Citation
A synthetic, structural and theoretical investigation of pentadentate Schiff base ligands

Material Information

Title:
A synthetic, structural and theoretical investigation of pentadentate Schiff base ligands
Creator:
Sommerer, Shaun O., 1962-
Publication Date:
Language:
English
Physical Description:
xi, 145 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Atoms ( jstor )
Crystals ( jstor )
Electrons ( jstor )
Geometric angles ( jstor )
Geometry ( jstor )
Hydrogen ( jstor )
Ions ( jstor )
Ligands ( jstor )
Molecules ( jstor )
Orbitals ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 140-144).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Shaun O. Sommerer.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001684244 ( ALEPH )
AHZ6228 ( NOTIS )
25060499 ( OCLC )

Downloads

This item has the following downloads:


Full Text











A SYNTHETIC, STRUCTURAL AND THEORETICAL INVESTIGATION
OF PENTADENTATE SCHIFF BASE LIGANDS















By

SHAUN O. SOMMERER


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991






















ACKNOWLEDGMENTS

I wish to thank my research director Gus J. Palenik for

his help and guidance during the course of this project,

Gaines Martin and Tom Cundari for the helpful discussions

concerning the work presented in Chapter 5, and John David

Baker for his introduction, help and patients in ZINDO land.

There are a myriad of other people who have helped me in

the course of this project and in making my way through

graduate school. I thank all of you and leave you with this

wish (which I borrowed from B. Dylan)



.... may your heart always be joyful,

may your song always be sung,

and may you stay forever young.















TABLE OF CONTENTS


ACKNOWLEDGMENTS . ii

LIST OF TABLES ............ iv

LIST OF FIGURES . .. vi

ABSTRACT ................ .vii

CHAPTERS

1 INTRODUCTION. .... .. 1

2 PENTAGONAL BIPYRAMIDAL COMPLEXES OF Sn(IV),
Ti(III), AND Cu(II) 6
Introduction ....... 6
Experimental .......... 7
Results and Discussion 27

3 A NOVEL PENTAGONAL BIPYRAMIDAL IRON
COMPOUND: UNCONNECTED Fe(II) AND Fe(III)
MOLECULES WITHIN THE SAME ASYMMETRIC UNIT 38
Introduction .......... 38
Experimental ............ .39
Results and Discussion .41

4 PENTAGONAL BIPYRAMIDAL COMPLEXES OF Cr(III)
WHICH DISPLAY A STATIC JAHN-TELLER
DISTORTION .. 54
Introduction. .. 54
Experimental .. .... 55
Results and Discussion .. .57

5 SYNTHESIS AND CRYSTAL STRUCTURE OF A WATER
SOLUBLE CATIONIC (n13, -CC1oH6)Ru(IV)
COMPLEX: CHLORO[(1-3-: 6-8- )-2,7-
DIMETHYLOCTADIENEDIYL]SEMICARBAZIDE
RUTHENIUM(IV) CHLORIDE DIHYDRATE 84
Introduction 84
Experimental ........... .85
Results and Discussion. .92
Conclusion. .. 100









6 A THEORETICAL INVESTIGATION OF THE
ELECTRONIC AND STRUCTURAL PROPERTIES
OF THE LIGAND DAPSC AND THE PENTAGONAL
BIPYRAMIDAL COMPLEX DIAQUO-
(2,6-DIACETYLPYRIDINEBIS(SEMICARBAZONE))
IRON(II) ...... ......... 101
Introduction .. 101
Calculations 104
Discussion 115

APPENDIX .. 127

REFERENCES .. .. 140

BIOGRAPHICAL SKETCH . 145











Table 2-1


Table

Table

Table

Table

Table

Table


Table

Table

Table

Table


2-2

2-3

2-4

2-5

2-6

2-7


2-8

2-9

2-1

2-1


Table 2-1;


Table 2-1


Table 3-1


Table 3-2


Table 3-3


Table 3-4


Table 3-5



Table 4-1


LIST OF TABLES

Crystal Data for Sn(DAPSC)Cl22,
Ti(DAPBAH)C12, and Cu(DAPAAH)Cl(H20)

Atomic Parameters for Sn(DAPSC)Cl2 .

Atomic Parameters for Ti(DAPBAH)C12 .

Atomic Parameters for Cu(DAPAAH)Cl(H20) .

Bond Distances and Angles for Sn(DAPSC)Cl2*

Bond Distances and Angles for Ti(DAPBAH)C1,

Bond Distances and Angles for
Cu(DAPAAH)Cl(H20) .

Anisotropic U values for Sn(DAPSC)Cl22 .

Anisotropic U values for Ti(DAPBAH)C1, .

0 Anisotropic U values for Cu(DAPAAH)Cl(H20)

1 Hydrogen Atomic Parameters for
Sn(DAPSC)C 2 .

2 Hydrogen Atomic Parameters for
Ti(DAPBAH)C12 .

3 Hydrogen Atomic Parameters for
Cu(DAPAAH)Cl(H20) .

Atomic Parameters for Fe(II)/(III)
(DAPSC)Cl(H0) .

Bond Distances and Angles for Fe(II)/(III)
(DAPSC)C1(H20) .

Anisotropic U values for Fe(II)/(III)
(DAPSC)C1(H20) .

Hydrogen Atomic Parameters for Fe(II)/(III)
(DAPSC)C1(H20) .

Bond Lengths Observed Within the Immediate
Coordination Sphere for Fe(II)/(III)
(DAPSC)Cl(H20) and related compounds

Crystal Data for Cr(DAPSC)(H20)2 and
Cr(DAPBAH)(H20), .


10

11

12

13

14

15


17

18

20

22


24


25


26


44


46


48


50



52


58









Table

Table

Table


4-2

4-3

4-4


Table 4-5


Table

Table

Table


4-6

4-7

4-8


Table 4-9


Table 4-1



Table 5-1


Table 5-2


Table 5-3


Table 5-4


Table 5-5


Table

Table


5-6

6-1


Table 6-2


Atomic Parameters for Cr(DAPSC)(H0) .

Atomic Parameters for Cr(DAPBAH)(H0) .

Bond Distances and Angles for
Cr(DAPSC)(H20)2 .

Bond Distances and Angles for
Cr(DAPBAH)(H20)2 .

Anisotropic U values for Cr(DAPSC)(H20)2

Anisotropic U values for Cr(DAPBAH)(H20)2 .

Hydrogen Atomic Parameters for
Cr(DAPSC)(H20)2 .

Hydrogen Atomic Parameters for
Cr(DAPSC)(H )2 .

) Bond Distances Within the Coordination
Sphere for Cr(DAPSC)(H0O)2 and
Cr(DAPBAH)(H20)2 ..

Crystal Data for (1~3, I3-CoH16)Semicarbazide
Ru(IV) Chloride .

Atomic Parameters for (T3, y13-CoH,6)
Semicarbazide Ru(IV) Chloride .

Bond Distances and Angles for (T13, ,3-CoH6)
Semicarbazide Ru(IV) Chloride .

Anisotropic U values for (t13, 13-CoH16)
Semicarbazide Ru(IV) Chloride .

Hydrogen Atomic Parameters for (i3, 3-CoH16)
Semicarbazide Ru(IV) Chloride .

Summary of the Ru-Cl Bond Distance .

Bond Distances and Angles for the
Geometrically Optimized DAPSC .

Bond Distances and Angles for the
Geometrically Optimized
Fe(DAPSC)(H0)22 .


59

60


62


63

66

68


71


72



76


87


88


89


90


91

99


107



120









Table 6-3 A Summary of the Bond Distances Within the
Immediate Coordination Sphere for an
Fe2* Center in Singlet, Triplet and
Quintet Spin States. .. 121

Table 6-4 Relative Total Energies of the Three Optimized
Spin States .. 122


vii











Figure 1-1


Figure

Figure

Figure


2-1

2-2

2-3


Figure 3-1


Figure 4-1


Figure 4-2


Figure 4-3


Figure 4-4


Figure 5-1


LIST OF FIGURES

Graphic Representation of the Ligands
DAPSC, DAPBAH and DAPAAH .

An ORTEP Representation of [Sn(DAPSC)C1,2

An ORTEP Representation of Ti(DAPBAH)Cl2

An ORTEP Representation of
[Cu(DAPAAH)Cl(H0)* .

An ORTEP Representation of an Fe(II/III)
DAPSC Complex .

An ORTEP Representation of
[Cr(DAPSC)(H20)2 .

An ORTEP Representation of
[Cr(DAPBAH)(H)20) 2+ ..

Crystal Field Splitting Diagram for a
Pentagonal Bipyramidal Field .

A Representation of the Half-Conjugated
Monoanion form of DAPSC .

An ORTEP Representation of (13,n13-Co1H16)
Semicarbazide Ru(IV) Chloride .


Figure 5-2 A Representation of the Bonding,
Non-bonding and Anti-bonding Molecular
Orbitals for a 3-electron T -allyl
function .

Figure 6-1 Representations of the DAPSC Ligand in
Low Energy Conformations .

Figure 6-2 A Representation of DAPSC in the Optimum
Geometry as Determined by ZINDO .

Figure 6-3 An Illustration of the Relative Total
Energy vs. the Angle of Rotation for
DAPSC with One Semicarbazone "arm"
Locked Forward .

Figure 6-4 An Illustration of the Relative Total
Energy vs. the Angle of Rotation for
DAPSC with One Semicarbazone "arm"
Locked Backward .


viii


96


105


108




111




113









Figure 6-5


Figure 6-6


Figure 6-7


An Illustration of the Possible Spin
States for an Fe2* (d6) Ion .

Coordinate System and Atom Numbering
Scheme .

A Representation of [Fe(DAPSC)(H20)2]2+
in the Optimum Geometry as Determined
by ZINDO ............


114


118



119















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the degree of Doctor of Philosophy

A SYNTHETIC, STRUCTURAL AND THEORETICAL INVESTIGATION
OF PENTADENTATE SCHIFF BASE LIGANDS

By

SHAUN O. SOMMERER

May 1991


Chairman: Dr. Gus J. Palenik
Major Department: Chemistry

The pentadentate Schiff base ligands 2,6-diacetyl-

pyridinebis(semicarbazone), DAPSC, 2,6-diacetylpyridine-

bis(benzoic acid hydrazone), DAPBAH, and 2,6-diacetyl-

pyridinebis-(acethydrazone), DAPATD, were used to isolate Sn *,

Ti3', and Cu2', respectively, in pentagonal bipyramidal, PBP,

geometry. The complexes were characterized by X-ray

diffraction studies, and the structural details of each

complex are reported and discussed. A unique Fe-DAPSC PBP

species is also reported which has been characterized by an X-

ray diffraction study, and evidence is put forth to show that

in one of the molecules, the Fe atom is formally 2+ where in

the other molecule the Fe atom is formally 3+.

Two PBP Cr3' complexes are reported which are markedly

distorted in the equatorial plane. Both structures have been

characterized by X-ray diffraction techniques and solution

x








magnetic moments show both species to be high spin d3

complexes. A group theoretical treatment of the possible spin

states resulting from the d3 configuration shows that a Jahn-

Teller distortion is possible in a D5h ligand field. The

equatorial distortion observed in both complexes is finally

shown to actually be a combination of effects, namely the

deprotonation of the ligand combined with a Jahn-Teller

distortion.

A theoretical study of the ligand DAPSC is presented

which employed several techniques. Molecular mechanics

calculations (MM2 type) (corroborated by MOPAC calculations)

showed that there were three configurations of the ligand

which corresponded to energy minima. Using the program ZINDO,

a complete geometry optimization of DAPSC was preformed, the

rotation barriers of the semicarbazone "arms" of DAPSC were

determined, and several geometry optimizations on a DAPSC

molecule perturbed by an Fe2* ion were preformed. The purpose

of these calculations was to determine the low energy

conformation of DAPSC as well as the effects of spin state

multiplicity on the geometry of both the ligand and the Fe-

DAPSC complex. The geometry and bond distances observed in

the optimized Fe-complex are in excellent agreement with what

has been observed in the solid state for a similar

[Fe(DAPSC)C12] complex as determined by X-ray diffraction

studies.















CHAPTER 1


INTRODUCTION



Seven-coordinate transition metal complexes are less

common since they cannot achieve as efficient a structural

form as the nearest coordination neighbors six and eight.

Moreover, in progressing from six to seven coordination, a

much less effective packing arrangement is achieved. Since

seven-coordination has, in the general case, a potential

surface that is not distinguished by a deep minimum

corresponding to one polytopal[l] form, the number of

monoisomorphic polyhedra with seven vertices is large (34)[2].

The pentagonal bipyramid (PBP), capped octahedron, and capped

trigonal prism are considered to be the three ideal polyhedra

for CN = 7 with PBP geometry, being the most common

arrangement found in monomers and dimers throughout the

periodic table(3]. The role of seven-coordination is

significant when viewed in the light of reaction intermediates

or transition states in associative reactions of 6-coordinate

complexes, oxidative addition reactions of 5-coordinate

complexes, and dissociative reactions of 8-coordinate

complexes[4]. Therefore, systematic investigations of 7-









2
coordinate complexes can provide added insight to these

important areas of chemistry.

A very efficient way of forming pentagonal bipyramidal

(PBP) complexes (C.N. = 7) is with pentadentate ligands that

can occupy the pentagonal plane, particularly if the ligand is

at least partly conjugated[5]. The two types of pentadentate

ligands that have been used successfully in this fashion to

achieve PBP geometry are either macrocyclic in nature or

noncyclic. A disadvantage of the macrocyclic type ligands is

that the size of the ligands central "hole" is of critical

importance in determining which metal-cations the ligand will

hold effectively. If the match between the metal-cation and

the "hole" size is incorrect, puckering of the pentagonal

girdle results causing distortion and possible instability.

Noncyclic pentadentate ligands on the other hand are not

hindered to the same extent by the metal-cation size

constraint since the "hole" is not bound on all sides;

consequently, this type of ligand is more versatile in

achieving PBP geometry as it can accommodate metal atoms of

different sizes by increasing the L-M-L angle not spanned by

a chelate ring. Accordingly, noncyclic pentadentate ligands

offer the potential for the development of a wide based

coordination chemistry due to the inherent flexibility of

these ligands.

In order to study seven-coordinate chemistry of the

transition metals a series of noncyclic pentadentate ligands









3

was designed which would consistently produce PBP geometry[6].

Three of these ligands are depicted in Figure 1.

DAPSC, DAPBAH, and DAPAAH have been used successfully to

produce several complexes which exhibit PBP geometry. DAPSC

especially has been found to react with virtually all +2 and

+3 ions of groups 3, 12, and 13 as well as the elements Ti to

Cu[6-16]. Although the usual result is PBP geometry, higher

coordination numbers are found with the larger +3 ions[13,14].

DAPBAH and DAPAAH mimic the coordination sites of DAPSC

but vary in the functional groups directed away from the

coordinated metal. With the replacement of the -NH2 function

of the acid hydrazide with either a -C6H5 function to give

DAPBAH, or a -CH3 function giving DAPATD, the solution

chemistry of the complex would be expected to change,

especially in terms of the solubility for a particular complex

in aqueous verses an organic media. Although DAPBAH and

DAPAAH have been used less extensively, previous results'5 have

demonstrated that these ligands are quite reactive with many

of the transition metals.

Several intriguing aspects concerning the chemistry and

structure of these pentadentate ligands emerged during the

initial investigation[6] which merited further examination.

As a consequence, a research project was designed to analyze

the coordination chemistry and structure of these ligands with

the following goals in mind: first, to advance the on going

study of seven-coordinate chemistry by preparing new seven-













CH3 N CH3


HNN NNH
HN DAPSC NH

NH2 0 0 NH2





CH3 CH3









N N



CH3 %{ CH3

N NNH

HN DAPAAH N

CH3 0 0' CH3





Figure 1-1. 2.6-diacetylpyridinebis(semicarbazone, (DAPSC),
2, 6-diacetylpyridinebis(benzoic acid hydrazone), (DAPBAH), and
2,6-diacetylpyridinebis(acethydrazone), (DAPAAH).









5

coordinate complexes of metals not yet isolated with the three

pentadentate ligands; second, to investigate further the

structural aspects of PBP complexes exhibiting unusual

distortions within the coordination sphere; third, to study

the structural characteristics of these pentadentate ligands;

and, finally, to explore the reaction chemistry observed with

these ligands. To accomplish this work, general laboratory

procedures were used for the synthesis with an emphasis on

obtaining single crystals for X-ray diffraction studies and

structural determination.

The following chapters report the experimental work which

was preformed and discuss what was learned regarding the

chemistry and structure of DAPSC, DAPBAH, and DAPAAH.













CHAPTER 2


PENTAGONAL BIPYRAMIDYL COMPLEXES OF Sn(IV), Ti(III),
AND Cu(II).



Introduction

The synthesis and structural characterization by X-ray

diffraction techniques of Sn(DAPSC)C122,, Ti(DAPBAH)CI1, and

Cu(DAPAAH)(H20)Cl' is addressed in this chapter. This set of

complexes demonstrates the versatility of the respective

ligands in the study of 7-coordinate chemistry since each of

these complexes was found to exhibit PBP geometry.

The PBP Sn(IV) complex was unexpectedly isolated from

aqueous solution during investigations involving

(CH4N)3[Pt(SnCl3)5]. This is a unique complex in that it is

the first example of a water soluble seven-coordinate Sn(IV)

complex in which a pentadentate ligand was used. With the

isolation of the Ti(DAPBAH)C12 complex, there is now an

example of each of the first transition series (i. e. Sc Zn)

in a PBP field coordinated by a pentadentate ligand. Finally,

this report of the Cu(DAPAAH)(H20)C1 complex marks the first

account of DAPAAH being used to isolate a Cu(II) ion in PBP

geometry.









7

Experimental

Materials. All materials and solvents were reagent grade

and used as supplied from the manufacturer except where noted.

Preparation of rSn(DAPSC)C1,1C1, 2H20 (I). Both

(CH3NH)3[Pt(SnCl3)s] (0.632g, 0.4 mmole) and DAPSC (0.113g, 0.4

mmole), prepared by methods previously described[9,17], were

slurried together in 40 mL of H20. HC1 was added drop-wise

until the pH = 1.00. As the solution cleared to a

yellow/brown color, a fine black precipitate was evident in

the solution. A dark yellow/brown solution void of black

precipitate was obtained after filtering through a fine glass

frit. Slow evaporation of the filtrate gave yellow crystals

within four days.

Preparation of Ti(DAPBAH)C*, (II). In a dry box with

an Argon atmosphere, TiCl3 (0.151g, 1.0 mmole) was weighed

out and placed into a dry Schlenk flask containing a magnetic

stirring bar. The flask was sealed with a rubber septum and

removed from the dry box. By means of a needle and syringe,

2,6-diacetylpyridine (0.168g, 1.0 mmole) dissolved in 20 mL

absolute ethanol was added to the flask. Next, benzoic acid

hydrazide (0.272g, 2.0 mmole) dissolved in 20 mL of absolute

ethanol was added by needle and syringe. The closed mixture

was stirred for three hours after which the solvent was

removed by vacuum. The Schlenk flask containing the dry crude

solid was placed back into the dry box and the rubber septum

was removed. Acetonitrile (30 mL), previously dried over









8

P2010, was added and the mixture was stirred for two hours.

The mixture was then filtered through a fine glass frit and a

clear dark red solution was obtained. The volume of this

solution was reduced to 13 mL and then placed into an

Erlenmyer flask, sealed, removed from the dry box, and placed

in a freezer (-10 *C). Air stable red single crystals were

obtained after three weeks.

Preparation of Cu(DAPAAH)Cl, (III). Acethydrazide

(0.156g, 2.0 mmole), CuC12 2H20 (0.170g, 1 mmole), and 2,6-

diacetylpyridine (0.168g, 1.0 mmole), were combined in 30 mL

of a 50/50 mixture of ethanol/water solution. This solution

was then heated to 580C and stirred for one-half hour. A dark

green solution was the result of this reaction which was then

filtered through a fine glass frit while warm. A crop of dark

green crystals were removed after eight days. The density of

these crystals was measured at 1.57 g/cm3 by floatation

techniques.

X-ray Crystallography. Crystals having the dimensions

0.15 x 0.17 x 0.23 mm, 0.18 x 0.20 x 0.25 mm, and 0.10 x 0.14

x 0.15 mm for I, II, and III, respectively, and suitable for

diffraction studies, were mounted on the end of a glass

fibers. All subsequent measurements for I and II were made

using a Nicolet R3m diffractometer with graphite-monochromated

Mo-Ka radiation (X = 0.71069A). For compound III, the

subsequent measurements were made using a Nicolet P1

diffractometer, up graded to R3m specifications, with









9

monochromated Cu-Ka radiation (X = 1.54056A) with a nickel

filter in place.

The cell dimensions for each of the three compounds were

determined by a least squares refinement of 25 automatically

centered reflections. A variable-speed (1" 29.3") 2e scan

technique was used to measure the intensity data from 0" to

50, 0* to 45, and 0 to 1100 in 28 for I, II, and III

respectively. Two standard reflections were measured every 98

reflections to monitor for any decomposition during the X-ray

analysis. No absorption corrections were made. The pertinent

crystal data is given in Table 2-1.

Structure Refinement. The data reduction, structure

solution and final refinement were performed using the NRCVAX

(PC-Version)[18] package of programs. The Sn, Ti and Cu atoms

and all non-hydrogen atoms were located by the heavy-atom

method (Patterson and Fourier syntheses) and refined

anisotropically by full-matrix least squares. The hydrogen

atoms were located using a difference Fourier map and refined

isotropically. The models converged to an R of 0.047, 0.061,

and 0.061 with Rw values of 0.061, 0.086, and 0.068 for I, II,

and III respectively. The final positional parameters for non-

hydrogen atoms are given in Tables 2-2 to 2-4. The final bond

distances involving the non-hydrogen atoms and bond angles are

listed in Tables 2-5 to 2-7 with the anisotropic thermal

parameters given in Tables 2-8 to 2-10. Tables 2-11 to 2-13

list the final positional parameters for the hydrogen atoms.




























H *












S-

"U,
















q -

u
o r--















0
N



a4
- H cE




o
-I.
'-U 3 ")
D (
H. C) C/)I


NoN V
no '- O
S .M '.0
* vO

CO00CT> CT


ON
"*
~r-1C


(Y0
~(V)
N3


o0
O
*
dr-1


.-C)

II)0
CO -0

\o
r-O 0o


4.)


00 0

0 0Q O
CO 0 0 a
Oi#< 5 1 3


:3: 0 -04 (a
E IQ X O ta.> N 0 M I)


0
N *L )
OO
a~cL 3


cH-o

^0 CO


?4~


0

( H- )-4
.0\


,-N
N *
C-


N

N






r,
C? '



PI
a


II



^Sl
cy


dcHo


4p

H
a)

cN
A
C


HZ M
- 0; O


vO t



















Table 2-2.


Atomic Parameters for I, x,y,z and Biso.
E.S.Ds. refer to the last digit printed.


x/a y/b z/c Biso


.7209
.7977
.6410
.5462
.5548
.8018
.9554
.8062
.4690
.6985
.7071
.4779
.5683
.9313
.9911
1.0211
1.1647
1.2383
1.1722
1.0287
.9410
1.0033
.5773
.7343
.8857
.6830
.6672


(1)
(3)
(3)
(6)
(7)
(7)
(7)
(8)
(10)
(7)
(9)
(10)
(10)
(10)
(13)
(9)
(10)
(10)
(10)
(10)
(10)
(12)
(10)
(10)
(11)
(3)
(3)


.8794
.7284
1.0346
.8820
.8033
.9612
.9285
.8419
.9221
.9660
.8016
.7322
.9225
.9952
1.0438
.9794
1.0122
.9893
.9348
.9064
.8556
.8258
.7790
.8522
.3283
.7146
1.0786


(1)
(2)
(2)
(5)
(5)
(5)
(5)
(5)
(7)
(6)
(6)
(7)
(7)
(7)
(10)
(6)
(7)
(8)
(8)
(6)
(6)
(8)
(6)
(7)
(8)
(2)
(2)


.1567
.2187
.1010
.2303
.0844
.2706
.1551
.0391
.3494
.3238
-.0146
-.0344
.2994
.2845
.3594
.2176
.2174
.1532
.0897
.0920
.0256
-.0488
.0140
.5155
.8452
.8170
.4759


(1)
(1)
(1)
(3)
(3)
(4)
(4)
(4)
(5)
(4)
(4)
(5)
(5)
(5)
(6)
(5)
(6)
(6)
(6)
(5)
(5)
(6)
(5)
(5)
(6)
(1)
(1)


2.01
3.3
3.14
2.7
2.9
2.1
2.1
2.2
3.5
2.6
2.8
3.3
2.5
2.6
3.8
2.3
3.0
3.4
3.0
2.5
2.3
3.0
2.5
4.6
6.4
4.1
3.9


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


Sn
C11
C12
01
02
N3
N4
N5
N1
N2
N6
N7
Cl
C2
C3
C4
C5
C6
C7
C8
C9
C10
Cll
W1
W2
C13
C14


(2)
(1)
(9)
(2)
(3)
(3)
(3)
(3)
(4)
(3)
(3)
(4)
(3)
(3)
(5)
(3)
(4)
(4)
(4)
(3)
(3)
(4)
(3)
(4)
(5)
(1)
(1)
















Table 2-3.


Atomic Parameters for II, x,y,z and Biso.
E.S.Ds. refer to the last digit printed.


x/a y/b z/c Biso


.1286
.1899
.0230
.3430
.2329
.2837
.1449
-.0988
-.0443
.0077
.3824
.0297
.0332
-.1156
-.2559
-.3795
-.3661
-.2236
-.1859
-.3003
.1534
.5386
.6388
.7859
.8275
.7313
.5869
.2364
.1549
.236
.394
.4721
.3915


(2)
(4)
(4)
(8)
(8)
(11)
(11)
(10)
(12)
(13)
(12)
(13)
(17)
(13)
(16)
(15)
(15)
(15)
(14)
(22)
(15)
(12)
(12)
(14)
(14)
(16)
(12)
(16)
(17)
(3)
(3)
(19)
(17)


.5235
.3800
.6553
.5435
.6027
.4531
.4488
.4548
.5505
.6035
.5089
.4009
.3486
.4032
.3599
.3724
.4267
.4637
.5169
.5329
.6284
.5293
.5910
.6167
.5770
.5127
.4898
.6874
.7096
.7605
.7862
.7591
.7135


(2)
(2)
(2)
(5)
(5)
(8)
(7)
(6)
(7)
(7)
(8)
(8)
(12)
(8)
(9)
(12)
(11)
(9)
(10)
(14)
(9)
(7)
(9)
(10)
(11)
(10)
(9)
(8)
(10)
(13)
(11)
(10)
(9)


.2035
.1565
.2488
.2567
.1430
.3435
.2991
.2098
.1121
.0630
.3170
.3162
.3788
.2659
.2719
.2197
.1627
.1591
.1030
.0397
.0836
.3565
.3321
.3711
.4327
.4574
.4193
.0389
-.0248
-.0664
-.0466
.0186
.0605


(1)
(2)
(2)
(3)
(3)
(5)
(4)
(5)
(5)
(5)
(5)
(6)
(8)
(7)
(8)
(10)
(9)
(7)
(7)
(12)
(6)
(5)
(5)
(6)
(6)
(6)
(6)
(6)
(7)
(8)
(9)
(8)
(6)


3.83(9)
5.5 (2)
5.1 (2)
4.1 (3)
4.0 (3)
4.6 (5)
4.2 (4)
4.0 (4)
4.6 (5)
5.0 (5)
3.6 (5)
3.9 (5)
5.8 (7)
4.3 (6)
5.8 (7)
7.6 (9)
6.4 (8)
5.0 (6)
5.5 (7)
7.2 (9)
4.4 (6)
3.3 (5)
4.3 (6)
5.4 (7)
5.6 (7)
6.0 (7)
4.7 (6)
4.4 (6)
6.1 (7)
8.3 (9)
8.4 (9)
6.7 (8)
5.1 (7)


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


Ti
Cll
C12
01
02
N1
N2
N3
N4
N5
Cl
C2
C3
C4
C5
C6
C7
C8
C9
C10
ClI
CA1
CA2
CA3
CA4
CA5
CA6
CB1
CB2
CB3
CB4
CB5
CB6


















Table 2-4.


Atomic Parameters for III, x,y,z and Biso.
E.S.Ds. refer to the last digit printed.


x/a y/b z/c Biso
i~~ ~ ~~ i ,i H ,IIIII


.2545
.5138
-.0564
.0241
.5683
.7701
.1665
.3326
.4056
.3539
.2438
.1379
.0872
.3925
.4543
.3546
.4052
.2987
.3011
.2461
.1891
.1900
.1312
.0735
.1030
.0396


(1)
(3)
(3)
(9)
(20)
(9)
(7)
(7)
(8)
(8)
(8)
(8)
(8)
(10)
(13)
(10)
(16)
(10)
(12)
(13)
(12)
(10)
(10)
(16)
(10)
(14)


.2823
.2839
.2043
.2864
.2810
.3874
.4146
.4122
.2911
.2213
.1128
.2276
.3007
.3899
.4662
.1255
.0797
.0628
-.0427
-.0911
-.0389
.0662
.1328
.0917
.3971
.4767


(1)
(2)
(2)
(5)
(10)
(5)
(4)
(4)
(5)
(5)
(4)
(4)
(5)
(6)
(10)
(6)
(10)
(6)
(7)
(6)
(6)
(6)
(6)
(8)
(6)
(8)


.0028
.0733
-.2091
-.0570
.7348
-.0181
.0634
-.0641
-.1383
-.0918
.0035
.0964
.1405
-.1174
-.1661
-.1060
-.1718
-.0501
-.0488
.0069
.0612
.0584
.1132
.1781
.1167
.1616


(1)
(1)
(1)
(4)
(7)
(5)
(3)
(3)
(3)
(3)
(4)
(3)
(3)
(4)
(6)
(4)
(6)
(4)
(6)
(6)
(5)
(4)
(4)
(5)
(4)
(5)


2.75(5)
4.21(9)
5.8 (1)
4.1 (3)
8.1 (7)
6.0 (4)
3.5 (3)
3.9 (3)
3.5 (3)
3.1 (3)
3.2 (3)
3.0 (3)
3.3 (3)
3.4 (4)
5.0 (5)
3.5 (4)
5.4 (6)
3.2 (4)
4.2 (4)
4.5 (4)
4.1 (5)
3.1 (3)
3.3 (3)
5.0 (5)
3.1 (4)
4.3 (4)


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


Cu
C11
C12
Wl
W2
W3
01
02
N1
N2
N3
N4
N5
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
Cll
C12
C13
















Table 2-5. Bond Distances(A) and Angles(*) for I


2.354(2)
2.368(2)
2.127(5)
2.123(6)
2.272(7)
2.260(7)
2.259(6)
1.282(10)
1.267(10)
1.371(9)
1.277(12)
1.348(10)
1.347(10)
1.336(10)


C9
Cl
Cl
Cll
ClI
C3
C4
C5
C6
C7
C8
C9
C10


1.297(11)
1.304(11)
1.360(12)
1.367(12)
1.322(12)
1.479(13)
1.477(12)
1.395(12)
1.368(14)
1.386(14)
1.381(13)
1.481(13)
1.484(12)


C11-Sn-C12
Cll-Sn-01
Cll-Sn-02
Cll-Sn-N3
Cll-Sn-N4
Cll-Sn-N5
C12-Sn-01
C12-Sn-02
C12-Sn-N3
C12-Sn-N4
C12-Sn-N5
01-Sn-02
01-Sn-N3
01-Sn-N4
01-Sn-N5
02-Sn-N3
02-Sn-N4
02-Sn-N5
N3-Sn-N4
N3-Sn-N5
N4-Sn-N5
Sn-01-Cl
Sn-02-C11
Sn-N3-N2
Sn-N3-C2
N2-N3-C2
Sn-N4-C4
Sn-N4-C8


176.94(8)
88.1(2)
90.6(2)
88.8(2)
90.5(2)
94.8(2)
89.6(2)
90.9(2)
88.6(2)
90.0(2)
88.2(2)
78.4(2)
72.8(2)
141.4(2)
149.7(2)
151.1(2)
140.3(2)
71.5(2)
68.6(2)
137.3(2)
68.9(2)
118.3(5)
119.1(6)
112.5(5)
123.3(5)
124.1(7)
119.6(5)
119.9(6)


C4-N4-C8
Sn-N5-N6
Sn-N5-C9
N6-N5-C9
N3-N2-C1
N5-N6-C11
01-C1-N1
01-C1-N2
N1-C1-N2
N3-C2-C3
N3-C2-C4
C3-C2-C4
N4-C4-C2
N4-C4-C5
C2-C4-C5
C4-C5-C6
C5-C6-C7
C6-C7-C8
N4-C8-C7
N4-C8-C9
C7-C8-C9
N5-C9-C8
N5-C9-C10
C8-C9-C10
02-C11-N6
02-C11-N7
N6-C11-N7


120.4(7)
114.3(5)
123.0(6)
122.7(7)
115.5(7)
114.4(7)
121.8(8)
120.9(7)
117.4(8)
125.2(8)
113.1(7)
121.7(8)
115.2(7)
120.8(8)
124.0(8)
118.4(9)
121.0(9)
118.3(8)
121.1(8)
114.8(8)
124.0(8)
113.1(7)
124.5(8)
122.4(8)
120.2(8)
122.1(9)
117.7(8)


Cll
C12
01
02
N3
N4
N5
Cl
Cll
N2
C2
C4
C8
N6














Table 2-6. Bond Distances(A) and Angles(*) for II


Cll
C12
01
02
N2
N3
N4
C1
C11
N2
Cl
C2
C4
C8
N5
C9
Cll
CA1
C3
C4


Cll-Ti-C12
Cll-Ti-01
Cll-Ti-02
Cl1-Ti-N2
C11-Ti-N3
C11-Ti-N4
C12-Ti-01
C12-Ti-02
C12-Ti-N2
C12-Ti-N3
C12-Ti-N4
01-Ti-02
01-Ti-N2
01-Ti-N3
01-Ti-N4
02-Ti-N2
02-Ti-N3
02-Ti-N4
N2-Ti-N3
N2-Ti-N4
N3-Ti-N4
Ti-01-Cl
Ti-02-C11
N2-N1-C1
Ti-N2-N1


2.322(4)
2.316(4)
1.982(7)
1.983(7)
2.179(9)
2.205(9)
2.188(9)
1.298(12)
1.320(14)
1.361(13)
1.336(14)
1.295(14)
1.373(17)
1.351(16)
1.377(16)
1.289(17)
1.296(17)
1.464(14)
1.459(19)
1.463(16)

169.9(2)
95.0(2)
93.9(2)
88.1(3)
85.2(2)
88.4(3)
93.8(2)
93.0(2)
89.9(3)
84.7(2)
86.6(3)
77.0(3)
71.4(3)
141.2(3)
149.3(4)
148.4(3)
141.7(3)
72.3(4)
69.8(4)
139.3(4)
69.4(4)
121.1(6)
119.7(7)
107.9(8)
118.2(7)


C4
C5
C6
C7
C8
C9
C11
CA1
CA1
CA2
CA3
CA4
CA5
CBI
CB1
CB2
CB3
CB4
CB5


- C5
- C6
- C7
- C8
- C9
- C10
-CB1
- CA2
- CA6
- CA3
- CA4
- CA5
- CA6
- CB2
- CB6
- CB3
- CB4
- CB5
- CB6


N1-C1-CA1
N2-C2-C3
N2-C2-C4
C3-C2-C4
N3-C4-C2
N3-C4-C5
C2-C4-C5
C4-C5-C6
C5-C6-C7
C6-C7-C8
N3-C8-C7
N3-C8-C9
C7-C8-C9
N4-C9-C8
N4-C9-C10
C8-C9-C10
02-C11-N5
02-C11-CB1
N5-C11-CB1
C1-CAl-CA2
C1-CA1-CA6
CA2-CA1-CA6
CA1-CA2-CA3
CA2-CA3-CA4
CA3-CA4-CA5


1.377(16)
1.368(24)
1.40(3)
1.346(20)
1.442(22)
1.486(22)
1.498(18)
1.374(15)
1.378(15)
1.413(15)
1.354(18)
1.376(19)
1.377(16)
1.386(17)
1.378(20)
1.38(3)
1.39(3)
1.42(3)
1.349(20)


118.8(9)
126.5(11)
113.8(10)
119.8(10)
112.4(9)
121.9(12)
125.7(12)
116.7(14)
122.4(12)
117.6(13)
122.1(14)
112.6(11)
125.3(13)
114.7(11)
122.1(17)
123.3(15)
122.2(11)
118.3(11)
119.5(11)
120.0(9)
121.4(9)
118.6(9)
121.2(10)
118.1(11)
121.7(10)
































Table 2-6 (cont.)


