21.50 8 55 37 50 19 20 0 75 0 .2 5 4 50 3 50 UMSPO 1.25 1 25 PANHEM 0 25 0 25 PELVIR 5 00 5 00 PONCOR 58.75 13 60 3.75 3 75 SAGLAN 37 50 4 79 SALROT 0 25 0 25 10.25 9 .92 0 50 0 29 3 00 2 35 0 50 0 29 1.25 1 25 SCICAL 2 50 2 50 1.25 1.25 31.25 12.97 1.25 1.25 SCIVAL 1.25 1.25 25 .00 12. 08 1.50 1.19 SPIPOL 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 68

PAGE 70

Table 12. Vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 15. 00 5.40 TYPLAT 1.50 1 .19 28 75 10 87 7 75 7.42 3 75 3 75 0 25 0 25 2 50 1 44 7 75 4 66 WOLFLO 0 .25 0 25 0 .2 5 0 25 0 50 0 29 ELEINTD 50.00 19 15 PONCORD 3 75 2.39 SAGLAND 1 25 1 25 SCICALD 18 75 10.87 SCIVALD 48 75 14 77 THAGEND 20 00 9 13 TYPSPPD 1.25 1.25 7 75 4 .19 1.50 1.19 2 50 2 50 FEBRUARY 1993 SITE 3 ALTPHI 0.25 0 25 0 25 0 .25 AZOCAR 0 50 0 29 0 .25 0.25 EICCRA 10.25 9 92 1 25 1 25 25 25 18.82 0 50 0 29 ELEINT 72.50 17 85 21. 25 18. 07 GALTIN 0 25 0.25 HYDRAN 4.00 3 67 20 .25 12 .11 12. 50 8 29 17 75 14 .11 12. 75 4.57 41.25 15 99 1 50 1 19 LEMSPP 4.00 3 67 48 00 27.14 15. 25 11. 80 68 75 18. 19 46. 25 5.54 18.75 10. 87 23.75 8.98 PELVIR 3 75 3.75 PONCOR 43 75 13 13 2 50 2.50 7 50 4 79 SAGLAN 21.25 3 75 SALROT 0 25 0.25 16 50 11. 68 1 .2 5 1 25 0.25 0 25 10 25 9 92 SCICAL 20 .25 10.65 0.25 0 .25 4.00 3.67 SCIVAL 19. 00 9 50 0 75 0.25 SPIPOL 0 75 0 25 0 25 0 25 0 50 0 29 0 75 0 25 THAGEN 22 50 7 22 TYPLAT 0.25 0 25 0 25 0 25 0 25 0 25 2 .50 2 50 WOLFLO 1.25 1 25 ELEINTD 20 00 13. 54 0 25 0 25 PONCORD 13.75 3 75 SCICALD 22.50 8.54 THAGEND 6 25 4 73 TYPSPPD 5 00 5.00 AUGUST 1993 SITE 1 ALTPHI 0.50 0 .29 5.00 0.25 0.25 1 75 1 .11 0 25 0 25 AMAAUS 0 25 0 25 1 25 1 25 2 50 1 44 ECLALB 0 .25 0 .2 5 ELEINT 75.00 23 36 48 75 28.16 HYDRAN 1 25 1.25 LEMSPP 0 25 0 .25 LUDLEP 1.25 1 25 0 .25 0 25 69

PAGE 71

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PAN HEM 3.75 3.75 PONCOR 98.75 1.25 2.50 2 50 10.00 7.07 SAGLAN 46 25 10. 87 0 25 0 25 SALROT 0 25 0 25 12 50 12. 50 SCI CAL 23 75 8 98 5 00 5 00 SCIVAL 7 75 2.25 SPIPOL 0 25 0 25 0 25 0 25 THAGEN 31. 25 23.31 TYPLAT 0 25 0 25 2.50 2.50 3 75 2 39 2.50 2 50 ELEINTD 24 00 23.67 SCICALD 43.75 13.13 15 00 15.00 SCIVALD 61. 25 13.29 TYPLATD 3 75 3.75 AUGUST 1993 SITE 2 ALTPHI 3 75 2 39 1 50 1 19 0 25 0.25 0 25 0.25 CYPODO 1.75 1 .11 0 50 0.29 1 25 1 25 ECLALB 0.25 0.25 1 50 1.19 ELEINT 42 75 15.25 6 50 6 .17 2.50 2.50 26.50 24.52 GALTIN 0 25 0.25 0 50 0 29 HYDRAN 11.25 8.26 1 25 1 25 2 50 2 50 0 25 0.25 HYDUMB 6.25 3 75 JUNEFF 0 25 0 25 LEMSPP 2.00 1 00 23 75 7.47 0 .7 5 0 25 7 75 3 04 13 00 12 34 1 75 1.11 8 75 7 18 LUDLEP 22.50 7n 7 50 3 .2 3 8 .75 5 .15 PONCOR 90 00 3 54 18 75 17.12 SAG LAN 41. 25 7 18 SALROT 1.50 1 19 38 75 10.48 0 25 0.25 32 50 2 50 11.50 9 58 11.25 7 18 2 75 2.43 SCICAL 2 50 2.50 0.25 0 25 8.75 1.25 SCISPP4 0.25 0 25 SCIVAL 0 25 0 25 7.75 3 04 0 25 0.25 SPIPOL 0 50 0 .29 0 25 0 25 0 50 0 .2 9 0 25 0 .2 5 0 25 0.25 THAGEN 67 50 22.87 TYPLAT 4 00 3 67 21. 25 8 26 4 00 2 27 2 75 2 43 7.50 5 95 10 25 5.99 1 25 1.25 WOLFLO 0 50 0 29 0 50 0 .29 0 50 0 29 0 25 0.25 ELEINTD 25 00 15 00 SCICALD 43 75 13 75 SCIVALD 7.75 5.85 TYPLATD 2.50 2 50 17.50 5.95 1 25 1.25 4.00 3 67 2.75 2.43 AUGUST 1993 SITE 3 ALTPHI 1.25 1 25 6 50 4 63 1 25 1 25 0 25 0 25 1 50 1 19 CYPODO 0 25 0.25 0.25 0 25 C Y PSPP 0 25 0 25 0.25 0 25 70

PAGE 72

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE E I CCRA 12 50 9 46 20.00 10 80 7 50 4 79 ELEINT 72.50 21.07 31.25 23. 66 HYDRAN 6 25 3 75 1 50 1.19 6.25 3 75 18 75 13 .90 1.25 1 25 JUNEFF 12 50 12 50 LEMSPP 1.50 1 19 42 50 6.29 15 25 9 45 31. 50 11.75 9 .00 4 10 17 75 7 .02 15 75 14 75 LUDLEP 5 00 5 .00 0 50 0 29 PELVIR 10 00 8.42 PONCOR 65 00 16 .83 18 75 18 75 10 00 6.12 SAGLAN 25. 00 7 .91 3.75 3.75 SALROT 15.00 15.00 0 .25 0.25 10.00 10 00 11.25 7 18 7 50 7.50 SCICAL 36.25 10.87 3 75 3 75 SCIVAL 6.50 2 99 0 25 0.25 SPIPOL 0 25 0 25 1.75 1.11 4 25 2 .14 1.00 3 00 2 35 0.50 0 29 1 00 THAGEN 2 50 2 50 60 00 13.39 TYPLAT 5 00 2 .89 6 25 6 25 7 50 7.50 5 .00 3 54 8.75 5 15 WOLFLO 0 .75 0.25 0 25 0 25 0 25 0 25 0 50 0.29 0 25 0 25 0 25 0 25 WOLSPP 0 .2 5 0 25 SCICALD 15 00 15 .00 TYPLATD 2 50 2 50 2 50 2 50 MARCH 1994 SITE 1 ALTPHI 0 25 0 25 0 25 0 25 3 00 1 15 0 50 0 29 0 50 0 29 AMAAUS 0.25 0 25 1 25 1 25 0 25 0 25 CARPEN 0 25 0 25 ELEINT 35 00 10.41 6.50 6 17 HYDRAN 7 50 7 50 7 50 4.33 0 25 0 25 5 25 3.42 LUDLEP 1 .50 1 19 PANHEM 1.25 1.25 PELVIR 5 .00 5 00 22.50 19.31 POLPUN 0 25 0.25 PONCOR 37.50 16 .01 25 00 17.68 SAG LAN 12 50 2 50 SALRO T 0 25 0 25 1 25 1 25 SCICAL 73 75 20 .14 22.50 22.50 SCIVAL 26 25 3 75 0 50 0 29 THAGEN 1 25 1.25 TYPLAT 7 50 5 95 1 25 1 25 3 75 3 .75 11. 25 11. 25 1 25 1.25 UTRSPP 2 50 2 50 ELE I NTD 57 50 7 50 PONCORD 22 50 7 50 5 .00 5 00 SAGLAND 2 50 1.44 SCICALD 6.75 3.47 SCIVALD 1 50 1 19 TYPLATD 5.00 5 00 7 50 7 50 8 75 8.75 2 50 2.50 71

PAGE 73

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE udicotS 0.25 0.25 0 50 0.29 MARCH 1994 SITE 2 ALTPHI 1.25 1 25 CYPSPP 0 25 0 25 ECLALB 0 25 0 25 ELEINT 53 75 19.51 21. 25 21.2 5 0 .2 5 0 25 5 25 4 92 GALTIN 0.50 0 .29 1.25 1 25 HYDRAN 7.50 4 33 1.25 1.25 1.25 1 25 1.50 1 .19 1.25 1 .25 0.25 0.25 LEMSPP 0.25 0 25 PELVIR 6 25 6.25 PONCOR 40 00 11. 73 3 75 2 39 SAGLAN 25 00 5.40 1.25 1.25 SALROT 1.25 1.25 0 75 0 .25 0.50 0 29 0 25 0 25 0.25 0.25 SCICAL 1 25 1 25 17.75 8 37 1 25 1.25 SCIVAL 0.25 0.25 0 25 0 25 16. 50 14 54 0 .75 0.25 THAGEN 11.25 3 75 TYPLAT 2.75 1 .31 32.50 17.62 7 75 4 66 22.50 8 54 12 50 7 50 28.75 10.B7 ELEINTD 27.50 22 59 PONCORD 15. 00 6.12 SCICALD 1 .2 5 1.25 26.25 19. 62 THAGEND 36 25 14.91 TYPLATD 7 50 3 .2 3 25.00 16. 58 7 50 3 23 10. 00 5 77 11. 25 4 27 7 50 7.50 GALTINS 0 25 0 25 TYPSPPS 0.25 0 25 0 25 0 .2 5 0 .25 0 .25 0 25 0 .25 0 .25 0.25 udlcotS 0 50 0 29 0 25 0 .2 5 MARCH 1994 SITE 3 ALTPHI 1 25 1 25 3.00 2.35 0.25 0 25 0 25 0 25 AMBART 0 .2 5 0 25 ECLALB 0 25 0 25 EICCRA 16. 25 14.63 6 .25 6 25 7.50 4 .33 10 00 7 .07 ELEINT 28.75 20 45 12.50 6 .61 EUPCAP 0 25 0 25 GALTIN 0.25 0 .2 5 HYDRAN 51.25 22.49 1.75 1 .11 7 50 7 50 30.00 18 82 6.25 1 25 7 75 2 .25 2 50 2.50 LEMSPP 5 00 2.04 0.50 0.29 0 25 0.25 0.25 0.25 PELVIR 12.50 12.50 PONCOR 58 75 13.60 10.00 10 .00 2 50 1.44 SAGLAN 14 00 4 49 2 50 2 50 SALROT 0 25 0.25 10 50 9.84 18.75 17. 12 3 00 2 35 1 50 1 .19 SCICAL 51. 25 16 75 7 50 7 50 SCIVAL 4 00 2 27 0 .25 0 25 SPIPOL 0 25 0.25 0 25 0 25 0 25 0 25 0 25 0 25 72

PAGE 74

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL M IXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE -_._-THAGEN 21.25 21.25 16.25 2.39 TYPLAT 2 .SO 2 50 7 50 7 .50 8 75 5 .91 5 00 5 00 18 75 10 87 EICCRAD 5 00 5 .00 2 .SO 2 .SO ELEINTD 22 75 16.41 5 00 3.54 PONCORD 8 .75 4.27 5 00 5 .00 SCICALD 12 75 4 09 THAGEND 2 .SO 2 .50 20 00 7 36 TYPLATD 2.SO 2.SO 2 50 2 .50 4 00 3 67 2 .SO 2 .SO 4 00 3 67 TYPSPPS 0.25 0 25 0 25 0 .25 0 .2 5 0 25 0 50 0 29 udicotS 0.25 0.25 0 50 0 .29 O .SO 0 29 0.25 0 25 0 75 0 25 0 50 0.29 73

PAGE 75

Experimental Planting Treatment Eleocharis interstincta Planted Plots LIVE [=:J DEAD 100 I I' I I I 1 .1 80 I I I SIEPTEMBER 1991 I Ii' i 60 iii I 40 i i i i -20 i i i i a -iii i i i i i ; 100 __ __ L I 80 I JrNUARY 1'(92 W I I I (/)60 i I i i I I I __ +II __ __ __ __ 100 I I I I MAY 1992 I -80 I I I I I i '0 60 I i I I I I .. i i : I ;..i a i i i'li ijj '" 100 __ __ __ __ -L __ __ H Ii,. 1 I I Iii I i i r""!' : : 60 . i i i i 80 1 1 : : : : : : : i_me 100 __ __ __ __ __ -L __ __ c l 60 I I I I I I I I I I I I I I 80 I I I I I I 40 I I I I I I I I 20 : 0 I I I il il 1 -i!j,_F a is i ",. I 1 ; I "" "F'i1I 100 __ -L __ __ FI I I M.fI.RCH 199t l! i i __ i i l_oooo ELEINT HYDRAN PANHEM PONCOR SAGLAN SCI CAL SCIVAL TYPLAT .. Plant Species Figure 12. Overall vegetation cover (% Plor', Mean SE) from Eleocharis interstincta Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 74

PAGE 76

ill C/) ..!. + c: '" ., :::;; '" E :;; > 0 U c: 0 Qi Cl ., > "0 a. .0 :::J C/) Experimental Planting Treatment -Eleocharis interstincta Planted Plot a LIVE CJ DEAD 100 60 60 40 20 0 100 80 60 40 20 0 100 60 60 40 20 0 100 80 60 40 20 0 100 80 60 40 20 0 100 60 60 40 20 0 100 60 60 40 20 1 1 i 1 I : I i 1 1 ii r ..: -1 i r 1 I i i 1 I 1 ,1" I I, -1 i m I 1 1 1 i I 1 : 1 i I i 1 [ 1 i I I I 1 1 i I i ... ffi i 1 1 1 1 1 1 1 SEPTEMBIR 1991 i i i i 1 1 1 1 1 1 : : 1 : I JANUARY 11992 ; 1 I i 1 i i i [ MAY 1992 I 1 1 1 1 I 1 I 1 1 1 1 1 I -m I I i AUGUST I i I I I i i I I : i i [ [ 1 FEBRUAR'f I 1 i I 1 I I 1 I I I I 1 i i i --1 I 1 1 1 1 I 1 I I I I I I I i [ [ L ........ I : MARCH 1 I I 1 i i I i I I -0 .. I; ; : : : m .,,' ELEINT HYDRAN PONCOR SAG LAN SCI CAL SCIVAL TYPLAT -Plant Species Figure 13. Subplot vegetation cover (% m 2 Mean SE) from E/eocharis inlerstincla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -=Hydrocoty/e ranuncu/oides (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 75

PAGE 77

UJ (/) -.!. + c: 0 0 c: 0 "" iii Q) > 0 100 75 50 25 0 30 25 20 15 10 5 0 100 75 50 25 0 30 25 20 15 10 5 0 100 75 50 25 0 30 25 20 15 10 5 0 Experimental Planting Treatment -Eleocharis interstincta Planted Plots oLIVE. DEAD SITE 1 ELEINT .......... .................. ...... SITE 1 TYPLAT ...... ............ l ............. ..... ..... ..... ......................... SITE 2 ELEINT ...................... ......... ................. ............. SITE 2 TYPLAT ........... ..................................................................... ............ SITE 3 ELEINT ............ ........................... SITE 3 TYPLAT ................................................................. ........................... ....... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 14. TIme series of overell vegetation cover (% Plorl, Mean SE) of E/eocharfs inierstincta and Typha latifolia from Eleocharfs interstincta Planted Plots, Experimental Planting Sites 76

PAGE 78

Experimenta l Planting Treatment -Panicum hemitomon Planted Plots LIVE CJ DEAD 100 'I" I I 'I I 80 I I I SIEPTEMBEIi 199 1 60 I i i i I 40 I I I I I I i I I I 20 iii ; j l ji_ 80 i I I JTUARY 1 [92 W 60 I i I I I CI) I Iii. I I i 40 i I I i I I c: 20 I [I i I I I .. :0 100 I I I I I MAY 1992 I 80 I I I I I I I '15 60 I I I I II II I I a. 40 I I I I ' 100 I I I I I I I 8 80 I I I i I Ai!JGUST 1992 iii i ,ill" ,..:I I I ... Q) 20 iii I i .. > 100 I-I I I I FEBRUARY E 80 I-I I I I I I 60 : : :: ::-o 40 I I I I I I I 20 I I I I I I I ; iii I !lI 1 1 -[rn' I I Ii" ill,arn 108 ---=.-...o-=--;:I o.....;:=C=-==--==J 80 I I I I AljJGUST I I I I I I 60 Iiii iii I -_ 40 I I I I I I __ __ 100 I I I I I I I 1 iii i RCH 199 :1 I I I I I I 20 I I1iI I I ;,; I I I I ziS __ __ __ ELEINT H Y DRAN PANHEM PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 15. Overall vegetation cover (% Plor', Mean SE) from Panicum hemitomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 77

PAGE 79

60 45 30 15 0 60 45 30 15 0 w 60 en -!. 45 + c: 30 co Q) 15 :; 0 E 60 *' 45 30 Q) > 0 15 t) c: 0 0 "" 60 co -45 Q) OJ Q) 30 > -15 0 C. 0 .c 60 en 45 30 15 0 60 45 30 15 0 Experimental Planting Treatment -Panicum hemi/omon Planted Plots LIVE c:::=J DEAD I I I I I I I I I I I I i SIEPTEMBER 1991 i i i i i i i i I I I I i I I i I I I I I i i i i i i I I I I I I I I I I J 1 NUARY 1 I I I I I I I I I I I I I I I I I I I I I 0 : : I : : a; ;-, I I I I I MAY 1992 I i i i i I I I i I I I I I I i I I I i i i I i i I I : : : a; rj I I I I I I I I i l-I I I I I A\JJGUST 1992 I I I I I I I I I I I I I I I I I I I I I I I 5 I I I I I I I I I I l-I I I I I I i i i I I I I I I I i i i i i i ; I I I I I I !o_ i L i)i I I : : : I I I I I I I I I I I I I I All)GUST I I I I I I I -I I I I I I l-I I I I I I a : : : : : I I I I I i I I I I I i i i i i I I I I I I i I I i i i I I I I I I I I iii ja. I i ; I i ElEI NT HYDRAN P A NHEM PONCOR S A G LAN sCICAl sCI V A l TYPLAT Plant Species Figure 16 Subplot vegetation cover (% m,2 Mean SE) from Panicum hemilomon Planted Plots, Experimental Planting SHes. For each species bars representing the three s i tes are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocotyfe ranuncu/oides (HYDRAN) and Typha latifolia (TYPLA T) not planted other species planted near treatment plot. 78

PAGE 80

w (J) -.!. + c: III Q) ::2 -.-E a.. Experimental Planting Treatment Panicum hemitomon Planted Plots o LIVE DEAD SITE 1 PAN HEM 6 : 1 109 SITE 1 TYPLAT 75 50 25 T = ... ... = .. 8 SITE 2 PAN HEM 6 4 I 2 __ __ __ -L __ 100 SITE 2 TYPLAT 75 50 25 ................ ... ...... ........... ........ ... ... .. .. .. .. ... .. .. .. __ __ ____ __ __ 8 SITE 3 PANHEM 6 4 2 SITE 3 TYPLAT 75 50 25 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 17. TIme series of overell vegetation cover (% Plor\ Mean SE) of Panicum hemlomon and Typha latifolia from Panicum hemitomon Planted Plots, Experimental Planting Sites 7 9

PAGE 81

100 80 60 40 20 a 100 80 60 40 20 W a en 100 ..!+ 80 60 Q) 40 :E 20 :!: 0 o 100 a: 80 60 40 o 20 () a 100 'iii 80 a; 60 '" 40 20 a 100 o 80 60 40 20 a 100 80 60 40 20 a Experimental Planting Treatment -Pontederia cordata Planted Plots fiIiBJ LIVE DEAD I I I I I I I I I I SEPTEMBER 1991 l-I I I I I I I i I I I i I i i I i i i I I I -i i I i I l-i I I I ; J4NUARY 1 i i i I i I H i i i i i i i I I I I-: : : I 1 1I 1 1 I I M.lw 1992 I I I 1 I I i I I I I I I I I I I I I I I I I I I I i l I I I I I_ i i i i -I I I l I I I I I I AIiJGUST 1992 I I : I I I I 1 I i : 1 I I -i 1 I: I i 1 I I i I I I 1 1 -1 1 1 -iii I I I I I FEBRUARY 993 I I I I I I I I i 1 r I I i I i i i I i i I I 01.. o L I i I iDm_ J if'; oJ ; J i I -; 1 i m I I I I I I -i i i i AIjIGUST 19$3 I I I i I I i I I I I I I I I I I I lot I I I 1 1 .. '" I -I 5 I 115 l-I I I I I I I I I I I I Ir I I I l-I 1 I I I I 1 00 o l I I i .. I I I I ili" '" 1 -I I ffi_ i ELEINT HYDRAN PANHEM PONCOR SAGLAN SCI CAL SCIVAL TYPLAT Plant Species Figure 18. Overall vegetation cover (% Plor', Mean SE) from Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 80

PAGE 82

Experimental Plant ing Treatment -Pontederia cordata Planted Plot LIVE 0 DEAD 100 I I I I I I 80 iii I I SEPTEMBItR 1991 60 I I I I I I 40 I I I I I I I Iii I I : : Q m : : : : : : : : : JANUAR Y 1992 I I I I I I W 60 I I iii i -! i m 100 P----'!_-!,--+--f, M"'"A'"'Y-:"""19=-=9C::2-+'--+--'1 il! j j j : II I : : : a 108 P----!!_-!, --'---f, "-",!-, --+---+,--=t---'1 i I i I i Iii i AUGUST 1 i92 !'l 40 ii' iii i 20 Ii: I I I I '" m 0p----'iL--!i _-+_-f=---=f' 100 I I I I I FEBRUARV 1993 80 I I I I I I i iii : a : = : : 0 80 I III I I I AUGUST __ __ __ r : I I : : MARCH 60 : i I : : : __ -L __ __ -L __ ELEINT HYDRAN PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 19. Subplot vegetation cover (% m2 Mean SE) from Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocoty/e ranuncu/Oic/es (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 81

PAGE 83

w (/) ...!.. + c: ro Q) ::2 Experimental Planting Treatment Pontederia cordata Planted Plots oLIVE DEAD '00 SITE' PONCOR 75 50 25 ...... ... ... .... ..... .... ,,-" 0 50 SITE' TYPLA T 40 30 20 '0 0 '00 SITE 2 PONCOR 75 50 25 ----........... ... ..... -"'. ................ .................. ...... o ........ .. __ ...... _, ........ -.0. __ .............................. .. ................................................. .j 50 SITE2 TYPLAT 40 30 20 '0 .................... .J ... ..... ........ ..... ..... .... o ......................... ................. '00 S I TE 3 PONCOR 75 50 25 .......... 4 ....... ... 0 .................... .... "" ... ..... ................... 50 SITE 3 TYPLAT 40 30 20 10 0 ........................................... ............ ..... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 Time (Months) MAR94 Figure 20. Time series of overall vegetation cover (% Plot", Mean SE) of Pontederia cordata and Typhaiatifoiia from Pontaderia cordata Planted Plots, Experimental Planting Sites. 82

PAGE 84

the term of study It didn't expand into all available space as did species such as P. cordata, but it did resist invas ion by other species (Figure 21, 22). Maximum cover (-75%)was reached by May 1992 for Site 2 and August 1992 for Sites 1 and 3 (-80% and 75%, respectively) (Figure 21, 22) Live vegetation cover remained relatively stable at between 50% to 75% through the study period, while dead was a minor component. In contrast, T. /al ifolia displayed two distinct growth patterns. In Sites 1 and 3 i t remained at low levels %). In Site 2 its cover increased rapidly during the February 1993 to March 1994 sample period (2.1%/month). This increase seems to be associated with a slight decline i n S. Iancifolia cover (Figure 23) Scimus caJifOrnicus. This treatment species performed well under any standard of measure. It had high survival, rapid complete site colonization, resisted invasion by other species, and did not form floating mats (Figures 24, 25, 26). It seems to have some means of excluding most other plant species. Its understory tended to be open through the study period. This species colonized pathways and adjacent plots (Stenberg, Pers. Obs.) Scimus valid us Early in the study period this treatment species colonized the site and resisted invasion by other species After about 2 years the entire cohort went through a large scale senescence After the senescence event, floating mats formed of dead vegetation and the few remaining live plants (Figures 27, 28, 29). Mixed Planting. The mixed planting treatment provided information about the adaptive and competitive abilities of the various planted species in an interspecific mix Survivors included : Eleocharis i nterstincta, Peltandra virginica, Pontederia cordata, SagiUaria lancifolia, Scirpus validus, Scirpus califomicus, and Thalia geniculata. Kosteletzkya virginia and Cladium jamaicense did not survive. The surviving species had partit i oned the available space among themselves This vegetation pattern suggests that they are somewhat equally competitive in an interspecific interaction (Figures 30, 31 32a,b,c) Invasion by Typha latifolia and Hydrocoty/e ranunculoides was minimal. Both of these species were found in the plots, but at low levels. They showed no sign at the time of the final sampling of increasing their rate of invasion. Seasonallive : dead cover dynamics were most pronounced with Thalia geniculata. This species cycled between live, tall (4m) vegetation during summer to large scale senescence during winter This phenomenon resulted in little or no exposed living cover during winter (Figures 30, 31, 32a,b,c). Thalia geniclilata dispersed beyond the p lot boundaries mo r e effectively than any other planted species in the planted plots It has become established in some treatment plots, i n pathways, and most densely in control plots and the area surrounding the planting area. Dispersal of this species seems related to movement of unanchored clumps and seed germination during drawdown events (Stenberg, Pers Obs). 8 3

PAGE 85

Experimental Planting Treatment Sagilfaria laneifolia Planted Plot LIVE DEAD 100 I I 'I I' I I 80 I I I I SEPTEMBER 1991 60 I-I I I I i i I I iii I 40 Iii : Iii 20 I I il i : I I I o iii i i-i i ii, Ii 80 iii i J1NUARY 1 192 __ __ __ __ __ __ __ __ __ .. w 100 I I I I I MAY Hi92 I en I I I I I I I 80 I i iii I I iii __ __ __ __ .... ro 100 I I I I I I I Il.. 80 I I I I AilJGUST 1992 ... 40 I I I I I 20 e 60 : :: II:::: 8 :--: : .. .. c: 108 F--+---c1--=--=-+I---'-=-!--1 o 80 I I I I I I I r 60 : : : 1 1 1: : : > 20 Iii : I : : e __ __ __ __ __ '" 100 I I I I I I I 5 80 Iiii i i AljJGUST 19$3 i I I i 1 i o : is : : : 60 I I I: I: I I 40 I: : : I j : : __ __ __ L =-'cei __ ELEINT H YDRAN PANHEM PONCOR SAGLAN SCICAL SCI VAL TYPLAT + Plant Species Figure 21. Overall vegetation cover (% Plor', Mean SE) from Sagiltaria lancifOlla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot.
PAGE 86

Experimental Planting Treatment Sagiftaria lancifolia Planted Plot LIVE D DEAD 100 : 1 1 1 I : I ; I 80 iii i I SEPTEMBER 1991 iii I 1 I 60 iii i i 40 1 I I I I 20 I I I I I F __ __ ___ ___ ___ __ __ __ 100 1 1 1 I 1 JANUARY 992 80 I 1 1 60 I I I I 1 40 I I I I I I I iii W j I : 1 0 iii g I I ; I ; + I I I I I c: 80 60 : : : .. f f .... 108 __ -L __ -+-I ---L---fl 80 I i ill i i AUGUST 60 r : : :1 : : : U 40 I I I I I I I ; I I I 1 Cl 80 i iii I 1 60 i I I 1 1 I (5 40 I i I i i jt __ ___ +I: __ __ __ __ ___ fI: __ 100 I I I 1 1 I 80 I I I 1 I AUGUST 60 ill i i i 1 1 i i 100 I 1 I 1 1 I 80 I 1 Iii MARCH 60 ill i I I i I i : : : :;);' __ __ __ : L ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT ** Plant Species Figure 22. Subplot vegetation cover (% m2 Mean SE) from Sagiftaria lancifelia Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted verlicalline bisects site 2 bars. -Hydrocoty/a ranuncu/oides (HYORAN) and Typha /atife/ia (TYPLAT) not planted, other species planted near treatment plot. 85

PAGE 87

Experimental Planting Treatment Sagiltaria /ancifolia Planted Plots oLIVE DEAD SITE 1 SAGLAN 75 50 25 o ................................... ....................................... ............................................................ ,. 50 SITE 1 TYPLA T 40 30 iii' 20 .. :::: ... ::. ... :;.: .. .. ::: ... ;.:. .. ::: ... ::: ... ::: .. ::: .. ;:. ... = .. = ... = ... !::==:;.: .. ::: ... ::: .. ::. ... ::: .. :;.: .. :::. ::. ... .:: .. :;.: ... .::. ... ::: .. ::. ... ::: ........ ... .. ... .. Q) ::2! SITE 2 SAGLAN 75 50 25 o .. -........ ...... .... .......... ........... ..................................................................................... 50 SITE 2 TYPLA T 40 30 20 10 ............................ .... ...... ............ o ... :::: .. ::: ... :;.: .. ::: .. ::: ... ;.: ... .:: .. ::. ... .:: ... .:: .. ;.: ... .:: .. .:: ... .. ... .::. ... ::: .. ::.. __ ..:j 100 SITE 3 SAGLAN Q) > o 75 50 25 o ... ................... ..... ................................................... .................... .............. ........... -... 50 40 30 20 10 SITE 3 TYPLAT o ___ I ... "" ... "" ... ::i. ire .. "' .. 7C ... 7C ... = ... = ... ,.. i"'"""."" .. :::: ::iir===:::: ... :::j .. llt::-: ............................................................. SEP91 'I,." "'''' AUG" FEB93 AUG93 Time (Months) Figure 23. Time series of overall vegetation cover (% Plor1 Mean SE) of Sagiltaria lancifo/ia and Typha /alifo/ia from Sagiltaria lancifolia Planted Plots, Experimental Planting Sites. 86

PAGE 88

Experimental Planting Treatment -Scirpus califomicus Planted Plots LIVE CJ DEAD 100 80 60 40 20 ELEINT HYDRAN PANHEM PONCOR SAGLAN SCICAL SCIVAL TYPLAT Plant Species Figure 24. Overall vegetation cover (% Plor', Mean SE) from Scirpus califomicus Planted Plots, Experimental Planting Sites. For each species, bars raprasenting the three sites ara bound by vertical dot-dash lines, a dotted vertlcailine bisects site 2 bars. 87

PAGE 89

w + c: '" Q) ::E Experimental Planting Treatment Scirpus califomicus Planted Plot LIVE 0 DEAD 100 'I I I I I 80 I I 'II I SEPTEM81E1 R 1991 60 I I I I I I 40 iii i 20 [I I [ : ; ;1 i i i i ; I 80 I i JANUARY 1992 I I i 60 iii I 40 I : I I I 20 : ; ; 1 I : 80 iii I I I I I iii r !! Ii j.i,:".. I AUGUST 1 r92 i. i ; --4 80 I I i I I 60 r I I I I I 1 Wj i I ilOi i o ioi i i 80 iii i iAUGUST 60 I I I I I i r i i i i m I I I I MAR(::H 80 Iii __ __ __ __ __ __ -L __ ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT ---Plant Species Figure 25. Subplot vegetation cover ('II. m2 Mean SE) from Scirpus ca/ifomicus Planted Plots, Experimental Planting Sites For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocotylfl ranunculoides (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 88

PAGE 90

w (/) c: '" Ql :; Experimental Planting Treatment -Sci rpus ca/ifornicus Planted Plots oLIVE DEAD SITE 1 SCICAl 75 50 25 ...... f ----. .......... .. .. o ..... -. ......... ... .... .... .... ... .......... .. ... ...... 20 SITE 1 TYPLA T 10 o SITE 2 SCICAl 75 50 ... .... 1 ... .. f .,-..... -25 ...... '1 o "... "' t.:!.'-'."' "' .. "' ... "' .. "- -.. 20 S ITE 2 TYPLAT 10 .... ... 1 0 .............................................................. .... 100 SITE 3 SCICAl 75 50 25 0 t ....... .... .. ...... .............................. ................. ....... 1 20 SITE 3 TYPLAT 10 o .. ........ i... .. ....... ... +--L. -.. -.... -... .... .. --... -.. .. -..... ... .. -..... -... -.... ........ '" SEP9 1 ''''92 W,Y92 FE.., MAR .. Time (Months) Figure 26. Time series of overall vegetation cover (% Plor1 Mean SE) of Scitpus califomicus and Typha latifolia from Scirpus califomicus Planted Plots, Experimental Planting Sites. 8 9

PAGE 91

Experimental Planting Site Scirpus validus Planted Plot LIVE [=:J DEAD 100 I I I I' I I I : I 80 SEPTEMBER 1991 I I I i I 60 iii iii i I I I I I I I 40 I I I I I I I __ __ -L __ __ __ __ -L __ __ 100 ,-I I I I I I I 80 JANUARY 1992 I I I I I I gr __ __ +ii __ ___ __ __ __ i: 100'-' I I I I I I I 1j '''L, l.l-*: I H 80 1992 : I I I : n I., I : ,'.lId 100 I I I I I I Q)CJ) 80 r FEBRU/IRY 1993 I I I i I I I I I I I 60 I Iii I : rn : :: 0 1-1 M m"' __ 1 a; UUCI o 100 I I I I I I I ildj" 80 1993 : : : : I I :! i i [ l .l i l ti 80 1994 : : : : i : 60 r i I I I I I : : : : i T =_: T i : : I o 1-"" f)j I I .. I-iI&lc_ '" o !.. ELEINT HYDRAN PANHEM PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 27. Overall vegetation cover ('II> Plor\ Mean SE) from Scirpus va/idus Planted Plots, Experimental Planting For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 90

PAGE 92

Experimental Planting Treatment -Scirpus validus Planted Plots LIVE D DEAD 100 I I I' I I 80 SEPTEMBER 1991 I I I I I I I I I 60 iii I 40 I I I I 2g Iii I : 1 __ 100 c 1992 II' II II' I 80 : I : 60 iii I I i I I 40 iii' I .1 w2g : i : : 1 m 100 MAY 199j2 :: I I I ; II i i i J Ii E 100 I I I I I I I i AUGUT' i : it, to: 5 FEBRUAfY 1993 : : : I I Ol I I I I : ; : 60 I i I I I I o 40 I I I I :1, ;r;J; J. ill I I I I ::J (/) 100 I-I I I I I 80 AUGUS111993 I I I I I I I 60 iii i 40 I-I I I i 2g : .. : i :ao i: : : : i i i I i I is l ili ilifa .. i -100 I I I I I I 80 MARCH n994 : I I I I I 60 I I I I I I I I 40 I I i I 2g I: : : : I I I I i i .. ELEINT HYDRAN PONCOR SAG LAN SCICAL SCIVAL TYPLAT .*** Plant Species Figure 28 Subplot vegetation cover (% m 2 Mean SE) from Scirpus vafidus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted verlicalline bisects site 2 bars. -=Hydrocotyle ranuncu/oides (HYDRAN) and Typha lalifolia (TYPLA T) not planted, other species planted near treatment plot. 91

PAGE 93

.\... o a.. t!-.... Q) > o () Experimental Planting Treatement -Scirpus validus Planted Plots o LIVE DEAD SITE 1 SCIVAL 75 ..... J .. 50 2: p:.: .::: ... ::: ... ::.:. ... C1 ... ::: .. ::: ... "'+= ... L ... ::.:. .. ::: ... ::: ... = ... SITE IlYPLA T 50 25 o 100 SITE 2 SCIVAL 75 50 .. nn .... n i .. nn ........... n ........... i c: 25 o ",-"" -" -'" S 0 ...... .............. .... .... ....... _.-. Q) C> SITE 2 lYPLA T 50 Q) > o 25 .... ...... ...................... .. .. S ...... .. .. 100 SITE 3 SCIVA 75 50 25 .. .. .. 1__"_ L_ "_" _"_L_"_"_ ._L._ .. ... ... .. .... ... ... ... ... ... ......... ... ... ....... ... .. ... ... _.!y 50 SITE 3 lYPLA T 25 o SEP9 1 JAN92 .......... J .. .. i ....... .... ..... n .... .......... .. ..... ... ........... .. MAY92 AUG92 FE893 AUG93 MAR94 T i me (Months) Figure 29. Time series of overall vegetation cover (% Plor', Mean SE) of Scirpus validus and Typha latifofia from Scirpus validus Planted Plots, Experimental Planting Sites. 92

PAGE 94

Experimental Planting Treatment Mixed Species Planted Plots LIVE [::=:J DEAD 100 I I I 80 SEPTEMBEIR 1Q91 i 60 40 I I I I I i I I I 20 iii 0 100 80 60 40 20 W-0 C/) 100 'as--!. 80 + c 60 til 40 ., :< 20 '-0 0 100 11: 80 60 40 ., > 20 0 () 0 c 100 0 80 .l2 ., 60 Ol 40 20 E 0 ., 100 > 0 80 60 40 20 0 100 I I 80 60 40 I I I I 20 0 !l m I I ELEINT HYDRAN JUNEFF PANHEM PELVIR PONCOR SAGLAN SCICAL SCIVAL THAGEN TYPLAT ...... .. Plant Species Figure 30. Overall vegetation DOver (% Plor1 Mean SE) from Mixed Species Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertlcailine bisects site 2 bars. 93

PAGE 95

Experimental Planting Treatment Mixed Species Planting Plots n LIVE c:::J OEAD 100 1991 80 60 I I I i 40 i i 20 I I 0 -100 80 60 i i w i i en 40 I I -!. m m + 20 I I c: 0 is i!i '" ., 100 MA t 1992 :. 80 "I 60 I L E I 40 i 20 i I ., 0 .. > 100 I I 0 U 80 AUd>UST 1992 c: 60 I I I i 0 i I "" 40 '" I S ., 20 I Cl ., 0 os ;,; a > 100 )993 0 80 0.. ..c 60 I I ::J I I en 40 t : I 20 I 0 100 I I 80 AUa>UST 19S3 il 60 : I i I i 40 I 20 I 0 100 I 80 I 60 I i 40 I 20 i!i 0 o is' .. os '" ELEINT HYDRAN PELVIR PONCCR SAGLAN SCiCAL SCIVAL THAGEN lYPLAT *** --Plant Species Figure 31. Subplot vegetation cover (% m 2 Mean SE) from Mixed Species Planted Plots, Experimental Planting SHes. For each species, bars representing the three sHes are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -=Hydrocotyle ranunculoides (HYDRAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 94

PAGE 96

W (/) :i: c: ., '" :;; .l... 0 c:: 0 0 U c: 0 "" l!! '" Cl '" > E '" > 0 Experimental Planting Treatment Mixed Species Planted Plots, S ite 1 0 UVE 45 ELEINT 30 15 0 45 PELVIR 30 15 0 45 PONCOR 30 15 0 15 10 SAG LAN 5 0 ............ ... .. 15 SCiCAL 10 5 0 15 SCIVAL 10 5 0 75 THAGEN lYPLAT 10 5 o SEP91 JAN92 DEAD I L ................... ...... ...... .. __ t........... ......... .............................. .............................. I 1 ..... HH ............ H .... .. ... n ............. n ... : t .................... J ........................ I....... ...... : r-LHH........... .... J -..... -........ .. ...... MAY 92 AUG92 FEB 9 3 AUG93 MAR94 Time (Months) Figure 32a, Time series o f overall vegetation cover (% Plor' Mean SE) of common species from Mixed Species Planted Plots, Site 1, Experimental Planting Sites, 95

PAGE 97

Experimental Planting Treatment Mixed Species Planted Plots, Site 2 oLIVE DEAD 45 ELEINT 30 15 l "-1-. .. .... = .... ... = .... t ... = .... = ... ... .. = .. .. .... ... = .... = .... = .... .... = .... + ... = .... = .... ... 15 PElVlR 10 J.. PONCOR 30 I r 1 1 ....... .... .... ............................................ ................. ................ 15 "I .......... ; 45 SAGlAN 30 I .1 15 / 1 1 ______ T .................................................................. .......... .. .......... ...... =:1. o ............. .. 15 SCICAL 10 5 o 45 ...................................................................................... SCIVAl 30 ........... : ....... ..... J ........................... 60 45 lHAGEN I __ --.---1-----____ -1:rL..... ......................... -w .... .. 20 TYPLAT 10 ------........ ........... ................ o ...................... .... ......... ........ .... T SEP91 JAN 92 MA Y92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 32b Time series of overall vegetation cover ('II> Plor1 Mean SE) of common species from Mixed Species Planted Plots, Site 2 Experimental Planting Sites. 96

PAGE 98

Experimental Planting Treatment -Mixed Species Plots, Site 3 0 LIVE OEAD 45 ELEINT 30 '5 ......... .... 0 .............. ........... ................................. __ ..... ... ... ... ... ............. ......... 45 PElVlR 30 15 0 45 PONCOR 30 15 0 ........... ...... 45 SAGLAN 30 15 0 45 SCICAL 30 15 o .................. .... ....................... ............................. 45 SCIVAL 30 15 0 45 THAGEN 30 15 0 10 8 TYPLAT 6 4 2 0 SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 Time (Months) Figure 32c. Time series of overall vegetation cover (% Plor', Mean SE) of common species from Mixed Species Planted Plots, Site 3, Experimental Planting Sites. 97 MAR94

PAGE 99

Seeded Treatments -Cover Percent PlUticllm hemitomo/t. This treatment was unsuccessful. The plot was colonized by '!)pha lati/olia Panicum hemilomon was not found in the plot (Figures 33,34 & Appendix AI, A2) Poivgoftllm p"ftctalllm. This treatment was generally unsuccessful. Late in the sample period a small amount of Polygonum punclatum was found. It may have come from the surrounding landscape and not the seeded treatment. Polygomlm ptlnclahlm was common in the natural succession marsh early in the vegetation sequence. It also made an appearance after the August 1993 drawdown. Typha /ali/olia colonized and dominated the site (Figures 35, 36, Appendix AI, A2). Pontederia corrhrta. This treatment was the most successful. Large patches of Pontederia cordata were found '!)pha /ali/olia colonized and was a co-dominant on sites 2 and 3 (Figures 37, 38, Appendix AI, A2). Sagittaria llUtcifolia. This treatment was moderately successful. The seed used in this treatment may have been contaminated with SagiUaria montevidensis S monlevidensis was found at high cover values in this treatment (Appendix AI, A2). Ponlederia cord ala was also an important component of this plot. It is not known if it invaded after seeding or if seed drifted in immediately after seeding from nearby plots. '!)pha lali/olia colonized and was a co-dominant on the site (Figures 39, 40). Scimus valitbls. Scirpus valim/S was found at low cover values and was largely unsuccessful. Other species including, Hydrocotyle ranunculoides invaded the plot. Typha /ali/olia colonized and dominated the site (Figures 41,42, Appendix AI, A2) Mulch Treatment -Cover Percent There was no evidence that the mulch treatment contributed additional plant species to the site The treatment plots remained minimally vegetated during the early sampling events Eventually, Typha lali/olia became established and took over the plots. The seed bank measurements ofl991 and 1992 revealed that few ifany seeds of species representing the donor wetland sites were found In the 1991 seed bank sample, three individuals of Xyris jllpicai and in the 1992 sample only one individual of Rhexia nashii were found. These species were never found on the site. The seed bank tests showed that '!)pha /ali/olia seemed to be preferentially favored by the mulch treatment. The magnitude of this contribution is unknown given the seemingly slow invasion of '!)pha /ali/olia under long-term flooded conditions (Figures 43, 448, b, c). Control Treatment -Cover Percent Vegetation dynamics within the control plots were different than the planted, seeded, or mulched treatment plots The control plots remained minimally vegetated for most of the sample period Early in the sample period floating plants were the most frequently found species (Figures 45, 468, b, c) Slowly the sites were colonized by Hydrocotyle ranunculoides and '!)pha lali/olia (Figures 45, 468, b, c) Small patches of 9 8

PAGE 100

W en -:i: c: '" Q) :::E '-0 il: ;j!. Q) > 0 () c: 0 "" Jl! Q) "" Q) > '" Q) > 0 Experimental Planting Treatment -Panicum hemitomon Seeded Plots LIVE [=::J DEAD 60 SEPTEMBER 199 1 40 20 0 60 JANUARY 1992 40 20 0 Ii! 60 MAY 1992 40 20 0 -""'" I, 60 40 20 0 AUGUST 1992 I,D -ril 60 FEBRUARY 1993 40 20 0 c-Id I,D -, 60 C-o 40 C-AUGUST 1993 o 20 0 c-Ii!Zo ...... .... --, ci!Z. I,D 60 40 20 0 MARCH 1994 c-ci!Z. -ElElN T HYDRAN HYDUMB POlPUN PONCOR SAGLAN SCICAL SCIVAl THAGEN TYPLAT Plant Species Figure 33_ Overall vegetation cover (% Plor1 Mean SE) from all (n=6) Panicum hemitomon Seeded Plots Experimental Planting Sites_ 9 9

PAGE 101

w (f) i-t: '" Q) :2 Experimental Planting Treatment -Panicum hemitomon Seeded Plots oLIVE DEAD SITE 1 PANHEM 75 50 25 SITE 1 TYPLA T 75 ... .. .. .. ... -.. -.. .----... -... .... ... -.. ---t... ... .. -.. 100 SITE 2 PANHEM 75 50 25 75 50 25 -'" ................ / ... ................ : 0 .... ............... Q) 100 SITE 3 PANHEM > o 75 50 25 SITE 3 TYPLA T 75 50 25 I o "-.. : ... ;:J: .. :: ... :: .. :: .. :S::=::!:;:::=:;:===="= i .. .. = = ... = ... = .. % SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 34. Time series of overell vegetation cover (% Plor1 Mean SE) of Panicum hemitomon and Typha/atifo/ia from Panicum hemitomon Seeded Plots. Experimental Planting Sftes 100

PAGE 102

w en i <: 0 () <: 0 :;> iii Q) > 0 Experimental Planting Treatment Polygonurn punctaturn Seeded Plots LIVE r=l DEAD 60 SEPTEMBER 1991 40 20 0 60 JANUARY 1992 40 20 0 , 60 MAY 1992 40 f20 0 f-, -. 60 f40 f-AUGUST 1992 20 0 fCa 1 60 FEBRUARY 1993 40 20 0 -IiJ 60 f40 AUGUST 1993 20 0 .... .... -60 MARCH 1994 40 20 0 -.... ril I, t I, I ElEINT HYORAN HYOUMB POlPUN PONCOR SAGLAN SClCAl SCIVAl THAGEN TYPlAT **** .*** Plant Species Figure 35 Overell vegetation cover ('II> Plor" Mean :tSE) from all (n=6) Po/ygonum punctatum Seeded Plots, Experimental Planting Sites. 101

PAGE 103

Experimental Planting Trteatment Polygonum punctatum Seeded Plots o LIVE DEAD ocr----r---.----.----,----,----,----r----r---r ----r---.----" 8 6 4 SITE 1 POLPUN 2 SITE 1 TYPLAT 75 .... ............. .......................... '" Q) :; 10 SITE 2 POlPUN 8 6 4 2 0 100 SITE 2 TYPLAT 75 50 2: ....................... ..... 1 ...... F ................................ 1 0 SITE 3 POLPUN 8 6 SITE 3 TYPLAT 75 50 25 ..... .... .. = .. .. = .. .. : .. __ __ SEP9' JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Month s ) Figure 36. TIme series of overall vegetation cover (% Plor', Mean SE) of Po/ygonum punctaturn and Typha latifolia from Po/ygonum punctatum Seeded Plots, Experimental Planting Sites. 102

PAGE 104

w (J) i: c '" Q) '-0 Cl.. 0 Q) > 0 <.) c 0 :;::> '" -Q) Cl Q) > '" Q) > 0 Experimenta l P l anting Treatment -Pontederia cordata Seeded Plot LIVE DEAD , 60 SEPTEMBER 1991 40 20 0 60 IJANUARY 1992 40 l-20 0 I-I Ililill 60 MAY 1992 40 20 0 60 40 20 0 AUGUST 1992 .m;" i 60 FEBRUARY 1993 40 20 0 i IJ 60 40 AUGUST 1993 20 0 """ I 60 40 20 0 MARCH 1994 t -. j I 1 0 1.0 a,D ELEINT HYDRAN HYOUMB POL PUN PONCO R SAGLAN SCICAL SCIVAl THAGEN TYPLAT **** Plant Spec i es Figure 37 Overell vegetat ion cover (% Plor Mean SE) from all (n=6) Poniederia cordata Seeded Plots, Experimental Planting Sites. 1 0 3

PAGE 105

Experimental Planting Treatment -Pontederia cordata Seeded Plots oLIVE DEAD 75 SITE 1 PONCOR 50 ... ... = .... a ................................ .; ..................... ................................................ ::r ........... ............ 100 25 SITE 1 TYPLAT 75 : w I r CI'I a .. ...... ................... .......................................... .............. .................................................... '!. + c: 75 IsITE 2 PONCOR "' C> :; 50 1:; ... = ... = ... = ... = ... = .... := ... = ... =li:====;Jr: == .... = ... = ... = ... = ... .... J .. :v SITE 2 TYPLAT > 8 75 T 50 T 25 ............ ........................... + .................... o 75 SITE 3 PONCOR 50 25 SITE 3 TYPLA T 75 50 25 o SEP91 JAN92 1 r i! ..................... : ............................ ". u ............................ .. MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) Figure 38. Time series of overall vegetation cover (% Plor1 Mean SE) of Pontederia cordata and Typha /atifo/ia from Pontederia cordata Seeded Plots, Experimental Planting Sites. 104

PAGE 106

w en i: c::: ro Q) :2 '--' 0 Cl. 0 Q) > 0 c..> c::: 0 "" ro Q) Ol "iii Q) > 0 Experimental Planting Treatment Sagitfaria lancifolia Seeded Plots LIVE c=J DEAD 60 SEPTEMBER 1991 40 20 0 60 JANUARY 1992 40 20 0 I I 60 MAY 1992 40 20 0 l-I -.-I 60 l-40 I-AUGUST 1992 20 0 II I ..... --60 FEBRUARY 1993 40 20 0 I 1 6 60 40 20 0 AUGUST 1993 _., i I,D 60 40 20 0 MARCH 1994 __ 1 0 -"'"" ..... ..;s. ElEINT HYDRAN HYDUMB POLPUN PONCOR SAGLAN saCAl saVAL THAGEN TYPLAT **** Plant Species Figure 39. Overell vegetation cover (% Plo\"1, Mean SE) from all (n=6) Sagittaria lancifolia Seeded Plots, Experimental Planting Sites. 105

PAGE 107

W (f) -!. + c: '" Q) :0 Experimental Planting Treatment -Sagittaria lancifolia Seeded Plots oLIVE DEAD SITE 1 SAGLAN 75 50 L 25 o .......... / .................. T 1-100 SITE 1 TYPLAT 75 50 25 0 100 SITE 2 SAGLAN 75 50 25 '" 1 ................. t. ................................. 0 ... .... .. .... ..... ......... 100 SITE 2 lYPLAT 75 50 25 I 0 100 SITE 3 SAG LAN 75 50 25 I I I 0 .. ,i i ........ ....... ..... ... 100 SITE 3 TYPLAT 75 50 T I o ... :::::. ..... = .... :::..!. ===:1. .. = ... = ..... = ..... = .... =!.:::.::::==.= ..... = .... .:.::.!:!1 25 SEP91 JAN92 MAYS2 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 40. Time series of overall vegetation cover (% Plor1 Mean SE) of Sagittaria /aOOfo/ia and Typha /atlfo/ia from Sagittaria /ancifo/ia Planted Plots, Experimental Planting Sites. 106

PAGE 108

w U) + c: (\I 4> ::!E '-0 a:: 0 4> > 0 () c: 0 "" '" -4> [J) 4> > 4> > 0 Experimental Planting Treatment Scirpus validus Seeded Plots LIVE t=l DEAD 60 ISEPTEMBER 1991 40 20 0 60 IJANUARY 1992 40 I-20 0 60 MAY 1992 40 20 0 -60 40 AUGUST 1992 20 0 ril .om 60 FEBRUARY 1993 40 20 0 rm. ...... .,;m, 60 AUGUST 1993 40 20 0 .,;m, """' iful .;o;z" 60 I-MARCH 1994 40 20 0 !iJ .,;m, -i .w.. -W2J I t I,D --1 0 ElEINl HYDRAN HYDUMB POlPUN PONCOR SAGLAN SCICAL SCIVAl THAGEN TYPLAT *.*. *.*. Plant Species Figure 41. Overall vegetation cover (% Plor', Mean SE) from all (n=6) Scirpus validus Seeded Plots, Experimental Planting Sites. 107

PAGE 109

Experimental Planting Treatment Scirpus validus Seeded Plots oLIVE DEAD 15 SITE 1 selVAl 10 5 o ............ SITE 1 TYPLA T 75 50 W ................. L ........... c: 15 "'SITE 2 selVAL .................. '" 10 5 0 100 SITE 2 TYPLAT 75 50 25 0 15 SITE 3 selVAL 10 5 o 100 SITE 3 TYPLA T 75 50 25 1 ...L ....... c:-r:-............................. .............. ..... ........................ ...... ...... ... -1........ ........ ...... .... ....... .... ...... "T......... HYDRAN (Live only) ,/ ,./1 ", I .:r./ ./ ., .. .. -.. --; o ....... == ...... == .... :=:!::i:: .... := ....... ;:::: ...... == ....... :1: .. ,:;:::= ... :: .. :::: ..... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 42. Time series of overall vegetation cover (% Plot" 1 Mean SE) of Hydrocotyfe ranucu/oides (Site 3 only), Scirpus validus and Typha lalifolia from Scirpus validus Seeded Plots, Experimental Planting Sites. 108

PAGE 110

Experimental Planting Treatment Mulch Plots LIVE CJ DEAD 100 I I I I I I I 80 SEPTEMBER 1991 I I I I I 6Of-i I I I I I I I I I i I I I 40 i i i I iii 20 I I I I I il I o I, I I I I 100 I I I I I I 80 -JANUA-.RY I I I I W 60 I I I I I I 40 I i I I i II. I I I I i I I I i I : i : ,: : i : ;!. i :2 100 I I I I I I I 80 MAY 1 i 992 I I I I I I '15 60 I I I I I I I c:: 40 I I I I i I i '#. I I I I I I ';:' : : :, : i _: i i 100F--L. __ L 1 __ L __ L I __ --L=-F1 __ o 80 AUGLn 1992 : : : : : : : 60 I I I I I I I I fii 40 I I I I I I I I i : : : i : > 100 1=--L--L1 __ L-:....L 1 __ L--+-1 __ 80 FEBRIIJARY I I I I I I g I I I I I I In( : : : @ : o : : 80 1993 : : : iii I 60 I I I I I i I : i : = : : !_ rn m! m __ L-:....L I __ __ 80 MAR9H 19$4 : : : : : i I I __ __ ElEINT HYDRAN PANHEM POlPUN PONCOR SAG LAN SCICAl SCIVAl TYPLAT *.*. ...... Plant Species F i gure 43 Overall vegetation cover (% Plor', Mean tSE) from Mulch Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars 109

PAGE 111

w CI) -!. + c: C\l CI> :::; Experimental Planting Treatment Mulch Plots, Site 1 LIVE DEAD 25 HYDRAN 20 15 '0 5 25 20 15 10 5 0 25 20 15 '0 5 0 25 20 POLPUN PONCOR SAGLAN ................... I ............................. i :; o I:!:==:;:=::!::: ... :i. ::: ... ::. ... ::: .. ::. ... :;. .. ... ::: .. ::. ... :;. .. ::: ... ... ::. ..... ::; .. :::: .... ::: .... ::: ..... ::. ..... ::: .. : :::y ... ::: .. ::: ... ... ::: .. ::. ... ::: .. ::: ... ;: ..... ::: ..... ::: .. ::: .... ::. ... ::: .. ::: ... :::.:;: ... ::. ... ::: .. 75 lYPLAT 60 45 I ... J... ................ '5 o .................. .... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 44a. Time series of overell vegetation cover (% Plor', Mean SE) of common species from Mulch Plots, Site 1, Experimental Planting Sites. 110

PAGE 112

Experimental Planting Treatment Mulch Plots, Site 2 o LIVE DEAD 3 HYORAN 2 o J. 2 POLPUN UJ C/) -.!. + c: '" 0 '" G B B B B 0 30 PONCOR 0 ii: 20 ';fl. '" 10 > 0 t) c: 0 2 '" Q; 3 Ol SAGLAN '" > iii 2 0 0 / ... 75 60 45 TYPLAT 1.----1 r 1 I 1 1 30 15 0 /1 I SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 44b. TIme series of overall vegetation cover (% Plor1 Mean SE) of common species from Mulch Plots, Site 2, Experimental Planting Sites. 111

PAGE 113

W CJ) -.!. + c: 0 U c: 0 :;:; Q) > 0 Experimental Planting Treatment Mulch Plots, Site 3 OLIVE DEAD 50 HYDRAN 40 POlPUN 8 6 4 2 0 0 9 ____ __ __ ________ ____ m 60 50 PONCOR 40 30 20 10 I I I 18 ...... ............. ................ ........................................................................................ 8 6 4 2 0 60 45 30 15 SAGLAN TYPLAT T 1 SEP91 JAN92 MAY92 AUG92 FEB93 Time (Months) AUG93 j 1 MAR94 Figure 440. Time series of overall vegetation cover (% Plor1 Mean SE) of common species from Mulch Plots, Site 3, Experimental Planting Sites. 112

PAGE 114

Experimental Planting Treatment Control Plots [8 LIVE r=J DEAD 100 80 60 40 20 I I S EPlEMBER i1991 i i I I I I I I 80 JANUARY 1992 W 60 I I (/) I i 10 40 i i c: 20 I I :;; 100 I 80 MAY 60 i i 40 i 20 I '-0 e o () 80 :5 60 I I :;:: 40 i 20 : : n : '" __ __ __ __ > 100 I I I 80 FEBRUARY I 60 I I i o 40 I I I 20 :J5 I I I I I I .. Plant Species Figure 45. Overall vegetation cover (% Plor', Mean SE) from Control Plots, Experimental Planting For each species, bars representing the three are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 113

PAGE 115

Experimental Planting Treatment Control Plots, Site 1 6 4 2 o LIVE ELEINT o 6 HYDRAN DEAD 2 ______ _____ .------1! 30 i: 10 ffi' 20 vPOLPUN 1__ __ ____ __ __ :::; 6 .:.. o a:: PONCOR 4 2 o 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 SAGLAN SCIVAL THAGEN TYPLAT .. j ....... n .. .. nnnn ... n .. L .n .............. j ............ n ............. j + I J 1 r ......... J .............. ; ............................................................................................. o --! ................................ ............................................. ..... .... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46a. Time series of overell vegetation cover (% Plor1 Mean SE) of common spedes from Control Plots, Site 1, Experimental Planting Sites. 114

PAGE 116

Experimental Planting Treatment Control Plots, Site 2 oLIVE DEAD 6 ELEINT 2 L .... .... = ..... = .... ..... = .... = ... = ..... = .... + ..... = .... = .... + .. .. = .. + .... = ..... = .... + .... = ..... = .. 6 HYDRAN T 1 2 .1. ____ .L 1 8 6 PDLPUN I r PONCOR 20r .......................................................................... ...... ............................................. ".. 6 SAGLAN 4 2 .......... .. f .............. J .=:::Z ..................... .. ......................... I .................................. o 6 SCIVAl 4 2 o 6 THAGEN 4 2 o 0 60 TYPlAT 40 o o a .............................. I :-_----1 2: ... E .. = ... j t.::: ... c .::: ... ::: .. = .. ; ... .. c: ... ::: .. ... '':';'":::''=:':::''::';'''::''' .::: .. ... .. ... ... .. ... ... .. ... ... ..L .. .. ... .. ..L ... ... .. ... ... .. ... ... .. ... ] SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46b. TIme series of overall vegetation cover (% Plor', Mean SE) of common species from Control Plots, Site 2, Experimental Planting Sites. 115

PAGE 117

w Ul :f: c: '" Q) :2 Experimental Planting Treatment Control Plots, Site 3 0 LIVE DEAD 6 ELEINT 2 0 60 45 HYDRAN 30 15 0 6 POLPUN 2 0 10 8 PONCOR 6 1. 2 T o ............... .................................. ...... ..... .. T 6 SAGLAN 2 o 6 SCIVAL 2 o 8 6 THAGEN 2 o 20 TYPLAT 10 ... ..... 1 ................... I L I T 1 .. __ ............. .................................. ,. .. ... = ... = .... = .. ... .... = ... = .. = ... = .... = ... .. = .... = ... .. .. = ... = .... = ... .. ... .. ... .. . SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46c. Time series of overall vegetation cover ('II> Plor1 Mean SE) of common species from Control Plots, Site 3, Experimental Planting Sites. 116

PAGE 118

Pontederia cordata and Sagittaria lancifolia were also found. After the drawdowns of August 1993 and March 1994, species richness increased and included a short-term colonization by species that had been found during earlier samples, including Cyperus iria, Echinoch/oa colonum, and Panicum dichotomiflorum. Eventually, these species declined or were found only on floating mats. Subplot Coyer and Water Depth Time series plots of vegetation cover and water depth for each planted treatment revealed that cover seemed to change independently of water depth (Figures 47 -52). A pattern of cover dominance oscillating between live and dead developed as the community matured (Figures 47-52). A decline in live cover is probably coincident with normal winter biomass dynamics. Planting Site Density Stem densities within planted plots were similar to cover with dominant species yielding the largest density estimates (Table 13 and Figures 53-59). The control, mulch and seeded plots were eventually dominated by JYpha latifolia (Appendix A3). The Eleocharis interstincta planting treatment had a pattern oflow densities of observable plants early in the sampling followed by increases over time. During January 1992, stem density at Site 3 jumped to nearly 100 stems m-2 while densities at Sites 1 and 2 remained low near 10 stems m-2 Stem densities became somewhat more similar among sites as time progressed, with peak densities reaching 150 stems m-2 (Site 2) to 375 stems m-2 (Site 1). Through most of the sample set, Sites 1 and 3 had similar density patterns, while Site 2 remained at a lower level until March 1994 when the densities were reduced at Sites 1 and 3. Invading species did not root successfully in the plots (Figure 53, Table 13). Stem densities in the Panicum hemitomon planting treatment remained low for most of the sample period. Except for Site 2 this species had little vegetative growth through most of the sample period. Panicum hemitomon was present at low density until it peaked at 4 5 stems m-2 at Site 2 in August 1993. The density of invading Eleocharis interstincta and JYpha lalifolia increased, primarily at Site 2 beginning in February 1993 (Figure 54, Table 13). Ponlederia cordala culms were found at low densities in the Pontederia cordata treatments during the first sample period. Culm densities approached a maximum (2032 stems m-2 ) by the August 1993 sample period. During the sample periods densities varied from 10-30 stems m-2 Invading species entered at different times for two of the sites (Figure 55, Table 13). Site 2 was invaded by Scirpus califomicus and JYpha lalifolia in May 1992 and by Eleocharis interstincta in August 1993. Site 3 was invaded by T. !alifolia in February 1993. In the Sagittaria !atifolia plots, density peaked at Sites 1 (45 m-2 ; May 1992), Site 2 (15 m-2 ; August 1993), and 3 (12 m-2 ; February 1993). The density levels changed from sample to sample suggesting a high turnover of culms by this target species (Figure 56). The competitor species JYpha lalifolia gradually increased its density over time with a peak at the March 1994 Site 2 sample (8 m-2). It wasn't until March 1994 that T. 117

PAGE 119

Experimental Planting Treatment Eleocharis interstincta Planted Plots o LIVE COVER 1oo0-------.-------,-------,-------,-------,-------0 DEAD COVER o WATER DEPTH eo eo 40 20 0 100 80 60 40 20 0 100 80 eo 40 20 0 SITE 1 COVER ....... ... ... .. : ... : .. : ... J .. ... .. .. .. WATER DEPTH .. .. .. -<1>. . -$. ............ .. .. .. ..,... .. /. ............. eo eo 40 20 SITE 2 COVER ..... "" ............................ ...... ....... 100 WATER DEPTH eo eo 40 20 0 SITE 3 COVER .......... WATER DEPTH 80 60 40 20 D-____ ______ ______ ____ -L ______ ____ SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) w rJ) -l + c: '" Q) :0 N E E .s. .c: -cQ) a Q) Figure 47. Time series ofvegetatlon cover ('IE> mo2) and water depth (an mo2) from subplots In Eleocharis interstincta single species planted plots, Experimental Planting Sites. 118

PAGE 120

w CI) i c: '" Q) :2 Experimental Planting Treatment -Panicum hemitomon Planted Plots o LIVE COVER DEAD COVER 0 WATER DEPTH 8 SITE 1 6 COVER 4 2 ... .. ... = ... = .... = ... ... = ... ... : .<&.. -.. . -. .. 4>......... 80 "'--,/ ...... ....... 60 v.. .. .. .. _-. ........ 40 WATER DEPTH 20 8 SITE 2 6 COVER 4 2 I I o ................................................................ .. WATER DEPTH -_.$.. .. -,.. ....... G.. .. .. .. .m--.. -.. ..-.. -. -.. .. .............. ....... 100 80 60 40 20 0 100 80 .. ..... -.-.. .. .. .. .. $-60 .. .. --.. .. .. -,,_. 40 20 __ __ __ __ ____ AUG91 JAN92 MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) w CI) "+ c: '" Q) :2 N E E .!:!. Q. Q) 0 Q) Figure 48. Time series of vegetation cover (% mo2) and water depth (em mo2) from subplots in Panicum hemitomon single species planted plots, Experimental Planting Sites. 119

PAGE 121

w CI) i-c: OJ Q) ::. N E :.\! 0 Q) > 0 () c: 2 OJ -Q) C) Q) > 0 C. .D :::J CI) Experimental Planting Treatment -Pontederia corriata Planted Plots o LIVE COVER 1000-------,--------,-------,-------,---0.--.------0 o DEAD COVER o WATER DEPTH 80 SITE 1 COVER 60 40 20 WATER DEPTH ...... ..... 0 -1; ; ; ___ +_ L __ .......+: T -----y ........ "'6' ....... ........ '.. t.. _-100 80 60 40 2 0 100 80 60 40 20 0 100 80 60 40 20 0 SITE 2 COVER ......... ................ ........ ... ......................................... .... "-. .. ..... -. .....;j)--. .. --t. -...-. -....... _-SITE 3 COVER 100 80 60 40 -"-'"-1? 20 0 ....... 0 ......... 0 .................. ... 0 .............. "'0 ...... 0 WATER DEPTH . .. ..
PAGE 122

w (/) i: c: III Q) :::; N E -;F. Q) > a () c: 0 :;:; III Q) '" Q) > Experimental Planting Treatment -Sagittaria lancifolia Planted Plots o LIVE COVER 1000--------,-------,-------,-------,-------.-------0 DEAD COVER o WATER DEPTH 80 SITE 1 60 40 20 COVER o .............. ..... ................. .................................................................... 100 80 60 40 20 0 100 WATER DEPTH 80 60 .. .. --"'--"".. ... .. -J: ,,-. -.. ... .. 1! 40 20 SITE 2 COVER ............... .......... ....... ..................... ... ........................... ...... ........................... WATER DEPTH 100 80 w (/) i: c: III Q) :::; -0 60 N Ci ..c :J (/) 40 20 0 .. lIl-" .. --G-.. .. .>C -lJ}-__ mo. .. __ -iI 100 80 S I TE 3 60 COVER 40 20 0 ..... ............................. ....... .............................................. ................. ...... 100 W A TER DEPTH 80 60 40 20 G-.. .. .G-.. .. .. .$.. -.. .. -.. -lJ}.. .. .$-...... ..... 0 SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 50 Time series of vegetation cover ('II> m 2 ) and water depth (em m 2 ) from Sagittaria lancifolia single species planted plots, Experimental Planting Sites. 121 E E .. .s::: -a. Q) Cl Q)

PAGE 123

W til -!. + c .. '" :;: "l' E '" > 0 () c 0 "" .l!! '" Cl '" > 0 Q. .0 til Experimental Planting Treatment Scirpus californicus Planted Plots o UVE COVER DEAD COVER 0 WATER DEPTH 100 80 SITE 1 80 40 20 COVER .... ...... o !:t===lh"""'"":!..""""c:!...::: .... ::... _-'-__ -'___ L_ WATER DEPTH .--. 0-,,-,,-,,-,,--4>" -" /' .. '. 100 SITE 2 80 COVER 60 l 40 .............. ............ 20 0 0 0 WATER DEPTH .. $,. ----, -"" ---<1>-"-' '-. .. ''1) SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) 100 BO 60 40 20 0 W i c .. 100 '" BO :;: "l' 60 E 40 E ,. 20 iO 0 Q. '" a '" 100 BO 60 40 20 0 Figure 51. Time series of vegetation cover (% m-1 and water depth (an m -2 ) from Scirpus ca/ifomicus single species planted plots, Experimental Planting Sites. 122

PAGE 124

UJ (j) + c: ro Q) :::;; N 'E *' Q) > 0 c..> c: 0 "" ro -Q) Cl Q) > 0 Ci .c ::J (j) Experimental Planting Treatment Scirpus validus Planted Plots a LIVE COVER DEAD COVER <) WATER DEPTH 1000-------,------.------,------,------,-------0 80 SITE 1 60 40 20 COVER ... 1... ". o ............ ... ......... ......................... .. .. 100 80 60 40 20 0 100 80 60 40 20 0 WATER DEPTH // .4>. -.. . --. . ....... 100 80 60 40 20 SITE2 COVER ... "' ... C:: .. ::: .. ';!!.'::.' "' ..... --'___ ----L __ -=-_ ... .. '... ... .. -.. ... ..:: ... ::.: ... ::.: 100 WATER DEPTH ... . -. -. SlTE3 COVER 80 60 40 20 -<1)0 ... c:: . .. ::J.=.:.:.::.: .. = .. WATER DEPTH 80 60 .$-' -- 0 SEP91 JAN92 MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) Figure 52 Time series of vegetation oover ('IE. m '2) and water depth (em m'2) from Scirpus vaUdus single species planted plots, Experimental Planting Sites, 123

PAGE 125

Table 13 Vegelalion densi1y measurements (# m-' MEAN SE) from subplals in planled plals Experimental Planting Species Codes : Upper case six character are abbreviated species codes, Lower case codes represent plant families or unknowns. Codes ending with 0 represent dead, while S represent seedlings, SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SI; MEAt-! SE MIi6N MEllI'! SE MEAN SE AUGUST 1991 SITE 1 PONCOR 0 50 0 29 SAG LAN 2 25 1 03 SCICAL 1.25 0 95 SCIVAL 1.00 0.71 AUGUST 1991 SITE 2 ALTPHI 0 25 0 25 AMMAUS 0 25 0 25 0 50 0 50 0 50 0 29 1 50 1 50 ASTSUB 0 25 0 25 COMOIF 0 25 0 25 CYPIRI 0 25 0 25 CYPSPP 0 25 0 25 ECHCOL 0 25 0 25 ECLALB 0.25 0 25 0 25 0 25 Poaceae 1 25 1 25 PONCOR 1.75 1.03 SAGLAN 0 75 0.48 SCICAL 0 25 0 25 SCISPP 0.25 0.25 SCIVAL 1 25 0 25 THAGEN 0.25 0.25 AUGUST 1991 SITE 3 AMMAUS 0 25 0 25 ELEINT 0 75 0 48 0 50 0 29 PONCOR 1 50 1 50 SAGLAN 1 25 0 95 SALCAR 0.25 0 25 SCICAL 0 50 0 50 SCIVAL 1 50 0 65 JANUARY 1992 SITE 1 ALTPHI 0.25 0.25 0.25 0.25 0.25 0.25

PAGE 126

Table 13 Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEINT 3 50 2.18 1 .2 5 0.95 PAN HEM 0 25 0.25 POLPUN 0.25 0.25 0.75 0.75 0.25 0.25 PONCOR 1.75 0 25 0 25 0.25 SAGLAN 2 75 0.25 SCICAL 5 00 5 00 0 25 0 25 SCIVAL 0 50 0 50 3 25 2 93 TYPLAT 0 25 0.25 JANUARY 1992 SITE2 ALTPHI 0 25 0 25 ELEINT 5 50 1 94 LUDPAL 0 50 0.50 PAN HEM 0 50 0.29 PONCOR 11.75 10 44 SAGLAN 10 25 5 45 SCI CAL 5.75 5.11 SCISPP 0 50 0 50 SCIVAL 0 25 0 .2 5 43 00 4 .14 10 00 5 83 THAGEN 4 25 3 92 TYPLAT 0 .2 5 0 25 0.25 0 25 JANUARY 1992 SITE3 ALTPH I 0 50 0 29 ELEINT 91.25 54 84 1 50 1 50 17. 00 9.82 LUDPAL 1 75 1.11 0 50 0 .5 0 0 75 0 48 0 50 0 29 0 50 0.50 POLPUN 1 00 0.71 0 25 0 25 0 .2 5 0 25 PONCOR 3.00 2 38 0.25 0.25 0 50 0.29 SAGMON 2.00 0 .91 SCI CAL 11.25 11.25 SCIVAL 1 00 1 00 77.25 24 67 6 75 6.75 THAGEN 0 50 0.29 TYPLAT 0 75 0.48 MAY 1992 SITE 1 ALTPHI 0.25 0 25 ELEINT 67 00 22.66 PANHEM 0 25 0.25 POLPUN 0 25 0.25 PONCOR 14.25 2.95 SAGLAN 45.25 16. 86 SCICAL 33 00 15 .15 SCIVAL 44 50 13 05 125

PAGE 127

Table 13. Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLAT 1.25 1.25 MAY 1992 SITE2 ALTPHI 0 25 0 25 0.25 0.25 0.50 0 29 ELEINT 43 50 25 67 JUNEFF 0 75 0 75 PELVIR 0 25 0.25 POLPUN 0.25 0 25 PONCOR 12 50 3.69 0.75 0.48 SAGLAN 15.00 9.87 0.50 0.50 SCICAL 1.00 1.00 42.50 13.62 17 25 17.25 SCIVAL 0 75 0 75 97 50 45 48 THAGEN 1 00 0.41 TYPLAT 0 50 0 29 0.50 0.50 1.25 0.95 MAY 1992 SITE 3 ALTPHI 0 25 0.25 EICCRA 2.00 2 00 ELEINT 74 75 9 53 42.50 25 29 JUNEFF 16.00 16.00 PANHEM 1.00 0 .71 PONCOR 23.50 5.78 6.25 6.25 1 75 1.03 SAGLAN 7.00 7.00 1.00 1 00 SAGMON 2 75 2 75 SCICAL 23.00 14.11 10.00 10.00 SCIVAL 67.75 12.91 8.50 8 50 THAGEN 1.75 1.75 TYPLAT 2.00 1.41 AUGUST 1992 SITE 1 ALTPHI 0.25 0.25 ELEINT 341.75 121. 40 87.50 51.54 PONCOR 8.75 3.09 1 25 0 95 SAGLAN 7.75 2.10 SCI CAL 64 50 27 38 SCIVAL 1.00 1.00 215.00 48 99 1.25 1.25 THAGEN 1.25 0.75 TYPLAT 1.25 1.25 1.50 1.50 SCIVALD 6.50 6.50 AUGUST 1992 SITE 2 126

PAGE 128

Table 13 Vegetation density measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0.25 0 25 ELEINT 25.75 7.26 0.50 0.50 1.25 1.25 LUDLEP 0 25 0.25 PANHEM 1.50 1.50 PELVIR 0.75 0.75 paN COR 21.75 2.90 2.25 2.25 SAG LAN 8 25 1.31 SCICAL 0.50 0 50 33.00 17.22 SCISPP4 1.25 0.63 SCIVAL 0 25 0.25 46. 75 46.75 26 75 3.01 4.75 2.50 THAGEN 3 50 2.02 TYPLAT 7.50 2.99 11.00 6.36 2.75 1.70 0 75 0 75 AUGUST 1992 SITE3 EICCRA 0 50 0 50 ELEINT 215.00 128 16 106.25 98.09 PELVIR 0 25 0.25 PONCOR 16 00 4 .38 3.25 3.25 1 50 0 65 SAGLAN 4 50 0.87 SCICAL 24.00 10.26 SCISPP4 0 25 0.25 SCIVAL 5 .00 5.00 74.00 45 30 24 00 24.00 THAGEN 1.00 0.41 TYPLAT 4 25 2.53 2.75 2 75 1.75 1 75 SCIVALD 5.50 3.20 F EBRUARY 1993 SITE 1 ELEINT 300.00 122.47 65.50 61.57 PELVIR 0 75 0.46 PONCOR 18.00 2.12 5 00 5.00 SAGLAN 11.75 1.25 0.25 0 25 SCI CAL 50 00 28 87 SCIVAL 19 .00 12.01 THAGEN 5 00 2.89 TYPLAT 2 .00 2 00 0.50 0.50 FEBRUARY 1993 SITE2 ALTPHI 0.25 0.25 ELEINT 72.50 22.87 7 .00 6 .04 0.25 0.25 PANHEM 1.00 1.00 PELVIR 0.50 0.50 127

PAGE 129

Table 13 Vegetation density measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN S); MEAN SE MEAN SE MEAN SE MEAN SE PONCOR 12 75 3 09 1 .50 1.50 SAGLAN 7 50 2 90 SCICAL 3 25 3 25 0 75 0 75 56 00 15 03 2 75 2.75 SCIVAL 1 25 1 25 20 50 8.42 4 00 3 37 THAGEN 3 25 1 65 TYPLAT 0.75 0 75 16.25 5 95 3 50 3 50 2 00 2 00 0 25 0 25 1 50 1 50 3 25 1 60 FEBRUARY 1993 SITE 3 ALTPHI 0 25 0.25 EICCRA 0 25 0 25 ELEINT 360 75 108 .51 0 75 0 75 GALTIN 0 25 0 25 PELVIR 0 25 0 25 PONCOR 21. 25 1 25 3 75 3 75 3 00 2 12 SAGLAN 13 00 4 20 SCICAL 17.25 9 68 7 75 7 75 7 75 7.42 SCIVAL 14 00 13 67 1 25 0.63 THAGEN 7 75 6.09 TYPLAT 0 25 0 25 0 25 0.25 0 25 0.25 AUGUST 1993 SITE 1 ALTPHI 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 AMAAUS 0 25 0 25 1 00 1 00 0 50 0 29 ELEINT 385 25 114 75 250 00 144 34 LUDLEP 0 25 0 25 0 25 0 25 PANHEM 4 50 4 50 PONCOR 31. 00 3 34 2.25 1.44 SAGLAN 8 50 1 19 SCI CAL 25 75 9 72 12 50 12.50 SC I VAL 12 50 12 50 26 75 8 63 TYPLAT 0 25 0 25 2.75 2 75 2 50 2 50 1 75 1 75 AUGUST 1993 SITE 2 ALTPHI 0 50 0 29 0 25 0 25 CYPODO 2.25 1 .31 0.75 0.48 16 00 16 00 ECLALB 0 25 0 25 0 75 0.48 ELEINT 176 75 57 80 20 00 17.44 3 00 3 00 134 50 122 .16 GALTIN 0 50 0 50 JUNEFF 15 00 15 00 LUDLEP 4 50 0.65 1.25 0 63 2 25 1 .31 PONCOR 27 25 2 29 4 00 3 67 SAGLAN 16 00 3 .11 128

PAGE 130

Table 13. Vegetation density measurements (Cant. ) SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCICAL 3.75 3 75 15.SO 3.57 SCISPP4 0.75 0.75 SCIVAL 0. 25 0 .25 30 .25 8 .26 1 00 1 00 THAGEN 8 75 4.70 TYPLAT 1 75 1 .44 13 75 4.73 2 .SO 1 32 3. 00 2 .68 2 .75 2 .14 5.50 3 .28 0. 75 0. 75 AUGUST 1993 SITE 3 CYPODO 0.50 0. 50 0.25 0.25 CYPSPP 17.50 17.SO EICCRA 0.50 O .SO ELEINT 305.75 117. 83 162.SO 117. 92 HYDRAN 2.25 2 .25 JUNEFF SO.OO SO.OO LUDLEP 1 .25 1 .25 0 25 0 25 PELVIR 1 00 0.71 PONCOR 19.25 4 77 4 .25 4 25 2 .SO 1 .44 SAG LAN 5.00 1 96 0. 25 0.25 SCICAL 49.SO 13. 62 9.SO 9.SO SCIVAL 14 25 7 .09 0. 75 0.75 THAGEN 3. 75 2 .25 TYPLAT 1.75 1 .44 2 .00 2 00 2 .SO 2 .SO 1 .SO 0.87 3. 25 1 .97 MARCH 1994 SITE 1 ALTPHI 0.25 0 25 0.25 0.25 AMAAUS 0.25 0 25 37.SO 37 .50 1 .00 1 .00 CARP EN 0.25 0 .25 ELEINT 53.25 5.82 10.75 7 .78 HYDRAN O.SO O .SO O .SO O.SO LUDLEP 1 .00 0.58 PAN HEM 2 00 2 .00 PELVIR 0.25 0.25 3 00 2.38 POLPUN 0 25 0.25 PONCOR 31.SO 5 84 15. 25 9.20 SAGLAN 13.25 4 .31 SCI CAL 84 00 43.32 13.75 13.75 SCIVAL 37 .25 6 .76 TYPLAT 4 .SO 3. 57 O .SO O .SO 3.00 3. 00 2 00 2 .00 0. 75 0. 75 udicotS 2 .SO 2 .SO 20. 25 18. 30 MARCH 1994 SITE2 CYPSPP 3.SO 3.SO ECLALB O.SO O.SO 129

PAGE 131

Table 13. Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEINT 159 .00 41.00 125 .00 125.00 2 00 2 .00 11.25 9 66 GALTIN 0.50 0 29 HYDRAN 0 50 0 50 PELVIR 0 50 0 50 PONCOR 16 50 2 .72 1.50 1.19 SAGLAN 9 25 1.70 SCICAL 2.75 2 75 23 75 10.13 2 25 2 25 SCIVAL 0 25 0 25 13 .75 9 .31 2 .75 1.11 THAGEN 4.00 2.04 TYPLAT 0 50 0 50 10 75 2.78 3 00 1 58 7 .75 2.78 6 00 3 .83 9 00 3.03 GALTINS 1 00 1 .00 TYPSPPS 2 50 2 50 6.25 6.25 2 50 2 50 0.50 0 50 5 00 5.00 udicotS 8.75 8 .75 0.25 0 25 MARCH 1994 SITE 3 AMBART 0 .75 0.75 ECLALB 0.25 0.25 EICCRA 3 75 3 75 1.00 1 .00 2 .25 2 25 ELEINT 104 .75 53 40 4 50 3.30 EUPCAP 0 .2 5 0 25 PELVIR 1 75 1 .75 PONCOR 30 00 12 62 5.00 5 .00 0.75 0.48 SAGLAN 5 25 1 89 0 75 0.75 SCICAL 30 00 4 32 3.25 3.25 SCIVAL 9 50 7.01 3.25 3.25 THAGEN 1 50 1 50 2 25 1 .31 TYPLAT 0.75 0 75 5 .00 5 .00 2 50 1 .8 9 2 00 1.41 3 75 2.17 TYPSPPS 2 50 2 50 2.50 2.50 udicotS 0.25 0.25 0 .5 0 0 50 130

PAGE 132

woo i c OJ Q) ::2 '" E !II C Q) o c o "" Cl -o C. .J:l 00 Experimental Planting T r eatment -Eleocharis interstincta Planted Plots 1 e:52SI 2 bS:'3 3 1991 300 i i 150 I I JAN UARY i 992 300 150 MAY 1992 300 150 AUGUST 1992 300 I I 150 I I FEBRUARi1993 300 I I 150 i I __ -L __ __ ;__ __ 450 AUGUST 1993 300 i I 150 I i MARCH 19p4 300 i I 150 I I __ __ ELEINT HYDRAN PONGOR SAG L A N S CI CA L SCI VAL TYPlAT Plant Species Figure 53. Vegetation density (# m2 Mean SE) from subplots in Eleocharis interstincta Planted Plots, Experimental Planting Sites For each species, bars representing the three sites are bound by vertical dot-dash lines -Invading species not planted. Panicum hemitomon (PAN HEM) not found in any plots other than it's own target plot. 131

PAGE 133

w (f) :i: c: -o C. ..0 (f) Experimental Plant ing Treatment -Panicum hemitomon Planted P l ots rzLj sn. 1 l32SI sn. 2 sn.3 40 I I I I I I i SEPTEMBfR 1991 iii i 30 iii I I i 20 iii iii o Iii i I I __ __ +-_+-L-r __ __ __ 40 I JANUARVI1992 I I: I 30 I I I I I I I 20 I i I I Iii o I I I I I I I I i I I : : : i MAV1992i Iii i 30 I I I I I I 20 I Iii i i o iii iii I I iii 0r--+ __ + i __ __ __ 4-__ __ + i __ 40 I J I I I I AUGUST 1992 iii 30 iii i i 20 Iii I I i o I I I I I I 1 I I i I I I __ __ +-_+-i-+ __ +i __ +-_+' __ 40 I I I I I I I FEBRUARtf 1993 Iii i 30 I I I I I i 20 I I i i i i o I I Iii i i __ __ __ __ 40 I I I I I I I I AUGUST j993 I i i i i 30 I I I I I I I 20 I I I I I I I o I I I I I I I __ __ __ __ r-jl __ 200 1 I I I I I I I I MARCH 1!194 I I I I I 100 / I I I I I I I v ELEINT HYDRAN PANHEM PONCOR SAGlAN SCICAL SCIVAL TYPLAT Plant Species Figure 54. Vegetation density (# m 2 Mean SE) from subplots in Panicum hemilomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. 132

PAGE 134

Experimental Planting Treatment -Pontederia cordata Planted Plots I'ZLl S"e 1 IQ2SI S"e 2 [S:"l S"e 3 40 1991 30 I 20 I I 10 I 0 40 I JAN UARY 1992 30 I 20 i i 10 i w en 0 :i: 40 MAY 199} c: OJ 30 i Q) I ::;; 20 I N 10 E 0 40 I AUGUST i'992 30 I en c: 20 I Q) Cl I c: 10 I 0 ., 0 .l!l 40 1993 Q) 20 I 0 I 0. 10 I ..c '" 0 en 40 AUGUST I 1993 30 I 20 I I 10 i 0 40 I 30 MARCH 1994 i 20 I 10 I I d:. 0 ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT Plant Species Figure 55. Vegetation density (# m-2 Mean SE) from subplots in Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ****= Invading species not planted. Panicum hamitOmon (PANHEM) not found in any plots other than it's own target plot. 133

PAGE 135

40 30 20 10 0 40 30 20 10 w en 0 i: 60 c: 50 '" 40 ., ::! 30 N 20 10 E 0 40 .?;> 'iii 30 c: 20 ., 0 c: 10 0 ., 0 '" 40 ., 0> ., 30 > 20 0 a. 10 ..c :::l 0 en 40 30 20 10 0 40 30 20 10 0 Experimental Planting Treatment -Sagittaria lancifolia Planted Plots rz2l 1 I'2Sl 2 [SSI 3 SEPTEMPER 1991 i I i I I JANUARY 1992 I I I I MAY I I I I I AUGUST I 1992 I I I I 1993 I I i i AUGUSTI1993 I I I I I MARCH 1994 i I I I ELEtt-rr HYDRAN PONCOR SAGLAN SCICAL selVAL Plant Species TYPLAT Figure 56. Vegetation density (# m2 Mean SE) from subplots in Sagittaria lancifo/ia Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ***"= Invading species not planted. Panicum hemilomon (PANHEM) not found in any plots other than it's own target plot. 134

PAGE 136

latifolia approached similar densities as S. lancifolia, at Site 2 (Figure 56, Table 13). Culm density varied among samples and sites with time in the Scirpus califomicus plots. Peale values were observed in February 1993 at Site 2 (60 m-2), August 1993 at Site 3 (50 m-2), and March 1994 at Site 1 (75 m-2 ) Density values in the March 1994 sample were reduced at Sites 2 and 3, to levels comparable to the August 1992 samples (Figure 57, Table 13). Scirpus validus appeared at Sites 2 and 3 in August 1992, and Site 1 in August 1993. The competitor species 'JYpha latifolia slowly increased density at Site 2 to a maximum of5 m-2 (Figure 57, Table13). Scirpus validus attained peale density May 1992 at Site 2 (100 m-2 ) and August 1992 at Site 1 (200 m-2 ) and Site 3 (75 m-). During subsequent sampling events, Scirpus validus occurred at much lower densities than previously measured <50 m-2 ) The competitor species 'JYpha latifolia first appeared in August 1992 and reached a maximum density of 5.5 culms m-2 at Site 2 in March 1994 (Figure 58, Table 13). In the Mixed Species plots, measurements of Eleocharis interstincta and Thalia geniculata dominated as a result of random plot placement. Vegetation density dynamics included growth to a maximum followed by a decline with time (Figure 59, Table 13). Density measurements in the seeded, mulch, and control plots featured an early period with little or no measurable vegetation followed by a later dominance by 'JYpha latifolia (Appendix AJ). The best representation of species performance can be found in the cover measurements (Appendix AI). Planting Site -Height Within the planting site plots, height measurements followed a similar temporal dynamic pattern as cover and density (Figures 60-65; Table 14). Fewer species were measured than for the cover parameter because the floating plant taxa such as Salviniaceae (Azol/a, Salvinia) and Lemnaceae (e.g. Lemna, Spirodel/a, Wolffia, Wolffiella) were excluded due to a thin growth form and non-rooting habit. Occasionally, Alternanthera philoxeroides was excluded if it was found floating (a frequent occurrence) or its rooting habit was indeterminate Species such as Eichhomia crassipes, Hydrocotyle ranunculoides, H. umbel/ata, and Limnobium spongia were measured from the top of the dense, floating root matrix. A greater number of species were measured for height than were counted for the density parameter. Height measurements were taken from plants that overhung the plot and from species that were defined as mat forming without an easily definable root to sediment location. Mat forming species included: Hydrocotyle ranunculoides, H. umbel/ata, Polygomun punctahlm, and Utricularia biflora. As was discussed in the density results, height measurements from planted plots will be treated in more detail than those from control, mulch, and seeded plots. Again the best measure of species performance in the latter plots may be derived from the cover estimates. Within the single species planted plots, target species height reached a peale up to two years after planting. The species reaching peale height earliest was Scirpus validus at 200-250 cm in May 1992. In August 1992, Eleocharis interstincta (150 cm), Pontederia cordata (125 cm), and Sagittaria lancifolia (175 cm) were found to have pealeed. Scirpus 135

PAGE 137

Experimental Planting Treatment Scirpus califomicus Planted Plots I'ZLl sn.1 sne2 I:S'3 sn.3 125 SEPTEMPER 1991 100 75 I 50 I I 25 I 0 125 I 100 JANUARY 1992 75 I 50 I I 25 I W (/) 0 ...!.. 125 + r:: 100 OJ 75 i ., 50 I I N 25 I E 0 125 I :?:-100 AUGUSTI 1992 "iii 75 I r:: I ., 50 0 i r:: 25 i 0 OJ 125 1993 ., 100 '" ., 75 i > I -50 i 0 a. 25 I .a ::l 0 rJ) 125 I 100 AUGUSTi1993 75 I 50 I I 25 I 0 125 I 100 MARCH 1994 75 I 50 I 25 I I 0 od=> ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPlAT Plant Species Figure 57. Vegetation density (# m-2 Mean SE) from subplots in Sc/rpus ca/ifom/cus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. Pan/cum hemitomon (PANHEM) not found in any plots other than it's own target plol 136

PAGE 138

Experimental Planting Treatment Scirpus validus Planted Plots rza 300 250 SEPTEMPER 1991 I I I I I I 200 I i i 150 i I 100 i I 50 0 i i 300 I I 250 JAN UARY 1992 i 200 I i 150 i I I 100 50 W en 0 i 300 c: 250 to 200 Q) 150 :; 100 N 50 E 0 I I I J I i MAY I I I I I I I i I I I i i I I i I i I i i I In I : : : ....J//V' v 150 -0 100 Ci. 50 .Q '" 0 en 300 I I I I I I AUGUST i 1992 I I rh I I I i : I I I I I i i 1993 I I I I I I i I I i I i I I I i i i i i I I I I I 250 AUGUST I 1993 I i 200 I i I 150 I I I 100 I i I 50 0 : -.i I : 300 I I I I I 250 MARCH 1994 I I I I 200 i I I I I 150 I I I I I 100 50 0 I I i i h I : : I -ELEINT HY D RAN PONCO R S A GLAN SCICA l SCI VAL TYPLAT Plant Species Figure 58. Vegetation density (# m2 Mean SE) from subplots i n Scirpus validus Planted Plots Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. Panicum hemitomon (PANHEM) not found in any plots other than it's own target plot. 137

PAGE 139

Experimental Planting Treatment -Mixed Species Planted Plots rz:;a 8ft. 1 8ft. 2 Sft.3 20 1 8EPTEMqER 1991 1 I 1 I 10 I i I i I I i JANUAR 'Ij 1992 i i i i 20 10 I 1 i i 60 ] 1 i MAY 50 1 I 1 I 20 10 150 r : : AUGUST )992 100 1 1 I 10 I 12g 100 : FEBRUA1y 1993 75 I 1 i 10 I I 1 300 I AUGUST 1993 225 150 i i 20 10 MARCH Uj94 20 10 I I i i I 1 __ ELEINT HYDRAN PELV I R PONCOR SAGLAN SCICAL SC IVAL THAGEN TYPlAT Plant Species Figure 59. Vegetation density (# m2 Mean SE) from subplots In the Mixed Species Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -= Invading species not planted. Panicum hemitomon (pANHEM) not found in any plots other than It's own target plot 138

PAGE 140

Experimental Planting Treatment -E1eocharis interstincta Planted Plots 250 200 150 100 50 rzLl Site 1 2 I I i SEPTEMBERi1991 I I I I I I I __ __ __ -+ __ __ __ -+ __ __ +__ 250 JANUARY 19L2 200 r 150 i w c:: MAY 1992 m I :::0 I i 1: .,o., i I i I E I i AUGUST :E I i I i :r: I i c:: I I o .. $ I I gJ, I FEBRUARY 1[993 >Q) I I I I 15 i i Ci 250 I 200 AUGUST 1993 150 i 100 I I 50 i dz, 200 MARCH 150 I 100 I I __ li __ __ ELEI NT HYORAN PONCOR SAGLAN scrCAL SCIVAL TYPLAT Plant Species Figure 60. Vegetation height (an m 2 Mean SE) from subplots in Eleocharis interstincta Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. Pan/cum hemitomon (PANHEM) because it did not colonize any other plots. 139

PAGE 141

Experimental Planting Treatment Panicum hemitomon Planted Plots r:za 1 2 3 250 200 1991 1 1 1 1 1 1 1 150 100 1 1 1 I 1 1 1 1 1 1 1 50 0 i I i 1 i i i 250 200 150 100 50 W Ul 0 "i 250 c: 200 '" Ql 150 ::2 100 N 50 E 0 E 250 0 200 .<:: 150 C) '0; 100 :I: 50 c: 0 0 ., '" 250 -Ql 200 C) Ql 150 > 100 0 a. 50 ..a 0 JANUARy!1992 1 1 1 1 1 i i i 1 1 i i i T i i i i -MAY 1992 : 1 1 1 i 1 1 i i I 1 1 1 1 1 T 1 Db i i i i AUGUST j 992 1 1 1 1 1 1 rsh! i rsh! i i i i : i I : 1993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : T 1 1 1 1 i 1 : : : i p'/ I I Ul 250 200 150 100 50 0 1 1 1 1 1 T AUGUST 1993 i i i i 1 1 1 1 1 1 1 i 1 i 1 i i I 250 200 150 100 50 0 MARCH 1 1 1 1 1 1 i 1 i 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 : I J... i i 1 1 r/, ,0. _,' i I ElEI NT HYDRAN PAN HEM PONCOR SAGlAN SCICAl SCIVAl TYPLAT Plant Species Figure 61. Vegetation height (em m2 Mean SE) from subplots in Panicum hemitomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. 140

PAGE 142

-o Q. ..0 :l Ul 250 Experimental Planting Treatment -Pontederia cordata Planted Plots r:za Sit. 1 sn. 2 sn.3 200 1991 i I I 150 100 __ r-__ __ __ __ __ __ -+ __ __ +-__ 250 JANUARY 1 192 200 150 100 250 200 MAY 1992 150 1: 200 AUGUST 19p2 150 I J.. __ -+ __ __ +__ __ +__ 250 I 200 150 i I 100 i __ r-__ 250 200 AUGUST 1993 150 I 100 I I __ __ 250 200 MARCH 150 i 100 I __ __ ELEINT HYDRAN PONCOR SAGLAN SC ICA L SCIVAL TYPlAT Plant Species Figure 62. Vegetation height (em m2 Mean SE) from subplots in Poniederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ""'"'= Invading species, not planted target species. Panicum hemitomon (PANHEM) because it did not colonize any other plots. 141

PAGE 143

Experimental Planting Treatment Sagittaria lancifolia Planted Plots r.za sa. 1 250 1991 200 150 I 100 I I 50 0 250 JAN UARY 1992 200 I 150 I 100 I I W 50 i CI) 0 +-250 r::: 200 MAY 1992 '" Q) 150 ::;; 100 N 50 E 0 E 250 0 200 .s:: 150 i 0> i .Q; 100 I 50 i r::: I 0 0 :; 250 -Q) 200 0> Q) 150 I > I 100 0 i 1i 50 I .!l 0 OJ CI) 250 I 200 AUGUST 150 I 100 I I 50 I 0 250 MARCH 200 150 i 100 I 50 I I 0 ELEINT HYDRAN PONCOR SAGLAN SC ICAL SCIVAL TYPLAT Plant Species Figure 63. Vegetation height (em m-2 Mean SE) from subplots In Sagittaria lancffolla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -= Invading species, not planted target species. Panicum hemitomon (PAN HEM) because it did not colonize any other plots. 142

PAGE 144

.r:::; C> iii I c:: o S Q) C> (5 a. .<:> ::J Ul Experimental Planting Treatment -Scirpus calif amicus Planted Plots rza 1 2 !;SSI 3 300 200 100 SEPTEMBEjl1991 i i I I JAN UARY lp92 JOo i 200 I I 100 I JOO 200 100 MAY 1992 JOO AUGUST I 200 I 100 : 300 FEBRUAR'VI1993 I 200 i 1 00 i l_-+ __ __ __ __ __ __ EI JOO AUGUST 1993 I 200 I 100 I JOO MARCH 1994 i 200 i 100 I I ELEINT HYDRAN PONGOR SAGLAN SCICAL SCIVAL TYPlAT P l ant Species Figure 64. Vegetation height (em m2 Mean SE) from subplots In Scirpus califomicus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. Pan/cum hemitomon (PANHEM) because it did not colonize any other plots. 143

PAGE 145

iii' (J) :i: c '" Q) :::i: '1 E ,. .r:; '" iii ::r: c o "" .l!l Q) '" o a. .c ::l (J) Experimental Planting Treatment Scirpus validus Planted Plots r:za sa. 1 sn. 2 bS"l sn. 3 250 200 SEPTEMBER 1991 150 i 100 I I 50 I 200 JANUARY 1992 150 I I 100 i 50 i __ __ 250 200 MAY1992 I 150 i 100 I I 50 I cOo 200 AUGUST 150 I 100 i i 50 I 200 FEBRUARi 1993 150 I I 100 i 50 I 200 AUGUST 150 I 100 I I __ __ 200 MARCH 1994 150 i 100 I I __ b ELEJNT H Y DRAN PONCOR SAGLAN SCICAL SC IVAL TYPLAT Plant Species Figure 65. Vegetation height (em m2 Mean SE) from subplots in Scirpus validus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -Invading species, not planted target species. Panicum hemitomon (PANHEM) because it did not colonize any other plots. 144

PAGE 146

Table 14. Vegetation height measurements (em m-2 MEAN SE) from planted plots in Experimental Planting Sites. Species Codes: Upper case six character are abbreviated species codes. Lower case codes represent plant families or unknowns. Codes ending with 0 represent dead, while S represent seedlings. SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1991 SITE 1 ALTPHI 15.75 15.75 16.50 16. 50 COMDIF 18 00 18 00 31.25 18.04 16.25 16.25 13.00 13.00 ECLALB 14.00 14.00 POLPUN 15.50 15.50 39.00 22.70 20.25 20.25 14.25 14.25 13.00 13.00 PONCOR 28.25 16.32 SAG LAN 61.50 20 75 SCICAL 71.25 41.82 SCIVAL 74.25 25.51 AUGUST 1991 SITE 2 ALTPHI 8.25 8.25 AMMAUS 16 00 10.46 10.00 10.00 13.25 8.40 ASTSUB 4.75 4.75 COMDIF 11.25 11.25 CYPIRI 9.00 9.00 CYPSPP 9.50 6.18 ECHCOL 12.75 12.75 ECLALB 6.75 6.75 5.00 5.00 4.50 4.50 PANDIC 6.00 6.00 PONCOR 30 50 17.84 SAGLAN 37 00 21.50 SCICAL 13.00 13.00 SCISPP 20.00 20.00 SCIVAL 17 50 17.50 61.25 20.44 THAGEN 38.75 21.27 UGRASS 4.25 4.25 AUGUST 1991 SITE3 AMMAUS 9.00 9.00 ELEINT 22.25 13.12 28.75 16.81 PONCOR 12.00 12.00 SAGLAN 25.75 15.27 SALCAR 8.75 8.75

PAGE 147

Table 14. V egetation h eight measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL SCIVAL MIXED SPP MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE M E AN S E MEAN SE SCICAL 43 25 43 25 SCIVAL 75 75 25 35 JANUARY 1992 SITE 1 ALTPHI 14. 25 14 25 13 50 13 50 11.50 11. 50 12 75 12 75 ELE INT 77.75 5 96 37 50 21.75 HYDRAN 10.00 10 00 PAN HEM 13 50 13.50 POLPUN 13 75 13 75 36.00 12.03 13. 00 13. 00 11.00 11.00 12.00 12 00 PONCOR 62 50 4 66 14. 75 14 .75 SAGLAN 124 25 13 39 SCICAL 60 00 46 19 66 50 38 .76 SCIVAL 81. 00 46 77 THAGEN 35 75 35 75 TYPLAT 23 50 23 50 JANUARY 1992 S ITE2 ALTPHI 7 25 7 25 9 25 9 25 4 00 4 00 4 50 4 50 ELE INT 53 75 6 49 HYDRAN 7 50 7 50 5 00 5 00 LUDPAL 3 25 3 25 PANHEM 18 25 12 09 POLPUN 5 25 5.25 2 25 2 25 PONCOR 43 00 4 78 12 00 12 00 SAGLAN 103 00 10.51 SCICAL 28 75 28 .75 SCISPP 10 25 10.25 SCIVAL 6.00 6 00 165 00 2.89 76 75 44.42 THAGEN 74 25 42 87 TYPLAT 4 50 4.50 3 75 3.75 JANUARY 1992 SITE 3 EICCRA 13 75 13 75 ELEINT 52 25 18 58 35 00 20 89 LUDPAL 6 00 6 00 6 25 6 25 10 00 10 00 6 75 6 75 8 75 8 .75 7 50 7 50 POLPU N 26.75 15 67 8 00 8 00 8 50 8 50 PONCOR 25 50 15 .17 18 25 18. 25 20 75 12. 06 SAGLAT 62 00 21. 00 SCICAL 46 50 46 50 SCIVAL 155 75 9.17 21.75 21. 75 146

PAGE 148

Table 14. Vegetation height measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 53.SO 30.96 TYPLAT 45.00 26.06 MAY 1992 SITE 1 ALTPHI 15 .75 15 75 14.00 14 .00 ELEINT 100 .75 7 17 PANHEM 20 .00 12.25 POLPUN 13 .75 13.75 33 .SO 11.82 10.SO 10.50 12.25 12.25 PONCOR l08.SO 16.47 SAGLAN 165 50 11.41 SCICAL 287 .SO 31. 46 SCIVAL 237 .SO 12 .SO TYPLAT 55.00 55 .00 MAY 1992 SITE2 ALTPHI 10.25 10.25 10 .25 10.25 23.75 23.75 10 25 10.25 15 75 15.75 4O.SO 27.84 ELEINT 96. 75 2.29 HYDRAN 11.00 11.00 10.00 10.00 16.75 10.27 PANHEM 32.50 32.50 PELVIR 11.00 11. 00 POLPUN 14.25 14. 25 PONCOR 112.75 13 .55 55.50 35 .08 SAG LAN 133 00 7.29 37.SO 37.SO SCICAL 47.SO 47 .SO 258 .SO 38.43 SO.OO SO.OO SCIVAL 30.00 30 00 255.50 15 39 THAGEN 210 .00 7.07 TYPLAT 75.SO 46 69 38.75 38 75 39 25 39.25 MAY 1992 SITE3 ALTPH I 10.SO 10 .SO 10 .SO 10 .SO E ICCRA 9.SO 9 .SO ELEINT 95.25 5.79 23. 00 23.00 54.75 31.61 PANHEM 26 .50 15 .35 PONCOR 87.00 11. 15 30 00 30 .00 38.25 23 .34 SAGLAN 33 75 33.75 25.00 25.00 SAGLAT 76.75 45 .81 SCICAL 162.SO 56.03 SO.OO 50.00 SCIVAL 206.00 28.04 53. 00 53 00 THAGEN SO.OO SO.OO TYPLAT 87.75 53.82 40.75 40.75 SO.OO SO.OO 147

PAGE 149

Table 14 Vegetation height measurements (Cont.). SPP AUGUST 1992 ALTPHI ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL THAGEN TYPLAT AUGUST 1992 ALTPHI ELEINT HYDUMB LUDLEP PAN HEM PELVIR POL PUN P O N COR SAGLAN SCI CAL SCISPP4 SC I VAL THAGEN TYPLAT AUGUST 199 2 ALTPHI EICCRA ELEINT H Y DRAN PELVIR POLPUN PONCOR SAGLAN SCICAL SCISPP4 SCIVAL THAGEN PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP ELEINT MEAN S E MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SITE 1 28 .75 27 .11 1 25 1 25 16 25 16 25 13 25 13 25 157 50 5 20 77 25 44 .64 13 25 13 25 121.50 40 .60 36 67 36 67 153 00 26 69 32.50 32 50 305 50 61. 02 35 .00 35 00 237 00 14 02 37.50 37.50 180 00 105.20 40 00 40 00 75 00 75.00 SIT E 2 27 25 27 25 35 75 35 75 60 00 34 88 164 50 17 63 30 00 30.00 26 25 26 25 19.00 19.00 48 75 48 75 30 00 30 00 31. 25 31.25 30 00 30 00 124 25 7 85 33 75 33 75 179 25 13 76 60 00 60.00 261.25 87 57 157 50 58 08 46 25 46 25 82.50 B2. 50 212 50 8.64 143 75 51. 29 220 00 92.01 207 50 69.81 137 50 80 .04 125 00 72 17 40 00 40 00 SITE 3 27 50 27 50 21. 25 21. 25 23 00 23 00 40 25 24 43 20 50 20 50 170 00 6 72 55 50 33 17 11.75 11. 75 27 25 27.25 25 00 25.00 146 00 8 .34 43 75 43 75 72 25 24.22 185 00 11. 70 218 50 76 04 48 00 48 00 190 50 8 96 40 50 40 50 168 00 62.22 148

PAGE 150

Table 14 Vegetation height measurement s (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLAT 77.00 47.SO 62 .SO 62 .SO 65.00 65 00 SCIVALD 91.25 52 77 FEBRUAR Y 1993 SITE 1 ALTPHI 2 .SO 2 .SO 8 .25 8 .25 ELEINT 174 .00 7 .99 77.75 45.18 PELVIR 32 .SO 32.SO P OLPUN 11.SO 11.SO PONCOR 120.75 20 62 36.25 28.53 SAGLAN 141.75 47. 64 45.00 45.00 SAGLAT 52.SO 52.SO SCICAL 305. 75 41.58 SCIVAL 213 75 23 22 THAGEN 93 25 54 12 TYPLAT 23 .25 23 .25 45.75 45.75 40.00 40.00 FEBRUARY 1993 SITE 2 ALTPHI 19.00 19. 00 11.25 11.25 ELEINT 126. 25 16.SO 52.00 31.58 10.75 10.75 GALTIN 14 75 14 75 H YDRAN 12.SO 12.SO 17. 00 17. 00 H Y D SPP 19.00 19 00 18. 75 18. 75 PAN HEM 21.25 21.25 PELVIR 23.00 23.00 PONCOR 89.25 4 .31 25.00 25.00 SAGLAN 134.00 10.75 SCICAL 87.SO 87.SO 62.SO 62.SO 332.SO 25.89 SO.OO SO.OO SCIVAL 150 .25 SO. 67 75.00 47.87 THAGEN 100.50 9.46 TYPLAT 37 .SO 37.SO 152.25 51.49 46. 75 46. 75 42.SO 42.SO 25 00 25.00 86. 25 51. 05 96. 75 45.06 FE8RUAR Y 1993 SITE 3 ALTPHI 13. 75 13 75 EICCRA 36.SO 21.83 18.25 18.25 67.SO 23.59 16.00 16. 00 ELEINT 137. 00 11.01 79.75 46. 24 GALTIN 16.25 16. 25 HYDRAN 31.00 18 12 51.25 17 73 35.SO 22 22 81.75 24.45 71. 25 5.62 70. 00 1 73 32 25 20 95 PELVIR 19. 75 19. 75 PONCOR 100 00 9 13 30.75 30. 75 39. 25 22. 66 SAGLAN 138.75 6 .68 SCICAL 229.SO 34 .31 SO.OO SO.OO 67.00 40. 70 149

PAGE 151

Tabl e 14. Vegetation height measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCIVAL 143. 50 16.17 103.75 38. 26 THAGEN 146.50 4 05 TYPLAT 28. 75 28 75 28.00 28. 00 33.50 33. 50 47. 50 47.50 AUGUST 1993 SITE 1 ALTPHI 34 .25 23 .59 60.75 25.14 6.25 6.25 20.25 11.91 32 .25 32.25 AMAAUS 21.25 21.25 10.00 10.00 18.75 11.97 ECLALB 15.75 15.75 ELEINT 171. 25 13 .19 97.00 58.22 HYDRAN 5.75 5 75 LUDLEP 15. 75 15.75 30.00 30.00 PANHEM 31.50 31.SO PONCOR 107.SO 9. 95 37.25 21.72 SAG LAN 31.SO 31. 50 125.75 1 .65 38.SO 38.SO SCICAL 321. 25 10.87 10.00 10. 00 SCIVAL 184.25 30 .38 THAGEN 225.25 65. 37 TYPLAT 22 .SO 22.SO 45. 50 45.SO 41.25 41.25 40. 00 40.00 AUGUST 1993 SITE 2 ALTPHI 21.SO 13. 07 33.00 20.57 6 .75 6 .75 CYPOOO 45. 25 17.45 30.00 18.37 1 .00 1 .00 ECLALB 13.25 13 25 32.75 19.30 ELEINT 107 .25 16.04 77.25 44.99 29.00 29. 00 67.75 35.68 GALTIN 8 .75 8.75 HYDRAN 14.25 8.25 2 .50 2 .SO 2 .SO 2 .SO 2.SO 2 .SO HYDUMB 21.00 13.58 LUDLEP 102.00 6 .87 73.25 29.81 34 00 21.42 PONCOR 109.00 14 94 SO.75 30.83 SAGLAN 153.SO 9. 54 SCICAL 80. 00 80. 00 57.SO 57.SO 301.25 17.12 SCI SPP4 57.SO 57.SO SCIVAL 21.25 21.25 162. 75 12.15 35.00 35. 00 THAGEN 212. 25 83.23 TYPLAT 70 00 SO.70 176. 25 59.31 130. 00 44. 38 88. 25 55 .44 114 .SO 88. 95 159. 75 80.20 SO.OO SO.OO AUGUST 1993 S ITE3 ALTPHI 4 75 4 75 23.75 20 .55 13.25 13. 25 14.00 14 00 33.SO 22 68 CYPODO 16.75 16.75 14. 00 14 00 CYPSPP 2 .SO 2 .SO 1.25 1.25 150

PAGE 152

Table 14 Vegetation height measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE EICCRA 12 25 7.42 27.25 15.80 13.25 7 87 ELEINT 129.25 11.74 70 00 40.42 HYDRAN 2.50 2.50 20 25 11.71 9 75 7 08 6.25 2.43 6 00 6.00 JUNEFF 41.25 41.25 LUDLEP 15.75 15 75 11. 75 7 03 PELVIR 39 75 24 57 PONCOR 92 00 17.64 31. 25 31.25 27 75 16 02 SAGLAN 140 75 2 66 24 75 24.75 SCICAL 301. 25 3 .15 65.00 65 00 SCIVAL 143.25 12. 58 33.00 33.00 THAGEN 40.75 40 75 367 50 19. 74 TYPLAT 95.75 55 58 47 25 47 25 43 00 43.00 75 00 43 49 99 00 57 .17 MARCH 1994 SITE 1 ALTPHI 4.75 4 75 5 75 4.25 17 00 4 64 6 50 6 17 4 50 4 17 AMAAUS 0 25 0 25 0 25 0 25 3 25 3 25 CARPEN 5 50 5 50 ELEINT 51.25 5 64 17. 25 12.75 HYDRAN 11. 75 4 63 0.50 0 50 8 75 3.17 LUDLEP 13 25 7 67 PANHEM 14. 00 14. 00 PELVIR 15. 00 15.00 40 75 25 .11 POLPUN 3 00 3 00 PONCOR 47 .25 6.30 24.25 14. 25 SAGLAN 82 00 1 29 SCI CAL 194 75 13 .10 43 75 43.75 SCIVAL 148 75 1.25 26 75 15. 83 THAGEN 7 00 7.00 TYPLAT 57 25 33 28 20 00 20 00 43 75 43 75 48 25 48 25 29 50 29.50 UTRSPP 0 25 0 25 UDICOTS 0 25 0 25 0 50 0.29 MARCH 1994 SITE 2 ALTPHI 16.50 16 50 CYPSPP 1 25 1.25 ECLALB 0 25 0.25 ELEINT 83 00 6.68 35.00 35 00 21. 00 21. 00 66 25 38.37 GALTIN 7.75 7.42 6 25 6 25 0 50 0 50 HYDRAN 15.50 5 19 2 50 2 .50 3 00 3 00 7 25 7 25 6 00 3 67 0 75 0.75 PELVIR 25 75 25 75 PONCOR 53.75 8 67 19.00 11. 34 SAGLAN 114 50 11. 98 20 00 20 00 151

