PRIVATE ITEM
Digitization of this item is currently in progress.
Perspectives on Interfacing Paper Mill Wasterwaters and Wetlands
CITATION MAP IT! PDF VIEWER
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/AA00004053/00001
 Material Information
Title: Perspectives on Interfacing Paper Mill Wasterwaters and Wetlands
Physical Description: Thesis
Language: English
Creator: Keller, Peter A.
Publisher: University of Florida
Publication Date: 1992
 Subjects
Subjects / Keywords: wastewater wetlands
wastewater treatment
paper mill wastewater
microcosms
Spatial Coverage: United States -- Florida -- Pensacola and Palatka -- Champion Artificial Wetland and Rice Creek Floodplain
Coordinates: 29.65 x -81.64
 Notes
General Note: 133 Pages
 Record Information
Source Institution: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: AA00004053:00001

Downloads

This item is only available as the following downloads:

( PDF )


Full Text

PAGE 1

PERSPECTIVESONINTERFACINGPAPERMILLWASTEWATERSANDWETLANDSByPETERA.KELLERA THESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA1992

PAGE 2

ACKNOWLEDGEMENTSIwouldliketoacknowledgetheinspirationandguidanceofHowardT.Odumthroughoutthisstudyandthemanycontributionsofmycommitteemembers,G.RonnieBestandMarkT.Brown.InadditionIthankRobertKnightofCH2M-Hillforhiscooperationandassistancewhichmadethisprojectpossible.TheresearchprojectwassupportedbyastipendfromChampionInternationalCorporationandTheNationalCouncilforAirandStreamQualityImprovement(NCASI).ThoseindividualscloselyinvolvedwiththeprojectwereRobertFisherandJimShepardofNCASIandDavidArceneauxofChampion.SpecialthanksgotoPeteWallaceofWallaceandGarrenEnvironmentalConsultantsfordonatingmaterialsandtechnicaladvice.LowellPritchard,ShanShinTon,RobertWoitheandDebraChildsassistedinfieldwork.ThanksalsogototheenvironmentalstaffofGeorgiaPacificCorporationinPalatka,Flloridaforallowingaccesstotheirpropertyandsupplyingnecessaryinformation.ii

PAGE 3

TABLEOFCONTENTSACKNOWLEDGEMENTSLISTOFTABLESLISTOFFIGURESABSTRACTINTRODUCTION ii vviix1FeasibilityQuestionsEnvironmentalFateofPreviousStudiesStudySitesandTheirStudyPlan..KraftEffluentoperation5610 1625METHODSANDMATERIALS27TestsofTreeSeedlingSurvivalandGrowthinPilotMarsh................27AquaticProductivitywithDiurnalChemicalMeasurements........29ChemicalChangesinPeatyMicrocosms.31StandCharacteristics,GrowthRate,andSpeciesDiversityintheHistoricallyEffluentInundatedRiceCreekFloodplainForestedWetland.38EmergyEvaluationofTertiaryTreatmentAlternatives41RESULTS.........42TestsofTreeSeedlingSurvivalandGrowthinpilotMarsh...........42AquaticProductivitywithDiurnalChemicalMeasurements........... 63ChemicalChangesinPeatyMicrocosms..75StandCharacteristicsandCypressGrowthRateintheEffluentImpactedRiceCreekFloodplainSwamp86DISCUSSION...................99SuccessionalPotentialofpilotMarshToForestedsystem....... ........99iii

PAGE 4

ImplicationsofAquaticProduction,Eh -pHParametersandEcosystemstructureonPollutantDynamics102ThePotentialRoleofForestedWetlandPeatSUbstrateinPollutantConversionandRetention..106ImpactsofKraftMillEffluentonaNaturalForestedFloodplainswamp ..........109EmergyEvaluationofTertiaryTreatmentAlternatives111Recommendations118APPENDIX REFERENCELISTBIOGRAPHICALSKETCHiv120127133

PAGE 5

LISTOFTABLESTableI.PeatMicrocosmwaterChemistryMethods39TableII.AquaticProductioninPilotWetland. 73TableIII.PeatMicrocosmwaterChemistryResults.79TableIV.RiceCreekExperimentalSiteForestStandData...........................87TableV.RiceCreekReferenceSiteForestStandData..................................88TableVI.EmergyEvaluationofTertiaryTreatmentAlternatives.........113TableVII.EmergyIndicesofTertiaryTreatmentAlternativesandTransformitiesofFinalProducts................................116v

PAGE 6

Figure1.LISTOFFIGURESAggregatedSystemsDiagramsofPaperMillswithsupportingEnvironmentandEconomy.4Figure2.PilotWetlandPlanView....18Figure3.Figure4.pilotWetland.June6,1991(Startup)RiceCreekSiteMap.Palatka,Fl1920Figure5.RiceCreekSwamp.JUly,1992..21Figure6.pilotWetlandVegetationProfile24Figure7.AquaticProductionCalculationMethods32Figure8.ExperimentalTroughMicrocosm33Figure9.InfiltrationColumnMicrocosm34Figure10.AverageSeedlingGrowth.6/6/91-9/18/9145Figure11.SeedlingMortality.6/6/91-9/18/9147Figure12.AverageSeedlingGrowth.6/6/91-4/21/9252Figure13.SeedlingMortality.6/6/91-4/21/9254Figure14.AverageSeedlingGrowth.9/18/91-4/21/9259Figure15.SeedlingMortality.9/18/91-4/21/92.61Figure16.stationD1.DiurnalTemperatureProfile.July16-17,1991.......64Figure17.StationD2.DiurnalTemperatureProfile.July16-17,1991.....64Figure18.stationC1.DiurnalTemperatureProfile.July16-17,1991........65Figure19.stationC2.DiurnalTemperatureProfile.July16-17,1991.........65vi

PAGE 7

Figure20.ReferenceStation.DiurnalTemperatureProfile.JUly16-17,1991..66Figure21.Figure22.Figure23.Figure24.station01.DiurnalDissolvedOxygenProfile.July16-17,1991....Station02.DiurnalDissolvedOxygenProfile.July16-17,1991.stationC1.DiurnalDissolvedOxygenProfile.July16-17,1991...stationC2.DiurnalDissolvedOxygenProfile.July16-17,1991... ..67 67 68 68Figure25.ReferenceStation.DiurnalDissolvedOxygenProfile.July16-17,1991.....69Figure26.Figure27.stationD1.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,1991station02.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,199170 70Figure28.Figure29.stationC1.DiurnalRateofChangeDissolvedOxygen/m2 July16-17,1991stationC2.DiurnalRateofChangeDissolvedoxygen/m2 JUly16-17,1991..7171Figure30.Figure31.Figure32.Figure33.Figure34.Figure35.ReferenceStation.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,1991DiurnalpH.PilotWetlandandReferenceStation.July16-17,1991....DiurnalRedoxPotential.pilotWetlandandReferencestation.July16-17,1991..Eh-pHDiagramofDataCollectedinpilotWetlandandReferencestation.July16-17,1991... ...............RelativeCoverage(BasalArea)ofTreeandShrubSpeciesinRiceCreekFloodplainSwampRelativeFrequencyofTreeandShrubSpeciesinRiceCreekFloodplainSwamp.. 72 76 76 77 91 93Figure36.SizeClassFrequencyperHectareofTreesandShrubsinRiceCreekFloodplainSwamp. 96vii

PAGE 8

Figure37.GrowthRates(Mean+-SE)of10CypressTreesinRiceCreekExperimentalsite.98Figure38.GrowthRate(Mean+-SE)of10cypressTreesinRiceCreekReferencesite....98viii

PAGE 9

AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulfillmentoftheRequirementsfortheDegreeofMasterofSciencePERSPECTIVESONINTERFACINGPAPERMILLWASTEWATERSANDWETLANDSByPeterA.KellerDecember,1992Chairperson:Dr.HowardT.OdumMajorDepartment:EnvironmentalEngineeringSciencesWetlandresponsestopapermillwastewaterswerestudiedinanartificialwetlandnearPensacola,FL,inpeatymicrocosmsandinaformerfloodplaindischargesiteinPalatka,FL.Afteroneyear,plantedseedlingsofbaldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvatica)insixplotswithinthepiloteffluenttreatmentmarshandoneirrigatedreferenceplotoutsidethewetlandexhibitedhighsurvivalandgrowth.Pondcypressexhibitedthehighestgrowthovertheentirestudyinthepilotwetlandfollowedbyblackgum,baldcypressandpopash.Popashandblackgumwerethespeciesmostretardedingrowthbyincreaseddepthofinundation.Metabolismwasevaluatedfromdataondiurnaltemperature,dissolvedoxygen,redoxpotentialandpHix

PAGE 10

measuredovera24-hourperiodatfourstationsinthepilotwetland.Temperatureanddissolvedoxygenwerehighlystratified.Grossprimaryproductioninthepilotwetlandwasmoderatetohighwiththehighestratecalculatedat7.6g/m2/day.Theproduction/respirationincreasedalongthelengthofthecellwithdeepzones.pHandredox(Eh)datafromthepilotwetlandplottedonanEh-pHdiagramwereintherangefoundinnaturalecosystems.Forestedwetlandpeat-effluentinterfacemicrocosmsprovedtobeaneffectivemediumforthereductionofbiochemicaloxygendemand(BOD),totalsuspendedsolids(TSS),ammonianitrogen(NH.-N),totalkehldahlnitrogen(TKN),nitrite-nitratenitrogen(N02-N03 )andtotalphosphorus(TP).ThemicrocosmsloweredeffluentpHandincreasedcolor.Dataonspeciescomposition,diversityandgrowthrateofbaldcypresswerecollectedfromtheRiceCreekfloodplainwhereeffluentfromtheGeorgiaPacificmillinPalatkahadbeendischarged.Growthanddiversityweresimilartothoseinanunaffectedsiteupstream.Anemergyevaluationoftertiarytreatmentalternativesindicatedthatawetlandinterfacemightrequirelesspurchasedinputs,thusbenefitingindustry,theenvironmentandsociety.Theseveralkindsofdatapresentedmayjustifyalargescalepilottestofreconditioningpapermillwastewatersinapeatyforestedwetland.x

PAGE 11

INTRODUCTIONIntegratingwetlandsintomunicipalandindustrialeffluentwastetreatmentprocesseshasstimulatedconsiderableresearchandimplementationoverthepastdecade.Wastewater-wetlandsystemshavebeenproveneffectiveinreducingbiochemicaloxygendemand (BOD),nutrientconcentrations,totalsuspendedsolids(TSS),heavymetals,pathogens,andsomeorganicpollutants.(Knight,1990;EPA,1988;Gillette,1989;EwelandOdum,1986;Thut,1990).Wetlandecosystemsself-organizetoadapttoenvironmentalinputssuchastreatedsewageandindustrialwastes.Biological,chemical,andphysicalprocessesareinvolvedinpurificationandattenuationofpollutants.Thepaperindustryuseslargevolumesofwater,producinganddischargingeffluentoftenhighinlignaceousorganiccompounds.Afascinatingpossibilityforthepaperindustryisinterfacingwetlandsystemswitheffluentdischarge,thusrecyclingwaterthroughnaturalenvironmentalprocesses,metabolizingandsequesteringpollutantsofconcerntothepUblic,helpingtomaintainlocalwatertablesandprovidingtheancillarybenefitsof1

PAGE 12

2ecosystemandhabitatconservation.Suchasymbiosisbetweenindustryandtheenvironment,ifitcanbeshowntobenefitthereceivingecosystemasitadapts,wouldbenefitthepaperindustry,theenvironment,andsociety.Usingexploratorymeasurements,thisstudyassemblesevidencethatmayjustifymoreextensivepilottesting.Includedare:1)MeasurementsofaquaticmetabolismandtreeseedlingsurvivalandgrowthinapilotwetlandtreatmentsystemconstructedbyChampionPaperCorp.nearPensacola,FL; 2)measurementsofwaterqualityinpeatmicrocosmsreceivingpapermillwastewatersatthePensacolasiteand;3)measurementsofindicesofmaturewetlandecosystemsthatformerlyreceivedpapermillwastewatersatRiceCreeknearPalatka,FL.Twoaggregatedsystemsrepresentinghypotheticalpapermillsandthesupportingenvironmentandeconomywerediagramed(Figure1).(SeeOdum,H.T.(1983)forenergycircuitsystemsdiagrammingmethods).Largescalepolicyimplicationsofwetlandinterfacingasopposedtotechnologicallyadvancedwastewatertreatmentinthepulpandpaperindustryareconsideredusingemergyevaluationinthediscussionofthisreport.

PAGE 13

Figure1.AggregatedSystemsDiagramsofPaperMillswithSupportingEnvironmentandEconomy.a)Wetlandinterfaceforsecondaryeffluentdischarge;b)Advancedtertiaryeffluenttreatment.

PAGE 14

CorutruetedTreatmentWeiland N."'n1 Wellond PIIIp.t:PoperMill (a)4 SunWmd Rain Soil(b) "'-. M.rltet )

PAGE 15

5FeasibilityOuestionsManyconceptsareinvolvedinusingwetlandsasaninterfacebetweenpapermilleffluentdischargesandpublicwaters.Somesubstancesmaybesimplyabsorbedbyplants,peatmicroorganismsandchemicalreactions.Self-organizingecosystemsthathaveahighdiversityofmicrobialspeciesoftendevelopprocessesneededtoutilizewastesubstances.Consensusisdevelopingthatlignaceoussubstancesfromnaturalwooddecompositionorpapermillwastearegoodatbindingmanykindsoftoxicsubstancesandareusefulforpurificationeitheraspeatfiltersorasblackwaters(Fuhr,1987;LarrsonandLemkemeir,1989).Eventhoughwatertreatmentforhumanconsumptionrequiresclarification,blackwatersarenaturalallovertheworldandmaycontributetothehealthofecosystemsandhumansbeforewatertreatment.ManyofthehealthiestwatersinFloridastartashighlycoloreddrainagesfromelevatedswampssuchasOkefenokee,SantaFe,GreenandBigCypressswamps.Oneconceptofinterfacingwetlandswithpapermillwastewatersistopassthemthroughenoughnaturalwetlandareasothatthelignaceousmaterialsfromtheeffluentareexchangedordilutedbythecolorfromtheswamp.Thecolorisnotchangedmuchbutthewatersbecomenormalforwetlandoutflow.

PAGE 16

Inordertolearnmoreaboutwetlandpotentialasaninterface,changesinchemicalcharacteristicswerestudiedandthepropertiesofadaptingecosystemswereexamined.Althoughcostly,conventionaleffluenttreatmenttechnologyandmodernprocessconfigurationssuchaschlorinedioxidesUbstitutionandoxygendelignificationhavebeenlargelyeffectiveinreducingbiochemicaloxygendemand (BOD),totalsuspendedsolids(TSS),toxicresinacids,andmuchofadsorbableorganichalide(AOX)inpUlpandpapermilleffluent.However,problemswithpersistenteffluentcharacteristics,includingcolor,chemicaloxygendemand (COD),foamingpropensity,nutrients,andAOXexistinmanymills.Thecostofengineeredtertiarytreatmentfacilitiesisoftenprohibitive.Alternativesbeingconsideredincludereturnofthesecondarilytreatedeffluentinadispersedmannertotheenvironmentviaacarefullymanagedconstructedornaturalwetlandsystem.Runningonnaturalenvironmentalenergies,awetlandwastewatertreatmentsysteminwhichaviableandappropriateecosystemcandevelopcanbeaninterfacebetweeneffluentdischargeandpublicwaters.EnvironmentalFateofKraftEffluentNumerousstudieshavebeenconductedworldwideontheimpactofpUlpandpapermilleffluentonaquaticorganismsinreceivingwaters.(Gellman,1988;Gove,1982;Hutchins,6

PAGE 17

71979)However,theenvironmentalstorage,cyclinganddegradationmechanismsformanyofthecompoundsarenotwellunderstood.ThekraftpUlpingprocessinvolvesthedigestionofwoodchipsinahighlyalkalinesodiumsulfidesolutionunderheatandpressure.Theresultingblackliquorisamixtureofsolubilizedligninandwoodextractiveswhichhavebeenseparatedfromthewoodfiberusedinpaperproduction.Theliquorissuccessivelyscreenedandwashed,with95%recoveryandrecyclingofprocesschemicals.Dilutewashwatersaredischargedtotheeffluenttreatmentsystem,wheretheytypicallyreceiveprimaryandsecondarytreatment.AtthispointinthepUlpingprocess,thepollutantsofconcerninwastewaterareBOD,TSS,nutrients,color,foam,andresinacids.Withtheexceptionofcolor,thesepollutantscanusuallybereducedtolevelsacceptableforpermittinganddischargeintoClassIIIreceivingwatersusingprimaryandconventionalbiologicaltreatment.Thepulpbleachingprocessisresponsiblefortheformationofthemostproblematicgroupofchemicalsfoundinpapermilleffluent,chlorinatedphenolicsandotherhalogenatedligninbyproducts.Thesechemicalstendtoberesistanttobiologicaldegradationandsomearetoxicand/orgenotoxictoaquaticorganismsandmaybio-accumulate(EarlandReeve,1990;Hutchins,1979).

PAGE 18

8Toproducewhitepaper,pUlpmustgothroughaseriesofbleachingandextractionsteps.Thebleachingisaccomplishedusingeitheraqueouschlorine,chlorinedioxideoracombinationofthetwo.causticsodiumhydroxideisusedinextraction.ManywesternEuropeanmillshaveswitchedtoozonebleaching,thuseliminatingtheenvironmentalproblemsassociatedwithchlorinatedorganiccompounds.Thecost,however,isthreetimesasmuchaschlorine,andsomefiberstrengthissacrificed(Swann,1990).OfthemanyconstituentsofAOX(aparameterwhichincludesallchlorinatedorganics),awiderangeofmolecularweightcompoundsarerepresented.ThoseoflowmolecularweightcontributemosttoAOXrelatedeffluenttoxicity.Thesetoxiccompounds,includingchloroform,chlorophenols,chlorinatedguiacolsandcatecholsaregenerallyreducedtosub-chronictoxicitylevelsforaquaticindicatororganismsbymillsthatusemodernprocesscontrolandsecondaryeffluenttreatmentsystemssuchasaeratedstabilizationbasins(ASB)andoxidationpondsoractivatedsludgeplants.TotalAOXcanrangefrom3-6kg/tonofpaperproduced,dependingonthelevelofchlorinedioxidesubstitutionusedinthebleachingprocess(Presley,1990).TheEPAandseveralstatesareintheprocessofissuingNPDESpermitsreflectingneweffluentstandardsonAOXanddioxin.Thesuggestedlimitondioxininstreamsis0.013

PAGE 19

9ppq.,wellbelowthedetectablelimit(Pulpandpaper,1991).ThesuggestedregulatorylimitforAOXinmilleffluentis1.5kg/ton(Presley,1990).TherecalcitrantnatureofhighmolecularweightkraftligninsresponsibleforthecolorandCODinpapermilleffluentisduetothemolecularstructureofligninitself.Ligninisacomplexaromaticpolymerwhichcontainsmanynon-hydrolyzablelinkagesprotectingthepolysaccharidesfromenzymaticdegradation(KirkandChang,1981).Theroleofcertainbasidiomycetes,specificallywhiterotfungi,inthecatabolismofligninrelatedcompoundshasbeenshown.ThewhiterotfungiPhanerochaetechrysosporiumandCoriolusversicolorwereabletodegradeligninasmeasuredbyI'C02generationfromaIClabeledlignincompoundculture(Crawford,1981;Kirketal.,1980).Depolymerizationinvolvesapowerfulextracellularenzymesystempresentinthefungi(Bumpus,etal.,1985).Theprocessrequiresaerobicconditionsandthepresenceofanadditionalcarbohydratefoodsource.Theby-productsformedcanthenundergofurtherringcleavageanddegradationthroughtheenzymesystemsofvariousbacteriaandothermicroorganisms(cain,1980).Astudyconductedonkraftmilleffluentinanaeratedlagoonreportedareductionoftotalorganichalide(TOX)of1/3to1/2.Thedehalogenationanddegradationofchlorinatedorganicsunderanaerobicconditionsinthe

PAGE 20

10benthallayerofthelagoonwasdeterminedtobeimportantinoverallTOXreduction.BiosorptionofthepersistentchlorinatedorganicmoleculesontosettlingbiomassplayedacrucialroleinthefurtherdegradationofTOXcomponentsinthebenthallayer(Amy,etal.,1988).Microbialsynthesisandcomplexationofligninrelatedaromaticcompoundsisknowntooccurintheprocessofsoilhumification(Martin,1980).LarrsonandLemkeimeier(1989)comparedthemineralizationofchlorinatedphenolsandbiphenolsinhumiclakesystemsvs.clearlakesystems.SUbstantiallyhigherratesofdegradationoccurredinthehumicenvironments,wheremicrobialpopulationswereadaptedtodegradingandcomplexingsimilarnaturalaromatichumiccompounds.PreviousstudiesApparentlyonlyonelargescalewetlandeffluenttreatmentsystemsexistforthepulpandpaperindustryinColumbus,MS.Informationonit'soperationhadnotbeenreportedintimeforinclusioninthisreport.Twopilotscalestudieshavebeenreportedontertiarytreatmentofpulpmilleffluentsbyartificialwetlands(Allender,1984andThut,1990).TwolargerandmoresignificantstudieswereinitiatedbyPopeandTalbot,Inc.Halsey,ORandChampionInternationalCorp.incantonment,FL.