Ti-N2-C2
N1-N2-C2
Ti-N3-C4
Ti-N3-C8
C4-N3-C8
Ti-N4-N5
Ti-N4-C9
N5-N4-C9
N4-N5-C11
01-C1-N1
01-C1-CAI


123.7(8)
118.1(9)
120.2(7)
120.6(9)
119.2(10)
116.3(7)
122.6(10)
121.1(11)
109.5(10)
121.2(9)
120.0(9)


CA4-CA5-CA6
CA1-CA6-CA5
C11-CB1-CB2
C11-CB1-CB6
CB2-CB1-CB6
CB1-CB2-CB3
CB2-CB3-CB4
CB3-CB4-CB5
CB4-CB5-CB6
CB1-CB6-CB5


119.4(11)
121.0(11)
117.9(12)
119.7(10)
122.3(12)
117.0(14)
122.1(14)
118.4(14)
119.8(15)
120.3(12)























Table 2-7. Bond Distances(A) and Angles(*) for III


Cll
W1
01
02
N2
N3
N4
C12
C1
N2
01
C3
C5
C9


Cll-Cu-Wl
N2-N1-C1
N1-N2-C3
C5-N3-C9
N5-N4-C10
N4-N5-C12
02-C1-N1
02-C1-C2
N1-C1-C2
N2-C3-C4
N2-C3-C5
C4-C3-C5
N3-C5-C3
N3-C5-C6


2.270(2)
1.996(7)
2.264(5)
2.280(5)
2.216(6)
2.250(6)
2.239(6)
1.217(9)
1.213(10)
1.381(9)
1.377(11)
1.299(10)
1.337(10)
1.332(10)


177.5(2)
114.4(6)
121.0(6)
122.6(6)
120.4(6)
114.2(6)
121.7(7)
123.5(9)
114.8(8)
125.4(9)
113.3(7)
121.3(8)
115.7(7)
119.2(8)


N4 N5
N4 C10
N5 C12
Cl C2
C3 C4
C3 C5
C5 C6
C6 C7
C7 C8
C8 C9
C9 C10
C10 C11
C12 C13


C3-C5-C6
C5-C6-C7
C6-C7-C8
C7-C8-C9
N3-C9-C8
N3-C9-C10
C8-C9-C10
N4-C10-C9
N4-C10-C11
C9-C10-C11
01-C12-N5
01-C12-C13
N5-C12-C13


1.378(9)
1.300(10)
1.367(10)
1.501(14)
1.491(13)
1.466(12)
1.400(12)
1.360(16)
1.371(15)
1.395(11)
1.490(11)
1.476(12)
1.491(12)


125.1(8)
118.7(8)
121.5(8)
118.2(9)
119.8(7)
116.0(6)
124.2(8)
112.0(7)
126.1(8)
121.9(8)
121.4(7)
123.8(7)
114.8(7)






















C% .% t r
N- N -N-N-N- N N N N N


N[ CO I.
* I I


I ,
I I


u)0oo0ooed

I 14V4 I f


-h h h h %. % -N ~ ~ -
N- N N N N N N N N


II-4 0 I


(-)