PAGE 153

Table 14 Vegetation hei g h t measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVA L MIXED SPP MEAN SE MEAN SE MEAN SE MEAN S E MEAN SE MEAN SE MEAN SE SCICAL 53 75 53 75 258 25 9 82 35 75 35 75 SCIVAL 23.75 23 75 31. 75 31. 75 112 00 41. 74 94 25 42 67 THAGEN 76 75 15.42 TYPLAT 71.50 29 24 147 00 12. 17 94 50 31. 58 127 75 44 50 94 50 55. 23 123 75 42 20 TYPSPPS 0 25 0.25 0 25 0 25 0 25 0 25 0 25 0 .2 5 0 25 0 25 UDICOTS 0 50 0 29 0 25 0 25 MARCH 1994 SITE3 ALTPHI 9.75 9 75 24.75 11.12 9 25 9 25 9 00 9 00 AMBART 1 25 1 25 ECLALB 0 25 0 25 EIC C RA 7 50 4 50 5 00 5 00 20.25 8 17 7 00 4 .12 ELEINT 60 00 5 43 64 75 21. 88 EUPCAP 2 00 2 00 GALTIN 2. 00 2 00 HYDRAN 20 00 5 52 7 50 2 60 4 50 4 50 18 75 7 58 17 75 2 90 7 25 4.42 3 00 3 00 PELVIR 25 75 25.75 PONCOR 67 00 5 73 19 00 19 00 12 00 7.35 SAGLAN 105 75 8 73 25 50 25 50 SCI CAL 207 75 18 55 31.00 31.00 SCIVAL 47 75 25 12 7 00 7 00 THAGE N 25 75 25 75 80 00 27 3 1 TYPLAT 21. 25 21.25 52 50 52 50 92 50 55 28 43 75 43 75 90 00 56 .61 T HA G E N D 12. 75 12. 75 TYPLATD 2 50 2 50 TYPSPPS 0 25 0 25 0 25 0 25 UDICOT S 0 50 0.29 0.25 0 25 0 25 0 25 0 25 0 25 0 25 0.25 152

PAGE 154

califamicus (300 cm) peaked around February 1993. Finally, Panicum hemitomon (25 cm) peaked around the August 1993 sample period. The potential competitor species 'fYpha latifolia tended to reach a lower height than the target species (Figures 60-65) The exception to the pattern of lower T. latifolia heights occurred in the P. hemitomon plot. P. hemitomon tended to survive and colonize poorly. Its height measurements partly reflect a lack of presence in the vegetation community The mixed species planted plots presented a special case with respect to measuring species performance. In contrast to the single species plots, species position in the mixed plot was more randomly arranged. Therefore, a height measurement would reflect the presence of the species initially or its subsequent invasion of the plot with time With this in mind it is not possible to directly compare the results of measurements in single species plots to mixed species plots. Similar patterns over time that include growth to a peak followed by a height decline are comparable and do reflect the nature of vegetation community development on the site (Table 14). The tall "flag" species Thalia geniculata provided the most temporally dynamic height pattern with growth to 200-400 cm during the summer followed by a winter decline to 10-80 cm (Table 14). The competitor species T. latifolia reached a peak height of about 100 cm at Site 2 in February 1993. Its height declined in subsequent samples. 'fYpha height was not measured at Sites 1 and 3 during most of the study period because of its inability to compete in the mixed species planted plots. NATURAL SUCCESSION STRUCfURE AND COMPOSmON Hydrology In spite of the uncertainty in determining hydroperiod associated with floating mat formation some useful water depth patterns were measured. The water depth plots showed a general pattern of mean water depth increase to an approximate plateau of about 50 cm in the south marsh and a little over 25 cm in the north marsh (Figures 66-74). Water depths dropped to near zero at most plots in March 1994 as a result of drawdown. Observations in the field during the drawdown and from the standard error of the mean provided evidence of the extensive area of floating vegetation mat (Figures 66-74). Large standard error estimates resulted from measurements on dry mat surface interspersed with measurements in open water Finally. plots of water depth over time along each transect provide a higher resolution view of transect level hydrologic conditions (Figures 66-74). These graphics clearly show increased standard errors in the sample prior to mat flotation and decreased water depth after flotation at times when the marsh is flooded (Figures 66-74). Water depth measurements along the transects revealed that depth was not always distributed evenly (Figures 66-74). Transects 1 (Figure 66) and 2 (Figure 67) tended to deepen from the middle to the southern end, and transect 9 (Figure 70) deepened toward its western end. Water depths along transects 3 (Figure 68) and 4 (Figure 69) were somewhat evenly distributed Transects 5 (Figure 71) and 7 (Figure 73) gradually declined in depth from north to south. Transects 6 (Figure 72) and 8 (Figure 74) had nearly constant water levels until a rapid water depth decrease from 400 m to the end of 153

PAGE 155

TRANSECT 1, SOUTH MARSH 100 NOVEMBER 1990 80 60 ..D. 40 20 0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 iiJ 60 40 + .-0 0 0 0 0 0 0 0-c 20 OJ ., 0 :;; 100 AUGUST 1992 N 80 E 60 40 % 20 ., 0 0 100 80 2 60 40 FEBRUARY 1993 0 0 "...---..0
PAGE 156

TRANSECT 2, SOUTH MARSH 100 NOVEMBER 1990 80 60 40 20 -0 -0-......()... 0-0 100 AUGUST 1991 80 60 40 20 0-0 100 JANUARY 1992 80 UJ 60 40 + 0--<> 0 0 -0-c 20 til ., 0 :::;: 100 AUGUST 1992 80 E 60 0 0-0 0 0 E 40 or; 20 Q. 0 ., 0 100 80 ., 60 40 20 FEBRUARY 1993 0 0 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 0 o 50 100 150 200 250 300 350 400 Distance Along Transect (m) Figure 67. Water depth time series from Transect 2, Natural Succession transects. 155

PAGE 157

TRANSECT 3, SOUTH MARSH 100 NOVEMBER 1990 80 80 40 20 0-0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 W 60 40 f>. + c: 20 '" Q) 0 ::;: 100 AUGUST 1992 N 80 E 60 J:}. E 40 .co 20 Q. 0 Q) a 100 FEBRUARY 1993 80 Q) 60 40 A ""V'" -v 20 0 100 AUGUST 1993 80 60 ..0-40 20 y 0 100 MARCH 1994 80 60 40 20 h. o o 50 1 00 150 200 250 300 350 400 Distance Along Transect (m) Figure 68. Water depth time series from Transed 3, Natural Succession transeds 156

PAGE 158

TRANSECT 4, SOUTH MARSH 100 NOVEMBER 1990 80 60 40 20 0 0..... 0----..0 a 0 --0a :::::: 100 AUGUST 1991 80 60 40 20 0-..0--0 J--c a a a 0 100 JANUARY 1992 80 W 60 (f) -!. 40 + C 20 '" Q) 0 --0 -<>-0 c :>--0--c 0 ::;; 100 AUGUST 1992 N 80 E 60 E 40 = 20 ...0--0 0-0 0-..0--
PAGE 159

TRANSECT 9 SOUTH MARSH 100 NOVEMBER 1990 80 60 40 oro 20 0 100 AUGUST 1991 80 60 40 20 JO 0 100 JANUARY 1992 80 W 60 40 -0 + c 20 '" OJ 0 ::!; 100 AUGUST 1992 N 80 E 60 ..0 v E 40 .r:: 20 C-O OJ a 100 FEBRUARY 1993 80 OJ -0 60 40 20 0 1 00 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 o 50 100 150 200 250 300 350 400 450 SOD 550 600 Distance Along Transect (m) Figure 70. Water depth time series from Transect 9, Natural Succession transects. 158

PAGE 160

W + <:: '" Q) N E E ..c: C. Q) Cl Q) TRANSECT 5, NORTH MARSH 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a a NOVEMBER 1990 AUGUST 1991 roo. JANUARY 1992 roo. AUGUST 1992 0FEBRUARY 1993 (). AUGUST 1993 MARCH 1994 50 100 -C\. ...0. 0 00 0-...0.. ...0. 150 200 250 300 350 Distance Along Transect (m) -0-..(J 400 450 500 Figure 71. Water depth time series from Transect 5, Natural Succession transects 159 0 550

PAGE 161

TRANSECT 6, NORTH MARSH 100 NOVEMBER 1990 80 60 40 20 0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 W 60 40 ++ 0--0 0 20 0 0 c: '" Q) 0 100 AUGUST 1992 -C)I 80 E 60 E 40 0 % 20 Q) 0 a 100 FEBRUARY 1993 80 Q) 60 40 0-Ch -0-A> 0 20 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 0 so 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) F igure 72. Water depth time series from Transect 6, Natural Succession transects. 160

PAGE 162

TRANSECT 7, NORTH MARSH 1 00 NOVEMBER 1990 80 60 .0 20 0 10 0 AUGUST 1991 80 60 .0 20 a 0-..0--0 0-0 0--0 0 100 JANUARY 1992 80 W 60 (j) -!. .0 + c 20 a a 0--0 ---0--0--'" ., 0 ::E 10 0 AUGUST 1992 N 80 E 60 E .0 0 .c 20 0--0-0 -0--<>------0 Co 0 ., 0 10 0 80 2 FEBRUARY 1993 60 40 a a 0-0-----.0--0-0---0 2 0 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1 9 94 80 60 .0 20 0 o 50 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) Figure 73. Water depth time series from Transect 7, Natural Succession transects. 161

PAGE 163

TRANSECT 8, NORTH MARSH 100 NOVEMBER 1990 80 60 40 ..6. 20 0 100 AUGUST 1991 80 60 40 20 0-0 --0 100 JANUARY 1992 80 W 60 CIl -!. + 40 c: 2 0 CO Q) 0 :::E 1 0 0 AUGUST 1992 N 80 E 60 E 40 <.) ..().. 20 Q) 0 0 100 80 Q) FEBRUARY 1993 60 40 .... 0-20 0 100 AUGUST 1993 80 60 40 20 0 "-------0--0 Q. -? "------a 0-100 MARCH 1994 80 60 40 20 y o o 50 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) Figure 74. Water depth time series from Transed 8 Natural Succession transeds. 162

PAGE 164

the transect. Vegetation Plots Flora. Distinctive spatial and temporal trends for rooted and floating plant species were detected (Figure 75). Species richness estimates for each plant type were related to water depth history. As we have seen, water depth history can be a function of management driven water level manipulation (e.g drawdown for structure maintenance or vegetation management) or natural floating mat formation. Rooted species richness was at a maximum (37 spp.) on Transect 5 during (August 1991) when water levels were lowered to accommodate the establishment of the Experimental Planting Sites (Figure 75). As time since the last drawdown increased, species richness declined to 4 spp. on Transect 2 at month 9 (August 1992). Species richness increased late in the sample period as water levels were dropped or floating mats formed. Simultaneously, Typha spp. dominance increased leading to exclusion of other flood tolerant species. A trend of increasing species richness with distance from the marsh inlet was found (Figure 75). Floating plant species richness was zero at all sites at month 0 (November 1990) when water levels were low (Figure 75). Species richness reached a maximum 7 spp. on Transects 5 and 7 at month 9 (August 1992). The temporal pattern of species richness was opposite that of the rooted plant species. Early in vegetation community development, floating plant species richness was low because of the lack of standing water and a dense overstory cover After the site was flooded, intolerant species were killed, exposing the water surface to full sunlight. With time, vegetation community development, floating mat development, and drawdown for maintenance leading to increased vegetation overstory development reduced the area favorable for floating species. The responses as measured by cover percent for the 15 most dominant species are presented in Figures 76-90 Effects of Flooding, Two flooding effects were observed. First, with time flooding killed or reduced the coverage of plants that were flood intolerant or annually reproducing. These species included: Eupatorium capillifolium and Ludwigia octovalvis (Figures 78, 82) Second, the hydrophytic species Typha domingensis and T. latifolia increased area\ coverage under flooded conditions (Figures 89,90) With the loss offlood intolerant species, Typha domingensis and T. /atifolia gained a competitive advantage and expanded their ranges. Additional flood tolerant species, including: Altemanthera philoxeroides (Figure 76), Hydrocotyle ranunculoides (Figure 79) and Hydrocotyle spp. (probably includes both Hydrocotyle ranunculoides and H. umbel/ata) (Figure 80) have become more widespread over time. At the drier ends of transects the prolific Ludwigia peruviQ11Q became dominant (Figure 83). Salix caroliniQ11Q increased its cover primarily in an area of initial establishment along the north levee of the north marsh (Figure 88) The flood tolerant species Pontederia corclata (Figure 86) and Sagit/aria lancifolia (Figure 87) were found at low levels (<5% cover) early in the project. Coincident with drawdown in the south marsh, Pontederia cordata cover increased to 163

PAGE 165

Natural Succession Transects (A) ROOTED SPECIES .. MAR 1114 AUG 1893 .> ....... .... FEB 1993 JAN 1992 AUG 1992 AUG "', /"onths) lime \'" I. 0 NOV 1990 I),., (8) FLOATING SPECIES 8 -1-....... 6 !/) 4 Q) '13 Q) 2 0-00 0 1",,,3000 ..... D "8 2250 1500 .. fCe f::j FEB 19UAUG 1993 1"0"., "'6/, 750 JAN 1992AUG 1992 ;hle 0 AUG .... (' 'onths) 'flo t 0,) 1I}lot NOV.... ." '" Figure 75. Time series response surface plot of rooted (Top graph) and floating (Bottom graph) plant species richness. Natural Succession Transects. 164

PAGE 166

Natural Succession Transects Alternanthera philoxer o ides 40 .: ';'. ; o NOV 1990 ,', ;-', ", -:', "; ". >. FEB 1993 JAlI1992 ; .. ... -':. Figure 76, TIme series response surface plot of Alemanthera phi/oxeroides cover (% m 2 Mean). Naturel Succession Trensects, 190

PAGE 167

Natural Succession Transects Amaranthus australis 40 .. .:.. :. .. :'" ":" .... ; .. : :" :'. .. AUG JAN 1992 AUG 1991 o NOV1990 '.' '. F igure 71, Time series response surface plot of Amaranthus australis cover (% m -2 Mean). Natural Succession Transects, 191

PAGE 168

Natural Succession Transects Eupatorium capillifolium 80 70 60 '1'E 50 ... Q) () 40 <: o 30 20 10 o .... ... ... .. .. -:,., '.' .. ..... .... -:" .. _.' -: .. .. ,.' ': i -;,, ;,-, ;-' .;., .. (' .:. .. .' 500 .' .... -;. .. ; .. .. -:," .. 0 NOV 1990 ':', .. : ,' ';" :-" :'" ',; : ';-. -.: .'. .... -L 'i. : -.. :, -" ': '. : -";-, .. ':-, FEB 1993 JAN 1992 AUG 1991 -<-,<$I '.' -. '. \" -,;. Figure 78, TIme series response surface plot of Eupatorium cepitnfolium cover (% m2 Mean), Natural Succession Transects, 192

PAGE 169

Natural Succession Transects Hydrocotyle r anunculoides 40 .. : .. -. .. :-., 30 '1'E 10 o 3000 \ O 'is> 2000 1500 'Q"" "i>. 1000 /: ." .. : .. 0 ". : o NOV 1990 ; : : AUG JAN 1992 AUG 1991 -\,
PAGE 170

Natura l Success i on Transects H y droco tyle spp 40 30 "i E 0 C1) () 20 c: 0 E C1) Cl C1) > 10 .: .,:' ; .. ', .... .. ;" ," "';" ... ;,., ,,' .. o NOV 1990 ... "i. :. -.; ,', ", >. JAN 1992 AUG 199 1 -(.,<.'0 .. ;"" F igure 80. Time series response surface plot of Hydrocotyle spp. cover ('II> mo 2 Mean), Naturel Succession Transects. 194

PAGE 171

Natural Succession Transects Ludwigia leptocarpa 40 .. ; -" ", ... ... : 30 '"I E .,-;' 0 ; .... .: -Q) U 20 c 0 16 ;.-Q) 0) : Q) > 10 -:" "!' a NOV 1990 ', . : AUG JAN 1992 AUG 1991 ;'" -':. Figure 81. TIme series response surface plot of Ludwigia /eptocarpa cover (% m,2, Mean), Natural Succession Transects, 195

PAGE 172

Natural Succession Transects Ludwigia octovalvis 40 .' 30 '1E ,g, 0 .... Q) U 20 c 0 :;::: ro Q) Cl Q) > 10 .:., .. ; ,' .. -: .. ,. .. o NOV 1990 '.' '. 'L : .. JAN1 2 e\'S AUG ,\,
PAGE 173

Natural Succession Transects Ludwigia peruviana 40 -;,., ,:, .j'" : 30 '"I E 0 .... Q) > 0 () 20 c 0 Q) Cl Q) .. > -' 10 ,. o NOV 1990 ;"" ",; '.; '. '. '. FEB 1993 JAN 1992 AUG 1991 -<.,<$'0 Figure 83. Time series response surface plot of Ludwigia peruviana cover (% m2 Mean). Natural Succession Transects. 197

PAGE 174

Natural Succession Transects Panicum dichotomiflorum 40 ,.,-_ .... .' 30 >I'. 0 ,.' Q) > 0 ,-!' U 20 c 0 :;:; g Q) Ol Q) > 10 ;." 4) 0 NOV 1990 "0, ;'" '.; '.; ;" '-; .'. : ", ".: >. JAN 1992 el:! AUG 1991 -<.,<$1 '., Figure 84, Time series response surface plot of Panicum cflChoiommorum cover (% m-2 Mean). Natural Succession Transects, 198

PAGE 175

Natural Succession Transects Polygonum pundatum 40 ,. : ., -!,-.;,--.: .. 30 ':'E .... : Q) ,, > 0 U 20 c: 0 :;:; .l9 -, Q) Cl Q) > _. 10 .. 0 NOV 1990 --' '-., -. : ,-"';" '}. JAN 2 AUG -(,,
PAGE 176

Natural Succession Transects Pont e d eria cordata 40 "'; .. ,;,:. 30 <:'E .. -:,., 0 -t ... ..' Q) > .' 0 C) 20 c 0 :;:; .l'-,. Cl Q) > .. 10 ,-,' .' "!'-; ., ., '. JAN 1992 AUG 1991 .(.\
PAGE 177

Natural Succession Transects Sagittaria lancifolia 40 .' ,.: .. -.. -!' 30 N 'E 0 .:.,.... Q) > 0 () 20 c 0 +> ro Q) ,. Cl : Q) > ., 10 500 0 NOV 1990 -'i ., ;'" -'';'' >. AUG JAI< 1992 AUG 1991 -\,{:' -;. MAR 1994 Figure 87. Time series response surface plot of Sagittaria lancifolia cover (% m2 Mean), Naturel Succession Trensects. 201

PAGE 178

Natural Succession Transects Salix caroliniona 40 30 Ii! 0 Q) > 0 () 20 c 0 S Q) 0) Q) .;.. > 10 .. .' -' ,'. ... . 0 : .. 500 ;"'" 0 NOV 1990 "; o "i. 'L FE91993 JAN 1992 AUG 1991 -<\,
PAGE 179

Natural Succession Transects Typha domingensis 40 .,-:'. ,-:" .... ;. '1'E 0 Ql > 0 () c 0 '';:; .!9 Ql Cl Ql > 30 20 10 :.,.-:" .. "': "-;": .. -,.-.. : i ,,-: ,,: 500 a NOV 1990 ';. ',: JAN 1992 AUG 1991 .. '. '. Figure 89. Time series response surface plot of Typha domingensis cover (% m2 Mean). Natural Succession Transects. 203

PAGE 180

Natural Succession Transects Typha latifolia 60 ';:'" 50 ":'E ': ,-: 40 ... Q) () C 30 0 ;> Cl Q) 20 > 10 .... ; ... ,.-;, ;., : .. .... .. .. : .:.,.. ,.,:' .,-: ", ", ;.,-" ... ... ,.-:" .-;,.;.-. ,,' .' ,', ," 4"" 0 NOV 1990 -;. . ,', : .. : -FEB 1993 JANI 2 AUG ,,., MAR 1994 AUG 1993 Figure 90. Time series response surface plot of Typha /afife/ia cover (% m-2 Mean). Natural Succession Transects. 204

PAGE 181

about 9"10 (Figure 86). In contrast, Sagittaria Iancifolia cover peaked at nearly 5% prior to drawdown (Figure 87). Drawdown and Mat Fonnation. During summer 1993 a management related drawdown and floating mat formation led to reductions in water depth long enough to allow activation of the soil seed bank These hydrologic changes led to increases in cover by species that had been found at much lower levels prior to drawdown. These effects can be seen in the surface plots of cover for various species. Note the increased cover in the later sample sets. Species responding in this manner included: Amaranthus australis (Figure 76), Ludwigia leptocarpa (Figure 81), Panicum dichotomijIorum (Figure 84), and Polygonum punctatum (Figure 85) Cover Percent Initial Conditions and Early Development, Vegetation coverage reflected site history, water depth distribution (spatially and temporally) and nutrient loading The responses to environmental conditions are a direct result of the adaptive capacities of the various species inhabiting the site Early in the project history the eastern half of the south marsh (Tl, T2, T9) was dominated by Commelina diJlusa, Eupatorium capillifolium, and Polygomun punctatum. Typha /ati/olia was present at low levels The western half of the south marsh (T3, T4) was dominated by the grass Panicum dichotomijIorum and the shrub Ludwigia octovalvis Aster subulatus, Baccharis halimifolia, and Eupatorium capillifolium were present at low levels. Typha latifolia was present, but at very low levels (Table 15). These patterns resulted because water levels tended to be deeper in the eastern half than the west (Figures 66-70). At the same time, the north marsh (T5-T8) was dominated by a community of Ellpatorium capillifolillm. The E capillifolillm covered most of the north marsh with a nearly continuous, dense overstory The Ellpatorillm capillifolium dominated area had been farmed most recently (summer 1990). Evidence in the form ofundecomposed corn (Zea mays) was found throughout the area. A small stand of Sesbania macrocarpa (0.94O.94%) was found near the end ofT5 in the southwestern corner Between the western levee and transect 5, a St. Augustine grass (Stenotaphorum secundatum) section (about 5 ha) remaining from sod farming was left intact. Aster subl//atus, Baccharis halimifolia, Commelina dijfusa. LI/dwigia octovalvis, Panicum dichotomijIorum, Polygonum punctatum, Salix caroliniana and Typha /ali/olia were present, but at low levels (Table 15). Cover Percent Successional Patterns Over Time. Changes in species dominance patterns over time reflect the integration of environmental controlling factors with initial conditions and the adaptive abilities of the available species pool. Water level dynamics were related to vegetation species cover dynamics (Figures 76-90) Two prominent species-level responses were observed. These included species that (1) declined after flooding, but maintained a presence in the seed bank allowing germination and growth response after water level drawdown or floating mat initiation (Amaranthus australis, Eupatorium capillifolillm, Llldwigia octovalvis, Panicum dichotomijIorum, and Polygomlm pllnctahlm), and (2) increased vegetation dominance with flooding (Alternanthera philoxeroides. Hydrocot1ye ramtnculoides and Typha spp.) 205

PAGE 182

Table 15. Vegetation cover measurements (% m-2 MEAN SE) from Natural Succession Transects Periods (.) represent species absent from. the transect or transects not sampled. SPECIES TRAN#1 TRAN#2 TRAN#3 TRANM TRAN#5 TRAN#5 TRAN", TRAN#8 COOE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN __ S E NOVEMBER 1990 SAMPLE SET ACERUB 0.06 0 04 0 03 0 03 ALTPHI 1 78 0 62 1 59 0 79 0.16 0 16 0 .94 0 65 1.44 0 66 0 22 0 16 0.31 0 .31 AMAAUS 0.16 0 .16 0 25 0 16 ASTELL 0 94 0.94 ASTSUB 0 19 0 .16 6 72 2 65 4 59 1 .81 5 25 2.67 1 56 0 79 1 09 0 43 3 13 1 09 BACHAL 0 78 0 64 0 16 0 .16 0 94 0.47 0 .31 0 .31 0 13 0 06 2 75 0 62 8 56 2 68 1 84 0 57 CALAME 0 .31 0 .16 4 53 2 30 0 03 0 03 CARSPP 0 63 0 63 COMDIF 1.44 0.88 14.69 4 97 0.47 0.26 12. 97 4.17 1 2 03 4 14 3 75 2 .94 CYNDAC 3 19 2 97 Cyperac 0 03 0 03 0 16 0 16 0 03 0 03 CYPHAS 1 09 0 80 0 06 0 .04 CYPODO 0 97 0 65 1 16 0 43 0 16 0 16 0 38 0 .31 0 22 0 .16 CYPSPP 0.13 0 06 2 06 1 88 1 72 1.57 0 06 0 .04 ECHCOL 0 53 0.47 3 28 1 63 5 63 1 76 1 09 0.83 5 44 2 24 0 53 0 26 ECLALB 0 06 0 04 0 94 0 52 1 09 1 09 2 06 1 62 1 78 0 65 0 03 0 03 ELEIND 0 03 0 03 0 78 0 .78 0 19 0 16 ELESPP 1 56 1 26 0 03 0 03 ERISPP 0 .31 0 .31 EUPCAP 21. 56 6 54 7 66 3 35 7 66 3 75 0.41 0 .31 32 26 6 72 77.34 5 78 72.97 6 20 70.47 6 57 EUPSER 0 16 0 16 0 16 0 16 EUPSPP 0 .81 0 .51 GALTIN 0 03 0 03 3.34 1.42 HYDSPP 0 50 0.47 2 .34 1 38 0 83 0.26 HYGLAC 0 25 0 16 I POSPP 0 03 0 03 JUNEFF 0 16 0 .16 LUDLEP 0 63 0 63 LUDOCT 0 66 0 49 0.47 0.47 16 25 4 15 6 28 1.28 4 78 1.36 0 78 0.78 0 38 0.22 0 06 0 04 LUDPAL 0 09 0 05 0 50 0.47 LUDPER 0 .94 0 94 LUDSPP 0 03 0 03 MELCOR 0 03 0 03 MIKSCA 0 78 0 46 PANDIC 5 94 3.69 9 38 3 90 40.94 6 .31 29 66 6 38 4 75 2 76 6.09 3.16 5 50 3.26 2 53 2 50 PANHEM 2.50 2 50 PANSPP 0 .31 0 .31 0.03 0 03 0.06 0 .04 1.66 1.66 PASSPP 2 22 1 87 2 56 1 58 PASURV 0 .31 0 .31

PAGE 183

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN #5 TRANm; TRAN 1fT TRANm; CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PHYANG 0.7B 0 .62 0 16 0 16 Poaceae 0 .03 0 .03 0 .78 0 .51 0 .34 0 .31 POlPUN 60.47 6 92 22.81 6 .14 B .59 3.47 3 59 2.42 PONCOR 0 78 0 78 0 63 0 .63 Pterido. 0.03 0 .03 GERCAR 0 .03 0 .03 1 03 0 .79 SAGLAN 1 13 1 09 SAlCAR 5 66 3 23 0 16 0 16 SAMCAN 0 16 0 .16 0 16 0 16 1 56 1.56 SAMPAR 0 63 0 43 SESMAC 0 94 0 .69 0 .94 0 94 SOLAME 0 0 3 0.Q3 SOlTOR 0.47 0 .34 STAFLO 0 .34 0 .31 TYPLAT 0.47 0 34 11.72 3 .61 0.09 0 05 0.03 0 03 3 13 3 .13 0 16 0 16 unknown 0 .06 0 .04 udicot 0.16 0 16 0 .53 0.47 0 .16 0 .16 0 .03 0 .03 0 .34 0.31 uvlne 0 .03 0 03 WOOVIR 0.47 0 26 AUGUS T 1991 SAMPLE SET ACERUB 0 .03 0 .03 AlTPHI 1 56 1.26 2 13 1 38 0 .94 0.57 0.50 0.47 O .Bl 0 43 1.91 1 28 1.28 0 95 AMAAUS 7 59 3 .00 1.41 1 .03 1.97 0 .62 5.75 1 69 3 00 1.63 0 ,22 0 16 0 .81 0.45 AM BART 1.25 1 25 AMMCOC 0 .16 0 16 0.Q3 0 ,03 A S TEll 0.03 0 03 A STSPP 1.00 0 79 ASTSUB 0 .38 0 17 A SITEN 0 09 0 05 0 .16 0.Q7 AZOCAR 0 .09 0 .05 0 .09 0 .05 BACHAL 0.47 0.47 3 .00 2 .09 0 66 0 .34 0 66 0.47 0.19 0 16 BIDLAE 0.34 0 22 BRAPUR 0 ,63 0 ,49 5.47 2 56 6 .88 3 90 CASOBT 2 06 1 62 0 .31 0 .31 COMDIF 0 .31 0 .31 1.56 1.28 0 19 0 16 2 03 0 .91 6 .69 3 46 0 03 0 03 C YNDAC 2 .44 1 60 Cyperac. 0 .03 0 .03 0 06 0.04 2 25 2 19 0 .03 0 ,03 0 .03 0 ,03 C YPESC 0 .03 0 .03 0.47 0.47 CYPHAS 0 .06 0 .04 0 .34 0 .31 0 ,34 0 .31 0 03 0 .03 0,06 0 .04 C YPIRI 0 03 0 .03 0 .56 0 47 0 .16 0 16 0 ,03 0 ,03 CYPODO 0 03 0.03 0 ,22 0 .16 0.56 0.34 0 .19 0 ,07 0 .81 0.29 0 13 0 .06 0 19 0 16 1.31 0 67 CYPSPP 0.47 0 22 0.03 0 03 CYPSUR 0 .69 0 49 0 .03 0.Q3 207

PAGE 184

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#6 TRAN#6 TRAN#7 TRAN#6 COOE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE DIGSER 1.88 1 88 1 44 0 96 1.16 0 49 3.47 1 27 4 55 2 .06 2 36 1 .03 12. 97 4 36 ECHCOL 0 .81 0 .51 1 .63 0.69 0.13 0.06 3 .71 1.69 9 .91 3.29 2 72 1 36 15 13 4 53 ECLALB 0 .03 0.03 0.97 0 .94 6 .81 3.04 3 .72 1 .62 17. 69 4.62 29.72 5.20 6 56 2 .70 13 03 3 37 EICCRA 0.03 0.03 0 .31 0.31 3 28 3 12 ELEIND 0 16 0 16 ELESPP 0.47 0.47 ELEVIV 4.47 2 09 EUPCAP 3 59 2 28 1 .75 0 .97 9 .75 4 .07 0 53 0 .34 0 63 0 .63 1.41 0 .72 EUPSER 0 .31 0 .31 EUPSPP 0.16 0 16 GALTIN 0 .03 0 .03 0 .03 0 .03 0 22 0 16 0 22 0 07 0 .50 0.23 1 19 0 .53 0.06 0 .04 1.31 0.42 HYDSPP 3 13 2 23 IPOSPP 0 03 0.03 0 19 0 .16 JUNEFF 0 .31 0 .31 LEMSPP 0 .03 0 03 0 50 0 .31 16.28 4 .74 1 19 0 44 1 25 0 .98 2 88 1 48 28 44 7 29 14.71 5 .54 LlMSPO 1.88 1.88 LUDLEP 10 50 4.68 0 06 0 .04 0.31 0 .31 0.97 0 .94 6.47 2 09 4 13 3.08 1 75 1.28 1 .91 o n LUDOCT 0 .63 0.49 1 25 0 59 10 .03 2 .54 11. 13 2 .94 4 25 1 27 17 19 4.03 LUDPAL 0 03 0 .03 0 .16 0 16 0 03 0 03 0,03 0,03 LUDPER 1 25 1 25 3 28 1 67 0 .16 0 16 0 78 0 .78 LUDSPP 0 .16 0 16 0 .03 0 03 MELPEN 0.16 0 16 MIKSCA 0 03 0,03 6.41 3 .55 1 75 1.56 0 .03 0.03 PANDIC 9 .36 4 10 2 .50 1 .74 38 .81 7 .83 26.72 6 .08 17 44 5 63 1 72 1 .57 2 13 1 .05 PANSPP 0 .63 0 .63 PASD I S 0 63 0 63 PASSPP 0.47 0.47 0 97 0.94 0 06 0.04 PASURV 0 50 0.47 1 .91 1.72 PHYANG 2.41 1 60 0 03 0.03 PHYSPP 0.03 0 03 0 .34 0 .31 Poaceae 0 .31 0 22 POLPUN 63 .16 7 25 12 09 5 .12 0.03 0 03 1 .81 1.32 15 25 4 .11 10. 97 4 .31 9 88 3 .70 17 69 5 13 PONCOR 3 16 2 97 2 .81 2 07 POROLE 0 .03 0 03 RUMCRI 1.88 0 .95 0 .06 0.04 5 97 3.01 SAGLAN 0 .63 0 49 SAGMON 0 .94 0 .94 0 .31 0.31 SALCAR 1 .56 1.56 7 97 4 .35 0 .78 0 55 SALROT 3 28 1 .52 3 .75 2.61 6 .91 2 .90 7 09 3 06 15 50 5 .61 SAMCAN 1 25 1 25 0.47 0.47 SESMAC 2 03 1.74 0 63 0 63 17 69 5 .34 11.41 5 .32 SETMAG 0 03 0.03 SOLAME 0.36 0.31 4 36 2 .79 0 36 0 .31 SPIPOL 0.47 0.31 0.78 0.34 0 63 0.30 TYPLAT 6 .06 2 .53 2 22 1.02 19.31 5 .70 0.97 0.39 1 25 0.98 0.47 0.47 1 56 1 56 UTRCOR 0 .03 0 03 208

PAGE 185

Table 15. Vegetation cover measu r ements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN tI6 TRAN#7 TRANt16 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE udicot 0 03 0 03 0 22 0 16 0.06 0 04 t 78 1 56 0 06 0 04 2 50 1.68 WOLFLO 5 84 2 .14 0 19 0 .16 WOLS PP 2 34 1 33 1.31 0 55 3 59 1 87 WOOVIR 0 63 0 43 J ANUARY 1 9 9 2 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 5 00 2 09 12. 97 5 33 2 63 2 50 0 .19 0 16 0 94 0.40 0 22 0.16 0.13 0 06 AMAAUS 0 16 0 16 AND S PP 0 16 0 16 ASTSPP 0 03 0 03 ASTS U B 0 03 0 03 0 03 0 03 ASTIEN 0 03 0 03 AZOCAR 0 .19 0 16 0 06 0 04 4 53 2 .61 10 47 4 06 BACHAL 0 .31 0 .31 0 .31 0 .31 0 .31 0 22 1 66 0 75 0 78 0 29 0 09 0 05 B I DLAE 1.41 1 25 BRA PUR 0 .31 0.31 0 63 0 63 7 66 4 5 1 COMDIF 0 06 0 04 0 56 0 34 0 03 0 03 CYNDAC 0 63 0 49 Cyperac. 0 68 0 35 0 13 0 07 0 06 0 04 C Y PHA S 1 16 0 83 0 06 0 .04 0 03 0 03 0 .19 0 16 CYPODO 0.06 0 04 E I CCRA 0 .31 0 .31 2 50 1.96 ELEVIV 2 97 1.56 EUPCAP 0 94 0 65 0 97 0 97 0 16 0 16 GALT I N 0 03 0 03 0 03 0 03 2 50 0 99 0 13 0 06 3.38 0 .91 H Y DRAN 15 00 5 82 2.38 2 34 HYDSPP 6 09 3.52 0 78 0 78 19 19 5 82 5 97 3 38 H Y DUMB 18 63 6.15 JUNEFF 0 16 0 16 LEMSPP 0 03 0 03 36 53 5 98 38 44 6 56 5.41 1.65 5.09 1.35 11. 53 3 77 5 .2 8 2.42 L1MSPO 4 22 3 19 0 03 0 03 LUDLEP 0 06 0 .04 LUDOCT 0 19 0 16 0.66 0 .49 0 03 0 03 0 .31 0 .31 0 16 0 16 LUDPAL 0 03 0 03 0 03 0 03 0 09 0 05 LUDPER 4 06 2 83 0 .31 0 .31 11. 59 3 97 0 .31 0 .31 2 53 1 19 2 .81 1 63 MIKSCA 0 03 0 03 2 .81 1 57 2 06 1 32 0 34 0 .31 PANDIC 3 .13 3 13 PASSPP 0 16 0 16 PASURV 1.3 1 0 59 0 03 0 03 Poaceae 0 06 0 04 0 22 0 .16 0 03 0 03 POLPUN 11. 38 3 62 4 94 2 .2 8 0.47 0 34 6 09 3 38 9 30 1 45 6 22 2 78 6 59 2 59 6.19 2 75 PONCOR 2.50 2 50 0 78 0 .51 RAPRAP 2 34 1.54 209

PAGE 186

Table 15 Vegetation cover measurements (Cant ) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRANtrT TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE RUMCRI 1.28 1 25 1.56 1 .04 SAGLAN 0 78 0 55 0 .16 0 16 SAGMON 0 .31 0 .31 0 94 0 69 1 56 0 73 SALCAR 1 88 1 88 0 16 0 .16 6.47 3 40 0.47 0.47 SALROT 0.75 0.49 0.Q3 0.Q3 12.41 4 34 1 72 1.57 26 29 5 37 53 .19 6 59 23 97 6 18 25.09 5 72 SAMCAN 0 03 0 03 0 63 0 63 SPIPOL 0 22 0 16 4 50 2 26 0 .19 0 07 0 03 0 03 0 13 0 06 0 16 0 16 TYPLAT 20 34 4 77 15.47 3 .91 26 56 4.81 13 .91 3 34 1 88 0 95 6 09 2 28 1 09 on udicot 1.41 1 25 WOLFLO 0 94 0 64 9 59 3 80 17.22 3 52 15 29 4 02 7.72 2 .71 2 50 0.56 2 .91 0 70 WOOVIR 0.47 0 34 AUGUST 1992 SAMPLE SET ALTPHI 11. 56 4 92 8 .94 3 64 0 03 0.03 0 .31 0 22 3 25 2 19 8 16 3 00 1 63 1 56 2 38 1 89 AMMUS 0 50 0.47 0 .16 0 16 ASTELL 0 16 0 16 0.47 0 34 AZOCAR 0 03 0 03 0 03 0 03 0.16 0 16 SAC HAL 0.16 0.16 0.47 0 34 SIOLAE 0.1 6 0 16 5 00 2 79 SRAPUR 0 16 0.16 6.41 4 34 COMOIF 0.47 0.47 Cyperac 0.Q3 0 03 0 66 0 62 CYPHAS 0 16 0 16 0 16 0 .16 CYPOOO 0.16 0 .16 0 03 0 03 CYPSPP 0 03 0 03 CYPSUR 0 50 0 .47 DIGSER 0 06 0 04 ECLALS 1 25 1 25 E I CCRA 0.16 0 .16 0 03 0 03 5 00 2 97 4 53 2 92 3.16 2 56 ELEVIV 2 94 2.19 0 03 0 03 EUPCAP 0 16 0 16 HYDRAN 0.Q3 0 03 0 16 0 16 0 78 0 40 5.03 2 85 1 88 1.05 9 22 4 .37 HYDSPP 0 06 0.04 2 22 1 88 0 16 0 16 HYOUMB 0 .31 0 .31 0 16 0 16 JUNEFF 0 .31 0 .31 LEMSPP 0 19 0 16 13 .91 5 10 44 .91 7 28 29. 38 6 .12 27 .41 4 99 49 44 5 98 20 72 4.39 LlMSPO 11.09 5.08 0 63 0 49 LUOLEP 5.00 3 54 0 03 0 03 LUOOCT 0.47 0.47 1 56 1 56 0 19 0 .16 LUOPER 0 .31 0 .31 2.34 2 34 15 16 5 60 0 78 0 .51 6 88 4 08 9 22 4 .81 14. 84 5 52 MIKSCA 0 16 0 16 0 .16 0 16 5 16 3 18 1 09 0 62 PASOIS 0 63 0.49 PASURV 0 03 0 03 Poaceae 0 03 0 03 210

PAGE 187

Table 15. Vegetation co v er measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN 1fT TRANmi CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE POLPUN 0.34 0 22 0.03 0.03 6 13 1.86 2.88 0.70 0.69 0.37 2 28 1.14 PONCOR 4.38 2 75 4.06 2 83 SAG LAN 5.81 3 35 SAGMON 11. 25 4 62 4.69 3.33 6.72 3.86 18 44 6 20 SALCAR 0 19 0 16 2 53 2.50 8 78 4 09 2 86 1 80 SALROT 1 28 1 25 0.56 0 22 0 16 0 16 0 16 0 16 3.63 1 83 3 97 1 72 SPIPOL 0 06 0.04 0.41 0 22 0 09 0 05 1 00 0 32 10 66 4 10 1 78 0 99 5 69 2 13 3 78 1 .71 SPIPUN 0 09 0 05 SPISPP 0 09 0 05 TYPDOM 4.22 3.18 TYPLAT 37.97 6 .31 32.81 6.02 35 94 5.94 41. 56 6.45 16.86 4 68 0.94 0 57 12 .03 3.90 9 06 3.68 TYPSPPD 4.84 2 09 11. 59 3.94 6 00 2.14 2 26 2 26 4 69 3 05 6.25 3 92 1.86 1.56 WOLFLO 0 94 0.45 7 16 2 35 8 .81 1 58 9 63 2 63 6.25 1.89 WOLSPP 3 03 1.80 1 19 0.48 0.91 0 39 FEBRUARY 1993 SAMPLE SET ACERUB 0.03 0.03 ALTPHI 0.47 0 17 0.25 0.16 0 06 0.04 0.28 0 16 0.13 0.06 0.03 0.03 0.16 0.07 AMAAUS 0.06 0 .04 APILEP 0 .91 0 50 ASTELL 1.41 0 88 AZOCAR 0 03 0.03 0 03 0 03 1.47 1.25 BACHAL 0 09 0.05 0 63 0 43 BIDLAE 2 .16 1 30 CARSPP 0 03 0.03 CYPSPP 0 16 0 16 0 03 0 03 dead 2 97 1.55 ECLALB 0.03 0.03 0 06 0 04 0.03 0 03 EICCRA 0.16 0 .16 1.75 1 28 3 94 2.83 ELEVIV 2.66 2 34 ELEVIVD 2.19 1 54 EUPCAP 0 03 0 03 EUPCAPD 0.31 0 .31 GALTIN 0 .91 0 84 0 09 0.05 HYDRAN 1.41 0.88 0.47 0.47 4 00 2.66 0 72 0 37 11.94 4.42 18. 28 5 99 11. 66 5 17 12 03 3 33 HYDSPP 0 34 0 .31 0.03 0 03 HYDUMB 0 03 0.03 0 34 0 .31 LEMSPP 0.13 0 06 0.19 0.07 4.53 2.33 2 06 0.43 24 00 6 23 29.31 5 87 30 78 6.67 16 16 4.70 LlMSPO 5 78 2.25 0 38 0.31 LUDLEP 1.13 0.94 0 .31 0.22 0.16 0 16 0 03 0.03 LUDLEPD 0.31 0 .31 LUDOCT 0 .31 0.31 LUDOCTD 0.47 0 34 LUDPER 0.19 0 .16 0 06 0.04 7 72 3 47 0 16 0 .16 2.97 1 49 4.50 2 20 5 .34 2 .21 211

PAGE 188

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#S TRAN#6 TRAN#7 TRAN #ll CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDPERD 0.31 0 .31 LUDSPPD 0 03 0 03 MIKSCA 0.47 0.47 2 97 1 68 0 59 0 34 PASURV 0.16 0 16 Poaceae 0.03 0 03 POLPUN 1 50 0 96 0 03 0 03 0.22 0 16 2 .09 0 83 0 19 0 16 0 56 0.34 PONCOR 2 75 1 43 2 03 1.42 PONCORD 0 .31 0.31 RHARHA 0 09 0 05 RUMCRI 0.06 0 04 1 56 1 .11 SAGLAN 1.56 1 .04 0 03 0.03 SAGLAND 0 16 0 .16 SAGMON 0 16 0 16 0 .31 0 .31 0 03 0 03 SAGSPP 0 03 0.03 SALCAR 0 19 0 .16 0.38 0 .31 0.63 0.43 5 97 2.96 1.88 1.12 SALROT 0 .16 0 16 0 03 0 03 1 .16 0.31 0.06 0 04 0 22 0 16 1.50 1 .24 6 88 3 73 5 66 2.42 SALROTD 0 78 0 55 SAMCAN 1 28 1 25 0 63 0 63 SPI POL 0 06 0.04 0 09 0 05 0.25 0 08 0 03 0 03 0 .31 0.16 0 63 0 30 0.38 0 17 TYPDOM 1 25 1 25 TYPLAT 14.55 2 .01 18 28 3 76 33 00 3 92 33.47 4 14 13. 88 3 00 4 84 2 06 10 03 3 .11 4 78 1 46 TYPLATD 18 28 2 85 19 69 4 .22 13. 75 1.85 15 88 3 26 9 25 2 62 1 09 0 70 3 94 1 87 3 94 1 45 UTRSPP 0 06 0 04 udicot 0 19 0.07 0 09 0 05 WOLFLO 0.09 0 05 0 25 0.08 0.06 0.04 1 97 0 85 0.25 0 .16 3 66 1.44 2 56 0 70 WOLSPP 0 34 0 .17 AUGUST 1993 SAMPLE SET ALTPHI 0 .91 0 29 0 66 0 43 0.59 0 22 5 .34 2 .81 AMAAUS 7.81 2 16 1.47 0 75 1.00 0.85 0 16 0 .16 ANDSPP 0 78 0 78 ASTELL 2.81 1 75 ASTSUB 2.97 1 99 BACHAL 0.47 0 34 B I DLAE 8 75 4 53 BRAPUR 0 63 0 63 CASOBT 0.03 0 03 CICMEX 0.16 0 16 COMDIF 1 28 1 25 CYPIRI 0 03 0 03 0.31 0 22 CYPODO 0 53 0 34 0 84 0 .51 1 .31 0 50 1.59 0.96 CYPSPP 0 09 0.05 0 06 0.04 0.03 0 03 ECHCRU 0.19 0 16 ECHCRUD 0.47 0.47 212

PAGE 189

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#5 TRAN#7 TRANIIlI CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECHSPPl 3 00 2.37 ECHSPP2 0 03 0.03 ECLALB 0 03 0.03 0 16 0 .16 0.25 0.16 1.00 0 94 EICCRA 2.34 1.63 4.56 2 .44 ELEVIV 0 .81 0 64 GALTIN 0 03 0 03 HYDRAN 1 94 0 99 2.41 1 27 2 .81 0 98 6 19 3 25 HYDUMB 0.47 0.47 0 16 0 16 LEMSPP 0 .31 0 16 1.47 0 95 19 13 4 53 14. 75 3 06 LlMSPO 3 59 2.01 LUDLEP 6 13 1 53 2.81 1 .31 16 38 4.81 7.03 2 57 LUDOCT 0 .63 0 63 1.56 0 .76 1.41 0 82 LUDPER 2 66 2 66 9 38 4 45 21.09 6 .31 M IK SCA 0 53 0 34 MOMCHA 0 16 0 .16 PANDIC 2 00 0.73 0.16 0.16 PASDIS 0.34 0.31 PASURV 0 03 0.03 PLUROS 0 16 0 16 POLDEN 2 34 1 66 POLPUN 7 44 3 89 14 22 5.04 0 97 0 57 PONCOR 8 .91 3.12 3 59 2.52 SAG LAN 1 56 0.99 SAGMON 2 66 1.37 2.34 1.23 SALCAR 2 .81 1.97 3.59 2 35 SALROT 0 63 0 63 8 03 3 17 8 09 3.57 8.34 3 02 SESMAC 0 .16 0.16 SPIPOL 0 03 0 03 0.03 0 03 5 19 1.69 9 72 3 25 TYPDOM 1.41 0.82 2 38 1 33 TYPLAT 14 72 2 .13 22.81 3.11 8 .31 2.89 9 75 2 69 TYPLATD 19 38 3 50 33 78 4 32 3 13 2.10 5.47 3 18 WOLFLO 2 78 1.38 0 .81 0 33 WOLSPP 0 03 0 03 ALTPHIS 0 03 0 03 AMAAUSS 0 .06 0 04 HYDRANS 0.47 0.47 LUDPERS 0.03 0 03 0 .31 0.22 POLPUNS 0 19 0.16 PONCORS 0 03 0 03 SAGLANS 0 50 0.47 SAGLATS 0 03 0 03 0.16 0 16 TYPLATS 0.16 0 16 udicotS 0 03 0.03 MARCH 1994 SAMPLE SET 213

PAGE 190

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN 114 TRAN#5 TRAN 1/6 TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0.25 0 08 4 75 3.06 0 78 0.44 0 66 0 .61 5.25 1 22 2 18 0.75 AMAAUS 2.20 0 70 1 83 0.68 0 .31 0 .21 0 70 0 33 0.15 0 15 APILEP 0 12 0 06 ASTELL 0 46 0 33 BACHAL 0 03 0.03 0 46 0 33 BIDLAE 0 46 0.33 BRAPUR 0 03 0.03 COMDIF 0.03 0.03 CYPODO 0.41 0.39 0.15 0.15 CYPSPP 0.04 0 04 0.50 0 39 0 03 0.03 0 04 0.04 0.09 0.05 0 09 0.05 ECLALB 0.41 0 39 0 06 0 04 0 03 0.03 EICCRA 2.34 1 16 10 70 4H ELEVIV 2 12 1 05 EUPCAP 0 20 0 20 0.08 0 07 0 15 0 15 0 08 0 05 0.56 0 25 0 40 0.21 GALTIN 0 04 0 04 0 04 0 04 0 06 0 04 0 .21 0 15 HYDRAN 24 80 7.47 12.20 6 25 13 60 4.90 3 70 1.50 15.80 4 78 38 00 6 35 LEMSPP 0 .31 0 16 0 06 0.04 0.06 0 04 1 34 0 64 LUDLEP 0.20 0.20 0 83 0.79 0 03 0.03 1.56 1.15 LUDPER 1.45 1 08 0 .31 0.30 4 00 2 86 12.50 5.20 18 90 5.51 MIKSCA 0 15 0.15 PASDIS 0 .31 0.30 POLDEN 1 12 0 92 POLPUN 5 95 1 90 5 25 2.91 0 20 0 20 4.93 1 68 0 34 0 .21 PONCOR 8 95 4 22 3.75 2 68 RUMCRI 0.31 0 .21 SAGLAN 1.25 0 .84 2.50 2.39 SAGMON O.OB 0 07 0.31 0 .21 0 .31 0 30 SALCAR 2.81 1 93 3.75 2.04 SALROT 0 62 0.36 0.71 0 36 12.30 4.03 SAMCAN 0.20 0 20 SOLAME 0.41 0 39 SPIPOL 0.15 0 06 0 15 0 06 TYPDOM 0.83 O .Bl 7 65 3 23 TYPLAT 17 90 4 16 44 50 7.91 48 50 6 92 60 40 5 22 22 30 5 30 19 70 5 16 WOLFLO 0 03 0 03 POLDEND 1.25 1 23 PONCORD 1.04 1 .01 0.7B 0.62 TYPLATD 3.95 1 50 13.30 1 .BO 23.10 4.73 32.00 5 .21 11. 10 3.32 4 43 1.15 214

PAGE 191

Responses By Species With Minimum Flood Tolerance. The most prominent species in this ecosystem showed varying responses to environmental conditions. Amaranthus australis revealed a pattern of prominence in the eastern portion of the south marsh early and late in the sample period (Figure 77). This pattern is related to the initial dry conditions the south marsh experienced and to drawdown and mat formation that occured later in the sample period. Amaranthus australis was nearly absent in the north marsh, due to dominance by Eupatorium capilli/olium. Eupatorium capilli/olium was rapidly nearly extirpated from the site following flooding (Figure 78). The plants remained for a short time following flooding, exhibiting signs of adaptation (e.g adventitious roots) but could not survive under continuous flooding (Stenberg, Pers. Obs). It was found occasionally at low levels in subsequent samples, especially after drawdown and mat formation (Figure 78). Ludwigia leptocarpa was found occasionally throughout the marsh early in the sample period. It increased in cover after drawdown and mat formation (Figure 81). It occured less frequently in the south than the north marsh. Ludwigia octovalvis cover was reduced quickly after flooding, but was found occasionally in subsequent samples (Figure 82). It responded to water level drawdown by increasing its cover. It was most prominent along transects 3-6, and 8. Its minimal flood tolerance was revealed by its propensity to inhabit the plow ridges in areas that had been farmed recently (Stenberg, Pers. Obs. ) Ludwigia peruviana increased in dominance since the inception of the project (Figure 83). It was most common in the driest regions of the sample areas, especially at the southern ends of the north marsh transects. Its most robust growth was in areas with water levels averaging less than 10 cm. Panicum dichotomiflorum reached its maximum cover along transects 3 and 4 early in the sample period (Figure 84). It persisted in the seed bank and became slightly more obvious after a drawdown and mat flotation Polygonum punctatum was an important member of the eastern portion of the south marsh plant community during the earliest days of the project (Figure 85, Table 15). It declined slowly to near obscurity after the 15th month of flooding (February 1992). It rebounded with an increase in cover after drawdown and mat formation (Figure 85). Responses By Species With Maximum Flood Tolerance. Hydrocotyle ranunculoides, an obligate hydrophyte (Reed 1989) was present at low levels early in the study period. By the 1 5th month of flooding it had increased its dominance (Figure 79). The coverage pattern for Hydrocotyle ranunculoides early in the project is slightly misleading because of an early mis-identification problem. The misidentification was corrected after the January 1992 sample. It had previously been lumped with Hydrocotyle spp. which included H. umbellata (Figure 80). After the 15th month it rapidly increased its dominance, especially in the north marsh. By the end of the sample period it had colonized most unshaded empty space in the marsh, including canals and under marginally open TYPha lati/olia canopy (Stenberg, Pers. Obs. ) Thi s colonization pattern has led to the establishment of mixed communities including Hydrocotyle ranunculoides and Bidens laevis or Eichhomia crassipes. In some areas, often in canals, 215

PAGE 192

floating Hydrocotyle ranunculoides mats have provided the substrate for regeneration of Amaranthus australis, Pontederia cordata, and Sagiltaria lancifolia (Stenberg, Pers. Obs.). Pontetieria cordata revealed a pattern of "preference" for transects 1 (200 m from water inlet) and 6 (middle of north marsh) (Figure 86). It was found early in the sample period and maintained a nearly constant cover level over time (4%). During the drawdown and mat formation it increased its cover along transect 1 to 8.5%. Sagittaria lancifolia cover increased with time primarily along transect 1. It was found at low levels early in the sample period. Late in the period it went through a rapid increase in community average (Figure 87). Salix caroliniana was relatively uncommon early in marsh development, occupying only north marsh transects It became more prominent with time, appearing along transect 4 (south marsh) in January 1992. In the south marsh, the largest continuous stand of S. caroliniana was found about 200m southeast of the marsh's northwest comer. Its triangular shape suggests a response to the surface scraping conducted during site construction (Stenberg, Pers. Obs.). The most likely seed source for marsh colonization carne from a well established Salix caroliniana stand (400m long by 50m wide) located along the north marsh levee (Stenberg, Pers. Obs.). Cattails TYPha domingensis and T. lati/olia increased in dominance from the southeastern section of the south marsh to the remainder of the demonstration marsh (Figures 89, 90). During the year prior to flooding, T. lali/olia dominated vegetative cover of the southeastern south marsh (Bob Cooper, Pers. Comm.). This was possible because the area had a lower soil elevation and water was not pumped out during site construction. The pattern of vegetative cover change over time suggests that the southeastern south marsh provided a T. lali/olia seed source to the remainder of the marsh Within the T. lali/olia community matrix, T. domingensis, a cattail species more common in southern Florida, became established and increased its coverage in the south marsh (Figure 89). The presence of T. domingensis in the marsh was noted simultaneously in the sample plots and in general observations. Density. Density measurements were taken on species with definable bunches, culms, or stems rooted in the sample plot. This measurement strategy resulted in mat or vine forming species being excluded These excluded species were: Alternanthera philoxeroides, Bidens laevis, Brachiara pllrpurascens, Commelina dijfllsa, Cynadon dactylon, Digitaria serolina, Eclipta alba, Eicchornia crassipes, Eleocharis vivipara, Galillm linctorillm, Hydrocotyle rammCIIloides, H. umbellata, Limnobium spongia, Ludwigia palustris, Mikania scandens, PaniClim dichotomiflorum, and Polygonum punctatum. If the rooting point for these sprawling, mat forming species could be located it was measured. Frequently, mat forming species exhibit rooting at nodes, leading to difficulty in determining the original rooting point. Vegetation patterns as described by density and cover data were similar (Tables 16 and 15). As the marsh matured and hydroperiod increased, the percent of species with mat forming or sprawling tendencies increased proportionally from 27% at Tl in November 1990 to 39% at T6 in March 1994. Concomitantly, as species with definable 216

PAGE 193

Table 16. Vegetation density measurements (# m-2 MEAN SE) from Natural Succession Transects. Periods ( ) represent species absent from the transect or transects not sampled. SPECIES TRAN #1 TRAN#2 TRAN#3 TRAN#4 TRAN #5 TRAN#6 TRAN #7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE NOVEMBER 1990 SAMPLE SET ACERUB 0.06 0 .04 0 .03 0 .03 ALTPHI 1.90 0.86 2.06 1.09 0.13 0 13 0 10 0 .07 0 16 0 10 AMAAUS 0.03 0 .03 0.20 0 17 ASTSUB 0 .06 0.04 3 09 1 .46 1 00 0 .35 0 .50 0 .22 0 .22 0 12 0.22 0.09 0 .86 0 25 BACHAL 0 .03 0 .03 0 03 0 .03 0.40 0 .29 0 06 0 .06 0 19 0.08 1 .78 0 .38 4 .63 0 95 0 .77 0 22 CALAME 1.97 1 .77 1 .25 0 .77 0 19 0 19 COMDIF 0 .84 0 .62 0 09 0 09 Cyperac. 0 09 0 09 CYPHAS 1 13 0 79 0 16 0.13 CYPODO 0 .37 0 26 0.40 0 18 0.07 0 07 0 09 0 05 CYPSPP 0 25 0.13 0 06 0 06 ECHCOL 0.09 0 05 0.05 0.05 1 .95 1.10 0.04 0 .04 ECLALB 0.06 0.04 0.71 0.51 0 .31 0 12 0.03 0 03 ELEIND 0.19 0 19 0 32 0 .32 ERISPP 0 .03 0 03 EUPCAP 2.21 0.93 1 .14 0 55 8.94 5.30 0 25 0 13 12.00 3 06 53 .91 10 36 44 .62 8.00 77.74 15.41 EUPSER 0.16 0.16 0.03 0 03 EUPSPP 0.25 0 .14 GALTIN 0 06 0.06 39 50 19 .74 GERCAR 1 52 1 29 HYDSPP 0 .73 0 .54 0 .77 0.39 HYGLAC 0 55 0.42 IPOSPP 0.31 0 .31 JUNEFF 0 .03 0 .03 LUDLEP 0.41 0.41 LUDOCT 0 .61 0 .55 0 .06 0 06 3.90 1 .15 2 55 0 58 2 .71 0.73 0.03 0 03 0 28 0 16 0 06 0 .04 LUDPAL 0 06 0 .06 LUDPER 0.03 0.Q3 LUDSPP 0 09 0 09 MELCOR 0.Q3 0 03 0 .03 0 03 MIKSCA 0.13 0 .09 PANDIC 2.31 1.25 0.22 0 15 0.03 0 03 PANSPP 0 06 0 .04 1 .09 1.09 PASSPP 0 30 0 .13 0.42 0 .17 PASURV 0.03 0 .03 PHYANG 0 .31 0 .14 0 06 0.06 Poaceae 0.26 0 26 PONCOR 0 03 0.03 Pterido. 0 06 0 06

PAGE 194

Table 16. Vegetation density measurements (Cont ). SPECIES TRAN #1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SAGLAN 0 10 0.10 SALCAR 0 55 0.29 0 06 0 06 SAMCAN 0 03 0 03 0.03 0 03 0.06 0 06 SAMPAR 0.10 0 10 SESMAC 0 19 0.13 0 16 0 16 SOLAME 0 03 0 03 SOLTOR 0 66 0 62 STAFLO 0 25 0 22 TYPLAT 0 06 0 06 2 06 0.73 0.13 0 .10 0 06 0 06 0 84 0.84 0 03 0 03 unknown 0.06 0.04 udicot 2.69 2 69 0.83 0.83 0.63 0.63 0 .31 0.31 0 .31 0 28 uvine 0.03 0 03 WOOVIR 0 22 0 .16 AUGUST 1991 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 0.07 0 07 0.06 0 06 0.04 0.04 0 .2 1 0 .17 AMAAUS 1 13 0.46 0 34 0 25 0 55 0 .17 12.00 4 .7 6 0 53 0 20 0 19 0.16 0 38 0 .19 AMBART 0 09 0 09 AMMCOC 0 06 0 06 0 03 0.03 ASTELL 0.03 0 03 ASTSPP 0.59 0.47 ASTSUB 0 50 0 20 ASTIEN 0.09 0 05 0.25 0 .11 BACHAL 0 06 0 06 0 25 0 17 0 20 0 07 0 44 0 .17 0 09 0 07 BIDLAE 0.16 0 13 BRAPUR 0 55 0.37 CASOBT 0 13 0.07 0.03 0 03 COMDIF 0 16 0 .11 0.14 0 14 CYNDAC 0.15 0 15 Cyperac 0 06 0 04 0 03 0 03 0 03 0.03 0 03 0 03 CYPESC 0 03 0.03 0.75 0 75 CYPHAS 0 09 0 07 0 03 0 03 0 16 0.13 0 03 0.03 0.09 0 07 CYPIRI 3.45 3 .22 0.03 0 03 CYPODO 0 06 0.06 0 16 0 10 0.42 0 .21 0.66 0.36 0.71 0.29 0 10 0.05 0 06 0 04 0 45 0.29 CYPSPP 0 33 0 .21 0 03 0 03 CYPSUR 0.94 0 76 0.03 0 03 DIGSER 0 34 0 24 0 25 0 18 0 23 0 23 ECHCOL 0.07 0.07 0.17 0.17 2 35 1 .91 0 05 0 05 0 53 0 .31 ECLALB 0.26 0.18 1 09 0.41 0 18 0.12 0 25 0.16 0.05 0.05 0 06 0 06 EICCRA 0.03 0.03 0.06 0.06 ELEIND 0.72 0 72 EUPCAP 2 09 1.25 0.41 0.15 11.61 5 36 0 16 0.08 0 16 0 .16 0 63 0.38 EUPSER 0 06 0 06 218

PAGE 195

Table 16. Vegetation density measure ments (Cont.). SPECIES TRAN#l TRAN#2 TRAN#3 TRANI/4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE EUPSPP 0 06 0 06 GALTIN 0 06 0 06 0 38 0 38 0 22 0 16 0 .29 0 .12 0 88 0.41 0 73 0 39 0 03 0 03 1.29 0 70 H Y DSPP 1 30 1 20 IPOSPP 0 03 0 0 3 0 03 0 03 JUNEFF 0 03 0 03 LUDLEP 1 63 0 74 0 06 0 04 0 03 0 03 0 06 0 04 0 97 0.29 0.47 0 23 0 19 0 09 0.26 0 09 LUDOCT 0 09 0 07 0 25 0 13 2 77 0 68 4 74 2 30 1 52 0 50 4 00 1.23 LUDPAL 0 06 0 06 0 06 0 06 0 03 0 03 LUDPER 0 03 0 03 0 63 0 37 0 03 0 03 0 03 0 03 LUDSPP 0 06 0.06 MELPEN 0.03 0 03 MIKSCA 0 03 0 03 0 03 0 03 PANDIC 9 44 6 79 1.81 1 43 0 20 0 20 0 03 0 03 0 12 0 12 PA S SPP 0 22 0 19 0 03 0 03 PHYANG 0 50 0 .21 0 03 0 03 PHY SPP 0 03 0 03 0 09 0 07 POLPUN 0 50 0 50 0 16 0.12 0 03 0 03 0.11 0 .11 0 .14 0 10 0 .04 0 04 0 17 0 17 PONCOR 0 78 0 72 POROLE 0 03 0 03 RUMCRI 0 97 0 43 0 06 0.04 1 34 0 84 SAGLAN 0 09 0 07 SAGMON 0.13 0 .13 0 09 0 09 S AL CAR 0 03 0 03 0 45 0 28 0 13 0 10 SAMCAN 0 03 0 0 3 0 03 0.03 SESMAC 0 13 0 10 0 03 0 03 1 76 0.60 0 50 0 27 SETMAG 0 03 0 03 S OLAME 0.19 0 .11 0 10 0 07 0 .13 0 07 TY PLAT 1.88 0 68 1 19 0 37 6 00 1 67 0 .81 0 27 0 10 0.10 0 25 0.25 0 34 0 34 U TR C OR 0.09 0 09 udicot 0 03 0 03 0 23 0 20 0 06 0 04 1 79 1.72 0.66 0 62 0 52 0 37 WOOVIR 0 38 0 26 JANUAR Y 1992 SAMPLE SET ACERUB 0 03 0 03 ALTPH I 0 04 0 .04 0 10 0 10 0.04 0 04 0 06 0 04 AMAAUS 0 03 0 03 ANDSPP 0.03 0 03 ASTSPP 0 03 0 03 ASTSUB 0 03 0 03 0 03 0 03 ASTIEN 0 03 0 03 BACHAL 0 03 0 03 0 .03 0 03 0 03 0 03 0 .44 0 22 0 32 0.11 0 09 0 05 BIDLAE 0.72 0 63 COMDIF 0 03 0.03 0 13 0 08 Cyperac 0 .19 0 09 0 16 0 10 0 03 0 03 219

PAGE 196

Table 16. Vegetation density measurements (Cont ). SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN #-4 TRAN#6 TRAN 1fT TRAN #8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE CYPHAS 0 13 0 10 0 03 0 03 0 03 0 03 0 13 0 09 CYPODO 0 09 0 07 ElEVIV 0 .08 0 06 EUPCAP 0 23 0 23 0 45 0 45 0 03 0 03 GAlT I N 0 05 0 05 0 03 0 03 0 05 0 05 H Y D S PP 0 03 0 03 lIMSPO 0 03 0.03 0 03 0 03 lUDlEP 0.03 0.03 lUDOCT 0 16 0 13 0 38 0 26 0 03 0 03 0 22 0.19 lUDPAl 0.03 0.03 0 03 0.03 0.16 0.10 lUDPER 0 09 0 07 0 03 0.03 0 78 0 29 0 17 0 08 0 .13 0 07 PASURV 0.34 0 13 Poa c eae 0 03 0 03 0 .19 0 .11 POlPUN 0 09 0 09 2 20 2 20 0 40 0 14 0 35 0 .21 PO N COR 0 16 0 16 0 23 0 20 RAP RAP 0 58 0.41 RUMCRI 0.41 0 32 0 53 0 38 SAGLAN 0 .13 0 09 0 06 0 06 SAGMON 0.22 0 22 0.47 0 .33 1 03 0 45 SAlCAR 0 28 0.28 0 03 0 03 0 .33 0.18 0 .13 0.13 SAMCAN 0 03 0 03 0 19 0 19 TYPLAT 6 03 1 25 5 50 1 23 10 44 1.58 4 44 1 00 0 .55 0 32 2 59 0 96 1 .34 1 .11 udicot 6 25 4 35 WOOV I R 0 22 0 17 AUGUS T 1992 SAMPLE SET AlTP H I 0.19 0 19 0 15 0 12 0 13 0 10 0 20 0 12 AMAAUS 0 68 0 68 0 16 0 16 ASTEll 0 06 0 06 0 06 0 04 BACHAl 0 16 0 16 0 09 0 07 BIDLAE 0 3 7 0 .37 CYPHAS 0 03 0 03 0 03 0 03 C Y PODO 0 03 0 03 C YPSPP 0 03 0 03 C Y P SUR 0 03 0 03 DlGSER 0 06 0 04 EICCRA 0 06 0 06 0 03 0 03 0 10 0 10 0 17 0 17 1 n 1 62 ElEVIV 0 03 0.03 EUPCAP 0 09 0.09 JUNEFF 0 03 0 03 lUDlEP 0 25 0 18 0 03 0 03 lUDOCT 0 13 0 13 0.22 0 22 0 09 0 07 lUDPER 0 03 0 03 0 09 0 09 1 10 0 55 0 09 0 05 0 06 0 04 0 28 0 15 0 58 0 20 MIKSCA 0 06 0 06 0 .04 0 04 0 03 0 03 220

PAGE 197

Table 16. Vegetation density measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PASURV 0 03 0 03 POLPUN 0 05 0 05 0 06 0 06 0 .21 0.17 0 04 0 04 PONCOR 0 45 0 33 0 22 0 15 SAGLAN 0 34 0.18 SAGMON 1 59 0 62 0 .31 0 22 1.19 0 75 1 69 0 50 SALCAR 0 03 0 03 0 03 0 03 1 13 0 43 0 13 0 10 TYPDOM 0 97 0 84 TYPLAT 8 .31 1 22 7 28 1 27 10 19 1 09 10 38 1 77 4 78 1.30 0.41 0 25 3 75 1 05 2 38 0 80 TYPSPPD 0 69 0 25 1 55 0 55 1 17 0 34 1 34 0 96 0 17 0 12 1 72 1.05 0 22 0.15 FEBRUARY 1993 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 0 35 0 .16 0 07 0 05 AMAAUS 0 44 0 .31 APILEP 4 46 2 59 ASTELL 1 38 1.00 BA C HAL 0 07 0 07 0 53 0 38 B I DLAE 0 15 0 .12 CYP SPP 0.03 0 03 0 03 0.03 ECLALB 0 03 0.03 EICCRA 0 17 0 .14 GALT I N 0 22 0 16 H Y DRAN 0 .15 0 15 0 05 0 05 0 06 0 06 LiM SPO 0 .07 0 07 LUDLEP 0 .10 0 10 0 06 0 06 LUDOCTD 0 03 0 03 LUDPER 0 03 0 03 0 37 0 19 0 03 0 03 0 29 0 19 0 29 0.16 0 .81 0 32 MIKSCA 0 03 0 03 Poaceae 0 03 0 03 POLPUN 3 84 3 38 0 03 0 03 0 04 0 04 0 03 0.03 0 14 0 .11 PONCOR 0 55 0 30 1 34 0 93 RHARHA 0 03 0 03 RUMCRI 0 03 0 03 5 .31 3 76 SAGLAN 0 52 0.36 0 03 0 03 SAGMON 0 03 0 03 0 16 0.16 0 03 0 03 SAGSPP 0 03 0 03 SALCAR 0 03 0 03 0 .13 0 .13 0.41 0 28 0 63 0 46 SAMCAN 0 06 0 04 TYPDOM 0 25 0 25 TYPLAT 11. 73 1.54 7 00 1.35 16 97 1.31 12. 80 1 .54 6 87 1.42 2.09 1 02 4 34 1.19 3 10 0 90 udicot 0 26 0.11 0 1 3 0 10 221

PAGE 198

Table 16. Vegetation density measurements (Cont.). SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRANtIS TRAN 116 TRAN 1fT TRANII6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1993 SAMPLE SET ALTPHI 0 .21 0 08 0 03 0.03 0 39 0 17 0 04 0 04 AMAAUS 1.97 0 59 0 37 0 24 0 37 0 28 ANOSPP 0 03 0 03 ASTELL 1 03 0 63 ASTSUB 0 59 0 36 BACHAL 0 10 0 10 BIOLAE 0 .11 0 .11 CASOBT 0 03 0.03 CICMEX 0 .31 0 .31 COMOIF 0 03 0 03 CYPIRI 0 .31 0 .31 0 25 0 18 CYPOOO 0 28 0 17 1 09 0 65 0 74 0 36 1 44 1.10 CYPSPP 0 16 0.10 0 .10 0.10 0 03 0 03 ECHCRU 0 06 0 06 ECHSPPl 0 13 0 09 ECHSPP2 0 03 0 03 ECLALB 0 09 0 09 0 03 0 03 0 17 0 .12 0.31 0.25 EICCRA 0.13 0 .13 0.21 0.13 GALTIN 0 03 0 03 HYORAN 0 18 0 .15 0 05 0.05 LUOLEP 2 27 0 .64 1 69 0.84 2 93 0 92 2 13 0 79 LUOOCT 0.63 0 63 1 00 0 .51 0 53 0 .31 LUOPER 1.41 0 63 0 80 0 26 MIKSCA 0 .10 0 05 MOMCHA 0 03 0 03 PANOIC 0.57 0 30 0 03 0 03 PASOIS 0 03 0.03 PLUROS 0.06 0.06 POLPUN 0.71 0 29 0 .11 0 .11 PONCOR 1 28 0 45 2.19 1 52 SAGLAN 0 29 0 23 SAGMON 0 45 0 23 0 .81 0 49 SALCAR 0 .31 0 22 0 23 0 .14 SESMAC 0 03 0 03 TYPOOM 0 .31 0 18 0 97 0 69 TYPLAT 6.75 1.05 10 78 1.24 4 90 1 63 4 16 1.21 ALTPHIS 0.03 0.03 AMAAUSS 0.06 0 04 HYORANS 3 .13 3 13 LUOPERS 0 03 0.03 0 28 0 20 POLPUNS 0 22 0 17 PONCORS 0 09 0 09 SAGLANS 1.41 1.28 SAGMONS 0.03 0 03 0 09 0 09 222

PAGE 199

Table 16. Vegetation dens i ty measurements SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRANIIS TRAN#S TRAN#7 TRAN#S CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLATS 1 25 1 16 udicots 0 03 0 03 MARCH 1994 SAMPLE SET ACERUB 0 03 0 03 0 03 0 03 ALTPHI 0 04 0 04 0 25 0 .18 0 06 0 04 AMAAUS 10. 58 5 59 2 .2 5 1 55 0 06 0 04 0 75 0.34 0 16 0 16 APILEP 0 33 0 22 ASTELL 0 28 0 25 BACHAL 0 03 0 03 0 03 0 03 BRAPUR 0 03 0 03 COMD I F 0 03 0 03 CYPODO 0 17 0 17 0.03 0 03 C YPSPP 0.04 0 .04 19.58 13. 80 0 03 0 03 0 04 0 04 1 13 0 66 0 22 0 19 ECLALB 0 08 0 08 0 03 0 03 ELEV I V 0 22 0 .17 EUPCAP 0 08 0 08 0 03 0 03 0.08 0 06 0 66 0 40 0 22 0 12 GALTIN 0.21 0 .21 0 06 0 06 0.03 0 03 H Y DRAN 0 05 0 05 0.03 0 03 0 38 0 .19 1 09 1 09 LUDL EP 0 04 0 04 0 83 0 83 0 03 0 03 0 38 0 26 LUDPER 0 29 0 20 0 13 0 13 0 25 0 18 1 53 0 99 2 13 0 .81 MIK SCA 0 03 0 03 Poacea 0.84 0 78 POLPUN 0 38 0 .2 4 2 00 1 44 0 22 0 .12 PONCOR 2 00 0 99 1 .31 0 95 RUMCR I 0 09 0 07 S AGLAN 0 13 0 13 0 .2 5 0 25 0 06 0 06 S AGMON 0 06 0 04 S AL CAR 0 06 0 06 0.06 0 06 SOLAME 0 08 0 08 TYPDOM 0 .13 0 .13 1 59 0 58 TYPLAT 8 .17 1 58 13.42 2 58 13 .31 1 83 15 29 1 36 6 84 1 43 5.09 1 28 223

PAGE 200

point rooting habits declined (Table 16). As the marsh matured, density of Typha lali/olia tended to increase with time. Early in marsh development T. /ali/olia was found at low levels. For example, a minimum density of 0 m-2 (0%) was found at T3 and T6, and a maximum density of2 m-2 (35%) found at T2 (Table 16). At the final measurement, T. /ali/olia had attained the greatest density relative to most other species measured. A minimum density of 5 m-2 (52%) was found at T8 and a maximum density of 15 m-2 (88%) was found at T4. In the north marsh, the second most dense perennial, non-mat forming species Ludwigia peruviana increased to maximum densities at the final sampling of l.Sm2 at T6 and 2.3m-2 at T8. This species contributed most to the shallow, south ends of transects 6 and 8 Height. Vegetation height patterns were similar to vegetation cover patterns (Table 17). Height measurements were taken on a larger number of species than density measurements and on a fewer number of species than cover measurements. This measurement difference resulted because species, such as Azolla caroliniana, Lemna spp., Salvinia rotundi/olia, Spirodel/a polyrhiza, Wolffia spp. and Wolffiel/afloridana are very thin floating species. Species such as Alternanthera philoxeroides often tended to float at the water surface without a definable rooting zone Under these conditions the height measurement was omitted. Height patterns were similar to cover in showing successional state of the marshes. These patterns included height declines by species not adapted to long-term flooding (e.g Aster subulata, Commelina dijfusa. Eupotorium capillifolium, Ludwigia octovalvis, and Panicum diehotomiflorum), and increases or height maintenance by flood adapted species (e.g Hydrocotyle ranunculoides, Ludwigiaperuviana, Pontederia cordata, Sagittaria laneifolia, Salix caroliniana, and Typha /atifolia) Opportunistic species, present in the seedbank, and responding to drawdown and mat flotation included: Amaranthus australis, Commelina diffusa, Eupatorium capillifolium, Ludwigia leptocarpa, and Polygonum punctatwn. Height measurements provided another view of the competitive environment in the marsh ecosystem. The most prolific invader species, Typha /ali/olia, was also the tallest species durng the study period Potential competing species (e.g Pontederia cordata, Ludwigia peruviana, and Sagittaria lancifolia) tended to attain a maximum average height <30 cm while Typha latifolia had attained heights approaching 250 cm. NATURAL SUCCESSION TRANSECTS BIOMASS Biomass within the Apopka Marsh showed noticeable changes from November 1990 to March 1994. Species composition, allocation of above-and below-ground biomass, and amount of dead biomass all contributed to these changes. In an attempt to better define some of these changes within the marsh, biomass was partitioned into "above-ground" (alive and dead), "below-ground" and "floating mat" components. Above-ground biomass was defined as any tissue (leaves, roots, rhizomes) found above the consolidated substrate Living tissue within the substrate was considered below-224

PAGE 201

Table 17. Vegetation height measurements (cm m2 MEAN SE) from Natural Succession Transects. Periods (., represent species absent from the transect. SPECIES TRAN#1 TRAN#2 TRAN#3 TRANIU TRAN#6 TRAN#6 TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE NOVEMBER 1990 SAMPLE SET ACERUB 0.81 0.81 0 63 0.63 ALTPHI 15.03 4 60 11.22 4.33 0.78 0 78 2.06 1.16 4 03 2.25 0.78 0.46 0 53 0.53 AMAAUS 12.50 12.50 14.28 9.87 ASTELL 7.50 7.50 ASTSUB 2 13 1 48 36 72 14.37 40.25 10.57 30.28 11.23 24 .06 12.06 12.57 6.66 48.41 15.33 BACHAL 8 44 5.93 1.88 1.88 4 48 4 48 2 63 2.63 6.19 2.64 31 19 5.79 45.28 7.10 19 87 5.42 CALAME 15.36 7 55 15 .31 7.36 0.31 0 .31 CARSPP 1.75 1 75 COMDIF 4.69 2 26 20. 13 5 .20 2 66 1.57 13 50 3.16 15 16 4 45 1 34 0.94 CYNDAC 6 13 3 12 Cyperac .. 0.00 0 00 1.25 1 .25 1 69 1.69 CYPHAS 3.84 2.26 3.59 2. 92 CYPODO 5.97 3 .34 7 90 3.16 1.69 1 69 2.91 1 86 4 56 2 68 CYPSPP 4.69 2.43 2.53 1.42 2 81 2.51 1 41 1.18 ECHCOL 4 34 2 43 9 77 4. 1 5 20. 32 5.01 5.63 4 .31 14 40 3 .44 4 .00 2. 27 ECLALB 2 .00 1 39 5 00 2 57 4.75 4.75 1.19 0.83 12 53 4 19 0 66 0 66 ELEIND 1 .03 1 03 1.88 1.88 2.13 1.52 ELESPP 0.30 0 30 0.13 0.13 ER ISPP 1 75 1.75 EUPCAP 72 26 22.13 51.32 17 97 29. 53 13.79 14 .91 9 32 110 13 16.93 258 .91 12.57 181 58 18 04 20Q.16 18 99 EUPSER 1.56 1.56 2.81 2 .81 EUPSPP 21. 88 12 .26 GALTIN 0.28 0.28 3 .81 1 .07 GERCAR 0.38 0.38 3 .41 3 12 HYDSPP 0 48 0 48 3.31 1.69 1 06 0.46 HYGLAC 3.34 1 .61 IPOSPP 0.16 0 16 JUNEFF 2.63 2.63 LUDLEP 3 13 3 13 LUDOCT 4 90 3 76 5.94 5 94 65 94 12 93 82 .84 15.12 51. 03 13.03 3 31 3.31 1.94 0.98 0.97 0 97 LUDPAL 0.72 0 48 0.90 0 90 LUDPER 6.56 6 56 LUDSPP 0 31 0 .31 MELCOR 1.56 1.56 1 16 1 16 MIKSCA 9.52 6 70 PANDIC 18 72 9.51 17. 4 8 6.55 67.10 8 10 63.16 9 35 7.00 3 11 7.48 4 87 1 1.00 5.02 5 19 4.70 PAN HEM 3.44 3 44 PANSPP 3 13 3 13 0 63 0 63 1.78 1.24 0.00 0.00 1 75 1 75 PASSPP 9 81 3.75 14.63 5 80

PAGE 202

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#5 TRAN#7 TRAN Ill! CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PASURV 3.75 3 75 PHYANG 4.00 1 75 1 .25 1 25 Poaceae 1 97 1 97 3 72 2. 22 0.36 0 35 POLPUN 82 .00 7.95 36 69 8.00 15.06 6 .03 7 16 3 52 PONCOR 3 .06 3 06 2.97 2. 97 Pterido. 0.31 0 .31 SAG LAN 3.74 3.74 SALCAR 24 53 12.05 3 .44 3.44 SAM CAN 1 09 1.09 2 53 2 53 8.44 8.44 SAM PAR 1.44 1.08 SESMAC 17.34 12 25 8.44 8.44 SOLAME 1 .25 1 .25 SOLTOR 2 72 2 03 STAFLO 4 06 3.23 TYPLAT 8 .91 6 24 62.16 14.87 6 03 4.20 3.28 3.28 7 .81 7 81 3 .91 3 91 unknown 0 22 0 17 udicot 0 .00 0 00 0 13 0 13 0 16 0 16 0.06 0.06 1 06 0.74 WOOVIR 3.39 2 38 AUGUST 1991 SAMPLE SET ACERUB 0 9 4 0 .94 ALTPHI 3 34 2 03 6 72 2 90 3.38 2.20 3 .81 2 .81 9.94 3 .29 8 53 3 74 6 56 3.62 AMAAUS 81. 94 24.37 8.19 5.77 45.28 12.53 65.9 4 20.43 4 1 00 16 .00 11.41 6.59 8.22 4.16 AM BART 3 38 3 38 AMMCOC 2.50 2.60 2 50 2.50 ASTELL 1 22 1 .22 ASTSPP 9 59 5 29 ASTSUB 12.06 4. 76 ASTIEN 7 78 4 61 8.66 4.00 BACHAL 4.06 4.06 16 22 11.09 26.03 8 45 20. 75 7.48 6 41 4. 46 BIDLAE 5.44 3 09 BRAPUR 7.09 4.93 26 50 9 40 11. 69 6.66 CASOBT 6 26 3.84 3.66 3 66 COMOIF 1.66 1 66 4 .06 2 83 2 26 1 69 11. 09 3 .31 23 34 6 .06 2 .44 2. 44 CYNOAC 6.53 2.35 Cyperac. 0.41 0.41 4.06 3 15 2 63 1.83 1 72 1 72 2.31 2 .31 CYPESC 0.88 0.88 2.76 2.75 CYPHAS 1 97 1 38 1 69 1.40 3 44 2.42 3 13 3.13 6 78 4. 10 CYPIRI 2.13 2 13 4 50 2.22 1.59 1 .69 0 .31 0 .31 CYPODO 0.78 0.78 7.97 6.79 7 34 3.19 6 63 2.23 16.25 4.61 9.63 4.66 4 97 3 46 15 .28 5.38 CYPSPP 10.13 3.73 1.63 1 63 CYPSUR 4.97 2 .51 1 38 1 38 OIGSER 1 59 1.59 10.91 4.78 8.41 2 63 32 .31 7 66 18.59 6.92 16 .81 6 .29 27.81 7.47 ECHCOL 4 88 2.48 16.38 4 .79 4 66 2.35 21.81 6 36 30 78 8 00 19.03 6.98 49.50 9. 4 2 226

PAGE 203

Table 17. Vegeta t ion Hei ght measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECLALB 1.78 1.78 1.69 1 .11 30.31 6.51 22.72 4.64 51. 22 8 16 75 13 9 09 36 .3B 9 15 42.59 7.77 EICCRA 0.59 0.59 1.41 1.41 3.25 2 30 ELEINO 1 .31 1 .31 ELESPP 0.25 0 25 ELEVIV 8 63 2.77 EUPCAP 17 31 B .2B 31. 16 13 04 20.69 6 97 12 03 7.04 6.63 6 63 14.38 6 .91 EUPSER 1 .2B 1 .2B EUPSPP 4.7B 4 .7B GALTIN 0 09 0 09 0 47 0 47 3 47 2 16 4 00 2.06 4.63 2.01 6.06 2.30 2.66 2.30 11.06 2 92 HYOSPP 3 66 2 06 IPOSPP 0.66 0.66 4.13 3.67 JUNEFF 3 13 3 13 llMSPO 0 .94 0 94 LUOlEP 36 34 13.17 1 25 0 .B7 4 66 4 66 6 .47 5 .01 4B.97 11.76 20.7B 9 10 17 .3B B 66 25 .31 B 50 LUOOCT 9 .91 7 42 11.97 7 13 69.76 14 32 99.00 17.03 6B. 34 16 72 97.66 lB 20 LUOPAl 0.3B 0.3B 0 .31 0.31 0.34 0.34 1.13 1.13 lUOPER 6 06 6 06 B 22 3 97 5.16 6 16 6 03 6 03 lUOSPP 1. 1 9 1 19 1.66 1 66 MElPEN 1.38 1.38 MIKSCA 0.16 0.16 15.2B 7 .3B 14.25 B.1B 2.97 2 97 PANDIC 24 25 B.37 6 .44 4.51 66.13 10.67 62 00 8 32 52 00 12.25 6 .B4 4. 24 2B.94 10.54 PANSPP 1 .BB 1.8B PASOIS 2 50 2 60 PASSPP 3.2B 3.2B 4 72 3.32 6 13 4 37 PASURV 7.31 6.29 10.66 6.02 PHYANG 14 .44 6.19 1 09 1 09 PHYSPP 0 63 0 63 4 06 2 B 4 Poaceae 0 97 0 97 POlPUN 93.47 7.32 16 22 6 .44 0.09 0.09 14 97 6 96 60 .91 8.07 23 Bl 7 62 25 .3B 7.73 44 63 8 0 4 PONCOR 6 03 3 72 6 56 4.57 POROlE 0 .31 0 3 1 RUMCRI 3 94 1.74 0 50 0 39 4 .31 1.B4 SAG LAN 6.13 4 .66 SAGMON 2.Bl 2.Bl 3 13 3 13 SALCAR 10 94 10 94 46 66 23 .B2 12 60 B.70 SAMCAN 6 66 6 56 9.3B 9 .3B SESMAC 16.03 10 61 0 00 0.00 109.94 24 .B6 50.63 21.42 SETMAG 5.7B 6.7B SOLAME 4 13 2.42 9 .3B 4.6B 4 .75 2 70 TYPLAT 76.66 17.6B 4B.B4 12.94 97.19 15 46 34.16 10.16 9.25 6 48 6.06 6.06 6 25 6.26 UTRCOR 0.56 0.56 udicot 0 03 0.03 O .BB 0.70 1 34 0 .94 2 34 1.36 0 03 0 03 9.03 6 69 WOOVI R 6 03 4.21 JANUARY 1992 SAMPLE SET 227

PAGE 204

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN 1fT TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ACERUB 1.03 1.03 ALTPHI 20 47 4.58 20.26 5 .11 6.19 2.63 2.41 1 75 7.39 2.42 4.03 2.45 4.84 2.57 AMAAUS 2.19 2 19 ANDSPP 2.31 2 31 ASTSPP 0.94 0.94 ASTSUB 0.84 0.84 2.94 2.94 BACHAL 5.66 5.66 6.25 6.25 7.25 5.20 27.47 10.14 27.66 8.53 6.59 4 13 BIDLAE 6 38 4 .44 BRAPUR 2.13 2.13 8.22 8.22 13.28 7.42 COMDIF 2.03 1 41 6.28 2.65 1.63 1.63 CYNDAC 2.22 1.54 Cyperac. 12.47 3.90 4.41 2.66 2 22 1.55 CYPHAS 6 34 3.03 3.63 2.62 1 94 1.94 3 22 2.25 CYPODO 2.72 1.91 ELEVIV 9 63 2.83 EUPCAP 2 91 1.67 1 48 1.48 0.34 0.34 GALTIN 0 38 0.38 0.16 0 16 9 47 2.82 4.97 2.39 16.68 4 14 HYDRAN 8 43 3.23 1.78 1.25 HYDSPP 4.94 2.78 1 63 1.63 12.56 3.46 5.34 2.59 HYDUMB 13.34 3.89 JUNEFF 3.72 3.72 LIMSPO 5.53 2.74 0.00 0 00 LUDLEP 3 66 2 83 LUDOCT 4.94 3 98 5 06 4.20 1 97 1 97 4 75 4.75 8 50 6.13 LUDPAL 1.31 1 .31 1 22 1.22 0 27 0.27 LUDPER 7.09 5 23 1.81 1.81 35 25 11.03 1.25 1 25 15.44 6.22 11. 50 6 61 MIKSCA 2.22 2.22 8 00 4.53 13 94 7.07 5 41 4.30 PASSPP 1.72 1 72 PASURV 11.88 4.18 2.25 2.25 Poaceae 1.34 1.03 2.56 1.62 1.34 1.34 0.00 0.00 POLPUN 40.84 5.75 16 75 4.91 3.00 2.29 9.81 3 42 35.84 3.62 19.25 4 46 17.59 4.61 21.61 6.04 PONCOR 3.13 3 13 5.44 3.08 RAPRAP 1.47 0.92 RUMCRI 2 28 1.60 0.94 0.61 SAGLAN 7.84 5.48 2.28 2.28 SAGMON 2 38 2.38 3.59 2.50 11.00 4.61 SALCAR 6.00 6 00 0.00 0.00 48.72 21.29 9.38 9.38 SAMCAN 2 06 2.06 9.38 9.38 TYPLAT 112.03 16.56 80.00 16 57 122 06 16.90 97.28 14.30 20.66 9.94 47.22 13 02 9 28 6.46 WOOVIR 4.03 2 82 AUGUST 1992 SAMPLE SET ALTPHI 11.71 4 68 19.45 6.63 0.44 0 .44 10 47 7.43 16.41 5 10 19 .91 4.73 5.53 3.09 8.66 4.34 228

PAGE 205

Table 17. Vegetation Height measurements (Cont ) SPECIES TRAN#1 TRAN#2 TRAN#3 TRANII4 TRAN#5 TRAN#5 TRAN#1 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AMAAUS 2 .34 1 92 4059 4.59 ASTELL 3.28 3.28 7 34 5 .11 BACHAL 7.81 7.81 7 53 5 .24 BIDLAE 0.00 0 00 11 00 6 .64 BRAPUR 1.28 1.28 1 19 4 .11 COMDIF 2.03 2 03 Cyperac. 1 97 1.97 2 88 2.39 CYPHAS 3 13 3.13 2.19 2.19 CYPODO 0 00 0.00 3.13 3.13 CYPSPP 1.18 1.78 CYPSUR 4.25 3.18 DIGSER 6 88 4.80 ECLALB 4 16 4.16 EICCRA 1 22 1 22 0.97 0 97 5.18 2.94 5 .12 3.28 7.69 4.37 ELEVIV 10 58 3 87 0.97 0.97 EUPCAP 1 25 1.25 HYDRAN 0.00 0.00 1 .34 1 .34 5 28 2.53 15. 32 4 82 7 63 3 20 12.03 4.30 HYDSPP 2 19 1.95 5.69 2.97 1 25 1 25 HYDUMB 1.31 1 31 1.22 1.22 JUNEFF 4 06 4 06 LlMSPO 12.42 5.27 2 22 1.54 LUDLEP 12 .81 8 .94 2 97 2.97 LUDOCT 6.56 6 56 5 09 5.09 4 53 3 16 LUDPER 4 22 4 22 7.81 7 81 42. 94 15 06 9.00 5 04 11 .91 10 07 21. 50 10.88 52 19 16 13 MIKSCA 2 66 2.66 1.50 1.60 21. 31 9.18 10 91 6.30 PASDIS 4 25 2 96 PASURV 2.15 2 75 Poaceae 1.94 1 .94 POLPUN 9 28 5.21 1.16 1 16 24. 13 5 64 34.31 7 .24 10.25 4.36 22.16 7.11 PONCOR 23.06 9 75 8.15 6.09 SAGLAN 21.28 10. 89 SAGMON 29 50 9 58 9.56 6.65 12.88 7 .21 39.59 10.65 SALCAR 9.28 6 89 15 00 10.78 52 .91 23 62 12 28 7.02 TYPDOM 26.06 14 87 TYPLAT 182 .34 16 56 146 .41 22.24 210 88 15 85 171.18 18.79 76 84 19.76 16 09 9 07 12.39 18.53 57 66 16.86 TYPSPPD 38 .44 13 .31 24 40 13.55 61.67 16.24 7.13 7 13 16.45 9.36 22 26 12 73 13 .44 9 37 FEBRUARY 1993 SAMPLE SET ACERUB 4.00 4.00 ALTPHI 11.48 5 48 2.31 2.31 0 .94 0 69 2.16 2 .11 5 81 2.77 0 00 0 00 7.45 3.64 APILEP 2.24 1.23 ASTELL 4 47 2 57 BACHAL 0.94 0.81 3 16 2 .21 BIDLAE 13.13 4.32 229

PAGE 206

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#4 TRAN#5 TRANI#; TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE CARSPP 0.78 0.78 CYPSPP 2.06 2.06 2.16 2.16 ECLALB 0.00 0.00 1.69 1.18 0.00 0.00 EICCRA 0.00 0.00 6 67 4 98 4 39 3.06 ELEVIV 0.80 0.80 EUPCAP 0.31 0 31 GALTIN 2.38 2.07 6.47 3.06 HYDRAN 6.41 4.18 0 16 0.16 3.79 2.69 3.43 1 76 11.82 3.79 22.97 6 10 11.04 4.61 28.10 4.80 HYDSPP 0.26 0.26 1.13 1.13 HYDUMB 0.00 0.00 1.00 1 00 LIMSPO 6.63 2.96 0.80 0.80 LUDLEP 10.84 7.43 8.66 6 56 1.76 1.76 1.09 1.09 LUDPER 6.63 4 69 6 28 3.85 33 60 13.62 6.66 6.56 17.53 8 96 26 .31 12.76 47.69 16 63 MIKSCA 0.00 0.00 6 90 6.90 6.62 3 .71 PASURV 1.41 1.41 Poaceae 1.41 1.41 POLPUN 16.70 7 84 0 00 0.00 1.13 1.13 11.84 4.64 1.65 1.65 7.76 3.61 PONCOR 26.46 10 03 4 69 3.26 RHARHA 1 00 1.00 RUMCRI 0.84 0.66 0 94 0.72 SAGLAN 17.34 9 .71 6 25 6.25 SAGMON 1.28 1.28 6 .94 6.94 0 78 0.78 SALCAR 6 78 4 02 0 00 0 00 12 .81 8.92 62.10 27.14 12 97 7.11 SAMCAN 10.44 7.41 3 13 3 13 TYPDOM 6.88 6 88 TYPLA T 147.90 13 09 113.76 17.86 196.00 9 94 142 .94 11. 79 96 38 14.99 30 88 11. 75 72.13 16.29 57.72 13.51 udicot 0 .11 0. 11 0 10 0.07 AUGUST 1993 SAMPLE SET ALTPHI 9.66 2.54 5 25 3.03 17.69 5.40 13 .44 4.04 AMAAUS 60.03 13.19 17 66 10 .21 10.25 5.88 2 97 2.97 ANDSPP 6.72 6.72 ASTELL 14.09 8.21 ASTSUB 14.38 8.03 BACHAL 7.16 5.05 BIDLAE 13.00 5.16 SRAPUR 2 47 2.47 CASOST 2.09 2 09 CICMEX 1.26 1.25 COMDIF 2.63 2.32 CYPIRI 0.78 0.78 2.75 1.99 CYPODO 8 28 3.97 10 22 4.45 15.81 5 36 11. 88 4.72 CYPSPP 1.81 1.11 3 22 2.70 0 .31 0.31 ECHCRU 5 .81 4.07 230

PAGE 207

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#6 TRANIIG TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECHSPPl 9.63 5.02 ECHSPP2 2.66 2.66 ECLALB 0 66 0.66 0.28 0 28 3.41 1.83 5.41 3.41 EICCRA 4.19 2.48 6.22 2.93 ELEVIV 1.68 1.27 GALTIN 0 47 0 47 HYDRAN 3.88 1.46 2.75 1 18 4.34 1.21 10.39 3.47 HYOUMB 0.88 0.88 0.94 0.94 UMSPO 2 07 1 07 LUOLEP 32.59 7.55 13.44 6.54 59.63 14.06 28.50 9 57 LUDOCT 2.50 2.60 26.72 12.06 14 63 8 62 LUOPER 8.28 8.28 40.25 15.76 71 60 19 51 MIKSCA 11.00 5.33 MOMCHA 3 59 3 69 PANDIC 39.22 11. 15 2.63 2.63 PASOIS 2.66 1.82 PASURV 3.25 3.25 PLUROS 0 47 0 .47 POLOEN 6.16 3.62 POLPUN 32 78 8.15 4 3.81 9 96 8 63 4.36 PONCOR 29 .84 10.00 8 53 5 94 SAG LAN 15.34 8.66 SAGMON 16 71 7 87 12.03 5 .51 SALCAR 16 26 11 31 24 19 10 64 SESMAC 6 26 6 25 TYPDOM 28 91 16.16 31. 19 15 .49 TYPLAT 145 00 17.30 192.66 16 85 80 .19 16 81 95. 06 17 12 ALTPHIS 0 25 0.25 AMAAUSS 0.34 0.26 HYORANS 0.03 0.03 LUOPERS 0.09 0.09 1 06 0.74 POLPUNS 2 88 2.10 PONCORS 0 06 0 06 SAGLANS 0.66 0 62 SAG MONS 0 16 0.16 1 .31 1.31 TYPLATS 0.16 0.16 udicots 0 50 0.50 MARCH 1994 SAMPLE SET ACERUB 0.41 0.41 0.38 0.38 ALTPHI 2 .71 1.92 4 08 2.18 4.26 2 .47 6.29 4.24 21.09 4.00 10.03 3.14 AMAAUS 6.88 1.83 2 17 1.48 3 03 2 11 2.63 1.17 0 .47 0.47 APILEP 1.92 1.13 ASTELL 6.28 4 00 231

PAGE 208

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#<4 TRAN#5 TRAN#5 TRAN In TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE BACHAL 0.31 0.31 6.22 4.66 BIDLAE 1 75 1.33 BRAPUR 1 09 1.09 COMDIF 0.47 0 47 CYPODO 6 83 6 83 1 .97 1 97 CYPSPP 0.42 0 42 2.33 1 37 0.72 0.52 0 .21 0.21 2.31 0.96 1.19 0 67 ECLALB 4.76 4.76 1.72 1 .41 EICCRA 1.03 0 66 6.28 2 .70 ELEVIV 9.19 3.36. EUPCAP 0 .21 0.21 3.67 3.67 0.47 0.47 0.79 0.55 1.91 1.31. 1.42 0 85 GALTIN 1.25 1.25 0.92 0.92 0.31 0.31. 2.44 1.61 HYDRAN 9 63 2.49 13.25 4 65 7 78 2.13 8 .29 2.49 12.41 2.96 25.00 3.60 LUDLEP 2.00 2.00 2.33 2 33 1 09 1.09 4.26 2.96 LUDPER 6.96 6.16 3.69 3.59 10.50 7.27 25.75 9.84 71. 22 20 19 MIKSCA 3.50 3 .60 PASDIC 0.94 0.94 Poaceae 2 50 1.96 POLDEN 4 .63 2 72 POLPUN 13.71 3.02 12 75 6.49 3 .17 3.17 19.38 6.38 4.19 2 42 PONCOR 11.79 5.62 3 72 3 .72 RUMCRI 1.25 0 87 SAGLAN 7 .79 5.39 11. 75 11. 76 SAGMON 2.00 1.40 1.19 1 .19 SALCAR 16. 25 11.31 15.22 9 33 SAM CAN 6.33 6.33 SOLAME 2 33 2.33 TYPDOM 11.25 11.25 67.59 22 48 TYPLAT 103.38 15.21 179.08 7.09 151. 63 15.15 245.21 6.79 94 32 17. 67 97.81 18.30 232

PAGE 209

ground biomass. If the biomass partition had a loosely consolidated matrix of soil and recently deposited sediment (aka "goop"), shoot bases, rhizomes, and roots floating in the water column, it was defined as floating mat biomass. Live and dead biomass was differentiated by tissue color with green biomass considered alive and brown dead. Above-ground and General Biomass Patterns In November 1990, above-ground live biomass values ranged from 270 g m-2 along transect 5 to 1753 g m-2 on transect 8 (Table 18). The dominant species as determined by total biomass were Eupatorium capillifolium, Panicum dichotomtflorum, Panicum spp., andPolygonum punctatum (Table 19). Additional species were found within the sample plots. With the exception of Aster subulatus in transect 4 and Ludwigia octovalvis in transect 3, these species accounted for less than 10% of the biomass collected along each transect. The amount of above-ground live biomass on the site relative to dead biomass ranged from a ratio of 1.28 on transect 2 to 38.48 on transect 7 Below-ground biomass for those transects ranged from 28 (T2) to 46 g m-2 (TI) (Table 18). Above-and live biomass for the August 1991 samples ranged from 268 g m-2 (T2) to 928 g m-(T9) (Table 18). Live above-ground biomass ranged from 136 g m-2 (T2) to 812 g m-2 (T9), with ratios ofaboveto below-ground live biomass from 1.03 (T2) to 10.87 (T6) Dead above-ground biomass ranged from 162 g m-(T9) to 545 g m-2 (T6) A ratio of live to dead above-ground biomass ranged from 0 .26 (T2) to 5.01 (T9) (Table 18). This indicates a change from the November 1990 sampling where, at all transects, live biomass was greater than dead biomass. There was a considerable increase in dead biomass at the site, in some cases up to four times that of living biomass. Also the dominant species began to shift, with Alternanthera philoxeroides, Amaranthus australis, Digitaria serotina, Echinochloa colonum, Eclipta alba, Ludwigia octovaIvis, Panicum dichotomtflorum, Polygonum punctatum, Sambucus canadensis and 7ypha !ali/olia providing approximately 90% of the live biomass along the transects (Table 19). Dominant species accounting for more than 90% of the biomass in the January 1992 sampling included Alternanthera philoxeroides, Baccharis halimifolia, Brachiaria purpurascens, Eupatorillm capillifolillm, Ludwigia peruviana, Polygomlm p"nctatum and '[ypha latifolia (Table 19). Above-and below-ground live biomass ranged from 295 g m-2 (T6) to 555 g m-2 (T5) (Table 18). Above-ground live biomass from 63 g m-2 (T3) to 456 g m-2 (T8). Below-ground biomass ranged from 38 g m-(T6) to 392 g m-2 (T3). The ratio oftotal above to below-ground biomass ranged from 0.16 (T3) to 6.78 (T6). The lowest ratios of above-ground live to dead biomass were recorded during this sampling period and ranged from 0.09 (T3) to 1.06 (T8). Dead biomass values ranged from 238 g m-2 (T2) to 686 g m-2 (T3) (Table 18). Live to dead above-ground biomass ratios for the August 1992 sampling were higher than that of the previous sampling and ranged from 0.85 (T9) to 6.48 (T6). The dead biomass values ranged from 51 m-2 (T6) to 749 m-2 (T3). Above-ground live biomass values ranged from 310 g m-(T9) to 705 g m-(T3) Below-ground biomass 233

PAGE 210

Table 18 Total biomass summary (g m2 MEAN SE), by transect and sampling date '." No sample taken or information not available for calculation A : B=Above-ground : Below-ground Biomass Ratio Transect I Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE November 1990 Above-ground Dead 198.21 71.62 568 56 139.27 141. 48 55 99 81.85 68 86 39 85 17.56 55 30 51.39 29 74 29 74 54.11 26 75 96 .61 25 83 Live 799.86 233 68 727 52 286.17 686.49 161.n 579. I 9 124.47 270 45 110.42 1386 00 2OS. 74 1 I 44 35 171. 55 1753.14284 n 633 .32104. 30 Total 997.86 305 30 1296.18425.44 827 .95217. 76 661.04193. 13 310 30 127 98 1441. 30 257 12 1174 09 201. 29 1807.25311 52 729 93 130 13 Live:Dead 4 03 1 28 4 85 7 08 6 79 25 06 38 48 32 40 6 56 Below-ground Total 82 768 23 95 27 975 5 316 66 042 19.093 Overall Live 682 43 755 49 686 49 579 19 270 45 1386 00 1144 35 1753 14 699 37 A : B 9.66 26 .01 9 59 August 1991 Above-ground Dead 535 30 206 54 524.47 271.06 148 92 53 20 545.11 106 59 472 83 1 I 4 55 162 20 68 84 live 658 69 82 78 135 86 65.11 463 82 lOS. 75 552 30 141. 30 328 79 64.39 811.91 140 83 Total 1193 99 289 32 660 33 336.17 630 74 158 95 1097.41 247 89 801. 62 178 94 974 .11 209 67 Live:Dead 1 23 0 26 3 29 1.01 0 70 5 .01 B elow-ground Total 223.557 48 504 132.47860.286 289 647100 492 SO.831 12. 749 62 842 12 683 116 74319.918 Overall live 682 24 268 34 n3.47 603 13 391.63 928 65 A : B 2.95 1.03 1 67 10 87 5 23 6 95 January 1992 Above-ground Dead 595 55 76 99 237 96 52 16 685 67 145 45 621.61 196 86 428 .91 87 95 S07 54 76 10 Live 294 23 66 57 212 44 68 73 63 35 26 58 256 84 I I 1.40 455.54 294 58 306 40 42.90 Total 889 79 143 56 450.41 120 89 749 02 172 04 878 45 308 26 884 45 382 52 813 .94119. 00 Live: Dead 0 49 0 89 0 09 0.4 1 1.06 0.60 Below-ground Total 225 34 59.486 248.462 5.349 392 233 86 342 37.899 10 524 99 235 53 67 201.48 51. 185 Overall live 519 57 458 90 455 58 294 74 554 78 S07. 86 A : B 1 .31 0 86 0 16 6 78 4.59 1.52 August 1992 Above-ground Dead 524.12207. 87 748 .71 294 94 SO.74 23 29 296 43 57 15 385 80 141. 88

PAGE 211

Table 18. Total biomass summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Mean SE Mea n SE Mean SE __ __ M e an SE M e arL SE_Mean ___ SE ---.M...e_an SE_ Mean SE Live 666 77 207 58 705 .88147. 15 328 60 155 96 476 83 86 85 310 12 85 46 Total 1190 89 415 46 1454 59 442 09 379 34 179 27 773 26 144.Q1 675 92 227 34 Live:Dead 1.27 0 94 6 46 1 .61 0 85 Below-ground Total 173 939 39 209 223 66 59 746 42 006 9.192 108 923 43 154 227 758 48 407 O v erall Live 840 .71 929 54 3 7 0 .61 585 75 537 88 A : B 3 83 3 16 7 82 4 38 1.36 February 1993 Above-ground Dead 565 .16174. 58 617 55 84 05 220 79 109 88 84 .61 46 59 246 20 86 37 Live 4 1 0 16 94 46 506 19 83 83 177.32 61. 45 604 27 268 29 678 39 232 85 Total 97 5. 32 269 04 1123 74 1 67.88 398 .11 171. 33 668 88 3 1 4 89 924 59 319 22 Live :Dead 0 73 0 82 0.60 9 35 2 76 Below-ground Total 450 08 36.70 288 57 54.50 81. 06 29 80 145 84 38 59 201. 38 37 88 Overall Live 860 24 794 76 258. 38 750 .11 879 77 A : B 0 9 1 1 75 2 19 4 14 3 37 August 1993 Above-ground Dead 302 52 195.38 1135.20 207 40 61.79 53 22 175 69 77.30 Live 654 78 2 38 59 274 52 60.86 550 19 223 50 1142 .01 77.77 Total 957 29 433 97 1409 72 268 26 611.98 276 72 1317 70 155 07 Live:Dead 2 16 0.24 8 90 6 50 Bel o w-ground Total 96 62 27 .88 821. 34 201.33 36 05 16 45 182 24 66.42 Overall Live 751. 40 1095 86 586 .24 1324 25 A : B 6 78 0 33 15 26 6 27 M arch 1994 Above-ground Dead 144 23 69.57 185 08 8.84 507 43 76 59 813 88 174 19 431.42 187 25 278 23 41.58 Live 190 80 78.52 414 .77169.76 533.47 73.86 617 39 88.41 370 08 220 60 1171.79290 10 Total 335 .03148. 10 599 85 178.60 1040 90 150.44 1431.28 262 60 801.50 407 85 1450 02 331.68 Live:Oead 1 32 2 24 1 05 0 76 0 86 4 .21 B e low-ground Total 294 60 14 70 265 22 50 53 549 43 108 35 580 78 68 63 537 56 147.22 241. 76 96 77 Overall Live 485 40 679 99 1082 90 1198 17 907 84 1413.55 A : B 0 65 1 56 0 97 1 06 0 69 4 85 235

PAGE 212

Table 19. Above-ground Biomass Summary (Mean :l:SE) by Transect and Species. Species codes ending with -L represent leaves and -R roots and rhizomes Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean se Mean SE Mean SE Mean SE November 1990 ACERUB .................... ........ ......................................................................... ...................................................................................... .......................................................................... ALTPHI ......... 8 32 ........ 8 .31 ...... 0.11 ........ 0.11 ...... ........ ............................ ............ ............ 8 .76 ........ 8.76 ....................................................... ........... .............. ....... ...... 40.73 ...... 23.11 AMAAUS ............................................................. ......... ........................... 1.23 ........ 1.23 ...... .... ...................................................................................................................................... AMMCOC...................................... .......................................... ................ .................................................................................. ............ ............................................ .............. ASTSUB ....... 3 60 ........ 3.60 ..... ...... ............. ....... 111. 13 .... 106 57 .... 141.32 ...... 97 90 ...... 41.85 ...... 27.34 ...... 21. 82 ...... 21. 82 ........ 1.11 ........ 1 .11 ...... 17.61 .... 12.82 ... ........ ...... ..... .. ASTTEN ...... 1 .51 ........ 1 .51 ..... ................... ............ 0.21 ........ 0.22 ............. ................. ......... BACHAL ........... .......................................... ............................. .......................................... 0 77 ........ 0 62 ....... 0 97 ........ 0 62 ........ 4 23 ........ 2 08 ........ 0 43 ....... 0.37 ......................... BIDLAE ........................................................ ............................ .......................................... ....... ..................... ................................................ ................ ........... ............................. BRAPUR .............. ....................... .......................................... ........................................................................... ......... ....................... ........ . . ................ ........ CALAME ........................... .......................... ....................................................................... 1.87 ........ 1.87 ..... ............................................................................................................. COMDIF ........ 3.77 ........ 3.77 ...... 46.29 ...... 31. 65 .......... ....... ....... ............ 3.79 ...... 3 60 ........ 3 83 ........ 1.91 ...... 62 78 ..... 44.18 ...................... . ............................ ........ 190.12 ...... 74.91 CYNDAC ......... .............. ... .......................................... ...................... ..... 6 47 ........ 6.47 ....................................................... ..... ....... ....................................................................... ... CYPHAS ......... ........... ................ .......................................................... 3 .93 ........ 3.93 .......... ..................................... ...... .................................... .................................................... CYPIRI ......................... ......... ................................ ..... ................ ............ ..... ...... .... ............. ....... .................... ................. ......... ..................... ......... .................. CYPODO ....................... ............... ............................ 0 .05 ........ 0 05 .......... ........................... 0.74 ........ 0 .74 ......................... ............ 0.18 ........ 0.18 ... ..... ........... ... CYPSPP ........ ............................ 0 09 ...... .. 0 09 ........ 0 .22 ........ 0 .21 .......... ............................. .... ....................... 0.05 ........ 0 05 ......................... .............. ........ ........ ....... .... 0 28 ........ 0.28 DIGSER .................. ................. ........... ................ .................................................... ............................................ ......................... .................. ................. ............ .... ........ 0.02 ........ 0.02 ECHCOL ......... ............... .......... .... ........................... 9 62 ........ 9 62 ........ 7 79 ........ 7 79 ......................... ..... ...... 50 .61 ...... 50 .61 ........ 0 .34 ........ 0 34 ..................................................... .. ECLALB ........ 0 02 ........ 0 .02 ...... ................... ..... .......... ......................................................... 5 85 ........ 3.12 ........ 3 29 ........ 2 16 ........ 0 .03 ........ 0 04 .......... ..... ..................... 1 0 87 ...... 1 0 63 EICCRA ...................................................................... .............. ............................. ............................. ................ ...................................................................................................... .. ELEIND ......... l.0l ........ 1.01 ...... .... ........ ............ ........ 3.01 ........ 2.92 ...................................................................... ....................................................................................... 0 06 ...... .. 0.06 ELEVIV ........................................................ ............................. .............. ........................ ................. ...................... ...................................................................................................... EUPCAP ... 276 40 .... 255.77 .... 314.70 .... 305.79 ...... 74. 68 ...... 74. 68 .................................. 153 69 ...... 69.49 .. 1152 .01 .... 257 .41 .... 927.37 .... 233 95 .. 1628.00 .... 317.17 ...... 57 79 ...... 57.79 EUPSER ......... ................................ ............. ............ 1 82 ........ 1 82 ...................................... 2.23 ........ 2.23 ........ 0 29 ........ 0 29 .......... ... ................................ ...... ................................ .. GALTIN ........... ........................................................................ O.o1 ....................................................... .............. ........................... 2 27 ........ 1.26 .......... .............. ..................... ....... HYDRAN ......... ............ ............... ..... ....... ................................... ........................................................... .............. ...................................................................................................... .. HYDSPP ........................ ... ........................... ........................................................... ............. .. .......... ................. 0 59 ...... .. 0.59 ........................ .. ........................................................... HYDUMB ...................................................................................... ............. .............. .............. .......... ................. ................. .............. ..... .................................................................... .. lIMSPO ................................................................................................................................. ............................................ .............. .............. .............. .......................................... .. LUDLEP ................................................................................................................................................ .... ........................... ............................................. ............ .............................. .. LUDOCT ....... 6 35 ........ 6.35 ...... 15 68 ...... 15.68 ...... 75 .50 ...... 36 20 ...... 24. 18 ..... 16.95 ........ 3.22 ....... 1.67 ........ 0 56 ........ 0.57 ......................... ............ ... .............. .......... 11.9 .......... 8.93 LUDPAL ................................................. .. ................................................. ........................... 0 .40 ........ 0.40 ....................................................... ........ ............... ........... .. ..................... .. LUDPER .................................................................... .... ............ .............. ............... .......... .... ........ .............................. ................... ........................................................................... MELCOR. ...... O 25 ........ 0.25 .............................................................. ................................................................................................................. ....................... ..................... .............. MIKSCA ......................... .............................................................. ..................................................................................................................... ............ 0 .04 ........ 0 .04 ......................... PANDIC ...... 23 85 ...... 23.85 ...... 50 38 ...... 50 38 .. .. 317 .07 .... 163 65 .... 166.15 .... 100.59 ...... 14.02 ...... 11.43 .................................. 142.02 ...... n .05 .................................. 103.17 .. .. .. 70.68 PANSPP ............................. ...... 17 09 ...... 16 .91 ...... 93 .00 ...... 49 77 .... 125.55 ...... 84.43 ...... 28 63 ...... 28.63 ...... 56.58 ...... 56 58 .......... .............. ......... 103 00 .... 100.09 ...... 40 .04 ...... 40 .04

