Citation
Stereochemical and reactivity studies of the 2 +2, 2 +4, and 1,3-dipolar cycloadditions of partially flourinated allenes

Material Information

Title:
Stereochemical and reactivity studies of the 2 +2, 2 +4, and 1,3-dipolar cycloadditions of partially flourinated allenes
Creator:
Wicks, Gene Ellis
Publication Date:
Language:
English
Physical Description:
vi, 181 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Adducts ( jstor )
Alkenes ( jstor )
Carbon ( jstor )
Cycloaddition ( jstor )
Fluorine ( jstor )
Kinetics ( jstor )
Orbitals ( jstor )
Reactivity ( jstor )
Solvents ( jstor )
Styrenes ( jstor )
Allene -- Reactivity ( lcsh )
Ring formation (Chemistry) ( lcsh )
Stereochemistry ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1985.
Bibliography:
Includes bibliographical references (leaves 176-180).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Gene Ellis Wicks.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000867106 ( ALEPH )
AEG3952 ( NOTIS )
14353002 ( OCLC )

Downloads

This item has the following downloads:


Full Text












STEREOCHEMICAL AND REACTIVITY STUDIES
OF THE [2+2], [2+4], AND 1,3-DIPOLAR CYCLOADDITIONS
OF PARTIALLY FLUORINATED ALLENES
















By

GENE ELLIS WICKS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1985


mmm















TO MOM AND DAD















ACKNOWLEDGEMENTS

It is with much gratitude that I acknowledge the guidance of Professor

William R. Dolbier, Jr., with the chemical adventures recorded herein. He

is both a scholar and a gentleman, and he has been an excellent mentor

and friend throughout my graduate studies.

The invaluable assistance of Jim Rocca from Professor Wallace Brey's

high-resolution NMR lab is also gratefully acknowledged. In addition, Dr.

Simon Sellers from SCM Specialty Chemicals aided in running a few of the

19F NMR spectra in Chapter 3. Professor Gus Palenik and Dr. Marian

Gawron obtained the X-ray crystal structure described in Appendix B, and

several people from the UF Quantum Theory Project provided aid in doing

the IN DO calculations for fluoroallene described in Chapter 4. It is also a

pleasure to thank Seth Elsheimer and Randy Winchester for their helpful

discussions and comradery throughout my graduate studies.

Finally, the support and encouragement of several friends and relatives

during the course of this work has been much appreciated. My parents and

the family of W. Randy Van Ness deserve special mention in this regard.
















TABLE OF CONTENTS


ACKNOWLEDGEMENTS----------------------------------------

ABSTRACT ------------------------------------------- --

CHAPTER


Page

iii

v


1 INTRODUCTION AND BACKGROUND INFORMATION --------- 1

2 [2+2] CYCLOADDITIONS OF 1,1-DIFLUOROALLENE --------- 14

3 STEREOCHEMISTRY OF THE 1,3-DIPOLAR CYCLO-
ADDITIONS OF FLUOROALLENE ------------------------- 37

4 STEREOCHEMISTRY OF THE [2+4] CYCLOADDITIONS
OF FLUOROALLENE ------------------------------------ 63

5 CONCLUSION ------------------------------------------- 74

6 EXPERIMENTAL SECTION ---------------------------------- 76

APPENDICES

A SELECTED SPECTRA -------------------------------------- 103

B X-RAY DIFFRACTION STUDY ------------------------------ 165

C SELECTED RESULTS FROM 'INDO" CALCULATIONS
FOR FLUOROALLENE AND 1,1-DIFLUOROALLENE -------- 169

D ACRONYMS USED IN THIS DISSERTATION ------------------ 174

REFERENCES ---------------------------------------------------- 176

BIOGRAPHICAL SKETCH ---------------------------------------- 181















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of
the Requirements for the Degree of Doctor of Philosophy


STEREOCHEMICAL AND REACTIVITY STUDIES
OF THE [2+2], [2+4], AND 1,3-DIPOLAR CYCLOADDITIONS
OF PARTIALLY FLUORINATED ALLENES

By

Gene Ellis Wicks

December 1985


Chairman: William R. Dolbier, Jr.
Major Department: Chemistry

Cycloadditions involving fluoroallenes are extremely useful mechanistic

probes. Due to the high reactivity of these allenes and the small size of

their fluorine substituents, cycloadditions of fluoroallenes are free from

many of the ambiguities surrounding analogous studies by previous workers.

Styrene and 1,1-difluoroallene, DFA, undergo clean reactions between

600 and 100C to give good yields (060%) of two cycloadducts: 2,2-difluoro-

3-phenyl-l-methylenecyclobutane (major) and 3-phenyl-l-(difluoromethylene)

cyclobutane (minor). Similar experiments comparing the reactions of p-nitro

and p-methoxystyrene with the above results give relative reactivities of 2.1

and 1.3, respectively. The [2+2] cycloaddition of DFA with Z-0-deuterio-

styrene gives the expected products in an 82:18 ratio with stereochemical

ratios of 58:42 and 79:21, respectively, at 800C. A mechanism involving

two kinetically distinguishable diradicals is proposed to rationalize the

results. The reaction of DFA with 1-cyanovinyl acetate, a "capto-dative"









reagent, is also studied and found to give results similar to the styrene

reactions.

N-Methyl, N-phenyl, and N-(2-naphthyl)-C-pheny!nitrones undergo regio-

specific C2-C3 dipolar cycloadditions with monofluoroallene, MFA, in nearly

quantitative yields at 250C. The average stereochemical ratio for the two

4-substituted isoxazolidines produced is 84:16 296 with the product from

syn addition of MFA in excess. The stereochemical assignments of the

products are made with the aid of difference nuclear Overhauser effect

(NOE) experiments and an X-ray crystal structure. Extensive solvent and

kinetic studies show that these are well-behaved second-order kinetic

processes consistent with previously well-studied 1,3-dipolar cycloadditions.

The reaction of MFA with diazomethane-d2 strongly favors the product

from syn addition (88:12 ratio), also. Consideration of transition-state

dipole-dipole interactions and solvation phenomena show that the factors

affecting the stereochemical outcome of all these 1,3-dipolar cycloadditions

are extremely subtle.

Finally, MFA undergoes Diels-Alder reactions with cyclopentadiene,

butadiene, and furan to give a modest preference for the syn adduct (51:49,

59:41, and 63:37, respectively). The results are discussed in terms of a

theoretical study done for MFA using INDO calculations.














CHAPTER 1
INTRODUCTION AND BACKGROUND INFORMATION

Introduction
Partially fluorinated allenes, like fluoroallene (MFA) and 1,1-difluoro-

allene (DFA), have several features that make their use ideal in the study
of cycloaddition reaction mechanisms. For instance, the presence of one or

two fluorines in an allene molecule dramatically increases its reactivity


F F

\ _C ___ .,.H \ ___ 11 i.H
"4H ,iIH


H F

MFA DFA



as compared to the hydrocarbon analog.1 In addition, the small size and
high electronegativity of the fluorine substituents allow a reaction

mechanism to be strongly influenced by the fluorines' electronic effects
while being virtually free from their steric interference. Furthermore, the

cycloaddition products obtained in these reactions have reasonable thermo-

dynamic stability, and they are not generally susceptible to mechanistically

complicating rearrangements under the reaction conditions. These and other
qualities of partially fluorinated allenes allow unique insights to be obtained
from the unambiguous study of cycloadditions which have been under both
scrutiny and dispute for two decades.









First, this dissertation contains a mechanistic investigation of the [2+2]

cycloadditions of 1,1-difluoroallene with olefins. Relative reactivity studies

and a detailed stereochemical study are presented and discussed. Second,

the stereochemistry of addition for fluoroallene in 1,3-dipolar and [2+4]

cycloadditions is examined. Extensive solvent and kinetic studies are pre-

sented for the 1,3-dipolar cycloadditions as well as a theoretical study

encompassing both the [2 +4] and 1,3-dipolar cycloaddition results. An

overview of pertinent background information for the study of these topics

will be given along with a brief review of the salient features of fluorine

as a substituent in organic molecules.

Fluorine as a Substituent
General Considerations

The characteristics of fluorine as a substituent on carbon have most

recently been discussed in Smart's excellent reviews.2,3 The properties of

fluorine are largely derived from its small size, its high electronegativity,

and its nonbonded electron pairs. The atomic orbitals of fluorine are of a

proper size for excellent orbital overlap with carbon since both elements

are in the same period. This allows fluorine to participate in potent a-with-

drawal from carbon and sometimes in Tr-donation. Fluorine's high electro-

negativity combined with its effective orbital overlap result in a C-F bond

which is quite strong, polar, and relatively short (1.36 A for a C-F bond;

1.77 A for a C-C1 bond).4 In addition, a C-F bond is also rich in p-char-

acter as reflected by the changes in hybridization and molecular geometry

that take place relative to C-H substitution. For example, the HCH bond

angle of CH2F2 is 113.70 and the FCF bond angle is 108.30 as compared to

the idealized bond angles of 109.50 for CH4.5 Finally, when a fluorine is


1








bound to an sp2 carbon, the lone pairs of fluorine backbond into the empty

p-orbital of carbon to the extent that a fluorine will actually stabilize a

carbocation in spite of its strong inductive effect.6






'' C--------- F-





In view of the discourse given so far, it is not surprising that even a

single fluorine can drastically alter the properties of a molecule. A few
examples will be given to illustrate the reactivity, thermodynamic, and

steric considerations helpful to understanding the cycloadditions of fluori-
nated allenes. These considerations will have an important bearing on the

discussion of experimental results throughout the dissertation.
Reactivity Considerations

The cycloadditions of cyclopentadiene and acrylonitrile with allene,7,8
fluoroallene,9 and 1,1-difluoroallene9 have been well studied. The [2+2]
cycloadditions of the allenes with acrylonitrile have been observed to give

one or two products in moderate yields as shown in equation (1). In
comparing the reaction conditions in Table 1-1, it is apparent that there is

a significant increase in reactivity by substitution of a single fluorine on
allene. Substitution of two fluorines on allene allows the reaction to

proceed at a temperature 100 C less than allene itself in a comparable
time and yield.







I_
















>

NC y


Table 1-1. [2+2] Cycloadditions with Acrylonitrile


Reaction Product
X Y Conditions Ratio (1:2) % Yield


H H 2100C, 12 h 60%

H F 135C, 21 h 31:69 45%

F F 1100C, 12 h 77:23 64%


The [2+4] cycloadditions of these allenes with cyclopentadiene show a

similar trend for equation (2). Although allene itself requires vigorous con-

ditions to give a modest yield of the [2+4] cycloadduct, Table 1-2 shows

that the fluorinated allenes react to give nearly quantitative yields of

products at 0C.


x



y


+ =\CN













X


Y


Table 1-2. [2+4] Cycloadditions with Cyelopentadiene


X Y Reaction Conditions % Yield

H H 215 C, 6 h, autoclave 49%
H F 0 C, 101 h 90%

F F 0 C, 2 min 99%


Thermodynamic Considerations

The first thermodynamic consideration for the cycloadditions of fluori-
nated allenes is that of product stability. Fluorine forms the strongest
single bonds to carbon of all the elements. The bond dissociation energies

of C-F, C-C1, and C-O bonds are 116, 78, and 86 kcal/mole, respectively.10
Thus, it is not surprising that saturated fluorocarbons have high chemical

stability and are less reactive than alkanes toward nearly all reagents.4
Although partially fluorinated compounds are quite different in this respect,

it is noteworthy that the high reactivity of partially fluorinated allenes, for
example, allows them to undergo cycloadditions under conditions mild

enough to insure the survival of products with reasonable thermodynamic
stability.


-10


~glily







An additional issue to consider here is the thermodynamic stability of
a single fluorine versus a gem-difluoro group. One may have noticed from
the product ratios in equation (1) that the major product is 2 for a single
fluorine but 1 when a gem-difluoro group is involved. This phenomenon has
been well studied. The equilibration of fluoropropenes shows that a single


F\=/


F


A Hrxn
3 4 -3.34 kcal/mole
3 5 -2.68 kcal/mole
4 5 +0.64 kcal/mole

fluorine is thermodynamically favored on an sp2 carbon by about 3
kcal/mole.11 In contrast to this, the Cope rearrangement of 6 to 7 shows
that a gem-difluoro group is thermodynamically favored on an sp3 carbon by


CF 2

K0>


F2

0\)


A Hrxn
-5.1 0.6 kcal/mole


6 7


F -=









5 kcal/mole.11 Thus, in the [2+2] cycloaddition of the fluorinated allenes

with acrylonitrile in equation (1), the more thermodynamically stable

product is favored in each case. This, however, is not what is found for

the [2+4] cycloadditions in equation (2). The conclusion is that the cyclo-

additions in equations (1) and (2) proceed via different mechanisms, a

matter which will be addressed shortly.

Steric Considerations

Excluding hydrogen, fluorine has the smallest Van der Waals radius of

any substituent atom or group. Thus, it is not surprising that the steric

demand of fluorine substituents has been shown to be practically negligible

in the [2+21 and [2+4] cycloadditions of fluorinated allenes.9,12 An

example of this is the reaction of fluoroallene with 1,1-dichloro-2,2-difluoro-

ethylene where 8 and 9 are formed in equal amounts. In contrast to this,

the related results of the cycloadditions of monoalkyl allenes are often

explained in terms of a steric rationale.13,14



F
F

1340C F F
+8h > + +
8h C2 F2 C12 F2 Cl2 F2

CF = CC1
CF2= CC 2 8 9 10


25.3 : 25.4 : 49.3

(45 % Yield)








It is interesting to note that even in the reactions of some perfluori-

nated compounds, which one might expect to be more sensitive to steric

congestion than partially fluorinated allenes, the steric demand of the

fluorines seems minimal. Indeed, the electrocyclic ring opening of trans-

perfluoro-3,4-dimethylcyclobutene, which is governed by strong electronic

factors, proceeds in a remarkable, contrasteric fashion to preferably give 11

instead of 12.15 The activation energy for the ring opening to the Z,Z-

diene 11 is 18 kcal/mole less than for opening to the E,E-diene 12, and at

111.5 OC, kZZ/kEE = 1.9 x 109.


k-zz


kEE

-EE


*CF3

*CF3


CF3
F F


F F
CF3


Mechanism of [2 +2] Versus [2 +4] Cycloadditions
The [2+2] cycloadditions of fluoroallene (MFA) and 1,1-difluoroallene

(DFA) are thought to proceed via a stepwise diradical mechanism while the
[2+4] cycloadditions are thought to be concerted.9,16 In the [2+2] reac-

tions, the central carbon of DFA undergoes bond formation with the






9

unsubstituted carbon of acrylonitrile, for example, to give an allyl- and

cyano-stabilized diradical intermediate 13. The diradical undergoes

competitive ring closures to predominately give the more stable product

with the CF2 endocyclic. This explains the product regiochemistry and the



F 2



-- CF2 NC
2CF2 (major)



CF 2

NCN

13 NC

(minor)



thermodynamic preferences observed for the DFA-acrylonitrile reaction in

Table 1-1. Other experimental results show a rough correlation between

the product ratio and the stability of the diradical intermediate for

reactions of this type. The Hammond postulate can be applied in that the

greater the stability of the diradical intermediate, the later the transition

state to ring closure, and thus, the more the product with greater thermo-

dynamic stability is favored.

Although much is known about the regiochemistry of [2+2] cyclo-

additions with MFA and DFA, no stereochemical study had been done before

the work in this dissertation was initiated. It was expected that the high

reactivity of these allenes and the lack of a fluorine's steric interference in









the ensuing reaction would make such a study unique. This is the rationale

for pursuing the cycloaddition of DFA with Z-B-deuteriostyrene17 discussed

in Chapter 2. The use of styrene as the olefin also allows a Hammett

reactivity study to be performed by the substitution of various electron-

releasing and electron-withdrawing groups in the para-position of the phenyl

ring.

It is interesting to note that the concerted [2+4 ] cycloaddition of

DFA with cyclopentadiene in Table 1-2 is regiospecific to give solely the

product of lesser thermodynamic stability in comparison with the [2+2 ]

reactions. Photoelectron spectra and ab initio 4-31G calculations for DFA

help substantiate the explanation one might intuitively expect.9,18 The

fluorine-substituted C1-C2 ir-bond, which is involved in Tr-donation from the

fluorine lone pairs, is both electron rich and quite unreactive in [ 2 +4 1 cyclo-

additions much like the r-bonds of allene. The C2-C3 IT-bond, however, is

greatly influenced by the a-withdrawing inductive effect of the allylic

fluorines and is very electron deficient. This results in a low C2-C3 r*

orbital energy, the energy of the lowest unoccupied molecular orbital

(LUMO) in the molecule. Thus, [ 2+4 ] cycloadditions of DFA occur exclu-

sively at the C2-C3 Tr-bond in spite of thermodynamic considerations.

The [ 2 +4 ] reactions of MFA display the same character as those of

DFA for presumably similar reasons.9 From this, it would not be surprising

to learn that the 1,3-dipolar cycloadditions of MFA and DFA also occur at

the unsubstituted double bond like the [2+4] cycloadditions.

1,3-Dipolar Cycloadditions

The 1,3-dipolar cycloadditions of DFA with diazoalkanes, nitrones,

nitrile oxides, and carbonyl ylides have been well-studied.19,20 The








1,3-dipoles undergo reaction with DFA exclusively at the C2-C3 w-bond to

give two regioisomers, 14 and 15 for example, for diazoalkanes.


F2 C f


N2A
N=N


+ R2 F
N-N


+
R2C -N =N
14 15



Table 1-3. DFA 1,3-Dipolar Cycloadditions with Diazoalkanes


Reaction Product
R Conditions Ratio (14:15) % Yield


H 0C, 5 min, Et20 100:0 95%

CH3 0C, 5 min, Et20 61:39 99%

Ph 28 C, 5 h, Et20 14:86 95%



Interestingly, Table 1-3 shows that the reaction of DFA with

diazomethane (R=H) is regiospecific with respect to the dipole as well as to

DFA. In contrast, the R=Ph reaction strongly favors product 15, and a

solvent study performed for this reaction demonstrates no significant change

in the 14:86 product ratio for six solvents ranging in polarity from pentane

to dimethylsulfoxide. The rationale for this reversal of product ratios in

Table 1-3 is a competition between frontier molecular orbital and steric

considerations.19 Extended Huckel calculations indicate that secondary

orbital interactions in the low-lying LUMO of DFA reinforce the wave

function at the middle carbon of the allene. Thus, regioisomer 14 is









favored by molecular orbital considerations for substituents of low steric

bulk. When the steric bulk of the R substituents becomes too great,

however, a reversal in product ratio occurs and product 15 is favored by

steric considerations.

In the reaction of fluoroallene (MFA) with 1,3-dipoles, both product

regiochemistry and stereochemistry are important. Indeed, a 1,3-dipole can

add either syn or anti to the fluorine in MFA. The reaction of MFA with




C syn


/ H
H
anti


N,C-diphenylnitrone has been studied by Burkholder.1 It is interesting to

note that the reaction is regiospecific with respect to both the allene and

1,3-dipole like the previously discussed cycloaddition of DFA with



F
F H H F


+ 250C P
CDC1 N-O N-O
Ph 0- CDCl3 / /
P/ Ph
N+

H Ph 16 17

86 : 14

(99 % Yield)









diazomethane. Also, the major product, tentatively although not

unambiguously assigned 16, appears to be that from syn addition of the

allene. This is in marked contrast to the 1,3-dipolar cycloadditions of

methoxy and phenoxyallene wherein the product from anti addition is

favored due to steric considerations.21,22

It was therefore expected that a systematic study of the 1,3-dipolar

cycloadditions of fluoroallene would be very interesting. First, unambiguous

stereochemical assignments had to be made for the products of the nitrone

reaction, preferably by obtaining an X-ray crystal structure for the major

isomer. Then the reactions could be studied kinetically and in different

solvents to see how electrostatic dipole-dipole interactions, the basicitv of

the fluorine, and molecular orbital calculations would affect or give insight

into the stereochemical preference for cycloaddition. The results for these

studies appear in Chapters 3 and 4 of this dissertation along with the

related results of the [2 +4] cycloadditions of fluoroallene.















CHAPTER 2
[2+2] CYCLOADDITIONS OF 1,1-DIFLUOROALLENE

Introduction

The mechanism of allene [2+2] cycloadditions has received consider-

able attention over the years23 with early excitement being generated by

the Moore et al. 1,2-cyclononadiene dimerization studies24 and Hoffmann's

related conjecture that allenes could act as antarafacial cycloaddends in

concerted cycloadditions.25 Early stereochemical studies,26-28 while lending

credibility to the concerted mechanism, did not provide unambiguous

evidence for it. Meanwhile, kinetic studies provided strong evidence for the

involvement of diradicals in such reactions.7,29 In spite of an interesting

theoretical exercise which reasserted the issue of concertedness,30 recent

studies,13,31 including two detailed stereochemical studies on the reactions

of fumarate and maleate esters with 1,1-dicyclopropylallene32 and 1,1-

dimethylallene,14 have been uniformly consistent with the involvement of

nonconcerted mechanisms.

As discussed in the previous chapter, the [2+2] cycloadditions of

1,1-difluoroallene (DFA) are also consistent with the involvement of a

nonconcerted diradical mechanism. The high reactivity of DFA and lack of

potentially complicating steric effects make the cycloadditions of

1,1-difluoroallene uniquely different from all previous mechanistic studies of

allene [2+2] cycloadditions. Thus, the reactions of DFA with variously

substituted styrenes were undertaken to obtain relative reactivity factors as

well as unambiguous stereochemical information about these extremely






15


informative [2+2] reactions. In addition, the reaction of DFA with 1-cyano-

vinyl acetate, a "capto-dative" reagent, was studied.

Results

Para-Substituted Styrene Studies

When the cycloadditions of 1,1-difluoroallene with para-substituted

styrenes were carried out neat under vacuum in sealed Pyrex tubes using a

tenfold excess of the styrene, only two adducts, 18 and 19, were obtained

in the product ratios and yields shown in Table 2-1. Either hydroquinone or

4-tert-butylcatechol were added to inhibit the free radical polymerization of




2 FCF2

--+ >
a, X = H'
b, X = OCH3
Sc, X = NO2
X X X


18a-c 19a-c



the styrene. The styrene and para-methoxystyrene reactions were very

clean, but there was partial polymerization of the para-nitrostyrene under

the reaction conditions. Nevertheless, extensive study of the crude reaction

mixtures by thin-layer chromatography, gas chromatography, and 19F NMR

at 282 MHz demonstrated that there were no other adducts than 18 and 19

except for the oligimers of DFA. Indeed, the lack of higher yields was

undoubtedly due to the competitive oligimerization of the highly self-

reactive DFA.









Table 2-1. Reactions of DFA with Para-Substituted Styrenes.
Yields and Product Ratios.


Product
X Conditionsa Ratio (18:19)b Yield (%)C


H 1000C, 2 h 81.8:18.2 58

H 80 C, 8 h 83.1:16.9 60

H 60C, 32 h 84.9:15.1 59

OCH3 100C, 2 h 83.5:16.5 58

OCH3 80C, 8 h 84.7:15.3 58

OCH3 60C, 32 h 86.2:13.8 57

NO2 100C, 2 h 83.5:16.5d 72

NO2 80C, 8 h 84.5:15.5d 74

aStyrene:allene = 10:1, hydroquinone or 4-tert-butylcatechol used as a free
radical inhibitor.
bError 0.2%; determined by GLC with a FID.
cError + 3%; determined by GLC or 19F NMR.
dError +0.5%; determined by 19F NMR.


The reaction of DFA with styrene was shown to be under kinetic

control. Products 18a and 19a were demonstrated to be both noninter-

converting as well as stable to further cycloadditions under the reaction

conditions. Identical reaction mixtures were prepared and allowed to

undergo reaction at 1000C for 3.0 h, 6.3 h, and 8.3 h. The reaction

mixtures were analyzed by gas-liquid chromatography (GLC), and the

reaction of DFA with styrene was shown to be complete within 3.0 h while

maintaining a constant product ratio of 81.8:18.2 (0.3) over time. Six

more identical mixtures were prepared and allowed to undergo reaction at

70 C for 15 min, 30 min, 1.0 h, 2.0 h, 3.0 h, and 6.0 h. While the yield

of the products gradually increased, there was again no change in the









observed 83.1:16.9 (0.2) product ratio by GLC. Finally, an isolated sample

of the minor isomer 19a was heated to 100 C under vacuum in a sealed

bulb with some heptane for 6.0 h, but it was recovered unchanged.

A slight temperature dependence in the ratio of 18:19 was observed

for the reaction of DFA with the para-substituted styrenes as shown in

Table 2-1. The greatest selectivity was observed at the lowest tempera-

ture. Products 18a-c and 19a-b were characterized by 1H, 13C, and 19F

NMR spectra, IR spectra, low and high resolution MS, and in the cases of

18a-c and 19a by combustion analyses. Product 19c, due to isolation

difficulties, was characterized only by 1H and 19F NMR. The spectral

interpretations were straightforward.

Relative Reactivity Study

Using equimolar mixtures of pairs of styrenes, the relative reactivities

of each were determined at 1000C as shown in Table 2-2. Since the

fluorine resonances of the four products in each competitive study were

resolved at 282 MHz, the product ratios and yields were determined by 19F

NMR using meta-bromobenzotrifluoride as an internal standard. The

reactivities of para-nitro- and para-methoxystyrene relative to styrene were

found to be 2.13 and 1.34, respectively.

Conservative NMR conditions with excellent digitization were chosen

for these analyses. A T1 population inversion experiment demonstrated that

the longest T1 was less than 6 sec, and thus, a 10 sec pulse delay was

used. The product ratios in Table 2-2 obtained by 19F NMR were in

excellent agreement with those of the 100 C experiments in Table 2-1

determined by GLC. Although the error usually quoted for NMR results is

2%,33 the error here seems to be 0.5% at most.









Table 2-2. Competition Reactions of DFA with Para-Substituted Styrenes.


Styrenes Product Reactivity
Runa Used Ratiosb Yields (%)b Ratio


X=OCH3 83.1:16.9 38
1 -j 1.34
X=H 81.4:18.6 28

SX=N02 83.3:16.7 47 2.13
2 2.13
X=H 81.7:18.3 22

XConditions: 100 C, 2.0 h; styrenes:DFA ratio = 5:5:1
bDetermined by 19F NMR


It is important to note that there was no polymerization of the para-

nitrostyrene under the reaction conditions in the competitive olefin experi-

ment. Since the product ratio for the para-nitrostyrene case in Table 2-2

is so close to that at 1000C in Table 2-1, this serves to validate the

earlier results where partial polymerization of the nitrostyrene occurred.

Stereochemical Study

Since styrene was used in large excess in previous reactions with DFA,

it was desired to prepare Z-B-deuteriostyrene in extremely high stereo-

chemical and isotopic purity free from any trace contaminants that might

hinder the interpretation of the cycloaddition results. Both diisobutyl-

aluminum hydride (DIBAH)17 and disiamylborane34 have generally been used

to prepare Z-B-deuteriostyrene from phenylacetylene, but each method has

drawbacks. First, DIBAH requires an excess of the acetylene to prevent bis-

addition, and phenylacetylene and styrene are not conveniently separated in

multigram quantities. Second, although borane reductions proceed in a

stereospecific cis manner, the additions to acetylenes are only regio-

selective35 and not regiospecific as desired. The stringent requirements for









the preparation of Z-6-deuteriostyrene were met with a modified synthesis

of Brown and Gupta.36

Phenylacetylene-d117 20 was smoothly reduced with catecholborane and

the catechol ester was cleaved with water to give, after recrystallization

from water with hot filtration and overnight drying in a vacuum oven, the

trimer of a-deuterio-B-phenylethenylboronic acid 21. The acid underwent

esterification with ethylene glycol in good yield to give 22, and the boronic

ester 22 reacted with acetic acid to give Z-8-deuteriostyrene 23 in a 28%

overall yield from the starting acetylene 20. The 300 MHz 1H NMR

spectrum of 23 agreed with published results17 and none of the trans






(1) O B-H, 2 h, 700C
S(2) H20, 4.0 h, 900C

(3) Vacuum Oven Drying D 3
20 21 45.6 %



Toluene, ,
HO OH

Reflux 20 h



HOAc, 900C, 1.5 h H

0 -H OH B
SOH D O


23 76.5 % 22 79.9 %






20


deuterated isomer was detected.* A comparison of the mass spectrum of

styrene at 12 eV with that of the cis deuterated material suggested an

isotopic purity of 99.3 (0.7)%.

The [2+2] cycloadditions of DFA with Z-B-deuteriostyrene 23 were

carried out neat under vacuum in sealed Pyrex tubes similar to previous

cycloadditions except that smaller styrene:DFA ratios were used, which

resulted in lower yields. The results are shown in Table 2-3. Again, the


S-CF2


A---c-


24-Z


24-E


23
23


25-Z


25-E


*A comparison of the 300 MHz 1H NMR spectra of styrene and 23 appears
in Appendix A in Figure A-23.









stability of the products under the reaction conditions was demonstrated.

The stereochemical ratio of the minor isomer 25 remained the same after

an isolated sample was resubjected to the reaction conditions. Unreacted

Z-S-deuteriostyrene was also able to be recovered with complete retention

of stereochemical integrity. No cycloreversion of 24 or 25 to the starting

materials was observed under the reaction conditions. The product ratios

were determined by GLC analysis of the crude reaction mixtures as before,

and the products were separated by flash chromatography37 and isolated for

the determination of the stereochemical ratios.


Table 2-3. Reaction of DFA with Z-B-Deuteriostyrene.
Stereochemical and Product Ratios.


Stereochemicalb
Ratios
Product 24-Z:24-E
Ratioa and
Styrene:DFA Conditions (24:25) 25Z:25-E Yield (%)


1.0:2.8 100 C, 3 h 81:19 57:43 22%c
79:21
2.2:1 80 C, 7.5 h 82:18 58:42 32%c
79:21
6.8:1 70 C, 15.5 h 83:17 59:41 58%d
79:21
'Error 1%; determined by GLC with a TCD.
bError 1%; determined by 300 MHz 1H NMR (pulse delay: 30s).
elsolated Yields.
dGLC yield.


The critical Z:E ratios were determined by quantitative integration of

the cyclobutane-ring methylene protons in the 300 MHz 1H NMR spectra of

24 and 25. Baseline resolution of Ha and Hb and of He and Hd in the

spectra of 24 and 25, respectively, enabled precise determinations of these









ratios as shown in Figure 2-1. The assignment of the methylene protons to

a particular chemical shift was made on the basis of difference NOE

experiments.* (Difference nuclear Overhauser effect (NOE) experiments can

currently be performed so that Overhauser enhancements of less than 1%

can be detected and accurately quantified.)38-40 Irradiation of Hx in 19a

gave an enhancement of 0.6% at the downfield methylene peak assigned He.

Irradiation of Hc gave enhancements of 0.8% at Hx and 2.0% at Hd.

Finally, irradiation of Hd gave enhancements of 0.6% at Hx and 1.7% at

He. Thus, the results were internally consistent with the proton


product




P H
Ph Hb


undeuterated deuterated




H H an H(b2

H. and Hb (0 ) 0.58:0.42 (24)


Ph Hd


Figure 2-1.


300 MHz 1H N MR Expansions of the Ring Methylene Protons


*The coupling of the methyne proton Hx to the ring methylene protons in
both 18a and 19a was not helpful in the assignment of the asymmetric
protons to a particular chemical shift. The coupling constant JAX was
shown to be nearly equal to JBX by decoupling experiments. Similarly,
JCX = JDX. This problem has been encountered before in the adduct of
styrene and diphenylketene. (See ref. 34.)









assignments given in Figure 2-1.* Difference NOE was less successful for

the structure elucidation of 18a, perhaps due to the proximity of the

geminal fluorines. It was noted, however, that 19a was an excellent model

compound for the assignment of the resonances in the spectra of 18a and

24. Thus, the resonances were assigned in an analogous manner. Worth

noting is the fact that the assignment of resonances by NOE experiments is

in agreement with what one would expect to observe when the cycloaddition

is performed with Z-4-deuteriostyrene. The largest methylene peaks in the

spectra of 24 and 25 are from the resonance of protons in the Z-deuterated

adducts.

Capto-Dative Study

The term "capto-dative" is derived from the extraordinary ability of a

"capto" electron acceptor group and a "dative" electron donor group to

stabilize a radical when both groups are attached to the same carbon.41

Both inductive and resonance effects of the attached groups contribute to


I



c = "capto" electron acceptor group

d = "dative" electron donor group

the stabilization. Geminal capto-dative substitution of an olefin increases

its reactivity in both radical and diradical reactions. The reduced frontier

orbital HOMO-LUMO energy separation makes capto-dative substituted

olefins radicophilic since the singly occupied molecular orbital (SOMO) of a


*The difference NOE spectra of 19a and 25 appear in Appendix A in
Figures A-7 and A-26.









radical is near to both the HOMO and the LUMO of the olefin. Thus, it

was thought that a capto-dative substituted olefin like 1-cyanovinyl acetate

26 might be more reactive toward DFA than the para-substituted styrenes

or any other olefin yet studied.9

The reactions of DFA with 1-cyanovinyl acetate 26 were carried out

the same as the reactions of DFA with the para-substituted styrenes. A

tenfold excess of the olefin was used. Analysis of the crude reaction

mixtures by GLC showed two products 27 and 28, and there was a slight

dependence of the product ratio on temperature as shown in Table 2-4.


-=*-CF2


+
AcO


NC


27 28


Table 2-4. Reactions of DFA with 1-Cyanovinyl Acetate.
Yields and Product Ratios.


Conditions Product Ratio (27:28)b Yield (%)C


100 oC, 2 h 77.0:23.0 53

80 oC, 8 h 78.0:22.0 54

60 oC, 32 h 79.2:20.8 46

aOlefin:allene = 10:1, hydroquinone used as a free radical polymerization
inhibitor.
bError 0.2%; determined by GLC with a FID.
tError 3%; determined by GLC.









The greatest selectivity was observed at the lowest temperature similar to

the results in Table 2-1. Products 27 and 28 were characterized by 1H,

13C, and 19F NMR spectra, IR spectra, low and high resolution MS, and in

the case of 27 by combustion analysis. The spectral interpretations were

straightforward. The reaction of DFA with 1-cyanovinyl acetate was very

clean with no polymerization observed.

The relative reactivity of 1-cyanovinyl acetate compared to styrene

was determined to be 0.82 by GLC as shown in Table 2-5. Surprisingly, the

capto-dative reagent was less reactive toward DFA than any of the styrenes

studied. A comparison of the percent yields for the reactions in Tables 2-1

and 2-4 seems to support the validity of the competitive study.


Table 2-5. Competition Reaction of DFA with Styrene and
1-Cyanovinyl Acetate (26).


Olefins Product Yields Reactivity
Used Ratiosb (%)b Ratio


OAc

76.9:23.1 29

CN

0.82

82.0:18.0 36

aConditions: 1000C, 2.0 h; styrene:26:DFA ratio = 5:5:1.
bDetermined by GLC.


Discussion

Mechanism of [2+2 ] Cycloadditions of 1,1-Difluoroallene

The [2+2] cycloadditions of 1,1-difluoroallene (DFA)42 with the para-

substituted styrenes and with 1-cyanovinyl acetate give results which are









consistent with those of previously studied DFA [2+2] reactions.9 The high

reactivity of DFA allows the cycloadditions to take place at 60-100C in 32-

2 h, respectively, while giving an average 59% yield of two products when

a tenfold excess of the olefin is used. The lack of higher yields is due to

the competitive oligimerization of the highly self-reactive DFA. All

products are completely stable under the reaction conditions with no

competing side reactions. The stereochemical study is also very clean with

no evidence for interconversion of the products once formed nor cleavage

of any intermediate to give starting materials under the reaction conditions.

Thus, the reactions are shown to be under kinetic control.

The [2+2] cycloadditions studied seem superficially consistent with the

type of stepwise diradical mechanism discussed in Chapter 1. In the first

step, an allyl-ethyl diradical intermediate 29 is formed which undergoes

competitive ring closures to predominately give, for example, 18a, the more





F


-.-CF Ph
--*--C2
CF 2 18a

SP-- /P)C




Ph 2

29 Ph


19a









thermodynamically stable product for the styrene reaction. This rationale

adequately explains the observed product ratios and regiochemistry of

cycloaddition in Tables 2-1 and 2-4.

The relative reactivity and stereochemical studies lend further support

to this mechanism. Table 2-3 shows there is a scrambling of the deuterium

label in the products when the reaction is performed with Z-6-deuterio-

styrene. Thus an intermediate must be involved. The relative reactivity

studies of Table 2-2 require an intermediate that is devoid of any polar

character to account for the fact that both electron-rich para-methoxy-

styrene and electron-deficient para-nitrostyrene undergo cycloaddition with

DFA more rapidly than styrene itself. The intervention of HOMO-LUMO

(donor-acceptor) or charge transfer interactions seems unlikely in view of

this, while a diradical intermediate like 29 is quite plausible.

It is interesting to note that although the competition studies are the

first example of a Hammett-type study of a [2+2] reaction, the results are

consistent with a previous substituent effect study of the thermal rearrange-

ments of 2-aryl-3,3-dimethylmethylenecyclopropanes 30.43 Ten different






lOO 100C *

Q isooctane

x x
30 X


X = CN, Br, C1, CF3, CH3, H, OCH3, SCH3 among others









substituents of varying degrees of electron donating or accepting ability

were shown to give increased reactivity relative to a hydrogen for 30.

A close examination of the stereochemical ratios in Table 2-3 reveals

that the common-intermediate diradical mechanism used to explain the [2+2]

cycloadditions of DFA so far may be an oversimplification. The retention

of stereochemistry is quite different in the two products with only a minor

variation of the stereochemical ratios with temperature. If the two

products were formed from the same intermediate, one would expect that

the stereochemical ratios would be nearly the same. Thus, a modification

of the mechanism must be made which accounts for the stereochemical

ratios but which is still consistent with all of the results discussed so far.

A thorough examination of what is currently known about the mechanistic

details of [2+2] reactions, in particular the details of the first mechanistic

step, would be helpful to insure that any modification of the common-

intermediate diradical mechanism would have a proper beginning.

Scrutinization of the First Mechanistic Step

Although evidence continues to accumulate indicating the stepwise

nature of [ 2 +2] cycloadditions in general and allene [ 2 +2] reactions in

particular,14,23,32 little is really known about the mechanistic details of

these reactions. Little theoretical effort has been directed toward [2+2]

cycloadditions.44,45 Not much more is known about factors which drive

these cycloadditions other than the general rules espoused in Roberts and

Shart's review of all known such reactions in 1962.46 The [2+2] reactions

do not appear to be driven by HOMO-LUMO (donor-acceptor) interactions

since many if not most of the best [2 +2 ]'s are dimerizations. In general,






29

classic factors seem to promote [2+2] reactivity like relief of strain and/or

the presence of radical-stabilizing or olefin-destabilizing substituents.

Allenes are both interesting and unique addends in [2+2] cyclo-

additions. While free radical additions to allenes occur at both terminal

and central carbons,47,48 [2+2] cycloadditions of allenes proceed almost

exclusively via central carbon attack23 as shown in Figure 2-2. The

contrast in regiochemistry for these superficially similar processes can be

understood in terms of the differences in energetic between them. The




PhS PhS--

peroxides, 80 %
PhSH
200C

= PhS -* PhS

20 %




1100C 0
o -NC

exclusively

Figure 2-2. Comparison of Free Radical Additions with Cycloadditions
of Allene.


addition of radicals to allene is generally an exothermic process with a low

activation energy and with little temperature dependence on regiochemistry

observed.47 In contrast, the first mechanistic step in a [2+2] cycloaddition

of allenes is endothermic with a significant activation energy. This, com-

bined with the regiospecificity observed in initial bond formation, leads one








to conclude that the transition state for this first step has undergone signi-

ficant rotation of the terminal methylene of the reactive double bond to

give the transition state considerable stabilizing allyl radical character as in

31-TS.* Once intermediate 31 has formed,49 it has only rarely been

observed to revert to starting materials,14 unlike the usual [2+2] diradical

intermediates, because the allyl radical stabilization in 31 must be lost

prior to cleavage. Indeed, no reversibility of this initial bond formation has

ever been observed in the Dolbier et al. studies of the [2+2] cycloadditions

of allene7 or of fluorine-substituted allenes.9



H H ~ H H

\ H

H c""H H



31-TS 31




Unlike the uncertainty present for most other allenes, one can be

reasonably assured that the initially reactive ir-bond of DFA in the first

mechanistic step is the fluorine-substituted one. This assumption is derived

from the observation that fluorine-substituted olefins are much more

reactive in [2 +2] cycloadditions than hydrogen-substituted ones.46 The

comparison of the [2+2] reactivities of methylenecyclopropanes 32a and 32b



*A recent isotope effect study is consistent with such rotation occurring in
the transition state (ref. 31).





31

illustrate this fact. Compounds 32a and 32b are essentially "homoallenes"
and should be considered excellent models of the fluorine-substituted and
hydrogen-substituted r-bonds of DFA.50 Thus, in the DFA-styrene reaction


+ CF2 CC12


+ CF2 CC12


1150C
4 days


1400C
5 days


F2

>C12
F2
45 %




C12
2 F2
22 %


it will be assumed that the initial reaction occurs at the central carbon of
DFA at the C1-C2 ri-bond.
Evidence for Two Kinetically Distinguishable Intermediates
In modifying the common-intermediate diradical mechanism for the
[2+2] cycloadditions of DFA, it should be recalled from Chapter 1 that the
fluorines exert little if any steric demand in [2+2] reactions. The only
substituent making a significant steric demand in the DFA-styrene system
under discussion is the phenyl ring. This is in stark contrast to Pasto's
related stereochemical study of the reactions of alkyl-substituted allenes
with diethyl fumarate and diethyl maleate. In his study, a steric rationale
was solely used to account for the results.14


>=CF2


C-






32


In order for a diradical mechanism to quantitatively rationalize the

stereochemical results in Table 2-3 wherein the minor product 25 is formed

with greater retention of stereochemistry than the major product 24, it is

necessary to invoke at least two kinetically distinct intermediates. The

first, short-lived intermediate or intermediates should be nonregioselective,

but highly stereoselective in the cyclization to 24 and 25. It must also

convert to a more stable intermediate before being able to undergo much

cyclization. The second intermediate should be much longer-lived, should




F2


__ CF2 Ph D Ph D

24-Z 24-E
+A
---^->-=--
CF CF2




23 Ph D Ph D

25-Z 25-E




randomize stereochemically before cyclizing, and should be much more

regioselective in forming the more stable product 24 versus 25. Figure 2-3

gives a reasonable mechanistic sequence of events which could give rise to

the above expectations.

Assuming a lack of steric effects due to the deuterium or fluorine

substituents, 33 and 34 should be formed at similar rates and should have

similar kinetic stabilities in Figure 2-3. They should rotate at similarly









rapid rates to alleviate the likely steric effects due to the phenyl

substituent and form the presumably more stable diradicals 35 and 36.

Because of their high reactivity, it is reasonable to assume a lack of

selectivity for 33 and 34 in their ring closures, although one might expect

that 33, due to its likely mode of rotation to 35, might prefer cyelization

to 25-Z while 34 might to a similar extent prefer cyelization to 24-Z.

Diradicals 35 and 36 in Figure 2-3 should be more stable kinetically

than 33 and 34 due to the relative lack of proximity of their benzyl radical


H






H r24-Z
H ..


11.2 %

.1


- -F


+ 25-Z -

11.0 %


24-Z + 24-E + 25-Z + 25-E

34.9 % 34.9 % 4.0 % 4.0 %



Figure 2-3. Modified Diradical Mechanism Which Quantitatively
Accounts for the Stereochemical Results in Table 2-3. Percent
Yields Given for 100 C Reaction.


33









orbitals to the termini of their allyl radical systems. The allyl radical

systems of 35 and 36 could potentially rotate as shown to form 36' and 35',

respectively, the enantiomeric forms of 36 and 35. The two radical

systems 35 +36' and 36 +35' are not interconvertible, but each should lead

to identical, fully stereorandomized mixtures of 24 and 25. Therefore, the

viability of Figure 2-3 is independent of the relative rate of formation of

33 and 34.

Remarkably, this scheme of mechanistic events has excellent corre-

lation with the experimental results. If one assumes that 33 and 34

undergo ring closure to give only the excess stereochemically-retained Z-

products, the percent yield of products formed from each pathway can be

calculated as shown in Figure 2-3 for the 1000 C reaction. This kinetic

scenario exactly reproduces the 24:25 product ratio (81:19) and the stereo-

chemical Z:E ratios for 24 (57:43) and 25 (79:21) in Table 2-3. One should

verify that the percent yields in Figure 2-3 quantitatively indicate 33 and

34 to be highly stereoselective but nonregioselective, and they indicate 35

and 36 to be highly regioselective but stereorandom in agreement with

previous expectations.

If one applies this same analysis to the lower temperature stereo-

chemical results in Table 2-3, greater selectivity of closure for 33 and 34

is observed as shown in Table 2-6. At 70C, for example, 15% of 24-Z and

10% of 25-Z is formed from 33 and 34 in agreement with thermodynamic

expectations.









Table 2-6. Selectivity of Closure for Intermediates 33 and 34 at
Various Temperatures.


% Excess % Excess
Conditions 24-Z Formed 25-Z Formed


100 oC, 3.0 h 11.2% 11.0%

30 oC, 7.5 h 13.1% 10.4%

70 C, 15.5 h 14.9% 9.9%



It has been assumed, for lack of a better hypothesis, that the pro-

posed diradicals satisfying the stereochemical results are simply conforma-

tional isomers like those depicted in Figure 2-3. However, there is no

direct evidence for the structures of the specific species actually involved,

nor is it even necessary that the two modes of reaction be sequentially

related. They could be parallel pathways. The stereochemical results

merely require two pathways to products 24 and 25, a minor pathway which

is nonregioselective but stereospecific and a major pathway which is regio-

selective but stereorandom. It should be finally stated, however, that the

specific mechanistic scheme presented in this discussion is one which is

consistent with everything that is presently known about allene [2+2]

cycloaddition reactions.

Summary

In summary, the [2 +2] cycloadditions of DFA with para-substituted sty-

renes (H, OCH3, NO2) and the "capto-dative" reagent 1-cyanovinyl acetate*



*It should, perhaps, be mentioned that the reactions of DFA with 1,2-
dichloro-1,2-difluoroethylene (1212) and cis-stilbene were also studied with
little success. In the 1212 reaction, the DFA underwent extensive
oligimerization with no cycloaddition at 147 C, and in the cis-stilbene
reaction, the starting material underwent extensive isomerization to trans-
stilbene under the reaction conditions.









were studied in order to gain a greater mechanistic understanding of allene

[2+2] cycloadditions. The product ratios and regiochemistry were consistent

with previously studied DFA reactions wherein the more thermodynamically

stable product was favored. In addition, a stereochemical study with

Z-B-deuteriostyrene was consistent with a stepwise mechanism since there

was a scrambling of the deuterium label in the products. A relative

reactivity study required an intermediate which was devoid of any polar

character since both para-methoxystyrene and para-nitrostyrene underwent

reaction with DFA more rapidly than styrene itself. These results seemed

consistent with a common-intermediate diradical mechanism for which there

has been substantial literature precedent.

Close examination of the stereochemical results in Table 2-3 suggested

that a common-intermediate diradical mechanism was an oversimplification,

however. The distinctively different retentions of stereochemistry for the

two products in the reaction of DFA with Z-B-deuteriostyrene gave evidence

for two kinetically distinguishable intermediates. The first, highly-reactive

intermediate was thought to be nonregioselective but stereospecific, and the

second, more-stable intermediate was thought to be regioselective but

stereorandom. This helped to account for the fact that there was a

greater retention of stereochemistry in the minor product. The high

reactivity of DFA, the stability of the products under the reaction

conditions, and the preparation of Z-S-deuteriostyrene with an isotopic

purity of 99.3% and greater than 99% Z allowed this stereochemical study

to be completely unambiguous.














CHAPTER 3
STEREOCHEMISTRY OF THE 1,3-DIPOLAR
CYCLOADDITIONS OF FLUOROALLENE

Introduction

Understanding the stereochemical preferences observed in cycloaddition

reactions has been one of the monumental problems of organic chemistry

during the past 50 years. Early excitement was generated by the reactions

of norbornene and related compounds which preferentially underwent exo

attack by a variety of reagents.51'52 Dipolar cycloadditions have played an

important role in the evolution of the stereochemistry problem. Indeed, the

infamous Alder exo rule, published in 1935, was formulated from a study of

the 1,3-dipolar cycloadditions of variously substituted norbornenes with

phenyl azide.53 The focus of this chapter will be on the stereochemical

preferences observed in dipolar cycloadditions of contemporary interest54

and, in particular, on the preferences observed for addition to dipolarophiles

containing an allylic halogen substituent.

Although several 1,3-dipolar cycloadditions of allenes have been

reported,23 only a few stereochemical studies have been done. The

reactions of methoxy and phenoxyallene show a definite preference for anti

attack, presumably due to steric reasons,21,22 while the reaction of

monofluoroallene (MFA) with N,C-diphenylnitrone seems to show a strong

preference for syn addition as discussed in Chapter 1. The use of a

monosubstituted allene to study the stereochemistry of cycloaddition

reactions seems ideal due to the simplicity of the dipolarophile. Thus, an

examination of the reactions of MFA with other nitrones and 1,3-dipoles












syn


MFA C C C


H
anti




would be expected to be quite interesting. In addition, it would be

interesting to do solvent and kinetic studies to obtain a greater under-

standing of the factors affecting the stereochemical outcome of these

reactions. These studies as well as unambiguous structural proofs for the

previously mentioned MFA/diphenylnitrone cycloadducts will be presented.

Similar to past chapters, both the high reactivity of MFA and the lack of a

significant steric demand for the fluorine substituent aid in the attainment

of some extremely interesting and valuable results.

Results

Nitrone Stereochemical Study

When a tenfold excess of MFA42 was allowed to react with each of

three nitrones55-57 37 at 25 C in chloroform, there were two products, 38

and 39, produced in a nearly quantitative yield. The reactions were done in

the dark in NMR tubes which had been sealed under vacuum. The progress

of the reaction was followed by 1H and 19F NMR, and the reactions were

shown to be complete between 6 h and 72 h. The product ratios shown in

Table 3-1 were determined by 19F NMR at 282 MHz, and they were found

not only to be unchanged during the reactions but also to remain unchanged













H F


F





+
Ph \0-



H R
37a-c


250C, CDC13 h
N--O
a) R = CH3
b) R = Ph
c) R = 2-Naphthyl
38a-c


39a-c


Table 3-1. MFA 1,3-Dipolar Cycloadditions with Nitrones.


Product
R Conditions Ratio (38:39)a % Yieldb krel


CH3 72 h 82:18 95 1.0

Ph 10 h 85:15 99 11.6

2-naphthyl 6 h 84:16 90 12.0

aError + 1%
bError 3%; determined by 19F NMR using meta-bromobenzotrifluoride as
an internal standard.


for more than 30 days after the reactions had gone to completion. Further

proof of kinetic control was obtained by heating the minor isomer 39c to

61-64 C for 48 h in chloroform. There was no decomposition or rearrange-

ment of 39c detected. Although 38 and 39 were the sole products found

for the R = Ph and R = 2-naphthyl cases, two additional possible products

were observed by 19F N MR, each in 3% relative yield, for the R = CH3

reaction. They were not identified. The relative rates in Table 3-1 were

determined from the pseudo-first-order rate constants similar to the method

that will be described for the solvent studies.