PAGE 21

11Allender'sstudy,conductedunderstatichydroponicgreenhouseconditions,showedareductionoflignosulfonate,color,TSS,BOD,andfoamingpropensityofsecondarytreatedeffluentsinsmallplantedreactors.Theexperimentwasconductedoveraten-weekperiodusingfourplantspeciesindigenoustothemilllocationinVictoria,Australia.Plantswereplantedinfourliterplastictubsfilledwithbleachplantandpapermachineeffluent.Variousconcentrationsoftheindicatorpollutantlignosulfonateweretestedaswellastheeffectofnutrientadditionandbiocidetreatment.Threeofthefourplantspecieswerecollectedfromthemill'sfinaleffluentponds,giantrush(Juncusingens),palerush(Juncuspallidus),commonreed(phragmitesaustralis)andcumbungibulrush(Typhaorientalis).JuncusandTyphashowedthegreatestpollutantremovalefficiencyunderhighloadingconditions.Allenderconcludedthatallspeciestestedwereabletotoleratelargeandrepeatedchangesineffluentqualityandthattheenzymemediatedprocessesinvolvedinphenoliccompounddegradationoccurredprimarilyinbacteriaassociatedwiththerhizosphereofalivingrootsystem.RudolfN.Thut,ScientificAdvisortoTheWeyerhaeuserCo.,conductedseveralsmallscalepilotstudiesonbleachedkraftmilleffluentin2.6m2marshreactors,andinitiatedathreeyearlargerscaleinvestigation(0.4ha.)treatingthermomechanicalpUlpmilleffluent(Thut,1990a,b).Using

PAGE 22

12wetlandplantsinagravelsubstrate,Thutattemptedtomaximizebothplantuptakeandanaerobicbreakdown.Theplantspeciesusedinthestudiesincludedgiantcordgrass (Sparrina cynosuroides),cattail(Typhalarifolia),reed(Phragmiresausrralis),bulrush(Scirpuscalifornicus),torpedograss(Panicumrepens),andsawgrass(Cladiumjamaicense).Afteroneyearnodifferenceinthetreatmentefficacybetweenspecieswasshown.Removalefficiencieswere:TSS-54%,500-29%,ammonia-64%,totalorganicnitrogen-33%,totalphosphorus-18%.Removaloffattyandresinacids,animportantconstituentofeffluenttoxicity,wasbetween20-25%.Theoptimumretentiontimebasedontheseparameterswas15hours.Nosignificantremovalofcolorortotalorganicchlorine(TOCL)wasreported,althoughareductioninchlorinatedphenolicsof50%wasnoted.Thutconcludedthatartificialwetlandtreatmentwouldhavenoappreciablepositiveeffectoncolorandadsorbableorganichalide(AOX)inwastewaters.Evidenceexists,however,thatbiosorptionandbiodegradationunderacombinationofaerobicandanaerobicconditionscanreduceAOXanddioxinconcentrations(Amy,etal.,1988;Presley,1990).PopeandTalbot,Inc.inHalsey,ORinitiatedalargescaleartificialwetlandtertiarytreatmentprojectscheduledtorunforfiveyears(NCASI,1991;Pope&Talbot,

PAGE 23

131990).WiththecooperationofOregonstateUniversity,40,000cattailsandbulrusheswereplantedandtheareawasinundatedwith18inchesofsecondarytreatedKraftmilleffluent.Proposedretentiontimeswere24-48hours.Theeffluentwascirculatedbygravityandpumping.Noresultswereavailable,butthepreliminarygoalswereaBODandTSSreductionfrom15ppmto8ppm,reductionofcolor,andreductionofthedioxinconcentrationintheeffluent.However,thedischargefromthemillcontainedlessthanthedetectablelevel(10ppq)ofdioxin.ChampionInternationalandCH2M-Hillstudiedaeffluent-wetlandinterfaceatakraftpUlpandpapermillincantonment,FL.Apilotwetlandandnitrificationplantwasconstructedtotheeastofaeratedstabilizationbasin(ASB2),oneofthefourlagoonsinChampion'ssecondaryeffluenttreatmentsystem.Rigorousquarterlywaterquality,vegetationandfaunasamplingandanalysiswasconductedoveraoneyearperiod(CH2MHill,1992).Thewetlandconsistedofsixcells100meterslongwiththreepairsofcellsofthefollowingwidths:40meters,20meters,and10meters.Thepairedcellswereidenticalexceptfortwoadditionaldeepzonesinonecellofeachpair.Thepurposeofthedeepzoneswastoassesstheeffectsofincreasedwaterstorage,increasedhydraulicretentiontime,andincreasedatmosphericreaeration.Tenherbaceousplantspeciesinsixidenticalplantingzones

PAGE 24

14withineachwetlandcellwereplanted.Speciesincludedweresoftrush(Juncuseffusus),maidencane(Panicumhemitomon),sawgrass(Cladiumjamaicense),canna(Cannaflacida),fireflag(Thaliageniculata),duckpotato(Sagittarialancifolia),pickerelweed(Pontedariacordata),cordgrass(Spartinabakerii),bulrush(Scirpuscalifornicus),andcattail(Typhalatifolia).Thegoalofthepilotstudywastoobtaindesigncriteriaforfullscaleimplementationandtoassessthecriticaleffluentparameterremovalorreductionpotentialofsuchasystemunderdifferentdesignandloadingrates.Thevariablestestedwerehydraulicloadingrate(HLR): 2 30em/day,theoreticalhydraulicretentiontime(HRT):0.3 35days,massloadingratesforthevariouseffluentparameters,depthofinundation:060 em,nitrificationpretreatmentandthepresenceofdeepzones.Thepollutantremovalefficiencyrangedasfollows:fivedaybiochemicaloxygendemand (BODs): 36 77%,totalsuspendedsolids(TSS):72 90%,NH3 :896%,totalnitrogen(TN): 37 79%,andtotalphosphorus(TP):26-78%.RemovalefficiencyfortheseparameterswasfoundtobeinverselycorrelatedtoHLR,whiletheremovaloftotaldissolvedsolids(TOS)andcolorwasonlyweaklycorrelatedwithHLR.Significantreductionsinalkalinity,solubletotalorganiccarbon(sTOe), TOS,colorandconductivitywereachievedonlyinthetwocellswhichreceivedthe

PAGE 25

15lowestHLR's.TDSandcolormassremovalratesweremostdependentonHRT.ThecolormassremovalataHRTof20dayswasbetween30and50%.Nitrificationpre-treatmentresultedinsignificantlyreducedoutflowconcentrationsofNH3andTN,andincreasedDO.Adsorbableorganichalide(AOX)wasreducedbyanaverageof50%duringthefirstquarterofoperation.Bioassaysofthefatheadminnow(Pimephalespromelas)andthecladoceran(CeriodaphniadUbia)wereconductedtodeterminetoxicitycharacteristicsofthewetlandinfluentandeffluent.NoacutetoxicitywasassociatedwiththeinflowfromASB2andthechronictoxicitywasreducedtonearzeroinmostcasesbywetlandtreatment.Cellswithdeepzonesreducedchronictoxicitymoreefficientlythanthosewithout.Sedimentandplantandfishtissuesamplesfromthepilotmarshwereanalyzedformetals,dioxin,andextractableorganichalide(EOX).Noharmfulaccumulationlevelswerereportedinthebiotasamplesanditwasassumedthatnearsteadystateconcentrationsexisted.Oftheplantspeciestested,bulrushandcattailwerethemostsuccessful,butallofthetenplantedspeciesexceptforcanna,maidencaneandarrowrootgrewwellundereffluentinundation.29invadingplantspecieswereidentified.Thewetlanddevelopedarichdiversityof

PAGE 26

16macroinvertebratesandwasutilizedbymanybirdspeciesaswellasotherwildlife.Someinterfacestudieshaveconsideredtheuseofpapermilleffluentforsprayorfloodirrigationofforestplantations.IrrigationofanintenselyculturedplantationofSalixandpopuluswithpapermilleffluentledtoPopulusgrowthratesof1.8-2.1m/yearandSalixgrowthrateof90cm/year(Hansen,etal.,1980).Inthisexperimenttherateofirrigationwasapproximately28cmperweekofsecondarytreatedgroundwoodandkraftprocesseffluent.Aftertwoyears,samplesweretakenfromwaterpercolatingthroughthesandysoilandqualitywasbetterthanthetertiarytreatedeffluentnormallydischargedbythemill.However,onepotentialconcernnotedwasthetransmissionofmostNa,CI,andSO.tothegroundwatertable.Once abroaderinformationbaseisestablishedontertiarytreatmentofpulpandpapermilleffluentwithnaturalsystemsthroughpilotstudiesitispossiblethatthisecologicalengineeringapproachtowastewatertreatmentmaybeacceptedbytheindustryasacosteffectivecomponentofanoverallstrategyforcompliancewithenvironmentalregulations.StudysitesandTheirOperationTwostudysiteswereinvolvedinthisresearchproject.(1)Apilottertiaryeffluenttreatmentmarshoperatedby

PAGE 27

17CH2M-HillfortheChampionpapermilllocatedinCantonment,FL.(Figure2,3)(seeprevioussectionforreviewofrecentstudiesthere.(2)TheRiceCreekforestedswampfloodplaininPalata,FL, WhereeffluentfromtheGeorgiaPacificmillwasdischargedinthepast(Figures4,5).ChampionArtificialWetlandIn1991,inordertoimprovewastewaterqualityfordischargeintoreceivingwaters,anartificialwetlandwasconstructednearPensacolabyChampionInternationalandCH2M-Hill(environmentalconsultants).TheClassIIIwaterqualitycriteriawhichareofconcernareammonia,dissolvedoxygen,transparency,conductivity,zinc,andiron.Availableinprocessandendofpipealternativeswereconsideredforeffluentqualityimprovement.NCASI,threeenvironmentalconsultingcompanies,andChampion'sownenvironmentalstaffwereinvolvedinevaluatingoptions.AreportwaspreparedonseveralengineeredcapitalintensivetreatmentsystemsincludingUltrafiltration,carbonadsorption,ammoniumionexchange,alumcoagulation,andlimetreatment(SirreneEnvironmental,1990).Inthe1991-1992studyinPensacola,CH2M-Hillwastestingapilotnitrificationplantinserieswithapilotconstructedwetland.

PAGE 28

CounseAggregaIeFlOm Pond2(INF11 Figure2.PilotWetlandPlanView. ChampionCorp.Cantonment,FL. (CH2M-Hill,1990).

PAGE 29

19Figure3.pilotWetland.June6,1991(startup).ChampionCorp.,Cantonment,FL.

PAGE 30

...... I .,t.1:.c/):.;:>' -I .. i ,'-,. "'"'."p\\II ...........\"..... \\ -1)<"",\",II \ -:. I --'" )II \"Jf\.\\ II 10:> -_....... rI :: )) _,>(71/.... I .. I"( ...........1.-) ) \II C' )"I" ...<1 II "".II'--".1I ,.i\.J'.)l' '::,: --:--I.4' '"' .... II \\ II........'" I'J') .-_II.',-/ 1q.-",,',\\\\ (2 q -t -;l. .......4\/......... ............, )0-""ij-...._. \ ............. \\ '. -;1' ...................L...g)/__--,L-_ -__-_o.J! ..-r,"-,,-:'..... 1. --,,/:0,.' ......,:...----.,.::-+""""'. t(5""'-.......:::."Q f r" ) / ) "')-_.:__-.(.j) I -;1:. __. J -:,...._-:\::-(,./.:..';'-..,.1J'.....,_,,__ c'_ r '-.c'-;'1,-..'::_:-..-:,"::..J,:.. j -.::0'. _'.'"_.) -(I.''I",'/ --.:: : ...."':-:\.........,1 .,. "----"iT ' --"-"+ --..-../-I-,...... _...........,,,............ III ......'\/_ _c.,.', I'--(".__-_.,...V;..'.-,-1".. 1 /;::.. ."..__ ... :'.....""'I (_/ 38 + _-::Ir!: r .1,,-;:-e-Ii>?"s ,,,,-.._.,...,_ _ _Iii';:',-1-.. I{1 .-."""-..................."" .....-"+--, "r,J" 6 .-_,\"\ ::..::_.1"_--,,-..-.:-:}1_-" I .",...'".......... / ,'2JJ.. I ._-_.<:.,...'-/1/.(--",e-, .. s;, : :-c"v..._..0'I/"'i;l ..',,(")-"'_,-__ ;.-.,;;; -... (I.: j \1/,(1\\,)" \ y-"-, \ / 5_''"::.;-,,' il R:" j' 1,:\, :: ...."_....',.__o.,.. '.:...;.,o...'i0-:''''.."......_I;'...... F ""ell'_::'\::"_: :.. ::o.'::. jl,o.-:.:::.,\:<: i __.. .._/__W"-", ''0,,'' ) .._..., .."./_6./';;9"(\,2I'\''','..i....J\'\,'_.".._ _"...((.1801,/-;".. TankI ,"........,.'"""." \ ..,rl (/--\.''''.,..-"",._."".,..',' ")", ,.. ,/..,.(' ) I'j,,1I".J '//,\./'.-".\(, I :J\) I/ ....,".,.'__\.;.If) i:1 C-00..) / .51\IJ.I/ r'I....L..!. '/( \ ( ..... ',I '.' (I.... \\ ._.. .:';: .._ .......... II \,'15' t ...-7 rFigure4.RiceCreekSiteMap.Palatka,FL.

PAGE 31

21Figure5.RiceCreekswamp.JUly,1992.Palatka,FL.

PAGE 32

22Althoughthepollutantremovalefficiencyandpositiveecologicalimpactsofwetlandtertiarytreatmentsystemsformunicipaleffluenthavebeenwelldocumented(EPA,1988),littlewas knownspecificallyaboutthefeasibilityofwetlandtreatmentforsecondaryeffluentofpUlpandpapermills.CH2M-Hillanalyzedsevendifferentnaturallandtreatmentalternativesincludingzerodischargerapidinfiltrationlandapplication,andbothnaturalandcreatedwetlandtreatmentwithsUbsequentdischargetosurfacewaters.TheclimateinthepanhandleofFloridaistemperate,withwarmhumidsummersandmildwinters.Theaveragetemperatureis20degreesCandaverageannualrainfallis1.57m,withapeakoccurrencebetweenJuneandSeptember.TheChampioneffluentwasfromableachedkraftprocess.IntegrationofoxygendelignificationandchlorinedioxidesubstitutioninpUlpprocessingincreasedtherecoveryofprocesschemicalsandreducedtheorganicloadineffluent.Effluenttreatmentconsistedofaprimarysettlingpondfollowedbyconsecutiveaeratedstabilizationbasins(ASB).Withtheexceptionofpolyaminetreatmentusedinprimarysettling,thissystemisthemostcommonlyusedeffluenttreatmentprocessamongpapermillsintheSoutheast.Thepilotmarshwasconstructedinahighclaysoilwithextremelylowpermeability.Approximately15cmof

PAGE 33

23topsoilwereaddedtothewetlandcells.MilleffluentfromASB2waspumpedintoapilotmarshonthesiteforoneyearundervariousloadingratesandcellconfigurations.Theherbaceouscommunitywasallowedtoselforganizeaftertheinitialplantingof10species.Figure6isaprofileofpilotwetlandCellCandCellDincludingplantcommunityzones.RiceCreekFloodplainsiteTheRiceCreekdrainageareanearthecurrentGeorgiaPacificsecondaryeffluentdischargeinPalatka,FLwaschosentostudytheimpactofhistoricaleffluentinundationonvegetativecommunitydevelopment.Themillhasbeeninoperationsince1947andinthepastitdischargedeffluentfromit's900acresofsecondaryoxidationpondstoforestedwetlandsalongRiceCreek.ThemillpresentlydischargesdirectlytoRiceCreekthroughachannelfromoxidationpond4.Thechannelwasconstructedtoimprovedissolvedoxygenlevelsinreceivingwaters.Inaddition,themillcurrentlyinjectsliquidoxygenintoRiceCreekatthreelocationsbeyondthedischarge.RiceCreekdrainsintothest.JohnsRivershortlybeyondthemillslocation.

PAGE 34

no iI ........ CELLC ....... IiI12.r\ JUDCUS128 fII i \TreePIOICICladiumI IPanicum Saginaria !1Z7 rCanna Ponlederia i IScirpusTyphaI .. Thalia Treeplol C2 ZI26r TreeplolC3 2 I! '"r ,I 124rV iIlZ3 I i 122 I0100 ZOO 300... 131 i130 CELLD iJ--'lr120 128LIJuncus Cladium SaginariaI is Treeplol D1 Canna Ponlederia Scirpus 1;1Z7rPanicum Thalia TrccplolD2Treeplol D3 Typha,z, .... I Eo \ t 126 ... r ;:: ,II <: : 125 :II -'OJ I 124 !I\I!I!123 i-------.......... .. III1Zl 0100 ZOO ...HORIZONTALDISTANCE(II)24Figure6.pilotWetlandVegetationProfile.CellCandCellD.

PAGE 35

25TwosoiltypesaredescribedinthisareaoftheRiceCreekfloodplainbytheU.S.GeologicalSurveySoilSurveyforPutnamCounty:Rivierafinesand-frequentlyfloodedandTerraceiamuck-frequentlyflooded.Peataccumulationdepthswereupto1.5m.Thestudysitewaslocatedfarenoughupstreamtobebeyond the areaoftidalinfluencefromthest.JohnsRiver.AveragedepthofinundationinthefloodplainmeasuredinJuly,1992was0.2-0.5m,witha maximumdepthdeterminedbylichenlinesofapproximately1.0m.StudyPlanThisstudywasdesignedtointegrateinformationfrombothstudysites,makingobservationsandtheorizingontheprospectsfornaturalandorconstructedwetlandeffluentinterfacesforthepaperindustry.Theobjectivesoftheresearchconductedcanbesummarizedasfollows:1)TodeterminethesurvivalandgrowthrateofselectedwetlandtreespecieseedlingsintheChampionpilotmarshandrelatethistopossiblesystemsuccessionaldevelopment.2)Tomeasurediurnalaquaticproductivityandwaterchemistrywithinthepilotmarshunderdifferentcellconfigurationsandmakeinferencesaboutsystemmetabolismandnutrientcycles.3)Todeterminethewaterchemistrydynamicsoftheeffluent-organicpeatsedimentinterfaceofamatureforestedwetlandthroughbothsurfaceflowandinfiltration

PAGE 36

26usingmicrocosmreactors.4)Tocollectandpresentdataonthestructure,growthrateanddiversityoftheplantcommunityinaforestedwetlandimpactedbyhistoricaleffluentinundation.5)Topresentanindustrialenvironmentalsystemsanalysiscomparingwetlandinterfacedischargeofpapermilleffluentwithtechnologicaltertiarytreatmentalternativesusingtheemergymethod.

