Perspectives on Interfacing Paper Mill Wasterwaters and Wetlands

MISSING IMAGE

Material Information

Title:
Perspectives on Interfacing Paper Mill Wasterwaters and Wetlands
Physical Description:
Thesis
Language:
English
Creator:
Keller, Peter A.
Publisher:
University of Florida
Publication Date:

Subjects

Subjects / Keywords:
wastewater wetlands
wastewater treatment
paper mill wastewater
microcosms
Spatial Coverage:
United States -- Florida -- Pensacola and Palatka -- Champion Artificial Wetland and Rice Creek Floodplain
Coordinates:
29.65 x -81.64

Notes

General Note:
133 Pages

Record Information

Source Institution:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
System ID:
AA00004053:00001


This item is only available as the following downloads:


Full Text

PAGE 1

PERSPECTIVESONINTERFACINGPAPERMILLWASTEWATERSANDWETLANDSByPETERA.KELLERA THESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA1992

PAGE 2

ACKNOWLEDGEMENTSIwouldliketoacknowledgetheinspirationandguidanceofHowardT.Odumthroughoutthisstudyandthemanycontributionsofmycommitteemembers,G.RonnieBestandMarkT.Brown.InadditionIthankRobertKnightofCH2M-Hillforhiscooperationandassistancewhichmadethisprojectpossible.TheresearchprojectwassupportedbyastipendfromChampionInternationalCorporationandTheNationalCouncilforAirandStreamQualityImprovement(NCASI).ThoseindividualscloselyinvolvedwiththeprojectwereRobertFisherandJimShepardofNCASIandDavidArceneauxofChampion.SpecialthanksgotoPeteWallaceofWallaceandGarrenEnvironmentalConsultantsfordonatingmaterialsandtechnicaladvice.LowellPritchard,ShanShinTon,RobertWoitheandDebraChildsassistedinfieldwork.ThanksalsogototheenvironmentalstaffofGeorgiaPacificCorporationinPalatka,Flloridaforallowingaccesstotheirpropertyandsupplyingnecessaryinformation.ii

PAGE 3

TABLEOFCONTENTSACKNOWLEDGEMENTSLISTOFTABLESLISTOFFIGURESABSTRACTINTRODUCTION ii vviix1FeasibilityQuestionsEnvironmentalFateofPreviousStudiesStudySitesandTheirStudyPlan..KraftEffluentoperation5610 1625METHODSANDMATERIALS27TestsofTreeSeedlingSurvivalandGrowthinPilotMarsh................27AquaticProductivitywithDiurnalChemicalMeasurements........29ChemicalChangesinPeatyMicrocosms.31StandCharacteristics,GrowthRate,andSpeciesDiversityintheHistoricallyEffluentInundatedRiceCreekFloodplainForestedWetland.38EmergyEvaluationofTertiaryTreatmentAlternatives41RESULTS.........42TestsofTreeSeedlingSurvivalandGrowthinpilotMarsh...........42AquaticProductivitywithDiurnalChemicalMeasurements........... 63ChemicalChangesinPeatyMicrocosms..75StandCharacteristicsandCypressGrowthRateintheEffluentImpactedRiceCreekFloodplainSwamp86DISCUSSION...................99SuccessionalPotentialofpilotMarshToForestedsystem....... ........99iii

PAGE 4

ImplicationsofAquaticProduction,Eh -pHParametersandEcosystemstructureonPollutantDynamics102ThePotentialRoleofForestedWetlandPeatSUbstrateinPollutantConversionandRetention..106ImpactsofKraftMillEffluentonaNaturalForestedFloodplainswamp ..........109EmergyEvaluationofTertiaryTreatmentAlternatives111Recommendations118APPENDIX REFERENCELISTBIOGRAPHICALSKETCHiv120127133

PAGE 5

LISTOFTABLESTableI.PeatMicrocosmwaterChemistryMethods39TableII.AquaticProductioninPilotWetland. 73TableIII.PeatMicrocosmwaterChemistryResults.79TableIV.RiceCreekExperimentalSiteForestStandData...........................87TableV.RiceCreekReferenceSiteForestStandData..................................88TableVI.EmergyEvaluationofTertiaryTreatmentAlternatives.........113TableVII.EmergyIndicesofTertiaryTreatmentAlternativesandTransformitiesofFinalProducts................................116v

PAGE 6

Figure1.LISTOFFIGURESAggregatedSystemsDiagramsofPaperMillswithsupportingEnvironmentandEconomy.4Figure2.PilotWetlandPlanView....18Figure3.Figure4.pilotWetland.June6,1991(Startup)RiceCreekSiteMap.Palatka,Fl1920Figure5.RiceCreekSwamp.JUly,1992..21Figure6.pilotWetlandVegetationProfile24Figure7.AquaticProductionCalculationMethods32Figure8.ExperimentalTroughMicrocosm33Figure9.InfiltrationColumnMicrocosm34Figure10.AverageSeedlingGrowth.6/6/91-9/18/9145Figure11.SeedlingMortality.6/6/91-9/18/9147Figure12.AverageSeedlingGrowth.6/6/91-4/21/9252Figure13.SeedlingMortality.6/6/91-4/21/9254Figure14.AverageSeedlingGrowth.9/18/91-4/21/9259Figure15.SeedlingMortality.9/18/91-4/21/92.61Figure16.stationD1.DiurnalTemperatureProfile.July16-17,1991.......64Figure17.StationD2.DiurnalTemperatureProfile.July16-17,1991.....64Figure18.stationC1.DiurnalTemperatureProfile.July16-17,1991........65Figure19.stationC2.DiurnalTemperatureProfile.July16-17,1991.........65vi

PAGE 7

Figure20.ReferenceStation.DiurnalTemperatureProfile.JUly16-17,1991..66Figure21.Figure22.Figure23.Figure24.station01.DiurnalDissolvedOxygenProfile.July16-17,1991....Station02.DiurnalDissolvedOxygenProfile.July16-17,1991.stationC1.DiurnalDissolvedOxygenProfile.July16-17,1991...stationC2.DiurnalDissolvedOxygenProfile.July16-17,1991... ..67 67 68 68Figure25.ReferenceStation.DiurnalDissolvedOxygenProfile.July16-17,1991.....69Figure26.Figure27.stationD1.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,1991station02.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,199170 70Figure28.Figure29.stationC1.DiurnalRateofChangeDissolvedOxygen/m2 July16-17,1991stationC2.DiurnalRateofChangeDissolvedoxygen/m2 JUly16-17,1991..7171Figure30.Figure31.Figure32.Figure33.Figure34.Figure35.ReferenceStation.DiurnalRateofChangeDissolvedOxygen/m2 JUly16-17,1991DiurnalpH.PilotWetlandandReferenceStation.July16-17,1991....DiurnalRedoxPotential.pilotWetlandandReferencestation.July16-17,1991..Eh-pHDiagramofDataCollectedinpilotWetlandandReferencestation.July16-17,1991... ...............RelativeCoverage(BasalArea)ofTreeandShrubSpeciesinRiceCreekFloodplainSwampRelativeFrequencyofTreeandShrubSpeciesinRiceCreekFloodplainSwamp.. 72 76 76 77 91 93Figure36.SizeClassFrequencyperHectareofTreesandShrubsinRiceCreekFloodplainSwamp. 96vii

PAGE 8

Figure37.GrowthRates(Mean+-SE)of10CypressTreesinRiceCreekExperimentalsite.98Figure38.GrowthRate(Mean+-SE)of10cypressTreesinRiceCreekReferencesite....98viii

PAGE 9

AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulfillmentoftheRequirementsfortheDegreeofMasterofSciencePERSPECTIVESONINTERFACINGPAPERMILLWASTEWATERSANDWETLANDSByPeterA.KellerDecember,1992Chairperson:Dr.HowardT.OdumMajorDepartment:EnvironmentalEngineeringSciencesWetlandresponsestopapermillwastewaterswerestudiedinanartificialwetlandnearPensacola,FL,inpeatymicrocosmsandinaformerfloodplaindischargesiteinPalatka,FL.Afteroneyear,plantedseedlingsofbaldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvatica)insixplotswithinthepiloteffluenttreatmentmarshandoneirrigatedreferenceplotoutsidethewetlandexhibitedhighsurvivalandgrowth.Pondcypressexhibitedthehighestgrowthovertheentirestudyinthepilotwetlandfollowedbyblackgum,baldcypressandpopash.Popashandblackgumwerethespeciesmostretardedingrowthbyincreaseddepthofinundation.Metabolismwasevaluatedfromdataondiurnaltemperature,dissolvedoxygen,redoxpotentialandpHix

PAGE 10

measuredovera24-hourperiodatfourstationsinthepilotwetland.Temperatureanddissolvedoxygenwerehighlystratified.Grossprimaryproductioninthepilotwetlandwasmoderatetohighwiththehighestratecalculatedat7.6g/m2/day.Theproduction/respirationincreasedalongthelengthofthecellwithdeepzones.pHandredox(Eh)datafromthepilotwetlandplottedonanEh-pHdiagramwereintherangefoundinnaturalecosystems.Forestedwetlandpeat-effluentinterfacemicrocosmsprovedtobeaneffectivemediumforthereductionofbiochemicaloxygendemand(BOD),totalsuspendedsolids(TSS),ammonianitrogen(NH.-N),totalkehldahlnitrogen(TKN),nitrite-nitratenitrogen(N02-N03 )andtotalphosphorus(TP).ThemicrocosmsloweredeffluentpHandincreasedcolor.Dataonspeciescomposition,diversityandgrowthrateofbaldcypresswerecollectedfromtheRiceCreekfloodplainwhereeffluentfromtheGeorgiaPacificmillinPalatkahadbeendischarged.Growthanddiversityweresimilartothoseinanunaffectedsiteupstream.Anemergyevaluationoftertiarytreatmentalternativesindicatedthatawetlandinterfacemightrequirelesspurchasedinputs,thusbenefitingindustry,theenvironmentandsociety.Theseveralkindsofdatapresentedmayjustifyalargescalepilottestofreconditioningpapermillwastewatersinapeatyforestedwetland.x

PAGE 11

INTRODUCTIONIntegratingwetlandsintomunicipalandindustrialeffluentwastetreatmentprocesseshasstimulatedconsiderableresearchandimplementationoverthepastdecade.Wastewater-wetlandsystemshavebeenproveneffectiveinreducingbiochemicaloxygendemand (BOD),nutrientconcentrations,totalsuspendedsolids(TSS),heavymetals,pathogens,andsomeorganicpollutants.(Knight,1990;EPA,1988;Gillette,1989;EwelandOdum,1986;Thut,1990).Wetlandecosystemsself-organizetoadapttoenvironmentalinputssuchastreatedsewageandindustrialwastes.Biological,chemical,andphysicalprocessesareinvolvedinpurificationandattenuationofpollutants.Thepaperindustryuseslargevolumesofwater,producinganddischargingeffluentoftenhighinlignaceousorganiccompounds.Afascinatingpossibilityforthepaperindustryisinterfacingwetlandsystemswitheffluentdischarge,thusrecyclingwaterthroughnaturalenvironmentalprocesses,metabolizingandsequesteringpollutantsofconcerntothepUblic,helpingtomaintainlocalwatertablesandprovidingtheancillarybenefitsof1

PAGE 12

2ecosystemandhabitatconservation.Suchasymbiosisbetweenindustryandtheenvironment,ifitcanbeshowntobenefitthereceivingecosystemasitadapts,wouldbenefitthepaperindustry,theenvironment,andsociety.Usingexploratorymeasurements,thisstudyassemblesevidencethatmayjustifymoreextensivepilottesting.Includedare:1)MeasurementsofaquaticmetabolismandtreeseedlingsurvivalandgrowthinapilotwetlandtreatmentsystemconstructedbyChampionPaperCorp.nearPensacola,FL; 2)measurementsofwaterqualityinpeatmicrocosmsreceivingpapermillwastewatersatthePensacolasiteand;3)measurementsofindicesofmaturewetlandecosystemsthatformerlyreceivedpapermillwastewatersatRiceCreeknearPalatka,FL.Twoaggregatedsystemsrepresentinghypotheticalpapermillsandthesupportingenvironmentandeconomywerediagramed(Figure1).(SeeOdum,H.T.(1983)forenergycircuitsystemsdiagrammingmethods).Largescalepolicyimplicationsofwetlandinterfacingasopposedtotechnologicallyadvancedwastewatertreatmentinthepulpandpaperindustryareconsideredusingemergyevaluationinthediscussionofthisreport.

PAGE 13

Figure1.AggregatedSystemsDiagramsofPaperMillswithSupportingEnvironmentandEconomy.a)Wetlandinterfaceforsecondaryeffluentdischarge;b)Advancedtertiaryeffluenttreatment.

PAGE 14

CorutruetedTreatmentWeiland N."'n1 Wellond PIIIp.t:PoperMill (a)4 SunWmd Rain Soil(b) "'-. M.rltet )

PAGE 15

5FeasibilityOuestionsManyconceptsareinvolvedinusingwetlandsasaninterfacebetweenpapermilleffluentdischargesandpublicwaters.Somesubstancesmaybesimplyabsorbedbyplants,peatmicroorganismsandchemicalreactions.Self-organizingecosystemsthathaveahighdiversityofmicrobialspeciesoftendevelopprocessesneededtoutilizewastesubstances.Consensusisdevelopingthatlignaceoussubstancesfromnaturalwooddecompositionorpapermillwastearegoodatbindingmanykindsoftoxicsubstancesandareusefulforpurificationeitheraspeatfiltersorasblackwaters(Fuhr,1987;LarrsonandLemkemeir,1989).Eventhoughwatertreatmentforhumanconsumptionrequiresclarification,blackwatersarenaturalallovertheworldandmaycontributetothehealthofecosystemsandhumansbeforewatertreatment.ManyofthehealthiestwatersinFloridastartashighlycoloreddrainagesfromelevatedswampssuchasOkefenokee,SantaFe,GreenandBigCypressswamps.Oneconceptofinterfacingwetlandswithpapermillwastewatersistopassthemthroughenoughnaturalwetlandareasothatthelignaceousmaterialsfromtheeffluentareexchangedordilutedbythecolorfromtheswamp.Thecolorisnotchangedmuchbutthewatersbecomenormalforwetlandoutflow.

PAGE 16

Inordertolearnmoreaboutwetlandpotentialasaninterface,changesinchemicalcharacteristicswerestudiedandthepropertiesofadaptingecosystemswereexamined.Althoughcostly,conventionaleffluenttreatmenttechnologyandmodernprocessconfigurationssuchaschlorinedioxidesUbstitutionandoxygendelignificationhavebeenlargelyeffectiveinreducingbiochemicaloxygendemand (BOD),totalsuspendedsolids(TSS),toxicresinacids,andmuchofadsorbableorganichalide(AOX)inpUlpandpapermilleffluent.However,problemswithpersistenteffluentcharacteristics,includingcolor,chemicaloxygendemand (COD),foamingpropensity,nutrients,andAOXexistinmanymills.Thecostofengineeredtertiarytreatmentfacilitiesisoftenprohibitive.Alternativesbeingconsideredincludereturnofthesecondarilytreatedeffluentinadispersedmannertotheenvironmentviaacarefullymanagedconstructedornaturalwetlandsystem.Runningonnaturalenvironmentalenergies,awetlandwastewatertreatmentsysteminwhichaviableandappropriateecosystemcandevelopcanbeaninterfacebetweeneffluentdischargeandpublicwaters.EnvironmentalFateofKraftEffluentNumerousstudieshavebeenconductedworldwideontheimpactofpUlpandpapermilleffluentonaquaticorganismsinreceivingwaters.(Gellman,1988;Gove,1982;Hutchins,6

PAGE 17

71979)However,theenvironmentalstorage,cyclinganddegradationmechanismsformanyofthecompoundsarenotwellunderstood.ThekraftpUlpingprocessinvolvesthedigestionofwoodchipsinahighlyalkalinesodiumsulfidesolutionunderheatandpressure.Theresultingblackliquorisamixtureofsolubilizedligninandwoodextractiveswhichhavebeenseparatedfromthewoodfiberusedinpaperproduction.Theliquorissuccessivelyscreenedandwashed,with95%recoveryandrecyclingofprocesschemicals.Dilutewashwatersaredischargedtotheeffluenttreatmentsystem,wheretheytypicallyreceiveprimaryandsecondarytreatment.AtthispointinthepUlpingprocess,thepollutantsofconcerninwastewaterareBOD,TSS,nutrients,color,foam,andresinacids.Withtheexceptionofcolor,thesepollutantscanusuallybereducedtolevelsacceptableforpermittinganddischargeintoClassIIIreceivingwatersusingprimaryandconventionalbiologicaltreatment.Thepulpbleachingprocessisresponsiblefortheformationofthemostproblematicgroupofchemicalsfoundinpapermilleffluent,chlorinatedphenolicsandotherhalogenatedligninbyproducts.Thesechemicalstendtoberesistanttobiologicaldegradationandsomearetoxicand/orgenotoxictoaquaticorganismsandmaybio-accumulate(EarlandReeve,1990;Hutchins,1979).

PAGE 18

8Toproducewhitepaper,pUlpmustgothroughaseriesofbleachingandextractionsteps.Thebleachingisaccomplishedusingeitheraqueouschlorine,chlorinedioxideoracombinationofthetwo.causticsodiumhydroxideisusedinextraction.ManywesternEuropeanmillshaveswitchedtoozonebleaching,thuseliminatingtheenvironmentalproblemsassociatedwithchlorinatedorganiccompounds.Thecost,however,isthreetimesasmuchaschlorine,andsomefiberstrengthissacrificed(Swann,1990).OfthemanyconstituentsofAOX(aparameterwhichincludesallchlorinatedorganics),awiderangeofmolecularweightcompoundsarerepresented.ThoseoflowmolecularweightcontributemosttoAOXrelatedeffluenttoxicity.Thesetoxiccompounds,includingchloroform,chlorophenols,chlorinatedguiacolsandcatecholsaregenerallyreducedtosub-chronictoxicitylevelsforaquaticindicatororganismsbymillsthatusemodernprocesscontrolandsecondaryeffluenttreatmentsystemssuchasaeratedstabilizationbasins(ASB)andoxidationpondsoractivatedsludgeplants.TotalAOXcanrangefrom3-6kg/tonofpaperproduced,dependingonthelevelofchlorinedioxidesubstitutionusedinthebleachingprocess(Presley,1990).TheEPAandseveralstatesareintheprocessofissuingNPDESpermitsreflectingneweffluentstandardsonAOXanddioxin.Thesuggestedlimitondioxininstreamsis0.013

PAGE 19

9ppq.,wellbelowthedetectablelimit(Pulpandpaper,1991).ThesuggestedregulatorylimitforAOXinmilleffluentis1.5kg/ton(Presley,1990).TherecalcitrantnatureofhighmolecularweightkraftligninsresponsibleforthecolorandCODinpapermilleffluentisduetothemolecularstructureofligninitself.Ligninisacomplexaromaticpolymerwhichcontainsmanynon-hydrolyzablelinkagesprotectingthepolysaccharidesfromenzymaticdegradation(KirkandChang,1981).Theroleofcertainbasidiomycetes,specificallywhiterotfungi,inthecatabolismofligninrelatedcompoundshasbeenshown.ThewhiterotfungiPhanerochaetechrysosporiumandCoriolusversicolorwereabletodegradeligninasmeasuredbyI'C02generationfromaIClabeledlignincompoundculture(Crawford,1981;Kirketal.,1980).Depolymerizationinvolvesapowerfulextracellularenzymesystempresentinthefungi(Bumpus,etal.,1985).Theprocessrequiresaerobicconditionsandthepresenceofanadditionalcarbohydratefoodsource.Theby-productsformedcanthenundergofurtherringcleavageanddegradationthroughtheenzymesystemsofvariousbacteriaandothermicroorganisms(cain,1980).Astudyconductedonkraftmilleffluentinanaeratedlagoonreportedareductionoftotalorganichalide(TOX)of1/3to1/2.Thedehalogenationanddegradationofchlorinatedorganicsunderanaerobicconditionsinthe

PAGE 20

10benthallayerofthelagoonwasdeterminedtobeimportantinoverallTOXreduction.BiosorptionofthepersistentchlorinatedorganicmoleculesontosettlingbiomassplayedacrucialroleinthefurtherdegradationofTOXcomponentsinthebenthallayer(Amy,etal.,1988).Microbialsynthesisandcomplexationofligninrelatedaromaticcompoundsisknowntooccurintheprocessofsoilhumification(Martin,1980).LarrsonandLemkeimeier(1989)comparedthemineralizationofchlorinatedphenolsandbiphenolsinhumiclakesystemsvs.clearlakesystems.SUbstantiallyhigherratesofdegradationoccurredinthehumicenvironments,wheremicrobialpopulationswereadaptedtodegradingandcomplexingsimilarnaturalaromatichumiccompounds.PreviousstudiesApparentlyonlyonelargescalewetlandeffluenttreatmentsystemsexistforthepulpandpaperindustryinColumbus,MS.Informationonit'soperationhadnotbeenreportedintimeforinclusioninthisreport.Twopilotscalestudieshavebeenreportedontertiarytreatmentofpulpmilleffluentsbyartificialwetlands(Allender,1984andThut,1990).TwolargerandmoresignificantstudieswereinitiatedbyPopeandTalbot,Inc.Halsey,ORandChampionInternationalCorp.incantonment,FL.