Products 38 and 39 were separated by flash chromatography37 and

isolated. The R = Ph adducts were previously characterized by Burkholder,

and the 1H and 19F NMR spectra obtained for them were identical to

previous results. The remaining nitrone adducts were characterized by 1H,

13C, and 19F NMR spectra, IR spectra, low and high resolution MS, and

finally by combustion analyses. The regioisomer assignments were straight-

forward as in Burkholder's nitrone adducts, but the stereochemical assign-

ment of the fluorine relative to the phenyl ring was not. The stereo-

chemical assignments were made on the basis of difference NOE experi-

ments for 38a and 39a and by an X-ray crystal structure determination for

38c.

The interpretation of the difference nuclear Overhauser effect (NOE)

experiments39 was forthright. For the irradiation of the PhCH and CH2 in

the 1H NMR, the CHF NOE enhancements were 1.9% and 4.2%, respective-

ly, for 38a. For the analogous irradiations in 39a, the enhancements were



F H H F


Ph Ph

N- N-0
H3C/ H3C/
38a 39a




1.9% and <1%. The difference NOE spectra of 38a and 39a appear in

Figures A-39 and A-44 of Appendix A for the interested reader.

A suitable crystal for an X-ray structure determination was grown by

slow evaporation of solvent from an ethanolic solution of 38c in an









uncapped NMR tube. After diffractometer data collection and structure

refinement, the structure shown in Figure 3-1 was obtained. One can see

that the fluorine is, indeed, sn to the phenyl in the R = 2-naphthyl major

adduct. The nonbonded distances F1--C15 and H4--C15 were 3.19 A and

4.15 A, respectively. (Atom H4, which is not shown in Figure 3-1, is

attached to atom C4.) The details of the X-ray structure determination

along with the bond lengths and bond angles of 38c appear in Appendix B.






C(3)


Figure 3-1. X-Ray Crystal Structure for the R = 2-Naphthyl Major Adduct,
38c.

It was of interest to be able to make firm stereochemical assignments

without having to resort to difference NOE and crystal structure determina-

tions each time a new reaction of MFA was studied. With this in mind,

salient spectroscopic features of stereochemical importance were noted for

the nitrone adducts 38 and 39. These will be discussed using the R = 2-

naphthyl case as an example. First, there was a greater deshielding of cis-








allylic than trans-allylic protons by fluorine. The chemical shift of each

proton cis to the fluorine in the 1H NMR was an average 0.33 ppm further

downfield than that in the other isomer. This is illustrated for 38c and

39c. Also, there was a larger transoid allylic than cisoid allylic H-H


F_ H


6 5.65 H
Ph



00f


6 4.61
nH--


6 5.


4.88
, 6 4.88


coupling constant observed in the 1H spectrum as well as a larger transoid

allylic C-F coupling constant observed in the 13C spectrum. This is shown

in Table 3-2. The average difference between the transoid and cisoid coup-

ling constants was 0.51 Hz for the H-H coupling and 5.4 Hz for the C-F
coupling. In view of this, the C-F coupling constant seemed more helpful

in assigning stereochemistry. Armed with these spectroscopic observations,

one can attempt to elucidate future stereochemical assignments from the

routine spectra obtained for new adducts of MFA.

Table 3-2. 1H and 13C NMR Coupling Constants to CHF for 38c and 39c.

H-H Coupling (Hz) C-F Coupling (Hz)
Compound J(CHPh) J(CH2) J(CHPh) J(CH2)

38c 1.86 1.70 < 1 5.9
39e 1.34 2.19 4.9 < 1


39c









Solvent Study for the Reaction of MFA with N-Methyl-C-phenylnitrone

The reaction of MFA with N-methyl-C-phenylnitrone was studied in

eight solvents of widely different ET values,58 where ET is a measure of

solvent polarity. First, the reaction rate was determined in each solvent at

23-24oC using 1H NMR to follow the progress of the reaction. The

relative rates are shown in Table 3-3. The reactions were run under psuedo-

first-order conditions with a tenfold excess of MFA. Multiple integration

over the nitrone methyl group at 3.95 ppm and the product methyl groups

near 2.65 ppm were obtained for at least five points within the first three

half-lives of the reaction. Plots of log [nitrone] versus time gave good

straight lines with correlation coefficients uniformly greater than 0.999, and

the pseudo-first-order rate constants were determined from them. From

these first-order rate constants, the relative rates of Table 3-3 were cal-

culated. The small spread of the relative rates is in excellent agreement

with the Huisgen et al. classic kinetic studies for nitrones.59

One may wonder why relative rates were reported in Table 3-3 rather

than the more informative second-order rate constants. The reason is that

the [MFA] values upon which the calculation of the second-order rate

constants depends (k2nd = klst/[MFA]) had poor accuracies. This matter is

worth considering further. The concentration of a reactant in excess, like

MFA, is usually well known in a pseudo-first-order kinetic study. Since

MFA is a gas, however, it can partition itself between the solvent and the

evacuated space directly above the solvent in a sealed NMR tube. Thus,

not only is the amount of MFA in the liquid somewhat less than the

amount initially condensed in the tube, but also it is potentially dependent

on the solubility of MFA in the different solvents.60 This can pose

problems. Using para-dioxane as an internal standard, these ideas








Table 3-3. Relative Rates and Product Ratios in Various Solvents for the
Reaction of MFA with N-Methyl-C-phenylnitrone at 23-24 C.


ET (kcal)/ Product
Solvent mole) krela Ratio (38a:39a)b


benzene-d6 34.5 16 80:20

dioxane-d8 36.0 11 75:25

CDC13 39.1 5.4 82:18

CD2C12 41.1 5.3 76:24

acetone-d6 42.2 5.4 60:40

DMSO-d6 45.0 5.2 53:47e

CD3CN 46.0 4.9 61:39

CD30D 55.5 1.0 68:32

aThe pseudo-first-order rate constants are given in the experimental section
in Table 6-1.
bError 1%.
CError 3%.


were tested by 1H NMR. It was found first that for all the solvents of

Table 3-3, there was no significant change in the solubility of MFA within

the uncertainty of the measurement. Second, it was shown that there was

a sevenfold excess of MFA over the nitrone present in the liquid at all

times. This knowledge was sufficient to justify reporting the relative rates

as shown in Table 3-3.

In addition to the relative rates, the product ratio for the reaction of

MFA with N-methyl-C-phenylnitrone was determined in each solvent by 19F

or 1H NMR and confirmed by GLC. These results are also shown in Table

3-3. Surprisingly, rather than to find that the product ratios were all the

same or that there was a good correlation of them with the solvent ET

values, it was found that there was a great deal of scatter in the results.









In spite of this, there was a net decrease in the ratio with increasing ET

value, and the results were reproducible.

A comparison of the benzene-d6, CDC13, and acetone-d6 rates and

ratios in Table 3-3 reveals some interesting results. Although the relative

rate for the MFA/N-methyl-C-phenylnitrone reaction was greater in benzene-

d6 than in CDC13, the product ratios were nearly the same in both

solvents. In comparing the CDC13 and acetone-d6 results, however, the

rates were the same but the product ratios were different. It was decided

to investigate the reaction kinetics in these three solvents more fully.

Kinetic Study for the Reaction of MFA with N-Methyl-C-phenylnitrone

As has been noted in the solvent study, the reaction of MFA with N-

methyl-C-phenylnitrone at 23-24C shows good first-order kinetics with

respect to the nitrone in all of the solvents studied. In separate experi-

ments, the reaction was also shown to be first-order with respect to MFA,

too. The second-order rate constants in CDC13 at 23-250C were calculated

for each of these studies. When MFA was in excess as in the solvent

studies, the rate constant was found to be 8.3 x 10-6 1/mole-sec, and when

the nitrone was in excess, the rate constant was found to be 8.1 x 10-6

1/mole-sec. Since the agreement in these second-order rate constants was

good and since a multitude of experimental errors was best minimized by

keeping [MFA] constant and in large excess, it was decided to continue the

pseudo-first-order kinetic approach in determining the activation parameters

for the reaction of interest.

The kinetics were followed by 1H NMR in the manner previously

described for the solvent studies. Pseudo-first-order rate constants were

obtained for the reaction of MFA with N-methyl-C-phenylnitrone at roughly

0C, 25 C, and 50C in benzene-d6, CDC13, and acetone-d6. The 00C








reactions were done in an ice-water bath inside a tall Dewar, and the 25 oC

reactions were done in water that had equilibrated to room temperature

inside a different Dewar flask. The 500C reactions were done in a well-

stirred oil bath, and separate reactions were used to obtain each point in

the rate plots. All of the reactions were done in the dark to prevent any

trace nitrone rearrangement.61 By carefully controlling the temperatures

and taking most points well within the first two half-lives of the reaction,

good pseudo-first-order rate constants were obtained from lines having

correlation coefficients greater than 0.999.

In order to calculate the second-order rate constants from the avail-

able data, the [MFA] values for each solvent and temperature had to be

determined with good accuracy. Since gaseous MFA partitions itself

between the solvent and the space directly above it in a sealed N MR tube,

this was not a trivial problem. Four samples of MFA in each of the three

solvents were prepared and studied by 1H and 19F NMR at 250C using para-

dioxane and meta-bromobenzotrifluoride as internal standards. The twelve

samples, which were identical to the kinetics samples except for the lack

of nitrone, were then studied by variable-temperature 1H NMR to obtain

good estimates for [MFA] at 0C and 500C as shown in Table 3-4.

Interestingly, although the concentration values seemed to indicate that the


Table 3-4. MFA Concentrations Used to Calculate the Second-Order
Rate Constants.


Solvent [MFA], 0 C [MFA], 250C [MFA], 500C


benzene-d6 1.5 M 1.8 M 2.1 M

CDC13 1.4 M 1.7 M 2.0 M

acetone-d6 1.5 M 1.8 M 2.1 M








solubility of MFA in each of the solvents was about the same, the [MFA]

values were quite dependent on temperature. Taking into account the

instrumental, operator, and calculational errors in the determinations, a

generous [MFA] uncertainty of +0.3 M was used to propagate errors in the

final kinetics results. It is of value to note that the maximum [MFA]

concentration if all of the gas was dissolved in the liquid was calculated to

be 2.6 M.

Using the [MFA] concentrations in Table 3-4 and the previously

determined pseudo-first-order rate constants, the second-order rate constants

were calculated for the reaction of MFA with N-methyl-C-phenylnitrone as

shown in Table 3-5. It was interesting to observe that the half-life for the

reaction in acetone-d6 was less than that in CDC13 at 0C, but that the

opposite was true at 500C.


Table 3-5. Overall Second-Order Rate Constants for the Reaction of MFA
with N -Methyl-C-phenylnitrone.


Rate Constant, ko Half-
Conditions (1/mole-sec) Life, t1/2


benzene-d6, 0.0 C 2.11 x 10-6 60.9 h

benzene-d6, 25.0C 2.11 x 10-5 5.07 h

benzene-d6, 49.7 C 1.44 x 10-4 0.64 h

CDC13, 0.0 OC 6.59 x 10-7 209 h

CDC13, 23.80C 8.29 x 10-6 13.7 h

CDC13, 50.40C 7.20 x 10-5 1.34 h

acetone-d6, 0.0C 7.60 x 10-7 169 h

acetone-d6, 23.8 C 7.39 x 10-6 14.5 h

acetone-d6, 49.7 oC 5.71 x 10-5 1.60 h








The activation parameters for the overall reaction in each solvent

were calculated from the data in Table 3-5. The results are shown in

Table 3-6. The Arrhenius plots had correlation coefficients of 0.99999,

0.9996, and 0.99998 for the benzene-d6, CDC13, and acetone-d6 results,

respectively. Table 3-6 shows that the free energy of activation, AG at

24 C was virtually the same in CDC13 as in acetone-d6, but it was lower

in benzene-d6 as one might have expected from the rate constants and half-


Table 3-6. Overall Activation Parameters for the Reaction of MFA with
N -Methyl-C-phenylnitrone.

Eact (0.5 AGO (0.1 AHV (0.4 AS (1.4
Solvent kcal/mole) kcal/mole)a kcal/mole)a cal/deg-mole)a


benzene-d6 14.9 23.8 14.3 -32.0

CDC13 16.4 24.4 15.8 -28.8

acetone-d6 15.2 24.4 14.6 -32.7

aMean temperature: 24"C.


lives given in Table 3-5. The enthalpies of activation, AH', were relatively

small and the entropies of activation, ASO, were large negative numbers in

keeping with previous kinetic studies of 1,3-dipolar cycloadditions of

nitrones.59 The large uncertainty in [MFA] previously noted was used to

calculate separate tables of activation parameters to determine the

minimum and maximum values for Eact, AG AHV, and AS# in Table 3-6.

The resulting uncertainties are shown in the column headings. Unfortun-

ately, the uncertainties seemed quite large to make reasonable conjecture

about the subtle differences in activation parameters between the solvents.

The product ratio, 38a:39a, for each kinetic study was determined by

19F NMR as shown in Table 3-7. Interestingly, there was little change in



















38a


Table 3-7. Separate Product Second-Order Rate Constants for the Reaction
of MFA with N-Methyl-C-phenylnitrone.


Product k1 for 38a k2 for 39a
Conditions Ratio (38a:39a)a (1/mole-sec) (1/mole-sec)


benzene-d6, 0.000C 80:20 1.69 x 10-6 4.22 x 10-7

benzene-d6, 25.0 C 81:19 1.71 x 10-5 4.01 x 10-6

benzene-d6, 49.7 0C 80:20 1.15 x 10-4 2.88 x 10-5

CDC13, 0.0 C 84:16 5.54 x 10-7 1.05 x 10-7

CDC13, 23.8 C 81:19 6.71 x 10-6 1.58 x 10-6

CDC13, 50.4 C 82:18 5.90 x 10-5 1.30 x 10-5

acetone-d6, 0.0 C 61:39 4.64 x 10-7 2.69 x 10-7

acetone-d6, 23.8 "C 61:39 4.51 x 10-6 2.88 x 10-6

acetone-d6, 49.7 C 63.37 3.60 x 10-5 2.11 x 10-5

aError + 2%, determined by 'IF NMR at 94.1 MHz.


product ratio with temperature within the uncertainty of the experimental

results. The rate constants shown in Table 3-7 for the formation of each

product in the reaction of MFA with N-methyl-C-phenylnitrone were

calculated by multiplying the fractional product ratios by the overall second-

order rate constants in Table 3-5.62 The separate product activation









parameters shown in Table 3-8 were, in turn, calculated from the data in

Table 3-7. Again, the uncertainties in the activation parameters were large

in comparison to the subtle differences between them in the different

solvents. In addition, the activation parameters for the separate products

were also very similar.


Table 3-8. Separate Product Activation Parameters for the
MFA with N-Methyl-C-phenylnitrone.


Reaction of


Product & Eact (0.5 AG (0.1 AH (0.4 AS (1.4
Solvent kcal/mole) kcal/molea kcal/mole)a cal/deg-mole)a


Major Product 38a:

benzene-d6 14.9 24.0 14.3 -32.4

CDC13 16.3 24.5 15.7 -29.5

acetone-d6 15.3 24.7 14.8 -33.3

Minor Product 39a:

benzene-d6 14.9 24.8 14.3 -35.2

CDC13 16.8 25.4 16.2 -30.8

acetone-d6 15.1 24.9 14.5 -35.3

aMean temperature: 24 C.


Ultraviolet (UV) and Infrared (IR) Studies for Nitrones

It was desired to know if there was any significant complexation

occurring between N-methyl-C-phenylnitrone and the more polar solvents of

Table 3-3. The ultraviolet spectrum of N-methyl-C-phenylnitrone was taken

in all eight solvents studied, but the spectra showed little change in Xmax

or molar absorptivity, e The Amax for the longest wavelength absorption

band remained between 299 nm and 295 nm for the first seven solvents,

and it decreased to 288 nm for CD3OD, the hydrogen-bonding solvent.






51

There were no other bands observed between 240 nm and 500 nm in the UV

spectra. The molar absorptivity E was between 1.6 x 104 l/mole-cm and

2.4 x 104 1/mole-cm in each of the solvents studied. The spectral

observations were in excellent agreement with published UV results.63

A possible change in C=N bond length due to complexation was tested

by measuring the C=N infrared stretching frequency, which is known to

appear at 1547 cm-1 for N,C-diphenylnitrone,64 in two key solvents. In

CHC13, the band appeared at 1555 cm-1, and in acetone, the band appeared

at 1551 cm-1. Again, as in the UV studies, there seemed to be little

evidence for significant complexation of the nitrone in more polar solvents.

Reaction of MFA with Diazomethane-d2

Although much effort had been expended in studying the reactions of

MFA with nitrones, it was still unknown whether cycloadditions of MFA

with other 1,3-dipoles also proceeded to predominately give the syn adduct.

Thus, the reaction of MFA with diazomethane-d2 was examined.

Diazomethane-d265 was prepared under nitrogen with due precautions. It

was allowed to warm to 250C from liquid nitrogen temperatures in the

presence of MFA for 55 min. Afterward, the ether was removed by careful


F

F H H F

+ 25C, 55 min D2 + D2(
Et20 N=N N--N
D2C -- N -N
2 40 41


88 : 12

(54 % Isolated Yield)









vacuum transfer to give a 54% isolated yield* of a white solid, which

rapidly melted at 250C. The product was quickly placed in an NMR tube

with cold (<0C) CDC13, and the NMR tube was sealed under vacuum and

stored on dry ice. The product ratio 40:41 was determined to be 88:12 by

300 MHz 1H N MR, and the isotopic purity of the products was shown to be

98%. The reaction was repeated, and the same product ratio was obtained.

A sample N MR spectrum is shown in Figure 3-2. Thus, there are, indeed,

other 1,3-dipoles besides nitrones that prefer to form syn adducts with

MFA.




41 40

H F F H


D D
N=N N=N

12 8 88 %











7.0 5.8 6.6 6.E 6.2 6.0 5.3 :. 5.



Figure 3-2. 300 MHz 1H NMR Spectrum for the MFA/Diazomethane-d2
Adducts.



*Some product likely transferred with the ether to give the less than
quantitative yield.









Discussion

Cycloadditions with Halogen-Substituted Dipolarophiles

The 1,3-dipolar cycloadditions of MFA with nitrones and diazomethane-

d2 show a strong preference for syn addition. The product structural proofs

rest upon difference NOE experiments, an X-ray crystal structure, and

several spectral observations which, when taken together, make the stereo-

chemical assignments completely unambiguous. The reaction of MFA with

N-methyl-C-phenylnitrone has been studied in great detail both kinetically

and in different solvents. The small spread of relative rates in Table 3-3

for solvents of contrasting polarities, the relatively small AH values

obtained, and the large negative ASO values shown in Tables 3-6 and 3-8 all

demonstrate that this reaction is completely consistent with other well-

studied 1,3-dipolar cycloadditions.54 Indeed, the results are in excellent

agreement with the Huisgen et al. classic studies of nitrones,59 which

include an extensive solvent study for the reaction of N-methyl-C-phenyl-

nitrone with ethyl acrylate.

The regiochemistry of these MFA cycloadditions might tentatively be

explained by the molecular orbital (MO) considerations discussed in Chapter

1 for the reactions of 1,1-difluoroallene with diazoalkanes.19 These MO

arguments, which involve secondary orbital interactions due to the fluorines,

would also explain the stereochemical preference observed in the analogous

reaction of MFA with diazomethane-d2. Padwa et al., who have studied

and reviewed the 1,3-dipolar cycloadditions of nitrones with electron-

deficient dipolarophiles like MFA, also use MO arguments to explain the

regiochemical and stereochemical preferences observed in their nitrone

reactions.66 One must be careful in applying these MO explanations,

however. They have often been qualified by steric interactions or other






54


such anomalous factors. Electrostatic MFA-dipole attractions or differential

solvation of the reactants and products may play an important role in

rationalizing the MFA cycloaddition results. Contributions from these

factors may, for instance, explain the scattering of the product ratios with

ET values observed in Table 3-3. Before a complex analysis of these ideas

is undertaken, it is of interest to briefly survey other dipolarophiles with

halogen substituents to determine if syn addition occurs in other cases.

In a 1963 review, Huisgen noted that several 1,3-dipoles underwent

cycloadditions with norbornene 42 and norbornadiene 43a with high stereo-

selectivity to form exo adducts.67 In contrast, other work demonstrated

that the reaction of most halogen-substituted norbornadienes 43b with

diazoethane favored the formation of endo-anti monoadducts,68,69 which in

the case of X = Cl would undergo exo-syn attack to form a bis adduct.

Interestingly, the reaction of 7-fluoronorbornadiene 43c with diazoethane

proceeded differently.70 A careful analysis of the complicated mixture of

mono and bis adducts produced showed that the ratio of initial endo-anti to

initial exo-syn attack by the dipole was approximately 50:50.



X
exo exo-anti- exo-sn




endo endo-anti-- endo-yn

42 43 a) X = H
b) X = I, Br, Cl
c) X = F








More dramatic examples of a halogen helping to induce syn attack on

a double bond are found in the clean cycloadditions of cis-3,4-dichloro-

cyclobutene 44 with diazomethane,71 nitrones,54,72 and nitrile oxides.73 In

many reactions, the product from sy addition is strongly favored. Various





Cl

/ CH 44

H-
anti- H



explanations considered for the contrasteric approach of 1,3-dipoles to 44

include alkene orbital distortion due to the halogens,74 pyramidalization of

the olefinic carbons away from the chlorines,75 dipole-dipole interactions,54

and direct halogen lone-pair interactions with the 1,3-dipole.54,72 Interest-

ingly, studies of the dipolar cycloadditions to allylic mono and disubstituted

cyclopentenes did not show the same stereochemical preferences observed

for 44.75

Factors Affecting the Stereochemical Outcome of MFA Cycloadditions

There seems to be several possible factors that contribute to the

stereochemical outcome of 1,3-dipolar cycloadditions involving halogen-

substituted dipolarophiles. In this chapter, emphasis will be placed on

transition-state dipole-dipole interactions and solvent-reactant or solvent-

product interactions as explanations for the MFA cycloaddition results.

Molecular orbital arguments, which are often invoked to explain such

results, are of questionable value at this point since quite polar transition

states may be involved in the reactions. It would be interesting to see if









the [2+4] reactions of MFA with cyclopentadiene and butadiene, which

involve nonpolar transition states, would also show a preference for syn

addition to MFA. If so, this would give stronger experimental support for

the use of MO arguments in explaining stereochemical cycloaddition

preferences. These ideas are considered in Chapter 4, and a thorough

discussion of the MO arguments for MFA dipolar cycloadditions will be

deferred until then.

As shown in a 1977 review, solvent studies have been performed for

several 1,3-dipolar cycloadditions.54 Although these have often been limited

to rate studies, the regiochemistry of cycloaddition has also been probed for

diazomethanel9,76,77 and some nitrile oxides.78,79 In addition, a few

stereochemically related solvent studies have been reported,73,80,81 and

they give interesting insight into explaining the observed trends in Table

3-3. It has been noted that the greater the dipole moment of a transition

state73 or product,80 the more it is favored in solvents of greater polarity.

The transition states to products 38a and 39a are shown in 45 and 46. As

one can see from 45, the dipole moments in the separate halves of the





F

--
Ph> Ph t,,"
H 'tN' N 05- H Nil +-

Me Me
-i-->-H--->









transition state leading to 38a, the major product, are directly opposed. In

contrast, the dipole moments of 46, which leads to 39a, the minor product,

are less opposed. Thus, the net dipole moment for 46 is somewhat greater

than that for 45, and one would expect that a greater amount of the minor

product would be formed in polar solvents than in nonpolar solvents. This

is consistent with the overall trend observed in Table 3-3.

This transition-state dipole-dipole argument also rationalizes the

regiochemistry and stereochemistry observed in MFA dipolar cycloadditions.

The points of dipole attraction in 45 and 46 are shown by 6+ and 6-. Since

fluorine is such a small element and has such a high electronegativity (i.e.

large 6-), it is not surprising that syn addition is favored for MFA. The

transition-state dipole-dipole argument cannot solely rationalize the

cycloaddition results for two reasons, however. First syn addition of MFA

is favored for all solvents in Table 3-3. If the dipole-dipole explanation

were solely responsible for the results, one would expect that the minor

product 39a would become the major product in more polar solvents.

Second, the trend in product ratios in Table 3-3 is not strictly linear with

ET value as one can see from Figure 3-3. If the dipole-dipole argument

were well-followed, there should be a good correlation.80 Interestingly, if

the CD30D product ratio is ignored, however, the remainder of the points

in Figure 3-3 seem to suspiciously lie on two nearly parallel lines.

There is additional evidence for factors other than dipole-dipole

interactions influencing the reaction of MFA with N-methyl-C-phenylnitrone.

For example, Figure 3-4 shows that there is a rough correlation of the

psuedo-first-order rate constants, which were used to calculate the relative

rates in Table 3-3, with solvent polarity. In general, the rate of reaction












90:10





80:20 -





70:30 -
s y:anti
Product
Ratio

60:40 -


50:50


0 Benzene-d6


0 Dioxane-d8


( CD2C1,


CD3OD G


Acetone-d6 )


1 EnISO-d6
'o


ET (kcal/mole)


Figure 3-3. Correlation of Product Ratios with Solvent ET Values for the
Reaction of MFA with N-Methyl-C-phenylnitrone in Various Solvents.
40-

0 Benzene-d6

20- ~ Dioxane-d8


CD2C12
Log of 10- MTSO-d6
Pseudo- CDC CDOCN
Pseudo 8- 3
First- Acetone-d6
Order k 6-
(106 sec'I)

4-





CD.OD
3)


I I 4I I 6
35 40 45 so SS 60


Figure 3-4.


Correlation of log(k) with Solvent ET Values for the Reaction
of MFA with N-Methyl-C-phenylnitrone.


ET (kcal/mole)









decreases with increasing polarity of the solvent. This trend is easily

explained. The polar reactant N-methyl-C-phenylnitrone is solvated best in

solvents of high polarity, while the less polar products 38a and 39a are

solvated best in solvents of low polarity. Thus, the reaction rate is

greatest in benzene-d6 and least in CD30D.

As one considers this solvation phenomenon for the nitrone and

products, one may wonder why it is not reflected in the activation param-

eters of Table 3-6. One might expect, for instance, that the enthalpy of

activation, AHO would be greater in acetone-d6, where solvent interactions



Polar Solvent Nonpolar Solvent



Transition Transition
State State




A nonsolvated
AH ltd
solvated



Nonsolvated
Nitrone


Solvated
Nitrone



AH > AH
solvated nonsolvated



Figure 3-5. Comparison of AH9 in Polar and Nonpolar Solvents Assuming
Strong Solvent-Nitrone Interactions in the Polar Solvent.









or even complexation of the nitrone might take place, than in benzene-d6.

(See Figure 3-5.) Solvent interactions observed in acetone-d6 might help to

explain the more random product ratios found for more polar solvents in

Table 3-3, too. The actual differences that one would observe between the

activation parameters would be within the uncertainties given for the

kinetics results, however. Table 3-8 shows that the difference in AHO

between the formation of the two products 38a and 39a is at most 1.4

kcal/mole,* irrespective of the fact that 38a is strongly favored in benzene-

d6. Since the spread of relative rates in the solvent study is small, the

differences in AH0 between the solvents would also be expected to be

minimal (<1.5 kcal/mole) in spite of any differences in solvation of the

nitrone. In view of this, it is not surprising that neither the activation

parameters nor the UV and IR studies detected strong solvent interaction or

complexation with the nitrone. The factors affecting the kinetics of the

reaction of MFA with N-methyl-C-phenylnitrone are extremely subtle.

In addition to transition-state dipole-dipole interactions and solvation

of the nitrone and products, there is also the possibility that nucleophilic

solvation of the fluorines may play a role in these dipolar cycloadditions.

The propensity of covalently-bound fluorine to undergo nucleophilic solvation

is reflected by the enormous solvent dependence of 19F NMR chemical

shifts.82 If there were, indeed, greater solvation of the fluorine of MFA in

polar solvents, then this would give another explanation for the

experimentally observed increase in formation of the minor product 39a in

polar solvents for the solvent study. It would be interesting to know how

viable the nucleophilic solvation argument might be. One can obtain a


*There is good literature precedent for this figure (ref. 73).









rough measure of this from the gas-phase basicities,83 which are reflected

by the proton affinities, of fluorine-containing compounds. For example,

the proton affinities, defined as the enthalpies for the gas-phase reaction

BH+-B + H+, of ethane, CH3F, CH3C1, H20, and NH3 are 142, 151, 160,

170, and 205 kcal/mole, respectively.84 From these values, the nucleophilic

solvation argument seems to be of limited value, but it does provide an

interesting explanation for the product ratios in the solvent study results.

Additional work will have to be done to evaluate the contribution of

nucleophilic solvation to the reactions of MFA with 1,3-dipoles.

Summary

To summarize, in spite of one's usual steric prejudices, fluoroallene

(MFA) underwent clean, high-yield 1,3-dipolar cycloadditions with nitrones

and diazomethane-d2 to strongly favor the adduct from syn addition. These

reactions were well-behaved second-order kinetic processes that were com-

pletely consistent with other well-studied 1,3-dipolar cycloadditions. The

products from these reactions were unambiguously characterized using

difference NOE experiments, an X-ray crystal structure, and several spectro-

scopic observations to make the stereochemical assignments.

Although the product regiochemistry and stereochemistry of MFA

cycloadditions could be well explained by molecular orbital arguments, it

was decided to defer this MO discussion until Chapter 4. In Chapter 4, the

[2+4] cycloadditions of MFA with cyclopentadiene and butadiene give

greater insight into how seriously these MO arguments should be considered

for explaining stereochemical preferences. In this chapter, it was shown

that transition-state dipole-dipole interactions were helpful to, in part,

explain the regiochemical and stereochemical preferences observed.






62

However, the reaction of MFA with N-methyl-C-phenylnitrone was also

found to be influenced by the solvation of the nitrone and the cycloadducts.

In addition to these solvation influences, possible nucleophilic solvation of

the fluorines was considered, but more experimental results were needed to

determine its overall contribution to rationalizing the results. In general, it

seemed that all of the factors affecting the stereochemical outcome of

these reactions were extremely subtle in spite of the contrasting product

ratios observed for the solvent study.














CHAPTER 4
STEREOCHEMISTRY OF THE [2+4]
CYCLOADDITIONS OF FLUOROALLENE

Introduction

In the previous chapter, it was shown that an allylic halogen sub-

stituent on a dipolarophile strongly influences the stereochemical outcome

of 1,3-dipolar cycloadditions. Surprisingly, both the past studies of cis-3,4-

dichlorocyclobutene 44 and the current studies of monofluoroallene (MFA)

show a strong preference for syn addition of 1,3-dipoles. In contrast to




Cl


/P C 44
H-
anti- H



this, the [2+4] cycloadditions of 44 have been shown to strongly favor the

product from anti addition.85,86

The [2+4] cycloadditions of MFA with cyclopentadiene, butadiene, and

furan were also studied briefly, but not definitively. The reported syn:anti

addition ratios are approximately 50:50 for reaction with the first two

dienes, but a 70:30 preference for syn addition is claimed for the furan

reaction.12,87 Since the experimental section of this work shows that the

product ratios were not determined from crude reaction mixtures, it was of








interest to repeat these reactions and make more careful studies. Evidence

for syn addition to cyclopentadiene or butadiene would give more credibility

to molecular orbital arguments in rationalizing the stereochemical

preferences observed for the 1,3-dipolar cycloadditions of MFA.

Results

When a tenfold excess of cyclopentadiene was allowed to react with

MFA at 0C for 4.0 days, a quantitative yield of two products, 47 and 48,

was obtained. The product ratio, determined by both 19F N MR and gas-

liquid chromatography (GLC), was found to be 51.0:49.0 + 0.3% with a

miniscule preference for the syn adduct.



F


OOC
4 days

10 eq. 47 48

51.0 : 49.0 (0.3 %)

99 % Yield


When a sevenfold excess of butadiene was allowed to react with MFA

at 110 'C for 38 h in hexane, three adducts 49, 50 and 51 were obtained in

a 44% overall yield. The stereochemical ratio for the [2+4] adducts was

determined to be 59:41 1% by 19F NMR at 282 MHz. The same 49:50

ratio was obtained upon repeating the reaction. Besides the dimers of

butadiene and MFA, there were also three possible minor products observed

by GLC in less than 3% total yield. They were not identified.















1100C, 38 h
hexane


7 eq.


F

49 H


49


59 : 41 (1 %)

38 % Yield


(Also isolated


in 6 % Yield)


The [2+4 ] cycloadducts 49 and 50 were isolated by preparative GLC,

and their 1H and 13C NMR spectra were obtained. The stereochemical

assignments were made on the basis of the 1H NMR chemical shifts given

below and the 13C NMR carbon-fluorine coupling constants shown in Table

4-1. The spectral characteristics were analogous to those of the nitrone


6 2.84


6 2.56


\ "--6 2.12
H


,'--6 2.39








Table 4-1. 13C NMR Coupling Constants to CHF for 49 and 50.


JCF for bis- JCF for
Compound Allylic Carbon, C3 Allylic Carbon, C5


49 3.1 Hz 7.6 Hz

50 7.7 Hz 1.9 (or 5.9) Hza

aThe assignment of C5 and C6 is ambiguous here, but both coupling
constants are smaller than that for C3.


adducts in Chapter 3, whose stereochemical assignments were confirmed by

an X-ray structure and difference NOE experiments.

It should finally be mentioned that a product stability experiment was

performed for 49 and 50. When an isolated mixture of the [2 +4] cyclo-

adducts was heated at 110-115C for 74 h in benzene-d6, there was no

rearrangement and the stereochemical ratio remained the same.

When a tenfold excess of furan was allowed to react with MFA at

51 C for 98 h, two cycloadducts, 52 and 53, were formed in 60% yield.






F
S0 0
\= F H

+510C H
98 h

10 eq. 52 53


63 : 37 (1 %)

60 % Yield









The product ratio was found to be 63:37 + 1% by GLC, and the results

were reproducible in a separate experiment. The stereochemical

assignments were straightforward in view of past spectroscopic studies.

Discussion

Syn-Addition in [2+4 Cycloadditions of MFA

Interestingly, a close examination of the Diels-Alder reactions of MFA

with cyclopentadiene, butadiene, and furan does show some preference for

syn addition of the allene. The preference is not nearly as great as that

observed in the 1,3-dipolar cycloadditions, however. In explaining the stereo-

chemical addition preferences, the cyclopentadiene and furan cases do not

provide strong evidence for the involvement of molecular orbital (MO)

arguments. The syn:anti ratio is practically random for the cyclopentadiene

reaction. Also, the presence of the oxygen in the furan case opens up any

stereochemical arguments to dipole-dipole interactions or other interactions

discussed in Chapter 3. The only reaction which seems supportive of MO

arguments is the one involving butadiene.

The results from the reaction of MFA with butadiene must be treated

with care for several reasons, however. For example, there are two

reasonable pathways to obtain the products. The first is a competing [2+2]

and [2+4] pathway, and the other is a totally diradical mechanism. This

mechanistic problem has been considered at length for the analogous

reaction of 1,1-difluoroallene and butadiene with conclusive evidence support-

ing the former pathway.12,16,88 A more serious consideration is the

possible rearrangement of the cyclobutane adduct 51 to preferentially form

syn adduct 49 under the reaction conditions. This seems unlikely since 54

and 55, which are thermally similar to 51, do not interconvert until

temperatures above 2000 C.88 A final consideration here is leakage from














F

F 0? CF2 >2000: NF

SNC NCL


51 49 54 55





the [2+2] reaction to preferentially form a small amount of 49 from an

intermediate diradical. This, again, seems unlikely since the reaction of

MFA with l,1-dichloro-2,2-difluoroethylenel,9 discussed in Chapter 1

demonstrates that both the formation and ring closure of any intermediate

diradical is completely stereorandom with respect to the fluorine. The

conclusion of this argument is that the reaction of MFA with the less-

reactive, more-selective butadiene does, indeed, give some support to

molecular orbital arguments for explaining the syn preferences observed in

MFA reactions.

Theoretical Study for MFA

Molecular orbital (MO) theory has been enormously successful in

organizing and explaining a vast body of experimental results.89 In fact, it

has been so successful that sometimes simpler explanations for rationalizing

results seem to be overlooked or underplayed in favor of making MO

arguments. An example of this is the invocation of secondary orbital

interactions,74 like the kind possible in MFA, to explain the regiochemistry

and stereochemistry of cycloaddition reactions. This is why the dipole-

dipole interactions and solvation phenomena were considered at length in








Chapter 3. Nevertheless, MO theory does give some interesting insights

into explaining the stereochemical preference of MFA to undergo syn

addition.

It seems clear that the cycloadditions of MFA studied in this

dissertation are members of the class of "concerted" reactions. In the 1,3-

dipolar cycloadditions, the small AH#, large negative ASO, and small spread

of relative rates observed over a wide range of solvent polarities give

testimony to this fact. In the [2+4] reactions, the relatively low tempera-

tures required to produce good yields of the cycloadducts also supports this

statement. The question still remains: What is the origin of the stereo-

chemical preferences observed in the cycloadditions of MFA in terms of MO

theory? Intermediate neglect of differential overlap (INDO) calculations90

for MFA suggest an interesting answer.

The first task in this theoretical study is to determine which orbital

of MFA is involved in the controlling frontier MO interaction. There is

much precedent to suggest that it is the lowest unoccupied MO for MFA.66

Houk et al. have considered the effect of electron-releasing, electron-

withdrawing, and conjugating substituents on the orbitals of dienophiles91

and dipolarophiles.92,93 It is found that, in general, both the highest

occupied molecular orbital, HOMO, and the lowest unoccupied molecular

orbital, LUMO, of the 7r-bond have orbital energies which are lowered

significantly when under the influence of an electron-withdrawing

substituent. A CHF or CF2 group on a carbon-carbon double bond would be

expected to influence the orbitals similar to the electron-withdrawing groups

that Houk considered. Houk also noted that when comparing an electron-

rich dipolarophile with an electron-deficient one, the controlling frontier MO

interaction changed from the HOMO to the LUMO.










These ideas are further illustrated in Figure 4-1. The IN DO

calculations for allene, fluoroallene, and 1,1-difluoroallene indicate that as

more fluorines are placed on allene, the energies of the SHOMO and LUMO

of the C2-C3 rT-bond are both lowered considerably, but the orbital energies

of the HOMO and SLUMO of the nonreactive orthogonal C1-C2 7T-bond

approach each other. This is in excellent agreement with ab initio

calculations for 1,1-difluoroallene.18 Interestingly, the INDO calculations

from Figure 4-1 predict that the orbital energies of MFA are more like

those of difluoroallene than allene itself.


Allene


Fluoroallene


1,1-Difluoroallene


-LU\N0's


- SLLDM

-LUHD





R11)a.


--SUD
-- UN)


- -HOO's


-SHCDO


- SHcIO


Figure 4-1. Comparison of Selected Orbital Energies (Eigenvalues) for
Allene, Fluoroallene, and 1,1-Difluoroallene.


Energy
(in eV)








It should finally be noted that the regiochemistry of nitrone cyclo-

additions is also consistent with having the LUMO of MFA as the

controlling frontier MO interaction. It has been observed that the usual

reactions of nitrones with non-electron-withdrawing dipolarophiles are HOMO-

controlled and 5-substituted isoxazolidines are produced. The 4-substituted

isoxazolidines experimentally observed for the reactions of MFA are found

in LUMO-controlled situations.66
Now that the LUMO of MFA has been established as the controlling

frontier MO for the molecule, it is time to investigate the possibility of

significant secondary orbital interactions in the LUMO wavefunction. A

portion of the eigenvector matrix for MFA has been extracted for the three

carbons in the LUMO as shown in Table 4-2. These eigenvectors show the

proportions in which atomic orbitals mix to form the resultant molecular

orbital. Interestingly, there are significant coefficients of -0.112 and -0.286

for the 2s and 2pz orbitals, respectively, of C1, the carbon bearing the

fluorine. If these orbitals mix as shown, an asymmetric orbital results. If






0 Mix






this asymmetric orbital further mixes with a 2pz orbital on C2, the middle

carbon of MFA, there is greater reinforcement of the wavefunction at C2

on the side of the molecule bearing the fluorine. A computer-generated

graph of the resultant LUMO confirms these expectations as shown in

Figure 4-2. This asymmetric LUMO may give rise to the stereochemical










Table 4-2. Eigenvectors (Coefficients) for the Atomic Orbitals
of the Carbons in the LUMO of Fluoroallene.


Atom Atomic Orbital Eigenveetora


C1 2s -0.112

2Px 0.087

2py 0.014

2pz -0.286

C2 2s 0.034

2px -0.018

2py -0.007

2pz -0.567

C3 2s -0.016

2Px 0.017

2py -0.089

2pz 0.660

aA more complete table of eigenvectors for both MFA and DFA along with
axis orientations are shown in Appendix C.


.--- H-
~I -~, --~N'
1'
i -


Figure 4-2. LUMO of Fluoroallene.


-' :
'~~Y-;---__L-----C--C-- i;
--








preferences observed for concerted cycloadditions of MFA. Indeed, the

preceding argument is completely analogous to that previously made to

explain the regiochemistry of cycloaddition of 1,1-difluoroallene with

diazoalkanes.19

Summary

In summary, it was shown that the syn:anti ratio for the [2+4] cyclo-

addition of MFA with cyclopentadiene was nearly 50:50 while a moderate

preference for syn addition was observed for reactions with butadiene and

furan. Only the butadiene reaction seemed to unambiguously support the

use of molecular orbital arguments in explaining the stereochemical

preferences observed in MFA cycloadditions, however. A theoretical study

of MFA using INDO calculations did suggest that there were secondary

orbital interactions present in the LUMO. A computer-generated graph of

the LUMO showed that the lobe at the middle carbon of MFA was much

larger on the side of the molecule bearing the fluorine. It was thought

that this explanation, in conjunction with past explanations, may help

rationalize the [2+4] and 1,3-dipolar cycloaddition behavior of MFA. One

should probably note the author's comments on this subject in Chapter 5,

however.














CHAPTER 5
CONCLUSION

The mechanistic studies for the thermal cycloadditions of fluoroallene

and 1,1-difluoroallene have been quite fruitful. The small size of the

fluorine substituents and the high reactivity of these allenes have allowed

some very interesting results to be obtained.

A major achievement was made by obtaining conclusive evidence for

two kinetically distinguishable intermediates in a [2+2] cycloaddition

mechanism. This opens the door to research in an area which has not

made significant mechanistic progress for several years. Also, the first, to

our knowledge, Hammett type relative reactivity study of a [2+2] reaction

was described. This may also be a productive area for additional work.

A second major achievement was the conclusive structural proofs for

the adducts obtained in the [2+4] and 1,3-dipolar cycloadditions of fluoro-

allene. It was curiously observed that there seemed to be a marked

preference for syn addition of the allene in spite of one's usual steric

prejudices. Several avenues were explored in trying to rationalize the

allene's cycloaddition behavior, but the studies seemed to prompt more

questions than answers. It is pertinent to briefly elaborate on a few of

these concerns for consideration in future work.

There seemed to be a scattering of product ratios with solvent ET

values for the fluoroallene/N-methyl-C-phenylnitrone solvent study shown in

Table 3-3. It would be interesting to probe more deeply into the solvation

phenomena influencing this reaction to see if a rationalization for the data

could be found. Also, it would be interesting to find a different molecular








system or analytical method to repeat the kinetic studies of Chapter 3.

With reasonable uncertainties for the activation parameters, these studies

could be quite important. Finally, although Chapter 4 proposed that the

syn addition preferences of fluoroallene might be explained by molecular

orbital theory, one should realize that the secondary orbital interactions

observed in semiempirical calculations (like INDO) are not always observed

in higher level calculations.94 Ab initio calculations for fluoroallene would

be quite informative.

In conclusion, there are opportunities for promising research in several

areas here. Continued study of the cycloadditions of fluoroallene and 1,1-

difluoroallene should be productive for many years to come.














CHAPTER 6
EXPERIMENTAL SECTION

General Methods

Infrared (IR) spectra were determined as films between KBr plates or

as CC14 solutions in 0.10 mm matched liquid cells. The IR spectra were

taken on a Perkin-Elmer 283B spectrophotometer and are reported in cm-1.

Ultraviolet (UV) spectra were determined on a Perkin-Elmer 330 spectro-

photometer in the absorbance mode from 240 nm to 500 nm and from 0 to

1.5 absorbance units. Spectro-grade solvents and matched 1.00 cm quartz

cells were used.

Nuclear magnetic resonance (NMR) chemical shifts for 1H and 13C

spectra are reported in parts per million downfield (6) from internal TMS.

Chemical shifts for 19F spectra are reported in parts per million upfield (4)

from internal CFC13. All spectra were taken in CDC13 unless otherwise

specified. The 13C multiplicities were determined with the aid of off-

resonance or INEPT spectra. All NMR spectra were taken on a Varian EM-

360L, a Jeol FX-100, a Jeol FX-90Q, or a Nicolet NT-300 spectrometer.

Mass spectra and exact masses were determined on an AEI-MS 30

spectrometer at 70 eV. Elemental analyses were performed by Atlantic

Microlabs or by the University of Florida microanalysis service. Melting

points and micro-boiling points were determined with a Thomas-Hoover

capillary melting-point apparatus and are uncorrected.

Bulk chromatographic separations were performed by either gas-liquid

chromatography (GLC) or flash chromatography. The GLC separations were









done on a Varian Aerograph A90-P3 gas chromatograph with a thermal

conductivity detector. Flash chromatography was performed with strict

adherence to the published method,37 and 230-400 mesh silica gel was used

in all cases.

The product ratios for the deuterated styrene work were determined

on a Varian Aerograph A90-P3 gas chromatograph. Other product ratios

and percent yields were determined as an average of at least three

injections on a Hewlett-Packard 5790A gas chromatograph with a flame

ionization detector, or by multiple 19F and 1H NMR integration. The

internal standards used to determine the yields are given in the text where

necessary.

Experimental Procedures

2,2-Difluoro-3-phenyl-l-methylenecyclobutane (18a) and 3-Phenyl-l-
(difluoromethylene)cyclobutane (19a).

Into each of three 30-ml pyrex bulbs, each containing 2.75 ml (24.0

mmole) of doubly degassed styrene, was condensed 15.3 mmole of previously

degassed DFA. After sealing under vacuum, the bulbs were placed into a

stirred oil bath at 97-99 C. The bulbs were removed, cooled, and opened

at the end of 3.0 h, 6.3 h, and 8.3 h. The regioisomer ratio 18a:19a was

determined to be 81.8:18.2 (0.3) for each bulb by GLC using a 1/4 in. x 20

ft. 10% DNP column at 128 C (45 ml/min flow), and the reaction was

shown to be essentially complete within 3.0 h by a comparison of the

chromatograms. Further examination of the 3.0 h reaction by TLC, GLC,

and 19F NMR demonstrated that there were no other products other than

the oligimers of DFA. The excess styrene was removed from the 3.0 h

reaction mixture by rotary evaporation at reduced pressure, and the

products were separated by flash chromatography on a 40-mm column with








15 cm of 230-400 mesh silica gel using 25-ml fractions and hexane as the

eluant. In this way, 0.54g (3.0 mmole) of 18a, which was further purified

by preparative GLC at conditions similar to those given above, and 0.04g

(0.2 mmole) of 19a were each isolated as colorless, sweet-smelling oils in a

combined isolated yield of 21%.

18a: Rf=0.34; IR, 3070, 3038, 2938 (w), 1500 (s), 1454, 1432, 1276

(vs), 1155 (vs), 1113 (s), 1050 (vs), 927 (vs), 724 (vs), 694 (vs) cm-1; 1H

NMR (300 MHz) 6 7.32 (m, 5H), 5.60 (m, 1H), 5.30 (m, 1H), 3.99 (d of
virtual quartets, 1H, JHF = 13.4 Hz, JHF = 10.2 HZ, JHH = 10.2 Hz

demonstrated by decoupling experiments), 2.87 (m, 2H); 19F N MR (282 MHz)
91.4 (dddd, 1F, JFF = 209.1 Hz, JHF = 13.6 Hz, JHF = 5.1 Hz, JHF = 2.5

Hz), 107.4 (dd, 1F, JFF = 209.1 Hz, HHF = 10.5 Hz); 13C NMR (75 MHz) 6
144.1 (t, JCF = 20.7 Hz, C1), 135.2 (Ph), 128.5 (Ph), 128.1 (Ph), 127.4 (Ph),

119.0 (dd, JCF = 286.6 Hz and JCF = 278.4 Hz, CF2), 112.2 (olefinic CH2),

49.9 (t, JCF = 21.6 Hz, CHPh), 29.1 (dd, JCF = 14.3 Hz, JCF = 4.0 Hz,

aliphatic CH2); MS, m/e 180 (55), 165 (66), 152 (25), 140 (43), 129 (100),
115 (28), 104 (100), 89 (16), 78 (49), 63 (21), 51 (39), 39 (35); M+ 180.07466

0.00103 (5.7 ppm), calc'd for C11H10F2 180.07506, deviation 0.00039 (2.2

ppm); Anal. Calc'd for C11H10F2: C, 73.31; H, 5.59. Found: C, 73.40; H,
5.59.

19a: Rf=0.46; IR 3070, 3034, 2969, 2931 (s), 1782 (vs), 1496, 1450,

1241 (vs), 1139 (s), 1096 (vs), 749 (vs), 694 (vs) cm-1; 1H NMR (300 MHz) 6

7.25 (m, 5H), 3.58 (virtual pentet, 1H, J = 8.3 Hz), 3.08 (m, 2Htrans), 2.79
(m, 2Hcis); 19F NMR (282 MHz) 4 97.3 (m); 13C NMR (75 MHz) 6 150.8 (t,

JCF = 282.3 Hz, CF2), 144.7 (Ph), 128.6 (Ph), 126.5 (Ph), 126.4 (Ph), 84.0








(t, JCF = 26.2 Hz, C1), 36.1 (CHPh), 31.7 (CH2); MS m/e 180 (33), 165

(36), 159 (31), 152 (19), 140 (11), 129 (73), 115 (20), 104 (100), 91 (12), 78

(60), 63 (17), 51 (42), 39 (23); M+ 180.07468 0.00099 (5.5 ppm), calc'd for

C11Ho1F2 180.07506, deviation 0.00038 (2.1 ppm); Anal. Calc'd for

C11H10F2: C, 73:31; H, 5.59. Found: C, 73.46; H, 5.61.

Similarly prepared samples were heated at 700 for 15 min, 30 min, 1

h, 2 h, 3 h, and 6 h with the ratios (18a:19a = 83.1:16.9 0.2) remaining

constant for all times of reaction even though none of the reactions had

gone to completion.

2,2-Difluoro-3-(4-methoxyphenyl)-l-methylenecyclobutane (18b) and 3-(4-
Methoxyphenyl)-l-(difluoromethylene)cyclobutane (19b)

Into a 15-ml pyrex bulb, which contained 1.50 ml (11.2 mmole) of

doubly degassed para-vinylanisole and 29 mg of hydroquinone, was condensed

4.4 mmole of degassed DFA. After sealing under vacuum, the bulb was

placed into a stirred oil bath at 61-63 0C for 16.0 h. The bulb was cooled

and opened, and the regioisomer ratio 18b:19b was determined to be

86.1:13.9 by GLC using a 1/4 in x 10 ft 10% diisodecylphthalate column at

150 C (73 ml/min flow). The products were separated by flash chromato-

graphy on a 30-mm column using carbon tetrachloride as the eluant. The

colorless products, when isolated, were each purified by preparative GLC at

conditions similar to those given above to afford 121 mg (0.576 mmole) of

18b and 8.0 mg (0.038 mmole) of 19b. The combined isolated yield was

14%.

18b: Rf=0.60; IR, 3007 (w), 2970, 2947, 2847, 1615 (s), 1587, 1517

(vs), 1467, 1445, 1278 (vs), 1252 (vs), 1221 (s), 1182 (s), 1160 (s), 1122 (s),

1080 (s), 1053 (vs), 1037 (s), 933 (s), 835 (s), 812, 782, 745 cm-1; 1H NMR








(100 MHz) 6 7.17 and 6.87 (AB pattern, 4H, JHH = 8.9 Hz), 5.57 (m, 1H),

5.25 (m, 1H), 3.90 (d of virtual quartets, 1H, JHF = 13.5 Hz, JHF = 9.8

Hz, JHH = 9.8 Hz), 3.77 (s, 3H), 2.80 (m, 2H); 19F NMR (282 MHz) ( 91.8

(dddd, 1F, JFF = 208.9 Hz, JHF = 13.5 Hz, JHF = 5.2 Hz, JHF = 2.5 Hz),

107.7 (dd, 1F, JFF = 208.9 Hz, JHF = 10.3 Hz); 13C NMR (25 Mz) 6 158.9

(Ph), 144.2 (t, JCF = 20.8 Hz, C1), 129.1 (Ph), 127.2 (Ph), 119.0 (dd, JCF
286.3 Hz and JCF = 277.7 Hz, CF2), 113.8 (Ph), 112.0 (olefinic CH2), 55.2
(OCH3), 49.2 (t, JCF = 21.3 Hz, CHAr), 29.3 (dd, JCF = 14.7 Hz and JCF

= 4.9 Hz, aliphatic CH2); MS m/e 210 (100), 195 (31), 179 (22), 170 (11),
159 (23), 134 (77), 119 (47), 91 (23), 84 (31), 77 (11), 65 (11), 51 (10); M+

210.08649 0.001179 (5.6 ppm), calc'd for C12H12F20 210.08562, deviation
+ 0.00087 (4.1 ppm); Anal. Calc'd for C12H12F20: C, 68.55; H, 5.76.

Found: C, 68.68; H, 5.79.
19b: Rf=0.73; IR, 2965, 2934, 2840 (w), 1785 (vs), 1613, 1512 (vs),

1461, 1442, 1290, 1250 (vs), 1227, 1179 (s), 1140, 1112, 1096 (s), 1038 (s),

826 (s) cm-1; 1H NMR (100 MHz) 6 7.18 and 6.90 (AB pattern, 4H, JHH =
8.9 Hz), 3.80 (S, 3H), 3.58 (virtual pentet, 1H, JHH = 8.3 Hz), 2.91 (m, 4H);

19F NMR (282 MHz) ( 97.4 (m); 13C NMR (25 MHz) 6 158.2 (Ph), 150.7 (t,

JCF = 282.0 Hz, CF2), 136.8 (Ph), 127.3 (Ph), 113.9 (Ph), 83.9 (t, J = 26.2
Hz, C1), 55.3 (OCH3), 35.4 (CHAr), 31.9 (CH2); MS m/e 210 (100), 195 (26),
179 (18), 159 (22), 134 (100), 119 (61), 91 (41), 84 (44), 77 (11), 65 (22), 49

(53), 39 (12); M+ 210.08584 0.001695 (8.1 ppm), calc'd for C12H12F20
210.08561, deviation + 0.00024 (1.0 ppm).

2,2-Difluoro-3-(4-nitrophenyl)-l-methylenecyclobutane (18c) and 3-(4-
Nitrophenyl)-l-(difluoromethylene)cyclobutane (19c)

Into a 5-ml pyrex bulb, which contained 0.50 ml (3.6 mmole) of
degassed para-nitrostyrene and 20 mg of 4-tert-butylcatechol, was condensed








0.32 mmole of degassed DFA. After sealing under vacuum, the bulb was

placed into a stirred oil bath at 101-103 C for 2.0 h. Several similar

reactions were performed, and the reaction mixtures were combined. The

products were separated by flash chromatography on a 30-mm column using

a 6% ethyl acetate in hexane solution as the eluant. In this way, 110.2 mg

(0.490 mmole) of 18c was obtained as a bright yellow oil. Purification of

19c, which was contaminated with para-nitrostyrene, was attempted by GLC
on a 1/4 in x 10 ft 4% diisodecylphthalate column at 150C (86 ml/min).

This afforded 3.1 mg of a bright yellow oil which contained mostly 19c

with some decomposition products. The combined 18c/19e isolated yield

was 26%.

18e: Rf=0.32; IR, 3085 (w), 2940 (w), 1600 (s), 1514 (vs), 1438, 1348

(vs), 1272 (s), 1218, 1200, 1155 (s), 1119 (s), 1108 (s), 1076 (s), 1048 (s), 930

(s), 850 (s), 730 (s), 692 cm-1; 1H NMR (100 MHz) 6 8.20 and 7.43 (AB

pattern, 4H, JHH = 8.91 Hz), 5.65 (m, 1H), 5.36 (m, 1H), 4.10 (d of virtual


quartets, 1H, JHF = 12.7 Hz, JHF = 9.8 Hz, JHH =

19F NMR (282 MHz) ( 90.8 (dddd, 1F, JFF = 209.7

JHF = 5.0 Hz, JHF = 2.5 HZ), 106.4 (dd, 1F, JFF =
Hz); 13C NMR (25 MHz) 6 147.2 (Ph), 142.9 (t, JCF

(Ph), 129.0 (Ph), 123.5 (Ph), 118.4 (dd, JCF = 288.09

Hz, CF2), 113.2 (olefinic CH2), 49.6 (t, JCF = 21.97

JCF = 13.43 Hz and JCF = 4.88 Hz, aliphatic CH2);
(17), 208 (98), 185 (5), 179 (74), 178 (100), 177 (50),

(86), 149 (22), 146 (19), 128 (74), 119 (60), 103 (60),


9.8 Hz), 2.92 (m, 2H);

Hz, JHF = 12.9 Hz,

209.7 Hz, JHF = 10.1

= 20.75 Hz, C1), 142.6

Hz and JCF = 278.32

Hz, CHAr), 28.9 (dd,

MS m/e 225 (7), 209

164 (42), 160 (25), 159

91 (33), 77 (72), 63


(20), 51 (28), 43 (66), 39 (24), 32 (32); M+ 225.06213 0.00045 (20 ppm),

calc'd for C11H9F2NO2 225.06013, deviation + 0.00199 (8.87 ppm); Anal.









Calc'd for C11H9F2NO2: C, 58.66; H, 4.04; N, 6.22. Found: C, 58.63; H,

4.08; N, 6.20.

19c: Rf=0.50; 1H NMR (100 MHz) 6 8.19 and 7.41 (AB pattern, 4H,

JHH = 8.91 Hz), 3.75 (virtual pentet, 1H, JHH = 8.25 Hz), 3.01 (complex m,
4H); 19F NMR (282 MHz) c 96.4 (m).

Quantitative Individual and Competitive Olefin + 1,1-Difluoroallene
Experiments

The fifteen 5-ml pyrex bulbs used in these experiments were all

washed thrice with distilled water, thrice with acetone, and dried overnight

in a 118C oven. The styrene, p-vinylanisole, and 1-cyanovinyl acetate

starting materials were shown by 100 MHz 1H NMR and GLC to be of

sufficient purity to use directly from their bottles. The p-nitrostyrene was

purified by flash chromatography before use. The DFA was purified by low-

temperature* preparative GLC on a 1/4 in x 20 ft 20% SE-30 column at 640

C (60 ml/min flow) to afford a material of extremely high spectroscopic

purity.

For each of the individual olefin + DFA experiments, 0.500 ml of an

olefin was placed into a 5-ml bulb with either 10 mg of hydroquinone or, in

the case of p-nitrostyrene, 20 mg of 4-t-butylcatechol. After the olefin

had been degassed twice, enough previously degassed DFA was condensed

into the bulb so that an olefin:DFA mole ratio of 10:1.0 was maintained.

The bulb was sealed under vacuum and placed into a well-stirred oil bath at

the reaction conditions shown in Tables 2-1 and 2-4 of Chapter 2. The

bulb was cooled and opened, and the regioisomer ratio and percent yield



*The syringe was cooled on dry ice for at least 15 min before each
injection.








were determined by GLC and/or 19F N MR integration of the reaction

mixture. The method used for the competition experiments was similar

except that all reactions were carried out at 100C for 2.0 h and the

styrene:variable olefin:DFA mole ratio was 5:5:1 with 0.250 ml of styrene

used in each run. The results are given in Tables 2-2 and 2-5.

Examination of these product mixtures by 19F NMR, TLC, and GLC

indicated that no products other than the oligimers of DFA were formed.

Yields were determined by comparison of each reaction mixture to a known

composition of purified major isomer, 18 or 27, in its respective starting

olefin as an external standard. Each reaction mixture and standard-

containing solution was analyzed by GLC (1/8 in x 10 ft, 20% DNP) from 3

to 5 times, with the average being reported.

For all of the reactions involving a-nitrostyrene and for the styrene/2-

methoxystyrene competitive olefin experiment, the regioisomer ratios were

determined by 282 MHz 19F NMR in CDC13. Use of m-bromobenzotri-

fluoride as an internal standard allowed calculation of the % yields. The

samples were all degassed and sealed under vacuum. A T1 population

inversion experiment33 showed that the longest T1 < 6 sec for these

compounds, and thus, a 10 sec pulse delay was used.

(Z)-6-Deuteriostyrene (23)

A solution of 40.2g (0.335 mole) of catecholborane and 36.2 g (0.351

mole) of phenylacetylene-d117 was stirred under nitrogen at 100C for 20

min. During slow warming with an oil bath, an exothermic reaction took

place at 550 C. It was controlled by periodic application of an ice-water

bath. After stirring for 2.0 h at 70C, 700 ml of distilled water was

slowly added and the milky white mixture was stirred at 890C for 4.0 h.









Upon cooling, the filtered solid was washed with hexane and recrystallized

from water using hot filtration. In this way, 36.0 g of white plates were

collected. These were dried at 60 C, in vacuo, overnight to afford 20.0 g

(50.9 mmole) of the trimer of c-deuterio-8-phenylethenylboronic acid 21

(45.6%); m.p. 150-153oC; 1H NMR (acetone-d6) 6 7.50 (m); M+ 393.1982 +

0.0025 (6.4 ppm), calc'd for C28H18D3B303 393.1958, deviation 0.00238

(6.1 ppm); M.S. m/e (relative intensity), 393 (100), 131 (38.5), all others

<15% rel. intensity.

The trimer (20.0 g, 0.134 mole), 8.38 g (0.135 mole) of ethylene

glycol, and 275 ml of toluene were heated at reflux with the azeotropic

removal of water for 20 h. The solvent was removed by rotary evaporation

at 20 torr to leave a liquid, which crystallized upon refrigeration. Re-

crystallization from n-hexane using hot filtration afforded 18.7 g (0.107

mole) of white needles (79.9%) of 2-((Z)-c-deuterio-6-phenyl)ethenyl-l,3,2-

dioxaborolane 22 which was stored in a vacuum dessicator; m.p. 47.5-49.0

C; 1H NMR (CDC13, 100 MHz) 6 7.50 (m, 6H), 4.24 (s,4H).

To a melted solution of 18.5 g (0.106 mole) of the boronic ester and

100 mg of 4-t-butylcatechol at 65 C under nitrogen was added 67.1 g (1.12

mole) of freshly distilled (29C, 4.2 torr) glacial acetic acid dropwise.

After stirring at 90C for 1.5 h, the cooled solution was poured onto a 200

ml ice/100 ml pentane mixture, and after vigorous stirring, the water layer

was extracted with pentane. The combined organic extract was washed

with 0.5 N KOH solution and distilled water, dried, and the solvent was

removed by rotary evaporation at 200 torr. Removal of the last traces of

pentane by a stream of dry nitrogen followed by vacuum transfer of the

colorless residue gave 8.52 g (0.0810 mole) of cis-deuteriostyrene 23

(76.5%). The product was stored under nitrogen at -10 C with









approximately 50 mg of 4-t-butylcatechol added. The 300 MHz 1H NMR

spectrum agreed with the published spectrum17 and none of the trans

deuterated isomer was detected. A comparison of the mass spectrum of

styrene at 12 eV with that of the cis deuterated material suggested an

isotopic purity of 99.3 0.7%.

(E) and (Z)-4-Deuterio-2,2-difluoro-3-phenyl-1-methylenecyclobutane (24) and
(E) and (Z)-2-Deuterio-3-phenyl-l-(difluoromethylene)cvclobutane (25)

A representative procedure for the deuterated runs in Table 2-3 of

Chapter 2 is given below. Into a clean, dry 30-ml pyrex bulb containing a

doubly degassed mixture of 2.00 ml (17.2 mmole) of 99.3% Z-B-deuterio-

styrene and 41 mg of hydroquinone was condensed 7.9 mmol of previously

triply degassed DFA. After sealing under vacuum, the bulb was placed in a

stirred oil bath at 79-810C for 7.5 h. The bulb was cooled and opened, and

the regioisomer ratio 24:25 was determined to be 82:12 by GLC using a 1/4

in x 10 ft 10% DNP column at 1400C (48 ml/min flow). (In the 700C run

of this reaction, the GLC yield was determined at this point with the aid

of a calibration curve.95 A previously purified sample of 24 was used as

the external standard.) The excess Z-B-deuteriostyrene was removed by

vacuum transfer at 12 torr, along with some 25, unfortunately.

Crude separation of the residue by flash chromatography on a 45-mm

column using 14 cm of 230-400 mesh silica gel, 25-ml fractions, and hexane

as the eluant afforded 77 mg (0.42 mmole) of 25 followed by 378 mg (2.09

mmole) of 24 for a combined isolated yield of 32%. All trace impurities

were removed by repeating the flash chromatography for each separated

isomer. The ratios of Z to E isomers of 24 and 25 were determined by

300 MHz 1H NMR using a pulse delay of 30 sec to insure relaxation of the








protons integrated. In this way the stereochemical ratios for the deuterium

Z versus E to the phenyl ring were determined to be 58:42 for regioisomer

24 and 79:21 for 25. Analysis of each isolated regioisomer by GLC at

conditions similar to those given above showed a single peak. Examination

of the recovered Z-l-deuteriostyrene by 100 MHz 1H NMR demonstrated

that there was no isomerization of the starting material under the reaction

conditions.

An additional control whereby 19.5 mg of 25 was heated in heptane at

100C for 6 h showed no isomerization of 25 to the more stable 24 and no

change in the Z to E ratio of recovered 25.

1-Acetoxy-2,2-difluoro-3-methylenecyclobutanecarbonitrile (27) and 1-Acetoxy-
3-(difluoromethylene)cyclobutanecarbonitrile (28)

Into a 15-mi pyrex bulb, which contained 1.50 ml (14.0 mmole) of

doubly degassed 1-cyanovinyl acetate and 30 mg of hydroquinone, was

condensed 2.3 mmole of degassed DFA. After sealing under vacuum, the

bulb was placed into a stirred oil bath at 79-80 C for 8.0 h. The bulb was

cooled and opened, and the regioisomer ratio 27:28 was determined to be

78.7:21.3 by GLC using a 1/4 in x 10 ft 10% diisodecylphthalate column at

137 C (55 ml/min flow). The excess 1-cyanovinyl acetate was removed by

short-path distillation at 12 torr to obtain 150 mg of a brown oil. The

products were separated by preparative GLC at the conditions described

above to afford 33.5 mg (0.179 mmole) of 27 and 4.1 mg (0.022 mmole) of

28 for a combined isolated yield of 8.7%. Both products were colorless

oils. Product 28 was the first eluted.

27: IR 3008 (w), 2948 (w) 1765 (vs), 1421 (s), 1370 (s), 1283 (vs), 1221

(vs), 1192 (vs), 1127 (vs), 1040 (vs), 1000 (s), 980 (s), 960 (s), 936, 907 (s),








836, 840, 730 (s) cm-l; 1H NMR (100 MHz) 6 5.84 (m, 1H), 5.57 (m, 1H)

3.39 (d of m, 1H, J = 17.6 Hz), 3.03 (d of m, 1H, J = 17.6 Hz), 2.21 (s,

3H); 19F NMR (282 MHz) > 98.0 (d of m, 1F, JFF = 212.0 Hz), 108.8 (d of

m, 1F, JFF = 212.0 Hz); 13C NMR (25.1 MHz) 6 168.0 (C=O), 137.1 (t, JCF
= 21.4 Hz, C3), 118.1 (olefinic CH2), 114.4 (dd, JCF = 296.0 Hz and JCF =

289.9 Hz, CF2), 113.5 (CN), 71.7 (t, JCF = 24.4 Hz, C1), 37.7 (dd, JCF =

9.2 Hz and JCF = 4.3 Hz, aliphatic CH2), 19.9 (CH3); MS m/e (no M- 127
(3.5), 109 (0.8), 100 (1.3), 90 (3.2), 82 (1.2), 76 (1.5), 75 (1.9), 64 (2.9), 51

(2.0), 43 (100.0), 39 (3.7), 32 (3.5); Anal. Calc'd for C8H7F2NO2: C, 51.34;
H, 3.78; N, 7.48. Found: C,51.26; H, 3.80; N, 7.40.

28: IR 2932 (w), 1790 (vs), 1762 (vs), 1411 (w), 1368, 1267 (vs), 1204

(vs), 1150, 1083, 1027 (s), 922 (w), 569 (w); 1H NMR (100 MHz) 6 3.53 (d of

m, 2H, J = 16.2 Hz, 3.14 (d of m, 2H, J = 16.2 Hz), 2.16 (s, 3H); 19F
NMR (282 MHz) P 91.7 (m); 13C NMR (75.3 MHz) 6 168.6 (C=0), 151.9 (t,

JCF = 285.5 Hz, CF2), 117.6 (CN), 78.0 (t, JCF = 29.5 Hz, C3), 64.6 (C1),
38.0 (t, JCF = 2.0 Hz, CH2), 20.5 (CH3); MS m/e (no MI), 127 (9.2), 108

(0.6), 100 (1.5), 90 (2.6), 76 (1.5), 75 (2.6), 64 (3.1), 51 (2.2), 43 (100.0), 39
(3.3), 32 (1.8).

N-(2-N aphthyl)-C-phenylnitrone (37e)

Into an Erlynmeyer flask was placed 11.2 g (64.7 mmole) of 2-nitro-

naphthalene, 315 ml of tetrahydrofuran, and 29.2 g of water. To this
rapidly stirred solution was added aluminum amalgam in small pieces over a

period of 1 h. The amalgam was prepared by tearing 3.75 g (139 mmole)
of aluminum foil into approximately 40 pieces and placing the pieces
separately into a 2% mercuric chloride solution for 15 to 30 sec followed









by washing with ethanol and tetrahydrofuran.96 The amalgam was used

immediately. The reduction was exothermic (490C) and a brown precipitate

formed. After all the amalgam had decomposed, the precipitate was

removed by suction filtration, and the solvent was removed by rotary

evaporation at reduced pressure to give an orange solid. The crude product

was recrystallized from chloroform followed by washing with benzene and

hexane to give, when dry, 6.58 g (41.3 mmole) of orange plates for a 63.9%

yield. The N-(2-naphthyl)hydroxylamine had a melting point of 135-1370C.

Into an Erlynmeyer flask was placed 6.23 g (39.1 mmole) of freshly

recrystallized N-(2-naphthyl)hydroxylamine and 70 ml of absolute ethanol.

The mixture was heated to 55 C to dissolve the amine whereupon 4.22 g

(39.8 mmole) of benzaldehyde was added with vigorous swirling. The

solution was set aside in the dark to cool. After 2.0 hours, the crude

product was collected by suction filtration and recrystallized twice from

ethanol to give 5.88 g (23.8 mmole) of pale yellow plates for a 60.9% yield

of 37c.

37c: mp 134-135 C; IR (CHC13) 3062, 2990 (s), 1508, 1445 (s), 1401

(vs), 1172 (s), 1079, 1063 (s), 900, 889, 807 (s), 683 (s), 425 (s) cm-1; 1H

NMR (100 MHz) 6 7.25-8.25 (m); MS m/e 247 (8), 231 (46), 230 (35), 141

(100), 140 (21), 127 (51), 115 (22), 114 (17), 77 (21); M+ 247.0998 0.0015

(6.0 ppm), calc'd for C17H13NO 247.0997, deviation +0.0001 (0.5 ppm).

(E) and (Z)-2-Methyl-3-phenyl-4-(fluoromethylene)isoxazolidines (38a) and
(39a).

Into an NMR tube, which contained a triply degassed solution of 120

mg (0.888 mmole) of N-methyl-C-phenylnitrone55 in 1.5 ml of CDC13, was

condensed 3.2 mmole of degassed MFA. The tube was sealed under vacuum

and kept at room temperature in the dark for 6 days. The progress of the








reaction was followed by 1H and 19F NMR. Upon completion, there were

two products present in an 82:18 ratio by 19F NMR. After the tube was

cooled and opened, the solvent was evaporated using a stream of dry

nitrogen to give 173 mg of an amber oil. The products were separated by

flash chromatography using silica gel and a 5% solution of ethyl acetate in

hexane. In this way, 26 mg (0.14 mmole) of 39a followed by 119 mg (0.616

mmole) of 38a were obtained as pale yellow oils for a combined isolated
yield of 84%. The stereochemical assignments were made, in part, with the

aid of difference NOE experiments as discussed in Chapter 3.

38a: Rf=0.29; IR (neat) 3032, 2960, 2852, 1707 (s), 1490, 1450, 1104

(vs), 1085 (vs), 1019 (s), 748 (s), 693 (vs), cm-l; 1H NMR (300 MHz) 6 7.34

(m, 5H), 6.61 (dm, JHF = 81.8 Hz, 1H), 4.52 (m, 2H), 4.43 (broad s, 1H),
2.68 (s, 3H), 19F NMR (282 MHz) P 131.3 (dm, JHF = 81.8 Hz); 13C NMR

(25 MHz) 6 141.3 (d, JCF = 225.1 Hz, CHF), 138.3 (Ph quat.), 128.4 (Ph),
127.8 (Ph), 126.8 (d, JCF = 8.6 Hz, olefinic quat. C4), 72.2 (CHPh), 65.5 (d,

JCF = 7.3 Hz, CH2), 43.5 (CH3); MS, m/e 193 (49), 148 (78), 147 (100), 146
(29), 133 (37), 116 (65), 115 (46), 77 (21), 51 (22), 42 (34); M+ 193.0899 -

0.0013 (6.7 ppm), calc'd for C11H120NF 193.0903, deviation -0.0004 (2.1

ppm); Anal. Calc'd for C11H120NF: C, 68.37; H, 6.26; N, 7.25. Found:
C, 68.21; H, 6.28; N, 7.20.

39a: Rf=0.46; IR (neat) 3030, 2960, 2850, 1710 (s), 1490, 1452, 1092

(vs), 1022 (s), 755 (s), 698 (vs), cm-1; 1H NMR (300 MHz) 6 7.33 (m, 5H),
6.15 (dm, JHF = 81.5 Hz, 1H), 4.71 (m, 2H, non-first-order AB pattern),

4.01 (broad s, 1H), 2.64 (s, 3H); 19F NMR (282 MHz) c 134.0 (dm, JHF

82.0 Hz); 13C NMR (25 MHz) 6 142.8 (d, JCF = 251.5 Hz, CHF), 137.3 (Ph
quat.), 129.2 (d, JCF = 12.2 Hz, olefinic quat. C4), 128.7 (Ph), 128.4 (Ph),









73.2 (d, JCF = 7.3 Hz, CHPh), 66.4 (d, JCF = 3.7 Hz, CH2), 42.9 (CH3);

MS, m/e 193 (49), 148 (76), 147 (100), 146 (23), 133 (39), 116 (70), 115 (52),

77 (22), 51 (23), 42 (33); M+ 193.0889 0.0019 (9.6 ppm), calc'd for

C11H120NF 193.0903, deviation -0.0014 (7.3 ppm); Anal. Calc'd for

C11H120NF: C, 68.37; H, 6.26; N, 7.25. Found: C, 68.18; H, 6.28; N,

7.21.

(E) and (Z)-2-(2'-N aphthyl)-3-phenyl-4-(fluoromethylene)isoxazolidines (38c)
and (39e)

Into an N MR tube, which contained a triply degassed solution of 217

mg (0.877 mmole) of N-(2-naphthyl)-C-phenylnitrone 37c in 1.5 ml of

CDC13, was condensed 2.9 mmole of MFA. The tube was sealed under

vacuum and kept at room temperature in the dark for 41 h. The progress

of the reaction was followed by 1H and 19F NMR. Upon completion, there

were two products present in an 84:16 ratio by 19F NMR. After the tube

was cooled in a dry ice/isopropanol bath and opened, the solvent was

evaporated using a stream of dry nitrogen to give 383 mg of a dark amber

oil. The products were separated by flash chromatography using silica gel

and a 4% solution of ethyl acetate in hexane. In this way, 32 mg (0.10

mmole) of 39c followed by 220 mg (0.720 mmole) of 38c were obtained for

a combined isolated yield of 93%. The products were recrystallized from

methanol to give snow white solids. A monocrystal suitable for an X-ray

structure determination was grown by slow evaporation of solvent from an

ethanolic solution of 38c in an uncapped NMR tube. The X-ray structure is

shown in Appendix B.

A product stability experiment was performed by heating the minor

isomer 39c at 61-64 C for 48 h in CDC13. There was no decomposition or

rearrangement of 39c detected by 100 MHz 1H NMR.








38c: mp 91-920C; Rf=0.31; IR (CC14) 3067, 3035, 2862, 1709 (s), 1632

(vs), 1599 (s), 1508, 1495, 1467, 1453, 1355, 1098 (vs), 1029 (s), 850 (s), 695
(s) cm-1; 1H NMR (300 MHz) 6 7.45 (m, 12H), 6.49 (ddt, 1H, JHF = 81.5
Hz, JHH = 1.7 Hz, JHH = 1.9 Hz by decoupling experiments), 5.65 (broad s,

1H), 4.61 (m, 2H, non-first-order AB pattern); 19F NMR (282 MHz) c 128.6
(dm, JHF = 81.9 Hz); 13C NMR (75 MHz) 6 147.6 (Ar quat.), 141.2 (d, JCF

= 255.6 Hz, CHF), 139.1 (d, JCF = 1.4 Hz, Ar quat.), 133.8 (Ar quat.),
129.9 (Ar quat.), 128.9 (Ar), 128.6 (Ar), 127.8 (Ar), 127.5 (Ar), 127.2 (Ar),

127.0 (Ar), 126.5 (Ar), 125.3 (d, JCF = 10.4 Hz, olefinic quat. C4), 124.3
(Ar), 116.8 (Ar), 110.6 (Ar), 69.6 (CHPh), 65.8 (d, JCF = 5.9 Hz, CH2); MS,

m/e 305 (100), 256 (18), 148 (36), 147 (69), 143 (16), 133 (24), 128 (21), 127
(56), 115 (59), 77 (17); M+ 305.1212 0.0015 (4.8 ppm), calc'd for

C20H160NF 305.1215, deviation -0.0004 (1.3 ppm); Anal. Calc'd for

C20H160NF: C, 78.67; H, 5.28; N, 4.59. Found: C, 78.79; H, 5.34; N,
4.56.

39c: mp 110-111C; Rf=0.46; IR (CC14) 3067, 3035, 2861, 1713 (s),
1633 (s), 1600 (s), 1508, 1495, 1467, 1455, 1355, 1106 (vs), 1030, 850, 698

(vs) cm-l; 1H NMR (300 MHz) 6 7.46 (m, 12H), 6.47 (ddt, 1H, JHF = 80.7
Hz, JHH = 2.2 Hz, JHH = 1.3 Hz by decoupling experiments), 5.22 (broad s,

1H), 4.88 (m, 2H, non-first-order AB pattern); 19F NMR (282 MHz) 4 129.2
(dm, JHF = 81.3 Hz); 13C NMR (75 MHz) 6 147.0 (Ar quat.), 142.5 (d, JCF
= 256.0 Hz, CFH), 139.1 (Ar quat.), 133.3 (Ar quat.), 129.7 (Ar quat.), 128.4

(Ar), 128.3 (Ar), 127.6 (Ar), 127.1 (Ar), 126.9 (Ar), 126.7 (Ar), 126.3 (d, JCF
= 10.2 Hz, olefinic quat. C4), 126.0 (Ar), 124.1 (Ar), 117.0 (Ar), 111.3 (Ar),
69.5 (d, JCF = 4.9 Hz, CHPh), 66.1 (CH2); MS, m/e 305 (40), 256 (23), 148

(30), 147 (87), 133 (32), 128 (44), 127 (100), 115 (89), 77 (33), 51 (27); M+









305.1210 0.0013 (4.2 ppm), calc'd for C20H160NF 305.1216, deviation

-0.0006 (2.1 ppm); Anal. Calc'd for C20H160NF: C, 78.67; H, 5.28; N,

4.59. Found: C, 78.81; H, 5.49; N, 4.41.

Relative Rate Studies for the Reaction of Fluoroallene with N-Methyl-C-
phenylnitrone in Various Solvents and with Nitrones in General

Into each of eight 9-inch NMR tubes, which each contained a degassed

solution of 20.0 mg (0.148 mmole) of N-methyl-C-phenylnitrone in 0.700 ml

of deuterated solvent, was condensed 1.47 mmole of degassed 99% MFA.

The tubes were sealed under vacuum and allowed to remain at 23-24 C in

the dark. The solutions were agitated by hand periodically. The progress

of the reactions was followed by 60 MHz 1H NMR. At least five integra-

tions of the nitrone methyl group at 3.95 ppm and the two isoxazolidine

product methyl groups at 2.65 ppm were obtained for each of five or more

points within the first three half-lives of the reaction. Plots of log(nitrone)

versus time were constructed from the data obtained for each tube, and the

pseudo-first-order rate constants were determined from them. The results

are summarized in Table 6-1. The reactions were allowed to go to comple-

tion, and the product ratios were determined by 19F NMR at 282 MHz as

shown in Table 3-3 of Chapter 3. The product ratios for the DMSO-d6 and

CD2C12 reactions were also determined by 1H NMR at 100 MHz. (There

was a strong solvent-product interaction observed in the DMSO-d6 19F NMR

spectrum of the isoxazolidine products which made that 19F N MR ratio

ambiguous.) Afterwards, the N MR tubes were cooled in a dry ice/isopro-

panol bath and opened, and the reaction mixtures were analyzed by GLC on

a 1/8 in x 10 ft 10% DNP column at 145C (11 ml/min flow). The product

ratios obtained by GLC were consistent with those obtained by 19F NMR.









Table 6-1. Pseudo-First-Order Rate Constants for the Solvent Study of the
Reaction of MFA with N-Methyl-C-phenylnitrone at 23-240C.

Pseudo-First- Correlation # of Points
Solvent Order k (see-1) Coefficient on Line


Benzene-d6 (2.81 0.04) x 10-5 0.9997 5

Dioxane-d8 (1.95 0.02) x 10-5 0.9996 7

CDC13 (9.58 0.19) x 10-6 0.9994 5

CD2C12 (9.48 0.26) x 10-6 0.9989 5

Acetone-d6 (9.57 0.12) x 10-6 0.9998 5

DMSO-d6 (9.22 0.20) x 10-6 0.9990 6

CD3CN (8.77 0.16) x 10-6 0.9994 6

CD3OD (1.78 0.03) x 10-6 0.9991 7


The relative rate study of the reaction of MFA with various nitrones

was done in a completely analogous way to the solvent studies. The results

are shown in Table 3-1 of Chapter 3. Into each of the 9-inch NMR tubes

was placed 0.150 mmole of nitrone, 0.700 ml of CDC13, and 1.47 mmole of

99% MFA. There was also 6.90 il of meta-bromobenzotrifluoride added to

each tube to calculate the yields by 19F N MR, and 4.70 vl of para-dioxane

added to aid in monitoring the loss of the nitrone in the relative rate

study. The tubes were sealed under vacuum and allowed to remain at 23-

24 C in the dark as before. The progress of the reaction was followed by

60 MHz 1H NMR, and the pseudo-first-order rate constants were determined

from the data as shown in Table 6-2. The reactions were allowed to go to

completion, and the product ratios and yields were determined by 19F NMR

as shown in Table 3-1.









Table 6-2. Pseudo-First-Order Rate Constants for the Reaction of MFA
with Various Nitrones at 23-24 C in CDC13.


Pseudo-First Correlation # of Points
Nitrone Order k (sec-1) Coefficient on Line


37a (N-methyl) (9.58 0.19) x 10-6 0.999 5

37b (N-phenyl) (1.11 0.04) x 10-4 0.999 4

37c (N-(2-naphthyl)) (1.15 0.07) x 10-4 0.996 4



In all of the 19F NMR spectra of these solvent and nitrone studies,

there were some impurities present. A spectrum of MFA alone demon-

strated that all except two of the impurities were present in the starting

material. These two possible products, which were observed only in the N-

methyl-C-phenylnitrone reactions, were each present in an average 3%

relative yield. They were not identified. Even though the MFA was 99%

pure by NMR integration, the impurities were readily apparent in the 19F

NMR spectra since MFA was in tenfold excess compared to the nitrone in

all of the kinetic studies. It was also observed by 19F N MR that the

product ratios did not change during the course of these reactions. In

addition, the ratios remained unchanged for more than 30 days after the

reactions had gone to completion.

Kinetic Studies for the Reaction of Fluoroallene with N-Methyl-C-phenyl-
nitrone in Benzene-dr, Chloroform-d, and Acetone-df

The reaction of MFA with N-methyl-C-phenylnitrone had already been

shown to be first order with respect to the nitrone in the relative rate

studies. The reaction was also shown to be first order with respect to

MFA. With the nitrone in tenfold and sevenfold excess compared to MFA,

the second-order rate constants were determined to be 6.0 x 10-6 1/mole-




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ENQTBRZVD_H70UUT INGEST_TIME 2011-10-24T18:02:08Z PACKAGE AA00003820_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

67(5(2&+(0,&$/ $1' 5($&7,9,7< 678',(6 2) 7+( >@ >@ $1' ',32/$5 &<&/2$'',7,216 2) 3$57,$//< )/825,1 $7(' $//(1 (6 %\ *(1( (//,6 :,&.6 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

72 020 $1' '$'

PAGE 3

$&.12:/('*(0(176 ,W LV ZLWK PXFK JUDWLWXGH WKDW DFNQRZOHGJH WKH JXLGDQFH RI 3URIHVVRU :LOOLDP 5 'ROELHU -U ZLWK WKH FKHPLFDO DGYHQWXUHV UHFRUGHG KHUHLQ +H LV ERWK D VFKRODU DQG D JHQWOHPDQ DQG KH KDV EHHQ DQ H[FHOOHQW PHQWRU DQG IULHQG WKURXJKRXW P\ JUDGXDWH VWXGLHV 7KH LQYDOXDEOH DVVLVWDQFH RI -LP 5RFFD IURP 3URIHVVRU :DOODFH %UH\nV KLJKUHVROXWLRQ 105 ODE LV DOVR JUDWHIXOO\ DFNQRZOHGJHG ,Q DGGLWLRQ 'U 6LPRQ 6HOOHUV IURP 6&0 6SHFLDOW\ &KHPLFDOV DLGHG LQ UXQQLQJ D IHZ RI WKH 105 VSHFWUD LQ &KDSWHU 3URIHVVRU *XV 3DOHQLN DQG 'U 0DULDQ *DZURQ REWDLQHG WKH ;UD\ FU\VWDO VWUXFWXUH GHVFULEHG LQ $SSHQGL[ % DQG VHYHUDO SHRSOH IURP WKH 8) 4XDQWXP 7KHRU\ 3URMHFW SURYLGHG DLG LQ GRLQJ WKH ,1 '2 FDOFXODWLRQV IRU IOXRURDOOHQH GHVFULEHG LQ &KDSWHU ,W LV DOVR D SOHDVXUH WR WKDQN 6HWK (OVKHLPHU DQG 5DQG\ :LQFKHVWHU IRU WKHLU KHOSIXO GLVFXVVLRQV DQG FRPUDGHU\ WKURXJKRXW P\ JUDGXDWH VWXGLHV )LQDOO\ WKH VXSSRUW DQG HQFRXUDJHPHQW RI VHYHUDO IULHQGV DQG UHODWLYHV GXULQJ WKH FRXUVH RI WKLV ZRUN KDV EHHQ PXFK DSSUHFLDWHG 0\ SDUHQWV DQG WKH IDPLO\ RI : 5DQG\ 9DQ 1HVV GHVHUYH VSHFLDO PHQWLRQ LQ WKLV UHJDUG LQ

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL $%675$&7 Y &+$37(5 ,1752'8&7,21 $1' %$&.*5281' ,1)250$7,21 >@ &<&/2$'',7,216 23 ',)/8252 $//(1 ( 67(5(2&+(0,675< 2) 7+( ',32/$5 &<&/2n $'',7,216 2) )/8252$//(1 ( 67(5(2&+(0,675< 2) 7+( >@ &<&/2$'',7,216 2) )/8252$//(1( &21&/86,21 (;3(5,0(17$/ 6(&7,21 $33(1',&(6 $ 6(/(&7(' 63(&75$ % ;5$< ',))5$&7,21 678'< & 6(/(&7(' 5(68/76 )520 ,1'2 &$/&8/$7,216 )25 )/8252$//(1( $1' ',)/8252 $//(1 ( $&521<06 86(' ,1 7+,6 ',66(57$7,21 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 67(5(2&+(0,&$/ $1' 5($&7,9,7< 678',(6 2) 7+( >@ >@ $1' ',32/$5 &<&/2$'',7,216 2) 3$57,$//< )/825,1$7(' $//(1 (6 %\ *HQH (OOLV :LFNV 'HFHPEHU &KDLUPDQ :LOOLDP 5 'ROELHU 7U 0DMRU 'HSDUWPHQW &KHPLVWU\ &\FORDGGLWLRQV LQYROYLQJ IOXRURDOOHQHV DUH H[WUHPHO\ XVHIXO TLHFKDQLVWLF SUREHV 'XH WR WKH KLJK UHDFWLYLW\ RI WKHVH DOLHQHV DQG WKH VPDOO VL]H RI WKHLU IOXRULQH VXEVWLWXHQWV F\FORDGGLWLRQV RI IOXRURDOOHQHV DUH IUHH IURP PDQ\ RI WKH DPELJXLWLHV VXUURXQGLQJ DQDORJRXV VWXGLHV E\ SUHYLRXV ZRUNHUV 6W\UHQH DQG GLIOXRURDOOHQH ')$ XQGHUJR FOHDQ UHDFWLRQV EHWZHHQ r DQG r& WR JLYH JRRG \LHOGV bILbf RI WZR F\FORDGGXFWV GLIOXRUR SKHQ\OOPHWK\OHQHF\FOREXWDQH PDMRUf DQG SKHQ\OOGLIOXRURPHWK\OHQHf F\FOREXWDQH PLQRUf 6LPLODU H[SHULPHQWV FRPSDULQJ WKH UHDFWLRQV RI SQLWUR DQG SPHWKR[\VW\UHQH ZLWK WKH DERYH UHVXOWV JLYH UHODWLYH UHDFWLYLWLHV RI DQG UHVSHFWLYHO\ 7KH >@ F\FORDGGLWLRQ RI ')$ ZLWK =%GHXWHULR VW\UHQH JLYHV WKH H[SHFWHG SURGXFWV LQ DQ UDWLR ZLWK VWHUHRFKHPLFDO UDWLRV RI DQG UHVSHFWLYHO\ DW r& $ PHFKDQLVP LQYROYLQJ WZR NLQHWLFDOO\ GLVWLQJXLVKDEOH GLUDGLFDOV LV SURSRVHG WR UDWLRQDOL]H WKH UHVXOWV 7KH UHDFWLRQ RI ')$ ZLWK F\DQRYLQ\O DFHWDWH D FDSWRGDWLYH Y

PAGE 6

UHDJHQW LV DOVR VWXGLHG DQG IRXQG WR JLYH UHVXOWV VLPLODU WR WKH VW\UHQH UHDFWLRQV 10HWK\O 1SKHQ\O DQG 1QDSKWK\Of&SKHQ\OQLWURQHV XQGHUJR UHJLR VSHFLILF && GLSRODU F\FORDGGLWLRQV ZLWK PRQRIOXRURDOOHQH 0)$ LQ QHDUO\ TXDQWLWDWLYH \LHOGV DW r& 7KH DYHUDJH VWHUHRFKHPLFDO UDWLR IRU WKH WZR VXEVWLWXWHG LVR[D]ROLGLQHV SURGXFHG LV sb ZLWK WKH SURGXFW IURP V\Q DGGLWLRQ RI 0)$ LQ H[FHVV 7KH VWHUHRFKHPLFDO DVVLJQPHQWV RI WKH SURGXFWV DUH PDGH ZLWK WKH DLG RI GLIIHUHQFH QXFOHDU 2YHUKDXVHU HIIHFW 12(f H[SHULPHQWV DQG DQ ;UD\ FU\VWDO VWUXFWXUH ([WHQVLYH VROYHQW DQG NLQHWLF VWXGLHV VKRZ WKDW WKHVH DUH ZHOOEHKDYHG VHFRQGRUGHU NLQHWLF SURFHVVHV FRQVLVWHQW ZLWK SUHYLRXVO\ ZHOOVWXGLHG GLRRODU FYFORDGGLWLRQV 7KH UHDFWLRQ RI 0)$ ZLWK GLD]RPHWKDQHG VWURQJO\ IDYRUV WKH SURGXFW IURP V\Q DGGLWLRQ UDWLRf DOVR &RQVLGHUDWLRQ RI WUDQVLWLRQVWDWH GLSROHGLSROH LQWHUDFWLRQV DQG VROYDWLRQ SKHQRPHQD VKRZ WKDW WKH IDFWRUV DIIHFWLQJ WKH VWHUHRFKHPLFDO RXWFRPH RI DOO WKHVH GLSRODU FYFORDGGLWLRQV DUH H[WUHPHO\ VXEWOH )LQDOO\ 0)$ XQGHUJRHV 'LHOV$OGHU UHDFWLRQV ZLWK FYFORSHQWDGLHQH EXWDGLHQH DQG IXUDQ WR JLYH D PRGHVW SUHIHUHQFH IRU WKH V\Q DGGXFW DQG UHVSHFWLYHO\f 7KH UHVXOWV DUH GLVFXVVHG LQ WHUPV RI D WKHRUHWLFDO VWXG\ GRQH IRU 0)$ XVLQJ ,1'2 FDOFXODWLRQV YL

PAGE 7

&+$37(5 ,1752'8&7,21 $1' %$&.*5281' ,1)250$7,21 ,QWURGXFWLRQ 3DUWLDOO\ IOXRULQDWHG DOLHQHV OLNH IOXRURDOOHQH 0)$f DQG GLIOXRUR DOOHQH ')$f KDYH VHYHUDO IHDWXUHV WKDW PDNH WKHLU XVH LGHDO LQ WKH VWXG\ RI F\FORDGGLWLRQ UHDFWLRQ PHFKDQLVPV )RU LQVWDQFH WKH SUHVHQFH RI RQH RU WZR IOXRULQHV LQ DQ DOLHQH PROHFXOH GUDPDWLFDOO\ LQFUHDVHV LWV UHDFWLYLW\ ) ) + ) 0)$ ')$ DV FRPSDUHG WR WKH K\GURFDUERQ DQDORJA ,Q DGGLWLRQ WKH VPDOO VL]H DQG KLJK HOHFWURQHJDWLYLW\ RI WKH IOXRULQH VXEVWLWXHQWV DOORZ D UHDFWLRQ PHFKDQLVP WR EH VWURQJO\ LQIOXHQFHG E\ WKH IOXRULQHVn HOHFWURQLF HIIHFWV ZKLOH EHLQJ YLUWXDOO\ IUHH IURP WKHLU VWHULF LQWHUIHUHQFH )XUWKHUPRUH WKH F\FORDGGLWLRQ SURGXFWV REWDLQHG LQ WKHVH UHDFWLRQV KDYH UHDVRQDEOH WKHUPRn G\QDPLF VWDELOLW\ DQG WKH\ DUH QRW JHQHUDOO\ VXVFHSWLEOH WR PHFKDQLVWLFDOO\ FRPSOLFDWLQJ UHDUUDQJHPHQWV XQGHU WKH UHDFWLRQ FRQGLWLRQV 7KHVH DQG RWKHU TXDOLWLHV RI SDUWLDOO\ IOXRULQDWHG DOLHQHV DOORZ XQLTXH LQVLJKWV WR EH REWDLQHG IURP WKH XQDPELJXRXV VWXG\ RI F\FORDGGLWLRQV ZKLFK KDYH EHHQ XQGHU ERWK VFUXWLQ\ DQG GLVSXWH IRU WZR GHFDGHV

PAGE 8

)LUVW WKLV GLVVHUWDWLRQ FRQWDLQV D PHFKDQLVWLF LQYHVWLJDWLRQ RI WKH >@ F\FORDGGLWLRQV RI GLIOXRURDOOHQH ZLWK ROHILQV 5HODWLYH UHDFWLYLW\ VWXGLHV DQG D GHWDLOHG VWHUHRFKHPLFDO VWXG\ DUH SUHVHQWHG DQG GLVFXVVHG 6HFRQG WKH VWHUHRFKHPLVWU\ RI DGGLWLRQ IRU IOXRURDOOHQH LQ GLSRODU DQG >@ F\FORDGGLWLRQV LV H[DPLQHG ([WHQVLYH VROYHQW DQG NLQHWLF VWXGLHV DUH SUHn VHQWHG IRU WKH GLSRODU F\FORDGGLWLRQV DV ZHOO DV D WKHRUHWLFDO VWXG\ HQFRPSDVVLQJ ERWK WKH >@ DQG GLSRODU F\FORDGGLWLRQ UHVXOWV $Q RYHUYLHZ RI SHUWLQHQW EDFNJURXQG LQIRUPDWLRQ IRU WKH VWXG\ RI WKHVH WRSLFV ZLOO EH JLYHQ DORQJ ZLWK D EULHI UHYLHZ RI WKH VDOLHQW IHDWXUHV RI IOXRULQH DV D VXEVWLWXHQW LQ RUJDQLF PROHFXOHV )OXRULQH DV D 6XEVWLWXHQW *HQHUDO &RQVLGHUDWLRQV 7KH FKDUDFWHULVWLFV RI IOXRULQH DV D VXEVWLWXHQW RQ FDUERQ KDYH PRVW UHFHQWO\ EHHQ GLVFXVVHG LQ 6PDUWnV H[FHOOHQW UHYLHZV! 7KH SURSHUWLHV RI IOXRULQH DUH ODUJHO\ GHULYHG IURP LWV VPDOO VL]H LWV KLJK HOHFWURQHJDWLYLW\ DQG LWV QRQERQGHG HOHFWURQ SDLUV 7KH DWRPLF RUELWDOV RI IOXRULQH DUH RI D SURSHU VL]H IRU H[FHOOHQW RUELWDO RYHUODS ZLWK FDUERQ VLQFH ERWK HOHPHQWV DUH LQ WKH VDPH SHULRG 7KLV DOORZV IOXRULQH WR SDUWLFLSDWH LQ SRWHQW RZLWK GUDZDO IURP FDUERQ DQG VRPHWLPHV LQ L7GRQDWLRQ )OXRULQHnV KLJK HOHFWURn QHJDWLYLW\ FRPELQHG ZLWK LWV HIIHFWLYH RUELWDO RYHUODS UHVXOW LQ D &) ERQG ZKLFK LV TXLWH VWURQJ SRODU DQG UHODWLYHO\ VKRUW ƒ IRU D &) ERQG $ IRU D &&O ERQGf LQ DGGLWLRQ D &) ERQG LV DOVR ULFK LQ SFKDU DFWHU DV UHIOHFWHG E\ WKH FKDQJHV LQ K\EULGL]DWLRQ DQG PROHFXODU JHRPHWU\ WKDW WDNH SODFH UHODWLYH WR &+ VXEVWLWXWLRQ )RU H[DPSOH WKH +&+ ERQG DQJOH RI &+) LV r DQG WKH )&) ERQG DQJOH LV r DV FRPSDUHG WR WKH LGHDOL]HG ERQG DQJOHV RI r IRU &+ )LQDOO\ ZKHQ D IOXRULQH LV

PAGE 9

ERXQG WR DQ VSA FDUERQ WKH ORQH SDLUV RI IOXRULQH EDFNERQG LQWR WKH HPSW\ SRUELWDO RI FDUERQ WR WKH H[WHQW WKDW D IOXRULQH ZLOO DFWXDOO\ VWDELOL]H D FDUERFDWLRQ LQ VSLWH RI LWV VWURQJ LQGXFWLYH HIIHFWA ,Q YLHZ RI WKH GLVFRXUVH JLYHQ VR IDU LW LV QRW VXUSULVLQJ WKDW HYHQ D VLQJOH IOXRULQH FDQ GUDVWLFDOO\ DOWHU WKH SURSHUWLHV RI D PROHFXOH $ IHZ H[DPSOHV ZLOO EH JLYHQ WR LOOXVWUDWH WKH UHDFWLYLW\ WKHUPRG\QDPLF DQG VWHULF FRQVLGHUDWLRQV KHOSIXO WR XQGHUVWDQGLQJ WKH F\FORDGGLWLRQV RI IOXRUL QDWHG DOLHQHV 7KHVH FRQVLGHUDWLRQV ZLOO KDYH DQ LPSRUWDQW EHDULQJ RQ WKH GLVFXVVLRQ RI H[SHULPHQWDO UHVXOWV WKURXJKRXW WKH GLVVHUWDWLRQ 5HDFWLYLW\ &RQVLGHUDWLRQV 7KH F\FORDGGLWLRQV RI F\FORSHQWDGLHQH DQG DFU\ORQLWULOH ZLWK DOLHQH IOXRURDOOHQHp DQG GLIOXRURDOOHQHA KDYH EHHQ ZHOO VWXGLHG 7KH >@ F\FORDGGLWLRQV RI WKH DOLHQHV ZLWK DFU\ORQLWULOH KDYH EHHQ REVHUYHG WR JLYH RQH RU WZR SURGXFWV LQ PRGHUDWH \LHOGV DV VKRZQ LQ HTXDWLRQ f ,Q FRPSDULQJ WKH UHDFWLRQ FRQGLWLRQV LQ 7DEOH LW LV DSSDUHQW WKDW WKHUH LV D VLJQLILFDQW LQFUHDVH LQ UHDFWLYLW\ E\ VXEVWLWXWLRQ RI D VLQJOH IOXRULQH RQ DOLHQH 6XEVWLWXWLRQ RI WZR IOXRULQHV RQ DOLHQH DOORZV WKH UHDFWLRQ WR SURFHHG DW D WHPSHUDWXUH r& OHVV WKDQ DOLHQH LWVHOI LQ D FRPSDUDEOH WLPH DQG \LHOG

PAGE 10

&' 7DEOH >@ &\FORDGGLWLRQV ZLWK $FU\ORQLWULOH ; < 5HDFWLRQ &RQGLWLRQV 3URGXFW 5DWLR f b @ F\FORDGGLWLRQV RI WKHVH DOLHQHV ZLWK F\FORSHQWDGLHQH VKRZ D VLPLODU WUHQG IRU HTXDWLRQ f $OWKRXJK DOLHQH LWVHOI UHTXLUHV YLJRURXV FRQn GLWLRQV WR JLYH D PRGHVW \LHOG RI WKH >@ F\FORDGGXFW 7DEOH VKRZV WKDW WKH IOXRULQDWHG DOLHQHV UHDFW WR JLYH QHDUO\ TXDQWLWDWLYH \LHOGV RI SURGXFWV DW r&

PAGE 11

7DEOH >@ &\FORDGGLWLRQV ZLWK &\FORSHQWDGLHQH ; < 5HDFWLRQ &RQGLWLRQV b
PAGE 12

$Q DGGLWLRQDO LVVXH WR FRQVLGHU KHUH LV WKH WKHUPRG\QDPLF VWDELOLW\ RI D VLQJOH IOXRULQH YHUVXV D JHPGLIOXRUR JURXS 2QH PD\ KDYH QRWLFHG IURP WKH SURGXFW UDWLRV LQ HTXDWLRQ f WKDW WKH PDMRU SURGXFW LV IRU D VLQJOH IOXRULQH EXW ZKHQ D JHPGLIOXRUR JURXS LV LQYROYHG 7KLV SKHQRPHQRQ KDV EHHQ ZHOO VWXGLHG 7KH HTXLOLEUDWLRQ RI IOXRURSURSHQHV VKRZV WKDW D VLQJOH $AU[Q NFDOPROH NFDOPROH NFDOPROH IOXRULQH LV WKHUPRG\QDPLFDOO\ IDYRUHG RQ DQ VSA FDUERQ E\ DERXW NFDOPROH+ ,Q FRQWUDVW WR WKLV WKH &RSH UHDUUDQJHPHQW RI WR VKRZV WKDW D JHPGLIOXRUR JURXS LV WKHUPRG\QDPLFDOO\ IDYRUHG RQ DQ VSA FDUERQ E\ s NFDOPROH

PAGE 13

NFDOPROHOO 7KXV LQ WKH >@ F\FORDGGLWLRQ RI WKH IOXRULQDWHG DOLHQHV ZLWK DFU\ORQLWULOH LQ HTXDWLRQ f WKH PRUH WKHUPRG\QDPLFDOO\ VWDEOH SURGXFW LV IDYRUHG LQ HDFK FDVH 7KLV KRZHYHU LV QRW ZKDW LV IRXQG IRU WKH >@ F\FORDGGLWLRQV LQ HTXDWLRQ f 7KH FRQFOXVLRQ LV WKDW WKH F\FORn DGGLWLRQV LQ HTXDWLRQV f DQG f SURFHHG YLD GLIIHUHQW PHFKDQLVPV D PDWWHU ZKLFK ZLOO EH DGGUHVVHG VKRUWO\ 6WHULF &RQVLGHUDWLRQV ([FOXGLQJ K\GURJHQ IOXRULQH KDV WKH VPDOOHVW 9DQ GHU :DDOV UDGLXV RI DQ\ VXEVWLWXHQW DWRP RU JURXS 7KXV LW LV QRW VXUSULVLQJ WKDW WKH VWHULF GHPDQG RI IOXRULQH VXEVWLWXHQWV KDV EHHQ VKRZQ WR EH SUDFWLFDOO\ QHJOLJLEOH LQ WKH >@ DQG >@ F\FORDGGLWLRQV RI IOXRULQDWHG DOLHQHV$Q H[DPSOH RI WKLV LV WKH UHDFWLRQ RI IOXRURDOOHQH ZLWK OOGLFKORURGLIOXRUR HWK\OHQH ZKHUH DQG DUH IRUPHG LQ HTXDO DPRXQWV ,Q FRQWUDVW WR WKLV WKH UHODWHG UHVXOWV RI WKH F\FORDGGLWLRQV RI PRQRDON\O DOLHQHV DUH RIWHQ H[SODLQHG LQ WHUPV RI D VWHULF UDWLRQDOH ) > b
PAGE 14

,W LV LQWHUHVWLQJ WR QRWH WKDW HYHQ LQ WKH UHDFWLRQV RI VRPH SHUIOXRUL QDWHG FRPSRXQGV ZKLFK RQH PLJKW H[SHFW WR EH PRUH VHQVLWLYH WR VWHULF FRQJHVWLRQ WKDQ SDUWLDOO\ IOXRULQDWHG DOLHQHV WKH VWHULF GHPDQG RI WKH IOXRULQHV VHHPV PLQLPDO ,QGHHG WKH HOHFWURF\FOLF ULQJ RSHQLQJ RI WUDQV SHUIOXRURGLPHWK\OF\FOREXWHQH ZKLFK LV JRYHUQHG E\ VWURQJ HOHFWURQLF IDFWRUV SURFHHGV LQ D UHPDUNDEOH FRQWUDVWHULF IDVKLRQ WR SUHIHUDEO\ JLYH LQVWHDG RI ,-/ 7KH DFWLYDWLRQ HQHUJ\ IRU WKH ULQJ RSHQLQJ WR WKH == GLHQH + LV NFDOPROH OHVV WKDQ IRU RSHQLQJ WR WKH ((GLHQH DQG DW p& NA]A(( r [ A &) &) 0HFKDQLVP RI > @ 9HUVXV > @ &\FORDGGLWLRQV 7KH >@ F\FORDGGLWLRQV RI IOXRURDOOHQH 0)$f DQG GLIOXRURDOOHQH ')$f DUH WKRXJKW WR SURFHHG YLD D VWHSZLVH GLUDGLFDO PHFKDQLVP ZKLOH WKH >@ F\FORDGGLWLRQV DUH WKRXJKW WR EH FRQFHUWHG! LQ WKH >@ UHDFn WLRQV WKH FHQWUDO FDUERQ RI ')$ XQGHUJRHV ERQG IRUPDWLRQ ZLWK WKH

PAGE 15

XQVXEVWLWXWHG FDUERQ RI DFU\ORQLWULOH IRU H[DPSOH WR JLYH DQ DOO\O DQG F\DQRVWDELOL]HG GLUDGLFDO LQWHUPHGLDWH B 7KH GLUDGLFDO XQGHUJRHV FRPSHWLWLYH ULQJ FORVXUHV WR SUHGRPLQDWHO\ JLYH WKH PRUH VWDEOH SURGXFW ZLWK WKH &) HQGRF\FOLF 7KLV H[SODLQV WKH SURGXFW UHJLRFKHPLVWU\ DQG WKH 1& PLQRUf WKHUPRG\QDPLF SUHIHUHQFHV REVHUYHG IRU WKH ')$DFUYORQLWULOH UHDFWLRQ LQ 7DEOH 2WKHU H[SHULPHQWDO UHVXOWV VKRZ D URXJK FRUUHODWLRQ EHWZHHQ WKH SURGXFW UDWLR DQG WKH VWDELOLW\ RI WKH GLUDGLFDO LQWHUPHGLDWH IRU UHDFWLRQV RI WKLV W\SH 7KH +DPPRQG SRVWXODWH FDQ EH DSSOLHG LQ WKDW WKH JUHDWHU WKH VWDELOLW\ RI WKH GLUDGLFDO LQWHUPHGLDWH WKH ODWHU WKH WUDQVLWLRQ VWDWH WR ULQJ FORVXUH DQG WKXV WKH PRUH WKH SURGXFW ZLWK JUHDWHU WKHUPRn G\QDPLF VWDELOLW\ LV IDYRUHG $OWKRXJK PXFK LV NQRZQ DERXW WKH UHJLRFKHPLVWU\ RI > @ F\FORn DGGLWLRQV ZLWK 0)$ DQG ')$ QR VWHUHRFKHPLFDO VWXG\ KDG EHHQ GRQH EHIRUH WKH ZRUN LQ WKLV GLVVHUWDWLRQ ZDV LQLWLDWHG ,W ZDV H[SHFWHG WKDW WKH KLJK UHDFWLYLW\ RI WKHVH DOLHQHV DQG WKH ODFN RI D IOXRULQHnV VWHULF LQWHUIHUHQFH LQ

PAGE 16

WKH HQVXLQJ UHDFWLRQ ZRXOG PDNH VXFK D VWXG\ XQLTXH 7KLV LV WKH UDWLRQDOH IRU SXUVXLQJ WKH F\FORDGGLWLRQ RI ')$ ZLWK =%GHXWHULRVW\UHQHA GLVFXVVHG LQ &KDSWHU 7KH XVH RI VW\UHQH DV WKH ROHILQ DOVR DOORZV D +DPPHWW UHDFWLYLW\ VWXG\ WR EH SHUIRUPHG E\ WKH VXEVWLWXWLRQ RI YDULRXV HOHFWURQ UHOHDVLQJ DQG HOHFWURQZLWKGUDZLQJ JURXSV LQ WKH SDUDSRVLWLRQ RI WKH SKHQ\O ULQJ ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH FRQFHUWHG > @ F\FORDGGLWLRQ RI ')$ ZLWK F\FORSHQWDGLHQH LQ 7DEOH LV UHJLRVSHFLILF WR JLYH VROHO\ WKH SURGXFW RI OHVVHU WKHUPRG\QDPLF VWDELOLW\ LQ FRPSDULVRQ ZLWK WKH > @ UHDFWLRQV 3KRWRHOHFWURQ VSHFWUD DQG DE LQLWLR FDOFXODWLRQV IRU ')$ KHOS VXEVWDQWLDWH WKH H[SODQDWLRQ RQH PLJKW LQWXLWLYHO\ H[SHFWA! 7KH IOXRULQHVXEVWLWXWHG && IUERQG ZKLFK LV LQYROYHG LQ 7LGRQDWLRQ IURP WKH IOXRULQH ORQH SDLUV LV ERWK HOHFWURQ ULFK DQG TXLWH XQUHDFWLYH LQ > @ F\FORn DGGLWLRQV PXFK OLNH WKH 7UERQGV RI DOLHQH 7KH && 77ERQG KRZHYHU LV JUHDWO\ LQIOXHQFHG E\ WKH DZLWKGUDZLQJ LQGXFWLYH HIIHFW RI WKH DOO\OLF IOXRULQHV DQG LV YHU\ HOHFWURQ GHILFLHQW 7KLV UHVXOWV LQ D ORZ && WWr RUELWDO HQHUJ\ WKH HQHUJ\ RI WKH ORZHVW XQRFFXSLHG PROHFXODU RUELWDO /802f LQ WKH PROHFXOH 7KXV > @ F\FORDGGLWLRQV RI ')$ RFFXU H[FOXn VLYHO\ DW WKH && QERQG LQ VSLWH RI WKHUPRG\QDPLF FRQVLGHUDWLRQV 7KH > @ UHDFWLRQV RI 0)$ GLVSOD\ WKH VDPH FKDUDFWHU DV WKRVH RI ')$ IRU SUHVXPDEO\ VLPLODU UHDVRQV )URP WKLV LW ZRXOG QRW EH VXUSULVLQJ WR OHDUQ WKDW WKH GLSRODU F\FORDGGLWLRQV RI 0)$ DQG ')$ DOVR RFFXU DW WKH XQVXEVWLWXWHG GRXEOH ERQG OLNH WKH >@ F\FORDGGLWLRQV 'LSRODU &\FORDGGLWLRQV 7KH GLSRODU F\FORDGGLWLRQV RI ')$ ZLWK GLD]RDONDQHV QLWURQHV QLWULOH R[LGHV DQG FDUERQ\O \OLGHV KDYH EHHQ ZHOOVWXGLHG 7KH

PAGE 17

GLSROHV XQGHUJR UHDFWLRQ ZLWK ')$ H[FOXVLYHO\ DW WKH && XERQG WR JLYH WZR UHJLRLVRPHUV DQG IRU H[DPSOH IRU GLD]RDONDQHV )& r FI ,, r m UU&)] UF 1 1 1 1 7DEOH ')$ 'LSRODU &\FORDGGLWLRQV ZLWK 'LD]RDONDQHV 5HDFWLRQ 3URGXFW 5 &RQGLWLRQV 5DWLR f b
PAGE 18

IDYRUHG E\ PROHFXODU RUELWDO FRQVLGHUDWLRQV IRU VXEVWLWXHQWV RI ORZ VWHULF EXON :KHQ WKH VWHULF EXON RI WKH 5 VXEVWLWXHQWV EHFRPHV WRR JUHDW KRZHYHU D UHYHUVDO LQ SURGXFW UDWLR RFFXUV DQG SURGXFW OMM LV IDYRUHG E\ VWHULF FRQVLGHUDWLRQV ,Q WKH UHDFWLRQ RI IOXRURDOOHQH 0)$f ZLWK GLSROHV ERWK SURGXFW UHJLRFKHPLVWU\ DQG VWHUHRFKHPLVWU\ DUH LPSRUWDQW ,QGHHG D GLSROH FDQ DGG HLWKHU V\Q RU DQWL WR WKH IOXRULQH LQ 0)$ 7KH UHDFWLRQ RI 0)$ ZLWK 1 &GLSKHQ\OQLWURQH KDV EHHQ VWXGLHG E\ %XUNKROGHU ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH UHDFWLRQ LV UHJLRVSHFLILF ZLWK UHVSHFW WR ERWK WKH DOLHQH DQG GLSROH OLNH WKH SUHYLRXVO\ GLVFXVVHG FYFORDGGLWLRQ RI ')$ ZLWK b
PAGE 19

GLD]RPHWKDQH $OVR WKH PDMRU SURGXFW WHQWDWLYHO\ DOWKRXJK QRW XQDPELJXRXVO\ DVVLJQHG DSSHDUV WR EH WKDW IURP VYQ DGGLWLRQ RI WKH DOLHQH 7KLV LV LQ PDUNHG FRQWUDVW WR WKH GLSRODU F\FORDGGLWLRQV RI PHWKR[\ DQG SKHQR[\DOOHQH ZKHUHLQ WKH SURGXFW IURP DQWL DGGLWLRQ LV IDYRUHG GXH WR VWHULF FRQVLGHUDWLRQVA r ,W ZDV WKHUHIRUH H[SHFWHG WKDW D V\VWHPDWLF VWXG\ RI WKH GLSRODU F\FORDGGLWLRQV RI IOXRURDOOHQH ZRXOG EH YHU\ LQWHUHVWLQJ )LUVW XQDPELJXRXV VWHUHRFKHPLFDO DVVLJQPHQWV KDG WR EH PDGH IRU WKH SURGXFWV RI WKH QLWURQH UHDFWLRQ SUHIHUDEO\ E\ REWDLQLQJ DQ ;UD\ FU\VWDO VWUXFWXUH IRU WKH PDMRU LVRPHU 7KHQ WKH UHDFWLRQV FRXOG EH VWXGLHG NLQHWLFDOO\ DQG LQ GLIIHUHQW VROYHQWV WR VHH KRZ HOHFWURVWDWLF GLSROHGLSROH LQWHUDFWLRQV WKH EDVLFLWY RI WKH IOXRULQH DQG PROHFXODU RUELWDO FDOFXODWLRQV ZRXOG DIIHFW RU JLYH LQVLJKW LQWR WKH VWHUHRFKHPLFDO SUHIHUHQFH IRU F\FORDGGLWLRQ 7KH UHVXOWV IRU WKHVH VWXGLHV DSSHDU LQ &KDSWHUV DQG RI WKLV GLVVHUWDWLRQ DORQJ ZLWK WKH UHODWHG UHVXOWV RI WKH > @ F\FORDGGLWLRQV RI IOXRURDOOHQH

PAGE 20

&+$37(5 >@ &<& /2 $'',7,216 2) ',)/8252$//(1( ,QWURGXFWLRQ 7KH PHFKDQLVP RI DOLHQH >@ F\FORDGGLWLRQV KDV UHFHLYHG FRQVLGHUn DEOH DWWHQWLRQ RYHU WKH \HDUV ZLWK HDUO\ H[FLWHPHQW EHLQJ JHQHUDWHG E\ WKH 0RRUH HW DO F\FORQRQDGLHQH GLPHUL]DWLRQ VWXGLHVA DQG +RIIPDQQnV UHODWHG FRQMHFWXUH WKDW DOLHQHV FRXOG DFW DV DQWDUDIDFLDO F\FORDGGHQGV LQ FRQFHUWHG F\FORDGGLWLRQV (DUO\ VWHUHRFKHPLFDO VWXGLHVrr ZKLOH OHQGLQJ FUHGLELOLW\ WR WKH FRQFHUWHG PHFKDQLVP GLG QRW SURYLGH XQDPELJXRXV HYLGHQFH IRU LW 0HDQZKLOH NLQHWLF VWXGLHV SURYLGHG VWURQJ HYLGHQFH IRU WKH LQYROYHPHQW RI GLUDGLFDOV LQ VXFK UHDFWLRQVA} ,Q VSLWH RI DQ LQWHUHVWLQJ WKHRUHWLFDO H[HUFLVH ZKLFK UHDVVHUWHG WKH LVVXH RI FRQFHUWHGQHVV UHFHQW VWXGLHV LQFOXGLQJ WZR GHWDLOHG VWHUHRFKHPLFDO VWXGLHV RQ WKH UHDFWLRQV RI IXPDUDWH DQG PDOHDWH HVWHUV ZLWK GLF\FORSURSYODOOHQH DQG f§ GLPHWK\ODOOHQH KDYH EHHQ XQLIRUPO\ FRQVLVWHQW ZLWK WKH LQYROYHPHQW RI QRQFRQFHUWHG PHFKDQLVPV $V GLVFXVVHG LQ WKH SUHYLRXV FKDSWHU WKH > @ F\FORDGGLWLRQV RI GLIOXRURDOOHQH ')$f DUH DOVR FRQVLVWHQW ZLWK WKH LQYROYHPHQW RI D QRQFRQFHUWHG GLUDGLFDO PHFKDQLVP 7KH KLJK UHDFWLYLW\ RI ')$ DQG ODFN RI SRWHQWLDOO\ FRPSOLFDWLQJ VWHULF HIIHFWV PDNH WKH F\FORDGGLWLRQV RI GLIOXRURDOOHQH XQLTXHO\ GLIIHUHQW IURP DOO SUHYLRXV PHFKDQLVWLF VWXGLHV RI DOLHQH >@ F\FORDGGLWLRQV 7KXV WKH UHDFWLRQV RI ')$ ZLWK YDULRXVO\ VXEVWLWXWHG VW\UHQHV ZHUH XQGHUWDNHQ WR REWDLQ UHODWLYH UHDFWLYLW\ IDFWRUV DV ZHOO DV XQDPELJXRXV VWHUHRFKHPLFDO LQIRUPDWLRQ DERXW WKHVH H[WUHPHO\

PAGE 21

LQIRUPDWLYH >@ UHDFWLRQV ,Q DGGLWLRQ WKH UHDFWLRQ RI ')$ ZLWK F\DQR YLQ\O DFHWDWH D FDSWRGDWLYH UHDJHQW ZDV VWXGLHG 5HVXOWV 3DUD6XEVWLWXWHG 6W\UHQH 6WXGLHV :KHQ WKH F\FORDGGLWLRQV RI GLIOXRURDOOHQH ZLWK SDUDVXEVWLWXWHG VW\UHQHV ZHUH FDUULHG RXW QHDW XQGHU YDFXXP LQ VHDOHG 3\UH[ WXEHV XVLQJ D WHQIROG H[FHVV RI WKH VW\UHQH RQO\ WZR DGGXFWV DQG ZHUH REWDLQHG LQ WKH SURGXFW UDWLRV DQG \LHOGV VKRZQ LQ 7DEOH (LWKHU K\GURTXLQRQH RU WHUWEXW\OFDWHFKRO ZHUH DGGHG WR LQKLELW WKH IUHH UDGLFDO SRO\PHUL]DWLRQ RI WKH VW\UHQH 7KH VW\UHQH DQG SDUDPHWKR[\VW\UHQH UHDFWLRQV ZHUH YHU\ FOHDQ EXW WKHUH ZDV SDUWLDO SRO\PHUL]DWLRQ RI WKH SDUDQLWURVW\UHQH XQGHU WKH UHDFWLRQ FRQGLWLRQV 1HYHUWKHOHVV H[WHQVLYH VWXG\ RI WKH FUXGH UHDFWLRQ PL[WXUHV E\ WKLQOD\HU FKURPDWRJUDSK\ JDV FKURPDWRJUDSK\ DQG t) 105 DW 0+] GHPRQVWUDWHG WKDW WKHUH ZHUH QR RWKHU DGGXFWV WKDQ B DQG B H[FHSW IRU WKH ROLJLPHUV RI ')$ ,QGHHG WKH ODFN RI KLJKHU \LHOGV ZDV XQGRXEWHGO\ GXH WR WKH FRPSHWLWLYH ROLJLPHUL]DWLRQ RI WKH KLJKO\ VHOIn UHDFWLYH ')$

PAGE 22

7DEOH 5HDFWLRQV RI ')$ ZLWK 3DUD6XEVWLWXWHG 6W\UHQHV
PAGE 23

REVHUYHG sf SURGXFW UDWLR E\ */& )LQDOO\ DQ LVRODWHG VDPSOH RI WKH PLQRU LVRPHU D ZDV KHDWHG WR r& XQGHU YDFXXP LQ D VHDOHG EXOE ZLWK VRPH KHSWDQH IRU K EXW LW ZDV UHFRYHUHG XQFKDQJHG $ VOLJKW WHPSHUDWXUH GHSHQGHQFH LQ WKH UDWLR RI ZDV REVHUYHG IRU WKH UHDFWLRQ RI ')$ ZLWK WKH SDUDVXEVWLWXWHG VW\UHQHV DV VKRZQ LQ 7DEOH 7KH JUHDWHVW VHOHFWLYLW\ ZDV REVHUYHG DW WKH ORZHVW WHPSHUDn WXUH 3URGXFWV DF DQG DE ZHUH FKDUDFWHUL]HG E\ A+ F DQG OA) 105 VSHFWUD ,5 VSHFWUD ORZ DQG KLJK UHVROXWLRQ 06 DQG LQ WKH FDVHV RI DF DQG D E\ FRPEXVWLRQ DQDO\VHV 3URGXFW F GXH WR LVRODWLRQ GLIILFXOWLHV ZDV FKDUDFWHUL]HG RQO\ E\ r+ DQG A) A05 7KH VSHFWUDO LQWHUSUHWDWLRQV ZHUH VWUDLJKWIRUZDUG 5HODWLYH 5HDFWLYLW\ 6WXG\ 8VLQJ HTXLPRODU PL[WXUHV RI SDLUV RI VW\UHQHV WKH UHODWLYH UHDFWLYLWLHV RI HDFK ZHUH GHWHUPLQHG DW r& DV VKRZQ LQ 7DEOH 6LQFH WKH IOXRULQH UHVRQDQFHV RI WKH IRXU SURGXFWV LQ HDFK FRPSHWLWLYH VWXG\ ZHUH UHVROYHG DW 0+] WKH SURGXFW UDWLRV DQG \LHOGV ZHUH GHWHUPLQHG E\ 105 XVLQJ PHWDEURPREHQ]RWULIOXRULGH DV DQ LQWHUQDO VWDQGDUG 7KH UHDFWLYLWLHV RI SDUDQLWUR DQG SDUDPHWKR[\VW\UHQH UHODWLYH WR VW\UHQH ZHUH IRXQG WR EH DQG UHVSHFWLYHO\ &RQVHUYDWLYH 105 FRQGLWLRQV ZLWK H[FHOOHQW GLJLWL]DWLRQ ZHUH FKRVHQ IRU WKHVH DQDO\VHV $ 7A SRSXODWLRQ LQYHUVLRQ H[SHULPHQW GHPRQVWUDWHG WKDW WKH ORQJHVW 7A ZDV OHVV WKDQ VHF DQG WKXV D VHF SXOVH GHOD\ ZDV XVHG 7KH SURGXFW UDWLRV LQ 7DEOH REWDLQHG E\ QPU ZHUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKRVH RI WKH r& H[SHULPHQWV LQ 7DEOH GHWHUPLQHG E\ */& $OWKRXJK WKH HUURU XVXDOO\ TXRWHG IRU 105 UHVXOWV LV b WKH HUURU KHUH VHHPV WR EH b DW PRVW

PAGE 24

7DEOH &RPSHWLWLRQ 5HDFWLRQV RI ')$ ZLWK 3DUD6XEVWLWXWHG 6W\UHQHV 6W\UHQHV 3URGXFW
PAGE 25

WKH SUHSDUDWLRQ RI =JGHXWHULRVW\UHQH ZHUH PHW ZLWK D PRGLILHG V\QWKHVLV RI %URZQ DQG *XSWD 3KHQ\ODFHW\OHQHGL ZDV VPRRWKO\ UHGXFHG ZLWK FDWHFKROERUDQH DQG WKH FDWHFKRO HVWHU ZDV FOHDYHG ZLWK ZDWHU WR JLYH DIWHU UHFU\VWDOOL]DWLRQ IURP ZDWHU ZLWK KRW ILOWUDWLRQ DQG RYHUQLJKW GU\LQJ LQ D YDFXXP RYHQ WKH WULPHU RI RFGHXWHULRSKHQ\OHWKHQ\OERURQLF DFLG B 7KH DFLG XQGHUZHQW HVWHULILFDWLRQ ZLWK HWK\OHQH JO\FRO LQ JRRG \LHOG WR JLYH DQG WKH ERURQLF HVWHU UHDFWHG ZLWK DFHWLF DFLG WR JLYH =JGHXWHULRVW\UHQH LQ D b RYHUDOO \LHOG IURP WKH VWDUWLQJ DFHW\OHQH 7KH 0+] r+ 105 VSHFWUXP RI DJUHHG ZLWK SXEOLVKHG UHVXOWV DQG QRQH RI WKH WUDQV f 2n %f§+ K r& f + K r& f 9DFXXP 2YHQ 'U\LQJ b

PAGE 26

GHXWHUDWHG LVRPHU ZDV GHWHFWHGr $ FRPSDULVRQ RI WKH PDVV VSHFWUXP RI VW\UHQH DW H9 ZLWK WKDW RI WKH FLV GHXWHUDWHG PDWHULDO VXJJHVWHG DQ LVRWRSLF SXULW\ RI sfb 7KH >@ F\FORDGGLWLRQV RI ')$ ZLWK =6GHXWHULRVW\UHQH ZHUH FDUULHG RXW QHDW XQGHU YDFXXP LQ VHDOHG 3\UH[ WXEHV VLPLODU WR SUHYLRXV F\FORDGGLWLRQV H[FHSW WKDW VPDOOHU VW\UHQH')$ UDWLRV ZHUH XVHG ZKLFK UHVXOWHG LQ ORZHU \LHOGV 7KH UHVXOWV DUH VKRZQ LQ 7DEOH $JDLQ WKH 3K = 9 3K ( &) rU? = &) 3K ( r$ FRPSDULVRQ RI WKH 0+] 105 VSHFWUD RI VW\UHQH DQG DSSHDUV LQ $SSHQGL[ $ LQ )LJXUH $

PAGE 27

VWDELOLW\ RI WKH SURGXFWV XQGHU WKH UHDFWLRQ FRQGLWLRQV ZDV GHPRQVWUDWHG 7KH VWHUHRFKHPLFDO UDWLR RI WKH PLQRU LVRPHU UHPDLQHG WKH VDPH DIWHU DQ LVRODWHG VDPSOH ZDV UHVXEMHFWHG WR WKH UHDFWLRQ FRQGLWLRQV 8QUHDFWHG =%GHXWHULRVW\UHQH ZDV DOVR DEOH WR EH UHFRYHUHG ZLWK FRPSOHWH UHWHQWLRQ RI VWHUHRFKHPLFDO LQWHJULW\ 1R F\FORUHYHUVLRQ RI RU WR WKH VWDUWLQJ PDWHULDOV ZDV REVHUYHG XQGHU WKH UHDFWLRQ FRQGLWLRQV 7KH SURGXFW UDWLRV ZHUH GHWHUPLQHG E\ */& DQDO\VLV RI WKH FUXGH UHDFWLRQ PL[WXUHV DV EHIRUH DQG WKH SURGXFWV ZHUH VHSDUDWHG E\ IODVK FKURPDWRJUDSK\ DQG LVRODWHG IRU WKH GHWHUPLQDWLRQ RI WKH VWHUHRFKHPLFDO UDWLRV 7DEOH 5HDFWLRQ RI ')$ ZLWK ='HXWHULRVW\UHQH 6WHUHRFKHPLFDO DQG 3URGXFW 5DWLRV 6WHUHRFKHPLFDO 5DWLRV 3URGXFW =( 5DWLRD DQG 6W\UHQHW')$ &RQGLWLRQV f =(
PAGE 28

UDWLRV DV VKRZQ LQ )LJXUH 7KH DVVLJQPHQW RI WKH PHWK\OHQH SURWRQV WR D SDUWLFXODU FKHPLFDO VKLIW ZDV PDGH RQ WKH EDVLV RI GLIIHUHQFH 12( H[SHULPHQWVr 'LIIHUHQFH QXFOHDU 2YHUKDXVHU HIIHFW 12(f H[SHULPHQWV FDQ FXUUHQWO\ EH SHUIRUPHG VR WKDW 2YHUKDXVHU HQKDQFHPHQWV RI OHVV WKDQ FDQ EH GHWHFWHG DQG DFFXUDWHO\ TXDQWLILHGf LUUDGLDWLRQ RI +[ LQ D JDYH DQ HQKDQFHPHQW RI b DW WKH GRZQILHOG PHWK\OHQH SHDN DVVLJQHG +F ,UUDGLDWLRQ RI +F JDYH HQKDQFHPHQWV RI b DW +[ DQG b DW +A )LQDOO\ LUUDGLDWLRQ RI JDYH HQKDQFHPHQWV RI b DW +[ DQG b DW +F 7KXV WKH UHVXOWV ZHUH LQWHUQDOO\ FRQVLVWHQW ZLWK WKH SURWRQ SURGXFW XQGHXWHUDWHG GHXWHUDWHG f )LJXUH 0+] 105 ([SDQVLRQV RI WKH 5LQJ 0HWK\OHQH 3URWRQV A7KH FRXSOLQJ RI WKH PHWK\QH SURWRQ +[ WR WKH ULQJ PHWK\OHQH SURWRQV LQ ERWK D DQG /D ZDV QRW KHOSIXO LQ WKH DVVLJQPHQW RI WKH DV\PPHWULF SURWRQV WR D SDUWLFXODU FKHPLFDO VKLIW 7KH FRXSOLQJ FRQVWDQW -A[ ZDV VKRZQ WR EH QHDUO\ HTXDO WR -J[ GHFRXSOLQJ H[SHULPHQWV 6LPLODUO\ -T[ A';r 7KLV SUREOHP KDV EHHQ HQFRXQWHUHG EHIRUH LQ WKH DGGXFW RI VW\UHQH DQG GLSKHQ\ONHWHQH 6HH UHI f

PAGE 29

DVVLJQPHQWV JLYHQ LQ )LJXUH r 'LIIHUHQFH 12( ZDV OHVV VXFFHVVIXO IRU WKH VWUXFWXUH HOXFLGDWLRQ RI D SHUKDSV GXH WR WKH SUR[LPLW\ RI WKH JHPLQDO IOXRULQHV ,W ZDV QRWHG KRZHYHU WKDW D ZDV DQ H[FHOOHQW PRGHO FRPSRXQG IRU WKH DVVLJQPHQW RI WKH UHVRQDQFHV LQ WKH VSHFWUD RI D DQG 7KXV WKH UHVRQDQFHV ZHUH DVVLJQHG LQ DQ DQDORJRXV PDQQHU :RUWK QRWLQJ LV WKH IDFW WKDW WKH DVVLJQPHQW RI UHVRQDQFHV E\ 12( H[SHULPHQWV LV LQ DJUHHPHQW ZLWK ZKDW RQH ZRXOG H[SHFW WR REVHUYH ZKHQ WKH F\FORDGGLWLRQ LV SHUIRUPHG ZLWK =%GHXWHULRVW\UHQH 7KH ODUJHVW PHWK\OHQH SHDNV LQ WKH VSHFWUD RI DQG DUH IURP WKH UHVRQDQFH RI SURWRQV LQ WKH =GHXWHUDWHG DGGXFWV &DSWR'DWLYH 6WXG\ 7KH WHUP FDSWRGDWLYH LV GHULYHG IURP WKH H[WUDRUGLQDU\ DELOLW\ RI D FDSWR HOHFWURQ DFFHSWRU JURXS DQG D GDWLYH HOHFWURQ GRQRU JURXS WR VWDELOL]H D UDGLFDO ZKHQ ERWK JURXSV DUH DWWDFKHG WR WKH VDPH FDUERQA %RWK LQGXFWLYH DQG UHVRQDQFH HIIHFWV RI WKH DWWDFKHG JURXSV FRQWULEXWH WR & F FDSWR HOHFWURQ DFFHSWRU JURXS G GDWLYH HOHFWURQ GRQRU JURXS WKH VWDELOL]DWLRQ *HPLQDO FDSWRGDWLYH VXEVWLWXWLRQ RI DQ ROHILQ LQFUHDVHV LWV UHDFWLYLW\ LQ ERWK UDGLFDO DQG GLUDGLFDO UHDFWLRQV 7KH UHGXFHG IURQWLHU RUELWDO +202/802 HQHUJ\ VHSDUDWLRQ PDNHV FDSWRGDWLYH VXEVWLWXWHG ROHILQV UDGLFRSKLOLF VLQFH WKH VLQJO\ RFFXSLHG PROHFXODU RUELWDO 6202f RI D A7KH GLIIHUHQFH 12( VSHFWUD RI D DQG DSSHDU LQ $SSHQGL[ $ LQ )LJXUHV $ DQG $

PAGE 30

UDGLFDO LV QHDU WR ERWK WKH +202 DQG WKH /802 RI WKH ROHILQ 7KXV LW ZDV WKRXJKW WKDW D FDSWRGDWLYH VXEVWLWXWHG ROHILQ OLNH F\DQRYLQ\O DFHWDWH PLJKW EH PRUH UHDFWLYH WRZDUG ')$ WKDQ WKH SDUDVXEVWLWXWHG VW\UHQHV T RU DQ\ RWKHU ROHILQ \HW VWXGLHG 7KH UHDFWLRQV RI ')$ ZLWK F\DQRYLQ\O DFHWDWH ZHUH FDUULHG RXW WKH VDPH DV WKH UHDFWLRQV RI ')$ ZLWK WKH SDUDVXEVWLWXWHG VW\UHQHV $ WHQIROG H[FHVV RI WKH ROHILQ ZDV XVHG $QDO\VLV RI WKH FUXGH UHDFWLRQ PL[WXUHV E\ */& VKRZHG WZR SURGXFWV DQG DQG WKHUH ZDV D VOLJKW GHSHQGHQFH RI WKH SURGXFW UDWLR RQ WHPSHUDWXUH DV VKRZQ LQ 7DEOH $F2 V $F2 &1 &)" 6 &1 7DEOH 5HDFWLRQV RI ')$ ZLWK &\DQRYLQ\O $FHWDWH
PAGE 31

7KH JUHDWHVW VHOHFWLYLW\ ZDV REVHUYHG DW WKH ORZHVW WHPSHUDWXUH VLPLODU WR WKH UHVXOWV LQ 7DEOH 3URGXFWV DQG A ZHUH FKDUDFWHUL]HG E\ r+ fA& DQG 105 VSHFWUD ,5 VSHFWUD ORZ DQG KLJK UHVROXWLRQ 06 DQG LQ WKH FDVH RI E\ FRPEXVWLRQ DQDO\VLV 7KH VSHFWUDO LQWHUSUHWDWLRQV ZHUH VWUDLJKWIRUZDUG 7KH UHDFWLRQ RI ')$ ZLWK F\DQRYLQ\O DFHWDWH ZDV YHU\ FOHDQ ZLWK QR SRO\PHUL]DWLRQ REVHUYHG 7KH UHODWLYH UHDFWLYLW\ RI F\DQRYLQ\O DFHWDWH FRPSDUHG WR VW\UHQH ZDV GHWHUPLQHG WR EH E\ */& DV VKRZQ LQ 7DEOH 6XUSULVLQJO\ WKH FDSWRGDWLYH UHDJHQW ZDV OHVV UHDFWLYH WRZDUG ')$ WKDQ DQ\ RI WKH VW\UHQHV VWXGLHG $ FRPSDULVRQ RI WKH SHUFHQW \LHOGV IRU WKH UHDFWLRQV LQ 7DEOHV DQG VHHPV WR VXSSRUW WKH YDOLGLW\ RI WKH FRPSHWLWLYH VWXG\ 7DEOH &RPSHWLWLRQ 5HDFWLRQ RI ')$ ZLWK 6W\UHQH DQG &\DQRYLQYO $FHWDWH f 2OHILQV 8VHGD 3URGXFW 5DWLRVE @ &\FORDGGLWLRQV RI 'LIOXRURDOOHQH 7KH >@ F\FORDGGLWLRQV RI GLIOXRURDOOHQH ')$f ZLWK WKH SDUD VXEVWLWXWHG VW\UHQHV DQG ZLWK F\DQRYLQ\O DFHWDWH JLYH UHVXOWV ZKLFK DUH

PAGE 32

FRQVLVWHQW ZLWK WKRVH RI SUHYLRXVO\ VWXGLHG ')$ >@ UHDFWLRQVA 7KH KLJK UHDFWLYLW\ RI ')$ DOORZV WKH F\FORDGGLWLRQV WR WDNH SODFH DW r& LQ K UHVSHFWLYHO\ ZKLOH JLYLQJ DQ DYHUDJH b \LHOG RI WZR SURGXFWV ZKHQ D WHQIROG H[FHVV RI WKH ROHILQ LV XVHG 7KH ODFN RI KLJKHU \LHOGV LV GXH WR WKH FRPSHWLWLYH ROLJLPHUL]DWLRQ RI WKH KLJKO\ VHOIUHDFWLYH ')$ $OO SURGXFWV DUH FRPSOHWHO\ VWDEOH XQGHU WKH UHDFWLRQ FRQGLWLRQV ZLWK QR FRPSHWLQJ VLGH UHDFWLRQV 7KH VWHUHRFKHPLFDO VWXG\ LV DOVR YHU\ FOHDQ ZLWK QR HYLGHQFH IRU LQWHUFRQYHUVLRQ RI WKH SURGXFWV RQFH IRUPHG QRU FOHDYDJH RI DQ\ LQWHUPHGLDWH WR JLYH VWDUWLQJ PDWHULDOV XQGHU WKH UHDFWLRQ FRQGLWLRQV 7KXV WKH UHDFWLRQV DUH VKRZQ WR EH XQGHU NLQHWLF FRQWURO 7KH >@ F\FORDGGLWLRQV VWXGLHG VHHP VXSHUILFLDOO\ FRQVLVWHQW ZLWK WKH W\SH RI VWHSZLVH GLUDGLFDO PHFKDQLVP GLVFXVVHG LQ &KDSWHU ,Q WKH ILUVW VWHS DQ DOO\OHWK\O GLUDGLFDO LQWHUPHGLDWH LV IRUPHG ZKLFK XQGHUJRHV FRPSHWLWLYH ULQJ FORVXUHV WR SUHGRPLQDWHO\ JLYH IRU H[DPSOH D WKH PRUH D

PAGE 33

WKHUPRG\QDPLFDOO\ VWDEOH SURGXFW IRU WKH VW\UHQH UHDFWLRQ 7KLV UDWLRQDOH DGHTXDWHO\ H[SODLQV WKH REVHUYHG SURGXFW UDWLRV DQG UHJLRFKHPLVWU\ RI F\FORDGGLWLRQ LQ 7DEOHV DQG 7KH UHODWLYH UHDFWLYLW\ DQG VWHUHRFKHPLFDO VWXGLHV OHQG IXUWKHU VXSSRUW WR WKLV PHFKDQLVP 7DEOH VKRZV WKHUH LV D VFUDPEOLQJ RI WKH GHXWHULXP ODEHO LQ WKH SURGXFWV ZKHQ WKH UHDFWLRQ LV SHUIRUPHG ZLWK =%GHXWHULR VW\UHQH 7KXV DQ LQWHUPHGLDWH PXVW EH LQYROYHG 7KH UHODWLYH UHDFWLYLW\ VWXGLHV RI 7DEOH UHTXLUH DQ LQWHUPHGLDWH WKDW LV GHYRLG RI DQ\ SRODU FKDUDFWHU WR DFFRXQW IRU WKH IDFW WKDW ERWK HOHFWURQULFK SDUDPHWKR[\ VW\UHQH DQG HOHFWURQGHILFLHQW SDUDQLWURVW\UHQH XQGHUJR F\FORDGGLWLRQ ZLWK ')$ PRUH UDSLGO\ WKDQ VW\UHQH LWVHOI 7KH LQWHUYHQWLRQ RI +202/802 GRQRUDFFHSWRUf RU FKDUJH WUDQVIHU LQWHUDFWLRQV VHHPV XQOLNHO\ LQ YLHZ RI WKLV ZKLOH D GLUDGLFDO LQWHUPHGLDWH OLNH LV TXLWH SODXVLEOH ,W LV LQWHUHVWLQJ WR QRWH WKDW DOWKRXJK WKH FRPSHWLWLRQ VWXGLHV DUH WKH ILUVW H[DPSOH RI D +DPPHWWW\SH VWXG\ RI D >@ UHDFWLRQ WKH UHVXOWV DUH FRQVLVWHQW ZLWK D SUHYLRXV VXEVWLWXHQW HIIHFW VWXG\ RI WKH WKHUPDO UHDUUDQJHn PHQWV RI DU\OGLPHWK\OPHWK\OHQHF\FORSURSDQHV eA 7HQ GLIIHUHQW

PAGE 34

VXEVWLWXHQWV RI YDU\LQJ GHJUHHV RI HOHFWURQ GRQDWLQJ RU DFFHSWLQJ DELOLW\ ZHUH VKRZQ WR JLYH LQFUHDVHG UHDFWLYLW\ UHODWLYH WR D K\GURJHQ IRU $ FORVH H[DPLQDWLRQ RI WKH VWHUHRFKHPLFDO UDWLRV LQ 7DEOH UHYHDOV WKDW WKH FRPPRQLQWHUPHGLDWH GLUDGLFDO PHFKDQLVP XVHG WR H[SODLQ WKH >@ F\FORDGGLWLRQV RI ')$ VR IDU PD\ EH DQ RYHUVLPSOLILFDWLRQ 7KH UHWHQWLRQ RI VWHUHRFKHPLVWU\ LV TXLWH GLIIHUHQW LQ WKH WZR SURGXFWV ZLWK RQO\ D PLQRU YDULDWLRQ RI WKH VWHUHRFKHPLFDO UDWLRV ZLWK WHPSHUDWXUH ,I WKH WZR SURGXFWV ZHUH IRUPHG IURP WKH VDPH LQWHUPHGLDWH RQH ZRXOG H[SHFW WKDW WKH VWHUHRFKHPLFDO UDWLRV ZRXOG EH QHDUO\ WKH VDPH 7KXV D PRGLILFDWLRQ RI WKH PHFKDQLVP PXVW EH PDGH ZKLFK DFFRXQWV IRU WKH VWHUHRFKHPLFDO UDWLRV EXW ZKLFK LV VWLOO FRQVLVWHQW ZLWK DOO RI WKH UHVXOWV GLVFXVVHG VR IDU $ WKRURXJK H[DPLQDWLRQ RI ZKDW LV FXUUHQWO\ NQRZQ DERXW WKH PHFKDQLVWLF GHWDLOV RI >@ UHDFWLRQV LQ SDUWLFXODU WKH GHWDLOV RI WKH ILUVW PHFKDQLVWLF VWHS ZRXOG EH KHOSIXO WR LQVXUH WKDW DQ\ PRGLILFDWLRQ RI WKH FRPPRQ LQWHUPHGLDWH GLUDGLFDO PHFKDQLVP ZRXOG KDYH D SURSHU EHJLQQLQJ 6FUXWLQL]DWLRQ RI WKH )LUVW 0HFKDQLVWLF 6WHS $OWKRXJK HYLGHQFH FRQWLQXHV WR DFFXPXODWH LQGLFDWLQJ WKH VWHSZLVH QDWXUH RI > @ F\FORDGGLWLRQV LQ JHQHUDO DQG DOLHQH > @ UHDFWLRQV LQ SDUWLFXODU QWWOH LV UHDOO\ NQRZQ DERXW WKH PHFKDQLVWLF GHWDLOV RI WKHVH UHDFWLRQV /LWWOH WKHRUHWLFDO HIIRUW KDV EHHQ GLUHFWHG WRZDUG >@ F\FORDGGLWLRQV 1RW PXFK PRUH LV NQRZQ DERXW IDFWRUV ZKLFK GULYH WKHVH F\FORDGGLWLRQV RWKHU WKDQ WKH JHQHUDO UXOHV HVSRXVHG LQ 5REHUWV DQG 6KDUWnV UHYLHZ RI DOO NQRZQ VXFK UHDFWLRQV LQ 7KH >@ UHDFWLRQV GR QRW DSSHDU WR EH GULYHQ E\ +202/802 GRQRUDFFHSWRUf LQWHUDFWLRQV VLQFH PDQ\ LI QRW PRVW RI WKH EHVW > @nV DUH GLPHUL]DWLRQV ,Q JHQHUDO

PAGE 35

FODVVLF IDFWRUV VHHP WR SURPRWH >@ UHDFWLYLW\ OLNH UHOLHI RI VWUDLQ DQGRU WKH SUHVHQFH RI UDGLFDOVWDELOL]LQJ RU ROHILQGHVWDELOL]LQJ VXEVWLWXHQWV $OLHQHV DUH ERWK LQWHUHVWLQJ DQG XQLTXH DGGHQGV LQ >@ F\FORn DGGLWLRQV :KLOH IUHH UDGLFDO DGGLWLRQV WR DOLHQHV RFFXU DW ERWK WHUPLQDO DQG FHQWUDO FDUERQV >@ F\FORDGGLWLRQV RI DOLHQHV SURFHHG DOPRVW H[FOXVLYHO\ YLD FHQWUDO FDUERQ DWWDFNA DV VKRZQ LQ )LJXUH 7KH FRQWUDVW LQ UHJLRFKHPLVWU\ IRU WKHVH VXSHUILFLDOO\ VLPLODU SURFHVVHV FDQ EH XQGHUVWRRG LQ WHUPV RI WKH GLIIHUHQFHV LQ HQHUJHWLFV EHWZHHQ WKHP 7KH )LJXUH &RPSDULVRQ RI )UHH 5DGLFDO $GGLWLRQV ZLWK &\FORDGGLWLRQV RI $OLHQH DGGLWLRQ RI UDGLFDOV WR DOLHQH LV JHQHUDOO\ DQ H[RWKHUPLF SURFHVV ZLWK D ORZ DFWLYDWLRQ HQHUJ\ DQG ZLWK OLWWOH WHPSHUDWXUH GHSHQGHQFH RQ UHJLRFKHPLVWU\ REVHUYHGA ,Q FRQWUDVW WKH ILUVW PHFKDQLVWLF VWHS LQ D >@ F\FORDGGLWLRQ RI DOLHQHV LV HQGRWKHUPLF ZLWK D VLJQLILFDQW DFWLYDWLRQ HQHUJ\ 7KLV FRPn ELQHG ZLWK WKH UHJLRVSHFLILFLW\ REVHUYHG LQ LQLWLDO ERQG IRUPDWLRQ OHDGV RQH

PAGE 36

WR FRQFOXGH WKDW WKH WUDQVLWLRQ VWDWH IRU WKLV ILUVW VWHS KDV XQGHUJRQH VLJQLn ILFDQW URWDWLRQ RI WKH WHUPLQDO PHWK\OHQH RI WKH UHDFWLYH GRXEOH ERQG WR JLYH WKH WUDQVLWLRQ VWDWH FRQVLGHUDEOH VWDELOL]LQJ DOO\O UDGLFDO FKDUDFWHU DV LQ 76r 2QFH LQWHUPHGLDWH B KDV IRUPHGA LW KDV RQO\ UDUHO\ EHHQ REVHUYHG WR UHYHUW WR VWDUWLQJ PDWHULDOV XQOLNH WKH XVXDO >@ GLUDGLFDO LQWHUPHGLDWHV EHFDXVH WKH DOO\O UDGLFDO VWDELOL]DWLRQ LQ 7 PXVW EH ORVW SULRU WR FOHDYDJH ,QGHHG QR UHYHUVLELOLW\ RI WKLV LQLWLDO ERQG IRUPDWLRQ KDV HYHU EHHQ REVHUYHG LQ WKH 'ROELHU HW DO VWXGLHV RI WKH >@ F\FORDGGLWLRQV RI DOLHQH RU RI IOXRULQHVXEVWLWXWHG DOLHQHVA 76 8QOLNH WKH XQFHUWDLQW\ SUHVHQW IRU PRVW RWKHU DOLHQHV RQH FDQ EH UHDVRQDEO\ DVVXUHG WKDW WKH LQLWLDOO\ UHDFWLYH QERQG RI ')$ LQ WKH ILUVW PHFKDQLVWLF VWHS LV WKH IOXRULQHVXEVWLWXWHG RQH 7KLV DVVXPSWLRQ LV GHULYHG IURP WKH REVHUYDWLRQ WKDW IOXRULQHVXEVWLWXWHG ROHILQV DUH PXFK PRUH UHDFWLYH LQ >@ F\FORDGGLWLRQV WKDQ K\GURJHQVXEVWLWXWHG RQHVp 7KH FRPSDULVRQ RI WKH >@ UHDFWLYLWLHV RI PHWK\OHQHF\FORSURSDQHV D DQG E r$ UHFHQW LVRWRSH HIIHFW VWXG\ LV FRQVLVWHQW ZLWK VXFK URWDWLRQ RFFXULQJ LQ WKH WUDQVLWLRQ VWDWH UHI f

PAGE 37

LOOXVWUDWH WKLV IDFW &RPSRXQGV D DQG E DUH HVVHQWLDOO\ KRPRDOOHQHV DQG VKRXOG EH FRQVLGHUHG H[FHOOHQW PRGHOV RI WKH IOXRULQHVXEVWLWXWHG DQG K\GURJHQVXEVWLWXWHG LUERQGV RI ')$A2 7KXV LQ WKH ')$VW\UHQH UHDFWLRQ LW ZLOO EH DVVXPHG WKDW WKH LQLWLDO UHDFWLRQ RFFXUV DW WKH FHQWUDO FDUERQ RI ')$ DW WKH &M& QERQG (YLGHQFH IRU 7ZR .LQHWLFDOO\ 'LVWLQJXLVKDEOH ,QWHUPHGLDWHV ,Q PRGLI\LQJ WKH FRPPRQLQWHUPHGLDWH GLUDGLFDO PHFKDQLVP IRU WKH >@ F\FORDGGLWLRQV RI ')$ LW VKRXOG EH UHFDOOHG IURP &KDSWHU WKDW WKH IOXRULQHV H[HUW OLWWOH LI DQ\ VWHULF GHPDQG LQ >@ UHDFWLRQV 7KH RQO\ VXEVWLWXHQW PDNLQJ D VLJQLILFDQW VWHULF GHPDQG LQ WKH ')$VW\UHQH V\VWHP XQGHU GLVFXVVLRQ LV WKH SKHQ\O ULQJ 7KLV LV LQ VWDUN FRQWUDVW WR 3DVWRnV UHODWHG VWHUHRFKHPLFDO VWXG\ RI WKH UHDFWLRQV RI DON\OVXEVWLWXWHG DOLHQHV ZLWK GLHWK\O IXPDUDWH DQG GLHWK\O PDOHDWH ,Q KLV VWXG\ D VWHULF UDWLRQDOH ZDV VROHO\ XVHG WR DFFRXQW IRU WKH UHVXOWVA

PAGE 38

,Q RUGHU IRU D GLUDGLFDO PHFKDQLVP WR TXDQWLWDWLYHO\ UDWLRQDOL]H WKH VWHUHRFKHPLFDO UHVXOWV LQ 7DEOH ZKHUHLQ WKH PLQRU SURGXFW LV IRUPHG ZLWK JUHDWHU UHWHQWLRQ RI VWHUHRFKHPLVWU\ WKDQ WKH PDMRU SURGXFW LW LV QHFHVVDU\ WR LQYRNH DW OHDVW WZR NLQHWLFDOO\ GLVWLQFW LQWHUPHGLDWHV 7KH ILUVW VKRUWOLYHG LQWHUPHGLDWH RU LQWHUPHGLDWHV VKRXOG EH QRQUHJLRVHOHFWLYH EXW KLJKO\ VWHUHRVHOHFWLYH LQ WKH F\FOL]DWLRQ WR DQG ,W PXVW DOVR FRQYHUW WR D PRUH VWDEOH LQWHUPHGLDWH EHIRUH EHLQJ DEOH WR XQGHUJR PXFK F\FOL]DWLRQ 7KH VHFRQG LQWHUPHGLDWH VKRXOG EH PXFK ORQJHUOLYHG VKRXOG ) A FI 3K = &) ? 3K ( RUA f§L &) 3K = 3K ( UDQGRPL]H VWHUHRFKHPLFDOO\ EHIRUH F\FOL]LQJ DQG VKRXOG EH PXFK PRUH UHJLRVHOHFWLYH LQ IRUPLQJ WKH PRUH VWDEOH SURGXFW YHUVXV )LJXUH JLYHV D UHDVRQDEOH PHFKDQLVWLF VHTXHQFH RI HYHQWV ZKLFK FRXOG JLYH ULVH WR WKH DERYH H[SHFWDWLRQV $VVXPLQJ D ODFN RI VWHULF HIIHFWV GXH WR WKH GHXWHULXP RU IOXRULQH VXEVWLWXHQWV DQG VKRXOG EH IRUPHG DW VLPLODU UDWHV DQG VKRXOG KDYH VLPLODU NLQHWLF VWDELOLWLHV LQ )LJXUH 7KH\ VKRXOG URWDWH DW VLPLODUO\

PAGE 39

UDSLG UDWHV WR DOOHYLDWH WKH OLNHO\ VWHULF HIIHFWV GXH WR WKH SKHQ\O VXEVWLWXHQW DQG IRUP WKH SUHVXPDEO\ PRUH VWDEOH GLUDGLFDOV DQG %HFDXVH RI WKHLU KLJK UHDFWLYLW\ LW LV UHDVRQDEOH WR DVVXPH D ODFN RI VHOHFWLYLW\ IRU DQG LQ WKHLU ULQJ FORVXUHV DOWKRXJK RQH PLJKW H[SHFW WKDW GXH WR LWV OLNHO\ PRGH RI URWDWLRQ WR PLJKW SUHIHU FYFOL]DWLRQ WR = ZKLOH PLJKW WR D VLPLODU H[WHQW SUHIHU F\FOL]DWLRQ WR = 'LUDGLFDOV A DQG LQ )LJXUH VKRXOG EH PRUH VWDEOH NLQHWLFDOO\ WKDQ DQG GXH WR WKH UHODWLYH ODFN RI SUR[LPLW\ RI WKHLU EHQ]\O UDGLFDO = ( = ( b b b b )LJXUH 0RGLILHG 'LUDGLFDO 0HFKDQLVP :KLFK 4XDQWLWDWLYHO\ $FFRXQWV IRU WKH 6WHUHRFKHPLFDO 5HVXOWV LQ 7DEOH 3HUFHQW
PAGE 40

RUELWDOV WR WKH WHUPLQL RI WKHLU DOO\O UDGLFDO V\VWHPV 7KH DOO\O UDGLFDO V\VWHPV RI DQG FRXOG SRWHQWLDOO\ URWDWH DV VKRZQ WR IRUP f DQG n UHVSHFWLYHO\ WKH HQDQWLRPHULF IRUPV RI DQG 7KH WZR UDGLFDO V\VWHPV f DQG f DUH QRW LQWHUFRQYHUWLEOH EXW HDFK VKRXOG OHDG WR LGHQWLFDO IXOO\ VWHUHRUDQGRPL]HG PL[WXUHV RI DQG 7KHUHIRUH WKH YLDELOLW\ RI )LJXUH LV LQGHSHQGHQW RI WKH UHODWLYH UDWH RI IRUPDWLRQ RI DQG 5HPDUNDEO\ WKLV VFKHPH RI PHFKDQLVWLF HYHQWV KDV H[FHOOHQW FRUUHn ODWLRQ ZLWK WKH H[SHULPHQWDO UHVXOWV ,I RQH DVVXPHV WKDW A DQG XQGHUJR ULQJ FORVXUH WR JLYH RQO\ WKH H[FHVV VWHUHRFKHPLFDOO\UHWDLQHG = SURGXFWV WKH SHUFHQW \LHOG RI SURGXFWV IRUPHG IURP HDFK SDWKZD\ FDQ EH FDOFXODWHG DV VKRZQ LQ )LJXUH IRU WKH r & UHDFWLRQ 7KLV NLQHWLF VFHQDULR H[DFWO\ UHSURGXFHV WKH SURGXFW UDWLR f DQG WKH VWHUHRn FKHPLFDO =( UDWLRV IRU f DQG f LQ 7DEOH 2QH VKRXOG YHULI\ WKDW WKH SHUFHQW \LHOGV LQ )LJXUH TXDQWLWDWLYHO\ LQGLFDWH DQG WR EH KLJKO\ VWHUHRVHOHFWLYH EXW QRQUHJLRVHOHFWLYH DQG WKH\ LQGLFDWH DQG WR EH KLJKO\ UHJLRVHOHFWLYH EXW VWHUHRUDQGRP LQ DJUHHPHQW ZLWK SUHYLRXV H[SHFWDWLRQV ,I RQH DSSOLHV WKLV VDPH DQDO\VLV WR WKH ORZHU WHPSHUDWXUH VWHUHRn FKHPLFDO UHVXOWV LQ 7DEOH JUHDWHU VHOHFWLYLW\ RI FORVXUH IRU DQG LV REVHUYHG DV VKRZQ LQ 7DEOH $W r& IRU H[DPSOH b RI = DQG b RI = LV IRUPHG IURP DQG LQ DJUHHPHQW ZLWK WKHUPRG\QDPLF H[SHFWDWLRQV

PAGE 41

7DEOH 6HOHFWLYLW\ RI &ORVXUH IRU ,QWHUPHGLDWHV DQG DW 9DULRXV 7HPSHUDWXUHV b ([FHVV b ([FHVV &RQGLWLRQV = )RUPHG = )RUPHG r& K b b r& K b b r& K b b ,W KDV EHHQ DVVXPHG IRU ODFN RI D EHWWHU K\SRWKHVLV WKDW WKH SURn SRVHG GLUDGLFDOV VDWLVI\LQJ WKH VWHUHRFKHPLFDO UHVXOWV DUH VLPSO\ FRQIRUPDn WLRQDO LVRPHUV OLNH WKRVH GHSLFWHG LQ )LJXUH +RZHYHU WKHUH LV QR GLUHFW HYLGHQFH IRU WKH VWUXFWXUHV RI WKH VSHFLILF VSHFLHV DFWXDOO\ LQYROYHG QRU LV LW HYHQ QHFHVVDU\ WKDW WKH WZR PRGHV RI UHDFWLRQ EH VHTXHQWLDOOY UHODWHG 7KH\ FRXOG EH SDUDOOHO SDWKZD\V 7KH VWHUHRFKHPLFDO UHVXOWV PHUHO\ UHTXLUH WZR SDWKZD\V WR SURGXFWV DQG D PLQRU SDWKZD\ ZKLFK LV QRQUHJLRVHOHFWLYH EXW VWHUHRVSHFLILF DQG D PDMRU SDWKZD\ ZKLFK LV UHJLR VHOHFWLYH EXW VWHUHRUDQGRP ,W VKRXOG EH ILQDOO\ VWDWHG KRZHYHU WKDW WKH VSHFLILF PHFKDQLVWLF VFKHPH SUHVHQWHG LQ WKLV GLVFXVVLRQ LV RQH ZKLFK LV FRQVLVWHQW ZLWK HYHU\WKLQJ WKDW LV SUHVHQWO\ NQRZQ DERXW DOLHQH >@ F\FORDGGLWLRQ UHDFWLRQV 6XPPDU\ ,Q VXPPDU\ WKH >@ F\FORDGGLWLRQV RI ')$ ZLWK SDUDVXEVWLWXWHG VW\n UHQHV + 2&+ 12Jf DQG WKH FDSWRGDWLYH UHDJHQW F\DQRYLQ\O DFHWDWHr A,W VKRXOG SHUKDSV EH PHQWLRQHG WKDW WKH UHDFWLRQV RI ')$ ZLWK GLFKORUROGLIOXRURHWK\OHQH f DQG FLVVWLOEHQH ZHUH DOVR VWXGLHG ZLWK OLWWOH VXFFHVV ,Q WKH UHDFWLRQ WKH ')$ XQGHUZHQW H[WHQVLYH ROLJLPHUL]DWLRQ ZLWK QR F\FORDGGLWLRQ DW r& DQG LQ WKH FLVVWLOEHQH UHDFWLRQ WKH VWDUWLQJ PDWHULDO XQGHUZHQW H[WHQVLYH LVRPHUL]DWLRQ WR WUDQV VWLOEHQH XQGHU WKH UHDFWLRQ FRQGLWLRQV

PAGE 42

ZHUH VWXGLHG LQ RUGHU WR JDLQ D JUHDWHU PHFKDQLVWLF XQGHUVWDQGLQJ RI DOLHQH >@ F\FORDGGLWLRQV 7KH SURGXFW UDWLRV DQG UHJLRFKHPLVWU\ ZHUH FRQVLVWHQW ZLWK SUHYLRXVO\ VWXGLHG ')$ UHDFWLRQV ZKHUHLQ WKH PRUH WKHUPRG\QDPLFDOOY VWDEOH SURGXFW ZDV IDYRUHG ,Q DGGLWLRQ D VWHUHRFKHPLFDO VWXG\ ZLWK =%GHXWHULRVW\UHQH ZDV FRQVLVWHQW ZLWK D VWHSZLVH PHFKDQLVP VLQFH WKHUH ZDV D VFUDPEOLQJ RI WKH GHXWHULXP ODEHO LQ WKH SURGXFWV $ UHODWLYH UHDFWLYLW\ VWXG\ UHTXLUHG DQ LQWHUPHGLDWH ZKLFK ZDV GHYRLG RI DQ\ SRODU FKDUDFWHU VLQFH ERWK SDUDPHWKR[\VW\UHQH DQG SDUDQLWURVW\UHQH XQGHUZHQW UHDFWLRQ ZLWK ')$ PRUH UDSLGO\ WKDQ VW\UHQH LWVHOI 7KHVH UHVXOWV VHHPHG FRQVLVWHQW ZLWK D FRPPRQLQWHUPHGLDWH GLUDGLFDO PHFKDQLVP IRU ZKLFK WKHUH KDV EHHQ VXEVWDQWLDO OLWHUDWXUH SUHFHGHQW &ORVH H[DPLQDWLRQ RI WKH VWHUHRFKHPLFDO UHVXOWV LQ 7DEOH VXJJHVWHG WKDW D FRPPRQLQWHUPHGLDWH GLUDGLFDO PHFKDQLVP ZDV DQ RYHUVLPSOLILFDWLRQ KRZHYHU 7KH GLVWLQFWLYHO\ GLIIHUHQW UHWHQWLRQV RI VWHUHRFKHPLVWU\ IRU WKH WZR SURGXFWV LQ WKH UHDFWLRQ RI ')$ ZLWK =GHXWHULRVW\UHQH JDYH HYLGHQFH IRU WZR NLQHWLFDOO\ GLVWLQJXLVKDEOH LQWHUPHGLDWHV 7KH ILUVW KLJKO\UHDFWLYH LQWHUPHGLDWH ZDV WKRXJKW WR EH QRQUHJLRVHOHFWLYH EXW VWHUHRVSHFLILF DQG WKH VHFRQG PRUHVWDEOH LQWHUPHGLDWH ZDV WKRXJKW WR EH UHJLRVHOHFWLYH EXW VWHUHRUDQGRP 7KLV KHOSHG WR DFFRXQW IRU WKH IDFW WKDW WKHUH ZDV D JUHDWHU UHWHQWLRQ RI VWHUHRFKHPLVWU\ LQ WKH PLQRU SURGXFW 7KH KLJK UHDFWLYLW\ RI ')$ WKH VWDELOLW\ RI WKH SURGXFWV XQGHU WKH UHDFWLRQ FRQGLWLRQV DQG WKH SUHSDUDWLRQ RI =%GHXWHULRVW\UHQH ZLWK DQ LVRWRSLF SXULW\ RI b DQG JUHDWHU WKDQ b = DOORZHG WKLV VWHUHRFKHPLFDO VWXG\ WR EH FRPSOHWHO\ XQDPELJXRXV

PAGE 43

&+$37(5 67(5(2&+(0,675< 2) 7+( ',32/$5 &<&/2$'',7,216 2) )/8252$//(1( ,QWURGXFWLRQ 8QGHUVWDQGLQJ WKH VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG LQ F\FORDGGLWLRQ UHDFWLRQV KDV EHHQ RQH RI WKH PRQXPHQWDO SUREOHPV RI RUJDQLF FKHPLVWU\ GXULQJ WKH SDVW \HDUV (DUO\ H[FLWHPHQW ZDV JHQHUDWHG E\ WKH UHDFWLRQV RI QRUERUQHQH DQG UHODWHG FRPSRXQGV ZKLFK SUHIHUHQWLDOO\ XQGHUZHQW H[R DWWDFN E\ D YDULHW\ RI UHDJHQWV} 'LSRODU F\FORDGGLWLRQV KDYH SOD\HG DQ LPSRUWDQW UROH LQ WKH HYROXWLRQ RI WKH VWHUHRFKHPLVWU\ SUREOHP ,QGHHG WKH LQIDPRXV $OGHU H[R UXOH SXEOLVKHG LQ ZDV IRUPXODWHG IURP D VWXG\ RI WKH GLSRODU F\FORDGGLWLRQV RI YDULRXVO\ VXEVWLWXWHG QRUERUQHQHV ZLWK SKHQ\O D]LGH 7KH IRFXV RI WKLV FKDSWHU ZLOO EH RQ WKH VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG LQ GLSRODU F\FORDGGLWLRQV RI FRQWHPSRUDU\ LQWHUHVWA DQG LQ SDUWLFXODU RQ WKH SUHIHUHQFHV REVHUYHG IRU DGGLWLRQ WR GLSRODURSKLOHV FRQWDLQLQJ DQ DOO\OLF KDORJHQ VXEVWLWXHQW $OWKRXJK VHYHUDO GLSRODU F\FORDGGLWLRQV RI DOLHQHV KDYH EHHQ UHSRUWHG RQO\ D IHZ VWHUHRFKHPLFDO VWXGLHV KDYH EHHQ GRQH 7KH UHDFWLRQV RI PHWKR[\ DQG SKHQR[\DOOHQH VKRZ D GHILQLWH SUHIHUHQFH IRU DQWL DWWDFN SUHVXPDEO\ GXH WR VWHULF UHDVRQV} ZKLOH WKH UHDFWLRQ RI PRQRIOXRURDOOHQH 0)$f ZLWK 1&GLSKHQ\OQLWURQH VHHPV WR VKRZ D VWURQJ SUHIHUHQFH IRU V\Q DGGLWLRQ DV GLVFXVVHG LQ &KDSWHU 7KH XVH RI D PRQRVXEVWLWXWHG DOLHQH WR VWXG\ WKH VWHUHRFKHPLVWU\ RI F\FORDGGLWLRQ UHDFWLRQV VHHPV LGHDO GXH WR WKH VLPSOLFLW\ RI WKH GLSRODURSKLOH 7KXV DQ H[DPLQDWLRQ RI WKH UHDFWLRQV RI 0)$ ZLWK RWKHU QLWURQHV DQG GLSROHV

PAGE 44

ZRXOG EH H[SHFWHG WR EH TXLWH LQWHUHVWLQJ ,Q DGGLWLRQ LW ZRXOG EH LQWHUHVWLQJ WR GR VROYHQW DQG NLQHWLF VWXGLHV WR REWDLQ D JUHDWHU XQGHUn VWDQGLQJ RI WKH IDFWRUV DIIHFWLQJ WKH VWHUHRFKHPLFDO RXWFRPH RI WKHVH UHDFWLRQV 7KHVH VWXGLHV DV ZHOO DV XQDPELJXRXV VWUXFWXUDO SURRIV IRU WKH SUHYLRXVO\ PHQWLRQHG 0)$GLSKHQ\OQLWURQH F\FORDGGXFWV ZLOO EH SUHVHQWHG 6LPLODU WR SDVW FKDSWHUV ERWK WKH KLJK UHDFWLYLW\ RI 0)$ DQG WKH ODFN RI D VLJQLILFDQW VWHULF GHPDQG IRU WKH IOXRULQH VXEVWLWXHQW DLG LQ WKH DWWDLQPHQW RI VRPH H[WUHPHO\ LQWHUHVWLQJ DQG YDOXDEOH UHVXOWV 5HVXOWV 1LWURQH 6WHUHRFKHPLFDO 6WXG\ :KHQ D WHQIROG H[FHVV RI 0)$ ZDV DOORZHG WR UHDFW ZLWK HDFK RI WKUHH QLWURQHV DW r& LQ FKORURIRUP WKHUH ZHUH WZR SURGXFWV DQG SURGXFHG LQ D QHDUO\ TXDQWLWDWLYH \LHOG 7KH UHDFWLRQV ZHUH GRQH LQ WKH GDUN LQ 105 WXEHV ZKLFK KDG EHHQ VHDOHG XQGHU YDFXXP 7KH SURJUHVV RI WKH UHDFWLRQ ZDV IROORZHG E\ DQG OA) 105 DQG WKH UHDFWLRQV ZHUH VKRZQ WR EH FRPSOHWH EHWZHHQ K DQG K 7KH SURGXFW UDWLRV VKRZQ LQ 7DEOH ZHUH GHWHUPLQHG E\ 105 DW 0+] DQG WKH\ ZHUH IRXQG QRW RQO\ WR EH XQFKDQJHG GXULQJ WKH UHDFWLRQV EXW DOVR WR UHPDLQ XQFKDQJHG

PAGE 45

3K 1 ? +n 5 + Ff 5 1DSKWK\O DF DF 7DEOH 0)$ 'LSRODU &\FORDGGLWLRQV ZLWK 1LWURQHV 5 &RQGLWLRQV 3URGXFW 5DWLR fr b
PAGE 46

3URGXFWV DQG ZHUH VHSDUDWHG E\ IODVK FKURPDWRJUDSK\" DQG LVRODWHG 7KH 5 3K DGGXFWV ZHUH SUHYLRXVO\ FKDUDFWHUL]HG E\ %XUNKROGHU DQG WKH A+ DQG ) QPU VSHFWUD REWDLQHG IRU WKHP ZHUH LGHQWLFDO WR SUHYLRXV UHVXOWV 7KH UHPDLQLQJ QLWURQH DGGXFWV ZHUH FKDUDFWHUL]HG E\ A+ & DQG ) Q 05 VSHFWUD ,5 VSHFWUD ORZ DQG KLJK UHVROXWLRQ 06 DQG ILQDOO\ E\ FRPEXVWLRQ DQDO\VHV 7KH UHJLRLVRPHU DVVLJQPHQWV ZHUH VWUDLJKWn IRUZDUG DV LQ %XUNKROGHUnV QLWURQH DGGXFWV EXW WKH VWHUHRFKHPLFDO DVVLJQn PHQW RI WKH IOXRULQH UHODWLYH WR WKH SKHQ\O ULQJ ZDV QRW 7KH VWHUHRn FKHPLFDO DVVLJQPHQWV ZHUH PDGH RQ WKH EDVLV RI GLIIHUHQFH 12( H[SHULn PHQWV IRU D DQG D DQG E\ DQ ;UD\ FU\VWDO VWUXFWXUH GHWHUPLQDWLRQ IRU F 7KH LQWHUSUHWDWLRQ RI WKH GLIIHUHQFH QXFOHDU 2YHUKDXVHU HIIHFW 12(f H[SHULPHQWV ZDV IRUWKULJKW )RU WKH LUUDGLDWLRQ RI WKH 3K&+ DQG &+ LQ WKH K 105 WKH &+) 12( HQKDQFHPHQWV ZHUH b DQG b UHVSHFWLYHn O\ IRU D )RU WKH DQDORJRXV LUUDGLDWLRQV LQ D WKH HQKDQFHPHQWV ZHUH b DQG b 7KH GLIIHUHQFH 12( VSHFWUD RI D DQG D DSSHDU LQ )LJXUHV $ DQG $ RI $SSHQGL[ $ IRU WKH LQWHUHVWHG UHDGHU $ VXLWDEOH FU\VWDO IRU DQ ;UD\ VWUXFWXUH GHWHUPLQDWLRQ ZDV JURZQ E\ VORZ HYDSRUDWLRQ RI VROYHQW IURP DQ HWKDQROLF VROXWLRQ RI F LQ DQ

PAGE 47

XQFDSSHG 105 WXEH $IWHU GLIIUDFWRPHWHU GDWD FROOHFWLRQ DQG VWUXFWXUH UHILQHPHQW WKH VWUXFWXUH VKRZQ LQ )LJXUH ZDV REWDLQHG 2QH FDQ VHH WKDW WKH IOXRULQH LV LQGHHG V\Q WR WKH SKHQ\O LQ WKH 5 QDSKWK\O PDMRU DGGXFW 7KH QRQERQGHG GLVWDQFHV )Mn&LV DQG +&L ZHUH $ DQG $ UHVSHFWLYHO\ $WRP + ZKLFK LV QRW VKRZQ LQ )LJXUH LV DWWDFKHG WR DWRP &f 7KH GHWDLOV RI WKH ;UD\ VWUXFWXUH GHWHUPLQDWLRQ DORQJ ZLWK WKH ERQG OHQJWKV DQG ERQG DQJOHV RI F DSSHDU LQ $SSHQGL[ % & f FXG PIf FLf & &f &f )LJXUH ;5D\ &U\VWDO 6WUXFWXUH IRU WKH 5 1DSKWK\O 0DMRU $GGXFW F ,W ZDV RI LQWHUHVW WR EH DEOH WR PDNH ILUP VWHUHRFKHPLFDO DVVLJQPHQWV ZLWKRXW KDYLQJ WR UHVRUW WR GLIIHUHQFH 12( DQG FU\VWDO VWUXFWXUH GHWHUPLQDn WLRQV HDFK WLPH D QHZ UHDFWLRQ RI 0)$ ZDV VWXGLHG :LWK WKLV LQ PLQG VDOLHQW VSHFWURVFRSLF IHDWXUHV RI VWHUHRFKHPLFDO LPSRUWDQFH ZHUH QRWHG IRU WKH QLWURQH DGGXFWV  DQG 7KHVH ZLOO EH GLVFXVVHG XVLQJ WKH 5 QDSKWK\O FDVH DV DQ H[DPSOH )LUVW WKHUH ZDV D JUHDWHU GHVKLHOGLQJ RI FLV

PAGE 48

DOO\OLF WKDQ WUDQVDOO\OLF SURWRQV E\ IOXRULQH 7KH FKHPLFDO VKLIW RI HDFK SURWRQ FLV WR WKH IOXRULQH LQ WKH r+ 105 ZDV DQ DYHUDJH SSP IXUWKHU GRZQILHOG WKDQ WKDW LQ WKH RWKHU LVRPHU 7KLV LV LOOXVWUDWHG IRU F DQG F $OVR WKHUH ZDV D ODUJHU WUDQVRLG DOO\OLF WKDQ FLVRLG DOO\OLF ++ FRXSOLQJ FRQVWDQW REVHUYHG LQ WKH VSHFWUXP DV ZHOO DV D ODUJHU WUDQVRLG DOO\OLF &) FRXSOLQJ FRQVWDQW REVHUYHG LQ WKH VSHFWUXP 7KLV LV VKRZQ LQ 7DEOH 7KH DYHUDJH GLIIHUHQFH EHWZHHQ WKH WUDQVRLG DQG FLVRLG FRXSn OLQJ FRQVWDQWV ZDV +] IRU WKH ++ FRXSOLQJ DQG +] IRU WKH &) FRXSOLQJ ,Q YLHZ RI WKLV WKH &) FRXSOLQJ FRQVWDQW VHHPHG PRUH KHOSIXO LQ DVVLJQLQJ VWHUHRFKHPLVWU\ $UPHG ZLWK WKHVH VSHFWURVFRSLF REVHUYDWLRQV RQH FDQ DWWHPSW WR HOXFLGDWH IXWXUH VWHUHRFKHPLFDO DVVLJQPHQWV IURP WKH URXWLQH VSHFWUD REWDLQHG IRU QHZ DGGXFWV RI 0)$ 7DEOH A+ DQG 105 &RXSOLQJ &RQVWDQWV WR &+) IRU F DQG F ++ &RXSOLQJ +]f &) &RXSOLQJ +]f &RPSRXQG -&+3Kf -&+f -&+3Kf -&+f F F

PAGE 49

6ROYHQW 6WXG\ IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH 7KH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH ZDV VWXGLHG LQ HLJKW VROYHQWV RI ZLGHO\ GLIIHUHQW (S YDOXHVffp ZKHUH (J LV D PHDVXUH RI VROYHQW SRODULW\ )LUVW WKH UHDFWLRQ UDWH ZDV GHWHUPLQHG LQ HDFK VROYHQW DW r& XVLQJ 105 WR IROORZ WKH SURJUHVV RI WKH UHDFWLRQ 7KH UHODWLYH UDWHV DUH VKRZQ LQ 7DEOH 7KH UHDFWLRQV ZHUH UXQ XQGHU SVXHGR ILUVWRUGHU FRQGLWLRQV ZLWK D WHQIROG H[FHVV RI 0)$ 0XOWLSOH LQWHJUDWLRQV RYHU WKH QLWURQH PHWK\O JURXS DW SSP DQG WKH SURGXFW PHWK\O JURXSV QHDU SSP ZHUH REWDLQHG IRU DW OHDVW ILYH SRLQWV ZLWKLQ WKH ILUVW WKUHH KDOIOLYHV RI WKH UHDFWLRQ 3ORWV RI ORJ >QLWURQH@ YHUVXV WLPH JDYH JRRG VWUDLJKW OLQHV ZLWK FRUUHODWLRQ FRHIILFLHQWV XQLIRUPO\ JUHDWHU WKDQ DQG WKH SVHXGRILUVWRUGHU UDWH FRQVWDQWV ZHUH GHWHUPLQHG IURP WKHP )URP WKHVH ILUVWRUGHU UDWH FRQVWDQWV WKH UHODWLYH UDWHV RI 7DEOH ZHUH FDOn FXODWHG 7KH VPDOO VSUHDG RI WKH UHODWLYH UDWHV LV LQ H[FHOOHQW DJUHHPHQW ZLWK WKH +XLVJHQ HW DO FODVVLF NLQHWLF VWXGLHV IRU QLWURQHVp 2QH PD\ ZRQGHU ZK\ UHODWLYH UDWHV ZHUH UHSRUWHG LQ 7DEOH UDWKHU WKDQ WKH PRUH LQIRUPDWLYH VHFRQGRUGHU UDWH FRQVWDQWV 7KH UHDVRQ LV WKDW WKH >0)$@ YDOXHV XSRQ ZKLFK WKH FDOFXODWLRQ RI WKH VHFRQGRUGHU UDWH FRQVWDQWV GHSHQGV NQM NSVW>0)$@f KDG SRRU DFFXUDFLHV 7KLV PDWWHU LV ZRUWK FRQVLGHULQJ IXUWKHU 7KH FRQFHQWUDWLRQ RI D UHDFWDQW LQ H[FHVV OLNH 0)$ LV XVXDOO\ ZHOO NQRZQ LQ D SVHXGRILUVWRUGHU NLQHWLF VWXG\ 6LQFH 0)$ LV D JDV KRZHYHU LW FDQ SDUWLWLRQ LWVHOI EHWZHHQ WKH VROYHQW DQG WKH HYDFXDWHG VSDFH GLUHFWO\ DERYH WKH VROYHQW LQ D VHDOHG 105 WXEH 7KXV QRW RQO\ LV WKH DPRXQW RI 0)$ LQ WKH OLTXLG VRPHZKDW OHVV WKDQ WKH DPRXQW LQLWLDOO\ FRQGHQVHG LQ WKH WXEH EXW DOVR LW LV SRWHQWLDOO\ GHSHQGHQW RQ WKH VROXELOLW\ RI 0)$ LQ WKH GLIIHUHQW VROYHQWVp 7KLV FDQ SRVH SUREOHPV 8VLQJ SDUDGLR[DQH DV DQ LQWHUQDO VWDQGDUG WKHVH LGHDV

PAGE 50

7DEOH 5HODWLYH 5DWHV DQG 3URGXFW 5DWLRV LQ 9DULRXV 6ROYHQWV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH DW r& (n 6ROYHQW U NFDOf PROHf NUHOD 3URGXFW 5DWLR DDfE EHQ]HQHGJ GLR[DQHGJ &'&, FGFL DFHWRQHGJ '062GJ F &'&1 &'2' D7KH SVHXGRILUVWRUGHU UDWH FRQVWDQWV DUH JLYHQ LQ WKH H[SHULPHQWDO VHFWLRQ LQ 7DEOH E(UURU s b F(UURU s b ZHUH WHVWHG E\ 105 ,W ZDV IRXQG ILUVW WKDW IRU DOO WKH VROYHQWV RI 7DEOH WKHUH ZDV QR VLJQLILFDQW FKDQJH LQ WKH VROXELOLW\ RI 0)$ ZLWKLQ WKH XQFHUWDLQW\ RI WKH PHDVXUHPHQW 6HFRQG LW ZDV VKRZQ WKDW WKHUH ZDV D VHYHQIROG H[FHVV RI 0)$ RYHU WKH QLWURQH SUHVHQW LQ WKH OLTXLG DW DOO WLPHV 7KLV NQRZOHGJH ZDV VXIILFLHQW WR MXVWLI\ UHSRUWLQJ WKH UHODWLYH UDWHV DV VKRZQ LQ 7DEOH ,Q DGGLWLRQ WR WKH UHODWLYH UDWHV WKH SURGXFW UDWLR IRU WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH ZDV GHWHUPLQHG LQ HDFK VROYHQW E\ OA) RU 105 DQG FRQILUPHG E\ */& 7KHVH UHVXOWV DUH DOVR VKRZQ LQ 7DEOH 6XUSULVLQJO\ UDWKHU WKDQ WR ILQG WKDW WKH SURGXFW UDWLRV ZHUH DOO WKH VDPH RU WKDW WKHUH ZDV D JRRG FRUUHODWLRQ RI WKHP ZLWK WKH VROYHQW ( YDOXHV LW ZDV IRXQG WKDW WKHUH ZDV D JUHDW GHDO RI VFDWWHU LQ WKH UHVXOWV

PAGE 51

,Q VSLWH RI WKLV WKHUH ZDV D QHW GHFUHDVH LQ WKH UDWLR ZLWK LQFUHDVLQJ YDOXH DQG WKH UHVXOWV ZHUH UHSURGXFLEOH $ FRPSDULVRQ RI WKH EHQ]HQHG &'&, DQG DFHWRQHG UDWHV DQG UDWLRV LQ 7DEOH UHYHDOV VRPH LQWHUHVWLQJ UHVXOWV $OWKRXJK WKH UHODWLYH UDWH IRU WKH 0)$1PHWK\O&SKHQ\OQLWURQH UHDFWLRQ ZDV JUHDWHU LQ EHQ]HQH G WKDQ LQ &'&, WKH SURGXFW UDWLRV ZHUH QHDUO\ WKH VDPH LQ ERWK VROYHQWV ,Q FRPSDULQJ WKH &'&, DQG DFHWRQHG UHVXOWV KRZHYHU WKH UDWHV ZHUH WKH VDPH EXW WKH SURGXFW UDWLRV ZHUH GLIIHUHQW ,W ZDV GHFLGHG WR LQYHVWLJDWH WKH UHDFWLRQ NLQHWLFV LQ WKHVH WKUHH VROYHQWV PRUH IXOO\ .LQHWLF 6WXG\ IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWKYO&SKHQ\OQLWURQH $V KDV EHHQ QRWHG LQ WKH VROYHQW VWXG\ WKH UHDFWLRQ RI 0)$ ZLWK 1 PHWK\O&SKHQ\OQLWURQH DW r& VKRZV JRRG ILUVWRUGHU NLQHWLFV ZLWK UHVSHFW WR WKH QLWURQH LQ DOO RI WKH VROYHQWV VWXGLHG ,Q VHSDUDWH H[SHUL PHQWV WKH UHDFWLRQ ZDV DOVR VKRZQ WR EH ILUVWRUGHU ZLWK UHVSHFW WR 0)$ WRR 7KH VHFRQGRUGHU UDWH FRQVWDQWV LQ &'&, DW r& ZHUH FDOFXODWHG IRU HDFK RI WKHVH VWXGLHV :KHQ 0)$ ZDV LQ H[FHVV DV LQ WKH VROYHQW VWXGLHV WKH UDWH FRQVWDQW ZDV IRXQG WR EH [ f PROHVHF DQG ZKHQ WKH QLWURQH ZDV LQ H[FHVV WKH UDWH FRQVWDQW ZDV IRXQG WR EH [ PROHVHF 6LQFH WKH DJUHHPHQW LQ WKHVH VHFRQGRUGHU UDWH FRQVWDQWV ZDV JRRG DQG VLQFH D PXOWLWXGH RI H[SHULPHQWDO HUURUV ZDV EHVW PLQLPL]HG E\ NHHSLQJ >0)$@ FRQVWDQW DQG LQ ODUJH H[FHVV LW ZDV GHFLGHG WR FRQWLQXH WKH SVHXGRILUVWRUGHU NLQHWLF DSSURDFK LQ GHWHUPLQLQJ WKH DFWLYDWLRQ SDUDPHWHUV IRU WKH UHDFWLRQ RI LQWHUHVW 7KH NLQHWLFV ZHUH IROORZHG E\ 105 LQ WKH PDQQHU SUHYLRXVOY GHVFULEHG IRU WKH VROYHQW VWXGLHV 3VHXGRILUVWRUGHU UDWH FRQVWDQWV ZHUH REWDLQHG IRU WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH DW URXJKOY r& r& DQG r& LQ EHQ]HQHG &'&, DQG DFHWRQHG 7KH r&

PAGE 52

UHDFWLRQV ZHUH GRQH LQ DQ LFHZDWHU EDWK LQVLGH D WDOO 'HZDU DQG WKH r& UHDFWLRQV ZHUH GRQH LQ ZDWHU WKDW KDG HTXLOLEUDWHG WR URRP WHPSHUDWXUH LQVLGH D GLIIHUHQW 'HZDU IODVN 7KH r& UHDFWLRQV ZHUH GRQH LQ D ZHOO VWLUUHG RLO EDWK DQG VHSDUDWH UHDFWLRQV ZHUH XVHG WR REWDLQ HDFK SRLQW LQ WKH UDWH SORWV $OO RI WKH UHDFWLRQV ZHUH GRQH LQ WKH GDUN WR SUHYHQW DQ\ WUDFH QLWURQH UHDUUDQJHPHQW %\ FDUHIXOO\ FRQWUROOLQJ WKH WHPSHUDWXUHV DQG WDNLQJ PRVW SRLQWV ZHOO ZLWKLQ WKH ILUVW WZR KDOIOLYHV RI WKH UHDFWLRQ JRRG SVHXGRILUVWRUGHU UDWH FRQVWDQWV ZHUH REWDLQHG IURP OLQHV KDYLQJ FRUUHODWLRQ FRHIILFLHQWV JUHDWHU WKDQ ,Q RUGHU WR FDOFXODWH WKH VHFRQGRUGHU UDWH FRQVWDQWV IURP WKH DYDLOn DEOH GDWD WKH >0)$@ YDOXHV IRU HDFK VROYHQW DQG WHPSHUDWXUH KDG WR EH GHWHUPLQHG ZLWK JRRG DFFXUDF\ 6LQFH JDVHRXV 0)$ SDUWLWLRQV LWVHOI EHWZHHQ WKH VROYHQW DQG WKH VSDFH GLUHFWO\ DERYH LW LQ D VHDOHG 105 WXEH WKLV ZDV QRW D WULYLDO SUREOHP )RXU VDPSOHV RI 0)$ LQ HDFK RI WKH WKUHH VROYHQWV ZHUH SUHSDUHG DQG VWXGLHG E\ + DQG ) 105 DW r& XVLQJ SDUD GLR[DQH DQG PHWDEURPREHQ]RWULIOXRULGH DV LQWHUQDO VWDQGDUGV 7KH WZHOYH VDPSOHV ZKLFK ZHUH LGHQWLFDO WR WKH NLQHWLFV VDPSOHV H[FHSW IRU WKH ODFN RI QLWURQH ZHUH WKHQ VWXGLHG E\ YDULDEOHWHPSHUDWXUH + 105 WR REWDLQ JRRG HVWLPDWHV IRU >0)$@ DW r& DQG r& DV VKRZQ LQ 7DEOH ,QWHUHVWLQJO\ DOWKRXJK WKH FRQFHQWUDWLRQ YDOXHV VHHPHG WR LQGLFDWH WKDW WKH 7DEOH 0)$ &RQFHQWUDWLRQV 5DWH 8VHG WR &DOFXODWH &RQVWDQWV WKH 6HFRQG2UGHU 6ROYHQW > 0)$@ r& >0)$@ r& >0)$@ r& EHQ]HQHGJ 0 0 0 &'& 0 0 0 DFHWRQHGJ 0 0 0

PAGE 53

VROXELOLW\ RI 0)$ LQ HDFK RI WKH VROYHQWV ZDV DERXW WKH VDPH WKH >0)$@ YDOXHV ZHUH TXLWH GHSHQGHQW RQ WHPSHUDWXUH 7DNLQJ LQWR DFFRXQW WKH LQVWUXPHQWDO RSHUDWRU DQG FDOFXODWLRQDO HUURUV LQ WKH GHWHUPLQDWLRQV D JHQHURXV >0)$@ XQFHUWDLQW\ RI s 0 ZDV XVHG WR SURSDJDWH HUURUV LQ WKH ILQDO NLQHWLFV UHVXOWV ,W LV RI YDOXH WR QRWH WKDW WKH PD[LPXP > 0)$ @ FRQFHQWUDWLRQ LI DOO RI WKH JDV ZDV GLVVROYHG LQ WKH OLTXLG ZDV FDOFXODWHG WR EH 0 8VLQJ WKH >0)$@ FRQFHQWUDWLRQV LQ 7DEOH DQG WKH SUHYLRXVO\ GHWHUPLQHG SVHXGRILUVWRUGHU UDWH FRQVWDQWV WKH VHFRQGRUGHU UDWH FRQVWDQWV ZHUH FDOFXODWHG IRU WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH DV VKRZQ LQ 7DEOH ,W ZDV LQWHUHVWLQJ WR REVHUYH WKDW WKH KDOIOLIH IRU WKH UHDFWLRQ LQ DFHWRQHGJ ZDV OHVV WKDQ WKDW LQ &'&, DW r& EXW WKDW WKH RSSRVLWH ZDV WUXH DW r& 7DEOH 2YHUDOO 6HFRQG2UGHU 5DWH &RQVWDQWV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH &RQGLWLRQV 5DWH &RQVWDQW N4 PROHVHFf +DOI /LIH WL EHQ]HQHGJ r& ; a K EHQ]HQHGJ r& ; f K EHQ]HQHGJ r& ; K &'&, r& ; K &'&, r& ; K &'&, r& ; O2 K DFHWRQHGJ r& ; +rN 2 K DFHWRQHGJ r& ; FR U+ K DFHWRQHGJ r& ; f K

PAGE 54

7KH DFWLYDWLRQ SDUDPHWHUV IRU WKH RYHUDOO UHDFWLRQ LQ HDFK VROYHQW ZHUH FDOFXODWHG IURP WKH GDWD LQ 7DEOH 7KH UHVXOWV DUH VKRZQ LQ 7DEOH 7KH $UUKHQLXV SORWV KDG FRUUHODWLRQ FRHIILFLHQWV RI DQG IRU WKH EHQ]HQHGJ &'&, DQG DFHWRQHGJ UHVXOWV UHVSHFWLYHO\ 7DEOH VKRZV WKDW WKH IUHH HQHUJ\ RI DFWLYDWLRQ $*r DW r & ZDV YLUWXDOO\ WKH VDPH LQ &'&, DV LQ DFHWRQHGJ EXW LW ZDV ORZHU LQ EHQ]HQHGJ DV RQH PLJKW KDYH H[SHFWHG IURP WKH UDWH FRQVWDQWV DQG KDOI 7DEOH 2YHUDOO $FWLYDWLRQ 3DUDPHWHUV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH 6ROYHQW ADFW s NFDOPROHf $ *r s NFDOPROHfp $+A s NFDOPROHfD $6r s FDOGHJPROHf EHQ]HQHGJ &'&, DFHWRQHGJ D0HDQ WHPSHUDWXUH f& OLYHV JLYHQ LQ 7DEOH 7KH HQWKDOSLHV RI DFWLYDWLRQ $+r ZHUH UHODWLYHO\ VPDOO DQG WKH HQWURSLHV RI DFWLYDWLRQ $6r ZHUH ODUJH QHJDWLYH QXPEHUV LQ NHHSLQJ ZLWK SUHYLRXV NLQHWLF VWXGLHV RI GLSRODU F\FORDGGLWLRQV RI QLWURQHVA 7KH ODUJH XQFHUWDLQW\ LQ >0)$@ SUHYLRXVO\ QRWHG ZDV XVHG WR FDOFXODWH VHSDUDWH WDEOHV RI DFWLYDWLRQ SDUDPHWHUV WR GHWHUPLQH WKH PLQLPXP DQG PD[LPXP YDOXHV IRU (DFW $*r $+r DQG $6r LQ 7DEOH 7KH UHVXOWLQJ XQFHUWDLQWLHV DUH VKRZQ LQ WKH FROXPQ KHDGLQJV 8QIRUWXQn DWHO\ WKH XQFHUWDLQWLHV VHHPHG TXLWH ODUJH WR PDNH UHDVRQDEOH FRQMHFWXUH DERXW WKH VXEWOH GLIIHUHQFHV LQ DFWLYDWLRQ SDUDPHWHUV EHWZHHQ WKH VROYHQWV 7KH SURGXFW UDWLR DD IRU HDFK NLQHWLF VWXG\ ZDV GHWHUPLQHG E\ OA) 105 DV VKRZQ LQ 7DEOH ,QWHUHVWLQJO\ WKHUH ZDV OLWWOH FKDQJH LQ

PAGE 55

7DEOH 6HSDUDWH 3URGXFW 6HFRQG2UGHU 5DWH &RQVWDQWV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH &RQGLWLRQV 3URGXFW 5DWLR DDfD IRU D PROHVHFf IRU D PROHVHFf EHQ]HQHGJ r& ; [ EHQ]HQHGJ r& ; [ EHQ]HQHGJ r& ; [ &'& r& ; [ &'&, r& ; [ f &'&, r& ; [ DFHWRQHGJ r& ; [ DFHWRQHGJ r& ; O2 [ a DFHWRQHGJ r& ; ,4 [ f D(UURU s b GHWHUPLQHG E\ 105 DW 0+] SURGXFW UDWLR ZLWK WHPSHUDWXUH ZLWKLQ WKH XQFHUWDLQW\ RI WKH H[SHULPHQWDO UHVXOWV 7KH UDWH FRQVWDQWV VKRZQ LQ 7DEOH IRU WKH IRUPDWLRQ RI HDFK SURGXFW LQ WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH ZHUH FDOFXODWHG E\ PXOWLSO\LQJ WKH IUDFWLRQDO SURGXFW UDWLRV E\ WKH RYHUDOO VHFRQG RUGHU UDWH FRQVWDQWV LQ 7DEOH 7KH VHSDUDWH SURGXFW DFWLYDWLRQ

PAGE 56

SDUDPHWHUV VKRZQ LQ 7DEOH ZHUH LQ WXUQ FDOFXODWHG IURP WKH GDWD LQ 7DEOH $JDLQ WKH XQFHUWDLQWLHV LQ WKH DFWLYDWLRQ SDUDPHWHUV ZHUH ODUJH LQ FRPSDULVRQ WR WKH VXEWOH GLIIHUHQFHV EHWZHHQ WKHP LQ WKH GLIIHUHQW VROYHQWV ,Q DGGLWLRQ WKH DFWLYDWLRQ SDUDPHWHUV IRU WKH VHSDUDWH SURGXFWV ZHUH DOVR YHU\ VLPLODU 7DEOH 6HSDUDWH 3URGXFW $FWLYDWLRQ 3DUDPHWHUV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH 3URGXFW t 6ROYHQW (DFW A NFDOPROHf $*A s NFDOPROHD $+A s $6r s NFDOPROHf FDOGHJPROHfD 0DMRU 3URGXFW D EHQ]HQHGJ &'&, DFHWRQHGJ 0LQRU 3URGXFW D EHQ]HQHGJ &'&, DFHWRQHGJ f§ X0HDQ WHPSHUDWXUH f& 8OWUDYLROHW 89f DQG ,QIUDUHG ,5f 6WXGLHV IRU 1LWURQHV ,W ZDV GHVLUHG WR NQRZ LI WKHUH ZDV DQ\ VLJQLILFDQW FRPSOH[DWLRQ RFFXUULQJ EHWZHHQ 1PHWK\O&SKHQ\OQLWURQH DQG WKH PRUH SRODU VROYHQWV RI 7DEOH 7KH XOWUDYLROHW VSHFWUXP RI 1PHWK\O&SKHQ\OQLWURQH ZDV WDNHQ LQ DOO HLJKW VROYHQWV VWXGLHG EXW WKH VSHFWUD VKRZHG OLWWOH FKDQJH LQ AUQD[ RU PRODU DEVRUSWLYLW\ H 7KH $PD[ IRU WKH ORQJHVW ZDYHOHQJWK DEVRUSWLRQ EDQG UHPDLQHG EHWZHHQ QP DQG QP IRU WKH ILUVW VHYHQ VROYHQWV DQG LW GHFUHDVHG WR QP IRU &'28 WKH K\GURJHQERQGLQJ VROYHQW

PAGE 57

7KHUH ZHUH QR RWKHU EDQGV REVHUYHG EHWZHHQ QP DQG QP LQ WKH 89 VSHFWUD 7KH PRODU DEVRUSWLYLW\ H ZDV EHWZHHQ [ A PROHFP DQG [ A PROHFP LQ HDFK RI WKH VROYHQWV VWXGLHG 7KH VSHFWUDO REVHUYDWLRQV ZHUH LQ H[FHOOHQW DJUHHPHQW ZLWK SXEOLVKHG 89 UHVXOWVpA $ SRVVLEOH FKDQJH LQ & 1 ERQG OHQJWK GXH WR FRPSOH[DWLRQ ZDV WHVWHG E\ PHDVXULQJ WKH & 1 LQIUDUHG VWUHWFKLQJ IUHTXHQF\ ZKLFK LV NQRZQ WR DSSHDU DW FPr IRU 1&GLSKHQ\OQLWURQHpA LQ WZR NH\ VROYHQWV ,Q &+&, WKH EDQG DSSHDUHG DW FPnO DQG LQ DFHWRQH WKH EDQG DSSHDUHG DW FPfO $JDLQ DV LQ WKH 89 VWXGLHV WKHUH VHHPHG WR EH OLWWOH HYLGHQFH IRU VLJQLILFDQW FRPSOH[DWLRQ RI WKH QLWURQH LQ PRUH SRODU VROYHQWV 5HDFWLRQ RI 0)$ ZLWK 3LD]RPHWKDQHG $OWKRXJK PXFK HIIRUW KDG EHHQ H[SHQGHG LQ VWXG\LQJ WKH UHDFWLRQV RI 0)$ ZLWK QLWURQHV LW ZDV VWLOO XQNQRZQ ZKHWKHU F\FORDGGLWLRQV RI 0)$ ZLWK RWKHU GLSROHV DOVR SURFHHGHG WR SUHGRPLQDWHO\ JLYH WKH V\QA DGGXFW 7KXV WKH UHDFWLRQ RI 0)$ ZLWK GLD]RPHWKDQHG ZDV H[DPLQHG 'LD]RPHWKDQHG ZDV SUHSDUHG XQGHU QLWURJHQ ZLWK GXH SUHFDXWLRQV ,W R ZDV DOORZHG WR ZDUP WR & IURP OLTXLG QLWURJHQ WHPSHUDWXUHV LQ WKH SUHVHQFH RI 0)$ IRU PLQ $IWHUZDUG WKH HWKHU ZDV UHPRYHG E\ FDUHIXO b ,VRODWHG
PAGE 58

YDFXXP WUDQVIHU WR JLYH D b LVRODWHG \LHOGr RI D ZKLWH VROLG ZKLFK UDSLGO\ PHOWHG DW r& 7KH SURGXFW ZDV TXLFNO\ SODFHG LQ DQ 105 WXEH ZLWK FROG r&f &'&, DQG WKH 105 WXEH ZDV VHDOHG XQGHU YDFXXP DQG VWRUHG RQ GU\ LFH 7KH SURGXFW UDWLR ZDV GHWHUPLQHG WR EH E\ 0+] + 105 DQG WKH LVRWRSLF SXULW\ RI WKH SURGXFWV ZDV VKRZQ WR EH b 7KH UHDFWLRQ ZDV UHSHDWHG DQG WKH VDPH SURGXFW UDWLR ZDV REWDLQHG $ VDPSOH 105 VSHFWUXP LV VKRZQ LQ )LJXUH 7KXV WKHUH DUH LQGHHG RWKHU GLSROHV EHVLGHV QLWURQHV WKDW SUHIHU WR IRUP V\Q DGGXFWV ZLWK 0)$ U )LJXUH 0+] r+ 105 6SHFWUXP IRU WKH 0)$'LD]RPHWKDQHG $GGXFWV A6RPH SURGXFW OLNHO\ WUDQVIHUUHG ZLWK WKH HWKHU WR JLYH WKH OHVV WKDQ TXDQWLWDWLYH \LHOG

PAGE 59

'LVFXVVLRQ &\FORDGGLWLRQV ZLWK +DORJHQ6XEVWLWXWHG 'LSRODURSKLOHV 7KH GLSRODU F\FORDGGLWLRQV RI 0)$ ZLWK QLWURQHV DQG GLD]RPHWKDQH œ VKRZ D VWURQJ SUHIHUHQFH IRU V\Q DGGLWLRQ 7KH SURGXFW VWUXFWXUDO SURRIV UHVW XSRQ GLIIHUHQFH 12( H[SHULPHQWV DQ ;UD\ FU\VWDO VWUXFWXUH DQG VHYHUDO VSHFWUDO REVHUYDWLRQV ZKLFK ZKHQ WDNHQ WRJHWKHU PDNH WKH VWHUHRn FKHPLFDO DVVLJQPHQWV FRPSOHWHO\ XQDPELJXRXV 7KH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH KDV EHHQ VWXGLHG LQ JUHDW GHWDLO ERWK NLQHWLFDOO\ DQG LQ GLIIHUHQW VROYHQWV 7KH VPDOO VSUHDG RI UHODWLYH UDWHV LQ 7DEOH IRU VROYHQWV RI FRQWUDVWLQJ SRODULWLHV WKH UHODWLYHO\ VPDOO $+ AYDOXHV REWDLQHG DQG WKH ODUJH QHJDWLYH $6A YDOXHV VKRZQ LQ 7DEOHV DQG DOO GHPRQVWUDWH WKDW WKLV UHDFWLRQ LV FRPSOHWHO\ FRQVLVWHQW ZLWK RWKHU ZHOO VWXGLHG GLSRODU F\FORDGGLWLRQVUf ,QGHHG WKH UHVXOWV DUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH +XLVJHQ HW DO FODVVLF VWXGLHV RI QLWURQHV ZKLFK LQFOXGH DQ H[WHQVLYH VROYHQW VWXG\ IRU WKH UHDFWLRQ RI 1PHWKYO2SKHQ\O QLWURQH ZLWK HWK\O DFU\ODWH 7KH UHJLRFKHPLVWU\ RI WKHVH 0)$ F\FORDGGLWLRQV PLJKW WHQWDWLYHO\ EH H[SODLQHG E\ WKH PROHFXODU RUELWDO 02f FRQVLGHUDWLRQV GLVFXVVHG LQ &KDSWHU IRU WKH UHDFWLRQV RI GLIOXRURDOOHQH ZLWK GLD]RDONDQHV 7KHVH 02 DUJXPHQWV ZKLFK LQYROYH VHFRQGDU\ RUELWDO LQWHUDFWLRQV GXH WR WKH IOXRULQHV ZRXOG DOVR H[SODLQ WKH VWHUHRFKHPLFDO SUHIHUHQFH REVHUYHG LQ WKH DQDORJRXV UHDFWLRQ RI 0)$ ZLWK GLD]RPHWKDQHG 3DGZD HW DO ZKR KDYH VWXGLHG DQG UHYLHZHG WKH GLSRODU F\FORDGGLWLRQV RI QLWURQHV ZLWK HOHFWURQ GHILFLHQW GLSRODURSKLOHV OLNH 0)$ DOVR XVH 02 DUJXPHQWV WR H[SODLQ WKH UHJLRFKHPLFDO DQG VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG LQ WKHLU QLWURQH UHDFWLRQV2QH PXVW EH FDUHIXO LQ DSSO\LQJ WKHVH 02 H[SODQDWLRQV KRZHYHU 7KH\ KDYH RIWHQ EHHQ TXDOLILHG E\ VWHULF LQWHUDFWLRQV RU RWKHU

PAGE 60

VXFK DQRPDORXV IDFWRUV (OHFWURVWDWLF 0)$GLSROH DWWUDFWLRQV RU GLIIHUHQWLDO VROYDWLRQ RI WKH UHDFWDQWV DQG SURGXFWV PD\ SOD\ DQ LPSRUWDQW UROH LQ UDWLRQDOL]LQJ WKH 0)$ F\FORDGGLWLRQ UHVXOWV &RQWULEXWLRQV IURP WKHVH IDFWRUV PD\ IRU LQVWDQFH H[SODLQ WKH VFDWWHULQJ RI WKH SURGXFW UDWLRV ZLWK (W YDOXHV REVHUYHG LQ 7DEOH %HIRUH D FRPSOH[ DQDO\VLV RI WKHVH LGHDV LV XQGHUWDNHQ LW LV RI LQWHUHVW WR EULHIO\ VXUYH\ RWKHU GLSRODURSKLOHV ZLWK KDORJHQ VXEVWLWXHQWV WR GHWHUPLQH LI V\Q DGGLWLRQ RFFXUV LQ RWKHU FDVHV ,Q D UHYLHZ +XLVJHQ QRWHG WKDW VHYHUDO GLSROHV XQGHUZHQW F\FORDGGLWLRQV ZLWK QRUERUQHQH DQG QRUERUQDGLHQH D ZLWK KLJK VWHUHRn VHOHFWLYLW\ WR IRUP H[R DGGXFWVA LQ FRQWUDVW RWKHU ZRUN GHPRQVWUDWHG WKDW WKH UHDFWLRQ RI PRVW KDORJHQVXEVWLWXWHG QRUERUQDGLHQHV E ZLWK GLD]RHWKDQH IDYRUHG WKH IRUPDWLRQ RI HQGRDQWL PRQRDGGXFWV ZKMFK MQ WKH FDVH RI ; &O ZRXOG XQGHUJR H[RV\Q DWWDFN WR IRUP D ELV DGGXFW ,QWHUHVWLQJO\ WKH UHDFWLRQ RI IOXRURQRUERUQDGLHQH F ZLWK GLD]RHWKDQH SURFHHGHG GLIIHUHQWO\A $ FDUHIXO DQDO\VLV RI WKH FRPSOLFDWHG PL[WXUH RI PRQR DQG ELV DGGXFWV SURGXFHG VKRZHG WKDW WKH UDWLR RI LQLWLDO HQGRDQWL WR LQLWLDO H[RV\Q DWWDFN E\ WKH GLSROH ZDV DSSUR[LPDWHO\ H[R H[RDQWL HQGRV\Q Df ; + Ef ; %U &O Ff ; )

PAGE 61

0RUH GUDPDWLF H[DPSOHV RI D KDORJHQ KHOSLQJ WR LQGXFH V\Q DWWDFN RQ D GRXEOH ERQG DUH IRXQG LQ WKH FOHDQ F\FORDGGLWLRQV RI FLVGLFKORUR F\FOREXWHQH ZLWK GLD]RPHWKDQH QLWURQHV} DQFM QLWULOH R[LGHV ,Q PDQ\ UHDFWLRQV WKH SURGXFW IURP V\Q DGGLWLRQ LV VWURQJO\ IDYRUHG 9DULRXV H[SODQDWLRQV FRQVLGHUHG IRU WKH FRQWUDVWHULF DSSURDFK RI GLSROHV WR LQFOXGH DONHQH RUELWDO GLVWRUWLRQ GXH WR WKH KDORJHQV S\UDPLGDOL]DWLRQ RI WKH ROHILQLF FDUERQV DZD\ IURP WKH FKORULQHV GLSROHGLSROH LQWHUDFWLRQV DQG GLUHFW KDORJHQ ORQHSDLU LQWHUDFWLRQV ZLWK WKH GLSROH} ,QWHUHVWn LQJO\ VWXGLHV RI WKH GLSRODU F\FORDGGLWLRQV WR DOO\OLF PRQR DQG GLVXEVWLWXWHG F\FORSHQWHQHV GLG QRW VKRZ WKH VDPH VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG IRU )DFWRUV $IIHFWLQJ WKH 6WHUHRFKHPLFDO 2XWFRPH RI 0)$ &\FORDGGLWLRQV 7KHUH VHHPV WR EH VHYHUDO SRVVLEOH IDFWRUV WKDW FRQWULEXWH WR WKH VWHUHRFKHPLFDO RXWFRPH RI GLSRODU F\FORDGGLWLRQV LQYROYLQJ KDORJHQ VXEVWLWXWHG GLSRODURSKLOHV ,Q WKLV FKDSWHU HPSKDVLV ZLOO EH SODFHG RQ WUDQVLWLRQVWDWH GLSROHGLSROH LQWHUDFWLRQV DQG VROYHQWUHDFWDQW RU VROYHQW SURGXFW LQWHUDFWLRQV DV H[SODQDWLRQV IRU WKH 0)$ FYFORDGGLWLRQ UHVXOWV 0ROHFXODU RUELWDO DUJXPHQWV ZKLFK DUH RIWHQ LQYRNHG WR H[SODLQ VXFK UHVXOWV DUH RI TXHVWLRQDEOH YDOXH DW WKLV SRLQW VLQFH TXLWH SRODU WUDQVLWLRQ VWDWHV PD\ EH LQYROYHG LQ WKH UHDFWLRQV ,W ZRXOG EH LQWHUHVWLQJ WR VHH LI

PAGE 62

WKH >@ UHDFWLRQV RI 0)$ ZLWK F\FORSHQWDGLHQH DQG EXWDGLHQH ZKLFK LQYROYH QRQSRODU WUDQVLWLRQ VWDWHV ZRXOG DOVR VKRZ D SUHIHUHQFH IRU V\Q DGGLWLRQ WR 0)$ ,I VR WKLV ZRXOG JLYH VWURQJHU H[SHULPHQWDO VXSSRUW IRU WKH XVH RI 02 DUJXPHQWV LQ H[SODLQLQJ VWHUHRFKHPLFDO F\FORDGGLWLRQ SUHIHUHQFHV 7KHVH LGHDV DUH FRQVLGHUHG LQ &KDSWHU DQG D WKRURXJK GLVFXVVLRQ RI WKH 02 DUJXPHQWV IRU 0)$ GLSRODU F\FORDGGLWLRQV ZLOO EH GHIHUUHG XQWLO WKHQ $V VKRZQ LQ D UHYLHZ VROYHQW VWXGLHV KDYH EHHQ SHUIRUPHG IRU VHYHUDO GLSRODU F\FORDGGLWLRQV $OWKRXJK WKHVH KDYH RIWHQ EHHQ OLPLWHG WR UDWH VWXGLHV WKH UHJLRFKHPLVWU\ RI F\FORDGGLWLRQ KDV DOVR EHHQ SUREHG IRU GLD]RPHWKDQHOp!p! DQM VRPH QLWULOH R[LGHVp}p LQ DGGLWLRQ D IHZ VWHUHRFKHPLFDOO\ UHODWHG VROYHQW VWXGLHV KDYH EHHQ UHSRUWHGA DQFM WKH\ JLYH LQWHUHVWLQJ LQVLJKW LQWR H[SODLQLQJ WKH REVHUYHG WUHQGV LQ 7DEOH ,W KDV EHHQ QRWHG WKDW WKH JUHDWHU WKH GLSROH PRPHQW RI D WUDQVLWLRQ VWDWHp RU SURGXFWpp WKH PRUH LW LV IDYRUHG LQ VROYHQWV RI JUHDWHU SRODULW\ 7KH WUDQVLWLRQ VWDWHV WR SURGXFWV D DQG D DUH VKRZQ LQ DQG $V RQH FDQ VHH IURP WKH GLSROH PRPHQWV LQ WKH VHSDUDWH KDOYHV RI WKH $ ‘!

PAGE 63

WUDQVLWLRQ VWDWH OHDGLQJ WR D WKH PDMRU SURGXFW DUH GLUHFWO\ RSSRVHG ,Q FRQWUDVW WKH GLSROH PRPHQWV RI ZKLFK OHDGV WR D WKH PLQRU SURGXFW DUH OHVV RSSRVHG 7KXV WKH QHW GLSROH PRPHQW IRU LV VRPHZKDW JUHDWHU WKDQ WKDW IRU DQG RQH ZRXOG H[SHFW WKDW D JUHDWHU DPRXQW RI WKH PLQRU SURGXFW ZRXOG EH IRUPHG LQ SRODU VROYHQWV WKDQ LQ QRQSRODU VROYHQWV 7KLV LV FRQVLVWHQW ZLWK WKH RYHUDOO WUHQG REVHUYHG LQ 7DEOH 7KLV WUDQVLWLRQVWDWH GLSROHGLSROH DUJXPHQW DOVR UDWLRQDOL]HV WKH UHJLRFKHPLVWU\ DQG VWHUHRFKHPLVWU\ REVHUYHG LQ 0)$ GLSRODU F\FORDGGLWLRQV 7KH SRLQWV RI GLSROH DWWUDFWLRQ LQ DQG DUH VKRZQ E\ DQG 6LQFH IOXRULQH LV VXFK D VPDOO HOHPHQW DQG KDV VXFK D KLJK HOHFWURQHJDWLYLW\ LH ODUJH f! LW LV QRW VXUSULVLQJ WKDW V\Q DGGLWLRQ LV IDYRUHG IRU 0)$ 7KH WUDQVLWLRQVWDWH GLSROHGLSROH DUJXPHQW FDQQRW VROHO\ UDWLRQDOL]H WKH F\FORDGGLWLRQ UHVXOWV IRU WZR UHDVRQV KRZHYHU )LUVW V\Q DGGLWLRQ RI 0)$ LV IDYRUHG IRU DOO VROYHQWV LQ 7DEOH ,I WKH GLSROHGLSROH H[SODQDWLRQ ZHUH VROHO\ UHVSRQVLEOH IRU WKH UHVXOWV RQH ZRXOG H[SHFW WKDW WKH PLQRU SURGXFW D ZRXOG EHFRPH WKH PDMRU SURGXFW LQ PRUH SRODU VROYHQWV 6HFRQG WKH WUHQG LQ SURGXFW UDWLRV LQ 7DEOH LV QRW VWULFWO\ OLQHDU ZLWK (W YDOXH DV RQH FDQ VHH IURP )LJXUH ,I WKH GLSROHGLSROH DUJXPHQW ZHUH ZHOOIROORZHG WKHUH VKRXOG EH D JRRG FRUUHODWLRQ,QWHUHVWLQJO\ LI WKH &'2' SURGXFW UDWLR LV LJQRUHG KRZHYHU WKH UHPDLQGHU RI WKH SRLQWV LQ )LJXUH VHHP WR VXVSLFLRXVO\ OLH RQ WZR QHDUO\ SDUDOOHO OLQHV 7KHUH LV DGGLWLRQDO HYLGHQFH IRU IDFWRUV RWKHU WKDQ GLSROHGLSROH LQWHUDFWLRQV LQIOXHQFLQJ WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH )RU H[DPSOH )LJXUH VKRZV WKDW WKHUH LV D URXJK FRUUHODWLRQ RI WKH SVXHGRILUVWRUGHU UDWH FRQVWDQWV ZKLFK ZHUH XVHG WR FDOFXODWH WKH UHODWLYH UDWHV LQ 7DEOH ZLWK VROYHQW SRODULW\ ,Q JHQHUDO WKH UDWH RI UHDFWLRQ

PAGE 64

62 a V\QDQWL 3URGXFW 5DWLR k&'& k %HQFHQHG k 'LR[DQHG k &'&O $FHWRQHF/ p R k &'A2L p (062G (M NFDOPROHf 7 &'2' k a7 )LJXUH &RUUHODWLRQ RI 3URGXFW 5DWLRV ZLWK 6ROYHQW (W 9DOXHV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH LQ 9DULRXV 6ROYHQWV f§ /RJ RI 4B 3VHXGR )LUVW 2UGHU N &,2 VHFnf k%HQ]HQHG k 'LR[DQHGB f rp&'2$FHWRQHG k &'2' a7a (M &NFDOQYROHf )LJXUH &RUUHODWLRQ RI ORJNf ZLWK 6ROYHQW (S 9DOXHV IRU WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH

PAGE 65

GHFUHDVHV ZLWK LQFUHDVLQJ SRODULW\ RI WKH VROYHQW 7KLV WUHQG LV HDVLO\ H[SODLQHG 7KH SRODU UHDFWDQW 1PHWK\O&SKHQ\OQLWURQH LV VROYDWHG EHVW LQ VROYHQWV RI KLJK SRODULW\ ZKLOH WKH OHVV SRODU SURGXFWV D DQG D DUH VROYDWHG EHVW LQ VROYHQWV RI ORZ SRODULW\ 7KXV WKH UHDFWLRQ UDWH LV JUHDWHVW LQ EHQ]HQHGJ DQG OHDVW LQ &'2' $V RQH FRQVLGHUV WKLV VROYDWLRQ SKHQRPHQRQ IRU WKH QLWURQH DQG SURGXFWV RQH PD\ ZRQGHU ZK\ LW LV QRW UHIOHFWHG LQ WKH DFWLYDWLRQ SDUDPn HWHUV RI 7DEOH 2QH PLJKW H[SHFW IRU LQVWDQFH WKDW WKH HQWKDOS\ RI DFWLYDWLRQ $+A ZRXOG EH JUHDWHU LQ DFHWRQHGJ ZKHUH VROYHQW LQWHUDFWLRQV 3RODU 6ROYHQW 1RQSRODU 6ROYHQW 7UDQVLWLRQ 6WDWH 7UDQVLWLRQ 6WDWH QRQVROYDWHG VROYDWHG 1RQVROYDWHG 1LWURQH 6ROYDWHG 1LWURQH )LJXUH &RPSDULVRQ RI $+A LQ 3RODU DQG 1RQSRODU 6ROYHQWV $VVXPLQJ 6WURQJ 6ROYHQW1LWURQH ,QWHUDFWLRQV LQ WKH 3RODU 6ROYHQW

PAGE 66

RU HYHQ FRPSOH[DWLRQ RI WKH QLWURQH PLJKW WDNH SODFH WKDQ LQ EHQ]HQHGJ 6HH )LJXUH f 6ROYHQW LQWHUDFWLRQV REVHUYHG LQ DFHWRQHGJ PLJKW KHOS WR H[SODLQ WKH PRUH UDQGRP SURGXFW UDWLRV IRXQG IRU PRUH SRODU VROYHQWV LQ 7DEOH WRR 7KH DFWXDO GLIIHUHQFHV WKDW RQH ZRXOG REVHUYH EHWZHHQ WKH DFWLYDWLRQ SDUDPHWHUV ZRXOG EH ZLWKLQ WKH XQFHUWDLQWLHV JLYHQ IRU WKH NLQHWLFV UHVXOWV KRZHYHU 7DEOH VKRZV WKDW WKH GLIIHUHQFH LQ $+r EHWZHHQ WKH IRUPDWLRQ RI WKH WZR SURGXFWV D DQG D LV DW PRVW NFDOPROH LUUHVSHFWLYH RI WKH IDFW WKDW D LV VWURQJO\ IDYRUHG LQ EHQ]HQH GJ 6LQFH WKH VSUHDG RI UHODWLYH UDWHV LQ WKH VROYHQW VWXG\ LV VPDOO WKH GLIIHUHQFHV LQ $+A EHWZHHQ WKH VROYHQWV ZRXOG DOVR EH H[SHFWHG WR EH PLQLPDO NFDOPROHf LQ VSLWH RI DQ\ GLIIHUHQFHV LQ VROYDWLRQ RI WKH QLWURQH ,Q YLHZ RI WKLV LW LV QRW VXUSULVLQJ WKDW QHLWKHU WKH DFWLYDWLRQ SDUDPHWHUV QRU WKH 89 DQG ,5 VWXGLHV GHWHFWHG VWURQJ VROYHQW LQWHUDFWLRQ RU H FRPSOH[DWLRQ ZLWK WKH QLWURQH 7KH IDFWRUV DIIHFWLQJ WKH NLQHWLFV RI WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH DUH H[WUHPHO\ VXEWOH ,Q DGGLWLRQ WR WUDQVLWLRQVWDWH GLSROHGLSROH LQWHUDFWLRQV DQG VROYDWLRQ RI WKH QLWURQH DQG SURGXFWV WKHUH LV DOVR WKH SRVVLELOLW\ WKDW QXFOHRSKLOLF VROYDWLRQ RI WKH IOXRULQHV PD\ SOD\ D UROH LQ WKHVH GLSRODU F\FORDGGLWLRQV 7KH SURSHQVLW\ RI FRYDOHQWO\ERXQG IOXRULQH WR XQGHUJR QXFOHRSKLOLF VROYDWLRQ LV UHIOHFWHG E\ WKH HQRUPRXV VROYHQW GHSHQGHQFH RI p) 105 FKHPLFDO VKLIWVp ,I WKHUH ZHUH LQGHHG JUHDWHU VROYDWLRQ RI WKH IOXRULQH RI 0)$ LQ SRODU VROYHQWV WKHQ WKLV ZRXOG JLYH DQRWKHU H[SODQDWLRQ IRU WKH H[SHULPHQWDOO\ REVHUYHG LQFUHDVH LQ IRUPDWLRQ RI WKH PLQRU SURGXFW D LQ SRODU VROYHQWV IRU WKH VROYHQW VWXG\ ,W ZRXOG EH LQWHUHVWLQJ WR NQRZ KRZ YLDEOH WKH QXFOHRSKLOLF VROYDWLRQ DUJXPHQW PLJKW EH 2QH FDQ REWDLQ D A7KHUH LV JRRG OLWHUDWXUH SUHFHGHQW IRU WKLV ILJXUH UHI f

PAGE 67

URXJK PHDVXUH RI WKLV IURP WKH JDVSKDVH EDVLFLWLHV ZKLFK DUH UHIOHFWHG E\ WKH SURWRQ DIILQLWLHV RI IOXRULQHFRQWDLQLQJ FRPSRXQGV )RU H[DPSOH WKH SURWRQ DIILQLWLHV GHILQHG DV WKH HQWKDOSLHV IRU WKH JDVSKDVH UHDFWLRQ %+ % + RI HWKDQH &+) &+& + DQG 1+ DUH DQG NFDOPROH UHVSHFWLYHO\rA )URP WKHVH YDOXHV WKH QXFOHRSKLOLF VROYDWLRQ DUJXPHQW VHHPV WR EH RI OLPLWHG YDOXH EXW LW GRHV SURYLGH DQ LQWHUHVWLQJ H[SODQDWLRQ IRU WKH SURGXFW UDWLRV LQ WKH VROYHQW VWXG\ UHVXOWV $GGLWLRQDO ZRUN ZLOO KDYH WR EH GRQH WR HYDOXDWH WKH FRQWULEXWLRQ RI QXFOHRSKLOLF VROYDWLRQ WR WKH UHDFWLRQV RI 0)$ ZLWK GLSROHV 6XPPDU\ 7R VXPPDUL]H LQ VSLWH RI RQHnV XVXDO VWHULF SUHMXGLFHV IOXRURDOOHQH 0)$f XQGHUZHQW FOHDQ KLJK\LHOG GLSRODU F\FORDGGLWLRQV ZLWK QLWURQHV DQG GLD]RPHWKDQHG WR VWURQJO\ IDYRU WKH DGGXFW IURP V\Q DGGLWLRQ 7KHVH UHDFWLRQV ZHUH ZHOOEHKDYHG VHFRQGRUGHU NLQHWLF SURFHVVHV WKDW ZHUH FRPn SOHWHO\ FRQVLVWHQW ZLWK RWKHU ZHOOVWXGLHG GLSRODU F\FORDGGLWLRQV 7KH SURGXFWV IURP WKHVH UHDFWLRQV ZHUH XQDPELJXRXVO\ FKDUDFWHUL]HG XVLQJ GLIIHUHQFH 12( H[SHULPHQWV DQ ;UD\ FU\VWDO VWUXFWXUH DQG VHYHUDO VSHFWURn VFRSLF REVHUYDWLRQV WR PDNH WKH VWHUHRFKHPLFDO DVVLJQPHQWV $OWKRXJK WKH SURGXFW UHJLRFKHPLVWU\ DQG VWHUHRFKHPLVWU\ RI 0)$ F\FORDGGLWLRQV FRXOG EH ZHOO H[SODLQHG E\ PROHFXODU RUELWDO DUJXPHQWV LW ZDV GHFLGHG WR GHIHU WKLV 02 GLVFXVVLRQ XQWLO &KDSWHU ,Q &KDSWHU WKH >@ F\FORDGGLWLRQV RI 0)$ ZLWK F\FORSHQWDGLHQH DQG EXWDGLHQH JLYH JUHDWHU LQVLJKW LQWR KRZ VHULRXVO\ WKHVH 02 DUJXPHQWV VKRXOG EH FRQVLGHUHG IRU H[SODLQLQJ VWHUHRFKHPLFDO SUHIHUHQFHV ,Q WKLV FKDSWHU LW ZDV VKRZQ WKDW WUDQVLWLRQVWDWH GLSROHGLSROH LQWHUDFWLRQV ZHUH KHOSIXO WR LQ SDUW H[SODLQ WKH UHJLRFKHPLFDO DQG VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG

PAGE 68

+RZHYHU WKH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH ZDV DOVR IRXQG WR EH LQIOXHQFHG E\ WKH VROYDWLRQ RI WKH QLWURQH DQG WKH F\FORDGGXFWV ,Q DGGLWLRQ WR WKHVH VROYDWLRQ LQIOXHQFHV SRVVLEOH QXFOHRSKLOLF VROYDWLRQ RI WKH IOXRULQHV ZDV FRQVLGHUHG EXW PRUH H[SHULPHQWDO UHVXOWV ZHUH QHHGHG WR GHWHUPLQH LWV RYHUDOO FRQWULEXWLRQ WR UDWLRQDOL]LQJ WKH UHVXOWV ,Q JHQHUDO LW VHHPHG WKDW DOO RI WKH IDFWRUV DIIHFWLQJ WKH VWHUHRFKHPLFDO RXWFRPH RI WKHVH UHDFWLRQV ZHUH H[WUHPHO\ VXEWOH LQ VSLWH RI WKH FRQWUDVWLQJ SURGXFW UDWLRV REVHUYHG IRU WKH VROYHQW VWXG\

PAGE 69

&+$37(5 67(5(2&+(0,675< 2) 7+( >@ &<&/2$'',7,216 2) )/8252$//(1( ,QWURGXFWLRQ ,Q WKH SUHYLRXV FKDSWHU LW ZDV VKRZQ WKDW DQ DOO\OLF KDORJHQ VXEn VWLWXHQW RQ D GLSRODURSKLOH VWURQJO\ LQIOXHQFHV WKH VWHUHRFKHPLFDO RXWFRPH RI GLSRODU F\FORDGGLWLRQV 6XUSULVLQJO\ ERWK WKH SDVW VWXGLHV RI FLV GLFKORURF\FOREXWHQH DQG WKH FXUUHQW VWXGLHV RI PRQRIOXRURDOOHQH 0)$f VKRZ D VWURQJ SUHIHUHQFH IRU V\QB DGGLWLRQ RI GLSROHV ,Q FRQWUDVW WR WKLV WKH >@ F\FORDGGLWLRQV RI KDYH EHHQ VKRZQ WR VWURQJO\ IDYRU WKH SURGXFW IURP DQWL DGGLWLRQ 7KH >@ F\FORDGGLWLRQV RI 0)$ ZLWK F\FORSHQWDGLHQH EXWDGLHQH DQG IXUDQ ZHUH DOVR VWXGLHG EULHIO\ EXW QRW GHILQLWLYHO\ 7KH UHSRUWHG V\QVDQWL DGGLWLRQ UDWLRV DUH DSSUR[LPDWHO\ IRU UHDFWLRQ ZLWK WKH ILUVW WZR GLHQHV EXW D SUHIHUHQFH IRU V\Q DGGLWLRQ LV FODLPHG IRU WKH IXUDQ UHDFWLRQ VLQFH WKH H[SHULPHQWDO VHFWLRQ RI WKLV ZRUN VKRZV WKDW WKH SURGXFW UDWLRV ZHUH QRW GHWHUPLQHG IURP FUXGH UHDFWLRQ PL[WXUHV LW ZDV RI

PAGE 70

LQWHUHVW WR UHSHDW WKHVH UHDFWLRQV DQG PDNH PRUH FDUHIXO VWXGLHV (YLGHQFH IRU V\Q DGGLWLRQ WR F\FORSHQWDGLHQH RU EXWDGLHQH ZRXOG JLYH PRUH FUHGLELOLW\ WR PROHFXODU RUELWDO DUJXPHQWV LQ UDWLRQDOL]LQJ WKH VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG IRU WKH GLSRODU F\FORDGGLWLRQV RI 0)$ 5HVXOWV :KHQ D WHQIROG H[FHVV RI F\FORSHQWDGLHQH ZDV DOORZHG WR UHDFW ZLWK 0)$ DW r& IRU GD\V D TXDQWLWDWLYH \LHOG RI WZR SURGXFWV e DQG ZDV REWDLQHG 7KH SURGXFW UDWLR GHWHUPLQHG E\ ERWK r) 105 DQG JDV OLTXLG FKURPDWRJUDSK\ */&f ZDV IRXQG WR EH s b ZLWK D PLQLVFXOH SUHIHUHQFH IRU WKH V\Q DGGXFW s bf b @ DGGXFWV ZDV GHWHUPLQHG WR EH s b E\ ) 105 DW 0+] 7KH VDPH UDWLR ZDV REWDLQHG XSRQ UHSHDWLQJ WKH UHDFWLRQ %HVLGHV WKH GLPHUV RI EXWDGLHQH DQG 0)$ WKHUH ZHUH DOVR WKUHH SRVVLEOH PLQRU SURGXFWV REVHUYHG E\ */& LQ OHVV WKDQ b WRWDO \LHOG 7KH\ ZHUH QRW LGHQWLILHG

PAGE 71

) HT ) + s bf b @ F\FORDGGXFWV DQG ZHUH LVRODWHG E\ SUHSDUDWLYH */& DQG WKHLU DQG & 105 VSHFWUD ZHUH REWDLQHG 7KH VWHUHRFKHPLFDO DVVLJQPHQWV ZHUH PDGH RQ WKH EDVLV RI WKH K 105 FKHPLFDO VKLIWV JLYHQ EHORZ DQG WKH & 105 FDUERQIOXRULQH FRXSOLQJ FRQVWDQWV VKRZQ LQ 7DEOH 7KH VSHFWUDO FKDUDFWHULVWLFV ZHUH DQDORJRXV WR WKRVH RI WKH QLWURQH

PAGE 72

7DEOH LAF 105 &RXSOLQJ &RQVWDQWV WR &+) IRU DQG -FI IrU ELV -FI IrU &RPSRXQG $OO\OLF &DUERQ & $OO\OLF &DUERQ & +] +] +] RU f +]D D7KH DVVLJQPHQW RI & DQG &J LV DPELJXRXV KHUH EXW ERWK FRXSOLQJ FRQVWDQWV DUH VPDOOHU WKDQ WKDW IRU & DGGXFWV LQ &KDSWHU ZKRVH VWHUHRFKHPLFDO DVVLJQPHQWV ZHUH FRQILUPHG E\ DQ ;UD\ VWUXFWXUH DQG GLIIHUHQFH 12( H[SHULPHQWV ,W VKRXOG ILQDOO\ EH PHQWLRQHG WKDW D SURGXFW VWDELOLW\ H[SHULPHQW ZDV SHUIRUPHG IRU DQG :KHQ DQ LVRODWHG PL[WXUH RI WKH >@ F\FORn DGGXFWV ZDV KHDWHG DW r& IRU K LQ EHQ]HQHGJ WKHUH ZDV QR UHDUUDQJHPHQW DQG WKH VWHUHRFKHPLFDO UDWLR UHPDLQHG WKH VDPH :KHQ D WHQIROG H[FHVV RI IXUDQ ZDV DOORZHG WR UHDFW ZLWK 0)$ DW r& IRU K WZR F\FORDGGXFWV DQG ZHUH IRUPHG LQ b \LHOG b
PAGE 73

7KH SURGXFW UDWLR ZDV IRXQG WR EH s b E\ */& DQG WKH UHVXOWV ZHUH UHSURGXFLEOH LQ D VHSDUDWH H[SHULPHQW 7KH VWHUHRFKHPLFDO DVVLJQPHQWV ZHUH VWUDLJKWIRUZDUG LQ YLHZ RI SDVW VSHFWURVFRSLF VWXGLHV 'LVFXVVLRQ 6\Q$GGLWLRQ LQ >@ &\FORDGGLWLRQV RI 0)$ ,QWHUHVWLQJO\ D FORVH H[DPLQDWLRQ RI WKH 'LHOV$OGHU UHDFWLRQV RI 0)$ ZLWK F\FORSHQWDGLHQH EXWDGLHQH DQG IXUDQ GRHV VKRZ VRPH SUHIHUHQFH IRU V\Q DGGLWLRQ RI WKH DOLHQH 7KH SUHIHUHQFH LV QRW QHDUO\ DV JUHDW DV WKDW REVHUYHG LQ WKH GLSRODU F\FORDGGLWLRQV KRZHYHU ,Q H[SODLQLQJ WKH VWHUHRn FKHPLFDO DGGLWLRQ SUHIHUHQFHV WKH F\FORSHQWDGLHQH DQG IXUDQ FDVHV GR QRW SURYLGH VWURQJ HYLGHQFH IRU WKH LQYROYHPHQW RI PROHFXODU RUELWDO 02f DUJXPHQWV 7KH V\QUDQWL UDWLR LV SUDFWLFDOO\ UDQGRP IRU WKH F\FORSHQWDGLHQH UHDFWLRQ $OVR WKH SUHVHQFH RI WKH R[\JHQ LQ WKH IXUDQ FDVH RSHQV XS DQ\ VWHUHRFKHPLFDO DUJXPHQWV WR GLSROHGLSROH LQWHUDFWLRQV RU RWKHU LQWHUDFWLRQV GLVFXVVHG LQ &KDSWHU 7KH RQO\ UHDFWLRQ ZKLFK VHHPV VXSSRUWLYH RI 02 DUJXPHQWV LV WKH RQH LQYROYLQJ EXWDGLHQH 7KH UHVXOWV IURP WKH UHDFWLRQ RI 0)$ ZLWK EXWDGLHQH PXVW EH WUHDWHG ZLWK FDUH IRU VHYHUDO UHDVRQV KRZHYHU )RU H[DPSOH WKHUH DUH WZR UHDVRQDEOH SDWKZD\V WR REWDLQ WKH SURGXFWV 7KH ILUVW LV D FRPSHWLQJ >@ DQG >@ SDWKZD\ DQG WKH RWKHU LV D WRWDOO\ GLUDGLFDO PHFKDQLVP 7KLV PHFKDQLVWLF SUREOHP KDV EHHQ FRQVLGHUHG DW OHQJWK IRU WKH DQDORJRXV UHDFWLRQ RI GLIOXRURDOOHQH DQG EXWDGLHQH ZLWK FRQFOXVLYH HYLGHQFH VXSSRUWn LQJ WKH IRUPHU SDWKZD\ D PRUH VHULRXV FRQVLGHUDWLRQ LV WKH SRVVLEOH UHDUUDQJHPHQW RI WKH F\FOREXWDQH DGGXFW A WR SUHIHUHQWLDOO\ IRUP V\Q DGGXFW XQGHU WKH UHDFWLRQ FRQGLWLRQV 7KLV VHHPV XQOLNHO\ VLQFH DQG ZKLFK DUH WKHUPDOO\ VLPLODU WR A GR QRW LQWHUFRQYHUW XQWLO WHPSHUDWXUHV DERYH r & $ ILQDO FRQVLGHUDWLRQ KHUH LV OHDNDJH IURP

PAGE 74

A&) 1&n ) !rA 1&n WKH >@ UHDFWLRQ WR SUHIHUHQWLDOO\ IRUP D VPDOO DPRXQW RI IURP DQ LQWHUPHGLDWH GLUDGLFDO 7KLV DJDLQ VHHPV XQOLNHO\ VLQFH WKH UHDFWLRQ RI 0)$ ZLWK OOGLFKORURGLIOXRURHWK\OHQHr GLVFXVVHG LQ &KDSWHU GHPRQVWUDWHV WKDW ERWK WKH IRUPDWLRQ DQG ULQJ FORVXUH RI DQ\ LQWHUPHGLDWH GLUDGLFDO LV FRPSOHWHO\ VWHUHRUDQGRP ZLWK UHVSHFW WR WKH IOXRULQH 7KH FRQFOXVLRQ RI WKLV DUJXPHQW LV WKDW WKH UHDFWLRQ RI 0)$ ZLWK WKH OHVV UHDFWLYH PRUHVHOHFWLYH EXWDGLHQH GRHV LQGHHG JLYH VRPH VXSSRUW WR PROHFXODU RUELWDO DUJXPHQWV IRU H[SODLQLQJ WKH V\Q SUHIHUHQFHV REVHUYHG LQ 0)$ UHDFWLRQV 7KHRUHWLFDO 6WXG\ IRU 0)$ 0ROHFXODU RUELWDO 02f WKHRU\ KDV EHHQ HQRUPRXVO\ VXFFHVVIXO LQ RUJDQL]LQJ DQG H[SODLQLQJ D YDVW ERG\ RI H[SHULPHQWDO UHVXOWV ,Q IDFW LW KDV EHHQ VR VXFFHVVIXO WKDW VRPHWLPHV VLPSOHU H[SODQDWLRQV IRU UDWLRQDOL]LQJ UHVXOWV VHHP WR EH RYHUORRNHG RU XQGHUSOD\HG LQ IDYRU RI PDNLQJ 02 DUJXPHQWV $Q H[DPSOH RI WKLV LV WKH LQYRFDWLRQ RI VHFRQGDU\ RUELWDO LQWHUDFWLRQV OLNH WKH NLQG SRVVLEOH LQ 0)$ WR H[SODLQ WKH UHJLRFKHPLVWU\ DQG VWHUHRFKHPLVWU\ RI F\FORDGGLWLRQ UHDFWLRQV 7KLV LV ZK\ WKH GLSROH GLSROH LQWHUDFWLRQV DQG VROYDWLRQ SKHQRPHQD ZHUH FRQVLGHUHG DW OHQJWK LQ

PAGE 75

&KDSWHU 1HYHUWKHOHVV 02 WKHRU\ GRHV JLYH VRPH LQWHUHVWLQJ LQVLJKWV LQWR H[SODLQLQJ WKH VWHUHRFKHPLFDO SUHIHUHQFH RI 0)$ WR XQGHUJR VYQ DGGLWLRQ ,W VHHPV FOHDU WKDW WKH F\FORDGGLWLRQV RI 0)$ VWXGLHG LQ WKLV GLVVHUWDWLRQ DUH PHPEHUV RI WKH FODVV RI FRQFHUWHG UHDFWLRQV ,Q WKH GLSRODU F\FORDGGLWLRQV WKH VPDOO $+A ODUJH QHJDWLYH $6A DQG VPDOO VSUHDG RI UHODWLYH UDWHV REVHUYHG RYHU D ZLGH UDQJH RI VROYHQW SRODULWLHV JLYH WHVWLPRQ\ WR WKLV IDFW ,Q WKH >@ UHDFWLRQV WKH UHODWLYHO\ ORZ WHPSHUDn WXUHV UHTXLUHG WR SURGXFH JRRG \LHOGV RI WKH F\FORDGGXFWV DOVR VXSSRUWV WKLV VWDWHPHQW 7KH TXHVWLRQ VWLOO UHPDLQV 79KDW LV WKH RULJLQ RI WKH VWHUHRn FKHPLFDO SUHIHUHQFHV REVHUYHG LQ WKH F\FORDGGLWLRQV RI 0)$ LQ WHUPV RI 02 WKHRU\" ,QWHUPHGLDWH QHJOHFW RI GLIIHUHQWLDO RYHUODS ,1'2f FDOFXODWLRQVA IRU 0)$ VXJJHVW DQ LQWHUHVWLQJ DQVZHU 7KH ILUVW WDVN LQ WKLV WKHRUHWLFDO VWXG\ LV WR GHWHUPLQH ZKLFK RUELWDO RI 0)$ LV LQYROYHG LQ WKH FRQWUROOLQJ IURQWLHU 02 LQWHUDFWLRQ 7KHUH LV PXFK SUHFHGHQW WR VXJJHVW WKDW LW LV WKH ORZHVW XQRFFXSLHG 02 IRU 0)$rA +RXN HW DO KDYH FRQVLGHUHG WKH HIIHFW RI HOHFWURQUHOHDVLQJ HOHFWURQ ZLWKGUDZLQJ DQG FRQMXJDWLQJ VXEVWLWXHQWV RQ WKH RUELWDOV RI GLHQRSKLOHVAO DQG GLSRODURSKLOHV! V IRXQM WKDW LQ JHQHUDO ERWK WKH KLJKHVW RFFXSLHG PROHFXODU RUELWDO +202 DQG WKH ORZHVW XQRFFXSLHG PROHFXODU RUELWDO /802 RI WKH 77ERQG KDYH RUELWDO HQHUJLHV ZKLFK DUH ORZHUHG VLJQLILFDQWO\ ZKHQ XQGHU WKH LQIOXHQFH RI DQ HOHFWURQZLWKGUDZLQJ VXEVWLWXHQW $ &+) RU &) JURXS RQ D FDUERQFDUERQ GRXEOH ERQG ZRXOG EH H[SHFWHG WR LQIOXHQFH WKH RUELWDOV VLPLODU WR WKH HOHFWURQZLWKGUDZLQJ JURXSV WKDW +RXN FRQVLGHUHG +RXN DOVR QRWHG WKDW ZKHQ FRPSDULQJ DQ HOHFWURQ ULFK GLSRODURSKLOH ZLWK DQ HOHFWURQGHILFLHQW RQH WKH FRQWUROOLQJ IURQWLHU 02 LQWHUDFWLRQ FKDQJHG IURP WKH +202 WR WKH /802

PAGE 76

7KHVH LGHDV DUH IXUWKHU LOOXVWUDWHG LQ )LJXUH 7KH ,1'2 FDOFXODWLRQV IRU DOLHQH IOXRURDOOHQH DQG GLIOXRURDOOHQH LQGLFDWH WKDW DV PRUH IOXRULQHV DUH SODFHG RQ DOLHQH WKH HQHUJLHV RI WKH 6+202 DQG /802 RI WKH && 7UERQG DUH ERWK ORZHUHG FRQVLGHUDEO\ EXW WKH RUELWDO HQHUJLHV RI WKH +202 DQG 6/802 RI WKH QRQUHDFWLYH RUWKRJRQDO && AERQG DSSURDFK HDFK RWKHU 7KLV LV LQ H[FHOOHQW DJUHHPHQW ZLWK DE LQLWLR FDOFXODWLRQV IRU GLIOXRURDOOHQHA ,QWHUHVWLQJO\ WKH ,1'2 FDOFXODWLRQV IURP )LJXUH SUHGLFW WKDW WKH RUELWDO HQHUJLHV RI 0)$ DUH PRUH OLNH WKRVH RI GLIOXRURDOOHQH WKDQ DOLHQH LWVHOI f (QHUJ\ LQ H9f ,6 OHQH )OXRURDOOHQH 'LIOXRURDOOHQH /8&'nV 6/802 6/8' /2' +2' I2' +2'n6 6+2' 6+2' )LJXUH &RPSDULVRQ RI 6HOHFWHG 2UELWDO (QHUJLHV (LJHQYDOXHVf IRU $OLHQH )OXRURDOOHQH DQG 'LIOXRURDOOHQH

PAGE 77

,W VKRXOG ILQDOO\ EH QRWHG WKDW WKH UHJLRFKHPLVWU\ RI QLWURQH F\FORn DGGLWLRQV LV DOVR FRQVLVWHQW ZLWK KDYLQJ WKH /802 RI 0)$ DV WKH FRQWUROOLQJ IURQWLHU 02 LQWHUDFWLRQ ,W KDV EHHQ REVHUYHG WKDW WKH XVXDO UHDFWLRQV RI QLWURQHV ZLWK QRQHOHFWURQZLWKGUDZLQJ GLSRODURSKLOHV DUH +202 FRQWUROOHG DQG VXEVWLWXWHG LVR[D]ROLGLQHV DUH SURGXFHG 7KH VXEVWLWXWHG LVR[D]ROLGLQHV H[SHULPHQWDOO\ REVHUYHG IRU WKH UHDFWLRQV RI 0)$ DUH IRXQG LQ /802FRQWURLOHG VLWXDWLRQVpp 1RZ WKDW WKH /802 RI 0)$ KDV EHHQ HVWDEOLVKHG DV WKH FRQWUROOLQJ IURQWLHU 02 IRU WKH PROHFXOH LW LV WLPH WR LQYHVWLJDWH WKH SRVVLELOLW\ RI VLJQLILFDQW VHFRQGDU\ RUELWDO LQWHUDFWLRQV LQ WKH /802 ZDYHIXQFWLRQ $ SRUWLRQ RI WKH HLJHQYHFWRU PDWUL[ IRU 0)$ KDV EHHQ H[WUDFWHG IRU WKH WKUHH FDUERQV LQ WKH /802 DV VKRZQ LQ 7DEOH 7KHVH HLJHQYHFWRUV VKRZ WKH SURSRUWLRQV LQ ZKLFK DWRPLF RUELWDOV PL[ WR IRUP WKH UHVXOWDQW PROHFXODU RUELWDO ,QWHUHVWLQJO\ WKHUH DUH VLJQLILFDQW FRHIILFLHQWV RI DQG IRU WKH V DQG S] RUELWDOV UHVSHFWLYHO\ RI &@B WKH FDUERQ EHDULQJ WKH IOXRULQH ,I WKHVH RUELWDOV PL[ DV VKRZQ DQ DV\PPHWULF RUELWDO UHVXOWV ,I WKLV DV\PPHWULF RUELWDO IXUWKHU PL[HV ZLWK D S] RUELWDO RQ &! WKH PLGGOH FDUERQ RI 0)$ WKHUH LV JUHDWHU UHLQIRUFHPHQW RI WKH ZDYHIXQFWLRQ DW & RQ WKH VLGH RI WKH PROHFXOH EHDULQJ WKH IOXRULQH $ FRPSXWHUJHQHUDWHG JUDSK RI WKH UHVXOWDQW /802 FRQILUPV WKHVH H[SHFWDWLRQV DV VKRZQ LQ )LJXUH 7KLV DV\PPHWULF /802 PD\ JLYH ULVH WR WKH VWHUHRFKHPLFDO

PAGE 78

7DEOH (LJHQYHFWRUV &RHIILFLHQWVf IRU WKH $WRPLF 2UELWDOV RI WKH &DUERQV LQ WKH /802 RI )OXRURDOOHQH $WRP $WRPLF 2UELWDO (LJHQYHFWRUp &O V S[ S\ 3] F V S[ S\ S] & V f S[ 3\ S] D$ PRUH FRPSOHWH WDEOH RI HLJHQYHFWRUV IRU ERWK 0)$ DQG ')$ DORQJ ZLWK D[LV RULHQWDWLRQV DUH VKRZQ LQ $SSHQGL[ & )LJXUH /802 RI )OXRURDOOHQH

PAGE 79

SUHIHUHQFHV REVHUYHG IRU FRQFHUWHG F\FORDGGLWLRQV RI 0)$ ,QGHHG WKH SUHFHGLQJ DUJXPHQW LV FRPSOHWHO\ DQDORJRXV WR WKDW SUHYLRXVO\ PDGH WR H[SODLQ WKH UHJLRFKHPLVWU\ RI F\FORDGGLWLRQ RI GLIOXRURDOOHQH ZLWK GL D]RDONDQHV r 6XPPDU\ ,Q VXPPDU\ LW ZDV VKRZQ WKDW WKH V\QDQWL UDWLR IRU WKH >@ F\FORn DGGLWLRQ RI 0)$ ZLWK F\FORSHQWDGLHQH ZDV QHDUO\ ZKLOH D PRGHUDWH SUHIHUHQFH IRU V\Q DGGLWLRQ ZDV REVHUYHG IRU UHDFWLRQV ZLWK EXWDGLHQH DQG IXUDQ 2QO\ WKH EXWDGLHQH UHDFWLRQ VHHPHG WR XQDPELJXRXVO\ VXSSRUW WKH XVH RI PROHFXODU RUELWDO DUJXPHQWV LQ H[SODLQLQJ WKH VWHUHRFKHPLFDO SUHIHUHQFHV REVHUYHG LQ 0)$ F\FORDGGLWLRQV KRZHYHU $ WKHRUHWLFDO VWXG\ RI 0)$ XVLQJ ,1'2 FDOFXODWLRQV GLG VXJJHVW WKDW WKHUH ZHUH VHFRQGDU\ RUELWDO LQWHUDFWLRQV SUHVHQW LQ WKH /802 $ FRPSXWHUJHQHUDWHG JUDSK RI WKH /802 VKRZHG WKDW WKH OREH DW WKH PLGGOH FDUERQ RI 0)$ ZDV PXFK ODUJHU RQ WKH VLGH RI WKH PROHFXOH EHDULQJ WKH IOXRULQH ,W ZDV WKRXJKW WKDW WKLV H[SODQDWLRQ LQ FRQMXQFWLRQ ZLWK SDVW H[SODQDWLRQV PD\ KHOS UDWLRQDOL]H WKH >@ DQG GLSRODU F\FORDGGLWLRQ EHKDYLRU RI 0)$ 2QH VKRXOG SUREDEO\ QRWH WKH DXWKRUnV FRPPHQWV RQ WKLV VXEMHFW LQ &KDSWHU KRZHYHU

PAGE 80

&+$37(5 &21&/86,21 7KH PHFKDQLVWLF VWXGLHV IRU WKH WKHUPDO F\FORDGGLWLRQV RI IOXRURDOOHQH DQG GLIOXRURDOOHQH KDYH EHHQ TXLWH IUXLWIXO 7KH VPDOO VL]H RI WKH IOXRULQH VXEVWLWXHQWV DQG WKH KLJK UHDFWLYLW\ RI WKHVH DOLHQHV KDYH DOORZHG VRPH YHU\ LQWHUHVWLQJ UHVXOWV WR EH REWDLQHG $ PDMRU DFKLHYHPHQW ZDV PDGH E\ REWDLQLQJ FRQFOXVLYH HYLGHQFH IRU WZR NLQHWLFDOO\ GLVWLQJXLVKDEOH LQWHUPHGLDWHV LQ D >@ F\FORDGGLWLRQ PHFKDQLVP 7KLV RSHQV WKH GRRU WR UHVHDUFK LQ DQ DUHD ZKLFK KDV QRW PDGH VLJQLILFDQW PHFKDQLVWLF SURJUHVV IRU VHYHUDO \HDUV $OVR WKH ILUVW WR RXU NQRZOHGJH +DPPHWW W\SH UHODWLYH UHDFWLYLW\ VWXG\ RI D >@ UHDFWLRQ ZDV GHVFULEHG 7KLV PD\ DOVR EH D SURGXFWLYH DUHD IRU DGGLWLRQDO ZRUN $ VHFRQG PDMRU DFKLHYHPHQW ZDV WKH FRQFOXVLYH VWUXFWXUDO SURRIV IRU WKH DGGXFWV REWDLQHG LQ WKH >@ DQG GLSRODU F\FORDGGLWLRQV RI IOXRURn DOOHQH ,W ZDV FXULRXVO\ REVHUYHG WKDW WKHUH VHHPHG WR EH D PDUNHG SUHIHUHQFH IRU V\Q DGGLWLRQ RI WKH DOLHQH LQ VSLWH RI RQHnV XVXDO VWHULF SUHMXGLFHV 6HYHUDO DYHQXHV ZHUH H[SORUHG LQ WU\LQJ WR UDWLRQDOL]H WKH DOOHQHnV F\FORDGGLWLRQ EHKDYLRU EXW WKH VWXGLHV VHHPHG WR SURPSW PRUH TXHVWLRQV WKDQ DQVZHUV ,W LV SHUWLQHQW WR EULHIO\ HODERUDWH RQ D IHZ RI WKHVH FRQFHUQV IRU FRQVLGHUDWLRQ LQ IXWXUH ZRUN 7KHUH VHHPHG WR EH D VFDWWHULQJ RI SURGXFW UDWLRV ZLWK VROYHQW (M YDOXHV IRU WKH IOXRURDOOHQH1PHWK\O&SKHQ\OQLWURQH VROYHQW VWXG\ VKRZQ LQ 7DEOH ,W ZRXOG EH LQWHUHVWLQJ WR SUREH PRUH GHHSO\ LQWR WKH VROYDWLRQ SKHQRPHQD LQIOXHQFLQJ WKLV UHDFWLRQ WR VHH LI D UDWLRQDOL]DWLRQ IRU WKH GDWD FRXOG EH IRXQG $OVR LW ZRXOG EH LQWHUHVWLQJ WR ILQG D GLIIHUHQW PROHFXODU

PAGE 81

V\VWHP RU DQDO\WLFDO PHWKRG WR UHSHDW WKH NLQHWLF VWXGLHV RI &KDSWHU :LWK UHDVRQDEOH XQFHUWDLQWLHV IRU WKH DFWLYDWLRQ SDUDPHWHUV WKHVH VWXGLHV FRXOG EH TXLWH LPSRUWDQW )LQDOO\ DOWKRXJK &KDSWHU SURSRVHG WKDW WKH V\Q DGGLWLRQ SUHIHUHQFHV RI IOXRURDOOHQH PLJKW EH H[SODLQHG E\ PROHFXODU RUELWDO WKHRU\ RQH VKRXOG UHDOL]H WKDW WKH VHFRQGDU\ RUELWDO LQWHUDFWLRQV REVHUYHG LQ VHPLHPSLULFDO FDOFXODWLRQV OLNH ,1'2f DUH QRW DOZD\V REVHUYHG LQ KLJKHU OHYHO FDOFXODWLRQV $E LQLWLR FDOFXODWLRQV IRU IOXRURDOOHQH ZRXOG EH TXLWH LQIRUPDWLYH ,Q FRQFOXVLRQ WKHUH DUH RSSRUWXQLWLHV IRU SURPLVLQJ UHVHDUFK LQ VHYHUDO DUHDV KHUH &RQWLQXHG VWXG\ RI WKH F\FORDGGLWLRQV RI IOXRURDOOHQH DQG f§ GLIOXRURDOOHQH VKRXOG EH SURGXFWLYH IRU PDQ\ \HDUV WR FRPH

PAGE 82

&+$37(5 (;3(5,0(17$/ 6(&7,21 *HQHUDO 0HWKRGV ,QIUDUHG ,5f VSHFWUD ZHUH GHWHUPLQHG DV ILOPV EHWZHHQ .%U SODWHV RU DV &&, VROXWLRQV LQ PP PDWFKHG OLTXLG FHOOV 7KH ,5 VSHFWUD ZHUH WDNHQ RQ D 3HUNLQ(OPHU % VSHFWURSKRWRPHWHU DQG DUH UHSRUWHG LQ FP 8OWUDYLROHW 89f VSHFWUD ZHUH GHWHUPLQHG RQ D 3HUNLQ(OPHU VSHFWURn SKRWRPHWHU LQ WKH DEVRUEDQFH PRGH IURP QP WR QP DQG IURP WR DEVRUEDQFH XQLWV 6SHFWURJUDGH VROYHQWV DQG PDWFKHG FP TXDUW] FHOOV ZHUH XVHG 1XFOHDU PDJQHWLF UHVRQDQFH 105f FKHPLFDO VKLIWV IRU DQG OA& VSHFWUD DUH UHSRUWHG LQ SDUWV SHU PLOOLRQ GRZQILHOG f IURP LQWHUQDO 706 &KHPLFDO VKLIWV IRU VSHFWUD DUH UHSRUWHG LQ SDUWV SHU PLOOLRQ XSILHOG !f IURP LQWHUQDO &)&, $OO VSHFWUD ZHUH WDNHQ LQ &'&, XQOHVV RWKHUZLVH VSHFLILHG 7KH OA& PXOWLSOLFLWLHV ZHUH GHWHUPLQHG ZLWK WKH DLG RI RII UHVRQDQFH RU ,1(37 VSHFWUD $OO 105 VSHFWUD ZHUH WDNHQ RQ D 9DUDQ (0 / D -HRO ); D -HRO );4 RU D 1LFROHW 17 VSHFWURPHWHU 0DVV VSHFWUD DQG H[DFW PDVVHV ZHUH GHWHUPLQHG RQ DQ $(,06 VSHFWURPHWHU DW H9 (OHPHQWDO DQDO\VHV ZHUH SHUIRUPHG E\ $WODQWLF 0LFURODEV RU E\ WKH 8QLYHUVLW\ RI )ORULGD PLFURDQDO\VLV VHUYLFH 0HOWLQJ SRLQWV DQG PLFURERLOLQJ SRLQWV ZHUH GHWHUPLQHG ZLWK D 7KRPDV+RRYHU FDSLOODU\ PHOWLQJSRLQW DSSDUDWXV DQG DUH XQFRUUHFWHG %XON FKURPDWRJUDSKLF VHSDUDWLRQV ZHUH SHUIRUPHG E\ HLWKHU JDVOLTXLG FKURPDWRJUDSK\ */&f RU IODVK FKURPDWRJUDSK\ 7KH */& VHSDUDWLRQV ZHUH

PAGE 83

GRQH RQ D 9DULDQ $HURJUDSK $3 JDV FKURPDWRJUDSK ZLWK D WKHUPDO FRQGXFWLYLW\ GHWHFWRU )ODVK FKURPDWRJUDSK\ ZDV SHUIRUPHG ZLWK VWULFW DGKHUHQFH WR WKH SXEOLVKHG PHWKRG DQG PHVK VLOLFD JHO ZDV XVHG LQ DOO FDVHV 7KH SURGXFW UDWLRV IRU WKH GHXWHUDWHG VW\UHQH ZRUN ZHUH GHWHUPLQHG RQ D 9DULDQ $HURJUDSK $3 JDV FKURPDWRJUDSK 2WKHU SURGXFW UDWLRV DQG SHUFHQW \LHOGV ZHUH GHWHUPLQHG DV DQ DYHUDJH RI DW OHDVW WKUHH LQMHFWLRQV RQ D +HZOHWW3DFNDUG $ JDV FKURPDWRJUDSK ZLWK D IODPH LRQL]DWLRQ GHWHFWRU RU E\ PXOWLSOH ) DQG r+ 105 LQWHJUDWLRQV 7KH LQWHUQDO VWDQGDUGV XVHG WR GHWHUPLQH WKH \LHOGV DUH JLYHQ LQ WKH WH[W ZKHUH QHFHVVDU\ ([SHULPHQWDO 3URFHGXUHV 'LIOXRURSKHQ\OOPHWK\OHQHF\FOREXWDQH Df DQG 3KHQ\OO GLIWXRURPHWK\OHQHfF\FOREXWDQH ODf ,QWR HDFK RI WKUHH PO S\UH[ EXOEV HDFK FRQWDLQLQJ PO PPROHf RI GRXEO\ GHJDVVHG VW\UHQH ZDV FRQGHQVHG PPROH RI SUHYLRXVO\ GHJDVVHG ')$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOEV ZHUH SODFHG LQWR D VWLUUHG RLO EDWK DW r& 7KH EXOEV ZHUH UHPRYHG FRROHG DQG RSHQHG DW WKH HQG RI K K DQG K 7KH UHJLRLVRPHU UDWLR DD ZDV GHWHUPLQHG WR EH sf IRU HDFK EXOE E\ */& XVLQJ D LQ [ IW b '13 FROXPQ DW r& POPLQ IORZf DQG WKH UHDFWLRQ ZDV VKRZQ WR EH HVVHQWLDOO\ FRPSOHWH ZLWKLQ K E\ D FRPSDULVRQ RI WKH FKURPDWRJUDPV )XUWKHU H[DPLQDWLRQ RI WKH K UHDFWLRQ E\ 7/& */& DQG ) 105 GHPRQVWUDWHG WKDW WKHUH ZHUH QR RWKHU SURGXFWV RWKHU WKDQ WKH ROLJLPHUV RI ')$ 7KH H[FHVV VW\UHQH ZDV UHPRYHG IURP WKH K UHDFWLRQ PL[WXUH E\ URWDU\ HYDSRUDWLRQ DW UHGXFHG SUHVVXUH DQG WKH SURGXFWV ZHUH VHSDUDWHG E\ IODVK FKURPDWRJUDSK\ RQ D PP FROXPQ ZLWK

PAGE 84

FP RI PHVK VLOLFD JHO XVLQJ PO IUDFWLRQV DQG KH[DQH DV WKH HOXDQW ,Q WKLV ZD\ J PPROHf RI D ZKLFK ZDV IXUWKHU SXULILHG E\ SUHSDUDWLYH */& DW FRQGLWLRQV VLPLODU WR WKRVH JLYHQ DERYH DQG J PPROHf RI D ZHUH HDFK LVRODWHG DV FRORUOHVV VZHHWVPHOOLQJ RLOV LQ D FRPELQHG LVRODWHG \LHOG RI b D 5I ,5 Zf Vf YVf YVf Vf YVf YVf YVf YVf FPn 1 05 0+]f P +f P +f P +f G RI YLUWXDO TXDUWHWV + -+) +] -+) += -++ +] GHPRQVWUDWHG E\ GHFRXSOLQJ H[SHULPHQWVf P +f I Q 05 0+]f GGGG ,) -)) +] -+) +] -+) +] -+) +]f GG ,) -)) +] ++) +]f & 1 05 0+]f W -&) +] &[f 3Kf 3Kf 3Kf 3Kf GG -&) +] DQG -&) +] &)f ROHILQLF &+f W -&) +] &+3Kf GG -&) +] -&) +] DOLSKDWLF &+f 06 PH f f f f f f f f f f f f 0 s SSPf FDOFnG IRU &K+Nf) GHYLDWLRQ SSPf $QDO &DOFnG IRU &Q+) & + )RXQG & + D 5I ,5 Vf YVf YVf Vf YVf YVf YVf FP W+ 105 0+]f P +f YLUWXDO SHQWHW + +]f P +WUDQVA P +FLVf OJ) 105 0+]f -! Pf L& 105 0+]f W -&) +] &)f 3Kf 3Kf 3Kf 3Kf

PAGE 85

W -&) +] &Lf &+3Kf &+f 06 PH f f f f f f f f f f f f f 0 s SSPf FDOFnG IRU &+) GHYLDWLRQ SSPf $QDO &DOFnG IRU &K+L) & + )RXQG & + 6LPLODUO\ SUHSDUHG VDPSOHV ZHUH KHDWHG DW r IRU PLQ PLQ K K K DQG K ZLWK WKH UDWLRV DD s f UHPDLQLQJ FRQVWDQW IRU DOO WLPHV RI UHDFWLRQ HYHQ WKRXJK QRQH RI WKH UHDFWLRQV KDG JRQH WR FRPSOHWLRQ 'LIOXRURPHWKR[\SKHQ\OfOPHWKYOHQHF\FOREXWDQH Ef DQG 0HWKR[\SKHQ\OfOGLIOXRURPHWK\,HQHfF\FOREXWDQH Ef ,QWR D PO SYUH[ EXOE ZKLFK FRQWDLQHG PO PPROHf RI GRXEO\ GHJDVVHG SDUDYLQ\ODQLVROH DQG PJ RI K\GURTXLQRQH ZDV FRQGHQVHG PPROH RI GHJDVVHG ')$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQWR D VWLUUHG RLO EDWK DW r& IRU K 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH UHJLRLVRPHU UDWLR EE ZDV GHWHUPLQHG WR EH E\ */& XVLQJ D LQ [ IW b GLLVRGHF\OSKWKDODWH FROXPQ DW r& POPLQ IORZf 7KH SURGXFWV ZHUH VHSDUDWHG E\ IODVK FKURPDWRn JUDSK\ RQ D PP FROXPQ XVLQJ FDUERQ WHWUDFKORULGH DV WKH HOXDQW 7KH FRORUOHVV SURGXFWV ZKHQ LVRODWHG ZHUH HDFK SXULILHG E\ SUHSDUDWLYH */& DW FRQGLWLRQV VLPLODU WR WKRVH JLYHQ DERYH WR DIIRUG PJ PPROHf RI E DQG PJ PPROHf RI E 7KH FRPELQHG LVRODWHG \LHOG ZDV b E 5I ,5 Zf Vf YVf YVf YVf Vf Vf Vf Vf Vf YVf Vf Vf Vf FP r+ 1 05

PAGE 86

0+]f DQG $% SDWWHUQ + -++ +]f P +f P +f G RI YLUWXDO TXDUWHWV + -AS +] -SMS +] -++ +]f V +f P +f ) 105 0+]f FS GGGG ,) -SS +] -MMS +] -MMS +] -MM) +]f GG ,) -SS +] -+S +]f & 105 0]f 3Kf W -&) +] &[f 3Kf 3Kf GG -&S +] DQG -&S +] &)f 3Kf ROHILQLF &+f 2&+f W -&S +] &+$Uf GG -&S +] DQG -&) +] DOLSKDWLF &+f 06 PH f f f f f f f f f f f f 0 s SSPf FDOFnG IRU &L+L) GHYLDWLRQ SSPf $QDO &DOFnG IRU &+) & + )RXQG & + E 5I ,5 Zf YVf YVf YVf Vf Vf Vf Vf FPr r+ 105 0+]f DQG $% SDWWHUQ + -++ +]f 6 +f YLUWXDO SHQWHW + -++ +]f P +f ) 105 0+]f 3 Pf & 105 0+]f 3Kf W -&) +] &)f 3Kf 3Kf 3Kf W +] &Lf 2&+f &+$Uf &+f 06 PH f f f f f f f f f f f f 0 s SSPf FDOFnG IRU &L+) GHYLDWLRQ SSPf 'LIOXRURQLWURSKHQ\OfOPHWK\OHQHF\FOREXWDQH Ff DQG 1LWURSKHQ\OfOGLIOXRURPHWK\OHQHfF\FOREXWDQH Ff ,QWR D PO S\UH[ EXOE ZKLFK FRQWDLQHG PO PPROHf RI GHJDVVHG SDUDQLWURVW\UHQH DQG PJ RI WHUWEXW\OFDWHFKR, ZDV FRQGHQVHG

PAGE 87

PPROH RI GHJDVVHG ')$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQWR D VWLUUHG RLO EDWK DW r& IRU K 6HYHUDO VLPLODU UHDFWLRQV ZHUH SHUIRUPHG DQG WKH UHDFWLRQ PL[WXUHV ZHUH FRPELQHG 7KH SURGXFWV ZHUH VHSDUDWHG E\ IODVK FKURPDWRJUDSK\ RQ D PP FROXPQ XVLQJ D b HWK\O DFHWDWH LQ KH[DQH VROXWLRQ DV WKH HOXDQW ,Q WKLV ZD\ PJ PPROHf RI F ZDV REWDLQHG DV D EULJKW \HOORZ RLO 3XULILFDWLRQ RI F ZKLFK ZDV FRQWDPLQDWHG ZLWK SDUDQLWURVW\UHQH ZDV DWWHPSWHG E\ */& RQ D LQ [ IW b GLLVRGHF\OSKWKDODWH FROXPQ DW r& POPLQf 7KLV DIIRUGHG PJ RI D EULJKW \HOORZ RLO ZKLFK FRQWDLQHG PRVWO\ F ZLWK VRPH GHFRPSRVLWLRQ SURGXFWV 7KH FRPELQHG FF LVRODWHG \LHOG ZDV b F 5I ,5 Zf Zf Vf YVf YVf Vf Vf Vf Vf Vf Vf Vf Vf Vf FP O+ 1 05 0+]f DQG $% SDWWHUQ + -KK +]f P +f P +f G RI YLUWXDO TXDUWHWV + -\S +] -A) +] -MLSM +]f P +f ) 105 0+]f } GGGG ,) -)) +] -+) +] -KI +] -MMI +=f GG ,) -S) +] -IMS r +]f & 105 0+]f 3Kf W -&) +] &Af 3Kf 3Kf 3Kf GG -&) +] DQG -&) +] &)f ROHILQLF &+f W -&) +] &+$Uf GG -T3 +] DQG -T) +] DOLSKDWLF &+f 06 PH f f f f f f f f f f f f f f f f f f f f f f 0 s SSPf FDOFnG IRU &Q+J)1 GHYLDWLRQ SSPf $QDO

PAGE 88

&DOFnG IRU &+)12 & + 1 )RXQG & + 1 F 5I r+ 105 0+]f DQG $% SDWWHUQ + -KK +]f YLUWXDO SHQWHW + +]f FRPSOH[ P +f ) 105 0+]f Pf 4XDQWLWDWLYH ,QGLYLGXDO DQG &RPSHWLWLYH 2OHILQ 'LIOXRURDOOHQH ([SHULPHQWV 7KH ILIWHHQ PO S\UH[ EXOEV XVHG LQ WKHVH H[SHULPHQWV ZHUH DOO ZDVKHG WKULFH ZLWK GLVWLOOHG ZDWHU WKULFH ZLWK DFHWRQH DQG GULHG RYHUQLJKW LQ D r& RYHQ 7KH VW\UHQH JYLQ\ODQLVROH DQG F\DQRYLQ\O DFHWDWH VWDUWLQJ PDWHULDOV ZHUH VKRZQ E\ 0+] r+ 105 DQG */& WR EH RI VXIILFLHQW SXULW\ WR XVH GLUHFWO\ IURP WKHLU ERWWOHV 7KH JQLWURVW\UHQH ZDV SXULILHG E\ +DVK FKURPDWRJUDSK\ EHIRUH XVH 7KH ')$ ZDV SXULILHG E\ ORZ WHPSHUDWXUHr SUHSDUDWLYH */& RQ D LQ [ IW b 6( FROXPQ DW r & POPLQ IORZf WR DIIRUG D PDWHULDO RI H[WUHPHO\ KLJK VSHFWURVFRSLF SXULW\ )RU HDFK RI WKH LQGLYLGXDO ROHILQ ')$ H[SHULPHQWV PO RI DQ ROHILQ ZDV SODFHG LQWR D PO EXOE ZLWK HLWKHU PJ RI K\GURTXLQRQH RU LQ WKH FDVH RI JQLWURVW\UHQH PJ RI /EXW\OFDWHFKRO $IWHU WKH ROHILQ KDG EHHQ GHJDVVHG WZLFH HQRXJK SUHYLRXVO\ GHJDVVHG ')$ ZDV FRQGHQVHG LQWR WKH EXOE VR WKDW DQ ROHILQ')$ PROH UDWLR RI ZDV PDLQWDLQHG 7KH EXOE ZDV VHDOHG XQGHU YDFXXP DQG SODFHG LQWR D ZHOOVWLUUHG RLO EDWK DW WKH UHDFWLRQ FRQGLWLRQV VKRZQ LQ 7DEOHV DQG RI &KDSWHU 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH UHJLRLVRPHU UDWLR DQG SHUFHQW \LHOG r7KH V\ULQJH ZDV FRROHG RQ GU\ LFH IRU DW OHDVW PLQ EHIRUH HDFK LQMHFWLRQ

PAGE 89

ZHUH GHWHUPLQHG E\ */& DQGRU QP5 LQWHJUDWLRQ RI WKH UHDFWLRQ PL[WXUH 7KH PHWKRG XVHG IRU WKH FRPSHWLWLRQ H[SHULPHQWV ZDV VLPLODU H[FHSW WKDW DOO UHDFWLRQV ZHUH FDUULHG RXW DW r& IRU K DQG WKH VW\UHQHYDULDEOH ROHILQ')$ PROH UDWLR ZDV ZLWK PO RI VW\UHQH XVHG LQ HDFK UXQ 7KH UHVXOWV DUH JLYHQ LQ 7DEOHV DQG ([DPLQDWLRQ RI WKHVH SURGXFW PL[WXUHV E\ OA) 105 7/& DQG */& LQGLFDWHG WKDW QR SURGXFWV RWKHU WKDQ WKH ROLJLPHUV RI ')$ ZHUH IRUPHG
PAGE 90

8SRQ FRROLQJ WKH ILOWHUHG VROLG ZDV ZDVKHG ZLWK KH[DQH DQG UHFU\VWDOOL]HG IURP ZDWHU XVLQJ KRW ILOWUDWLRQ ,Q WKLV ZD\ J RI ZKLWH SODWHV ZHUH FROOHFWHG 7KHVH ZHUH GULHG DW r& LQ YDFXR RYHUQLJKW WR DIIRUG J PPROHf RI WKH WULPHU RI DGHXWHULR%SKHQ\OHWKHQ\OERURQLF DFLG bf PS r& K 105 DFHWRQHGf Pf 0 s SSPf FDOFnG IRU &+'%2 GHYLDWLRQ SSPf 06 PH UHODWLYH LQWHQVLW\f f f DOO RWKHUV b UHO LQWHQVLW\ 7KH WULPHU J PROHf J PROHf RI HWK\OHQH JO\FRO DQG PO RI WROXHQH ZHUH KHDWHG DW UHIOX[ ZLWK WKH D]HRWURSLF UHPRYDO RI ZDWHU IRU K 7KH VROYHQW ZDV UHPRYHG E\ URWDU\ HYDSRUDWLRQ DW WRUU WR OHDYH D OLTXLG ZKLFK FU\VWDOOL]HG XSRQ UHIULJHUDWLRQ 5Hn FU\VWDOOL]DWLRQ IURP QKH[DQH XVLQJ KRW ILOWUDWLRQ DIIRUGHG J PROHf RI ZKLWH QHHGOHV bf RI =fDGHXWHULRtSKHQ\OfHWKHQ\OO GLR[DERURODQH ZKLFK ZDV VWRUHG LQ D YDFXXP GHVVLFDWRU PS r & K 105 &'&, 0+]f P +f V+f 7R D PHOWHG VROXWLRQ RI J PROHf RI WKH ERURQLF HVWHU DQG PJ RI WEXW\OFDWHFKRO DW r& XQGHU QLWURJHQ ZDV DGGHG J PROHf RI IUHVKO\ GLVWLOOHG r& WRUUf JODFLDO DFHWLF DFLG GURSZLVH $IWHU VWLUULQJ DW r& IRU K WKH FRROHG VROXWLRQ ZDV SRXUHG RQWR D PO LFH PO SHQWDQH PL[WXUH DQG DIWHU YLJRURXV VWLUULQJ WKH ZDWHU OD\HU ZDV H[WUDFWHG ZLWK SHQWDQH 7KH FRPELQHG RUJDQLF H[WUDFW ZDV ZDVKHG ZLWK 1 .2+ VROXWLRQ DQG GLVWLOOHG ZDWHU GULHG DQG WKH VROYHQW ZDV UHPRYHG E\ URWDU\ HYDSRUDWLRQ DW WRUU 5HPRYDO RI WKH ODVW WUDFHV RI SHQWDQH E\ D VWUHDP RI GU\ QLWURJHQ IROORZHG E\ YDFXXP WUDQVIHU RI WKH FRORUOHVV UHVLGXH JDYH J PROHf RI FLVGHXWHULRVW\UHQH bf 7KH SURGXFW ZDV VWRUHG XQGHU QLWURJHQ DW r& ZLWK

PAGE 91

DSSUR[LPDWHO\ PJ RI WBEXW\OFDWHFKRO DGGHG 7KH 0+] r+ 105 VSHFWUXP DJUHHG ZLWK WKH SXEOLVKHG VSHFWUXP DQG QRQH RI WKH WUDQV GHXWHUDWHG LVRPHU ZDV GHWHFWHG $ FRPSDULVRQ RI WKH PDVV VSHFWUXP RI VW\UHQH DW H9 ZLWK WKDW RI WKH FLV GHXWHUDWHG PDWHULDO VXJJHVWHG DQ LVRWRSLF SXULW\ RI s b (f DQG =f'HXWHULRGLIOXRURSKHQ\OOPHWK\OHQHFYFOREXWDQH f DQG (f DQG =f'HXWHULRSKHQ\OOGLIOXRURPHWK\OHQHfF\FOREXWDQH f $ UHSUHVHQWDWLYH SURFHGXUH IRU WKH GHXWHUDWHG UXQV LQ 7DEOH RI &KDSWHU LV JLYHQ EHORZ ,QWR D FOHDQ GU\ PO S\UH[ EXOE FRQWDLQLQJ D GRXEO\ GHJDVVHG PL[WXUH RI PO PPROHf RI b =%GHXWHULR VW\UHQH DQG PJ RI K\GURTXLQRQH ZDV FRQGHQVHG PPRO RI SUHYLRXVO\ WULSO\ GHJDVVHG ')$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQ D VWLUUHG RLO EDWK DW r& IRU K 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH UHJLRLVRPHU UDWLR ZDV GHWHUPLQHG WR EH E\ */& XVLQJ D LQ [ IW b '13 FROXPQ DW r& POPLQ IORZf ,Q WKH r& UXQ RI WKLV UHDFWLRQ WKH */& \LHOG ZDV GHWHUPLQHG DW WKLV SRLQW ZLWK WKH DLG RI D FDOLEUDWLRQ FXUYH $ SUHYLRXVO\ SXULILHG VDPSOH RI ZDV XVHG DV WKH H[WHUQDO VWDQGDUGf 7KH H[FHVV =JGHXWHULRVW\UHQH ZDV UHPRYHG E\ YDFXXP WUDQVIHU DW WRUU DORQJ ZLWK VRPH XQIRUWXQDWHO\ &UXGH VHSDUDWLRQ RI WKH UHVLGXH E\ +DVK FKURPDWRJUDSK\ RQ D PP FROXPQ XVLQJ FP RI PHVK VLOLFD JHO PO IUDFWLRQV DQG KH[DQH DV WKH HOXDQW DIIRUGHG PJ PPROHf RI IROORZHG E\ PJ PPROHf RI IRU D FRPELQHG LVRODWHG \LHOG RI b $OO WUDFH LPSXULWLHV ZHUH UHPRYHG E\ UHSHDWLQJ WKH IODVK FKURPDWRJUDSK\ IRU HDFK VHSDUDWHG LVRPHU 7KH UDWLRV RI = WR ( LVRPHUV RI DQG M ZHUH GHWHUPLQHG E\ 0+] K 105 XVLQJ D SXOVH GHOD\ RI VHF WR LQVXUH UHOD[DWLRQ RI WKH

PAGE 92

SURWRQV LQWHJUDWHG ,Q WKLV ZD\ WKH VWHUHRFKHPLFDO UDWLRV IRU WKH GHXWHULXP = YHUVXV ( WR WKH SKHQ\O ULQJ ZHUH GHWHUPLQHG WR EH IRU UHJLRLVRPHU DQG IRU $QDO\VLV RI HDFK LVRODWHG UHJLRLVRPHU E\ */& DW FRQGLWLRQV VLPLODU WR WKRVH JLYHQ DERYH VKRZHG D VLQJOH SHDN ([DPLQDWLRQ RI WKH UHFRYHUHG =GHXWHULRVW\UHQH E\ 0+] r+ 105 GHPRQVWUDWHG WKDW WKHUH ZDV QR LVRPHUL]DWLRQ RI WKH VWDUWLQJ PDWHULDO XQGHU WKH UHDFWLRQ FRQGLWLRQV $Q DGGLWLRQDO FRQWURO ZKHUHE\ PJ RI ZDV KHDWHG LQ KHSWDQH DW r& IRU K VKRZHG QR LVRPHUL]DWLRQ RI WR WKH PRUH VWDEOH DQG QR FKDQJH LQ WKH = WR ( UDWLR RI UHFRYHUHG O$FHWR[\GLIOXRURPHWK\OHQHF\FOREXWDQHFDUERQLWULOH f DQG $FHWR[\ GLIOXRURPHWK\OHQHfF\FOREXWDQHFDUERQLWULOH f ,QWR D PO S\UH[ EXOE ZKLFK FRQWDLQHG PO PPROHf RI GRXEO\ GHJDVVHG F\DQRYLQ\O DFHWDWH DQG PJ RI K\GURTXLQRQH ZDV FRQGHQVHG PPROH RI GHJDVVHG ')$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQWR D VWLUUHG RLO EDWK DW r& IRU K 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH UHJLRLVRPHU UDWLR ZDV GHWHUPLQHG WR EH E\ */& XVLQJ D LQ [ IW b GLLVRGHFYOSKWKDODWH FROXPQ DW r& POPLQ IORZf 7KH H[FHVV F\DQRYLQ\O DFHWDWH ZDV UHPRYHG E\ VKRUWSDWK GLVWLOODWLRQ DW WRUU WR REWDLQ PJ RI D EURZQ RLO 7KH SURGXFWV ZHUH VHSDUDWHG E\ SUHSDUDWLYH */& DW WKH FRQGLWLRQV GHVFULEHG DERYH WR DIIRUG PJ PPROHf RI @B DQG PJ PPROHf RI IRU D FRPELQHG LVRODWHG \LHOG RI b %RWK SURGXFWV ZHUH FRORUOHVV RLOV 3URGXFW ZDV WKH ILUVW HOXWHG ,5 Zf Zf YVf Vf Vf YVf YVf YVf YVf YVf Vf Vf Vf Vf

PAGE 93

Vf FP r+ 1 05 0+]f P +f P +f G RI P + +]f G RI P + +]f V +f ) 105 0+]f G RI P ,) -)) +]f G RI P ,) -)) +]f & 105 0+]f & f W -&) +] &f ROHILQLF &+f GG -&) +] DQG -&) +] &)f &1f W -&) +] &Lf GG -&) +] DQG -T) +] DOLSKDWLF &+f &+f 06 PH QR 0` f f f f f f f f f f f f $QDO &DOFnG IRU &+)1 & + 1 )RXQG & + 1 ,5 Zf YVf YVf Zf YVf YVf Vf Zf Zf r+ 105 0+]f G RI P + +] G RI P + +]f V +f ) 105 0+]f Pf & 105 0+]f & f W -&) +] &)f &1f W -&) +] &f &Lf W -&) +] &+f &+f 06 PH QR 0f f f f f f f f f f f f 11DSKWK\Of&SKHQ\OQLWURQH Ff ,QWR DQ (UO\QPH\HU IODVN ZDV SODFHG J PPROHf RI QLWUR QDSKWKDOHQH PO RI WHWUDK\GURIXUDQ DQG J RI ZDWHU 7R WKLV UDSLGO\ VWLUUHG VROXWLRQ ZDV DGGHG DOXPLQXP DPDOJDP LQ VPDOO SLHFHV RYHU D SHULRG RI K 7KH DPDOJDP ZDV SUHSDUHG E\ WHDULQJ J PPROHf RI DOXPLQXP IRLO LQWR DSSUR[LPDWHO\ SLHFHV DQG SODFLQJ WKH SLHFHV VHSDUDWHO\ LQWR D b PHUFXULF FKORULGH VROXWLRQ IRU WR VHF IROORZHG

PAGE 94

E\ ZDVKLQJ ZLWK HWKDQRO DQG WHWUDK\GURIXUDQ 7KH DPDOJDP ZDV XVHG LPPHGLDWHO\ 7KH UHGXFWLRQ ZDV H[RWKHUPLF r&f DQG D EURZQ SUHFLSLWDWH IRUPHG $IWHU DOO WKH DPDOJDP KDG GHFRPSRVHG WKH SUHFLSLWDWH ZDV UHPRYHG E\ VXFWLRQ ILOWUDWLRQ DQG WKH VROYHQW ZDV UHPRYHG E\ URWDU\ HYDSRUDWLRQ DW UHGXFHG SUHVVXUH WR JLYH DQ RUDQJH VROLG 7KH FUXGH SURGXFW ZDV UHFU\VWDOOL]HG IURP FKORURIRUP IROORZHG E\ ZDVKLQJ ZLWK EHQ]HQH DQG KH[DQH WR JLYH ZKHQ GU\ J PPROHf RI RUDQJH SODWHV IRU D b \LHOG 7KH 1QDSKWK\OfK\GUR[\ODPLQH KDG D PHOWLQJ SRLQW RI r& ,QWR DQ (UO\QPH\HU IODVN ZDV SODFHG J PPROHf RI IUHVKO\ UHFU\VWDOOL]HG 1QDSKWK\OfK\GUR[\ODPLQH DQG PO RI DEVROXWH HWKDQRO 7KH PL[WXUH ZDV KHDWHG WR r& WR GLVVROYH WKH DPLQH ZKHUHXSRQ J PPROHf RI EHQ]DOGHK\GH ZDV DGGHG ZLWK YLJRURXV VZLUOLQJ 7KH VROXWLRQ ZDV VHW DVLGH LQ WKH GDUN WR FRRO $IWHU KRXUV WKH FUXGH SURGXFW ZDV FROOHFWHG E\ VXFWLRQ ILOWUDWLRQ DQG UHFU\VWDOOL]HG WZLFH IURP HWKDQRO WR JLYH J PPROHf RI SDOH \HOORZ SODWHV IRU D b \LHOG RI F F PS r& ,5 &+&f Vf Vf YVf Vf Vf Vf Vf Vf FP 1 05 0+]f Pf 06 PH f f f f f f f f f 0 s SSPf FDOFnG IRU &+12 GHYLDWLRQ SSPf (f DQG =f0HWK\OSKHQ\OIOXRURPHWKYOHQHfLVR[D]ROLGLQHV Df DQG Df ,QWR DQ 105 WXEH ZKLFK FRQWDLQHG D WULSO\ GHJDVVHG VROXWLRQ RI PJ PPROHf RI 1PHWK\O&SKHQ\OQLWURQH LQ PO RI &'&, ZDV FRQGHQVHG PPROH RI GHJDVVHG 0)$ 7KH WXEH ZDV VHDOHG XQGHU YDFXXP DQG NHSW DW URRP WHPSHUDWXUH LQ WKH GDUN IRU GD\V 7KH SURJUHVV RI WKH

PAGE 95

UHDFWLRQ ZDV IROORZHG E\ A+ DQG ) 105 8SRQ FRPSOHWLRQ WKHUH ZHUH WZR SURGXFWV SUHVHQW LQ DQ UDWLR E\ ) 105 $IWHU WKH WXEH ZDV FRROHG DQG RSHQHG WKH VROYHQW ZDV HYDSRUDWHG XVLQJ D VWUHDP RI GU\ QLWURJHQ WR JLYH PJ RI DQ DPEHU RLO 7KH SURGXFWV ZHUH VHSDUDWHG E\ IODVK FKURPDWRJUDSK\ XVLQJ VLOLFD JHO DQG D b VROXWLRQ RI HWK\O DFHWDWH LQ KH[DQH ,Q WKLV ZD\ PJ PPROHf RI D IROORZHG E\ PJ PPROHf RI D ZHUH REWDLQHG DV SDOH \HOORZ RLOV IRU D FRPELQHG LVRODWHG \LHOG RI b 7KH VWHUHRFKHPLFDO DVVLJQPHQWV ZHUH PDGH LQ SDUW ZLWK WKH DLG RI GLIIHUHQFH 12( H[SHULPHQWV DV GLVFXVVHG LQ &KDSWHU D 5I ,5 QHDWf Vf YVf YVf Vf Vf YVf FP ;+ 105 0+]f P +f GP -AS +] +f P +f EURDG V +f V +f I 105 0+]f -! GP -+) +]f r& 105 0+]f G -&) +] &+)f 3K TXDWf 3Kf 3Kf G -&S +] ROHILQLF TXDW &f &+3Kf G -&) +] &+f &+f 06 PH f f f f f f f f f f 0 s SSPf FDOFnG IRU &K+L21) GHYLDWLRQ SSPf $QDO &DOFnG IRU &Q+21) & + 1 )RXQG & + 1 D 5I ,5 QHDWf Vf YVf Vf Vf YVf FPr O( 105 0+]f P +f GP -MMI +] +f P + QRQILUVWRUGHU $% SDWWHUQf EURDG V +f V +f ) 105 0+]f W! GP -+I +]f & 105 0+]f G -&) +] &+)f 3K TXDWf G -&) +] ROHILQLF TXDW &f 3Kf 3Kf

PAGE 96

G -&) +] &+3Kf G -&) +] &+f &+f 06 PH f f f f f f f f f f 0 s SSPf FDOFnG IRU &+21) GHYLDWLRQ SSPf $QDO &DOFnG IRU &+21) & + 1 )RXQG & + 1 (f DQG =fn1DSKWK\OfSKHQ\OIOXRURPHWK\OHQHfLVR[D]ROLGLQHV Ff DQG Ffa ,QWR DQ 105 WXEH ZKLFK FRQWDLQHG D WULSO\ GHJDVVHG VROXWLRQ RI PJ PPROHf RI 1QDSKWK\Of&SKHQ\OQLWURQH F LQ PO RI &'&, ZDV FRQGHQVHG PPROH RI 0)$ 7KH WXEH ZDV VHDOHG XQGHU YDFXXP DQG NHSW DW URRP WHPSHUDWXUH LQ WKH GDUN IRU K 7KH SURJUHVV RI WKH UHDFWLRQ ZDV IROORZHG E\ r+ DQG A) 105 8SRQ FRPSOHWLRQ WKHUH ZHUH WZR SURGXFWV SUHVHQW LQ DQ UDWLR E\ 105 $IWHU WKH WXEH ZDV FRROHG LQ D GU\ LFHLVRSURSDQRO EDWK DQG RSHQHG WKH VROYHQW ZDV HYDSRUDWHG XVLQJ D VWUHDP RI GU\ QLWURJHQ WR JLYH PJ RI D GDUN DPEHU RLO 7KH SURGXFWV ZHUH VHSDUDWHG E\ +DVK FKURPDWRJUDSK\ XVLQJ VLOLFD JHO DQG D b VROXWLRQ RI HWK\O DFHWDWH LQ KH[DQH ,Q WKLV ZD\ PJ PPROHf RI F IROORZHG E\ PJ PPROHf RI F ZHUH REWDLQHG IRU D FRPELQHG LVRODWHG \LHOG RI b 7KH SURGXFWV ZHUH UHFU\VWDOOL]HG IURP PHWKDQRO WR JLYH VQRZ ZKLWH VROLGV $ PRQRFU\VWDO VXLWDEOH IRU DQ ;UD\ VWUXFWXUH GHWHUPLQDWLRQ ZDV JURZQ E\ VORZ HYDSRUDWLRQ RI VROYHQW IURP DQ HWKDQROLF VROXWLRQ RI F LQ DQ XQFDSSHG 105 WXEH 7KH ;UD\ VWUXFWXUH LV VKRZQ LQ $SSHQGL[ % $ SURGXFW VWDELOLW\ H[SHULPHQW ZDV SHUIRUPHG E\ KHDWLQJ WKH PLQRU LVRPHU F DW r& IRU K LQ &'&, 7KHUH ZDV QR GHFRPSRVLWLRQ RU UHDUUDQJHPHQW RI F GHWHFWHG E\ 0+] r+ 105

PAGE 97

F PS r& 5I ,5 &&f Vf YVf Vf YVf Vf Vf Vf FP r+ 105 0+]f P +f GGW + -+) +] -MMK +] -MMK +] E\ GHFRXSOLQJ H[SHULPHQWVf EURDG V +f P + QRQILUVWRUGHU $% SDWWHUQf ) 105 0+]f GP -+) +]f & 105 0+]f $U TXDWf G -&) +] &+)f G -T) +] $U TXDWf $U TXDWf $U TXDWf $Uf $Uf $Uf $Uf $Uf $Uf $Uf G -TI +] ROHILQLF TXDW &f $Uf $Uf $Uf &+3Kf G -&) +] &+f 06 PH f f f f f f f f f f 0 s SSPf FDOFnG IRU &+21) GHYLDWLRQ SSPf $QDO &DOFnG IRU F+L21) & + 1 )RXQG & + 1 F PS r& 5I ,5 &&f Vf Vf Vf YVf YVf FPr K 105 0+]f P +f GGW + -+) +] -MMMM +] -IMSM +] E\ GHFRXSOLQJ H[SHULPHQWVf EURDG V +f P + QRQILUVWRUGHU $% SDWWHUQf ) 105 0+]f 3 GP -+) +]f F 105 0+]f $U TXDWf G -&) +] &)+f $U TXDWf $U TXDWf $U TXDWf $Uf $Uf $Uf $Uf $Uf $Uf G -&) +] ROHILQLF TXDW &f $Uf $Uf $Uf $Uf G -&) +] &+3Kf &+f 06 PH f f f f f f f f f f 0

PAGE 98

s SSPf FDOFnG IRU &+21) GHYLDWLRQ SSPf $QDO &DOFnG IRU &R+LJ21) & + 1 )RXQG & + 1 5HODWLYH 5DWH 6WXGLHV IRU WKH 5HDFWLRQ RI )OXRURDOOHQH ZLWK 10HWKYO& SKHQ\OQLWURQH LQ 9DULRXV 6ROYHQWV DQG ZLWK 1LWURQHV LQ *HQHUDO ,QWR HDFK RI HLJKW LQFK 105 WXEHV ZKLFK HDFK FRQWDLQHG D GHJDVVHG VROXWLRQ RI PJ PPROHf RI 1PHWK\O&SKHQ\OQLWURQH LQ PO RI GHXWHUDWHG VROYHQW ZDV FRQGHQVHG PPROH RI GHJDVVHG b 0)$ 7KH WXEHV ZHUH VHDOHG XQGHU YDFXXP DQG DOORZHG WR UHPDLQ DW r& LQ WKH GDUN 7KH VROXWLRQV ZHUH DJLWDWHG E\ KDQG SHULRGLFDOO\ 7KH SURJUHVV RI WKH UHDFWLRQV ZDV IROORZHG E\ 0+] r+ 105 $W OHDVW ILYH LQWHJUDn WLRQV RI WKH QLWURQH PHWK\O JURXS DW SSP DQG WKH WZR LVR[D]ROLGLQH SURGXFW PHWK\O JURXSV DW SSP ZHUH REWDLQHG IRU HDFK RI ILYH RU PRUH SRLQWV ZLWKLQ WKH ILUVW WKUHH KDOIOLYHV RI WKH UHDFWLRQ 3ORWV RI ORJQLWURQHf YHUVXV WLPH ZHUH FRQVWUXFWHG IURP WKH GDWD REWDLQHG IRU HDFK WXEH DQG WKH SVHXGRILUVWRUGHU UDWH FRQVWDQWV ZHUH GHWHUPLQHG IURP WKHP 7KH UHVXOWV DUH VXPPDUL]HG LQ 7DEOH 7KH UHDFWLRQV ZHUH DOORZHG WR JR WR FRPSOHn WLRQ DQG WKH SURGXFW UDWLRV ZHUH GHWHUPLQHG E\ ) Q 05 DW 0+] DV VKRZQ LQ 7DEOH RI &KDSWHU 7KH SURGXFW UDWLRV IRU WKH '062GJ DQG &'&O UHDFWLRQV ZHUH DOVR GHWHUPLQHG E\ r+ 105 DW 0+] 7KHUH ZDV D VWURQJ VROYHQWSURGXFW LQWHUDFWLRQ REVHUYHG LQ WKH '062GJ ) 105 VSHFWUXP RI WKH LVR[D]ROLGLQH SURGXFWV ZKLFK PDGH WKDW ) 105 UDWLR DPELJXRXVf $IWHUZDUGV WKH 105 WXEHV ZHUH FRROHG LQ D GU\ LFHLVRSURn SDQRO EDWK DQG RSHQHG DQG WKH UHDFWLRQ PL[WXUHV ZHUH DQDO\]HG E\ */& RQ D LQ [ IW b '13 FROXPQ DW r& POPLQ +RZf 7KH SURGXFW UDWLRV REWDLQHG E\ */& ZHUH FRQVLVWHQW ZLWK WKRVH REWDLQHG E\ ) 105

PAGE 99

7DEOH 3VHXGR)LUVW2UGHU 5DWH &RQVWDQWV IRU WKH 6ROYHQW 6WXG\ RI WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH DW r & 6ROYHQW 3VHXGR)LUVW 2UGHU N VHFfOf &RUUHODWLRQ &RHIILFLHQW RI 3RLQWV RQ /LQH %HQ]HQHGJ f [ f 'LR[DQHGJ s f [ &'&, s f [ a &'&, s f [ $FHWRQHGJ s f [ '062GJ s f [ &'&1 s f [ &'2' s f [ 7KH UHODWLYH UDWH VWXG\ RI WKH UHDFWLRQ RI 0)$ ZLWK YDULRXV QLWURQHV ZDV GRQH LQ D FRPSOHWHO\ DQDORJRXV ZD\ WR WKH VROYHQW VWXGLHV 7KH UHVXOWV DUH VKRZQ LQ 7DEOH RI &KDSWHU ,QWR HDFK RI WKH LQFK 105 WXEHV ZDV SODFHG PPROH RI QLWURQH PO RI &'&, DQG PPROH RI b 0)$ 7KHUH ZDV DOVR \O RI PHWDEURPREHQ]RWULIOXRULGH DGGHG WR HDFK WXEH WR FDOFXODWH WKH \LHOGV E\ ) 105 DQG \O RI SDUDGLR[DQH DGGHG WR DLG LQ PRQLWRULQJ WKH ORVV RI WKH QLWURQH LQ WKH UHODWLYH UDWH VWXG\ 7KH WXEHV ZHUH VHDOHG XQGHU YDFXXP DQG DOORZHG WR UHPDLQ DW r& LQ WKH GDUN DV EHIRUH 7KH SURJUHVV RI WKH UHDFWLRQ ZDV IROORZHG E\ 0+] 105 DQG WKH SVHXGRILUVWRUGHU UDWH FRQVWDQWV ZHUH GHWHUPLQHG IURP WKH GDWD DV VKRZQ LQ 7DEOH 7KH UHDFWLRQV ZHUH DOORZHG WR JR WR FRPSOHWLRQ DQG WKH SURGXFW UDWLRV DQG \LHOGV ZHUH GHWHUPLQHG E\ r) 105 DV VKRZQ LQ 7DEOH

PAGE 100

7DEOH 3VHXGR)LUVW2UGHU 5DWH &RQVWDQWV ZLWK 9DULRXV 1LWURQHV DW IRU WKH 5HDFWLRQ r& LQ &'& RI 0)$ 1 LWURQH 3VHXGR)LUVW 2UGHU N VHFAf &RUUHODWLRQ &RHIILFLHQW RI 3RLQWV RQ /LQH D 1PHWK\Of s f [ E 1SKHQ\Of s f [ F 1QDSKWK\Off s f [ ,Q DOO RI WKH ) 105 VSHFWUD RI WKHVH VROYHQW DQG QLWURQH VWXGLHV WKHUH ZHUH VRPH LPSXULWLHV SUHVHQW $ VSHFWUXP RI 0)$ DORQH GHPRQn VWUDWHG WKDW DOO H[FHSW WZR RI WKH LPSXULWLHV ZHUH SUHVHQW LQ WKH VWDUWLQJ PDWHULDO 7KHVH WZR SRVVLEOH SURGXFWV ZKLFK ZHUH REVHUYHG RQO\ LQ WKH 1 PHWK\O&SKHQ\OQLWURQH UHDFWLRQV ZHUH HDFK SUHVHQW LQ DQ DYHUDJH b UHODWLYH \LHOG 7KH\ ZHUH QRW LGHQWLILHG (YHQ WKRXJK WKH 0)$ ZDV b SXUH E\ 105 LQWHJUDWLRQ WKH LPSXULWLHV ZHUH UHDGLO\ DSSDUHQW LQ WKH ) 105 VSHFWUD VLQFH 0)$ ZDV LQ WHQIROG H[FHVV FRPSDUHG WR WKH QLWURQH LQ DOO RI WKH NLQHWLF VWXGLHV ,W ZDV DOVR REVHUYHG E\ ) 105 WKDW WKH SURGXFW UDWLRV GLG QRW FKDQJH GXULQJ WKH FRXUVH RI WKHVH UHDFWLRQV ,Q DGGLWLRQ WKH UDWLRV UHPDLQHG XQFKDQJHG IRU PRUH WKDQ GD\V DIWHU WKH UHDFWLRQV KDG JRQH WR FRPSOHWLRQ .LQHWLF 6WXGLHV IRU WKH 5HDFWLRQ RI )OXRURDOOHQH ZLWK 10HWK\O&SKHQYO QLWURQH LQ %HQ]HQHGD &KORURIRUPG DQG $FHWRQHGV 7KH UHDFWLRQ RI 0)$ ZLWK 1PHWK\O&SKHQ\OQLWURQH KDG DOUHDG\ EHHQ VKRZQ WR EH ILUVW RUGHU ZLWK UHVSHFW WR WKH QLWURQH LQ WKH UHODWLYH UDWH VWXGLHV 7KH UHDFWLRQ ZDV DOVR VKRZQ WR EH ILUVW RUGHU ZLWK UHVSHFW WR 0)$ :LWK WKH QLWURQH LQ WHQIROG DQG VHYHQIROG H[FHVV FRPSDUHG WR 0)$ WKH VHFRQGRUGHU UDWH FRQVWDQWV ZHUH GHWHUPLQHG WR EH [ PROH

PAGE 101

VHF DQG [ p PROHVHF UHVSHFWLYHO\ 7KH VHWXS DQG SURFHGXUH ZDV FRPSOHWHO\ DQDORJRXV WR WKH IROORZLQJ NLQHWLF VWXGLHV H[FHSW WKDW WKH VROXWLRQV LQ WKH 105 WXEHV ZHUH FRQWLQXRXVO\ PL[HG E\ VORZ URWDWLRQ XVLQJ D VSHFLDOO\ULJJHG URWDU\ HYDSRUDWRU )RU DQ H[DPSOH RI WKH UHDFWLRQ VHWXS IRU WKH NLQHWLFV UHDFWLRQV PPROH RI GHJDVVHG b 0)$ ZDV FRQGHQVHG LQWR D LQFK 105 WXEH ZKLFK FRQWDLQHG D GHJDVVHG VROXWLRQ RI PJ PPROHf RI 1PHWK\O& SKHQ\OQLWURQH LQ PO RI VROYHQW 7KH WXEHV ZHUH VHDOHG XQGHU YDFXXP DQG SODFHG LQWR D WHPSHUDWXUHFRQWUROOHG HQYLURQPHQW 7KH r& UHDFWLRQV ZHUH GRQH LQ DQ LFHZDWHU EDWK LQVLGH D WDOO 'HZDU DQG WKH r& UHDFWLRQV ZHUH GRQH LQ ZDWHU WKDW KDG HTXLOLEUDWHG WR URRP WHPSHUDWXUH LQVLGH D GLIIHUHQW 'HZDU IODVN 7KH r& UHDFWLRQV ZHUH GRQH LQ D ZHOOVWLUUHG RLO EDWK DQG VHSDUDWH UHDFWLRQV ZHUH XVHG WR REWDLQ HDFK SRLQW LQ WKH UDWH SORWV $OO RI WKH UHDFWLRQV ZHUH GRQH LQ WKH GDUN WR SUHYHQW DQ\ WUDFH QLWURQH UHDUUDQJHPHQWA 7KH SURJUHVV RI WKH UHDFWLRQV ZDV IROORZHG E\ 105 LQ H[DFWO\ WKH VDPH ZD\ DV GHVFULEHG LQ WKH VROYHQW VWXGLHV 2QO\ WKH SDUW RI WKH VSHFWUXP SHUWLQHQW WR WKH NLQHWLFV ZDV UHFRUGHG WR UHGXFH WKH WLPH WKH 105 WXEHV ZHUH RXW RI WKHLU WHPSHUDWXUHFRQWUROOHG HQYLURQn PHQW ,Q 7DEOH WKH SVHXGRILUVWRUGHU UDWH FRQVWDQWV GHWHUPLQHG IURP WKH GDWD DUH SUHVHQWHG 7KH UHPDLQGHU RI WKH FDOFXODWLRQDO ZRUN UHTXLUHG WR REWDLQ WKH GHVLUHG DFWLYDWLRQ SDUDPHWHUV LV ZHOO GHVFULEHG LQ &KDSWHU 7KH SURGXFW UDWLRV QHHGHG WR FDOFXODWH WKH VHSDUDWH SURGXFW UDWH FRQVWDQWV LQ 7DEOH ZHUH GHWHUPLQHG E\ ) 105 DW 0+] ,Q RUGHU WR GHWHUPLQH WKH >0)$@ YDOXHV XVHG WR FDOFXODWH WKH VHFRQG RUGHU UDWH FRQVWDQWV IRU 7DEOH IRXU 105 WXEHV HDFK FRQWDLQLQJ PPROH RI 0)$ LQ PO RI VROYHQW ZHUH SUHSDUHG IRU HDFK RI WKH WKUHH VROYHQWV WKH UHDFWLRQ ZDV VWXGLHG LQ 8VLQJ \O RI RDUDGLR[DQH DQG

PAGE 102

7DEOH 2YHUDOO 3VHXGR)LUVW2UGHU 5DWH &RQVWDQWV IRU WKH .LQHWLF 6WXGLHV RI WKH 5HDFWLRQ RI 0)$ ZLWK 10HWK\O&SKHQ\OQLWURQH 3VHXGR)LUVW &RUUHODWLRQ RI 3RLQWV &RQGLWLRQV 2UGHU N VHFfD &RHIILFLHQW RQ /LQH %HQ]HQHGJ r& f [ %HQ]HQHGJ r& f [ %HQ]HQHGJ r& f [ &'& r& f [ &'&, r& f [ &'&, r& f [ O2 $FHWRQHGJ r& f [ $FHWRQHGJ r& f [ f $FHWRQHGJ r& f 2 ; D7KH UHDVRQ WKDW WKH SVHXGRILUVWRUGHU UDWH FRQVWDQWV DW r& KHUH DUH VOLJKWO\ GLIIHUHQW WKDQ WKRVH LQ 7DEOH LV WKDW D GLIIHUHQW VHWXS ZDV XVHG WR SUHSDUH WKH UHDFWLRQV ,W ZDV PRUH FRVW HIILFLHQW WR XVH VPDOOHU 105 WXEHV KHUH \O RI PHWDEURPREHQ]RWULIOXRULGH DV LQWHUQDO VWDQGDUGV WKH >0)$@ YDOXHV ZHUH GHWHUPLQHG XVLQJ + DQG OA) 105 8VH RI WHPSHUDWXUH YDULDEOH + 105 DW 0+] DOVR DOORZHG WKH GHWHUPLQDWLRQ RI >0)$@ DW r& DQG r& DV VKRZQ LQ 7DEOH RI &KDSWHU ,Q VLPLODU EXW VHSDUDWH H[SHULPHQWV WKH >0)$@ YDOXH ZDV VKRZQ WR EH FRQVWDQW LQ DOO RI WKH VROYHQWV RI 7DEOH 8OWUDYLROHW 6SHFWUXP RI 10HWK\O&SKHQ\OQLWURQH LQ 'LIIHUHQW 6ROYHQWV 7KH XOWUDYLROHW VSHFWUXP RI 1PHWK\O&SKHQ\OQLWURQH ZDV WDNHQ LQ VHYHUDO VSHFWURJUDGH VROYHQWV DV VKRZQ LQ 7DEOH 7KH VSHFWUD ZHUH WDNHQ LQ WKH DEVRUEDQFH PRGH IURP QP WR QP DQG IURP WR

PAGE 103

7DEOH /RQJHVW :DYHOHQJWK 89 $EVRUSWLRQ %DQG RI 10HWK\O&SKHQ\OQLWURQH LQ 'LIIHUHQW 6ROYHQWV 6ROYHQW (US NFDO PROH APD[ QPf $EVRUEDQFH 0RODU $EVRUSWLYLW\ H PROHFPf %HQ]HQH [ 'LR[DQH [ &+&, [ &+&O [ $FHWRQH D D D '062 [ &+&1 [ &+2+ [ &\FORKH[DQHr [ (WKDQROr [ D89 FXWRII IRU A6HH UHI DFHWRQH LV QP DEVRUEDQFH XQLWV 7KH FRQFHQWUDWLRQ RI WKH QLWURQH XVHG IRU WKH 89 VWXGLHV ZDV XQLIRUPO\ [ 0 7KHUH ZHUH QR RWKHU 89 EDQGV REVHUYHG =f DQG (f'LGHXWHULR GLK\GURIOXRURPHWK\OHQHf+S\UD]ROH f $ PO HWKHU VROXWLRQ RI GLD]RPHWKDQHApr ZDV FDXWLRXVO\ SUHSDUHG XQGHU QLWURJHQ IURP J PPROHf RI 1PHWK\ 1QLWURVRSDUD WROXHQHVXOIRQDPLGH ,Q WKH SUHSDUDWLRQ J PPROHf RI 1D2' J RI '2 DQG PO PPROHf RI HWKR[\HWKR[\fHWKDQROG ZHUH XVHG ,QWR WKH VDPH YHVVHO LQ ZKLFK WKH GLD]RPHWKDQHGHWKHU VROXWLRQ ZDV GLVWLOOHG ZDV FRQGHQVHG PPROH RI 0)$ 7KH YHVVHO ZDV VHDOHG XQGHU YDFXXP DQG DOORZHG WR ZDUP WR URRP WHPSHUDWXUH $IWHU PLQ WKH

PAGE 104

VROXWLRQ KDG WXUQHG IURP \HOORZ WR FRORUOHVV 7KH HWKHU ZDV UHPRYHG E\ YDFXXP WUDQVIHU RYHU PLQ WR OHDYH D ZKLWH FU\VWDOOLQH VROLG ZKLFK UDSLGO\ PHOWHG DW DSSUR[LPDWHO\ r& ,Q WKLV ZD\ PJ PPROHf RI D FRORUOHVV RLO FRQWDLQLQJ DQG e ZDV REWDLQHG IRU D b \LHOG 7KH SURGXFW ZDV TXLFNO\ SODFHG LQ DQ 105 WXEH ZLWK FROG r&f &'&, DQG WKH 105 WXEH ZDV VHDOHG XQGHU YDFXXP DQG VWRUHG RQ GU\ LFH 7KH V\QDQWL SURGXFW UDWLR f ZDV GHWHUPLQHG WR EH E\ 0+] r+ 105 DQG WKH LVRWRSLF SXULW\ RI WKH SURGXFWV ZDV VKRZQ WR EH b 8SRQ UHSHDWLQJ WKH UHDFWLRQ DQ SURGXFW UDWLR ZDV REWDLQHG ZLWK D b LVRWRSLF SXULW\ REVHUYHG E\ 0+] r+ 105 $ FRPSDULVRQ RI WKH 0+] K 105 VSHFWUXP RI DQG ZLWK WKDW RI WKH WRWDOO\ SURWLDWHG FRPSRXQG LV VKRZQ LQ )LJXUH $ RI $SSHQGL[ $ 7KH WRWDOO\ SURWLDWHG FRPSRXQG KDV EHHQ IXOO\ FKDUDFWHUL]HG E\ %XUNKROGHU =f DQG (f)OXRURPHWK\OHQHfELF\FOR >@ KHSWHQHV f DQG f ,QWR D PO S\UH[ EXOE ZKLFK FRQWDLQHG PO PPROHf RI GHJDVVHG F\FORSHQWDGLHQH ZDV FRQGHQVHG PPROH RI GHJDVVHG 0)$ 7KH EXOE ZDV VHDOHG XQGHU YDFXXP DQG SODFHG LQWR D WDOO 'HZDU IODVN FRQWDLQLQJ DQ LFHZDWHU EDWK IRU K $IWHU WKH EXOE ZDV RSHQHG WKH V\QDQWL SURGXFW UDWLR e ZDV GHWHUPLQHG WR EH s E\ */& XVLQJ D LQ [ IW b 29 FROXPQ LQ WDQGHP ZLWK D LQ [ IW b 7&3 FROXPQ DW r& POPLQ IORZf $OVR DQ r) 105 VSHFWUXP RI WKH UHDFWLRQ PL[WXUH JDYH D SURGXFW UDWLR RI s b 7KH UHDFWLRQ ZDV VKRZQ WR EH TXDQWLWDWLYH LQ \LHOG E\ XVH RI PHWDEURPREHQ]RWULIOXRULGH DV DQ LQWHUQDO VWDQGDUG LQ WKH ) 105 VWXG\ 7KH VSHFWUDO FKDUDFWHUL]Dn WLRQ RI WKH SURGXFWV ZKLFK ZDV GRQH E\ %XUNKROGHULV JLYHQ IRU HDV\ FRPSDULVRQ RI WKH VWHUHRFKHPLFDO FKDUDFWHULVWLFV ZLWK SDVW VSHFWURVFRSLF VWXGLHV

PAGE 105

,5 QHDWf Vf Vf Vf Vf YVf Vf Vf YVf FP + 105 0+]f GP -+I +] + &+)f P +f P + ELVDOO\OLF &+f P +f GP -AK +] H[R+f GP -MMK +] HQGR +f P +f P +f ) 105 0+]f c! GP -+) +]f 06 PH f f f f f f f f 0 s SSPf FDOFnG IRU &J+J) ,5 QHDWf Vf Vf Vf YVf YVf Vf YVf FPn ,5 105 0+]f GP -+) +] + &+)f P +f P + ELVDOO\OLF &+f P +f GP -MMK +] H[R+f GP +] HQGR+f P +f P +f ) 105 0+]f GP -+) +]f 06 PH r f f f f f f f f 0 s SSPf FDOFnG IRU &+) =f DQG (f)OXRURPHWK\OHQHfF\FORKH[HQHV f DQG f DQG O(WKHQ\O IOXRURPHWK\OHQHfF\FOREXWDQH f a ,QWR D PO WKLFNZDOOHG S\UH[ EXOE ZKLFK FRQWDLQHG PO RI KH[DQHV ZDV FRQGHQVHG PPROH RI EXWDGLHQH DQG PPROH RI 0)$ 7KH UHDFWDQWV ZHUH GHJDVVHG WZLFH $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQWR D VWLUUHG RLO EDWK DW r& IRU K 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH UHDFWLRQ PL[WXUH ZDV DQDO\]HG E\ */& DQG 0+] ) 105 7KHUH ZHUH WKUHH PDMRU SURGXFWV REVHUYHG EHVLGHV WKH VWDUWLQJ PDWHULDOV DQG WKH GLPHUV RI EXWDGLHQH DQG 0)$ 7KHUH ZHUH DOVR WKUHH WUDFH PDWHULDOV REVHUYHG LQ OHVV WKDQ b WRWDO \LHOG 7KH UDWLR RI WKH F\FORKH[HQH SURGXFWV e DQG M WR WKH F\FOREXWDQH SURGXFW $O ZDV

PAGE 106

IRXQG WR EH E\ */& XVLQJ D LQ [ IW b 29 FROXPQ LQ WDQGHP ZLWK D LQ [ IW b 7&3 FROXPQ DW r& POPLQ +RZf 7KLV UDWLR ZDV FRQILUPHG E\ ) 105 DQG DOVR WKH V\QDQWL UDWLR RI ZDV IRXQG WR EH s b 7KHVH UDWLRV ZHUH UHSURGXFLEOH LQ D VHSDUDWH H[SHULPHQWf 7KH F\FORKH[HQH SURGXFWV DQG ZHUH VHSDUDWHG IURP WKH UHDFWLRQ PL[WXUH E\ SUHSDUDWLYH */& RQ D LQ [ IW b 29 FROXPQ DW r& POPLQ IORZf WR JLYH PJ RI D FRORUOHVV RLO 7KH WRWDO LVRODWHG \LHOG RI DQG ZDV b 7KH PL[WXUH ZDV FDUHn IXOO\ SUREHG E\ K DQG & 105 DQG LW ZDV SRVVLEOH WR WHOO WKH SURWRQV DQG FDUERQV IRU HDFK SURGXFW DSDUW E\ 105 LQWHJUDWLRQ $ & 11( QR QXFOHDU 2YHUKDXVHU HIIHFWf H[SHULPHQW ZKLFK LV VKRZQ LQ )LJXUH $ RI $SSHQGL[ $ DLGHG LQ WKLV GHWHUPLQDWLRQ 7KH IXOO FKDUDFWHUL]DWLRQ RI DQG LV JLYHQ EHORZ $ SURGXFW VWDELOLW\ H[SHULPHQW ZDV SHUIRUPHG :KHQ WKH LVRODWHG PL[WXUH ZDV KHDWHG DW r & IRU K LQ EHQ]HQHGJ WKHUH ZDV QR UHDUUDQJHPHQW DQG WKH VWHUHRFKHPLFDO UDWLR UHPDLQHG WKH VDPH ,5 QHDWf Vf YVf FP r+ 105 0+]f GP -+) +] + &+)f P +f P + ELVDOO\OLF &+f P + DOO\OLF &+nVf ) 105 0+]f GP -+) +]f & 105 0+]f G -&) +] &+)f &Lf G -&) +] &f G -&) +] &f G -&) +] &f G -&) +] &f G -&) +] &Jf 06 PH f f f f f f f f

PAGE 107

\ ,5 QHDWf Vf YVf FPn r+ 105 0+]f GP -+) +] + &+)f P +f P + ELVDOO\OLF &+f P + &+ QHDUHVW )f P +f ) 105 0+]f I! GP -+) +]f & 105 0+]f G -&) +] &+)f &A G -&) +] &f G -&) +] &f G -&) +] &f G -T) +] & RU &Jf G -T) +] &J RU &f 06 PH f f f f f f f f ,5 QHDWf Vf Vf Vf YVf Vf YVf FP r+ 105 0+]f GP -+) +] +f P +f P +f P +f EURDG P +f ) 105 0+]f GP -+) +]f 06 PH f f f f f f f f f 0 s SSPf FDOFnG IRU &+) =f DQG (f)OXRURPHWK\OHQHfR[DELF\FOR>@ KHSWHQHV f DQG f ,QWR D PO WKLFNZDOOHG S\UH[ EXOE ZKLFK FRQWDLQHG PO PPROHf RI GHJDVVHG IXUDQ ZDV FRQGHQVHG PPROH RI 0)$ $IWHU VHDOLQJ XQGHU YDFXXP WKH EXOE ZDV SODFHG LQWR D VWLUUHG RLO EDWK DW r & IRU K 7KH EXOE ZDV FRROHG DQG RSHQHG DQG WKH V\QDQWL UDWLR RI ZDV GHWHUPLQHG WR EH s b E\ */& RQ D LQ [ IW b '13 FROXPQ DW r& POPLQ IORZf 7KH UHDFWLRQ ZDV UHSHDWHG DW r& IRU K DQG WKH UDWLR ZDV GHWHUPLQHG WR EH s b E\ */& 7KH SURGXFWV KDYH EHHQ IXOO\ FKDUDFWHUL]HG E\ %XUNKROGHU DQG WKH VSHFWUDO GDWD LV JLYHQ IRU FRPSDULVRQ WR SDVW VWHUHRFKHPLFDO VWXGLHV

PAGE 108

,5 QHDWf Zf Zf Vf Vf Vf Vf Vf HPn r+ 105 0+]f GP -+) +] + &+)f P +f P + ELVDOO\OLF &+f P +f GP -++ +] H[R+f GP -++ +] HQGR+f O) 105 0+]f F_f GP -+) +]f 06 PH f f f f f f f 0 s SSPf FDOFfG IRU &+)2 ,5 QHDWf Zf Zf Vf Vf Vf FP 7+ 105 0+]f GP -+) +] + &+)f P +f P + ELVDOO\OLF &+ LQFOXGHGf GP +] H[R+f GP -++ +] HQGR+f ) 105 0+]f W! GP -+) +]f 06 PH f f f f f f f 0 s SSPf FDOFnG IRU &+)2

PAGE 109

$33(1',; $ 6(/(&7(' 63(&75$ 7KH ,5 VSHFWUD DQG A+ ) DQG 105 VSHFWUD RI DOO QHZ FRPn SRXQGV DUH GHSLFWHG JUDSKLFDOO\ LQ WKLV DSSHQGL[ 7KH VSHFWUDO GDWD KDYH EHHQ WUDQVFULEHG DQG DUH SUHVHQWHG LQ QXPHULFDO IRUP LQ &KDSWHU 7KH GLIIHUHQFH QXFOHDU 2YHUKDXVHU HIIHFW 12(f H[SHULPHQWV ZKLFK DUH RI VSHFLDO LQWHUHVW DSSHDU LQ )LJXUHV $ $ $ DQG $ 7KH 105 VSHFWUD RI WKH GHXWHUDWHG FRPSRXQGV DSSHDU LQ )LJXUHV $ $ $ DQG $ $ FRPSDULVRQ RI WKH r+ 105 VSHFWUD RI VW\UHQH DQG =tGHXWHULRVW\UHQH DSSHDUV LQ )LJXUH $ 7KH 105 GHFRXSOLQJ H[SHULPHQWV IRU WKH QLWURQH DGGXFWV DSSHDU LQ )LJXUHV $ DQG $

PAGE 110

)LJXUH $O ,5 6SHFWUXP QHDWf RI D

PAGE 111

)LJXUH $ 0+] K 105 6SHFWUXP RI D 330

PAGE 112

+(,*+7 )5(2+=f /,1( +(,*+7 )5(2,+=f 33+ 3. n n n n 7 M f D Y mP}}\ }Z m‘ IQ f§_ f§7 f§ f§Lf§Ua L S L L L L L L _f§Lf§Lf§Lf§_f§Lf§Lf§Lf§_f§Lf§U )LJXUH $ 0+] ) 105 6SHFWUXP RI D

PAGE 113

L /,1( +(,*+7Of 33 )5(2,+=f 33+ ,, ,, + 8 } 3. f, U ‘Sf§L U L L U L L U 7 7 , 7 fL L U )LJXUH $ 0+] & 1 05 6SHFWUXP RI D 330

PAGE 114

)LJXUH $ ,5 6SHFWUXP QHDWf RI D 75$160,66,21 bf

PAGE 115

)LJXUH $ 0+] @+ 105 6SHFWUXP RI D

PAGE 116

8O1,12W,;&&8 11 :,&.6 12(%,)) 63&&7 21()8/6( ZLWK IUHVDW Qf IOO 86(& WL,, 6(& m6(& 6(& %(& 2))6(7 /,67 2+ '(& 2))6(7 f } f }, 0 ,,, 6,=( ‘ $7 f 6(& 2LO 21 f $%& 2)) ,877(58257+ ),/7(5 21 $77 $%& %,76 $, f ,, 61 ‘ A %1 f 5O f ,, 86(& %( 86(& 7/ 181 )28(5 21 ) %O /2%8/$7,21 2)) 2) 6) (1 ) 0 )LJXUH $ 0+] 105 'LIIHUHQFH 12( ([SHULPHQWV IRU D

PAGE 117

&) 6 3K /,1( +(,*+7 )5(4+=f 330 330 )LJXUH $ 0+] S 105 6SHFWUXP RI D

PAGE 118

WI +( +(,*+7/f )5(4+=f 330 ,%6 I ` QLII I W i ,%% ,I I" % 9 6,, I ,6 II II ,% } I r "%O II III Q U ‘-Yr L W U 7 KOA /L Q L L >f§ f, Uf§@ U 330 )LJXUH $ 0+] & 105 6SHFWUXP RI D

PAGE 119

0,&520(7(56 f )LJXUH $ ,5 6SHFWUXP QHDWf RI E

PAGE 120

)LJXUH $OO 0+] 105 6SHFWUXP RI E

PAGE 121

/,1( +, 8KO ).W4+Lf )LQ r r H LI Q r r ,6 rr&O r U Lf§_ Lf§Lf§Lf§_f§Wf§Lf§Lf§_f§Lf§L L L Lf§Uf§Lf§Lf§Lf§Lf§U % SSP /,1(r +(,*+7 )5(4+=f 3)+ r r r rr" r rrr rm )LJXUH $ 0+] ) 105 6SHFWUXP RI E

PAGE 122

, , , , , , , , , @ ‘ , ‘ , , , , , , , , , , U , 7777-777 , , , , , aO , , 3,n0 )LJXUH $ 0+] 105 6SHFWUXP RI E

PAGE 123

$160,66,&0 )LJXUH $ ,5 6SHFWUXP QHDWf RI E

PAGE 125

7 /,1( +(,*+7 )5(%+=f 30  , 330 )LJXUH $ 0+] ) 105 6SHFWUXP RI E

PAGE 126

WXUQ c WW6/OO0 + &+() 6 m 0 Um1 LQ ),(+ Im O n HrL 8 I r f" f DW  }} n  m WL Q f X  f "O n   " O‹OIIO ?8L + QQ$YAIWA9YLY ZYW\ $Y:n ‘YQY$YLYAn f 7 L L L L ULa UP > } U7UMUUUU P Q SL PM L L L US7UUS QUUSQ L L UPUSQ L L M L ULaL_nQaL UUP Q } L L L n 3,f0 )LJXUH $ 0+] A 105 6SHFWUXP RI E

PAGE 127

75$160,66,21 r )LJXUH $ ,5 6SHFWUXP QHDWf RI F

PAGE 128

)LJXUH $ 0+] r+ 105 6SHFWUXP RI F

PAGE 129

f§, 7 nL re +(,*+7 I5(4,+=f 3) } 7 @ L? MM "L +,,*+, )5( +=f % f ))+ ‘ )LJXUH $ 0+] ) 105 6SHFWUXP RI F

PAGE 130

72 0/ ,(,, += )0() 33,, ,%6 += :8,+ 12 I)f+=f 330 ,08 O D ,, ,OO ,, ,6 06 ,W @e "O " r 2 f H r r n n n n f L L L L L f L L LL L L L L L L L L L L M L L P UU LW_ L Q U MU UL L M UnL UL L L )LJXUH $ 0+] & 105 6SHFWUXP RI F 330

PAGE 131

UIr&) RQ /,1(} +(,*+7 )5(4+=f )) 0 330 )LJXUH $ 0+] ) 105 6SHFWUXP RI F

PAGE 132

)LJXUH $ &RPSDULVRQ RI 0+] + 105 6SHFWUD RI DQG 6W\UHQH

PAGE 133

7 )LJXUH 3 I 3K L n f n L Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§L 330 L L L U L U L L L L U Q L U A 0+] r+ 105 6SHFWUXP RI = DQG ( 330

PAGE 134

)LJXUH $ 0+] 105 6SHFWUXP RI = DQG (

PAGE 135

0"I r -,0 8OO;&'&/}716 11:,&.6 21(38/6( :,7+ 35(6$785$7 3} rf 86(& '} ff 6(& 0 06(& '! 6(& '(& 2))6(7 /,67 2+ '(& 2))6(7} } , } 0I } 0 ‘ 6,=( ‘ r 6(& 432 20 } ,& 2)) E877(58257+ ),/7(5 21 ', $77} $'& } %,76 m 68 } A 28 } 5 f ,I 86(& '(} 86(& 7/ +,*+ 32:(5 21 ) r ,, 02'8/$7,21 2)) 2)} r 6)} rr (1 WOI 30 3O} m )LJXUH $ 0+] 105 'LIIHUHQFH 12( ([SHULPHQWV IRU = DQG

PAGE 136

)LJXUH $ ,5 6SHFWUXP QHDWf RI

PAGE 138

SS /,1(1 +(,*+7 )5(4+=f 33UW ,L " \ LL LW % SS /,1( +(,*+7 )5(4+=f 33UW " " ,, &2 WR )LJXUH $ 0+] Q05 6SHFWUXP RI

PAGE 139

7RP ML I/O"O"Wr 0O I;%W) 30 6 1 +8,2 +3 PRr K]f 3 3 ,6 LP H f ,. 8 6 ,, "n n ,I I  f WLOO " @6O LWFLO IO7mO UL r Of! 3BA $F2 &1 I A f$VW0ZmY aOaUUa 7aUUL a77Un ‘n n L L L L a9a aO , M , } >7, , } } W } ‘,,, 7 77_ 7 ,77 @ )LJXUH $ 0+] & 105 6SHFWUXP RI U 7 FR &2

PAGE 140

7 &' fR &' &' UW 7 F &' e WR 2' 75$160,66,21 bf LF67 0,&520(7(56

PAGE 141

7 U30 )LJXUH $ 0+] r+ 105 6SHFWUXP RI

PAGE 142

$F2 &1 !SS /,1(1 +(,*+7 )5(4+= f )31 +, % % } Lf§Lf§U aL L L L L L L L L L L L L L L Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§U +] )LJXUH $ 0+] ) 105 6SHFWUXP RI

PAGE 143

!SS ,1(, +(,*+7 } 6 } } ,} ,W )5(4+=f 33+ } } % } m} &1 -&'&/ 5(029(' L U L >f§L Ua n U a ?a f, n aWf§! &L )LJXUH $ 0+] 105 6SHFWUXP RI e

PAGE 144

.$160,66,21 r@ )LJXUH $ ,5 6SHFWUXP &+2,f RI F

PAGE 145

D )LJXUH $ 0+] ,U 105 6SHFWUXP RI F 330

PAGE 146

)LJXUH $ ,5 6SHFWUXP QHDWf RI D

PAGE 147

)LJXUH $ 0+] 105 6SHFWUXP RI D

PAGE 148

, D +D } 6,=( II r $7 f 6(& RUD RQ m f $O& 2)) %877(58257+ ),/7(5 21 $77} $%& %,76 $, f 6: f A '8 f 5 f 86(& '( 86(& 7O +,*+ 32:(5 21 6) (5 30 3% RUWKR SURWRQV b QHW f§f§ b QHW FFR FF && LUR WHQ U WHQ FH UU 7) ,, !&+ /(1*7+ m +(,*+7 I ,17(5 25'(5 2$6+(% 3/27} )LJXUH $ 0+] r+ 105 'LIIHUHQFH 12( ([SHULPHQWV IRU D

PAGE 149

/,1( +(,*+7 (5(2+=f 6% , , 330 )LJXUH $ 0+] ) 1 05 6SHFWUXP RI D

PAGE 150

I'7$O )62, += (;() 6W633D &%6 += 0&$ ,0 E Q WLFNK]f 330 ,1,O W OLW W c e OO & 6 r r _ 7 f n n n } nU! L }aL L L UUU L L L L > L L L L MWWW L> Q L L M LQ L _WL UUS U LaL_ L Q L M )LJXUH $ 0+] & 105 6SHFWUXP RI D 330

PAGE 151

)LJXUH $ ,5 6SHFWUXP QHDWf RI D

PAGE 152

)LJXUH $ 0+] W+ 105 6SHFWUXP RI D

PAGE 153

&8 /(1*7+n +(,*+7r ,17(5" 25'(5 '$6+(' 3/27" ,I 0 !7) 1 ,,, W2&&$ 87, =&'&/ 6+1:,&.6 25(38/6( :,7+ 35(6$7 6OI 86(& Ua -O aUa !&+ /(1*7+ }mm +(,*+7 ,17(5" 25'(5 '$6+(' 3/47}5 r7 05 $ WUHH "UU XUF FU )LJXUH $ 0+] 105 'LIIHUHQFH 12( ([SHULPHQWV IRU D

PAGE 154

SS /,1( +(,*+7 f f 330 )5(4 +f )LJXUH $ 0+] ) 105 6SHFWUXP RI D 330

PAGE 155

} } r r } ‘ ‘ n n ‘ f n7 M r } 7_aO 7, , U , O_ 77 UUSP O 77 7aO I777-77777777US )LJXUH $ 0+] & 105 6SHFWUXP RI D L _WL L L_ LULW_ 330

PAGE 156

)LJXUH $ ,5 6SHFWUXP &&f RI F 75$160,66,21 nf 2*,

PAGE 157

)LJXUH $ 0+] 105 6SHFWUXP RI F

PAGE 158

QR UWeW+=f 330 L 7f O IF +L f  e  L / mM F O U M 1R ,UUDGLDWLRQ m Im(4+=! O 6 +LLnL e 8 U 3 K N +L G O ‘    L V L ,UUDGLDWH &83K QR IILW4WL=f UrS L em  e L e  Xf"L Lr ,UUDGLDWH )LJXUH $ 0+] 105 'HFRXSOLQJ ([SHULPHQWV IRU F

PAGE 159

/,1(1 +(,*+7  )5(4+=f )LJXUH $ 0+] ) 105 6SHFWUXP RI F 330

PAGE 160

!UU /,1(, +(,*+7/f )5(% +=f 33+ M , 7 , , O , 330 0+] ,1(37 & 105 6SHFWUXP RI F &+ 2+ XS TXDW & &+ GRZQf )LJXUH $

PAGE 161

5$1M9WO66O21 r )LJXUH $ ,5 6SHFWUXP &&,f RI F

PAGE 162

)LJXUH $ 0+] 105 6SHFWUXP RI F

PAGE 163

02 )(.=, 330 LP O E X 1R ,UUDGLDWLRQ .2 )L)'+=f c0O L X L e m L F L M3HV W  Rr L ,UUDGLDWH &O,3K .IO )II2+=f " !rFQ mm ,UUDGLDWH &+A )LJXUH $ 0+] 105 'HFRXSOLQJ ([SHULPHQWV IRU F

PAGE 164

,1(1 +(,*+7 )5(4+=f 3.IO U L f§ ,3* 3 3I U )LJXUH $ 0+] ) 105 6SHFWUXP RI F

PAGE 165

UU /1(, +(,*+7/f )5(2+=f )38 f ,,%, ,, ,W f Om ,6 ,% +(,*+7 )5(4+=f 33+ ,6,, r ,," ,, ,,, Q L a a7a )LJXUH $ 0+] ,1(37 & 105 6SHFWUXP RI F &+ &+ XS TXDW + &+ GRZQf

PAGE 166

9LO FUnTf =! UU+ L+7L )LJXUH $ &RPSDULVRQ RI 0+] r+ 105 6SHFWUD RI DQG ZLWK WKDW RI WKH WRWDOO\ SURWLDWHG FRPSRXQG

PAGE 167

Lf§UaMf§_f§rf§L )M L L L L L L L Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§U L Lf§Lf§_f§L Lf§Lf§U 0 } @ +L L OLW  } L" )LJXUH $ 0+] QPU 6SHFWUXP RI WKH 5HDFWLRQ 0L[WXUH RI DQG

PAGE 168

)LJXUH $ 0+] +05 6SHFWUXP RI DQG

PAGE 169

)LJXUH $ 0+] ) 105 6SHFWUXP RI WKH 5HDFWLRQ 0L[WXUH RI DQG

PAGE 170

)LJXUH $ 0+] 11( QPU 6SHFWUXP RI DQG

PAGE 171

$33(1',; % ;5$< ',))5$&7,21 678'< 7KH ;UD\ VWUXFWXUH RI WKH PDMRU LVRPHU IURP WKH UHDFWLRQ RI IOXRUR DOOHQH ZLWK 1QDSKWK\Of&SKHQ\OQLWURQH ZDV GHWHUPLQHG RQ D 1LFROHW GLIIUDFWRPHWHU 7KH FRQGLWLRQV RI WKH GDWD FROOHFWLRQ DQG VWUXFWXUH UHILQHPHQW DUH VXPPDUL]HG EHORZ 7KH ERQG OHQJWKV DQG ERQG DQJOHV IRU F DUH VKRZQ LQ 7DEOHV %O DQG % UHVSHFWLYHO\ 7KH XQFHUWDLQW\ IRU WKH ERQG OHQJWKV LV s $ DQG WKH XQFHUWDLQW\ IRU WKH ERQG DQJOHV LV sr &U\VWDO GDWD IRU &+)12 0 PRQRFOLQLF 3MF D f ƒ E fƒ F fƒ fr 9 fƒ ] 'FDOFGf J FP ,QWHQVLW\ GDWD 1LFROHW 5P GLIIUDFWRPHWHU 0R .FW UDGLDWLRQ JUDSKLWH PRQRFKURPDWRU VFDQ WR r XQLTXH UHIOHFWLRQV UHIOHFWLRQV ,DOf 6WUXFWXUH VROXWLRQ DQG UHILQHPHQW 6+(/;7/ SURJUDPV GLUHFW PHWKRGV DQG )RXULHU V\QWKHVLV OHDVWVTXDUHV UHILQHPHQW 5 XVXDOf 5 ZHLJKWHGf JRRGQHVVRIILW +DWRPV LQFOXGHG EXW QRW UHILQHG

PAGE 172

7DEOH %O %RQG /HQJWKV IRU (fn1DSKWK\OfSKHQ\O IOXRURPHWK\OHQHfLVR[D]ROLGLQH Ff %RQG /HQJWK ƒf %RQG /HQJWK$f %RQG /HQJWK $f )& Ff&O F&L 2Of1 L &+ FK 2& && FF 1& && FF 1L&J &+ FBF FOF &BA FF FOaF FK FfK &O+L &JALR FF FA && &+ &a& &+ FF &+ && FK &+n &+ &OA &+ FOOBF FfK FfF &OO+Q FW

PAGE 173

7DEOH % %RQG $QJOHV IRU (fn1DSKWK\OfSKHQ\O IOXRURPHWK\OHQHfLVR[D]ROLGLQH Ff $WRPV $QJOHrf $WRPV $QJOHrf 12& &&+ 2O1L&L &&+ r1L& FFFOO &LQLF &&+ 1&& &OO&O+L 1L&L&LV FFOOF 1LG+ &LR&Q+Q &&& FFIL &&L+ FOOFF &&+ &+&+ FOFF &a&+ &&& FUF FFBF FFF 2&& FFF 2&+ &&& 2&+n &&L&L &&+ &&& &&+n AAA +&+f FOFA )&& FfAF ) &LV&LHAL" &&+ &&+ &H&V&X FFK

PAGE 174

7DEOH f§ FRQWLQXHG &&+ FFF &&+ F&O+L 1L&& FFBK A L& a& FFF &&& FfK &&& FFK &&+ FFF &&+ FaFfK &&& &FK &&+ FFF &L&+ &OF+ FFF FFK

PAGE 175

$33(1',; & 6(/(&7(' 5(68/76 )520 ,1'2 &$/&8/$7,216 )25 )/8252$//(1( $1' ',)/8252$//(1( 7KH FDOFXODWHG ERQG OHQJWKV DQG ERQG DQJOHV IRU IOXRURDOOHQH DUH VKRZQ LQ 7DEOHV &O DQG & DQG WKH FDOFXODWHG ERQG OHQJWKV DQG ERQG DQJOHV IRU GL IOXRURDOOHQH DUH VKRZQ LQ 7DEOHV & DQG & 7DEOHV & DQG & FRQWDLQ H[FHUSWV IURP WKH HLJHQYHFWRU PDWULFHV RI IOXRURDOOHQH DQG GL IOXRURDOOHQH UHVSHFWLYHO\ 7KH RULHQWDWLRQ RI WKH DWRPLF RUELWDOV $2nVf LQ 7DEOHV & DQG & FDQ EH GHGXFHG IURP WKH FRRUGLQDWH D[HV VKRZQ LQ WKH DFFRPSDQ\LQJ GUDZLQJV 7KH UHODWLYH HQHUJLHV RI WKH PROHFXODU RUELWDOV 02nVf FDQ EH GHGXFHG IURP WKH HLJHQYDOXHV DW WKH ERWWRP RI ERWK WDEOHV 7KH DFURQ\PV XVHG LQ WKH FROXPQ KHDGLQJV DUH WKH VDPH DV WKRVH XVHG LQ WKH GLVFXVVLRQ VHFWLRQ RI &KDSWHU ,W PD\ EH RI YDOXH WR QRWH WKDW WKH HLJHQYHFWRUV DUH LQ KDUWUHHV EXW WKDW WKH HLJHQYDOXHV KDYH EHHQ FRQYHUWHG WR HOHFWURQYROWV KDUWUHH H9f WKH XQLWV XVHG LQ UHODWHG SXEOLFDWLRQV E\ RWKHU ZRUNHUV

PAGE 176

7DEOH &O ,1'2 %RQG /HQJWKV IRU )OXRURDOOHQH %RQG /HQJWK $f &+ && &) && &+ &+ 7DEOH & ,1'2 %RQG $QJOHV IRU )OXRURDOOHQH $WRPV $QJOH rf KLFF +LFI &&) &&& +BFF +&+ &&+

PAGE 177

7DEOH & $WRPLF 2UELWDO &RHIILFLHQWV LQ 6HOHFWHG 0ROHFXODU 2UELWDOV IRU )OXRURDOOHQH $WRP $2 6+202 +202 /802 6/802 +L ,V K ,V F V 3[ 3\ 3] & V A3[ 3\ 3] & V 3[ 3\ 3] I V 3[ 3\ 3] K ,V HLJHQYDOXHV H9 H9 H9 H9

PAGE 178

7DEOH & ,1'2 %RQG /HQJWKV IRU 'LIOXRURDOOHQH %RQG /HQJWK ƒf &) && &) && &+ &+ 7DEOH & /1'2 %RQG $QJOHV IRU OMO'LIOXRURDOOHQH $WRPV $QJOH rf )L&) )&& )FF &&& +&& +&+ &&+

PAGE 179

7DEOH & $WRPLF 2UELWDO &RHIILFLHQWV LQ 6HOHFWHG 0ROHFXODU 2UELWDOV IRU 'LIOXRURDOOHQH $WRP $2 6+202 +202 /802 6/802 r V 3[ 3\ S] K ,V F V 3[ S\ A3] F V 3[ 3\ 3] F V 3[ 3\ S] ) V 3[ 3\ A3] K LV HLJHQYDOXHV H9 H9 H9 H9

PAGE 180

$33(1',; $&521<06 86(' ,1 7+,6 ',66(57$7,21 ')$ 'LIOXRURDOOHQH ',%$+ 'LLVREXW\ODOXPLQXP +\GULGH '0 62 'LPHWK\OVXOIR[LGH '13 'LQRQ\O 3KWKDODWH ),' )ODPH ,RQL]DWLRQ 'HWHFWRU */& *DV/LTXLG &KURPDWRJUDSK\ +202 +LJKHVW 2FFXSLHG 0ROHFXODU 2UELWDO ,1'2 ,QWHUPHGLDWH 1HJOHFW RI 'LIIHUHQWLDO 2YHUODS ,1(37 ,QVHQVLWLYH 1XFOHL (QKDQFHG E\ 3RODUL]DWLRQ 7UDQVIHU ,5 ,QIUDUHG /802 /RZHVW 8QRFFXSLHG 0ROHFXODU 2UELWDO 0)$ 0RQRIOXRURDOOHQH 02 0ROHFXODU 2UELWDO 06 0DVV 6SHFWURPHWU\ 105 1XFOHDU 0DJQHWLF 5HVRQDQFH 11( 1R 1XFOHDU 2YHUKDXVHU (IIHFW 12( 1XFOHDU 2YHUKDXVHU (IIHFW 6+202 6HFRQG +LJKHVW 2FFXSLHG 0ROHFXODU 2UELWDO 6/802 6HFRQG /RZHVW 2FFXSLHG 0ROHFXODU 2UELWDO 6202 6LQJO\ 2FFXSLHG 0ROHFXODU 2UELWDO 7&' 7KHUPDO &RQGXFWLYLW\ 'HWHFWRU

PAGE 181

$FURQ\PQVf§FRQWLQXHG 7&3 7ULFUHV\O 3KRVSKDWH 7/& 7KLQ/D\HU &KURPDWRJUDSK\ 706 7HWUDPHWK\OVLODQH 89 8OWUDYLROHW

PAGE 182

5()(5(1&(6 &5 %XUNKROGHU 8QLY RI )ORULGD 'LVVHUWDWLRQf 3LVV $EVWU 7QW % ZYY f§ %( 6PDUW 7KH &KHPLVWU\ RI )XQFWLRQDO *URXSV 6XSSOHPHQW 6 3DWDL = 5DSSDSRUW (GV -RKQ :LOH\ t 6RQV /WG &KLFKHVWHU 3DUW &K )OXRURFDUERQV DQG UHIHUHQFHV FLWHG WKHUHLQ %( 6PDUW 0ROHFXODU 6WUXFWXUHV DQG (QHUJHWLFV -) /LHEPDQ $ *UHHQEHUJ (GV 9HUODJ &KHPLH ,QWHUQDWLRQDO ,QF 'HHUILHOG %HDFK  &K )OXRULQDWHG 2UJDQLF 0ROHFXOHV -& 7DWORZ 2UJDQRIOXRULQH &KHPLFDOV DQG WKHLU ,QGXVWULDO $SSOLFDWLRQV 5( %DQNV (G (OOLV +RUZRRG /WG &KLFKHVWHU &K $VSHFWV RI 2UJDQRIOXRULQH &KHPLVWU\ 0' +DUPRQ\ 9: /DXULH 5/ .XF]NRZVNL 5+ 6FKZHQGHPDQ '$ 5DPVD\ ) /RYDV :/DIIHUW\ $* 0DNL 3K\V &KHP 5HI 'DWD n:9$ f§ *$ 2ODK <. 0R $GYDQ )OXRULQH &KHP U?-?I?I?! f§ 6+ 'DL :5 'ROELHU $P &KHP 6RF O9:?\ + 3OHGJHU 2UJ &KHP -:5 'ROELHU &5 %XUNKROGHU 2UJ &KHP DQG UHIHUHQFHV FLWHG WKHUHLQ YZE -( +XKHH\ ,QRUJDQLF &KHPLVWU\ 3ULQFLSOHV RI 6WUXFWXUH DQG 5HDFWLYLW\ 6HFRQG (GLWLRQ +DUSHU t 5RZ 1HZ
PAGE 183

-) :RRG -6 $UQH\ &RUWHV -$ %HUVRQ $P &KHP 6RF YP /1 'RPHOVPLWK .1 +RXN &3LHGUDKLWD DQG :5 'ROELHU $P &KHP 6RF n:9?M :5 'ROELHU &5 %XUNKROGHU :5 :LQFKHVWHU 2UJ &KHP n:;$n :5 'ROELHU &5 %XUNKROGHU ,VUDHO &KHP LQ 'UHVV :OIW 3 %DWWLRQL / 9R4XDQJ < 9R4XDQJ %XOO 6RF &KLP )U 3DUW ,,f n99;$M 3 %DWWLRQL / 9R4XDQJ < 9R4XDQJ %XOO 6RF &KLP )U 3DUW ,,f + +RSI 65 /DQGRU 7KH &KHPLVWU\ RI WKH $OLHQHV 65 /DQGRU (G 9RO $FDGHPLF 3UHVV /RQGRQ :5 0RRUH 5' %DFK 70 2]UHWLFK $P &KHP 6RF 5% :RRGZDUG 5 +RIIPDQQ 7KH &RQVHUYDWLRQ RI 2UELWDO 6\PPHWU\nV 9HUODJ &KHPLH :HLQKHLP () .LHIHU 0< 2NDPXUD 7 $P &KHP 6RF n:;$M -( %DOGZLQ 89 5R\ &KHP 6RF &KHP &RPPXQ ZYY -*DLHZVNL :$ %ODFN 7HWUDKHGURQ /HWW YP :5 'ROELHU 6+ 'DL $P &KHP 6RF n:: '3DVWR $P &KHP 6RF ZY? '3DVWR 3) +HLG 6( :DUUHQ $P &KHP 6RF ZY[n = .RPL\D 6 1LVKLGD 2UJ &KHP 7-+ -: $NLWW 105 DQG &KHPLVWU\ $Q ,QWURGXFWLRQ WR WKH )RXULHU 7UDQVIRUP 0XOWLQXFOHDU (UD 6HFRQG (GLWLRQ &KDSPDQ DQG +DOO /RQGRQ YP -( %DOGZLQ -$ .DSHFNL $P &KHP 6RF YP +& %URZQ -% &DPSEHOO $OGULFKLPLFD $FWD / :O$ +& %URZQ 6. *XSWD $P &KHP 6RF :$ :& 6WLOO 0 .DKQ $ 0LWUD 2U" &KHP I9:?M f§ /' +DOO -.0 6DQGHUV $P &KHP 6RF n9:2

PAGE 184

-.0 6DQGHUV -' 0HUVK 3URJ 105 6'HFWURVF $:E 1HXKDXV 51 6KHSSDUG 5& %LFN $P &KHP 6RF n:9$n +* 9LHKH 5 0HUHQ\L / 6WHOOD = -DQRXVHN $QJHZ &KHP WQW (G (QJO $ZE :5 'ROELHU &5 %XUNKROGHU &$ 3LHGUDKLWD )OXRULQH &KHP YP ; &UHDU\ 2UJ &KHP $:E 1( (SLRWLV $P &KHP 6RF $$$E 1( (SLRWLV $P &KHP 6RF $99E f-' 5REHUWV & 6KDUWV 2UJ 5HDFWLRQV f $:E 7/ -DFREV 7KH &KHPLVWU\ RI WKH $OLHQHV 65 /DQGRU (G 9RO $FDGHPLF 3UHVV /RQGRQ $:E (, +HLED 2UJ &KHP $:E -( %DOGZLQ 5+ )OHPLQJ 7RSLFV LQ &XUUHQW &KHP B :5 'ROELHU 0 6HDEXU\ 'DO\ 6PDUW 2UJ &KHP VXEPLWWHG IRU SXEOLFDWLRQ 1* 5RQGDQ 01 3DGGRQ5RZ 3 &DUDPHOOD 0DUHGD 3+ 0XHOOHU .1 +RXN $P &KHP 6RF DQG UHIHUHQFHV FLWHG WKHUHLQ 5 +XLVJHQ 3+2RPV 0 0LQJLQ 1/ $OOLQJHU $P &KHP 6RF DQG UHIHUHQFHV FLWHG WKHUHLQ YZ?M $OGHU 6WHLQ /LHELJV $QQ &KHP $:E %LDQFKL & 'H0LFKHOL 5 *DQGROIL 7KH &KHPLVWU\ RI )XQFWLRQDO *URXSV 6XSSOHPHQW $ 6 3DWDL (G -RKQ :LOH\ t 6RQV /RQGRQ A 3DUW &K 'LSRODU &\FORDGGLWLRQV ,QYROYLQJ ; < *URXSV 2/ %UDG\ )3 'XQQ 5) *ROGVWHLQ &KHP 6RF %UXQLQJ 5 *UDVKH\ + +DXFN 5 +XLVJHQ + 6HLGO 2UJDQLF 6\QWKHVHV $9$E 0DQVRQ &KHP 6RF & f $$$$ & 5HLFKKDUGW $QJHZ &KHP ,QW (G (QJO f§ $$$$ f§ 5 +XLVJHQ + 6HLGO %UXQLQJ &KHP %HU $$$E

PAGE 185

5 %DWWLQR +) &OHYHU &KHP 5HY YP .R\DQR + 6X]XNL < 0RUL ,7DQDND %XOO &KHP 6RH -DSDQ n9:9 -: 0RRUH 5* 3HDUVRQ .LQHWLFV DQG 0HFKDQLVP 7KLUG (GLWLRQ -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 186

-: (PVOH\ ) 3KLOOLSV 3URJ 1 05 6SHFWURVF U:?-?M &5 0RYDQ -, %UDXPDQ $QQ 5HY 3K\V &KHP f n9:?M .1 +DUWPDQ 6 /LDV 3 $XVORRV +0 5RVHQVWRFN 66 6FKUR\HU $ &RPSHQGLXP RI *DV 3KDVH %DVLFLW\ DQG 3URWRQ $IILQLW\ 0HDVXUHPHQWV 1DWO %XU 6WDQGDUGV :DVKLQJWRQ '& 1%6,5 :9E 51 :DUUHQHU 53 -RKQVRQ &: -HIIRUG '$ 5DOSK 7HWUDKHGURQ /HWW U?$$$M 51 :DUUHQHU &0 $QGHUVRQ ,: 0F&D\ 01 3DGGRQ5RZ $XVWUDOLDQ &KHP U?$$?L &5 %XUNKROGHU 8QLY RI )ORULGD 7KHVLVf & 3LHGUDfQLWD 8QLY RI )ORULGD 'LVVHUWDWLRQf 3LVV $EVWU ,QW % .1 +RXN WKHUHLQ $FH &KHP 5HV DQG UHIHUHQFHV FLWHG n9:E f§ *$ 6HJDO (G 6HPLHPSLULFDO 0HWKRGV RI (OHFWURQLF 6WUXFWXUH &DOFXODWLRQ 3OHQXP 3UHVV 1HZ
PAGE 187

%,2*5$3+,&$/ 6.(7&+ *HQH (OOLV :LFNV ZDV ERUQ RQ $XJXVW LQ )OLQW 0LFKLJDQ +H GHYHORSHG D VWURQJ LQWHUHVW LQ VFLHQFH DW DQ HDUO\ DJH DQG KH SHUIRUPHG KLV ILUVW ERQD ILGH FKHPLFDO H[SHULPHQW DW DJH XQGHU WKH VXSHUYLVLRQ RI KLV \HDUROG FRXVLQ ,W ZDV IRXQG WKDW ZKHQ D VPDOO DPRXQW RI FDOFLXP FDUELGH ZDV SODFHG LQ ZDWHU WKHUH ZDV DQ LPPHGLDWH HYROXWLRQ RI D JDV :KHQ WKLV H[SHULPHQW ZDV SHUIRUPHG LQVLGH D ORRVHO\FRYHUHG SDLQW FDQ ZKLOH KROGLQJ D OLJKWHG PDWFK QH[W WR D SLQKROH LQ WKH FDQnV VLGH WKHUH ZDV D UHVRXQGLQJ ERRP DFFRPSDQLHG E\ D VWDUWOLQJ ULVH RI WKH SDLQW FDQ FRYHU $IWHU WKRURXJKO\ FRQILUPLQJ WKH UHSURGXFLELOLW\ RI WKLV KLVWRULF H[SHULPHQW *HQH GHFLGHG WKDW FKHPLVWU\ ZDV ZRUWK D PRUH VHULRXV SXUVXLW 8SRQ JUDGXDWLRQ IURP KLJK VFKRRO LQ *HQH DWWHQGHG &HQWUDO 0LFKLJDQ 8QLYHUVLW\ ZKHUH KH REWDLQHG D %6 LQ ZLWK D PDMRU LQ FKHPLVWU\ DQG D PLQRU LQ PDWKHPDWLFV +H ZDV D PHPEHU RI 3KL (WD 6LJPD DQG 3KL .DSSD 3KL +RQRU 6RFLHWLHV DQG WKH FKHPLVWU\ IDFXOW\ DZDUGHG KLP WKH 0LFKLJDQ ,QVWLWXWH RI &KHPLVWV $ZDUG DV ZHOO DV WKH 5HVHDUFK $ZDUG IRU KLV ZRUN ZLWK 3URIHVVRU %RE +RZHOO *HQH KDV DWWHQGHG WKH 8QLYHUVLW\ RI )ORULGD VLQFH 6HSWHPEHU DQG LV D FDQGLGDWH IRU WKH 3K' GHJUHH LQ 'HFHPEHU 8SRQ JUDGXDWLRQ KH ZLOO GR SRVWGRFWRUDO ZRUN ZLWK 3URIHVVRU 3KLOOLS (DWRQ DW 7KH 8QLYHUVLW\ RI &KLFDJR

PAGE 188

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 5 'ROELHU -U &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 0 -RQHV 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ [ L 0HUOH $ %DWWLVWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ f 0DUWLQ 9DOD 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ [N KDUOHV 0 $OOHQ -U 3URIHVVRU RI %LRFKHPLVWU\

PAGE 189

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HDQ *UDGXDWH 6FKRRO 'HFHPEHU

PAGE 190

81,9(56,7< 2) )/25,'$ L LQ LQ PX PLO