Citation
Maxpolynomials and morphological template decomposition

Material Information

Title:
Maxpolynomials and morphological template decomposition
Creator:
Crosby, Frank J., 1967-
Publication Date:
Language:
English
Physical Description:
v, 98 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Abstract algebra ( jstor )
Algebra ( jstor )
Conceptual lattices ( jstor )
Factorization ( jstor )
Image processing ( jstor )
Linear algebra ( jstor )
Mathematical theorems ( jstor )
Mathematics ( jstor )
Minimax ( jstor )
Polynomials ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1995.
Bibliography:
Includes bibliographical references (leaves 96-97).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Frank J. Crosby.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002045659 ( ALEPH )
AKN3588 ( NOTIS )
33399213 ( OCLC )

Downloads

This item has the following downloads:


Full Text










MAXPOLYNOMIALS AND MORPHOLOGICAL TEMPLATE DECOMPOSITION


By

FRANK J. CROSBY










A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1995














ACKNOWLEDGMENTS


I would first like to thank my parents for their continuous support and encouragement.

They have given me a belief in myself which is what I have needed most. I would also

like to thank my friends. They Ihive stood by me, so that in spirit I was never alone.

The Florida Education Fund deserves special thanks, not only for its financial aid

but also for its moral support.

There have been many that I have met during my journey who have not been

supportive. I know that every obstacle that I am able to overcome will make stronger,

so I thank them as well.














TABLE OF CONTENTS


ACKNOWLEDGMENTS ................... ............ ii

ABSTRACT ........... ...................... ......... iv

CHAPTERS

1 INTRODUCTION................... ............... 1

2 MINIMAX ALGEBRA ....... ................. ........ 7
2.1 Introduction ................... ................ 7
2.2 Belts ........................................ 8

3 IMAGE ALGEBRA ................... ............... 13
3.1 Introduction ................ .. ................... 13
3.2 Basic Definitions ......... .................. ...... 14
3.3 Operations ................... .................. 16

4 MAXPOLYNOMIALS ................... ............. 22
4.1 Introduction .. . 22
4.2 Basic Definitions .......... ... .................... 24

5 FACTORIZATION .................................. 42
5.1 Introduction ................... ............... 42
5.2 Basic Properties ............. ..................... 44
5.3 Maxpolynomials over (R-o, V, +) ............... ..... 48
5.4 Maxpolynomials over ( {-oo, O}, V, +) ...... ... ......... 74

6 RANK BASED MATRIX DECOMPOSITION .................. 80
6.1 Introduction .................................... 80
6.2 Basic Definitions ......... .................... ..... 81
6.3 Matrix Decomposition ....... ...................... 89

7 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH ..... 94

REFERENCES ................ ......................... 96

BIOGRAPHICAL SKETCH ........ ....................... 98














Abstract of Dissertation Presented to the Graduate School of the University of Florida
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy






MAXPOLYNOMIALS AND MORPHOLOGICAL TEMPLATE DECOMPOSITION

By

Frank J. Crosby

May 1995






Chairman: Dr. Gerhard X. Ritter
Major Department: Mathematics

Image algebra and combinatorial optimization have led to the consideration of

polynomials over lattice-ordered groups instead of over the usual structure of rings. These

polynomials are referred to as maxpolynomials. Maxpolynomials were first introduced to

solve combinatorial problems. This use is more restricted than their applications to image

algebra. Therefore, a general development of the concepts related to maxpolynomials

was in order.

A general definition of maxpolynomials is the starting point of this research. Max-

polynomials are defined for both the single-variable and the several-variable cases. These

new definitions allow for the complete classification of maxpolynomials by way of a uni-

versal mapping property.








Past research in image algebra has established that maxpolynomial factorization is

equivalent to morphological template decomposition. Several elements of maxpolynomial

factorization are also investigated. First a division algorithm is demonstrated. From

there, new factorization techniques are presented. Two lattice-ordered groups are the

central focus of the factorization techniques. The first is built around the real numbers

and negative infinity. This lattice-ordered group is used for gray-scale morphological

templates. The second is built around just zero and negative infinity. Its applications

are chiefly in binary morphology.

Another method of template decomposition is based on matrix analysis. A matrix

decomposition algorithm utilizing nonlinear operations and the definition of rank in terms

of minimax algebra is also developed.













CHAPTER 1
INTRODUCTION


The results presented here add to the expanding frontiers of image algebra. There

are many specific examples of algebraic structures, and the power of the abstract point of

view becomes apparent when results for an entire class are obtained by proving a single

result for an abstract structure. This is the goal of image algebra.

The history of image algebra begins with mathematical morphology. The term

morphology denotes a study of form. It is commonly used to describe a branch of

biology which studies the structure of plants and animals. In image processing there is

mathematical morphology. It is a tool which is used to rigorously quantify geometric

structure or texture within an image. Mathematical morphology views the image as a

collection of sets and then interprets how other sets interact with the image. It was

developed in the mid 1960s by G. Matheron and J. Serra at the Paris School of Mines in

Fontainbleau [1]. From a few basic operations they developed many different algorithms.

Two very important theorems about mathematical morphology were proved by

Hadwiger and Matheron. In 1975, Matheron proved that any increasing mapping on

R" is both a union of erosions and an intersection of dilations [2]. Hadwiger showed

that suitably well-behaved image functionals posses a similar property [3]. The beauty

of morphology lies in these two theorems. They show that a wide class of operators can

be represented by just a few morphological operations. Complete characterizations such

as these are some of the most powerful theorems in mathematics. They generally serve

to confirm a particular approach to a problem.






2

These observations led Serra and Sternberg to unify the concepts of morphology in

hopes of bringing together many different aspects of image processing. Sternberg began

to use the term image algebra to describe this unification [4].

Their attempt at generalization had a serious drawback. Many image operations

are not expressible in morphological terms. Some transformations such as the Fourier

transformation and histogram equalization are basic to digital image processing but cannot

be accomplished using purely morphological methods. To remedy this shortcoming, G.

X. Ritter set out to develop a universal system. The goals were to define a complete

algebra which would encompass all image processing techniques, and to define a simple

algebra whose operands and operators would be intelligible to those without an extensive

mathematical background [5].

Once a comprehensive framework was built, the relationships between image algebra

and other existing algebraic structures could be determined. This would turn out to be

a prolific means of enhancing image understanding.

J.L. Davidson and H.J. Heijmans independently discovered that mathematical mor-

phology could be formulated in terms of lattice algebra as well as the traditional set

theoretic approach [6, 7]. Davidson's results further showed that morphology, with this

reformulation, could be embedded into image algebra. They showed that morphologi-

cal operations can be computed using lattice convolutions. In fact, lattice convolutions

can do more that just morphology. The results further established the connection be-

tween mathematical morphology and minimax algebra. Lattice convolutions are based

on minimax algebra.

Minimax theory has long been used to solve problems in operations research, such as

machine scheduling and shortest-path problems. This theory is built around semilattice-

ordered semigroups, also known as belts. A belt is set together with a lattice operation






-1,

and a binary operation which distributes over the lattice operation. It is typically denoted

by (F, V, +). In much the same way that one investigates structures over rings, one also

investigates homomorphisms, linear transformations, and matrices over belts. In fact,

minimax problems for piecewise linear functions lead Cuninghame-Green and Miejer to

develop the theory of maxpolynomials, which are polynomials over belts [8].

Maxpolynomials have the additional property that, in much the same way that poly-

nomials can be used to calculate linear convolutions, they can be used to calculate lattice

convolutions. However, a major drawback of the original development of maxpoly-

nomials is that they were viewed as functional expressions. Unlike a polynomial, a

maxpolynomial is quite different when viewed alternately as a formal expression and as

a functional expression. For example, while it is true that for .r E Ro,


(2 + 2.r) V (1 + x) V I = (2 + 2x) V 1.


formally they differ. When calculating lattice convolutions, maxpolynomials are taken to

be formal expressions. All of the development given in this work will treat them as such.

The processing of images is a computationally intensive task. Convolutions require

a large number of operations, which is proportional to not only the size of the image,

but also to the size of the template. Template decomposition is one of the best ways to

reduce the computational complexity of an algorithm.

In their initial investigation Cuninghame-Green and Meijer presented a factorization

theorem for maxpolynomials. The necessary and sufficient condition for the application

of their result is that the maxpolynomial be irredundant. This means that when viewed

as a functional expression, it has no extraneous terms. In the above example, (1 + x) on

the left side of the equation is an extraneous term. Furthermore, when expanding their

factorization it was only guaranteed that the result would be functionally the same as the






4

original. Li expanded their theorem to give conditions under which the original and the

expansion of their factorization would be identical formal expressions [9].

The goal of this dissertation is to develop the theory of maxpolynomials beyond the

work of Li [9], and Cuninghame-Green and Meijer [8]. By solidifying the foundation

of maxpolynomials, we hope that they will become a generous resource for many

applications. To insure the usefulness of the factoring techniques presented in this

dissertation, all maxpolynomials are regarded as formal expressions. Hence, they are

directly applicable to lattice convolutions.

In order to develop the theory of maxpolynomials, this dissertation begins with a

review of some relevant minimax definitions. We present these axiomatics and basic

manipulative properties in Chapter 2. The names and definitions for several types of

belts are given. In addition, the concepts of homomorphism and duality are presented.

These concepts form the basis of maxpolynomials analogously to the way in which ring

theory is the basis of polynomial investigations.

Next, we present some of the foundations of image algebra. The focus of the third

chapter is to show some of the ways in which minimax algebra and image algebra interact.

The presentation is far from complete. However, it serves to familiarize the reader with

the basic concepts.

Chapter 4 begins a rigorous establishment of maxpolynomials. First maxpolynomials

are defined for a single indeterminate. Some elementary properties and notation are

then developed. The construction of maxpolynomials in n indeterminates is next and

is followed by some of their basic properties. In particular, we relate the structure of

maxpolynomials back to the structures mentioned in Chapter 2. The main result of

Chapter 4 is the complete classification of the belt of maxpolynomials using a universal

mapping property.






5

In Chapter 5 we explore various concepts associated with factorization. Among the

basic properties is the establishment of an analog to the division algorithm. From there,

particular factorization theorems are presented for the two most common belts used in

lattice convolutions.

Many of the considerations used in factoring maxpolynomials stem from those in

the work of Z. Manseur and D. Wilson [10]. They used conditions such as symmetry

and skew symmetry to aid in factoring polynomials. They also looked at how factoring

boundary polynomials effected factorization.

Section 5.3 focuses on (R-_, V,+), which is used for gray scale morphology.

Several techniques for the single-variable situation are developed. Then the two prin-

cipal techniques are applied to the two-variable case. The belt of Section 5.4 is

({-oo,0},V,+), which corresponds to binary image manipulations. The first part of

the section shows that factoring by grouping arises in three important cases. It is then

shown that when decomposing a binary restricted-convex template (see Section 5.4), only

decompositions of the boundary need be considered. We then prove that the boundary

involves only the three cases shown in the beginning. Once this is done, we have finished

classifying the problem of decomposing restricted-convex templates.

The main focus of this dissertation is the development of the theory of maxpolynomi-

als. Particular emphasis is placed on their use in morphological template deomposition.

There are other methods used in morphological template decomposition. One of those

methods is based on matrix analysis.

In the setting of linear algebra, D. O'Leary showed that if a 5 x 5 matrix has either

rank 1 or all of its nonzero terms are on a single diagonal, then it can be factored into the

product of two 3 x 3 matrices [11]. Z. Manseur and D. Wilson reduced the number of

factors implied by O'Leary's result for the decomposition of an arbitrary matrix by using






6

polynomial methods [10]. J. Davidson studied some nonlinear matrix decompositions

based on minimax algebra [12]. However, the work of Davidson did not utilize the rank

of a matrix. The Goal of Section 6.3 is to prove a rank based decomposition in terms

of minimax algebra.














CHAPTER 2
MINIMAX ALGEBRA


2.1 Introduction


When solving problems chiefly of interest to the operational researcher, a number of

different authors discovered that these problems could be reformulated under a nonlinear

algebraic structure. This reformulation presented a unifying language and thus a mutual

strategy for solution. The language consists of an algebra. This algebra contains

the extended real numbers and two binary operations. The two binary operations are

maximum or minimum, and addition. We can denote this algebra by (Ro, V, A, +).

Authors such as Giffler applied this structure to solve machine scheduling problems [13].

Others used it in shortest-path problems of graph theory [14, 151. The properties of the

lattice-ordered group (Ro, V, A. +) have been investigated over many years. However,

the study of spaces of n-tuples over this algebra led to an elemental connection between

operations research and linear algebra.

A unified account of this algebra and its connection to linear algebra was presented

by Cuninghame-Green in his book Minimax Algebra [16].

J. Davidson showed that minimax algebra could be embedded into image algebra

and that some of the basic results which had been obtained in the area of operations

research have applications in image processing [6]. Although it had already been formally

proven that image algebra was capable of representing any image transformation, the

isomorphism that Davidson developed showed that minimax theory could be applied to

image analysis.






8

The next section introduces some of the basic definitions and notation of minimax

algebra. This presentation does not aim at completeness. Only those concepts which

will be used are covered.


2.2 Belts


Let F be a set. We define on F two binary operations, V and *, having the following

properties.

1. Associativity of V: x V (y V z) = (. V y) V z.

2. Commutativity of V: x V y = y V ..

3. Idempotent: x V x = x.

4. Associativity of *: x (y z) = (x y) z.

5. Right distributive: x (y V z) = (x y) V (x z).


6. Left distributive: (y V :) = (y x) V (z ).

The ordered triple (F, V, *) is known as a belt.

The properties 1-3 define a semilattice structure, that is, an abelian semigroup in

which every element is idempotent. A semilattice is also referred to as a commutative

band in some literature. It is the basis for what follows, similar to the way a group is the

basis for the structure of a ring. In addition, the operation is associative and satisfies

"distributive" laws. Due to the similarity between this structure and a ring we call the

structure (F V. *) a belt. We also refer to V as addition and as multiplication. A belt

is also known as a semilattice-ordered semigroup.

If we define V to be the maximum of two numbers and to be the usual addition,

then the set of real numbers with these operations, denoted by (R. V, +), is an example

of a belt. Another example may be formed by taking the set F to be the positive real






9

numbers, R+, and binary operations to be maximum, V, and multiplication, x. This

belt is denoted by (R, V, x).

Any semilattice may be viewed as a belt when the multiplication is defined to be

identical to the semilattice operation. In this case, we say that the belt is a degenerate belt.

Let (F, V,*) and (F, V, *) be belts. A function /, : F, F, is a belt homo-

morphism if


'(.x V y) = '(.r) V ,'(y)


and

N,(x* y) = ,(- .') ,(y)


Similarly, we use the terms isomorphism, endomorphism, and automorphism.

For example, if 0/' : R -* R is defined by


(x) = t ,


then it is evident that (R, V, +) is isomorphic to (R+, V, x), where R+ is the positive

real numbers.

A particular belt may also satisfy

7. Commtativity of *: x y = y .

Such a belt is called a commutative belt.

If there exists an element IF such that

8. Identity: IF X = IF = -,

then element 1F is called the identity element and a belt satisfying axiom 8 is a belt

with identity.

Suppose that for each x E F there exists an element x' such that








9. Inverse: x x' = 1F

Such an element is called the inverse of x.

It can be shown that the one-sided inverse of an element is its two-sided inverse and

that the inverse is unique. We denote the inverse of an element x by x-1. It is also

evident that (x1)-' = x and (IF)- = IF If a belt satisfies both axioms 8 and 9,

then it is a division belt.

If there exists an element -oo such that


x V (-oo) = x


and


-00 2 = (-OC) = -o0,




then such an element is unique and termed the null element. The existence of a null

element is quite significant in the sequel. In fact, many of the derivations will depend on

its presence. Fortunately an arbitrary nondegenerate belt may be extended to include a

null element. The element -oo can be adjoined to the set F and this new set is denoted

by F-o. This element serves as a lower bound for the semilattice. So we define


V (-oo) = (-oo) V = x .


The semigroup operation can be extended by defining


-oo = x (-o) = -oo .


The elements of F which are different from -oo are called the finite elements of F. It

has been shown that, except in the trivial case, where F= {1} a partially ordered group

cannot have universal bounds [17]. Thus a division belt cannot have a null element.








Notice that (R, V, +) is in fact a division belt. We may adjoin -oo to R. It follows

that (Roo, V, +) is a belt with a null element in which the finite elements form a division

belt. The belt ({-o,O0},V,+) may be considered as a subbelt of (Roo,V,+). The

belt ({-oo,0),V,+) is again a belt with a null element in which the finite elements

form a division belt.

Under the mapping ,(x) = e', the belt (R, V. +) can be shown to be isomorphic

to (R, V, x). If we extend the map <, by defining ',(-oo) = 0, then we have that

(R-o, V, +) is isomorphic to (R0o, V, x), where Ro denotes all real numbers greater

than or equal to zero. Note that the null element of (R>O, V, x) is zero. By the

uniqueness of the null element,


R!o, V, x) = (RO, V, x)


The possibility exists to expand the structure of an arbitrary belt to include dual

operations. That is, it would have the additional properties that for all x, y, z E F,

1'. Associativity of A: x A (y A z) = (x A y) A z.

2'. Commutativity of A: r A y = yA x.

3'. Idempotent: x A = x.

4'. Associativity of *': x *' (y *' z) = (x *' y) z.

5'. Right distributive: x *' (y A z) = (x *' y) A (x *' z).

6'. Left distributive: (y A z) x = (y *' x) A (z *' x).

If the two semilattice operations satisfy

10. Lattice absorption law: x V (y A x) = x A (y V x) = x.

then it is said that the two semilattice operations are consistent and that (F, A, *') is the

dual of (F, V, *) and vice versa. Thus, if it is possible to define these two additional






12

operations we say that (F, V, *) has duality. This is often represented by (F, V, A, ,, *').

It is not assumed that and *' are related. However, if they should coincide, then we

say that the belt has a self dual multiplication. If (F_,o, V, *) is a division belt, then by

defining x A y = (X-1 V y-') we have introduced a dual semilattice operation and we

get a division belt with self dual multiplication.

The belt (R, V, +) may be expanded by the inclusion of a minimum operation. It is

easily checked that (R.A, +) is the dual of (R, V. +).

Let (F. V. *) and (F2. V.*) be belts. We shall say that (F1.V, *) is conjugate to

(F2, V, *), if there exists a function ,' : Fi -- F2 such that

', is bijective;

for all y e F, (/'(x V y) = ,(x) A '(y);

for all x, y F, 7'(.x y) = i,(.) *' '(y).

In particular, if (F. V, *) is a belt with duality, then we say that it is self-conjugate,

if (F, V, *) is conjugate to (F,A,*).

If (F, V, *) has a conjugate we denote by (F. V, *)* the image of the conjugate map

/,. If f E F we denote by f* V,(f). We call f* the conjugate of f It is immediate that

((F, V, )*)* = (F,V,*) and (f*)* = f.

We note that every division belt is self conjugate under the map f -- f-1. Unless

otherwise noted, our reference to the dual of a given division belt shall be with respect

to this mapping.

If we again consider the belt (R, V, +), then under the map ,(r) = -r, we see that

(R, V, +) is conjugate to (R,A, +).













CHAPTER 3
IMAGE ALGEBRA


3.1 Introduction


Image algebra is a response to the need of the image processing community to have

an axiomatic development of the field of image processing. In an axiomatic, or abstract,

treatment of a given type of algebraic structure one assumes a small number of properties

as axioms and then deduces many other properties from those axioms. Thus, it is possible

to deal simultaneously with all the structures satisfying a given set of axioms instead of

with each structure individually.

The term image algebra was first used by Sternberg to describe morphological

operations [4]. Mathematical morphology is well suited for algebraic abstraction of its

properties. Many of its techniques are expressible as combinations of simple operations.

However, it lacked the generality to express many common image processing techniques.

Techniques such as histogram equalization and image rotation are not expressible in

terms of simple morphological operations.

The establishment of a general image algebra became the goal of G. X. Ritter at the

University of Florida. Objects such as value sets and images were defined in general

terms, with minimum specification. The result of Ritter's work has been shown to be

capable of expressing all image processing operations [5].

J. Davidson showed that minimax algebra could be embedded into image algebra

and that some of the basic results which had been obtained in the area of operations

research have applications in image processing [6]. Although it had already been formally






14

proven that image algebra was capable of representing any image transformation, the

isomorphism that Davidson developed showed that minimax theory could be applied to

image analysis. In particular, the use of lattice convolutions showed how morphology

is a subalgebra of image algebra.

Image algebra is a heterogeneous algebraic structure. That is, it consists of a number

of different operands and operators. This chapter presents some of the basic concepts

and notation of image algebra. Only those concepts which will be used in the sequel are

reviewed. An in depth review may be found in Ritter et al. [18].


3.2 Basic Definitions


The value set is a homogeneous algebra. It is a set together with at least one binary

operation. Generally, our interest will be concentrated on the set consisting of the real

numbers along with negative infinity. Several different operations may be considered.

We denote this by R-o. An arbitrary value set will be denoted by F.

A spatial domain can be any topological space. Subsets of R' will be our main

focus with most applications being Z". The symbol Z" represents the n fold Cartesian

product of the integers.

Let X be a spatial domain and F a value set. An F valued image on X is any map

from X to F. We denote the set of all F valued images on X by Fx.

We shall not distinguish between the graph of an image and the map. The graph of

an image is also referred to as the data structure representation of the image. Given the

data structure representation a = {(x, a(x)) : x E X}, then an element (x, a(x)) of the

data structure is called a picture element or pixel. The first coordinate, x, of a pixel is

called the pixel location or image point, and the second coordinate, a(x), is the pixel

value or gray value of a at location x.






15

Let X and Y be spatial domains and F a value set. An F valued template from Y

to X is a function t : Y FX.

Thus, a template is an image whose pixel values are images. We denote the set

of all F valued templates from Y to X by (FX) For notational convenience we

define ty t(y). The pixel values, ty(x), of the image ty are called the weights of the

template at the target point y.

If t is a real or complex valued template from X to Y, then the support of t is

defined as



S(ty) = {x EX : ty(x) $ 0}



For extended real-valued templates we also define the following support at infinity,


S+,o(ty) = {x EX : ty(x) / +o),},

,_o(ty) = {x X :X ty(x) -,o} .


If X is a spatial domain with an operation +, then a template t C (FX)X is

said to be translation invariant (with respect to the operation +) if and only if for

each x,y,x+z,y+z EX we have that ty(x) = ty+z(x+z). Templates that

are not translation invariant are called translation variant or simply variant. Of-

ten a translation invariant template can be represented pictorially. For example,

let X = Z2 and y = (x, y) be an arbitrary point of X. Define t E (RiX)Xo by

ty(y) = 2, ty(x y) = 1, ty(r, ,yl 1) = 1, ty(r 2. y) = 0, ty(r, y 2) = 0,






16

ty(x-1, y 1) = ty(x+l,y ) = ty(x+l, y+l)

ty(x, y) = -oo otherwise. The representation of t is


ty(x 1,y+1) = 0 and


0

t= 0 1

0


3.3 Operations


The operations on and between Fx are naturally derived from the algebraic structure

of the value set F. For example, if 7 is a binary operation defined on F, then induces

a binary operation on Fx defined as follows.

Let a,b E FX. Then


ayb = {(x,c(x)) : c(x) = a(x)-b(x), x e X} .


For an F valued image on a coordinate set X we have the following basic operations;


a + b {(x,c(x)) : c(x) = a(x) + b(x), x X}

a b {(x, c(x)) : c(x) = a(x) b(x), x X}

aVb ={(x,c(x)) : c(x) = a(x)Vb(x), x X}


a A b ={I(x, c(x)) : c(x) = a(x) A b(x), x EX).






17

Induced unary operations are defined in a similar fashion. Any unary operation

g : F -+ F induces a unary operation g : Fx -- FX defined by


g(a)= {(x,c(x)) : c(x) g(a(x)), x X} .


Let F = R,. The additive dual of (R,, V, +) is denoted by (R,, A, +) and

is determined by the map r -- -r. For aE (R+)x, the additive dual is defined by

-a(x) if a(x) E R
a*(x) = -oo if a(x)= +oo
+oc if a(x) = -oo .

Similarly, if a E (RO) X, then the multiplicative dual is defined by

(1/a(x) if a(x) E R
a*(x) = 0 if a(x) = +o
+oo if a(x) = -oc.

Generalized convolutions are one of the most useful consequences of the concept of

a heterogeneous image product. They provide rules for combining images with templates

and templates with templates.

Let F1, F2 and F3 be three value sets, and suppose O : F1 x F2 -* F3 is a binary

operation. If a EF t (Fx ) and 7 is an associative binary operation on F, then

for each y E Y we have ty E Fx. Thus, aO ty EFX and r (a O ty) E F. It follows

that the binary operations O and X induce a binary operation





where

b = at eF

is defined by


b(y) = F(a O ty) = r(a(x) O ty(x)) .






18

The expression a @t is called a generalized convolution or the right convolution

product of a with t.

Substitution of different value sets and specific binary operations for and 0 results

in a wide variety of different image transforms. The main focus here will come from

the belt (Ro, V, +).

The bounded lattice ordered group (R,o, V, A, +, +') provides for two lattice con-

volutions,

b=aa t


where


b(y)= V [a(x)+ ty(x)]
xEXn5_, (ty)


and


b= aEt


where


b(y) = A [a(x) + ty(x)] .
x6XnS_,. (ty)

We designate M as the additive maximum and [E as the additive minimum.

The bounded lattice ordered group (R., V, A, x, x') provides for two lattice con-

volutions,

b=a @t


where


b(y) = V [a(x) x ty(x)]
xeXnS-oo(ty)


b = a@t







where

b(y)= [a(x) x ty(x)].
xeXnS_.(ty)
We designate @ as the multiplicative maximum and @ as the multiplicative minimum.

The common unary and binary operation on templates correspond to those defined

on images. For example, if g : Fi F2 and t e (FX)Y then r= g o t (FX)Y

is defined by

ry = g(ty),

where g is applied point-wise to the image ty.

Let t e (FX)y. The transpose of t is a template t' E (FY)X defined by

ty(x) tx(y).

For t ((Rlm)X) the additive dual of t is the template t defined by

-ty(x) if ty(x) ER
tx(y) = -0c if ty(X) = +,xo
-+o if ty(x) = -0o .

For t E ((R x)X)Y, the multiplicative dual of t is the template t defined by

f1/ty(x) if ty(x) E R
tx(y) = -oo if ty(x) = +oo
+oo if ty() = -=oo.

We saw previously how two binary operations, 7 and 0, could be combined to

induce a convolution operator. This notion extends to templates as well.

Suppose that s E (FZ) ,t E (F) : F1 x F2 F3, (F3,) a commutative

semigroup, and X a finite point set. The generalized convolution product r=sOt,

where r e (F) Y, is defined as


ry(z) = Fl(sx(z) 0 ty(x)) .






20

Let t E (RxoY and s E (R ) X. Then r = s M t is defined by the formula


ry(z)= V [Sx(z)+ty(x)].
xeX

If t e ((R o) and t e ((R!W) then r = s @t is defined by the formula


ry(Z)= V [Sx(z) x ty(X)
xEX
Many other image and template operations are described in Ritter et al. [18].

In the subsequent discussion, we assume that X = Z2, and t E (FX)x is a shift-

invariant template with finite support at a point y E X. If x = (r, y) E X, then define

pi(x) = :x and p2(x) = y. We have then that S-,o(ty) is finite and the following are

well defined,


i(y)mi, = inf{[pi(x) :x e S,(ty)]}, i(y),a = sup{[pi(x) : x E S-oo(ty)]}

J(y)m,n= inf{[p2(x) : x S-oo(ty)]}, j(Y)m.x = sup{[p2(x) : x S-oo(ty)]}.



Let


me(y) = i(Y)max i(y),i.,

n(y) = j(y)max (Y)min ,



and define

R(ty) = {(i(y),n + i, J()mi, + ) : 0 < i < m(y) 0 < j < n(y), i,j E N}.

By definition R(ty) is a rectangular array, and it is the smallest rectangular array

containing S-'o(ty).






21

A template, t, with finite support is called a rectangular n x n template if R(ty)

is of size m x n.


Example. Let a morphological template, t, is given by



0


0

t= 0 1

0


The set R(ty) is given by


The diamond designates the origin.














CHAPTER 4
MAXPOLYNOMIALS


4.1 Introduction


The algebraic structure of a belt can be applied to the solution of minimax problems

for piecewise linear functions. Cuninghame-Green and Meijer noted that certain combi-

natorial problems can be expressed using maxpolynomials [8]. These problems involve

using maxpolynomials as functional expressions.

Maxpolynomials have a different use when they are considered as formal expressions.

One use is the calculation of lattice convolutions such as M] or @. To illustrate the

similarities and differences between linear convolutions and lattice convolutions, suppose

that two finite, discrete, one-dimensional signals are given. These signals may be regarded

as functions from the set of integers into some set, the real numbers for example. Their

convolution results in a finite, discrete signal and so it is also a polynomial. Let


f = Co + bax + + abnr"


g= bo+bla + -- +bxmm


and


f g = Co + Cld + + + C m+n.S n




The coefficients of the polynomials are the discrete values of the signal. The powers of

the variable x serve to preserve the order of the coefficients.






23

The convolution of f and g is given by


(f*g)(j) = y f(m)g(j 7n) for 1,2,...
in?

If f, g and f g are replaced with their polynomial representations the convolution

formula becomes


Cj t bj_ .
m
In

Taking into account were the coefficients of f and g are nonzero, the formula reduces to

J
Cj = arb_-m .
m=0

which is just the product of the polynomials.

Image algebra has the capability to represent generalized convolutions. These are

convolutions where different binary operations are used, instead of the usual operations

of addition and multiplication. For example, there is the generalized convolution called

the additive maximum. The additive maximum of two finite, discrete, one-dimensional

signals is represented in image algebra as M and is calculated by the formula


(f M g)(j) = V (f(m) +- g(j ,n)).
In

One may now be led to believe that it is possible to define a certain kind of

"polynomial" whose product corresponds to this convolution. In the linear convolution

we had


S= u -J- (i ( .') + (ax 2) + (a3.' 3) + -.


The two operations were addition and multiplication. In a lattice convolution, the two

operations are maximum and addition. To separate the coefficients we will now use








V, and to preserve the order of the coefficients instead of powers of a variable we use

multiples and write


f = ao V (al + .r) V (a2 +- 2xr) V (a3 + 3x1) V .


Dong Li noted the connection between maxpolynomials and the additive maximum

convolution [9 ]. All of these observations may be extended to signals in two (images)

or more dimensions.

The aim of this chapter is to classify maxpolynomials. That is to say that they will

be identified as a member of an algebraic structure. By doing so, any investigation is not

limited to the specific, and other results may be applied to this new member.


4.2 Basic Definitions

Let (F_-o,V,*) be a belt with lower bound -oo.


Definition. All sequences of elements of F which have only finitely many elements

which are not negative infinity are called maxpolynomials over F.

The set of maxpolynomials over F is denoted by F_-,[.x].


Theorem 4.2.1. Let (Fo, V, *) be a belt.

(i) F_ oo[.] is a belt with V and defined by


(o. ar,. ..) V (bo, bl...) = (ao V bo, a V b, ...)


and

(ao, a .l ...) (bo, b ....) = (co, cl...)

where

c, = V\(a,,- b).
1=0






25

(ii) If (F-o,, V, *) is a commutative belt [resp. a belt with identity], then so is Foo[x].


(iii) The map F -> F-oo[x] given by ,/(f) = (f, -oo, -oo, -oo,...) is a monomor-

phism of belts.





Proof: If a, b, c F_., then a = (ao, a, ...),b = (bo, bl...), and c = (co, c,...),


a V (b c) = a V (bo V co, bl V cl, ...)


= (ao V bo V co, a V b1 V cl,...)


= (ao V bo,ai V b,...)Vc


= (a V b) V c





aV b = (ao V bo,ai V bl,...)


= (bo V ao, bi V a1,...)


= bVa





aVa = (ao V ao,0a V al,...)


= (ao,al,...)


=(a






26


(a *b) c = V V a b,,-j-i cj
j=0 i=o


= V V a -- b-j- *
j=0 i=0


= V V a" bn-,,j- *c
i=0 j=O
2-
SV a V bn-.-i cj
i=0 j=O
=a (b c).
Let d,, be the nth coefficient of a (b V c). By calculation

d. = V an.-i(bi V ci)
i=0

= V (an-i bi) V (a,-i, ci)
i=0

=V (a.n_,* bi) V V (a,,- c).
i=0 i=0
Hence, dn is also the nth coefficient of (a b) V (a c). So


a (b Vc)= (aV b) (a V c).

Next, let d, be the nth coefficient of (b V c) a. Again by calculation

d,, = V (bn-i V c.-i) ai
i=0

= V (ai bn-i,) V (ai c,-i)
i=0

= (a n-i) V V(a, *c ) .
.i=0 i= 0
Hence, d, is the nth coefficient of (b a) V (c a). So


(b c)*a = (b V a)* (c V a).








If F-_, is commutative, then


it
a b V ai b,-i
i=0
7L
=V bj-i *ai
i=0
b a ,

which shows that F-o~[x] is also commutative.

If F-o has an identity IF, then the element (F,-oo, -0o,...) e F-oo[x] acts as

an identity in F_o[,r]. By calculation,


(1F, -oo, -o ....) (ao, al,a2,...) (ao, al,a2,...) .


To show that the mapping is a belt monomorphism, let fi, f2 E F. It follows that

S(.fl V f2) =


(.fi V 2, -oc, -00,o ...) = (fi, -0o, -00, ...) V (./2, -00, -oo ...)

and



(fl f2)=


(fi f2,-oo00-oo, ...) = (f,-o,-00, ...) (f2,-o,-oo, ...) .
So the map is a belt homomorphism.

Suppose that


(fI, -0cl, 0o,...)= ( -oo, -oo ,...),


then clearly fl = f2. So the map is also a monomorphism.


Q.E.D.






28

In view of part ii of the previous theorem, F-_, may be identified with its isomorphic

image in F_-,[x] and we will write (f, --oo,-o,...) as simply f. By calculation, we

have that f (ao, at,...) = (f* ao,f* a, ...).

The next theorem develops a notation which makes the connection between polyno-

mials and maxpolynomials easier to see.


Theorem 4.2.2. Let (F_,, V, *) be a belt with identity and denote by x the element

(-_0, 1F,-0, --c ....) of F_,,[x].

(i) nz = (-00o. -oo,..., IF, -oo,...), where 1F is in the (n + 1)st coordinate.

(ii) Iff E F_,, then for each n > 0, f nx = f = (- ,.... -oo, f, -oo,...),

where f is in the (n + 1)st coordinate.

(iii) For every non negative infinity maxpolynomial (that is a maxpolynomial with

some element which is not -oo) in F_-,[], there exists an integer n and elements

ao, a, ...,a,, E F,_ such that g = ao V (al x)V. ..., V(a,, nx). The integer n and

the elements (a are unique.


Proof: (i) By definition, the formula is true for n = 1. Suppose that (n 1). =

(-o, -00..., IF. --oo,...), where 1F is in the (n 1)-th coordinate. It follows that

n. = x + (n l)x = (-c0, IF, -oo, -oc....) + (-o ,., -0-oo, 1F, -oo,...)


= (cu, 1, ...)




If j = n, then cj = IF F = IF. If j n. then ci = -oc.

(ii) f = (f, -O0, -00,...) (-oo, ..., -0o, OF, -oo,...). Straightfor-

ward computation show that (f, -oo, -oo,...) (-0-...., ,o, IF, -00,...)

(-00,..., -oo, f, -oo,...). Similarly, foi n.r f.






29

(iii) If g = (ao, al, ...), there must be a largest index n such that a,, $ -oo. It follows

that ao, a, ..., a,, E Fo are the desired elements. If g = bo V(bl + x)V .- V(bm + mx),

then

(bo, b, ..., b.,, -oo -oo,...) = (ao, a ..., a,, -oo, -oo,...)


and ai = bi.


Q.E.D.


If F has an identity, then Ox = IF and we may write the maxpolynomial ao Ox V

(a( lx) V ... V (a, nx) as ao V (al x) V .. V (an nx). An important difference

between the two cases is that when there is an identity element, x is an element of the

belt Foo[x]. Hereafter, a maxpolynomial f over a belt with identity will always be

written in the form f = ao V (al x) V ... V (an nx). In this notation, maximum and

addition are given by the following analogs to the familiar rules,

11 'it ti
V (a* ix) V (b ix)= V ((ai V bi) ix)
i=0 i=0 i=0

(n m+n
V(ai ix) + (b x)) = V (ck k), where c = V (a b).
i=0 \j=0 =0 i+j=k


If P = V (ai ix) e F_[xr], then the elements ai are called the coefficients of
i=0
P. The coefficient ao is called the constant term. Elements of F_o, which all have the
n
form f = (f. -oo, -oo,...), are called the constant maxpolynomials. If P = V (ai ix)
i=0
has a, 5 c, then an is called the leading coefficient. If Fo has an identity and the

leading coefficient of P is 1F, then P is said to be a monic maxpolynomial. It shall be

the convention here that when writing P = V (ai ix), we have a,, / -oo.
i=0






30

The next step is to define maxpolynomials in several variables. The starting point

is that a sequence is a function defined on the Natural numbers. Let N be the Natural

numbers and N" = N x N x ... x N (n factors).