r -O


N-5 N- N N- hN N N- N- N- N- N- N- N- N- N- N- N-


'I 0 I (

I I


I I ,"I I I I


0 % M M M t V N 0 0 nM W M M W M E




n 0 0 wv 0 to t LO





0 N- H N- N N% N n
C4 4 4dd C4 r4 C4
* 0 .
0~~~~0~u,.N~Icv,



-~ % ~ -~. % % % % e



N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- N
~~~O~~~~~


,-i N ,-i NM m v i, tD N, r-i q N i m io v mo
002222zzz00000000


00
1-1 1-


- ,


~DN~Lna)ma\


r- N
C M- r-
0U U



























II (









- 1' -
'- N


f-I I rOr,


0 -
(0 0 0


-33 r-I
a: _- UU























































































1- N r4 N c r- N M V M % U t C MO
0o0zzzzuQuuuuuu u


-r4 N
*~rld
























I --I _

I

'- %0 w wo -% r- m 0 w t-
I I

i- O .
CY r"4 ,m0 N wN-4 mCN I





"p M 0
r. .. a) 4(





o o

-% O% O 0 N N OO a Oq C7 o
(0















4 r 0 NA

1 f4 ,-4 W .
02











N0 N
N O r- a, i-f N M




O o c00 7% 4 r-
O 0NI or- N ON ^o v- rq in r-4
01 1 .



r-4 r-4 l r-4 V-4




r-4 < < 4t; < 4 uuuuuuu)uuuu u

























.-' -h h h h ~


~0fle0OO~LO
I I I V V-4CI r


-. h% % % % -4 -h -% th -% -% -% -


*- ONe4O


'-I


ro -


- -C hC h C h%- -


I I I I


-4


.% -. -. .%
-~C-~ C. -v C- Cu Cu -



C C C C C C


hC- -

.- Ch ~-


- -. h % -- C %-% %

C- OC-'C-'C- C' C-


0 N Nt m w 0 N -I N N r-4 r-t vN w' ,- O- ow






1-








Cn C NC n C C C C









UOUS2SOOZZZZZUUUUUUOOU


I -


p O N 0 i-I

V-4 rYi 10 Nro N 9-4


E* in N (Y























c -4 N -4




I I
I +


S .. "l ." .% -

0




0+


S' ,- (0 4'




004



















00 00 0
4- N (
1 u ~+







5 (0



N 0CiN
r-4 C) N 1 % c
E- (0



0)LLn otfl o 0 3







U*





r-i .)
3 U i OUCC> o
C*


0 1-4 (S P
co y> 1- 11 -i r-
U U U U U


















Table 2-11. Hydrogen Atomic Parameters x,y,z and Biso for
I. E.S.Ds. refer to the last digit printed.



x/a y/b z/c Biso

H1(N1) .397 (12) .910 (8) .339 (6) 3.2
H2(N1) .489 (11) .955 (7) .385 (5) 3.2
H3(N2) .711 (11) 1.017 (7) .368 (5) 3.2
H4(C3) .956 (11) 1.026 (8) .405 (6) 3.2
H5(C3) 1.092 (12) 1.014 (7) .373 (5) 3.2
H6(C3) 1.013 (11) 1.110 (8) .349 (5) 3.2
H7(C5) 1.209 (11) 1.047 (7) .261 (6) 3.2
H8(C6) 1.355 (11) 1.007 (7) .154 (5) 3.2
H9(C7) 1.238 (11) .914 (7) .051 (5) 3.2
H10(C10) 1.072 (12) .865 (8) -.063 (6) 3.2
H11(C10) .931 (11) .811 (7) -.096 (6) 3.2
H12(C10) 1.030 (11) .756 (8) -.046 (5) 3.2
H13(N6) .742 (11) .774 (8) -.055 (6) 3.2
H14(N7) .483 (12) .728 (8) -.073 (6) 3.2
H15(N7) .395 (12) .720 (8) -.009 (6) 3.2
H16(W1) .694 (12) .847 (8) .556 (6) 3.2
H17(W1) .741 (11) .921 (8) .512 (6) 3.2




Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


















Table 2-12. Hydrogen Atomic
for II. E.S.Ds. refer to


Parameters x,y,z and Biso
the last digit printed.


x/a y/b z/c Biso


H1(C3) .144 (13) .357 (8) .401
H2(C3) .011 (12) .374 (8) .402
H3(C3) .017 (12) .262 (8) .382
H4(N1) .265 (12) .510 (8) .370
H5(C6) -.264 .314 .314
H6(C6) -.491 .336 .220
H7(C7) -.470 .438 .127
H8(C10) -.361 (17) .564 (10) .041
H9(C10) -.349 (12) .471 (8) .022
H10(CO0) -.288 (13) .570 (8) -.002
H11(CA2) .607 .618 .281
H12(CA3) .868 .662 .352
H13(CA4) .936 .600 .465
H14(CA5) .767 .482 .507
H15(CA6) .509 .442 .439
H16(CB2) .033 .690 -.039
H17(CB3) .177 .785 -.115
H18(CB4) .453 .829 -.079
H19(CB5) .597 .774 .036
H20(CB6) .446 .693 .111



Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


(5)
(5)
(5)
(5)




(8)
(5)
(5)


4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
















Table 2-13. Hydrogen Atomic Parameters x,y,z and Biso
for III. E.S.Ds. refer to the last digit printed.



x/a y/b z/c Biso

H1(C2) .362 .493 -.179 4.7
H2(C2) .531 .465 -.161 4.7
H3(N1) .461 .275 -.188 4.7
H4(C4) .347 .096 -.204 4.7
H5(C4) .517 .088 -.184 4.7
H6(C4) .381 .001 -.174 4.7
H7(C6) .340 -.064 -.083 4.7
H8(C7) .247 -.150 .005 4.7
H9(C8) .141 -.061 .092 4.7
H1O(C11) -.054 .097 .185 4.7
H12(C11) .113 .031 .182 4.7
H13(C11) .120 .127 .220 4.7
H14(N5) .022 .215 -.317 4.7
H15(C13) .138 .509 .170 4.7
H16(C13) -.028 .454 .195 4.7
H17(C13) -.041 .503 .134 4.7
H18(W1) -.041 .297 -.045 4.7
H19(W1) .005 .275 -.096 4.7
H20(W2) .568 .293 .700 4.7
H21(W2) .569 .235 .745 4.7
H22(W3) .664 .370 .005 4.7
H23(W3) .750 .384 .034 4.7


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid












27

Results and Discussion

Sn(DAPSC)C122 The crystals were found to contain

monomeric Sn(DAPSC)C1,22 cations and display PBP geometry which

is easily seen in Figure 2-1. Surprisingly, the complex was

obtained from aqueous solution and is very water soluble since

all related compounds[19-21] were isolated from organic media.

Oxidation of Sn2 to Sn4 is known[21] to occur in aqueous

solutions exposed to the air and has been observed to occur in

a structurally similar complex[19]. Indeed, a similar

oxidation has occurred in this instance. As noted above, a

fine black precipitate fell out as the solution cleared, which

suggests that a reduction of the Pt2 starting material to Pto

occurred. Whether or not this was a direct result of the Sn

oxidation is not clear. This is the first example of a metal

oxidation taking place in the presence of DAPSC and being

stabilized by the ligand. DAPSC tends to have a more reducing

nature as is observed in the Fe2' and Co2+ systems[6].

Compounds such as (CH3NH)3[Pt(SnCl3)s] and Pt(II)/Sn(II)

mixtures have been of interest for some time due to the

observed capability of these species to homogeneously catalyze

the hydroformylation, carbonylation, and hydrogenation

reactions[22]. Common to most of the discussion regarding

possible mechanisms for these reactions is the postulated

presence of free SnClI- ions in solution liberated by ligand

dissociation. The [Pt(SnCl3)5]3- species has long-term



















C6
C7
C5
C10 C7 C4 Cl

C9

N6 N N4 C2 C3
Cll
Sn N3
N7 N2
02
01
Ol Cl

C12
Nl







Figure 2-1. An ORTEP representation of Sn(DAPSC)C1,












29

stability in the presence of protic solvents, although in HCl

solutions metallic Pt is slowly precipitated[23] as we also

observed. Hence, in a HCl solution of (CH3NH)3[Pt(SnCl3)5]

with pH = 1.00 the concentration of free SnCl3" is probably

quite high and the likely source of the Sn atom for

coordination by DAPSC. Attempts to prepare the title complex

in good yield directly from SnCl2 2H20 and DAPSC in HC1 and

methanol/H20 solutions failed even when excess halide was

added in the form of KC1 which promotes[24] the formation of

SnCl3,

The geometry about the Sn-cation can be described as a

slightly distorted pentagonal bipyramid. A slight distortion

is apparent in the pentagonal equatorial plane as evidenced by

the lengths of the respective sides 01-02 2.685(7), 01-N3

2.611(8), N3-N4 2.553(9), N4-N5 2.555(9), and N5-02 2.560(9)A.

The axial chlorides also contribute to the observed distortion

since they are not exactly linear and make an angle of

176.94(8). A least-squares plane drawn through the five

coordinating atoms in the equatorial girdle shows little

deviation from planarity with the average of the deviations

being 0.034(7)A. The Sn ion can be considered to lie in the

equatorial plane since it deviates only 0.019(3)A out of the

plane made by the five equatorial donors. Dimensions within

the neutral ligand are similar to those observed in related

structures with no irregularities. There is evidence of












30
several hydrogen-bonds with in the asymmetric unit. Most

notable are the interactions between N2 C14, N6 C13, and

N7 W1 with distances (H *** Cl) of 2.053(10), 2.289(10), and

1.863(10)A with bond angles of 152(1), 143(1), and 156(1)"

respectively.

The two Sn Cl distances appear to be significantly

different, to = 4.09[25], although they appear to be

chemically equivalent. However an analysis of the various

intermolecular contacts involving Cll and C12 indicates that

the two Cl atoms have slightly different environments which

could account for the small but significant difference. The

Sn Cl distances are slightly shorter than that of 2.395(7)

and 2.387(7)A found in [Sn(dappc)Cl2]2' [20]. However the Sn -

O and Sn -N distances are slightly longer than in the

[Sn(dappc)Cl2]2* complex which suggests that the Sn Cl

distance may be influenced by non bonded interactions. The

much longer Sn Cl bond distance of 2.446(3)A when the trans

atom is carbon suggests a trans influence may be operative in

Sn compounds. The Sn Cl distance of 2.362(4)A in

tris(tropolonato)monochlorotin(IV) chloroform solvate[26]

would support this view. Unfortunately, there are not a

sufficient number of seven-coordinate Sn(IV) complexes for a

detailed comparison.

It has been suggested[27] that tin in a seven-coordinate

environment prefers pentagonal bipyramidal geometry; however,












31

our result may be attributed to the planar pentadentate nature

of the ligand rather than any stereochemical preference by the

metal[3].

Ti(DAPBAH)C1, The pentagonal bipyramidyl nature of this

complex is easily seen in Figure 2-2. With the isolation of

this complex, there are now examples of each of the first row

transition metals (Sc Zn) in PBP geometry coordinated in

part by planar pentadentate ligands. Seven coordinate Ti

complexes are known though most involve combinations of mono-

and bidentate ligands to arrive at a coordination number of

seven. This complex is unique in that a pentadentate ligand

has been used.

Preliminary experiments demonstrated that DAPSC does

indeed react with TiCl3, however crystalline products were

never evident in any of the reaction mixtures. Combining our

experience from previous experiments which have shown that

DAPSC works best in aqueous or semiaqueous solution together

with the fact that TiCl3 is extremely sensitive to water

suggested that neither this ligand or this solvent system

would be favorable for an attempt to obtain a PBP complex of

Ti3+. However, due to the high solubility of benzoic acid

hydrazide in organic media, the ligand DAPBAH emerged as a

better choice and the best of the three pentadentate ligands

to use for a reaction with Ti3.

The ligand DAPBAH is not as soluble in pure ethanol as












32



CB5

C10
~CB6
CB4 CB6 N5
C9
COl C8 C2
C7
CB3 CB1 N4

CB2 02 C12 C6







CA33
Ti N3 C5
C4

01 C2l C2
N2
Cl
CA6 C3
N1
CAl
CA5
CA2

CA3
CA4





Figure 2-2. An ORTEP representation of Ti(DAPBAH)C1,












33

are 2,6-diacetylpyridine and benzoic acid hydrazide

separately. Consequently, the complex had to be prepared by

a template type reaction rather than by combining the ligand

directly with Ti3'. Although two equivalents of water were

produced in the reaction forming the Schiff base ligand, no

deleterious results were detected in the course of the

reaction.

The Ti-cation can be described as being at the center of

a distorted pentagonal bipyramid with distortions occurring in

both the equatorial plane and axial positions. The distortion

observed in the equatorial plane has two contributions: first

and foremost is the formation of a monoanion resulting from

the deprotonation of the ligand at N1. Upon deprotonation,

the entire side of the ligand becomes conjugated as well as

negatively charged. The 3+ center now has a stronger

attraction to this side of the ligand as is evidenced in the

shorter Ti-N2 bond of 2.179(9)A verses the Ti-N4 bond of

2.188(9)A. Similarly, the distance between 01 and N2 in the

pentagonal plane is 2.434(9)A verses a distance of 2.188(9)A

from 02 to N4. The shorter side reflects a contraction in

that "arm" of the ligand due to the conjugation and increased

attraction towards the cationic center. The second

contribution to the distortion is a minor Jahn-Teller effect

due to the degeneracy of the possible electron configurations

for a d' species in a PBP field. Since the orbitals












34

potentially occupied by the single d-electron are not strongly

bonding, the distortion resultant from this effect is small.

Distortions due to the Jahn-Teller effect and the formation of

monoanions in these types of complexes will be examined at

length and in greater detail in chapter four.

An angle of 169.86(15)*, significantly less than the

expected 1800, is made by the atoms Cl1 Ti C12. Since

there appears to be no other intermolecular contacts between

the axial Cl's and other molecules in the asymmetric unit, the

distortion must be the result of an intermolecular electronic

effect. Pentadentate ligands of this type are known to have

some inherent flexibility especially between the "arms". This

complex provides an excellent example of this as illustrated

by the deviations of 01 and 02 from the least squares plane

calculated for Ti, N2, N3, and N4. All four of these atoms

show deviations of less than 0.002(9)A but 01 deviates

+0.051(8)A and 02 deviates -0.010(8)A. In essence, DAPBAH has

twisted slightly with one oxygen moving up and the other down

perpendicular to the equatorial plane. The electronic effects

from the two oxygens is the most likely contributor to the

axial distortion since the associated electron density would

repel the axial chloride ions to some degree.

Cu(DAPAAH)(H20)Cl' The crystals were found to contain

monomeric Cu(DAPAAH)(H20)C1l cations which display PBP geometry

as can be seen in Figure 2-3. Although the axial ligands


















C13


C11


An ORTEP representation of Cu(DAPAAH)C1(H20)*


Figure 2-3.












36
differ (i.e. one Cl- and one HO2) there appears to be no

disorder occurring. The geometry about the Cu-cation can be

described as being a somewhat disordered pentagonal bipyramid.

The distortion is apparent in the pentagonal equatorial plane

as evidenced by the length of the 01-02 side being 2.921(7)A

while the other four sides average length is 2.574(8)A

0.022(8). This distortion apparently does not affect the

planarity of the equatorial plane since a least-squares plane

drawn through the five coordinating atoms comprising the

equatorial plane shows that there is little deviation from

planarity with average deviations of 0.031(8)A out of the

plane for the five equatorial atoms. The Cu ion can be

considered to lie in the equatorial plane since it deviates

only 0.061(3)A out of the plane.

The bond lengths exhibited both within the coordination

sphere and throughout the ligand are very nearly the same as

those found in the previously reported [Cu(DAPSC)Cl(H20)]*

complex[16]. The major difference is found in the replacement

of an axial Cl- with a H20 molecule. An uncoordinated Cl- is

closely associated with the cation through a hydrogen bond to

the axial H20 with a O-H ... Cl distance of 2.30(3)A. There

also appears to be some interaction between the two

uncoordinated H20 molecules found in the asymmetric unit and

the axial Cl- with the closest contact being a hydrogen bond

between W3 and Cll with a O-H ..* Cl distance of 2.20(3)A.












37

Attempts to isolate IV by a similar method to the

aforementioned complex ([Cu(DAPSC)Cl(H20)]*) from a pure

aqueous solution failed due to the insolubility of the 2,6-

diacetylpyridine. In other experiments where the DAPAAH

ligand was prepared separately and then reacted with the Cu

ion, solubility problems were again encountered in pure

aqueous media though upon the addition of either ethanol or

methanol to the aqueous solution, the reaction appeared to

progress rapidly and clear dark green solutions were obtained.

The Cu(DAPAAH)C1H20' crystals were found to be much more

soluble in ethanol, methanol and ethanol/water solutions than

in pure H20. This observations suggest that the methyl groups

directed outward from the complex have an effect to some

extent on the solubility of this complex.
















CHAPTER 3

A NOVEL PENTAGONAL BIPYRAMIDAL IRON COMPOUND:
UNCONNECTED Fe(II) AND Fe(III) MOLECULES WITHIN
THE SAME ASYMMETRIC UNIT.



Introduction

In the preceding chapter it was noted that the ligand

DAPSC reacts with all the metals of the first transition

series and that in each case the result has usually been the

formation of seven-coordinate complexes displaying PBP

geometry. A particularly interesting system which we have

come upon in this series is that of the iron-DAPSC complexes.

Fe(II)[7] and Fe(III)[9] cations coordinated by DAPSC

have been isolated and structurally characterized by means of

X-ray structure studies. Both compounds were obtained from

the same reaction mixture. However, in addition to these two

compounds, a third product was isolated from the same reaction

mixture which appeared to have a different crystal habit than

the two compounds previously characterized. In order to

determine the composition of the third product, an

investigation of the crystal structure by means of an X-ray

analysis was undertaken.

Previous attempts at determining the structure of this

product were unsuccessful. Thus, a more detailed experimental

38












39
section outlining the crystallographic work is presented in

addition to the normal experimental details.



Experimental

Materials. All chemicals were reagent grade and used as

supplied.

Preparation of [Fe(DAPSC)Cl H2012'/3. DAPSC (0.5546g, 2

mmole) prepared by the method previously described[9] was

combined with FeCl3 H20 (0.5406g, 2 mmole) in 50 mL deionized

H20. The pH was lowered to 1.00 with HC1 and stirred for 1.5

hours. A deep red solution resulted which was filtered and

allowed to slowly evaporate. After 16 days the product was

obtained, the second of two red products. The first red

product, the Fe(III)-DAPSC, formed red needles some of which

were quite long. The second product was dark red "chunks"

which are easily distinguishable from the first red product.

No green product (Fe(II)) was visible at this point.

Crystallography. A dark red crystal suitable for an X-

ray study having the dimensions 0.18 x 0.21 x 0.25 mm was

mounted on the end of a glass fiber. All subsequent

measurements were made using a Nicolet R3m diffractometer with

graphite-monochromated Mo-Ka radiation (X = 0.71069A). The

cell dimensions were determined by a least squares refinement

of 25 automatically centered reflections in the 28 range 3.63*

- 24.56*. A variable-speed (1 29.3*) 28 scan technique












40

was used to measure the intensity data from 2.0* to 46.00

degrees in 28 corresponding to hkl values of 0 to 10, 0 to 18,

and -22 to 22 respectively. Two standard reflections were

measured every 98 reflections to monitor for any decomposition

during the X-ray analysis. No absorption correction was made.

There were 2543 unique reflections measured of which 2473 with

an Inet > 2.5a(Inet) were used in the analysis. The density

of the compound was found to be 1.68 g/cm3 by flotation which

when taken together with the unit cell volume of 1808.4 A3

suggested that there were four molecules per unit cell

assuming a molecular weight of -450 g/mole. From an analysis

of the systematic absences, either of the space groups P21 or

P21/m were possible though from an evaluation of the intensity

statistics P 21 appeared to be the best choice. The data

reduction, structure solution and final refinement were

performed using the NRCVAX (PC-Version)[18] package of

programs. The Fe atoms and all non-hydrogen atoms were located

by the heavy-atom method (Patterson and Fourier syntheses) and

refined anisotropically by full-matrix least squares. The

hydrogen atoms were located using a difference Fourier map and

refined isotropically. The model converged to an R of 0.036

and a Rw of 0.039. The largest shift/e.s.d. in the last cycle

was 0.213. A final difference fourier synthesis had a maximum

peak of 0.530 and a minimum peak of -0.560 e A-3 and was

featureless.












41

Results and Discussion

As noted previously, the structural solution for this

compound was somewhat involved. The direct method routines of

both the SHELXTL[28] and NRCVAX (PC-version)[18] software

packages failed to arrive at a reasonable initial solution for

this compound. This is often the case when noncentrosymmetric

crystals are encountered and caution must be exercised when

using "black-box" solving routines in these situations. We

were eventually able to arrive at an initial solution for the

structure by locating the Fe atoms from a Patterson map though

with two heavy atoms in the asymmetric unit, four Fe vectors

resulted which had to be properly sorted out. Upon the

correct phasing of the Fe atoms, the positions of the

remaining non-hydrogen atoms were easily determined from

subsequent Fourier syntheses.

The refinement of this model proceeded smoothly and the

resulting structural parameters contained nothing irregular or

abnormal. To check if any symmetry elements had been

overlooked, the program MISSYM which is part of the NRCVAX

(PC-version)[18] software package was run using the atomic

parameters from the final model. MISSYM checks the structural

data and can detect possible missing symmetry which may have

been described in the wrong space group. Upon running the

program no additional symmetry was detected. This result

together with the smooth refinement and intensity statistics













42

which indicated a noncentrosymmetric structure confirms that

P21 was indeed the correct space group for this structure.

The PBP nature of the two cations is easily seen in

Figure 3-1. The final atom coordinates are given in Table 3-1

and bond distances and angles are given in Table 3-2. The

final anisotropic thermal parameters are given in Table 3-3

and the final coordinates for the hydrogen atoms are provided

in Table 3-4.

The presence of only five anions in the asymmetric unit

implies that one Fe-cation is formally 2+ and the other 3+

which is highly unusual indeed. The possibility does exist

that an additional anion is present in the form of a

deprotonated ligand or water molecule though this is doubtful

for several reasons. First the hydrogen atoms bonded to N2,

N6, N9, and N13 are known to be acidic and it has been pointed

out previously that DAPSC can in fact undergo deprotonation at

one of these sites with the semicarbazone arm then acting as

monoanion and carrying an overall negative charge[29].

However, all hydrogen atoms associated with the ligand were

clearly found in a Fourier difference map, so both ligands are

fully protonated and neither has undergone deprotonation.

Second, the two coordinated and two uncoordinated H20

molecules in the asymmetric unit could have undergone

deprotonation leaving a OH- anion, but this is highly unlikely

since the compound was isolated from a highly acidic solution.

























02 4 N8
C22 C12
N13 Fe2

N12 N9
C20 C12 N10
C21 C1, 3 C7 C6
C19l N11 C4
C15 C5
C18 C16 C4

C9 N4 C2 C3
C17

N7 N5
N3
N6

Cll Fe
N7 02 01 C 1


Figure 3-1. An ORTEP representation of the
Fe(II/III)-DAPSC complex.














Table 3-1. Atomic Parameters x,y,z and Biso.
E.S.Ds. refer to the last digit printed.


x y z Biso


.1524
.7548
-.1406
.4228
.4227
1.0449
.0447
.1719
.7544
.8690
-.0908
.0321
.1013
.2433
.2733
.2788
.2180
.7272
.6466
.6521
.7067
.8358
.9052
1.0061
-.0050
.1388
.1115
.2181
.2617
.3267
.3479
.3061
.3239


(2)
(2)
(3)
(3)
(7)
(7)
(8)
(8)
(8)
(8)
(11)
(10)
(9)
(9)
(9)
(10)
(9)
(10)
(9)
(9)
(9)
(9)
(10)
(11)
(12)
(11)
(12)
(10)
(11)
(13)
(13)
(11)
(10)


.5000
.3115
.5035
.2893
.5049
.3208
.4731
.3534
.4630
.3369
.5284
.6291
.6352
.6140
.4439
.3485
.2136
.6005
.4637
.3683
.1979
.1770
.1815
.2766
.5408
.7130
.8065
.7030
.7761
.7563
.6663
.5953
.4943


Fel
Fe2
Cll
C12
W1
W2
01
02
03
04
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
Cl
C2
C3
C4
C5
C6
C7
C8
C9


.4175
1.0514
.4685
1.1062
.3735
1.0112
.3098
.4064
1.0598
1.1652
.2036
.2918
.3612
.4912
.5226
.5263
.4631
.9984
.9388
.9450
.9716
1.1038
1.1759
1.2710
.2689
.3923
.3571
.4682
.5166
.5884
.6113
.5608
.5780


(1)
(1)
(1)
(1)
(3)
(3)
(3)
(3)
(3)
(3)
(4)
(4)
(3)
(3)
(3)
(4)
(4)
(4)
(4)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
(5)
(4)
(5)
(5)
(5)
(4)
(4)


1.8 (4)
1.8 (4)
2.8 (8)
2.6 (8)
2.9 (2)
2.8 (2)
2.4 (2)
2.2 (2)
2.6 (2)
2.8 (2)
3.3 (3)
2.3 (3)
1.9 (3)
2.1 (3)
2.2 (3)
2.3 (3)
2.3 (3)
2.7 (3)
2.3 (3)
1.9 (2)
1.8 (3)
2.0 (3)
2.4 (3)
3.4 (3)
2.4 (3)
2.0 (3)
2.8 (3)
1.9 (3)
2.6 (4)
3.2 (4)
3.0 (4)
2.1 (3)
2.1 (3)


(1)
(2)
(1)
(4)
(4)
(3)
(3)
(4)
(4)
(5)
(4)
(4)
(4)
(4)
(5)
(4)
(5)
(4)
(4)
(4)
(4)
(4)
(5)
(6)
(5)
(6)
(5)
(6)
(6)
(6)
(5)
(6)






















Table 3-1 (cont.).


x y z Biso


.3915
.2199
.7111
.6159
.5639
.6431
.6081
.6489
.7241
.7470
.8199
.8619
.9261
.8797
.3949
.1171
.4179
.5128


(15)
(10)
(10)
(10)
(13)
(11)
(12)
(13)
(11)
(11)
(11)
(12)
(12)
(3)
(3)
(4)
(10)
(12)


.4647
.3069
.5070
.3172
.3516
.2165
.1462
.0562
.0355
.1084
.0990
.0053
.2701
.7394
.2004
.0688
.0893
.3840


(7)
(5)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(5)
(6)
(5)
(2)
(1)
(2)
(5)
(6)


.6536
.4633
1.0026
.8871
.8119
.9036
.8501
.8700
.9432
.9917
1.0688
1.1040
1.2025
.1446
.6431
.3107
.1835
.2638


(5)
(4)
(4)
(4)
(4)
(4)
(4)
(5)
(4)
(4)
(4)
(5)
(4)
(1)
(1)
(1)
(4)
(4)


3.7
2.0
2.0
2.1
2.9
2.3
2.7
3.1
2.3
2.2
2.2
2.9
2.4
3.3
2.5
3.7
4.4
5.5


(4)
(3)
(3)
(3)
(4)
(3)
(4)
(4)
(3)
(3)
(3)
(3)
(3)
(2)
(2)
(2)
(3)
(4)


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


C10
Cll
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C13
C14
C15
W3
W4














Table 3-2. Bond Distances(A) and Angles()


Fel Cll
Fel W1
Fel 01
Fel 02
Fel N3
Fel N4
Fel N5
01 Cl
02 Cll
N3 N2
N3 C2
N4 C4
N4 C8
N5 N6
N5 C9
N1 C1
N2 C1
N6 C11
N7 Cll
C2 C3
C2 C4
C4 C5
C5 C6
C6 C7
C7 C8
C8 C9
C9 C10


Cll-Fel-Wl
Cll-Fel-01
Cll-Fel-02
W1-Fel-01
W1-Fel-02
01-Fel-02
Fel-01-Cl
Fel-02-C11
N2-N3-C2


2.2644(22)
2.067(5)
2.095(5)
2.124(5)
2.218(6)
2.193(6)
2.203(6)
1.265(9)
1.260(9)
1.331(9)
1.275(10)
1.357(10)
1.342(10)
1.376(9)
1.275(10)
1.318(10)
1.359(10)
1.338(10)
1.342(10)
1.497(11)
1.467(10)
1.394(11)
1.387(13)
1.366(13)
1.392(12)
1.491(12)
1.488(11)


176.5(2)
93.2(2)
96.9(1)
88.7(2)
86.4(2)
75.7(2)
118.9(5)
118.0(5)
122.3(6)


Fe2 C12
Fe2 W2
Fe2 03
Fe2 04
Fe2 N10
Fe2 Nil
Fe2 N12
03 C12
04 C22
N10 N9
N10 C13
N11 C15
N11 C19
N12 N13
N12 C20
N8 C12
N9 C12
N13 C22
N14 C22
C13 C14
C13 C15
C15 C16
C16 C17
C17 C18
C18 C19
C19 C20
C20 C21


C8-C9-C10
02-C11-N6
02-C11-N7
N6-C11-N7
N9-N10-C13
C15-N11-C19
N13-N12-C20
N10-N9-C12
N12-N13-C22


2.5631(23)
2.174(5)
2.184(5)
2.207(5)
2.183(6)
2.195(6)
2.223(6)
1.237(9)
1.233(9)
1.378(9)
1.293(9)
1.316(10)
1.367(10)
1.374(8)
1.290(10)
1.353(10)
1.372(9)
1.368(10)
1.343(10)
1.474(11)
1.492(12)
1.411(12)
1.374(13)
1.436(12)
1.370(11)
1.470(11)
1.515(12)


119.4(7)
121.2(7)
121.8(7)
117.0(7)
119.8(6)
120.0(6)
121.7(6)
112.2(6)
113.9(6)

























Table 3-2 (cont.)


C4-N4-C8
N6-N5-C9
N3-N2-C1
N5-N6-C11
01-C1-N1
01-C1-N2
N1-C1-N2
N3-C2-C3
N3-C2-C4
C3-C2-C4
N4-C4-C2
N4-C4-C5
C2-C4-C5
C4-C5-C6
C5-C6-C7
C6-C7-C8
N4-C8-C7
N4-C8-C9
C7-C8-C9
N5-C9-C8
N5-C9-C10


120.7(6)
121.5(6)
114.1(6)
113.5(6)
121.8(7)
119.7(7)
118.5(7)
125.6(7)
113.0(7)
121.4(7)
114.7(6)
119.9(7)
125.3(7)
119.1(8)
120.3(8)
118.8(8)
121.2(7)
114.4(6)
124.5(7)
111.8(6)
128.7(8)


03-C12-N8
03-C12-N9
N8-C12-N9
N10-C13-C14
N10-C13-C15
C14-C13-C15
N11-C15-C13
N11-C15-C16
C13-C15-C16
C15-C16-C17
C16-C17-C18
C17-C18-C19
N11-C19-C18
N11-C19-C20
C18-C19-C20
N12-C20-C19
N12-C20-C21
C19-C20-C21
04-C22-N13
04-C22-N14
N13-C22-N14


122.4(7)
121.9(7)
115.7(6)
125.8(8)
111.7(6)
122.4(7)
114.9(7)