PAGE 213

Table 19. Above-ground Biomass Summary (Cant.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 5pectes Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PASDIC ........................................................................................................................................................... ......... ...... ............ ............... ................ ............................. ........... .............. ..... .. PASSPP ........................................ 2.53 ........ 2.53 ........ 0 .14 ......... 0.11 ....... 34. 30 ....... 34.30 ........ 0 .11 ........ 0.11 ......................................................................................................................... PASURV ........................ .... ............................................................................ .......... .................. 3.13 ........ 2.06 ....................................................... ......... ......... ...... ........................ 3.10 ......... 3 10 PHYANG ....................................................................................... ........ ...... 0 12 ......... 0 .12 ............................................. ............. ........................................... 0.01 ......... 0 .02 ..... ..................... PHYSPP .......... ........ ........ .......................... ............. ....... ...... ........... ................ ................ ....................................... .......... .......................................................................................................... POACEAE ..................................................................... ........................... 61. 76 ....... 61.76 ........................ .............................................................................. ............................ POLPUN ... 462.60 ..... 151.47 ..... 195 .04 .... 129 .22 ....... ............... ..................... .............. .... ....................................... 36.44 ....... 24. 33 .......................... ............ 4.03 ......... 4 03 ..... 168 64 ..... 110.96 PONCOR-L .................... .. ................................................................................................................................ PONCOR-R .............................................................................................................................................. .. RHYINU ................................ ........... ....................................... ............. ......................................... ............................ ........... ......... ................ ........ .................................................. 2.35 ......... 2.35 RUMCRI ....................................................................... ................................................................................................ ...... .................................................... SAGLAN-L 10.89 10 89 0 A SAGLAN-R ............................................................................................................................................................................................................................................................................ .. SAGMON-L ........................................ .. ........... ............... .................. ............. ........ ........................................... ................. ....................................... ........ ....................... ...... .......... SAGMON-R ...................................... SALCAR-L.. .................................................................. ............... ......................... .......... .................................................................... 66.55 ...... 66.55 .......... ......... ................................. .. SALCAR-R........ ............................................... ............ ................................. ........ .. ....................................................................................................... ..... ...................................... SALROT .... ............. ........ ................... ................. ............................... .......................... ........................................................................................................................................................ .. SAMSPP ........................ ................... ................. .................. ..................................................... 0 25 ........ 0.20 ......................................... 0 .21 ........ 0 .21 ......................................................... .. SESMAC .......................................................................................................................................................................................................... .. ................................................. ..4 23 ......... 423 SOLAME .................................. .............. ......... ................................ ............. .... .......... ........ ........................................................................... ...... .............................................................. TYPLAT-L .... 1.11 ......... 1.11 ....... 85.62 ...... 66.50 .................. ...................... 2 62 ......... 2.62 ........ 1.11 ........ 1.11 .................................................................................................................. TYPLAT-R ...... ................................................ ............................................ ............. ........................................... ........ ............... UDICOT ........ .... ...................................................................................................................................................................................................... ............. ................................................. .. UNKNOWN ................................................................. 0 .01 ......... 0.01 ......... ............... ............ ...... .......................... ............ ................ ....... 0.02 ....... 0.02 ........ 0 .01 ......... 0 .01 ........................... WOOVIR ..................................................................... 0.Q1 ......... 0.Q1 ........................................................................................................................................................ ............ .. .. ............... DEAD ........ 198 .21 .. ..... 71.62 ..... 568 66 .... 139 27 .... 141. 46 ....... 55 99 ....... 81. 85 ....... 68 66 ...... 39 85 ...... 17.56 ....... 55 30 ....... 51.39 ....... 29 74 ...... 29.74 ...... 54.11 ....... 26 75 ....... 96.61 ....... 25 83 DEAD-EIC .................................................... .. ... ............... ................................................................... ......................... DEAD-EUP .................................................... DEAD-LIM ............... ..................................... DEAD-LUD ................................................................................................................................................. ............................... ......... ........ ............ .. DEAD-PON ..................... .............. .... ............ ......... .................. .......................................... ........... ............. ............................................................................................................................ .. DEAD-SAG .................................................................. ............... ........ ................ .. ................ .................. .......................................... ...................................... DEAD-TYP ..................................................... ........................................................................................................................................................................................................................ .. August 1991 ACERUB ..................................................................... 0 .17 ......... 0 .18 .......................................... ....................... ............. ........ ................................. .............. ........ ................ ALTPHI ....... 28 57 ....... 28.56 ....... 26.32. ..... 26.32 ...... 27 23 ....... 27.23 .. ......... ......................................................... 27.02 ...... 27.03 ......................... .... ..................................... ..42 16 ....... 17.42 AMAAUS ... 103.92 ....... 70.08 ....................................... 5 93 ........ 4 .44 .... ................................................... .............. 0 05 ......... 0 05 ................... ....... ............. 1.16 ......... 1.16 ....... 88 30 ....... 79 .20 AMMCOC ........................... ..................................................................... ................... ............................................................................................................................................ 0 04 ......... 0.04 ASTTEN ...... ......... .................... .......... ......................... 0.14 ......... 0.14 ................................................................................................. ......... .......................................................... .. BACHAL.. .................................................................. 20 78 ...... 20 79 ..................................... ..... ............................. 0.34 ......... 0 30 ....................................... 0 12 ........ 0 12... ........................ BIDLAE ............................ ....................................................................................................................................................................................................... 3.99 ......... 2.30 .......................... .. BRAPUR ..................................................................................................................................................... ........... 21. 99 ....... 21.99 ....................................................... ................................ .. 237

PAGE 214

Table 19. Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean S E COMDIF ..................................................................... ............................. .............. ............................ .......... 21. 35 ...... 15 .96 ...................................... 0.08 ...... .. 0 .08 .......... .............. CyPHAS ......... ................ ........ ............... ............. ........ .............. .............. ............................ .. ........................................................... ........................... .. ............................. CyPIRI ............. ..... ............................... ... .................. 0.29 ........ 0 30 .................................................................................................. .............. .............. .... ........ .................. ........ .... .. CYPODO ...... 0.57 .. ..... 0.52 ........ 0 .54 ........ 0 .54 ........ 0.98 ........ 0 98 ......................... ..... ............................. .... .... 0 .58 .... .... 0.48 .......... .............. ............ 4.27 ........ 4 .12 ........ 0 .10 ........ 0.10 CYPSPP ...... ............................................................. 2 .76 ........ 2 .75 .......... ........................................................................... .............. ................... .. ........ ........... .... ............ 0.14 ........ 0.14 DIGSER ........ ................. ........................................... 0 .01 ........ 0 .01 ....................................................... .......... 15.90 ...... 14.51 .......... ................... .. .. .. 66.14 .. .. .. 40 .19 ........ 1.72 ........ 1 .64 ECHCOL ......... ............... ............ 1.32 ........ 1 32 ...... 23 .73 ...... 23 .09 ................. .............. ....... .................. .......... 76.39 ...... 67.34 ........ ....... ............. ........ 90.53 .. .. .. 41.64 ........ 0.09 ........ 0.08 ECLALB ........ 0.12 ........ 0 .12.......... ...... ....... .. ..46.72 ...... 34. 46 ........................................... ...... ............... 115 .02 ...... 32. 19 ......................... .......... 36.50 ...... 18.72 ........ 0 .72 ........ 0 .61 EICCRA-L ....... ............................. ......... .. ................. .............. .............. ...................................................... ....... ..................... .... ................. ............................. .............. ELEVIV ............ ............................. ....... ........ .. .... .................. .......... ............. ....... ............. ..................... .... 21.51 ...... 21.41 ................................................................................... .. EUPCAP .. ........ ............... ............ ... ..... .... ...... .. .. 6.02 ........ 6.02 .......... .............. .............................. ........ .... 8 .37 ........ 8 .37 .......... ............................. ............................. ............ .. EUPSER ......... ............... .............. ......... ................... 0.19 ........ 0.19 .......... ....... ........ ................................................................................. ......... ............ 0 23 ........ 0.24 .......... .............. GALTIN ........... ........ ....... ........ .. ................................ 0.o1 .. ...... 0.o1 ............................................... ......... ............ 0 26 ........ 0.17 ............... ...... .. ............... 0 44 ........ 0 .44 ........................ HYORAN .......... ............ .............................................................. .............. .............. .............. ............... ........................................... .................................... .... .... ....................... ...... HYDUMB ....... .............. ........... ........................................... ........ .... ...... .......................................................... .... ......... .... .... ..................... ......... ............... ...... ......... .... ................. ........ LlMSPO ......... ................ ............. ....... .......... ............... ........ ........... ........... .............. .............. .............. ............................. ....................... ............. ......... .......... .... ....... ........ ..... .......... LUOLEP ...... 81.18 ...... 81.18 .......... ..... ............... ............... ............... .... ..................................... ............... ...... ...... 0.12 ........ 0.12 ...................... ... ............ 0 46 ........ 0 46 ........ 0.08 .... .... 0.08 LUOOCT .... .................... ......... ................................................................... ........... ......................... .... ............... 74.69 ...... 39.83 ............... ...... .... .......... 66.12 ...... 42 .37 .. ......... .......... .... LUOPAL .......... ............. ................................................................................................................................... 0 .03 ........ 0 .04 .............................. .......... .............. ............................. LUOPER ..................................... ............... ................. ............. ......... ................. ...... ............ ........... ... .................................. ............................................... ...... .. ............................. MIKSCA .......... ....... ........ ........................................ 15.74 ...... 15.74 ........................ .......................... ...................................... .......... ......... .. ........................ ........ ................. .............. PANDIC ...... 22 .36 ...... 22.36 ........ ... ....................... 174.98 ...... 89.19 ......................... ......... ..... ..... ........... ............ 2 46 ........ 2.47 .......... ........................................................ 60.95 .... ..41 .73 PANSPP ..................................... ......... ......... ..................... ........ .... .......... ............... ............... ..... ..................... 0.30 ........ 0 .30 ................. ................... .... PASOIC ........... ..... .......... ............................................ .............. ............... .............. ....... .................................... 0 .13 .... .... 0 13 .......... ........ .... .. ....................... PHYANG ......... .............. ............ 0.50 ........ 0 .50 ........... .............. ........ ...... .................................................................... .. ............... ............. ................... 2 .3 7 ........ 2 .38 ......................... PHYSPP ......... .................. .......... ........... ............. ................. .................................. ............... ......... .... .... ............ 0 .02 ........ 0.02 ......................... .......... .... ...................... ....................... POACEAE ....... .. ....................................................................... .... ....................................................... ........ .... 0 06 ........ 0 .06 .................................................................... 0 .04 ........ 0 .03 POLPUN ... 398 .39 .... 13O.64 ...... 53.56 ...... 52.85 ........ 0.13 ........ 0 .13 ....................................................... ............ 1 18 ........ 0.77 ......................... .......... 35 46 ...... 34.34 .... 478.38 .... 171.13 PONCOR-L.. .O.02 ........ 0.02 ........................................ .................... ....... .............................................................. ............................. ..... .......... ............................. ............ 0 .04 ........ 0 .04 PONCOR-R ................... ............................................ ............................. .................................. ........ .......................... ...... ........................ ...... .............................. .......... ............. ...... RUMCRI.. ...... ........... ...... ....................................... ....... .............. .............. ............................. ... ...... .................. 0 28 ........ 0 28 .......... ............... ....................... ....... ............ 0 .66 ........ 0 .66 SAGLAN-L ...................... .... ............. .... ....................... .............. .............. .............. .............. ....................... .... .................... .......... .............................................. .............. ..... .......... SAGLAN-R .................. .................. ...... ........ ............................. ..................... ........ ............................. .................................................................. ....................... ............................. SAGMONL...0.12 ........ 0 .12 .......... ............... ........ ...... .......... ............................. ...... .... ........... ............... .... ......................... ..... ......... .................................................................... ....... SAGMON-R ................................... ............................. ....................... ......... ............ .............. .............. ................................................................. ........ ........... .. .......................... ........ SALCAR-L ................................ ....... ............ .............. ....................................................... ............. ...... ........ 128 .64 .... 128.64 ............................ .... ...... 0 .32 .... .... 0.32 ........ 1.24 ........ 1.24 SALCAR-R .... ........... .................................................................. ...... ...................................................... ............................................................... ...... ........... ........ ............... .............. SALROT ....................................... ... ...................................................................................................... .............. ........... ....... .............................................. ........... ................. .......... .. SAMCAN ........ ................. .............. .... ....... ... ............... ...... ...... ... .......... ................. ... ................. ...... .... ........... ...... ............................................ .............. ............ ........................... ...... SESMAC .... ................. ... .............. .............. .............. .............. ...................................................................... 11.32 ...... 11.32 ......................... ...................... ... ............. 121.25 ...... 66.92 SOLAME ......... ....................... .. .... ........ ...... .............. .... ...... .... ...... ....... ............................. ............. ............ 24 26 ...... 24. 26 ........... .... ........ ........ ....... 0 .57 ........ 0.57 ......................... TYPLAT-L ... 23.43 ...... 14.54 ...... 53.62 ...... 24.93 .... 157 .99 ...... 97.57 .. ...... ............................................................................. ................................................. .... ................. 16.00 ...... 11.94 TYPLAT-R ...... ....... ........... ............. .......... .... ........... ..... ................... ...... ....... .... .................................................................... ............................. ................... .... ...... ............. .. ....... ........ UOICOT ...... ....... ............................................. ...... ......... ............. .......... ....... .... ......... .......... ................. ......... ...... 0.07 ........ 0.07 ...................................... 0 .66 ........ 0.86 .......... ....... ........ DEAO .. ...... 535.3O .... 206 .54 .... 524.4 7 .... 271 .06 .... 146 .92 ...... 53.20 ........................................... ........ ......... .. .. 545.11 .. .. 106.59 .................................. 472.83 .... 114 .55 .. .. 162 20 ...... 68.84 DEAD-EIC .......... ........ .. ............. ..... .... .. .............................................................. .. ................................... .... ........... .... ...... .... .............................................................. .... ..................... .. 238

PAGE 215

Table 19. Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE DEADEUP .................................................... .................... ....... ....... .............. ...................... -........................ DEADLlM ..................................................... DEAD-LUD ........................... .......... ............. ............... .... ... ...... .............................................................................................................. DEAD-PON ... .... ........... .... ..... ... ..... ........................... .............. .... ............... ........................................ .... ............... .............. DEAD-SAG ........................................ .......................................................... ............... .. ....................................................... ......... ....... ... ....... ....... DEAD-TYP ...... .............................. ....... ........ ............ ............ ................................. ..... .............. ............. .............. .... ....... ................ .......... ............... ............. ... ... ........ .... ..... .......... January 1992 ACERUB .............................. ..................................... 0 30 ......... 0.30 ....................... ........................................ ...... .... ......... ............... ................. ....... ........ ...... ........... ....... ..................... AL TPHI ........ 46 63 ....... 36 90 ....... 17.13 .... 14.95 ........ 7 86 ......... 7 75 ............... ........................................ .............. 1 06 ......... 0 97 ........... .............. .............................. ........... 46.79 ....... 26 .02 ASTSPP ............................ ............... ............... ............ 0 37 ......... 0 37 ........... ................. ..................... ................... 1 34 ......... 1 34 ........... ........................ ..... .. .............. ............... ............... ASTIEN ............. .................................................... ................................. ....... ............ ............................................ ............................... .............. ............ 0 .51 ......... 0.51 ........... ............... BACHAL. ......... ............... .............................. ......... .. ................................................. ........................ ................ 135 13 ..... 118.43 ........... .............. ............ 0.21 ......... 0 .21 ........... ............... BIDLAE ............................ ...... ....... ...... ......... ..... ........................ ................................... ..... .................. ................................ .................. ....................... 23.88 ....... 23.88 ........................... BRAPUR ........................................................ .............................. ..... ............ .................................. .......... .............. 45 29 ....... 33 .51 .......................... ........ 312.67 ..... 312 68 ......... 9.52 ......... 9 52 COMDIF .......... ............... ....... ...................... .......................................................................................................... 3.19 ......... 2 89 ........... .............. ................ .............. ................. ...... ........ CYPERAC ........ .......................................... ................. .............. ............ .... ................ ........................................... 0 06 ......... 0 06 .................. .................. ............ ....... .... ............. ........... CYPSPP .......................... .............. .............. ............. ..................................................................... ................ . 0 54 ......... 0 .54 ....................................... 0.50 ......... 0 50 ........................... ECHCOL ......................................................... .............. ............................... ............... .............. ....... .............................................. ....... .... .......................... 0 24 ......... 0 24 ...................... ..... ECLALB .................................... ...... ......... . ................. .............. ................................. ........ ........................ ........ .. 0 02 ......... 0 02 ........ ............. ................ ... .................... ............ .......... EICCRA-L ...... ........................... ..... .......... ..... ............... ... ............ ....... ......... ..... ............ ................ .......... ............. .............. .................. ...... ....... ........... ..................... .... ................ ..... ...... ELEVIV ......... ................................... ............................................ ....... .... ..... ............... .. ............. .. ..... ..................... 2 37 ......... 2 24 ......... ... ........... .............................. ..... .... ............. .... ...... EUPCAP ................................................................... ......................... ........................................ ....... ..... .............. ... 40 .82. ...... 40 82 ...... ............. .... ................ 2 00 ......... 2 00 ........................... GALTIN ....... ....................... ........ ........ ........... ............. 0 .01 ......... 0.01 ............ ..................... . .... .................... ... .. ... 2 90 ......... 2 75 .... ..... ..... ................... ...... 5 20 ......... 4 .81 ............. ......... ... .. HYDRAN ............................................. '" ............ ............ ............... .................... ............................ ............ .......... .... .......... ........................ ........ .................. 11.58 ....... 11. 58 .. ..... ..... ............. .. HYDSPP .............................................................................................................. .................................................................................................... ............ 0 07 .... ..... 0.07 ...... ......... ............ LlMSPO ............ ............ ................................ LUDLEP ........... .................................................. ........ ................................................. ..................... ....... LUDOCT ............. .......................... ............................................................. .......... ........................................... .......... 0 .34 ......... 0 .34 ........... .............. ............. LUDPAL .......................................... ........................... 0 65 .. ....... 0 65 ................................................................. ............ ......................................... .............. ............................................. LUDPER ...... 1 0 .16 ....... 1 0 .16 ........... ...................................................... .............................................................................................................................. 50 .94 ....... 33 46 ....................... .... LUDSPP .......................................... .............. ....................................................................................... .... ............... 0.01 ......... 0.01 ........... .... ................. ........... ........................... ............ .... MIKSCA ......... ..... ............................. ............. ............................................................................................ PASDIC ........................................... ..... ...... .......... .... ............................ ............................... POLPUN ..... 37.01 ....... 19.07 ....... 13.56 ........ 7.78 ........ 0.14 ........ 0.14 .................... ............................................... 21.00 ....... 14.37 ........... ....... .................. 10.62 ......... 7.11 ..... 104 62 ..... 40 .01 PONCOR-L .......... ... ...... .... .......................... ............... ............... ............... ....................................... .. ... ........ ....... ........................................................ .... PONCOR-R ........ .......... .............................................. ............... ................................... ....... ............. ..... ......... ...................................................... RHARHA ..... ....... .... ......................................... ..... ......... ............... ............... ....... ......................... ......................... 2 76 ......... 2 .n. ......................... ............... ............... ............... ............... SAGLANL ....................... .... .................................... ....... ............. ................ ........................... .... ......... ......... ..... ......... ...................................... ............... ............................. 6 09 ......... 6 09 SAGLAN-R ..... ................................. ................... ....... ............. ............................................ ......... ................... ............................... .... ............................................................... ............... SAGMON-L ..... ........................ ...... ....................... ....... ............... ........ .... ....... ......... ............. ... ... ...... ............ .... .... ........ ........ ................. ... ..... ....... ............ 1.73 ......... 1 73 .... .... ......... .......... SA LCAR-L ... ..... ... .................................................. ..................... ........... .... ............... ..................... ...... ............... ...... .... ..................... ....................................... ........................................ SALROT ................................... .... ................. ............................... ........ ....... .... .................. .... ......... .... .... ......... ...... ............. ............ .... ............................ 0 .14 ......... 0 .14 ........................... SAMCAN ....... 1 .11 ......... 1 .11 ....... ................................................................. ................. ...... ....... .... ..... ....... .............. ...................... ........................... .... ................ ...... .... ...... ...... ................ 239

PAGE 216

Table 19 Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mea n SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE TYPLATL.199.33 ..... 72.07 .... 181.75 ...... 83 22 ...... 54.01 ...... 28.06 ............ ............... ................................................... .......... ..... ....... ........... ......... 18.82 ...... 18.82 .... 139.18 ... ... 57.94 TYPLATR .............. .... ... ...... ....... ................................................................. ............... ......... ......................................... ....... ......................................... ................. ........................... fIoat/ng ............................ ... ....... ......................................... .......... ........................... ............................ ..... .................................................... ...... ......... 16.42 .. .. .. 16 .42 ............ ............ DEAD ........ 595 .SS ...... 76.99 .... 237 96 ...... 52.16 .... 685.67 .... 145 45 ... ....... ................... ................... ......... .... 621.61 .... 196.86 .......... ....................... 428 .91 ...... 87.95 .... 507 .54 ... ... 76 .10 DEAD-E/C ....... ........................................... ....... ........ .............. ................................. ....................... .......................................... DEADEUP ................................................. .... .......... .............. ........................ ...... .......................... DEADLlM ...................... ............ ... ............................ ............... ......................... ... ...... ...................... DEADLUD ............ ..................................... .............. DEADPON .... DEAD SAG ........... .... ............................ DEADTYP ..... ........... ........................ .... August 1992 ALTPH/ ......... 9 .41 ........ 9 38 ........ ....... ....... ........................................................... ........................ 38 06 ...... 11.51 .......... ............... .......... 50.41 ...... 48.96 ...... 75 40 ...... 43.20 B/DLAE .... ...................... ......................................... .. .. ............. ........... 0.16 ........ 0 16 CYPHAS ........................................................................................................ ................................................... ........................... ........ .... ...... ..... 0 69 ....... 0.69 ......................... E/CCRAL ......... ................. ................................ ............ ........ ......... ............... ..... ............. ......... ........... ..... 0.49 ........ 0 49 ........................ ....................... ...... .............. ... ........... ELEV/V .................................................................................................................... ............... ........................... 0 .06 ........ 0 .05 .................... ..... ................ .......... .......................... .... HYDRAN ......... ............ .................................................................................................................... .............. 0 .65 ........ 0 46 ......................... ..... .... 46.91 ...... 46.62 ................ ........ HYDUMB ...................... .... ......................... .......................................................................................... .................. ..... .......... ............ ......... ....... .... 4.09 ........ 4 09 .... ............ ....... LlMSPO ......................... ........................................ 34.32 ...... 34 32 ............. ......................... ........................ 72.83 ...... 72 84 ......... . ........... ........ .......................... ................... ..... LUDOCT ..... 18. 09 ...... 18.09 ....................................................................................................... ......................... ...................... ...... ............................ 0 06 .... .... 0 06 ...... 24 10 ...... 23.65 LUDPER .................... .................................... ............ ............. ................. .... .... .... ........... .......................... ..... 10 69 ...... 10. 69 ..... ........ ....................... 49.24 ..... 49 25 .......... .............. M/KSCA ................ ....... ...... .......... ......... .................... .................. ...... .... ......... .... .............. .............. .................................................................... .... 7.06 ....... 6 95 ......................... PASO/C ............ ...... ........ ....... .. ..... .............. .............. .............. ............... ............... ............. ............... ............... ........ ....... ...... .... .............. ..... ...... 1.97 ....... 1.97 ......................... POLPUN ......... ............. ...... .............................. ...... .... ..... .......... ................... ....................... ............... ..... ...... 4 86 ........ 4.68 ...... ................... .......... 27.10 ..... 18.32 ........ 1 53 ........ 1 53 SAGLANL .. 83.26 ..... 83.26 .... ....... .... .... ...... ...... ......... ...... ....... ............ .... ...... ..... .............. .... ......... ... .......... ........... .... ....... ... ................. .............. ......... ...... ............... ............ SAGLANR 48.47 ..... 48.47 .......................................... .... ........ ............ ............. .............. ........................................ .... .............. .............. ..... ............................................................ SAGMONL ........................................................................................... ......................................... ............... 25 62 ...... 25 62 ............ ............. ......... 68 .21 .. .... 44.79 ......................... SAGMONR ............... ............. ................. ............................... .............. ........... ............... ...................... ................................ .......... ............. ..... ...... 3 37 ... ..... 3.38 ......................... SALCARL ..................... ...... .............. ...... ..... .... ........................ ..... .......................................................... ... 147 06 .... 147 06 ........... .................... .... 67 .10 ...... 67 .10 ................. ...... SALCARR .................... ....... ...................................................... .............. ........ ...... .. ............................................ ............................................ .......... 15.80 ...... 15. 80 ............. ........ TYPLAT L 466 53 .... 149 84 .................................. 569.17 .... 151.75 ...... ........................ .......... ......................... 17.35 ...... 17. 38 ......................... ........ 114.81 ...... 65 77 .... 208 .94 ...... 60.72 TYPLAT-R .. 41.01 ...... 27 03 ................................. 82.39 ...... 44.40 ............... ...... ..................................... ....... 10 30 ...... 10 30 ......................... ........................................... UD/COT ....................... ....... .......... .................. ......... ... .............. ................. ...... ..................... ........................... 2 62 ...... 2.62 ..... ................... DEAD ...... 329 34 .... 15O.51 ............................ ....... 50.75 ..... 37. 03 ......... ..... ........... ..... ........ .............. ....... ... 50 .74 ...... 23 29 . ...... ....... . .... ........ 156 68 ...... 61.67 .... 163.1 8 .... 120.31 DEADLlM .................. ......... ......... .............. ........... 34.50 ...... 34.50 ........................................ ..... ........ ..................................... ............ .. .... .... ........ ................... .......... .................... DEAD-LUD ................ .... .... ..... ........ ........... ................ ........ ........... ........ ....... ........ ............ ........... 12. 58 ...... 12.58 ...... .................. DEAD-SAG .... .......... ............ ....... .......... ................... .............. ............. ....... ...... ....... ........ ......... .. .......... .. ............ 8 83 ........ 8.83 ........... .... ........ DEADTYP 194.78 ...... 83.38 .............. .. ................. 663.46 ... 313 .10 .......... ........................... ....................... .... .... ......... ..... .............. ........ 118.15 ...... 77.35 .... 202 62 ... 110.65 240

PAGE 217

Table 19. Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE February 1993 AL TPHI.. ........ 5 56 ......... 5 29 ........... ........................... 0 07 ......... 0 08 ...................................................... .............. 0 12 ......... 0 .12 ..................................... 1 12 ......... 0.69 ....... 54.74 ....... 4211 BIDLAE ............ .............................. .......... ............................................................................................... ........................................................................... 0.02 ......... 0 .02 .......... ......... ...... .. EICCRA-L ............ .......................................................................................................................................................... .................................................... 119.47... .. 119 47 ......... 0 22 ......... 0 22 ELEVI V ............................................................................................................... .......... .......... ................... ............ 21. 16 ...... 21. 16 ............................. .. ....................... .... .................... .. EUPCAP .......................... ............ ................................ ........................................................................... ..................................................... .. GAL TIN ................................ ........................................ .............................. ........................................... .................................................................. .. ....... 0 .04 ......... 0 04 .......................... .. HYDRAN ....... 0 25 ......... 0 25 ......................................... ......................................................................................... 38.45 ....... 38.20 ........ .......................... 137 10 ..... 134 58 ........................... LlMSPO ..................................................................... 30 35 ....... 30 35 .......... .. ....... ................................. .. ..................... .. LUDLEP ........ 0.13 ......... 0 13 ....................................... .. LUDPER. ....... O 23 ......... 0 23 ......................................... ........................ ....... ........................................................ 40.38 ....... 40 38 .. ................................... 59.96 ....... 51. 12 ......... 7 68 ......... 7 68 MIKSCA .......................................................... ............... ......................... .. ....................................... ............................................................... .......... 25 .11 ....... 23 59 .. ...... .................. .. POLPUN ....... 9 68 ......... 8 09 ........................ .. ................................................................. ...................................................... PONCORL .................................................... ............... ..... ...................................................................................................................................................... ........... 96 02 ...... 96 02 PONCOR-R ......................................................................................... ........................................ .................................................................................................................... 118.56 ..... 118 56 SAGLAN-L .. 58 .91 ....... 58 .91...... .................... ............... .............................................................................................. .. .................. ....................... ......... .. ....................... .. .. .. ...... .. SAGLAN-R .. 26 86 ....... 26 86 ...................................................................................................................... ...................................... ........................... .......................................................... .. SAGMON-L. ................ ...... ............................ ............... .... ............................. ........................... .......... .. .......................................................... ............. 0.01 ..... .. .. 0.01 .......................... .. SALCAR-L ............. ............ ...... ............................................................................................................... ................................. ...................................... 156 56 ..... 156 56 ....... 35.81 ....... 31.29 SALROT .................................. .................................................. ................................... ........................................................ ........................................... 14 82 ...... 11.42 .......................... TYPLA T-L 157 70 ....... 54 19 ............ ..................... 421. 53 ....... 84.85 ............... ................... ............................. .... 79 24 ....... 59 05 ..................................... 86 97 ....... 30 39 ..... 212 75 ....... 90.06 TYPLA T-R 150 86 ....... 56.52 ..................................... 54. 23 ....... 16 05 ..................................................................................................................................... 3 08 ......... 3 08 ..... 152 82. ...... 73.43 DEAD ...... .. .............................................................. 134 .51 ....... 94.75 .................................. ................................... 48 89 ....... 48 89 .................. ....................... ............................ 14 97 ....... 11.10 DEAD-EIC ................................................................................................... .................. ........................................................................................... ............ 4 .59 ........ .4.59 .. ...... .................. .. DEAD-EUP ............................................................................................. ................................................................... 3.58 ......... 3 58 .................. .................... ..................... .... ...................... .. .. DEAD-LUD ................................................................................................ ............................................................. 46.48 ....... 46.49 ........................................................................................ DEAD-PON .................................................... ........................................................................................... ................ ........................................................................................... 28 64 .. ..... 28 .64 DEAD-SAG 11.75 ....... 11.75 ....................... ....... ........ .. DEAD-TYP 553.41 ..... 179.43 ...... ............................ 483 05 ....... 62 54 .... ................... .... ................. ........ ..... ........ 121. 84 ....... 83 82. ........ ........ .... ............. ... 60 03 ...... .47.21 ..... 202 58 .. .. ... 79 87 August 1993 AL TPHI.. ........ 3 17 ......... 1.71 ........................................ ........................................ ...... .............................................. 0 1 0 ......... 0 06 ............. .......................... 0 .02 ......... 0 02 ................ .......... .. AMAAUS ... 103 38 .. ... 102 12 ........................................................................ .... .................. ....................................... 6 09 ......... 6.09 ........................ .. CYPODO ....... 1.71 ... ...... 1 .71 ..................................................................... .............................................................. 15 97 ....... 15.98 ............... CYPSPP ........ 0 03 ......... 0.03 .......................... ........................................................................................... ECHSPPI .................................................................................................... .... .................................. ......... ............ 38.59 ....... 38 60 .............................................................................. ...... .... .. ECLALB .. ....... 0 .Ol ......... 0.0l ........................................................................ .. .............. ..................................................... ............. ........................................ 0.41 ......... 0.42... ........................ ELEVlV ........................................................... ........................................... ...... ........................................ ... .............. 0 03 .... .... 0 .04 .................................................................................. ...... .. HYDRAN ....... 0 .61 ......... 0 .61 ..................................................................................... ............................ .................... 0 67 ......... 0 67 ......................................................................... ............... LUDLEP ...... 26 80 ....... 15 03 ...... .... ........................................................................... .............................................. 58 67 ....... 58 68 ..................................... 35.50 ....... 35 50 ........................... LUDOCT .................................................................................................................................................................................................................... ........... 20.23 ....... 20 23 ........... ............... LUDPER ........................ .................... .. .......................................... ............................................................. ......... 286 19 ..... 288.19 ................................... 259.26 ..... 259 26 .......................... .. MIKSCA ......................................................................................... ............................................................. ......................................................................... 12.54 ....... 12 54 ........................... 241

PAGE 218

Table 19 Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Soecles Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PANoIC ......................... ............................................ .. ....................................................... 3 78 ........ 2.32 ..................................................................................... POLDEN ....................... ..... .......... .............. .............. ............................................ .. ...... 255 25 .... 255 .25 ........................ PDLPUN ..... 0 93 ........ 0 93 ......................... .............. ...... ........ .... .......... ........ ....... ............... .......... 70 06 ...... 70.07 ....................... .. .. .......... 4 30 ........ 4 30 ......................... PONCOR-LI21 44 .... 121.44 .......... .............. ........ ..... .......................................... ................... ......... ............................................ PONCOR-R 95.23 ...... 95.23 ................. ... ........... ....... ..... .............. ........ SAGLA N-L .. 54.01 ...... 54.01 ...................... ...... ........ SAGLAN-R ... 7.00 ........ 7 00 .......... ............ ................................. .......................... ." ........................................ SALCAR-L ...... ........................................................... ............................................ ............................. .............. .............................. ............. ........ 187.76 .... 181.87 ......................... SAMCAN ....... O 08 ........ 0.08 .......... .................................................................................... ..... .......................... .. .......................................................... TYPoOM ... l06. 59 .. .. 106.59 ....... .... .... ........ ............. ..... ............................... ....... ................ .... TYPLAT-L .I33. 80 ...... 83.4O ......................... ........ 274.52 ...... 80.86 .......... ................................... ........... ...... .... 70 .01 ...... 70 .02 ................................ .. 332.15 .... 207.91 ....................... .. TYPLAT-R .................... ............ ............................................................................................................. ...................................... .. ................... .......... 34 57 ...... 34. 57 ....................... .. DEAo .......... 32.81 ...... 32 .81 ............................................................................. ...... .................. .... ................... .. 61. 79 ...... 53 .22 ...... ........... ........ ........ 175 69 ...... 77 30 ....... .................. DEADTYP269.71 .... 207 35 ........................ .. ...... 1135 20 .... 207.40 ................................................................ .. ....................................... .... ....... ...... ........... ................. ............... .... .. March 1994 ALTPHI ......... 0.Q1 ........ 0.Q1 ........................................ .......................... 0 67 ........ 0.67 .......... .............. ....... ...... 0 63 ........ 0 62 ...................................... 4.84 ........ 4.84 .......... .............. AMAAUS ....... 0 12 ........ 0 12 ...................................................... ............................................ ............ ... .................................................................................................... ................... CYPSpp ....................................... ........................... 0.Q1 ........ 0.Q1 ........................................ ........................................... ........................................................................... .............. EICCRA-L ..................................... ....................................................................................................................... ..................................................... 689 93 .... 402 73 .......... .............. EICCRA-R ..................... ............................. ........................................................... ............................. .............. ............................. ......................... 40 84 ...... 40 85 ........................ .. HYDRAN ..... 47 90 ...... 47.39 .................................... 45.53 ...... 30.81 ........ 0.19 ........ 0.19 ......................... .... ......... 0 .12 ........ 0.12 .................................... 48 44 ...... 21. 06 ........... .............. LUOLEP ........................................... ...... ................... 0 05 ........ 0 05 ............. ................................... ...... ................................... .............................................................. ....................... LUDPER .... ...... ........................... 0 .02 ........ 0 02 ....................................................... .................................................................................................. 132 .18 .... 132.18 ........................ .. PASoIC ........... ............................................ ............................................ .......................................................................... ........................................ 71. 88 ...... 71. 88 ...... .. ................. POLO EN ..................................... 1 .39 ........ 1.39 .................................................................................................................................. POLPUN ....... 6.98 ........ 5.50 ........ 0.18 ........ 0 18 ........................................ ...................................... .... ............... 0 .04 ........ 0 04 ..................................................................................... PONCOR-L.17.59 ...... 17.59 .......... ......................... .... .............................. ............................................ ......................................................................................... ........................... PONCOR-R 20.18 ...... 20.18 ...................................................................... ............................................ ....................................................................................................................... SAGLAN-L .. 12 64 ........ 9 80 .......... ........................................................... ........ .................... ..... ...... ..................................................................... ...... ......... .......... .... ...... .................... SALCAR-L ..................... ...................................................................................................................................... .............. ........................................ 26 .81 ...... 26 82 ......................... TYPDOM ................................................................. 84 32 ...... 50 .11 ............................................................................................................... .... .................... .... ................... .. TYPLAT-L ... 85 .4O ...... 42.31 .... 413 .18 .... 168 17 .... 403.57 .... 106 .18 .... 616.54 ...... 88 86 ................................. .459 43 .... 258 89 ................................ .. 156 86 .... 141. 07 .......... ............... TYPLAT-R ...... .................................................................................................................. ................................. 2 38 ........ 2 38 ............... ...... ................. ........... ...... .............................. TYPSPP-S ................................................... ............................................ ................. ............ ...... ....................... ............. ... ............... ........................................................................ .. UDICOT ....... ........ .......... .............. .............. ................................................................................. .......................................................................................... .... ....... .. ........ ... .............. DEAD ........ 144 23 ...... 69.57 .... 185.08 .... .... 8.84 .... 333 66 ...... 70 95 .... 723.30 .... 215 33 .................................. 539 27 .... 197 .61 .................................. 278 23 .... ..41 56 ......................... DEAD-TYP 173.77 87 73 90 56 90 56 242

PAGE 219

values ranged from 42 g m-2 (T6) to 228 g m-2 (T9) (Table 17). Ratios of above-ground biomass to below-ground biomass ranged from 1.36 (T9) to 7.82 (T6). Dominant species for this sampling period consisted of Alternanthera philoxeroides, Baeeharis halimi/olia, Braehiaria purpurascens, Eupatorium capilli/olium, Ludwigia peruviana, Polygonum punetatllm and TYPha lati/olia (Table 19). In Februa.ry 1993 above-and below-ground live biomass ranged from 258 g m-2 (T6) to 880 g m-2 (T9) with above-to below-ground biomass ratios ranging from 0.91 (Tl)to 4.14 (T8). Live biomass above-ground ranged from 177 g m-2 (T6)to 678 g m-2 (T9) and live below-ground biomass ranged from 81 (T6) g m-2 to 450 (Tl) g m-2 (Table 18). The dominant vegetation consisted of Altemanthera philoxeroides, Eiehhomia erassipes, Hydrocotyle ranunculoides, Ludwigia peruviana, Pontederia cordata, Salix caroliniana and TYPha lali/olia. T. latifolia provided more than 50% of the combined live biomass in all but two transects measured (Table 19). Dead above-ground biomass ranged from 65 g m-2 (T8) to 618 g m-2 (T3), with a range ofabove-ground live to dead ratios of 0.73 (Tl) to 9.35 (T8) (Table 18). Dead biomass from August 1993 ranged from 62 g m-2 (T6) to 1135 g m-2 (T3), with live above-ground biomass values ranging from 275 g m-2 (T3) to 1142 g m-2 (T8). The ratio of live to dead above-ground biomass ranged from 0.24 (T3) to 8.90 (1'6) (Table 18). Below-ground live biomass ranged from 36 g m-2 (T6) to 821 g m-2 (T3). The aboveto below-ground live biomass ratio ranged from 0.33 (T3) to 15.26 (T6) (Table 18). Dominant species found along the transects were Alternanthera philoxeroides, Amaranthus australis, LlIdwigia leptocarpa, Ludwigia peruviana, Polygonum densijIorum, Polygonum punetatum, Pontederia cordata, Sagittaria lanei/olia, Salix caroliniana, TYPha domingensis, and Typha lati/olia (Table 19). In March 1994 there were six dominant species throughout the system: Eiehhomia erassipes, Hydrocotyle rammculoides, LlIdwigia peruviana, Paspalllm distiehum, TYPha domingensis, and Typha lati/olia (Table 19). Above-ground live biomass ranged from 191 g m-2 (Tl) to 1172 g m-2 (T8). Dead biomass ranged from 144 g m-2 (Tl) to 814 g m-2 (T4), with a ratio of live to dead above-ground biomass from 0.76 (T4) to 4.21 (T8) (Table 18). Below-ground biomass ranged from 242 g m-2 (T8) to 581 g m-2 (T4) with a ratio between above and below-ground biomass ranging from 0.65 (Tl) to 4.85 (T8) (Table 18). Total above-and below-8I:0und live biomass for this sampling date ranged from 485 g m-2 (Tl) to 1414 g m-2 (T9) (Table 18). Contribution to Biomass by Common Species Species composition changes resulting from initial inundation and subsequent flooding influenced the standing crop biomass within the system. Nine species that dominated the system at some point during the study period have been addressed in more detail. A discussion of each of these species and changes in the dead biomass within the system follows. Altemanthera philoxeroides was a relatively small component of the biomass during the first sampling,
PAGE 220

c: os Q) ::;: E AlternanJhera philoxeroides 120 100 2. 120 100 2. 120 100 20 120 100 .. 2. 120 100 80 60 40 20 o 120 100 2. 120 100 .. 2. 120 100 8 2. 120 100 2 Transect 1 I-r--+----I I Transect 2 I I Transect 3 '----+--1 Transect 4 Transect 5 I Transect 6 + + Transect 7 Transect 8 Transect 9 1 T L j I j NOV 90 AUG 91 FEB92 AUG 92 FEB 93 Time (Months) I AUG 93 MAR 94 Figure 91. Time series of AJtemanthera philoxeroides biomass (g m -2 Mean SE) from Natural Succession Transects_ 244

PAGE 221

periods, biomass of A. philoxeroides appeared to follow a bell-shaped pattern, with transects in the south marsh reaching maximum biomass levels earlier than those in the north Biomass of A. philoxeroides increased until August 1992 (Table 19, Figure 91). Biomass distribution of A. philoxeroides was very patchy, indi cated by a high -90% average coefficient of variation along all transects except for transect 9 Transect 9 showed a more even distribution during the study period, with a coefficient of variation averaging 57%. Biomass contribution from Eupatorium capillifolium was the greatest during the first sampling period in November 1990 with average values on transect 8 as high as 1628 g m-2 (Table 19). By the next sampling period in August 1991, E. capillifolium was absent on several transects On transects where E. capillifolium was found, biomass levels were <10 g m-2 (Figure 92). In the February 1992 sampling, E. capillifolium biomass at transect 6 increased to 41 g m-2 but disappeared by August 1992. Biomass of E. capillifolium was always higher in the north cell of the marsh than in the south cell (Table 20). High biomass levels of Hydrocotyle rammclIloides were not measured until the February 1993 through March 1994 sampling periods (Figure 93). Except for transect 8, H. rammculoides biomass never averaged more than 48 g m-2 This level was attained at T6 in February 1993 and at T1 and T2 in March 1994. At transect 8, biomass increased gradually between February 1992 and February 1993 and was followed by a sudden decline six months later. H. ranunculoides biomass, like E. capillifolillm, was generally higher in the north cell of the marsh than in the south cell. However, there was one exception in March 1994 when the south cell had a greater average biomass (Table 20) The coefficient of variation between nodes in all but transects 3 and 6 in March 1994 was greater than 95%, suggesting a very patchy biomass distribution ofH. rammculoides throughout the site Panicum dichotomiflora biomass was as high as 317 g m-2 along transect 3 and ranged between 0 and 166 g m-2 along other transects in November 1990. August 1991 biomass levels were half of previous measurements Apparent extirpation of Panicum dichotomiflorum occurred by February of 1992 when, after sharp declines in biomass, no individuals of this species were collected (Figure 94). Comparison of the north and south cells indicated the south marsh, except Polygonum punctalum exhibited a similar biomass pattern as that of P. dichotomiflorum. A maximum biomass of 463 g m-2 (Tl) and 478 g m-2 (T9) was recorded during the first two sampling events, followed by substantial declines in February 1992 (Figure 95). Low biomass levels persisted throughout the remaining study period with a maximum of70.06 g m-2 (T6) found in August 1993. Also the biomass distribution between the north and south cells showed higher levels in the south marsh except for the August 1992 and 1993 sampling events when biomass for this species was greate r in the north cell (Table 20) 245

PAGE 222

Eupatorilun capillifolium 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o Transect 1 I Transect 2 t Transect 3 Transect 4 Transect 5 I Transect 6 Transect 7 Transect 9 NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 92. Time series of Eupatorium capillifo/ium biomass (g m-2 Mean SE) from Natural Succession Transects 246

PAGE 223

Table 20 Uve biomass summary ( g m Mean SE), North (N) and South (S) Cells. All entries are leaf or culm biomass. Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SE Meao sg Mean SE Mean SE Mean SE Mea!] sg Mean SE ACERUB N S 0 03 0 03 0.06 0 .06 ALTPHI N 2.19 2 19 6 .76 6 .76 0.27 0 25 21.62 12 60 0 .31 0 19 0 .02 0 .01 0 68 0 .61 S 11.30 6 23 23 80 9 16 23 56 9 .94 19 .75 11.34 14.11 10.56 0 .30 0 10 0.08 0 08 AMAAUS N 0.30 0 29 0 .76 0 .76 S 0 23 0 24 41.95 23.80 9.85 9.99 0.02 0 02 AMMCOC N S 0 .01 0 .01 ASTSPP N 0 .33 0.33 S ASTSUB N 20 60 9 23 S 48.77 28.48 0 .07 0.07 ASTTEN N 0.13 0.13 S 0 .33 0.30 0 03 0 03 BACHAL N 1 60 0 .61 0.11 0 08 33.84 30.04 S 3.96 4 06 BIDLAE N 1 00 0 63 5 97 5.97 S 0 .04 0.04 BRAPUR N 5.50 5.50 89 49 78.29 S 2.27 0.00 CALAME N 0.47 0.47 S COMO IF N 16.65 11. 55 5 .36 4 .14 0.80 0.73 S 55.52 22.21 CYNDAC N S 1.23 1 26 CYPHAS N 0 17 0 .17 S 0 75 0 .77 CYPIRI N S 0.06 0 .06 CYPODO N 0.23 0 .19 1.21 1 .04 2 00 2 00 S 0.01 0.01 0.38 0 22 0.16 0.17 CYPRAC N 0.01 0 .01 S CYPSPP N 0.D1 0.01 0 26 0.18 S 0 .12 0.08 0 56 0 56 DIGSER N 20.51 11. 26 S 0 .01 0 .01 0.41 0.40 ECHCOL N 12.74 12.65 41.73 20.27 0.06 0.06 S 3 .32 2 39 4 .70 4 52 ECHSPPl N 4.57 4 57 S

PAGE 224

Table 20. live biomass summary (g mo 2 Mean SE), North (N) and South (S) Celts (continued) Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 M ean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean S" ECLALB N 2 29 1 00 37 .BB 12 22 0 .01 0 .01 O .OS O .OS S 2 59 2.62 9 09 7.01 EICCRA N 0 12 0 12 29 87 29 87 86 24 60 .34 S O .OS O .OS ELEINO N S 0 78 0 60 ELEVIV N 5 38 5.35 0.59 0 56 0.01 0.01 5 29 5.29 S EUPCAP N 965 27 148 69 2 09 2 09 10 .71 10 20 S 140 57 78 72 1 15 1 18 EUPSER N 0 63 0 .56 0 06 0 06 S 0 .35 0.35 0.04 0.04 GALT I N N 0 .57 0 .35 0 18 0 12 2 03 1 37 0 .01 0.01 S HYORAN N 2 90 2 90 11. 89 11. 66 43 39 34.61 0 08 0 08 6.07 3 69 S O .OS O.OS 0 06 0 06 15 54 9 26 HYOSPP N 0 15 0.15 0 02 0 .02 S HYOUMB N 1 02 1 02 S LlMSPO N 18 .21 18 .21 S 6 .54 6 70 5 .78 5.92 LUOLEP N 0 14 0 12 11.77 8.45 S 15 48 0 02 0 03 0 03 2 .55 1.80 0.01 0 .01 LUOOCT N 0 95 0 48 40 .2 0 15 .61 0 09 0 09 0 02 0 02 2 .53 2 53 S 26 02 9 05 9 18 3 53 LUOPAL N 0 10 0 10 0 .01 0 .01 S 0 12 0 13 LUOPER N 12 74 8 66 14 98 12 .51 25.08 16.16 BB. 43 47 67 16.52 16.52 S 1 93 1 98 1.87 0 04 MELCOR N S 0 05 0 05 MIKSCA N 0 .01 0,01 1 76 1 .74 6 28 5 94 1 57 1 57 S 3.00 3 07 PANDIC N 39 .01 20 .39 0 62 0 62 0 49 0.49 0.47 0 .34 S 130 74 43 .61 52 10 20 39 PANSPP N 47 .OS 28 97 0 07 0 07 S 54.42 21.87 PASOIC N 0.03 0.03 8.99 8 99 S PASSPP N 0.03 0 03 S 7.04 6 70 PASURV N 0.78 0 55 S 0.74 0 82 PHYANG N 0 .59 0 .59 S 0.02 0 02 0 06 0 06 248

PAGE 225

Table 20 Live biomass summary (g m ', Mean SE) North (N) and South (S) Cells (continued) SpecIes Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PHYSPP N 0 .01 0.Q1 S Poaceae N 0 .02 0 .02 S 11.76 12.05 0.Q1 0.00 POLDEN N 31.91 31.91 S 0.07 0.07 POLPUN N 10. 12 6.47 9.16 8.61 7 .91 4 12 7 .99 4 .92 9 30 8 76 0.Q1 0.Q1 S 165.42 51.86 196 18 58.25 33.65 12 06 0 .36 0 37 1 84 1 .61 0.09 0 .09 1 .01 0 .84 PONCOR N S 0.Q1 0 .00 22.86 0 .00 11.57 0.00 2 .51 0 00 RHARHA N 0 69 0 69 S RHYINU N S 0 56 0 00 RUMCRI N 0.07 0 .07 S 0.16 0 16 SAGLAN N S 2 .07 2 12 1 45 0 00 15 86 16 25 11. 22 11. 49 5 .14 0 00 1.81 1 46 SAGMON N 0 43 0 43 28 46 13 86 S SALCAR N 16 .84 16 .84 32.24 32. 16 53 54 39 92 39 14 39.14 23.47 22 .90 3 35 3 35 S 0 30 0 30 8 .53 7 .72 SALROT N 0 03 0 03 3 .70 2.95 S SAMCAN N S 0 .21 0.22 0 .01 0 .01 SAMSPP N 0 12 0 07 S SESMAC N 2 83 2 83 S 1.01 0 .00 28 87 17 .71 SOLAME N 6 .21 6 .06 S TYPDOM N S 10 15 10 40 16.06 10 66 TYPLAT N 0 28 0 28 4 .70 4.70 33 .04 18.30 41. 55 17 46 50 27 31. 07 77.04 42 55 S 17.02 13 40 44.75 20.69 103.03 24.79 250.83 56.24 160.98 37. 36 36 89 16 30 182.14 43 20 u-dicot N 0.23 0 .22 0.66 0 66 S unknown N 0 .01 0 .01 S TOTAL N 1136 46 137.60 220.27 55.93 178 .10 82. 35 201.36 56 53 195 40 79.01 29 69 14. 76 102.19 40.51 S 682.76 83 24 427.11 66.34 194 68 32.75 335 30 70. 28 336.06 55.58 136 93 58 99 222 .96 52.42 249

PAGE 226

Hydrocotyle ranun c uloide. 100 7 2 0 0 100 7 2 0 100 7 2 0 0 100 7 0 2 0 100 7 25 0 100 7 2 0 0 100 2 o 300 250 200 100 100 o 100 2. o Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 NOV 90 AUG 91 .... FEB 92 AUG 92 FEB 93 AUG 93 MAR .. Time (Months) Figure 93. Time series of Hydroootyle ranuncu/Oides b iomass (g m -2 Mean SE) from Natural Succession Transects. 250

PAGE 227

ill en i Panicum dichotomiflorum 500 .00 300 200 100 0 500 .00 300 200 100 0 500 .00 300 200 100 0 500 400 300 200 100 0 500 400 300 200 100 o 500 400 300 200 100 0 500 '00 300 200 100 o 500 400 300 200 100 o 500 .00 300 200 100 o Transect 1 Transect 2 Transect 3 Transect 4 f Transect 5 Transect 6 Transect 7 + Transect 8 Transect 9 + NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 94. Time series of Panicum dichotomiflorum biomass (g m2 Mean SE) from Naturel Succession Trensects. 251

PAGE 228

W en i Polygonum punctatum 600 .60 300 '60 0 600 .60 300 '50 0 600 .60 300 '60 0 600 450 300 '00 0 600 450 300 150 a 600 .60 300 '60 o 600 '00 300 '00 o 600 '00 300 '00 o 600 .50 300 '00 o 1. Transect 1 I I r Transect 2 i j Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 NOV 90 AUG 91 FEB 92 .. AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 95. Time series of Po/ygonum punctatum biomass (g m2 Mean SE) from Natural Succession Transects. 252

PAGE 229

Occurrence of Pontederia cordata in the nine transects sampled was very low (Figure 96). P cordata was found on transects 1 and 9 during the August 1993 and February 1993 samples respectively. Biomass ofleafand root material was 121 g m-2 and 95 g m-2 for transect I, and 96 g m-2 and 119 g m-2 respectively, for transect 9. P cordata was also found in transect 1 during the March 1994 sampling, with shoot and root biomass levels of 1 8 g m-2 and 20 g m-2 respectively. Sagittaria lancifolia also had a narrow biomass distribution within the marsh with notable biomass only occurring in transects 1 and 9, which are located in the south cell of the marsh (Figure 97). Transect 9 had 6 g m-2 ofleafbiomass in February 1992 with no root material found. Along transect I, 11 g m-2 ofleafbiomass was collected in November 1990. No biomass was found during the August 1991 and February 1992 sampling dates. A sharp increase in biomass, up to 83 g m-2 for leaf and 48 g m-2 for roots, occurred i n August 1992, followed by a decline in both above-and below ground biomass down to 13 g m-2 and 7 g m for leaves and roots, respectively Two species ofLudwigia, Ludwigia octovalvis and Ludwigia peruviana, attained significant biomass within the marsh (Figure 98). Ludwigia octovalvis biomass was h i ghest at the beginning of the four-year sampling regime with upper level averages of76 g m 2 along transect 3 in November 1990 and 86 g m-2 in August 1991 on transect 8. There was no clear biomass dominance of this species between the north and south cells of the marsh (Table 20). By August 1992 biomass was below 10 g m-2 with Ludwigia peruviana as the dominant contributor In February 1992 on transect 8, b iomass ofL. peruviana was 51 g m-2 Biomass peaks along transect 1 (10 g m-2 ), 6 (288 g m-2 ) and 8 (259 g m 2 ) occurred during February 1992, August 1993 and August 1993 respectively. Biomass declined by the next sampling period to 0 0 g m-2 at transects 1 and 6 and 132 g m-2 at transect 8 Biomass of L Peruviana was always greater in the north cell compared to average biomass of the south cell (Table 20). 7ypha /ali/olia provided the greatest overall contribution of biomass in the marsh, with peak live biomass occurring in August 1992 (Figure 99). During the first sampling event in November 1990 only transect 2 had a significant biomass contribution from IYpha /ali/olia averaging 86 g m-2 Between November 1990 and August 1992, transects I, 2, 3 and 9 (south marsh, (Table 20), experienced a gradual increase in leaf biomass along with a lesser, but comparable, root biomass increase. In August 1992 T. latifolia biomass in these transects ranged from 209 g m-2 and 0 g m-2 to 589 g m-2 and 82 g m 2 for l eaf and root biomass, respectively. After this date biomass along these transects declined and appeared to level off. Dead T. lati/olia biomass showed a similar pattern to that of live leaf biomass with the exception of a six-month lag between peak values This pattern is likely due to the contribution of summer T. /atifolia leaf biomass to the winter leaf litter and overall dead biomass. In the north marsh along transects 6 and 8, a gradual increase in T. /atifolia biomass began in February 1992, peaked in August 1993 at a level of332 g m 2 (leaf) and 32 g m-2 (root) for transect 8 and rose to 459 g m-2 (leaf) and 2 g m-2 (root) for transect 6 253

PAGE 230

Pontederia cordata --+Leaves Rhizomes & Roots 250 200 Transect 1 150 100 '-50 0 250 200 Transect 2 150 100 50 0 250 200 Transect 3 150 100 50 0 250 200 Transect 4 W 150 en 100 ic 50 0 C 250 '" 200 '" Transect 5 :! 150 N 100 E 50 Cl 0 250 VI 200 VI ., 150 E 0 100 Transect 6 iii 50 ." 0 0:: 250 0 200 Transect 7 (!) 150 '" 100 > 50 0 0 250 200 Transect 8 150 100 50 0 250 200 Transect 9 150 100 50 0 / NOV 90 AUG 91 FEB 9 2 AUG 92 F E B 93 AUG 9 3 MAR 94 Time (Months) Figure 96. TIme series of Pontederia cotdata biomass (g m-2 Mean SE) from Natural Succession Transeds. 254

PAGE 231

Sagittaria lancifolia Leaves Rhizomes & Roots 250 200 Transect 1 150 100 50 1 I 0 250 200 Transect 2 150 100 50 0 250 200 Transect 3 150 100 50 0 250 200 Transect 4 (if 150 (J) 100 -!. 50 + 0 c: 250 CO 200 ., TransectS ::0 150 1 100 50 .9 0 250 '" 200 '" CO 150 E 0 100 Transect 6 iii 50 "'C 0 c: 250 e 200 Transect 7 C) 150 ., 100 > 50 0 0 250 200 TransectS 150 100 50 0 250 200 Transect 9 150 100 50 0 NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 9 4 Time (Months) Figure 97. TIme series of Sagittaria /ancifo/ia biomass (g m2 Mean SE) from Natural Succession Transeds. 255

PAGE 232

W C/l i C '" C1> ::;; N E .9 I/) I/) '" E 0 iii c: 0 -t!) ., > 0 150 100 -Ludwigla octovalvls Transect 1 g.. Ludwigla peruviana 50 150 i:-' . ..... Transect 2 100 50 0 150 Transect 3 100 50 0 G 150 Transect 4 100 50 0 soo 450 Transect 5 300 150 0 Soo 450 Transect 6 300 150 0 -0....... m 6 00 450 Transect 7 300 150 0 SOO Transect 8 450 300 150 0 ..... -13 ...... ............ I .... :I 150 Transect 9 100 50 .l 0 .. ,J. ..... .m NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 98. TIme series of Ludwigia octovaMs and Ludwigia peruviana biomass (g m-2 Mean SE) from Natural Succession Transects. 256

PAGE 233

Typha lafifolia -+Leaves (l Rhizomes & Roots -11-Dead 1250 1000 Transect 1 750 500 250 0 ..... ..... .._-. ........... 1250 1000 Transect 2 750 500 250 + 0 1250 1000 Tran&ect3 750 500 250 0 "' o. .... ..... i5 1250 Transect 4 1000 750 W (/) 500 -!. 250 + C 0 '" 1250 '" 1000 TransectS ::;: 750 1: 500 250 ..9 0 "' 1250 "' 1000 '" 6 E 750 0 500 ill 250 ""C 0 c: ::l 1250 ... .... 0 1000 Transect 7 (!) 750 '" 500 > 0 250 0 1250 Transect 8 1000 750 500 250 0 ::; 1250 Transect 9 1000 750 500 250 0 ... Q .... -..... NOV 90 AUG 91 FEB92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 99. Time series of Typha lalifolia biomass (g m2 Mean SE) from Natural Succession Transects. 257

PAGE 234

Total dead biomass varied considerably among transects and throughout the duration of the study (Figure 100). The range in average dead biomass was 30 g m-2 to 814 g m-2 occurring in November 1990 on transect 7 and March 1994 on transect 4, respectively Dead biomass peaked at T8 in August and at T6 and T9 in February 1992. Transect 3 peaked in August 1993 after a gradual increase in dead biomass since August 1991. Transect 1 had no distinguishable peak in dead biomass with approximately equal levels collected throughout the August 1991 to February 1993 samples Transect 2 was the only transect that had more dead biomass during the first sampling event than any successive sampling. Spatial and temporal representation of dead biomass at transect 9 is representative of the variation found in dead biomass throughout the marsh during this study (Figure 101). Comparison of the total dead biomass within the north and south cells of the marsh showed highest levels in the south cell except in August 1991 and 1993. In August 1991, biomass in the north was slightly greater than the south (254 g mo2 >231 g mo2). In contrast, in August 1993 there was a large biomass difference between north and south south (212 g mo2 >89 g mo2) (Table 21) This discrepancy resulted from thepresence of open water patches in the south cell. Below-Ground Biomass Trends Transects in the south marsh showed an increase in biomass from the initial sampling in November 1990, with levels oscillating slightly between sampling periods (Figl!re 102). Maximum average biomass levels measured along these transects were 450 g m-2 (Tl, Feb 93),265 g m-2 (T2, Mar. 94), 821 g m-2 (T3, Aug. 93) and 581 g m-2 (T4, Mar. 94). Below-ground biomass concentrations in the north marsh along transects 6 and 8 also showed an increase over time with the greatest levels, 538 g m-2 (T6) and 242 g m-2 (T8), measured in March 1994. Below-ground biomass measurements from transect 9 also showed a gradual increase in biomass over time but indicated heterogeneity along the transect 103). Average below-ground biomass levels along the transect ranged from 66 g m-2 in November 1990 to 201 gm-2 in February 1993. A group of species-Pontederia cordata, Sagittaria lancifolia, S. montevidensis, Salix caroliniana and 1)tpha spp. -exhibited a morphological feature in which roots and/or rhizomes grew into the water column without support from soil. This seemed to be an intermediate stage prior to floating mat development. As floating mats developed, observations were made that these water suspended roots and rhizomes were trapping overstory leaf litter and organic matter from inflowing lake water (Clark and Stenberg, Personal Observations) Typha spp. showed higher average water suspended rhizome/root biomass in the south marsh during the August 1992 and February 1993 sampling periods, but a change to higher biomass levels in the north cell of the marsh in August 1993 and March 1994. S. lancifolia andP. cordata showed consistently higher water suspended rhizome/root biomass in the south marsh while Sagittaria montevidensis 258

PAGE 235

Total Above-Ground Biomass --+Uve .. Dead 2000 1600 Transect 1 1200 800 400 0 ............. t -=:;.::. ::.:.; .. ;:..:. :.-.. .. ---,",. tt'" -= ... '**,.... -..-:-:": ... :1. ;r.:-::-:-:-:-,-. ... _.., 2000 1600 Transect 2 1 200 800 400 0 2000 1600 Transect 3 1200 800 400 W 0 en 2000 -!. 1600 .......... -'"T. t.. '-'-' .. = .:.:..: .. ... ..... . ... :.:.: .. ;:..:. .. ,... .. (t Transect 4 + 1200 r: 800 '" 400 ., ::;: 0 C)I 2000 E 1600 1200 .9 800 Transect 5 If) 400 If) '" 0 E 2000 0 iii 1600 Transect 6 ." 1200 c 800 :::J 400 e C) 0 .... ........,.. :..:. ... :.:... -4+:':': .. ,,--. ct 1 2000 ., > 1600 0 1200 800 Transect 7 400 0 2000 1600 1200 800 400 0 ... 8' _., I ........ t ...... ............. 2000 Transect 9 1600 1200 800 400 0 !_ .............. ... t ----+ ""' NOV eo AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 100. TIme series oftotal above-ground biomass (g m-2 Mean SE) from Natural Succession Transects. 259

PAGE 236

Natural Succession Transect 9 A Total Uve B Total Dead .,. .. 2000 Figure 101. Time series of total above-ground biomass (g m-2 Mean SE) from Natural Succession Transect 9 260 700

PAGE 237

Table 21. Dead biomass summary ( g m -2 Mean SE). North (N) and South (S) Cells. All entries are leaf and/or culm biomass Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Me!!D SI:; Mea!! I; MeaD SI:; MeaD SI; Me!!!! SI:; Me!!D SI:; Mea!! SI; EICCRA N 1 15 1 15 S EUPCAP N 0.89 0.89 S LlMSPO N S 6 .57 6 73 LUDSPP N 3 .14 3 14 11. 62 11. 62 S PONCOR N S 6 82 0 00 SAGSPP N 2 .21 2 .21 S 2.24 2.29 TYPSPP N 29.54 20.55 45.47 24.55 S 211.72 74.62 245.65 54 09 133.80 58 .99 43. 88 22 .01 unknown N 44. 75 16.14 254.48 59.10 262.63 70.70 51.91 19.43 12 22 12.22 29.69 14.76 102.19 40.51 S 211.61 43.95 231.00 62 .10 393.21 55.21 111.25 44. 28 29 .18 19.42 3.13 0.00 179.08 47.34 TOTAL N 44. 75 16.14 254 .48 59.10 262.63 70 70 86.79 26.48 71.35 32.66 211. 52 75.59 204 30 82.94 S 211.61 43 95 231.00 62 .10 364 89 57. 93 329 54 87 36 283.90 58 23 88 .51 28 38 222.12 45.38 261

PAGE 238

Natural Succession Transects 1-8 SOUTH MARSH. EASTERN 'TRANSECTS TRANSECT 1 750 ... TRANSECT 2 500 250 /' 0 W CI) -!. SOUTH MARSH. WESTERN TRANSECTS + TRANSECT 3 c:: OJ TRANSECT 4 CD 750 ::;; N E .9 500 '" '" OJ E 0 250 iii '0 c:: '" e 0 Cl 0 Qj NORTH MARSH III TRANSECTS 750 TRANSECTS 500 250 -----+----I o NOV90 AUG91 JAN92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 102. Time series of below-ground biomass (g m2 Mean iSE) from Naturel Suocesslon Trensects 1-4, 6, 8. 262

PAGE 239

E E E! tJ) tJ) III E 0 iii "0 c :::J 0 ..... <.? Qi m tJ) tJ) III E o iii "0 C :::J e <.? CD m Natural Succession Transect 9 A. Mean 600 500 400 300 200 100 B Standard Error 400 300 200 100 o _.;." ," .;.. .. ", .. 700 Figure 103. TIme series of below-ground biomass (g m 2 Mean SE) from Natural Succession Transect 9 263

PAGE 240

and Salix caroliniana showed highest water suspended rhizome/root biomass in the north cell (Table 22). Floating Mat Formation and Biomass Although not well understood, the formation of floating mats within the Apopka Marsh may have some effect on species composition and standing crop biomass Formation of mats was first noted in August 1992 (Figure 104) along transects 1 and 3 A simple index of mat formation using the percentage of plots with evidence of mat development revealed a pattern of increasing areal floating mat coverage with time This pattern consisted of2%, 5%, and 41% for sample dates, August 1992, March 1993, and August 1993, respectively. Mat formation began in the south marsh along transects 1 and 3 (August 1992) and progressed to the remainder of the marsh by August 1993 (Figure 104 and 105). Floating mat biomass in August 1992 for transects 1 and 6 averaged 827:419 g m 2 and 647%381 g m-2 respectively. In March 1994, biomass had increased to 926%381 g m-2 along transect 2 Preliminary information from August 1994 suggested a substantial increase in aerial coverage by floating mats primarily within the south marsh (Clark and Stenberg, Personal Observations). Repeated Measures Analysis Total Live Biomass. Temporal and spatial differences i n total live biomass were analyzed for the Apopka Marsh using a general linear model procedure for the analysis of variance and two mean separation techniques, Least Significant Differences (LSD) and Scheffe's comparisons tests. Highly significant differences (p = 0 .0001) were found among sampling dates, among transects sampled, and as an interaction of sampling dates and sampling transects. No differences (p = 0 .8865) were found within the sampling transects Temporal comparison of all sampling events using the LSD comparison method showed only the January 1992 sampling event as having significantly different (1=0.05) total live biomass when compared to all other sampling dates (Tables 23,24) This same temporal comparison using Scheffe's comparison technique showed significant differences (a = 0 .05) between sampling events in January 1992 and the sampling periods in November 1990, August 1991, August 1992, and August 1993. The comparison did not show differences between the January 1992, February 1993 or March 1994 sampling dates, which were significant with the LSD method (Tables 23, 24) Spatial analysis comparing differences among transects over the course of the study were variable among transects and between the north and south marsh with no apparent pattern (Tables 23, 24). Comparisons using the LSD analysis techniques showed significant differences at the 95% confidence level among transects 2, 4, 5, and 7, and transects I, 3, 6, 8 and 9 The results of the spatial analysis using the Scheffe's comparison method were identical to that found with the LSD technique (Tables 23, 24). Total dead b i omass. Overall temporal and spatial comparisons of the data set for total above-ground dead biomass were similar to that of total live biomass. Highly significant differences (p=O.OOOI) were found among sampling dates, transects sampled, and as an interaction of the sampling date and transect sampled. Again, no significant 264

PAGE 241

Table 22. Water suspended Rhizome and root biomass summary (g m -2 Mean SE). North (N) and South (S) Cells. All entries are leaf or culm biomass. Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SI; Mean SI; Mean SI; Mea!] S!; Mea!] SI; Mean SI; Mean SI; EICCRA N 5.11 5 .11 S PONCOR N S 28 .23 0 00 9.07 0 00 2 .88 0 .00 SAGLAN N S 9 23 9.46 5 12 5 24 0 67 0.00 SAGMON N 0.84 0.84 S SAlCAR N 3.95 3 95 S TYPLAT N 2 57 2 57 0 77 0.77 4 32 4 32 0 .30 0.30 S 23.50 10.91 75.40 22.97 265

PAGE 242

-co Cl c: :;:: co o u: 1.0 0 5 o 1 0 0.5 o 1.0 0 5 Transects (Inlet=:1 t 0 o Ut/et=:8) Figure 104. Floating mats along Natural Succession Transects. Floating mat index is the percent of plots with floating mat. 266

PAGE 243

August 1993 3 1 o >< ., "C c: 3 '" :;; 0> .5 1ii 0 u:: 3 Figure 105. Floating mats In Experimental Planting Areas. Floating mat Index based on mat layers observed during water depth measurements (1 =Minimal mat, 2=Two layer mat, 3=Three layer mat). 267

PAGE 244

Table 23. Repeated Measure Analysis of Total Uve Biomass using Least Significant Differences (LSD) comparison technique Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug -93 Mar-94 Nov-90 ... Aug -91 ... Jan-92 ... ... ... ... ... ... Aug-92 ... Feb-93 ... Aug-93 ... Mar-94 ... ... Denotes significants comparison at the 0 .05 level Comparisons by Transect Transect # T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... T4 ... ... ... ... ... ... T5 --... ... T6 ----T7 --... ... T8 ----T9 ... ... ... ... Denotes s l gnificants comparison at the 0.05 level Table 24. Repeated Measure Analysis of Total Uve Biomass using Scheffe's comparison technique Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug -92 Feb-93 Aug-93 Mar-94 Nov-90 ... Aug-91 ... Jan-92 ... ... Aug-92 Feb-93 Aug-93 Mar-94 ... ... ... ... ... Denotes significants comparison at the 0 .05 level Comparisons by Transect Transect T1 T2 T3 T4 T5 T6 T1 ... ... ... T2 ... -... T3 ... ... T4 ... ... ... T5 ... ... ... T6 ... --T7 ... --T8 ... ... ... T9 ... ... ... Denotes significants comparison at the 0.05 level 268 T7 ... ... ... T8 T9 ... ... ... ... ... ...

PAGE 245

difference (p=.3032) was found within the transects Comparison of sampling dates using the LSD analysis technique showed significant differences between November 1990 and all other sampling dates, between January 1992 and all other sampling dates, and the August 1992 and the March 1994 sampling dates (fables 25, 26) Repeated measures analysis using Scheffe's comparison of sampling dates showed differences between the November 1990 sampling and all other dates. Two significant differences were found between January 1992, August 1991 and March 1994 (fables 25, 26). No other significant differences were found among sampling dates. Use of the LSD or Scheffe's analysis technique in the repeated measures analysis of total dead above-ground biomass between transects showed identical results (fable 25 and Table 26 respectively). Significant differences (a=O. 05) using these two tests were found among transects I, 3, 6, 8 and 9 and transects 2, 4, 5, and 7. REPRODUCTrVEPHENOLOGY Planted Plots Phenology characteristics in the planted treatments were similar when classification groupings could be identified for the five target species (fables 27, 28). Seasonal trends in Eleocharis interstincta, Pontederia cordata and Sagittaria lancifolia showed peaks in flowering during the summer season while Scirpus califomicus and Scirpus validus both peaked in the winter. Evidence of a time lag between early and later developmental stages of phenology (i.e. from flowering to mature fruit) could be identified in all target species except E interstincta where no clear time lag was apparent. Phenology index activity showed either no evidence of change throughout the study period or a decrease in activity over the course of the study. The phenology of target species did not appear to be affected by the water quality gradient among the planted treatment plots. Eleocharis interstincta showed a strong seasonal pattern with greatest levels of flowering, immature and mature fruit present during the summer months (Figure 106). This pattern was initiated in May 1992 with no change in activity apparent through March 1994. It was difficult to define a distinct time lag of phenology within this species partly due to the high index level of immature fruit during the summer samplings This high level, often above the flowering index, indicated that flowering actually occurred earlier in the year, possibly in mid or late spring. Distance from the inlet did not appear to affect timing or intensity of the phenology index of this species for all three phenology stages. 269

PAGE 246

Table 25. Repeated Measure Analysis of Total Dead Biomass using Least Significant Differences (LSD) comparison technique Temporal Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug-93 Mar-94 Nov-90 ...... *** *** ... *** Aug-91'" ... Jan-92 ... ... ... ... ... ... Aug-92 ... ... ... Feb-93 ... ... Aug-93 ... ... Mar-94 ... ... ... ... Denotes significants comparison at the 0.05 level Spatial Comparisons by Transed Transed# T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... ... T4 ... ... ... ... ... T5 ... ... ... ... ... T6 ... ... ... ... T7 ... ... ... ... ... T8 ... ... ... ... T9 ... ... ... ... ... Denotes significants comparison at the 0.05 level Table 26 Repeated Measure Analysis of Total Dead Biomass using Scheffe's comparison technique Temporal Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug-93 Mar-94 ............... ... Aug-91'" ... Jan-92 ... Aug-92 ... Feb-93 ... Aug-93 ... Mar-94 ... ... ... Denotes slgnificants comparison at the 0.05 level Spatial Comparisons by Transed Transed# T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... ... T4 ... ... ... ... ... T5 ... ... ... ... ... T6 ... ... ... ... T7 ... ... ... ... ... T8 ... ... ... ... T9 ... ... ... ... ... Denotes significants comparison at the 0.05 level 270

PAGE 247

Table 27. Summary of phenological patterns for single species planted treatments. Table entries: Seasonality= "Summer" or "Winter" denotes peak periods of flowering detectable under this sampling frequency. Time Lag= "Yes" or "No" denotes presence or absence of detectable time lags. Activity:: "Positive", "No", or "Negative" denotes trend with time. Gradient= "Positive", "No", or "Negative" denotes trend with distance from the lake water inlet. "1" Indicates pattem difficult to determine. Classification E/eocharis Pontederia Sagittaria Scirpus Scirpus jnterstjnda cordata lancifolia califomicus velidus Seasonality Summer Summer Summer Winter Winter Time Lag No Yes (Site 1) Yes Yes Yes Activity No Negative Negative 1 Negative Gradient 1 No No No No Table 28. Summary of phenological pattems for mixed species planted treatments. Table entries: Seasonality: "Summer" or "Winter" denotes peak periods of flowering detectable under this sampling frequency. Time Lag= "Yes" or "No" denotes presence or absence of detectable time lags. Activity:: "Positive", "No", or "Negative" denotes trend with time. Gradient= "Positive", "No", or "Negative" denotes trend with distance from the lake water inlet. "1" indicates pattem difficult to determine. Classification E/eocharis Pontederia Scirpus Scirpus Thalia interstjnda cordata caljfomicus validus oeniculata Seasonality 1 Summer 1 1 Summer Time Lag No Yes No Yes No Activity 1 1 1 Negaative Positive Gradient Positive Positive Negative 1 1 271

PAGE 248

S i ngle Species Planted Plots ____ Flowerin g .... Immature Frui t --+Matu r e 2 1 Eleoch8n"s interstinct8 1 0 3 I I I I 2 1 2 .. ... """, -'''''' .. --..... 0 --3 2 I ... Site 3 1 0 ........... -l __ ..... 3 2 Site 1 2 2 1 o ....... ........... P o n teden"a cordata I 3 2 Site 3 t= ........ .... .... .... ...... a-::.: .. -= .. =,,:........ ... 1.. -.... .:.:,:: .. .. .:::: .... '-"' .... = .. .. \JI,3"J9t Time (Months) Figure 106. Phenology of E/eocharis in/erstincta (Top three grephs), Pontederia COIdata (Middle three graphs) and Sagittaria /al'lGifo/ia (Bottom three graphs) from Single Species Planted Plots, Experimental Planting Sites. 272

PAGE 249

Phenology data of Pontederia cordata in the planted plots indicated peak flowering occurred in late spring and was closely followed by immature fruit production at a slightly lower percentage of the total potential coverage (Figure 106). Mature fruit production at all three sites was low compared to the overall coverage of the species with mean phenology indices ranging from 0 to less than 0.75. The overall trends of activity showed a slight increase in activity during the summer of 1992 over that of the previous year. However, a decrease in flowering and immature fruit phenology occurred the next summer. Effects of distance are not apparent in the data with Sites 1 and 3 having similar phenological indices during the summers of 1992 and 1993. Activity levels of Sagittaria lancifolia showed a marked decline between the summer of 1992 and that of 1993 especially in mature fruit development (Figure 106). The seasonal pattern, peaking in the summer, was still evident especially in the immature fruiting stage of development. Time lag of immature and mature fruiting phenology was clearly evident during the two summer sampling events in 1992. Time lag for flowering and immature fruit development was not as apparent during any time of the year indicating the peak flowering period probably occurred between May and August. Site 2 had an overall lower mean phenological index than Sites 1 or 3. However, there was no apparent difference between Sites 1 and 2 during the study period Scirpus califomicus showed a clearly different peak flowering phenology than that of the three species mentioned above. This species flowered closer to the winter sampling events, with phenological index values between 0.5-1.5. For the August 1992 and 1993 sampling events no flowering was detected (Figure 107). Peak mature fruit phenology however, had its highest index values during the summer months. No apparent trends in the phenology activity were apparent over time at any of the sites and differences between sites were also not apparent. Peak flowering phenology for ScirptlS validus was similar to that of S. califomicus and closer to the winter sampling event (Figure 107). These winter flowering peaks were often below the immature fruiting phenological indices indicating flowering may be taking place in early or mid winter followed by immature fruit in late winter and into spring and peak values of mature fruit occurring during the summer sampling period. It is difficult to identify any activity trends due to time or gradient because of a large fluctuation in phenological indices within sites and over the course of the study Mixed Planted Plots A clear classification of phenology of the six target species in the mixed planted plots was difficult due to the low mean phenological indices calculated during the study period Five of the six planted species had phenological values less then 1.0 for either flowering, immature or mature fruiting stages (Appendix B 1). Only Thalia geniculata had index values greater then one, ranging up to 2.5 for flowering in August 1993 (Figure 108). Summer peak flowering periods were evident for Pontederia cordata and Thalia genicu[ata. There was no clear evidence for flowering seasonality in the other four species (fable 28). Temporal changes in activity were also difficult to distinguish with mixed results in the two species in which trends were identified. Distance also showed 273

PAGE 250

Singl e Species P l ant e d P l o ts --*-F l o w er ing --+Mature Fruit 3 ,_____________________ .. _______ 2 )( Site 1 S c i rp u s cBlifo m i cus ....... ---+-1 .. .. ....... -.... ><' ..... ".-' ... o .., 3 11> ." c: ;;; 2 Site 2 OE;) 1 ....... -.-C) 0 0 (5 3 c: Q) 2 .s;;; 11. 1 0 Sit e 3 .. .. -.-... :=<--.".... ... :-... =ll=======tl .. ---......... ==._ .... =t Time (Months) F i gure 107 Phenology of Sclrpus califomicus (Top three graphs) Sclrpus validus (Bottom three graphs) from Single Species Planted Plots Experimental Planting Sites. 274

PAGE 251

3 Mixed Species Planted Plot -e-HOlN9ring .,. '" Immature Fruit ...... Mature Fruit 2 Site 1 Thalia geniculafa 1 0 ''''''' .. ./ ... .... . . ............ ... ... --:i=--./ -.. 3 , 2 Site 2 1 0 ..... .... ........ .=t=> 'fh;;;' ... .... .. ....... .. 3 2 1 0 Sits 3 I ... .... 3 , >< 2 Site 1 Eleocharis interstincts Q) 1 -c <:: <:: 0 -. =1= .-. = co 3 Q) 2 Site 2 >-OJ 1 0 "0 0 <:: Q) 3 .s: (l. 2 I' , Site 3 1 0 .-"':1;; n'" c: *' 3 I 2 Site 1 Pontederia cordata 1 0 .. ... ... 3 I 2 Site 2 1 0 :I I --- 3 2 Site 3 1 0 __ e I .. .. ...... *' ,...IlCd 9"'-,)a.{\ 91. "",a.'l9'l. p..u!d g'2. f&'O p..uCi} \IIa.t gA Time (Months) Figure 108. Phenology of Thalia geniculata (Top three graphs). E/eocharis inters/incta (Middle three graphs) and Pontederia cordata (Bottom three graphs) from Mixed Specles Planted Plots. Experimental Planting Sites. 275

PAGE 252

variable effects on Eleocharis interstincta, Pontederia cordata and Scirpus cali/omicus with no trends evident for Scirpus validus or Thalia genicu!ata. Thalia genicu!ata had the highest flowering index values, when present, during the summer sampling events, with no time lag in reproductive stages evident within the sampling frequency of the data (Figure 108). Peak values for immature fruit and mature fruit varied slightly between the summer sampling events of 1992 and 1993 with mature values greater or equal to index values ofimmature fruit in 1992 and only immature fruit present during the sampling event in August of 1993. There appeared to be an increase in mean phenological index values over time especially for immature fruit, with values increasing from less then 0.5 in May and August 1992 to greater than 1.0 during August 1993. Gradient effects on phenology of T. geniculata were evident at Site 3 of the north cell where the highest phenological index was the flowering reproductive stage while peak values found at Sites 1 and 2 in the south marsh were mature or immature fruit stages. Phenological indices for Eleocharis interstincta in mixed planted plots were low making determination of trends difficult. All values were less than 1.0 with no activity occurring at Site 2 until August 1993 (Figure 108). Flowering, immature and mature fruit phenology appeared to occur during the summer while little activity and index values less than 0.25 occurred in the winter Mean phenological indices were greater in the north marsh at Site 3 than in either of the south marsh sampling locations, indicating a positive relationship between phenology index and distance from the marsh inlet. Pontederia cordata mean phenological indices show increased in activity at Site 1 in the north marsh and increased with distance away from the marsh inlet during the August 1992 sampling (Figure 108). Summer sampling events had the greatest abundance ofP. cordata flowers with phenology indices ranging from 0 .25 to 0 5 Time lag of reproductive stage was clearly evident between May and August 1992. However, in the summer of 1993, only flowering plants were present at Sites 2 and 3 and only immature fruiting plants were detected at Site 1. Winter flowering of Scirpus cali/omicus was evident in the mixed planted plots, indicating a seasonal trend in phenology for this species. Most of the activity for S. cali/omicus occurred at Site 1 in the south marsh. Only one mean phenological index value of 0.5 was recorded for immature fruit at Site 2 and no activity was recorded at Site 3 (Figure 109). There appeared to be no major changes in activity in phenology at Site 1 and no clear evidence of time lags for successive reproductive stages. Scirpus validus in mixed planted plots showed peak activity in August 1992 with little activity before or after this date (Figure 109). Mean phenological indices for all three sites was 0.75 showing no gradient effect due to distance from the marsh inlet on percentage of plants with mature fruit production Time lag of reproductive stages was not evident. Absence of any phenological activity in August 1993 may indicate a decreasing trend in flowering and fruit production over the course of the study period Seeded Plots Seeded plot treatments within the marsh generally showed low reproductive activity throughout the study period. Three of the species, Panicum hemitomon, 276

PAGE 253

Mixed Specie. Planted Plots -.-Flowering ..... Immature Fruit -+Mature Fruit 3 2 Site 1 Scirpus califomicus )( 1 Q) "0 0 ....................... 3 '" Q) 2 Site 2 >1 Cl 0 -... ...... (5 0 3 Q) .r:; Il. 2 I' Site 3 I I I I I I -1 0 , I 3 2 -Site 1 Scirpus vslidus 1 )( Q) 0 "0 .E 3 ........ '" 2 Q) Silo 2 1 >-Cl 0 0 .. ....... (5 3 I I I I I I I Q) 2 .r:; Sile3 Il. 1 0 : ._.-. t= \1>'< 9" Time (Months) Figure 109. Phenology of Scirpus califomicus (Top three grephs). Scirpus validus (Bottom three graphs) from Mixed Species Planted Plots. Experimental Planting Sites. 277

PAGE 254

Polygonum punctatum and Scirpus validus, showed no activity. Two species, Pontederia cordata and Sagittaria Iancifolia, had mean flowering .75), immature fruit 75) and mature fruit .5) phenological values in Sites 1 and 3 (Appendix B2). Pontederia cordata had flowering peaks during the early summer followed by immature fruit development in August 1992 (Figure 110). Activity of P. cordata was apparent during the summer of 1992 and 1993 at Site 1 but only during May of 1992 at Site 3. Sagittaria Iancifolia showed a similar pattern with flowering and fruiting occurring during the summer of 1992 and 1993 at Site 1 but restricted in 1992 to Site 3 (Figure 110). There was no reproductive activity for either of these two species at Site 2 in the western portion of the south cell of the marsh. Control Plots Three species were noted as having some reproductive activity in the control treatment plots (Appendix B3). Typha lati/olia, which was the most active, will be discussed later in a section designated to this species. Hydrocotyle ranunculoides showed no activity in any of the control plots until August 1993 when flowering and immature fruit phenology indices reached 0.17 and 0.08, respectively (Figure Ill). In March 1994 the mean flowering phenological index for this species was 0 .25 at all three sites. Seasonality, lag time or distance trends could not be identified due to limited data for this species. Polygonum punctatum, the third species with some activity within the control treatment plots, flowered in January 1992 at Site 2 and was both flowering and bearing immature fruit in August 1993 at Site 3 (Figure Ill). No other instances of phenological activity were noted for this species Mulched Plots Flowering phenology was the only reproductive phase noted for this treatment type and was identified in four species at all sites on three different sampling events (Appendix B3). Sagittaria lancifolia had an average flowering phenological index of 0.25 in August 1992 at Site 1. Cyperus odoratus was found at Sites 2 and 3 during the August 1993 sampling with mean flowering phenologic indices of 0.75 and 0.75 respectively Altemanthera philoxeroides was identified in March 1994 at Site 3 with a flowering phenologic index of 0.75 along with Hydrocotyle umbellata at the same location and time with a phenologic index of 0.25 The only other species identified in this treatment with phenologic characteristics was Typha latifolia, which will be discussed in more detail later. Natural Succession Measurements of phenology on natural succession transects revealed that thirty six species were found either flowering or with immature or mature fruit between November 1990 and March 1994 Most of these species were highly variable in their occurrence or phenology and resulted in mean phenological indices less then 0.01. For this reason these species will not be dealt with in more detail and the reader is referred to Appendix B4 for further information. Pontederia cordata, Hydrocotyle ranunculoides and Typha latifolia showed a more regular pattern of phenology. Pontederia cordata and 278

PAGE 255

Pontederia corda t a ---.-Flow e ri ng ... Immature Fru i t --+Mature Fru i t 3 2 Site 1 )( 1 Q) "tJ c: 0 .. .... .......... .... ..... ....... .... .... ... ........ c: 3 '" Q) 2 Site 2 >1 C> -0 "5 0 c: 3 Q) .c CL 2 Site 3 I I I I I 1 0 SSgittSriB 18ncffolia 3 2 Site 1 1 )( Q) "C 0 -= 3 c: -= : I I '" 2 Q) Site 2 >1 C> 0 0 "5 3 c: I I I I I I I Q) 2 .c -Site 3 CL 1 0 ... .... ... ........... / , I lime (Months) Figure 110 Phenology of Pontederia cordata (Top graph) and Sagittaria/ancifolia (Bottom graph) from Seed Plots, Experimental Planting Sites. 279

PAGE 257

Hydrocotyle ranunculoides will be discussed in this section. Typha latifolia will be discussed within its own section Pontederia cordata was found flowering on transects I, 9 and 6 and with immature frui t on transects 1 and 6. In the south marsh mean phenologic indices for flowering and immature fruit were less then 0.065 (Figure 112). Flowering on transect 6 in the north marsh had phenologic indices up to 2.0 in June 1991 and 1.75 in March of 1994 (Figure 112). Seasonal trends and time lag information for reproductive stages were not identified for Pontederia cordata under natural succession due to its limited occurrence in the marsh. Hydrocotyle ranunculoides showed a greater distribution of phenological activity than P. cordata and was found in all transects except transect 9 (Figure 113). Mean index values for all stages of phenology were less then 0 .25 until March 1994, except for flowering on transect 4 in May 1992 and immature seed production in August 1992 which were both 1.0. Flowering phenological indices in March 1994 increased to 1.0 or greater for transects I, 3, 6 and 8 and more than 0 5 for transects 2 and 4 Immature fruit phenology in March 1994 was measured at 0 5 on transect 4 and 8 and 0.25 on transect 2 and 6. Flowering activity appeared to be greatest during the summer months with no clear time lag ofimmature or mature fruiting being detected during the sampling period. TYpha latifolia Typha latifolia in Natural Succession. The dominant species, as determined by biomass and cover, within the marsh after the first year of flooding was TYpha latifolia. The phenology of this species therefore was well documented primari l y i n areas unde r natural succession, but also in areas which were initially planted or seeded with other species In the natural succession areas, T. lati/olia showed a seasonal pattern of flowering in late winter or early spring and had immature and mature fruit phenology during the summer sampling events (Figure 114). Time lags of mature fruit following i mmature fruit were evident especially in May and August 1992 samplings in the south marsh. Although tempora! changes in phenology of T. latifolia during the study period were not clear and were masked to some extent by spatial influences, i t appeared that in the south marsh phenological indices stayed relatively constant. In the north marsh flowering and fruiting phenology increased during the second year after flooding. Spatially there is a trend in the eastern portion of the south marsh closest to the inflow where immature and mature fruit were greatest in June 1991 and decreased to only half of that level in May and August of the following year In the west end of the south marsh all stages of phenology measured in August 1992 and February 1993 were equal or greater than those measured in August 1991 and January 1992. In the north marsh, transects 5, 7 and 8 showed increases in phenological activity in August 1992 and February 1993 from that of August 1991 and January 1992. Variability of T. lali/olia 281

PAGE 258

3 Pontederia cord8ta ""*-Flowering ___ Immature Fruit -&-Mature Fruit 2 -Transect 1 1 0 -. ... 3 2 I' Transect , -1 0 -3 , 2 -Transect 3 1 0 -3 , 2 )( Tra n sed: 4 Q) 1 "0 <: <: 0 '" 3 Q) , 2 -Transect 5 >. C) 0 1 (5 0 <: Ql 3 .s: (L , , 2 1 0 -----A -----"'3 , 2 -Transect 7 1 0 3 , 2 -Transect 8 1 0 3 2 Transect 9 1 0 0" gO 9\ 9\ 9i 'go> sat' 1"-ur;) Time (Months) Figure 112. Phenology of Poniederia cordata from Naturel Succession Transects. 282

PAGE 259

3 Hydrocoty/e ranuncuJoides -6Mature Fruit ___ Flo weri ng ..... Immature Fruit 2 Transect 1 1 0 -3 2 I Tran",'" I I I I I I I -1 0 3 , I 2 Transect 3 1 0 3 I I I I I I I I I 2 )( Transect 4 '" 1 .: c: 0 I m 3 '" I 2 Transect 5 >-Cl 0 1 "0 0 c: ." 3 ..c: a. I' I , I 2 Transect 6 1 0 3 I I 2 -Transect 7 1 0 3 I 2 1 0 -Transect 8 / .. 3 I 2 -Transect 9 1 0 0,,9 0 .' '., ja(\ Time (M onths) .i .. ",.< Figure 113 Pheno l ogy of Hydrocotyle ranunculoides from Natural Succession Transects 283

PAGE 260

3 Typha latifolia ___ Flowering __ Immature Fruit Mature Fruit 2 -Transect 1 1 0 ..... -\ --..,-- =. =I 3 2 1 0 Transect :2 , -. =--a---<,--.". 3 , 2 Transect 3 1 0 t--:. =t 3 , ')(' 2 Transect 4 1 "0 .!: 0 !' I _...:::-,,* m 3 2 I' -Transect 5 >-Cl 1 0 "0 0 -. -==-t =;J 3 .<: 0.. I' , , 2 -T ran sect 6 1 0 -3 2 -Transect 7 1 0 -. .. =a 3 , 2 -Transect 8 1 0 -. 3 2 Transect 9 1 0 ---0..,9 0 9' '9' '9'2. .'9'2. 9i i '"" \Ita" l'u!d Time (Months) Figure 114. Phenology of Typha latifolia from Natural Succession Transects. 284

PAGE 261

phenology between nodes along the same transect and during a specific sampling event were high but tended to be lower then other species sampled in the natural succession areas of the marsh (Appendix B4). 'JY.pha latifolia in Planted Treatments. The first observation of phenological activity of T. lali/olia in the planted treatments was in May 1992. Three treatments planted with Eleocharis interstincta (Figure 115), Pontederia cordata (Figure 115) and Sagittaria lancifolia (Figure 115) showed signs of immature fruit, mature fruit and flowering phenology of Typha latifolia. No other phenology stage was noted in the E. interstincta planted treatments after this sampling date, but both P. cordata and S. lancifolia planted treatments had mature fruit and dead fruit phenology in the August 1993 at Sites 3 and 2, respectively One additional flowering event of T. Iati/olia occurred in the P. cordata planted treatment in March 1994. Two other planted treatments had dead mature fruit phenology stages of T. lali/olia in August 1993 at Sites I, 2 and 3 for P hemitomon (Figure 116) and Sites 2 and 3 for So validus (Figure 116). So validus also showed flowering phenology of T. latifolia in March 1994 at Site 3. 'JY.pha lalifolia in Seeded Treatments Seeded treatments had the first occurrence of T. latifolia phenology in May 1992, and overall had a much greater level of cattail reproductive activity than did the planted treatments. Site 2 had the greatest phenology activity of cattail in all five of the seeded treatments. Pontederia cordata (Figure 117) and Panicum hemitomon (Figure 117) treatments showing some activity until March 1994 at Site 2 and only one other occurrence each of flowering and mature fruit phenology respectively at Site 1. The other three seeded species treatments, Polygonum punctatum (Figure 117), Sagittaria lancifolia (Figure 118) and Scirpus validus (Figure 118) showed lesser Typha activity at Site 2 than P. cordata and P. hemitomon treatments did and more activity at Site 1 (So lancifoUa) and Site 3 (P. punctatum) Typha lali/oUa flowering and immature fruit phenology in all five seeded treatments was only noted in May 1992 and all later sampling dates had mature or dead mature phenology. &'pha lalifolia in Mulched Treatment. The mulched treatment plots also showed this trend of flowering and immature fruit only May 1992 but this occurred at Site 1 and 3 and was followed by higher phenological index values of mature and dead mature fruit than those found in the control plots (Figure 119). Mulched treatments also had mature fruit of T. latifolia as early as January 1992 with equal index values in August 1992 and 1993. Typha lalifolia in Control Treatment. Typha latifoUa phenology in the control treatment showed no activity at Site I, but increasing activity after May 1992 at Sites 2 and 3 (Figure 119). Again only mature and dead mature phenology was noted after the August 1992 sampling event with both flowering and immature fruit occurring in May 1992. 285

PAGE 263

"C I: I: '" ., >-C) 0 "0 I: ., .r::; 0.. 'X' ., c: I: '" ., >C) o "0 I: ., .r::; 0.. _____ Flowering ..... Immature Frui t ---+-Mature Frurt A Dead Maturo Fruit 3 2 Site 1 Psnicum hemitomon Planted Plots 1 0 ------:------ .- 3 2 I' A Site 2 / / '" 1 / // '" 0 / ./ ,. 3 2 I Site 3 I I I I I -1 0 = I I 3 2 Sne l 1 -o 3 I 2 Sne2 1 o 3 I 2 -5 3 1 o I Scirpus vslidus Plan t ed Plots -""-.---" .----. ---... I I I I I .--- -- ----_..2": "'-... Time (Months) Figure 116. Phenology of Typha/atifolia in Panicum hemilomon (Top three grephs) and Sclrpus validus (Bottom three grephs) Planted Plots, Experimental Planting Sites. 287

PAGE 264

Typh.,.tifoli. in Seeded Plots ___ Flowering ___ Immature Fruit ___ Mature Fruit 3,-----------------------------------------, 2 Site 1 Pontederia cordata 1O. I I I ;. -, L. /A--__ o .. ... 3 2 SK.3 1 -o 3 'X' 21 Site 1 PBnicum hemitomon 0 -I -------... ._-- F=="' '''''' '-''' -'''-'' .. .. ... ... .::: "'. =='-i ._--------.... I 3 :;. 2 I I Sfte2 I 1 / g 0 ... ... .. ... ... "'--='= ... I 3 -1,-------",-------,-,------,-------.-,------,-------,----1 2 Site 3 1 -o ,_------.,=----"" .. :::: ... :::: ... :;:::::"::c" .. =----.. ,r-====:;:i====_.,f----------II, 3 2 -1 -o 3 i I 2 1 o 3 Site 1 Site 2 2 -S'e 3 1 o I I I Polygonum punct8tum I I I I I I I I I g'2. p...\l.Q g'2. fe'o Time (Months) Figure 117. Phenology of Typha latlfolia in Pontederia cordata (Top three graphs), Panicum hemitomon (Middle three graphs), and Po/ygonum punctatum (Bottom three graphs) Seeded Plots, Experimental Planting Sites. 288

PAGE 265

____ Flowering ..... Immature Fruit ---+Mature Fruit -1;.Dead Mature Fruit 3 2 Sagittaria /ancifolia Seeded Plots Sile1 2 / Q) 1 -............................ c 0 4 .. .. __ __ __ I 3 2 -sa.2 ----1 ....-..... g> ./ -----/ ------o 0 __ I 3 a. 2 Sae3 1 -o 3 2 Scirpus vslidus Seeded Plots Site 1 1 )( Q) 0 c 3 c '" 2 Q) 1 >-Cl 0 0 .--t--- I I I /' '''. I I "A, Site 2 / / -/ ... ,,"'" ........................ ,. 0 3 c I I I I Q) 2 .c: a. Site 3 1 -0 I I lime (Months) Figure 118. Phenology of Typha latifolia in Sagittaria lancifona (Top three grephs) and Scirpus validus (Bottom three grephs) Seeded Plots. Experimental Planting Sites 289

PAGE 266

3 2 ___ Flowering Site 1 ..... Immature Fruit --+-Mature Fruit ... Dead Mature Fruit Mulch Plots 1 -0 I m 34.-,------,'--------,.-------.-,------.-,------.-,------.---4 Sile2 ;;;. 2 -f 4 I-------..... ---__ ___ I 3 a.. 2 3 1 o .--------. ..... .......... -..... _.... , 3 2 Site 1 Control Plots 1 >< 0 'C -= 3 '" 2 -Site 2 ;;;. 1 >-'" 0 0 .. =t-. -----. -------". 0 3 2 .r= -Site 3 D.. 1 -0 =&= , Time (Months) Figure 119. Phenology of Typha /atifo/ia in Mulch (Top three grephs) and Control (Bottom three grephs) Plots, Experimental Planting Sites. 290

PAGE 267

CLONAL GROWTH Clonal growth studies within the Apopka Marsh Flow-Way provided additional information toward understanding the early succession and colonization of species Four target species, Pontederia cordata, Sagittaria lancifolia, Scirpus val iritIS and rypha latifolia, were monitored between May 1992 and May 1993. All of these species have rhizomatous morphology and vegetative reproductive potential under inundated conditions. Experimental design and data collected in this study were organized under two criteria. The first featured the change in rhizome growth distance between the two sample times The data were normalized to average daily growth rate of the four species in an effort to estimate the vegetative growth potential of these species The second criteria looked at the average distance to the nearest competitor to approximate competitive effects on the target species. In addition, possible effects of distance from the inlet on clonal growth rate and competitive interactions were analyzed. Oonal Daily Growth Average clonal growth rates from 0 013 cm d-1 for P. cordata at 2800 meters from inlet (MFI), to 0 162 cm d-for T. latifolia at 490 MFI (Table 29). Growth rates were generally less then 0.1 cm d-1 with the exception of T. latifolia, which had growth rates of 0.162 cm d-1 and 0 149 cm d-1 measured at 490 and 1200 MFI, respectively Of the four species studied, two species T. latifolia and P. cordata, showed decreased rates of growth with increasing distance from the inlet. The other two species, S. lancifolia and S. valiritlS, showed highest growth rates at the 1200 meter distance (Figure 120) Statistically significant differences (p=O.OOOl) were found between the four species when averaged over the whole marsh. Using Scheffe's multiple ranges test to isolate significant differences in growth rate means, T. latifolia had significantly (a.=O.OS) greater daily growth rates than all three other species studied. P cordata, S. valiritlS and S. lancifolia showed no significant difference with other species except for T. latifolia Effects of distance from inlet as well as distance from nearest competitor were analyzed using Pearsons coefficient correlation test. Daily growth of Pontederia cordata was negatively correlated with distance from the inlet (r=-0.420). The relationship was also negative, but less certain with Scirpus valiritlS (r=-0.26 p=O.18), and virtually nonexistent for Sagittaria lancifolia and Typha latifolia (Table 30). Distance from nearest competitor showed statistically significant effects on daily growth of P. cordata (p=O.034) and T. latifolia (p=O.018) Correlations in the two other species were noted. (Table 31). 291

PAGE 268

Table 29 Daily clonal growth rates (em day-I) of four species from Experimental Planting Sites. Pontederia cordata Sagittaria lancifolia Scirpus validus Typha latifolia Sample Site Distance From Inlet 490 Meters 1200 Meters Mean SE Mean SE 0.028 0.005 0.026 0.004 0.030 0 .007 0 038 0.006 0.068 0 .007 0.073 0 .012 0.162 0.047 0.1490.027 292 2800 Meters Mean SE 0.0130.004 0 .0350. 006 0 044 0.010 0.0430.016

PAGE 269

0.22 EZZa Pontederia cordata 0.20 Sagittan O a lancifolia 0.18 Itll Scirpus vafidus W i 0.16 b b Typha falifofia '" OJ ::;: 0.14 ""',., '" "tJ E 0.12 t 0 10 C> OJ E 0 08 0 .!::! a a .r: It: 0 06 m Cl a a a a 0.04 a a 0.02 a 0.00 Site 1 (490 m) m) Site 3 Planting Sites (Distance from inlet, meters) Figure 120. Dally rhizome growth retes (em day"1, Mean SE). Experimental Planting Site 293

PAGE 270

Competitor Effect on Daily Growth A positive correlation was found between daily growth and change in distance to competitors for P. cordata (r=O.35, p=O.03). In contrast, negative correlations were found between daily growth and delta distance to competitor for S. lancifolia (r=-0.24, p=O.10), and T. /atifolia (r=-0.49, p=O.018). Little or no relationship was found for S. validus (r=-0.12, p=O.53) (Table 30). The values given for this sampling parameter represent the distance filled in by the clonal and competitor species during the one-year period between sampling dates. The greater the positive value the greater the filling in rate of combined clonal and competitor species. Negative values suggested death of the nearest competitor or growth away from the target species. The change in distance ranged from 7.38 cm to 45.31 cm occurring inP. cordata at 2800MFI and 490 MFI, respectively (Table 31) Values for S. lancifolia and S. validus were typically between 10 and 20 cm. T. 1atifolia had values of 34.72 cm and 34.58 cm for sites 490 MFI and 1200 MFI respectively High mortality of T. /atifolia at site 2800 MFI confounded this analysis With data pooled by species, the change in distance to competition measure differed for T. /atifolia, S. lancifolia and S. validus (Scheffe's, a=O.05). No differences were found for P. cordata versus the other species This same analysis when tested individually at each site indicated highest differences between species at the nearest site to the inflow, 490 meters, and no statistically significant differences at the farthest site measured, 2800 meters (Figure 121). With data pooled by site, sites 490 and 1200 were similar to each other yet both differed from site 2800 (Scheff's a=O.05). Effects of distance from inflow on change in competitor distance were variable when analyzed using a Pearsons correlation test. P cordata was the only species highly correlated with distance from inflow (p = 0.0001). All other species showed little or no statistically significant correlation (Table 30). SEEDS Waterborne Seed T rapping Measurements of seed dispersal by water did not reveal differences in seed density (as represented by numbers of seed germinated) betweeen the upstream and downstream sides of the planted areas for any sample date (Table 32) No differences i n seed density between sites were detected for the first three sample periods. Site 3 was greater than Site 1 in the fourth sample (Table 32). This difference may be attributed to four species, Cyperus iria (104.5 seedlings per upstream trap, 53.5 per downstream trap), Ludwigia octovalvis (32. 3 seedlings per upstream trap, 7.8 seedlings per downstream trap), Eupatorium capillifolium (21 seedlings per upstream trap, 15 seedlings per 294

PAGE 271

Table 30 Pearson correlation analysis of daily clonal growth pattems of four species from Experimental Planting Sites Table entries consist of correlation coefficient and p value In parentheses. Site Daily Growth Pontederia cordata Daily Delta Growth Distance -0.420 -0.776 (0.010) (0.0001) 0.349 (0. 034) Sagittaria /anclfo/ia Scftpus va/idus Daily Delta Daily Delta Growth D i stance Growth plstance 0.064 0.056 -0.257 -0.233 (0.669) (0.709) (0.178) (0.220) -0.243 10.100) -0 120 10.535) Typha /alifo/la Daily Delta Growth plstance -0.055 -0 .103 (0.801) (0.988) -0.488 (0,018) Table 31. Change in distance between Target species and nearest competitor (an) offour species from Experimental Planting Sites. "." one surviving Individual. Pontaderia cordata Sagittaria /anclfo/ia Scftpus va/idus Typha /atifo/ia Sample Site Distance From Inlet 490 Meters 1200 Meters Mean SE Mean SE 45 .31 5 .264 18.33 4 .844 11.31 5 .105 21.44 6 .660 18.08 1 .834 10.45 3 .015 34.73 6 .294 34.58 7 .041 295 2800 Meters Mean SE 7 .38 2 130 16.73 7 .989 11.23 5 .020

PAGE 272

"0 c: -< Q) E o N :.c_ 50 o:: w 40 ",CI) Q)-!. 0 + Q) c: c.", CI) Q) 30 E '" 0 c: 0 Q)OJ+= }; 20 Q) E W 0 Q)U 0_ c: U> '" Q) -'" Q) c:Z Q) Ol c: '" U o a a a Site 1 (490 m) Pontederia cordata Sagittarialancifolia Scirpus validus lSSl Typha lalifolia b a a a Stte 2 (1200 m) Site 3 (2800 m) Planting Sites (Distance from inlet, meters) Figure 121. Change In distance between target species rhizome and nearest competitor (an, Mean SE) by Species. 296

PAGE 273

Table 32. Differences between waterbome seed traps by date from Experimental Plantlng Sites Values reported as # trap-1, Mean(Standard Error) Differences determined using TTest Differences between Sites Qate Site 1 S!le S92-N92 46.7 (12 2) 56 6 (23.4) -0.516 0.649 N92-D92 47.9 (11.9) 98.0 (31.7) -1.482 0.182 D92-J93 41.6 (10.0) 58.6 (23.6) -0.665 0.528 J93-M93 22.3 (4 8) 149 8 (31.D -3.979 0,005 Differences between Trap Positions Ul!!ream QowDst[!!am T-Value S92-N92 53.4 (16.5) 51.8 (18.6) 0 062 0.952 N92-D92 101. 4 (30.7) .5 (12 1) 1.720 0.129 D92-J93 64.5 (21.6) 34.9 (13 0) 1.133 0.278 (l!!.n 2 .221 297

PAGE 274

downstream trap), and Ludwigia palustris (10.8 seedlings per upstream trap, 4 3 seedlings per downstream trap) (Table 33) Velocity of water flow through the seed traps is an important factor in determining the composition and density of seeds moving into the trap. Because we were unable to obtain reliable measurement of flow velocity, it was not possible to conduct a time series analysis. A flow measurement test conducted at Site 3 while water level was at 35 cm revealed that water flow was less than the detection limit of the flow-meter (1.5 cm s-I). This low flow could be attributed to establishment of a dense mat of Eichhomia crassipes and Hydrocotyle ranunculoides in the northern planted area (Site 3). The development of flow-restricting vegetation and the system shutdown of spring 1993 (weir repair) made a time series analysis unreliable. The species composition identified with seed traps was similar to that of the seed bank study Species tended to be annual and rudera\ in life history type (Table 33). Spearmans Rank Correlation analysis revealed that species composition was related between the upstream and downstream traps for samples I, 2, and 4 (Table 34). The relationships tended to be weak, but statistically significant (p<0.10). The seed traps provided no evidence for movement of seeds from planted species out of the planted area. In contrast to the results of trap measurements, Scirpus validus was observed growing near the upstream edge of the southeastern planted area (Stenberg, Pers. Obs. ) It could only have come from the planted area because it was not present on the site before planting. Also, Thalia geniculata expanded its range from the original planted sites. Dissimilarities in species richness were small for both sites and all dates (Table 35). Airborne Seed Trapping Differences in trapped seed densities between sites were detected from the second and third samples (Table 36). No statistical differences in trapped seed densities were detected for the upstream versus downstream position (Table 36). Species composition of trapped seeds was almost exclusively made up of Typha spp. It was not possible to determine the relative proportion of T. domingensis and T. latifolia seeds, so they were lumped under Typha spp. The lone exception to sample dominance by Typha spp. seeds was the trapping of a single seed of Andropogon spp. in the N92-D92 sample at Site 1 in the downstream trap (Table 36). Seed Germination Seed germination rates were lower than expected (Table 37) Results are reported as minimum and maximum values to provide information about the range of values observed in this experiment. The experiment was conducted in a growth chamber at the Center For Wetlands. The growth chamber was chosen because it provided an environment with lower daily maximum temperatures and allowed for a consistent daily light/dark cycle. As will be seen by comparison with published data these experiments seem to have underestimated seed germination rates. The flooded treatment (1 cm depth) provided the best germination conditions, with more germination events and greater germination rates. These results will be compared with similar published studies in the Discussion section. 298

PAGE 275

Table 33. Summary of seedling densities from waterbome seed traps by date and site. Densities reported as # trap ,(Mean standard Error). Site 1 Site 3 Upstream Downstream Upstream Downstream S(!!!cies Mea!] SE Mea!] SI; Mean E MeaD E Sep92-Nov92 AMAAUS 10.33 2.96 5.33 3.18 AMMCOC 0.33 0 33 BACHAL 0.33 0.33 CARPEN 2.00 1.00 CARSPP 1.00 1.00 CVPBRE 1 00 1.00 1.00 0.58 CVPIRI 1.00 1.00 9.67 9.17 1.33 1.33 CVPODO 12.33 7.54 3.67 1.86 1.00 1.00 1.33 1.33 CVPSPP 0 33 0 33 CVPSPP1 1.00 1.00 CVPSPP2 2.33 2.33 ECHCRU 0.33 0.33 ECLALB 2 00 2.00 0.33 0.33 3.00 3.00 7 33 3.28 EUPCAP 3.33 1.76 1 33 0.88 7 00 7.00 37.3321.09 GALTIN 2.00 2 00 1.33 0.67 HYDRAN 6.00 6.00 2 33 1.45 JUNMAR 0.33 0.33 0.50 0 50 0.67 0.33 LINANA 3.33 2 85 0.33 0 33 0.67 0.67 LUDDEC 0 33 0 33 LUDLEP 1.33 1.33 LUDOCT 1 33 0.88 2.50 2.50 0.33 0.33 LUDPAL 0.33 0.33 1.50 0.50 <4.67 2.<40 LUDPER 0.33 0.33 2.00 2 00 0.33 0.33 LUDSPP 0.67 0.67 OXACOR 0.67 0.33 PANDIC 0.67 0.33 POLPUN 7.33 5 36 1.00 1 00 0 50 0.50 3.00 3.00 TYPSPP 16.67 0.67 7.00 7 00 13 5013.50 3.00 1 15 udicot 1.67 0.88 0.67 0.67 Nov92-Dec92 ALTPHI 0.25 0.25 AMAAUS 3 00 1.58 1.00 0.71 1.25 0.63 0.75 0.25 AMMCOC 0.25 0.25 0.25 0.25 0.25 0.25 BACHAL 0.25 0.25 0.75 0.<48 0.50 0.50 CARALB 0.75 0.25 0.25 0.25 CARPEN 0.50 0.50 0.75 0.25 0 25 0.25 CVPBRE 0.50 0.29 CVPHAS 1 00 0 58 1 25 0.95 0 25 0.25 CVPIRI 0.75 0.<48 6.50 3.75 13.25 8.93 0.50 0.50 CVPODO 5 75 3.01 5.50 3.23 7.50 3.97 3.25 1.65 CVPSPP 1.00 1 00 0 75 0 75 3.00 3 00 3.00 3.00 DIGSER 0 50 0 29 ECLALB 1.00 0.<41 12.0010.37 23.00 8 34 7 00 4.76 ELEVIV 0.50 0.50 EUPCAP 0.25 0.25 6.00 3.24 60 .0024. 69 2.25 1 93 299

PAGE 276

Table 33. Summary of seedling densities from waterborne seed traps by date and site (continued). Site 1 Site 3 GALTIN 0.50 0.50 2.50 0.65 0.25 0.25 HYDRAN 0.25 0.25 4.25 2.98 HYDSPP 0.25 0.25 JUNEFF 0.25 0 25 JUNMAR 0.25 0.25 LINANA 10.50 4.94 0.25 0.25 0.75 0.48 0.25 0 25 LUOOEC 1.00 1.00 LUOOCT 5 00 3 54 0.25 0.25 LUOPAL 0.25 0.25 0.25 0 25 10 75 7.11 LUOPER 4.50 2.06 1.00 0 .58 2.25 2.25 0.25 0 25 LUOSPP 0.75 0 75 0.75 0.75 MIKSCA 0 25 0.25 OXACOR 0.25 0.25 0.75 0.75 0.75 0.75 PANOIC 0.25 0.25 0 25 0 25 2.75 1.60 POLPUN 4.25 2.66 0.75 0.75 2.00 1.35 0.50 0.29 TYPSPP 7.25 1.89 17.25 8.26 18.00 4.12 11.50 4.57 udlcot 0.25 0.25 Oec92.Jan93 ALTPHI 0.75 0 48 AMAAUS 5.75 2 78 1 33 0.88 1.00 1.00 AMMCOC 0.25 0.25 CARALB 0.25 0 25 CVPHAS 0.25 0.25 CVPIRI 1.25 1.25 0 33 0.33 CVPOOO 6 75 2.87 6.33 4 37 4.25 2.66 4.75 2 50 CVPSPP 4.50 3 86 0.75 0.75 DIGSER 1.00 0.58 ECLALB 1.67 1 20 11.00 4.02 4 75 3.09 ELEINO 0.25 0.25 0.25 0.25 EUPCAP 0.25 0.25 20.5014.67 15.25 9.08 HYDRAN 1.00 0 .58 4.50 3.20 0 50 0 29 JUNMAR 0.25 0.25 L1NANA 2.25 1.93 0.33 0.33 LUOOCT 0.50 0.50 0.33 0.33 LUOPAL 0.50 0.50 1.50 1.50 LUOPER 9 00 2.48 13 33 9.06 6.50 3.77 2.00 0.71 LUOSPP 1.75 1.75 MIKSCA 0.50 0.50 0.50 0.50 PANOIC 0.25 0.25 1.25 0.48 POLPUN 3.25 2 93 TYPSPP 20.00 6 10 5.00 3.61 21. 7515.46 7 .00 3.19 udicot 0.25 0 25 300