Theorem 4.2.3. Let (Fo, V, *) be a belt and denote by F_-[xoi,..., x,] the set of all

functions g : N" Fo such that g( ) $ --oo for at most a finite number of elements

it of N".

(i) F-_[x'l,... x,,] is a belt with V and defined by


(g V h)(u) = g(u) V h(u)

and

(g *h)(u)= V g(v)* h(w).
v+w=U
(ii) If F-o is commutative ( resp. a belt with identity), then so is F_-oo ..., xn].

(iii) The map


: F-oo F-oo[l,.... x ] ,


given by /,(Jf) = gf, where gf(0,..., 0) = f and


gf(u) = -o

for all other u E N", is a monomorphism of belts.


Proof: (i)
(h V g)(u) =

= h(u) V g(u)


= g(u) V h(u)


= (g V h)(u)







[(.f v )V h](u) =

= (f V g)(u) v h(u)

= f(u) V g(u) V h(u)

= (u) v (g(u) V h(u))

= [.f (g V h)](u)



(q v g)(u) =- (u) v g(u) = g(u)

((f/*)*h) =

= V f()+ V g(y)*h())
v+w=u \-Yz=w /

= V V f(v)*g(y) h(~)


(+Z=(( 1'+Y=U'

= V V f(W)* (y) *h(z).
w+4-z=u v+y=uw


g*(hVs)

g (h V s)(u)


= g(u) (h V s)(u)

= g(u) (h(u) V s(u))

= (g(u) h(u)) V (g(u) s(u))

= (g h) v ( *s).








(h Vs)*g=

[(h V s) *g](u) =[(h V s)](u) *g(tu)

=(h(u) V s(u)) g(u)

= (h(u) g(u)) V (s(u) g(u))

(h g) V (s g)
(ii)
(g* h)(u)= V g(v)* h(w)
(v-- U' =

= \ h( w)*g(v)

= (h* g)(u)
Let 1F be the identity of F. Define I: N" Foo by I(u)= 1F if =

(0, 0,0, ..., 0), and I(u) = -oo otherwise. We have then

(g I)(u) =g(u) I(u)

= V g I(mw)

= (u (0, 0,... 0)) I(0, 0,...,0)



= g(u) *

(iii) First, l(.fi V f,) = gflvf.

If a = (0,..., 0), then


gf vf2(u) = fl V f2 = 9 f1(u) V gf2(u).

If u 7 (0,...,0), then


gf2 ivf() = -00 = gf, () V gf(u).








Next, ,(.f *a J') = gfh.f.,.

If u = (0,..., 0), then in order for v + tw = i, it must be that v = (0,..., 0) and w =

(0,....0) simultaneously. So,

(gf, g9)(") = V i (1') gf(w)
()+W?=U

= g (0, .... 0) gf (O ....,0)

= Ji J2

=-- gf. (u) .
= f//1*f2(U) -
If u / (0,...,0), then it is not possible to have v = (0,...,0) and t = (0,...,0)

simultaneously. Hence,

(g9f *9f2) () = V gf1(V) g2(U')
v+1w=u
= -00


= gf*f(u).
So, <' is a homomorphism.

If V'(fi) = '(f), then gf,(u) = gf(u) for all u. In particular, if u = (0,...,0),

we see that fl = fJ.

Q.E.D.


The belt of the previous theorem is called the belt of maxpolynomials in n indeter-

minates over F-oo. If = 1, then F-oo[x] is the belt of maxpolynomials. As in the

previous case, there is a more familiar notation.

Let n be a positive number and for each i = 1,2,..., a let


(0, ...0, 1. 0, ..0) e N",

where I is in the ith coordinate of si. If k E N, let k, = (0,..., 0, k, 0, ..., 0), then every

element of N" may be written in the form ki1l + k22 + + kn- n.






34

Theorem 4.2.4. Let (F_oo, V, *) be a belt with identity and n a positive integer. For each

i = 1,2,...,n, let xi C F_-o[, ...,xrn] be defined by xi(Ei) = 1F_ and xi(u) = -oo

for u / Ei.

(i) For each integer k E N, x (kei) = lF_, and xri(u) = -oo for i k-i;

(ii) For each (ki... k,,) C N", x' 1 .2 k* .x"(kil +- + knEs) = IF_, and

SX 2 ... X "(u) o= fOr u (kl + + -kne),

(ii) x = ffor all s, t = 1,2, ...,;

(iv) xf = fx' for allf C F and all t C N;

v) for every maxpolynomial g in F-oo[al,...,,,] there exists unique elements

akl,...,k, C F, indexed by all (k1, ..., kn) E N" and non -oo for at most a finite number

of (kl,..., kn) E N", such that



S=V aki,,..., knk1 kX


where the maximum is taken over all kl, ..., k,, Nn.




Proof: (i) The case for k = 1 is given by definition. When k = 2, we have



xi (2) I V xr(z) xt()w)
V+-W=2Ft
x;i(i) Xi( -i) = IF.








If u and v are not simultaneously ci, then xi(v) xi(w) =

formula holds for k = n 1. It follows that


-oo. Assume that the


1( "- 1/ '=11,

= -[(,- 1)(Ei)] xi(i)


= 1F 1F

= IF.


.;11 ...2 :1"( 7l1- ..+ k,, cn)
:r ,r2- "


= IF IF ... IF

= IF .

If u $ (klc + + knEn), then it is not possible for vl = kEii, -2 = k2E2, v..,n =

knEn, simultaneously. Hence, .rk' -.. ,,"(u) = -oc.

(iii)

'j(.ru) = lF if and only if u = s- + tEj ,


but sei + tE tj = + se and


.r. f(u) = IF if and only if u = tcj + sji .


Hence, xs = x.
aiZ = ,J i.


V )X((> 2 n-(v,
v'1l+ 2+---+v,=kl 1+---+k,,,n
= .rX (k~ll) k2 ()k2 (2 2)... "( ,, )








(iv)



= l=
Sti(1~itI'f(u li)


= IF '/'f

= d'f IF
*

=O/'f -i(ti)


\'f(w)x (v)



(v) Let ak,,...,ak, = g(kl,...,kn). The ak,,... ,ak are the desired elements. To

show uniqueness, if



V ak,, k k1 n = Vbk, ., bk, m


then aj = b, for j e N".


Q.E.D.


If (F_,o,V,*) is any belt, then the map F_oo[] -- F-_o[l,...,Xn], defined by
m. m
V ai ixr -- V ai i:'l 02 *... OX,, is easily seen to be a monomorphism of belts.
i=0 i=0
Similarly, for any subset {il,..., ik} of {1,2,...,n} there is a monomorphism Fo [] -+

F- [xl ,.... x,]. The belt F-o[x,, ...,xik] will be identified with its isomorphic image

and considered to be a subbelt of F-o[i ..., sn].

For the purposes of the next theorem, will shall the need the following definitions

and well known theorems [19].






37

Definition. A category is a class C of objects together with

(i) a class of disjoint sets, denoted hom(A,B), one for each pair of objects in C; (an

element f' of hom(A,B) is called a morphism from A to B and is denoted f : A -- B;

(ii) for each triple (A,B,C) of objects of C a function


hom.(B, C) x homn(A,B) -+ honm(A, C) :


(for morphisms : A -+ B, g : B -- C, this function is written (g, f) g o f and

g o f : A C is called the composite of f and g); all subject to the two axioms:

(I) Associativity. If g : A -- B, h : B -* C, s : C -- D are morphisms of C, then

h o (g os) = (ho g) os

(II) Identity. For each object B of C there exists a morphism 1B : B -+ B such that

for any g : A -- B, h : B -+ C,


1B og = g and ho 1B = h.


In a category C, a morphism g : A B is called an equivalence if there is in C

a morphism h : B A such that ho g = 1A and g o h = 1. If g : A -- B is an

equivalence, A and B are said to be equivalent.


Definition. An object I in a category C is said to be universal if for each object D of

C there exist one and only one morphism I C.


Theorem 4.2.5. Any two universal objects in a category C are equivalent.


Theorem 4.2.6. Let (F-o, V, *) and (S_-, V, *) be commutative belts with identity and

S: Fo S_- a homomorphism of belts such that P(IF) = P(ls).- If s s2,..., sn E S,

then there is a unique homomorphism of belts ; : F_[oo[, ...,Xn] S such that








F I F-oo = and (n(xi) = si for i 1,2, ..., .. This property completely determines the

polynomial belt F-oo[i, ...xn] up to isomorphism.

Proof: If g E F_,[xl,...,n], then
m
g = .V a"i" k,"*. (ai E F-oo; ij N)
i=0
by Theorem 4.2.4. The map 7 given by ;(g) = pg(sl,...,s,) is well defined map such

that F-oo = and ;(xi) = si. We use the fact that o is a homomorphism to show

that 7 is a homomorphism. If g, h E F-_oo [.r, ...xn], then
7(.g V h) = (g V h)(si .. )

= V ((ai V bi)si --. s

= V[,(ai)V V,(b,)]si,--S

= V[p(ai)S ... s] V [p(bi)sl .. s n]

= V p(a,)si ... V p(bi)s s,

= (g) V (h)
and
7(g h)
k1 k,2 k k ,2 k k1 2
=1 2 "1 "2 = 2 =0
"[V V V V1 I




= [(.g )(. ...,.S,,)]


= V V V V V V (aI ... b.i2.
i'=0 z =0 i =0 i2 i01=0 i
1 ((i + ) ( +)







ki k i k 2 k' ki

i =0 i2=0 il=0 i'=0 il=0 i2

((i + i)1 +- (i + i)s)

k k k (kik 2
.. n... i ,... V y- V (b ...~ isi .-
i" =0 ii=0 \i =0 i, =0

= (.f) (g)

Suppose that : F-oo[xi, ...,a n] -- S,- is a homomorphism such that | Foo =

p and 4(xi) = si for each i. Computing ,/'(g), we have




i=0

t=7



i=0


V ("k),,'' -O.--
i=0

= Yg(sl,.., s,,)




So, then 0 = and so 7 is unique. Category theory is now employed to show that this

property completely determines the belt F_,[xi,...,,r]. Define a category C whose

objects are all (n + 2)-tuples, (0,K_,,i,...s), where K_,o is a commutative belt

with identity, si e K and (/ : F_o -- K_, is a homomorphism with V'(1F) = 1K. Our

aim is to show that the object (t,F-o[xi, ..., Xj, x1,...x?1) is universal in this category.








Define a morphism in C from (0, Ko, ,s. .... ) to ((, G_,, at, ..., an) as a homo-

morphism of belts p : Ko, Go such that

p(K) = 1G

p,' = 0

and


P(S) I

for i = 1,2,...,n. p : K_ G_- is an equivalence in C if and only if p is an

isomorphism of belts. If F : F_, -+ Fo[.ri, ..., x,,] is the inclusion map, then the first

part of the proof shows that (L,F-_o[x, ...,. ,], ;X,...., rx) is a universal object in C.

Any other object which is universal is equivalent and so will be isomorphic. Therefore,

F-oo[x1,..., xr] is completely determined up to isomorphism by Theorem 4.2.5

Q.E.D.


Corollary 4.2.7. Let (F-_o, V, *) be a commutative belt with identity and n a positive

integer. For each k (1 < d < n) there are isomorphisms of belts

F-_oo[xi,..., ][ [Xk+1 .... n],,--

F-_~o [, ..., s]-

F-.~,[.rk+1 .... X,,][Xl, ..., dk]

Proof: The universal mapping property established in Theorem 4.2.6 is invoked to

prove the corollary. Given a homomorphism ; : F_o -+ So of commutative

belts with identity and elements .f E F_(o[.l,....r,,], there exists a homomorphism

. : F-oo[xl,, ... -- So such that j F_, = 9 and W(xi) = si for i = 1,2,.., k by

Theorem 4.2.6. Applying Theorem 4.2.6 with F_o,[.x, ..., xk] in place of Fo, yields a

homomorphism : Fo[xl, .., xk][xk+, ..... ] --+ S_- such that I Fo [xl, ...,k] =








Sand (xri) = si for i = 1,2, ...., By construction 5 I F_- = Fo = p and

(ri) = si for i = 1,2,...,n. Suppose that q : F-_,[xl,...,k.k][+l,,...,Xn] -- S-oo

is a homomorphism such that I1 Fo = ( and O(xi) = si for i = 1,2,...,n. The

same argument used in the proof of uniqueness statement of Theorem 4.2.6 shows

that 0 | F-oo[xi,...,rk] = ;. Therefore, the uniqueness statement of Theorem 4.2.6

implies that 0 = -. Consequently, F,[xi ...., k] [k+.1, ., .,] has the desired universal

mapping property, whence F-oo[4i,..., kk.+1.rF, by Theorem

4.2.6. The other isomorphism is proved similarly.


Q.E.D.












CHAPTER 5
FACTORIZATION

5.1 Introduction

On the forefront of mathematical morphology research is the area of template

decomposition. The area consists of taking a template with a large support and reducing

it to a number of templates with smaller supports. The fundamental property which gives

rise to such a study is the fact that convolutions are associative. So, if t is a template

which has the following decomposition;

i=h j=1 S j
i==lrir)V(M '),

then the convolution of an image a, with t, is given by


a[t = aM i r, V M j= Sj

= [(...((a M ri) M r2)...) M rh] V [[(...((a s) s)...) M s]]




Similarly, we may use a templates decomposition to rewrite a template-template con-

volution.

One of the goals of any algorithm is to reduce computational complexity. Template

decomposition is one of the best tools for achieving this end. A template may be

represented as a maxpolynomial.

To represent a two-dimensional template as a maxpolynomial, let the coefficients

aij be defined by aij = t(o,o)(i,j) for all (i,j) E Z2 [9]. Next eliminate any negative






43
multiples of the indeterminants from the expression


V V aij +x +ixjy
icZ jEZ
where aij 5 -oo, by adding the lowest negative multiples of x and y which are present

in the expression.

The adding of the indeterminants amounts to a shift of the template so that its support

lies in the first quadrant. Care must be taken to keep this shift in mind when translating

from maxpolynomials back to templates.

Since maxpolynomials can represent templates, factoring the maxpolynomials is one

way of reducing a large template into smaller ones Maxpolynomials may be applied to

the four lattice convolutions M, M @ and @.

The relationship between the additive max, [M, and the additive min, E is given

in terms of lattice duality by

a Et = (t* a*)*,

where the image a* is defined by a*(x) = [a(x)]* and the conjugate of t E (RXo) is

the template t* e (RYI,) defined by t*(y) = [ty(x)]*. Similarly, there is a duality

relation between the multiplicative max and the multiplicative min given by

a@t= (t* @a*)*

Here however, t e ((Ro)x)Y.

From these relations it is clear that any results obtained for i and @ are also

results for E and @.

The convolution @ is often computed over (RO, V, x). But under the map

V,(x) = e", (R-o, V, +) is isomorphic to (RO, V, x). Therefore, it suffices to consider

only the EM convolution.






44

Two common value sets used in the M convolution are R_- and {-oc,0}. Section

3 is devoted to the former and Section 4 to the latter case.


5.2 Basic Properties


In this section we mention a few properties which can be applied to maxpolynomials

over general belts.


Definition. If P(x) is a maxpolynomial over the belt (Fo, V, *), then P(x) is factor

of a maxpolynomial Q(x), if there exists a maxpolynomial R(.) such that


R(x) P(x) = Q(x).


The degree of a maxpolynomial is defined in the same manner as regular polynomials.

That is, if aax .2 ... "d is a monomial, then the exponent di is called the degree in xi.

The sum d = di + d2 +* + dn is called the degree of the monomial. The ordered n-tuple

(dl, d2,..., d,,) is the multi-degree of the monomial. The degree of a maxpolynomial is

the largest degree of any of its monomial terms. There is one notable exception to these

familiar rules. The degree of the -oo maxpolynomial is defined to be -oo and the degree

of the zero maxpolynomials is 0. Additionally, we have the following observations about

the degree of a maxpolynomial:


Theorem 5.2.1. Let P, Q E Fo[.x], then

(i) deg(Q V P) = max (deg(Q) deg(P))

(ii) deg (Q P)= deg(Q) + deg(P)

For the traditional polynomial, the way to check if Q(x) divides P(x) is to apply

the Division Algorithm and see if there is a nonvanishing remainder. The Division

Algorithm is usually stated as follows [20].






45

Theorem 5.2.2. If R be a field and f, g E R[x], then there exists q, r C R[x] such that


f = g q + r and deg(r) < deg(g).


The proof of this theorem relies on the group structure of R. In the case of a belt,

there is not as strong a condition on F-oo. Hence, a strict translation of the division

algorithm is not possible. The next example demonstrates this shortcoming.


Example. Let (F_,, V,) = (R-o, V, +). Consider


f = V (4 + x) V (2 + 2x)


and


g = 3 V (2 + .).




Since deg(r) < deg(g), deg(r) = 0. So, r must be a constant. Also, deg(f) = 2 and

since deg(g) = 1, it must be true that deg(q) = 1. Let q = ao V (ai + x). Then


q + g = (ao + 3) V (ao + 2 + x) V (al + 3 + x) V (ail +2+ 2x)


Since r is a constant, we must have a1 +2 = 2. So, al = 0. This implies that ao+2 = 4.

Therefore,

g+q=5V(4+x.)V(2+2x)

However, there does not exist r C R-o such that r V 5 = 0.

This does not mean that there is not some analogue to the division algorithm. It is

given next. Let P(x) = ao V (a + x) V ... and Q(x) = bo V (b + x) V .. be any two

maxpolynomials. The reference P(x) > Q(x) means that ao > bo, al > bl,....






46

Theorem 5.2.3. Let (F-o, V, *) be a belt with duality such that the finite elements form

a division belt and P, Q E Fo[x]. Suppose deg(P) = n and deg(Q) = m with n > m.

Let P(x) = ao V (al + x) V V (a, + ax) and Q(x) = bo V (bl + x) V.. V (bm + mx).

Let K be the set of indices such that bk -oo. For each k G K, let

n-m.+k
hk = V ((aj bk) + (j k)x)
j=k

If H is defined by


H= hk ,
kEK

then H satisfies H(x) Q(x) < P(x). Furthermore, ifR(x) is any other maxpolynomial

such that R(x) Q(x) < P(x), then H(x) > R(x).


Proof: If Hj is the j-th term of H then


Hj = (aj+k b1)
kEK

and

(H *Q)j = V (H-i bi) .
i=0
If there exists k E K such that k < j, then


(H* Q) = V (A (ak- ))* bk
k
< V (ak bk) bk
k = ak -

Otherwise, all b6, i = 0,1, ...,j are -oo and so, (H* Q)j = -oo.

Suppose that there exists an R(x) such that R(x) > H(x) and R(x) Q(x) < P(x).

Let Rj > H,. Since m G K, K / 0. Hence, there exists k e K with Rj > aj+k bk1.









This gives

j+k
(R*Q)j+k = V Rj+k-i b
z=0

> ak b- bk- = k ,




and this is a contradiction.

Q.E.D.




Corrollary 5.2.4. Let P, Q, and H be as in Theorem 5.2.3. Then Q(x) is a factor of

P(x) if and only if H(x) Q(x) = P(x).


Proof: If Q is a factor of P, then there exists R(x) such that Q(x) R(x) = P(x).

Therefore,


P(x) = R(x) Q(x) < H(x) Q(x) < P(x).


The other direction is clear.


Q.E.D.


We define the division of two maxpolynomials as P/Q = H.

In the example before Theorem 5.2.3, we saw how the Division Algorithm can

breakdown. However, we can apply Theorem 5.2.3 to the example in a well defined

way.








Example. Again, let


f = OV (4 + ) V(2 +2x)

and


q=3V(2 +r)


The quotient, f/q, is calculated by first finding


hi =(0-3) V(4-3 + x)


and


h2 = (4 2) V (2 2 + x).


Then,


f/q = hi A h2


= -3 V (0 + ).
Notice that f/q + q / f, which shows that q is not a factor of f.

In the next two sections extensive use is made of the fact that the finite elements

of the belts under consideration form a division belt. To include the most general of

possibilities, we note a procedure for when the element under consideration is -oo. For

the all subsequent discussions, if x E F, then x (-oo) = x + oo = +oo. However,

-oo (-oo) = -00.


5.3 Maxpolynomials over (R-oo, V, +)


Keeping in mind the structure (R_,, V, +), the following is noted.






49

Remark. A maxpolynomial P(x) is afiactor of the maxpolynomial Q(x), if there exists

a maxpolynomial R(x) such that


R(x) + P(x) = Q(-).


Theorem 5.3.1. Let P(x) = ao V (a, + x) V -. V (an + nx) be a maxpolynomial. If

the first degree term (b V (0 + x)) is a factor of P, then b must satisfy


ao -al < b < n-1 an.


Proof: Let


P(x)/(b V (0 + x)) = Yo V ('y + x) V .. V (7n-1 + (7n 1)x) .


By computation, if


P(x) = ao V (ai + x) V .. V (a, + nx),


then it must be true that yo = (ao b) A (al 0). Since (b V (0 + x)) is a factor of

P(x), b + yo = ao. So, -o = ao b. Therefore, ao b < al 0.

Looking at 7Y-1, reveals that -,_1 = an A (a,-1 b). In a similar method, it may

be computed that an < an-1 b.

Q.E.D.


In certain cases Theorem 5.3.1 can be strengthened. Types of symmetries often

have aided in the factorization of polynomials [10]. In maxpolynomials as well, these

properties can be exploited. We shall need the next definition.






50

Definition. A maxpolynomial P(x) = ao V (al + .) V V (an + nr) is said to be

skew symmetric if ai = -an-i for all i = 0, 1, .. n/2. Note that this implies that if n

is even then the center term is zero.

Theorem 5.3.1 can be particularly useful when dealing with a skew symmetric

maxpolynomial. If it is applied to this case, the following result is obtained:


Corollary 5.3.2. Let P E R-o[xr] be skew symmetric. If the first degree term

(b V (0 + x)) is a factor of P, then


b = to ai


It can be shown that for skew symmetric maxpolynomials of degrees 2, 3, and 4 the

term (bV (0 + x)), with b = ao al, is always a factor. The three cases are shown in

the following results:

Let P = ato V (0 + x) V (-ao + 2x). The first step is to divide P by ao V (0 + x),

resulting in 0 V (-ao + x). By adding back the term it can be seen that


[0 V (-ao+x )] +[ao V (0+ )] = P.


Thus, (bV (0 + x)) is a factor in this case.

If P = ao V (al + z) V (-al + 2x) V (-ao + 3x), then there are two possibilities for

P/((ao al) V (0 + x)). If -al < --ao + 2al, then


P/((ao al) V (0 + x)) = ai V (-ai + x) V (-ao + 2x)


and again


[a( V (-ai + x) V (--ao + 2;)] + [((ao a) + (0 + ))] = P.






51

On the other hand, if -al > -ao + 2al, then

P/((ao al) V (0 + x')) = a1 V ((-ao + 2al) + x) V (-a0 + 2r)

and it is still true that


[ai V (-al + x) V ((-ao + 2al) + 2x)] + [((ao al) + (0 + x))] = P.

If P = ao V (a1 + .) V (0 + 2r) V (-a, + :3.) V (-ao + 4x), then there are still just

two possibilities for P/((ao a1) V (0 + x)). If -ao + 2ai < 0, then
P/((ao al) V (0 + r))=

a( V (-ao + 2ai + x) V (-ao + al + 2x) V (-ao + 3x).
Adding ((ao al) V (0 + x)) to this, recovers P. If -ao + 2al > 0, then

P/((ao al) V (0 + .)) = al V (0 + x) V (-aI + 2x) V (-ao + 3x).

Adding back ((ao al) V (0 + )), again gives us P.

Of course it is not always true that (b V (0 + x)) is a factor. A counter example is

of degree 5. If

Q(x) = 1 V (-2 + a') V (-1 + 2x) V (1 + 3x)

V(2 + 4x) V (-1 + 5) ,



then

Q(x)/(3 V (0 + x)) = -2 V (-5 + r) V (-4 + 2r)

V(-2 + 3x) V (-1 + 4x).


Now, by adding back (3 V (0 + x)), we see that Q is not recovered.






52

Theorem 5.3.3. Let P(x) = ao V (al + .z) V V (a, + nx) be a maxpolynomial with

ai 7f -oo for i = 0, 1,..., n. Compute the numbers bi = ao al, b~ = al a2,..., bn =

an-l an. If there exists a number j such that


max bi < min bi,
i=l,j z=J+l,?1n

then P(x) can be factored into a maxpolynomial of degree j and a maxpolynomial of

degree n j.


Proof: Define

Po = ao V (al + x) V .. V (aj + jx)


and


PI = 0 V (aj+ aj + x) V (aJ+2 aj + 2x) V .. V (an aj + (n -j)x).


Let Po + P1 = co V (cl + x) V ... V (cn + nx). If k < j, then for i = 0,1,..., k 1


aj+l aj+l+l > ai+l ai+l+i I = 0,..., k i 1.


Hence,
k-i-1 k-i-l
S(a+l aj+l+l) > (ai+l ai+l+l)
1=0 1=0

This gives


ak lV kc-i
ak (k V [V (a, + aj+k-i a)
i=0
k
= V (ai + aj+k-i aj)
i=0
= Ck-








If k > j, then for i = 0,1,...,j 1


ak+l ak++1 > ai+l a,+l+1 =, ...,j i 1.

So,
j-i-1 j-i-1
S(ak+l ak+1+1) > E (ai+l ai++l),
1=0 1=(0
which gives

ak = ak V (ai + aj+k-i aj)
(i=o
k
= V ( + aj+k- aj)
i=0
SCk.
Q.E.D.

This theorem can be applied to some cases in which some of the coefficients are -oo.

The next corollary shows that a strict inequality on the differences of the coefficients is

all that is needed.


Corollary 5.3.4. Let P(x) = ao V (al + r) V ... V (a,, + nx) be a maxpolynomial.

Compute the numbers b1 = ao al, b2 = al a2, .. b, = a,_- an. If there exists

a number j such that

max bi < min bi,
i=1,j i=j+l,n

then P(x) can be factored into a maxpolynomial of degree j and a maxpolynomial of

degree n j.

Proof: The strict inequality means that aj 7 --oo. The proof is the same as that of

the previous theorem.


Q.E.D.








Example. If


P = (0 + x) V (2 + 2x) V (0 + 3;),


then


bt = -oo 0 = -oo,


b2 =0 -2 = -2,


Corollary 5.3.4 says that one


b3 =2 0 = 2.

possible factorization is


P = [(0 + x) V (2 + 2x)] + [0 V (-2 + x)].


Example. This example shows that the conditions of Theorem 5.3.3 are only sufficient

conditions. Let


P = 5 V (3 + x) V (5 + 2x) V (4 + 3x) V (4 + 4x) V (4 + 5x).


This maxpolynomial may be factored as


P = [2 V (0 + x) V (2 + 2x)]


+[3 V (1 + x) V (2 + 2x) V (2 + 3x)].




However, it does not meet the conditions of Theorem 5.3.3.

One class of maxpolynomials which is common in template representation is sym-

metric maxpolynomials. Symmetric polynomials were studied by Manseur [10]. We

follow that definition for symmetric polynomials.






55

Definition. A maxpolynomial P(x) = ao V (al + x) V. V (a, + nx) is symmetric with

respect to n, if ai = an-i for all i = 1,2,..., n.

When a maxpolynomial is said to be symmetric, we shall always mean with respect

to the degree of the maxpolynomial.


Corollary 5.3.5. If P is a symmetric maxpolynomial of even degree such that the

coefficients increase from ao to a,,1, then P factors into two maxpolynomials of degree

n/2.


Proof: The conditions on P imply that the numbers bi are greater than or equal to 0

for i = 1,2,.... /2 and less than or equal to 0 for i = + 1,...,n. Hence, Theorem

5.3.3 applies.

Q.E.D.


When the conditions of the corollary are met and a, is even, aa/2 may be subtracted

from Po and added to P1. Doing so results in a factorization which shall be shown to

be valuable in the decomposition of two variable maxpolynomials. This corollary will

be used in Theorem 5.3.14.

Q.E.D.


Theorem 5.3.6. If P(x) is a symmetric maxpolynomial of even degree and P factors

into first degree terms, then all the factors appear in conjugate pairs.


Proof: Let P2(x) = 0 V (al + r) V (0 + 2x). Since P2 factors, the factors must have

constant terms which add to give the constant term of P2 and the coefficients of the

highest terms must add to give the highest term. Therefore, if (co V (ci + x)) is a factor

then the other factor must be (-co V (-cl + x)).






56

Next, assume that the results holds for a maxpolynomial of degree n.

Given P,,2, the reducibility criterion provides that


Pn+2 = Pn + (bo V (bi + x)) + (b' V (b' + x)).

The constant term of P, is 0. Therefore, P,, + (bo V (bi + x)) has bo as the constant

term. Also Pn+2 has a constant term of 0.

Hence, b'O must equal -bo. Similarly, it is shown that b' = -bl.

Q.E.D.


Theorem 5.3.7. Let P = 0 V (a + x)V V(al + (n 1)) )V(0 + nx) be a symmetric

maxpolynomial of even degree. If (b V (0 + x)) is a factor of P, then b < al.


Proof: Suppose that b > al and (b V (0 + x)) is a factor of P. The division theorem

is used to calculate P/(b V (0 + a)). The candidates for the coefficient of (n 1); are

al b and 0. In order for


[P/(b v (0 + z))] + (b (0 + x)) = P,

it must be true that al b > 0. Thus, there is a contradiction.


Theorem 5.3.8. Let P = 0 V (al + x) V (a2 + 2a.) V V (al + (n l)x) V (0 + nx)

be a symmetric maxpolynomial of even degree. Define cl = al and ci = ai ai-I for

i = 2, 3,..., n/2. The maxpolynomial P factors into first degree terms if and only if
P =(ci V (0 + x)) + (-cl V (0 + a))

+ (c2 V (0 + X)) + (-C2 V (0 + a))


+ (Cn/2 V (0 + X)) + (-c,,/2 V (0 + -.)).






57
Proof: Suppose that P factors into first degree terms. By theorem 5.3.6

Pn = (di V (0 + x)) + (-di V (0 + x))+

+ (dan/2 V (0 + X)) + (-dn/. V (0 + .)).


An ordering on the di, such that dl > d.2 > -.. > da, may be assumed. Combining

conjugates first, yields


P = (0 V (dl +. ) V (0 + 2.))

+((O V (d2 + .) V (0 + 2x)))




+((o V (dn/2 + x) V (0 + 2x))).




Using the ordering on the di, we begin combining more terms. The first step yields


P = (0 V (di + x) V (di + d- + 2x) V (di + 3x) V (0 + 4x))

+(0 V (d3 + x) V (0 + 2x)) + (0 V (d4 + x) V 0 + 2x)+

... + (0 V (d,,/ + r) V (0 + 2x)).


Continuing in this way results in












P = 0 V (di + x + d + 2) V (i d ) d + d2 + d3 + 3x)

V -. V (di + d2 + + dn/2+ (n/2)x) V .-

V(dl + (n 1)x) V (0 + n.).




Thus, dl = a1 and di = ai ai- .

Q.E.D.



Example. Consider the template



p= 0 3X. 4X 3X 0



where A is a free parameter. The corresponding maxpolynomial is


0 V (3A + x) V (4A + 2x) V (3A + 3x) V (0 + 4x) .


According to Theorem 5.3.8, this factors as

(-A V (0 + x)) + (A V (0 + ))

+ (-3A V (0 + x)) + (3A V (0 + x)).

The corresponding templates are


X 0 -3 0


p = -X 0


3W 0






59
Theorem 5.3.8 leads immediately to several observations. One is that a symmet-

ric maxpolynomial can only factor completely if all the terms are positive. Another

observation is shown in the next theorem.


Corollary 5.3.9. If P = ao V (ai + x') V ... V (ao + nx) is symmetric and factors into

first degree terms, then ak < ak+1 for k = 0,1, ..., *


Corollary 5.3.10. IfP = ao V (al + x) V ... V (ao + nx) is symmetric and factors into

first degree terms, then ai+l ai < ai+2 uji+ for i = 0, 1, .., 2.


Theorem 5.3.11. If P is symmetric of odd degree and the coefficients increase from al

to as, then there exists Q, symmetric of even degree, such that


Q + (0 V (0 + x)) = P


Proof: Let

P = 0 V (al + x) V V (a + -
2 2 )x)

S(an-i + 2 --+1 x V ..V(a+(n- ).r)V(0+nx).

2
Next, divide P by (0 V (0 + X)). Recall that P/(O V (0 + r)) = A hj, where the
j=1
coefficients of hi are


(0, al,a2,...,o, a -i, a,-i,..,a. a l


and the coefficients of h2 are


(aG ,a.2,...,a,,_ ,-, ..., ,ai,,0 ).









Thus, the coefficients of P/(O V (0 + .)) are


(O0, a a .I ..., a ...., a .02 ) .


By calculation P/(0 V (0 + x)) + (0 V (0 + x)) = P.

Q.E.D.


We now begin the consideration of two variable maxpolynomials. One of the most

desirable factorizations of two variable maxpolynomials is a decomposition into two one

variable maxpolynomials. First, this special case. Note that the next theorem is an

extension of the result for templates given by Li [21].


Theorem 5.3.12. Let T(x,y) = V V (tij + ix +jy) be a maxpolynomial in two
i=0 j=
variables with tm,, -oo, then T( x, y) = P(x)+Q(y) if and only if tij = tin +tmj -tmn

for 0 < i < m and0 <_ j < n.


Proof: Suppose that T = P + Q. Let


P = ao V (al + z) V V (amn + mx)


and

Q = bo v (b + y) v V (b, + ny),


where am z -oo and b,, -oo. It may assumed that an = 0 and thus that

tmj = bj for j = 0,1,...,n. In particular, note that tmn = -oo. The relation

tj + ix + jy = (ai + ix) + (bj + jy) also holds. However, bj may be calculated by

bj = tmj and ai = tirn tmn.






61

If T satisfies tij = tin + tmj tnn for 0 < i < n 0 < j < m, then define

n
P =V (tnj t, + j)
3=0

and

Q V (tin + i"r)
i=0

Calculation shows that P + Q = T.


Q.E.D.


Maxpolynomials, or corresponding templates, which satisfy the conditions of this

theorem are referred to as separable.


Example. A parabolic structuring element can be used to bring out texture information

and suppress both point noise and white noise [22]. In the following parabolic template,

t, the parameter A is a free parameter.

Let



0 3X 4X 3X 0

3X 6X 7X 6X 3X

= 4X 7X 8X 7X 4X


3X 6X 7X 6X 3X

0 3X 4X 3X 0



According to Theorem 5.3.12 this template is separable. Hence, it may be decom-

posed into a row template and a column template. So t=p M] q, where














P= 0 3U 4k


0

3X

3X 0 and q= 4X

3.


Recall that a rectangular template is one whose support is a subset of a rectangle.

The previous results on the separability of templates was limited to templates whose

support was identical to the smallest rectangle containing the support [21]. Theorem

5.3.12 applies to a wider class of templates. Consider the following template, t.

Example. Let


The corresponding maxpolynomial is given by


o0V (O + 2.,) V (O + 2y) V (O + 2x+ 2y).


This factors as


[O V (0 + 2x)] + [0 V (0 + 2y)]









0 0 0



0


There are often cases when a two variable maxpolynomial is not separable. In such

cases, it may be possible to apply the one variable theorems already presented to reduce

the two variable maxpolynomial.

For the next definition, let t be is a translation invariant rectangular template with
rIl n
maxpolynomial representation T(x, y) = V V (t+ ix + +jy).
i=0 j=0


Definition. The boundary maxpolynomials of a rectangular translation invariant

template are the maxpolynomials P = V (tio +ix), P-2 V (to +jy), P3 =
i=0 j=0
m 71
V (ti, + .r + ny), and P4 = V (t,,, + mx + jy).
i=0 j=0
If t is a rectangular template, then the boundary maxpolynomials may be obtained

by first finding the maxpolynomial that corresponds to t and then isolating certain

coefficients. The coefficients to isolate are from the terms which have the highest degree

in each variable and the lowest degree in each variable. This will give the four boundary

maxpolynomials.









Example. Let



10

0 1 0

t= 0 1 2 1 0

0 1 0

0



The boundary maxpolynomial for this template are

P1 = 0 + 2x


P2 =0 + 2y


P3 = 0 + 2x + 4y


P4 = 0 + 4x + 2y

Suppose s and t are two rectangular templates. To compute the boundary max-

polynomial of their convolution, it is only necessary to add corresponding boundary

maxpolynomials from the two templates. This is obvious when one considers that, for

example, the terms with lowest degree in x from s M t are obtained by adding the terms

with the lowest degree in x from s with those of t.

These observations are recorded in the next proposition.


Proposition 5.3.13. Suppose that t is a rectangular template and

Al(x,y), A2(x,y), A3(x,y), and A4(2,y) correspond to a counterclockwise rep-

resentation of the boundary of t where any AZ(x, y) could be a monomial. If t








is reducible into the convolution of two rectangular templates, then there exists

factorizations of A' (x, y), ..., A4(.x, y),


A' = Af + A'





A = A + Ai




such that A'(x, y), A (x, y), A3(., y), A (x, y) and A(.x, y), A (rx, y), A (x, y), A4(x, y)

correspond to a counterclockwise representation of the boundary of two templates.

Proof: Suppose that t=sZIr. Let A}(x, y),..., A4(x, y) correspond to the boundary of

s and A.(x, y), ..., A4(.x, y) correspond to the boundary of r.