PAGE 37

METHODSANDMATERIALSTestsofTreeSeedlingSurvivalandGrowthinpilotMarsh560treeseedlings,donatedforuseinthisstudybyPeteWallaceofWallaceandGarrenEnvironmentalConsultantsweredeliveredtotheChampionconstructedwetlandsiteonJune4,1990.152individualsofthefollowing4specieswereincluded:baldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvaticavar.biflora).sixtreeplotswereplantedinthewetland,threeincellCand3incellD.Theplotswerelocatedineachofthethreeslopezonesonagradientfromwetlandinflowtooutflowwithinbothcellsandinthefollowingthreeplantcommunities:Juncuszone, Sagittaria /Pontedariazone,andScirpuszone.Seedlingswereplantedonfivefootcenterstocorrelatewiththetwoandonehalffootcentersusedfortheherbaceousspecies,expeditefuturemonitoringandallowsufficientspacingfortheoneyearmonitoringprogram.Areferenceplotwasplantedoutsidethewetland,approximately60meterswestofthenorthwestcornerofthewetland.Theplotreceivessunalldayandconsistsofthe27

PAGE 38

2Ssamehighclaycontentsoiltypeasthewetland.Asprinklersystemwaspurchasedtomaintainsoilmoistureinthereferenceplot.Eachoftheseventreeplotswasplantedwith20individualsofthefourspecieslocatedatrandomwithintheplots.AtotalofSOindividualswereplantedineachplot.Equipmentusedfortreeplantingandmonitoringincludedthreedibbles,12lengthsof1/2in.PVCpipeandflaggingtape,one100mandone20mtapemeasure,metersticks,100mofhoseandasprinkler.Atthetimeofinitiationforthisstudy,theconstructedwetlandhadalreadybeenplantedwithtenherbaceouswetlandplantspeciesattheendofApril,andeachcellwasdividedintosixplantcommunities(seestudysites).Milleffluentfromthenumber2ASBwasbeingpumpedintothewetlandatalowrate,approximately40gallonsperminute(GPM)incellsA&B,and20GPMintheremainingcells.TheseflowsweremaintaineduntiltheendofJunetoallowtheplantstobecomeestablished.Averagedepthofinundationunderthisloadingwaso-scmintheinfluentzone,15-23cminthemiddlezone,and23-30cmintheeffluentzone.ImplementationofprescribedflowratesforthepilotstudybeganonJune27,1991.InitialtreeheightswererecordedonJune6,1991tothenearestcentimeterandenteredintoaLotusspreadsheetdesignedtocalculateaveragegrowthbyspeciesbyplot,

PAGE 39

29averageheightperspeciesbyplot,andmortality.Thetreeplotsweremonitoredforgrowthandmortalitythreetimesinthe1991growingseasonandtwiceinthe1992growingseason.Theexactmonitoringdateswere:June6,1991,July15,1991,September18,1991,March3,1992,andApril20,1992.AquaticProductivitywithDiurnalChemicalMeasurementsBeginningat8:00AMonJuly16acrewmeasureddiurnaldissolvedoxygen(DO),temperature,pH,andredoxpotentialforapproximately25hoursat43pointswithinthepilotmarshandatareferencelocationwithinthestormwaterretentionwetlandsadjacenttoaerationpond4.TheequipmentusedwassuppliedbyCH2M-HillandincludedaportableDOmeter(YSIModel57#106,ProbeModel5739)andaportablepHmeter(OrionModelSA235).TheD.O.meterwascalibratedwithaWinklerTitrationbeforeusebyCH2MHill'slaboratoryinGainesville.Theinstrumentwasaircalibratedbeforeandaftermeasurementsweremadeateachsamplingstation.ThepHmeterwasalsocalibratedateachstationusingtwobuffersolutions,pH 7and10.WeatherconditionsonTuesday,July16werecharacteristicforsummerandidealfordeterminingaquaticproductivity.Mostofthedaywassunnywiththehighreaching34degreesC.Someafternooncloudinesssetinaround3:00PMbutthesitereceivednorain.Wind

PAGE 40

30conditionswerecalm,reducingthesignificanceofatmosphericdiffusionofDO,whichwasnotaccountedforincalculations.Overnightlowsreached22degreesC.Sunrisewasat5:58AMandsunsetwasat7:52PM.DiurnalmeasurementsofDO,temperature,redoxandpHweremadefromthetwoboardwalksinCellCandCellDandthereferencestation,withfourreplicationsateachstation.Inaddition,depthprofilereadingsofD.O.andtemperatureweremadeinthedeepzonesofcellDandthereferencelocationat7cm,15cm,30cm,and60cmdepths.Fourreplicationswerealsomadeateachdepth.RedoxandpHreadingswereaveragedoveradepthof7-15cmateachofthefivestations.Readingsweretakenattwohourintervalsfor24hourswiththeexceptionoftwothreehourintervalsduringthemiddleofthenight.ThedatawasadjustedaccordingtofieldcalibrationandenteredintoaLotusspreadsheetforplottingdiurnalcurves.GraphedcurvesofconcentrationorvalueofaparameterovertimeandrateofchangeofDOpersquaremeterarepresented.OnerateofchangecurveforD.O.wasderivedfromthedepthprofilecurvesatstationsD1andD2(deepzones)usingplanimetry(Vollenweider,1969)Theratecurvesandthedepthoftheaquaticproductionprofileateachstationwasusedtocalculategrossaquaticphotosyntheticproductionandrespiration.Theareaunder

PAGE 41

31therateofchangeofD.O.curve(ppm/day)multipliedbydepthyieldedgrossprimaryproduction(g/m2/day)(Odum,1956).Nightrespirationwascalculatedinasimilarmannerandsubtractedfromgrossproductiontoobtainavaluefornetprimaryproduction.SeeFigure7foraquaticproductioncalculationmethods.DiurnalpHandredoxpotentialdatafromthepilotwetlandandreferencestation(tencmdepth)wereplottedinanEh-pHdiagram(BassBecking,etal.,1960).Althoughtherehasbeencontroversyconcerningtheuseofempiricalredox(Eh)dataindrawingdefiniteconclusionsaboutchemicalandbiologicalcharacteristicsofecosystems,thedatacollectedinthisstudyfallwithintheareagroupingontheEh-pHdiagramwherereliableresultscanbeexpectedusingtheplatinumelectrodeinmeasurement(FaustandAly,1981).ChemicalChangesinPeatyMicrocosmsTostudytheeffluent-peatinterfacemicrocosmreactorswereused.Twotroughswereconstructed(Figure8)andsixthreemeterinfiltrationcolumns(Figure9)werealreadyatthesite,havingbeenusedinaCH2M-Hillsoilsstudy.Thetroughswereconstructedusing2in.by10in.#2SYPlumberand5/8in.BCplywood.Oneexperimentalandonecontrolwereimplemented.Insidedimensionswere3.0mby0.6m,resultinginasurfaceareaof1.8m2

PAGE 42

I.'II II ,..,oE. ,ei ,,.c.."f c.. / ."" z Ul / "-'"0 I\ ;>->< \0 0onUl /..,>Ic ,...J /BC/I0/ en en I\ Q] \i i ,I "'......04:41AM09:16AM02:24PM07:UPMIZ:OOAM TIMEFigure7.AquaticProductionCalculationMethods.A+B*Depth=GrossPrimaryProduction.B*Depth=DayRespiration.C*Depth=NightRespiration.32

PAGE 43

33Figure8.ExperimentalTroughMicrocosm.

PAGE 44

Figure9.InfiltrationColumnMicrocosm.34

PAGE 45

35Designparameterswerechosentocorrelatewithavailabledripirrigationfittingsandflowratealternativesandtransportfeasibility.Av-notchweirwascuttoanequaldepthatoneendofeachtroughandfittedwithaplasticoverflowstructure.Thewoodwastreatedwithawatersealantandthenthetroughswerelinedwithdouble6mmpolyliner.Approximately1.2m3ofpeatwerecollectedfromamixedswamplocatedontheRainwatertract,theproposedsiteforfullscaleimplementationofconstructedwetlandstonaturalwetlandsdischarge.KeyswereobtainedfromChampiontogainaccesstotramroadsonthesite.Thechosencollectionareaischaracterizedbythefollowingplantspecies:Nyssasylvaticavar.biflora,Taxodiumdistichum,Taxodiumascendens,Smilaxspp.,andSphagnumspp.Peatdepthwasmeasuredat2 m andconsistedofbothwoodyandfibrouspeat.Thecolorwasdarkblack,indicatingahighC/Nratio.Laterlabanalysisrevealedapeatbulkdensityof0.1g/cm3 Thepeatwascollectedmanuallywithaspadein5gallonbucketsandtransportedbacktothesitein35gallonplasticgarbagecans.Duringcollectionaneffortwasmadetoobtainarepresentativeprofileofmoreandlessdecomposedmaterial.Troughswerefilledwithpeattoanapproximatedepthof15em.DripirrigationhardwarebyRaindripwasusedforhydraulicloadingofbothtroughs.Componentsincluded:

PAGE 46

363/4in.hosetopipethreadadapterswithscreenfilter,pipethreadpressureregulators,pipethreadto1/4in.tUbingadapters,1/4in.plastictubing,and1/2gallonperhour(GPH)dripheads.TheeffluenttroughwaslocatedattheinfluentendofcellEdirectlybelowandparalleltothewetlandinfluentpressurepipe,whichpumpsfromASB#2ofthemill'ssecondaryeffluenttreatmentsystem.Thistroughwasloadeddirectlyfromtheinfluentpressurepipe.Onein.PVCpipewasgluedintoaballvalvedrainageportonthepipeandroutedthrougha90degreejointtoa3/4in.faucetthreadballvalvewhichconnectstothedripirrigationsetup.Ataconstantflowof0.5GPHthehydraulicloadingrate(HLR)fortheexperimentaltroughwas2.5cm./dayandthetheoreticalresidencetimewas2days.Thesameloadinghardwarewasusedforthecontroltroughonlyitadaptedtoastandard3/4in.hoseandwasloadedwithtapwaterfromthemill'sownwell.Thecontroltroughwaslocatednexttothepilotnitrificationplant.Flowratewasthesameasintheeffluenttrough,1/2GPH,equatingtoaHLRof2.5cm/dayandatheoreticalresidencetimeof2days.ClearPVCcolumnswereusedtoassesthewaterqualityimpactsofinfiltrationthroughorganicpeat.Fortunately,acolumnsetupwasonthesite,andsoilinfiltrationstudiesrelatedtoalandapplicationalternativebeingexploredbyCH2M-Hillhadbeencompleted.Useofthe

PAGE 47

37columnswasgrantedbytheCH2M-Hillscientistsinvolvedintheproject.TheapparatusconsistedofeightclearPVCcolumnsthreemetersinlengthand10eminsidediametermountedonawheeledframewithsteelUbracesandwingnuts.Atthebaseofeachcolumnwasapressureplatewithaninternalplasticfilteranda3/4in.hosethreadoutflowwithaballvalve.Alengthofhosedirectedeachcolumnoutflowtoaseparateenclosedbucketforcollection.Thecolumnswereintwopiecesconnectedbyrubbersealedpipeclampstoallowfordisassemblyandhandling.Beforesettingupthisexperiment,theapparatuswascompletelydisassembledandcleaned.sixcolumnswereusedinthisexperiment,threeexperimentalandthreecontrol.Thecolumnswerepreparedasfollows:5emofpoolfiltersandwasaddedtopreventcloggingofthedrainagefilter;peatwasloadedineachcolumntoadepthof2 m;greyplasticwaswrappedaroundeachcolumntopreventexcessiveheatingbythesunandalgaegrowth.Columns1-3wereloadedwith500ml.ofASB2effluenteveryMonday,Wednesday,andFridayandcolumns4-6receivedthesameloadingwithtapwater.LoadingratesequatedtoaHLRof2.7em/day.TheloadingwasconductedmanuallybythefulltimeoperatoroftheCH2M-Hilllabatthesite.Baselinewaterqualitymonitoringwasconductedoneweekafterloadinginitiationandsubsequentmonitoring

PAGE 48

38followedatonemonthintervals.SampleanalysisforBOD,TSS,TPandcolorwassupportedbyChampion'sonsiteanalyticallaboratory.AnalysisofTKNandN02-N03wassupportedbyNCASI,throughPPBEnvironmentalLaboratoryinGainesville.NH3andpHweremeasuredbytheauthoronsiteusingChampion'smobilelaboratoryonthepilotwetlandtreatmentsite.TemperaturemeasurementsweremadeusingaNBScertifiedthermometerateachsamplelocation.pHmeasurementsweremadewithanorionModel250Aspecificionmeter.TheinstrumentwascalibratedtotheappropriatepHrangeandthesloperecorded.AmmoniawasmeasuredusinganorionModel720Aammoniaselectiveelectrodemeter.Theinstrumentwascalibratedat10,1,and0.1mg/landthesloperecorded.NaOHwasaddedtoeach40mlsampletobringthepHto11beforeanalysis.Meterreadingswereaccurateto0.1mg/landreadingsbelow0.1mg/larereportedas<0.1mg/l.Table1liststheparametersanalyzed,collection,preservation,analyticalmethod,andsupportlabs.StandCharacteristics.GrowthRate.SpeciesDiversityinTheHistoricallyEffluentInundatedRiceCreekFloodplainForestedWetlandInJune,1992plantcommunitydatawerecollectedfromtwositesalongtheRiceCreekFloodplain.

PAGE 49

39TableI.PeatMicrocosmwaterChemistryMethods.CollectionPreservationAnalyticalSupportMethodLabBOD-5(2)500mlCoolto4CStandardChampionPlasticMethod5210TSS(2)500mlCoolto4CStandardChampionPlasticMethod2540DColor(2)500mlCoolto4CNCASITech.ChampionPlasticBull.253TP(2)500mlCoolto4CSM4500-PBChampionPlasticNH4-N(1)125mlStandardPeterPlasticMethod4500-KellerNH3FonsitepH(1)125mlStandardPeterPlasticMethod4500-HKelleronsiteTKN(1)125mlH2SO4topHEPA-600/4-79-NCASI/PPBPlastic<=2;Coolto0204CN02/N03(1)125mlH2SO4topHEPA-600/4-79-NCASI/PPBPlastic<=2;Coolto0204C

PAGE 50

40ThreePlotsmeasuring20by10mwerelaidoutatrandominboththeexperimentalandreferencesites.Theexperimentalplotswerelocatedinanareaofthefloodplainwheremilleffluenthadbeendischargedpriorto1985,directlysouthfromthesoutheastcornerofoxidationpond4andapproximately200mupstreamofthemill'spresentchannelizeddischarge(seestudySites).ThereferenceplotswerelocatedupstreamfromanyhistoriceffluentdischargeintheRiceCreekfloodplainbeyondthezoneoftidalinfluencefromtheSaintJohnsRiver.TheareawasbetweenBardinRoadandthesouthwestfacingsideofoxidationpond2.Alltreeandshrubspeciesineachplotabove1 cmdiameterbreastheight(dBH)wereidentifiedandmeasuredtothenearestcentimeter.Treecoresweretakenfrom10baldcypressindividualsselectedfromthe3plotsineachsite.Twocoresweretakenfromeachindividualat90degreeangles.TheforestdatawasenteredintoLotusspreadsheetsandsummarygraphsofstandcharacteristicsproduced.ThediversityoftreeandshrubspeciesineachsitewascalculatedusingtheShannon-WeaverDiversityIndexlogarithmicbase2.TreecoresweremountedandpreparedaccordingtomethodsdescribedinEwelandParendes(1984).Annualringsweremeasuredusingadissectingmicroscopeandacalipercalibratedto0.1mm.Thegrowthrateswere

PAGE 51

41averagedinfouryearincrementsforthepast40yearsandconvertedtobasalareagrowthincrementsusingaformuladescribedinBrayandstruik(1963).EmergyEvaluationofEffluentTreatmentAlternativesAnemergyevaluationwasconductedtocomparetwotertiarytreatmentalternativesforpulpandpapermills.First,aenergycircuitdiagramwasdrawn(Figure1)depictingthemajorinputstothekraftpUlpandpaperprocessusingtechnologicaltertiarytreatment(granularmediafiltration,carbonadsorption.andammoniumionexchange)andusingawetlandinterface.TheinputstoeachprocesswerelistedinenergyormassunitsperovendrytonofpUlp(ODTP).Energyormassunitswereconvertedtoemergy,ameasureof"energymemory"orvaluedefinedasthesumofallavailableenergypreviouslyusedtomake aproductoraserviceexpressedinenergyofonekind,solarequivalentjoules(sej).Theratioofemergytoenergyistermedtransformityandhastheunitsofsolaremjoulesperjoule(sej/J).Bythismethodallprocessinputswereputona commonbasisforcomparison(sej/ODTP).Transformitieswerecalculatedbysummingalltheenvironmental,fuelandserviceinputstoaproduct.Sometransformitiesweretakenfrompreviousemergyevaluations(Odum,1992a,bjOdumandArding,1991jPritchard,1992).

PAGE 52

RESULTSTestsofTreeSeedlingSurvivalandGrowthinpilotMarshOnApril11,1991flowofmilleffluenttotheChampionpilotwetlandcommenced.TheflowlevelswereminimalanddesignedtoallowtheherbaceousplantcommunitytoestablishbeforeinitiationofoperationalflowratesonJune27,1991.TreeseedlingplotswereplantedinCellCandCellDofthewetlandonJune5and6,1991.SeeFigure6underStudySitesforaprofilediagramofbothcellsincludingvegetationzonesandtreeplots.Moralityandgrowthofthefourspecies,baldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvaticavar.biflora)arepresentedinFigures10-15.Theresultsfromthreemonitoringperiodsareincluded.Monitoringperiodonewasfromplanting,June6,1991toSeptember18,1991,representinginitialsurvivalandfirstseasongrowth.MonitoringperiodtwowasfromplantingtoApril21,1992,thefinalmonitoringevent.MonitoringperiodthreewasfromSeptember18,1991toApril21,1992,representingwintermortalityandsecondseasoninitialgrowth.42

PAGE 53

43Growthdatabetweenspecies,plotsandcellsforallmonitoringperiodswerecomparedusingstudent'stTeststatisticswithasignificancelevelof0.05.StatisticalresultsarepresentedinAppendixA.MonitoringPeriod1Monitoringperiod1includedthreeweeksofstartupconditions,withtheremainderoftheperiodfallinginthefirstoperationalphaseoftheexperimentalwetland,whichwasfromJune27,1991toFebruary8,1992.(CH2MHill,1992)ThetargetflowrateforCellsCandDduringthisphasewas120m3/day.Theactualaveragehydraulicloadingrate(HLR)fortheperiodwas4.81cm/day.Thedepthofinundation,ascontrolledbythestagingofoutletweirswasheldconstantinbothcellsduringthefirstoperationalphase.Theactualdepthsdidvaryasaresultofprecipitationandevapotranspiration.Averagedepthofinundationforindividualtreeplotswasrecordedduringgrowthmonitoringevents.Foroperationalphaseonetheywereasfollows:PlotC1,0-4cm;PlotD1,0-4cm;PlotC2,8 12cm;PlotD2,12-16em;PlotC3,12-16cm;PlotD3,12-16cm.Pondcypresshadthehighestgrowthaveragedoverallfourwetlandplotsduringmonitoringperiod1,25.2cm,followedbyblackgum,13.4cm,baldcypress,10.3cmandpopash,6.1cm(Figure10(c.WhencomparingPlot1growthto

PAGE 54

44theReferencePlot,onlypopashshowedsignificantlylessgrowthinthewetlandforCellCandD,andblackgumgrewmoreinCellDPlot1thanintheReferencePlot . (Figure10(a,b))AllspeciesgrewsignificantlymoreintheReferencePlotrelativetoPlots2and3inthewetland,butonlypopashshowedsubstantialgrowthreductionunderinundation.It'saveragegrowthwas6.1eminthewetlandand29.0emintheReferencePlot(Figure10(d)).Thiswasindicativeofthelowrelativefloodtoleranceofthespecies.AllfourspeciesgrewsignificantlymoreinPlot1thanPlot2or3whenthedatafrombothcellswascombined.Thisshowedaninversecorrelationbetweendepthofinundationandgrowthduringthisperiod(Figure10(a,b)).TherewasnosignificantdifferencebetweengrowthrateinPlot2andPlot3forbothcells(Figure10(d)).Competitionbyherbaceousspecieswasnotamajorfactorduringmonitoringperiod1,asthecommunitieswerejustbecomingestablished.NodistinctdifferenceingrowthbetweenthecelltotalswasnotedalthoughbaldcypressgrewsignificantlymoreinCellC,12.3cmvs.8.4cm,andblackgumgrewsignificantlymoreinCellD,15.2cmvs.11.5cm(Figure10(c)).Pondcypresshadthehighestseedlingmortalitywithinthewetlandduringmonitoringperiod1(Figure11(c)).

PAGE 55

45 ,. e2Sz ,. "" ,<,. , SALD CYPRESSPOND CYPRESSPOPASHBLAexGlAoI SPECIES 11m CELL C PLOT 1 CELL C PLOT 2 CELL CPLOT3 REFEAENCE (a) ,. a2S ,. "<" , .BALD CYPRESS POND CYPAESSPOP ASH BLACKGu.oI SPECIES Illm CELL 0 PLOT 1 CELL0 PLOT 2CEL.1. 0 PLOT 3 REFERENCE(b)Figure10.AverageSeedlingGrowth6/6/91-9/18/91.a)CellCandreference;b)CellD&reference;c)Totalbycell;d)Totalbyplot.

PAGE 56

(c)",-------------------------, "r-------------------"1---------------------"f-------,CEL.LC CELL 0WETL ....NOREFERENCe CELL PmBALDPOND CYPRESS ASHBLACKGL&l 46 ""a", 20 0"" w ," PLOT 1 PLOT 2PLOT 3 (d)TREE PLOT (tNCLlA) I NG BOTHCELLS) PmBALD CYPAESSPOHD CYPRESS popASHBl."CI::GlM Figure10.(continued).