PAGE 21

11Allender'sstudy,conductedunderstatichydroponicgreenhouseconditions,showedareductionoflignosulfonate,color,TSS,BOD,andfoamingpropensityofsecondarytreatedeffluentsinsmallplantedreactors.Theexperimentwasconductedoveraten-weekperiodusingfourplantspeciesindigenoustothemilllocationinVictoria,Australia.Plantswereplantedinfourliterplastictubsfilledwithbleachplantandpapermachineeffluent.Variousconcentrationsoftheindicatorpollutantlignosulfonateweretestedaswellastheeffectofnutrientadditionandbiocidetreatment.Threeofthefourplantspecieswerecollectedfromthemill'sfinaleffluentponds,giantrush(Juncusingens),palerush(Juncuspallidus),commonreed(phragmitesaustralis)andcumbungibulrush(Typhaorientalis).JuncusandTyphashowedthegreatestpollutantremovalefficiencyunderhighloadingconditions.Allenderconcludedthatallspeciestestedwereabletotoleratelargeandrepeatedchangesineffluentqualityandthattheenzymemediatedprocessesinvolvedinphenoliccompounddegradationoccurredprimarilyinbacteriaassociatedwiththerhizosphereofalivingrootsystem.RudolfN.Thut,ScientificAdvisortoTheWeyerhaeuserCo.,conductedseveralsmallscalepilotstudiesonbleachedkraftmilleffluentin2.6m2marshreactors,andinitiatedathreeyearlargerscaleinvestigation(0.4ha.)treatingthermomechanicalpUlpmilleffluent(Thut,1990a,b).Using

PAGE 22

12wetlandplantsinagravelsubstrate,Thutattemptedtomaximizebothplantuptakeandanaerobicbreakdown.Theplantspeciesusedinthestudiesincludedgiantcordgrass (Sparrina cynosuroides),cattail(Typhalarifolia),reed(Phragmiresausrralis),bulrush(Scirpuscalifornicus),torpedograss(Panicumrepens),andsawgrass(Cladiumjamaicense).Afteroneyearnodifferenceinthetreatmentefficacybetweenspecieswasshown.Removalefficiencieswere:TSS-54%,500-29%,ammonia-64%,totalorganicnitrogen-33%,totalphosphorus-18%.Removaloffattyandresinacids,animportantconstituentofeffluenttoxicity,wasbetween20-25%.Theoptimumretentiontimebasedontheseparameterswas15hours.Nosignificantremovalofcolorortotalorganicchlorine(TOCL)wasreported,althoughareductioninchlorinatedphenolicsof50%wasnoted.Thutconcludedthatartificialwetlandtreatmentwouldhavenoappreciablepositiveeffectoncolorandadsorbableorganichalide(AOX)inwastewaters.Evidenceexists,however,thatbiosorptionandbiodegradationunderacombinationofaerobicandanaerobicconditionscanreduceAOXanddioxinconcentrations(Amy,etal.,1988;Presley,1990).PopeandTalbot,Inc.inHalsey,ORinitiatedalargescaleartificialwetlandtertiarytreatmentprojectscheduledtorunforfiveyears(NCASI,1991;Pope&Talbot,

PAGE 23

131990).WiththecooperationofOregonstateUniversity,40,000cattailsandbulrusheswereplantedandtheareawasinundatedwith18inchesofsecondarytreatedKraftmilleffluent.Proposedretentiontimeswere24-48hours.Theeffluentwascirculatedbygravityandpumping.Noresultswereavailable,butthepreliminarygoalswereaBODandTSSreductionfrom15ppmto8ppm,reductionofcolor,andreductionofthedioxinconcentrationintheeffluent.However,thedischargefromthemillcontainedlessthanthedetectablelevel(10ppq)ofdioxin.ChampionInternationalandCH2M-Hillstudiedaeffluent-wetlandinterfaceatakraftpUlpandpapermillincantonment,FL.Apilotwetlandandnitrificationplantwasconstructedtotheeastofaeratedstabilizationbasin(ASB2),oneofthefourlagoonsinChampion'ssecondaryeffluenttreatmentsystem.Rigorousquarterlywaterquality,vegetationandfaunasamplingandanalysiswasconductedoveraoneyearperiod(CH2MHill,1992).Thewetlandconsistedofsixcells100meterslongwiththreepairsofcellsofthefollowingwidths:40meters,20meters,and10meters.Thepairedcellswereidenticalexceptfortwoadditionaldeepzonesinonecellofeachpair.Thepurposeofthedeepzoneswastoassesstheeffectsofincreasedwaterstorage,increasedhydraulicretentiontime,andincreasedatmosphericreaeration.Tenherbaceousplantspeciesinsixidenticalplantingzones

PAGE 24

14withineachwetlandcellwereplanted.Speciesincludedweresoftrush(Juncuseffusus),maidencane(Panicumhemitomon),sawgrass(Cladiumjamaicense),canna(Cannaflacida),fireflag(Thaliageniculata),duckpotato(Sagittarialancifolia),pickerelweed(Pontedariacordata),cordgrass(Spartinabakerii),bulrush(Scirpuscalifornicus),andcattail(Typhalatifolia).Thegoalofthepilotstudywastoobtaindesigncriteriaforfullscaleimplementationandtoassessthecriticaleffluentparameterremovalorreductionpotentialofsuchasystemunderdifferentdesignandloadingrates.Thevariablestestedwerehydraulicloadingrate(HLR): 2 30em/day,theoreticalhydraulicretentiontime(HRT):0.3 35days,massloadingratesforthevariouseffluentparameters,depthofinundation:060 em,nitrificationpretreatmentandthepresenceofdeepzones.Thepollutantremovalefficiencyrangedasfollows:fivedaybiochemicaloxygendemand (BODs): 36 77%,totalsuspendedsolids(TSS):72 90%,NH3 :896%,totalnitrogen(TN): 37 79%,andtotalphosphorus(TP):26-78%.RemovalefficiencyfortheseparameterswasfoundtobeinverselycorrelatedtoHLR,whiletheremovaloftotaldissolvedsolids(TOS)andcolorwasonlyweaklycorrelatedwithHLR.Significantreductionsinalkalinity,solubletotalorganiccarbon(sTOe), TOS,colorandconductivitywereachievedonlyinthetwocellswhichreceivedthe

PAGE 25

15lowestHLR's.TDSandcolormassremovalratesweremostdependentonHRT.ThecolormassremovalataHRTof20dayswasbetween30and50%.Nitrificationpre-treatmentresultedinsignificantlyreducedoutflowconcentrationsofNH3andTN,andincreasedDO.Adsorbableorganichalide(AOX)wasreducedbyanaverageof50%duringthefirstquarterofoperation.Bioassaysofthefatheadminnow(Pimephalespromelas)andthecladoceran(CeriodaphniadUbia)wereconductedtodeterminetoxicitycharacteristicsofthewetlandinfluentandeffluent.NoacutetoxicitywasassociatedwiththeinflowfromASB2andthechronictoxicitywasreducedtonearzeroinmostcasesbywetlandtreatment.Cellswithdeepzonesreducedchronictoxicitymoreefficientlythanthosewithout.Sedimentandplantandfishtissuesamplesfromthepilotmarshwereanalyzedformetals,dioxin,andextractableorganichalide(EOX).Noharmfulaccumulationlevelswerereportedinthebiotasamplesanditwasassumedthatnearsteadystateconcentrationsexisted.Oftheplantspeciestested,bulrushandcattailwerethemostsuccessful,butallofthetenplantedspeciesexceptforcanna,maidencaneandarrowrootgrewwellundereffluentinundation.29invadingplantspecieswereidentified.Thewetlanddevelopedarichdiversityof

PAGE 26

16macroinvertebratesandwasutilizedbymanybirdspeciesaswellasotherwildlife.Someinterfacestudieshaveconsideredtheuseofpapermilleffluentforsprayorfloodirrigationofforestplantations.IrrigationofanintenselyculturedplantationofSalixandpopuluswithpapermilleffluentledtoPopulusgrowthratesof1.8-2.1m/yearandSalixgrowthrateof90cm/year(Hansen,etal.,1980).Inthisexperimenttherateofirrigationwasapproximately28cmperweekofsecondarytreatedgroundwoodandkraftprocesseffluent.Aftertwoyears,samplesweretakenfromwaterpercolatingthroughthesandysoilandqualitywasbetterthanthetertiarytreatedeffluentnormallydischargedbythemill.However,onepotentialconcernnotedwasthetransmissionofmostNa,CI,andSO.tothegroundwatertable.Once abroaderinformationbaseisestablishedontertiarytreatmentofpulpandpapermilleffluentwithnaturalsystemsthroughpilotstudiesitispossiblethatthisecologicalengineeringapproachtowastewatertreatmentmaybeacceptedbytheindustryasacosteffectivecomponentofanoverallstrategyforcompliancewithenvironmentalregulations.StudysitesandTheirOperationTwostudysiteswereinvolvedinthisresearchproject.(1)Apilottertiaryeffluenttreatmentmarshoperatedby

PAGE 27

17CH2M-HillfortheChampionpapermilllocatedinCantonment,FL.(Figure2,3)(seeprevioussectionforreviewofrecentstudiesthere.(2)TheRiceCreekforestedswampfloodplaininPalata,FL, WhereeffluentfromtheGeorgiaPacificmillwasdischargedinthepast(Figures4,5).ChampionArtificialWetlandIn1991,inordertoimprovewastewaterqualityfordischargeintoreceivingwaters,anartificialwetlandwasconstructednearPensacolabyChampionInternationalandCH2M-Hill(environmentalconsultants).TheClassIIIwaterqualitycriteriawhichareofconcernareammonia,dissolvedoxygen,transparency,conductivity,zinc,andiron.Availableinprocessandendofpipealternativeswereconsideredforeffluentqualityimprovement.NCASI,threeenvironmentalconsultingcompanies,andChampion'sownenvironmentalstaffwereinvolvedinevaluatingoptions.AreportwaspreparedonseveralengineeredcapitalintensivetreatmentsystemsincludingUltrafiltration,carbonadsorption,ammoniumionexchange,alumcoagulation,andlimetreatment(SirreneEnvironmental,1990).Inthe1991-1992studyinPensacola,CH2M-Hillwastestingapilotnitrificationplantinserieswithapilotconstructedwetland.

PAGE 28

CounseAggregaIeFlOm Pond2(INF11 Figure2.PilotWetlandPlanView. ChampionCorp.Cantonment,FL. (CH2M-Hill,1990).

PAGE 29

19Figure3.pilotWetland.June6,1991(startup).ChampionCorp.,Cantonment,FL.

PAGE 30

...... I .,t.1:.c/):.;:>' -I .. i ,'-,. "'"'."p\\II ...........\"..... \\ -1)<"",\",II \ -:. I --'" )II \"Jf\.\\ II 10:> -_....... rI :: )) _,>(71/.... I .. I"( ...........1.-) ) \II C' )"I" ...<1 II "".II'--".1I ,.i\.J'.)l' '::,: --:--I.4' '"' .... II \\ II........'" I'J') .-_II.',-/ 1q.-",,',\\\\ (2 q -t -;l. .......4\/......... ............, )0-""ij-...._. \ ............. \\ '. -;1' ...................L...g)/__--,L-_ -__-_o.J! ..-r,"-,,-:'..... 1. --,,/:0,.' ......,:...----.,.::-+""""'. t(5""'-.......:::."Q f r" ) / ) "')-_.:__-.(.j) I -;1:. __. J -:,...._-:\::-(,./.:..';'-..,.1J'.....,_,,__ c'_ r '-.c'-;'1,-..'::_:-..-:,"::..J,:.. j -.::0'. _'.'"_.) -(I.''I",'/ --.:: : ...."':-:\.........,1 .,. "----"iT --"-"+ --..-../-I-,...... _...........,,,............ III ......'\/_ _c.,.', I'--(".__-_.,...V;..'.-,-1".. 1 /;::.. ."..__ ... :'.....""'I (_/ 38 + _-::Ir!: r .1,,-;:-e-Ii>?"s ,,,,-.._.,...,_ _Iii';:',-1-.. I{1 .-."""-..................."" .....-"+--, "r,J" 6 .-_,\"\ ::..::_.1"_--,,-..-.:-:}1_-" I .",...'".......... / ,'2JJ.. I ._-_.<:.,...'-/1/.(--",e-, .. s;, : :-c"v..._..0'I/"'i;l ..',,(")-"'_,-__ ;.-.,;;; -... (I.: j \1/,(1\\,)" \ y-"-, \ / 5_''"::.;-,,' il R:" j' 1,:\, :: ...."_....',.__o.,.. '.:...;.,o...'i0-:''''.."......_I;'...... F ""ell'_::'\::"_: :.. ::o.'::. jl,o.-:.:::.,\:<: i __.. .._/__W"-", ''0,,'' ) .._..., .."./_6./';;9"(\,2I'\''','..i....J\'\,'_.".._ _"...((.1801,/-;".. TankI ,"........,.'"""." \ ..,rl (/--\.''''.,..-"",._."".,..',' ")", ,.. ,/..,.(' ) I'j,,1I".J '//,\./'.-".\(, I :J\) I/ ....,".,.'__\.;.If) i:1 C-00..) / .51\IJ.I/ r'I....L..!. '/( \ ( ..... ',I '.' (I.... \\ ._.. .:';: .._ .......... II \,'15' t ...-7 rFigure4.RiceCreekSiteMap.Palatka,FL.

PAGE 31

21Figure5.RiceCreekswamp.JUly,1992.Palatka,FL.

PAGE 32

22Althoughthepollutantremovalefficiencyandpositiveecologicalimpactsofwetlandtertiarytreatmentsystemsformunicipaleffluenthavebeenwelldocumented(EPA,1988),littlewas knownspecificallyaboutthefeasibilityofwetlandtreatmentforsecondaryeffluentofpUlpandpapermills.CH2M-Hillanalyzedsevendifferentnaturallandtreatmentalternativesincludingzerodischargerapidinfiltrationlandapplication,andbothnaturalandcreatedwetlandtreatmentwithsUbsequentdischargetosurfacewaters.TheclimateinthepanhandleofFloridaistemperate,withwarmhumidsummersandmildwinters.Theaveragetemperatureis20degreesCandaverageannualrainfallis1.57m,withapeakoccurrencebetweenJuneandSeptember.TheChampioneffluentwasfromableachedkraftprocess.IntegrationofoxygendelignificationandchlorinedioxidesubstitutioninpUlpprocessingincreasedtherecoveryofprocesschemicalsandreducedtheorganicloadineffluent.Effluenttreatmentconsistedofaprimarysettlingpondfollowedbyconsecutiveaeratedstabilizationbasins(ASB).Withtheexceptionofpolyaminetreatmentusedinprimarysettling,thissystemisthemostcommonlyusedeffluenttreatmentprocessamongpapermillsintheSoutheast.Thepilotmarshwasconstructedinahighclaysoilwithextremelylowpermeability.Approximately15cmof

PAGE 33

23topsoilwereaddedtothewetlandcells.MilleffluentfromASB2waspumpedintoapilotmarshonthesiteforoneyearundervariousloadingratesandcellconfigurations.Theherbaceouscommunitywasallowedtoselforganizeaftertheinitialplantingof10species.Figure6isaprofileofpilotwetlandCellCandCellDincludingplantcommunityzones.RiceCreekFloodplainsiteTheRiceCreekdrainageareanearthecurrentGeorgiaPacificsecondaryeffluentdischargeinPalatka,FLwaschosentostudytheimpactofhistoricaleffluentinundationonvegetativecommunitydevelopment.Themillhasbeeninoperationsince1947andinthepastitdischargedeffluentfromit's900acresofsecondaryoxidationpondstoforestedwetlandsalongRiceCreek.ThemillpresentlydischargesdirectlytoRiceCreekthroughachannelfromoxidationpond4.Thechannelwasconstructedtoimprovedissolvedoxygenlevelsinreceivingwaters.Inaddition,themillcurrentlyinjectsliquidoxygenintoRiceCreekatthreelocationsbeyondthedischarge.RiceCreekdrainsintothest.JohnsRivershortlybeyondthemillslocation.

PAGE 34

no iI ........ CELLC ....... IiI12.r\ JUDCUS128 fII i \TreePIOICICladiumI IPanicum Saginaria !1Z7 rCanna Ponlederia i IScirpusTyphaI .. Thalia Treeplol C2 ZI26r TreeplolC3 2 I! '"r ,I 124rV iIlZ3 I i 122 I0100 ZOO 300... 131 i130 CELLD iJ--'lr120 128LIJuncus Cladium SaginariaI is Treeplol D1 Canna Ponlederia Scirpus 1;1Z7rPanicum Thalia TrccplolD2Treeplol D3 Typha,z, .... I Eo \ t 126 ... r ;:: ,II <: : 125 :II -'OJ I 124 !I\I!I!123 i-------.......... .. III1Zl 0100 ZOO ...HORIZONTALDISTANCE(II)24Figure6.pilotWetlandVegetationProfile.CellCandCellD.

PAGE 35

25TwosoiltypesaredescribedinthisareaoftheRiceCreekfloodplainbytheU.S.GeologicalSurveySoilSurveyforPutnamCounty:Rivierafinesand-frequentlyfloodedandTerraceiamuck-frequentlyflooded.Peataccumulationdepthswereupto1.5m.Thestudysitewaslocatedfarenoughupstreamtobebeyond the areaoftidalinfluencefromthest.JohnsRiver.AveragedepthofinundationinthefloodplainmeasuredinJuly,1992was0.2-0.5m,witha maximumdepthdeterminedbylichenlinesofapproximately1.0m.StudyPlanThisstudywasdesignedtointegrateinformationfrombothstudysites,makingobservationsandtheorizingontheprospectsfornaturalandorconstructedwetlandeffluentinterfacesforthepaperindustry.Theobjectivesoftheresearchconductedcanbesummarizedasfollows:1)TodeterminethesurvivalandgrowthrateofselectedwetlandtreespecieseedlingsintheChampionpilotmarshandrelatethistopossiblesystemsuccessionaldevelopment.2)Tomeasurediurnalaquaticproductivityandwaterchemistrywithinthepilotmarshunderdifferentcellconfigurationsandmakeinferencesaboutsystemmetabolismandnutrientcycles.3)Todeterminethewaterchemistrydynamicsoftheeffluent-organicpeatsedimentinterfaceofamatureforestedwetlandthroughbothsurfaceflowandinfiltration

PAGE 36

26usingmicrocosmreactors.4)Tocollectandpresentdataonthestructure,growthrateanddiversityoftheplantcommunityinaforestedwetlandimpactedbyhistoricaleffluentinundation.5)Topresentanindustrialenvironmentalsystemsanalysiscomparingwetlandinterfacedischargeofpapermilleffluentwithtechnologicaltertiarytreatmentalternativesusingtheemergymethod.