Q.E.D.


m n
Definition. A maxpolynomial in two variables P(x, y) = V V (tij + i + jy)
i=0 j=
V (ix + Pi(y)) is symmetric with respect to y, if each Pi(y) is symmetric with respect
i=0
to n.

A similar definition can be given for the variable x.


Definition. A maxpolynomial in two variables is symmetric, if it is symmetric with

respect to both x and y.

In
Theorem 5.3.14. Suppose P(x, y) = V V (a,j + ix + jy) corresponds to a rectangu-
i=0 j-=
lar template, and T is symmetric with both m and n even. If


aoo '< ap,





66

aoo < ao0 < < aon
2

ago = ao0, ao0 is even ai > auo for 1 < i < m 1 and 1 < j < n 1, then there

exists maxpolynomials P(x,y),Q(x,y), and R(x,y) such that


T(x, y) = [P(x, y) + Q(x, y)] V R(x, y)


where
n-1 n-1
R(x,y) = V V aij + ix+ jy.
j=1 i=1

Proof: Since the support of the template may not be rectangular, several of the

coefficients of T may be -oo. The boundary maxpolynomials are symmetric with a

center term that is even. Even with certain coefficients equal to -oo, Corollary 5.3.5 and

the procedure in the comments that follow it, may be applied to each of the boundary

maxpolynomials. The results for each of the boundary maxpolynomials are


V aio + Ix
i=O

a0oo -a o ao + x V + -
12 V 9 2 ) 2 9
+ a(.-,)- 1( ) + X I r

(+ a o V a( z-)o o + V... V aoo ao + x

= A + A2 ,

m
V a + ix + n
i=Q
n [( 1 ) ( 1 ) (1 (m )]
= -y + aon amn V 1n- -an + V V (an + ()x
22 2 22 2 2
n [(1 ) ( I 1 m2M
+ y + [(a-) v a(-,i)n ay ) + x) V .. V aon 2a!n + x

= B + B2 ,








V aoi + iy
i=0

Saoo -- a V aol ao + Y V V ao +
aoo 2 o2- 2 2-

+ ao) V a (-1) ao2 + ) V -V aoo- + 2+

= C + C-2,
and
,n.
V ami + x + i
i=0

-= x+ (am0o am V (ami -am + V -V (-am? + ry

+-x + amx V am ( -) a, + y- V... v amo -am n+






P(x,y) = A V 2 V B2 V C


and

Q(x. y)= A2 V D1 V B, V C2.

Then
P + Q = (41 + A2) V [A2 + (D2 V B2 V (7)j

+ (D, + D2) v [D1 + (A1 V B2 V C1)]

+ (B1 + B2) V [B1 -t (A1 V D. V Ci)]

+ (C' + C2) V [C2 + (A1 V D2 V B2)].






68

Thus, P + Q gives back the boundary maxpolynomials of T. The terms from
[A2 + (D2 V B2 V Ci)]

[D1 + (Ai V B2 V Ci)]

[B1 + (A1 V D2 V CI)]

[C2 + (A \V D2 V B2)]
form the interior of P+Q. The largest terms of P added to the largest terms of Q naturally

give the largest terms of P + Q. Those terms from P are laoL and aoa + z2 + y'

and those from Q are (1ao- + La and (aoa + y. Notice that in P + Q, these

terms will be in the boundary maxpolynomials. Hence, the condition aij > ao0 for

1 < i < m 1 and 1 < j < n 1, insures that the coefficients produced by P + Q

are not larger than the coefficients of T.

Thus, it is possible to define

n-1 m-1
R(,y) =V V a + + ix +y.
j=1 i=1

Q.E.D.


Example. This example demonstrates the use of Theorem 5.3.14. The following tem-

plate is used for location determination [23]. Let



0

0 1 0

t= 0 1 2 1 0

0 1 0






69

The maxpolynomial which corresponds to this template is
T = (0 + 2y) V (0 + x + y) V (1 + x + 2y) V (0 + x + 3y)

V (0 + 2x) V (1 + 2x + y) V (2 + 2x + 2y) V (1 + 2x + 3y) V (0 + 2x + 4y)

V (0 + 3x + y) V (1 + 3x + 2y) V (0 + 3x + 3y) V (0 + 4x + 2y).
This factors according to theorem 5.3.14. The result is


T = [0 V (0 + 2x + 2y) + (0 + 2y) V (0 + 2x)]

V[0 V (1 + y) V (0 + 2y)

V(1 + x) V (2 + x + y) V (1 + x + 2y)

V(0 + 2x) V (1 + 2x + y) V (0 + 2x + 2y)].




Thus, we have T = [P + Q] V R, where

P = O V (0 + 2x + 2y),

Q= (0 + 2y) V(0+ 22)
and
R = [0V(1 y) V (0+2y)

V (1 + x) V (2 + x + y) V (1 + x + 2y)

V (0 + 2x) V (1 2x -r y) V (0 + 2x + 2y)].
The template representation is t = p S q V r, where



0 0


0 0








and



0 1 0

r= 1 2 1

0 1 0



Theorem 5.3.15. Suppose that T(x,y) = V =o V1io + -rix + y is a symmetric

maxpolynomial such that the boundary maxpolynomials factor into first degree terms with

m,n > 4. If


aij > (aoa aol + alo) V (a-o alo + aol)


for 1 < j < n 1 and 1 < i < m 1, then there exists maxpolynomials P(x, y), Q(x, y),

and R(x,y) such that


T(x, y) = [P(x, y) + Q(x, y)] V R(x, y),


where
n-1 nm-1
R(,y) = V V aij + jy.
j=1 i=i

Proof: If


i=0
in


,n
V aoj + jy = C
j=0


V ani + nx + jy = D,
j=0








then A can be written as


(0 V (aol + x) V (0 + 2x)) + A2 ,


B as


((0 + 2y) V (aol + x + 2y) V (0 + 2x + 2y)) + B2,


C as


(0 V (alo + y) V (0 + 2y)) + C2,


and D as


((0 + 2x) V (aol + 2x + y) V (0 + 2x + 2y)) + D2 .


Define


P(x, y) = (0 V (aol + x) V (0 + 2x))


V ((0 + 2x) V (ai,, + 2x + y) V (0 + 2x + 2y))

V ((0 + 2y) V (ail + x + 2y) V (0 + 2x + 2y))

V (0 V (aol + y) V (0 + 2y))


and


Q(x,y) = A2 V B2 V C2 V D2 .


The proof proceeds as before, noting that the highest term of P + Q is the maximum of

the largest terms of P added to the largest of Q. This is given by


(ao2 aol + alo) V (a2o alo + aol)


Q.E.D.






72

Example. To demonstrate Theorem 5.3.15, we again look at a template which is used

for location determination [23]. Let



-2 -2 -2 -2 -2

-2 -1 -1 -1 -2

t= -2 -1 0 -1 -2

-2 -1 -1 -1 -2

-2 -2 -2 -2 -2



The template decomposition is given by t p q V r, where



-2 -2 -2 -2 -2 -2

p = -2 -2 q= -2 -2

-2 -2 -2 -2 -2 -2






-1 -1 -1

and r= -1 0 -1

-1 -1 -1



Factorization methods for polynomials are often recursive. If a symmetric polynomial

is factored as T = P*Q+R, then R is symmetric and can usually be factored by the same

theorem which led to the factorization of T [10, Corollary 2 to Theorem 3.1]. However,

the same is not true for maxpolynomials. As is demonstrated in the next example, there






73

may exist a factorization T = (P + Q) V R, but R does not satisfy either the hypotheses

of Theorem 5.3.14 or Theorem 5.3.15.


Example. Let


The template t may be

However, in both cases we


decomposed

will have


by either theorem 5.3.14 or Theorem 5.3.15.


4 5

5 5

r= 7 4

5 5

4 5


4

5

7

5

4


The template r does not satisfy the hypothesis of either theorem.

To show that r can not be decomposed into symmetric templates, suppose that such

templates exist. Let r = sl E s2 V r2, where










ai b1

Si= C1


ai bi a,


and r2 =


By simple computation of sl 2 s2, we

sl M S2 V r2, we also have that


a2 b2


S2 = C2

a2


r1 r12 r13

r21 r22 r23

r31 r32 r33


know that a1 + a2 = 4. Since r =


3 = max {a, + a2, bi + bg, ci + c3, r22}


This contradiction shows that r can not be decomposed into symmetric templates.


5.4 Maxpolynomials over ({- 0}, V, +)


When binary images are involved, the templates used in the M convolution often

have values in {-oo, 0}. The principal tool in factorization of maxpolynomials over

the belt ({-oo,0},V,+) is factoring by grouping. Here are three special cases when

factoring by grouping is easily done.



Theorem 5.4.1. Let k be any real number. If

m+n71
P(x,y) = V O + j + ky
Sj=

is a maxpolynomial in two variables, then P(x,y) = (mex + ky) + n,(0 V (0 + x)).








Proof:

m+n
P(x,y) = V O+ jx + cky
j=m

S0 + mx + ky V (0 + (m + )x + ky) V ..


V (0 + (m + n)x + ky)


= mx + ky + (0 V (0 ) V ... V (0 +nx))


= mx + ky + n(0 V (0 + x)).

Q.E.D.



m+n
Theorem 5.4.2. Let k be any real number. If P(x,y)= V 0 + jx + (j + k)y is a
j=m
maxpolynomial in two variables, then P(x, y) = mx + (m + k)y + n(0 V (0 + x + y)).

Proof:

m+n
P(x,y) = V 0 +jx + (j + k)y
j=m

= 0 + mx + (m + k)y V (0 + (m + 1)x + (m1 + 1 + i)y) V ..


V (0 + (m + n)x + (m + n + k)y)


= x + (m + k)y + (0 V (0 + x+ y) V ... V (0 + nx + ny))


= m.r + (mn + k)y + n(0 V (0 + x + y)).

Q.E.D.



m+n
Theorem 5.4.3. Let k be any real number. If P(x, y) = V 0 + jx + (k j)y is a max-
=pm
polynomial in two variables, then P(x, y) = mx + (k mi n)y + n((0 + y) V (0 + x)).








Proof:

m+n
P= V +j. ( (kj)y

= (0 + mn + (k m)y) V (0 (m ) + (k )y) V ..


V (0 + (m + n)x + (k m n)y)



= m7 + (k m n)y + ((0+ ny) V (0 + x + (n l)y V .. V (0 + nx)))


Smx + (k 7n n)y + n((0 -- y) V (0 + x)).

Q.E.D.


Although there are many other cases when factoring by grouping can be applied to

reduce a maxpolynomial, these three cases play a special role in the decomposition of a

certain class of convex binary templates.

Let X C Z x Z. Define its convex hull, C(X), as the intersection of the half planes,

H(a, k), which contain X;


C(X)= n {H(a, k) : H(a, k) X}.
a,k

Definition. We say that X is a convex set in Z x Z, when it is identical with its convex

hull. Note that this definition is identical to the following when X is bounded: Let xi E X

and integers Ai > 0 are such that E Ai = 1, then since x = E Aixi x C X if and only

if X is a convex set. This second approach is known as the barycentric approach.


Definition. A restricted convex shape is defined as a convex 4-connected component

whose convex hull has boundary lines oriented only at angles 0, 45', 900 and 1350 with

respect to the positive x-axis [1].






77

Definition. We say that a template is a convex (or restricted convex) template, if its

support is a convex (or restricted convex) subset of X.

If t is a restricted convex template, then its support forms a polygon in R2 with at

most eight sides. A maxpolynomial may be associated with each of those eight sides.


Theorem 5.4.4. A set of eight maxpolynomials corresponds to the boundary of a re-

stricted convex template if and only if there are two of the form

m+n
P(xy) = V 0 + j + (k )y
j=711,

two of the form

m+n
P(x,y) = V O +jx+ ( + i)y ,
j=m

two of the form

m+n
P(x,y) = V O +jx + ky


two of the form

7n+n
P(x,y) = V 0 + kx +jy ,
jr=m

and each one has its first term and last term in common with another maxpolynomial in

the set.

Proof: Each of the polynomials represents two of the possible sides and every side

shares two vertices.

Q.E.D.


In the case of a convolution of binary templates, the effects of the boundary

maxpolynomials on the interior is no longer a concern. Hence, Proposition 5.3.13 may

be strengthened in the following way:






78

Theorem 5.4.5. Suppose that t is a restricted convex template and

Al(x,y), A2(x,y),..., A8(x, y) correspond to a counterclockwise representation of

the boundary oft, where any Ai(x, y) could be a monomial. The template t is reducible

into the convolution of two restricted convex templates if and only if there exists

factorizations ofJ' A( 2(y) A2x,y),..., A(x, y),


A' = Al + A'

A2 = A' + Al




Af = A8 + A




such that A (x, y), A (x, y), ..., AS(x, y) corresponds to a counterclockwise representation

of the boundary of a restricted convex template.


Proof: We have already proved one direction in theorem 5.3.13. Now suppose that such

a factorization of A'(x, y), A2(,y, ) ..., A8(x, y) exists.

We know that each of the A, are of the correct form since we know that the form

of the factors of the A' are of the correct form.

All that remains to show is that A (x,y), A (x,y),..., A(x,y) corresponds to

a counterclockwise representation of the boundary of a restricted convex template.

This is equivalent to showing that if A'(x,y), Aj(x,y) have a common term then

A ~(x, y), A (x, y) have a common term. Suppose that A (x, y), Ai (x, y) are adjacent. Let

the common term of A(x, y), AJ(x, y) be denoted by a and that of A'(x, y), A (x, y)






79

be denoted by 3. Consider a/f this term is in both A4/A' = A. and AJ/A = A.

Hence it is a common term for them.

Thus, both Al(xy, A 2(x, y),..., A(xr, y) and A'(x, y), A (Xr,y),..., A (x,y) cor-

respond to a counterclockwise representation of the boundary of a restricted convex

template.

It is well known that the convolution of two restricted convex template is again a

restricted convex template. If such a factorization exists then the maxpolynomials will

give the correct boundary. And since this will be the boundary of a restricted convex

template the proof is done.

Q.E.D.


There is an important note to keep in mind when applying theorem 5.4.5. When

looking for a factorization of a boundary maxpolynomial we may only be looking for a

monomial and that monomial may be 0.

We have now proved the following theorem.


Theorem 5.4.6. Factoring by grouping can be used to decompose a restricted convex

template into a combination of irreducible templates.

Proof: By Theorem 5.4.5 we only need consider the boundary maxpolynomials and by

Theorem 5.4.4 we know their form. Theorems 5.4.1, 5.4.2, and 5.4.3 show how factoring

by grouping can be applied to these forms.


Q.E.D.













CHAPTER 6
RANK BASED MATRIX DECOMPOSITION


6.1 Introduction


Another method of template decomposition is based on matrix analysis. A rectangular

shift-invariant template can be represented as a matrix. This representation of a two-

dimensional rectangular shift-invariant template is achieved by letting the matrix entries,

aij, be defined by aij = t(0,0)(i,j) for all (i,j) E R(t(o,o)), where R(ty) is defined

in Chapter 3. This matrix representation of the template is called the centered weight

matrix associated with t. By representing templates in this way, we get a one-to-one

correspondence between shift-invariant templates and these matrices [24].

An image algebra computation of M] involves the operations V and +. Hence, the

usual matrix operations do not suffice for template decomposition. Instead, one must

consider minimax matrix operations.

The Ph.D. dissertation by J. Davidson showed that minimax algebra can be embedded

into image algebra [25]. An important implication of this embedding is that all the tools

of minimax algebra are directly applicable to solving problems in image processing

whenever any image algebra operation isomorphic or dual to M is used.

In the setting of linear algebra, D. O'Leary showed that if a 5 x 5 matrix has either

rank 1 or all of its nonzero terms are on a single diagonal, then it can be factored into the

product of two 3 x 3 matrices [11]. Z. Manseur and D. Wilson reduced the number of

factors implied by O'Leary's result for the decomposition of an arbitrary matrix by using

polynomial methods [10]. J. Davidson studied some nonlinear matrix decompositions






81

based on minimax algebra [12]. However, the work of Davidson did not utilize the rank

of a matrix. The Goal of Section 6.3 is to prove a rank based decomposition in terms

of minimax algebra.

Two common belts used in the M convolution are (R_,, V, +) and ({-oo, 0}, V, +).

In the second section, we shall extend an arbitrary belt to create a bounded lattice-ordered

group. Since (R-oo, V, +) and ({-oo, 0}, V, +) are commutative, many of the theorems

of Cuninghame-Green are only stated for commutative belts and commutative bounded

lattice-ordered groups [16].

The presentation of the definition of the rank of a matrix as defined by Cuninghame-

Green requires several preliminary definitions and theorems [16]. If one were to read

the definition of rank without referring to the associated theorems, one would have the

impression that the definition is too limited to encompass the most general of cases,

especially with regard to matrix decompositions. However, the main decomposition

method presented only depends on the number of dependent columns in a matrix.

Since the definition of rank is more restrictive than that of independence, rank based

decompositions follow as a corollary to the main technique.


6.2 Basic Definitions

Let (F, V, *) be a division belt. We now progressively extend (F, V, *) as follows.

First, we introduce the dual to V by defining for all x, y E F,


x A y= (,7-1 V I-)-1)1


So then, F becomes a lattice ordered group, or 1-group.

Next, adjoin universal bounds to F, The elements +00 and oo are the adjoined

elements and the result is denoted by Foo.






82

The group operation is extended in the following manner. If x, y F, then x y

is already defined. Let *' = be the self-dual multiplication on elements of F, that is,


x y = x y for all z, y F.


Otherwise, define for all x e F,

x --0 = -00 = -00


X 00 = 00 X = 00


X -00 = -00 X = 00


X *0 o =o a",1 = 00


(-00) 00 = 0 (--o) = -00


(-00) *' 00 = 00 *' (--C) = 00 .

Hence, the element -oo acts as a null element in the system (Fo, V,*) and the

element +00 acts as a null element in the system (F~, A, *). The resultant structure

(Fo, V, A, *, *') is called a bounded lattice-ordered group, or bounded 1-group. We

refer to F as the group of the bounded I-group (Fo,, V, A, *, *'). Reference to Fi as

a bounded 1-group shall be with respect to (F,,, V, A, I, *').

Two familiar examples of bounded I-groups are (Ro, V, A, +, -') and

(R V,A, x, x'). Note that (R,V,A,+) is isomorphic to (R>,V,A, x) both

as a group and as a lattice, and hence their extensions to 1-groups will be isomorphic

as well.

In recent years, lattice based matrix operations have found widespread applications

in engineering sciences. In these applications, the usual matrix operations of addition

and multiplication are replaced by corresponding lattice operations. For example, let








(Fo, V,*) be a bounded 1-group and A = (aj), B = (bij) two m x n matrices with

entries in Fo,.


Definition. The point-wise maximum, AVB of A and B, is the in xn matrix C defined by


A V B = C, where c,J = ai V bj .


Suppose that A is m x p and B is p x n.


Definition. The product of A and B, denoted by A B, is the m x n matrix C = A B,

where
p
Cij = / (aik bkj)
k=1

Definition. The dual product of A and B, denoted by A *' B, is the n x n matrix

C = A *' B, where

P
cj = A (ak *' bkj)
k=l

The set of all m x n matrices over Foo will be denoted by Mmn.

Recall from the theory of probability that a row-stochastic matrix is a (nonnegative)

matrix in which the sum of the elements in each row is unity. A column-stochastic matrix

has the sum of the elements in each column equal to unity, and a doubly stochastic matrix

is both row and column-stochastic.

Let (F+, V, A, x, x') be a belt with duality and (or, V, A, x, x') a sub-belt of Fo

with duality. We shall say that a finite subset 5 C F is a -astic, if it is true that



V x E 00.
xES






84

Let 1F be the identity with respect to *. If o0 is just IF, then a ag-astic set satisfies:



V. = IF.
xES

A matrix over F, will be called row-og-astic (respectively column-o0-astic, or

doubly o0-astic) if the elements in each row (respectively each column, or each row and

column) form a oa-astic set.
0

Definition. A square matrix A E M,, is strictly doubly 1F-astic, if it satisfies the

following two requirements.

(i) Aij <_ IF for all i = 1,...,n and j = 1,...,n.

(ii) On each row and on each column of A, we can find one and only one element

equal to 1F.

If A E Mmn, then A has n columns, ail, ai2, ..., ain, each of which is an m-tuple.

For notational purposes, let a(j) = aij, i = 1, 2,..., m7, so that a(j) is the j-th column.

Let X e Mn, and B C Mm,. The equation A X = B may then be written,







Definition. The relation, V a(j) =- B, expresses the linear dependence (over

F) of B on a(j). We shall also say that B is a linear combination of a(1), ...,a(n),

(even when n = 1).

Let F+ be a bounded 1-group. Suppose that we are given m-tuples, a(j), j =

1, ..., n and we wish to determine, for each of them, whether or not it is linearly dependent

on the other (n 1) m-tuples. The next theorem gives a convenient mechanical

procedure.






85

Let A Mmn be the matrix having a(j) as its j-th column. Let A* be defined by

(A*)ij = (Aji)*, where (Aji)* is the conjugate of Aji as defined in Chapter 2. Define

a matrix A E Mmn as follows. Let

Aii = --oo, i = ...,n,


and


Aj = (A**'A)ij,i= 1,....n,j = ,...,m, i j.




In other words, A is the matrix A* *' A with its diagonal elements overwritten by -oo.

We now compare each column of A with the corresponding column of A E Mmn and

make use of the following theorem.


Theorem 6.2.1. (Cuninghame-Green, Theorem 16.2) Let F be a commutative bounded

1-group. Let the matrix A E Mm have columns a(j) E Mml ,j = l,...,n > 2, not

necessarily all different. For each j = 1,..., n, the j-th column of A A is identical with

a(j) if and only if a(j) is linearly dependent on the other columns of A. The elements of

the j- th column of A then give suitable coefficients to express the linear dependence.

Note that the proof of this theorem shows that if the d-th column is dependent, then

Ajd is the coefficient corresponding to the column a(j).


Example. Let

A= 3 4 2 1 .
2 5 5 3
To compute A, first find
-1 -3 -2 2
A A = 3' -43 4 2 1
2 -2 -5 5 5 3
-3 -1 -3


I






86
0 1 -1 -2
-3 0 -2 -3
-3 0 0 -2
-3 0 -1 0



Hence,

-oo 1 -1 -2
-3 -oo -2 -3
-3 0 -oo -2
-2 0 -1 -oo
and


A A = 4 2 1 .
\2 5 3 3



Applying Theorem 6.2.1, it can be seen that the second column is linearly dependent on

the other three. However, note that column one is not linearly dependent on the other

columns. This is a major difference between conventional linear algebra and minimax

algebra. In conventional linear algebra, the equation


clal + c2a2 + +Cnan = b


would also imply that aj is a linearly dependent on {b} U {ai}li j.

There are situations, particularly if the matrix is symmetric, that minimax linear

dependence mimics conventional linear algebra in this regard. In those situations, one way

to effectively apply the methods of Theorem 6.2.1 is to analyze the columns inductively.

If a linearly dependent column is found, disregard it in the next step of the analysis.

If it is not dependent keep it in the next step. So, if a(j), j = 1,...,n 1 are not

linearly dependent, apply Theorem 6.2.1 to a(j), j = 1,..., n. If a(n) is dependent on

a(j), j = 1,...,n 1, then next apply the theorem to a(j), j = 1,...,n 1, n + 1,






87

leaving out a(n). If a(n) is not dependent on a(j), j = 1,..., n 1, then next apply the

theorem to a(j), j = 1,..., n + 1,, including a(n).

The purpose of the next two theorems is to show some of the anomalies associated

with linear dependence as it may lead to the definition of rank.


Theorem 6.2.2. (Cuninghame-Green, Theorem 16.4) Suppose that F is a commutative

bounded i-group other than ({-oo,0, +o}, V, A,+, +'). Let m > 2 and k > 1 be

arbitrary integers. We can always find k finite m-tuples, no one of which is linearly

dependent on the others.


Theorem 6.2.3. (Cuninghame-Green, Theorem 16.5) Suppose that F

({ -oo, 0,+00},V,A,+,+'). Let in > 2. We can always find (at least) m2 i

m-tuples, no one of which is linearly dependent on the others.

In conventional linear algebra, a number of different, but logically equivalent,

definitions are possible of the notion of linear independence of a set of elements of a vector

space. However, Cuninghame-Green formulated analogous minimax algebra definitions

of various alternative forms of linear independence of elements of a band-space, and

showed that they are not logically equivalent, although certain logical implications may

be demonstrated among them [16]. These considerations led to the following definition.


Definition. Let F be a bounded 1-group and let a(1),...,a(k) E M,,,. We shall say

that a(1),..., a(k) are strongly linearly independent, if there is at least one finite n-tuple,

B C M,,1, which has a unique expression in the form


(1) B= (V a(jr) + A)

with Ai, E F 1 < jr < k, (r = 1,...,t) andjr < if r < s (r = 1,...,t; s = 1...,t).

We shall abbreviate "strongly linearly independent" by SLI.






88

For a given belt, F,, define linear independence as the negation of linear depen-

dence.


Definition. a(1), ..., a(k) e F' are linearly independent exactly when no one of them

is linearly dependent on the others.

The next theorem relates the definitions of SLI and linear independence.


Theorem 6.2.4. (Cuninghame-Green, Theorem 16.10) Let Fo be a commutative

bounded 1-group and a(1),...,a(k) E M,,. For a(1),...,a(k) to be linearly indepen-

dent it is sufficient, but not necessary, that a(1),..., a(k) be SLI


Definition. Let F+ be any bounded 1-group and let A e Mmn. Suppose that we

can find r columns (1 < r < n) of A, but no more, which are SLI. We shall say that

A has column-rank equal to r. We define row-rank of A as the column-rank of the

transpose of A.

Before proving relationships among these ranks, we need one more definition.


Definition. A given matrix A E Mmn has 1F-astic rank equal to r, if the following is

true for k = r but not for k > r.

(i) There are X E M,, and Y E Mm,, both finite, such that B e Mmn is doubly

1F-astic and contains a k x k strictly doubly IF-astic submatrix, where


Bij = Yi Ayi Xj (i = 1, ..., m; j = 1, ..., n)


Theorem 6.2.5. (Cuninghame-Green, Theorem 17.7) Let Fto be a linear commutative

bounded i-group with group F and let A E Mmn be doubly 1F-astic. The following

statements are then equivalent.


(i) A has 1F-astic rank equal to r.








(ii) A has column-rank equal to r.

(iii) A has row-rank equal to r.

(iv) A* has dual column-rank equal to r

(v) A has dual row-rank equal to r

In view of Theorem 6.2.5, we may (for doubly F-astic A) simply use the expression

rank of A.

In the foregoing results, the equality of various ranks of a matrix have been demon-

strated, if they exist. We have not yet discussed whether a matrix necessarily has such

ranks. The next theorem answers this question.


Theorem 6.2.6. (Cuninghame-Green, Theorem 17.9) Let Fo be linear commutative

bounded 1-group with group F and let A E Mmn. There exists an integer r such that

A has IF-astic rank r if and only if A is doubly F-astic The integer r satisfies

1 < r < min{m,n}.


6.3 Matrix Decomposition


We begin with the weaker condition of linear independence.


Theorem 6.3.1. If A Mm is a matrix with r linearly independent columns, then


A = Ai v A2 V -.. V Ar,


where each Ai is of size m x n and has one linearly independent column.


Proof: Let D denote the set of indices of the dependent columns.

For each independent a(j), define A, as follows.






90

Let the j-th column of Aj be a(j). For each d E D, let the d-th column of

Aj be Ajd a(j), where A is from Theorem 6.2.1. According to Theorem 6.2.1,

A = A1 V A2 V ... V Ar. Since each Ai consist of a single non -oo column, a(j),

and Ajd a(j), they all have one linearly independent column.

Q.E.D.


Example. Let


3)
1
3


We have that


1
-00
0
0


-2
-3
-2
-00)


and




Hence, the second column

A12 = 1, A32 = 0, A42 = 0.

A 1 2
A= 3 4
2 3


/I 3 2 0\
A*A= 1 4 2 1
2 5 3 3

is linearly dependent on the

According to Theorem 6.3.1,

-oo -oo -oo 2 2
-oo -oo V -o 2 2
-0 -00 -00 5 5


(-oo 3 -oo 3\
-oo 3 -oo 3


other columns.


Corollary 6.3.2. If A E Mmn is a matrix with rank r, then


A = A1 V A2 V ... V Ar


where each Ai is of size m x n and has one linearly independent column.


Also


A= -3
-3
-2









Proof: If A C M,,, is a matrix with rank r, then by Theorem 6.2.5 A has r columns

which are SLI. By Theorem 6.2.4, r SLI columns implies r independent columns.


Q.E.D.


Thus, if the centered weight matrix, A, corresponding to a template, t, has r

independent columns, then we can write t as



t = tl V t2 V ... V tr,



where ti is separable template for each i = 1,2, ..., n. A separable template can then be

decomposed into a row and a column template, namely ti = ri E] si. Therefore,



t = (rl M si) V (ra2 M S2) V .. V (rn ]M sn).


Example. Let


-2

-2

t= -2

-2

-2


-2 -2

-1 -2

-1 -2

-1 -2

-2 -2


The centered weight


matrix corresponding to this

-2 -2 -2 -2
2 -] -1 -1
T = -2 -1 0 -1
-2 -1 -1 -1
\-2 -2 -2 -2


template is

-2\
-2
-2
-2
-2/










According to Theorem 6.3.1, we may write T = T1 V T2 V T3 where


-2
-2
T,= -2
-2
-2



-00
--'CX

T2 = --oo
-oo00
\-0


-00
-00

-00
-oo
-00


--2
-1
-1
-1
-2


-00
--00

-00
-00
-00


-00 C
-003


--o0
-oo


and
/-oo -oo -2
-oo -oo -1

T3 = -oo -oo 0
-oo -oo -1
-oo -oo -2

If we take ti to be the template corresponding to


-2)
-2
-2

-2
-2/


-3
-2
-2
-2
-3/


-3 -4\
-2 -3
-1 -2
-2 -3
-3 -4/

the centered


weight matrix Ti, then


each ti is separable. Thus, t = (ri M si) V (r.2 M s2) V (r3 M s3), where


ri= -2 r2= -1 ,r3 = 0


Si = 0


-00 -00 0 0


S2 = --o 0


-0o 0 -1


and S = -- -- 0 -1 -2






93

The converse of Theorem 6.3.1 is not true. Specifically, it can be shown that if a

matrix A has a decomposition in the form A = A1 V A2, where each Ai has one linearly

independent column, it may not be true that A has two linearly independent columns.

The next example shows how this can happen.


Example. If
/I 5 7\ -oo 7 -oo
A = 2 6 8 ) and A = o 5 -oo
4 8 10 -oo 9 -oo
then

A=AIVA= 2 6 8 .
\4 9 10
The matrix A has three linearly independent columns.













CHAPTER 7
CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH


This dissertation has developed the theory of maxpolynomials. A particular emphasis

has been placed on using their factorization as a method of decomposing morphological

structuring elements.

The steps in the development were:



1) A definition of maxpolynomials given in terms of sequences of elements. This

definition allows for the complete classification of their algebraic structure. This

classification is based on existing minimax theory.



2) A counter example showed that a division algorithm does not hold for maxpolyno-

mials. However, we developed a division procedure for the one variable case which

can be applied in most practical cases.



3) The presentation of several sufficient conditions for the factorization of one variable

maxpolynomials. Particular emphasis was placed on those exhibiting symmetry, due

to their frequency of use in image processing.



4) The necessary and sufficient conditions under which a two variable maxpolynomials

can be decomposed into two one variable maxpolynomials. The previous result in this

area only applied to maxpolynomials which corresponded to rectangular templates.






95

5) A necessary condition for the decomposition of two-dimensional templates is the

decomposition of their boundaries. The one variable techniques were extended to the

two variable case. Since most template are two-dimensional, these results should be

the most useful.


6) A rank based matrix decomposition in terms of minimax algebra was proven.

The following are suggestions for further research:

The primary theoretical results on polynomial factorization and irreducibility are

derived from the algebraic structure on the coefficients. The theorems of Chapter 4 lead

to the investigation of such possibilities for maxpolynomials. We now may consider

conditions on the belt of coefficients. Do notions such as divisibility and irreducibility

exist in belts? Are there properties of certain belts which aid in the factorization of

maxpolynomials?

The splitting field of the real numbers is the complex numbers. Is there an extension

of (R-,, V, +) which leads to an equivalent form of the fundamental theorem of algebra?

Since there is no fundamental theorem at this time, many more factorization techniques

for specific maxpolynomials need to be developed.

We considered methods for decomposing two variable maxpolynomials based on their

boundary. The arrangement of the boundary factorization has a substantial effect on the

interior. Is there a minimal configuration for the boundary factorization? Extensions of

the factorization results presented here can include algorithms to determine the interior

of the decompositions so to optimize any remainder which may exist.