PAGE 57

" """""" 3 ,0 S ....LO CYPRESSPOND POP ASHSPECIES CELL CPLOT1 CEL.LCPLOT 2 CELL CPLOT :3 (a) "r----------------------------,"f-----------"f--"f----------..f----------"f---------"f--------"f-------------,"f---------.f-------,f--------'f---SPECIES Ilim CELL 0 PLOT1 CELL 0 PLOT 2 CELL 0 PLOT 3(b)Figure11.SeedlingMortality6/6/91-9/18/91.a)CellCib)CellDic)Totalbycellid)Totalbyplot.47

PAGE 58

"r------------------------, 48"f-----------2Sf-----------, o REFEQliNCE CELL. BALD CYPReSSPOND CYPRESS popASHBLACXGl.lol (c)",--------------------------, "f--------------2Sf-------------2Of-------------"f----------, o REFEREtE (d) TREE PLOT (INCLl.OthG BOTHCELLS) BALD CYPRESSPOND CYPRESS popASHBLACI::GUM Figure11.(continued).

PAGE 59

49TherewasnomortalityforallspeciesintheReferencePlot.Mortalityduringthisperiodwascorrelatedwithdepthofinundationandinitialseedlingheight.ThecorrelationofseedlingmortalitywithdepthgradientbyplotisshowninFigure11(d).Theinitialheightofpondcypressatplantingwasthelowest,38.3cm,followedbyblackgum,47.2cm,popash,49.5cmandbaldcypress,54.9cm.MonitoringPeriod2Thesecondmonitoringperiodrecordedseedlinggrowthandmortalitytrendsovertheentiredurationofthestudy,fromplantingthroughApril21,1992.Theperiodincludedthefirstandsecondoperationalphaseofthewetland.Conditionsunderthesecondoperationalphaseweredecreasedflowrates,60m3/dayforCellsCand0,andincreaseddepthsduetotheraisingofoutletweirsinallcellsbyapproximately21cm.ThesecondwetlandoperationalphasecommencedonFebruary9,1992.OnFebruary24,1992CellOinfluentwasreplacedbyeffluentfromthepilotnitrificationplantwhichCH2MHillwastesting.Theincreasedweirelevationscorrespondedtothefollowingdepthsofinundationfortreeplots:plotC1,14-18cm;Plot01,14-18cm;PlotC2,26-30cm;Plot02,28-32cm.

PAGE 60

50Plot3inbothcellswasnotmonitoredinthesecondgrowingseasonduetotheprolificgrowthofbulrush.stormconditionshadcausedthebulrushtolaydown,makinglocationoftreeseedlingsintheseplotsimpossible.ProbablesurvivalofseedlingsinPlotsC3andD3wasnearzero.Pondcypressexhibitedthehighestgrowthovertheentirestudyinthewetlandandreferenceplots(Figure12(a,b.Inallwetlandplotstherelativegrowthofthefourspeciesfortheperiodwasasfollows:Pondcypress,38.8cm;blackgum,27.1cm;baldcypress,20.3cm;andpopash,18.1cm(Figure12(c.IntheReferencePlot,pondcypressandpopashgrewthemost,40.8cmand35.6cmrespectively,followedbyblackgumandbaldcypressat20.8cmand19.2cm.GrowthinthewetlandrelativetotheReferencePlotwasgreaterthanformonitoringperiod1.onlypopashgrewsignificantlymoreintheReferencePlotthaninthewetland,andblackgumshowedsignificantlygreatergrowthinthewetland(Figure12(c.Againtherewasastrongcorrelationbetweenplotnumberandgrowthrateinbothcells.AllspeciesexceptpondcypressgrewsignificantlymoreinPlot1thanPlot2(Figure12(d.PopashandblackgumwerethespeciesmostretardedingrowthbytheincreaseddepthofinundationinPlot2,bothhavinggrown16cmmoreinPlot1(Figure12(d.

PAGE 61

51DifferencesinseedlinggrowthbetweencellswereminimalandonlyblackgumshowedsignificantlyhighergrowthinCellDthanCellC(Figure12(c.Thedifferencecanprobablybeattributedtopatchyinvasionofdensecattailandeelgrass(Eleocharisspp.)inPlot1andpennywort(Hydrocotylespp.)inPlot2.CompetitiveinteractionwithherbaceousspeciesduringtheearlysecondseasonwasmostprominentinPlot1,wheresoftrushandcordgrassweregrowingwellandconsiderableinvasionbycattailhadoccurred.Plot2inbothcellswasessentiallydevoidofherbaceousvegetationwiththeexceptionofduckweed(Lemnaspp.)andsomepennywort.ThiswasduetothelatergrowingcycleofsagittariaandPontedariawhichwereplantedinthiszoneandtheincreaseddepthcreatedforwetlandoperationalphase2,hinderinginvadingemergentspecies.Seedlingmortalitywithinthewetlandduringmonitoringperiod2washighestforpopashandpondcypress,followedbybackgumandbaldcypress(Figure13(a,b.TotalmortalityofpopashoccurredinCellDPlot2.Thehighmortalityofpondcypresswasattributedtoit'slowinitialheight,assomeindividualsinPlot2werenearlycompletelysUbmergedunderthedepthregimeofoperationalphase2.Mortalitywascorrelatedtoplotnumberwhenthedatafrombothcellswascombined(Figure13(d.Differencesinmortalitybetweencellswerealsonoted.

PAGE 62

"<0J5a"z"i20 > <" 0 52 Ill8lllHCELL. C PLOT 1 CELL C PLOT2AEFEAENCE (a) ".,'0J5a"z"0 020
PAGE 63

".,""aJO,i""> < ", 0CEL.LCCEL.L0CEL.L IlS!l2lIB-.LOcypqessPOND_ETLAHOREFEAeCE 53(c) .," "a","0" < ffi"> < o TREE PLOT (INCL.UOING 90THCELLS) BALD CYPRESS POND CYPRESS popASHBLACKGUM (d)Figure12.(continued).

PAGE 64

54",-----------------------, 'f---------"f---------"f---------------POP ASH POND CYPRESSBALD CYPRESSo, ,6,SPEC I ES mJI CELL C PLOT 1 CELL C PLOT 2(a) """ """"""":s BALD CYPRESS PONDCYPRESS POP ASHBLACKG\.I.4 SPECIES CELL0 Pl.OT 1 CELL0 PLOT 2(b)Figure13.SeedlingMortality6/6/91-4/21/92.a)CellCib)CellDic)Totalbycellid)Totalbyplot.

PAGE 65

"r-------------------------.., "f---------"f---------"f--------------"f-----------"f----"f----"f----"f-----"'0 6 ,oCELL PmBALD CYPRESSPOND CYPRESS popASHlS22lBLA.CKGUlol (c)55 '0 """" '0 """" "'0 6oREFERENCE(d)TREE PLOT (I NCLlXHNG9:)TH CELLS) PmBALDCYPRESSPOHD CYPRESS f:ZZ]popASHBLACICGUlol Figure13.(continued).

PAGE 66

56OverallmortalitywashigherinCellDthanCellC(FigureIJ(c.CellCPlot1showedhighermortalitythanCellDPlot1forallspecies.Thiscanbeattributedtothegreaterdensityandextentofinvadingherbaceousspecies,especiallycattail,foundinCellCPlot1duringthesecondgrowingseason.CellDPlot2hadsignificantlyhighermortalityforallspeciesthanCellCPlot2.ThismayhavebeenduetotheslightlydeeperinundationinCellDPlot2.MonitoringPeriodJMonitoringperiodJexaminedthegrowthandmortalityofthetreeseedlingsfromSeptember18,1991throughtheendofthestudy,April21,1992.Thisdatareflectstheimpactofthefirstwinterandtheinitiationofwetlandoperationalphase2aswellastheearlysecondgrowingseasontrends.Blackgumshowedthehighestgrowthinthewetlandduringthisperiod,10.9cm,followedbypondcypress,8.4cm,popash,7.9cmandbaldcypress,6.5cm(Figure14{c}).Allspeciesshowedsignificantlyhighergrowthinthewetlandthaninthereferenceplot,whileonlypondcypressgrewsignificantlymoreinwetlandPlot2thanintheReferencePlot(Figure14(d)}.IntheReferencePlot,popashshowedthegreatestgrowth,6.7cm,followedbyblackgum,4.9cm,baldcypress,5.4cmandpondcypress,5.4cm.

PAGE 67

57Popashandblackguminitiatedgrowthearlierthanthecypressspeciesduringthesecondgrowingseason.PopashalreadyhadfullydevelopedleavesonApril21,1992,whilecypresswasstillinthebuddingstage.Thisexplainstheapparentlyhighgrowthrateofthesehardwoodspeciesinmonitoringperiod3ascomparedtotheoverallrelationship.DifferencesingrowthbetweenPlots1and2werelesspronouncedinmonitoringperiod3duetotheremovalofunadaptedindividualsfromthedadabasethroughmortalityandtheincreasedcompetitivestressinPlot1frombothplantedandinvadingspecies.OnlyblackgumshowedsignificantlyhighergrowthinwetlandPlot1comparedwithPlot2(Figure14(d.Noconclusivedifferenceingrowthbetweencellswasnotedinmonitoringperiod3althoughblackgum,pondcypressandbaldcypressshowedmarginallyhighergrowthinCellD(Figure14(c.Seedlingmortalityduringthisperiodwasconsiderable,reflectingtheincreasedstageheightinitiatedinFebruaryandthefirstwinter.AllspeciesshowedhighermortalityinPlot2thanPlot1(Figure15(d.Includingallwetlandplots,popashhadthehighestmortality,followedbypondcypress,baldcypressandblackgum.Baldcypress,popashandblackgumallshowedhighermortalityinCellDthanCellC,possiblyduetothe

PAGE 68

58slightlyhigherdepthofinundationinCell0(Figure15(c.CellCPlot1producedhighermortalityforallspeciesthanCellOPlot1,whileCellOPlot2producedhighermortalitythanCellCPlot2forallspeciesbutpondcypress(Figure15(a,b).

PAGE 69

(a) """ 9 r 6 ","< <, SPECIES e:.m CELLCPLOT1 CELLCPLOT2 REFERENce59'0 """" """" r "'0" 9 < 6 ,< J (b)SPECIES CELL 0 PLOT 1 CELL 0 PLOT 2 GQ() REFERENCEFigure14.AverageSeedlingGrowth9/18/91-4/21/92.a)CellCandreference;b)CellD&reference;c)Totalbycell;d)Totalbyplot.

PAGE 70

""""""-"-", 20 CELLCCELL 0 CELL PmBA.LOCYPRESSPOND CYPResS(c) WETL.ANOREFEAENCEASHEl.AClCGUU 60(d) "r------------------------,"f------"".,--------------------..,"r---"f-----"f-----"f-----1-----.f--- , 2oTREE PLOT(INCt.Ul)ING BOTHCELLS) Pm6'
PAGE 71

'r------------------------, .1------, 2o61 BALD CYPRESS POND CYPRESSASH StACIeGl.J,l (a)(b)SPECIES 1m CEtLC PLOT 1 CELLCPlOT 2 "r-------------------------,"1--------------"f----------------"f----------------" 1---" 1---" 1---" 1---'1---'1-'1--'1-'1---SPECIES CELL 0 PLOT 1 CELL 0 PLOT2 Figure15.SeedlingMortality9/18/91-4/21/92.b)CellD;c)Totalbycell;d)Totala)CellC;byplot.

PAGE 72

62 REF&ReNCC,. 1--------------o,2 .f-, I----c"""" 'f--",---------------------------,"1------------"1------------"f-CELL IBBlmIBUDCYPAESSPOND CYPRESS POf'ASHBL"CXGW (c)2',--------,22 1-------.., 20f-----------"f------------" f----------,.f--------------,"f---------'01---------.f---2o REFERENCETREE PLOT ClNCLUOINiBOTH CELLS) Il:BBALD CYPRESSPOND CYPRESS popASH r:?:ZI BL. ...Cr::GW (d)Figure15.(continued).

PAGE 73

63AquaticProductivitywithDiurnalChemicalMeasurementsTemperatureDiurnaltemperaturedatacollectedonJuly16-17,1992atthefourstationsinthepilotwetlandandthereferencestationincludingdepthprofilesfordeepzonesarepresentedinFigures16-20.Temperaturefluctuationsinthepilotwetlandweredramaticwhencomparedtothereferencestationduetothehighcoloroftheeffluentandtheresultantsolarheatingbothinexposedareasofthewetland(plantcoverinmostareas<40%)andintheprecedingprimaryandsecondarytreatmentponds.Thediurnaltemperatureoftheupperdepthstratumatallwetlandstationswassimilar.ThetemperaturedepthprofileatstationD1andD2washighlystratified.DissolvedOxygen(DOlandAquaticProductionDiurnalDOdatacollectedonJuly16-17,1991fromthepilotwetlandandreferencestationsincludingdepthprofilesfordeepzonesispresentedinFigures21-25.ThediurnalrateofchangeofDOateachstation,fromwhichaquaticproductionwascalculatedispresentedinFigures26-30.DiurnalDOconcentrationswereapproximatelytwiceashighinthelowerdeepzoneofCellD(StationD2)thanstationD1.

PAGE 74

u u39 a38.0 "0 36.0 35.0... 0 33.0 32.0 31.0 30.029.028.027.026.0 25.0 12:[]O ...'"04:-48 AN 02 :2"R.l 07:12 PM 64 TO""C 7 CIII. CMPt.n + 15011.OitOtn(> 30em eteot.nt. 60 Cltl.a.ptn Figure16.stationD1.DiurnalTemperatureProfile.July16-17,1991. u39.038.037,036.0 35,0.... 033.032.031.030,029.028.027.026.025,012:00 AN04:"8AM09:35AN 07:12 PM 12:00 AMTO"" o, em, <:leDtl'l ...15em cJePtn(> JO em.aeot.h01\ 60 emaepUl Figure17.stationD2.DiurnalTemperatureProfile.July16-17,1991.

PAGE 75

u)9.0380 31.0 36.0 35.0'""33 _032.031.030.0 29.0 28.027026.0 25 _01200 AY 09:36 ".., a 7ern Deoth 07:12 PM 12:00 AM 65Figure18.stationC1.DiurnalTemperatureProfile.July16-17,1991.39.038,037.036,035.0 '"' ,]3032.031030.029.028.0 27.026.0 250 12:00 09:36 AM02:2<4PM 07:12 PM12:00AM".., a7 ernDeptn Figure19.StationC2.DiurnalTemperatureProfile.July16-17,1991.

PAGE 76

39.0 38,0 37.0 36.0 35.0340 33.032.031.0 30.0 29.0 28.0 27 026.0 250 12:00 AN09:36AN 02 :24PM07:12PM 12:00 N.iI 66 ...D 7(;I'll.Cotn+15(;I'll.Deptn0:30emCotn Figure20.Referencestation.DiurnalTemperatureProfile.July16-17,1991.

PAGE 77

20.0,,--, 19.019,017016.0150 1<11.013.0 12.011.010.09.0B.O,.0B.O5.0 '.03.0 2010I 0.0 ':: 12:00 0":048AM 09:36 AN 02:24 PN 0712 Pol 12:00 AMH,",o c'"Zone +15 em Zone 30 em.Zone.6 60 CIIlZone Figure21.stationD1.DiurnalDissolvedOxygenProfile.July16-17,1991.20.0 r'---------------,------------, 19,018.0'7.016.015.0 '''1 0 13.0 12.011.010.090BO, 0 6 0'.0'.0 3020 10, 12:00 AM0<11:<118AM 09:36 AM 02:24 PM 07:12 F'M 12:00 AMH,", o., em. Zone + 15em Zone 030em Zone.6 60 emZone Figure22.stationD2.DiurnalDissolvedOxygenProfile.July16-17,1991.67

PAGE 78

20.019018.0 17.0 16015.0 ", 13,0 12.0 11.010.09 '.0 ,, "5.0'0 0 '0, 0 '.0 12'00 At.! 09'36 AMN.A 68Figure23.StationC1.DiurnalDissolvedOxygenProfile.July16-17,1991.20.0 ", 18017016.0150 "," 012 011,0 10.09 '0 ,, '05 ,0 ,, ,",., 12 'N09,36,....02:2'"R.l07:12PM12:00AAl Figure24.StationC2.DiurnalDissolvedOxygenProfile.JUly16-17,1991.

PAGE 79

200,---,--------------------------..,1!J. 018.0 17,0 16,015,0 1<111.013.0 12.011010.090'.0 06.05.0'0 J 0 '.0U o0 '--:':--'-,-'-c--'-.,.,--,L-----'----:c,-,'---:c-"'--..L.,.,..---'---'--' 12:00 AM0.:""8Jw 09:36 Jw 02:2"" PM 07:12 12:00N.4"'"C 7 em.Deotn +15 c:rILDeo"tn 030 em,Deptn Figure25.ReferenceStation.DiurnalDissolvedOxygenProfile.July16-17,1991.69

PAGE 80

, , 00'OS0,0'o5 0.' 0'0.' o., 0.0_0.1 -0,2-0.3 -0, '" -(],5-0.5 .712:00..,..12:00AM 70 "... Figure26.station01.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991. ,,,------------------------," 0'oS 0.> 0.'o5 o. 0'o. 0' o0 f--+------+--------""'-------::---j -0 2 -0.3 -0.'" -0.5-0.6-0.7 L,_=_,.,OL,..:-:: ...,---L-o::,-:,:'.:.....mE Figure27.station02.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991.

PAGE 81

71 ,,-,-------------------------,,., , ,,.,f-+-...."'---------1r-----------;I"--j , -'.0-2,0 ].0L,::_,.-=,,':-c...r-'-=,"".-.'::-,_:...r-'-,::,-:. ,:':'...._:,=-,:::""r-'-=,=,-:,"',-:...-::' Figure28.stationC1.DiurnalRateofChangeDissolvedOxygen/m2 July16-17,1991. ",-,------------------------, ,,.,",,, ,f--+--e>=-------I;---------_-or---I -1.0-20 .3.0L,,,",_:.,L,-,._'-:,"'._ .......-:.,L,=""r-'-,-:,-....-,J'"'' Figure29.stationC2.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991.

PAGE 82

,,, 0090'o,06OS0 0, 02 o. 0.0-0_1-0 2 -0.3 *0"0 5 -06-0_?12 Alol07'12R.l 12:00 AM 72Figure30.ReferenceStation.DiurnalRateofChange-Dissolvedoxygen/m2 JUly16-17,1991.

PAGE 83

73Wetland(g/m2/day).TableII.AquaticProductioninpilotJuly16-17,1991.D1D2ClC2REFERENCEDepthem)GrossPrimaryProduction:NetPrimaryProduction:DayRespiration:NightRespiration:NetPrimaryProductionNightRespirationRatio(P lid / R,,;,ht ):1.201.250.080.132.57.61.52.40.64.70.30.71.14.30.30.71.92.91.31.70.31.60.20.4 1.00 4.3 1.8 2.3 2.40.7Note:StationD1=firstdeepzoneinCellDjStationD2=SeconddeepzoneinCellDjStationC1=influentendboardwalkinCellCjstationC2=effluentendboardwalkinCellC.

PAGE 84

74IntheupperstrataofbothofthesedeepzonesandatstationC1andC2DOfluctuatedfromalowerpre-dawnconcentration(near0 ppm)tomuchhigherdaytimelevelsincomparisontothereferencestation.ThedepthprofileofDOinthewetlanddeepzoneswashighlystratified.ElevateddiurnalDOlevelsextendeddeeperatstationD2comparedtostationD1.GrossandnetprimaryproductioninthepilotwetlandandreferencestationarepresentedinTableIII.PHandRedoxPotentialFigures30and31areplotsofthediurnalpHandredoxpotential(Eh)datacollectedfromthesurfacewaters(10cmdepth)ofthepilotwetlandandreferencestationonJuly16-17,1991.InthedatafromallstationstheimpactofaquaticprimaryproductionwasevidencedbyanincreaseinpHandcorrespondingincreaseinEhduringdaylighthours.Oxidativerespiratoryprocessesreleaseenergyandavailablenutrientscontributingtotherapidincreaseinphotosynthesisatdawn.Photosynthesisproducesreducedconditions,incorporatingdissolvedCO2intobiomass,increasingthepHandoxidizingthesurroundingenvironment.Theeffluentaquaticsystemwasmorealkalineandreducedcomparedtothereferencestation.Thediurnalcurvesindicatethatphotosynthesisreachedapeakearlier

PAGE 85

75inthereferencesystemthaninthepilotwetland,possiblyduetonutrientlimitation.Figure32isthediurnalpHandredox(Eh)datafromthepilotwetlandandthereferencestationplottedonaEhpHdiagram.ThegroupingsrepresentthediurnalpUlsingwithinadiscreteelectrochemicalrange(moderatetohighpHandmedium Ehinthepilotwetland)thatwereusedtointerpretredoxreactions,chemicalequilibriaandsomemicrobioticecosystemcomponents(seeDiscussion).ChemicalChangesinPeatyMicrocosmsTheresultsofthreewaterchemistrymonitoringeventsforthepeattroughandcolumnmicrocosmsaresummarizedinTableII.Thepeatinterfaceprovedaneffectivemediumforthechemical,physicalandbiologicalprocessesinvolvedinthereductionofbiochemicaloxygendemand (BOD),totalsuspendedsolids(TSS),ammonianitrogen(NH4-N),totalkehldahlnitrogen(TKN),nitrite-nitratenitrogen(N02-NO])andtotalphosphorus(TP).Resultsweremoreconsistentinthesurfaceflowtroughreactorsthanintheinfiltrationcolumns.Inthefirst2monitoringeventsthepHofASB2effluentwasreducedbytheexperimentaltroughs.