PAGE 277

Table 33. Summary of seedling densities from waterbome seed traps by date and site (continued). Site 1 Site 3 Upstream Downstream Upstream Downstream Species Mean SE Mean SE Mean SE Mean SE Jan93-May93 AMAAUS 9.25 3.94 4.25 1. 0.75 0.48 0.25 0.25 AMMCOC 5.75 3.52 2 75 1.70 CARPEN 0.25 0.25 0.50 0.50 CVPBRE 0.25 0.25 2.00 1.22 3.00 2.12 CVPIRI 0.50 0.29 0.75 0.48 104.5045.55 53 5013.54 CVPODO 7.25 0.95 2.50 1 .32 1.50 0.87 2 .50 1.04 CVPSPP 0.50 0.50 CVPSUR 0.50 0.29 DIGSER 0.25 0.25 1.00 0 .41 Dlodia? 0.25 0.25 0.25 0.25 0.25 0.25 ECHCOL 0.75 0.48 ECLALB 0.50 0.29 0.25 0.25 5.75 2 .50 2.75 1.11 ELEIND 2.25 0.75 0.75 0.25 EUPCAP 0.50 0.50 21.0010 .90 15.00 4.51 FIMAUT 0 25 0 25 GALTIN 0.25 0.25 HYDRAN 0.25 0.25 LINANA 0.50 0.50 0.50 0.50 LUDLEP 4.50 1 .85 0.75 0 .48 3.25 0.85 4.50 2.90 LUDOCT 4.00 3.67 0.75 0 .75 32.25 6 66 7.75 4,87 LUDPAL 10.75 8.09 4.25 1.60 LUDPER 0.50 0.50 0.25 0 25 0.25 0.25 MIKSCA 0.25 0.25 PANDIC 0.25 0 25 0.75 0.48 0.25 0.25 PASDIC 1.25 0 75 0.25 0.25 POLPUN 0.50 0.50 0.25 0.25 ROTRAM 0 .50 0 .50 0.25 0.25 0.25 0.25 TYPSPP 5.00 4.67 0.25 0 .25 1.25 0 .95 2.75 2.75 301

PAGE 278

Table 34. Spearman Rank Correlation analysis comparing species composition of Upstream vs Downstream seed traps by date. Date S92-N92 N92-D92 D92-J93 J93-M93 Corr. Coer. -0.473 -0.191 0.044 0.224 p>IRI 0.0005 0.0334 0.7169 0.0232 Table 35. Species richness from water bome seed traps. Date S92-N92 N92-D92 D92-J93 J93-M93 Site 1 Upstream 15 15 13 11 Downstream 13 19 9 12 Site 3 Upstream 302 12 28 15 22 Downstream 20 21 12 23

PAGE 279

Table 36. Differences between airborne seed traps by date. Values reported as # 0.5 m-2 Mean(standard Error) Differences determined using TTest. Except for one seed of Andropogon spp. found in the Date=N92-D92. Site=1. Downstream trap. only Typha spp. seeds were found in traps Differences between Sites He 1 T-Value(l>III S92-N92 29 .0 (21.7) 23 .0 (15 2) 0 211 0.837 N92-D92 65.3 (16.0) 24.8 (4 2) 2 447 0.045 D92-J93 0.2 (0 .5) 4.3 (2.0) -2.026 0.082 2 (0 6} 2,1 (2,ll 2 m 2,m Differences between Trap Positions Qate Uostream S92-N92 33.1 (24.6) 19.7 (13.3) 0.480 0.640 N92-D92 44 1 (15.8) 43.3 (14.0) 0.047 0 964 D92-J93 3 3 (2.4) 2 1 (1.5) 0.433 0 673 ,!93-M93 0 6 (0 4} 0 .0 (o.o} 1 227 0 246 Table 37 Results of seed germination experiment. Reported as percent germination SPECIES Cyperus haspan Cyperus odoratus Echinoch/oa crusgalli E/eocharis inferstincta Juncus effusus Juncu s marg;natus Pontederia cordata Rumex crispus S agiftaria lancifo/ia Scirpus va/idus Typha latifolia TREATMENTS MOIST o 3 o o o o 0-3 0-33 0-17 o 2 303 FLOOD 52 3 13 o o o 0-2 0-37 0-25 o 2

PAGE 280

Seed Bank Overview. Seed bank species richness varied from 24 to 52 for all sites and samples (Table 38). The flora may be characterized as annual or biennial (47%), generalist (84%), species common to disturbed sites (56%) with dominance by grasses, graminoids, and herbs (95%). See Table 39 for a summary of seed bank species composition and seedling densities. Most species found in the seed bank have been reported to be <1.5 m tall at maturity (Godfrey and Wooten 1981a, b). Comparison of Seed Bank Treatments Mean seedling densities differed between field greenhouse treatment combinations (F=9.65, p=O.OOOI, n=12). Seedling count data were log10 transformed prior to analysis to correct a lack of independence of the mean and variance (Sokal and Rohlf 1981). The untransformed mean seedling densities are reported. Three seedling density patterns were detected (Figure 122). These seedling density patterns were related to dates of soil collection, greenhouse treatments (moist vs. flooded) and field treatments. Seedling densities measured from the November 1991 soil sample seemed to decline according to the following pattern: Natural Succession Transects> Mulch> Control (Figure 122). This pattern was not statistically significant (SNK Multiple Ranges Test, =0. I). In contrast, under moist soil conditions seedlings from the November 1992 sample seemed to follow a pattern of Natural Succession == Mulch> Control. This pattern was statistically significant (SNK Multiple Ranges Test, a=O. 1). Seedling densities for the two greenhouse soil moisture treatments were similar (Moist =Flood) for November 1991 and differed for the November 1992 soil samples. This pattern resulted because during the assay of November 1991, soil water levels were not well controlled. This problem was corrected before the start of the November 1992 assay Therefore, results of the November 1992 flooded soil treatment are reliable, while the November 1991 flooded soil treatment results are less so Seed bank species responded to field and greenhouse treatments. Species richness was higher under moist soil conditions regardless of the field treatment (Table 38). Species richness was higher in the seed bank than the existing vegetation at any time in the study period (Table 38). The most common and abundant species in the seed bank flora tended to germinate more readily under moist soil conditions (Table 40). In contrast to the majority, Typha spp. germinated more favorably under flooded conditions (Table 40) Species germination patterns were less distinct when comparing among field treatments. Under flooded conditions, only Lindemia anagallidea, Panicum dichotomiflorum and 1}pha spp had statistically significant differences (Table 41) The seedling density pattern detected for Typha spp reflects the overall seedling density pattern (Fig. 122, Table 40,41) Under moist soil conditions a larger collection of species was found to have statistically significant differences between field treatments (Table 42). These species included, Ammania coccinea, Cyperus surinamensis, Eclipta alba, Lindemia anagallidea, Ludwigia decu"ens, and Ludwigia octovalvis. Species seedling density patterns were not clearly defined, with the natural succession sites or control sites often 304

PAGE 281

Table 38. Number of species from seed bank and above-ground vegeta\Jon measurements. Data consolidated for simpllclty.ReId Treatment (FLO) Codes: NS=Natural Succession, MUL"'Mulch Site, and CON=Controi SIte. Greenhouse Treatment Codes (GRNHS): FL=Flooded Soil, MO=Molst Soli SEED BANK ABOVE-GROUND VEGETATION GRNHS SAMPLE DATES FLO 1991 1992 FL "10 FL "10 %CHG N0Y90 AUG91 JAN92 MAY92 AUG92 FEB93 AUG93 NS 50 51 32 51 +59 32 38 30 27 20 25 MUL 45 41 24 39 +63 14 15 12 15 25 CON 4 52 29 37 +28 18 15 14 16 32

PAGE 282

Table 39. Summary of seed bank density by species (# sample1). First column codes represent species abbreviations. Full species names with abbreviations can be found In Table 6. Column header codes use the following convention: sample sites (first two characters), dates (second two characters) and data type (last character) Site characters are: C1-C3=Control Sites 1 and 3; M1-M3=Mulch Sites 1 and 3; and T1-T8=Transects 1-8. Date characters are: N91=November 1991 and N92=November 1992. Data type characters are: F=Flooded greenhouse treatment ; M=Molst greenhouse treatment; and V=Vegetation cover SEEDBANK SEED BANK NOY1"1 NOY1"1 TRANSECT ftOIST ftULCH ftOIST CONTROL-ftOnT TRANSECTfLOO} ftULCH-fLOO} CONTR OL-fLOO) SE!e ACERUB 0 .00 0 00 0 .00 0 .00 0 .00 0.00 0 0 0 0 0 00 0 .00 0.00 0 .00 0 0 .00 A LTPHI 1 00 0 .00 0 0 00 0 .00 0.00 1 00 0.00 0 00 0 0 00 0.00 0 0 .00 1.00 0 .00 A ftUUS 3 12.50 0 1 00 1.00 1 2 1 00 1 .00 0 .00 1 .00 AftASPP 0 .00 0 00 0 .00 0 .00 0 00 0 0 0 .00 0 .00 0 00 0 00 0 0 0 0 00 AftBART 0 00 0 .00 0 0 0 00 0 .00 0 .00 1.00 0 0 0 00 0.00 0 00 0 .00 0 0 00 AftftCOC 1 .00 0 00 1 00 30.00 0 .00 0 3 .00 1500 0 00 ,.33 53a A N}SPP 0 0 00 0 .00 0 00 0 00 0 0 .00 0 .00 0 00 0 0 00 0 0 .00 0 .00 0 00 0 00 A PILEP 1'.00 1.00 0 00 0 .00 1 .00 0.00 la.aD 0 0 2 0 .00 0.00 0.00 0 00 0 ASTELL i!.[JD 2 00 0 .00 0 .00 1 00 1 1.00 3 .00 0 .00 0 0 0 .00 1 .00 0 .00 A STSPP 0 0 0.00 0 0 00 0.00 0 .00 0.00 0 0 0 00 0 .00 0 .00 0 00 0 0 ASTSUB 0 .00 0.00 DDD 0 .00 0 00 0.00 0 00 0 0.00 0 00 0 .00 D.DD 0 0 00 0 .00 0 ASTTEN 0 00 0 00 0 .00 0 .00 0 0 00 0 .00 0 .00 0 .00 0.00 0 00 0 0 0 .00 0 .00 0 .00 AZOCAR 0 00 0 00 0 .00 D DD 0 0 0 .00 0.00 D.DO 0 0 0 0 00 0 .00 0 0 .00 BACHAL 0 00 1 .00 0 .00 0 0 0 1 .00 0 .00 D.DD D.DO D DD 0 .00 0 0 .00 0.00 0 .00 B ACINN D .DD 0 .00 0 00 DDD 0 00 0 .00 0 00 0 0 0 0 0 .00 0 .00 0 0.00 BULAE 0.00 0 0 00 0 .00 0 .00 0.00 0 0 0.00 0 00 0 .00 0.00 0 0 0 0 00 BRAPUR 0 00 0 00 0 .00 0 00 0 00 0 0 .00 0 .00 0 .00 0.00 0 0.00 0 00 0.00 0 .00 0 .00 CALA"E 0 .00 0 0.00 0 0 00 0 0 .00 0 0 0 0 0.00 0 .00 0 .00 0 00 0 CARALB 1 00 D.DD 0 00 0 .00 0.00 D .DD 0 .00 0 00 0 .00 1.00 1.00 0 0 00 1 CARPEN 3 00 3 LDD 0 3 .aa 0.00 1 00 0 2 .00 3 .00 5 .20 5 .20 C ARSPP 0 0 .00 0 00 0 00 0 00 0.00 0 0 00 0 00 0 00 0 .00 0.00 0 00 0 3 00 0 00 C ASOBT 0 0 0 .00 0.00 0 0 00 0 .00 0 .00 0 .00 0.00 0 0 00 0 00 0 .00 0 .00 0 .00 CICftEX 0 .00 0 .00 0 0 00 0 0 .00 0.00 0 .00 0 00 0 0 00 0 .00 0 .00 0 .00 0 00 0 00 CO"If 0.00 0 1 0 .00 0.00 0.00 0.00 0 0 00 0 00 0 .00 0 0 .00 DDD 0 0 CYNUC 0 0 0 .00 0.00 2000 0 0 00 0 .00 0.00 0 .00 0 0 .00 2 0 .00 0.00 0 .00 CYPBRE 0 00 0 .00 2 2 00 1 0 .00 0 00 0 00 0 .00 1 .00 1 .00 5.50 0 0 .00 CYPCOft a .D[] 0 00 0 0 .00 0.00 0 .00 0 0 00 0 .00 0 00 0 .00 1 00 0 0 00 0 .00 0 00 CYPERA C 0 00 0.00 0 .00 0 00 0 00 0 .00 0.00 0 .00 0 00 0 00 0 0 .00 0 .00 0 0 0 CYPESC 0.00 0.00 0 0 00 0.00 0 .00 0 0 00 0 .00 0 .00 0 .00 0 0 00 1100 0.00 0 CYPHAS 0 00 0 00 .00 0 0 7 00 1 .33 1 1200 7 00 0 .00 2 00 7 CYPIRI 3a.DD 7[]D 10.75 23.00 H 22 17 7S 1725 22.25 1'.25 CYPO}O 17 5 .50 1233 12.33 150 lS.5D 5 50 .00 12 3 75 25 10.00 CYPSPP 15.00 1 HD 3a.DD 7 25 10.00 H .DD 1 0 25 3 CYPSUR 0 0 0 0 .00 1.00 1 1.00 0 .00 0 .00 0 00 1 00 0.00 2 .00 IIGSER a .DD 23.25 2233 2 L7 2.50 3 .50 a DD 2 3 00 10.00 2 .00 7 00 1 ECHCOL 2 00 1 .00 a .DD 0 .00 0 .00 1 0 a .DD 25.50 1 .00 0 00 1 3 00 1 .50 2 .00 ECHCRU 0 .00 0 0.00 0 0 .00 1.00 1 00 0 0.00 la.DD 0 00 0 .00 0 0 .00 1 00 ECHSPPl 0 00 D.DD 0 0 .00 0 .00 0 0 0 0 .00 0 00 0 0 0.00 0 .00 0 0 00 ECHSPP2 0 .00 0.00 0.00 0 .00 0 .00 0 00 0.00 0 0 .00 0.00 0 0 0 0.00 0 0.00 ECLALB nD 25.75 15 52.00 a n 33 2a 20 13.33 13 EICCRA 0 .00 0.00 0 0 0.00 0 .00 0 0 0 .00 0 .00 0 .00 0 0 0 .00 0 .00 0 .00 ELEfLA 0 00 0.00 0 0 .00 0 0 00 0 0 0 .00 0 .00 0 00 0 00 0 0.00 0 00 1 00 E L EIN} 25. L7 la25 a 10.50 ,.00 lD.aa 1 00 1 .00 11 3aD ELEINT D .DO DDD 0 0 .00 0 0 00 0 00 0 .00 0 .00 0 00 0 .00 0 .00 0 .00 0 .00 0 00 0 .00 ELESPP 0 00 0 00 0 00 0 .00 0 0 00 0.00 0 .00 0 00 0 0 00 0.00 0 0 .00 0 .00 0 .00

PAGE 283

Table 39. Seed bank density ( # sample-1 ) (Cont. ) SEEBANK SEEPBANK NOY1"1 NOY1"1 TRANSECT -"OIST "ULCH -"OIST CONTROL-"OIST TRANSECT-FLOOP "ULCH-FLOOP CONTROL-FLOO) spe t1N,1"0 13N,1"0 TbN,lno T1N'I"0 "1N,I"0 "3"'}"0 ()N'lnO (3",)"0 TIN,)F! T3N,lFL IbN,)" T?N,)'! "}N'lFk n3N,lfb 'l"'lEI '3N,lFb ELEYIV 0 .00 1500 0.00 l DD SS 0 .00 0 00 0 .00 0 00 l'DD 0.00 ell l .DD 1 0 .00 ERISPP 0 .00 0 00 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 .00 0 .00 0 00 0 00 0 .00 0 00 EUPCAP lD.SD l SD l S eDle 101.00 eSD ee.DD 'lSD ss n EUPSER l.DD 1 .00 0 00 0.00 U SD 0 .00 eD 0 .00 0 00 1 7 0 00 USD 1 00 EUPSPP 0 0 .00 0 00 0.00 0 0 .00 0 00 0 00 0 0 0.00 0 0 0 .00 0 00 0 .00 Fa AUT 0 .00 0 00 0 .00 0 0 00 0 0 .00 0 .00 0 0 .00 0 0 .00 0 .00 0 0 .00 0.00 GAL TIN UlDD l .SD 1600 1.SD 1 S .SD e DD el 1.50 0 .00 0 HE)UNI 0 0 0 .00 0 0 .00 0 00 0 00 0 .00 0 0 0 00 0 0.00 l DD 0 00 0 .00 HnRAN 0 .00 0 lDD l .DD 0 00 0 0 .00 0 00 0 00 0 .00 0 0.00 0 00 0 1 00 0 Hnspp 0 0 .00 0 0 0 0 .00 0 0 .00 0 0.00 0 0 .00 0 .00 0.00 0 00 0.00 HnU"B 0 00 0 .00 0 0 00 0 0.00 0 0 .00 0 00 0 0.00 0 00 0 0 00 0.00 0 0 .00 0 1.00 0 0.00 0 00 1 0 .00 0 0 00 0 .00 1 0 00 l .DD 0.00 1 0 l .DD 0 I.ll S.DD 13.00 lDD lD l ll 100 LE"SPP 0.00 0 0.00 0 0 .00 0 00 0 .00 0 .00 0 00 0.00 0 100.00 0 .00 0 0 00 0.00 LEPfAS 0 00 0.00 0 00 0 .00 0 0 .00 0 0 00 0 .00 0 0.00 0 00 0 0 .00 0 0 .00 LI"SPO 0 .00 0 0 .00 0 00 0 .00 0 0 .00 0 .00 0 0.00 0 0 0.00 0 0 00 0 00 LINANA 1 00 0 00 e .DD 0 .00 e DD 1 0 .00 Ulle LINCAN l .DD 1 00 0 .00 7 l 7S n .17 0 .00 0 00 0 .00 1 00 0 .00 7 .7 0 n 7 0 00 LUPALA 0 00 0 .00 0 0 .00 0 0 .00 0 0 00 0 0 0 .00 0 0 0 0 0.00 LunEC 0 .00 55 0 .00 0 0 .00 0 0 0 .00 '3.00 0 0 0 .00 0 7 .00 1 00 LUPLEP 3 .50 1 0 .00 1 0 .00 0 .00 1 00 0 .00 17 1 0.00 l.DO 0 S .DD lD.DO LUPOCT 2 .50 3 133 SD.75 "1 "7 S'.33 u.S. DO 16750 .e.5D S DD LUPPAL 10.00 3111.00 1750 3 SD '00 16.SD 3 LUPPER 0 00 0 00 0 00 lDD 0 0 00 1 00 0 .00 0 0 .00 0 0 00 0 .00 LUPSPP 10.00 0 0 00 1 00 7 0 0 .00 00 0 0 00 1 .00 0 0 .00 0 00 "ELCOR 0 00 0 .00 0 0 .00 0 0 00 0 .00 0 00 0 .00 0 0 0 0 0 .00 0 00 0 .00 "IKSCA 0 .00 0 0.00 1 0.00 0.00 0 0 .00 0 00 0 00 0 .00 0 0 .00 0 0 00 0 .00 "ITPET 120.00 0 00 0.00 U DD l .DD 0 0 0 0 .5.00 0 .00 1 .SD 0 .00 "O"CHA 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 .00 0 00 0 .00 0.00 0 0 .00 0 00 0 .00 PANPIC 13 1 .3l lDD 5.00 00 l .DD PANHE" 0 00 0 00 0.00 0 00 0 .00 0 0 .00 0.00 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 PANSPP 0 .00 0 .00 0 .00 1 00 0.00 1 0.00 1 00 lSD 1 00 0 1 n DD 1 PASPIC 0 00 0 00 0.00 0 0 .00 0 .00 D DD 0 0 .00 0 00 0 .00 0.00 0 0 .00 0 0 .00 PASPIS 0 .00 0 00 0 .00 0 0 .00 0.00 0 00 1 .00 0 00 0 .00 0 00 0.00 0 .00 0 0 .00 0 00 PASS PP 0 00 0 .00 0 0 .00 0 00 0 0 .00 0 0.00 0 00 0 00 0 .00 0 00 0 .00 0 0 .00 PASURY 0.00 0 0 .00 0 00 0 .00 0.00 1 0 0 .00 0 00 0 0 .00 0 00 lDD 0 .00 PENPEN 0 00 0 .00 0 1 .00 l OD 0 1 00 0 0 00 1 .00 0 00 0 00 0 0 .00 0 0 .00 PHVANG 10 0 00 0 00 0 1.00 1 5 .00 0.00 0 0 .00 0 00 0 .00 1 .00 0 00 PLUROS 0 .00 0 00 0.00 00 0.00 00 0 .00 0 0 .00 0 .00 0 0 .00 1 0 POACEAE 0.00 0 0 .00 0 0 00 0 00 0 00 0 00 0 0 .00 0 00 0 0 .00 0 .00 0 0 .00 POLPEN 0 0 .00 0 0.00 0.00 0 0 .00 0 0 .00 0 00 0 0.00 0 00 0 0 .00 0 00 POLPUN 0 00 n .3l 7SD 0 .00 e' 75 0.00 1 00 7 .00 5S 1 0 PONCOR 0 0 .00 0 00 0 0 .00 0 00 0 .00 0 .00 0 0 .00 0 0 0 .00 0 00 0 0 .00 POROLE 0 .00 1 0 .00 e.OD 0 0 .00 3 00 0 .00 0 00 0.00 0 0 00 1 50 PTERno 0 0 .00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 .00 0 0 .00 0 00 0 .00 0 .00 RANSPP 0 0 00 0 .00 0 .00 0 0 .00 0 0 .00 0 00 0 00 0.00 0.00 0 00 0.00 0 .00 0 00 0 0 .00 0 0 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 0.00 0 00 0.00 0.00 RHENAS 0.00 0 00 0 .00 0.00 0 00 0 0 .00 0 0 .00 0 00 0 00 0.00 0 0 0 .00 0 RHVBAL 0 0 00 0.00 0 0 0 0 0 .00 0.00 0.00 0 .00 0 0 .00 1.00 0 0 .00 ROTRA" 0.00 0 .00 0 00 0 .00 0 0 0 .00 l 75 0 .00 0 0 .00 00 0 0 RU"CRI 1 0 .00 0.00 0 0 .00 0 0 00 0 .00 0 0 0 00 0 0 .00 0 00 0 SAGLAN 0 0 00 0.00 0 0 0 00 0 0 .00 0 0.00 0 .00 0 0 .00 0 00 0.00 SAGLAT 0 0 .00 0 00 0 0 .00 0 0 .00 0 0 0 00 0 00 0 0.00 0 00 0 00 0 .00 307

PAGE 284

Table 39. Seed bank density (# sample-1 ) (Cont. ) SEnBANK SEnBANK NOV1"1 NOV1,'1 TRANSECT "OIST "ULCH "OaT CONTROL-MIST TRANSECT-fLOOD "ULCH-fLOOD CONTROL-fLOOD spp T1N,lMo T3N91no TbN,lnO 17N9)"0 ")N91M2 "3",)"0 ()N,IM2 (3N,)"0 T)N'lfL IhN,lfb T7N,)fb "'N,lfl n3N'lfb ()N,lfk C3N,lFL SAGriON 0 D.DD 0 0 .00 DDD 0 0 0 0 .00 0 00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 SAGSPP 0 0 0.00 0 .00 0 0 .00 1 0 .00 1.00 0 0 .00 0 .00 l.DD 0 00 0 SAL CAR 0.00 0 DDD 0 .00 0 0 .00 0 0 .00 0 .00 0 0 .00 0 0.00 0 0.00 0.00 SALROT 0.00 0 0 0 .00 0 0 .00 0 0 .00 0 0 0.00 0 0 .00 0 0 .00 0.00 SA"CAN 0.00 0 0 .00 0 .00 0 0.00 0.00 0 00 0 0 00 0 .00 0 00 0 0 .00 0 0 SA"PAR 0 0 .00 0 5.00 0.00 0 0 '.b7 0 0 .00 1 .00 0 .00 0 0 0 .00 SCI CAL 0.00 0 0 0 00 0 0 0 0 00 0 .00 0 0 00 0 .00 0 0.00 0 .00 0 scapp 0 0 00 0 00 0 0 .00 0 00 0.00 0 0 0 00 0.00 0 0 0.00 0 0 SCI VAL 0.00 0 0 .00 0 00 0.00 0.00 0 .00 0 0 0.00 0 .00 0.00 0 00 0 0.00 0 SENGLA 1 1.00 0.00 0 3 0 00 7 1 1 0 00 0 0.00 0.00 0 00 0 SES"AC 1 0.00 0 0 00 1 00 0 00 0 0 00 0 00 0 .00 0 00 0 .00 1.00 0 00 0 .00 0 .00 SET"AG 0.00 0 0 .00 0 0 0 0 0 0 .00 0 00 0 .00 0 0 00 0 .00 0 0 SOLA"E 0 .00 0 0 .00 0 0 .00 0 .00 0 0 0 00 1 0.00 0 .00 0 0 .00 0.00 SOL TOR 0.00 0 00 0 .00 0 00 0.00 0 0 0 0.00 0 0 .00 0 0 0.00 0 0 .00 SPIPOL 0 00 0.00 0.00 0 .00 0 0 .00 0 0 .00 0 0 00 0 00 0.00 0 .00 0 00 0.00 0.00 STAfLO 0.00 0 00 0.00 0 .00 0 .00 0 0.00 0 0 0 00 0 00 0 0 0 .00 0 0 THAGEN 0 0 0 0.00 0 0 .00 0 0 .00 0.00 0 0 .00 0 0.00 0 00 0 0.00 TYPDO" 0 .00 D.DD 0 .00 0 00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 0 00 0 00 0 TYPLAT 0 0 0 0 .00 0 00 0 00 0.00 0 00 0 .00 0 0 00 0 0 0 .00 0 0 00 TYPSPP 0 1 7 50 0 .00 3 0 .00 'b7 1 .b7 1 5 75 1.00 6&6 1.00 UTRBIf 0 .00 D.DD 0 .00 0 00 0 .00 0 .00 DDD 0.00 D.DD 0 0 00 0 0 .00 0.00 0 .00 0.00 0 .00 0 0 0 0 .00 D .DD 0 0 .00 0 00 0 0.00 0.00 0 .00 0 0 0.00 UTRSPP 0.00 0 0.00 0 .00 0.00 0 0.00 0 0 00 0.00 0 00 0 .00 0 0 00 0 .00 0 UTRSUB 0 0.00 0 0 .00 0 0 00 0.00 7 00 0 .00 0 00 0 00 0 0 0 0 VERPER 0 D.DD 0 0 0 00 0.00 0 0.00 3 0 0 0.00 0.00 0 0 0.00 VERseA 1 0 0 .00 0 00 1 0 00 0 00 0 .00 0 00 0 .00 0 00 0 0 00 1 0 VERSCR 0 D .DD 0 0 .00 0 00 0 .00 0 .00 0 0 00 0.00 0 0.00 0 .00 1 0 .00 WOLfLO 0.00 0 0 00 0 0 .00 0 .00 0.00 0 00 0 0 .00 0 0.00 0 0 0 00 0 WOLSPP 0 0 0 00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 0 .00 0.00 0 0.00 WOO VIR 1 0.00 0 0 00 0 .00 0.00 1.00 1 0 00 0 .00 0 0 .00 0 .00 0 00 0 .00 0 00 XYRJUP 0 0 00 0 0 .00 0 0 00 0 .00 0 00 0 .00 0 0 .00 0 00 0 .00 0 00 0.00 cypll:r.c 0 .00 0 .00 0 00 0 .00 0 0 .00 3 0 0 7.00 0 .00 0 0.00 0 .00 poaeel. H.DD 0 .00 7 00 0 00 0 0 .00 0 00 0 .00 00 3 0 0.00 DDO scispp 0 0 00 0 00 0 .00 0 00 0.00 0 0 0 .00 0 00 0 00 0 0 0 .00 0 0.00 udicot 1 1.00 1 0 0 0 .00 0 1 0 1.00 0 00 0.00 0 00 1 0.00 0 Table 39. Seed bank density (# sample-1). (Cont. ) SEnBANK SEnBANK TRANSECT "OIST "ULCH "OIST CONTROL-"OIST TRANSECT-fLOOD "ULCH-fLOOD CONTROL-fLOOD spp 1)",2"0 T3N,?MO ThN,?nO T7N,?nO "IN'2nO "3N,2"0 (IN'?M9 '3N'2"0 T1N92" T]N'2fl IbN'?f! 17N,2(L "'N'2Fl "3N'?FI ('N,eEL C3N,2FL ACERUB 0 0 .00 0 0 0 .00 0.00 0 .00 0 00 0 00 0.00 0 0.00 0 0 .00 0 0 ALTPHI 0 0 00 0.00 0 0 0 0 0 0 .00 0 0.00 0 0 0 0 0 .00 A"AAUS 5 0 00 17.00 36 0 .00 0.00 3 .50 0 .00 16.33 0 .00 A"ASPP 0.00 0 0 00 0 0 .00 0.00 0 0 00 0 0.00 0 0 .00 0 0 0 0 ""BART 0 0 00 0 .00 0.00 0 0 0 .00 0 0 .00 0 0.00 0 .00 0 0 .00 D.DD 0 A""COC 1 0 .00 3b7 3 1.00 0 3.50 0 ANDSPP 0 0 .00 0.00 0 .00 0 0 0 0 .00 0 .00 DDD 0.00 0 0 .00 0 .00 0 0.00 APILEP 0 0 .00 0 00 0.00 0.00 0.00 1 0 .00 0 0 0.00 0.00 0 0 .00 0 0 ASTELL 1 D .DO 0 0.00 0 1 0 0 .00 0.00 0 0 0.00 0.00 0 0 0.00 308

PAGE 285

'" M A o o N -' ... DOOOOOOoooooooooooccomoomooooooooooooomooooooooooooo o D:: .. ... z N o v 0000000000000000000000000000000000000000000000000000 ...................... ...... ........ ............ A o o -' L I % u -' N :0 ., A o o -' ... '" 0-ZNV .... '" WOO: ",zo-0-'" .... o ., -' o 0: 0-Z o V 0-'" .... o ., :z: V -' :0 EO 0-'" .... o ., '" 0-ZNV .... '" .. ,"00: ",zo-OOOOOOOOOOOooooooooooooooooooooooooooomooooooooooooo m m 0000000000000000000000000000000000000000000000000000 . . . . . . . . . . . . 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 .................................................. ........................................... .... ... N ............ ..................................... .................................................. 7 ........ ........... ........... ................. N ..................... .............. ........ . ... ru .................................................. o N r ......... ...... ..... . ................ ......... .. ...................................... .......... .. V

PAGE 286

01 00' 0 00' 0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 10dldS 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00'0 OOt OO"C 00' 0 OOt 00'0 3YV10S 00' 0 00'0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 00' 0 9VY13S 00'0 00'0 00' 0 00'0 00'0 OO t 00'0 OOt 00'0 00' 0 00'0 OOt 00'0 OO t 00'0 00' 0 )VYS3S 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 n9N3S 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 OOt 00' 0 00'0 00'0 00'0 00' 0 00'0 00'0 1VhDS 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00'0 00' 0 OOt 00' 0 00'0 00' 0 00'0 00' 0 ddSDS 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00' 0 00'0 1nDS 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00'0 OO t 00'0 00' 0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00'0 00'0 00' 0 00'0 NnyVS 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00' 0 OOt 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00' 0 ddS9 V S 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00'0 NOY9VS 00' 0 OO t 00' 0 00' 0 OO'S 00' 0 OOt 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00' 0 n19VS 00' 0 00' 0 OO t 00'0 OOt 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 Nn9VS 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 OO" D 00' 0 00'0 00'0 00' 0 OO"D OO t OS t 00'0 00'0 00'0 00'0 OO' E 00' 0 OOt 00'0 00'0 00' 0 OOt OO' E 00' 0 00'0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00' 0 OO"D 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00' 0 00' 0 00' 0 00'0 OO t 00' 0 00'0 00'0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 []OoO 00' 0 00'0 00'0 00'0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00' 0 00'0 00'0 00'0 00' 0 00' 0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00"0 00'0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 OO t 00'0 00' 0 00'0 00' 0 OOt 00' 0 00' 0 OO t OO t OO'E 00'0 00'0 00'0 00'0 Os t 00'0 00'0 OO'E 00' 0 00'0 00' 0 00'0 00' 0 VE' U 00' 0 Oo Et OS'V DOot 00" EE'VV 00' 0 OO"D oS'n Oo t DO"t Nnd10d 00'0 00'0 00'0 00' 0 00'0 00' 0 00' 0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00' 0 N3d 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00'0 00'0 00' 0 00'0 OO" D 00' 0 00' 0 3V3)'fOd 00' 0 00'0 00'0 00' 0 00'0 Oot 00' 0 00' 0 00' 0 Oo t OO"D 00'0 00'0 00'0 Oot 00' 0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 9NVAHd 00' 0 00' 0 00'0 00'0 00'0 00'0 00' 0 00' 0 Oo,t 00'0 [lOot 00'0 00'0 00'0 00' 0 N3dN3d 00' 0 OO" D OO"D 00' 0 00'0 OD"C 00'0 00' 0 00'0 00' 0 0000 00'0 Oo"D 00' 0 00' 0 OO' E 00' 0 00'0 00' 0 00'0 00'0 00'0 00 0 00' 0 00' 0 00' 0 00'0 00'0 00'0 00'0 00'0 00' 0 ddSSVd 00' 0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00' 0 OO'E 00' 0 oo"c 00'0 00'0 00'0 00' 0 00' 0 SHSVd 00' 0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 OO'E 00' 0 00' 0 00' 0 )HSVd 00'0 00'0 00' 0 00'0 00'0 00'0 Oo t 00' 0 Oo t COot 00'0 00'0 00'0 OD"D 00' 0 00'0 ddSNVd 00' 0 00' 0 00' 0 00'0 00'0 00' 0 OO" D 00' 0 00'0 00' 0 OO"D OO"D 00'0 00' 0 00' 0 00' 0 Y3HNVd L, t DOot 00' 0 OS'E OO'V OS'L OO'E OO'Ot SLt OS'L oo"s EE' S )HNVd 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 00'0 OD' C 00'0 00'0 00'0 OD"D 00'0 00'0 YH)"'OY 00' 0 00'0 00'0 Oo t 00' 0 00'0 00' 0 00' 0 00' 0 OO' E 00'0 00' 0 00'0 Os t l3dUY 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 00'0 Oo t 00'0 00'0 OO't 00'0 00 0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00 0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 VO)13Y 00' 0 00' 0 00'0 00'0 00'0 00'0 00 0 00'0 00'0 00' 0 00'0 00' 0 OD'D 00' 0 00'0 00'0 ddsan1 00' 0 Oot 00'0 00'0 oS' n 00'0 Oo t 00'0 00' 0 OO' t Oot OS'Et 00'0 V3dan1 00" Oot SL'V 00 0 L"U OS'H SL OO"D 1Vdan1 OS'S oO'n OsEt Os't OS'O, EE'n OO'V E,' U SL OS l)Oan1 Oo t 00'0 00'0 Oot OO' E EE', Oot OS'E 00'0 00' 0 oS'n OS'Ot d31an1 00'0 OO'E 00'0 00'0 OS'S Oot 00' 0 Oot OO'E 00' 0 EE'Ot naan1 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 00'0 Oot 00'0 00' 0 00' 0 00'0 00'0 00'0 nun1 00'0 00'0 00'0 00' 0 00'0 00'0 00 0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 NnNI1 Oot 00' 0 00'0 Oo't Ootst 00' 0 00'0 OO'E OO'LE VNVNI1 112bNt) i12bNtU 1:::I26AZ1 iOJ2bN"lX tJC!bNEI 112bAtl oU2bNtJ oW2bNEW 6U2bNtU 6U2bNLI 6w2bN11 oW2bNEI 6U2bNti ddS: lSIOY H)1nY lSIOY ( (l_aTdUl-es #) paas "6 aTq-eJ,

PAGE 287

Table 39. Seed bank density (# sample-1 ) (Cont. ) SEEBANK SEEBANK NOVl"2 NOVl"2 TRANSECT "OIST "ULCH "OIST CONTROL-"OIST TRANSECT-flOO) .mLcH-fLOO) CONTROL-fLOO spp 1\N,2"0 13N,2"0 IbN,?MO T7"'2"0 "}N,2"0 M3N'?MO C\N,?nO (3N,2"0 T1N,?fl T]N'?El IbN'?fL T7N,?Fl "),N,2Fb "3N,2'1 C1NQ?fl e3N,.", STAFLO 0 0 .00 0 0 .00 0 00 0.00 0 00 0 0.00 0 00 0 .00 0 00 D DD 0 0 0 .00 THAGEN 0 0 0 .00 0.00 0 00 0 00 0 .00 0 00 0 .00 0 00 0.00 0 00 0 0 .00 0 0 TYPO" 0 0 00 0 0 0 .00 0 0 00 0 .00 0 0 .00 0 00 0 0 .00 0 0 .00 0 00 TYPLAT 0 0 0 0 .00 0 00 0 0 .00 0 00 0 .00 0 .00 0 00 0.00 0 0 .00 0 00 0 .00 TYPSPP l 33 l'D 1 00 11.00 6 75 l2.5D 1 75 ),i! .7S 2 n .DD 16 15 2 63 UTRBIF 0 0.00 0 .00 0 .00 0 0 .00 0 00 0 0 .00 0 00 0 .00 0 0 0 .00 0 0 .00 UTRCOR 0 0 0 0 .00 0 .00 0 00 0.00 0 00 0 0.00 0 0 00 0 0 .00 0 0 00 UTRSPP 0 0 0 00 0 00 0 0 00 0 0 0 .00 0 0.00 0 0 0 00 0 0 .00 UTRSUB 0 0 00 0 0 00 0 0 00 0 0 0 .00 0 0 .00 0 0 D DD 0 0 .00 VERPER 0 0 0 .00 0 00 0 0 .00 0 0.00 0 00 0 0 0 0 00 0 00 0 .00 0 .00 VERSCA 0.00 0 0 .00 0 0 .00 0 00 0 0 .00 0 0 .00 0 0 00 0 00 0.00 0 00 0 VERSCR 0 00 0 00 0 .00 0 00 0 0 .00 0 00 0 0 .00 0 00 0 .00 0 0 00 0 0 00 0 .00 WOLFLO 0 .00 0 0 00 0 0.00 0 00 D .DD 0 0 .00 0 .00 0 0 .00 0 00 0.00 0 00 0 00 W OLSPP D.DD 0 .00 0.00 0 0 .00 0 00 D DD 0 .00 0 00 0.00 0 0 00 0 .00 0 0 00 0 00 WOOVIR 0 0 00 0 0 .00 0 0 .00 0.00 0 0 .00 0 00 0.00 0 .00 0 00 0 .00 0 0 00 XYRJUP 0 .00 0 00 0 0.00 1 00 0 0 00 0 00 0 0 .00 0 0 00 0 .00 0 0 .00 0 cypar. c 0 00 0 .00 0.00 0 D.DD 0 .00 0 00 D.DD 0 0 00 0 .00 0 00 D .DO 0 .00 0 0 .00 poacea a 0 00 0 00 1 .00 0 00 0 .00 0 00 0 00 0.00 0 00 0 00 0 .00 0 .00 0.00 0 .00 0 00 scispp 0 00 0 00 0.00 0.00 0 00 0 .00 0 00 0 00 0 .00 0 0 .00 0 .00 1 00 0 .00 0 00 0 .00 udicot 0 .00 0 00 0 0 .00 0 00 0 00 0 00 0 .00 D.DD 0 0 0 .00 0 0 00 0 00 D .DD 311

PAGE 288

SAMPLE TIMES NOV 1991 NOV 1992 GREENHOUSE TREATMENTS FLOOD EZ2l MOIST lSSl bbbI 12000 w V? 10000 '+ c '" Q) :;; iii c Q) D en S Q) Q) (/J 8000 6000 4000 2000 a NATURAL a MULCH a b Site Treatments CONTROL Figure 122. Comparisons among seed bank. treatments. Detected using SNK Multiple Rantes Test (<1.=0.10). Similar letters represent similar means. 312

PAGE 289

Table 40. Effects of soil flooding on .eed bank gOfminatlon densities (' m2 Mean SE) for species common to aU greenhouse and field treatment combinations. November 1992 sample only. Differences among treatment distributions tested wnh Wilcoxon Two-Sample Test (n=40, p<0.15 considered to ba. signifiCant difference). GREENHOUSE TREATMENTS FLOOO (FL)MOIST (MO) MEAI::l MEAI::l (1)E) Z Q Amaranthu$ australis 72 (33) -109 (53) 0.040 0.9681 Amman's coco/nea 376 (116) '" 433 (141) 0.7599 Cyperus haspen 37 (12) '" 27 (11) 1.065 0.2780 Cyperus Irla 505 (66) < 1860 (187) &.429 0.0001 Cyperus odoralUs 28 (8) < 140 (39) 0.0174 Cyperus spp. 46 (14) = 191 (96) 0.7134 Cyperus surinamensis 131 (35) '" 136 (46) 0.224 0.8224 Eel/pta alba &4 (20) < 149 (36) -3.573 0.0004 Eupatorium capillifolium 204 (70) < 1767 (338) -'.634 0,0001 Juncus marginarus 15 (6) '" 23 (13) 0.277 0.7816 Undemla anaga/tides 447 (201) 583 (249) 0.437 Ludwigis decumms 25 (9) < 60 (17) 1.623 0,1045 Ludwigls octova/vis 393 (113) < 1226 (254) -3.671 0.0002 Ludwlgla palustrls 123 (38) < 221 (50) -1.509 0.1313 Panlcum dichoromlfforum 83 (37) < 301 (104) -3.071 0.0021 Potygonum punctatum 349 (109) '" 434 (128) 0.6503 Rotals ramosoi, 7 (3) '" 8 (4) 0.9866 < 313

PAGE 290

Table 41. Etrects of field lraa1ment on seed bank germination densities ( I m-2 Mean tSE) for common species November 1992 sample only Dilferences among trea1ments tested with Kruskal-Wallis Multiple Comparison Test (Natural Success ion Transects and Contro l Trea1ments n=16 M ulch lraa1me n t n=8; p
PAGE 291

Table 42. Effects of field treatment on seed bank germination densities (g m2 Mean ;l:SE) for common species November 1992 sample only. Differences in distributions among treatments tested with Kruskal-Waliis Multiple Comparison Test (Naturel Succession and Control n=16, Mulch n=8; p <0.15 considered to be significantly difference). MOIST SOIL GREENHOUSE TREATMENT A. Seed bank germination densiUes (# m-2j FIELD TREATMENT Natural Succession (NS) Mulch (MUL) Control (CON) EE!:
PAGE 292

having the smallest seedling counts. Mulch sites tended to have middle range seedling density. Comparison of Seed Bank and Vegetation Species Composition. The species composition of the seed bank tended to differ from that of the extant vegetation. Based on a normalized dataset containing seed bank and vegetation species a Principal Components Analysis (PCA) and a cluster analysis revealed distinct groups (Figure 123, Table 43). The PCA revealed two distinct groups representing seed bank and vegetation species (Figure 123). The PCA Axis I was most closely correlated with treatments (Seed Bank Flooded and Moist, and Vegetation; Pearson Correlation, r=-0.831), and the PCA Axis IT was most closely correlated with the date of sample collection (pearson Correlation; r=-0.563). A cluster analysis revealed a similar pattern, but with more definitive groupings (Table 43) The cluster analysis revealed three species composition groups dominated by the seed bank and three dominated by the vegetation (Table 43). Within the seed bank and vegetation groups three additional subgroups each were found. Each group defined a separate site identity. Within the seed bank group, the first subgroup contained south marsh sites from November 1991. The second subgroup contained sites from both the November 1991 and 1992 samples, primarily from the north marsh. The third subgroup contained a mixture of sites from the north and south Marshes combined, all of which were sampled in November 1992. Within the vegetation group, the first subgroup contained all transect sites from the November 1990 through February 1993 samples. With the exception of transect 1 in March 1994, the second subgroup was dominated by mulch and control sites from May 1992 through August 1993. The third subgroup contained a mixture of transect, mulch, and control sites from August 1993 and March 1994. The third subgroup was also primarily made up of north marsh sites (Table 43). The patterns detected by Principal Components Analysis and cluster analysis result from the species contained within the seed bank not becoming established in the above-ground vegetation. The seed bank was dominated by a large collection of small, and often ephemeral species, such as, Cyperus iria, ElettSine indica, Lindemia anagallidea and Utricularia slIblilata. The prostrate, submersed species Llldwigia palustris was commonly found in the seed bank, but seldom found in the vegetation. The seed bank also contained species that had been important members of the vegetation community, such as, Eupatorium capillifolium, Ludwigia octovalvis, Panicum dichotomijlorum, and Polygonum punctatum. The dominant plant, cattail (Typha spp.) was found at low levels in the November 1991 sample, and at much higher levels in the November 1992 sample (Table 39). Although the donor mulch used in the plots came from a bayhead site, little evidence was found for the presence of bay head species from the mulch treatment (Table 3). The most likely contenders were Rhexia nashii (1 seedling, north marsh, November 1992), Utricularia subulata (24 seedlings, north marsh, November 1991) andXyrisjtlpicai (I seedling, south marsh, November 1992). Utricularia sublilata (7 seedlings, November 1991) was also found in the north marsh control site. 316

PAGE 293

, 2 5 SEED BANK o VEGETATION 1 5 0 = 00 0 0 u Cl. 0 0 <9 ... ,,'., ., 1.0 .. .. 0 9,0 0 0 0 8 0 0 5 0 0 0 0 0 I 0 0 0.5 1 0 1 5 2 0 2.5 peAl Figure 123. Principal comP!lnents analysis of normalized seed bank seedling densities (# m-2 ) and vegetation cover ('II> m -1. 317

PAGE 294

Table 43. Cluster analysis of normalized seed bank density and vegetation cover datasets from Natural Succession Transects and Experimental Planting Site Mulch and Control Sites. Left hand column codes reprasent specific sites (first two characters). dates (second two characters) and data type (last character). Site characters are: C1-C3=Control Sites 1 and 3; M1-M3=Mulch Sites 1 and 3; and T1-T8=Transects 1-8. Date characters are: N91=November 1991 and N92=November 1992. Data type characters are: F=Flooded greenhouse treatment; M=Molst greenhouse treatment; and V=Vegetation cover. DIS'rANCE .500 254.151 507.803 761.454 1015.106 1-------+-------+-------+-------+-------+-------+-------+-------+ 'rlN9ty ----------------1--------1 H1N9ty ----------------1 1---1 ClN9ty ---------1---------------1 1----1 (1) ClN91F ---------1 1 1 'rlN9ty --------1--------------------1 1 'rlN91F --------1 1 'r6N9ty 'r6N92!( H1N9n 'r6N9n C3N9n 'r7N92!( 'r7N9ty 'r7N9n 'rlN9n 'rlN92!( lON9ty lON9lF lON92!( C3N9ty C3N92!( C3N92F -------------1----1 1 -------------1 1---1 1 ------------------1 1----1 1------------1---------1 1 1 1 --------1 1---1 1 1 ------------------1 1---1 1 -----------1----1 1 1 1 -----------1 1-----1 1 1 1 ----------------1 1----1 1--1 ----------------------1 1 -----------------1------1 1 -----------1-----1 1------1 -----------1 1 -----------------------11 ------1----------------1 ------1 'r3N92!( --1----------------1 1 'rlN92F --I 1 1 H1N92!( --------1-----1 I 1 MlN92F --------1 1----1-------------------1 C1N92!( --------------1 1 'rlN92F --1----------1 I C1N92F --I 1-----1 'r6N92F ------1------1 'r7N92F ----1-1 lON92F ----I -----------------------1 1 1 1 1 1 (2) (3)

PAGE 295

Table 43. Cluster analysis of normalized seed bank density and vegetation cover datasets from Natural Succession Transects and Experimental Planting Site Mulch and Control Sites. (Cont.) TlN90V T8A92V T7J92V TlA92V T3A92V T6J92V TlA91V T8A91V T3N90V T1J92V T6N90V T7N90V T3J92V T8N90V T8J92V T6F93V T8F93V T6A92V TU93V T3F93V T7A92V T3A91V T6A91V T7A91V MUC92V MlA93V MlA92V MlF93V CU93V ClM92V TlM9'V ca93V ca92V lC3F93V C3F93V C3A93V lC3A93V lC3M92V lC3A92V ClA92V ClH92V DISTANCE .500 25'.151 507.803 1015.106 1-------+-------+-------+-------+-------+-------+-------+-------+ I-I I 1--1 I I I I-I 1-1 I I I-I -----1 I 1-----------1 I ---------1 1---1 I I-I -------------I 1----------II I ---11-1 ----I 1--1 I I I I 1--1------1 I I 1-------I I ----------1 -------1--1 -------1 1-------------------------1 ----------------1 I I I I I I I I 1----1 I I 1--------1 I I-I I I I I I 1--1 1------1 1------------------1 --I I I I II I I I I 1------------1 1------1 I -I I I I (5) I I I I I 11--1 I I I II 1----------------1 1-------1 I -I I I I I ----I I I I -I I I I 11--------------------------1 I I II 1------1 -I I 319

PAGE 296

Table 43 Cluster analysis of normalized seed bank density and vegetation cover datasets from Natural Succession Transects and Experimental Planting Site Mulch and Control Sites. (Cont.) DISTANCE .500 254.151 507.B03 1015.106 1-------+-------+-------+-------+-------+-------+-------+-------+ T7r93V -----1--------------------1 T&M94V ---1-1 1---1 TBM94V ---I I 1--1 T&A93V --------------------------1 I I I TBA93V ------------1-----------------1 1--1 C3M94V ------------1 I T1A93V ---------1----------1 I M3M94V ---------1 1------------1 T3A93V 1-----------1 I T3M94V I 1-------1 K1M94V 1-----------1 C1M94V I 320 (6)

PAGE 297

WILDLIFE UTILIZATION BIRD OBSERVATIONS Avian Species Similarity Avian species composition similarity, based on Simp sons Similarity Index, varied between 50% and 70% These index values were observed for the duration of the study within and between marshes (Figure 124) No temporal trends or major differences between or within the marshes in similarity were observed Avian Density Based on Transects. Avian density measurements from transects revealed some differences between the north and south marshes and consistent patterns within transects in each marsh (Figures 125, 126). The avian communities of the south and north marshes tended to be dominated by blackbirds (10-20 birds ha1 ) (Figure 125 126) In addition to blackbirds, ducks were important in the north marsh (10-40 birds ha1 ) (Figure 126) The observation of 40 birds ha1 occurred while sampling along transect 6 during the November 1992 sample period Duck densities declined in subsequent samples Avian densities tended to be lower in the unmanaged marsh than the north or south marshes (Figures 125-127) Density distribution of taxonomic types in the unmanaged marsh seemed more similar to the north marsh than the south Avian Density Based on Drive-Through Observations made using the Drive-Through Method revealed a slightly different pattern than that provided by transects (Figure 128) Blackbirds were important in the south marsh, as was observed along transects (Figure 128). In the south marsh, gallinules were not as important in the transect sample as in the drive-through sample In the north marsh, in contrast to the transects, a more evenly distributed taxon density was observed (Figure 128) Gallinules, Waders Blackbirds, and Passerines shared dominance over the time period represented (Figure 128) The agricultural field contained the lowest avian density at any time during any sample periods (Figure 128 ) Additional Bird Observations Additional birds sighted during visits, but not during survey periods were documented Avian species which were sighted on or near Clay Island included barn barred and great homed owls, bald eagles, and sharp-shinned hawks. Passerines were often seen along the edges of Clay Island and the marshes These passerines included blue grosbeak, grasshopper sparrow, common nighthawk, and chuck-will's-widow. Birds sighted near the agricultural field included yellow-billed cuckoo, lesser yellowlegs, sanderlings, least sandpiper and a cooper's hawk. Immature wood storks were sighted twice in the north marsh near transect 5. White pelicans were sighted near the study area. During the winter months sandhill cranes also flew directly over the marshes 321

PAGE 298

100 Nov 1991 90 April 1992 Nov 1992 80 c::J Mean ;;e. 70 x OJ "0 C 60 >. c til E 50 U5 c 40 0 U) 0E 30 U5 20 10 0 South vs North T1 vs T4 T5 vs T8 Sample Locations Figure 124 Avian species similarity index (Simpson Similarity Index %) 322

PAGE 299

50 Transect 1 (South Marsh) 40 30 20 10 0 50 40 30 -; 20 .. .<: 10 0 '" c: Q) 50 0 Transect 3 (South Marsh) c: .. 40 30 20 10 0 50 Transect 4 (South Marsh) 40 30 20 10 0 Ganinules Waders Blackbirds Passerines Ducks Ibis Other Total Taxonomic Group Figure 125. Avian density (# ha 1 ) estimates from transects in South Marsh 323

PAGE 300

50 Transect 5 (North Marsh) 40 30 20 10 a 50 Transect 6 (North Marsh) 40 30 20 '" .t:: :!t 10 a <: .. 50 c Transect 7 (North Marsh) <: 40 '" 30 20 10 a 50 Transect 8 (North Marsh) 40 30 20 10 0 Gallinules Waders B lackbirds Passerines Ducks Ibis other Total Taxonomic Group Figure 126. Avian density (# ha-') estimates from transects in North Marsh 324

PAGE 301

50 c:::::J Nov 1992 Transect 10 (Unmanaged Marsh) 40 April 1993 mBl Mean 30 20 10 0 50 40 30 20 10 0 Gallinules Waders Blackbirds Passerines Ducks Ibis Other Total Figure 127 Avian density (# ha" ) estimates from transects in Unmanaged Marsh 325

PAGE 302

60 IIIIIIlIIIII Nov 1991 50 c::J Apri l 1992 South Marsh 40 !!fa Nov 1992 30 April 1993 Mean 20 10 0 60 50 40 30 '" 20 .r: :!!:.. 1 0 0 en 60 ., 0 Unmanaged Marsh 50 '" 40 30 20 10 0 60 50 Agricultu ral Field 40 30 20 10 0 Gallinules Waders Blackbirds Passerines Ducks Ibis other Total Taxonomic Group Figure 128. Avian density (# ha" ) estimat e s using Dr i ve-Through method 326

PAGE 303

Nesting birds observed during the spring of 1992 and 1993 included common moorhens, purple gallinules, glossy ibis, little blue herons, and green-back herons. All three planting sites were used extensively for nesting by red-wing blackbirds boat-tailed grackles, and least bitterns. American bitterns, cattle egrets, and great blue herons were observed performing mating rituals, but nests of these birds were not found in the marshes. Yellow-crowned night herons and black-crowned night herons were observed with young in the south and north marshes during the 1992 breeding season In addition, eggs identified as belonging to yellow-crowned night herons were found near the south marsh inlet. Black-necked stilts were observed nesting in the south and unmanaged marshes during the 1991, 1992, and 1993 breeding seasons. It was interesting to note that sightings of the night herons and black-necked stilts were rare during late summer through winter months. A fulvous whistling duck was found in south marsh sitting on a nest with eggs in May 1993. Ospreys have been observed in nests in the trees along the lake shoreline near the marshes. These birds were observed feeding their young in these nests White ibis also built nests in the same forest, but it was difficult to ascertain whether young were being produced. MAMMAL OBSERVATIONS Raccoons, opossums, and armadillos were commonly observed on the project site. In May 1993 during a survey of the unmanaged marsh, two infant raccoons were found in a nest made of cattails Bobcats or evidence (e g. feces, foot prints, prey remains) were observed frequently around the marsh. Otters were sighted swimming and feeding in all three of the marshes Most often two or more otters were seen together. Occasionally, up to five otters were observed feeding in the open areas of the north and unmanaged marshes. A marsh rabbit and its nest were found near the end of transect 8. Rabbit feces have been found in other project areas Rats and mice were also commonly seen in the marshes at various times Fish have been observed during bird surveys and vegetation field work A limited throw trap survey in the south and unmanaged marshes revealed four species with dominance by mosquitofish (Gambusia holbrooki) (Table 44) Numerous Iilapia spp. nests were found in the unmanaged and south marshes. Large schools of gar have been seen in the canals and in the pool downstream of the south marsh outlet weir. Invertebrate observations

PAGE 304

Table 44, Small scale fish sample of South and Unmanaged Marshes. Density (# m-2 ) Species South Marsh Unmanaged_Mars h Gambusia holbroo 183.5 130 lei Heterandria Jormo 38 31 sa Ti/apia_spp, 0 8 letalurus nebulosu 1 0 s Total 222.5 169







done has increased slightly to 41 x 10 Cal plus, 0.3% larger than the

base solution.




Sensitivity Analysis and Conclusion


Intuitivity, energy production values calculated from the unit

model may change as new assignments of land activity are added. This

interdependency among land use activities implies that each object row

coefficient is a function of the set of variables that influences the

productivity of land; many of these variables are related to the quality

of other land uses. Thus, in reality, the land resource allocation

problem is nonlinear.

In order to test the interaction and the stability of the problem

solutions, the parametric linear programming technique (Gass, 1964) was

used. Sensitivity analysis deals with the changes in solutions due to

changes in data. The range through which values of the energy production

coefficient can be varied for the solution to remain optimal and feasible

were investigated.

For example, the base condition of water-use in land-use model II

simulates that water resource is the limiting factor in the area. The

base condition differs in formulation from that of the land-use model I

only in the objective row coefficients assigned to the productivities of

the agricultural and industrial sectors. In the land-use model I, pro-

ductivities of agricultural and industrial sectors are 12 x 106 and 36.6

x 106 Cal/acre, respectively (see Figure 11), while sensitivity analysis

shows the number necessary for a base solution under the criteria of





16



interaction with coal-based activity, such as urban or industry. It

is complicated when the water is part of solar energy transformation

that attracts and interacts with the fuels. However, an attempt has

been made to analyze and estimate the energy value of water. The

following chapter presents the procedure and assumptions made.





3



Chapter III covers the procedure and assumption for evaluating

energy value. In the chapter, estimation of model parameters based

on discrete system and linked system are presented. A sample computation

is provided in that chapter, and the supporting data is included in

the appendix. Some of the potential limitations of the parameters

derived from data problems are discussed.

Chapter IV presents the technique of formulating resources alloca-

tion problems. The common base for man and nature is first described.

Energy criterion is introduced as a measure of overall environmental

quality (Butkovich and Heaney, 1975). Then land use management is

translated into a standard linear programming problem. Land acreages

of subsystems are formulated as decision variables in the land use

model.

Chapter V contains the results of the land use model and its base

solution. Model simulations for constrained efficiency are also

presented. Parametric and sensitivity analyses have provided insight to

model stability as well as its implication. Future study is recommended.

Sections written by Dr. Odum on the energy value of water and the

relationship of energy effect to energy cost are also included. The

report is concluded with a list of references and appendices.
















FEEDBACK LOOP


ENERGY INPUT j
FROM SECTOR i: aijXj


ENERGY
PRODUCTION
SECTOR j


ENERGY OUTPUT
(GROSS) Xj


FINAL
CONSUMPTION
(NET) Yj


ENERGY EXTRACTED FROM EARTH

DIRECT ENERGY COST INDIRECT ENERGY COST = FINAL DEMAND

Xj Zaij Xj = Yj
i


Figure 1. Input-output balance for an energy production sector









for the relevant time intervals. A recursive linear programming approach,

which separates linear programming problems for each of a sequence of

short planning periods, could be employed to the management aspect of

the spatial and temporal resources allocation.

The above recommendations and suggestions are made in the realization

that this study, within the time and financial budget limitations, does

not permit investigation of all the possible improvements and extensions

that could be made to the proposed approach and its application to real

situations. A realistic model for water should have it contributing to

attract outside investment from urban and industrial systems as an inter-

action with basic production in agricultural and natural systems.

The principle conclusion at this stage of the research is that it

is possible to construct an operational resource allocation model based

on energy analysis theory. Coupling of nonlinear energetic models with

linear resource allocation models would allow one to look forward when

analog computers programmed with unit models generate coefficients that

could be sent to digital partners that simulate resource allocation

problems.















LIST OF FIGURES


Figure Page

1 Input-output balance for an energy
production sector 5

2 Energy diagram for an energy production sector 7

3 Energy quality factor in decreasing order 9

4 Energy intensity coefficient in a single sector
energy balance 12

5 Seasonal changes in insolation at the campus of
the University of Florida 18

6 Corn yield and fuel energy input during different
years 22

7 Energy flow diagram for an agricultural system
of a single corn crop 24

8 Modern agricultural systems interact with
natural, human, and fuel energies 31

9 Corn yield and yield ratio as a function of
fertilizer 33

10 Energy flow diagram for a hypothetical land use
model 36

11 Land use Model I's formulation and its base
solution 40

12 Land use distribution due to changes in
constraints 41









In energy maximization, the coefficients thus delineate the total

useful energy production per unit of land. Estimates of the energy value

of land for different production systems are summariezed in Table 5.

Evaluation of the data source and computational methods have led to the

selection of those considered representative for use in the problem

formulation. A hypothetical land use model is formed. The selective

values for this model are diagrammed in Figure 10.

Figure 10 offers an aggregate view of the relationship of the

production sectors to major inputs and outputs. The diagram displays

nonlinear processes within each system, which determine the coefficients

of each pathway. Water, fuel, and sunlight coefficients are calculated

from the unit model. Technical coefficients for land resources are set

at a value of 1.0, indicating a one-to-one correspondence between resource

input and production output. The pollutant contributor, nitrogen, is

incorporated as a constraint and corresponding to the degradation of the

environment, and their values are obtained from the study done by Loehr

(1974).

The approximation of input-output interdependency for a linear

assignment among all sectors lends to standard linear programming technique.

The decision variables, X's, represent land acreage, and the objective

is to maximize the total useful energy and is expressed as:

Maximize:

ROBJ = CAXA + CNXN + C X + CXU (16

where:

XA = units of land allocated to agricultural sector, acres;
XN = nits of land allocated to natural sector, acres;

X, = units of land allocated to industrial sector, acres; and

XU = units of land allocated to urban sector, acres.










power is maximized by crops characteristic transitions, and finally,

production declines and a steady state is reached.




Linear Programming for Land Use Model


Based on inference from production function, it is hypothesized

that when external energy sources become constant, the energy flows to

the system and the structure within the system also tend to be constant.

Thus, for a long-range land use plan, the strategy for the steady state

is implied. The land use management is formulated to an optimization

problem (Day, 1973), and simulated as a linear programming model. The

problem, or alternative, revolves around the question of balancing agri-

cultural, urban, and industrial expansion with natural land. Each system

is functioned under its best management practice. The planning objective

for the selection of land is the utilization of an energy criteria rather

than the more commonly used profit maximization criteria.

The energy value of land is defined as the total work done, or the

net productivity of the subsystem measured at its boundary. Productivity,

in units of energy Cal/acre, serves as a measure of value of the useful

work that each subsystem does for the whole. Energy provides a parameter

for the assessment of the natural system, its productivity is a measure

of the photosynthesis produced which eventually enters the foodchains of

man and animal. For the urban and industrial sectors, productivity is

measured as goods and services in terms of dollars and is converted to

Calories of energy using an energy-dollar ratio. For the agricultural

system, the productivity is measured by both the photosynthesis energy

conversion, and goods and services of purchased energy dollar conversion.





PAGE 1

Development of Natural and Planted Vegetation and Wildlife Use in the Lake Apopka Marsh Flow-Way Demonstration Project FINAL REPORT by John Stenberg', Mark Clark'and Roxanne Center for Wetlands University of Florida Gainesville, Florida and 2St. Johns River Water Management District Palatka, Florida edited by Joseph Prenger Prepared for: St. Johns River Water Management District Palatka, Florida Contract # 89B005 (SWIM 1O-43-6420-3103-DIST-31500) 1997

PAGE 2

I. INTRODUCTION This research project provides information about vegetation and wildlife community development and control of vegetation community development in the Lake Apopka Marsh Flow-Way Demonstration Project. Information from this study will be used to help guide the design, construction and management of a full scale Lake Apopka Marsh Flow-Way. VEGETATION COMPONENT Until this project little information was available about "old-field" succession in wetland ecosystems. The successional process occurring in the study area is defined as secondary rather than primary because the site was not devoid of organisms (GlennLewin and van der Maarel 1992). Previous site manipulation drastically changed the site, but not to the extent that it was beginning a successional process without propagules or on a newly formed substrate. There exists a long history of studies on upland old-field succession in northern temperate areas within recovering agricultural lands (Bazzaz 1976, Odum 1960, Wiegert and Evans 1964, and Zedler and Zedler 1969). Much of the early theoretical work in ecology centered around observations of abandoned farmland in North America. Many familiar paradigms in today's ecology originated from these studies. They include: Succession begins with the establishment of an annual plant community that rapidly shifts to a shrub community which then is replaced by a forest. The forest is stable and remains intact for a long period of time unless it is distuIbed by some exogenous force such as wind or fire, and The successional pattern is predictable and generally driven by local climate. In other words, if the ecosystem is left alone it will return to a "normal" state (peet 1992). Contemporary successional paradigms don't accept a simplistic view of plant community succession. McCook (1994) provides a useful analysis of the various successional theories in use today. He suggests that there are generally accepted patterns of succession including: initial conditions are important, species replacements occur over time, and successional theories tend to be incomplete and somewhat fragmented. His statement, which is a condensation of past theory and a guide for the study and management of plant community succession, consists of three conditions: Life history strategies employed by various species will determine how they respond to the available environmental conditions; Competitive interactions determine the relative success of species within an ecosystem; 1

PAGE 3

Sorting of species along environmental gradients will result from the interplay of life history strategies and competitive interactions. This theoretical statement says that species with the ability to establish, survive and compete with other species along an environmental gradient will determine the character of successional patterns. Understanding these various components may lead to a moderately correct prediction of successional patterns. This study was initiated before the publication of McCook's paper, but included many of its criteria for predicting successional patterns. Life history strategies may be inferred from long-term measurements of species presence/absence, cover, density, height, and phenology, and measurements of seed bank, and seed dispersal. Competitive interactions may be inferred from measurements of species performance under conditions of manipulated (e.g. planted) versus un-manipulated (e.g. unplanted) sites within the developing marsh. Sorting along environmental gradients may be addressed by the downstream placement of study plots. With this information we can generate a conceptual model of how ecosystem development may occur on this site. WILDLIFE COMMUNITIES AND mGH NUTRIENT ENVIRONMENTS Constructed Wetlands and Habitat Ouality Many studies have been conducted on the most effective methods of designing and managing constructed wetlands to enhance habitat qUality. Marble (1992) discussed methods that may enhance wetland dependent bird diversity. She suggested the use of complex/cluster wetlands to create a variety of habitats. Suggestions for vegetation class interspersion, richness, and canopy also were given that focus on enhancing bird populations. Knight (1992) explained that significant losses of vegetation and animals may occur as a result of high loadings of pollutants. He suggested that water flow and depth control may affect primary productivity of the wetland and the ability of the wetland to effectively treat nonpoint source pollution. He suggested that greater flows in shallow water provide higher dissolved oxygen levels leading to higher secondary productivity. Deeper water can limit oxidation of organic matter and plant growth. The wetland design should include a flexible hydroperiod to allow for maximum growth of emergent vegetation over submerged vegetation and algae. Hammer (1992a) predicted that high loading of nutrients into a system would allow Typha spp., Salix spp., or other woody shrubs to dominate and reduce the ecosystem's diversity. Hammer (1992b) also found that manipulation of the water level alone can sustain a diverse, complex, and productive marsh for many years. Furthermore, fluctuations of water levels may create more ecological niches. Wildlife production is generally high for constructed wetlands receiving high concentrations of nutrients (Hammer 1992a, Hammer 1992b, McAllister 1993a, 2

PAGE 4

McAllister 1993b, Streever and Crisman 1993, Kale 1992, McAllister 1992, Knight 1992, Rader and Richardson 1992, Kerekes 1990, Maehr 1984). Edelson and Collopy (1990) conducted a study of wading bird utilization of a hypereutrophic lake, and concluded that the abundance of fish stimulated a large population of egrets and herons. Van Home (1983) correlated habitat diversity and wildlife species by the ratio of generalist to specialist species in managed areas. A positive correlation between habitat quality and species density cannot be assumed without supporting demographic data. Home defined habitat quality as the relative importance of a certain habitat type in maintaining wildlife. He suggested that management plans should not be adopted on the basis of species surveys or censuses conducted for one year or less. Factors Affecting Avian Community Structure Based on studies of marshes in Iowa, Weller and Spatcher (1965) suggested that the majority of common marsh birds preferred a combination of dry and open areas, and areas of extreme coverage or extreme openness were not preferred by anyone marsh bird species. "Edge" areas were attractive only when open pockets of water were present. Interspersion of open areas that could be connected by animal trails were determined to be more important than cover to open water ratios in determining habitat suitability for marsh birds. Joyner (1980) found that pond selection by ducks in Ontario was partially determined by invertebrate density. Voigts (1976) determined that invertebrate abundance increased as submergent vegetation replaced emergent vegetation and that marshes with submerged vegetation (suggesting openness) interspersed with emergent vegetation (suggesting cover) maintained the greatest invertebrate abundance. Nesting birds preferred marshes with the highest numbers of invertebrates. Murkin (1982) discovered that on experimental plots of various cover:water ratios, dabbling ducks preferred the 50:50 plots. This study supported the theory that maximum avian use and production occurs during the "herni-marsh" phase of the marsh cycle. Invertebrate abundance also was positively correlated with marsh usage by waterfowl. However, invertebrate abundance was not affected by cover removal. Visual cues of openness may be the primary factor used by waterfowl to select areas of greatest invertebrate abundance. Leschisin et al. (1992) suggested that vegetative factors such as cover, species diversity, and wetland age may affect waterfowl usage of wetlands. Their study revealed that breeding waterfowl may select a marsh based only on physical characteristics, with preference to submerged vegetation. This study did not include an analysis of water quality, or the macroinvertebrate and fish populations. Wilcox and Meeker (1992) found that structural complexity and species diversity of the plant community was important to providing habitat for invertebrates, thus affecting the availability of a food source for fish and birds in marshes. Water depth fluctuation affected both plant structure and diVersity. No, or infrequent, water fluctuation reduced the plant diversity and negatively affected invertebrate populations 3

PAGE 5

However, large aquatic macrophytes tended to dominate their study sites. It was suggested that large fluctuations in water depth could lead to a lack of larger canopy plants resulting in reduced habitat for invertebrates and protective cover for fish and birds. In a study of plant-macroinvertebrate associations with waterfowl, one gram of animal biomass was associated with every 100 grams of plant life (Krull 1970). Although there was no differentiation between overall percent cover types, it was noted that plants considered to be poor waterfowl food can harbor large quantities of macroinvertebrates, thereby increasing the area's utility for waterfowl. OBJECTIVES Awssment of ExJ;!erimental Planting Areas and Natura! Succession Transects. This assessment introduces studies that were designed to provide information about the succession of agricultural land to freshwater marsh after flooding and to determine if the inclusion of preferred species will enhance the succession of this new marsh. Assesgpent of Experimental Planting Treatments. The objective of this subtask was to determine the nature of plant community development within three Experimental Planting areas. In 1991 a contractor selected by the SJRWMD completed planting in three five-acre experimental blocks located within the marsh flow-way. The successional development of these three areas containing a variety of experimental treatments was monitored. Each site contained planted, seeded, mulched, and control treatments. These treatments were chosen to test the survivability, competitiveness, and colonization potential of a suite of wetland species. The experimental planting sites provided information about the feasibility of enhancing plant community succession to a desirable species composition. These sites also provided insights into plant community development in the presence of cattail (Typha latifolia), an invasive, potentially site dominating plant species. Assessment of Natural Succession -Structure and Composition This subtask provided an assessment of successional development of the natural marsh and was compared to succession in the experimental planting areas. This assessment was undertaken to determine successional development without site manipulation or succession enhancement through planting. Assesgpent of Natural Succession Aboye-and Below-ground Biomass Dynamics This assessment provided insights into the vegetation biomass dynamics in the natural succession area of the marsh. Above and below ground biomass data were collected in order to determine the partitioning of biomass in the ecosystem over time. 4

PAGE 6

The vegetation samples provided material for tissue nutrient analysis conducted by the University of Florida Department of Soil and Water Sciences. Reproductiye Potential from seed for plant commnnities in the Lake ADOJ.)ka Marsh The purpose of this task was to determine phenology of seed production (presence of flowers and fruits); assess the effect of water depth on seed germination; assess the role of air and water in seed dispersal in the marsh; determine the potential role of the seed bank in plant community dynamics; and determine seasonal patterns of flowering and fruiting in the marsh. Literature related to seed resources can be found in Leek, et aI. (1989) and Fenner (1992). Regenerative capabilities of vegetative communities are dependent on two strategies: sexual reproduction from seed, and asexual reproduction (clonal) from rhizomes, stolons, or other means of vegetative growth. Wetland ecosystems tend to contain a preponderance of species that use clonal growth to increase and maintain population sizes. Seeds are an important part of the reproductive potential of a wetland community, but seeds make their greatest contribution to community regeneration or expansion during the periods when water levels recede to a low enough point to allow seed germination (van der Valk 1992). Understanding the regenerative potential of plant species found in the marsh will help managers devise management strategies for promoting or retarding these species. Reproductiye Phenology Reproductive phenology was studied to provide information on flowering and fruiting phenology in the marsh in the natural succession areas and planting sites. Seed Germination This assessment was designed to provide information about the seed germination requirements of various plant species (preferred and nuisance) in the marsh, including the effects of shallow flooding on germination of target species within the marsh. Species of interest included: (1) dominant species found in the natural marsh, (2) planted species in the experimental planting site, and (3) obligate hydrophyte species (as defined by Reed 1989) found in the local area. Seed Dispersal The seed dispersal assessment was designed to provide information about seed dispersal to and from the Planted Sites. This information will provide insights into the understanding the seed flow patterns in the marsh. Soil Seed Bank Soil seed banks have been identified as sources of propagules for the regeneration of disturbed ecosystems. In some cases seeds have remained viable in the soil for long periods of time and have provided an opportunity to contribute to vegetation community restoration (van der Valk, A.G. and R.L. Pederson. 1989, van der Valk, 5

PAGE 7

A.G and J.T.A. Verhoeven 1988, and van der Valk, A.G., R.L. Pederson, and C.B. Davis. 1992). In the case of the Lake Apopka Marsh, with anticipated management strategies including long hydroperiod and water depth greater than 50 cm, the seed bank may not contribute favorable wetland species to restoration of preferred species because farming activities have included intensive site management techniques to remove competing plant species and reduce water levels Clonal Growth Clonal growth, an asexual reproductive strategy common to many wetland species, was studied to determine its contribution to the development of the marsh. Wetland species use this strategy to take advantage of environmental conditions that often are not acceptable for seed germination (e.g. deep flooding for long periods). This study was designed to compare the growth rates of rhizomes from a set of target species in the Planted area, including P01l1edaria cordata, Sagiltaria lancifolia, Scirpus californicus, and Typha latifolia. Wildlife Component This portion of the Apopka Demonstration Project Report identifies the population dynamics of the emerging wildlife communities utilizing the marsh from August 1991 through November 1993. Avian communities were used as the primary indicators of habitat quality for this study for the following reasons : 1) birds are easy to observe; 2) they engage in community dynamics; and 3) other studies have shown that birds are often sensitive to changes in wetland structure and function (Edelson and Collopy 1990, Cable et al. 1989, Frederick and Collopy 1988, Kroodsma 1978). In addition, Edelson and Collopy (1990) determined that constructed wetlands can provide suitable habitat for many avian species. A limited fish survey is included in this report to supplement the avian surveys in the description of the wildlife communities using the project site. Only the south and unmanaged marshes of the demonstration project were sampled. 6

PAGE 8

II. STUDY SITE The study marsh is located on the northwest shore (28 40'N Latitude, 80 39W Longitude) of Lake Apopka in Lake County, Florida (Figure I). Lake Apopka is located in the headwaters of the Ocklawaha River basin, downstream and northeast of the Green Swamp. Before it was farmed, the site was a sawgrass/roixed shrub marsh (1940 USGS Aerial Photograph, 1842 Surveyers Map). Landscape changes began in the 1880s with the digging of the Apopka-Beauclair Canal. The canal connected Lake Apopka to Lake Beauclair Prior to the canal, Lake Apopka probably drained overland through a hardwood swamp forest to the northwest into Little Lake Harris The canal seems to have reduced the water level in Lake Apopka based on observations of a present day difference in water level between Lake Apopka and downstream lakes (USGS hydrodata) Conversion of marsh into agricultura1land began during the late 1940s. Most of the marsh area was converted to farmland by the middle 1950s. Lake eutrophication progressed as a result of oxidized soil releasing nutrients into drainage water, fertilizer application in farming, discharge from a nearby citrus processing plant, and sewage effluent discharge from the community ofWmter Garden. Lake Apopka restoration plans began in the 1970s as water quality degraded and the lake's recreational fishery declined. Restoration efforts have continued with land acquisitions and the establishment of the Lake Apopka Marsh Demonstration Flow-Way Project. PHYSICA L CHARACTERISTICS Climate in this region is transitional between subtropical and temperate (Chen and Gerber 1991). This pattern is evident from the cool, slightly rainy winters, dry fall and spring seasons, and hot wet summers (Figures 2 and 3). Wmter temperatures below freezing are infrequent, resulting in a nearly continuous growing season for vegetation Soil at the site is a 10 cm to 1 m thick veneer ofhistosol over clay and sand (Lake Co. Soil Survey; Pers Obs.). Fifty years offarming has resulted in soil oxidation The soil surface elevation reduction due to oxidation is approximately one meter (unpublished data, SJRWMD Soil Elevation Survey). Farming practices included plowing to an approximate depth of 50 crn, applying pesticides, and repeated planting of a seasonal rotation of primarily com and carrots. These practices removed all wetland plants from the crop areas of the farm fields. The rapidly growing wetland plants, Eichhomia crassipes, Hydrocotyle rammculoides and '/ypha spp. maintained populations along drainage canals in spite of herbicide applications. Lake Apopka water enters the marsh along the eastern levee of the south marsh. It flows westward through a water control weir, into a connecting flow-way, then into the north marsh through a series of culverts along its western levee. Water is pumped back into Lake Apopka at the northeastern comer of the north marsh (Figure 1). 7

PAGE 9

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT NORTH MARSH TRAN 5 TRAN 6 TRAN 7 i I CLAY I StANO TRAN 9 TRAN -4 TRAN 3 TRAN 2 TRAN 1 SOUTH MARSH TRAN 8 I INLET OUTFLOW PUMPS LAKE APOPKA sao M Figure 1 Plan view of Apopka Marsh Flow-Way Demonstration Project 8

PAGE 10

30 6 0 Air Temperature 0 Pan Evaporation 25 00 '6 5 o 00 '0 00 0 8 cfi 00'0 0 c: c: .. .. ., ., 20 o r:8 0 /?J cf)0 4 :< :< cfo 0 o 0 OOc9cg 0 'c o'O"fo0o "0 0 o 0 E 0 o QIQ"@o 0 g 15 000& 3 c: .a ij9 2 E ., E 0-0 0E .. ., 10 2 > IW c: .. 0.. 5 1 # Time (Daily, with Monthly Labels) Figure 2. Mean daily air temperature (Clermont, Florida) and pan evaporation (lisbon, Florida) from nearby the Apopka Marsh Flow-way Demonstration Project. 9

PAGE 11

Rainfall Time Series (Clermont Florida) 120 100 80 ---1 I 60 I Rainfall ( ,m 40 II I 1 ,II i l l 1 I l l 20 o ... .... IAp ..... __ P'k .. .... u .. P'k ... ..a.oJIdHMlo .... .. per.;trfolDec 18110 1118 15182 1ii 3 11M Time (Days from 1 Jan 1990 -31 Dec 1994) Figure 3. Rainfall time series from Clermont, F l orida 10

PAGE 12

Lake Apopka has been descnl>ed as hypereutrophic with a mean total phosphorus of 0.22 mg I-I and a mean soluble reactive phosphorus of 0.035 mg I-I (Lowe, etaI., 1992). The lake water is high in suspended solids resulting in low water clarity. The lake surface level is usually above the marsh soil surface level due to soil oxidation. Stage within the marsh remained above the sediment level during most of the sample period (Figure 4). Exceptions to this pattern occurred in August 1991 during planting of the Experimental Planting Sites and again in August 1993 during repair of the weir at the exit from the south marsh. These stage data also show the downstream elevation gradient from the marsh inlet to the easternmost stage recorder in the north marsh (Figure 4). The physical environment may control vegetation dynamics of the Apopka Marsh in a number of ways. High nutrient levels in lake water and soils may promote the rapid growth ofEichhornia crassipes and Typha spp (DeBusk, et aI., 1995; Newman, et aI., 1996; Davis, 1984; Urban, et aI., 1993; Grace, 1988) Rapid growth of Hydrocotyle ranunculoides is probably promoted by increased nutrient loading. Growth measurement under varying nutrient loadings are not evident in the literature, but the absence of this species in low nutrient environments provides an inference about its habitat requirements (Loveless, 1959; Gunderson, 1989). High levels of suspended solids in the water limit the deVelopment of shade intolerant submersed plants and increase the burial rate of seeds in the soil seed bank as a result of increased sedimentation rates. Increased sedimentation rates may lead to isolation of the older seed bank while the recent seed bank becomes more likely to be exposed and activated when conditions are favorable for seed germination. If the recent seed bank is dominated by the most aggressive, high nutrient adapted plant species, a perpetuation of the dominant overstory may be expected. BIOLOGICAL CHARACfERISTICS Land use on the site has eliminated the perennial wetland plant community. Before the site was farmed it was dominated by a rhizomatous sedge, sawgrass (Cladium jamaicense) and mixed shrub (probably Baccharis halimifolia and Myrica cerifera) communities. Aerial photographs from 1941 reveal that the sawgrass marsh extended from the edge of the upland ridge system to the edge of Lake Apopka, a distance of about 5 km. At present sawgrass is only sporadically common along the Apopka-Beauclair Canal and around the lake fringe. Since 1941 a swamp forest dominated by Acer rubrum and Fraxinus pennsylvanica has become established on the lake fringe (1940 USGS aerial photography) The biological environment may be described as highly disturbed and devoid of historically dominant perennial vegetation 11

PAGE 13

20.75 o South Marsh, East Platform 6 South Marsh, West Platform o North Marsh, West Platform o North Marsh, East Platform 20.50 20.25 -l ..... F e 2 @ ",1\ "" 1 E iiIIi> i 19.75 SOIL EXPOSURE 19.50 -l .. rp",W I \ f1 19.25 o 19.00 ",<8 ,,'" ,,'l-,,'l",<8 ,," "" !!} '" Time (Date) "'" ",'<) Figure 4. Apopka Marsh stage time series (m, NGVD), Apopka Marsh Flow-Way Demonstration Project. 12 ,,<'

PAGE 14

m METHODS RESEARCH PROGRAM MANUAL A research program manual was completed in October 1991. The manual, which descnoed research methods, was used on a regular basis during field work at the Apopka Marsh. VEGETATION COMPONENT Development of Naturai and Planted Vegetation and Mechanisms for Enhancing Marsh Establishment Objectives of this study were to assess the development of plant communities within the Apopka Marsh Demonstration Project area (Figure 1). This part of the study was divided into three subsections: Experimental Planting Sites-Structure and Composition, Natural Succession Transects-Structure and Composition, and Natural Succession Transects-Above and Below Ground Biomass. This task deals with the fundamental measurements of succession within the marsh. See Figures 5 and 6 for overviews of Experimental Planting Sites (Figure 5) and Natural Succession Transects (Figure 6) Procedures for sampling community structure and biomass can be found in Bonham and Ahmed (1989) and Mueller-Dombois and Ellenberg (1974) A method for extracting roots using a sharpened PVC plastic corer inserted into the soil and sieving the extracted soil to separate roots was used. This method, along with other more complicated and time consuming methods are reported in Pearcy et al. (1991) and Boehm (1979). Within each planting treatment plot and natural succession transect plot a suite of qualitative and quantitative data were taken from each species encountered. These data included: vegetative cover (%), stem density (# m-2), maximum height (cm), and phenology (canopy index) Cover was estimated in 5% increments, except for trace levels (<5%) Trace cover estimates were assigned a 1 % cover value. A phenological index was generated by estimating the state of flowering and fruiting (immature and mature) using a canopy dominance index (1=113 of canopy, 2=2/3 of canopy, and 3=total canopy). Within each subplot three water depth measurements estimated to the nearest 1 cm were made. To account for changes in water depth resulting from floating mat formation, additional vertical measurements were made through the mat surface to hard soil below These measurements revealed mat formation in progress As the mat floated to the surface over time it could be seen as a hard soil surface suspended in the water column. This resulted in a single vertical measurement while the soil was anchored, two vertical measurements after the mat had detached, and rarely, three vertical measurements if the mat had two layers. Stage measurements were made at the nearest continuous recording station 13

PAGE 15

Site 1 & +Site 2 z o w a: is u. a: w Site 3 ... C41.1 C41.2 C41. 3 C41 4 C41.5 C41 6 EXPERIMENTAL PLANT ING AREA Is1lIs2lIs3l [dB bJ9 D PAN"" PONCOR MIX39 rP14l PIS D[;J20 MIX40 SelVAl P26 I M331 Mulch fM4lfSslls6l fP16lfP11l I P291 fP30l ElL.NT N C42. 1 Mulch l.d C42. 2 S AGLAN b] C42. 3 5CICAL C42. 4 S AGLAN bJ C42. S PO NCO I M3BI C42. 6 Mulch Figure 5 Plan view of Experimental Planting Site, Apopka Marsh Flow-Way Demonstration Project Plot assignments were changed sli ghtly at Site 2. S1 and S37 contained Pontederia cordata (ponCor) not Sclrpus va/idus (SelVal) 53 and S37 contained Sclrpus va/idus (5cNaQ not Pontederia cordata (ponCor) See Tables 1-3 for plant code Information 14

PAGE 16

NATURAL SUCCESSION TRANSECT WATER FLOW DIRECTION 1 1 1 ...-N 88888888 TRANSECT L. 350 m South Marsh 490 m North Marsh SAMPLE NODE 40 m DIAMETER Figure 6. Plan view of Natural Succession Transect. Apopka Marsh Flow-Way Demonstration Project. 15

PAGE 17

Botanical nomenclature followed a number of sources. These included wetland species (Godfrey and Wooten 1981a, 1981b), upland (Radford et al. 1968), grasses (Hitchcock 1971), and ferns (Lak.ela and Long 1976). Assessment ofExperimentai Planting Treatments. Two experimental planting sites were located in the south marsh and one site was located in the north marsh (Figure 1). Each site was prepared for planting by mowing, herbicide application (RODEO), and burning to remove the established plant community. Experimental treatments consisted of Planted-Single Species, Planted-Mixed Species, Mulched and Seeded (Figure 5 and Table 1 and 2). Single species plots were planted at low (3' centers) and high (2' centers) densities. The mulch treatment consisted ofapplying an approximate 5 cm thick layer of wetland donor soil collected from a site near Sebring, Florida (Table 3). Treatment plots were delineated at each corner by 0.102 m diameter by 1.5 m white PVC posts Treatment plots were separated by 4.5 m wide In all but the Mixed Species plots a single, permanent, randomly positioned Imsubplot was established. In the Mixed Species plots, two subplots were established. Vegetative cover (%) by species data were taken from the larger treatment plots and from the Im2 subplot(s) These data are reported as Overall Cover and Subplot Cover, respectively. Assessment of Natural Marsh Development. Using nine established permanent transects (Stenberg et al. 1991) (Figure 1), we collected community structure and composition, and biomass data. An assessment of the influence of hydrology (depth and duration) and distance from the marsh inlet on community development was conducted. Vegetation community structure data were collected from within each sample node at three permanent plots and one temporary plot. Data were collected according to the sample schedule in Table 4. These data consisted of species composition, percent cover, density (numbers of stems, culms, bunches), height (tallest leaf), phenology index (canopy dominance of flowers, immature fruit, and mature fruit in increments of 1=113 2=2/3 3=FulI Canopy), and water depth (nearest cm). Vegetative biomass was collected along the Natural Succession Transects Within each temporary (biomass) plot (plot #4 per sample node) we collected above-ground and below-ground biomass. The above-ground component was collected as follows: (I) From within the Im2 subplot #4 all plant material was clipped to soil surface level. Vegetation hanging into the plot was clipped through a vertical plane that intersected the plot boundaries. (2) Clipped plant material was stored in large plastic bags with a numbered aluminum identification tag. (3) Material was processed immediately or stored at 40C up to one week prior to processing. (4) Plant material was separated into live (by species) and standing dead (all species combined) portions 16

PAGE 18

Table 1. Experimental Treatment Plot Descriptions and Sample Collection Schedule. Name Treatment Description a Dimensions em) per Site Mulch (M) Wetland soil from sites near 15.2x15.2 4 Mixed Spp.(X) Planted (P) Seeded (S) Control CC) TOTAUSITE Sebring, Florida added to soli surface. Planted sprigs of an 24.4x24.4 assortment of species Planted sprigs of a single species. b Seeded by a single species Site Preparation onlv 15 2x15.2 15.2x15.2 18.3x18.3 GRAND TOTAL (3 sites) 2 24 10 12 52 152 a. All treatment plots received site preparation to remove competing vegetation b 12 plots planted at LOW DENSITY=1.2m centers yielding 1.56 plants m-2 and 12 plots planted at HIGH DENSITY=0.6m centers yielding 6.25 plants m2 Sample Collection Schedule Initial Conditions (sprigged plots only) First Winter Season First Spring Season First Summer Season Second Winter Season Second Summer Season Third Spring Season Sep 1991 Jan 1992 May 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 17

PAGE 19

Table 2. Planted plot treatment species and codes. plant Species List and Codes Treatment Codes 1. Sagittarla lancifolia (SAG LAN) (p S.X) 2 Pontedaria cordata (PONCOR) (P.S.X) 3. Scirpus validus (SCIVAL) (P.S.X) 4. S. califomicus (SCICAL) (P.-.X) 5. Panicum hamitomom (PANHEM) (P.S.X) 6. E/eocharis intersIincta (ELEINT) (P.-.X) 7. Pe/tandra virglnica (PELVIR) (-.-.X) 8. C/adiumjamaicense (CLAJAM) (-.-.X). 9 Kos/e/etzkya spp (KOSSPP) (-.-.X) 10. ThaDa geniculata (THAGEN) (-.. X) 11. Po/ygonum punctatum (pOLPUN) Treatment Code Explanat jon (P.S) = SPRIGS AND SEEDS (X) = MIXED SPECIES PLOTS (P) = SPRIGS () = SEEDS ONLY (-) = SPECIES NOT INCLUDED IN TREATMENT M = MULCHED PLOT C/adium jamaicensis replaced by Juncus effusus after initial planting. 18

PAGE 20

Table 3. Vegetation species composition from donor soli sites for solis applied to mulch treatments In Experimental Planting Areas, Apopka Marsh Flow-Way Demonstration Project Soil A: Depressional wetland. Species Name Andropogon virginicus Drosera blevifo/ia Erianthus strictus Eriocau/on spp. Hyparicum fascicu/atum Lacnanthes carollniana Lear:sia spp Panicum hemitomon Xyrisspp. Soil B: Bayhead Species Name Gordonia /asianthus Hyparicum fascicu/afum //ex gabra Lear:sia spp. Lyonia /ucida Magno/la virginiana Myrica cerifara Osmunda cinnamomea Panicum absclssum Parsea paluslris Pontederia cordata Rhexia cubensis Sagittaria lanelfolia Woodwardia areo/afa Common Name Bushy Beardgrass Sundew Beard Grass Hat Pins St. Johns Wort Redroot Cutgrass Maidencane Yellow-Eyed Grass Common Name Loblolly Bay St. Johns Wort Gallbeny Cutgrass Fetterbush Sweetbay Waxmyrtle Cinnamon Fem Cutthroat Grass Redbay Pickerel Weed Meadow Beauty Arrowhead Chain Fem 19

PAGE 21

Table 4 Sampling schedule for Natural SuccessIon Transects. Table entries are nodes sempled, "= aU nodes sampled, numbers=specific nodes, NS=no sample. Lower case a and b next to transect number represent type of data collected: a=structure and CompositIon, and b=Blomass. SAMPLE DATES TRANSECT NQV90 AUG91 JAN92 AUG92 FEB93 AUG93 MAR94 18 .. .. .. b 2, 4, 6, 8 1, 3, 5, 7 2 a 1-2, 6-8 1-2, 6-8 1-2, 6-8 1-2,6-8 NS 1-2, 7 b NS NS NS NS NS NS 1-2, 7 38 .. .. .. .. .. .. b 2, 4, 6 8 1, 3, 5, 7 4 a NS 1.3.5.7 b NS NS NS NS NS NS 1,3,5,7 6 a .. .. b 2, 4, 6, 8 1, 3, 5, 7 8 a .. b .. 2, 4, 6, 8 1, 3, 5, 7 20

PAGE 22

(5) Material was dried at 700C to constant mass, then weighed to nearest 0.1 g Above-ground plant material was submitted to the Soil Science Wetland Soils Laboratory, University of Florida for nutrient analysis. Preparation for above-ground nutrient analysis was conducted as follows: (1) From the dried and weighed biomass sample we removed two replicates each of three dominant species and one composite from the above-ground biomass collected per transect (40 samples). (2) Material was ground to a coarse particle size using a Wlley Mill. (3) Ground plant material (at least 1 g) was stored in 12 ml vials and submitted to the Soil Science Department for nutrient analysis. Below-ground biomass was collected from each biomass subplot (#4) in the following manner: (1) Three soil cores (10 cm dia. X 20 cm long) were extracted using a section of sharpened PVC pipe. Soil and an aluminum i dentification tag were placed in a plastic sealable bag for transport (2) Soils were stored in cooler at 40C for up to one month until processing (3) Biomass was separated from soil by washing through a 2 mm (No. 10, USA Standard Testing Sieve) sieve. (4) Biomass was dried at 700C to a constant mass, then weighed to nearest 0.001 g Below-ground biomass was prepared for nutrient analysis and submitted to the Soil Science Department, Wetland Soils Laboratory for nutrient analysis. Preparation was as follows: (1) Root material from every two nodes per transect was combined (21 samples). (2) The composite sample was ground to a coarse particle size using a Wiley Mill. (3) Ground material was stored in 12 ml vials and submitted to the Soil Science Department for nutrient analysis. 21

PAGE 23

Detennination of Potential Seed Production. We collected phenology data while we were conducting structure and composition, and biomass data collections During Phenology Only sampling (see sample schedule below) all nodes were visited with phenological sampling from one randomly chosen plot per node We estimated the percentage of each species' canopy that was in a state of flowering and fruiting (unmature and/or mature). Data collected included (1) species composition and (2) phenology (estimate of canopy dominance of flowers. immature fruit, and mature fruit in increments of1=II3, 2=213, 3=Full Canopy). Sample scheduling was as follows: SampleDate Description First May-Jun 1991 Phenology Only Second Aug-Sep 1991 Vegetation and Phenology Third Jan 1992 Vegetation and Phenology Fourth May 1992 Phenology Only Fifth Aug 1992 Vegetation and Phenology Sixth Feb 1993 Vegetation and Phenology Phenology of vegetation within the Apopka Demonstration Marsh was observed along Natura\ Succession Transects; and within planted, seeded, mulched and control treatments. States of flowering, immature and mature fruit were identified in the natural succession plots from November 1990 to March 1994 and from August 1991 to March 1994 in the Experimental Planting Site treatments. Analysis of the data included identification of unique phenology characteristics ofa species under different treatments as well as classification of the phenology into four general groups These groups included seasonality, time lag of phenological developmental stages. reduction or increase in phenology activity and distance to inlet effects on phenology between the north and south cells. Seasonality of a species was determined qualitatively by identification of a sine wave pattern within the data for either flowering, immature fruiting or mature fruiting phenology regardless of the amplitude or timing within the year of the peaks Time lag of developmental stages was classified as any species that showed a peak of one developmental stage followed by a peak of a later developmental stage in the next sampling period. Distance to inlet effects. presumably of water quality parameters. were identified by comparing the phenology index: activity in the four treatment sites or for natural succession in the eight transects perpendicular to the predominant flow path in the marsh. Detailed results for each treatment and target species as well as a summary table for each treatment type will follow. Phenology of TYpha 1ali/olia under natural succession as well as within the treatment plots will be addressed separately due to its predominant influence within most areas of the marsh. 22

PAGE 24

Determination of the Effect of Hydrology on Seed Germination. In a growth chamber, seeds were placed in petri dishes on filter paper. Treatments consisted of moist soil and flooded (1 cm above filter paper). The growth chamber was used because it was easier to measure seed germination earlier in the process (Zheng, et al. 1994). Using this method allowed the opportunity to screen more species in a shorter period of time. The method has been used successfully (Morinaga 1926a, 1926b, 1926c, Sifton 1959, Zheng et al. 1994, Benvenuti and Macchia 1995). Methods consisted of: (I) Seeds of target species were collected as they became available. (2) Seeds were placed on filter paper in 3 petri dishes/trt, at least 30 seeds/dish, seeds and paper were moistened (MOIST TRT), or flooded to Icm depth (FLOODED TRT). (3) Seeds were maintained in a growth chamber for 12 hour light/dark cycle under a bank offour 40 watt fluorescent and four 60 watt incandescent bulbs. (4) Each trial ran for about 60 days under ambient temperature conditions (271320). (5) Seeds exhibiting signs of germination (splitting of the seed coat and extension of the root tip beyond the seed) were periodically counted. (6) Water was added as needed. Assessment of Seed Dispersal Mechanisms. Seed traps (Figure 7) designed to trap water-and air-borne seeds were placed in positions upstream and downstream of each planting area. Seeds floating in the water or wind dispersed from surrounding vegetation were trapped, thus, providing an indication of propagule movement within the marsh. The seed traps were built with 1.3 cm dia. PVC pipe. Fiberglass netting with a Imrn2 mesh size was stretched loosely over the top (1 m x 0.5 m) for airborne seeds. To trap water-borne seeds a bag made from the same net material was attached to the leading edge of the trap (Figure 7). Four seed traps per upstream and downstream side were placed at Experimental Planting Sites 1 and 3. Traps were collected at one month intervals four times and replaced with clean netting during each visit. Nets were stored in a cooler at 40 C for less than 7 days until processed Nets from the water-borne position were washed into a germination tray filled to a depth of 2 cm with sterile Metro-Mix soil mix. The trays were then placed in the greenhouse under twice per day misting until seedlings could be identified. Germination trials were run for two months per trap sample. The traps captured large amounts of organic matter resulting in the need to use the seed germination method instead ofa seed identification method. 23

PAGE 25

MESH 1 mm' Figure 7. Seed trap design used for seed capture In Experimental Planting Sites, Apopka Marsh Flow-Way Demonstration Project. 24

PAGE 26

Assessment of the Soil Seed Bank. The purpose of this subtask was to provide information about the contribution of the soil seed bank to plant community development. The factors influencing seed bank response were site treatment and, where possible, hydrology (e g depth and duration of inundation). This subtask was accomplished by the following procedure : (1) Collected and composited 10 (10 cm dia. X 5 cm deep) soil cores from every other node along transects 1, 2, 6, and 7; Experimental Sites 1 and 3, "control" subplots 1, 3, 4, and 6, and the mulched plots. Soil was stored in sealable plastic bags until processed. Total number of plots = Natural (16) + "Control" (16) + Mulched (8) = 40 Plots (Fig. 2). (2) Soil was stored at 40C up to two weeks prior to processing (3) Soil moisture treatments prepared by mixing soil together, removing rhizomes and roots, spreading soil into germination flats. (4) A thin layer of soil was spread in germination flats (filled to 1 cm depth with METRO-MIX sterile soil mix) (5) At the same time as (4) flats with Metro-Mix only were established to provide a contamination indicator (6) Trays were misted twice daily. (7) Treatments consisted of Moist Soil and Flooded Soil (3-4 cm depth). (8) Seedlings were identified to species or genus, counted and removed. (9) When seedlings were depleted, the soil was turned over and (8) was repeated Soil was collected and the experiment run twice : ( 1 ) Nov 1991 and (2) Nov 1992. Each trial was conducted for 9 months in a forced-air ventilation greenhouse on the University of Florida campus. Therefore, light and temperature conditions were similar to that of Gainesville, Florida. Statistical analysis consisted of a t-test for the moist ( # seeds m-2 ) versus flooded soil (# seeds m 2 ) greenhouse treatment, an ANOVA with multiple ranges test for the site treatment effects (Natural Succession = Mulch = Control seeds m-2 ) and a Cluster Analysis using normalized data (Vegetation % cover m-2 and Seed Bank seed number m-2) to determine if a relationship existed between the seed bank species composition and that of the established vegetation Clonal Recruitment. Production and Dispers al Growth rate was defined as a measure of the distance ofa rhizome's growth over time. Plants were chosen in areas where the rhizome could be marked and it's growth followed. Pontederia cordata, Sagittaria lancifolia, and Scirpus val idus planted plots were used Typha latifolia was measured in seeded and mulched plots The seeded and mulched plots were used because they contained sufficient T. latifolia to allow measurements. For each species a numbered PVC post was driven into the soil, marking the position of the rhizome at the initial time. Distance to the nearest competitor was measured at the initial time. Eight rhizomes per planting site per species were marked. The sites were revisited at the end of the sample period. For the final sample the distance grown from the PVC post and the distance to the nearest competition was measured. 25

PAGE 27

Water depth at the initial and final measurement was recorded. These measurements were made during the May 1992-1993 time period. For each species, growth rates were estimated by calculating the distance between the initial and final measurements. Using a two-way ANOVA (species and distance from marsh inlet) the possible influence of high nutrient lake water on clonal growth was evaluated. An additional two-way ANOVA (Distance To Competition and Distance to Marsh Inlet) was used to help explain growth rates. WILDLIFE COMPONENT Wildlife community patterns were monitored every six weeks over the period August 1991 through June 1993. Avian surveys were conducted using two different surveying methods. In addition, general information was collected about other animals observed in the project area. The techniques used in the wildlife sampling are outlined in the research program manual for Phase IT of the Demonstration Project (Best et al. 1991). Avian sampling was performed in the two marshes used for the flow-way demonstration project, and the unmanaged marsh (Figures 8 and 9). An agricultural field adjacent to the north marsh was also surveyed. The avifauna surveys were conducted using the Emlen strip technique (Emlen 1977), a timed drive-through survey (Best et al. 1991), a technique for counting congregating red-winged blackbirds, and a supplemental direct counting method. These are described below. Only minor changes were made from the program manual surveying methods including the rejection of use of radio transceivers, spotting scopes (binoculars were used), and documentation of flushes by photography These procedures were intended to supplement other documentation and verification efforts, but were not needed. Avifauna population sampling Emlen strip technique. Avian sampling along transects established for vegetation and wildlife studies began in August 1991. For wildlife studies each transect had an approximate fixed width of35 meters on either side of the transect center line. Four transects were established in each of the north and south marshes (Tl through T8, Figure 8). All transects were oriented north-south. The south marsh transects were each 440 meters long, and the north marsh transects were each 600 meters long Two transects were established in the unmanaged marsh, each 750 m long (T10 and TIl, Figure 8). Surveying began on TlO and Tll in November 1992. Two persons walked transects. One maintained trueness on the transect, watching for obstructions and assisting in data collection, while the other concentrated only on data collection. This method reduced the difficulty in passage through the marsh and improved the census qUality. Binoculars were used on transect walks. Observations were recorded directly on a map of the transect complete with gridded distances from the center line. Vegetation, by species, was also included on the map. Up to three dominant vegetation species were included in every somewhat homogeneous locale. The parameters recorded 26

PAGE 28

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT NORTH MARSH RTI\Y TRAN 5 TRAN IS TRAN 7 TRAN 8 --=-------rl "" CL,o,V I&L""I>IO UNMANAGED MARSH TRAN 4 TRAN 3 TRAN 2 TRAN 1 SOUTH MARSH OUTFLOW PUMPS LAKE APOPKA sao M Figure 8. Wildlife survey transects (TRAN 1-8, 10, 11), Apopka Marsh Flow-way Demonstration Project 27

PAGE 29

APOPKA MARSH FLOW-WAY DEMONSTRATION PROJECT AGRICULTURAL FIELDS .... ---------------------------... --'/7-/ I NORTH MARSH OUTFLOW PUMPS / CLAY ISLAND UNMANAGED MARSH SOUTH MARSH -_ .... -_ ... --1 INLET LAKE APOPKA 500 M Figure 9. Paths (heavy dashed lines) used during drive-through wildlife surveys, Apopka Marsh Flow-way Demonstration Project. 28

PAGE 30

were: (1) position of the birds from the center line; (2) dominant vegetation; (3) type of cue given (visual or auditory); and (4) time of observation. Only birds observed within thirty-five meters from the transect center line were recorded. An additional observer was positioned at an elevated, fixed point on a levee. The purpose of this observer was to record birds flushed from dense vegetation stands that would have been missed from the transect center line. Flying birds such as raptors which were actively using the marsh and were within the vertical bounds of the transects were recorded in addition to the dominant vegetation of the area they used. Observers assigned to each transect compiled their collected data at the completion of the survey. By keeping accurate records on the time of observation, fixed observer and transect walker data redundancy was reduced. Sampling order for the transects revolved from one sampling event to the next. The rotation decreased sampling bias by surveying each transect during different morning hours. Sampling was begun within thirty minutes of sunrise Avifauna population sampling drive-through method. Access roads upon the levees were used in a drive-through survey methodology in all three marshes (north, south, and unmanaged); and the adjacent agricultural field (Figure 9). Drive-through surveys occurred in the early afternoon after completion of the transect surveys. Observers with binoculars were positioned atop a slowly driven vehicle (van or full-sized four-wheel-drive) The vehicle was equipped with a platform on which the observers sat. The sitting observer's eyes reached a height of -3m above the levee surface. Multiple observers (3-4) using binoculars were employed. This facilitated sighting, counting, and identification of birds. All birds sighted, as well as brief vegetation information, were recorded on a map of the area being surveyed. Supplement direct counting. While performing Emlen strip and/or drive-through counts, observers recorded soaring species and species using areas near the marshes within the project site. These data completed the site species list. Technique for red-winged blackbirds. Red-winged blackbirds congregating in high numbers within the dense vegetation stands were deliberately flushed before counting. This methodology was necessary only during the breeding seasons. Avian species similarities (Sorensen's Similarity Index) were used to compare the north versus south marsh (transect 1 versus transect 4 within the south, and transect 5 versus transect 8 within the north; Sorensen 1948). Species similarity described the percentage of avian species each survey had in common as compared to the total number of species found in each marsh. The following equation was used to determine the similarity of species between the survey areas: 29

PAGE 31

where s = [2C I (A + B)] x 100 S = similarity % A = number of species in sample 1 B = number of species in sample 2 C = number of species common to samples 1 and 2 Changes in density among taxonomic groups were compared for each survey area Table 5 lists both the species identified during the surveys and their taxonomic group used for this study. The species in the category labeled "other" were grouped together due to the low number of species represented by the remaining taxonomic groups counted. Avian density estimates for the transect survey method were calculated by dividing the total number of birds counted in each taxonomic group on one transect by the area of that transect: where D'=N I A 1 1J"'1 Di = density of transect i Nij = number of birds in taxonomic group j on transect i Ai = area of transect i (ha) Total area of transects 1 through 4 in the south marsh was 3.08 ha each (440 m x 70 m), and transects 5 through 8 in the north marsh each contained an area of 4.20 ha (600 m x 70 m). In the unmanaged marsh, transects 10 and 11 each were 5 .25 ha (750 m x70m). Estimates of overall avian density for each marsh were calculated by dividing the total number of birds in each taxonomic group by the total area of a\l surveyed transects in that marsh as follows: Dm=Nmj/Am where Dm = density of marsh m Nmj = number of birds in taxonomic group j in marsh m Am: = area of marsh m (transects only) The total combined area of the four transects in the south marsh was 12. 32 ha, and the total area offour transects in the north marsh was 16. 8 ha. The total area of the two transects in the unmanaged marsh was 10.50 ha. The survey results were averaged over three six month time periods to provide a more general representation of short-term temporal changes in density. 30

PAGE 32

Table 5. Avian species found on Apopka Marsh Flow-way Demonstration Projed. by taxonomic group. Taxonomic Group Gallinules Wading Birds Black Birds Passerines Passerines Scienlifjc Name Fu/ica americana Gallinu/a cho/orpus Rallus e/egans Porphyrula marlinica Porzana carolina Botaurus Ientiginosus Nydicorax nydicorax Bubulcus ibis Ardea herodias Casmerodius albus Butorides striatus Ixobrychus exilis Euetta caeru/ea Euetta thula Euetta tricolor Nycticorax vialaeaus Quiscalus major Qulscalus quisca/us Agjaius phoeniceus Hirundo rustica Poliopb7a caeru/ea Guiraca caerru/ea Cyanocitta oris/ala Thryothorus ludovicianus Chaetura pelagica Geoth/ypls trichas Tyrannus tyrannus Sayormis phoebe Sterna forsteri Columbina pesserina Passerrina cyanea Charadrius vociferus Cistothorus pelustris Zenaida macroura Cardinalis cardinatis Mimus polyglottos Dendroica palmarum Cistohorus platensis Me/ospiza me/odia Me/ospiza georgiana Tachycinela biocolor 3 1 Common Name American coot Common moomen King rail Purple gallinule Sora rail American bittem Black crown night heron Catt l e egret Great blue heron Great white egret Green back heron Least bittern Little blue heron Snowy egret Tri-color heron Yellow crown night heron Boat tall grackle Common grackle Red wing black bird Bam swallow Blue-gray gnatcatcher Blue grosbeak Blue jay Carolina wren Chimney swift Common yellow throat Eastem kingbird Eastern phoebe Foresters tern Ground dove Indigo bunling Kill deer Marsh wren Mouring dove Northem cardinal Northem mocking bird Palm warbler Sedge wren Song sparrow Swamp sparrow Tree swallow

PAGE 33

Table 5. Avian species found on Apopka Marsh Flow-way Demonstration Project (continued). Ducks Ibis other Oendrocla coronata Oendroica petechia Ana americana Anas discors Oendrocygna bicolor Anas strepera Lophodytes cucullatus Anas platyrhynchos Anas fulvigu/a Anasacuta Anas c/ypeata Aixsponsa P/egadis faJcjnellus Eudocimus albus Falco sparver/us Anhinga anhinga Hia/iaeetus feucocephs/us Ceryle alcyon Himantopus mexicanus Coragyps atratus Gallinago galDnago Pha/scrocorax pe/agicus Tr/nga me/ano/euca Lanius ludovic/anus Circus cyaneus Pandion ha/isetus Podilymbus podioops Buteo lineatus Cathartes aUlll Catoptrophorus semipalmatus 32 Yellow rumped warbler Yellow warbler American widgeon Blue wing teal Fulvous whistling duck Gadwall Hooded merganser Mallard duck Mottled duck Northem pintail Northem shoveler Wood duck Glossy ibis White ibis American kestrel Anhinga Bald eagle Belted kingfisher Black neck stilt Black vulture Common snipe Double-crested cormorant Greater yellow legs Logger headed shrike Northem herrier Osprey Pied billed grebe Red shoulder hawk Turkey vulture Willet

PAGE 34

IV. RESULTS General Overview: This general overview has been included to introduce the species list, species codes, growth habits and life history types, hydrology. and some general observations. This study found a total of 109 plant species during the duration of the project. These species were not found simultaneously. but entered and departed the species sample as the project progressed The assemblage is depicted in a cumulative list that reflects the history of the site varying from a moist, abandoned farm to a deeply flooded, early successional marsh (Table 6). Species richness from the Natural Succession treatment varied from a high of65 early (August 1991) to a low of36 late (March 1994) in the sample period Species richness tended to decline with time. Species richness in the Planted treatments varied from 30 (May 1992) to 47 (August 1993). The change in species richness over time was not clearly defined Both the Natural Succession and Planted treatments seemed to be approaching similar species richness late in the sample set. Both treatments seemed to be responding in a similar manner to the drawdown of Summer 1993 and the development of floating mats with an increase in species richness (planting=47. Natural Succession=44) (Figure 4 ; Table 6). The relationship between water level and species responses will be explored in subsequent sections of this report. Due to the sampling strategy species richness may be underestimated for the Natural Succession treatment versus the Planting Sites (t{atural Succession= 296 m 2 /visit vs Planted= 40488 m 2 /visit from overall plots and 164 m 2 /visit from subplots). In spite of differences in total sample area these estimates seem reliable, because the samples were distributed over the study area, and we found few unrecorded species in our sample plots. For example, Carex albotuscens and Hydrolea corymbosa were very rare on the site and not found in any sample. The site treatment method seems to have had a slight persistent effect on the comparative species assemblage over time. Site treatment species similarity based on Sorensen's Similarity Index (SI) tended to increase from a low value after planting site establishment to a set of values that didn't change much overtime (pielou 1984). Sorensen's SI was calculated with and without the planted species in the data set. Thi s was done to determine how the addition of species through planting affected the "community" similarity. SI values varied from 53.1 % (August 1991) to 62.9% (February 1993) with planted species included in the sample set. Similarity index values tended to be lower in the data set without planted species. With planted species removed from the SI calculation, values varied from 48.4% (August 1991) to 62.5% (August 1993) (Table 6). Results of the two calculation methods approached similar values during August 1993 (With Planted= 62.2% vs Without Planted= 62.5%). This suggests that the seed bank was activated by the Summer 1993 drawdown and had contributed a large species pool to the entire ecosystem, thus diluting the planting influence (Table 6). The seed bank linkage will be explored in the Seed bank section 33

PAGE 35

Table 6. Plant Species List with Codes and Presence Data For Apopka Marsh Species Codes Plantb c Saml!le Dale' A9] J92 M92 A92 F93 A93 M!M ACERUB= Acerrubrom TRP -IN -IN -IN -/--IN -/-/-PIN AL TPHI= Altemanthera phi/oxeroides RH -IN PIN PIN P/PIN PIN PIN PIN AMAAUS= Amaranthus australis RHA -IN PIN PIN -/-PIN PIN PIN PIN ANDSPP= Andropogon spp. GRA -/-/--IN -/-/--IN -IN -/AMBART= Ambrosia Iirlemissllb/ia RHA -/--IN -/-/-/-/-/P/AMMCOC= Ammania coccinea RHA -/--IN P/-/-/-/P/-/APILEP= Apium teplophytlum RHA -/-/-/-/-/-PIN -/-PIN ASTELL = Aster el/iotii RHA -IN -IN -/-/--IN -IN -IN -IN ASTSPP= Aster spp. RHA -/--IN -IN -/-IN -/-/-/-ASTSUB= Aster subulata RHA -IN PIN PIN -/-/-/--IN -/-ASTTEN= Aster tenuilb/ia RHA -/--IN -IN -/-/-/-/-/-I>Z.OCAR= Azol/a caroliniana FF -/-IN PIN P/PIN PIN -/-/BACCAR= Bacopa caroliniana RHP -/P/-/-/--/--/-/--/BACHAL= Baccharis ha/imifo/ia SHP -IN -IN -IN -/--IN -IN -IN -IN BIDLAE= Bidens taevis RH -/--IN -IN -/--IN -IN -IN -IN BRAPUR= Brachiara purplXascens GR -/--IN PIN -/-IN P/PIN -IN CALAME= Cal/icarpa americana RHA -IN -/-/--/--/--/-/-/CARPEN= Cardamine pansytvanica RHA -/-/-/-/-/--/-/P/CARSPP= Carex spp. SE -IN -/-/--/--/--IN -/-/-CASOBT= Cassia obtusllb/ia RH -/--IN -/--/-/-/--IN -/-CICMEX= Cicuta mexicana RH -/-/-/-/-/-/--IN -/CYNDAC= Cynodon dactyton GRP -IN -IN -IN -/-/-/-/-/-COMDIF= Comma/ina diffusa RH -IN PIN PIN -/--IN -/--IN -IN CYPCOM= Cyperus compressus SE -IN -/-/-/--/--/P/-/-CYPESC=Cyperusescutentus SE -/--IN -/--/-/-/-/-/-CYPHAS= Cyperus haspans SE -IN -IN PIN P/-IN -/--/-/-CYPIRI= Cyperus /ria SE -/-PIN -/--/--/-/-PIN -/CYPODO= Cyperus odoratus SE -IN -IN -IN -/-PIN -/-PIN -IN CYPSPP= Cyperus spp. SE -IN PIN P/P/PIN PIN PIN PIN CYPSUR= Cyperus surinamensls SE -/-/--/--/P/-/-/-/-DIGSER= Oigtaria serotina GR -/--IN -IN -/-/-IN -/--/ECHCOL= Echinochloa co/onum GR -IN PIN PIN -/--/-/-PIN -/Continued