Full Text

PAGE 1

Qc 0$;32/<120,$/6 $1' 0253+2/2*,&$/ 7(03/$7( '(&20326,7,21 %\ )5$1. &526%< ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 ZRXOG ILUVW OLNH WR WKDQN P\ SDUHQWV IRU WKHLU FRQWLQXRXV VXSSRUW DQG HQFRXUDJHPHQW 7KH\ KDYH JLYHQ PH D EHOLHI LQ P\VHOI ZKLFK LV ZKDW KDYH QHHGHG PRVW ZRXOG DOVR OLNH WR WKDQN P\ IULHQGV 7KH\ KDYH VWRRG E\ PH VR WKDW LQ VSLULW ZDV QHYHU DORQH 7KH )ORULGD (GXFDWLRQ )XQG GHVHUYHV VSHFLDO WKDQNV QRW RQO\ IRU LWV ILQDQFLDO DLG EXW DOVR IRU LWV PRUDO VXSSRUW 7KHUH KDYH EHHQ PDQ\ WKDW KDYH PHW GXULQJ P\ MRXUQH\ ZKR KDYH QRW EHHQ VXSSRUWLYH NQRZ WKDW HYHU\ REVWDFOH WKDW DP DEOH WR RYHUFRPH ZLOO PDNH VWURQJHU VR WKDQN WKHP DV ZHOO

PAGE 3

7$%/( 2) &217(176 $&.12:/('*0(176 LL $%675$&7 LY &+$37(56 ,1752'8&7,21 0,1,0$; $/*(%5$ ,QWURGXFWLRQ %HOWV ,0$*( $/*(%5$ ,QWURGXFWLRQ %DVLF 'HILQLWLRQV 2SHUDWLRQV 0$;32/<120,$/6 ,QWURGXFWLRQ %DVLF 'HILQLWLRQV )$&725,=$7,21 ,QWURGXFWLRQ %DVLF 3URSHUWLHV 0D[SRO\QRPLDOV RYHU 5BRR 9 f 0D[SRO\QRPLDOV RYHU ^f§RR` 9f 5$1. %$6(' 0$75,; '(&20326,7,21 ,QWURGXFWLRQ %DVLF 'HILQLWLRQV 0DWUL[ 'HFRPSRVLWLRQ &21&/86,21 $1' 68**(67,216 )25 )857+(5 5(6($5&+ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+

PAGE 4

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 0$;32/<120,$/6 $1' 0253+2/2*,&$/ 7(03/$7( '(&20326,7,21 %\ )UDQN &URVE\ 0D\ &KDLUPDQ 'U *HUKDUG ; 5LWWHU 0DMRU 'HSDUWPHQW 0DWKHPDWLFV ,PDJH DOJHEUD DQG FRPELQDWRULDO RSWLPL]DWLRQ KDYH OHG WR WKH FRQVLGHUDWLRQ RI SRO\QRPLDOV RYHU ODWWLFHRUGHUHG JURXSV LQVWHDG RI RYHU WKH XVXDO VWUXFWXUH RI ULQJV 7KHVH SRO\QRPLDOV DUH UHIHUUHG WR DV PD[SRO\QRPLDOV 0D[SRO\QRPLDOV ZHUH ILUVW LQWURGXFHG WR VROYH FRPELQDWRULDO SUREOHPV 7KLV XVH LV PRUH UHVWULFWHG WKDQ WKHLU DSSOLFDWLRQV WR LPDJH DOJHEUD 7KHUHIRUH D JHQHUDO GHYHORSPHQW RI WKH FRQFHSWV UHODWHG WR PD[SRO\QRPLDOV ZDV LQ RUGHU $ JHQHUDO GHILQLWLRQ RI PD[SRO\QRPLDOV LV WKH VWDUWLQJ SRLQW RI WKLV UHVHDUFK 0D[ SRO\QRPLDOV DUH GHILQHG IRU ERWK WKH VLQJOHYDULDEOH DQG WKH VHYHUDOYDULDEOH FDVHV 7KHVH QHZ GHILQLWLRQV DOORZ IRU WKH FRPSOHWH FODVVLILFDWLRQ RI PD[SRO\QRPLDOV E\ ZD\ RI D XQLn YHUVDO PDSSLQJ SURSHUW\ ,9

PAGE 5

3DVW UHVHDUFK LQ LPDJH DOJHEUD KDV HVWDEOLVKHG WKDW PD[SRO\QRPLDO IDFWRUL]DWLRQ LV HTXLYDOHQW WR PRUSKRORJLFDO WHPSODWH GHFRPSRVLWLRQ 6HYHUDO HOHPHQWV RI PD[SRO\QRPLDO IDFWRUL]DWLRQ DUH DOVR LQYHVWLJDWHG )LUVW D GLYLVLRQ DOJRULWKP LV GHPRQVWUDWHG )URP WKHUH QHZ IDFWRUL]DWLRQ WHFKQLTXHV DUH SUHVHQWHG 7ZR ODWWLFHRUGHUHG JURXSV DUH WKH FHQWUDO IRFXV RI WKH IDFWRUL]DWLRQ WHFKQLTXHV 7KH ILUVW LV EXLOW DURXQG WKH UHDO QXPEHUV DQG QHJDWLYH LQILQLW\ 7KLV ODWWLFHRUGHUHG JURXS LV XVHG IRU JUD\VFDOH PRUSKRORJLFDO WHPSODWHV 7KH VHFRQG LV EXLOW DURXQG MXVW ]HUR DQG QHJDWLYH LQILQLW\ ,WV DSSOLFDWLRQV DUH FKLHIO\ LQ ELQDU\ PRUSKRORJ\ $QRWKHU PHWKRG RI WHPSODWH GHFRPSRVLWLRQ LV EDVHG RQ PDWUL[ DQDO\VLV $ PDWUL[ GHFRPSRVLWLRQ DOJRULWKP XWLOL]LQJ QRQOLQHDU RSHUDWLRQV DQG WKH GHILQLWLRQ RI UDQN LQ WHUPV RI PLQLPD[ DOJHEUD LV DOVR GHYHORSHG

PAGE 6

&+$37(5 ,1752'8&7,21 7KH UHVXOWV SUHVHQWHG KHUH DGG WR WKH H[SDQGLQJ IURQWLHUV RI LPDJH DOJHEUD 7KHUH DUH PDQ\ VSHFLILF H[DPSOHV RI DOJHEUDLF VWUXFWXUHV DQG WKH SRZHU RI WKH DEVWUDFW SRLQW RI YLHZ EHFRPHV DSSDUHQW ZKHQ UHVXOWV IRU DQ HQWLUH FODVV DUH REWDLQHG E\ SURYLQJ D VLQJOH UHVXOW IRU DQ DEVWUDFW VWUXFWXUH 7KLV LV WKH JRDO RI LPDJH DOJHEUD 7KH KLVWRU\ RI LPDJH DOJHEUD EHJLQV ZLWK PDWKHPDWLFDO PRUSKRORJ\ 7KH WHUP PRUSKRORJ\ GHQRWHV D VWXG\ RI IRUP ,W LV FRPPRQO\ XVHG WR GHVFULEH D EUDQFK RI ELRORJ\ ZKLFK VWXGLHV WKH VWUXFWXUH RI SODQWV DQG DQLPDOV ,Q LPDJH SURFHVVLQJ WKHUH LV PDWKHPDWLFDO PRUSKRORJ\ ,W LV D WRRO ZKLFK LV XVHG WR ULJRURXVO\ TXDQWLI\ JHRPHWULF VWUXFWXUH RU WH[WXUH ZLWKLQ DQ LPDJH 0DWKHPDWLFDO PRUSKRORJ\ YLHZV WKH LPDJH DV D FROOHFWLRQ RI VHWV DQG WKHQ LQWHUSUHWV KRZ RWKHU VHWV LQWHUDFW ZLWK WKH LPDJH ,W ZDV GHYHORSHG LQ WKH PLG V E\ 0DWKHURQ DQG 6HUUD DW WKH 3DULV 6FKRRO RI 0LQHV LQ )RQWDLQEOHDX >@ )URP D IHZ EDVLF RSHUDWLRQV WKH\ GHYHORSHG PDQ\ GLIIHUHQW DOJRULWKPV 7ZR YHU\ LPSRUWDQW WKHRUHPV DERXW PDWKHPDWLFDO PRUSKRORJ\ ZHUH SURYHG E\ +DGZLJHU DQG 0DWKHURQ ,Q 0DWKHURQ SURYHG WKDW DQ\ LQFUHDVLQJ PDSSLQJ RQ 5Q LV ERWK D XQLRQ RI HURVLRQV DQG DQ LQWHUVHFWLRQ RI GLODWLRQV >+DGZLJHU VKRZHG WKDW VXLWDEO\ ZHOOEHKDYHG LPDJH IXQFWLRQDOV SRVVHV D VLPLODU SURSHUW\ >@ 7KH EHDXW\ RI PRUSKRORJ\ OLHV LQ WKHVH WZR WKHRUHPV 7KH\ VKRZ WKDW D ZLGH FODVV RI RSHUDWRUV FDQ EH UHSUHVHQWHG E\ MXVW D IHZ PRUSKRORJLFDO RSHUDWLRQV &RPSOHWH FKDUDFWHUL]DWLRQV VXFK DV WKHVH DUH VRPH RI WKH PRVW SRZHUIXO WKHRUHPV LQ PDWKHPDWLFV 7KH\ JHQHUDOO\ VHUYH WR FRQILUP D SDUWLFXODU DSSURDFK WR D SUREOHP L

PAGE 7

7KHVH REVHUYDWLRQV OHG 6HUUD DQG 6WHUQEHUJ WR XQLI\ WKH FRQFHSWV RI PRUSKRORJ\ LQ KRSHV RI EULQJLQJ WRJHWKHU PDQ\ GLIIHUHQW DVSHFWV RI LPDJH SURFHVVLQJ 6WHUQEHUJ EHJDQ WR XVH WKH WHUP LPDJH DOJHEUD WR GHVFULEH WKLV XQLILFDWLRQ >_ 7KHLU DWWHPSW DW JHQHUDOL]DWLRQ KDG D VHULRXV GUDZEDFN 0DQ\ LPDJH RSHUDWLRQV DUH QRW H[SUHVVLEOH LQ PRUSKRORJLFDO WHUPV 6RPH WUDQVIRUPDWLRQV VXFK DV WKH )RXULHU WUDQVIRUPDWLRQ DQG KLVWRJUDP HTXDOL]DWLRQ DUH EDVLF WR GLJLWDO LPDJH SURFHVVLQJ EXW FDQQRW EH DFFRPSOLVKHG XVLQJ SXUHO\ PRUSKRORJLFDO PHWKRGV 7R UHPHG\ WKLV VKRUWFRPLQJ ; 5LWWHU VHW RXW WR GHYHORS D XQLYHUVDO V\VWHP 7KH JRDOV ZHUH WR GHILQH D FRPSOHWH DOJHEUD ZKLFK ZRXOG HQFRPSDVV DOO LPDJH SURFHVVLQJ WHFKQLTXHV DQG WR GHILQH D VLPSOH DOJHEUD ZKRVH RSHUDQGV DQG RSHUDWRUV ZRXOG EH LQWHOOLJLEOH WR WKRVH ZLWKRXW DQ H[WHQVLYH PDWKHPDWLFDO EDFNJURXQG >_ 2QFH D FRPSUHKHQVLYH IUDPHZRUN ZDV EXLOW WKH UHODWLRQVKLSV EHWZHHQ LPDJH DOJHEUD DQG RWKHU H[LVWLQJ DOJHEUDLF VWUXFWXUHV FRXOG EH GHWHUPLQHG 7KLV ZRXOG WXUQ RXW WR EH D SUROLILF PHDQV RI HQKDQFLQJ LPDJH XQGHUVWDQGLQJ -/ 'DYLGVRQ DQG ++HLMPDQV LQGHSHQGHQWO\ GLVFRYHUHG WKDW PDWKHPDWLFDO PRUn SKRORJ\ FRXOG EH IRUPXODWHG LQ WHUPV RI ODWWLFH DOJHEUD DV ZHOO DV WKH WUDGLWLRQDO VHW WKHRUHWLF DSSURDFK f 'DYLGVRQfV UHVXOWV IXUWKHU VKRZHG WKDW PRUSKRORJ\ ZLWK WKLV UHIRUPXODWLRQ FRXOG EH HPEHGGHG LQWR LPDJH DOJHEUD 7KH\ VKRZHG WKDW PRUSKRORJLn FDO RSHUDWLRQV FDQ EH FRPSXWHG XVLQJ ODWWLFH FRQYROXWLRQV ,Q IDFW ODWWLFH FRQYROXWLRQV FDQ GR PRUH WKDW MXVW PRUSKRORJ\ 7KH UHVXOWV IXUWKHU HVWDEOLVKHG WKH FRQQHFWLRQ EHn WZHHQ PDWKHPDWLFDO PRUSKRORJ\ DQG PLQLPD[ DOJHEUD /DWWLFH FRQYROXWLRQV DUH EDVHG RQ PLQLPD[ DOJHEUD 0LQLPD[ WKHRU\ KDV ORQJ EHHQ XVHG WR VROYH SUREOHPV LQ RSHUDWLRQV UHVHDUFK VXFK DV PDFKLQH VFKHGXOLQJ DQG VKRUWHVWSDWK SUREOHPV 7KLV WKHRU\ LV EXLOW DURXQG VHPLODWWLFH RUGHUHG VHPLJURXSV DOVR NQRZQ DV EHOWV $ EHOW LV VHW WRJHWKHU ZLWK D ODWWLFH RSHUDWLRQ

PAGE 8

DQG D ELQDU\ RSHUDWLRQ ZKLFK GLVWULEXWHV RYHU WKH ODWWLFH RSHUDWLRQ ,W LV W\SLFDOO\ GHQRWHG E\ ) 9 f ,Q PXFK WKH VDPH ZD\ WKDW RQH LQYHVWLJDWHV VWUXFWXUHV RYHU ULQJV RQH DOVR LQYHVWLJDWHV KRPRPRUSKLVPV OLQHDU WUDQVIRUPDWLRQV DQG PDWULFHV RYHU EHOWV ,Q IDFW PLQLPD[ SUREOHPV IRU SLHFHZLVH OLQHDU IXQFWLRQV OHDG &XQLQJKDPH*UHHQ DQG 0LHMHU WR GHYHORS WKH WKHRU\ RI PD[SRO\QRPLDOV ZKLFK DUH SRO\QRPLDOV RYHU EHOWV >0D[SRO\QRPLDOV KDYH WKH DGGLWLRQDO SURSHUW\ WKDW LQ PXFK WKH VDPH ZD\ WKDW SRO\n QRPLDOV FDQ EH XVHG WR FDOFXODWH OLQHDU FRQYROXWLRQV WKH\ FDQ EH XVHG WR FDOFXODWH ODWWLFH FRQYROXWLRQV +RZHYHU D PDMRU GUDZEDFN RI WKH RULJLQDO GHYHORSPHQW RI PD[SRO\n QRPLDOV LV WKDW WKH\ ZHUH YLHZHG DV IXQFWLRQDO H[SUHVVLRQV 8QOLNH D SRO\QRPLDO D PD[SRO\QRPLDO LV TXLWH GLIIHUHQW ZKHQ YLHZHG DOWHUQDWHO\ DV D IRUPDO H[SUHVVLRQ DQG DV D IXQFWLRQDO H[SUHVVLRQ )RU H[DPSOH ZKLOH LW LV WUXH WKDW IRU [ ( 5RR [f 9 [f 9 [f 9 IRUPDOO\ WKH\ GLIIHU :KHQ FDOFXODWLQJ ODWWLFH FRQYROXWLRQV PD[SRO\QRPLDOV DUH WDNHQ WR EH IRUPDO H[SUHVVLRQV $OO RI WKH GHYHORSPHQW JLYHQ LQ WKLV ZRUN ZLOO WUHDW WKHP DV VXFK 7KH SURFHVVLQJ RI LPDJHV LV D FRPSXWDWLRQDOO\ LQWHQVLYH WDVN &RQYROXWLRQV UHTXLUH D ODUJH QXPEHU RI RSHUDWLRQV ZKLFK LV SURSRUWLRQDO WR QRW RQO\ WKH VL]H RI WKH LPDJH EXW DOVR WR WKH VL]H RI WKH WHPSODWH 7HPSODWH GHFRPSRVLWLRQ LV RQH RI WKH EHVW ZD\V WR UHGXFH WKH FRPSXWDWLRQDO FRPSOH[LW\ RI DQ DOJRULWKP ,Q WKHLU LQLWLDO LQYHVWLJDWLRQ &XQLQJKDPH*UHHQ DQG 0HLMHU SUHVHQWHG D IDFWRUL]DWLRQ WKHRUHP IRU PD[SRO\QRPLDOV 7KH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ IRU WKH DSSOLFDWLRQ RI WKHLU UHVXOW LV WKDW WKH PD[SRO\QRPLDO EH LUUHGXQGDQW 7KLV PHDQV WKDW ZKHQ YLHZHG DV D IXQFWLRQDO H[SUHVVLRQ LW KDV QR H[WUDQHRXV WHUPV ,Q WKH DERYH H[DPSOH [f RQ WKH OHIW VLGH RI WKH HTXDWLRQ LV DQ H[WUDQHRXV WHUP )XUWKHUPRUH ZKHQ H[SDQGLQJ WKHLU IDFWRUL]DWLRQ LW ZDV RQO\ JXDUDQWHHG WKDW WKH UHVXOW ZRXOG EH IXQFWLRQDOO\ WKH VDPH DV WKH

PAGE 9

RULJLQDO /L H[SDQGHG WKHLU WKHRUHP WR JLYH FRQGLWLRQV XQGHU ZKLFK WKH RULJLQDO DQG WKH H[SDQVLRQ RI WKHLU IDFWRUL]DWLRQ ZRXOG EH LGHQWLFDO IRUPDO H[SUHVVLRQV >_ 7KH JRDO RI WKLV GLVVHUWDWLRQ LV WR GHYHORS WKH WKHRU\ RI PD[SRO\QRPLDOV EH\RQG WKH ZRUN RI /L >@ DQG &XQLQJKDPH*UHHQ DQG 0HLMHU >%\ VROLGLI\LQJ WKH IRXQGDWLRQ RI PD[SRO\QRPLDOV ZH KRSH WKDW WKH\ ZLOO EHFRPH D JHQHURXV UHVRXUFH IRU PDQ\ DSSOLFDWLRQV 7R LQVXUH WKH XVHIXOQHVV RI WKH IDFWRULQJ WHFKQLTXHV SUHVHQWHG LQ WKLV GLVVHUWDWLRQ DOO PD[SRO\QRPLDOV DUH UHJDUGHG DV IRUPDO H[SUHVVLRQV +HQFH WKH\ DUH GLUHFWO\ DSSOLFDEOH WR ODWWLFH FRQYROXWLRQV ,Q RUGHU WR GHYHORS WKH WKHRU\ RI PD[SRO\QRPLDOV WKLV GLVVHUWDWLRQ EHJLQV ZLWK D UHYLHZ RI VRPH UHOHYDQW PLQLPD[ GHILQLWLRQV :H SUHVHQW WKHVH D[LRPDWLFV DQG EDVLF PDQLSXODWLYH SURSHUWLHV LQ &KDSWHU 7KH QDPHV DQG GHILQLWLRQV IRU VHYHUDO W\SHV RI EHOWV DUH JLYHQ ,Q DGGLWLRQ WKH FRQFHSWV RI KRPRPRUSKLVP DQG GXDOLW\ DUH SUHVHQWHG 7KHVH FRQFHSWV IRUP WKH EDVLV RI PD[SRO\QRPLDOV DQDORJRXVO\ WR WKH ZD\ LQ ZKLFK ULQJ WKHRU\ LV WKH EDVLV RI SRO\QRPLDO LQYHVWLJDWLRQV 1H[W ZH SUHVHQW VRPH RI WKH IRXQGDWLRQV RI LPDJH DOJHEUD 7KH IRFXV RI WKH WKLUG FKDSWHU LV WR VKRZ VRPH RI WKH ZD\V LQ ZKLFK PLQLPD[ DOJHEUD DQG LPDJH DOJHEUD LQWHUDFW 7KH SUHVHQWDWLRQ LV IDU IURP FRPSOHWH +RZHYHU LW VHUYHV WR IDPLOLDUL]H WKH UHDGHU ZLWK WKH EDVLF FRQFHSWV &KDSWHU EHJLQV D ULJRURXV HVWDEOLVKPHQW RI PD[SRO\QRPLDOV )LUVW PD[SRO\QRPLDOV DUH GHILQHG IRU D VLQJOH LQGHWHUPLQDWH 6RPH HOHPHQWDU\ SURSHUWLHV DQG QRWDWLRQ DUH WKHQ GHYHORSHG 7KH FRQVWUXFWLRQ RI PD[SRO\QRPLDOV LQ Q LQGHWHUPLQDWHV LV QH[W DQG LV IROORZHG E\ VRPH RI WKHLU EDVLF SURSHUWLHV ,Q SDUWLFXODU ZH UHODWH WKH VWUXFWXUH RI PD[SRO\QRPLDOV EDFN WR WKH VWUXFWXUHV PHQWLRQHG LQ &KDSWHU 7KH PDLQ UHVXOW RI &KDSWHU LV WKH FRPSOHWH FODVVLILFDWLRQ RI WKH EHOW RI PD[SRO\QRPLDOV XVLQJ D XQLYHUVDO PDSSLQJ SURSHUW\

PAGE 10

,Q &KDSWHU ZH H[SORUH YDULRXV FRQFHSWV DVVRFLDWHG ZLWK IDFWRUL]DWLRQ $PRQJ WKH EDVLF SURSHUWLHV LV WKH HVWDEOLVKPHQW RI DQ DQDORJ WR WKH GLYLVLRQ DOJRULWKP )URP WKHUH SDUWLFXODU IDFWRUL]DWLRQ WKHRUHPV DUH SUHVHQWHG IRU WKH WZR PRVW FRPPRQ EHOWV XVHG LQ ODWWLFH FRQYROXWLRQV 0DQ\ RI WKH FRQVLGHUDWLRQV XVHG LQ IDFWRULQJ PD[SRO\QRPLDOV VWHP IURP WKRVH LQ WKH ZRUN RI = 0DQVHXU DQG :LOVRQ >@ 7KH\ XVHG FRQGLWLRQV VXFK DV V\PPHWU\ DQG VNHZ V\PPHWU\ WR DLG LQ IDFWRULQJ SRO\QRPLDOV 7KH\ DOVR ORRNHG DW KRZ IDFWRULQJ ERXQGDU\ SRO\QRPLDOV HIIHFWHG IDFWRUL]DWLRQ 6HFWLRQ IRFXVHV RQ 5B9f ZKLFK LV XVHG IRU JUD\ VFDOH PRUSKRORJ\ 6HYHUDO WHFKQLTXHV IRU WKH VLQJOHYDULDEOH VLWXDWLRQ DUH GHYHORSHG 7KHQ WKH WZR SULQn FLSDO WHFKQLTXHV DUH DSSOLHG WR WKH WZRYDULDEOH FDVH 7KH EHOW RI 6HFWLRQ LV ^ f§ RR ` 9 f ZKLFK FRUUHVSRQGV WR ELQDU\ LPDJH PDQLSXODWLRQV 7KH ILUVW SDUW RI WKH VHFWLRQ VKRZV WKDW IDFWRULQJ E\ JURXSLQJ DULVHV LQ WKUHH LPSRUWDQW FDVHV ,W LV WKHQ VKRZQ WKDW ZKHQ GHFRPSRVLQJ D ELQDU\ UHVWULFWHGFRQYH[ WHPSODWH VHH 6HFWLRQ f RQO\ GHFRPSRVLWLRQV RI WKH ERXQGDU\ QHHG EH FRQVLGHUHG :H WKHQ SURYH WKDW WKH ERXQGDU\ LQYROYHV RQO\ WKH WKUHH FDVHV VKRZQ LQ WKH EHJLQQLQJ 2QFH WKLV LV GRQH ZH KDYH ILQLVKHG FODVVLI\LQJ WKH SUREOHP RI GHFRPSRVLQJ UHVWULFWHGFRQYH[ WHPSODWHV 7KH PDLQ IRFXV RI WKLV GLVVHUWDWLRQ LV WKH GHYHORSPHQW RI WKH WKHRU\ RI PD[SRO\QRPLn DOV 3DUWLFXODU HPSKDVLV LV SODFHG RQ WKHLU XVH LQ PRUSKRORJLFDO WHPSODWH GHRPSRVLWLRQ 7KHUH DUH RWKHU PHWKRGV XVHG LQ PRUSKRORJLFDO WHPSODWH GHFRPSRVLWLRQ 2QH RI WKRVH PHWKRGV LV EDVHG RQ PDWUL[ DQDO\VLV ,Q WKH VHWWLQJ RI OLQHDU DOJHEUD 2f/HDU\ VKRZHG WKDW LI D [ PDWUL[ KDV HLWKHU UDQN RU DOO RI LWV QRQ]HUR WHUPV DUH RQ D VLQJOH GLDJRQDO WKHQ LW FDQ EH IDFWRUHG LQWR WKH SURGXFW RI WZR [ PDWULFHV >@ = 0DQVHXU DQG :LOVRQ UHGXFHG WKH QXPEHU RI IDFWRUV LPSOLHG E\ 2f/HDU\fV UHVXOW IRU WKH GHFRPSRVLWLRQ RI DQ DUELWUDU\ PDWUL[ E\ XVLQJ

PAGE 11

SRO\QRPLDO PHWKRGV >_ 'DYLGVRQ VWXGLHG VRPH QRQOLQHDU PDWUL[ GHFRPSRVLWLRQV EDVHG RQ PLQLPD[ DOJHEUD >@ +RZHYHU WKH ZRUN RI 'DYLGVRQ GLG QRW XWLOL]H WKH UDQN RI D PDWUL[ 7KH *RDO RI 6HFWLRQ LV WR SURYH D UDQN EDVHG GHFRPSRVLWLRQ LQ WHUPV RI PLQLPD[ DOJHEUD

PAGE 12

&+$37(5 0,1,0$; $/*(%5$ ,QWURGXFWLRQ :KHQ VROYLQJ SUREOHPV FKLHIO\ RI LQWHUHVW WR WKH RSHUDWLRQDO UHVHDUFKHU D QXPEHU RI GLIIHUHQW DXWKRUV GLVFRYHUHG WKDW WKHVH SUREOHPV FRXOG EH UHIRUPXODWHG XQGHU D QRQOLQHDU DOJHEUDLF VWUXFWXUH 7KLV UHIRUPXODWLRQ SUHVHQWHG D XQLI\LQJ ODQJXDJH DQG WKXV D PXWXDO VWUDWHJ\ IRU VROXWLRQ 7KH ODQJXDJH FRQVLVWV RI DQ DOJHEUD 7KLV DOJHEUD FRQWDLQV WKH H[WHQGHG UHDO QXPEHUV DQG WZR ELQDU\ RSHUDWLRQV 7KH WZR ELQDU\ RSHUDWLRQV DUH PD[LPXP RU PLQLPXP DQG DGGLWLRQ :H FDQ GHQRWH WKLV DOJHEUD E\ 5sRR 9 $ f $XWKRUV VXFK DV *LIIOHU DSSOLHG WKLV VWUXFWXUH WR VROYH PDFKLQH VFKHGXOLQJ SUREOHPV @ 2WKHUV XVHG LW LQ VKRUWHVWSDWK SUREOHPV RI JUDSK WKHRU\ @ 7KH SURSHUWLHV RI WKH ODWWLFHRUGHUHG JURXS 5sRR 9 $ f KDYH EHHQ LQYHVWLJDWHG RYHU PDQ\ \HDUV +RZHYHU WKH VWXG\ RI VSDFHV RI Q f§ WXSOHV RYHU WKLV DOJHEUD OHG WR DQ HOHPHQWDO FRQQHFWLRQ EHWZHHQ RSHUDWLRQV UHVHDUFK DQG OLQHDU DOJHEUD $ XQLILHG DFFRXQW RI WKLV DOJHEUD DQG LWV FRQQHFWLRQ WR OLQHDU DOJHEUD ZDV SUHVHQWHG E\ &XQLQJKDPH*UHHQ LQ KLV ERRN 0LQLPD[ $OJHEUD >@ 'DYLGVRQ VKRZHG WKDW PLQLPD[ DOJHEUD FRXOG EH HPEHGGHG LQWR LPDJH DOJHEUD DQG WKDW VRPH RI WKH EDVLF UHVXOWV ZKLFK KDG EHHQ REWDLQHG LQ WKH DUHD RI RSHUDWLRQV UHVHDUFK KDYH DSSOLFDWLRQV LQ LPDJH SURFHVVLQJ _@ $OWKRXJK LW KDG DOUHDG\ EHHQ IRUPDOO\ SURYHQ WKDW LPDJH DOJHEUD ZDV FDSDEOH RI UHSUHVHQWLQJ DQ\ LPDJH WUDQVIRUPDWLRQ WKH LVRPRUSKLVP WKDW 'DYLGVRQ GHYHORSHG VKRZHG WKDW PLQLPD[ WKHRU\ FRXOG EH DSSOLHG WR LPDJH DQDO\VLV

PAGE 13

7KH QH[W VHFWLRQ LQWURGXFHV VRPH RI WKH EDVLF GHILQLWLRQV DQG QRWDWLRQ RI PLQLPD[ DOJHEUD 7KLV SUHVHQWDWLRQ GRHV QRW DLP DW FRPSOHWHQHVV 2QO\ WKRVH FRQFHSWV ZKLFK ZLOO EH XVHG DUH FRYHUHG %HOWV /HW ) EH D VHW :H GHILQH RQ ) WZR ELQDU\ RSHUDWLRQV 9 DQG r KDYLQJ WKH IROORZLQJ SURSHUWLHV $VVRFLDWLYLW\ RI 9 [ 9 \ 9 ]f U 9 \f 9 U &RPPXWDWLYLW\ RI 9 [ 9 \ \ 9 [ ,GHPSRWHQW [ 9 [ [ $VVRFLDWLYLW\ RI r [ r \ r ]f [ r \f r ] 5LJKW GLVWULEXWLYH [ r \ 9 ]f U r \f 9 U r af /HIW GLVWULEXWLYH \ 9fr [ \ r Uf 9 F r [f 7KH RUGHUHG WULSOH )9rf LV NQRZQ DV D EHOW 7KH SURSHUWLHV GHILQH D VHPLODWWLFH VWUXFWXUH WKDW LV DQ DEHOLDQ VHPLJURXS LQ ZKLFK HYHU\ HOHPHQW LV LGHPSRWHQW $ VHPLODWWLFH LV DOVR UHIHUUHG WR DV D FRPPXWDWLYH EDQG LQ VRPH OLWHUDWXUH ,W LV WKH EDVLV IRU ZKDW IROORZV VLPLODU WR WKH ZD\ D JURXS LV WKH EDVLV IRU WKH VWUXFWXUH RI D ULQJ ,Q DGGLWLRQ WKH RSHUDWLRQ r LV DVVRFLDWLYH DQG VDWLVILHV fGLVWULEXWLYHf ODZV 'XH WR WKH VLPLODULW\ EHWZHHQ WKLV VWUXFWXUH DQG D ULQJ ZH FDOO WKH VWUXFWXUH ) 9rf D EHOW :H DOVR UHIHU WR 9 DV DGGLWLRQ DQG r DV PXOWLSOLFDWLRQ $ EHOW LV DOVR NQRZQ DV D VHPLODWWLFHRUGHUHG VHPLJURXS ,I ZH GHILQH 9 WR EH WKH PD[LPXP RI WZR QXPEHUV DQG r WR EH WKH XVXDO DGGLWLRQ WKHQ WKH VHW RI UHDO QXPEHUV ZLWK WKHVH RSHUDWLRQV GHQRWHG E\ 5 9f LV DQ H[DPSOH RI D EHOW $QRWKHU H[DPSOH PD\ EH IRUPHG E\ WDNLQJ WKH VHW ) WR EH WKH SRVLWLYH UHDO

PAGE 14

QXPEHUV 5 DQG ELQDU\ RSHUDWLRQV WR EH PD[LPXP 9 DQG PXOWLSOLFDWLRQ [ 7KLV EHOW LV GHQRWHG E\ 59 [f $Q\ VHPLODWWLFH PD\ EH YLHZHG DV D EHOW ZKHQ WKH PXOWLSOLFDWLRQ LV GHILQHG WR EH LGHQWLFDO WR WKH VHPLODWWLFH RSHUDWLRQ ,Q WKLV FDVH ZH VD\ WKDW WKH EHOW LV D GHJHQHUDWH EHOW /HW )9rf DQG )9rf EH EHOWV $ IXQFWLRQ ) f§! ) LV D EHOW KRPRn PRUSKLVP LI U 9 \f I^[f 9 WI">\f DQG LI!^[ r \f LS[f r LOf\f 6LPLODUO\ ZH XVH WKH WHUPV LVRPRUSKLVP HQGRPRUSKLVP DQG DXWRPRUSKLVP )RU H[DPSOH LI LE 5 f§! 5 LV GHKQHG E\ +[f W WKHQ LW LV HYLGHQW WKDW 5 9f LV LVRPRUSKLF WR 5 9 [f ZKHUH 5 LV WKH SRVLWLYH UHDO QXPEHUV $ SDUWLFXODU EHOW PD\ DOVR VDWLVI\ &RPPWDWLYLW\ RI r [ r \ \ r [ 6XFK D EHOW LV FDOOHG D FRPPXWDWLYH EHOW ,I WKHUH H[LVWV DQ HOHPHQW OS VXFK WKDW ,GHQWLW\ OS r [ [ r ,S [ WKHQ HOHPHQW S LV FDOOHG WKH LGHQWLW\ HOHPHQW DQG D EHOW VDWLVI\LQJ D[LRP LV D EHOW ZLWK LGHQWLW\ 6XSSRVH WKDW IRU HDFK [ ) WKHUH H[LVWV DQ HOHPHQW [n VXFK WKDW

PAGE 15

,QYHUVH [ r [n f§ OS 6XFK DQ HOHPHQW LV FDOOHG WKH LQYHUVH RI [ ,W FDQ EH VKRZQ WKDW WKH RQHVLGHG LQYHUVH RI DQ HOHPHQW LV LWV WZRVLGHG LQYHUVH DQG WKDW WKH LQYHUVH LV XQLTXH :H GHQRWH WKH LQYHUVH RI DQ HOHPHQW [ E\ ]B ,W LV DOVR HYLGHQW WKDW ]Bf n [ DQG ,If ,I ,I D EHOW VDWLVILHV ERWK D[LRPV DQG WKHQ LW LV D GLYLVLRQ EHOW ,I WKHUH H[LVWV DQ HOHPHQW f§ RR VXFK WKDW [ 9 f§ RRf [ DQG f§RR r [ ] r f§ RRf f§RR WKHQ VXFK DQ HOHPHQW LV XQLTXH DQG WHUPHG WKH QXOO HOHPHQW 7KH H[LVWHQFH RI D QXOO HOHPHQW LV TXLWH VLJQLILFDQW LQ WKH VHTXHO ,Q IDFW PDQ\ RI WKH GHULYDWLRQV ZLOO GHSHQG RQ LWV SUHVHQFH )RUWXQDWHO\ DQ DUELWUDU\ QRQGHJHQHUDWH EHOW PD\ EH H[WHQGHG WR LQFOXGH D QXOO HOHPHQW 7KH HOHPHQW f§ RR FDQ EH DGMRLQHG WR WKH VHW ) DQG WKLV QHZ VHW LV GHQRWHG E\ )BRR 7KLV HOHPHQW VHUYHV DV D ORZHU ERXQG IRU WKH VHPLODWWLFH 6R ZH GHILQH ]9 f§ RRf f§ f§ RRf 9 ] [ 7KH VHPLJURXS RSHUDWLRQ FDQ EH H[WHQGHG E\ GHILQLQJ f§RR r ] [ r f§ RRf f§RR 7KH HOHPHQWV RI ) ZKLFK DUH GLIIHUHQW IURP f§RR DUH FDOOHG WKH ILQLWH HOHPHQWV RI ) ,W KDV EHHQ VKRZQ WKDW H[FHSW LQ WKH WULYLDO FDVH ZKHUH ) ^,` D SDUWLDOO\ RUGHUHG JURXS FDQQRW KDYH XQLYHUVDO ERXQGV >@ 7KXV D GLYLVLRQ EHOW FDQQRW KDYH D QXOO HOHPHQW

PAGE 16

1RWLFH WKDW 5 9 f LV LQ IDFW D GLYLVLRQ EHOW :H PD\ DGMRLQ f§RF WR 5 ,W IROORZV WKDW 5RR 9 f LV D EHOW ZLWK D QXOO HOHPHQW LQ ZKLFK WKH ILQLWH HOHPHQWV IRUP D GLYLVLRQ EHOW 7KH EHOW ^ f§FR` 9f PD\ EH FRQVLGHUHG DV D VXEEHOW RI 5BRR9f 7KH EHOW ^f§RF ` 9 f LV DJDLQ D EHOW ZLWK D QXOO HOHPHQW LQ ZKLFK WKH ILQLWH HOHPHQWV IRUP D GLYLVLRQ EHOW 8QGHU WKH PDSSLQJ n^[f H[ WKH EHOW 5 9f FDQ EH VKRZQ WR EH LVRPRUSKLF WR 5 9 [f ,I ZH H[WHQG WKH PDS 9f E\ GHILQLQJ f§RRf WKHQ ZH KDYH WKDW 5BRR 9f LV LVRPRUSKLF WR 5r 9 [f ZKHUH 5r GHQRWHV DOO UHDO QXPEHUV JUHDWHU WKDQ RU HTXDO WR ]HUR 1RWH WKDW WKH QXOO HOHPHQW RI 5r9[f LV ]HUR %\ WKH XQLTXHQHVV RI WKH QXOO HOHPHQW 7KH SRVVLELOLW\ H[LVWV WR H[SDQG WKH VWUXFWXUH RI DQ DUELWUDU\ EHOW WR LQFOXGH GXDO RSHUDWLRQV 7KDW LV LW ZRXOG KDYH WKH DGGLWLRQDO SURSHUWLHV WKDW IRU DOO U \ ] H ) f $VVRFLDWLYLW\ RI $ [ $ \ $ ]f [ $ \f $ f &RPPXWDWLYLW\ RI $ [ $ \ \ $ [ f ,GHPSRWHQW [ $ [ [ f $VVRFLDWLYLW\ RI [ rn \ rn ]f [ rn \f rn ] f 5LJKW GLVWULEXWLYH [ \ $ ]f [ rn \f $ [ rn ]f f /HIW GLVWULEXWLYH \ $ ]f rn [ \ rn [f $ ] rn [f ,I WKH WZR VHPLODWWLFH RSHUDWLRQV VDWLVI\ /DWWLFH DEVRUSWLRQ ODZ [ 9 \ $ [f [ $ \ 9 [f [ WKHQ LW LV VDLG WKDW WKH WZR VHPLODWWLFH RSHUDWLRQV DUH FRQVLVWHQW DQG WKDW ) $rnf LV WKH GXDO RI ) 9rf DQG YLFH YHUVD 7KXV LI LW LV SRVVLEOH WR GHILQH WKHVH WZR DGGLWLRQDO

PAGE 17

RSHUDWLRQV ZH VD\ WKDW ) 9 rf KDV GXDOLW\ 7KLV LV RIWHQ UHSUHVHQWHG E\ ) 9 $ r rnf ,W LV QRW DVVXPHG WKDW r DQG rn DUH UHODWHG +RZHYHU LI WKH\ VKRXOG FRLQFLGH WKHQ ZH VD\ WKDW WKH EHOW KDV D VHOI GXDO PXOWLSOLFDWLRQ ,I )B;f 9 rf LV D GLYLVLRQ EHOW WKHQ E\ GHILQLQJ [ $\ U 9 cf ZH KDYH LQWURGXFHG D GXDO VHPLODWWLFH RSHUDWLRQ DQG ZH JHW D GLYLVLRQ EHOW ZLWK VHOI GXDO PXOWLSOLFDWLRQ 7KH EHOW 5 9 f PD\ EH H[SDQGHG E\ WKH LQFOXVLRQ RI D PLQLPXP RSHUDWLRQ ,W LV HDVLO\ FKHFNHG WKDW 5 $f LV WKH GXDO RI 5 9f /HW )[9rf DQG )9rf EH EHOWV :H VKDOO VD\ WKDW )L9rf LV FRQMXJDWH WR )9rf LI WKHUH H[LVWV D IXQFWLRQ )L f§! ) VXFK WKDW LV ELMHFWLYH IRU DOO [\ e ) U 9 \f Uf $ Mf IRU DOO [ \ e ) U r \f Uf r LS\f ,Q SDUWLFXODU LI ) 9rf LV D EHOW ZLWK GXDOLW\ WKHQ ZH VD\ WKDW LW LV VHOIFRQMXJDWH LI ) 9rf LV FRQMXJDWH WR )$rf ,I ) 9 rf KDV D FRQMXJDWH ZH GHQRWH E\ ) 9 rfr WKH LPDJH RI WKH FRQMXJDWH PDS [M? ,I e ) ZH GHQRWH E\ r "ff :H FDOO Ir WKH FRQMXJDWH RI ,W LV LPPHGLDWH WKDW ) 9 rfrfr ) 9 rf DQG rfr :H QRWH WKDW HYHU\ GLYLVLRQ EHOW LV VHOI FRQMXJDWH XQGHU WKH PDS f§! 8QOHVV RWKHUZLVH QRWHG RXU UHIHUHQFH WR WKH GXDO RI D JLYHQ GLYLVLRQ EHOW VKDOO EH ZLWK UHVSHFW WR WKLV PDSSLQJ ,I ZH DJDLQ FRQVLGHU WKH EHOW 5 9 f WKHQ XQGHU WKH PDS Uf f§U ZH VHH WKDW 5 9f LV FRQMXJDWH WR 5 $f

