Citation
Agro-economic evaluation of four vegetable cropping patterns for north Florida as influenced by crop and fertilizer management levels

Material Information

Title:
Agro-economic evaluation of four vegetable cropping patterns for north Florida as influenced by crop and fertilizer management levels
Creator:
Palada, Manuel Celiz, 1944-
Publication Date:
Language:
English
Physical Description:
xi, 97 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Cropping systems ( jstor )
Crops ( jstor )
Farmers ( jstor )
Fertilizers ( jstor )
Onions ( jstor )
Peas ( jstor )
Soils ( jstor )
Tomatoes ( jstor )
Vegetable crops ( jstor )
Vegetables ( jstor )
Cropping systems -- Florida ( lcsh )
Vegetable gardening -- Florida ( lcsh )
Vegetables -- Fertilizers -- Florida ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Includes bibliographical references (leaves 81-95).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Manuel Celiz Palada.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000014253 ( ALEPH )
AAB7454 ( NOTIS )
06347531 ( OCLC )

Downloads

This item has the following downloads:


Full Text









AGRO-ECONOMIC EVALUATION OF FOUR VEGETABLE CROPPING
PATTERNS FOR NORTH FLORIDA AS INFLUENCED BY
CROP AND FERTILIZER MANAGEMENT LEVELS














By



MANUEL CELIZ PALADA


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE EQUIRElTS'ETS FOR l-
DEGREE OF DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1980



























DEDICATED



TO



THE SMALL-SCALZ VEGETABLE GCF.CWER IN
NORTH FLORIDA AND EEVE'L.PING
COUNTRIES IN THE TROPICS









ACKNOWLEDGMENTS


This research has been completed because of the help of a great

number of people. The supervision and assistance from the members of

the author's graduate committee, Dr. R. D. William, former chairman,

Dr. D. N. Maynard, present chairman, and Dr. W. G. Blue, Prof. L. H.

Halsey, Dr. S. R. Kostewicz, Dr. G. M. Prine, and Dr. G. B. Wall are

gratefully acknowledged. Dr. William served as chairman of the super-

visory committee for the entire course of the research and graduate

training program and helped stimulate an environment conducive to the

author's academic development. The author appreciates the interest

and willingness of Dr. D. N. Maynard who served as chairman of the

supervisory committee after Dr. William left the Vegetable Crops Depart-

ment. The help and guidance of Dr. William and Dr. Maynard in develop-

ing and improving the author's skill in writing are highly appreciated.

The helpful suggestions and assistance of Prof. Halsey in the conduct

of the field experiment are gratefully acknowledged.

Acknowledgments are due also to Mr. L. C. Bryant, and other

technicians of the Horticultural Unit and Soil Science Department

Testing Laboratory who helped and assisted the author in conducting

field work and analyzing soil samples. The author is thankful to Dr.

N. Gammon, and Dr. W. G. Blue for allowing him to use the facilities

of the Tropical Pastures and Soils Laboratory. Special appreciation

is also extended to Dr. S. J. Locascio for allowing the author to use

the facilities of the Vegetable Nutrition Laboratory. The help and










assistance of his fellow graduate students and friends in Vegetable

Crops Department are also appreciated.

The author is grateful to the Rockefeller Foundation for

providing a graduate fellowship and to the persons who recommended

him for this fellowship, namely, Dr. N. C. Brady, Director General,

International Rice Research Institute (IRRI), Los Banos, Philippines,

and Dr. Richard R. Harwood, Director, Organic Gardening and Farming

Research Center, Kutztown, Pennsylvania.

Finally, the author wishes to express his sincere thanks to

his wife, Elie; daughter, Daffodil; and son, Ted Peter, for their

love, constant inspiration, encouragement, and understanding.









TABLE OF CONTENTS


Page

ACKNOWLEDGMENTS iii

LIST OF TABLES vii

LIST OF FIGURES ix

ABSTRACT x

INTRODUCTION 1

CHAPTER I. LITERATURE REVIEW 3

Concepts of Cropping Systems 3
Cropping Systems Research Approaches and
Methodologies 4
Management of Vegetables in Cropping Systems 8
Soil and Fertilizer Management in Vegetable
Cropping Systems 13
Economic Evaluation of Vegetable Cropping
Patterns 20

CHAPTER II. AN EVALUATION OF FOUR VEGETABLE CROPPING PA'TTE.:S
FOR NORTH FLORIDA 25

Introduction 25
Materials and Methods 27
Results and Discussion 32
Crop environment 32
Crop duration 35
Marketable yields 35
Biological stability 39
Production costs and returns to management 40
Returns to production inputs 40

CHAPTER III. CROP AND FERTILIZER MANAGEMENT LEVELS IN FOUR
SEQUENTIAL CROPPING PATTERNS INVOLVING
VEGETABLES 44

Introduction 44
Materials and Methods 47
Experimental site 47
Soil characteristics 47
Classification of vegetable crops 47
Selection of vegetable crops 47
Design of cropping patterns 48









Levels of fertilizers 48
Experimental design 51
Data collection 51
Soil sampling and chemical analyses 52
Statistical analysis of data 52
Results and Discussion 53
Shifts in Soil Properties 53
Total soluble salts 53
Soil reaction 53
Soil organic matter 55
Soil nitrogen 55
Soil potassium 59
Effects of Crop and Fertilizer Management
Levels on Marketable Yields 59
Cropping pattern HM-HM-HM 59
Cropping pattern LM-LM-L 61
Cropping pattern H-M-MMIM 61
Cropping pattern Hi-LM-MM 61
Resource Utilization of Cropping Patterns 63
Labor profile 63
Production costs 63
Income and Returns to Production Inputs 65
Gross and net income 65
Returns to production inputs 68
Rates of return to production inputs 68
Economic Implications 72

SUMMARY AND CONCLUSIONS 74

LITERATURE CITED 81

BIOGRAPHICAL SKETCH 96







LIST OF TABLES


Table Page

1 Cultural practices for vegetable crops grouped in three
management levels and grown in four cropping patterns at
Gainesville, FL, 1977-79. 29

2 Average fertilizer, pesticide, cultural labor, and
harvest costs for high, medium, and low management
vegetable crops in Florida, 1973-1977. 30

3 Crop duration and interval between crops in four vegetable
cropping patterns over two cropping cycles in the period
1977-79, Gainesville, FL. 36

4 Marketable yields of vegetable crops in four cropping
patterns at Gainesville, FL. 37

5 Production costs and returns to management of vegetable
crops in four cropping patterns over two cropping cycles
in the period 1977-79, Gainesville, FL. 41

6 Returns to fertilizer, cash, labor, and management of
vegetable crops in four cropping patterns over two crop-
ping cycles in the period 1977-79, Gainesville, FL. 42

7 Nitrogen and potassium levels for low, medium, and high
management crops, Gainesville, FL, 1977-79. 50

8 Soil pH after harvest of each crop as influenced by crop
and fertilizer management levels over two cropping cycles
in the period 1977-79, Gainesville, FL. 56

9 Soil organic matter content after harvest of each crop
as influenced by crop and fertilizer management levels
over two cropping cycles in the period 1977-79, Gainesville,
FL. 57

10 Marketable yields of component vegetable crops in four
cropping patterns as influenced by crop and fertilizer
management levels over two cropping cycles in the period
1977-79, Gainesville, FL. 62

11. Production costs of four vegetable cropping patterns as
influenced by crop and fertilizer management levels over
two cropping cycles in the period 1977-79, Gainesville,
FL 66

12 Gross and net incomes of four vegetable cropping patterns
as influenced by crop and fertilizer management levels over
two cropping cycles in the period 1977-79, Gainesville, FL. 67










13 Returns to production inputs of four vegetable cropping
patterns as influenced by crop and fertilizer management
levels over two cropping cycles in the period 1977-79,
Gainesville, FL. 69

14 Rates of return to production inputs of four vegetable
cropping patterns as influenced by crop and fertilizer
management levels over two cropping cycles in the period
1977-79, Gainesville, FL. 70


viii


Table


Page









LIST OF FIGURES


Figure Page

1 Four vegetable cropping patterns plotted against rainfall
and temperature at Gainesville, FL, 1977-78. 33

2 Four vegetable cropping patterns plotted against rainfall
and temperature at Gainesville, FL, 1978-79. 34

3 A conceptual model of crop management approach to vegetable
cropping systems research. 46

4 Planting sequences of low, medium, and high management
vegetable crops in four cropping patterns over two crop-
ping cycles in the period 1977-79, Gainesville, FL. 49

5 Total soluble salts after harvest of each crop as influenced
by crop and fertilizer management levels over two cropping
cycles in the period 1977-79, Gainesville, FL. 54

6 Soil nitrogen after harvest of each crop as influenced by
crop and fertilizer management levels over two cropping
cycles in the period 1977-79, Gainesville, FL. 58

7 Soil potassium after harvest of each crop as influenced
by crop and fertilizer management levels over two cropping
cycles in the period 1977-79, Gainesville, FL. 60

8 Labor profile of four vegetable cropping patterns as
influenced by crop management levels over two cropping
cycles in the period 1977-79, Gainesville, FL. 64







Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

AGRO-ECONOMIC EVALUATION OF FOUR VEGETABLE CROPPING
PATTERNS FOR NORTH FLORIDA AS INFLUENCED BY
CROP AND FERTILIZER MANAGEMENT LEVELS

By

Manuel Celiz Palada

March, 1980

Chairman: Donald N. Maynard
Major Department: Horticultural Science (Vegetable Crops)

Appropriate crop management technologies for year-round vegetable

cropping systems are essential to increase productivity and improve farm

income among small-scale vegetable farmers. A 2-year study was conducted

to determine and evaluate the influence of crop and fertilizer manage-

ment levels on productivity, income, and nutrient levels in soil from

four vegetable cropping patterns for North Florida and to develop

appropriate crop and fertilizer management practices for sequential

vegetable cropping systems.

Seven vegetable crops were classified into three management

groups (low, LM; medium, MM; and high, HM) and planted in four cropping

patterns (HM-HM-HM, LM-LM-LM, Hr-;..!-LM, and -lM-l-;-.1). Vegetable crops

included bulb onion (Allium cepa L.), collard (Brassica oleracea L.

Viridis Cr;up), English pea (Pisum sativum L.), mustard (Brassica

juncea L. Czern. and Coss.), pole bean (Phaseolus vulgaris L.), southern

pea (Vigna unguiculata L. Walp.), and crookneck squash (Cucurbita pepo L.).

The four cropping pattern main plots were split into three fertilizer

level sub-plots (low, medium, and high N and K) arranged in a randomized

block design.








Cropping duration was longest in cropping pattern HM-HM-HM

(bulb onion-pole bean-collard) and shortest in LM-LM-LM (English pea-

southern pea-southern pea) and HM-LM-MM (bulb onion-southern pea-

mustard). At the end of the cropping sequence, soil pH was lower than

the initial value in all cropping patterns, but the difference between

initial and final pH was greater in cropping patterns HM-HM-HIM, HM-MM-M,

and H-M-LM-MM than in LM-LM-LM. Soil organic matter content decreased,

whereas total soluble salts increased in cropping pattern HM-HM-EM,

where high levels of fertilizer were applied. Cropping pattern LM-LM-LM

resulted in highest soil organic matter content after harvest of the

third crop. Soil N and exchangeable K were significantly higher in

cropping pattern HM-FHM-HM than in the other cropping patterns. Exchange-

able K increased as fertilizer level increased in all cropping patterns.

Increases in marketable yields were not observed with increasing

fertilizer level except for bulb onion, squash, and English pea, where

significant yield responses resulted from application of the medium

fertilizer level. Cropping pattern HMI-M-HM resulted in significantly

higher resource use and gross and net incomes, but rates of return to

production inputs such as fertilizer, labor, cash, and management were

similar among the cropping patterns. Planting low management and a

combination of high, medium, and low management crops in sequential

vegetable cropping patterns required low production inputs and were

efficient and profitable. Such cropping patterns offer greater yield

stability and the possibility of improved farm income.







INTRODUCTION


Vegetable growers in North Florida produced 12 vegetable crops

commercially in 1978 (45). Enterprises range in scale from full-time

businesses to part-time small-scale market garden operations (42, 89,

163). In general, vegetable growers in North Florida plant vegetable

crops during the spring and fall seasons because the climate is more

favorable than in summer and winter (175, 176). The higher temperatures

and rainfall in summer and freezing temperatures in winter limit the

production of most vegetables in North Florida (36, 63, 175, 176).

Vegetable production in North Florida is characterized by few total

hectares (19, 45) and lower yields compared to South Florida (29, 45).

Small-scale farmers generally produce vegetables using low levels

of crop management (29, 45). In a survey of 50 small-scale growers in

North Florida, a majority of the growers used low levels of fertilizers

and pesticides (29). Marketing alternatives were limited and prices

for most vegetables were below the break-even price (30, 50). Thus,

the feasibility of increasing and improving vegetable production in

North Florida is dependent upon both efficient cropping and marketing

systems.

Several studies have been conducted to extend and improve vege-

table production in North Florida (20, 164, 175, 176). For example,

the use of black and white plastic mulches to reduce the effect of

intense rainfall and high soil temperatures improved yields of mus.melon

(Cucumis melo L.), watermelon [Citrullus lanatus (Thum.b.) Mansf.], and

squash (20). Production of vegetables under tobacco (Nicotania taba-

cum L.) shades also increased total yield of cucumber (Cucumis sativus L.)

1







2

(164, 175). By selecting adapted cultivars, many vegetable crops can

be grown sequentially (63). For instance, promising cultivars of cru-

cifers, cucurbits, leguminous, leaf, bulb, and solanaceous crops produced

high marketable yields in Gainesville (61, 62, 64, 65, 66, 67).

These studies report only the management system of an individual

crop from planting to harvesting without considering interactions

between crops within cropping and farm management systems. Most of these

studies are specialized, narrow in scope, and often oriented to a speci-

fic discipline. In contrast, cropping systems research involves the

study of cropping patterns and their interaction with farm resources,

other farm enterprises, and available technology on a year-round crop-

ping basis (5, 68, 138).

Since different vegetable crops respond to different levels of

management, research methods such as the cropping systems approach

which integrates crop production with farmer's management capabilities

are needed to develop appropriate technologies. The objectives of this

study were to (a) evaluate productivity, resource use, and profitability

of several vegetable crops planted in four cropping patterns for North

Florida, (b) determine and evaluate the influence of crop and fertilizer

management levels on productivity, income, and nutrient levels in soil

from four vegetable cropping patterns, and (c) develop appropriate crop

and fertilizer management practices for sequential cropping patterns.

The principles and methodology developed from this research study can

be used in both developing and developed countries where small-scale

farmers have limited resources and low energy technologies.






CHAPTER I

LITERATURE REVIEW

Concepts of Cropping Systems

A cropping system is defined as a collection of distinct functional

units or of elements that are interrelated and interacting (31, 94, 118,

119, 138). These components are crops, soils, marketing activities,

production inputs, farmer's management skills, and other environmental

factors. The farmer sometimes manipulates some of these factors in order

to achieve his goals.

Common terms used in cropping systems include:

A crop system comprises components required for the production

of a particular crop and the interrelationships with the environment.

These components include the necessary physical, biological, and techno-

logical factors as well as labor (31).

Monoculture involves the growing of only one crop on the same

plot of land in one year (5, 31, 138, 157).

Multicropping is the growing of more than one crop on the same

land in one year (5, 68, 138).

Sequential cropping is the growing of two or more crops in

sequence on the same field per year (5, 138, 157).

Intercropping is the growing of more than one crop on the same

field at the same time (5, 47, 69, 138, 157).

Relay intercropping is the planting of a second crop before the

first crop is harvested (5, 47, 69, 138).

A -rTppling pattern is a yearly sequence and arran-ement of crops

or fallow on a given land area (5, 31). The interaction of cropping

patterns with physical and socio-economic factors results in cropping

systems for a given area (68).







4

Cropping Systems Research Approaches and Methodologies

Agricultural research generally has been designed to investigate

component technologies based on objectives of increasing yields, product-

ion efficiencies, and profitabilities (37, 121). This research often

benefits large, commercial farmers. Small-scale farmers, however, are

seldom benefited because their objectives are influenced not only by

risk, but also by religion, culture and tradition (80, 118). Improved

technologies for small-scale farmers often fail and are sometimes un-

acceptable because these technologies are not appropriate to their

farming systems. For example, in the central highlands of Guatemala,

Hildebrand (80) reported that farmers do not fertilize their corn

(Zea mays L.) although they recognize that fertilizers increase yields.

These farmers would rather apply the fertilizer to their vegetables

where return to cash or to fertilizer is greater than for corn. In

northern Nigeria, where mixed cropping is practiced, Baker and Norman

(8) reported that farmers are reluctant to adopt recommendations for

single crops because these improved technologies were not relevant to

the local environment or their multiple cropping system. Upland rice

(Oryza sativa L.) farmers in the Philippines prefer a tall cultivar

over the short and high yielding cultivars because weed competition

is less serious (85).

A lack of appropriate methods for conducting multiple cropping

research has hampered the development of more effective technologies

for small-scale farmers (177). Development of relevant, farmer-oriented

methodologies that utilize a multidisciplinary, farm-oriented, farmer

participation, and resource utilization approach have recently been






5

utilized by an increasing number of researchers (8, 23, 69, 77, 81, 97).

An interdisciplinary research team is a prerequisite in develop-

ing cropping system programs (48, 77, 79, 118, 119). Based on assess-

ment of factors that limit production and farm income, the researchable

parts of problems are identified. Research workers from different

disciplines and farmers agree on researchable problems followed by a

combined and joint research effort. In this approach, everyone in the

team works and makes decisions together on a regular basis. These

farming research teams are often composed of an agronomist, economist,

and anthropologist or sociologist (31, 69, 77, 80). The entire team

often conducts a survey to understand and interpret the small farmers'

agro-socio-economic conditions. Each member of the team interviews

the farmer to reduce interviewer bias and increase cross-disciplinary

exchange. The group meets each night to discuss the day's interview.

The farmer participation approach in testing appropriate tech-

nologies in on-farm research is essential in cropping systems studies

(8, 54, 69, 80, 145). On-farm trials can reduce perceived risk by

allowing farmers to observe the technology under the rigors of their

production environment. Farmers can express their opinions and criti-

cisms during the early stage of research process so that technology

is culturally, economically, and biologically viable. The communica-

tion between the farmer-participant and researcher permits small-scale

farmers to become part of the research process and insures that the

technology is appropriate (69, 118, 119).

Most studies using the farmer participation approach are asso-

ciated with small farm development projects whose objectives are to






6

develop, adopt, and transfer improved technologies to small farms in

developing countries (37, 57, 79, 83, 178). For example, the Caqueza

project near Bogota, Colombia, provided farmers with incentive for adapt-

ing a "complete package" of agricultural practices under a risk-reducing

credit scheme (178). Dramatic increases in both yield [200%o for corn

and 50% for potato (Solanum tuberosum L.)] resulted from incorporation

of improved production technologies consisting of new cultivars, opti-

mum population density, additional fertilizer and insect control (178).

A methodology for the design and transfer of agronomic techno-

logy to increase bean production was studied on small farms in a coffee

(Coffea sp. L.)-growing area of Colombia (82). The objective was to

develop a low-cost, low-risk technology. Unlike most agronomic studies

that emphasize yield maximization, the goal of this study was to increase

economic returns with minimum risk. The three components of the study

were to observe traditional bean production systems, design a techno-

logical package, and evaluate the economics of this package at the

farm level. Farmer participation was an integral part of the methodo-

logy. The low-cost technology consisting of combined use of improved

cultivars at optimum population densities and low levels of agrochemi-

cals resulted in a 30% increase in bean production and a 54% net

income (82).

In Asia, projects designed to introduce and validate technolo-

gical innovations for small farms were developed (83, 162). For example,

researchers in India tested rice technological packages in 1966 to

screen cultivars in farmers' field (57). At the same time, economic

data were obtained on the farmers' traditional production system which

allowed researchers to design complementary inputs within the scope of






7

the small farmers' land, labor, and capital resources. In the Philip-

pines, a 50% adoption rate for high-yielding rice cultivars was observed

within a 6-year period (73). Rice "microkits" were tried in other

Asian countries to maximize the dispersal of technology to small farmers

(44). These "microkits" contained five cultivars of rice to be planted

in the farmer's field alongside the local variety. Two levels of ferti-

lizer and two levels of insecticide also were included. Seed yield of

the best variety was sufficient to plant one fourth hectare the follow-

ing season. Through this approach, farmers multiplied the seeds of the

best cultivars, thereby eliminating the necessity of purchasing govern-

ment supplied seed (44).

A similar project was initiated in Nigeria by the International

Institute of Tropical Agriculture with both rice and corn (158). The

package included four improved cultivars and one local cultivar, two

fertilizer levels, and a record book. One farmer in each village was

selected by local extension agents and village leaders to test and

manage the experiment. Results indicated that small farmer adoption

rates were enhanced by these on-farm demonstrations of productivity and

profitability (158).

In El Salvador, the basic multiple cropping system developed for

complex relay and intercropping of corn, pole bean, cabbage (Brassica

oleracea L. Capitata Group), cucumber, bush bean, and radish (Raphanus
2
sativus L,) produced a net income of $772/900 m (78).

The resource utilization approach is another method which is

applicable for the study of cropping systems (16, 68). In this approach,

the farmer seeks to integrate farm resources into farm enterprises by

using available technologies and management skills. An example is






8

intercropping practices in Southeast Asia and in Africa. Short-season

crops such as corn or sorghum (Sorghum bicolor L.) are frequently inter-

cropped with upland rice and cassava (Manihot esculenta L.) or pigeon

pea (Cajanus cajan Millsp.) creating a 9 to 10-month cropping season

with several harvests and a single major tillage operation. This system

enables efficient utilization of land, solar radiation, water, and labor

resources (8).

Most farmers use a combination of enterprises with different

resource requirements. Some enterprises may be of lower productivity

but higher in stability. Others may be labor or cash-intensive and

highly productive, but unstable from the biological, management or

economic standpoint. The net effect is to balance the farmer's resources

in meeting his needs for productivity and stability (68).


Management of Vegetables in Cropping Systems

Vegetables are often grown as component crops in a wide array

of cropping patterns (167). Thus, management of vegetable crops is

dependent on the type of cropping patterns. Asian farmers plant field

and vegetable crops following rice or other staple crops (47, 68, 70,

138). The vegetable crops planted depend on the availability of

resources such as irrigation, labor, cash inputs, and market. High

management vegetable crops such as cabbage, pole bean, cauliflower

(Brassica oleracea L. Botrytis Group), and tomato (Lycopersicon escu-

lentum Mill.) are grown after rice where there is sufficient irrigation

and market incentive (24). Farmers use stakes, high levels of ferti-

lizers and pesticides on crops like tomato and pole lima bean (Phaseolus

lunatus L.) where crop market value is high. Conversely, low






9

manaSgement crops such as mungbean (Vigna radiata L. Wilczek) and cowpea

(Vigna unguiculata L. Walp.) are often planted after rice by farmers in

rain-fed areas where market is limited and a major portion of the produce

is consumed by the farm family (26, 114, 177). Although these crops

require low management levels, studies indicate that they respond to

improved levels of cultural management. For example, Herrera et al.

(76) reported that adequate control of insect pests from vegetative to

flowering stages significantly increased yield of mungbeans.

In Taiwan, vegetable crops are planted sequentially after irri-

gated rice field crops (47, 105). The rice-rice-vegetables cropping

pattern is most common where variety of medium to high management

vegetables can be grown during the period between the production of

two rice crops. There is sufficient time for growing short-season

vegetable crops such as bunching onion (Allium fistulosum L.), cabbage,

mustard, lettuce (Lactuca sativa L.), radish, and bean. In-certain

parts of Malaysia where there are efficient irrigation and drainage

systems, high management vegetable crops such as hot peppers (Casicim

frutescens L.), tomato, yard lcng bean [Vigna sinensis (Stickm) Savi

ex Hassk. Sesquipedalis Group], and cucumber are planted after rice (165).

Some double cropping vegetables with field crops are also possible

under irrigation during the warm season in North Florida (55, 133).

For example, southern pea, pigeon pea, wax and black beans (Phaseolus

sn_. L.) were successfully grown as second crops after early or mid-

season corn (55). Under double cropping, these crops required high

plant populations and narrow row widths compared to lower populations

and wider spacings when grown as single crops. With a snort-maturi:g.

small .rain crop like barley (Hordeum vulgare L.), it was possible to






10

grow three crops in sequence with vegetables such as sweet corn, English

pea, southern pea, and snap bean (51, 52). These crops are planted

using zero tillage and no fertilizer except for the sweet corn. The

vegetable legumes utilize the residual fertilizer from the preceding

crop to make more efficient use of soil nutrients. Double cropping of

vegetables was feasible in South Florida (21, 43, 129). Butternut

squash produced high yields without additional fertilizer when planted

after tomato grown under full-bed plastic mulch (21). In this study,

complete or partial incorporation of fertilizer in beds under mulch

resulted in higher yields of tomato and second crop butternut squash

than banding all the fertilizer on top of the bed. Everett (43) reported

that yields of tomato or cucumber planted as second crop on plastic

mulched beds previously planted to fall tomato did not significantly

increase at fertilizer rates higher than 70 kg/ha N and 100 kg/ha K

regardless of placement methods. Thus, multiple cropping on mulched beds

can reduce energy use and production costs by permitting efficient use

of both physical and applied resources (21).

Small-scale farmers in the tropics have developed a variety of

intercropping systems involving vegetable crops (6, 24, 79, 92, 169).

For example, short-maturing crops such as mungbean, cowpea, and soybean

(Gldcine max L.) can be intercropped with tall, short-maturing crops

such as corn (84). Paner (1Z7) reported that vegetable crops can also

be intercropped with tall, lr.g--aturing crops such as r'.ngieanr in

sugarcane (Caccharua officinarum L.). Also, tall permanent or perennial

crops such as coconut (Cocus nucifera L.), rubber (Hevea brasilienses

L.), banana (Musa soDierntum L. Schaft) can be intercropped with ginger






11

(Zingeber officinale Roscoe), dasheen (Colocasia esculenta L.), arrow--

root (Maranta arundinacea L.), mungbean, and other crops producing eco-

nomic yield for small-scale farmers.

In Taiwan, small-scale farmers also plant short-duration vegetable

crops under grape (Vitis spp.) vines during the dormant period or between

young fruit trees such as mango (Mangifera indica L.) (169). This

practice provided incentives for additional income. Intensive vegetable

growers in Taiwan also interplant mustard spinach (Brassica campestris

L. Perviridis Group) and bunching onion. Following the harvest of

mustard spinach, cauliflower is transplanted between alternate rows of

onion (169). In south-central Taiwan, farmers interplant cauliflower

and pole lima bean or other crops in rotation with paddy rice (24, 169).

Management of intercropping systems is sometimes more complex

than sequential cropping and may depend on several factors such as

season, crop, farm resources, market, and farmer skills. For example,

in Taiwan, farmers intercropped lima bean and cauliflower using three

methods (24). Farmers with abundant labor and small landholdings planted

high populations of cauliflower (21,000-30,000 plants/ha) with low seed-

ing rates for lima bean (25-30 kg/ha) to obtain high farm income.

Farmers who planted late in the season used low populations of cauli-

flower (15,000-16,000 plants/ha) with high seeding rates for lima bean

(60-90 kg/ha) because they predict that the price of cauliflower will

drop during the peak harvest period of vegetables while the price of

lima bean will rise in response to reduced supply. Farmers who planted

early in the season used 20,000-29,000 seedlings/ha for cauliflower and

50-70 kg/ha of lima bean seed because they predict that the price





12

of early planted cauliflower will be very high.

Relay intercropping which is another method of crop intensifi-

cation, can save time in the cropping sequence, permit the first crop

to protect the second crop during the early stages of growth by acting

as a "nurse crop" and distribute labor peaks throughout the cropping

year (92, 117). In relay interplanting, the primary limiting factor

seems to be competition for light, whereas moisture and nutrients are

less critical (84). For example, experiments at IRRI demonstrated that

mungbean and radish were least tolerant to shading because these crops

can stand only two to three days of dense shade, whereas sweet potato

(Ipomoea batatas L.) can stand four to five weeks of dense shade with

little yield reduction when relay intercropped with rice (84).

Several vegetable crops relay interplanted into annual field

crops or vegetable crops benefited small-scale farmers (7, 84). For

instance, relay interplanting tomato, cabbage, bush snap bean, and

sweet potato as early as 20 days before harvest of sweet corn did not

reduce yield (7). Relay intercropping vegetables into rice increased

total production, yet maintained critical planting dates for the main

rice crop within the cropping pattern. For instance, small-scale

farmers in central Taiwan relay interplant short duration vegetable

crops during a 60 to 100-day period between two rice crops (96).

Vegetable crops that require 10 to 30 additional days to mature can be

planted and harvested before the critical rice planting dates. Summer

melon (Cucumis melo L.), pickling melon (Cucumis melo L. Var. Conomon),

or watermelon [Citrullus lanatus (Thumb.) Mansf.] are planted on small

mounds of soil two weeks before rice harvest during the summer season.






13

During winter, a single crop such as sweet potato or edible-podded pea

(Pisum sativum L. Macrocarpon Group) and many green leafy vegetables

can be relay interplanted before rice harvest to increase total

production within the 100-day period (169).

In North Florida, relay interplanting of sweet potato and pigeon

pea in corn did not reduce corn grain yield (3). Higher yields of sweet

potato and pigeon pea were obtained with early maturing corn at low

populations than at high populations.

Relay intercropping vegetable crops has some limitations because

of managementt constraints. For instance, the Taiwan method of planting

sweet potato into puddled rice imposed difficulty in seedbed preparation

particularly in fine textured soils (47). This method is also expensive

since construction of ridges takes 400 to 500 hours/ha. Management of

these ridges is extremely difficult in terms of weed control (47).


Soil and Fertilizer Management in Vegetable Cropping Systems

Soil and fertilizer management studies in vegetable multiple

cropping systems are limited. As fertilizer costs increase every year

because of high energy cost for their production, many researchers are

finding methods to reduce fertilizer use or to increase efficiency

(122, 123, 143). Oesligle et al. (122) stated that high analysis ferti-

lizers, if available at any price, frequently constitute a direct input

cost that is beyond the means of the marginal farmer. High fertilizer

prices in developing countries imply that this input be used efficiently.

Thus, consideration of the economics of manaFemen-:t practices simul-

taneously with their biological potential is important when developing








fertilizer practices for multiple cropping patterns (122). This is

especially true for vegetable crops because of their high crop value,

intensive cultivation, and responsiveness to fertilization (104). Soil

and fertilizer management studies in multiple cropping usually deal with

yield responses to residual fertilizers (21, 33, 134, 136) or to applied

fertilizers in continuous cropping (75, 91, 152, 153). Associated with

these studies are effects of previous crops on yields of succeeding

crops (6, 13, 87, 88, 102, 112, 137, 144, 143). These studies provide

some bases for fertilizer recommendations in sequential cropping sys-

tems.

In sequential cropping patterns, the basic precept is that the

farmer manages only one crop at a time. From the soil management point

of view, improved practices for single crop stands are not entirely

applicable to sequential cropping systems because of the influence of

previous crops on soil physical properties, water, and nutrient availa-

bility to succeeding crops (143). Soil and fertilizer management

practices should be geared to the crop sequence or rotation rather

than to individual crops.

Sanchez (143) stated that the residual effects of N fertilization

are influenced by many variables such as the: rate of application, reco-

very of added fertilizer by previous crop, leaching, immobilization,

denitrification, and rainfall pattern. Thus, residual effects should

be considered in fertilizing succeeding crops. For example, in India,

soybean yields increased from 1.3 to 1.9 tons/ha when N appllicati' n

to the preceding rice crop was increased from 0 to 130 kg/ha (136).

The residual N fertilizer, however, decreased nodulation in soybean.






15

Jones (91) reported that when corn followed cotton (Gossypium hirsutum L.),

the response to N was maximum at 84 kg/ha, whereas corn following sorgh&'m,

peanut (Arachis hypogaea L.), and cowpea required 168 kg/ha to achieve

maximum yield. Experiments in Sudan Gezira (22) have shown that soc-rghum

and wheat (Triticum aestivum L.) were responsive to fertilizer N and

were affected by residual N, whereas hyacinth bean (Dolichos lablab L.)

did not respond to residual N but yield consistently increased by increas-

ing residual P.

Residual N from previous crops had a greater influence on tomato

yield than fertilizer applied specifically to the tomato crop (123).

For example, Osterli and Meyer (123) found that tomato yields responded

favorably to 336 kg/na N applied to the previous sugar beet (Beta

vulgaris L.). When additional N was applied directly to tomato there

was no significant increase in fruit size and quality.

Hayami (72) stated that optimum elemental concentrations for

most vegetable crops are about 5 to 1C times trose required for rice.

Under lowland puddled soil conditions in tropical Asia, Hayami (72) found

that fruiting vegetables such as tomato and cucumbers accumulated

nitrate N prfreferentially from the initial growth stage. Since this

form of N would be found only before the soil is puddled, growers can

benefit if they plant tomato and cucumber before rice. However, with

proper soil, fertilizer, and water management, growers may also benefit

by growing these vegetables after rice. Leafy and heading cabbages

absorb ammonium N and required an increasing amount throughout the

growing period. These crops are suited for production in post rice

soils (72).







16

In Florida, high management vegetable crops such as tomato and

pepper (Carsicum annuum L.) are double cropped with either low or high

management vegetables and field crops (21, 33, 43, 52, 55, 95). The

objective is to utilize applied fertilizer more efficiently and increase

productivity by eliminating added costs. Kretschmer et al. (95) suggested

that field corn is a good crop to follow fall tomato and other heavily

fertilized vegetable crops on sandy soils in Florida. When corn was

planted following these crops, additional applications of P, K, and

micronutrients, were not necessary. Yields of carrot (Daucus carota L.),

green onion, lettuce, and radish were significantly higher in plots

where no additional fertilizers were applied than in plots applied with

fertilizers after a fall tomato (33). The low yield of vegetables in

the fertilized plots was the result of high total soluble salts that

inhibited germination and reduced seedling survival.

As cropping intensity increases, high levels of added chemical

fertilizers may cause rapid shifts in soil properties such as pH (12,

52, 85, 98, 135, 140), total soluble salts (34, 53, 73, 103, 161),

organic matter (1, 2, 10, 71, 98, 111, 114, 147, 151, 166), N (38, 39,

135, 142, 146), P (139, 141), and K (14, 135, 137). Consequently,

shifts in soil properties may create a soil environment that can

restrict crop growth and limit cropping potential of soils. For

example, shifts in pH may result in excesses and deficiencies of both

micro and macronutrients (85).

An example of the effect of intensive sequential cropping on

soil properties was studied by Nair et al. (114). Rice, wheat, and

mungbean or potato were grown sequentially per year. In spite of high






17

amounts of nutrient removal, there were no appreciable changes on soil

organic carbon, total N and available P and K (114). On double cropping

of paddy rice in Taiwan for 48 years, average rice yields were similar

among fertility treatments with the same amount of N added (100). The

effects on chemical properties were also similar with those observed

by Nair et al. (114), and suggested an equilibrium level without major

differences among treatments.

Continuous cropping does not always result in stable or increased

yields. Yield levels of succeeding crops depend on resultant soil

fertility which is influenced by changes in soil chemistry (143).

Double or triple cropping sequences involving sweet potato, taro

(Colocasia esculenta L. Schott), sorghum, and cowpea conducted in New

Guinea on volcanic alluvial soils showed progressive yield decreases

with time (15). These decreases were related to decreases in soil

fertility parameters. Crops were not fertilized but when cropping was

alternated with legwTes or green manure, the fertility decline was

delayed. Intensive cropping of this nature required fertilization to

sustain long-term sequential cropping (116). In a 2-year continuously

cropped rotation of early and late crops including corn, cotton, bean,

sweet potato, peanut, finger millet (Eleusine corocana L.), and sorghum,

yields of all crops declined steadily during the first two cycles (153),

but application of N, P, K, and farm yard manure increased yields.

After a few years of continuous cropping, K deficiency limited yields,

especially of sweet potato.






18

Several reports indicated that soil organic matter changes with

continuous and with intensive cropping systems (40, 98, 111, 114, 166).