PAGE 36

Table 6. Plant Species List (Cont.) Species Codes Plantb C Saml1le Date" TvDe J:i90 621 M92 A9'/" t,,93 ECHCRU= Echinochloa crus-gal/i GR -/-/-/-/-/--/-P/P/ECHSPP1= Echinoch/oa spp1 GR -/--/-/-/-/-/P/-/ECLALB= Eclipla alba RH -IN PIN P/-P/PIN -IN PIN PIN EICCRA= Eichhomia crassipes FH" -/PIN PIN P/PIN PIN PIN PIN ELEIND= E/eusine indica GR -IN -IN -/-/-IN -/-P/-P/ELEINT-Eleocharis Intetstincta SE -/-P/-P/P/P/-P/PI -P/ELEVIV= E/eocharis vivipara SE -/-IN -IN -/-IN -IN -IN -IN ERISPP= Eriocau/on spp. RH -IN -/--/-/--/--/--/-/EUPCAP= Eupatorium capil/ifolium RH -IN -IN -IN -/-IN PIN P/PIN EUPSER= Eupatorium serotinum RH -IN -IN P/--/--/-/--/-P/EUPSPP= Eupatorium spp. RH -IN -//--/-/-/-/-/GAL TIN= Ga/ium tinclorium RH -IN -IN PIN /-/PIN PIN PIN GERCAR= Geranium caro/in/ana RH -IN -1--1--/--/--/-/-/HYDRAN= Hydrocotyle ranunculoides RH" -//--1--/-/--/PIN PIN HYDSPP= Hydtocoty/e spp RH" -IN PIN PIN P/PIN PIN P/-/HYDUMB= Hydtocoty/e umbel/ala RH" -/-/--/-/-/--/-IN P/-HYGLAC= Hygrophi/a Iscustris RH -IN -/-/-/--/-/--/-/-IPOSPP= Ipomoea spp VI -IN -IN -/--//-/--/-/JUNEFF= Juncus effusus SE" -IN PIN PIN P/PIN -/-P/-/-LEMSPP= Lemna spp. FH -/PIN P/-P/PIN PIN PIN PIN LEPFAS= Leptocarpa fascicularis GR -/--/-/-/-/-/-P/-/-L1MSPO= Umnobium spongia RH" -/-IN PIN P/PIN PIN -/-/LUDLEP= Ludwigia /eptocarpa SH -IN PIN -IN -/PIN PIN PIN PIN LUDOCT= Ludwigia ociovalvis SH -IN P/PIN -/-IN PIN PIN P/LUDPER= Ludwigia peruviana SH -IN -/-PIN -/-IN PIN PIN PIN LUDPAL= Ludwigia palustTis RH -IN PIN PIN P/P/--/--/-/-LUDSPP= Ludwigia spp. SH -IN -/-/-/-/-P/-/--/-MELCOR= Me/ochia corchorifolia RH -IN -/-/--/--/-/--/-/MELPEN= Melothria pandu/osa RH -1-IN -/--/--/--/-/-/-MIKSCA= Mikania scandens VI -IN -IN -IN -/-PIN PIN PIN PIN MOMCHA= Momotdica charantia VI -/-/-/--/--1--/-IN -/PANDiC= Panicum dichotomiflorum GR -IN PIN -IN -/--/-/PIN -/PAN HEM" Panlcum hemltomon GR -/-P/-P/-PI-P/-PI-P/-P/PANSPP= Pan/cum spp GR -IN -IN -/--/-/-/-P/--/PASDIS= Paspalum dissectum GR -/-/-/-/-/-/-PIN -IN PASSPP= Paspalum spp. GR -/-IN -IN -/-IN -/ --/--/35

PAGE 37

Table 6. Plant Species List (Cont.) Species Codes Plantb C Samule Date" Tvoe 691 122 622 1:23 A93 PASURV= Paspalum urvi//ei GR -/-IN -IN P/-IN -IN -/--1-PElVIR-Peltandra vlrg/n/cus RH -1-P/P/P/P/P/P/P/PHYANG= Physalis angu/ata RH -IN -IN -/--/-/--/-/--1-PlUROS= Pfuchea rosea RH -/-/--1--/--1--1--IN -1-POLDEN= Polygonum densiflorum RH -/--/--1--/--1--/--IN -IN POLPUN= PoIygonum punctatum RH -IN PIN PIN P/PIN PIN PIN PIN RH -IN PIN PIN P/PIN PIN PIN PIN POROlE= Portulaca o/eracea RH -/-IN -/--/--1--/-/--1-RAPRAP= Raphanus raphanistrum RH -/-/-PIN -/--/-/-/--1-ROTRAM= Rotala ramosior RH -/--/--/-/-/-/-P/--1-RUMCRI= Rumex crispus RH -/--IN -IN -/--/--IN -/--IN SAGLAN .. Saglttaria lanclfolla RHP -IN PIN PIN P/PIN PIN PIN PIN SAGLA T= Sagittaria latifolia RH -/--IN PIN P/PIN -IN PIN PIN SALCAR= Salix caroliniana TRP -IN PIN PIN P/-IN -IN -IN -IN SALROT= Salvinia rotundifolia FF -/-PIN PIN P/PIN PIN PIN PIN SAMCAN= Sambucus canadensis SH -IN -IN -IN -1-P/-IN -/--IN SAMPAR= Samolus parviflorus RH -IN -/-/--1--/--/-/-P/-SCICAl-Sc/rpus ca/lfomlcus SEP -/-P/P/P/P/P/P/P/SCISPP= Scirpus spp SEP -/--/-/--1-P/P/--/-/-SCISPP4= Scirpus spp4 SEP -/-/-/--1-1-P/P/--1-SCIVAl-Sc/rpus valldus SEP -1-PI-P/P/P/P/P/P/SESMAC= Sesbanla macrocarpa RHA -IN -IN -/--1--/-/-PIN P/SETMAG= Setaria magna GRA -/--IN -/--1--/-/--/--/-SOLAME= Solanum americanum RHA -IN -IN -/-P/--/--/-/--IN SOL TOR= Solidago Iorlifolia RHA -IN -/-/-/-/-/-/-/-SPIPOl= Spirodella po/yrhiza FH -/-PIN PIN P/PIN PIN PIN P/STAFLO= stachys fIoridana RH -IN -/-/-/-/--/--/--/THAGEN .. Thalia gen/cu/ata RHP -/-PI-P/P/P/P/P/PIN TYPDOM= Typha domingensis SEP -/--/--/--1-1--/--IN -IN TYPLA T= Typha latifolia SEP -IN PIN PIN P/PIN PIN PIN PIN UTRBIF= utricularia biflora FH -/--1--/-P/PIN P/--1--/-UTRCOR= utricularia comuta RH -/--IN -/--1--/-/-/-/-UTRSPP= utricularia spp. RH -/--1--/--/-/-/-P/-/WOLFLO= Wolffiella fIoridana FH -1--IN -IN P/PIN PIN PIN PIN WOLSPP= Wo/IIia spp. FH -1-PIN P/--/--IN -IN PIN -1-WOOVIR= Woodwardia virginiana RFP -IN PIN -IN -1-1-1--/-/36

PAGE 38

Table 6 Plant Species List (Cont.) Species Codes Plantb C Sample Date" Tvoe N90 A91 J92 M92 A92 F93 A93 M94 cyperac= Cyperaceae SE -IN -IN fem= pteridophyte RF -IN -/poaceae= Poaceae GR -IN PIN udicot= Unknown Dlcot 11 -IN PIN uvlne= Vine VI -IN -/# SPECIES PLANTING SITES (1215 34 # SPECIES NATURAL MARSH (296 m2j 54 65 # SPECIES COMMON TO ALL SITES 26 SORENSEN'S SIMILARI1Y INDEX % PLANTED SPECIES INCLUDED 53 PLANTED SPECIES EXCLUDED 48 = Not present. Bold Characters = Planted Species "SAMPLE DATE CODES NATURAL CODE PLANTED (P) SUCCESSION IN) N90 A91 SEP 1991 J92 JAN 1992 M92 MAY 1992 NOV 1990 AUG 1991 JAN 1992 A92 AUG 1992 AUG 1992 F93 FEB 1993 FEB 1993 A93 AUG 1993 AUG 1993 M94 MAR 1994 MAR 1994 CPLANT LIFE 1YPE= AlP ANNUAL or PERENNIAL -IN P/-IN -/--/--/--/--/--/-/--/--/PIN -/-PIN -/-/-/--IN -/-/-IN -IN -/--/--/--/-/--/--/38 30 33 33 47 37 48 41 37 44 36 26 23 22 28 22 61 62 63 62 60 59 59 56 63 56 = Plant may not fit category easily 37 CODE FF FH RF RH GR SE SH ST TR VI b pLANT 1YPE CODES DESCRIPTION FLOATING FERN FLOATING HERB ROOTED FERN ROOTED HERB GRASS SEDGE,RUSH,1YPHA SHRUB SMALL TREE TREE VINE

PAGE 39

As mentioned above, some species, such as Carex albotuscens. Habenaria repens. and Hydro/ea corymbosa were found in the marsh, but not in sample plots Carex albotuscens was found most frequently along canal banks in areas surrounding the marsh. The sedge may increase it's presence in the marsh over time Hydrolea corymbosa was found only once in the South Marsh. It's environmental requirements include shallow water and access to light. The loss of these requirements (flooding >50 em and overstory dominance by TYpha Tali/olia) over time seem to have caused it's demise. A single plant of the orchid Habenana repens was found along transect 6 (North Marsh) The plant was growing on a floating mat of Eleocharis vivipara The increasing area of floating mats may lead to increased presence of species such as Habenaria repens. This species is commonly found in the nearby lake fringing swamp forest. In contrast, Polygomlm densijlorum was found in small patches in the North Marsh during Summer 1991. Patch sizes increased until P. densijlornm was found in sample plots in August 1993 (Table 6). Hydrology Hydrology is an important driving force in any ecosystem A number of conditions in the Apopka Marsh may cause unique hydrologic conditions in different parts of the marsh. Two conditions that may alter hydrology include the indirect connection between the North and South Marshes; soil surface elevation gradients that are perpendicular to the axis of the stage recording network; and the tendency to form floating mats. The long-term stage record showed that water surface fluctuations across the marsh were well correlated (Fig. 4). The stage record also provided information about the timing and duration of soil surface exposure during August 1993 and March 1994. The water depth record from measurements at plots provided information about soil surface elevation gradients and elevation changes brought on by floating mat formation over the duration of the project. The topographic survey conducted in August 1992 provided information about soil surface elevation for a short time and was not linked to this study. other than to provide inferences about soil oxidation. As mat formation progressed its presence was revealed as an increase in variation associated with water depth measurements. Finally. developing an understanding of how vegetation succession has been driven requires an understanding of the relationship between the abiotic and biotic components. In this case relating water depth patterns measured at vegetation plots to long-term stage records should provide information about the hydrologic components: depth, duration, and timing. Unfortunately. floating mat development results in a loss in the information value oflong-term stage records. A correlation analysis between daily stage and vegetation plot water depth revealed differences over time and between the natural succession and planting sites (Table 7). The relationship between stage and water depth tended to be closer in the planted sites than in the natural succession sites. 38

PAGE 40

Table 7. Correlation analysis of Water Depth and Recorded Stage Data No correlation estimate due to insufficient numbers of stage measurements. (A) NATURAL SUCCESSION TRANSECTS SPEARMAN CORRELATiON ANALYSIS SOUTH MARSH NORTH MARSH DATE COEF. 0 N COEF. 0 N NOV 90 -0.26 0.0003 166 -0.17 0.0527 126 AUG 91 0.60 0.0001 155 0.72 0.0001 124 JAN 92 0.52 0.0001 155 -0.15 0 .0917 126 AUG 92 0.70 0.0001 156 -0.21 0.0169 126 FEB 93 0 .52 0.0001 155 -0.30 0.0007 126 AUG 93 -0.35 0.0052 64 0.36 0.0022 62 MAR 94 -0.02 0 6140 92 -0.04 0.7512 63 (B) PLANTING SITE PLOTS SPEARMAN CORRELATION ANALYSIS SOUTH MARSH NORTH MARSH COMBINED DATE COEF. Q N COEF. Q N COEF p N SEP 91 0.65 0.0001 56 0.66 0.0001 64 JAN 92 0.71 0.0001 106 0.56 0.0001 159 MAY 92 0.60 0.0001 106 0.36 0.0077 54 0.41 0.0001 162 AUG 92 0.75 0.0001 106 0.67 0.0001 162 FEB 93 0.60 0.0001 106 0.53 0.0001 162 AUG 93 0.55 0 .0001 107 0 .05 0.7445 53 0 .56 0.0001 160 MAR 94 0.51 0 .0001 106 0 .55 0.0001 162 39

PAGE 41

In the south marsh natural succession sites the relationship tended to weaken or become negative during drawdowns or as mat formation reached maximum. In most cases north marsh natural succession sites tended to have positive or negative relationships with no discernable pattern. Drawdown did seem to result in breakdown in the relationship in the March 1994 sample (Table 7). In the south marsh planting site, the relationship between stage and water depth seemed to decline late in the sample period. In contrast, the north marsh planting site analysis was mared by the lack of stage measurements because sites were measured in one day. A correlation analysis with the sites combined revealed little difference among sample dates. Combining sites lead to an overall reduction of correlation coefficients (Table 7). Within vegetation plot water depth measurements were highly correlated. This result held for all sample dates in both north and south marsh planting sites (Table 8). Correlation analysis of natural succession plots also revealed similar within plot measures (Table 8). ASSESSMENT OF EXPERIMENTAL PLANTING SITES Hydrology Hydrology will be reported first to lay the groundwork for understanding the vegetation dynamics of the site. The site remained flooded for most of the time since it was established (Figure 4). The first drawdown of the north marsh (Site 3) occurred during spring 1993. The soil surface was exposed during the drawdown event. The south marsh remained flooded during this drawdown. During spring 1994 both the north and south marshes were drawn down leading to soil exposure. Hydrology on the site was linked to vegetation dynamics and floating mat development. The Pontederia cordata planting treatment exhibited the greatest mat formation A slowly declining water depth pattern over time reflects mat formation (Figure 10). The Panicum hemitomon planting treatment was vegetated (primarily by Typha latifolia) later than the other planted treatments. This later vegetation development resulted in the least mat formation and deeper water depths (Figure 10). The remaining treatments showed a linkage to surface water intermediate between Pontederia and Panicum (Figure 10, 11). A Scheffe' Multiple Ranges test (a=O 05) revealed that water depth in the Pontederia cordata planted treatment tended to be shallowest while the Panicllm hemitomon treatment was deepest. Water depths in the remaining treatments did not differ (Table 9). Floating Mats Floating mats were as diverse in the Planting Sites as they were in the Natural Succession areas. Mats were formed by Eleocharis interstincta, Pontederia cordata, Sagittaria lancifolia, ScirptlS valid!IS, and Typha latifolia rhizomes; Hydrocotyle spp. 40

PAGE 42

Table 8. Water depth measurement correlation analysis from within vegetation plots. (A) NATURAL SUCCESSION TRANSECTS SPEARMAN CORRELATION COEFFICIENTS SOUTH MARSH NORTH MARSH DATE WL1xWl2 WL1xWL3 WL2xWL3 WL1xW!.2 WL1xWL3 WL2xW!..3 NOV 90 0 95 0.96 0 96 0.87 0 88 0.92 AUG 91 0.95 0.91 0 95 0 94 0.86 0.90 JAN 92 0.95 0.92 0 95 0 90 0.78 0.84 AUG 92 0.93 0.92 0 94 0 86 0.84 0.86 FEB 93 0 .91 0.92 0 94 0 77 0.74 0.76 AUG 93 0.90 0.87 0.91 0.82 0 84 0.83 O. Q94 0 94 0 84 (6) PLANTING SITE PLOTS SPEARMAN CORRELATION COEFFiCIENTS SOUTH MARSH NORTH MARSH DATE WL1xWl2 WL1xWL3 WL2xWL3 WL1xW!.2 WL1xWL3 WL2xW!.3 SEP 91 0.88 0.85 0.81 0.90 0 87 0 88 JAN 92 0.92 0.86 0.90 0.95 0 93 0 94 MAY 92 0.92 0.86 0 90 0.93 0 90 0 90 AUG 92 0.92 0.90 0 93 0.90 0 90 0.87 FEB 93 0 .91 0.80 0 86 0.85 0 75 0.82 AUG 93 0 .91 0.86 0 83 0.80 0.72 0.83 W 0.96 Q96 41

PAGE 43

Experimental Planting Treatment Planted Plots -SITE 1 ---SITE 2 SITE 3 ELEINT 80 '" _________ I o>-----...... .... 1" ...... ... -----------f.-_ 20 --__ ---108 h L 80 PANHEM "' ............ ",...... 20 -----:r----.. -:r 80 PONCOR T -= .......... ::.:t:: 80 SAGLAN I .", ................. .............. :::. .. ::::.:: .:.:..;:;:--. '" 20 .:E---___ ----::.-::-.:::"' .", .... :---r 80 SCIVAL 601 -___ __. ...... 2 4 0 0 .. ":I; __ ...... -... $ .... __ r ---r...... Time (Months) Figure 10. Water depth from Experimental Planting Treatment Sites, Planted Plots. 42

PAGE 44

w CI) :i: z w ::2: .c a. (I) Cl Experimental Planting Treatment Seeded, Mulch and Control Plots -SITE 1 --SITE 2 SITE 3 aD PANHEM 60 .. _____ :.-::-:::::::-.::-::: ..... H._.. ................. .......... :.. .... aD PONCOR T --________ .;.:. ...... ...... x ......... ___ 20 1 aD 60 40 SAG LAN 1:.. -= .' I .. ... .... .. '. I '" 20 aD SCIVAL 60 40 .f ................. 20 aD r MULCH 60 40 20 __ T ., __ -----_--'r----__ _-------_ ;r..:::::::.::-.::-::::....... ,. .................... _--r........... I .... ----J ...... l ..... aD 60 40 20 CONTROL --"'----.. -... ___ ........ ... '" ______ _J ________ ______ -L ________ ______ ______ SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 11. Water depth from Experimental Planting Treatment Sites, Seeded, Mulch, and Control Plots. 43

PAGE 45

Table 9 Comparison of mean water depths (em) among planted plot treatments, Experimental Planting Sites, Apopka Marsh Flow-way Demonstration Project. General Linear Model procedure with a Scheffe' Multiple Ranges test. 1 Similar letters denote no significant difference Wate[ DeRth 1 Scheffe' MultiRle Ranges Panicum hemitomon 45 7 a Scirpus validus 40.6 b Scirpus califomicus 39.9 b c Elaocharis interstincta 39.9 b c Mixed Species 38 5 b c Pontederia cordate 35 7 c 44

PAGE 46

stolons; dead vegetation; and Eichhomia crassipes colonies. We observed that most mat areas formed as vegetation grew into shallow soil (i.e. agricultura1 plow zone), followed by disconnection of the soil-root/rhizome matrix and flotation. Hydrocotyle spp. and Eichhomia crassipes tended to develop floating colonies which spread across canals and into established planted treatments. Minimal invasion of planted Scirpus califomicus plots by either Hydrocotyle spp. or Eichhomia crassipes was found. This is an unusual situation with colonization up to the edge of the S. califomicus and little or no invasion inside the treatment plot. This pattern may represent a form of competitive exclusion. Other treatments exhibited similar patterns, but not to the extent of the S califomicus treatment. Vegetation Treatment Plots Flora-Overall. Fluctuations in species richness were similar among the various treatments over time (Table 10). An increase in species richness coinciding with the August 1993 drawdown in the south marsh was detected (Table 10). Flora-Subplot. Fewer species were found in the subplots than in the overall plots This results from the smaller sample area of the subplot. Common species found included the floating plants: Azolla caroliniana, Lemna spp Salvinia rohmdijolia, Spirodella polyrhiza, Wolffia spp. and Wolffiellafloridana. Similarities in vegetation dynamics of dominant species between subplots and overall plots suggests that the subplots were representative of vegetation dynamics over time. Cover Percent. The first sampling (August 1991) of the planted sites was limited to a presence/absence species list for the overall estimates and detailed data collection from the subplots. The seeded, mulched, and control plots were visited but not intensively sampled during this sample period The plots were nearly devoid of plants as a result of the site preparation (Table 11). Little evidence of planted sprigs were found during this visit. Apparently leaf die-back had occurred, leaving viable rhizomes in the soil. The dark brown stained water color restricted our view of living plants. As the plant community developed it became obvious that the planted treatment had achieved a high survival rate. Each species behaved in a way that reflects its adaptation to its environment. Each species exhibited varying degrees of survival and colonization effectiveness in the face of interand intra-specific competition. Hydrocotyle ranunculoides and Typha latifolia were the most frequent invading species from the natura1 succession marsh. These species tended to provide competition in two ways. Hydrocotyle rammcllioides, a low growing, stoloniferous, perennial plant was found to grow into the understory of many other taller species. After cold weather reduced overstory cover it seemed as if H. rammcllioides increased its cover into the formerly shaded space. In contrast, Typha latifolia tended to establish from seed, then colonize nearby areas by growing mUltiple rhizomes into available spaces. It tended to increase shade and expand into a large fraction of the rhizosphere. It was outcompeted by planted species in many cases 45

PAGE 47

Table 10. Total plant species richness per treatmentfrom Experimental Planting Sites. Values In parenthesis (X 0.001) are species richness values normalized to' spp. m"' to allow comparisons among treatments. TREATMENTS SAMPLE DATES PLANTED (n;12) ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED (n;6) SEEDED (n;6) PANHEM POLPUN PONCOR SAGLAN SCIVAL MULCH (n;12) JAN92 MAY92 AUG92JEB93 __ __ MAR94 17 (6.13) 23 (8.30) 12 (4.33) IS (S. 41) 22 (7 .94) 13 (4.69) 17 (6 .13) 18 (6 49) 19 (6.85) IS (S.41) 26 (9.38) 21 (7.57) 19 (6 .85) 28(10.10) 19 (6.85) 19 (6.85) 24 (8.66) 19 (6.85) 18 (6.49) 23 (8.30) 17 (6.13) 16 (s.n) 24 (8 .66) 18 (6.49) IS (S.41) 18 (6.49) 19 (6.85) 13 (4.69) 21 (7 57) 12 (4.33) 19 (6.85) 16 (S.77) 22 (7.94) 12 (4.33) 27 (9 74) 17 (6.13) 23 (6 55l 18 (SI2) 23 (6 55l 21(S 98) 28 (7 9D 20 (S 69l 7 (S.OS) 14(10. 10) 14(10. 10) 12(8.66) 21 (IS. IS) 18(12. 98) 11(7.94) IS (10.82) 13(9.38) 11(7.94) 21 (IS. IS) 12(8.66) 11 (7 .94) 11 (7 .94) IS (10.82) 14(10.10) 25(18.03) 14(10.10) 12(8.66) 14(10. 10) 14(10.10) 11 (7.94) 19(13. 71) 16(II.S4) 10(721) 14(1010) 13(938) IS(1082) 19(1371\ 18(1298) 14 (S 05) IS (S.41) 14 (S 05) IS (S.41) 26 (9.38) 13 (4.69) CONTROLln;36) 22 (1 89) 26 (2 23) 25 (2 14) 24 (2 06) 40 (3 43) 28 (2 49) 46

PAGE 48

Table 11. Overall vegetation cover measurements (% plor' MEAN SE) from planted plots, Experimental Planting Sites, Apopka Marsh Flow Way Demonstration Project. Species Codes: Upper case six character are abbreviated species codes. Lower case codes represent plant families or unknowns. Codes ending with D represent dead, while S represent seedlings. Overall cover measurements in August 1991 sample were presence/absence, therefore numeric entries are frequency of occurrence, not mean cover. SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP MEAN SE MEAtl E SE MEAN SE MEAN SE MEAN SE MEAN ... SE AUGUST 1991 SITE 1 ALTPHI 0.25 0 25 0 25 AMMAUS 0.25 0.25 BACSPP 0.25 COMDIF 0.25 0 50 0 25 0 25 CYPSPP 0.25 ECLALB 0.25 0 .2 5 0.25 LEMSPP 1.00 1 .00 1 .00 1 00 1 00 1 00 0 50 PANHEM 0 25 0 25 POLPUN 0.50 0 .75 0 50 0 .5 0 0.50 0.50 PONCOR 0 .2 5 0 25 SAGLAN 0 .2 5 0 .25 1 00 0 25 SALROT 0.25 SCICAL 0.25 0 25 0.25 0 25 SCISPP SCIVAL 0 .2 5 0 .25 0 25 0.25 SPIPOL 1 .00 1.00 1 00 1 00 1.00 0 75 0 50 THAGEN TYPLAT 0 .25 WOLFLO 0 25 0 .2 5 WOLSPP 0.25 0 75 0.25 0.25 0 25 0 75 0.50 AUGUST 1991 SITE2 ALTPHI 0.25 0 25 0.50 0 50 0 25 AMMAUS 1 .00 0 .75 0 .75 0.25 1 .00 0 75 0 50 ASTSUB 0 25 0.50 0.25 COMDIF 0 25 0 50 CYPIRI 0.25 CYPODO CYPSPP 0 25 0 25 ECHCOL 0.50 0.25 0 50 ECLALB 0.25 0 50 0 50 0 25 0 50 0 50

PAGE 49

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEIND 0.25 ELEINT 0.25 0.50 0.50 HYDUMB 0.25 0.25 KOSSPP 0.50 LEMSPP 1 00 1.00 1.00 1.00 1.00 1 00 0.50 LUDLEP 0.2 5 0 25 LUDOCT 0 25 0.25 0.50 LUDPAL 0 25 0.25 0.25 PANDIC 0.25 0 25 0.50 0.25 0.25 0 25 PANHEM 0.50 0.25 0 25 0 50 POLPUN 0.25 PONCOR 0.25 0 25 0.50 SAG LAN 0 25 0.75 0.25 0.50 SCICAL 0.25 0 25 0.25 0.25 SCISPP 0 50 SCIVAL 0.25 0.25 0.25 0.25 SPIPOL 1.00 0 50 0.75 0.75 0.75 1.00 0.50 THAGEN 0.50 TYPLAT 0.25 UGRASS 0.25 WOLSPP 0 75 0 50 0.25 1 00 0 25 0.50 0.50 AUGUST 1991 SITE3 ALTPHI 0.25 0.75 0.25 0 25 AMMAUS 0 .25 0.50 0 25 0 25 BACCAR 0.25 COMDIF 0.25 0.25 EICCRA 0.25 0.25 ELEINT 0.25 0.25 0.50 0.50 LEMSPP 0.25 0.75 0.25 0.75 LUDLEP 0.25 LUDOCT 0 .25 0.25 LUDPAL 0.75 0 50 0 25 0 .25 0 25 PAN HEM 0.25 0.25 0.25 0.50 POLPUN 0.25 PONCOR 0.25 0.50 0 25 0.25 0.50 SAGLAN 0.50 0.25 0.50 SAL CAR 0.25 SCICAL 0.25 0 25 0.25 0.25 SCISPP 0.25 0 50 SCIVAL 0 25 0.25 0.25 0 25 SPIPOL 0.25 THAGEN 0 50 TYPLAT 0 25 48

PAGE 50

Tabl e 11. O verall vegetation cover measurements (Cant.). SPP JANUARY ALTPHI AMAAUS AMMCOC ECHCOL ELEINT HYDRAN LUDOCT LUDPAL PAN HEM POLPUN PONCOR SAGLAN SAGMON SCICAL SClsPP SCIVAL THAGEN TYPLAT umana unknon JANUARY ALTPHI AMMCOC AsTsUB AZOCAR COMDIF CYPHA S CYPODO CYPSPP ECLALB ELE I N T ELESPP EUPSER HYDRAN LEMSPP LlMsPO LUDOCT LUDPAL PANHEM ELEINT MEAN 1992 2 00 5.25 0 .2 5 0 50 0 25 0 25 199 2 0 75 0 75 0 25 16 25 7 75 16 25 1 00 PANHEM SE MEAN SE SITE 1 1.00 1.50 1.19 1 .84 0 25 0.25 0 25 0.25 0 25 1 00 0 29 2 75 1 .31 0 25 0 25 0 25 0 25 SITE 2 0 25 0.50 0.29 0 25 0.25 0.25 0 25 3 15 0 25 0 25 7.42 1 25 1.25 5 54 6 50 2 99 0 75 0 25 1 00 PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE M EAN sE MEAN SE MEAN sE MEAN SE 3 00 2 35 1 50 1 19 1 00 0 75 0 25 0 50 0.50 0 25 0 25 1.00 0 50 0 29 0.50 0 29 1 25 1.25 1 00 1 50 1.19 1 75 1.11 0 75 0.25 0 50 0 29 1 00 28 75 10 87 0 50 0 29 7 50 7 50 0 25 0 25 38 25 11. 43 0 25 0 25 1 00 1 5 00 3 54 10 00 10 00 15 00 5 00 37 50 14 38 5 00 5 00 35 00 5 00 0 25 0 25 1 25 1 25 1 50 1 19 1 25 1 25 1 25 1 25 1 75 1 .11 3 75 3 75 0 25 0 25 7 75 4 19 18. 75 7 18 43 75 15 33 0 50 0.50 0.25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 5 00 5 00 0 25 0 25 2 50 2 50 0 25 0 25 1 50 1 19 0 25 0.25 0 25 0 25 1.00 46 .25 8 .51 52 50 11. 27 7.75 3 04 35 00 4 08 40 50 39 50 0 25 0 25 0 50 0 50 0 25 0 25 0 25 0 25 0.25 0 25 0 25 0.25 49

PAGE 51

Table 11. OVerall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAGLAN SCICA L SCIVAL MIXEO SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PO L PUN 0.25 0 25 O .SO 0 29 0 25 0.25 PONCOR 0 25 0.25 0 25 0.25 43 .75 14.91 5 00 5 00 RHARHA 0.25 0.25 0.25 0 .25 SAGLAN 0 25 0.25 60 .00 9.13 0 .25 0.25 5 00 SAGMON SALROT 0 75 0 25 O .SO 0 29 0 25 0 25 O .SO 0 29 0 25 0.25 0 50 0.50 SCI CAL 21. 25 8 .51 SCISPP 10 00 1 0 .00 SCIVAL 0 25 0 25 0 25 0 25 10.00 10.00 76.25 1.25 10.00 10 00 SPIPOL 1 75 1.11 0.75 0.25 2 .00 1 00 1.00 1 00 4.25 3.59 1 .00 THAGEN 27.50 7 50 TYPLAT 1 75 1.11 0 75 0.25 3.00 1.15 0 25 0 .2 5 0 25 0 25 0 .50 0 50 WOLFLO 4 25 2 .14 2 00 1.00 5 25 1 .84 4 .2 5 2 14 3 .00 1.15 6 50 2 18 5 50 4.50 WOLSPP ugrass 0 .2 5 0 .25 0 25 0 25 0 25 0.25 JANUARY 1992 SITE3 ALTPHI 0 .25 0 25 AZOCAR 47 50 24.62 15 25 11.62 52 50 18 87 33 .75 15 99 18 75 10 48 62 50 9.46 52 50 22 50 BRAPUR CLAJAM 0.50 0.50 COMDIF EICCRA 0 75 0 25 0 25 0 25 0 .75 0 25 0 50 0 .29 0 25 0 25 1.00 0 50 0.50 ELEINT 33.75 10.28 7 50 2 50 GALTIN LEMSPP 4 .00 1 00 0 .75 0.25 4.25 1 .11 4 00 2 27 1 00 1.00 3.00 2 00 LUOOCT LUOPAL 3 25 2.25 4 .25 2.14 0.5 0 0 29 0.75 0 25 2 00 1.00 2 00 1.00 0.50 0.50 LUOPER POLPUN 0 50 0 29 0 25 0 25 0 25 0 25 0 .50 0 50 PONCOR 1 50 1.19 51. 25 17 12 0 25 0 25 0 .25 0 25 0 25 0.25 5 00 5 00 SAGMON 32 50 14. 36 1.00 SALROT 0 50 0 29 0 50 0 29 0 .25 0 25 0.50 0.29 0 75 0.25 1.00 SCICAL 10 00 10.00 35 00 10.00 SCISPP SCIVAL 1.25 1.25 15 .00 5.40 81.25 9 66 2 50 2 .50 SPIPOL THAGEN 0 25 0 .25 25 00 5 00 TYPLAT 1 .75 1 .11 2 .00 1 00 0 50 0.29 2 .75 2 43 1.25 1 25 0.50 0.29 WOLFLO 1.00 1 .00 1.75 1.11 4.00 2 27 1.00 0 75 0.2 5 3 00 2.00 50

PAGE 52

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MAY 1992 SITE 1 ALTPHI 10 25 3.30 10 00 6 n 6.25 2 39 3 00 2 35 9 25 4 87 6 50 2.99 ELEINT 41. 25 9.66 HYDRAN 0 50 0 29 0 25 0 25 0 25 0 25 0.50 0 29 0 50 0 29 LEMSPP 0 75 0 25 0 50 0 29 1 00 1.00 0 25 0 25 1 00 PANHEM 1 00 POLPUN 1 00 2 75 1 .31 1 25 1 25 0.50 0 29 0 75 0 25 0 75 0 25 PONCOR 62 50 8 .29 1 25 1 25 SAGLAN 5 25 3.42 2 75 2 43 72.50 5 20 0 50 0.29 1 25 1 25 SAGMON 0.25 0 25 SALROT 0 25 0.25 SCI CAL 51.25 5 15 16 25 16 25 SCIVAL 18 75 18. 75 52 50 17 62 SPIPOL 0 75 0.25 0 75 0 25 1 00 1 00 0 25 0 25 2 00 1.00 TYPLAT 1 25 1 25 1 50 1 .19 0 25 0 25 0 25 0.25 0 25 0.25 UTRBIF 5 00 2 89 2 50 1.44 0 25 0 25 2.50 2 50 0 25 0.25 UTRSPP 0 50 0.29 0 50 0 29 3 75 2 39 6.25 3 75 5 00 3 54 6 25 2 39 MA Y 1992 SITE 2 ALTPHI 7 75 3 .04 0 25 0 25 5 25 4 92 5.25 4.92 1 25 1 25 0 75 0 25 0 50 0.50 AMAAUS 0 25 0 25 0 25 0 25 APILEP 0 25 0 25 0 25 0 25 ASTELL 0 25 0 25 AZOCAR 1 50 1.19 0 25 0 25 3 75 2 39 7.50 7 .50 12 75 7 36 2 75 2 43 CYPHAS CYPODO CYPSPP ECHCRU 0.25 0 25 ECLALB 2 50 2 .50 EICCRA 0 25 0.25 0 .50 0 50 ELEINT 63 75 3 75 0 25 0 25 3 00 2 00 EUPCAP 0 25 0.25 EUPSER 0 25 0 25 0.25 0.25 GALTIN 0.25 0 25 HYDRAN 7 50 7 50 2 50 2.50 1 25 1 .25 6.50 6 17 5 00 3 54 5 50 4 50 HYDUMB 2 75 2 43 3.75 3 75 0 25 0 25 JUNEFF 7 50 2 50 LEMSPP 3 25 2 25 9 00 5.Q2 47 50 7 50 30 00 8 16 30 50 17 03 37 75 12 .91 35 00 15.00 LlMSPO 0 25 0 25 2 50 2 50 LUDPAL PANDIC 0 25 0.25 PANHEM 4 00 1 00 PELVIR 1 00 51

PAGE 53

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVA L M I XED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE POLPUN 1.25 1 25 0 25 0 .25 3 75 2 39 PONCOR 0 50 0 29 52 50 17 97 2 .50 2 50 RUMOBO 0 25 0 25 SAGLAN 1 25 1 25 75 00 11. 73 0 25 0 25 8 00 7 .00 SAGMON SAGSTA SALROT 6 50 4 63 7 .75 3 .04 1 50 1.19 25 00 21.70 17 50 7 50 13 75 9.44 2 50 2 50 SAM C AN SCI CAL 0 25 0 25 0 25 0 25 70 00 7 .91 2.50 2 50 SCIVAL 0 25 0.25 0.25 0.25 0 25 0 25 92 50 2 50 17 .50 12.50 SENGLA 0 25 0 25 SOLSPP SPIPOL 1 75 1.11 2 50 2 50 5 00 2 89 0 25 0 .25 6 25 3 75 5 25 2 .75 THAGEN 32 .50 2 50 TYPLAT 17 50 6 .61 26 25 12 48 15 00 8 90 0 25 0 25 1 50 1 19 40 00 30.00 WOLFLO 0 25 0 25 7 .75 7.42 8 .75 7 18 17 50 4 79 2 75 2 43 5 .50 4.50 MAY 1992 SITE3 ALTPHI 0.75 0 25 0 25 0 25 1.25 1.25 0.50 0 29 AMAAUS AZOCAR 2.00 1 00 0 50 0 29 0 50 0 29 0 75 0 25 2 00 1 .00 1 75 1 .11 10 50 9 50 EICCRA 1 75 1 .11 0 25 0 25 1 50 1.19 1 50 1 19 1.75 1. 1 1 2 00 1 00 ELEINT 48 75 3 15 0 25 0 .25 11.50 1 1. 17 5 50 4 50 EL E VIV 0 25 0 25 JUNEFF 0 25 0 25 0 50 0 50 LEMSPP 1 00 0 50 0 29 5 75 4 75 0 75 0 25 2 00 1 .00 15 75 14 .75 15 50 14 50 LUDPAL 1.75 1 .11 2 .75 1.31 0 .2 5 0.25 1 50 1 19 1.50 1 19 1.50 1 19 1 .00 PANHEM 0.25 0 .25 1 .00 PASURV PELVIR 0 50 0 50 POLPUN PONCOR 0 25 0 25 2 50 1.44 56 25 18 .86 2 .50 2 50 0 50 0 29 2 50 1 44 15 00 15 00 SAGLA N 0 25 0 25 30.00 17 80 3 00 2 00 SAGMON 5 .00 5 00 SAG S TA 0 25 0 25 SAL CAR SALROT 1 00 0 25 0 25 2 00 1.00 0 50 0 .29 2.00 1 .00 4.25 2 .14 10 50 9.50 SCICAL 0 50 0.29 37.50 13 15 15 .00 15 00 5 00 5.00 SCIVAL 1 25 1.25 63.75 14 .34 35. 00 5 .00 SPIPOL 0 25 0 25 0 50 0 29 0.25 0 25 THAGEN 1 .25 1.25 35 00 5.00 TYPLAT 10 .00 2 04 4 .00 2 27 0 50 0.29 1.25 1 25 0 25 0 25 0 50 0 29 WOLFLO 1.00 0 50 0 29 2 .00 1 .00 0.75 0 25 2 00 1 00 1.00 10 50 9 50 52

PAGE 54

Tab l e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL S CIVAL MIXED SPP MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1992 SITE 1 ALTPHI 4 00 2 27 2 50 1 44 0 50 0 29 3 00 1 15 4 00 1 00 3 75 2 39 5 00 5 .00 AMAAUS 0 25 0 25 0 25 0 .25 CYPODO 0 25 0 25 0 25 0 25 CYPSPP ECHCRU EICCRA 0 25 0.25 0 25 0 25 ELEINT 78. 75 10 68 7.50 7.50 HYDRAN HYDUMB 0 25 0 25 0 25 0 25 LEMSPP 1 25 1 25 0 25 0 25 1.50 1 19 0 25 0 25 5 00 5.00 LUDREP PANHEM 0 20 5 .00 0 50 PASURV 2. 50 1 40 PELV I R 2 50 2 50 POLPUN 0 25 0 25 PO N COR 70 00 23 .36 0 25 0 25 5 00 5 00 SAGLAN 5 00 2 89 3 70 5 00 2 .90 81.2 5 5 15 8 00 7 00 S AGMON 0 .25 0 25 SALROT S CICAL 81.25 5 .91 2 50 2 50 SCISPP4 0 25 0 25 0 50 0.50 SCIVAL 2 50 2 50 87 50 5 95 10 00 5 .00 SPIPOL 0 25 0 .2S 0 25 0 25 0 25 0 25 0 .2 5 0 25 5 00 5 00 THAGEN 55.00 15 00 TYPLAT 1 50 1 .19 1 50 1 90 1 .00 1 19 7 .75 4 66 0 25 0 25 0 25 0 25 5 00 5 00 UTR81F 3 .75 2 .39 0 20 5.00 0 50 1.00 1 19 1 25 1.25 2 75 2.43 22 50 16 52 7 50 2 .50 AUGUST 1992 SITE2 ALTPH I 0 25 0 25 1 00 AMAAUS 1 25 1 25 CYPODO CYPSUR ECLALB EICCRA 1 25 1 25 ELEINT 88 75 5 .15 6 25 3 .75 0 25 0 .2 5 0 .25 0 25 7 50 2 50 EUPCAP 0 25 0 25 2 50 1.44 2 50 2 50 0 50 0 50 HYDRAN 0 25 0 25 HYDUMB 0 25 0 25 JUNEFF 0.50 0 50 LEMSPP 0 25 0 25 30.00 11.73 7 50 4 .79 32 50 11.09 17.50 11.09 0 25 0 25 30.00 30 00 LlMSPO 1 25 1 25 1 25 1 25 1 25 1 25 0 50 0 29 1 00 53

PAGE 55

Tabl e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDLEP LUDOCT 0 25 0 25 2 50 1 44 2 50 2 50 LUDPER PANDIC 0 50 0.29 PAN HEM 4 25 2.14 PELVIR 0 50 0.50 POLPUN 0 50 0.50 PONCOR 2 50 2 50 61.25 18 53 2 50 2 50 10. 00 10.00 SAGLAN 0 25 0.25 0 25 0 25 0.25 0.25 66.25 3.75 0 50 0.29 22.50 17.50 SAGMON SALROT 2 .75 2.43 3 .75 3 .75 8.75 3.15 0.25 0.25 5.00 5 .00 SCI CAL 0 25 0 25 0 25 0 25 56 25 20.14 2 50 2.50 SCISPP SCISPP4 10 00 4 08 SCIVAL 2 50 2.50 22.50 22 50 78 75 10.68 12 50 2 50 SPIPOL 0.25 0.25 5.25 3.42 2.50 2 50 7.75 4 66 2 50 2 50 0.25 0.25 THAGEN 0.25 0.25 35.00 25.00 TYPLAT 7 .50 2.50 43.75 12 .81 15 .00 6 45 8.75 3 75 2.50 2 50 4 .00 3.67 35.00 15.00 WOLFLO 3 .75 2 39 3.75 2 39 5 .00 5.00 AUGUST 1992 SITE3 ALTPHI 0 25 0 25 0.50 0 29 0 50 0.29 1 00 AZOCAR 0 25 0.25 0 25 0 25 2 50 2 50 5 00 5 00 BRA PUR CYPSUR EICCRA 2 00 1.00 12 50 4 79 8.75 5 15 19.00 9.50 7 75 2.25 5.00 ELEINT 87.50 4.33 35.00 5.00 HYDRAN 2 75 2 43 1.25 1 25 1 25 1 25 0.25 0.25 1.50 1 19 2 50 2 50 HYDUMB 0 25 0 25 LEMSPP 15 25 8.52 40 .00 7 07 10 00 3 54 25.00 6 45 37 50 8 54 32 50 9.46 25 00 5 00 LUDLEP 0 50 0 29 0 25 0.25 LUDPER 0 50 0 50 MIKSCA PANHEM 0.50 0 29 0.25 0 25 PELVIR 7 50 2.50 POLPUN 0.25 0 25 0 50 0 29 0 25 0.25 PONCOR 7 75 4 19 65 .00 21. 79 2.50 2 50 1 25 1.25 8 75 5 15 5 00 5 00 SAGLAN 0.25 0.25 0 50 0 29 72. 50 4 33 10.00 SALROT 0 50 0.29 10.00 10.00 5 00 2 89 SCI CAL 1.50 1.19 70.00 9.79 7.50 7.50 5.00 5.00 SCISPP4 3.00 1.15 SCIVAL 33. 75 9 44 15 00 5.00 SPIPOL 4 00 2 27 22 .75 10 13 3 .00 1 .15 12.50 2 50 8 75 1 25 8 75 1 25 15 00 5.00 54

PAGE 56

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 3 .75 2 39 1 25 1 25 10 00 10 00 TYPLAT 6 50 2 .99 16. 25 6 25 5 .25 2 75 3 00 2 35 2 .50 2 50 6 25 3 .75 2 50 2 50 WOLFLO 1 50 1 19 1 .75 1 .11 0 .75 0 25 4 00 2 27 5 .00 2 89 0 50 0 29 5 00 5 00 uaquatic 0 25 0.25 FEBRUARY 1993 SITE 1 ALTPHI 0 50 0 29 0 50 0 29 0 50 0 .29 0 50 0 29 0 .50 0 29 0 50 0.50 AMAAUS 0 25 0.25 0 50 0.50 CYPSPP 0 25 0 25 EICCRA 0.50 0.50 ELEINT 66 25 9 44 12 .50 2 50 EUP C AP 0 25 0 25 GALTIN HYDRAN 0 .25 0 25 2 50 2 50 LUDLEP 0.50 0 50 LUDOCT LUDSPP PANHEM 0 .75 0 25 PELVIR 10 00 POLP U N 0 25 0 25 0 50 0 50 PONCOR 0 25 0.25 28 .75 16 63 1 50 1.19 2 50 1 44 2 50 2 50 SAGLAN 7 75 7.42 7 50 4 .79 1 50 1 19 46 .25 15 46 0 25 0 25 2 50 2 50 10 00 SAGMON 15 .00 15 00 SALROT 0 25 0 25 0 25 0 25 0 25 0 .2 5 SCICAL 0 25 0 25 55.00 2 .89 5 50 4.50 SCIVAL 53.75 9 44 7 50 7 50 SPIPO L 0.25 0 25 THAGEN 10 00 10.00 TYPLAT 0 50 0 29 3 00 2 .35 4.00 3 67 1 00 0.25 0 25 0 25 0 25 2 50 2 .50 UTRBIF FEBRUARY 1993 SITE 2 ALTPH I 2 75 1 .3 1 0.25 0 25 1 25 1 .2 5 1 50 1 19 1 25 1 25 0 25 0 25 0 .50 0 50 AP I LEP 0 25 0 25 0 .50 0 50 EICCRA ELEINT 67 50 7 50 5 .00 3.54 0 .75 0 25 3 00 2 00 GALT I N 0 25 0 25 HYDRAN 3 75 2 .39 5 .00 5 00 0 50 0 50 HYDUMB 0 25 0 25 1.25 1 25 LEMSPP 23 75 18 75 16. 75 13 90 16.75 14 45 21. 50 9.47 33 75 15 73 4 00 2 27 10 00 LlMSPO 1 25 1 25 1 25 1 25 5 50 4.50 LUDLEP 55

PAGE 57

Table 11. Overall vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDPER PAN HEM 0 .75 0.25 5 .00 5.00 PELVIR 7 50 2 50 POLPUN 0.25 0 25 0 50 0.50 PONCOR 0 25 0 25 30.00 10. 80 7 50 7.50 SAGLAN 0 25 0 .25 0 25 0 25 63 .7 5 3 75 1.25 1 25 17 50 7 50 SAGMON SALROT 2 50 2.50 0 50 0 29 12. 75 12.42 3 25 2 25 5.25 2 .75 4.00 2 27 10 .00 10.00 SCICAL 0 25 0.25 0.25 0.25 1 50 1 19 48 75 4 27 5.50 4.50 SCIVAL 0.25 0 25 7 50 7 50 30.00 10.80 12 50 7 50 SPIPOL 0.25 0 25 0.50 0.29 0 25 0 25 0 25 0 .2 5 1 00 THAGEN 27 50 2.50 TYPLAT 4 .00 2 .2 7 36. 67 6.67 20 .00 7 .07 6 25 2 39 1.50 1 19 15.00 8 .90 3 00 2 .00 WOLFLO 0 25 0 25 0 50 0 29 0 25 0 .2 5 0 25 0 25 0.25 0 .2 5 0 25 0.25 1 00 FEBRUARY 1993 SITE 3 ALTPHI 1 25 1.25 0 25 0.25 0 25 0.25 0 25 0 25 AZOCAR 0 50 0.29 0 25 0 .2 5 BRAPUR EICCRA 0.50 0 .2 9 11.25 8 26 5.25 3.42 22 50 7 22 1.50 1.19 ELEINT 80 .00 5.40 0 50 0 29 0 25 0 25 12. 50 2 50 GALTIN 0 25 0 25 HYDRAN 3.75 2.39 23.75 12.Bl 17 50 11.2 7 15 00 7.07 10 .00 2 89 31. 25 8 26 30 00 20 .00 LEMSPP 11.25 3 15 29 00 12 12 24 00 11.26 so.oo 16 20 26 25 8 98 23 75 8 98 5 00 LUDLEP 0 25 0 25 LUDOCT MIKSCA PAN HEM 0.50 0 29 PELVIR 17 50 7.SO POLPUN 0 50 0.29 PONCOR 0.25 0 25 5 00 2 .8 9 53 .75 17 .98 5 .00 5 00 1 25 1 25 2 .SO 1 44 20 00 20 00 SAGLAN 0.25 0 25 0 25 0 25 0 75 0 25 63 .75 4 73 1 .SO 1 19 25 00 15 00 SAGMON SALROT 0 25 0 .2 5 0 25 0.25 11. 50 9 56 16 25 9 44 1.25 1 25 7 .SO 7 .SO SCICAL 1 50 1.19 0 25 0 25 40 .00 4 56 3 75 3.75 10 00 SCIVAL 0 25 0 25 0 25 0.25 1.25 1 25 33.75 10 28 12.SO 2 .SO SPIPOL 0.50 0 29 0.25 0.25 1 50 1 .19 o .so 0 29 1 .00 THAGEN 1 50 1.19 25 00 5.00 TYPLAT 3.75 1.25 12.SO 4 .79 6 25 1.25 2 .SO 1.44 2.75 1 .31 15 00 7 36 WOLFLO 0 25 0 25 0 25 0.25 o .so 0.50 AUGUST 1993 SITE 1 56

PAGE 58

Tabl e 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MI X ED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0 50 0 29 0 25 0 25 1 .00 5 00 2.00 1 00 2.00 1 00 0 50 0,50 AMAAUS 0.50 0 29 0 25 0 25 1 .75 1 .11 1 ,50 1 19 0 25 0 25 4 00 1 00 CYPIRI CYPODO 0 50 0 29 0 25 0 25 CYPSPP 0 25 0 25 ECLALB 0 25 0.25 0 50 0 29 EICCRA 0 25 0 25 ELE INT 91. 25 3 .75 12 50 12. 50 EUPCAP 0.25 0 25 0 25 0 25 0 50 0 29 HYDRAN 2 50 1,44 0,25 0 25 0 50 0.50 HYDUMB 0,25 0 25 LEM S PP 0.25 0 25 LUDLEP 2 .75 2 43 2 .75 2 43 3 75 2 39 1.75 1 .11 3 25 2 25 PANHEM 2 .50 1 44 PELVIR 5 00 5 00 POLPUN 0 25 0 ,25 0 50 0 29 0 50 0 29 PONCOR 0 25 0 .2 5 0 25 0 25 73 .75 24 .61 0 25 0 25 1 50 1 19 10 00 10.00 SAG LAN 1 25 1 25 6 25 3 75 60 00 7 36 0 50 0 29 0 25 0.25 8 00 7 00 SAGMON SALROT 0.25 0 25 0 50 0.50 SCICAL 0 25 0.25 36. 25 9 44 5.00 5 00 S C ISPP4 0 25 0 25 0 50 0 50 SCIVAL 2 50 2 50 30 00 14.14 5 .00 5 00 SP I POL 0 25 0 25 0 25 0 25 0.25 0 25 THAGEN 25 00 25 .00 TYPLAT 4 00 3 67 9 ,00 5 ,79 4 .00 2 27 5 00 0 ,25 0 25 2 75 2 43 5 00 5 .00 AUGUST 1993 SITE 2 ALTPHI 0.75 0 25 0 25 0.25 0 ,50 0 29 0.25 0 25 0 25 0 25 AMAAUS 0.25 0 25 0 .50 0 29 0 .25 0 25 CYPODO 4 25 2 14 0 50 0 29 0 25 0 25 1 75 1 .11 3.00 2 .35 0 50 0 50 ECHCOL ECH CRU 0 50 0 50 ECLALB 0 50 0 .29 0 50 0 29 E I CCRA ELEINT 50.00 12 25 4 00 2 27 2 .75 2 43 7 50 7.50 EUPCAP 0.25 0 25 0.25 0 25 GALTIN 0.25 0 ,25 HYDRAN 4.25 3.59 2 50 2 50 3 75 2 39 4.00 2 27 1 00 HYDUMB 2 75 2 43 0 25 0.25 0 25 0 25 JUNEFF 7 50 7 50 LEMSPP 1.00 15 25 6 26 0 75 0 25 10 00 3 54 9 25 6 98 1 75 1 .11 3 00 2 00 LEPFAS LlMSPO 0 25 0 25 57

PAGE 59

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL M IXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDLEP 31.25 6.25 2 .00 1.00 10 .00 1 0 .00 7 50 1 .44 1.25 1 25 21. 25 7 .18 2 50 2 50 LUDOCT 0 .25 0 .25 0 .25 0 .25 LUDPER PANDIC PAN HEM 0 .75 0.25 PANSPP 0 50 0.50 PELVIR 0 50 0 50 POLPUN 0.25 0.25 1 .25 1.25 PONCOR 1.50 1.19 45 .00 13.23 2 .50 2.50 20.00 20 00 SAGLAN 0.25 0 25 0.25 0 25 60 .00 1.5 0 1.19 1.25 1.25 15.00 15.00 SAGMON 1 25 1 .2 5 SALROT 0.50 0.29 35. 00 6.45 2.75 2 43 37 50 4 .79 22.50 7 50 17.50 10.31 3.00 2.00 SCICAL 1 50 1.19 1.25 1.25 0 .2 5 0.25 27.50 8 .54 2.50 2.50 SCISPP4 0.50 0.29 SCIVAL 0 .25 0 .2 5 0 .2 5 0 25 2.50 2.50 20.00 4 56 2 50 2.50 SPIPOL 0 .75 0 25 0 .25 0 .2 5 0 50 0 29 0 50 0 29 1 00 THAGEN 20 00 20.00 TYPLAT 8 .7 5 5 15 52.50 6.29 28 .75 4 .2 7 18 75 7 18 10 25 4 .3 9 30. 00 9 35 45 00 25.00 WOLFLO 0 50 0.29 0 50 0 .29 0.50 0.29 0 50 0 50 AUGUST 1993 SITE3 ALTPHI 0 50 0 .29 4 .00 2.27 1 75 1 .11 2 75 1 .31 1.50 1 19 3 00 1.15 15 50 14 50 AMAAUS 0 .25 0 25 AMMCOC 0 .75 0.25 0 25 0 .25 0 25 0.25 0 50 0 .29 BRAPUR 0 50 0.50 CYPCOM 0 .2 5 0.25 CYPIRI 0.25 0 25 0 75 0.25 0 .2 5 0 25 0 .25 0 25 0.25 0.25 0 .5 0 0 29 CYPODO 0.75 0.25 0 .25 0 25 0 .25 0.25 0.25 0 25 1.00 CYPSPP 0 .2 5 0 25 0.50 0.29 0.25 0 .2 5 ECHCOL 0.25 0 26 0 50 0.50 ECHCRU ECLALB 0.25 0 25 0 .25 0 .2 5 0 25 0.25 0.25 0 25 1 25 1 .25 0 50 0 50 EICCRA 0 25 0 25 27.50 10.51 0 .2 5 0 .25 2.75 1.31 12 50 3 23 11. 50 6 .44 10 00 10.00 ELEIND ELEINT 83 .75 5 .91 0 25 0 25 2 .75 2 43 1 25 1 25 0 .2 5 0.25 7 50 7 50 HYDRAN 1 75 1.11 2.50 2 50 1 .50 1 19 2.50 1.44 4.25 3 59 8 .7 5 1 25 5.00 HYDUMB 0 .25 0 25 7 .50 7 50 JUNEFF LEMSPP 1 .75 1 .11 31. 25 10.08 15 .25 11. 80 33 75 10. 68 12 75 5 .01 27 .75 9 .22 3 .00 2.00 LEPFAS LUDLEP 1.25 1 .25 1 .50 1.19 1 .00 0 25 0 .25 3 00 2 35 2 .00 1 .00 30.50 29 50 LUDOCT 0 25 0.25 0 .50 0.29 0 50 0 29 0 .25 0 .25 5 .00 5 .00 MIKSCA PANDIC 0.25 0 .26 58

PAGE 60

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL M I XED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PANSPP 0.25 0.25 PASOIC PELVIR 2.50 2.50 POLPUN 0.25 0.25 1 25 1.25 0 25 0 .25 4 00 3 67 0.25 0 25 0.50 0.50 PONCOR 13.75 8.00 40.00 14.14 2.50 2.50 6.25 3.75 2 50 2.50 ROTRAM SAGLAN 0.25 0.25 0.50 0.29 72.50 4.33 10.00 10.00 SAGMON SALROT 10 25 9.92 0 50 0.29 10.00 5.77 10.00 5.77 10 00 10.00 SCICAL 2.50 1 .44 0 25 0.25 63.75 2.39 7.50 7.50 SCISPP4 1.25 1.25 11.25 11. 25 SCIVAL 0.25 0.25 17.75 17.42 0.25 0.25 40.00 10.80 5 00 5.00 SESMAC 0.50 0.50 SPIPOL 0.50 0 29 3.00 2 35 3.25 2 25 1.00 3.00 2.35 0.75 0.25 1.00 THAGEN 1.25 1.25 2 50 1.44 0.25 0.25 3.75 2.39 20.00 20.00 TYPLAT 11. 50 5.38 17.50 6.29 30.00 7.38 13.75 2.39 5.00 3.54 28.75 12.31 12.50 2.50 UTRSPP 0.25 0.25 WOLFLO 0 .75 0.25 0.25 0.25 0 25 0.25 0.50 0 29 0.50 0.29 0.50 0.50 WOLSPP 0.25 0 25 MARCH 1994 SITE 1 ACERUB ALTPHI 0.50 0.29 0 75 0.25 0.75 0 25 5.75 4.75 0.75 0.25 7.50 2.50 AMAAUS 0.25 0.25 0.25 0.25 0.25 0 25 1.25 1.25 0.50 0.50 APILEP CARPEN 0.25 0.25 EICCRA 0.25 0.25 ELEINT 51.25 11.61 2.50 2 50 EUPCAP 0 50 0 50 GALTIN HYORAN 5.25 1.84 2.75 2.43 0.50 0.29 21.25 11.61 1.75 1.11 5.00 5.00 LEMSPP 0.25 0.25 LUOLEP 0.50 0.29 0.50 0.29 0.25 0.25 1.00 LUOPER 2.50 2.50 PAN HEM 0.25 0.25 PELVIR 0.25 0.25 22.50 7.50 POLPUN 0.50 0.29 0.25 0.25 1.00 PONCOR 56.50 18.95 1.25 1.25 4.00 2.27 15.00 15.00 SAGLAN 8.75 7.18 6.50 3.62 0 .50 0.29 53 75 3 75 0.50 0.29 1.25 1 25 10.50 9.50 SAGMON SALROT 0 25 0 25 SAM PAR SCICAL 0.25 0 25 83 75 5 15 17.50 17 50 5.00 SCIVAL 52.50 17 85 5 00 59

PAGE 61

Table 11. Overall vegetation cover measurements (Cont.). SPP ELEINT PANHEM PONCOR sAGLAN SCI CAL sCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN sE MEAN SE MEAN SE MEAN SE SPIPOL THAGEN 15.00 TYPLAT 2.75 2.43 9.00 4 10 4 .00 2.27 8 .00 5.74 3.00 2 .35 3.75 3 75 1 00 MARCH 1994 SITE2 ACERUB 0 50 0 50 ALTPHI 0.75 0 25 0 50 0.29 0.25 0 25 0.25 0.25 0.25 0 25 0.50 0 50 APILEP 0.25 0 .25 0.25 0 25 0.75 0.25 0 .25 0.25 0.50 0.50 CYPSPP 0 25 0.25 0.25 0.25 0 50 0.50 ECLALB 0.25 0 25 0 25 0.25 0.25 0.25 0 50 0.50 EICCRA 0 25 0 25 ELEINT 63.75 3.75 3 .00 2.35 3 75 3 .75 0.25 0 25 10.00 EUPCAP 0 25 0 25 GALTIN 0.75 0 .2 5 0 75 0 25 0 25 0 25 1 .00 HYDRAN 6.50 2.99 0.50 0.29 1 50 1 19 1.75 1.11 1.25 1 25 4.00 2 .2 7 3 00 2.00 LEMSPP 0.50 0.29 0 50 0 29 0 25 0.25 0.25 0 25 LUDOCT LUDPER 0 25 0 .25 PELVIR 8 00 7 00 POLPUN 0.25 0 .2 5 PONCOR 0 .75 0 .25 32.50 14.93 5 .00 5.00 SAGLAN 0.25 0 .2 5 47 50 12 99 0 50 0 29 0 50 0 29 10.00 5.00 SAGMON SALROT 1 .2 5 1.25 0 .25 0.25 1.00 1 00 0 50 0 .29 2 50 2 50 SCICAL 1 50 1 19 1 25 1.25 1 .75 1 .11 60. 00 7 .07 2.50 2.50 0.50 0.50 SCIVAL 0.25 0 .25 0 75 0 .2 5 0 25 0 25 17.50 14.22 3 00 2 00 THAGEN 5 00 TYPLAT 10.25 4 .3 9 76 25 5.91 38 75 13.75 36.25 12 .14 18.75 5.15 47.50 10.31 35.00 30.00 MARCH 1994 SITE 3 ACERUB ALTPHI 0.25 0 .2 5 6.50 3.62 0 75 0.25 1 50 1 19 1 00 0.75 0 .2 5 0 50 0 50 AMAAUS 0 50 0.29 AM BART 0 25 0.25 CYPSPP 0.25 0.25 0 50 0.50 ECHCRU ECLALB 0.25 0.25 EICCRA 14.00 6 72 2.75 2 43 9.00 3 56 5.25 2 75 ELEINT 51.25 8 26 2 .75 2.43 1.25 1 25 17.50 2 50 EUPCAP 0 25 0 25 0.50 0 29 GALTIN 0.50 0.29 3.00 2.35 0 50 0 50 HYDRAN 37. 50 4 33 17.50 1.44 1.50 1.19 26 25 7.47 11. 25 3 15 10.00 3 54 1.00 60

PAGE 62

Table 11. Overall vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE HYDUMB 0 25 0.25 LEMSPP 1 75 1.11 0 50 0.29 0 25 0 25 0 25 0.25 0 25 0 25 LUDLEP 0.25 0 25 MIKSCA PELVIR 12.50 2 50 POLPUN 0.25 0 25 0.25 0 25 PONCOR 11. 50 4 05 42.50 14 36 1.25 1.25 0.25 0 25 2.50 2.50 7.50 2 50 SAGLAN 0 25 0 25 0 25 0 25 76 25 5 15 0 25 0 25 5 00 SAGMON SALROT 0.50 0.29 0.25 0.25 13.25 12.25 2 50 1 .19 1.75 1.11 0 50 0 .50 SCI CAL 5 00 2 89 1 25 1 25 67 50 5 95 5 25 4 92 7 50 7 .50 SCIVAL 0 50 0 29 0 25 0 25 0 25 0 .25 27.75 14 92 0 50 0 50 SPIPOL 0.25 0.25 0 25 0 25 0.25 0 25 THAGEN 1 25 1 25 0 25 0 25 1 50 1 19 17 50 7 50 TYPLAT 8 00 4 .04 13 75 5 15 13 75 5.54 8 75 3 75 0 75 0 25 23 75 13.75 15 00 15 00 WOLFLO 0 25 0 25 0 25 0.25 61

PAGE 63

(e.g Eleocharis imerstincla, Ponlederia cordala, Sagittaria Ianci/olia, and Scirpus cali/omicus) (fables 11,12). Planted Treatments Overal l and Subplot Cover Percent Eleocharis ittterstittcta. This species was successful in terms of colonizing the treatment plot and resisting invasion by other species (Figure 12) It also was a successful invader of pathways and adjacent treatment plots Colonization at all three sites followed a similar pattern (Figure 12) Coverage in the treatment plots reached maximum (75%-90%) by the August 1992 sample collection. With time the cover values varied, but remained near 75% Cover at Sites 1 and 3 began to decline between August 1993 and March 1994 (Figure 12). Declines in live leaf cover were matched by increased coverage of dead vegetation. Vegetation dynamics at Site 2 were slightly different. Cover peaked at the August 1992 sample date, declined slightly until August 1993, then increased by the March 1994 sample. Dead vegetation cover followed this pattern as well between February 1993 until March 1994. This treatment experienced a dramatic die-off of Eleocharis inlerslincla during the winter of 1994/1995 (Stenberg Pers Obs March 1995) The competitor species, Typha lali/olia, was limited by its competition with Eleocharis int erstincla (Figures 12, 13, 14) At Site 1 Typha lali/olia was suppressed (<5% cover) while at Sites 2 and 3 it slowly increased cover (0 33% month1 and 0 5% month-I, Sites 2 and 3, respectively) Pan;cum hemitomott. This species was largely unsuccessful at site colonization and resistance to invasion by other species This species did not completely die out in spite of its inability to compete. It was found at low levels in at least a few of the plots during each sample (Figure 15) Early in the vegetative development of these plots they tended to be dominated by open water. Eventually the plots were colonized by Typha lali/olia. Colonization rates varied among the sites (Figure 16) Sites 1 and 3 were similar with low cover values (<20%). Site 2 was substantially different with a rapid rate ofincrease (2.5% month-I) following invasion in January 1992 (Figure 17). Potttetieria cordata. This species was highly successful at colonization and resisting invasion by other species. The P cordala vegetation community formed dense floating mats consisting of rhizomes and attached soil. The species was sensitive to cold and showed leaf die-back after severe freezes. Live vegetation reached maximum cover at approximately the same time for all sites (August 1992) (Figures 18, 19) This pattern was followed by cover oscillation around 75% at Site 1 and a slow decline in cover at S i tes 2 and 3 Typha !ali/olia was suppressed at Site 1 (cover <10%). Typha latifolia cover at Sites 2 and 3 increased over time (1.07% month1 and 0.65% month-I, respectively (Figures 18-20). Sagittaria lattcifolia. This treatment tended to be successful at surviving during 62

PAGE 64

Table 12. Vegetalion cover measurements (% m' MEAN SE) from subplots In planted plots, experimental Planting Species Codes: Upper case six character are abbreviated species codes. lower case codes represent plant families or unknowns. Codes ending with D represent dead, while S represent seedlings. SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1991 SITE 1 ALTPHI 0.25 0. 25 0 25 0 .25 COMDIF 1 .25 1 .25 6 25 3 75 0.25 0.25 1 25 1 .25 ECLALB 0.50 0.29 LEMSPP 4 .25 2 .14 3.25 2 .25 1 00 3.00 2 35 2 .00 1 .00 1 .00 3. 25 2 25 POLPUN 2.50 2.50 10.00 7.07 1.25 1 25 0 .25 0. 25 1.25 1.25 PONCOR 0. 50 0 29 SAGLAN 1.75 1 .11 SCICAL 1.50 1.19 SCIVAL 1 75 1.11 SPIPOL 5. 00 2 04 4 25 2 14 2 .00 1 00 7 .50 3.23 3. 00 1.15 1 00 3.00 1.15 WOLSPP 0 .25 0. 25 0.50 0 29 0 50 0.29 0.50 0.29 0 50 0.29 0 .50 0. 29 0. 50 0.29 AUGUST 1991 SITE 2 ALTPHI 0.25 0. 25 AMMAUS 0. 25 0 .25 2 .50 2.50 0.50 0.29 2 .50 2 .50 ASTSU B 0 .25 0.25 COMDIF 0.25 0. 25 CYPI R I 0.25 0.25 CYPSPP 0.50 0.29 ECHCOL 0 .25 0.25 ECLALB 0.25 0.25 0.25 0.25 0 25 0 25 LEMSPP 13.67 6 .33 13.25 12.25 10.50 5 85 33.75 6.88 17.75 14.11 8.00 5.74 13. 00 8 .04 PANDIC 0 .25 0. 25 Poaceae 0.25 0.25 PONCOR 5. 00 2 89 SAGLAN 2 50 1 .44 SCICAL 0 .25 0.25 SCISPP 0 25 0.25 SCIVAL 1 .00 SPIPOL 22. 00 12. 74 0 .75 0.25 9 00 5 02 6 75 6 09 1 50 1 .19 0.75 0.25 21. 75 16.42 THAGEN 2 .50 1 .44 WOLSPP 10. 00 5. 77 12.75 12.42 0.25 0. 25 17.50 11.27 9.00 8 .67 5.25 4 92 9. 00 5. 02 AUGUST 1991 SITE3 AMMAUS 1 25 1 .25 ELEINT 0 .25 0.25 0. 50 0. 29

PAGE 65

Table 12 Vegetation cover measurements (Cont.) SPP ElEINT PANHEM PONCOR SAGLAN SCICAl SCIVAl MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE lEMSPP 0 25 0.25 PONCOR 3 .75 3 .75 SAGLAN 0.50 0 29 SAL CAR 0 .25 0.25 SCI CAL 0 25 0 25 SCIVAl 0 25 0.25 JANUARY 1992 SITE 1 AlTPHI 1.25 1 25 0 25 0 25 0 25 0 25 0 25 0 25 ElEINT 1 00 1.50 1.19 HYDRAN 0.25 0.25 PAN HEM 0 25 0 .25 POlPUN 0 .25 0.25 1 75 1 .11 0 .25 0.25 0 25 0 25 0 25 0 .25 PONCOR 8 00 5.74 0.25 0 25 SAGLAN 10.25 4 39 SCI CAL 1 50 1 19 0 50 0 29 SCIVAl 8.75 5 .91 THAGEN 2.50 2 50 TYPLAT 0 25 0 25 JANUARY 1992 SITE2 A l TPHI 1 25 1.25 0 25 0 .25 0 25 0 25 0 25 0 .25 AZOCAR 0.25 0 25 1 .25 1 25 0 50 0.29 18.75 14.20 0 25 0 25 21. 25 8.26 0 25 0 25 ElEINT 1 00 H YDRAN 3 75 3 .75 2 .50 2 .50 lEMSPP 5 25 1 .84 6 .75 4 52 26 .25 12. 48 27 50 19 20 4 00 1 00 30 00 10 80 19.00 8 57 lUDPAl 0.25 0 25 PANHEM 0 50 0 29 POlPUN 0 25 0 25 0 25 0 25 PONCOR 22. 50 12 .99 0.25 0 25 SAGLAN 6 75 3.47 SAlROT 0 25 0 25 0 25 0 25 SCICAl 0 25 0 25 S CISPP 0 25 0 25 SCIVAl 0 25 0 25 38 75 7 .74 5 00 3 .54 S P IPOl 0.50 0.29 0 .75 0 .25 0 75 0 25 1.00 0 50 0 29 4 00 2 27 0.75 0.25 THAGEN 16 25 9 87 TYPLAT 0 25 0 25 0 25 0 25 WOlFlO 2.00 1 00 2 00 1.00 6 .50 2 18 2.00 1 00 1 .00 5 25 1.84 2.00 1 .00 JANUARY 1992 SITE 3 AlTPHI 0.50 0.29 0 .25 0 25 0.50 0 50 0 25 0 25 64

PAGE 66

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AZOCAR 73 75 19 72 30 25 20.29 27.SO 11.09 61. 25 11.61 6.75 4.52 47 75 22 69 42 75 19 13 EICCRA 0.25 0 25 0 25 0.25 ELEINT 21.50 13.16 3 .75 3 .75 0 25 0 25 3 .7 5 2.39 LEMSPP 2 .00 1 .00 0 .75 0.25 3.00 1.15 11. 50 9 .56 1.75 1 .11 1 .00 3 00 1.15 LUDPAL 2 00 1.00 1.25 1.25 1.25 1.25 1 25 1 .25 0 .75 0.25 0.50 0.29 1.SO 1 19 POLPUN 0 50 0.29 0 25 0 25 0 25 0.25 PONCOR 16 25 14. 63 0 75 0 75 o .so 0 29 SAGLAN 11. 25 5 54 SALROT 0.75 0 25 0 50 0.29 o .so 0 29 0 75 0 .25 SCICAL 12.50 12.50 SCIVAL 0.25 0 25 60 00 16 83 1 25 1.25 THAGEN 17 50 11.81 TYPLAT 0.50 0 29 WOLFLO 1 .00 2.00 1.00 1.75 1.11 1 75 1 .11 0.75 0 25 1 00 2 00 1 00 MAY 1992 SITE 1 ALTPHI 5 25 4.92 0 50 0 .29 0 .2 5 0 .2 5 0 50 0 29 ELEINT 13.75 5 54 HYDRAN 0.25 0 25 0 25 0 25 LEMSPP 0 25 0 25 0 25 0 25 1.00 0 50 0 29 PANHEM 0 50 0 29 POLPUN 0.50 0 .29 2 75 1 .31 0 25 0.25 0.25 0 25 PONCOR 67.50 17.97 SAGLAN 60 00 11. 73 SALROT 0 25 0 25 SCICAL 41.2 5 18.41 SCIVAL 53.75 16 38 SPIPOL 0.25 0 25 1.25 1 25 0 25 0.25 2 00 1.00 0 25 0.25 1 .00 TYPLAT 2 .SO 2 50 URTBIF 15 .00 15 00 3 75 2 39 1 25 1 25 1 25 1 .25 1 25 1 25 UTRSPP 0 25 0 .2 5 5 00 5 .00 MAY 1992 SITE2 ALTPHI 1.25 1 25 2 50 2 50 0 25 0 25 0 25 0 25 1.50 1 19 AZOCAR 1 25 1 25 3 75 3.75 0 25 0 25 2 .SO 2 50 2 50 2 50 ELEINT 38 75 9 66 HYDRAN 7.50 7 50 6 25 6 25 2 50 2 50 HYDUMB 0 25 0 25 JUNEFF 1.25 1 25 LEMSPP 8 .00 4 53 3 .00 2 35 67.50 11.09 22 50 17 62 11.75 9.46 SO. 25 20 62 25.25 11.73 PANHEM 1 25 1 25 PELVIR 2 50 2.50 POLPUN 2 50 2 50 65

PAGE 67

Table 12. Vegetation cover measurements (Cont.) SPP ElEINT PANHEM PONCOR SAG LAN SCICAl SCIVAl MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PONCOR 87 .50 5 95 12. 50 9 46 SAGLAN 41.25 11. 25 7 50 7 .50 SAlROT 6.50 3 62 4 00 2 27 1 50 1 19 31. 50 20 12 14 00 10.58 5 00 5 00 8 75 7 18 SCICAl 0.25 0 25 48 75 15 .33 18 75 18 75 SCIVAl 1.25 1.25 85.00 8.90 SPIPOl 3.00 2 35 1 25 1 25 0.50 0 29 0 25 0 25 1 50 1.19 6.50 3 62 0 .2 5 0 25 THAGEN 58.75 19 83 TYPLAT 1 .50 1 19 2 50 2 50 5 .2 5 4 .92 WOlFlO 2.50 2 50 15 25 14 92 18. 75 14 .20 7 50 2 50 1.25 1.25 5 50 4 .84 MAY 1992 SITE 3 AlTPHI 0.25 0 .2 5 1.25 1.25 0 .25 0 25 AZOCAR 1 50 1 .19 0 50 0.29 0.50 0 .29 1.50 1.19 0.25 0 25 8 00 7.34 EICCRA 2.50 1 44 3 75 2.39 2.50 1.44 ElEINT 30.00 15 55 10 00 10. 00 17. 50 10 .31 JUNEFF 7 50 7 50 lEMSPP 2.00 1 00 3 00 2 35 0 75 0 25 0 75 0 25 16 75 14 45 14 25 11. 95 lUDPAl 0.25 0 25 lUDREP 2.50 2.50 PANHEM 0 50 0 .29 PONCOR 47 50 17. 97 6 25 6 .2 5 18 75 17.12 SAGLAN 7 50 7 50 1 .2 5 1 25 SAGLAT 7.50 4 .33 SAlROT 0.75 0.25 1 .7 5 1.11 0.25 0 25 1 75 1.11 5.00 2 04 5.00 SCICAl 7 .7 5 7.42 10 00 10.00 SCIVAl 17 50 17 50 67 .50 12. 50 17.50 17 50 SPIPOl 0 .50 0 .29 0.50 0 29 0 25 0 25 THAGEN 12 50 12 50 TYPLAT 5.00 3 54 6 25 6.25 1.25 1 25 WOlFlO 1 00 1 00 0 .50 0 .2 9 1 00 1.50 1 19 15 25 11. 62 AUGUST 1992 SITE 1 AlTPHI 2 75 2.43 0 25 0 25 0 50 0 29 3 75 2 39 0 .25 0 25 ElEINT 71. 25 19.08 40 00 23 09 HYDRAN 0 .2 5 0 25 lEMSPP 1.25 1.25 0 25 0.25 0.25 0 25 0 .25 0 25 PONCOR 93 75 1.25 2.50 1.44 SAGLAN 76 25 10 28 1.25 1.25 SCICAl 58. 75 22 .11 SCIVAl 1 25 1 25 81. 25 8 .51 2 .50 2 .50 SPIPOl 0.25 0 .25 0 25 0 25 0 .25 0.25 0 25 0 25 1 50 1 19 THAGEN 45 00 25 98 TYPLAT 5 00 5 00 2 50 2 .50 66

PAGE 68

Table 12. Vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE UTRBIF 1.25 1 25 0 50 0 29 0 25 0 25 0 25 0.25 20 .00 12.25 5 25 1 .84 SCIVALD 3.75 3 75 AUGUST 1992 SITE 2 ALTPHI 1.25 1 25 1.25 1.25 10.25 9 92 ELEINT 86 25 12 .14 0.25 0 25 1.25 1.25 HYDSPP 0 25 0 25 LEMSPP 3 25 2.25 25 50 14. 72 21.25 8.26 48 75 17 12 14.00 8 86 8 .75 1.25 35 00 11. 90 L1MSPO 3.75 3.75 0.25 0.25 LUDLEP 5.00 5.00 PANHEM 1 .2 5 1 25 PELVIR 2 .50 2 50 POL PUN 2.50 2.50 PONCOR 95.00 3.54 18 .75 18 75 SAGLAN 67 50 17 38 SALROT 8 .75 7 18 1.50 1.19 0.25 0 25 11.25 4.27 15 00 11.90 1.25 1.25 3.00 2.35 SCICAL 2.50 2 .SO 65.00 23.63 SCISPP4 0.75 0 25 SCIVAL 0.25 0 25 25.00 25 00 98 .75 1 25 4 00 2.27 SPIPOL 3.67 1 33 5 25 3.42 20.00 10.80 16 50 14.54 21.25 16.63 47 .SO 6 .29 22.SO 13.15 THAGEN 43.75 23.57 TYPLAT 40.00 16 83 35 00 21.11 7 .SO 4 79 1 25 1.25 WOLFLO 0 25 0 25 2 75 1.31 0 25 0 25 12 .SO 6 .61 10 .2 5 9 92 3 .75 3 75 6 25 2 39 WOLSPP 0 .5 0 0 29 1 25 1.25 1.25 1 25 0.25 0 25 AUGUST 1992 SITE 3 ALTPHI 0 25 0.25 EICCRA 1.25 1 25 25 00 21.79 1 25 1.25 ELEINT 100 .00 27.SO 24 28 HYDSPP 0 25 0 25 LEMSPP 14 25 11.95 40 .00 9.13 6 .SO 2 18 36 .2 5 15 .99 60 .00 15 .81 so.oo 17.32 37.50 16 52 PELVIR 2 .50 2 50 POLPUN 0 .2 5 0 25 PONCOR 100 00 23 75 23.75 6.00 4 .71 SAGLAN 56 25 13.44 SALROT 1.50 1 19 10 00 10 00 1 25 1.25 2.50 2 50 12.50 12.50 SCICAL 32 .SO 23.58 SCISPP4 0 25 0.25 SCIVAL 20.00 20.00 62 50 16.52 20 00 20.00 SPIPOL 1 50 1 19 25 25 8.42 2 .75 1.31 36 25 19.93 31.25 16.75 32.50 14.36 20 00 13.54 THAGEN 25 00 9.57 TYPLAT 31.25 18 53 15 00 15 .00 15 .00 15.00 uaquatic 2.SO 2 .SO WOLFLO 0.25 0 25 2.SO 2.SO 20.00 12.25 30.00 21.21 67

PAGE 69

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL M I XED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCIVALD 25 00 15 00 FEBRUARY 1993 SITE 1 ALTPHI 0 25 0.25 0 50 0 29 0 25 0 25 ELE INT 65 00 17 56 21. 25 19 62 LEMSPP 0 25 0.25 PELV I R 2 .50 2 50 POLPUN 0.25 0 25 PONCOR 58.75 11.97 21. 25 19 62 SAGLAN 43 75 16 .25 1.25 1.25 SAGLAT 6 25 6 25 SALROT 0 25 0 25 0 50 0.29 0.25 0 25 SCICAL 37 50 12.99 SCIVAL 62 50 15 07 SPIPOL 0 25 0 25 THAGEN 31. 25 18.75 TYPLAT 0 25 0 25 3 75 3 75 0 25 025 ELEINTD 30.00 15.81 PONCORD 13 75 5 .54 S AGLAND 1 25 1.25 SCICA L D 34 00 12 25 S CIVALD 23 75 8 98 THAGEND 11.25 6.57 TYPSPPD 0 25 0 25 FEBRUARY 1993 SITE 2 ALTPHI 1.25 1.25 1 25 1.25 0 25 0 25 0 25 0.25 APILEP 1 25 1 25 ELE INT 37 50 10.31 2 75 2 43 0 25 0 25 GALTIN 0 25 0 25 HYDRAN 1.25 1.25 5.00 5 00 1.25 1.25 HYDSPP 1.25 1.25 HYDUMB 1.25 1.25 LEMSPP 2 50 2 50 16 50 11. 3 2 6 75 4 52 21.50 8 55 37 50 19 20 0 75 0 .2 5 4 50 3 50 UMSPO 1.25 1 25 PANHEM 0 25 0 25 PELVIR 5 00 5 00 PONCOR 58.75 13 60 3.75 3 75 SAGLAN 37 50 4 79 SALROT 0 25 0 25 10.25 9 .92 0 50 0 29 3 00 2 35 0 50 0 29 1.25 1 25 SCICAL 2 50 2 50 1.25 1.25 31.25 12.97 1.25 1.25 SCIVAL 1.25 1.25 25 .00 12. 08 1.50 1.19 SPIPOL 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 68

PAGE 70

Table 12. Vegetation cover measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 15. 00 5.40 TYPLAT 1.50 1 .19 28 75 10 87 7 75 7.42 3 75 3 75 0 25 0 25 2 50 1 44 7 75 4 66 WOLFLO 0 .25 0 25 0 .2 5 0 25 0 50 0 29 ELEINTD 50.00 19 15 PONCORD 3 75 2.39 SAGLAND 1 25 1 25 SCICALD 18 75 10.87 SCIVALD 48 75 14 77 THAGEND 20 00 9 13 TYPSPPD 1.25 1.25 7 75 4 .19 1.50 1.19 2 50 2 50 FEBRUARY 1993 SITE 3 ALTPHI 0.25 0 25 0 25 0 .25 AZOCAR 0 50 0 29 0 .25 0.25 EICCRA 10.25 9 92 1 25 1 25 25 25 18.82 0 50 0 29 ELEINT 72.50 17 85 21. 25 18. 07 GALTIN 0 25 0.25 HYDRAN 4.00 3 67 20 .25 12 .11 12. 50 8 29 17 75 14 .11 12. 75 4.57 41.25 15 99 1 50 1 19 LEMSPP 4.00 3 67 48 00 27.14 15. 25 11. 80 68 75 18. 19 46. 25 5.54 18.75 10. 87 23.75 8.98 PELVIR 3 75 3.75 PONCOR 43 75 13 13 2 50 2.50 7 50 4 79 SAGLAN 21.25 3 75 SALROT 0 25 0.25 16 50 11. 68 1 .2 5 1 25 0.25 0 25 10 25 9 92 SCICAL 20 .25 10.65 0.25 0 .25 4.00 3.67 SCIVAL 19. 00 9 50 0 75 0.25 SPIPOL 0 75 0 25 0 25 0 25 0 50 0 29 0 75 0 25 THAGEN 22 50 7 22 TYPLAT 0.25 0 25 0 25 0 25 0 25 0 25 2 .50 2 50 WOLFLO 1.25 1 25 ELEINTD 20 00 13. 54 0 25 0 25 PONCORD 13.75 3 75 SCICALD 22.50 8.54 THAGEND 6 25 4 73 TYPSPPD 5 00 5.00 AUGUST 1993 SITE 1 ALTPHI 0.50 0 .29 5.00 0.25 0.25 1 75 1 .11 0 25 0 25 AMAAUS 0 25 0 25 1 25 1 25 2 50 1 44 ECLALB 0 .25 0 .2 5 ELEINT 75.00 23 36 48 75 28.16 HYDRAN 1 25 1.25 LEMSPP 0 25 0 .25 LUDLEP 1.25 1 25 0 .25 0 25 69

PAGE 71

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PAN HEM 3.75 3.75 PONCOR 98.75 1.25 2.50 2 50 10.00 7.07 SAGLAN 46 25 10. 87 0 25 0 25 SALROT 0 25 0 25 12 50 12. 50 SCI CAL 23 75 8 98 5 00 5 00 SCIVAL 7 75 2.25 SPIPOL 0 25 0 25 0 25 0 25 THAGEN 31. 25 23.31 TYPLAT 0 25 0 25 2.50 2.50 3 75 2 39 2.50 2 50 ELEINTD 24 00 23.67 SCICALD 43.75 13.13 15 00 15.00 SCIVALD 61. 25 13.29 TYPLATD 3 75 3.75 AUGUST 1993 SITE 2 ALTPHI 3 75 2 39 1 50 1 19 0 25 0.25 0 25 0.25 CYPODO 1.75 1 .11 0 50 0.29 1 25 1 25 ECLALB 0.25 0.25 1 50 1.19 ELEINT 42 75 15.25 6 50 6 .17 2.50 2.50 26.50 24.52 GALTIN 0 25 0.25 0 50 0 29 HYDRAN 11.25 8.26 1 25 1 25 2 50 2 50 0 25 0.25 HYDUMB 6.25 3 75 JUNEFF 0 25 0 25 LEMSPP 2.00 1 00 23 75 7.47 0 .7 5 0 25 7 75 3 04 13 00 12 34 1 75 1.11 8 75 7 18 LUDLEP 22.50 7n 7 50 3 .2 3 8 .75 5 .15 PONCOR 90 00 3 54 18 75 17.12 SAG LAN 41. 25 7 18 SALROT 1.50 1 19 38 75 10.48 0 25 0.25 32 50 2 50 11.50 9 58 11.25 7 18 2 75 2.43 SCICAL 2 50 2.50 0.25 0 25 8.75 1.25 SCISPP4 0.25 0 25 SCIVAL 0 25 0 25 7.75 3 04 0 25 0.25 SPIPOL 0 50 0 .29 0 25 0 25 0 50 0 .2 9 0 25 0 .2 5 0 25 0.25 THAGEN 67 50 22.87 TYPLAT 4 00 3 67 21. 25 8 26 4 00 2 27 2 75 2 43 7.50 5 95 10 25 5.99 1 25 1.25 WOLFLO 0 50 0 29 0 50 0 .29 0 50 0 29 0 25 0.25 ELEINTD 25 00 15 00 SCICALD 43 75 13 75 SCIVALD 7.75 5.85 TYPLATD 2.50 2 50 17.50 5.95 1 25 1.25 4.00 3 67 2.75 2.43 AUGUST 1993 SITE 3 ALTPHI 1.25 1 25 6 50 4 63 1 25 1 25 0 25 0 25 1 50 1 19 CYPODO 0 25 0.25 0.25 0 25 C Y PSPP 0 25 0 25 0.25 0 25 70

PAGE 72

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE E I CCRA 12 50 9 46 20.00 10 80 7 50 4 79 ELEINT 72.50 21.07 31.25 23. 66 HYDRAN 6 25 3 75 1 50 1.19 6.25 3 75 18 75 13 .90 1.25 1 25 JUNEFF 12 50 12 50 LEMSPP 1.50 1 19 42 50 6.29 15 25 9 45 31. 50 11.75 9 .00 4 10 17 75 7 .02 15 75 14 75 LUDLEP 5 00 5 .00 0 50 0 29 PELVIR 10 00 8.42 PONCOR 65 00 16 .83 18 75 18 75 10 00 6.12 SAGLAN 25. 00 7 .91 3.75 3.75 SALROT 15.00 15.00 0 .25 0.25 10.00 10 00 11.25 7 18 7 50 7.50 SCICAL 36.25 10.87 3 75 3 75 SCIVAL 6.50 2 99 0 25 0.25 SPIPOL 0 25 0 25 1.75 1.11 4 25 2 .14 1.00 3 00 2 35 0.50 0 29 1 00 THAGEN 2 50 2 50 60 00 13.39 TYPLAT 5 00 2 .89 6 25 6 25 7 50 7.50 5 .00 3 54 8.75 5 15 WOLFLO 0 .75 0.25 0 25 0 25 0 25 0 25 0 50 0.29 0 25 0 25 0 25 0 25 WOLSPP 0 .2 5 0 25 SCICALD 15 00 15 .00 TYPLATD 2 50 2 50 2 50 2 50 MARCH 1994 SITE 1 ALTPHI 0 25 0 25 0 25 0 25 3 00 1 15 0 50 0 29 0 50 0 29 AMAAUS 0.25 0 25 1 25 1 25 0 25 0 25 CARPEN 0 25 0 25 ELEINT 35 00 10.41 6.50 6 17 HYDRAN 7 50 7 50 7 50 4.33 0 25 0 25 5 25 3.42 LUDLEP 1 .50 1 19 PANHEM 1.25 1.25 PELVIR 5 .00 5 00 22.50 19.31 POLPUN 0 25 0.25 PONCOR 37.50 16 .01 25 00 17.68 SAG LAN 12 50 2 50 SALRO T 0 25 0 25 1 25 1 25 SCICAL 73 75 20 .14 22.50 22.50 SCIVAL 26 25 3 75 0 50 0 29 THAGEN 1 25 1.25 TYPLAT 7 50 5 95 1 25 1 25 3 75 3 .75 11. 25 11. 25 1 25 1.25 UTRSPP 2 50 2 50 ELE I NTD 57 50 7 50 PONCORD 22 50 7 50 5 .00 5 00 SAGLAND 2 50 1.44 SCICALD 6.75 3.47 SCIVALD 1 50 1 19 TYPLATD 5.00 5 00 7 50 7 50 8 75 8.75 2 50 2.50 71

PAGE 73

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE udicotS 0.25 0.25 0 50 0.29 MARCH 1994 SITE 2 ALTPHI 1.25 1 25 CYPSPP 0 25 0 25 ECLALB 0 25 0 25 ELEINT 53 75 19.51 21. 25 21.2 5 0 .2 5 0 25 5 25 4 92 GALTIN 0.50 0 .29 1.25 1 25 HYDRAN 7.50 4 33 1.25 1.25 1.25 1 25 1.50 1 .19 1.25 1 .25 0.25 0.25 LEMSPP 0.25 0 25 PELVIR 6 25 6.25 PONCOR 40 00 11. 73 3 75 2 39 SAGLAN 25 00 5.40 1.25 1.25 SALROT 1.25 1.25 0 75 0 .25 0.50 0 29 0 25 0 25 0.25 0.25 SCICAL 1 25 1 25 17.75 8 37 1 25 1.25 SCIVAL 0.25 0.25 0 25 0 25 16. 50 14 54 0 .75 0.25 THAGEN 11.25 3 75 TYPLAT 2.75 1 .31 32.50 17.62 7 75 4 66 22.50 8 54 12 50 7 50 28.75 10.B7 ELEINTD 27.50 22 59 PONCORD 15. 00 6.12 SCICALD 1 .2 5 1.25 26.25 19. 62 THAGEND 36 25 14.91 TYPLATD 7 50 3 .2 3 25.00 16. 58 7 50 3 23 10. 00 5 77 11. 25 4 27 7 50 7.50 GALTINS 0 25 0 25 TYPSPPS 0.25 0 25 0 25 0 .2 5 0 .25 0 .25 0 25 0 .25 0 .25 0.25 udlcotS 0 50 0 29 0 25 0 .2 5 MARCH 1994 SITE 3 ALTPHI 1 25 1 25 3.00 2.35 0.25 0 25 0 25 0 25 AMBART 0 .2 5 0 25 ECLALB 0 25 0 25 EICCRA 16. 25 14.63 6 .25 6 25 7.50 4 .33 10 00 7 .07 ELEINT 28.75 20 45 12.50 6 .61 EUPCAP 0 25 0 25 GALTIN 0.25 0 .2 5 HYDRAN 51.25 22.49 1.75 1 .11 7 50 7 50 30.00 18 82 6.25 1 25 7 75 2 .25 2 50 2.50 LEMSPP 5 00 2.04 0.50 0.29 0 25 0.25 0.25 0.25 PELVIR 12.50 12.50 PONCOR 58 75 13.60 10.00 10 .00 2 50 1.44 SAGLAN 14 00 4 49 2 50 2 50 SALROT 0 25 0.25 10 50 9.84 18.75 17. 12 3 00 2 35 1 50 1 .19 SCICAL 51. 25 16 75 7 50 7 50 SCIVAL 4 00 2 27 0 .25 0 25 SPIPOL 0 25 0.25 0 25 0 25 0 25 0 25 0 25 0 25 72

PAGE 74

Table 12. Vegetation cover measurements (Cont.) SPP ELEINT PAN HEM PONCOR SAGLAN SCICAL SCIVAL M IXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE -_._-THAGEN 21.25 21.25 16.25 2.39 TYPLAT 2 .SO 2 50 7 50 7 .50 8 75 5 .91 5 00 5 00 18 75 10 87 EICCRAD 5 00 5 .00 2 .SO 2 .SO ELEINTD 22 75 16.41 5 00 3.54 PONCORD 8 .75 4.27 5 00 5 .00 SCICALD 12 75 4 09 THAGEND 2 .SO 2 .50 20 00 7 36 TYPLATD 2.SO 2.SO 2 50 2 .50 4 00 3 67 2 .SO 2 .SO 4 00 3 67 TYPSPPS 0.25 0 25 0 25 0 .25 0 .2 5 0 25 0 50 0 29 udicotS 0.25 0.25 0 50 0 .29 O .SO 0 29 0.25 0 25 0 75 0 25 0 50 0.29 73

PAGE 75

Experimental Planting Treatment Eleocharis interstincta Planted Plots LIVE [=:J DEAD 100 I I' I I I 1 .1 80 I I I SIEPTEMBER 1991 I Ii' i 60 iii I 40 i i i i -20 i i i i a -iii i i i i i ; 100 __ __ L I 80 I JrNUARY 1'(92 W I I I (/)60 i I i i I I I __ +II __ __ __ __ 100 I I I I MAY 1992 I -80 I I I I I i '0 60 I i I I I I .. i i : I ;..i a i i i'li ijj '" 100 __ __ __ __ -L __ __ H Ii,. 1 I I Iii I i i r""!' : : 60 i i i i 80 1 1 : : : : : : : i_me 100 __ __ __ __ __ -L __ __ c l 60 I I I I I I I I I I I I I I 80 I I I I I I 40 I I I I I I I I 20 : 0 I I I il il 1 -i!j,_F a is i ",. I 1 ; I "" "F'i1I 100 __ -L __ __ FI I I M.fI.RCH 199t l! i i __ i i l_oooo ELEINT HYDRAN PANHEM PONCOR SAGLAN SCI CAL SCIVAL TYPLAT .. Plant Species Figure 12. Overall vegetation cover (% Plor', Mean SE) from Eleocharis interstincta Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 74

PAGE 76

ill C/) ..!. + c: '" ., :::;; '" E :;; > 0 U c: 0 Qi Cl ., > "0 a. .0 :::J C/) Experimental Planting Treatment -Eleocharis interstincta Planted Plot a LIVE CJ DEAD 100 60 60 40 20 0 100 80 60 40 20 0 100 60 60 40 20 0 100 80 60 40 20 0 100 80 60 40 20 0 100 60 60 40 20 0 100 60 60 40 20 1 1 i 1 I : I i 1 1 ii r ..: -1 i r 1 I i i 1 I 1 ,1" I I, -1 i m I 1 1 1 i I 1 : 1 i I i 1 [ 1 i I I I 1 1 i I i ... ffi i 1 1 1 1 1 1 1 SEPTEMBIR 1991 i i i i 1 1 1 1 1 1 : : 1 : I JANUARY 11992 ; 1 I i 1 i i i [ MAY 1992 I 1 1 1 1 I 1 I 1 1 1 1 1 I -m I I i AUGUST I i I I I i i I I : i i [ [ 1 FEBRUAR'f I 1 i I 1 I I 1 I I I I 1 i i i --1 I 1 1 1 1 I 1 I I I I I I I i [ [ L ........ I : MARCH 1 I I 1 i i I i I I -0 .. I; ; : : : m .,,' ELEINT HYDRAN PONCOR SAG LAN SCI CAL SCIVAL TYPLAT -Plant Species Figure 13. Subplot vegetation cover (% m 2 Mean SE) from E/eocharis inlerstincla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -=Hydrocoty/e ranuncu/oides (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 75

PAGE 77

UJ (/) -.!. + c: 0 0 c: 0 "" iii Q) > 0 100 75 50 25 0 30 25 20 15 10 5 0 100 75 50 25 0 30 25 20 15 10 5 0 100 75 50 25 0 30 25 20 15 10 5 0 Experimental Planting Treatment -Eleocharis interstincta Planted Plots oLIVE. DEAD SITE 1 ELEINT .......... .................. ...... SITE 1 TYPLAT ...... ............ l ............. ..... ..... ..... ......................... SITE 2 ELEINT ...................... ......... ................. ............. SITE 2 TYPLAT ........... ..................................................................... ............ SITE 3 ELEINT ............ ........................... SITE 3 TYPLAT ................................................................. ........................... ....... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 14. TIme series of overell vegetation cover (% Plorl, Mean SE) of E/eocharfs inierstincta and Typha latifolia from Eleocharfs interstincta Planted Plots, Experimental Planting Sites 76

PAGE 78

Experimenta l Planting Treatment -Panicum hemitomon Planted Plots LIVE CJ DEAD 100 'I" I I 'I I 80 I I I SIEPTEMBEIi 199 1 60 I i i i I 40 I I I I I I i I I I 20 iii ; j l ji_ 80 i I I JTUARY 1 [92 W 60 I i I I I CI) I Iii. I I i 40 i I I i I I c: 20 I [I i I I I .. :0 100 I I I I I MAY 1992 I 80 I I I I I I I '15 60 I I I I II II I I a. 40 I I I I ' 100 I I I I I I I 8 80 I I I i I Ai!JGUST 1992 iii i ,ill" ,..:I I I ... Q) 20 iii I i .. > 100 I-I I I I FEBRUARY E 80 I-I I I I I I 60 : : :: ::-o 40 I I I I I I I 20 I I I I I I I ; iii I !lI 1 1 -[rn' I I Ii" ill,arn 108 ---=.-...o-=--;:I o.....;:=C=-==--==J 80 I I I I AljJGUST I I I I I I 60 Iiii iii I -_ 40 I I I I I I __ __ 100 I I I I I I I 1 iii i RCH 199 :1 I I I I I I 20 I I1iI I I ;,; I I I I ziS __ __ __ ELEINT H Y DRAN PANHEM PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 15. Overall vegetation cover (% Plor', Mean SE) from Panicum hemitomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 77

PAGE 79

60 45 30 15 0 60 45 30 15 0 w 60 en -!. 45 + c: 30 co Q) 15 :; 0 E 60 *' 45 30 Q) > 0 15 t) c: 0 0 "" 60 co -45 Q) OJ Q) 30 > -15 0 C. 0 .c 60 en 45 30 15 0 60 45 30 15 0 Experimental Planting Treatment -Panicum hemi/omon Planted Plots LIVE c:::=J DEAD I I I I I I I I I I I I i SIEPTEMBER 1991 i i i i i i i i I I I I i I I i I I I I I i i i i i i I I I I I I I I I I J 1 NUARY 1 I I I I I I I I I I I I I I I I I I I I I 0 : : I : : a; ;-, I I I I I MAY 1992 I i i i i I I I i I I I I I I i I I I i i i I i i I I : : : a; rj I I I I I I I I i l-I I I I I A\JJGUST 1992 I I I I I I I I I I I I I I I I I I I I I I I 5 I I I I I I I I I I l-I I I I I I i i i I I I I I I I i i i i i i ; I I I I I I !o_ i L i)i I I : : : I I I I I I I I I I I I I I All)GUST I I I I I I I -I I I I I I l-I I I I I I a : : : : : I I I I I i I I I I I i i i i i I I I I I I i I I i i i I I I I I I I I iii ja. I i ; I i ElEI NT HYDRAN P A NHEM PONCOR S A G LAN sCICAl sCI V A l TYPLAT Plant Species Figure 16 Subplot vegetation cover (% m,2 Mean SE) from Panicum hemilomon Planted Plots, Experimental Planting SHes. For each species bars representing the three s i tes are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocotyfe ranuncu/oides (HYDRAN) and Typha latifolia (TYPLA T) not planted other species planted near treatment plot. 78

PAGE 80

w (J) -.!. + c: III Q) ::2 -.-E a.. Experimental Planting Treatment Panicum hemitomon Planted Plots o LIVE DEAD SITE 1 PAN HEM 6 : 1 109 SITE 1 TYPLAT 75 50 25 T = ... ... = .. 8 SITE 2 PAN HEM 6 4 I 2 __ __ __ -L __ 100 SITE 2 TYPLAT 75 50 25 ................ ... ...... ........... ........ ... ... .. .. .. .. ... .. .. .. __ __ ____ __ __ 8 SITE 3 PANHEM 6 4 2 SITE 3 TYPLAT 75 50 25 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 17. TIme series of overell vegetation cover (% Plor\ Mean SE) of Panicum hemlomon and Typha latifolia from Panicum hemitomon Planted Plots, Experimental Planting Sites 7 9

PAGE 81

100 80 60 40 20 a 100 80 60 40 20 W a en 100 ..!+ 80 60 Q) 40 :E 20 :!: 0 o 100 a: 80 60 40 o 20 () a 100 'iii 80 a; 60 '" 40 20 a 100 o 80 60 40 20 a 100 80 60 40 20 a Experimental Planting Treatment -Pontederia cordata Planted Plots fiIiBJ LIVE DEAD I I I I I I I I I I SEPTEMBER 1991 l-I I I I I I I i I I I i I i i I i i i I I I -i i I i I l-i I I I ; J4NUARY 1 i i i I i I H i i i i i i i I I I I-: : : I 1 1I 1 1 I I M.lw 1992 I I I 1 I I i I I I I I I I I I I I I I I I I I I I i l I I I I I_ i i i i -I I I l I I I I I I AIiJGUST 1992 I I : I I I I 1 I i : 1 I I -i 1 I: I i 1 I I i I I I 1 1 -1 1 1 -iii I I I I I FEBRUARY 993 I I I I I I I I i 1 r I I i I i i i I i i I I 01.. o L I i I iDm_ J if'; oJ ; J i I -; 1 i m I I I I I I -i i i i AIjIGUST 19$3 I I I i I I i I I I I I I I I I I I lot I I I 1 1 .. '" I -I 5 I 115 l-I I I I I I I I I I I I Ir I I I l-I 1 I I I I 1 00 o l I I i .. I I I I ili" '" 1 -I I ffi_ i ELEINT HYDRAN PANHEM PONCOR SAGLAN SCI CAL SCIVAL TYPLAT Plant Species Figure 18. Overall vegetation cover (% Plor', Mean SE) from Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 80

PAGE 82

Experimental Plant ing Treatment -Pontederia cordata Planted Plot LIVE 0 DEAD 100 I I I I I I 80 iii I I SEPTEMBItR 1991 60 I I I I I I 40 I I I I I I I Iii I I : : Q m : : : : : : : : : JANUAR Y 1992 I I I I I I W 60 I I iii i -! i m 100 P----'!_-!,--+--f, M"'"A'"'Y-:"""19=-=9C::2-+'--+--'1 il! j j j : II I : : : a 108 P----!!_-!, --'---f, "-",!-, --+---+,--=t---'1 i I i I i Iii i AUGUST 1 i92 !'l 40 ii' iii i 20 Ii: I I I I '" m 0p----'iL--!i _-+_-f=---=f' 100 I I I I I FEBRUARV 1993 80 I I I I I I i iii : a : = : : 0 80 I III I I I AUGUST __ __ __ r : I I : : MARCH 60 : i I : : : __ -L __ __ -L __ ELEINT HYDRAN PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 19. Subplot vegetation cover (% m2 Mean SE) from Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocoty/e ranuncu/Oic/es (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 81

PAGE 83

w (/) ...!.. + c: ro Q) ::2 Experimental Planting Treatment Pontederia cordata Planted Plots oLIVE DEAD '00 SITE' PONCOR 75 50 25 ...... ... ... .... ..... .... ,,-" 0 50 SITE' TYPLA T 40 30 20 '0 0 '00 SITE 2 PONCOR 75 50 25 ----........... ... ..... -"'. ................ .................. ...... o ........ .. __ ...... _, ........ -.0. __ .............................. .. ................................................. .j 50 SITE2 TYPLAT 40 30 20 '0 .................... .J ... ..... ........ ..... ..... .... o ......................... ................. '00 S I TE 3 PONCOR 75 50 25 .......... 4 ....... ... 0 .................... .... "" ... ..... ................... 50 SITE 3 TYPLAT 40 30 20 10 0 ........................................... ............ ..... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 Time (Months) MAR94 Figure 20. Time series of overall vegetation cover (% Plot", Mean SE) of Pontederia cordata and Typhaiatifoiia from Pontaderia cordata Planted Plots, Experimental Planting Sites. 82

PAGE 84

the term of study It didn't expand into all available space as did species such as P. cordata, but it did resist invas ion by other species (Figure 21, 22). Maximum cover (-75%)was reached by May 1992 for Site 2 and August 1992 for Sites 1 and 3 (-80% and 75%, respectively) (Figure 21, 22) Live vegetation cover remained relatively stable at between 50% to 75% through the study period, while dead was a minor component. In contrast, T. /al ifolia displayed two distinct growth patterns. In Sites 1 and 3 i t remained at low levels %). In Site 2 its cover increased rapidly during the February 1993 to March 1994 sample period (2.1%/month). This increase seems to be associated with a slight decline i n S. Iancifolia cover (Figure 23) Scimus caJifOrnicus. This treatment species performed well under any standard of measure. It had high survival, rapid complete site colonization, resisted invasion by other species, and did not form floating mats (Figures 24, 25, 26). It seems to have some means of excluding most other plant species. Its understory tended to be open through the study period. This species colonized pathways and adjacent plots (Stenberg, Pers. Obs.) Scimus valid us Early in the study period this treatment species colonized the site and resisted invasion by other species After about 2 years the entire cohort went through a large scale senescence After the senescence event, floating mats formed of dead vegetation and the few remaining live plants (Figures 27, 28, 29). Mixed Planting. The mixed planting treatment provided information about the adaptive and competitive abilities of the various planted species in an interspecific mix Survivors included : Eleocharis i nterstincta, Peltandra virginica, Pontederia cordata, SagiUaria lancifolia, Scirpus validus, Scirpus califomicus, and Thalia geniculata. Kosteletzkya virginia and Cladium jamaicense did not survive. The surviving species had partit i oned the available space among themselves This vegetation pattern suggests that they are somewhat equally competitive in an interspecific interaction (Figures 30, 31 32a,b,c) Invasion by Typha latifolia and Hydrocoty/e ranunculoides was minimal. Both of these species were found in the plots, but at low levels. They showed no sign at the time of the final sampling of increasing their rate of invasion. Seasonallive : dead cover dynamics were most pronounced with Thalia geniculata. This species cycled between live, tall (4m) vegetation during summer to large scale senescence during winter This phenomenon resulted in little or no exposed living cover during winter (Figures 30, 31, 32a,b,c). Thalia geniclilata dispersed beyond the p lot boundaries mo r e effectively than any other planted species in the planted plots It has become established in some treatment plots, i n pathways, and most densely in control plots and the area surrounding the planting area. Dispersal of this species seems related to movement of unanchored clumps and seed germination during drawdown events (Stenberg, Pers Obs). 8 3

PAGE 85

Experimental Planting Treatment Sagilfaria laneifolia Planted Plot LIVE DEAD 100 I I 'I I' I I 80 I I I I SEPTEMBER 1991 60 I-I I I I i i I I iii I 40 Iii : Iii 20 I I il i : I I I o iii i i-i i ii, Ii 80 iii i J1NUARY 1 192 __ __ __ __ __ __ __ __ __ .. w 100 I I I I I MAY Hi92 I en I I I I I I I 80 I i iii I I iii __ __ __ __ .... ro 100 I I I I I I I Il.. 80 I I I I AilJGUST 1992 ... 40 I I I I I 20 e 60 : :: II:::: 8 :--: : .. .. c: 108 F--+---c1--=--=-+I---'-=-!--1 o 80 I I I I I I I r 60 : : : 1 1 1: : : > 20 Iii : I : : e __ __ __ __ __ '" 100 I I I I I I I 5 80 Iiii i i AljJGUST 19$3 i I I i 1 i o : is : : : 60 I I I: I: I I 40 I: : : I j : : __ __ __ L =-'cei __ ELEINT H YDRAN PANHEM PONCOR SAGLAN SCICAL SCI VAL TYPLAT + Plant Species Figure 21. Overall vegetation cover (% Plor', Mean SE) from Sagiltaria lancifOlla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot.
PAGE 86

Experimental Planting Treatment Sagiftaria lancifolia Planted Plot LIVE D DEAD 100 : 1 1 1 I : I ; I 80 iii i I SEPTEMBER 1991 iii I 1 I 60 iii i i 40 1 I I I I 20 I I I I I F __ __ ___ ___ ___ __ __ __ 100 1 1 1 I 1 JANUARY 992 80 I 1 1 60 I I I I 1 40 I I I I I I I iii W j I : 1 0 iii g I I ; I ; + I I I I I c: 80 60 : : : .. f f .... 108 __ -L __ -+-I ---L---fl 80 I i ill i i AUGUST 60 r : : :1 : : : U 40 I I I I I I I ; I I I 1 Cl 80 i iii I 1 60 i I I 1 1 I (5 40 I i I i i jt __ ___ +I: __ __ __ __ ___ fI: __ 100 I I I 1 1 I 80 I I I 1 I AUGUST 60 ill i i i 1 1 i i 100 I 1 I 1 1 I 80 I 1 Iii MARCH 60 ill i I I i I i : : : :;);' __ __ __ : L ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT ** Plant Species Figure 22. Subplot vegetation cover (% m2 Mean SE) from Sagiftaria lancifelia Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted verlicalline bisects site 2 bars. -Hydrocoty/a ranuncu/oides (HYORAN) and Typha /atife/ia (TYPLAT) not planted, other species planted near treatment plot. 85

PAGE 87

Experimental Planting Treatment Sagiltaria /ancifolia Planted Plots oLIVE DEAD SITE 1 SAGLAN 75 50 25 o ................................... ....................................... ............................................................ ,. 50 SITE 1 TYPLA T 40 30 iii' 20 .. :::: ... ::. ... :;.: .. .. ::: ... ;.:. .. ::: ... ::: ... ::: .. ::: .. ;:. ... = .. = ... = ... !::==:;.: .. ::: ... ::: .. ::. ... ::: .. :;.: .. :::. ::. ... .:: .. :;.: ... .::. ... ::: .. ::. ... ::: ........ ... .. ... .. Q) ::2! SITE 2 SAGLAN 75 50 25 o .. -........ ...... .... .......... ........... ..................................................................................... 50 SITE 2 TYPLA T 40 30 20 10 ............................ .... ...... ............ o ... :::: .. ::: ... :;.: .. ::: .. ::: ... ;.: ... .:: .. ::. ... .:: ... .:: .. ;.: ... .:: .. .:: ... .. ... .::. ... ::: .. ::.. __ ..:j 100 SITE 3 SAGLAN Q) > o 75 50 25 o ... ................... ..... ................................................... .................... .............. ........... -... 50 40 30 20 10 SITE 3 TYPLAT o ___ I ... "" ... "" ... ::i. ire .. "' .. 7C ... 7C ... = ... = ... ,.. i"'"""."" .. :::: ::iir===:::: ... :::j .. llt::-: ............................................................. SEP91 'I,." "'''' AUG" FEB93 AUG93 Time (Months) Figure 23. Time series of overall vegetation cover (% Plor1 Mean SE) of Sagiltaria lancifo/ia and Typha /alifo/ia from Sagiltaria lancifolia Planted Plots, Experimental Planting Sites. 86

PAGE 88

Experimental Planting Treatment -Scirpus califomicus Planted Plots LIVE CJ DEAD 100 80 60 40 20 ELEINT HYDRAN PANHEM PONCOR SAGLAN SCICAL SCIVAL TYPLAT Plant Species Figure 24. Overall vegetation cover (% Plor', Mean SE) from Scirpus califomicus Planted Plots, Experimental Planting Sites. For each species, bars raprasenting the three sites ara bound by vertical dot-dash lines, a dotted vertlcailine bisects site 2 bars. 87

PAGE 89

w + c: '" Q) ::E Experimental Planting Treatment Scirpus califomicus Planted Plot LIVE 0 DEAD 100 'I I I I I 80 I I 'II I SEPTEM81E1 R 1991 60 I I I I I I 40 iii i 20 [I I [ : ; ;1 i i i i ; I 80 I i JANUARY 1992 I I i 60 iii I 40 I : I I I 20 : ; ; 1 I : 80 iii I I I I I iii r !! Ii j.i,:".. I AUGUST 1 r92 i. i ; --4 80 I I i I I 60 r I I I I I 1 Wj i I ilOi i o ioi i i 80 iii i iAUGUST 60 I I I I I i r i i i i m I I I I MAR(::H 80 Iii __ __ __ __ __ __ -L __ ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT ---Plant Species Figure 25. Subplot vegetation cover ('II. m2 Mean SE) from Scirpus ca/ifomicus Planted Plots, Experimental Planting Sites For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -Hydrocotylfl ranunculoides (HYORAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 88

PAGE 90

w (/) c: '" Ql :; Experimental Planting Treatment -Sci rpus ca/ifornicus Planted Plots oLIVE DEAD SITE 1 SCICAl 75 50 25 ...... f ----. .......... .. .. o ..... -. ......... ... .... .... .... ... .......... .. ... ...... 20 SITE 1 TYPLA T 10 o SITE 2 SCICAl 75 50 ... .... 1 ... .. f .,-..... -25 ...... '1 o "... "' t.:!.'-'."' "' .. "' ... "' .. "- -.. 20 S ITE 2 TYPLAT 10 .... ... 1 0 .............................................................. .... 100 SITE 3 SCICAl 75 50 25 0 t ....... .... .. ...... .............................. ................. ....... 1 20 SITE 3 TYPLAT 10 o .. ........ i... .. ....... ... +--L. -.. -.... -... .... .. --... -.. .. -..... ... .. -..... -... -.... ........ '" SEP9 1 ''''92 W,Y92 FE.., MAR .. Time (Months) Figure 26. Time series of overall vegetation cover (% Plor1 Mean SE) of Scitpus califomicus and Typha latifolia from Scirpus califomicus Planted Plots, Experimental Planting Sites. 8 9

PAGE 91

Experimental Planting Site Scirpus validus Planted Plot LIVE [=:J DEAD 100 I I I I' I I I : I 80 SEPTEMBER 1991 I I I i I 60 iii iii i I I I I I I I 40 I I I I I I I __ __ -L __ __ __ __ -L __ __ 100 ,-I I I I I I I 80 JANUARY 1992 I I I I I I gr __ __ +ii __ ___ __ __ __ i: 100'-' I I I I I I I 1j '''L, l.l-*: I H 80 1992 : I I I : n I., I : ,'.lId 100 I I I I I I Q)CJ) 80 r FEBRU/IRY 1993 I I I i I I I I I I I 60 I Iii I : rn : :: 0 1-1 M m"' __ 1 a; UUCI o 100 I I I I I I I ildj" 80 1993 : : : : I I :! i i [ l .l i l ti 80 1994 : : : : i : 60 r i I I I I I : : : : i T =_: T i : : I o 1-"" f)j I I .. I-iI&lc_ '" o !.. ELEINT HYDRAN PANHEM PONCOR SAG LAN SCICAL SCIVAL TYPLAT Plant Species Figure 27. Overall vegetation cover ('II> Plor\ Mean SE) from Scirpus va/idus Planted Plots, Experimental Planting For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 90