PAGE 18

&+$37(5 ,0$*( $/*(%5$ ,QWURGXFWLRQ ,PDJH DOJHEUD LV D UHVSRQVH WR WKH QHHG RI WKH LPDJH SURFHVVLQJ FRPPXQLW\ WR KDYH DQ D[LRPDWLF GHYHORSPHQW RI WKH ILHOG RI LPDJH SURFHVVLQJ ,Q DQ D[LRPDWLF RU DEVWUDFW WUHDWPHQW RI D JLYHQ W\SH RI DOJHEUDLF VWUXFWXUH RQH DVVXPHV D VPDOO QXPEHU RI SURSHUWLHV DV D[LRPV DQG WKHQ GHGXFHV PDQ\ RWKHU SURSHUWLHV IURP WKRVH D[LRPV 7KXV LW LV SRVVLEOH WR GHDO VLPXOWDQHRXVO\ ZLWK DOO WKH VWUXFWXUHV VDWLVI\LQJ D JLYHQ VHW RI D[LRPV LQVWHDG RI ZLWK HDFK VWUXFWXUH LQGLYLGXDOO\ 7KH WHUP LPDJH DOJHEUD ZDV ILUVW XVHG E\ 6WHUQEHUJ WR GHVFULEH PRUSKRORJLFDO RSHUDWLRQV >@ 0DWKHPDWLFDO PRUSKRORJ\ LV ZHOO VXLWHG IRU DOJHEUDLF DEVWUDFWLRQ RI LWV SURSHUWLHV 0DQ\ RI LWV WHFKQLTXHV DUH H[SUHVVLEOH DV FRPELQDWLRQV RI VLPSOH RSHUDWLRQV +RZHYHU LW ODFNHG WKH JHQHUDOLW\ WR H[SUHVV PDQ\ FRPPRQ LPDJH SURFHVVLQJ WHFKQLTXHV 7HFKQLTXHV VXFK DV KLVWRJUDP HTXDOL]DWLRQ DQG LPDJH URWDWLRQ DUH QRW H[SUHVVLEOH LQ WHUPV RI VLPSOH PRUSKRORJLFDO RSHUDWLRQV 7KH HVWDEOLVKPHQW RI D JHQHUDO LPDJH DOJHEUD EHFDPH WKH JRDO RI ; 5LWWHU DW WKH 8QLYHUVLW\ RI )ORULGD 2EMHFWV VXFK DV YDOXH VHWV DQG LPDJHV ZHUH GHILQHG LQ JHQHUDO WHUPV ZLWK PLQLPXP VSHFLILFDWLRQ 7KH UHVXOW RI 5LWWHUfV ZRUN KDV EHHQ VKRZQ WR EH FDSDEOH RI H[SUHVVLQJ DOO LPDJH SURFHVVLQJ RSHUDWLRQV >@ 'DYLGVRQ VKRZHG WKDW PLQLPD[ DOJHEUD FRXOG EH HPEHGGHG LQWR LPDJH DOJHEUD DQG WKDW VRPH RI WKH EDVLF UHVXOWV ZKLFK KDG EHHQ REWDLQHG LQ WKH DUHD RI RSHUDWLRQV UHVHDUFK KDYH DSSOLFDWLRQV LQ LPDJH SURFHVVLQJ >@ $OWKRXJK LW KDG DOUHDG\ EHHQ IRUPDOO\

PAGE 19

SURYHQ WKDW LPDJH DOJHEUD ZDV FDSDEOH RI UHSUHVHQWLQJ DQ\ LPDJH WUDQVIRUPDWLRQ WKH LVRPRUSKLVP WKDW 'DYLGVRQ GHYHORSHG VKRZHG WKDW PLQLPD[ WKHRU\ FRXOG EH DSSOLHG WR LPDJH DQDO\VLV ,Q SDUWLFXODU WKH XVH RI ODWWLFH FRQYROXWLRQV VKRZHG KRZ PRUSKRORJ\ LV D VXEDOJHEUD RI LPDJH DOJHEUD ,PDJH DOJHEUD LV D KHWHURJHQHRXV DOJHEUDLF VWUXFWXUH 7KDW LV LW FRQVLVWV RI D QXPEHU RI GLIIHUHQW RSHUDQGV DQG RSHUDWRUV 7KLV FKDSWHU SUHVHQWV VRPH RI WKH EDVLF FRQFHSWV DQG QRWDWLRQ RI LPDJH DOJHEUD 2QO\ WKRVH FRQFHSWV ZKLFK ZLOO EH XVHG LQ WKH VHTXHO DUH UHYLHZHG $Q LQ GHSWK UHYLHZ PD\ EH IRXQG LQ 5LWWHU HW DO >@ %DVLF 'HILQLWLRQV 7KH YDOXH VHW LV D KRPRJHQHRXV DOJHEUD ,W LV D VHW WRJHWKHU ZLWK DW OHDVW RQH ELQDU\ RSHUDWLRQ *HQHUDOO\ RXU LQWHUHVW ZLOO EH FRQFHQWUDWHG RQ WKH VHW FRQVLVWLQJ RI WKH UHDO QXPEHUV DORQJ ZLWK QHJDWLYH LQILQLW\ 6HYHUDO GLIIHUHQW RSHUDWLRQV PD\ EH FRQVLGHUHG :H GHQRWH WKLV E\ 5RR $Q DUELWUDU\ YDOXH VHW ZLOO EH GHQRWHG E\ ) $ VSDWLDO GRPDLQ FDQ EH DQ\ WRSRORJLFDO VSDFH 6XEVHWV RI 5f ZLOO EH RXU PDLQ IRFXV ZLWK PRVW DSSOLFDWLRQV EHLQJ =f 7KH V\PERO = UHSUHVHQWV WKH Q IROG &DUWHVLDQ SURGXFW RI WKH LQWHJHUV /HW ; EH D VSDWLDO GRPDLQ DQG ) D YDOXH VHW $Q ) YDOXHG LPDJH RQ ; LV DQ\ PDS IURP ; WR ) :H GHQRWH WKH VHW RI DOO ) YDOXHG LPDJHV RQ ; E\ )[ :H VKDOO QRW GLVWLQJXLVK EHWZHHQ WKH JUDSK RI DQ LPDJH DQG WKH PDS 7KH JUDSK RI DQ LPDJH LV DOVR UHIHUUHG WR DV WKH GDWD VWUXFWXUH UHSUHVHQWDWLRQ RI WKH LPDJH *LYHQ WKH GDWD VWUXFWXUH UHSUHVHQWDWLRQ D ^[ D[ff [ e ;` WKHQ DQ HOHPHQW [D[ff RI WKH GDWD VWUXFWXUH LV FDOOHG D SLFWXUH HOHPHQW RU SL[HO 7KH ILUVW FRRUGLQDWH [ RI D SL[HO LV FDOOHG WKH SL[HO ORFDWLRQ RU LPDJH SRLQW DQG WKH VHFRQG FRRUGLQDWH D[f LV WKH SL[HO YDOXH RU JUD\ YDOXH RI D DW ORFDWLRQ [

PAGE 20

/HW ; DQG < EH VSDWLDO GRPDLQV DQG ) D YDOXH VHW $Q ) YDOXHG WHPSODWH IURP < WR ; LV D IXQFWLRQ W < f§‘! )[ 7KXV D WHPSODWH LV DQ LPDJH ZKRVH SL[HO YDOXHV DUH LPDJHV :H GHQRWH WKH VHW RI DOO ) YDOXHG WHPSODWHV IURP < WR ; E\ )[f )RU QRWDWLRQDO FRQYHQLHQFH ZH GHILQH W\ W\f 7KH SL[HO YDOXHV W\[f RI WKH LPDJH W\ DUH FDOOHG WKH ZHLJKWV RI WKH WHPSODWH DW WKH WDUJHW SRLQW \ ,I W LV D UHDO RU FRPSOH[ YDOXHG WHPSODWH IURP ; WR < WKHQ WKH VXSSRUW RI W LV GHILQHG DV W\f ^[(; W\[f A ` )RU H[WHQGHG UHDOYDOXHG WHPSODWHV ZH DOVR GHILQH WKH IROORZLQJ VXSSRUW DW LQILQLW\ IRRW\f ^[ ( ; W\[f 7RR` 6nBW\f ^[e; W\[f s RR` ,I ; LV D VSDWLDO GRPDLQ ZLWK DQ RSHUDWLRQ WKHQ D WHPSODWH W H )[f LV VDLG WR EH WUDQVODWLRQ LQYDULDQW ZLWK UHVSHFW WR WKH RSHUDWLRQ f LI DQG RQO\ LI IRU HDFK [\[7]\7] H; ZH KDYH WKDW W\[f W\][ 7 ]f 7HPSODWHV WKDW DUH QRW WUDQVODWLRQ LQYDULDQW DUH FDOOHG WUDQVODWLRQ YDULDQW RU VLPSO\ YDULDQW 2In WHQ D WUDQVODWLRQ LQYDULDQW WHPSODWH FDQ EH UHSUHVHQWHG SLFWRULDOO\ )RU H[DPSOH OHW ; = DQG \ [\f EH DQ DUELWUDU\ SRLQW RI ; 'HILQH W 5Af E\ W\\f W\UsO\f W\[\sOf W\[s\f W\[\sf

PAGE 21

f f§ W\O \ f§ f f§ W\U O \f f§ W\U f§ WOf f§ 2 DQG W\[\f f§RF RWKHUZLVH 7KH UHSUHVHQWDWLRQ RI W LV W + f 2SHUDWLRQV 7KH RSHUDWLRQV RQ DQG EHWZHHQ )[ DUH QDWXUDOO\ GHULYHG IURP WKH DOJHEUDLF VWUXFWXUH RI WKH YDOXH VHW ) )RU H[DPSOH LI LV D ELQDU\ RSHUDWLRQ GHILQHG RQ ) WKHQ LQGXFHV D ELQDU\ RSHUDWLRQ RQ )[ GHILQHG DV IROORZV /HW D E )[ 7KHQ DE ^[F[ff F[f D[fE[f [ ;` )RU DQ ) YDOXHG LPDJH RQ D FRRUGLQDWH VHW ; ZH KDYH WKH IROORZLQJ EDVLF RSHUDWLRQV D E ^[F[ff F[f D[f E[f [ ;` D r E ^[ F[ff F[f D[f r E[f [ ;` D9E ^[F[ff F[f D[f9E[f [*;` D$E ^[F[ff F[f D[f$E[f [*;`

PAGE 22

,QGXFHG XQDU\ RSHUDWLRQV DUH GHILQHG LQ D VLPLODU IDVKLRQ $Q\ XQDU\ RSHUDWLRQ J ) f§ ) LQGXFHV D XQDU\ RSHUDWLRQ J )[ f§! )[ GHILQHG E\ J^Df ^[F[ff F[f AD[ff [ ;` /HW ) 5LRR 7KH DGGLWLYH GXDO RI 5sRR 97f LV GHQRWHG E\ 5sRR$f DQG LV GHWHUPLQHG E\ WKH PDS U f§! f§U )RU D* 5sRRf; WKH DGGLWLYH GXDO LV GHILQHG E\ f§D[f LI D[f 5 Dr[f f§RR LI D[f 7RR 7RR LI D[f f§RR < 6LPLODUO\ LI D 5Arf WKHQ WKH PXOWLSOLFDWLYH GXDO LV GHILQHG E\ OD[f LI D[f 5 D[f LI D[f 7RR > 7RR LI D[f f§RR *HQHUDOL]HG FRQYROXWLRQV DUH RQH RI WKH PRVW XVHIXO FRQVHTXHQFHV RI WKH FRQFHSW RI D KHWHURJHQHRXV LPDJH SURGXFW 7KH\ SURYLGH UXOHV IRU FRPELQLQJ LPDJHV ZLWK WHPSODWHV DQG WHPSODWHV ZLWK WHPSODWHV /HW )) DQG ) EH WKUHH YDOXH VHWV DQG VXSSRVH )L [ ) f§! ) LV D ELQDU\ RSHUDWLRQ ,I D *); W J)[f< DQG LV DQ DVVRFLDWLYH ELQDU\ RSHUDWLRQ RQ ) WKHQ IRU HDFK \ < ZH KDYH W\ )[ 7KXV D 2 W \ *)[ DQG 7D4W\f ) ,W IROORZV WKDW WKH ELQDU\ RSHUDWLRQV 4 DUG ; LQGXFH D ELQDU\ RSHUDWLRQ ZKHUH E DkW *)M LV GHILQHG E\ E\f 7D 2 W\f UD[f 2 W\[ff

PAGE 23

7KH H[SUHVVLRQ DkW LV FDOOHG D JHQHUDOL]HG FRQYROXWLRQ RU WKH ULJKW FRQYROXWLRQ SURGXFW RI D ZLWK W 6XEVWLWXWLRQ RI GLIIHUHQW YDOXH VHWV DQG VSHFLILF ELQDU\ RSHUDWLRQV IRU DQG 2 UHVXOWV LQ D ZLGH YDULHW\ RI GLIIHUHQW LPDJH WUDQVIRUPV 7KH PDLQ IRFXV KHUH ZLOO FRPH IURP WKH EHOW 5sRR 9f 7KH ERXQGHG ODWWLFH RUGHUHG JURXS 5sRR 9 $ nf SURYLGHV IRU WZR ODWWLFH FRQn YROXWLRQV E D W ZKHUH DQG E\f 9 >D[f W\[f@ [H;QVBRRW\f E D (O W ZKHUH E\f I? >D[f W\[fM [H;Q6BW\f :H GHVLJQDWH DV WKH DGGLWLYH PD[LPXP DQG ( DV WKH DGGLWLYH PLQLPXP 7KH ERXQGHG ODWWLFH RUGHUHG JURXS 5AI 9 $ [ [nf SURYLGHV IRU WZR ODWWLFH FRQn YROXWLRQV E D#W ZKHUH DQG E\f 9 >D[f [ W\[f@ [*;Q6BRRW\f E D#W

PAGE 24

ZKHUH E\f ? >D[f [ W\[f@ ;*;Q6RRIW\f :H GHVLJQDWH k DV WKH PXOWLSOLFDWLYH PD[LPXP DQG # DV WKH PXOWLSOLFDWLYH PLQLPXP 7KH FRPPRQ XQDU\ DQG ELQDU\ RSHUDWLRQ RQ WHPSODWHV FRUUHVSRQG WR WKRVH GHILQHG RQ LPDJHV )RU H[DPSOH LI J )L f§! ) DQG W e )[f WKHQ U J R W e )[f LV GHILQHG E\ f§ W\ f ZKHUH J LV DSSOLHG SRLQWZLVH WR WKH LPDJH W\ < L ; /HW W e )[f 7KH WUDQVSRVH RI W LV D WHPSODWH W e ) LI W\[f f§ 2* < WKH PXOWLSOLFDWLYH GXDO RI W LV WKH WHPSODWH W GHILQHG E\ W\ ; f LI W\ ; f e 5 W[\f O rR LI W\[f 7RR ^ 7RR LI W\ [f f§ RR :H VDZ SUHYLRXVO\ KRZ WZR ELQDU\ RSHUDWLRQV DQG FRXOG EH FRPELQHG WR LQGXFH D FRQYROXWLRQ RSHUDWRU 7KLV QRWLRQ H[WHQGV WR WHPSODWHV DV ZHOO ; 9 6XSSRVH WKDW V e )If W e )[f r 4 )@ [ ) f§! ) )Mf D FRPPXWDWLYH VHPLJURXS DQG ; D ILQLWH SRLQW VHW 7KH JHQHUDOL]HG FRQYROXWLRQ SURGXFW U VkW ZKHUH U e );f< LV GHILQHG DV U\]f UV[]f 2 I\[ff f

PAGE 25

< ; /HW W e 5rRRf DQG V e 5Af f 7KHQ U VW LV GHILQHG E\ WKH IRUPXOD U\]f ? >V[]f W\[f@ [H[ < ; ,I W e A5Arf;M DQG A e 5_rf:f WKHQ U V#W LV GHILQHG E\ WKH IRUPXOD U\]f 9 [ 0[f@ ‘ ;*; 0DQ\ RWKHU LPDJH DQG WHPSODWH RSHUDWLRQV DUH GHVFULEHG LQ 5LWWHU HW DO > f ,Q WKH VXEVHTXHQW GLVFXVVLRQ ZH DVVXPH WKDW ; =a DQG W e )[f LV D VKLIW LQYDULDQW WHPSODWH ZLWK ILQLWH VXSSRUW DW D SRLQW \ e ; ,I [ [ \f e ; WKHQ GHILQH SL[f [ DQG SR[f \ :H KDYH WKHQ WKDW nAW\f LV ILQLWH DQG WKH IROORZLQJ DUH ZHOO GHILQHG \fPLQ LQI^E;f ; e BRRW\f@` \fPD[ VXS^>S[f ; e 6BRRW\f@` -L \fPLf LQI^>S[f ; e 6nf§RFM W\ f@ ` M\fPD[ VXS ^>3[f ; e BRRW\f@` P\f pn\fPQU \fPP }\f L\fPD[ M^\fPLP DQG GHILQH AW\f ^r\fPLQ } M\fPLQMf n‘ r P\f M Q^\f LM e 1` %\ GHILQLWLRQ 5W\f LV D UHFWDQJXODU DUUD\ DQG LW LV WKH VPDOOHVW UHFWDQJXODU DUUD\ FRQWDLQLQJ 6RR W\f

PAGE 26

$ WHPSODWH W ZLWK ILQLWH VXSSRUW LV FDOOHG D UHFWDQJXODU P [ Q WHPSODWH LI 5W\f LV RI VL]H P [ Q ([DPSOH /HW D PRUSKRORJLFDO WHPSODWH W LV JLYHQ E\ W 7KH VHW 5W\f LV JLYHQ E\ 7KH GLDPRQG GHVLJQDWHV WKH RULJLQ

PAGE 27

&+$37(5 0$;32/<120,$/6 ,QWURGXFWLRQ 7KH DOJHEUDLF VWUXFWXUH RI D EHOW FDQ EH DSSOLHG WR WKH VROXWLRQ RI PLQLPD[ SUREOHPV IRU SLHFHZLVH OLQHDU IXQFWLRQV &XQLQJKDPH*UHHQ DQG 0HLMHU QRWHG WKDW FHUWDLQ FRPELn QDWRULDO SUREOHPV FDQ EH H[SUHVVHG XVLQJ PD[SRO\QRPLDOV >@ 7KHVH SUREOHPV LQYROYH XVLQJ PD[SRO\QRPLDOV DV IXQFWLRQDO H[SUHVVLRQV 0D[SRO\QRPLDOV KDYH D GLIIHUHQW XVH ZKHQ WKH\ DUH FRQVLGHUHG DV IRUPDO H[SUHVVLRQV 2QH XVH LV WKH FDOFXODWLRQ RI ODWWLFH FRQYROXWLRQV VXFK DV (O RU k 7R LOOXVWUDWH WKH VLPLODULWLHV DQG GLIIHUHQFHV EHWZHHQ OLQHDU FRQYROXWLRQV DQG ODWWLFH FRQYROXWLRQV VXSSRVH WKDW WZR ILQLWH GLVFUHWH RQHGLPHQVLRQDO VLJQDOV DUH JLYHQ 7KHVH VLJQDOV PD\ EH UHJDUGHG DV IXQFWLRQV IURP WKH VHW RI LQWHJHUV LQWR VRPH VHW WKH UHDO QXPEHUV IRU H[DPSOH 7KHLU FRQYROXWLRQ UHVXOWV LQ D ILQLWH GLVFUHWH VLJQDO DQG VR LW LV DOVR D SRO\QRPLDO /HW f§ 7 ‘ f ‘ WWMM -f J R E\[ f ‘ f EP[P DQG r J f§ In2 &?; ‘ f f FPQe 7KH FRHIILFLHQWV RI WKH SRO\QRPLDOV DUH WKH GLVFUHWH YDOXHV RI WKH VLJQDO 7KH SRZHUV RI WKH YDULDEOH [ VHUYH WR SUHVHUYH WKH RUGHU RI WKH FRHIILFLHQWV

PAGE 28

7KH FRQYROXWLRQ RI DQG J LV JLYHQ E\ r Jf>Mf < a PfIRU / ,I DQG r J DUH UHSODFHG ZLWK WKHLU SRO\QRPLDO UHSUHVHQWDWLRQV WKH FRQYROXWLRQ IRUPXOD EHFRPHV LQ 7DNLQJ LQWR DFFRXQW ZHUH WKH FRHIILFLHQWV RI DQG J DUH QRQ]HUR WKH IRUPXOD UHGXFHV WR M ZKLFK LV MXVW WKH SURGXFW RI WKH SRO\QRPLDOV ,PDJH DOJHEUD KDV WKH FDSDELOLW\ WR UHSUHVHQW JHQHUDOL]HG FRQYROXWLRQV 7KHVH DUH FRQYROXWLRQV ZKHUH GLIIHUHQW ELQDU\ RSHUDWLRQV DUH XVHG LQVWHDG RI WKH XVXDO RSHUDWLRQV RI DGGLWLRQ DQG PXOWLSOLFDWLRQ )RU H[DPSOH WKHUH LV WKH JHQHUDOL]HG FRQYROXWLRQ FDOOHG WKH DGGLWLYH PD[LPXP 7KH DGGLWLYH PD[LPXP RI WZR ILQLWH GLVFUHWH RQHGLPHQVLRQDO VLJQDOV LV UHSUHVHQWHG LQ LPDJH DOJHEUD DV ( DQG LV FDOFXODWHG E\ WKH IRUPXOD I0Jf^Mf ?Pff P 2QH PD\ QRZ EH OHG WR EHOLHYH WKDW LW LV SRVVLEOH WR GHILQH D FHUWDLQ NLQG RI fSRO\QRPLDOf ZKRVH SURGXFW FRUUHVSRQGV WR WKLV FRQYROXWLRQ ,Q WKH OLQHDU FRQYROXWLRQ ZH KDG IOL I DLYf D-f DUf ‘ f f 7KH WZR RSHUDWLRQV ZHUH DGGLWLRQ DQG PXOWLSOLFDWLRQ ,Q D ODWWLFH FRQYROXWLRQ WKH WZR RSHUDWLRQV DUH PD[LPXP DQG DGGLWLRQ 7R VHSDUDWH WKH FRHIILFLHQWV ZH ZLOO QRZ XVH

PAGE 29

9 DQG WR SUHVHUYH WKH RUGHU RI WKH FRHIILFLHQWV LQVWHDG RI SRZHUV RI D YDULDEOH ZH XVH PXOWLSOHV DQG ZULWH mR 9 mL [f 9 D Uf 9 D L[f 9 f f f 'RQJ /L QRWHG WKH FRQQHFWLRQ EHWZHHQ PD[SRO\QRPLDOV DQG WKH DGGLWLYH PD[LPXP FRQYROXWLRQ > @ $OO RI WKHVH REVHUYDWLRQV PD\ EH H[WHQGHG WR VLJQDOV LQ WZR LPDJHVf RU PRUH GLPHQVLRQV 7KH DLP RI WKLV FKDSWHU LV WR FODVVLI\ PD[SRO\QRPLDOV 7KDW LV WR VD\ WKDW WKH\ ZLOO EH LGHQWLILHG DV D PHPEHU RI DQ DOJHEUDLF VWUXFWXUH %\ GRLQJ VR DQ\ LQYHVWLJDWLRQ LV QRW OLPLWHG WR WKH VSHFLILF DQG RWKHU UHVXOWV PD\ EH DSSOLHG WR WKLV QHZ PHPEHU %DVLF 'HILQLWLRQV /HW )BRR9rf EH D EHOW ZLWK ORZHU ERXQG f§ 'HILQLWLRQ $OO VHTXHQFHV RI HOHPHQWV RI ) ZKLFK KDYH RQO\ ILQLWHO\ PDQ\ HOHPHQWV ZKLFK DUH QRW QHJDWLYH LQILQLW\ DUH FDOOHG PD[SRO\QRPLDOV RYHU ) 7KH VHW RI PD[SRO\QRPLDOV RYHU ) LV GHQRWHG E\ )BRF>U@ 7KHRUHP /HW )BRR 9rf EH D EHOW Lf )BRR>Mn@ LV D EHOW ZLWK 9 DQG r GHILQHG E\ mRm f 9 Lf mR 9 RL 9 ELf DQG IO fffffr @ f F FLf Q ZKHUH

PAGE 30

LLf n)RR 9 rf LV D FRPPXWDWLYH EHOW >UHVS D EHOW ZLWK LGHQWLW\@ WKHQ VR LV )BRR>D@ +Lf 7KH PDS ) f§! )RRMD@ JLYHQ E\ LSMf f§ RR f§RR f§ RRf LV D PRQRPRU SKLVP RI EHOWV 3URRI ,I DF ( )RR WKHQ D D D?E f f DQG F FFLf D 9 E 9 Ff D 9 R 9 FT @ 9 FMf D 9 9 F mL 9 E? 9 FLf mR Y RmL 9 Lf 9 F m9 f 9 F D 9 E mR 9 R mL 9 Lf 9 mR L 9 mLf 9 D D 9 D mR 9 DRmL 9 mMf f§ m m ffff D

PAGE 31

D r Ef r Q QM 9 9 r EQa-aO f r &M ?mn Q Qf§M 9 9FWL r r FM L Q Q f§ L 9 9 rr r r FM 9r D r E r Ff /HW Gf EH WKH QWK FRHIILFLHQW RI D r E 9 Ff %\ FDOFXODWLRQ Q GQ ?GQf§L^EL 9 &Of Q 9 D%L r Lf 9 DfBL r &Mf L fL } 9 m r Lf 9 ?r &Mf L +HQFH GQ LV DOVR WKH QWK FRHIILFLHQW RI D r Ef 9 D r Ff 6R D r ^E 9 Ff D 9 f r D 9 Ff 1H[W OHW GQ EH WKH QWK FRHIILFLHQW RI E 9 Ff r D $JDLQ E\ FDOFXODWLRQ GQ ?EQf§L 9 &QBf r 2n c 9 m r QWf 9 D r FfBf 9 mL r cL 9 9 Dr rF}r +HQFH GQ LV WKH QWK FRHIILFLHQW RI  r Ff 9 F r mf 6R  9 Ff r D 9 Df r F 9 Df

PAGE 32

,I )BRR LV FRPPXWDWLYH WKHQ Q D r ,f ?D[ r EQL L Q 9 EQ r O L E r D ZKLFK VKRZV WKDW )BRR>U@ LV DOVR FRPPXWDWLYH ,I )BRF KDV DQ LGHQWLW\ ,I WKHQ WKH HOHPHQW ,If§ RR f§ RR f )BRR>[@ DFWV DV DQ LGHQWLW\ LQ )BRR>[@ %\ FDOFXODWLRQ ,I RR RRf r DRDLDf DmLf 7R VKRZ WKDW WKH PDSSLQJ LV D EHOW PRQRPRUSKLVP OHW L f ) ,W IROORZV WKDW L 9f 9 In f§ f§f O f§RR f§f 9 I f§ f§2* f DQG LS ^I r I !f O r In f f r I f 6R WKH PDS LV D EHOW KRPRPRUSKLVP 6XSSRVH WKDW O f§22 f§22f In f§22 f§n22f WKHQ FOHDUO\ I? IR 6R WKH PDS LV DOVR D PRQRPRUSKLVP 4('

PAGE 33

,Q YLHZ RI SDUW LL RI WKH SUHYLRXV WKHRUHP )BRR PD\ EH LGHQWLILHG ZLWK LWV LVRPRUSKLF LPDJH LQ )BRR>U@ DQG ZH ZLOO ZULWH f§ RR f§ RRf DV VLPSO\ I %\ FDOFXODWLRQ ZH KDYH WKDW rDRDLf I r DR I r D?f 7KH QH[W WKHRUHP GHYHORSV D QRWDWLRQ ZKLFK PDNHV WKH FRQQHFWLRQ EHWZHHQ SRO\QRn PLDOV DQG PD[SRO\QRPLDOV HDVLHU WR VHH 7KHRUHP /HW )BRR 9rf EH D EHOW ZLWK LGHQWLW\ DQG GHQRWH E\ [ WKH HOHPHQW f§ ,I f§ f§f RI )BRR>[@ Lf Q[ f§ f§,S f§f ZKHUH ,S LV LQ WKH Q fVW FRRUGLQDWH LLf ,I I ( )B WKHQ IRU HDFK Q r Q[ Q[ r I f§f§ f§ f ZKHUH I LV LQ WKH Q fVW FRRUGLQDWH +Lf )RU HYHU\ QRQ QHJDWLYH LQILQLW\ PD[SRO\QRPLDO WKDW LV D PD[SRO\QRPLDO ZLWK VRPH HOHPHQW ZKLFK LV QRW f§f LQ )BO>U@ WKHUH H[LVWV DQ LQWHJHU Q DQG HOHPHQWV DR DLDQ ( )AO& VXFK WKDW M mR 9 m r [ f99DQ r Q[f 7KH LQWHJHU Q DQG WKH HOHPHQWV D DUH XQLTXH 3URRI Lf %\ GHILQLWLRQ WKH IRUPXOD LV WUXH IRU Q 6XSSRVH WKDW Q f§ ?f[ f§ f§ ,S f§f ZKHUH OS LV LQ WKH Q f§ ff§WK FRRUGLQDWH ,W IROORZV WKDW Q[ [ Q f§ OfU f§ OS f§ f§ RFf f§ f§ OS f§f FRFLf ,I M Q WKHQ FM OS r OS OS ,I M I Q WKHQ F f§ LLf r Q[ f§RF f§f r f§ f§ 2S f§f 6WUDLJKWIRUn ZDUG FRPSXWDWLRQ VKRZ WKDW f§ f§f r f§ f§ OS f§f f§ f§ f§f 6LPLODUO\ IRU Q[ r I

PAGE 34

LLLf ,I M mR DL ‘‘‘f WKHUH PXVW EH D ODUJHVW LQGH[ Q VXFK WKDW Df A f§RR ,W IROORZV WKDW DRmL mf f )RR DUH WKH GHVLUHG HOHPHQWV ,I \\ T9tL [f9f ‘ 9P P[f WKHQ P RR RRf D mDf f DQG m 4(' ,I ) KDV DQ LGHQWLW\ WKHQ 2 U S DQG ZH PD\ ZULWH WKH PD[SRO\QRPLDO D r 2[ 9 mL r O[f 9 ‘ f ‘ 9 Df r Q[f DV D R 9 FcL r [f 9 ‘ ‘ ‘ 9 Df r Q[f $Q LPSRUWDQW GLIIHUHQFH EHWZHHQ WKH WZR FDVHV LV WKDW ZKHQ WKHUH LV DQ LGHQWLW\ HOHPHQW [ LV DQ HOHPHQW RI WKH EHOW )BRR>[@ +HUHDIWHU D PD[SRO\QRPLDO RYHU D EHOW ZLWK LGHQWLW\ ZLOO DOZD\V EH ZULWWHQ LQ WKH IRUP D R 9 ^D? r [f 9 f f f 9 DQ r Q[f ,Q WKLV QRWDWLRQ PD[LPXP DQG DGGLWLRQ DUH JLYHQ E\ WKH IROORZLQJ DQDORJV WR WKH IDPLOLDU UXOHV Q Q Q ?D r L[f 9 ?EW r L[f ?FWL 9 EWf r L[f  Q ? LQ ? PQ 9 9 rL[f @ 9 Fr rN[ff ZKHUH &N 9 Db r Ef ?M R }M MW Q LI S 9 ^DWrL[f e )BRR>U@ WKHQ WKH HOHPHQWV DW DUH FDOOHG WKH FRHIILFLHQWV RI f 3 7KH FRHIILFLHQW mR LV FDOOHG WKH FRQVWDQW WHUP (OHPHQWV RI )BRR ZKLFK DOO KDYH WKH Q IRUP f§ f§f DUH FDOOHG WKH FRQVWDQW PD[SRO\QRPLDOV ,I 3 9 D r L[f KDV DQ f§ WKHQ DQ LV FDOOHG WKH OHDGLQJ FRHIILFLHQW ,I )RR KDV DQ LGHQWLW\ DQG WKH OHDGLQJ FRHIILFLHQW RI 3 LV LS WKHQ 3 LV VDLG WR EH D PRQLF PD[SRO\QRPLDO ,W VKDOO EH Q WKH FRQYHQWLRQ KHUH WKDW ZKHQ ZULWLQJ 3 ?^D r L[f ZH KDYH DQ A f§

PAGE 35

7KH QH[W VWHS LV WR GHILQH PD[SRL\QRPLDOV LQ VHYHUDO YDULDEOHV 7KH VWDUWLQJ SRLQW LV WKDW D VHTXHQFH LV D IXQFWLRQ GHILQHG RQ WKH 1DWXUDO QXPEHUV /HW 1 EH WKH 1DWXUDO QXPEHUV DQG 1 1 [ 1 [ f f ‘ [ 1 Q IDFWRUVf 7KHRUHP /HW ) f§RRL 9 rf O\H D EHOW DQG GHQRWH E\ )f§RR>rAL" fff WKH VHW RI LOO IXQFWLRQV J 1 f§! )BRR VXFK WKDW JXf I f§RR IRU DW PRVW D ILQLWH QXPEHU RI HOHPHQWV X RI 1 Lf )RRIDT ;X@ LV D EHOW ZLWK 9 DQG r GHILQHG E\ LG 9 KfXf JXf 9 KXf DQG JrKfXf 9 JYfrK>Zf YZ X LLf ,I ) BRR LV FRPPXWDWLYH UHVS D EHOW ZLWK LGHQWLW\f WKHQ VR LV )BRR>DL +Lf 7KH PDS ‘ )BRR !‘ )B2>[UQ@ JLYHQ E\ f J ZKHUH JI f I DQG JIXf RR IRU DOO RWKHU X e 1Q LV D PRQRPRUSKLVP RI EHOWV 3URRI Lf K9JfXf K^Xf 9IOUmf J Df 9 KXf JYKfXf

PAGE 36

f V r f D \ r %f QfV r Qff D Qf\ r Qff QfV! D Qf\f r Qf "f6n $ \f r Qfe QfII D nf r Vn $ 9f r P L? Q ]?P :rDfc W? M $ P LL % ]LQ ]f\r%f%rDfI >? >? LQ ]?OL Q LQ?D Vf\ r 5f%r Dfc I? I? P ]IL? Q P?D ^]f\r^$f% >? MDf ? 9 r rff ""ff‘ !f! $ Qfe }f! $ ef Qf>9 $Af $@ }fr $ "f!f $ mf QfOO $ Qf% $ QfI LQf\ D Df }f> $ >% $f@ LH

PAGE 37

K 9 Vf r J f§ 3 9 Vf rJ@Xf >K 9 Vf@^Xf r JXf KXf 9 V^XffrJXf }mfremff Y LVLXf rmff LLf K r Jf 9 V r Jf ^JrKfXf ?JYf r KZf Z X 9 KZfrYf YZ X KrJfXf /HW OS EH WKH LGHQWLW\ RI ) 'HILQH 1 f§} E\ ,Xf OS LI L f DQG ,Zf f§RR RWKHUZLVH :H KDYH WKHQ r ,fmf J^Xf r ,mf 9 VIWf,Wf Y?Z X JX fff r f J^Xf r OS JXf ‘ LLLf )LUVW 9fL 9f O9 ,I X f WKHQ Y+ L 9 K mf Y KXff ,I X A f WKHQ L9Dff RR \mf Y JIXf

PAGE 38

1H[W LnM? r If Kr` ,I X f WKHQ LQ RUGHU IRU Y Z f§ LW LW PXVW EH WKDW Y f DQG Z f VLPXOWDQHRXVO\ 6R ^9K r IfXf 9 ALWff rIZf YZ X I Lfrf r K ,I X WKHQ LW LV QRW SRVVLEOH WR KDYH Y f DQG Z f VLPXOWDQHRXVO\ +HQFH ^L rKfLXf 9 IOYfrIZf YZ X f§ 22 I? rI Xf f 6R L! LV D KRPRPRUSKLVP ,I LOnILf f§ 8nInfL WKHQ MIAXf IXf IRU DOO X ,Q SDUWLFXODU LI X f ZH VHH WKDW I? R 4(' 7KH EHOW RI WKH SUHYLRXV WKHRUHP LV FDOOHG WKH EHOW RI PD[SRO\QRPLDOV LQ Q LQGHWHU PLQDWHV RYHU )BRF ,I Q WKHQ )BRR>Mn@ LV WKH EHOW RI PD[SRO\QRPLDOV $V LQ WKH SUHYLRXV FDVH WKHUH LV D PRUH IDPLOLDU QRWDWLRQ /HW Q EH D SRVLWLYH QXPEHU DQG IRU HDFK L OHW eL R f H 1 ZKHUH LV LQ WKH WK FRRUGLQDWH RI ,I N e 1 OHW NV N f WKHQ HYHU\ HOHPHQW RI 1 PD\ EH ZULWWHQ LQ WKH IRUP N?e? NV f f f NQVQ