PAGE 86

76 '.0'.0I0.7.'7.0+REFC101 ...... ... ... /1MD2:MAW1Z:m.....01:"....TIME02x C2Figure31.DiurnalpH.PilotWetlandandReferencestation.Jul16-171991. 100.0 r------------------------..., OL,-: ...".-.......--."....-:...".--'--o:O.:-,..=-...::--'----;llZ=":':-::1 ... -:-L-:':=,,-:,7, -: ...".-.......---=,:0,,""-'"...D2:lMll.W07:12....12:011A.II1)04:048PM01ll:3BTIME 01C1 02 x C2+REFFigure32.DiurnalRedoxPotential.pilotWetlandandReferencestation.July16-17,1991.

PAGE 87

"0,--------, 77 "0'"' >E'0 U J: W0 ':,. I} Figure33.Eh-pHDiagramofDataCollectedinPilotWetlandandReferencestation.July16-17,1991.

PAGE 88

78AtthefinalmonitoringperiodtheexperimentaltrougheffluentexperiencedanincreaseinpHfrom7.9to8.5duetohighphotosyntheticproductionbythedensealgalcommunity.TheaverageexperimentalinfluentpHwas7.8overthemonitoringperiod.ThecontroltroughshowedthesametrendwithalowerinfluentpHandlessphotosyntheticproductiontranslatingtoalowerrelative difference.TheexperimentalinfiltrationcolumnsproducedamoresubstantialdecreaseineffluentpH.TheinfluentpHof7.8wasreducedtoanaverageof4.6overthethreemonitoringperiods.ThepHinthecontrolcolumnswasreducedfromanaverageof5.2to5.0.BiochemicaloxygenDemand(BOD)BOD-5concentrationswerereducedbyanaverageof 38% intheexperimentaltrough.Influentconcentrationsrangedfrom16mg/lto27mg/l.ThecontroltroughproducedanincreaseinBODfrom0to3mg/lduringtheinitialmonitoringperiodbutsubsequentmonitoringsshowedonlyaslightincreaseinBOD-5.TotalSuspendedSolids(TSS)ExperimentalinfluentTSSwashighlyvariableoverthemonitoringperiod,rangingfrom12mg/lto154mg/l.

PAGE 89

TableIII.PeatMicrocosmwaterChemistryResults.31,1992;b)SamplesCollectedMarch4,April21,1992.a)SamplesCollectedJanuary1992;c)SamplesCollected Stetlonloe_tionTomp. pH BOD TSSCol"NHe-NTK. N0241103 T.Part(a)Ie,IS.UJ fmgnl1",,111(PtCol"""nI""".,lmglll1"'0111 TrOUCllhInfluentIASB 2120.07.S22.012.03431.77'.12 0.0'" 0.420'3 Experimental Trough Effluent1.0S.S11.010.060.0.72 3."11 <0.0060.230TControl Trough Influent fTapl 17.66.30.00.03.<0.10<0.100.01e0.130T3Control TroughEm.... nt 111.& 6.23.06.0..<0.101.28<0.0060.116e, Column 1 ElIluent 19.04.S1.0 "S <0.101.40<0.0060.120e2 CoilMnn 2effluent18.04.710.0'00<0.101.011<0.0060.'70e3 Co/urn" 3 E"Il.-nc 18.06.2T.O'S<0.101.83<0.0060.'42e4 CoI!Jnn" Effluent".06.''.0,0'<0.10 1.88 <0.0060.116e6Column 6 Effh.-nt17.04.S'.0SO<0.101.43<0.0060.060esColumn IIEfflUlnt 18.04.77.0 11 <0.101.41<0.0060.110 -..J\D

PAGE 90

TableIII.(continued).51.cion loc:etfonTemp.pH.00-. TSSC_NH ....,TKNN02-N03 TPPart(b)IC'IS.U.I """m'moll'...... 1"'1111""""'ImoIIllmal1l Experiment. Trough Influent lAse 2122.07.21.0 1&4.0 2.' I.ell 1000.01' 1.1l10 '3 Experlm.nt"Trough Effl .... nt".07.120.0....n.<0.10 1.4' <0.00& 0.486 T ControlTroughInfluentrTlpl 17.0.11.<0.100.1'0.07'0.070T3Control Trough Effluent17.0<0.336.0133<0.102.1'0.01'0.22&ClColumn 1 EttlUllf'lt 22.63.222.03. 8.68 12.00 0.011 0.040C2Column 2 Em .... nt22.63.10.078.8212.20<0.0060.130C3Column3Effl .... nt23.0121.003."<0.006 1.760 C'Column 4 Effluent23.0'.32.0 220.702.010.0"0.170C.CoIu,nn 6 Effluent23.011.03'.<0.10 1,158 <0.0060.116C.Column e Effl .... nt23.01370.202.01<0.0060.140000

PAGE 91

TableIII.(continued). 51.lion T ......pH BOD-6TSSC_NH4-N T1
PAGE 92

82Theexperimentaltroughyieldeda68%reductioninTSSunderthehighest mass loadingof154mg/l.Underlowerloadingthereductionwasonly21%. TSSwasincreasedinthecontroltroughfrom0mg/ltoandaverageof15mg/loverthethreemonitoringevents.TheinfiltrationcolumnsproducedgreaterandmorevariablechangesinTSS.TheexperimentalcolumnsdecreasedinfluentTSSbyanaverageof68%witha maximumreductionof91%.ThecontrolcolumnscausedanincreaseinTSS,mostnotablyintheinitialmonitoringperiod.ControlinfluentTSSwas0mg/landtheaveragedischargewas5mg/l.ColorInallmonitoringperiodstheexperimentalandcontroltroughsproducedanincreaseincolor.Theaverageexperimentalinfluentcolorwas312CPt-counits).Theaveragecolorincreasewas92%overthestudyperiod.Thecontroltroughincreasedtheaverageinfluentcolorof22unitsbyanaverageof215%.Theresultsoftheexperimentalcolumnmicrocosmsshowedanaveragecolorreductionof55%.Individualresults,however,hadconsiderablevariability.Thecontrolcolumnsincreasedthetapwatercolorfromit'saveragevalueof22unitsbyanaverageof597%.

PAGE 93

83TotalAmmoniaNitrogenTotalammonianitrogenwasmostconsistentlyreducedbythesurfaceflowtroughs.Averageexperimentalinflowconcentrationoverthestudyperiodwas4.15mgtlandtheaverageoutflowconcentrationwas0.31mgtl.Nitrificationandassimilationofammoniaincreasedintheexperimentaltroughfromtheinitialstartupmonitoringthroughtheremainderofthestudy.Removalefficiencyforthelasttwomonthlymonitoringperiodswasgreaterthan98%.Controltroughoutflowconcentrationsremainedunchangedfromtheinfluentammoniaconcentrationof<0.10mgtlforthefirsttwomonitoringperiodsbutshowedanincreaseto1.24mgtlinthefinalmonitoringevent.Theexperimentalcolumns,organizedundermostlyanaerobicconditions,wentfroma94%reductionofammoniainthestartupperiodtonochangeinthesecondmonitoringperiodtoa116%increaseinthefinalmonitoringevent.Thecontroltroughsshowednosignificantchangeintheinflowammoniaconcentrationof<0.10mgtlexceptatthesecondmonitoringevent,whereitwasincreasedby0.23mgtl.

PAGE 94

84TotalKjeldahlNitrogen(TKNlTKN(NH3-N+OrganicN)wasreducedbyanaverageof 62% intheexperimentaltroughduringthestudyperiod.TheaverageinfluentTKNconcentrationwas11.74mgjlandtheaverageexperimentaltrougheffluentconcentrationwas4.12mg/l.TKNwasincreasedbythecontroltroughsfromanaverageinfluentconcentrationof<0.13mgjltoanaverageoutflowconcentrationof1.83mgjl.TheexperimentalcolumnoutflowconcentrationofTKNincreasedoverthestudyperiodfrom1.37mgjlattheinitialmonitoringeventto9.27mgjland10.71mgjlinthesUbsequentmonthlymonitoringevents.Thecorrespondinginflowconcentrationswere9.72mgjl,18.00mg/land7.49mg/lrespectively.ThecontrolcolumnsincreasedTKNfromanaverageinflowconcentrationof<0.13mg/ltoanaverageof1.52mg/loverthestudyperiod.OrganicNitrogenOrganicnitrogen(TKNNH3-N)experimentalinfluentconcentrationsvariedconsiderablyoverthestudyperiod.Atthemonitoringeventstheexperimentalinflowconcentrationswere7.95mg/l,12.34mg/land2.46mg/l.Theexperimentaltrougheffluentconcentrationswere2.24

PAGE 95

85mg/l,5.31mg/land3.4mg/lrespectively.Thetrendindicatedincreasedassimilationofinorganicnitrogentoorganicformsasthesystemorganized.Thecontroltroughincreasedtheaverageinfluentorganicnitrogenconcentrationof<0.03mg/lto1.32mg/l.Theexperimentalcolumnsreducedtheinfluentconcentrationoforganicnitrogenbyanaverageof81%overthestudyperiod.Thecontrolcolumnsincreasedtheinflowconcentration,whichaveraged<0.03mg/lbyandaverageof1.29mg/l.NitrateandNitriteNitrogenTheaverageexperimentalinfluentconcentrationofN02+NO,was0.049mg/l.InallmonitoringperiodstheexperimentaltroughreducedN02+NO,to<0.005mg/l.Theresultsofthecontroltroughwereessentiallythesame,reducingtheaverageinflowconcentrationof.061mg/ltoanaverageoutflowconcentrationof<0.010mg/l.TheexperimentalcolumnresultsforN02+NO,wereconsistentforthefirsttwomonitoringperiods,reducingtheinfluentconcentrationto<0.005mg/l.Thefinalmonitoring,however,showedhighvariabilitywithtwocolumnsincreasingtheN02+NO,concentrationinthedischarge.

PAGE 96

86TotalPhosphorusTheaverageexperimentalinflowconcentrationofTPwas0.82mg/loverthestudyperiod.Thisconcentrationwasconsistentlyreducedintheexperimentaltroughbyanaverageof59%.ThecontroltroughinitiallyreducedtheinfluentconcentrationofTP,0.130mg/lto0.115mg/lbutincreasedtheconcentrationbyanaverageof0.117mg/linsUbsequentmonitoringperiodsTheexperimentalcolumnswereslightlymoreeffectiveinreducinginfluentconcentrationsofTPthanthetrough.Concentrationswerereducedbyanaverageof65%.Thecontrolcolumnsyieldedsimilarresultstothecontroltrough,initiallydecreasingtheTPconcentrationslightlyandthenincreasingtheconcentrationbyanaverageof0.081mg/linthesubsequenttwomonitoringperiods.standCharacteristicsandCypressGrowthRateinTheEffluentImpactedRiceCreekFloodplainSwampStandCharacteristicsTherawforeststanddatacollectedintheRiceCreekexperimentalsite(TableIV)andreferencesite(TableV),includingbasalareacoverage,frequencyandspeciesdiversityweresummarized.

PAGE 97

87TableIV.RiceCreekExperimentalSiteForestStandData.Plot 1 Basal.Area (em .....:!: I F!C9umt'yAccrrubrum14456 Au, 16 Cephelanthuaocc.iQentaliJ 6.28 Ccphelanthua 2Comw.pp.47.12 Com... 8 fruinuscaroliniana1894.38Fruinw34ItavirJjnica0.79 It..1 N)'I&lsytwtica 1807.99 N"",4Ouercualaurifolia25.13Quemu 2 SamWcUli .pp. U8""buc... 2 TamciiwDdiltichWII 176.71 T-.... 1 Ulmwamericana358J.4UIm... 15 Shmnon DiYerlily2.48 Plot 2 ..............ZH9......4CepbelanthuaoccXlent&6141.c.1CepbelanthuaISFIUinuIcaroJiniana155195Fruinua 38 Myric:acerifera 105.24 Myrioa 10 N)UIs:ytYalica95...1 Sambucul'pp. 7.07 ........... 1 Tamdiu.mdiltichum 3216.21 T-.... 6Ulmus americana223DSUIm... 7 SbannClll.Diw:raity2.28Plot,Accrrubrum71.47...... 5 8IIcchariI .pp. 9.42-,Cepbdanthulccc:identalil57.33 Cepbelanthus 21 FruinUicaroliniana24'73.22Frain'll 70 Ucxcauine 8.64IIco 5 Myracerifera37.1)Myrioa 5 N)WoaI}'fvatica3276.68N"", 5 Quen:uslaurifolia7.07Que",... 1 Sambucus .pp.9.42 ........... 6 TuodiumdiIt:il:bum 2976.66 T-"" 8 Ulmus americana357.36UIm... 5 ShannonDMnity 2.43 A\'eraaeBaaalArea!Hectare (Ill. ... 21 #.!HectareTamdium 10-'3Fru:iD.us 2315.12 Fraxinus 10.13 Ceph.607.21N"", 7.93 UIm...497B6""e, 1.74 ......456.63UIm... 1.64 Myrioa 26550 Myrioa0.26T_ 241.76 Ceph. 0.17 N"", 16135 Com ..0.10 Com...15634QuCnoUi 0.06 ""buc... 1)4115 ....buc... 0.03 llex62.92Baoehario 0.01 Clue", ..51.67 llex 0.01 -""" 37.75It..0.00It..19.54 Total 32.625008.50SHANNON DIVERSrI'Y: 2.40 SizeClassFrequencydBHCJass Plot 1 Plot:! Plot ,Aw:."/Hectare 1-5 38 54 92 3066.675-1028141.1016.6710-15146 4 400.00 15-20 2 5266.6720-252 1 2 83.3325-30 0 1 250.00 30-35 0 0 50.00 35-40 0 0 0 0.00 40-45 1 01 33.3345-500I016.67

PAGE 98

TableV.RiceCreekReferencesiteForestStandData.Plot I RaulArealeU!....2)FmjUCDCYAurrubnJm 17827...., 3 CepheJanlhuaoccidentalil179.06Cepbelanthus 20 Fru:inWicaroliniana 5510.74F ........38mcditsiaaqu.m:a927.49Gledibia 2 LiquidambarlIyraciflua 58IJ5 LiqllidamwMyricaceriCera157M_ 2 N_""""'"296D7N_ 2 0ItJyavqiniaaa36S.Oouya 2 Ql.LmwJauriColia 7SS.s0 au.2 TUDdiumdiltichum1982.99TUDdium2UlmusamericaDII"3J(lUlmuo 7 ShanmDiwnir:y 2."Plot 2 Aurrubrum 193U9 ....,14Cepb.cRDthuiocc:idaIlali:I113.88c.pbeianlh... 18 633.82PruiDUiISN)'mIl)'MUca1834.69N_13281.96 Oouya 3Salix..........30.%7Salix I TUDdUmdiIticlw.m63.62T_ I SharmcaDiYenily2.38 Plot 3""'",bnlm2704.13...., 9 CepbClanthUloccidallali:l121.7.CcpbelantbUi 7 FruinUicaroJirtiana 3356.79 FruiDUi36Gledlbiaaquaticll 10.21 GWiuja 2 LiqllidambarllyraciOua 1167.89 Liqllidamw 8 Myri;:acerifen38.48M,nca 1 N)'UasyMtica.. 2.60 8 Oslryavirginiana99.73Oouya 6 Ouettw; laurilolia176.71 au.I SaliJ:caroliniana254.47Salix 1 TUDdiumdillicbum 50.27 T_ IUlmus americana 452.39UIm..IShannon. OMrtir.y 2." 8aulArealHcctare1m'" 21 #J1ieclaneFru:inw 13.89 Fruinua 1 .........., 9.80 CepheiantbUl 161.00 N_ 6.22 .... 454.64Taxodium 2.75 N_ "1.96 Liquidambar253Cot.,.. 221.45UIm ...1.13 Liquidambar 190.30Quercus 1.22UIm.. 12438GJcdihja 1.18 Tamdium65."Cot.,.. 1.01 Giediuia 63.OSCephclanthw0.73 au.-47.00Salix 0.53 M_ 47.00 M_0.06Salix 34.89 ToW 41.18 390000 SHANNON DryERSrrY: 2.49 SizeClanFrequency dBHCJauPlot I Plot 2Plot 31-5.... .. 200000 :'-10 17 10 20 78333 10-1511710.....715-20 J 37216.67 20-25 3 723333 25-303 23 13333 30-352 0 0 33.3335-40 I 0 016.6740-450 0 0 0.0045-50I 0 016.6788

PAGE 99

89Relativecoverage.Thebasalareacoverage(m2/hectare)oftreeandshrubspeciesintheexperimentalandreferencesiteispresentedinFigure34.Thetotalaveragebasalareaperhectarewassomewhathigherinthereferencesite,41.2m2/ha,comparedto32.6m2/haintheexperimentalsite.Thespeciesofgreatestdominanceinbothsiteswerepopash(Fraxinuscaroliniana),baldcypress(Taxodiumdisticbum),blackgum(Nyssasylvatica)andredmaple(Acerrubrum).Baldcypresswassignificantlymoredominantintheexperimentalsite (32% relativecoverage)thaninthereferencesite (7% relativecoverage).RelativeFreguency.Thefrequencyoftreeandshrubspecies(#/hectare)intheexperimentalandreferencesiteispresentedinFigure35.Inbothsitesashshowedthehighestrelativefrequencyfollowedbybuttonbush(Cepbelantbusoccidentalis).Thefrequencyofashwashigherintheexperimentalsite (46% relativefrequency)thanthereference(37%relativefrequency)butwasattributedmainlytoindividualsofsaplingsize.Baldcypressandelm(Ulmusamericana)hadahigherfrequencyintheexperimentalsitewhileironwood(Ostryavirginiana)andlocust(Gleditsiaaquatica)werefoundonlyinthereferencesite.

PAGE 100

Figure34.RelativeCoverage(basalarea)ofTreeandShrubSpeciesinRiceCreekFloodplainSwamp.a)Experimentalsite;b)Referencesite.

PAGE 101

n C\J
PAGE 102

Figure35.RelativeFrequencyofTreeandShrubspeciesinRiceCreekFloodplainSwamp.a)Experimentalsite;b)ReferenceSite.

PAGE 103

n 2000 '"L.'"'-' U '"I, 1500tilE '"'-' If) u>1000U C'":>0-'"L. 500l.Lo FraXlnusUlmusMyr'"lCllINyssaSamt:>ucu&Quercusl'tea Ceph Ace,. Taxodlum Cor-nus IIex BacCf'ler ISSpecies(a)93 2500n 2000 '"L.'"'-' U '"I, 1500tilE '"'-' If) u>1000U C'":>0-'" L500l.Lo FraxinusACei'"Qst.rya Ulmus GleOitsie.Myl""iCll Cephe 1 linthu NyssaLiC!uldllll'Cler'"TaxOdll.lTlOuer-cusSalix Species(b)

PAGE 104

94sizeclassfrequency.ThebasalareasizeclassfrequencyperhectareoftreeandshrubspeciesintheexperimentalandreferencesiteispresentedinFigure36.Therelativefrequencyofindividualsinthe1-5cmand5-10cmdBHclasswassignificantlyhigherintheexperimentalsite.Thismaybeattributedtoaloweringofthewaterlevelin1985wheneffluentwasre-routedandnolongerdischargedtothisareatothefloodplain.Speciesdiversity.TheShannon-Weaverdiversities(logbase2)oftreeandshrubspeciesweresimilarintheexperimentalsite(2.40)andthereferencesite(2.49).Student'stTeststatistics(0.05significancelevel)revealednosignificantdifferenceinthetwomeandiversities.cypressGrowthRateTheannualbasalareagrowthrateincm2ofcypressaveragedinfouryearincrementsforthe40yearsperiodfrom1953-1992ispresentedinFigure37and38fortheexperimentalandreferencesiterespectively.Inboththeexperimentalandreferencesiteaveragecypressgrowthwasgreatestduringthetimeperiod1973-1988.Thismaybeattributedtocanopyreleaseandweatherconditions.