PAGE 92

Experimental Planting Treatment -Scirpus validus Planted Plots LIVE D DEAD 100 I I I' I I 80 SEPTEMBER 1991 I I I I I I I I I 60 iii I 40 I I I I 2g Iii I : 1 __ 100 c 1992 II' II II' I 80 : I : 60 iii I I i I I 40 iii' I .1 w2g : i : : 1 m 100 MAY 199j2 :: I I I ; II i i i J Ii E 100 I I I I I I I i AUGUT' i : it, to: 5 FEBRUAfY 1993 : : : I I Ol I I I I : ; : 60 I i I I I I o 40 I I I I :1, ;r;J; J. ill I I I I ::J (/) 100 I-I I I I I 80 AUGUS111993 I I I I I I I 60 iii i 40 I-I I I i 2g : .. : i :ao i: : : : i i i I i I is l ili ilifa .. i -100 I I I I I I 80 MARCH n994 : I I I I I 60 I I I I I I I I 40 I I i I 2g I: : : : I I I I i i .. ELEINT HYDRAN PONCOR SAG LAN SCICAL SCIVAL TYPLAT .*** Plant Species Figure 28 Subplot vegetation cover (% m 2 Mean SE) from Scirpus vafidus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted verlicalline bisects site 2 bars. -=Hydrocotyle ranuncu/oides (HYDRAN) and Typha lalifolia (TYPLA T) not planted, other species planted near treatment plot. 91

PAGE 93

.\... o a.. t!-.... Q) > o () Experimental Planting Treatement -Scirpus validus Planted Plots o LIVE DEAD SITE 1 SCIVAL 75 ..... J .. 50 2: p:.: .::: ... ::: ... ::.:. ... C1 ... ::: .. ::: ... "'+= ... L ... ::.:. .. ::: ... ::: ... = ... SITE IlYPLA T 50 25 o 100 SITE 2 SCIVAL 75 50 .. nn .... n i .. nn ........... n ........... i c: 25 o ",-"" -" -'" S 0 ...... .............. .... .... ....... _.-. Q) C> SITE 2 lYPLA T 50 Q) > o 25 .... ...... ...................... .. .. S ...... .. .. 100 SITE 3 SCIVA 75 50 25 .. .. .. 1__"_ L_ "_" _"_L_"_"_ ._L._ .. ... ... .. .... ... ... ... ... ... ......... ... ... ....... ... .. ... ... _.!y 50 SITE 3 lYPLA T 25 o SEP9 1 JAN92 .......... J .. .. i ....... .... ..... n .... .......... .. ..... ... ........... .. MAY92 AUG92 FE893 AUG93 MAR94 T i me (Months) Figure 29. Time series of overall vegetation cover (% Plor', Mean SE) of Scirpus validus and Typha latifofia from Scirpus validus Planted Plots, Experimental Planting Sites. 92

PAGE 94

Experimental Planting Treatment Mixed Species Planted Plots LIVE [::=:J DEAD 100 I I I 80 SEPTEMBEIR 1Q91 i 60 40 I I I I I i I I I 20 iii 0 100 80 60 40 20 W-0 C/) 100 'as--!. 80 + c 60 til 40 ., :< 20 '-0 0 100 11: 80 60 40 ., > 20 0 () 0 c 100 0 80 .l2 ., 60 Ol 40 20 E 0 ., 100 > 0 80 60 40 20 0 100 I I 80 60 40 I I I I 20 0 !l m I I ELEINT HYDRAN JUNEFF PANHEM PELVIR PONCOR SAGLAN SCICAL SCIVAL THAGEN TYPLAT ...... .. Plant Species Figure 30. Overall vegetation DOver (% Plor1 Mean SE) from Mixed Species Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertlcailine bisects site 2 bars. 93

PAGE 95

Experimental Planting Treatment Mixed Species Planting Plots n LIVE c:::J OEAD 100 1991 80 60 I I I i 40 i i 20 I I 0 -100 80 60 i i w i i en 40 I I -!. m m + 20 I I c: 0 is i!i '" ., 100 MA t 1992 :. 80 "I 60 I L E I 40 i 20 i I ., 0 .. > 100 I I 0 U 80 AUd>UST 1992 c: 60 I I I i 0 i I "" 40 '" I S ., 20 I Cl ., 0 os ;,; a > 100 )993 0 80 0.. ..c 60 I I ::J I I en 40 t : I 20 I 0 100 I I 80 AUa>UST 19S3 il 60 : I i I i 40 I 20 I 0 100 I 80 I 60 I i 40 I 20 i!i 0 o is' .. os '" ELEINT HYDRAN PELVIR PONCCR SAGLAN SCiCAL SCIVAL THAGEN lYPLAT *** --Plant Species Figure 31. Subplot vegetation cover (% m 2 Mean SE) from Mixed Species Planted Plots, Experimental Planting SHes. For each species, bars representing the three sHes are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. -=Hydrocotyle ranunculoides (HYDRAN) and Typha latifolia (TYPLA T) not planted, other species planted near treatment plot. 94

PAGE 96

W (/) :i: c: ., '" :;; .l... 0 c:: 0 0 U c: 0 "" l!! '" Cl '" > E '" > 0 Experimental Planting Treatment Mixed Species Planted Plots, S ite 1 0 UVE 45 ELEINT 30 15 0 45 PELVIR 30 15 0 45 PONCOR 30 15 0 15 10 SAG LAN 5 0 ............ ... .. 15 SCiCAL 10 5 0 15 SCIVAL 10 5 0 75 THAGEN lYPLAT 10 5 o SEP91 JAN92 DEAD I L ................... ...... ...... .. __ t........... ......... .............................. .............................. I 1 ..... HH ............ H .... .. ... n ............. n ... : t .................... J ........................ I....... ...... : r-LHH........... .... J -..... -........ .. ...... MAY 92 AUG92 FEB 9 3 AUG93 MAR94 Time (Months) Figure 32a, Time series o f overall vegetation cover (% Plor' Mean SE) of common species from Mixed Species Planted Plots, Site 1, Experimental Planting Sites, 95

PAGE 97

Experimental Planting Treatment Mixed Species Planted Plots, Site 2 oLIVE DEAD 45 ELEINT 30 15 l "-1-. .. .... = .... ... = .... t ... = .... = ... ... .. = .. .. .... ... = .... = .... = .... .... = .... + ... = .... = .... ... 15 PElVlR 10 J.. PONCOR 30 I r 1 1 ....... .... .... ............................................ ................. ................ 15 "I .......... ; 45 SAGlAN 30 I .1 15 / 1 1 ______ T .................................................................. .......... .. .......... ...... =:1. o ............. .. 15 SCICAL 10 5 o 45 ...................................................................................... SCIVAl 30 ........... : ....... ..... J ........................... 60 45 lHAGEN I __ --.---1-----____ -1:rL..... ......................... -w .... .. 20 TYPLAT 10 ------........ ........... ................ o ...................... .... ......... ........ .... T SEP91 JAN 92 MA Y92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 32b Time series of overall vegetation cover ('II> Plor1 Mean SE) of common species from Mixed Species Planted Plots, Site 2 Experimental Planting Sites. 96

PAGE 98

Experimental Planting Treatment -Mixed Species Plots, Site 3 0 LIVE OEAD 45 ELEINT 30 '5 ......... .... 0 .............. ........... ................................. __ ..... ... ... ... ... ............. ......... 45 PElVlR 30 15 0 45 PONCOR 30 15 0 ........... ...... 45 SAGLAN 30 15 0 45 SCICAL 30 15 o .................. .... ....................... ............................. 45 SCIVAL 30 15 0 45 THAGEN 30 15 0 10 8 TYPLAT 6 4 2 0 SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 Time (Months) Figure 32c. Time series of overall vegetation cover (% Plor', Mean SE) of common species from Mixed Species Planted Plots, Site 3, Experimental Planting Sites. 97 MAR94

PAGE 99

Seeded Treatments -Cover Percent PlUticllm hemitomo/t. This treatment was unsuccessful. The plot was colonized by '!)pha lati/olia Panicum hemilomon was not found in the plot (Figures 33,34 & Appendix AI, A2) Poivgoftllm p"ftctalllm. This treatment was generally unsuccessful. Late in the sample period a small amount of Polygonum punclatum was found. It may have come from the surrounding landscape and not the seeded treatment. Polygomlm ptlnclahlm was common in the natural succession marsh early in the vegetation sequence. It also made an appearance after the August 1993 drawdown. Typha /ali/olia colonized and dominated the site (Figures 35, 36, Appendix AI, A2). Pontederia corrhrta. This treatment was the most successful. Large patches of Pontederia cordata were found '!)pha /ali/olia colonized and was a co-dominant on sites 2 and 3 (Figures 37, 38, Appendix AI, A2). Sagittaria llUtcifolia. This treatment was moderately successful. The seed used in this treatment may have been contaminated with SagiUaria montevidensis S monlevidensis was found at high cover values in this treatment (Appendix AI, A2). Ponlederia cord ala was also an important component of this plot. It is not known if it invaded after seeding or if seed drifted in immediately after seeding from nearby plots. '!)pha lali/olia colonized and was a co-dominant on the site (Figures 39, 40). Scimus valitbls. Scirpus valim/S was found at low cover values and was largely unsuccessful. Other species including, Hydrocotyle ranunculoides invaded the plot. Typha /ali/olia colonized and dominated the site (Figures 41,42, Appendix AI, A2) Mulch Treatment -Cover Percent There was no evidence that the mulch treatment contributed additional plant species to the site The treatment plots remained minimally vegetated during the early sampling events Eventually, Typha lali/olia became established and took over the plots. The seed bank measurements ofl991 and 1992 revealed that few ifany seeds of species representing the donor wetland sites were found In the 1991 seed bank sample, three individuals of Xyris jllpicai and in the 1992 sample only one individual of Rhexia nashii were found. These species were never found on the site. The seed bank tests showed that '!)pha /ali/olia seemed to be preferentially favored by the mulch treatment. The magnitude of this contribution is unknown given the seemingly slow invasion of '!)pha /ali/olia under long-term flooded conditions (Figures 43, 448, b, c). Control Treatment -Cover Percent Vegetation dynamics within the control plots were different than the planted, seeded, or mulched treatment plots The control plots remained minimally vegetated for most of the sample period Early in the sample period floating plants were the most frequently found species (Figures 45, 468, b, c) Slowly the sites were colonized by Hydrocotyle ranunculoides and '!)pha lali/olia (Figures 45, 468, b, c) Small patches of 9 8

PAGE 100

W en -:i: c: '" Q) :::E '-0 il: ;j!. Q) > 0 () c: 0 "" Jl! Q) "" Q) > '" Q) > 0 Experimental Planting Treatment -Panicum hemitomon Seeded Plots LIVE [=::J DEAD 60 SEPTEMBER 199 1 40 20 0 60 JANUARY 1992 40 20 0 Ii! 60 MAY 1992 40 20 0 -""'" I, 60 40 20 0 AUGUST 1992 I,D -ril 60 FEBRUARY 1993 40 20 0 c-Id I,D -, 60 C-o 40 C-AUGUST 1993 o 20 0 c-Ii!Zo ...... .... --, ci!Z. I,D 60 40 20 0 MARCH 1994 c-ci!Z. -ElElN T HYDRAN HYDUMB POlPUN PONCOR SAGLAN SCICAL SCIVAl THAGEN TYPLAT Plant Species Figure 33_ Overall vegetation cover (% Plor1 Mean SE) from all (n=6) Panicum hemitomon Seeded Plots Experimental Planting Sites_ 9 9

PAGE 101

w (f) i-t: '" Q) :2 Experimental Planting Treatment -Panicum hemitomon Seeded Plots oLIVE DEAD SITE 1 PANHEM 75 50 25 SITE 1 TYPLA T 75 ... .. .. .. ... -.. -.. .----... -... .... ... -.. ---t... ... .. -.. 100 SITE 2 PANHEM 75 50 25 75 50 25 -'" ................ / ... ................ : 0 .... ............... Q) 100 SITE 3 PANHEM > o 75 50 25 SITE 3 TYPLA T 75 50 25 I o "-.. : ... ;:J: .. :: ... :: .. :: .. :S::=::!:;:::=:;:===="= i .. .. = = ... = ... = .. % SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 34. Time series of overell vegetation cover (% Plor1 Mean SE) of Panicum hemitomon and Typha/atifo/ia from Panicum hemitomon Seeded Plots. Experimental Planting Sftes 100

PAGE 102

w en i <: 0 () <: 0 :;> iii Q) > 0 Experimental Planting Treatment Polygonurn punctaturn Seeded Plots LIVE r=l DEAD 60 SEPTEMBER 1991 40 20 0 60 JANUARY 1992 40 20 0 60 MAY 1992 40 f20 0 f-, -. 60 f40 f-AUGUST 1992 20 0 fCa 1 60 FEBRUARY 1993 40 20 0 -IiJ 60 f40 AUGUST 1993 20 0 .... .... -60 MARCH 1994 40 20 0 -.... ril I, t I, I ElEINT HYORAN HYOUMB POlPUN PONCOR SAGLAN SClCAl SCIVAl THAGEN TYPlAT **** .*** Plant Species Figure 35 Overell vegetation cover ('II> Plor" Mean :tSE) from all (n=6) Po/ygonum punctatum Seeded Plots, Experimental Planting Sites. 101

PAGE 103

Experimental Planting Trteatment Polygonum punctatum Seeded Plots o LIVE DEAD ocr----r---.----.----,----,----,----r----r---r ----r---.----" 8 6 4 SITE 1 POLPUN 2 SITE 1 TYPLAT 75 .... ............. .......................... '" Q) :; 10 SITE 2 POlPUN 8 6 4 2 0 100 SITE 2 TYPLAT 75 50 2: ....................... ..... 1 ...... F ................................ 1 0 SITE 3 POLPUN 8 6 SITE 3 TYPLAT 75 50 25 ..... .... .. = .. .. = .. .. : .. __ __ SEP9' JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Month s ) Figure 36. TIme series of overall vegetation cover (% Plor', Mean SE) of Po/ygonum punctaturn and Typha latifolia from Po/ygonum punctatum Seeded Plots, Experimental Planting Sites. 102

PAGE 104

w (J) i: c '" Q) '-0 Cl.. 0 Q) > 0 <.) c 0 :;::> '" -Q) Cl Q) > '" Q) > 0 Experimenta l P l anting Treatment -Pontederia cordata Seeded Plot LIVE DEAD 60 SEPTEMBER 1991 40 20 0 60 IJANUARY 1992 40 l-20 0 I-I Ililill 60 MAY 1992 40 20 0 60 40 20 0 AUGUST 1992 .m;" i 60 FEBRUARY 1993 40 20 0 i IJ 60 40 AUGUST 1993 20 0 """ I 60 40 20 0 MARCH 1994 t -. j I 1 0 1.0 a,D ELEINT HYDRAN HYOUMB POL PUN PONCO R SAGLAN SCICAL SCIVAl THAGEN TYPLAT **** Plant Spec i es Figure 37 Overell vegetat ion cover (% Plor Mean SE) from all (n=6) Poniederia cordata Seeded Plots, Experimental Planting Sites. 1 0 3

PAGE 105

Experimental Planting Treatment -Pontederia cordata Seeded Plots oLIVE DEAD 75 SITE 1 PONCOR 50 ... ... = .... a ................................ .; ..................... ................................................ ::r ........... ............ 100 25 SITE 1 TYPLAT 75 : w I r CI'I a .. ...... ................... .......................................... .............. .................................................... '!. + c: 75 IsITE 2 PONCOR "' C> :; 50 1:; ... = ... = ... = ... = ... = .... := ... = ... =li:====;Jr: == .... = ... = ... = ... = ... .... J .. :v SITE 2 TYPLAT > 8 75 T 50 T 25 ............ ........................... + .................... o 75 SITE 3 PONCOR 50 25 SITE 3 TYPLA T 75 50 25 o SEP91 JAN92 1 r i! ..................... : ............................ ". u ............................ .. MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) Figure 38. Time series of overall vegetation cover (% Plor1 Mean SE) of Pontederia cordata and Typha /atifo/ia from Pontederia cordata Seeded Plots, Experimental Planting Sites. 104

PAGE 106

w en i: c::: ro Q) :2 '--' 0 Cl. 0 Q) > 0 c..> c::: 0 "" ro Q) Ol "iii Q) > 0 Experimental Planting Treatment Sagitfaria lancifolia Seeded Plots LIVE c=J DEAD 60 SEPTEMBER 1991 40 20 0 60 JANUARY 1992 40 20 0 I I 60 MAY 1992 40 20 0 l-I -.-I 60 l-40 I-AUGUST 1992 20 0 II I ..... --60 FEBRUARY 1993 40 20 0 I 1 6 60 40 20 0 AUGUST 1993 _., i I,D 60 40 20 0 MARCH 1994 __ 1 0 -"'"" ..... ..;s. ElEINT HYDRAN HYDUMB POLPUN PONCOR SAGLAN saCAl saVAL THAGEN TYPLAT **** Plant Species Figure 39. Overell vegetation cover (% Plo\"1, Mean SE) from all (n=6) Sagittaria lancifolia Seeded Plots, Experimental Planting Sites. 105

PAGE 107

W (f) -!. + c: '" Q) :0 Experimental Planting Treatment -Sagittaria lancifolia Seeded Plots oLIVE DEAD SITE 1 SAGLAN 75 50 L 25 o .......... / .................. T 1-100 SITE 1 TYPLAT 75 50 25 0 100 SITE 2 SAGLAN 75 50 25 '" 1 ................. t. ................................. 0 ... .... .. .... ..... ......... 100 SITE 2 lYPLAT 75 50 25 I 0 100 SITE 3 SAG LAN 75 50 25 I I I 0 .. ,i i ........ ....... ..... ... 100 SITE 3 TYPLAT 75 50 T I o ... :::::. ..... = .... :::..!. ===:1. .. = ... = ..... = ..... = .... =!.:::.::::==.= ..... = .... .:.::.!:!1 25 SEP91 JAN92 MAYS2 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 40. Time series of overall vegetation cover (% Plor1 Mean SE) of Sagittaria /aOOfo/ia and Typha /atlfo/ia from Sagittaria /ancifo/ia Planted Plots, Experimental Planting Sites. 106

PAGE 108

w U) + c: (\I 4> ::!E '-0 a:: 0 4> > 0 () c: 0 "" '" -4> [J) 4> > 4> > 0 Experimental Planting Treatment Scirpus validus Seeded Plots LIVE t=l DEAD 60 ISEPTEMBER 1991 40 20 0 60 IJANUARY 1992 40 I-20 0 60 MAY 1992 40 20 0 -60 40 AUGUST 1992 20 0 ril .om 60 FEBRUARY 1993 40 20 0 rm. ...... .,;m, 60 AUGUST 1993 40 20 0 .,;m, """' iful .;o;z" 60 I-MARCH 1994 40 20 0 !iJ .,;m, -i .w.. -W2J I t I,D --1 0 ElEINl HYDRAN HYDUMB POlPUN PONCOR SAGLAN SCICAL SCIVAl THAGEN TYPLAT *.*. *.*. Plant Species Figure 41. Overall vegetation cover (% Plor', Mean SE) from all (n=6) Scirpus validus Seeded Plots, Experimental Planting Sites. 107

PAGE 109

Experimental Planting Treatment Scirpus validus Seeded Plots oLIVE DEAD 15 SITE 1 selVAl 10 5 o ............ SITE 1 TYPLA T 75 50 W ................. L ........... c: 15 "'SITE 2 selVAL .................. '" 10 5 0 100 SITE 2 TYPLAT 75 50 25 0 15 SITE 3 selVAL 10 5 o 100 SITE 3 TYPLA T 75 50 25 1 ...L ....... c:-r:-............................. .............. ..... ........................ ...... ...... ... -1........ ........ ...... .... ....... .... ...... "T......... HYDRAN (Live only) ,/ ,./1 ", I .:r./ ./ ., .. .. -.. --; o ....... == ...... == .... :=:!::i:: .... := ....... ;:::: ...... == ....... :1: .. ,:;:::= ... :: .. :::: ..... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 42. Time series of overall vegetation cover (% Plot" 1 Mean SE) of Hydrocotyfe ranucu/oides (Site 3 only), Scirpus validus and Typha lalifolia from Scirpus validus Seeded Plots, Experimental Planting Sites. 108

PAGE 110

Experimental Planting Treatment Mulch Plots LIVE CJ DEAD 100 I I I I I I I 80 SEPTEMBER 1991 I I I I I 6Of-i I I I I I I I I I i I I I 40 i i i I iii 20 I I I I I il I o I, I I I I 100 I I I I I I 80 -JANUA-.RY I I I I W 60 I I I I I I 40 I i I I i II. I I I I i I I I i I : i : ,: : i : ;!. i :2 100 I I I I I I I 80 MAY 1 i 992 I I I I I I '15 60 I I I I I I I c:: 40 I I I I i I i '#. I I I I I I ';:' : : :, : i _: i i 100F--L. __ L 1 __ L __ L I __ --L=-F1 __ o 80 AUGLn 1992 : : : : : : : 60 I I I I I I I I fii 40 I I I I I I I I i : : : i : > 100 1=--L--L1 __ L-:....L 1 __ L--+-1 __ 80 FEBRIIJARY I I I I I I g I I I I I I In( : : : @ : o : : 80 1993 : : : iii I 60 I I I I I i I : i : = : : !_ rn m! m __ L-:....L I __ __ 80 MAR9H 19$4 : : : : : i I I __ __ ElEINT HYDRAN PANHEM POlPUN PONCOR SAG LAN SCICAl SCIVAl TYPLAT *.*. ...... Plant Species F i gure 43 Overall vegetation cover (% Plor', Mean tSE) from Mulch Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars 109

PAGE 111

w CI) -!. + c: C\l CI> :::; Experimental Planting Treatment Mulch Plots, Site 1 LIVE DEAD 25 HYDRAN 20 15 '0 5 25 20 15 10 5 0 25 20 15 '0 5 0 25 20 POLPUN PONCOR SAGLAN ................... I ............................. i :; o I:!:==:;:=::!::: ... :i. ::: ... ::. ... ::: .. ::. ... :;. .. ... ::: .. ::. ... :;. .. ::: ... ... ::. ..... ::; .. :::: .... ::: .... ::: ..... ::. ..... ::: .. : :::y ... ::: .. ::: ... ... ::: .. ::. ... ::: .. ::: ... ;: ..... ::: ..... ::: .. ::: .... ::. ... ::: .. ::: ... :::.:;: ... ::. ... ::: .. 75 lYPLAT 60 45 I ... J... ................ '5 o .................. .... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 44a. Time series of overell vegetation cover (% Plor', Mean SE) of common species from Mulch Plots, Site 1, Experimental Planting Sites. 110

PAGE 112

Experimental Planting Treatment Mulch Plots, Site 2 o LIVE DEAD 3 HYORAN 2 o J. 2 POLPUN UJ C/) -.!. + c: '" 0 '" G B B B B 0 30 PONCOR 0 ii: 20 ';fl. '" 10 > 0 t) c: 0 2 '" Q; 3 Ol SAGLAN '" > iii 2 0 0 / ... 75 60 45 TYPLAT 1.----1 r 1 I 1 1 30 15 0 /1 I SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 44b. TIme series of overall vegetation cover (% Plor1 Mean SE) of common species from Mulch Plots, Site 2, Experimental Planting Sites. 111

PAGE 113

W CJ) -.!. + c: 0 U c: 0 :;:; Q) > 0 Experimental Planting Treatment Mulch Plots, Site 3 OLIVE DEAD 50 HYDRAN 40 POlPUN 8 6 4 2 0 0 9 ____ __ __ ________ ____ m 60 50 PONCOR 40 30 20 10 I I I 18 ...... ............. ................ ........................................................................................ 8 6 4 2 0 60 45 30 15 SAGLAN TYPLAT T 1 SEP91 JAN92 MAY92 AUG92 FEB93 Time (Months) AUG93 j 1 MAR94 Figure 440. Time series of overall vegetation cover (% Plor1 Mean SE) of common species from Mulch Plots, Site 3, Experimental Planting Sites. 112

PAGE 114

Experimental Planting Treatment Control Plots [8 LIVE r=J DEAD 100 80 60 40 20 I I S EPlEMBER i1991 i i I I I I I I 80 JANUARY 1992 W 60 I I (/) I i 10 40 i i c: 20 I I :;; 100 I 80 MAY 60 i i 40 i 20 I '-0 e o () 80 :5 60 I I :;:: 40 i 20 : : n : '" __ __ __ __ > 100 I I I 80 FEBRUARY I 60 I I i o 40 I I I 20 :J5 I I I I I I .. Plant Species Figure 45. Overall vegetation cover (% Plor', Mean SE) from Control Plots, Experimental Planting For each species, bars representing the three are bound by vertical dot-dash lines, a dotted vertical line bisects site 2 bars. 113

PAGE 115

Experimental Planting Treatment Control Plots, Site 1 6 4 2 o LIVE ELEINT o 6 HYDRAN DEAD 2 ______ _____ .------1! 30 i: 10 ffi' 20 vPOLPUN 1__ __ ____ __ __ :::; 6 .:.. o a:: PONCOR 4 2 o 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 SAGLAN SCIVAL THAGEN TYPLAT .. j ....... n .. .. nnnn ... n .. L .n .............. j ............ n ............. j + I J 1 r ......... J .............. ; ............................................................................................. o --! ................................ ............................................. ..... .... SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46a. Time series of overell vegetation cover (% Plor1 Mean SE) of common spedes from Control Plots, Site 1, Experimental Planting Sites. 114

PAGE 116

Experimental Planting Treatment Control Plots, Site 2 oLIVE DEAD 6 ELEINT 2 L .... .... = ..... = .... ..... = .... = ... = ..... = .... + ..... = .... = .... + .. .. = .. + .... = ..... = .... + .... = ..... = .. 6 HYDRAN T 1 2 .1. ____ .L 1 8 6 PDLPUN I r PONCOR 20r .......................................................................... ...... ............................................. ".. 6 SAGLAN 4 2 .......... .. f .............. J .=:::Z ..................... .. ......................... I .................................. o 6 SCIVAl 4 2 o 6 THAGEN 4 2 o 0 60 TYPlAT 40 o o a .............................. I :-_----1 2: ... E .. = ... j t.::: ... c .::: ... ::: .. = .. ; ... .. c: ... ::: .. ... '':';'":::''=:':::''::';'''::''' .::: .. ... .. ... ... .. ... ... .. ... ... ..L .. .. ... .. ..L ... ... .. ... ... .. ... ... .. ... ] SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46b. TIme series of overall vegetation cover (% Plor', Mean SE) of common species from Control Plots, Site 2, Experimental Planting Sites. 115

PAGE 117

w Ul :f: c: '" Q) :2 Experimental Planting Treatment Control Plots, Site 3 0 LIVE DEAD 6 ELEINT 2 0 60 45 HYDRAN 30 15 0 6 POLPUN 2 0 10 8 PONCOR 6 1. 2 T o ............... .................................. ...... ..... .. T 6 SAGLAN 2 o 6 SCIVAL 2 o 8 6 THAGEN 2 o 20 TYPLAT 10 ... ..... 1 ................... I L I T 1 .. __ ............. .................................. ,. .. ... = ... = .... = .. ... .... = ... = .. = ... = .... = ... .. = .... = ... .. .. = ... = .... = ... .. ... .. ... .. SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 46c. Time series of overall vegetation cover ('II> Plor1 Mean SE) of common species from Control Plots, Site 3, Experimental Planting Sites. 116

PAGE 118

Pontederia cordata and Sagittaria lancifolia were also found. After the drawdowns of August 1993 and March 1994, species richness increased and included a short-term colonization by species that had been found during earlier samples, including Cyperus iria, Echinoch/oa colonum, and Panicum dichotomiflorum. Eventually, these species declined or were found only on floating mats. Subplot Coyer and Water Depth Time series plots of vegetation cover and water depth for each planted treatment revealed that cover seemed to change independently of water depth (Figures 47 -52). A pattern of cover dominance oscillating between live and dead developed as the community matured (Figures 47-52). A decline in live cover is probably coincident with normal winter biomass dynamics. Planting Site Density Stem densities within planted plots were similar to cover with dominant species yielding the largest density estimates (Table 13 and Figures 53-59). The control, mulch and seeded plots were eventually dominated by JYpha latifolia (Appendix A3). The Eleocharis interstincta planting treatment had a pattern oflow densities of observable plants early in the sampling followed by increases over time. During January 1992, stem density at Site 3 jumped to nearly 100 stems m-2 while densities at Sites 1 and 2 remained low near 10 stems m-2 Stem densities became somewhat more similar among sites as time progressed, with peak densities reaching 150 stems m-2 (Site 2) to 375 stems m-2 (Site 1). Through most of the sample set, Sites 1 and 3 had similar density patterns, while Site 2 remained at a lower level until March 1994 when the densities were reduced at Sites 1 and 3. Invading species did not root successfully in the plots (Figure 53, Table 13). Stem densities in the Panicum hemitomon planting treatment remained low for most of the sample period. Except for Site 2 this species had little vegetative growth through most of the sample period. Panicum hemitomon was present at low density until it peaked at 4 5 stems m-2 at Site 2 in August 1993. The density of invading Eleocharis interstincta and JYpha lalifolia increased, primarily at Site 2 beginning in February 1993 (Figure 54, Table 13). Ponlederia cordala culms were found at low densities in the Pontederia cordata treatments during the first sample period. Culm densities approached a maximum (2032 stems m-2 ) by the August 1993 sample period. During the sample periods densities varied from 10-30 stems m-2 Invading species entered at different times for two of the sites (Figure 55, Table 13). Site 2 was invaded by Scirpus califomicus and JYpha lalifolia in May 1992 and by Eleocharis interstincta in August 1993. Site 3 was invaded by T. !alifolia in February 1993. In the Sagittaria !atifolia plots, density peaked at Sites 1 (45 m-2 ; May 1992), Site 2 (15 m-2 ; August 1993), and 3 (12 m-2 ; February 1993). The density levels changed from sample to sample suggesting a high turnover of culms by this target species (Figure 56). The competitor species JYpha lalifolia gradually increased its density over time with a peak at the March 1994 Site 2 sample (8 m-2). It wasn't until March 1994 that T. 117

PAGE 119

Experimental Planting Treatment Eleocharis interstincta Planted Plots o LIVE COVER 1oo0-------.-------,-------,-------,-------,-------0 DEAD COVER o WATER DEPTH eo eo 40 20 0 100 80 60 40 20 0 100 80 eo 40 20 0 SITE 1 COVER ....... ... ... .. : ... : .. : ... J .. ... .. .. .. WATER DEPTH .. .. .. -<1>. -$. ............ .. .. .. ..,... .. /. ............. eo eo 40 20 SITE 2 COVER ..... "" ............................ ...... ....... 100 WATER DEPTH eo eo 40 20 0 SITE 3 COVER .......... WATER DEPTH 80 60 40 20 D-____ ______ ______ ____ -L ______ ____ SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) w rJ) -l + c: '" Q) :0 N E E .s. .c: -cQ) a Q) Figure 47. Time series ofvegetatlon cover ('IE> mo2) and water depth (an mo2) from subplots In Eleocharis interstincta single species planted plots, Experimental Planting Sites. 118

PAGE 120

w CI) i c: '" Q) :2 Experimental Planting Treatment -Panicum hemitomon Planted Plots o LIVE COVER DEAD COVER 0 WATER DEPTH 8 SITE 1 6 COVER 4 2 ... .. ... = ... = .... = ... ... = ... ... : .<&.. -.. -. .. 4>......... 80 "'--,/ ...... ....... 60 v.. .. .. .. _-. ........ 40 WATER DEPTH 20 8 SITE 2 6 COVER 4 2 I I o ................................................................ .. WATER DEPTH -_.$.. .. -,.. ....... G.. .. .. .. .m--.. -.. ..-.. -. -.. .. .............. ....... 100 80 60 40 20 0 100 80 .. ..... -.-.. .. .. .. .. $-60 .. .. --.. .. .. -,,_. 40 20 __ __ __ __ ____ AUG91 JAN92 MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) w CI) "+ c: '" Q) :2 N E E .!:!. Q. Q) 0 Q) Figure 48. Time series of vegetation cover (% mo2) and water depth (em mo2) from subplots in Panicum hemitomon single species planted plots, Experimental Planting Sites. 119

PAGE 121

w CI) i-c: OJ Q) ::. N E :.\! 0 Q) > 0 () c: 2 OJ -Q) C) Q) > 0 C. .D :::J CI) Experimental Planting Treatment -Pontederia corriata Planted Plots o LIVE COVER 1000-------,--------,-------,-------,---0.--.------0 o DEAD COVER o WATER DEPTH 80 SITE 1 COVER 60 40 20 WATER DEPTH ...... ..... 0 -1; ; ; ___ +_ L __ .......+: T -----y ........ "'6' ....... ........ '.. t.. _-100 80 60 40 2 0 100 80 60 40 20 0 100 80 60 40 20 0 SITE 2 COVER ......... ................ ........ ... ......................................... .... "-. .. ..... -. .....;j)--. .. --t. -...-. -....... _-SITE 3 COVER 100 80 60 40 -"-'"-1? 20 0 ....... 0 ......... 0 .................. ... 0 .............. "'0 ...... 0 WATER DEPTH .. ..
PAGE 122

w (/) i: c: III Q) :::; N E -;F. Q) > a () c: 0 :;:; III Q) '" Q) > Experimental Planting Treatment -Sagittaria lancifolia Planted Plots o LIVE COVER 1000--------,-------,-------,-------,-------.-------0 DEAD COVER o WATER DEPTH 80 SITE 1 60 40 20 COVER o .............. ..... ................. .................................................................... 100 80 60 40 20 0 100 WATER DEPTH 80 60 .. .. --"'--"".. ... .. -J: ,,-. -.. ... .. 1! 40 20 SITE 2 COVER ............... .......... ....... ..................... ... ........................... ...... ........................... WATER DEPTH 100 80 w (/) i: c: III Q) :::; -0 60 N Ci ..c :J (/) 40 20 0 .. lIl-" .. --G-.. .. .>C -lJ}-__ mo. .. __ -iI 100 80 S I TE 3 60 COVER 40 20 0 ..... ............................. ....... .............................................. ................. ...... 100 W A TER DEPTH 80 60 40 20 G-.. .. .G-.. .. .. .$.. -.. .. -.. -lJ}.. .. .$-...... ..... 0 SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 50 Time series of vegetation cover ('II> m 2 ) and water depth (em m 2 ) from Sagittaria lancifolia single species planted plots, Experimental Planting Sites. 121 E E .. .s::: -a. Q) Cl Q)

PAGE 123

W til -!. + c .. '" :;: "l' E '" > 0 () c 0 "" .l!! '" Cl '" > 0 Q. .0 til Experimental Planting Treatment Scirpus californicus Planted Plots o UVE COVER DEAD COVER 0 WATER DEPTH 100 80 SITE 1 80 40 20 COVER .... ...... o !:t===lh"""'"":!..""""c:!...::: .... ::... _-'-__ -'___ L_ WATER DEPTH .--. 0-,,-,,-,,-,,--4>" -" /' .. '. 100 SITE 2 80 COVER 60 l 40 .............. ............ 20 0 0 0 WATER DEPTH .. $,. ----, -"" ---<1>-"-' '-. .. ''1) SEP91 JAN92 MAY92 AUG92 FEB93 AUG93 MAR94 Time (Months) 100 BO 60 40 20 0 W i c .. 100 '" BO :;: "l' 60 E 40 E ,. 20 iO 0 Q. '" a '" 100 BO 60 40 20 0 Figure 51. Time series of vegetation cover (% m-1 and water depth (an m -2 ) from Scirpus ca/ifomicus single species planted plots, Experimental Planting Sites. 122

PAGE 124

UJ (j) + c: ro Q) :::;; N 'E *' Q) > 0 c..> c: 0 "" ro -Q) Cl Q) > 0 Ci .c ::J (j) Experimental Planting Treatment Scirpus validus Planted Plots a LIVE COVER DEAD COVER <) WATER DEPTH 1000-------,------.------,------,------,-------0 80 SITE 1 60 40 20 COVER ... 1... ". o ............ ... ......... ......................... .. .. 100 80 60 40 20 0 100 80 60 40 20 0 WATER DEPTH // .4>. -.. --. ....... 100 80 60 40 20 SITE2 COVER ... "' ... C:: .. ::: .. ';!!.'::.' "' ..... --'___ ----L __ -=-_ ... .. '... ... .. -.. ... ..:: ... ::.: ... ::.: 100 WATER DEPTH ... -. -. SlTE3 COVER 80 60 40 20 -<1)0 ... c:: .. ::J.=.:.:.::.: .. = .. WATER DEPTH 80 60 .$-' -- 0 SEP91 JAN92 MAY92 AUG92 FE893 AUG93 MAR94 Time (Months) Figure 52 Time series of vegetation oover ('IE. m '2) and water depth (em m'2) from Scirpus vaUdus single species planted plots, Experimental Planting Sites, 123

PAGE 125

Table 13 Vegelalion densi1y measurements (# m-' MEAN SE) from subplals in planled plals Experimental Planting Species Codes : Upper case six character are abbreviated species codes, Lower case codes represent plant families or unknowns. Codes ending with 0 represent dead, while S represent seedlings, SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SI; MEAt-! SE MIi6N MEllI'! SE MEAN SE AUGUST 1991 SITE 1 PONCOR 0 50 0 29 SAG LAN 2 25 1 03 SCICAL 1.25 0 95 SCIVAL 1.00 0.71 AUGUST 1991 SITE 2 ALTPHI 0 25 0 25 AMMAUS 0 25 0 25 0 50 0 50 0 50 0 29 1 50 1 50 ASTSUB 0 25 0 25 COMOIF 0 25 0 25 CYPIRI 0 25 0 25 CYPSPP 0 25 0 25 ECHCOL 0 25 0 25 ECLALB 0.25 0 25 0 25 0 25 Poaceae 1 25 1 25 PONCOR 1.75 1.03 SAGLAN 0 75 0.48 SCICAL 0 25 0 25 SCISPP 0.25 0.25 SCIVAL 1 25 0 25 THAGEN 0.25 0.25 AUGUST 1991 SITE 3 AMMAUS 0 25 0 25 ELEINT 0 75 0 48 0 50 0 29 PONCOR 1 50 1 50 SAGLAN 1 25 0 95 SALCAR 0.25 0 25 SCICAL 0 50 0 50 SCIVAL 1 50 0 65 JANUARY 1992 SITE 1 ALTPHI 0.25 0.25 0.25 0.25 0.25 0.25

PAGE 126

Table 13 Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEINT 3 50 2.18 1 .2 5 0.95 PAN HEM 0 25 0.25 POLPUN 0.25 0.25 0.75 0.75 0.25 0.25 PONCOR 1.75 0 25 0 25 0.25 SAGLAN 2 75 0.25 SCICAL 5 00 5 00 0 25 0 25 SCIVAL 0 50 0 50 3 25 2 93 TYPLAT 0 25 0.25 JANUARY 1992 SITE2 ALTPHI 0 25 0 25 ELEINT 5 50 1 94 LUDPAL 0 50 0.50 PAN HEM 0 50 0.29 PONCOR 11.75 10 44 SAGLAN 10 25 5 45 SCI CAL 5.75 5.11 SCISPP 0 50 0 50 SCIVAL 0 25 0 .2 5 43 00 4 .14 10 00 5 83 THAGEN 4 25 3 92 TYPLAT 0 .2 5 0 25 0.25 0 25 JANUARY 1992 SITE3 ALTPH I 0 50 0 29 ELEINT 91.25 54 84 1 50 1 50 17. 00 9.82 LUDPAL 1 75 1.11 0 50 0 .5 0 0 75 0 48 0 50 0 29 0 50 0.50 POLPUN 1 00 0.71 0 25 0 25 0 .2 5 0 25 PONCOR 3.00 2 38 0.25 0.25 0 50 0.29 SAGMON 2.00 0 .91 SCI CAL 11.25 11.25 SCIVAL 1 00 1 00 77.25 24 67 6 75 6.75 THAGEN 0 50 0.29 TYPLAT 0 75 0.48 MAY 1992 SITE 1 ALTPHI 0.25 0 25 ELEINT 67 00 22.66 PANHEM 0 25 0.25 POLPUN 0 25 0.25 PONCOR 14.25 2.95 SAGLAN 45.25 16. 86 SCICAL 33 00 15 .15 SCIVAL 44 50 13 05 125

PAGE 127

Table 13. Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLAT 1.25 1.25 MAY 1992 SITE2 ALTPHI 0 25 0 25 0.25 0.25 0.50 0 29 ELEINT 43 50 25 67 JUNEFF 0 75 0 75 PELVIR 0 25 0.25 POLPUN 0.25 0 25 PONCOR 12 50 3.69 0.75 0.48 SAGLAN 15.00 9.87 0.50 0.50 SCICAL 1.00 1.00 42.50 13.62 17 25 17.25 SCIVAL 0 75 0 75 97 50 45 48 THAGEN 1 00 0.41 TYPLAT 0 50 0 29 0.50 0.50 1.25 0.95 MAY 1992 SITE 3 ALTPHI 0 25 0.25 EICCRA 2.00 2 00 ELEINT 74 75 9 53 42.50 25 29 JUNEFF 16.00 16.00 PANHEM 1.00 0 .71 PONCOR 23.50 5.78 6.25 6.25 1 75 1.03 SAGLAN 7.00 7.00 1.00 1 00 SAGMON 2 75 2 75 SCICAL 23.00 14.11 10.00 10.00 SCIVAL 67.75 12.91 8.50 8 50 THAGEN 1.75 1.75 TYPLAT 2.00 1.41 AUGUST 1992 SITE 1 ALTPHI 0.25 0.25 ELEINT 341.75 121. 40 87.50 51.54 PONCOR 8.75 3.09 1 25 0 95 SAGLAN 7.75 2.10 SCI CAL 64 50 27 38 SCIVAL 1.00 1.00 215.00 48 99 1.25 1.25 THAGEN 1.25 0.75 TYPLAT 1.25 1.25 1.50 1.50 SCIVALD 6.50 6.50 AUGUST 1992 SITE 2 126

PAGE 128

Table 13 Vegetation density measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0.25 0 25 ELEINT 25.75 7.26 0.50 0.50 1.25 1.25 LUDLEP 0 25 0.25 PANHEM 1.50 1.50 PELVIR 0.75 0.75 paN COR 21.75 2.90 2.25 2.25 SAG LAN 8 25 1.31 SCICAL 0.50 0 50 33.00 17.22 SCISPP4 1.25 0.63 SCIVAL 0 25 0.25 46. 75 46.75 26 75 3.01 4.75 2.50 THAGEN 3 50 2.02 TYPLAT 7.50 2.99 11.00 6.36 2.75 1.70 0 75 0 75 AUGUST 1992 SITE3 EICCRA 0 50 0 50 ELEINT 215.00 128 16 106.25 98.09 PELVIR 0 25 0.25 PONCOR 16 00 4 .38 3.25 3.25 1 50 0 65 SAGLAN 4 50 0.87 SCICAL 24.00 10.26 SCISPP4 0 25 0.25 SCIVAL 5 .00 5.00 74.00 45 30 24 00 24.00 THAGEN 1.00 0.41 TYPLAT 4 25 2.53 2.75 2 75 1.75 1 75 SCIVALD 5.50 3.20 F EBRUARY 1993 SITE 1 ELEINT 300.00 122.47 65.50 61.57 PELVIR 0 75 0.46 PONCOR 18.00 2.12 5 00 5.00 SAGLAN 11.75 1.25 0.25 0 25 SCI CAL 50 00 28 87 SCIVAL 19 .00 12.01 THAGEN 5 00 2.89 TYPLAT 2 .00 2 00 0.50 0.50 FEBRUARY 1993 SITE2 ALTPHI 0.25 0.25 ELEINT 72.50 22.87 7 .00 6 .04 0.25 0.25 PANHEM 1.00 1.00 PELVIR 0.50 0.50 127

PAGE 129

Table 13 Vegetation density measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN S); MEAN SE MEAN SE MEAN SE MEAN SE PONCOR 12 75 3 09 1 .50 1.50 SAGLAN 7 50 2 90 SCICAL 3 25 3 25 0 75 0 75 56 00 15 03 2 75 2.75 SCIVAL 1 25 1 25 20 50 8.42 4 00 3 37 THAGEN 3 25 1 65 TYPLAT 0.75 0 75 16.25 5 95 3 50 3 50 2 00 2 00 0 25 0 25 1 50 1 50 3 25 1 60 FEBRUARY 1993 SITE 3 ALTPHI 0 25 0.25 EICCRA 0 25 0 25 ELEINT 360 75 108 .51 0 75 0 75 GALTIN 0 25 0 25 PELVIR 0 25 0 25 PONCOR 21. 25 1 25 3 75 3 75 3 00 2 12 SAGLAN 13 00 4 20 SCICAL 17.25 9 68 7 75 7 75 7 75 7.42 SCIVAL 14 00 13 67 1 25 0.63 THAGEN 7 75 6.09 TYPLAT 0 25 0 25 0 25 0.25 0 25 0.25 AUGUST 1993 SITE 1 ALTPHI 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 AMAAUS 0 25 0 25 1 00 1 00 0 50 0 29 ELEINT 385 25 114 75 250 00 144 34 LUDLEP 0 25 0 25 0 25 0 25 PANHEM 4 50 4 50 PONCOR 31. 00 3 34 2.25 1.44 SAGLAN 8 50 1 19 SCI CAL 25 75 9 72 12 50 12.50 SC I VAL 12 50 12 50 26 75 8 63 TYPLAT 0 25 0 25 2.75 2 75 2 50 2 50 1 75 1 75 AUGUST 1993 SITE 2 ALTPHI 0 50 0 29 0 25 0 25 CYPODO 2.25 1 .31 0.75 0.48 16 00 16 00 ECLALB 0 25 0 25 0 75 0.48 ELEINT 176 75 57 80 20 00 17.44 3 00 3 00 134 50 122 .16 GALTIN 0 50 0 50 JUNEFF 15 00 15 00 LUDLEP 4 50 0.65 1.25 0 63 2 25 1 .31 PONCOR 27 25 2 29 4 00 3 67 SAGLAN 16 00 3 .11 128

PAGE 130

Table 13. Vegetation density measurements (Cant. ) SPP ELEINT PANHEM PONCOR SAG LAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCICAL 3.75 3 75 15.SO 3.57 SCISPP4 0.75 0.75 SCIVAL 0. 25 0 .25 30 .25 8 .26 1 00 1 00 THAGEN 8 75 4.70 TYPLAT 1 75 1 .44 13 75 4.73 2 .SO 1 32 3. 00 2 .68 2 .75 2 .14 5.50 3 .28 0. 75 0. 75 AUGUST 1993 SITE 3 CYPODO 0.50 0. 50 0.25 0.25 CYPSPP 17.50 17.SO EICCRA 0.50 O .SO ELEINT 305.75 117. 83 162.SO 117. 92 HYDRAN 2.25 2 .25 JUNEFF SO.OO SO.OO LUDLEP 1 .25 1 .25 0 25 0 25 PELVIR 1 00 0.71 PONCOR 19.25 4 77 4 .25 4 25 2 .SO 1 .44 SAG LAN 5.00 1 96 0. 25 0.25 SCICAL 49.SO 13. 62 9.SO 9.SO SCIVAL 14 25 7 .09 0. 75 0.75 THAGEN 3. 75 2 .25 TYPLAT 1.75 1 .44 2 .00 2 00 2 .SO 2 .SO 1 .SO 0.87 3. 25 1 .97 MARCH 1994 SITE 1 ALTPHI 0.25 0 25 0.25 0.25 AMAAUS 0.25 0 25 37.SO 37 .50 1 .00 1 .00 CARP EN 0.25 0 .25 ELEINT 53.25 5.82 10.75 7 .78 HYDRAN O.SO O .SO O .SO O.SO LUDLEP 1 .00 0.58 PAN HEM 2 00 2 .00 PELVIR 0.25 0.25 3 00 2.38 POLPUN 0 25 0.25 PONCOR 31.SO 5 84 15. 25 9.20 SAGLAN 13.25 4 .31 SCI CAL 84 00 43.32 13.75 13.75 SCIVAL 37 .25 6 .76 TYPLAT 4 .SO 3. 57 O .SO O .SO 3.00 3. 00 2 00 2 .00 0. 75 0. 75 udicotS 2 .SO 2 .SO 20. 25 18. 30 MARCH 1994 SITE2 CYPSPP 3.SO 3.SO ECLALB O.SO O.SO 129

PAGE 131

Table 13. Vegetation density measurements (Cant.) SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ELEINT 159 .00 41.00 125 .00 125.00 2 00 2 .00 11.25 9 66 GALTIN 0.50 0 29 HYDRAN 0 50 0 50 PELVIR 0 50 0 50 PONCOR 16 50 2 .72 1.50 1.19 SAGLAN 9 25 1.70 SCICAL 2.75 2 75 23 75 10.13 2 25 2 25 SCIVAL 0 25 0 25 13 .75 9 .31 2 .75 1.11 THAGEN 4.00 2.04 TYPLAT 0 50 0 50 10 75 2.78 3 00 1 58 7 .75 2.78 6 00 3 .83 9 00 3.03 GALTINS 1 00 1 .00 TYPSPPS 2 50 2 50 6.25 6.25 2 50 2 50 0.50 0 50 5 00 5.00 udicotS 8.75 8 .75 0.25 0 25 MARCH 1994 SITE 3 AMBART 0 .75 0.75 ECLALB 0.25 0.25 EICCRA 3 75 3 75 1.00 1 .00 2 .25 2 25 ELEINT 104 .75 53 40 4 50 3.30 EUPCAP 0 .2 5 0 25 PELVIR 1 75 1 .75 PONCOR 30 00 12 62 5.00 5 .00 0.75 0.48 SAGLAN 5 25 1 89 0 75 0.75 SCICAL 30 00 4 32 3.25 3.25 SCIVAL 9 50 7.01 3.25 3.25 THAGEN 1 50 1 50 2 25 1 .31 TYPLAT 0.75 0 75 5 .00 5 .00 2 50 1 .8 9 2 00 1.41 3 75 2.17 TYPSPPS 2 50 2 50 2.50 2.50 udicotS 0.25 0.25 0 .5 0 0 50 130

PAGE 132

woo i c OJ Q) ::2 '" E !II C Q) o c o "" Cl -o C. .J:l 00 Experimental Planting T r eatment -Eleocharis interstincta Planted Plots 1 e:52SI 2 bS:'3 3 1991 300 i i 150 I I JAN UARY i 992 300 150 MAY 1992 300 150 AUGUST 1992 300 I I 150 I I FEBRUARi1993 300 I I 150 i I __ -L __ __ ;__ __ 450 AUGUST 1993 300 i I 150 I i MARCH 19p4 300 i I 150 I I __ __ ELEINT HYDRAN PONGOR SAG L A N S CI CA L SCI VAL TYPlAT Plant Species Figure 53. Vegetation density (# m2 Mean SE) from subplots in Eleocharis interstincta Planted Plots, Experimental Planting Sites For each species, bars representing the three sites are bound by vertical dot-dash lines -Invading species not planted. Panicum hemitomon (PAN HEM) not found in any plots other than it's own target plot. 131

PAGE 133

w (f) :i: c: -o C. ..0 (f) Experimental Plant ing Treatment -Panicum hemitomon Planted P l ots rzLj sn. 1 l32SI sn. 2 sn.3 40 I I I I I I i SEPTEMBfR 1991 iii i 30 iii I I i 20 iii iii o Iii i I I __ __ +-_+-L-r __ __ __ 40 I JANUARVI1992 I I: I 30 I I I I I I I 20 I i I I Iii o I I I I I I I I i I I : : : i MAV1992i Iii i 30 I I I I I I 20 I Iii i i o iii iii I I iii 0r--+ __ + i __ __ __ 4-__ __ + i __ 40 I J I I I I AUGUST 1992 iii 30 iii i i 20 Iii I I i o I I I I I I 1 I I i I I I __ __ +-_+-i-+ __ +i __ +-_+' __ 40 I I I I I I I FEBRUARtf 1993 Iii i 30 I I I I I i 20 I I i i i i o I I Iii i i __ __ __ __ 40 I I I I I I I I AUGUST j993 I i i i i 30 I I I I I I I 20 I I I I I I I o I I I I I I I __ __ __ __ r-jl __ 200 1 I I I I I I I I MARCH 1!194 I I I I I 100 / I I I I I I I v ELEINT HYDRAN PANHEM PONCOR SAGlAN SCICAL SCIVAL TYPLAT Plant Species Figure 54. Vegetation density (# m 2 Mean SE) from subplots in Panicum hemilomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. 132

PAGE 134

Experimental Planting Treatment -Pontederia cordata Planted Plots I'ZLl S"e 1 IQ2SI S"e 2 [S:"l S"e 3 40 1991 30 I 20 I I 10 I 0 40 I JAN UARY 1992 30 I 20 i i 10 i w en 0 :i: 40 MAY 199} c: OJ 30 i Q) I ::;; 20 I N 10 E 0 40 I AUGUST i'992 30 I en c: 20 I Q) Cl I c: 10 I 0 ., 0 .l!l 40 1993 Q) 20 I 0 I 0. 10 I ..c '" 0 en 40 AUGUST I 1993 30 I 20 I I 10 i 0 40 I 30 MARCH 1994 i 20 I 10 I I d:. 0 ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPLAT Plant Species Figure 55. Vegetation density (# m-2 Mean SE) from subplots in Pontederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ****= Invading species not planted. Panicum hamitOmon (PANHEM) not found in any plots other than it's own target plot. 133

PAGE 135

40 30 20 10 0 40 30 20 10 w en 0 i: 60 c: 50 '" 40 ., ::! 30 N 20 10 E 0 40 .?;> 'iii 30 c: 20 ., 0 c: 10 0 ., 0 '" 40 ., 0> ., 30 > 20 0 a. 10 ..c :::l 0 en 40 30 20 10 0 40 30 20 10 0 Experimental Planting Treatment -Sagittaria lancifolia Planted Plots rz2l 1 I'2Sl 2 [SSI 3 SEPTEMPER 1991 i I i I I JANUARY 1992 I I I I MAY I I I I I AUGUST I 1992 I I I I 1993 I I i i AUGUSTI1993 I I I I I MARCH 1994 i I I I ELEtt-rr HYDRAN PONCOR SAGLAN SCICAL selVAL Plant Species TYPLAT Figure 56. Vegetation density (# m2 Mean SE) from subplots in Sagittaria lancifo/ia Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ***"= Invading species not planted. Panicum hemilomon (PANHEM) not found in any plots other than it's own target plot. 134

PAGE 136

latifolia approached similar densities as S. lancifolia, at Site 2 (Figure 56, Table 13). Culm density varied among samples and sites with time in the Scirpus califomicus plots. Peale values were observed in February 1993 at Site 2 (60 m-2), August 1993 at Site 3 (50 m-2), and March 1994 at Site 1 (75 m-2 ) Density values in the March 1994 sample were reduced at Sites 2 and 3, to levels comparable to the August 1992 samples (Figure 57, Table 13). Scirpus validus appeared at Sites 2 and 3 in August 1992, and Site 1 in August 1993. The competitor species 'JYpha latifolia slowly increased density at Site 2 to a maximum of5 m-2 (Figure 57, Table13). Scirpus validus attained peale density May 1992 at Site 2 (100 m-2 ) and August 1992 at Site 1 (200 m-2 ) and Site 3 (75 m-). During subsequent sampling events, Scirpus validus occurred at much lower densities than previously measured <50 m-2 ) The competitor species 'JYpha latifolia first appeared in August 1992 and reached a maximum density of 5.5 culms m-2 at Site 2 in March 1994 (Figure 58, Table 13). In the Mixed Species plots, measurements of Eleocharis interstincta and Thalia geniculata dominated as a result of random plot placement. Vegetation density dynamics included growth to a maximum followed by a decline with time (Figure 59, Table 13). Density measurements in the seeded, mulch, and control plots featured an early period with little or no measurable vegetation followed by a later dominance by 'JYpha latifolia (Appendix AJ). The best representation of species performance can be found in the cover measurements (Appendix AI). Planting Site -Height Within the planting site plots, height measurements followed a similar temporal dynamic pattern as cover and density (Figures 60-65; Table 14). Fewer species were measured than for the cover parameter because the floating plant taxa such as Salviniaceae (Azol/a, Salvinia) and Lemnaceae (e.g. Lemna, Spirodel/a, Wolffia, Wolffiella) were excluded due to a thin growth form and non-rooting habit. Occasionally, Alternanthera philoxeroides was excluded if it was found floating (a frequent occurrence) or its rooting habit was indeterminate Species such as Eichhomia crassipes, Hydrocotyle ranunculoides, H. umbel/ata, and Limnobium spongia were measured from the top of the dense, floating root matrix. A greater number of species were measured for height than were counted for the density parameter. Height measurements were taken from plants that overhung the plot and from species that were defined as mat forming without an easily definable root to sediment location. Mat forming species included: Hydrocotyle ranunculoides, H. umbel/ata, Polygomun punctahlm, and Utricularia biflora. As was discussed in the density results, height measurements from planted plots will be treated in more detail than those from control, mulch, and seeded plots. Again the best measure of species performance in the latter plots may be derived from the cover estimates. Within the single species planted plots, target species height reached a peale up to two years after planting. The species reaching peale height earliest was Scirpus validus at 200-250 cm in May 1992. In August 1992, Eleocharis interstincta (150 cm), Pontederia cordata (125 cm), and Sagittaria lancifolia (175 cm) were found to have pealeed. Scirpus 135

PAGE 137

Experimental Planting Treatment Scirpus califomicus Planted Plots I'ZLl sn.1 sne2 I:S'3 sn.3 125 SEPTEMPER 1991 100 75 I 50 I I 25 I 0 125 I 100 JANUARY 1992 75 I 50 I I 25 I W (/) 0 ...!.. 125 + r:: 100 OJ 75 i ., 50 I I N 25 I E 0 125 I :?:-100 AUGUSTI 1992 "iii 75 I r:: I ., 50 0 i r:: 25 i 0 OJ 125 1993 ., 100 '" ., 75 i > I -50 i 0 a. 25 I .a ::l 0 rJ) 125 I 100 AUGUSTi1993 75 I 50 I I 25 I 0 125 I 100 MARCH 1994 75 I 50 I 25 I I 0 od=> ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL TYPlAT Plant Species Figure 57. Vegetation density (# m-2 Mean SE) from subplots in Sc/rpus ca/ifom/cus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. Pan/cum hemitomon (PANHEM) not found in any plots other than it's own target plol 136

PAGE 138

Experimental Planting Treatment Scirpus validus Planted Plots rza 300 250 SEPTEMPER 1991 I I I I I I 200 I i i 150 i I 100 i I 50 0 i i 300 I I 250 JAN UARY 1992 i 200 I i 150 i I I 100 50 W en 0 i 300 c: 250 to 200 Q) 150 :; 100 N 50 E 0 I I I J I i MAY I I I I I I I i I I I i i I I i I i I i i I In I : : : ....J//V' v 150 -0 100 Ci. 50 .Q '" 0 en 300 I I I I I I AUGUST i 1992 I I rh I I I i : I I I I I i i 1993 I I I I I I i I I i I i I I I i i i i i I I I I I 250 AUGUST I 1993 I i 200 I i I 150 I I I 100 I i I 50 0 : -.i I : 300 I I I I I 250 MARCH 1994 I I I I 200 i I I I I 150 I I I I I 100 50 0 I I i i h I : : I -ELEINT HY D RAN PONCO R S A GLAN SCICA l SCI VAL TYPLAT Plant Species Figure 58. Vegetation density (# m2 Mean SE) from subplots i n Scirpus validus Planted Plots Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species not planted. Panicum hemitomon (PANHEM) not found in any plots other than it's own target plot. 137

PAGE 139

Experimental Planting Treatment -Mixed Species Planted Plots rz:;a 8ft. 1 8ft. 2 Sft.3 20 1 8EPTEMqER 1991 1 I 1 I 10 I i I i I I i JANUAR 'Ij 1992 i i i i 20 10 I 1 i i 60 ] 1 i MAY 50 1 I 1 I 20 10 150 r : : AUGUST )992 100 1 1 I 10 I 12g 100 : FEBRUA1y 1993 75 I 1 i 10 I I 1 300 I AUGUST 1993 225 150 i i 20 10 MARCH Uj94 20 10 I I i i I 1 __ ELEINT HYDRAN PELV I R PONCOR SAGLAN SCICAL SC IVAL THAGEN TYPlAT Plant Species Figure 59. Vegetation density (# m2 Mean SE) from subplots In the Mixed Species Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -= Invading species not planted. Panicum hemitomon (pANHEM) not found in any plots other than It's own target plot 138

PAGE 140

Experimental Planting Treatment -E1eocharis interstincta Planted Plots 250 200 150 100 50 rzLl Site 1 2 I I i SEPTEMBERi1991 I I I I I I I __ __ __ -+ __ __ __ -+ __ __ +__ 250 JANUARY 19L2 200 r 150 i w c:: MAY 1992 m I :::0 I i 1: .,o., i I i I E I i AUGUST :E I i I i :r: I i c:: I I o .. $ I I gJ, I FEBRUARY 1[993 >Q) I I I I 15 i i Ci 250 I 200 AUGUST 1993 150 i 100 I I 50 i dz, 200 MARCH 150 I 100 I I __ li __ __ ELEI NT HYORAN PONCOR SAGLAN scrCAL SCIVAL TYPLAT Plant Species Figure 60. Vegetation height (an m 2 Mean SE) from subplots in Eleocharis interstincta Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. Pan/cum hemitomon (PANHEM) because it did not colonize any other plots. 139

PAGE 141

Experimental Planting Treatment Panicum hemitomon Planted Plots r:za 1 2 3 250 200 1991 1 1 1 1 1 1 1 150 100 1 1 1 I 1 1 1 1 1 1 1 50 0 i I i 1 i i i 250 200 150 100 50 W Ul 0 "i 250 c: 200 '" Ql 150 ::2 100 N 50 E 0 E 250 0 200 .<:: 150 C) '0; 100 :I: 50 c: 0 0 ., '" 250 -Ql 200 C) Ql 150 > 100 0 a. 50 ..a 0 JANUARy!1992 1 1 1 1 1 i i i 1 1 i i i T i i i i -MAY 1992 : 1 1 1 i 1 1 i i I 1 1 1 1 1 T 1 Db i i i i AUGUST j 992 1 1 1 1 1 1 rsh! i rsh! i i i i : i I : 1993 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : T 1 1 1 1 i 1 : : : i p'/ I I Ul 250 200 150 100 50 0 1 1 1 1 1 T AUGUST 1993 i i i i 1 1 1 1 1 1 1 i 1 i 1 i i I 250 200 150 100 50 0 MARCH 1 1 1 1 1 1 i 1 i 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 : I J... i i 1 1 r/, ,0. _,' i I ElEI NT HYDRAN PAN HEM PONCOR SAGlAN SCICAl SCIVAl TYPLAT Plant Species Figure 61. Vegetation height (em m2 Mean SE) from subplots in Panicum hemitomon Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. 140

PAGE 142

-o Q. ..0 :l Ul 250 Experimental Planting Treatment -Pontederia cordata Planted Plots r:za Sit. 1 sn. 2 sn.3 200 1991 i I I 150 100 __ r-__ __ __ __ __ __ -+ __ __ +-__ 250 JANUARY 1 192 200 150 100 250 200 MAY 1992 150 1: 200 AUGUST 19p2 150 I J.. __ -+ __ __ +__ __ +__ 250 I 200 150 i I 100 i __ r-__ 250 200 AUGUST 1993 150 I 100 I I __ __ 250 200 MARCH 150 i 100 I __ __ ELEINT HYDRAN PONCOR SAGLAN SC ICA L SCIVAL TYPlAT Plant Species Figure 62. Vegetation height (em m2 Mean SE) from subplots in Poniederia cordata Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. ""'"'= Invading species, not planted target species. Panicum hemitomon (PANHEM) because it did not colonize any other plots. 141

PAGE 143

Experimental Planting Treatment Sagittaria lancifolia Planted Plots r.za sa. 1 250 1991 200 150 I 100 I I 50 0 250 JAN UARY 1992 200 I 150 I 100 I I W 50 i CI) 0 +-250 r::: 200 MAY 1992 '" Q) 150 ::;; 100 N 50 E 0 E 250 0 200 .s:: 150 i 0> i .Q; 100 I 50 i r::: I 0 0 :; 250 -Q) 200 0> Q) 150 I > I 100 0 i 1i 50 I .!l 0 OJ CI) 250 I 200 AUGUST 150 I 100 I I 50 I 0 250 MARCH 200 150 i 100 I 50 I I 0 ELEINT HYDRAN PONCOR SAGLAN SC ICAL SCIVAL TYPLAT Plant Species Figure 63. Vegetation height (em m-2 Mean SE) from subplots In Sagittaria lancffolla Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -= Invading species, not planted target species. Panicum hemitomon (PAN HEM) because it did not colonize any other plots. 142

PAGE 144

.r:::; C> iii I c:: o S Q) C> (5 a. .<:> ::J Ul Experimental Planting Treatment -Scirpus calif amicus Planted Plots rza 1 2 !;SSI 3 300 200 100 SEPTEMBEjl1991 i i I I JAN UARY lp92 JOo i 200 I I 100 I JOO 200 100 MAY 1992 JOO AUGUST I 200 I 100 : 300 FEBRUAR'VI1993 I 200 i 1 00 i l_-+ __ __ __ __ __ __ EI JOO AUGUST 1993 I 200 I 100 I JOO MARCH 1994 i 200 i 100 I I ELEINT HYDRAN PONGOR SAGLAN SCICAL SCIVAL TYPlAT P l ant Species Figure 64. Vegetation height (em m2 Mean SE) from subplots In Scirpus califomicus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. --= Invading species, not planted target species. Pan/cum hemitomon (PANHEM) because it did not colonize any other plots. 143

PAGE 145

iii' (J) :i: c '" Q) :::i: '1 E ,. .r:; '" iii ::r: c o "" .l!l Q) '" o a. .c ::l (J) Experimental Planting Treatment Scirpus validus Planted Plots r:za sa. 1 sn. 2 bS"l sn. 3 250 200 SEPTEMBER 1991 150 i 100 I I 50 I 200 JANUARY 1992 150 I I 100 i 50 i __ __ 250 200 MAY1992 I 150 i 100 I I 50 I cOo 200 AUGUST 150 I 100 i i 50 I 200 FEBRUARi 1993 150 I I 100 i 50 I 200 AUGUST 150 I 100 I I __ __ 200 MARCH 1994 150 i 100 I I __ b ELEJNT H Y DRAN PONCOR SAGLAN SCICAL SC IVAL TYPLAT Plant Species Figure 65. Vegetation height (em m2 Mean SE) from subplots in Scirpus validus Planted Plots, Experimental Planting Sites. For each species, bars representing the three sites are bound by vertical dot-dash lines. -Invading species, not planted target species. Panicum hemitomon (PANHEM) because it did not colonize any other plots. 144

PAGE 146

Table 14. Vegetation height measurements (em m-2 MEAN SE) from planted plots in Experimental Planting Sites. Species Codes: Upper case six character are abbreviated species codes. Lower case codes represent plant families or unknowns. Codes ending with 0 represent dead, while S represent seedlings. SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1991 SITE 1 ALTPHI 15.75 15.75 16.50 16. 50 COMDIF 18 00 18 00 31.25 18.04 16.25 16.25 13.00 13.00 ECLALB 14.00 14.00 POLPUN 15.50 15.50 39.00 22.70 20.25 20.25 14.25 14.25 13.00 13.00 PONCOR 28.25 16.32 SAG LAN 61.50 20 75 SCICAL 71.25 41.82 SCIVAL 74.25 25.51 AUGUST 1991 SITE 2 ALTPHI 8.25 8.25 AMMAUS 16 00 10.46 10.00 10.00 13.25 8.40 ASTSUB 4.75 4.75 COMDIF 11.25 11.25 CYPIRI 9.00 9.00 CYPSPP 9.50 6.18 ECHCOL 12.75 12.75 ECLALB 6.75 6.75 5.00 5.00 4.50 4.50 PANDIC 6.00 6.00 PONCOR 30 50 17.84 SAGLAN 37 00 21.50 SCICAL 13.00 13.00 SCISPP 20.00 20.00 SCIVAL 17 50 17.50 61.25 20.44 THAGEN 38.75 21.27 UGRASS 4.25 4.25 AUGUST 1991 SITE3 AMMAUS 9.00 9.00 ELEINT 22.25 13.12 28.75 16.81 PONCOR 12.00 12.00 SAGLAN 25.75 15.27 SALCAR 8.75 8.75

PAGE 147

Table 14. V egetation h eight measurements (Cont.). SPP ELEINT PANHEM PONCOR SAG LAN SCI CAL SCIVAL MIXED SPP MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE M E AN S E MEAN SE SCICAL 43 25 43 25 SCIVAL 75 75 25 35 JANUARY 1992 SITE 1 ALTPHI 14. 25 14 25 13 50 13 50 11.50 11. 50 12 75 12 75 ELE INT 77.75 5 96 37 50 21.75 HYDRAN 10.00 10 00 PAN HEM 13 50 13.50 POLPUN 13 75 13 75 36.00 12.03 13. 00 13. 00 11.00 11.00 12.00 12 00 PONCOR 62 50 4 66 14. 75 14 .75 SAGLAN 124 25 13 39 SCICAL 60 00 46 19 66 50 38 .76 SCIVAL 81. 00 46 77 THAGEN 35 75 35 75 TYPLAT 23 50 23 50 JANUARY 1992 S ITE2 ALTPHI 7 25 7 25 9 25 9 25 4 00 4 00 4 50 4 50 ELE INT 53 75 6 49 HYDRAN 7 50 7 50 5 00 5 00 LUDPAL 3 25 3 25 PANHEM 18 25 12 09 POLPUN 5 25 5.25 2 25 2 25 PONCOR 43 00 4 78 12 00 12 00 SAGLAN 103 00 10.51 SCICAL 28 75 28 .75 SCISPP 10 25 10.25 SCIVAL 6.00 6 00 165 00 2.89 76 75 44.42 THAGEN 74 25 42 87 TYPLAT 4 50 4.50 3 75 3.75 JANUARY 1992 SITE 3 EICCRA 13 75 13 75 ELEINT 52 25 18 58 35 00 20 89 LUDPAL 6 00 6 00 6 25 6 25 10 00 10 00 6 75 6 75 8 75 8 .75 7 50 7 50 POLPU N 26.75 15 67 8 00 8 00 8 50 8 50 PONCOR 25 50 15 .17 18 25 18. 25 20 75 12. 06 SAGLAT 62 00 21. 00 SCICAL 46 50 46 50 SCIVAL 155 75 9.17 21.75 21. 75 146

PAGE 148

Table 14. Vegetation height measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE THAGEN 53.SO 30.96 TYPLAT 45.00 26.06 MAY 1992 SITE 1 ALTPHI 15 .75 15 75 14.00 14 .00 ELEINT 100 .75 7 17 PANHEM 20 .00 12.25 POLPUN 13 .75 13.75 33 .SO 11.82 10.SO 10.50 12.25 12.25 PONCOR l08.SO 16.47 SAGLAN 165 50 11.41 SCICAL 287 .SO 31. 46 SCIVAL 237 .SO 12 .SO TYPLAT 55.00 55 .00 MAY 1992 SITE2 ALTPHI 10.25 10.25 10 .25 10.25 23.75 23.75 10 25 10.25 15 75 15.75 4O.SO 27.84 ELEINT 96. 75 2.29 HYDRAN 11.00 11.00 10.00 10.00 16.75 10.27 PANHEM 32.50 32.50 PELVIR 11.00 11. 00 POLPUN 14.25 14. 25 PONCOR 112.75 13 .55 55.50 35 .08 SAG LAN 133 00 7.29 37.SO 37.SO SCICAL 47.SO 47 .SO 258 .SO 38.43 SO.OO SO.OO SCIVAL 30.00 30 00 255.50 15 39 THAGEN 210 .00 7.07 TYPLAT 75.SO 46 69 38.75 38 75 39 25 39.25 MAY 1992 SITE3 ALTPH I 10.SO 10 .SO 10 .SO 10 .SO E ICCRA 9.SO 9 .SO ELEINT 95.25 5.79 23. 00 23.00 54.75 31.61 PANHEM 26 .50 15 .35 PONCOR 87.00 11. 15 30 00 30 .00 38.25 23 .34 SAGLAN 33 75 33.75 25.00 25.00 SAGLAT 76.75 45 .81 SCICAL 162.SO 56.03 SO.OO 50.00 SCIVAL 206.00 28.04 53. 00 53 00 THAGEN SO.OO SO.OO TYPLAT 87.75 53.82 40.75 40.75 SO.OO SO.OO 147

PAGE 149

Table 14 Vegetation height measurements (Cont.). SPP AUGUST 1992 ALTPHI ELEINT HYDRAN PONCOR SAGLAN SCICAL SCIVAL THAGEN TYPLAT AUGUST 1992 ALTPHI ELEINT HYDUMB LUDLEP PAN HEM PELVIR POL PUN P O N COR SAGLAN SCI CAL SCISPP4 SC I VAL THAGEN TYPLAT AUGUST 199 2 ALTPHI EICCRA ELEINT H Y DRAN PELVIR POLPUN PONCOR SAGLAN SCICAL SCISPP4 SCIVAL THAGEN PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP ELEINT MEAN S E MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SITE 1 28 .75 27 .11 1 25 1 25 16 25 16 25 13 25 13 25 157 50 5 20 77 25 44 .64 13 25 13 25 121.50 40 .60 36 67 36 67 153 00 26 69 32.50 32 50 305 50 61. 02 35 .00 35 00 237 00 14 02 37.50 37.50 180 00 105.20 40 00 40 00 75 00 75.00 SIT E 2 27 25 27 25 35 75 35 75 60 00 34 88 164 50 17 63 30 00 30.00 26 25 26 25 19.00 19.00 48 75 48 75 30 00 30 00 31. 25 31.25 30 00 30 00 124 25 7 85 33 75 33 75 179 25 13 76 60 00 60.00 261.25 87 57 157 50 58 08 46 25 46 25 82.50 B2. 50 212 50 8.64 143 75 51. 29 220 00 92.01 207 50 69.81 137 50 80 .04 125 00 72 17 40 00 40 00 SITE 3 27 50 27 50 21. 25 21. 25 23 00 23 00 40 25 24 43 20 50 20 50 170 00 6 72 55 50 33 17 11.75 11. 75 27 25 27.25 25 00 25.00 146 00 8 .34 43 75 43 75 72 25 24.22 185 00 11. 70 218 50 76 04 48 00 48 00 190 50 8 96 40 50 40 50 168 00 62.22 148

PAGE 150

Table 14 Vegetation height measurement s (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCI CAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLAT 77.00 47.SO 62 .SO 62 .SO 65.00 65 00 SCIVALD 91.25 52 77 FEBRUAR Y 1993 SITE 1 ALTPHI 2 .SO 2 .SO 8 .25 8 .25 ELEINT 174 .00 7 .99 77.75 45.18 PELVIR 32 .SO 32.SO P OLPUN 11.SO 11.SO PONCOR 120.75 20 62 36.25 28.53 SAGLAN 141.75 47. 64 45.00 45.00 SAGLAT 52.SO 52.SO SCICAL 305. 75 41.58 SCIVAL 213 75 23 22 THAGEN 93 25 54 12 TYPLAT 23 .25 23 .25 45.75 45.75 40.00 40.00 FEBRUARY 1993 SITE 2 ALTPHI 19.00 19. 00 11.25 11.25 ELEINT 126. 25 16.SO 52.00 31.58 10.75 10.75 GALTIN 14 75 14 75 H YDRAN 12.SO 12.SO 17. 00 17. 00 H Y D SPP 19.00 19 00 18. 75 18. 75 PAN HEM 21.25 21.25 PELVIR 23.00 23.00 PONCOR 89.25 4 .31 25.00 25.00 SAGLAN 134.00 10.75 SCICAL 87.SO 87.SO 62.SO 62.SO 332.SO 25.89 SO.OO SO.OO SCIVAL 150 .25 SO. 67 75.00 47.87 THAGEN 100.50 9.46 TYPLAT 37 .SO 37.SO 152.25 51.49 46. 75 46. 75 42.SO 42.SO 25 00 25.00 86. 25 51. 05 96. 75 45.06 FE8RUAR Y 1993 SITE 3 ALTPHI 13. 75 13 75 EICCRA 36.SO 21.83 18.25 18.25 67.SO 23.59 16.00 16. 00 ELEINT 137. 00 11.01 79.75 46. 24 GALTIN 16.25 16. 25 HYDRAN 31.00 18 12 51.25 17 73 35.SO 22 22 81.75 24.45 71. 25 5.62 70. 00 1 73 32 25 20 95 PELVIR 19. 75 19. 75 PONCOR 100 00 9 13 30.75 30. 75 39. 25 22. 66 SAGLAN 138.75 6 .68 SCICAL 229.SO 34 .31 SO.OO SO.OO 67.00 40. 70 149

PAGE 151

Tabl e 14. Vegetation height measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP. MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SCIVAL 143. 50 16.17 103.75 38. 26 THAGEN 146.50 4 05 TYPLAT 28. 75 28 75 28.00 28. 00 33.50 33. 50 47. 50 47.50 AUGUST 1993 SITE 1 ALTPHI 34 .25 23 .59 60.75 25.14 6.25 6.25 20.25 11.91 32 .25 32.25 AMAAUS 21.25 21.25 10.00 10.00 18.75 11.97 ECLALB 15.75 15.75 ELEINT 171. 25 13 .19 97.00 58.22 HYDRAN 5.75 5 75 LUDLEP 15. 75 15.75 30.00 30.00 PANHEM 31.50 31.SO PONCOR 107.SO 9. 95 37.25 21.72 SAG LAN 31.SO 31. 50 125.75 1 .65 38.SO 38.SO SCICAL 321. 25 10.87 10.00 10. 00 SCIVAL 184.25 30 .38 THAGEN 225.25 65. 37 TYPLAT 22 .SO 22.SO 45. 50 45.SO 41.25 41.25 40. 00 40.00 AUGUST 1993 SITE 2 ALTPHI 21.SO 13. 07 33.00 20.57 6 .75 6 .75 CYPOOO 45. 25 17.45 30.00 18.37 1 .00 1 .00 ECLALB 13.25 13 25 32.75 19.30 ELEINT 107 .25 16.04 77.25 44.99 29.00 29. 00 67.75 35.68 GALTIN 8 .75 8.75 HYDRAN 14.25 8.25 2 .50 2 .SO 2 .SO 2 .SO 2.SO 2 .SO HYDUMB 21.00 13.58 LUDLEP 102.00 6 .87 73.25 29.81 34 00 21.42 PONCOR 109.00 14 94 SO.75 30.83 SAGLAN 153.SO 9. 54 SCICAL 80. 00 80. 00 57.SO 57.SO 301.25 17.12 SCI SPP4 57.SO 57.SO SCIVAL 21.25 21.25 162. 75 12.15 35.00 35. 00 THAGEN 212. 25 83.23 TYPLAT 70 00 SO.70 176. 25 59.31 130. 00 44. 38 88. 25 55 .44 114 .SO 88. 95 159. 75 80.20 SO.OO SO.OO AUGUST 1993 S ITE3 ALTPHI 4 75 4 75 23.75 20 .55 13.25 13. 25 14.00 14 00 33.SO 22 68 CYPODO 16.75 16.75 14. 00 14 00 CYPSPP 2 .SO 2 .SO 1.25 1.25 150

PAGE 152

Table 14 Vegetation height measurements (Cont.) SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVAL MIXED SPP MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE EICCRA 12 25 7.42 27.25 15.80 13.25 7 87 ELEINT 129.25 11.74 70 00 40.42 HYDRAN 2.50 2.50 20 25 11.71 9 75 7 08 6.25 2.43 6 00 6.00 JUNEFF 41.25 41.25 LUDLEP 15.75 15 75 11. 75 7 03 PELVIR 39 75 24 57 PONCOR 92 00 17.64 31. 25 31.25 27 75 16 02 SAGLAN 140 75 2 66 24 75 24.75 SCICAL 301. 25 3 .15 65.00 65 00 SCIVAL 143.25 12. 58 33.00 33.00 THAGEN 40.75 40 75 367 50 19. 74 TYPLAT 95.75 55 58 47 25 47 25 43 00 43.00 75 00 43 49 99 00 57 .17 MARCH 1994 SITE 1 ALTPHI 4.75 4 75 5 75 4.25 17 00 4 64 6 50 6 17 4 50 4 17 AMAAUS 0 25 0 25 0 25 0 25 3 25 3 25 CARPEN 5 50 5 50 ELEINT 51.25 5 64 17. 25 12.75 HYDRAN 11. 75 4 63 0.50 0 50 8 75 3.17 LUDLEP 13 25 7 67 PANHEM 14. 00 14. 00 PELVIR 15. 00 15.00 40 75 25 .11 POLPUN 3 00 3 00 PONCOR 47 .25 6.30 24.25 14. 25 SAGLAN 82 00 1 29 SCI CAL 194 75 13 .10 43 75 43.75 SCIVAL 148 75 1.25 26 75 15. 83 THAGEN 7 00 7.00 TYPLAT 57 25 33 28 20 00 20 00 43 75 43 75 48 25 48 25 29 50 29.50 UTRSPP 0 25 0 25 UDICOTS 0 25 0 25 0 50 0.29 MARCH 1994 SITE 2 ALTPHI 16.50 16 50 CYPSPP 1 25 1.25 ECLALB 0 25 0.25 ELEINT 83 00 6.68 35.00 35 00 21. 00 21. 00 66 25 38.37 GALTIN 7.75 7.42 6 25 6 25 0 50 0 50 HYDRAN 15.50 5 19 2 50 2 .50 3 00 3 00 7 25 7 25 6 00 3 67 0 75 0.75 PELVIR 25 75 25 75 PONCOR 53.75 8 67 19.00 11. 34 SAGLAN 114 50 11. 98 20 00 20 00 151

PAGE 153

Table 14 Vegetation hei g h t measurements (Cont.). SPP ELEINT PANHEM PONCOR SAGLAN SCICAL SCIVA L MIXED SPP MEAN SE MEAN SE MEAN SE MEAN S E MEAN SE MEAN SE MEAN SE SCICAL 53 75 53 75 258 25 9 82 35 75 35 75 SCIVAL 23.75 23 75 31. 75 31. 75 112 00 41. 74 94 25 42 67 THAGEN 76 75 15.42 TYPLAT 71.50 29 24 147 00 12. 17 94 50 31. 58 127 75 44 50 94 50 55. 23 123 75 42 20 TYPSPPS 0 25 0.25 0 25 0 25 0 25 0 25 0 25 0 .2 5 0 25 0 25 UDICOTS 0 50 0 29 0 25 0 25 MARCH 1994 SITE3 ALTPHI 9.75 9 75 24.75 11.12 9 25 9 25 9 00 9 00 AMBART 1 25 1 25 ECLALB 0 25 0 25 EIC C RA 7 50 4 50 5 00 5 00 20.25 8 17 7 00 4 .12 ELEINT 60 00 5 43 64 75 21. 88 EUPCAP 2 00 2 00 GALTIN 2. 00 2 00 HYDRAN 20 00 5 52 7 50 2 60 4 50 4 50 18 75 7 58 17 75 2 90 7 25 4.42 3 00 3 00 PELVIR 25 75 25.75 PONCOR 67 00 5 73 19 00 19 00 12 00 7.35 SAGLAN 105 75 8 73 25 50 25 50 SCI CAL 207 75 18 55 31.00 31.00 SCIVAL 47 75 25 12 7 00 7 00 THAGE N 25 75 25 75 80 00 27 3 1 TYPLAT 21. 25 21.25 52 50 52 50 92 50 55 28 43 75 43 75 90 00 56 .61 T HA G E N D 12. 75 12. 75 TYPLATD 2 50 2 50 TYPSPPS 0 25 0 25 0 25 0 25 UDICOT S 0 50 0.29 0.25 0 25 0 25 0 25 0 25 0 25 0 25 0.25 152

PAGE 154

califamicus (300 cm) peaked around February 1993. Finally, Panicum hemitomon (25 cm) peaked around the August 1993 sample period. The potential competitor species 'fYpha latifolia tended to reach a lower height than the target species (Figures 60-65) The exception to the pattern of lower T. latifolia heights occurred in the P. hemitomon plot. P. hemitomon tended to survive and colonize poorly. Its height measurements partly reflect a lack of presence in the vegetation community The mixed species planted plots presented a special case with respect to measuring species performance. In contrast to the single species plots, species position in the mixed plot was more randomly arranged. Therefore, a height measurement would reflect the presence of the species initially or its subsequent invasion of the plot with time With this in mind it is not possible to directly compare the results of measurements in single species plots to mixed species plots. Similar patterns over time that include growth to a peak followed by a height decline are comparable and do reflect the nature of vegetation community development on the site (Table 14). The tall "flag" species Thalia geniculata provided the most temporally dynamic height pattern with growth to 200-400 cm during the summer followed by a winter decline to 10-80 cm (Table 14). The competitor species T. latifolia reached a peak height of about 100 cm at Site 2 in February 1993. Its height declined in subsequent samples. 'fYpha height was not measured at Sites 1 and 3 during most of the study period because of its inability to compete in the mixed species planted plots. NATURAL SUCCESSION STRUCfURE AND COMPOSmON Hydrology In spite of the uncertainty in determining hydroperiod associated with floating mat formation some useful water depth patterns were measured. The water depth plots showed a general pattern of mean water depth increase to an approximate plateau of about 50 cm in the south marsh and a little over 25 cm in the north marsh (Figures 66-74). Water depths dropped to near zero at most plots in March 1994 as a result of drawdown. Observations in the field during the drawdown and from the standard error of the mean provided evidence of the extensive area of floating vegetation mat (Figures 66-74). Large standard error estimates resulted from measurements on dry mat surface interspersed with measurements in open water Finally. plots of water depth over time along each transect provide a higher resolution view of transect level hydrologic conditions (Figures 66-74). These graphics clearly show increased standard errors in the sample prior to mat flotation and decreased water depth after flotation at times when the marsh is flooded (Figures 66-74). Water depth measurements along the transects revealed that depth was not always distributed evenly (Figures 66-74). Transects 1 (Figure 66) and 2 (Figure 67) tended to deepen from the middle to the southern end, and transect 9 (Figure 70) deepened toward its western end. Water depths along transects 3 (Figure 68) and 4 (Figure 69) were somewhat evenly distributed Transects 5 (Figure 71) and 7 (Figure 73) gradually declined in depth from north to south. Transects 6 (Figure 72) and 8 (Figure 74) had nearly constant water levels until a rapid water depth decrease from 400 m to the end of 153

PAGE 155

TRANSECT 1, SOUTH MARSH 100 NOVEMBER 1990 80 60 ..D. 40 20 0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 iiJ 60 40 + .-0 0 0 0 0 0 0 0-c 20 OJ ., 0 :;; 100 AUGUST 1992 N 80 E 60 40 % 20 ., 0 0 100 80 2 60 40 FEBRUARY 1993 0 0 "...---..0
PAGE 156

TRANSECT 2, SOUTH MARSH 100 NOVEMBER 1990 80 60 40 20 -0 -0-......()... 0-0 100 AUGUST 1991 80 60 40 20 0-0 100 JANUARY 1992 80 UJ 60 40 + 0--<> 0 0 -0-c 20 til ., 0 :::;: 100 AUGUST 1992 80 E 60 0 0-0 0 0 E 40 or; 20 Q. 0 ., 0 100 80 ., 60 40 20 FEBRUARY 1993 0 0 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 0 o 50 100 150 200 250 300 350 400 Distance Along Transect (m) Figure 67. Water depth time series from Transect 2, Natural Succession transects. 155

PAGE 157

TRANSECT 3, SOUTH MARSH 100 NOVEMBER 1990 80 80 40 20 0-0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 W 60 40 f>. + c: 20 '" Q) 0 ::;: 100 AUGUST 1992 N 80 E 60 J:}. E 40 .co 20 Q. 0 Q) a 100 FEBRUARY 1993 80 Q) 60 40 A ""V'" -v 20 0 100 AUGUST 1993 80 60 ..0-40 20 y 0 100 MARCH 1994 80 60 40 20 h. o o 50 1 00 150 200 250 300 350 400 Distance Along Transect (m) Figure 68. Water depth time series from Transed 3, Natural Succession transeds 156

PAGE 158

TRANSECT 4, SOUTH MARSH 100 NOVEMBER 1990 80 60 40 20 0 0..... 0----..0 a 0 --0a :::::: 100 AUGUST 1991 80 60 40 20 0-..0--0 J--c a a a 0 100 JANUARY 1992 80 W 60 (f) -!. 40 + C 20 '" Q) 0 --0 -<>-0 c :>--0--c 0 ::;; 100 AUGUST 1992 N 80 E 60 E 40 = 20 ...0--0 0-0 0-..0--
PAGE 159

TRANSECT 9 SOUTH MARSH 100 NOVEMBER 1990 80 60 40 oro 20 0 100 AUGUST 1991 80 60 40 20 JO 0 100 JANUARY 1992 80 W 60 40 -0 + c 20 '" OJ 0 ::!; 100 AUGUST 1992 N 80 E 60 ..0 v E 40 .r:: 20 C-O OJ a 100 FEBRUARY 1993 80 OJ -0 60 40 20 0 1 00 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 o 50 100 150 200 250 300 350 400 450 SOD 550 600 Distance Along Transect (m) Figure 70. Water depth time series from Transect 9, Natural Succession transects. 158

PAGE 160

W + <:: '" Q) N E E ..c: C. Q) Cl Q) TRANSECT 5, NORTH MARSH 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a 100 80 60 40 20 a a NOVEMBER 1990 AUGUST 1991 roo. JANUARY 1992 roo. AUGUST 1992 0FEBRUARY 1993 (). AUGUST 1993 MARCH 1994 50 100 -C\. ...0. 0 00 0-...0.. ...0. 150 200 250 300 350 Distance Along Transect (m) -0-..(J 400 450 500 Figure 71. Water depth time series from Transect 5, Natural Succession transects 159 0 550

PAGE 161

TRANSECT 6, NORTH MARSH 100 NOVEMBER 1990 80 60 40 20 0 100 AUGUST 1991 80 60 40 20 0 100 JANUARY 1992 80 W 60 40 ++ 0--0 0 20 0 0 c: '" Q) 0 100 AUGUST 1992 -C)I 80 E 60 E 40 0 % 20 Q) 0 a 100 FEBRUARY 1993 80 Q) 60 40 0-Ch -0-A> 0 20 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1994 80 60 40 20 0 0 so 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) F igure 72. Water depth time series from Transect 6, Natural Succession transects. 160

PAGE 162

TRANSECT 7, NORTH MARSH 1 00 NOVEMBER 1990 80 60 .0 20 0 10 0 AUGUST 1991 80 60 .0 20 a 0-..0--0 0-0 0--0 0 100 JANUARY 1992 80 W 60 (j) -!. .0 + c 20 a a 0--0 ---0--0--'" ., 0 ::E 10 0 AUGUST 1992 N 80 E 60 E .0 0 .c 20 0--0-0 -0--<>------0 Co 0 ., 0 10 0 80 2 FEBRUARY 1993 60 40 a a 0-0-----.0--0-0---0 2 0 0 100 AUGUST 1993 80 60 40 20 0 100 MARCH 1 9 94 80 60 .0 20 0 o 50 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) Figure 73. Water depth time series from Transect 7, Natural Succession transects. 161

PAGE 163

TRANSECT 8, NORTH MARSH 100 NOVEMBER 1990 80 60 40 ..6. 20 0 100 AUGUST 1991 80 60 40 20 0-0 --0 100 JANUARY 1992 80 W 60 CIl -!. + 40 c: 2 0 CO Q) 0 :::E 1 0 0 AUGUST 1992 N 80 E 60 E 40 <.) ..().. 20 Q) 0 0 100 80 Q) FEBRUARY 1993 60 40 .... 0-20 0 100 AUGUST 1993 80 60 40 20 0 "-------0--0 Q. -? "------a 0-100 MARCH 1994 80 60 40 20 y o o 50 100 150 200 250 300 350 400 450 500 550 Distance Along Transect (m) Figure 74. Water depth time series from Transed 8 Natural Succession transeds. 162

PAGE 164

the transect. Vegetation Plots Flora. Distinctive spatial and temporal trends for rooted and floating plant species were detected (Figure 75). Species richness estimates for each plant type were related to water depth history. As we have seen, water depth history can be a function of management driven water level manipulation (e.g drawdown for structure maintenance or vegetation management) or natural floating mat formation. Rooted species richness was at a maximum (37 spp.) on Transect 5 during (August 1991) when water levels were lowered to accommodate the establishment of the Experimental Planting Sites (Figure 75). As time since the last drawdown increased, species richness declined to 4 spp. on Transect 2 at month 9 (August 1992). Species richness increased late in the sample period as water levels were dropped or floating mats formed. Simultaneously, Typha spp. dominance increased leading to exclusion of other flood tolerant species. A trend of increasing species richness with distance from the marsh inlet was found (Figure 75). Floating plant species richness was zero at all sites at month 0 (November 1990) when water levels were low (Figure 75). Species richness reached a maximum 7 spp. on Transects 5 and 7 at month 9 (August 1992). The temporal pattern of species richness was opposite that of the rooted plant species. Early in vegetation community development, floating plant species richness was low because of the lack of standing water and a dense overstory cover After the site was flooded, intolerant species were killed, exposing the water surface to full sunlight. With time, vegetation community development, floating mat development, and drawdown for maintenance leading to increased vegetation overstory development reduced the area favorable for floating species. The responses as measured by cover percent for the 15 most dominant species are presented in Figures 76-90 Effects of Flooding, Two flooding effects were observed. First, with time flooding killed or reduced the coverage of plants that were flood intolerant or annually reproducing. These species included: Eupatorium capillifolium and Ludwigia octovalvis (Figures 78, 82) Second, the hydrophytic species Typha domingensis and T. latifolia increased area\ coverage under flooded conditions (Figures 89,90) With the loss offlood intolerant species, Typha domingensis and T. /atifolia gained a competitive advantage and expanded their ranges. Additional flood tolerant species, including: Altemanthera philoxeroides (Figure 76), Hydrocotyle ranunculoides (Figure 79) and Hydrocotyle spp. (probably includes both Hydrocotyle ranunculoides and H. umbel/ata) (Figure 80) have become more widespread over time. At the drier ends of transects the prolific Ludwigia peruviQ11Q became dominant (Figure 83). Salix caroliniQ11Q increased its cover primarily in an area of initial establishment along the north levee of the north marsh (Figure 88) The flood tolerant species Pontederia corclata (Figure 86) and Sagit/aria lancifolia (Figure 87) were found at low levels (<5% cover) early in the project. Coincident with drawdown in the south marsh, Pontederia cordata cover increased to 163

PAGE 165

Natural Succession Transects (A) ROOTED SPECIES .. MAR 1114 AUG 1893 .> ....... .... FEB 1993 JAN 1992 AUG 1992 AUG "', /"onths) lime \'" I. 0 NOV 1990 I),., (8) FLOATING SPECIES 8 -1-....... 6 !/) 4 Q) '13 Q) 2 0-00 0 1",,,3000 ..... D "8 2250 1500 .. fCe f::j FEB 19UAUG 1993 1"0"., "'6/, 750 JAN 1992AUG 1992 ;hle 0 AUG .... (' 'onths) 'flo t 0,) 1I}lot NOV.... ." '" Figure 75. Time series response surface plot of rooted (Top graph) and floating (Bottom graph) plant species richness. Natural Succession Transects. 164

PAGE 166

Natural Succession Transects Alternanthera philoxer o ides 40 .: ';'. ; o NOV 1990 ,', ;-', ", -:', "; ". >. FEB 1993 JAlI1992 ; .. ... -':. Figure 76, TIme series response surface plot of Alemanthera phi/oxeroides cover (% m 2 Mean). Naturel Succession Trensects, 190

PAGE 167

Natural Succession Transects Amaranthus australis 40 .. .:.. :. .. :'" ":" .... ; .. : :" :'. .. AUG JAN 1992 AUG 1991 o NOV1990 '.' '. F igure 71, Time series response surface plot of Amaranthus australis cover (% m -2 Mean). Natural Succession Transects, 191

PAGE 168

Natural Succession Transects Eupatorium capillifolium 80 70 60 '1'E 50 ... Q) () 40 <: o 30 20 10 o .... ... ... .. .. -:,., '.' .. ..... .... -:" .. _.' -: .. .. ,.' ': i -;,, ;,-, ;-' .;., .. (' .:. .. .' 500 .' .... -;. .. ; .. .. -:," .. 0 NOV 1990 ':', .. : ,' ';" :-" :'" ',; : ';-. -.: .'. .... -L 'i. : -.. :, -" ': '. : -";-, .. ':-, FEB 1993 JAN 1992 AUG 1991 -<-,<$I '.' -. '. \" -,;. Figure 78, TIme series response surface plot of Eupatorium cepitnfolium cover (% m2 Mean), Natural Succession Transects, 192

PAGE 169

Natural Succession Transects Hydrocotyle r anunculoides 40 .. : .. -. .. :-., 30 '1'E 10 o 3000 \ O 'is> 2000 1500 'Q"" "i>. 1000 /: ." .. : .. 0 ". : o NOV 1990 ; : : AUG JAN 1992 AUG 1991 -\,
PAGE 170

Natura l Success i on Transects H y droco tyle spp 40 30 "i E 0 C1) () 20 c: 0 E C1) Cl C1) > 10 .: .,:' ; .. ', .... .. ;" ," "';" ... ;,., ,,' .. o NOV 1990 ... "i. :. -.; ,', ", >. JAN 1992 AUG 199 1 -(.,<.'0 .. ;"" F igure 80. Time series response surface plot of Hydrocotyle spp. cover ('II> mo 2 Mean), Naturel Succession Transects. 194

PAGE 171

Natural Succession Transects Ludwigia leptocarpa 40 .. ; -" ", ... ... : 30 '"I E .,-;' 0 ; .... .: -Q) U 20 c 0 16 ;.-Q) 0) : Q) > 10 -:" "!' a NOV 1990 ', : AUG JAN 1992 AUG 1991 ;'" -':. Figure 81. TIme series response surface plot of Ludwigia /eptocarpa cover (% m,2, Mean), Natural Succession Transects, 195

PAGE 172

Natural Succession Transects Ludwigia octovalvis 40 .' 30 '1E ,g, 0 .... Q) U 20 c 0 :;::: ro Q) Cl Q) > 10 .:., .. ; ,' .. -: .. ,. .. o NOV 1990 '.' '. 'L : .. JAN1 2 e\'S AUG ,\,
PAGE 173

Natural Succession Transects Ludwigia peruviana 40 -;,., ,:, .j'" : 30 '"I E 0 .... Q) > 0 () 20 c 0 Q) Cl Q) .. > -' 10 ,. o NOV 1990 ;"" ",; '.; '. '. '. FEB 1993 JAN 1992 AUG 1991 -<.,<$'0 Figure 83. Time series response surface plot of Ludwigia peruviana cover (% m2 Mean). Natural Succession Transects. 197

PAGE 174

Natural Succession Transects Panicum dichotomiflorum 40 ,.,-_ .... .' 30 >I'. 0 ,.' Q) > 0 ,-!' U 20 c 0 :;:; g Q) Ol Q) > 10 ;." 4) 0 NOV 1990 "0, ;'" '.; '.; ;" '-; .'. : ", ".: >. JAN 1992 el:! AUG 1991 -<.,<$1 '., Figure 84, Time series response surface plot of Panicum cflChoiommorum cover (% m-2 Mean). Natural Succession Transects, 198

PAGE 175

Natural Succession Transects Polygonum pundatum 40 ,. : ., -!,-.;,--.: .. 30 ':'E .... : Q) ,, > 0 U 20 c: 0 :;:; .l9 -, Q) Cl Q) > _. 10 .. 0 NOV 1990 --' '-., -. : ,-"';" '}. JAN 2 AUG -(,,
PAGE 176

Natural Succession Transects Pont e d eria cordata 40 "'; .. ,;,:. 30 <:'E .. -:,., 0 -t ... ..' Q) > .' 0 C) 20 c 0 :;:; .l'-,. Cl Q) > .. 10 ,-,' .' "!'-; ., ., '. JAN 1992 AUG 1991 .(.\
PAGE 177

Natural Succession Transects Sagittaria lancifolia 40 .' ,.: .. -.. -!' 30 N 'E 0 .:.,.... Q) > 0 () 20 c 0 +> ro Q) ,. Cl : Q) > ., 10 500 0 NOV 1990 -'i ., ;'" -'';'' >. AUG JAI< 1992 AUG 1991 -\,{:' -;. MAR 1994 Figure 87. Time series response surface plot of Sagittaria lancifolia cover (% m2 Mean), Naturel Succession Trensects. 201

PAGE 178

Natural Succession Transects Salix caroliniona 40 30 Ii! 0 Q) > 0 () 20 c 0 S Q) 0) Q) .;.. > 10 .. .' -' ,'. ... 0 : .. 500 ;"'" 0 NOV 1990 "; o "i. 'L FE91993 JAN 1992 AUG 1991 -<\,
PAGE 179

Natural Succession Transects Typha domingensis 40 .,-:'. ,-:" .... ;. '1'E 0 Ql > 0 () c 0 '';:; .!9 Ql Cl Ql > 30 20 10 :.,.-:" .. "': "-;": .. -,.-.. : i ,,-: ,,: 500 a NOV 1990 ';. ',: JAN 1992 AUG 1991 .. '. '. Figure 89. Time series response surface plot of Typha domingensis cover (% m2 Mean). Natural Succession Transects. 203

PAGE 180

Natural Succession Transects Typha latifolia 60 ';:'" 50 ":'E ': ,-: 40 ... Q) () C 30 0 ;> Cl Q) 20 > 10 .... ; ... ,.-;, ;., : .. .... .. .. : .:.,.. ,.,:' .,-: ", ", ;.,-" ... ... ,.-:" .-;,.;.-. ,,' .' ,', ," 4"" 0 NOV 1990 -;. ,', : .. : -FEB 1993 JANI 2 AUG ,,., MAR 1994 AUG 1993 Figure 90. Time series response surface plot of Typha /afife/ia cover (% m-2 Mean). Natural Succession Transects. 204

PAGE 181

about 9"10 (Figure 86). In contrast, Sagittaria Iancifolia cover peaked at nearly 5% prior to drawdown (Figure 87). Drawdown and Mat Fonnation. During summer 1993 a management related drawdown and floating mat formation led to reductions in water depth long enough to allow activation of the soil seed bank These hydrologic changes led to increases in cover by species that had been found at much lower levels prior to drawdown. These effects can be seen in the surface plots of cover for various species. Note the increased cover in the later sample sets. Species responding in this manner included: Amaranthus australis (Figure 76), Ludwigia leptocarpa (Figure 81), Panicum dichotomijIorum (Figure 84), and Polygonum punctatum (Figure 85) Cover Percent Initial Conditions and Early Development, Vegetation coverage reflected site history, water depth distribution (spatially and temporally) and nutrient loading The responses to environmental conditions are a direct result of the adaptive capacities of the various species inhabiting the site Early in the project history the eastern half of the south marsh (Tl, T2, T9) was dominated by Commelina diJlusa, Eupatorium capillifolium, and Polygomun punctatum. Typha /ati/olia was present at low levels The western half of the south marsh (T3, T4) was dominated by the grass Panicum dichotomijIorum and the shrub Ludwigia octovalvis Aster subulatus, Baccharis halimifolia, and Eupatorium capillifolium were present at low levels. Typha latifolia was present, but at very low levels (Table 15). These patterns resulted because water levels tended to be deeper in the eastern half than the west (Figures 66-70). At the same time, the north marsh (T5-T8) was dominated by a community of Ellpatorium capillifolillm. The E capillifolillm covered most of the north marsh with a nearly continuous, dense overstory The Ellpatorillm capillifolium dominated area had been farmed most recently (summer 1990). Evidence in the form ofundecomposed corn (Zea mays) was found throughout the area. A small stand of Sesbania macrocarpa (0.94O.94%) was found near the end ofT5 in the southwestern corner Between the western levee and transect 5, a St. Augustine grass (Stenotaphorum secundatum) section (about 5 ha) remaining from sod farming was left intact. Aster subl//atus, Baccharis halimifolia, Commelina dijfusa. LI/dwigia octovalvis, Panicum dichotomijIorum, Polygonum punctatum, Salix caroliniana and Typha /ali/olia were present, but at low levels (Table 15). Cover Percent Successional Patterns Over Time. Changes in species dominance patterns over time reflect the integration of environmental controlling factors with initial conditions and the adaptive abilities of the available species pool. Water level dynamics were related to vegetation species cover dynamics (Figures 76-90) Two prominent species-level responses were observed. These included species that (1) declined after flooding, but maintained a presence in the seed bank allowing germination and growth response after water level drawdown or floating mat initiation (Amaranthus australis, Eupatorium capillifolillm, Llldwigia octovalvis, Panicum dichotomijIorum, and Polygomlm pllnctahlm), and (2) increased vegetation dominance with flooding (Alternanthera philoxeroides. Hydrocot1ye ramtnculoides and Typha spp.) 205

PAGE 182

Table 15. Vegetation cover measurements (% m-2 MEAN SE) from Natural Succession Transects Periods (.) represent species absent from. the transect or transects not sampled. SPECIES TRAN#1 TRAN#2 TRAN#3 TRANM TRAN#5 TRAN#5 TRAN", TRAN#8 COOE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN __ S E NOVEMBER 1990 SAMPLE SET ACERUB 0.06 0 04 0 03 0 03 ALTPHI 1 78 0 62 1 59 0 79 0.16 0 16 0 .94 0 65 1.44 0 66 0 22 0 16 0.31 0 .31 AMAAUS 0.16 0 .16 0 25 0 16 ASTELL 0 94 0.94 ASTSUB 0 19 0 .16 6 72 2 65 4 59 1 .81 5 25 2.67 1 56 0 79 1 09 0 43 3 13 1 09 BACHAL 0 78 0 64 0 16 0 .16 0 94 0.47 0 .31 0 .31 0 13 0 06 2 75 0 62 8 56 2 68 1 84 0 57 CALAME 0 .31 0 .16 4 53 2 30 0 03 0 03 CARSPP 0 63 0 63 COMDIF 1.44 0.88 14.69 4 97 0.47 0.26 12. 97 4.17 1 2 03 4 14 3 75 2 .94 CYNDAC 3 19 2 97 Cyperac 0 03 0 03 0 16 0 16 0 03 0 03 CYPHAS 1 09 0 80 0 06 0 .04 CYPODO 0 97 0 65 1 16 0 43 0 16 0 16 0 38 0 .31 0 22 0 .16 CYPSPP 0.13 0 06 2 06 1 88 1 72 1.57 0 06 0 .04 ECHCOL 0 53 0.47 3 28 1 63 5 63 1 76 1 09 0.83 5 44 2 24 0 53 0 26 ECLALB 0 06 0 04 0 94 0 52 1 09 1 09 2 06 1 62 1 78 0 65 0 03 0 03 ELEIND 0 03 0 03 0 78 0 .78 0 19 0 16 ELESPP 1 56 1 26 0 03 0 03 ERISPP 0 .31 0 .31 EUPCAP 21. 56 6 54 7 66 3 35 7 66 3 75 0.41 0 .31 32 26 6 72 77.34 5 78 72.97 6 20 70.47 6 57 EUPSER 0 16 0 16 0 16 0 16 EUPSPP 0 .81 0 .51 GALTIN 0 03 0 03 3.34 1.42 HYDSPP 0 50 0.47 2 .34 1 38 0 83 0.26 HYGLAC 0 25 0 16 I POSPP 0 03 0 03 JUNEFF 0 16 0 .16 LUDLEP 0 63 0 63 LUDOCT 0 66 0 49 0.47 0.47 16 25 4 15 6 28 1.28 4 78 1.36 0 78 0.78 0 38 0.22 0 06 0 04 LUDPAL 0 09 0 05 0 50 0.47 LUDPER 0 .94 0 94 LUDSPP 0 03 0 03 MELCOR 0 03 0 03 MIKSCA 0 78 0 46 PANDIC 5 94 3.69 9 38 3 90 40.94 6 .31 29 66 6 38 4 75 2 76 6.09 3.16 5 50 3.26 2 53 2 50 PANHEM 2.50 2 50 PANSPP 0 .31 0 .31 0.03 0 03 0.06 0 .04 1.66 1.66 PASSPP 2 22 1 87 2 56 1 58 PASURV 0 .31 0 .31

PAGE 183

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN #5 TRANm; TRAN 1fT TRANm; CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PHYANG 0.7B 0 .62 0 16 0 16 Poaceae 0 .03 0 .03 0 .78 0 .51 0 .34 0 .31 POlPUN 60.47 6 92 22.81 6 .14 B .59 3.47 3 59 2.42 PONCOR 0 78 0 78 0 63 0 .63 Pterido. 0.03 0 .03 GERCAR 0 .03 0 .03 1 03 0 .79 SAGLAN 1 13 1 09 SAlCAR 5 66 3 23 0 16 0 16 SAMCAN 0 16 0 .16 0 16 0 16 1 56 1.56 SAMPAR 0 63 0 43 SESMAC 0 94 0 .69 0 .94 0 94 SOLAME 0 0 3 0.Q3 SOlTOR 0.47 0 .34 STAFLO 0 .34 0 .31 TYPLAT 0.47 0 34 11.72 3 .61 0.09 0 05 0.03 0 03 3 13 3 .13 0 16 0 16 unknown 0 .06 0 .04 udicot 0.16 0 16 0 .53 0.47 0 .16 0 .16 0 .03 0 .03 0 .34 0.31 uvlne 0 .03 0 03 WOOVIR 0.47 0 26 AUGUS T 1991 SAMPLE SET ACERUB 0 .03 0 .03 AlTPHI 1 56 1.26 2 13 1 38 0 .94 0.57 0.50 0.47 O .Bl 0 43 1.91 1 28 1.28 0 95 AMAAUS 7 59 3 .00 1.41 1 .03 1.97 0 .62 5.75 1 69 3 00 1.63 0 ,22 0 16 0 .81 0.45 AM BART 1.25 1 25 AMMCOC 0 .16 0 16 0.Q3 0 ,03 A S TEll 0.03 0 03 A STSPP 1.00 0 79 ASTSUB 0 .38 0 17 A SITEN 0 09 0 05 0 .16 0.Q7 AZOCAR 0 .09 0 .05 0 .09 0 .05 BACHAL 0.47 0.47 3 .00 2 .09 0 66 0 .34 0 66 0.47 0.19 0 16 BIDLAE 0.34 0 22 BRAPUR 0 ,63 0 ,49 5.47 2 56 6 .88 3 90 CASOBT 2 06 1 62 0 .31 0 .31 COMDIF 0 .31 0 .31 1.56 1.28 0 19 0 16 2 03 0 .91 6 .69 3 46 0 03 0 03 C YNDAC 2 .44 1 60 Cyperac. 0 .03 0 .03 0 06 0.04 2 25 2 19 0 .03 0 ,03 0 .03 0 ,03 C YPESC 0 .03 0 .03 0.47 0.47 CYPHAS 0 .06 0 .04 0 .34 0 .31 0 ,34 0 .31 0 03 0 .03 0,06 0 .04 C YPIRI 0 03 0 .03 0 .56 0 47 0 .16 0 16 0 ,03 0 ,03 CYPODO 0 03 0.03 0 ,22 0 .16 0.56 0.34 0 .19 0 ,07 0 .81 0.29 0 13 0 .06 0 19 0 16 1.31 0 67 CYPSPP 0.47 0 22 0.03 0 03 CYPSUR 0 .69 0 49 0 .03 0.Q3 207

PAGE 184

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#6 TRAN#6 TRAN#7 TRAN#6 COOE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE DIGSER 1.88 1 88 1 44 0 96 1.16 0 49 3.47 1 27 4 55 2 .06 2 36 1 .03 12. 97 4 36 ECHCOL 0 .81 0 .51 1 .63 0.69 0.13 0.06 3 .71 1.69 9 .91 3.29 2 72 1 36 15 13 4 53 ECLALB 0 .03 0.03 0.97 0 .94 6 .81 3.04 3 .72 1 .62 17. 69 4.62 29.72 5.20 6 56 2 .70 13 03 3 37 EICCRA 0.03 0.03 0 .31 0.31 3 28 3 12 ELEIND 0 16 0 16 ELESPP 0.47 0.47 ELEVIV 4.47 2 09 EUPCAP 3 59 2 28 1 .75 0 .97 9 .75 4 .07 0 53 0 .34 0 63 0 .63 1.41 0 .72 EUPSER 0 .31 0 .31 EUPSPP 0.16 0 16 GALTIN 0 .03 0 .03 0 .03 0 .03 0 22 0 16 0 22 0 07 0 .50 0.23 1 19 0 .53 0.06 0 .04 1.31 0.42 HYDSPP 3 13 2 23 IPOSPP 0 03 0.03 0 19 0 .16 JUNEFF 0 .31 0 .31 LEMSPP 0 .03 0 03 0 50 0 .31 16.28 4 .74 1 19 0 44 1 25 0 .98 2 88 1 48 28 44 7 29 14.71 5 .54 LlMSPO 1.88 1.88 LUDLEP 10 50 4.68 0 06 0 .04 0.31 0 .31 0.97 0 .94 6.47 2 09 4 13 3.08 1 75 1.28 1 .91 o n LUDOCT 0 .63 0.49 1 25 0 59 10 .03 2 .54 11. 13 2 .94 4 25 1 27 17 19 4.03 LUDPAL 0 03 0 .03 0 .16 0 16 0 03 0 03 0,03 0,03 LUDPER 1 25 1 25 3 28 1 67 0 .16 0 16 0 78 0 .78 LUDSPP 0 .16 0 16 0 .03 0 03 MELPEN 0.16 0 16 MIKSCA 0 03 0,03 6.41 3 .55 1 75 1.56 0 .03 0.03 PANDIC 9 .36 4 10 2 .50 1 .74 38 .81 7 .83 26.72 6 .08 17 44 5 63 1 72 1 .57 2 13 1 .05 PANSPP 0 .63 0 .63 PASD I S 0 63 0 63 PASSPP 0.47 0.47 0 97 0.94 0 06 0.04 PASURV 0 50 0.47 1 .91 1.72 PHYANG 2.41 1 60 0 03 0.03 PHYSPP 0.03 0 03 0 .34 0 .31 Poaceae 0 .31 0 22 POLPUN 63 .16 7 25 12 09 5 .12 0.03 0 03 1 .81 1.32 15 25 4 .11 10. 97 4 .31 9 88 3 .70 17 69 5 13 PONCOR 3 16 2 97 2 .81 2 07 POROLE 0 .03 0 03 RUMCRI 1.88 0 .95 0 .06 0.04 5 97 3.01 SAGLAN 0 .63 0 49 SAGMON 0 .94 0 .94 0 .31 0.31 SALCAR 1 .56 1.56 7 97 4 .35 0 .78 0 55 SALROT 3 28 1 .52 3 .75 2.61 6 .91 2 .90 7 09 3 06 15 50 5 .61 SAMCAN 1 25 1 25 0.47 0.47 SESMAC 2 03 1.74 0 63 0 63 17 69 5 .34 11.41 5 .32 SETMAG 0 03 0.03 SOLAME 0.36 0.31 4 36 2 .79 0 36 0 .31 SPIPOL 0.47 0.31 0.78 0.34 0 63 0.30 TYPLAT 6 .06 2 .53 2 22 1.02 19.31 5 .70 0.97 0.39 1 25 0.98 0.47 0.47 1 56 1 56 UTRCOR 0 .03 0 03 208