PAGE 39

7KHRUHP /HW ) f§RR L 9 rf EH D EHOW ZLWK LGHQWLW\ DQG Q D SRVLWLYH LQWHJHU )RU HDFK L Q OHW [ f )BRR>[L [Q? EH GHILQHG E\ [ef A DQG [IXf RR IRU X I e Lf )RU HDFK LQWHJHU N 1 OSA DQG [IXf f§RR IRU X A NHW LLf )RU HDFK NLNQf f 1X [I ‘ ‘ ‘ [NQQNLe? E $fHff OSA DQG $n n$ ‘ ‘ ‘ [QfXf RR IRU X s nL0 f f ‘ NQHQf LLLf UILWM [AM[I IRU DOO VW Yf [?I I[? IRU DOO I ) DQG DOO W 1 YM IRU HYHU\ PD[SRO\QRPLDO J LQ [Q@ WKHUH H[LVWV XQLTXH HOHPHQWV DNXNQ e ) LQGH[HG E\ DOO N?$fQf 1 DQG QRQ f§ RR IRU DW PRVW D ILQLWH QXPEHU RI >N@ NQf 1 VXFK WKDW 9 $}rr ZKHUH WKH PD[LPXP LV WDNHQ RYHU DOO N? NQ 1 3URRI Lf 7KH FDVH IRU $ LV JLYHQ E\ GHILQLWLRQ :KHQ $n ZH KDYH [OeLf f§ 9 rrXf rrfm!f fXf H peLf r e‘e‘f ,I

PAGE 40

,I X DQG Y DUH QRW VLPXOWDQHRXVO\ H WKHQ [W>Yf r [Zf f§ RR $VVXPH WKDW WKH IRUPXOD KROGV IRU N Q f§ ,W IROORZV WKDW UQHWf ? DBXf r [L^Zf YZ QH f§ [LaO>Q f§ fe}f@r eHf OS r OS ,I f LLf DnMf]nR f f f L f f f NQHQf 9 !Lf!fOfQf L"O9 I LnLL f§ t eO + I DUIIFLHLfrDIFefD%AQf OS r OS r ‘ f f OS ,I f ,I X A $nLFM fff NQHQf WKHQ LW LV QRW SRVVLEOH IRU XM N?e? YL f§ NRe fff YQ NQeQ VLPXOWDQHRXVO\ +HQFH [?n f f f UMQXf f§RR LLLf DID Mmf OS LI DQG RQO\ LI X VW WeM EXW WM WHM VW DQG [nM;AXf OS LI DQG RQO\ LI X WHM VW +HQFH UUn

PAGE 41

LYf [8nI Y [WGYfAIZf ‘O-WWFOfWIX WeLf ,I r 9f LSM r LS r [^IHf ?nOnIZf[LLYf LnI$ ‘ Yf /HW DIFQ JN?NQf 7KH Dr DrQ DUH WKH GHVLUHG HOHPHQWV 7R VKRZ XQLTXHQHVV LI 9 DrL f nnn [WQ 9 rL f f ENQ[OO nn f [P WKHQ LM EM IRU M 1 4(' ,I )BRR9rf LV DQ\ EHOW WKHQ WKH PDS )BRR>[@ f§! )BRR>[L[Q@ GHILQHG E\ P P 9 D r L[L f§! 9 D r L[L r [ r f f f r [f LV HDVLO\ VHHQ WR EH D PRQRPRUSKLVP RI EHOWV f§ 6LPLODUO\ IRU DQ\ VXEVHW ^ ` RI ^ Q` WKHUH LV D PRQRPRUSKLVP )BRR>[@ f§r )BRR>[L [f7KH EHOW )BRR>[ [ZLOO EH LGHQWLILHG ZLWK LWV LVRPRUSKLF LPDJH DQG FRQVLGHUHG WR EH D VXEEHOW RI )RRI[L [Q@ )RU WKH SXUSRVHV RI WKH QH[W WKHRUHP ZLOO VKDOO WKH QHHG WKH IROORZLQJ GHILQLWLRQV DQG ZHOO NQRZQ WKHRUHPV >@

PAGE 42

'HILQLWLRQ $ FDWHJRU\ LV D FODVV & RI REMHFWV WRJHWKHU ZLWK Lf D FODVV RI GLVMRLQW VHWV GHQRWHG KRP$%f RQH IRU HDFK SDLU RI REMHFWV LQ &? DQ HOHPHQW n RI KRP$%f LV FDOOHG D PRUSKLVP IURP $ WR % DQG LV GHQRWHG I $ f§} % LLf IRU HDFK WULSOH $%&f RI REMHFWV RI & D IXQFWLRQ KRUQ%&f [ KRLQ$%f f§! KRP$&f IRU PRUSKLVPV $ f§ % J % f§! & WKLV IXQFWLRQ LV ZULWWHQ f f§} J R I DQG J R I $ f§} & LV FDOOHG WKH FRPSRVLWH RI DQG Jf? DOO VXEMHFW WR WKH WZR D[LRPV ,f $VVRFLDWLYLW\ ,I J $ f§! % K % f§‘! & V & f§! DUH PRUSKLVPV RI & WKHQ K R J R Vf K R Jf R V ,,f ,GHQWLW\ )RU HDFK REMHFW % RI & WKHUH H[LVWV D PRUSKLVP E % f§! % VXFK WKDW IRU DQ\ J $ f§ % K % f§! & + J J DQG c R E K ,Q D FDWHJRU\ & D PRUSKLVP J $ f§! % LV FDOOHG DQ HTXLYDOHQFH LI WKHUH LV LQ & D PRUSKLVP K % f§! $ VXFK WKDW KRJ $ DQG J R K OJ ,I J $ f§! % LV DQ HTXLYDOHQFH $ DQG % DUH VDLG WR EH HTXLYDOHQW 'HILQLWLRQ $Q REMHFW LQ D FDWHJRU\ & LV VDLG WR EH XQLYHUVDO LI IRU HDFK REMHFW RI & WKHUH H[LVW RQH DQG RQO\ RQH PRUSKLVP f§! & 7KHRUHP $Q\ WZR XQLYHUVDO REMHFWV LQ D FDWHJRU\ & DUH HTXLYDOHQW 7KHRUHP /HW )RR 9 rf DQG 6RR 9 rf EH FRPPXWDWLYH EHOWV ZLWK LGHQWLW\ DQG LS )BRR f§r 6RR D KRPRPRUSKLVP RI EHOWV VXFK WKDW ,If \ Vf ‘ OIV?L VL VQ e 6 WKHQ WKHUH LV D XQLTXH KRPRPRUSKLVP RI EHOWV 7S )BRR>[L [Q@ 6 VXFK WKDW

PAGE 43

cS )BRR S DQG S[Lf f§ V IRU L 7KLV SURSHUW\ FRPSOHWHO\ GHWHUPLQHV WKH SRO\QRPLDO EHOW )RRMDnL XS WR LVRPRUSKLVP 3URRI ,I J )RTAL[Q? WKHQ P ? DL[? ‘ ‘ ‘ [NQnQ D )BRR NLM f 1f W E\ 7KHRUHP 7KH PDS S JLYHQ E\ SJf SJVL VQf LV ZHOO GHILQHG PDS VXFK WKDW S )RR S DQG S^[f V :H XVH WKH IDFW WKDW S LV D KRPRPRUSKLVP WR VKRZ WKDW S LV D KRPRPRUSKLVP ,I JML ( )BRR>DfL WKHQ S^J 9 Kf SJ 9 LfVL f VQf 9 9 f VL ?0Dmf 9 Amnf@VL f f Vm n f fVm@ 9 00VL f f ‘ 6Q@ 9 Am! f f 6Q ?c SELfV ‘ f f 6f DQG £ 9 !f g" r Lf $WM  W O ,r 9 9 D}L‘‘fr"! r}"L LL me `  f-nO f f f rQ MM   Lf§ G Y>J r Kf^tL V}f@ L Q Q r 9 9 9 9 ‘ ‘ 9 9ADr Armn mn L` M   X  ` f ‘ f "` LMf6Qf

PAGE 44

O 8n OK 0 N N .Q .Q 9 9 9 9 99.r. r} rff    Q "@  f A L cQfVQf N   Y fff Y M f§ cQ 9 f 9 ADmOnQfOnO6Ofr% r L_  "f 6XSSRVH WKDW 9f )BRR>[L [ff§} 6BRR LV D KRPRPRUSKLVP VXFK WKDW )BF ! DQG [f  IRU HDFK L &RPSXWLQJ f ZH KDYH P 9 9fmrf9f M Lff f ‘ ‘ ffQf LQ 9 f ‘ fWO!^[QfNLQ 9 fff  R fUf L VQf YLJf ‘ 6R WKHQ DQG VR LV XQLTXH &DWHJRU\ WKHRU\ LV QRZ HPSOR\HG WR VKRZ WKDW WKLV SURSHUW\ FRPSOHWHO\ GHWHUPLQHV WKH EHOW )BRR>[L 'HILQH D FDWHJRU\ & ZKRVH REMHFWV DUH DOO Q fWXSOHV .BRR VL ZKHUH A LV D FRPPXWDWLYH EHOW ZLWK LGHQWLW\ V DQG )BRR f§! .BRR LV D KRPRPRUSKLVP ZLWK If ,N 2XU DLP LV WR VKRZ WKDW WKH REMHFW L )BRR>[L[QM [L [Qf LV XQLYHUVDO LQ WKLV FDWHJRU\

PAGE 45

'HILQH D PRUSKLVP LQ & IURP S .BRR VL VQf WR S *BRR D?Dff DV D KRPRn PRUSKLVP RI EHOWV S .BFR f§ *RR VXFK WKDW 3Nf J SLf DQG S^Vf W IRU L Q S BRF f§} *RR LV DQ HTXLYDOHQFH LQ & LI DQG RQO\ LI S LV DQ LVRPRUSKLVP RI EHOWV ,I W )RR f§} )BRR>DL[f@ LV WKH LQFOXVLRQ PDS WKHQ WKH ILUVW SDUW RI WKH SURRI VKRZV WKDW  )BRF>DLDQ@ [? [Qf LV D XQLYHUVDO REMHFW LQ & $Q\ RWKHU REMHFW ZKLFK LV XQLYHUVDO LV HTXLYDOHQW DQG VR ZLOO EH LVRPRUSKLF 7KHUHIRUH )RR>]L fff [Q@ LV FRPSOHWHO\ GHWHUPLQHG XS WR LVRPRUSKLVP E\ 7KHRUHP 4(' &RUROODU\ /HW )BO2 9 rf EH D FRPPXWDWLYH EHOW ZLWK LGHQWLW\ DQG Q D SRVLWLYH LQWHJHU )RU HDFK N G Qf WKHUH DUH LVRPRUSKLVPV RI EHOWV )f§RR>r'L f‘‘L n fff‘f fnLnQ@ )f§RFL >p f‘‘L 3Q@ )BRRID"IHBLBLDf@>D"WDUr@ 3URRI 7KH XQLYHUVDO PDSSLQJ SURSHUW\ HVWDEOLVKHG LQ 7KHRUHP LV LQYRNHG WR SURYH WKH FRUROODU\ *LYHQ D KRPRPRUSKLVP S )ARR f§! 6BRR RI FRPPXWDWLYH EHOWV ZLWK LGHQWLW\ DQG HOHPHQWV e )BRR>UL [Q@ WKHUH H[LVWV D KRPRPRUSKLVP S! )BRR>[L Uf@ f§! 6r VXFK WKDW 7S ? )BRR S! DQG S^[Wf V IRU L f§ N E\ 7KHRUHP $SSO\LQJ 7KHRUHP ZLWK )BRF>[ [IF@ LQ SODFH RI )BRR \LHOGV D KRPRPRUSKLVPA )BRR>[L[IF@>DMW [Q@ rf 6BRR VXFK WKDW A )BRR>[L er@

PAGE 46

I DQG S[Lf 6L IRU L %\ FRQVWUXFWLRQ S )r S ? )BRF S DQG S[Lf 6L IRU L Q 6XSSRVH WKDW )BRR>UL[r@>DMW[Q@ 6BRR LV D KRPRPRUSKLVP VXFK WKDW If )RR S DQG S^[Wf V IRU L 7KH VDPH DUJXPHQW XVHG LQ WKH SURRI RI XQLTXHQHVV VWDWHPHQW RI 7KHRUHP VKRZV WKDW M! )BRR>]L frr@ S 7KHUHIRUH WKH XQLTXHQHVV VWDWHPHQW RI 7KHRUHP LPSOLHV WKDW M! S &RQVHTXHQWO\ )BRR>AW Ur@>eMWL [Q@ KDV WKH GHVLUHG XQLYHUVDO PDSSLQJ SURSHUW\ ZKHQFH )BRR>DL D"IF@>DMIFL DQ@ )BRR>DUL DUf@ E\ 7KHRUHP 7KH RWKHU LVRPRUSKLVP LV SURYHG VLPLODUO\ 4('

PAGE 47

&+$37(5 )$&725,=$7,21 ,QWURGXFWLRQ 2Q WKH IRUHIURQW RI PDWKHPDWLFDO PRUSKRORJ\ UHVHDUFK LV WKH DUHD RI WHPSODWH GHFRPSRVLWLRQ 7KH DUHD FRQVLVWV RI WDNLQJ D WHPSODWH ZLWK D ODUJH VXSSRUW DQG UHGXFLQJ LW WR D QXPEHU RI WHPSODWHV ZLWK VPDOOHU VXSSRUWV 7KH IXQGDPHQWDO SURSHUW\ ZKLFK JLYHV ULVH WR VXFK D VWXG\ LV WKH IDFW WKDW FRQYROXWLRQV DUH DVVRFLDWLYH 6R LI W LV D WHPSODWH ZKLFK KDV WKH IROORZLQJ GHFRPSRVLWLRQ UDc Uf Y UDMMVf W WKHQ WKH FRQYROXWLRQ RI DQ LPDJH D ZLWK W LV JLYHQ E\ >D ULf Uff UK@ 9 >>D Vf Vff V@@ 6LPLODUO\ ZH PD\ XVH D WHPSODWHV GHFRPSRVLWLRQ WR UHZULWH D WHPSODWHWHPSODWH FRQn YROXWLRQ 2QH RI WKH JRDOV RI DQ\ DOJRULWKP LV WR UHGXFH FRPSXWDWLRQDO FRPSOH[LW\ 7HPSODWH GHFRPSRVLWLRQ LV RQH RI WKH EHVW WRROV IRU DFKLHYLQJ WKLV HQG $ WHPSODWH PD\ EH UHSUHVHQWHG DV D PD[SRO\QRPLDO 7R UHSUHVHQW D WZRGLPHQVLRQDO WHPSODWH DV D PD[SRO\QRPLDO OHW WKH FRHIILFLHQWV GLM EH GHILQHG E\ DWWRf]‘!-f IrU & = >@ 1H[W HOLPLQDWH DQ\ QHJDWLYH

PAGE 48

PXOWLSOHV RI WKH LQGHWHUPLQDQWV IURP WKH H[SUHVVLRQ 9 9 mR O[ -9 f H] MJ] ZKHUH DWf§ RR E\ DGGLQJ WKH ORZHVW QHJDWLYH PXOWLSOHV RI [ DQG \ ZKLFK DUH SUHVHQW LQ WKH H[SUHVVLRQ 7KH DGGLQJ RI WKH LQGHWHUPLQDQWV DPRXQWV WR D VKLIW RI WKH WHPSODWH VR WKDW LWV VXSSRUW OLHV LQ WKH ILUVW TXDGUDQW &DUH PXVW EH WDNHQ WR NHHS WKLV VKLIW LQ PLQG ZKHQ WUDQVODWLQJ IURP PD[SRO\QRPLDOV EDFN WR WHPSODWHV 6LQFH PD[SRO\QRPLDOV FDQ UHSUHVHQW WHPSODWHV IDFWRULQJ WKH PD[SRO\QRPLDOV LV RQH ZD\ RI UHGXFLQJ D ODUJH WHPSODWH LQWR VPDOOHU RQHV 0D[SRO\QRPLDOV PD\ EH DSSOLHG WR WKH IRXU ODWWLFH FRQYROXWLRQV k DQG # 7KH UHODWLRQVKLS EHWZHHQ WKH DGGLWLYH PD[ DQG WKH DGGLWLYH PLQ (O LV JLYHQ LQ WHUPV RI ODWWLFH GXDOLW\ E\ DOW WrDrfr < ZKHUH WKH LPDJH Dr LV GHILQHG E\ Dr[f >D[f@r DQG WKH FRQMXJDWH RI W e 5sRRf fV WKH WHPSODWH Wr e 5sRRf GHILQHG E\ Wr\f >W\[f@r 6LPLODUO\ WKHUH LV D GXDOLW\ UHODWLRQ EHWZHHQ WKH PXOWLSOLFDWLYH PD[ DQG WKH PXOWLSOLFDWLYH PLQ JLYHQ E\ D#W Wr kDr fr +HUH KRZHYHU W e A5Af;A ‘ )URP WKHVH UHODWLRQV LW LV FOHDU WKDW DQ\ UHVXOWV REWDLQHG IRU DQG k DUH DOVR UHVXOWV IRU ( DQG k 7KH FRQYROXWLRQ k LV RIWHQ FRPSXWHG RYHU 5r9 [f %XW XQGHU WKH PDS LS[f H[ 5BRR 9f LV LVRPRUSKLF WR 5r 9 [f 7KHUHIRUH LW VXIILFHV WR FRQVLGHU RQO\ WKH FRQYROXWLRQ

PAGE 49

7ZR FRPPRQ YDOXH VHWV XVHG LQ WKH (O FRQYROXWLRQ DUH 5BRR DQG ^f§RR` 6HFWLRQ LV GHYRWHG WR WKH IRUPHU DQG 6HFWLRQ WR WKH ODWWHU FDVH %DVLF 3URSHUWLHV ,Q WKLV VHFWLRQ ZH PHQWLRQ D IHZ SURSHUWLHV ZKLFK FDQ EH DSSOLHG WR PD[SRO\QRPLDOV RYHU JHQHUDO EHOWV 'HILQLWLRQ ,I 3[f LV D PD[SRO\QRPLDO RYHU WKH EHOW )BRR 9 rf WKHQ 3^[f LV D IDFWRU RI D PD[SRO\QRPLDO 4^[f LI WKHUH H[LVWV D PD[SRO\QRPLDO 5[f VXFK WKDW 5[fr3[f 4[f 7KH GHJUHH RI D PD[SRO\QRPLDO LV GHILQHG LQ WKH VDPH PDQQHU DV UHJXODU SRO\QRPLDOV 7KDW LV LI D[nO [GI ‘ ‘ ‘ [AQ LV D PRQRPLDO WKHQ WKH H[SRQHQW FO LV FDOOHG WKH GHJUHH LQ [W 7KH VXP G f§ G? HI! I GQ LV FDOOHG WKH GHJUHH RI WKH PRQRPLDO 7KH RUGHUHG QWXSOH  } ‘ GQf LV WKH PXOWLGHJUHH RI WKH PRQRPLDO 7KH GHJUHH RI D PD[SRO\QRPLDO LV WKH ODUJHVW GHJUHH RI DQ\ RI LWV PRQRPLDO WHUPV 7KHUH LV RQH QRWDEOH H[FHSWLRQ WR WKHVH IDPLOLDU UXOHV 7KH GHJUHH RI WKH f§RR PD[SRO\QRPLDO LV GHILQHG WR EH f§ RR DQG WKH GHJUHH RI WKH ]HUR PD[SRO\QRPLDOV LV $GGLWLRQDOO\ ZH KDYH WKH IROORZLQJ REVHUYDWLRQV DERXW WKH GHJUHH RI D PD[SRO\QRPLDO 7KHRUHP /HW 34 ( )BRR>H@ WKHQ Lf GHJ^4 9 3f PD[ GHJ^4f GWJ^3ff LLf GHJ 4 r 3f GHJ4f GHJ^3f )RU WKH WUDGLWLRQDO SRO\QRPLDO WKH ZD\ WR FKHFN LI 4[f GLYLGHV 3^[f LV WR DSSO\ WKH 'LYLVLRQ $OJRULWKP DQG VHH LI WKHUH LV D QRQYDQLVKLQJ UHPDLQGHU 7KH 'LYLVLRQ $OJRULWKP LV XVXDOO\ VWDWHG DV IROORZV >@

PAGE 50

7KHRUHP ,I 5 EH D ILHOG DQG I J ( 5>[@ WKHQ WKHUH H[LVWV TU ( 5>F@ VXFK WKDW I J r T U DQG GHJUf GHJJf 7KH SURRI RI WKLV WKHRUHP UHOLHV RQ WKH JURXS VWUXFWXUH RI 5 ,Q WKH FDVH RI D EHOW WKHUH LV QRW DV VWURQJ D FRQGLWLRQ RQ )BRR +HQFH D VWULFW WUDQVODWLRQ RI WKH GLYLVLRQ DOJRULWKP LV QRW SRVVLEOH 7KH QH[W H[DPSOH GHPRQVWUDWHV WKLV VKRUWFRPLQJ ([DPSOH /HW )BRR9rf 5BRR9f &RQVLGHU 9 [f 9 [f DQG J Y [f 6LQFH GHJUf GHJJf GHJUf 6R U PXVW EH D FRQVWDQW $OVR GHJf DQG VLQFH GHJJf LW PXVW EH WUXH WKDW GHJ[f 4[f PHDQV WKDW D D? KL

PAGE 51

7KHRUHP /HW )BBO& 9 rf EH D EHOW ZLWK GXDOLW\ VXFK WKDW WKH ILQLWH HOHPHQWV IRUP D GLYLVLRQ EHOW DQG 34 )BRR>[@ 6XSSRVH GHJ3f Q DQG GHJ4f P ZLWK Q P /HW 3[f DR 9 D? [f 9 f ‘ f 9 DQ Q[f DQG 4[f f§ ER 9 M [f 9 f f f 9 EP P[f /HW EH WKH VHW RI LQGLFHV VXFK WKDW EN I f§RR )RU HDFK N OHW Qf§PN KN ? ^DM r EIf M Nf[f M N ,I + LV GHILQHG E\ + c? KN NH N WKHQ + VDWLVILHV +[f r 4[f 3[f )XUWKHUPRUH LI 5[f LV DQ\ RWKHU PD[SRO\QRPLDO VXFK WKDW 5^[f r 4>[f 3[f WKHQ +[f 5[f 3URRI ,I +M LV WKH MWK WHUP RI + WKHQ $ n:rnUf NH N DQG M ^+ r 4fM 9 ^+ML r ELf L ,I WKHUH H[LVWV N H VXFK WKDW N M WKHQ ^+r4fM 9 $ DNLO r NM ?LH. r EN 9 ^,N r ,If r EN N DN ‘ 2WKHUZLVH DOO L DUH f§ RR DQG VR r f§RR 6XSSRVH WKDW WKHUH H[LVWV DQ 5[f VXFK WKDW 5[f +[f DQG 5[f r 4Df 3[f /HW 5M +M 6LQFH P ( . A +HQFH WKHUH H[LVWV N ZLWK ,I D-N r EI

PAGE 52

7KLV JLYHV MN 5 r 4fMN ?5MNL r E DN r r ENM DN DQG WKLV LV D FRQWUDGLFWLRQ 4(' &RUUROODU\ /HW 3 4 DQG + EH DV LQ 7KHRUHP 7KHQ 4^[f LV D IDFWRU RI 3[f LI DQG RQO\ LI +[f r 4[f 3[f 3URRI ,I 4 LV D IDFWRU RI 3 WKHQ WKHUH H[LVWV 5[f VXFK WKDW 4[f r 5[f 3^[f 7KHUHIRUH 3[f 5[f r 4[f +[f r 4[f 3[f 7KH RWKHU GLUHFWLRQ LV FOHDU 4(' :H GHILQH WKH GLYLVLRQ RI WZR PD[SRO\QRPLDOV DV 34 + ,Q WKH H[DPSOH EHIRUH 7KHRUHP ZH VDZ KRZ WKH 'LYLVLRQ $OJRULWKP FDQ EUHDNGRZQ +RZHYHU ZH FDQ DSSO\ 7KHRUHP WR WKH H[DPSOH LQ D ZHOO GHILQHG ZD\

PAGE 53

([DPSOH $JDLQ OHW 2 9 [f 9 [f DQG T 9 [f 7KH TXRWLHQW IT LV FDOFXODWHG E\ ILUVW ILQGLQJ K? f 9 Uf DQG K f 9 [f 7KHQ IT KL $ KR f§ 9 [f 1RWLFH WKDW I T T A ZKLFK VKRZV WKDW T LV QRW D IDFWRU RI ,Q WKH QH[W WZR VHFWLRQV H[WHQVLYH XVH LV PDGH RI WKH IDFW WKDW WKH ILQLWH HOHPHQWV RI WKH EHOWV XQGHU FRQVLGHUDWLRQ IRUP D GLYLVLRQ EHOW 7R LQFOXGH WKH PRVW JHQHUDO RI SRVVLELOLWLHV ZH QRWH D SURFHGXUH IRU ZKHQ WKH HOHPHQW XQGHU FRQVLGHUDWLRQ LV f§ RR )RU WKH DOO VXEVHTXHQW GLVFXVVLRQV LI [ ) WKHQ [ f§ f§ RRf [ RR RR +RZHYHU f§ RR f§ f§RRf f§RR 0D[SRO\QRPLDOV RYHU 5BRR 9f .HHSLQJ LQ PLQG WKH VWUXFWXUH 5B;f9f WKH IROORZLQJ LV QRWHG

PAGE 54

5HPDUN $ PD[SRO\QRPLDO 3[f LV D IDFWRU RI WKH PD[SRO\QRPLDO LI WKHUH H[LVWV D PD[SRO\QRPLDO 5[f VXFK WKDW 5[f 3[f 4[f 7KHRUHP /HW 3[f DR 9 D? [f 9 ‘ f f 9 Df Q[f EH D PD[SRO\QRPLDO ,I WKH ILUVW GHJUHH WHUP E 9 [ff LV D IDFWRU RI 3 WKHQ E PXVW VDWLVI\ HcR f§ DL RQ f§ D 3URRI /HW 3[fE 9 Dff R 9 Uf 9 f f f 9 fBL ^Q Of]f %\ FRPSXWDWLRQ LI 3[f DR 9 DL [f 9 f f f 9 Df Q[f WKHQ LW PXVW EH WUXH WKDW DR f§ Ef $ D f§ f 6LQFH 9 [ff LV D IDFWRU RI 3[f E DR 6R DR f§ E 7KHUHIRUH DR f§ E D /RRNLQJ DW fBL UHYHDOV WKDW \QL DQ $ DQBL f§ Ef ,Q D VLPLODU PHWKRG LW PD\ EH FRPSXWHG WKDW DQ DQ? f§ E 4(' ,Q FHUWDLQ FDVHV 7KHRUHP FDQ EH VWUHQJWKHQHG 7\SHV RI V\PPHWULHV RIWHQ KDYH DLGHG LQ WKH IDFWRUL]DWLRQ RI SRO\QRPLDOV >@ ,Q PD[SRO\QRPLDOV DV ZHOO WKHVH SURSHUWLHV FDQ EH H[SORLWHG :H VKDOO QHHG WKH QH[W GHILQLWLRQ

PAGE 55

'HILQLWLRQ $ PD[SRO\QRPLDO 3[f f§ D R 9 D@ Df 9 f f f 9 DQ Q[f LV VDLG WR EH VNHZ V\PPHWULF LI D f§DfB IRU DOO f§ Q 1RWH WKDW WKLV LPSOLHV WKDW LI Q LV HYHQ WKHQ WKH FHQWHU WHUP LV ]HUR 7KHRUHP FDQ EH SDUWLFXODUO\ XVHIXO ZKHQ GHDOLQJ ZLWK D VNHZ V\PPHWULF PD[SRO\QRPLDO ,I LW LV DSSOLHG WR WKLV FDVH WKH IROORZLQJ UHVXOW LV REWDLQHG &RUROODU\ /HW 3 5BRR >D@ EH VNHZ V\PPHWULF ,I WKH ILUVW GHJUHH WHUP >E 9 Dfff LV D IDFWRU RI 3 WKHQ E D R mL ,W FDQ EH VKRZQ WKDW IRU VNHZ V\PPHWULF PD[SRO\QRPLDOV RI GHJUHHV DQG WKH WHUP ^E 9 Uff ZLWK E DR f§ D? LV DOZD\V D IDFWRU 7KH WKUHH FDVHV DUH VKRZQ LQ WKH IROORZLQJ UHVXOWV /HW 3 mR 9 Uf 9 f§D Df 7KH ILUVW VWHS LV WR GLYLGH 3 E\ DQ 9 [f UHVXOWLQJ LQ 9 f§mR fn‘f %\ DGGLQJ EDFN WKH WHUP LW FDQ EH VHHQ WKDW > 9 f§mR Uf@ >DR 9 Df@ 3 7KXV E 9 [ff LV D IDFWRU LQ WKLV FDVH ,I 3 mR 9 ^D? Df 9 f§mL Df 9 f§mR Df WKHQ WKHUH DUH WZR SRVVLELOLWLHV IRU 3mR mLf 9 Dff ,I m@ DR DL WKHQ 3^DR D?f 9 Dff FX 9 f§mL Df 9 D Df DQG DJDLQ >mO 9 DL Df 9 D Df_ >D DLf Dff@ 3

PAGE 56

2Q WKH RWKHU KDQG LI f§m f§D D? WKHQ 3^^DR a DLf 9 [ff D 9 m Dcf [f 9 aD [f DQG LW LV VWLOO WUXH WKDW >m 9 L? [f 9 f§D D?f [f@ >D DWf Uff@ 3 ,I 3 f§ IO Y m [f 9 [f 9 f§ m [f 9 f§mR G[f WKHQ WKHUH DUH VWLOO MXVW WZR SRVVLELOLWLHV IRU 3DR f§ D?f 9 [ff ,I f§ FLT WKHQ 3^>DR mf 9 [ff m 9 m mL [f 9 mR m [f 9 R [f $GGLQJ m f§ mf 9 [ff WR WKLV UHFRYHUV 3 ,I f§m D? WKHQ 3D D?f 9 [ff D L 9 [f 9 mL [f 9 D [f $GGLQJ EDFN mR f§ Dcf 9 [ff DJDLQ JLYHV XV 3 2I FRXUVH LW LV QRW DOZD\V WUXH WKDW 9 [ff LV D IDFWRU $ FRXQWHU H[DPSOH LV RI GHJUHH ,I 4[f 9 [f 9 [f 9 [f 9 [f 9 f§ [f WKHQ 4[f 9 [ff 9 [f 9 [f 9 [f 9 f§ [f 1RZ E\ DGGLQJ EDFN 9 [ff ZH VHH WKDW 4 LV QRW UHFRYHUHG

PAGE 57

7KHRUHP /HW 3[f mR 9 mL [f 9 9 DQ Q[f EH D PD[SRO\QRPLDO ZLWK D f§RR IRUL OQ &RPSXWH WKH QXPEHUV ,S XT f§ D?ER D? DEQ DQ? f§ DQ ,I WKHUH H[LVWV D QXPEHU M VXFK WKDW PD[ ,f PLQ n L MOQ WKHQ 3^[f FDQ EH IDFWRUHG LQWR D PD[SRO\QRPLDO RI GHJUHH M DQG D PD[SRO\QRPLDO RI GHJUHH Q f§ M 3URRI 'HILQH 3R DR 9 DL [f 9 f f f 9 M[f DQG 3? 9 D-L DM [f 9 DD` Df 9 f f f 9 mf DM Q Mf[f /HW 3 3L UR 9 FL [f 9 ‘ ‘ f 9 FQ Q[f ,I N M WKHQ IRU  N f§ DMO f§ DMO DLO a DLOL L f§ N f§ L f§ +HQFH 7KLV JLYHV NLO Nf§ f§ mm‘mmf ] R n-W DW m$ 9 9 Dr DMIFWn DMf 9 N 9 D D-IFB DMf

PAGE 58

,I N M WKHQ IRU L M f§ DNO f§ DNO DLO f§ DLO M f§ L f§ 6R ZKLFK JLYHV MLO MLO ^DNO f§ DNOOf LDLO f§ DLOf 8 mLW mLW 9 < D D\f ?L N 9 DMNL DMf L FN 4(' 7KLV WKHRUHP FDQ EH DSSOLHG WR VRPH FDVHV LQ ZKLFK VRPH RI WKH FRHIILFLHQWV DUH f§ RR 7KH QH[W FRUROODU\ VKRZV WKDW D VWULFW LQHTXDOLW\ RQ WKH GLIIHUHQFHV RI WKH FRHIILFLHQWV LV DOO WKDW LV QHHGHG &RUROODU\ /HW 3^[f mR 9 IDM Uf 9 9 Df I QUf EH D PD[SRO\QRPLDO &RPSXWH WKH QXPEHUV E? DR f§ D? E! D? f§ D !r ‘ ‘ ‘ EQ DfBL f§ Df ,I WKHUH H[LVWV D QXPEHU M VXFK WKDW PD[M PLQ EW L O M L MOQ WKHQ 3^[f FDQ EH IDFWRUHG LQWR D PD[SRO\QRPLDO RI GHJUHH M DQG D PD[SRO\QRPLDO RI GHJUHH Q f§ M 3URRI 7KH VWULFW LQHTXDOLW\ PHDQV WKDW DM I RR 7KH SURRI LV WKH VDPH DV WKDW RI WKH SUHYLRXV WKHRUHP 4('

PAGE 59

([DPSOH ,I 3 Df 9 Df 9 Df WKHQ E? f§ f§RR f§ f§ RF E  f§ &RUROODU\ VD\V WKDW RQH SRVVLEOH IDFWRUL]DWLRQ LV 3 > [f 9 Df@ > 9 Df@ ([DPSOH 7KLV H[DPSOH VKRZV WKDW WKH FRQGLWLRQV RI 7KHRUHP DUH RQO\ VXIILFLHQW FRQGLWLRQV /HW 3 9 Df 9 [f 9 DUf 9 [f 9 Df 7KLV PD[SRO\QRPLDO PD\ EH IDFWRUHG DV 3 > 9 [f 9 Df@ > 9 [f 9 Df 9 Df@ +RZHYHU LW GRHV QRW PHHW WKH FRQGLWLRQV RI 7KHRUHP 2QH FODVV RI PD[SRO\QRPLDOV ZKLFK LV FRPPRQ LQ WHPSODWH UHSUHVHQWDWLRQ LV V\Pn PHWULF PD[SRO\QRPLDOV 6\PPHWULF SRO\QRPLDOV ZHUH VWXGLHG E\ 0DQVHXU @ :H IROORZ WKDW GHILQLWLRQ IRU V\PPHWULF SRO\QRPLDOV

PAGE 60

'HILQLWLRQ $ PD[SRO\QRPLDO 3[f mX 9 D? [f 9 f f f 9 mf QVf LV V\PPHWULF ZLWK UHVSHFW WR Q LI D DQB IRU DOO  Q :KHQ D PD[SRO\QRPLDO LV VDLG WR EH V\PPHWULF ZH VKDOO DOZD\V PHDQ ZLWK UHVSHFW WR WKH GHJUHH RI WKH PD[SRO\QRPLDO &RUROODU\ ,I 3 LV D V\PPHWULF PD[SRO\QRPLDO RI HYHQ GHJUHH VXFK WKDW WKH FRHIILFLHQWV LQFUHDVH IURP mR WR DQ WKHQ 3 IDFWRUV LQWR WZR PD[SRO\QRPLDOV RI GHJUHH Q 3URRI 7KH FRQGLWLRQV RQ 3 LPSO\ WKDW WKH QXPEHUV E DUH JUHDWHU WKDQ RU HTXDO WR IRU L f§ Q DQG OHVV WKDQ RU HTXDO WR IRU L I OQ +HQFH 7KHRUHP DSSOLHV 4(' :KHQ WKH FRQGLWLRQV RI WKH FRUROODU\ DUH PHW DQG D} LV HYHQ D} PD\ EH VXEWUDFWHG IURP 3T DQG DGGHG WR )? 'RLQJ VR UHVXOWV LQ D IDFWRUL]DWLRQ ZKLFK VKDOO EH VKRZQ WR EH YDOXDEOH LQ WKH GHFRPSRVLWLRQ RI WZR YDULDEOH PD[SRO\QRPLDOV 7KLV FRUROODU\ ZLOO EH XVHG LQ 7KHRUHP 4(' 7KHRUHP ,I 3[f LV D V\PPHWULF PD[SRO\QRPLDO RI HYHQ GHJUHH DQG 3 IDFWRUV LQWR ILUVW GHJUHH WHUPV WKHQ DOO WKH IDFWRUV DSSHDU LQ FRQMXJDWH SDLUV 3URRI /HW 3![f 9 m [f 9 [f 6LQFH 3 IDFWRUV WKH IDFWRUV PXVW KDYH FRQVWDQW WHUPV ZKLFK DGG WR JLYH WKH FRQVWDQW WHUP RI 3 DQG WKH FRHIILFLHQWV RI WKH KLJKHVW WHUPV PXVW DGG WR JLYH WKH KLJKHVW WHUP 7KHUHIRUH LI FR 9 FL Uff LV D IDFWRU WKHQ WKH RWKHU IDFWRU PXVW EH f§F 9 f§F? [ff