PAGE 105

Figure36.SizeClassFrequencyperHectareofTreesandShrubsinRiceCreekFloodplainSwamp.a)ExperimentalSite;b)Referencesite.

PAGE 106

3'" L "" U '"I,c 2>-, U gc:'":JfJ'" L LL o 3'" L "" u '"I ,c2>0u c:'":JfJ'" L LL o5-105-1010-1515-2020-2525-3030-35 35-40 40-4545-50dBHClassCa)10-1515-2020-2525-3030-3535-4040-4545-50dBHClass(em.)Cb)96

PAGE 107

97Theperiodofeffluentdischargetotheexperimentalsitewasfrom1973-1985(Simmons,Marvin.G.P.Palatka1992,personalcommunication).Thisrepresentstheperiodofanypotentialimpactsongrowthduetoeffluentinundation.Student'stTeststatistics(0.05significancelevel)wereappliedtothegrowthdatafrombothsites.Althoughtherewasnosignificantdifferenceinthegrowthtrendsofcypressinbothsitesovermostofthe40yearperiod,averagegrowthwassignificantlyhigherintheexperimentalsiteduringthetimeperiod1977-1980wheneffluentwasbeingdischargedtothisareaofthefloodplain.

PAGE 108

3DW0: UZI '0>-" Z "'0'!I Et'lue t Ille.. 19-19S5II VII 98 53.5657.6061-6465-1118 69-7273-76 7781M85-88Sg-g2 TIME (YEAF1S) Figure37. '0 GrowthRates(Mean+-SE)of10cypressTreesinRiceCreekExperimentalsite. N40 U U>Z 30 W0: UZ I '0>-0:" Z "'0W" Qflue t .. 19-1 5'-/ '/ -.'53-5657-6061_64 65-6869 73-7677-80 81_1MSSS889-92 TIME(YEARS)Figure38.GrowthRate(Mean+-SE)of10CypressTreesinRiceCreekReferencesite.

PAGE 109

DISCUSSIONSuccessionalPotentialofpilotMarshToForestedSystemAccordingtoclassicalecosystemsuccessiontheory,communitiesdevelopthroughtime,selforganizingtoautogenicallyalteredbioticandabioticparametersinadirectiontowardsamatureclimaxsystem(Odum,E.P.,1971).Gleason,1917advocatedanindividualisticcontinuumconceptofcommunitysuccession,wheresetsofspeciesexistaccordingtoallogenicenvironmentalconditions.Morematureecosystemsaresometimesconsideredofhighervalueasmeasuredbygrossproduction,speciesdiversityandlongtermorganicmatterandinformationstorage.Anthropogenicimpactsonecosystems,suchaswastewaterdischarge,canaltersuccessionalpatterns,oftencausinganarrestedearlysuccessionalstatetopersist.ThequestiontobeansweredabouttheChampionpilotwetlandwaswhethersuccessiontoaswampdominatedbywetlandtreeswasfeasible.Aftertheecosystemwasprimedbyplantingpropagules,herbaceousandtreespeciesweremonitoredtodeterminewhatsuccessionwastakingplace.Thetreeseedlingstudyshowedthataforestedwetlandwasfeasible.Therewasnophytotoxicityorgrowth99

PAGE 110

100inhibitionassociatedwithmoderateeffluentinundation.Themostsignificantfactorsinseedlingsurvivalandgrowthweredepthofinundationandcompetitionwithherbaceouscommunities.TreespeciesperformanceinthepilotwetlandmirroredtherelationshipsfoundinarelativefloodtolerancestudyconductedbyHarms,etal.(1980).Pondcypress(Taxodiumascendens)andbaldcypress(Taxodiumdistichum)showedthegreatestfloodtolerancefollowedbyblackgum(Nyssasylvatica)andpopash(Fraxinuscaroliniana),whichhadtheleastsuccessfulgrowthandsurvivalinthepilotmarsh.Thestressassociatedwithinundationiscausedprimarilybytheanaerobicsoilconditions,butcanalsorelatetowaterqualityparameterssuchasdissolvedoxygen,suspendedsolids,andcompoundswhicharereducedtophytotoxicformsinthesedimentssuchassulfide(EwelandOdum,1986).Growthlimitingandpotentiallytoxicsubstancesarealsoproducedbyanaerobicrespirationintherootsandbymicrobesinthesediments(Kowzlowski,1984).Treespeciesdifferintheirmorphologicalandphysiologicalresponsetofloodingaswellasinthetimingofadaptation.HookandBrown(1973)establishedastrongcorrelationbetweenfloodtoleranceandspecializedrootadaptations.Fivefloodplaintreespeciesweretestedundergreenhouseconditions.Thosespecieswhichwereabletoundergomorphologicalandphysiologicalrootadaptations

PAGE 111

101showedgreaterfloodtolerance.AmongtheadaptationsidentifiedbyHookandBrownweretheabilitytoregeneratesecondaryroots,oftensucculentandlessbranched,thedevelopmentofadventitiouswaterroots,theabilitytorespireanaerobically,toleratehighconcentrationsofcarbondioxide,andoxidizetherhizosphere.IntheChampionpilotwetland,treeseedlingsurvivalandgrowthwasexcellentexceptunderalmostcompletesubmersionorwheredenseherbaceouscommunitiesstrangledindividualseedlings.Growthofthetwocypressspeciesandblackgumwascomparableorhigherinthewetlandthaninanirrigateddrainedsiteofthesamesoiltypeoutsidethewetland.Theauthorconcludedthatinitialmortalityandgrowthretardationinthewetlandwasduetothenormalstressofinundation.Onceindividualsadaptedtheythrivedinthenutrientenrichedeffluent.Highaquaticalgalproductionduringdaylighthoursincreasingdissolvedoxygenlevelsinthewaterprofileandsedimentinterfacelikelyalsocontributedtoseedlingsuccess.Althoughtissueanalysiswasnotconductedontreeseedlings,itwasassumedfromthepositiveresultsofanalysisofherbaceousplanttissueforchlorinatedorganiccompounds(measuredasextractableorganichalogen(EOX))thatsomeuptakedidoccur.Enoughtimehadtranspiredtoachievenearsteadystateconcentrations(CH2M-Hill,1992).Assumingsimilaruptake,theselowconcentrations25

PAGE 112

102mg/kgEOXmeasuredinJuncus)didnotsignificantlyimpactthehealthoftreeseedlings.Thelowwatersolubilityofdioxinandit'saffinitytoadsorbonsedimentslimitsplantuptake.Dioxinwasnotdetectedinplant,fishorbenthossamplesfromthepilotwetland(CH2M-Hill,1992).ImplicationsofAquaticProduction.Eh-pHParametersandEcosystemStructureonPollutantDynamicsInthefirstyearofoperation,thepilottreatmentwetlandsupportedhighgrossprimaryproduction,upto7.6g/m2/dayinthelowerdeepzoneofcellD.Althoughhighlystratified,grossandnetprimaryproductionwashighestindeepzonesandincreaseddramaticallyfromtheinfluentenddeepzoneofCellDtotheeffluentenddeepzone.Thenetproduction/nightrespiration(P/Rratio)increasedfrom0.3to1.6fromstationD1tostationD2.Thisindicatedlongitudinalsuccessionofthephytoplanktonicandalgalcommunityandpossiblytheimpactofareducedorganicloadintheeffluent.Thelongitudinalsuccessionfollowspatternsobservedinsewageoutfallsinstreamswhereheterotrophic(P>R)aquaticcommunitiesgiverisetoautotrophic(P>R)communitiesdownstream(Odum,1956).ThispatternwasnotobservedincellCwhichdidnothavedeepzonesandhadasignificantlyshorterhydraulicretentiontime.

PAGE 113

103DifferentEh-pHparametersofaquaticsystemsaredueprimarilytophotosynthesis,respirationandredoxchangesinthesulfurironsystem.Microorganismsincludingbacteria,fungiandalgaeareimportantinthemediationorcatalysisofredoxreactions(FaustandAly,1981).TheEhpHcharacteristicsofthepilotwetlandwerecomparedtosimilardatafromnumerousaquaticandbenthalsystemspresentedbyBaasBeckingetal.(1960).Thepilotwetlanddatafallswithinthelowerrighthandquadrant(moderatetohighpHandmediumtolowredoxpotential)oftheEh-pHenvelopeincludingover4000aquaticenvironments.TherelativelyhighpHisduetoalkalinemillprocesswatersandphotosyntheticproductioninthemill'ssecondarytreatmentlagoonsandthewetlanditself.OftenliquidcarbondioxideisaddedtotheprimaryeffluenttolowerthepH.Theredoxpotentialofthepilotwetlandsurfacewaterwashigherthanthereferencewetland,indicatinghigheraveragedissolvedoxygenlevelsintheproductivestratum.IncomparisontoredoxpotentialdistributionsforaquaticsystemsdescribedbyBassBecking,etal.(1960)thepilotwetlandEhwasmediumtolow.Reducedconditionsmaybeattributedtotheeffluentorganicload.GiventheEh-pHconditionsmeasuredinthesurfacewaterofthepilotwetlandandtheeffluentwaterchemistrythefollowingconclusionsweredrawn.Inthenarrowupperstrataofthewatercolumnwherehighdissolvedoxygen

PAGE 114

104levelsareproducedandwheneddydiffusiontolowerstrataandactiveplantoxygentransporttosedimentsoccur,aerobicrespirationandotherchemicaloxidationprocessesoccurincludingmicrobiallycatalyzednitrificationofammonianitrogen.Theresultinghighlymobileoxidizednitrogen(N02+NO)iseitherquicklyassimilatedbyplantsandmicrobesorreadilyundergoesdenitrificationreductionundertheanaerobicconditionswhichprevailinthewetland.Lossofnitrogentothesystemislimitedbydissolvedoxygenlevels,temperatureandtherelativethermodynamicstabilityofammonia,presentinthewetlandmainlyinunionizedform,overalargeEhrange(FaustandAly,1981).Afternitrogen,manganese,ironandsulfurcompoundsservenextaselectronacceptorsintheabsenceofoxygen.Ifsulfateispresentinhighconcentrationsineffluentorsediments,sulfidesformedunderreducedconditionsmaycausetoxiceffectsonplantsandmicrobes.Thepresenceofironinsedimentscanmediatethisbyforminginsolubleferroussulfide(MitschandGosselink,1986).Concentrationsofsulfateinthekrafteffluentinthisstudywerenotofconcernatapproximately15ppm.Organiccarboncompoundsmayalsoserveaselectronacceptorsinmicrobialanaerobicrespiration.Thisfermentationprocessresultsinlowmolecularweightacidsandalcoholsandcarbondioxidewhichareavailableforfurthermicrobialdegradation(MitschandGosselink,1986).

PAGE 115

105Underextremereducingconditions(-250to-350mv)whichmayoccurinwastewatertreatmentwetlandsediments,methanogenesis,thereductionofcarbondioxideoramethylgrouptomethane,couldalsooccur.Thesequenceofbiologicallymediatedchemicalreactionsfromsurfacewaterstosedimentsineutrophicwetlandsystemsisanalogoustothetemporalsuccessioninananaerobicbatchdigester;aerobicheterotrophs,denitrifiers,fermentors,sulfatereducers,andmethanebacteria.Inawetland,however,thesebiologicalandchemicalprocessesmayoccurconcurrently.As amarshwetlanddevelops,themacrophytecoverageeventuallyreducesaquaticproductionunlessareasofopenwaterarepresent.Thepresenceofdissolvedoxygenisnecessaryandcanbecomelimitingforthemetabolismofmanypollutantsofconcernincludingnitrificationofammonia.Nitrificationisgenerallythelimitingstepinammoniaremovalfromwetlandsasdenitrificationoccursreadilyintheanaerobicbenthiczone(Knight,1990).CH2M-Hill(1992)reportedslightlylowerammoniareductioninthesecondseasonofoperationforthepilotwetlandandattributedthistoincreasedmacrophytecoverandthuslowerdissolvedoxygenlevels.Alternatingopenareassupportinghighratesofphotosynthesisandshallowanddeepmarshareasweredesigncomponentsinthefullscalewetlandtreatmentsystemconceptualdesign(CH2M-Hill,1992).

PAGE 116

106Asthedegradation,complexationandassimilationprocessesofkrafteffluentpollutantsoccurslowlyinnature,hydraulicretentiontimeisanimportantdesignconsiderationforanyfullscaleconstructedwetland.Thepilotwetlandcellswithdeepzonesandthuslongerhydraulicretentiontimesweremoreeffectiveinreducingtheeffluentchronictoxicitytowaterfleasandfatheadminnows(possiblycausedbyammoniaandtracelowmolecularweightchlorinatedorganics)thanthosewithout(CH2M-Hill,1992)ThePotentialRoleofForestedWetlandPeatSubstrateinPollutantConversionandRetentionIntheglobalcarbon-oxygencycle,ligninisaratelimitingfactor,sometimestakingseveralthousandyearstorecycleoncethepolyaromaticcompoundsarecomplexedinsoilhumicmatter(Crawford,1981).Underanaerobicconditionscausedbyfloodinginwetlandstherateoflignocellulosedegradationisfurtherreduced,leadingtotheaccumulationofpeat.Kraftlignins,whichcontributethemajorportionofpersistentpollutantsinkraftmilleffluentsuchaschemicaloxygendemand(COD),color,andchlorinatedorganics,aresimilarlyresistanttodegradation,causingdifficultyindesigningeffectiveandeconomicallyfeasiblesecondaryortertiaryeffluenttreatmentsystems.

PAGE 117

107Unlikeengineeredbiologicaltreatmentsystemswhichculturediscreteassociationsofmicrobes,wetlandswithphysical,chemicalandstructuraldiversitydevelopasynergisticheterotrophicmicrobialfoodchaincapableofslowlydegradingorconvertingrecalcitrantlignaceousmaterials,suchasthosefoundinkraftmilleffluent,toformswhichareavailablefornaturalmetaboliccyclesorbiologicallyinactiveinpeathumiccompounds.Thepeatservesasachemicalandbiologicalmediumfornaturalwastewatertreatment.Thephysicalandchemicalcharacteristicsofpeataswellasbiologicalprocessesitsupportsareimportantinunderstandingitspotentialroleinapapermilleffluenttreatmentwetland.Ingeneral,theleveloforganicmatterdecompositionandbulkdensityincreaseswithincreasingdepthinthesedimentprofile.Theaveragebulkdensityofpeatislow,0.1g/cm3forthepeatusedinmicrocosmsinthisstudy.Thehydraulicconductivityofpeatisverylow,especiallyinmoreadvancedstagesofdecompositionandexchangewithgroundwaterisusuallyinsignificant.Incertaincaseshowever,asinperchedwetlandsinFlorida,somegroundwaterrechargemayoccur(EwelandOdum,1986).Humicandfulviccompoundsinblackwaterandpeat,oftenintheformofnegativelychargedcolloids,haveanaffinitytoformcomplexeswithmetalions.Also,duetotheirlargevoidfractionandfunctionalgroupswhich

PAGE 118

108undergohydrogenbonding,peatsubstratescanadsorbotherorganiccompoundsincludingtracetoxicmaterials(StrummandMorgan,1981).Theacidificationofpeatinterstitialwateriscausedbythehighcationexchangecapacityofpeatandbyactivecationexchangebyplantspecies,mostimportantlySphagnumspp.(BaasBecking,etal.,1960).UnderlowerpHconditionsthemicrobioticcommunityassociatedwiththepeatshiftstowardsmorefungalrelativetobacterialspeciesinthefoodchain(MitschandGosselink,1986).Speciesofwhiterotfungi,whichpossessomeofthestrongestoxidativeenzymesystemsinnature,havebeenshowntobeanimportantfirststepinthedegradationandconversionofkraftlignins.Hall,etal.,(1980)studiedthisprocessinsubmergedculturefermentationsofthewhiterotfunguscoriolisversicolor.Someofthekraftligninsweremetabolizedtocarbondioxidewhilemostwereextensivelytransformedtohighermolecularweightcompoundswithahigheroxygencontent.Thepeatmicrocosmstudyshowedthatforestedwetlandpeatcanserveasamediumfordegradation,conversion,andlongtermstorageofnutrients,suspendedsolids,oxygendemandingorganics,andpotentiallytoxicandpersistentchlorolignins.Althoughcolorwasnotreduced,thecomplexationofeffluentcolorconstituents(mainlykraftlignins)intohumicandfulviccompoundsnaturalto

PAGE 119

109blackwatersystemsmayhaveoccurred.Evidenceexiststhatpeatservesasasignificantsinkforchlorinatedorganicsandmayinfactparticipatetoadegreeintheirformation(Asplund,etal.,1989).Onecanconcludethatinterfacingpulpandpapermilleffluentwithanappropriatewetlandecosystemmancanutilizethisnaturalpollutantconversionandlongtermstoragesysteminamutuallybeneficialmanner.ImpactsofKraftMillEffluentonaNaturalForestedFloodplainSwampTheRiceCreekforestdatadidnotshownegativeimpactsontreegrowthduringtheperiodofsecondarytreatedeffluentdischarge.Asnotedinotherstudiesofmunicipaleffluentinnaturalwetlands,thegrowthrateofplantspeciesmaybestimulatedbyenrichednutrientconditions(Best,1984;EwelandOdum,1984).AlthoughmorerigoroussamplingwouldbenecessarytoprovecypressgrowthstimulationbyeffluentdischargeintheRiceCreekexperimentalsite,thedatacollectedinthisstudydidindicatethatgrowthwasstimulatedduringtheperiodofeffluentdischargetotheexperimentalfloodplainsiteandthatgrowthfollowedthenormalpatternovertimeforafloodplainsystem.Thegrowthrateofbaldcypressinbothsiteswashigh(reachingapproximately25cm2peryear)comparedtodatapresentedonseveralhundredbaldcypress

PAGE 120

110infloodplainsthroughoutnorthandcentralFloridabyOdum,etal.(1983).TheaveragegrowthratereportedbyOdumetal.(1983)reachedaplateauatapproximately13cm2peryear.Somedifferencesinthestandcompositionoftheexperimentalsitewerefoundcomparedtotheupstreamreferencesitewerenoted,butthediversitywassimilarandcomparabletodiversitiesreportedforforestedwetlandsystemsintheSoutheast(Monk,1966,1968).Speciesdifferencesmaybeattributedtorelativegeographiclocationinthefloodplain.Theexperimentalsitewasinabroader,lesschannelizedareaofthefloodplainwithdeeperpeatdeposits.Therelativelyhighpercentageofsmallsizeclassindividualsintheexperimentalsite(1-10em dBH)indicatesthatincreasedregenerationoccurredaftereffluentdischargetothesiteceased.Perhapsthedifferencewasduetoachangeinhydroperiodandanoverallloweringofwaterdepthintheabsenceoftheeffluentinput.Importantdesignconsiderationinanynaturalorcoupledconstructed-naturalwetlandtreatmentsystemareloadingratesanddispersionmechanismswhichcanmaintainthehydroperiodwithinthelimitsoftolerationofthenaturalplantcommunity.Changesinhydroperiodandnutrientconditionsmaycauseashiftinrelativespeciescompositionattheeffluentdischargepoint,butunder

PAGE 121

111reasonableloadingratesandwitharelativelyhighqualityofsecondarytreatedeffluenttheconditionscanbewithintherangefoundinFloridawetlandsnaturally.thiswouldbealocalizedandtolerableimpact.Certainlymoreresearchiswarrantedconcerningthefateofchlorinatedorganicsinnaturalwetlandecosystems,butevidencepresentedinthispapersuggeststhatlowmolecularweightpotentiallytoxicadsorbableorganichalide(AOX)constituentsarerapidlydegradedandthathighermolecularweightkraftligninsenterthenaturalsedimentation,humificationandpeatstoragecycle,becomingbiologicallyinactive.EmergyEvaluationofEffluentTreatmentAlternativesThemajorinputstotwoeffluenttreatmentalternativesshowninFigureIwerecomparedusingtheemergymethod.TreatmentalternativeB(Figurel(bistertiarytreatmentusinggranularmediafiltration,carbonadsorptionandammoniumionexchange,andtreatmentalternativeA(Figure istertiarytreatmentusingawetlandinterface.AwetlandsuchasthatintheRiceCreekFloodplainwasassumedwithahydraulicloadingrateof2em/daysothattheeffluentwouldbewithinthewetlandlongenoughfortheprocessesdiscussedinthisthesistooperate.TheresultsoftheemergyevaluationperovendrytonofpUlp(ODTP)arepresentedinTableVI.