122.3(7)
122.8(7)
117.8(8)
120.3(8)
117.2(7)
122.3(7)
113.7(7)
124.0(7)
113.7(7)
123.9(7)
122.4(7)
120.4(7)
124.6(7)
115.0(7)
















48









C OHOOHNHHrOOm-OO NNONNOHHNO


v 1 c000 0 m m o~00



C cie to eo eN

o Q I I l Hi I H I I Iv I I I I I
+,I I I I I I l l






S3 NO(OOOsOOONM OOO(NO ( 0N
aII I I I




0 _















H (a M ONN r- Or0H4N 9-4 0r-|r- -4 0 00 0NO0











AUU0OOOOOOZZZZZZOZZZZOO OO
ttofc 00 3S 00002
cn$ m mN0 N0wv wmNm
a) C). .
0) 4
r- ) z NNL Y Y NNNcqC)"mNNNc
Q $4hh h hh h ~ h~~ h
E-4 ~ 00 o o~0 0ddoo ~ d

N VV VV VYVq CA VY VV
M v4r4 -I00W -I0N0 0Mr4















49









O
o5
$i

I I I I lI I II I I II

Ok
0




* .* *. .. 4




SIO II I I H HM














I*4
0dd44 d ov v v T-4d d05 o
S01



-**N *%" -.S *.% -^ .- % *% % -. W
Yi-4














* 4 04 C4 ,* ,* ; C4 C4 1 ,* N, N I ko
0*








C
S












C4 '- 4 IM
mNC a
am -


00uuuuuuuuuuuuuuuuuuuuuuu














Table 3-4. Ligand Hydrogen Atomic Parameters x,y,z and Biso.


x y z Biso


H1(N1) -.0083 .4996 .1851 3.2
H2(N1) -.1751 .5412 .2113 3.2
H3(N2) .0110 .6694 .2611 3.2
H4(C3) -.2010 .3353 .6303 3.2
H5(C3) .0088 .8044 .3246 3.2
H6(C3) -.0264 .3303 .5968 3.2
H7C5) -.2386 .3430 .5094 3.2
H8(C6) .3402 .8195 .6205 3.2
H9(C7) .3718 .6529 .6609 3.2
H10(C10) .4297 .4216 .6529 3.2
H11(C1O) -.4994 .4879 .6650 3.2
H12(C10) .3151 .4682 .6813 3.2
H13(N6) .3193 .3126 .5743 3.2
H14(N7) -.2609 .6866 .4966 3.2
H15(N7) .1658 .1744 .4155 3.2
H16(N8) .3187 .1321 .0417 3.2
H17(N8) -.2080 .6298 .0443 3.2
H18(N9) -.3888 .4878 .8936 3.2
H19(C14) -.5506 .8003 .2380 3.2
H20(C14) -.4743 .8987 .1867 3.2
H21(C14) -.6696 .8921 .2106 3.2
H22(C16) -.5474 .6594 .2028 3.2
H23(C17) .3863 .5015 .1719 3.2
H24(C18) .2388 .4654 .0406 3.2
H25(C21) .0196 .4956 .8776 3.2
H26(C21) .0854 .4712 .9317 3.2
H27(C21) .1906 .4981 .8433 3.2
H28(N13) .0572 .6371 .7953 3.2
H29(N14) -.0879 .7769 .7410 3.2
H30(N14) .0807 .7722 .7251 3.2


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid












51
Third, the existence of an OH" ion in this water soluble

compound would imply that it should act as a strong base in

aqueous solution. Aqueous solutions of this compound were

found to be acidic and not at all basic. Finally, though

there is evidence of hydrogen bonding, most notably between

N6-H(N6)*-C1l4, N2-H(N2)** C13, N13-H(N13) C15 with

distances between the hydrogen and chloride of 2.10(4),

2.48(4) and 2.45(4)A respectively, there is no evidence of

strong hydrogen bonding involving either of the uncoordinated

water molecules as might be expected if one were in fact a OH"

ion.

Additional evidence for an Fe(II)/Fe(III) assignment

comes from a comparison of bond lengths within the immediate

coordination sphere of each Fe-cation. Table 3-5 shows that

Fel has much shorter bond lengths within the coordination

sphere than does Fe2. Since first row transition metals tend

generally to be ionic in nature, it is reasonable to expect

that shorter bond lengths would be observed for a 3+ cation as

opposed to a cation carrying a 2+ charge. Thus our

observations suggest that the Fel-cation is 3+ and the Fe2-

cation is 2+. Furthermore, comparing the coordination sphere

bond lengths of the two complexes in this compound with the

previously reported Fe(II) and Fe(III) complexes as is shown

in Table 2-5, reveals that the bond lengths of Fe2 parallel
















Table 3-5. Bond Lengths Observed Within the
Immediate Coordination Sphere in A.


III


Fe Cl 2.506

Fe 0 2.153



Fe 01 2.192

Fe 02 2.175

Fe N3 2.195

Fe N4 2.229

Fe N5 2.229


2.563

2.174



2.207

2.184

2.183

2.195

2.223


2.362

2.325(C1)



2.074

2.131

2.200

2.196

2.203


I = Fe(DAPSC)II,

II = Fe2 complex


J. Am. Chem. Soc., (1975),16,6505.

discussed in this chapter.


III = Fe(DAPSC)III, Inorq. Chem., (1976), 15, 1814.

IV = Fel complex discussed in this chapter.


2.261

2.067



2.095

2.124

2.218

2.183

2.203


Where












53

those observed for the Fe(II) complex and a similar situation

exists between Fel and the Fe(III) complex.

Due to the unique nature of this compound, we have now

begun a theoretical investigation exploring the electronic and

conformational characteristics of the associated molecules by

preforming semi-empirical geometry optimization calculations.

The details of this work will be presented in chapter 6.
















CHAPTER 4

PENTAGONAL BIPYRAMIDAL COMPLEXES OF Cr(III)
WHICH DISPLAY A STATIC JAHN-TELLER DISTORTION


Introduction


Pentagonal-bipyramidal complexes of Cr(III) are extremely

rare and to date only four reports[9,9,29,30] of such compounds

have appeared in the literature. In each instance a planar

pentadentate ligand was employed to obtain this unique

geometry around the chromium-cation. An intriguing aspect of

these complexes is the pronounced asymmetry observed in the

equatorial plane of the pentagonal bipyramid. In two of the

reports[9,29] this dramatic asymmetry has been attributed to

two effects: a static Jahn-Teller[31] distortion arising from

orbital degeneracy and the stronger attraction of a negatively

charged section of the ligand to the metal cation.

Utilizing both DAPSC and DAPBAH, two new complexes of

Cr(III) displaying PBP geometry have been prepared. The

reaction of DAPSC with Cr2O 2- in a reducing medium produced a

Cr(III) cation [Cr(DAPSC)(H20)2]2*, a product previously

isolated[9] but not structurally characterized. Combining

DAPBAH with a solution of Cr2' in 0.6M HC1 produced the cation

[Cr(DAPBAH) (H20)2]2.












55

The synthesis and characterization of both PBP-Cr(III)

complexes by X-ray diffraction techniques is presented in this

chapter. In addition, it is shown by means of a group

theoretical treatment that a static Jahn-Teller31 distortion

is indeed possible for a Cr(III) cation in a PBP-field.



Experimental

Materials. The 2,6-Diacetylpyridine purchased from

Aldrich, semicarbazide hydrochloride purchased from Eastman

Chemicals, and the benzoic acid hydrazide purchased from

Pfaltz and Bauer were used as supplied. All other solvents

and chemicals were reagent grade.

Preparation of [Cr(DAPSC)(H20),12( NOj2 12 H0,, (I). KCr20,

(0.0735g, 0.2 mmole) was added to 45 mL H20 having a pH = 1.00

(conc. HNO3). DAPSC (0.390g, 1.4 mmole), prepared by the

method previously described[9], was then added to this

solution. The resulting slurry was stirred and heated to 57'

C for 1 hr. The green solution was then filtered through a

fine glass frit and cooled to room temp (23' C). At this

point pH = 3.30. Slow evaporation of the filtrate gave a crop

of brown plates after 23 days.

Preparation of rCr(DAPBAH)(H,20)12+C1, 4H,O, (II).

Chromium metal (0.0265g, 0.5 mmole) was placed into 30 mL of

a 0.06 M HC1 solution (under N2) to produce a 0.017 M Cr2*

solution. DAPBAH (0.2003g, 0.5 mmole), prepared by the method












56

previously described[15], was then added to this solution.

Upon the addition of DAPBAH, the blue Cr2* solution rapidly

turned to a yellow/green color. Stirring was continued for 1

hr. after which the N2 atmosphere was removed and the solution

filtered. The filtrate had a pH = 0.90 and no further color

changes were observed. Green cubic shaped crystals were

obtained in good yield within 24 hrs..

Magnetic Measurements. The magnetic moments of both

compounds were determined in a 2% tert-butyl alcohol-water

solution by NMR techniques[32]. The average of three

measurements for I and II was 4.03 0.04 and 4.07 0.04

respectively.

Data Collection and Structure Refinement. Crystals

suitable for diffraction studies were mounted on the end of a

glass fiber and all subsequent measurements were made using a

Nicolet R3m diffractometer with graphite-monochromated Mo-Ka

radiation (k = 0.71069A). The unit cell dimensions were

determined by a least squares refinement of 25 automatically

centered reflections. A variable-speed (1* 29.3*) 20 scan

technique was used to measure the intensity data from 0 to

50* and 40 in 20 for the complexes I, and II respectively.

Two standard reflections were measured every 98 reflections to

monitor for any decomposition during the X-ray analysis. No

absorption corrections were made. The pertinent crystal data

is given in Table 4-1.












57

The data reduction, structure solution and final

refinement were performed using the NRCVAX (PC-Version)[18]

package of programs. All non-hydrogen atoms were located by

the heavy-atom method (Patterson and Fourier syntheses) and

refined anisotropically by full-matrix least squares. The

hydrogen atoms were located by the calculation of a difference

Fourier map and refined isotropically for complex I. For

complex II, H-atoms were placed at calculated positions and

not refined. The final positional parameters are given in

Tables 4-2 and 4-3 with the final bond distances involving the

non-hydrogen atoms and bond angles listed in Tables 4-4 and 4-

5 respectively. The anisotropic thermal parameters are listed

in Tables 4-6 and 4-7 and the hydrogen positional parameters

are given in Tables 4-8 and 4-9.



Results and Discussion

The crystals of I and II consist of [Cr(DAPSC)(H2O)2]2+

and [Cr(DAPBAH)(H20)2]2 cations respectively and display PBP

geometry which is easily seen in Figures 4-1 and 4-2. The

bond lengths observed within each of the coordination spheres

are presented in Table 4-10. It is clear from the bond

lengths in Table 4-10 that the five bonds in each of the

equatorial planes differ significantly from each other.

Consequently there is notable distortion of the respective

pentagonal bipyramid in each case.














Table 4-1. Crystal Data for I and II


I II


Crystal System
Space Group
a, A
b, A
c, A
a, 0
P,
Y,
Vol., A3
mol. wt.
Z
d(calcd), g/cm3
Crystal Size, mm3


p, cm-'
Data with I > 2.5 oI
R", %
Rwb, %


Monoclinic
P21/n
11.726
14.730
11.856
90
105.52
90
1973
508.34
4
1.71
0.10 x 0.12
x 0.18
11.4
2580


4.4
4.6


Triclinic
P1
14.404
14.689
15.102
62.56
75.17
74.90
2703
601.90
4
1.48
0.09 x 0.11
x 0.17
6.4
2509
7.0
8.3


R WIF Fo-2














Table 4-2. Atomic Parameters x,y,z and Biso for Compound I.
E.S.Ds. refer to the last digit printed.

x y z Biso


.08266(6)
-.0838 (3)
.2469 (3)
.0307 (2)
.0959 (3)
.1028 (3)
.0390 (3)
.0057 (3)
-.0251 (4)
.1342 (3)
.1477 (3)
.1329 (4)
.1373 (4)
.1552 (4)
.1370 (5)
.1028 (4)
.0860 (4)
.0523 (4)
.0373 (7)
.0045 (4)
.1564 (4)
.1984 (6)
.1254 (3)
.2823 (4)
.4585 (3)
.2832 (4)
.2722 (5)
.2924 (5)
.3972 (3)
.5285 (4)
.4487 (3)
.2524 (4)


.60588(4)
.6001 (3)
.6178 (2)
.5761 (2)
.4725 (1)
.7389 (2)
.7390 (2)
.7227 (2)
.6107 (3)
.5777 (3)
.4875 (2)
.3485 (2)
.7326 (3)
.8078 (3)
.8927 (3)
.8997 (3)
.8213 (3)
.8201 (3)
.9035 (4)
.6331 (3)
.6392 (4)
.6167 (4)
.4385 (3)
.6743 (4)
.6637 (2)
.7165 (3)
.7120 (4)
.5918 (4)
.7332 (2)
.6468 (3)
.6095 (2)
.9328 (3)


.23319(5)
.1449 (3)
.3282 (3)
.3865 (2)
.2355 (2)
.1458 (3)
.3300 (3)
.4287 (3)
.5502 (3)
.0854 (3)
.0616 (3)
.1398 (4)
.0469 (3)
-.0160 (4)
.0261 (4)
.1287 (4)
.1866 (4)
.2978 (4)
.3615 (6)
.4550 (3)
.0136 (4)
-.0897 (5)
.1478 (3)
.6070 (4)
.1838 (3)
.5198 (3)
.6935 (4)
.6065 (6)
.1647 (3)
.1239 (4)
.2596 (3)
.7621 (4)


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


Cr
Wl
W2
01
02
N1
N2
N3
N4
N5
N6
N7
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
N8
N9
03
04
05
06
07
08
W3


2.04
2.7
3.1
2.4
2.5
2.3
2.5
2.8
3.4
2.2
2.4
3.1
2.5
3.3
3.8
3.4
2.5
2.5
4.1
2.4
2.5
4.0
2.3
4.5
2.6
6.7
8.9
9.7
4.2
5.6
4.0
5.8


(2)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(1)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(3)
(2)
(2)
(3)
(2)
(2)
(2)
(2)
(3)
(4)
(2)
(2)
(2)
(2)













Table 4-3. Atomic Parameters x,y,z and Biso for Compound II.
E.S.Ds. refer to the last digit printed.

x y z Biso
Crl .6354 (2) .8579 (2) .0952 (2) 2.3 (2)
Cr2 .8675 (2) .40859(2) .6351 (2) 2.2 (2)
C11 .1162 (4) .1741 (4) .7679 (4) 4.6 (3)
C12 .6169 (4) .2706 (4) .6967 (4) 4.7 (3)
C13 .9184 (4) .8115 (4) .9019 (4) 4.7 (3)
C14 .5941 (5) .6068 (4) .6941 (4) 5.7 (4)
01 .6134 (9) 1.0274 (8) .0454 (8) 3.0 (7)
02 .6350 (8) .9153 (7) -.0514 (7) 2.3 (6)
03 .8825 (8) .4664 (7) .4862 (7) 2.0 (6)
04 .8711 (9) .5648 (7) .5940 (7) 2.7 (6)
W1 .4912 (10) .8735 (8) .1230 (8) 3.9 (8)
W2 .7796 (8) .8456 (8) .0737 (8) 3.1 (6)
W3 .7203 (9) .4415 (8) .6485 (8) 3.0 (7)
W4 1.0119 (9) .3733 (7) .6264 (8) 3.3 (7)
N1 .6340 (10) .7264 (8) .2435 (8) 1.9 (7)
N2 .6292 (11) .9058 (9) .2241 (9) 2.7 (8)
N3 .6312 (10) 1.0109 (9) .1988 (8) 2.3 (8)
N4 .6435 (11) .7297 (9) .0724 (9) 2.6 (9)
N5 .6433 (11) .7472 (9) -.0273 (9) 2.6 (8)
N6 .8629 (9) .2720 (9) .7853 (9) 1.8 (7)
N7 .8652 (10) .2848 (10) .6139 (8) 2.5 (8)
N8 .8632 (11) .3040 (9) .5153 (9) 2.8 (8)
N9 .8599 (11) .4476 (9) .7776 (9) 2.8 (9)
N10 .8654 (11) .5488 (9) .7531 (9) 2.9 (9)
Cl .6303 (13) .7348 (11) .3296 (11) 2.3 ( 9)
C2 .6229 (14) .6470 (13) .4216 (11) 3.0 (11)
C3 .6216 (15) .5539 (12) .4244 (12) 3.3 (11)
C4 .6247 (15) .5470 (12) .3363 (12) 3.3 (12)
C5 .6311 (14) .6358 (11) .2452 (13) 3.4 (10)
C6 .6299 (12) .8388 (11) .3204 (10) 1.8 (9)
C7 .6231 (15) .8644 (15) .4059 (12) 4.0 (12)
C8 .6203 (12) 1.0673 (12) .1024 (11) 2.2 (9)
C9 .6361 (14) .6364 (11) .1468 (12) 3.1 (10)
C10 .6302 (15) .5453 (13) .1304 (13) 3.7 (12)
C11 .6391 (14) .8479 (13) -.0851 (12) 3.1 (11)
C12 .8624 (11) .1812 (11) .7821 (10) 1.5 (8)
C13 .8640 (14) .0851 (12) .8725 (12) 3.1 (10)
C14 .8717 (14) .0865 (12) .9604 (11) 3.1 (10)
C15 .8755 (15) .1805 (12) .9643 (12) 3.3 (11)
C16 .8703 (13) .2735 (12) .8719 (11) 2.6 (9)
C17 .8654 (13) .1881 (11) .6832 (11) 2.7 (10)
C18 .8680 (17) .0982 (13) .6622 (14) 4.6 (13)
C19 .8783 (13) .4002 (12) .4537 (11) 2.6 (10)

















Table 4-3 (cont).


x y z Biso


.8665 (15)
.8692 (15)
.8659 (13)
.6147 (14)
.6275 (16)
.6220 (16)
.5971 (15)
.5821 (17)
.5924 (14)
.6360 (13)
.6325 (13)
.6276 (15)
.6258 (16)
.6308 (16)
.6419 (16)
.8835 (16)
.8739 (16)
.8822 (13)
.9034 (14)
.9045 (18)
.8945 (16)
.8737 (14)
.8844 (15)
.8936 (16)
.8858 (16)
.8714 (16)
.8621 (15)
.8245 (10)
.7073 (13)
.3229 (15)
.6014 (19)
.9021 (13)


.3758
.3870
.6071
1.1835
1.2414
1.3472
1.3977
1.3399
1.2321
.8831
.8182
.8546
.9603
1.0250
.9872
.4349
.5408
.5687
.4942
.3925
.3589
.7203
.7674
.8725
.9291
.8829
.7789
.6335
1.0800
.7132
.2406
.0596


(12)
(13)
(12)
(11)
(12)
(13)
(13)
(14)
(12)
(11)
(13)
(13)
(14)
(14)
(12)
(12)
(13)
(13)
(12)
(15)
(14)
(12)
(12)
(14)
(12)
(13)
(13)
(8)
(10)
(11)
(16)
(11)


.8682
.9612
.6497
.0572
-.0454
-.0854
-.0214
.0846
.1233
-.1924
-.2337
-.3339
-.3950
-.3577
-.2565
.3427
.2745
.1718
.1359
.2028
.3076
.6099
.6638
.6167
.5149
.4629
.5056
.9051
.3062
.5256
.3560
.2059


(12)
(13)
(11)
(12)
(12)
(12)
(14)
(13)
(12)
(11)
(12)
(13)
(13)
(13)
(11)
(12)
(12)
(12)
(12)
(16)
(13)
(12)
(13)
(14)
(14)
(14)
(12)
(8)
(10)
(10)
(17)
(11)


3.5 (11)
3.7 (12)
2.4 (10)
2.9 (11)
3.8 (12)
4.1 (12)
4.0 (12)
4.5 (13)
3.0 (10)
2.2 (10)
2.7 (10)
3.9 (13)
4.3 (13)
4.3 (13)
3.8 (12)
3.8 (12)
4.0 (12)
3.2 (10)
3.3 (11)
5.5 (15)
4.6 (13)
3.1 (11)
3.7 (12)
4.5 (13)
4.5 (12)
4.0 (12)
3.6 (12)
4.1 (8)
6.7 (11)
7.7 (12)
12.4 (19)
7.3 (11)


Biso is the Mean of the Principal
Axes of the Thermal Ellipsoid


C20
C21
C22
C81
C82
C83
C84
C85
C86
C111
C112
C113
C114
C115
C116
C191
C192
C193
C194
C195
C196
C221
C222
C223
C224
C225
C226
W5
W6
W7
W8
W9














Table 4-4. Bond Lengths (A) and Bond Angles (*) for I.


1.955(4)
1.962(3)
2.112(2)
1.970(3)
2.258(3)
2.396(3)
2.043(4)
1.261(5)
1.282(4)
1.342(5)
1.340(5)
1.350(5)
1.276(5)
1.357(5)
1.309(5)
1.376(5)
1.333(5)


C11
C2
C9
C3
C4
C5
C6
C7
C10
03
04
05
06
07
08
C9


1.333(5)
1.382(6)
1.465(6)
1.385(7)
1.383(6)
1.385(6)
1.474(6)
1.478(7)
1.475(7)
1.209(6)
1.199(6)
1.221(8)
1.237(5)
1.246(5)
1.229(4)
1.316(7)


W1-Cr-W2
W1-Cr-01
W1-Cr-02
W1-Cr-N5
W2-Cr-01
W2-Cr-02
W2-Cr-N5
01-Cr-02
01-Cr-N5
02-Cr-N5
Cr-01-C8
Cr-02-Cll
C1-N1-C5
N3-N2-C6
N2-N3-C8
Cr-N5-N6
Cr-N5-C9
N6-N5-C9
N5-N6-Cll
N1-C1-C2
N1-C1-C9
C2-C1-C9
C1-C2-C3


176.3(2)
88.6(1)
91.6(1)
90.8(2)
89.4(1)
91.1(1)
92.3(2)
79.7(1)
156.3(1)
76.6(1)
126.3(2)
114.6(2)
119.1(3)
120.8(3)
113.3(3)
116.7(3)
124.8(3)
118.6(4)
108.0(3)
122.7(4)
113.8(3)
123.4(4)
118.0(4)


C2-C3-C4
C3-C4-C5
N1-C5-C4
N1-C5-C6
C4-C5-C6
N2-C6-C5
N2-C6-C7
C5-C6-C7
01-C8-N3
01-C8-N4
N3-C8-N4
N5-C9-C1
N5-C9-C10
C1-C9-C10
02-C11-N6
02-C11-N7
N6-C11-N7
03-N8-04
03-N8-05
04-N8-05
06-N9-07
06-N9-08
07-N9-08


119.5(4)
119.1(4)
121.5(4)
114.4(3)
124.1(4)
111.2(3)
125.8(4)
122.9(4)
118.7(3)
123.6(4)
117.7(4)
113.6(4)
123.4(5)
122.9(5)
124.1(3)
119.0(4)
117.0(3)
121.2(6)
119.0(5)
119.8(6)
120.0(4)
120.5(3)
119.5(4)


W1
W2
01
02
N1
N2
N5
C8
C11
C1
C5
N3
C6
C8
C8
N6
C11















Bond Lengths (A) and Angles () for II.


Crl
Crl
Crl
Crl
Crl
Crl
Crl
Cr2
Cr2
Cr2
Cr2
Cr2
Cr2
Cr2
01
02
03
04
N1
N1 -
N2
N2
N3
N4-
N4 -
N5 -
N6 -
N6
N7-
N7
N8
N9 -
N9-
N10
Cl -
C1 -
C2 -
C3 -
C4 -


- 01
- 02
- W1
- W2
- N1
- N2
- N4
- 03
-04
- W3
- W4
- N6
-N7
-N9
- C8
SC11
SC19
C22
SCl
SC5
N3
SC6
C8
N5
C9
SC11
C12
C16
N8
SC17
C19
N10
C20
- C22
C2
C6
C3
C4
C5


2.203(10)
1.974(9)
1.984(14)
1.992(12)
2.181(11)
2.330(13)
2.034(11)
1.978(9)
2.094(10)
2.027(12)
1.993(13)
2.231(12)
1.996(13)
2.440(13)
1.278(18)
1.290(18)
1.294(18)
1.236(17)
1.349(19)
1.331(20)
1.415(16)
1.330(18)
1.330(19)
1.408(17)
1.322(19)
1.320(20)
1.359(18)
1.350(20)
1.389(17)
1.320(19)
1.325(20)
1.376(16)
1.296(20)
1.392(19)
1.396(21)
1.468(21)
1.354(23)
1.369(23)
1.395(22)


C5 -
C6 -
C8 -
C9 -
C11
C12
012
C13
C14
C15
C16
C17
C19
C20
C22
C81
C81
C82
C83
C84
C85
C111
C111
C112
C113
C114
C115
C191
C191
C192
C193
C194
C195
C221
C221
C222
C223
C224
C225


01-Crl-02
01-Crl-Wl
01-Crl-W2
01-Crl-N1
01-Crl-N4


76.1(4)
85.9(4)
92.4(4)
133.1(4)
152.5(5)


C1-C6-C7
01-C8-N3
01-C8-C81
N3-C8-C81
N4-C9-C5


125.0(13)
122.8(14)
117.7(13)
119.5(13)
111.5(13)


C9
C7
C81
C10
- C111

- C13
- C17
- C14
- C15

-C20
- C18
- C191
- C21
- C221
- C82
- C86
- C83
- C84
- C85
- C86
- C112
- C116
- C113
- C114
- C115
- C116
- C192
- C196
- C193
- C194
- 0195
- C196
- C222
- C226
- C223
- C224
- C225
- C226


1.465(24)
1.477(22)
1.505(21)
1.495(23)
1.466(22)
1.442(20)
1.439(21)
1.370(24)
1.424(23)
1.436(21)
1.465(22)
1.484(23)
1.498(21)
1.498(24)
1.509(21)
1.371(22)
1.408(22)
1.371(23)
1.40(3)
1.41(3)
1.392(23)
1.375(21)
1.394(21)
1.369(23)
1.390(25)
1.33(3)
1.403(24)
1.409(23)
1.399(25)
1.391(23)
1.368(24)
1.36(3)
1.40(3)
1.342(24)
1.435(23)
1.398(23)
1.39(3)
1.33(3)
1.387(23)


Table 4-5.














Table 4-5 (cont.).


02-Crl-Wl
02-Crl-W2
02-Crl-Nl
02-Crl-N4
W1-Crl-W2
W1-Crl-Nl
W1-Crl-N4
W2-Crl-Nl
W2-Crl-N4
N1-Crl-N4
03-Cr2-04
03-Cr2-W3
03-Cr2-W4
03-Cr2-N6
03-Cr2-N7
04-Cr2-W3
04-Cr2-W4
04-Cr2-N6
04-Cr2-N7
W3-Cr2-W4
W3-Cr2-N6
W3-Cr2-N7
W4-Cr2-N6
W4-Cr2-N7
N6-Cr2-N7
Crl-01-C8
Crl-02-C11
Cr2-03-C19
Cr2-04-C22
Crl-Nl-Cl
Crl-N1-C5
C1-N1-C5
N3-N2-C6
N2-N3-C8
Crl-N4-N5
Crl-N4-C9
N5-N4-C9
N4-N5-C11
Cr2-N6-C12
Cr2-N6-C16
C12-N6-C16
Cr2-N7-N8
Cr2-N7-C17
N8-N7-C17
N7-N8-C19
N10-N9-C20


91.1(5)
91.5(5)
150.3(4)
76.7(5)
176.4(5)
86.7(5)
90.0(5)
92.2(5)
93.0(5)
73.7(5)
78.7(4)
91.9(4)
89.8(4)
149.9(4)
78.0(4)
89.6(4)
91.2(4)
131.1(4)
156.6(4)
178.2(4)
92.4(4)
89.2(5)
85.9(4)
90.7(5)
72.3(4)
122.0(10)
115.2(9)
113.5(9)
128.2(9)
123.7(9)
115.2(10)
120.9(12)
117.2(12)
108.5(12)
116.3(8)
123.4(10)
119.8(12)
108.2(11)
114.2(9)
124.7(9)
120.8(12)
115.6(9)
126.9(10)
117.6(12)
109.6(12)
120.8(12)


N4-C9-C10
C5-C9-C10
02-C11-N5
02-C11-C111
N5-C11-C111
N6-C12-C13
N6-C12-C17
C13-C12-C17
C12-C13-C14
C13-C14-C15
C14-C15-C16
N6-C16-C15
N6-C16-C20
C15-C16-C20
N7-C17-C12
N7-C17-C18
C12-C17-C18
03-C19-N8
03-C19-C191
N8-C19-C191
N9-C20-C16
N9-C20-C21
C16-C20-C21
04-C22-N10
04-C22-C221
N10-C22-C221
C8-C81-C82
C8-C81-C86
C82-C81-C86
C81-C82-C83
C82-C83-C84
C83-C84-C85
C84-C85-C86
C81-C86-C85
C11-C111-C112
C11-C111-C116
C112-C111-C116
C111-C112-C113
C112-C113-C114
C113-C114-C115
C114-C115-C116
C111-C116-C115
C19-C191-C192
C19-C191-C196
C192-C191-C196
C191-C192-C193


123.1(15)
125.4(13)
123.5(14)
119.4(14)
117.0(13)
120.7(13)
115.4(12)
123.8(14)
118.5(14)
121.4(14)
116.8(14)
121.7(13)
116.5(13)
121.7(14)
111.2(13)
124.4(14)
124.3(13)
122.6(13)
119.3(14)
117.9(14)
110.3(14)
128.8(14)
120.9(14)
120.8(13)
122.9(13)
115.8(12)
121.3(14)
118.2(13)
120.4(14)
120.7(15)
119.9(15)
120.4(15)
118.5(15)
120.0(14)
123.6(14)
117.8(13)
118.5(14)
121.8(15)
118.6(15)
121.1(16)
120.6(16)
118.9(15)
121.9(14)
118.2(14)
119.9(15)
119.6(15)































Table 4-5 (cont.).


N9-N10-C22
N1-C1-C2
N1-C1-C6
C2-C1-C6
C1-C2-C3
C2-C3-C4
C3-C4-C5
N1-C5-C4
N1-C5-C9
C4-C5-C9
N2-C6-C1
N2-C6-C7


109.0(11)
119.3(14)
116.9(12
123.8(14)
120.5(15)
119.4(14)
119.2(14)
120.7(15)
115.8(13)
123.5(14)
108.3(12)
126.5(13)


C192-C193-C194
C193-C194-C195
C194-C195-C196
C191-C196-C195
C22-C221-C222
C22-C221-C226
C222-C221-C226
C221-C222-C223
C222-C223-C224
C223-C224-C225
C224-C225-C226
C221-C226-C225


120.6(15)
119.2(16)
122.8(17)
117.2(16)
126.2(14)
113.0(14)
120.7(15)
120.3(16)
119.2(17)
120.1(15)
123.1(17)
116.3(16)




























co Nf -OOO O O O -i mco i MOn M o-4 iov o m hr-iNMi
3 I I I I I I I I I -lr I I I N



'0
... .. r -,' .
I I


4, N N rHl r-qr-4N N N04N NNNNNNN vNN^)ON NNNC

V co c o0 I" m cooOo "r- o coC





:00)









4-) NN NNNNNNNNNTMNNNNNMENNN
III Ivv I I11vvvvvvIIv1vv1 ,vvvvI)v



y0- -





























OI
r0 *'-








N M N M N CM U) t r- N CO O E 00 C)N V CM W C MV
















67














5-1
0
44
.N CMC NC NC +
C0 M M r i r- I 4 W

4 C

-0 0+


( 4M-) 0
NN N u e(Um
0 N 0 % o r-I 0 r-






OC-
%03 N(M C rY N 3J









r4(



E4-
E k-% o N Na

)C N













N ONN
OOOOo
r-ic





0 0 0 0

















68











.. *








Sr- 4 .
II 4NN I IHI I I vNIvIIII H H
11111 I r I I 1 II I Ir







4JI I I- l-4 INHI IN I HIN H HI
I0 II0 I I I I I
00)*^ 0




0o.










N Npmv % roi n om 0e N NNw p wNoN wN c moom c4Crt
M 0 No Mo M "ri Mn Vo c < di o in r- 4 cNro N 0 r- N o N3 CNnM No W









44








(N N






N *40 N0 o 0 0 N4N N m 0 0
( ... .




O I I-4 r-l I i q r-Il I i I l





(N C. .-I (IC l I) 0





b O000 o ii ro ii ^
^ M^ov nN M^ T oNS o ^( T ? Mco^ T a nc
r- .
o *r~o~yim ^ o ii^iikirinnO~on'C


r- r- M m l
t- ii- -.i riT s .is o 'ii n a i ^ r o ct -t c 't
UCU(UOOS3222 Z2U U
















69








0 MOON ow 00No o N%

S "I I' I 1 I



r-IH H I II r-IH IwIHHwm-H H I r- Hm-wm(H
I I I I I I I I I I I I I I





r .. a. .

.4 I4l r-l r r I r-l r4 I I




S0^ 0 0 O00O 0 000 N H


N ll OHN N N O Her-0 lON
00 0 0 0 0 000 I n



) M I" -I l w m H l i- r I I l I I i Or O
I l l I I III II I I I II








S0 -000^000C 0 000 000 0 0










u u u u U u UI I0UUu 0 0 U u u


























c o 0 0 'D M V n
N .
Sl r-I lH I I Nl.-4 I N i-EO I
I I I I I I I I I I I I


0
l000 OC ONNi 0OO 44
0 -0 4 -000

0 VH M IIM rE- I 4%DnH0 04





I I I II I II I O
O 1' 1 E H 1 1



+



+ 1 T-l l r-l .-I r I C4 C; C C4 1 -lV r) 0 H (0



k 1 24 X
I I I I 1 1 1 1 I I I O 3









Sa) N z N
S. .. ... '4






S. a. a. ()


N E4 4





a. a. a. H. a. H .

























Table 4-8. Hydrogen Atomic Parameters x,y,z and Biso for I.
E.S.Ds. refer to the last digit printed.

x y z Biso


H1(N4)
H2(N4)
H3(N3)
H4(C7)
H5(C7)
H6(C7)
H7(C4)
H8(C3)
H9(C2)
H10(C10)
H12(C10)
H13(C10)
H14(N7)
H15(N7)
H16(W1)
H17(W1)
H18(W2)
H19(W2)
H20(W3)
H21(W3)


-.029(4)
-.048(4)
.006(4)
-.023(5)
.108(6)
.030(6)
.092(4)
.150(4)
.182(4)
.252(5)
.247(5)
.146(5)
.153(4)
.127(3)
-.103(5)
-.126(5)
.301(4)
.262(6)
.266(7)
.183(7)


.559(3)
.648(3)
.755(3)
.904(4)
.913(5)
.943(4)
.955(3)
.945(4)
.802(3)
.570(4)
.661(4)
.605(4)
.327(3)
.316(3)
.574(4)
.598(4)
.623(3)
.634(5)
.846(6)
.930(5)


.566(4)
.582(4)
.478(4)
.399(5)
.426(6)
.328(6)
.154(4)
-.017(4)
-.080(4)
-.074(4)
-.109(5)
-.143(5)
.085(4)
.188(4)
.088(5)
.173(5)
.304(4)
.389(6)
.755(7)
.726(6)


3.6(12)
2.2(10)
3.8(11)
9.0(16)
8.8(21)
7.4(19)
3.8(11)
4.8(12)
3.3(10)
5.6(14)
6.0(15)
5.4(18)
3.5(10)
1.8(19)
5.8(19)
3.3(16)
3.9(13)
6.8(21)
15.2(22)
10.9(23)














Table 4-9. Hydrogen Atomic Parameters x,y,z and Biso for II.
E.S.Ds. refer to the last digit printed.

x y z Biso

H1(C7) .690 .855 .394 3.9
H2(C7) .659 .805 .462 3.9
H3(C7) .560 .847 .453 3.9
H4(C2) .618 .654 .491 3.6
H5(C3) .619 .485 .495 3.6
H6(C4) .622 .473 .338 4.3
H7(C10) .572 .502 .198 3.9
H8(C10) .699 .511 .160 3.9
H9(C10) .608 .529 .081 3.9
H10(C18) .944 .062 .658 6.0
Hl1(C18) .835 .128 .607 3.9
H12(C18) .817 .067 .704 3.9
H13(C13) .859 .014 .871 3.8
H14(C14) .875 .015 1.029 3.6
H15(C15) .881 .183 1.033 4.5
H16(C21) .875 .460 .946 3.9
H17(C21) .806 .372 1.009 3.9
H18(C21) .933 .331 .989 4.6
H19(C112) .635 .736 -.185 3.7
H20(C113) .624 .803 -.365 4.6
H21(C114) .622 .990 -.474 5.0
H22(C115) .624 1.108 -.406 5.2
H23(C116) .662 1.035 -.230 4.0
H24(C222) .884 .723 .744 4.6
H25(C223) .907 .908 .660 5.2
H26(C224) .891 1.011 .477 4.7
H27(C225) .869 .928 .383 5.1
H28(C226) .845 .745 .463 4.6
H29(C82) .642 1.204 -.095 4.6
H30(C83) .637 1.392 -.166 4.4
H31(C84) .590 1.481 -.053 4.6
H32(C85) .562 1.379 .134 5.8
H33(C86) .583 1.186 .204 3.9
H34(C192) .855 .601 .302 4.2
H35(C193) .873 .650 .120 3.6
H36(C194) .921 .516 .056 4.1
H37(C195) .915 .336 .173 6.7
H38(C196) .894 .278 .359 4.9
H39(W1) .458 .914 .062 3.9
H40(W1) .507 .900 .164 3.9
H41(W2) .806 .885 .084 3.9
H42(W2) .834 .819 .056 3.9
H43(W3) .668 .477 .676 3.9






























Table 4-9 (cont.).


x y z Biso

H44(W3) .769 .416 .682 3.9
H45(W4) 1.049 .442 .597 3.9
H46(W4) 1.078 .383 .577 3.9
H47(W5) .780 .669 .915 3.9
H48(W5) .859 .674 .887 3.9
H49(W6) .679 1.043 .259 3.9
H50(W6) .705 1.105 .264 3.9
H51(W7) .336 .718 .467 3.9
H52(W8) .633 .282 .314 3.9
H53(W8) .582 .198 .388 3.9
H54(W9) .947 .093 .195 3.9
H55(W9) .920 -.005 .198 3.9




































































Figure 4-1.


An ORTEP representation of Compound I.


























C84


C114

C115


C10


Figure 4-2. An ORTEP representation of compound II.


























Table 4-10. Bond Distances in A Within the
Coordination Sphere


I II





Cr W1 = 1.955 1.984 2.027

W2 = 1.962 1.992 1.993

01 = 2.112 2.203 1.987

02 = 1.970 1.974 2.094

N1 = 2.258 2.181 2.231

N2 = 2.396 2.330 1.996

N5 = 2.043 2.034 2.440












77

Jahn Teller Effect. Previously it was suggested[8]

that the asymmetry observed in PBP Cr(III) complexes was due

to a Jahn-Teller distortion[31] which occurs to remove the

orbital degeneracy. Since both compounds exhibit solution

magnetic moments corresponding to 3 unpaired electrons, the

central Cr ion can be described as a d3 system. The energy

level diagrams, Figure 4-3, for the d-orbitals in PBP

geometry[33,34] require placing one electron in either the

antibonding dx2_y2 or dxy orbital. Assuming regular D5h

geometry, the imposed crystal field would lead to an orbital

degeneracy which may be removable by a Jahn-Teller vibronic

distortion.

With three unpaired electrons, an electron configuration

of e" 2, e'2 is obtained for Cr(III) in a PBP field. Upon

coupling the two e", electrons, a triplet spin function is

obtained which is symmetric, consequently the antisymmetric

direct product of the two electrons must be taken as required

by the Pauli principal to produce an overall spin function

which is antisymmetric.



[e", X e"1]lnt = 3A'2



Now coupling in the e'2 electron and taking the symmetric

direct product the ground state term symbol





















01


,-r-
(a


01


Co




I


(0









14
mH
0a)






C
4a)


(CO


S0
4-a

aC
10
i- *
(0
r>
en4 -


1-4
a)


01


0)









79

[A'2 X e' 2] m = E'2