PAGE 185

Table 15. Vegetation cover measu r ements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN tI6 TRAN#7 TRANt16 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE udicot 0 03 0 03 0 22 0 16 0.06 0 04 t 78 1 56 0 06 0 04 2 50 1.68 WOLFLO 5 84 2 .14 0 19 0 .16 WOLS PP 2 34 1 33 1.31 0 55 3 59 1 87 WOOVIR 0 63 0 43 J ANUARY 1 9 9 2 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 5 00 2 09 12. 97 5 33 2 63 2 50 0 .19 0 16 0 94 0.40 0 22 0.16 0.13 0 06 AMAAUS 0 16 0 16 AND S PP 0 16 0 16 ASTSPP 0 03 0 03 ASTS U B 0 03 0 03 0 03 0 03 ASTIEN 0 03 0 03 AZOCAR 0 .19 0 16 0 06 0 04 4 53 2 .61 10 47 4 06 BACHAL 0 .31 0 .31 0 .31 0 .31 0 .31 0 22 1 66 0 75 0 78 0 29 0 09 0 05 B I DLAE 1.41 1 25 BRA PUR 0 .31 0.31 0 63 0 63 7 66 4 5 1 COMDIF 0 06 0 04 0 56 0 34 0 03 0 03 CYNDAC 0 63 0 49 Cyperac. 0 68 0 35 0 13 0 07 0 06 0 04 C Y PHA S 1 16 0 83 0 06 0 .04 0 03 0 03 0 .19 0 16 CYPODO 0.06 0 04 E I CCRA 0 .31 0 .31 2 50 1.96 ELEVIV 2 97 1.56 EUPCAP 0 94 0 65 0 97 0 97 0 16 0 16 GALT I N 0 03 0 03 0 03 0 03 2 50 0 99 0 13 0 06 3.38 0 .91 H Y DRAN 15 00 5 82 2.38 2 34 HYDSPP 6 09 3.52 0 78 0 78 19 19 5 82 5 97 3 38 H Y DUMB 18 63 6.15 JUNEFF 0 16 0 16 LEMSPP 0 03 0 03 36 53 5 98 38 44 6 56 5.41 1.65 5.09 1.35 11. 53 3 77 5 .2 8 2.42 L1MSPO 4 22 3 19 0 03 0 03 LUDLEP 0 06 0 .04 LUDOCT 0 19 0 16 0.66 0 .49 0 03 0 03 0 .31 0 .31 0 16 0 16 LUDPAL 0 03 0 03 0 03 0 03 0 09 0 05 LUDPER 4 06 2 83 0 .31 0 .31 11. 59 3 97 0 .31 0 .31 2 53 1 19 2 .81 1 63 MIKSCA 0 03 0 03 2 .81 1 57 2 06 1 32 0 34 0 .31 PANDIC 3 .13 3 13 PASSPP 0 16 0 16 PASURV 1.3 1 0 59 0 03 0 03 Poaceae 0 06 0 04 0 22 0 .16 0 03 0 03 POLPUN 11. 38 3 62 4 94 2 .2 8 0.47 0 34 6 09 3 38 9 30 1 45 6 22 2 78 6 59 2 59 6.19 2 75 PONCOR 2.50 2 50 0 78 0 .51 RAPRAP 2 34 1.54 209

PAGE 186

Table 15 Vegetation cover measurements (Cant ) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRANtrT TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE RUMCRI 1.28 1 25 1.56 1 .04 SAGLAN 0 78 0 55 0 .16 0 16 SAGMON 0 .31 0 .31 0 94 0 69 1 56 0 73 SALCAR 1 88 1 88 0 16 0 .16 6.47 3 40 0.47 0.47 SALROT 0.75 0.49 0.Q3 0.Q3 12.41 4 34 1 72 1.57 26 29 5 37 53 .19 6 59 23 97 6 18 25.09 5 72 SAMCAN 0 03 0 03 0 63 0 63 SPIPOL 0 22 0 16 4 50 2 26 0 .19 0 07 0 03 0 03 0 13 0 06 0 16 0 16 TYPLAT 20 34 4 77 15.47 3 .91 26 56 4.81 13 .91 3 34 1 88 0 95 6 09 2 28 1 09 on udicot 1.41 1 25 WOLFLO 0 94 0 64 9 59 3 80 17.22 3 52 15 29 4 02 7.72 2 .71 2 50 0.56 2 .91 0 70 WOOVIR 0.47 0 34 AUGUST 1992 SAMPLE SET ALTPHI 11. 56 4 92 8 .94 3 64 0 03 0.03 0 .31 0 22 3 25 2 19 8 16 3 00 1 63 1 56 2 38 1 89 AMMUS 0 50 0.47 0 .16 0 16 ASTELL 0 16 0 16 0.47 0 34 AZOCAR 0 03 0 03 0 03 0 03 0.16 0 16 SAC HAL 0.16 0.16 0.47 0 34 SIOLAE 0.1 6 0 16 5 00 2 79 SRAPUR 0 16 0.16 6.41 4 34 COMOIF 0.47 0.47 Cyperac 0.Q3 0 03 0 66 0 62 CYPHAS 0 16 0 16 0 16 0 .16 CYPOOO 0.16 0 .16 0 03 0 03 CYPSPP 0 03 0 03 CYPSUR 0 50 0 .47 DIGSER 0 06 0 04 ECLALS 1 25 1 25 E I CCRA 0.16 0 .16 0 03 0 03 5 00 2 97 4 53 2 92 3.16 2 56 ELEVIV 2 94 2.19 0 03 0 03 EUPCAP 0 16 0 16 HYDRAN 0.Q3 0 03 0 16 0 16 0 78 0 40 5.03 2 85 1 88 1.05 9 22 4 .37 HYDSPP 0 06 0.04 2 22 1 88 0 16 0 16 HYOUMB 0 .31 0 .31 0 16 0 16 JUNEFF 0 .31 0 .31 LEMSPP 0 19 0 16 13 .91 5 10 44 .91 7 28 29. 38 6 .12 27 .41 4 99 49 44 5 98 20 72 4.39 LlMSPO 11.09 5.08 0 63 0 49 LUOLEP 5.00 3 54 0 03 0 03 LUOOCT 0.47 0.47 1 56 1 56 0 19 0 .16 LUOPER 0 .31 0 .31 2.34 2 34 15 16 5 60 0 78 0 .51 6 88 4 08 9 22 4 .81 14. 84 5 52 MIKSCA 0 16 0 16 0 .16 0 16 5 16 3 18 1 09 0 62 PASOIS 0 63 0.49 PASURV 0 03 0 03 Poaceae 0 03 0 03 210

PAGE 187

Table 15. Vegetation co v er measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN 1fT TRANmi CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE POLPUN 0.34 0 22 0.03 0.03 6 13 1.86 2.88 0.70 0.69 0.37 2 28 1.14 PONCOR 4.38 2 75 4.06 2 83 SAG LAN 5.81 3 35 SAGMON 11. 25 4 62 4.69 3.33 6.72 3.86 18 44 6 20 SALCAR 0 19 0 16 2 53 2.50 8 78 4 09 2 86 1 80 SALROT 1 28 1 25 0.56 0 22 0 16 0 16 0 16 0 16 3.63 1 83 3 97 1 72 SPIPOL 0 06 0.04 0.41 0 22 0 09 0 05 1 00 0 32 10 66 4 10 1 78 0 99 5 69 2 13 3 78 1 .71 SPIPUN 0 09 0 05 SPISPP 0 09 0 05 TYPDOM 4.22 3.18 TYPLAT 37.97 6 .31 32.81 6.02 35 94 5.94 41. 56 6.45 16.86 4 68 0.94 0 57 12 .03 3.90 9 06 3.68 TYPSPPD 4.84 2 09 11. 59 3.94 6 00 2.14 2 26 2 26 4 69 3 05 6.25 3 92 1.86 1.56 WOLFLO 0 94 0.45 7 16 2 35 8 .81 1 58 9 63 2 63 6.25 1.89 WOLSPP 3 03 1.80 1 19 0.48 0.91 0 39 FEBRUARY 1993 SAMPLE SET ACERUB 0.03 0.03 ALTPHI 0.47 0 17 0.25 0.16 0 06 0.04 0.28 0 16 0.13 0.06 0.03 0.03 0.16 0.07 AMAAUS 0.06 0 .04 APILEP 0 .91 0 50 ASTELL 1.41 0 88 AZOCAR 0 03 0.03 0 03 0 03 1.47 1.25 BACHAL 0 09 0.05 0 63 0 43 BIDLAE 2 .16 1 30 CARSPP 0 03 0.03 CYPSPP 0 16 0 16 0 03 0 03 dead 2 97 1.55 ECLALB 0.03 0.03 0 06 0 04 0.03 0 03 EICCRA 0.16 0 .16 1.75 1 28 3 94 2.83 ELEVIV 2.66 2 34 ELEVIVD 2.19 1 54 EUPCAP 0 03 0 03 EUPCAPD 0.31 0 .31 GALTIN 0 .91 0 84 0 09 0.05 HYDRAN 1.41 0.88 0.47 0.47 4 00 2.66 0 72 0 37 11.94 4.42 18. 28 5 99 11. 66 5 17 12 03 3 33 HYDSPP 0 34 0 .31 0.03 0 03 HYDUMB 0 03 0.03 0 34 0 .31 LEMSPP 0.13 0 06 0.19 0.07 4.53 2.33 2 06 0.43 24 00 6 23 29.31 5 87 30 78 6.67 16 16 4.70 LlMSPO 5 78 2.25 0 38 0.31 LUDLEP 1.13 0.94 0 .31 0.22 0.16 0 16 0 03 0.03 LUDLEPD 0.31 0 .31 LUDOCT 0 .31 0.31 LUDOCTD 0.47 0 34 LUDPER 0.19 0 .16 0 06 0.04 7 72 3 47 0 16 0 .16 2.97 1 49 4.50 2 20 5 .34 2 .21 211

PAGE 188

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#S TRAN#6 TRAN#7 TRAN #ll CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE LUDPERD 0.31 0 .31 LUDSPPD 0 03 0 03 MIKSCA 0.47 0.47 2 97 1 68 0 59 0 34 PASURV 0.16 0 16 Poaceae 0.03 0 03 POLPUN 1 50 0 96 0 03 0 03 0.22 0 16 2 .09 0 83 0 19 0 16 0 56 0.34 PONCOR 2 75 1 43 2 03 1.42 PONCORD 0 .31 0.31 RHARHA 0 09 0 05 RUMCRI 0.06 0 04 1 56 1 .11 SAGLAN 1.56 1 .04 0 03 0.03 SAGLAND 0 16 0 .16 SAGMON 0 16 0 16 0 .31 0 .31 0 03 0 03 SAGSPP 0 03 0.03 SALCAR 0 19 0 .16 0.38 0 .31 0.63 0.43 5 97 2.96 1.88 1.12 SALROT 0 .16 0 16 0 03 0 03 1 .16 0.31 0.06 0 04 0 22 0 16 1.50 1 .24 6 88 3 73 5 66 2.42 SALROTD 0 78 0 55 SAMCAN 1 28 1 25 0 63 0 63 SPI POL 0 06 0.04 0 09 0 05 0.25 0 08 0 03 0 03 0 .31 0.16 0 63 0 30 0.38 0 17 TYPDOM 1 25 1 25 TYPLAT 14.55 2 .01 18 28 3 76 33 00 3 92 33.47 4 14 13. 88 3 00 4 84 2 06 10 03 3 .11 4 78 1 46 TYPLATD 18 28 2 85 19 69 4 .22 13. 75 1.85 15 88 3 26 9 25 2 62 1 09 0 70 3 94 1 87 3 94 1 45 UTRSPP 0 06 0 04 udicot 0 19 0.07 0 09 0 05 WOLFLO 0.09 0 05 0 25 0.08 0.06 0.04 1 97 0 85 0.25 0 .16 3 66 1.44 2 56 0 70 WOLSPP 0 34 0 .17 AUGUST 1993 SAMPLE SET ALTPHI 0 .91 0 29 0 66 0 43 0.59 0 22 5 .34 2 .81 AMAAUS 7.81 2 16 1.47 0 75 1.00 0.85 0 16 0 .16 ANDSPP 0 78 0 78 ASTELL 2.81 1 75 ASTSUB 2.97 1 99 BACHAL 0.47 0 34 B I DLAE 8 75 4 53 BRAPUR 0 63 0 63 CASOBT 0.03 0 03 CICMEX 0.16 0 16 COMDIF 1 28 1 25 CYPIRI 0 03 0 03 0.31 0 22 CYPODO 0 53 0 34 0 84 0 .51 1 .31 0 50 1.59 0.96 CYPSPP 0 09 0.05 0 06 0.04 0.03 0 03 ECHCRU 0.19 0 16 ECHCRUD 0.47 0.47 212

PAGE 189

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#5 TRAN#7 TRANIIlI CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECHSPPl 3 00 2.37 ECHSPP2 0 03 0.03 ECLALB 0 03 0.03 0 16 0 .16 0.25 0.16 1.00 0 94 EICCRA 2.34 1.63 4.56 2 .44 ELEVIV 0 .81 0 64 GALTIN 0 03 0 03 HYDRAN 1 94 0 99 2.41 1 27 2 .81 0 98 6 19 3 25 HYDUMB 0.47 0.47 0 16 0 16 LEMSPP 0 .31 0 16 1.47 0 95 19 13 4 53 14. 75 3 06 LlMSPO 3 59 2.01 LUDLEP 6 13 1 53 2.81 1 .31 16 38 4.81 7.03 2 57 LUDOCT 0 .63 0 63 1.56 0 .76 1.41 0 82 LUDPER 2 66 2 66 9 38 4 45 21.09 6 .31 M IK SCA 0 53 0 34 MOMCHA 0 16 0 .16 PANDIC 2 00 0.73 0.16 0.16 PASDIS 0.34 0.31 PASURV 0 03 0.03 PLUROS 0 16 0 16 POLDEN 2 34 1 66 POLPUN 7 44 3 89 14 22 5.04 0 97 0 57 PONCOR 8 .91 3.12 3 59 2.52 SAG LAN 1 56 0.99 SAGMON 2 66 1.37 2.34 1.23 SALCAR 2 .81 1.97 3.59 2 35 SALROT 0 63 0 63 8 03 3 17 8 09 3.57 8.34 3 02 SESMAC 0 .16 0.16 SPIPOL 0 03 0 03 0.03 0 03 5 19 1.69 9 72 3 25 TYPDOM 1.41 0.82 2 38 1 33 TYPLAT 14 72 2 .13 22.81 3.11 8 .31 2.89 9 75 2 69 TYPLATD 19 38 3 50 33 78 4 32 3 13 2.10 5.47 3 18 WOLFLO 2 78 1.38 0 .81 0 33 WOLSPP 0 03 0 03 ALTPHIS 0 03 0 03 AMAAUSS 0 .06 0 04 HYDRANS 0.47 0.47 LUDPERS 0.03 0 03 0 .31 0.22 POLPUNS 0 19 0.16 PONCORS 0 03 0 03 SAGLANS 0 50 0.47 SAGLATS 0 03 0 03 0.16 0 16 TYPLATS 0.16 0 16 udicotS 0 03 0.03 MARCH 1994 SAMPLE SET 213

PAGE 190

Table 15. Vegetation cover measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN 114 TRAN#5 TRAN 1/6 TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ALTPHI 0.25 0 08 4 75 3.06 0 78 0.44 0 66 0 .61 5.25 1 22 2 18 0.75 AMAAUS 2.20 0 70 1 83 0.68 0 .31 0 .21 0 70 0 33 0.15 0 15 APILEP 0 12 0 06 ASTELL 0 46 0 33 BACHAL 0 03 0.03 0 46 0 33 BIDLAE 0 46 0.33 BRAPUR 0 03 0.03 COMDIF 0.03 0.03 CYPODO 0.41 0.39 0.15 0.15 CYPSPP 0.04 0 04 0.50 0 39 0 03 0.03 0 04 0.04 0.09 0.05 0 09 0.05 ECLALB 0.41 0 39 0 06 0 04 0 03 0.03 EICCRA 2.34 1 16 10 70 4H ELEVIV 2 12 1 05 EUPCAP 0 20 0 20 0.08 0 07 0 15 0 15 0 08 0 05 0.56 0 25 0 40 0.21 GALTIN 0 04 0 04 0 04 0 04 0 06 0 04 0 .21 0 15 HYDRAN 24 80 7.47 12.20 6 25 13 60 4.90 3 70 1.50 15.80 4 78 38 00 6 35 LEMSPP 0 .31 0 16 0 06 0.04 0.06 0 04 1 34 0 64 LUDLEP 0.20 0.20 0 83 0.79 0 03 0.03 1.56 1.15 LUDPER 1.45 1 08 0 .31 0.30 4 00 2 86 12.50 5.20 18 90 5.51 MIKSCA 0 15 0.15 PASDIS 0 .31 0.30 POLDEN 1 12 0 92 POLPUN 5 95 1 90 5 25 2.91 0 20 0 20 4.93 1 68 0 34 0 .21 PONCOR 8 95 4 22 3.75 2 68 RUMCRI 0.31 0 .21 SAGLAN 1.25 0 .84 2.50 2.39 SAGMON O.OB 0 07 0.31 0 .21 0 .31 0 30 SALCAR 2.81 1 93 3.75 2.04 SALROT 0 62 0.36 0.71 0 36 12.30 4.03 SAMCAN 0.20 0 20 SOLAME 0.41 0 39 SPIPOL 0.15 0 06 0 15 0 06 TYPDOM 0.83 O .Bl 7 65 3 23 TYPLAT 17 90 4 16 44 50 7.91 48 50 6 92 60 40 5 22 22 30 5 30 19 70 5 16 WOLFLO 0 03 0 03 POLDEND 1.25 1 23 PONCORD 1.04 1 .01 0.7B 0.62 TYPLATD 3.95 1 50 13.30 1 .BO 23.10 4.73 32.00 5 .21 11. 10 3.32 4 43 1.15 214

PAGE 191

Responses By Species With Minimum Flood Tolerance. The most prominent species in this ecosystem showed varying responses to environmental conditions. Amaranthus australis revealed a pattern of prominence in the eastern portion of the south marsh early and late in the sample period (Figure 77). This pattern is related to the initial dry conditions the south marsh experienced and to drawdown and mat formation that occured later in the sample period. Amaranthus australis was nearly absent in the north marsh, due to dominance by Eupatorium capilli/olium. Eupatorium capilli/olium was rapidly nearly extirpated from the site following flooding (Figure 78). The plants remained for a short time following flooding, exhibiting signs of adaptation (e.g adventitious roots) but could not survive under continuous flooding (Stenberg, Pers. Obs). It was found occasionally at low levels in subsequent samples, especially after drawdown and mat formation (Figure 78). Ludwigia leptocarpa was found occasionally throughout the marsh early in the sample period. It increased in cover after drawdown and mat formation (Figure 81). It occured less frequently in the south than the north marsh. Ludwigia octovalvis cover was reduced quickly after flooding, but was found occasionally in subsequent samples (Figure 82). It responded to water level drawdown by increasing its cover. It was most prominent along transects 3-6, and 8. Its minimal flood tolerance was revealed by its propensity to inhabit the plow ridges in areas that had been farmed recently (Stenberg, Pers. Obs. ) Ludwigia peruviana increased in dominance since the inception of the project (Figure 83). It was most common in the driest regions of the sample areas, especially at the southern ends of the north marsh transects. Its most robust growth was in areas with water levels averaging less than 10 cm. Panicum dichotomiflorum reached its maximum cover along transects 3 and 4 early in the sample period (Figure 84). It persisted in the seed bank and became slightly more obvious after a drawdown and mat flotation Polygonum punctatum was an important member of the eastern portion of the south marsh plant community during the earliest days of the project (Figure 85, Table 15). It declined slowly to near obscurity after the 15th month of flooding (February 1992). It rebounded with an increase in cover after drawdown and mat formation (Figure 85). Responses By Species With Maximum Flood Tolerance. Hydrocotyle ranunculoides, an obligate hydrophyte (Reed 1989) was present at low levels early in the study period. By the 1 5th month of flooding it had increased its dominance (Figure 79). The coverage pattern for Hydrocotyle ranunculoides early in the project is slightly misleading because of an early mis-identification problem. The misidentification was corrected after the January 1992 sample. It had previously been lumped with Hydrocotyle spp. which included H. umbellata (Figure 80). After the 15th month it rapidly increased its dominance, especially in the north marsh. By the end of the sample period it had colonized most unshaded empty space in the marsh, including canals and under marginally open TYPha lati/olia canopy (Stenberg, Pers. Obs. ) Thi s colonization pattern has led to the establishment of mixed communities including Hydrocotyle ranunculoides and Bidens laevis or Eichhomia crassipes. In some areas, often in canals, 215

PAGE 192

floating Hydrocotyle ranunculoides mats have provided the substrate for regeneration of Amaranthus australis, Pontederia cordata, and Sagiltaria lancifolia (Stenberg, Pers. Obs.). Pontetieria cordata revealed a pattern of "preference" for transects 1 (200 m from water inlet) and 6 (middle of north marsh) (Figure 86). It was found early in the sample period and maintained a nearly constant cover level over time (4%). During the drawdown and mat formation it increased its cover along transect 1 to 8.5%. Sagittaria lancifolia cover increased with time primarily along transect 1. It was found at low levels early in the sample period. Late in the period it went through a rapid increase in community average (Figure 87). Salix caroliniana was relatively uncommon early in marsh development, occupying only north marsh transects It became more prominent with time, appearing along transect 4 (south marsh) in January 1992. In the south marsh, the largest continuous stand of S. caroliniana was found about 200m southeast of the marsh's northwest comer. Its triangular shape suggests a response to the surface scraping conducted during site construction (Stenberg, Pers. Obs.). The most likely seed source for marsh colonization carne from a well established Salix caroliniana stand (400m long by 50m wide) located along the north marsh levee (Stenberg, Pers. Obs.). Cattails TYPha domingensis and T. lati/olia increased in dominance from the southeastern section of the south marsh to the remainder of the demonstration marsh (Figures 89, 90). During the year prior to flooding, T. lali/olia dominated vegetative cover of the southeastern south marsh (Bob Cooper, Pers. Comm.). This was possible because the area had a lower soil elevation and water was not pumped out during site construction. The pattern of vegetative cover change over time suggests that the southeastern south marsh provided a T. lali/olia seed source to the remainder of the marsh Within the T. lali/olia community matrix, T. domingensis, a cattail species more common in southern Florida, became established and increased its coverage in the south marsh (Figure 89). The presence of T. domingensis in the marsh was noted simultaneously in the sample plots and in general observations. Density. Density measurements were taken on species with definable bunches, culms, or stems rooted in the sample plot. This measurement strategy resulted in mat or vine forming species being excluded These excluded species were: Alternanthera philoxeroides, Bidens laevis, Brachiara pllrpurascens, Commelina dijfllsa, Cynadon dactylon, Digitaria serolina, Eclipta alba, Eicchornia crassipes, Eleocharis vivipara, Galillm linctorillm, Hydrocotyle rammCIIloides, H. umbellata, Limnobium spongia, Ludwigia palustris, Mikania scandens, PaniClim dichotomiflorum, and Polygonum punctatum. If the rooting point for these sprawling, mat forming species could be located it was measured. Frequently, mat forming species exhibit rooting at nodes, leading to difficulty in determining the original rooting point. Vegetation patterns as described by density and cover data were similar (Tables 16 and 15). As the marsh matured and hydroperiod increased, the percent of species with mat forming or sprawling tendencies increased proportionally from 27% at Tl in November 1990 to 39% at T6 in March 1994. Concomitantly, as species with definable 216

PAGE 193

Table 16. Vegetation density measurements (# m-2 MEAN SE) from Natural Succession Transects. Periods ( ) represent species absent from the transect or transects not sampled. SPECIES TRAN #1 TRAN#2 TRAN#3 TRAN#4 TRAN #5 TRAN#6 TRAN #7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE NOVEMBER 1990 SAMPLE SET ACERUB 0.06 0 .04 0 .03 0 .03 ALTPHI 1.90 0.86 2.06 1.09 0.13 0 13 0 10 0 .07 0 16 0 10 AMAAUS 0.03 0 .03 0.20 0 17 ASTSUB 0 .06 0.04 3 09 1 .46 1 00 0 .35 0 .50 0 .22 0 .22 0 12 0.22 0.09 0 .86 0 25 BACHAL 0 .03 0 .03 0 03 0 .03 0.40 0 .29 0 06 0 .06 0 19 0.08 1 .78 0 .38 4 .63 0 95 0 .77 0 22 CALAME 1.97 1 .77 1 .25 0 .77 0 19 0 19 COMDIF 0 .84 0 .62 0 09 0 09 Cyperac. 0 09 0 09 CYPHAS 1 13 0 79 0 16 0.13 CYPODO 0 .37 0 26 0.40 0 18 0.07 0 07 0 09 0 05 CYPSPP 0 25 0.13 0 06 0 06 ECHCOL 0.09 0 05 0.05 0.05 1 .95 1.10 0.04 0 .04 ECLALB 0.06 0.04 0.71 0.51 0 .31 0 12 0.03 0 03 ELEIND 0.19 0 19 0 32 0 .32 ERISPP 0 .03 0 03 EUPCAP 2.21 0.93 1 .14 0 55 8.94 5.30 0 25 0 13 12.00 3 06 53 .91 10 36 44 .62 8.00 77.74 15.41 EUPSER 0.16 0.16 0.03 0 03 EUPSPP 0.25 0 .14 GALTIN 0 06 0.06 39 50 19 .74 GERCAR 1 52 1 29 HYDSPP 0 .73 0 .54 0 .77 0.39 HYGLAC 0 55 0.42 IPOSPP 0.31 0 .31 JUNEFF 0 .03 0 .03 LUDLEP 0.41 0.41 LUDOCT 0 .61 0 .55 0 .06 0 06 3.90 1 .15 2 55 0 58 2 .71 0.73 0.03 0 03 0 28 0 16 0 06 0 .04 LUDPAL 0 06 0 .06 LUDPER 0.03 0.Q3 LUDSPP 0 09 0 09 MELCOR 0.Q3 0 03 0 .03 0 03 MIKSCA 0.13 0 .09 PANDIC 2.31 1.25 0.22 0 15 0.03 0 03 PANSPP 0 06 0 .04 1 .09 1.09 PASSPP 0 30 0 .13 0.42 0 .17 PASURV 0.03 0 .03 PHYANG 0 .31 0 .14 0 06 0.06 Poaceae 0.26 0 26 PONCOR 0 03 0.03 Pterido. 0 06 0 06

PAGE 194

Table 16. Vegetation density measurements (Cont ). SPECIES TRAN #1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE SAGLAN 0 10 0.10 SALCAR 0 55 0.29 0 06 0 06 SAMCAN 0 03 0 03 0.03 0 03 0.06 0 06 SAMPAR 0.10 0 10 SESMAC 0 19 0.13 0 16 0 16 SOLAME 0 03 0 03 SOLTOR 0 66 0 62 STAFLO 0 25 0 22 TYPLAT 0 06 0 06 2 06 0.73 0.13 0 .10 0 06 0 06 0 84 0.84 0 03 0 03 unknown 0.06 0.04 udicot 2.69 2 69 0.83 0.83 0.63 0.63 0 .31 0.31 0 .31 0 28 uvine 0.03 0 03 WOOVIR 0 22 0 .16 AUGUST 1991 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 0.07 0 07 0.06 0 06 0.04 0.04 0 .2 1 0 .17 AMAAUS 1 13 0.46 0 34 0 25 0 55 0 .17 12.00 4 .7 6 0 53 0 20 0 19 0.16 0 38 0 .19 AMBART 0 09 0 09 AMMCOC 0 06 0 06 0 03 0.03 ASTELL 0.03 0 03 ASTSPP 0.59 0.47 ASTSUB 0 50 0 20 ASTIEN 0.09 0 05 0.25 0 .11 BACHAL 0 06 0 06 0 25 0 17 0 20 0 07 0 44 0 .17 0 09 0 07 BIDLAE 0.16 0 13 BRAPUR 0 55 0.37 CASOBT 0 13 0.07 0.03 0 03 COMDIF 0 16 0 .11 0.14 0 14 CYNDAC 0.15 0 15 Cyperac 0 06 0 04 0 03 0 03 0 03 0.03 0 03 0 03 CYPESC 0 03 0.03 0.75 0 75 CYPHAS 0 09 0 07 0 03 0 03 0 16 0.13 0 03 0.03 0.09 0 07 CYPIRI 3.45 3 .22 0.03 0 03 CYPODO 0 06 0.06 0 16 0 10 0.42 0 .21 0.66 0.36 0.71 0.29 0 10 0.05 0 06 0 04 0 45 0.29 CYPSPP 0 33 0 .21 0 03 0 03 CYPSUR 0.94 0 76 0.03 0 03 DIGSER 0 34 0 24 0 25 0 18 0 23 0 23 ECHCOL 0.07 0.07 0.17 0.17 2 35 1 .91 0 05 0 05 0 53 0 .31 ECLALB 0.26 0.18 1 09 0.41 0 18 0.12 0 25 0.16 0.05 0.05 0 06 0 06 EICCRA 0.03 0.03 0.06 0.06 ELEIND 0.72 0 72 EUPCAP 2 09 1.25 0.41 0.15 11.61 5 36 0 16 0.08 0 16 0 .16 0 63 0.38 EUPSER 0 06 0 06 218

PAGE 195

Table 16. Vegetation density measure ments (Cont.). SPECIES TRAN#l TRAN#2 TRAN#3 TRANI/4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE EUPSPP 0 06 0 06 GALTIN 0 06 0 06 0 38 0 38 0 22 0 16 0 .29 0 .12 0 88 0.41 0 73 0 39 0 03 0 03 1.29 0 70 H Y DSPP 1 30 1 20 IPOSPP 0 03 0 0 3 0 03 0 03 JUNEFF 0 03 0 03 LUDLEP 1 63 0 74 0 06 0 04 0 03 0 03 0 06 0 04 0 97 0.29 0.47 0 23 0 19 0 09 0.26 0 09 LUDOCT 0 09 0 07 0 25 0 13 2 77 0 68 4 74 2 30 1 52 0 50 4 00 1.23 LUDPAL 0 06 0 06 0 06 0 06 0 03 0 03 LUDPER 0 03 0 03 0 63 0 37 0 03 0 03 0 03 0 03 LUDSPP 0 06 0.06 MELPEN 0.03 0 03 MIKSCA 0 03 0 03 0 03 0 03 PANDIC 9 44 6 79 1.81 1 43 0 20 0 20 0 03 0 03 0 12 0 12 PA S SPP 0 22 0 19 0 03 0 03 PHYANG 0 50 0 .21 0 03 0 03 PHY SPP 0 03 0 03 0 09 0 07 POLPUN 0 50 0 50 0 16 0.12 0 03 0 03 0.11 0 .11 0 .14 0 10 0 .04 0 04 0 17 0 17 PONCOR 0 78 0 72 POROLE 0 03 0 03 RUMCRI 0 97 0 43 0 06 0.04 1 34 0 84 SAGLAN 0 09 0 07 SAGMON 0.13 0 .13 0 09 0 09 S AL CAR 0 03 0 03 0 45 0 28 0 13 0 10 SAMCAN 0 03 0 0 3 0 03 0.03 SESMAC 0 13 0 10 0 03 0 03 1 76 0.60 0 50 0 27 SETMAG 0 03 0 03 S OLAME 0.19 0 .11 0 10 0 07 0 .13 0 07 TY PLAT 1.88 0 68 1 19 0 37 6 00 1 67 0 .81 0 27 0 10 0.10 0 25 0.25 0 34 0 34 U TR C OR 0.09 0 09 udicot 0 03 0 03 0 23 0 20 0 06 0 04 1 79 1.72 0.66 0 62 0 52 0 37 WOOVIR 0 38 0 26 JANUAR Y 1992 SAMPLE SET ACERUB 0 03 0 03 ALTPH I 0 04 0 .04 0 10 0 10 0.04 0 04 0 06 0 04 AMAAUS 0 03 0 03 ANDSPP 0.03 0 03 ASTSPP 0 03 0 03 ASTSUB 0 03 0 03 0 03 0 03 ASTIEN 0 03 0 03 BACHAL 0 03 0 03 0 .03 0 03 0 03 0 03 0 .44 0 22 0 32 0.11 0 09 0 05 BIDLAE 0.72 0 63 COMDIF 0 03 0.03 0 13 0 08 Cyperac 0 .19 0 09 0 16 0 10 0 03 0 03 219

PAGE 196

Table 16. Vegetation density measurements (Cont ). SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN #-4 TRAN#6 TRAN 1fT TRAN #8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE CYPHAS 0 13 0 10 0 03 0 03 0 03 0 03 0 13 0 09 CYPODO 0 09 0 07 ElEVIV 0 .08 0 06 EUPCAP 0 23 0 23 0 45 0 45 0 03 0 03 GAlT I N 0 05 0 05 0 03 0 03 0 05 0 05 H Y D S PP 0 03 0 03 lIMSPO 0 03 0.03 0 03 0 03 lUDlEP 0.03 0.03 lUDOCT 0 16 0 13 0 38 0 26 0 03 0 03 0 22 0.19 lUDPAl 0.03 0.03 0 03 0.03 0.16 0.10 lUDPER 0 09 0 07 0 03 0.03 0 78 0 29 0 17 0 08 0 .13 0 07 PASURV 0.34 0 13 Poa c eae 0 03 0 03 0 .19 0 .11 POlPUN 0 09 0 09 2 20 2 20 0 40 0 14 0 35 0 .21 PO N COR 0 16 0 16 0 23 0 20 RAP RAP 0 58 0.41 RUMCRI 0.41 0 32 0 53 0 38 SAGLAN 0 .13 0 09 0 06 0 06 SAGMON 0.22 0 22 0.47 0 .33 1 03 0 45 SAlCAR 0 28 0.28 0 03 0 03 0 .33 0.18 0 .13 0.13 SAMCAN 0 03 0 03 0 19 0 19 TYPLAT 6 03 1 25 5 50 1 23 10 44 1.58 4 44 1 00 0 .55 0 32 2 59 0 96 1 .34 1 .11 udicot 6 25 4 35 WOOV I R 0 22 0 17 AUGUS T 1992 SAMPLE SET AlTP H I 0.19 0 19 0 15 0 12 0 13 0 10 0 20 0 12 AMAAUS 0 68 0 68 0 16 0 16 ASTEll 0 06 0 06 0 06 0 04 BACHAl 0 16 0 16 0 09 0 07 BIDLAE 0 3 7 0 .37 CYPHAS 0 03 0 03 0 03 0 03 C Y PODO 0 03 0 03 C YPSPP 0 03 0 03 C Y P SUR 0 03 0 03 DlGSER 0 06 0 04 EICCRA 0 06 0 06 0 03 0 03 0 10 0 10 0 17 0 17 1 n 1 62 ElEVIV 0 03 0.03 EUPCAP 0 09 0.09 JUNEFF 0 03 0 03 lUDlEP 0 25 0 18 0 03 0 03 lUDOCT 0 13 0 13 0.22 0 22 0 09 0 07 lUDPER 0 03 0 03 0 09 0 09 1 10 0 55 0 09 0 05 0 06 0 04 0 28 0 15 0 58 0 20 MIKSCA 0 06 0 06 0 .04 0 04 0 03 0 03 220

PAGE 197

Table 16. Vegetation density measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PASURV 0 03 0 03 POLPUN 0 05 0 05 0 06 0 06 0 .21 0.17 0 04 0 04 PONCOR 0 45 0 33 0 22 0 15 SAGLAN 0 34 0.18 SAGMON 1 59 0 62 0 .31 0 22 1.19 0 75 1 69 0 50 SALCAR 0 03 0 03 0 03 0 03 1 13 0 43 0 13 0 10 TYPDOM 0 97 0 84 TYPLAT 8 .31 1 22 7 28 1 27 10 19 1 09 10 38 1 77 4 78 1.30 0.41 0 25 3 75 1 05 2 38 0 80 TYPSPPD 0 69 0 25 1 55 0 55 1 17 0 34 1 34 0 96 0 17 0 12 1 72 1.05 0 22 0.15 FEBRUARY 1993 SAMPLE SET ACERUB 0 03 0 03 ALTPHI 0 35 0 .16 0 07 0 05 AMAAUS 0 44 0 .31 APILEP 4 46 2 59 ASTELL 1 38 1.00 BA C HAL 0 07 0 07 0 53 0 38 B I DLAE 0 15 0 .12 CYP SPP 0.03 0 03 0 03 0.03 ECLALB 0 03 0.03 EICCRA 0 17 0 .14 GALT I N 0 22 0 16 H Y DRAN 0 .15 0 15 0 05 0 05 0 06 0 06 LiM SPO 0 .07 0 07 LUDLEP 0 .10 0 10 0 06 0 06 LUDOCTD 0 03 0 03 LUDPER 0 03 0 03 0 37 0 19 0 03 0 03 0 29 0 19 0 29 0.16 0 .81 0 32 MIKSCA 0 03 0 03 Poaceae 0 03 0 03 POLPUN 3 84 3 38 0 03 0 03 0 04 0 04 0 03 0.03 0 14 0 .11 PONCOR 0 55 0 30 1 34 0 93 RHARHA 0 03 0 03 RUMCRI 0 03 0 03 5 .31 3 76 SAGLAN 0 52 0.36 0 03 0 03 SAGMON 0 03 0 03 0 16 0.16 0 03 0 03 SAGSPP 0 03 0 03 SALCAR 0 03 0 03 0 .13 0 .13 0.41 0 28 0 63 0 46 SAMCAN 0 06 0 04 TYPDOM 0 25 0 25 TYPLAT 11. 73 1.54 7 00 1.35 16 97 1.31 12. 80 1 .54 6 87 1.42 2.09 1 02 4 34 1.19 3 10 0 90 udicot 0 26 0.11 0 1 3 0 10 221

PAGE 198

Table 16. Vegetation density measurements (Cont.). SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRANtIS TRAN 116 TRAN 1fT TRANII6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AUGUST 1993 SAMPLE SET ALTPHI 0 .21 0 08 0 03 0.03 0 39 0 17 0 04 0 04 AMAAUS 1.97 0 59 0 37 0 24 0 37 0 28 ANOSPP 0 03 0 03 ASTELL 1 03 0 63 ASTSUB 0 59 0 36 BACHAL 0 10 0 10 BIOLAE 0 .11 0 .11 CASOBT 0 03 0.03 CICMEX 0 .31 0 .31 COMOIF 0 03 0 03 CYPIRI 0 .31 0 .31 0 25 0 18 CYPOOO 0 28 0 17 1 09 0 65 0 74 0 36 1 44 1.10 CYPSPP 0 16 0.10 0 .10 0.10 0 03 0 03 ECHCRU 0 06 0 06 ECHSPPl 0 13 0 09 ECHSPP2 0 03 0 03 ECLALB 0 09 0 09 0 03 0 03 0 17 0 .12 0.31 0.25 EICCRA 0.13 0 .13 0.21 0.13 GALTIN 0 03 0 03 HYORAN 0 18 0 .15 0 05 0.05 LUOLEP 2 27 0 .64 1 69 0.84 2 93 0 92 2 13 0 79 LUOOCT 0.63 0 63 1 00 0 .51 0 53 0 .31 LUOPER 1.41 0 63 0 80 0 26 MIKSCA 0 .10 0 05 MOMCHA 0 03 0 03 PANOIC 0.57 0 30 0 03 0 03 PASOIS 0 03 0.03 PLUROS 0.06 0.06 POLPUN 0.71 0 29 0 .11 0 .11 PONCOR 1 28 0 45 2.19 1 52 SAGLAN 0 29 0 23 SAGMON 0 45 0 23 0 .81 0 49 SALCAR 0 .31 0 22 0 23 0 .14 SESMAC 0 03 0 03 TYPOOM 0 .31 0 18 0 97 0 69 TYPLAT 6.75 1.05 10 78 1.24 4 90 1 63 4 16 1.21 ALTPHIS 0.03 0.03 AMAAUSS 0.06 0 04 HYORANS 3 .13 3 13 LUOPERS 0 03 0.03 0 28 0 20 POLPUNS 0 22 0 17 PONCORS 0 09 0 09 SAGLANS 1.41 1.28 SAGMONS 0.03 0 03 0 09 0 09 222

PAGE 199

Table 16. Vegetation dens i ty measurements SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRANIIS TRAN#S TRAN#7 TRAN#S CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE TYPLATS 1 25 1 16 udicots 0 03 0 03 MARCH 1994 SAMPLE SET ACERUB 0 03 0 03 0 03 0 03 ALTPHI 0 04 0 04 0 25 0 .18 0 06 0 04 AMAAUS 10. 58 5 59 2 .2 5 1 55 0 06 0 04 0 75 0.34 0 16 0 16 APILEP 0 33 0 22 ASTELL 0 28 0 25 BACHAL 0 03 0 03 0 03 0 03 BRAPUR 0 03 0 03 COMD I F 0 03 0 03 CYPODO 0 17 0 17 0.03 0 03 C YPSPP 0.04 0 .04 19.58 13. 80 0 03 0 03 0 04 0 04 1 13 0 66 0 22 0 19 ECLALB 0 08 0 08 0 03 0 03 ELEV I V 0 22 0 .17 EUPCAP 0 08 0 08 0 03 0 03 0.08 0 06 0 66 0 40 0 22 0 12 GALTIN 0.21 0 .21 0 06 0 06 0.03 0 03 H Y DRAN 0 05 0 05 0.03 0 03 0 38 0 .19 1 09 1 09 LUDL EP 0 04 0 04 0 83 0 83 0 03 0 03 0 38 0 26 LUDPER 0 29 0 20 0 13 0 13 0 25 0 18 1 53 0 99 2 13 0 .81 MIK SCA 0 03 0 03 Poacea 0.84 0 78 POLPUN 0 38 0 .2 4 2 00 1 44 0 22 0 .12 PONCOR 2 00 0 99 1 .31 0 95 RUMCR I 0 09 0 07 S AGLAN 0 13 0 13 0 .2 5 0 25 0 06 0 06 S AGMON 0 06 0 04 S AL CAR 0 06 0 06 0.06 0 06 SOLAME 0 08 0 08 TYPDOM 0 .13 0 .13 1 59 0 58 TYPLAT 8 .17 1 58 13.42 2 58 13 .31 1 83 15 29 1 36 6 84 1 43 5.09 1 28 223

PAGE 200

point rooting habits declined (Table 16). As the marsh matured, density of Typha lali/olia tended to increase with time. Early in marsh development T. /ali/olia was found at low levels. For example, a minimum density of 0 m-2 (0%) was found at T3 and T6, and a maximum density of2 m-2 (35%) found at T2 (Table 16). At the final measurement, T. /ali/olia had attained the greatest density relative to most other species measured. A minimum density of 5 m-2 (52%) was found at T8 and a maximum density of 15 m-2 (88%) was found at T4. In the north marsh, the second most dense perennial, non-mat forming species Ludwigia peruviana increased to maximum densities at the final sampling of l.Sm2 at T6 and 2.3m-2 at T8. This species contributed most to the shallow, south ends of transects 6 and 8 Height. Vegetation height patterns were similar to vegetation cover patterns (Table 17). Height measurements were taken on a larger number of species than density measurements and on a fewer number of species than cover measurements. This measurement difference resulted because species, such as Azolla caroliniana, Lemna spp., Salvinia rotundi/olia, Spirodel/a polyrhiza, Wolffia spp. and Wolffiel/afloridana are very thin floating species. Species such as Alternanthera philoxeroides often tended to float at the water surface without a definable rooting zone Under these conditions the height measurement was omitted. Height patterns were similar to cover in showing successional state of the marshes. These patterns included height declines by species not adapted to long-term flooding (e.g Aster subulata, Commelina dijfusa. Eupotorium capillifolium, Ludwigia octovalvis, and Panicum diehotomiflorum), and increases or height maintenance by flood adapted species (e.g Hydrocotyle ranunculoides, Ludwigiaperuviana, Pontederia cordata, Sagittaria laneifolia, Salix caroliniana, and Typha /atifolia) Opportunistic species, present in the seedbank, and responding to drawdown and mat flotation included: Amaranthus australis, Commelina diffusa, Eupatorium capillifolium, Ludwigia leptocarpa, and Polygonum punctatwn. Height measurements provided another view of the competitive environment in the marsh ecosystem. The most prolific invader species, Typha /ali/olia, was also the tallest species durng the study period Potential competing species (e.g Pontederia cordata, Ludwigia peruviana, and Sagittaria lancifolia) tended to attain a maximum average height <30 cm while Typha latifolia had attained heights approaching 250 cm. NATURAL SUCCESSION TRANSECTS BIOMASS Biomass within the Apopka Marsh showed noticeable changes from November 1990 to March 1994. Species composition, allocation of above-and below-ground biomass, and amount of dead biomass all contributed to these changes. In an attempt to better define some of these changes within the marsh, biomass was partitioned into "above-ground" (alive and dead), "below-ground" and "floating mat" components. Above-ground biomass was defined as any tissue (leaves, roots, rhizomes) found above the consolidated substrate Living tissue within the substrate was considered below-224

PAGE 201

Table 17. Vegetation height measurements (cm m2 MEAN SE) from Natural Succession Transects. Periods (., represent species absent from the transect. SPECIES TRAN#1 TRAN#2 TRAN#3 TRANIU TRAN#6 TRAN#6 TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEA N SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE NOVEMBER 1990 SAMPLE SET ACERUB 0.81 0.81 0 63 0.63 ALTPHI 15.03 4 60 11.22 4.33 0.78 0 78 2.06 1.16 4 03 2.25 0.78 0.46 0 53 0.53 AMAAUS 12.50 12.50 14.28 9.87 ASTELL 7.50 7.50 ASTSUB 2 13 1 48 36 72 14.37 40.25 10.57 30.28 11.23 24 .06 12.06 12.57 6.66 48.41 15.33 BACHAL 8 44 5.93 1.88 1.88 4 48 4 48 2 63 2.63 6.19 2.64 31 19 5.79 45.28 7.10 19 87 5.42 CALAME 15.36 7 55 15 .31 7.36 0.31 0 .31 CARSPP 1.75 1 75 COMDIF 4.69 2 26 20. 13 5 .20 2 66 1.57 13 50 3.16 15 16 4 45 1 34 0.94 CYNDAC 6 13 3 12 Cyperac .. 0.00 0 00 1.25 1 .25 1 69 1.69 CYPHAS 3.84 2.26 3.59 2. 92 CYPODO 5.97 3 .34 7 90 3.16 1.69 1 69 2.91 1 86 4 56 2 68 CYPSPP 4.69 2.43 2.53 1.42 2 81 2.51 1 41 1.18 ECHCOL 4 34 2 43 9 77 4. 1 5 20. 32 5.01 5.63 4 .31 14 40 3 .44 4 .00 2. 27 ECLALB 2 .00 1 39 5 00 2 57 4.75 4.75 1.19 0.83 12 53 4 19 0 66 0 66 ELEIND 1 .03 1 03 1.88 1.88 2.13 1.52 ELESPP 0.30 0 30 0.13 0.13 ER ISPP 1 75 1.75 EUPCAP 72 26 22.13 51.32 17 97 29. 53 13.79 14 .91 9 32 110 13 16.93 258 .91 12.57 181 58 18 04 20Q.16 18 99 EUPSER 1.56 1.56 2.81 2 .81 EUPSPP 21. 88 12 .26 GALTIN 0.28 0.28 3 .81 1 .07 GERCAR 0.38 0.38 3 .41 3 12 HYDSPP 0 48 0 48 3.31 1.69 1 06 0.46 HYGLAC 3.34 1 .61 IPOSPP 0.16 0 16 JUNEFF 2.63 2.63 LUDLEP 3 13 3 13 LUDOCT 4 90 3 76 5.94 5 94 65 94 12 93 82 .84 15.12 51. 03 13.03 3 31 3.31 1.94 0.98 0.97 0 97 LUDPAL 0.72 0 48 0.90 0 90 LUDPER 6.56 6 56 LUDSPP 0 31 0 .31 MELCOR 1.56 1.56 1 16 1 16 MIKSCA 9.52 6 70 PANDIC 18 72 9.51 17. 4 8 6.55 67.10 8 10 63.16 9 35 7.00 3 11 7.48 4 87 1 1.00 5.02 5 19 4.70 PAN HEM 3.44 3 44 PANSPP 3 13 3 13 0 63 0 63 1.78 1.24 0.00 0.00 1 75 1 75 PASSPP 9 81 3.75 14.63 5 80

PAGE 202

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#1 TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#5 TRAN#7 TRAN Ill! CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE PASURV 3.75 3 75 PHYANG 4.00 1 75 1 .25 1 25 Poaceae 1 97 1 97 3 72 2. 22 0.36 0 35 POLPUN 82 .00 7.95 36 69 8.00 15.06 6 .03 7 16 3 52 PONCOR 3 .06 3 06 2.97 2. 97 Pterido. 0.31 0 .31 SAG LAN 3.74 3.74 SALCAR 24 53 12.05 3 .44 3.44 SAM CAN 1 09 1.09 2 53 2 53 8.44 8.44 SAM PAR 1.44 1.08 SESMAC 17.34 12 25 8.44 8.44 SOLAME 1 .25 1 .25 SOLTOR 2 72 2 03 STAFLO 4 06 3.23 TYPLAT 8 .91 6 24 62.16 14.87 6 03 4.20 3.28 3.28 7 .81 7 81 3 .91 3 91 unknown 0 22 0 17 udicot 0 .00 0 00 0 13 0 13 0 16 0 16 0.06 0.06 1 06 0.74 WOOVIR 3.39 2 38 AUGUST 1991 SAMPLE SET ACERUB 0 9 4 0 .94 ALTPHI 3 34 2 03 6 72 2 90 3.38 2.20 3 .81 2 .81 9.94 3 .29 8 53 3 74 6 56 3.62 AMAAUS 81. 94 24.37 8.19 5.77 45.28 12.53 65.9 4 20.43 4 1 00 16 .00 11.41 6.59 8.22 4.16 AM BART 3 38 3 38 AMMCOC 2.50 2.60 2 50 2.50 ASTELL 1 22 1 .22 ASTSPP 9 59 5 29 ASTSUB 12.06 4. 76 ASTIEN 7 78 4 61 8.66 4.00 BACHAL 4.06 4.06 16 22 11.09 26.03 8 45 20. 75 7.48 6 41 4. 46 BIDLAE 5.44 3 09 BRAPUR 7.09 4.93 26 50 9 40 11. 69 6.66 CASOBT 6 26 3.84 3.66 3 66 COMOIF 1.66 1 66 4 .06 2 83 2 26 1 69 11. 09 3 .31 23 34 6 .06 2 .44 2. 44 CYNOAC 6.53 2.35 Cyperac. 0.41 0.41 4.06 3 15 2 63 1.83 1 72 1 72 2.31 2 .31 CYPESC 0.88 0.88 2.76 2.75 CYPHAS 1 97 1 38 1 69 1.40 3 44 2.42 3 13 3.13 6 78 4. 10 CYPIRI 2.13 2 13 4 50 2.22 1.59 1 .69 0 .31 0 .31 CYPODO 0.78 0.78 7.97 6.79 7 34 3.19 6 63 2.23 16.25 4.61 9.63 4.66 4 97 3 46 15 .28 5.38 CYPSPP 10.13 3.73 1.63 1 63 CYPSUR 4.97 2 .51 1 38 1 38 OIGSER 1 59 1.59 10.91 4.78 8.41 2 63 32 .31 7 66 18.59 6.92 16 .81 6 .29 27.81 7.47 ECHCOL 4 88 2.48 16.38 4 .79 4 66 2.35 21.81 6 36 30 78 8 00 19.03 6.98 49.50 9. 4 2 226

PAGE 203

Table 17. Vegeta t ion Hei ght measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN#7 TRAN#6 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECLALB 1.78 1.78 1.69 1 .11 30.31 6.51 22.72 4.64 51. 22 8 16 75 13 9 09 36 .3B 9 15 42.59 7.77 EICCRA 0.59 0.59 1.41 1.41 3.25 2 30 ELEINO 1 .31 1 .31 ELESPP 0.25 0 25 ELEVIV 8 63 2.77 EUPCAP 17 31 B .2B 31. 16 13 04 20.69 6 97 12 03 7.04 6.63 6 63 14.38 6 .91 EUPSER 1 .2B 1 .2B EUPSPP 4.7B 4 .7B GALTIN 0 09 0 09 0 47 0 47 3 47 2 16 4 00 2.06 4.63 2.01 6.06 2.30 2.66 2.30 11.06 2 92 HYOSPP 3 66 2 06 IPOSPP 0.66 0.66 4.13 3.67 JUNEFF 3 13 3 13 llMSPO 0 .94 0 94 LUOlEP 36 34 13.17 1 25 0 .B7 4 66 4 66 6 .47 5 .01 4B.97 11.76 20.7B 9 10 17 .3B B 66 25 .31 B 50 LUOOCT 9 .91 7 42 11.97 7 13 69.76 14 32 99.00 17.03 6B. 34 16 72 97.66 lB 20 LUOPAl 0.3B 0.3B 0 .31 0.31 0.34 0.34 1.13 1.13 lUOPER 6 06 6 06 B 22 3 97 5.16 6 16 6 03 6 03 lUOSPP 1. 1 9 1 19 1.66 1 66 MElPEN 1.38 1.38 MIKSCA 0.16 0.16 15.2B 7 .3B 14.25 B.1B 2.97 2 97 PANDIC 24 25 B.37 6 .44 4.51 66.13 10.67 62 00 8 32 52 00 12.25 6 .B4 4. 24 2B.94 10.54 PANSPP 1 .BB 1.8B PASOIS 2 50 2 60 PASSPP 3.2B 3.2B 4 72 3.32 6 13 4 37 PASURV 7.31 6.29 10.66 6.02 PHYANG 14 .44 6.19 1 09 1 09 PHYSPP 0 63 0 63 4 06 2 B 4 Poaceae 0 97 0 97 POlPUN 93.47 7.32 16 22 6 .44 0.09 0.09 14 97 6 96 60 .91 8.07 23 Bl 7 62 25 .3B 7.73 44 63 8 0 4 PONCOR 6 03 3 72 6 56 4.57 POROlE 0 .31 0 3 1 RUMCRI 3 94 1.74 0 50 0 39 4 .31 1.B4 SAG LAN 6.13 4 .66 SAGMON 2.Bl 2.Bl 3 13 3 13 SALCAR 10 94 10 94 46 66 23 .B2 12 60 B.70 SAMCAN 6 66 6 56 9.3B 9 .3B SESMAC 16.03 10 61 0 00 0.00 109.94 24 .B6 50.63 21.42 SETMAG 5.7B 6.7B SOLAME 4 13 2.42 9 .3B 4.6B 4 .75 2 70 TYPLAT 76.66 17.6B 4B.B4 12.94 97.19 15 46 34.16 10.16 9.25 6 48 6.06 6.06 6 25 6.26 UTRCOR 0.56 0.56 udicot 0 03 0.03 O .BB 0.70 1 34 0 .94 2 34 1.36 0 03 0 03 9.03 6 69 WOOVI R 6 03 4.21 JANUARY 1992 SAMPLE SET 227

PAGE 204

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#5 TRAN#6 TRAN 1fT TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ACERUB 1.03 1.03 ALTPHI 20 47 4.58 20.26 5 .11 6.19 2.63 2.41 1 75 7.39 2.42 4.03 2.45 4.84 2.57 AMAAUS 2.19 2 19 ANDSPP 2.31 2 31 ASTSPP 0.94 0.94 ASTSUB 0.84 0.84 2.94 2.94 BACHAL 5.66 5.66 6.25 6.25 7.25 5.20 27.47 10.14 27.66 8.53 6.59 4 13 BIDLAE 6 38 4 .44 BRAPUR 2.13 2.13 8.22 8.22 13.28 7.42 COMDIF 2.03 1 41 6.28 2.65 1.63 1.63 CYNDAC 2.22 1.54 Cyperac. 12.47 3.90 4.41 2.66 2 22 1.55 CYPHAS 6 34 3.03 3.63 2.62 1 94 1.94 3 22 2.25 CYPODO 2.72 1.91 ELEVIV 9 63 2.83 EUPCAP 2 91 1.67 1 48 1.48 0.34 0.34 GALTIN 0 38 0.38 0.16 0 16 9 47 2.82 4.97 2.39 16.68 4 14 HYDRAN 8 43 3.23 1.78 1.25 HYDSPP 4.94 2.78 1 63 1.63 12.56 3.46 5.34 2.59 HYDUMB 13.34 3.89 JUNEFF 3.72 3.72 LIMSPO 5.53 2.74 0.00 0 00 LUDLEP 3 66 2 83 LUDOCT 4.94 3 98 5 06 4.20 1 97 1 97 4 75 4.75 8 50 6.13 LUDPAL 1.31 1 .31 1 22 1.22 0 27 0.27 LUDPER 7.09 5 23 1.81 1.81 35 25 11.03 1.25 1 25 15.44 6.22 11. 50 6 61 MIKSCA 2.22 2.22 8 00 4.53 13 94 7.07 5 41 4.30 PASSPP 1.72 1 72 PASURV 11.88 4.18 2.25 2.25 Poaceae 1.34 1.03 2.56 1.62 1.34 1.34 0.00 0.00 POLPUN 40.84 5.75 16 75 4.91 3.00 2.29 9.81 3 42 35.84 3.62 19.25 4 46 17.59 4.61 21.61 6.04 PONCOR 3.13 3 13 5.44 3.08 RAPRAP 1.47 0.92 RUMCRI 2 28 1.60 0.94 0.61 SAGLAN 7.84 5.48 2.28 2.28 SAGMON 2 38 2.38 3.59 2.50 11.00 4.61 SALCAR 6.00 6 00 0.00 0.00 48.72 21.29 9.38 9.38 SAMCAN 2 06 2.06 9.38 9.38 TYPLAT 112.03 16.56 80.00 16 57 122 06 16.90 97.28 14.30 20.66 9.94 47.22 13 02 9 28 6.46 WOOVIR 4.03 2 82 AUGUST 1992 SAMPLE SET ALTPHI 11.71 4 68 19.45 6.63 0.44 0 .44 10 47 7.43 16.41 5 10 19 .91 4.73 5.53 3.09 8.66 4.34 228

PAGE 205

Table 17. Vegetation Height measurements (Cont ) SPECIES TRAN#1 TRAN#2 TRAN#3 TRANII4 TRAN#5 TRAN#5 TRAN#1 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE AMAAUS 2 .34 1 92 4059 4.59 ASTELL 3.28 3.28 7 34 5 .11 BACHAL 7.81 7.81 7 53 5 .24 BIDLAE 0.00 0 00 11 00 6 .64 BRAPUR 1.28 1.28 1 19 4 .11 COMDIF 2.03 2 03 Cyperac. 1 97 1.97 2 88 2.39 CYPHAS 3 13 3.13 2.19 2.19 CYPODO 0 00 0.00 3.13 3.13 CYPSPP 1.18 1.78 CYPSUR 4.25 3.18 DIGSER 6 88 4.80 ECLALB 4 16 4.16 EICCRA 1 22 1 22 0.97 0 97 5.18 2.94 5 .12 3.28 7.69 4.37 ELEVIV 10 58 3 87 0.97 0.97 EUPCAP 1 25 1.25 HYDRAN 0.00 0.00 1 .34 1 .34 5 28 2.53 15. 32 4 82 7 63 3 20 12.03 4.30 HYDSPP 2 19 1.95 5.69 2.97 1 25 1 25 HYDUMB 1.31 1 31 1.22 1.22 JUNEFF 4 06 4 06 LlMSPO 12.42 5.27 2 22 1.54 LUDLEP 12 .81 8 .94 2 97 2.97 LUDOCT 6.56 6 56 5 09 5.09 4 53 3 16 LUDPER 4 22 4 22 7.81 7 81 42. 94 15 06 9.00 5 04 11 .91 10 07 21. 50 10.88 52 19 16 13 MIKSCA 2 66 2.66 1.50 1.60 21. 31 9.18 10 91 6.30 PASDIS 4 25 2 96 PASURV 2.15 2 75 Poaceae 1.94 1 .94 POLPUN 9 28 5.21 1.16 1 16 24. 13 5 64 34.31 7 .24 10.25 4.36 22.16 7.11 PONCOR 23.06 9 75 8.15 6.09 SAGLAN 21.28 10. 89 SAGMON 29 50 9 58 9.56 6.65 12.88 7 .21 39.59 10.65 SALCAR 9.28 6 89 15 00 10.78 52 .91 23 62 12 28 7.02 TYPDOM 26.06 14 87 TYPLAT 182 .34 16 56 146 .41 22.24 210 88 15 85 171.18 18.79 76 84 19.76 16 09 9 07 12.39 18.53 57 66 16.86 TYPSPPD 38 .44 13 .31 24 40 13.55 61.67 16.24 7.13 7 13 16.45 9.36 22 26 12 73 13 .44 9 37 FEBRUARY 1993 SAMPLE SET ACERUB 4.00 4.00 ALTPHI 11.48 5 48 2.31 2.31 0 .94 0 69 2.16 2 .11 5 81 2.77 0 00 0 00 7.45 3.64 APILEP 2.24 1.23 ASTELL 4 47 2 57 BACHAL 0.94 0.81 3 16 2 .21 BIDLAE 13.13 4.32 229

PAGE 206

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#4 TRAN#5 TRANI#; TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE CARSPP 0.78 0.78 CYPSPP 2.06 2.06 2.16 2.16 ECLALB 0.00 0.00 1.69 1.18 0.00 0.00 EICCRA 0.00 0.00 6 67 4 98 4 39 3.06 ELEVIV 0.80 0.80 EUPCAP 0.31 0 31 GALTIN 2.38 2.07 6.47 3.06 HYDRAN 6.41 4.18 0 16 0.16 3.79 2.69 3.43 1 76 11.82 3.79 22.97 6 10 11.04 4.61 28.10 4.80 HYDSPP 0.26 0.26 1.13 1.13 HYDUMB 0.00 0.00 1.00 1 00 LIMSPO 6.63 2.96 0.80 0.80 LUDLEP 10.84 7.43 8.66 6 56 1.76 1.76 1.09 1.09 LUDPER 6.63 4 69 6 28 3.85 33 60 13.62 6.66 6.56 17.53 8 96 26 .31 12.76 47.69 16 63 MIKSCA 0.00 0.00 6 90 6.90 6.62 3 .71 PASURV 1.41 1.41 Poaceae 1.41 1.41 POLPUN 16.70 7 84 0 00 0.00 1.13 1.13 11.84 4.64 1.65 1.65 7.76 3.61 PONCOR 26.46 10 03 4 69 3.26 RHARHA 1 00 1.00 RUMCRI 0.84 0.66 0 94 0.72 SAGLAN 17.34 9 .71 6 25 6.25 SAGMON 1.28 1.28 6 .94 6.94 0 78 0.78 SALCAR 6 78 4 02 0 00 0 00 12 .81 8.92 62.10 27.14 12 97 7.11 SAMCAN 10.44 7.41 3 13 3 13 TYPDOM 6.88 6 88 TYPLA T 147.90 13 09 113.76 17.86 196.00 9 94 142 .94 11. 79 96 38 14.99 30 88 11. 75 72.13 16.29 57.72 13.51 udicot 0 .11 0. 11 0 10 0.07 AUGUST 1993 SAMPLE SET ALTPHI 9.66 2.54 5 25 3.03 17.69 5.40 13 .44 4.04 AMAAUS 60.03 13.19 17 66 10 .21 10.25 5.88 2 97 2.97 ANDSPP 6.72 6.72 ASTELL 14.09 8.21 ASTSUB 14.38 8.03 BACHAL 7.16 5.05 BIDLAE 13.00 5.16 SRAPUR 2 47 2.47 CASOST 2.09 2 09 CICMEX 1.26 1.25 COMDIF 2.63 2.32 CYPIRI 0.78 0.78 2.75 1.99 CYPODO 8 28 3.97 10 22 4.45 15.81 5 36 11. 88 4.72 CYPSPP 1.81 1.11 3 22 2.70 0 .31 0.31 ECHCRU 5 .81 4.07 230

PAGE 207

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#4 TRAN#6 TRANIIG TRAN#7 TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE ECHSPPl 9.63 5.02 ECHSPP2 2.66 2.66 ECLALB 0 66 0.66 0.28 0 28 3.41 1.83 5.41 3.41 EICCRA 4.19 2.48 6.22 2.93 ELEVIV 1.68 1.27 GALTIN 0 47 0 47 HYDRAN 3.88 1.46 2.75 1 18 4.34 1.21 10.39 3.47 HYOUMB 0.88 0.88 0.94 0.94 UMSPO 2 07 1 07 LUOLEP 32.59 7.55 13.44 6.54 59.63 14.06 28.50 9 57 LUDOCT 2.50 2.60 26.72 12.06 14 63 8 62 LUOPER 8.28 8.28 40.25 15.76 71 60 19 51 MIKSCA 11.00 5.33 MOMCHA 3 59 3 69 PANDIC 39.22 11. 15 2.63 2.63 PASOIS 2.66 1.82 PASURV 3.25 3.25 PLUROS 0 47 0 .47 POLOEN 6.16 3.62 POLPUN 32 78 8.15 4 3.81 9 96 8 63 4.36 PONCOR 29 .84 10.00 8 53 5 94 SAG LAN 15.34 8.66 SAGMON 16 71 7 87 12.03 5 .51 SALCAR 16 26 11 31 24 19 10 64 SESMAC 6 26 6 25 TYPDOM 28 91 16.16 31. 19 15 .49 TYPLAT 145 00 17.30 192.66 16 85 80 .19 16 81 95. 06 17 12 ALTPHIS 0 25 0.25 AMAAUSS 0.34 0.26 HYORANS 0.03 0.03 LUOPERS 0.09 0.09 1 06 0.74 POLPUNS 2 88 2.10 PONCORS 0 06 0 06 SAGLANS 0.66 0 62 SAG MONS 0 16 0.16 1 .31 1.31 TYPLATS 0.16 0.16 udicots 0 50 0.50 MARCH 1994 SAMPLE SET ACERUB 0.41 0.41 0.38 0.38 ALTPHI 2 .71 1.92 4 08 2.18 4.26 2 .47 6.29 4.24 21.09 4.00 10.03 3.14 AMAAUS 6.88 1.83 2 17 1.48 3 03 2 11 2.63 1.17 0 .47 0.47 APILEP 1.92 1.13 ASTELL 6.28 4 00 231

PAGE 208

Table 17. Vegetation Height measurements (Cont.) SPECIES TRAN#l TRAN#2 TRAN#3 TRAN#<4 TRAN#5 TRAN#5 TRAN In TRAN#8 CODE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE BACHAL 0.31 0.31 6.22 4.66 BIDLAE 1 75 1.33 BRAPUR 1 09 1.09 COMDIF 0.47 0 47 CYPODO 6 83 6 83 1 .97 1 97 CYPSPP 0.42 0 42 2.33 1 37 0.72 0.52 0 .21 0.21 2.31 0.96 1.19 0 67 ECLALB 4.76 4.76 1.72 1 .41 EICCRA 1.03 0 66 6.28 2 .70 ELEVIV 9.19 3.36. EUPCAP 0 .21 0.21 3.67 3.67 0.47 0.47 0.79 0.55 1.91 1.31. 1.42 0 85 GALTIN 1.25 1.25 0.92 0.92 0.31 0.31. 2.44 1.61 HYDRAN 9 63 2.49 13.25 4 65 7 78 2.13 8 .29 2.49 12.41 2.96 25.00 3.60 LUDLEP 2.00 2.00 2.33 2 33 1 09 1.09 4.26 2.96 LUDPER 6.96 6.16 3.69 3.59 10.50 7.27 25.75 9.84 71. 22 20 19 MIKSCA 3.50 3 .60 PASDIC 0.94 0.94 Poaceae 2 50 1.96 POLDEN 4 .63 2 72 POLPUN 13.71 3.02 12 75 6.49 3 .17 3.17 19.38 6.38 4.19 2 42 PONCOR 11.79 5.62 3 72 3 .72 RUMCRI 1.25 0 87 SAGLAN 7 .79 5.39 11. 75 11. 76 SAGMON 2.00 1.40 1.19 1 .19 SALCAR 16. 25 11.31 15.22 9 33 SAM CAN 6.33 6.33 SOLAME 2 33 2.33 TYPDOM 11.25 11.25 67.59 22 48 TYPLAT 103.38 15.21 179.08 7.09 151. 63 15.15 245.21 6.79 94 32 17. 67 97.81 18.30 232

PAGE 209

ground biomass. If the biomass partition had a loosely consolidated matrix of soil and recently deposited sediment (aka "goop"), shoot bases, rhizomes, and roots floating in the water column, it was defined as floating mat biomass. Live and dead biomass was differentiated by tissue color with green biomass considered alive and brown dead. Above-ground and General Biomass Patterns In November 1990, above-ground live biomass values ranged from 270 g m-2 along transect 5 to 1753 g m-2 on transect 8 (Table 18). The dominant species as determined by total biomass were Eupatorium capillifolium, Panicum dichotomtflorum, Panicum spp., andPolygonum punctatum (Table 19). Additional species were found within the sample plots. With the exception of Aster subulatus in transect 4 and Ludwigia octovalvis in transect 3, these species accounted for less than 10% of the biomass collected along each transect. The amount of above-ground live biomass on the site relative to dead biomass ranged from a ratio of 1.28 on transect 2 to 38.48 on transect 7 Below-ground biomass for those transects ranged from 28 (T2) to 46 g m-2 (TI) (Table 18). Above-and live biomass for the August 1991 samples ranged from 268 g m-2 (T2) to 928 g m-(T9) (Table 18). Live above-ground biomass ranged from 136 g m-2 (T2) to 812 g m-2 (T9), with ratios ofaboveto below-ground live biomass from 1.03 (T2) to 10.87 (T6) Dead above-ground biomass ranged from 162 g m-(T9) to 545 g m-2 (T6) A ratio of live to dead above-ground biomass ranged from 0 .26 (T2) to 5.01 (T9) (Table 18). This indicates a change from the November 1990 sampling where, at all transects, live biomass was greater than dead biomass. There was a considerable increase in dead biomass at the site, in some cases up to four times that of living biomass. Also the dominant species began to shift, with Alternanthera philoxeroides, Amaranthus australis, Digitaria serotina, Echinochloa colonum, Eclipta alba, Ludwigia octovaIvis, Panicum dichotomtflorum, Polygonum punctatum, Sambucus canadensis and 7ypha !ali/olia providing approximately 90% of the live biomass along the transects (Table 19). Dominant species accounting for more than 90% of the biomass in the January 1992 sampling included Alternanthera philoxeroides, Baccharis halimifolia, Brachiaria purpurascens, Eupatorillm capillifolillm, Ludwigia peruviana, Polygomlm p"nctatum and '[ypha latifolia (Table 19). Above-and below-ground live biomass ranged from 295 g m-2 (T6) to 555 g m-2 (T5) (Table 18). Above-ground live biomass from 63 g m-2 (T3) to 456 g m-2 (T8). Below-ground biomass ranged from 38 g m-(T6) to 392 g m-2 (T3). The ratio oftotal above to below-ground biomass ranged from 0.16 (T3) to 6.78 (T6). The lowest ratios of above-ground live to dead biomass were recorded during this sampling period and ranged from 0.09 (T3) to 1.06 (T8). Dead biomass values ranged from 238 g m-2 (T2) to 686 g m-2 (T3) (Table 18). Live to dead above-ground biomass ratios for the August 1992 sampling were higher than that of the previous sampling and ranged from 0.85 (T9) to 6.48 (T6). The dead biomass values ranged from 51 m-2 (T6) to 749 m-2 (T3). Above-ground live biomass values ranged from 310 g m-(T9) to 705 g m-(T3) Below-ground biomass 233

PAGE 210

Table 18 Total biomass summary (g m2 MEAN SE), by transect and sampling date '." No sample taken or information not available for calculation A : B=Above-ground : Below-ground Biomass Ratio Transect I Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE November 1990 Above-ground Dead 198.21 71.62 568 56 139.27 141. 48 55 99 81.85 68 86 39 85 17.56 55 30 51.39 29 74 29 74 54.11 26 75 96 .61 25 83 Live 799.86 233 68 727 52 286.17 686.49 161.n 579. I 9 124.47 270 45 110.42 1386 00 2OS. 74 1 I 44 35 171. 55 1753.14284 n 633 .32104. 30 Total 997.86 305 30 1296.18425.44 827 .95217. 76 661.04193. 13 310 30 127 98 1441. 30 257 12 1174 09 201. 29 1807.25311 52 729 93 130 13 Live:Dead 4 03 1 28 4 85 7 08 6 79 25 06 38 48 32 40 6 56 Below-ground Total 82 768 23 95 27 975 5 316 66 042 19.093 Overall Live 682 43 755 49 686 49 579 19 270 45 1386 00 1144 35 1753 14 699 37 A : B 9.66 26 .01 9 59 August 1991 Above-ground Dead 535 30 206 54 524.47 271.06 148 92 53 20 545.11 106 59 472 83 1 I 4 55 162 20 68 84 live 658 69 82 78 135 86 65.11 463 82 lOS. 75 552 30 141. 30 328 79 64.39 811.91 140 83 Total 1193 99 289 32 660 33 336.17 630 74 158 95 1097.41 247 89 801. 62 178 94 974 .11 209 67 Live:Dead 1 23 0 26 3 29 1.01 0 70 5 .01 B elow-ground Total 223.557 48 504 132.47860.286 289 647100 492 SO.831 12. 749 62 842 12 683 116 74319.918 Overall live 682 24 268 34 n3.47 603 13 391.63 928 65 A : B 2.95 1.03 1 67 10 87 5 23 6 95 January 1992 Above-ground Dead 595 55 76 99 237 96 52 16 685 67 145 45 621.61 196 86 428 .91 87 95 S07 54 76 10 Live 294 23 66 57 212 44 68 73 63 35 26 58 256 84 I I 1.40 455.54 294 58 306 40 42.90 Total 889 79 143 56 450.41 120 89 749 02 172 04 878 45 308 26 884 45 382 52 813 .94119. 00 Live: Dead 0 49 0 89 0 09 0.4 1 1.06 0.60 Below-ground Total 225 34 59.486 248.462 5.349 392 233 86 342 37.899 10 524 99 235 53 67 201.48 51. 185 Overall live 519 57 458 90 455 58 294 74 554 78 S07. 86 A : B 1 .31 0 86 0 16 6 78 4.59 1.52 August 1992 Above-ground Dead 524.12207. 87 748 .71 294 94 SO.74 23 29 296 43 57 15 385 80 141. 88

PAGE 211

Table 18. Total biomass summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Mean SE Mea n SE Mean SE __ __ M e an SE M e arL SE_Mean ___ SE ---.M...e_an SE_ Mean SE Live 666 77 207 58 705 .88147. 15 328 60 155 96 476 83 86 85 310 12 85 46 Total 1190 89 415 46 1454 59 442 09 379 34 179 27 773 26 144.Q1 675 92 227 34 Live:Dead 1.27 0 94 6 46 1 .61 0 85 Below-ground Total 173 939 39 209 223 66 59 746 42 006 9.192 108 923 43 154 227 758 48 407 O v erall Live 840 .71 929 54 3 7 0 .61 585 75 537 88 A : B 3 83 3 16 7 82 4 38 1.36 February 1993 Above-ground Dead 565 .16174. 58 617 55 84 05 220 79 109 88 84 .61 46 59 246 20 86 37 Live 4 1 0 16 94 46 506 19 83 83 177.32 61. 45 604 27 268 29 678 39 232 85 Total 97 5. 32 269 04 1123 74 1 67.88 398 .11 171. 33 668 88 3 1 4 89 924 59 319 22 Live :Dead 0 73 0 82 0.60 9 35 2 76 Below-ground Total 450 08 36.70 288 57 54.50 81. 06 29 80 145 84 38 59 201. 38 37 88 Overall Live 860 24 794 76 258. 38 750 .11 879 77 A : B 0 9 1 1 75 2 19 4 14 3 37 August 1993 Above-ground Dead 302 52 195.38 1135.20 207 40 61.79 53 22 175 69 77.30 Live 654 78 2 38 59 274 52 60.86 550 19 223 50 1142 .01 77.77 Total 957 29 433 97 1409 72 268 26 611.98 276 72 1317 70 155 07 Live:Dead 2 16 0.24 8 90 6 50 Bel o w-ground Total 96 62 27 .88 821. 34 201.33 36 05 16 45 182 24 66.42 Overall Live 751. 40 1095 86 586 .24 1324 25 A : B 6 78 0 33 15 26 6 27 M arch 1994 Above-ground Dead 144 23 69.57 185 08 8.84 507 43 76 59 813 88 174 19 431.42 187 25 278 23 41.58 Live 190 80 78.52 414 .77169.76 533.47 73.86 617 39 88.41 370 08 220 60 1171.79290 10 Total 335 .03148. 10 599 85 178.60 1040 90 150.44 1431.28 262 60 801.50 407 85 1450 02 331.68 Live:Oead 1 32 2 24 1 05 0 76 0 86 4 .21 B e low-ground Total 294 60 14 70 265 22 50 53 549 43 108 35 580 78 68 63 537 56 147.22 241. 76 96 77 Overall Live 485 40 679 99 1082 90 1198 17 907 84 1413.55 A : B 0 65 1 56 0 97 1 06 0 69 4 85 235

PAGE 212

Table 19. Above-ground Biomass Summary (Mean :l:SE) by Transect and Species. Species codes ending with -L represent leaves and -R roots and rhizomes Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean se Mean SE Mean SE Mean SE November 1990 ACERUB .................... ........ ......................................................................... ...................................................................................... .......................................................................... ALTPHI ......... 8 32 ........ 8 .31 ...... 0.11 ........ 0.11 ...... ........ ............................ ............ ............ 8 .76 ........ 8.76 ....................................................... ........... .............. ....... ...... 40.73 ...... 23.11 AMAAUS ............................................................. ......... ........................... 1.23 ........ 1.23 ...... .... ...................................................................................................................................... AMMCOC...................................... .......................................... ................ .................................................................................. ............ ............................................ .............. ASTSUB ....... 3 60 ........ 3.60 ..... ...... ............. ....... 111. 13 .... 106 57 .... 141.32 ...... 97 90 ...... 41.85 ...... 27.34 ...... 21. 82 ...... 21. 82 ........ 1.11 ........ 1 .11 ...... 17.61 .... 12.82 ... ........ ...... ..... .. ASTTEN ...... 1 .51 ........ 1 .51 ..... ................... ............ 0.21 ........ 0.22 ............. ................. ......... BACHAL ........... .......................................... ............................. .......................................... 0 77 ........ 0 62 ....... 0 97 ........ 0 62 ........ 4 23 ........ 2 08 ........ 0 43 ....... 0.37 ......................... BIDLAE ........................................................ ............................ .......................................... ....... ..................... ................................................ ................ ........... ............................. BRAPUR .............. ....................... .......................................... ........................................................................... ......... ....................... ........ . ................ ........ CALAME ........................... .......................... ....................................................................... 1.87 ........ 1.87 ..... ............................................................................................................. COMDIF ........ 3.77 ........ 3.77 ...... 46.29 ...... 31. 65 .......... ....... ....... ............ 3.79 ...... 3 60 ........ 3 83 ........ 1.91 ...... 62 78 ..... 44.18 ...................... ............................ ........ 190.12 ...... 74.91 CYNDAC ......... .............. ... .......................................... ...................... ..... 6 47 ........ 6.47 ....................................................... ..... ....... ....................................................................... ... CYPHAS ......... ........... ................ .......................................................... 3 .93 ........ 3.93 .......... ..................................... ...... .................................... .................................................... CYPIRI ......................... ......... ................................ ..... ................ ............ ..... ...... .... ............. ....... .................... ................. ......... ..................... ......... .................. CYPODO ....................... ............... ............................ 0 .05 ........ 0 05 .......... ........................... 0.74 ........ 0 .74 ......................... ............ 0.18 ........ 0.18 ... ..... ........... ... CYPSPP ........ ............................ 0 09 ...... .. 0 09 ........ 0 .22 ........ 0 .21 .......... ............................. .... ....................... 0.05 ........ 0 05 ......................... .............. ........ ........ ....... .... 0 28 ........ 0.28 DIGSER .................. ................. ........... ................ .................................................... ............................................ ......................... .................. ................. ............ .... ........ 0.02 ........ 0.02 ECHCOL ......... ............... .......... .... ........................... 9 62 ........ 9 62 ........ 7 79 ........ 7 79 ......................... ..... ...... 50 .61 ...... 50 .61 ........ 0 .34 ........ 0 34 ..................................................... .. ECLALB ........ 0 02 ........ 0 .02 ...... ................... ..... .......... ......................................................... 5 85 ........ 3.12 ........ 3 29 ........ 2 16 ........ 0 .03 ........ 0 04 .......... ..... ..................... 1 0 87 ...... 1 0 63 EICCRA ...................................................................... .............. ............................. ............................. ................ ...................................................................................................... .. ELEIND ......... l.0l ........ 1.01 ...... .... ........ ............ ........ 3.01 ........ 2.92 ...................................................................... ....................................................................................... 0 06 ...... .. 0.06 ELEVIV ........................................................ ............................. .............. ........................ ................. ...................... ...................................................................................................... EUPCAP ... 276 40 .... 255.77 .... 314.70 .... 305.79 ...... 74. 68 ...... 74. 68 .................................. 153 69 ...... 69.49 .. 1152 .01 .... 257 .41 .... 927.37 .... 233 95 .. 1628.00 .... 317.17 ...... 57 79 ...... 57.79 EUPSER ......... ................................ ............. ............ 1 82 ........ 1 82 ...................................... 2.23 ........ 2.23 ........ 0 29 ........ 0 29 .......... ... ................................ ...... ................................ .. GALTIN ........... ........................................................................ O.o1 ....................................................... .............. ........................... 2 27 ........ 1.26 .......... .............. ..................... ....... HYDRAN ......... ............ ............... ..... ....... ................................... ........................................................... .............. ...................................................................................................... .. HYDSPP ........................ ... ........................... ........................................................... ............. .. .......... ................. 0 59 ...... .. 0.59 ........................ .. ........................................................... HYDUMB ...................................................................................... ............. .............. .............. .......... ................. ................. .............. ..... .................................................................... .. lIMSPO ................................................................................................................................. ............................................ .............. .............. .............. .......................................... .. LUDLEP ................................................................................................................................................ .... ........................... ............................................. ............ .............................. .. LUDOCT ....... 6 35 ........ 6.35 ...... 15 68 ...... 15.68 ...... 75 .50 ...... 36 20 ...... 24. 18 ..... 16.95 ........ 3.22 ....... 1.67 ........ 0 56 ........ 0.57 ......................... ............ ... .............. .......... 11.9 .......... 8.93 LUDPAL ................................................. .. ................................................. ........................... 0 .40 ........ 0.40 ....................................................... ........ ............... ........... .. ..................... .. LUDPER .................................................................... .... ............ .............. ............... .......... .... ........ .............................. ................... ........................................................................... MELCOR. ...... O 25 ........ 0.25 .............................................................. ................................................................................................................. ....................... ..................... .............. MIKSCA ......................... .............................................................. ..................................................................................................................... ............ 0 .04 ........ 0 .04 ......................... PANDIC ...... 23 85 ...... 23.85 ...... 50 38 ...... 50 38 .. .. 317 .07 .... 163 65 .... 166.15 .... 100.59 ...... 14.02 ...... 11.43 .................................. 142.02 ...... n .05 .................................. 103.17 .. .. .. 70.68 PANSPP ............................. ...... 17 09 ...... 16 .91 ...... 93 .00 ...... 49 77 .... 125.55 ...... 84.43 ...... 28 63 ...... 28.63 ...... 56.58 ...... 56 58 .......... .............. ......... 103 00 .... 100.09 ...... 40 .04 ...... 40 .04

PAGE 213

Table 19. Above-ground Biomass Summary (Cant.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 5pectes Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PASDIC ........................................................................................................................................................... ......... ...... ............ ............... ................ ............................. ........... .............. ..... .. PASSPP ........................................ 2.53 ........ 2.53 ........ 0 .14 ......... 0.11 ....... 34. 30 ....... 34.30 ........ 0 .11 ........ 0.11 ......................................................................................................................... PASURV ........................ .... ............................................................................ .......... .................. 3.13 ........ 2.06 ....................................................... ......... ......... ...... ........................ 3.10 ......... 3 10 PHYANG ....................................................................................... ........ ...... 0 12 ......... 0 .12 ............................................. ............. ........................................... 0.01 ......... 0 .02 ..... ..................... PHYSPP .......... ........ ........ .......................... ............. ....... ...... ........... ................ ................ ....................................... .......... .......................................................................................................... POACEAE ..................................................................... ........................... 61. 76 ....... 61.76 ........................ .............................................................................. ............................ POLPUN ... 462.60 ..... 151.47 ..... 195 .04 .... 129 .22 ....... ............... ..................... .............. .... ....................................... 36.44 ....... 24. 33 .......................... ............ 4.03 ......... 4 03 ..... 168 64 ..... 110.96 PONCOR-L .................... .. ................................................................................................................................ PONCOR-R .............................................................................................................................................. .. RHYINU ................................ ........... ....................................... ............. ......................................... ............................ ........... ......... ................ ........ .................................................. 2.35 ......... 2.35 RUMCRI ....................................................................... ................................................................................................ ...... .................................................... SAGLAN-L 10.89 10 89 0 A SAGLAN-R ............................................................................................................................................................................................................................................................................ .. SAGMON-L ........................................ .. ........... ............... .................. ............. ........ ........................................... ................. ....................................... ........ ....................... ...... .......... SAGMON-R ...................................... SALCAR-L.. .................................................................. ............... ......................... .......... .................................................................... 66.55 ...... 66.55 .......... ......... ................................. .. SALCAR-R........ ............................................... ............ ................................. ........ .. ....................................................................................................... ..... ...................................... SALROT .... ............. ........ ................... ................. ............................... .......................... ........................................................................................................................................................ .. SAMSPP ........................ ................... ................. .................. ..................................................... 0 25 ........ 0.20 ......................................... 0 .21 ........ 0 .21 ......................................................... .. SESMAC .......................................................................................................................................................................................................... .. ................................................. ..4 23 ......... 423 SOLAME .................................. .............. ......... ................................ ............. .... .......... ........ ........................................................................... ...... .............................................................. TYPLAT-L .... 1.11 ......... 1.11 ....... 85.62 ...... 66.50 .................. ...................... 2 62 ......... 2.62 ........ 1.11 ........ 1.11 .................................................................................................................. TYPLAT-R ...... ................................................ ............................................ ............. ........................................... ........ ............... UDICOT ........ .... ...................................................................................................................................................................................................... ............. ................................................. .. UNKNOWN ................................................................. 0 .01 ......... 0.01 ......... ............... ............ ...... .......................... ............ ................ ....... 0.02 ....... 0.02 ........ 0 .01 ......... 0 .01 ........................... WOOVIR ..................................................................... 0.Q1 ......... 0.Q1 ........................................................................................................................................................ ............ .. .. ............... DEAD ........ 198 .21 .. ..... 71.62 ..... 568 66 .... 139 27 .... 141. 46 ....... 55 99 ....... 81. 85 ....... 68 66 ...... 39 85 ...... 17.56 ....... 55 30 ....... 51.39 ....... 29 74 ...... 29.74 ...... 54.11 ....... 26 75 ....... 96.61 ....... 25 83 DEAD-EIC .................................................... .. ... ............... ................................................................... ......................... DEAD-EUP .................................................... DEAD-LIM ............... ..................................... DEAD-LUD ................................................................................................................................................. ............................... ......... ........ ............ .. DEAD-PON ..................... .............. .... ............ ......... .................. .......................................... ........... ............. ............................................................................................................................ .. DEAD-SAG .................................................................. ............... ........ ................ .. ................ .................. .......................................... ...................................... DEAD-TYP ..................................................... ........................................................................................................................................................................................................................ .. August 1991 ACERUB ..................................................................... 0 .17 ......... 0 .18 .......................................... ....................... ............. ........ ................................. .............. ........ ................ ALTPHI ....... 28 57 ....... 28.56 ....... 26.32. ..... 26.32 ...... 27 23 ....... 27.23 .. ......... ......................................................... 27.02 ...... 27.03 ......................... .... ..................................... ..42 16 ....... 17.42 AMAAUS ... 103.92 ....... 70.08 ....................................... 5 93 ........ 4 .44 .... ................................................... .............. 0 05 ......... 0 05 ................... ....... ............. 1.16 ......... 1.16 ....... 88 30 ....... 79 .20 AMMCOC ........................... ..................................................................... ................... ............................................................................................................................................ 0 04 ......... 0.04 ASTTEN ...... ......... .................... .......... ......................... 0.14 ......... 0.14 ................................................................................................. ......... .......................................................... .. BACHAL.. .................................................................. 20 78 ...... 20 79 ..................................... ..... ............................. 0.34 ......... 0 30 ....................................... 0 12 ........ 0 12... ........................ BIDLAE ............................ ....................................................................................................................................................................................................... 3.99 ......... 2.30 .......................... .. BRAPUR ..................................................................................................................................................... ........... 21. 99 ....... 21.99 ....................................................... ................................ .. 237

PAGE 214

Table 19. Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean S E COMDIF ..................................................................... ............................. .............. ............................ .......... 21. 35 ...... 15 .96 ...................................... 0.08 ...... .. 0 .08 .......... .............. CyPHAS ......... ................ ........ ............... ............. ........ .............. .............. ............................ .. ........................................................... ........................... .. ............................. CyPIRI ............. ..... ............................... ... .................. 0.29 ........ 0 30 .................................................................................................. .............. .............. .... ........ .................. ........ .... .. CYPODO ...... 0.57 .. ..... 0.52 ........ 0 .54 ........ 0 .54 ........ 0.98 ........ 0 98 ......................... ..... ............................. .... .... 0 .58 .... .... 0.48 .......... .............. ............ 4.27 ........ 4 .12 ........ 0 .10 ........ 0.10 CYPSPP ...... ............................................................. 2 .76 ........ 2 .75 .......... ........................................................................... .............. ................... .. ........ ........... .... ............ 0.14 ........ 0.14 DIGSER ........ ................. ........................................... 0 .01 ........ 0 .01 ....................................................... .......... 15.90 ...... 14.51 .......... ................... .. .. .. 66.14 .. .. .. 40 .19 ........ 1.72 ........ 1 .64 ECHCOL ......... ............... ............ 1.32 ........ 1 32 ...... 23 .73 ...... 23 .09 ................. .............. ....... .................. .......... 76.39 ...... 67.34 ........ ....... ............. ........ 90.53 .. .. .. 41.64 ........ 0.09 ........ 0.08 ECLALB ........ 0.12 ........ 0 .12.......... ...... ....... .. ..46.72 ...... 34. 46 ........................................... ...... ............... 115 .02 ...... 32. 19 ......................... .......... 36.50 ...... 18.72 ........ 0 .72 ........ 0 .61 EICCRA-L ....... ............................. ......... .. ................. .............. .............. ...................................................... ....... ..................... .... ................. ............................. .............. ELEVIV ............ ............................. ....... ........ .. .... .................. .......... ............. ....... ............. ..................... .... 21.51 ...... 21.41 ................................................................................... .. EUPCAP .. ........ ............... ............ ... ..... .... ...... .. .. 6.02 ........ 6.02 .......... .............. .............................. ........ .... 8 .37 ........ 8 .37 .......... ............................. ............................. ............ .. EUPSER ......... ............... .............. ......... ................... 0.19 ........ 0.19 .......... ....... ........ ................................................................................. ......... ............ 0 23 ........ 0.24 .......... .............. GALTIN ........... ........ ....... ........ .. ................................ 0.o1 .. ...... 0.o1 ............................................... ......... ............ 0 26 ........ 0.17 ............... ...... .. ............... 0 44 ........ 0 .44 ........................ HYORAN .......... ............ .............................................................. .............. .............. .............. ............... ........................................... .................................... .... .... ....................... ...... HYDUMB ....... .............. ........... ........................................... ........ .... ...... .......................................................... .... ......... .... .... ..................... ......... ............... ...... ......... .... ................. ........ LlMSPO ......... ................ ............. ....... .......... ............... ........ ........... ........... .............. .............. .............. ............................. ....................... ............. ......... .......... .... ....... ........ ..... .......... LUOLEP ...... 81.18 ...... 81.18 .......... ..... ............... ............... ............... .... ..................................... ............... ...... ...... 0.12 ........ 0.12 ...................... ... ............ 0 46 ........ 0 46 ........ 0.08 .... .... 0.08 LUOOCT .... .................... ......... ................................................................... ........... ......................... .... ............... 74.69 ...... 39.83 ............... ...... .... .......... 66.12 ...... 42 .37 .. ......... .......... .... LUOPAL .......... ............. ................................................................................................................................... 0 .03 ........ 0 .04 .............................. .......... .............. ............................. LUOPER ..................................... ............... ................. ............. ......... ................. ...... ............ ........... ... .................................. ............................................... ...... .. ............................. MIKSCA .......... ....... ........ ........................................ 15.74 ...... 15.74 ........................ .......................... ...................................... .......... ......... .. ........................ ........ ................. .............. PANDIC ...... 22 .36 ...... 22.36 ........ ... ....................... 174.98 ...... 89.19 ......................... ......... ..... ..... ........... ............ 2 46 ........ 2.47 .......... ........................................................ 60.95 .... ..41 .73 PANSPP ..................................... ......... ......... ..................... ........ .... .......... ............... ............... ..... ..................... 0.30 ........ 0 .30 ................. ................... .... PASOIC ........... ..... .......... ............................................ .............. ............... .............. ....... .................................... 0 .13 .... .... 0 13 .......... ........ .... .. ....................... PHYANG ......... .............. ............ 0.50 ........ 0 .50 ........... .............. ........ ...... .................................................................... .. ............... ............. ................... 2 .3 7 ........ 2 .38 ......................... PHYSPP ......... .................. .......... ........... ............. ................. .................................. ............... ......... .... .... ............ 0 .02 ........ 0.02 ......................... .......... .... ...................... ....................... POACEAE ....... .. ....................................................................... .... ....................................................... ........ .... 0 06 ........ 0 .06 .................................................................... 0 .04 ........ 0 .03 POLPUN ... 398 .39 .... 13O.64 ...... 53.56 ...... 52.85 ........ 0.13 ........ 0 .13 ....................................................... ............ 1 18 ........ 0.77 ......................... .......... 35 46 ...... 34.34 .... 478.38 .... 171.13 PONCOR-L.. .O.02 ........ 0.02 ........................................ .................... ....... .............................................................. ............................. ..... .......... ............................. ............ 0 .04 ........ 0 .04 PONCOR-R ................... ............................................ ............................. .................................. ........ .......................... ...... ........................ ...... .............................. .......... ............. ...... RUMCRI.. ...... ........... ...... ....................................... ....... .............. .............. ............................. ... ...... .................. 0 28 ........ 0 28 .......... ............... ....................... ....... ............ 0 .66 ........ 0 .66 SAGLAN-L ...................... .... ............. .... ....................... .............. .............. .............. .............. ....................... .... .................... .......... .............................................. .............. ..... .......... SAGLAN-R .................. .................. ...... ........ ............................. ..................... ........ ............................. .................................................................. ....................... ............................. SAGMONL...0.12 ........ 0 .12 .......... ............... ........ ...... .......... ............................. ...... .... ........... ............... .... ......................... ..... ......... .................................................................... ....... SAGMON-R ................................... ............................. ....................... ......... ............ .............. .............. ................................................................. ........ ........... .. .......................... ........ SALCAR-L ................................ ....... ............ .............. ....................................................... ............. ...... ........ 128 .64 .... 128.64 ............................ .... ...... 0 .32 .... .... 0.32 ........ 1.24 ........ 1.24 SALCAR-R .... ........... .................................................................. ...... ...................................................... ............................................................... ...... ........... ........ ............... .............. SALROT ....................................... ... ...................................................................................................... .............. ........... ....... .............................................. ........... ................. .......... .. SAMCAN ........ ................. .............. .... ....... ... ............... ...... ...... ... .......... ................. ... ................. ...... .... ........... ...... ............................................ .............. ............ ........................... ...... SESMAC .... ................. ... .............. .............. .............. .............. ...................................................................... 11.32 ...... 11.32 ......................... ...................... ... ............. 121.25 ...... 66.92 SOLAME ......... ....................... .. .... ........ ...... .............. .... ...... .... ...... ....... ............................. ............. ............ 24 26 ...... 24. 26 ........... .... ........ ........ ....... 0 .57 ........ 0.57 ......................... TYPLAT-L ... 23.43 ...... 14.54 ...... 53.62 ...... 24.93 .... 157 .99 ...... 97.57 .. ...... ............................................................................. ................................................. .... ................. 16.00 ...... 11.94 TYPLAT-R ...... ....... ........... ............. .......... .... ........... ..... ................... ...... ....... .... .................................................................... ............................. ................... .... ...... ............. .. ....... ........ UOICOT ...... ....... ............................................. ...... ......... ............. .......... ....... .... ......... .......... ................. ......... ...... 0.07 ........ 0.07 ...................................... 0 .66 ........ 0.86 .......... ....... ........ DEAO .. ...... 535.3O .... 206 .54 .... 524.4 7 .... 271 .06 .... 146 .92 ...... 53.20 ........................................... ........ ......... .. .. 545.11 .. .. 106.59 .................................. 472.83 .... 114 .55 .. .. 162 20 ...... 68.84 DEAD-EIC .......... ........ .. ............. ..... .... .. .............................................................. .. ................................... .... ........... .... ...... .... .............................................................. .... ..................... .. 238

PAGE 215

Table 19. Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE DEADEUP .................................................... .................... ....... ....... .............. ...................... -........................ DEADLlM ..................................................... DEAD-LUD ........................... .......... ............. ............... .... ... ...... .............................................................................................................. DEAD-PON ... .... ........... .... ..... ... ..... ........................... .............. .... ............... ........................................ .... ............... .............. DEAD-SAG ........................................ .......................................................... ............... .. ....................................................... ......... ....... ... ....... ....... DEAD-TYP ...... .............................. ....... ........ ............ ............ ................................. ..... .............. ............. .............. .... ....... ................ .......... ............... ............. ... ... ........ .... ..... .......... January 1992 ACERUB .............................. ..................................... 0 30 ......... 0.30 ....................... ........................................ ...... .... ......... ............... ................. ....... ........ ...... ........... ....... ..................... AL TPHI ........ 46 63 ....... 36 90 ....... 17.13 .... 14.95 ........ 7 86 ......... 7 75 ............... ........................................ .............. 1 06 ......... 0 97 ........... .............. .............................. ........... 46.79 ....... 26 .02 ASTSPP ............................ ............... ............... ............ 0 37 ......... 0 37 ........... ................. ..................... ................... 1 34 ......... 1 34 ........... ........................ ..... .. .............. ............... ............... ASTIEN ............. .................................................... ................................. ....... ............ ............................................ ............................... .............. ............ 0 .51 ......... 0.51 ........... ............... BACHAL. ......... ............... .............................. ......... .. ................................................. ........................ ................ 135 13 ..... 118.43 ........... .............. ............ 0.21 ......... 0 .21 ........... ............... BIDLAE ............................ ...... ....... ...... ......... ..... ........................ ................................... ..... .................. ................................ .................. ....................... 23.88 ....... 23.88 ........................... BRAPUR ........................................................ .............................. ..... ............ .................................. .......... .............. 45 29 ....... 33 .51 .......................... ........ 312.67 ..... 312 68 ......... 9.52 ......... 9 52 COMDIF .......... ............... ....... ...................... .......................................................................................................... 3.19 ......... 2 89 ........... .............. ................ .............. ................. ...... ........ CYPERAC ........ .......................................... ................. .............. ............ .... ................ ........................................... 0 06 ......... 0 06 .................. .................. ............ ....... .... ............. ........... CYPSPP .......................... .............. .............. ............. ..................................................................... ................ 0 54 ......... 0 .54 ....................................... 0.50 ......... 0 50 ........................... ECHCOL ......................................................... .............. ............................... ............... .............. ....... .............................................. ....... .... .......................... 0 24 ......... 0 24 ...................... ..... ECLALB .................................... ...... ......... ................. .............. ................................. ........ ........................ ........ .. 0 02 ......... 0 02 ........ ............. ................ ... .................... ............ .......... EICCRA-L ...... ........................... ..... .......... ..... ............... ... ............ ....... ......... ..... ............ ................ .......... ............. .............. .................. ...... ....... ........... ..................... .... ................ ..... ...... ELEVIV ......... ................................... ............................................ ....... .... ..... ............... .. ............. .. ..... ..................... 2 37 ......... 2 24 ......... ... ........... .............................. ..... .... ............. .... ...... EUPCAP ................................................................... ......................... ........................................ ....... ..... .............. ... 40 .82. ...... 40 82 ...... ............. .... ................ 2 00 ......... 2 00 ........................... GALTIN ....... ....................... ........ ........ ........... ............. 0 .01 ......... 0.01 ............ ..................... .... .................... ... .. ... 2 90 ......... 2 75 .... ..... ..... ................... ...... 5 20 ......... 4 .81 ............. ......... ... .. HYDRAN ............................................. '" ............ ............ ............... .................... ............................ ............ .......... .... .......... ........................ ........ .................. 11.58 ....... 11. 58 .. ..... ..... ............. .. HYDSPP .............................................................................................................. .................................................................................................... ............ 0 07 .... ..... 0.07 ...... ......... ............ LlMSPO ............ ............ ................................ LUDLEP ........... .................................................. ........ ................................................. ..................... ....... LUDOCT ............. .......................... ............................................................. .......... ........................................... .......... 0 .34 ......... 0 .34 ........... .............. ............. LUDPAL .......................................... ........................... 0 65 .. ....... 0 65 ................................................................. ............ ......................................... .............. ............................................. LUDPER ...... 1 0 .16 ....... 1 0 .16 ........... ...................................................... .............................................................................................................................. 50 .94 ....... 33 46 ....................... .... LUDSPP .......................................... .............. ....................................................................................... .... ............... 0.01 ......... 0.01 ........... .... ................. ........... ........................... ............ .... MIKSCA ......... ..... ............................. ............. ............................................................................................ PASDIC ........................................... ..... ...... .......... .... ............................ ............................... POLPUN ..... 37.01 ....... 19.07 ....... 13.56 ........ 7.78 ........ 0.14 ........ 0.14 .................... ............................................... 21.00 ....... 14.37 ........... ....... .................. 10.62 ......... 7.11 ..... 104 62 ..... 40 .01 PONCOR-L .......... ... ...... .... .......................... ............... ............... ............... ....................................... .. ... ........ ....... ........................................................ .... PONCOR-R ........ .......... .............................................. ............... ................................... ....... ............. ..... ......... ...................................................... RHARHA ..... ....... .... ......................................... ..... ......... ............... ............... ....... ......................... ......................... 2 76 ......... 2 .n. ......................... ............... ............... ............... ............... SAGLANL ....................... .... .................................... ....... ............. ................ ........................... .... ......... ......... ..... ......... ...................................... ............... ............................. 6 09 ......... 6 09 SAGLAN-R ..... ................................. ................... ....... ............. ............................................ ......... ................... ............................... .... ............................................................... ............... SAGMON-L ..... ........................ ...... ....................... ....... ............... ........ .... ....... ......... ............. ... ... ...... ............ .... .... ........ ........ ................. ... ..... ....... ............ 1.73 ......... 1 73 .... .... ......... .......... SA LCAR-L ... ..... ... .................................................. ..................... ........... .... ............... ..................... ...... ............... ...... .... ..................... ....................................... ........................................ SALROT ................................... .... ................. ............................... ........ ....... .... .................. .... ......... .... .... ......... ...... ............. ............ .... ............................ 0 .14 ......... 0 .14 ........................... SAMCAN ....... 1 .11 ......... 1 .11 ....... ................................................................. ................. ...... ....... .... ..... ....... .............. ...................... ........................... .... ................ ...... .... ...... ...... ................ 239

PAGE 216

Table 19 Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mea n SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE TYPLATL.199.33 ..... 72.07 .... 181.75 ...... 83 22 ...... 54.01 ...... 28.06 ............ ............... ................................................... .......... ..... ....... ........... ......... 18.82 ...... 18.82 .... 139.18 ... ... 57.94 TYPLATR .............. .... ... ...... ....... ................................................................. ............... ......... ......................................... ....... ......................................... ................. ........................... fIoat/ng ............................ ... ....... ......................................... .......... ........................... ............................ ..... .................................................... ...... ......... 16.42 .. .. .. 16 .42 ............ ............ DEAD ........ 595 .SS ...... 76.99 .... 237 96 ...... 52.16 .... 685.67 .... 145 45 ... ....... ................... ................... ......... .... 621.61 .... 196.86 .......... ....................... 428 .91 ...... 87.95 .... 507 .54 ... ... 76 .10 DEAD-E/C ....... ........................................... ....... ........ .............. ................................. ....................... .......................................... DEADEUP ................................................. .... .......... .............. ........................ ...... .......................... DEADLlM ...................... ............ ... ............................ ............... ......................... ... ...... ...................... DEADLUD ............ ..................................... .............. DEADPON .... DEAD SAG ........... .... ............................ DEADTYP ..... ........... ........................ .... August 1992 ALTPH/ ......... 9 .41 ........ 9 38 ........ ....... ....... ........................................................... ........................ 38 06 ...... 11.51 .......... ............... .......... 50.41 ...... 48.96 ...... 75 40 ...... 43.20 B/DLAE .... ...................... ......................................... .. .. ............. ........... 0.16 ........ 0 16 CYPHAS ........................................................................................................ ................................................... ........................... ........ .... ...... ..... 0 69 ....... 0.69 ......................... E/CCRAL ......... ................. ................................ ............ ........ ......... ............... ..... ............. ......... ........... ..... 0.49 ........ 0 49 ........................ ....................... ...... .............. ... ........... ELEV/V .................................................................................................................... ............... ........................... 0 .06 ........ 0 .05 .................... ..... ................ .......... .......................... .... HYDRAN ......... ............ .................................................................................................................... .............. 0 .65 ........ 0 46 ......................... ..... .... 46.91 ...... 46.62 ................ ........ HYDUMB ...................... .... ......................... .......................................................................................... .................. ..... .......... ............ ......... ....... .... 4.09 ........ 4 09 .... ............ ....... LlMSPO ......................... ........................................ 34.32 ...... 34 32 ............. ......................... ........................ 72.83 ...... 72 84 ......... ........... ........ .......................... ................... ..... LUDOCT ..... 18. 09 ...... 18.09 ....................................................................................................... ......................... ...................... ...... ............................ 0 06 .... .... 0 06 ...... 24 10 ...... 23.65 LUDPER .................... .................................... ............ ............. ................. .... .... .... ........... .......................... ..... 10 69 ...... 10. 69 ..... ........ ....................... 49.24 ..... 49 25 .......... .............. M/KSCA ................ ....... ...... .......... ......... .................... .................. ...... .... ......... .... .............. .............. .................................................................... .... 7.06 ....... 6 95 ......................... PASO/C ............ ...... ........ ....... .. ..... .............. .............. .............. ............... ............... ............. ............... ............... ........ ....... ...... .... .............. ..... ...... 1.97 ....... 1.97 ......................... POLPUN ......... ............. ...... .............................. ...... .... ..... .......... ................... ....................... ............... ..... ...... 4 86 ........ 4.68 ...... ................... .......... 27.10 ..... 18.32 ........ 1 53 ........ 1 53 SAGLANL .. 83.26 ..... 83.26 .... ....... .... .... ...... ...... ......... ...... ....... ............ .... ...... ..... .............. .... ......... ... .......... ........... .... ....... ... ................. .............. ......... ...... ............... ............ SAGLANR 48.47 ..... 48.47 .......................................... .... ........ ............ ............. .............. ........................................ .... .............. .............. ..... ............................................................ SAGMONL ........................................................................................... ......................................... ............... 25 62 ...... 25 62 ............ ............. ......... 68 .21 .. .... 44.79 ......................... SAGMONR ............... ............. ................. ............................... .............. ........... ............... ...................... ................................ .......... ............. ..... ...... 3 37 ... ..... 3.38 ......................... SALCARL ..................... ...... .............. ...... ..... .... ........................ ..... .......................................................... ... 147 06 .... 147 06 ........... .................... .... 67 .10 ...... 67 .10 ................. ...... SALCARR .................... ....... ...................................................... .............. ........ ...... .. ............................................ ............................................ .......... 15.80 ...... 15. 80 ............. ........ TYPLAT L 466 53 .... 149 84 .................................. 569.17 .... 151.75 ...... ........................ .......... ......................... 17.35 ...... 17. 38 ......................... ........ 114.81 ...... 65 77 .... 208 .94 ...... 60.72 TYPLAT-R .. 41.01 ...... 27 03 ................................. 82.39 ...... 44.40 ............... ...... ..................................... ....... 10 30 ...... 10 30 ......................... ........................................... UD/COT ....................... ....... .......... .................. ......... ... .............. ................. ...... ..................... ........................... 2 62 ...... 2.62 ..... ................... DEAD ...... 329 34 .... 15O.51 ............................ ....... 50.75 ..... 37. 03 ......... ..... ........... ..... ........ .............. ....... ... 50 .74 ...... 23 29 ...... ....... .... ........ 156 68 ...... 61.67 .... 163.1 8 .... 120.31 DEADLlM .................. ......... ......... .............. ........... 34.50 ...... 34.50 ........................................ ..... ........ ..................................... ............ .. .... .... ........ ................... .......... .................... DEAD-LUD ................ .... .... ..... ........ ........... ................ ........ ........... ........ ....... ........ ............ ........... 12. 58 ...... 12.58 ...... .................. DEAD-SAG .... .......... ............ ....... .......... ................... .............. ............. ....... ...... ....... ........ ......... .. .......... .. ............ 8 83 ........ 8.83 ........... .... ........ DEADTYP 194.78 ...... 83.38 .............. .. ................. 663.46 ... 313 .10 .......... ........................... ....................... .... .... ......... ..... .............. ........ 118.15 ...... 77.35 .... 202 62 ... 110.65 240

PAGE 217

Table 19. Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Species Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE February 1993 AL TPHI.. ........ 5 56 ......... 5 29 ........... ........................... 0 07 ......... 0 08 ...................................................... .............. 0 12 ......... 0 .12 ..................................... 1 12 ......... 0.69 ....... 54.74 ....... 4211 BIDLAE ............ .............................. .......... ............................................................................................... ........................................................................... 0.02 ......... 0 .02 .......... ......... ...... .. EICCRA-L ............ .......................................................................................................................................................... .................................................... 119.47... .. 119 47 ......... 0 22 ......... 0 22 ELEVI V ............................................................................................................... .......... .......... ................... ............ 21. 16 ...... 21. 16 ............................. .. ....................... .... .................... .. EUPCAP .......................... ............ ................................ ........................................................................... ..................................................... .. GAL TIN ................................ ........................................ .............................. ........................................... .................................................................. .. ....... 0 .04 ......... 0 04 .......................... .. HYDRAN ....... 0 25 ......... 0 25 ......................................... ......................................................................................... 38.45 ....... 38.20 ........ .......................... 137 10 ..... 134 58 ........................... LlMSPO ..................................................................... 30 35 ....... 30 35 .......... .. ....... ................................. .. ..................... .. LUDLEP ........ 0.13 ......... 0 13 ....................................... .. LUDPER. ....... O 23 ......... 0 23 ......................................... ........................ ....... ........................................................ 40.38 ....... 40 38 .. ................................... 59.96 ....... 51. 12 ......... 7 68 ......... 7 68 MIKSCA .......................................................... ............... ......................... .. ....................................... ............................................................... .......... 25 .11 ....... 23 59 .. ...... .................. .. POLPUN ....... 9 68 ......... 8 09 ........................ .. ................................................................. ...................................................... PONCORL .................................................... ............... ..... ...................................................................................................................................................... ........... 96 02 ...... 96 02 PONCOR-R ......................................................................................... ........................................ .................................................................................................................... 118.56 ..... 118 56 SAGLAN-L .. 58 .91 ....... 58 .91...... .................... ............... .............................................................................................. .. .................. ....................... ......... .. ....................... .. .. .. ...... .. SAGLAN-R .. 26 86 ....... 26 86 ...................................................................................................................... ...................................... ........................... .......................................................... .. SAGMON-L. ................ ...... ............................ ............... .... ............................. ........................... .......... .. .......................................................... ............. 0.01 ..... .. .. 0.01 .......................... .. SALCAR-L ............. ............ ...... ............................................................................................................... ................................. ...................................... 156 56 ..... 156 56 ....... 35.81 ....... 31.29 SALROT .................................. .................................................. ................................... ........................................................ ........................................... 14 82 ...... 11.42 .......................... TYPLA T-L 157 70 ....... 54 19 ............ ..................... 421. 53 ....... 84.85 ............... ................... ............................. .... 79 24 ....... 59 05 ..................................... 86 97 ....... 30 39 ..... 212 75 ....... 90.06 TYPLA T-R 150 86 ....... 56.52 ..................................... 54. 23 ....... 16 05 ..................................................................................................................................... 3 08 ......... 3 08 ..... 152 82. ...... 73.43 DEAD ...... .. .............................................................. 134 .51 ....... 94.75 .................................. ................................... 48 89 ....... 48 89 .................. ....................... ............................ 14 97 ....... 11.10 DEAD-EIC ................................................................................................... .................. ........................................................................................... ............ 4 .59 ........ .4.59 .. ...... .................. .. DEAD-EUP ............................................................................................. ................................................................... 3.58 ......... 3 58 .................. .................... ..................... .... ...................... .. .. DEAD-LUD ................................................................................................ ............................................................. 46.48 ....... 46.49 ........................................................................................ DEAD-PON .................................................... ........................................................................................... ................ ........................................................................................... 28 64 .. ..... 28 .64 DEAD-SAG 11.75 ....... 11.75 ....................... ....... ........ .. DEAD-TYP 553.41 ..... 179.43 ...... ............................ 483 05 ....... 62 54 .... ................... .... ................. ........ ..... ........ 121. 84 ....... 83 82. ........ ........ .... ............. ... 60 03 ...... .47.21 ..... 202 58 .. .. ... 79 87 August 1993 AL TPHI.. ........ 3 17 ......... 1.71 ........................................ ........................................ ...... .............................................. 0 1 0 ......... 0 06 ............. .......................... 0 .02 ......... 0 02 ................ .......... .. AMAAUS ... 103 38 .. ... 102 12 ........................................................................ .... .................. ....................................... 6 09 ......... 6.09 ........................ .. CYPODO ....... 1.71 ... ...... 1 .71 ..................................................................... .............................................................. 15 97 ....... 15.98 ............... CYPSPP ........ 0 03 ......... 0.03 .......................... ........................................................................................... ECHSPPI .................................................................................................... .... .................................. ......... ............ 38.59 ....... 38 60 .............................................................................. ...... .... .. ECLALB .. ....... 0 .Ol ......... 0.0l ........................................................................ .. .............. ..................................................... ............. ........................................ 0.41 ......... 0.42... ........................ ELEVlV ........................................................... ........................................... ...... ........................................ ... .............. 0 03 .... .... 0 .04 .................................................................................. ...... .. HYDRAN ....... 0 .61 ......... 0 .61 ..................................................................................... ............................ .................... 0 67 ......... 0 67 ......................................................................... ............... LUDLEP ...... 26 80 ....... 15 03 ...... .... ........................................................................... .............................................. 58 67 ....... 58 68 ..................................... 35.50 ....... 35 50 ........................... LUDOCT .................................................................................................................................................................................................................... ........... 20.23 ....... 20 23 ........... ............... LUDPER ........................ .................... .. .......................................... ............................................................. ......... 286 19 ..... 288.19 ................................... 259.26 ..... 259 26 .......................... .. MIKSCA ......................................................................................... ............................................................. ......................................................................... 12.54 ....... 12 54 ........................... 241