PAGE 122

112Inemergyevaluationtheinputstotheprocess,includingcontributionsfromnatureandhighqualityfeedbacksfromsocietysuchasfuelsandhumanservice,areevaluatedona commonbasis,solaremjoules(sej).Thisallowstheinclusionofworkdonebynaturewhichislargelyignoredbycostanalysis,asmoneyispaidonlyforthehumanservices.Thesolartransformity(sej/J)ofthefinalproducts,paperandeffluent,wascalculatedforthekraftpUlpandpaperprocessusingconventionalprimaryandsecondarytreatmentandusingbothtertiarytreatmentalternatives(TableVII).Therelativelyhightransformityoffinaleffluent(S.66E+6sej/J)indicatesahighpotentialvaluetotheeconomyortotheenvironmentifthesystemcanadapttousethematerialsasby-products.Theprinciplehereisthathightransformitysubstancesaremostvaluableinteractingwithalargerquantity,lowertransformitycomponentadaptedtoutilizethisvalue,suchasawetland(OdumandArding,1991).Usingeffluenttoreinforcementenvironmentalprocessesbenefitstheindustry,environmentandsociety.Theindustrywouldbenefitfromalesscostlytreatmentprocessusingalargerpercentageofnaturalenergiesandmakingmorehighqualityfeedbacksfromsocietysuchasfuels,chemicalsandhumanservicesavailableforotheruses.Inaddition,societyandtheenvironmentbenefitfromthevaluesassociatedwithwetlandconservation.

PAGE 123

TableVI.EmergyEvaluationofTertiaryTreatmentAlternatives.AllDataperOven Dry TonofPulp(ODTP).Note Item Units EmcrgylUnitSolar EmcrgyIODTP(scjlunit) (E14 scjlODTP) Kraft Pulp and Paper Mill I Water J 4.45E-+ll8 4.IOE-+ll4 0.18 2 Pine Pulpwood J 6.84E+IO 6.72E-+ll3 4.60 3 NaOH (pulping) g 9.07E-+ll3 7.45E+09 0.68 4 NaOH (Bleaching) g 2.72E-+ll4 7.45E+09 2.03 5Na2S04 g 3.63E-+ll4 1.20E+09 0.44 6 CI2 g 5.67E-+ll4 8.42E+09 4.77 7 FOiln Fuel (Coal) J 1.05E+IO 4.ooE-+ll4 4.20 8 Services (Capital Calls) S4001.6OE+12 6.40 9 Services (Labor) 0.7510 Services (production Calls) SISO1.6OE+12 2.40 Sum (Emergy/ODTP) 26.44 Tertiary Treatment (Granular media fJllration.carbon adsorption, ammonium ion exchange).11NaOH g I.25E-+ll5 7.45E+09 9.3112H2SO4 g 4.15E-+ll4 4.56E-+ll8 0.1913NaCI g I.06E-+ll3 1.22E+09 0.0114Carbong 1.62E-+ll4 1.42E+09 0.2315 Electricity J 2.70E-+ll8 2.ooE-+ll5 0.5416onJ 9.22E+09 5.4OE-+ll4 4.9817 Services (Capital COIls) S48.00 1.6OE+12 0.7718 Services (Operation !Maintenance Costa) S10.00 1.6OE+12 0.16 Sum (Emergy/ODTP) 42.63 Weiland Tertiary Treatment 19 Treatment Weiland hectare-yr 0.12 6.4OE+15 7.68 20 Services (Capital Calls) S13.23 1.6OE+12 0.2121 Services (Operation !Maintenance Calls) S1.17 1.6OE+12 0.02 Sum (Emergy/ODTP) 34.35113

PAGE 124

TableVI.(continued).NOTES Water -(23500gal.lODTP)(1 mA31264.17205 gal.)(IE+6glmA3)(5 Jig)=4.45E+8 J (PenonalCooversatioo (p.C.)Dr RobertFilller'" Dr. MuDSomeahwar, NCASJ Gaincovi1Je, F1..1992)Tr .... Cormity=4.IOE+4 (Odum, 1992b) 2 Pine PulpWood (5 tonI)(9.072E+5 gllOo)(3.6 koa1lg) (4186 JIla:al) =6.84E+10 J (Champion, 1991: Brill, 1970) Truuformity =6.72E+3IOjlJ(Odum, 19920) 3N.OHPulping (20Ibl)(453.S923 glib)=9.07E+3 g (p.C.NCASI, 1992) T .....Cormity =7.45E+9 IOjlg (prllchard, 1992) 4N.OHBI01Cbing (80Ibl)(453.S923 glib)=3.63E+4 g (p.C.NCASJ. 1992) 5 Na2S04 -(gOIbl)(453.S923)=3.63E+4 g (p.C.NCASJ. 1992) T .....Cormity 1.20E+9 IOjlg = l.ooE+9 IOjlg rawmaterial (Odom. 1992b) + fuclin mining&DdtranIpOrt&tion 0.SOE+8 IOjlg + scrviccI in capital&Ddlabor I.SOE+8 IOjlg O\I&jmundar. 1995) 6CI2 -(125 Iblj(453.5923 glib)=5.67E+4 g (p.C.NCASJ, 1992) Truuformity =g.42E+9 IOjlg caleullled Cromjoint produetiooproc:cu call1lie + cbIorinc (lion cbIorinc11.131oncaUIlic)(Prllchard, 1992; Hardie. 1975) 7FouilFucl (Coal) -(I0E+6btu)(I0S4.35 JIbtu) = 1.0SE+10 J(p.C.NCASJ. 1992) Truuformity5.40E+4 IOjlJ (Odum. 1992b) 8 Capital COIl (interell anddcprccialioD) ($600IODTP total annualcOIl)(S150OIM cOIl) -($SO laborcOIl) =S400(p.C.NCASJ. 1992)U.S.1991 emcrgylmoney ratio= 1.6OEI2 IOjlS 9 Servi....(Labor) Emergy Work Houn= Emcrgy Delivery Rate. (gOOemp. ICbooI +)(2.58E+14 IOjlday)I(14OO IoDI/day) =4.30E+13 IOjlODTP (200emp.eoIlege +)(7.67E+14 IOjlday)I(14OO IoDI/day) =1.I0E+141Oj10DTP4.30E+13+1.I0E+14=I.S3E+14 IOjlODTP (Champion, 1991: Odum, 1992b) 10 Services (embodiedinproduction COllI) -(S6OO total production cOIlper ODTpaper)(.25 percentage oC totalcOIl in capitalCOllI&Ddeo'" other than/Ibor.energy and rawmaterial) =S150U.S. emergylmoneyratio =1.6OE+121OjlS(p.C.NCASI.1992;OECD,1985)IIN.OH(70080 tonI1')1(36S dayl1')1(14OO tonlday)(2000 Ibllon) (453.59 glib)=I.25E+5 g (Sirrine, 1989) 12H2SO4(23360 tonl1')1(36S dayl1')1(14OO tonIday)(2000 Ibllon) (453.59 glib)=4.15E+4 g (Sirrine. 1989) T ..... Cormity=4.56E+8 IOjlg caleullled Cor 100'1' H2SO4Crom Pritchard (1992) 13N.C1-(2.35IbIODTP)(453.S9 glib)=I.06E+3 g (Sirrine, 1989) T ..... Cormity = I.22E+9 IOjlg=l.ooE+9 IOjlg rawmaterial (Odum, 1992b) +Cuclin mining and tranIpOrtatioo 0.SOE+8 IOjlg + lOrYi.... in capitalCOllI 1.50E+8 IOjlg (_ed) 14 Carbon (18.3E+61bl1')1(36S dayl1')1(14OO tonIday)(453.59 glib)=1.62E+4 g (Sirrine. 1989) T .....Cormity =1.42E+9 IOjlg= cooltranlCormity converted to III&ISbuiI (Odum, 1992b)114

PAGE 125

TableVI.(continued).15 Electricity (5884 HP)(42.44 btu/minlHP)(I440 minlday)/ (1400 tonIday)(IOS4.35 1/blU)+(2.7E+5 kwhlyr)(3.6E+61/kwh)=2.70E+81 (Sirrine. 1989) Tranoformity =2.ooE+5sey1 (Odum. 1992b)16FuclOil-(31.4E+6 g&l/yr)(1.5E+8 1/g&l)/(365 d/yr)(14OO ton/day)=9.22+91(Sirrine. 1989) Tranoformity =5.4OE+4 sey1 (Odum. 1992b)17 Capital COIl (intereat and depreciation) $1.81+7 (granular media IUtration"carbon adaorplion) + $5.89E+6 (ammonium ion exchange) =($2.46E+7/yr)/ day/yr)/(14OO ton/day)=$48 (Sirrine, 1989) U.S.1991emergy/money ratio=1.6OE+12 sej/$18 OpcrationlMaintawlCCCOIlll ($4.24E+7/yr) + ($8.61+6/yr)/(365 day/yr)/(14OO ton/day)=$10 (Sirrine. 1989) U.S.1991emergy/moncy ratio=1.6OE+12 sey119 Trco1IIleatWeiland -(SO ac/mgd)(0.0235 mgdlODTP)=(1.175 tu:) (eatim1tcd ...... tion time 0.25 yr)/(2.47 tu:!bcctarc) =0.24 hce:tare-yr (CH2M-Hili. 1990&)Looding (SO ac/mgd)bued on 80% reductionofammonia-N=2.00em/day (CH2M-Hili. 1990&)Emcrgy utu:!bcctarc =6.4OE+15 sejlhcctarc-yr calculated for floodplain wedand uaing transpiration (Ewcl and Odum. 1984) 20 CapitalCOIlll ($58.8E+6)(0.115)/(365 day/yr)/(l4OO ton/day)=$13.23 (CH2M-HW. 1990&) U.S.1991emergy/monmey ratio=1.6OE+12sey$21 OpcrationlMaintcnancc Costs ($O.6E+6)/(365 day/yr)/(14OO ton/day)=$1.17 (CH2M-Hili. 1990) U.S.1991emergy/monmey ratio=1.6OE+12 sej/$115

PAGE 126

116TableVII.EmergyIndicesofTertiaryTreatmentAlternativesandTransformitiesofFinalProducts. NoteNet Emcrgy Yield Ratio Emcrgy Invcmncnt RatioSolu TrUllformity ofFinal Products ( ... j/I) Kraft Pulp & Paper Prooess with Primary &Seoondary Effiuent Treatment 1.22 4.S3 I Paper 1.42E-t1lS 2 Final Effluent S.66E-t1l6 With Technological TertiaryTreatment (granular media fdtration, carbon adsorption, ammonium ion exchange) 1.13 8.07 3Paper 2.29E-t1lS With Wetland Tertiary Treatment I.S7 1.76 1.8SE-t1lS 4 Paper FOOTNOTES TransformityofPaper:(Itoo)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 Jig)=1.86E+IOI(Doherty, et.al., 1992) Transformity=26.44E+14 ... jl1.86E+10I=1.42E+S ... yI2 TransformityofFinal Effluent: Final Effluent Sollds (3250 Ibs black liquor sollds/ton pulp)(6000 BTU)(1.0SSE+3 IIBTU)=2.06E+IO Ilion 1(2000 Ibs/ton)/(4S3,S9 glib)= 2.27E+4 I/g(p.C.NCASI, 1992) Effluent Sollds=(ISS9 mg/l TDS +TSS)(IE-3g/mg)/(0.2642 galll)=0.412g/gal(23S0 gal/ODTP)=9.68E+2 g (CH2M-HiIl, 1990) (2.27E+4 I/g)(9.68E+2 g)=2.20E+7 I Water-(23500gal.lODTP)(1 mA3/264.1720S gal.)(IE+6g/mA3)(SI/g)=4.4SE+8 I (personal Conversation (P.C.)DrRoben FiBber& Dr.Arun Somcshwar, NCASI Gainesville, Fl..1992) TransformityofEffluent=26.44E+ 14 ... j/(2.20E+ 7I+ 4.4SE+8I)=S.66E+6 ... j/I3 TranaformityofPaper:(Iton)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 I/g)=1.86E+1O I (Doherty, et.al., 1992) Transformity=42.63E+14 soj/1.86E+1OI=2.29E+Ssoyl4 TransformityofPaper:(1ton)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 I/g)=1.86E+IO I (Doherty, et.al., 1992) Transformity=34.3SE+14 scY1.86E+1OI=1.8SE+Sscj/I

PAGE 127

117Wetlandvaluesincludewaterstorageandgroundwatertablemaintenance,primaryandsecondaryproduction,habitatdiversity,andaestheticandeducationalhumanuses(Knight,1992).Thenetemergyyieldratioandemergyinvestmentratiowereusedininterpretingtheemergyevaluation(TableVII).Thenetemergyyieldratioistheemergyyielddividedbytheemergyusedforprocessing.Fuels,water,woodandotherrawmaterialshaveahighnetemergyyieldratio(210)andarecapableofcontributingmoretotheeconomythan theyrequirefromitforprocessing.However,attheendofprocessesgeneratinghighqualityproductssuchaspaper,netemergyyieldratiosareclosetoone.Paperisahighemergyproductwithahightransformity.Itistoovaluabletouseasafuel.Papercontributestotheeconomyaboutwhatistakenfromtheeconomyinit'smanufacture.Thenetemergyyieldratioofpulpandpaperproductionusingtechnologicaltertiarytreatmentwasconsiderablylowerthanthatforthesystemusingwetlandtreatment(1.13vs.1.57).AlthoughthetransformityoffinalproductwashigherinalternativeB,thelowernetemergyyieldratioindicatesalowerefficiencywhenhighqualityresourcesfromsocietyarescarce.Theemergyinvestmentratiomeasuresthepurchasedinputsrelativetothefreeonesfromusingenvironmentalresources.IntheU.S.,wheretheintensityofeconomic

PAGE 128

118developmentishigh,systemsusingtheenvironmentsuchasforestryoperationstypicallyhaveseventimesmoreemergybroughtinwithpurchasedinputsassuppliedfreefromtheenvironment.Anyprocessthathasaloweremergyinvestmentratiothan7usestheenvironmentmore,haslowercostsandtendstocompeteeconomicallywithalternativeinvestments.Thelowvalueof1.76forthewetlandtertiarytreatmentalternativesuggestsitwouldbeeconomic.TheemergyinvestmentratioofalternativeBwas8.07asopposedto1.76foralternativeA.AlternativeBreliesheavilyonintensivetechnologicalprocesseswhilealternativeAusesalargerpercentageoffreenaturalemergy.RecommendationsTheblackwastewatersdischargedfromkraftpulpandpapermillshaveasolartransformityof5.66E+6sej/J,avaluehigherthanfreshwater.Potentially,thesewaterscanmakeacontributiontoanenvironmentalsystemcapableofdevelopingagoodecosystem.ThevariouspiecesofevidenceassembledinthisthesissuggestthatwastewaterspassingthroughwetlandsincludingsomelongstretchesofpeatyforestedwetlandscanbereconditionedandbecomesimilartonormalblackwatercharacteristicofFlorida'sstreams.Itshouldbepossibletoreorganizewaterprocessingandrecyclingbetweenpinelandsthatdevelop

PAGE 129

119wood,the10-20%ofwetlandsandsmallstreamsamongthepinelandsandthepapermillssoastomaintainafairlynormallandscapeofwetlandsandwildlifewhileclosingtheloopofwateruseandreuse.Suchasymbioticinterfacingofindustrialprocesswasteswithenvironmentalsystemswillbeincreasingvaluetosocietyasfossilfuelsandotherhighqualityresourcesbecomescarceandaslandfillspacebecomeslimiting.ThegroundworkhasbeenlaidforalargescalepilottestofwetlandsforgeneralreconditioningofpUlpandpaperwastewaters.Thetestshouldincludelargeareasofpeatyforestedwetlandandhavetheobjectiveofconvertingthewastewatertonormalswampblackwater.

PAGE 130

APPENDIXSEEDLINGGROWTHSTUDYSTATISTICSSEEDLINOOROWTHSTATS6/6/91-9/18/91CELL C CELL C PLOT 2BCPCPABOBCPCPABO MEAN4.85 9.161.B7 4. 53 MEAN4.58 7.260.94 4.91 VAR 12.44 33.009.426.95VAR 10.64 36.97 4.06 9.36SS 684. 0211BB.03471.00319.75SS191. 49 591.5860.88149.76n56375147n19171617DF55365046DF18161516CELL 0 CELL C PLOT 3BCPCPABOBCPCPABO MEAN 3.3010.892.925.97 MEAN 3.058.101.008.76VAR18.3562.0810.0012.00VAR 11.42 10.641.3B10.09ss1046.121676.10520.19576.20SS205.5342.5626.13161.47n582853 49 n1952017OF57275248OFlB 4 19 16PLOT 1 CELL 0 PLOT 1BCPCPABOBCPCPABO MEAN 6.5812.684.556.97 MEAN 6.1813.475.00 4.19 VAR 16.44 39.7618.4710.73VAR24.4349.BO17.358.15SS608.321312.18572.71343.24SS 464.21 896.43277.65122.29n38 343233n201917 16OF3733 3132OF19181615PLOT 2 CELL D PLOT 2BCPCPABOBCPCPABO MEAN 3.036.671.05 4. 56 MEAN 1.555.211.16 4. 78VAR10.0040.332.638.91VAR 4.9245.49 1.185.00SS379.98927.5181.55 284. 97ss93.53272.9417.68 74.99 n39243233n2071616OF38233132DF1961515PLOT 3 CELL 0 PLOT 3BCPCPABOBCPCPABO MEAN 2.577.571.794.17 MEAN 2.066.252.58 4.78 VAR12.14 19.46 3.575.61VAR12.3939.06 4.53 5.00ss 436.94 116.76139.37162.56ss210.5639.06B6.11 74. 99n3774030n1822016OF366 39 29DF1711915CELL C PLOT 1 REFERENCEBCPCPABOBCPCPABO MEAN 7.0311.674.035.06 MEAN 6.30 14 .8311.406.50VAR7.1825.2219.254.34VAR5.017.7622.22 4.15 ss122.06353.11269.4865.10ss95.19147.38422.097B.B5n18 151516n20202020OF17 14 14 15OF19 19 1919120

PAGE 131

121GROWTHCOMPARISON-STUDENTStTEST CELL C PLOT 1ICELL C PLOT 2 CELL C PLOT 1ICELL D PLOT 1SP28.9585531.489811.39186.93082SP216.285039.048318.23777.308540.984471.987881.213030.916991.311092.158331.512830.94164BCPCPABGBCPCPABGt2.492.212.550.16t0.650.840.643.93erit.t2.03 2.042.042.04erit.t2.032.042.042.04CELL C PLOT 1ICELL C PLOT 3 CELL C PLOT 2ICELL D PLOT 2SP29.3595821.98178.957864.81985SP27.7032539.29652.618658.775571.006272.421111.022290.803440.889152.815190.572121.03183BCPCPABOBCPCPABOt3.951.472.971.99t3.410.730.38 0.70erit.t2.032.102.032.05erit.t2.032.072.042.04CELL C PLOT2ICELL C PLOT 3 CELL C PLOT 3ICELL D PLOT 3SP211.028331.70722.558937.57297SP211.888216.32452.953435.172991.092303.129200.542781.013901.134083.380400.543450.83235BCPCPABOBCPCPABOt1.400.270.121.43t0.880.552.901.58erit.t2.032.09 2.032.04erit.t2.032.572.052.05CELL DPLOT1ICELLD PLOT2 CELL C PLOT 1IREFERENCESP214.677148.72399.526709.15329SP26.0346215.166420.95664..233751.211493.086251.075081.053800.798111.330191.563630.69014BCPCPABGBCPCPABGt3.822.683.58 4. 34t0.912.374.712.08erit.t2.02 2.062.042.04erit.t2.032.032.032.03CELL D PLOT 1ICELL D PLOT 3 CELL C PLOT 2IREFERENCESP218.743449.236710.39297.62749SP27.7481921.113214.20486.531651.406585.216291.063480.961970.891741.515791.264130.84308BCPCPABGBCPCPABOt2.931.382.284.14t1.93 4. 998.281.88erit.t2.03 2.09 2.032.04erit.t2.03 2.032.03 2.03CELL D PLOT 2ICELL D PLOT 3 CELL C PLOT 3IREFERENCESP28.44683 44 .57163.052536.57568SP28.127548.2582811.79 5 4. 647130.944255.352860.586010.90662 0.913311.436861.086040.75119BCPCPABOBCPCPABGt0.540.192.420.65t3.564.689.584.04erit.t2.032.362.032.04erie.t2.032.062.022.04