is obtained. Attention must now be given to how the spin

portion of the wave function transforms in the point group

symmetry by looking at the spin-orbit coupling effects. If

there is strong spin-orbit coupling, four states arise as

shown below but all are Kramers doublets and thus not Jahn-

Teller active.

Spin = 3/2

(i.e. quartet ground state)

3/2 = E,/2 + E3/2

[E1/2 + E3/2] X E' = E3/2 + E5/2 + E1/2 + E3/2

In the case of Cr(III) the spin-orbit coupling can be

considered weak[35]. In consequence upon taking the symmetric

direct product of the E'2 vibronic state only



[E', X E'2] = A'1 + E'



is obtained.

Although the A'l state is totally symmetric and not Jahn-

Teller active, the E', state is a two fold degenerate

vibration and could indeed give rise to a Jahn-Teller

vibronic distortion.

Although it is not our purpose to make any quantitative

calculation on the magnitude of this distortion, the Jahn-

Teller effect for a d3 metal ion in a PBP field is important









80

since the orbital degeneracy involves an electron in either a

dx2_y2 or a dxy orbital both of which participate strongly in

bonding in the equatorial plane.

Deprotonation of the Ligand. A second contribution to

the observed distortion in both PBP Cr(III) complexes arises

from the formation of a half-conjugated monoanion which

results from the deprotonation of one of the NH functions of

the respective ligand "arm" as shown in Figure 4-4. In

complex I the hydrogen atom on N6 was not located;

consequently, the ligand becomes a half-conjugated monoanion

and as a result the overall charge on the complex has a 2+

which is balanced by two N03O ions. Behavior of this type is

not unusual as has been pointed out previously[29,36,37]. The

bond lengths from the deprotonated arm to the Cr(III) ion are

shorter than those on the opposite side as might be expected

from electrostatic arguments.

The quality of the final difference map for complex I was

not of sufficient quality to locate all hydrogens with

certainty. It is likely that both molecules have lost one

proton since each molecule has two chloride ions associated

with it and requires a third negative charge to balance the 3+

state of the metal. Since the complex was obtained from a

highly acidic solution, the existence of a OH- ion rather than

a water molecule in the unit cell is unlikely.

Deprotonation of either DAPSC or DAPBAH leads to the

delocalization of the n-electrons in the ligand arm.





























1 4
No



HN O


NH2


Figure 4-4. A representation of the half-conjugated monoanion
which results from the deprotonation of the ligand.









82

Lengthening of the C=O and N=C bonds and a shortening of the

N-C bond is observed in both 1 and 2 as would be expected.

The N-N bond would also be expected to shorten though we find

the bond actually lengthens which is in accord with previous

reports[9,29]. This lengthening may be due to the presence of

a n-nodal plane perpendicular to the equatorial plane of the

pentagonal bipyramid which bisects the N-N bond. Deprotonation

of the ligand puts an additional electron into the delocalized

n-orbital which would in turn cause greater repulsion at the

nodal plane. Hence n-orbital antibonding interactions are a

more likely cause of this anomaly than ring stress in the five

membered ring resulting from the strong attraction of the

negatively charged portion of the ligand to the metal as has

been suggested[29].

In conclusion, we see that PBP complexes of Cr(III) with

either DAPSC or DAPBAH are readily obtained from aqueous

media. Moreover, these two complexes provide additional

examples of static Jahn-Teller distortions in PBP complexes.

Furthermore, the distortions observed cannot be accounted for

totally in terms of either a Jahn-Teller distortion or the

formation of a half-conjugated monoanion but rather by a

combination of both effects.















CHAPTER 5

SYNTHESIS AND CRYSTAL STRUCTURE OF A WATER SOLUBLE CATIONIC
(13,13'-CioHs6)Ru(IV) COMPLEX: CHLORO[(1-3-q:6-8-v )-2,7-
DIMETHYLOCTADIENEDIYL]SEMICARBAZIDE RUTHENIUM(IV) CHLORIDE
DIHYDRATE.


Introduction

There is current interest in high formal oxidation state

Ru complexes as models for the heme protein system, as well as

for their relevance in catalytic processes[38-43] and for

their use as oxidizing agents for organic synthesis[44].

Although stable bis(n-allyl)ruthenium complexes have been

prepared[41], the reactions of the chloro-bridged dimer di-u-

chloro-bis[(2,7,-dimethyl-octa-2,6-diene-1,8-

diyl)ruthenium(IV)] chloride,I, has not been extensively

studied. We chose to study the reaction of DAPSC with 1[45-

47] in an attempt to prepare a PBP Ru(IV) complex.

One problem encountered in preparing PBP complexes of the

second and third transition series is that the spin-orbit

coupling effect has a major influence on the splitting of the

d-orbitals. This effect magnifies the energy differences

between the d-orbitals which are initially produced by the PBP

ligand field encountered by the metal-cation. The greatest

difference in energy for second and third row metals comes

between the e'2 and e"I orbitals (Figure 4-3) with the e'2









84

orbitals increasing dramatically in energy as compared to the

e", orbitals. Thus, it is reasonable to expect that metal

cations with electron configurations of d4 or lower[4] would

be easier to isolate since it would not require the placement

of one or more electrons into the higher energy orbitals.

Since a Ru(IV) complex had been reported[48] where

bidentate ligands had been used to achieve PBP geometry, we

were interested in exploring whether a pentadentate ligand

could also be used to isolate Ru in a high formal oxidation

state. The reported oxidation state of I suggested that the

metal was d4. Furthermore, this compound was known to be air

stable and relatively uncomplicated to prepare. Consequently

we decided to use I as a source of Ru(IV) in our study.

Rather than the expected PBP complex, a novel 5-coordinate

species was isolated with an unusual trigonal bipyramidal,

TBP, geometry around the Ru center resulting from a disruption

of the chlorine bridges in the dimeric Ru starting material

and the solvolysis of the DAPSC ligand. The new complex is

the first example of a Ru(IV) ion chelated by both two (q3-

allyl) functions and a semicarbazide ligand.

Recently, the isomerism and solution equilibria for the

chloro-bridged dimer, I, was reported and the possible

existence of cationic species was postulated[49]. Indeed,

this is the first report of the isolation and structural

characterization of such a species.









85

Experimental
Materials. All solvents and chemicals were reagent grade

and were used as supplied.

Synthesis. Dichloro(2,7-dimethyl-octa-2,6-diene-l,8-

diyl)ruthenium chloride, I,[50] and DAPSC[9] were synthesized

by methods previously described. Into 35 mL of deionized H20,

DAPSC (0.045g, 0.2 mmole) was slurried together with I

(0.050g, 0.1 mmole). This mixture was stirred and heated to

55*C for two hours. A clear yellow/brown solution was

obtained which was filtered through a fine glass frit while

warm. Upon reaching room temperature (230C), the pH of the

solution was adjusted to 1.45 with HC1. Brown, air stable

single crystals were obtained from the above solution in 10

days by the slow evaporation of the solvent. The compound was

found to be quite soluble in H20 and decomposed at 1800C.

The yield of this compound can be increased dramatically

by the reaction of I with semicarbazide directly. For

example, 0.050g (0.1 mmole) of I was combined with 0.0181g

(0.2 mmole) semicarbazide hydrochloride in 35 mL deionized

water (pH = 1.50) and heated to 55C for 2 hrs.. A clear

yellow-brown solution formed which was filtered and allowed to

cool to room temperature(25 C). Slow evaporation of this

solution produced, after 12 days, brown crystals of the title

complex (yield 77%). Elemental analysis: Calc. C = 31.50%, H

= 6.01%, N = 10.02%, Found C = 31.30%, H = 6.20%, N = 9.91%.









86

X-ray Crystallography. A crystal 0.05 x 0.07 x 0.13 mm

suitable for diffraction studies was mounted on the end of a

glass fiber and all subsequent measurements were made using a

Nicolet R3m diffractometer with graphite-monochromated Mo-Ka

radiation (X = 0.71069A). The cell dimensions were determined

by a least squares refinement of 25 automatically centered

reflections. A variable-speed (10 29.3*) 28 scan technique

was used to measure the intensity data from 0 to 450 degrees

in 28. Two standard reflections were measured every 98

reflections to monitor for any decomposition during the x-ray

analysis. No absorption correction was made. The pertinent

crystal data is given in Table 5-1.

Structure Refinement. The data reduction, structure

solution and final refinement were performed using the NRCVAX

(PC-Version)[18] package of programs. The Ru atom and all non-

hydrogen atoms were located by the heavy-atom method

(Patterson and Fourier syntheses) and refined anisotropically

by full-matrix least squares. The hydrogen atoms were located

by the calculation of a difference Fourier map and refined

isotropically. The model converged to an R of 0.027 and a Rw

of 0.034. The final positional parameters are given in Table

5-2. The final bond distances involving the non-hydrogen

atoms and bond angles are listed in Table 5-3. Table 5-4

lists the anisotropic thermal parameters and Table 5-5 lists

the hydrogen positional parameters.









87

Table 4-1. Crystal Data


formula

MW

a, A

b, A

c, A

a, deg

P, deg

Y, deg

Vol.,A3

z

Ocalc'g/cm3
space group
-1
p, cm1

no. of data used (Inet>2.5olnet)

Ra

b
w


RuC11N303H25Cl2

419.31

7.1907(12)

15.280(4)

7.8244(21)

90.305(22)

102.154(18)

89.895(18)

840.4

2

1.66

P Ibar

26.1

2603

2.7

3.4


R= I -I cI







R w(IFI-IFI) 2 1/2
E WIF2ol











Atomic Parameters x,y,z and Biso.


x/a y/b z/c Biso


Ru

Cll

01

N3

C2

C8

CL2

Cl

C3

C4

C5

C6

C7

C9

C10

ClI

N1

N2

W1

W2


.22152(2)


.21704(4)

.4133 (2)

.0130 (4)

.1059 (5)

.4176 (6)

.1037 (6)

-.2225 (2)

.4176 (6)

.3422 (8)

.4720 (6)

.4586 (7)

.2511 (7)

.1166 (6)

.2157 (8)

-.0126 (7)

-.0655 (6)

-.1857 (5)

-.0314 (5)

-.6733 (4)

.8546 (5)


.1624

.3004

.2994

.2803

.0868

.4335

.3321

.3153

.1922

.1207

.1021

.1292

.0059

.1303

.3574

.4155

.3589

.4531

.2259


.29801(4)


(1)

(2)

(2)

(3)

(3)

(1)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(2)

(3)

(2)

(2)


.5579

.1373

.4855

.1500

.2342

.7044

.3017

-.0332

.1874

.0508

-.0383

.0776

.3003

.3309

.2169

.1310

.3926

.6394

.7018


1.765(12)


(1)

(3)

(4)

(5)

(6)

(1)

(6)

(6)

(6)

(6)

(6)

(6)

(7)

(6)

(5)

(5)

(5)

(4)

(5)


3.05

2.54

2.27

2.56

2.88

3.31

2.79

3.83

2.60

3.51

3.39

2.63

4.08

3.17

2.28

2.91

3.01

3.13

3.84


(4)

(11)

(13)

(17)

(18)

(5)

(17)

(23)

(17)

(20)

(20)

(17)

(23)

(19)

(16)

(15)

(15)

(13)

(16)


Table 5-2.











Table 5-3. Bond Distances(A) and Angles()


Ru Cll
Ru 01
Ru N3
Ru Cl
Ru C2
Ru C4
Ru C7
Ru C8
Ru C10
01 Cll
N3 N2


Cll-Ru-01
C11-Ru-C2
C11-Ru-C8
Ru-01-Cll
Ru-C2-C1
01-Ru-N3
01-Ru-C2
01-Ru-C8
C3-C2-C4
Ru-C8-C9
N3-Ru-C2
N3-Ru-C8
C9-C8-C10
C2-C4-C5
C5-C6-C7
01-C11-N1
N1-C11-N2


2.3976(12)
2.102(3)
2.162(3)
2.219(4)
2.224(4)
2.230(4)
2.223(4)
2.230(4)
2.220(5)
1.267(5)
1.426(5)


C2 C1
C2 C3
C2 C4
C8 C7
C8 C9
C8 C10
C4 C5
C5 C6
C6 C7
Cl1 N1
Cl1 N2


159.70(8)
105.45(12)
87.80(12)
115.24(24)
71.15(24)
77.33(11)
84.35(14)
102.72(14)
124.1(4)
122.5(3)
120.20(15)
119.04(15)
122.4(4)
124.3(4)
111.2(4)
121.4(4)
118.2(4)


Cl1-Ru-N3
C4-Ru-C10
C7-Ru-C10
Ru-N3-N2
Ru-C2-C3
Ru-C2-C4
C1-C2-C3
C1-C2-C4
Ru-C8-C7
Ru-C8-C10
C7-C8-C9
C7-C8-C10
C2-Ru-C8
C4-C5-C6
C8-C7-C6
01-C11-N2
N3-N2-C11


1.423(6)
1.521(6)
1.417(6)
1.409(7)
1.508(7)
1.404(6)
1.514(6)
1.534(7)
1.514(6)
1.319(5)
1.345(5)


82.39(9)
127.80(17)
64.14(17)
108.58(22)
119.6(3)
71.67(23)
121.8(4)
113.6(4)
71.27(24)
71.21(25)
123.4(4)
114.0(4)
120.42(17)
111.4(4)
124.3(4)
120.4(4)
118.1(3)




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E3H3RG0VO_I2NMZ0 INGEST_TIME 2017-07-13T21:48:51Z PACKAGE AA00003733_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

$ 6<17+(7,& 6758&785$/ $1' 7+(25(7,&$/ ,19(67,*$7,21 2) 3(17$'(17$7( 6&+,)) %$6( /,*$1'6 %\ 6+$81 2 6200(5(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 ZLVK WR WKDQN P\ UHVHDUFK GLUHFWRU *XV 3DOHQLN IRU KLV KHOS DQG JXLGDQFH GXULQJ WKH FRXUVH RI WKLV SURMHFW *DLQHV 0DUWLQ DQG 7RP &XQGDUL IRU WKH KHOSIXO GLVFXVVLRQV FRQFHUQLQJ WKH ZRUN SUHVHQWHG LQ &KDSWHU DQG -RKQ 'DYLG %DNHU IRU KLV LQWURGXFWLRQ KHOS DQG SDWLHQWV LQ =,1'2 ODQG 7KHUH DUH D P\ULDG RI RWKHU SHRSOH ZKR KDYH KHOSHG PH LQ WKH FRXUVH RI WKLV SURMHFW DQG LQ PDNLQJ P\ ZD\ WKURXJK JUDGXDWH VFKRRO WKDQN DOO RI \RX DQG OHDYH \RX ZLWK WKLV ZLVK ZKLFK ERUURZHG IURP % '\ODQf PD\ \RXU KHDUW DOZD\V EH MR\IXO PD\ \RXU VRQJ DOZD\V EH VXQJ DQG PD\ \RX VWD\ IRUHYHU \RXQJ LL

PAGE 3

7$%/( 2) &217(176 $&.12:/('*0(176 LL /,67 2) 7$%/(6 LY /,67 2) ),*85(6 YL $%675$&7 YLL &+$37(56 ,1752'8&7,21 3(17$*21$/ %,3<5$0,'$/ &203/(;(6 2) 6Q,9f 7L,,,f $1' &X,,f ,QWURGXFWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ $ 129(/ 3(17$*21$/ %,3<5$0,'$/ ,521 &203281' 81&211(&7(' )H,,f $1' )H,,,f 02/(&8/(6 :,7+,1 7+( 6$0( $6<00(75,& 81,7 ,QWURGXFWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ 3(17$*21$/ %,3<5$0,'$/ &203/(;(6 2) &U,,, f :+,&+ ',63/$< $ 67$7,& -$+17(//(5 ',67257,21 ,QWURGXFWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ 6<17+(6,6 $1' &5<67$/ 6758&785( 2) $ :$7(5 62/8%/( &$7,21,& L@ 7O&+ f5X ,9 f &203/(; &+/252> UL WM f ',0(7+
PAGE 4

$ 7+(25(7,&$/ ,19(67,*$7,21 2) 7+( (/(&7521,& $1' 6758&785$/ 3523(57,(6 2) 7+( /,*$1' '$36& $1' 7+( 3(17$*21$/ %,3<5$0,'$/ &203/(; ',$482 ',$&(7
PAGE 5

/,67 2) 7$%/(6 7DEOH &U\VWDO 'DWD IRU 6Q '$36& f&r 7L '$3%$+ f &O DQG &X '$3$$+ f&O + f 7DEOH $WRPLF 3DUDPHWHUV IRU 6Q '$36& f&r 7DEOH $WRPLF 3DUDPHWHUV IRU 7L'$3%$+f& 7DEOH $WRPLF 3DUDPHWHUV IRU &X'$3$$+f&O+ f 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU 6Q '$36& f& 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU 7L'$3%$+f& 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU &X '$3$$+f &O +f 7DEOH $QLVRWURSLF 8 YDOXHV IRU 6Q '$36& f&r 7DEOH $QLVRWURSLF 8 YDOXHV IRU 7L'$3%$+f& 7DEOH $QLVRWURSLF 8 YDOXHV IRU &X'$3$$+f&O+ f 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU 6Q '$36& f& 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU 7L'$3%$+f& 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU &X '$3$$+f &O +f 7DEOH $WRPLF 3DUDPHWHUV IRU )H,,f,,,f '$36&f &O +f 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU )H,,f,,,f '$36&f &O +f 7DEOH $QLVRWURSLF 8 YDOXHV IRU )H,,f,,,f '$36& f&+f 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU )H,,f,,,f '$36&f &O +f 7DEOH %RQG /HQJWKV 2EVHUYHG :LWKLQ WKH ,PPHGLDWH &RRUGLQDWLRQ 6SKHUH IRU )H,,f,,,f '$36&f&+f DQG UHODWHG FRPSRXQGV 7DEOH &U\VWDO 'DWD IRU &U'$36&f+ f DQG &U '$3%$+ f+f Y

PAGE 6

7DEOH $WRPLF 3DUDPHWHUV IRU &U'$36&f+ f 7DEOH $WRPLF 3DUDPHWHUV IRU &U'$3%$+f+ f 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU &U '$36& f +f 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU &U '$3%$+ f+f 7DEOH $QLVRWURSLF 8 YDOXHV IRU &U'$36&f+ f 7DEOH $QLVRWURSLF 8 YDOXHV IRU &U'$3%$+f+ f 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU &U '$36& f + f 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU &U '$36& f +f 7DEOH %RQG 'LVWDQFHV :LWKLQ WKH &RRUGLQDWLRQ 6SKHUH IRU &U '$36&f+ f DQG &U '$3%$+ f+f 7DEOH &U\VWDO 'DWD IRU WM Q&+ f6HPLFDUED]LGH 5X,9f &KORULGH 7DEOH $WRPLF 3DUDPHWHUV IRU 7_ UL&+f 6HPLFDUED]LGH 5X,9f &KORULGH 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU W_ U_&+f 6HPLFDUED]LGH 5X,9f &KORULGH 7DEOH $QLVRWURSLF 8 YDOXHV IRU 7f Q&+f 6HPLFDUED]LGH 5X,9f &KORULGH 7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV IRU WM WL&+ f 6HPLFDUED]LGH 5X,9f &KORULGH 7DEOH 6XPPDU\ RI WKH 5X&O %RQG 'LVWDQFH 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU WKH *HRPHWULFDOO\ 2SWLPL]HG '$36& 7DEOH %RQG 'LVWDQFHV DQG $QJOHV IRU WKH *HRPHWULFDOO\ 2SWLPL]HG )H '$36& f + f YL

PAGE 7

7DEOH $ 6XPPDU\ RI WKH %RQG 'LVWDQFHV :LWKLQ WKH ,PPHGLDWH &RRUGLQDWLRQ 6SKHUH IRU DQ )Hr &HQWHU LQ 6LQJOHW 7ULSOHW DQG 4XLQWHW 6SLQ 6WDWHV 7DEOH 5HODWLYH 7RWDO (QHUJLHV RI WKH 7KUHH 2SWLPL]HG 6SLQ 6WDWHV

PAGE 8

/,67 2) ),*85(6 )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH *UDSKLF 5HSUHVHQWDWLRQ RI WKH /LJDQGV '$36& '$3%$+ DQG '$3$$+ $Q 257(3 5HSUHVHQWDWLRQ RI >6Q '$36& f&O@W $Q 257(3 5HSUHVHQWDWLRQ RI 7L'$3%$+f& $Q 257(3 5HSUHVHQWDWLRQ RI > &X '$3$$+f &O +f7 $Q 257(3 5HSUHVHQWDWLRQ RI DQ )H,,,,,f '$36& &RPSOH[ $Q 257(3 5HSUHVHQWDWLRQ RI >&U '$36& f + f@r $Q 257(3 5HSUHVHQWDWLRQ RI >&U '$3%$+ f+f@ &U\VWDO )LHOG 6SOLWWLQJ 'LDJUDP IRU D 3HQWDJRQDO %LS\UDPLGDO )LHOG $ 5HSUHVHQWDWLRQ RI WKH +DOI&RQMXJDWHG 0RQRDQLRQ IRUP RI '$36& $Q 257(3 5HSUHVHQWDWLRQ RI WM WL&+ f 6HPLFDUED]LGH 5X,9f &KORULGH $ 5HSUHVHQWDWLRQ RI WKH %RQGLQJ 1RQERQGLQJ DQG $QWLERQGLQJ 0ROHFXODU 2UELWDOV IRU D HOHFWURQ U@DOO\O IXQFWLRQ 5HSUHVHQWDWLRQV RI WKH '$36& /LJDQG LQ /RZ (QHUJ\ &RQIRUPDWLRQV $ 5HSUHVHQWDWLRQ RI '$36& LQ WKH 2SWLPXP *HRPHWU\ DV 'HWHUPLQHG E\ =,1'2 $Q ,OOXVWUDWLRQ RI WKH 5HODWLYH 7RWDO (QHUJ\ YV WKH $QJOH RI 5RWDWLRQ IRU '$36& ZLWK 2QH 6HPLFDUED]RQH DUP /RFNHG )RUZDUG ,OO $Q ,OOXVWUDWLRQ RI WKH 5HODWLYH 7RWDO (QHUJ\ YV WKH $QJOH RI 5RWDWLRQ IRU '$36& ZLWK 2QH 6HPLFDUED]RQH DUP /RFNHG %DFNZDUG YLLL

PAGE 9

)LJXUH )LJXUH )LJXUH $Q ,OOXVWUDWLRQ RI WKH 3RVVLEOH 6SLQ 6WDWHV IRU DQ )Hr Gf ,RQ &RRUGLQDWH 6\VWHP DQG $WRP 1XPEHULQJ 6FKHPH $ 5HSUHVHQWDWLRQ RI >)H '$36& f + f@r LQ WKH 2SWLPXP *HRPHWU\ DV 'HWHUPLQHG E\ =,1'2

PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $ 6<17+(7,& 6758&785$/ $1' 7+(25(7,&$/ ,19(67,*$7,21 2) 3(17$'(17$7( 6&+,)) %$6( /,*$1'6 %\ 6+$81 6200(5(5 0D\ &KDLUPDQ 'U *XV 3DOHQLN 0DMRU 'HSDUWPHQW &KHPLVWU\ 7KH SHQWDGHQWDWH 6FKLII EDVH OLJDQGV GLDFHW\O S\ULGLQHELVVHPLFDUED]RQHf '$36& GLDFHW\OS\ULGLQH ELVEHQ]RLF DFLG K\GUD]RQHf '$3%$+ DQG GLDFHW\O S\ULGLQHELV DFHWK\GUD]RQHf '$3$7' ZHUH XVHG WR LVRODWH 6Qr 7Lr DQG &X UHVSHFWLYHO\ LQ SHQWDJRQDO ELS\UDPLGDO 3%3 JHRPHWU\ 7KH FRPSOH[HV ZHUH FKDUDFWHUL]HG E\ ;UD\ GLIIUDFWLRQ VWXGLHV DQG WKH VWUXFWXUDO GHWDLOV RI HDFK FRPSOH[ DUH UHSRUWHG DQG GLVFXVVHG $ XQLTXH )H'$36& 3%3 VSHFLHV LV DOVR UHSRUWHG ZKLFK KDV EHHQ FKDUDFWHUL]HG E\ DQ ; UD\ GLIIUDFWLRQ VWXG\ DQG HYLGHQFH LV SXW IRUWK WR VKRZ WKDW LQ RQH RI WKH PROHFXOHV WKH )H DWRP LV IRUPDOO\ ZKHUH LQ WKH RWKHU PROHFXOH WKH )H DWRP LV IRUPDOO\ 7ZR 3%3 &Ur FRPSOH[HV DUH UHSRUWHG ZKLFK DUH PDUNHGO\ GLVWRUWHG LQ WKH HTXDWRULDO SODQH %RWK VWUXFWXUHV KDYH EHHQ FKDUDFWHUL]HG E\ ;UD\ GLIIUDFWLRQ WHFKQLTXHV DQG VROXWLRQ [

PAGE 11

PDJQHWLF PRPHQWV VKRZ ERWK VSHFLHV WR EH KLJK VSLQ G FRPSOH[HV $ JURXS WKHRUHWLFDO WUHDWPHQW RI WKH SRVVLEOH VSLQ VWDWHV UHVXOWLQJ IURP WKH G FRQILJXUDWLRQ VKRZV WKDW D -DKQ 7HOOHU GLVWRUWLRQ LV SRVVLEOH LQ D 'K OLJDQG ILHOG 7KH HTXDWRULDO GLVWRUWLRQ REVHUYHG LQ ERWK FRPSOH[HV LV ILQDOO\ VKRZQ WR DFWXDOO\ EH D FRPELQDWLRQ RI HIIHFWV QDPHO\ WKH GHSURWRQDWLRQ RI WKH OLJDQG FRPELQHG ZLWK D -DKQ7HOOHU GLVWRUWLRQ $ WKHRUHWLFDO VWXG\ RI WKH OLJDQG '$36& LV SUHVHQWHG ZKLFK HPSOR\HG VHYHUDO WHFKQLTXHV 0ROHFXODU PHFKDQLFV FDOFXODWLRQV 00 W\SHf FRUURERUDWHG E\ 023$& FDOFXODWLRQVf VKRZHG WKDW WKHUH ZHUH WKUHH FRQILJXUDWLRQV RI WKH OLJDQG ZKLFK FRUUHVSRQGHG WR HQHUJ\ PLQLPD 8VLQJ WKH SURJUDP =,1'2 D FRPSOHWH JHRPHWU\ RSWLPL]DWLRQ RI '$36& ZDV SUHIRUPHG WKH URWDWLRQ EDUULHUV RI WKH VHPLFDUED]RQH DUPV RI '$36& ZHUH GHWHUPLQHG DQG VHYHUDO JHRPHWU\ RSWLPL]DWLRQV RQ D '$36& PROHFXOH SHUWXUEHG E\ DQ )Hn LRQ ZHUH SUHIRUPHG 7KH SXUSRVH RI WKHVH FDOFXODWLRQV ZDV WR GHWHUPLQH WKH ORZ HQHUJ\ FRQIRUPDWLRQ RI '$36& DV ZHOO DV WKH HIIHFWV RI VSLQ VWDWH PXOWLSOLFLW\ RQ WKH JHRPHWU\ RI ERWK WKH OLJDQG DQG WKH )H '$36& FRPSOH[ 7KH JHRPHWU\ DQG ERQG GLVWDQFHV REVHUYHG LQ WKH RSWLPL]HG )HFRPSOH[ DUH LQ H[FHOOHQW DJUHHPHQW ZLWK ZKDW KDV EHHQ REVHUYHG LQ WKH VROLG VWDWH IRU D VLPLODU >)H'$36&f&@ FRPSOH[ DV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ VWXGLHV [L

PAGE 12

&+$37(5 ,1752'8&7,21 6HYHQFRRUGLQDWH WUDQVLWLRQ PHWDO FRPSOH[HV DUH OHVV FRPPRQ VLQFH WKH\ FDQQRW DFKLHYH DV HIILFLHQW D VWUXFWXUDO IRUP DV WKH QHDUHVW FRRUGLQDWLRQ QHLJKERUV VL[ DQG HLJKW 0RUHRYHU LQ SURJUHVVLQJ IURP VL[ WR VHYHQ FRRUGLQDWLRQ D PXFK OHVV HIIHFWLYH SDFNLQJ DUUDQJHPHQW LV DFKLHYHG 6LQFH VHYHQFRRUGLQDWLRQ KDV LQ WKH JHQHUDO FDVH D SRWHQWLDO VXUIDFH WKDW LV QRW GLVWLQJXLVKHG E\ D GHHS PLQLPXP FRUUHVSRQGLQJ WR RQH SRO\WRSDO>O@ IRUP WKH QXPEHU RI PRQRLVRPRUSKLF SRO\KHGUD ZLWK VHYHQ YHUWLFHV LV ODUJH f>@ 7KH SHQWDJRQDO ELS\UDPLG 3%3f FDSSHG RFWDKHGURQ DQG FDSSHG WULJRQDO SULVP DUH FRQVLGHUHG WR EH WKH WKUHH LGHDO SRO\KHGUD IRU &1 ZLWK 3%3 JHRPHWU\ EHLQJ WKH PRVW FRPPRQ DUUDQJHPHQW IRXQG LQ PRQRPHUV DQG GLPHUV WKURXJKRXW WKH SHULRGLF WDEOH>@ 7KH UROH RI VHYHQFRRUGLQDWLRQ LV VLJQLILFDQW ZKHQ YLHZHG LQ WKH OLJKW RI UHDFWLRQ LQWHUPHGLDWHV RU WUDQVLWLRQ VWDWHV LQ DVVRFLDWLYH UHDFWLRQV RI FRRUGLQDWH FRPSOH[HV R[LGDWLYH DGGLWLRQ UHDFWLRQV RI FRRUGLQDWH FRPSOH[HV DQG GLVVRFLDWLYH UHDFWLRQV RI FRRUGLQDWH FRPSOH[HV>@ 7KHUHIRUH V\VWHPDWLF LQYHVWLJDWLRQV RI

PAGE 13

FRRUGLQDWH FRPSOH[HV FDQ SURYLGH DGGHG LQVLJKW WR WKHVH LPSRUWDQW DUHDV RI FKHPLVWU\ $ YHU\ HIILFLHQW ZD\ RI IRUPLQJ SHQWDJRQDO ELS\UDPLGDO 3%3f FRPSOH[HV &1 f LV ZLWK SHQWDGHQWDWH OLJDQGV WKDW FDQ RFFXS\ WKH SHQWDJRQDO SODQH SDUWLFXODUO\ LI WKH OLJDQG LV DW OHDVW SDUWO\ FRQMXJDWHG>@ 7KH WZR W\SHV RI SHQWDGHQWDWH OLJDQGV WKDW KDYH EHHQ XVHG VXFFHVVIXOO\ LQ WKLV IDVKLRQ WR DFKLHYH 3%3 JHRPHWU\ DUH HLWKHU PDFURF\FOLF LQ QDWXUH RU QRQF\FOLF $ GLVDGYDQWDJH RI WKH PDFURF\FOLF W\SH OLJDQGV LV WKDW WKH VL]H RI WKH OLJDQGV FHQWUDO KROH LV RI FULWLFDO LPSRUWDQFH LQ GHWHUPLQLQJ ZKLFK PHWDOFDWLRQV WKH OLJDQG ZLOO KROG HIIHFWLYHO\ ,I WKH PDWFK EHWZHHQ WKH PHWDOFDWLRQ DQG WKH KROH VL]H LV LQFRUUHFW SXFNHULQJ RI WKH SHQWDJRQDO JLUGOH UHVXOWV FDXVLQJ GLVWRUWLRQ DQG SRVVLEOH LQVWDELOLW\ 1RQF\FOLF SHQWDGHQWDWH OLJDQGV RQ WKH RWKHU KDQG DUH QRW KLQGHUHG WR WKH VDPH H[WHQW E\ WKH PHWDOFDWLRQ VL]H FRQVWUDLQW VLQFH WKH KROH LV QRW ERXQG RQ DOO VLGHV FRQVHTXHQWO\ WKLV W\SH RI OLJDQG LV PRUH YHUVDWLOH LQ DFKLHYLQJ 3%3 JHRPHWU\ DV LW FDQ DFFRPPRGDWH PHWDO DWRPV RI GLIIHUHQW VL]HV E\ LQFUHDVLQJ WKH /0/ DQJOH QRW VSDQQHG E\ D FKHODWH ULQJ $FFRUGLQJO\ QRQF\FOLF SHQWDGHQWDWH OLJDQGV RIIHU WKH SRWHQWLDO IRU WKH GHYHORSPHQW RI D ZLGH EDVHG FRRUGLQDWLRQ FKHPLVWU\ GXH WR WKH LQKHUHQW IOH[LELOLW\ RI WKHVH OLJDQGV ,Q RUGHU WR VWXG\ VHYHQFRRUGLQDWH FKHPLVWU\ RI WKH WUDQVLWLRQ PHWDOV D VHULHV RI QRQF\FOLF SHQWDGHQWDWH OLJDQGV

PAGE 14

ZDV GHVLJQHG ZKLFK ZRXOG FRQVLVWHQWO\ SURGXFH 3%3 JHRPHWU\>@ 7KUHH RI WKHVH OLJDQGV DUH GHSLFWHG LQ )LJXUH '$36& '$3%$+ DQG '$3$$+ KDYH EHHQ XVHG VXFFHVVIXOO\ WR SURGXFH VHYHUDO FRPSOH[HV ZKLFK H[KLELW 3%3 JHRPHWU\ '$36& HVSHFLDOO\ KDV EHHQ IRXQG WR UHDFW ZLWK YLUWXDOO\ DOO DQG LRQV RI JURXSV DQG DV ZHOO DV WKH HOHPHQWV 7L WR &X>@ $OWKRXJK WKH XVXDO UHVXOW LV 3%3 JHRPHWU\ KLJKHU FRRUGLQDWLRQ QXPEHUV DUH IRXQG ZLWK WKH ODUJHU LRQV>@ '$3%$+ DQG '$3$$+ PLPLF WKH FRRUGLQDWLRQ VLWHV RI '$36& EXW YDU\ LQ WKH IXQFWLRQDO JURXSV GLUHFWHG DZD\ IURP WKH FRRUGLQDWHG PHWDO :LWK WKH UHSODFHPHQW RI WKH 1+ IXQFWLRQ RI WKH DFLG K\GUD]LGH ZLWK HLWKHU D &+ IXQFWLRQ WR JLYH '$3%$+ RU D &+ IXQFWLRQ JLYLQJ '$3$7' WKH VROXWLRQ FKHPLVWU\ RI WKH FRPSOH[ ZRXOG EH H[SHFWHG WR FKDQJH HVSHFLDOO\ LQ WHUPV RI WKH VROXELOLW\ IRU D SDUWLFXODU FRPSOH[ LQ DTXHRXV YHUVHV DQ RUJDQLF PHGLD $OWKRXJK '$3%$+ DQG '$3$$+ KDYH EHHQ XVHG OHVV H[WHQVLYHO\ SUHYLRXV UHVXOWV KDYH GHPRQVWUDWHG WKDW WKHVH OLJDQGV DUH TXLWH UHDFWLYH ZLWK PDQ\ RI WKH WUDQVLWLRQ PHWDOV 6HYHUDO LQWULJXLQJ DVSHFWV FRQFHUQLQJ WKH FKHPLVWU\ DQG VWUXFWXUH RI WKHVH SHQWDGHQWDWH OLJDQGV HPHUJHG GXULQJ WKH LQLWLDO LQYHVWLJDWLRQ>@ ZKLFK PHULWHG IXUWKHU H[DPLQDWLRQ $V D FRQVHTXHQFH D UHVHDUFK SURMHFW ZDV GHVLJQHG WR DQDO\]H WKH FRRUGLQDWLRQ FKHPLVWU\ DQG VWUXFWXUH RI WKHVH OLJDQGV ZLWK WKH IROORZLQJ JRDOV LQ PLQG ILUVW WR DGYDQFH WKH RQ JRLQJ VWXG\ RI VHYHQFRRUGLQDWH FKHPLVWU\ E\ SUHSDULQJ QHZ VHYHQ

PAGE 15

)LJXUH GLDFHW\OS\ULGLQHELV VHPLFDUED]RQH '$36&f GLDFHW\OS\ULGLQHELVEHQ]RLF DFLG K\GUD]RQHf '$3%$+f DQG GLDFHW\OS\ULGLQHELVDFHWK\GUD]RQHf '$3$$+f

PAGE 16

FRRUGLQDWH FRPSOH[HV RI PHWDOV QRW \HW LVRODWHG ZLWK WKH WKUHH SHQWDGHQWDWH OLJDQGV VHFRQG WR LQYHVWLJDWH IXUWKHU WKH VWUXFWXUDO DVSHFWV RI 3%3 FRPSOH[HV H[KLELWLQJ XQXVXDO GLVWRUWLRQV ZLWKLQ WKH FRRUGLQDWLRQ VSKHUH WKLUG WR VWXG\ WKH VWUXFWXUDO FKDUDFWHULVWLFV RI WKHVH SHQWDGHQWDWH OLJDQGV DQG ILQDOO\ WR H[SORUH WKH UHDFWLRQ FKHPLVWU\ REVHUYHG ZLWK WKHVH OLJDQGV 7R DFFRPSOLVK WKLV ZRUN JHQHUDO ODERUDWRU\ SURFHGXUHV ZHUH XVHG IRU WKH V\QWKHVLV ZLWK DQ HPSKDVLV RQ REWDLQLQJ VLQJOH FU\VWDOV IRU ;UD\ GLIIUDFWLRQ VWXGLHV DQG VWUXFWXUDO GHWHUPLQDWLRQ 7KH IROORZLQJ FKDSWHUV UHSRUW WKH H[SHULPHQWDO ZRUN ZKLFK ZDV SUHIRUPHG DQG GLVFXVV ZKDW ZDV OHDUQHG UHJDUGLQJ WKH FKHPLVWU\ DQG VWUXFWXUH RI '$36& '$3%$+ DQG '$3$$+

PAGE 17

&+$37(5 3(17$*21$/ %,3<5$0,'3W 6Q&O f@ 7KLV LV D XQLTXH FRPSOH[ LQ WKDW LW LV WKH ILUVW H[DPSOH RI D ZDWHU VROXEOH VHYHQFRRUGLQDWH 6Q,9f FRPSOH[ LQ ZKLFK D SHQWDGHQWDWH OLJDQG ZDV XVHG :LWK WKH LVRODWLRQ RI WKH 7L'$3%$+f&r FRPSOH[ WKHUH LV QRZ DQ H[DPSOH RI HDFK RI WKH ILUVW WUDQVLWLRQ VHULHV L H 6F =Qf LQ D 3%3 ILHOG FRRUGLQDWHG E\ D SHQWDGHQWDWH OLJDQG )LQDOO\ WKLV UHSRUW RI WKH &X '$3$$+ f +f&Or FRPSOH[ PDUNV WKH ILUVW DFFRXQW RI '$3$$+ EHLQJ XVHG WR LVRODWH D &X,,f LRQ LQ 3%3 JHRPHWU\

PAGE 18

([SHULPHQWDO 0DWHULDOV $OO PDWHULDOV DQG VROYHQWV ZHUH UHDJHQW JUDGH DQG XVHG DV VXSSOLHG IURP WKH PDQXIDFWXUHU H[FHSW ZKHUH QRWHG 3UHSDUDWLRQ RI 76Q '$36& f& &O } + ,f %RWK &+1+ f >3W 6Q&O f@ J PPROHf DQG '$36& J PPROHf SUHSDUHG E\ PHWKRGV SUHYLRXVO\ GHVFULEHG>@ ZHUH VOXUULHG WRJHWKHU LQ P/ RI + +& ZDV DGGHG GURSZLVH XQWLO WKH S+ $V WKH VROXWLRQ FOHDUHG WR D \HOORZEURZQ FRORU D ILQH EODFN SUHFLSLWDWH ZDV HYLGHQW LQ WKH VROXWLRQ $ GDUN \HOORZEURZQ VROXWLRQ YRLG RI EODFN SUHFLSLWDWH ZDV REWDLQHG DIWHU ILOWHULQJ WKURXJK D ILQH JODVV IULW 6ORZ HYDSRUDWLRQ RI WKH ILOWUDWH JDYH \HOORZ FU\VWDOV ZLWKLQ IRXU GD\V 3UHSDUDWLRQ RI 7L '$3%$+f &Or ,,f ,Q D GU\ ER[ ZLWK DQ $UJRQ DWPRVSKHUH 7L&O J PPROHf ZDV ZHLJKHG RXW DQG SODFHG LQWR D GU\ 6FKOHQN IODVN FRQWDLQLQJ D PDJQHWLF VWLUULQJ EDU 7KH IODVN ZDV VHDOHG ZLWK D UXEEHU VHSWXP DQG UHPRYHG IURP WKH GU\ ER[ %\ PHDQV RI D QHHGOH DQG V\ULQJH GLDFHW\OS\ULGLQH J PPROHf GLVVROYHG LQ P/ DEVROXWH HWKDQRO ZDV DGGHG WR WKH IODVN 1H[W EHQ]RLF DFLG K\GUD]LGH J PPROHf GLVVROYHG LQ P/ RI DEVROXWH HWKDQRO ZDV DGGHG E\ QHHGOH DQG V\ULQJH 7KH FORVHG PL[WXUH ZDV VWLUUHG IRU WKUHH KRXUV DIWHU ZKLFK WKH VROYHQW ZDV UHPRYHG E\ YDFXXP 7KH 6FKOHQN IODVN FRQWDLQLQJ WKH GU\ FUXGH VROLG ZDV SODFHG EDFN LQWR WKH GU\ ER[ DQG WKH UXEEHU VHSWXP ZDV UHPRYHG $FHWRQLWULOH P/f SUHYLRXVO\ GULHG RYHU

PAGE 19