PAGE 61

1H[W DVVXPH WKDW WKH UHVXOWV KROGV IRU D PD[SRO\QRPLDO RI GHJUHH Q *LYHQ 3Q WKH UHGXFLELOLW\ FULWHULRQ SURYLGHV WKDW 3Q 3Q >ER 9 E? [ff T 9 >E? [ff 7KH FRQVWDQW WHUP RI 3Q LV 7KHUHIRUH 3Q >ER 9 >E? [ff KDV ER DV WKH FRQVWDQW WHUP $OVR 3Q KDV D FRQVWDQW WHUP RI +HQFH PXVW HTXDO f§ER 6LPLODUO\ LW LV VKRZQ WKDW E? f§ f§E? 4(' 7KHRUHP /HW 3 9 DL [f 9 f f f 9 DL Q f§ f[f 9 Q[f EH D V\PPHWULF PD[SRO\QRPLDO RI HYHQ GHJUHH ,I >E 9 [ff LV D IDFWRU RI 3 WKHQ E D? 3URRI 6XSSRVH WKDW E D? DQG 9 [ff LV D IDFWRU RI 3 7KH GLYLVLRQ WKHRUHP LV XVHG WR FDOFXODWH 3cE? [ff 7KH FDQGLGDWHV IRU WKH FRHIILFLHQW RI >Q f§ f[ DUH D f§ E DQG ,Q RUGHU IRU >!t 9 rff@ 9 Dff 3 LW PXVW EH WUXH WKDW D? f§ E 7KXV WKHUH LV D FRQWUDGLFWLRQ 7KHRUHP /HW 3 f§ 9 D? [f 9 m [f 9 f f f 9 m Q f§ 9 Q[f EH D V\PPHWULF PD[SRO\QRPLDO RI HYHQ GHJUHH 'HILQH FL D? DQG F D[ f§ DW? IRU L f§ 7KH PD[SRO\QRPLDO 3 IDFWRUV LQWR ILUVW GHJUHH WHUPV LI DQG RQO\ LI 3 FL 9 [ff FL 9 [ff F9 [ff f§& 9 [ff FQ 9 ;ff f§ &Q 9 [ff

PAGE 62

3URRI 6XSSRVH WKDW 3 IDFWRUV LQWR ILUVW GHJUHH WHUPV %\ WKHRUHP 3Q GL 9 rff 9 Uff fn f >GQ 9 Uff f§GQ 9 8 [ff $Q RUGHULQJ RQ WKH GW VXFK WKDW G? G! ‘ Gs PD\ EH DVVXPHG &RPELQLQJ FRQMXJDWHV ILUVW \LHOGV 3 9 GL f 9 rff 9U Lf 9 Ufff 9 GQ [f 9 Ufff 8VLQJ WKH RUGHULQJ RQ WKH GX ZH EHJLQ FRPELQLQJ PRUH WHUPV 7KH ILUVW VWHS \LHOGV 3 9 GL [f 9 UL G [f 9 GL [f 9 [ff 9 G [f 9 [ff 9 G [f 9 [f ‘ f f 9 GQ [f 9 [ff &RQWLQXLQJ LQ WKLV ZD\ UHVXOWV LQ

PAGE 63

3 2 9 GL [f 9 GL G [f 9 G? G! G Uf 9 f f f 9 GL G ? GQ Qf[f 9 f f f \ GL Q f§ fFf 9 2 Q[f 7KXV GL DL DQG GW DW f§ DBM 4(' ([DPSOH &RQVLGHU WKH WHPSODWH A $ R &2 ZKHUH $ LV D IUHH SDUDPHWHU 7KH FRUUHVSRQGLQJ PD[SRO\QRPLDO LV 9 $ [f 9 $ [f 9 $ Uf 9 Uf $FFRUGLQJ WR 7KHRUHP WKLV IDFWRUV DV f§ $9 Uff I $ 9 Uff f§$ 9 [ff $ 9 [ff 7KH FRUUHVSRQGLQJ WHPSODWHV DUH S $ O $ $

PAGE 64

7KHRUHP OHDGV LPPHGLDWHO\ WR VHYHUDO REVHUYDWLRQV 2QH LV WKDW D V\PPHWn ULF PD[SRO\QRPLDO FDQ RQO\ IDFWRU FRPSOHWHO\ LI DOO WKH WHUPV DUH SRVLWLYH $QRWKHU REVHUYDWLRQ LV VKRZQ LQ WKH QH[W WKHRUHP &RUROODU\ ,I 3 f§ RR 9 R Uf 9 ‘ ‘ ‘ 9 RR Q[f LV V\PPHWULF DQG IDFWRUV LQWR ILUVW GHJUHH WHUPV WKHQ R RL IRU N &RUROODU\ ,I 3 mR 9 D L [f 9 f f ‘ 9 mR Q[f LV V\PPHWULF DQG IDFWRUV LQWR ILUVW GHJUHH WHUPV WKHQ RL f§ DW Dc D IRU L f§ 7KHRUHP ,I 3 LV V\PPHWULF RI RGG GHJUHH DQG WKH FRHIILFLHQWV LQFUHDVH IURP Dc WR DLL WKHQ WKHUH H[LVWV 4 V\PPHWULF RI HYHQ GHJUHH VXFK WKDW 4 9 Uff 3 3URRI /HW 3 9 DL [f 9 f f f 9 9 f[ 9 f f f 9 mL Q f§ OfUf 9 Q[f 1H[W GLYLGH 3 E\ 9 [ff 5HFDOO WKDW 3^ 9 I [ff FRHIILFLHQWV RI K? DUH I? KM ZKHUH WKH M L D L m D 7LL D QLFW RW@ ? f DQG WKH FRHIILFLHQWV RI KR DUH DL D 8 QL 2QL D" DM 9 f n f ff

PAGE 65

7KXV WKH FRHIILFLHQWV RI 3 9 Lnff DUH AmL mD}AL D@ A %\ FDOFXODWLRQ 3 9 Uff 9 "fff 3 4(' :H QRZ EHJLQ WKH FRQVLGHUDWLRQ RI WZR YDULDEOH PD[SRO\QRPLDOV 2QH RI WKH PRVW GHVLUDEOH IDFWRUL]DWLRQV RI WZR YDULDEOH PD[SRO\QRPLDOV LV D GHFRPSRVLWLRQ LQWR WZR RQH YDULDEOH PD[SRO\QRPLDOV )LUVW WKLV VSHFLDO FDVH 1RWH WKDW WKH QH[W WKHRUHP LV DQ H[WHQVLRQ RI WKH UHVXOW IRU WHPSODWHV JLYHQ E\ /L >@ WLO 7KHRUHP /HW 7[\f f§ 9 9 ^8M L[ M\f EH D PD[SRO\QRPLDO LQ WZR c YDULDEOHV ZLWK WPQ s RR WKHQ 7^[ \f 3[f 4\f LI DQG RQO\ LI WWWOQ WPMWPQ IRU L P DQG M Q 3URRI 6XSSRVH WKDW 7 3 4 /HW 3 DR 9 DL [f 9 f f ‘ 9 DP P[f DQG 4 E 9 L \f 9 f f f 9 EQ Q\f ZKHUH DP f§RR DQG Ef f§RR ,W PD\ DVVXPHG WKDW DQ f§ DQG WKXV WKDW WPM f§ EM IRU M "" ,Q SDUWLFXODU QRWH WKDW WPQ A f§RR 7KH UHODWLRQ WLM L[ M\ D L[f EM M\f DOVR KROGV +RZHYHU EM PD\ EH FDOFXODWHG E\ EM WPM DQG 2 c WPQ‘

PAGE 66

,I 7 VDWLVILHV OWWLQ WPM f§ WPQ IRU L Q M P WKHQ GHILQH Q 3 ?^PM WPQ fI -bf DQG P 4 ?WLQ L[f L &DOFXODWLRQ VKRZV WKDW 3 4 7 4(' 0D[SRO\QRPLDOV RU FRUUHVSRQGLQJ WHPSODWHV ZKLFK VDWLVI\ WKH FRQGLWLRQV RI WKLV WKHRUHP DUH UHIHUUHG WR DV VHSDUDEOH ([DPSOH $ SDUDEROLF VWUXFWXULQJ HOHPHQW FDQ EH XVHG WR EULQJ RXW WH[WXUH LQIRUPDWLRQ DQG VXSSUHVV ERWK SRLQW QRLVH DQG ZKLWH QRLVH >,Q WKH IROORZLQJ SDUDEROLF WHPSODWH W WKH SDUDPHWHU $ LV D IUHH SDUDPHWHU /HW ; ; ; ; ; ; ; $; ; ; ; $; ; ; ; ; ; ; $; ; $FFRUGLQJ WR 7KHRUHP WKLV WHPSODWH LV VHSDUDEOH +HQFH LW PD\ EH GHFRPn SRVHG LQWR D URZ WHPSODWH DQG D FROXPQ WHPSODWH 6R W S (O T ZKHUH

PAGE 67

2 ; S 2 2 DQG T $ $ 2 5HFDOO WKDW D UHFWDQJXODU WHPSODWH LV RQH ZKRVH VXSSRUW LV D VXEVHW RI D UHFWDQJOH 7KH SUHYLRXV UHVXOWV RQ WKH VHSDUDELOLW\ RI WHPSODWHV ZDV OLPLWHG WR WHPSODWHV ZKRVH VXSSRUW ZDV LGHQWLFDO WR WKH VPDOOHVW UHFWDQJOH FRQWDLQLQJ WKH VXSSRUW >@ 7KHRUHP DSSOLHV WR D ZLGHU FODVV RI WHPSODWHV &RQVLGHU WKH IROORZLQJ WHPSODWH W ([DPSOH /HW W 7KH FRUUHVSRQGLQJ PD[SRO\QRPLDO LV JLYHQ E\ 9 [f 9 \f 9 [ \f 7KLV IDFWRUV DV > 9 [fM > 9 \f@ RU

PAGE 68

7rc R 7KHUH DUH RIWHQ FDVHV ZKHQ D WZR YDULDEOH PD[SRO\QRPLDO LV QRW VHSDUDEOH ,Q VXFK FDVHV LW PD\ EH SRVVLEOH WR DSSO\ WKH RQH YDULDEOH WKHRUHPV DOUHDG\ SUHVHQWHG WR UHGXFH WKH WZR YDULDEOH PD[SRO\QRPLDO )RU WKH QH[W GHILQLWLRQ OHW W EH LV D WUDQVODWLRQ LQYDULDQW UHFWDQJXODU WHPSODWH ZLWK P Q PD[SRO\QRPLDO UHSUHVHQWDWLRQ 7[\f 9 9 ^WLM L[ M\f r RM R 'HILQLWLRQ 7KH ERXQGDU\ PD[SRO\QRPLDOV RI D UHFWDQJXODU WUDQVODWLRQ LQYDULDQW P Q WHPSODWH DUH WKH PD[SRO\QRPLDOV 3? 9 WLR L[f 3L f§ 9 ^WRM M\f 3nW L M R P Q 9 ^8Q L[ Q\f DQG O? ?WPM P[ M\f L R Mn R ,I W LV D UHFWDQJXODU WHPSODWH WKHQ WKH ERXQGDU\ PD[SRO\QRPLDOV PD\ EH REWDLQHG E\ ILUVW ILQGLQJ WKH PD[SRO\QRPLDO WKDW FRUUHVSRQGV WR W DQG WKHQ LVRODWLQJ FHUWDLQ FRHIILFLHQWV 7KH FRHIILFLHQWV WR LVRODWH DUH IURP WKH WHUPV ZKLFK KDYH WKH KLJKHVW GHJUHH LQ HDFK YDULDEOH DQG WKH ORZHVW GHJUHH LQ HDFK YDULDEOH 7KLV ZLOO JLYH WKH IRXU ERXQGDU\ PD[SRO\QRPLDOV

PAGE 69

([DPSOH /HW W 7KH ERXQGDU\ PD[SRO\QRPLDO IRU WKLV WHPSODWH DUH 3? D 3 \ 3 D $\ 3? D \ 6XSSRVH V DQG W DUH WZR UHFWDQJXODU WHPSODWHV 7R FRPSXWH WKH ERXQGDU\ PD[ SRO\QRPLDO RI WKHLU FRQYROXWLRQ LW LV RQO\ QHFHVVDU\ WR DGG FRUUHVSRQGLQJ ERXQGDU\ PD[SRO\QRPLDOV IURP WKH WZR WHPSODWHV 7KLV LV REYLRXV ZKHQ RQH FRQVLGHUV WKDW IRU H[DPSOH WKH WHUPV ZLWK ORZHVW GHJUHH LQ [ IURP V (O W DUH REWDLQHG E\ DGGLQJ WKH WHUPV ZLWK WKH ORZHVW GHJUHH LQ [ IURP V ZLWK WKRVH RI W 7KHVH REVHUYDWLRQV DUH UHFRUGHG LQ WKH QH[W SURSRVLWLRQ 3URSRVLWLRQ 6XSSRVH WKDW W LV D UHFWDQJXODU WHPSODWH DQG $^[\f $[\f$^[\f DQG $^[\f FRUUHVSRQG WR D FRXQWHUFORFNZLVH UHSn UHVHQWDWLRQ RI WKH ERXQGDU\ RI W ZKHUH DQ\ $O[\f FRXOG EH D PRQRPLDO ,I W

PAGE 70

LV UHGXFLEOH LQWR WKH FRQYROXWLRQ RI WZR UHFWDQJXODU WHPSODWHV WKHQ WKHUH H[LVWV IDFWRUL]DWLRQV RI $O[\f $ [ \f O $? $? $? $? VXFK WKDW $?^[\f $?[\f $I[\f $?[\f DQG $?[\f $?[\f $?[\f $?[\f FRUUHVSRQG WR D FRXQWHUFORFNZLVH UHSUHVHQWDWLRQ RI WKH ERXQGDU\ RI WZR WHPSODWHV 3URRI 6XSSRVH WKDW W V(U /HW $?[\f$?[\f FRUUHVSRQG WR WKH ERXQGDU\ RI V DQG $?[ \f $[ \f FRUUHVSRQG WR WKH ERXQGDU\ RI U 4(' WR Q 'HILQLWLRQ $ PD[SRO\QRPLDO LQ WZR YDULDEOHV 3UMf 9 9 8M L[ M\f L 72 9 L[ 3W\ff LV V\PPHWULF ZLWK UHVSHFW WR \ LI HDFK 3W\f LV V\PPHWULF ZLWK UHVSHFW WR Q $ VLPLODU GHILQLWLRQ FDQ EH JLYHQ IRU WKH YDULDEOH [ 'HILQLWLRQ $ PD[SRO\QRPLDO LQ WZR YDULDEOHV LV V\PPHWULF LI LW LV V\PPHWULF ZLWK UHVSHFW WR ERWK [ DQG \ 8 7KHRUHP 6XSSRVH 3[\f 9 ?DWL[ M\f FRUUHVSRQGV WR D UHFW£QJXn OR ODU WHPSODWH DQG 7 LV V\PPHWULF ZLWK ERWK P DQG Q HYHQ ,I m m f f f mIR L

PAGE 71

m2 m f f f m2I DAR mRI} mRI LV HYHQ DW! mRI IRU L P f§ DQG M Q f§ WKHQ WKHUH H[LVWV PD[SRO\QRPLDOV 3[\f4[\f DQG 5[\f VXFK WKDW 7[\f >3[f 4[\f@ 9 L"[Lf ZKHUH UH f§ UH f§ \f 9 9 DrL A M\ ‘ M ? L 3URRI 6LQFH WKH VXSSRUW RI WKH WHPSODWH PD\ QRW EH UHFWDQJXODU VHYHUDO RI WKH FRHIILFLHQWV RI 7 PD\ EH f§ RR 7KH ERXQGDU\ PD[SRO\QRPLDOV DUH V\PPHWULF ZLWK D FHQWHU WHUP WKDW LV HYHQ (YHQ ZLWK FHUWDLQ FRHIILFLHQWV HTXDO WR f§ RR &RUROODU\ DQG WKH SURFHGXUH LQ WKH FRPPHQWV WKDW IROORZ LW PD\ EH DSSOLHG WR HDFK RI WKH ERXQGDU\ PD[SRO\QRPLDOV 7KH UHVXOWV IRU HDFK RI WKH ERXQGDU\ PD[SRO\QRPLDOV DUH P ?m L[ P ?FLLQ L[ Q\ Q 9 9 f f ‘ 9 m7m Q c\ 9 D P ? DIQ [ M %` %

PAGE 72

Q 9 mRr L\ Ln & & Q 9DQL P[  ] 'L :H QRZ XVH DHOT DI! DQG GHILQH 3[\f $L 9 'R 9 %R 9 &L DQG 7KHQ 4[ \f f§ $R 9 9 %? 9 & f 3 4 $L $f 9 >$ =! 9 %R 9 &Lf@ -? 'Rf 9 > 'L $ @ 9 %R 9 nf@ ILL f Y > $O 9 'R 9 &fOf@ &L &f 9 >& $L 9 e! 9 IOf@

PAGE 73

7KXV 3 4 JLYHV EDFN WKH ERXQGDU\ PD[SRO\QRPLDOV RI 7 7KH WHUPV IURP >$n 9 %! 9 &Lf@ >'L $L 9 %! 9 &Lf@ >%^ $; 9 9 &Lf@ >& L 9 Of 9 e/f@ IRUP WKH LQWHULRU RI 34 7KH ODUJHVW WHUPV RI 3 DGGHG WR WKH ODUJHVW WHUPV RI 4 QDWXUDOO\ JLYH WKH ODUJHVW WHUPV RI 3 4 7KRVH WHUPV IURP 3 DUH DQG [ I\M DQG WKRVH IURP 4 DUH ^?D4L[ _DM DQG ADI I\AM 1RWLFH WKDW LQ 3 4 WKHVH WHUPV ZLOO EH LQ WKH ERXQGDU\ PD[SRO\QRPLDOV +HQFH WKH FRQGLWLRQ DW! FLQ IRU L P f§ DQG M Q f§ LQVXUHV WKDW WKH FRHIILFLHQWV SURGXFHG E\ 3 4 DUH QRW ODUJHU WKDQ WKH FRHIILFLHQWV RI 7 7KXV LW LV SRVVLEOH WR GHILQH Q f§ P f§ 5^[\f 9 9 r\ O[ -\ ‘ M L 4(' ([DPSOH 7KLV H[DPSOH GHPRQVWUDWHV WKH XVH RI 7KHRUHP 7KH IROORZLQJ WHPn SODWH LV XVHG IRU ORFDWLRQ GHWHUPLQDWLRQ >@ /HW W

PAGE 74

7KH PD[SRO\QRPLDO ZKLFK FRUUHVSRQGV WR WKLV WHPSODWH LV 7 \f 9 [ \f 9 [ \f 9 [ \f 9 Df 9 U \f9 D \f 9 [ \f 9 D L\f 9 [ \f 9 D \f 9 D \f 9 D \f 7KLV IDFWRUV DFFRUGLQJ WR WKHRUHP 7KH UHVXOW LV 7 > 9 D \f \f 9 [f` 9> 9 \f 9 \f 9 [f 9 [ \f 9 [ \f 9 Df 9 D \f 9 D \f? 7KXV ZH KDYH 7 f§ >3 4? 9 5 ZKHUH 3 9 D \f 4 \f 9 DUf DQG 5 > 9 \f 9 \f 9 [f 9 [ \f 9 [ \f 9 [f 9 ‘‘ D U \f 9 D \f` 7KH WHPSODWH UHSUHVHQWDWLRQ LV W S(T 9 U ZKHUH 3

PAGE 75

DQG r@ U 7KHRUHP 6XSSRVH WKDW 7[\f 9LOR DLM W[ -9 fV D V\PPHWULF PD[SRO\QRPLDO VXFK WKDW WKH ERXQGDU\ PD[SRO\QRPLDOV IDFWRU LQWR ILUVW GHJUHH WHUPV ZLWK RQ Q ,I DLM mR_ f§ DRL DLRf 9 Amr f§ m mf IRU M Q f§ DQG ] ""] f§ L]HQ LLHUH H[LVWV PD[SRO\QRPLDOV 3[\f4[\f DQG 5[S\f VXFK WKDW 7^[ \f >3[\f 4[\f@ 9 3[ \f ZKHUH 3URRI ,I Q f§ UQ f§ 5>[\f 9 9 Dn! O[ M\ ‘ P 9 m  P n?D LQ I W[ U Q\ % Q 9 m2M M\ F Q 9 m+ mD L\ M R

PAGE 76

WKHQ $ FDQ EH ZULWWHQ DV 2 9 m Df 9 Dff $f % DV \f 9 mR D \f 9 D \ff %! & DV 9 m \f 9 \ff & DQG DV Df 9 mR D \f 9 D \ff 'HILQH 3>[\f 9 DRL [f 9 Dff 9 [f 9 mLP U \f 9 D \ff 9 \f 9 mLf D \f 9 D \ff 929mL\f 9 \ff DQG 4[ f nB 9 % 9 &R 9 /f! 7KH SURRI SURFHHGV DV EHIRUH QRWLQJ WKDW WKH KLJKHVW WHUP RI 3 I 4 LV WKH PD[LPXP RI WKH ODUJHVW WHUPV RI 3 DGGHG WR WKH ODUJHVW RI 4 7KLV LV JLYHQ E\ DRI f§ mR mORf 9 ID]LLR f§ mOR mRLM f 4('

PAGE 77

([DPSOH 7R GHPRQVWUDWH 7KHRUHP ZH DJDLQ ORRN DW D WHPSODWH ZKLFK LV XVHG IRU ORFDWLRQ GHWHUPLQDWLRQ >@ /HW W 7KH WHPSODWH GHFRPSRVLWLRQ LV JLYHQ E\ W S (O T 9 U ZKHUH 3 T U DQG U )DFWRUL]DWLRQ PHWKRGV IRU SRO\QRPLDOV DUH RIWHQ UHFXUVLYH ,I D V\PPHWULF SRO\QRPLDO LV IDFWRUHG DV 7 3r4 5 WKHQ 5 LV V\PPHWULF DQG FDQ XVXDOO\ EH IDFWRUHG E\ WKH VDPH WKHRUHP ZKLFK OHG WR WKH IDFWRUL]DWLRQ RI 7 > &RUROODU\ WR 7KHRUHP @ +RZHYHU WKH VDPH LV QRW WUXH IRU PD[SRO\QRPLDOV $V LV GHPRQVWUDWHG LQ WKH QH[W H[DPSOH WKHUH

PAGE 78

PD\ H[LVW D IDFWRUL]DWLRQ 7 3 4f 9 5 EXW 5 GRHV QRW VDWLVI\ HLWKHU WKH K\SRWKHVHV RI 7KHRUHP RU 7KHRUHP ([DPSOH /HW 7KH WHPSODWH W PD\ EH GHFRPSRVHG +RZHYHU LQ ERWK FDVHV ZH ZLOO KDYH B L / W r ,f§_ U HLWKHU WKHRUHP RU 7KHRUHP L n U 7KH WHPSODWH U GRHV QRW VDWLVI\ WKH K\SRWKHVLV RI HLWKHU WKHRUHP 7R VKRZ WKDW U FDQ QRW EH GHFRPSRVHG LQWR V\PPHWULF WHPSODWHV VXSSRVH WKDW VXFK WHPSODWHV H[LVW /HW U VL (O 6 9 U ZKHUH

PAGE 79

t EL DL 6 &O &L DL EL DL DQG ;L E D 6 & & D E D UL U U UL ; U I  I %\ VLPSOH FRPSXWDWLRQ RI VL (O V ZH NQRZ WKDW Dc D 6LQFH U VL ( V 9 U ZH DOVR KDYH WKDW PD[ ^DL D EL E F U` 7KLV FRQWUDGLFWLRQ VKRZV WKDW U FDQ QRW EH GHFRPSRVHG LQWR V\PPHWULF WHPSODWHV 0D[SRO\QRPLDOV RYHU ^ f§ RR ` 9 f :KHQ ELQDU\ LPDJHV DUH LQYROYHG WKH WHPSODWHV XVHG LQ WKH ( FRQYROXWLRQ RIWHQ KDYH YDOXHV LQ ^ f§RR ` 7KH SULQFLSDO WRRO LQ IDFWRUL]DWLRQ RI PD[SRO\QRPLDOV RYHU WKH EHOW ^ f§RR ` 9f LV IDFWRULQJ E\ JURXSLQJ +HUH DUH WKUHH VSHFLDO FDVHV ZKHQ IDFWRULQJ E\ JURXSLQJ LV HDVLO\ GRQH 7KHRUHP /HW N EH DQ\ UHDO QXPEHU ,I PQ 3[\f 9 M[ N\ f M P LV D PD[SRO\QRPLDO LQ WZR YDULDEOHV WKHQ 3[\f f§ QL[ N\f "f 9 [ff

PAGE 80

3URRI PQ 3^[\f 9 M[ N\ M P f§ P[ N\ 9 P L f[ N\f 9 f f ‘ 9 P Qf[ N\f P[ N\ 9 [f 9 ‘ f f 9 Q[ff P[ N\ Q 9 [ff 4(' PQ 7KHRUHP /HW N EH DQ\ UHDO QXPEHU ,I 3[ \f ?M[ M Nf\ LV D M P PD[SRO\QRPLDO LQ WZR YDULDEOHV WKHQ 3[\f P[ P Nf\ Q 9 [ \ff 3URRI PQ 3[ \f 9 L[ 2n Nf\ M P P[ P Nf\ 9 P f[ P Lf\f 9 f f f 9 P Qf[ P Q Nf\f P[ P Nf\ 9 [ \f 9 f f f 9 Q[ Q\ff P[ P Nf\ Q 9 [ \ff ‘ 4(' PQ 7KHRUHP /HW N EH DQ\ UHDO QXPEHU ,I 3[\f ? M[ IF f§ M f\ LV D PD[ M P SRO\QRPLDO LQ WZR YDULDEOHV WKHQ 3[ \f P[ N f§ P f§ Qf\ Q \f 9 [ff

PAGE 81

OE 3URRI PQ 3 9 M[ NMf\ M P P[ N f§ Pf\f 9 P f[ N f§ P f§ f"f 9 f f f 9 P Qf[ N f§ UQ f§ Qf\f P[ N f§ P f§ Qf\ Q\f 9 I [ Q f§ @

PAGE 82

'HILQLWLRQ :H VD\ WKDW D WHPSODWH LV D FRQYH[ RU UHVWULFWHG FRQYH[f WHPSODWH LI LWV VXSSRUW LV D FRQYH[ RU UHVWULFWHG FRQYH[f VXEVHW RI ; ,I W LV D UHVWULFWHG FRQYH[ WHPSODWH WKHQ LWV VXSSRUW IRUPV D SRO\JRQ LQ 5 ZLWK DW PRVW HLJKW VLGHV $ PD[SRO\QRPLDO PD\ EH DVVRFLDWHG ZLWK HDFK RI WKRVH HLJKW VLGHV 7KHRUHP $ VHW RI HLJKW PD[SRO\QRPLDOV FRUUHVSRQGV WR WKH ERXQGDU\ RI D UHn VWULFWHG FRQYH[ WHPSODWH LI DQG RQO\ LI WKHUH DUH WZR RI WKH IRUP UULQ 3[\f 9 ?M[ >NMf\ M P WZR RI WKH IRUP PQ 3^[\f 9 -[ 2n rf\ M P WZR RI WKH IRUP PQ 3^[\f 9 -[ Na\ n P WZR RI WKH IRUP PQ 3^[\f 9 N[ M\ Mf§P DQG HDFK RQH KDV LWV ILUVW WHUP DQG ODVW WHUP LQ FRPPRQ ZLWK DQRWKHU PD[SRO\QRPLDO LQ WKH VHW 3URRI (DFK RI WKH SRO\QRPLDOV UHSUHVHQWV WZR RI WKH SRVVLEOH VLGHV DQG HYHU\ VLGH VKDUHV WZR YHUWLFHV 4(' ,Q WKH FDVH RI D FRQYROXWLRQ RI ELQDU\ WHPSODWHV WKH HIIHFWV RI WKH ERXQGDU\ PD[SRO\QRPLDOV RQ WKH LQWHULRU LV QR ORQJHU D FRQFHUQ +HQFH 3URSRVLWLRQ PD\ EH VWUHQJWKHQHG LQ WKH IROORZLQJ ZD\

PAGE 83

7KHRUHP 6XSSRVH WKDW W LV D UHVWULFWHG FRQYH[ WHPSODWH DQG [f $[ $+[ \f FRUUHVSRQG WR D FRXQWHUFORFNZLVH UHSUHVHQWDWLRQ RI WKH ERXQGDU\ RIW ZKHUH DQ\ $O[\f FRXOG KH D PRQRPLDO 7KH WHPSODWH W LV UHGXFLEOH LQWR WKH FRQYROXWLRQ RI WZR UHVWULFWHG FRQYH[ WHPSODWHV LI DQG RQO\ LI WKHUH H[LVWV IDFWRUL]DWLRQV RI $[\f $[ \f $V[ \f $ $@ $, $ $I $M $I $? $c VXFK WKDW $?[ \f $M[ \f r[ \f FRUUHVSRQGV WR D FRXQWHUFORFNZLVH UHSUHVHQWDWLRQ RI WKH ERXQGDU\ RI D UHVWULFWHG FRQYH[ WHPSODWH 3URRI :H KDYH DOUHDG\ SURYHG RQH GLUHFWLRQ LQ WKHRUHP 1RZ VXSSRVH WKDW VXFK D IDFWRUL]DWLRQ RI ƒO[\f $[ \f [ \f H[LVWV :H NQRZ WKDW HDFK RI WKH $? DUH RI WKH FRUUHFW IRUP VLQFH ZH NQRZ WKDW WKH IRUP RI WKH IDFWRUV RI WKH $ DUH RI WKH FRUUHFW IRUP $OO WKDW UHPDLQV WR VKRZ LV WKDW $?[\f $?>[ $?^[ \f FRUUHVSRQGV WR D FRXQWHUFORFNZLVH UHSUHVHQWDWLRQ RI WKH ERXQGDU\ RI D UHVWULFWHG FRQYH[ WHPSODWH 7KLV LV HTXLYDOHQW WR VKRZLQJ WKDW LI $O[\f $-[\f KDYH D FRPPRQ WHUP WKHQ $O[ \f $-[ \f KDYH D FRPPRQ WHUP 6XSSRVH WKDW $O^[ \f $-^[ \f DUH DGMDFHQW /HW WKH FRPPRQ WHUP RI $O[\f $-[\f EH GHQRWHG E\ D DQG WKDW RI $?[\f $[\f

PAGE 84

EH GHQRWHG E\ &RQVLGHU D WKLV WHUP LV LQ ERWK $O$? $ DQG $$? f§ $` +HQFH LW LV D FRPPRQ WHUP IRU WKHP 7KXV ERWK $?[\f $b[ \f$_DU \f DQG $?[\f $?^[\f$?^[\f FRUn UHVSRQG WR D FRXQWHUFORFNZLVH UHSUHVHQWDWLRQ RI WKH ERXQGDU\ RI D UHVWULFWHG FRQYH[ WHPSODWH ,W LV ZHOO NQRZQ WKDW WKH FRQYROXWLRQ RI WZR UHVWULFWHG FRQYH[ WHPSODWH LV DJDLQ D UHVWULFWHG FRQYH[ WHPSODWH ,I VXFK D IDFWRUL]DWLRQ H[LVWV WKHQ WKH PD[SRO\QRPLDOV ZLOO JLYH WKH FRUUHFW ERXQGDU\ $QG VLQFH WKLV ZLOO EH WKH ERXQGDU\ RI D UHVWULFWHG FRQYH[ WHPSODWH WKH SURRI LV GRQH 4(' 7KHUH LV DQ LPSRUWDQW QRWH WR NHHS LQ PLQG ZKHQ DSSO\LQJ WKHRUHP :KHQ ORRNLQJ IRU D IDFWRUL]DWLRQ RI D ERXQGDU\ PD[SRO\QRPLDO ZH PD\ RQO\ EH ORRNLQJ IRU D PRQRPLDO DQG WKDW PRQRPLDO PD\ EH :H KDYH QRZ SURYHG WKH IROORZLQJ WKHRUHP 7KHRUHP )DFWRULQJ E\ JURXSLQJ FDQ EH XVHG WR GHFRPSRVH D UHVWULFWHG FRQYH[ WHPSODWH LQWR D FRPELQDWLRQ RI LUUHGXFLEOH WHPSODWHV 3URRI %\ 7KHRUHP ZH RQO\ QHHG FRQVLGHU WKH ERXQGDU\ PD[SRO\QRPLDOV DQG E\ 7KHRUHP ZH NQRZ WKHLU IRUP 7KHRUHPV DQG VKRZ KRZ IDFWRULQJ E\ JURXSLQJ FDQ EH DSSOLHG WR WKHVH IRUPV 4('

PAGE 85

&+$37(5 5$1. %$6(' 0$75,; '(&20326,7,21 ,QWURGXFWLRQ $QRWKHU PHWKRG RI WHPSODWH GHFRPSRVLWLRQ LV EDVHG RQ PDWUL[ DQDO\VLV $ UHFWDQJXODU VKLIWLQYDULDQW WHPSODWH FDQ EH UHSUHVHQWHG DV D PDWUL[ 7KLV UHSUHVHQWDWLRQ RI D WZR GLPHQVLRQDO UHFWDQJXODU VKLIWLQYDULDQW WHPSODWH LV DFKLHYHG E\ OHWWLQJ WKH PDWUL[ HQWULHV DLM EH GHILQHG E\ DOWWfMf IRU DOO Mf L"Wff ZKHUH 5W\f LV GHILQHG LQ &KDSWHU 7KLV PDWUL[ UHSUHVHQWDWLRQ RI WKH WHPSODWH LV FDOOHG WKH FHQWHUHG ZHLJKW PDWUL[ DVVRFLDWHG ZLWK W %\ UHSUHVHQWLQJ WHPSODWHV LQ WKLV ZD\ ZH JHW D RQHWRRQH FRUUHVSRQGHQFH EHWZHHQ VKLIWLQYDULDQW WHPSODWHV DQG WKHVH PDWULFHV >$Q LPDJH DOJHEUD FRPSXWDWLRQ RI 0 LQYROYHV WKH RSHUDWLRQV 9 DQG +HQFH WKH XVXDO PDWUL[ RSHUDWLRQV GR QRW VXIILFH IRU WHPSODWH GHFRPSRVLWLRQ ,QVWHDG RQH PXVW FRQVLGHU PLQLPD[ PDWUL[ RSHUDWLRQV 7KH 3K' GLVVHUWDWLRQ E\ 'DYLGVRQ VKRZHG WKDW PLQLPD[ DOJHEUD FDQ EH HPEHGGHG LQWR LPDJH DOJHEUD >@ $Q LPSRUWDQW LPSOLFDWLRQ RI WKLV HPEHGGLQJ LV WKDW DOO WKH WRROV RI PLQLPD[ DOJHEUD DUH GLUHFWO\ DSSOLFDEOH WR VROYLQJ SUREOHPV LQ LPDJH SURFHVVLQJ ZKHQHYHU DQ\ LPDJH DOJHEUD RSHUDWLRQ LVRPRUSKLF RU GXDO WR (= LV XVHG ,Q WKH VHWWLQJ RI OLQHDU DOJHEUD 2f/HDU\ VKRZHG WKDW LI D [ PDWUL[ KDV HLWKHU UDQN RU DOO RI LWV QRQ]HUR WHUPV DUH RQ D VLQJOH GLDJRQDO WKHQ LW FDQ EH IDFWRUHG LQWR WKH SURGXFW RI WZR [ PDWULFHV >@ = 0DQVHXU DQG :LOVRQ UHGXFHG WKH QXPEHU RI IDFWRUV LPSOLHG E\ 2f/HDU\fV UHVXOW IRU WKH GHFRPSRVLWLRQ RI DQ DUELWUDU\ PDWUL[ E\ XVLQJ SRO\QRPLDO PHWKRGV >@ 'DYLGVRQ VWXGLHG VRPH QRQOLQHDU PDWUL[ GHFRPSRVLWLRQV

PAGE 86

EDVHG RQ PLQLPD[ DOJHEUD >@ +RZHYHU WKH ZRUN RI 'DYLGVRQ GLG QRW XWLOL]H WKH UDQN RI D PDWUL[ 7KH *RDO RI 6HFWLRQ LV WR SURYH D UDQN EDVHG GHFRPSRVLWLRQ LQ WHUPV RI PLQLPD[ DOJHEUD 7ZR FRPPRQ EHOWV XVHG LQ WKH 0 FRQYROXWLRQ DUH 5BRR 9 f DQG ^f§RR` 9 f ,Q WKH VHFRQG VHFWLRQ ZH VKDOO H[WHQG DQ DUELWUDU\ EHOW WR FUHDWH D ERXQGHG ODWWLFHRUGHUHG JURXS 6LQFH 5BRR 9f DQG ^f§RR` 9 If DUH FRPPXWDWLYH PDQ\ RI WKH WKHRUHPV RI &XQLQJKDPH*UHHQ DUH RQO\ VWDWHG IRU FRPPXWDWLYH EHOWV DQG FRPPXWDWLYH ERXQGHG ODWWLFHRUGHUHG JURXSV >@ 7KH SUHVHQWDWLRQ RI WKH GHILQLWLRQ RI WKH UDQN RI D PDWUL[ DV GHILQHG E\ &XQLQJKDPH *UHHQ UHTXLUHV VHYHUDO SUHOLPLQDU\ GHILQLWLRQV DQG WKHRUHPV >@ ,I RQH ZHUH WR UHDG WKH GHILQLWLRQ RI UDQN ZLWKRXW UHIHUULQJ WR WKH DVVRFLDWHG WKHRUHPV RQH ZRXOG KDYH WKH LPSUHVVLRQ WKDW WKH GHILQLWLRQ LV WRR OLPLWHG WR HQFRPSDVV WKH PRVW JHQHUDO RI FDVHV HVSHFLDOO\ ZLWK UHJDUG WR PDWUL[ GHFRPSRVLWLRQV +RZHYHU WKH PDLQ GHFRPSRVLWLRQ PHWKRG SUHVHQWHG RQO\ GHSHQGV RQ WKH QXPEHU RI GHSHQGHQW FROXPQV LQ D PDWUL[ 6LQFH WKH GHILQLWLRQ RI UDQN LV PRUH UHVWULFWLYH WKDQ WKDW RI LQGHSHQGHQFH UDQN EDVHG GHFRPSRVLWLRQV IROORZ DV D FRUROODU\ WR WKH PDLQ WHFKQLTXH %DVLF 'HILQLWLRQV /HW )9rf EH D GLYLVLRQ EHOW :H QRZ SURJUHVVLYHO\ H[WHQG )9rf DV IROORZV )LUVW ZH LQWURGXFH WKH GXDO WR 9 E\ GHILQLQJ IRU DOO [ \ f ) [ $ \ UB 9 f ? 6R WKHQ ) EHFRPHV D ODWWLFH RUGHUHG JURXS RU JURXS 1H[W DGMRLQ XQLYHUVDO ERXQGV WR ) 7KH HOHPHQWV IRH DQG f§ RR DUH WKH DGMRLQHG HOHPHQWV DQG WKH UHVXOW LV GHQRWHG E\ )sRR