PAGE 132

122CELL D PLOT 1/ REFERENCEPLOT 2 / PLOT 3SP2 l4.7209 28.2ll219.99236.86620SP211.039436.00903.155987.336631. 21329 1.701571.475000.864400.762512.577690.42l330.68328BCPCPABOBCPCPABOt0.100.794.34 2.62 t0.600.351.760.58erit.t 2.02 2.03 2.03 2.03erit.t1.992.041.992.00CELL D PLOT 2 / REFERENCE PLOT 1/ REFERENCESP2 4. 9662516.812712.93425.91573SP212.562728.068419.89588.276340.704711.800681.206270.81579o.979l41.492971.271430.81523BCPCPABOBCPCPABOt6.745.348.492.83t0.28 1.44 5.390.58erie.t2.022.06 2.03 2.03Crit.t2.012.012.012.01CELLD PLOT 3/ REFERENCE PLOT 2/ REFERENCESP28.493019.3221513.3734 4.52456 SP28.3362225.592510.07267.13379 0.946822.26432 1.156430.71345 0.794071.531660.904650.75687BCPCPABOBCPCPABOt 4.48 3.797.63 2.41 t 4.12 5.33 11.44 2.56erit.t2.032.092.022.03erit.t2.002.012.01 2.01CELL C/ CELL D PLOT 3/REFERENCESP215.447645.46239.717609.53139SP29.6751510.56549.680265.029390.736331.688890.6ll460.63032 0.863271.427450.852060.64739BCPCPABOBCPCPABOt2.101.02 1.72 2.28t 4.32 5.0811.283.60erit.t1.982.001.98 1.99 crie.t2.012.062.002.01PLOT 1/ PLOT 2SP213.177239.994310.55249.815880.827431.686040.812ll0.77129BCPCPABOt 4.29 3.564.313.12erit.t1.992.002.002.00PLOT 1/PLOT 3 SP214.318736.639310.17258.291870.873952.512330.756440.72640BCPCPABOt 4.59 2.033.653.86Crit.t1.992.021.992.00

PAGE 133

123SEEDLINO OROWTH STATS6/6/91-4/21/92CELL CCELLDPLOT1BCPCPABOBCPCPABO MEAN 7.6413.684.908.10 MEAN 9.4216.8310.0716.03VAR13.9321.8838.5713.20VAR35.4361.7247.7627.98SS431.69415.76732.74316.80SS673.171049.24668.64447.68n32202025n20181517DF31191924DF19171416CELL DCELLDPLOT2BCPCPABOBCPCPABO MEAN 8.4416.8810.0713.31 MEAN 5.6417.256.71VAR35.4356.3247.7642.43VAR24.847.5616.06SS921.231070.12668.67975.97SS149.047.5696.36n27201524n72 7DF26191423DF61 6 PLOT 1 REFERENCEBCPCPABOBCPCPABO MEAN 7.5716.0514.028.20MEAN9.5616.119.1012.97VAR8.088.6527.76 6.32 VAR24.8445.3854.1932.24SS153.52164.35 527.44 120.08SS844.551225.301246.30967.23n20202020n35282431DF1919 1919DF34272330PLOT 2 OROWTH COMPARISONSTUDENTS tTESTBCPCPABOCELLCPLOT1/CELLCPLOT2MEAN5.7513.332.776.67VAR14.0027.6010.3312.75SP210.057320.61532.752211.5273SS322.00303.57103.35216.751.123432.030512.572271.36796n24121118DF23111017BCPCPABOt3.511.111.841.91er1t.t2.042.102.102.06CELL C PLOT 1BCPCPABOCELLD PLOT 1/ CELL D PLOT 2 MEAN 9.7314.807.509.25VAR10.6613.3160.7812.21SP232.888458.711124.7290SS149.24 119.79486.24158.732.518485.711152.23324n15 10914DF149813BCPCPABOt10.285.927.76CELL C PLOT 2Crit.t2.062.102.07BCPCPABO MEAN 5.7912.552.776.64CELL CPLOT1/ CELL D PLOT 1VAR9.5327.9210.3310.64SS152.48251.28103.30106.40SP224.9215 44 .962652.494520.9106n171011 111.705142.644653.054891.65035DF1691010BCPCPABOt0.180.770.844.11erit.t2.032.062.072.04

PAGE 134

124CELL C PLOT 2/ CELL D PLOT 2 PLOT 1/ PLOT 2SP213.705425.884 12.6725 SP220.465740.233340.898425.1909 1.66256 3.940861. 72116 1.198942.18853 2.328551.48731BCPCPABOBCPCPABOt0.091.190.04t3.181.272.72 4.24 erit.t2.072.23 2.12erit.t2.002.032.042.01CELL C PLOT 1/ REFERENCEPLOT1/REFERENCESP2 9.17454 10.1478 37.5437 8.71281SP218.831430.209742.231922.18991.034581.23376 2.45941 1.028581.216391. 60916 1.967551.35103BCPCPABOBCPCPABOt2.091.012.651.02t1. 63 0.042.503.53erit.t2.03 2.052.05 2.04erit.t2.012.012.022.01CELL C PLOT 2/ REFERENCE PLOT 2/REFERENCESP28.74285 14. 843921. 7496 7.80965SP211.321915.597321.75129.356380.97541 1.49217 1.750631. 049021.01874 1. 44209 1.750700.99379BCPCPABOBCPCPABOt1.822.35 6.43 1. 49 t1.791.88 6.42 1.54Crit.t2.032.052.042.04erit.t2.022.042.042.03CELL D PLOT 1/ REFERENCESP221.75533.7108 36.244816.22171.47495 1. 88636 2.056341. 32864 BCPCPABOt1.25 0.41 1.925.89erit.t2.02 2.032.032.03CELL D PLOT 2/ REFERENCESP212.10248.5955 8.6576 1. 52775 2.174281.29216BCPCPABOt1.260.551.15erit.t2.062.102.06CELL C/ CELL DSP223.735539.1018 42.4668 27.50581.273111. 97741 2.225861. 49876 BCPCPABOt0.631. 62 2.323.48crie.t2.002.032.04 2.01

PAGE 135

125SEEDLINGGROWTHSTATS9/18/91-4/21/92CELLCCELL DPLOT1BCPCPABGBCPCPABGMEAl!2.022.133.933.18MEAl!3.302.895.637.26VAR2.184.2024.715.9BVARB.214.2719.1212.44SS67.5679.74469.43143.46SS155.9972.51267.62199.11n32202025n20181517DF311919 24DF19171416CELL D CELL D PLOT 2BCPCPABGBCPCPABGMEAl!3.262.9B5.635.56MEAl!3.143.751.43VAR 9.34 5.3119.1216.38VAR12.5514.061.82SS242.84100.93267.62376.77ss75.3114.0610.90n27201524n72 7DF26191423DF61 6 PLOT 1 REFERENCEBCPCPABGBCPCPABGMEAl!1.451.232.631.93MEAl!2.862.555.0B5.85VAR0.650.992.021.23VAR5.584.6820.3112.B3ss12.30IB.7538.42 23.41 SS189.71126.49467.033B4.77n20 202020n35282431DF191919 19DF 34 272330PLOT 2GROWTHCOMPARISONSTUDENTS t TESTBCPCPABGCELL C PLOT 1/ CELL C PLOT 2MEAl!2.192.543.731.75VAR5.955.5227.701.26SP22.126434.16625 24. 6966 4. B3496SS136.9560.71276.9B21.370.516570.912822.233650.BB594n 24 12 11IBDF23111017BCPCPABGt0.910.380.202.47CrH.t2.042.102.102.06CELL C PLOT 1BCPCPABGCELL D PLOT 1/ CELL D PLOT 2MEAl!2.271.954.174.14VAR 1.46 4.8720.947.94SP29.25184 4. B09719.54600SS20.47 43.B5 167.56103.271.335771.634641.3B753n1510914DF149B13BCPCPABGt4.12 0.49 B.40CELL C PLOT 2erit.t2.062.102.07BCPCPABGMEAl!1.792.303.731.95CELL C PLOT 1/ CELL D PLOT 1VAR2.713.4627.700.79SS43.3231.14276.9B7.93SP25.347304.4755719.7B0610.4270n171011110.7B9840.B343B1.B75241.16539DF1691010BCPCPABGt1.311.130.782.6Berit.t2.032.062.072.04

PAGE 136

126CELL C PLOT 2/ CELL D PLOT 2 PLOT 1/ PLOT 2SP25.39217 4. 520251.17699SP220.465740.233340.898425.19091.042831. 64686 0.524531.198942.188532.328551.48731BCPCPABOBCPCPABOt1.290.881.00t3.181.272.72 4.24 erit.t2.072.23 2.12erit.t2.002.032.042.01CELL C PLOT 1/ REFERENCE PLOT 1/ REFERENCESP20.993132.235827.628563.95862SP218.831430.209742.231922.18990.340390.579111.108620.693311.216391.609161.967551.35103BCPCPABOBCPCPABOt2.401.251.393.20t1.630.042.503.53erie.t2.03 2.05 2.052.04erit.t2.012.012.022.01CELL C PLOT 2/ REFERENCE PLOT 2/ REFERENCESP21.589261.7818010.87581.08067SP211.321915.597321.75129.356380.415870.516981.237940.390221. 01874 1. 44209 1.750700.99379BCPCPABOBCPCPABOt0.832.080.890.08t1.791.886.421.54Crit.t2.032.052.042.04Crit.t2.02 2.042.042.03CELL D PLOT 1/ REFERENCESP221.75533.7108 36.2448 16.22171. 47495 1.886362.056341.32864BCPCPABOt1.25 0.41 1.925.89erit.t2.022.032.032.03CELL D PLOT 2/ REFERENCESP212.10248.59558.65761.527752.174281.29216BCPCPABOt1.260.551.15erit.t2.062.102.06CELL C/CELLDSP223.735539.101842.466827.50581.273111.977412.225861.49876BCPCPABOt0.631.622.323.48erit.t2.002.032.042.01

PAGE 137

REFERENCELISTAllender,BruceM.(1984).Waterqualityimprovementofpulpandpapermilleffluentsbyaquaticplants.Appita:37,303-306.Amy,GaryL.,curtisW.Bryant,BruceC.Alleman,andWilliamA.Barkley(1988).Biosorptionoforganichalideinakraftmillgeneratedlagoon.JournalWPCF:60(8),1445-1453.Asplund,G.,A.Grimvall,andC.Petterson(1989).Naturallyproducedadsorbableorganichalogens(AOX)inhumicsubstancesfromsoilandwater.TheScienceoftheTotalEnvironment.81/82:239/248.BaasBecking,L.G.M.,I.R.KaplanandD.Moore(1960).LimitsofthenaturalenvironmentintermsofpHandoxidation-reductionpotentials.TheJournalofGeology.243-281.Best,RonnieG(1984).Naturalwetlands-southernenvironment:Wastewatertowetlands,wheredowegofromhere?InAquaticPlantsforwaterTreatmentandResourceRecovery,K.R.ReddyandW.H.smith(Eds.),MagnoliaInc.,Orlando,FL,99-119.Bray,J.R.,andG.J.Struik(1963).ForestgrowthandglacialchronologyineasternBritishColumbiaandtheirrelationtorecentclimatictrends.CanJBot.41:1245-1271.Britt,KennethW.(1970).HandbookofpUlpandPaperTechnology.VanNostrandReinholdCo.,NewYork.Brower,James,JerroldZarandCarlvonEnde(1990).FieldandLaboratoryMethodsforGeneralEcology,ThirdEdition.Wm.,C.BrownPublishers,DUbuque,237p.Buckman,HarryO.andNyleC,Brady(1969).TheNatureandpropertiesofSoils.TheMacmillamCo.,London,355377.127

PAGE 138

128Bumpus,JohnA.,MingTien,DavidWright,andstevenD.Aust(1985).oxidationofpersistentenvironmentalpollutantsbyawhiterotfungus.Science.228:14341436.Cain,RonaldB.(1980)Theuptakeandcatabolismofaromaticlignin-relatedcompoundsandtheirregulationinmicroorganisms.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.I,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,21-60.ChampionInternationalCorp.,Cantonment,FL(1991)MillFactSheet.CH2M-Hill(1990a)AssessmentofTreatmentandDisposalAlternativesforthePensacolaMill.CH2M-Hill(1990b).Nitrification/constructedWetlandspilotstudyatChampion'sPensacolaMill.CH2M-Hill(1991).OperationsPlanfortheChampionPensacolaMillConstructedWetlandspilotStudy.CH2M-Hill(1992).DraftFinalReport:ChampionPensacolaMillConstructedWetlandTreatmentsystempilotStudy.Crawford,RonaldL.(1981).LigninBiodegradationandTransformation.wiley,NewYork,154p.Doherty,S.J.,H.T.OdumandP.o.Nilsson(1992).SystemsAnalysisoftheSolarEmergyBasisforForestAlternativesinSweden.CenterofEnvironmentalPolicyandDepartmentofEnvironmentalEngineeringSciences,UniversityofFlorida,Gainesville,FL.Earl,PaulF.andDouglasW.Reeve(1990).Chlorinatedorganicmatterinbleachedchemicalpulpproduction.Tappi.Jan:179-183.Ewel,KatherineCarter,andHowardT.Odum(1984).CypressSwamps.UniversityofFloridaPress,Gainesville,FL,427pp.Ewel,KatherineCarter,andLaurieA.Parendes(1984).Usefulnessofannualgrowthringsofcypresstrees(Taxodiumdistichum)forimpactanalysis.Tree-RingBulletin.44:39-43.EPA(1988).DesignManual:ConstructedWetlandsandAquaticPlantSystemsforMunicipalWastewaterTreatment.EPA/625/1-88/022.

PAGE 139

129Faust,SamuelD.andOsmanM.Aly(1981).ChemistryofNaturalWaters.AnnArborSciencePUblishers,Inc.,AnnArbor,400p.Fuhr,F.(1987).Non-extractablepesticideresiduesinsoil.In:PesticideScienceBiotechnology.Greenhalgh,R.andT.R.Roberts(Eds).BlackwellScientificPUblications,OXford,381-389.Gellman,I.(1988).Environmentaleffectsofpaperindustrywastewaters-anoverview.WaterScienceTechnology.20(2):59-65.Gillette,Becky(1989).Artificialmarshtreatsindustrialwastewater.Biocycle.30(2):48-50.Gleason,H. A.(1917).Thestructureanddevelopmentoftheplantassociation.TorreyBot.ClubBull.44:463-481.Gove,GeorgeW.(1982).Pulpandpapereffluentmanagement.JournalWaterPollutionControlFederation.54(6):704-16.Hall,PhilipL.,WolfgangG.GlasserandStephenW.Drew(1980).In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,33-49.Hansen,EdwardA.,DavidH.Dawson,andDavidN.Tolsted(1980).Irrigationofintensleyculturedplantationswithpapermilleffluent.Tappi.63(11):139-143.Hardie,D.W.F.(1975).ElectrolyticManufactureofChemicalsfromSalt.TheChlorineInstitute,NewYork,92p.Hutchins,FloydE.(1979).ToxicityofpUlpandpapermilleffluent.EPA-600/3-79-013.Kirk,KentT.andHou-MinChang(1981).Potentialapplicationsofbio-ligninolyticsystems.EnzymeMicrob.Technol.3:189-195.Kirk,KentT.,TakayoshiHiguchi,andHou-minchang(1980).Ligninbiodegradation:summaryandperspectives.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,235-243.

PAGE 140

130Knight,R.L.(1990).Wetlandsystems.In:NaturalSystemsforWastewaterTreatment.ManualofPracticeFD-16,WaterPollutionControlFederation:211-256.Knight,R.L.(1992).Ancillarybenefitsandpotentialproblemswiththeuseofwetlandsfornonpointsourcepollutioncontrol.EcologicalEngineering.1:97-113.Kowzlowski,T.T.(1984).Plantresponsestofloodinginsoil.BioScience.34(3):162-166.Larrson,PerandKerstinLemkemeier(1989).Microbialmineralizationofchlorinatedphenolsandbiphenylsinsediment-watersystemsfromhumicandclear-waterlakes.WaterResources.23(9):1081-1085.Martin,J.P.(1980).Microbialdegradationandstabilizationof14C-labeledlignins,phenols,andphenolicpolymersinrelationtosoilhumusformation.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.I,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,77100.Mitsch,WilliamJ.andJamesG.Gosselink(1986).Wetlands.VanNostrandReinhold,NewYork,535p.Monk,C.D.(1966).Anecologicalstudyofhardwoodswampsinnorth-centralFlorida.Ecology.47:649-654.Monk,C.D.(1968).Successionandenvironmentalrelationshipsoftheforestvegetationofnorth-centralFlorida.AmericanMidlandScientist.79:441-457.NCASI(1991).Pope&Talbottouseartificialwetlandforthird-stagewastewatertreatment.NCASIBulletin16(1). Odum,E.P.(1971).FundamentalsofEcology.W.B.SaundersCo.,Philadelphia,544p.Odum,H.T.(1956).Primaryproductioninflowingwaters.Limnol.andOceanogr.1:103-117.Odum.H.T.(1983).SystemsEcology:AnIntroduction.Wiley,NewYork,644p.Odum,H.T.(1992a).EmergyandPublicPolicyPartI.UniversityofFlorida,Gainesville,FL,285p.Odum,H.T.(1992b).EmergyandPublicpolicyPartII.UniversityofFlorida,Gainesville,FL,162p.

PAGE 141

131Odum,H.T.,MichaelA.Miller,BettyT.Rushton,TimR.McClanahanandGRonnieBest(1983).InteractionofWetlandswiththePhosphateIndustry.CenterforWetlands,UniversityofFlorida,Gainesville,FL,164p.OECD(1985).EconomicAspectsofEnergyUseinthePulpandPaperIndustry.PopeandTalbot(1990).Halseywetlandstudybreaksnewground.In:TheNewsletterofPopeandTalbot,Inc.3(1)Presley,Richard(1990).Bleachplantfacesnewenvironmentalhurdleinadsorbableorganichalides.Pulp&Paper.Sept.,252-255.Pritchard,LowellJr.(1992).EcologicalEconomicsofNaturalWetlandRetentionofLead.M.S.Thesis,139p.PUlp&Paper(1991).Cleanair,dioxinaredominantconcerns.pUlp&Paper.Jan.,79-80.Salkinoja-Salonen,MirjaandVeronicaSundman(1980).RegulationandgeneticsofthebiodegradationofligninderivativesinpUlpmilleffluents.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,179-198.SirrineEnvironmentalConsultants,Inc.(1989).AdvancedWasteTreatmentOptions,ChampionInternationalCorp.,Pensacola,FLMill.SECJobNo.G-8286.Strumm,WernerandJamesJ.Morgan(1981).AquaticChemistry:AnIntroductionEmphasizingChemicalEquilibriainNaturalWaters.Johnwiley&Sons,Inc.NewYork,780p.Swann,CharlesE.(1990).Bleachplantsconcentrateonreducingchlorinatedorganics.AmericanPapermaker.JUly:21-3.Thut,Rudolph,N.(1990a).Utilizationofartificialmarshesfortreatmentofpulpmilleffluent.Tappi.Feb.:93-6.Thut,Rudolph,N.(1990b).Treatmentofpulpmilleffluentbyanartificialmarsh-largescalepilotstudy.In:Tappi1990EnvironmentalConferenceProceedings.

PAGE 142

132Vollenweider,R.A.(Ed)(1969).A ManualforMethodsonMeasuringPrimaryProductioninAquaticEnvironments.lBPhandbook#12,BlackwellScientificPUblications,Oxford.

PAGE 143

BIOGRAPHICALSKETCHPeterKellerwasbornonJuly9,1963,inVanNuys,CA.HeattendedWestonHighSchoolinWeston,CT.FollowinghighschoolgraduationPeterenrolledatOregonStateUniversityandgraduatedwithaBachelorofSciencedegreeinforestmanagementin1986.HethenspentfouryearsasacommoditylumbertraderinBoston,MAbeforeenrollingintheUniversityofFloridamastersprograminenvironmentalengineeringsciences.133

PAGE 144

IcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeofMasterofScience.H.T.Odum,ChairmanGraduateResearchProfessorofEnvironmentalEngineeringSciencesIcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeof G.RonnieBestScientistofEnvironmentalEngineeringSciencesIcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeof M"ark T.BrownAssociateScientistofEnvironmentalEngineeringSciencesThisthesiswassubmittedtotheGraduateFacultyoftheCollegeofEngineeringandtotheGraduateSchoolandwasacceptedaspartialfulfillmentoftherequirementsforthedegreeofMasterofScience.December,1992WinfredM.PhillipsDean,CollegeofEngineeringMadelynM.LockhartDean,GraduateSchool


University of Florida Home Page
© 2004 - 2011 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated May 24, 2011 - Version 3.0.0 - mvs