32L ZDV DGGHG DQG WKH PL[WXUH ZDV VWLUUHG IRU WZR KRXUV 7KH PL[WXUH ZDV WKHQ ILOWHUHG WKURXJK D ILQH JODVV IULW DQG D FOHDU GDUN UHG VROXWLRQ ZDV REWDLQHG 7KH YROXPH RI WKLV VROXWLRQ ZDV UHGXFHG WR P/ DQG WKHQ SODFHG LQWR DQ (UOHQP\HU IODVN VHDOHG UHPRYHG IURP WKH GU\ ER[ DQG SODFHG LQ D IUHH]HU r&f $LU VWDEOH UHG VLQJOH FU\VWDOV ZHUH REWDLQHG DIWHU WKUHH ZHHNV 3UHSDUDWLRQ RI &X '$3$$+ f& ,,,f $FHWK\GUD]LGH J PPROHf &X&O f + J PPROHf DQG GLDFHW\OS\ULGLQH J PPROHf ZHUH FRPELQHG LQ P/ RI D PL[WXUH RI HWKDQROZDWHU VROXWLRQ 7KLV VROXWLRQ ZDV WKHQ KHDWHG WR r& DQG VWLUUHG IRU RQHKDOI KRXU $ GDUN JUHHQ VROXWLRQ ZDV WKH UHVXOW RI WKLV UHDFWLRQ ZKLFK ZDV WKHQ ILOWHUHG WKURXJK D ILQH JODVV IULW ZKLOH ZDUP $ FURS RI GDUN JUHHQ FU\VWDOV ZHUH UHPRYHG DIWHU HLJKW GD\V 7KH GHQVLW\ RI WKHVH FU\VWDOV ZDV PHDVXUHG DW JFP E\ IORDWDWLRQ WHFKQLTXHV ;UD\ &U\VWDOORJUDSK\ &U\VWDOV KDYLQJ WKH GLPHQVLRQV [ [ PP [ [ PP DQG [ [ PP IRU ,, DQG ,,, UHVSHFWLYHO\ DQG VXLWDEOH IRU GLIIUDFWLRQ VWXGLHV ZHUH PRXQWHG RQ WKH HQG RI D JODVV ILEHUV $OO VXEVHTXHQW PHDVXUHPHQWV IRU DQG ,, ZHUH PDGH XVLQJ D 1LFROHW 5P GLIIUDFWRPHWHU ZLWK JUDSKLWHPRQRFKURPDWHG 0R.D UDGLDWLRQ ; ƒf )RU FRPSRXQG ,,, WKH VXEVHTXHQW PHDVXUHPHQWV ZHUH PDGH XVLQJ D 1LFROHW 3, GLIIUDFWRPHWHU XS JUDGHG WR 5P VSHFLILFDWLRQV ZLWK

PAGE 20

PRQRFKURPDWHG &X.D UDGLDWLRQ ; ƒf ZLWK D QLFNHO ILOWHU LQ SODFH 7KH FHOO GLPHQVLRQV IRU HDFK RI WKH WKUHH FRPSRXQGV ZHUH GHWHUPLQHG E\ D OHDVW VTXDUHV UHILQHPHQW RI DXWRPDWLFDOO\ FHQWHUHG UHIOHFWLRQV $ YDULDEOHVSHHG ,R rf VFDQ WHFKQLTXH ZDV XVHG WR PHDVXUH WKH LQWHQVLW\ GDWD IURP r WR r r WR r DQG r WR r LQ IRU ,, DQG ,,, UHVSHFWLYHO\ 7ZR VWDQGDUG UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU IRU DQ\ GHFRPSRVLWLRQ GXULQJ WKH ;UD\ DQDO\VLV 1R DEVRUSWLRQ FRUUHFWLRQV ZHUH PDGH 7KH SHUWLQHQW FU\VWDO GDWD LV JLYHQ LQ 7DEOH 6WUXFWXUH 5HILQHPHQW 7KH GDWD UHGXFWLRQ VWUXFWXUH VROXWLRQ DQG ILQDO UHILQHPHQW ZHUH SHUIRUPHG XVLQJ WKH 15&9$; 3&9HUVLRQf>@ SDFNDJH RI SURJUDPV 7KH 6Q 7L DQG &X DWRPV DQG DOO QRQK\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH KHDY\DWRP PHWKRG 3DWWHUVRQ DQG )RXULHU V\QWKHVHVf DQG UHILQHG DQLVRWURSLFDOO\ E\ IXOOPDWUL[ OHDVW VTXDUHV 7KH K\GURJHQ DWRPV ZHUH ORFDWHG XVLQJ D GLIIHUHQFH )RXULHU PDS DQG UHILQHG LVRWURSLFDOO\ 7KH PRGHOV FRQYHUJHG WR DQ 5 RI DQG ZLWK 5Z YDOXHV RI DQG IRU ,, DQG ,,, UHVSHFWLYHO\ 7KH ILQDO SRVLWLRQDO SDUDPHWHUV IRU QRQn K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV WR 7KH ILQDO ERQG GLVWDQFHV LQYROYLQJ WKH QRQK\GURJHQ DWRPV DQG ERQG DQJOHV DUH OLVWHG LQ 7DEOHV WR ZLWK WKH DQLVRWURSLF WKHUPDO SDUDPHWHUV JLYHQ LQ 7DEOHV WR 7DEOHV WR OLVW WKH ILQDO SRVLWLRQDO SDUDPHWHUV IRU WKH K\GURJHQ DWRPV

PAGE 21

7DEOH &U\VWDO 'DWD ,, ,,, 6Q '$36& f&r&n} + 7L'$3%$++f& &X'$3$$+ff+ IRUPXOD 6Q&1+&O 7L&12+&O &X&1+& 0: D ƒ f f f E ƒ f f f F ƒ f f f S GHJ 9RLKU f f f ] mFDOFnFP VSDFH FMURXS 3 [Q 3 F 3 MF S RQ 'DWD XVHG ZLWK ,QHW!R,QHWf 5 X 5 E Z 5 ( ?)R?a? 7. 5Z AA_)__)&_f ( Z?SR?

PAGE 22

7DEOH $WRPLF 3DUDPHWHUV IRU [\] DQG %LVR (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR 6Q f f f f &OO f f f f & f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f : f f f f : ,' f f f & f f f f & f f f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 23

7DEOH $WRPLF 3DUDPHWHUV IRU ,, [\] DQG %LVR (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR 7L f f f f &OO f f f f & f f f f f f f f f f f f 1 ,' f f f 1 ,' f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f ,' f f & f f f f & f f f f &,2 f f f f &OO f f f f &$ f f f f &$ f f f f &$ f f f f &$ f ,' f f &$ f f f f &$ f f f f &% f f f f &% f f f f &% f f f f &% f ,' f f &% f f f f &% f f f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 24

7DEOH $WRPLF 3DUDPHWHUV IRU ,,, [\] DQG %LVR (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR &X f f f f &OO f f f f & f f f f : f f f f : f f f f : f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f & f f f f & f f f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 25

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHVrf IRU 6Q &OO f 1 & f 6Q & f 1 &O f 6Q f 1 &O f 6Q f 1 &OO f 6Q 1 f 1 &OO f 6Q 1 f & & f 6Q 1 f & & f &O f & & f &OO f & & f 1 1 f & & f 1 & f & & f 1 & f & & f 1 & f & &,2 f 1 1 f &OO6Q& f &1& f &OO6Q f 6Q11 f &OO6Q f 6Q1& f &OO6Q1 f 11& f &OO6Q1 f 11& f &OO6Q1 f 11& f &6Q f &1 f &6Q f &1 f &6Q1 f 1&1 f &6Q1 f 1&& f &6Q1 f 1&& f 6Q f &&& f 6Q 1 f 1&& f 6Q 1 f 1&& f 6Q 1 f &&& f 6Q 1 f &&& f 6Q 1 f &&& f 6Q 1 f &&& f 16Q 1 f 1&& f 16Q 1 f 1&& f 16Q 1 f &&& f 6Q &O f 1&& f 6Q &OO f 1&& f 6Q1 1 f &&& f 6Q1 & f &1 f 11 & f &1 f 6Q1 & f 1&1 f 6Q1 & f

PAGE 26

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHVrf IRU ,, 7L &OO f & & f 7L & f & & f 7L f & & f 7L f & & f 7L 1 f & & f 7L 1 f & &,2 f 7L 1 f &OO &% f &O f &$, &$ f &OO f &$, &$ f 1, 1 f &$ &$ f 1 &O f &$ &$ f 1 & f &$ &$ f 1 & f &$ &$ f 1 & f &% &% f 1 1 f &% &% f 1 & f &% &% f 1 &OO f &% &% f &O &$ f &% &% f & & f &% &% f & & f &7& f 1&&$ f &OO7L f 1&& f &OO7L f 1&& f &71 f &&& f &71 f 1&& f &71 f 1&& f &7 f &&& f &7 f &&& f &71 f &&& f &71 f &&& f &71 f 1&& f 2O7L f 1&& f 71 f &&& f 71 f 1&& f 71 f 1&& f 71 f &&& f 71 f &1 f 71 f &&% f 171 f 1&&% f 171 f &&$&$ f 171 f &&$&$ f 7L&O f &$&$&$ f 7L&OO f &$&$&$ f 11& f &$&$&$ f 711 f &$&$&$ f

PAGE 27

7DEOH FRQWf 71& f &$&$&$ f 11& f &$&$&$ f 71& f &&%&% f 71& f &&%&% f &1& f &%&%&% f 711 f &%&%&% f 71& f &%&%&% f 11& f &%&%&% f 11& f &%&%&% f &1 f &%&%&% f &&$ f

PAGE 28

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHVr f IRU ,,, &X &OO f 1 1 f &X : f 1 &,2 f &X f 1 & f &X f &O & f &X 1 f & & f &X 1 f & & f &X 1 f & & f & f & & f &O f & & f 1, 1 f & & f 1 &O f & &,2 f 1 & f &,2 &OO f 1 & f & & f 1 & f &OO&X:O f &&& f 11& f &&& f 11& f &&& f &1& f &&& f 11& f 1&& f 11& f 1&& f &1 f &&& f && f 1&& f 1&& f 1&& f 1&& f &&& f 1&& f &1 f &&& f && f 1&& f 1&& f 1&& f

PAGE 29

8OODf 7DEOH 8 YDOXHV (6'V UHIHU WR WKH ODV 8 8 6Q f f f &OO f f f & f f f f f f f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f &O f f f & f f f & f f f & f f f & f f f & f f f & f f f & f f f r IRU GLJLW SULQWHG 8 8 8 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 30

7DEOH FRQWf 8OORf 8 8 8 8 8 & f f f f f f f &,2 f f f f f f &OO f f f f f f : f f f f f f : f f f f f f & f f f f ,' ,' & f f f f ,' ,' $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU f

PAGE 31

8OORf 7DEOH 8 YDOXHV (6'V UHIHU WR WKH ODV 8 8 7L f f f &OO f f f & f f f f f f f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f &O f f f & f f f & f f ,' & f f f & f f f & f f f & f f f & f f f & f f f &,2 ,' f f r IRU ,, W GLJLW SULQWHG 8 8 8 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ,'

PAGE 32

7DEOH FRQWf 8OODf 8 8 8 8 8 &OO f f f f f f &$ f f f f f f &$ f f f f f f &$ f f f f f f &$ f ,' f f f f &$ f f f f f f &$ f f f f f f &% f f f f f f &% f f f f f f &% f f f f f f &% f f f f f f &% f f f f f f &% f f f f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU f

PAGE 33

7DEOH 8 YDOXHV r IRU ,,, (6'V UHIHU WR WKH ODVW GLJLW SULQWHG 8OODf 8 8 8 8 8 &X f f f f f f &OO f f f f f f & f f f f f f : f f f f f f : f ,' f f f ,' : f f f f f f f f f f f f f f f f f f 1 f f f f f f 1 f f f f f f 1 f f f f f f 1 f f f f f f 1 f f f f f f &O f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f

PAGE 34

7DEOH FRQWf 8OORf 8 8 8 8 8 & f f f f f f & f f f f f m2 &,2 f f f f f f Z &OO f f f f f f & f f f f f f & f f f f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU f

PAGE 35

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR +,1f f f f +1f ,' f f +1f ,' f f +&f ,' f f +&f f f f +& f ,' f f +&f ,' f f +&f ,' f f +&f ,' f f +,2&,2f f f f +OO&O2f f f f +&,2f ,' f f +1f ,' f f +1f f f f +1f f f f +:f f f f +:f ,' f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 36

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU ,, (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR +,& f f f f +& f f f f +&f f f f +1f f f f +&f +&f +&f +&,2f f f f +&,2f f f f +,2&,2f f f f +&$f +&$f +&$f +&$f +&$f +&% f +&% f +&% f +&%f +&%f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 37

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU ,,, (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR +,&f +&f +1f +&f +&f +&f +&f +&f +&f +&OOf +&OOf +&OOf +1f +& f +&f +&f +:f +:f +:f +:f +:f +:f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 38

5HVXOWV DQG 'LVFXVVLRQ 6Q '$36& f&"r 7KH FU\VWDOV ZHUH IRXQG WR FRQWDLQ PRQRPHULF 6Q '$36& f&r FDWLRQV DQG GLVSOD\ 3%3 JHRPHWU\ ZKLFK LV HDVLO\ VHHQ LQ )LJXUH 6XUSULVLQJO\ WKH FRPSOH[ ZDV REWDLQHG IURP DTXHRXV VROXWLRQ DQG LV YHU\ ZDWHU VROXEOH VLQFH DOO UHODWHG FRPSRXQGV>@ ZHUH LVRODWHG IURP RUJDQLF PHGLD 2[LGDWLRQ RI 6Qr WR 6Qr LV NQRZQ>@ WR RFFXU LQ DTXHRXV VROXWLRQV H[SRVHG WR WKH DLU DQG KDV EHHQ REVHUYHG WR RFFXU LQ D VWUXFWXUDOO\ VLPLODU FRPSOH[>@ ,QGHHG D VLPLODU R[LGDWLRQ KDV RFFXUUHG LQ WKLV LQVWDQFH $V QRWHG DERYH D ILQH EODFN SUHFLSLWDWH IHOO RXW DV WKH VROXWLRQ FOHDUHG ZKLFK VXJJHVWV WKDW D UHGXFWLRQ RI WKH 3Wr VWDUWLQJ PDWHULDO WR 3Wr RFFXUUHG :KHWKHU RU QRW WKLV ZDV D GLUHFW UHVXOW RI WKH 6Q R[LGDWLRQ LV QRW FOHDU 7KLV LV WKH ILUVW H[DPSOH RI D PHWDO R[LGDWLRQ WDNLQJ SODFH LQ WKH SUHVHQFH RI '$36& DQG EHLQJ VWDELOL]HG E\ WKH OLJDQG '$36& WHQGV WR KDYH D PRUH UHGXFLQJ QDWXUH DV LV REVHUYHG LQ WKH )Hr DQG &Rr V\VWHPV>@ &RPSRXQGV VXFK DV &+1+f>3W 6Q&O f@ DQG 3W ,, f6Q ,,f PL[WXUHV KDYH EHHQ RI LQWHUHVW IRU VRPH WLPH GXH WR WKH REVHUYHG FDSDELOLW\ RI WKHVH VSHFLHV WR KRPRJHQHRXVO\ FDWDO\]H WKH K\GURIRUP\ODWLRQ FDUERQ\ODWLRQ DQG K\GURJHQDWLRQ UHDFWLRQV>@ &RPPRQ WR PRVW RI WKH GLVFXVVLRQ UHJDUGLQJ SRVVLEOH PHFKDQLVPV IRU WKHVH UHDFWLRQV LV WKH SRVWXODWHG SUHVHQFH RI IUHH 6Q&On LRQV LQ VROXWLRQ OLEHUDWHG E\ OLJDQG GLVVRFLDWLRQ 7KH >3W 6Q&O f@ f VSHFLHV KDV ORQJWHUP

PAGE 39

&,2 & )LJXUH $Q 257(3 UHSUHVHQWDWLRQ RI 6Q '$36& f&r

PAGE 40

VWDELOLW\ LQ WKH SUHVHQFH RI SURWLF VROYHQWV DOWKRXJK LQ +& VROXWLRQV PHWDOOLF 3W LV VORZO\ SUHFLSLWDWHG>@ DV ZH DOVR REVHUYHG +HQFH LQ D +& VROXWLRQ RI &+1+ f >3W 6Q&O f@ ZLWK S+ WKH FRQFHQWUDWLRQ RI IUHH 6Q&On LV SUREDEO\ TXLWH KLJK DQG WKH OLNHO\ VRXUFH RI WKH 6Q DWRP IRU FRRUGLQDWLRQ E\ '$36& $WWHPSWV WR SUHSDUH WKH WLWOH FRPSOH[ LQ JRRG \LHOG GLUHFWO\ IURP 6Q&O f + DQG '$36& LQ +& DQG PHWKDQRO+ VROXWLRQV IDLOHG HYHQ ZKHQ H[FHVV KDOLGH ZDV DGGHG LQ WKH IRUP RI .& ZKLFK SURPRWHV>@ WKH IRUPDWLRQ RI 6Q&On 7KH JHRPHWU\ DERXW WKH 6QFDWLRQ FDQ EH GHVFULEHG DV D VOLJKWO\ GLVWRUWHG SHQWDJRQDO ELS\UDPLG $ VOLJKW GLVWRUWLRQ LV DSSDUHQW LQ WKH SHQWDJRQDO HTXDWRULDO SODQH DV HYLGHQFHG E\ WKH OHQJWKV RI WKH UHVSHFWLYH VLGHV f 1 f 11 f 11 f DQG 1 fƒ 7KH D[LDO FKORULGHV DOVR FRQWULEXWH WR WKH REVHUYHG GLVWRUWLRQ VLQFH WKH\ DUH QRW H[DFWO\ OLQHDU DQG PDNH DQ DQJOH RI fr $ OHDVWVTXDUHV SODQH GUDZQ WKURXJK WKH ILYH FRRUGLQDWLQJ DWRPV LQ WKH HTXDWRULDO JLUGOH VKRZV OLWWOH GHYLDWLRQ IURP SODQDULW\ ZLWK WKH DYHUDJH RI WKH GHYLDWLRQV EHLQJ fƒ 7KH 6Q LRQ FDQ EH FRQVLGHUHG WR OLH LQ WKH HTXDWRULDO SODQH VLQFH LW GHYLDWHV RQO\ f$ RXW RI WKH SODQH PDGH E\ WKH ILYH HTXDWRULDO GRQRUV 'LPHQVLRQV ZLWKLQ WKH QHXWUDO OLJDQG DUH VLPLODU WR WKRVH REVHUYHG LQ UHODWHG VWUXFWXUHV ZLWK QR LUUHJXODULWLHV 7KHUH LV HYLGHQFH RI

PAGE 41

VHYHUDO K\GURJHQERQGV ZLWK LQ WKH DV\PPHWULF XQLW 0RVW QRWDEOH DUH WKH LQWHUDFWLRQV EHWZHHQ 1 & 1 & DQG 1 : ZLWK GLVWDQFHV + fff &Of RI f f DQG f$ ZLWK ERQG DQJOHV RI f f DQG fr UHVSHFWLYHO\ 7KH WZR 6Q &O GLVWDQFHV DSSHDU WR EH VLJQLILFDQWO\ GLIIHUHQW W4 >@ DOWKRXJK WKH\ DSSHDU WR EH FKHPLFDOO\ HTXLYDOHQW +RZHYHU DQ DQDO\VLV RI WKH YDULRXV LQWHUPROHFXODU FRQWDFWV LQYROYLQJ &OO DQG & LQGLFDWHV WKDW WKH WZR &O DWRPV KDYH VOLJKWO\ GLIIHUHQW HQYLURQPHQWV ZKLFK FRXOG DFFRXQW IRU WKH VPDOO EXW VLJQLILFDQW GLIIHUHQFH 7KH 6Q &O GLVWDQFHV DUH VOLJKWO\ VKRUWHU WKDQ WKDW RI f DQG fƒ IRXQG LQ >6Q GDSSF f&@r >@ +RZHYHU WKH 6Q DQG 6Q 1 GLVWDQFHV DUH VOLJKWO\ ORQJHU WKDQ LQ WKH >6Q GDSSF f&@r FRPSOH[ ZKLFK VXJJHVWV WKDW WKH 6Q &O GLVWDQFH PD\ EH LQIOXHQFHG E\ QRQ ERQGHG LQWHUDFWLRQV 7KH PXFK ORQJHU 6Q &O ERQG GLVWDQFH RI fƒ ZKHQ WKH WUDQV DWRP LV FDUERQ VXJJHVWV D WUDQV LQIOXHQFH PD\ EH RSHUDWLYH LQ 6Q FRPSRXQGV 7KH 6Q &O GLVWDQFH RI fƒ LQ WULVWURSRORQDWRfPRQRFKORURWLQ ,9f FKORURIRUP VROYDWH>@ ZRXOG VXSSRUW WKLV YLHZ 8QIRUWXQDWHO\ WKHUH DUH QRW D VXIILFLHQW QXPEHU RI VHYHQFRRUGLQDWH 6Q,9f FRPSOH[HV IRU D GHWDLOHG FRPSDULVRQ ,W KDV EHHQ VXJJHVWHG>@ WKDW WLQ LQ D VHYHQFRRUGLQDWH HQYLURQPHQW SUHIHUV SHQWDJRQDO ELS\UDPLGDO JHRPHWU\ KRZHYHU

PAGE 42

RXU UHVXOW PD\ EH DWWULEXWHG WR WKH SODQDU SHQWDGHQWDWH QDWXUH RI WKH OLJDQG UDWKHU WKDQ DQ\ VWHUHRFKHPLFDO SUHIHUHQFH E\ WKH PHWDO>@ 7L'$3%$+f&" 7KH SHQWDJRQDO ELS\UDPLG\O QDWXUH RI WKLV FRPSOH[ LV HDVLO\ VHHQ LQ )LJXUH :LWK WKH LVRODWLRQ RI WKLV FRPSOH[ WKHUH DUH QRZ H[DPSOHV RI HDFK RI WKH ILUVW URZ WUDQVLWLRQ PHWDOV 6F =Qf LQ 3%3 JHRPHWU\ FRRUGLQDWHG LQ SDUW E\ SODQDU SHQWDGHQWDWH OLJDQGV 6HYHQ FRRUGLQDWH 7L FRPSOH[HV DUH NQRZQ WKRXJK PRVW LQYROYH FRPELQDWLRQV RI PRQR DQG ELGHQWDWH OLJDQGV WR DUULYH DW D FRRUGLQDWLRQ QXPEHU RI VHYHQ 7KLV FRPSOH[ LV XQLTXH LQ WKDW D SHQWDGHQWDWH OLJDQG KDV EHHQ XVHG 3UHOLPLQDU\ H[SHULPHQWV GHPRQVWUDWHG WKDW '$36& GRHV LQGHHG UHDFW ZLWK 7L&O KRZHYHU FU\VWDOOLQH SURGXFWV ZHUH QHYHU HYLGHQW LQ DQ\ RI WKH UHDFWLRQ PL[WXUHV &RPELQLQJ RXU H[SHULHQFH IURP SUHYLRXV H[SHULPHQWV ZKLFK KDYH VKRZQ WKDW '$36& ZRUNV EHVW LQ DTXHRXV RU VHPLDTXHRXV VROXWLRQ WRJHWKHU ZLWK WKH IDFW WKDW 7L&O LV H[WUHPHO\ VHQVLWLYH WR ZDWHU VXJJHVWHG WKDW QHLWKHU WKLV OLJDQG RU WKLV VROYHQW V\VWHP ZRXOG EH IDYRUDEOH IRU DQ DWWHPSW WR REWDLQ D 3%3 FRPSOH[ RI 7Lr +RZHYHU GXH WR WKH KLJK VROXELOLW\ RI EHQ]RLF DFLG K\GUD]LGH LQ RUJDQLF PHGLD WKH OLJDQG '$3%$+ HPHUJHG DV D EHWWHU FKRLFH DQG WKH EHVW RI WKH WKUHH SHQWDGHQWDWH OLJDQGV WR XVH IRU D UHDFWLRQ ZLWK 7Lr 7KH OLJDQG '$3%$+ LV QRW DV VROXEOH LQ SXUH HWKDQRO DV

PAGE 43

/ % )LJXUH $Q 257(3 UHSUHVHQWDWLRQ RI 7L'$3%$+f&

PAGE 44

DUH GLDFHW\OS\ULGLQH DQG EHQ]RLF DFLG K\GUD]LGH VHSDUDWHO\ &RQVHTXHQWO\ WKH FRPSOH[ KDG WR EH SUHSDUHG E\ D WHPSODWH W\SH UHDFWLRQ UDWKHU WKDQ E\ FRPELQLQJ WKH OLJDQG GLUHFWO\ ZLWK 7Lr $OWKRXJK WZR HTXLYDOHQWV RI ZDWHU ZHUH SURGXFHG LQ WKH UHDFWLRQ IRUPLQJ WKH 6FKLII EDVH OLJDQG QR GHOHWHULRXV UHVXOWV ZHUH GHWHFWHG LQ WKH FRXUVH RI WKH UHDFWLRQ 7KH 7LFDWLRQ FDQ EH GHVFULEHG DV EHLQJ DW WKH FHQWHU RI D GLVWRUWHG SHQWDJRQDO ELS\UDPLG ZLWK GLVWRUWLRQV RFFXUULQJ LQ ERWK WKH HTXDWRULDO SODQH DQG D[LDO SRVLWLRQV 7KH GLVWRUWLRQ REVHUYHG LQ WKH HTXDWRULDO SODQH KDV WZR FRQWULEXWLRQV ILUVW DQG IRUHPRVW LV WKH IRUPDWLRQ RI D PRQRDQLRQ UHVXOWLQJ IURP WKH GHSURWRQDWLRQ RI WKH OLJDQG DW 1 8SRQ GHSURWRQDWLRQ WKH HQWLUH VLGH RI WKH OLJDQG EHFRPHV FRQMXJDWHG DV ZHOO DV QHJDWLYHO\ FKDUJHG 7KH r FHQWHU QRZ KDV D VWURQJHU DWWUDFWLRQ WR WKLV VLGH RI WKH OLJDQG DV LV HYLGHQFHG LQ WKH VKRUWHU 7L1 ERQG RI fƒ YHUVHV WKH 7L1 ERQG RI fƒ 6LPLODUO\ WKH GLVWDQFH EHWZHHQ DQG 1 LQ WKH SHQWDJRQDO SODQH LV fƒ YHUVHV D GLVWDQFH RI fƒ IURP WR 1 7KH VKRUWHU VLGH UHIOHFWV D FRQWUDFWLRQ LQ WKDW DUP RI WKH OLJDQG GXH WR WKH FRQMXJDWLRQ DQG LQFUHDVHG DWWUDFWLRQ WRZDUGV WKH FDWLRQLF FHQWHU 7KH VHFRQG FRQWULEXWLRQ WR WKH GLVWRUWLRQ LV D PLQRU -DKQ7HOOHU HIIHFW GXH WR WKH GHJHQHUDF\ RI WKH SRVVLEOH HOHFWURQ FRQILJXUDWLRQV IRU D G VSHFLHV LQ D 3%3 ILHOG 6LQFH WKH RUELWDOV

PAGE 45

SRWHQWLDOO\ RFFXSLHG E\ WKH VLQJOH GHOHFWURQ DUH QRW VWURQJO\ ERQGLQJ WKH GLVWRUWLRQ UHVXOWDQW IURP WKLV HIIHFW LV VPDOO 'LVWRUWLRQV GXH WR WKH -DKQ7HOOHU HIIHFW DQG WKH IRUPDWLRQ RI PRQRDQLRQV LQ WKHVH W\SHV RI FRPSOH[HV ZLOO EH H[DPLQHG DW OHQJWK DQG LQ JUHDWHU GHWDLO LQ FKDSWHU IRXU $Q DQJOH RI fr VLJQLILFDQWO\ OHVV WKDQ WKH H[SHFWHG r LV PDGH E\ WKH DWRPV &OO 7L & 6LQFH WKHUH DSSHDUV WR EH QR RWKHU LQWHUPROHFXODU FRQWDFWV EHWZHHQ WKH D[LDO &OnV DQG RWKHU PROHFXOHV LQ WKH DV\PPHWULF XQLW WKH GLVWRUWLRQ PXVW EH WKH UHVXOW RI DQ LQWHUPROHFXODU HOHFWURQLF HIIHFW 3HQWDGHQWDWH OLJDQGV RI WKLV W\SH DUH NQRZQ WR KDYH VRPH LQKHUHQW IOH[LELOLW\ HVSHFLDOO\ EHWZHHQ WKH DUPV 7KLV FRPSOH[ SURYLGHV DQ H[FHOOHQW H[DPSOH RI WKLV DV LOOXVWUDWHG E\ WKH GHYLDWLRQV RI DQG IURP WKH OHDVW VTXDUHV SODQH FDOFXODWHG IRU 7L 1 1 DQG 1 $OO IRXU RI WKHVH DWRPV VKRZ GHYLDWLRQV RI OHVV WKDQ fƒ EXW GHYLDWHV fƒ DQG GHYLDWHV fƒ ,Q HVVHQFH '$3%$+ KDV WZLVWHG VOLJKWO\ ZLWK RQH R[\JHQ PRYLQJ XS DQG WKH RWKHU GRZQ SHUSHQGLFXODU WR WKH HTXDWRULDO SODQH 7KH HOHFWURQLF HIIHFWV IURP WKH WZR R[\JHQV LV WKH PRVW OLNHO\ FRQWULEXWRU WR WKH D[LDO GLVWRUWLRQ VLQFH WKH DVVRFLDWHG HOHFWURQ GHQVLW\ ZRXOG UHSHO WKH D[LDO FKORULGH LRQV WR VRPH GHJUHH &X '$3$$+f + f&r 7KH FU\VWDOV ZHUH IRXQG WR FRQWDLQ PRQRPHULF &X '$3$$+ f + f&r FDWLRQV ZKLFK GLVSOD\ 3%3 JHRPHWU\ DV FDQ EH VHHQ LQ )LJXUH $OWKRXJK WKH D[LDO OLJDQGV

PAGE 46

)LJXUH $Q 257(3 UHSUHVHQWDWLRQ RI &X'$3$$+f&+ fr

PAGE 47

GLIIHU LH RQH &O DQG RQH +f WKHUH DSSHDUV WR EH QR GLVRUGHU RFFXUULQJ 7KH JHRPHWU\ DERXW WKH &XFDWLRQ FDQ EH GHVFULEHG DV EHLQJ D VRPHZKDW GLVRUGHUHG SHQWDJRQDO ELS\UDPLG 7KH GLVWRUWLRQ LV DSSDUHQW LQ WKH SHQWDJRQDO HTXDWRULDO SODQH DV HYLGHQFHG E\ WKH OHQJWK RI WKH VLGH EHLQJ fƒ ZKLOH WKH RWKHU IRXU VLGHV DYHUDJH OHQJWK LV fƒ s f 7KLV GLVWRUWLRQ DSSDUHQWO\ GRHV QRW DIIHFW WKH SODQDULW\ RI WKH HTXDWRULDO SODQH VLQFH D OHDVWVTXDUHV SODQH GUDZQ WKURXJK WKH ILYH FRRUGLQDWLQJ DWRPV FRPSULVLQJ WKH HTXDWRULDO SODQH VKRZV WKDW WKHUH LV OLWWOH GHYLDWLRQ IURP SODQDULW\ ZLWK DYHUDJH GHYLDWLRQV RI fƒ RXW RI WKH SODQH IRU WKH ILYH HTXDWRULDO DWRPV 7KH &X LRQ FDQ EH FRQVLGHUHG WR OLH LQ WKH HTXDWRULDO SODQH VLQFH LW GHYLDWHV RQO\ f$ RXW RI WKH SODQH 7KH ERQG OHQJWKV H[KLELWHG ERWK ZLWKLQ WKH FRRUGLQDWLRQ VSKHUH DQG WKURXJKRXW WKH OLJDQG DUH YHU\ QHDUO\ WKH VDPH DV WKRVH IRXQG LQ WKH SUHYLRXVO\ UHSRUWHG >&X'$36&f&+f @ FRPSOH[>@ 7KH PDMRU GLIIHUHQFH LV IRXQG LQ WKH UHSODFHPHQW RI DQ D[LDO &O ZLWK D + PROHFXOH $Q XQFRRUGLQDWHG &O LV FORVHO\ DVVRFLDWHG ZLWK WKH FDWLRQ WKURXJK D K\GURJHQ ERQG WR WKH D[LDO + ZLWK D + ffr &O GLVWDQFH RI fƒ 7KHUH DOVR DSSHDUV WR EH VRPH LQWHUDFWLRQ EHWZHHQ WKH WZR XQFRRUGLQDWHG + PROHFXOHV IRXQG LQ WKH DV\PPHWULF XQLW DQG WKH D[LDO &O ZLWK WKH FORVHVW FRQWDFW EHLQJ D K\GURJHQ ERQG EHWZHHQ : DQG &OO ZLWK D + fff &O GLVWDQFH RI fƒ

PAGE 48

$WWHPSWV WR LVRODWH ,9 E\ D VLPLODU PHWKRG WR WKH DIRUHPHQWLRQHG FRPSOH[ >&X'$36&f&+f @ rf IURP D SXUH DTXHRXV VROXWLRQ IDLOHG GXH WR WKH LQVROXELOLW\ RI WKH GLDFHW\OS\ULGLQH ,Q RWKHU H[SHULPHQWV ZKHUH WKH '$3$$+ OLJDQG ZDV SUHSDUHG VHSDUDWHO\ DQG WKHQ UHDFWHG ZLWK WKH &X LRQ VROXELOLW\ SUREOHPV ZHUH DJDLQ HQFRXQWHUHG LQ SXUH DTXHRXV PHGLD WKRXJK XSRQ WKH DGGLWLRQ RI HLWKHU HWKDQRO RU PHWKDQRO WR WKH DTXHRXV VROXWLRQ WKH UHDFWLRQ DSSHDUHG WR SURJUHVV UDSLGO\ DQG FOHDU GDUN JUHHQ VROXWLRQV ZHUH REWDLQHG 7KH &X '$3$$+ f&+r FU\VWDOV ZHUH IRXQG WR EH PXFK PRUH VROXEOH LQ HWKDQRO PHWKDQRO DQG HWKDQROZDWHU VROXWLRQV WKDQ LQ SXUH + 7KLV REVHUYDWLRQV VXJJHVW WKDW WKH PHWK\O JURXSV GLUHFWHG RXWZDUG IURP WKH FRPSOH[ KDYH DQ HIIHFW WR VRPH H[WHQW RQ WKH VROXELOLW\ RI WKLV FRPSOH[

PAGE 49

&+$37(5 $ 129(/ 3(17$*21$/ %,3<5$0,'$/ ,521 &203281' 81&211(&7(' )H,,f $1' )H,,,f 02/(&8/(6 :,7+,1 7+( 6$0( $6<00(75,& 81,7 ,QWURGXFWLRQ ,Q WKH SUHFHGLQJ FKDSWHU LW ZDV QRWHG WKDW WKH OLJDQG '$36& UHDFWV ZLWK DOO WKH PHWDOV RI WKH ILUVW WUDQVLWLRQ VHULHV DQG WKDW LQ HDFK FDVH WKH UHVXOW KDV XVXDOO\ EHHQ WKH IRUPDWLRQ RI VHYHQFRRUGLQDWH FRPSOH[HV GLVSOD\LQJ 3%3 JHRPHWU\ $ SDUWLFXODUO\ LQWHUHVWLQJ V\VWHP ZKLFK ZH KDYH FRPH XSRQ LQ WKLV VHULHV LV WKDW RI WKH LURQ'$36& FRPSOH[HV )H,,f>@ DQG )H,,,f>@ FDWLRQV FRRUGLQDWHG E\ '$36& KDYH EHHQ LVRODWHG DQG VWUXFWXUDOO\ FKDUDFWHUL]HG E\ PHDQV RI ;UD\ VWUXFWXUH VWXGLHV %RWK FRPSRXQGV ZHUH REWDLQHG IURP WKH VDPH UHDFWLRQ PL[WXUH +RZHYHU LQ DGGLWLRQ WR WKHVH WZR FRPSRXQGV D WKLUG SURGXFW ZDV LVRODWHG IURP WKH VDPH UHDFWLRQ PL[WXUH ZKLFK DSSHDUHG WR KDYH D GLIIHUHQW FU\VWDO KDELW WKDQ WKH WZR FRPSRXQGV SUHYLRXVO\ FKDUDFWHUL]HG ,Q RUGHU WR GHWHUPLQH WKH FRPSRVLWLRQ RI WKH WKLUG SURGXFW DQ LQYHVWLJDWLRQ RI WKH FU\VWDO VWUXFWXUH E\ PHDQV RI DQ ;UD\ DQDO\VLV ZDV XQGHUWDNHQ 3UHYLRXV DWWHPSWV DW GHWHUPLQLQJ WKH VWUXFWXUH RI WKLV SURGXFW ZHUH XQVXFFHVVIXO 7KXV D PRUH GHWDLOHG H[SHULPHQWDO

PAGE 50

VHFWLRQ RXWOLQLQJ WKH FU\VWDOORJUDSKLF ZRUN LV SUHVHQWHG LQ DGGLWLRQ WR WKH QRUPDO H[SHULPHQWDO GHWDLOV ([SHULPHQWDO 0DWHULDOV $OO FKHPLFDOV ZHUH UHDJHQW JUDGH DQG XVHG DV VXSSOLHG 3UHSDUDWLRQ RI I)H'$36&f& +rr '$36& J PPROHf SUHSDUHG E\ WKH PHWKRG SUHYLRXVO\ GHVFULEHG>@ ZDV FRPELQHG ZLWK )H&O f + J PPROHf LQ P/ GHLRQL]HG + 7KH S+ ZDV ORZHUHG WR ZLWK +& DQG VWLUUHG IRU KRXUV $ GHHS UHG VROXWLRQ UHVXOWHG ZKLFK ZDV ILOWHUHG DQG DOORZHG WR VORZO\ HYDSRUDWH $IWHU GD\V WKH SURGXFW ZDV REWDLQHG WKH VHFRQG RI WZR UHG SURGXFWV 7KH ILUVW UHG SURGXFW WKH )H,,,f'$36& IRUPHG UHG QHHGOHV VRPH RI ZKLFK ZHUH TXLWH ORQJ 7KH VHFRQG SURGXFW ZDV GDUN UHG FKXQNV ZKLFK DUH HDVLO\ GLVWLQJXLVKDEOH IURP WKH ILUVW UHG SURGXFW 1R JUHHQ SURGXFW )H,,ff ZDV YLVLEOH DW WKLV SRLQW &U\VWDOORJUDSK\ $ GDUN UHG FU\VWDO VXLWDEOH IRU DQ ; UD\ VWXG\ KDYLQJ WKH GLPHQVLRQV [ [ PP ZDV PRXQWHG RQ WKH HQG RI D JODVV ILEHU $OO VXEVHTXHQW PHDVXUHPHQWV ZHUH PDGH XVLQJ D 1LFROHW 5P GLIIUDFWRPHWHU ZLWK JUDSKLWHPRQRFKURPDWHG 0R.D UDGLDWLRQ ; ƒf 7KH FHOO GLPHQVLRQV ZHUH GHWHUPLQHG E\ D OHDVW VTXDUHV UHILQHPHQW RI DXWRPDWLFDOO\ FHQWHUHG UHIOHFWLRQV LQ WKH UDQJH r r $ YDULDEOHVSHHG r rf VFDQ WHFKQLTXH $ YDULDEOHVSHHG

PAGE 51

ZDV XVHG WR PHDVXUH WKH LQWHQVLW\ GDWD IURP r WR r GHJUHHV LQ FRUUHVSRQGLQJ WR KNO YDOXHV RI WR WR DQG WR UHVSHFWLYHO\ 7ZR VWDQGDUG UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU IRU DQ\ GHFRPSRVLWLRQ GXULQJ WKH ;UD\ DQDO\VLV 1R DEVRUSWLRQ FRUUHFWLRQ ZDV PDGH 7KHUH ZHUH XQLTXH UHIOHFWLRQV PHDVXUHG RI ZKLFK ZLWK DQ ,QHW D,QHWf ZHUH XVHG LQ WKH DQDO\VLV 7KH GHQVLW\ RI WKH FRPSRXQG ZDV IRXQG WR EH JFP E\ IORWDWLRQ ZKLFK ZKHQ WDNHQ WRJHWKHU ZLWK WKH XQLW FHOO YROXPH RI ƒ VXJJHVWHG WKDW WKHUH ZHUH IRXU PROHFXOHV SHU XQLW FHOO DVVXPLQJ D PROHFXODU ZHLJKW RI JPROH )URP DQ DQDO\VLV RI WKH V\VWHPDWLF DEVHQFHV HLWKHU RI WKH VSDFH JURXSV 3; RU 3P ZHUH SRVVLEOH WKRXJK IURP DQ HYDOXDWLRQ RI WKH LQWHQVLW\ VWDWLVWLFV 3 DSSHDUHG WR EH WKH EHVW FKRLFH 7KH GDWD UHGXFWLRQ VWUXFWXUH VROXWLRQ DQG ILQDO UHILQHPHQW ZHUH SHUIRUPHG XVLQJ WKH 15&9$; 3&9HUVLRQf>@ SDFNDJH RI SURJUDPV 7KH )H DWRPV DQG DOO QRQK\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH KHDY\DWRP PHWKRG 3DWWHUVRQ DQG )RXULHU V\QWKHVHVf DQG UHILQHG DQLVRWURSLFDOO\ E\ IXOOPDWUL[ OHDVW VTXDUHV 7KH K\GURJHQ DWRPV ZHUH ORFDWHG XVLQJ D GLIIHUHQFH )RXULHU PDS DQG UHILQHG LVRWURSLFDOO\ 7KH PRGHO FRQYHUJHG WR DQ 5 RI DQG D 5Z RI 7KH ODUJHVW VKLIWHVG LQ WKH ODVW F\FOH ZDV $ ILQDO GLIIHUHQFH IRXULHU V\QWKHVLV KDG D PD[LPXP SHDN RI DQG D PLQLPXP SHDN RI H ƒn DQG ZDV IHDWXUHOHVV

PAGE 52

5HVXOWV DQG 'LVFXVVLRQ $V QRWHG SUHYLRXVO\ WKH VWUXFWXUDO VROXWLRQ IRU WKLV FRPSRXQG ZDV VRPHZKDW LQYROYHG 7KH GLUHFW PHWKRG URXWLQHV RI ERWK WKH 6+(/;7/>@ DQG 15&9$; 3&YHUVLRQf>@ VRIWZDUH SDFNDJHV IDLOHG WR DUULYH DW D UHDVRQDEOH LQLWLDO VROXWLRQ IRU WKLV FRPSRXQG 7KLV LV RIWHQ WKH FDVH ZKHQ QRQFHQWURV\PPHWULF FU\VWDOV DUH HQFRXQWHUHG DQG FDXWLRQ PXVW EH H[HUFLVHG ZKHQ XVLQJ EODFNER[ VROYLQJ URXWLQHV LQ WKHVH VLWXDWLRQV :H ZHUH HYHQWXDOO\ DEOH WR DUULYH DW DQ LQLWLDO VROXWLRQ IRU WKH VWUXFWXUH E\ ORFDWLQJ WKH )H DWRPV IURP D 3DWWHUVRQ PDS WKRXJK ZLWK WZR KHDY\ DWRPV LQ WKH DV\PPHWULF XQLW IRXU )H YHFWRUV UHVXOWHG ZKLFK KDG WR EH SURSHUO\ VRUWHG RXW 8SRQ WKH FRUUHFW SKDVLQJ RI WKH )H DWRPV WKH SRVLWLRQV RI WKH UHPDLQLQJ QRQK\GURJHQ DWRPV ZHUH HDVLO\ GHWHUPLQHG IURP VXEVHTXHQW )RXULHU V\QWKHVHV 7KH UHILQHPHQW RI WKLV PRGHO SURFHHGHG VPRRWKO\ DQG WKH UHVXOWLQJ VWUXFWXUDO SDUDPHWHUV FRQWDLQHG QRWKLQJ LUUHJXODU RU DEQRUPDO 7R FKHFN LI DQ\ V\PPHWU\ HOHPHQWV KDG EHHQ RYHUORRNHG WKH SURJUDP 0,66<0 ZKLFK LV SDUW RI WKH 15&9$; 3&YHUVLRQf>@ VRIWZDUH SDFNDJH ZDV UXQ XVLQJ WKH DWRPLF SDUDPHWHUV IURP WKH ILQDO PRGHO 0,66<0 FKHFNV WKH VWUXFWXUDO GDWD DQG FDQ GHWHFW SRVVLEOH PLVVLQJ V\PPHWU\ ZKLFK PD\ KDYH EHHQ GHVFULEHG LQ WKH ZURQJ VSDFH JURXS 8SRQ UXQQLQJ WKH SURJUDP QR DGGLWLRQDO V\PPHWU\ ZDV GHWHFWHG 7KLV UHVXOW WRJHWKHU ZLWK WKH VPRRWK UHILQHPHQW DQG LQWHQVLW\ VWDWLVWLFV

PAGE 53

ZKLFK LQGLFDWHG D QRQFHQWURV\PPHWULF VWUXFWXUH FRQILUPV WKDW 3 ZDV LQGHHG WKH FRUUHFW VSDFH JURXS IRU WKLV VWUXFWXUH 7KH 3%3 QDWXUH RI WKH WZR FDWLRQV LV HDVLO\ VHHQ LQ )LJXUH 7KH ILQDO DWRP FRRUGLQDWHV DUH JLYHQ LQ 7DEOH DQG ERQG GLVWDQFHV DQG DQJOHV DUH JLYHQ LQ 7DEOH 7KH ILQDO DQLVRWURSLF WKHUPDO SDUDPHWHUV DUH JLYHQ LQ 7DEOH DQG WKH ILQDO FRRUGLQDWHV IRU WKH K\GURJHQ DWRPV DUH SURYLGHG LQ 7DEOH 7KH SUHVHQFH RI RQO\ ILYH DQLRQV LQ WKH DV\PPHWULF XQLW LPSOLHV WKDW RQH )HFDWLRQ LV IRUPDOO\ DQG WKH RWKHU ZKLFK LV KLJKO\ XQXVXDO LQGHHG 7KH SRVVLELOLW\ GRHV H[LVW WKDW DQ DGGLWLRQDO DQLRQ LV SUHVHQW LQ WKH IRUP RI D GHSURWRQDWHG OLJDQG RU ZDWHU PROHFXOH WKRXJK WKLV LV GRXEWIXO IRU VHYHUDO UHDVRQV )LUVW WKH K\GURJHQ DWRPV ERQGHG WR 1 1 1 DQG 1 DUH NQRZQ WR EH DFLGLF DQG LW KDV EHHQ SRLQWHG RXW SUHYLRXVO\ WKDW '$36& FDQ LQ IDFW XQGHUJR GHSURWRQDWLRQ DW RQH RI WKHVH VLWHV ZLWK WKH VHPLFDUED]RQH DUP WKHQ DFWLQJ DV PRQRDQLRQ DQG FDUU\LQJ DQ RYHUDOO QHJDWLYH FKDUJH>@ +RZHYHU DOO K\GURJHQ DWRPV DVVRFLDWHG ZLWK WKH OLJDQG ZHUH FOHDUO\ IRXQG LQ D )RXULHU GLIIHUHQFH PDS VR ERWK OLJDQGV DUH IXOO\ SURWRQDWHG DQG QHLWKHU KDV XQGHUJRQH GHSURWRQDWLRQ 6HFRQG WKH WZR FRRUGLQDWHG DQG WZR XQFRRUGLQDWHG + PROHFXOHV LQ WKH DV\PPHWULF XQLW FRXOG KDYH XQGHUJRQH GHSURWRQDWLRQ OHDYLQJ D 2+ DQLRQ EXW WKLV LV KLJKO\ XQOLNHO\ VLQFH WKH FRPSRXQG ZDV LVRODWHG IURP D KLJKO\ DFLGLF VROXWLRQ

PAGE 54

& 1 &O &O & )LJXUH )H $Q 257(3 UHSUHVHQWDWLRQ RI WKH ,,,,,f'$36& FRPSOH[

PAGE 55

7DEOH $WRPLF 3DUDPHWHUV [\] DQG %LVR (6'V UHIHU WR WKH ODVW GLJLW SULQWHG ; \ ] %LVR )HO f f f )H f f f f &OO f f f f & f f f f : f f f f : f f f f f f f f f f f f f f f f f f f f 1 ,' f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1LO f f f f 1 f f f f 1 f f f f 1 ,' f f f &O f f f f & ,' f f f & f f f f & f f f f & ,' f f f & f f f f & f f f f & ,' f f f & f f f f

PAGE 56

7DEOH FRQWf ; \ ] %LVR &,2 f f f f &OO f f f f & f f f R f 1 f & f f f f & f f f f & ,' f f 6L f &2 f & f f f f & f f f f & ,' f f f & ,' f f f & ,' f f f & f f f f & f f f f & f f f f & f f f f & f f f f : f f f f : f f f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 57

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHVr f )HO &OO )HO : )HO )HO )HO 1 )HO 1 )HO 1 &O &OO 1 1 1 & 1 & 1 & 1 1 1 & 1 &O 1 &O 1 &OO 1 &OO & & & & & & & & & & & & & & & &,2 &OO )HO:O &OO )HO &OO )HO :O )HO :O )HO )HO )HO & )HO & 1 1& f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f )H & )H : )H )H )H 1 )H 1LO )H 1 & & 1 1 1 & 1LO & 1LO & 1 1 1 & 1 & 1 & 1 & 1 & & & & & & & & & & & & & & & & & &&& &1 &1 1&1 11& &1& 11& 11& 11& f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 58

7DEOH FRQWf &1& f 11& f 11& f 11& f &1 f &1 f 1&1 f 1&& f 1&& f &&& f 1&& f 1&& f &&& f &&& f &&& f &&& f 1&& f 1&& f &&& f 1&& f 1&& f &1 f &1 f 1&1 f 1&& f 1&& f &&& f 1&& f 1&& f &&& f &&& f &&& f &&& f 1&& f 1&& f &&& f 1&& f 1&& f &&& f &1 f &1 f 1&1 f

PAGE 59

7DEOH (6'V UHIHU WR 8OODf 8 8 )( f f f )( f f f &/ f f f &/ f f f : f f f : f f f f f f f f f f f f f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1 f f f 1LO f f f 1 f f f 1 f f f 1 f f f &O f f f & f f f 8 YDOXHV r WKH ODVW GLJLW SULQWHG 8 8 8 f f f f f f f f f f f f ff f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 60

7DEOH FRQWf 8OODf 8 8 8 8 8 & f f f f f f & f f f f f f f & f f f f f f & f f f f f f & f f f f f f f & f f f f f f & f f f f f f &,2 f f f f f f &OO f f f f f f & f f f f f f & f f f f f f & f f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f f & f f f f f f &/ f f f f f f f &/ f f f f f f &/ f f f f f f : f f f f f f f : f f f f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU

PAGE 61

fDEOH /LJDQG +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR ; \ ] %LVR +,1f +1f +1f +&f +&f +&f +&f +&f +&f +,2&,2f +OO&O2f +&,2f +1f +1f +1f +1f +1f +1f +&f +&f +&f +& f +&f +&f +&f +&f +&f +1f +1f +1f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 62