PAGE 87

7KH JURXS RSHUDWLRQ r LV H[WHQGHG LQ WKH IROORZLQJ PDQQHU ,I [\ e ) WKHQ [ r \ LV DOUHDG\ GHILQHG /HW rn r EH WKH VHOIGXDO PXOWLSOLFDWLRQ RQ HOHPHQWV RI ) WKDW LV [ rn \ [ r \ IRU DOO [ \ e ) 2WKHUZLVH GHILQH IRU DOO [ e ) [ r f§RR f§ RH r [ f§RJ [ r RR RR r [ RR ; rn f§ 22 f§ 22 rn ; f§n22 , ; r r ; RR f§f r &2 r f§ f f§ f§ f rn rn f§f +HQFH WKH HOHPHQW f§ DFWV DV D QXOO HOHPHQW LQ WKH V\VWHP )sRR9rf DQG WKH HOHPHQW DFWV DV D QXOO HOHPHQW LQ WKH V\VWHP )sRR$rf 7KH UHVXOWDQW VWUXFWXUH )sRR 9 $ r rnf LV FDOOHG D ERXQGHG ODWWLFHRUGHUHG JURXS RU ERXQGHG JURXS :H UHIHU WR ) DV WKH JURXS RI WKH ERXQGHG JURXS )s 9 $ r rnf 5HIHUHQFH WR )A DV D ERXQGHG JURXS VKDOO EH ZLWK UHVSHFW WR )WRR 9 $ r rnf 7ZR IDPLOLDU H[DPSOHV RI ERXQGHG JURXSV DUH 5sRR 9 $ nf DQG 5sRR! 9 $ [ [nf 1RWH WKDW 5 9$f LV LVRPRUSKLF WR 5!9$[f ERWK DV D JURXS DQG DV D ODWWLFH DQG KHQFH WKHLU H[WHQVLRQV WR JURXSV ZLOO EH LVRPRUSKLF DV ZHOO ,Q UHFHQW \HDUV ODWWLFH EDVHG PDWUL[ RSHUDWLRQV KDYH IRXQG ZLGHVSUHDG DSSOLFDWLRQV LQ HQJLQHHULQJ VFLHQFHV ,Q WKHVH DSSOLFDWLRQV WKH XVXDO PDWUL[ RSHUDWLRQV RI DGGLWLRQ DQG PXOWLSOLFDWLRQ DUH UHSODFHG E\ FRUUHVSRQGLQJ ODWWLFH RSHUDWLRQV )RU H[DPSOH OHW

PAGE 88

)sRR9rf EH D ERXQGHG JURXS DQG $ f§ % f§ EW-f WZR P [ Q PDWULFHV ZLWK HQWULHV LQ )WRR 'HILQLWLRQ 7KH SRLQWZLVH PD[LPXP $0% RI $ DQG % LV WKH P [ Q PDWUL[ & GHILQHG E\ $\ % & ZKHUH FWDW9 EW@ 6XSSRVH WKDW $ LV P [ S DQG % LV S [ Q 'HILQLWLRQ 7KH SURGXFW RI $ DQG % GHQRWHG E\ $r % LV WKH UQ [ Q PDWUL[ & $r % ZKHUH S FLM ?I ^DLN r KMf ‘ N 'HILQLWLRQ 7KH GXDO SURGXFW RI $ DQG % GHQRWHG E\ $ rn % LV WKH P [ Q PDWUL[ & $ rn % ZKHUH S ?O $ rn KNMf ‘ N 7KH VHW RI DOO UQ [ Q PDWULFHV RYHU )sRR ZLOO EH GHQRWHG E\ 0Pf 5HFDOO IURP WKH WKHRU\ RI SUREDELOLW\ WKDW D URZVWRFKDVWLF PDWUL[ LV D QRQQHJDWLYHf PDWUL[ LQ ZKLFK WKH VXP RI WKH HOHPHQWV LQ HDFK URZ LV XQLW\ $ FROXPQVWRFKDVWLF PDWUL[ KDV WKH VXP RI WKH HOHPHQWV LQ HDFK FROXPQ HTXDO WR XQLW\ DQG D GRXEO\ VWRFKDVWLF PDWUL[ LV ERWK URZ DQG FROXPQVWRFKDVWLF /HW )sRR 9 $ [ [nf EH D EHOW ZLWK GXDOLW\ DQG FU 9 $ [ [nf D VXEEHOW RI )A ZLWK GXDOLW\ :H VKDOO VD\ WKDW D ILQLWH VXEVHW 6f & ) LV UDVWLF LI LW LV WUXH WKDW 9 [ H DO ‘ [e6

PAGE 89

/HW ,I EH WKH LGHQWLW\ ZLWK UHVSHFW WR r ,I HUJ LV MXVW ,I WKHQ D RJDVWLF VHW VDWLVILHV [* 6 $ PDWUL[ RYHU )sRR ZLOO EH FDOOHG URZRADVWLF UHVSHFWLYHO\ FROXPQFUJDVWLF RU GRXEO\ 7\DVWLFf LI WKH HOHPHQWV LQ HDFK URZ UHVSHFWLYHO\ HDFK FROXPQ RU HDFK URZ DQG FROXPQf IRUP D FUADVWLF VHW 2 'HILQLWLRQ $ VTXDUH PDWUL[ $ e 0ff LV VWULFWO\ GRXEO\ ,IDVWLF LI LW VDWLVILHV WKH IROORZLQJ WZR UHTXLUHPHQWV Lf $WM ,I IRU DOO L f§ DQG M LLf 2Q HDFK URZ DQG RQ HDFK FROXPQ RI $ ZH FDQ ILQG RQH DQG RQO\ RQH HOHPHQW HTXDO WR ,I ,I $ e 0PQ WKHQ $ KDV Q FROXPQV DQ DWDcQ HDFK RI ZKLFK LV DQ PWXSOH )RU QRWDWLRQDO SXUSRVHV OHW DMf DWL f§ """ VR WKDW DMf LV WKH MWK FROXPQ /HW ; ( 0X DQG % e 0PL 7KH HTXDWLRQ $r ; f§ % PD\ WKHQ EH ZULWWHQ Q 'HILQLWLRQ 7KH UHODWLRQ 9 DMf r ;M % H[SUHVVHV WKH OLQHDU GHSHQGHQFH RYHU 9 )f RI % RQ DMf :H VKDOO DOVR VD\ WKDW % LV D OLQHDU FRPELQDWLRQ RI DOf DQf HYHQ ZKHQ Q f /HW )LRR EH D ERXQGHG JURXS 6XSSRVH WKDW ZH DUH JLYHQ PWXSOHV DMf M Q DQG ZH ZLVK WR GHWHUPLQH IRU HDFK RI WKHP ZKHWKHU RU QRW LW LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHU Q f§ f PWXSOHV 7KH QH[W WKHRUHP JLYHV D FRQYHQLHQW PHFKDQLFDO SURFHGXUH

PAGE 90

/HW $ ( 0PQ EH WKH PDWUL[ KDYLQJ DMf DV LWV f§WK FROXPQ /HW $r EH GHILQHG E\ ^$rfW$Mfr ZKHUH >$MWfr LV WKH FRQMXJDWH RI $` DV GHILQHG LQ &KDSWHU 'HILQH D PDWUL[ $ ( 0PQ DV IROORZV /HW $Q RF L DQG ,Q RWKHU ZRUGV $ LV WKH PDWUL[ r rn $ ZLWK LWV GLDJRQDO HOHPHQWV RYHUZULWWHQ E\ f§ :H QRZ FRPSDUH HDFK FROXPQ RI $ ZLWK WKH FRUUHVSRQGLQJ FROXPQ RI $ ( 0PQ DQG PDNH XVH RI WKH IROORZLQJ WKHRUHP 7KHRUHP &XQLQJKDPH*UHHQ 7KHRUHP f /HW ) EH D FRPPXWDWLYH ERXQGHG OJURXS /HW WKH PDWUL[ $ ( 0Pf KDYH FROXPQV DMf ( 0PL M Q QRW QHFHVVDULO\ DOO GLIIHUHQW )RU HDFK M WKH MWK FROXPQ RI $ r $ LV LGHQWLFDO ZLWK DMf LI DQG RQO\ LIDMf LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHU FROXPQV RI $ 7KH HOHPHQWV RI WKH M WK FROXPQ RI $ WKHQ JLYH VXLWDEOH FRHIILFLHQWV WR H[SUHVV WKH OLQHDU GHSHQGHQFH 1RWH WKDW WKH SURRI RI WKLV WKHRUHP VKRZV WKDW LI WKH UWK FROXPQ LV GHSHQGHQW WKHQ $MG LV WKH FRHIILFLHQW FRUUHVSRQGLQJ WR WKH FROXPQ DMf ([DPSOH /HW 7R FRPSXWH $ ILUVW ILQG

PAGE 91

+HQFH 2 f§ f§? 2 2 2 ?f§ 2 f§RR a? f§ RR B f§ RR B 9 f§RR DQG ? $ r $ ? $SSO\LQJ 7KHRUHP LW FDQ EH VHHQ WKDW WKH VHFRQG FROXPQ LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHU WKUHH +RZHYHU QRWH WKDW FROXPQ RQH LV QRW OLQHDUO\ GHSHQGHQW RQ WKH RWKHU FROXPQV 7KLV LV D PDMRU GLIIHUHQFH EHWZHHQ FRQYHQWLRQDO OLQHDU DOJHEUD DQG PLQLPD[ DOJHEUD ,Q FRQYHQWLRQDO OLQHDU DOJHEUD WKH HTXDWLRQ F?D? &&c ‘ f ‘ FQDQ f§ E ZRXOG DOVR LPSO\ WKDW D LV D OLQHDUO\ GHSHQGHQW RQ ^!` 8 ^DO`r1B 7KHUH DUH VLWXDWLRQV SDUWLFXODUO\ LI WKH PDWUL[ LV V\PPHWULF WKDW PLQLPD[ OLQHDU GHSHQGHQFH PLPLFV FRQYHQWLRQDO OLQHDU DOJHEUD LQ WKLV UHJDUG ,Q WKRVH VLWXDWLRQV RQH ZD\ WR HIIHFWLYHO\ DSSO\ WKH PHWKRGV RI 7KHRUHP LV WR DQDO\]H WKH FROXPQV LQGXFWLYHO\ ,I D OLQHDUO\ GHSHQGHQW FROXPQ LV IRXQG GLVUHJDUG LW LQ WKH QH[W VWHS RI WKH DQDO\VLV ,I LW LV QRW GHSHQGHQW NHHS LW LQ WKH QH[W VWHS 6R LI D^Mf M OQ f§ DUH QRW OLQHDUO\ GHSHQGHQW DSSO\ 7KHRUHP WR DMf M ,I DQf LV GHSHQGHQW RQ DLfL M f§ WKHQ QH[W DSSO\ WKH WKHRUHP WR DMf M OQ f§ Q

PAGE 92

OHDYLQJ RXW DQf ,I DQf LV QRW GHSHQGHQW RQ DMf M Q f§ WKHQ QH[W DSSO\ WKH WKHRUHP WR DMf M Q IL f LQFOXGLQJ DQf 7KH SXUSRVH RI WKH QH[W WZR WKHRUHPV LV WR VKRZ VRPH RI WKH DQRPDOLHV DVVRFLDWHG ZLWK OLQHDU GHSHQGHQFH DV LW PD\ OHDG WR WKH GHILQLWLRQ RI UDQN 7KHRUHP &XQLQJKDPH*UHHQ 7KHRUHP f 6XSSRVH WKDW ) LV D FRPPXWDWLYH ERXQGHG OJURXS RWKHU WKDQ ^ f§ RRRR`9 $nf /HW P DQG N EH DUELWUDU\ LQWHJHUV :H FDQ DOZD\V ILQG N ILQLWH PWXSOHV QR RQH RI ZKLFK LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHUV 7KHRUHP &XQLQJKDPH*UHHQ 7KHRUHP f 6XSSRVH WKDW ) ^f§RR RR` 9 $ nf /HW UQ :H FDQ DOZD\V ILQG DW OHDVWf UQ f§ P PWXSOHV QR RQH RI ZKLFK LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHUV ,Q FRQYHQWLRQDO OLQHDU DOJHEUD D QXPEHU RI GLIIHUHQW EXW ORJLFDOO\ HTXLYDOHQW GHILQLWLRQV DUH SRVVLEOH RI WKH QRWLRQ RI OLQHDU LQGHSHQGHQFH RI D VHW RI HOHPHQWV RI D YHFWRU VSDFH +RZHYHU &XQLQJKDPH*UHHQ IRUPXODWHG DQDORJRXV PLQLPD[ DOJHEUD GHILQLWLRQV RI YDULRXV DOWHUQDWLYH IRUPV RI OLQHDU LQGHSHQGHQFH RI HOHPHQWV RI D EDQGVSDFH DQG VKRZHG WKDW WKH\ DUH QRW ORJLFDOO\ HTXLYDOHQW DOWKRXJK FHUWDLQ ORJLFDO LPSOLFDWLRQV PD\ EH GHPRQVWUDWHG DPRQJ WKHP >7KHVH FRQVLGHUDWLRQV OHG WR WKH IROORZLQJ GHILQLWLRQ 'HILQLWLRQ /HW ) EH D ERXQGHG JURXS DQG OHW DODNf ( 0QL :H VKDOO VD\ WKDW DOf DNf DUH VWURQJO\ OLQHDUO\ LQGHSHQGHQW LI WKHUH LV DW OHDVW RQH ILQLWH WXSOH % ( 0: ZKLFK KDV D XQLTXH H[SUHVVLRQ LQ WKH IRUP f ZLWK ?M7 ( ) M7 N U f DQG MU MV LI U V U W V Wf :H VKDOO DEEUHYLDWH fVWURQJO\ OLQHDUO\ LQGHSHQGHQWf E\ 6/,

PAGE 93

)RU D JLYHQ EHOW )WRR GHILQH OLQHDU LQGHSHQGHQFH DV WKH QHJDWLRQ RI OLQHDU GHSHQn GHQFH 'HILQLWLRQ D DNf e ) DUH OLQHDUO\ LQGHSHQGHQW H[DFWO\ ZKHQ QR RQH RI WKHP LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHUV 7KH QH[W WKHRUHP UHODWHV WKH GHILQLWLRQV RI 6/, DQG OLQHDU LQGHSHQGHQFH 7KHRUHP &XQLQJKDPH*UHHQ 7KHRUHP f /HW )sRR EH D FRPPXWDWLYH ERXQGHG OJURXS DQG D DIFf e 0QL )RU DOf DIFf WR EH OLQHDUO\ LQGHSHQn GHQW LW LV VXIILFLHQW EXW QRW QHFHVVDU\ WKDW D f DNf EH 6/, 'HILQLWLRQ /HW )WRR EH DQ\ ERXQGHG JURXS DQG OHW $ e 0fP 6XSSRVH WKDW ZH FDQ ILQG U FROXPQV U Qf RI $ EXW QR PRUH ZKLFK DUH 6/, :H VKDOO VD\ WKDW $ KDV FROXPQUDQN HTXDO WR U :H GHILQH URZUDQN RI $ DV WKH FROXPQUDQN RI WKH WUDQVSRVH RI $ %HIRUH SURYLQJ UHODWLRQVKLSV DPRQJ WKHVH UDQNV ZH QHHG RQH PRUH GHILQLWLRQ 'HILQLWLRQ $ JLYHQ PDWUL[ $ e 0PQ KDV OSDVWLF UDQN HTXDO WR U LI WKH IROORZLQJ LV WUXH IRU N U EXW QRW IRU N U Lf 7KHUH DUH ; e 0QL DQG < e 0PL ERWK ILQLWH VXFK WKDW % e 0Pf LV GRXEO\ OSDVWLF DQG FRQWDLQV D N [ N VWULFWO\ GRXEO\ OSDVWLF VXEPDWUL[ ZKHUH %LM
PAGE 94

LLf $ KDV FROXPQUDQN HTXDO WR U +Lf $ KDV URZUDQN HTXDO WR U LYf $r KDV GXDO FROXPQUDQN HTXDO WR U Yf $ KDV GXDO URZUDQN HTXDO WR U ,Q YLHZ RI 7KHRUHP ZH PD\ IRU GRXEO\ OSDVWLF $f VLPSO\ XVH WKH H[SUHVVLRQ UDQN RI $ ,Q WKH IRUHJRLQJ UHVXOWV WKH HTXDOLW\ RI YDULRXV UDQNV RI D PDWUL[ KDYH EHHQ GHPRQn VWUDWHG LI WKH\ H[LVW :H KDYH QRW \HW GLVFXVVHG ZKHWKHU D PDWUL[ QHFHVVDULO\ KDV VXFK UDQNV 7KH QH[W WKHRUHP DQVZHUV WKLV TXHVWLRQ 7KHRUHP &XQLQJKDPH*UHHQ 7KHRUHP f /HW )sRR EH OLQHDU FRPPXWDWLYH ERXQGHG OJURXS ZLWK JURXS ) DQG OHW $ e 0Pf 7KHUH H[LVWV DQ LQWHJHU U VXFK WKDW $ KDV \DVWLF UDQN U LI DQG RQO\ LI $ LV GRXEO\ )DVWLF 7KH LQWHJHU U VDWLVILHV U PLQ^PQ` 0DWUL[ 'HFRPSRVLWLRQ :H EHJLQ ZLWK WKH ZHDNHU FRQGLWLRQ RI OLQHDU LQGHSHQGHQFH 7KHRUHP ,I $ e 0PQ LV D PDWUL[ ZLWK U OLQHDUO\ LQGHSHQGHQW FROXPQV WKHQ $ $L 9 $ 9 f ‘ ‘ 9 $W ZKHUH HDFK $W LV RI VL]H P [ Q DQG KDV RQH OLQHDUO\ LQGHSHQGHQW FROXPQ 3URRI /HW GHQRWH WKH VHW RI LQGLFHV RI WKH GHSHQGHQW FROXPQV )RU HDFK LQGHSHQGHQW DMf GHILQH $M DV IROORZV

PAGE 95

/HW WKH MWK FROXPQ RI $M EH DMf )RU HDFK FO OHW WKH GWK FROXPQ RI $M EH $MGrD^Mf ZKHUH $ LV IURP 7KHRUHP $FFRUGLQJ WR 7KHRUHP $ $? 9 $ 9 f f f 9 $U 6LQFH HDFK $c FRQVLVW RI D VLQJOH QRQ f§ FROXPQ DMf DQG $MG r D^Mf WKH\ DOO KDYH RQH OLQHDUO\ LQGHSHQGHQW FROXPQ 4(' ([DPSOH /HW :H KDYH WKDW DQG L $ ? f§ ? f§ B f§ 9 f§ $r$ OO ? +HQFH WKH VHFRQG FROXPQ LV OLQHDUO\ GHSHQGHQW RQ WKH RWKHU FROXPQV $OVR $? $ $ f§ $FFRUGLQJ WR 7KHRUHP $ Q f§ f§ ? L L f§ f§ ? f§ f§ 9 f§ f§ ? f§ f§ ? f§ f§ &RUROODU\ ,I $ ( LV D PDWUL[ ZLWK UDQN U WKHQ $ $L 9 $ 9 f f f 9 $U ZKHUH HDFK $ LV RI VL]H P [ Q DQG KDV RQH OLQHDUO\ LQGHSHQGHQW FROXPQ

PAGE 96

3URRI ,I $ 0Pf LV D PDWUL[ ZLWK UDQN U WKHQ E\ 7KHRUHP KDV U FROXPQV ZKLFK DUH 6/, %\ 7KHRUHP U 6/, FROXPQV LPSOLHV U LQGHSHQGHQW FROXPQV 4(' 7KXV LI WKH FHQWHUHG ZHLJKW PDWUL[ $ FRUUHVSRQGLQJ WR D WHPSODWH W KDV U LQGHSHQGHQW FROXPQV WKHQ ZH FDQ ZULWH W DV W WL 9 W Y f ‘ f 9 WU ZKHUH W LV VHSDUDEOH WHPSODWH IRU HDFK L $ VHSDUDEOH WHPSODWH FDQ WKHQ EH GHFRPSRVHG LQWR D URZ DQG D FROXPQ WHPSODWH QDPHO\ W U (O V 7KHUHIRUH W UL 0 VLf 9 U (O 6f 9 f ‘ ‘ 9 Uf 0 Vff ([DPSOH /HW / W L 7KH FHQWHUHG ZHLJKW PDWUL[ FRUUHVSRQGLQJ WR WKLV WHPSODWH LV 7 &0 &0 &0 B ? B B B ?f§ f§

PAGE 97

$FFRUGLQJ WR 7KHRUHP ZH PD\ ZULWH 7 f§ 7? 9 7 9 7 ZKHUH DQG f§ f§ 2* B $ f§ f§ f§ 22 B B f§ f§ f§ 22 B B f§ f§ f§ 22 B B ? f§ 2* f§ 22 B f§ B f§ 2* B f§ ? f§ f§ 22 B f§ f§ 2* B f§ f§ 2* B ?f§ B f§ 2* B f§ f§ B ? f§ f§ B f§ f§ B f§ f§ B ?f§ f§ B ,I ZH WDNH W WR EH WKH WHPSODWH FRUUHVSRQGLQJ WR WKH FHQWHUHG ZHLJKW PDWUL[ 7 WKHQ HDFK W LV VHSDUDEOH 7KXV W UL (O VLf 9 UL (O 6f 9 U ( Vf ZKHUH U 6L rr 6 DQG 6D

PAGE 98

7KH FRQYHUVH RI 7KHRUHP LV QRW WUXH 6SHFLILFDOO\ LW FDQ EH VKRZQ WKDW LI D PDWUL[ $ KDV D GHFRPSRVLWLRQ LQ WKH IRUP $ $?0 $R ZKHUH HDFK $W KDV RQH OLQHDUO\ LQGHSHQGHQW FROXPQ LW PD\ QRW EH WUXH WKDW $ KDV WZR OLQHDUO\ LQGHSHQGHQW FROXPQV 7KH QH[W H[DPSOH VKRZV KRZ WKLV FDQ KDSSHQ ([DPSOH ,I WKHQ 7KH PDWUL[ $ KDV WKUHH OLQHDUO\ LQGHSHQGHQW FROXPQV

PAGE 99

&+$37(5 &21&/86,21 $1' 68**(67,216 )25 )857+(5 5(6($5&+ 7KLV GLVVHUWDWLRQ KDV GHYHORSHG WKH WKHRU\ RI PD[SRO\QRPLDOV $ SDUWLFXODU HPSKDVLV KDV EHHQ SODFHG RQ XVLQJ WKHLU IDFWRUL]DWLRQ DV D PHWKRG RI GHFRPSRVLQJ PRUSKRORJLFDO VWUXFWXULQJ HOHPHQWV 7KH VWHSV LQ WKH GHYHORSPHQW ZHUH f $ GHILQLWLRQ RI PD[SRO\QRPLDOV JLYHQ LQ WHUPV RI VHTXHQFHV RI HOHPHQWV 7KLV GHILQLWLRQ DOORZV IRU WKH FRPSOHWH FODVVLILFDWLRQ RI WKHLU DOJHEUDLF VWUXFWXUH 7KLV FODVVLILFDWLRQ LV EDVHG RQ H[LVWLQJ PLQLPD[ WKHRU\ f $ FRXQWHU H[DPSOH VKRZHG WKDW D GLYLVLRQ DOJRULWKP GRHV QRW KROG IRU PD[SRO\QRn PLDOV +RZHYHU ZH GHYHORSHG D GLYLVLRQ SURFHGXUH IRU WKH RQH YDULDEOH FDVH ZKLFK FDQ EH DSSOLHG LQ PRVW SUDFWLFDO FDVHV f 7KH SUHVHQWDWLRQ RI VHYHUDO VXIILFLHQW FRQGLWLRQV IRU WKH IDFWRUL]DWLRQ RI RQH YDULDEOH PD[SRO\QRPLDOV 3DUWLFXODU HPSKDVLV ZDV SODFHG RQ WKRVH H[KLELWLQJ V\PPHWU\ GXH WR WKHLU IUHTXHQF\ RI XVH LQ LPDJH SURFHVVLQJ f 7KH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV XQGHU ZKLFK D WZR YDULDEOH PD[SRO\QRPLDOV FDQ EH GHFRPSRVHG LQWR WZR RQH YDULDEOH PD[SRO\QRPLDOV 7KH SUHYLRXV UHVXOW LQ WKLV DUHD RQO\ DSSOLHG WR PD[SRO\QRPLDOV ZKLFK FRUUHVSRQGHG WR UHFWDQJXODU WHPSODWHV

PAGE 100

f $ QHFHVVDU\ FRQGLWLRQ IRU WKH GHFRPSRVLWLRQ RI WZRGLPHQVLRQDO WHPSODWHV LV WKH GHFRPSRVLWLRQ RI WKHLU ERXQGDULHV 7KH RQH YDULDEOH WHFKQLTXHV ZHUH H[WHQGHG WR WKH WZR YDULDEOH FDVH 6LQFH PRVW WHPSODWH DUH WZRGLPHQVLRQDO WKHVH UHVXOWV VKRXOG EH WKH PRVW XVHIXO f $ UDQN EDVHG PDWUL[ GHFRPSRVLWLRQ LQ WHUPV RI PLQLPD[ DOJHEUD ZDV SURYHQ 7KH IROORZLQJ DUH VXJJHVWLRQV IRU IXUWKHU UHVHDUFK 7KH SULPDU\ WKHRUHWLFDO UHVXOWV RQ SRO\QRPLDO IDFWRUL]DWLRQ DQG LUUHGXFLELOLW\ DUH GHULYHG IURP WKH DOJHEUDLF VWUXFWXUH RQ WKH FRHIILFLHQWV 7KH WKHRUHPV RI &KDSWHU OHDG WR WKH LQYHVWLJDWLRQ RI VXFK SRVVLELOLWLHV IRU PD[SRO\QRPLDOV :H QRZ PD\ FRQVLGHU FRQGLWLRQV RQ WKH EHOW RI FRHIILFLHQWV 'R QRWLRQV VXFK DV GLYLVLELOLW\ DQG LUUHGXFLELOLW\ H[LVW LQ EHOWV" $UH WKHUH SURSHUWLHV RI FHUWDLQ EHOWV ZKLFK DLG LQ WKH IDFWRUL]DWLRQ RI PD[SRO\QRPLDOV" 7KH VSOLWWLQJ ILHOG RI WKH UHDO QXPEHUV LV WKH FRPSOH[ QXPEHUV ,V WKHUH DQ H[WHQVLRQ RI 5BRR 9 f ZKLFK OHDGV WR DQ HTXLYDOHQW IRUP RI WKH IXQGDPHQWDO WKHRUHP RI DOJHEUD" 6LQFH WKHUH LV QR IXQGDPHQWDO WKHRUHP DW WKLV WLPH PDQ\ PRUH IDFWRUL]DWLRQ WHFKQLTXHV IRU VSHFLILF PD[SRO\QRPLDOV QHHG WR EH GHYHORSHG :H FRQVLGHUHG PHWKRGV IRU GHFRPSRVLQJ WZR YDULDEOH PD[SRO\QRPLDOV EDVHG RQ WKHLU ERXQGDU\ 7KH DUUDQJHPHQW RI WKH ERXQGDU\ IDFWRUL]DWLRQ KDV D VXEVWDQWLDO HIIHFW RQ WKH LQWHULRU ,V WKHUH D PLQLPDO FRQILJXUDWLRQ IRU WKH ERXQGDU\ IDFWRUL]DWLRQ" ([WHQVLRQV RI WKH IDFWRUL]DWLRQ UHVXOWV SUHVHQWHG KHUH FDQ LQFOXGH DOJRULWKPV WR GHWHUPLQH WKH LQWHULRU RI WKH GHFRPSRVLWLRQV VR WR RSWLPL]H DQ\ UHPDLQGHU ZKLFK PD\ H[LVW

PAGE 101

5()(5(1&(6 > @ 6HUUD ,PDJH $QDO\VLV DQG 0DWKHPDWLFDO 0RUSKRORJ\ $FDGHPLF 3UHVV /RQGRQ >@ 0DWKHURQ 5DQGRP 6HWV DQG ,QWHJUDO *HRPHWU\ :LOH\ 1HZ @ + +DGZLJHU 9RUOHVXQJHQ -EHU ,QKDOW 2EHUIOFHFKH XQG ,VRSHULPHWULH 6SULQJHU 9HUODJ %HUOLQ >@ 65 6WHUQEHUJ 2YHUYLHZ RI LPDJH DOJHEUD DQG UHODWHG LVVXHV ,Q 6 /HYLDOGL HGLWRU ,QWHJUDWHG 7HFKQRORJ\ IRU 3DUDOOHO ,PDJH 3URFHVVLQJ $FDGHPLF 3UHVV /RQGRQ >@ *; 5LWWHU 0$ 6KUDGHU)UHFKHWWH DQG -1 :LOVRQ ,PDJH DOJHEUD $ ULJRURXV DQG WUDQVOXFHQW ZD\ RI H[SUHVVLQJ DOO LPDJH SURFHVVLQJ RSHUDWLRQV ,Q 7HFKQLFDO 6\PSRVLXP 6RXWKHDVW RQ 2SWLFV (OHFWUR2SWLFV DQG 6HQVRUV 3URFHHGLQJV RI 63,( 2UODQGR )/ 0D\ >@ -/ 'DYLGVRQ 0LQLPD[ WHFKQLTXHV IRU QRQOLQHDU LPDJH SURFHVVLQJ WUDQVIRUPV ,Q 7HFKQLFDO 6\PSRVLXP RQ 2SWLFV (OHFWUR2SWLFV DQG 6HQVRUV YROXPH RI 3URFHHGLQJV RI 63,( 2UODQGR )/ 0DUFK >@ +-$0 +HLMPDQV 7KHRUHWLFDO DVSHFWV RI JUD\OHYHO PRUSKRORJ\ ,((( 7UDQVDFn WLRQV RQ 3DWWHUQ $QDO\VLV DQG 0DFKLQH ,QWHOOLJHQFH ff§ >@ 5 &XQLQJKDPH*UHHQ DQG 3)0HLMHU $Q DOJHEUD IRU SLHFHZLVHOLQHDU PLQLPD[ SUREOHPV 'LVFUHWH $SSOLHG 0DWKHPDWLFV ff§ >@ /L 0RUSKRORJLFDO WHPSODWH GHFRPSRVLWLRQ ZLWK PD[SRO\QRPLDOV -RXUQDO RI 0DWKHPDWLFDO ,PDJLQJ DQG 9LVLRQ f 6HSWHPEHU >@ == 0DQVHXU DQG '& :LOVRQ 'HFRPSRVLWLRQ PHWKRGV IRU FRQYROXWLRQ RSHUDWRUV &RPSXWHU 9LVLRQ *UDSKLFV DQG ,PDJH 3URFHVVLQJ f >@ '3 2f/HDU\ 6RPH DOJRULWKPV IRU DSSUR[LPDWLQJ FRQYROXWLRQV &RPSXWHU 9LVLRQ *UDSKLFV DQG ,PDJH 3URFHVVLQJ f >@ -/ 'DYLGVRQ 1RQOLQHDU PDWUL[ GHFRPSRVLWLRQV DQG DQ DSSOLFDWLRQ WR SDUDOOHO SURFHVVLQJ -RXUQDO RI 0DWKHPDWLFDO ,PDJLQJ DQG 9LVLRQ

PAGE 102

>@ % *LIIOHU 0DWKHPDWLFDO VROXWLRQ RI SURGXFWLRQ SODQQLQJ DQG VFKHGXOLQJ SUREOHPV 7HFK UHS ,%0 $6'' >@ % &DUU $Q DOJHEUD IRU QHWZRUN URXWLQJ SUREOHPV ,QVW 0DWK $SSO >@ & %HQ]DNHQ 6WUXFWXUHV DOJEUD GHV FKHPLQHPHQWV ,Q %LRUFL HGLWRU 1HWZRUN DQG 6ZLWFKLQJ 7KHRU\ SDJHV $FDGHPLF 3UHVV >@ 5 &XQLQJKDPH*UHHQ 0LQLPD[ $OJHEUD /HFWXUH 1RWHV LQ (FRQRPLFV DQG 0DWKHPDWLFDO 6\VWHPV 6SULQJHU9HUODJ 1HZ @ %LUNKRII /DWWLFH 7KHRU\ $PHULFDQ 0DWKHPDWLFDO 6RFLHW\ 3URYLGHQFH 5, > @ *; 5LWWHU -1 :LOVRQ DQG -/ 'DYLGVRQ ,PDJH DOJHEUD $Q RYHUYLHZ &RPSXWHU 9LVLRQ *UDSKLFV DQG ,PDJH 3URFHVVLQJ f 0DUFK >@ 7: +XQJHUIRUG $OJHEUD 6SULQJHU9HUODJ 1HZ @ 5 /LGO DQG 3LO] $SSOLHG $EVWUDFW $OJHEUD 6SULQJHU9HUODJ 1HZ @ /L DQG ; 5LWWHU 'HFRPSRVLWLRQ RI VHSDUDEOH DQG V\PPHWULF FRQYH[ WHPSODWHV ,Q ,PDJH $OJHEUD DQG 0RUSKRORJLFDO ,PDJH 3URFHVVLQJ YROXPH RI 3URFHHGLQJV RI 63( SDJHV 6DQ 'LHJR &$ -XO\ >@ $' :HLVPDQ (5 'RXJKHUW\ +$ 0L]HV DQG 5-' 0LOOHU 1RQOLQHDU GLJLWDO ILOWHULQJ RI VFDQQLQJSUREHPLFURVFRS\ LPDJHV E\ PRUSKRORJLFDO SVHXGRFRQYROXn WLRQV -RXUQDO RI $SSOLHG 3K\VLFV f )HEUXDU\ >@ ) 6KLK DQG 25 0LWKFHOO $XWRPDWHG IDVW UHFRJQLWLRQ DQG ORFDWLRQ RI DUELWUDULO\ VKDSHG REMHFWV E\ LPDJH PRUSKRORJ\ ,Q 3URF RI &RPSXWHU 9LVLRQ DQG 3DWWHUQ 5HFRJQLWLRQ &RQI SDJHV $QQ $UERU 0, -XQH >@ *; 5LWWHU ,PDJH DOJHEUD ZLWK DSSOLFDWLRQV 8QSXEOLVKHG PDQXVFULSW >@ -/ 'DYLGVRQ /DWWLFH 6WUXFWXUHV LQ WKH ,PDJH $OJHEUD DQG $SSOLFDWLRQV WR ,PDJH 3URFHVVLQJ 3K' WKHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ >@ 3 0DUDJRV DQG 5: 6FKDIHU 0RUSKRORJLFDO VNHOHWRQ UHSUHVHQWDWLRQ DQG FRGLQJ RI ELQDU\ LPDJHV ,((( 7UDQV $FRXVWLFV 6SHHFK DQG 6LJQDO 3URF $663f 2FWREHU

PAGE 103

%,2*5$3+,&$/ 6.(7&+ )UDQN &URVE\ ZDV ERUQ LQ 'HWURLW 0LFKLJDQ RQ WKH WKLUG DQG ZRUVW QLJKW RI WKH ULRWV LQ +H OLYHG LQ 'HWURLW XQWLO DWWHQGLQJ $ODEDPD $JULFXOWXUDO DQG 0HFKDQLFDO 8QLYHUVLW\ $W $ODEDPD $ DQG 0 KH SOD\HG ERWK YDUVLW\ WHQQLV DQG VRFFHU +H UHFHLYHG D %6 LQ 0DWKHPDWLFV LQ +LV JUDGXDWH VWXGLHV EHJDQ DW WKH 8QLYHUVLW\ RI 0LFKLJDQ ZKHUH KH JRW DQ 06 LQ $SSOLHG 0DWKHPDWLFV LQ +H EHJDQ VWXG\LQJ LPDJH DOJHEUD DW WKH 8QLYHUVLW\ RI )ORULGD LQ WKH )DOO RI DQG JUDGXDWHG ZLWK D 3K' LQ 0DWKHPDWLFV LQ

PAGE 104

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ LQ\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSADQMO TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *FUIIDIG ; 5LWWHU &KDLUPDQ TRIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /RXLV %ORFN 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ £ SL 8LW-/ 8W %HUQDUG 0DLU $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ +ZYLYY YL; M 0XUDOL 5DR 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG :LOVRQ 3URIHVVRU RI 0DWKHPDWLFV

PAGE 105

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EP8WDCC7S_VI9UD6 INGEST_TIME 2017-07-13T14:59:38Z PACKAGE AA00003597_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES