Citation
The radiation chemistry and mass spectrometry of trifluoromethyl iodide and pentafluoroethyl iodide in the gas phase

Material Information

Title:
The radiation chemistry and mass spectrometry of trifluoromethyl iodide and pentafluoroethyl iodide in the gas phase
Creator:
Hsieh, Tacheng, 1947-
Publication Date:
Language:
English
Physical Description:
xii, 131 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Atoms ( jstor )
Dosage ( jstor )
Free radicals ( jstor )
Iodides ( jstor )
Iodine ( jstor )
Ions ( jstor )
Mass spectra ( jstor )
Mass spectroscopy ( jstor )
Molecules ( jstor )
Radiolysis ( jstor )
Iodides ( lcsh )
Ionized gases ( lcsh )
Mass spectrometry ( lcsh )
Radiation chemistry ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Includes bibliographical references (leaves 125-130).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Tacheng Hsieh.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000161405 ( ALEPH )
AAS7745 ( NOTIS )
02672693 ( OCLC )

Downloads

This item has the following downloads:


Full Text










THE RADIATION CHEMISTRY AND MASS SPECTROMETRY OF
TRIFLUOROMETHYL IODIDE AND PENTAFLUOROETHYL
IODIDE IN THE GAS PHASE










BY

TACHENG HSIEH


A DISSERTATION PREzErIED TO THE CRADE'ATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE RElQIRE!,ITS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY







UNIVERSITY OF FLORIDA


1976













ACKNOWLEDGMENTS


The author expresses his sincere appreciation to his research

director, Prof. Robert J. Hanrahan, for his advice and encouragement

throughout this work. He also thanks Dr. John R. Eyler for

providing access to the ICR experiments.

Special appreciation goes to his wife, Jinn-Hwei, for her

understanding and patience that has made this work possible.
















TABLE OF CONTENTS


Page

ACKNOWLEDGMENTS ......................... ...................... ii

LIST OF TABLES ....................... ........ ............ ... v

LIST OF FIGURES ............................................. vii

ABSTRACT ...................................................... x

I. INTRODUCTION ......... ....................... ........... 1

A. Foreword .............. .. ..... ...... ................. 1
B. Review of Previous Work ............................ 1

II. EXPERIMENTAL PROCEDURES AND APPARATUS ..................... 5

A. Reagents and Their Purification ..................... 5
B. Sample Preparation ................................. 6
C. Sample Irradiation .............. ............ .... 8
D. Dosimetry .......................................... 10
E. Analytical Equipment and Product Analysis ......... 12

III. ION-MOLECULE REACTIONS IN THE SYSTEMS TRIFLUOROMETHYL
IODIDE AND PENTAFLUORL,'ETHYL I:'DIDE .................... 22

A. Experimental Results ............................... 22
B. Discussion ..... ................................... 26
C. Summary ..................... ...... .............. 43

IV. THE GAMMA RADIOLYSIS OF TRIFLUOROMETHYL IODIDE .......... 45

A. Experimental Results ......................... ... 45
B. Discussion ................... ............ ......... 52
C. Summary ......................... .... ..... 63

V. THE GAMMA RADIOLYSIS OF PENTAFLUOROETHYL IODIDE .......... 64

A. Experimental Results ............................ 64
B. Discussion ....... .. ................................. 85
C. Summary .......................................... 95










TABLE OF CONTENTS (continued)


Page

APPENDIX I APPEARANCE POTENTIAL MEASUREMENTS ON C2F5 ......... 98

APPENDIX II IDENTIFICATION OF RADIOLYSIS PRODUCTS .............. 109

APPENDIX III RELATIVE FLAME IONIZATION DETECTOR RESPONSE OF
RADIOLYSIS PRODUCTS ............................... 123

REFERENCES .................................. ............. 125

BIOGRAPHICAL SKETCH .......................................... 131














LIST OF TABLES


Table Page

1 Rate Constants of Fragment Ions in the C2F5I System ...... 27

2 Rate Constants of Fragment Ions in the CF3I System ....... 34

3 Ion-Molecule Reactions in C2F5I .......................... 35

4 Ion-Molecule Reactions in CF I ......................... 41

5 Radiolysis Yields for CF3I ............................... 53

6 Radiolysis Mechanism in the CF3I System .................. 55

7 Comparison of Radiolysis Conditions in the CF3I System ... 60

8 G Values for Radiolysis Products from C2 F 5 at 50 Torr ... 83

9 Secondary Ionic Processes in the Radiolysis of C2F5I ..... 88

10 Neutral Secondary Processes in the Radiolysis of C2F5I ... 91

11 Selected Thermochemical Data for Fluorocarbon Species .... 102

12 Selected Thermochemical Data for Fluorocarbon Ions ....... 104

13 Selected Bond Dissociation Energies for Fluorocarbon
Species ........................ .... ....... ... ........ .. 105

14 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 1 and 2 ........................ ... ...... .. 114

15 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 3 and 4 ............................ ........ 115

16 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 5 and 6 ................................... 116

17 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 7 and 8 .................................... 117











LIST OF TABLES (continued)


Table Page

18 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 9, 10, and 11 ..... .................... .. 118

19 Mass Spectra of Pentafluoroethyl Iodide Radiolysis
Product Nos. 12, 13, and 14 ............................. 120

20 Mass Spectra of Pentafluoroethyl Iodide Radiclysis
Product Nos. 15, 16, and 17 ............. .............. 122

21 Relative Flame Ionization Detector Response on MicroTek
2000 Research Gas Chromatograph ........................ 124















LIST OF FIGURES


Figure Page

1 Annular radiolysis vessel and holder ..................... 9

2 Dosimetry: Hydrogen yield from ethylene as a function of
irradiation time .................. ..... ........... ....... 11

3 Gas chromatographic sample loops ......................... 13

4 Schematic of Bendix high pressure ion-molecule reaction
source ...... ......... .... ........... ... ....... ....... ... 18

5 Schematic of ICR cell used for ion-molecule studies ...... 20

6 Normalized CF CF3 C2F5', and CF2I ion intensities as
a function of delay time in the T.O.F. spectrum of C2F51
at 37.0 microns and 500 C ................................ 23

7 Normalized C2F4I and C2F I ion intensities as a function
of delay time in the T.O.F. spectrum of C2F5I at 37.0
microns and 50 C ....................................... 24

8 Normalized I 12 C2F 12 and (C2F5I)2 ion intensities
as a function of delay time in the T. .F. spectrum of
C2F5I at 37.0 microns and 500 C .......................... 25

9 Ion Cyclotron Double Resonance spectrum of C2F5I+ with
an irradiating field of 0.48 V ......................28

10 Ion Cyclotron Double Resonance spectrum of C2F4I with
an irradiating field of 0.48 V .......................... 28

11 Normalized CF I+, CF2I1, and CF II ion intensities
a function of pressure in the T.0.F. spectrum of CF3I
at 25 C .............................................. 29

12 Normalized I2 CF312 and (CF3I)2+ ion intensities as
a function of pressure in the T.O.F. spectrum of CF3I
at 250 C ........... ............................... ..... 330










LIST OF FIGURES (continued)

Figure Page

13 Normalized ion single-resonance intensities as a
function of pressure in the ICR spectrum of CF3I at
25 eV and 25 C ........................................ 31

.14 Normalized CF +, CF2I and CF3I+ ion intensities as
a function of delay time in the T.O.F. spectrum of CF3I
at 50.0 microns and 500 C .............................. 32

15 Normalized I+, 12, CF312 and (CF3I)2 ion intensities
as a function of delay time in the T.O.F. spectrum
of CF3I at 50.0 microns and 500 C ...................... 33

16 Production of 1I (pure, ; 5%o HI, 0 ), CF3H (5 HI,
o ), and H2 (5o HI, ) as a function of dose in the
CF3I system ..................... ..................... 46

17 Production of CF4 (pure, 4 ; Y5 HI, 0 ) as a function
of dose in the CF3I system ............................ 47

18 Production of C2F6 (pure, 0' ;Yo HI, 0 ) as a function
of dose in the CF3I system ........................... 48

19 Production of C2F4 (pure, i ;Y5 HI, [] ) and C3Fg
(pure, 0 ; 5% HI, 0 ) as a function of dose in the
CF3I system ............................................ 49

20 Production of C2F5I (pure, ( ; 5% HI, 0 ) as a
function of dose in the CF3I system ................ 50

21 Production of CF212 (pure, 0 ; 5% HI, 0 ) and CF2IH
(5o HI, [ ) as a function of dose in the CF3I system... 51
22 Production of 12 (pure, Y ; 5% HI, O ) as a function
of dose in the C2F5I system ........................... 69

23 Production of CF4 (pure, ( ; Y5 HI, 0 ) as a
function of dose in the C2F5I system ................... 70

24 Production of C2F6 (pure, 0 ; 5o HI, 0 ) as a
function of dose in the C2F5I system ................... 71

25 production of C2F4 (pure, 0 ; 5% HI, 0 ) as a
function of dose in the C2F5I system .................. 72


viii









LIST OF FIGURES (continued)


Figure Page
26 Production of C3F6 (pure, ; 5% HI, 0 ) as a
function of dose in the C2F5I system .....................73
27 Production of C3Fg (pure, 0 ) and n-C4F10 (pure, i )
as a function of dose in the C2F5I system ................74
28 Production of CF3I (pure, ; 5% HI, 0 ) as a
function of dose in the C2F5I system .....................75
29 Production of C2F3I (pure, ; 5% HI, 0 ) as a
function of dose in the C2F5I system .................... 76

30 Production of n-CF7I (pure, ; 5% HI, 0 ) and
i-C3F7I (pure, i ) as a function of dose in the
C2F5I system ............................................ 77
31 Production of n-C4F9I (pure, 0 ; 5% HI, 0 ) and
1-C3F 5 (pure, N ) as a function of dose in the
C2F5I system ......... ...... .... ...................... 78
32 Production of s-C4F9I (pure, ; 5% HI, 0 ) as a
function of dose in the C2F5I system .....................79

33 Production of CF212 (pure, ; 5% HI, 0 ) as a
function of dose in the C2F5I system .....................80

34 Production of CF2ICF2I (pure, ; 5% HI, 0 ) and
CF3CFI2 (pure, i ) as a function of dose in the
C25FI system ........................................... 81
35 Production of CF3H ( 0 ), C2F5H ( 0 ), CF2IH ( i ),
and H2 ( & ) as a function of dose in the 5% HI-added
C2F5I system ...................................... .82
36 R.P.D. curves for CF3+, C2F5+, and C2F5I+ from C2F5I;
N2 from N2 .......... .. .......... ... ........... 99

37 Gas chromatogram of irradiated pentafluoroethyl iodide ..110
















Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy


THE RADIATION CHEMISTRY AND MASS SPECTROMETRY OF
TRIFLUOROMETHYL IODIDE AND PENTAFLUOROETHYL
IODIDE IN THE GAS PHASE

BY

Tacheng Hsieh

March, 1976
Chairman: Dr. R. J. Hanrahan
Major Department: Chemistry


The ion-molecule reactions in CF I and C2F5I have been investi-

gated using a Bendix Time-of-Flight mass spectrometer to obtain

kinetic data, and a Varian Ion Cyclotron Resonance mass spectrometer

to obtain information on the reaction pathways. To obtain kinetic

data, measurements of the variation of the ion intensities with

changes in delay time were carried out. The most characteristic

reaction is ion-molecule condensation leading to the formation of

dimers such as (CF I)2 in the CF3I system and (C2F5I)2+ in the C2F5I

system. Other reactions involving charge transfer, fluoride-ion

transfer, iodide-ion transfer, CF3 transfer, iodine-atom transfer,

and collision induced dissociation are also observed. Fluoride ion

transfer processes are observed only when the final products are

stable molecules, such as CF4 in the CF I system and CF4, C2F6, and









CF3I in the C2F5I system. The parent ion and major fragment ions

resulting from electron impact on perfluoroalkyl iodides are formed

with considerable internal excitation amounting to as much as 1.5 eV.

The fragmentation of C2F5I under electron bombardment was studied

using a Bendix Time-of-Flight mass spectrometer. Using the Fox

Retarding Potential Difference technique, measurements were made of

the appearance potentials of parent ion as well as major ionic

fragments including C2F5If (10.66 eV), C2F5+ (11.71 eV), and CF3+

(13.73 eV). From these results it is found that AH0 for the parent

molecule C2F5I is > -236.4 kcal/mole, the (CF3CF2-I) bond dissociation

energy is < 47.0 kcal/mole and the (CF3-CF2I) bond dissociation

energy is ( 73.6 kcal/mole.

The gamma-radiolysis of gaseous C F 5I was studied at 50 Torr

and 240 C, both pure and with added HI. In all, 17 products were

formed in the radiolysis. For the pure system the major radiolytic

products and their respective G values are 12, 0.91; C2F6, 0.28;

C2F4, 0.78; C3F8, 0.15; n-C4F0, 0.42; CF I, 0.18; CF22, 0.18;

CF2ICF21, 0.11; and CF3CFI2, 0.052. It was observed that the addition
of approximately 5% HI dramatically increased the G values of I2

(from 0.91 to 2.84) and the initial G value of CF3I (from 0.18 to

2.50), while decreasing other product yields by 50 to 100%. Tn

addition, CFJP, C2FH, CF2IH, and H2 were also formed in the HI-added

system. Results are discussed in terms of ionic fragmentation and

ion-molecule chemistry of C2F5I, as observed in this investigation,

as well as postulated bond-rupture processes of neutral excited

species. The observed low overall yield is due to the back reactions









between 12 and C2F5 radicals.

The gamms-radiolysis of gaseous CF3I was also studied at 25

Torr and 240 C, both pure and with added HI. The major radiolytic

products and their corresponding G values in the pure system are
12, 0.50; CF4, 0.55; and C2F6, 0.11. With added HI scavenger, the

additional products CF3H, CF2IH and H2 were observed. In general,

the results can be interpreted in terms of known ion fragmentation

and ion-molecule chemistry of CF3I, investigated as part of the

present work, as well as neutral fragmentation processes and radical

reactions observed during photolysis. However, a comparison of the

present work with results from other laboratories shows that CF3I

can break down under different radiolysis conditions to give C2F6

plus 12 (Cooper, et al.), CF4 plus CF2I2 (McAlpine, et al.), or

CF4 + 12 (CF2)n (present work). Some suggestions are presented

concerning the factors which control branching of the reaction

pathways during radiolysis of this compound.














I. INTRODUCTION


A. Foreword


Investigations of the gamma radiolyses of trifluoromethyl

iodide and pentafluoroethyl iodide in the gas phase were undertaken

to study the primary and secondary processes leading to their

decomposition. Studies of ion-molecule reactions in both systems

provided supplementary information on the decomposition mechanism.

This work was undertaken both for purposes of comparison with

the radiolysis (1, 2) and mass spectrometry (3, 4, 5) of the

hydrocarbon analogs, and also because of continuing interest in the

Kasper-Pimental iodine atom laser based on photolysis of CF I

(6, 7, 8). Although the radiolysis of gaseous CF3I has been

investigated in two laboratories, there are discrepancies in the

obtained results. No previous work has been reported on the

radiolysis of C2F5I, or on the ion-molecule reaction chemistry of

either compound.



B. Review of Previous Work


More than two decades ago, Dacey (9) studied the gas phase

photolysis of CF3I using a 2537 R mercury resonance lamp. At low

pressure only C2F6 and 12 were formed, both with low quantum yields.

However, at pressures above 10 Torr, small amounts of C2F4 polymer








were also present. More recently, Skorobogatov and Smirnov(7) made

a mass spectrometric analysis of the volatile product residues after

the pulsing of CF3I and C3F I lasers. From the results of these

analyses, Skorobogatov concluded that: (1) In the CF3I system, the

electronically excited I(2P /2) atoms promote the conversion of CF3I

into C2F4 and C2F6, while the nonexcited (2 P3/2) atoms promote the

conversion of CF I into CF4 and (2) In the C3F7I system, the I(2P1/2)

atoms are responsible for the formation of C2F4, C3F6, and C2F5I,

while the I( 2P/2) atoms account for the conversion of C F7I into

CF4, C2F6, and polymers.

McAlpine and Sutcliffe (10) investigated the.gamma radiolysis

of CF I at a dose rate of 4.6 X 1019 eV/g-hr. These authors give

the following account of the radiolysis mechanism in this system.

In the absorbed dose range of 1.19 to 44.5 X 1021 eV, the primary

processes were:


CF3I vvvx- CF3I' + e 1

n'A CF + I+ + e 2

V^XW- CF + + I + e 3

qw+ CF I (excited molecule) 4


The main fate of the parent ions is neutralization to give e -ited

molecules and ultimately CF3 radicals

+ ** *
CFI + e --> CFI ----> CF + I 5


The consequence of the detailed primary processes listed in Equations









1 to 5 is summarized by Equation 6. Secondary processes postulated

by McAlpine are given in Equations 7 to 10:

*
CF3I '~AWv+ CF + I' 6

CF + CF3I > CF2I. + CF4 7

M + CF2I- + I. > CF2I2 + M 8

CF 2I + CF I -- CF2I2 + CF3. 9

M + CF3. + I- CF3I + M 10


McAlpine also stated that no C2F6 was formed when the glass vessel

surface was conditioned. (The irradiation vessel was preconditioned

by heating in vacuum for 0.5 hr followed by repeated irradiation of

samples of trifluoromethyl iodide until consistent results were

obtained.) However, C2F6 was formed in unconditioned vessels.

At about the same time, Cooper and coworkers (11) also studied
20
the gamma radiolysis of CF3I at dose rates of 1.3 to 2.6 X 1020 eV/g-hr.

Their observations were in contradiction with McAlpine's work. Cooper

proposed the following reaction scheme:

+ +
CF I '1AAvA CF I + e > CF + I* + e 11

--- CF. + I + e- 12

CF3I 3 vv\.+ CF2 + F. + I. 13

I + CF3I > CF 3I + 1- 14

I- + CF3I > CF3. + I2 15

CF 3 + CF* > C2F6 16
3 3 26 1










CF3 + F -- CF 17

CF2 + CF2 C2F and/or polymers 18

CF3 + I -- CF3I 19

CF 3 + 12 CF3I + I. 20

There were several disagreements in the yields reported by

McAlpine and by Cooper; the respective values are G(C2F4) = 0

(McAlpine) or 0.89 (Cooper); G(C2F6) = 0 (McAlpine) or 3.0 (Cooper);

G(CF212) = 0.82 (McAlpine) or 0 (Cooper); and G(I2) = 0.13 (McAlpine)

or 4.08 (Cooper).














II. EXPERIMENTAL PROCEDURES AND APPARATUS


A. Reagents and Their Purification


Trifluoromethyl iodide


PCR, Incorporated trifluoromethyl iodide was purified using

preparative gas chromatography. A 10-foot-long stainless steel

column packed with 60/80 mesh silica gel was used, and was operated

at 400 C with a helium flow rate of 60 ml/min. The collected

trifluoromethyl iodide was then transferred through a barium oxide

drying tube to a U loop on the vacuum line. It was degassed by

several freeze-pump-thaw cycles and stored at -1960 C in a vessel

attached to the vacuum line.


Pentafluoroethyl iodide


PCR, Incorporated pentafluoroethyl iodide was purified and

stored using the same method as that for trifluoromethyl iodide as

described above.


Ethylene


Matheson Company C. P. grade ethylene (99% minimum purity)

was passed through a barium oxide drying tube into a storage vessel

on the vacuum line and degassed by the freeze-pump-thaw method.









Hydrogen iodide


Hydrogen iodide was prepared by dehydrating Matheson Coleman

& Bell reagent grade hydriodic acid (57%) with P205. The acid was

frozen in a round bottom flask with liquid nitrogen, and P205 was

added on top of it. The flask containing the frozen mixture was

attached to the vacuum line and allowed to melt very slowly. The

HI that was released when the acid reacted with the P205 was

transferred through a P205 drying tube to another flask attached to

the vacuum line. Several freeze-pump-thaw cycles were performed to

separate HI from the iodine which was also produced. The HI was

kept frozen at liquid nitrogen temperature until used.


Chromatographic calibration standards


The gas calibration standards were used as received. (These

gases as well as liquid samples were obtained from PCR, Inc.) The

liquid standards were degassed by the freeze-pump-thaw method and

transferred to a gas chromatographic sample loop via a metering

vessel of known volume.



B. Sample Preparation


Vacuum system


All samples for radiolysis were prepared on a vacuum line.

The pumping system was a Welch Duo-Seal mechanical pump connected

through a liquid nitrogen trap to a two stage mercury diffusion

pump. These pumps were connected to the main manifold through a








second liquid nitrogen trap and a stopcock. Attached to the main

manifold were a mercury manometer, two metering vessels of known

volume (26.0 ml and 335.1 ml respectively), a thermocouple vacuum

gauge, storage vessels for CF3I, C2F5I, and HI, several Teflon-plug

stopcocks with 0-ring joints, a Toepler pump-McLeod gauge apparatus,

and a submanifold used for transferring radiolysis products to a

sample loop for analysis following irradiation. The submanifold

utilized only Teflon-plug stopcocks and had a separate thermocouple

vacuum gauge for monitoring sample transfer operations.


Treatment for cleaning radiolysis vessels


The vessels used for radiolysis were rinsed with distilled

water and annealed at 5650 C to remove any organic residues. They

were then attached to the vacuum line and pumped on for at least

5 hours before filling them with samples.


Metering and filling of radiolysis vessels


Before sample preparation, the manifold was isolated from the

pumps and the C2F5I vapor was allowed to expand into the 335.1 ml

metering vessel until a desired pressure was reached. The valve to

the metering vessel was closed and the excess material in the main

manifold was condensed back into the storage vessel using liquid

nitrogen. When HI was added, this was metered in by using the 26.0 ml

standard vessel and was introduced after the C2F5I transfer. After

samples were metered in, the entire metered amount was then vacuum

transferred into a radiolysis vessel while continuously monitoring






8

the pressure with the thermocouple gauge. Although this transfer

was completed within 5 minutes, 20 minutes were allowed for this

process. After all materials were transferred into the radiolysis

vessel, the vacuum line was opened to the pumps for another 10

minutes before the radiolysis vessel was sealed off with a natural

gas-oxygen flame.

The same procedures were employed in the case of CF I.



C. Sample Irradiation


Radiation source and vessels

Irradiations were carried out at room temperature (240 C) in

a Cobalt-60 gamma ray source which has been described in detail

elsewhere (12).

The annular radiolysis vessel used in this work is shown in

Fig. 1. It was made of Pyrex and equipped with a breakseal, a cold

finger and a 10 cm path length Supersil quartz optical cell (#S18-

260; Pyrocell Manufacturing Co.) connected by a quartz to Pyrex

graded seal. The two annular vessels used in these investigations

had volumes of 370.7 ml and 382.4 ml, respectively.

The sample holder (Fig. 1) allowed reproducible positioning of

the radiolysis vessel during irradiations. The vessel fits onto a

metal post; the height of this metal post allowed the Cobalt-60

source to rest in the center of the vessel.
















































0


r-7
0I)

Pi
0


H
4-3



0 b
0)

z





ry)0
o rr




CI)
(D-
Cd



H ON
.z4d
tuo
m
~c\Z







"4-
rx.~


^=7H









D. Dosimetry


It has been reported that the hydrogen yield in ethylene under

gamma radiolysis in the pressure range of 150 to 1000 Torr at room

temperature is independent of absorbed dose (13). Furthermore, the

G value for hydrogen production in ethylene has been established to

be 1.2 (14).

The absorbed dose rate in the ethylene system was determined

by measuring the hydrogen yield at room temperature at irradiation

times between 5 and 24 hours and at a pressure of 200 Torr. Following

irradiation the amount of hydrogen (along with small amounts of methane

and ethylene) was determined using the Toepler-McLeod apparatus.

Knowing the total pressure of the mixture and the quantities of

methane and ethylene (determined by gas chromatographic analyses),

the hydrogen yield could be calculated. The amount of H2 plotted

against the irradiation time gave a straight line, as shown in Fig. 2.

From the slope of the plot in Fig. 2 and the accepted G value for

hydrogen, the absorbed dose rate in ethylene was calculated to be

4.29 X 1019 eV/g-hr on June 26, 1975.

Assuming that the radiolysis vessels used approximated a

Bragg-Gray cavity (15), the rate of energy deposition in ethylene

can be correlated with that in C2F5I and CF3I. Since the application

of the Bragg-Gray principle is justified (16), the ratio of the

energy deposited per unit mass in the sample to that in the dosimeter

can be determined by the ratio of their mass stopping powers (17).

The final form of the dosimetry equations used to calculate









11









*r


0N 0


Cd


4
F-H
\ C


o
CN 0



C,d
\ O




z r-C

0 0



0 Z )
0 r-.:


C\ 1 0
O --




S-1 r-1




N-I -I-
000

00







0



Clo
\ -H



*** rz
Nd 3(i\


HZiD JO u-o E/sai-ouioxoTuI -H









the absorbed dose rates in C2F5I and CF3I are


Dose (C2F51) = 0.666 Dose (C24)

Dose (CF I) = 0.636 Dose (C2H4)


in units of eV/g-hr. Therefore, the absorbed dose rates on June 26,

1975 were 2.86 X 1019 eV/g-hr for C2F5I and 2.73 X 1019 eV/g-hr for

CF I. During subsequent irradiations, the absorbed dose rates were

corrected for the decay of Cobalt-60. Sample weights used in both

vessels were 0.088 g for CF3I and 0.222 g for C2F5I. (Actual sample

pressures varied slightly from the normal values due to slight

difference in the volume of the vessels used.)



E. Analytical Equipment and Product Analysis


Gas chromatograph

A MicroTek model 2000 research gas chromatograph equipped with

a flame ionization detector and a thermal conductivity detector was

used for the quantitative analysis of organic products. In this

instrument, the gas chromatographic column is enclosed in an oven whose

temperature is controlled by a multifunction temperature programmer.

The output of the gas chromatographic detector system was fed to a

1 mV Westronics recorder. All products were transferred on : vacuum

line submanifold to one of the sample loops shown in Fig. 3 for

subsequent injection into the gas chromatograph.


a. Products noncondensible at -1960 C

In the determination of the noncondensibles, the radiolysis






13














L1















L2


Fig. 3 Gas chromatographic sample loops.









vessel was attached to a submanifold leading to the Toepler pump-

McLeod gauge apparatus through a breakseal. After a good vacuum had

been reached, a "zero" pressure reading was taken with an Ealing

cathetometer. The system was isolated from the vacuum pumps and the

breakseal was broken open. The products were passed through a liquid

nitrogen U-trap. The noncondensible fraction was collected and

transferred in 12 Toepler pump cycles to the McLeod gauge for

measurement. It was then transferred to sample loop L1 for flame

ionization gas chromatographic analysis. This procedure allowed

determination of small quantities of methane and ethylene that

contributed to the pressure measurement. Hydrogen yields were

determined by difference.


b. Organic products condensible at -1960 C

The organic condensibles were transferred to smaple loop L2 on

the submanifold by breaking the breakseal. All products were separated

on a 9 ft, 0.25" O.D. X 0.020" wall stainless steel column packed with

60/80 mesh silica gel with a helium carrier gas flow rate of 40 ml/min.

The column was operated at 350 C until n-C4F10 eluted, after which

the temperature was increased at a rate of 20 C per minute to 150 C.

At the end of each analysis, the column was cinditioned at 2000 C for

several hours. A 5 m, 0.25" 0.D. X 0.020" wall stainless steel column

packed with 30% SE-30 on 60/80 mesh acid washed Chromosorb P was used

to investigate possible product decomposition on the silica gel column

described above. Products measured using the SE-30 column were in

agreement with those measured using the silica gel column, indicating







15


that there was no significant decomposition of products on the silica

gel column.

Prior to each analysis, the relative response of the flame

ionization detector to a typical fluorocarbon compound was determined

using perfluoropropane.

Since CF4 has an extremely small molar response in a flame

ionization detector (18, 19), it was measured using a thermal

conductivity detector.


Gas chromatograph-mass spectrometer-computer system

A detailed description of the gas chromatograph-Bindix model

14-107 mass spectrometer-General Automation SPC-12 minicomputer system

has been given elsewhere (20, 21). The gas chromatograph was equipped

with a stream splitter at the column exit. A Hoke "Milli-Mite"

metering valve diverted approximately 1/3 of the column effluent to

the detector of the gas chromatograph and the remaining fraction to

the ion source of the Bendix mass spectrometer through a single stage

jet molecular separator. The effluent splitter system allows the gas

chromatograph to operate at stmospheric pressure while running the

mass spectrometer under vacuum (10-6 Torr). Helium is used as the

carrier gas since it is easily skimmed off by the molecular separator;

furthermore, it provides minimum interference with the mass spectra

of other species. The mass spectral data acquisition is accomplished

by a General Automation SPC-12 minicomputer. During a gas chromato-

grap-mass spectrometer run, data are stored on magnetic tape (PEC 9-

track magnetic tape unit) and are retrieved and reduced at a later

time.









Spectrophotometry

A Beckman DU spectrophotometer with a Gillford model 222

photometer and power supply was used. Two readings were necessary

for each determination. First, the sample was condensed into the

cold finger of the radiolysis vessel and the cell absorbance determined.

Then the sample was volatilized and its optical density was measured

at 800 C. The difference between the two optical density readings

was taken to be proportional to the concentration of iodine. The

amount of iodine present was determined taking the extinction
-1 -1
coefficient to be 820 liter mole cm at 520 nm (22, 23). The

uncertainty in individual 12 measurements may be as much as 20% in

the worst case, although the standard deviation of the 12 dose-yield

plot was only 6%.


Equipment for ion molecule studies


a. High pressure mass spectrometry

The Bendix mass spectrometer could easily be changed from the

analytical to the ion-molecule mode (24). The high pressure ion

source was constructed as described by Futrell and coworkers (25).

A slight modification was made so that the filament is shielded to

prevent electrons from entering the ion focus region.

The ion source is housed inside a stainless steel "cross" which

is connected directly to the drift tube of the mass spectrometer.

Besides the regular pumping system supplied with the Bendix instrument,

a CVC Type D4 oil diffusion pump backed by a Welch Duo-seal forepump,

acting as an auxiliary fast pumping system was used. This system was






17
attached directly to the ion source by means of metallic bellows in

order to maintain a pressure differential of about 1000 : 1 between

the interior of the source and its surrounding region inside the

"cross". With this setup, ion-molecule reactions could be studied

at a pressure as high as 0.5 Torr.

Fig. 4 shows a schematic diagram of the ion-molecule reaction

source. The ion-molecule reaction chamber is a rectangular block

with a length of 0.222 inch in the direction parallel to the flight

tube; 0.25 inch in the direction parallel to the electron beam; and

1 inch in the vertical direction. The electron beam was pulsed at a

rate of 10 kHz (i.e. 100 microseconds for each complete cycle). A

small repulsive d.c. potential was applied to the backing plate R to

achieve the repeller field strength which is required to extract ions

from the source.

At some time interval, variable from zero to about 17 microseconds

after the electron beam was shut off, a +25 volt pulse was applied to

grid G1 and a synchronous pulse of -150 volts was applied to grid G2.

The pulse on Gl (blocking pulse) prevents any additional ions from

entering the focus region and the pulse on G2 (focus pulse) gates all

ions within the focus region between G1 and G2 into the acceleration

region. These ions are transmitted down the drift tube and appear at

the detector as several peaks in an order characterized by their ion

masses. This design allows data to be obtained as a function of

reaction time as well as source pressure.

During the off-cycle of the focus pulse, ions are continuously

coming out of the source. If they were allowed to reach the detector,

it would lead to a large continuous background current. The split













)H

e 0 0)

r 0 ET
( O 4
-P 3
H 0 0

bD o Cd
to -l a) a) iH
cd H Hl H
GAMMA


- 0 4-
, -p


,-i
o bD -
o k i F-
SH 0 &
& o
o ho o o.
0 d3 0 -


H-i NQ


LL-


(~L~


Oo


0

Ik
I---- '*----


o o
u\








plate structure of Grid G2 prevents this from happening (26). During

the off-cycle, a negative bias of about 150 volts is applied to the

lower half-plate. Since the upper half is at ground potential,

positive ions which diffuse past the grid (attached to the upper

half-plate) are accelerated against the lower half-plate and lost to

the walls. Therefore, only during the focus pulse are the ions in

the focus region swept into the acceleration region by G1 (+25 volts)

and G2 (-150 volts, both upper and lower half-plate).


b. Ion Cyclotron Resonance mass spectrometry

Ion Cyclotron Resonance (ICR) mass spectrometry is now well

established as a technique for the study of ion-molecule reactions (27).

In a typical apparatus used in such studies, a uniform magnetic field

B is oriented along the Z axis (Fig. 5) and a d.c. electric field E
s
(in the source region) is present in the Y direction. An ion of mass

to charge ratio m/e in crossed d.c. electric and magnetic fields will

drift in the X direction following a cycloidal trajectory with a

characteristic frequence of revolution w If an r.f. electric field

Er of frequency w1 is applied perpendicular to B, the ions will absorb

energy from the r.f. electric field and be accelerated when wl = wc.

Single resonance spectra are obtained by scanning B and measuring the

power absorption from a fixed frequency marginal oscillator.

A Varian V-5900 instrument equipped with the standard three

section flat cell was used (Fig. 5). The drift plate separation in

all sections was 1.1 cm, the length of the source region from the

filament location to the end of the source drift plates was 2.54 cm




















0
-A
I-
0r


t









0




On y,
0o


0




uL


2


wx


m -.
0p0
or *



"- p o
O OH
0 0 -0 H



0ol 0
0 0)

1 'd H H
0n3 d0) -





(1 0 z 0o

'd C 0) z
3o o



'dr-t c -t
-0 I 0 4- C\0


< C )




o00
S0 C 0
'd 4 A rl P ,
o -d o -f




*t i (1)rl ( P m
3 Il n7 ;1 Pe

( Co 0

-H 0) Hi 0 H 0)
S4 C l
0r )d ( -
H* rA .
0 -H
r -0 Cd -
I M CH 0 ()
004C Cd
H0 0\0 )-





CH C H H
2 -0+ (Q
D CM 0)


0)0 H0 (U 0

O 0 c *H
o 0), 1

M 0 r +3

0 O3 p
0 z d
0 cH 0 -i l

EN 0 p :S
6 )t-d 0) W) 0
H r-H H )
r C0Ha 0
HC 3H 0'-




i4-
EeH
00 OM


1-






cL
Q
--2--





Ot

c/1








and the length of the analyzer section was 6.35 cm. A single trapping

plate was used on each side of both the source and the analyzer

sections; separation was 2.54 cm. The level of the observing

oscillator frequency was set as low as possible in order to minimize

ion loss to the wall in the analyzer region. The emission current

was kept below 0.5 PA.

Double-resonance spectra were obtained by sweeping the double-

resonance frequency 2 while the analyzer was set at the magnetic

field required to observe a secondary ion of interest with the marginal

oscillator set at wl. The change in product ion intensity caused by

changing the kinetic energy of the primary ion was thus directly

observed. The double resonance r.f. field was applied to the source

region and the irradiating field strength was kept as low as possible

to prevent sweep-out effect (28).

Pressure was monitored by the Vac-ion pump control unit and the

rate constant for a well-established reaction (29)

+ +
CH 4 + CH4 > CH5 + CH


was measured as a reference under the same experimental conditions as

the reactions being studied, in order to back calculaLe the actual

pressure and thus calibrate the readings from the Vac-ion pump.