PAGE 37

METHODSANDMATERIALSTestsofTreeSeedlingSurvivalandGrowthinpilotMarsh560treeseedlings,donatedforuseinthisstudybyPeteWallaceofWallaceandGarrenEnvironmentalConsultantsweredeliveredtotheChampionconstructedwetlandsiteonJune4,1990.152individualsofthefollowing4specieswereincluded:baldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvaticavar.biflora).sixtreeplotswereplantedinthewetland,threeincellCand3incellD.Theplotswerelocatedineachofthethreeslopezonesonagradientfromwetlandinflowtooutflowwithinbothcellsandinthefollowingthreeplantcommunities:Juncuszone, Sagittaria /Pontedariazone,andScirpuszone.Seedlingswereplantedonfivefootcenterstocorrelatewiththetwoandonehalffootcentersusedfortheherbaceousspecies,expeditefuturemonitoringandallowsufficientspacingfortheoneyearmonitoringprogram.Areferenceplotwasplantedoutsidethewetland,approximately60meterswestofthenorthwestcornerofthewetland.Theplotreceivessunalldayandconsistsofthe27

PAGE 38

2Ssamehighclaycontentsoiltypeasthewetland.Asprinklersystemwaspurchasedtomaintainsoilmoistureinthereferenceplot.Eachoftheseventreeplotswasplantedwith20individualsofthefourspecieslocatedatrandomwithintheplots.AtotalofSOindividualswereplantedineachplot.Equipmentusedfortreeplantingandmonitoringincludedthreedibbles,12lengthsof1/2in.PVCpipeandflaggingtape,one100mandone20mtapemeasure,metersticks,100mofhoseandasprinkler.Atthetimeofinitiationforthisstudy,theconstructedwetlandhadalreadybeenplantedwithtenherbaceouswetlandplantspeciesattheendofApril,andeachcellwasdividedintosixplantcommunities(seestudysites).Milleffluentfromthenumber2ASBwasbeingpumpedintothewetlandatalowrate,approximately40gallonsperminute(GPM)incellsA&B,and20GPMintheremainingcells.TheseflowsweremaintaineduntiltheendofJunetoallowtheplantstobecomeestablished.Averagedepthofinundationunderthisloadingwaso-scmintheinfluentzone,15-23cminthemiddlezone,and23-30cmintheeffluentzone.ImplementationofprescribedflowratesforthepilotstudybeganonJune27,1991.InitialtreeheightswererecordedonJune6,1991tothenearestcentimeterandenteredintoaLotusspreadsheetdesignedtocalculateaveragegrowthbyspeciesbyplot,

PAGE 39

29averageheightperspeciesbyplot,andmortality.Thetreeplotsweremonitoredforgrowthandmortalitythreetimesinthe1991growingseasonandtwiceinthe1992growingseason.Theexactmonitoringdateswere:June6,1991,July15,1991,September18,1991,March3,1992,andApril20,1992.AquaticProductivitywithDiurnalChemicalMeasurementsBeginningat8:00AMonJuly16acrewmeasureddiurnaldissolvedoxygen(DO),temperature,pH,andredoxpotentialforapproximately25hoursat43pointswithinthepilotmarshandatareferencelocationwithinthestormwaterretentionwetlandsadjacenttoaerationpond4.TheequipmentusedwassuppliedbyCH2M-HillandincludedaportableDOmeter(YSIModel57#106,ProbeModel5739)andaportablepHmeter(OrionModelSA235).TheD.O.meterwascalibratedwithaWinklerTitrationbeforeusebyCH2MHill'slaboratoryinGainesville.Theinstrumentwasaircalibratedbeforeandaftermeasurementsweremadeateachsamplingstation.ThepHmeterwasalsocalibratedateachstationusingtwobuffersolutions,pH 7and10.WeatherconditionsonTuesday,July16werecharacteristicforsummerandidealfordeterminingaquaticproductivity.Mostofthedaywassunnywiththehighreaching34degreesC.Someafternooncloudinesssetinaround3:00PMbutthesitereceivednorain.Wind

PAGE 40

30conditionswerecalm,reducingthesignificanceofatmosphericdiffusionofDO,whichwasnotaccountedforincalculations.Overnightlowsreached22degreesC.Sunrisewasat5:58AMandsunsetwasat7:52PM.DiurnalmeasurementsofDO,temperature,redoxandpHweremadefromthetwoboardwalksinCellCandCellDandthereferencestation,withfourreplicationsateachstation.Inaddition,depthprofilereadingsofD.O.andtemperatureweremadeinthedeepzonesofcellDandthereferencelocationat7cm,15cm,30cm,and60cmdepths.Fourreplicationswerealsomadeateachdepth.RedoxandpHreadingswereaveragedoveradepthof7-15cmateachofthefivestations.Readingsweretakenattwohourintervalsfor24hourswiththeexceptionoftwothreehourintervalsduringthemiddleofthenight.ThedatawasadjustedaccordingtofieldcalibrationandenteredintoaLotusspreadsheetforplottingdiurnalcurves.GraphedcurvesofconcentrationorvalueofaparameterovertimeandrateofchangeofDOpersquaremeterarepresented.OnerateofchangecurveforD.O.wasderivedfromthedepthprofilecurvesatstationsD1andD2(deepzones)usingplanimetry(Vollenweider,1969)Theratecurvesandthedepthoftheaquaticproductionprofileateachstationwasusedtocalculategrossaquaticphotosyntheticproductionandrespiration.Theareaunder

PAGE 41

31therateofchangeofD.O.curve(ppm/day)multipliedbydepthyieldedgrossprimaryproduction(g/m2/day)(Odum,1956).Nightrespirationwascalculatedinasimilarmannerandsubtractedfromgrossproductiontoobtainavaluefornetprimaryproduction.SeeFigure7foraquaticproductioncalculationmethods.DiurnalpHandredoxpotentialdatafromthepilotwetlandandreferencestation(tencmdepth)wereplottedinanEh-pHdiagram(BassBecking,etal.,1960).Althoughtherehasbeencontroversyconcerningtheuseofempiricalredox(Eh)dataindrawingdefiniteconclusionsaboutchemicalandbiologicalcharacteristicsofecosystems,thedatacollectedinthisstudyfallwithintheareagroupingontheEh-pHdiagramwherereliableresultscanbeexpectedusingtheplatinumelectrodeinmeasurement(FaustandAly,1981).ChemicalChangesinPeatyMicrocosmsTostudytheeffluent-peatinterfacemicrocosmreactorswereused.Twotroughswereconstructed(Figure8)andsixthreemeterinfiltrationcolumns(Figure9)werealreadyatthesite,havingbeenusedinaCH2M-Hillsoilsstudy.Thetroughswereconstructedusing2in.by10in.#2SYPlumberand5/8in.BCplywood.Oneexperimentalandonecontrolwereimplemented.Insidedimensionswere3.0mby0.6m,resultinginasurfaceareaof1.8m2

PAGE 42

I.'II II ,..,oE. ,ei ,,.c.."f c.. / ."" z Ul / "-'"0 I\ ;>->< \0 0onUl /..,>Ic ,...J /BC/I0/ en en I\ Q] \i i ,I "'......04:41AM09:16AM02:24PM07:UPMIZ:OOAM TIMEFigure7.AquaticProductionCalculationMethods.A+B*Depth=GrossPrimaryProduction.B*Depth=DayRespiration.C*Depth=NightRespiration.32

PAGE 43

33Figure8.ExperimentalTroughMicrocosm.

PAGE 44

Figure9.InfiltrationColumnMicrocosm.34

PAGE 45

35Designparameterswerechosentocorrelatewithavailabledripirrigationfittingsandflowratealternativesandtransportfeasibility.Av-notchweirwascuttoanequaldepthatoneendofeachtroughandfittedwithaplasticoverflowstructure.Thewoodwastreatedwithawatersealantandthenthetroughswerelinedwithdouble6mmpolyliner.Approximately1.2m3ofpeatwerecollectedfromamixedswamplocatedontheRainwatertract,theproposedsiteforfullscaleimplementationofconstructedwetlandstonaturalwetlandsdischarge.KeyswereobtainedfromChampiontogainaccesstotramroadsonthesite.Thechosencollectionareaischaracterizedbythefollowingplantspecies:Nyssasylvaticavar.biflora,Taxodiumdistichum,Taxodiumascendens,Smilaxspp.,andSphagnumspp.Peatdepthwasmeasuredat2 m andconsistedofbothwoodyandfibrouspeat.Thecolorwasdarkblack,indicatingahighC/Nratio.Laterlabanalysisrevealedapeatbulkdensityof0.1g/cm3 Thepeatwascollectedmanuallywithaspadein5gallonbucketsandtransportedbacktothesitein35gallonplasticgarbagecans.Duringcollectionaneffortwasmadetoobtainarepresentativeprofileofmoreandlessdecomposedmaterial.Troughswerefilledwithpeattoanapproximatedepthof15em.DripirrigationhardwarebyRaindripwasusedforhydraulicloadingofbothtroughs.Componentsincluded:

PAGE 46

363/4in.hosetopipethreadadapterswithscreenfilter,pipethreadpressureregulators,pipethreadto1/4in.tUbingadapters,1/4in.plastictubing,and1/2gallonperhour(GPH)dripheads.TheeffluenttroughwaslocatedattheinfluentendofcellEdirectlybelowandparalleltothewetlandinfluentpressurepipe,whichpumpsfromASB#2ofthemill'ssecondaryeffluenttreatmentsystem.Thistroughwasloadeddirectlyfromtheinfluentpressurepipe.Onein.PVCpipewasgluedintoaballvalvedrainageportonthepipeandroutedthrougha90degreejointtoa3/4in.faucetthreadballvalvewhichconnectstothedripirrigationsetup.Ataconstantflowof0.5GPHthehydraulicloadingrate(HLR)fortheexperimentaltroughwas2.5cm./dayandthetheoreticalresidencetimewas2days.Thesameloadinghardwarewasusedforthecontroltroughonlyitadaptedtoastandard3/4in.hoseandwasloadedwithtapwaterfromthemill'sownwell.Thecontroltroughwaslocatednexttothepilotnitrificationplant.Flowratewasthesameasintheeffluenttrough,1/2GPH,equatingtoaHLRof2.5cm/dayandatheoreticalresidencetimeof2days.ClearPVCcolumnswereusedtoassesthewaterqualityimpactsofinfiltrationthroughorganicpeat.Fortunately,acolumnsetupwasonthesite,andsoilinfiltrationstudiesrelatedtoalandapplicationalternativebeingexploredbyCH2M-Hillhadbeencompleted.Useofthe

PAGE 47

37columnswasgrantedbytheCH2M-Hillscientistsinvolvedintheproject.TheapparatusconsistedofeightclearPVCcolumnsthreemetersinlengthand10eminsidediametermountedonawheeledframewithsteelUbracesandwingnuts.Atthebaseofeachcolumnwasapressureplatewithaninternalplasticfilteranda3/4in.hosethreadoutflowwithaballvalve.Alengthofhosedirectedeachcolumnoutflowtoaseparateenclosedbucketforcollection.Thecolumnswereintwopiecesconnectedbyrubbersealedpipeclampstoallowfordisassemblyandhandling.Beforesettingupthisexperiment,theapparatuswascompletelydisassembledandcleaned.sixcolumnswereusedinthisexperiment,threeexperimentalandthreecontrol.Thecolumnswerepreparedasfollows:5emofpoolfiltersandwasaddedtopreventcloggingofthedrainagefilter;peatwasloadedineachcolumntoadepthof2 m;greyplasticwaswrappedaroundeachcolumntopreventexcessiveheatingbythesunandalgaegrowth.Columns1-3wereloadedwith500ml.ofASB2effluenteveryMonday,Wednesday,andFridayandcolumns4-6receivedthesameloadingwithtapwater.LoadingratesequatedtoaHLRof2.7em/day.TheloadingwasconductedmanuallybythefulltimeoperatoroftheCH2M-Hilllabatthesite.Baselinewaterqualitymonitoringwasconductedoneweekafterloadinginitiationandsubsequentmonitoring

PAGE 48

38followedatonemonthintervals.SampleanalysisforBOD,TSS,TPandcolorwassupportedbyChampion'sonsiteanalyticallaboratory.AnalysisofTKNandN02-N03wassupportedbyNCASI,throughPPBEnvironmentalLaboratoryinGainesville.NH3andpHweremeasuredbytheauthoronsiteusingChampion'smobilelaboratoryonthepilotwetlandtreatmentsite.TemperaturemeasurementsweremadeusingaNBScertifiedthermometerateachsamplelocation.pHmeasurementsweremadewithanorionModel250Aspecificionmeter.TheinstrumentwascalibratedtotheappropriatepHrangeandthesloperecorded.AmmoniawasmeasuredusinganorionModel720Aammoniaselectiveelectrodemeter.Theinstrumentwascalibratedat10,1,and0.1mg/landthesloperecorded.NaOHwasaddedtoeach40mlsampletobringthepHto11beforeanalysis.Meterreadingswereaccurateto0.1mg/landreadingsbelow0.1mg/larereportedas<0.1mg/l.Table1liststheparametersanalyzed,collection,preservation,analyticalmethod,andsupportlabs.StandCharacteristics.GrowthRate.SpeciesDiversityinTheHistoricallyEffluentInundatedRiceCreekFloodplainForestedWetlandInJune,1992plantcommunitydatawerecollectedfromtwositesalongtheRiceCreekFloodplain.

PAGE 49

39TableI.PeatMicrocosmwaterChemistryMethods.CollectionPreservationAnalyticalSupportMethodLabBOD-5(2)500mlCoolto4CStandardChampionPlasticMethod5210TSS(2)500mlCoolto4CStandardChampionPlasticMethod2540DColor(2)500mlCoolto4CNCASITech.ChampionPlasticBull.253TP(2)500mlCoolto4CSM4500-PBChampionPlasticNH4-N(1)125mlStandardPeterPlasticMethod4500-KellerNH3FonsitepH(1)125mlStandardPeterPlasticMethod4500-HKelleronsiteTKN(1)125mlH2SO4topHEPA-600/4-79-NCASI/PPBPlastic<=2;Coolto0204CN02/N03(1)125mlH2SO4topHEPA-600/4-79-NCASI/PPBPlastic<=2;Coolto0204C

PAGE 50

40ThreePlotsmeasuring20by10mwerelaidoutatrandominboththeexperimentalandreferencesites.Theexperimentalplotswerelocatedinanareaofthefloodplainwheremilleffluenthadbeendischargedpriorto1985,directlysouthfromthesoutheastcornerofoxidationpond4andapproximately200mupstreamofthemill'spresentchannelizeddischarge(seestudySites).ThereferenceplotswerelocatedupstreamfromanyhistoriceffluentdischargeintheRiceCreekfloodplainbeyondthezoneoftidalinfluencefromtheSaintJohnsRiver.TheareawasbetweenBardinRoadandthesouthwestfacingsideofoxidationpond2.Alltreeandshrubspeciesineachplotabove1 cmdiameterbreastheight(dBH)wereidentifiedandmeasuredtothenearestcentimeter.Treecoresweretakenfrom10baldcypressindividualsselectedfromthe3plotsineachsite.Twocoresweretakenfromeachindividualat90degreeangles.TheforestdatawasenteredintoLotusspreadsheetsandsummarygraphsofstandcharacteristicsproduced.ThediversityoftreeandshrubspeciesineachsitewascalculatedusingtheShannon-WeaverDiversityIndexlogarithmicbase2.TreecoresweremountedandpreparedaccordingtomethodsdescribedinEwelandParendes(1984).Annualringsweremeasuredusingadissectingmicroscopeandacalipercalibratedto0.1mm.Thegrowthrateswere

PAGE 51

41averagedinfouryearincrementsforthepast40yearsandconvertedtobasalareagrowthincrementsusingaformuladescribedinBrayandstruik(1963).EmergyEvaluationofEffluentTreatmentAlternativesAnemergyevaluationwasconductedtocomparetwotertiarytreatmentalternativesforpulpandpapermills.First,aenergycircuitdiagramwasdrawn(Figure1)depictingthemajorinputstothekraftpUlpandpaperprocessusingtechnologicaltertiarytreatment(granularmediafiltration,carbonadsorption.andammoniumionexchange)andusingawetlandinterface.TheinputstoeachprocesswerelistedinenergyormassunitsperovendrytonofpUlp(ODTP).Energyormassunitswereconvertedtoemergy,ameasureof"energymemory"orvaluedefinedasthesumofallavailableenergypreviouslyusedtomake aproductoraserviceexpressedinenergyofonekind,solarequivalentjoules(sej).Theratioofemergytoenergyistermedtransformityandhastheunitsofsolaremjoulesperjoule(sej/J).Bythismethodallprocessinputswereputona commonbasisforcomparison(sej/ODTP).Transformitieswerecalculatedbysummingalltheenvironmental,fuelandserviceinputstoaproduct.Sometransformitiesweretakenfrompreviousemergyevaluations(Odum,1992a,bjOdumandArding,1991jPritchard,1992).

PAGE 52

RESULTSTestsofTreeSeedlingSurvivalandGrowthinpilotMarshOnApril11,1991flowofmilleffluenttotheChampionpilotwetlandcommenced.TheflowlevelswereminimalanddesignedtoallowtheherbaceousplantcommunitytoestablishbeforeinitiationofoperationalflowratesonJune27,1991.TreeseedlingplotswereplantedinCellCandCellDofthewetlandonJune5and6,1991.SeeFigure6underStudySitesforaprofilediagramofbothcellsincludingvegetationzonesandtreeplots.Moralityandgrowthofthefourspecies,baldcypress(Taxodiumdistichum),pondcypress(Taxodiumascendens),popash(Fraxinuscaroliniana),andblackgum(Nyssasylvaticavar.biflora)arepresentedinFigures10-15.Theresultsfromthreemonitoringperiodsareincluded.Monitoringperiodonewasfromplanting,June6,1991toSeptember18,1991,representinginitialsurvivalandfirstseasongrowth.MonitoringperiodtwowasfromplantingtoApril21,1992,thefinalmonitoringevent.MonitoringperiodthreewasfromSeptember18,1991toApril21,1992,representingwintermortalityandsecondseasoninitialgrowth.42

PAGE 53

43Growthdatabetweenspecies,plotsandcellsforallmonitoringperiodswerecomparedusingstudent'stTeststatisticswithasignificancelevelof0.05.StatisticalresultsarepresentedinAppendixA.MonitoringPeriod1Monitoringperiod1includedthreeweeksofstartupconditions,withtheremainderoftheperiodfallinginthefirstoperationalphaseoftheexperimentalwetland,whichwasfromJune27,1991toFebruary8,1992.(CH2MHill,1992)ThetargetflowrateforCellsCandDduringthisphasewas120m3/day.Theactualaveragehydraulicloadingrate(HLR)fortheperiodwas4.81cm/day.Thedepthofinundation,ascontrolledbythestagingofoutletweirswasheldconstantinbothcellsduringthefirstoperationalphase.Theactualdepthsdidvaryasaresultofprecipitationandevapotranspiration.Averagedepthofinundationforindividualtreeplotswasrecordedduringgrowthmonitoringevents.Foroperationalphaseonetheywereasfollows:PlotC1,0-4cm;PlotD1,0-4cm;PlotC2,8 12cm;PlotD2,12-16em;PlotC3,12-16cm;PlotD3,12-16cm.Pondcypresshadthehighestgrowthaveragedoverallfourwetlandplotsduringmonitoringperiod1,25.2cm,followedbyblackgum,13.4cm,baldcypress,10.3cmandpopash,6.1cm(Figure10(c.WhencomparingPlot1growthto

PAGE 54

44theReferencePlot,onlypopashshowedsignificantlylessgrowthinthewetlandforCellCandD,andblackgumgrewmoreinCellDPlot1thanintheReferencePlot (Figure10(a,b))AllspeciesgrewsignificantlymoreintheReferencePlotrelativetoPlots2and3inthewetland,butonlypopashshowedsubstantialgrowthreductionunderinundation.It'saveragegrowthwas6.1eminthewetlandand29.0emintheReferencePlot(Figure10(d)).Thiswasindicativeofthelowrelativefloodtoleranceofthespecies.AllfourspeciesgrewsignificantlymoreinPlot1thanPlot2or3whenthedatafrombothcellswascombined.Thisshowedaninversecorrelationbetweendepthofinundationandgrowthduringthisperiod(Figure10(a,b)).TherewasnosignificantdifferencebetweengrowthrateinPlot2andPlot3forbothcells(Figure10(d)).Competitionbyherbaceousspecieswasnotamajorfactorduringmonitoringperiod1,asthecommunitieswerejustbecomingestablished.NodistinctdifferenceingrowthbetweenthecelltotalswasnotedalthoughbaldcypressgrewsignificantlymoreinCellC,12.3cmvs.8.4cm,andblackgumgrewsignificantlymoreinCellD,15.2cmvs.11.5cm(Figure10(c)).Pondcypresshadthehighestseedlingmortalitywithinthewetlandduringmonitoringperiod1(Figure11(c)).

PAGE 55

45 ,. e2Sz ,. "" ,<,. SALD CYPRESSPOND CYPRESSPOPASHBLAexGlAoI SPECIES 11m CELL C PLOT 1 CELL C PLOT 2 CELL CPLOT3 REFEAENCE (a) ,. a2S ,. "<" .BALD CYPRESS POND CYPAESSPOP ASH BLACKGu.oI SPECIES Illm CELL 0 PLOT 1 CELL0 PLOT 2CEL.1. 0 PLOT 3 REFERENCE(b)Figure10.AverageSeedlingGrowth6/6/91-9/18/91.a)CellCandreference;b)CellD&reference;c)Totalbycell;d)Totalbyplot.

PAGE 56

(c)",-------------------------, "r-------------------"1---------------------"f-------,CEL.LC CELL 0WETL ....NOREFERENCe CELL PmBALDPOND CYPRESS ASHBLACKGL&l 46 ""a", 20 0"" w ," PLOT 1 PLOT 2PLOT 3 (d)TREE PLOT (tNCLlA) I NG BOTHCELLS) PmBALD CYPAESSPOHD CYPRESS popASHBl."CI::GlM Figure10.(continued).

PAGE 57

" """""" 3 ,0 S ....LO CYPRESSPOND POP ASHSPECIES CELL CPLOT1 CEL.LCPLOT 2 CELL CPLOT :3 (a) "r----------------------------,"f-----------"f--"f----------..f----------"f---------"f--------"f-------------,"f---------.f-------,f--------'f---SPECIES Ilim CELL 0 PLOT1 CELL 0 PLOT 2 CELL 0 PLOT 3(b)Figure11.SeedlingMortality6/6/91-9/18/91.a)CellCib)CellDic)Totalbycellid)Totalbyplot.47

PAGE 58

"r------------------------, 48"f-----------2Sf-----------, o REFEQliNCE CELL. BALD CYPReSSPOND CYPRESS popASHBLACXGl.lol (c)",--------------------------, "f--------------2Sf-------------2Of-------------"f----------, o REFEREtE (d) TREE PLOT (INCLl.OthG BOTHCELLS) BALD CYPRESSPOND CYPRESS popASHBLACI::GUM Figure11.(continued).

PAGE 59

49TherewasnomortalityforallspeciesintheReferencePlot.Mortalityduringthisperiodwascorrelatedwithdepthofinundationandinitialseedlingheight.ThecorrelationofseedlingmortalitywithdepthgradientbyplotisshowninFigure11(d).Theinitialheightofpondcypressatplantingwasthelowest,38.3cm,followedbyblackgum,47.2cm,popash,49.5cmandbaldcypress,54.9cm.MonitoringPeriod2Thesecondmonitoringperiodrecordedseedlinggrowthandmortalitytrendsovertheentiredurationofthestudy,fromplantingthroughApril21,1992.Theperiodincludedthefirstandsecondoperationalphaseofthewetland.Conditionsunderthesecondoperationalphaseweredecreasedflowrates,60m3/dayforCellsCand0,andincreaseddepthsduetotheraisingofoutletweirsinallcellsbyapproximately21cm.ThesecondwetlandoperationalphasecommencedonFebruary9,1992.OnFebruary24,1992CellOinfluentwasreplacedbyeffluentfromthepilotnitrificationplantwhichCH2MHillwastesting.Theincreasedweirelevationscorrespondedtothefollowingdepthsofinundationfortreeplots:plotC1,14-18cm;Plot01,14-18cm;PlotC2,26-30cm;Plot02,28-32cm.

PAGE 60

50Plot3inbothcellswasnotmonitoredinthesecondgrowingseasonduetotheprolificgrowthofbulrush.stormconditionshadcausedthebulrushtolaydown,makinglocationoftreeseedlingsintheseplotsimpossible.ProbablesurvivalofseedlingsinPlotsC3andD3wasnearzero.Pondcypressexhibitedthehighestgrowthovertheentirestudyinthewetlandandreferenceplots(Figure12(a,b.Inallwetlandplotstherelativegrowthofthefourspeciesfortheperiodwasasfollows:Pondcypress,38.8cm;blackgum,27.1cm;baldcypress,20.3cm;andpopash,18.1cm(Figure12(c.IntheReferencePlot,pondcypressandpopashgrewthemost,40.8cmand35.6cmrespectively,followedbyblackgumandbaldcypressat20.8cmand19.2cm.GrowthinthewetlandrelativetotheReferencePlotwasgreaterthanformonitoringperiod1.onlypopashgrewsignificantlymoreintheReferencePlotthaninthewetland,andblackgumshowedsignificantlygreatergrowthinthewetland(Figure12(c.Againtherewasastrongcorrelationbetweenplotnumberandgrowthrateinbothcells.AllspeciesexceptpondcypressgrewsignificantlymoreinPlot1thanPlot2(Figure12(d.PopashandblackgumwerethespeciesmostretardedingrowthbytheincreaseddepthofinundationinPlot2,bothhavinggrown16cmmoreinPlot1(Figure12(d.

PAGE 61

51DifferencesinseedlinggrowthbetweencellswereminimalandonlyblackgumshowedsignificantlyhighergrowthinCellDthanCellC(Figure12(c.Thedifferencecanprobablybeattributedtopatchyinvasionofdensecattailandeelgrass(Eleocharisspp.)inPlot1andpennywort(Hydrocotylespp.)inPlot2.CompetitiveinteractionwithherbaceousspeciesduringtheearlysecondseasonwasmostprominentinPlot1,wheresoftrushandcordgrassweregrowingwellandconsiderableinvasionbycattailhadoccurred.Plot2inbothcellswasessentiallydevoidofherbaceousvegetationwiththeexceptionofduckweed(Lemnaspp.)andsomepennywort.ThiswasduetothelatergrowingcycleofsagittariaandPontedariawhichwereplantedinthiszoneandtheincreaseddepthcreatedforwetlandoperationalphase2,hinderinginvadingemergentspecies.Seedlingmortalitywithinthewetlandduringmonitoringperiod2washighestforpopashandpondcypress,followedbybackgumandbaldcypress(Figure13(a,b.TotalmortalityofpopashoccurredinCellDPlot2.Thehighmortalityofpondcypresswasattributedtoit'slowinitialheight,assomeindividualsinPlot2werenearlycompletelysUbmergedunderthedepthregimeofoperationalphase2.Mortalitywascorrelatedtoplotnumberwhenthedatafrombothcellswascombined(Figure13(d.Differencesinmortalitybetweencellswerealsonoted.

PAGE 62

"<0J5a"z"i20 > <" 0 52 Ill8lllHCELL. C PLOT 1 CELL C PLOT2AEFEAENCE (a) ".,'0J5a"z"0 020
PAGE 63

".,""aJO,i""> < ", 0CEL.LCCEL.L0CEL.L IlS!l2lIB-.LOcypqessPOND_ETLAHOREFEAeCE 53(c) .," "a","0" < ffi"> < o TREE PLOT (INCL.UOING 90THCELLS) BALD CYPRESS POND CYPRESS popASHBLACKGUM (d)Figure12.(continued).

PAGE 64

54",-----------------------, 'f---------"f---------"f---------------POP ASH POND CYPRESSBALD CYPRESSo, ,6,SPEC I ES mJI CELL C PLOT 1 CELL C PLOT 2(a) """ """"""":s BALD CYPRESS PONDCYPRESS POP ASHBLACKG\.I.4 SPECIES CELL0 Pl.OT 1 CELL0 PLOT 2(b)Figure13.SeedlingMortality6/6/91-4/21/92.a)CellCib)CellDic)Totalbycellid)Totalbyplot.

PAGE 65

"r-------------------------.., "f---------"f---------"f--------------"f-----------"f----"f----"f----"f-----"'0 6 ,oCELL PmBALD CYPRESSPOND CYPRESS popASHlS22lBLA.CKGUlol (c)55 '0 """" '0 """" "'0 6oREFERENCE(d)TREE PLOT (I NCLlXHNG9:)TH CELLS) PmBALDCYPRESSPOHD CYPRESS f:ZZ]popASHBLACICGUlol Figure13.(continued).

PAGE 66

56OverallmortalitywashigherinCellDthanCellC(FigureIJ(c.CellCPlot1showedhighermortalitythanCellDPlot1forallspecies.Thiscanbeattributedtothegreaterdensityandextentofinvadingherbaceousspecies,especiallycattail,foundinCellCPlot1duringthesecondgrowingseason.CellDPlot2hadsignificantlyhighermortalityforallspeciesthanCellCPlot2.ThismayhavebeenduetotheslightlydeeperinundationinCellDPlot2.MonitoringPeriodJMonitoringperiodJexaminedthegrowthandmortalityofthetreeseedlingsfromSeptember18,1991throughtheendofthestudy,April21,1992.Thisdatareflectstheimpactofthefirstwinterandtheinitiationofwetlandoperationalphase2aswellastheearlysecondgrowingseasontrends.Blackgumshowedthehighestgrowthinthewetlandduringthisperiod,10.9cm,followedbypondcypress,8.4cm,popash,7.9cmandbaldcypress,6.5cm(Figure14{c}).Allspeciesshowedsignificantlyhighergrowthinthewetlandthaninthereferenceplot,whileonlypondcypressgrewsignificantlymoreinwetlandPlot2thanintheReferencePlot(Figure14(d)}.IntheReferencePlot,popashshowedthegreatestgrowth,6.7cm,followedbyblackgum,4.9cm,baldcypress,5.4cmandpondcypress,5.4cm.

PAGE 67

57Popashandblackguminitiatedgrowthearlierthanthecypressspeciesduringthesecondgrowingseason.PopashalreadyhadfullydevelopedleavesonApril21,1992,whilecypresswasstillinthebuddingstage.Thisexplainstheapparentlyhighgrowthrateofthesehardwoodspeciesinmonitoringperiod3ascomparedtotheoverallrelationship.DifferencesingrowthbetweenPlots1and2werelesspronouncedinmonitoringperiod3duetotheremovalofunadaptedindividualsfromthedadabasethroughmortalityandtheincreasedcompetitivestressinPlot1frombothplantedandinvadingspecies.OnlyblackgumshowedsignificantlyhighergrowthinwetlandPlot1comparedwithPlot2(Figure14(d.Noconclusivedifferenceingrowthbetweencellswasnotedinmonitoringperiod3althoughblackgum,pondcypressandbaldcypressshowedmarginallyhighergrowthinCellD(Figure14(c.Seedlingmortalityduringthisperiodwasconsiderable,reflectingtheincreasedstageheightinitiatedinFebruaryandthefirstwinter.AllspeciesshowedhighermortalityinPlot2thanPlot1(Figure15(d.Includingallwetlandplots,popashhadthehighestmortality,followedbypondcypress,baldcypressandblackgum.Baldcypress,popashandblackgumallshowedhighermortalityinCellDthanCellC,possiblyduetothe

PAGE 68

58slightlyhigherdepthofinundationinCell0(Figure15(c.CellCPlot1producedhighermortalityforallspeciesthanCellOPlot1,whileCellOPlot2producedhighermortalitythanCellCPlot2forallspeciesbutpondcypress(Figure15(a,b).

PAGE 69

(a) """ 9 r 6 ","< <, SPECIES e:.m CELLCPLOT1 CELLCPLOT2 REFERENce59'0 """" """" r "'0" 9 < 6 ,< J (b)SPECIES CELL 0 PLOT 1 CELL 0 PLOT 2 GQ() REFERENCEFigure14.AverageSeedlingGrowth9/18/91-4/21/92.a)CellCandreference;b)CellD&reference;c)Totalbycell;d)Totalbyplot.

PAGE 70

""""""-"-", 20 CELLCCELL 0 CELL PmBA.LOCYPRESSPOND CYPResS(c) WETL.ANOREFEAENCEASHEl.AClCGUU 60(d) "r------------------------,"f------"".,--------------------..,"r---"f-----"f-----"f-----1-----.f--- 2oTREE PLOT(INCt.Ul)ING BOTHCELLS) Pm6'
PAGE 71

'r------------------------, .1------, 2o61 BALD CYPRESS POND CYPRESSASH StACIeGl.J,l (a)(b)SPECIES 1m CEtLC PLOT 1 CELLCPlOT 2 "r-------------------------,"1--------------"f----------------"f----------------" 1---" 1---" 1---" 1---'1---'1-'1--'1-'1---SPECIES CELL 0 PLOT 1 CELL 0 PLOT2 Figure15.SeedlingMortality9/18/91-4/21/92.b)CellD;c)Totalbycell;d)Totala)CellC;byplot.

PAGE 72

62 REF&ReNCC,. 1--------------o,2 .f-, I----c"""" 'f--",---------------------------,"1------------"1------------"f-CELL IBBlmIBUDCYPAESSPOND CYPRESS POf'ASHBL"CXGW (c)2',--------,22 1-------.., 20f-----------"f------------" f----------,.f--------------,"f---------'01---------.f---2o REFERENCETREE PLOT ClNCLUOINiBOTH CELLS) Il:BBALD CYPRESSPOND CYPRESS popASH r:?:ZI BL. ...Cr::GW (d)Figure15.(continued).

PAGE 73

63AquaticProductivitywithDiurnalChemicalMeasurementsTemperatureDiurnaltemperaturedatacollectedonJuly16-17,1992atthefourstationsinthepilotwetlandandthereferencestationincludingdepthprofilesfordeepzonesarepresentedinFigures16-20.Temperaturefluctuationsinthepilotwetlandweredramaticwhencomparedtothereferencestationduetothehighcoloroftheeffluentandtheresultantsolarheatingbothinexposedareasofthewetland(plantcoverinmostareas<40%)andintheprecedingprimaryandsecondarytreatmentponds.Thediurnaltemperatureoftheupperdepthstratumatallwetlandstationswassimilar.ThetemperaturedepthprofileatstationD1andD2washighlystratified.DissolvedOxygen(DOlandAquaticProductionDiurnalDOdatacollectedonJuly16-17,1991fromthepilotwetlandandreferencestationsincludingdepthprofilesfordeepzonesispresentedinFigures21-25.ThediurnalrateofchangeofDOateachstation,fromwhichaquaticproductionwascalculatedispresentedinFigures26-30.DiurnalDOconcentrationswereapproximatelytwiceashighinthelowerdeepzoneofCellD(StationD2)thanstationD1.

PAGE 74

u u39 a38.0 "0 36.0 35.0... 0 33.0 32.0 31.0 30.029.028.027.026.0 25.0 12:[]O ...'"04:-48 AN 02 :2"R.l 07:12 PM 64 TO""C 7 CIII. CMPt.n + 15011.OitOtn(> 30em eteot.nt. 60 Cltl.a.ptn Figure16.stationD1.DiurnalTemperatureProfile.July16-17,1991. u39.038.037,036.0 35,0.... 033.032.031.030,029.028.027.026.025,012:00 AN04:"8AM09:35AN 07:12 PM 12:00 AMTO"" o, em, <:leDtl'l ...15em cJePtn(> JO em.aeot.h01\ 60 emaepUl Figure17.stationD2.DiurnalTemperatureProfile.July16-17,1991.

PAGE 75

u)9.0380 31.0 36.0 35.0'""33 _032.031.030.0 29.0 28.027026.0 25 _01200 AY 09:36 ".., a 7ern Deoth 07:12 PM 12:00 AM 65Figure18.stationC1.DiurnalTemperatureProfile.July16-17,1991.39.038,037.036,035.0 '"' ,]3032.031030.029.028.0 27.026.0 250 12:00 09:36 AM02:2<4PM 07:12 PM12:00AM".., a7 ernDeptn Figure19.StationC2.DiurnalTemperatureProfile.July16-17,1991.

PAGE 76

39.0 38,0 37.0 36.0 35.0340 33.032.031.0 30.0 29.0 28.0 27 026.0 250 12:00 AN09:36AN 02 :24PM07:12PM 12:00 N.iI 66 ...D 7(;I'll.Cotn+15(;I'll.Deptn0:30emCotn Figure20.Referencestation.DiurnalTemperatureProfile.July16-17,1991.

PAGE 77

20.0,,--, 19.019,017016.0150 1<11.013.0 12.011.010.09.0B.O,.0B.O5.0 '.03.0 2010I 0.0 ':: 12:00 0":048AM 09:36 AN 02:24 PN 0712 Pol 12:00 AMH,",o c'"Zone +15 em Zone 30 em.Zone.6 60 CIIlZone Figure21.stationD1.DiurnalDissolvedOxygenProfile.July16-17,1991.20.0 r'---------------,------------, 19,018.0'7.016.015.0 '''1 0 13.0 12.011.010.090BO, 0 6 0'.0'.0 3020 10, 12:00 AM0<11:<118AM 09:36 AM 02:24 PM 07:12 F'M 12:00 AMH,", o., em. Zone + 15em Zone 030em Zone.6 60 emZone Figure22.stationD2.DiurnalDissolvedOxygenProfile.July16-17,1991.67

PAGE 78

20.019018.0 17.0 16015.0 ", 13,0 12.0 11.010.09 '.0 ,, "5.0'0 0 '0, 0 '.0 12'00 At.! 09'36 AMN.A 68Figure23.StationC1.DiurnalDissolvedOxygenProfile.July16-17,1991.20.0 ", 18017016.0150 "," 012 011,0 10.09 '0 ,, '05 ,0 ,, ,",., 12 'N09,36,....02:2'"R.l07:12PM12:00AAl Figure24.StationC2.DiurnalDissolvedOxygenProfile.JUly16-17,1991.

PAGE 79

200,---,--------------------------..,1!J. 018.0 17,0 16,015,0 1<111.013.0 12.011010.090'.0 06.05.0'0 J 0 '.0U o0 '--:':--'-,-'-c--'-.,.,--,L-----'----:c,-,'---:c-"'--..L.,.,..---'---'--' 12:00 AM0.:""8Jw 09:36 Jw 02:2"" PM 07:12 12:00N.4"'"C 7 em.Deotn +15 c:rILDeo"tn 030 em,Deptn Figure25.ReferenceStation.DiurnalDissolvedOxygenProfile.July16-17,1991.69

PAGE 80

, 00'OS0,0'o5 0.' 0'0.' o., 0.0_0.1 -0,2-0.3 -0, '" -(],5-0.5 .712:00..,..12:00AM 70 "... Figure26.station01.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991. ,,,------------------------," 0'oS 0.> 0.'o5 o. 0'o. 0' o0 f--+------+--------""'-------::---j -0 2 -0.3 -0.'" -0.5-0.6-0.7 L,_=_,.,OL,..:-:: ...,---L-o::,-:,:'.:.....mE Figure27.station02.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991.

PAGE 81

71 ,,-,-------------------------,,., ,,.,f-+-...."'---------1r-----------;I"--j -'.0-2,0 ].0L,::_,.-=,,':-c...r-'-=,"".-.'::-,_:...r-'-,::,-:. ,:':'...._:,=-,:::""r-'-=,=,-:,"',-:...-::' Figure28.stationC1.DiurnalRateofChangeDissolvedOxygen/m2 July16-17,1991. ",-,------------------------, ,,.,",,, ,f--+--e>=-------I;---------_-or---I -1.0-20 .3.0L,,,",_:.,L,-,._'-:,"'._ .......-:.,L,=""r-'-,-:,-....-,J'"'' Figure29.stationC2.DiurnalRateofChangeDissolvedoxygen/m2 July16-17,1991.

PAGE 82

,,, 0090'o,06OS0 0, 02 o. 0.0-0_1-0 2 -0.3 *0"0 5 -06-0_?12 Alol07'12R.l 12:00 AM 72Figure30.ReferenceStation.DiurnalRateofChange-Dissolvedoxygen/m2 JUly16-17,1991.

PAGE 83

73Wetland(g/m2/day).TableII.AquaticProductioninpilotJuly16-17,1991.D1D2ClC2REFERENCEDepthem)GrossPrimaryProduction:NetPrimaryProduction:DayRespiration:NightRespiration:NetPrimaryProductionNightRespirationRatio(P lid / R,,;,ht ):1.201.250.080.132.57.61.52.40.64.70.30.71.14.30.30.71.92.91.31.70.31.60.20.4 1.00 4.3 1.8 2.3 2.40.7Note:StationD1=firstdeepzoneinCellDjStationD2=SeconddeepzoneinCellDjStationC1=influentendboardwalkinCellCjstationC2=effluentendboardwalkinCellC.

PAGE 84

74IntheupperstrataofbothofthesedeepzonesandatstationC1andC2DOfluctuatedfromalowerpre-dawnconcentration(near0 ppm)tomuchhigherdaytimelevelsincomparisontothereferencestation.ThedepthprofileofDOinthewetlanddeepzoneswashighlystratified.ElevateddiurnalDOlevelsextendeddeeperatstationD2comparedtostationD1.GrossandnetprimaryproductioninthepilotwetlandandreferencestationarepresentedinTableIII.PHandRedoxPotentialFigures30and31areplotsofthediurnalpHandredoxpotential(Eh)datacollectedfromthesurfacewaters(10cmdepth)ofthepilotwetlandandreferencestationonJuly16-17,1991.InthedatafromallstationstheimpactofaquaticprimaryproductionwasevidencedbyanincreaseinpHandcorrespondingincreaseinEhduringdaylighthours.Oxidativerespiratoryprocessesreleaseenergyandavailablenutrientscontributingtotherapidincreaseinphotosynthesisatdawn.Photosynthesisproducesreducedconditions,incorporatingdissolvedCO2intobiomass,increasingthepHandoxidizingthesurroundingenvironment.Theeffluentaquaticsystemwasmorealkalineandreducedcomparedtothereferencestation.Thediurnalcurvesindicatethatphotosynthesisreachedapeakearlier

PAGE 85

75inthereferencesystemthaninthepilotwetland,possiblyduetonutrientlimitation.Figure32isthediurnalpHandredox(Eh)datafromthepilotwetlandandthereferencestationplottedonaEhpHdiagram.ThegroupingsrepresentthediurnalpUlsingwithinadiscreteelectrochemicalrange(moderatetohighpHandmedium Ehinthepilotwetland)thatwereusedtointerpretredoxreactions,chemicalequilibriaandsomemicrobioticecosystemcomponents(seeDiscussion).ChemicalChangesinPeatyMicrocosmsTheresultsofthreewaterchemistrymonitoringeventsforthepeattroughandcolumnmicrocosmsaresummarizedinTableII.Thepeatinterfaceprovedaneffectivemediumforthechemical,physicalandbiologicalprocessesinvolvedinthereductionofbiochemicaloxygendemand (BOD),totalsuspendedsolids(TSS),ammonianitrogen(NH4-N),totalkehldahlnitrogen(TKN),nitrite-nitratenitrogen(N02-NO])andtotalphosphorus(TP).Resultsweremoreconsistentinthesurfaceflowtroughreactorsthanintheinfiltrationcolumns.Inthefirst2monitoringeventsthepHofASB2effluentwasreducedbytheexperimentaltroughs.

PAGE 86

76 '.0'.0I0.7.'7.0+REFC101 ...... ... ... /1MD2:MAW1Z:m.....01:"....TIME02x C2Figure31.DiurnalpH.PilotWetlandandReferencestation.Jul16-171991. 100.0 r------------------------..., OL,-: ...".-.......--."....-:...".--'--o:O.:-,..=-...::--'----;llZ=":':-::1 ... -:-L-:':=,,-:,7, -: ...".-.......---=,:0,,""-'"...D2:lMll.W07:12....12:011A.II1)04:048PM01ll:3BTIME 01C1 02 x C2+REFFigure32.DiurnalRedoxPotential.pilotWetlandandReferencestation.July16-17,1991.

PAGE 87

"0,--------, 77 "0'"' >E'0 U J: W0 ':,. I} Figure33.Eh-pHDiagramofDataCollectedinPilotWetlandandReferencestation.July16-17,1991.

PAGE 88

78AtthefinalmonitoringperiodtheexperimentaltrougheffluentexperiencedanincreaseinpHfrom7.9to8.5duetohighphotosyntheticproductionbythedensealgalcommunity.TheaverageexperimentalinfluentpHwas7.8overthemonitoringperiod.ThecontroltroughshowedthesametrendwithalowerinfluentpHandlessphotosyntheticproductiontranslatingtoalowerrelative difference.TheexperimentalinfiltrationcolumnsproducedamoresubstantialdecreaseineffluentpH.TheinfluentpHof7.8wasreducedtoanaverageof4.6overthethreemonitoringperiods.ThepHinthecontrolcolumnswasreducedfromanaverageof5.2to5.0.BiochemicaloxygenDemand(BOD)BOD-5concentrationswerereducedbyanaverageof 38% intheexperimentaltrough.Influentconcentrationsrangedfrom16mg/lto27mg/l.ThecontroltroughproducedanincreaseinBODfrom0to3mg/lduringtheinitialmonitoringperiodbutsubsequentmonitoringsshowedonlyaslightincreaseinBOD-5.TotalSuspendedSolids(TSS)ExperimentalinfluentTSSwashighlyvariableoverthemonitoringperiod,rangingfrom12mg/lto154mg/l.

PAGE 89

TableIII.PeatMicrocosmwaterChemistryResults.31,1992;b)SamplesCollectedMarch4,April21,1992.a)SamplesCollectedJanuary1992;c)SamplesCollected Stetlonloe_tionTomp. pH BOD TSSCol"NHe-NTK. N0241103 T.Part(a)Ie,IS.UJ fmgnl1",,111(PtCol"""nI""".,lmglll1"'0111 TrOUCllhInfluentIASB 2120.07.S22.012.03431.77'.12 0.0'" 0.420'3 Experimental Trough Effluent1.0S.S11.010.060.0.72 3."11 <0.0060.230TControl Trough Influent fTapl 17.66.30.00.03.<0.10<0.100.01e0.130T3Control TroughEm.... nt 111.& 6.23.06.0..<0.101.28<0.0060.116e, Column 1 ElIluent 19.04.S1.0 "S <0.101.40<0.0060.120e2 CoilMnn 2effluent18.04.710.0'00<0.101.011<0.0060.'70e3 Co/urn" 3 E"Il.-nc 18.06.2T.O'S<0.101.83<0.0060.'42e4 CoI!Jnn" Effluent".06.''.0,0'<0.10 1.88 <0.0060.116e6Column 6 Effh.-nt17.04.S'.0SO<0.101.43<0.0060.060esColumn IIEfflUlnt 18.04.77.0 11 <0.101.41<0.0060.110 -..J\D

PAGE 90

TableIII.(continued).51.cion loc:etfonTemp.pH.00-. TSSC_NH ....,TKNN02-N03 TPPart(b)IC'IS.U.I """m'moll'...... 1"'1111""""'ImoIIllmal1l Experiment. Trough Influent lAse 2122.07.21.0 1&4.0 2.' I.ell 1000.01' 1.1l10 '3 Experlm.nt"Trough Effl .... nt".07.120.0....n.<0.10 1.4' <0.00& 0.486 T ControlTroughInfluentrTlpl 17.0.11.<0.100.1'0.07'0.070T3Control Trough Effluent17.0<0.336.0133<0.102.1'0.01'0.22&ClColumn 1 EttlUllf'lt 22.63.222.03. 8.68 12.00 0.011 0.040C2Column 2 Em .... nt22.63.10.078.8212.20<0.0060.130C3Column3Effl .... nt23.0121.003."<0.006 1.760 C'Column 4 Effluent23.0'.32.0 220.702.010.0"0.170C.CoIu,nn 6 Effluent23.011.03'.<0.10 1,158 <0.0060.116C.Column e Effl .... nt23.01370.202.01<0.0060.140000

PAGE 91

TableIII.(continued). 51.lion T ......pH BOD-6TSSC_NH4-N T1
PAGE 92

82Theexperimentaltroughyieldeda68%reductioninTSSunderthehighest mass loadingof154mg/l.Underlowerloadingthereductionwasonly21%. TSSwasincreasedinthecontroltroughfrom0mg/ltoandaverageof15mg/loverthethreemonitoringevents.TheinfiltrationcolumnsproducedgreaterandmorevariablechangesinTSS.TheexperimentalcolumnsdecreasedinfluentTSSbyanaverageof68%witha maximumreductionof91%.ThecontrolcolumnscausedanincreaseinTSS,mostnotablyintheinitialmonitoringperiod.ControlinfluentTSSwas0mg/landtheaveragedischargewas5mg/l.ColorInallmonitoringperiodstheexperimentalandcontroltroughsproducedanincreaseincolor.Theaverageexperimentalinfluentcolorwas312CPt-counits).Theaveragecolorincreasewas92%overthestudyperiod.Thecontroltroughincreasedtheaverageinfluentcolorof22unitsbyanaverageof215%.Theresultsoftheexperimentalcolumnmicrocosmsshowedanaveragecolorreductionof55%.Individualresults,however,hadconsiderablevariability.Thecontrolcolumnsincreasedthetapwatercolorfromit'saveragevalueof22unitsbyanaverageof597%.

PAGE 93

83TotalAmmoniaNitrogenTotalammonianitrogenwasmostconsistentlyreducedbythesurfaceflowtroughs.Averageexperimentalinflowconcentrationoverthestudyperiodwas4.15mgtlandtheaverageoutflowconcentrationwas0.31mgtl.Nitrificationandassimilationofammoniaincreasedintheexperimentaltroughfromtheinitialstartupmonitoringthroughtheremainderofthestudy.Removalefficiencyforthelasttwomonthlymonitoringperiodswasgreaterthan98%.Controltroughoutflowconcentrationsremainedunchangedfromtheinfluentammoniaconcentrationof<0.10mgtlforthefirsttwomonitoringperiodsbutshowedanincreaseto1.24mgtlinthefinalmonitoringevent.Theexperimentalcolumns,organizedundermostlyanaerobicconditions,wentfroma94%reductionofammoniainthestartupperiodtonochangeinthesecondmonitoringperiodtoa116%increaseinthefinalmonitoringevent.Thecontroltroughsshowednosignificantchangeintheinflowammoniaconcentrationof<0.10mgtlexceptatthesecondmonitoringevent,whereitwasincreasedby0.23mgtl.

PAGE 94

84TotalKjeldahlNitrogen(TKNlTKN(NH3-N+OrganicN)wasreducedbyanaverageof 62% intheexperimentaltroughduringthestudyperiod.TheaverageinfluentTKNconcentrationwas11.74mgjlandtheaverageexperimentaltrougheffluentconcentrationwas4.12mg/l.TKNwasincreasedbythecontroltroughsfromanaverageinfluentconcentrationof<0.13mgjltoanaverageoutflowconcentrationof1.83mgjl.TheexperimentalcolumnoutflowconcentrationofTKNincreasedoverthestudyperiodfrom1.37mgjlattheinitialmonitoringeventto9.27mgjland10.71mgjlinthesUbsequentmonthlymonitoringevents.Thecorrespondinginflowconcentrationswere9.72mgjl,18.00mg/land7.49mg/lrespectively.ThecontrolcolumnsincreasedTKNfromanaverageinflowconcentrationof<0.13mg/ltoanaverageof1.52mg/loverthestudyperiod.OrganicNitrogenOrganicnitrogen(TKNNH3-N)experimentalinfluentconcentrationsvariedconsiderablyoverthestudyperiod.Atthemonitoringeventstheexperimentalinflowconcentrationswere7.95mg/l,12.34mg/land2.46mg/l.Theexperimentaltrougheffluentconcentrationswere2.24

PAGE 95

85mg/l,5.31mg/land3.4mg/lrespectively.Thetrendindicatedincreasedassimilationofinorganicnitrogentoorganicformsasthesystemorganized.Thecontroltroughincreasedtheaverageinfluentorganicnitrogenconcentrationof<0.03mg/lto1.32mg/l.Theexperimentalcolumnsreducedtheinfluentconcentrationoforganicnitrogenbyanaverageof81%overthestudyperiod.Thecontrolcolumnsincreasedtheinflowconcentration,whichaveraged<0.03mg/lbyandaverageof1.29mg/l.NitrateandNitriteNitrogenTheaverageexperimentalinfluentconcentrationofN02+NO,was0.049mg/l.InallmonitoringperiodstheexperimentaltroughreducedN02+NO,to<0.005mg/l.Theresultsofthecontroltroughwereessentiallythesame,reducingtheaverageinflowconcentrationof.061mg/ltoanaverageoutflowconcentrationof<0.010mg/l.TheexperimentalcolumnresultsforN02+NO,wereconsistentforthefirsttwomonitoringperiods,reducingtheinfluentconcentrationto<0.005mg/l.Thefinalmonitoring,however,showedhighvariabilitywithtwocolumnsincreasingtheN02+NO,concentrationinthedischarge.

PAGE 96

86TotalPhosphorusTheaverageexperimentalinflowconcentrationofTPwas0.82mg/loverthestudyperiod.Thisconcentrationwasconsistentlyreducedintheexperimentaltroughbyanaverageof59%.ThecontroltroughinitiallyreducedtheinfluentconcentrationofTP,0.130mg/lto0.115mg/lbutincreasedtheconcentrationbyanaverageof0.117mg/linsUbsequentmonitoringperiodsTheexperimentalcolumnswereslightlymoreeffectiveinreducinginfluentconcentrationsofTPthanthetrough.Concentrationswerereducedbyanaverageof65%.Thecontrolcolumnsyieldedsimilarresultstothecontroltrough,initiallydecreasingtheTPconcentrationslightlyandthenincreasingtheconcentrationbyanaverageof0.081mg/linthesubsequenttwomonitoringperiods.standCharacteristicsandCypressGrowthRateinTheEffluentImpactedRiceCreekFloodplainSwampStandCharacteristicsTherawforeststanddatacollectedintheRiceCreekexperimentalsite(TableIV)andreferencesite(TableV),includingbasalareacoverage,frequencyandspeciesdiversityweresummarized.

PAGE 97

87TableIV.RiceCreekExperimentalSiteForestStandData.Plot 1 Basal.Area (em .....:!: I F!C9umt'yAccrrubrum14456 Au, 16 Cephelanthuaocc.iQentaliJ 6.28 Ccphelanthua 2Comw.pp.47.12 Com... 8 fruinuscaroliniana1894.38Fruinw34ItavirJjnica0.79 It..1 N)'I&lsytwtica 1807.99 N"",4Ouercualaurifolia25.13Quemu 2 SamWcUli .pp. U8""buc... 2 TamciiwDdiltichWII 176.71 T-.... 1 Ulmwamericana358J.4UIm... 15 Shmnon DiYerlily2.48 Plot 2 ..............ZH9......4CepbelanthuaoccXlent&6141.c.1CepbelanthuaISFIUinuIcaroJiniana155195Fruinua 38 Myric:acerifera 105.24 Myrioa 10 N)UIs:ytYalica95...1 Sambucul'pp. 7.07 ........... 1 Tamdiu.mdiltichum 3216.21 T-.... 6Ulmus americana223DSUIm... 7 SbannClll.Diw:raity2.28Plot,Accrrubrum71.47...... 5 8IIcchariI .pp. 9.42-,Cepbdanthulccc:identalil57.33 Cepbelanthus 21 FruinUicaroliniana24'73.22Frain'll 70 Ucxcauine 8.64IIco 5 Myracerifera37.1)Myrioa 5 N)WoaI}'fvatica3276.68N"", 5 Quen:uslaurifolia7.07Que",... 1 Sambucus .pp.9.42 ........... 6 TuodiumdiIt:il:bum 2976.66 T-"" 8 Ulmus americana357.36UIm... 5 ShannonDMnity 2.43 A\'eraaeBaaalArea!Hectare (Ill. ... 21 #.!HectareTamdium 10-'3Fru:iD.us 2315.12 Fraxinus 10.13 Ceph.607.21N"", 7.93 UIm...497B6""e, 1.74 ......456.63UIm... 1.64 Myrioa 26550 Myrioa0.26T_ 241.76 Ceph. 0.17 N"", 16135 Com ..0.10 Com...15634QuCnoUi 0.06 ""buc... 1)4115 ....buc... 0.03 llex62.92Baoehario 0.01 Clue", ..51.67 llex 0.01 -""" 37.75It..0.00It..19.54 Total 32.625008.50SHANNON DIVERSrI'Y: 2.40 SizeClassFrequencydBHCJass Plot 1 Plot:! Plot ,Aw:."/Hectare 1-5 38 54 92 3066.675-1028141.1016.6710-15146 4 400.00 15-20 2 5266.6720-252 1 2 83.3325-30 0 1 250.00 30-35 0 0 50.00 35-40 0 0 0 0.00 40-45 1 01 33.3345-500I016.67

PAGE 98

TableV.RiceCreekReferencesiteForestStandData.Plot I RaulArealeU!....2)FmjUCDCYAurrubnJm 17827...., 3 CepheJanlhuaoccidentalil179.06Cepbelanthus 20 Fru:inWicaroliniana 5510.74F ........38mcditsiaaqu.m:a927.49Gledibia 2 LiquidambarlIyraciflua 58IJ5 LiqllidamwMyricaceriCera157M_ 2 N_""""'"296D7N_ 2 0ItJyavqiniaaa36S.Oouya 2 Ql.LmwJauriColia 7SS.s0 au.2 TUDdiumdiltichum1982.99TUDdium2UlmusamericaDII"3J(lUlmuo 7 ShanmDiwnir:y 2."Plot 2 Aurrubrum 193U9 ....,14Cepb.cRDthuiocc:idaIlali:I113.88c.pbeianlh... 18 633.82PruiDUiISN)'mIl)'MUca1834.69N_13281.96 Oouya 3Salix..........30.%7Salix I TUDdUmdiIticlw.m63.62T_ I SharmcaDiYenily2.38 Plot 3""'",bnlm2704.13...., 9 CepbClanthUloccidallali:l121.7.CcpbelantbUi 7 FruinUicaroJirtiana 3356.79 FruiDUi36Gledlbiaaquaticll 10.21 GWiuja 2 LiqllidambarllyraciOua 1167.89 Liqllidamw 8 Myri;:acerifen38.48M,nca 1 N)'UasyMtica.. 2.60 8 Oslryavirginiana99.73Oouya 6 Ouettw; laurilolia176.71 au.I SaliJ:caroliniana254.47Salix 1 TUDdiumdillicbum 50.27 T_ IUlmus americana 452.39UIm..IShannon. OMrtir.y 2." 8aulArealHcctare1m'" 21 #J1ieclaneFru:inw 13.89 Fruinua 1 .........., 9.80 CepheiantbUl 161.00 N_ 6.22 .... 454.64Taxodium 2.75 N_ "1.96 Liquidambar253Cot.,.. 221.45UIm ...1.13 Liquidambar 190.30Quercus 1.22UIm.. 12438GJcdihja 1.18 Tamdium65."Cot.,.. 1.01 Giediuia 63.OSCephclanthw0.73 au.-47.00Salix 0.53 M_ 47.00 M_0.06Salix 34.89 ToW 41.18 390000 SHANNON DryERSrrY: 2.49 SizeClanFrequency dBHCJauPlot I Plot 2Plot 31-5.... .. 200000 :'-10 17 10 20 78333 10-1511710.....715-20 J 37216.67 20-25 3 723333 25-303 23 13333 30-352 0 0 33.3335-40 I 0 016.6740-450 0 0 0.0045-50I 0 016.6788

PAGE 99

89Relativecoverage.Thebasalareacoverage(m2/hectare)oftreeandshrubspeciesintheexperimentalandreferencesiteispresentedinFigure34.Thetotalaveragebasalareaperhectarewassomewhathigherinthereferencesite,41.2m2/ha,comparedto32.6m2/haintheexperimentalsite.Thespeciesofgreatestdominanceinbothsiteswerepopash(Fraxinuscaroliniana),baldcypress(Taxodiumdisticbum),blackgum(Nyssasylvatica)andredmaple(Acerrubrum).Baldcypresswassignificantlymoredominantintheexperimentalsite (32% relativecoverage)thaninthereferencesite (7% relativecoverage).RelativeFreguency.Thefrequencyoftreeandshrubspecies(#/hectare)intheexperimentalandreferencesiteispresentedinFigure35.Inbothsitesashshowedthehighestrelativefrequencyfollowedbybuttonbush(Cepbelantbusoccidentalis).Thefrequencyofashwashigherintheexperimentalsite (46% relativefrequency)thanthereference(37%relativefrequency)butwasattributedmainlytoindividualsofsaplingsize.Baldcypressandelm(Ulmusamericana)hadahigherfrequencyintheexperimentalsitewhileironwood(Ostryavirginiana)andlocust(Gleditsiaaquatica)werefoundonlyinthereferencesite.

PAGE 100

Figure34.RelativeCoverage(basalarea)ofTreeandShrubSpeciesinRiceCreekFloodplainSwamp.a)Experimentalsite;b)Referencesite.

PAGE 101

n C\J
PAGE 102

Figure35.RelativeFrequencyofTreeandShrubspeciesinRiceCreekFloodplainSwamp.a)Experimentalsite;b)ReferenceSite.

PAGE 103

n 2000 '"L.'"'-' U '"I, 1500tilE '"'-' If) u>1000U C'":>0-'"L. 500l.Lo FraXlnusUlmusMyr'"lCllINyssaSamt:>ucu&Quercusl'tea Ceph Ace,. Taxodlum Cor-nus IIex BacCf'ler ISSpecies(a)93 2500n 2000 '"L.'"'-' U '"I, 1500tilE '"'-' If) u>1000U C'":>0-'" L500l.Lo FraxinusACei'"Qst.rya Ulmus GleOitsie.Myl""iCll Cephe 1 linthu NyssaLiC!uldllll'Cler'"TaxOdll.lTlOuer-cusSalix Species(b)

PAGE 104

94sizeclassfrequency.ThebasalareasizeclassfrequencyperhectareoftreeandshrubspeciesintheexperimentalandreferencesiteispresentedinFigure36.Therelativefrequencyofindividualsinthe1-5cmand5-10cmdBHclasswassignificantlyhigherintheexperimentalsite.Thismaybeattributedtoaloweringofthewaterlevelin1985wheneffluentwasre-routedandnolongerdischargedtothisareatothefloodplain.Speciesdiversity.TheShannon-Weaverdiversities(logbase2)oftreeandshrubspeciesweresimilarintheexperimentalsite(2.40)andthereferencesite(2.49).Student'stTeststatistics(0.05significancelevel)revealednosignificantdifferenceinthetwomeandiversities.cypressGrowthRateTheannualbasalareagrowthrateincm2ofcypressaveragedinfouryearincrementsforthe40yearsperiodfrom1953-1992ispresentedinFigure37and38fortheexperimentalandreferencesiterespectively.Inboththeexperimentalandreferencesiteaveragecypressgrowthwasgreatestduringthetimeperiod1973-1988.Thismaybeattributedtocanopyreleaseandweatherconditions.

PAGE 105

Figure36.SizeClassFrequencyperHectareofTreesandShrubsinRiceCreekFloodplainSwamp.a)ExperimentalSite;b)Referencesite.

PAGE 106

3'" L "" U '"I,c 2>-, U gc:'":JfJ'" L LL o 3'" L "" u '"I ,c2>0u c:'":JfJ'" L LL o5-105-1010-1515-2020-2525-3030-35 35-40 40-4545-50dBHClassCa)10-1515-2020-2525-3030-3535-4040-4545-50dBHClass(em.)Cb)96

PAGE 107

97Theperiodofeffluentdischargetotheexperimentalsitewasfrom1973-1985(Simmons,Marvin.G.P.Palatka1992,personalcommunication).Thisrepresentstheperiodofanypotentialimpactsongrowthduetoeffluentinundation.Student'stTeststatistics(0.05significancelevel)wereappliedtothegrowthdatafrombothsites.Althoughtherewasnosignificantdifferenceinthegrowthtrendsofcypressinbothsitesovermostofthe40yearperiod,averagegrowthwassignificantlyhigherintheexperimentalsiteduringthetimeperiod1977-1980wheneffluentwasbeingdischargedtothisareaofthefloodplain.

PAGE 108

3DW0: UZI '0>-" Z "'0'!I Et'lue t Ille.. 19-19S5II VII 98 53.5657.6061-6465-1118 69-7273-76 7781M85-88Sg-g2 TIME (YEAF1S) Figure37. '0 GrowthRates(Mean+-SE)of10cypressTreesinRiceCreekExperimentalsite. N40 U U>Z 30 W0: UZ I '0>-0:" Z "'0W" Qflue t .. 19-1 5'-/ '/ -.'53-5657-6061_64 65-6869 73-7677-80 81_1MSSS889-92 TIME(YEARS)Figure38.GrowthRate(Mean+-SE)of10CypressTreesinRiceCreekReferencesite.

PAGE 109

DISCUSSIONSuccessionalPotentialofpilotMarshToForestedSystemAccordingtoclassicalecosystemsuccessiontheory,communitiesdevelopthroughtime,selforganizingtoautogenicallyalteredbioticandabioticparametersinadirectiontowardsamatureclimaxsystem(Odum,E.P.,1971).Gleason,1917advocatedanindividualisticcontinuumconceptofcommunitysuccession,wheresetsofspeciesexistaccordingtoallogenicenvironmentalconditions.Morematureecosystemsaresometimesconsideredofhighervalueasmeasuredbygrossproduction,speciesdiversityandlongtermorganicmatterandinformationstorage.Anthropogenicimpactsonecosystems,suchaswastewaterdischarge,canaltersuccessionalpatterns,oftencausinganarrestedearlysuccessionalstatetopersist.ThequestiontobeansweredabouttheChampionpilotwetlandwaswhethersuccessiontoaswampdominatedbywetlandtreeswasfeasible.Aftertheecosystemwasprimedbyplantingpropagules,herbaceousandtreespeciesweremonitoredtodeterminewhatsuccessionwastakingplace.Thetreeseedlingstudyshowedthataforestedwetlandwasfeasible.Therewasnophytotoxicityorgrowth99

PAGE 110

100inhibitionassociatedwithmoderateeffluentinundation.Themostsignificantfactorsinseedlingsurvivalandgrowthweredepthofinundationandcompetitionwithherbaceouscommunities.TreespeciesperformanceinthepilotwetlandmirroredtherelationshipsfoundinarelativefloodtolerancestudyconductedbyHarms,etal.(1980).Pondcypress(Taxodiumascendens)andbaldcypress(Taxodiumdistichum)showedthegreatestfloodtolerancefollowedbyblackgum(Nyssasylvatica)andpopash(Fraxinuscaroliniana),whichhadtheleastsuccessfulgrowthandsurvivalinthepilotmarsh.Thestressassociatedwithinundationiscausedprimarilybytheanaerobicsoilconditions,butcanalsorelatetowaterqualityparameterssuchasdissolvedoxygen,suspendedsolids,andcompoundswhicharereducedtophytotoxicformsinthesedimentssuchassulfide(EwelandOdum,1986).Growthlimitingandpotentiallytoxicsubstancesarealsoproducedbyanaerobicrespirationintherootsandbymicrobesinthesediments(Kowzlowski,1984).Treespeciesdifferintheirmorphologicalandphysiologicalresponsetofloodingaswellasinthetimingofadaptation.HookandBrown(1973)establishedastrongcorrelationbetweenfloodtoleranceandspecializedrootadaptations.Fivefloodplaintreespeciesweretestedundergreenhouseconditions.Thosespecieswhichwereabletoundergomorphologicalandphysiologicalrootadaptations

PAGE 111

101showedgreaterfloodtolerance.AmongtheadaptationsidentifiedbyHookandBrownweretheabilitytoregeneratesecondaryroots,oftensucculentandlessbranched,thedevelopmentofadventitiouswaterroots,theabilitytorespireanaerobically,toleratehighconcentrationsofcarbondioxide,andoxidizetherhizosphere.IntheChampionpilotwetland,treeseedlingsurvivalandgrowthwasexcellentexceptunderalmostcompletesubmersionorwheredenseherbaceouscommunitiesstrangledindividualseedlings.Growthofthetwocypressspeciesandblackgumwascomparableorhigherinthewetlandthaninanirrigateddrainedsiteofthesamesoiltypeoutsidethewetland.Theauthorconcludedthatinitialmortalityandgrowthretardationinthewetlandwasduetothenormalstressofinundation.Onceindividualsadaptedtheythrivedinthenutrientenrichedeffluent.Highaquaticalgalproductionduringdaylighthoursincreasingdissolvedoxygenlevelsinthewaterprofileandsedimentinterfacelikelyalsocontributedtoseedlingsuccess.Althoughtissueanalysiswasnotconductedontreeseedlings,itwasassumedfromthepositiveresultsofanalysisofherbaceousplanttissueforchlorinatedorganiccompounds(measuredasextractableorganichalogen(EOX))thatsomeuptakedidoccur.Enoughtimehadtranspiredtoachievenearsteadystateconcentrations(CH2M-Hill,1992).Assumingsimilaruptake,theselowconcentrations25

PAGE 112

102mg/kgEOXmeasuredinJuncus)didnotsignificantlyimpactthehealthoftreeseedlings.Thelowwatersolubilityofdioxinandit'saffinitytoadsorbonsedimentslimitsplantuptake.Dioxinwasnotdetectedinplant,fishorbenthossamplesfromthepilotwetland(CH2M-Hill,1992).ImplicationsofAquaticProduction.Eh-pHParametersandEcosystemStructureonPollutantDynamicsInthefirstyearofoperation,thepilottreatmentwetlandsupportedhighgrossprimaryproduction,upto7.6g/m2/dayinthelowerdeepzoneofcellD.Althoughhighlystratified,grossandnetprimaryproductionwashighestindeepzonesandincreaseddramaticallyfromtheinfluentenddeepzoneofCellDtotheeffluentenddeepzone.Thenetproduction/nightrespiration(P/Rratio)increasedfrom0.3to1.6fromstationD1tostationD2.Thisindicatedlongitudinalsuccessionofthephytoplanktonicandalgalcommunityandpossiblytheimpactofareducedorganicloadintheeffluent.Thelongitudinalsuccessionfollowspatternsobservedinsewageoutfallsinstreamswhereheterotrophic(P>R)aquaticcommunitiesgiverisetoautotrophic(P>R)communitiesdownstream(Odum,1956).ThispatternwasnotobservedincellCwhichdidnothavedeepzonesandhadasignificantlyshorterhydraulicretentiontime.

PAGE 113

103DifferentEh-pHparametersofaquaticsystemsaredueprimarilytophotosynthesis,respirationandredoxchangesinthesulfurironsystem.Microorganismsincludingbacteria,fungiandalgaeareimportantinthemediationorcatalysisofredoxreactions(FaustandAly,1981).TheEhpHcharacteristicsofthepilotwetlandwerecomparedtosimilardatafromnumerousaquaticandbenthalsystemspresentedbyBaasBeckingetal.(1960).Thepilotwetlanddatafallswithinthelowerrighthandquadrant(moderatetohighpHandmediumtolowredoxpotential)oftheEh-pHenvelopeincludingover4000aquaticenvironments.TherelativelyhighpHisduetoalkalinemillprocesswatersandphotosyntheticproductioninthemill'ssecondarytreatmentlagoonsandthewetlanditself.OftenliquidcarbondioxideisaddedtotheprimaryeffluenttolowerthepH.Theredoxpotentialofthepilotwetlandsurfacewaterwashigherthanthereferencewetland,indicatinghigheraveragedissolvedoxygenlevelsintheproductivestratum.IncomparisontoredoxpotentialdistributionsforaquaticsystemsdescribedbyBassBecking,etal.(1960)thepilotwetlandEhwasmediumtolow.Reducedconditionsmaybeattributedtotheeffluentorganicload.GiventheEh-pHconditionsmeasuredinthesurfacewaterofthepilotwetlandandtheeffluentwaterchemistrythefollowingconclusionsweredrawn.Inthenarrowupperstrataofthewatercolumnwherehighdissolvedoxygen

PAGE 114

104levelsareproducedandwheneddydiffusiontolowerstrataandactiveplantoxygentransporttosedimentsoccur,aerobicrespirationandotherchemicaloxidationprocessesoccurincludingmicrobiallycatalyzednitrificationofammonianitrogen.Theresultinghighlymobileoxidizednitrogen(N02+NO)iseitherquicklyassimilatedbyplantsandmicrobesorreadilyundergoesdenitrificationreductionundertheanaerobicconditionswhichprevailinthewetland.Lossofnitrogentothesystemislimitedbydissolvedoxygenlevels,temperatureandtherelativethermodynamicstabilityofammonia,presentinthewetlandmainlyinunionizedform,overalargeEhrange(FaustandAly,1981).Afternitrogen,manganese,ironandsulfurcompoundsservenextaselectronacceptorsintheabsenceofoxygen.Ifsulfateispresentinhighconcentrationsineffluentorsediments,sulfidesformedunderreducedconditionsmaycausetoxiceffectsonplantsandmicrobes.Thepresenceofironinsedimentscanmediatethisbyforminginsolubleferroussulfide(MitschandGosselink,1986).Concentrationsofsulfateinthekrafteffluentinthisstudywerenotofconcernatapproximately15ppm.Organiccarboncompoundsmayalsoserveaselectronacceptorsinmicrobialanaerobicrespiration.Thisfermentationprocessresultsinlowmolecularweightacidsandalcoholsandcarbondioxidewhichareavailableforfurthermicrobialdegradation(MitschandGosselink,1986).

PAGE 115

105Underextremereducingconditions(-250to-350mv)whichmayoccurinwastewatertreatmentwetlandsediments,methanogenesis,thereductionofcarbondioxideoramethylgrouptomethane,couldalsooccur.Thesequenceofbiologicallymediatedchemicalreactionsfromsurfacewaterstosedimentsineutrophicwetlandsystemsisanalogoustothetemporalsuccessioninananaerobicbatchdigester;aerobicheterotrophs,denitrifiers,fermentors,sulfatereducers,andmethanebacteria.Inawetland,however,thesebiologicalandchemicalprocessesmayoccurconcurrently.As amarshwetlanddevelops,themacrophytecoverageeventuallyreducesaquaticproductionunlessareasofopenwaterarepresent.Thepresenceofdissolvedoxygenisnecessaryandcanbecomelimitingforthemetabolismofmanypollutantsofconcernincludingnitrificationofammonia.Nitrificationisgenerallythelimitingstepinammoniaremovalfromwetlandsasdenitrificationoccursreadilyintheanaerobicbenthiczone(Knight,1990).CH2M-Hill(1992)reportedslightlylowerammoniareductioninthesecondseasonofoperationforthepilotwetlandandattributedthistoincreasedmacrophytecoverandthuslowerdissolvedoxygenlevels.Alternatingopenareassupportinghighratesofphotosynthesisandshallowanddeepmarshareasweredesigncomponentsinthefullscalewetlandtreatmentsystemconceptualdesign(CH2M-Hill,1992).

PAGE 116

106Asthedegradation,complexationandassimilationprocessesofkrafteffluentpollutantsoccurslowlyinnature,hydraulicretentiontimeisanimportantdesignconsiderationforanyfullscaleconstructedwetland.Thepilotwetlandcellswithdeepzonesandthuslongerhydraulicretentiontimesweremoreeffectiveinreducingtheeffluentchronictoxicitytowaterfleasandfatheadminnows(possiblycausedbyammoniaandtracelowmolecularweightchlorinatedorganics)thanthosewithout(CH2M-Hill,1992)ThePotentialRoleofForestedWetlandPeatSubstrateinPollutantConversionandRetentionIntheglobalcarbon-oxygencycle,ligninisaratelimitingfactor,sometimestakingseveralthousandyearstorecycleoncethepolyaromaticcompoundsarecomplexedinsoilhumicmatter(Crawford,1981).Underanaerobicconditionscausedbyfloodinginwetlandstherateoflignocellulosedegradationisfurtherreduced,leadingtotheaccumulationofpeat.Kraftlignins,whichcontributethemajorportionofpersistentpollutantsinkraftmilleffluentsuchaschemicaloxygendemand(COD),color,andchlorinatedorganics,aresimilarlyresistanttodegradation,causingdifficultyindesigningeffectiveandeconomicallyfeasiblesecondaryortertiaryeffluenttreatmentsystems.

PAGE 117

107Unlikeengineeredbiologicaltreatmentsystemswhichculturediscreteassociationsofmicrobes,wetlandswithphysical,chemicalandstructuraldiversitydevelopasynergisticheterotrophicmicrobialfoodchaincapableofslowlydegradingorconvertingrecalcitrantlignaceousmaterials,suchasthosefoundinkraftmilleffluent,toformswhichareavailablefornaturalmetaboliccyclesorbiologicallyinactiveinpeathumiccompounds.Thepeatservesasachemicalandbiologicalmediumfornaturalwastewatertreatment.Thephysicalandchemicalcharacteristicsofpeataswellasbiologicalprocessesitsupportsareimportantinunderstandingitspotentialroleinapapermilleffluenttreatmentwetland.Ingeneral,theleveloforganicmatterdecompositionandbulkdensityincreaseswithincreasingdepthinthesedimentprofile.Theaveragebulkdensityofpeatislow,0.1g/cm3forthepeatusedinmicrocosmsinthisstudy.Thehydraulicconductivityofpeatisverylow,especiallyinmoreadvancedstagesofdecompositionandexchangewithgroundwaterisusuallyinsignificant.Incertaincaseshowever,asinperchedwetlandsinFlorida,somegroundwaterrechargemayoccur(EwelandOdum,1986).Humicandfulviccompoundsinblackwaterandpeat,oftenintheformofnegativelychargedcolloids,haveanaffinitytoformcomplexeswithmetalions.Also,duetotheirlargevoidfractionandfunctionalgroupswhich

PAGE 118

108undergohydrogenbonding,peatsubstratescanadsorbotherorganiccompoundsincludingtracetoxicmaterials(StrummandMorgan,1981).Theacidificationofpeatinterstitialwateriscausedbythehighcationexchangecapacityofpeatandbyactivecationexchangebyplantspecies,mostimportantlySphagnumspp.(BaasBecking,etal.,1960).UnderlowerpHconditionsthemicrobioticcommunityassociatedwiththepeatshiftstowardsmorefungalrelativetobacterialspeciesinthefoodchain(MitschandGosselink,1986).Speciesofwhiterotfungi,whichpossessomeofthestrongestoxidativeenzymesystemsinnature,havebeenshowntobeanimportantfirststepinthedegradationandconversionofkraftlignins.Hall,etal.,(1980)studiedthisprocessinsubmergedculturefermentationsofthewhiterotfunguscoriolisversicolor.Someofthekraftligninsweremetabolizedtocarbondioxidewhilemostwereextensivelytransformedtohighermolecularweightcompoundswithahigheroxygencontent.Thepeatmicrocosmstudyshowedthatforestedwetlandpeatcanserveasamediumfordegradation,conversion,andlongtermstorageofnutrients,suspendedsolids,oxygendemandingorganics,andpotentiallytoxicandpersistentchlorolignins.Althoughcolorwasnotreduced,thecomplexationofeffluentcolorconstituents(mainlykraftlignins)intohumicandfulviccompoundsnaturalto

PAGE 119

109blackwatersystemsmayhaveoccurred.Evidenceexiststhatpeatservesasasignificantsinkforchlorinatedorganicsandmayinfactparticipatetoadegreeintheirformation(Asplund,etal.,1989).Onecanconcludethatinterfacingpulpandpapermilleffluentwithanappropriatewetlandecosystemmancanutilizethisnaturalpollutantconversionandlongtermstoragesysteminamutuallybeneficialmanner.ImpactsofKraftMillEffluentonaNaturalForestedFloodplainSwampTheRiceCreekforestdatadidnotshownegativeimpactsontreegrowthduringtheperiodofsecondarytreatedeffluentdischarge.Asnotedinotherstudiesofmunicipaleffluentinnaturalwetlands,thegrowthrateofplantspeciesmaybestimulatedbyenrichednutrientconditions(Best,1984;EwelandOdum,1984).AlthoughmorerigoroussamplingwouldbenecessarytoprovecypressgrowthstimulationbyeffluentdischargeintheRiceCreekexperimentalsite,thedatacollectedinthisstudydidindicatethatgrowthwasstimulatedduringtheperiodofeffluentdischargetotheexperimentalfloodplainsiteandthatgrowthfollowedthenormalpatternovertimeforafloodplainsystem.Thegrowthrateofbaldcypressinbothsiteswashigh(reachingapproximately25cm2peryear)comparedtodatapresentedonseveralhundredbaldcypress

PAGE 120

110infloodplainsthroughoutnorthandcentralFloridabyOdum,etal.(1983).TheaveragegrowthratereportedbyOdumetal.(1983)reachedaplateauatapproximately13cm2peryear.Somedifferencesinthestandcompositionoftheexperimentalsitewerefoundcomparedtotheupstreamreferencesitewerenoted,butthediversitywassimilarandcomparabletodiversitiesreportedforforestedwetlandsystemsintheSoutheast(Monk,1966,1968).Speciesdifferencesmaybeattributedtorelativegeographiclocationinthefloodplain.Theexperimentalsitewasinabroader,lesschannelizedareaofthefloodplainwithdeeperpeatdeposits.Therelativelyhighpercentageofsmallsizeclassindividualsintheexperimentalsite(1-10em dBH)indicatesthatincreasedregenerationoccurredaftereffluentdischargetothesiteceased.Perhapsthedifferencewasduetoachangeinhydroperiodandanoverallloweringofwaterdepthintheabsenceoftheeffluentinput.Importantdesignconsiderationinanynaturalorcoupledconstructed-naturalwetlandtreatmentsystemareloadingratesanddispersionmechanismswhichcanmaintainthehydroperiodwithinthelimitsoftolerationofthenaturalplantcommunity.Changesinhydroperiodandnutrientconditionsmaycauseashiftinrelativespeciescompositionattheeffluentdischargepoint,butunder

PAGE 121

111reasonableloadingratesandwitharelativelyhighqualityofsecondarytreatedeffluenttheconditionscanbewithintherangefoundinFloridawetlandsnaturally.thiswouldbealocalizedandtolerableimpact.Certainlymoreresearchiswarrantedconcerningthefateofchlorinatedorganicsinnaturalwetlandecosystems,butevidencepresentedinthispapersuggeststhatlowmolecularweightpotentiallytoxicadsorbableorganichalide(AOX)constituentsarerapidlydegradedandthathighermolecularweightkraftligninsenterthenaturalsedimentation,humificationandpeatstoragecycle,becomingbiologicallyinactive.EmergyEvaluationofEffluentTreatmentAlternativesThemajorinputstotwoeffluenttreatmentalternativesshowninFigureIwerecomparedusingtheemergymethod.TreatmentalternativeB(Figurel(bistertiarytreatmentusinggranularmediafiltration,carbonadsorptionandammoniumionexchange,andtreatmentalternativeA(Figure istertiarytreatmentusingawetlandinterface.AwetlandsuchasthatintheRiceCreekFloodplainwasassumedwithahydraulicloadingrateof2em/daysothattheeffluentwouldbewithinthewetlandlongenoughfortheprocessesdiscussedinthisthesistooperate.TheresultsoftheemergyevaluationperovendrytonofpUlp(ODTP)arepresentedinTableVI.

PAGE 122

112Inemergyevaluationtheinputstotheprocess,includingcontributionsfromnatureandhighqualityfeedbacksfromsocietysuchasfuelsandhumanservice,areevaluatedona commonbasis,solaremjoules(sej).Thisallowstheinclusionofworkdonebynaturewhichislargelyignoredbycostanalysis,asmoneyispaidonlyforthehumanservices.Thesolartransformity(sej/J)ofthefinalproducts,paperandeffluent,wascalculatedforthekraftpUlpandpaperprocessusingconventionalprimaryandsecondarytreatmentandusingbothtertiarytreatmentalternatives(TableVII).Therelativelyhightransformityoffinaleffluent(S.66E+6sej/J)indicatesahighpotentialvaluetotheeconomyortotheenvironmentifthesystemcanadapttousethematerialsasby-products.Theprinciplehereisthathightransformitysubstancesaremostvaluableinteractingwithalargerquantity,lowertransformitycomponentadaptedtoutilizethisvalue,suchasawetland(OdumandArding,1991).Usingeffluenttoreinforcementenvironmentalprocessesbenefitstheindustry,environmentandsociety.Theindustrywouldbenefitfromalesscostlytreatmentprocessusingalargerpercentageofnaturalenergiesandmakingmorehighqualityfeedbacksfromsocietysuchasfuels,chemicalsandhumanservicesavailableforotheruses.Inaddition,societyandtheenvironmentbenefitfromthevaluesassociatedwithwetlandconservation.

PAGE 123

TableVI.EmergyEvaluationofTertiaryTreatmentAlternatives.AllDataperOven Dry TonofPulp(ODTP).Note Item Units EmcrgylUnitSolar EmcrgyIODTP(scjlunit) (E14 scjlODTP) Kraft Pulp and Paper Mill I Water J 4.45E-+ll8 4.IOE-+ll4 0.18 2 Pine Pulpwood J 6.84E+IO 6.72E-+ll3 4.60 3 NaOH (pulping) g 9.07E-+ll3 7.45E+09 0.68 4 NaOH (Bleaching) g 2.72E-+ll4 7.45E+09 2.03 5Na2S04 g 3.63E-+ll4 1.20E+09 0.44 6 CI2 g 5.67E-+ll4 8.42E+09 4.77 7 FOiln Fuel (Coal) J 1.05E+IO 4.ooE-+ll4 4.20 8 Services (Capital Calls) S4001.6OE+12 6.40 9 Services (Labor) 0.7510 Services (production Calls) SISO1.6OE+12 2.40 Sum (Emergy/ODTP) 26.44 Tertiary Treatment (Granular media fJllration.carbon adsorption, ammonium ion exchange).11NaOH g I.25E-+ll5 7.45E+09 9.3112H2SO4 g 4.15E-+ll4 4.56E-+ll8 0.1913NaCI g I.06E-+ll3 1.22E+09 0.0114Carbong 1.62E-+ll4 1.42E+09 0.2315 Electricity J 2.70E-+ll8 2.ooE-+ll5 0.5416onJ 9.22E+09 5.4OE-+ll4 4.9817 Services (Capital COIls) S48.00 1.6OE+12 0.7718 Services (Operation !Maintenance Costa) S10.00 1.6OE+12 0.16 Sum (Emergy/ODTP) 42.63 Weiland Tertiary Treatment 19 Treatment Weiland hectare-yr 0.12 6.4OE+15 7.68 20 Services (Capital Calls) S13.23 1.6OE+12 0.2121 Services (Operation !Maintenance Calls) S1.17 1.6OE+12 0.02 Sum (Emergy/ODTP) 34.35113

PAGE 124

TableVI.(continued).NOTES Water -(23500gal.lODTP)(1 mA31264.17205 gal.)(IE+6glmA3)(5 Jig)=4.45E+8 J (PenonalCooversatioo (p.C.)Dr RobertFilller'" Dr. MuDSomeahwar, NCASJ Gaincovi1Je, F1..1992)Tr .... Cormity=4.IOE+4 (Odum, 1992b) 2 Pine PulpWood (5 tonI)(9.072E+5 gllOo)(3.6 koa1lg) (4186 JIla:al) =6.84E+10 J (Champion, 1991: Brill, 1970) Truuformity =6.72E+3IOjlJ(Odum, 19920) 3N.OHPulping (20Ibl)(453.S923 glib)=9.07E+3 g (p.C.NCASI, 1992) T .....Cormity =7.45E+9 IOjlg (prllchard, 1992) 4N.OHBI01Cbing (80Ibl)(453.S923 glib)=3.63E+4 g (p.C.NCASJ. 1992) 5 Na2S04 -(gOIbl)(453.S923)=3.63E+4 g (p.C.NCASJ. 1992) T .....Cormity 1.20E+9 IOjlg = l.ooE+9 IOjlg rawmaterial (Odom. 1992b) + fuclin mining&DdtranIpOrt&tion 0.SOE+8 IOjlg + scrviccI in capital&Ddlabor I.SOE+8 IOjlg O\I&jmundar. 1995) 6CI2 -(125 Iblj(453.5923 glib)=5.67E+4 g (p.C.NCASJ, 1992) Truuformity =g.42E+9 IOjlg caleullled Cromjoint produetiooproc:cu call1lie + cbIorinc (lion cbIorinc11.131oncaUIlic)(Prllchard, 1992; Hardie. 1975) 7FouilFucl (Coal) -(I0E+6btu)(I0S4.35 JIbtu) = 1.0SE+10 J(p.C.NCASJ. 1992) Truuformity5.40E+4 IOjlJ (Odum. 1992b) 8 Capital COIl (interell anddcprccialioD) ($600IODTP total annualcOIl)(S150OIM cOIl) -($SO laborcOIl) =S400(p.C.NCASJ. 1992)U.S.1991 emcrgylmoney ratio= 1.6OEI2 IOjlS 9 Servi....(Labor) Emergy Work Houn= Emcrgy Delivery Rate. (gOOemp. ICbooI +)(2.58E+14 IOjlday)I(14OO IoDI/day) =4.30E+13 IOjlODTP (200emp.eoIlege +)(7.67E+14 IOjlday)I(14OO IoDI/day) =1.I0E+141Oj10DTP4.30E+13+1.I0E+14=I.S3E+14 IOjlODTP (Champion, 1991: Odum, 1992b) 10 Services (embodiedinproduction COllI) -(S6OO total production cOIlper ODTpaper)(.25 percentage oC totalcOIl in capitalCOllI&Ddeo'" other than/Ibor.energy and rawmaterial) =S150U.S. emergylmoneyratio =1.6OE+121OjlS(p.C.NCASI.1992;OECD,1985)IIN.OH(70080 tonI1')1(36S dayl1')1(14OO tonlday)(2000 Ibllon) (453.59 glib)=I.25E+5 g (Sirrine, 1989) 12H2SO4(23360 tonl1')1(36S dayl1')1(14OO tonIday)(2000 Ibllon) (453.59 glib)=4.15E+4 g (Sirrine. 1989) T ..... Cormity=4.56E+8 IOjlg caleullled Cor 100'1' H2SO4Crom Pritchard (1992) 13N.C1-(2.35IbIODTP)(453.S9 glib)=I.06E+3 g (Sirrine, 1989) T ..... Cormity = I.22E+9 IOjlg=l.ooE+9 IOjlg rawmaterial (Odum, 1992b) +Cuclin mining and tranIpOrtatioo 0.SOE+8 IOjlg + lOrYi.... in capitalCOllI 1.50E+8 IOjlg (_ed) 14 Carbon (18.3E+61bl1')1(36S dayl1')1(14OO tonIday)(453.59 glib)=1.62E+4 g (Sirrine. 1989) T .....Cormity =1.42E+9 IOjlg= cooltranlCormity converted to III&ISbuiI (Odum, 1992b)114

PAGE 125

TableVI.(continued).15 Electricity (5884 HP)(42.44 btu/minlHP)(I440 minlday)/ (1400 tonIday)(IOS4.35 1/blU)+(2.7E+5 kwhlyr)(3.6E+61/kwh)=2.70E+81 (Sirrine. 1989) Tranoformity =2.ooE+5sey1 (Odum. 1992b)16FuclOil-(31.4E+6 g&l/yr)(1.5E+8 1/g&l)/(365 d/yr)(14OO ton/day)=9.22+91(Sirrine. 1989) Tranoformity =5.4OE+4 sey1 (Odum. 1992b)17 Capital COIl (intereat and depreciation) $1.81+7 (granular media IUtration"carbon adaorplion) + $5.89E+6 (ammonium ion exchange) =($2.46E+7/yr)/ day/yr)/(14OO ton/day)=$48 (Sirrine, 1989) U.S.1991emergy/money ratio=1.6OE+12 sej/$18 OpcrationlMaintawlCCCOIlll ($4.24E+7/yr) + ($8.61+6/yr)/(365 day/yr)/(14OO ton/day)=$10 (Sirrine. 1989) U.S.1991emergy/moncy ratio=1.6OE+12 sey119 Trco1IIleatWeiland -(SO ac/mgd)(0.0235 mgdlODTP)=(1.175 tu:) (eatim1tcd ...... tion time 0.25 yr)/(2.47 tu:!bcctarc) =0.24 hce:tare-yr (CH2M-Hili. 1990&)Looding (SO ac/mgd)bued on 80% reductionofammonia-N=2.00em/day (CH2M-Hili. 1990&)Emcrgy utu:!bcctarc =6.4OE+15 sejlhcctarc-yr calculated for floodplain wedand uaing transpiration (Ewcl and Odum. 1984) 20 CapitalCOIlll ($58.8E+6)(0.115)/(365 day/yr)/(l4OO ton/day)=$13.23 (CH2M-HW. 1990&) U.S.1991emergy/monmey ratio=1.6OE+12sey$21 OpcrationlMaintcnancc Costs ($O.6E+6)/(365 day/yr)/(14OO ton/day)=$1.17 (CH2M-Hili. 1990) U.S.1991emergy/monmey ratio=1.6OE+12 sej/$115

PAGE 126

116TableVII.EmergyIndicesofTertiaryTreatmentAlternativesandTransformitiesofFinalProducts. NoteNet Emcrgy Yield Ratio Emcrgy Invcmncnt RatioSolu TrUllformity ofFinal Products ( ... j/I) Kraft Pulp & Paper Prooess with Primary &Seoondary Effiuent Treatment 1.22 4.S3 I Paper 1.42E-t1lS 2 Final Effluent S.66E-t1l6 With Technological TertiaryTreatment (granular media fdtration, carbon adsorption, ammonium ion exchange) 1.13 8.07 3Paper 2.29E-t1lS With Wetland Tertiary Treatment I.S7 1.76 1.8SE-t1lS 4 Paper FOOTNOTES TransformityofPaper:(Itoo)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 Jig)=1.86E+IOI(Doherty, et.al., 1992) Transformity=26.44E+14 ... jl1.86E+10I=1.42E+S ... yI2 TransformityofFinal Effluent: Final Effluent Sollds (3250 Ibs black liquor sollds/ton pulp)(6000 BTU)(1.0SSE+3 IIBTU)=2.06E+IO Ilion 1(2000 Ibs/ton)/(4S3,S9 glib)= 2.27E+4 I/g(p.C.NCASI, 1992) Effluent Sollds=(ISS9 mg/l TDS +TSS)(IE-3g/mg)/(0.2642 galll)=0.412g/gal(23S0 gal/ODTP)=9.68E+2 g (CH2M-HiIl, 1990) (2.27E+4 I/g)(9.68E+2 g)=2.20E+7 I Water-(23500gal.lODTP)(1 mA3/264.1720S gal.)(IE+6g/mA3)(SI/g)=4.4SE+8 I (personal Conversation (P.C.)DrRoben FiBber& Dr.Arun Somcshwar, NCASI Gainesville, Fl..1992) TransformityofEffluent=26.44E+ 14 ... j/(2.20E+ 7I+ 4.4SE+8I)=S.66E+6 ... j/I3 TranaformityofPaper:(Iton)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 I/g)=1.86E+1O I (Doherty, et.al., 1992) Transformity=42.63E+14 soj/1.86E+1OI=2.29E+Ssoyl4 TransformityofPaper:(1ton)(2000Ibslton)(4S3.59 glib) (2.0S2E+4 I/g)=1.86E+IO I (Doherty, et.al., 1992) Transformity=34.3SE+14 scY1.86E+1OI=1.8SE+Sscj/I

PAGE 127

117Wetlandvaluesincludewaterstorageandgroundwatertablemaintenance,primaryandsecondaryproduction,habitatdiversity,andaestheticandeducationalhumanuses(Knight,1992).Thenetemergyyieldratioandemergyinvestmentratiowereusedininterpretingtheemergyevaluation(TableVII).Thenetemergyyieldratioistheemergyyielddividedbytheemergyusedforprocessing.Fuels,water,woodandotherrawmaterialshaveahighnetemergyyieldratio(210)andarecapableofcontributingmoretotheeconomythan theyrequirefromitforprocessing.However,attheendofprocessesgeneratinghighqualityproductssuchaspaper,netemergyyieldratiosareclosetoone.Paperisahighemergyproductwithahightransformity.Itistoovaluabletouseasafuel.Papercontributestotheeconomyaboutwhatistakenfromtheeconomyinit'smanufacture.Thenetemergyyieldratioofpulpandpaperproductionusingtechnologicaltertiarytreatmentwasconsiderablylowerthanthatforthesystemusingwetlandtreatment(1.13vs.1.57).AlthoughthetransformityoffinalproductwashigherinalternativeB,thelowernetemergyyieldratioindicatesalowerefficiencywhenhighqualityresourcesfromsocietyarescarce.Theemergyinvestmentratiomeasuresthepurchasedinputsrelativetothefreeonesfromusingenvironmentalresources.IntheU.S.,wheretheintensityofeconomic

PAGE 128

118developmentishigh,systemsusingtheenvironmentsuchasforestryoperationstypicallyhaveseventimesmoreemergybroughtinwithpurchasedinputsassuppliedfreefromtheenvironment.Anyprocessthathasaloweremergyinvestmentratiothan7usestheenvironmentmore,haslowercostsandtendstocompeteeconomicallywithalternativeinvestments.Thelowvalueof1.76forthewetlandtertiarytreatmentalternativesuggestsitwouldbeeconomic.TheemergyinvestmentratioofalternativeBwas8.07asopposedto1.76foralternativeA.AlternativeBreliesheavilyonintensivetechnologicalprocesseswhilealternativeAusesalargerpercentageoffreenaturalemergy.RecommendationsTheblackwastewatersdischargedfromkraftpulpandpapermillshaveasolartransformityof5.66E+6sej/J,avaluehigherthanfreshwater.Potentially,thesewaterscanmakeacontributiontoanenvironmentalsystemcapableofdevelopingagoodecosystem.ThevariouspiecesofevidenceassembledinthisthesissuggestthatwastewaterspassingthroughwetlandsincludingsomelongstretchesofpeatyforestedwetlandscanbereconditionedandbecomesimilartonormalblackwatercharacteristicofFlorida'sstreams.Itshouldbepossibletoreorganizewaterprocessingandrecyclingbetweenpinelandsthatdevelop

PAGE 129

119wood,the10-20%ofwetlandsandsmallstreamsamongthepinelandsandthepapermillssoastomaintainafairlynormallandscapeofwetlandsandwildlifewhileclosingtheloopofwateruseandreuse.Suchasymbioticinterfacingofindustrialprocesswasteswithenvironmentalsystemswillbeincreasingvaluetosocietyasfossilfuelsandotherhighqualityresourcesbecomescarceandaslandfillspacebecomeslimiting.ThegroundworkhasbeenlaidforalargescalepilottestofwetlandsforgeneralreconditioningofpUlpandpaperwastewaters.Thetestshouldincludelargeareasofpeatyforestedwetlandandhavetheobjectiveofconvertingthewastewatertonormalswampblackwater.

PAGE 130

APPENDIXSEEDLINGGROWTHSTUDYSTATISTICSSEEDLINOOROWTHSTATS6/6/91-9/18/91CELL C CELL C PLOT 2BCPCPABOBCPCPABO MEAN4.85 9.161.B7 4. 53 MEAN4.58 7.260.94 4.91 VAR 12.44 33.009.426.95VAR 10.64 36.97 4.06 9.36SS 684. 0211BB.03471.00319.75SS191. 49 591.5860.88149.76n56375147n19171617DF55365046DF18161516CELL 0 CELL C PLOT 3BCPCPABOBCPCPABO MEAN 3.3010.892.925.97 MEAN 3.058.101.008.76VAR18.3562.0810.0012.00VAR 11.42 10.641.3B10.09ss1046.121676.10520.19576.20SS205.5342.5626.13161.47n582853 49 n1952017OF57275248OFlB 4 19 16PLOT 1 CELL 0 PLOT 1BCPCPABOBCPCPABO MEAN 6.5812.684.556.97 MEAN 6.1813.475.00 4.19 VAR 16.44 39.7618.4710.73VAR24.4349.BO17.358.15SS608.321312.18572.71343.24SS 464.21 896.43277.65122.29n38 343233n201917 16OF3733 3132OF19181615PLOT 2 CELL D PLOT 2BCPCPABOBCPCPABO MEAN 3.036.671.05 4. 56 MEAN 1.555.211.16 4. 78VAR10.0040.332.638.91VAR 4.9245.49 1.185.00SS379.98927.5181.55 284. 97ss93.53272.9417.68 74.99 n39243233n2071616OF38233132DF1961515PLOT 3 CELL 0 PLOT 3BCPCPABOBCPCPABO MEAN 2.577.571.794.17 MEAN 2.066.252.58 4.78 VAR12.14 19.46 3.575.61VAR12.3939.06 4.53 5.00ss 436.94 116.76139.37162.56ss210.5639.06B6.11 74. 99n3774030n1822016OF366 39 29DF1711915CELL C PLOT 1 REFERENCEBCPCPABOBCPCPABO MEAN 7.0311.674.035.06 MEAN 6.30 14 .8311.406.50VAR7.1825.2219.254.34VAR5.017.7622.22 4.15 ss122.06353.11269.4865.10ss95.19147.38422.097B.B5n18 151516n20202020OF17 14 14 15OF19 19 1919120

PAGE 131

121GROWTHCOMPARISON-STUDENTStTEST CELL C PLOT 1ICELL C PLOT 2 CELL C PLOT 1ICELL D PLOT 1SP28.9585531.489811.39186.93082SP216.285039.048318.23777.308540.984471.987881.213030.916991.311092.158331.512830.94164BCPCPABGBCPCPABGt2.492.212.550.16t0.650.840.643.93erit.t2.03 2.042.042.04erit.t2.032.042.042.04CELL C PLOT 1ICELL C PLOT 3 CELL C PLOT 2ICELL D PLOT 2SP29.3595821.98178.957864.81985SP27.7032539.29652.618658.775571.006272.421111.022290.803440.889152.815190.572121.03183BCPCPABOBCPCPABOt3.951.472.971.99t3.410.730.38 0.70erit.t2.032.102.032.05erit.t2.032.072.042.04CELL C PLOT2ICELL C PLOT 3 CELL C PLOT 3ICELL D PLOT 3SP211.028331.70722.558937.57297SP211.888216.32452.953435.172991.092303.129200.542781.013901.134083.380400.543450.83235BCPCPABOBCPCPABOt1.400.270.121.43t0.880.552.901.58erit.t2.032.09 2.032.04erit.t2.032.572.052.05CELL DPLOT1ICELLD PLOT2 CELL C PLOT 1IREFERENCESP214.677148.72399.526709.15329SP26.0346215.166420.95664..233751.211493.086251.075081.053800.798111.330191.563630.69014BCPCPABGBCPCPABGt3.822.683.58 4. 34t0.912.374.712.08erit.t2.02 2.062.042.04erit.t2.032.032.032.03CELL D PLOT 1ICELL D PLOT 3 CELL C PLOT 2IREFERENCESP218.743449.236710.39297.62749SP27.7481921.113214.20486.531651.406585.216291.063480.961970.891741.515791.264130.84308BCPCPABGBCPCPABOt2.931.382.284.14t1.93 4. 998.281.88erit.t2.03 2.09 2.032.04erit.t2.03 2.032.03 2.03CELL D PLOT 2ICELL D PLOT 3 CELL C PLOT 3IREFERENCESP28.44683 44 .57163.052536.57568SP28.127548.2582811.79 5 4. 647130.944255.352860.586010.90662 0.913311.436861.086040.75119BCPCPABOBCPCPABGt0.540.192.420.65t3.564.689.584.04erit.t2.032.362.032.04erie.t2.032.062.022.04

PAGE 132

122CELL D PLOT 1/ REFERENCEPLOT 2 / PLOT 3SP2 l4.7209 28.2ll219.99236.86620SP211.039436.00903.155987.336631. 21329 1.701571.475000.864400.762512.577690.42l330.68328BCPCPABOBCPCPABOt0.100.794.34 2.62 t0.600.351.760.58erit.t 2.02 2.03 2.03 2.03erit.t1.992.041.992.00CELL D PLOT 2 / REFERENCE PLOT 1/ REFERENCESP2 4. 9662516.812712.93425.91573SP212.562728.068419.89588.276340.704711.800681.206270.81579o.979l41.492971.271430.81523BCPCPABOBCPCPABOt6.745.348.492.83t0.28 1.44 5.390.58erie.t2.022.06 2.03 2.03Crit.t2.012.012.012.01CELLD PLOT 3/ REFERENCE PLOT 2/ REFERENCESP28.493019.3221513.3734 4.52456 SP28.3362225.592510.07267.13379 0.946822.26432 1.156430.71345 0.794071.531660.904650.75687BCPCPABOBCPCPABOt 4.48 3.797.63 2.41 t 4.12 5.33 11.44 2.56erit.t2.032.092.022.03erit.t2.002.012.01 2.01CELL C/ CELL D PLOT 3/REFERENCESP215.447645.46239.717609.53139SP29.6751510.56549.680265.029390.736331.688890.6ll460.63032 0.863271.427450.852060.64739BCPCPABOBCPCPABOt2.101.02 1.72 2.28t 4.32 5.0811.283.60erit.t1.982.001.98 1.99 crie.t2.012.062.002.01PLOT 1/ PLOT 2SP213.177239.994310.55249.815880.827431.686040.812ll0.77129BCPCPABOt 4.29 3.564.313.12erit.t1.992.002.002.00PLOT 1/PLOT 3 SP214.318736.639310.17258.291870.873952.512330.756440.72640BCPCPABOt 4.59 2.033.653.86Crit.t1.992.021.992.00

PAGE 133

123SEEDLINO OROWTH STATS6/6/91-4/21/92CELL CCELLDPLOT1BCPCPABOBCPCPABO MEAN 7.6413.684.908.10 MEAN 9.4216.8310.0716.03VAR13.9321.8838.5713.20VAR35.4361.7247.7627.98SS431.69415.76732.74316.80SS673.171049.24668.64447.68n32202025n20181517DF31191924DF19171416CELL DCELLDPLOT2BCPCPABOBCPCPABO MEAN 8.4416.8810.0713.31 MEAN 5.6417.256.71VAR35.4356.3247.7642.43VAR24.847.5616.06SS921.231070.12668.67975.97SS149.047.5696.36n27201524n72 7DF26191423DF61 6 PLOT 1 REFERENCEBCPCPABOBCPCPABO MEAN 7.5716.0514.028.20MEAN9.5616.119.1012.97VAR8.088.6527.76 6.32 VAR24.8445.3854.1932.24SS153.52164.35 527.44 120.08SS844.551225.301246.30967.23n20202020n35282431DF1919 1919DF34272330PLOT 2 OROWTH COMPARISONSTUDENTS tTESTBCPCPABOCELLCPLOT1/CELLCPLOT2MEAN5.7513.332.776.67VAR14.0027.6010.3312.75SP210.057320.61532.752211.5273SS322.00303.57103.35216.751.123432.030512.572271.36796n24121118DF23111017BCPCPABOt3.511.111.841.91er1t.t2.042.102.102.06CELL C PLOT 1BCPCPABOCELLD PLOT 1/ CELL D PLOT 2 MEAN 9.7314.807.509.25VAR10.6613.3160.7812.21SP232.888458.711124.7290SS149.24 119.79486.24158.732.518485.711152.23324n15 10914DF149813BCPCPABOt10.285.927.76CELL C PLOT 2Crit.t2.062.102.07BCPCPABO MEAN 5.7912.552.776.64CELL CPLOT1/ CELL D PLOT 1VAR9.5327.9210.3310.64SS152.48251.28103.30106.40SP224.9215 44 .962652.494520.9106n171011 111.705142.644653.054891.65035DF1691010BCPCPABOt0.180.770.844.11erit.t2.032.062.072.04

PAGE 134

124CELL C PLOT 2/ CELL D PLOT 2 PLOT 1/ PLOT 2SP213.705425.884 12.6725 SP220.465740.233340.898425.1909 1.66256 3.940861. 72116 1.198942.18853 2.328551.48731BCPCPABOBCPCPABOt0.091.190.04t3.181.272.72 4.24 erit.t2.072.23 2.12erit.t2.002.032.042.01CELL C PLOT 1/ REFERENCEPLOT1/REFERENCESP2 9.17454 10.1478 37.5437 8.71281SP218.831430.209742.231922.18991.034581.23376 2.45941 1.028581.216391. 60916 1.967551.35103BCPCPABOBCPCPABOt2.091.012.651.02t1. 63 0.042.503.53erit.t2.03 2.052.05 2.04erit.t2.012.012.022.01CELL C PLOT 2/ REFERENCE PLOT 2/REFERENCESP28.74285 14. 843921. 7496 7.80965SP211.321915.597321.75129.356380.97541 1.49217 1.750631. 049021.01874 1. 44209 1.750700.99379BCPCPABOBCPCPABOt1.822.35 6.43 1. 49 t1.791.88 6.42 1.54Crit.t2.032.052.042.04erit.t2.022.042.042.03CELL D PLOT 1/ REFERENCESP221.75533.7108 36.244816.22171.47495 1. 88636 2.056341. 32864 BCPCPABOt1.25 0.41 1.925.89erit.t2.02 2.032.032.03CELL D PLOT 2/ REFERENCESP212.10248.5955 8.6576 1. 52775 2.174281.29216BCPCPABOt1.260.551.15erit.t2.062.102.06CELL C/ CELL DSP223.735539.1018 42.4668 27.50581.273111. 97741 2.225861. 49876 BCPCPABOt0.631. 62 2.323.48crie.t2.002.032.04 2.01

PAGE 135

125SEEDLINGGROWTHSTATS9/18/91-4/21/92CELLCCELL DPLOT1BCPCPABGBCPCPABGMEAl!2.022.133.933.18MEAl!3.302.895.637.26VAR2.184.2024.715.9BVARB.214.2719.1212.44SS67.5679.74469.43143.46SS155.9972.51267.62199.11n32202025n20181517DF311919 24DF19171416CELL D CELL D PLOT 2BCPCPABGBCPCPABGMEAl!3.262.9B5.635.56MEAl!3.143.751.43VAR 9.34 5.3119.1216.38VAR12.5514.061.82SS242.84100.93267.62376.77ss75.3114.0610.90n27201524n72 7DF26191423DF61 6 PLOT 1 REFERENCEBCPCPABGBCPCPABGMEAl!1.451.232.631.93MEAl!2.862.555.0B5.85VAR0.650.992.021.23VAR5.584.6820.3112.B3ss12.30IB.7538.42 23.41 SS189.71126.49467.033B4.77n20 202020n35282431DF191919 19DF 34 272330PLOT 2GROWTHCOMPARISONSTUDENTS t TESTBCPCPABGCELL C PLOT 1/ CELL C PLOT 2MEAl!2.192.543.731.75VAR5.955.5227.701.26SP22.126434.16625 24. 6966 4. B3496SS136.9560.71276.9B21.370.516570.912822.233650.BB594n 24 12 11IBDF23111017BCPCPABGt0.910.380.202.47CrH.t2.042.102.102.06CELL C PLOT 1BCPCPABGCELL D PLOT 1/ CELL D PLOT 2MEAl!2.271.954.174.14VAR 1.46 4.8720.947.94SP29.25184 4. B09719.54600SS20.47 43.B5 167.56103.271.335771.634641.3B753n1510914DF149B13BCPCPABGt4.12 0.49 B.40CELL C PLOT 2erit.t2.062.102.07BCPCPABGMEAl!1.792.303.731.95CELL C PLOT 1/ CELL D PLOT 1VAR2.713.4627.700.79SS43.3231.14276.9B7.93SP25.347304.4755719.7B0610.4270n171011110.7B9840.B343B1.B75241.16539DF1691010BCPCPABGt1.311.130.782.6Berit.t2.032.062.072.04

PAGE 136

126CELL C PLOT 2/ CELL D PLOT 2 PLOT 1/ PLOT 2SP25.39217 4. 520251.17699SP220.465740.233340.898425.19091.042831. 64686 0.524531.198942.188532.328551.48731BCPCPABOBCPCPABOt1.290.881.00t3.181.272.72 4.24 erit.t2.072.23 2.12erit.t2.002.032.042.01CELL C PLOT 1/ REFERENCE PLOT 1/ REFERENCESP20.993132.235827.628563.95862SP218.831430.209742.231922.18990.340390.579111.108620.693311.216391.609161.967551.35103BCPCPABOBCPCPABOt2.401.251.393.20t1.630.042.503.53erie.t2.03 2.05 2.052.04erit.t2.012.012.022.01CELL C PLOT 2/ REFERENCE PLOT 2/ REFERENCESP21.589261.7818010.87581.08067SP211.321915.597321.75129.356380.415870.516981.237940.390221. 01874 1. 44209 1.750700.99379BCPCPABOBCPCPABOt0.832.080.890.08t1.791.886.421.54Crit.t2.032.052.042.04Crit.t2.02 2.042.042.03CELL D PLOT 1/ REFERENCESP221.75533.7108 36.2448 16.22171. 47495 1.886362.056341.32864BCPCPABOt1.25 0.41 1.925.89erit.t2.022.032.032.03CELL D PLOT 2/ REFERENCESP212.10248.59558.65761.527752.174281.29216BCPCPABOt1.260.551.15erit.t2.062.102.06CELL C/CELLDSP223.735539.101842.466827.50581.273111.977412.225861.49876BCPCPABOt0.631.622.323.48erit.t2.002.032.042.01

PAGE 137

REFERENCELISTAllender,BruceM.(1984).Waterqualityimprovementofpulpandpapermilleffluentsbyaquaticplants.Appita:37,303-306.Amy,GaryL.,curtisW.Bryant,BruceC.Alleman,andWilliamA.Barkley(1988).Biosorptionoforganichalideinakraftmillgeneratedlagoon.JournalWPCF:60(8),1445-1453.Asplund,G.,A.Grimvall,andC.Petterson(1989).Naturallyproducedadsorbableorganichalogens(AOX)inhumicsubstancesfromsoilandwater.TheScienceoftheTotalEnvironment.81/82:239/248.BaasBecking,L.G.M.,I.R.KaplanandD.Moore(1960).LimitsofthenaturalenvironmentintermsofpHandoxidation-reductionpotentials.TheJournalofGeology.243-281.Best,RonnieG(1984).Naturalwetlands-southernenvironment:Wastewatertowetlands,wheredowegofromhere?InAquaticPlantsforwaterTreatmentandResourceRecovery,K.R.ReddyandW.H.smith(Eds.),MagnoliaInc.,Orlando,FL,99-119.Bray,J.R.,andG.J.Struik(1963).ForestgrowthandglacialchronologyineasternBritishColumbiaandtheirrelationtorecentclimatictrends.CanJBot.41:1245-1271.Britt,KennethW.(1970).HandbookofpUlpandPaperTechnology.VanNostrandReinholdCo.,NewYork.Brower,James,JerroldZarandCarlvonEnde(1990).FieldandLaboratoryMethodsforGeneralEcology,ThirdEdition.Wm.,C.BrownPublishers,DUbuque,237p.Buckman,HarryO.andNyleC,Brady(1969).TheNatureandpropertiesofSoils.TheMacmillamCo.,London,355377.127

PAGE 138

128Bumpus,JohnA.,MingTien,DavidWright,andstevenD.Aust(1985).oxidationofpersistentenvironmentalpollutantsbyawhiterotfungus.Science.228:14341436.Cain,RonaldB.(1980)Theuptakeandcatabolismofaromaticlignin-relatedcompoundsandtheirregulationinmicroorganisms.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.I,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,21-60.ChampionInternationalCorp.,Cantonment,FL(1991)MillFactSheet.CH2M-Hill(1990a)AssessmentofTreatmentandDisposalAlternativesforthePensacolaMill.CH2M-Hill(1990b).Nitrification/constructedWetlandspilotstudyatChampion'sPensacolaMill.CH2M-Hill(1991).OperationsPlanfortheChampionPensacolaMillConstructedWetlandspilotStudy.CH2M-Hill(1992).DraftFinalReport:ChampionPensacolaMillConstructedWetlandTreatmentsystempilotStudy.Crawford,RonaldL.(1981).LigninBiodegradationandTransformation.wiley,NewYork,154p.Doherty,S.J.,H.T.OdumandP.o.Nilsson(1992).SystemsAnalysisoftheSolarEmergyBasisforForestAlternativesinSweden.CenterofEnvironmentalPolicyandDepartmentofEnvironmentalEngineeringSciences,UniversityofFlorida,Gainesville,FL.Earl,PaulF.andDouglasW.Reeve(1990).Chlorinatedorganicmatterinbleachedchemicalpulpproduction.Tappi.Jan:179-183.Ewel,KatherineCarter,andHowardT.Odum(1984).CypressSwamps.UniversityofFloridaPress,Gainesville,FL,427pp.Ewel,KatherineCarter,andLaurieA.Parendes(1984).Usefulnessofannualgrowthringsofcypresstrees(Taxodiumdistichum)forimpactanalysis.Tree-RingBulletin.44:39-43.EPA(1988).DesignManual:ConstructedWetlandsandAquaticPlantSystemsforMunicipalWastewaterTreatment.EPA/625/1-88/022.

PAGE 139

129Faust,SamuelD.andOsmanM.Aly(1981).ChemistryofNaturalWaters.AnnArborSciencePUblishers,Inc.,AnnArbor,400p.Fuhr,F.(1987).Non-extractablepesticideresiduesinsoil.In:PesticideScienceBiotechnology.Greenhalgh,R.andT.R.Roberts(Eds).BlackwellScientificPUblications,OXford,381-389.Gellman,I.(1988).Environmentaleffectsofpaperindustrywastewaters-anoverview.WaterScienceTechnology.20(2):59-65.Gillette,Becky(1989).Artificialmarshtreatsindustrialwastewater.Biocycle.30(2):48-50.Gleason,H. A.(1917).Thestructureanddevelopmentoftheplantassociation.TorreyBot.ClubBull.44:463-481.Gove,GeorgeW.(1982).Pulpandpapereffluentmanagement.JournalWaterPollutionControlFederation.54(6):704-16.Hall,PhilipL.,WolfgangG.GlasserandStephenW.Drew(1980).In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,33-49.Hansen,EdwardA.,DavidH.Dawson,andDavidN.Tolsted(1980).Irrigationofintensleyculturedplantationswithpapermilleffluent.Tappi.63(11):139-143.Hardie,D.W.F.(1975).ElectrolyticManufactureofChemicalsfromSalt.TheChlorineInstitute,NewYork,92p.Hutchins,FloydE.(1979).ToxicityofpUlpandpapermilleffluent.EPA-600/3-79-013.Kirk,KentT.andHou-MinChang(1981).Potentialapplicationsofbio-ligninolyticsystems.EnzymeMicrob.Technol.3:189-195.Kirk,KentT.,TakayoshiHiguchi,andHou-minchang(1980).Ligninbiodegradation:summaryandperspectives.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,235-243.

PAGE 140

130Knight,R.L.(1990).Wetlandsystems.In:NaturalSystemsforWastewaterTreatment.ManualofPracticeFD-16,WaterPollutionControlFederation:211-256.Knight,R.L.(1992).Ancillarybenefitsandpotentialproblemswiththeuseofwetlandsfornonpointsourcepollutioncontrol.EcologicalEngineering.1:97-113.Kowzlowski,T.T.(1984).Plantresponsestofloodinginsoil.BioScience.34(3):162-166.Larrson,PerandKerstinLemkemeier(1989).Microbialmineralizationofchlorinatedphenolsandbiphenylsinsediment-watersystemsfromhumicandclear-waterlakes.WaterResources.23(9):1081-1085.Martin,J.P.(1980).Microbialdegradationandstabilizationof14C-labeledlignins,phenols,andphenolicpolymersinrelationtosoilhumusformation.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.I,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,77100.Mitsch,WilliamJ.andJamesG.Gosselink(1986).Wetlands.VanNostrandReinhold,NewYork,535p.Monk,C.D.(1966).Anecologicalstudyofhardwoodswampsinnorth-centralFlorida.Ecology.47:649-654.Monk,C.D.(1968).Successionandenvironmentalrelationshipsoftheforestvegetationofnorth-centralFlorida.AmericanMidlandScientist.79:441-457.NCASI(1991).Pope&Talbottouseartificialwetlandforthird-stagewastewatertreatment.NCASIBulletin16(1). Odum,E.P.(1971).FundamentalsofEcology.W.B.SaundersCo.,Philadelphia,544p.Odum,H.T.(1956).Primaryproductioninflowingwaters.Limnol.andOceanogr.1:103-117.Odum.H.T.(1983).SystemsEcology:AnIntroduction.Wiley,NewYork,644p.Odum,H.T.(1992a).EmergyandPublicPolicyPartI.UniversityofFlorida,Gainesville,FL,285p.Odum,H.T.(1992b).EmergyandPublicpolicyPartII.UniversityofFlorida,Gainesville,FL,162p.

PAGE 141

131Odum,H.T.,MichaelA.Miller,BettyT.Rushton,TimR.McClanahanandGRonnieBest(1983).InteractionofWetlandswiththePhosphateIndustry.CenterforWetlands,UniversityofFlorida,Gainesville,FL,164p.OECD(1985).EconomicAspectsofEnergyUseinthePulpandPaperIndustry.PopeandTalbot(1990).Halseywetlandstudybreaksnewground.In:TheNewsletterofPopeandTalbot,Inc.3(1)Presley,Richard(1990).Bleachplantfacesnewenvironmentalhurdleinadsorbableorganichalides.Pulp&Paper.Sept.,252-255.Pritchard,LowellJr.(1992).EcologicalEconomicsofNaturalWetlandRetentionofLead.M.S.Thesis,139p.PUlp&Paper(1991).Cleanair,dioxinaredominantconcerns.pUlp&Paper.Jan.,79-80.Salkinoja-Salonen,MirjaandVeronicaSundman(1980).RegulationandgeneticsofthebiodegradationofligninderivativesinpUlpmilleffluents.In:LigninBiodegradation:Microbiology,Chemistry,andPotentialApplicationsVol.II,T.KentKirk,TakayoshiHiguchi,andHou-minChang(Eds),CRCPress,BocaRaton,FL,179-198.SirrineEnvironmentalConsultants,Inc.(1989).AdvancedWasteTreatmentOptions,ChampionInternationalCorp.,Pensacola,FLMill.SECJobNo.G-8286.Strumm,WernerandJamesJ.Morgan(1981).AquaticChemistry:AnIntroductionEmphasizingChemicalEquilibriainNaturalWaters.Johnwiley&Sons,Inc.NewYork,780p.Swann,CharlesE.(1990).Bleachplantsconcentrateonreducingchlorinatedorganics.AmericanPapermaker.JUly:21-3.Thut,Rudolph,N.(1990a).Utilizationofartificialmarshesfortreatmentofpulpmilleffluent.Tappi.Feb.:93-6.Thut,Rudolph,N.(1990b).Treatmentofpulpmilleffluentbyanartificialmarsh-largescalepilotstudy.In:Tappi1990EnvironmentalConferenceProceedings.

PAGE 142

132Vollenweider,R.A.(Ed)(1969).A ManualforMethodsonMeasuringPrimaryProductioninAquaticEnvironments.lBPhandbook#12,BlackwellScientificPUblications,Oxford.

PAGE 143

BIOGRAPHICALSKETCHPeterKellerwasbornonJuly9,1963,inVanNuys,CA.HeattendedWestonHighSchoolinWeston,CT.FollowinghighschoolgraduationPeterenrolledatOregonStateUniversityandgraduatedwithaBachelorofSciencedegreeinforestmanagementin1986.HethenspentfouryearsasacommoditylumbertraderinBoston,MAbeforeenrollingintheUniversityofFloridamastersprograminenvironmentalengineeringsciences.133

PAGE 144

IcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeofMasterofScience.H.T.Odum,ChairmanGraduateResearchProfessorofEnvironmentalEngineeringSciencesIcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeof G.RonnieBestScientistofEnvironmentalEngineeringSciencesIcertifythatIhavereadthisstudyandthatinmyopinionitconformstoacceptablestandardsofscholarlypresentationandisfullyadequate,inscopeandquality,asathesisforthedegreeof M"ark T.BrownAssociateScientistofEnvironmentalEngineeringSciencesThisthesiswassubmittedtotheGraduateFacultyoftheCollegeofEngineeringandtotheGraduateSchoolandwasacceptedaspartialfulfillmentoftherequirementsforthedegreeofMasterofScience.December,1992WinfredM.PhillipsDean,CollegeofEngineeringMadelynM.LockhartDean,GraduateSchool