PAGE 218

Table 19 Above-ground Biomass Summary (Cont.) Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 Soecles Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PANoIC ......................... ............................................ .. ....................................................... 3 78 ........ 2.32 ..................................................................................... POLDEN ....................... ..... .......... .............. .............. ............................................ .. ...... 255 25 .... 255 .25 ........................ PDLPUN ..... 0 93 ........ 0 93 ......................... .............. ...... ........ .... .......... ........ ....... ............... .......... 70 06 ...... 70.07 ....................... .. .. .......... 4 30 ........ 4 30 ......................... PONCOR-LI21 44 .... 121.44 .......... .............. ........ ..... .......................................... ................... ......... ............................................ PONCOR-R 95.23 ...... 95.23 ................. ... ........... ....... ..... .............. ........ SAGLA N-L .. 54.01 ...... 54.01 ...................... ...... ........ SAGLAN-R ... 7.00 ........ 7 00 .......... ............ ................................. .......................... ." ........................................ SALCAR-L ...... ........................................................... ............................................ ............................. .............. .............................. ............. ........ 187.76 .... 181.87 ......................... SAMCAN ....... O 08 ........ 0.08 .......... .................................................................................... ..... .......................... .. .......................................................... TYPoOM ... l06. 59 .. .. 106.59 ....... .... .... ........ ............. ..... ............................... ....... ................ .... TYPLAT-L .I33. 80 ...... 83.4O ......................... ........ 274.52 ...... 80.86 .......... ................................... ........... ...... .... 70 .01 ...... 70 .02 ................................ .. 332.15 .... 207.91 ....................... .. TYPLAT-R .................... ............ ............................................................................................................. ...................................... .. ................... .......... 34 57 ...... 34. 57 ....................... .. DEAo .......... 32.81 ...... 32 .81 ............................................................................. ...... .................. .... ................... .. 61. 79 ...... 53 .22 ...... ........... ........ ........ 175 69 ...... 77 30 ....... .................. DEADTYP269.71 .... 207 35 ........................ .. ...... 1135 20 .... 207.40 ................................................................ .. ....................................... .... ....... ...... ........... ................. ............... .... .. March 1994 ALTPHI ......... 0.Q1 ........ 0.Q1 ........................................ .......................... 0 67 ........ 0.67 .......... .............. ....... ...... 0 63 ........ 0 62 ...................................... 4.84 ........ 4.84 .......... .............. AMAAUS ....... 0 12 ........ 0 12 ...................................................... ............................................ ............ ... .................................................................................................... ................... CYPSpp ....................................... ........................... 0.Q1 ........ 0.Q1 ........................................ ........................................... ........................................................................... .............. EICCRA-L ..................................... ....................................................................................................................... ..................................................... 689 93 .... 402 73 .......... .............. EICCRA-R ..................... ............................. ........................................................... ............................. .............. ............................. ......................... 40 84 ...... 40 85 ........................ .. HYDRAN ..... 47 90 ...... 47.39 .................................... 45.53 ...... 30.81 ........ 0.19 ........ 0.19 ......................... .... ......... 0 .12 ........ 0.12 .................................... 48 44 ...... 21. 06 ........... .............. LUOLEP ........................................... ...... ................... 0 05 ........ 0 05 ............. ................................... ...... ................................... .............................................................. ....................... LUDPER .... ...... ........................... 0 .02 ........ 0 02 ....................................................... .................................................................................................. 132 .18 .... 132.18 ........................ .. PASoIC ........... ............................................ ............................................ .......................................................................... ........................................ 71. 88 ...... 71. 88 ...... .. ................. POLO EN ..................................... 1 .39 ........ 1.39 .................................................................................................................................. POLPUN ....... 6.98 ........ 5.50 ........ 0.18 ........ 0 18 ........................................ ...................................... .... ............... 0 .04 ........ 0 04 ..................................................................................... PONCOR-L.17.59 ...... 17.59 .......... ......................... .... .............................. ............................................ ......................................................................................... ........................... PONCOR-R 20.18 ...... 20.18 ...................................................................... ............................................ ....................................................................................................................... SAGLAN-L .. 12 64 ........ 9 80 .......... ........................................................... ........ .................... ..... ...... ..................................................................... ...... ......... .......... .... ...... .................... SALCAR-L ..................... ...................................................................................................................................... .............. ........................................ 26 .81 ...... 26 82 ......................... TYPDOM ................................................................. 84 32 ...... 50 .11 ............................................................................................................... .... .................... .... ................... .. TYPLAT-L ... 85 .4O ...... 42.31 .... 413 .18 .... 168 17 .... 403.57 .... 106 .18 .... 616.54 ...... 88 86 ................................. .459 43 .... 258 89 ................................ .. 156 86 .... 141. 07 .......... ............... TYPLAT-R ...... .................................................................................................................. ................................. 2 38 ........ 2 38 ............... ...... ................. ........... ...... .............................. TYPSPP-S ................................................... ............................................ ................. ............ ...... ....................... ............. ... ............... ........................................................................ .. UDICOT ....... ........ .......... .............. .............. ................................................................................. .......................................................................................... .... ....... .. ........ ... .............. DEAD ........ 144 23 ...... 69.57 .... 185.08 .... .... 8.84 .... 333 66 ...... 70 95 .... 723.30 .... 215 33 .................................. 539 27 .... 197 .61 .................................. 278 23 .... ..41 56 ......................... DEAD-TYP 173.77 87 73 90 56 90 56 242

PAGE 219

values ranged from 42 g m-2 (T6) to 228 g m-2 (T9) (Table 17). Ratios of above-ground biomass to below-ground biomass ranged from 1.36 (T9) to 7.82 (T6). Dominant species for this sampling period consisted of Alternanthera philoxeroides, Baeeharis halimi/olia, Braehiaria purpurascens, Eupatorium capilli/olium, Ludwigia peruviana, Polygonum punetatllm and TYPha lati/olia (Table 19). In Februa.ry 1993 above-and below-ground live biomass ranged from 258 g m-2 (T6) to 880 g m-2 (T9) with above-to below-ground biomass ratios ranging from 0.91 (Tl)to 4.14 (T8). Live biomass above-ground ranged from 177 g m-2 (T6)to 678 g m-2 (T9) and live below-ground biomass ranged from 81 (T6) g m-2 to 450 (Tl) g m-2 (Table 18). The dominant vegetation consisted of Altemanthera philoxeroides, Eiehhomia erassipes, Hydrocotyle ranunculoides, Ludwigia peruviana, Pontederia cordata, Salix caroliniana and TYPha lali/olia. T. latifolia provided more than 50% of the combined live biomass in all but two transects measured (Table 19). Dead above-ground biomass ranged from 65 g m-2 (T8) to 618 g m-2 (T3), with a range ofabove-ground live to dead ratios of 0.73 (Tl) to 9.35 (T8) (Table 18). Dead biomass from August 1993 ranged from 62 g m-2 (T6) to 1135 g m-2 (T3), with live above-ground biomass values ranging from 275 g m-2 (T3) to 1142 g m-2 (T8). The ratio of live to dead above-ground biomass ranged from 0.24 (T3) to 8.90 (1'6) (Table 18). Below-ground live biomass ranged from 36 g m-2 (T6) to 821 g m-2 (T3). The aboveto below-ground live biomass ratio ranged from 0.33 (T3) to 15.26 (T6) (Table 18). Dominant species found along the transects were Alternanthera philoxeroides, Amaranthus australis, LlIdwigia leptocarpa, Ludwigia peruviana, Polygonum densijIorum, Polygonum punetatum, Pontederia cordata, Sagittaria lanei/olia, Salix caroliniana, TYPha domingensis, and Typha lati/olia (Table 19). In March 1994 there were six dominant species throughout the system: Eiehhomia erassipes, Hydrocotyle rammculoides, LlIdwigia peruviana, Paspalllm distiehum, TYPha domingensis, and Typha lati/olia (Table 19). Above-ground live biomass ranged from 191 g m-2 (Tl) to 1172 g m-2 (T8). Dead biomass ranged from 144 g m-2 (Tl) to 814 g m-2 (T4), with a ratio of live to dead above-ground biomass from 0.76 (T4) to 4.21 (T8) (Table 18). Below-ground biomass ranged from 242 g m-2 (T8) to 581 g m-2 (T4) with a ratio between above and below-ground biomass ranging from 0.65 (Tl) to 4.85 (T8) (Table 18). Total above-and below-8I:0und live biomass for this sampling date ranged from 485 g m-2 (Tl) to 1414 g m-2 (T9) (Table 18). Contribution to Biomass by Common Species Species composition changes resulting from initial inundation and subsequent flooding influenced the standing crop biomass within the system. Nine species that dominated the system at some point during the study period have been addressed in more detail. A discussion of each of these species and changes in the dead biomass within the system follows. Altemanthera philoxeroides was a relatively small component of the biomass during the first sampling,
PAGE 220

c: os Q) ::;: E AlternanJhera philoxeroides 120 100 2. 120 100 2. 120 100 20 120 100 .. 2. 120 100 80 60 40 20 o 120 100 2. 120 100 .. 2. 120 100 8 2. 120 100 2 Transect 1 I-r--+----I I Transect 2 I I Transect 3 '----+--1 Transect 4 Transect 5 I Transect 6 + + Transect 7 Transect 8 Transect 9 1 T L j I j NOV 90 AUG 91 FEB92 AUG 92 FEB 93 Time (Months) I AUG 93 MAR 94 Figure 91. Time series of AJtemanthera philoxeroides biomass (g m -2 Mean SE) from Natural Succession Transects_ 244

PAGE 221

periods, biomass of A. philoxeroides appeared to follow a bell-shaped pattern, with transects in the south marsh reaching maximum biomass levels earlier than those in the north Biomass of A. philoxeroides increased until August 1992 (Table 19, Figure 91). Biomass distribution of A. philoxeroides was very patchy, indi cated by a high -90% average coefficient of variation along all transects except for transect 9 Transect 9 showed a more even distribution during the study period, with a coefficient of variation averaging 57%. Biomass contribution from Eupatorium capillifolium was the greatest during the first sampling period in November 1990 with average values on transect 8 as high as 1628 g m-2 (Table 19). By the next sampling period in August 1991, E. capillifolium was absent on several transects On transects where E. capillifolium was found, biomass levels were <10 g m-2 (Figure 92). In the February 1992 sampling, E. capillifolium biomass at transect 6 increased to 41 g m-2 but disappeared by August 1992. Biomass of E. capillifolium was always higher in the north cell of the marsh than in the south cell (Table 20). High biomass levels of Hydrocotyle rammclIloides were not measured until the February 1993 through March 1994 sampling periods (Figure 93). Except for transect 8, H. rammculoides biomass never averaged more than 48 g m-2 This level was attained at T6 in February 1993 and at T1 and T2 in March 1994. At transect 8, biomass increased gradually between February 1992 and February 1993 and was followed by a sudden decline six months later. H. ranunculoides biomass, like E. capillifolillm, was generally higher in the north cell of the marsh than in the south cell. However, there was one exception in March 1994 when the south cell had a greater average biomass (Table 20) The coefficient of variation between nodes in all but transects 3 and 6 in March 1994 was greater than 95%, suggesting a very patchy biomass distribution ofH. rammculoides throughout the site Panicum dichotomiflora biomass was as high as 317 g m-2 along transect 3 and ranged between 0 and 166 g m-2 along other transects in November 1990. August 1991 biomass levels were half of previous measurements Apparent extirpation of Panicum dichotomiflorum occurred by February of 1992 when, after sharp declines in biomass, no individuals of this species were collected (Figure 94). Comparison of the north and south cells indicated the south marsh, except Polygonum punctalum exhibited a similar biomass pattern as that of P. dichotomiflorum. A maximum biomass of 463 g m-2 (Tl) and 478 g m-2 (T9) was recorded during the first two sampling events, followed by substantial declines in February 1992 (Figure 95). Low biomass levels persisted throughout the remaining study period with a maximum of70.06 g m-2 (T6) found in August 1993. Also the biomass distribution between the north and south cells showed higher levels in the south marsh except for the August 1992 and 1993 sampling events when biomass for this species was greate r in the north cell (Table 20) 245

PAGE 222

Eupatorilun capillifolium 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 0 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o 2000 1500 1000 500 o Transect 1 I Transect 2 t Transect 3 Transect 4 Transect 5 I Transect 6 Transect 7 Transect 9 NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 92. Time series of Eupatorium capillifo/ium biomass (g m-2 Mean SE) from Natural Succession Transects 246

PAGE 223

Table 20 Uve biomass summary ( g m Mean SE), North (N) and South (S) Cells. All entries are leaf or culm biomass. Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SE Meao sg Mean SE Mean SE Mean SE Mea!] sg Mean SE ACERUB N S 0 03 0 03 0.06 0 .06 ALTPHI N 2.19 2 19 6 .76 6 .76 0.27 0 25 21.62 12 60 0 .31 0 19 0 .02 0 .01 0 68 0 .61 S 11.30 6 23 23 80 9 16 23 56 9 .94 19 .75 11.34 14.11 10.56 0 .30 0 10 0.08 0 08 AMAAUS N 0.30 0 29 0 .76 0 .76 S 0 23 0 24 41.95 23.80 9.85 9.99 0.02 0 02 AMMCOC N S 0 .01 0 .01 ASTSPP N 0 .33 0.33 S ASTSUB N 20 60 9 23 S 48.77 28.48 0 .07 0.07 ASTTEN N 0.13 0.13 S 0 .33 0.30 0 03 0 03 BACHAL N 1 60 0 .61 0.11 0 08 33.84 30.04 S 3.96 4 06 BIDLAE N 1 00 0 63 5 97 5.97 S 0 .04 0.04 BRAPUR N 5.50 5.50 89 49 78.29 S 2.27 0.00 CALAME N 0.47 0.47 S COMO IF N 16.65 11. 55 5 .36 4 .14 0.80 0.73 S 55.52 22.21 CYNDAC N S 1.23 1 26 CYPHAS N 0 17 0 .17 S 0 75 0 .77 CYPIRI N S 0.06 0 .06 CYPODO N 0.23 0 .19 1.21 1 .04 2 00 2 00 S 0.01 0.01 0.38 0 22 0.16 0.17 CYPRAC N 0.01 0 .01 S CYPSPP N 0.D1 0.01 0 26 0.18 S 0 .12 0.08 0 56 0 56 DIGSER N 20.51 11. 26 S 0 .01 0 .01 0.41 0.40 ECHCOL N 12.74 12.65 41.73 20.27 0.06 0.06 S 3 .32 2 39 4 .70 4 52 ECHSPPl N 4.57 4 57 S

PAGE 224

Table 20. live biomass summary (g mo 2 Mean SE), North (N) and South (S) Celts (continued) Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 M ean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean S" ECLALB N 2 29 1 00 37 .BB 12 22 0 .01 0 .01 O .OS O .OS S 2 59 2.62 9 09 7.01 EICCRA N 0 12 0 12 29 87 29 87 86 24 60 .34 S O .OS O .OS ELEINO N S 0 78 0 60 ELEVIV N 5 38 5.35 0.59 0 56 0.01 0.01 5 29 5.29 S EUPCAP N 965 27 148 69 2 09 2 09 10 .71 10 20 S 140 57 78 72 1 15 1 18 EUPSER N 0 63 0 .56 0 06 0 06 S 0 .35 0.35 0.04 0.04 GALT I N N 0 .57 0 .35 0 18 0 12 2 03 1 37 0 .01 0.01 S HYORAN N 2 90 2 90 11. 89 11. 66 43 39 34.61 0 08 0 08 6.07 3 69 S O .OS O.OS 0 06 0 06 15 54 9 26 HYOSPP N 0 15 0.15 0 02 0 .02 S HYOUMB N 1 02 1 02 S LlMSPO N 18 .21 18 .21 S 6 .54 6 70 5 .78 5.92 LUOLEP N 0 14 0 12 11.77 8.45 S 15 48 0 02 0 03 0 03 2 .55 1.80 0.01 0 .01 LUOOCT N 0 95 0 48 40 .2 0 15 .61 0 09 0 09 0 02 0 02 2 .53 2 53 S 26 02 9 05 9 18 3 53 LUOPAL N 0 10 0 10 0 .01 0 .01 S 0 12 0 13 LUOPER N 12 74 8 66 14 98 12 .51 25.08 16.16 BB. 43 47 67 16.52 16.52 S 1 93 1 98 1.87 0 04 MELCOR N S 0 05 0 05 MIKSCA N 0 .01 0,01 1 76 1 .74 6 28 5 94 1 57 1 57 S 3.00 3 07 PANDIC N 39 .01 20 .39 0 62 0 62 0 49 0.49 0.47 0 .34 S 130 74 43 .61 52 10 20 39 PANSPP N 47 .OS 28 97 0 07 0 07 S 54.42 21.87 PASOIC N 0.03 0.03 8.99 8 99 S PASSPP N 0.03 0 03 S 7.04 6 70 PASURV N 0.78 0 55 S 0.74 0 82 PHYANG N 0 .59 0 .59 S 0.02 0 02 0 06 0 06 248

PAGE 225

Table 20 Live biomass summary (g m ', Mean SE) North (N) and South (S) Cells (continued) SpecIes Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE PHYSPP N 0 .01 0.Q1 S Poaceae N 0 .02 0 .02 S 11.76 12.05 0.Q1 0.00 POLDEN N 31.91 31.91 S 0.07 0.07 POLPUN N 10. 12 6.47 9.16 8.61 7 .91 4 12 7 .99 4 .92 9 30 8 76 0.Q1 0.Q1 S 165.42 51.86 196 18 58.25 33.65 12 06 0 .36 0 37 1 84 1 .61 0.09 0 .09 1 .01 0 .84 PONCOR N S 0.Q1 0 .00 22.86 0 .00 11.57 0.00 2 .51 0 00 RHARHA N 0 69 0 69 S RHYINU N S 0 56 0 00 RUMCRI N 0.07 0 .07 S 0.16 0 16 SAGLAN N S 2 .07 2 12 1 45 0 00 15 86 16 25 11. 22 11. 49 5 .14 0 00 1.81 1 46 SAGMON N 0 43 0 43 28 46 13 86 S SALCAR N 16 .84 16 .84 32.24 32. 16 53 54 39 92 39 14 39.14 23.47 22 .90 3 35 3 35 S 0 30 0 30 8 .53 7 .72 SALROT N 0 03 0 03 3 .70 2.95 S SAMCAN N S 0 .21 0.22 0 .01 0 .01 SAMSPP N 0 12 0 07 S SESMAC N 2 83 2 83 S 1.01 0 .00 28 87 17 .71 SOLAME N 6 .21 6 .06 S TYPDOM N S 10 15 10 40 16.06 10 66 TYPLAT N 0 28 0 28 4 .70 4.70 33 .04 18.30 41. 55 17 46 50 27 31. 07 77.04 42 55 S 17.02 13 40 44.75 20.69 103.03 24.79 250.83 56.24 160.98 37. 36 36 89 16 30 182.14 43 20 u-dicot N 0.23 0 .22 0.66 0 66 S unknown N 0 .01 0 .01 S TOTAL N 1136 46 137.60 220.27 55.93 178 .10 82. 35 201.36 56 53 195 40 79.01 29 69 14. 76 102.19 40.51 S 682.76 83 24 427.11 66.34 194 68 32.75 335 30 70. 28 336.06 55.58 136 93 58 99 222 .96 52.42 249

PAGE 226

Hydrocotyle ranun c uloide. 100 7 2 0 0 100 7 2 0 100 7 2 0 0 100 7 0 2 0 100 7 25 0 100 7 2 0 0 100 2 o 300 250 200 100 100 o 100 2. o Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9 NOV 90 AUG 91 .... FEB 92 AUG 92 FEB 93 AUG 93 MAR .. Time (Months) Figure 93. Time series of Hydroootyle ranuncu/Oides b iomass (g m -2 Mean SE) from Natural Succession Transects. 250

PAGE 227

ill en i Panicum dichotomiflorum 500 .00 300 200 100 0 500 .00 300 200 100 0 500 .00 300 200 100 0 500 400 300 200 100 0 500 400 300 200 100 o 500 400 300 200 100 0 500 '00 300 200 100 o 500 400 300 200 100 o 500 .00 300 200 100 o Transect 1 Transect 2 Transect 3 Transect 4 f Transect 5 Transect 6 Transect 7 + Transect 8 Transect 9 + NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 94. Time series of Panicum dichotomiflorum biomass (g m2 Mean SE) from Naturel Succession Trensects. 251

PAGE 228

W en i Polygonum punctatum 600 .60 300 '60 0 600 .60 300 '50 0 600 .60 300 '60 0 600 450 300 '00 0 600 450 300 150 a 600 .60 300 '60 o 600 '00 300 '00 o 600 '00 300 '00 o 600 .50 300 '00 o 1. Transect 1 I I r Transect 2 i j Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 NOV 90 AUG 91 FEB 92 .. AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 95. Time series of Po/ygonum punctatum biomass (g m2 Mean SE) from Natural Succession Transects. 252

PAGE 229

Occurrence of Pontederia cordata in the nine transects sampled was very low (Figure 96). P cordata was found on transects 1 and 9 during the August 1993 and February 1993 samples respectively. Biomass ofleafand root material was 121 g m-2 and 95 g m-2 for transect I, and 96 g m-2 and 119 g m-2 respectively, for transect 9. P cordata was also found in transect 1 during the March 1994 sampling, with shoot and root biomass levels of 1 8 g m-2 and 20 g m-2 respectively. Sagittaria lancifolia also had a narrow biomass distribution within the marsh with notable biomass only occurring in transects 1 and 9, which are located in the south cell of the marsh (Figure 97). Transect 9 had 6 g m-2 ofleafbiomass in February 1992 with no root material found. Along transect I, 11 g m-2 ofleafbiomass was collected in November 1990. No biomass was found during the August 1991 and February 1992 sampling dates. A sharp increase in biomass, up to 83 g m-2 for leaf and 48 g m-2 for roots, occurred i n August 1992, followed by a decline in both above-and below ground biomass down to 13 g m-2 and 7 g m for leaves and roots, respectively Two species ofLudwigia, Ludwigia octovalvis and Ludwigia peruviana, attained significant biomass within the marsh (Figure 98). Ludwigia octovalvis biomass was h i ghest at the beginning of the four-year sampling regime with upper level averages of76 g m 2 along transect 3 in November 1990 and 86 g m-2 in August 1991 on transect 8. There was no clear biomass dominance of this species between the north and south cells of the marsh (Table 20). By August 1992 biomass was below 10 g m-2 with Ludwigia peruviana as the dominant contributor In February 1992 on transect 8, b iomass ofL. peruviana was 51 g m-2 Biomass peaks along transect 1 (10 g m-2 ), 6 (288 g m-2 ) and 8 (259 g m 2 ) occurred during February 1992, August 1993 and August 1993 respectively. Biomass declined by the next sampling period to 0 0 g m-2 at transects 1 and 6 and 132 g m-2 at transect 8 Biomass of L Peruviana was always greater in the north cell compared to average biomass of the south cell (Table 20). 7ypha /ali/olia provided the greatest overall contribution of biomass in the marsh, with peak live biomass occurring in August 1992 (Figure 99). During the first sampling event in November 1990 only transect 2 had a significant biomass contribution from IYpha /ali/olia averaging 86 g m-2 Between November 1990 and August 1992, transects I, 2, 3 and 9 (south marsh, (Table 20), experienced a gradual increase in leaf biomass along with a lesser, but comparable, root biomass increase. In August 1992 T. latifolia biomass in these transects ranged from 209 g m-2 and 0 g m-2 to 589 g m-2 and 82 g m 2 for l eaf and root biomass, respectively. After this date biomass along these transects declined and appeared to level off. Dead T. lati/olia biomass showed a similar pattern to that of live leaf biomass with the exception of a six-month lag between peak values This pattern is likely due to the contribution of summer T. /atifolia leaf biomass to the winter leaf litter and overall dead biomass. In the north marsh along transects 6 and 8, a gradual increase in T. /atifolia biomass began in February 1992, peaked in August 1993 at a level of332 g m 2 (leaf) and 32 g m-2 (root) for transect 8 and rose to 459 g m-2 (leaf) and 2 g m-2 (root) for transect 6 253

PAGE 230

Pontederia cordata --+Leaves Rhizomes & Roots 250 200 Transect 1 150 100 '-50 0 250 200 Transect 2 150 100 50 0 250 200 Transect 3 150 100 50 0 250 200 Transect 4 W 150 en 100 ic 50 0 C 250 '" 200 '" Transect 5 :! 150 N 100 E 50 Cl 0 250 VI 200 VI ., 150 E 0 100 Transect 6 iii 50 ." 0 0:: 250 0 200 Transect 7 (!) 150 '" 100 > 50 0 0 250 200 Transect 8 150 100 50 0 250 200 Transect 9 150 100 50 0 / NOV 90 AUG 91 FEB 9 2 AUG 92 F E B 93 AUG 9 3 MAR 94 Time (Months) Figure 96. TIme series of Pontederia cotdata biomass (g m-2 Mean SE) from Natural Succession Transeds. 254

PAGE 231

Sagittaria lancifolia Leaves Rhizomes & Roots 250 200 Transect 1 150 100 50 1 I 0 250 200 Transect 2 150 100 50 0 250 200 Transect 3 150 100 50 0 250 200 Transect 4 (if 150 (J) 100 -!. 50 + 0 c: 250 CO 200 ., TransectS ::0 150 1 100 50 .9 0 250 '" 200 '" CO 150 E 0 100 Transect 6 iii 50 "'C 0 c: 250 e 200 Transect 7 C) 150 ., 100 > 50 0 0 250 200 TransectS 150 100 50 0 250 200 Transect 9 150 100 50 0 NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 9 4 Time (Months) Figure 97. TIme series of Sagittaria /ancifo/ia biomass (g m2 Mean SE) from Natural Succession Transeds. 255

PAGE 232

W C/l i C '" C1> ::;; N E .9 I/) I/) '" E 0 iii c: 0 -t!) ., > 0 150 100 -Ludwigla octovalvls Transect 1 g.. Ludwigla peruviana 50 150 i:-' ..... Transect 2 100 50 0 150 Transect 3 100 50 0 G 150 Transect 4 100 50 0 soo 450 Transect 5 300 150 0 Soo 450 Transect 6 300 150 0 -0....... m 6 00 450 Transect 7 300 150 0 SOO Transect 8 450 300 150 0 ..... -13 ...... ............ I .... :I 150 Transect 9 100 50 .l 0 .. ,J. ..... .m NOV 90 AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 98. TIme series of Ludwigia octovaMs and Ludwigia peruviana biomass (g m-2 Mean SE) from Natural Succession Transects. 256

PAGE 233

Typha lafifolia -+Leaves (l Rhizomes & Roots -11-Dead 1250 1000 Transect 1 750 500 250 0 ..... ..... .._-. ........... 1250 1000 Transect 2 750 500 250 + 0 1250 1000 Tran&ect3 750 500 250 0 "' o. .... ..... i5 1250 Transect 4 1000 750 W (/) 500 -!. 250 + C 0 '" 1250 '" 1000 TransectS ::;: 750 1: 500 250 ..9 0 "' 1250 "' 1000 '" 6 E 750 0 500 ill 250 ""C 0 c: ::l 1250 ... .... 0 1000 Transect 7 (!) 750 '" 500 > 0 250 0 1250 Transect 8 1000 750 500 250 0 ::; 1250 Transect 9 1000 750 500 250 0 ... Q .... -..... NOV 90 AUG 91 FEB92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 99. Time series of Typha lalifolia biomass (g m2 Mean SE) from Natural Succession Transects. 257

PAGE 234

Total dead biomass varied considerably among transects and throughout the duration of the study (Figure 100). The range in average dead biomass was 30 g m-2 to 814 g m-2 occurring in November 1990 on transect 7 and March 1994 on transect 4, respectively Dead biomass peaked at T8 in August and at T6 and T9 in February 1992. Transect 3 peaked in August 1993 after a gradual increase in dead biomass since August 1991. Transect 1 had no distinguishable peak in dead biomass with approximately equal levels collected throughout the August 1991 to February 1993 samples Transect 2 was the only transect that had more dead biomass during the first sampling event than any successive sampling. Spatial and temporal representation of dead biomass at transect 9 is representative of the variation found in dead biomass throughout the marsh during this study (Figure 101). Comparison of the total dead biomass within the north and south cells of the marsh showed highest levels in the south cell except in August 1991 and 1993. In August 1991, biomass in the north was slightly greater than the south (254 g mo2 >231 g mo2). In contrast, in August 1993 there was a large biomass difference between north and south south (212 g mo2 >89 g mo2) (Table 21) This discrepancy resulted from thepresence of open water patches in the south cell. Below-Ground Biomass Trends Transects in the south marsh showed an increase in biomass from the initial sampling in November 1990, with levels oscillating slightly between sampling periods (Figl!re 102). Maximum average biomass levels measured along these transects were 450 g m-2 (Tl, Feb 93),265 g m-2 (T2, Mar. 94), 821 g m-2 (T3, Aug. 93) and 581 g m-2 (T4, Mar. 94). Below-ground biomass concentrations in the north marsh along transects 6 and 8 also showed an increase over time with the greatest levels, 538 g m-2 (T6) and 242 g m-2 (T8), measured in March 1994. Below-ground biomass measurements from transect 9 also showed a gradual increase in biomass over time but indicated heterogeneity along the transect 103). Average below-ground biomass levels along the transect ranged from 66 g m-2 in November 1990 to 201 gm-2 in February 1993. A group of species-Pontederia cordata, Sagittaria lancifolia, S. montevidensis, Salix caroliniana and 1)tpha spp. -exhibited a morphological feature in which roots and/or rhizomes grew into the water column without support from soil. This seemed to be an intermediate stage prior to floating mat development. As floating mats developed, observations were made that these water suspended roots and rhizomes were trapping overstory leaf litter and organic matter from inflowing lake water (Clark and Stenberg, Personal Observations) Typha spp. showed higher average water suspended rhizome/root biomass in the south marsh during the August 1992 and February 1993 sampling periods, but a change to higher biomass levels in the north cell of the marsh in August 1993 and March 1994. S. lancifolia andP. cordata showed consistently higher water suspended rhizome/root biomass in the south marsh while Sagittaria montevidensis 258

PAGE 235

Total Above-Ground Biomass --+Uve .. Dead 2000 1600 Transect 1 1200 800 400 0 ............. t -=:;.::. ::.:.; .. ;:..:. :.-.. .. ---,",. tt'" -= ... '**,.... -..-:-:": ... :1. ;r.:-::-:-:-:-,-. ... _.., 2000 1600 Transect 2 1 200 800 400 0 2000 1600 Transect 3 1200 800 400 W 0 en 2000 -!. 1600 .......... -'"T. t.. '-'-' .. = .:.:..: .. ... ..... ... :.:.: .. ;:..:. .. ,... .. (t Transect 4 + 1200 r: 800 '" 400 ., ::;: 0 C)I 2000 E 1600 1200 .9 800 Transect 5 If) 400 If) '" 0 E 2000 0 iii 1600 Transect 6 ." 1200 c 800 :::J 400 e C) 0 .... ........,.. :..:. ... :.:... -4+:':': .. ,,--. ct 1 2000 ., > 1600 0 1200 800 Transect 7 400 0 2000 1600 1200 800 400 0 ... 8' _., I ........ t ...... ............. 2000 Transect 9 1600 1200 800 400 0 !_ .............. ... t ----+ ""' NOV eo AUG 91 FEB 92 AUG 92 FEB 93 AUG 93 MAR 94 Time (Months) Figure 100. TIme series oftotal above-ground biomass (g m-2 Mean SE) from Natural Succession Transects. 259

PAGE 236

Natural Succession Transect 9 A Total Uve B Total Dead .,. .. 2000 Figure 101. Time series of total above-ground biomass (g m-2 Mean SE) from Natural Succession Transect 9 260 700

PAGE 237

Table 21. Dead biomass summary ( g m -2 Mean SE). North (N) and South (S) Cells. All entries are leaf and/or culm biomass Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Me!!D SI:; Mea!! I; MeaD SI:; MeaD SI; Me!!!! SI:; Me!!D SI:; Mea!! SI; EICCRA N 1 15 1 15 S EUPCAP N 0.89 0.89 S LlMSPO N S 6 .57 6 73 LUDSPP N 3 .14 3 14 11. 62 11. 62 S PONCOR N S 6 82 0 00 SAGSPP N 2 .21 2 .21 S 2.24 2.29 TYPSPP N 29.54 20.55 45.47 24.55 S 211.72 74.62 245.65 54 09 133.80 58 .99 43. 88 22 .01 unknown N 44. 75 16.14 254.48 59.10 262.63 70.70 51.91 19.43 12 22 12.22 29.69 14.76 102.19 40.51 S 211.61 43.95 231.00 62 .10 393.21 55.21 111.25 44. 28 29 .18 19.42 3.13 0.00 179.08 47.34 TOTAL N 44. 75 16.14 254 .48 59.10 262.63 70 70 86.79 26.48 71.35 32.66 211. 52 75.59 204 30 82.94 S 211.61 43 95 231.00 62 .10 364 89 57. 93 329 54 87 36 283.90 58 23 88 .51 28 38 222.12 45.38 261

PAGE 238

Natural Succession Transects 1-8 SOUTH MARSH. EASTERN 'TRANSECTS TRANSECT 1 750 ... TRANSECT 2 500 250 /' 0 W CI) -!. SOUTH MARSH. WESTERN TRANSECTS + TRANSECT 3 c:: OJ TRANSECT 4 CD 750 ::;; N E .9 500 '" '" OJ E 0 250 iii '0 c:: '" e 0 Cl 0 Qj NORTH MARSH III TRANSECTS 750 TRANSECTS 500 250 -----+----I o NOV90 AUG91 JAN92 AUG92 FEB93 AUG93 MAR94 Time (Months) Figure 102. Time series of below-ground biomass (g m2 Mean iSE) from Naturel Suocesslon Trensects 1-4, 6, 8. 262

PAGE 239

E E E! tJ) tJ) III E 0 iii "0 c :::J 0 ..... <.? Qi m tJ) tJ) III E o iii "0 C :::J e <.? CD m Natural Succession Transect 9 A. Mean 600 500 400 300 200 100 B Standard Error 400 300 200 100 o _.;." ," .;.. .. ", .. 700 Figure 103. TIme series of below-ground biomass (g m 2 Mean SE) from Natural Succession Transect 9 263

PAGE 240

and Salix caroliniana showed highest water suspended rhizome/root biomass in the north cell (Table 22). Floating Mat Formation and Biomass Although not well understood, the formation of floating mats within the Apopka Marsh may have some effect on species composition and standing crop biomass Formation of mats was first noted in August 1992 (Figure 104) along transects 1 and 3 A simple index of mat formation using the percentage of plots with evidence of mat development revealed a pattern of increasing areal floating mat coverage with time This pattern consisted of2%, 5%, and 41% for sample dates, August 1992, March 1993, and August 1993, respectively. Mat formation began in the south marsh along transects 1 and 3 (August 1992) and progressed to the remainder of the marsh by August 1993 (Figure 104 and 105). Floating mat biomass in August 1992 for transects 1 and 6 averaged 827:419 g m 2 and 647%381 g m-2 respectively. In March 1994, biomass had increased to 926%381 g m-2 along transect 2 Preliminary information from August 1994 suggested a substantial increase in aerial coverage by floating mats primarily within the south marsh (Clark and Stenberg, Personal Observations). Repeated Measures Analysis Total Live Biomass. Temporal and spatial differences i n total live biomass were analyzed for the Apopka Marsh using a general linear model procedure for the analysis of variance and two mean separation techniques, Least Significant Differences (LSD) and Scheffe's comparisons tests. Highly significant differences (p = 0 .0001) were found among sampling dates, among transects sampled, and as an interaction of sampling dates and sampling transects. No differences (p = 0 .8865) were found within the sampling transects Temporal comparison of all sampling events using the LSD comparison method showed only the January 1992 sampling event as having significantly different (1=0.05) total live biomass when compared to all other sampling dates (Tables 23,24) This same temporal comparison using Scheffe's comparison technique showed significant differences (a = 0 .05) between sampling events in January 1992 and the sampling periods in November 1990, August 1991, August 1992, and August 1993. The comparison did not show differences between the January 1992, February 1993 or March 1994 sampling dates, which were significant with the LSD method (Tables 23, 24) Spatial analysis comparing differences among transects over the course of the study were variable among transects and between the north and south marsh with no apparent pattern (Tables 23, 24). Comparisons using the LSD analysis techniques showed significant differences at the 95% confidence level among transects 2, 4, 5, and 7, and transects I, 3, 6, 8 and 9 The results of the spatial analysis using the Scheffe's comparison method were identical to that found with the LSD technique (Tables 23, 24). Total dead b i omass. Overall temporal and spatial comparisons of the data set for total above-ground dead biomass were similar to that of total live biomass. Highly significant differences (p=O.OOOI) were found among sampling dates, transects sampled, and as an interaction of the sampling date and transect sampled. Again, no significant 264

PAGE 241

Table 22. Water suspended Rhizome and root biomass summary (g m -2 Mean SE). North (N) and South (S) Cells. All entries are leaf or culm biomass. Species Cell Nov 1990 Aug 1991 Feb 1992 Aug 1992 Feb 1993 Aug 1993 Mar 1994 Mean SI; Mean SI; Mean SI; Mea!] S!; Mea!] SI; Mean SI; Mean SI; EICCRA N 5.11 5 .11 S PONCOR N S 28 .23 0 00 9.07 0 00 2 .88 0 .00 SAGLAN N S 9 23 9.46 5 12 5 24 0 67 0.00 SAGMON N 0.84 0.84 S SAlCAR N 3.95 3 95 S TYPLAT N 2 57 2 57 0 77 0.77 4 32 4 32 0 .30 0.30 S 23.50 10.91 75.40 22.97 265

PAGE 242

-co Cl c: :;:: co o u: 1.0 0 5 o 1 0 0.5 o 1.0 0 5 Transects (Inlet=:1 t 0 o Ut/et=:8) Figure 104. Floating mats along Natural Succession Transects. Floating mat index is the percent of plots with floating mat. 266

PAGE 243

August 1993 3 1 o >< ., "C c: 3 '" :;; 0> .5 1ii 0 u:: 3 Figure 105. Floating mats In Experimental Planting Areas. Floating mat Index based on mat layers observed during water depth measurements (1 =Minimal mat, 2=Two layer mat, 3=Three layer mat). 267

PAGE 244

Table 23. Repeated Measure Analysis of Total Uve Biomass using Least Significant Differences (LSD) comparison technique Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug -93 Mar-94 Nov-90 ... Aug -91 ... Jan-92 ... ... ... ... ... ... Aug-92 ... Feb-93 ... Aug-93 ... Mar-94 ... ... Denotes significants comparison at the 0 .05 level Comparisons by Transect Transect # T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... T4 ... ... ... ... ... ... T5 --... ... T6 ----T7 --... ... T8 ----T9 ... ... ... ... Denotes s l gnificants comparison at the 0.05 level Table 24. Repeated Measure Analysis of Total Uve Biomass using Scheffe's comparison technique Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug -92 Feb-93 Aug-93 Mar-94 Nov-90 ... Aug-91 ... Jan-92 ... ... Aug-92 Feb-93 Aug-93 Mar-94 ... ... ... ... ... Denotes significants comparison at the 0 .05 level Comparisons by Transect Transect T1 T2 T3 T4 T5 T6 T1 ... ... ... T2 ... -... T3 ... ... T4 ... ... ... T5 ... ... ... T6 ... --T7 ... --T8 ... ... ... T9 ... ... ... Denotes significants comparison at the 0.05 level 268 T7 ... ... ... T8 T9 ... ... ... ... ... ...

PAGE 245

difference (p=.3032) was found within the transects Comparison of sampling dates using the LSD analysis technique showed significant differences between November 1990 and all other sampling dates, between January 1992 and all other sampling dates, and the August 1992 and the March 1994 sampling dates (fables 25, 26) Repeated measures analysis using Scheffe's comparison of sampling dates showed differences between the November 1990 sampling and all other dates. Two significant differences were found between January 1992, August 1991 and March 1994 (fables 25, 26). No other significant differences were found among sampling dates. Use of the LSD or Scheffe's analysis technique in the repeated measures analysis of total dead above-ground biomass between transects showed identical results (fable 25 and Table 26 respectively). Significant differences (a=O. 05) using these two tests were found among transects I, 3, 6, 8 and 9 and transects 2, 4, 5, and 7. REPRODUCTrVEPHENOLOGY Planted Plots Phenology characteristics in the planted treatments were similar when classification groupings could be identified for the five target species (fables 27, 28). Seasonal trends in Eleocharis interstincta, Pontederia cordata and Sagittaria lancifolia showed peaks in flowering during the summer season while Scirpus califomicus and Scirpus validus both peaked in the winter. Evidence of a time lag between early and later developmental stages of phenology (i.e. from flowering to mature fruit) could be identified in all target species except E interstincta where no clear time lag was apparent. Phenology index activity showed either no evidence of change throughout the study period or a decrease in activity over the course of the study. The phenology of target species did not appear to be affected by the water quality gradient among the planted treatment plots. Eleocharis interstincta showed a strong seasonal pattern with greatest levels of flowering, immature and mature fruit present during the summer months (Figure 106). This pattern was initiated in May 1992 with no change in activity apparent through March 1994. It was difficult to define a distinct time lag of phenology within this species partly due to the high index level of immature fruit during the summer samplings This high level, often above the flowering index, indicated that flowering actually occurred earlier in the year, possibly in mid or late spring. Distance from the inlet did not appear to affect timing or intensity of the phenology index of this species for all three phenology stages. 269

PAGE 246

Table 25. Repeated Measure Analysis of Total Dead Biomass using Least Significant Differences (LSD) comparison technique Temporal Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug-93 Mar-94 Nov-90 ...... *** *** ... *** Aug-91'" ... Jan-92 ... ... ... ... ... ... Aug-92 ... ... ... Feb-93 ... ... Aug-93 ... ... Mar-94 ... ... ... ... Denotes significants comparison at the 0.05 level Spatial Comparisons by Transed Transed# T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... ... T4 ... ... ... ... ... T5 ... ... ... ... ... T6 ... ... ... ... T7 ... ... ... ... ... T8 ... ... ... ... T9 ... ... ... ... ... Denotes significants comparison at the 0.05 level Table 26 Repeated Measure Analysis of Total Dead Biomass using Scheffe's comparison technique Temporal Comparisons by Sample Date Date Nov-90 Aug-91 Jan-92 Aug-92 Feb-93 Aug-93 Mar-94 ............... ... Aug-91'" ... Jan-92 ... Aug-92 ... Feb-93 ... Aug-93 ... Mar-94 ... ... ... Denotes slgnificants comparison at the 0.05 level Spatial Comparisons by Transed Transed# T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 ... ... ... ... T2 ... ... ... ... ... T3 ... ... ... ... T4 ... ... ... ... ... T5 ... ... ... ... ... T6 ... ... ... ... T7 ... ... ... ... ... T8 ... ... ... ... T9 ... ... ... ... ... Denotes significants comparison at the 0.05 level 270

PAGE 247

Table 27. Summary of phenological patterns for single species planted treatments. Table entries: Seasonality= "Summer" or "Winter" denotes peak periods of flowering detectable under this sampling frequency. Time Lag= "Yes" or "No" denotes presence or absence of detectable time lags. Activity:: "Positive", "No", or "Negative" denotes trend with time. Gradient= "Positive", "No", or "Negative" denotes trend with distance from the lake water inlet. "1" Indicates pattem difficult to determine. Classification E/eocharis Pontederia Sagittaria Scirpus Scirpus jnterstjnda cordata lancifolia califomicus velidus Seasonality Summer Summer Summer Winter Winter Time Lag No Yes (Site 1) Yes Yes Yes Activity No Negative Negative 1 Negative Gradient 1 No No No No Table 28. Summary of phenological pattems for mixed species planted treatments. Table entries: Seasonality: "Summer" or "Winter" denotes peak periods of flowering detectable under this sampling frequency. Time Lag= "Yes" or "No" denotes presence or absence of detectable time lags. Activity:: "Positive", "No", or "Negative" denotes trend with time. Gradient= "Positive", "No", or "Negative" denotes trend with distance from the lake water inlet. "1" indicates pattem difficult to determine. Classification E/eocharis Pontederia Scirpus Scirpus Thalia interstjnda cordata caljfomicus validus oeniculata Seasonality 1 Summer 1 1 Summer Time Lag No Yes No Yes No Activity 1 1 1 Negaative Positive Gradient Positive Positive Negative 1 1 271

PAGE 248

S i ngle Species Planted Plots ____ Flowerin g .... Immature Frui t --+Matu r e 2 1 Eleoch8n"s interstinct8 1 0 3 I I I I 2 1 2 .. ... """, -'''''' .. --..... 0 --3 2 I ... Site 3 1 0 ........... -l __ ..... 3 2 Site 1 2 2 1 o ....... ........... P o n teden"a cordata I 3 2 Site 3 t= ........ .... .... .... ...... a-::.: .. -= .. =,,:........ ... 1.. -.... .:.:,:: .. .. .:::: .... '-"' .... = .. .. \JI,3"J9t Time (Months) Figure 106. Phenology of E/eocharis in/erstincta (Top three grephs), Pontederia COIdata (Middle three graphs) and Sagittaria /al'lGifo/ia (Bottom three graphs) from Single Species Planted Plots, Experimental Planting Sites. 272

PAGE 249

Phenology data of Pontederia cordata in the planted plots indicated peak flowering occurred in late spring and was closely followed by immature fruit production at a slightly lower percentage of the total potential coverage (Figure 106). Mature fruit production at all three sites was low compared to the overall coverage of the species with mean phenology indices ranging from 0 to less than 0.75. The overall trends of activity showed a slight increase in activity during the summer of 1992 over that of the previous year. However, a decrease in flowering and immature fruit phenology occurred the next summer. Effects of distance are not apparent in the data with Sites 1 and 3 having similar phenological indices during the summers of 1992 and 1993. Activity levels of Sagittaria lancifolia showed a marked decline between the summer of 1992 and that of 1993 especially in mature fruit development (Figure 106). The seasonal pattern, peaking in the summer, was still evident especially in the immature fruiting stage of development. Time lag of immature and mature fruiting phenology was clearly evident during the two summer sampling events in 1992. Time lag for flowering and immature fruit development was not as apparent during any time of the year indicating the peak flowering period probably occurred between May and August. Site 2 had an overall lower mean phenological index than Sites 1 or 3. However, there was no apparent difference between Sites 1 and 2 during the study period Scirpus califomicus showed a clearly different peak flowering phenology than that of the three species mentioned above. This species flowered closer to the winter sampling events, with phenological index values between 0.5-1.5. For the August 1992 and 1993 sampling events no flowering was detected (Figure 107). Peak mature fruit phenology however, had its highest index values during the summer months. No apparent trends in the phenology activity were apparent over time at any of the sites and differences between sites were also not apparent. Peak flowering phenology for ScirptlS validus was similar to that of S. califomicus and closer to the winter sampling event (Figure 107). These winter flowering peaks were often below the immature fruiting phenological indices indicating flowering may be taking place in early or mid winter followed by immature fruit in late winter and into spring and peak values of mature fruit occurring during the summer sampling period. It is difficult to identify any activity trends due to time or gradient because of a large fluctuation in phenological indices within sites and over the course of the study Mixed Planted Plots A clear classification of phenology of the six target species in the mixed planted plots was difficult due to the low mean phenological indices calculated during the study period Five of the six planted species had phenological values less then 1.0 for either flowering, immature or mature fruiting stages (Appendix B 1). Only Thalia geniculata had index values greater then one, ranging up to 2.5 for flowering in August 1993 (Figure 108). Summer peak flowering periods were evident for Pontederia cordata and Thalia genicu[ata. There was no clear evidence for flowering seasonality in the other four species (fable 28). Temporal changes in activity were also difficult to distinguish with mixed results in the two species in which trends were identified. Distance also showed 273

PAGE 250

Singl e Species P l ant e d P l o ts --*-F l o w er ing --+Mature Fruit 3 ,_____________________ .. _______ 2 )( Site 1 S c i rp u s cBlifo m i cus ....... ---+-1 .. .. ....... -.... ><' ..... ".-' ... o .., 3 11> ." c: ;;; 2 Site 2 OE;) 1 ....... -.-C) 0 0 (5 3 c: Q) 2 .s;;; 11. 1 0 Sit e 3 .. .. -.-... :=<--.".... ... :-... =ll=======tl .. ---......... ==._ .... =t Time (Months) F i gure 107 Phenology of Sclrpus califomicus (Top three graphs) Sclrpus validus (Bottom three graphs) from Single Species Planted Plots Experimental Planting Sites. 274

PAGE 251

3 Mixed Species Planted Plot -e-HOlN9ring .,. '" Immature Fruit ...... Mature Fruit 2 Site 1 Thalia geniculafa 1 0 ''''''' .. ./ ... .... . ............ ... ... --:i=--./ -.. 3 2 Site 2 1 0 ..... .... ........ .=t=> 'fh;;;' ... .... .. ....... .. 3 2 1 0 Sits 3 I ... .... 3 >< 2 Site 1 Eleocharis interstincts Q) 1 -c <:: <:: 0 -. =1= .-. = co 3 Q) 2 Site 2 >-OJ 1 0 "0 0 <:: Q) 3 .s: (l. 2 I' Site 3 1 0 .-"':1;; n'" c: *' 3 I 2 Site 1 Pontederia cordata 1 0 .. ... ... 3 I 2 Site 2 1 0 :I I --- 3 2 Site 3 1 0 __ e I .. .. ...... *' ,...IlCd 9"'-,)a.{\ 91. "",a.'l9'l. p..u!d g'2. f&'O p..uCi} \IIa.t gA Time (Months) Figure 108. Phenology of Thalia geniculata (Top three graphs). E/eocharis inters/incta (Middle three graphs) and Pontederia cordata (Bottom three graphs) from Mixed Specles Planted Plots. Experimental Planting Sites. 275

PAGE 252

variable effects on Eleocharis interstincta, Pontederia cordata and Scirpus cali/omicus with no trends evident for Scirpus validus or Thalia genicu!ata. Thalia genicu!ata had the highest flowering index values, when present, during the summer sampling events, with no time lag in reproductive stages evident within the sampling frequency of the data (Figure 108). Peak values for immature fruit and mature fruit varied slightly between the summer sampling events of 1992 and 1993 with mature values greater or equal to index values ofimmature fruit in 1992 and only immature fruit present during the sampling event in August of 1993. There appeared to be an increase in mean phenological index values over time especially for immature fruit, with values increasing from less then 0.5 in May and August 1992 to greater than 1.0 during August 1993. Gradient effects on phenology of T. geniculata were evident at Site 3 of the north cell where the highest phenological index was the flowering reproductive stage while peak values found at Sites 1 and 2 in the south marsh were mature or immature fruit stages. Phenological indices for Eleocharis interstincta in mixed planted plots were low making determination of trends difficult. All values were less than 1.0 with no activity occurring at Site 2 until August 1993 (Figure 108). Flowering, immature and mature fruit phenology appeared to occur during the summer while little activity and index values less than 0.25 occurred in the winter Mean phenological indices were greater in the north marsh at Site 3 than in either of the south marsh sampling locations, indicating a positive relationship between phenology index and distance from the marsh inlet. Pontederia cordata mean phenological indices show increased in activity at Site 1 in the north marsh and increased with distance away from the marsh inlet during the August 1992 sampling (Figure 108). Summer sampling events had the greatest abundance ofP. cordata flowers with phenology indices ranging from 0 .25 to 0 5 Time lag of reproductive stage was clearly evident between May and August 1992. However, in the summer of 1993, only flowering plants were present at Sites 2 and 3 and only immature fruiting plants were detected at Site 1. Winter flowering of Scirpus cali/omicus was evident in the mixed planted plots, indicating a seasonal trend in phenology for this species. Most of the activity for S. cali/omicus occurred at Site 1 in the south marsh. Only one mean phenological index value of 0.5 was recorded for immature fruit at Site 2 and no activity was recorded at Site 3 (Figure 109). There appeared to be no major changes in activity in phenology at Site 1 and no clear evidence of time lags for successive reproductive stages. Scirpus validus in mixed planted plots showed peak activity in August 1992 with little activity before or after this date (Figure 109). Mean phenological indices for all three sites was 0.75 showing no gradient effect due to distance from the marsh inlet on percentage of plants with mature fruit production Time lag of reproductive stages was not evident. Absence of any phenological activity in August 1993 may indicate a decreasing trend in flowering and fruit production over the course of the study period Seeded Plots Seeded plot treatments within the marsh generally showed low reproductive activity throughout the study period. Three of the species, Panicum hemitomon, 276

PAGE 253

Mixed Specie. Planted Plots -.-Flowering ..... Immature Fruit -+Mature Fruit 3 2 Site 1 Scirpus califomicus )( 1 Q) "0 0 ....................... 3 '" Q) 2 Site 2 >1 Cl 0 -... ...... (5 0 3 Q) .r:; Il. 2 I' Site 3 I I I I I I -1 0 I 3 2 -Site 1 Scirpus vslidus 1 )( Q) 0 "0 .E 3 ........ '" 2 Q) Silo 2 1 >-Cl 0 0 .. ....... (5 3 I I I I I I I Q) 2 .r:; Sile3 Il. 1 0 : ._.-. t= \1>'< 9" Time (Months) Figure 109. Phenology of Scirpus califomicus (Top three grephs). Scirpus validus (Bottom three graphs) from Mixed Species Planted Plots. Experimental Planting Sites. 277

PAGE 254

Polygonum punctatum and Scirpus validus, showed no activity. Two species, Pontederia cordata and Sagittaria Iancifolia, had mean flowering .75), immature fruit 75) and mature fruit .5) phenological values in Sites 1 and 3 (Appendix B2). Pontederia cordata had flowering peaks during the early summer followed by immature fruit development in August 1992 (Figure 110). Activity of P. cordata was apparent during the summer of 1992 and 1993 at Site 1 but only during May of 1992 at Site 3. Sagittaria Iancifolia showed a similar pattern with flowering and fruiting occurring during the summer of 1992 and 1993 at Site 1 but restricted in 1992 to Site 3 (Figure 110). There was no reproductive activity for either of these two species at Site 2 in the western portion of the south cell of the marsh. Control Plots Three species were noted as having some reproductive activity in the control treatment plots (Appendix B3). Typha lati/olia, which was the most active, will be discussed later in a section designated to this species. Hydrocotyle ranunculoides showed no activity in any of the control plots until August 1993 when flowering and immature fruit phenology indices reached 0.17 and 0.08, respectively (Figure Ill). In March 1994 the mean flowering phenological index for this species was 0 .25 at all three sites. Seasonality, lag time or distance trends could not be identified due to limited data for this species. Polygonum punctatum, the third species with some activity within the control treatment plots, flowered in January 1992 at Site 2 and was both flowering and bearing immature fruit in August 1993 at Site 3 (Figure Ill). No other instances of phenological activity were noted for this species Mulched Plots Flowering phenology was the only reproductive phase noted for this treatment type and was identified in four species at all sites on three different sampling events (Appendix B3). Sagittaria lancifolia had an average flowering phenological index of 0.25 in August 1992 at Site 1. Cyperus odoratus was found at Sites 2 and 3 during the August 1993 sampling with mean flowering phenologic indices of 0.75 and 0.75 respectively Altemanthera philoxeroides was identified in March 1994 at Site 3 with a flowering phenologic index of 0.75 along with Hydrocotyle umbellata at the same location and time with a phenologic index of 0.25 The only other species identified in this treatment with phenologic characteristics was Typha latifolia, which will be discussed in more detail later. Natural Succession Measurements of phenology on natural succession transects revealed that thirty six species were found either flowering or with immature or mature fruit between November 1990 and March 1994 Most of these species were highly variable in their occurrence or phenology and resulted in mean phenological indices less then 0.01. For this reason these species will not be dealt with in more detail and the reader is referred to Appendix B4 for further information. Pontederia cordata, Hydrocotyle ranunculoides and Typha latifolia showed a more regular pattern of phenology. Pontederia cordata and 278

PAGE 255

Pontederia corda t a ---.-Flow e ri ng ... Immature Fru i t --+Mature Fru i t 3 2 Site 1 )( 1 Q) "tJ c: 0 .. .... .......... .... ..... ....... .... .... ... ........ c: 3 '" Q) 2 Site 2 >1 C> -0 "5 0 c: 3 Q) .c CL 2 Site 3 I I I I I 1 0 SSgittSriB 18ncffolia 3 2 Site 1 1 )( Q) "C 0 -= 3 c: -= : I I '" 2 Q) Site 2 >1 C> 0 0 "5 3 c: I I I I I I I Q) 2 .c -Site 3 CL 1 0 ... .... ... ........... / I lime (Months) Figure 110 Phenology of Pontederia cordata (Top graph) and Sagittaria/ancifolia (Bottom graph) from Seed Plots, Experimental Planting Sites. 279

PAGE 257

Hydrocotyle ranunculoides will be discussed in this section. Typha latifolia will be discussed within its own section Pontederia cordata was found flowering on transects I, 9 and 6 and with immature frui t on transects 1 and 6. In the south marsh mean phenologic indices for flowering and immature fruit were less then 0.065 (Figure 112). Flowering on transect 6 in the north marsh had phenologic indices up to 2.0 in June 1991 and 1.75 in March of 1994 (Figure 112). Seasonal trends and time lag information for reproductive stages were not identified for Pontederia cordata under natural succession due to its limited occurrence in the marsh. Hydrocotyle ranunculoides showed a greater distribution of phenological activity than P. cordata and was found in all transects except transect 9 (Figure 113). Mean index values for all stages of phenology were less then 0 .25 until March 1994, except for flowering on transect 4 in May 1992 and immature seed production in August 1992 which were both 1.0. Flowering phenological indices in March 1994 increased to 1.0 or greater for transects I, 3, 6 and 8 and more than 0 5 for transects 2 and 4 Immature fruit phenology in March 1994 was measured at 0 5 on transect 4 and 8 and 0.25 on transect 2 and 6. Flowering activity appeared to be greatest during the summer months with no clear time lag ofimmature or mature fruiting being detected during the sampling period. TYpha latifolia Typha latifolia in Natural Succession. The dominant species, as determined by biomass and cover, within the marsh after the first year of flooding was TYpha latifolia. The phenology of this species therefore was well documented primari l y i n areas unde r natural succession, but also in areas which were initially planted or seeded with other species In the natural succession areas, T. lati/olia showed a seasonal pattern of flowering in late winter or early spring and had immature and mature fruit phenology during the summer sampling events (Figure 114). Time lags of mature fruit following i mmature fruit were evident especially in May and August 1992 samplings in the south marsh. Although tempora! changes in phenology of T. latifolia during the study period were not clear and were masked to some extent by spatial influences, i t appeared that in the south marsh phenological indices stayed relatively constant. In the north marsh flowering and fruiting phenology increased during the second year after flooding. Spatially there is a trend in the eastern portion of the south marsh closest to the inflow where immature and mature fruit were greatest in June 1991 and decreased to only half of that level in May and August of the following year In the west end of the south marsh all stages of phenology measured in August 1992 and February 1993 were equal or greater than those measured in August 1991 and January 1992. In the north marsh, transects 5, 7 and 8 showed increases in phenological activity in August 1992 and February 1993 from that of August 1991 and January 1992. Variability of T. lali/olia 281

PAGE 258

3 Pontederia cord8ta ""*-Flowering ___ Immature Fruit -&-Mature Fruit 2 -Transect 1 1 0 -. ... 3 2 I' Transect -1 0 -3 2 -Transect 3 1 0 -3 2 )( Tra n sed: 4 Q) 1 "0 <: <: 0 '" 3 Q) 2 -Transect 5 >. C) 0 1 (5 0 <: Ql 3 .s: (L , 2 1 0 -----A -----"'3 2 -Transect 7 1 0 3 2 -Transect 8 1 0 3 2 Transect 9 1 0 0" gO 9\ 9\ 9i 'go> sat' 1"-ur;) Time (Months) Figure 112. Phenology of Poniederia cordata from Naturel Succession Transects. 282

PAGE 259

3 Hydrocoty/e ranuncuJoides -6Mature Fruit ___ Flo weri ng ..... Immature Fruit 2 Transect 1 1 0 -3 2 I Tran",'" I I I I I I I -1 0 3 I 2 Transect 3 1 0 3 I I I I I I I I I 2 )( Transect 4 '" 1 .: c: 0 I m 3 '" I 2 Transect 5 >-Cl 0 1 "0 0 c: ." 3 ..c: a. I' I I 2 Transect 6 1 0 3 I I 2 -Transect 7 1 0 3 I 2 1 0 -Transect 8 / .. 3 I 2 -Transect 9 1 0 0,,9 0 .' '., ja(\ Time (M onths) .i .. ",.< Figure 113 Pheno l ogy of Hydrocotyle ranunculoides from Natural Succession Transects 283

PAGE 260

3 Typha latifolia ___ Flowering __ Immature Fruit Mature Fruit 2 -Transect 1 1 0 ..... -\ --..,-- =. =I 3 2 1 0 Transect :2 -. =--a---<,--.". 3 2 Transect 3 1 0 t--:. =t 3 ')(' 2 Transect 4 1 "0 .!: 0 !' I _...:::-,,* m 3 2 I' -Transect 5 >-Cl 1 0 "0 0 -. -==-t =;J 3 .<: 0.. I' , 2 -T ran sect 6 1 0 -3 2 -Transect 7 1 0 -. .. =a 3 2 -Transect 8 1 0 -. 3 2 Transect 9 1 0 ---0..,9 0 9' '9' '9'2. .'9'2. 9i i '"" \Ita" l'u!d Time (Months) Figure 114. Phenology of Typha latifolia from Natural Succession Transects. 284

PAGE 261

phenology between nodes along the same transect and during a specific sampling event were high but tended to be lower then other species sampled in the natural succession areas of the marsh (Appendix B4). 'JY.pha latifolia in Planted Treatments. The first observation of phenological activity of T. lali/olia in the planted treatments was in May 1992. Three treatments planted with Eleocharis interstincta (Figure 115), Pontederia cordata (Figure 115) and Sagittaria lancifolia (Figure 115) showed signs of immature fruit, mature fruit and flowering phenology of Typha latifolia. No other phenology stage was noted in the E. interstincta planted treatments after this sampling date, but both P. cordata and S. lancifolia planted treatments had mature fruit and dead fruit phenology in the August 1993 at Sites 3 and 2, respectively One additional flowering event of T. Iati/olia occurred in the P. cordata planted treatment in March 1994. Two other planted treatments had dead mature fruit phenology stages of T. lali/olia in August 1993 at Sites I, 2 and 3 for P hemitomon (Figure 116) and Sites 2 and 3 for So validus (Figure 116). So validus also showed flowering phenology of T. latifolia in March 1994 at Site 3. 'JY.pha lalifolia in Seeded Treatments Seeded treatments had the first occurrence of T. latifolia phenology in May 1992, and overall had a much greater level of cattail reproductive activity than did the planted treatments. Site 2 had the greatest phenology activity of cattail in all five of the seeded treatments. Pontederia cordata (Figure 117) and Panicum hemitomon (Figure 117) treatments showing some activity until March 1994 at Site 2 and only one other occurrence each of flowering and mature fruit phenology respectively at Site 1. The other three seeded species treatments, Polygonum punctatum (Figure 117), Sagittaria lancifolia (Figure 118) and Scirpus validus (Figure 118) showed lesser Typha activity at Site 2 than P. cordata and P. hemitomon treatments did and more activity at Site 1 (So lancifoUa) and Site 3 (P. punctatum) Typha lali/oUa flowering and immature fruit phenology in all five seeded treatments was only noted in May 1992 and all later sampling dates had mature or dead mature phenology. &'pha lalifolia in Mulched Treatment. The mulched treatment plots also showed this trend of flowering and immature fruit only May 1992 but this occurred at Site 1 and 3 and was followed by higher phenological index values of mature and dead mature fruit than those found in the control plots (Figure 119). Mulched treatments also had mature fruit of T. latifolia as early as January 1992 with equal index values in August 1992 and 1993. Typha lalifolia in Control Treatment. Typha latifoUa phenology in the control treatment showed no activity at Site I, but increasing activity after May 1992 at Sites 2 and 3 (Figure 119). Again only mature and dead mature phenology was noted after the August 1992 sampling event with both flowering and immature fruit occurring in May 1992. 285

PAGE 263

"C I: I: '" ., >-C) 0 "0 I: ., .r::; 0.. 'X' ., c: I: '" ., >C) o "0 I: ., .r::; 0.. _____ Flowering ..... Immature Frui t ---+-Mature Frurt A Dead Maturo Fruit 3 2 Site 1 Psnicum hemitomon Planted Plots 1 0 ------:------ .- 3 2 I' A Site 2 / / '" 1 / // '" 0 / ./ ,. 3 2 I Site 3 I I I I I -1 0 = I I 3 2 Sne l 1 -o 3 I 2 Sne2 1 o 3 I 2 -5 3 1 o I Scirpus vslidus Plan t ed Plots -""-.---" .----. ---... I I I I I .--- -- ----_..2": "'-... Time (Months) Figure 116. Phenology of Typha/atifolia in Panicum hemilomon (Top three grephs) and Sclrpus validus (Bottom three grephs) Planted Plots, Experimental Planting Sites. 287

PAGE 264

Typh.,.tifoli. in Seeded Plots ___ Flowering ___ Immature Fruit ___ Mature Fruit 3,-----------------------------------------, 2 Site 1 Pontederia cordata 1O. I I I ;. -, L. /A--__ o .. ... 3 2 SK.3 1 -o 3 'X' 21 Site 1 PBnicum hemitomon 0 -I -------... ._-- F=="' '''''' '-''' -'''-'' .. .. ... ... .::: "'. =='-i ._--------.... I 3 :;. 2 I I Sfte2 I 1 / g 0 ... ... .. ... ... "'--='= ... I 3 -1,-------",-------,-,------,-------.-,------,-------,----1 2 Site 3 1 -o ,_------.,=----"" .. :::: ... :::: ... :;:::::"::c" .. =----.. ,r-====:;:i====_.,f----------II, 3 2 -1 -o 3 i I 2 1 o 3 Site 1 Site 2 2 -S'e 3 1 o I I I Polygonum punct8tum I I I I I I I I I g'2. p...\l.Q g'2. fe'o Time (Months) Figure 117. Phenology of Typha latlfolia in Pontederia cordata (Top three graphs), Panicum hemitomon (Middle three graphs), and Po/ygonum punctatum (Bottom three graphs) Seeded Plots, Experimental Planting Sites. 288

PAGE 265

____ Flowering ..... Immature Fruit ---+Mature Fruit -1;.Dead Mature Fruit 3 2 Sagittaria /ancifolia Seeded Plots Sile1 2 / Q) 1 -............................ c 0 4 .. .. __ __ __ I 3 2 -sa.2 ----1 ....-..... g> ./ -----/ ------o 0 __ I 3 a. 2 Sae3 1 -o 3 2 Scirpus vslidus Seeded Plots Site 1 1 )( Q) 0 c 3 c '" 2 Q) 1 >-Cl 0 0 .--t--- I I I /' '''. I I "A, Site 2 / / -/ ... ,,"'" ........................ ,. 0 3 c I I I I Q) 2 .c: a. Site 3 1 -0 I I lime (Months) Figure 118. Phenology of Typha latifolia in Sagittaria lancifona (Top three grephs) and Scirpus validus (Bottom three grephs) Seeded Plots. Experimental Planting Sites 289

PAGE 266

3 2 ___ Flowering Site 1 ..... Immature Fruit --+-Mature Fruit ... Dead Mature Fruit Mulch Plots 1 -0 I m 34.-,------,'--------,.-------.-,------.-,------.-,------.---4 Sile2 ;;;. 2 -f 4 I-------..... ---__ ___ I 3 a.. 2 3 1 o .--------. ..... .......... -..... _.... 3 2 Site 1 Control Plots 1 >< 0 'C -= 3 '" 2 -Site 2 ;;;. 1 >-'" 0 0 .. =t-. -----. -------". 0 3 2 .r= -Site 3 D.. 1 -0 =&= Time (Months) Figure 119. Phenology of Typha /atifo/ia in Mulch (Top three grephs) and Control (Bottom three grephs) Plots, Experimental Planting Sites. 290

PAGE 267

CLONAL GROWTH Clonal growth studies within the Apopka Marsh Flow-Way provided additional information toward understanding the early succession and colonization of species Four target species, Pontederia cordata, Sagittaria lancifolia, Scirpus val iritIS and rypha latifolia, were monitored between May 1992 and May 1993. All of these species have rhizomatous morphology and vegetative reproductive potential under inundated conditions. Experimental design and data collected in this study were organized under two criteria. The first featured the change in rhizome growth distance between the two sample times The data were normalized to average daily growth rate of the four species in an effort to estimate the vegetative growth potential of these species The second criteria looked at the average distance to the nearest competitor to approximate competitive effects on the target species. In addition, possible effects of distance from the inlet on clonal growth rate and competitive interactions were analyzed. Oonal Daily Growth Average clonal growth rates from 0 013 cm d-1 for P. cordata at 2800 meters from inlet (MFI), to 0 162 cm d-for T. latifolia at 490 MFI (Table 29). Growth rates were generally less then 0.1 cm d-1 with the exception of T. latifolia, which had growth rates of 0.162 cm d-1 and 0 149 cm d-1 measured at 490 and 1200 MFI, respectively Of the four species studied, two species T. latifolia and P. cordata, showed decreased rates of growth with increasing distance from the inlet. The other two species, S. lancifolia and S. valiritlS, showed highest growth rates at the 1200 meter distance (Figure 120) Statistically significant differences (p=O.OOOl) were found between the four species when averaged over the whole marsh. Using Scheffe's multiple ranges test to isolate significant differences in growth rate means, T. latifolia had significantly (a.=O.OS) greater daily growth rates than all three other species studied. P cordata, S. valiritlS and S. lancifolia showed no significant difference with other species except for T. latifolia Effects of distance from inlet as well as distance from nearest competitor were analyzed using Pearsons coefficient correlation test. Daily growth of Pontederia cordata was negatively correlated with distance from the inlet (r=-0.420). The relationship was also negative, but less certain with Scirpus valiritlS (r=-0.26 p=O.18), and virtually nonexistent for Sagittaria lancifolia and Typha latifolia (Table 30). Distance from nearest competitor showed statistically significant effects on daily growth of P. cordata (p=O.034) and T. latifolia (p=O.018) Correlations in the two other species were noted. (Table 31). 291

PAGE 268

Table 29 Daily clonal growth rates (em day-I) of four species from Experimental Planting Sites. Pontederia cordata Sagittaria lancifolia Scirpus validus Typha latifolia Sample Site Distance From Inlet 490 Meters 1200 Meters Mean SE Mean SE 0.028 0.005 0.026 0.004 0.030 0 .007 0 038 0.006 0.068 0 .007 0.073 0 .012 0.162 0.047 0.1490.027 292 2800 Meters Mean SE 0.0130.004 0 .0350. 006 0 044 0.010 0.0430.016

PAGE 269

0.22 EZZa Pontederia cordata 0.20 Sagittan O a lancifolia 0.18 Itll Scirpus vafidus W i 0.16 b b Typha falifofia '" OJ ::;: 0.14 ""',., '" "tJ E 0.12 t 0 10 C> OJ E 0 08 0 .!::! a a .r: It: 0 06 m Cl a a a a 0.04 a a 0.02 a 0.00 Site 1 (490 m) m) Site 3 Planting Sites (Distance from inlet, meters) Figure 120. Dally rhizome growth retes (em day"1, Mean SE). Experimental Planting Site 293

PAGE 270

Competitor Effect on Daily Growth A positive correlation was found between daily growth and change in distance to competitors for P. cordata (r=O.35, p=O.03). In contrast, negative correlations were found between daily growth and delta distance to competitor for S. lancifolia (r=-0.24, p=O.10), and T. /atifolia (r=-0.49, p=O.018). Little or no relationship was found for S. validus (r=-0.12, p=O.53) (Table 30). The values given for this sampling parameter represent the distance filled in by the clonal and competitor species during the one-year period between sampling dates. The greater the positive value the greater the filling in rate of combined clonal and competitor species. Negative values suggested death of the nearest competitor or growth away from the target species. The change in distance ranged from 7.38 cm to 45.31 cm occurring inP. cordata at 2800MFI and 490 MFI, respectively (Table 31) Values for S. lancifolia and S. validus were typically between 10 and 20 cm. T. 1atifolia had values of 34.72 cm and 34.58 cm for sites 490 MFI and 1200 MFI respectively High mortality of T. /atifolia at site 2800 MFI confounded this analysis With data pooled by species, the change in distance to competition measure differed for T. /atifolia, S. lancifolia and S. validus (Scheffe's, a=O.05). No differences were found for P. cordata versus the other species This same analysis when tested individually at each site indicated highest differences between species at the nearest site to the inflow, 490 meters, and no statistically significant differences at the farthest site measured, 2800 meters (Figure 121). With data pooled by site, sites 490 and 1200 were similar to each other yet both differed from site 2800 (Scheff's a=O.05). Effects of distance from inflow on change in competitor distance were variable when analyzed using a Pearsons correlation test. P cordata was the only species highly correlated with distance from inflow (p = 0.0001). All other species showed little or no statistically significant correlation (Table 30). SEEDS Waterborne Seed T rapping Measurements of seed dispersal by water did not reveal differences in seed density (as represented by numbers of seed germinated) betweeen the upstream and downstream sides of the planted areas for any sample date (Table 32) No differences i n seed density between sites were detected for the first three sample periods. Site 3 was greater than Site 1 in the fourth sample (Table 32). This difference may be attributed to four species, Cyperus iria (104.5 seedlings per upstream trap, 53.5 per downstream trap), Ludwigia octovalvis (32. 3 seedlings per upstream trap, 7.8 seedlings per downstream trap), Eupatorium capillifolium (21 seedlings per upstream trap, 15 seedlings per 294

PAGE 271

Table 30 Pearson correlation analysis of daily clonal growth pattems of four species from Experimental Planting Sites Table entries consist of correlation coefficient and p value In parentheses. Site Daily Growth Pontederia cordata Daily Delta Growth Distance -0.420 -0.776 (0.010) (0.0001) 0.349 (0. 034) Sagittaria /anclfo/ia Scftpus va/idus Daily Delta Daily Delta Growth D i stance Growth plstance 0.064 0.056 -0.257 -0.233 (0.669) (0.709) (0.178) (0.220) -0.243 10.100) -0 120 10.535) Typha /alifo/la Daily Delta Growth plstance -0.055 -0 .103 (0.801) (0.988) -0.488 (0,018) Table 31. Change in distance between Target species and nearest competitor (an) offour species from Experimental Planting Sites. "." one surviving Individual. Pontaderia cordata Sagittaria /anclfo/ia Scftpus va/idus Typha /atifo/ia Sample Site Distance From Inlet 490 Meters 1200 Meters Mean SE Mean SE 45 .31 5 .264 18.33 4 .844 11.31 5 .105 21.44 6 .660 18.08 1 .834 10.45 3 .015 34.73 6 .294 34.58 7 .041 295 2800 Meters Mean SE 7 .38 2 130 16.73 7 .989 11.23 5 .020

PAGE 272

"0 c: -< Q) E o N :.c_ 50 o:: w 40 ",CI) Q)-!. 0 + Q) c: c.", CI) Q) 30 E '" 0 c: 0 Q)OJ+= }; 20 Q) E W 0 Q)U 0_ c: U> '" Q) -'" Q) c:Z Q) Ol c: '" U o a a a Site 1 (490 m) Pontederia cordata Sagittarialancifolia Scirpus validus lSSl Typha lalifolia b a a a Stte 2 (1200 m) Site 3 (2800 m) Planting Sites (Distance from inlet, meters) Figure 121. Change In distance between target species rhizome and nearest competitor (an, Mean SE) by Species. 296

PAGE 273

Table 32. Differences between waterbome seed traps by date from Experimental Plantlng Sites Values reported as # trap-1, Mean(Standard Error) Differences determined using TTest Differences between Sites Qate Site 1 S!le S92-N92 46.7 (12 2) 56 6 (23.4) -0.516 0.649 N92-D92 47.9 (11.9) 98.0 (31.7) -1.482 0.182 D92-J93 41.6 (10.0) 58.6 (23.6) -0.665 0.528 J93-M93 22.3 (4 8) 149 8 (31.D -3.979 0,005 Differences between Trap Positions Ul!!ream QowDst[!!am T-Value S92-N92 53.4 (16.5) 51.8 (18.6) 0 062 0.952 N92-D92 101. 4 (30.7) .5 (12 1) 1.720 0.129 D92-J93 64.5 (21.6) 34.9 (13 0) 1.133 0.278 (l!!.n 2 .221 297

PAGE 274

downstream trap), and Ludwigia palustris (10.8 seedlings per upstream trap, 4 3 seedlings per downstream trap) (Table 33) Velocity of water flow through the seed traps is an important factor in determining the composition and density of seeds moving into the trap. Because we were unable to obtain reliable measurement of flow velocity, it was not possible to conduct a time series analysis. A flow measurement test conducted at Site 3 while water level was at 35 cm revealed that water flow was less than the detection limit of the flow-meter (1.5 cm s-I). This low flow could be attributed to establishment of a dense mat of Eichhomia crassipes and Hydrocotyle ranunculoides in the northern planted area (Site 3). The development of flow-restricting vegetation and the system shutdown of spring 1993 (weir repair) made a time series analysis unreliable. The species composition identified with seed traps was similar to that of the seed bank study Species tended to be annual and rudera\ in life history type (Table 33). Spearmans Rank Correlation analysis revealed that species composition was related between the upstream and downstream traps for samples I, 2, and 4 (Table 34). The relationships tended to be weak, but statistically significant (p<0.10). The seed traps provided no evidence for movement of seeds from planted species out of the planted area. In contrast to the results of trap measurements, Scirpus validus was observed growing near the upstream edge of the southeastern planted area (Stenberg, Pers. Obs. ) It could only have come from the planted area because it was not present on the site before planting. Also, Thalia geniculata expanded its range from the original planted sites. Dissimilarities in species richness were small for both sites and all dates (Table 35). Airborne Seed Trapping Differences in trapped seed densities between sites were detected from the second and third samples (Table 36). No statistical differences in trapped seed densities were detected for the upstream versus downstream position (Table 36). Species composition of trapped seeds was almost exclusively made up of Typha spp. It was not possible to determine the relative proportion of T. domingensis and T. latifolia seeds, so they were lumped under Typha spp. The lone exception to sample dominance by Typha spp. seeds was the trapping of a single seed of Andropogon spp. in the N92-D92 sample at Site 1 in the downstream trap (Table 36). Seed Germination Seed germination rates were lower than expected (Table 37) Results are reported as minimum and maximum values to provide information about the range of values observed in this experiment. The experiment was conducted in a growth chamber at the Center For Wetlands. The growth chamber was chosen because it provided an environment with lower daily maximum temperatures and allowed for a consistent daily light/dark cycle. As will be seen by comparison with published data these experiments seem to have underestimated seed germination rates. The flooded treatment (1 cm depth) provided the best germination conditions, with more germination events and greater germination rates. These results will be compared with similar published studies in the Discussion section. 298

PAGE 275

Table 33. Summary of seedling densities from waterbome seed traps by date and site. Densities reported as # trap ,(Mean standard Error). Site 1 Site 3 Upstream Downstream Upstream Downstream S(!!!cies Mea!] SE Mea!] SI; Mean E MeaD E Sep92-Nov92 AMAAUS 10.33 2.96 5.33 3.18 AMMCOC 0.33 0 33 BACHAL 0.33 0.33 CARPEN 2.00 1.00 CARSPP 1.00 1.00 CVPBRE 1 00 1.00 1.00 0.58 CVPIRI 1.00 1.00 9.67 9.17 1.33 1.33 CVPODO 12.33 7.54 3.67 1.86 1.00 1.00 1.33 1.33 CVPSPP 0 33 0 33 CVPSPP1 1.00 1.00 CVPSPP2 2.33 2.33 ECHCRU 0.33 0.33 ECLALB 2 00 2.00 0.33 0.33 3.00 3.00 7 33 3.28 EUPCAP 3.33 1.76 1 33 0.88 7 00 7.00 37.3321.09 GALTIN 2.00 2 00 1.33 0.67 HYDRAN 6.00 6.00 2 33 1.45 JUNMAR 0.33 0.33 0.50 0 50 0.67 0.33 LINANA 3.33 2 85 0.33 0 33 0.67 0.67 LUDDEC 0 33 0 33 LUDLEP 1.33 1.33 LUDOCT 1 33 0.88 2.50 2.50 0.33 0.33 LUDPAL 0.33 0.33 1.50 0.50 <4.67 2.<40 LUDPER 0.33 0.33 2.00 2 00 0.33 0.33 LUDSPP 0.67 0.67 OXACOR 0.67 0.33 PANDIC 0.67 0.33 POLPUN 7.33 5 36 1.00 1 00 0 50 0.50 3.00 3.00 TYPSPP 16.67 0.67 7.00 7 00 13 5013.50 3.00 1 15 udicot 1.67 0.88 0.67 0.67 Nov92-Dec92 ALTPHI 0.25 0.25 AMAAUS 3 00 1.58 1.00 0.71 1.25 0.63 0.75 0.25 AMMCOC 0.25 0.25 0.25 0.25 0.25 0.25 BACHAL 0.25 0.25 0.75 0.<48 0.50 0.50 CARALB 0.75 0.25 0.25 0.25 CARPEN 0.50 0.50 0.75 0.25 0 25 0.25 CVPBRE 0.50 0.29 CVPHAS 1 00 0 58 1 25 0.95 0 25 0.25 CVPIRI 0.75 0.<48 6.50 3.75 13.25 8.93 0.50 0.50 CVPODO 5 75 3.01 5.50 3.23 7.50 3.97 3.25 1.65 CVPSPP 1.00 1 00 0 75 0 75 3.00 3 00 3.00 3.00 DIGSER 0 50 0 29 ECLALB 1.00 0.<41 12.0010.37 23.00 8 34 7 00 4.76 ELEVIV 0.50 0.50 EUPCAP 0.25 0.25 6.00 3.24 60 .0024. 69 2.25 1 93 299

PAGE 276

Table 33. Summary of seedling densities from waterborne seed traps by date and site (continued). Site 1 Site 3 GALTIN 0.50 0.50 2.50 0.65 0.25 0.25 HYDRAN 0.25 0.25 4.25 2.98 HYDSPP 0.25 0.25 JUNEFF 0.25 0 25 JUNMAR 0.25 0.25 LINANA 10.50 4.94 0.25 0.25 0.75 0.48 0.25 0 25 LUOOEC 1.00 1.00 LUOOCT 5 00 3 54 0.25 0.25 LUOPAL 0.25 0.25 0.25 0 25 10 75 7.11 LUOPER 4.50 2.06 1.00 0 .58 2.25 2.25 0.25 0 25 LUOSPP 0.75 0 75 0.75 0.75 MIKSCA 0 25 0.25 OXACOR 0.25 0.25 0.75 0.75 0.75 0.75 PANOIC 0.25 0.25 0 25 0 25 2.75 1.60 POLPUN 4.25 2.66 0.75 0.75 2.00 1.35 0.50 0.29 TYPSPP 7.25 1.89 17.25 8.26 18.00 4.12 11.50 4.57 udlcot 0.25 0.25 Oec92.Jan93 ALTPHI 0.75 0 48 AMAAUS 5.75 2 78 1 33 0.88 1.00 1.00 AMMCOC 0.25 0.25 CARALB 0.25 0 25 CVPHAS 0.25 0.25 CVPIRI 1.25 1.25 0 33 0.33 CVPOOO 6 75 2.87 6.33 4 37 4.25 2.66 4.75 2 50 CVPSPP 4.50 3 86 0.75 0.75 DIGSER 1.00 0.58 ECLALB 1.67 1 20 11.00 4.02 4 75 3.09 ELEINO 0.25 0.25 0.25 0.25 EUPCAP 0.25 0.25 20.5014.67 15.25 9.08 HYDRAN 1.00 0 .58 4.50 3.20 0 50 0 29 JUNMAR 0.25 0.25 L1NANA 2.25 1.93 0.33 0.33 LUOOCT 0.50 0.50 0.33 0.33 LUOPAL 0.50 0.50 1.50 1.50 LUOPER 9 00 2.48 13 33 9.06 6.50 3.77 2.00 0.71 LUOSPP 1.75 1.75 MIKSCA 0.50 0.50 0.50 0.50 PANOIC 0.25 0.25 1.25 0.48 POLPUN 3.25 2 93 TYPSPP 20.00 6 10 5.00 3.61 21. 7515.46 7 .00 3.19 udicot 0.25 0 25 300

PAGE 277

Table 33. Summary of seedling densities from waterbome seed traps by date and site (continued). Site 1 Site 3 Upstream Downstream Upstream Downstream Species Mean SE Mean SE Mean SE Mean SE Jan93-May93 AMAAUS 9.25 3.94 4.25 1. 0.75 0.48 0.25 0.25 AMMCOC 5.75 3.52 2 75 1.70 CARPEN 0.25 0.25 0.50 0.50 CVPBRE 0.25 0.25 2.00 1.22 3.00 2.12 CVPIRI 0.50 0.29 0.75 0.48 104.5045.55 53 5013.54 CVPODO 7.25 0.95 2.50 1 .32 1.50 0.87 2 .50 1.04 CVPSPP 0.50 0.50 CVPSUR 0.50 0.29 DIGSER 0.25 0.25 1.00 0 .41 Dlodia? 0.25 0.25 0.25 0.25 0.25 0.25 ECHCOL 0.75 0.48 ECLALB 0.50 0.29 0.25 0.25 5.75 2 .50 2.75 1.11 ELEIND 2.25 0.75 0.75 0.25 EUPCAP 0.50 0.50 21.0010 .90 15.00 4.51 FIMAUT 0 25 0 25 GALTIN 0.25 0.25 HYDRAN 0.25 0.25 LINANA 0.50 0.50 0.50 0.50 LUDLEP 4.50 1 .85 0.75 0 .48 3.25 0.85 4.50 2.90 LUDOCT 4.00 3.67 0.75 0 .75 32.25 6 66 7.75 4,87 LUDPAL 10.75 8.09 4.25 1.60 LUDPER 0.50 0.50 0.25 0 25 0.25 0.25 MIKSCA 0.25 0.25 PANDIC 0.25 0 25 0.75 0.48 0.25 0.25 PASDIC 1.25 0 75 0.25 0.25 POLPUN 0.50 0.50 0.25 0.25 ROTRAM 0 .50 0 .50 0.25 0.25 0.25 0.25 TYPSPP 5.00 4.67 0.25 0 .25 1.25 0 .95 2.75 2.75 301

PAGE 278

Table 34. Spearman Rank Correlation analysis comparing species composition of Upstream vs Downstream seed traps by date. Date S92-N92 N92-D92 D92-J93 J93-M93 Corr. Coer. -0.473 -0.191 0.044 0.224 p>IRI 0.0005 0.0334 0.7169 0.0232 Table 35. Species richness from water bome seed traps. Date S92-N92 N92-D92 D92-J93 J93-M93 Site 1 Upstream 15 15 13 11 Downstream 13 19 9 12 Site 3 Upstream 302 12 28 15 22 Downstream 20 21 12 23

PAGE 279

Table 36. Differences between airborne seed traps by date. Values reported as # 0.5 m-2 Mean(standard Error) Differences determined using TTest. Except for one seed of Andropogon spp. found in the Date=N92-D92. Site=1. Downstream trap. only Typha spp. seeds were found in traps Differences between Sites He 1 T-Value(l>III S92-N92 29 .0 (21.7) 23 .0 (15 2) 0 211 0.837 N92-D92 65.3 (16.0) 24.8 (4 2) 2 447 0.045 D92-J93 0.2 (0 .5) 4.3 (2.0) -2.026 0.082 2 (0 6} 2,1 (2,ll 2 m 2,m Differences between Trap Positions Qate Uostream S92-N92 33.1 (24.6) 19.7 (13.3) 0.480 0.640 N92-D92 44 1 (15.8) 43.3 (14.0) 0.047 0 964 D92-J93 3 3 (2.4) 2 1 (1.5) 0.433 0 673 ,!93-M93 0 6 (0 4} 0 .0 (o.o} 1 227 0 246 Table 37 Results of seed germination experiment. Reported as percent germination SPECIES Cyperus haspan Cyperus odoratus Echinoch/oa crusgalli E/eocharis inferstincta Juncus effusus Juncu s marg;natus Pontederia cordata Rumex crispus S agiftaria lancifo/ia Scirpus va/idus Typha latifolia TREATMENTS MOIST o 3 o o o o 0-3 0-33 0-17 o 2 303 FLOOD 52 3 13 o o o 0-2 0-37 0-25 o 2

PAGE 280

Seed Bank Overview. Seed bank species richness varied from 24 to 52 for all sites and samples (Table 38). The flora may be characterized as annual or biennial (47%), generalist (84%), species common to disturbed sites (56%) with dominance by grasses, graminoids, and herbs (95%). See Table 39 for a summary of seed bank species composition and seedling densities. Most species found in the seed bank have been reported to be <1.5 m tall at maturity (Godfrey and Wooten 1981a, b). Comparison of Seed Bank Treatments Mean seedling densities differed between field greenhouse treatment combinations (F=9.65, p=O.OOOI, n=12). Seedling count data were log10 transformed prior to analysis to correct a lack of independence of the mean and variance (Sokal and Rohlf 1981). The untransformed mean seedling densities are reported. Three seedling density patterns were detected (Figure 122). These seedling density patterns were related to dates of soil collection, greenhouse treatments (moist vs. flooded) and field treatments. Seedling densities measured from the November 1991 soil sample seemed to decline according to the following pattern: Natural Succession Transects> Mulch> Control (Figure 122). This pattern was not statistically significant (SNK Multiple Ranges Test, =0. I). In contrast, under moist soil conditions seedlings from the November 1992 sample seemed to follow a pattern of Natural Succession == Mulch> Control. This pattern was statistically significant (SNK Multiple Ranges Test, a=O. 1). Seedling densities for the two greenhouse soil moisture treatments were similar (Moist =Flood) for November 1991 and differed for the November 1992 soil samples. This pattern resulted because during the assay of November 1991, soil water levels were not well controlled. This problem was corrected before the start of the November 1992 assay Therefore, results of the November 1992 flooded soil treatment are reliable, while the November 1991 flooded soil treatment results are less so Seed bank species responded to field and greenhouse treatments. Species richness was higher under moist soil conditions regardless of the field treatment (Table 38). Species richness was higher in the seed bank than the existing vegetation at any time in the study period (Table 38). The most common and abundant species in the seed bank flora tended to germinate more readily under moist soil conditions (Table 40). In contrast to the majority, Typha spp. germinated more favorably under flooded conditions (Table 40) Species germination patterns were less distinct when comparing among field treatments. Under flooded conditions, only Lindemia anagallidea, Panicum dichotomiflorum and 1}pha spp had statistically significant differences (Table 41) The seedling density pattern detected for Typha spp reflects the overall seedling density pattern (Fig. 122, Table 40,41) Under moist soil conditions a larger collection of species was found to have statistically significant differences between field treatments (Table 42). These species included, Ammania coccinea, Cyperus surinamensis, Eclipta alba, Lindemia anagallidea, Ludwigia decu"ens, and Ludwigia octovalvis. Species seedling density patterns were not clearly defined, with the natural succession sites or control sites often 304

PAGE 281

Table 38. Number of species from seed bank and above-ground vegeta\Jon measurements. Data consolidated for simpllclty.ReId Treatment (FLO) Codes: NS=Natural Succession, MUL"'Mulch Site, and CON=Controi SIte. Greenhouse Treatment Codes (GRNHS): FL=Flooded Soil, MO=Molst Soli SEED BANK ABOVE-GROUND VEGETATION GRNHS SAMPLE DATES FLO 1991 1992 FL "10 FL "10 %CHG N0Y90 AUG91 JAN92 MAY92 AUG92 FEB93 AUG93 NS 50 51 32 51 +59 32 38 30 27 20 25 MUL 45 41 24 39 +63 14 15 12 15 25 CON 4 52 29 37 +28 18 15 14 16 32

PAGE 282

Table 39. Summary of seed bank density by species (# sample1). First column codes represent species abbreviations. Full species names with abbreviations can be found In Table 6. Column header codes use the following convention: sample sites (first two characters), dates (second two characters) and data type (last character) Site characters are: C1-C3=Control Sites 1 and 3; M1-M3=Mulch Sites 1 and 3; and T1-T8=Transects 1-8. Date characters are: N91=November 1991 and N92=November 1992. Data type characters are: F=Flooded greenhouse treatment ; M=Molst greenhouse treatment; and V=Vegetation cover SEEDBANK SEED BANK NOY1"1 NOY1"1 TRANSECT ftOIST ftULCH ftOIST CONTROL-ftOnT TRANSECTfLOO} ftULCH-fLOO} CONTR OL-fLOO) SE!e ACERUB 0 .00 0 00 0 .00 0 .00 0 .00 0.00 0 0 0 0 0 00 0 .00 0.00 0 .00 0 0 .00 A LTPHI 1 00 0 .00 0 0 00 0 .00 0.00 1 00 0.00 0 00 0 0 00 0.00 0 0 .00 1.00 0 .00 A ftUUS 3 12.50 0 1 00 1.00 1 2 1 00 1 .00 0 .00 1 .00 AftASPP 0 .00 0 00 0 .00 0 .00 0 00 0 0 0 .00 0 .00 0 00 0 00 0 0 0 0 00 AftBART 0 00 0 .00 0 0 0 00 0 .00 0 .00 1.00 0 0 0 00 0.00 0 00 0 .00 0 0 00 AftftCOC 1 .00 0 00 1 00 30.00 0 .00 0 3 .00 1500 0 00 ,.33 53a A N}SPP 0 0 00 0 .00 0 00 0 00 0 0 .00 0 .00 0 00 0 0 00 0 0 .00 0 .00 0 00 0 00 A PILEP 1'.00 1.00 0 00 0 .00 1 .00 0.00 la.aD 0 0 2 0 .00 0.00 0.00 0 00 0 ASTELL i!.[JD 2 00 0 .00 0 .00 1 00 1 1.00 3 .00 0 .00 0 0 0 .00 1 .00 0 .00 A STSPP 0 0 0.00 0 0 00 0.00 0 .00 0.00 0 0 0 00 0 .00 0 .00 0 00 0 0 ASTSUB 0 .00 0.00 DDD 0 .00 0 00 0.00 0 00 0 0.00 0 00 0 .00 D.DD 0 0 00 0 .00 0 ASTTEN 0 00 0 00 0 .00 0 .00 0 0 00 0 .00 0 .00 0 .00 0.00 0 00 0 0 0 .00 0 .00 0 .00 AZOCAR 0 00 0 00 0 .00 D DD 0 0 0 .00 0.00 D.DO 0 0 0 0 00 0 .00 0 0 .00 BACHAL 0 00 1 .00 0 .00 0 0 0 1 .00 0 .00 D.DD D.DO D DD 0 .00 0 0 .00 0.00 0 .00 B ACINN D .DD 0 .00 0 00 DDD 0 00 0 .00 0 00 0 0 0 0 0 .00 0 .00 0 0.00 BULAE 0.00 0 0 00 0 .00 0 .00 0.00 0 0 0.00 0 00 0 .00 0.00 0 0 0 0 00 BRAPUR 0 00 0 00 0 .00 0 00 0 00 0 0 .00 0 .00 0 .00 0.00 0 0.00 0 00 0.00 0 .00 0 .00 CALA"E 0 .00 0 0.00 0 0 00 0 0 .00 0 0 0 0 0.00 0 .00 0 .00 0 00 0 CARALB 1 00 D.DD 0 00 0 .00 0.00 D .DD 0 .00 0 00 0 .00 1.00 1.00 0 0 00 1 CARPEN 3 00 3 LDD 0 3 .aa 0.00 1 00 0 2 .00 3 .00 5 .20 5 .20 C ARSPP 0 0 .00 0 00 0 00 0 00 0.00 0 0 00 0 00 0 00 0 .00 0.00 0 00 0 3 00 0 00 C ASOBT 0 0 0 .00 0.00 0 0 00 0 .00 0 .00 0 .00 0.00 0 0 00 0 00 0 .00 0 .00 0 .00 CICftEX 0 .00 0 .00 0 0 00 0 0 .00 0.00 0 .00 0 00 0 0 00 0 .00 0 .00 0 .00 0 00 0 00 CO"If 0.00 0 1 0 .00 0.00 0.00 0.00 0 0 00 0 00 0 .00 0 0 .00 DDD 0 0 CYNUC 0 0 0 .00 0.00 2000 0 0 00 0 .00 0.00 0 .00 0 0 .00 2 0 .00 0.00 0 .00 CYPBRE 0 00 0 .00 2 2 00 1 0 .00 0 00 0 00 0 .00 1 .00 1 .00 5.50 0 0 .00 CYPCOft a .D[] 0 00 0 0 .00 0.00 0 .00 0 0 00 0 .00 0 00 0 .00 1 00 0 0 00 0 .00 0 00 CYPERA C 0 00 0.00 0 .00 0 00 0 00 0 .00 0.00 0 .00 0 00 0 00 0 0 .00 0 .00 0 0 0 CYPESC 0.00 0.00 0 0 00 0.00 0 .00 0 0 00 0 .00 0 .00 0 .00 0 0 00 1100 0.00 0 CYPHAS 0 00 0 00 .00 0 0 7 00 1 .33 1 1200 7 00 0 .00 2 00 7 CYPIRI 3a.DD 7[]D 10.75 23.00 H 22 17 7S 1725 22.25 1'.25 CYPO}O 17 5 .50 1233 12.33 150 lS.5D 5 50 .00 12 3 75 25 10.00 CYPSPP 15.00 1 HD 3a.DD 7 25 10.00 H .DD 1 0 25 3 CYPSUR 0 0 0 0 .00 1.00 1 1.00 0 .00 0 .00 0 00 1 00 0.00 2 .00 IIGSER a .DD 23.25 2233 2 L7 2.50 3 .50 a DD 2 3 00 10.00 2 .00 7 00 1 ECHCOL 2 00 1 .00 a .DD 0 .00 0 .00 1 0 a .DD 25.50 1 .00 0 00 1 3 00 1 .50 2 .00 ECHCRU 0 .00 0 0.00 0 0 .00 1.00 1 00 0 0.00 la.DD 0 00 0 .00 0 0 .00 1 00 ECHSPPl 0 00 D.DD 0 0 .00 0 .00 0 0 0 0 .00 0 00 0 0 0.00 0 .00 0 0 00 ECHSPP2 0 .00 0.00 0.00 0 .00 0 .00 0 00 0.00 0 0 .00 0.00 0 0 0 0.00 0 0.00 ECLALB nD 25.75 15 52.00 a n 33 2a 20 13.33 13 EICCRA 0 .00 0.00 0 0 0.00 0 .00 0 0 0 .00 0 .00 0 .00 0 0 0 .00 0 .00 0 .00 ELEfLA 0 00 0.00 0 0 .00 0 0 00 0 0 0 .00 0 .00 0 00 0 00 0 0.00 0 00 1 00 E L EIN} 25. L7 la25 a 10.50 ,.00 lD.aa 1 00 1 .00 11 3aD ELEINT D .DO DDD 0 0 .00 0 0 00 0 00 0 .00 0 .00 0 00 0 .00 0 .00 0 .00 0 .00 0 00 0 .00 ELESPP 0 00 0 00 0 00 0 .00 0 0 00 0.00 0 .00 0 00 0 0 00 0.00 0 0 .00 0 .00 0 .00

PAGE 283

Table 39. Seed bank density ( # sample-1 ) (Cont. ) SEEBANK SEEPBANK NOY1"1 NOY1"1 TRANSECT -"OIST "ULCH -"OIST CONTROL-"OIST TRANSECT-FLOOP "ULCH-FLOOP CONTROL-FLOO) spe t1N,1"0 13N,1"0 TbN,lno T1N'I"0 "1N,I"0 "3"'}"0 ()N'lnO (3",)"0 TIN,)F! T3N,lFL IbN,)" T?N,)'! "}N'lFk n3N,lfb 'l"'lEI '3N,lFb ELEYIV 0 .00 1500 0.00 l DD SS 0 .00 0 00 0 .00 0 00 l'DD 0.00 ell l .DD 1 0 .00 ERISPP 0 .00 0 00 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 .00 0 .00 0 00 0 00 0 .00 0 00 EUPCAP lD.SD l SD l S eDle 101.00 eSD ee.DD 'lSD ss n EUPSER l.DD 1 .00 0 00 0.00 U SD 0 .00 eD 0 .00 0 00 1 7 0 00 USD 1 00 EUPSPP 0 0 .00 0 00 0.00 0 0 .00 0 00 0 00 0 0 0.00 0 0 0 .00 0 00 0 .00 Fa AUT 0 .00 0 00 0 .00 0 0 00 0 0 .00 0 .00 0 0 .00 0 0 .00 0 .00 0 0 .00 0.00 GAL TIN UlDD l .SD 1600 1.SD 1 S .SD e DD el 1.50 0 .00 0 HE)UNI 0 0 0 .00 0 0 .00 0 00 0 00 0 .00 0 0 0 00 0 0.00 l DD 0 00 0 .00 HnRAN 0 .00 0 lDD l .DD 0 00 0 0 .00 0 00 0 00 0 .00 0 0.00 0 00 0 1 00 0 Hnspp 0 0 .00 0 0 0 0 .00 0 0 .00 0 0.00 0 0 .00 0 .00 0.00 0 00 0.00 HnU"B 0 00 0 .00 0 0 00 0 0.00 0 0 .00 0 00 0 0.00 0 00 0 0 00 0.00 0 0 .00 0 1.00 0 0.00 0 00 1 0 .00 0 0 00 0 .00 1 0 00 l .DD 0.00 1 0 l .DD 0 I.ll S.DD 13.00 lDD lD l ll 100 LE"SPP 0.00 0 0.00 0 0 .00 0 00 0 .00 0 .00 0 00 0.00 0 100.00 0 .00 0 0 00 0.00 LEPfAS 0 00 0.00 0 00 0 .00 0 0 .00 0 0 00 0 .00 0 0.00 0 00 0 0 .00 0 0 .00 LI"SPO 0 .00 0 0 .00 0 00 0 .00 0 0 .00 0 .00 0 0.00 0 0 0.00 0 0 00 0 00 LINANA 1 00 0 00 e .DD 0 .00 e DD 1 0 .00 Ulle LINCAN l .DD 1 00 0 .00 7 l 7S n .17 0 .00 0 00 0 .00 1 00 0 .00 7 .7 0 n 7 0 00 LUPALA 0 00 0 .00 0 0 .00 0 0 .00 0 0 00 0 0 0 .00 0 0 0 0 0.00 LunEC 0 .00 55 0 .00 0 0 .00 0 0 0 .00 '3.00 0 0 0 .00 0 7 .00 1 00 LUPLEP 3 .50 1 0 .00 1 0 .00 0 .00 1 00 0 .00 17 1 0.00 l.DO 0 S .DD lD.DO LUPOCT 2 .50 3 133 SD.75 "1 "7 S'.33 u.S. DO 16750 .e.5D S DD LUPPAL 10.00 3111.00 1750 3 SD '00 16.SD 3 LUPPER 0 00 0 00 0 00 lDD 0 0 00 1 00 0 .00 0 0 .00 0 0 00 0 .00 LUPSPP 10.00 0 0 00 1 00 7 0 0 .00 00 0 0 00 1 .00 0 0 .00 0 00 "ELCOR 0 00 0 .00 0 0 .00 0 0 00 0 .00 0 00 0 .00 0 0 0 0 0 .00 0 00 0 .00 "IKSCA 0 .00 0 0.00 1 0.00 0.00 0 0 .00 0 00 0 00 0 .00 0 0 .00 0 0 00 0 .00 "ITPET 120.00 0 00 0.00 U DD l .DD 0 0 0 0 .5.00 0 .00 1 .SD 0 .00 "O"CHA 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 .00 0 00 0 .00 0.00 0 0 .00 0 00 0 .00 PANPIC 13 1 .3l lDD 5.00 00 l .DD PANHE" 0 00 0 00 0.00 0 00 0 .00 0 0 .00 0.00 0 00 0 .00 0 00 0 .00 0 00 0 0 .00 0 PANSPP 0 .00 0 .00 0 .00 1 00 0.00 1 0.00 1 00 lSD 1 00 0 1 n DD 1 PASPIC 0 00 0 00 0.00 0 0 .00 0 .00 D DD 0 0 .00 0 00 0 .00 0.00 0 0 .00 0 0 .00 PASPIS 0 .00 0 00 0 .00 0 0 .00 0.00 0 00 1 .00 0 00 0 .00 0 00 0.00 0 .00 0 0 .00 0 00 PASS PP 0 00 0 .00 0 0 .00 0 00 0 0 .00 0 0.00 0 00 0 00 0 .00 0 00 0 .00 0 0 .00 PASURY 0.00 0 0 .00 0 00 0 .00 0.00 1 0 0 .00 0 00 0 0 .00 0 00 lDD 0 .00 PENPEN 0 00 0 .00 0 1 .00 l OD 0 1 00 0 0 00 1 .00 0 00 0 00 0 0 .00 0 0 .00 PHVANG 10 0 00 0 00 0 1.00 1 5 .00 0.00 0 0 .00 0 00 0 .00 1 .00 0 00 PLUROS 0 .00 0 00 0.00 00 0.00 00 0 .00 0 0 .00 0 .00 0 0 .00 1 0 POACEAE 0.00 0 0 .00 0 0 00 0 00 0 00 0 00 0 0 .00 0 00 0 0 .00 0 .00 0 0 .00 POLPEN 0 0 .00 0 0.00 0.00 0 0 .00 0 0 .00 0 00 0 0.00 0 00 0 0 .00 0 00 POLPUN 0 00 n .3l 7SD 0 .00 e' 75 0.00 1 00 7 .00 5S 1 0 PONCOR 0 0 .00 0 00 0 0 .00 0 00 0 .00 0 .00 0 0 .00 0 0 0 .00 0 00 0 0 .00 POROLE 0 .00 1 0 .00 e.OD 0 0 .00 3 00 0 .00 0 00 0.00 0 0 00 1 50 PTERno 0 0 .00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 .00 0 0 .00 0 00 0 .00 0 .00 RANSPP 0 0 00 0 .00 0 .00 0 0 .00 0 0 .00 0 00 0 00 0.00 0.00 0 00 0.00 0 .00 0 00 0 0 .00 0 0 0 .00 0 00 0 .00 0 00 0 0 .00 0 0 0.00 0 00 0.00 0.00 RHENAS 0.00 0 00 0 .00 0.00 0 00 0 0 .00 0 0 .00 0 00 0 00 0.00 0 0 0 .00 0 RHVBAL 0 0 00 0.00 0 0 0 0 0 .00 0.00 0.00 0 .00 0 0 .00 1.00 0 0 .00 ROTRA" 0.00 0 .00 0 00 0 .00 0 0 0 .00 l 75 0 .00 0 0 .00 00 0 0 RU"CRI 1 0 .00 0.00 0 0 .00 0 0 00 0 .00 0 0 0 00 0 0 .00 0 00 0 SAGLAN 0 0 00 0.00 0 0 0 00 0 0 .00 0 0.00 0 .00 0 0 .00 0 00 0.00 SAGLAT 0 0 .00 0 00 0 0 .00 0 0 .00 0 0 0 00 0 00 0 0.00 0 00 0 00 0 .00 307

PAGE 284

Table 39. Seed bank density (# sample-1 ) (Cont. ) SEnBANK SEnBANK NOV1"1 NOV1,'1 TRANSECT "OIST "ULCH "OaT CONTROL-MIST TRANSECT-fLOOD "ULCH-fLOOD CONTROL-fLOOD spp T1N,lMo T3N91no TbN,lnO 17N9)"0 ")N91M2 "3",)"0 ()N,IM2 (3N,)"0 T)N'lfL IhN,lfb T7N,)fb "'N,lfl n3N'lfb ()N,lfk C3N,lFL SAGriON 0 D.DD 0 0 .00 DDD 0 0 0 0 .00 0 00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 SAGSPP 0 0 0.00 0 .00 0 0 .00 1 0 .00 1.00 0 0 .00 0 .00 l.DD 0 00 0 SAL CAR 0.00 0 DDD 0 .00 0 0 .00 0 0 .00 0 .00 0 0 .00 0 0.00 0 0.00 0.00 SALROT 0.00 0 0 0 .00 0 0 .00 0 0 .00 0 0 0.00 0 0 .00 0 0 .00 0.00 SA"CAN 0.00 0 0 .00 0 .00 0 0.00 0.00 0 00 0 0 00 0 .00 0 00 0 0 .00 0 0 SA"PAR 0 0 .00 0 5.00 0.00 0 0 '.b7 0 0 .00 1 .00 0 .00 0 0 0 .00 SCI CAL 0.00 0 0 0 00 0 0 0 0 00 0 .00 0 0 00 0 .00 0 0.00 0 .00 0 scapp 0 0 00 0 00 0 0 .00 0 00 0.00 0 0 0 00 0.00 0 0 0.00 0 0 SCI VAL 0.00 0 0 .00 0 00 0.00 0.00 0 .00 0 0 0.00 0 .00 0.00 0 00 0 0.00 0 SENGLA 1 1.00 0.00 0 3 0 00 7 1 1 0 00 0 0.00 0.00 0 00 0 SES"AC 1 0.00 0 0 00 1 00 0 00 0 0 00 0 00 0 .00 0 00 0 .00 1.00 0 00 0 .00 0 .00 SET"AG 0.00 0 0 .00 0 0 0 0 0 0 .00 0 00 0 .00 0 0 00 0 .00 0 0 SOLA"E 0 .00 0 0 .00 0 0 .00 0 .00 0 0 0 00 1 0.00 0 .00 0 0 .00 0.00 SOL TOR 0.00 0 00 0 .00 0 00 0.00 0 0 0 0.00 0 0 .00 0 0 0.00 0 0 .00 SPIPOL 0 00 0.00 0.00 0 .00 0 0 .00 0 0 .00 0 0 00 0 00 0.00 0 .00 0 00 0.00 0.00 STAfLO 0.00 0 00 0.00 0 .00 0 .00 0 0.00 0 0 0 00 0 00 0 0 0 .00 0 0 THAGEN 0 0 0 0.00 0 0 .00 0 0 .00 0.00 0 0 .00 0 0.00 0 00 0 0.00 TYPDO" 0 .00 D.DD 0 .00 0 00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 0 00 0 00 0 TYPLAT 0 0 0 0 .00 0 00 0 00 0.00 0 00 0 .00 0 0 00 0 0 0 .00 0 0 00 TYPSPP 0 1 7 50 0 .00 3 0 .00 'b7 1 .b7 1 5 75 1.00 6&6 1.00 UTRBIf 0 .00 D.DD 0 .00 0 00 0 .00 0 .00 DDD 0.00 D.DD 0 0 00 0 0 .00 0.00 0 .00 0.00 0 .00 0 0 0 0 .00 D .DD 0 0 .00 0 00 0 0.00 0.00 0 .00 0 0 0.00 UTRSPP 0.00 0 0.00 0 .00 0.00 0 0.00 0 0 00 0.00 0 00 0 .00 0 0 00 0 .00 0 UTRSUB 0 0.00 0 0 .00 0 0 00 0.00 7 00 0 .00 0 00 0 00 0 0 0 0 VERPER 0 D.DD 0 0 0 00 0.00 0 0.00 3 0 0 0.00 0.00 0 0 0.00 VERseA 1 0 0 .00 0 00 1 0 00 0 00 0 .00 0 00 0 .00 0 00 0 0 00 1 0 VERSCR 0 D .DD 0 0 .00 0 00 0 .00 0 .00 0 0 00 0.00 0 0.00 0 .00 1 0 .00 WOLfLO 0.00 0 0 00 0 0 .00 0 .00 0.00 0 00 0 0 .00 0 0.00 0 0 0 00 0 WOLSPP 0 0 0 00 0 .00 0 0 0 00 0 00 0 .00 0 0 .00 0 0 .00 0.00 0 0.00 WOO VIR 1 0.00 0 0 00 0 .00 0.00 1.00 1 0 00 0 .00 0 0 .00 0 .00 0 00 0 .00 0 00 XYRJUP 0 0 00 0 0 .00 0 0 00 0 .00 0 00 0 .00 0 0 .00 0 00 0 .00 0 00 0.00 cypll:r.c 0 .00 0 .00 0 00 0 .00 0 0 .00 3 0 0 7.00 0 .00 0 0.00 0 .00 poaeel. H.DD 0 .00 7 00 0 00 0 0 .00 0 00 0 .00 00 3 0 0.00 DDO scispp 0 0 00 0 00 0 .00 0 00 0.00 0 0 0 .00 0 00 0 00 0 0 0 .00 0 0.00 udicot 1 1.00 1 0 0 0 .00 0 1 0 1.00 0 00 0.00 0 00 1 0.00 0 Table 39. Seed bank density (# sample-1). (Cont. ) SEnBANK SEnBANK TRANSECT "OIST "ULCH "OIST CONTROL-"OIST TRANSECT-fLOOD "ULCH-fLOOD CONTROL-fLOOD spp 1)",2"0 T3N,?MO ThN,?nO T7N,?nO "IN'2nO "3N,2"0 (IN'?M9 '3N'2"0 T1N92" T]N'2fl IbN'?f! 17N,2(L "'N'2Fl "3N'?FI ('N,eEL C3N,2FL ACERUB 0 0 .00 0 0 0 .00 0.00 0 .00 0 00 0 00 0.00 0 0.00 0 0 .00 0 0 ALTPHI 0 0 00 0.00 0 0 0 0 0 0 .00 0 0.00 0 0 0 0 0 .00 A"AAUS 5 0 00 17.00 36 0 .00 0.00 3 .50 0 .00 16.33 0 .00 A"ASPP 0.00 0 0 00 0 0 .00 0.00 0 0 00 0 0.00 0 0 .00 0 0 0 0 ""BART 0 0 00 0 .00 0.00 0 0 0 .00 0 0 .00 0 0.00 0 .00 0 0 .00 D.DD 0 A""COC 1 0 .00 3b7 3 1.00 0 3.50 0 ANDSPP 0 0 .00 0.00 0 .00 0 0 0 0 .00 0 .00 DDD 0.00 0 0 .00 0 .00 0 0.00 APILEP 0 0 .00 0 00 0.00 0.00 0.00 1 0 .00 0 0 0.00 0.00 0 0 .00 0 0 ASTELL 1 D .DO 0 0.00 0 1 0 0 .00 0.00 0 0 0.00 0.00 0 0 0.00 308

PAGE 285

'" M A o o N -' ... DOOOOOOoooooooooooccomoomooooooooooooomooooooooooooo o D:: .. ... z N o v 0000000000000000000000000000000000000000000000000000 ...................... ...... ........ ............ A o o -' L I % u -' N :0 ., A o o -' ... '" 0-ZNV .... '" WOO: ",zo-0-'" .... o ., -' o 0: 0-Z o V 0-'" .... o ., :z: V -' :0 EO 0-'" .... o ., '" 0-ZNV .... '" .. ,"00: ",zo-OOOOOOOOOOOooooooooooooooooooooooooooomooooooooooooo m m 0000000000000000000000000000000000000000000000000000 . . . . . . 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 .................................................. ........................................... .... ... N ............ ..................................... .................................................. 7 ........ ........... ........... ................. N ..................... .............. ........ ... ru .................................................. o N r ......... ...... ..... ................ ......... .. ...................................... .......... .. V

PAGE 286

01 00' 0 00' 0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 10dldS 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00'0 OOt OO"C 00' 0 OOt 00'0 3YV10S 00' 0 00'0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 00' 0 9VY13S 00'0 00'0 00' 0 00'0 00'0 OO t 00'0 OOt 00'0 00' 0 00'0 OOt 00'0 OO t 00'0 00' 0 )VYS3S 00'0 00' 0 00'0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00'0 00'0 00'0 n9N3S 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 OOt 00' 0 00'0 00'0 00'0 00' 0 00'0 00'0 1VhDS 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00'0 00' 0 OOt 00' 0 00'0 00' 0 00'0 00' 0 ddSDS 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00' 0 00'0 1nDS 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00'0 OO t 00'0 00' 0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00'0 00'0 00' 0 00'0 NnyVS 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00' 0 OOt 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00'0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00' 0 ddS9 V S 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00' 0 00'0 NOY9VS 00' 0 OO t 00' 0 00' 0 OO'S 00' 0 OOt 00'0 00'0 00' 0 00' 0 00' 0 00' 0 00' 0 n19VS 00' 0 00' 0 OO t 00'0 OOt 00'0 00' 0 00'0 00' 0 00'0 00' 0 00'0 00'0 00' 0 Nn9VS 00'0 00'0 00'0 00'0 00' 0 00'0 00'0 00' 0 00' 0 00'0 OO" D 00' 0 00'0 00'0 00' 0 OO"D OO t OS t 00'0 00'0 00'0 00'0 OO' E 00' 0 OOt 00'0 00'0 00' 0 OOt OO' E 00' 0 00'0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00' 0 OO"D 00'0 00'0 00' 0 00' 0 00' 0 00'0 00'0 00' 0 00'0 00' 0 00' 0 00'0 00' 0 00' 0 00' 0 00'0 OO t 00' 0 00'0 00'0 00'0 00' 0 00' 0 00'0 00' 0 00'0 00'0 00' 0