7KLUG WKH H[LVWHQFH RI DQ 2+n LRQ LQ WKLV ZDWHU VROXEOH FRPSRXQG ZRXOG LPSO\ WKDW LW VKRXOG DFW DV D VWURQJ EDVH LQ DTXHRXV VROXWLRQ $TXHRXV VROXWLRQV RI WKLV FRPSRXQG ZHUH IRXQG WR EH DFLGLF DQG QRW DW DOO EDVLF )LQDOO\ WKRXJK WKHUH LV HYLGHQFH RI K\GURJHQ ERQGLQJ PRVW QRWDEO\ EHWZHHQ 1+1 f r r f& 1+1ff r f& 1+1ff f f& ZLWK GLVWDQFHV EHWZHHQ WKH K\GURJHQ DQG FKORULGH RI f f DQG fƒ UHVSHFWLYHO\ WKHUH LV QR HYLGHQFH RI VWURQJ K\GURJHQ ERQGLQJ LQYROYLQJ HLWKHU RI WKH XQFRRUGLQDWHG ZDWHU PROHFXOHV DV PLJKW EH H[SHFWHG LI RQH ZHUH LQ IDFW D 2+n LRQ $GGLWLRQDO HYLGHQFH IRU DQ )H,,f)H,,,f DVVLJQPHQW FRPHV IURP D FRPSDULVRQ RI ERQG OHQJWKV ZLWKLQ WKH LPPHGLDWH FRRUGLQDWLRQ VSKHUH RI HDFK )HFDWLRQ 7DEOH VKRZV WKDW )HO KDV PXFK VKRUWHU ERQG OHQJWKV ZLWKLQ WKH FRRUGLQDWLRQ VSKHUH WKDQ GRHV )H 6LQFH ILUVW URZ WUDQVLWLRQ PHWDOV WHQG JHQHUDOO\ WR EH LRQLF LQ QDWXUH LW LV UHDVRQDEOH WR H[SHFW WKDW VKRUWHU ERQG OHQJWKV ZRXOG EH REVHUYHG IRU D FDWLRQ DV RSSRVHG WR D FDWLRQ FDUU\LQJ D FKDUJH 7KXV RXU REVHUYDWLRQV VXJJHVW WKDW WKH )HOFDWLRQ LV DQG WKH )H FDWLRQ LV )XUWKHUPRUH FRPSDULQJ WKH FRRUGLQDWLRQ VSKHUH ERQG OHQJWKV RI WKH WZR FRPSOH[HV LQ WKLV FRPSRXQG ZLWK WKH SUHYLRXVO\ UHSRUWHG )H,,f DQG )H,,,f FRPSOH[HV DV LV VKRZQ LQ 7DEOH UHYHDOV WKDW WKH ERQG OHQJWKV RI )H SDUDOOHO

PAGE 63

7DEOH %RQG /HQJWKV 2EVHUYHG :LWKLQ WKH ,PPHGLDWH &RRUGLQDWLRQ 6SKHUH LQ ƒ ,, ,,, ,9 )H &O )H &Of )H )H )H 1 )H 1 )H 1 :KHUH )H'$36&f,, $P &KHP 6RF f ,, )H FRPSOH[ GLVFXVVHG LQ WKLV FKDSWHU ,,, )H'$36&f,,, ,QRUR &KHP f ,9 )HO FRPSOH[ GLVFXVVHG LQ WKLV FKDSWHU

PAGE 64

WKRVH REVHUYHG IRU WKH )H,,f FRPSOH[ DQG D VLPLODU VLWXDWLRQ H[LVWV EHWZHHQ )HO DQG WKH )H,,,f FRPSOH[ 'XH WR WKH XQLTXH QDWXUH RI WKLV FRPSRXQG ZH KDYH QRZ EHJXQ D WKHRUHWLFDO LQYHVWLJDWLRQ H[SORULQJ WKH HOHFWURQLF DQG FRQIRUPDWLRQDO FKDUDFWHULVWLFV RI WKH DVVRFLDWHG PROHFXOHV E\ SUHIRUPLQJ VHPLHPSLULFDO JHRPHWU\ RSWLPL]DWLRQ FDOFXODWLRQV 7KH GHWDLOV RI WKLV ZRUN ZLOO EH SUHVHQWHG LQ FKDSWHU

PAGE 65

&+$37(5 3(17$*21$/ %,3<5$0,'$/ &203/(;(6 2) &U,,, f :+,&+ ',63/$< $ 67$7,& -$+17(//(5 ',67257,21 ,QWURGXFWLRQ 3HQWDJRQDOELS\UDPLGDO FRPSOH[HV RI &U,,,f DUH H[WUHPHO\ UDUH DQG WR GDWH RQO\ IRXU UHSRUWV>@ RI VXFK FRPSRXQGV KDYH DSSHDUHG LQ WKH OLWHUDWXUH ,Q HDFK LQVWDQFH D SODQDU SHQWDGHQWDWH OLJDQG ZDV HPSOR\HG WR REWDLQ WKLV XQLTXH JHRPHWU\ DURXQG WKH FKURPLXPFDWLRQ $Q LQWULJXLQJ DVSHFW RI WKHVH FRPSOH[HV LV WKH SURQRXQFHG DV\PPHWU\ REVHUYHG LQ WKH HTXDWRULDO SODQH RI WKH SHQWDJRQDO ELS\UDPLG ,Q WZR RI WKH UHSRUWV>@ WKLV GUDPDWLF DV\PPHWU\ KDV EHHQ DWWULEXWHG WR WZR HIIHFWV D VWDWLF -DKQ7HOOHU>@ GLVWRUWLRQ DULVLQJ IURP RUELWDO GHJHQHUDF\ DQG WKH VWURQJHU DWWUDFWLRQ RI D QHJDWLYHO\ FKDUJHG VHFWLRQ RI WKH OLJDQG WR WKH PHWDO FDWLRQ 8WLOL]LQJ ERWK '$36& DQG '$3%$+ WZR QHZ FRPSOH[HV RI &U,,,f GLVSOD\LQJ 3%3 JHRPHWU\ KDYH EHHQ SUHSDUHG 7KH UHDFWLRQ RI '$36& ZLWK &Un LQ D UHGXFLQJ PHGLXP SURGXFHG D &U,,,f FDWLRQ >&U'$36&f+ f@ ? D SURGXFW SUHYLRXVO\ LVRODWHG>@ EXW QRW VWUXFWXUDOO\ FKDUDFWHUL]HG &RPELQLQJ '$3%$+ ZLWK D VROXWLRQ RI &U LQ 0 +& SURGXFHG WKH FDWLRQ >&U '$3%$+ f+f@?

PAGE 66

7KH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI ERWK 3%3&U,,,f FRPSOH[HV E\ ;UD\ GLIIUDFWLRQ WHFKQLTXHV LV SUHVHQWHG LQ WKLV FKDSWHU ,Q DGGLWLRQ LW LV VKRZQ E\ PHDQV RI D JURXS WKHRUHWLFDO WUHDWPHQW WKDW D VWDWLF -DKQ7HOOHU GLVWRUWLRQ LV LQGHHG SRVVLEOH IRU D &U,,,f FDWLRQ LQ D 3%3ILHOG ([SHULPHQWDO 0DWHULDOV 7KH 'LDFHW\OS\ULGLQH SXUFKDVHG IURP $OGULFK VHPLFDUED]LGH K\GURFKORULGH SXUFKDVHG IURP (DVWPDQ &KHPLFDOV DQG WKH EHQ]RLF DFLG K\GUD]LGH SXUFKDVHG IURP 3IDOW] DQG %DXHU ZHUH XVHG DV VXSSOLHG $OO RWKHU VROYHQWV DQG FKHPLFDOV ZHUH UHDJHQW JUDGH 3UHSDUDWLRQ RI U&U'$36&f+f}1 K m + ,f .&U J PPROHf ZDV DGGHG WR P/ + KDYLQJ D S+ FRQH +1f '$36& J PPROHf SUHSDUHG E\ WKH PHWKRG SUHYLRXVO\ GHVFULEHG>@ ZDV WKHQ DGGHG WR WKLV VROXWLRQ 7KH UHVXOWLQJ VOXUU\ ZDV VWLUUHG DQG KHDWHG WR r & IRU KU 7KH JUHHQ VROXWLRQ ZDV WKHQ ILOWHUHG WKURXJK D ILQH JODVV IULW DQG FRROHG WR URRP WHPS r &f $W WKLV SRLQW S+ 6ORZ HYDSRUDWLRQ RI WKH ILOWUDWH JDYH D FURS RI EURZQ SODWHV DIWHU GD\V 3UHSDUDWLRQ RI U&U '$3%$+ f + f r& m + ,,f &KURPLXP PHWDO J PPROHf ZDV SODFHG LQWR P/ RI D 0 +& VROXWLRQ XQGHU 1f WR SURGXFH D 0 &UW VROXWLRQ '$3%$+ J PPROHf SUHSDUHG E\ WKH PHWKRG

PAGE 67

SUHYLRXVO\ GHVFULEHG>@ ZDV WKHQ DGGHG WR WKLV VROXWLRQ 8SRQ WKH DGGLWLRQ RI '$3%$+ WKH EOXH &Ur VROXWLRQ UDSLGO\ WXUQHG WR D \HOORZJUHHQ FRORU 6WLUULQJ ZDV FRQWLQXHG IRU KU DIWHU ZKLFK WKH 1 DWPRVSKHUH ZDV UHPRYHG DQG WKH VROXWLRQ ILOWHUHG 7KH ILOWUDWH KDG D S+ DQG QR IXUWKHU FRORU FKDQJHV ZHUH REVHUYHG *UHHQ FXELF VKDSHG FU\VWDOV ZHUH REWDLQHG LQ JRRG \LHOG ZLWKLQ KUV 0DJQHWLF 0HDVXUHPHQWV 7KH PDJQHWLF PRPHQWV RI ERWK FRPSRXQGV ZHUH GHWHUPLQHG LQ D b WHUWEXW\O DOFRKROZDWHU VROXWLRQ E\ 105 WHFKQLTXHV>@ 7KH DYHUDJH RI WKUHH PHDVXUHPHQWV IRU DQG ,, ZDV s DQG s UHVSHFWLYHO\ 'DWD &ROOHFWLRQ DQG 6WUXFWXUH 5HILQHPHQW &U\VWDOV VXLWDEOH IRU GLIIUDFWLRQ VWXGLHV ZHUH PRXQWHG RQ WKH HQG RI D JODVV ILEHU DQG DOO VXEVHTXHQW PHDVXUHPHQWV ZHUH PDGH XVLQJ D 1LFROHW 5P GLIIUDFWRPHWHU ZLWK JUDSKLWHPRQRFKURPDWHG 0R.D UDGLDWLRQ ; ƒf 7KH XQLW FHOO GLPHQVLRQV ZHUH GHWHUPLQHG E\ D OHDVW VTXDUHV UHILQHPHQW RI DXWRPDWLFDOO\ FHQWHUHG UHIOHFWLRQV $ YDULDEOHVSHHG ,R rf VFDQ WHFKQLTXH ZDV XVHG WR PHDVXUH WKH LQWHQVLW\ GDWD IURP r WR r DQG r LQ IRU WKH FRPSOH[HV DQG ,, UHVSHFWLYHO\ 7ZR VWDQGDUG UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU IRU DQ\ GHFRPSRVLWLRQ GXULQJ WKH ;UD\ DQDO\VLV 1R DEVRUSWLRQ FRUUHFWLRQV ZHUH PDGH 7KH SHUWLQHQW FU\VWDO GDWD LV JLYHQ LQ 7DEOH

PAGE 68

7KH GDWD UHGXFWLRQ VWUXFWXUH VROXWLRQ DQG ILQDO UHILQHPHQW ZHUH SHUIRUPHG XVLQJ WKH 15&9$; 3&9HUVLRQf>@ SDFNDJH RI SURJUDPV $OO QRQK\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH KHDY\DWRP PHWKRG 3DWWHUVRQ DQG )RXULHU V\QWKHVHVf DQG UHILQHG DQLVRWURSLFDOO\ E\ IXOOPDWUL[ OHDVW VTXDUHV 7KH K\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH FDOFXODWLRQ RI D GLIIHUHQFH )RXULHU PDS DQG UHILQHG LVRWURSLFDOO\ IRU FRPSOH[ )RU FRPSOH[ ,, +DWRPV ZHUH SODFHG DW FDOFXODWHG SRVLWLRQV DQG QRW UHILQHG 7KH ILQDO SRVLWLRQDO SDUDPHWHUV DUH JLYHQ LQ 7DEOHV DQG ZLWK WKH ILQDO ERQG GLVWDQFHV LQYROYLQJ WKH QRQK\GURJHQ DWRPV DQG ERQG DQJOHV OLVWHG LQ 7DEOHV DQG UHVSHFWLYHO\ 7KH DQLVRWURSLF WKHUPDO SDUDPHWHUV DUH OLVWHG LQ 7DEOHV DQG DQG WKH K\GURJHQ SRVLWLRQDO SDUDPHWHUV DUH JLYHQ LQ 7DEOHV DQG 5HVXOWV DQG 'LVFXVVLRQ 7KH FU\VWDOV RI DQG ,, FRQVLVW RI >&U '$36&f + f@r DQG >&U '$3%$+ f + f@r FDWLRQV UHVSHFWLYHO\ DQG GLVSOD\ 3%3 JHRPHWU\ ZKLFK LV HDVLO\ VHHQ LQ )LJXUHV DQG 7KH ERQG OHQJWKV REVHUYHG ZLWKLQ HDFK RI WKH FRRUGLQDWLRQ VSKHUHV DUH SUHVHQWHG LQ 7DEOH ,W LV FOHDU IURP WKH ERQG OHQJWKV LQ 7DEOH WKDW WKH ILYH ERQGV LQ HDFK RI WKH HTXDWRULDO SODQHV GLIIHU VLJQLILFDQWO\ IURP HDFK RWKHU &RQVHTXHQWO\ WKHUH LV QRWDEOH GLVWRUWLRQ RI WKH UHVSHFWLYH SHQWDJRQDO ELS\UDPLG LQ HDFK FDVH

PAGE 69

7DEOH &U\VWDO 'DWD IRU DQG ,, ,, &U\VWDO 6\VWHP 0RQRFOLQLF 7ULFOLQLF 6SDFH *URXS 3Q 3, D ƒ E ƒ F ƒ D r 3 < r 9RO ƒ PRO ZW = GFDOHGf JFP &U\VWDO 6L]H PP [ [ [ [ S FPn 'DWD ZLWK FW, 5D b 5ZE b ) )f A ,) a )F _f (AI

PAGE 70

7DEOH $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU &RPSRXQG (6'V UHIHU WR WKH ODVW GLJLW SULQWHG ; \ ] %LVR &U f f f f : f f f f : f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f 1 f f f f 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f : f f f f %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 71

7DEOH $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU &RPSRXQG ,, (6'V UHIHU WR WKH ODVW GLJLW SULQWHG ; \ ] %LVR &UO f f f f &U f f f f &OO f f f f & f f f f & f f f f & f f f f f f f f f f f f f f f f f f f f : f f f f : f f f f : f f f f : f f f f 1 f f f f 1 ,' f f f 1 f f f f 1 ,' f f f 1 ,' f f f 1 f f f f 1 f f f f 1 ,' f f f 1 ,' f f f 1 ,' f f f &O f ,' ,' f & f f ,' ,' & f f f ,' & f f f f & f ,' f f & f ,' f f & f f f f & f f ,' f & f ,' f f &,2 f f f f &OO f f f ,' & ,' ,' f f & f f f f & f f ,' f & f f f ,' & f f ,' f & f f ,' f & f f f f & f f ,' f

PAGE 72

7DEOH FRQWf ; \ ] %LVR & f f f ,' & f f f f & f f ,' f & f ,' f ,' & f f f f & f f f f & f f f f & f f f f & f f f f &OOO f ,' ,' f & f f f f & f f f f & f f f f & f f f f & f f ,' f & f f f f & f f f f & f f f f & f f f ,' & f f f f & f f f f & f f f ,' & f f f f & f f f f & f f f f & f f f f & f f f f : f f f f : f f f ,' : f ,' f f : f f f f : f ,' ,' ,' %LVR LV WKH 0HDQ RI WKH 3ULQFLSDO $[HV RI WKH 7KHUPDO (OOLSVRLG

PAGE 73

7DEOH %RQG /HQJWKV ƒf DQG %RQG $QJOHV rf IRU &U : f 1 &OO f &U : f &O & f &U f &O & f &U f & & f &U 1 f & & f &U 1 f & & f &U 1 f & & f & f & & f &OO f & &,2 f 1 &O f 1 f 1 & f 1 f 1 1 f 1 f 1 & f 1 f 1 & f 1 f 1 & f 1 f 1 1 f 1 & f 1 &OO f :O&U: f &&& f :O&U f &&& f :O&U f 1&& f :O&U1 f 1&& f :&U f &&& f :&U f 1&& f :&U1 f 1&& f &U f &&& f &U1 f &1 f &U1 f &1 f &U& f 1&1 f &U&OO f 1&& f &1& f 1&& f 11& f &&& f 11& f &1 f &U11 f &1 f &U1& f 1&1 f 11& f 1 f 11& f 1 f 1&& f 1 f 1&& f 1 f &&& f 1 f &&& f 1 f

PAGE 74

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU ,, &UO f & & f &UO f & & f &UO : f & & f &UO : f & &,2 f &UO 1 f &OO &OOO f &UO 1 f & & f &UO 1 f & & f &U f & & f &U f & & f &U : f & & f &U : f & & f &U 1 f & & f &U 1 f & & f &U 1 f & & f & f & & f &OO f & & f & f & & f & f & & f 1 &O f & & f 1, & f & & f 1 1 f & & f 1 & f &OOO & f 1 & f FP & f 1 1 f & & f 1 & f & &O f 1 &OO f & & f 1 & f & & f 1 & f & & f 1 1 f & & f 1 & f & & f 1 & f & & f 1 1 f & & f 1 & f & & f 1 & f & & f &O & f & & f &O & f & & f & & f & & f & & f & & f & & f & & f &UO f && & f &UO:O f & 1 f &UO: f & & f &UO1O f 1& & f &UO1 f 1& & f

PAGE 75

7DEOH FRQWf &UO:O f 1&& f &UO: f &&& f &UO1O f &1 f &UO1 f && f :O&UO: f 1&& f :O&UO1O f 1&& f :O&UO1 f 1&& f :&UO1O f &&& f :&UO1 f &&& f 1O&UO1 f &&& f &U f &&& f &U: f 1&& f &U: f 1&& f &U1 f &&& f &U1 f 1&& f &U: f 1&& f &U: f &&& f &U1 f &1 f &U1 f && f :&U: f 1&& f :&U1 f 1&& f :&U1 f 1&& f :&U1 f &&& f :&U1 f 2&1 f 1&U1 f && f &UO& f 1&& f &UO&OO f &&& f &U& f &&& f &U& f &&& f &UO1O&O f &&& f &UO1O& f &&& f &1& f &&& f 11& f &&& f 11& f &&& f &UO11 f &O&O&O f &UO1& f &&& f 11& f &&& f 11& f &O&O&O f &U1& f &O&O&O f &U1& f &&& f &1& f &&& f &U11 f &&& f &U1& f &O&O&O f 11& f &&& f 11& f &&& f 11& f &O&O&O f

PAGE 76

7DEOH FRQWf 11& f &&& f 1&& f &O&O&O f 1&& &&& f &&& f &O&O&O f &&& f &&& f &&& f &&& f &&& f &&& f 1&& f &&& f 1&& f &&& f &&& f &&& f 1&& f &&& f 1&& f &&& f

PAGE 77

7DEOH 8 YDOXHV r IRU (6'V UHIHU WR WKH ODVW GLJLW SULQWHG 8OOTf 8 8 8 8 8 &U f f : f f : f f f f f f 1 f f 1 f f 1 f f 1 f f 1 f f 1 f f 1 f f &O f f & f f & f f & f f & f f & f f & f f & f f & f f &,2 f f &OO f f 1 f f 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f O.' f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f &7L 2L

PAGE 78

7DEOH FRQWf 8OODf 8 8 8 8 f f f f f f f f f f f f f f f f f f f f f : f f f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH WHPS r3Lr3Lr KrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU f 8 f f f f f IRUP

PAGE 79

8OODf 7DEOH 8 YDOXHV r (6'V UHIHU WR WKH ODVW GLJ 8 8 8 &UO f f f f &U f f f f &OO f f f f & f f f f & f f f f & f f f f f f f f f f f f f f f f f f f f f : f f f f : f f f f : f f f f : f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f IRU ,, /W SULQWHG 8 8 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 80

7DEOH 8OODf 8 8 & f & f & f & f & f &,2 f &OO f & f & f & f & f & f & f & f & f & f & f & f & f & f & f & f & f & f &OOO f & f & f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f FRQWf 8 f f f f f f f f f f f f f f f f f f f f f f f f f f f 8 f f f f f f f f f f f f f f f f f ‘ f f f f f f f f f f f 8 f f f f f f f f f f f f f f f f f f f f f f f f f§f f f f f f

PAGE 81

7DEOH FRQWf 8OORf 8 8 8 8 8 & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f : f f f f f f f : f f f f f f : f f f f f f : f f f f f f : f f f f§ f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDUf§ rKrNrXOrDVWDUrEVWDU f

PAGE 82

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU (6'V UHIHU WR WKH ODVW GLJLW SULQWHG [ \ ] %LVR +,1f +1f +1f +&f +&f +&f +&f +&f +&f +,2&,2f +&,2f +&,2f +1f +1f +:f +:f +:f +:f +:f +:f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 83

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR IRU ,, (6'V UHIHU WR WKH ODVW GLJLW SULQWHG ; \ ] %LVR +,&f +&f +&f +&f +&f +&f +&,2f +&,2f +&,2f +&f +OO&f +& f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +&f +& f +&f +&f +&f +&f +&f +:f +:f +:f +:f +:f

PAGE 84

7DEOH FRQWf ; \ ] %LVR +:f +:f +:f +:f +:f +:f +:f +:f +:f +:f +:f +:f

PAGE 85

)LJXUH $Q 257(3 UHSUHVHQWDWLRQ RI &RPSRXQG ,

PAGE 86

)LJXUH $Q 257(3 UHSUHVHQWDWLRQ RI FRPSRXQG ,,

PAGE 87

&U 7DEOH %RQG 'LVWDQFHV LQ ƒ :LWKLQ WKH &RRUGLQDWLRQ 6SKHUH ,, : : 1 1 1

PAGE 88

-DKQ 7HOOHU (IIHFW 3UHYLRXVO\ LW ZDV VXJJHVWHG>@ WKDW WKH DV\PPHWU\ REVHUYHG LQ 3%3 &U,,,f FRPSOH[HV ZDV GXH WR D -DKQ7HOOHU GLVWRUWLRQ>@ ZKLFK RFFXUV WR UHPRYH WKH RUELWDO GHJHQHUDF\ 6LQFH ERWK FRPSRXQGV H[KLELW VROXWLRQ PDJQHWLF PRPHQWV FRUUHVSRQGLQJ WR XQSDLUHG HOHFWURQV WKH FHQWUDO &U LRQ FDQ EH GHVFULEHG DV D G V\VWHP 7KH HQHUJ\ OHYHO GLDJUDPV )LJXUH IRU WKH GRUELWDOV LQ 3%3 JHRPHWU\>@ UHTXLUH SODFLQJ RQH HOHFWURQ LQ HLWKHU WKH DQWLERQGLQJ G[B\ RU G[\ RUELWDO $VVXPLQJ UHJXODU 'BK JHRPHWU\ WKH LPSRVHG FU\VWDO ILHOG ZRXOG OHDG WR DQ RUELWDO GHJHQHUDF\ ZKLFK PD\ EH UHPRYDEOH E\ D -DKQ7HOOHU YLEURQLF GLVWRUWLRQ :LWK WKUHH XQSDLUHG HOHFWURQV DQ HOHFWURQ FRQILJXUDWLRQ RI HnA Hn LV REWDLQHG IRU &U,,,f LQ D 3%3 ILHOG 8SRQ FRXSOLQJ WKH WZR HnA HOHFWURQV D WULSOHW VSLQ IXQFWLRQ LV REWDLQHG ZKLFK LV V\PPHWULF FRQVHTXHQWO\ WKH DQWLV\PPHWULF GLUHFW SURGXFW RI WKH WZR HOHFWURQV PXVW EH WDNHQ DV UHTXLUHG E\ WKH 3DXOL SULQFLSDO WR SURGXFH DQ RYHUDOO VSLQ IXQFWLRQ ZKLFK LV DQWLV\PPHWULF >H? ; H?@DQWO $n 1RZ FRXSOLQJ LQ WKH Hn HOHFWURQ DQG WDNLQJ WKH V\PPHWULF GLUHFW SURGXFW WKH JURXQG VWDWH WHUP V\PERO

PAGE 89

'T 'T 'T )LJXUH &U\VWDO )LHOG 6SOLWWLQJ IRU D 3HQWDJRQDO %LS\UDPLGDO )LHOG 'Kf

PAGE 90

>$n ; H n @ V\P (n LV REWDLQHG $WWHQWLRQ PXVW QRZ EH JLYHQ WR KRZ WKH VSLQ SRUWLRQ RI WKH ZDYH IXQFWLRQ WUDQVIRUPV LQ WKH SRLQW JURXS V\PPHWU\ E\ ORRNLQJ DW WKH VSLQRUELW FRXSOLQJ HIIHFWV ,I WKHUH LV VWURQJ VSLQRUELW FRXSOLQJ IRXU VWDWHV DULVH DV VKRZQ EHORZ EXW DOO DUH .UDPHUV GRXEOHWV DQG WKXV QRW -DKQ 7HOOHU DFWLYH 6SLQ LH TXDUWHW JURXQG VWDWHf ( ( WAL (@ ; (n ( ( ( ( ,Q WKH FDVH RI &U,,,f WKH VSLQRUELW FRXSOLQJ FDQ EH FRQVLGHUHG ZHDN>@ ,Q FRQVHTXHQFH XSRQ WDNLQJ WKH V\PPHWULF GLUHFW SURGXFW RI WKH (n YLEURQLF VWDWH RQO\ > ( n ; ( n @ $n (? LV REWDLQHG $OWKRXJK WKH $n[ VWDWH LV WRWDOO\ V\PPHWULF DQG QRW -DKQ 7HOOHU DFWLYH WKH (n VWDWH LV D WZR IROG GHJHQHUDWH YLEUDWLRQ DQG FRXOG LQGHHG JLYH ULVH WR D -DKQ7HOOHU YLEURQLF GLVWRUWLRQ $OWKRXJK LW LV QRW RXU SXUSRVH WR PDNH DQ\ TXDQWLWDWLYH FDOFXODWLRQ RQ WKH PDJQLWXGH RI WKLV GLVWRUWLRQ WKH -DKQ 7HOOHU HIIHFW IRU D G PHWDO LRQ LQ D 3%3 ILHOG LV LPSRUWDQW

PAGE 91

VLQFH WKH RUELWDO GHJHQHUDF\ LQYROYHV DQ HOHFWURQ LQ HLWKHU D G[B\ RU D G[\ RUELWDO ERWK RI ZKLFK SDUWLFLSDWH VWURQJO\ LQ ERQGLQJ LQ WKH HTXDWRULDO SODQH 'HSURWRQDWLRQ RI WKH /LJDQG $ VHFRQG FRQWULEXWLRQ WR WKH REVHUYHG GLVWRUWLRQ LQ ERWK 3%3 &U,,,f FRPSOH[HV DULVHV IURP WKH IRUPDWLRQ RI D KDOIFRQMXJDWHG PRQRDQLRQ ZKLFK UHVXOWV IURP WKH GHSURWRQDWLRQ RI RQH RI WKH 1+ IXQFWLRQV RI WKH UHVSHFWLYH OLJDQG DUP DV VKRZQ LQ )LJXUH ,Q FRPSOH[ WKH K\GURJHQ DWRP RQ 1 ZDV QRW ORFDWHG FRQVHTXHQWO\ WKH OLJDQG EHFRPHV D KDOIFRQMXJDWHG PRQRDQLRQ DQG DV D UHVXOW WKH RYHUDOO FKDUJH RQ WKH FRPSOH[ KDV D ZKLFK LV EDODQFHG E\ WZR 1f LRQV %HKDYLRU RI WKLV W\SH LV QRW XQXVXDO DV KDV EHHQ SRLQWHG RXW SUHYLRXVO\>@ 7KH ERQG OHQJWKV IURP WKH GHSURWRQDWHG DUP WR WKH &U,,,f LRQ DUH VKRUWHU WKDQ WKRVH RQ WKH RSSRVLWH VLGH DV PLJKW EH H[SHFWHG IURP HOHFWURVWDWLF DUJXPHQWV 7KH TXDOLW\ RI WKH ILQDO GLIIHUHQFH PDS IRU FRPSOH[ ZDV QRW RI VXIILFLHQW TXDOLW\ WR ORFDWH DOO K\GURJHQV ZLWK FHUWDLQW\ ,W LV OLNHO\ WKDW ERWK PROHFXOHV KDYH ORVW RQH SURWRQ VLQFH HDFK PROHFXOH KDV WZR FKORULGH LRQV DVVRFLDWHG ZLWK LW DQG UHTXLUHV D WKLUG QHJDWLYH FKDUJH WR EDODQFH WKH VWDWH RI WKH PHWDO 6LQFH WKH FRPSOH[ ZDV REWDLQHG IURP D KLJKO\ DFLGLF VROXWLRQ WKH H[LVWHQFH RI D +f LRQ UDWKHU WKDQ D ZDWHU PROHFXOH LQ WKH XQLW FHOO LV XQOLNHO\ 'HSURWRQDWLRQ RI HLWKHU '$36& RU '$3%$+ OHDGV WR WKH GHORFDOL]DWLRQ RI WKH QHOHFWURQV LQ WKH OLJDQG DUP

PAGE 92

)LJXUH $ UHSUHVHQWDWLRQ RI WKH KDOIFRQMXJDWHG PRQRDQLRQ ZKLFK UHVXOWV IURP WKH GHSURWRQDWLRQ RI WKH OLJDQG

PAGE 93

/HQJWKHQLQJ RI WKH & DQG 1 & ERQGV DQG D VKRUWHQLQJ RI WKH 1& ERQG LV REVHUYHG LQ ERWK DQG DV ZRXOG EH H[SHFWHG 7KH 11 ERQG ZRXOG DOVR EH H[SHFWHG WR VKRUWHQ WKRXJK ZH ILQG WKH ERQG DFWXDOO\ OHQJWKHQV ZKLFK LV LQ DFFRUG ZLWK SUHYLRXV UHSRUWV>@ 7KLV OHQJWKHQLQJ PD\ EH GXH WR WKH SUHVHQFH RI D QQRGDO SODQH SHUSHQGLFXODU WR WKH HTXDWRULDO SODQH RI WKH SHQWDJRQDO ELS\UDPLG ZKLFK ELVHFWV WKH 11 ERQG 'HSURWRQDWLRQ RI WKH OLJDQG SXWV DQ DGGLWLRQDO HOHFWURQ LQWR WKH GHORFDOL]HG LWRUELWDO ZKLFK ZRXOG LQ WXUQ FDXVH JUHDWHU UHSXOVLRQ DW WKH QRGDO SODQH +HQFH QRUELWDO DQWLERQGLQJ LQWHUDFWLRQV DUH D PRUH OLNHO\ FDXVH RI WKLV DQRPDO\ WKDQ ULQJ VWUHVV LQ WKH ILYH PHPEHUHG ULQJ UHVXOWLQJ IURP WKH VWURQJ DWWUDFWLRQ RI WKH QHJDWLYHO\ FKDUJHG SRUWLRQ RI WKH OLJDQG WR WKH PHWDO DV KDV EHHQ VXJJHVWHG>@ ,Q FRQFOXVLRQ ZH VHH WKDW 3%3 FRPSOH[HV RI &U,,,f ZLWK HLWKHU '$36& RU '$3%$+ DUH UHDGLO\ REWDLQHG IURP DTXHRXV PHGLD 0RUHRYHU WKHVH WZR FRPSOH[HV SURYLGH DGGLWLRQDO H[DPSOHV RI VWDWLF -DKQ7HOOHU GLVWRUWLRQV LQ 3%3 FRPSOH[HV )XUWKHUPRUH WKH GLVWRUWLRQV REVHUYHG FDQQRW EH DFFRXQWHG IRU WRWDOO\ LQ WHUPV RI HLWKHU D -DKQ7HOOHU GLVWRUWLRQ RU WKH IRUPDWLRQ RI D KDOIFRQMXJDWHG PRQRDQLRQ EXW UDWKHU E\ D FRPELQDWLRQ RI ERWK HIIHFWV

PAGE 94

&+$37(5 6<17+(6,6 $1' &5<67$/ 6758&785( 2) $ :$7(5 62/8%/( &$7,21,& WL7@&+f5X,9f &203/(; &+/252> UL 7@f ',0(7+@ DQG IRU WKHLU XVH DV R[LGL]LQJ DJHQWV IRU RUJDQLF V\QWKHVLV>@ $OWKRXJK VWDEOH ELVQDOO\OfUXWKHQLXP FRPSOH[HV KDYH EHHQ SUHSDUHG>@ WKH UHDFWLRQV RI WKH FKORUREULGJHG GLPHU GLX FKORURELV > GLPHWK\ORFWD GLHQHO GL\OfUXWKHQLXP,9f@ FKORULGH, KDV QRW EHHQ H[WHQVLYHO\ VWXGLHG :H FKRVH WR VWXG\ WKH UHDFWLRQ RI '$36& ZLWK > @ LQ DQ DWWHPSW WR SUHSDUH D 3%3 5X,9f FRPSOH[ 2QH SUREOHP HQFRXQWHUHG LQ SUHSDULQJ 3%3 FRPSOH[HV RI WKH VHFRQG DQG WKLUG WUDQVLWLRQ VHULHV LV WKDW WKH VSLQRUELW FRXSOLQJ HIIHFW KDV D PDMRU LQIOXHQFH RQ WKH VSOLWWLQJ RI WKH GRUELWDOV 7KLV HIIHFW PDJQLILHV WKH HQHUJ\ GLIIHUHQFHV EHWZHHQ WKH GRUELWDOV ZKLFK DUH LQLWLDOO\ SURGXFHG E\ WKH 3%3 OLJDQG ILHOG HQFRXQWHUHG E\ WKH PHWDOFDWLRQ 7KH JUHDWHVW GLIIHUHQFH LQ HQHUJ\ IRU VHFRQG DQG WKLUG URZ PHWDOV FRPHV EHWZHHQ WKH Hn DQG H[ RUELWDOV )LJXUH f ZLWK WKH Hn

PAGE 95

RUELWDOV LQFUHDVLQJ GUDPDWLFDOO\ LQ HQHUJ\ DV FRPSDUHG WR WKH HnA RUELWDOV 7KXV LW LV UHDVRQDEOH WR H[SHFW WKDW PHWDO FDWLRQV ZLWK HOHFWURQ FRQILJXUDWLRQV RI G RU ORZHU>@ ZRXOG EH HDVLHU WR LVRODWH VLQFH LW ZRXOG QRW UHTXLUH WKH SODFHPHQW RI RQH RU PRUH HOHFWURQV LQWR WKH KLJKHU HQHUJ\ RUELWDOV 6LQFH D 5X,9f FRPSOH[ KDG EHHQ UHSRUWHG>@ ZKHUH ELGHQWDWH OLJDQGV KDG EHHQ XVHG WR DFKLHYH 3%3 JHRPHWU\ ZH ZHUH LQWHUHVWHG LQ H[SORULQJ ZKHWKHU D SHQWDGHQWDWH OLJDQG FRXOG DOVR EH XVHG WR LVRODWH 5X LQ D KLJK IRUPDO R[LGDWLRQ VWDWH 7KH UHSRUWHG R[LGDWLRQ VWDWH RI VXJJHVWHG WKDW WKH PHWDO ZDV G )XUWKHUPRUH WKLV FRPSRXQG ZDV NQRZQ WR EH DLU VWDEOH DQG UHODWLYHO\ XQFRPSOLFDWHG WR SUHSDUH &RQVHTXHQWO\ ZH GHFLGHG WR XVH DV D VRXUFH RI 5X,9f LQ RXU VWXG\ 5DWKHU WKDQ WKH H[SHFWHG 3%3 FRPSOH[ D QRYHO FRRUGLQDWH VSHFLHV ZDV LVRODWHG ZLWK DQ XQXVXDO WULJRQDO ELS\UDPLGDO 7%3 JHRPHWU\ DURXQG WKH 5X FHQWHU UHVXOWLQJ IURP D GLVUXSWLRQ RI WKH FKORULQH EULGJHV LQ WKH GLPHULF 5X VWDUWLQJ PDWHULDO DQG WKH VROYRO\VLV RI WKH '$36& OLJDQG 7KH QHZ FRPSOH[ LV WKH ILUVW H[DPSOH RI D 5X,9f LRQ FKHODWHG E\ ERWK WZR 7@ DOO\Of IXQFWLRQV DQG D VHPLFDUED]LGH OLJDQG 5HFHQWO\ WKH LVRPHULVP DQG VROXWLRQ HTXLOLEULD IRU WKH FKORUREULGJHG GLPHU ZDV UHSRUWHG DQG WKH SRVVLEOH H[LVWHQFH RI FDWLRQLF VSHFLHV ZDV SRVWXODWHG>@ ,QGHHG WKLV LV WKH ILUVW UHSRUW RI WKH LVRODWLRQ DQG VWUXFWXUDO FKDUDFWHUL]DWLRQ RI VXFK D VSHFLHV

PAGE 96

([SHULPHQWDO 0DWHULDOV $OO VROYHQWV DQG FKHPLFDOV ZHUH UHDJHQW JUDGH DQG ZHUH XVHG DV VXSSOLHG 6\QWKHVLV 'LFKORURGLPHWK\ORFWDGLHQHO GL\OfUXWKHQLXP FKORULGH ,>@ DQG '$36&>@ ZHUH V\QWKHVL]HG E\ PHWKRGV SUHYLRXVO\ GHVFULEHG ,QWR P/ RI GHLRQL]HG + '$36& J PPROHf ZDV VOXUULHG WRJHWKHU ZLWK J PPROHf 7KLV PL[WXUH ZDV VWLUUHG DQG KHDWHG WR r& IRU WZR KRXUV $ FOHDU \HOORZEURZQ VROXWLRQ ZDV REWDLQHG ZKLFK ZDV ILOWHUHG WKURXJK D ILQH JODVV IULW ZKLOH ZDUP 8SRQ UHDFKLQJ URRP WHPSHUDWXUH r&f WKH S+ RI WKH VROXWLRQ ZDV DGMXVWHG WR ZLWK +& %URZQ DLU VWDEOH VLQJOH FU\VWDOV ZHUH REWDLQHG IURP WKH DERYH VROXWLRQ LQ GD\V E\ WKH VORZ HYDSRUDWLRQ RI WKH VROYHQW 7KH FRPSRXQG ZDV IRXQG WR EH TXLWH VROXEOH LQ +2 DQG GHFRPSRVHG DW r& 7KH \LHOG RI WKLV FRPSRXQG FDQ EH LQFUHDVHG GUDPDWLFDOO\ E\ WKH UHDFWLRQ RI ZLWK VHPLFDUED]LGH GLUHFWO\ )RU H[DPSOH J PPROHf RI ZDV FRPELQHG ZLWK J PPROHf VHPLFDUED]LGH K\GURFKORULGH LQ P/ GHLRQL]HG ZDWHU S+ f DQG KHDWHG WR r& IRU KUV $ FOHDU \HOORZEURZQ VROXWLRQ IRUPHG ZKLFK ZDV ILOWHUHG DQG DOORZHG WR FRRO WR URRP WHPSHUDWXUH r&f 6ORZ HYDSRUDWLRQ RI WKLV VROXWLRQ SURGXFHG DIWHU GD\V EURZQ FU\VWDOV RI WKH WLWOH FRPSOH[ \LHOG bf (OHPHQWDO DQDO\VLV &DOF & b + b 1 b )RXQG & b + b 1 b

PAGE 97

;UD\ &U\VWDOORJUDSK\ $ FU\VWDO [ [ PP VXLWDEOH IRU GLIIUDFWLRQ VWXGLHV ZDV PRXQWHG RQ WKH HQG RI D JODVV ILEHU DQG DOO VXEVHTXHQW PHDVXUHPHQWV ZHUH PDGH XVLQJ D 1LFROHW 5P GLIIUDFWRPHWHU ZLWK JUDSKLWHPRQRFKURPDWHG 0R.D UDGLDWLRQ ; ƒf 7KH FHOO GLPHQVLRQV ZHUH GHWHUPLQHG E\ D OHDVW VTXDUHV UHILQHPHQW RI DXWRPDWLFDOO\ FHQWHUHG UHIOHFWLRQV $ YDULDEOHVSHHG ,R rf VFDQ WHFKQLTXH ZDV XVHG WR PHDVXUH WKH LQWHQVLW\ GDWD IURP r WR r GHJUHHV LQ 7ZR VWDQGDUG UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU IRU DQ\ GHFRPSRVLWLRQ GXULQJ WKH [UD\ DQDO\VLV 1R DEVRUSWLRQ FRUUHFWLRQ ZDV PDGH 7KH SHUWLQHQW FU\VWDO GDWD LV JLYHQ LQ 7DEOH 6WUXFWXUH 5HILQHPHQW 7KH GDWD UHGXFWLRQ VWUXFWXUH VROXWLRQ DQG ILQDO UHILQHPHQW ZHUH SHUIRUPHG XVLQJ WKH 15&9$; 3&9HUVLRQf> @ SDFNDJH RI SURJUDPV 7KH 5X DWRP DQG DOO QRQn K\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH KHDY\DWRP PHWKRG 3DWWHUVRQ DQG )RXULHU V\QWKHVHVf DQG UHILQHG DQLVRWURSLFDOO\ E\ IXOOPDWUL[ OHDVW VTXDUHV 7KH K\GURJHQ DWRPV ZHUH ORFDWHG E\ WKH FDOFXODWLRQ RI D GLIIHUHQFH )RXULHU PDS DQG UHILQHG LVRWURSLFDOO\ 7KH PRGHO FRQYHUJHG WR DQ 5 RI DQG D 5Z RI 7KH ILQDO SRVLWLRQDO SDUDPHWHUV DUH JLYHQ LQ 7DEOH 7KH ILQDO ERQG GLVWDQFHV LQYROYLQJ WKH QRQK\GURJHQ DWRPV DQG ERQG DQJOHV DUH OLVWHG LQ 7DEOH 7DEOH OLVWV WKH DQLVRWURSLF WKHUPDO SDUDPHWHUV DQG 7DEOH OLVWV WKH K\GURJHQ SRVLWLRQDO SDUDPHWHUV

PAGE 98

7DEOH &U\VWDO 'DWD IRUPXOD 0: D ƒ E ƒ F ƒ D GHJ 3 GHJ < GHJ 9ROƒ = HFDOFFP VSDFH JURXS S FP QR RI GDWD XVHG ,QHW!DOQHWf 5 Z 5X&1r+& f f f f f f 3 OEDU 5 = ?)R+ :_)__)&_f e +ARO

PAGE 99

7DEOH $WRPLF 3DUDPHWHUV [\] DQG %LVR [D \E ]F %LVR 5X f f f f &OO f f f f f f f ,' 1 f f f f & f f f f & f f f f &/ f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f 1 f f f f 1 f f f f : f f f f : f f f f

PAGE 100

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHV f 5X &OO f & &O f 5X f & & f 5X 1 f & & f 5X &O f & & f 5X & f & & f 5X & f & &,2 f 5X & f & & f 5X & f & & f 5X &,2 f & & f &OO f &OO 1 f 1 1 f &OO 1 f &OO5X f &581 f &58& f &58& f &58& f &58& f 5X&OO f 5811 f 58&& f 58&& f 581 f 58&& f 58& f &&& f 58& f &&& f &&& f 58&& f 58&& f 58&& f 158& f &&& f 158& f &&& f &&& f &58& f &&& f &&& f &&& f &&& f 2O&OO1O f &1 f 1&1 f 11& f

PAGE 101

7DEOH 8 YDOXHV r (6'V UHIHU WR WKH ODVW GLJLW SULQWHG 8OORf 8 8 8 8 8 5X f f f f f f &OO f f f f f f f f f f f f 1 f f f f f f & f f f f f f & f f f f f f & f f f f f f &O f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f & f f f f f f &,2 f f f f f f &OO f f f f f f 1 f f f f f f 1 f f f f f f : f f f f f f : f f f f f f $QLVRWURSLF 7HPSHUDWXUH )DFWRUV DUH RI WKH IRUP 7HPS r3Lr3LrKrKrXOOrDVWDUrDVWDU rKrNrXOrDVWDUrEVWDU f

PAGE 102

7DEOH +\GURJHQ $WRPLF 3DUDPHWHUV [\] DQG %LVR ( 6'V UHIHU WR WKH ODVW GLJLW SULQWHG [D \E ]F %LVR +,1f f f f f +1f f f f f +1f f f f f +1f f f f f +1f f f f ,' +&Of f f f ,' +&f f f f f +&f f f f f +&f f f f f +&f f f f f +OO&f f f f ,' +&f f f f f +&f f f f f +&f f f f f +&f f f f f +&f f f f ,' +& f f f f f +&f f f f f +&f f f f f +&,2f f f f ,' +&,2f f f f f +:f f f f f +:f f f f f +:f f f f f +:f f f f f :KHUH %LVR LV WKH PHDQ RI WKH SULQFLSDO D[HV RI WKH WKHUPDO HOOLSVRLG

PAGE 103

5HVXOWV DQG 'LVFXVVLRQ 6WUXFWXUH RI WKH &RPSRXQG $Q 257(3 UHSUHVHQWDWLRQ RI WKH WLWOH FRPSRXQG DORQJ ZLWK WKH ODEHOLQJ VFKHPH LV JLYHQ LQ )LJ 7KH JHRPHWU\ RI WKH FRPSOH[ FDQ EH GHVFULEHG DV D GLVWRUWHG 7%3 ZKLFK LV VLPLODU WR WKH WULIOXURSKRVSKLQH 5X,9f FRPSOH[>@ SUHYLRXVO\ UHSRUWHG ZLWK WKH 5X DWRP ORFDWHG DW WKH FHQWHU 7KH 5X LRQ DORQJ ZLWK &f &f DQG 1f GHILQH WKH HTXDWRULDO SODQH RI WKH 7%3 ZLWK f DQG &OOf WKH WZR PRVW HOHFWURQHJDWLYH VSHFLHV UHVLGLQJ LQ RIID[LDO SRVLWLRQV DV PLJKW EH H[SHFWHG :LWKLQ WKH 5X FRRUGLQDWLRQ VSKHUH WKHUH LV VLJQLILFDQW GLVWRUWLRQ IURP WUXH 7%3 JHRPHWU\ H[HPSOLILHG E\ WKH 5X1 DQJOH RI r 7KH FRQVWUDLQW LPSRVHG E\ WKH IRUPDWLRQ RI D PHPEHUHG FKHODWH ULQJ ZKHUH WKH VHPLFDUED]LGH VSDQV DQ D[LDOHTXDWRULDO SRVLWLRQ LV D OLNHO\ FRQWULEXWRU WR WKLV GLVWRUWLRQ 7KH 5X1 DQJOH DORQJ ZLWK WKH RWKHU GLPHQVLRQV ZLWKLQ WKH VHPLFDUED]LGH SRUWLRQ RI WKH FRPSOH[ DUH VLPLODU WR WKRVH ZH KDYH SUHYLRXVO\ UHSRUWHG>@ ZKHUH LW LV SDUW RI WKH '$36& OLJDQG 7KH GLPHULF QDWXUH RI WKH VWDUWLQJ PDWHULDO KDV EHHQ EURNHQ DQG D VHPLFDUED]LGH KDV UHSODFHG WKH WZR EULGJLQJ FKORULGHV RI WKH VWDUWLQJ PDWHULDO 7KLV LV D UHVXOW RI WKH 6FKLII EDVH IXQFWLRQ RI '$36& EHLQJ K\GURO\]HG ZKLFK LV HVVHQWLDOO\ WKH UHYHUVH RI WKH UHDFWLRQ XVHG WR IRUP WKH OLJDQG 8SRQ FRRUGLQDWLRQ RI WKH 6FKLII EDVH QLWURJHQ WR WKH

PAGE 104

5X WKH GDWLYH ERQG IRUPHG LV VWURQJO\ SRODU WRZDUGV WKH 5X UHVXOWLQJ LQ HOHFWURQ GHQVLW\ EHLQJ GLUHFWHG DZD\ IURP WKH & DGMDFHQW WR WKH 1 7KLV & WKHQ EHFRPHV VXVFHSWLEOH WR QXFOHRSKLOLF DWWDFN E\ ZKLFK EUHDNV XS WKH 6FKLII EDVH IXQFWLRQ 7KLV LV WKH ILUVW WLPH WKLV W\SH RI UHDFWLRQ KDV EHHQ REVHUYHG WR WDNH SODFH ZLWK '$36& 7KH 2UTDQRPHWDOOLF ,QWHUDFWLRQ 7KH && DQG && ERQG OHQJWKV WRJHWKHU ZLWK WKH && DQG && ERQG OHQJWKV SURYLGH FOHDU HYLGHQFH WKDW WKH HOHFWURQ GHQVLW\ IRU WKH DOO\O IXQFWLRQV DUH GHORFDOL]HG RYHU DWRPV && t &f DQG && t &,2f DW RSSRVLWH HQGV RI WKH FDUERQ VNHOHWRQ UHVSHFWLYHO\ 7KXV ERWK WL DOO\O JURXSV PD\ WKHQ EH FRQVLGHUHG HOHFWURQ GRQRUV IROORZLQJ WKH FRQYHQWLRQ VXJJHVWHG E\ 3RZHOO>@ ,Q DGGLWLRQ WKH D[LDO DQG HTXDWRULDO 1 DUH HOHFWURQ GRQRUV DQG WKH UHPDLQLQJ &O GRQDWHV D VLQJOH HOHFWURQ WR WKH PHWDO FHQWHU 6LQFH WKH FRPSOH[ LV NQRZQ WR EH D FDWLRQ IURP WKH VWUXFWXUDO UHVXOWV WKH 5X FHQWHU LV DVVLJQHG HOHFWURQV DQG DQ ($1 RI LV DWWDLQHG E\ WKH 5X FHQWHU 7KLV LV LQ DJUHHPHQW ZLWK VLPLODU DVVLJQPHQWV RI HOHFWURQV IRU 5XDOO\O LQWHUDFWLRQV RI WKLV W\SH>@ 6SDQQLQJ WZR HTXDWRULDO VLWHV WKH GLPHWK\ORFWD GLHQHGL\O KDV GLPHQVLRQV TXLWH VLPLODU WR WKRVH SUHYLRXVO\ UHSRUWHG>@ KRZHYHU D VWULNLQJ IHDWXUH RI WKH RUJDQLF SRUWLRQ LV WKH VPDOO DQJOH PDGH E\ &&& rf DQG &&& rf ERWK RI ZKLFK DUH VLJQLILFDQWO\ OHVV WKDQ r H[SHFWHG IRU D VS W\SH FDUERQ DWRP

PAGE 105

)LJXUH $Q 257(3 5HSUHVHQWDWLRQ RI &KORUR > U_ U_ f GLPHWK\ORFWDGLHQHGL\O @ VHPLFDUED]LGH UXWKHQLXP,9f &KORULGH 'LK\GUDWH

PAGE 106

$V HOHFWURQ GRQRUV WKH UL r n DOO\O IXQFWLRQV KDYH WKUHH GHORFDOL]HG HOHFWURQV LQ WKH SQ RUELWDO $V HOHFWURQV ILOO WKH WKUHH PROHFXODU RUELWDOV WKH SLERQGLQJ RUELWDO LV ILOOHG ILUVW DQG WKH QRQERQGLQJ RUELWDO LV VLQJO\ RFFXSLHG 6LQFH WKH ERQGLQJ RUELWDO LV ERQGLQJ RYHUDOO LW FDQ EH VHHQ IURP )LJXUH ZKHUH WKH ERQGLQJ QRQERQGLQJ DQG DQWLERQGLQJ PROHFXODU RUELWDOV DUH VKRZQ D F UHVSHFWLYHO\ WKDW WKHUH ZLOO EH D VOLJKW DWWUDFWLRQ RI WKH WHUPLQDO DOO\O FDUERQV ZKLFK LQ WXUQ ZRXOG OHDG WR D GHFUHDVH RI WKH &&& DQJOH IURP r 7KHUH ZLOO KRZHYHU EH D VHFRQG IRUFH FRXQWHU WR WKH RQH MXVW GHVFULEHG UHVXOWLQJ IURP WKH VLQJO\ RFFXSLHG DOO\O QRQn ERQGLQJ RUELWDO ZKLFK LV GLUHFWHG DW PLQLPL]LQJ WKH DQWLDURPDWLF FKDUDFWHU RI WKH WHUPLQDO SQ RUELWDOV RI WKH U@ DOO\O IXQFWLRQ ,W ZRXOG EH H[SHFWHG WKDW D GHFUHDVH LQ WKH &&& DQJOH ZRXOG PRVW OLNHO\ EH H[KLELWHG VLQFH WKH ERQGLQJ RUELWDO LV ILOOHG ZKHUH WKH QRQERQGLQJ RUELWDO LV VLQJO\ RFFXSLHG 7KLV TXDOLWDWLYH ERQGLQJ GHVFULSWLRQ LV VXSSRUWHG DV D ILUVW DSSUR[LPDWLRQ E\ JHRPHWU\ RSWLPL]DWLRQ FDOFXODWLRQV> @ LQYROYLQJ U? DOO\O PROHFXOHV LQ LVRODWHG VWDWHV 7KH FDOFXODWLRQV VKRZ WKDW ZLWK WKH DGGLWLRQ RI HOHFWRQV WR WKH GHORFDOL]HG L[RUELWDO WKH &&& DQJOH LQFUHDVHV VLJQLILFDQWO\ r r IURP WKH QDOO\O FDWLRQ WR WKH DQLRQ UHVSHFWLYHO\ )RUPDO 2[LGDWLRQ 6WDWH $VVLJQPHQW ,W LV FOHDU WKDW WKH WLWOH FRPSOH[ LV LRQLF GXH WR WKH SUHVHQFH RI WKH &O LQ WKH

PAGE 107

)LJXUH $ UHSUHVHQWDWLRQ RI WKH ERQGLQJ $f %f DQG DQWLERQGLQJ &f PROHFXODU RUELWDOV IRU U_DOO\O IXQFWLRQ QRQERQGLQJ D HOHFWURQ

PAGE 108

ODWWLFH $ VHFRQG &O UHVLGHQW LQ WKH FRRUGLQDWLRQ VSKHUH DQG WKH WZR U_ DOO\O IXQFWLRQV HDFK DVVLJQHG DV GRQRUV EULQJV WKH DQLRQLF FKDUJH WR DQG KHQFH WKH 5X LV IRUPDOO\ ,9f E\ DFFHSWHG FRQYHQWLRQV>@ 7KH JHQHUDO WHQGHQF\ WR REVHUYH VSLQSDLUHG FRPSOH[HV DQG KLJK VSLQ RUELW FRXSOLQJ FRQVWDQWV IRU VHFRQG DQG WKLUG URZ WUDQVLWLRQ PHWDOV PDNHV WKH GLUHFW GHWHUPLQDWLRQ RI WKH IRUPDO R[LGDWLRQ VWDWH IRU D 5X FHQWHU GLIILFXOW DW EHVW +HQFH ZH VWUHVV WKDW LW LV KLJKO\ XQOLNHO\ WKDW D 5X FHQWHU LQ WKH GHVFULEHG FKHPLFDO HQYLURQPHQW ZRXOG UHVHPEOH D 5X FDWLRQ $V 6HGGRQ DQG 6HGGRQ>@ SRLQW RXW ZKHQHYHU OLJDQGV DUH VWURQJ LWGRQRUV RU QDFFHSWRUV LH DOO\Of WUDGLWLRQDO R[LGDWLRQ IRUPDOLVP QR ORQJHU KROGV 0RUHRYHU ORQJ DFFHSWHG WHQHWV VXFK DV WKH 3ULQFLSOH RI (OHFWURQHXWUDOLW\>@ DQG WKH 3ULQFLSDO RI (OHFWURQHJDWLYLW\ (TXDOL]DWLRQ>@ ZRXOG QRW VXSSRUW WKH H[LVWHQFH D KLJK R[LGDWLRQ VWDWH DV LQ DQ\ UHDO VHQVH &DPEULGJH &U\VWDOORJUDSKLF 'DWDEDVH 5HVXOWV 6LQFH 5X,9f FRPSOH[HV DUH RI FXUUHQW LQWHUHVW ZH IHOW VRPH LQVLJKW FRXOG EH JDLQHG FRQFHUQLQJ WKH QDWXUH RI WKH 5X,9f FDWLRQ LQ WKH WLWOH FRPSRXQG E\ FRPSDULQJ LW ZLWK RWKHU 5X VWUXFWXUDO GDWD FDWDORJHG LQ WKH &DPEULGJH &U\VWDOORJUDSKLF 'DWDEDVH 6LQFH LW LV JHQHUDOO\ DFFHSWHG IRU WUDQVLWLRQ PHWDOV WKDW ZLWK DQ LQFUHDVLQJ R[LGDWLRQ VWDWH WKHUH LV D FRUUHVSRQGLQJ GHFUHDVH LQ WKH ERQG OHQJWKV ZLWKLQ WKH FRRUGLQDWLRQ VSKHUH ZH GHFLGHG WR LQYHVWLJDWH WKH UHODWLRQ RI WKH 5X &O ERQG OHQJWK RI NQRZQ FRPSOH[HV DV D IXQFWLRQ RI

PAGE 109

WKH IRUPDO R[LGDWLRQ VWDWH 6WUXFWXUHV ZLWK DQ 5IDFW b RU FRQWDLQLQJ EULGJLQJ &O DWRPV ZHUH GLVFDUGHG WR QDUURZ D VHDUFK RI WKH &DPEULGJH 'DWDEDVH>@ ZKLFK SURYLGHG VWUXFWXUHV FRQWDLQLQJ 5X &O ERQGV )XUWKHUPRUH ZH ZHUH DEOH WR VHDUFK WKH ILOH LQ D QDUURZHU IDVKLRQ DQG FRUUHODWH WKH 5X &O ERQG OHQJWKV LQ UHODWLRQ WR WKH VSHFLHV WUDQV WR &O GHILQHG DV VSHFLHV FRRUGLQDWHG WR 5X DQG PDNLQJ DQ DQJOH RI WR ZLWK WKH &O RI WKH 5X &O RI LQWHUHVWf DQG WKH R[LGDWLRQ VWDWH RI WKH 5X LQ WKH FRPSOH[ DV GHWHUPLQHG IURP WKH OLWHUDWXUH 6HYHUDO LQWHUHVWLQJ WUHQGV ZHUH REVHUYHG DQG WKH UHVXOWV RI WKHVH VHDUFKHV DUH VXPPDUL]HG LQ 7DEOH 7KHVH UHVXOWV VXJJHVW WKDW LI KDUG GRQRUV VXFK DV 1 DQG &O DUH WUDQV WR &O WKHUH LV QRWLFHDEOH YDULDWLRQ LQ WKH 5X &O ERQG OHQJWK ZLWK FKDQJLQJ R[LGDWLRQ VWDWH ,Q FRPSOH[HV ZKHUH 5X LV IRUPDOO\ ,,f WKH 5X &O ERQG OHQJWK LV VRPHZKDW ORQJHU FD ƒf WKDQ ZKHUH 5X LV IRUPDOO\ ,,,f 6LQFH KDUG GRQRUV WHQG WR EH PRUH LRQLF LQ QDWXUH VKRUWHU ERQG OHQJWKV ZLWK DQ LQFUHDVH LQ R[LGDWLRQ VWDWH IURP ,,f WR ,,,f LV QRW D VXUSULVH WKRXJK WKH EHKDYLRU LV QRW DV SURQRXQFHG DV ZLWK WKH ILUVW URZ PHWDOV ZKLFK DUH PRUH LRQLF LQ QDWXUH 7KHUH LV D GUDPDWLF FKDQJH LQ WKH 5X &O ERQG OHQJWKV REVHUYHG ZKHQ VRIW GRQRUV VXFK DV & 3 DQG 6 DUH WUDQV UHODWLYH WR &O ,Q WKHVH FRPSOH[HV 5X LV IRUPDOO\ ,,f DQG WKH 5X &O ERQG OHQJWKV DUH ORQJHU RQ DYHUDJH WKDQ WKRVH

PAGE 110

7DEOH 6XPPDU\ RI WKH 5X&O %RQG 'LVWDQFHV 6WDWH RI 5X 7UDQV 6SHFLHV ;f 5X &O GLVW 1R $YHUDJHG 5HI i ,, 1 ,,, 1 ,9 1 ,, ,,, ,9 ,, &O ,,, &O ,9 &O ,, F ,, S ,, V ,9 V i 7KH FRPSOHWH UHIHUHQFH IRU HDFK VWUXFWXUH FDQ EH IRXQG LQ $SSHQGL[

PAGE 111

IRXQG IRU 5X,,f ZLWK WKH KDUGHU GRQRUV E\ FD $ 7KLV LQFUHDVH LQ WKH 5X &O ERQG OHQJWK VXJJHVWV D WUDQV LQIOXHQFH )LQDOO\ LW LV LQWHUHVWLQJ WR QRWH WKDW ZKHUH 5X LV IRUPDOO\ ,9f WKH 5X &O ERQG OHQJWK PLPLFV WKDW REVHUYHG IRU 5X ZKHQ LW LV IRUPDOO\ ,,f LQ HDFK FDVH ZKHUH GDWD LV DYDLODEOH &RQFOXVLRQ 7KH JURZLQJ LQWHUHVW LQ WKH RUJDQRPHWDOOLF FKHPLVWU\ RI WKH 5X,9f IRUPDO R[LGDWLRQ VWDWH FHQWHUV DURXQG WKH FDWLRQV UROH LQ ERQG DFWLYDWLRQ DQG UHGR[ UHDFWLRQV :H KDYH VKRZQ WKDW WKH 5X&O ERQG OHQJWKV H[KLELWHG IRU WKH WLWOH FRPSRXQG DQG WKRVH RI VLPLODU VWUXFWXUHV DUH TXLWH DQDORJRXV WR WKRVH IRXQG IRU 5X,,f FRPSOH[HV :H ZHUH DEOH WR GHWHFW D GLIIHUHQFH IURP VWUXFWXUDO GDWD LQ WKH 5X&O ERQG OHQJWK IRU 5X,,f DQG 5X,,,f EXW QRW IRU 5X,9f ZKLFK VXJJHVWV WKDW WKH R[LGDWLRQ VWDWH IRUPDOLVP XVHG LQ UHODWLRQ WR LRQLF FKDUDFWHU EUHDNV GRZQ DW ,9f DQG PD\ EH DW LWV OLPLW IRU ,,f DQG ,,,f 7KHUH LV JUHDW SRWHQWLDO IRU UHDFWLYLW\ DW WKH 5X FHQWHU RI WKH GLPHU DV HYLGHQFHG E\ WKH K\GURO\VLV UHDFWLRQ ZKLFK OHDG WR WKH IRUPDWLRQ RI WKH WLWOH FRPSOH[ 7KH DELOLW\ WR REWDLQ WKLV FRPSOH[ E\ WKH GLUHFW UHDFWLRQ RI VHPLFDUED]LGH K\GURFKORULGH ZLWK ZLOO SURYLGH DFFHVV WR D ODUJH QXPEHU RI FDWLRQLF 5X,9f FRPSOH[HV 6LQFH WKLV FRPSRXQG LV ZDWHU VROXEOH WKHUH H[LVWV WKH SRWHQWLDO IRU WKH GHYHORSPHQW RI D ZDWHUEDVHG RUJDQRPHWDOOLF FKHPLVWU\

PAGE 112

&+$37(5 $ 7+(25(7,&$/ ,19(67,*$7,21 2) 7+( (/(&7521,& $1' 6758&785$/ 3523(57,(6 2) 7+( /,*$1' '$36& $1' 7+( 3(17$*21$/ %,3<5$0,'$/ &203/(; ',$48$',$&(77L'$3%$+f&@ FRPSOH[ LQ FKDSWHU 7KH FRQIRUPDWLRQ '$36& KDV DGRSWHG UHSHDWHGO\ LQ HDFK RI WKH 3%3 FRPSOH[HV LV RQH ZKHUH ERWK VHPLFDUED]RQH DUPV RI WKH OLJDQG DUH GLUHFWHG RXWZDUGV LGHQWLFDO WR WKH FRQIRUPDWLRQ VKRZQ LQ )LJXUH ,W EHFDPH FOHDU GXULQJ WKH FRXUVH RI WKLV SURMHFW WKDW LI D SODXVLEOH PRGHO RI WKLV PROHFXOH ZDV WR EH GHYHORSHG WKH TXHVWLRQ RI FRQIRUPDWLRQ KDG WR EH DGGUHVVHG SDUWLFXODUO\ ZKLFK RQHV ZHUH IDYRUHG HQHUJHWLFDOO\ DQG VWHULFDOO\ E\ WKLV PROHFXOH

PAGE 113

6LQFH WKH OLJDQG '$36& LV QRW VROXEOH LQ DQ\ FRPPRQ VROYHQW RU PL[WXUH RI VROYHQWV WKH SRVVLELOLW\ RI REWDLQLQJ VLQJOH FU\VWDOV IRU ;UD\ GLIIUDFWLRQ VWXGLHV ZDV UHPRWH )XUWKHUPRUH GLVVROYLQJ D ODUJH HQRXJK VDPSOH RI WKLV FRPSRXQG LQ DQ DSSURSULDWH VROYHQW WR REWDLQ 105 VSHFWUD KDV QRW EHHQ SRVVLEOH HLWKHU 5HFHQW UHSRUWV>@ GLVFXVVLQJ KRZ PROHFXODU PHFKDQLFV 00f FDOFXODWLRQV KDYH EHFRPH LQFUHDVLQJO\ LPSRUWDQW LQ WKH VWXG\ RI FRRUGLQDWLRQ FKHPLVWU\ SDUWLFXODUO\ ZLWK UHJDUG WR OLJDQGV SURYLGHG D KLQW DV WR KRZ ZH PLJKW SURFHHG ZLWK WKLV LQYHVWLJDWLRQ LQWR WKH QDWXUH RI '$36& 6LQFH RUJDQLF FKHPLVWV KDYH EHHQ YHU\ VXFFHVVIXO LQ XVLQJ 00 FDOFXODWLRQV WR SUHGLFW ERQG OHQJWKV LQ RUJDQLF PROHFXOHV WR ZLWKLQ ƒ DQG ERQG DQJOHV WR ZLWKLQ r RI WKH H[SHULPHQWDOO\ REVHUYHG YDOXHV>@ SHUIRUPLQJ WKLV W\SH RI D FDOFXODWLRQ RQ '$36& DSSHDUHG WR EH DQ H[FHOOHQW SODFH WR EHJLQ ZRUN &RQVHTXHQWO\ ZH WXUQHG IURP SK\VLFDO PHWKRGV WR WKRVH RI WKHRU\ VSHFLILFDOO\ PROHFXODU PHFKDQLFV DQG VHPLHPSLULFDO TXDQWXP PHFKDQLFDO PHWKRGV RI WKH ,1'2 ,QWHUPHGLDWH 1HJOHFW RI 'LIIHUHQWLDO 2YHUODSf W\SH %RWK RI WKHVH PHWKRGV DUH FXUUHQWO\ GHYHORSHG WR OHYHOV ZKHUH WKH\ DUH SUDFWLFDO DQG FDQ EH XVHG HIIHFWLYHO\ LQ WUHDWLQJ V\VWHPV WKH VL]H RI D '$36& PROHFXOH 7KXV LQ DQ HIIRUW WR OHDUQ PRUH DERXW WKH VWUXFWXUDO DQG FRQIRUPDWLRQDO SURSHUWLHV RI WKH '$36& PROHFXOH D WKHRUHWLFDO LQYHVWLJDWLRQ ZDV ODXQFKHG HPSOR\LQJ WKHVH WRROV

PAGE 114

$OWKRXJK WKH RULJLQDO LQWHQW RI WKLV HQGHDYRU ZDV WR JDLQ LQVLJKW LQWR WKH VWUXFWXUDO DVSHFWV RI '$36& LW ZDV IRXQG DV WKH SURMHFW SURJUHVVHG WKURXJK WKH LQLWLDO VWDJHV WKDW D VHPLHPSLULFDO TXDQWXP PHFKDQLFDO PHWKRG H[LVWHG ZKLFK FRXOG KDQGOH QRW RQO\ '$36& EXW DOVR DQ HQWLUH FRRUGLQDWLRQ FRPSOH[ RI WKH W\SH >0'$36&f+f@ ZKHUH '$36& LV FRRUGLQDWHG LQ D SHQWDGHQWDWH IDVKLRQ WR D WUDQVLWLRQ PHWDOFDWLRQ 0f $FFRUGLQJO\ DIWHU WKH LQLWLDO ZRUN ZKHUH 00>@ FDOFXODWLRQV ZHUH HPSOR\HG ZH FRQWLQXHG RQ XVLQJ VHPLHPSLULFDO PHWKRGV H[FOXVLYHO\ IRU WKH UHPDLQGHU RI WKH ZRUN ZKLFK DOORZHG XOWLPDWHO\ IRU SHUWXUEDWLRQ RI '$36& E\ D WUDQVLWLRQ PHWDO FDWLRQ 7KH DELOLW\ WR LQFOXGH WUDQVLWLRQ PHWDOV LQ WKH FDOFXODWLRQV SURYLGHG IRU D XQLTXH RSSRUWXQLW\ WR FRPSDUH WKHRUHWLFDO UHVXOWV ZLWK WKRVH REWDLQHG H[SHULPHQWDOO\ 'R WR WKH UHTXLUHPHQWV RI WKH VHPLHPSLULFDO PHWKRG ZKLFK ZDV XVHG )HW Gf DSSHDUHG WR EH D JRRG FDQGLGDWH WR LQYHVWLJDWH VLQFH ZLWK WKLV PHWDO ZH FRXOG VWXG\ D YDULHW\ RI HOHFWURQLF HIIHFWV LQFOXGLQJ WKH LQIOXHQFH RI WKH VSLQ VWDWH PXOWLSOLFLW\ RQ WKH FRQIRUPDWLRQ RI WKH FRPSOH[ 7KLV PHWDO ZDV DOVR D JRRG FKRLFH IURP WKH VWDQGSRLQW RI H[SHULPHQWDO HYLGHQFH VLQFH D ; UD\ GLIIUDFWLRQ VWXG\ RI D >)H '$36& f + f&@ r FRPSOH[ KDG EHHQ UHSRUWHG 6HPLHPSLULFDO FDOFXODWLRQV PRGHO PROHFXOHV LQ WKH JDV SKDVH ZKHUH WKHUH LV QR VWUDLQ LPSRVHG H[WHUQDOO\ RQ WKH PROHFXOH 6LQFH WKH H[SHULPHQWDO GDWD VKRZ WKH >)H '$36&f+ f&@ FRPSOH[ WR EH FRPSDUDEO\ IUHH RI H[WHUQDO

PAGE 115

VWUDLQ WKH VWUXFWXUDO UHVXOWV REWDLQHG IURP WKH WKHRUHWLFDO ZRUN FRXOG EH FRPSDUHG GLUHFWO\ WR WKRVH REWDLQHG YLD H[SHULPHQW &DOFXODWLRQV ,QLWLDO &DOFXODWLRQV RQ WKH /LJDQG '$36& 7KH LQLWLDO FDOFXODWLRQV SHUIRUPHG RQ '$36& ZHUH 00>@ HQHUJ\ PLQLPL]DWLRQV ZKLFK ZHUH FDOFXODWHG IRU DVVRUWHG FRQIRUPDWLRQV XVLQJ D &$&KH ZRUN VWDWLRQ PDQXIDFWXUHG E\ 7HNWURQLFV ,QF f 7KUHH RI WKH FRQIRUPDWLRQV ZKLFK DUH LOOXVWUDWHG LQ )LJXUH ZHUH IRXQG WR H[KLELW UHODWLYHO\ ORZ WRWDO HQHUJ\ YDOXHV DQG ZHUH VHOHFWHG IRU IXUWKHU VWXG\ 1H[W ='2 =HUR 'LIIHUHQWLDO 2YHUODSf FDOFXODWLRQV ZHUH SUHIRUPHG XVLQJ 023$&>@ 0ROHFXODU 2UELWDO 3DFNDJHf ZLWK WKH $0,>@ $XVWLQ 0RGHO f SDUDPHWHUL]DWLRQ VFKHPH RQ WKH &$&KH ZRUN VWDWLRQ ZKLFK FRUURERUDWHG WKH WKUHH FRQIRUPDWLRQV DV EHLQJ PLQLPXP HQHUJ\ FRQIRUPDWLRQV $W WKLV MXQFWXUH WKH VHPLHPSLULFDO URXWLQH =,1'2 ZDV VHOHFWHG IRU WKH UHPDLQGHU RI WKH FDOFXODWLRQV ZKLFK ZHUH WR EH SUHIRUPHG IRU WKUHH UHDVRQV ILUVW WKLV LV WKH RQO\ PHWKRG DYDLODEOH WKDW LV SDUDPHWHUL]HG WR KDQGOH WUDQVLWLRQ PHWDO FDWLRQV KHQFH DV WKH ZRUN SURJUHVVHG ZH ZRXOG EH DEOH WR DGG D PHWDO )Hrf WR WKH V\VWHP DQG REVHUYH WKH HIIHFWV RI WKLV SHUWXUEDWLRQ 6HFRQG WKRXJK =,1'2 PD\ QRW EH WKH PHWKRG RI FKRLFH IRU GHDOLQJ ZLWK RUJDQLF V\VWHPV VXFK DV '$36& WKH PHWKRG LV NQRZQ WR JLYH JRRG UHVXOWV IRU URWDWLRQDO EDUULHUV

PAGE 116

$ $ )LJXUH 5HSUHVHQWDWLRQV RI WKH '$36& FRQIRUPDWLRQV ZKLFK H[KLELWHG WKH ORZHVW UHODWLYH WRWDO HQHUJ\

PAGE 117

DURXQG ERQGV DQG UHDVRQDEOH HVWLPDWLRQV RI VWHULF HIIHFWV 7KLV ZDV FULWLFDO IRU D FUHGLEOH GHWHUPLQDWLRQ RI ZKLFK FRQIRUPDWLRQV FRUUHVSRQGHG WR HQHUJ\ PLQLPD 7KLUG E\ LPSOHPHQWLQJ WKLV PHWKRG DQG RQO\ WKLV PHWKRG D FRQVLVWHQW +DPLOWRQLDQ HPSOR\LQJ WKH VDPH SDUDPHWHUL]DWLRQ ZRXOG EH XVHG IRU DOO VXEVHTXHQW FDOFXODWLRQV *HRPHWU\ 2SWLPL]DWLRQ RI '$36& 8VLQJ =,1'2 8VLQJ WKH SURJUDP =,1'2 D IXOO JHRPHWU\ RSWLPL]DWLRQ ZDV SUHIRUPHG RQ WKH OLJDQG '$36& DJDLQ XVLQJ WKH &$&KH ZRUN VWDWLRQ DQG WKH UHVXOWV RI WKHVH FDOFXODWLRQV LQ WHUPV RI ERQG GLVWDQFHV DQG DQJOHV DUH WDEXODWHG LQ 7DEOH $FFRPSDQ\LQJ WKH WDEOH LV DQ LOOXVWUDWLRQ RI WKH OLJDQG )LJXUH LQ WKH RSWLPXP FRQIRUPDWLRQ DV GHWHUPLQHG E\ =,1'2 'HWHUPLQDWLRQ RI WKH 5RWDWLRQ %DUULHUV IRU WKH 6HPLFDUED]RQH DUP 7R GHWHUPLQH WKH HQHUJ\ RI WKH URWDWLRQ EDUULHU IRU WKH VHPLFDUED]RQH DUPV WKH WRWDO HQHUJ\ RI WKH PROHFXOH ZDV FDOFXODWHG XVLQJ =,1'2 IRU D VHULHV RI ORFNHG FRQIRUPDWLRQV ZKLFK SURFHHGHG DV IROORZV L RQH VHPLFDUED]RQH DUP ZDV ORFNHG IRUZDUG DV LOOXVWUDWHG LQ $ RI )LJXUH LL WKH VHFRQG VHPLFDUED]RQH DUP ZDV URWDWHG WKURXJK r LQ LQFUHPHQWV RI r LLL ZLWK HDFK LQFUHPHQW WKH FRQIRUPDWLRQ RI WKH PROHFXOH ZDV ORFNHG DQG WKH WRWDO HQHUJ\ ZDV GHWHUPLQHG IRU WKDW H[DFW FRQIRUPDWLRQ LY WKH HQHUJ\ RI HDFK FRQIRUPDWLRQ ZDV GHWHUPLQHG

PAGE 118

7DEOH %RQG 'LVWDQFHV ƒf DQG $VVRFLDWHG $QJOHVr f 1& &1 &1 & && && && && &1 && 11 && &1 &1 &1 && & && &1 11 &1& 1&& &&& &&& &&& &&1 &&& 1&& &&& &&1 1&& &11 11& 1&1 1& 1& &&& 1&& &&1 &&& 1&& &11 11& 1&1 1& 1&

PAGE 119

)LJXUH $ UHSUHVHQWDWLRQ RI '$36& LQ RSWLPXP FRQIRUPDWLRQ DV GHWHUPLQHG E\ WKH SURJUDP =,1'2

PAGE 120

UHODWLYH WR WKDW RI WKH VWDUWLQJ FRQIRUPDWLRQ DQG D SORW RI WKH UHODWLYH HQHUJ\ YV DQJOH RI URWDWLRQ LV VKRZQ LQ )LJXUH Y VWHSV L WKURXJK LY ZHUH WKHQ UHSHDWHG WKLV WLPH VWDUWLQJ ZLWK RQH RI WKH VHPLFDUED]RQH DUPV ORFNHG EDFN DV LOOXVWUDWHG LQ % RI )LJXUH $ SORW RI WKH UHODWLYH HQHUJ\ YV DQJOH RI URWDWLRQ IRU WKLV VHULHV RI FRQIRUPDWLRQV LV VKRZQ LQ )LJXUH (IIHFWV RI 6SLQ 6WDWH 0XOWLSOLFLW\ DQG *HRPHWU\ 2SWLPL]DWLRQV RQ DQ )H'$36& &RPSOH[ ,Q RUGHU WR GHWHUPLQH WKH HIIHFW RI D PHWDOFDWLRQ DQG WKH DVVRFLDWHG VSLQ PXOWLSOLFLW\ RQ WKH FRQIRUPDWLRQ RI D '$36& FRRUGLQDWLRQ FRPSOH[ KDYLQJ WKH IRUPXOD >)H '$36&f+ f@ VHSDUDWH JHRPHWU\ RSWLPL]DWLRQV ZHUH SHUIRUPHG RQ WKUHH VHSDUDWH VSLQ VWDWHV DVVRFLDWHG ZLWK D G PHWDO ,I WKH PROHFXOH FDQ EH DVVXPHG WR EH ORZ VSLQ LH KLJK ILHOG ZLWK QR GHJHQHUDF\ RFFXULQJ LQ WKH GRUELWDOVf KDYLQJ SVXGR&Y V\PPHWU\ D FORVHG VKHOO VLQJOHW UHVXOWV $Q RSHQ VKHOO WULSOHW FDQ EH REWDLQHG IURP WKH GRUELWDO VSOLWWLQJ SDWWHUQ H[SHFWHG IURP WKH SRLQW JURXS 'K )RU D ZHDN ILHOG D KLJK VSLQ TXLQWHW LV REWDLQHG (DFK RI WKHVH WKUHH VWDWHV LV GHSLFWHG LQ )LJXUH )RU HDFK PLQLPXP FRQIRUPDWLRQ D6&) FDOFXODWLRQV ZHUH SHUIRUPHG RQ WKH GLIIHUHQW VSLQ VWDWHV 'XH WR SUHYLRXV VXFFHVV LQ GHDOLQJ ZLWK WUDQVLWLRQ PHWDO FRPSRXQGV WKH ,1'2 PRGHO +DPLOWRQLDQ>@ DV LPSOHPHQWHG LQ

PAGE 121

)LJXUH $Q LOOXVWUDWLRQ RI WKH UHODWLYH WRWDO HQHUJ\ YV DQJOH RI URWDWLRQ IRU '$36& ZLWK RQH VHPLFDUED]RQH DUP ORFNHG IRUZDUG

PAGE 122

NFDOPROH

PAGE 123

)LJXUH $Q LOOXVWUDWLRQ RI WKH UHODWLYH WRWDO HQHUJ\ YV DQJOH RI URWDWLRQ IRU '$36& ZLWK RQH VHPLFDUED]RQH DUP ORFNHG EDFNZDUG

PAGE 124

NFDOPROH 'LKHGUDO

PAGE 125

6LQJOHW FORVHG VKHOO X X 8 G\] A[] G;\ A‘[\ G= 7ULSOHW RSHQ VKHOO 8 8 7 7 G\= G[] A‘[\ A[\ A] 4XLQWHW RSHQ VKHOO 8 7 7 7 7 A\] A[] A‘[\ A[\ A] )LJXUH $Q LOOXVWUDWLRQ RI WKH SRVVLEOH VSLQ VWDWHV IRU DQ )H Gf LRQ

PAGE 126

WKH SURJUDP =,1'2>@ ZDV XVHG IRU DOO FDOFXODWLRQV 1R UHILQHPHQW RI WKH SDUDPHWHUL]DWLRQ ZDV IRXQG WR EH QHFHVVDU\ LQ RUGHU WR SHUIRUP WKLV VWXG\ 7KH ,1'2 PRGHO LV DSSURSULDWH IRU WKLV LQYHVWLJDWLRQ VLQFH DOO RQHFHQWHU WZRHOHFWURQ LQWHJUDOV DUH UHWDLQHG 7KHVH LQWHJUDOV KDYH EHHQ IRXQG WR EH QHFHVVDU\ LQ RUGHU WR SURSHUO\ GLIIHUHQWLDWH EHWZHHQ DWRPLF VWDWH HQHUJLHV ZKLFK LV WKH SULPDU\ FRQFHUQ RI WKLV VHFWLRQ>@ 7KH JHRPHWU\ RSWLPL]DWLRQV ZHUH SHUIRUPHG RQ DQ ,%0 56 FRPSXWHU XVLQJ WKH %)*6 TXDVL1HZWRQ XSGDWH WHFKQLTXH>@ IRU HDFK VSLQ VWDWH DQG ZHUH FRQVLGHUHG FRQYHUJHG ZKHQ WKH QRUP RI WKH JUDGLHQW ZDV OHVV WKDQ [ f DWRPLF XQLWV $ UHVWULFWHG +DUWUHH)RFN GHWHUPLQDQW 5+)f ZDV XVHG IRU WKH FORVHG VKHOO VLQJOHW 7KH RSHQ VKHOOV ZHUH DOVR UHVWULFWHG 52+)f LQ RUGHU WR DOORZ D GLUHFW FRPSDULVRQ EHWZHHQ SXUH VSLQ VWDWHV>@ )RU DOO VWDWHV WKH 6&) ZDV FRQWLQXHG XQWLO VXFFHVVLYH F\FOHV \LHOGHG GLIIHUHQFHV LQ HQHUJ\ RI OHVV WKDQ [ n DWRPLF XQLWV 'LVFXVVLRQ 7KH /LJDQG '$36& ,W LV LPSRUWDQW QRW WR XQGHUHVWLPDWH WKH YDOXH RI WKH LQLWLDO 00 FDOFXODWLRQV ZKLFK VKRZHG WKUHH GLIIHUHQW FRQIRUPDWLRQV IRU '$36& FRUUHVSRQGLQJ WR HQHUJ\ PLQLPD 7KLV LQIRUPDWLRQ KHOSHG WR GUDPDWLFDOO\ UHGXFH WKH FRPSXWLQJ WLPH UHTXLUHG IRU WKH IXOO JHRPHWU\ RSWLPL]DWLRQ RI '$36& VLQFH ZH ZHUH DEOH WR EHJLQ ZLWK D JRRG LQLWLDO PRGHO

PAGE 127

KDYLQJ D FRQIRUPDWLRQ TXLWH FORVH WR WKH JOREDO PLQLPD GHWHUPLQHG E\ =,1'2 )RU WKLV VSHFLILF SURMHFW ZH GLG QRW XVH 00 EH\RQG WKH LQLWLDO FDOFXODWLRQV SHUIRUPHG RQ WKLV OLJDQG VLQFH WKH LQWHQW ZDV WR XOWLPDWHO\ LQYHVWLJDWH WKH HOHFWURQLF SURSHUWLHV LQYROYLQJ WKH VSLQ VWDWH PXOWLSOLFLW\ RI WKH >)H '$36& f + f@ FRPSOH[ ZKLFK UHTXLUHG WKH XVH RI TXDQWXP PHFKDQLFDO PHWKRGV (YHQ WKRXJK 00 ZHUH QRW XVHG PRUH LQ WKLV SURMHFW WKH UHVXOWV ZHUH YHU\ KHOSIXO 7KH XVH RI 00 FDOFXODWLRQV LQ FRRUGLQDWLRQ FKHPLVWU\ ZLOO OLNHO\ LQFUHDVH LQ WKH IXWXUH VLQFH WKHUH KDYH EHHQ UHSRUWV LQ ZKLFK WKH PHWKRG KDV EHHQ SDUDPHWHUL]HG IRU D IHZ WUDQVLWLRQ PHWDOV \LHOGLQJ JRRG UHVXOWV>@ $WWHPSWV KDYH DOVR EHHQ PDGH WR XVH 00 FDOFXODWLRQV WR PRGHO PHWDOPHWDO ERQGHG V\VWHPV>@ 7KXV 00>@ FDOFXODWLRQV VKRXOG QRW EH RYHUORRNHG VLQFH WKH\ FDQ SURYLGH LQVLJKW LQWR WKH FRQIRUPDWLRQ RI OLJDQGV DQG DUH HDVLO\ DFFHVVLEOH RQ 3& FRPSXWHUV XVLQJ VRIWZDUH SDFNDJHV VXFK DV $/&+(0< ,,>@ 7KH JHRPHWU\ RSWLPL]DWLRQ RI WKLV PROHFXOH VKRZV FOHDUO\ WKDW WKH FRQIRUPDWLRQ ZKLFK KDV EHHQ REVHUYHG LQ WKH VROLG VWDWH WKDW LV ZKHQ '$36& LV FRRUGLQDWHG WR D WUDQVLWLRQ PHWDOFDWLRQ LV QRW WKH RQH RI ORZHVW HQHUJ\ ,Q IDFW WKH HQHUJ\ FDOFXODWLRQV SHUIRUPHG WR GHWHUPLQH WKH URWDWLRQ EDUULHUV RI WKH VHPLFDUED]RQH DUPV VKRZ WKLV FRQIRUPDWLRQ DV LOOXVWUDWHG LQ $ RI )LJXUH f WR EH WKH KLJKHVW LQ WRWDO HQHUJ\ RI WKH WKUHH PLQLPD 7KXV LW DSSHDUV WKDW WKH SUHVHQFH RI D PHWDOFDWLRQ VWDELOL]HV WKLV SDUWLFXODU FRQILJXUDWLRQ

PAGE 128

,W VKRXOG EH QRWHG WKDW WKH HQHUJ\ EDUULHU EHWZHHQ WKH WKUHH PLQLPXP FRQILJXUDWLRQV LV QRW YHU\ ODUJH QHYHUWKHOHVV LW FDQ JHQHUDOO\ EH H[SHFWHG WKDW WKH YDVW PDMRULW\ RI WKH PROHFXOHV ZLOO EH LQ WKH ORZHVW HQHUJ\ VWDWH DYDLODEOH DW DQ\ JLYHQ LQVWDQW 7KLV LV VLJQLILFDQW LQ WHUPV RI ZKDW KDV EHHQ REVHUYHG H[SHULPHQWDOO\ VLQFH VHYHUDO RI WKH UHDFWLRQV RI '$36& ZLWK ILUVW URZ WUDQVLWLRQ PHWDOV KDYH EHHQ REVHUYHG WR JR WR FRPSOHWLRQ PXFK PRUH UDSLGO\ LI WKH PL[WXUH LV KHDWHG VOLJKWO\ $SSO\LQJ KHDW PD\ VLJQLILFDQWO\ LQFUHDVH WKH SRSXODWLRQ RI '$36& PROHFXOHV KDYLQJ WKH KLJK HQHUJ\ FRQILJXUDWLRQ ZKLFK LV OLNHO\ WR IDYRU FRPSOH[ IRUPDWLRQ 7KH &RPSOH[ I)H '$36&f + ff 2XU LQWHUHVW LQ WKLV VWXG\ ZDV WR GHWHUPLQH WKH HIIHFW RI VSLQ PXOWLSOLFLW\ RQ WKH FRQIRUPDWLRQ RI WKLV )H'$36& FRPSOH[ VLQFH VHYHUDO VSLQ VWDWHV FDQ DULVH IRU D G VSHFLHV VXFK DV )H 6SHFLILFDOO\ ZH ZHUH LQWHUHVWHG LQ WKH YDULDWLRQ LQ ERQG GLVWDQFHV EHWZHHQ WKH PHWDOFDWLRQ DQG WKH OLJDQG GRQRUV DV ZHOO DV WKH JHRPHWU\ H[KLELWHG ZLWKLQ WKH FRRUGLQDWLRQ VSKHUH DV D IXQFWLRQ RI WKH VSLQ VWDWH )LJXUH GLVSOD\V WKH FRRUGLQDWH V\VWHP XVHG LQ WKLV ZRUN DV ZHOO DV WKH DWRP QXPEHULQJ VFKHPH IRU WKH GRQRUV LQ WKH LPPHGLDWH FRRUGLQDWLRQ VSKHUH DQG )LJXUH LOOXVWUDWHV WKH RSWLPXP JHRPHWU\ RI WKH FRPSOH[ DV GHWHUPLQHG E\ =,1'2 IRU WKH TXLQWHW VSLQ VWDWH 7DEOH LV D OLVWLQJ RI WKH ERQG GLVWDQFHV DQG DVVRFLDWHG ERQG DQJOHV REWDLQHG IURP WKH RSWLPL]DWLRQ FDOFXODWLRQV IRU DQ )Hr Gf FHQWHU LQ WKH TXLQWHW VSLQ VWDWH 7DEOH VXPPDUL]HV WKH H[SHULPHQWDOO\

PAGE 129

< ZL f )H 2 : )LJXUH &RRUGLQDWH V\VWHP DQG DWRP QXPEHULQJ VFKHPH

PAGE 130

)LJXUH $Q LOOXVWUDWLRQ RI WKH RSWLPL]HG JHRPHWU\ IRU WKH FRPSOH[ >)H '$36&f + f@r DV GHWHUPLQHG E\ =,1'2

PAGE 131

7DEOH %RQG 'LVWDQFHVƒf DQG $QJOHVf IRU > )H '$36&f + f@ )H 1& )H && )H && )H && )H1 && )H1 &1 )H1 && & && &1 &1 &1 11 11 1& 1& &1 && & && )H 1 && )H & && )H & && )H1 & && )H1 & &1 )H1 &OO 1& )H 1 && )H & && )H1 &OO && )H1 & &1 )H1 &OO &1 )H & 11 )H1 1 1& 1)H1 1 &1 1)H1 1 & 1)H 1 & )H& & )H &1 & &1 &1 & 11 11& 1 && &&& 1 && &&1 & &&

PAGE 132

7DEOH %RQG 'LVWDQFHV :LWKLQ WKH ,PPHGLDWH &RRUGLQDWLRQ 6SKHUH DV 'HWHUPLQHG IURP WKH 2SWLPL]DWLRQ &DOFXODWLRQV IRU DQ )Hr Gf &HQWHU LQ 6LQJOHW 7ULSOHW DQG 4XLQWHW 6SLQ 6WDWHV 6LQJOHW 7ULSOHW 4XLQWHW 2EVHUYHG r $OO ERQG GLVWDQFHV DUH JLYHQ LQ ƒ %RQGV DUH LQ UHIHUHQFH WR )LJXUH

PAGE 133

7DEOH 5HODWLYH 7RWDO (QHUJ\ H9f 6LQJOHW 7ULSOHW 4XLQWHW 6LQJOHW 7ULSOHW 4XLQWHW

PAGE 134

REVHUYHG ERQG GLVWDQFHV IRU D FRPSOH[ VLPLODU LQ VWUXFWXUH WR WKH FRPSOH[ ZKLFK ZDV RSWLPL]HG ZKLFK ZHUH REWDLQHG E\ ;UD\ GLIIUDFWLRQ VWXGLHV WRJHWKHU ZLWK WKRVH GLVWDQFHV REVHUYHG IRU WKH )Hr VLQJOHW WULSOHW DQG TXLQWHW VSLQ VWDWHV 7DEOH OLVWV WKH UHODWLYH HQHUJ\ LQ H9f RI HDFK SRVVLEOH VSLQ VWDWH IRU HDFK RI WKH WKUHH RSWLPL]HG VSLQ VWDWHV 7KHVH YDOXHV KDYH DOO EHHQ FDOFXODWHG UHODWLYH WR WKDW ZKLFK ZDV GHWHUPLQHG IRU WKH FRQVWUDLQHG TXLQWHW VWDWH ZKLFK ZDV IRXQG WR EH WKH ORZHVW LQ HQHUJ\ RYHUDOO 7KHVH UHVXOWV DUH LQ H[FHOOHQW DJUHHPHQW ZLWK ZKDW KDV EHHQ REVHUYHG H[SHULPHQWDOO\ LQ WKUHH DUHDV )LUVW WKH JHRPHWU\ RSWLPL]DWLRQV VKRZ WKH RSHQVKHOO TXLQWHW WR KDYH WKH ORZHVW RYHUDOO HQHUJ\ ZKLFK VD\V WKDW WKH PHWDO LV KLJK VSLQ DQG WKH OLJDQG LV ORZ ILHOG 7KLV DJUHHV ZHOO ZLWK ZKDW KDV EHHQ REVHUYHG IRU WKH &UW'$36&'$3%$+ FRPSOH[HV DV SUHVHQWHG LQ &KDSWHU f ZKHUH ERWK RI WKH FRPSOH[HV ZHUH KLJKVSLQ DQG ZLWK ZKDW KDV EHHQ UHSRUWHG IRU )H'$36& LQ DTXHRXV VROXWLRQ 6HFRQG WKH ERQG GLVWDQFHV DQG DVVRFLDWHG DQJOHV GHWHUPLQHG LQ WKH JHRPHWU\ RSWLPL]DWLRQ EHWZHHQ WKH DWRPV ZLWKLQ WKH LPPHGLDWH FRRUGLQDWLRQ VSKHUH RI WKH >)H'$36&f+f@ VSHFLHV DUH TXLWH FORVH WR WKDW ZKLFK KDV EHHQ REVHUYHG LQ WKH VROLG VWDWH IRU D FORVHO\ UHODWHG )HW'$36& FRPSOH[ )LQDOO\ WKH IDFW WKDW WKH JHRPHWU\ RSWLPL]DWLRQ VKRZV WKH OLJDQG '$36& WR EH SODQDU LV LQGHHG VLJQLILFDQW 7KH FRPSDULVRQ RI WKH ERQG GLVWDQFHV LQ 7DEOH LV QRWHZRUWK\ DQG VKRZV WKH UHOLDELOLW\ RI WKH =,1'2 PHWKRG ,W

PAGE 135

LV FOHDU WKDW DV HOHFWURQ GHQVLW\ LV SODFHG LQWR WKH G[B\ DQG G RUELWDOV WKDW WZR WKLQJV KDSSHQ )LUVW WKH ERQGV WR WKH =L QLWURJHQ GRQRUV EHFRPH ORQJHU PRVW QRWDEO\ )H1 VLQFH DQ HOHFWURQ LV QRZ LQ WKH G [ \ RUELWDO DQG KHQFH WKHUH LV QRZ UHSXOVLRQ EHWZHHQ WKH GRQRU HOHFWURQV DQG WKLV HOHFWURQ UHVXOWLQJ LQ D ORQJHU ERQG OHQJWK $ VLPLODU HIIHFW LV UHIOHFWHG LQ WKH D[LDO ERQG OHQJWKV HVSHFLDOO\ DV DQ HOHFWURQ LV SODFHG LQWR WKH G RUELWDO ZKLFK LV DOLJQHG GLUHFWO\ WRZDUGV WKH ZDWHU GRQRUV 6HFRQG DV DQ HOHFWURQ LV UHPRYHG IURP WKH G RUELWDO DQG SODFHG LQWR WKH G [\ U [ \ RUELWDO LQ JRLQJ IURP D VLQJOHW WR WKH WULSOHW VWDWH D QRWDEOH GHFUHDVH LQ ERQG OHQJWK LV REVHUYHG IRU WKH )H DQG )H ERQGV ZKLFK LV GXH WR WKH UHPRYDO RI DQ HOHFWURQ IURP WKH G RUELWDO [\ GLUHFWHG WRZDUGV ERWK VHPLFDUED]RQH R[\JHQV UHVXOWLQJ LQ OHVV UHSXOVLRQ DQG KHQFH D GHFUHDVH LQ ERQG OHQJWK %RWK RI WKHVH UHVXOWV DUH UHDVRQDEOH DQG WKH\ PDWFK TXLWH ZHOO ZLWK WKH EHKDYLRU ZKLFK ZRXOG EH H[SHFWHG $ FRPSDULVRQ RI WKH ERQG OHQJWKV ZLWKLQ WKH HTXDWRULDO SODQH GHWHUPLQHG IRU WKH TXLQWHW VSLQ VWDWH ZLWK WKRVH REVHUYHG LQ WKH VROLG VWDWH LV H[WUHPHO\ JRRG $OWKRXJK WKH VROLG VWDWH FRPSOH[ XVHG LQ WKH FRPSDULVRQ GLIIHUV LQ WKH D[LDO GRQRUV WKH ILYH HTXDWRULDO SRVLWLRQV DUH LGHQWLFDO ,W LV LPSRUWDQW WR QRWH WKDW WKH =,1'2 FDOFXODWLRQV SHUIRUPHG RQ WKH >)H '$36&f + f@ FRPSOH[ DVVXPH WKDW WKHUH DUH QR H[WHUQDO HIIHFWV FRQWULEXWLQJ WR WKH FRQIRUPDWLRQ RI WKH REVHUYHG FRPSOH[ ,Q RWKHU ZRUGV WKH FRPSOH[ LV WUHDWHG DV

PAGE 136

DQ LVRODWHG V\VWHP WKURXJKRXW WKH JHRPHWU\ RSWLPL]DWLRQ 7KLV VDPH FRQGLWLRQ LV QRW WUXH IRU WKH JHRPHWU\ RI WKH )H'$36& FRPSOH[ REVHUYHG LQ FU\VWDOOLQH IRUP ZKLFK LV PRVW FHUWDLQO\ DIIHFWHG E\ QHDU QHLJKERUV DV ZHOO DV RWKHU UHDOLWLHV RI RXU SODQHW 1RQHWKHOHVV WZR SRLQWV FDQ FHUWDLQO\ EH PDGH ILUVW WKH GLIIHUHQFHV LQ ERQG OHQJWKV EHWZHHQ WKH TXLQWHW VSLQ VWDWH GHWHUPLQHG WR EH WKH ORZHVW LQ HQHUJ\ IURP JHRPHWU\ RSWLPL]DWLRQ FDOFXODWLRQV DQG WKRVH REVHUYHG YLD H[SHULPHQW DUH PLQRU ZKLFK VXJJHVWV WKDW HIIHFWV VXFK DV SDFNLQJ IRUFHV LQ WKH VROLG VWDWH PD\ DFWXDOO\ EH WULYLDO LQ DIIHFWLQJ WKH VWUXFWXUH RI WKHVH FRPSOH[HV 6HFRQG WKRXJK WKH PHWKRG XVHG WR RSWLPL]H WKH JHRPHWU\ ZDV VHPLHPSLULFDO LH H[SHULPHQWDO UHVXOWV XVHG LQ WKH SDUDPHWHUL]DWLRQ VFKHPHf WKUHH GLIIHUHQW JHRPHWULHV ZHUH FOHDUO\ GLVWLQJXLVKHG ZKLFK FRUUHVSRQGHG WR WKH WKUHH GLIIHUHQW VSLQ VWDWHV 7KHVH UHVXOWV VKRZ WKDW WKH VSLQ VWDWH RI WKH FRPSOH[ PD\ LQ IDFW EH RQH RI WKH PRVW LPSRUWDQW IDFWRUV DIIHFWLQJ WKH ERQG OHQJWKV DQJOHV DQG JHRPHWU\ REVHUYHG ZLWKLQ WKH LPPHGLDWH FRRUGLQDWLRQ VSKHUH RI WKLV W\SH RI FRPSOH[ 'HWHUPLQLQJ ZKLFK VSLQ VWDWH ZDV WKH ORZHVW LQ UHODWLYH WRWDO HQHUJ\ UHTXLUHG FRQVLGHUDEOH DPRXQWV RI FRPSXWLQJ WLPH ,W LV LQWHUHVWLQJ WR VHH KRZ WKH WRWDO UHODWLYH HQHUJLHV 7DEOH f RI WKH YDULRXV VSLQ VWDWHV UHODWH WR WKDW RI WKH TXLQWHW JURXQG VWDWH ZKLFK ZDV IRXQG WR EH WKH ORZHVW LQ HQHUJ\ 7KH JHRPHWU\ FRQVWUDLQWV DUH JLYHQ DFURVV WKH WDEOH DV FROXPQ KHDGLQJV DQG WKH UHODWLYH HQHUJLHV IRU WKH VSLQ

PAGE 137

VWDWHV DUH OLVWHG GRZQ WKH OHIW VLGH DV URZ KHDGLQJV )URP 7DEOH LW LV HDV\ WR GHWHUPLQH WKH DPRXQW RI HQHUJ\ UHTXLUHG WR JR IURP RQH VSLQ VWDWH WR DQRWKHU LQ D SDUWLFXODU JHRPHWU\ RU IURP RQH VSLQ VWDWH LQ D SDUWLFXODU JHRPHWU\ WR WKH VDPH VSLQ VWDWH LQ D GLIIHUHQW JHRPHWU\ )RU LQVWDQFH LI WKH JHRPHWU\ ZDV WKDW RI D TXLQWHW DQG WKH VSLQ VWDWH FKDQJHG IRUP D TXLQWHW WR D WULSOHW WKLV ZRXOG UHTXLUH H9 RU FPn RI HQHUJ\

PAGE 138

$33(1',; &203/(7( 5()(5(1&(6 )25 7+( 587+(1,80 &203/(;(6 &,7(' ,1 &+$37(5 &,6',&+/252%,6',0(7+
PAGE 139

&$5%21
PAGE 140

',&+/25275,$0,1(&$))(,1(
PAGE 141

%(1=2$72',&+/252%,675,3+(1
PAGE 142

',&+/25275,6(7+
PAGE 143

75$16',&+/2527(75$.,6',(7+
PAGE 144

0875,63<5,'
PAGE 145

7(75$3+(1
PAGE 146

%,6%,675,3+(1
PAGE 147

%(1=
PAGE 148

&,6&$5%21
PAGE 149

&,6',&$5%21
PAGE 150

&,6',&+/2527(75$7+,$&<&/27(75$'(&$1( f 587+(1,80,,f ',+<'5$7( %,*/$( 7)/$,&.3221 -&+(062&'$/721 ',&+/2527(75$.,6',0(7+
PAGE 151

5()(5(1&(6 0XWWHUWLHV ( / $P &KHP 6RF f %ULWWRQ 'XQLW] $FWD &UYVW 6HFW $ f 'UHZ 0 3URJUHVV LQ ,QRUJDQLF &KHPLVWU\ f +RIIPDQQ 5 %HLHU % ) 0XHWWHUWLHV ( / 5RVVL $ 5 ,QRUJ &KHP f .HSHUW / 3URJUHVV LQ ,QRUJDQLF &KHPLVWU\ f :HVWHU : 3K' 'LVVHUWDWLRQ 7KH 8QLYHUVLW\ RI )ORULGD :HVWHU : 3DOHQLN $P &KHP 6RF f :HVWHU : 3DOHQLN $P &KHP 6RF f 3DOHQLN :HVWHU : 5\FKOHZVND 8 3DOHQLN 5 & ,QRUJ &KHP f 3DOHQLN *LRUGDQR 7 &KHP 6RF 'DOWRQ 7UDQV f 0F5LWFKLH ' 3DOHQLN 5 & 3DOHQLN ,QRUJ &KLP $FWD f / 'DYLG 3DOHQLN ,QRUJ &KLP $FWD f / ( 7KRPDV DQG 3DOHQLN ,QRUJ &KLP $FWD f / ( 7KRPDV 06 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ *LRUGDQR 7 3DOHQLN 3DOHQLN 5 & 6XOOLYDQ $ ,QRUJ &KHP f 3DOHQLN .R]LRO $ ( *DZURQ 0 3DOHQLN 5 & :HVWHU : $FWD &UYVW f & 1RZDWDUL + +LUDED\DVNL
PAGE 152

*DEH ( 3DJH < / &KDUODQG 3 /HH ) / :KLWH 3 6 15&9$; $Q ,QWHUDFWLYH 3URJUDP 6\VWHP IRU 6WUXFWXUDO $QDO\VLV $SSO &U\VW f 'HOOHGRQQH 3HOL]]L 3HOL]]L & $FWD &U\VW f & 3HOL]]L & 3HOL]]L &KHP 6RF 'DOWRQ 7UDQV f 3HOL]]L & 3HOL]]L 3UHGLHUL 2UTDQRPHW &KHP f $OELQDWL $ 3UHJRVLQ 3 6 5XHJJHU + ,QRUR &KHP f DQG UHIHUHQFHV WKHUHLQ 1HOVRQ + $OFRFN 1 : ,QRUR &KHP f &RWWRQ ) $ :LONLQVRQ $GYDQFHG ,QRUJDQLF &KHPLVWU\ WK HG -RKQ :LOH\ DQG 6RQV ,QF 1HZ
PAGE 153

:DVVRQ 5 /RUHQ]H 5 ,QRUD 1XF &KHQW /HWW f *RRGPDQ % $ 5D\QRU %$GYDQFHV LQ ,QRUJDQLF &KHPLVWU\ DQG 5DGORFKHPLVWU\ 9RO S 7DEOH ;9,f :HVWHU 3DOHQLN ,QRUD &KHP f 3DROXFFL 0DUDQJRQL ,QRUD &KLP $FWD f / 0DVXGD + 7DJD 7 2VDNL 6XJLPRWR + 0RUL 0 2JRVKL + %XOO &KHP 6RF -SQ f $QG UHIHUHQFHV WKHUH LQ &XQGDUL 7 5 'UDJR 5 6 ,QRUD &KHP f +ROP 5 + &KHP 5HY f 1DJDVKLPD + 0XNDL 6KLRWD <
PAGE 154

+LUDNL +LGHIXPL + 0DFURPROHFXOHV f 3RZHOO 3 3ULQFLSDOV RI 2UTDQRPHWDOOLF &KHPLVWU\ QG HG &KDSPDQ DQG +LOO 1HZ
PAGE 155

$QGHUVRQ : 3 (GZDUGV : =HUQHU 0 & ,QRUT &KHP f =HUQHU 0 & /RHZ + .LUFKQHU 5 ) 0XHOOHU :HVWHUKRII 8 7 $P &KHP 6RF f +HDG =HUQHU 0 & f WR f (GZDUGV : =HUQHU 0 f +DQFRFN 5 'REVRQ 6 3 :DGH 3 : %RH\HQV $P &KHP 6RF f %RH\HQV & $ &RWWRQ &KHP f &KHP 3K\V /HWW f & 7KHRU &KLP $FWD 0 (YHUV $ 1JZHQ\D 0 & $ :DLQZULJKW 3 ) $ +DQ 6 ,QRUT $OOLQJHU 1 /
PAGE 156

%,2*5$3+,&$/ 6.(7&+ 7KH DXWKRU ZDV ERUQ LQ /RV $QJHOHV &DOLIRUQLD RQ 0D\ 6KRUWO\ WKHUHDIWHU KH PRYHG WR &DQE\ 0LQQHVRWD ZKHUH KH DWWHQGHG SULPDU\ DQG VHFRQGDU\ VFKRRO $IWHU JUDGXDWLQJ IURP &DQE\ 3XEOLF +LJK 6FKRRO LQ KH DWWHQGHG 6W -RKQnV 8QLYHUVLW\ LQ &ROOHJHYLOOH 0LQQHVRWD REWDLQLQJ D %6 LQ FKHPLVWU\ LQ $IWHU WDNLQJ D \HDU DQG RQHKDOI RII WR ZRUN KH EHJDQ JUDGXDWH VWXGLHV DW 6RXWK 'DNRWD 6WDWH 8QLYHUVLW\ %URRNLQJV 6RXWK 'DNRWD ZKHUH KH REWDLQHG D 06 LQ FKHPLVWU\ LQ +H WKHQ PRYHG WR *DLQHVYLOOH )ORULGD DQG EHJDQ D 3K' SURJUDP LQ FKHPLVWU\ DW WKH 8QLYHUVLW\ RI )ORULGD

PAGE 157

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *XV 3DOHQLN &KDLU 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -DPHV 0 %RQFHOOD $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5 &DUO 6WRXIHU $VVRFLDWH 3URIHVVRU RI &KHPLVWU\

PAGE 158

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ > :.2 ODPHV :LQHMRUGQHU *UDGXDWH 5HVHDUFK 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI SEFWRU RIA3KLORVRSK\ )UDQN %ODQFKDUG 3URIHVVRU RI *HRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 159

81,9(56,7< 2) )/25,'$