Due to the uncertainties in the measurements of ion tra it

times, the absolute pressures, and the complexities of the reactions

involved in the systems studied, no attempt was made to determine the

absolute reaction rate constants. The primary objective was to use

the double-resonance technique to identify reaction channels.














SIII. ION-MOLECULE REACTIONS IN THE SYSTEMS TRIFLUOROMETHYL
IODIDE AND PENTAFLUOROETHYL IODIDE


A. Experimental Results


C2FI system

Figs. 6, 7, and 8 show the variation of normalized and diffusion

corrected (17, 25) ion intensities as a function of delay time for

the high pressure Time-of-Flight mass spectrum of C2F5I at 37.0 microns

and 500 C. Intensities of CF+, CF3 and I+ decrease rather rapidly

with delay time; these ions disappear at 4, 9, and 12 psec, respec-

tively. Intensities of C2F5 CF2I C2FI+ and C2F5 + ions increase

with increasing reaction time. At 4 psec, C2F5+ ion intensity reaches

maximan while that of CF2I+ ion becomes constant. After 4 psec, the

abundance of C2F5+ ion drops off sharply while C2F I+ and C2F5I+ ions

continue to grow. As the reaction time increases, three new ions

having masses greater than the parent appear in the spectrum (Fig. 8)

and have been identified to be the species I2 C2F5 2 and (C2F5I)2

In the experiment illustrated in Fig. 7, the intensity of C2F5I

reaches a constant value beyond 9 psec. Under other experim- tal

conditions, however, the intensity of C2FI+ decreased as the heavier

ions (C2F5I)2+ and C2F512+ increased after approximately 6 psec.

Semilogarithmic plots of corrected intensities for the formation

and/or loss of ions against delay time gave straight lines; resulting















3 -




0 0
H *H




E 3
O 0







0 0

1-P d
u+ 0




0o r o


+ rl
0 0
rZ4 + *
a 0 c r





+ ) + 0
+ CH





00

0 0

+
+
0 0

0 *)
N

o *H

\O

Co

0N 0 0








24







00

r,.

a)









t o

0 o
4L)
NN ctO


H O
m


z 0



N~*HH
0 p 00



c d C\]
\+ 0

o 0
0 CO



o o o o o





\) \k- *H 7
H






a +0
9 \NH










t m


i-I
X4 v













o a
O O o O

r? o N H
0 /|x/./I
















Sd
0O

0 o

+ \

0
0 O 0



I- c i
HH






o0 -
ad

SO o|

N 00
H CH 0C





co 0
+"

z 0 NC
*H rd




0 -S 0
NH






0 o


ul
o -
COl
000 0 0








+ /
N0



H






cC

E O
0





co


00 &




(/W 0()









rate constants are summarized in Table 1. The semilogarithmic

treatment for the formation of ions is plotted as ln((A P)/Ao)

versus delay time for the ions I2 C2F51 +, and (C2F5I)2+, or

plotted as In((Po P)/Po) versus delay time for the ions C2 F5

CF2I+, C2FI+ and C2F5I where P is the corrected ion intensity,

A is the corrected initial intensity for the reactant ion, and P
0 o
is the corrected final intensity for the product ion.

Figs. 9 and 10 show typical Ion Cyclotron Double Resonance

(ICDR) spectra taken to identify reaction channels leading to the

formation of C2F5I+ and C2FI+ ions, respectively.


CF I system

Figs. 11 through 15 show the pressure and time dependence of

the ion intensities in the high pressure Time-of-Flight mass spectro-

metry as well as in the Ion Cyclotron Resonance study of the CF3I

system. Heavy ions such as I2 CF3I2 and (CF3I)2 were also formed

in this system. The semilogarithmic treatment as performed in the

C2F5I system gave good straight lines which led to the rate constants

for the formation or loss of fragment ions as listed in Table 2.



B. Discussion


C2FI system

The reaction pathways established on the basis of Ion Cyclotron

Double Resonance spectroscopy or high pressure Time-of-Flight mass

spectrometry are listed in Table 3. These measurements appear to











Table 1
Rate Constants of Fragment Ions in the C2F5I System

ions k, cm molecule- sec- X 100

CF+ dec. (0-4 psec) 13.4
CF + dec. (2-9 psec) 2.58

C2F5+ inc. (1-3 usec) 1.26
C2F5+ dec. (4-14 psec) 1.46
CF2I+ inc. (1-4 sec) 2.69
C2F4I+ inc. (2-12 psec) 2.11
C2F5I+ inc. (3-9 usec) 3.58
I+ dec. (2.5-8 4sec) 2.26

I2+ inc. (2.5-8 psec) 1.26
C2F5 I+ inc. (7-14 usec) 0.13
(C2F5I)2+ inc. (7-14 wsec) 0.15




















177 1k,? 119 100


m/e irradiated
Fig. 9 Ion Cyclotron Double Resonance spectrum of C2F5I+
with an irradiating field of 0.48 V.







*r-I
C|


177 119 69
m/e irradiated
Fig. 10 Ion Cyclotron Double Resonance spectrum of C2F4I+
with an irradiating field of 0.48 V.


L. -I


177


127 119 100












80.0





70.0

CF3



60 0 o


040.0
0
CF I
CF 50.0 C-


30.0


H V
2 40.0


20.0


30.0


l10.0 Lf-. CF 3I+


I

0.0
20.0 40.0 60.0 80.0

Pressure in microns

Fig. 11 Normalized CF + I+, CF2I+ and CF I3 ion intensities
as a function of pressure in the T.0.F. spectrum of
CF I at 25 oC.





























(CF3I)2 +













+


CF I2 +
!


60.0


80.0


100.0


Pressure in microns


Fig. 12 Normalized
a function
at 25 oC.


I2 CF3I2+, and (CF3I)2+ ion intensities as
of pressure in the T.0.F. spectrum of CF3I
3


20.0


10.0


20.0


40.0




















CF I+
3


CF3
3


CF2I
2


i I i


4.0


6.0


Pressure, Torr X 105


Fig. 13 Normalized ion single-resonance
function of pressure in the ICR
at 25 eV and 250 C.


intensities as a
spectrum of CF I
3


50.0


40.0 I-


30.0 1-


20.0


10.0 -


0.0 I
0.


0


2.0


8.0


I I I















60.0 -



CCFF




++
40.0 0.0




CF I++
2 c
20.0 0.0
O H




20.0
O





0.0




0.0 I I I
0.0 2.0 4.0 6.0 8.0
Delay in microsecs

Fig. 14 Normalized CF3, CF2I and CF I+ ion intensities as a
function of delay time in the T.O.F. spectrum of CF I
at 50.0 microns and 50 C.

















10.0




8.0 0-

(D 30 D
(cF I)2+
6.0 -
I I+



S4.0




2.0



CF 3I2
0.0 I I
0.0 2.0 4.0 6.0 8.0
Delay time in microsecs

Fig. 15 Normalized I I2, CF3I2 and (CF3I)2+ ion.intensities as
a function of delay time in the T.O.F. spectrum of CF I at
50.0 microns and 50 0C.











Table 2
SRate Constants of Fragment Ions in the CF3I System

ions k, cm molecule- sec- X 100

CF + inc. (1-3 psec) 1.20
CF+ dec. (3.5-6 psec) 2.46
CF + dec. (6-9 psec) 1.24
CF2I+ inc. (3.5-7 psec) 1.68
CF I+ dec. (1-3 psec) 1.36
CF I+ inc. (3.5-7 psec) 1.97
I+ dec. (2-6 psec) 2.85

2+ inc. (3-6 psec) 0.79
CF 12+ inc. (4-8 psec) 0.034
(CF3I)2+ inc. (3-8 psec) 0.22












II 0
II



11 0 4.3 4 3 +3 P P z I z
II + 0 0 o o o 0 0 0 0 0-
II II E I
II 0
II I

II *H
II r7 6-1
II _0 -C N0 -N -\-
li e -i- '0 (N -3- C- 0' C'- N c:_ 0'. 1- 0)

ll Cd3 cN c( Nj r-i H N to
ii + + + + I + + i + +a,
II *
II H Rl
II H

SII O

SII (
r II C \ 0 cO


N II C '. N
II N N O
S 11 O C.
0 II 0 pq (

- II a ,-
O II o r.
+0 II D 1 0 0



O II 0 --I H H H ( c-4 C
0, II C r )B
a II H .
O II + + M M "
SII 0 0
0 II+ Q F
E II + + + + + + + N0H H

o II + r H
SII N a N N N N N N H P.c
II 0 00
E-< 11 i Cl 0 i
c- II p o
a II ( 0 0 +
O II H F-

II H O 4-
E- +H 0 H

II H H H H H H H H -H H H H H H a,
0i C 4-d
E II n3 pq r




11 pl I 3 -P
011 r- Fr CT, _r P4 IP Od





II + + .J 1 1
II + + + + + H 0
11 HH+ + H HH -H H H '^i tr> a, ,; CH 6
II + + C1 e rx 4 H O


"- Fze [N l CN N N+ + Nx rz4 (l N N 0 0 z-
II 0 0 0 0 0 0 0 0 0 0 0 a 0
II 04 ko
+ 0+




c a 0 a)
1 H N ( n -+ U? \o o oC 0 H N1 O 0 E-i H 0
1r-I -| r-. -l H -
II 4 -13 0









be straightforward and in good agreement with each other. Wherever

possible, rate constants and heats of reaction for individual

processes are also listed in the table.

.Reactions of CF : Fig. 6 shows that the intensity of CF ion

decreases very rapidly and becomes zero after only 4 psec. In the

same time region, the intensity of C2F5+ ion increases drastically,

and that of CF2I ion increases to a nearly constant value. These

observations indicate that the primary reaction channels for the CF

ion are the formation of C25+ and CF2I+ ions. The formation of

C2F 5 ion could proceed either by iodide ion transfer,


CF+ + C2F5I > CF ++ CFI III-1


or by a dissociative charge transfer.


CF+ + C2F5I -- > C2F5 + + C I. III-la


Thermodynamic calculations indicate both reactions are endothermic.

However, Reaction III-1 is more favorable, since it would require only

4.4 kcal/mole in excess of that supplied by the reactants in their

ground states. Similar thermodynamic arguments suggest that the

favorable process for the formation of CF2I+ ion would be CF3 ion

transfer from parent molecule to CF+ ion. The CF,- ion transfer

reaction has been reported (17) in the ion-molecule reactions of

hexafluoroacetone.


CF + C2F5I ---- > CF2I + CF3CF III-2


The endothermicity of Reaction III-2 is 25.6 kcal/mole. Marcotte






37

and Tiernan (30) have previously reported the participation of excited

reactant ions during ion-molecule reactions of fluorocarbon species.

These authors pointed out that a large fraction of the CF+ species

formed by electron impact of C2F6 at 70 eV have internal energies

approaching 1.5 eV and the CF3+ ions in the tandem instrument have

as much as 2.9 eV of internal excitation. (It should be noted that

electrons of 100 eV energy were used in the high pressure Time-of-

Flight work and 25 eV in the ICR work. A tendency to form excited

ions under conditions of excess energy bombardment does not necessarily

invalidate appearance potential measurements taken at onset. This

point is discussed further in Appendix I.)

The rate constant for Reaction III-2 is 2.69 X 10-10 cm3
-1 -1
molecule sec Since the rate constant for the disappearance of

the CF+ ion is 13.4 X 10- cm3 molecule- sec- (Table ), the rate

constant for Reaction III-1 is estimated to be 10.7 X 10-10 cm3
-1 -1
molecule sec

Reactions of CF + and C2F .: From Figs. 6, 7, and 8 showing

the region between 4 and 10 psec, the combined decrease of the
intensities of CF+
intensities of CF and C2F5 is roughly equal to the combined increase

of the intensities of C2F4I and C2F 5I. The most important reactions

involving these species are as follows:


CF3+ + C2FI ---> C2F5I + CF3. III-3

CF3 + C2F5I > C2F4I + CF4 III-4

C2F5 + C2F5I -- > C2F5I+ + C2F.5 III-5

C2F5++ C2FI -- > CF4I+ + C2F III-6








All four reaction channels were identified by the ICDR technique. In

addition, the same set of reactions is strongly suggested by the high

pressure Time-of-Flight results shown in Figs. 6, 7, and 8. Reactions

II-3 and III-5 are charge transfer from CF3+ and C2F5+ ions to the

neutral parent molecules. However, thermodynamic calculations based

on ground state enthalpies of formation show that both are endothermic

reactions. The energy deficit is as high as 34.24 kcal/mole in

Reaction III-3. Hence, the reactants must be internally excited for

the reaction to occur; the reactant ions could be vibrationally and/or

electronically excited.

Reactions III-4 and III-6 are fluoride ion transfers from

neutral parent molecules to fragment ions CF + and C2 F5 for which

the exothermicities are 2.46 and 7.9 kcal/mole, respectively. The

possible dissociative charge transfer reactions have been ruled out,

since these reactions are endoergic by 114 kcal/mole.

The total rate constant for the decrease of CF+ ion (k + k)
3 4
is 2.58 X 010 cm molecule- sec- and for the disappearing of

C2F5+ ion (k5 + k ) is 1.46 X -10 cm3 molecule1 sec-1 (Table 1).

Since complicated processes are involved in the corresponding

product ions, no attempt was made to calculate individual rate

constant.

Reaction of CF +: There is no clear indication that t'

charge transfer from C2F ion to parent molecule occurs in the high

pressure mass spectrometry work, but this reaction is indeed seen

in the ICDR spectrum and requires 12.7 kcal/mole.








C2F4 + C2F5I > C2F51 + C2F III-7

This reaction is probably a very slow process since it is not seen

in the high pressure mass spectrometer.

Reactions of I : I+ ions are involved in the following

reactions:


I+ +C2F5I > C2F5I+ + I. III-8

I+ +C2F5I 12 + C2F5 III-9


Reaction III-8 is a simple charge transfer and Reaction III-9 is

an iodine atom abstraction reaction. The rate constant for the
s 2010 3 -1 -1
disappearance of reactant ion I+ is 2.26 X -10 cm molecule- sec.

The rate constant for the formation of I 2 is 1.26 X 10 cm
-1 -1
molecule sec Therefore, the rate constant for Reaction III-8
-10 3 -1 -1
can be estimated to be 1.00 X 10 cm molecule sec The

former is 4.24 kcal/mole endothermic and the latter is 16.6 kcal/mole

exothermic.

Reactions of CFI +: ICDR shows that two processes involve this

species as follows:


CF2I + C2F5I -- C2F5I + CF2I. III-10

CF2I + C2F5I -- CF4I+ + CF I III-11


This is essentially the same reaction pair which occurs with CF3

and C2F+ ions (charge transfer and fluoride ion transfer reactions).

An energy input of 1.4 kcal/mole is required in Reaction III-11.

Reliable thermochemical data on CF2I are not available, but from






40

ICDR experiments and rough estimation, Reaction III-10 is expected

to be endoergic by as much as 25 kcal/mole. Hence, Reactions III-10

and III-11 are not seen in the high pressure Time-of-Flight spectrum;

these two reactions are probably slow processes.

Reactions of C F I: The following reaction pathways are
21-5-
observed for parent ion C2F5 +:


C2FI+ + C2F5I -- C2F5I 2 + C2F5. III-12

C2F5I++ C25I --- (C2F5)2 III-13


Reactions III-12 and III-13 can be compared with results obtained

some years ago by Hamill and coworkers (3) on the corresponding

compound in the hydrocarbon series, ethyl iodide. In that investigation

the formation of simple dimer (C2H5I)2+ was assumed to occur via a

"sticky collision" process. In our system the corresponding

ion (C2F5I)2+ is presumably formed in the same way. Fragmentation

to give C2F5 2 is possible if sufficient energy is available. The

rate constants for the formation of C2F512+ and (C2F5)2+ ions are

0.13 X 010 and 0.15 X 0-10 cm3 molecule sec -, respectively.


CFI system

Ion-molecule reactions in the CF3I system are very similar to'

those observed in the C2F5I system. The following set of reactions

is compatible with the data of Table 4:


CF3 + CF3I > CF3 I + CF3. I1-14

CF3+ + CF I > CF2I + CF4 III-15

















O r
0
E--



0 0 0 0 0 0 0







0 0 0
H H -I E-H E-4






(N


+ i + i +







C0 +- 0 (\









SH+
** *
0 H CM 0 '- 0 0











0 H H 0 H 0

+ + + + + +


(NJ
+ + + C 'H
++ H

H H H + H C(
n cN r' + c C( r=4
0 0 U H 0 0

I Al IA





H H H H H H H
rX4 (4 4 r rX 5. r74
0 0 0 0 0 0 0

+ + + + + + +


+ + +
+ + H H H

0 0 H1 H 0 0 0


H H C\ O -


H
x
,-i



pt







H


0
c1










H


C)
4-)
-d













r- i H
r(

o





O C

0 0
0)

H
-I e
o



H *r.4
0 0
H o
O 0

E E3
C? 0
U 0)


4h





0




9 -
4i- 0)







*H *







Cm a
Cod

4, 4,




o o


-0) +
00) r













S4-l 0
00 0
0 O
0HI H
H
m a)
04' 4'
O 4
0 z
p 0

H w
Ea 0)
OH =
. -) I


0 0
0 4

0( 0
QC 0

030 B3


0O
o




H
0



0
4
I
I










0)





Co
r)



+
0
0




Co
0)
EP


a











0



0
Gp





*r
-P

IB
(D









I + CFI ---- CF I + I. 111-16

I + CF I -> 12 + CF III1-17

CF3I + CF I > CF + I. + CF I III-18

CF +1+ + CFI -> CF I2 + CF3 III-19

CF3I+ + CFI ---- > (CF I)2+ III-20


Reactions III-14 and III-16 are charge transfer from CF,+ and I ions

to parent molecules. Reaction III-15 is fluoride ion transfer from

parent molecule to CF + ion forming the stable CF molecule with a

rate constant of 1.68 X 010 cm molecule- sec as measured by

formation of CF2I+ ion. Reaction III-17 is iodine atom abstraction

by an iodide ion to form the 12 species. This reaction has a rate
-10 3 -1 -1
constant of 0.79 X 10 cm molecule sec The total rate

constant for the disappearance of I ion is 2.85 X 10-10 cm3 molecule-
-i
sec ; therefore the rate constant for Reaction III-16 becomes

2.06 X -10 cm3 molecule- sec .

From Fig. 13, there is a sharp increase of the intensity of
+ ~-5 -
CF + ion in the lower pressure region (0.2 X 10-5 to 2.5 X 10-5 Torr),

and a clearly correlated decrease in the intensity of CF3I+ over the

same region. This observation strongly suggests a reaction channel

in which CF I+ disappears and CF + is formed. It is proposed that

a collisionally induced dissociation of CF 1+ must occur. It is

necessary to assume that the CF I is internally excited to a

considerable degree, so that the dissociation process would be

energetically possible. Tiernan and Kevan (31) found that the

collision induced dissociation process is very common among








perfluoro compounds.

Reaction III-19 is iodine atom transfer from substrate to

parent ion CF 1 forming CF 12+ with a rate constant of 0.03 X 10-10
3 -1 -1
cm3 molecule sec The ion-molecule condensation reaction III-20

is also observed in this system, as shown in Fig. 15. This reaction

has a rate constant of 0.22 X 010 cm molecule- sec- for the

formation of dimer (CF3I)2 .

It is worthwhile mentioning here that the ether-type ions

CH H3 I + and C2H5IC5+ observed by Harill (3) and by Beauchamp (5)

in the methyl and ethyl iodide systems are not observed in either

the CF I or the C2F5I system; the corresponding ions CF ICF and

C2F5IC2F + are entirely absent under all conditions investigated.

The ions C2F5I 2, (C2F5I)2+, CF312, and (CF I)2+ are beyond the mass

range of the ICR instrument used in this work, although all these

ions were seen in the Bendix instrument.



C. Summary


Reactions such as charge transfer, fluoride ion transfer,

iodide ion transfer, CF ion transfer, iodine atom transfer,

collision induced dissociation, and ion-molecule condensation play

very important roles in the ion-molecule reactions of perfluoroalkyl

iodide systems. The fluoride ion transfer process apparently occurs

only when the final products are stable molecules such as CF4 in the

CF3I system and CF C2F and CF3I in the C2F5I system.

The parent ion and several major fragment ions resulting from

electron impact on perfluoroalkyl iodides are formed with large amounts






44

of internal energy, amounting to as much as 1.5 eV. It appears that

attempts to calculate bond energies in fluorocarbon systems, using

the assumption that all observable ion-molecule reactions must be

exothermic or thermalneutral, are of doubtful validity.
*<~ .















IV. THE GAMMA RADIOLYSIS OF TRIFLUOROMETHYL IODIDE


A. Experimental Results


The radiolysis of CF I was carried out at 25 Torr and room

temperature over the absorbed dose range of 0.453 X 1019 to

4.18 X 1019 eV. Three major products, iodine, tetrafluoromethane,

and hexafluoroethane are shown in Figs. 16, 17 and 18. Apparently,

their yields are all linear with respect to dose absorbed. The G

values for iodine, tetrafluoromethane, and hexafluoroethane are

0.50, 0.55, and 0.11, respectively. The amount of CF212 produced

(Fig. 21) is a linear function of dose from 0.45 X 1019 to about

1.5 X 1019 eV with a corresponding G value of 0.016. After this

dose, the G value for the production of CF2 I is reduced to 0.0092.

Other products such as C2F4, C3F8, and C2F5I (Figs. 19 and 20) were

also found in the radiolysis of the CF I system. However, their G

values were relatively small compared to those products mentioned

above.

In the HI scavenged system, most G values were substantially

reduced but the iodine yield was increased from 0.50 to 3.05. The

100 eV yields of CF4 and CF2I2 were reduced to 0.26 and 0.0081,

respectively. Other yields were reduced to very small residual


a G value is the number of molecules changed for each 100 electron
volts of energy absorbed.























2.0


1.0


0.0


2.0 3.0
Dose, eV X 10-19


Fig. 16 Production
(5% HI, [
of dose in


of 12 (pure, ; 5% HI, O), CF3H
) and H2 (5% HI, U ) as a function
the CF I system.






















0





0

.1-
0





0








o .
0



































rC-
H
03

























0

0








OtD
[x.o


-1 N H-
0 0 0 0
~ n r
o o o ;


(soq-omOzoa3TO) 'pTajp_ 1jo







48











0.10





S 0.08

r4
0







0.04 -





0.02 -
0.o I0
02Fg /5% HI


0.00
0.0 1.0 2.0 3.0 4.0

Dose, eV X 10-19


Fig. 18 Production of C2F6 (pure, ; % HI, 0 ) as a function
of dose in the CF I system.






49








0.008 -







0.006

C3F8





0.004
M -








C2F
0

















C2Fn /5% HI

0.00 I
0.0 1.0 2.0 3.0 4.0

Dose, eV X 10-19

Fig. 19 Production of C2F4 (pure, a ; 5% HI, D ) and C3F
(pure, 0 ; 5% HI, O ) as a function of dose in the
CF3I system.















0.012





0.010




2 5
---/ C2F5I
0 0.008 .
o
0




0.006
H


U
0.004





0.002 /
/ C2F51 /5.HI



0.00oo I I I
0.0 1.0 2.0 3.0 4.0

Dose, eV X 10-19

Fig. 20 Production of C2F5I (pure, 5 ; 5% HI, O ) as a
function of dose in the CF3I system.









(saetouroJOTu) 'PT9ap HIZdo
Uri C !



I I










o r
H H0


\ e\





















H *
N








N 0

O


S0









SO rd
40 0 41
z
H z
\ CO]



Cl]
U i







H
o 0





\ \\ C



\ \i id u






0 0 0 0 0
0 0 0 0
*
0 0 0 0


(s3910mwoao-M) 'pTGTSX zjzq[)










values, below 0.005. Three additional products were also found in

the HI-added system, including two new organic products, identified

as CF3H and CF2IH, with 100 eV yields of 0.76 and 0.12, as well as

H2 formed with a yield of 1.67.

All product yields are plotted as a function of absorbed dose

in Figs. 16 through 21. All G values are listed on Table 5, together

with previous results (10, 11) on the CF3I system. Material balance

is reasonably satisfactory in this system. The ratio of C/F/I is

0.797/2.88/1. Kevan and Hamlet (32) reported that irradiation of

fluorinated compounds in Pyrex glass vessels resulted in large yields

of carbon dioxide and silicon tetrafluoride. This could contribute

to the shortages of carbon and fluorine. It is also possible that

polymer is formed in this system.



B. Discussion


The previous studies on the photolysis (9) and radiolysis

(10, 11) indicate that -the main primary event in the gas phase

radiolysis of CF I is the rupture of the C-I bond.


CF3I vvvCA CF3I --> CF 3 + I. IV-1


It is evident (33, 34) that one or both of the radicals CF3. and

I. may be excited.

The mass spectrum of trifluoromethyl iodide shows that the

most abundant ion is CF I+ (100) followed by I+ (95.6), CF + (77.4),

and CF2I+ (31.2). The initial absorption of ionizing radiation may

accordingly give rise to the reactions:




















\0 r-H r- C\2
,cO cC) 0
\O00 CH 0
o 0 0 0 \0 C C'-
0 0 0 0 Ls- H- \0O
0 0 0 0















0.I
0

V


Cfl\ 0

0







0


CNM H
SO H CO V H
Nx NC NX 5M N
N U N N r O N U F4 O N
H 0 U 0 0 03 0 03 0


9
r--
r.1








0 0
H0


<

0 0
0




H


O-









r C
1- n
ft X
i- C
^ .
S 0r
*

M ft
ri ^=


0

0 C\I 0
C( 0 0


0 0


NO
0
H -
H


N
0 0
0


CO
0











CM


E



ul


O
C



0
U
N
0




CY-
0






rZ-
fO
Iu
45






54

CF3I vvvl- CF + e IV-2

vvWW* CF + + I1 + e IV-3

'V\ W+ I + CF 3 + e IV-4
C2+
F'VV+* CF2I + F" + e IV-5


The electron affinity of iodine atom (3.07 eV) (35) is quite

large, therefore dissociative electron attachment leading to the

formation of I is a very feasible process.


e + CF3I --- CF3. + I IV-6


All primary events as well as the kinetic scheme postulated

for the gas phase radiolysis of CF3I, are listed in Table 6.

Ion-molecule reactions in Processes TV-7 through IV-10 are

observed in the high pressure Time-of-Flight mass spectrometry and

Ion Cyclotron Resonance spectrometry. Step IV-7 is fluoride ion

transfer from substrate to CF3+ forming the stable molecule CF4 and

the CFI+ ion. Reactions IV-8 and IV-9 are iodine atom transfers

from parent molecule to I+ and parent ion CFI + leading to the

formation of I2+ and CF 31+ ions and CF3* radicals. Process IV-10

is an ion-molecule condensation reaction. These reactions are

discussed in detail in the Ion-Molecule Reactions section of this

dissertation.

Positive ions formed in the primary process as well as in the

ion-molecule reactions undergo neutralization with iodide ions to

form excited species as shown in Steps IV-11 to IV-16. These excited

species will undergo further decomposition and produce more radicals










Table 6

Radiolysis Mechanism in The CF3I System


SCF I










e +

CF +

I +

CF I+ +

CF I +



CF3

CF2I+

12+

CF I2 +

(CF3I)2+

ID + ID

CF
CF 31

CF2I
CF +


'VVW,+


CFI+



CF 3I

CF I
CF3I
CF I
F3I

+ I

+ I


+ I

+ I
+ I

+


+ M

+ 12



CF I
3FI


CF3I

CF I+

CF

I +

CF2I+


2>
----->








^^----->
---->










----->
.---->













------>
----->


--> CF + I.
3
+ e

+ I* + e

CF + e

+ F- + e

CF + I

CF4 + CF2I+

12 + CF 3

CFI2+ + CF .

(CF3I)2

(complex) -- > neutral fragments

CFI ---> neutral fragments


CF22 > neutral fragments

31-
S3I
(complex) -- > neutral fragments

(complex) -- > neutral fragments

12 + M

CF I + I.

CF2I2 + I.

CF4 + CF2I'

C2F + I


IV-1

IV-2

IV-3

IV-4

IV-5

IV-6

IV-?

IV-8

IV-9

IV-10

IV-11

IV-12


IV-13

IV-14

IV-15

iv-16

IV-17

IV-18

IV-19

IV-20

IV -21









which will be different for each species (mainly CF 3, I', and CF2I.

radicals, and the carbene species CF2). These intermediates will

take part in secondary reactions as postulated below.

The low overall fields in the pure system and the high yield of

iodine observed in the presence of radical scavengers indicate that

the back reaction IV-18 plays a significant role in the radiolysis

of pure CF I. It has been reported previously (36, 37) that there is

no activation energy for Reaction IV-18 and the corresponding rate
-12 3 -1 -1
constant is 4.32 X 10 cm molecule sec These observations

indicate that the gas phase radiolysis of CF3I is somewhat similar to

the gas phase radiolysis of alkyl iodides. The non-productive cycle


CF3I > CF 3 + 1 IV-1

I' + I--> 12 IV-17

CF3 + I2--- > CF3I + I* IV-18


takes place unless there is another process to remove CF 3 radicals.

In the radiolysis and photolysis of CC13Br investigated by Young

and Willard (38), the main product is CC14. They reported that the

reaction CC13' + CC13Br > CC14 + CC12Br* is responsible for

CC14 formation and that CC1 3 radical could be either thermal or

hot. It is reasonable to postulate a similar reaction in th4 system

as shown in Equation IV-20. Thermochemical considerations also favor

this reaction with a small potential barrier. The analogous hydrocarbon

reaction CH + CHI --- > CH4 + CH2I* has an activation energy

of less than 8 kcal/mole (39). Although not much information is










available about fluorine atom abstraction reactions, it can easily be

shown that in analogous hydrogen atom abstractions about 88-90% of

the energy of the bond formed is available to aid the bond breaking

process (40). The energy of the C-F bond in CFq has been given as

128 kcal/mole (41), while calculations from published appearance

potential data (42) show that the C-F bonds in CF I have an energy of

115 kcal/mole. If it can be assumed that the energy-availability

factor of 88% 90o applies to Reaction IV-20, then the corresponding

activation energy is less than 3 kcal/mole.

The photochemical reactions caused by the external pumping flash

lamps in the CF3I laser system have been investigated previously

(6, 7, 8, 43). It has been reported that the lasing process can

persist a substantial time(several microseconds) after termination of

the pumping flash. Reaction IV-21 has been invoked to explain the

growth in the concentration of excited iodine atoms which cause the

late-time lasing. This reaction is also used to explain (8) the fact

that adding more CF3 radicals can increase the concentration of

excited iodine atoms and contribute to the output of the photochemical

iodine laser. Consumption of CF3 radicals in Reaction IV-21 allows

accumulation of 12 by combination of the iodine atom released in

Process IV-1.

Consistent with the reaction scheme presented, the data in

Table 5 indicate that about 50% of the CF4 and CFI2 yields are due to

thermal radical reactions. Tetrafluoromethane is formed in Reaction IV-7

(non-scavengeable) and IV-20 (scavengeable), respectively. Reaction

IV-19 accounts for the scavengeable portion of the CF2I2 yield, while









thermalization of a small fraction of the yield of excited CF2I2

intermediate in Process IV-13 can account for the non-scavengeable

yield of this product. Since Reaction IV-21 is the only suffested

route to formation of C2F6, this product should be entirely scavenge-

able. In fact, Table 5 shows that this yield is 97% scavengeable.

The 3% residue of unscavenged C2F6 may be due to a small extent of

participation by "hot" CF3' radicals in Reaction IV-21.

Additional reactions are postulated to account for the minor

products observed in this system. It has been reported (44, 45) that

C2z5H radicals are produced in small yield in the radiolysis of liquid

methyl iodide. The precursor to this species could easily be the

simple carbene CH2, although this was not suffested by the original
*
authors. The formation of excited CCl26 due to direct insertion

of CC12 into CC14 appears to be an efficient process in the photolysis

of CC14 (46). It is suffested that insertion of CF2 into CF3I accounts

for formation of several minor products in the present system, including

C3F8, C2F5I, and C2 F4


CF2 + CF I > C2F5I IV-22

C2F5I > C2F5' + I* IV-23


C2F5I C2F + IF IV-24

C2F5I --- CF3. + CF2I* IV-25

C2F5 + 2 >- C2F5I + I. IV-26

C2F5* + CF3I C3F8 + I. IV-27


Since one bond is broken but two strong bonds are formed by the








insertion of CF2 into substrate (Reaction IV-22), the resulting C F5I

should be excited to the extent of ca. 75 kcal. Subsequent fragmen-

tation Processes IV-23, IV-24, and IV-25 can ensue, as discussed

later in connection with the radiolysis of C F I. Reaction IV-24

provides an explanation of the minor product C2F The C2F5' radicals

formed in Reaction IV-23 can undergo the Reactions IV-26 and IV-27,

accounting for production of C2F5I and C3F Reaction IV-27 is postu-

lated by analogy with Reaction IV-21, discussed above. Reaction IV-25

probably occurs but is unobservable, since the CF3 and CF2I. fragments

are already present in the system.

The combination of two CF2 fragments is also possible but this

process will not compete if Reaction IV-22 has a reasonable rate

constant, since the latter process involves substrate. Additionally,

CF2 combination might fail to compete with scavenging of CF2 by

product I2.

The radiolysis of CF I has been investigated by two previous

research teams (10, 11), with results which differ with each other and

with the present study. Since the explanation of the diverse results

must lie in differences in the experimental conditions employed, a

detailed summary of the conditions used by each group is given in

Table 7. The predominant stoichiometric pathways observed by

Sutcliffe and McAlpine, by Shah, Stranks, and Cooper, and in the

present work are as follows:

McAlpine 2CF I = CF4 + CF2I2 IV-28

Cooper 2CF3I = C2F6 + 12 IV-29

This work 2CF I = CF4 + 2 +(CF2)n IV-30
3^ 2 (CF2) n








60




II
II
II
II C'- CM
II 0N r-H 00 F

II H-l
11 X

7II cO N 0
II h H H H* N

X1 > +
0I H0 0 qHrl
U 0 P1 H H-" -.- lX


cc N 0
II H X X I I +
11I C- M -
ll 1 I oo c^ o

II H 0
11 *1 in O CO N O

SC11




H l
>1 II
ii I H H +
113 00 00 0 N



r 110 H H N 54
\0 11

II ( N N 0 0

IIl N CC1 -1 N .t cc
C'- d II *
SII 0 r- 0 0


S 11
3 U) II
I 11 -
II
0 II HI
II O 0N 0 N



0 |I X HI 0 MHC)
*4 lc N ) 0O C- 0 CO H N
11 r H H H H
i l D rOl *
00-P 0 II
c r-fl | II
Q II


H II-I H 0 X < N +
SII N r -
0 II *1 I I I

.r II C- H ON
II 4 H
PC< II OO H H-
SII O

0 II O
C.) 1*I


II
11

II ?1-
11 -*
II ao
II
IO 11
II I
0
II -H 0 o


II ) I U) H i tO
II U) U 3 ) C ( *r *

II 0) F1. 0 0









Examination of Table 7 indicates that there are variations in

vessel size, sample pressure, dose rate, and the total dose delivered

to the sample. Of these parameters, it is suggested that the most

important factors are the sample pressure and the dose rate. The

former affects thermalization of excited intermediates as well as

diffusion rates; the latter determines the steady-state concentration

of intermediates. It is suggested that a high dose rate may promote

net Reaction IV-29, since a sufficiently high concentration of CF3*

radicals could lead to direct CF3' CF combination. Consistent

with this suggestion, Cooper used the highest dose rate, and observed

the stoichiometric pattern given by Equation IV-29. (Since Cooper

used a very small vessel and a moderate pressure, it is possible that

CF combination was wall-catalyzed.) At lower dose rates as used

by McAlpine and by this laboratory., the CF 3 combination reaction

appears to be negligible; this species disappears by reaction with

substrate:


CF + CF I ---> CF + CF2I. IV-20

-- > C2F6 + I IV-21


McAlpine's results as well as the present work suggest that Reaction

IV-20 is the predominate fate of the CF radical. Under the high

pressure conditions used by McAlpine, CF2I. apparently undergoes a

homogeneous gas phase reaction with 12.


CF2I + I2 > CF2I2 + I. IV-19


In the present work, the vessel was six times smaller than McAlpine's,








and the pressure was 30 times lower. It suggested that CF2I reaches

the wall and decomposes to give various organic products, releasing

iodine:


CF2I- + wall --6> (CF)wall + I. IV-31


This suggestion accounts for a nearly stoichiometric ratio of CF4

and I2 in the present work, coupled with a deficit of additional

organic products.

Taking a W value of 26.2 eV/ion-pair for CF3I (47), the initial

value for loss of CF I should be somewhere around 3.8. Assuming

Reactions IV-3 and IV-4 are equally important, the initial G value

for CF and I' radicals would also be around 3.8. This value is

somewhat more consistent with the product yields reported by Cooper

at higher dose rates and with the results of present work on the

HI-added system than with the values observed by McAlpine in the lower

dose rate experiments. These observations indicate that the removal

of 12 by Reaction IV-18 is predominate over other processes as soon

as the concentration of iodine molecule starts to build up.

In the HI-added system the following reactions should be

considered:


CF- + HI > CF3H + I- IV-32

CF2I + HI ---> CFIH + I. -33


Whittle (37) pointed out that an activation energy of only 0.5 kcal/mole

is sufficient for Reaction IV-32, with a rate constant of 3.85 X 10-13
m3 molecule-1 -1at room temperature. The formation of hydrogen
cm molecule sec at room temperature. The formation of hydrogen






63

due to the decomposition of added scavenger HI has been reported

previously by several workers (48, 49, 50). Since the ionization

potential of CF I (10.6 eV) is considerably higher than that of HI

(10.4 eV) (42), charge transfer from CF3I+ to HI should be an efficient

process.


CF3I + HI > HI + CF I IV-34


The concomitant interference with subsequent reactions of CF I+ will

cause a decrease in almost all product yields, even those not affected

by HI as a radical scavenger. Furthermore, formation of HI+ in

Reaction IV-34 provides a reasonable explanation of sensitized

formation of H2 in the presence of 5% added HI, as discussed later in

connection with the radiolysis of C2F5I.



C. Summary


The gamma-radiolysis of gaseous CF3I was studied at 25 Torr

pressure and 240 C, both pure and with added HI. The radiolytic

products and their corresponding G values in the pure system are

12, 0.50; CF4, 0.55; C2F 0.11; CF2I2, 0.016; C F, 0.012; and C2F5 I,

0.0014. CF H, CF IH and H were observed in the 5% HI-added system

with corresponding G values of 0.76, 0.12, and.1.67. The results are

discussed in terms of reactions of both ions and neutral species.

Under condition of present work, stoichiometric considerations show

that the overall reaction in the radiolysis of gaseous CF I can be

summarized as


2CF I -- > CF4 + 12 + (CF2)n














V. THE GAMMA FADIOLYSIS OF PENTAFLUOROETHYL IODIDE


A. Experimental Results


The radiolysis of C2F5I was carried out at 50 Torr pressure

and room temperature over the absorbed dose range of 1.27 X 1019

to 13.9 X 1019 eV. The product yields are plotted as a function of

dose absorbed in Figs. 22 through 35 at the end of this section.

Iodine: Fig. 22 shows that the amount of iodine produced is

independent of absorbed dose over the entire dose range. The G value

for the production of iodine in the pure and scavenged systems are

0.91 and 2.84, respectively.

Tetrafluoromethane (CF4): Fig. 23 shows that in both pure and

HI scavenged systems the CF4 yield is linear over the absorbed dose

range investigated. The corresponding G values for this compound

are 0.035 molecules /100 eV and 0.018 molecules /100 eV for pure and

HI scavenged systems, respectively.

Hexafluoroethane (C2F6): In the unscavenged system the G value

for C2F6 is 0.28 throughout the absorbed dose region. The 100 eV

yield is reduced to 0.16 with 51 HI-added to the system (Fig. ').

Tetrafluoroethylene (C2F4): Tetrafluoroethylene production is

shown in Fig. 25. The G values are 0.78 for the pure system and 0.54

for the scavenged system in the low dose region; however, the yield

increases back to approximately 0.78 after the absorbed dose reaches

6.0 X 1019 eV.








Hexafluoropropene (C3F6): The C3F6 production data shown in

Fig. 26 indicate that it is a minor product in this system. The

corresponding G value for this compound in the pure system is 0.0034;

the, yield is reduced to,the residual value of 0.0001 in the HI

scavenged system.

Octafluoropropane (C3F8): This compound's dose-yield plot is

shown in Fig. 27. The 100 eV yield is 0.15 in the unscavenged

system and is completely eliminated in the HI-added system.

n-Decafluorobutane (n-C4F10): Fig. 27 also shows that production
19
of n-CF10 is linear with absorbed dose up to 3.5 X 10 9eV, and then

levels off to a constant value. The G value in the-initial linear

region is 0.42 molecules/100 eV. This product is completely absent

in the scavenged system.

Trifluoromethyl iodide (CF3I): Fig. 28 shows that the production

of CF I is linear in the absorbed dose range studied, with a G value

of 0.18. In the HI scavenged system, the initial yield of CF3I

surprisingly increases to 2.50 and then falls back to about the same

value as in the pure system when the absorbed dose reaches 3 X 1019 eV.

Iodotrifluoroethylene (C2F3I): The data for this compound are

rather scattered because it eluted on the tail of the parent peak.

The 100 eV yield is estimated to be 0.015 in the pure system. In the

scavenged system, the initial yield is reduced to 0.0044 but .reases

to 0.020 when the absorbed dose reaches 4.0 X 1019 eV (Fig. 29).

n-Heptafluoropropyl iodide (n-C3F7 ): Fig. 30 shows that the

G value of n-C F I is 0.014 between 0 and 4.0 X 1019 eV but increases

to 0.086 after a dose of 4.0 X 1019 eV in the pure system. In the









HI-added system, the 100 eV yield reduces to a residue value of 0.0012.

i-Heptafluoropropyl iodide (i-C3F7I): Fig. 30 also shows that

the G value of i-C F7I is 0.0028 in the pure system and that this

compound is completely scavengeable in the HI-added system.

I-Iodo-Pentafluoropropene (1-C3F5I): Fig. 31 shows that the

yield of 1-C F5I is 0.0040 up to an absorbed dose of 4.0 X 1019 eV

in the pure system. In the scavenged system, the G value reduces

to zero.

n-Perfluorobutyl iodide (n-C4F9I): Fig. 31 also shows that the

amount of n-C4F9I produced is a linear function of dose with a

corresponding G value of 0.011. The effect of HI is to reduce the

initial G value to 0.0046; the net rate of production of n-CF 9I is

zero beyond 2.0 X 1019 eV.

s-Perfluorobutyl iodide (s-C4F9 ): As shown in Fig. 32 the

amount of s-C F I in both the HI free and scavenged systems is a

linear function of absorbed dose. The G avlue for the unscavenged

system is 0.026 and for the scavenged system is reduced to 0.0072.

Diiododifluoromethane (CF2 2): The amount of CF2I2 produced is

a linear function of dose from 1.0 X 1019 to 5.0 X 10 9 eV with a

corresponding G value of 0.18. After this dose, the G value for the

production of CF2 I starts leveling off. The effect of added HI is

to reduce the initial 100 eV yield to 0.068. As with the pure system,

the net G value for the production of additional CF2I2 is zero beyond

8.0 X 1019 eV (Fig. 33).

1,2-Diiodotetrafluoroethane (CF2ICF2I): As shown in Fig. 34

the low dose 100 eV yields of CF2ICF2I in the pure and HI-added systems








are 0.11 and 0.080 respectively. The high dose G value for the

production of additional CF2ICF2I is 0.23 for both pure and scavenged

systems.

1.1-Diiodotetrafluoroethane (CF3CFI2): Fig. 34 also shows that

the initial G value of CF CFI2 is 0.052 between the dose of 1.0 X 1019

and 6.0 X 1019 eV. Thereafter, the net G value for the additional

production of CF CFI2 is essentially zero. In the scavenged system,

the added HI effectively blocks CF CFI2 production.

In addition to the products mentioned above, CF3H, C2FH, CF2IH,

and H2 were also found in the 5% HI-added system. As shown in Fig. 35

the initial G value of CF H is 0.35 between an absorbed dose of

2.0 X 1019 and 4.0 X 1019 eV. The net G value reduces to 0.10 with an

absorbed dose beyond 6.0 X 1019 eV. Fig. 35 also shows that the G

value for the production of C2F5 is 1.94 between a dose of 2.0 X 1019

and 12.0 X 1019 eV. In the case of CF IH, the initial G value is 0.19

before the absorbed dose reaches 3.0 X 1019 eV. Thereafter, the net

production of additional CF2IH is reduced to zero. Fig. 35 also shows

that the initial H2 yield is 1.23 and reduces to 0.086 after the

absorbed dose reaches 3.0 X 1019 eV. All G values are listed in

Table 8; only products having a G value greater than 0.03 are discussed

in the following section.

From the G values listed in Table 8, the major stoichiometric

patterns for the radiolysis of gaseous C2F2I are as follows:


2CF5I = n-CFo + 12 i

2C2F5I = c3 F + CF2I2 ii








2C2F5I = C2F6 + C2F + 2 iii

2C2F5I = C2F6 + CF2ICF2I iv

2C2F5I = C2F4 + 2CF3I v

C2F5I = C2F + IF v.

Since the G value for n-C F10 is 0.42, the 100 eV yield for the loss
of C2F5I due to Equation i is 0.84. The G values for the products

C3F8 and CF2I2 in stoichiometric Equation ii are 0.15 and 0.18,
respectively; using the average of these two values, the G(-C2F5I)
due to Equation ii is 0.33. Taking G(CF2ICF2I) and G(CF3I) as 0.11

and 0.18, the G(-C2F5I) values for Equation iv and v are 0.22 and
0.18, respectively. The G value for C2F6 is 0.28. Since part of it
is due to Equation iv (0.112), the G(-C2 5I) for Equation iii is 0.34.
Similar arguments lead to a G(-C2FI1) for Equation vi of 0.52. From
the above figures, the overall 100 eV loss of C2F I in the pure
system is 2.42 which is close to the sum of the scavenged radical
yields (2.48). Since the reported W value for C2F5I is 27.7 eV/ion-pair

(47), the initial G(-C2F5I) should be around 3.6. Neither of the
values quoted above is close to 3.6; this may be due either to the
formation of polymer or to the importance of back reaction, as
considered in the Discussion.


a G(C2F4 in Eq. vi) = G(C2F4 overall) G(C2F4 in Eq. iii)
G(C2F4 in Eq. v)
= 0.78 0.17 0.09 = 0.52






69







6.0




5.0-




2 4.0 15% HI
O




0 3.





2.0







O 12
1.0





2 .0 3.0 6.0 9.o 12.0
f1 .0








Dose, eV X 10-19

Fig. 22 Production of 12 (pure, ;5% HI, O ) as a function
of dose in the C2F5I system.




















0
C















0
Crl



0'



oH






rt
0


o
0
p^


ON
O 0 0 0 0
0 0 0 0 0


(saomoioToui) 'P[apq. 17o


4)


1-


0

0




n



4
o






0








t-












Or=
CM,


0
IPz












































































co 0 0 0
o O o O o


N


(
o .
o


(seoioao~xoyn) 'pTqoL 9,J


0
.C




0

0
Cd


*H








4









0







0
c+















0 ul
H



























,0 r4
(H
MO


'-I
o
O-
X




o
a















H
I-.





C
rj


c)

0

*r-1
0


0




























o


o
to
'-4



































4 -
0




Om













pq
0
0




z



c-4
0


a


I I I I u
0
ND C~c
a-I 14 0 0 0


(se~anomo-Fioi) 'pTayX tr2








73


(saTouoczo.nu) IH 9%/ 09,D

O o O
o O o O
o o o o
0 0 0 0


o0 a




\4rI

or





0
H











0
Q NO




0 'A












m
O
H


















0 0 0
\0
o1






4t-






*0H
N


r4-






^ \ **-1 >
\ I -p (f
\ o \ 3


O -t N
0 0 0 0
0 0 0 0
O O o O


(selomoaui) 'PTGTX 9je














0.30







n-C F10
4 io


0.20





SC3F8



0.10










0.00 I
0.0 2.0 4.0 6.0 8.0

Dose, eV X 10-19

Fig. 27 Production of C3F8 (pure, 0 ) and n-C4F10 (pure, I ) as
a function of dose in the C2F5I system. (In both cases
the yield with 5% added HI is zero.)
























C
c,



0
Id
4-)
0
r.
0














H
4-3





(d
(/I




H














r4
c-N




H


a)
0
-4-*
oe

U,
oCa



0


co

0 r-
CO



0


(sabomo.ioTm) 'peaTs Ido




















o
C






\H o
0





,-I
0

H 0







oo d

O
0

O
\o -



S0 0




OO
H






S4-\ 4
0 \ 0










NN




0
04r
o












\\ H
0 0 0



(s o *0 d
0. 0 a 0
















0.006 0.12






0
o n-C F I

0
S3 7



S 0.004 0.08 o










C



00 3-Fn-c3 7 /% HI







0.00 I I I I .00
0.0 2.0 4.0 6.0 8.0

Dose, eV X 10-19

Fig. 30 Production of n-C3F7I (pure, ; 5% HI, 0 ) and
i-C3F7I (pure, U ) as a function of dose in the
C2F5I system. (Production of i-C3F71 is eliminated
with 5% added HI.)
0.0 ^j /^
M. y. /06. .

















































































0 CO $
r-H H 0 0 0
o 0 0 0 0
o O 0 0 0


(saeomo o.uop) 'PTaTX


78





0


1




C)
cii
cd







00
H

I 0

-l
a)







0
.H
P4
o'3
I 0
F-

4-H




















O
4-4











10
*H
O a)






CH

0 -=,


0 -i-b


0* 0 (1)


*ri A






*r
fc



















































































co 0o o
0 0 o 0 0
o o o o o


(sa-eowoaOTu) 'p[@TX I6,[-s


0










H





I-l


0
00 ,
O (




0
ar
0





0 -


0)
.C




0





H.
or









i-N
0















*H







0
o
+
o



































i- U
H




u






(0



0
OG















0.20






0.15


0.10






0.05


0.00


2.0 4.0 '6.0 8.0

Dose, eV X 10-19


Fig. 33 Production of CF2I2 (pure, *
function of dose in the C2F5I


; 5% HI, O ) as a
system.


0.0













0.25


0.20





0- CF ICF I
S 0.15 2 2

O / /o




) 0.10
H
0













0.05 / B
CF 3CFI2





0.00
0.0 2.0 4.0 6.0 8.0

Dose, eV X 10-19

Fig. 34 Production of CF2ICF2I (pure, O ; ef HI, O ) and
CF3CFI2 (pure, 0 ) as a function of dose in the C2F1I
system. (Yield of CF3CFI2 is eliminated with 5% added
HI.)











(sa[omoa~oTu) 'pTGTX H i



Sc\ Ho
0
o 0 0 0 o






\ V ca
Cp


o o
N 4-






O H H






H 4




'4
N 0 4


00








rM4


S0 N 0
0 0 0




crx
oo n













O4
rx



o 0



p 0

on
0 O O O O

*'Ih


(saTomowomi) 'spTaT ZH puWe HI AD 'HI3D

































0

0
xr-


H




0
CM




0) 'd
0
pI







0
o






.-i





H
C*
1 o
1-1


0
0 H
r-H ON
0 0
ON
r1 \
0
X



U;
m0 0
0




0
W I-
Ol 0


N
H
r-1
0
0
0






N
H
0
0
0 0






r--
0
0
0 0


co
CO
V (\ %r) \0 C\i
CO cO cOO CO r-i 0
0 No C- 0 r r 0 0 0








co C 0 o H co C0
9 C O0 0 O -Z 0 r r- 9 O 0
0 0 0 0 0 0 0 0 0 0






Cr O0 C 0 O r 0
0 CN C' r-!0 -t- r- 0 0 0
0 0 0 0 0 0 0 0 0 0
tr v o o o o o


o0 H o C- C-

0 .- rx4 F=4 r4 c Cr 0 0
p CN Rix N NM c c C I r= C I
P.. H 0 0 0 0 0 0 0 -


o o
SCO 0 o 0 0,
O C H NO CO O C N l
H O H rH 0




X


r-1
SCO 0 0
) V) -.t rH LO I O OD N
1 COO H O i O

S0 0 H 0


0
U2

co o o0
C0 r-l 0
3 0 r-I 0 Vi 0

0 C O O o C
0 OOON
















CM
O 0 O 00

0 c0 O 0 dH 0








o 0c 0 oO 0\ 0
00 0 00 0 0 0


0
0
00


C\l
EC- c0 0
0 \CO
0 0 0 0


rH N
0 r


0 Hr- \
-H H- CN c
o o o C
0 0 C) 0 0 0






SC H000000 V

S00


-O- H \0 CN




0 0il CM 00 0i V

S00 0 0 0 0





H
H H \H N CN
n o,0 o0 P H
cr I H H H 0,
enl N3- cr- 9- 1-4 o ;
H- C U2 0 0 0 0 0 0 S








B. Discussion


The mass spectrum of pentafluoroethyl iodide shows that the

most abundant ion is C2F5I+ (100%) followed by CF3+ (89%), C2F5 (85.),

I+ (604), CF+ (52%), C2F4 (36%), CF2I (35%), and C 2F4 (28%). The

initial absorption of high energy radiation may therefore give rise

to the following reactions as a result of primary ionization events:


C2F5I nV'+ C2F5I + e V-1

%Wv -+ CF + + CF2I- + e- V-2

'Vnnvv\ C2F + + I. + e- V-3

+ I+ + C2F5 + e" V-4

v + CF+ + neutral fragments + e V-5

CV2+ C2F + neutral fragments + e V-6

CVF+V CF2I + CF 3 + e V-7

VVVV- C2F4I + F' + e V-8


In addition, it is known that high energy radiation gives rise

to primary excitation processes (35). Since excited molecules

produced in this way usually decompose by the lowest energy routes

available, the following reactions are proposed:


C2F5I + e 'C+ F C2F5I + e V-9

C2FI -- C 2F5 + I- V-10

-- > CF + CF2I V-11








C 2FI > CF 3 + CF .+ I. V-12

> C2F4 + IF V-13


Primary excitation (V-9) is probably followed most frequently by

C-I bond rupture (V-10), since this is the weakest bond in the system.

Since C2F5I does not absorb light in the visible region of the

spectrum, the lowest available electronic state probably possesses

75 to 100 kcal/mole of internal energy. One or both of the radicals

C2F5- and I- formed in Process V-10 may be excited, since deposition

of just 47 kcal/mole could result in rupture of the C-I bond.

Rupture of the C-C bond (Reaction V-ll) is proposed as a minor but

still significant process. If either the C2F5. fragment formed in

V-10 or the CF,2I fragment in V-ll still possesses substantial

excitation energy, further fragmentation to give CF2 can occur; the

net process is then summarized in V-12.

Whereas C2F4 is not found in the radiolysis of perfluoroalkanes

(32, 51, 52) it is a moderately important product in the C2F5I system.

Although there are ionic routes to this product (see Reactions V-19

and V-20 below), it is appropriate to inquire whether it can be formed

in neutral processes as well. Formation by radical-radical

disproportionation, a significant process in hydrocarbon radiolysis

(53), is not possible in the present case since perfluoroalkyl

radicals do not undergo disproportionation reactions (54). One

possible direct route to C2F formation is suggested in Reaction V-13.

Although F2 elimination is not seen in the radiolysis of perfluoroalkanes

(32, 51, 52), thermochemical considerations still suggest the possibility








of IF elimination in this system. This is because the C-I bond

(47 kcal/mole) is much weaker than the C-F bond (115 kcal/mole) and

the I-F bond (67 kcal/mole) formed in this system is much stronger

than the F-F bond (37 kcal/mole). The IF product postulated in

Reaction V-13 would presumably be a reactive scavenger. Radicals

would probably abstract fluorine rather than iodine, due to the

greater strength of the bond formed. Consequently, accumulation of

IF, even as a minor product, is not likely.

Formation of negative ions by capture of slow electrons is also

postulated in this system:


e + C2F5I > C2F5. + I V-14

-> C2F5 + I' V-15


Since the electron affinity of the iodine atom (3.07 eV) is larger

than the electron affinity of the C2F5 radical (2.30 eV) (55), Process

V-14 is probably more important than Process V-15. Non-dissociative

electron capture to give C2F5I is not likely, since the electron

affinity of iodine exceeds the C-I bond strength.

Ion-molecule reactions observed in high pressure mass spectro-

metry can also occur in the gas phase radiolysis of this system, as

listed in Table 9. Reactions V-16, V-17, and V-18 are fluoride ion

transfers from parent molecule to the ions CF C2F5 and CF2I

leading to the formation of stable products CF4, C2F6, and CF3I,

respectively. Process V-19 is charge transfer from C2F4+ ion to

parent molecule forming C F5I+ ions and product C2F4. The transient




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EO9VJUZNQ_3U470P INGEST_TIME 2017-07-13T21:39:39Z PACKAGE AA00003925_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

7+( 5$',$7,21 &+(0,675< $1' 0$66 63(&7520(75< 2) 75,)/82520(7+
PAGE 3

$&.12:/('*0(176 f! r f 7KH DXWKRU H[SUHVVHV KLV VLQFHUH DSSUHFLDWLRQ WR KLV UHVHDUFK GLUHFWRU 3URI 5REHUW +DQUDKDQ IRU KLV DGYLFH DQG HQFRXUDJHPHQW WKURXJKRXW WKLV ZRUN +H DOVR WKDQNV 'U -RKQ 5 (\OHU IRU SURYLGLQJ DFFHVV WR WKH ,&5 H[SHULPHQWV 6SHFLDO DSSUHFLDWLRQ JRHV WR KLV ZLIH -LQQ+ZHL IRU KHU XQGHUVWDQGLQJ DQG SDWLHQFH WKDW KDV PDGH WKLV ZRUN SRVVLEOH LL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YLL $%675$&7 [ ,1752'8&7,21 $ )RUHZRUG % 5HYLHZ RI 3UHYLRXV :RUN ,, (;3(5,0(17$/ 352&('85(6 $1' $33$5$786 $ 5HDJHQWV DQG 7KHLU 3XULILFDWLRQ % 6DPSOH 3UHSDUDWLRQ & 6DPSOH ,UUDGLDWLRQ 'RVLPHWU\ ( $QDO\WLFDO (TXLSPHQW DQG 3URGXFW $QDO\VLV ,,, ,2102/(&8/( 5($&7,216 ,1 7+( 6<67(06 75,)/82520(7+
PAGE 5

7$%/( 2) &217(176 FRQWLQXHGf 3DJH $33(1',; $33($5$1&( 327(17,$/ 0($685(0(176 21 &A, $33(1',; ,, ,'(17,),&$7,21 2) 5$',2/<6,6 352'8&76 $33(1',; ,,, 5(/$7,9( )/$0( ,21,=$7,21 '(7(&725 5(63216( 2) 5$',2/<6,6 352'8&76 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ LY

PAGE 6

/,67 2) 7$%/(6 3DJH 5DWH &RQVWDQWV RI )UDJPHQW ,RQV LQ WKH 6\VWHP 5DWH &RQVWDQWV RI )UDJPHQW ,RQV LQ WKH &)A, 6\VWHP ,RQ0ROHFXOH 5HDFWLRQV LQ &A)A, ,RQ0ROHFXOH 5HDFWLRQV LQ &)A, O 5DGLRO\VLV
PAGE 7

/,67 2) 7$%/(6 FRQWLQXHGf 7DEOH 3DJH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV } } DQG 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLFO\VLV 3URGXFW 1RV DQG 5HODWLYH )ODPH ,RQL]DWLRQ 'HWHFWRU 5HVSRQVH RQ 0LFUR7HN 5HVHDUFK *DV &KURPDWRJUDSK YL

PAGE 8

/,67 2) ),*85(6 )LJXUH 3DJH $QQXODU UDGLRO\VLV YHVVHO DQG KROGHU 'RVLPHWU\ +\GURJHQ \LHOG IURP HWK\OHQH DV D IXQFWLRQ RI LUUDGLDWLRQ WLPH *DV FKURPDWRJUDSKLF VDPSOH ORRSV 6FKHPDWLF RI %HQGL[ KLJK SUHVVXUH LRQPROHFXOH UHDFWLRQ VRXUFH 6FKHPDWLF RI ,&5 FHOO XVHG IRU LRQPROHFXOH VWXGLHV 1RUPDOL]HG &) &)A &S)A DQG &)SO LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &S)A, DW PLFURQV DQG r & 1RUPDOL]HG &S)=MM DQG &)H, LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &S)A, DW PLFURQV DQG & 1RUPDOL]HG O} A)FOSA DQWA AAAf LrQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &S)A, DW PLFURQV DQG r & ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH VSHFWUXP RI &)A, ZLWK DQ LUUDGLDWLQJ ILHOG RI 9 ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH VSHFWUXP RI &), ZLWK DQ LUUDGLDWLQJ ILHOG RI 9 1RUPDOL]HG &)A &), DQG &)R, LRQ LQWHQVLWLHV D IXQFWLRQ RI SUHVVXUH LQ WKH 72) VSHFWUXP RI &)RO DW E & 1RUPDOL]HG ,Sr &)A,Sr DQG &)AOf LRQ LQWHQVLWLHV DV D IXQFWLRQ RI SUHVVXUH LQ WKH 72) VSHFWUXP RI &), DW r & YLL

PAGE 9

/,67 2) ),*85(6 FRQWLQXHGf )LJXUH 3DJH 1RUPDOL]HG LRQ VLQJOHUHVRQDQFH LQWHQVLWLHV DV D IXQFWLRQ RI SUHVVXUH LQ WKH ,&5 VSHFWUXP RI &)A, DW H9 DQG & 1RUPDOL]HG &)A &)S, DQG &)A, LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &)A, DW PLFURQV DQG r & 1RUPDOL]HG O! &)A,Sr DQFA &)Of DRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &)A, DW PLFURQV DQG r & 3URGXFWLRQ RI ,R SXUH k b +, 2 f &)A+ b +, ’ f DQG +S b +, f DV D IXQFWLRQ RI GRVH LQ WKH &)AO V\VWHP 3URGXFWLRQ RI &) SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP 3URGXFWLRQ RI &S)J SXUH kn ?b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP 3URGXFWLRQ RI &S)A SXUH ?AR +, ’ f DQG &R)J SXUH 4 b +, 2 f DV D IXQFWLRQ RI GRVH P WKH &)JO V\VWHP 3URGXFWLRQ RI &S)A, SXUH k A +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)JO V\VWHP 3URGXFWLRQ RI &)S,S SXUH k b +, 2 f DQeL &),+ ^b +, f DV D IXQFWLRQ RI GRVH LQ WKH &)JO V\VWHP 3URGXFWLRQ RI ,S SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &S)A, V\VWHP 3URGXFWLRQ RI &)_ SXUH k A +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &S)Fc, V\VWHP 3URGXFWLRQ RI &S)J SXUH k "r +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &S)A, V\VWHP SURGXFWLRQ RI &S)A SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH *S)A, V\VWHP YLLL

PAGE 10

/,67 2) ),*85(6 FRQWLQXHGf )LJXUH 3DJH 3URGXFWLRQ RI &J)J SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &J)J SXUH k f DQG Q&)S4 SXUH ‘ f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP A 3URGXFWLRQ RI &)JO SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &), SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI Q&J)A, SXUH 4 +, 2 f DQG L&J)S, SXUH +f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI Q&AJO SXUH k +, 2 f DQG &J)F, SXUH 4 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI 6&), SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &), SXUH 4 b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &),&), SXUH 4 ? b +, 2 f DQG &)J&)O SXUH f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &)+ 4 f &)O k f &),+ f DQG + A f DV D IXQFWLRQ RIAGRVH LQ WKH b +,DGGHG &), V\VWHP 53' FXUYHV IRU &) &)F DQG &)H, IURP &)FO 1 IURP 1 A *DV FKURPDWRJUDP RI LUUDGLDWHG SHQWDIOXRURHWK\O LRGLGH

PAGE 11

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( 5$',$7,21 &+(0,675< $1' 0$66 63(&7520(75< 2) 75,)/82520(7+
PAGE 12

&)B, LQ WKH &), V\VWHP 7KH SDUHQW LRQ DQG PDMRU IUDJPHQW LRQV \ \ UHVXOWLQJ IURP HOHFWURQ LPSDFW RQ SHUIOXRURDON\O LRGLGHV DUH IRUPHG ZLWK FRQVLGHUDEOH LQWHUQDO H[FLWDWLRQ DPRXQWLQJ WR DV PXFK DV H9 7KH IUDJPHQWDWLRQ RI &A)A, XQAHU HOHFWURQ ERPEDUGPHQW ZDV VWXGLHG XVLQJ D %HQGL[ 7LPHRI)OLJKW PDVV VSHFWURPHWHU 8VLQJ WKH )R[ 5HWDUGLQJ 3RWHQWLDO 'LIIHUHQFH WHFKQLTXH PHDVXUHPHQWV ZHUH PDGH RI WKH DSSHDUDQFH SRWHQWLDOV RI SDUHQW LRQ DV ZHOO DV PDMRU LRQLF IUDJPHQWV LQFOXGLQJ A H9f &A) H9f DQG &)A H9f )URP WKHVH UHVXOWV LW LV IRXQG WKDW $+A IRU WKH SDUHQW PROHFXOH &J)A, LV NFDOPROH WKH &)A&)f§Lf ERQG GLVVRFLDWLRQ HQHUJ\ LV NFDOPROH DQG WKH &)A8AOf ERQG GLVVRFLDWLRQ HQHUJ\ LV NFDOPROH 7KH JDPPDUDGLRO\VLV RI JDVHRXV &A)A, ZDV VWXGLHG DW 7RUU DQG r & ERWK SXUH DQG ZLWK DGGHG +, ,Q DOO SURGXFWV ZHUH IRUPHG LQ WKH UDGLRO\VLV )RU WKH SXUH V\VWHP WKH PDMRU UDGLRO\WLF SURGXFWV DQG WKHLU UHVSHFWLYH YDOXHV DUH ,A &J)A &) *)T Q&A4 rn &),! rrn A} O &),&), DQG &)A&),A ,W ZDV REVHUYHG WKDW WKH DGGLWLRQ RI DSSUR[LPDWHO\ b +, GUDPDWLFDOO\ LQFUHDVHG WKH YDOXHV RI IURP WR f DQG WKH LQLWLDO YDOXH RI &)A, IURP WR f ZKLOH GHFUHDVLQJ RWKHU SURGXFW \LHOGV E\ WR b 7Q )A+ &),+ DQG + ZHUH DOVR IRUPHG LQ WKH +,DGGHG V\VWHP 5HVXOWV DUH GLVFXVVHG LQ WHUPV RI LRQLF IUDJPHQWDWLRQ DQG LRQPROHFXOH FKHPLVWU\ RI &A)A, DV REVHUYHG LQ WKLV LQYHVWLJDWLRQ DV ZHOO DV SRVWXODWHG ERQGUXSWXUH SURFHVVHV RI QHXWUDO H[FLWHG VSHFLHV 7KH REVHUYHG ORZ RYHUDOO \LHOG LV GXH WR WKH EDFN UHDFWLRQV DGGLWLRQ &)A+ & [L

PAGE 13

EHWZHHQ A DQG &A)A UDGLFDOV 7KH JDPPVUDGLRO\VLV RI JDVHRXV &)A, ZDV DOVR VWXGLHG DW 7RUU DQG r ERWK SXUH DQG ZLWK DGGHG +, 7KH PDMRU UDGLRO\WLF ‘? b ‘ SURGXFWV DQG WKHLU FRUUHVSRQGLQJ YDOXHV LQ WKH SXUH V\VWHP DUH ,A &)A DQG &A)A :LWK DGGHG +, VFDYHQJHU WKH DGGLWLRQDO SURGXFWV &)A+ &)A,+ DQG +A ZHUH REVHUYHG ,Q JHQHUDO WKH UHVXOWV FDQ EH LQWHUSUHWHG LQ WHUPV RI NQRZQ LRQ IUDJPHQWDWLRQ DQG LRQPROHFXOH FKHPLVWU\ RI &)A, LQYHVWLJDWHG DV SDUW RI WKH SUHVHQW ZRUN DV ZHOO DV QHXWUDO IUDJPHQWDWLRQ SURFHVVHV DQG UDGLFDO UHDFWLRQV REVHUYHG GXULQJ SKRWRO\VLV +RZHYHU D FRPSDULVRQ RI WKH SUHVHQW ZRUN ZLWK UHVXOWV IURP RWKHU ODERUDWRULHV VKRZV WKDW &)A, FDQ EUHDN GRZQ XQGHU GLIIHUHQW UDGLRO\VLV FRQGLWLRQV WR JLYH &A)A SOXV ,A &RRSHU HW DOf &)A SOXV &)A, 0F$OSLQH HW DOf RU &) &)f SUHVHQW ZRUNf 6RPH VXJJHVWLRQV DUH SUHVHQWHG FRQFHUQLQJ WKH IDFWRUV ZKLFK FRQWURO EUDQFKLQJ RI WKH UHDFWLRQ SDWKZD\V GXULQJ UDGLRO\VLV RI WKLV FRPSRXQG [LL

PAGE 14

, ,1752'8&7,21 ? A f $ )RUHZRUG ,QYHVWLJDWLRQV RI WKH JDPPD UDGLRO\VHV RI WULIOXRURPHWK\O LRGLGH DQG SHQWDIOXRURHWK\O LRGLGH LQ WKH JDV SKDVH ZHUH XQGHUWDNHQ WR VWXG\ WKH SULPDU\ DQG VHFRQGDU\ SURFHVVHV OHDGLQJ WR WKHLU GHFRPSRVLWLRQ 6WXGLHV RI LRQPROHFXOH UHDFWLRQV LQ ERWK V\VWHPV SURYLGHG VXSSOHPHQWDU\ LQIRUPDWLRQ RQ WKH GHFRPSRVLWLRQ PHFKDQLVP 7KLV ZRUN ZDV XQGHUWDNHQ ERWK IRU SXUSRVHV RI FRPSDULVRQ ZLWK WKH UDGLRO\VLV O f DQG PDVV VSHFWURPHWU\ r f WKH K\GURFDUERQ DQDORJV DQG DOVR EHFDXVH RI FRQWLQXLQJ LQWHUHVW LQ WKH .DVSHU3LPHQWDO LRGLQH DWRP ODVHU EDVHG RQ SKRWRO\VLV RI &)A, f $OWKRXJK WKH UDGLRO\VLV RI JDVHRXV &)A, KDV EHHQ LQYHVWLJDWHG LQ WZR ODERUDWRULHV WKHUH DUH GLVFUHSDQFLHV LQ WKH REWDLQHG UHVXOWV 1R SUHYLRXV ZRUN KDV EHHQ UHSRUWHG RQ WKH UDGLRO\VLV RI &A)A, RU RQ WKH LRQPROHFXOH UHDFWLRQ FKHPLVWU\ RI HLWKHU FRPSRXQG % 5HYLHZ RI 3UHYLRXV :RUN 0RUH WKDQ WZR GHFDGHV DJR 'DFH\ f VWXGLHG WKH JDV SKDVH SKRWRO\VLV RI &)A, XVLQJ D PHUFXU\ UHVRQDQFH ODPS $W ORZ SUHVVXUH RQO\ &A)A DQG ,A ZHUH IRUPHG ERWK ZLWK ORZ TXDQWXP \LHOGV +RZHYHU DW SUHVVXUHV DERYH 7RUU VPDOO DPRXQWV RI &A)A SRO\PHU

PAGE 15

ZHUH DOVR SUHVHQW 0RUH UHFHQWO\ 6NRURERJDWRY DQG 6PLUQRYf PDGH D PDVV VSHFWURPHWULF DQDO\VLV RI WKH YRODWLOH SURGXFW UHVLGXHV DIWHU WKH SXOVLQJ RI &)A, DQG &A)A, ODVHUV )URP WKH UHVXOWV RI WKHVH DQDO\VHV 6NRURERJDWRY FRQFOXGHG WKDW Of ,Q WKH &)A, V\VWHP WKH HOHFWURQLFDOO\ H[FLWHG DWRPV SURPRWH WKH FRQYHUVLRQ RI &)A, LQWR &)A DQG &A)A ZKLOH WKH QRQH[FLWHG O DWRPV SURPRWH WKH FRQYHUVLRQ RI &)A, LQWR &)A DQG f ,Q WKH &A)A, V\VWHP WKH O 3AAf DWRPV DUH UHVSRQVLEOH IRU WKH IRUPDWLRQ RI &A)A &A)A DQG &A)A, ZKLOH WKH O 3A\Af DWRPV DFFRXQW IRU WKH FRQYHUVLRQ RI &A)A, LQWR &)AB &A)A DQG SRO\PHUV 0F$OSLQH DQG 6XWFOLIIH O2f LQYHVWLJDWHG WKH JDPPD UDGLRO\VLV RI *)A, DW D GRVH UDWH RI ; H9JKU 7KHVH DXWKRUV JLYH WKH IROORZLQJ DFFRXQW RI WKH UDGLRO\VLV PHFKDQLVP LQ WKLV V\VWHP ,Q WKH DEVRUEHG GRVH UDQJH RI WR ; H9 WKH SULPDU\ SURFHVVHV ZHUH FIL YZZ! ZYZ! YZYYr ::9r &)A,r H &)A f H &) ,r H r ? *)A, H[FLWHG PROHFXOHf 7KH PDLQ IDWH RI WKH SDUHQW LRQV LV QHXWUDOL]DWLRQ WR JLYH HY LWHG PROHFXOHV DQG XOWLPDWHO\ *)A UDGLFDOV &)A, H &)A, rr &) f 7KH FRQVHTXHQFH RI WKH GHWDLOHG SULPDU\ SURFHVVHV OLVWHG LQ (TXDWLRQV

PAGE 16

WR LV VXPPDUL]HG E\ (TXDWLRQ 6HFRQGDU\ SURFHVVHV SRVWXODWHG E\ 0F$OSLQH DUH JLYHQ LQ (TXDWLRQV WR &)A, n:999r &) f ,f r &)A f FIL FIL FILf &), 0 FILf FIL &), &)\ &)f &)f, 0 0F$OSLQH DOVR VWDWHG WKDW QR ZDV IRUPHG ZKHQ WKH JODVV YHVVHO VXUIDFH ZDV FRQGLWLRQHG 7KH LUUDGLDWLRQ YHVVHO ZDV SUHFRQGLWLRQHG E\ KHDWLQJ LQ YDFXXP IRU KU IROORZHG E\ UHSHDWHG LUUDGLDWLRQ RI VDPSOHV RI WULIOXRURPHWK\O LRGLGH XQWLO FRQVLVWHQW UHVXOWV ZHUH REWDLQHGf +RZHYHU &A)A ZDV IRUPHG LQ XQFRQGLWLRQHG YHVVHOV $W DERXW WKH VDPH WLPH &RRSHU DQG FRZRUNHUV OOf DOVR VWXGLHG WKH JDPPD UDGLRO\VLV RI &)A, DW GRVH UDWHV RI WR ; H9JKU 7KHLU REVHUYDWLRQV ZHUH LQ FRQWUDGLFWLRQ ZLWK 0F$OSLQHnV ZRUN &RRSHU SURSRVHG WKH IROORZLQJ UHDFWLRQ VFKHPH &)A, nZZZ &)A, H &)A ,r H &)\ H &)A, nZZZ &) )r , &)A, FIL , f &)A, &)\ ; &)\ &)Ar &)

PAGE 17

&)\ ) f§ &) &) &)A DQGRU SRO\PHUV &)A f f§ &)A, &)\ ; &)A, ,f 7KHUH ZHUH VHYHUDO GLVDJUHHPHQWV LQ WKH \LHOGV UHSRUWHG E\ 0F$OSLQH DQG E\ &RRSHU WKH UHVSHFWLYH YDOXHV DUH *&)Af 0F$OSLQHf RU &RRSHUf *&A)Af 0F$OSLQHf RU r &RRSHUf *&),f 0F$OSLQHf RU &RRSHUf DQG *Of 0F$OSLQHf RU &RRSHUf

PAGE 18

,, (;3(5,0(17$/ 352&('85(6 $1' $33$5$786 $ 5HDJHQWV DQG 7KHLU 3XULILFDWLRQ 7ULIOXRURPHWK\O LRGLGH 3&5 ,QFRUSRUDWHG WULIOXRURPHWK\O LRGLGH ZDV SXULILHG XVLQJ SUHSDUDWLYH JDV FKURPDWRJUDSK\ $ IRRWORQJ VWDLQOHVV VWHHO FROXPQ SDFNHG ZLWK 2 PHVK VLOLFD JHO ZDV XVHG DQG ZDV RSHUDWHG DW r & ZLWK D KHOLXP IORZ UDWH RI POPLQ 7KH FROOHFWHG WULIOXRURPHWK\O LRGLGH ZDV WKHQ WUDQVIHUUHG WKURXJK D EDULXP R[LGH GU\LQJ WXEH WR D 8 ORRS RQ WKH YDFXXP OLQH ,W ZDV GHJDVVHG E\ VHYHUDO IUHH]HSXPSWKDZ F\FOHV DQG VWRUHG DW r & LQ D YHVVHO DWWDFKHG WR WKH YDFXXP OLQH 3HQWDIOXRURHWK\O LRGLGH 3&5 ,QFRUSRUDWHG SHQWDIOXRURHWK\O LRGLGH ZDV SXULILHG DQG VWRUHG XVLQJ WKH VDPH PHWKRG DV WKDW IRU WULIOXRURPHWK\O LRGLGH DV GHVFULEHG DERYH (WK\OHQH 0DWKHVRQ &RPSDQ\ & 3 JUDGH HWK\OHQH b PLQLPXP SXULW\f ZDV SDVVHG WKURXJK D EDULXP R[LGH GU\LQJ WXEH LQWR D VWRUDJH YHVVHO RQ WKH YDFXXP OLQH DQG GHJDVVHG E\ WKH IUHH]HSXPSWKDZ PHWKRG

PAGE 19

+\GURJHQ LRGLGH +\GURJHQ LRGLGH ZDV SUHSDUHG E\ GHK\GUDWLQJ 0DWKHVRQ &ROHPDQ t %HOO UHDJHQW JUDGH K\GULRGLF DFLG ^bf ZLWK 3A2A 7KH DFA ZDV f IUR]HQ LQ D URXQG ERWWRP IODVN ZLWK OLTXLG QLWURJHQ DQG 3A2A ZDV DGGHG RQ WRS RI LW 7KH IODVN FRQWDLQLQJ WKH IUR]HQ PL[WXUH ZDV DWWDFKHG WR WKH YDFXXP OLQH DQG DOORZHG WR PHOW YHU\ VORZO\ 7KH +, WKDW ZDV UHOHDVHG ZKHQ WKH DFLG UHDFWHG ZLWK WKH 3A2A ZDV WUDQVIHUUHG WKURXJK D 3A2 7U\LQ6 WXEH WR DQRWKHU IODVN DWWDFKHG WR WKH YDFXXP OLQH 6HYHUDO IUHH]HSXPSWKDZ F\FOHV ZHUH SHUIRUPHG WR VHSDUDWH +, IURP WKH LRGLQH ZKLFK ZDV DOVR SURGXFHG 7KH +, ZDV NHSW IUR]HQ DW OLTXLG QLWURJHQ WHPSHUDWXUH XQWLO XVHG &KURPDWRJUDSKLF FDOLEUDWLRQ VWDQGDUGV 7KH JDV FDOLEUDWLRQ VWDQGDUGV ZHUH XVHG DV UHFHLYHG 7KHVH JDVHV DV ZHOO DV OLTXLG VDPSOHV ZHUH REWDLQHG IURP 3&5 ,QFf 7KH OLTXLG VWDQGDUGV ZHUH GHJDVVHG E\ WKH IUHH]HSXPSWKDZ PHWKRG DQG WUDQVIHUUHG WR D JDV FKURPDWRJUDSKLF VDPSOH ORRS YLD D PHWHULQJ YHVVHO RI NQRZQ YROXPH % 6DPSOH 3UHSDUDWLRQ 9DFXXP V\VWHP $OO VDPSOHV IRU UDGLRO\VLV ZHUH SUHSDUHG RQ D YDFXXP OLQH 7KH SXPSLQJ V\VWHP ZDV D :HOFK 'XR6HDO PHFKDQLFDO SXPS FRQQHFWHG WKURXJK D OLTXLG QLWURJHQ WUDS WR D WZR VWDJH PHUFXU\ GLIIXVLRQ SXPS 7KHVH SXPSV ZHUH FRQQHFWHG WR WKH PDLQ PDQLIROG WKURXJK D

PAGE 20

VHFRQG OLTXLG QLWURJHQ WUDS DQG D VWRSFRFN $WWDFKHG WR WKH PDLQ PDQLIROG ZHUH D PHUFXU\ PDQRPHWHU WZR PHWHULQJ YHVVHOV RI NQRZQ YROXPH PO DQG PO UHVSHFWLYHO\f D WKHUPRFRXSOH YDFXXP JDXJH VWRUDJH YHVVHOV IRU &)A, &A)A, DQG +, VHYHUDO 7HIORQSOXJ VWRSFRFNV ZLWK ULQJ MRLQWV D 7RHSOHU SXPS0F/HRG JDXJH DSSDUDWXV DQG D VXEPDQLIROG XVHG IRU WUDQVIHUULQJ UDGLRO\VLV SURGXFWV WR D VDPSOH ORRS IRU DQDO\VLV IROORZLQJ LUUDGLDWLRQ 7KH VXEPDQLIROG XWLOL]HG RQO\ 7HIORQSOXJ VWRSFRFNV DQG KDG D VHSDUDWH WKHUPRFRXSOH YDFXXP JDXJH IRU PRQLWRULQJ VDPSOH WUDQVIHU RSHUDWLRQV 7UHDWPHQW IRU FOHDQLQJ UDGLRO\VLV YHVVHOV 7KH YHVVHOV XVHG IRU UDGLRO\VLV ZHUH ULQVHG ZLWK GLVWLOOHG ZDWHU DQG DQQHDOHG DW r & WR UHPRYH DQ\ RUJDQLF UHVLGXHV 7KH\ ZHUH WKHQ DWWDFKHG WR WKH YDFXXP OLQH DQG SXPSHG RQ IRU DW OHDVW KRXUV EHIRUH ILOOLQJ WKHP ZLWK VDPSOHV 0HWHULQJ DQG ILOOLQJ RI UDGLRO\VLV YHVVHOV %HIRUH VDPSOH SUHSDUDWLRQ WKH PDQLIROG ZDV LVRODWHG IURP WKH SXPSV DQG WKH &A)A, YDSRU ZDV DOORZHG WR H[SDQG LQWR WKH PO PHWHULQJ YHVVHO XQWLO D GHVLUHG SUHVVXUH ZDV UHDFKHG 7KH YDOYH WR WKH PHWHULQJ YHVVHO ZDV FORVHG DQG WKH H[FHVV PDWHULDO LQ WKH PDLQ PDQLIROG ZDV FRQGHQVHG EDFN LQWR WKH VWRUDJH YHVVHO XVLQJ OLTXLG QLWURJHQ :KHQ +, ZDV DGGHG WKLV ZDV PHWHUHG LQ E\ XVLQJ WKH PO VWDQGDUG YHVVHO DQG ZDV LQWURGXFHG DIWHU WKH &J)A, WUDQVIHU $IWHU VDPSOHV ZHUH PHWHUHG LQ WKH HQWLUH PHWHUHG DPRXQW ZDV WKHQ YDFXXP WUDQVIHUUHG LQWR D UDGLRO\VLV YHVVHO ZKLOH FRQWLQXRXVO\ PRQLWRULQJ

PAGE 21

WKH SUHVVXUH ZLWK WKH WKHUPRFRXSOH JDXJH $OWKRXJK WKLV WUDQVIHU ZDV FRPSOHWHG ZLWKLQ PLQXWHV PLQXWHV ZHUH DOORZHG IRU WKLV SURFHVV $IWHU DOO PDWHULDOV ZHUH WUDQVIHUUHG LQWR WKH UDGLRO\VLV YHVVHO WKH YDFXXP OLQH ZDV RSHQHG WR WKH SXPSV IRU DQRWKHU PLQXWHV EHIRUH WKH UDGLRO\VLV YHVVHO ZDV VHDOHG RII ZLWK D QDWXUDO JDVR[\JHQ IODPH 7KH VDPH SURFHGXUHV ZHUH HPSOR\HG LQ WKH FDVH RI &)A, & 6DPOH ,UUDGLDWLRQ 5DGLDWLRQ VRXUFH DQG YHVVHOV ,UUDGLDWLRQV ZHUH FDUULHG RXW DW URRP WHPSHUDWXUH r &f LQ D &REDOW JDPPD UD\ VRXUFH ZKLFK KDV EHHQ GHVFULEHG LQ GHWDLO HOVHZKHUH f 7KH DQQXODU UDGLRO\VLV YHVVHO XVHG LQ WKLV ZRUN LV VKRZQ LQ )LJ ,W ZDV PDGH RI 3\UH[ DQG HTXLSSHG ZLWK D EUHDNVHDO D FROG ILQJHU DQG D FP SDWK OHQJWK 6XSHUVLO TXDUW] RSWLFDO FHOO 6 • 3\URFHOO 0DQXIDFWXULQJ &Rf FRQQHFWHG E\ D TXDUW] WR 3\UH[ JUDGHG VHDO 7KH WZR DQQXODU YHVVHOV XVHG LQ WKHVH LQYHVWLJDWLRQV KDG YROXPHV RI PO DQG PO UHVSHFWLYHO\ 7KH VDPSOH KROGHU )LJ Of DOORZHG UHSURGXFLEOH SRVLWLRQLQJ RI WKH UDGLRO\VLV YHVVHO GXULQJ LUUDGLDWLRQV 7KH YHVVHO ILWV RQWR D PHWDO SRVW WKH KHLJKW RI WKLV PHWDO SRVW DOORZHG WKH &REDOW VRXUFH WR UHVW LQ WKH FHQWHU RI WKH YHVVHO

PAGE 22

)LJ $QQXODU UDGLRO\VLV YHVVHO DQG KROGHU Of TXDUW] RSWLFDO FHOO f EUHDNVHDO DQG f FROG ILQJHU

PAGE 23

' 'RVLPHWU\ ,W KDV EHHQ UHSRUWHG WKDW WKH K\GURJHQ \LHOG LQ HWK\OHQH XQGHU JDPPD UDGLRO\VLV LQ WKH SUHVVXUH UDQJH RI WR 7RUU DW URRP WHPSHUDWXUH LV LQGHSHQGHQW RI DEVRUEHG GRVH f )XUWKHUPRUH WKH YDOXH IRU K\GURJHQ SURGXFWLRQ LQ HWK\OHQH KDV EHHQ HVWDEOLVKHG WR EH f 7KH DEVRUEHG GRVH UDWH LQ WKH HWK\OHQH V\VWHP ZDV GHWHUPLQHG E\ PHDVXULQJ WKH K\GURJHQ \LHOG DW URRP WHPSHUDWXUH DW LUUDGLDWLRQ WLPHV EHWZHHQ DQG KRXUV DQG DW D SUHVVXUH RI 7RUU )ROORZLQJ LUUDGLDWLRQ WKH DPRXQW RI K\GURJHQ DORQJ ZLWK VPDOO DPRXQWV RI PHWKDQH DQG HWK\OHQHf ZDV GHWHUPLQHG XVLQJ WKH 7RHSOHU0F/HRG DSSDUDWXV .QRZLQJ WKH WRWDO SUHVVXUH RI WKH PL[WXUH DQG WKH TXDQWLWLHV RI PHWKDQH DQG HWK\OHQH GHWHUPLQHG E\ JDV FKURPDWRJUDSKLF DQDO\VHVf WKH K\GURJHQ \LHOG FRXOG EH FDOFXODWHG 7KH DPRXQW RI SORWWHG DJDLQVW WKH LUUDGLDWLRQ WLPH JDYH D VWUDLJKW OLQH DV VKRZQ LQ )LJ )URP WKH VORSH RI WKH SORW LQ )LJ DQG WKH DFFHSWHG YDOXH IRU K\GURJHQ WKH DEVRUEHG GRVH UDWH LQ HWK\OHQH ZDV FDOFXODWHG WR EH ; H9JKU RQ -XQH $VVXPLQJ WKDW WKH UDGLRO\VLV YHVVHOV XVHG DSSUR[LPDWHG D %UDJJ*UD\ FDYLW\ f WKH UDWH RI HQHUJ\ GHSRVLWLRQ LQ HWK\OHQH FDQ EH FRUUHODWHG ZLWK WKDW LQ &f)A, DQG &), 6LQFH WKH DXSOLFDWLRQ G RI WKH %UDJJ*UD\ SULQFLSOH LV MXVWLILHG Of WKH UDWLR RI WKH HQHUJ\ GHSRVLWHG SHU XQLW PDVV LQ WKH VDPSOH WR WKDW LQ WKH GRVLPHWHU FDQ EH GHWHUPLQHG E\ WKH UDWLR RI WKHLU PDVV VWRSSLQJ SRZHUV fr 7KH ILQDO IRUP RI WKH GRVLPHWU\ HTXDWLRQV XVHG WR FDOFXODWH

PAGE 24

PLFURPROHVJUDP RI &B+ )LJ 'RVLPHWU\ +\GURJHQ \LHOG IURP HWK\OHQH DV D IXQFWLRQ RI LUUDGLDWLRQ WLPH

PAGE 25

WKH DEVRUEHG GRVH UDWHV LQ &A)A, DQG &)A, DUH 'RVH &J)AOf 'RVH &Af 'RVH &) ,f 2 'RVH & +f LQ XQLWV RI H9JKU 7KHUHIRUH WKH DEVRUEHG GRVH UDWHV RQ -XQH ZHUH ; H9JKU IRU &A, DQG ; H9JKU IRU &)A, 'XULQJ VXEVHTXHQW LUUDGLDWLRQV WKH DEVRUEHG GRVH UDWHV ZHUH FRUUHFWHG IRU WKH GHFD\ RI &REDOW 6DPSOH ZHLJKWV XVHG LQ ERWK YHVVHOV ZHUH J IRU &)A, DQG J IRU &A)A, $FWXDO VDPSOH SUHVVXUHV YDULHG VOLJKWO\ IURP WKH QRUPDO YDOXHV GXH WR VOLJKW GLIIHUHQFH LQ WKH YROXPH RI WKH YHVVHOV XVHGf ( $QDO\WLFDO (TXLSPHQW DQG 3URGXFW $QDO\VLV *DV FKURPDWRJUDSK $ 0LFUR7HN PRGHO UHVHDUFK JDV FKURPDWRJUDSK HTXLSSHG ZLWK D IODPH LRQL]DWLRQ GHWHFWRU DQG D WKHUPDO FRQGXFWLYLW\ GHWHFWRU ZDV XVHG IRU WKH TXDQWLWDWLYH DQDO\VLV RI RUJDQLF SURGXFWV ,Q WKLV LQVWUXPHQW WKH JDV FKURPDWRJUDSKLF FROXPQ LV HQFORVHG LQ DQ RYHQ ZKRVH f§f§A WHPSHUDWXUH LV FRQWUROOHG E\ D PXOWLIXQFWLRQ WHPSHUDWXUH SURJUDPPHU 7KH RXWSXW RI WKH JDV FKURPDWRJUDSKLF GHWHFWRU V\VWHP ZDV IHG WR D P9 :HVWURQLFV UHFRUGHU $OO SURGXFWV ZHUH WUDQVIHUUHG RQ YDFXXP OLQH VXEPDQLIROG WR RQH RI WKH VDPSOH ORRSV VKRZQ LQ )LJ IRU VXEVHTXHQW LQMHFWLRQ LQWR WKH JDV FKURPDWRJUDSK D 3URGXFWV QRQFRQGHQVLEOH DW r ,Q WKH GHWHUPLQDWLRQ RI WKH QRQFRQGHQVLEOHV WKH UDGLRO\VLV

PAGE 26

)LJ *DV FKURPDWRJUDSKLF VDPSOH ORRSV

PAGE 27

YHVVHO ZDV DWWDFKHG WR D VXEPDQLIROG OHDGLQJ WR WKH 7RHSOHU SXPS 0F/HRG JDXJH DSSDUDWXV WKURXJK D EUHDNVHDO $IWHU D JRRG YDFXXP KDG EHHQ UHDFKHG D ]HUR SUHVVXUH UHDGLQJ ZDV WDNHQ ZLWK DQ (DOLQJ FDWKHWRPHWHU 7KH V\VWHP ZDV LVRODWHG IURP WKH YDFXXP SXPSV DQG WKH EUHDNVHDO ZDV EURNHQ RSHQ 7KH SURGXFWV ZHUH SDVVHG WKURXJK D OLTXLG QLWURJHQ 8WUDS 7KH QRQFRQGHQVLEOH IUDFWLRQ ZDV FROOHFWHG DQG WUDQVIHUUHG LQ 7RHSOHU SXPS F\FOHV WR WKH 0F/HRG JDXJH IRU PHDVXUHPHQW ,W ZDV WKHQ WUDQVIHUUHG WR VDPSOH ORRS IRU IODPH LRQL]DWLRQ JDV FKURPDWRJUDSKLF DQDO\VLV 7KLV SURFHGXUH DOORZHG GHWHUPLQDWLRQ RI VPDOO TXDQWLWLHV RI PHWKDQH DQG HWK\OHQH WKDW FRQWULEXWHG WR WKH SUHVVXUH PHDVXUHPHQW +\GURJHQ \LHOGV ZHUH GHWHUPLQHG E\ GLIIHUHQFH E 2UJDQLF SURGXFWV FRQGHQVLEOH DW r & 7KH RUJDQLF FRQGHQVLEOHV ZHUH WUDQVIHUUHG WR VPDSOH ORRS RQ WKH VXEPDQLIROG E\ EUHDNLQJ WKH EUHDNVHDO $OO SURGXFWV ZHUH VHSDUDWHG RQ D IW 2' ; ZDOO VWDLQOHVV VWHHO FROXPQ SDFNHG ZLWK R PHVK VLOLFD JHO ZLWK D KHOLXP FDUULHU JDV IORZ UDWH RI POPLQ 7KH FROXPQ ZDV RSHUDWHG DW r & XQWLO Q&A)A HOXWHG DIWHU ZKLFK WKH WHPSHUDWXUH ZDV LQFUHDVHG DW D UDWH RI r & SHU PLQXWH WR r & $W WKH HQG RI HDFK DQDO\VLV WKH FROXPQ ZDV FLQGLWLRQHG DW r & IRU VHYHUDO KRXUV $ P 2' ; ZDOO VWDLQOHVV VWHHO FROXPQ SDFNHG ZLWK b 6( RQ R PHVK DFLG ZDVKHG *KURPRVRUE 3 ZDV XVHG WR LQYHVWLJDWH SRVVLEOH SURGXFW GHFRPSRVLWLRQ RQ WKH VLOLFD JHO FROXPQ GHVFULEHG DERYH 3URGXFWV PHDVXUHG XVLQJ WKH 66 FROXPQ ZHUH LQ DJUHHPHQW ZLWK WKRVH PHDVXUHG XVLQJ WKH VLOLFD JHO FROXPQ LQGLFDWLQJ

PAGE 28

WKDW WKHUH ZDV QR VLJQLILFDQW GHFRPSRVLWLRQ RI SURGXFWV RQ WKH VLOLFD JHO FROXPQ 3ULRU WR HDFK DQDO\VLV WKH UDODWLYH UHVSRQVH RI WKH IODPH LRQL]DWLRQ GHWHFWRU WR D W\SLFDO IOXRURFDUERQ FRPSRXQG ZDV GHWHUPLQHG XVLQJ SHUIOXRURSURSDQH 6LQFH &)AB KDV DQ H[WUHPHO\ VPDOO PRODU UHVSRQVH LQ D IODPH LRQL]DWLRQ GHWHFWRU f LW ZDV PHDVXUHG XVLQJ D WKHUPDO FRQGXFWLYLW\ GHWHFWRU *DV FKURPDWRJUDSKPDVV VSHFWURPHWHUFRPSXWHU V\VWHP $ GHWDLOHG GHVFULSWLRQ RI WKH JDV FKURPDWRJUDSK%LQGL[ PRGHO PDVV VSHFWURPHWHU*HQHUDO $XWRPDWLRQ 63& PLQLFRPSXWHU V\VWHP KDV EHHQ JLYHQ HOVHZKHUH f 7KH JDV FKURPDWRJUDSK ZDV HTXLSSHG ZLWK D VWUHDP VSOLWWHU DW WKH FROXPQ H[LW $ +RNH 0LOOL0LWH PHWHULQJ YDOYH GLYHUWHG DSSUR[LPDWHO\ O RI WKH FROXPQ HIIOXHQW WR WKH GHWHFWRU RI WKH JDV FKURPDWRJUDSK DQG WKH UHPDLQLQJ IUDFWLRQ WR WKH LRQ VRXUFH RI WKH %HQGL[ PDVV VSHFWURPHWHU WKURXJK D VLQJOH VWDJH MHW PROHFXODU VHSDUDWRU 7KH HIIOXHQW VSOLWWHU V\VWHP DOORZV WKH JDV FKURPDWRJUDSK WR RSHUDWH DW VWPRVSKHULF SUHVVXUH ZKLOH UXQQLQJ WKH PDVV VSHFWURPHWHU XQGHU YDFXXP A 7RUUf +HOLXP LV XVHG DV WKH FDUULHU JDV VLQFH LW LV HDVLO\ VNLPPHG RII E\ WKH PROHFXODU VHSDUDWRU IXUWKHUPRUH LW SURYLGHV PLQLPXP LQWHUIHUHQFH ZLWK WKH PDVV VSHFWUD RI RWKHU VSHFLHV 7KH PDVV VSHFWUDO GDWD DFTXLVLWLRQ LV DFFRPSOLVKHG E\ D *HQHUDO $XWRPDWLRQ 63& PLQLFRPSXWHU 'XULQJ D JDV FKURPDWR JUDSPDVV VSHFWURPHWHU UXQ GDWD DUH VWRUHG RQ PDJQHWLF WDSH 3(& WUDFN PDJQHWLF WDSH XQLWf DQG DUH UHWULHYHG DQG UHGXFHG DW D ODWHU WLPH

PAGE 29

6SHFWURSKRWRPHWU\ $ %HFNPDQ '8 VSHFWURSKRWRPHWHU ZLWK D *LOOIRUG PRGHO SKRWRPHWHU DQG SRZHU VXSSO\ ZDV XVHG 7ZR UHDGLQJV ZHUH QHFHVVDU\ IRU HDFK GHWHUPLQDWLRQ )LUVW WKH VDPSOH ZDV FRQGHQVHG LQWR WKH FROG ILQJHU RI WKH UDGLRO\VLV YHVVHO DQG WKH FHOO DEVRUEDQFH GHWHUPLQHG 7KHQ WKH VDPSOH ZDV YRODWLOL]HG DQG LWV RSWLFDO GHQVLW\ ZDV PHDVXUHG DW r & 7KH GLIIHUHQFH EHWZHHQ WKH WZR RSWLFDO GHQVLW\ UHDGLQJV ZDV WDNHQ WR EH SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI LRGLQH 7KH DPRXQW RI LRGLQH SUHVHQW ZDV GHWHUPLQHG WDNLQJ WKH H[WLQFWLRQ FRHIILFLHQW WR EH OLWHU PROH A FP A DW QP f 7KH XQFHUWDLQW\ LQ LQGLYLGXDO ,A PHDVXUHPHQWV PD\ EH DV PXFK DV b LQ WKH ZRUVW FDVH DOWKRXJK WKH VWDQGDUG GHYLDWLRQ RI WKH GRVH\LHOG SORW ZDV RQO\ b (TXLSPHQW IRU LRQ PROHFXOH VWXGLHV D +LJK SUHVVXUH PDVV VSHFWURPHWU\ 7KH %HQGL[ PDVV VSHFWURPHWHU FRXOG HDVLO\ EH FKDQJHG IURP WKH DQDO\WLFDO WR WKH LRQPROHFXOH PRGH f 7KH KLJK SUHVVXUH LRQ VRXUFH ZDV FRQVWUXFWHG DV GHVFULEHG E\ )XWUHOO DQG FRZRUNHUV f $ VOLJKW PRGLILFDWLRQ ZDV PDGH VR WKDW WKH ILODPHQW LV VKLHOGHG WR SUHYHQW HOHFWURQV IURP HQWHULQJ WKH LRQ IRFXV UHJLRQ 7KH LRQ VRXUFH LV KRXVHG LQVLGH D VWDLQOHVV VWHHO FURVV ZKLFK LV FRQQHFWHG GLUHFWO\ WR WKH GULIW WXEH RI WKH PDVV VSHFWURPHWHU %HVLGHV WKH UHJXODU SXPSLQJ V\VWHP VXSSOLHG ZLWK WKH %HQGL[ LQVWUXPHQW D &9& 7\SH RLO GLIIXVLRQ SXPS EDFNHG E\ D :HOFK 'XRVHDO IRUHSXPS DFWLQJ DV DQ DX[LOLDU\ IDVW SXPSLQJ V\VWHP ZDV XVHG 7KLV V\VWHP ZDV

PAGE 30

DWWDFKHG GLUHFWO\ WR WKH LRQ VRXUFH E\ PHDQV RI PHWDOOLF EHOORZV LQ RUGHU WR PDLQWDLQ D SUHVVXUH GLIIHUHQWLDO RI DERXW EHWZHHQ WKH LQWHULRU RI WKH VRXUFH DQG LWV VRXUURXQGLQJ UHJLRQ LQVLGH WKH FURVV :LWK WKLV VHWXS LRQPROHFXOH UHDFWLRQV FRXOG EH VWXGLHG DW D SUHVVXUH DV KLJK DV 7RUU )LJ VKRZV D VFKHPDWLF GLDJUDP RI WKH LRQPROHFXOH UHDFWLRQ VRXUFH 7KH LRQPROHFXOH UHDFWLRQ FKDPEHU LV D UHFWDQJXODU EORFN ZLWK D OHQJWK RI LQFK LQ WKH GLUHFWLRQ SDUDOOHO WR WKH IOLJKW WXEH LQFK LQ WKH GLUHFWLRQ SDUDOOHO WR WKH HOHFWURQ EHDP DQG LQFK LQ WKH YHUWLFDO GLUHFWLRQ 7KH HOHFWURQ EHDP ZDV SXOVHG DW D UDWH RI N+] LH PLFURVHFRQGV IRU HDFK FRPSOHWH F\FOHf $ VPDOO UHSXOVLYH GF SRWHQWLDO ZDV DSSOLHG WR WKH EDFNLQJ SODWH 5 WR DFKLHYH WKH UHSHOOHU ILHOG VWUHQJWK ZKLFK LV UHTXLUHG WR H[WUDFW LRQV IURP WKH VRXUFH $W VRPH WLPH LQWHUYDO YDULDEOH IURP ]HUR WR DERXW PLFURVHFRQGV DIWHU WKH HOHFWURQ EHDP ZDV VKXW RII D YROW SXOVH ZDV DSSOLHG WR JULG DQG D V\QFKURQRXV SXOVH RI YROWV ZDV DSSOLHG WR JULG 7KH SXOVH RQ EORFNLQJ SXOVHf SUHYHQWV DQ\ DGGLWLRQDO LRQV IURP HQWHULQJ WKH IRFXV UHJLRQ DQG WKH SXOVH RQ IRFXV SXOVHf JDWHV DOO LRQV ZLWKLQ WKH IRFXV UHJLRQ EHWZHHQ DQG LQWR WKH DFFHOHUDWLRQ UHJLRQ 7KHVH LRQV DUH WUDQVPLWWHG GRZQ WKH GULIW WXEH DQG DSSHDU DW WKH GHWHFWRU DV VHYHUDO SHDNV LQ DQ RUGHU FKDUDFWHUL]HG E\ WKHLU LRQ PDVVHV 7KLV GHVLJQ DOORZV GDWD WR EH REWDLQHG DV D IXQFWLRQ RI UHDFWLRQ WLPH DV ZHOO DV VRXUFH SUHVVXUH 'XULQJ WKH RIIF\FOH RI WKH IRFXV SXOVH LRQV DUH FRQWLQXRXVO\ FRPLQJ RXW RI WKH VRXUFH ,I WKH\ ZHUH DOORZHG WR UHDFK WKH GHWHFWRU LW ZRXOG OHDG WR D ODUJH FRQWLQXRXV EDFNJURXQG FXUUHQW 7KH VSOLW

PAGE 31

8) F 7 Y $ *DV LQOHW % )OLJKW WXEH & (OHFWURQ FRQWURO JULG ( (OHFWURQ EHDP LQOHW ) )LODPHQW %ORFNLQJ SXOVH ,RQ IRFXV SXOVH 5 %DFNLQJ SODWH 6 ,RQ RXWOHW VOLW 7 (OHFWURQ WUDS )LJ 6FKHPDWLF RI %HQGL[ KLJK SUHVVXUH LRQPROHFXOH UHDFWLRQ VRXUFH

PAGE 32

SODWH VWUXFWXUH RI *ULG SUHYHQWV WKLV IURP KDSSHQLQJ f 'XULQJ WKH RIIF\FOH D QHJDWLYH ELDV RI DERXW YROWV LV DSSOLHG WR WKH ORZHU KDOISODWH 6LQFH WKH XSSHU KDOI LV DW JURXQG SRWHQWLDO SRVLWLYH LRQV ZKLFK GLIIXVH SDVW WKH JULG DWWDFKHG WR WKH XSSHU KDOISODWHf DUH DFFHOHUDWHG DJDLQVW WKH ORZHU KDOISODWH DQG ORVW WR WKH ZDOOV 7KHUHIRUH RQO\ GXULQJ WKH IRFXV SXOVH DUH WKH LRQV LQ WKH IRFXV UHJLRQ VZHSW LQWR WKH DFFHOHUDWLRQ UHJLRQ E\ YROWVf DQG YROWV ERWK XSSHU DQG ORZHU KDOISODWHf E ,RQ &\FORWURQ 5HVRQDQFH PDVV VSHFWURPHWU\ ,RQ &\FORWURQ 5HVRQDQFH ,&5f PDVV VSHFWURPHWU\ LV QRZ ZHOO HVWDEOLVKHG DV D WHFKQLTXH IRU WKH VWXG\ RI LRQPROHFXOH UHDFWLRQV "f ,Q D W\SLFDO DSSDUDWXV XVHG LQ VXFK VWXGLHV D XQLIRUP PDJQHWLF ILHOG % LV RULHQWHG DORQJ WKH = D[LV )LJ f DQG D GF HOHFWULF ILHOG ( V LQ WKH VRXUFH UHJLRQf LV SUHVHQW LQ WKH < GLUHFWLRQ $Q LRQ RI PDVV WR FKDUJH UDWLR PH LQ FURVVHG GF HOHFWULF DQG PDJQHWLF ILHOGV ZLOO GULIW LQ WKH ; GLUHFWLRQ IROORZLQJ D F\FORLGDO WUDMHFWRU\ ZLWK D FKDUDFWHULVWLF IUHTXHQFH RI UHYROXWLRQ FMF ,I DQ UI HOHFWULF ILHOG ( RI IUHTXHQF\ A LV DSSOLHG SHUSHQGLFXODU WR % WKH LRQV ZLOO DEVRUE HQHUJ\ IURP WKH UI HOHFWULF ILHOG DQG EH DFFHOHUDWHG ZKHQ 6LQJOH UHVRQDQFH VSHFWUD DUH REWDLQHG E\ VFDQQLQJ % DQG PHDVXULQJ WKH SRZHU DEVRUSWLRQ IURP D IL[HG IUHTXHQF\ PDUJLQDO RVFLOODWRU $ 9DULDQ 9 LQVWUXPHQW HTXLSSHG ZLWK WKH VWDQGDUG WKUHH VHFWLRQ IODW FHOO ZDV XVHG )LJ f 7KH GULIW SODWH VHSDUDWLRQ LQ DOO VHFWLRQV ZDV FP WKH OHQJWK RI WKH VRXUFH UHJLRQ IURP WKH ILODPHQW ORFDWLRQ WR WKH HQG RI WKH VRXUFH GULIW SODWHV ZDV A FP

PAGE 33

$ % !.f§ F f§ , DQDO\]H DQG ,RQ FROOHFWRU UHJLRQV UHVSHFWLYHO\ (OHFWURGHV DQG DUH XVHG IRU WUDSSLQJ DQG IRU VRXUFH GULIW DQG IRU DQDO\]HU GULIW DQG UI DQG IRU WRWDO LRQ FROOHFWLRQV 'RXEOHUHVRQDQFH UI FDQ DOVR EH DSSOLHG WR DQG DQG HOHFWURGHV $IWHU GLDJUDP JLYHQ E\ 0 6 +HQLV ,RQ &\FORWURQ 5HVRQDQFH 6SHFWURPHWU\ LQ ,RQ 0ROHFXOH 5HDFWLRQV (G / )UDNOLQ 3OHQXP 3UHVV 1HZ
PAGE 34

DQG WKH OHQJWK RI WKH DQDO\]HU VHFWLRQ ZDV FP $ VLQJOH WUDSSLQJ SODWH ZDV XVHG RQ HDFK VLGH RI ERWK WKH VRXUFH DQG WKH DQDO\]HU VHFWLRQV VHSDUDWLRQ ZDV A FP 7KH OHYHO RI WKH REVHUYLQJ RVFLOODWRU IUHTXHQF\ ZDV VHW DV ORZ DV SRVVLEOH LQ RUGHU WR PLQLPL]H LRQ ORVV WR WKH ZDOO LQ WKH DQDO\]HU UHJLRQ 7KH HPLVVLRQ FXUUHQW ZDV NHSW EHORZ Or$ 'RXEOHUHVRQDQFH VSHFWUD ZHUH REWDLQHG E\ VZHHSLQJ WKH GRXEOHn UHVRQDQFH IUHTXHQF\ ZKLOH WKH DQDO\]HU ZDV VHW DW WKH PDJQHWLF ILHOG UHTXLUHG WR REVHUYH D VHFRQGDU\ LRQ RI LQWHUHVW ZLWK WKH PDUJLQDO RVFLOODWRU VHW DW 7KH FKDQJH LQ SURGXFW LRQ LQWHQVLW\ FDXVHG E\ FKDQJLQJ WKH NLQHWLF HQHUJ\ RI WKH SULPDU\ LRQ ZDV WKXV GLUHFWO\ REVHUYHG 7KH GRXEOH UHVRQDQFH UI ILHOG ZDV DSSOLHG WR WKH VRXUFH UHJLRQ DQG WKH LUUDGLDWLQJ ILHOG VWUHQJWK ZDV NHSW DV ORZ DV SRVVLEOH WR SUHYHQW VZHHSRXW HIIHFW f 3UHVVXUH ZDV PRQLWRUHG E\ WKH 9DFLRQ SXPS FRQWURO XQLW DQG WKH UDWH FRQVWDQW IRU D ZHOOHVWDEOLVKHG UHDFWLRQ f FK r1L r &+ f ZDV PHDVXUHG DV D UHIHUHQFH XQGHU WKH VDPH H[SHULPHQWDO FRQGLWLRQV DV WKH UHDFWLRQV EHLQJ VWXGLHG LQ RUGHU WR EDFN FDOFODOH WKH DFWXDO SUHVVXUH DQG WKXV FDOLEUDWH WKH UHDGLQJV IURP WKH 9DFLRQ SXPS 'XH WR WKH XQFHUWDLQWLHV LQ WKH PHDVXUHPHQWV RI LRQ WUD LW WLPHV WKH DEVROXWH SUHVVXUHV DQG WKH FRPSOH[LWLHV RI WKH UHDFWLRQV LQYROYHG LQ WKH V\VWHPV VWXGLHG QR DWWHPSW ZDV PDGH WR GHWHUPLQH WKH DEVROXWH UHDFWLRQ UDWH FRQVWDQWV 7KH SULPDU\ REMHFWLYH ZDV WR XVH WKH GRXEOHUHVRQDQFH WHFKQLTXH WR LGHQWLI\ UHDFWLRQ FKDQQHOV

PAGE 35

,,, ,2102/(&8/( 5($&7,216 ,1 7+( 6<67(06 75,)/82520(7+
PAGE 36

,9fe,9Pf )LJ 1RUPDOL]HG &) &)A &A)A DQG &)JOAf LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &)H, DW m PLFURQV DQG  9f 9M2

PAGE 37

LcfHL $f \\ 'HOD\ LQ PLFURVHFV L )LJ 1RUPDOL]HG &A)A, DQG &A)A, LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &A)A, DW m PLFURQV DQG & 1! IU

PAGE 38

O\PfLO9Pf )LJ 1RUPDOL]HG , &)A, DQG &)AOf LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &J)A, DW m PLFURQV DQG r* UY!

PAGE 39

UDWH FRQVWDQWV DUH VXPPDUL]HG LQ 7DEOH 7KH VHPLORJDULWKPLF WUHDWPHQW IRU WKH IRUPDWLRQ RI LRQV LV SORWWHG DV OQ$4 3f$ f YHUVXV GHOD\ WLPH IRU WKH LRQV &A)A,A DQG &)AOf RU SORWWHG DV OQ3RR 3f3RRf YHUVXV GHOD\ WLPH IRU WKH LRQV &A)A &), &/), DQG &)F, ZKHUH 3 LV WKH FRUUHFWHG LRQ LQWHQVLW\ $ LV WKH FRUUHFWHG LQLWLDO LQWHQVLW\ IRU WKH UHDFWDQW LRQ DQG 3 2 RR LV WKH FRUUHFWHG ILQDO LQWHQVLW\ IRU WKH SURGXFW LRQ )LJV DQG VKRZ W\SLFDO ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH ,&'5f VSHFWUD WDNHQ WR LGHQWLI\ UHDFWLRQ FKDQQHOV OHDGLQJ WR WKH IRUPDWLRQ RI &A)A,r DQG &J)A,f LRQV UHVSHFWLYHO\ &)A, V\VWHP )LJV WKURXJK VKRZ WKH SUHVVXUH DQG WLPH GHSHQGHQFH RI WKH LRQ LQWHQVLWLHV LQ WKH KLJK SUHVVXUH 7LPHRI)OLJKW PDVV VSHFWURn PHWU\ DV ZHOO DV LQ WKH ,RQ &\FORWURQ 5HVRQDQFH VWXG\ RI WKH &)A, V\VWHP +HDY\ LRQV VXFK DV ,A &)A,A DQG &)AOfA ZHUH DOVR IRUPHG LQ WKLV V\VWHP 7KH VHPLORJDULWKPLF WUHDWPHQW DV SHUIRUPHG LQ WKH &)A, V\VWHP JDYH JRRG VWUDLJKW OLQHV ZKLFK OHG WR WKH UDWH FRQVWDQWV IRU WKH IRUPDWLRQ RU ORVV RI IUDJPHQW LRQV DV OLVWHG LQ 7DEOH % 'LVFXVVLRQ &f)f, V\VWHP f§a 7KH UHDFWLRQ SDWKZD\V HVWDEOLVKHG RQ WKH EDVLV RI ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH VSHFWURVFRS\ RU KLJK SUHVVXUH 7LPHRI)OLJKW PDVV VSHFWURPHWU\ DUH OLVWHG LQ 7DEOH r 7KHVH PHDVXUHPHQWV DSSHDU WR

PAGE 40

" 7DEOH 5DWH &RQVWDQWV RI )UDJPHQW ,RQV LQ WKH &J)A, 6\VWHP LRQV N FML3 PROHFXOH A VHF A ; A* &) GHF 0VHFf FI GHF SVHFf FI LQF 0VHFf FI GHF Of§ SVHFf FIL LQF 0VHFf &), LQF 0VHFf FI LQF 0VHFf GHF 0VHFf LQF 0VHFf *), LQF 0VHFf r3,f LQF 0VHFf

PAGE 41

,QWHQVLWLHV )LJ ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH VSHFWUXP RI &B)F, ZLWK DQ LUUDGLDWLQJ ILHOG RI 9 A PH LUUDGLDWHG )LJ ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH VSHFWUXP RI &"), ZLWK DQ LUUDGLDWLQJ ILHOG RI 9

PAGE 42

O9PfO9Pf 3UHVVXUH LQ PLFURQV )LJ 1RUPDOL]HG &)A &), DQG &)A, LRQ LQWHQVLWLHV DV D IXQFWLRQ RI SUHVVXUH LQ WKH 72) VSHFWUXP RI &)A, DW r* O1Lf]O9Pf IRU &)f LRQV

PAGE 43

O9AfeO9• )LJ 1RUPDOL]HG &)A,A DQG &)AOfB D IXQFWLRQ RI SUHVVXUH LQ WKH 72) DW r& LRQ LQWHQVLWLHV DV VSHFWUXP RI &)A,

PAGE 44

OPf(OPf 3UHVVXUH 7RUU ; &A )LJ 1RUPDOL]HG LRQ VLQJOHUHVRQDQFH LQWHQVLWLHV DV D IXQFWLRQ RI SUHVVXUH LQ WKH ,&5 VSHFWUXP RI &)f, DW H9 DQG r &

PAGE 45

OAf(O9! )LJ 1RUPDOL]HG &)A &)AO DQG &)A, LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &)B, R DW PLFURQV DQG & O9Pf]O9Pf IRU &) LRQV

PAGE 46

O$Pf(O9Pf 'HOD\ WLPH LQ PLFURVHFV )LJ 1RUPDOL]HG , &)A, DQG &)AOf LRQ LQWHQVLWLHV DV D IXQFWLRQ RI GHOD\ WLPH LQ WKH 72) VSHFWUXP RI &)A, DW PLFURQV DQG r*

PAGE 47

7DEOH 5DWH &RQVWDQWV RI )UDJPHQW ,RQV LQ WKH &)A, 6\VWHP LRQV N FPA PROHFXOH A VHF A ; A* FI LQF \VHFf FI GHF \VHFf FI GHF \VHFf FIL LQF \VHFf &), GHF \VHFf &), LQF \VHFf GHF \VHFf ; LQF \VHFf *), LQF \VHFf &ILf LQF \VHFf

PAGE 48

7DEOH ,RQ0ROHFXOH 5HDFWLRQV LQ )A, 5HDFWLRQ ND $ + NFDOPROHnr 0HWKRG f &) *), &) &), 72) f &) *), *), FIFI 72) f FI FIL &), FIr ,&'5 ` f FI &), *), ,&'5 7 f *), &) ,&'5 r) &), ` f *), *), *) %RWK &) &9 7 7 VORZ f *), *), *) ,&'5 f 7 *), :n ,r %RWK I f &), *)r %RWK f &) *), *), *), r ,&'5 ` VORZ f &) &), *), FIL ,&'5 f *), *), *), *)f 72) f r), *), FILf 72) D FP PROHFX L VHF ; 2 f Lf§ R f§O 7KHUPRFKHPLFDO GDWD IRU WKHVH FDOFXODWLRQV DUH OLVWHG LQ $SSHQGL[ 4 ,&'5 UHIHUV WR ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH 72) LQGLFDWHV KLJK SUHVVXUH 7LPHRI)OLJKW PDVV VSHFWURPHWU\ %RWK UHIHUV WR ERWK ,&'5 DQG 72)

PAGE 49

EH VWUDLJKWIRUZDUG DQG LQ JRRG DJUHHPHQW ZLWK HDFK RWKHU :KHUHYHU SRVVLEOH UDWH FRQVWDQWV DQG KHDWV RI UHDFWLRQ IRU LQGLYLGXDO SURFHVVHV DUH DOVR OLVWHG LQ WKH WDEOH 5HDFWLRQV RI &)A )LJ VKRZV WKDW WKH LQWHQVLW\ RI &) LRQ GHFUHDVHV YHU\ UDSLGO\ DQG EHFRPHV ]HUR DIWHU RQO\ SVHF ,Q WKH VDPH WLPH UHJLRQ WKH LQWHQVLW\ RI &)A DRQ LQFUHDVHV GUDVWLFDOO\ DQG WKDW RI &), LrQ LQFUHDVHV WR D QHDUO\ FRQVWDQW YDOXH 7KHVH REVHUYDWLRQV LQGLFDWH WKDW WKH SULPDU\ UHDFWLRQ FKDQQHOV IRU WKH &) LRQ DUH WKH IRUPDWLRQ RI &)A DQA &), DRQVf 7KH IRUPDWLRQ RI *A)A LRQ FRXOG SURFHHG HLWKHU E\ LRGLGH LRQ WUDQVIHU &) &A, &)A &), ,,,O RU E\ D GLVVRFLDWLYH FKDUJH WUDQVIHU &) &), &)A &)r ‘ ,OOOD 7KHUPRG\QDPLF FDOFXODWLRQV LQGLFDWH ERWK UHDFWLRQV DUH HQGRWKHUPLF +RZHYHU 5HDFWLRQ ,,,O LV PRUH IDYRUDEOH VLQFH LW ZRXOG UHTXLUH RQO\ NFDOPROH LQ H[FHVV RI WKDW VXSSOLHG E\ WKH UHDFWDQWV LQ WKHLU JURXQG VWDWHV 6LPLODU WKHUPRG\QDPLF DUJXPHQWV VXJJHVW WKDW WKH IDYRUDEOH SURFHVV IRU WKH IRUPDWLRQ RI &), LRQ ZRXOG EH &)A LRQ WUDQVIHU IURP SDUHQW PROHFXOH WR &) LRQ 7KH &)A LRQ WUDQVIHU UHDFWLRQ KDV EHHQ UHSRUWHG f LQ WKH LRQPROHFXOH UHDFWLRQV RI KH[DIOXRURDFHWRQH &) &)A, &)e, &)A&) ,,, 7KH HQGRWKHUPLFLW\ RI 5HDFWLRQ ,,, LV NFDOPROH 0DUFRWWH

PAGE 50

DQG 7LHUQDQ f KDYH SUHYLRXVO\ UHSRUWHG WKH SDUWLFLSDWLRQ RI H[FLWHG UHDFWDQW LRQV GXULQJ LRQPROHFXOH UHDFWLRQV RI IOXRURFDUERQ VSHFLHV 7KHVH DXWKRUV SRLQWHG RXW WKDW D ODUJH IUDFWLRQ RI WKH &) VSHFLHV IRUPHG E\ HOHFWURQ LPSDFW RI &A)A DW H9 KDYH LQWHUQDO HQHUJLHV DSSURDFKLQJ H9 DQG WKH &)A LRQV LQ WKH WDQGHP LQVWUXPHQW KDYH DV PXFK DV H9 RI LQWHUQDO H[FLWDWLRQ LW VKRXOG EH QRWHG WKDW HOHFWURQV RI H9 HQHUJ\ ZHUH XVHG LQ WKH KLJK SUHVVXUH 7LPHRI )OLJKW ZRUN DQG H9 LQ WKH ,&5 ZRUN $ WHQGHQF\ WR IRUP H[FLWHG LRQV XQGHU FRQGLWLRQV RI H[FHVV HQHUJ\ ERPEDUGPHQW GRHV QRW QHFHVVDULO\ LQYDOLGDWH DSSHDUDQFH SRWHQWLDO PHDVXUHPHQWV WDNHQ DW RQVHW 7KLV SRLQW LV GLVFXVVHG IXUWKHU LQ $SSHQGL[ ,f 7KH UDWH FRQVWDQW IRU 5HDFWLRQ ,,, LV ; FXU PROHFXOH A VHF A 6LQFH WKH UDWH FRQVWDQW IRU WKH GLVDSSHDUDQFH RI WKH &) LRQ LV ; FPA PSOHFXOH A VHF A 7DEOH Of WKH UDWH FRQVWDQW IRU 5HDFWLRQ ,,,O LV HVWLPDWHG WR EH ; FXU PROHFXOH A VHF A 5HDFWLRQV RI &)a DQG &A)A )URP )LJV DQG VKRZLQJ WKH UHJLRQ EHWZHHQ DQG \VHF WKH FRPELQHG GHFUHDVH RI WKH LQWHQVLWLHV RI &)A DQG LV URXJKO\ HTXDO WR WKH FRPELQHG LQFUHDVH RI WKH LQWHQVLWLHV RI &)A, DQG &)A, 7KH PRVW LPSRUWDQW UHDFWLRQV LQYROYLQJ WKHVH VSHFLHV DUH DV IROORZV &) &), *), &) ,,, &) &), *), r ,,, &) &), *), *) ,,, &) &), *), *) ,,,

PAGE 51

$OO IRXU UHDFWLRQ FKDQQHOV ZHUH LGHQWLILHG E\ WKH ,&'5 WHFKQLTXH ,Q DGGLWLRQ WKH VDPH VHW RI UHDFWLRQV LV VWURQJO\ VXJJHVWHG E\ WKH KLJK SUHVVXUH 7LPHRI)OLJKW UHVXOWV VKRZQ LQ )LJV DQG 5HDFWLRQV +L DQG ,,, DUH FKDUJH WUDQVIHU IURP &)A DQG &A) LRQV WR WKH QHXWUDO SDUHQW PROHFXOHV +RZHYHU WKHUPRG\QDPLF FDOFXODWLRQV EDVHG RQ JURXQG VWDWH HQWKDOSLHV RI IRUPDWLRQ VKRZ WKDW ERWK DUH HQGRWKHUPLF UHDFWLRQV 7KH HQHUJ\ GHILFLW LV DV KLJK DV NFDOPROH LQ 5HDFWLRQ ,,, +HQFH WKH UHDFWDQWV PXVW EH LQWHUQDOO\ H[FLWHG IRU WKH UHDFWLRQ WR RFFXU WKH UHDFWDQW LRQV FRXOG EH YLEUDWLRQDOO\ DQGRU HOHFWURQLFDOO\ H[FLWHG 5HDFWLRQV ,,, DQG ,,, DUH IOXRULGH LRQ WUDQVIHUV IURP QHXWUDG SDUHQW PROHFXOHV WR IUDJPHQW LRQV &)A DQG IRU ZKLFK WKH H[RWKHUPLFLWLHV DUH DQG NFDOPROH UHVSHFWLYHO\ 7KH SRVVLEOH GLVVRFLDWLYH FKDUJH WUDQVIHU UHDFWLRQV KDYH EHHQ UXOHG RXW VLQFH WKHVH UHDFWLRQV DUH HQGRHUJLF E\ NFDOPROH 7KH WRWDO UDWH FRQVWDQW IRU WKH GHFUHDVH RI &)A LRQ NA NAf LV ; FPA PROHFXOH A VHF A DQG IRU WKH GLVDSSHDULQJ RI )A LRQ NA NAf LV ; A FPA PROHFXOH A VHF A 7DEOH Of 6LQFH FRPSOLFDWHG SURFHVVHV DUH LQYROYHG LQ WKH FRUUHVSRQGLQJ SURGXFW LRQV QR DWWHPSW ZDV PDGH WR FDOFXODWH LQGLYLGXDO UDWH FRQVWDQW 5HDFWLRQ RI 7KHUH LV QR FOHDU LQGLFDWLRQ WKDW I FKDUJH WUDQVIHU IURP &A)A LRQ WR SDUHQW PROHFXOH RFFXUV LQ WKH KLJK SUHVVXUH PDVV VSHFWURPHWU\ ZRUN EXW WKLV UHDFWLRQ LV LQGHHG VHHQ LQ WKH ,&'5 VSHFWUXP DQG UHTXLUHV NFDOPROH

PAGE 52

&9 &), r &), &) ,,, 7KLV UHDFWLRQ LV SUREDEO\ D YHU\ VORZ SURFHVV VLQFH LW LV QRW VHHQ LQ WKH KLJK SUHVVXUH PDVV VSHFWURPHWHU 5HDFWLRQV RI , LRQV DUH LQYROYHG LQ WKH IROORZLQJ UHDFWLRQV &), FIL ,,, : &)n ,,, 5HDFWLRQ ,,, LV D VLPSOH FKDUJH WUDQVIHU DQG 5HDFWLRQ ,,, LV DQ LRGLQH DWRP DEVWUDFWLRQ UHDFWLRQ 7KH UDWH FRQVWDQW IRU WKH GLVDSSHDUDQFH RI UHDFWDQW LRQ LV ; FPA PROHFXOH A VHF A 7KH UDWH FRQVWDQW IRU WKH IRUPDWLRQ RI ,A LV ; FPA PROHFXOH A VHF A 7KHUHIRUH WKH UDWH FRQVWDQW IRU 5HDFWLRQ ,,, FDQ EH HVWLPDWHG WR EH ; FPA PROHFXOH A VHF A 7KH IRUPHU LV NFDOPROH HQGRWKHUPLF DQG WKH ODWWHU LV O NFDOPROH H[RWKHUPLF 5HDFWLRQV RI &)A, ,&'5 VKRZV WKDW WZR SURFHVVHV LQYROYH WKLV VSHFLHV DV IROORZV FIL *), &), &); FIL &), &), &)A, ,,, ,,,OO 7KLV LV HVVHQWLDOO\ WKH VDPH UHDFWLRQ SDLU ZKLFK RFFXUV ZLWK &)A DQG &A)A LRQV FKDUJH WUDQVIHU DQG IOXRULGH LRQ WUDQVIHU UHDFWLRQVf $Q HQHUJ\ LQSXW RI NFDOPROH LV UHTXLUHG LQ 5HDFWLRQ ,,,OO 5HOLDEOH WKHUPRFKHPLFDO GDWD RQ &)A,r DUH QRW DYDLODEOH EXW IURP

PAGE 53

9 ,*'5 H[SHULPHQWV DQG URXJK HVWLPDWLRQ 5HDFWLRQ ,,, LV H[SHFWHG WR EH HQGRHUJLF E\ DV PXFK DV NFDOPROH +HQFH 5HDFWLRQV ,,, DQG ,,,OO DUH QRW VHHQ LQ WKH KLJK SUHVVXUH 7LPHRI)OLJKW VSHFWUXP WKHVH WZR UHDFWLRQV DUH SUREDEO\ VORZ SURFHVVHV 5HDFWLRQV RI &A)A, 7KH IROORZLQJ UHDFWLRQ SDWKZD\V DUH REVHUYHG IRU SDUHQW LRQ *A)AOr FIL FIL FIL FIL &), f) FILf ,,, LOO 5HDFWLRQV ,,, DQG ,,, FDQ EH FRPSDUHG ZLWK UHVXOWV REWDLQHG VRPH \HDUV DJR E\ +DPLOO DQG FRZRUNHUV f RQ WKH FRUUHVSRQGLQJ FRPSRXQG LQ WKH K\GURFDUERQ VHULHV HWK\O LRGLGH ,Q WKDW LQYHVWLJDWLRQ WKH IRUPDWLRQ RI VLPSOH GLPHU &J+AOfA ZDV DVVXPHG WR RFFXU YLD D VWLFN\ FROOLVLRQ SURFHVV ,Q RXU V\VWHP WKH FRUUHVSRQGLQJ LRQ &A)AOfA LV SUHVXPDEO\ IRUPHG LQ WKH VDPH ZD\ )UDJPHQWDWLRQ WR JLYH &A)A,A LV SRVVLEOH LI VXIILFLHQW HQHUJ\ LV DYDLODEOH 7KH UDWH FRQVWDQWV IRU WKH IRUPDWLRQ RI &)F, DQG *)Of LRQV DUH ; A DQG ; A FLUUA PROHFXOH A VHF ? UHVSHFWLYHO\ &)A, V\VWHP ,RQPROHFXOH UHDFWLRQV LQ WKH &)A, V\VWHP DUH YHU\ VLPLODU WR WKRVH REVHUYHG LQ WKH &A)A, V\VWHP 7KH IROORZLQJ VHW RI UHDFWLRQV LV FRPSDWLEOH ZLWK WKH GDWD RI 7DEOH &) &), f§ &), &) f ,,, &) &), f§ FIL ,,,

PAGE 54

, 7DEOH ,RQ0ROHFXOH 5HDFWLRQV LQ &)A, 5HDFWLRQV ND $+ NFDOPROH 0HWKRG f &) &), f§ &), &)\ fG ,&'5 f &) &), f§ &)L &) ,&'5 72) f &), f§ &), ,r ,&'5 f &), f§ &)\ 72) f &), &), f§ &) ,f &), OfH 72) ,&5 f &), &), f§ &), *)\ 72) f &), &), f§ &),f 72) D Q Y f FP PROHFXOH VHF ; 7KHUPRFKHPLFDO GDWD XVHG LQ WKLV FDOFXODWLRQ DUH OLVWHG LQ $SSHQGL[ 4 ,&'5 UHIHUV WR ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH 72) LQGLFDWHV KLJK SUHVVXUH 7LPHRI)OLJKW PDVV VSHFWURPHWU\ ,&5 UHIHUV WR SUHVVXUH GHSHQGHQFH SORW RQ VLQJOH UHVRQDQFH VWXG\ A 5DWH FRQVWDQW UHIHUUHG IURP WRWDO ORVV RI &)A XQFHUWDLQW\ FD b (VWLPDWHG IURP &)A LQFUHDVH LQ WKH WLPH UDQJH QVHF

PAGE 55

, &), f§ &), ,,, &), f§ FI ,,, &), &), f§ &) &), ,,, &), &), f§ &), &)\ ,,, &), &), f§ D\f ,,, 5HDFWLRQV ,,, DQG ,,, DUH FKDUJH WUDQVIHU IURP *)A DQG LRQV WR SDUHQW PROHFXOHV 5HDFWLRQ ,,, LV IOXRULGH LRQ WUDQVIHU IURP SDUHQW PROHFXOH WR &)A LRQ IRUPLQJ WKH VWDEOH &)A PROHFXOH ZLWK D UDWH FRQVWDQW RI ; FQ3 PROHFXOH A VHF A DV PHDVXUHG E\ IRUPDWLRQ RI &)AO LRQ 5HDFWLRQ ,,, LV LRGLQH DWRP DEVWUDFWLRQ E\ DQ LRGLGH LRQ WR IRUP WKH ,A VSHFLHV 7KLV UHDFWLRQ KDV D UDWH FRQVWDQW RI ; A FPA PROHFXOH A VHF 7KH WRWDO UDWH FRQVWDQW IRU WKH GLVDSSHDUDQFH RI LRQ LV ; A FPA PROHFXOH VHF A WKHUHIRUH WKH UDWH FRQVWDQW IRU 5HDFWLRQ +, EHFRPHV ; A FPA PROHFXOH A VHF ? )URP )LJ WKHUH LV D VKDUS LQFUHDVH RI WKH LQWHQVLW\ RI &)f LRQ LQ WKH ORZHU SUHVVXUH UHJLRQ ; A WR ; A 7RUUf DQG D FOHDUO\ FRUUHODWHG GHFUHDVH LQ WKH LQWHQVLW\ RI &)A, RYHU WKH VDPH UHJLRQ 7KLV REVHUYDWLRQ VWURQJO\ VXJJHVWV D UHDFWLRQ FKDQQHO LQ ZKLFK &)A, GLVDSSHDUV DQG &)A LV IRUPHG ,W LV SURSRVHG WKDW D FROOLVLRQDOO\ LQGXFHG GLVVRFLDWLRQ RI &)A, PXVW RFFXU ,W LV QHFHVVDU\ WR DVVXPH WKDW WKH *)A, LV LQWHUQDOO\ H[FLWHG WR D FRQVLGHUDEOH GHJUHH VR WKDW WKH GLVVRFLDWLRQ SURFHVV ZRXOG EH HQHUJHWLFDOO\ SRVVLEOH 7LHPDQ DQG .HYDQ Of IRXQG WKDW WKH FROOLVLRQ LQGXFHG GLVVRFLDWLRQ SURFHVV LV YHU\ FRPPRQ DPRQJ

PAGE 56

SHUIOXRUR FRPSRXQGV 5HDFWLRQ ,,, LV LRGLQH DWRP WUDQVIHU IURP VXEVWUDWH WR SDUHQW LRQ &)A, IRUPLQJ &)A, ZLWK D UDWH FRQVWDQW RI ; A FP PROHFXOH VHF 7KH LRQPROHFXOH FRQGHQVDWLRQ UHDFWLRQ ,,, LV DOVR REVHUYHG LQ WKLV V\VWHP DV VKRZQ LQ )LJ 7KLV UHDFWLRQ KDV D UDWH FRQVWDQW RI ; A FPA PROHFXOH A VHF A IRU WKH IRUPDWLRQ RI GLPHU &)AOf ,W LV ZRUWKZKLOH PHQWLRQLQJ KHUH WKDW WKH HWKHUW\SH LRQV &+A,&+A DQG &A,&A REVHUYHG E\ +DPLOO f DQG E\ %HDXFKDPS f LQ WKH PHWK\O DQG HWK\O LRGLGH V\VWHPV DUH QRW REVHUYHG LQ HLWKHU WKH &)A, RU WKH &)A, V\VWHP WKH FRUUHVSRQGLQJ LRQV &)A,&)A DQG A,*A)DUH HQWLUHO\ DEVHQW XQGHU DOO FRQGLWLRQV LQYHVWLJDWHG 7KH LRQV &)A, &)AOf &)A, DQG &)AOf DUH EH\RQG WKH PDVV UDQJH RI WKH ,&5 LQVWUXPHQW XVHG LQ WKLV ZRUN DOWKRXJK DOO WKHVH LRQV ZHUH VHHQ LQ WKH %HQGL[ LQVWUXPHQW & 6XPPDU\ 5HDFWLRQV VXFK DV FKDUJH WUDQVIHU IOXRULGH LRQ WUDQVIHU LRGLGH LRQ WUDQVIHU &)f LRQ WUDQVIHU LRGLQH DWRP WUDQVIHU FROOLVLRQ LQGXFHG GLVVRFLDWLRQ DQG LRQPROHFXOH FRQGHQVDWLRQ SOD\ YHU\ LPSRUWDQW UROHV LQ WKH LRQPROHFXOH UHDFWLRQV RI SHUIOXRURDON\O LRGLGH V\VWHPV 7KH IOXRULGH LRQ WUDQVIHU SURFHVV DSSDUHQWO\ RFFXUV RQO\ ZKHQ WKH ILQDO SURGXFWV DUH VWDEOH PROHFXOHV VXFK DV &)A LQ WKH &)A, V\VWHP DQG &)A DQG &)A, LQ WKH &A)A, V\VWHP 7KH SDUHQW LRQ DQG VHYHUDO PDMRU IUDJPHQW LRQV UHVXOWLQJ IURP HOHFWURQ LPSDFW RQ SHUIOXRURDON\O LRGLGHV DUH IRUPHG ZLWK ODUJH DPRXQWV

PAGE 57

N RI LQWHUQDO HQHUJ\ DPRXQWLQJ WR DV PXFK DV H9 ,W DSSHDUV WKDW DWWHPSWV WR FDOFXODWH ERQG HQHUJLHV LQ IOXRURFDUERQ V\VWHPV XVLQJ WKH DVVXPSWLRQ WKDW DOO REVHUYDEOH LRQPROHFXOH UHDFWLRQV PXVW EH H[RWKHUPLF RU WKHUPDOQHXWUDO DUH RI GRXEWIXO YDOLGLW\ $ A

PAGE 58

,9 7+( *$00$ 5$',2/<6,6 2) 75,)/82520(7+
PAGE 59


PAGE 60

)LJ 3URGXFWLRQ RI &) SXUH 4 b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP

PAGE 61

& ) \LHOG PLFURPROHVf 'RVH H9 ; O2 )LJ 3URGXFWLRQ RI &S)A SXUH # b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP

PAGE 62


PAGE 63

*A)M \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &A)A, SXUH 4 b +, 2 f IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP DV D

PAGE 64

&),B \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &)A SXUH 4 b +, 2 f DQG &)A,+ ^b +, f DV D IXQFWLRQ RI GRVH LQ WKH &)A, V\VWHP 9 &),+ \LHOG PLFURPROHVf

PAGE 65

YDOXHV EHORZ 7KUHH DGGLWLRQDO SURGXFWV ZHUH DOVR IRXQG LQ WKH +,DGGHG V\VWHP LQFOXGLQJ WZR QHZ RUJDQLF SURGXFWV LGHQWLILHG DV &)A+ DQG &)A,+ ZLWK H9 \LHOGV RI DQG DV ZHOO DV IRUPHG ZLWK D \LHOG RI $OO SURGXFW \LHOGV DUH SORWWHG DV D IXQFWLRQ RI DEVRUEHG GRVH LQ )LJV O WKURXJK $OO YDOXHV DUH OLVWHG RQ 7DEOH WRJHWKHU ZLWK SUHYLRXV UHVXOWV f RQ WKH &)A, V\VWHP 0DWHULDO EDODQFH LV UHDVRQDEO\ VDWLVIDFWRU\ LQ WKLV V\VWHP 7KH UDWLR RI &I, LV .HYDQ DQG +DPOHW f UHSRUWHG WKDW LUUDGLDWLRQ RI IOXRULQDWHG FRPSRXQGV LQ 3\UH[ JODVV YHVVHOV UHVXOWHG LQ ODUJH \LHOGV RI FDUERQ GLR[LGH DQG VLOLFRQ WHWUDIOXRULGH 7KLV FRXOG FRQWULEXWH WR WKH VKRUWDJHV RI FDUERQ DQG IOXRULQH ,W LV DOVR SRVVLEOH WKDW SRO\PHU LV IRUPHG LQ WKLV V\VWHP % 'LVFXVVLRQ 7KH SUHYLRXV VWXGLHV RQ WKH SKRWRO\VLV f DQG UDGLRO\VLV OOf LQGLFDWH WKDW WKH PDLQ SULPDU\ HYHQW LQ WKH JDV SKDVH UDGLRO\VLV RI &)A, LV WKH UXSWXUH RI WKH &f§, ERQG r &)A, ZZY! &)A, &)\ r ,9 ,W LV HYLGHQW r WKDW RQH RU ERWK RI WKH UDGLFDOV &)Ar DQG ,r PD\ EH H[FLWHG 7KH PDVV VSHFWUXP RI WULIOXRURPHWK\O LRGLGH VKRZV WKDW WKH PRVW DEXQGDQW LRQ LV &)A, O22f IROORZHG E\ f &)A rf DQG &)A,r f 7KH LQLWLDO DEVRUSWLRQ RI LRQL]LQJ UDGLDWLRQ PD\ DFFRUGLQJO\ JLYH ULVH WR WKH UHDFWLRQV

PAGE 66

7DEOH 5DGLRO\VLV
PAGE 67

A ,9 H nYYZYr &) ,r H LY ,9 LY 7KH HOHFWURQ DIILQLW\ RI LRGLQH DWRP H9f f LV TXLWH ODUJH WKHUHIRUH GLVVRFLDWLYH HOHFWURQ DWWDFKPHQW OHDGLQJ WR WKH IRUPDWLRQ RI LV D YHU\ IHDVLEOH SURFHVV ,9 H &)A, &)A f $OO SULPDU\ HYHQWV DV ZHOO DV WKH NLQHWLF VFKHPH SRVWXODWHG ,RQPROHFXOH UHDFWLRQV LQ 3URFHVVHV ,9 WKURXJK ,9 DUH REVHUYHG LQ WKH KLJK SUHVVXUH 7LPHRI)OLJKW PDVV VSHFWURPHWU\ DQG ,RQ &\FORWURQ 5HVRQDQFH VSHFWURPHWU\ 6WHS ,9 LV IOXRULGH LRQ LV DQ LRQPROHFXOH FRQGHQVDWLRQ UHDFWLRQ 7KHVH UHDFWLRQV DUH GLVFXVVHG LQ GHWDLO LQ WKH ,RQ0ROHFXOH 5HDFWLRQV VHFWLRQ RI WKLV GLVVHUWDWLRQ 3RVLWLYH LRQV IRUPHG LQ WKH SULPDU\ SURFHVV DV ZHOO DV LQ WKH LRQPROHFXOH UHDFWLRQV XQGHUJR QHXWUDOL]DWLRQ ZLWK LRGLGH LRQV WR IRUP H[FLWHG VSHFLHV DV VKRZQ LQ 6WHSV ,9 WR ,9 7KHVH H[FLWHG VSHFLHV ZLOO XQGHUJR IXUWKHU GHFRPSRVLWLRQ DQG SURGXFH PRUH UDGLFDOV

PAGE 68

7DEOH 5DGLRO\VLV 0HFKDQLVP LQ 7KH &)A, 6\VWHP &)A, ::9 r &) *)Af ,f ,9 &)A, nZYZ! &)M, H UY ::OUW &) H LY RZZ! &)f H ,9 ZYZ! FIL )r H LY H &), FIr LY FI FIL &)9 FIL ,9 &), L F\ ,9 &)A,r &), FIL FI UY &)A,r &), FILf ,9 &), ?r FRPSOH[f QHXWUDO IUDJPHQWV ,9 &) r &), QHXWUDO IUDJPHQWV 79 &), ,a f§ &), QHXWUDO IUDJPHQWV LY , f§ ,9 &), ,a f§ FRPSOH[f QHXWUDO IUDJPHQWV LY FILf f§ FRPSOH[f QHXWUDO IUDJPHQWV LYL , 0 f§ 0 ,9 &) f ; &), ,f ,9 FIL ; &), ,9 &)\ &), f§ &)A &), r ,9 &) ,9

PAGE 69

ZKLFK ZLOO KH GLIIHUHQW IRU HDFK VSHFLHV PDLQO\ *)Am ,r DQG UDGLFDOV DQG WKH FDUEHQH VSHFLHV &)Af 7KHVH LQWHUPHGLDWHV ZLOO WDNH SDUW LQ VHFRQGDU\ UHDFWLRQV DV SRVWXODWHG EHORZ 7KH ORZ RYHUDOO \LHOGV LQ WKH SXUH V\VWHP DQG WKH KLJK \LHOG RI LRGLQH REVHUYHG LQ WKH SUHVHQFH RI UDGLFDO VFDYHQJHUV LQGLFDWH WKDW WKH EDFN UHDFWLRQ ,9 SOD\V D VLJQLILFDQW UROH LQ WKH UDGLRO\VLV RI SXUH &)A, ,W KDV EHHQ UHSRUWHG SUHYLRXVO\ f WKDW WKHUH LV QR DFWLYDWLRQ HQHUJ\ IRU 5HDFWLRQ ,9 DQG WKH FRUUHVSRQGLQJ UDWH FRQVWDQW LV ; FP PROHFXOH VHF 7KHVH REVHUYDWLRQV LQGLFDWH WKDW WKH JDV SKDVH UDGLRO\VLV RI &)A, LV VRPHZKDW VLPLODU WR WKH JDV SKDVH UDGLRO\VLV RI DON\O LRGLGHV 7KH QRQSURGXFWLYH F\FOH FIL ,r &) ; &)A f ,n ! &)A, ‘ ,9 ,9n ,9 WDNHV SODFH XQOHVV WKHUH LV DQRWKHU SURFHVV WR UHPRYH &)Ar UDGLFDOV ,Q WKH UDGLRO\VLV DQG SKRWRO\VLV RI &&OA%U LQYHVWLJDWHG E\
PAGE 70

DYDLODEOH DERXW IOXRULQH DWRP DEVWUDFWLRQ UHDFWLRQV LW FDQ HDVLO\ EH VKRZQ WKDW LQ DQDORJRXV K\GURJHQ DWRP DEVWUDFWLRQV DERXW b RI WKH HQHUJ\ RI WKH ERQG IRUPHG LV DYDLODEOH WR DLG WKH ERQG EUHDNLQJ SURFHVV f 7KH HQHUJ\ RI WKH &) ERQG LQ &)A KDV EHHQ JLYHQ DV NFDOPROH Of ZKLOH FDOFXODWLRQV IURP SXEOLVKHG DSSHDUDQFH SRWHQWLDO GDWD f VKRZ WKDW WKH &f§) ERQGV LQ &)A, KDYH DQ HQHUJ\ RI NFDOPROH ,I LW FDQ EH DVVXPHG WKDW WKH HQHUJ\DYDLODELOLW\ IDFWRU RI b b DSSOLHV WR 5HDFWLRQ ,9 WKHQ WKH FRUUHVSRQGLQJ DFWLYDWLRQ HQHUJ\ LV OHVV WKDQ NFDOPROH 7KH SKRWRFKHPLFDO UHDFWLRQV FDXVHG E\ WKH H[WHUQDO SXPSLQJ IODVK ODPSV LQ WKH &)A, ODVHU V\VWHP KDYH EHHQ LQYHVWLJDWHG SUHYLRXVO\ f ,W KDV EHHQ UHSRUWHG WKDW WKH ODVLQJ SURFHVV FDQ SHUVLVW D VXEVWDQWLDO WLPHVHYHUDO PLFURVHFRQGVf DIWHU WHUPLQDWLRQ RI WKH SXPSLQJ IODVK 5HDFWLRQ ,9 KDV EHHQ LQYRNHG WR H[SODLQ WKH JURZWK LQ WKH FRQFHQWUDWLRQ RI H[FLWHG LRGLQH DWRPV ZKLFK FDXVH WKH ODWHWLPH ODVLQJ 7KLV UHDFWLRQ LV DOVR XVHG WR H[SODLQ f WKH IDFW WKDW DGGLQJ PRUH &)\ UDGLFDOV FDQ LQFUHDVH WKH FRQFHQWUDWLRQ RI H[FLWHG LRGLQH DWRPV DQG FRQWULEXWH WR WKH RXWSXW RI WKH SKRWRFKHPLFDO LRGLQH ODVHU &RQVXPSWLRQ RI &)A UDGLFDOV LQ 5HDFWLRQ ,9 DOORZV DFFXPXODWLRQ RI ,A E\ FRPELQDWLRQ RI WKH LRGLQH DWRP UHOHDVHG LQ 3URFHVV 79 &RQVLVWHQW ZLWK WKH UHDFWLRQ VFKHPH SUHVHQWHG WKH GDWD LQ 7DEOH LQGLFDWH WKDW DERXW b RI WKH &)A DQG &)A,A \LHOGV DUH GXH WR WKHUPDO UDGLFDO UHDFWLRQV 7HWUDIOXRURPHWKDQH LV IRUPHG LQ 5HDFWLRQ 79 QRQVFDYHQJHDEOHf DQG ,9 VFDYHQJHDEOHf UHVSHFWLYHO\ 5HDFWLRQ ,9 DFFRXQWV IRU WKH VFDYHQJHDEOH SRUWLRQ RI WKH &)A \LHOG ZKLOH

PAGE 71

WKHUPDOL]DWLRQ RI D VPDOO IUDFWLRQ RI WKH \LHOG RI H[FLWHG &), LQWHUPHGLDWH LQ 3URFHVV ,9 FDQ DFFRXQW IRU WKH QRQVFDYHQJHDEOH \LHOG RI WKLV SURGXFW 6LQFH 5HDFWLRQ ,9 LV WKH RQO\ VXIIHVWHG URXWH WR IRUPDWLRQ RI &A)A 3UrXFW VKRXOG EH HQWLUHO\ VFDYHQJH DEOH ,Q IDFW 7DEOH VKRZV WKDW WKLV \LHOG LV b VFDYHQJHDEOH 7KH b UHVLGXH RI XQVFDYHQJHG &A)A PD\ EH GXH WR D VPDOO H[WHQW RI SDUWLFLSDWLRQ E\ KRW &)Ar UDGLFDOV LQ 5HDFWLRQ ,9 $GGLWLRQDO UHDFWLRQV DUH SRVWXODWHG WR DFFRXQW IRU WKH PLQRU SURGXFWV REVHUYHG LQ WKLV V\VWHP ,W KDV EHHQ UHSRUWHG f WKDW &A+An UDGLFDOV DUH SURGXFHG LQ VPDOO \LHOG LQ WKH UDGLRO\VLV RI OLTXLG PHWK\O LRGLGH 7KH SUHFXUVRU WR WKLV VSHFLHV FRXOG HDVLO\ EH WKH VLPSOH FDUEHQH &+A DOWKRXJK WKLV ZDV QRW VXIIHVWHG E\ WKH RULJLQDO r DXWKRUV 7KH IRUPDWLRQ RI H[FLWHG &A&OA AXH AUHFA LQVHUWLRQ RI &&OA LQWR &&OA DSSHDUV WR EH DQ HIILFLHQW SURFHVV LQ WKH SKRWRO\VLV RI &&OA f ,W LV VXIIHVWHG WKDW LQVHUWLRQ RI &) LQWR &)A, DFFRXQWV IRU IRUPDWLRQ RI VHYHUDO PLQRU SURGXFWV LQ WKH SUHVHQW V\VWHP LQFOXGLQJ &B)T &f), DQG &) R S r &) &) f§ *), ,9 r &), *) ,r ,9 R\L *) ,) ,9 r *), &)\ FIL ,9 : A *), ,r ,9 FI FIL *) ,9 6LQFH RQH ERQG LV EURNHQ EXW WZR VWURQJ ERQGV DUH IRUPHG E\ WKH

PAGE 72

VKRXOG EH H[FLWHG WR WKH H[WHQW RI FD NFDO 6XEVHTXHQW IUDJPHQn WDWLRQ 3URFHVVHV ,9} ,9 DQG ,9 FDQ HQVXH DV GLVFXVVHG IRUPHG LQ 5HDFWLRQ ,9 FDQ XQGHUJR WKH 5HDFWLRQV ,9 DQG ,9 ODWHG E\ DQDORJ\ ZLWK 5HDFWLRQ 79 GLVFXVVHG DERYH 5HDFWLRQ ,9 SUREDEO\ RFFXUV EXW LV XQREVHUYDEOH VLQFH WKH &)A DQG &)A,r IUDJPHQWV DUH DOUHDG\ SUHVHQW LQ WKH V\VWHP 7KH FRPELQDWLRQ RI WZR *)A IUDJPHQWV LV DOVR SRVVLEOH EXW WKLV SURFHVV ZLOO QRW FRPSHWH LI 5HDFWLRQ ,9 KDV D UHDVRQDEOH UDWH FRQVWDQW VLQFH WKH ODWWHU SURFHVV LQYROYHV VXEVWUDWH $GGLWLRQDOO\ &)A FRPELQDWLRQ PLJKW IDLO WR FRPSHWH ZLWK VFDYHQJLQJ RI &)A E\ SURGXFW ,J UHVHDUFK WHDPV OOf ZLWK UHVXOWV ZKLFK GLIIHU ZLWK HDFK RWKHU DQG ZLWK WKH SUHVHQW VWXG\ 6LQFH WKH H[SODQDWLRQ RI WKH GLYHUVH UHVXOWV PXVW OLH LQ GLIIHUHQFHV LQ WKH H[SHULPHQWDO FRQGLWLRQV HPSOR\HG D GHWDLOHG VXPPDU\ RI WKH FRQGLWLRQV XVHG E\ HDFK JURXS LV JLYHQ LQ 7DEOH 7KH SUHGRPLQDQW VWRLFKLRPHWULF SDWKZD\V REVHUYHG E\ 6XWFOLIIH DQG 0F$OSLQH E\ 6KDK 6WUDQNV DQG &RRSHU DQG LQ WKH SUHVHQW ZRUN DUH DV IROORZV 0F$OSLQH &), &) &), &), &e) &), &) &)fQ ,9 &RRSHU ,9 7KLV ZRUN LY

PAGE 73

7DEOH &RPSDULVRQ RI 5DGLRO\VLV &RQGLWLRQV LQ 7KH &)A 6\VWHP 0F$OSLQHD &RRSHU 7KLV ZRUN 9HVVHO S\UH[ PO S\UH[ PO S\UH[ 3UHVVXUH • PP PP PP 'RVH UDWH H9JKU [ [ [ H9POKU [ ; [ 7RWDO GRVH H9J ; [ ; H9PO ; ; [ H9 [ ; ; 0DMRU 6WRLFKLRPHWU\ &) FIL &) &) &)fQ D 5HI E 5HI 2Q 2

PAGE 74

O ([DPLQDWLRQ RI 7DEOH LQGLFDWHV WKDW WKHUH DUH YDULDWLRQV LQ YHVVHO VL]H VDPSOH SUHVVXUH GRVH UDWH DQG WKH WRWDO GRVH GHOLYHUHG WR WKH VDPSOH 2I WKHVH SDUDPHWHUV LW LV VXJJHVWHG WKDW WKH PRVW LPSRUWDQW IDFWRUV DUH WKH VDPSOH SUHVVXUH DQG WKH GRVH UDWH 7KH IRUPHU DIIHFWV WKHUPDOL]DWLRQ RI H[FLWHG LQWHUPHGLDWHV DV ZHOO DV GLIIXVLRQ UDWHV WKH ODWWHU GHWHUPLQHV WKH VWHDG\VWDWH FRQFHQWUDWLRQ RI LQWHUPHGLDWHV ,W LV VXJJHVWHG WKDW D KLJK GRVH UDWH PD\ SURPRWH QHW 5HDFWLRQ ,9 VLQFH D VXIILFLHQWO\ KLJK FRQFHQWUDWLRQ RI &)A UDGLFDOV FRXOG OHDG WR GLUHFW &)Ar &)A FRPELQDWLRQ &RQVLVWHQW ZLWK WKLV VXJJHVWLRQ &RRSHU XVHG WKH KLJKHVW GRVH UDWH DQG REVHUYHG WKH VWRLFKLRPHWULF SDWWHUQ JLYHQ E\ (TXDWLRQ 79 6LQFH &RRSHU XVHG D YHU\ VPDOO YHVVHO DQG D PRGHUDWH SUHVVXUH LW LV SRVVLEOH WKDW &)Ar FRPELQDWLRQ ZDV ZDOOFDWDO\]HGf $W ORZHU GRVH UDWHV DV XVHG E\ 0F$OSLQH DQG E\ WKLV ODERUDWRU\ WKH &)A FRPELQDWLRQ UHDFWLRQ DSSHDUV WR EH QHJOLJLEOH WKLV VSHFLHV GLVDSSHDUV E\ UHDFWLRQ ZLWK VXEVWUDWH &)\ &)A, &)A &)JOr ,9 r &) ,9 0F$OSLQHnV UHVXOWV DV ZHOO DV WKH SUHVHQW ZRUN VXJJHVW WKDW 5HDFWLRQ ,9 LV WKH SUHGRPLQDWH IDWH RI WKH &)Ar UDGLFDO 8QGHU WKH KLJK SUHVVXUH FRQGLWLRQV XVHG E\ 0F$OSLQH &)Ar DSSDUHQWO\ XQGHUJRHV D KRPRJHQHRXV JDV SKDVH UHDFWLRQ ZLWK ,A &), &), L ,9 ,Q WKH SUHVHQW ZRUN WKH YHVVHO ZDV VL[ WLPHV VPDOOHU WKDQ 0F$OSLQHnV

PAGE 75

DQG WKH SUHVVXUH ZDV WLPHV ORZHU ,W VXJJHVWHG WKDW &)A,r UHDFKHV WKH ZDOO DQG GHFRPSRVHV WR JLYH YDULRXV RUJDQLF SURGXFWV UHOHDVLQJ LRGLQH &)A,f ZDOO &)DOO ,9 7KLV VXJJHVWLRQ DFFRXQWV IRU D QHDUO\ VWRLFKLRPHWULF UDWLR RI &)A DQG ,A LQ WKH SUHVHQW ZRUN FRXSOHG ZLWK D GHILFLW RI DGGLWLRQDO RUJDQLF SURGXFWV 7DNLQJ D : YDOXH RI H9LRQSDLU IRU &)A, "f} WKH LQLWLDO YDOXH IRU ORVV RI &)A, VKRXOG EH VRPHZKHUH DURXQG r $VVXPLQJ 5HDFWLRQV ,9 DQG 79 DUH HTXDOO\ LPSRUWDQW WKH LQLWLDO YDOXH IRU &)Af DQG UDGLFDOV ZRXOG DOVR EH DURXQG r 7KLV YDOXH LV VRPHZKDW PRUH FRQVLVWHQW ZLWK WKH SURGXFW \LHOGV UHSRUWHG E\ &RRSHU DW KLJKHU GRVH UDWHV DQG ZLWK WKH UHVXOWV RI SUHVHQW ZRUN RQ WKH +LDGGHG V\VWHP WKDQ ZLWK WKH YDOXHV REVHUYHG E\ 0F$OSLQH LQ WKH ORZHU GRVH UDWH H[SHULPHQWV 7KHVH REVHUYDWLRQV LQGLFDWH WKDW WKH UHPRYDO RI E\ 5HDFWLRQ ,9 LV SUHGRPLQDWH RYHU RWKHU SURFHVVHV DV VRRQ DV WKH FRQFHQWUDWLRQ RI LRGLQH PROHFXOH VWDUWV WR EXLOG XS ,Q WKH +,DGGHG V\VWHP WKH IROORZLQJ UHDFWLRQV VKRXOG EH FRQVLGHUHG f§V &)\ +, &)JOr +, &)A+ f FILK ,9 ,9 :KLWWOH f SRLQWHG RXW WKDW DQ DFWLYDWLRQ HQHUJ\ RI RQO\ NFDOPROH LV VXIILFLHQW IRU 5HDFWLRQ 79 ZLWK D UDWH FRQVWDQW RI ; FP PROHFXOH VHF DW URRP WHPSHUDWXUH 7KH IRUPDWLRQ RI K\GURJHQ

PAGE 76

GXH WR WKH GHFRPSRVLWLRQ RI DGGHG VFDYHQJHU +, KDV EHHQ UHSRUWHG SUHYLRXVO\ E\ VHYHUDO ZRUNHUV f 6LQFH WKH LRQL]DWLRQ SRWHQWLDO RI &)A, H9f LV FRQVLGHUDEO\ KLJKHU WKDQ WKDW RI +, H9f f FKDUJH WUDQVIHU IURP &)A, WR +, VKRXOG EH DQ HIILFLHQW SURFHVV &)A, +, +, &)A, ,9 FDXVH D GHFUHDVH LQ DOPRVW DOO SURGXFW \LHOGV HYHQ WKRVH QRW DIIHFWHG E\ +, DV D UDGLFDO VFDYHQJHU )XUWKHUPRUH IRUPDWLRQ RI +, LQ 5HDFWLRQ ,9 SURYLGHV D UHDVRQDEOH H[SODQDWLRQ RI VHQVLWL]HG IRUPDWLRQ RI +A LQ WKH SUHVHQFH RI DGGHG +, DV GLVFXVVHG ODWHU LQ FRQQHFWLRQ ZLWK WKH UDGLRO\VLV RI &A)A, & 6XPPDU\ 7KH JDPPDUDGLRO\VLV RI JDVHRXV *)A, ZDV VWXGLHG DW 7RUU SUHVVXUH DQG r ERWK SXUH DQG ZLWK DGGHG +, 7KH UDGLRO\WLF SURGXFWV DQG WKHLU FRUUHVSRQGLQJ YDOXHV LQ WKH SXUH V\VWHP DUH &) &A &)A &J)J DQG &A, &)J+ &),+ DQG + ZHUH REVHUYHG LQ WKH b +,DGGHG V\VWHP ZLWK FRUUHVSRQGLQJ YDOXHV RI DQG 7KH UHVXOWV DUH GLVFXVVHG LQ WHUPV RI UHDFWLRQV RI ERWK LRQV DQG QHXWUDO VSHFLHV 8QGHU FRQGLWLRQ RI SUHVHQW ZRUN VWRLFKLRPHWULF FRQVLGHUDWLRQV VKRZ WKDW WKH RYHUDOO UHDFWLRQ LQ WKH UDGLRO\VLV RI JDVHRXV &)A, FDQ EH &), &) &)fQ VXPPDUL]HG DV

PAGE 77

9 7+( *$00$ 5$',2/<6,6 2) 3(17$)/8252(7+
PAGE 78

+H[DIOXRURSURXHQH &A)Jf 7KH &A)J SURGXFWLRQ GDWD VKRZQ LQ )LJ LQGLFDWH WKDW LW LV D PLQRU SURGXFW LQ WKLV V\VWHP 7KH FRUUHVSRQGLQJ YDOXH IRU WKLV FRPSRXQG LQ WKH SXUH V\VWHP LV WKH \LHOG LV UHGXFHG WR WKH UHVLGXDO YDOXH RI LQ WKH +, VFDYHQJHG V\VWHP 4FWDIOXRURSURSDQH &A)Jf 7KLV FRPSRXQGnV GRVH\LHOG SORW LV VKRZQ LQ )LJ 7KH H9 \LHOG LV LQ WKH XQVFDYHQJHG V\VWHP DQG LV FRPSOHWHO\ HOLPLQDWHG LQ WKH +,DGGHG V\VWHP Q'HFDIOXRUREXWDQH Q&A)AJf )LJ DOVR VKRZV WKDW SURGXFWLRQ RI Q& ) f LV OLQHDU ZLWK DEVRUEHG GRVH XS WR ; H9 DQG WKHQ Kr /8 OHYHOV RII WR D FRQVWDQW YDOXH 7KH YDOXH LQ WKHLQLWLDO OLQHDU UHJLRQ LV PROHFXOHV H9 7KLV SURGXFW LV FRPSOHWHO\ DEVHQW LQ WKH VFDYHQJHG V\VWHP 7ULIOXRURPHWK\O LRGLGH &)AOf )LJ VKRZV WKDW WKH SURGXFWLRQ RI &)JO LV OLQHDU LQ WKH DEVRUEHG GRVH UDQJH VWXGLHG ZLWK D YDOXH RI ,Q WKH +, VFDYHQJHG V\VWHP WKH LQLWLDO \LHOG RI &)A, VXUSULVLQJO\ LQFUHDVHV WR DQG WKHQ IDOOV EDFN WR DERXW WKH VDPH YDOXH DV LQ WKH SXUH V\VWHP ZKHQ WKH DEVRUEHG GRVH UHDFKHV ; H9 ,RGRWULIOXRURHWK\OHQH &A) Wf 7KH GDWD IRU WKLV FRPSRXQG DUH UDWKHU VFDWWHUHG EHFDXVH LW HOXWHG RQ WKH WDLO RI WKH SDUHQW SHDN 7KH H9 \LHOG LV HVWLPDWHG WR EH LQ WKH SXUH V\VWHP ,Q WKH VFDYHQJHG V\VWHP WKH LQLWLDO \LHOG LV UHGXFHG WR EXW B FUHDVHV WR ZKHQ WKH DEVRUEHG GRVH UHDFKHV ; AA H9 )LJ f Q+HSWDIOXRURSURS\O LRGLGH Q&B)AOf )LJ VKRZV WKDW WKH YDOXH RI Q*A)A, LV EHWZHHQ DQG ; A H9 EXW LQFUHDVHV WR DIWHU D GRVH RI ; AA H9 LQ WKH SXUH V\VWHP ,Q WKH

PAGE 79

+LDGGHG V\VWHP WKH H9 \LHOG UHGXFHV WR D UHVLGXH YDOXH RI L+HSWDIOXRURSURS\O LRGLGH L&A)AOf )LJ DOVR VKRZV WKDW WKH YDOXH RI L&A)A, LV LQ WKH SXUH V\VWHP DQG WKDW WKLV FRPSRXQG LV FRPSOHWHO\ VFDYHQJHDEOH LQ WKH +,DGGHG V\VWHP ,,RGR3HQWDIOXRURSURSHQH O&A)AOf )LJ VKRZV WKDW WKH \LHOG RI O&A)A, LV XS WR DQ DEVRUEHG GRVH RI ; A H9 LQ WKH SLUUH V\VWHP ,Q WKH VFDYHQJHG V\VWHP WKH YDOXH UHGXFHV WR ]HUR Q3HUIOXRUREXW\O LRGLGH Q&A)AOf )LJ DOVR VKRZV WKDW WKH DPRXQW RI Q&A)A, SURGXFHG LV D OLQHDU IXQFWLRQ RI GRVH ZLWK D FRUUHVSRQGLQJ YDOXH RI 7KH HIIHFW RI +, LV WR UHGXFH WKH LQLWLDO YDOXH WR WKH QHW UDWH RI SURGXFWLRQ RI Q&A)A, LV ]HUR EH\RQG ; H9 V3HUIOXRUREXW\O LRGLGH V&A)AOf $V VKRZQ LQ )LJ WKH DPRXQW RI V&A)A, LQ ERWK WKH +, IUHH DQG VFDYHQJHG V\VWHPV LV D OLQHDU IXQFWLRQ RI DEVRUEHG GRVH 7KH DYOXH IRU WKH XQVFDYHQJHG V\VWHP LV DQG IRU WKH VFDYHQJHG V\VWHP LV UHGXFHG WR 'LLRGRGLIOXRURPHWKDQH &)A,Af 7KH DPRXQW RI &)A,R SURGXFHG LV D OLQHDU IXQFWLRQ RI GRVH IURP ; O2 WR ; H9 ZLWK D FRUUHVSRQGLQJ YDOXH RI $IWHU WKLV GRVH WKH YDOXH IRU WKH SURGXFWLRQ RI &), VWDUWV OHYHOLQJ RII 7KH HIIHFW RI DGGHG +, LV WR UHGXFH WKH LQLWLDO H9 \LHOG WR $V ZLWK WKH SXUH V\VWHP WKH QHW YDOXH IRU WKH SURGXFWLRQ RI DGGLWLRQDO *), ,V ]HUR EH\RQG ; H9 )LJ f 'LLRGRWHWUDIOXRURHWKDQH &),&)Of $V VKRZQ LQ )LJ WKH ORZ GRVH H9 \LHOGV RI &),&), LQ WKH SXUH DQG +,DGGHG V\VWHPV

PAGE 80

DUH DQG UHVSHFWLYHO\ 7KH KLJK GRVH YDOXH IRU WKH SURGXFWLRQ RI DGGLWLRQDO &),&), LV IRU ERWK SXUH DQG VFDYHQJHG V\VWHPV 'LLRGRWHWUDIOXRURHWKDQH &)A&),Af )LJ DOVR VKRZV WKDW WKH LQLWLDO YDOXH RI &)A&),A LV EHWZHHQ WKH GRVH RI ; O2nrn DQG ; H9 7KHUHDIWHU WKH QHW YDOXH IRU WKH DGGLWLRQDO SURGXFWLRQ RI &)A*),A LV HVVHQWLDOO\ ]HUR ,Q WKH VFDYHQJHG V\VWHP WKH DGGHG +, HIIHFWLYHO\ EORFNV &)A*),A SURGXFWLRQ ,Q DGGLWLRQ WR WKH SURGXFWV PHQWLRQHG DERYH &)A+ &A)A+ &)A,+ DQG ZHUH DOVR IRXQG LQ WKH b +,DGGHG V\VWHP $V VKRZQ LQ )LJ WKH LQLWLDO YDOXH RI &)A+ LV EHWZHHQ DQ DEVRUEHG GRVH RI ; DQG ; O2n H9 7KH QHW YDOXH UHGXFHV WR ZLWK DQ DEVRUEHG GRVH EH\RQG ; H9 )LJ DOVR VKRZV WKDW WKH YDOXH IRU WKH SURGXFWLRQ RI &A)A+ LV EHWZHHQ D GRVH RI ; A DQG ; H9 ,Q WKH FDVH RI &)A,+ WKH LQLWLDO YDOXH LV EHIRUH WKH DEVRUEHG GRVH UHDFKHV r ; H9 7KHUHDIWHU WKH QHW SURGXFWLRQ RI DGGLWLRQDO &)A,+ LV UHGXFHG WR ]HUR )LJ DOVR VKRZV WKDW WKH LQLWLDO \LHOG LV DQL UHGXFHV WR DIWHU WKH DEVRUEHG GRVH UHDFKHV r ; H9 $OO YDOXHV DUH OLVWHG LQ 7DEOH RQO\ SURGXFWV KDYLQJ D YDOXH JUHDWHU WKDQ DUH GLVFXVVHG LQ WKH IROORZLQJ VHFWLRQ )URP WKH YDOXHV OLVWHG LQ 7DEOH WKH PDMRU VWRLFKLRPHWULF SDWWHUQV IRU WKH UDGLRO\VLV RI JDVHRXV &A)A, DUH DV IROORZV

PAGE 81

&), &) *) LLL &), &e) FILFIL LY &); *) &)J, 9 &), r) ,) 9M 6LQFH WKH YDOXH IRU Q&A)AS LV WKH H9 \LHOG IRU WKH ORVV RI GXH WR (TXDWLRQ L LV 7KH YDOXHV IRU WKH SURGXFWV &A)J DQG &)A,A LQ VWRLFKLRPHWULF (TXDWLRQ LL DUH DQG UHVSHFWLYHO\ XVLQJ WKH DYHUDJH RI WKHVH WZR YDOXHV WKH *&")AOf GXH WR (TXDWLRQ LL LV 7DNLQJ *A)A,&)AOf DQG *&)AOf DV DQG WKH *&)AOf YDOXHV IRU (TXDWLRQ LY DQG Y DUH DQG UHVSHFWLYHO\ 7KH YDOXH IRU &A)J LV 6LQFH SDUW RI LW LV GXH WR (TXDWLRQ LY f WKH *&AIRU (TXDWLRQ LLL LV 6LPLODU DUJXPHQWV OHDG WR D *&)AOf IRU (TXDWLRQ YL RI D )URP WKH DERYH ILJXUHV WKH RYHUDOO H9 ORVV RI &A)A, LQ WKH SXUH V\VWHP LV ZKLFK LV FORVH WR WKH VXP RI WKH VFDYHQJHG UDGLFDO \LHOGV f 6LQFH WKH UHSRUWHG : YDOXH IRU &A)A, LV H9LRQSDLU f WKH LQLWLDO *A&A)AOf VKRXOG EH DURXQG 1HLWKHU RI WKH YDOXHV TXRWHG DERYH LV FORVH WR WKLV PD\ EH GXH HLWKHU WR WKH IRUPDWLRQ RI SRO\PHU RU WR WKH LPSRUWDQFH RI EDFN UHDFWLRQ DV FRQVLGHUHG LQ WKH 'LVFXVVLRQ D *&)A LQ (T YLf *&)A RYHUDOOf *&)A LQ (T LLLf *&)A LQ (T Yf

PAGE 82

\LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI SXUH 4 +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH A)A, V\VWHP

PAGE 83

&) \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &)A SXUH 4 b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH *A)A, V\VWHP

PAGE 84

&) \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &") SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &J)A, V\VWHP

PAGE 85

&/) \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &") SXUH # b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &/), V\VWHP A Z

PAGE 86

&B) \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI & ) SXUH 4 b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &A)A, V\VWHP &/)U b +, PLFURPROHVf

PAGE 87


PAGE 88

&)f, \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &)f, SXUH k b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH *A)A, V\VWHP A

PAGE 89

&)f, \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI &B)f, SXUH # b +, 2 f DV D IXQFWLRQ RI GRVH LQ WKH &)H, V\VWHP A aR 2

PAGE 90

DQG Q&f)-Ob +, \LHOGV PLFURPROHVf )LJ 3URGXFWLRQ RI Q*)\, SXUH 4 b! +, 2 f DQG &), SXUH f DV D IXQFWLRQ RI GRVH LQ WKH &), V\VWHP 3URGXFWLRQ RI &), LV HOLPLQDWHG ZLWK b DGGHG +,f &/), \LHOG PLFURPROHVf

PAGE 91


PAGE 92

&)T, \LHOG PLFURPROHVf )LJ 3URGXFWLRQ RI V& ) SXUH 4 M b +, 2 f &), V\VWHP n DV D IXQFWLRQ RI GRVH LQ WKH Y'

PAGE 93

&)B,f \LHOG PLFURPROHVf L L 3URGXFWLRQ RI &), SXXUH +, 2 f IXQFWLRQ RI GRVH LQ WKH &A)A, V\VWHP )LJ DV D

PAGE 94


PAGE 95

)LJr )L UPDWLRQ RI &)A+ 2f &A) kf &)A,+ f DQG $ f DV D IXQFWLRQ RI GRVH LQ WKH b +,DGGHG &A)A, V\VWHP

PAGE 96

, 9X7DEOH 9DOXHV IRU 5DGLRO\VLV 3URGXFWV IURP &A) DW 7RUU 3XUH 6\VWHP -IR +, 6FDYHQJHG 6\VWHP $EVRUEHG 'RVH H9 ; ,4r $EVRUEHG 'RVH H9 [ 3URGXFWV ; &) &) &) r) *) QB*) &)A, &), Q&A)A, L*)",

PAGE 97

&), QF), V&), &), FILJIL FIFIL &)A+ *)+ &),+ R R R A ^ ‘

PAGE 98

% 'LVFXVVLRQ 7KH PDVV VSHFWUXP RI SHQWDIOXRURHWK\O LRGLGH VKRZV WKDW WKH PRVW DEXQGDQW LRQ LV &A)A, bf IROORZHG E\ &)A bf &A)A Abf bf &) bf &) bf &), bf DQG bf 7KH LQLWLDO DEVRUSWLRQ RI KLJK HQHUJ\ UDGLDWLRQ PD\ WKHUHIRUH JLYH ULVH WR WKH IROORZLQJ UHDFWLRQV DV D UHVXOW RI SULPDU\ LRQL]DWLRQ HYHQWV *), ::9! FIL H 9O ::: &) W &),r Hf 9 n:::r &) L 8 + Y ::: *)r H 9 n:9:r &) QHXWUDO IUDJPHQWV H Y n9En9:: &9 QHXWUDO IUDJPHQWV H Y :9:: &), &)Af H 9 ::: : 9 ,Q DGGLWLRQ LW LV NQRZQ WKDW KLJK HQHUJ\ UDGLDWLRQ JLYHV ULVH WR SULPDU\ H[FLWDWLRQ SURFHVVHV fr 6LQFH H[FLWHG PROHFXOHV SURGXFHG LQ WKLV ZD\ XVXDOO\ GHFRPSRVH E\ WKH ORZHVW HQHUJ\ URXWHV DYDLODEOH WKH IROORZLQJ UHDFWLRQV DUH SURSRVHG r M n9::! *), H Y r &B) 6/ &f) r 9 &) f &),r 9OO

PAGE 99

r &), 9 XR FI f 9 &) ,) 9 3ULPDU\ H[FLWDWLRQ 9f§f LV SUREDEO\ IROORZHG PRVW IUHTXHQWO\ E\ &f§, ERQG UXSWXUH 9f VLQFH WKLV LV WKH ZHDNHVW ERQG LQ WKH V\VWHP 6LQFH GRHV QRW DEVRUE OLJKW LQ WKH YLVLEOH UHJLRQ RI WKH VSHFWUXP WKH ORZHVW DYDLODEOH HOHFWURQLF VWDWH SUREDEO\ SRVVHVVHV WR NFDOPROH RI LQWHUQDO HQHUJ\ 2QH RU ERWK RI WKH UDGLFDOV DQG ,r IRUPHG LQ 3URFHVV 9 PD\ EH H[FLWHG VLQFH GHSRVLWLRQ RI MXVW NFDOPROH FRXOG UHVXOW LQ UXSWXUH RI WKH &f§, ERQG 5XSWXUH RI WKH &f§& ERQG 5HDFWLRQ 9OOf LV SURSRVHG DV D PLQRU EXW VWLOO VLJQLILFDQW SURFHVV ,I HLWKHU WKH IUDJPHQW IRUPHG LQ 9 RU WKH &)A,r IUDJPHQW LQ 9OO VWLOO SRVVHVVHV VXEVWDQWLDO H[FLWDWLRQ HQHUJ\ IXUWKHU IUDJPHQWDWLRQ WR JLYH *)A FDQ RFFXU WKH QHW SURFHVV LV WKHQ VXPPDUL]HG LQ 9 :KHUHDV &A)A LV QRW IRXQG LQ WKH UDGLRO\VLV RI SHUIOXRURDONDQHV f LW LV D PRGHUDWHO\ LPSRUWDQW SURGXFW LQ WKH A)A, V\VWHP $OWKRXJK WKHUH DUH LRQLF URXWHV WR WKLV SURGXFW VHH 5HDFWLRQV 9 DQG 9 EHORZf LW LV DSSURSULDWH WR LQTXLUH ZKHWKHU LW FDQ EH IRUPHG LQ QHXWUDO SURFHVVHV DV ZHOO )RUPDWLRQ E\ UDGLFDOUDGLFDO GLVSURSRUWLRQDWLRQ D VLJQLILFDQW SURFHVV LQ K\GURFDUERQ UDGLRO\VLV f LV QRW SRVVLEOH LQ WKH SUHVHQW FDVH VLQFH SHUIOXRURDON\O UDGLFDOV GR QRW XQGHUJR GLVSURSRUWLRQDWLRQ UHDFWLRQV f 2QH SRVVLEOH GLUHFW URXWH WR &)A IRUPDWLRQ LV VXJJHVWHG LQ 5HDFWLRQ 9 $OWKRXJK )A HOLPLQDWLRQ LV QRW VHHQ LQ WKH UDGLRO\VLV RI SHUIOXRURDONDQHV f WKHUPRFKHPLFDO FRQVLGHUDWLRQV VWLOO VXJJHVW WKH SRVVLELOLW\

PAGE 100

RI ,) HOLPLQDWLRQ LQ WKLV V\VWHP 7KLV LV EHFDXVH WKH &f§, ERQG NFDOPROHf LV PXFK ZHDNHU WKDQ WKH &f§) ERQG NFDOPROHf DQG WKH ,a) ERQG NFDOPROHf IRUPHG LQ WKLV V\VWHP LV PXFK VWURQJHU WKDQ WKH )) ERQG NFDOPROHf 7KH ,) SURGXFW SRVWXODWHG LQ 5HDFWLRQ 9 ZRXOG SUHVXPDEO\ EH D UHDFWLYH VFDYHQJHU 5DGLFDOV ZRXOG SUREDEO\ DEVWUDFW IOXRULQH UDWKHU WKDQ LRGLQH GXH WR WKH JUHDWHU VWUHQJWK RI WKH ERQG IRUPHG &RQVHTXHQWO\ DFFXPXODWLRQ RI ,) HYHQ DV D PLQRU SURGXFW LV QRW OLNHO\ )RUPDWLRQ RI QHJDWLYH LRQV E\ FDSWXUH RI VORZ HOHFWURQV LV DOVR SRVWXODWHG LQ WKLV V\VWHP H &), FI 9 FI ,r 9 6LQFH WKH HOHFWURQ DIILQLW\ RI WKH LRGLQH DWRP H9f LV ODUJHU WKDQ WKH HOHFWURQ DIILQLW\ RI WKH &A)A UDGLFDO H9f f 3URFHVV 9 LV SUREDEO\ PRUH LPSRUWDQW WKDQ 3URFHVV 9 1RQGLVVRFLDWLYH HOHFWURQ FDSWXUH WR JLYH &)F, LV QRW OLNHO\ VLQFH WKH HOHFWURQ DIILQLW\ RI LRGLQH H[FHHGV WKH &f§, ERQG VWUHQJWK ,RQPROHFXOH UHDFWLRQV REVHUYHG LQ KLJK SUHVVXUH PDVV VSHFWURn PHWU\ FDQ DOVR RFFXU LQ WKH JDV SKDVH UDGLRO\VLV RI WKLV V\VWHP DV OLVWHG LQ 7DEOH } 5HDFWLRQV 9O 9} DQG 9 DUH IOXRULGH LRQ I I WUDQVIHUV IURP SDUHQW PROHFXOH WR WKH LRQV &)A &A)A DQG &), OHDGLQJ WR WKH IRUPDWLRQ RI VWDEOH SURGXFWV &)A &A)A DQG &)A, UHVSHFWLYHO\ 3URFHVV 9 LV FKDUJH WUDQVIHU IURP &)A LRQ WR SDUHQW PROHFXOH IRUPLQJ &)I> LRQV DQG SURGXFW &) 7KH WUDQVLHQW  -

PAGE 101

7DEOH 6HFRQGDU\ ,RQLF 3URFHVVHV LQ WKH 5DGLRO\VLV RI &A)A, FI *), &) F ), 9O &) &); *) *), 9 &), &)H, &), & ), 9 *) *), &) *), 9 &) *), FIJI FIL 9 *) 7 F 9 )&, &)H, Ff)Lf &f)Ff 9 FIL` 9 &), FRPSOH[f r f§! QHXWUDO IUDJPHQWV 9 r &) &), &)f ,r 9 &f)F f§ r *)&, f§ &) ,m 9 r FIL &), &), f 9 *), *), f QHXWUDO IUDJPHQWV 9 ; r 9 &), FRPSOH[f fgU QHXWUDO IUDJPHQWV 9 &),f L FRPSOH[f r QHXWUDO IUDJPHQWV 9

PAGE 102

&)A&) SURGXFHG LQ WKH &)A WUDQVIHU UHDFWLRQ DV VKRZQ LQ 6WHS 9 ZLOO XQGHUJR UHDUUDQJHPHQW WR JLYH WKH ILQDO VWDEOH SURGXFW &A) 6WHSV 9 DQG 9 DUH LRGLQH DWRP WUDQVIHU UHDFWLRQV DQG 3URFHVV 9 LV LRQPROHFXOH FRQGHQVDWLRQ UHDFWLRQ $OO LRQPROHFXOH UHDFWLRQV DUH GLVFXVVHG LQ 6HFWLRQ ,,, RI WKLV GLVVHUWDWLRQ 6XEVHTXHQW QHXWUDOL]DWLRQ SURFHVVHV EHWZHHQ SRVLWLYH SULPDU\ DQG VHFRQGDU\ LRQV DQG LRGLGH LRQV DUH DOVR OLVWHG LQ 7DEOH QV 5HDFWLRQV 9 WKURXJK 9 7KH HQHUJ\ UHOHDVHG LQ WKHVH UHDFWLRQV ZLOO EH DSSUR[LPDWHO\ HTXDO WR WKH QHXWUDOL]DWLRQ HQHUJ\ RI WKH SRVLWLYH LRQ SOXV WKH HQHUJ\ RI D &f§, ERQG LI VXFK D ERQG LV IRUPHGf OHVV WKH HOHFWURQ DIILQLW\ RI WKH LRGLQH DWRP *HQHUDOO\ WKLV ZLOO DPRXQW WR H9 VR WKDW IUDJPHQWDWLRQ RI WKH LQLWLDOO\ IRUPHG QHXWUDO VSHFLHV LQ 5HDFWLRQV 9 WKURXJK 9 LV YLUWXDOO\ D FHUWDLQW\ LQGHHG LQ PDQ\ FDVHV WKH IUDJPHQW" PXVW VWLOO SRVVHVV H[FHVV HQHUJ\ 7KH *)Ar UDGLFDO SURGXFHG LQ 5HDFWLRQ 9 LV OLNHO\ WR SHUVLVW DV VXFK GXH WR WKH VWUHQJWK RI WKH &) ERQGDOWKRXJK ERWK &)Ar DQG ,} PD\ SRVVHVV H[FHVV LQWHUQDO RU WUDQVODWLRQDO HQHUJ\ 7KH SODXVLEOH LQLWLDO SURGXFWV &A)A DQG *)A,f VXJJHVWHG LQ (TXDWLRQV 9 DQG 9 DUH OLNHO\ WR IUDJPHQW IXUWKHU WR JLYH &)Am *)A DQG &)A ,r r UHVSHFWLYHO\ 7KH H[FLWHG PROHFXOH &)A,A IRUPHG LQ 5HDFWLRQ
PAGE 103

IXUWKHU IUDJPHQWDWLRQ RI WKH ROHILQLF FRPSRXQGV ZRXOG JLYH WUDQVLHQW VSHFLHV UDWKHU WKDQ REVHUYHG SURGXFWV 7KH ,) SURGXFW SRVWXODWHG LQ 5HDFWLRQ 9E ZRXOG EH D UHDFWLYH VFDYHQJHU DV GLVFXVVHG SUHYLRXVO\ 6LQFH WKH QHXWUDOWVSHFLHV IRUPHG LQ 5HDFWLRQV 9 9 DQG 9 FDQ QRW FRUUHVSRQG WR VWDEOH VWUXFWXUHV GHFRPSRVLWLRQ ZLOO QHFHVVDULO\ RFFXU )RUPDWLRQ RI &A)A DQG RQH RU PRUH ,r DWRPV LV YHU\ OLNHO\ 6HFRQGDU\ UHDFWLRQV LQYROYLQJ QHXWUDO VSHFLHV DUH VXPPDUL]HG LQ 7DEOH 6LQFH LRGLQH DWRP UHFRPELQDWLRQ LV D YHU\ UDSLG SURFHVV HYHQ DW URRP WHPSHUDWXUH f WKH LRGLQH DWRP IRUPHG LQ WKLV V\VWHP ZLOO FRPELQH WR IRUP ,A ZLWK &A)A, VHUYLQJ DV WKH WKLUG ERG\ 7KH LRGLQH WKXV IRUPHG LV D JRRG IUHH UDGLFDO VFDYHQJHU DQG ZLOO EDFNUHDFW ZLWK RUJDQLF UDGLFDOV DV VKRZQ LQ 5HDFWLRQV 9 WR 9 7KHVH UHDFWLRQV ZLOO WHQG WR OLPLW JURZWK RI WKH FRQFHQn WUDWLRQ ZKLFK ZLOO UHDFK PDFURVFRSLF OHYHOV RQO\ LI WKH QXPEHU RI HTXLYDOHQWV RI LQRUJDQLF LRGLQH H[FHHGV WKH QXPEHU RI HTXLYDOHQWV RI UDGLFDOV IRUPHG 5XSWXUH RI WKH &f§, ERQG JLYHV RQH &A)Ar UDGLFDO SHU LRGLQH DWRP DQG EDFN UHDFWLRQ ZLOO RFFXU YLD 5HDFWLRQ 9r )XUWKHU UXSWXUH RI &A)f LQWR *)Ar &) HIIHFWLYHO\ JLYHV UDGLFDO VLWHV SHU LRGLQH DQG ZRXOG UHVXOW LQ QHW ORVV RI ,Q RUGHU IRU WKH V\VWHP WR DFFXPXODWH QHW LRGLQH WKH UDWH RI UHPRYDO RI UDGLFDOV RWKHU WKDQ E\ UHDFWLRQ ZLWK LRGLQHf PXVW EH VRPHZKDW LQ H[FH RI WKH DGGLWLRQDO UDGLFDO VLWHV SURGXFHG E\ UXSWXUH RI &f§* ERQGV 7KH LRGLQH VFDYHQJLQJ 5HDFWLRQV 9 WR 9 OHDG WR WKH IRUPDWLRQ RI REVHUYHG UDGLRO\VLV SURGXFWV &)A, &)A,A &)J,&)JO DQG &)A&),A UHVSHFWLYHO\ $QRWKHU URXWH WR WKH IRUPDWLRQ RI &)A,&)A,

PAGE 104

9 7DEOH 1HXWUDO 6HFRQGDU\ 3URFHVVHV LQ 7KH 5DGLRO\VLV RI ,r r 0 f§ 0 9 F)\ O Z Y &)r &)A, ,r 9 FIO L *), Y FIFIL FILFIL Y &)A&),f f§ FIFIL f 9 &) ; JILFIL Y &)n &)L Q&) Y &) f &f), f§ &) T ,r 9 : FIL &) W &)&)n RU &)A&),ff 9 &)A r &A)A, &) &)&), RU &)A&),ff 9

PAGE 105

LV WKH GLUHFW DGGLWLRQ RI WR DV LQGLFDWHG LQ 6WHS 9 )LJV DQG VKRZ WKDW LQ WKH +,DGGHG V\VWHP WKH LQLWLDO \LHOGV RI DQG &)A,&)A, DUH UHGXFHG E\ WKH VDPH SHUFHQWDJH bf 7KHVH ILJXUHV DOVR LQGLFDWH WKDW WKH GRVH\LHOG SORWV RI &B) DQG &),&), LQ WKH +,DGGHG V\VWHP DUH EHQGLQJ XSZDUGV DW DERXW WKH VDPH GRVH UHJLRQ 7KHVH REVHUYDWLRQV VXJJHVW WKDW PRVW &)A,&)A, LV SURGXFHG E\ 5HDFWLRQ 9 %\ DQDORJ\ ZLWK WKH &)A, V\VWHP 5HDFWLRQ 9 LV SRVWXODWHG DV WKH FKLHI UHDFWLRQ UHPRYLQJ UDGLFDOV DQG DOORZLQJ LRGLQH WR DFFXPXODWH 6LQFH D NFDO &f§, ERQG LV EURNHQ ZKLOH D NFDO && ERQG LV IRUPHG WKH SURFHVV LV VWURQJO\ H[RHUJLF 5HDFWLRQ 9 LV D VLPLODUO\ IDYRUDEOH IDWH RI WKH &)A UDGLFDO VSHFLHV 7KLV URXWH GRHV QRW IUHH QHW LRGLQH VLQFH WKH ,r IRUPHG LQ 9 LV QHHGHG WR UHDFW ZLWK WKH RULJLQDO &), ZKLFK PXVW KDYH DFFRPSDQLHG &)A! IRUPDWLRQ 5HDFWLRQV 9 DQG 9 VXJJHVW RWKHU URXWHV RI UHDFWLRQ RI &)A DQA A)Ar UHVSHFn WLYHO\ %RWK UHDFWLRQV VKRXOG EH VOLJKWO\ H[RHUJLF VLQFH WKH *f§) ERQG IRUPHG ZRXOG SUREDEO\ EH VOLJKWO\ VWURQJHU WKDQ WKH ERQG EURNHQ ,Q HDFK FDVH KRZHYHU WKHUH FRXOG EH D VLJQLILFDQW DFWLYDWLRQ HQHUJ\ 7KHVH SURFHVVHV DUH VXJJHVWHG DV D SRVVLEOH LQWHUSUHWDWLRQ RI WKH IDFW WKDW WKH &)A DQG &)A \LHOGV DUH DERXW b VFDYHQJHDEOH E\ b DGGHG +, ,Q WKH b +,DGGHG V\VWHP WKUHH DGGLWLRQDO RUJDQLF SURGXFWV &A)A+ &)A+ DQG &)A,+ DUH IRUPHG 6LQFH +, DFWV DV D IUHH UDGLFDO VFDYHQJHU WKH IROORZLQJ UHDFWLRQV DUH SURSRVHG &J(\ KL f§ &)I 9 &)\ +, f§ &)A+ 9

PAGE 106

9 &),r +, *),+ 9 7KHVH UHDFWLRQV 9 9 9f FRPSOHWHO\ EORFN WKH URXWHV OHDGLQJ WR WKH IRUPDWLRQ RI Q&A)WA &A)J DQG &)J&), DQG VXEVWDQWLDOO\ UHGXFH RWKHU SURGXFW \LHOGV UHVXOWLQJ IURP &)Af &)A DQG &)JOr UDGLFDOV 6LQFH WKH LRQL]DWLRQ SRWHQWLDO RI +, H9f LV VPDOOHU WKDQ WKH LRQL]DWLRQ SRWHQWLDO RI &)A, H9f FKDUJH WUDQVIHU EHWZHHQ &)M, DQG +, LV YHU\ OLNHO\ WR RFFXU DV SRVWXODWHG LQ 5HDFWLRQ 9 &A,r +, +, &)A, 9 6LQFH &)M, LV WKH SUHFXUVRU RI PDQ\ RWKHU LQWHUPHGLDWH VSHFLHV DQG ILQDG SURGXFWV DV LQGLFDWHG LQ 5HDFWLRQV 9O 9 9 DQG 9 LQFOXGLQJ H[FLWHG &)A, DQG &)Am QRUPDO DQG H[FLWHGf DQG RWKHU WUDQVLHQWV IRUPHG LQ QHXWUDOL]DWLRQ SURFHVVHV LQYROYLQJ &)A, UHPRYDO RI WKH &)A, LRQ E\ DGGHG +, ZLOO SUHYHQW IRUPDWLRQ RI DOO WKHVH LQWHUPHGLDWHV DQG WKHLU XOWLPDWH SURGXFWV ,I DQ\ +, PROHFXOH HQFRXQWHUV DQ H[FLWHG SUHFXUVRU *)A, LRQ SULRU WR IUDJPHQWDWLRQ 6WHSV 9 WR 9 LQWHUIHUHQFH ZLWK YLUWXDOO\ HYHU\ UHDFWLRQ VHTXHQFH LQ WKH V\VWHP LV SRVVLEOH ,W FDQ EH FRQFOXGHG WKDW SURGXFW \LHOGV ZKLFK DUH HQWLUHO\ HOLPLQDWHG E\ DGGHG +, Q&A)AJ &A)J DQG &)J&),f PXVW EH HQWLUHO\ IRUPHG LQ UDGLFDO SURFHVVHV 3DUWLDO LQWHUIHUHQFH ZLWK VHYHUDO \LHOGV FRXOG EH GXH HLWKHU WR HOLPLQDWLRQ RI WKH UDGLFDO FRPSRQHQW RI D SURGXFW IRUPHG E\ VHYHUDO SURFHVVHV RU WR LQWHUIHUHQFH ZLWK LRQLF SUHFXUVRUV RI D VSHFLHV IRUPHG E\ LRQLF IUDJPHQWDWLRQ LRQPROHFXOH UHDFWLRQV RU LRQ QHXWUDOL]DWLRQ SURFHVVHV

PAGE 107

,W PLJKW EH VXUSULVLQJ WKDW LV DOVR IRXQG DV D SURGXFW LQ WKH +, VFDYHQJHG V\VWHP KRZHYHU IRUPDWLRQ LV D UHDVRQDEOH FRQVHTXHQFH RI 5HDFWLRQ 9 7KH IRUPDWLRQ RI K\GURJHQ GXH WR DGGHG UDGLFDO VFDYHQJHU +, KDV EHHQ UHSRUWHG SUHYLRXVO\ LQ VHYHUDO V\VWHPV f 7KH SRVVLEOH LQYROYHPHQW RI +, ZKLFK LV SURGXFHG E\ FKDUJH WUDQVIHU 5HDFWLRQ 9 LV SRVWXODWHG EHORZ +, +, f§ 9 9 +, f§ + f 9 + 9 + +, f§ + 9 +r +, 9 3URFHVVHV 9 DQG 9 DUH HVWDEOLVKHG UHDFWLRQV LQ WKH LRQ PROHFXOH FKHPLVWU\ RI WKH +, V\VWHP ZKLFK KDV EHHQ GLVFXVVHG WKRURXJKO\ E\ :LOVRQ DQG $UPVWURQJ f $Q DOWHUQDWLYH WR K\GURJHQ DWRP IRUPDWLRQ DV LQGLFDWHG LQ 5HDFWLRQ 9 LV WKH IRUPDWLRQ RI K\GURJHQ PROHFXOH LQ 6WHS 9 E\ DQDORJ\ ZLWK WKH UHDFWLRQ +A%Uf %U +A %Ur GLVFXVVHG E\ 6SLQNV DQG :RRGV ff 3HQ]KRUQ DQG 'DUZHQW f IRXQG WKDW WKH 5HDFWLRQ 9 LV DW OHDVW WLPHV IDVWHU WKDQ 5HDFWLRQ 9 7KLV H[SODLQV WKH OHYHOLQJ RII RI WKH \LHOG LQGLFDWHG LQ WKH GRVH\LHOG SORW LQ )LJ VLQFH WKH UHPRYDO RI K\GURJHQ DWRP LV GRPLQDWHG E\ 5HDFWLRQ 9 DW ORQJHU LUUDGLDWLRQ GXH WR DFFXPXODWLRQ RI f 6LQFH WKHUH LV QR SURGXFW \LHOG FRUUHVSRQGLQJ WR IRUPDWLRQ RI &)A, ZLWK D YDOXH DV ODUJH DV GXULQJ WKH HDUO\ VWDJHV RI

PAGE 108

UDGLRO\VLV ZLWK DGGHG +, LW LV GLIILFXOW WR DFFRXQW IRU WKLV REVHUYDWLRQ $VVXPLQJ D VWRLFKLRPHWU\ FIL +, &)A, FILK WKH PLVVLQJ SURGXFW VKRXOG EH &),+ $OWKRXJK WKLV FRPSRXQG LV IRUPHG LWV YDOXH LV RQO\ DERXW 8QIRUWXQDWHO\ ZH GLG QRW KDYH DFFHVV WR D VWDQGDUG VDPSOH RI &),+ QHHGHG WR PHDVXUH WKH JDV FKURPDWRJUDSKLF UHVSRQVH RI WKH FRPSRXQG $OWKRXJK WKH YDOXH ZKLFK ZH XVHG LV DQ HVWLPDWH EDVHG RQ VHYHUDO K\GURJHQ VXEVWLWXWHG SHUIOXRURFRPSRXQGV DQ HUURU LQ WKH PRODU UHVSRQVH RI D IDFWRU RI LV PRVW XQOLNHO\ $ KLQW DV WR WKH VROXWLRQ RI WKLV GLOHPPD PD\ OLH LQ WKH IDFW WKDW &AA+ ZKLFK KDV D OLQHDU \LHOG RI HTXDO WR EH\RQG D GRVH RI FD ; H9 VKRZV DQ LQGXFWLRQ SHULRG LQ HVVHQWLDOO\ WKH VDPH GRVH UDQJH ZKHUH WKH DQRPDORXV KLJK &)A, \LHOG RFFXUV ,Q DQ\ HYHQW VLQFH WKH &)A, LQLWLDO \LHOG LV DV ODUJH DV LWV SUHFXUVRU PXVW EH IRUPHG ZLWK D VXEVWDQWLDO YDOXH & 6XPPDU\ 7KH JDPPDUDGLRO\VLV RI JDVHRXV &AA, ZDV VWXGLHG DW 7RUU SUHVVXUH DQG r ERWK SXUH DQG ZLWK DGGHG +, ,Q DOO SURGXFWV ZHUH IRUPHG LQ WKH UDGLRO\VLV )RU WKH SXUH V\VWHP WKH PDMRU UDGLRO\WLF SURGXFWV DQG WKHLU UHVSHFWLYH YDOXHV DUH &) &) &A &) Q&A *)A, &), &)J,*)JO DQG &)A&),J ,W ZDV REVHUYHG WKDW WKHDGGLWLRQ RI DSSUR[LPDWHO\ b +, GUDPDWLFDOO\

PAGE 109

LQFUHDVHG WKH YDOXH RI IURP WR f DQG WKH LQLWLDO YDOXH RI &)A, IURP WR f ZKLOH RWKHU SURGXFW \LHOGV GHFUHDVHG ,Q DGGLWLRQ &)A+ &A)A+ &),+ DQG + ZHUH DOVR IRUPHG LQ WKH +,DGGHG V\VWHP ZLWK FRUUHVSRQGLQJ YDOXHV RI } DQG 7KH REVHUYDWLRQV DUH LQWHUSUHWHG LQ WHUPV RI UHDFWLRQV RI ERWK LRQV DQG QHXWUDO VSHFLHV 7KH ORZ RYHUDOO \LHOG LV GXH WR WKH EDFN UHDFWLRQV EHWZHHQ DQG *A)A UDGLFDOV 7KH UDGLRO\VLV RI JDVHRXV *A)A, ZLOO UHDFK D VWHDG\VWDWH DFFRUGLQJ WR WKH F\FOH &), FI ,n ,r ,n *)r &), n XQOHVV WKHUH LV DQ DOWHUQDWLYH UHDFWLRQ ZKLFK UHPRYHV &)A UDGLFDOV

PAGE 110

$33(1',&(6

PAGE 111

$33(1',; $33($5$1&( 327(17,$/ 0($685(0(176 21 &A, 7KHVH H[SHULPHQWV ZHUH GRQH RQ D %HQGL[ 7LPHRI)OLJKW PDVV VSHFWURPHWHU XVLQJ VWDQGDUG 5HWDUGLQJ 3RWHQWLDO 'LIIHUHQFH 5)'f WHFKQLTXHV O f $ GHWDLOHG GHVFULSWLRQ RI WKH 53' H[SHULPHQWV KDV EHHQ JLYHQ HOVHZKHUH f 3RWHQWLDOV RQ WKH ILYH JULG HOHFWURQ JXQ ZHUH DV IROORZV 1R JULG HOHFWURQ FRQWURO JULG QHDUHVW WR WKH ILODPHQWf 9 ZLWK D 9 SXOVH RI SVHF GXUDWLRQ UHSHDWHG DW D IUHTXHQF\ RI N+] 1R JULG 9 1R JULG )R[ UHWDUGLQJ SRWHQDWLDO GLIIHUHQFH JULGf 9 ZLWK DQ LQWHUPLWWHQW $9 RI 9 1R JULG 9 DQG 1R JULG JURXQGHG WR WKH LRQ VRXUFH IUDPH 3RWHQWLDOV RQ JULGV DUH UHIHUHQFHG WR WKH HOHFWURQ ILODPHQW KHQFH WKHLU DEVROXWH YDOXH UHODWLYH WR JURXQG YDULHV DORQJ ZLWK WKDW RI WKH ILODPHQW 7KH 5HWDUGLQJ 3RWHQWLDO 'LIIHUHQFH FXUYHV ZKLFK ZHUH REWDLQHG IRU &)A &A)A DQG *A)A, IURP &)A, DUH VKRZQ LQ )LJ DORQJ ZLWK 1A DV D VWDQGDUG 8VLQJ WKH UHSRUWHG DSSHDUDQFH SRWHQWLDO RI 1 H9f DV D UHIHUHQFH WKH IROORZLQJ DSSHDUDQFH SRWHQWLDOV ZHUH REWDLQHG &)A H9 &A H9 &A, H9 )URP WKHVH YDOXHV LW LV SRVVLEOH WR FDOFXODWH KHDWV RI IRUPDWLRQ RI WKH LRQ &)H, DQG WKH QHXWUDO SDUHQW PROHFXOH &)U, DV ZHOO DV YDOXHV IRU WKH HQHUJLHV RI GLVVRFLDWLRQ RI &f§, ERQG DQG && ERQG

PAGE 113

LQ &)M7KH KHDW RI IRUPDWLRQ RI WKH SDUHQW PROHFXOH FDQ EH A IRUPXODWHG DV IROORZV &), &) H $O $3&)*),f $+r &)f $+r Lf $+r &AOf 7KHUHIRUH DKr FILf DKr FIf DKr Lf DSFIFILf $+r &A)AOf NFDOPROH NFDOPROH NFDOPROH $+r &J)AOf NFDOPROH 8VLQJ WKH YDOXH RI NFDOPROH IRU WKH KHDW RI IRUPDWLRQ RI &c)A, DQG WKH PHDVXUHG YDOXH RI WKH DSSHDUDQFH SRWHQWLDO RI &A) A, WKH KHDW RI IRUPDWLRQ IRU WKLV LRQ FDQ EH FDOFXODWHG DV IROORZV &)F, &)F, H $ A$ $3&),&),f $+r &A,rf $+r &AOf 7KHUHIRUH $+r &),f $3*),&),f A&AOf $+r &),f NFDOPROH $ VLPLODU WUHDWPHQW ZLOO OHDG WR WKH &f§, ERQG GLVVRFLDWLRQ HQHUJ\ LQ WKH &J)A, PROHFXOH &A, &) &)A Ha $ $+DB $3&)F),f '&),f $+r &Af $+r &Af

PAGE 114

GFILf DSFIFILf DKr FIf DKr FIf '&)A,f f NFDOPROH '&)Af§Lf NFDOPROH f? m f ,Q RUGHU WR FDOFXODWH WKH && ERQG GLVVRFLDWLRQ HQHUJ\ LQ WKH &)A, PROHFXOH WKH IROORZLQJ UHDFWLRQV KDYH WR EH FRQVLGHUHG &N), f§ f! &) &)f &) 9 2 f &), &)B, &)f *) DKDB DSFIFILf GFIAILf DKr FIf DKr FIf $+r ,f $+r &)f $+r &),f 7KHUHIRUH GFIFILf DSFIFILf DKr JIf DKr FIf $+r ,f $+r &)f $+r &),f '&)&),f NFDOPROH 7DEOHV DQG OLVW VHOHFWHG KHDWV RI IRUPDWLRQ DQG ERQG GLVVRFLDWLRQ HQHUJLHV IRU IOXRURFDUERQ VSHFLHV XVHG IRU WKH WKHUPRFKHPLFDO FDOFXODWLRQV LQ WKLV GLVVHUWDWLRQ 7KH )&), ERQG KDV EHHQ FDOFXODWHG DV NFDOPROH W HIRUH WKH KHDW RI IRUPDWLRQ RI &), FDQ EH HVWLPDWHG EDVHG RQ WKH UHDFWLRQ &), &), ) $+ NFDOPROH $

PAGE 115

7DEOH 6HOHFWHG 7KHUPRFKHPLFDO 'DWD IRU )OXRURFDUERQ 6SHFLHV 6SHFLHV $+ NFDOPROH 5HIHUHQFH ) &) &) &) *) &) &)A&) *) *) *) *) F) F*) Q&) LB*) *) E &?@ U+ + ; ,)

PAGE 116

7DEOH FRQWLQXHGf 6SHFLHV $+ NFDOPROH 5HIHUHQFH &), Df &), Df &)A, &3, Z &),&), ,, (VWLPDWHG YDOXH UHIHU WR WH[W IRU GHWDLO E &DOFXODWLRQ EDVHG RQ DSSHDUDQFH SRWHQWLDO PHDVXUHPHQWV RI &)M SHUIRUPHG LQ WKLV ODERUDWRU\

PAGE 117

9 7DEOH 6HOHFWHG 7KHUPRFKHPLFDO 'DWD IRU )OXRURFDUERQ ,RQV ,RQV R $+ NFDOPROH 5HIHUHQFHV ) R n FI R &) &) *) *) Q&)" B&) ; FIL &), *), NFDO Df *), Ef I &)n &) } (VWLPDWHG YDOXHV UHIHU WR WH[W IRU GHWDLO E &DOFXODWLRQ EDVHG RQ DSSHDUDQFH SRWHQWLDO PHDVXUHPHQWV RI &AA, SHUIRUPHG LQ WKLV ODERUDWRU\

PAGE 118

7DEOH 6HOHFWHG %RQG 'LVVRFLDWLRQ (QHUJLHV IRU )OXRURFDUERQ 6SHFLHV %RQG NFDOPROH 5HIHUHQFH &f§) &)f§) &)) &)Af§) &)&)f§) FIAAIA &) e) s &)&) &) &)Af§, &) Df *)f§ Q&A)"f§, L&A)Af§, Q&)f§ &)Af§&), Df )f§&), rf f§ )f§) ,f§, ,f§) &)Af§+ +f§, (O &DOFXODWLRQ EDVHG RQ DSSHDUDQFH SRWHQWLDOV PHDVXUHPHQWV RI &J)A, 3HUIRUPHG LQ WKLV ODERUDWRU\ &DOFXODWLRQ EDVHG RQ UHSRUWHG DSSHDUDQFH SRWHQWLDOV PHDVXUHPHQWV RI &),&),f LQ UHI

PAGE 119

,W IROORZV WKDW $+r &),f $+DB $+r )f $+r &)Af NFDOPROH 6LPLODU DUJXPHQWV OHDG WR WKH KHDW RI IRUPDWLRQ RI &), DV NFDOPROH 7KH KHDW RI IRUPDWLRQ RI &A)A,A LRQ ZDV HVWLPDWHG EDVHG RQ FHUWDLQ UHVXOWV IURP WKH ,RQ &\FORWURQ 'RXEOH 5HVRQDQFH H[SHULPHQWV GHVFULEHG LQ 6HFWLRQ ,,, ,W ZDV IRXQG WKDW ERWK &)A DQG &), DUH SUHFXUVRUV RI &A)A,r &) FIL f§! &) FIL $ FIL FIL f! &), *), $ +RZHYHU WKH LQWHQVLW\ RI SURGXFW &A)A, GHFUHDVHG ZKHQ &)A LRQ ZDV LUUDGLDWHG DQG LQFUHDVHG ZKHQ &)A, ZDV LUUDGLDWHG ,W LV UHDVRQDEOH WR VXJJHVW WKDW 5HDFWLRQ $ LV H[RWKHUPLF ZKLOH 5HDFWLRQ $ LV HQGRWKHUPLFA 7KHUHIRUH $+DB $+r :f $+r &)f $+r &AOf $+r &)A $+r &),f NFDOPROH $ $+DB" $+r &),f $+r &),f $+r &AOf $+r &)e,f 7KH )f§&), ERQG VWUHQJWK VKRXOG EH VRPHZKDW VPDOOHU WKDQ NFDOPROH ,W LV DVVXPHG WR EH NFDOPROH LQ DERYH FDOFXODWLRQ $Q LQFUHDVH LQ SURGXFW LQWHQVLW\ GXULQJ DQ ,&'5 H[SHULPHQW DOZD\V LQGLFDWHV DQ HQGRWKHUPLF UHDFWLRQ $OWKRXJK WKH LQYHUVH JHQHUDOLn ]DWLRQ LV QRW ULJRURXVO\ YDOLG D GHFUHDVH LQ SURGXFW LQWHQVLW\ LV PRVW FRPPRQO\ VHHQ LQ H[RHUJLF UHDFWLRQV

PAGE 120

" $+r &)A,f NFDOPROH $ )URP $ DQG $ WKH HVWLPDWHG YDOXH IRU $+r &A)AOf LV NFDOPROH $V LQGLFDWHG DERYH WKH WKHUPRFKHPLFDO LQIRUPDWLRQ UHVXOWLQJ IURP WKH SUHVHQW 53' ZRUN LQFOXGHV YDOXHV IRU 'A)A&)AOf IRXQG WR EH NFDOPROH %&A)Af§Of PHDVXUHG DV NFDOPROH $+r &A)A,rf ZLWK D YDOXH RI NFDOPROH DQG $+r &A)AOf ZLWK WKH UHVXOWLQJ YDOXH NFDOPROH ,W ZDV QRWHG LQ WKH VHFWLRQ RQ KLJK SUHVVXUH PDVV VSHFWURPHWU\ WKDW VHYHUDO RI WKH LRQV LQ ERWK WKH &)A, DQG &A)A, V\VWHPV DSSHDUHG WR EH IRUPHG ZLWK VXEVWDQWLDO H[FLWDWLRQ HQHUJ\ DPRXQWLQJ WR DV PXFK DV H9 RU NFDOPROHf 2EVHUYDWLRQV IURP WKH UDGLRO\VLV RI WKHVH FRPSRXQGV WHQG WR FRUURERUDWH WKH VXJJHVWLRQ WKDW H[FLWHG LRQV DUH LQYROYHG VLQFH WKH VDPH HQGRHUJLF UHDFWLRQV DSSHDU WR DSSO\ WR WKH UDGLRO\WLF FRQGLWLRQV ,W VKRXOG FOHDUO\ EH XQGHUVWRRG WKDW LQ ERWK UDGLRO\VLV DQG KLJK SUHVVXUH PDVV VSHFWURPHWU\ LQFOXGLQJ ,&5 ZRUNf WKHUH LV D SRSXODWLRQ RI ERPEDUGLQJ HOHFWURQV ZLWK HQHUJLHV FRQVLGHUDEO\ LQ H[FHVV RI PLQLPXP LRQL]DWLRQ DQG DSSHDUDQFH SRWHQWLDOV 'XH WR WKH QDWXUH RI WKH 53' H[SHULPHQW KRZHYHU QR VXFK H[FHVV HQHUJ\ HOHFWURQV DUH DYDLODEOH DW LRQ RQVHW ,I WKH LRQV &) &) DQG &)F, XVHG  WR FDOFXODWH WKH SUHYLRXVO\ PHQWLRQHG WKHUPRFKHPLFDO TXDQWLWLHV SRVVHVVHG DQ\ZKHUH QHDU H9 RI H[FHVV HQHUJ\ WKH UHVXOWLQJ UHDFWLRQ KHDWV ZRXOG EH LQ JURVV GLVDJUHHPHQW ZLWK SXEOLVKHG OLWHUDWXUH f $FWXDOO\ WKH YDOXH RI NFDOPROH LV TXLWH UHDVRQDEOH IRU WKH &f§, ERQG LQ &A)A, ,W ZLOO EH QRWHG WKDW H[FHVV

PAGE 121

HQHUJ\ LQ WKH &A) LRQ ZRXOG GHFUHDVH WKH UHVXOWLQJ ERQG HQHUJ\ WR D YDOXH EHORZ NFDOPROH ,Q IDFW WKLV YDOXH LV TXLWH UHDVRQDEOH FRPSDUHG WR D YDULHW\ RI RWKHU FRPSRXQGV FRQWDLQLQJ WKH &f§, ERQG D YDOXH RI HYHQ NFDOPROH OHVV ZRXOG EH UDWKHU XQUHDVRQDEOH ,W LV FRQFOXGHG WKDW WKH &A)A LRQ IRUPHG DW RQVHW LV LQ LWV JURXQG HOHFWURQLF VWDWH DQG SRVVHV DW PRVW D VPDOO DPRXQW RI YLEUDWLRQDO HQHUJ\ 6LPLODU DUJXPHQWV DSSO\ WR &)A DQG &)A, LRQV ,W FDQ EH VHHQ E\ UHIHUHQFH WR )LJ KRZHYHU WKDW WKH 53' UHVXOWV DUH FRQVLVWHQW ZLWK SDUWLFLSDWLRQ RI H[FLWHG LRQV ZKHQ ERPEDUGLQJ HOHFWURQV ZLWK H[FHVV HQHUJ\ DUH XVHG ,Q SDUWLFXODU ERWK &)A DQG &A)A, VKRZ EUHDNV LQ WKH LQWHQVLW\ YHUVXV YROWDJH FXUYH UHVSHFWLYHO\ 9 DQG 9 DERYH RQVHW ,W LV VXJJHVWHG WKDW WKH HQHUJHWLF LRQV VHHQ LQ WKH ,&'5 ZRUN LPSO\ SDUWLFLSDWLRQ RI VSHFLHV LQ VSHFLILF H[FLWHG HOHFWURQLF VWDWHV 2I FRXUVH LQWHUQDO FRQYHUVLRQ WR D KLJK YLEUDWLRQDO VWDWH RI WKH HOHFWURQLF JURXQG VWDWH PD\ RFFXU SULRU WR WKH SDUWLFLSDWLRQ RI WKH LRQ LQ D VXEVHTXHQW LRQPROHFXOH UHDFWLRQ

PAGE 122

$33(1',; ,, ,'(17,),&$7,21 2) 5$',2/<6,6 352'8&76 7KH RQO\ LQRUJDQLF SURGXFW IRUPHG LQ WKH UDGLRO\VLV RI SXUH &A)A, DQG &)A, ZDV ,A ,W ZDV LGHQWLILHG XVLQJ DEVRUSWLRQ VSHFWURn VFRS\ $OO WKH RUJDQLF SURGXFWV ZHUH LGHQWLILHG E\ WKHLU JDV FKURPDWRJUDSKLF UHWHQWLRQ WLPHV DQG FRQILUPHG E\ WKHLU PDVV VSHFWUDO FUDFNLQJ SDWWHUQV )LJ VKRZV WKH JDV FKURPDWRJUDP RI WKH RUJDQLF SURGXFWV IRU WKH UDGLRO\VLV RI SXUH &)A, ,Q WKH FDVH RI &)A, UDGLRO\VLV WKH RUJDQLF SURGXFWV LGHQWLILHG ZHUH &)A &A)A AAf &) &)U, DQG &)f, )RUWXQDWHO\ WKHVH ZHUH DOVR SUHVHQW LQ WKH M R &)A, UDGLRO\VLV 0DVV VSHFWUDO WDEOHV IRU WKH FRPSRXQGV IRUPHG LQ WKH UDGLRO\VLV DUH FROOHFWHG WRJHWKHU DW WKH HQG RI WKLV VHFWLRQ 7DEOHV f :KHQHYHU SRVVLEOH WKH VWDQGDUG PDVV VSHFWUXP $PHULFDQ 3HWUROHXP ,QVWLWXWH 0DVV 6SHFWUD 'DWDf LV DOVR OLVWHG IRU FRPSDULVLRQ *LYHQ EHORZ LV D GLVFXVVLRQ RI WKH PDVV VSHFWUXP RI HDFK FRPSRXQG LQ WKH RUGHU WKDW LW HOXWHV IURP WKH JDV FKURPDWRJUDSKLF FROXPQ )LJ f LQWR WKH PDVV VSHFWURPHWHU 3HDNV 1R WKURXJK 7DEOHV DQG f FRUUHVSRQG UHVSHFWLYHO\ WR WKH FRPSRXQGV &)A &A)A &A)A AAf AAf QAA DQG &)A, 7KHVH LGHQWLILFDWLRQV DUH XQDPELJXRXV LQ HDFK FDVH JRRG DJUHHPHQW ZLWK SXEOLVKHG PDVV VSHFWUDO FUDFNLQJ SDWWHUQV ZDV REWDLQHG

PAGE 123

)LJ *DV FKURPDWRJUDP RI LUUDGLDWHG SHQWDIOXRURHWK\O LRGLGH KHOLXP JDV IORZ UDWH RI POPLQ RQ IW 2' ; ZDOO VWDLQOHVV VWHHO FROXPQ SDFNHG ZLWK R PHVK VLOLFD JHOf 3HDN ,GHQWLILFDWLRQ &) Q&A)A, &) L*A)A, *) &A)A, &) Q&), &) V&), QB*) FIL &)A, *),&), *), *), &)&),

PAGE 124

'HWHFWRU 5HVSRQVH )LJ

PAGE 125

3HDN 1R &A)I( 7KLV SHDN LV WKH SDUHQW FRPSRXQG f§f§3 SHQWDIOXRURHWK\O LRGLGH 3HDN 1R &A)A, 7KH PROHFXODU LRQ LGHQWLILHV WKLV FRPSRXQG DV *A)A, )XUWKHU HYLGHQFH FDQ EH VHHQ LURP WKH UHODWLYH DEXQGDQFHV RI &), DQG &Ar 3HDN 1R Q&A)A, 0DVV SHDNV DQG FRUUHVSRQG WR WKH HPSLULFDO IRUPXOD &A)A, 5HODWLYH DEXQGDQFHV RI &A)Af &)A &A)A DQG &), LQGLFDWH WKDW WKH FRPSRXQG LV Q&A)A, 3HDN 1R L&)f, &RPSDULVRQ RI PDVV SHDNV &) &)A f§ r S &A)A DQG *), ZLWK WKH PDVV VSHFWUXP RI 3HDN 1R LQGLFDWHV WKDW WKH FRPSRXQG LV L&A)A, UDWKHU WKDQ Q&A)A, 3HDN 1R &A)A, 7KH PROHFXODU LRQ FRUUHVSRQGV WR WKH HPSLULFDO IRUPXOD &A)A, 5HODWLYH DEXQGDQFHV RI &)A DQG &)A HVWDEOLVK WKH FRPSRXQG DV O&)I> UDWKHU WKDQ &B)7> RU &), 3 3 S 3 S 3 7KH VWUXFWXUH RI WKLV FRPSRXQG LV ,&) &)&)Af 3HDN 1R 7KH PROHFXODU LRQ LQGLFDWHV WKH HPSLULFDO IRUPXOD LV &A)A, 0DVV SHDNV &A)A DQG &)SOr VKRZ WKDW WKH FRPSRXQG LV Q9, 3HDN 1R V&)A, &RPSDULVRQ RI PDVV SHDNV &)A &A)A Ef§f§ E S DQG &), ZLWK WKH PDVV VSHFWUXP RI 3HDN 1R FOHDUO\ VKRZV WKLV FRPSRXQG LV V&A)A, UDWKHU WKDQ Qn&), RU WB*), %\ FRPSDULVRQ RI 3HDNV1RV DQG DQG 3HDNV 1RV DQG RQH FDQ HDVLO\ HVWDEOLVK WKH IROORZLQJ JHQHUDO UXOHV IRU WKHVH SHUIOXRURDON\O LRGLGHV Of 7KH LQWHQVLW\ RI WKH LRQ IRUPHG E\ ORVV RI RQH LRGLQH DWRP LV JUHDWHU LQ WKH QLRGLGHV WKDQ LQ WKH VLRGLGHV f 7KH LQWHQVLW\ RI &), LRQV LV JUHDWHU LQ WKH QLRGLGHV WKDQ LQ

PAGE 126

9 WKH VLRGLGHV f 7KH LQWHQVLW\ RI WKH LRQ IRUPHG E\ ORVV RI RQH LRGLQH DWRP SOXV WZR IOXRULQH DWRP LV OHVV LQ WKH QLRGLGHV WKDQ LQ WKH VLRGLGHV )URP WKH DERYH REVHUYDWLRQV ZH FRQFOXGH WKDW WKH VLRGLGHV DUH OLNHO\ WR EUHDN VRPH RWKHU ERQGVf LQ DGGLWLRQ WR WKH RQH *f§, ERQG ZKHQ VXEMHFWHG WR WKH HOHFWURQ LPSDFW SURFHVV ,Q RWKHU ZRUGV WKHVH PROHFXOHV GR QRW EUHDN D VLQJOH &f§, ERQG DORQH 3HDN 1R &)A, 7KH PROHFXODU LRQ LGHQWLILHV WKH FRPSRXQG DV &)A,A 6XSSRUWLQJ HYLGHQFH LV JLYHQ E\ PDVV SHDNV &)A, DQG A n 3HDNV 1R DQG 0DVV SHDN A FRUUHVSRQGV WR WKH HPSLULFDO IRUPXOD &A)A,A &RPSDULVRQ RI PDVV SHDNV &)A DQO &), HVWDEOLVKHV WKDW 3HDN 1R LV WKH FRPSRXQG &),&), DQG 3HDN 1R LV WKH FRPSRXQG &)A*),A ,Q WKH +, VFDYHQJHG V\VWHP WKUHH QHZ SHDNV ZHUH REVHUYHG 7KH\ DUH WKH FRPSRXQGV &)A+ &)A+ DQG *)A,+ ,GHQWLILFDWLRQ RI &)A+ DQG &A)A+ ZDV XQDPELJXRXV EDVHG RQ FRPSDULVRQ RI PDVV VSHFWUD ZLWK SXEOLVKHG UHVXOWV f ,GHQWLILFDWLRQ RI &),+ ZDV DOVR VWUDLJKWIRUZDUG EDVHG RQ PDVV VSHFWUDO SHDNV DW PH &)+ bf bf &), bf DQG &)Q,+ bf

PAGE 127

7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG 5HODWLYH ,QWHQVLWLHV P H $VVLJQHG ,RQV 1R 12 *)& &) &) &)A *) %DFNJURXQG KDV EHHQ VXEVWUDFWHG RXW RI WKH PDVV VSHFWUD E $PHULFDQ 3HWUROHXP ,QVWLWXWH 3URMHFW &DWDORJ RI 0DVV 6SHFWUD 'DWD 6HULDO 1R f & ,ELG 6HULDO 1R

PAGE 128

7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG } 5HODWLYH ,QWHQVLWLHV PH $VVLJQHG ,RQV 1R &E 1R *) & &) FI &) &) &) *) &) g" %DFNJURXQG KDV EHHQ VXEVWUDFWHG RXW RI WKH PDVV VSHFWUD $PHULFDQ 3HWUROHXP ,QVWLWXWH 3URMHFW &DWDORJ RI 0DVV $SHFWUD 'DWD 6HULDO 1R & ,ELG 6HULDO 1R

PAGE 129

7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG PH $VVLJQHG F/ 5HODWLYH ,QWHQVLWLHV ,RQV 1R FE 1R Q*)& & ) & &) . FI RI *) &) &) &) &) *) *) &) *) *) &) %DFNJURXQG KDV EHHQ VXEVWUDFWHG RXW RI WKH PDVV VSHFWUD $PHULFDQ 3HWUROHXP ,QVWLWXWH 3URMHFW &DWDORJ RI 0DVV 6SHFWUD 'DWD 6HULDO 1R & ,ELG 6HULDO 1R

PAGE 130

7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG PH $VVLJQHG ,RQV FO 5HODWLYH ,QWHQVLWLHV 1R &),E 1R & ) &) &) FI &) *) &), FIL &), Z &)F, %DFNJURXQG KDV EHHQ VXEVWUDFWHG RXW RI WKH PDVV VSHFWUD $PHULFDQ 3HWUROHXP ,QVWLWXWH 3URMHFW &DWDORJ RI 0DVV 6SHFWUD 'DWD 6HULDG 1R

PAGE 131

PH 7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV } DQG 5HODWLYH ,QWHQVLWLHV VVLJQHG ,RQV 1R 1R 12 FI FI &f) &) A &) &) &) *) *) *) r &O g &), FI *), *) *), *),

PAGE 132

7DEOH FRQWLQXHGf PH $VVLJQHG ,RQV 5HODWLYH ,QWHQVLWLHV 1R 1R 1R Z &), FIL FI] &), D 6FDQQHG EH\RQG PH

PAGE 133

PH 7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV DQG r 5HODWLYH ,QWHQVLWLHV $VVLJQHG ,RQV 1R f§ 2 t 1R FI FI &A) &) &)A I FI &) &) &) &) &) r) &), &) FIL &) &), &) &),

PAGE 134

7DEOH FRQWLQXHGf F/ 5HODWLYH ,QWHQVLWLHV PH $VVLJQHG ,RQV 1R 1R 1R &9 Z Z : &), &), &), r 6FDQQHG EH\RQG PH

PAGE 135

7DEOH 0DVV 6SHFWUD RI 3HQWDIOXRURHWK\O ,RGLGH 5DGLRO\VLV 3URGXFW 1RV O DQG P H $VVLJQHG ,RQV 5HODWLYH 1R ,QWHQVLWLHV 1R 1R FI FI &) &) FI &O &), FIL r), FIL *), ; &, FIL &), OO &), &), D 6FDQQHG EH\RQG PH

PAGE 136

$33(1',; ,,, 5(/$7,9( )/$0( ,21,=$7,21 '(7(&725 5(63216( 2) 5$',2/<6,6 352'8&76 7KH UHODWLYH IODPH LRQL]DWLRQ GHWHFWRU UHVSRQVH IDFWRU IRU UDGLRO\VLV SURGXFWV ZDV PHDVXUHG XQGHU WKH VDPH FRQGLWLRQV DV GHVFULEHG LQ WKH $QDO\WLFDO (TXLSPHQW DQG 3URGXFW $QDO\VLV VHFWLRQ RI WKLV GLVVHUWDWLRQ 7KH JDV VWDQGDUGV ZHUH XVHG DV UHFHLYHG 7KH OLTXLG VWDQGDUGV ZHUH GHJDVVHG E\ WKH IUHH]HSXPSWKDZ PHWKRG DQG WUDQVIHUUHG WR D JDV FKURPDWRJUDSKLF VDPSOH ORRS YLD D VWDQGDUG YHVVHO RI NQRZQ YROXPH 5HVXOWV DUH OLVWHG LQ 7DEOH %\ FRPSDULVRQ ZLWK K\GURJHQ VXEVWLWXWHG SHUIOXRURFDUERQV WKH UHODWLYH IODPH LRQL]DWLRQ GHWHFWRU UHVSRQVH RI &)A,+ VKRXOG EH QR OHVV WKDQ WKDW RI &)A, ,W LV DVVXPHG WR EH HTXDO WR WKDW RI &A)J 6LPLODU FRPSDULVRQ JLYHV WKH UHODWLYH IODPH LRQL]DWLRQ GHWHFWRU UHVSRQVH RI O&A)A, WR EH HTXDO WR WKDW RI &J)J DOVR

PAGE 137

7DEOH 5HODWLYH )ODPH ,RQL]DWLRQ 'HWHFWRU 5HVSRQVH RQ 0LFUR7HN 5HVHDUFK *DV &KURPDWRJUDSK &) &) &) &) &) Q&) n9LR 9V &), &), &), Q&)", Q&), FILFIL &)+ F)+ *), A &),+ F &-F D 5HI A (VWLPDWHG YDOXH KDOI WKH YDOXH RI &)A,&)AOf (VWLPDWHG YDOXH UHIHU WR WH[W IRU GHWDLO

PAGE 138

5()(5(1&(6 0DULH 'RQRYDQ DQG 5 +DQUDKDQ 7KH 5DGLDWLRQ &KHPLVWU\ RI 0HWK\O ,RGLGH LQ WKH *DV 3KDVH ,QW 5DGLDW 3K\V &KHP f 5 1 6FKLQGOHU DQG 0 + :LMQHQ 7KH *DV 3KDVH 5DGLRO\VLV RI (WK\O ,RGLGH = 3K\VLN &KHP 1HXH )ORJH AB f Df 5 ) 3RWWLH DQG : + +DPLOO 3HUVLVWHQW ,RQPROHFXOH &ROOLVLRQ &RPSOH[HV RI $ON\O +DOLGHV 3K\V &KHP  f Ef 5 ) 3RWWLH 5 %DUNHU DQG: + +DPLOO ,RQPROHFXOH UHDFWLRQV RI 0HWK\O DQG (WK\O ,RGLGHV 5DGLDW 5HVHDUFK f / : 6LHFN DQG 5 *RUGHQ -U )RUPDWLRQ RI $VVRFLDWLRQ ,RQV LQ WKH 3KRWRLRQL]DWLRQ RI $ON\O +DOLGHV ,QW &KHP .LQHWLFV f / %HDXFKDPS +ROW] 6 :RRGJDWH DQG 6 / 3DWW 7KHUPRFKHPLFDO 3URSHUWLHV DQG ,RQ0ROHFXOH 5HDFWLRQV RI WKH $ON\O +DOLGHV LQ WKH *DV 3KDVH E\ ,RQ &\FORWURQ 5HVRQDQFH 6SHFWURVFRS\ $P &KHP 6RF f 9 9 .DVSHU DQG & 3LPHQWDO $WRPLF ,RGLQH 3KRWRn GLVVRFLDWLRQ /DVHU $SSO 3K\V /HWWHUV f $ 6NRURERJDWRY DQG 9 0 6PLUQRY &KHPLFDO 5HDFWLRQV 2FFXULQJ LQ .DVSHU3LPHQWDO 3HUIOXRURDON\O ,RGLGH /DVHU =KXPDO 2EVKFKHL .KLPLL f} DYDLODEOH LQ (QJOLVK 7UDQVODWLRQ IURP &RQVXOWDQWV %XUHDX ,QF 5 6ULQLUDVQ DQG 5 /DQNDUG 7KH 5ROH RI &)\ 5DGLFDOV LQ WKH 3KRWRFKHPLFDO ,RGLQH /DVHU 3K\V &KHP f 5 'DFH\ 7KH 3KRWRO\VLV RI 7ULIOXRURPHWK\O ,RGLGH 'LVFXVV )DUDGD\ 6RF fr Df 0F$OSLQH DQG + 6XWFOLIIH 7KH 5DGLRO\VLV RI 7ULIOXRUR LRGRPHWKDQH LQ WKH *DV 3KDVH 3K\V &KHP } f Ef 0F$OSLQH DQG + 6XWFOLIIH 7KH 5DGLRO\VLV RI *DVHRXV 7ULIOXRURLRGRPHWKDQH LQ WKH 3UHVHQFH RI 1LWULF 2[LGH 3K\V &KHP f Ff + 6XWFOLIIH DQG 0F$OSLQH 7KH 5DGLDWLRQ &KHPLVWU\ RI 3RO\IOXRULQDWHG 2UJDQLF &RPSRXQGV )OXRULQH &KHP 5HY f

PAGE 139

9 3 6KDK 5 6WUDQNV DQG 5 &RRSHU 7KH 5DGLRO\VLV RI *DVHRXV 7ULIOXRURPHWK\O ,RGLGH $XVW &KHP  ff 5 +DQUDKDQ $ &R *DPPD ,UUDGLDWRU IRU &KHPLFDO 5HVHDUFK ,QWHUQ $SSO 5DGLDWLRQ ,VRWRSHV A f 0 & 6DXHU -U DQG / 0 'RUIPDQ 7KH 5DGLRO\VLV RI (WK\OHQH 'HWDLOV RI WKH )RUPDWLRQ RI 'HFRPSRVLWLRQ 3URGXFWV 3K\V &KHP f * 0HLVHOV *DV3KDVH 'RVLPHWU\ E\ 8VH RI ,RQL]DWLRQ 0HDVXUHPHQWV &KHP 3K\V @/ f : + %UDJJ 6WXGLHV LQ 5DGLRDFWLYLW\ 0DFPLOODQ DQG &R /RQGRQ S +LQH DQG / %URZQHOO 5DGLDWLRQ 'RVLPHWU\ $FDGHPLF 3UHVV 1HZ
PAGE 140

7KLV PRGLILFDWLRQ ZDV GLYLVHG E\ WKH $5/ JURXS VXEVHTXHQW WR 7KHLU SDSHU RQ WKH DSSDUDWXV 5HIHUHQFH f 0 6 +HQLV ,RQ &\FORWURQ 5HVRQDQFH 6SHFWURPHWU\ LQ ,RQ0ROHFXOH 5HDFWLRQV (G / )UDQNOLQ 3OHQXP 3UHVV 1HZ
PAGE 141

+HLFNOHQ *DV 3KDVH 2[LGDWLRQ RI 3HUKDORFDUERQV LQ $GYDQ 3KRWRFKHP f / )UDQNOLQ 'LOODUG + 0 5RVHQVWRFN 7 +HUURQ 'UD[O DQG ) + )LHOG ,RQL]DWLRQ 3RWHQWLDO $SSHDUDQFH 3RWHQWLDO DQG +HDW RI )RUPDWLRQ RI *DVHRXV 3RVLWLYH ,RQV ‘! 1DW 6WG 5HI 'DWD 6HU 1DW %XU 6WG 1R f +RKOD DQG / .RPSD (QHUJ\ 7UDQVIHU LQ D 3KRWRFKHPLFDO ,RGLQH /DVHU &KHP 3K\V /HWWHU f + $ *LOOLV 5 5 :LOOLDPV -U DQG : + +DPLOO ,RQLF DQG )UHH 5DGLFDO 3URFHVVHV LQ WKH 5DGLRO\VLV RI /LTXLG 0HWK\O DQG (WK\O ,RGLGHV $P &KHP 6RF f 5 & 3HWU\ DQG 5 + 6FKXOHU 7KH 5DGLRO\VLV RI /LTXLG 0HWK\O ,RGLGH $P &KHP 6RF  f ' 'DYLV ) 6FKPLGW 0 1HHOH\ DQG 5 +DQUDKDQ (IIHFW RI :DYHOHQJWK LQ WKH *DV3KDVH 3KRWRO\VLV RI &DUERQ 7HWUDFKORULGH DW DQG QP 3K\V &KHP f 5 &RRSHU DQG 5 0RRULQJ ,RQL]DWLRQ &XUUHQW 0HDVXUHPHQWV DQG WKH (QHUJ\ 5HTXLUHG WR )RUP DQ ,RQ 3DLU LQ *DPPDUD\ ,UUDGLDWHG *DVHV $XVW &KHP f * 0HLVHOV : + +DPLOO DQG 5 5 :LOOLDPV -U 7KH 5DGLDWLRQ &KHPLVWU\ RI 0HWKDQH 3K\V &KHP O f / 0 7KHDUG (IIHFWV Re $GGLWLYHV RQ WKH 5DGLRO\VLV RI &\FORKH[DQH 9DSRU DW 3K\V &KHP f 3 $XVORRV DQG 6 /LDV +c DV D )UHH5DGLFDO ,QWHUFHSWRU LQ WKH *DV3KDVH 5DGLRO\VLV DQG 3KRWRO\VLV RI 3URSDQH &KHP 3K\V f : & $VNHZ 7 0 5HHG ,,, DQG & 0DLOHQ 3HUIOXRURDONDQHV LQ ,RQL]LQJ 5DGLDWLRQ 5DGLD 5HVHDUFK f f 5 &RRSHU DQG + 5 +D\VRP )UHH 5DGLFDO
PAGE 142

+HLFNOHQ DQG 9 .QLJKW 'LIOXRURDFHW\OHQH 3K\V &KHP f r $ %ODNH DQG %XPV .LQHWLFV RI ,RGLQH $WRP 5HFRPELQDWLRQ %HWZHHQ DQG r &KHP 3K\V M! f . ,S DQG %XUQV 5HFRPELQDWLRQ RI ,RGLQH $WRPV E\ )ODVK 3KRWRO\VLV 2YHU D :LGH 7HPSHUDWXUH 5DQJH ,, &KHP 3K\V  f r ( :LOVRQ DQG $ $UPVWURQJ 7KH 5DGLDWLRQ &KHPLVWU\ RI +\GURJHQ +DOLGHV 5HGLDWLRQ 5HV 5HY f 5 3HQ]KRUQ DQG % GH% 'DUZHQW 7KH 5DGLDWLRQ &KHPLVWU\ RI $WRP ZLWK +\GURJHQ ,RGLGH 3K\V &KHP f 5 ( )R[ : 0 +LFNDP *URYH DQG 7 .MHOGDDV -U ,RQL]DWLRQ LQ D 0DVV 6SHFWURPHWHU E\ 0RQRHQHUJHWLF (OHFWURQV 5HY 6FL ,QVWUXP ff Df & ( 0HOWRQ ,RQL]DWLRQ 3URFHVVHV E\ 0RQRHQHUJHWLF (OHFWURQV 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI 1RWUH 'DPH f Ef & ( 0HOWRQ DQG : + +DPLOO $SSHDUDQFH 3RWHQWLDOV RI 3RVLWLYH DQG 1HJDWLYH ,RQV E\ 0DVV 6SHFWURPHWU\ &KHP 3K\V f Df $ 5 5DYLVKDQNDUD 7KH 3KRWRO\VLV 5DGLRO\VLV DQG 0DVV 6SHFWURPHWU\ RI 7HWUDIOXRURF\FOREXWDQH 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD ff Ef $ 5 5DYLVKDQNDUD DQG 5 +DQUDKDQ $Q (OHFWURQ ,PSDFW ,QYHVWLJDWLRQ RI 7HWUDIOXRURF\FOREXWDQH 3K\V &KHP f 7 $ :DOWHU & /LIVKLW] : $ &KXSND DQG %HUNRZLW] 0DVV6SHFWURPHWULF 6WXG\ RI WKH 3KRWRLRQL]DWLRQ RI &a) DQG &)9 &KHP 3K\V  f : 0 %U\DQW )UHH (QHUJLHV RI )RUPDWLRQ RI )OXRURFDUERQV DQG 7KHLU 5DGLFDOV 7KHUPRG\QDPLFV RI )RUPDWLRQ DQG 'HSRO\PHULn ]DWLRQ RI 3RO\WHWUDIOXRURHWK\OHQH 3RO\ 6FL  f + & 'XXV 7KHUPRFKHPLFDO 6WXGLHV RQ )OXRURFDUERQV +HDW RI )RUPDWLRQ RI &) &) &M)J &S)A 'LPPHU DQG &) 3RO\PHU ,QG (QJ &KHP f & /LIVKLW] DQG ) $ /RQJ $SSHDUDQFH 3RWHQWLDOV DQG 0DVV 6SHFWUD RI &R) &R )H &O DQG F&R) 3K\V &KHP f ' :DJPDQ : + (YDQV 9 % 3DUNHU +DORZ 6 0 %DLOH\ DQG 5 + 6FKXPP 1%6 7HFK 1RWH 1DW %XU 6WG f

PAGE 143

-$1$) 5 6WXOO (G ,QWHULP 7DEOHV RI 7KHUPRFKHPLFDO 'DWD 'RZ &KHPLFDO 0LGODQG 0LFKn f ( :X 0 3LFNDUG DQG $ 6 5RGJHU 7KHUPRFKHPLVWU\ RI WKH *DV 3KDVH 5HDFWLRQ &) &) &),&), +HDW RI )RUPDWLRQ RI 'LLRGRSHUIOXRURHWKDQH DQG RI ,RGRSHUIOXRURHWKDQH n 3K\V &KHP e f $ /LIVKLW] + ) &DUUROO DQG 6 + %DXHU 6WXGLHV ZLWK D 6LQJOH3XOVH 6KRFN 7XEH ,, 7KH 7KHUPDO 'HFRPSRVLWLRQ RI 3HUIOXRURF\FOREXWDQH &KHP 3K\V W OO f 3 )LVKHU % +RPHU DQG ) 3 /RVVLQJ )UHH 5DGLFDOV E\ 0DVV 6SHFWURPHWU\ ;;;,,, ,RQL]DWLRQ 3RWHQWLDOV RI &) &)&) &)&+ Q&Q)\ DQG &) 5DGLFDOV $P &KHP 6RF f r 7 6X / .HYDQ DQG 7 7LHUQDQ 1HJDWLYH ,RQ0ROHFXOH 5HDFWLRQV LQ 3HUIOXRURSURSDQH 3K\V &KHP  f ) =PERY 0 8\ DQG / 0DUJUDYH 0DVV 6SHFWURPHWULF 6WXG\ RI WKH +LJK7HPSHUDWXUH (TXLOLEULXP &) &) DQG WKH +HDW RI )RUPDWLRQ RI WKH &) 5DGLFDO $P &KHP 6RF f % GH% 'DUZHQW %RQG 'LVVRFLDWLRQ (QHUJLHV LQ 6LPSOH 0ROHFXOHV 1DW 6WG 5HI 'DWD 6HU 1DW %XU 6WG 1R f 6 : %HQVRQ %RQG (QHUJLHV &KHP (G f Df ( 1 2NDIR DQG ( :KLWWOH 7KH .LQHWLFV RI WKH 7KHUPDO %URPLQDWLRQ RI &)R, 'HWHUPLQDWLRQ RI WKH %RQG 'LVVRFLDWLRQ (QHUJ\ '&)Rf§Lf ,QW &KHP .LQHWLFV f Ef ( 1 2NDIR DQG ( :KLWWOH &RPSHWLWLYH 6WXG\ RI WKH 5HDFWLRQV %U 5SO ,%U 5A DQG 'HWHUPLQDWLRQ RI %RQG 'LVVRFLDWLRQ (QHUJLHV '5JOf :KHUH 5I &)W &A)F Q&R)\ L&A)A DQG Q&A)A ,QW &KHP .LQHWLFV f $PHULFDQ 3HWUROHXP ,QVWLWLWH 3URMHFW &DWDORJ RI 0DVV 6SHFWUD 'DWD 6HULDO 1R 6 : 3ULFH DQG .XWVFKNH 7KH 5HDFWLRQV RI 3HUAOXRUR HWK\O 5DGLFDOV ZLWK +\GURJHQ DQG 0HWKDQH &DQ &KHP Lf

PAGE 144

%,2*5$3+,&$/ 6.(7&+ 7DFKHQJ +VLHK ZDV ERUQ LQ 6KHQ\DQJ &KLQD RQ )HEUXDU\ +H PRYHG ZLWK KLV IDPLO\ WR 7DLZDQ SURYLQFH LQ ,Q -XQH } KH UHFHLYHG WKH %DFKHORU RI (QJLQHHULQJ GHJUHH LQ &KHPLFDO (QJLQHHULQJ IURP &KXQJ
PAGE 145

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV 0 5HHG ,,, 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWn PHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI $UWV DQG 6FLHQFHV DQG WR WKH *UDGXn DWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUFK 'HDQ *UDGXDWH 6FKRRO

PAGE 146

81,9(56,7< 2) )/25,'$