The changes can be an increase or decrease depending on the crop species,

tillage level, and fertilizer level. For example, rotation of spinach

(Spinacea oleracea L.) and cabbage with green manures such as alfalfa

(Medicago sativa L.), timothy (Trifolium pratense L.), red clover

(Lolium multiflorum L.), and sweet clover (Melilotus indica L.) resulted

in higher carbon and N in the soil than rotations with continuous

vegetables (40). Continuous cropping of corn for three consecutive

years followed by four seasons of cultivation with cropping sequences

of corn-corn-cowpea, pigeon pea-corn, soybean-soybean, corn-soybean,

and cowpea-cowpea resulted in greater decline in organic matter than

the no-tillage plots (98). The rate of decline was much higher under

cowpea and soybean where smaller amounts of crop residues were produced

than with corn. Standifer and Ismail (151) also found that organic

matter was lower in conventional tillage plots than in minimum tillage

plots after four years of multiple cropping crimson clover (Trifolium

incarnatum L.), sweet corn, and cowpea. Stevenson (154) reported that

rotations including legumes maintained higher organic matter contents

than continuous cropping with non-leguminous crops.

A combination of moderate manuring and medium rates of complete

fertilizer application is most effective in producing hih yields of

vegetables without depleting soil fertility (111). In a continuous

corn-green manure crop rotation, Thompson and Robertson (160) found

that organic matter in the high fertilized corn plots was more than in

the unfertilized plots. In India, Havanagi and Mann (71) reported that





19

soil organic carbon was increased by application of farm yard manure and

by rotation including both green manure and legume crops.

The preceding crop species can have beneficial or detrimental

effects on yields of succeeding crops. For example, onion and lettuce

planted after sweet corn with a winter crop of vetch (Vicia sativa L.)

developed a severe root rot gradually reducing the yield and often

killing the vegetables (87, 88). They postulated that during the de-

composition of corn residue under cool temperatures of spring, a toxin

was formed which injured plant roots (88). Mack et al. (102) observed

that average crop yield indices following cabbage, onion, summer pumpkin

(Cucurbita pepo L.), and carrot were significantly greater than those

crops following sweet corn, potato, and tomato. The low yields follow-

ing sweet corn, potato, and tomato might have been the result of low

soil fertility after grozing these crops. Some vegetables planted

after rice respond favorably to N application but not to residual N.

For instance, yields of sweet potato and tomato planted after rice

significantly increased when N was applied directly to the vegetable

crops (6). Jones (91) also reported that corn yields were higher when

preceded by peanut than by cowpea. The differences were larger without

N application and decreased at the optimum application of 84 kg/ha.

Detrimental effects have also been observed with grain legumes. Expe-

riments proved that mungbeans have a depressing effect on yield, parti-

cularly at low levels of N (83). Apparently, mur.ab=ans secrete certain

toxins which depress growth.






20

Economic Evaluation of Vegetable Cropping Patterns

Cropping patterns are sometimes assessed in terms of various

economic parameters (105, 113, 120, 131, 132). Methods and analytical

tools have been developed to enable farm management researchers to

evaluate yield responses of new crop cultivars, various levels of

mechanization, input-output relationships and net income (105). These

methods, however, were often developed and used for single crop enter-

prises. Menegay (105) reported that current analytical tools for

measuring, evaluating, studying, or comparing multiple cropping patterns

are limited in scope and flexibility.

Two general economic criteria involving land use and production

are commonly used in evaluating performance of cropping patterns.

Several indices such as multiple cropping index (MCI), diversity index

(DI), harvest diversity index (HDI), simultaneous cropping index (SCI),

cultivated land utilization index (CLUI), and crop intensity index

(CII) have been used to measure this criterion (105, 106, 107, 157).

Crop intensity index (CII) is more precise because it provides an assess-

ment of farmer's actual land use from an area-time perspective and

defines the composition of land use (107). The use of indices to com-

pare economic performance of cropping patterns is more appropriate in

studies conducted under actual farm conditions where farm sizes are

variable and cropping patterns within a farm vary from parcel to parcel.

Level of returns to resources and other production inputs is

the most commonly used criterion in evaluating economic performance

of cropping patterns because it relates inputs and products in terms






21

of a common denominator which is usually money (48, 49, 105, 120, 132).

Levels or return are usually measured and expressed in terms of returns

to physical resources such as land ($/ha), irrigation water or rainfall

($/inch) or returns to purchased and applied production inputs such as

fertilizer ($/kg) or labor ($/hr). Price (132) stated that rates of

return to resources should be regarded as secondary criteria after net

returns criteria are met. Measuring rates of return to resources is

useful if a farmer is interested in profit maximization. A farmer will

achieve this goal through maximizing return to his limiting resource

(120). For example, a farmer with large amounts of available labor

compared to cash will adopt cropping patterns that produce high rates

of return to cash (132). Conversely, an appropriate cropping pattern

in an area characterized by a marked shortage of labor at certain times

of the year will maximize returns per unit of labor (120).

The rate of return to both physical and applied resources is

affected by farmer's crop management interacting with physical, biolo-

gical, and socio-economic factors. Hence, motivation and production

decisions of farmers are influenced by these factors (24). For example,

small-scale farmers in Taiwan intercrop tomato for processing with mango

to utilize more fully their land and family labor resources. Production

practices for tomato intercropped with mango are similar to those in

the monocrop and intercrop with sugarcane, but adverse physical and

environmental factors reduced yields. Net returns and farm income were

much lower when tomato was intercropped with mango than when tomato was

a monocrop or intercropped with sugarcane (24). Since there was no

close relationship between fertilizers applied and yield in tomato







22

intercropped with mango, lower levels of fertilizer application reduce

input costs without significant yield loss (24).

Some Taiwan farmers plant sweet potato stem cuttings near rice

stubble with no tillage and minimum input requirement. Others use

complete tillage before planting or intercropping with corn and edible

sugarcane. The tillage method requires higher inputs, whereas the inter-

crop method involves the least inputs. Survey data showed that yields

were increased with increased net returns, but the correlation value

between yield and net return was low with tillage method suggesting

that added costs did not result in higher yields (24). There was no

significant relationship between capital inputs notably fertilizer and

yield. Farmers may be applying excessive capital inputs to sweet

potato but returns to fertilizer and material costs were lower than

returns from tomato. The highest net return and farm return were not

associated with high yield but with low cost (24). Although the inter-

crop method produced intermediate yields, production costs were lowest,

and therefore, farm returns, net return, and revenue-cost ratio were

highest (24).

Charreau (28) reported that improved cropping patterns consisting

of high tillage and fertilizer levels were more profitable in the central

zone of West Africa where rainfall was higher than in the northern zone.

This was a situation where potential of improved technology to increase

productivity and profitability was limited by climatic factors.

The goal of most cropping systems research has been to improve

productivity and income among small farms (8, 31, 69, 70, 118, 177).

Since adoption of cropping patterns not only depends on economic






23

returns but also on farmer's motives, studies should emphasize LTLprove-

ment of farmer's traditional cropping systems before recommending alter-

native cropping patterns. Cropping systems of small-scale farmers are

usually characterized by diversity, stability, and low productivity

(70). To improve income, productivity should be increased without

sacrificing diversity and stability.

Improving crop management practices attempts to increase productiv-

ity. Researchers develop improved production technologies for each

stage of crop production from tillage to harvesting by varying levels

of production inputs or introducing a new technique. These studies

generally focus on one crop with yield maximization as the main objective,

but exclude economic considerations (16, 24). For some crops, a signi-

ficant increase in agronomic yield may not be economically acceptable

to farmers (24). Although economic evaluation of different crop manage-

ment practices is common, similar studies for year-round cropping

patterns are limited. Most studies compare costs and returns from

various types of cropping patterns using standard cultural practices

which are in some situations higher than the farmer's management level

(25, 85). For example, in Chiang Mai, Thailand, Calkins (25) reported

that the cropping pattern peanut-tomato-rice had higher economic potential

than tomato-mungbean-rice because a heat-tolerant tomato cultivar was

planted in the first pattern resulting in yields with high market price.

In the Philippines, the cropping pattern rice-watermelon was the most

profitable, whereas the cropping patterns rice-mungbean and rice-sweet

potato resulted in equal net returns as the rice-rice or rice-sorghum

(127). Economic evaluation of the cropping pattern rice-sweet potato

using three power sources was studied by Banta (9). Costs and returns






24

were different among the three power sources but returns to labor were

higher using handtractor compared to either animal power or hand labor

(9). He suggested that the use of a machine in intensive cropping

patterns can provide better labor efficiency but may not be economically

profitable.

In a study of economic performance of rice-based cropping pat-

terns, labor requirement was slightly higher in a rice-rice pattern

than in rice-upland crops patterns (86). Cash requirements were higher

with rice-upland crops because of high costs of upland crop seeds and

insecticides (86). The upland crops included vegetables such as mung-

bean, cowpea, and muskmelon. The rice-mungbean pattern produced the

highest net return because mungbean received a high market price (86).

Increasing intensity of cropping patterns increased gross and

net returns to labor in four cropping patterns evaluated in Hissar

District, india (35, 138). Singh et al. (149) reported that the more

intensive pattern involving corn-potato-tomato and mungbean was more

profitable than cotton-wheat or pearl millet (Pennisetum glaucum L.)-

wheat-mungbean. Darlymple (35) also reported that net returns per

hectare and net returns per hour of labor increased with increasing

cropping index. A more complex intensive cropping pattern involving

sequential and relay intercropping of pole bean, corn, cabbage, cucumber,

bean, and radish resulted in high net returns in El Salvador (78).

Although some studies involving economic evaluation of cropping

patterns were conducted in experiment stations using small plots,

results have shown high level of accuracy because of high degree of

control. Therefore, these studies should compliment or support those

evaluated under actual farm conditions.






CHAPTER II

AN EVALUATION OF FOUR VEGETABLE CROPPING
PATTERNS FOR NORTH FLORIDA


Introduction

Vegetable production in North Florida among small-scale growers

is characterized by relatively few total hectares (45), a short cropping

period (63), limited and inefficient marketing systems (29, 50, 129),

and a low level of crop management (42). Climate and soil conditions

favor the growing of vegetables during spring and fall seasons, whereas

higher temperatures and intense rainfall during summer and freezing

temperatures (36) in winter limit production of vegetables.

In general, average yields of vegetable crops grown by small-

scale farmers in North Florida are lower than in South Florida (29, 45).

For example, average yields of eight out of ten vegetables were higher

in South Florida than in North Florida (45). Climate, cropping systems,

labor, and market constraints limit production levels and profit margins

from vegetable production in North Florida (29, 30, 50). In addition,

low income (42) and limited education levels (115, 170, 172) among

small-scale growers contribute to marginal vegetable production enter-

prises.

Crop management levels utilized by many vegetable growers also

contribute to lower yields in North Florida. Crop management level is

defined as capital, labor, and other production inputs including pro-

duction skills that the farmer allocates to produce various crops.

Examples are levels of irrigation, weed control, insect and disease

management, tillage, mulching, staking, crop establishment, and






26

fertilizing. Insect, disease, and fertilizer management levels were low

among small-scale growers in North Florida (29).

Double cropping, or the planting of two crops in one year, is

practiced comTmonly in Florida (129). In 1973-74, 147,200 hectares of

vegetables were harvested, but only 80,000 to 100,000 hectares were

planted to vegetables (129). For example, four or five crops of radishes

are generally harvested from the same field in the Everglades and Zell-

wood (Shuler, per. comm.). Some growers alternate part of their radish

hectarage with other crops such as sweet corn, celery (Apium graveolens

L.), carrot, and leafy crops.

Double cropping tomato on full-bed plastic mulch with other crops

is practiced by many growers. Some tomato growers in Quincy plant pick-

ling cucumbers or winter squash after tomato. In South Florida, Bryan

and Dalton (21) obtained high yields of butternut squash planted after

fall-grown tomato on full-bed plastic mulch. Csizinszky (34) reported

that several vegetable crops can be grown after tomato without additional

fertilizer. As the land area planted to more than one vegetable crop

per year increases, year-round cropping systems studies are required to

provide information on appropriate crop management practices for effi-

cient production systems and improved returns to production inputs.

Several studies have been conducted to extend the production

season and improve vegetable production in North Florida (20, 164, 175,

176). The use of black and white plastic mulches to reduce the effect

of heavy rainfall and high soil temperature during summer increased

yield and improved quality of several vegetable crops (20). The use of

black plastic mulch was more profitable for cantaloupe, whereas clear









mulch was most effective for watermelon. Squash produced highest yield

when grown with white on black mulch (20). Growing vegetables under

tobacco shades increased total yields of cucumber, but reduced tomato and

pole bean yields (164, 175).

Sequential planting of selected vegetable cultivars also extended

the production season to late spring and summer in Gainesville (61, 63,

64, 65, 66, 67). Halsey and Kostewicz (63) reported high marketable

yields for some vegetable crops grown during extended seasons. Vegetable

crops-included in their cultivar and date of planting experiments were

snap bean, southern pea, lima bean, cabbage, collard, squash, and onion.

In sequential plantings involving seven vegetable crops arranged in four

cropping patterns, Palada et al. (126) reported no significant yield

increase with increasing levels of fertilizer, but returns to manage-

ment on a dollar/ha basis were higher in high management crops than in

low management crops.

Research aimed at developing appropriate crop management technc-

logies for sequential cropping patterns is needed to improve vegetable

cropping systems throughout Florida. The purpose of this study was to

evaluate resource use, productivity, and profitability of several

vegetable crops planted in four year-round cropping patterns for North

Florida.


Materials and Methods

This 2-year study was conducted at the Horticultural Unit of the

University of Florida at Gainesville (29 45' N latitude, 820 20' W

longitude) beginning in October 1977, and terminating in October 1979.






28

The soil was classified as Kanapaha fine sand (loamy, siliceous, hyper-

thermic, Grossarenic Paleauquult) with 1% organic matter and a CEC of

2.52 meq/100 g (27). The climate is warm (average max 310C; min 11C)

and humid (average 229 mm rainfall/month) from April to September, where-

as October to March is cool (average max 240C; min 0.550C) and dry

(average 76 mm rainfall/month).1

Soybean was planted as a cover crop prior to initiating the experi-

ment. Soybean was mowed to a stubble and the land disc plowed before

fumigating with 66 liters/ha SMDC (sodium N-methyl-dithiocarbamate).

The fumigant was injected into the soil with a gravity-flow distributor

using two coulter applicators. Basal fertilizer was broadcast and roto-

tilled into the soil at varying rates depending on crop requirement

(Table 1). Raised beds were formed using a disc-hiller and bed press.

Subsequent land preparation between crops consisted of mowing, disc

plowing, rototilling, fertilizing, and bedding. Seven vegetable crops

including 'Texas Grano 502' bulb onion, 'Blue Lake' pole bean, 'Morris

Heading' collard, 'Early Golden Summer Crookneck' squash, 'Wando' Eng-

lish pea, 'Zipper Cream' southern pea, and 'Florida Curled Leaf' mustard

were classified into low (LM), medium (MM), and high (HM) management

groups. These management groups were based on average costs of ferti-

lizers, pesticides, cultural labor, and 5-year average harvesting costs

for producing each vegetable crpp in Florida (Table 2).

Four basic cropping patterns were developed using combinations

of seven vegetable crops (Figs. 1 and 2), Two cropping patterns were


Climatic data, Horticultural Unit, University of Florida (mimeo).




















0 00
-coo


0
_ -co,


0 0 0 0 0
T-l N-w & -1


0 C0 0
1-4


0 0
r\ \O


0 C\2 C'. C'2 t C C.
~~r\00c'.


.-I
C d
r0



HO
a) H


0)





P4 cd


-,
O 0







Ck


ibDo





0 -4
a)
p *0





O


S-4
0 0





SC'-
^HO




O













-


H
c


c~-\0 0 0 C


Cd a)
) p4
94 0
Cd


* m &-
H 0
0 0 0 0
hD tQ


- -t4-4 1- 4-


Io






-H
at

C/ 2


0
O

*-l


dHt

aS -i

> 3 g


















-lH 1 0 00 0 00 0 00
Cd I ON \o No- C- c -,- N 0 r coO
+. I--i U- CN c- 0 C -4 C- 00 C
p0 I -1 -
0 E-4 ,- l N 1--4 -1 -4 T-q

ca C-
1- + IO
O a) 10 0 00 0 00 0 00
o ~ > 0\ 0 O -4 U) CO l N UCON
I COK > C 0 CO- 0 3 -
03 *r-I I *- r-I O'
I/ I 01
>0 I O
to, r- 0-1
. -: 0 0 0 0C0 0 00 0 00
c r cd nN v \O V- \O n c CO- o co a
t (cd CL \ C C\l --4 J-4 -1 -4- 0 0

O a *H -4 C
p d *H
0 0 -It
?L O4 00 aP
rQ + H 03
c-o 0 00 0 *00 0 00 0 0o
i -I ;z -H o 0_: CC) r 0 cL- L u 0\
r 't + 4 -- --4 -4
r- Cd 0 t0 I
d+ 1 U) I

0 4 1 0 4
.H i Q I N >
-) 4-)
-l I
1 +> vi

a)I
t U N I
**l 0 0 *00 0 00 0 00 0 00 O0
o H- I- ort O0 O' .0 OCO 1r-3
*H IN N NC'4 Nr-r -4
+) i + I I



-H Cd X d *





04 p4 -
pcd p 0 HU
CD (U Hb
at o eq q c a -
0" ro n na --








-C 00 00 M -
a z 0o u : 3 .0 0 -P
c0 +3 0 r-1 +> I







tUo i a p p
U.)9 0 w d (O 0 0
ts P0 ra ( r-l -P 3 O EP +








E 1 u w q N >4 X
E-4 S 60 2f S 0 H >- X





31

three high management crops planted in sequence (bulb onion-pole bean-

collard), and three low management crops planted in sequence (English

pea-southern pea-southern pea). The other two cropping patterns were

a combination of low, medium, and high management crops planted in

sequence as follows: HM-MM-LM (bulb onion-squash-southern pea), and

HM-LM-MM (bulb onion-southern pea-mustard). These patterns were designed

to estimate the effect of crop management sequences on resource use,

total productivity, and profitability.

The four cropping patterns were arranged in a randomized block

design with four replications. Each plot measured 21 m 1_:; by 4 m

wide. Rows were oriented in an east-west direction. Bulb onion,

southern pea, English pea, squash, and mustard were field-seeded on

raised beds using an Earthway seeder. Pole bean was hand-seeded into

holes22 cm deep. Collards were grown in peat pots and transplanted

after 30 days. Planting practices and seeding rates were based on

recommended practices (109, 110, 171).

Crops were planted in a single row per bed, except for bulb

onion which was seeded in double rows. Each plot consisted of three

beds 40 cm wide and 15 cm high spaced 1.10 m apart. A 5-m section

of the center bed was harvested for yields.

Fertilizer rates for each crop (Table 1) were based on fertilizer

and vegetable production studies conducted in Florida (21, 56, 58, 59,

60, 74, 93, 159, 168). Basal fertilizer for each crop was applied and

incorporated into the soil prior to planting. Depending on the crop,

supplemental fertilizer was sidedressed or topdressed one or three

times during each crop cycle. Insects and diseases were controlled






32

using the recommended practices for Florida. Weeds were controlled

by cultivation and handweeding, except for first crop of bulb onion

where DCPA (dimethyl tetrachloroterephthalate) at 6.7 kg a.i./ha and

chlorpropham isopropyll m-chlorocarbanilate) at 1.0 kg a.i./ha were

sprayed preemergence. Information about cultural practices for each

crop is summarized in Table 1.

Crop and cropping pattern duration including the interval

between crops were recorded. Crop duration was counted from seeding to

last harvest. Bulb onions were graded according to standard sizes of

large (diameter greater than 7 cm), medium (5 to 7 cm), and small

(less than 5 cm). Production costs and returns to management were

based on 2-year average prices of production inputs and market prices

at the time of harvest. These production costs and market prices

(46, 108, 150) were compared with 5-year averages (19) to determine

long-term profitability.


Results and Discassion

Crop environment. The first cropping year (1977-78) was character-

ized by higher rainfall (1,495 mm) compared to the second year (726 mm)

(Figs. 1 and 2). Most rainfall occurred during July and August in

1977-78. The rainfall pattern for 1978-79 followed the 13-year weekly

average, except that the dry period was extended (Fig. 2).

The winter of 1977-78 was colder than 1978-79 (Figs. 1 and 2).

The lowest weekly minimum temperature was -1.40C in 1977-78 and 0.020C

in 1978-79. Low temperatures in winter retarded the growth of bulb

onion and English pea resulting in an extended growing period. The















D0 3ani.Va3dd3i1
n0 O Oi 0 0 U0
to fn cN N -


0 0
to 0


H


TJ









o- -
r4
ai





w CM

















- 4
r-)
c,
-t,

0-
n0



bO *






0 CO
0 i,0
Oa
[ =4


N*3.L.Vd 9NIddO(3


(wUw) 77V--Nriv















3 niva3dVAi3i
0 o c 0 n 0 o
r N N( -


N -ILlVd ONIddOID


0 0 0 0 0
0 iCJ 0 n


(ww) 7TvjNIVa


r--



+-
C,



:t





d










c\
0 co
I



O CO
01
Z *







r-4

O *r






cdO
Ca



03(






35

highest weekly maximum temperatures were 38 C in June 1978, and 360C in

July 1979 (Figs. 1 and 2). The growing period of the second crops in

all cropping patterns coincided with high rainfall and temperature.


Crop duration. Using average data for 2 years, the longest

cropping duration was 322 days in cropping pattern HM-H-HM while the

shortest duration of 300 days was observed in cropping patterns LM-LM-LM

and HM-LM-MM (Table 3). The interval between crops was longest (68 days)

with cropping pattern LM-LM-LM and shortest (44 days) with HM-HM--H M.

In general, crops grown during winter had prolonged growing periods.

This prolonged growing period delayed the planting of second crops in

cropping patterns HM-HM-HM, HM-MM-IM, and HM-LM-MM.


Marketable yields. In general, marketable yields of vegetables

were affected by planting dates (Table 4). Cropping patterns involving

bulb onion resulted in late planting and reduced yields of second crops.

For example, yields of pole bean and squash following bulb onion were

low because these crops were planted in June when harvesting coincided

with high rainfall and temperature. A difference of two to four weeks

in planting dates reduced marketable yields of these crops compared

to normal spring planting.

Cropping patterns involving large crop residues also delayed

planting of succeeding crops. Bulb onion produced lower yield when

planted after southern pea where large crop residue remained in the

soil than onion planted after collard and mustard. Janes (88) observed

that onion planted after sweet corn and vetch had reduced growth and

died, whereas onion following spinach and beet produced satisfactory

growth.














Table 3.


Crop duration and interval between crops in four vegetable
cropping patterns over two cropping cycles in the period
1977-79, Gainesville, FL.


Cropping Crop Crop Interval
patternz duration between crops


Bulb onion
Pole bean
Collard


English pea
Southern pea
Southern pea


Bulb onion
Squash
Southern pea


Bulb onion
Southern pea
Mustard


--------- days

199
74
49


-------------

19
20
5


Total 322 44

152 24
78 11
70 33
Total 300 52

192 24
43 11
72 17
Total 307 52

192 24
70 18
38 14
Total 300 56


ZHM=high management; MM=medium management; LM=low management.


HM-HM-HM





LM-IM-LM





HM-MM-LM





HM-IM-MM

















Table 4. Marketable yields of vegetable crops in four cropping
patterns at Gainesville, FL.


T-test
Cropping Cropping year betwte
Crop between
pattern 1977-78 1978-79 yearsy

-Marketable yield, MT/ha-
HM-HM-HM Bulb onion 33.5 14.9 *
Pole bean 1.7 1.5 NS
Collard 15.3 6.1 **


LM-LM-LM English pea 3.8 6.5 NS
Southern pea 3.9 4.1 NS
Southern pea 2.4 1.6 NS


HM-MM-LM Bulb onion 14.1 5.5 **
Squash no data 2.1
Southern pea 5.8 1.2 **


HM-LM-MM Bulb onion 14.1 9.8 NS
Southern pea 1.6 2.2 NS
Mustard 7.4 3.2


ZCrop failure due to herbicide damage.


Y** = Significant at 1% level; NS = Not significant.





38

Marketable yields of bulb onion were significantly greater during

the first year of the cropping cycle than in the second year (Table 4).

Within a cropping year, onion planted early in the season produced higher

yields than late-planted onion. A difference of 4 weeks in planting

bulb onion during 1977-78 resulted in a 20-metric ton yield difference.

Larger onion plants were produced in early plantings which tolerated

low temperatures in January and February. Guzman and Hayslip (56) and

Corgan and Izquierdo (32) observed that yield of bulb onions decreased

as planting was delayed during the period from September to December.

Halsey (61) reported that bulb size decreased after October planting

dates in Gainesville.

Marketable yields of pole bean were lower compared to normal

planting in North Florida (Table 4). Bryan (20) obtained yields of

4.5 metric tons/ha from an early spring planting. In Dade county, average

yields ranged from 5.6 to 7.8 metric tons/ha (19). High rainfall and

temperature at flowering and pod set resulted in low yields. Pole bean,

therefore, represents a risk when planted during late spring.

A total of 15.3 metric tons/ha of marketable collards was picked

from four successive harvests of mature leaves (Table 4),which were simi-

lar with yields reported by Halsey and Kostewicz (67). Yields during

the second year were significantly lower (6.1 metric tons/ha) because

planting coincided with higher temperature and rainfall during late

summer.

Marketable yields of English pea were lower in 1977-78 than in

1978-79 because prolonged low temperatures severely retarded early

growth which predisposed some plants to killing frost in January and

February. Halsey and Kostewicz (64) reported low production throughout






39

the fall months, whereas yield of about 6,7 metric tons/ha were harvested

when planted from January to March in Gainesville.

Yields of southern pea were not significantly different between

years except in cropping pattern HM-MM-LM (Table 4). High residual

nutrients in the soil from previous squash (126) and earlier planting

dates resulted in higher yields in 1977-78 than in 1978-79. In general,

the third crop of southern pea produced low yields. Several reports (60,

63 4, 64, 101) indicated that yields from fall plantings were lower compared

to spring plantings of southern peas. Lorz (101) reported that crops

planted in late spring produced excessive vines at the expense of yield.

Planting squash in early summer in cropping pattern HM-MM-LI

resulted in yields equivalent to 2.1 metric tons/ha (Table 4). Halsey

and Kostewicz (66) harvested comparable yields when squash was planted

in early summer because of foliar disease incidence associated with

high humidity and temperature.


Biological stability. Biological stability is defined as the
2
degree to which the outcome of any event is predictable. One method

of increasing the degree of biological stability in cropping patterns

is to plant crops at the proper time. In cropping patterns HM-Hi-HML

and f.-MM-LM, the inclusion of pole bean and squash resulted in unstable

yields due to impr:.per time of planting. Cropping pattern LM-LI.-L'

provided some stability, but yields of southern pea decreased with

successive plantings. A high degree of biological stability was




2R. R. Harwcod. 1974. Stability in cropping systems (mimeo).
International Rice Research Institute, Los Banos, Philippines.






40

observed in cropping pattern HM-LM-MM although southern pea produced

low yields.


Production costs and returns to management. Cropping pattern

HM-HM-HM required the highest production costs of $8,580/ha, whereas

cropping pattern IM-LM-LM required only $3,970/ha (Table 5). Cropping

patterns HM-MM-LM and HM-LM-MM required similar production costs as the

IM-LM-LM. In general, cash inputs for materials were higher than

labor costs in the four cropping patterns. The low yields of most

vegetable crops reduced harvest labor costs. Since total labor costs

included harvest labor cost, total labor costs were lower than material

costs. Gross income was highest with HM-HM-HM and lowest with HM-MM-LM

(Table 5).

Crop management groupings significantly influenced relative

returns to management. Total returns to management were highest with

cropping pattern HM-HM-HM (Table 5). No significant differences in

returns to management were calculated among cropping patterns LM-LM-LM,

HM-MM-LM and HM-LM-MM. Growing low management crops was as profitable

as growing a combination of low, medium, and high management crops.


Returns to production inputs. To assess profitability of crop-

ping patterns, returns to production inputs such as fertilizer, cash,

labor, and management were calculated in terms of dollar/dollar invest-

ment. In terms of dollar return per dollar invested in production

inputs, cropping pattern HM-HM-HM was similar to both LMd-LM-LM or

HM-LM-MM (Table 6). Palada et al. (126) also reported that increasing

production inputs such as fertilizer above recommended levels did not






















0


0 C-


o o0




0


Op








0 P4
4) 0
a)




o *H




Eo










a4)
hO o







a3



0
P4


0
La*



4- >
a





P4 1-
O H
o -4








0 a
H- iD*


N
0 -,
+)
I 6



t I
M g


000
cT- 0






000
OO-







C\2 0 CO






000
-' c-Z (ON





000
C'--- 00
S0 CO


S1-4




0 0






o0






.H

00 o
S a)

Oil

pq P-4 U
#OH r
HMH ri


\O C- ON,




C C" C\2
000'



NO C',1 .I













Cr\ O Cl









00 0
000




C2 cUN
E- O-~



















a





H CQ Ul


000'








0 C) 0,<
0001











0 01
\000



















0 0 0
NiDO *
OOO,















000











-'4 m l
0 0 0










cd I



00)
O ft
o



oC 0
0}D X
000 ni
rH0 3


000
0 C\0
co n crD
-00




000
00 0







C\ n \0
000







000







- --
T-4
000













0
*H a
-C T

30 z
m om s


0







0 +
u- F-4

u0P





















mc
0 1
Oj


ON

( <




0 4-)
d a


Z -H
Pu4

0)
SaH





Cd
P4
do



0 0









00H
O 0





4) P
O 0
co













pP
0)+



o 0)









0 P4-
0 0r
2k >




0) 0c>
NCO



E -
[ (










H
'a
M ^1 >

C 0ff
i- (
3 r

000

00 01




000
000









C\ 0





NOo





D-
000

00-4 0













NoN

000
0 o


z 0 0
pq P-4 u


0 000





o o
0 000
0 000 U






0 000
0 000
O\ CO CO











0 C000
C- N -t (0


CdC
F4


000

I (


000
0 0 UO











000
Ci c-4













0
0
O
-H 0



z 0
3 C 0
11 7
P? Co rCO


000
. Co -0






oo

4 c-




000
O C-C-


000

0 O\, C6O
-j" ON


0
Ca P


0 (
4-

3 0
pq ca


0()
a0




P4










il0





H'
0







0




.r-








-4
o
a





















+
0u














02
9
U
u






-p



n
Ei-

fta

ft





ci-l (


z z


0 -P
M CO
O t






43

increase returns to management or to various production inputs in four

cropping patterns.

Thus, growers with limited cash receive similar returns per dol-

lar spent on production inputs as those growers with more available cash

resource. Although both groups of growers assume risk during unfavorable

cropping years, growers who grow high management crops will incur a much

greater risk of loss than growers with limited cash. With limited cash,

small-scale growers benefit from growing a sequence of low management

crops because of low and efficient resource use and stable yields.

Growers with available cash can grow low and high management crops and

earn a greater gross income if they operate efficiently.







CHAPTER III

CROP AND FERTILIZER MANAGEMENT LEVELS IN FOUR SEQUECTIAL
CROPPING PATTERNS INVOLVING VEGETABLES

Introduction

Many horticulturists working with small-scale vegetable growers

in the tropics are concerned with improving crop production and profi-

tability of year-round cropping systems (49, 107, 151). These cropping

systems often involve the study of crops grown in numerous multiple

cropping combinations ranging from single crops grown sequentially to

crops grown together in various combinations (69). Productivity and

profitability often depend on the management level utilized by farmers

which depends on the type of vegetable crop, its market value (24, 105),

and the capital, labor, and other production inputs that a farmer allo-

cates to produce the crops (125). Generally, high value vegetable

crops such as tomato are grown using high management levels, whereas

low value crops such as mungbean are grown under low management levels

(70).

Crop management in vegetable production is often limited to

single crops grown in monoculture (31). However, small-scale farmers

are often engaged in diversified production involving several crop and

livestock enterprises (31, 68, 69, 70, 80, 118, 138). Therefore, a

research approach that integrates the entire crop production enterprise

with the farming system and the farmer's management skills is required

to develop appropriate technologies for year-round vegetable cropping

systems.

A conceptual model of the crop management approach in developing

appropriate technologies for vegetable cropping systems is presented in

44








Fig. 3. Any vegetable cropping pattern involving a single, double or

triple crop, or complex intercrop will interact with the biological,

physical, and socio-economic factors and the type of available techno-

logy. The degree of interaction measured in terms of biological and

economic productivity depends on the farmer's skill in integrating and

manipulating these factors. The crop management approach seeks to

integrate a cropping pattern with the available resources, production

technologies, and skills which ultimately result in better nutrition,

improved farm income, and a balanced ecology (68, 94).

In developing countries, fertilizers constitute a major cost in

vegetable production for marginal farmers. Cost of high analysis ferti-

lizer is often beyond their means (122). As chemical fertilizers become

more expensive, researchers are developing methods to reduce rates of

application through improved crop and soil management systems (71, 72,

75, 143). Increasing fertilizer use efficiency also can be achieved

through efficient year-round cropping patterns (21, 33, 43, 52, 124).

For example, squash, cucumber, carrot, lettuce, and onion required no

additional fertilizer when planted after tomato on full-bed plastic

mulch (21, 34, 43). Similarly, English pea and southern pea were not

fertilized when planted after barley in a triple cropping pattern (51,

52).

This study was conducted to determine and evaluate the influence

of crop and fertilizer management levels and their interactions on

productivity, income, and soil nutrient stability in four vegetable

cropping patterns, and to develop appropriate crop and fertilizer

management practices for sequential cropping systems for North Florida.


























































,co

UCL
^-I

xv,
aIJ
cr J


c?

c~






47

Materials and Methods

Experimental site. This 2-year study was conducted at the Horti-

cultural Unit of the University of Florida at Gainesville (290 45' N

latitude, 820 20' W longitude) beginning in October 1977, and termi-

nating in October 1979. The climate is warm (average max 31 C; min 110C)

and humid (average 229 mm rainfall/month) from April to September,

whereas October to March is cool (average max 24 C; min 0.550C) and dry

(average 76 mm rainfall/month).


Soil characteristics. The soil was classified as Kanapaha fine

sand (loamy, siliceous, hyperthermic, Grossarenic Paleauquult) with 1%

organic matter and a CEC of 2.52 meq/100 g (27). Initial soil chemical

analysis resulted in a pH of 6.5, 0.04% N, 385 and 46 ppm of double-acid

extractable P and K, respectively.


Classification of vegetable crops. Since vegetable crops require

different levels of management, they were classified into three manage-

ment groups: low (LM), medium (MM), and high (HM). These management

groups were based on average costs of fertilizers, pesticides, cultural

labor, and 5-year average harvesting costs for producing each vegetable

crop in Florida (19). For example, HM crops such as pole bean and bulb

onion required a production cost of $2,550/ha, whereas LM crops such as

southern pea and English pea required only $790/ha. Labor and harvest-

ing costs constitute the largest portion of the total production costs.


Selection of vegetable crops. Seven vegetable crops were selected

based on total production costs and marketing potentials in North Florida.






48

High management crops included 'Texas Grano 502' bulb onion, 'Blue Lake'

pole bean, and 'Morris Heading' collard. 'Early Golden Summer Crookneck'

squash, and 'Florida Curled Leaf' mustard were selected as MM crops,

whereas 'Wando' English pea and 'Zipper Cream' southern pea were classi-

fied as LM crops.


Design of cropping patterns. Based on crop management grouping,

four basic cropping patterns were developed using combinations of three

crops (Fig. 4). Cropping pattern HM-HM-HM (bulb onion-pole bean-collard)

was designed to estimate the effect of HM crop sequence and fertilizer

interactions on total productivity, profitability, and nutrient levels

in soil. Within this pattern subsequent effects of HM crops on succeed-

ing crops were observed. Similarly, cropping pattern LM-LM-LM (English

pea-southern pea-southern pea) was designed to estimate the effects of

1M crop sequence on the same parameters. Cropping patterns H-f~I--LM

(bulb onion-squash-southern pea) and HM-LM-MM (bulb onion-southern pea-

mustard) were designed to determine and estimate the effects of combi-

nation of LM, MM, and HM crops on the same parameters.


Levels of fertilizers. The crops were fertilized with low,

medium, and high levels of N and K depending on crop management grouping

(Table 7). These rates were based on several fertilizer and vegetable

production studies conducted in Florida (20, 56, 59, 159). For each

level, the combined N and K fertilizer treatments were considered as

single treatments. Rate of P application was fixed depending on crop

requirement. Basal fertilizer for each crop was applied and incorpo-

rated into the soil prior to planting. Depending on crop, the remaining





























ULJ
>.
t:crI






LLJ
4-
Is
P^
0
^/)


10
z


C)
0
0


LU
COi

















L-
LLI
Z>















C-,
-i


K--J


IJ
CL



Li
1s





crI
0-
z
uJ

|
C)


a-









1=


-J
-1
<









Il
1L3








CD
^e-
U) :

.^3
ZC
^^,
o


z

2-
0


2

0

m
=I


z

L.j
I-
0~i
c.


z
0
z,



m


()

4-3

0)


> o
(U






40-







--U >C
Cdc
CE; P .












E 0.
*-l













0 ).
4C
teo









U) 0i C
0 3


' -H

.G ri


C=4 0


-J
LL


















Table 7. Nitrogen and potassium levels for low, medium, and
high management crops, Gainesville, FL, 1977-79.


Fertilizer Crop management level
levelz
levelLow Medium High

Low 0 ix 2x

Mediumy Ix 2x 4x

High 2x 3x 6x


ZNitrogen and potassium
kg/ha, respectively.


increments (x) were 30 kg/ha and 40


YMedium fertilizer level was regarded as recommended level
for each crop.







51

amounts of fertilizer were side or topdressed once for ILM and MM crops,

but twice for HM crops during each crop cycle.


Experimental design. A randomized block design with a split-

plot arrangement and four replications was used. The four cropping

patterns were main plots within each block and the three fertilizer

levels were subplots. Each subplot measured 4 x 7 m and consisted of

three beds, 40 cm wide and 15 cm high, spaced 1.10 m apart. Land

preparation, planting practices, and pest and disease control were

based on recommended practices and methods reported by Palada et al.

(125).


Data collection. Yields were harvested from a 5-m section of

the center bed. Bulb onion was hand-pulled, oven-dried at 800C for

48 hours, and graded to sizes of large (diameter greater than 7 cm),

medium (5 to 7 cm), and small (less than 5 cm). Mature green marketable

pods of pole bean, southern pea, and English pea were picked two to

four times during each crop season. Marketable squash were harvested

three times during the crop season. Tender leaves from the base of

collard plants were stripped four times during each season, whereas

mustard plants were cut slightly above the ground 38 days after seeding.

Production costs and returns to management were based on 2-year

average prices of production inputs and market prices (150) at the time

of harvest. Return to management was calculated by subtracting total

production costs from gross returns. Rates of return to labor, cash,

and fertilizer were calculated by deducting either labor, material,

or fertilizer costs from gross returns and dividing the difference by






52

either labor, material, or fertilizer costs. For example, rates of

return to labor were calculated as follows:

Return to labor ($/$) = Gross return Material cost
Labor cost

Similarly, return to material cash was calculated:

Return to cash ($/$) = Gross return Labor cost
Material cost

Production costs and market prices (46, 108, 150) were compared with

5-year averages (19) to determine long-term profitability.


Soil sampling and chemical analyses. Soils were sampled from

the top center of each bed to a depth of 15 cm. Samples.were oven-dried

at 700C for 48 hours, screened to pass a 25-mesh sieve, and analyzed

for organic matter (OM),content, total soluble salts (TSS), pH, nitrate-

nitrogen (N03-N), ammonium-nitrogen (NH4-N), and K. Equal volumes of

soil and water were prepared as suspensions for determination of pH

and total soluble salts. Soil pH was measured using a combination pH

electrode. Total soluble salts were determined from soil solution

conductivity readings using a solubridge. Organic matter was analyzed

by the method of Walkley and Black as outlined by Allison (4). Nitrate

and ammonium were determined by steam distillation (18). Potassium was

analyzed at the Soil Testing Laboratory of Soil Science Department

using a double-acid extractant (130).


Statistical analysis of data. Analyses of variance on marketable

yields and soil test results were run by computer using programs from

the Statistical Analysis System (11). Treatment means of marketable

yields and costs and returns from each crop were compared using Duncan's






53

multiple range test, whereas treatment means from interactions between

crop and fertilizer management levels were compared using least signi-

ficant difference. Except for marketable yields, all data were analyzed

and treatment means compared using the statistical model for split-plot

design.


Results and Discussion

Shifts in Soil Properties

Total soluble salts. Cropping pattern HM-HM-HM resulted in

higher TSS among the four cropping patterns (Fig. 5). In cropping pat-

tern HM-HM-HM, application of medium to high levels of fertilizer

resulted in significant increase in TSS (Fig. 5), whereas no significant

differences in TSS were found after harvest of the first crops in the

other cropping patterns.

High soluble salts after pole bean and collard can be attributed

to fertilizer level and crop duration. Pole bean and collard are short

maturing crops compared to bulb onion. The low TSS after bulb onion

might have been the result of long and extended crop duration which en-

hanced more leaching and absorption of fertilizer salts. Sequential

planting of HM crops increased soluble salt accumulation, whereas

sequential planting of LM, MM, and HM crops in combination stabilized

soluble salt levels. Previous studies (34, 73, 103, 161) showed that

large fertilizer applications to HM crops such as tomato, cabbage,

and celery resulted in high residual soluble salts at harvest.


Soil reaction. Soil reaction (pH) was lowest after harvest of

second and third crops (Table 8). Differences in soil pH after harvest















8000

SLOW NK
H MEDIUM NK
6000 HIGH NK




4000 3

ab

- 2000 -
(3 (3



S. ONION P BEAN COLLARD
CROPPING PATTERN HM-HM-HM

6000

o ^LOW NK
SI MEDIUM NK
4000 HIGH NK




2000

baa a ao


B.ONION SQUASH S. PEA
CROPPING PATTERN HM-MM-LM


E.PEA
CROPPING


S.PEA
PATTERN


S. PEA
LM-LM-LM


B. ONION S. PEA MUSTARD
CROPPING PATTERN HM-LM-MM


Fig. 5. Total soluble salts after harvest of each crop as in-
fluenced by crop and fertilizer management levels over
two cropping cycles in the period 1977-79, Gainesville,
FL. Letters on the bars indicate mean separation among
fertilizer levels within each crop by least significant
difference, 5% level.


LOW NK
| MEDIUM NK
l HIGH NK












^ 1:, ,:
_,~ii~l^






55

of first and third crops were greater in cropping patterns HM-HM-HM,

HM-MM-LM, and HM-LM-MM than in LM-LM-LM. Cropping pattern LM-LM-LM

resulted in pH above 6.0 after the third crop, whereas cropping patterns

involving combinations with HM crops resulted in pH below 6.0 (Table 8).

In all cropping patterns, soil pH tended to equilibrate to its initial

level after each year of cropping. The low soil pH in HM-HM-HM can be

attributed to replacement of Hf on the exchange complex and by hydrolysis

of exchangeable A13+ and hydroxy Al resulting from high management ferti-

lizer application rates.


Soil organic matter. Soil OM content decreased with successive

cropping in all cropping patterns except for cropping pattern LM-LM-LM

(Table 9). Average reductions in soil OM content were greater with

cropping pattern HM-HM-HM than other cropping patterns. In contrast,

cropping pattern LM-LM-LM resulted in increased soil OM content from

0.86 to 0.94% after harvest of third crops. After harvest of third crops,

cropping pattern HM-HM-HM resulted in significantly lower OM content

among the four cropping patterns (Table 9). For each cropping pattern,

the effect of high fertilizer levels generally resulted in greater OM

contents after harvest of second and third crops (Table 9). These

data are consistent with other studies (1, 12, 40, 41, 111, 135, 166),

and suggest that OM stability can be achieved by including vegetable

legnes in sequential cropping patterns.


Soil nitrogen. Except for collard, fertilizer levels had no

significant influence on soil N measured as IH4-N and NO3-N (Fig. 6).

In cropping pattern HM-Hi-:-l, high soil N after collard was caused by

high levels of fertilizer. In addition, residual fertilizer from













Table 8.


Soil pH after harvest of each crop as influenced by crop and
fertilizer management levels over two cropping cycles in the
period 1977-79, Gainesville, FL.


Cropping Fertilizer C r o p
pattern level First Second Third

-------------- pH ----------------


LM-LM-LM





HM-MM-LM


HM -LM -MM


Low
Medium
High
Mean


Low
Medium
High
Mean


Low
Medium
High
Mean


Low
Medium
High
Mean


Bi .Onion
6.4 az
6.4 a
6.5 a
6.4 B

E. Pea
6.7 a
6.8 a
6.8 a
6.8 A

B. Onion
6.4 a
6.5 a
6.5 a
6.5 B

B. Onion
6.5 a
6.6 a
6.6 a
6.6 B


P. Bean
6.4 a
6.4 a
6.3 a
6.4 A

S. Pea
6.4 a
6.4 a
6.5 a
6.5 A

Squash
6.3 a
6.3 a
6.3 a
6.3 A

S. Pea
6.3 a
6.4 a
6.4 a
6.4 A


Collard
5.7 a
5.6 'a
5.7 a
5.6 B

S. Pea
6.5 a
6.5 a
6.4 a
6.5 A

S. Pea
5.9 b
5.9 b
6.0 a
5.9 B

Mustard
6.0 a
5.9 ab

5.9 B


ZMean separation in columns within crops by least significant
difference at 5% level. Fertilizer means (lower case letters),
cropping pattern means (upper case letters).














Table 9.


Soil organic matter content after harvest of each crop as
influenced by crop and fertilizer management levels over
two cropping cycles in the period 1977-79, Gainesville, FL.


Cropping Fertilizer C r o p
pattern level
Fpatternirst Second Third

------------------- % -----------------


LM-LM-LM






HM-MM-LM






HM -LM -MM


Low
Medium
High
Mean



Low
Medium
High
Mean



Low
Medium
High
Mean



Low
Medium
High
Mean


B. Onion
:0.88 a
0.88 a
0.95 a
0.90 A

E. Pea
0.84 a
0.88 a
0.85 a
0.86 A

B. Onion
0.92 a
0.91 a
0.96 a
0.93 A

B. Onion
0.90 a
0.93 a
0.95 a
0.93 A


P. Bean
0.76 b
0.75 b
0.82 a
0.78 A

S. Pea
0.82 b
0.88 a
0.91 a
0.87 A

Squash
0.77 c
0.85 b
0.93 a
0.85 A

S. Pea
0.88 b
0.80 c
0.97 a
0.88 A


Collard
0.60 a
0.45 c
0.58 b
0.54 c

S. Pea
0.99 a
0.88 b
0.96 a
0.94 A

S. Pea
0.86 a
0.79 b
0.86 a
0.84 B

Mustard
0.84 b
0.78 c
0.90 a
0.84 B


ZMean separation in columns within crops by least significant
difference, 5% level. Fertilizer means (lower case letters),
cropping pattern means (upper case letters).




































9. ONION P BEAN COLLARD
CROPPING PATTERN HM-HM-HM


8. ONION SQUASH
CROPPING PATTERN


S. PEA
HMI-MM-LM


LOW NK
MEDIUM NK
HIGH NK














E. PEA S. PEA S. PEA
CROPPING PATTERN LM-LM-LM




Q LOW NK
] MEDIUM NK
HIGH NK






1 a



B.ONION S. PEA MUSTARD
CROPPING PATTERN HM-LM- MM


Fig. 6. Soil nitrogen after harvest of each crop as influenced
by crop and fertilizer management levels over two crop-
ping cycles in the period 1977-79, Gainesville, FL.
Letters on the bars indicate mean separation among
fertilizer levels within each crop by least signifi-
cant difference, 5% level.


40


20-


LCW NK
_ MEDIUM NK
- HIGH NK







a C C aC
C-C
5r~T~i -^







59

previous bulb onion and pole bean significantly contributed to higher

soil N. These results agree with Rao and Sharma (135) who reported

that soil N decreased at low fertilizer levels after each crop in six

cropping patterns, whereas soil N increased at high fertilizer levels.


Soil potassium. A consistent increase in double-acid extractable

soil K was observed with successive cropping in HM-HM-HM but not with

the other three cropping patterns (Fig. 7). For each cropping pattern,

high fertilizer levels increased soil K except the third crop in the

HM cropping pattern (Fig. 7). However, residual soil K remained almost

constant with successive crops in all cropping patterns except the HM

cropping pattern (Fig. 7).

In general, residual K was higher than applied K for the LM

cropping pattern, whereas HM and MM vegetable crops required supplemen-

tal applications of about 40 to 80 kg/ha K. Results from this study

do not agree with Biswas et al. (14), and Rao and Sharma (135) who

reported that soil K remained low after two cycles and after harvest

of different crops at various fertilizer levels.


Effects of Crop and Fertilizer Management Levels on Marketable Yields

Cropping pattern HM-HM-HM. Marketable yield of bulb onion was

generally high because of early planting date (Table 10). Onion ferti-

lized with the medium level of fertilizer (120 kg/ha N, and 160 kg/ha K)

yielded significantly higher than onion fertilized with low level

(Table 10). Application of a high fertilizer level resulted in no sig-

nificant yield increase (Table 10). Marketable yield of pole bean was

generally low because of late spring planting which subjected the crop




























I00


300




200


100


B. ONION BEAN COLLARD
CROPPING PATTERN HM -HM-HM


3, ONION SQUASH S. PEA
CROPPING PATTERN HM-MM-LM


SLOW NK
MEDIUM NK
- HIGH NK


- a


E. PEA S. PEA S. PEA
CROPPING PATTERN LM- LM- LM


SLOW NK

MEDIUM NK
- HIGH NK


a
-bb





S. ONION
CROPPING


a


, D
**.. N '.


S. PEA
PATTERN


MUST7ARO
HM -LM- MM


Soil potassium after harvest of each crop as influenced
by crop and fertilizer management levels over two crop-
ping cycles in the period 1977-79, Gainesville, FL.
Letters on the bars indicate mean separation among
fertilizer levels within each crop by least significant
difference, 5% level.


SI I j I


200


SLOW NK
l MEDIUM NK
a
- \HIGH NK .


ct7ii
b
, *- *S ,i


,i
.,


S LOW NK
MEDIUM NK

- HIGH NK




a a

b3
h2S :' a !


Fig. 7.


a

~
i
:







61

to high rainfall and temperature (Table 10). Fertilizer levels did not

influence pole bean yield. Leafy vegetable collard responded equally

to all levels of fertilizer (Table 10).


Cropping pattern LM-LM-LM. Only English pea produced a low yield

at the low fertilizer level (Table 10). Successive plantings of vegetable

legumes resulted in low yield of the third crop southern pea (Table 10).

This result was consistent with previous studies (83, 84). Fertilizer

levels did not influence yields of southern pea which support the data

reported from previous investigations (17, 59, 128, 155, 156, 174).


Cropping pattern HM-M-M M. Low yield of bulb onion was due to

late fall planting (Table 10). Combined effects of previous southern

pea residue and low residual nutrients in soil contributed also to low

yields. Late planting predisposed onion seedlings to freezing tempe-

ratures, whereas pea residue reduced germination and seedling survival.

Squash productivity was low when planted in June because of high tempe-

rature and humidity (Table 10). The high management fertilizer level

did not result in significant yield increase (Table 10). Southern pea

produced satisfactory yields after squash; however, low yield was

obtained without fertilizer application (Table 10).


Cropping pattern HM-LM-MM. No significant differences in yield

of bulb onion were observed as a result of fertilizer levels (Table 10).

These yields, however, were generally lower than yields obtained from

cropping pattern HM-HM-HM. Low yield was the result of late planting

in November. A low yield of second crop southern pea was caused by late













Table 10.


Marketable yields of component vegetable crops in four
cropping patterns as influenced by crop and fertilizer
management levels over two cropping cycles in the period
1977-79, Gainesville, FL.


Cropping Fertilizer C r o p
pattern level First Second Third

------------------ MT/ha ---------------
B. Onion P. Bean Collard
Low 18.5 bz 0.8 a 10.0 a
HM-HM-HM Medium 24.2 a 1.5 a 10.7 a
High 22.3 ab 0.9 a 10.0 a

E. Pea S. Pea S. Pea
Low 4.6 b 3.4 a 2.0 a
LM-LM-IM Medium ;5'2 .a 4.0 a 2.0 a
High 5.3 a 3.8 a 1.9 a

B. Onion Squash S. Pea
Low 10.0 a 0.6 b 2.7 b
HM- DI -LM Medium 9.8 a 2.1 a 3.5 a
High 8.5 a 3.1 a 3.5 a

B. Onion S. Pea Mustard
Low 11.7 a 2.0 a 4.6 a
HM-LM-MM Medium 11.9 a 1.9 a 5.3 a
High 12.6 a 1.8 a 4.3 a



ZMean separation in columns within each crop by Duncan's multiple
range test, 5% level.






63

planting in June which subjected the crop to high rainfall and

temperature. Mustard responded equally to fertilizer levels (Table 10).


Resource Utilization of Cropping Patterns

Labor profile. Cropping pattern HM-HM-HM was characterized by

three labor peaks (Fig. 8). Planting and harvesting constituted 30

and 50%, respectively, of the total labor requirements. The high labor

required for planting and harvesting was due to many hours required

for transplanting collard, handseeding pole bean, and multiple harvests

of both crops.

Cropping patterns LM-LM-LM, HM-MM-LM, and HM-LM-MM were character-

ized by only one labor peak for harvesting (Fig. 8). However, labor

required for harvesting in cropping pattern LMM-LM-M was equal to

HM-HM-HM because of multiple harvests of three successive vegetable

legume crops.

Vegetable growers who have limited year-round labor resources

should grow a combination of LM, MM, and HM crops where labor demands

are low and evenly distributed throughout the year. Growers who have

abundant labor and cash can probably benefit by growing HM vegetable

crops in their year-round cropping patterns. Growers who have abundant

labor but are limited in cash resource may have an advantage by growing

a sequence of LM vegetable crops.


Production costs. For each cropping pattern, fertilizer levels

had no influence on production costs (Table 11). Therefore, cropping

patterns were compared based on mean production cost across fertilizer

levels. Cropping pattern -HM-HM-HM required the highest total mean





















III ,






111 :









I I
ill


C C

(Dt4,'Ju;-UD3; d0Fl7


IIII I lillllIIIIIII IIIII <



IIII

IiI


li _


I llIl l II j I






I



Illli f













Is
i --


U3 *HCH



Cd I 0



-H *HS-1
P4 1 Cd
11 -) -I


-0 0 aj
u4-) -4


-r- 0 T-



*H H *


- 0 0 4

> a) bZ bf
h a)
o HCH
*rI 1
SC
0 r'- 1


C) '-'
(D a
r- H .
-Ia n
CH i 0!=
a 6 *r-

" ---
ft f (
0 o- c
a-?hi i-




*H~3.
&, ~-~


~IIIII1II j-


r'
C-



O


III_
I:


1111111lll l


I


N
iDLi/JY-Ci3~' ~i3er-







65

production cost of $7,630/ha which was significantly different from

the other three cropping patterns (Table 11). Except for material cost,

cropping patterns L-IL- -Ll, HM-MM-LM, and HM-LM-MM were similar in

cultural and harvest labor costs (Table 11). In terms of harvest labor

cost, the four cropping patterns were similar although cropping

patterns HMI-H'IM-HM and LM-LM-LM required more harvest labor.

In general, production cost data indicated that planting HM

vegetable crops in year-round cropping patterns required high cash

and labor inputs, but planting a combination of LM, MM, and HM reduced

total production costs by about 50o.


Income and Returns to Production Inputs


Gross and net income. Gross and net incomes were significantly

higher in cropping pattern HM-HM-HM than the other three cropping

patterns (12). Cropping patterns LM-LM-LM, HM-YM-LM, and HT-LTH-Hi

resulted in statistically similar gross income, although cropping

pattern HM-MM-LM produced the lowest gross income (Table 12). The low

gross income from pattern HM-MM-LM was caused by low marketable yields

of bulb onion and squash.

Regardless of fertilizer levels, the best pattern seemed to be

NM-HM-HM if growers consider total net income as the criterion for

profitability, However, this pattern required the highest total costs

and labor inputs (Table 12). Cropping pattern HM-IM-MM netted $3000/ha

income, but total production costs were lower than 1I!-.I-0-HI, and yields

were stable than the other cropping patterns.













Table 11.


Production costs of four vegetable cropping patterns as
influenced by crop and fertilizer management levels over
two cropping cycles in the period 1977-79, Gainesville, FL.


Cropping Fertilizer Production inputs Total
pattern level Cultural Harvest cost
Material labor labor
-------- Costs, $/ha ------------------
Low 2,990 a 1,430 a 1,440 a 5,860 a
Medium 5,420 a 1,430 a 1,720 a 8,570 a
HM-HM-HM 5,00 a 1,430 a 1640 a 8,470 a
Mean 4,600 A 1,430 A 1,600 A 7,630 A


Low 1,840 a 400 a 1,520 a 3,760 a
Medium 2,010 a 400 a 1,560 a 3,970 a
LM-LM-LM High 2070 a 400 a 1,700 a 4,170 a
Mean 1,970 C 400 B 1,590 A 3,950 B


Low 1,890 a 750 a 800 a 3,440 a
Medium 2,370 a 520 a 930 a 3,820 a
HM-MM-LM High 2,210 a 800 a 970 a 3,930 a
Mean 2,160 B 90 B 900 A 3,730 B


Low 2,420 a 560 a 1,060 a 4,040 a
Medium 2,660 a 560 a 1,230 a 4,450 a
HM-LM-MM High 3040 a 560 a 990 a 4,590 a
Mean 2,710 B 560 B 1,090 A 4,360 B



Mean separation in columns within each cropping pattern by least
significant difference, 5% level. Fertilizer means (lower case letters),
cropping pattern means (upper case letters).













Table 12.


Gross and net incomes of four vegetable cropping patterns as
influenced by crop and fertilizer management levels over two
cropping cycles in the period 1977-79, Gainesville, FL.


Cropping Fertilizer Total Income
pattern level cost G
Gross Net
---------- $/ha --------------------
Low 5,860 az 10,990 b 5,130 a
t-edium 8,570 a 13,440 a 4,870 a
HM-H'H-'.I
High 8,470 a 11,920 a 3,450 a
Mean 7,630 A 12,120 A 4,490 A


Low 3,760 a 5,830 a 2,070 a
Medium 3,970 a 5,890 a 1,920 a
High 4,170 a 6,500 a 2,300 a
Mean 3,950 B 6,070 B 2,120 BC


Low 3,440 a 3,920 a 480 a
Medium 3,810 a 5,110 a 1,300 a
M-MM-LM
High 3,930 a 4,410 a 480 a
Mean 3,730 B 4,480 B 750 C


Low 4,040 a 6,940 a 2,900 a
Medium 4,450 a 7,030 a 2,580 a
HM-LM-VM
High 4,590 a 7,990 a 3,400 a
Mean 4,360 B 71320 B 2,960 B



ZMean separation in columns within each cropping pattern by least
significant difference, 5% level. Fertilizer means (lower case
letters), cropping pattern means (upper case letters).







68

Returns to production inputs. Except for cash, returns to ferti-

lizer, labor and management on a dollar/ha basis were not significantly

influenced by fertilizer levels (Table 13). Comparing returns to ferti-

lizer, cash, and labor on the basis of total mean, indicated that

cropping pattern HM-EM-HM produced a higher return to production inputs

(Table 13). Cropping pattern HM-MM-LM resulted in lowest returns to

fertilizer, cash, labor, and management (Table 13).


Rates of return to production inputs. Rate of return to pro-

duction inputs expressed in terms of dollar/dollar is a measure of

return per unit investment of production inputs. This provides a

measure of resource use efficiency for each cropping pattern and is

useful in comparing economic performance of cropping patterns. Rates

of return to fertilizer were influenced by fertilizer levels in cropping

pattern HM-HM-HM and LLM-M-LM but not in HM-EM-LM and HM-LM-MM (Table 14).

Rates of return to fertilizer decreased with increasing fertilizer levels

for each cropping pattern. Among cropping pattern means, rates of return

to fertilizer were significantly higher with LM-LM-LM than the other

three patterns. This suggested that growers with limited fertilizer

input can make more efficient use of this limiting resource by growing

a sequence of IM crops, whereas growers who adopt cropping patterns

HM-HM-HM and H4-LM-MM can profit by reducing fertilizer application.

Although cropping pattern HM-HM-HM produced high return to

cash on a dollar/ha basis (Table 13), rates of return to cash on a

dollar/dollar basis did not differ with pattern LM-LM-LM (Table 14).

For every dollar spent on cash input, pattern HI-HM-HM resulted in $2.50,













Table 13.


Returns to production inputs of four vegetable cropping
patterns as influenced by crop and fertilizer management
levels over two cropping cycles in the period 1977-79,
Gainesville, FL.


Cropping Fertilizer Production inputs
pattern level Fertilizer Cash Labor Management
--------------- Returns, $/ha ---------------
Low 5,650 a 8,120 b 8,010 a 5,130 a
Medium 5,440 a 10,290 a 8,020 a 4,870 a
M-HM-M High 4,880 a 4240 b 6,900 a 3,450 a
Mean 5,320 A 7,550 A 7,640 A 4,490 A


Low 2,120 a 3,860 a 3,890 a 2,070 a
Medium 2,170 a 4,010 a 3,980 a 1,920 a
LM -LM High 2,630 a 4,400 a 4,430 a 2,330 a
Mean 2,310 BC 4,090 BC 4,100 B 2,120 BC


Low 1,160 a 2,370 a 2,040 a 480 a
Medium 1,170 a 3,110 a 2,240 a 1,300 a
-MM-LM High 1,040 a 2,720 a 2,270 a 480 a
Mean 1,120 C 2,730 C 2,180 C 750 C


Low 2,480 a 4,430 b 4,520 a 2,900 a
Medium 3,290 a 5,240 ab 4,360 a 2,580 a
High 3,470 a 5,970 a 4,960 a 3,400 a
Mean 3,080 B 5,210 B 4,610 B 2,960 B



ZMean separation in columns within each cropping pattern by least
significant difference, 5fo level. Fertilizer means (lower case
letters), cropping pattern means (upper case letters).













Table 14.


Rates of return to production inputs of four vegetable
cropping patterns as influenced by crop and fertilizer
management levels over two cropping cycles in the period
1977-79, Gainesville, FL.


Cropping Fertilizer Production inputs
pattern level
patternlevelFertilizer Cash Labor Management

------------ Returns, $/$ -------
Low 11.80 az 2.90 a 2.90 a 1.00 a
Medium 9.70 a 3.10 a 2.50 b 0.60 b
HM-HM-HM
High 5.20 b 1.60 a 2.10 c 0.40 c
Mean 8.90 B 2.50 A 2.50 A 0.70 A


Low 20.80 a 2.10 a 2.00 b 0.60 a
L-LM-LM Medium 14.40 b 2.00 a 2.00 b 0.50 a
High 8.70 c 2.10 a 2.50 a 0.50 a
Mean 14.60 A 2.10 AB 2.20 A 0.50 A


Low 2.50 a 1.30 a 1.90 a 0.10 a
Medium 2.70 a 1.20 a 1.40 a 0.30 a
HM -MM-LM
High 1.90 a 1.10 a 1.80 a 0.10 a
Mean 2.40 C 1.20 C 1.70 A 0.20 B


Low 7.90 a 1.90 a 2.30 bc 0.70 a
Medium 7.70 a 1.90 a 2.50 b 0.60 a
HM-LM-MM
High 6.50 a 1.90 a 3.20 a 0.70 a
Mean 7.30 B 1.90 B 2.60 A 0.70 A



ZMean separation in columns within each cropping pattern by least


significant difference, 5%
letters), cropping pattern


level. Fertilizer means (lower case
means (upper case letters).






71

whereas rate for LM-LM-IM was $2.10 (Table 14). Rates of return to

cash were similar for cropping patterns LM-LM-LM and HM-LM-MM, whereas

HM-MM-LM provided the lowest rate of return to cash input. Growers

with limited cash often adopt cropping patterns with high cash returns.

Except for cropping pattern HM-MM-LM, rates of return to labor

were influenced by fertilizer levels within cropping pattern but not

among cropping patterns (Table 14). In cropping pattern HM-HM-HM,

increasing fertilizer levels significantly decreased rates of return

to labor, whereas the reverse was true in cropping pattern LM-LM-LM

and HM-LM-MM. Thus, it pays to increase fertilizer levels when labor

is limited for cropping patterns involving LM and a combination of IM,

MM, and HM vegetable crops.

Except for cropping pattern HM-HM-HM, fertilizer levels did not

affect rates of return to management (Table 14). In cropping pattern

HM-HM-HM, increasing fertilizer levels decreased rates of return to

management. Thus, growers who face constraints to management can make

more efficient use of their management skills by reducing rates of

fertilizer if they grow a sequence of HM vegetable crops. Among cropping

patterns, HM-HM-HM, LM-LM-IM, and HM-LM-MM, average rates of return to

management were similar (Table 14). This implies that low-labor and

low-cash requiring cropping patterns are as efficient and profitable as

cropping patterns requiring high labor and high cash inputs. Therefore,

growers with limited resources can grow a sequence of LM or a combination

of LM, MM, and HM vegetable crops and obtain profitable economic returns

without necessarily increasing production inputs such as fertilizer.









Economic Implications

Economic evaluation of four cropping patterns based on costs

and returns analysis indicated that resource use, income, and returns

to production inputs were influenced by management level associated

with crop grouping and levels of component technology within each group.

Although levels of component technology such as fertilizer management

did not cause significant differences in marketable yields, resource

use in terms of production costs and rates of return to production

inputs for cropping patterns were affected by fertilizer levels. This

implies that insignificant difference in agronomic yields may sometimes

be misinterpreted in economic terms, especially when the grower bases

production decisions on economic criteria.

Cropping patterns involving HM vegetable crops are highly pro-

ductive and profitable but may not be more efficient in terms of resource

use and rates of return to production inputs than cropping patterns

involving LM and a combination of HM, MM, and LM vegetable crops. This

was shown by high total marketable yield and gross and net incomes, but

non-significant rates of return to fertilizer, cash, labor, and manage-

ment in cropping pattern HM-HM-HM. With increasing costs of production

inputs, vegetable growers with limited cash for purchasing these inputs

will have an advantage by planting either a sequence of LM or a combi-

nation of LM, MM, and HM crops for year-round cropping patterns.

Growers who have available production resources can benefit more by

reducing levels of production inputs such as fertilizer if they grow a

sequence of HM vegetable crops.







73

This study showed that crop and fertilizer management levels can

influence productivity, profitability, and income in year-round crop-

ping systems involving vegetables. Thus, economic returns are a

function of farmer's integration and manipulation of component techno-

logy levels and their interaction with biological, physical, and socio-

economic factors. In understanding and improving management of vegetables

in year-round cropping systems, horticulturists can study other aspects

of component technologies such as insect pest, disease, weed, and water

management through joint effort with entomologists, plant pathologists,

weed scientists, and economists. Through joint research efforts, techno-

logies can be developed and become more relevant and appropriate for

small-scale vegetable farmers.







SUMMARY AND CONCLUSIONS


A 2-year study on four vegetable cropping patterns was conducted

at the Horticultural Unit of the University of Florida, Gainesville, in

1977 to 1979. The objectives of this study were to evaluate productiv-

ity, resource use, and profitability of several vegetable crops planted

in four year-round cropping patterns for North Florida, to determine

and evaluate the influence of crop and fertilizer management levels on

productivity, income, and nutrient levels in soil from four vegetable

cropping patterns, and to develop appropriate crop and fertilizer manage-

ment practices for sequential vegetable cropping systems.

To achieve the first objective, seven vegetable crops including

bulb onion, pole bean, collard, crookneck squash, English pea, mustard,

and southern pea were classified into low (LM), medium (MM), and high

(HM) management groups. These management groups were based on average

costs of fertilizers, pesticides, cultural labor, and a 5-year average

harvesting costs for producing each vegetable crop.

Four basic cropping patterns were developed using combinations

of seven vegetable crops. Two cropping patterns were three HM crops

planted in sequence (bulb onion-pole bean-collard), and three LM crops

planted in sequence (English pea-southern pea-southern pea). The other

two cropping patterns were a combination of LM, MM, and HM crops planted

in sequence as follows: HM-MM-IM (bulb onion-squash-southern pea) and

HM-LM-MM (bulb onion-southern pea-mustard). The four cropping patterns

were arranged in a randomized block design with four replications. To

achieve the second and third objectives, three levels of fertilizer N

74






75

and K (low, medium, and high) were superimposed on each of the four

cropping pattern main plots.

The longest cropping duration was 322 days in cropping pattern

HM-HI-HM, while the shortest duration of 300 days was observed in crop-

ping patterns IM-IM-LM and HM-LM-MM. Crops grown during winter had

prolonged growing periods which delayed the planting of second crops

in cropping patterns involving bulb onion.

In general, marketable yields of vegetables were affected by

planting dates. Cropping patterns involving bulb onion resulted in

late planting and reduced yields of second crops. Cropping patterns

involving large crop residues also delayed planting of succeeding crops.

Bulb onion produced lower yield when planted after southern pea where

large crop residue remained in the soil than onion planted after collard

and mustard.

High rainfall and temperature at flowering and pod set resulted

in low yields of pole bean in both years. Marketable yield averaged

only 1.7 metric tons/ha in 1977-78 and 1.5 metric tons/ha in 1978-79.

These yields were lower than those obtained from normal spring planting

in Florida.

Marketable yields of English pea were lower in 1977-78 than in

1978-79 because prolonged low temperature severely retarded early

growth which predisposed some plants to killing frost in January and

February.

Yields of southern pea were not significantly different between

years except in cropping pattern HM-MM-lM. High residual nutrient

level in soil from previous squash and early planting dates contributed





76

to increased yields in 1977-78 than in 1978-79. In general, the third

crop of southern pea produced low yields.

Cropping pattern LM-LM-IM provided some biological stability but

yields of southern pea decreased with successive plantings. A high

degree of biological stability was observed in cropping pattern HM-LM-MM.

In cropping patterns HM-HM-HM and HM-MM-LM, inclusion of pole bean and

squash resulted in unstable yields due to improper time of planting.

Crop and fertilizer management levels significantly influenced

total soluble salts (TSS). Cropping pattern HM-HM-HM resulted in higher

TSS among the four cropping patterns. Differences were apparent after

harvest of second and third crops. Fertilizer levels significantly

affected TSS only in cropping pattern HM-HM-HM, where high levels of

fertilizer were applied. High TSS was due to high rates of fertilizer

and crop duration in pattern HM-HM-HM. The shorter the crop duration,

the higher the TSS content.

In general, soil pH decreased after harvest of second and third

crops. Differences in soil pH after first and third crops were higher

in all cropping patterns except IM-LM-IM. Cropping pattern LM-LN-LTM

maintained soil pH above 6.0, whereas cropping patterns involving HM

and a combination of HM, MM, and LM crops resulted in pH below 6.0

after the third crop. Fertilizer levels significantly affected soil

pH only after the harvest of third crops, but there was no tendency for

pH to decrease or increase with increasing fertilizer levels.

Soil organic matter (OM) content decreased with successive crop-

ping in all cropping patterns except for IM-LM-IM. Differences among

cropping patterns were significant after harvest of third crops. Soil

OM decreased from 0.90 to 0.54% between the first and third crops in






77

HM-HM-HM, whereas soil OM increased from 0.86 to 0.94% in IM-LM-IM.

High OM content in pattern LM-LM-LM was probably due to large amount of

crop residues from southern peas. Effect of fertilizer levels on soil

OM was apparent after harvest of second and third crops in all cropping

patterns. After harvest of second crops, soil OM content was signifi-

cantly higher at high than at low fertilizer level, but this trend was

not consistent at harvest of third crops.

Significant differences in soil nitrogen (N) were observed among

cropping patterns after harvest of second and third crops. Cropping pat-

terns HM-HM-HM and HM-LL-MM resulted in significantly higher soil N

than LM-LM-LM and HM-MM-LM after harvest of second crops. After harvest

of third crops, highest soil N (95 ppm) was measured in HM-HM-HM. Low

soil N was observed in cropping patterns HM-MM-LM, HM-LM-MM, and

LM-LM-LM even after harvest of third crops. Differences in soil N were

only observed after collard in HM-HM-HM. Application of low, medium,

or high fertilizer level resultedd in similar soil N after each crop

in cropping patterns LM-LM-LM, and HM-LM-MM.

A consistent increase in soil K was observed with successive

cropping in HM-HM-HM, but not with the other cropping patterns. Soil K

increased from 84 ppm after bulb onion to 176 ppm after collard. In

general, soil K was lowest with LM-LM-LM where low levels of fertilizer

were applied, but after harvest of second and third crops, soil K was

not different between cropping patterns LM-LM-LM and HM-MM-LM. Soil K

was influenced by fertilizer levels, in that, increasing fertilizer level

increased soil K for each crop in all cropping patterns. Application

of medium to high levels of fertilizer usually resulted in higher soil

K than low fertilizer level. The residual soil K levels from all





78

fertilizer treatments were higher than applied K indicating that K ferti-

lizer is less limiting compared to N fertilizer in sequential cropping.

The overall effects of fertilizer levels on marketable yields of

vegetable crops in four cropping patterns indicated that more responses

were observed on first crops than on second and third crops. Differences

in yield responses due to fertilizer levels were not consistent with

differences in soil test values for N and K. Improved yields of crops

in four cropping patterns were achieved at medium fertilizer level

although most yields obtained from this level were not significantly

higher than yields at low fertilizer level. Application of high ferti-

lizer rate beyond the medium level resulted in no additional yield

increase for most crops.

Labor requirement and total production costs were significantly

higher in cropping pattern HM-HM-HM than LM-LM-LM, HM-MM-LM, and BM-

LM-MM at all fertilizer levels. For each cropping pattern, increasing

level of fertilizer did not significantly increase total production

costs.

In general, cropping pattern HM-HM-HM produced high gross and

net income and returns to production inputs. Except for cash, returns

to fertilizer, labor, and management were not influenced by-fertilizer

levels for each cropping pattern. Although cropping pattern HM-HM-HM

produced high gross and net incomes, and returns to production inputs

on a dollar/dollar basis, rates of returns to fertilizer, cash, labor,

and management did not differ with patterns IM-LM-LM and HM-LMI-MM.

Rates of return to fertilizer decreased with increasing fertilizer

level for each cropping pattern.






79

Rates of return to cash were not influenced by fertilizer levels

within each cropping pattern, but among cropping patterns, rates of

return to cash were significantly different. Cropping pattern HM-HM-HM

had similar rates of return to cash as the LM-LM-LM.

Rates of return to labor were influenced by fertilizer levels

within each cropping pattern, but not among cropping patterns. In crop-

ping pattern HM-HM-HM, increasing fertilizer level significantly decreased

rates of return to labor. In cropping patterns LM-LM-LM and HM-LM-MM,

high fertilizer level resulted in higher rate of return to labor than

medium and low levels.

Rates of return to management were not affected by fertilizer

levels except for cropping pattern HM-HM-HM, where increasing fertilizer

levels decreased rates of return to management.

Based on the results obtained from this study, the following

conclusions can be drawn:

1. Classifying vegetables according to low, medium, and high

management groups and growing them in sequential cropping patterns

influenced productivity and relative economic returns.

2. In this study, the sequence of HM vegetable crops increased

total soluble salts, soil N and K, but decreased soil pH and OM content.

This suggested that additional fertilizer applications might not have

been required for succeeding crops in cropping patterns involving HM

crops.

3. Increasing fertilizer application above the recommended levels

did not increase marketable yields of vegetable crops in this study.

Vegetable crops that belong to any of the management groups did not

respond to high levels of applied fertilizer when grown in sequential







cropping patterns.

4. In this study, applications of the same rate of fertilizers

to each crop in sequential cropping patterns with HM vegetable crops

were not profitable. Residual fertilizer from previous crops should

be considered in formulating fertilizer rates for succeeding crops.

5. Successive plantings of related LM crops such as English

pea and southern pea in a year-round cropping pattern resulted in low

yields of successive crops.

6. Cropping patterns involving HM vegetable crops were highly

productive and profitable, but were not more efficient than cropping

patterns involving LM and a combination of HM, MM, and LM vegetable

crops in terms of resource use and rates of return to production inputs.

7. The low-labor and low-cash requiring cropping patterns were

as efficient and profitable as cropping patterns requiring high labor

and cash inputs. Therefore, vegetable growers with limited resources

can grow a sequence of LM or a combination of HM, MM, and LM crops and

improve their income without additional production costs.







LITERATURE CITED


1. Acharya, C. M., J. A. Jha, and S. P. Jain. 1953. Studies on the
building up of soil fertility by phosphatic fertilization of
legumes. I. Influence of a legume rotation on the organic
matter level of the soil. J. Indian Soc. Soil Sci. 1:83-88.

2. Aina, P. D. 1979. Soil changes resulting from long-term manage-
ment practices in Western Nigeria. Soil Sci. Soc. Am. J.
43:173-177.

3. Akhanda, A. M., J. T. Mauco, V. E. Green, Jr., and G. M. Prine.
1977. Relay intercropping peanut, soybean, sweet potato and
pigeon pea in corn. Proc. Soil and Crop Sci. Soc. Fla. 37:
95-101.

4. Allison, F. E. 1965. Organic carbon. p. 1367-1378 in C. A.
Black, D. D. Evans, J. L. White, L. E. Ensminger, and F. E.
Clark (eds.). Methods of Soil Analysis. Part 2. Chemical
and Microbiological Properties. Amer. Soc. of Agron.
Madison, WI.

5. Andrews, P. J., and A. H. Kassam. 1976. The importance of multiple
cropping in increasing world food supplies. p. 1-10 in R. I.
Papendick, P. A. Sanchez, and G. B. Triplett (eds.). Multiple
Cropping. Spec. Pub. 27. Amer. Soc. Agron. Madison, WI.

6. Asian Vegetable Research and Development Center. 1977. Annual
Report. Shanhua, Taiwan, Rep. of China.

7. Aycardo, H. B. 1974. Relay intercropping of sweet corn with other
vegetable crops. M. S. Thesis. University of the Philippines
at Los Banos, Philippines.

8. Baker, E. F. I., and D. W. Norman. 1975. Cropping systems in
Northern Nigeria. p. 334-361 in International Rice Research
Institute Proceedings of the Cropping Systems Workshop. Los
Banos, Philippines.

9. Banta, G. R. 1973. Comparison of power sources in multiple crop-
ping. IRRI Saturday Seminar Paper. Int. Rice Res. Inst.
Los Banos, Philippines.

10. Barber, S. A. 1979. Corn residue and soil organic matter. Agron.
J. 71:625-627.

11. Barr, A. J., J. H. Goodnight, J. P. Sall, W. H. Blair, and D. M.
Chilko. 1979. SAS User's Guide 1979 Edition. J. T. Helwig
and K. A. Council (eds.). Statistical Analysis System Inst.
Raleigh, N. C.







12. Bavaskar, V. S., and G. K. Zende. 1973. Soil fertility under
continuous manuring and cropping. Indian J. Agr. Sci. 43:
492-499.

13. Bell, R. S., T. E. Odland, and A. L. Owens. 1949. A half century
of crop rotation experiments. Rhode Island Agr. Expt. Sta.
Bul. 303.

14. Biswas, C. R., G. S. Sekhon, and R. Singh. 1977. Accumulation
and decline of available phosphorus and potassium in a soil
under multiple cropping. J. Indian Soc. Soil Sci. 25:23-27.

15. Bourke, R. M. 1974. A long term rotation trial in New Britain,
Papua, New Guinea. Lowlands Agr. Expt. Sta. Kerawat East,
New Britain, Papua, New Guinea.

16. Bradfield, R. 1972. Maximizing food production through multiple
cropping systems centered on rice. p. 143-163 in Rice,
Science, and Man. Int. Rice Res. Inst. Los Banos, Philippines.

17. Brantley, B. B. 1964. Responses of southern peas to photoperiod
and nitrogen. Proc. Amer. Soc. Hort. Sci. 85:409-413.

18. Bremner, J. M. 1965. Inorganic forms of nitrogen. p. 1179-1237
in C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger,
and F. E. Clark (eds.). Methods of Soil Analysis. Part 2.
Chemical and Microbiological Properties. Amer. Soc. of Agron.
Madison, WI.

19. Brooke, D. L. 1979. Costs and returns from vegetable crops in
Florida, Season 1977-78 with comparisons. Econ. Info. Rpt.
110. Food and Resource Econ. Dept., IFAS, Univ. of Florida,
Gainesville.

20. Bryan, H. H. 1966. Effect of plastic mulch on the yield of seve-
ral vegetable crops in North Florida. Proc. Fla. State Hort.
Soc. 79:139-146.

21. and J. P. Dalton. 1974. Yield responses of tomatoes
and second cropped butternut squash to fertilizer rate and
placement under plastic mulch in Rockdale soil. Proc. Fla.
State Hort. Soc. 87:159-164.

22. Burhan, H. C., and M. M. Said, 1975. Residual effects of N, P,
and K applied to cotton on following crops of sorghum, doli-
chos, and wheat in Sudan Gezira. J. Agr. Sci. 84:81-86.

23. Cady, F. B. 1974. Experimental strategy for transferring crop
production information. Cornell Univ. Paper No. BU-502-M,
Ithaca, New York.








24. Calkins, P. H. 1978. Why farmers plant what they do: A study
of vegetable production technology in Taiwan. AVRDC Tech.
Bul. # 8 (78-74). Shanhua, Taiwan, Rep. of China.


25. 1978.
in the tropics.
Tropical Tomato.
Center, Shanhua,


Improving small-scale tomato
p. 22-23 in 1st International
Asian Vegetable Research and
Taiwan, Rep. of China.


production
Symposium on
Development


26. Carandang, D. A. 1975. Prospects of multiple cropping in the
Philippines. Phil. Econ. J. 14:279-287.


27. Carlisle,
Soil
Soil


V. W., C. E. Beeman, H. Herbert, and E. L. Hinton. 1974.
identification handbook. Hyperthermic temperate zone.
Science Dept., IFAS, Univ. of Florida, Gainesville.


28. Charreau, C. 1974. Systems of cropping in the dry tropical zone
of West Africa with special reference to Senegal. p. 443-468
in International Workshop on Farming Systems. Int. Crops
Res. Inst. for the Semi-Arid Tropics (ICRISAT), Hyderabad,
India.

29. Colette, A. W. 1978. Vegetable crop production budgets for small
farms in North Florida, 1976. Staff Paper 75. Food and Res.
Econ. Dept., IFAS, Univ. of Florida, Gainesville.


30. __, and E.
growth potential
Proc. Fla. State


Arias. 1977. Regional terminal market
for North Florida produced vegetables.
Hort. Soc. 90:356-358.


31. Consultative Group on International Agricultural Research Technical
Advisory Committee. 1978. Farming systems research at the
international agricultural research centers. I. Analysis by
the TAC Review Team of farming systems research at CIAT, IITA,
ICRISAT, and IRRI. World Bank, Wash. D. C.

32. Corgan, J. N., and J. Izquierdo. 1979. Bolting control by ethe-
phon in fall-planted, short-day onions. J. Amer. Soc. Hort.
Sci. 104:387-388.

33. Csizinszky, A. A. 1978. Utilization of residual fertilizers of
a fall tomato crop by direct seeded and transplanted vegetables.
AREC Bradenton Research Rpt. GC 1978-1. IFAS, Univ. of Florida,
Bradenton, FL.

34. 1979. Effect of salt on seed germination and
transplant survival of vegetable crops. Florida Scientist
42:43-51.








35. Dalrymple, D. G. 1971. Survey of multiple cropping in less deve-
loped nations. USDA and USAID, Wash. D. C.

36. Davis, D. R., and J. E. Mickelson. 1969. A climatological summary
for the North Florida Experiment Station. North Florida Expt.
Sta. Mimeo Rpt. NFS 64-1, Quincy, Fl.

37. Dillon, J. L. 1976. The economics of systems research. Agr.
Systems 1:3-20.

38. Dodd, D. R., and G. G. Pohlman. 1935. Some factors affecting the
influence of soybean, oats, and other crops on the succeeding
crop. West Virginia Agr. Expt. Sta. Bul. 265.

39. Doll, E. C., and L. A. Link. 1957. Influence of various legumes
on the yields of succeeding corn and wheat and nitrogen con-
tent of the soil. Agron. J. 49:307-309.

40. Downs, D. B., H. G. M. Jacobson, and P. E. Waggoner. 1962. Rota-
tions, organic matter, and vegetables. Conn. Agr. Expt. Sta.
Cir. 220.

41. Dubetz, S., G. C. Kuzub, and J. F. Dormaar. 1975. Effects of
fertilizer, barnyard manure, and crop residues on irrigated
crop yields and soil chemical properties. Can. J. Soil Sci.
55:481-490.

42. Edmond, C. D. 1979. Highlights of the small farmer program in
IFAS, 1974-78. Center for Community and Rural Development.
Florida Coop. Ext. Ser., Univ. of Florida, Gainesville.

43. Everett, P. H. 1978. Fertilizing tomatoes or cucumbers as second
crops on plastic mulched beds. Proc. Fla. State Hort. Soc.
91:317-319.

44. Feuer, R., and R. A. Obordo. 1972. The multi-purpose "Rice
Microkits". Agron. Abst. Am. Soc. of Agron. Madison, WI.

45. Florida.Agricultural Statistics. 1978. Vegetable summary.
Florida Crop and Livestock Reporting Service, Orlando, Fl.

46. Florida Vegetable Report. 1978-79. Federal Market News Service.
North Palm Beach, Fl.

47. Food and Fertilizer Technology Center of the Asian and Pacific
Region. 1974. Multiple Cropping Systems in Taiwan. Taipei,
Taiwan, Rep. of China.

48. Francis, C. A. 1974. Impact of new technology on small-farm
agriculture. p. 433-444 in Proc. International Workshop on
Farming Systems. ICRISAT, Hyderabad, India.








49. Francis, C. A. 1978. Multiple cropping potentials of beans and
maize. HortScience 13:12-17.

50. Fuller, A., and C. O. Andrew. 1976. Vegetable marketing and
production in Columbia, Suwannee, Hamilton, and Madison
counties. Proc. Fla. State Hort. Soc. 89:111-115.

51. Gallaher, R. N. 1975. Triple cropping in the Georgia Piedmont.
Georgia Agr. Res. 17:19-25.

52. 1977. Soil fertility management of double crop-
ping systems. Res. Rpt. 248. Dept. of Agronomy, Experiment,
GA.

53. Geraldson, C. M. 1966. Effects of salt accumulation in sandy
spodosols on tomato production. Proc. Soil and Crop Sci.
Soc. Fla. 25:6-12.

54. Gomez, A. A. 1977. Cropping systems approach to production
program: The Philippine experience, p. 441-450 in Proceed-
ings, Symposium on Cropping Systems Research and Development
for the Asian Rice Farmer. Int. Rice Res. Inst., Los Banos,
Philippines.

55. Guilarte, T. C., R. E. Perez-Levy, and G. M. Prine. 1975. Some
double cropping possibilities under irrigation during the
warm season in North and West Florida. Proc. Soil and Crop
Sci. Soc. Fla. 34:138-143.

56. Guzman, V. L., and N. C. Hayslip. 1962. Effect of time of seeding
and varieties on onion production and quality when grown in
two soil types. Proc. Fla. State Hort. Soc. 75:156-162.

57. Hall, V. L. 1973. Designing adaptive research for developing
countries. Agrnn. Abst. Amer. Soc. of Agron. Madison, WI.

58. Halsey, L. H. 1956. Variety tests of commercial types and new
breeding lines of southern pea. Proc. Fla. State Hort. Soc.
69:255-258.

59. 1960. Influence of nitrogen fertilization and seed
inoculation levels on yield of southern peas. Proc. Amer.
Soc. Hort. Sci. 75:517-520.

60. 1961. Southern pea varieties, culture, and harvest-
ing as related to production for handling and processing.
Proc. Fla. State Hort. Soc. 74:233-237.

61. 1978. Seasonal response of vegetable crops for
selected cultivars in North Florida. VII. Root and bulb
crops. Res. Rpt. VC 7-78. IFAS, Veg. Crops Dept., Univ. of
Florida, Gainesville.








62. Halsey, L. H. 1978. Seasonal response of vegetable crops for
selected cultivars in North Florida. VI. Leaf crops. Res.
Rpt. VC 6-78. IFAS, Veg. Crops Dept., Univ. of Florida,
Gainesville.

63. and S. R. Kostewicz. 1975. Extending the production
season of vegetables in North Florida. Proc. Fla. State
Hort. Soc. 88:228-232.

64. and _. 1976. Seasonal response of
vegetable-crops for selected cultivars in North Florida.
I.. Legumes. Res. Rpt. VC 1-1976. IFAS, Veg. Crops Dept.,
Univ. of Florida, Gainesville.

65. and 1976. Seasonal response of
vegetable crops for selected cultivars in North Florida. II.
Solanaceous crops. Res. Rpt. VC 2-76. IFAS, Veg. Crops.
Dept., Univ. of Florida, Gainesville.

66. and 1976. Seasonal response of
vegetable crops for selected cultivars in North Florida. IV.
Cucurbits. Res. Rpt. VC 4-76. IFAS, Veg. Crops Dept., Univ.
of Florida, Gainesville.

67. and 1977. Seasonal response of
vegetable crops for selected cultivars in North Florida. V.
Crucifers. Res. Rpt. VC 5-77. IFAS, Veg. Crops Dept., Univ.
of Florida, Gainesville.

68. Harwood, R. R. 1974. Resource utilization approach to cropping
systems improvement, p. 249-260 in International Workshop
on Farming Systems. ICRISAT, Hyderabad, India.

69. 1975. Farm oriented research aimed at crop inten-
sification, p. 12-32 in Proc. of the Cropping Systems Work-
shop. IRRI, Los Banos, Philippines.

70. and E. C. Price. 1976. Multiple cropping in tro-
pical Asia. p. 11-40 in R. I. Papendick, P. A. Sanchez, and
G. B. Triplett (eds.). Multiple Cropping. Spec. Pub. 27.
Amer. Soc. Agron. Madison, WI.

71. Havanagi, G. V., and H. S. Mann. 1970. Effect of rotation and
continuous application of manures and fertilizers on soil
properties under dry farming conditions. J. Indian Soc. Soil
Sci. 18:45-50.

72. Hayami, A. 1975. Cropping sequences and their effect on soil fer-
tility. Food and Fertilizer Tech. Center, Asian Pacific Reg.
Tech. Bul. 23. Taipei, Taiwan, Rep. of China.








73. Hayslip, N. C., E. Hodges, D. W. Jones, and A. E. Kretschmer, Jr.
1964. Tomato and pangola grass rotation for sandy soils of
South Florida. Univ. of Florida Agr. Expt. Sta. Cir. S-153.

74. and J. R. Iley. 1966. Use of plastic strips over
fertilizer bands to reduce leaching. Proc. Fla. State Hort.
Soc. 79:132-139.

75. Heathcote, R. G. 1970. Soil fertility under continuous cultivation
in Northern Nigeria. I. The role of organic manures. Expt.
Agr. 6:229-237.

76. Herrera, W. T., H. G. Zandstra, and S. P. Liboon. 1977. The
management of mungbeans in rice-based cropping systems. p.
115-119 in The First International Symposium on Mungbean.
AVRDC, Shanhua, Taiwan, Rep. of China.

77. Hildebrand, P. E. 1976. A multi-disciplinary methodology for
generating new technology for small, traditional farmers.
A paper presented at the conference on developing economies
in agrarian regions. A search for methodology. The Rockefel-
ler Foundation Conference Center, Bellagio, Italy.

78. 1976. Multiple cropping systems are dollars and
"sense" agronomy. p. 347-371.in'R. I. Papendick, P. A. Sanchez,
and G. B. Triplett (eds.). Multiple Cropping. Spec. Pub. 27.
Amer. Soc. Agron. Madison, WI.

79. 1977. Generating small farms technology: An
integrated multidisciplinary system. Paper given at 12th
West Indian Agr. Econ. Conference, Antigua.

80. 1979. Generating technology for traditional
farmers. The Guatemalan experience. Symposium on Socio-
economic Constraints to Crop Protection. Ninth International
Congress of Plant Protection. Wash. D. C.

81. Houser, G. F. 1970. A standard guide to soil fertility investi-
gations on farmers fields. Soils Bul. No. 11. Food and Agr.
Org. Rome, Italy.

82. Hudgens, R. E. 1978. Adapting agronomic technology for small farm
bean production in highland Colombia. Ph. D. Dissertation.
Univ. of Florida, Gainesville.

83. IRRI. 1973. Annual Report for 1972. Int. Rice Res. Inst. Los
Banos, Philippines.

84. 1974. Annual Report for 1973. Int. Rice Res. Inst. Los
Banos, Philippines.







85. IRRI. 1976. Annual Report for 1975. Int. Rice Res. Inst. Los
Banos, Philippines.

86. 1978. Annual Report for 1977. Int. Rice Res. Inst. Los
Banos, Philippines.

87. Janes, B. E. 1951. Vegetable rotation studies in Connecticut II.
Proc. Amer. Soc. Hort. Sci. 57:252-258.

88. 1955. Vegetable rotation studies in Connecticut.
III. Effect of sweet corn and vetch on the growth of several
crops which follow. Proc. Amer. Soc. Hort. Sci. 65:324-330.

89. Jhunjhunwala, B. 1971. Minimum cropland requirements for speci-
fied income levels in selected counties of North and West
Florida. M. S. Thesis. Univ. of Florida, Gainesville.

90. Johnson, J. L., and R. C. Atkinson. 1977. Vegetable cost analy-
sis. Farm Management Dept., Georgia Coop. Ext. Ser. Misc.
Rpt. No. 8.

91. Jones, M. J. 1974. Effects of previous crop on yield and nitrogen
response of maize at Samaru, Nigeria. Expt. Agr; 10:275-279.

92. Kass, D. C. L. 1978. Polyculture cropping systems: Review and
analysis. Cornell International Agr. Bul. 32. New York
State College of Agr. and Life Sciences, Ithaca, N.Y.

93. Kelbert, D. G.,and D. S. Burgis. 1962. Adaptable varieties, her-
bicides, and plant spacing for bulb onions on sandy land.
Proc. Fla. State Hort. Soc. 75:153-156.

94. Krantz, B. A., S. K. Sharma, P. Singh, and K. L. Sahrawat. 1974.
Cropping patterns for increasing and stabilizing agricultural
production in the semi-arid tropics, p. 217-248 in Inter-
national Workshop on Farming Systems, ICRISAT, Hyderabad,
India.

95. Kretschmer, A. E., N. C. Hayslip, and W. T. Forsee. 1963. Spring
field corn and sorghum production after fall vegetables. Fla.
Agr. Expt. Sta. Cir. S-145.

96. Kung, P. 1969. Multiple cropping in Taiwan. World Crops 27:228-
236.

97. Laird, R. J. 1968. Field technique for fertilizer experiments.
Res. Bul. No. 9. CIMMYT, El Batan, Mexico.

98. Lal, K. 1976. No tillage effects on soil properties and crop
under different crop rotations in Western Nigeria. Soil Sci.
Soc. Amer. Proc. 40:762-768.









99. Levins, R. A., and R. D. Downs. 1975. Management handbook for
small farms in Florida. Florida Coop. Ext. Ser. Food and
Resource Econ. Dept., IFAS, Utiversity of Florida, Gainesville.

100. Lin, C. F., T. S. Lee Wang, A. H. Chang, and C. Y. Cheng. 1973.
Effects of some long term fertilizer treatments on the chemi-
cal properties of soil and yield of rice. J. Taiwan Agr. Res.
22:242-262.

101. Lorz, A. P. 1955. Production of southern peas (cowpeas) in
Florida. Florida Agr. Expt. Sta. Bul. 557.

102. Mack, W. B., G. J. Stout, and F. W. Haller. 1933. The effect of
certain truck crops on the yield of truck crops following
them on the same plots in the next season. Proc. Amer. Soc.
Hort. Sci. 30:447-451.

103. Marlowe, G. A., and C. M. Geraldson. 1976. Results of a soluble
salt survey of commercial tomato fields in Southwest Florida.
Proc. Fla. State Hort. Soc. 89:132-135.

104. Maynard, D. N., and 0. A. Lorenz. 1979. Seventy-five years of
progress in the nutrition of vegetable crops. HortScience
14:355-358.

105. Menegay, M. R. 1975. Socio-economic factors affecting cropping
systems for selected Taiwan farmers, p. 231-251 in Proc.
of the Cropping Systems Workshop. IRRI, Los Banos, Philippines.

106. 1976. Farm management research on cropping sys-
tems. AVRDC Tech. Bul. No. 2. Shanhua, Taiwan, Rep. of
China.

107. J. N. Hubbell, and R. D. William. 1978. Crop
intensity index: A research method of measuring land use in
multiple cropping. HortScience 13:8-11.

108. Miami Wholesale Fruit and Vegetable Report. 1978-79. Federal
State Market News Service. South Miami, FL.

109. Montelaro, J. 1978. Squash production guide. Florida Coop. Ext.
Ser. Cir. 103-D.

110. and S. R. Kostewicz. 1975. Bean production gul-e.
Florida Coop. Ext. Ser. Cir. 100-C.

111. Morgan, M. F., and H. G. M. Jacobson. 1940. Soil management for
intensive vegetable production in sandy Connecticut Valley
land. Conn. Agr. Expt. Sta. Bul. 439.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ER7Q0SWEM_Q6KZ70 INGEST_TIME 2017-07-13T15:06:37Z PACKAGE AA00003473_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

$*52(&2120,& (9$/8$7,21 2) )285 9(*(7$%/( &5233,1* 3$77(516 )25 1257+ )/25,'$ $6 ,1)/8(1&(' %< &523 $1' )(57,/,=(5 0$1$*(0(17 /(9(/6 %\ 0$18(/ &(/,= 3$/$'$ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

'(',&$7(' 72 7+( 60$//6&$/( 9(*(7$%/( *52:(56 ,1 1257+ )/25,'$ $1' '(9(/23,1* &28175,(6 ,1 7+( 7523,&6

PAGE 4

$&.12:/('*0(176 7KLV UHVHDUFK KDV EHHQ FRPSOHWHG EHFDXVH RI WKH KHOS RI D JUHDW QXPEHU RI SHRSOH 7KH VXSHUYLVLRQ DQG DVVLVWDQFH IURP WKH PHPEHUV RI WKH DXWKRUnV JUDGXDWH FRPPLWWHH 'U 5 :LOOLDP IRUPHU FKDLUPDQ 'U 1 0D\QDUG SUHVHQW FKDLUPDQ DQG 'U : %OXH 3URI / + +DOVH\ 'U 6 5 .RVWHZLF] 'U 0 3ULQH DQG 'U % :DOO DUH JUDWHIXOO\ DFNQRZOHGJHG 'U :LOOLDP VHUYHG DV FKDLUPDQ RI WKH VXSHUn YLVRU\ FRPPLWWHH IRU WKH HQWLUH FRXUVH RI WKH UHVHDUFK DQG JUDGXDWH WUDLQLQJ SURJUDP DQG KHOSHG VWLPXODWH DQ HQYLURQPHQW FRQGXFLYH WR WKH DXWKRUnV DFDGHPLF GHYHORSPHQW 7KH DXWKRU DSSUHFLDWHV WKH LQWHUHVW DQG ZLOOLQJQHVV RI 'U 1 0D\QDUG ZKR VHUYHG DV FKDLUPDQ RI WKH VXSHUYLVRU\ FRPPLWWHH DIWHU 'U :LOOLDP OHIW WKH 9HJHWDEOH &URSV 'HSDUWn PHQW 7KH KHOS DQG JXLGDQFH RI 'U :LOOLDP DQG 'U 0D\QDUG LQ GHYHORSn LQJ DQG LPSURYLQJ WKH DXWKRUnV VNLOO LQ ZULWLQJ DUH KLJKO\ DSSUHFLDWHG 7KH KHOSIXO VXJJHVWLRQV DQG DVVLVWDQFH RI 3URI +DOVH\ LQ WKH FRQGXFW RI WKH ILHOG H[SHULPHQW DUH JUDWHIXOO\ DFNQRZOHGJHG $FNQRZOHGJPHQWV DUH GXH DOVR WR 0U / & %U\DQW DQG RWKHU WHFKQLFLDQV RI WKH +RUWLFXOWXUDO 8QLW DQG 6RLO 6FLHQFH 'HSDUWPHQW 7HVWLQJ /DERUDWRU\ ZKR KHOSHG DQG DVVLVWHG WKH DXWKRU LQ FRQGXFWLQJ ILHOG ZRUN DQG DQDO\]LQJ VRLO VDPSOHV 7KH DXWKRU LV WKDQNIXO WR 'U 1 *DPPRQ DQG 'U : %OXH IRU DOORZLQJ KLP WR XVH WKH IDFLOLWLHV RI WKH 7URSLFDO 3DVWXUHV DQG 6RLOV /DERUDWRU\ 6SHFLDO DSSUHFLDWLRQ LV DOVR H[WHQGHG WR 'U 6 /RFDVFLR IRU DOORZLQJ WKH DXWKRU WR XVH WKH IDFLOLWLHV RI WKH 9HJHWDEOH 1XWULWLRQ /DERUDWRU\ 7KH KHOS DQG

PAGE 5

DVVLVWDQFH RI KLV IHOORZ JUDGXDWH VWXGHQWV DQG IULHQGV LQ 9HJHWDEOH &URSV 'HSDUWPHQW DUH DOVR DSSUHFLDWHG 7KH DXWKRU LV JUDWHIXO WR WKH 5RFNHIHOOHU )RXQGDWLRQ IRU SURYLGLQJ D JUDGXDWH IHOORZVKLS DQG WR WKH SHUVRQV ZKR UHFRPPHQGHG KLP IRU WKLV IHOORZVKLS QDPHO\ 'U 1 & %UDG\ 'LUHFWRU *HQHUDO ,QWHUQDWLRQDO 5LFH 5HVHDUFK ,QVWLWXWH ,55,f /RV %DQRV 3KLOLSSLQHV DQG 'U 5LFKDUG 5 +DUZRRG 'LUHFWRU 2UJDQLF *DUGHQLQJ DQG )DUPLQJ 5HVHDUFK &HQWHU .XW]WRZQ 3HQQV\OYDQLD )LQDOO\ WKH DXWKRU ZLVKHV WR H[SUHVV KLV VLQFHUH WKDQNV WR KLV ZLIH (OLH GDXJKWHU 'DIIRGLO DQG VRQ 7HG 3HWHU IRU WKHLU ORYH FRQVWDQW LQVSLUDWLRQ HQFRXUDJHPHQW DQG XQGHUVWDQGLQJ LY

PAGE 6

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LLL /,67 2) 7$%/(6 YLL /,67 2) ),*85(6 L[ $%675$&7 ,1752'8&7,21 &+$37(5 /,7(5$785( 5(9,(: &RQFHSWV RI &URSSLQJ 6\VWHPV &URSSLQJ 6\VWHPV 5HVHDUFK $SSURDFKHV DQG 0HWKRGRORJLHV 0DQDJHPHQW RI 9HJHWDEOHV LQ &URSSLQJ 6\VWHPV 6RLO DQG )HUWLOL]HU 0DQDJHPHQW LQ 9HJHWDEOH &URSSLQJ 6\VWHPV (FRQRPLF (YDOXDWLRQ RI 9HJHWDEOH &URSSLQJ 3DWWHUQV &+$37(5 ,, $1 (9$/8$7,21 2) )285 9(*(7$%/( &5233,1* 3$77(516 )25 1257+ )/25,'$ ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ &URS HQYLURQPHQW &URS GXUDWLRQ 0DUNHWDEOH \LHOGV %LRORJLFDO VWDELOLW\ 3URGXFWLRQ FRVWV DQG UHWXUQV WR PDQDJHPHQW 5HWXUQV WR SURGXFWLRQ LQSXWV &+$37(5 ,,, &523 $1' )(57,/,=(5 0$1$*(0(17 /(9(/6 ,1 )285 6(48(17,$/ &5233,1* 3$77(516 ,192/9,1* 9(*(7$%/(6 ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV ([SHULPHQWDO VLWH 6RLO FKDUDFWHULVWLFV &ODVVLILFDWLRQ RI YHJHWDEOH FURSV 6HOHFWLRQ RI YHJHWDEOH FURSV 'HVLJQ RI FURSSLQJ SDWWHUQV

PAGE 7

/HYHOV RI IHUWLOL]HUV ([SHULPHQWDO GHVLJQ 'DWD FROOHFWLRQ 6RLO VDPSOLQJ DQG FKHPLFDO DQDO\VHV 6WDWLVWLFDO DQDO\VLV RI GDWD 5HVXOWV DQG 'LVFXVVLRQ 6KLIWV LQ 6RLO 3URSHUWLHV 7RWDO VROXEOH VDOWV 6RLO UHDFWLRQ 6RLO RUJDQLF PDWWHU 6RLO QLWURJHQ 6RLO SRWDVVLXP (IIHFWV RI &URS DQG )HUWLOL]HU 0DQDJHPHQW /HYHOV RQ 0DUNHWDEOH
PAGE 8

/,67 2) 7$%/(6 3DJH &XOWXUDO SUDFWLFHV IRU YHJHWDEOH FURSV JURXSHG LQ WKUHH PDQDJHPHQW OHYHOV DQG JURZQ LQ IRXU FURSSLQJ SDWWHUQV DW *DLQHVYLOOH )/ f $YHUDJH IHUWLOL]HU SHVWLFLGH FXOWXUDO ODERU DQG KDUYHVW FRVWV IRU KLJK PHGLXP DQG ORZ PDQDJHPHQW YHJHWDEOH FURSV LQ )ORULGD &URS GXUDWLRQ DQG LQWHUYDO EHWZHHQ FURSV LQ IRXU YHJHWDEOH FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 0DUNHWDEOH \LHOGV RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV DW *DLQHVYLOOH )/ 3URGXFWLRQ FRVWV DQG UHWXUQV WR PDQDJHPHQW RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 5HWXUQV WR IHUWLOL]HU FDVK ODERU DQG PDQDJHPHQW RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSn SLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 1LWURJHQ DQG SRWDVVLXP OHYHOV IRU ORZ PHGLXP DQG KLJK PDQDJHPHQW FURSV *DLQHVYLOOH )/ am 6RLO S+ DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 6RLO RUJDQLF PDWWHU FRQWHQW DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ 0DUNHWDEOH \LHOGV RI FRPSRQHQW YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ 3URGXFWLRQ FRVWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ *URVV DQG QHW LQFRPHV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/

PAGE 9

7DEOH 3DJH 5HWXUQV WR SURGXFWLRQ LQSXWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG r *DLQHVYLOOH )/ 5DWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG r *DLQHVYLOOH )/ 9L L[

PAGE 10

/,67 2) ),*85(6 )LJXUH 3DJH )RXU YHJHWDEOH FURSSLQJ SDWWHUQV SORWWHG DJDLQVW UDLQIDOO DQG WHPSHUDWXUH DW *DLQHVYLOOH )/ )RXU YHJHWDEOH FURSSLQJ SDWWHUQV SORWWHG DJDLQVW UDLQIDOO DQG WHPSHUDWXUH DW *DLQHVYLOOH )/ r $ FRQFHSWXDO PRGHO RI FURS PDQDJHPHQW DSSURDFK WR YHJHWDEOH FURSSLQJ V\VWHPV UHVHDUFK 3ODQWLQJ VHTXHQFHV RI ORZ PHGLXP DQG KLJK PDQDJHPHQW YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSn SLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 7RWDO VROXEOH VDOWV DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 6RLO QLWURJHQ DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOLVHU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ 6RLO SRWDVVLXP DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ /DERU SURILOH RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/

PAGE 11

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $*52(&2120,& (9$/8$7,21 2) )285 9(*(7$%/( &5233,1* 3$77(516 )25 1257+ )/25,'$ $6 ,1)/8(1&(' %< &523 $1' )(57,/,=(5 0$1$*(0(17 /(9(/6 %\ 0DQXHO &HLL] 3DODGD 0DUFK ,2 &KDLUPDQ 'RQDOG 1 0D\QDUG 0DMRU 'HSDUWPHQW +RUWLFXOWXUDO 6FLHQFH 9HJHWDEOH &URSVf $SSURSULDWH FURS PDQDJHPHQW WHFKQRORJLHV IRU \HDUURXQG YHJHWDEOH FURSSLQJ V\VWHPV DUH HVVHQWLDO WR LQFUHDVH SURGXFWLYLW\ DQG LPSURYH IDUP LQFRPH DPRQJ VPDOOVFDOH YHJHWDEOH IDUPHUV $ \HDU VWXG\ ZDV FRQGXFWHG WR GHWHUPLQH DQG HYDOXDWH WKH LQIOXHQFH RI FURS DQG IHUWLOL]HU PDQDJHn PHQW OHYHOV RQ SURGXFWLYLW\ LQFRPH DQG QXWULHQW OHYHOV LQ VRLO IURP IRXU YHJHWDEOH FURSSLQJ SDWWHUQV IRU 1RUWK )ORULGD DQG WR GHYHORS DSSURSULDWH FURS DQG IHUWLOL]HU PDQDJHPHQW SUDFWLFHV IRU VHTXHQWLDO YHJHWDEOH FURSSLQJ V\VWHPV 6HYHQ YHJHWDEOH FURSV ZHUH FODVVLILHG LQWR WKUHH PDQDJHPHQW JURXSV ORZ /0 PHGLXP 00 DQG KLJK +0f DQG SODQWHG LQ IRXU FURSSLQJ SDWWHUQV +0+0+0 /0,0/0 +000/0 DQG +0/000f 9HJHWDEOH FURSV LQFOXGHG EXOE RQLRQ $OOLXP FHSD /f FROODUG &%UDVVLFD ROHU£FHD / 9LULGLV *URXSf (QJOLVK SHD 3LVXP VDWLYXP /f PXVWDUG %UDVVLFD MQFHD / *]HUQ DQG *RVVf SROH EHDQ 3QDVHROXV nYXOJDULV /f VRXWKHUQ SHD 9LJUD XQJXLFXODWD / :DOSf DQG FURFNQHFN VTXDVK &XFDUELWD SHQR /f 7KH IRXU FURSSLQJ SDWWHUQ PDLQ SORWV ZHUH VSOLW LQWR WKUHH IHUWLOL]HU OHYHO VXESORWV ORZ PHGLXP DQG KLJK 1 DQG .f DUUDQJHG LQ D UDQGRPL]HG EORFN GHVLJQ [

PAGE 12

&URSSLQJ GXUDWLRQ ZDV ORQJHVW LQ FURSSLQJ SDWWHUQ +0+0+0 EXOE RQLRQSROH EHDQFROODUGf DQG VKRUWHVW LQ /0/0/0 (QJOLVK SHD VRXWKHUQ SHDVRXWKHUQ SHDf DQG +0/000 EXOE RQLRQVRXWKHP SHD PXVWDUGf $W WKH HQG RI WKH FURSSLQJ VHTXHQFH VRLO S+ ZDV ORZHU WKDQ WKH LQLWLDO YDOXH LQ DOO FURSSLQJ SDWWHUQV EXW WKH GLIIHUHQFH EHWZHHQ LQLWLDO DQG ILQDO S+ ZDV JUHDWHU LQ FURSSLQJ SDWWHUQV +0+0+0 +000/0 DQG +0/000 WKDQ LQ /0/0/0 6RLO RUJDQLF PDWWHU FRQWHQW GHFUHDVHG ZKHUHDV WRWDO VROXEOH VDOWV LQFUHDVHG LQ FURSSLQJ SDWWHUQ +0+0+0 ZKHUH KLJK OHYHOV RI IHUWLOL]HU ZHUH DSSOLHG &URSSLQJ SDWWHUQ /0/0/0 UHVXOWHG LQ KLJKHVW VRLO RUJDQLF PDWWHU FRQWHQW DIWHU KDUYHVW RI WKH WKLUG FURS 6RLO 1 DQG H[FKDQJHDEOH ZHUH VLJQLILFDQWO\ KLJKHU LQ FURSSLQJ SDWWHUQ +0+0+0 WKDQ LQ WKH RWKHU FURSSLQJ SDWWHUQV ([FKDQJHn DEOH ; LQFUHDVHG DV IHUWLOL]HU OHYHO LQFUHDVHG LQ DOO FURSSLQJ SDWWHUQV ,QFUHDVHV LQ PDUNHWDEOH \LHOGV ZHUH QRW REVHUYHG ZLWK LQFUHDVLQJ IHUWLOL]HU OHYHO H[FHSW IRU EXOE RQLRQ VTXDVK DQG (QJOLVK SHD ZKHUH VLJQLILFDQW \LHOG UHVSRQVHV UHVXOWHG IURP DSSOLFDWLRQ RI WKH PHGLXP IHUWLOL]HU OHYHO &URSSLQJ SDWWHUQ +0+0+0 UHVXOWHG LQ VLJQLILFDQWO\ KLJKHU UHVRXUFH XVH DQG JURVV DQG QHW LQFRPHV EXW UDWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV VXFK DV IHUWLOL]HU ODERU FDVK DQG PDQDJHPHQW ZHUH VLPLODU DPRQJ WKH FURSSLQJ SDWWHUQV 3ODQWLQJ ORZ PDQDJHPHQW DQG D FRPELQDWLRQ RI KLJK PHGLXP DQG ORZ PDQDJHPHQW FURSV LQ VHTXHQWLDO YHJHWDEOH FURSSLQJ SDWWHUQV UHTXLUHG ORZ SURGXFWLRQ LQSXWV DQG ZHUH HIILFLHQW DQG SURILWDEOH 6XFK FURSSLQJ SDWWHUQV RIIHU JUHDWHU \LHOG VWDELOLW\ DQG WKH SRVVLELOLW\ RI LPSURYHG IDUP LQFRPH [L

PAGE 13

,1752'8&7,21 9HJHWDEOH JURZHUV LQ 1RUWK )ORULGD SURGXFHG YHJHWDEOH FURSV FRPPHUFLDOO\ LQ f (QWHUSULVHV UDQJH LQ VFDOH IURP IXOOWLPH EXVLQHVVHV WR SDUWWLPH VPDOOVFDOH PDUNHW JDUGHQ RSHUDWLRQV f ,Q JHQHUDO YHJHWDEOH JURZHUV LQ 1RUWK )ORULGD SODQW YHJHWDEOH FURSV GXULQJ WKH VSULQJ DQG IDOO VHDVRQV EHFDXVH WKH FOLPDWH LV PRUH IDYRUDEOH WKDQ LQ VXPPHU DQG ZLQWHU f 7KH KLJKHU WHPSHUDWXUHV DQG UDLQIDOO LQ VXPPHU DQG IUHH]LQJ WHPSHUDWXUHV LQ ZLQWHU OLPLW WKH SURGXFWLRQ RI PRVW YHJHWDEOHV LQ 1RUWK )ORULGD f 9HJHWDEOH SURGXFWLRQ LQ 1RUWK )ORULGD LV FKDUDFWHUL]HG E\ IHZ WRWDO KHFWDUHV } f DQG ORZHU \LHOGV FRPSDUHG WR 6RXWK )ORULGD f 6PDOOVFDOH IDUPHUV JHQHUDOO\ SURGXFH YHJHWDEOHV XVLQJ ORZ OHYHOV RI FURS PDQDJHPHQW f ,Q D VXUYH\ RI VPDOOVFDOH JURZHUV LQ 1RUWK )ORULGD D PDMRULW\ RI WKH JURZHUV XVHG ORZ OHYHOV RI IHUWLOL]HUV DQG SHVWLFLGHV f 0DUNHWLQJ DOWHUQDWLYHV ZHUH OLPLWHG DQG SULFHV IRU PRVW YHJHWDEOHV ZHUH EHORZ WKH EUHDNHYHQ SULFH f 7KXV WKH IHDVLELOLW\ RI LQFUHDVLQJ DQG LPSURYLQJ YHJHWDEOH SURGXFWLRQ LQ 1RUWK )ORULGD LV GHSHQGHQW XSRQ ERWK HIILFLHQW FURSSLQJ DQG PDUNHWLQJ V\VWHPV 6HYHUDO VWXGLHV KDYH EHHQ FRQGXFWHG WR H[WHQG DQG LPSURYH YHJHn WDEOH SURGXFWLRQ LQ 1RUWK )ORULGD } f )RU H[DPSOH WKH XVH RI EODFN DQG ZKLWH SODVWLF PXOFKHV WR UHGXFH WKH HIIHFW RI LQWHQVH UDLQIDOO DQG KLJK VRLO WHPSHUDWXUHV LPSURYHG \LHOGV RI PXVNPHORQ &XFXPLV PHO /f ZDWHUPHORQ >&LWUXOOXV ODQDWXV 7KXPEf 0DQVI@ DQG VTXDVK f 3URGXFWLRQ RI YHJHWDEOHV XQGHU WREDFFR 1LFRWDQLD WDED FXP /f VKDGHV DOVR LQFUHDVHG WRWDO \LHOG RI FXFXPEHU &XFXPLV VDWLYXV /f

PAGE 14

ff %\ VHOHFWLQJ DGDSWHG FXOWLYDUV PDQ\ YHJHWDEOH FURSV FDQ EH JURZQ VHTXHQWLDOO\ f )RU LQVWDQFH SURPLVLQJ FXOWLYDUV RI FUXn FLIHUV FXFXUELWV OHJXPLQRXV OHDI EXOE DQG VRODQDFHRXV FURSV SURGXFHG KLJK PDUNHWDEOH \LHOGV LQ *DLQHVYLOOH f 7KHVH VWXGLHV UHSRUW RQO\ WKH PDQDJHPHQW V\VWHP RI DQ LQGLYLGXDO FURS IURP SODQWLQJ WR KDUYHVWLQJ ZLWKRXW FRQVLGHULQJ LQWHUDFWLRQV EHWZHHQ FURSV ZLWKLQ FURSSLQJ DQG IDUP PDQDJHPHQW V\VWHPV 0RVW RI WKHVH VWXGLHV DUH VSHFLDOL]HG QDUURZ LQ VFRSH DQG RIWHQ RULHQWHG WR D VSHFLn ILF GLVFLSOLQH ,Q FRQWUDVW FURSSLQJ V\VWHPV UHVHDUFK LQYROYHV WKH VWXG\ RI FURSSLQJ SDWWHUQV DQG WKHLU LQWHUDFWLRQ ZLWK IDUP UHVRXUFHV RWKHU IDUP HQWHUSULVHV DQG DYDLODEOH WHFKQRORJ\ RQ D \HDUURXQG FURSn SLQJ EDVLV f 6LQFH GLIIHUHQW YHJHWDEOH FURSV UHVSRQG WR GLIIHUHQW OHYHOV RI PDQDJHPHQW UHVHDUFK PHWKRGV VXFK DV WKH FURSSLQJ V\VWHPV DSSURDFK ZKLFK LQWHJUDWHV FURS SURGXFWLRQ ZLWK IDUPHUnV PDQDJHPHQW FDSDELOLWLHV DUH QHHGHG WR GHYHORS DSSURSULDWH WHFKQRORJLHV 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR Df HYDOXDWH SURGXFWLYLW\ UHVRXUFH XVH DQG SURILWDELOLW\ RI VHYHUDO YHJHWDEOH FURSV SODQWHG LQ IRXU FURSSLQJ SDWWHUQV IRU 1RUWK )ORULGD Ef GHWHUPLQH DQG HYDOXDWH WKH LQIOXHQFH RI FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RQ SURGXFWLYLW\ LQFRPH DQG QXWULHQW OHYHOV LQ VRLO IURP IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DQG Ff GHYHORS DSSURSULDWH FURS DQG IHUWLOL]HU PDQDJHPHQW SUDFWLFHV IRU VHTXHQWLDO FURSSLQJ SDWWHUQV 7KH SULQFLSOHV DQG PHWKRGRORJ\ GHYHORSHG IURP WKLV UHVHDUFK VWXG\ FDQ EH XVHG LQ ERWK GHYHORSLQJ DQG GHYHORSHG FRXQWULHV ZKHUH VPVFDOH IDUPHUV KDYH OLPLWHG UHVRXUFHV DQG ORZ HQHUJ\ WHFKQRORJLHV

PAGE 15

&+$37(5 /,7(5$785( 5(9,(: &RQFHSWV RI &URSSLQJ 6\VWHPV $ FURSSLQJ V\VWHP LV GHILQHG DV D FROOHFWLRQ RI GLVWLQFW IXQFWLRQDO XQLWV RU RI HOHPHQWV WKDW DUH LQWHUUHODWHG DQG LQWHUDFWLQJ f 7KHVH FRPSRQHQWV DUH FURSV VRLOV PDUNHWLQJ DFWLYLWLHV SURGXFWLRQ LQSXWV IDUPHUnV PDQDJHPHQW VNLOOV DQG RWKHU HQYLURQPHQWDO IDFWRUV 7KH IDUPHU VRPHWLPHV PDQLSXODWHV VRPH RI WKHVH IDFWRUV LQ RUGHU WR DFKLHYH KLV JRDOV &RPPRQ WHUPV XVHG LQ FURSSLQJ V\VWHPV LQFOXGH $ FURS V\VWHP FRPSULVHV FRPSRQHQWV UHTXLUHG IRU WKH SURGXFWLRQ RI D SDUWLFXODU FURS DQG WKH LQWHUUHODWLRQVKLSV ZLWK WKH HQYLURQPHQW 7KHVH FRPSRQHQWV LQFOXGH WKH QHFHVVDU\ SK\VLFDO ELRORJLFDO DQG WHFKQRn ORJLFDO IDFWRUV DV ZHOO DV ODERU f 0RQRFXOWXUH LQYROYHV WKH JURZLQJ RI RQO\ RQH FURS RQ WKH VDPH SORW RI ODQG LQ RQH \HDU } f 0XOWLFURSSLQJ LV WKH JURZLQJ RI PRUH WKDQ RQH FURS RQ WKH VDPH ODQG LQ RQH \HDU f 6HTXHQWLDO FURSSLQJ LV WKH JURZLQJ RI WZR RU PRUH FURSV LQ VHTXHQFH RQ WKH VDPH ILHOG SHU \HDU f ,QWHUFURSSLQJ LV WKH JURZLQJ RI PRUH WKDQ RQH FURS FP WKH VDPH ILHOG DW WKH VDPH WLPH f 5H OD" LQWHUFURSSLQJ LV WKH SODQWLQJ RI D VHFRQG FURS EHIRUH WKH ILUVW FURS LV KDUYHVWHG f $ FURSSLQJ SDWWHUQ LV D \HDUO\ VHTXHQFH DQG DUUDQJHPHQW RI FURSV RU IDOORZ RQ D JLYHQ ODQG DUHD fr 7KH LQWHUDFWLRQ RI FURSSLQJ SDWWHUQV ZLWK SK\VLFDO DQG VRFLRHFRQRPLF IDFWRUV UHVXOWV LQ FURSSLQJ V\VWHPV IRU D JLYHQ DUHD f

PAGE 16

&URSSLQJ 6\VWHPV 5HVHDUFK $SSURDFKHV DQG 0HWKRGRORJLHV $JULFXOWXUDO UHVHDUFK JHQHUDOO\ KDV EHHQ GHVLJQHG WR LQYHVWLJDWH FRPSRQHQW WHFKQRORJLHV EDVHG RQ REMHFWLYHV RI LQFUHDVLQJ \LHOGV SURGXFWn LRQ HIILFLHQFLHV DQG SURILWDELOLWLHV f 7KLV UHVHDUFK RIWHQ EHQHILWV ODUJH FRPPHUFLDO IDUPHUV 6PDOOVFDOH IDUPHUV KRZHYHU DUH VHOGRP EHQHILWHG EHFDXVH WKHLU REMHFWLYHV DUH LQIOXHQFHG QRW RQO\ E\ ULVN EXW DOVR E\ UHOLJLRQ FXOWXUH DQG WUDGLWLRQ f ,PSURYHG WHFKQRORJLHV IRU VPDOOVFDOH IDUPHUV RIWHQ IDLO DQG DUH VRPHWLPHV XQn DFFHSWDEOH EHFDXVH WKHVH WHFKQRORJLHV DUH QRW DSSURSULDWH WR WKHLU ? IDUPLQJ V\VWHPV )RU H[DPSOH LQ WKH FHQWUDO KLJKODQGV RI *XDWHPDOD +LOGHEUDQG 62f UHSRUWHG WKDW IDUPHUV GR QRW IHUWLOL]H WKHLU FRP =HD PD\V /f DOWKRXJK WKH\ UHFRJQL]H WKDW IHUWLOL]HUV LQFUHDVH \LHOGV 7KHVH IDUPHUV ZRXOG UDWKHU DSSO\ WKH IHUWLOL]HU WR WKHLU YHJHWDEOHV ZKHUH UHWXUQ WR FDVK RU WR IHUWLOL]HU LV JUHDWHU WKDQ IRU FRUQ ,Q QRUWKHUQ 1LJHULD ZKHUH PL[HG FURSSLQJ LV SUDFWLFHG %DNHU DQG 1RUPDQ f UHSRUWHG WKDW IDUPHUV DUH UHOXFWDQW WR DGRSW UHFRPPHQGDWLRQV IRU VLQJOH FURSV EHFDXVH WKHVH LPSURYHG WHFKQRORJLHV ZHUH QRW UHOHYDQW WR WKH ORFDO HQYLURQPHQW RU WKHLU PXOWLSOH FURSSLQJ V\VWHP 8SODQG ULFH 2U\]D VDWLYD /f IDUPHUV LQ WKH 3KLOLSSLQHV SUHIHU D WDOO FXOWLYDU RYHU WKH VKRUW DQG KLJK \LHOGLQJ FXOWLYDUV EHFDXVH ZHHG FRPSHWLWLRQ LV OHVV VHULRXV f $ ODFN RI DSSURSULDWH PHWKRGV IRU FRQGXFWLQJ PXOWLSOH FURSSLQJ UHVHDUFK KDV KDPSHUHG WKH GHYHORSPHQW RI PRUH HIIHFWLYH WHFKQRORJLHV IRU VPDOOVFDOH IDUPHUV f 'HYHORSPHQW RI UHOHYDQW IDUPHURULHQWHG PHWKRGRORJLHV WKDW XWLOL]H D PXOWLGLVFLSOLQDU\ IDUPRULHQWHG IDUPHU SDUWLFLSDWLRQ DQG UHVRXUFH XWLOL]DWLRQ DSSURDFK KDYH UHFHQWO\ EHHQ

PAGE 17

XWLOL]HG E\ DQ LQFUHDVLQJ QXPEHU RI UHVHDUFKHUV f $Q LQWHUGLVFLSOLQDU\ UHVHDUFK WHDP LV D SUHUHTXLVLWH LQ GHYHORSn LQJ FURSSLQJ V\VWHP SURJUDPV f %DVHG RQ DVVHVVn PHQW RI IDFWRUV WKDW OLPLW SURGXFWLRQ DQG IDUP LQFRPH WKH UHVHDUFKDEOH SDUWV RI SUREOHPV DUH LGHQWLILHG 5HVHDUFK ZRUNHUV IURP GLIIHUHQW GLVFLSOLQHV DQG IDUPHUV DJUHH RQ UHVHDUFKDEOH SUREOHPV IROORZHG E\ D FRPELQHG DQG MRLQW UHVHDUFK HIIRUW ,Q WKLV DSSURDFK HYHU\RQH LQ WKH WHDP ZRUNV DQG PDNHV GHFLVLRQV WRJHWKHU RQ D UHJXODU EDVLV 7KHVH IDUPLQJ UHVHDUFK WHDPV DUH RIWHQ FRPSRVHG RI DQ DJURQRPLVW HFRQRPLVW DQG DQWKURSRORJLVW RU VRFLRORJLVW f 7KH HQWLUH UHDP RIWHQ FRQGXFWV D VXUYH\ WR XQGHUVWDQG DQG LQWHUSUHW WKH VPDOO IDUPHUVn DJURVRFLFHFRQRPLF FRQGLWLRQV (DFK PHPEHU RI WKH WHDP LQWHUYLHZV WKH IDUPHU WR UHGXFH LQWHUYLHZHU ELDV DQG LQFUHDVH FURVVGLVFLSOLQDU\ H[FKDQJH 7KH JURXS PHHWV HDFK QLJKW WR GLVFXVV WKH GD\nV LQWHUYLHZ 7KH IDUPHU SDUWLFLSDWLRQ DSSURDFK LQ WHVWLQJ DSSURSULDWH WHFKn QRORJLHV LQ RQIDUP UHVHDUFK LV HVVHQWLDO LQ FURSSLQJ V\VWHPV VWXGLHV f 2QIDUP WULDOV FDQ UHGXFH SHUFHLYHG ULVN E\ DOORZLQJ IDUPHUV WR REVHUYH WKH WHFKQRORJ\ XQGHU WKH ULJRUV RI WKHLU SURGXFWLRQ HQYLURQPHQW )DUPHUV FDQ H[SUHVV WKHLU RSLQLRQV DQG FULWLn FLVPV GXULQJ WKHn HDUO\ VWDJH RI UHVHDUFK SURFHVV VR WKDW WHFKQRORJ\ LV FXOWXUDOO\ HFRQRPLFDOO\ DQG ELRORJLFDOO\ YLDEOH 7KH FRPPXQLFDn WLRQ EHWZHHQ WKH IDUPHUSDUWLFLSDQW DQG UHVHDUFKHU SHUPLWV VPDOOVFDOH IDUPHUV WR EHFRPH SDUW RI WKH UHVHDUFK SURFHVV DULG LQVXUHV WKDW WKH WHFKQRORJ\ LV DSSURSULDWH f 0RVW VWXGLHV XVLQJ WKH IDUPHU SDUWLFLSDWLRQ DSSURDFK DUH DVVRn FLDWHG ZLWK VPDOO IDUP GHYHORSPHQW SURMHFWV ZKRVH REMHFWLYHV DUH WR

PAGE 18

GHYHORS DGRSW DQG WUDQVIHU LPSURYHG WHFKQRORJLHV WR VPDOO IDUPV LQ GHYHORSLQJ FRXQWULHV f )RU H[DPSOH WKH &DTXH]D SURMHFW QHDU %RJRWD &RORPELD SURYLGHG IDUPHUV ZLWK LQFHQWLYH IRU DGDSWn LQJ D FRPSOHWH SDFNDJH RI DJULFXOWXUDO SUDFWLFHV XQGHU D ULVNUHGXFLQJ FUHGLW VFKHPH f %UDPDWLF LQFUHDVHV LQ ERWK \LHOG >b IRU FRUQ DQG b IRU SRWDWR 6RODQXP WXEHURVXP /f@ UHVXOWHG IURP LQFRUSRUDWLRQ RI LPSURYHG SURGXFWLRQ WHFKQRORJLHV FRQVLVWLQJ RI QHZ FXOWLYDUV RSWLn PXP SRSXODWLRQ GHQVLW\ DGGLWLRQDO IHUWLOL]HU DQG LQVHFW FRQWURO ,f $ PHWKRGRORJ\ IRU WKH GHVLJQ DQG WUDQVIHU RI DJURQRPLF WHFKQRn ORJ\ WR LQFUHDVH EHDQ SURGXFWLRQ ZDV VWXGLHG RQ VPDOO IDUPV LQ D FRIIHH &RIIHD VS /fJURZLQJ DUHD RI &RORPELD f 7KH REMHFWLYH ZDV WR GHYHORS D ORZFRVW ORZULVN WHFKQRORJ\ 8QOLNH PRVW DJURQRPLF VWXGLHV WKDW HPSKDVL]H \LHOG PD[LPL]DWLRQ WKH JRDO RI WKLV VWXG\ ZDV WR LQFUHDVH HFRQRPLF UHWXUQV ZLWK PLQLPXP ULVN 7KH WKUHH FRPSRQHQWV RI WKH VWXG\ ZHUH WR REVHUYH WUDGLWLRQDO EHDQ SURGXFWLRQ V\VWHPV GHVLJQ D WHFKQRn ORJLFDO SDFNDJH DQG HYDOXDWH WKH HFRQRPLFV RI WKLV SDFNDJH DW WKH IDUP OHYHO )DUPHU SDUWLFLSDWLRQ ZDV DQ LQWHJUDO SDUW RI WKH PHWKRGRn ORJ\ 7KH ORZFRVW WHFKQRORJ\ FRQVLVWLQJ RI FRPELQHG XVH RI LPSURYHG FXOWLYDUV DW RSWLPXP SRSXODWLRQ GHQVLWLHV DQG ORZ OHYHOV RI DJURFKHPLn FDOV UHVXOWHG LQ D b LQFUHDVH LQ EHDQ SURGXFWLRQ DQG D Ab QHW LQFRPH f ,Q $VLD SURMHFWV GHVLJQHG WR LQWURGXFH DQG YDOLGDWH WHFKQRORn JLFDO LQQRYDWLRQV IRU VPDOO IDUPV ZHUH GHYHORSHG f )RU H[DPSOH UHVHDUFKHUV LQ ,QGLD WHVWHG ULFH WHFKQRORJLFDO SDFNDJHV LQ WR VFUHHQ FXOWLYDUV LQ IDUPHUVn ILHOG f $W WKH VDPH WLPH HFRQRPLF GDWD ZHUH REWDLQHG RQ WKH IDUPHUVn WUDGLWLRQDO SURGXFWLRQ V\VWHP ZKLFK DOORZHG UHVHDUFKHUV WR GHVLJQ FRPSOHPHQWDU\ LQSXWV ZLWKLQ WKH VFRSH RI

PAGE 19

WKH VPDOO IDUPHUVn ODQG ODERU DQG FDSLWDO UHVRXUFHV ,Q WKH 3KLOLSn SLQHV D A DGRSWLRQ UDWH IRU KLJK\LHOGLQJ ULFH FXOWLYDUV ZDV REVHUYHG ZLWKLQ D \HDU SHULRG f} 5LFH PLFURNLWV ZHUH WULHG LQ RWKHU $VLDQ FRXQWULHV WR PD[LPL]H WKH GLVSHUVDO RI WHFKQRORJ\ WR VPDOO IDUPHUV f 7KHVH PLFURNLWV FRQWDLQHG ILYH FXOWLYDUV RI ULFH WR EH SODQWHG LQ WKH IDUPHUnV ILHOG DORQJVLGH WKH ORFDO YDULHW\ 7ZR OHYHOV RI IHUWLn OL]HU DQG WZR OHYHOV RI LQVHFWLFLGH DOVR ZHUH LQFOXGHG 6HHG \LHOG RI WKH EHVW YDULHW\ ZDV VXIILFLHQW WR SODQW RQH IRXUWK KHFWDUH WKH IROORZn LQJ VHDVRQ 7KURXJK WKLV DSSURDFK IDUPHUV PXOWLSOLHG WKH VHHGV RI WKH EHVW FXOWLYDUV WKHUHE\ HOLPLQDWLQJ WKH QHFHVVLW\ RI SXUFKDVLQJ JRYHUQn PHQW VXSSOLHG VHHG f $ VLPLODU SURMHFW ZDV LQLWLDWHG LQ 1LJHULD E\ WKH ,QWHUQDWLRQDO ,QVWLWXWH RI 7URSLFDO $JULFXOWXUH ZLWK ERWK ULFH DQG FRUQ ,f 7KH SDFNDJH LQFOXGHG IRXU LPSURYHG FXOWLYDUV DQG RQH ORFDO FXOWLYDU WZR IHUWLOL]HU OHYHOV DQG D UHFRUG ERRN 2QH IDUPHU LQ HDFK YLOODJH ZDV VHOHFWHG E\ ORFDO H[WHQVLRQ DJHQWV DQG YLOODJH OHDGHUV WR WHVW DQG PDQDJH WKH H[SHULPHQW 5HVXOWV LQGLFDWHG WKDW VPDOO IDUPHU DGRSWLRQ UDWHV ZHUH HQKDQFHG E\ WKHVH RQIDUP GHPRQVWUDWLRQV RI SURGXFWLYLW\ DQG SURILWDELOLW\ ,f ,Q (O 6DOYDGRU WKH EDVLF PXOWLSOH FURSSLQJ V\VWHP GHYHORSHG IRU FRPSOH[ UHOD\ DQG LQWHUFURSSLQJ RI FRUQ SROH EHDQ FDEEDJH %UDVVLFD ROHU£FHD / *DSLWDWD *URXSf FXFXPEHU EXVK EHDQ DQG UDGLVK 5DSKDQXV VDWLYXV /f SURGXFHG D QHW LQFRPH RI P n f 7KH UHVRXUFH XWLOLVDWLRQ DSSURDFK LV DQRWKHU PHWKRG ZKLFK LV DSSOLFDEOH IRU WKH VWXG\ RI FURSSLQJ V\VWHPV f ,Q WKLV DSSURDFK WKH IDUPHU VHHNV WR LQWHJUDWH IDUP UHVRXUFHV LQWR IDUP HQWHUSULVHV E\ XVLQJ DYDLODEOH WHFKQRORJLHV DQG PDQDJHPHQW VNLOOV $Q H[DPSOH LV

PAGE 20

LQWHUFURSSLQJ SUDFWLFHV LQ 6RXWKHDVW $VLD DQG LQ $IULFD 6KRUWVHDVRQ FURSV VXFK DV FRUQ RU VRUJKXP 6RUJKXP ELFRORU /f DUH IUHTXHQWO\ LQWHUn FURSSHG ZLWK XSODQG ULFH DQG FDVVDYD 0DQLKRW HVFXOHQWD /f RU SLJHRQ SHD &DMDQXV FDMDQ 0LOOVSf FUHDWLQJ D WR PRQWK FURSSLQJ VHDVRQ ZLWK VHYHUDO KDUYHVWV DQG D VLQJOH PDMRU WLOODJH RSHUDWLRQ 7KLV V\VWHP HQDEOHV HIILFLHQW XWLOL]DWLRQ RI ODQG VRODU UDGLDWLRQ ZDWHU DQG ODERU UHVRXUFHV f 0RVW IDUPHUV XVH D FRPELQDWLRQ RI HQWHUSULVHV ZLWK GLIIHUHQW UHVRXUFH UHTXLUHPHQWV 6RPH HQWHUSULVHV PD\ EH RI ORZHU SURGXFWLYLW\ EXW KLJKHU LQ VWDELOLW\ 2WKHUV PD\ EH ODERU RU FDVKLQWHQVLYH DQG KLJKO\ SURGXFWLYH EXW XQVWDEOH IURP WKH ELRORJLFDO PDQDJHPHQW RU HFRQRPLF VWDQGSRLQW 7KH QHW HIIHFW LV WR EDODQFH WKH IDUPHUnV UHVRXUFHV LQ PHHWLQJ KLV QHHGV IRU SURGXFWLYLW\ DQG VWDELOLW\ f 0DQDJHPHQW RI 9HJHWDEOHV LQ &URSSLQJ 6\VWHPV 9HJHWDEOHV DUH RIWHQ JURZQ DV FRPSRQHQW FURSV LQ D ZLGH DUUD\ RI FURSSLQJ SDWWHUQV fr 7KXV PDQDJHPHQW RI YHJHWDEOH FURSV LV GHSHQGHQW RQ WKH W\SH RI FURSSLQJ SDWWHUQV $VLDQ IDUPHUV SODQW ILHOG DQG YHJHWDEOH FURSV IROORZLQJ ULFH RU RWKHU VWDSOH FURSV f 7KH YHJHWDEOH FURSV SODQWHG GHSHQG RQ WKH DYDLODELOLW\ RI UHVRXUFHV VXFK DV LUULJDWLRQ ODERU FDVK LQSXWV DQG PDUNHW +LJK PDQDJHPHQW YHJHWDEOH FURSV VXFK DV FDEEDJH SROH EHDQ FDXOLIORZHU %UDVVLFD ROHU£FHD / %RWU\WLV *URXSf DQG WRPDWR /\FRSHUVLFRQ HVFX OHQWXP 0LOOf DUH JURZQ DIWHU ULFH ZKHUH WKHUH LV VXIILFLHQW LUULJDWLRQ DQG PDUNHW LQFHQWLYH f )DUPHUV XVH VWDNHV KLJIU OHYHOV RI IHUWLn OL]HUV DQG SHVWLFLGHV RQ FURSV OLNH WRPDWR DQG SROH OLPD EHDQ 3KDVHROXV OXQDWXV /f ZKHUH FURS PDUNHW YDOXH LV KLJK &RQYHUVHO\ ORZ

PAGE 21

PDQDJHPHQW FURSV VXFK DV PXQJWHDQ 9LJQD UDGLDUD / :LOF]HNf DQG FRZSHD 9LJQD XQJXLFXODWD / :DOSf DUH RIWHQ SODQWHG DIWHU ULFH E\ IDUPHUV LQ UDLQIHG DUHDV ZKHUH PDUNHW LV OLPLWHG DQG D PDMRU SRUWLRQ RI WKH SURGXFH LV FRQVXPHG E\ WKH IDUP IDPLO\ "f $OWKRXJK WKHVH FURSV UHTXLUH ORZ PDQDJHPHQW OHYHOV VWXGLHV LQGLFDWH WKDW WKH\ UHVSRQG WR LPSURYHG OHYHOV RI FXOWXUDO PDQDJHPHQW )RU H[DPSOH +HUUHUD HW DO "f UHSRUWHG WKDW DGHTXDWH FRQWURO RI LQVHFW SHVWV IURP YHJHWDWLYH WR IORZHULQJ VWDJHV VLJQLILFDQWO\ LQFUHDVHG \LHOG RI PXQJEHDQV ,Q 7DLZDQ YHJHWDEOH FURSV DUH SODQWHG VHTXHQWLDOO\ DIWHU LUULn JDWHG ULFH ILHOG FURSV f 7KH ULFHULFHYHJHWDEOHV FURSSLQJ SDWWHUQ LV PRVW FRPPRQ ZKHUH YDULHW\ RI PHGLXP WR KLJK PDQDJHPHQW YHJHWDEOHV FDQ EH JURZQ GXULQJ WKH SHULRG EHWZHHQ WKH SURGXFWLRQ RI WZR ULFH FURSV 7KHUH LV VXIILFLHQW WLPH IRU JURZLQJ VKRUWVHDVRQ YHJHWDEOH FURSV VXFK DV EXQFKLQJ RQLRQ $OOLXP ILVFXORVXP /f FDEEDJH PXVWDUG OHWWXFH /DFWXFD VDWLYD ,f UDGLVK DQG EHDQ ,Q FHUWDLQ SDUWV RI 0DOD\VLD nZKHUH WKHUH DUH HIILFLHQW LUULJDWLRQ DQG GUDLQDJH V\VWHPV KLJK PDQDJHPHQW YHJHWDEOH FURSV VXFK DV KRW SHSSHUV &DSVLFXP IUXWHVFHQV /f WRPDWR \DUG ORQJ EHDQ >9LJQD VLQHQVLV 6WLFNPf 6DYL H[ +DVVN 6HVTXLSHGDOLV *URXS@ DQG FXFXPEHU DUH SODQWHG DIWHU ULFH ,f 6RPH GRXEOH FURSSLQJ YHJHWDEOHV ZLWK ILHOG FURSV DUH DOVR SRVVLEOH XQGHU LUULJDWLRQ GXULQJ WKH ZDUP VHDVRQ LQ 1RUWK )ORULGD } ff )RU H[DPSOH VRXWKHUQ SHD SLJHRQ SHD ZD[ DQG EODFN EHDQV 3KDVHROXV VSS /f ZHUH VXFFHVVIXOO\ JURZQ DV VHFRQG FURSV DIWHU HDUO\ RU PLGn VHDVRQ FRUQ fr 8QGHU GRXEOH FURSSLQJ WKHVH FURSV UHTXLUHG KLJK SODQW SRSXODWLRQV DQG QDUURZ URZ ZLGWKV FRPSDUHG WR ORZHU SRSXODWLRQV DQG ZLGHU VSDFLQJV ZKHQ JURZQ DV VLQJOH FURSV :LWK D VKRUWPDWXULQJ VPDOO JUDLQ FURS OLNH EDUOH\ +RUGHXP YXOJDUH /f LW ZDV SRVVLEOH WR

PAGE 22

JURZ WKUHH FURSV LQ VHTXHQFH ZLWK YHJHWDEOHV VXFK DV VZHHW FRUQ (QJOLVK SHD VRXWKHUQ SHD DQG VQDS EHDQ f 7KHVH FURSV DUH SODQWHG XVLQJ ]HUR WLOODJH DQG QR IHUWLOL]HU H[FHSW IRU WKH VZHHW FRUQ 7KH YHJHWDEOH OHJXPHV XWLOL]H WKH UHVLGXDO IHUWLOL]HU IURP WKH SUHFHGLQJ FUFS WR PDNH PRUH HIILFLHQW XVH RI VRLO QXWULHQWV 'RXEOH FURSSLQJ RI YHJHWDEOHV ZDV IHDVLEOH LQ 6RXWK )ORULGD f %XWWHUQXW VTXDVK SURGXFHG KLJK \LHOGV ZLWKRXW DGGLWLRQDO IHUWLOL]HU ZKHQ SODQWHG DIWHU WRPDWR JURZQ XQGHU IXOOEHG SODVWLF PXOFK f ,Q WKLV VWXG\ FRPSOHWH RU SDUWLDO LQFRUSRUDWLRQ RI IHUWLOL]HU LQ EHGV XQGHU PXOFK UHVXOWHG LQ KLJKHU \LHOGV RI WRPDWR DQG VHFRQG FURS EXWWHUQXW VTXDVK WKDQ EDQGLQJ DOO WKH IHUWLOL]HU RQ WRS RI WKH EHG (YHUHWW f UHSRUWHG WKDW \LHOGV RI WRPDWR RU FXFXPEHU SODQWHG DV VHFRQG FURS RQ SODVWLF PXOFKHG EHGV SUHYLRXVO\ SODQWHG WR IDOO WRPDWR GLG QRW VLJQLILFDQWO\ LQFUHDVH DW IHUWLOL]HU UDWHV KLJKHU WKDQ NJKD 1 DQG NJKD ; UHJDUGOHVV RI SODFHPHQW PHWKRGV 7KXV PXOWLSOH FURSSLQJ RQ PXOFKHG EHGV FDQ UHGXFH HQHUJ\ XVH DQG SURGXFWLRQ FRVWV E\ SHUPLWWLQJ HIILFLHQW XVH RI ERWK SK\VLFDO DQG DSSOLHG UHVRXUFHV f 6PDOOVFDOH IDUPHUV LQ WKH WURSLFV KDYH GHYHORSHG D YDULHW\ RI LQWHUFURSSLQJ V\VWHPV LQYROYLQJ YHJHWDEOH FURSV ,ff )FU H[DPSOH VKRUWPDWXULQJ FURSV VXFK DV PXQJEHDQ FRZSHD DQG VR\EHDQ *O\FLQH PD[ /f FDQ EH LQWHUFURSSHG ZLWK WDOO VKRUWPDWXULQJ FURSV VXFK DV FRP f 3DQHU "f UHSRUWHG WKDW YHJHWDEOH FURSV FDQ DOVR EH LQWHUFURSSHG ZLWK WDOO ORQJPDWXULQJ FURSV VXFK DV PXQJEHDQ LQ VXJDUFDQH &DFFKDUXP RIILFLQDUXP /f $OVR WDOO SHUPDQHQW RU SHUHQQLDO FURSV VXFK DV FRFRQXW &RFXV QXFIHUD /f UXEEHU +HYHD EUDVLOLHQVHV /f EDQDQD 0XVD VDQLHQWXP / 6FKDIWf FDQ EH LQWHUFURSSHG ZLWK JLQJHU

PAGE 23

=LQJHEHU RIILFLQDOH 5RVFRHf GDVKHHQ *RORFDVLD HVFDOHQWD /f DUURZ URRW 0DUDQWD DUXUGLQDFHD /f PXQJEHDQ DQG RWKHU FURSV SURGXFLQJ HFRn QRPLF \LHOG IRU VPDOOVFDOH IDUPHUV ,Q 7DLZDQ VPDOOVFDOH IDUPHUV DOVR SODQW VKRUWGXUDWLRQ YHJHWDEOH FURSV XQGHU JUDSH 9LWLV VQSf YLQHV GXULQJ WKH GRUPDQW SHULRG RU EHWZHHQ \RXQJ IUXLW WUHHV VXFK DV PDQJR 0DQJLIHUD LQGLFD /f ,f 7KLV SUDFWLFH SURYLGHG LQFHQWLYHV IRU DGGLWLRQDO LQFRPH ,QWHQVLYH YHJHWDEOH JURZHUV LQ 7DLZDQ DOVR LQWHUSODQW PXVWDUG VSLQDFK %UDVVLFD FDPSHVWULV / 3HUYLULGLV *URXSf DQG EXQFKLQJ RQLRQ )ROORZLQJ WKH KDUYHVW RI PXVWDUG VSLQDFK FDXOLIORZHU LV WUDQVSODQWHG EHWZHHQ DOWHUQDWH URZV RI RQLRQ ,f ,Q VRXWKFHQWUDO 7DLZDQ IDUPHUV LQWHUSODQW FDXOLIORZHU DQG SROH OLPD EHDQ RU RWKHU FURSV LQ URWDWLRQ ZLWK SDGG\ ULFH ff 0DQDJHPHQW RI LQWHUFURSSLQJ V\VWHPV LV VRPHWLPHV PRUH FRPSOH[ WKDQ VHTXHQWLDO FURSSLQJ DQG PD\ GHSHQG RQ VHYHUDO IDFWRUV VXFK DV VHDVRQ FURS IDUP UHVRXUFHV PDUNHW DQG IDUPHU VNLOOV )RU H[DPSOH LQ 7DLZDQ IDUPHUV LQWHUFURSSHG OLPD EHDQ DQG FDXOLIORZHU XVLQJ WKUHH PHWKRGV f )DUPHUV ZLWK DEXQGDQW ODERU DQG VPDOO ODQGKROGLQJV SODQWHG KLJK SRSXODWLRQV RI FDXOLIORZHU SODQWVKDf ZLWK ORZ VHHGn LQJ UDWHV IRU OLPD EHDQ NJKDf WR REWDLQ KLJK IDUP LQFRPH )DUPHUV ZKR SODQWHG ODWH LQ WKH VHDVRQ XVHG ORZ SRSXODWLRQV RI FDXOLn IORZHU SODQWVKDf ZLWK KLJK VHHGLQJ UDWHV IRU OLPD EHDQ NJKDf EHFDXVH WKH\ SUHGLFW WKDW WKH SULFH RI FDXOLIORZHU ZLOO GURS GXULQJ WKH SHDN KDUYHVW SHULRG RI YHJHWDEOHV ZKLOH WKH SULFH RI OLPD EHDQ ZLOO ULVH LQ UHVSRQVH WR UHGXFHG VXSSO\ )DUPHUV ZKR SODQWHG HDUO\ LQ WKH VHDVRQ XVHG VHHGOLQJVKD IRU FDXOLIORZHU DQG NJKD RI OLPD EHDQ VHHG EHFDXVH WKH\ SUHGLFW WKDW WKH SULFH

PAGE 24

RI HDUO\ SODQWHG FDXOLIORZHU ZLOO EH YHU\ KLJK 5HOD\ LQWHUFURSSLQJ ZKLFK LV DQRWKHU PHWKRG RI FURS LQWHQVLILn FDWLRQ FDQ VDYH WLPH LQ WKH FURSSLQJ VHTXHQFH SHUPLW WKH ILUVW FURS WR SURWHFW WKH VHFRQG FURS GXULQJ WKH HDUO\ VWDJHV RI JURZWK E\ DFWLQJ DV D QXUVH FURS DQG GLVWULEXWH ODERU SHDNV WKURXJKRXW WKH FURSSLQJ \HDU "f ,Q UHOD\ LQWHUSODQWLQJ WKH SULPDU\ OLPLWLQJ IDFWRU VHHPV WR EH FRPSHWLWLRQ IRU OLJKW ZKHUHDV PRLVWXUH DQG QXWULHQWV D[H OHVV FULWLFDO f )RU H[DPSOH H[SHULPHQWV DW ,55, GHPRQVWUDWHG WKDW PXQJEHDQ DQG UDGLVK ZHUH OHDVW WROHUDQW WR VKDGLQJ EHFDXVH WKHVH FURSV FDQ VWDQG RQO\ WZR WR WKUHH GD\V RI GHQVH VKDGH ZKHUHDV VZHHW SRWDWR LSRPRHD EDWDWDV /f FDQ VWDQG IRXU WR ILYH ZHHNV RI GHQVH VKDGH ZLWK OLWWOH \LHOG UHGXFWLRQ ZKHQ UHOD\ LQWHUFURSSHG ZLWK ULFH f 6HYHUDO YHJHWDEOH FURSV UHOD\ LQWHUSODQWHG LQWR DQQXDO ILHOG FURSV RU YHJHWDEOH FURSV EHQHILWHG VPDOOVFDOH IDUPHUV } f )RU LQVWDQFH UHOD\ LQWHUSODQWLQJ WRPDWR FDEEDJH EXVK VQDS EHDQ DQG VZHHW SRWDWR DV HDUO\ DV GD\V EHIRUH KD[YHVW RI VZHHW FRUQ GLG QRW UHGXFH \LHOG f 5HOD\ LQWHUFURSSLQJ YHJHWDEOHV LQWR ULFH LQFUHDVHG WRWDO SURGXFWLRQ \HW PDLQWDLQHG FULWLFDO SODQWLQJ GDWHV IRU WKH PDLQ ULFH FURS ZLWKLQ WKH FURSSLQJ SDWWHUQ )RU LQVWDQFH VPDOOVFDOH IDUPHUV LQ FHQWUDO 7DLZDQ UHOD\ LQWHUSODQW VKRUW GXUDWLRQ YHJHWDEOH FURSV GXULQJ D WR GD\ SHULRG EHWZHHQ WZR ULFH FURSV f 9HJHWDEOH FURSV WKDW UHTXLUH WR DGGLWLRQDO GD\V WR PDWXUH FDQ EH SODQWHG DQG KDUYHVWHG EHIRUH WKH FULWLFDO ULFH SODQWLQJ GDWHV 6XPPHU PHORQ &XFXPLV PHO /f SLFNOLQJ PHORQ &XFXPLV PHO / 9DU *RQRPRQf RU ZDWHUPHORQ >&LWUXOOXV ODQDWXV 7KXPEf 0DQVI@ DUH SODQWHG RQ VPDOO PRXQGV RI VRLO WZR ZHHNV EHIRUH ULFH KDUYHVW GXULQJ WKH VXPPHU VHDVRQ

PAGE 25

'XULQJ ZLQWHU D VLQJOH FURS VXFK DV VZHHW SRWDWR RU HGLEOHSRGGHG SHD 3LVXP VDWLYXP / 0DFURFDUSRQ *URXSf DQG PDQ\ JUHHQ OHDI\ YHJHWDEOHV FDQ EH UHOD\ LQWHUSODQWHG EHIRUH ULFH KDUYHVW WR LQFUHDVH WRWDO SURGXFWLRQ ZLWKLQ WKH GD\ SHULRG ff ,Q 1RUWK )ORULGD UHOD\ LQWHUSODQWLQJ RI VZHHW SRWDWR DQG SLJHRQ SHD LQ FRUQ GLG QRW UHGXFH FRUQ JUDLQ \LHOG f +LJKHU \LHOGV RI VZHHW SRWDWR DQG SLJHRQ SHD ZHUH REWDLQHG ZLWK HDUO\ PDWXULQJ FRUQ DW ORZ SRSXODWLRQV WKDQ DW KLJK SRSXODWLRQV 5HOD\ LQWHUFURSSLQJ YHJHWDEOH FURSV KDV VRPH OLPLWDWLRQV EHFDXVH RI PDQDJHPHQW FRQVWUDLQWV )RU LQVWDQFH WKH 7DLZDQ PHWKRG RI SODQWLQJ VZHHW SRWDWR LQWR SXGGOHG ULFH LPSRVHG GLIILFXOW\ LQ VHHGEHG SUHSDUDWLRQ SDUWLFXODUO\ LQ ILQH WH[WXUHG VRLOV f 7KLV PHWKRG LV DOVR H[SHQVLYH VLQFH FRQVWUXFWLRQ RI ULGJHV WDNHV WR KRXUVKD 0DQDJHPHQW RI WKHVH ULGJHV LV H[WUHPHO\ GLIILFXOW LQ WHUPV RI ZHHG FRQWURO f 6RLO DQG )HUWLOLVHU 0DQDJHPHQW LQ 9HJHWDEOH &URSSLQJ 6\VWHPV 6RLO DQG IHUWLOL]HU PDQDJHPHQW VWXGLHV LQ YHJHWDEOH PXOWLSOH FURSSLQJ V\VWHPV DUH OLPLWHG $V IHUWLOL]HU FRVWV LQFUHDVH HYHU\ \HDU EHFDXVH RI KLJK HQHUJ\ FRVW IRU WKHLU SURGXFWLRQ PDQ\ UHVHDUFKHUV DUH ILQGLQJ PHWKRGV WR UHGXFH IHUWLOL]HU XVH RU WR LQFUHDVH HIILFLHQF\ f 2HVOLJOH HW DO f VWDWHG WKDW KLJK DQDO\VLV IHUWLn OL]HUV LI DYDLODEOH DW DQ\ SULFH IUHTXHQWO\ FRQVWLWXWH D GLUHFW LQSXW FRVW WKDW LV EH\RQG WKH PHDQV RI WKH PDUJLQDO IDUPHU +LJK IHUWLOL]HU SULFHV LQ GHYHORSLQJ FRXQWULHV LPSO\ WKDW WKLV LQSXW EH XVHG HIILFLHQWO\ 7KXV FRQVLGHUDWLRQ RI WKH HFRQRPLFV RI PDQDJHPHQW SUDFWLFHV VLPXOn WDQHRXVO\ ZLWK WKHLU ELRORJLFDO SRWHQWLDO LV ,PSRUWDQW ZKHQ GHYHORSLQJ

PAGE 26

IHUWLOL]HU SUDFWLFHV IRU PXOWLSOH FURSSLQJ SDWWHUQV f 7KLV LV HVSHFLDOO\ WUXH IRU YHJHWDEOH FURSV EHFDXVH RI WKHLU KLJK FURS YDOXH LQWHQVLYH FXOWLYDWLRQ DQG UHVSRQVLYHQHVV WR IHUWLOL]DWLRQ f 6RLO DQG IHUWLOL]HU PDQDJHPHQW VWXGLHV LQ PXOWLSOH FURSSLQJ XVXDOO\ GHDO ZLWK \LHOG UHVSRQVHV WR UHVLGXDO IHUWLOL]HUV f RU WR DSSOLHG IHUWLOLVHUV LQ FRQWLQXRXV FURSSLQJ } ff $VVRFLDWHG ZLWK WKHVH VWXGLHV DUH HIIHFWV RI SUHYLRXV FURSV RQ \LHOGV RI VXFFHHGLQJ FURSV f 7KHVH VWXGLHV SURYLGH VRPH EDVHV IRU IHUWLOL]HU UHFRPPHQGDWLRQV LQ VHTXHQWLDO FURSSLQJ V\Vn WHPV ,Q VHTXHQWLDO FURSSLQJ SDWWHUQV WKH EDVLF SUHFHSW LV WKDW WKH IDUPHU PDQDJHV RQO\ RQH FURS DW D WLPH )URP WKH VRLO PDQDJHPHQW SRLQ[ RI YLHZ LPSURYHG SUDFWLFHV IRU VLQJOH FURS VWDQGV DUH QRW HQWLUHO\ DSSOLFDEOH WR VHTXHQWLDO FURSSLQJ V\VWHPV EHFDXVH RI WKH LQIOXHQFH RI SUHYLRXV FURSV RQ VRLO SK\VLFDO SURSHUWLHV ZDWHU DQG QXWULHQW DYDLODn ELOLW\ WR VXFFHHGLQJ FURSV f 6RLO DQG IHUWLOL]HU PDQDJHPHQW SUDFWLFHV VKRXOG EH JHDUHG WR WKH FURS VHTXHQFH RU URWDWLRQ UDWKHU WKDQ WR LQGLYLGXDO FURSV 6DQFKH] f VWDWHG WKDW WKH UHVLGXDO HIIHFWV RI 1 IHUWLOL]DWLRQ DUH LQIOXHQFHG E\ PDQ\ YDULDEOHV VXFK DV WKH UDWH RI DSSOLFDWLRQ UHFRn YHU\ RI DGGHG IHUWLOL]HU E\ SUHYLRXV FURS OHDFKLQJ LPPRELOL]DWLRQ GHQLWULILFDWLRQ DQG UDLQIDOO SDWWHUQ 7KXV UHVLGXDO HIIHFWV VKRXOG EH FRQVLGHUHG LQ IHUWLOL]LQJ VXFFHHGLQJ FURSV )RU H[DPSOH LQ ,QGLD VR\EHDQ \LHOGV LQFUHDVHG IURP WR WRQVKD ZKHQ ,DSSOLFDWLRQ WR WKH SUHFHGLQJ ULFH FURS ZDV LQFUHDVHG IURP WR NJKD f 7KH UHVLGXDO 1 IHU[LOL]HU KRZHYHU GHFUHDVHG QRGXODWLRQ LQ VR\EHDQ

PAGE 27

-RQHV f UHSRUWHG WKDW ZKHQ FRUQ IROORZHG FRWWRQ *RVV\SLXP KLUVXWXP /f WKH UHVSRQVH WR 1 ZDV PD[LPXP DW NJKD ZKHUHDV FRP IROORZLQJ VRUJKXP SHDQXW $UDFKLV K\QRJDHD /f DQG FRZSHD UHTXLUHG NJKD WR DFKLHYH PD[LPXP \LHOG ([SHULPHQWV LQ 6XGDQ *H]LUD f KDYH VKRZQ WKDW VRUJKXP DQG ZKHDW 7ULWLHXP DHVWLYXP /f ZHUH UHVSRQVLYH WR IHUWLOL]HU 1 DQG ZHUH DIIHFWHG E\ UHVLGXDO 1 ZKHUHDV K\DFLQWK EHDQ 'ROLFKRV ODEODE /f GLG QRW UHVSRQG WR UHVLGXDO 1 EXW \LHOG FRQVLVWHQWO\ LQFUHDVHG E\ LQFUHDVn LQJ UHVLGXDO ) 5HVLGXDO 0 IURP SUHYLRXV FURSV KDG D JUHDWHU LQIOXHQFH RQ WRPDWR \LHOG WKDQ IHUWLOL]HU DSSOLHG VSHFLILFDOO\ WR WKH WRPDWR FURS ff )RU H[DPSOH 2VWHUOL DQG 0H\HU IRXQG WKDW WRPDWR \LHOGV UHVSRQGHG IDYRUDEO\ WR NJQD 1 DSSOLHG WR WKH SUHYLRXV VXJDU EHHW %HWD YXOJDULV /f :KHQ DGGLWLRQDO 1 ZDV DSSOLHG GLUHFWO\ WR WRPDWR WKHUH ZDV QR VLJQLILFDQW LQFUHDVH LQ IUXLW VL]H DQG TXDOLW\ +D\DPL "f VWDWHG WKDW RSWLPXP HOHPHQWDO FRQFHQWUDWLRQV IRU PRVW YHJHWDEOH FURSV DUH DERXW WF & WLPHV WURVH UHTXLUHG IRU ULFH 8QGHU ORZODQG SXGGOHG VRLO FRQGLWLRQV LQ WURSLFDO $VLD +D\DPL f IRXQG WKDW IUXLWLQJ YHJHWDEOHV VXFK DV WRPDWR DQG FXFXPEHUV DFFXPXODWHG QLWUDWH 1 SUHIHUHQWLDOO\ IURP WKH LQLWLDO JURZWK VWDJH 6LQFH WKLV IRUP RI 1 ZRXOG EH IRXQG RQO\ EHIRUH WKH VRLO LV SXGGOHG JURZHUV FDQ EHQHILW LI WKH\ SODQW WRPDWR DQG FXFXPEHU EHIRUH ULFH +RZHYHU ZLWK SURSHU VRLO IHUWLOL]HU DQG ZDWHU PDQDJHPHQW JURZHUV PD\ DOVR EHQHILW E\ JURZLQJ WKHVH YHJHWDEOHV DIWHU ULFH /HDI\ DQG KHDGLQJ FDEEDJHV DEVRUE DPPRQLXP 1 DQG UHTXLUHG DQ LQFUHDVLQJ DPRXQW WKURXJKRXW WKH JURZLQJ SHULRG 7KHVH FURSV DUH VXLWHG IRU SURGXFWLRQ LQ SRVW ULFH VRLOV f

PAGE 28

,Q )ORULGD KLJK PDQDJHPHQW YHJHWDEOH FURSV VXFK DV WRPDWR DQG SHSSHU &DSVLFXP DQQXXP /f DUH GRXEOH FURSSHG ZLWK HLWKHU ORZ RU KLJK PDQDJHPHQW YHJHWDEOHV DQG ILHOG FURSV r" } ff 7KH REMHFWLYH LV WR XWLOL]H DSSOLHG IHUWLOL]HU PRUH HIILFLHQWO\ DQG LQFUHDVH SURGXFWLYLW\ E\ HOLPLQDWLQJ DGGHG FRVWV .UHWVFKPHU HW DO f VXJJHVWHG WKDW ILHOG FRUQ LV D JRRG FURS WR IROORZ IDOO WRPDWR DQG RWKHU KHDYLO\ IHUWLOL]HG YHJHWDEOH FURSV RQ VDQG\ VRLOV LQ )ORULGD :KHQ FRUQ ZDV SODQWHG IROORZLQJ WKHVH FURSV DGGLWLRQDO DSSOLFDWLRQV RI 3 DQG PLFURQXWULHQWV ZHUH QRW QHFHVVDU\
PAGE 29

" DPRXQWV RI QXWULHQW UHPRYDO WKHUH ZHUH QR DSSUHFLDEOH FKDQJHV RQ VRLO RUJDQLF FDUERQ WRWDO 1 DQG DYDLODEOH 3 DQG f 2Q GRXEOH FURSSLQJ RI SDGG\ ULFH LQ 7DLZDQ IRU \HDUV DYHUDJH ULFH \LHOGV ZHUH VLPLODU DPRQJ IHUWLOLW\ WUHDWPHQWV ZLWK WKH VDPH DPRXQW RI 1 DGGHG f 7KH HIIHFWV RQ FKHPLFDO SURSHUWLHV ZHUH DOVR VLPLODU ZLWK WKRVH REVHUYHG E\ 1DLU HW DO f DQG VXJJHVWHG DQ HTXLOLEULXP OHYHO ZLWKRXW PDMRU GLIIHUHQFHV DPRQJ WUHDWPHQWV &RQWLQXRXV FURSSLQJ GRHV QRW DOZD\V UHVXOW LQ VWDEOH RU LQFUHDVHG \LHOGV
PAGE 30

6HYHUDO UHSRUWV LQGLFDWHG WKDW VRLO RUJDQLF PDWWHU FKDQJHV ZLWK FRQWLQXRXV DQG ZLWK LQWHQVLYH FURSSLQJ V\VWHPV f 7KH FKDQJHV FDQ EH DQ LQFUHDVH RU GHFUHDVH GHSHQGLQJ RQ WKH FURS VSHFLHV WLOODJH OHYHO DQG IHUWLOL]HU OHYHO )RU H[DPSOH URWDWLRQ RI VSLQDFK 6XLQDFHD ROHU£FHD /f DQG FDEEDJH ZLWK JUHHQ PDQXUHV VXFK DV DOIDOID 0HGLFDGR VDWLYD /f WLPRWK\ 7ULIROLXP SUDWHQVH /f UHG FORYHU /ROLXP PXOWLIORUXP /f DQG VZHHW FORYHU 0HOLORWXV LQGLFD /f UHVXOWHG LQ KLJKHU FDUERQ DQG 1 LQ WKH VRLO WKDQ URWDWLRQV ZLWK FRQWLQXRXV YHJHWDEOHV f &RQWLQXRXV FURSSLQJ RI FRUQ IRU WKUHH FRQVHFXWLYH \HDUV IROORZHG E\ IRXU VHDVRQV RI FXOWLYDWLRQ ZLWK FURSSLQJ VHTXHQFHV RI FRUQFRUQFRZSHD SLJHRQ SHDFRUQ VR\EHDQVR\EHDQ FRUQVR\EHDQ DQG FRZSHDFRZSHD UHVXOWHG LQ JUHDWHU GHFOLQH LQ RUJDQLF PDWWHU WKDQ WKH QRWLOODJH SORWV f 7KH UDWH RI GHFOLQH ZDV PXFK KLJKHU XQGHU FRZSHD DQG VR\EHDQ ZKHUH VPDOOHU DPRXQWV RI FURS UHVLGXHV ZHUH SURGXFHG WKDQ ZLWK FRUQ 6WDQGLIHU DQG ,VPDLO f DOVR IRXQG WKDW RUJDQLF PDWWHU ZDV ORZHU LQ FRQYHQWLRQDO WLOODJH SORWV WKDQ LQ PLQLPXP WLOODJH SORWV DIWHU IRXU \HDUV RI PXOWLSOH FURSSLQJ FULPVRQ FORYHU 7ULIROLXP LQFDUQDWXP /f VZHHW FRUQ DQG FRZSHD 6WHYHQVRQ f UHSRUWHG WKDW URWDWLRQV LQFOXGLQJ OHJXPHV PDLQWDLQHG KLJKHU RUJDQLF PDWWHU FRQWHQWV WKDQ FRQWLQXRXV FURSSLQJ ZLWK QRQOHJXPLQRXV FURSV $ FRPELQDWLRQ RI PRGHUDWH PDQXULQJ DQG PHGLXP UDWHV RI FRPSOHWH IHUWLOLVHU DSSOLFDWLRQ LV PRVW HIIHFWLYH LQ SURGXFLQJ KLJK \LHOGV RI YHJHWDEOHV ZLWKRXW GHSOHWLQJ VRLO IHUWLOLW\ f ,Q D FRQWLQXRXV FRUQJUHHQ PDQXUH FURS URWDWLRQ 7KRPSVRQ DQG 5REHUWVRQ f IRXQG WKDW RUJDQLF PDWWHU LQ WKH KLJK IHUWLOL]HG FRP SORWV ZDV PHUH WKDQ LQ WKH XQIHUWLOL]HG SORWV ,Q ,QGLD +DYDQDJL DQG 0DQQ "Of UHSRUWHG WKDW

PAGE 31

VRLO RUJDQLF FDUERQ ZDV LQFUHDVHG E\ DSSOLFDWLRQ RI IDUP \DUG PDQXUH DQG E\ URWDWLRQ LQFOXGLQJ ERWK JUHHQ PDQXUH DQG OHJXPH FURSV 7KH SUHFHGLQJ FURS VSHFLHV FDQ KDYH EHQHILFLDO RU GHWULPHQWDO HIIHFWV RQ \LHOGV RI VXFFHHGLQJ FURSV )RU H[DPSOH RQLRQ DQG OHWWXFH SODQWHG DIWHU VZHHW FRUQ ZLWK D ZLQWHU FURS RI YHWFK 9LFLD VDWLYD /f GHYHORSHG D VHYHUH URRW URW JUDGXDOO\ UHGXFLQJ WKH \LHOG DQG RIWHQ NLOOLQJ WKH YHJHWDEOHV f 7KH\ SRVWXODWHG WKDW GXULQJ WKH GHn FRPSRVLWLRQ RI FRUQ UHVLGXH XQGHU FRRO WHPSHUDWXUHV RI VSULQJ D WR[LQ ZDV IRUPHG ZKLFK LQMXUHG SODQW URRWV f 0DFN HW DO f REVHUYHG WKDW DYHUDJH FURS \LHOG LQGLFHV IROORZLQJ FDEEDJH RQLRQ VXPPHU SXPSNLQ &XFUELWD SHQR /f DQG FDUURW ZHUH VLJQLILFDQWO\ JUHDWHU WKDQ WKRVH FURSV IROORZLQJ VZHHW FRP SRWDWR DQG WRPDWR 7KH ORZ \LHOGV IROORZn LQJ VZHHW FRUQ SRWDWR DQG WRPDWR PLJKW KDYH EHHQ WKH UHVXOW RI ORZ VRLO IHUWLOLW\ DIWHU JURZLQJ WKHVH FURSV 6RPH YHJHWDEOHV SODQWHG DIWHU ULFH UHVSRQG IDYRUDEO\ WR 1 DSSOLFDWLRQ EXW QRW WR UHVLGXDO 1 )RU LQVWDQFH \LHOGV RI VZHHW SRWDWR DQG WRPDWR SODQWHG DIWHU ULFH VLJQLILFDQWO\ LQFUHDVHG ZKHQ 1 ZDV DSSOLHG GLUHFWO\ WR WKH YHJHWDEOH FURSV f -RQHV f DOVR UHSRUWHG WKDW FRUQ \LHOGV ZHUH KLJKHU ZKHQ SUHFHGHG E\ SHDQXW WKDQ E\ FRZSHD 7KH GLIIHUHQFHV ZHUH ODUJHU ZLWKRXW 1 DSSOLFDWLRQ DQG GHFUHDVHG DW WKH RSWLPXP DSSOLFDWLRQ RI E NJKD 'HWULPHQWDO HIIHFWV KDYH DOVR EHHQ REVHUYHG ZLWK JUDLQ OHJXPHV ([SHn ULPHQWV SURYHG WKDW PXQJEHDQV KDYH D GHSUHVVLQJ HIIHFW RQ \LHOG SDUWLn FXODUO\ DW ORZ OHYHOV RI 1 f $SSDUHQWO\ PXQJEHDQV VHFUHWH FHUWDLQ WR[LQV ZKLFK GHSUHVV JURZWK

PAGE 32

(FRQRPLF (YDOXDWLRQ RI 9HJHWDEOH &URSSLQJ 3DWWHUQV &URSSLQJ SDWWHUQV DUH VRPHWLPHV DVVHVVHG LQ WHUPV RI YDULRXV HFRQRPLF SDUDPHWHUV f 0HWKRGV DQG DQDO\WLFDO WRROV KDYH EHHQ GHYHORSHG WR HQDEOH IDUP PDQDJHPHQW UHVHDUFKHUV WR HYDOXDWH \LHOG UHVSRQVHV RI QHZ FURS FXOWLYDUV YDULRXV OHYHOV RI PHFKDQL]DWLRQ LQSXWRXWSXW UHODWLRQVKLSV DQG QHW LQFRPH f 7KHVH PHWKRGV KRZHYHU ZHUH RIWHQ GHYHORSHG DQG XVHG IRU VLQJOH FURS HQWHUn SULVHV 0HQHJDMU f UHSRUWHG WKDW FXUUHQW DQDO\WLFDO WRROV IRU PHDVXULQJ HYDOXDWLQJ VWXG\LQJ RU FRPSDULQJ PXOWLSOH FURSSLQJ SDWWHUQV DUH OLPLWHG LQ VFRSH DQG IOH[LELOLW\ 7ZR JHQHUDO HFRQRPLF FULWHULD LQYROYLQJ ODQG XVH DQG SURGXFWLRQ DUH FRPPRQO\ XVHG LQ HYDOXDWLQJ SHUIRUPDQFH RI FURSSLQJ SDWWHUQV 6HYHUDO LQGLFHV VXFK DV PXOWLSOH FURSSLQJ LQGH[ 0&,f GLYHUVLW\ LQGH[ 'Of KDUYHVW GLYHUVLW\ LQGH[ +'Of VLPXOWDQHRXV FURSSLQJ LQGH[ 6&,f FXOWLYDWHG ODQG XWLOL]DWLRQ LQGH[ &/8Of DQG FURS LQWHQVLW\ LQGH[ &,Of KDYH WHHQ XVHG WR PHDVXUH WKLV FULWHULRQ f &URS LQWHQVLW\ LQGH[ &,Of LV PRUH SUHFLVH EHFDXVH LW SURYLGHV DQ DVVHVVn PHQW RI IDUPHUnV DFWXDO ODQG XVH IURP DQ DUHDWLPH SHUVSHFWLYH DQG GHILQHV WKH FRPSRVLWLRQ RI ODQG XVH f 7KH XVH RI LQGLFHV WR FRPn SDUH HFRQRPLF SHUIRUPDQFH RI FURSSLQJ SDWWHUQV LV PRUH DSSURSULDWH LQ VWXGLHV FRQGXFWHG XQGHU DFWXDO IDUP FRQGLWLRQV ZKHUH IDUP VL]HV DUH YDULDEOH DQG FURSSLQJ SDWWHUQV ZLWKLQ D IDUP YDU\ IURP SDUFHO WR SDUFHO /HYHO RI UHWXUQV WR UHVRXUFHV DQG RWKHU SURGXFWLRQ LQSXWV LV WKH PRVW FRPPRQO\ XVHG FULWHULRQ LQ HYDOXDWLQJ HFRQRPLF SHUIRUPDQFH RI FURSSLQJ SDWWHUQV EHFDXVH LW UHODWHV LQSXWV DQG SURGXFWV LQ WHUPV

PAGE 33

RI D FRPPRQ GHQRPLQDWRU ZKLFK LV XVXDOO\ PRQH\ f /HYHOV RU UHWXUQ DUH XVXDOO\ PHDVXUHG DQG H[SUHVVHG LQ WHUPV RI UHWXUQV WR SK\VLFDO UHVRXUFHV VXFK DV ODQG KDf LUULJDWLRQ ZDWHU RU UDLQIDOO LQFKf RU UHWXUQV WR SXUFKDVHG DQG DSSOLHG SURGXFWLRQ LQSXWV VXFK DV IHUWLOL]HU NJf RU ODERU KUf 3ULFH f VWDWHG WKDW UDWHV RI UHWXUQ WR UHVRXUFHV VKRXOG EH UHJDUGHG DV VHFRQGDU\ FULWHULD DIWHU QHW UHWXUQV FULWHULD DUH PHW 0HDVXULQJ UDWHV RI UHWXUQ WR UHVRXUFHV LV XVHIXO LI D IDUPHU LV LQWHUHVWHG LQ SURILW PD[LPL]DWLRQ $ IDUPHU ZLOO DFKLHYH WKLV JRDO WKURXJK PD[LPL]LQJ UHWXUQ WR KLV OLPLWLQJ UHVRXUFH f )RU H[DPSOH D IDUPHU ZLWK ODUJH DPRXQWV RI DYDLODEOH ODERU FRPSDUHG WR FDVK ZLOO DGRSW FURSSLQJ SDWWHUQV WKDW SURGXFH KLJK UDWHV RI UHWXUQ WR FDVK f &RQYHUVHO\ DQ DSSURSULDWH FURSSLQJ SDWWHUQ LQ DQ DUHD FKDUDFWHUL]HG E\ D PDUNHG VKRUWDJH RI ODERU DW FHUWDLQ WLPHV RI WKH \HDU ZLOO PD[LPL]H UHWXUQV SHU XQLW RI ODERU f 7KH UDWH RI UHWXUQ WR ERWK SK\VLFDO DQG DSSOLHG UHVRXUFHV LV DIIHFWHG E\ IDUPHUnV FURS PDQDJHPHQW LQWHUDFWLQJ ZLWK SK\VLFDO ELRORn JLFDO DQG VRFLRHFRQRPLF IDFWRUV +HQFH PRWLYDWLRQ DQG SURGXFWLRQ GHFLVLRQV RI IDUPHUV DUH LQIOXHQFHG E\ WKHVH IDFWRUV f )RU H[DPSOH VPDOOVFDOH IDUPHUV LQ 7DLZDQ LQWHUFURS WRPDWR IRU SURFHVVLQJ ZLWK PDQJR WR XWLOL]H PRUH IXOO\ WKHLU ODQG DQG IDPLO\ ODERU UHVRXUFHV 3URGXFWLRQ SUDFWLFHV IRU WRPDWR LQWHUFURSSHG ZLWK PDQJR DUH VLPLODU WR WKRVH LQ WKH PRQRFURS DQG LQWHUFURS ZLWK VXJDUFDQH EXW DGYHUVH SK\VLFDO DQG HQYLURQPHQWDO IDFWRUV UHGXFHG \LHOGV 1HW UHWXUQV DQG IDUP LQFRPH ZHUH PXFK ORZHU ZKHQ WRPDWR ZDV LQWHUFURSSHG ZLWK PDQJR WKDQ ZKHQ WRPDWR ZDV D PRQRFURS RU LQWHUFURSSHG ZLWK VXJDUFDQH f 6LQFH WKHUH ZDV QR FORVH UHODWLRQVKLS EHWZHHQ IHUWLOL]HUV DSSOLHG DQG \LHOG LQ WRPDWR

PAGE 34

LQWHUFURSSHG ZLWK PDQJR ORZHU OHYHOV RI IHUWLOL]HU DSSOLFDWLRQ UHGXFH LQSXW FRVWV ZLWKRXW VLJQLILFDQW \LHOG ORVV f 6RPH 7DLZDQ IDUPHUV SODQW VZHHW SRWDWR VWHP FXWWLQJV QHDU ULFH VWXEEOH ZLWK QR WLOODJH DQG PLQLPXP LQSXW UHTXLUHPHQW 2WKHUV XVH FRPSOHWH WLOODJH EHIRUH SODQWLQJ RU LQWHUFURSSLQJ ZLWK FRUQ DQG HGLEOH VXJDUFDQH 7KH WLOODJH PHWKRG UHTXLUHV KLJKHU LQSXWV ZKHUHDV WKH LQWHUn FURS PHWKRG LQYROYHV WKH OHDVW LQSXWV 6XUYH\ GDWD VKRZHG WKDW \LHOGV ZHUH LQFUHDVHG ZLWK LQFUHDVHG QHW UHWXUQV EXW WKH FRUUHODWLRQ YDOXH EHWZHHQ \LHOG DQG QHW UHWXUQ ZDV ORZ ZLWK WLOODJH PHWKRG VXJJHVWLQJ WKDW DGGHG FRVWV GLG QRW UHVXOW LQ KLJKHU \LHOGV f 7KHUH ZDV QR VLJQLILFDQW UHODWLRQVKLS EHWZHHQ FDSLWDO LQSXWV QRWDEO\ IHUWLOL]HU DQG \LHOG )DUPHUV PD\ EH DSSO\LQJ H[FHVVLYH FDSLWDO LQSXWV WR VZHHW SRWDWR EXW UHWXUQV WR IHUWLOL]HU DQG PDWHULDO FRVWV ZHUH ORZHU WKDQ UHWXUQV IURP WRPDWR 7KH KLJKHVW QHW UHWXUQ DQG IDUP UHWXUQ ZHUH QRW DVVRFLDWHG ZLWK KLJK \LHOG EXW ZLWK ORZ FRVW f $OWKRXJK WKH LQWHUn FURS PHWKRG SURGXFHG LQWHUPHGLDWH \LHOGV SURGXFWLRQ FRVWV ZHUH ORZHVW DQG WKHUHIRUH IDUP UHWXUQV QHW UHWXUQ DQG UHYHQXHFRVW UDWLR ZHUH KLJKHVW f &KDUUHDX f UHSRUWHG WKDW LPSURYHG FURSSLQJ SDWWHUQV FRQVLVWLQJ RI KLJK WLOODJH DQG IHUWLOL]HU OHYHOV ZHUH PRUH SURILWDEOH LQ WKH FHQWUDO ]RQH RI :HVW $IULFD ZKHUH UDLQIDOO ZDV KLJKHU WKDQ LQ WKH QRUWKHUQ ]RQH 7KLV ZDV D VLWXDWLRQ ZKHUH SRWHQWLDO RI LPSURYHG WHFKQRORJ\ WR LQFUHDVH SURGXFWLYLW\ DQG SURILWDELOLW\ ZDV OLPLWHG E\ FOLPDWLF IDFWRUV 7KH JRDO RI PRVW FURSSLQJ V\VWHPV UHVHDUFK KDV EHHQ WR LPSURYH SURGXFWLYLW\ DQG LQFRPH DPRQJ VPDOO IDUPV } f 6LQFH DGRSWLRQ RI FURSSLQJ SDWWHUQV QRW RQO\ GHSHQGV RQ HFRQRPLF

PAGE 35

UHWXUQV EXW DOVR RQ IDUPHUnV PRWLYHV VWXGLHV VKRXOG HPSKDVL]H LPSURYHn PHQW RI IDUPHUnV WUDGLWLRQDO FURSSLQJ V\VWHPV EHIRUH UHFRPPHQGLQJ DOWHUn QDWLYH FURSSLQJ SDWWHUQV &URSSLQJ V\VWHPV RI VPDOOVFDOH IDUPHUV DUH XVXDOO\ FKDUDFWHUL]HG E\ GLYHUVLW\ VWDELOLW\ DQG ORZ SURGXFWLYLW\ "f 7R LPSURYH LQFRPH SURGXFWLYLW\ VKRXOG EH LQFUHDVHG ZLWKRXW VDFULILFLQJ GLYHUVLW\ DQG VWDELOLW\ ,PSURYLQJ FURS PDQDJHPHQW SUDFWLFHV DWWHPSWV WR LQFUHDVH SURGXFWLYn LW\ 5HVHDUFKHUV GHYHORS LPSURYHG SURGXFWLRQ WHFKQRORJLHV IRU HDFK VWDJH RI FURS SURGXFWLRQ IURP WLOODJH WR KDUYHVWLQJ E\ YDU\LQJ OHYHOV RI SURGXFWLRQ LQSXWV RU LQWURGXFLQJ D QHZ WHFKQLTXH 7KHVH VWXGLHV JHQHUDOO\ IRFXV RQ RQH FURS ZLWK \LHOG PD[LPL]DWLRQ DV WKH PDLQ REMHFWLYH EXW H[FOXGH HFRQRPLF FRQVLGHUDWLRQV f )RU VRPH FURSV D VLJQLn ILFDQW LQFUHDVH LQ DJURQRPLF \LHOG PD\ QRW EH HFRQRPLFDOO\ DFFHSWDEOH WR IDUPHUV f $OWKRXJK HFRQRPLF HYDOXDWLRQ RI GLIIHUHQW FURS PDQDJHn PHQW SUDFWLFHV LV FRPPRQ VLPLODU VWXGLHV IRU \HDUURXQG FURSSLQJ SDWWHUQV DUH OLPLWHG 0RVW VWXGLHV FRPSDUH FRVWV DQG UHWXUQV IURP YDULRXV W\SHV RI FURSSLQJ SDWWHUQV XVLQJ VWDQGDUG FXOWXUDO SUDFWLFHV ZKLFK DUH LQ VRPH VLWXDWLRQV KLJKHU WKDQ WKH IDUPHUnV PDQDJHPHQW OHYHO f )RU H[DPSOH LQ *KLDQJ 0DL 7KDLODQG *DONLQV f UHSRUWHG WKDW WKH FURSSLQJ SDWWHUQ SHDQXWWRPDWRULFH KDG KLJKHU HFRQRPLF SRWHQWLDO WKDQ WRPDWRPXQJEHDQULFH EHFDXVH D KHDWWROHUDQW WRPDWR FXOWLYDU ZDV SODQWHG LQ WKH ILUVW SDWWHUQ UHVXOWLQJ LQ \LHOGV ZLWK KLJK PDUNHW SULFH ,Q WKH 3KLOLSSLQHV WKH FURSSLQJ SDWWHUQ ULFHZDWHUPHORQ ZDV WKH PRVW SURILWDEOH ZKHUHDV WKH FURSSLQJ SDWWHUQV ULFHPXQJEHDQ DQG ULFHVZHHW SRWDWR UHVXOWHG LQ HTXDO QHW UHWXUQV DV WKH ULFHULFH RU ULFHVRUJKXP f (FRQRPLF HYDOXDWLRQ RI WKH FURSSLQJ SDWWHUQ ULFHVZHHW SRWDWR XVLQJ WKUHH SRZHU VRXUFHV ZDV VWXGLHG E\ %DQWD f‘ &RVWV DQG UHWXUQV

PAGE 36

ZHUH GLIIHUHQW DPRQJ WKH WKUHH SRZHU VRXUFHV EXW UHWXUQV WR ODERU ZHUH KLJKHU XVLQJ KDQGWUDFWRU FRPSDUHG WR HLWKHU DQLPDO SRZHU RU KDQG ODERU f +H VXJJHVWHG WKDW WKH XVH RI D PDFKLQH LQ LQWHQVLYH FURSSLQJ SDWWHUQV FDQ SURYLGH EHWWHU ODERU HIILFLHQF\ EXW PD\ QRW EH HFRQRPLFDOO\ SURILWDEOH ,Q D VWXG\ RI HFRQRPLF SHUIRUPDQFH RI ULFHEDVHG FURSSLQJ SDWn WHUQV ODERU UHTXLUHPHQW ZDV VOLJKWO\ KLJKHU LQ D ULFHULFH SDWWHUQ WKDQ LQ ULFHXSODQG FURSV SDWWHUQV f &DVK UHTXLUHPHQWV ZHUH KLJKHU ZLWK ULFHXSODQG FURSV EHFDXVH RI KLJK FRVWV RI XSODQG FURS VHHGV DQG LQVHFWLFLGHV f 7KH XSODQG FURSV LQFOXGHG YHJHWDEOHV VXFK DV PXQJ EHDQ FRZSHD DQG PXVIFPHORQ 7KH ULFHPXQJEHDQ SDWWHUQ SURGXFHG WKH KLJKHVW QHW UHWXUQ EHFDXVH PXQJEHDQ UHFHLYHG D KLJK PDUNHW SULFH f ,QFUHDVLQJ LQWHQVLW\ RI FURSSLQJ SDWWHUQV LQFUHDVHG JURVV DQG QHW UHWXUQV WR ODERU LQ IRXU FURSSLQJ SDWWHUQV HYDOXDWHG LQ +LVVDU 'LVWULFW ,QGLD f 6LQJK HW DO f UHSRUWHG WKDW WKH PRUH LQWHQVLYH SDWWHUQ LQYROYLQJ FRUQSRWDWRWRPDWR DQG PXQJEHDQ ZDV PRUH SURILWDEOH WKDQ FRWWRQZKHDW RU SHDUO PLOOHW 3HQQLVHWXP JODXFXP /f ZKHDWPXQJEHDQ 'DUO\PSOH f DOVR UHSRUWHG WKDW QHW UHWXUQV SHU KHFWDUH DQG QHW UHWXUQV SHU KRXU RI ODERU LQFUHDVHG ZLWK LQFUHDVLQJ FURSSLQJ LQGH[ $ PRUH FRPSOH[ LQWHQVLYH FURSSLQJ SDWWHUQ LQYROYLQJ VHTXHQWLDO DQG UHOD\ LQWHUFURSSLQJ RI SROH EHDQ FRUQ FDEEDJH FXFXPEHU EHDQ DQG UDGLVK UHVXOWHG LQ KLJK QHW UHWXUQV LQ (O 6DOYDGRU f $OWKRXJK VRPH VWXGLHV LQYROYLQJ HFRQRPLF HYDOXDWLRQ RI FURSSLQJ SDWWHUQV ZHUH FRQGXFWHG LQ H[SHULPHQW VWDWLRQV XVLQJ VPDOO SORWV UHVXOWV KDYH VKRZQ KLJK OHYHO RI DFFXUDF\ EHFDXVH RI KLJK GHJUHH RI FRQWURO 7KHUHIRUH WKHVH VWXGLHV VKRXOG FRPSOLPHQW RU VXSSRUW WKRVH HYDOXDWHG XQGHU DFWXDO IDUP FRQGLWLRQV

PAGE 37

&+$37(5 ,, $1 (9$/8$7,21 2) )285 9(*(7$%/( &5233,1* 3$77(516 )25 1257+ )/25,'$ ,QWURGXFWLRQ 9HJHWDEOH SURGXFWLRQ LQ 1RUWK )ORULGD DPRQJ VPDOOVFDOH JURZHUV LV FKDUDFWHUL]HG E\ UHODWLYHO\ IHZ WRWDO KHFWDUHV f D VKRUW FURSSLQJ SHULRG f OLPLWHG DQG LQHIILFLHQW PDUNHWLQJ V\VWHPV f DQG D ORZ OHYHO RI FURS PDQDJHPHQW f &OLPDWH DQG VRLO FRQGLWLRQV IDYRU WKH JURZLQJ RI YHJHWDEOHV GXULQJ VSULQJ DQG IDOO VHDVRQV ZKHUHDV KLJKHU WHPSHUDWXUHV DQG LQWHQVH UDLQIDOO GXULQJ VXPPHU DQG IUHH]LQJ WHPSHUDWXUHV f LQ ZLQWHU OLPLW SURGXFWLRQ RI YHJHWDEOHV ,Q JHQHUDO DYHUDJH \LHOGV RI YHJHWDEOH FURSV JURZQ E\ VPDOO VFDOH IDUPHUV LQ 1RUWK )ORULGD DUH ORZHU WKDQ LQ 6RXWK )ORULGD f )RU H[DPSOH DYHUDJH \LHOGV RI HLJKW RXW RI WHQ YHJHWDEOHV ZHUH KLJKHU LQ 6RXWK )ORULGD WKDQ LQ 1RUWK )ORULGD f &OLPDWH FURSSLQJ V\VWHPV ODERU DQG PDUNHW FRQVWUDLQWV OLPLW SURGXFWLRQ OHYHOV DQG SURILW PDUJLQV IURP YHJHWDEOH SURGXFWLRQ LQ 1RUWK )ORULGD f ,Q DGGLWLRQ ORZ LQFRPH f DQG OLPLWHG HGXFDWLRQ OHYHOV f DPRQJ VPDOOVFDOH JURZHUV FRQWULEXWH WR PDUJLQDO YHJHWDEOH SURGXFWLRQ HQWHUn SULVHV &URS PDQDJHPHQW OHYHOV XWLOL]HG E\ PDQ\ YHJHWDEOH JURZHUV DOVR FRQWULEXWH WR ORZHU \LHOGV LQ 1RUWK )ORULGD &URS PDQDJHPHQW OHYHO LV GHILQHG DV FDSLWDO ODERU DQG RWKHU SURGXFWLRQ LQSXWV LQFOXGLQJ SURn GXFWLRQ VNLOOV WKDW WKH IDUPHU DOORFDWHV WR SURGXFH YDULRXV FURSV ([DPSOHV DUH OHYHOV RI LUULJDWLRQ ZHHG FRQWURO LQVHFW DQG GLVHDVH PDQDJHPHQW WLOODJH PXOFKLQJ VWDNLQJ FURS HVWDEOLVKPHQW DQG

PAGE 38

IHUWLOL]LQJ ,QVHFW GLVHDVH DQG IHUWLOL]HU PDQDJHPHQW OHYHOV ZHUH ORZ DPRQJ VPDOOVFDOH JURZHUV LQ 1RUWK )ORULGD ff 'RXEOH FURSSLQJ RU WKH SODQWLQJ RI WZR FURSV LQ RQH \HDU LV SUDFWLFHG FRPPRQO\ LQ )ORULGD f ,Q KHFWDUHV RI YHJHWDEOHV ZHUH KDUYHVWHG EXW RQO\ WR KHFWDUHV ZHUH SODQWHG WR YHJHWDEOHV f )RU H[DPSOH IRXU RU ILYH FURSV RI UDGLVKHV DUH JHQHUDOO\ KDUYHVWHG IURP WKH VDPH ILHOG LQ WKH (YHUJODGHV DQG =HOO ZFRG 6KXOHU SHU FRPPf 6RPH JURZHUV DOWHUQDWH SDUW RI WKHLU UDGLVK KHFWDUDJH ZLWK RWKHU FURSV VXFK DV VZHHW FRUQ FHOHU\ $SLXP JUDYHROHQV /f FDUURW DQG OHDI\ FURSV 'RXEOH FURSSLQJ WRPDWR RQ IXOOEHG SODVWLF PXOFK ZLWK RWKHU FURSV LV SUDFWLFHG E\ PDQ\ JURZHUV 6RPH WRPDWR JURZHUV LQ 4XLQF\ SODQW SLFNn OLQJ FXFXPEHUV RU ZLQWHU VTXDVK DIWHU WRPDWR ,Q 6RXWK )ORULGD %U\DQ DQG 'DOWRQ f REWDLQHG KLJK \LHOGV RI EXWWHUQXW VTXDVK SODQWHG DIWHU IDOOJURZQ WRPDWR RQ IXOOEHG SODVWLF PXOFK &VL]LQV]N\ f UHSRUWHG WKDW VHYHUDO YHJHWDEOH FURSV FDQ EH JURZQ DIWHU WRPDWR ZLWKRXW DGGLWLRQDO IHUWLOL]HU $V WKH ODQG DUHD SODQWHG WR PRUH WKDQ RQH YHJHWDEOH FURS SHU \HDU LQFUHDVHV \HDUURXQG FURSSLQJ V\VWHPV VWXGLHV DUH UHTXLUHG WR SURYLGH LQIRUPDWLRQ RQ DSSURSULDWH FURS PDQDJHPHQW SUDFWLFHV IRU HIILn FLHQW SURGXFWLRQ V\VWHPV DQG LPSURYHG UHWXUQV WR SURGXFWLRQ LQSXWV 6HYHUDO VWXGLHV KDYH EHHQ FRQGXFWHG WR H[WHQG WKH SURGXFWLRQ VHDVRQ DQG LPSURYH YHJHWDEOH SURGXFFLQ LQ 1RUWK )ORULGD } ,f 7KH XVH RI EODFN DQG ZKLWH SODVWLF PXOFKHV WR UHGXFH WKH HIIHFW RI KHDY\ UDLQIDOO DQG KLJK VRLO WHPSHUDWXUH GXULQJ VXPPHU LQFUHDVHG \LHOG DQG LPSURYHG TXDOLW\ RI VHYHUDO YHJHWDEOH FURSV f 7KH XVH RI EODFN SODVWLF PXOFK ZDV PHUH SURILWDEOH IRU FDQWDORXSH ZKHUHDV FOHDU

PAGE 39

PXOFK ZDV PRVW HIIHFWLYH IRU ZDWHUPHORQ 6TXDVK SURGXFHG KLJKHVW \LHOG ZKHQ JURZQ ZLWK ZKLWH RQ EODFN PXOFK f *URZLQJ YHJHWDEOHV XQGHU WREDFFR VKDGHV LQFUHDVHG WRWDO \LHOGV RI FXFXPEHU EXW UHGXFHG WRPDWR DQG SROH EHDQ \LHOGV f 6HTXHQWLDO SODQWLQJ RI VHOHFWHG YHJHWDEOH FXOWLYDUV DOVR H[WHQGHG WKH SURGXFWLRQ VHDVRQ WR ODWH VSULQJ DQG VXPPHU LQ *DLQHVYLOOH f +DOVH\ DQG .RVWHZLF] f UHSRUWHG KLJK PDUNHWDEOH \LHOGV IRU VRPH YHJHWDEOH FURSV JURZQ GXULQJ H[WHQGHG VHDVRQV 9HJHWDEOH FURSVLQFOXGHG LQ WKHLU FXOWLYDU DQG GDWH RI SODQWLQJ H[SHULPHQWV ZHUH VQDS EHDQ VRXWKHUQ SHD OLPD EHDQ FDEEDJH FROODUG VTXDVK DQG RQLRQ ,Q VHTXHQWLDO SODQWLQJV LQYROYLQJ VHYHQ YHJHWDEOH FURSV DUUDQJHG LQ IRXU FURSSLQJ SDWWHUQV 3DODGD HW DO f UHSRUWHG QR VLJQLILFDQW \LHOG LQFUHDVH ZLWK LQFUHDVLQJ OHYHOV RI IHUWLOL]HU EXW UHWXUQV WR PDQDJHn PHQW RQ D GROODUKD EDVLV ZHUH KLJKHU LQ KLJK PDQDJHPHQW FURSV WKDQ LQ ORZ PDQDJHPHQW FURSV 5HVHDUFK DLPHG DW GHYHORSLQJ DSSURSULDWH FURS PDQDJHPHQW WHFKQRn ORJLHV IRU VHTXHQWLDO FURSSLQJ SDWWHUQV LV QHHGHG WR LPSURYH YHJHWDEOH FURSSLQJ V\VWHPV WKURXJKRXW )ORULGD 7KH SXUSRVH RI WKLV VWXG\ ZDV WR HYDOXDWH UHVRXUFH XVH SURGXFWLYLW\ DQG SURILWDELOLW\ RI VHYHUDO YHJHWDEOH FURSV SODQWHG LQ IRXU \HDUURXQG FURSSLQJ SDWWHUQV IRU 1RUWK )ORULGD 0DWHULDOV DQG 0HWKRGV 7KLV \HDU VWXG\ ZDV FRQGXFWHG DW WKH +RUWLFXOWXUDO 8QLW RI WKH 8QLYHUVLW\ RI )ORULGD DW *DLQHVYLOOH r n 1 ODWLWXGH r n : ORQJLWXGHf EHJLQQLQJ LQ 2FWREHU DQG WHUPLQDWLQJ LQ 2FWREHU

PAGE 40

7KH VRLO ZDV FODVVLILHG DV .DQDSDKD ILQH VDQG ORDP\ VLOLFHRXV K\SHUn WKHUPLF *URVVDUHQLF 3DOHDXTXXOWf ZLWK b RUJDQLF PDWWHU DQG D *(* RI PHTO22 J "f 7KH FOLPDWH LV ZDUP DYHUDJH PD[ r* PLQ OLr&f DQG KXPLG DYHUDJH QXQ UDLQIDOOPRQWKf IURP $SULO WR 6HSWHPEHU ZKHUHn DV 2FWREHU WR 0DUFK LV FRRO DYHUDJH PD[ r& PLQ r*f DQG GU\ DYHUDJH PP UDLQIDOOPRQWKfA 6R\EHDQ ZDV SODQWHG DV D FRYHU FURS SULRU WR LQLWLDWLQJ WKH H[SHULn PHQW 6R\EHDQ ZDV PRZHG WR D VWXEEOH DQG WKH ODQG GLVF SORZHG EHIRUH IXPLJDWLQJ ZLWK OLWHUVKD 60'& VRGLXP 1PHWK\OGLWKLRFDUEDPDWHf 7KH IXPLJDQW ZDV LQMHFWHG LQWR WKH VRLO ZLWK D JUDYLW\IORZ GLVWULEXWRU XVLQJ WZR FRXOWHU DSSOLFDWRUV %DVDO IHUWLOL]HU ZDV EURDGFDVW DQG URWR WLOOHG LQWR WKH VRLO DW YDU\LQJ UDWHV GHSHQGLQJ RQ FURS UHTXLUHPHQW 7DEOH f 5DLVHG EHGV ZHUH IRUPHG XVLQJ D GLVFKLLOHU DQG WHG SUHVV 6XEVHTXHQW ODQG SUHSDUDWLRQ EHWZHHQ FURSV FRQVLVWHG RI PRZLQJ GLVF SORZLQJ URWRWLOOLQJ IHUWLOL]LQJ DQG EHGGLQJ 6HYHQ YHJHWDEOH FURSV LQFOXGLQJ n7H[DV *UDQR n EXOE RQLRQ n%OXH /DNHn SROH EHDQ n0RUULV +HDGLQJf FROODUG n(DUO\ *ROGHQ 6XPPHU &URRNQHFNn VTXDVK n:DQGRn (QJn OLVK SHD n=LSSHU &UHDPf VRXWKHUQ SHD DQG n)ORULGD &XUOHG /HDIn PXVWDUG ZHUH FODVVLILHG LQWR ORZ /0f PHGLXP 00f DQG KLJK +0f PDQDJHPHQW JURXSV 7KHVH PDQDJHPHQW JURXSV ZHUH EDVHG RQ DYHUDJH FRVWV RI IHUWLn OL]HUV SHVWLFLGHV FXOWXUDG ODERU DQG \HDU DYHUDJH KDUYHVWLQJ FRVWV IRU SURGXFLQJ HDFK YHJHWDEOH FURS LQ )ORULGD 7DEOH f )RXU EDVLF FURSSLQJ SDWWHUQV ZHUH GHYHORSHG XVLQJ FRPELQDWLRQV RI VHYHQ YHJHWDEOH FURSV )LJV DQG f 7ZR FURSSLQJ SDWWHUQV ZHUH &OLPDWLF GDWD +RUWLFXOWXUDO 8QLW 8QLYHUVLW\ RI )ORULGD PLPHRf

PAGE 41

7DEOH &XOWXUDO SUDFWLFHV IRU YHJHWDEOH FURSV JURXSHG LQ WKUHH PDQDJHPHQW OHYHOV DQG JURZQ LQ IRXU FURSSLQJ SDWWHUQV DW *DLQHVYLOOH )/ 9HJHWDEOH FURS DQG SODQWLQJ PHWKRG 0DQDJHPHQW JURXS 6HHGLQJ UDWH 6SDFLQJ 7RWDO IHUWLOL]HU 5RZ 3ODQW 1 3r .r NJKD LQ FP f§ NJKD 'LUHFW VHHGHG %XOE RQLRQ +LJK = (QJOLVK SHD /RZ 0XVWDUG 0HGLXP 3ROH EHDQ +LJK 6RXWKHUQ SHD /RZ 6TXDVK 0HGLXP 7UDQVSODQWHG &ROODUG +LJK 7ZR URZV SHU EHG VSDFHG FP DSDUW

PAGE 42

7DEOH $YHUDJH IHUWLOL]HU SHVWLFLGH FXOWXUDO ODERU DQG KDUYHVW FRVWV IRU KLJK PHGLXP DQG ORZ PDQDJHPHQW YHJHWDEOH FURSV LQ )ORULGD r 0DQDJHPHQW &URS 3URGXFWLRQ LQSXWV JURXS )HUWLOL]HU 3HVWLFLGH /DERU +DUYHVW 7RWDO +LJK %XOE RQLRQ &RVWV KD f§ \ 3ROH EHDQ &ROODUnG 0HDQ 0HGLXP 0XVWDUG 6TXDVKA 0HDQ /RZ (QJOLVK SHD 6RXWKHUQ SHD 0HDQ =O HVWLPDWH XVLQJ GDWD RI / -RKQVRQ DQG 5 $WNLQVRQ f A6RXUFH / %URRNH fr ; 6RXUFHV $ : &ROHWWH f DQG 5 ( /HYLQV DQG 5 'RZQV fr

PAGE 43

WKUVH KLJK PDQDJHPHQW FURSV SODQWHG LQ VHTXHQFH EXOE RQLRQSROH EHDQ FROODUGf DQG WKUHH ORZ PDQDJHPHQW FURSV SODQWHG LQ VHTXHQFH (QJOLVK SHDVRXWKHUQ SHDVRXWKHUQ SHDf 7KH RWKHU WZR FURSSLQJ SDWWHUQV ZHUH D FRPELQDWLRQ RI ORZ PHGLXP DQG KLJK PDQDJHPHQW FURSV SODQWHG LQ VHTXHQFH DV IROORZV +000/0 EXOE RQLRQVTXDVKVRXWKHUQ SHDf DQG +0/000 EXOE RQLRQVRXWKHUQ SHDPXVWDUGf 7KHVH SDWWHUQV ZHUH GHVLJQHG WR HVWLPDWH WKH HIIHFW RI FURS PDQDJHPHQW VHTXHQFHV RQ UHVRXUFH XVH WRWDO SURGXFWLYLW\ DQG SURILWDELOLW\ 7KH IRXU FURSSLQJ SDWWHUQV ZHUH DUUDQJHG LQ D UDQGRPL]HG EORFN GHVLJQ ZLWK IRXU UHSOLFDWLRQV (DFK SORW PHDVXUHG P ORQJ E\ P ZLGH 5RZV ZHUH RULHQWHG LQ DQ HDVWZHVW GLUHFWLRQ %XOE RQLRQ VRXWKHUQ SHD (QJOLVK SHD VTXDVK DQG PXVWDUG ZHUH ILHOGVHHGHG RQ UDLVHG EHGV XVLQJ DQ (DUWKZD\ VHHGHU 3ROH EHDQ ZDV KDQGVHHGHG LQWR KROHV FP GHHS &ROODUGV ZHUH JURZQ LQ SHDW SRWV DQG WUDQVSODQWHG DIWHU GD\V 3ODQWLQJ SUDFWLFHV DQG VHHGLQJ UDWHV ZHUH EDVHG RQ UHFRPPHQGHG SUDFWLFHV +2 "f &URSV ZHUH SODQWHG LQ D VLQJOH URZ SHU EHG H[FHSW IRU EXOE RQLRQ ZKLFK ZDV VHHGHG LQ GRXEOH URZV (DFK SORW FRQVLVWHG RI WKUHH EHGV FP ZLGH DQG FP KLJK VSDFHG P DSDUW $ P VHFWLRQ RI WKH FHQWHU EHG ZDV KDUYHVWHG IRU \LHOGV )HUWLOL]HU UDWHV IRU HDFK FURS 7DEOH f ZHUH EDVHG RQ IHUWLOL]HU DQG YHJHWDEOH SURGXFWLRQ VWXGLHV FRQGXFWHG LQ )ORULGD } } f %DVDO IHUWLOL ]HU IRU HDFK FURS ZDV DSSOLHG DQG LQFRUSRUDWHG LQWR WKH VRLO SULRU WR SODQWLQJ 'HSHQGLQJ RQ WKH FURS VXSSOHPHQWDO IHUWLOL]HU ZDV VLGHGUHVVHG RU WFSGUHVVHG RQH RU WKUHH WLPHV GXULQJ HDFK FURS F\FOH ,QVHFWV DQG GLVHDVHV ZHUH FRQWUROOHG

PAGE 44

XVLQJ WKH UHFRPPHQGHG SUDFWLFHV IRU )ORULGD :HHGV ZHUH FRQWUROOHG E\ FXOWLYDWLRQ DQG KDQGZHHGLQJ H[FHSW IRU ILUVW FURS RI EXOE RQLRQ ZKHUH '&3$ GLPHWK\O WHWUDFKORURWHUHSKWKDODWHf DW NJ DLKD DQG FKORUSURSKDP LVRSURS\O PFKORURFDUEDQLODWHf DW NJ DLKD ZHUH VSUD\HG SUHHPHUJHQFH ,QIRUPDWLRQ DERXW FXOWXUDO SUDFWLFHV IRU HDFK FURS LV VXPPDUL]HG LQ 7DEOH &URS DQG FURSSLQJ SDWWHUQ GXUDWLRQ LQFOXGLQJ WKH LQWHUYDO EHWZHHQ FURSV ZHUH UHFRUGHG &URS GXUDWLRQ ZDV FRXQWHG IURP VHHGLQJ WR ODVW KDUYHVW %XOE RQLRQV ZHUH JUDGHG DFFRUGLQJ WR VWDQGDUG VL]HV RI ODUJH GLDPHWHU JUHDWHU WKDQ FPf PHGLXP WR FPf DQG VPDOO OHVV WKDQ FPf 3URGXFWLRQ FRVWV DQG UHWXUQV WR PDQDJHPHQW ZHUH EDVHG RQ \HDU DYHUDJH SULFHV RI SURGXFWLRQ LQSXWV DQG PDUNHW SULFHV DW WKH WLPH RI KDUYHVW 7KHVH SURGXFWLRQ FRVWV DQG PDUNHW SULFHV f ZHUH FRPSDUHG ZLWK \HDU DYHUDJHV f WR GHWHUPLQH ORQJWHUP SURILWDELOLW\ 5HVXOWV DQG 'LVFXVVLRQ &URS HQYLURQPHQW 7KH ILUVW FURSSLQJ \HDU f ZDV FKDUDFWHUn L]HG E\ KLJKHU UDLQIDOO PPf FRPSDUHG WR WKH VHFRQG \HDU PPf )LJV DQG f 0RVW UDLQIDOO RFFXUUHG GXULQJ -XO\ DQG $XJXVW LQ 7KH UDLQIDOO SDWWHUQ IRU IROORZHG WKH \HDU ZHHNO\ DYHUDJH H[FHSW WKDW WKH GU\ SHULRG ZDV H[WHQGHG )LJ f 7KH ZLQWHU FI ZDV FROGHU WKDQ )LJV DQG f 7KH ORZHVW ZHHNO\ PLQLPXP WHPSHUDWXUH ZDV r* LQ DQG r& LQ /RZ WHPSHUDWXUHV LQ ZLQWHU UHWDUGHG WKH JURZWK RI EXOE RQLRQ DQG (QJOLVK SHD UHVXOWLQJ LQ DQ H[WHQGHG JURZLQJ SHULRG 7KH

PAGE 45

5$,1)$// PPf &5233,1* 3$77(51 2 )LJ )RXU YHJHWDEOH FURSSLQJ SDWWHUQV SORWWHG DJDLQVW UDLQIDOO DQG WHPSHUDWXUH DW *DLQHVYLOOH )/ 7(03(5$785(

PAGE 46

5$,1)$// PPf &5233,1* 3$77(51 2 R K FU 84B V 8Wf§ S )LJ )RXU YHJHWDEOH FURSSLQJ SDWWHUQV SORWWHG DJDLQVW UDLQIDOO DQG WHPSHUDWXUH DW *DLQHVYLOOH )/

PAGE 47

KLJKHVW ZHHNO\ PD[LPXP WHPSHUDWXUHV ZHUH r* LQ -XQH DQG r& LQ -XO\ )LJV DQG f 7KH JURZLQJ SHULRG RI WKH VHFRQG FURSV LQ DOO FURSSLQJ SDWWHUQV FRLQFLGHG ZLWK KLJK UDLQIDOO DQG WHPSHUDWXUH &URS GXUDWLRQ 8VLQJ DYHUDJH GDWD IRU \HDUV WKH ORQJHVW FURSSLQJ GXUDWLRQ ZDV GD\V LQ FURSSLQJ SDWWHUQ +0+0+0 ZKLOH WKH VKRUWHVW GXUDWLRQ RI GD\V ZDV REVHUYHG LQ FURSSLQJ SDWWHUQV /0/0/0 DQG +0/000 7DEOH fm 7KH LQWHUYDO EHWZHHQ FURSV ZDV ORQJHVW GD\Vf ZLWK FURSSLQJ SDWWHUQ /0/0/0 DQG VKRUWHVW GD\Vf ZLWK +0+0+0 ,Q JHQHUDO FURSV JURZQ GXULQJ ZLQWHU KDG SURORQJHG JURZLQJ SHULRGV 7KLV SURORQJHG JURZLQJ SHULRG GHOD\HG WKH SODQWLQJ RI VHFRQG FURSV LQ FURSSLQJ SDWWHUQV +0+0+0 +000,0 DQG +0/000 0DUNHWDEOH \LHOGV ,Q JHQHUDO PDUNHWDEOH \LHOGV RI YHJHWDEOHV ZHUH DIIHFWHG E\ SODQWLQJ GDWHV 7DEOH f &URSSLQJ SDWWHUQV LQYROYLQJ EXOE RQLRQ UHVXOWHG LQ ODWH SODQWLQJ DQG UHGXFHG \LHOGV RI VHFRQG FURSV )RU H[DPSOH \LHOGV RI SROH EHDQ DQG VTXDVK IROORZLQJ EXOE RQLRQ ZHUH ORZ EHFDXVH WKHVH FURSV ZHUH SODQWHG LQ -XQH ZKHQ KDUYHVWLQJ FRLQFLGHG ZLWK KLJK UDLQIDOO DQG WHPSHUDWXUH $ GLIIHUHQFH RI WZR WR IRXU ZHHNV LQ SODQWLQJ GDWHV UHGXFHG PDUNHWDEOH \LHOGV RI WKHVH FURSV FRPSDUHG WR QRUPDO VSULQJ SODQWLQJ &URSSLQJ SDWWHUQV LQYROYLQJ ODUJH FURS UHVLGXHV DOVR GHOD\HG SODQWLQJ RI VXFFHHGLQJ FURSV %XOE RQLRQ SURGXFHG ORZHU \LHOG ZKHQ SODQWHG DIWHU VRXWKHUQ SHD ZKHUH ODUJH FURS UHVLGXH UHPDLQHG LQ WKH VRLO WKDQ RQLRQ SODQWHG DIWHU FROODUG DQG PXVWDUG -DQHV f REVHUYHG WKDW RQLRQ SODQWHG DIWHU VZHHW FRUQ DQG YHWFK KDG UHGXFHG JURZWK DQG GLHG ZKHUHDV RQLRQ IROORZLQJ VSLQDFK DQG EHHW SURGXFHG VDWLVIDFWRU\ JURZWK

PAGE 48

7DEOH } &URS GXUDWLRQ DQG LQWHUYDO EHWZHHQ FURSV LQ IRXU YHJHWDEOH FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ &URS &URS GXUDWLRQ ,QWHUYDO EHWZHHQ FURSV +0+0+0 %XOE RQLRQ GD\V 3ROH EHDQ &ROODUG 7RWDO /0,0/0 (QJOLVK SHD 6RXWKHUQ SHD 6RXWKHUQ SHD 7RWDO +000/0 %XOE RQLRQ 6TXDVK 6RXWKHUQ SHD 7RWDO +0,000 %XOE RQLRQ 6RXWKHUQ SHD 0XVWDUG 7RWDO +0 KLJK PDQDJHPHQW 00 PHGLXP PDQDJHPHQW /0 ORZ PDQDJHPHQW

PAGE 49

7DEOH 0DUNHWDEOH \LHOGV RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV DW *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ &URS &URSSLQJ \HDU n7WHVW EHWZHHQ \ \HDUVnA 0DUNHWDEOH \LHOG 07QD +0+0+0 %XOE RQLRQ +I 3ROH EHDQ 16 &ROODUG /0/0/0 (QJOLVK SHD 16 6RXWKHUQ SHD 16 6RXWKHUQ SHD 16 +000/0 %XOE RQLRQ 6TXDVK QR GDWD 6RXWKHUQ SHD +0/000 %XOE RQLRQ 16 6RXWKHUQ SHD 16 0XVWDUG &URS IDLOXUH GXH WR KHUELFLGH GDPDJH 6LJQLILFDQW DW b OHYHO 16 1RW VLJQLILFDQW

PAGE 50

0DUNHWDEOH \LHOGV RI EXOE RQLRQ ZHUH VLJQLILFDQWO\ JUHDWHU GXULQJ WKH ILUVW \HDU RI WKH FURSSLQJ F\FOH WKDQ LQ WKH VHFRQG \HDU 7DEOH f :LWKLQ D FURSSLQJ \HDU RQLRQ SODQWHG HDUO\ LQ WKH VHDVRQ SURGXFHG KLJKHU \LHOGV [KDQ ODWHSODQWHG RQLRQ $ GLIIHUHQFH RI ZHHNV LQ SODQWLQJ EXOE RQLRQ GXULQJ UHVXOWHG LQ D PHWULF WRQ \LHOG GLIIHUHQFH /DUJHU RQLRQ SODQWV ZHUH SURGXFHG LQ HDUO\ SODQWLQJV ZKLFK WROHUDWHG ORZ WHPSHUDWXUHV LQ -DQXDU\ DQG )HEUXDU\ *X]PDQ DQG +D\VOLS f DQG &RUJDQ DQG ,]TXLHUGR f REVHUYHG WKDW \LHOG RI EXOE RQLRQV GHFUHDVHG DV SODQWLQJ ZDV GHOD\HG GXULQJ WKH SHULRG IURP 6HSWHPEHU WR 'HFHPEHU +DOVH\ f UHSRUWHG WKDW EXOE VL]H GHFUHDVHG DIWHU 2FWREHU SODQWLQJ GDWHV LQ *DLQHVYLOOH 0DUNHWDEOH \LHOGV RI SROH EHDQ ZHUH ORZHU FRPSDUHG WR QRUPDO SODQWLQJ LQ 1RUWK )ORULGD 7DEOH f %U\DQ f REWDLQHG \LHOGV RI PHWULF WRQVKD IURP DQ HDUO\ VSULQJ SODQWLQJ ,Q 'DGH FRXQW\ DYHUDJ \LHOGV UDQJHG IURP WR r PHWULF WRQVKD f +LJK UDLQIDOO DQG WHPSHUDWXUH DW IORZHULQJ DQG SRG VHW UHVXOWHG LQ ORZ \LHOGV 3ROH EHDQ WKHUHIRUH UHSUHVHQWV D ULVN ZKHQ SODQWHG GXULQJ ODWH VSULQJ $ WRWDO RI r PHWULF WRQVKD RI PDUNHWDEOH FROODUGV ZDV SLFNHG IURP IRXU VXFFHVVLYH KDUYHVWV RI PDWXUH OHDYHV 7DEOH fZKLFK ZHUH VLPLn ODU ZLWK \LHOGV UHSRUWHG E\ +DOVH\ DQG .RVWHZLF] f
PAGE 51

WKH IDOO PRQWKV ZKHUHDV \LHOG RI DERXW PHWULF WRQVKD ZHUH KDUYHVWHG ZKHQ SODQWHG IURP -DQXDU\ WR 0DUFK LQ *DLQHVYLOOH
PAGE 52

REVHUYHG LQ FURSSLQJ SDWWHUQ +0/000 DOWKRXJK VRXWKHUQ SHD SURGXFHG ORZ \LHOGV 3URGXFWLRQ FRVWV DQG UHWXUQV WR PDQDJHPHQW &URSSLQJ SDWWHUQ +0+0+0 UHTXLUHG WKH KLJKHVW SURGXFWLRQ FRVWV RI RKD ZKHUHDV FURSSLQJ SDWWHUQ ,0/0/0 UHTXLUHG RQO\ !"KD 7DEOH f &URSSLQJ SDWWHUQV +000,0 DQG +0/000 UHTXLUHG VLPLODU SURGXFWLRQ FRVWV DV WKH ,0/0/0 ,Q JHQHUDO FDVK LQSXWV IRU PDWHULDOV ZHUH KLJKHU WKDQ ODERU FRVWV LQ WKH IRXU FURSSLQJ SDWWHUQV 7KH ORZ \LHOGV RI PRVW YHJHWDEOH FURSV UHGXFHG KDUYHVW ODERU FRVWV 6LQFH WRWDO ODERU FRVWV LQFOXGHG KDUYHVW ODERU FRVW WRWDO ODERU FRVWV ZHUH ORZHU WKDQ PDWHULDO FRVWV *URVV LQFRPH ZDV KLJKHVW ZLWK +0+0+0 DQG ORZHVW ZLWK +000/0 7DEOH f &URS PDQDJHPHQW JURXSLQJV VLJQLILFDQWO\ LQIOXHQFHG UHODWLYH UHWXUQV WR PDQDJHPHQW 7RWDO UHWXUQV WR PDQDJHPHQW ZHUH KLJKHVW ZLWK FURSSLQJ SDWWHUQ +0+0+0 7DEOH fr 1R VLJQLILFDQW GLIIHUHQFHV LQ UHWXUQV WR PDQDJHPHQW ZHUH FDOFXODWHG DPRQJ FURSSLQJ SDWWHUQV /0/0/0 +000/0 DQG +0/000 *URZLQJ ORZ PDQDJHPHQW FURSV ZDV DV SURILWDEOH DV JURZLQJ D FRPELQDWLRQ RI ORZ PHGLXP DQG KLJK PDQDJHPHQW FURSV 5HWXUQV WR SURGXFWLRQ LQSXWV 7R DVVHVV SURILWDELOLW\ RI FURSn SLQJ SDWWHUQV UHWXUQV WR SURGXFWLRQ LQSXWV VXFK DV IHUWLOL]HU FDVK ODERU DQG PDQDJHPHQW ZHUH FDOFXODWHG LQ WHUPV RI GROODUGFOODU LQYHVWn PHQW ,Q WHUPV RI GROODU UHWXUQ SHU GROODU LQYHVWHG LQ SURGXFWLRQ LQSXWV FURSSLQJ SDWWHUQ +0+0+0 ZDV VLPLODU WR fn'RWK /0/0/0 RU +0/000 7DEOH f 3DODGD HW DO f DOVR UHSRUWHG WKDW LQFUHDVLQJ SURGXFWLRQ LQSXWV VXFK DV IHUWLOL]HU DERYH UHFRPPHQGHG OHYHOV GLG QRW

PAGE 53

7DEOH r 3URGXFWLRQ FRVWV DQG UHWXUQV WR PDQDJHPHQW RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH (/ &URSSLQJ &URS 3URGXFWLRQ LQSXWV *URVV LQFRPH 5HWXUQV WR PDQDJHPHQWn SDWWHUQ 0DWHULDO /DERU 7RWDO +0+0+0 %XOE RQLRQ &RVWV DQG UHWXUQV KD f§ 3ROH EHDQ &ROODUG 7RWDO D\ /0/0/0 (QJOLVK SHD 6RXWKHUQ SHD 6RXWKHUQ SHD 7RWDO E +000/0 %XOE RQLRQ 6TXDVK 6RXWKHUQ SHD 7RWDO E +0/000 %XOE RQLRQ 6RXWKHUQ SHD 0XVWDUG 7RWDO aR E =5HWXUQV WR PDQDJHPHQW *URVV LQFRPH PLQX V WRWDO FRVWV \0HDQ VHSDUDWLRQ RI FURSSLQJ SDWWHUQ E\ 'XQFDQnV PXOWLSOH UDQJH WHVW \r OHYHO

PAGE 54

7DEOH 5HWXUQV WR IHUWLOL]HU FDVK ODERU DQG PDQDJHPHQW RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG B *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ &URS 3URGXFWLRQ LQSXWV )HUWLOL]HU &DVK /DERU 0DQDJHPHQW 5HWXUQV +0+0+0 %XOE RQLRQ 3ROH EHDQ &ROODUG 7RWDO DED D DE DE /0/0/0 (QJOLVK SHD 6RXWKHUQ SHD 6RXWKHUQ SHD 7RWDO D D EH DE +000/0 %XOE RQLRQ 6TXDVK 6RXWKHUQ SHD 7RWDO F E F E +0/000 %XOE RQLRQ 6RXWKHUQ SHD 0XVWDUG 7RWDO EH D D D A0HDQ VHSDUDWLRQ RI FURSSLQJ SDWWHUQV ZLWKLQ HDFK FROXPQ E\ 'XQFDQnV PXOWLSOH UDQJH WHVW b OHYHO

PAGE 55

LQFUHDVH UHWXUQV WR PDQDJHPHQW RU WR YDULRXV SURGXFWLRQ LQSXWV LQ IRXU FURSSLQJ SDWWHUQV 7KXV JURZHUV ZLWK OLPLWHG FDVK UHFHLYH VLPLODU UHWXUQV SHU GROn ODU VSHQW RQ SURGXFWLRQ LQSXWV DV WKRVH JURZHUV ZLWK PRUH DYDLODEOH FDVK UHVRXUFH $OWKRXJK ERWK JURXSV RI JURZHUV DVVXPH ULVN GXULQJ XQIDYRUDEOH FURSSLQJ \HDUV JURZHUV ZKR JURZ KLJK PDQDJHPHQW FURSV ZLOO LQFXU D PXFK JUHDWHU ULVN RI ORVV WKDQ JURZHUV ZLWK OLPLWHG FDVK :LWK OLPLWHG FDVK VPDOOVFDOH JURZHUV EHQHILW IURP JURZLQJ D VHTXHQFH RI ORZ PDQDJHPHQW FURSV EHFDXVH RI ORZ DQG HIILFLHQW UHVRXUFH XVH DQG VWDEOH \LHOGV *URZHUV ZLWK DYDLODEOH FDVK FDQ JURZ ORZ DQG KLJK PDQDJHPHQW FURSV DQG HDUQ D JUHDWHU JURVV LQFRPH LI WKH\ RSHUDWH HIILFLHQWO\

PAGE 56

&+$37(5 ,,, &523 $1' )(57,/,=(5 0$1$*(0(17 /(9(/6 ,1 )285 6(48(17,$/ &5233,1* 3$77(516 ,192/9,1* 9(*(7$%/(6 ,QWURGXFWLRQ 0DQ\ KRUWLFXOWXULVWV ZRUNLQJ ZLWK VPDOOVFDOH YHJHWDEOH JURZHUV LQ WKH WURSLFV DUH FRQFHUQHG ZLWK LPSURYLQJ FURS SURGXFWLRQ DQG SURILn WDELOLW\ RI \HDUURXQG FURSSLQJ V\VWHPV fr 7KHVH FURSSLQJ V\VWHPV RIWHQ LQYROYH WKH VWXG\ RI FURSV JURZQ LQ QXPHURXV PXOWLSOH FURSSLQJ FRPELQDWLRQV UDQJLQJ IURP VLQJOH FURSV JURZQ VHTXHQWLDOO\ WR FURSV JURZQ WRJHWKHU LQ YDULRXV FRPELQDWLRQV f 3URGXFWLYLW\ DQG SURILWDELOLW\ RIWHQ GHSHQG RQ WKH PDQDJHPHQW OHYHO XWLOL]HG E\ IDUPHUV ZKLFK GHSHQGV RQ WKH W\SH RI YHJHWDEOH FURS LWV PDUNHW YDOXH f DQG WKH FDSLWDO ODERU DQG RWKHU SURGXFWLRQ LQSXWV WKDW D IDUPHU DOORn FDWHV WR SURGXFH WKH FURSV f *HQHUDOO\ KLJK YDOXH YHJHWDEOH FURSV VXFK DV WRPDWR DUH JURZQ XVLQJ KLJK PDQDJHPHQW OHYHOV ZKHUHDV ORZ YDOXH FURSV VXFK DV PXQJEHDQ DUH JURZQ XQGHU ORZ PDQDJHPHQW OHYHOV f &URS PDQDJHPHQW LQ YHJHWDEOH SURGXFWLRQ LV RIWHQ OLPLWHG WR VLQJOH FURSV JURZQ LQ PRQRFXOWXUH f +RZHYHU VPDOOVFDOH IDUPHUV DUH RIWHQ HQJDJHG LQ GLYHUVLILHG SURGXFWLRQ LQYROYLQJ VHYHUDO FURS DQG OLYHVWRFN HQWHUSULVHV f 7KHUHIRUH D UHVHDUFK DSSURDFK WKDW LQWHJUDWHV WKH HQWLUH FURS SURGXFWLRQ HQWHUSULVH ZLWK WKH IDUPLQJ V\VWHP DQG WKH IDUPHUnV PDQDJHPHQW VNLOOV LV UHTXLUHG WR GHYHORS DSSURSULDWH WHFKQRORJLHV IRU \HDUURXQG YHJHWDEOH FURSSLQJ V\VWHPV $ FRQFHSWXDO PRGHO RI WKH FURS PDQDJHPHQW DSSURDFK LQ GHYHORSLQJ DSSURSULDWH WHFKQRORJLHV IRU YHJHWDEOH FURSSLQJ V\VWHPV LV SUHVHQWHG LQ

PAGE 57

)LJ r $Q\ YHJHWDEOH FURSSLQJ SDWWHUQ LQYROYLQJ D VLQJOH GRXEOH RU WULSOH FURS RU FRPSOH[ LQWHUFURS ZLOO LQWHUDFW ZLWK WKH ELRORJLFDO SK\VLFDO DQG VRFLRHFRQRPLF IDFWRUV DQG WKH W\SH RI DYDLODEOH WHFKQRn ORJ\ 7KH GHJUHH RI LQWHUDFWLRQ PHDVXUHG LQ WHUPV RI ELRORJLFDO DQG HFRQRPLF SURGXFWLYLW\ GHSHQGV RQ WKH IDUPHUnV VNLOO LQ LQWHJUDWLQJ DQG PDQLSXODWLQJ WKHVH IDFWRUV 7KH FURS PDQDJHPHQW DSSURDFK VHHNV WR LQWHJUDWH D FURSSLQJ SDWWHUQ ZLWK WKH DYDLODEOH UHVRXUFHV SURGXFWLRQ WHFKQRORJLHV DQG VNLOOV ZKLFK XOWLPDWHO\ UHVXOW LQ EHWWHU QXWULWLRQ LPSURYHG IDUP LQFRPH DQG D EDODQFHG HFRORJ\ f ,Q GHYHORSLQJ FRXQWULHV IHUWLOL]HUV FRQVWLWXWH D PDMRU FRVW LQ YHJHWDEOH SURGXFWLRQ IRU PDUJLQDO IDUPHUV &RVW RI KLJK DQDO\VLV IHUWLn OL]HU LV RIWHQ EH\RQG WKHLU PHDQV f $V FKHPLFDO IHUWLOL]HUV EHFRPH PRUH H[SHQVLYH UHVHDUFKHUV DUH GHYHORSLQJ PHWKRGV WR UHGXFH UDWHV RI DSSOLFDWLRQ WKURXJK LPSURYHG FURS DQG VRLO PDQDJHPHQW V\VWHPV f ,QFUHDVLQJ IHUWLOL]HU XVH HIILFLHQF\ DOVR FDQ EH DFKLHYHG WKURXJK HIILFLHQW \HDUURXQG FURSSLQJ SDWWHUQV f )RU H[DPSOH VTXDVK FXFXPEHU FDUURW OHWWXFH DQG RQLRQ UHTXLUHG QR DGGLWLRQDO IHUWLOL]HU ZKHQ SODQWHG DIWHU WRPDWR RQ IXOOEHG SODVWLF PXOFK f 6LPLODUO\ (QJOLVK SHD DQG VRXWKHUQ SHD ZHUH QRW IHUWLOL]HG ZKHQ SODQWHG DIWHU EDUOH\ LQ D WULSOH FURSSLQJ SDWWHUQ f 7KLV VWXG\ ZDV FRQGXFWHG WR GHWHUPLQH DQG HYDOXDWH WKH LQIOXHQFH RI FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV DQG WKHLU LQWHUDFWLRQV RQ SURGXFWLYLW\ LQFRPH DQG VRLO QXWULHQW VWDELOLW\ LQ IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DQG WR GHYHORS DSSURSULDWH FURS DQG IHUWLOL]HU PDQDJHPHQW SUDFWLFHV IRU VHTXHQWLDO FURSSLQJ V\VWHPV IRU 1RUWK )ORULGD

PAGE 58

&5233,1* 3$77(51 &URS $ &URS % &URS & LQWHUDFW ZLWK 3+<6,&$/ 5(6285&(6 62&,2(&2120,& 5(6285&(6 /LJKW S ; 7LPH = ; 7HPSHUDWXUH 6RLO &DVOL :DWHU + 0XU NHO ] ? /DQG &XSLWXO /DERU 6RLO :DWHU UHUWLOXHU :HHG 0DQDJHPHQW 0DQDJHPHQW n 0DQDJHPHQW f 0DQDJHPHQW 7LOODJH _a_ &XOWLYDU ,QVHFW /L 'LVHDVH 0DQDJHPHQW 0DQDJHPHQW Y 352'8&7,21 7(&+12/2*< LQWHJUDWH WKURXJK FURS DQG IDUPHU PXQXJHPHQO VNLOOV 'LXORJLFDO DQG (FRQRPLF 3URGXFWLYLW\ 7U 2Q )LJ r $ FRQFHSWXDO PRGHO RI FURS PDQDJHPHQW DSSURDFK WR YHJHWDEOH FURSSLQJ V\VWHPV UHVHDUFK

PAGE 59

0DWHULDOV DQG 0HWKRGV ([SHULPHQWDO VLWH 7KLV \HDU VWXG\ ZDV FRQGXFWHG DW WKH +RUWLn FXOWXUDO 8QLW RI WKH 8QLYHUVLW\ RI )ORULGD DW *DLQHVYLOOH r n 1 ODWLWXGH r n 9L ORQJLWXGHf EHJLQQLQJ LQ 2FWREHU DQG WHUPLn QDWLQJ LQ 2FWREHU r 7KH FOLPDWH LV ZDUP DYHUDJH PD[ r* PLQ r&f DQG KXPLG DYHUDJH PP UDLQIDOOPRQWKf IURP $SULO WR 6HSWHPEHU ZKHUHDV 2FWREHU WR 0DUFK LV FRRO DYHUDJH PD[ r* PLQ Rr*f DQG GU\ DYHUDJH PP UDLQIDOOPRQWKf 6RLO FKDUDFWHULVWLFV 7KH VRLO ZDV FODVVLILHG DV .DQDSDKD ILQH VDQG ORDP\ VLOLFHRXV K\SHUWKHUPLF *URVVDUHQLF )DOHDXTXXOWf ZLWK b RUJDQLF PDWWHU DQG D *(* RI PHT J f ,QLWLDO VRLO FKHPLFDO DQDO\VLV UHVXOWHG LQ D S+ RI b 1 DQG SSP RI GRXEOHDFLG H[WUDFWDEOH 3 DQG UHVSHFWLYHO\ *ODVVLILFDWLRQ RI YHJHWDEOH FURSV 6LQFH YHJHWDEOH FURSV UHTXLUH GLIIHUHQW OHYHOV RI PDQDJHPHQW WKH\ ZHUH FODVVLILHG LQWR WKUHH PDQDJHn PHQW JURXSV ORZ /0f PHGLXP 00f DQG KLJK +0f 7KHVH PDQDJHPHQW JURXSV ZHUH EDVHG RQ DYHUDJH FRVWV RI IHUWLOL]HUV SHVWLFLGHV FXOWXUDO ODERU DQG \HD[ DYHUDJH KDUYHVWLQJ FRVWV IRU SURGXFLQJ HDFK YHJHWDEOH FURS LQ )ORULGD f )RU H[DPSOH +0 FURSV VXFK DV SROH EHDQ DQG EXOE RQLRQ UHTXLUHG D SURGXFWLRQ FRVW RI KD ZKHUHDV /0 FURSV VXFK DV VRXWKHUQ SHD DQG (QJOLVK SHD UHTXLUHG RQO\ nKD /DERU DQG KDUYHVWn LQJ FRVWV FRQVWLWXWH WKH ODUJHVW SRUWLRQ RI WKH WRWDO SURGXFWLRQ FRVWV 6HOHFWLRQ RI YHJHWDEOH FURSV 6HYHQ YHJHWDEOH FURSV ZHUH VHOHFWHG EDVHG RQ WRWDO SURGXFWLRQ FRVWV DQG PDUNHWLQJ SRWHQWLDOV LQ 1RUWK )ORULGD

PAGE 60

+LJK PDQDJHPHQW FURSV LQFOXGHG n7H[DV *UDQR n EXOR RQLRQ n%OXH /DNHn SROH EHDQ DQG n0RUULV +HDGLQJn FROODUG n(DUO\ *ROGHQ 6XPPHU &URRNQHFNn VTXDVK DQG n)ORULGD &XUOHG /HDIn PXVWDUG ZHUH VHOHFWHG DV 00 FURSV ZKHUHDV n:DQGRn (QJOLVK SHD DQG n=LSSHU &UHDPn VRXWKHUQ SHD ZHUH FODVVLn ILHG DV /0 FURSV 'HVLJQ RI FURSSLQJ SDWWHUQV %DVHG RQ FURS PDQDJHPHQW JURXSLQJ IRXU EDVLF FURSSLQJ SDWWHUQV ZHUH GHYHORSHG XVLQJ FRPELQDWLRQV RI WKUHH FURSV )LJ f &URSSLQJ SDWWHUQ +0+0+0 EXOE RQLRQSROH EHDQFROODUGf ZDV GHVLJQHG WR HVWLPDWH WKH HIIHFW RI +0 FURS VHTXHQFH DQG IHUWLOL]HU LQWHUDFWLRQV RQ WRWDO SURGXFWLYLW\ SURILWDELOLW\ DQG QXWULHQW OHYHOV LQ VRLO :LWKLQ WKLV SDWWHUQ VXEVHTXHQW HIIHFWV RI +0 FURSV RQ VXFFHHGn LQJ FURSV ZHUH REVHUYHG 6LPLODUO\ FURSSLQJ SDWWHUQ /0,0/0 (QJOLVK SHDVRXWKHUQ SHDVRXWKHUQ SHDf ZDV GHVLJQHG WR HVWLPDWH WKH HIIHFWV RI /0 FURS VHTXHQFH RQ WKH VDPH SDUDPHWHUV &URSSLQJ SDWWHUQV +000/0 EXOE RQLRQVTXDVKVRXWKHUQ SHDf DQG +0/000 EXOE RQLRQVRXWKHUQ SHD PXVWDUGf ZHUH GHVLJQHG WR GHWHUPLQH DQG HVWLPDWH WKH HIIHFWV RI FRPELn QDWLRQ RI /0 00 DQG +0 FURSV RQ WKH VDPH SDUDPHWHUV /HYHOV RI IHUWLOL]HUV 7KH FURSV ZHUH IHUWLOL]HG ZLWK ORZ PHGLXP DQG KLJK OHYHOV RI 1 DQG GHSHQGLQJ RQ FURS PDQDJHPHQW JURXSLQJ 7DEOH f! 7KHVH UDWHV ZHUH EDVHG RQ VHYHUDO IHUWLOL]HU DQG YHJHWDEOH SURGXFWLRQ VWXGLHV FRQGXFWHG LQ )ORULGD f )RU HDFK OHYHO WKH FRPELQHG 1 DQG IHUWLOL]HU WUHDWPHQWV ZHUH FRQVLGHUHG DV VLQJOH WUHDWPHQWV 5DWH RI 3 DSSOLFDWLRQ ZDV IL[HG GHSHQGLQJ RQ FURS UHTXLUHPHQW %DVDO IHUWLOL]HU IRU HDFK FURS ZDV DSSOLHG DQG LQFRUSRn UDWHG LQWR WKH VRLO SULRU WR SODQWLQJ 'HSHQGLQJ RQ FURS WKH UHPDLQLQJ

PAGE 61

2&7 129 '(& -$1 )(% 0$5 $35 0$< /nL^ne9nY (MM81 0LO S_ $8* 6)37 2&7 129 %8/% 21,21 +0 (1*/,6+ 3($ /0f %8/% 21,21 +0f %8/% 21,21 +0f \ UVU W 6287+(51 3($ /0f VRXWKHUQ SHD >B /0f fS Y2 )$// :,17(5 635,1* )$// )LJ 3ODQWLQJ VHTXHQFHV RI ORZ PHGLXP DQG KLJK PDQDJHPHQW YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/

PAGE 62

7DEOH 1LWURJHQ DQG SRWDVVLXP OHYHOV IRU ORZ PHGLXP DQG KLJK PDQDJHPHQW FURSV *DLQHVYLOOH )/ r )HUWLOL]HU OHYHO] &URS PDQDJHPHQW OHYHO /RZ 0HGLXP +LJK /RZ O[ [ 0HGLXPA O[ [ [ +LJK [ [ [ A1LWURJHQ DQG SRWDVVLXP LQFUHPHQWV [f ZHUH NJKD DQG NJKD UHVSHFWLYHO\ ‘A0HGLXP IHUWLOL]HU OHYHO ZDV UHJDUGHG DV UHFRPPHQGHG OHYHO IRU HDFK FURS

PAGE 63

DPRXQWV RI IHUWLOL]HU ZHUH VLGH RU WRSGUHVVHG RQFH IRU /0 DQG 0 FURSV EXW WZLFH IRU +0 FURSV GXULQJ HDFK FURS F\FOH ([SHULPHQWDO GHVLJQ $ UDQGRPL]HG EORFN GHVLJQ ZLWK D VSOLW SORW DUUDQJHPHQW DQG IRXU UHSOLFDWLRQV ZDV XVHG 7KH IRXU FURSSLQJ SDWWHUQV ZHUH PDLQ SORWV ZLWKLQ HDFK EORFN DQG WKH WKUHH IHUWLOL]HU OHYHOV ZHUH VXESORWV (DFK VXESORW PHDVXUHG [ P DQG FRQVLVWHG RI WKUHH EHGV FP ZLGH DQG FP KLJK VSDFHG P DSDUW /DQG SUHSDUDWLRQ SODQWLQJ SUDFWLFHV DQG SHVW DQG GLVHDVH FRQWURO ZHUH EDVHG RQ UHFRPPHQGHG SUDFWLFHV DQG PHWKRGV UHSRUWHG E\ 3DODGD HW DO f 'DWD FROOHFWLRQ
PAGE 64

HLWKHU ODERU PDWHULDO RU IHUWLOL]HU FRVWV )RU H[DPSOH UDWHV RI UHWXUQ WR ODERU ZHUH FDOFXODWHG DV IROORZV 5HWXUQ WR ODERU f *URVV UHWXUQ 0DWHULDO FRVW /DERU FRVW 6LPLODUO\ UHWXUQ WR PDWHULDO FDVK ZDV FDOFXODWHG 5HWXUQ WR FDVK f *URVV UHWXUQ /DERU FRVW 0DWHULDO FRVW 3URGXFWLRQ FRVWV DQG PDUNHW SULFHV ,f ZHUH FRPSDUHG ZLWK \HDU DYHUDJHV ,f WR GHWHUPLQH ORQJWHUP SURILWDELOLW\ 6RLO VDPSOLQJ DQG FKHPLFDO DQDO\VHV 6RLOV ZHUH VDPSOHG IURP WKH WRS FHQWHU RI HDFK EHG WR D GHSWK RI FP 6DPSOHV ZHUH RYHQGULHG DW r& IRU KRXUV VFUHHQHG WR SDVV D PHVK VLHYH DQG DQDO\]HG IRU RUJDQLF PDWWHU 20fFRQWHQW WRWDO VROXEOH VDOWV 766f S+ QLWUDWH QLWURJHQ 11f DPPRQLXPQLWURJHQ 1+1f DQG (TXDO YROXPHV RI + VRLO DQG ZDWHU ZHUH SUHSDUHG DV VXVSHQVLRQV IRU GHWHUPLQDWLRQ RI S+ DQG WRWDO VROXEOH VDOWV 6RLO S+ ZDV PHDVXUHG XVLQJ D FRPELQDWLRQ S+ HOHFWURGH 7RWDO VROXEOH VDOWV ZHUH GHWHUPLQHG IURP VRLO VROXWLRQ FRQGXFWLYLW\ UHDGLQJV XVLQJ D VROXEULGJH 2UJDQLF PDWWHU ZDV DQDO\]HG E\ WKH PHWKRG RI :DONOH\ DQG %ODFN DV RXWOLQHG E\ $OOLVRQ f 1LWUDWH DQG DPPRQLXP ZHUH GHWHUPLQHG E\ VWHDP GLVWLOODWLRQ f 3RWDVVLXP ZDV DQDO\]HG DW WKH 6RLO 7HVWLQJ /DERUDWRU\ RI 6RLO 6FLHQFH 'HSDUWPHQW XVLQJ D GRXEOHDFLG H[WUDFWDQW ,f 6WDWLVWLFDO DQDO\VLV RI GDWD $QDO\VHV RI YDULDQFH RQ PDUNHWDEOH \LHOGV DQG VRLO WHVW UHVXOWV ZHUH UXQ E\ FRPSXWHU XVLQJ SURJUDPV IURP WKH 6WDWLVWLFDO $QDO\VLV 6\VWHP f 7UHDWPHQW PHDQV RI PDUNHWDEOH \LHOGV DQG FRVWV DQG UHWXUQV IURP HDFK FURS ZHUH FRPSDUHG XVLQJ 'XQFDQnV

PAGE 65

PXOWLSOH UDQJH WHVW ZKHUHDV WUHDWPHQW PHDQV IURP LQWHUDFWLRQV EHWZHHQ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV ZHUH FRPSDUHG XVLQJ OHDVW VLJQLn ILFDQW GLIIHUHQFH ([FHSW IRU PDUNHWDEOH \LHOGV DOO GDWD ZHUH DQDO\]HG DQG WUHDWPHQW PHDQV FRPSDUHG XVLQJ WKH VWDWLVWLFDO PRGHO IRU VSOLWSORW GHVLJQ 5HVXOWV DQG 'LVFXVVLRQ 6KLIWV LQ 6RLO 3URSHUWLHV 7RWDO VROXEOH VDOWV &URSSLQJ SDWWHUQ +0+0+0 UHVXOWHG LQ KLJKHU 766 DPRQJ WKH IRXU FURSSLQJ SDWWHUQV )LJ ff ,Q FURSSLQJ SDWn WHUQ +0+0+0 DSSOLFDWLRQ RI PHGLXP WR KLJK OHYHOV RI IHUWLOL]HU UHVXOWHG LQ VLJQLILFDQW LQFUHDVH LQ 766 )LJ f} ZKHUHDV QR VLJQLILFDQW GLIIHUHQFHV LQ 766 ZHUH IRXQG DIWHU KDUYHVW RI WKH ILUVW FURSV LQ WKH RWKHU FURSSLQJ SDWWHUQV +LJK VROXEOH VDOWV DIWHU SROH EHDQ DQG FROODUG FDQ EH DWWULEXWHG WR IHUWLOL]HU OHYHO DQG FURS GXUDWLRQ 3ROH EHDQ DQG FROODUG DUH VKRUW PDWXULQJ FURSV FRPSDUHG WR EXOE RQLRQ 7KH ORZ 766 DIWHU EXOE RQLRQ PLJKW KDYH EHHQ WKH UHVXOW RI ORQJ DQG H[WHQGHG FURS GXUDWLRQ ZKLFK HQn KDQFHG PRUH OHDFKLQJ DQG DEVRUSWLRQ RI IHUWLOL]HU VDOWV 6HTXHQWLDO SODQWLQJ RI +0 FURSV LQFUHDVHG VROXEOH VDOW DFFXPXODWLRQ ZKHUHDV VHTXHQWLDO SODQWLQJ RI /0 00 DQG +0 FURSV LQ FRPELQDWLRQ VWDELOL]HG VROXEOH VDOW OHYHOV 3UHYLRXV VWXGLHV f VKRZHG WKDW ODUJH IHUWLOL]HU DSSOLFDWLRQV WR +0 FURSV VXFK DV WRPDWR FDEEDJH DQG FHOHU\ UHVXOWHG LQ KLJK UHVLGXDO VROXEOH VDOWV DW KDUYHVW 6RLO UHDFWLRQ 6RLO UHDFWLRQ S+f ZDV ORZHVW DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV 7DEOH f 'LIIHUHQFHV LQ VRLO S+ DIWHU KDUYHVW

PAGE 66

727$/ 62/8%/( 6$/76 SSPf &5233,1* 3$77(51 +000/0 &5233,1* 3$77(51 +0/000 )LJ 7RWDO VROXEOH VDOWV DIWHU KDUYHVW RI HDFK FURS DV LQn IOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ /HWWHUV RQ WKH EDUV LQGLFDWH PHDQ VHSDUDWLRQ DPRQJ IHUWLOL]HU OHYHOV ZLWKLQ HDFK FURS E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO

PAGE 67

RI ILUVW DQG WKLUG FURSV ZHUH JUHDWHU LQ FURSSLQJ SDWWHUQV +0+0+0 +000/0 DQG +0/000 WKDQ LQ /0/0/0 &URSSLQJ SDWWHUQ /0/0/0 UHVXOWHG LQ S+ DERYH DIWHU WKH WKLUG FURS ZKHUHDV FURSSLQJ SDWWHUQV LQYROYLQJ FRPELQDWLRQV ZLWK +0 FURSV UHVXOWHG LQ S+ EHORZ 7DEOH f ,Q DOO FURSSLQJ SDWWHUQV VRLO S+ WHQGHG WR HTXLOLEUDWH WR LWV LQLWLDO OHYHO DIWHU HDFK \HDU RI FURSSLQJ 7KH ORZ VRLO S+ LQ +0+0+0 FDQ EH DWWULEXWHG WR UHSODFHPHQW RI +rr RQ WKH H[FKDQJH FRPSOH[ DQG E\ K\GURO\VLV RI H[FKDQJHDEOH $ DQG K\GUR[\ $ UHVXOWLQJ IURP KLJK PDQDJHPHQW IHUWLn OL]HU DSSOLFDWLRQ UDWHV 6RLO RUJDQLF PDWWHU 6RLO 0 FRQWHQW GHFUHDVHG ZLWK VXFFHVVLYH FURSSLQJ LQ DOO FURSSLQJ SDWWHUQV H[FHSW IRU FURSSLQJ SDWWHUQ /0/0/0 7DEOH ff $YHUDJH UHGXFWLRQV LQ VRLO 0 FRQWHQW ZHUH JUHDWHU ZLWK FURSSLQJ SDWWHUQ +0+0+0 WKDQ RWKHU FURSSLQJ SDWWHUQV ,Q FRQWUDVW FURSSLQJ SDWWHUQ /00/0 UHVXOWHG LQ LQFUHDVHG VRLO 20 FRQWHQW IURP WR 48• DIWHU KDUYHVW RI WKLUG FURSV $IWHU KDUYHVW RI WKLUG FURSV FURSSLQJ SDWWHUQ +0+0+0 UHVXOWHG LQ VLJQLILFDQWO\ ORZHU 20 FRQ[HQW DPRQJ WKH IRXU FURSSLQJ SDWWHUQV 7DEOH fr )RU HDFK FURSSLQJ SDWWHUQ WKH HIIHFW RI KLJK IHUWLOL]HU OHYHOV JHQHUDOO\ UHVXOWHG LQ JUHDWHU 20 FRQWHQWV DIWHU KDUYHVW RI VHFRQG DQG RKLUG FURSV 7DEOH ff 7KHVH GDWD DUH FRQVLVWHQW ZLWK RWKHU VWXGLHV } f DQG VXJJHVW WKDW 20 VWDELOLW\ FDQ EH DFKLHYHG E\ LQFOXGLQJ YHJHWDEOH OHJXPHV LQ VHTXHQWLDO FURSSLQJ SDWWHUQV 6RLO QLWURJHQ ([FHSW IRU FROODU IHUWLOL]HU OHYHOV KDG QR VLJQLILFDQW LQIOXHQFH RQ VRLO 1 PHDVXUHG DV ++A1 DQG 1R1 )LJ f ,Q FURSSLQJ SDWWHUQ +0+0+0 QLJK VRLO 1 DIWHU &*OODUG ZDV FDXVHG E\ KLJK OHYHOV RI IHUWLOL]HU ,Q DGGLWLRQ UHVLGXDO IHUWLOL]HU IURP

PAGE 68

7DEOH 6RLO S+ DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ +0+0+0 0/0/0 +000/0 +0/000 )HUWLOL]HU &URS OHYHO )LUVW 6HFRQG 7KLUG S+ %\ 2QLRQ 3 %HDQ &ROODUG /RZ D= D D 0HGLXP D D L D +LJK D D D 0HDQ % $ f % 6 3HD 6 3HD 6 3HD /RZ D D D 0HGLXP D D D +LJK D D D 0HDQ $ $ $ 2QLRQ 6TXDVK 6 3HD /RZ D D E 0HGLXP D D E +LJK D D D 0HDQ % $ % % 2QLRQ 6 3HD 0XVWDUG /RZ D D D 0HGLXP D D DE +LJK D D E 0HDQ % $ % AHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ FURSV E\ OHDVW VLJQLILFDQW GLIIHUHQFH DW OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 69

7DEOH m 6RLO RUJDQLF PDWWHU FRQWHQW DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG a! *DLQHVYLOOH )/ &URSSLQJ )HUWLOL]HU &URS SDWWHUQ OHYHO )LUVW 6HFRQG 7KLUG b % 2QLRQ 3 %HDQ &ROODU /RZ D= E D +0+0+0 0HGLXP +LJK D D E D F E 0HDQ $ $ & ( 3HD 6 3HD 6 3HD /RZ D E D /0/0/0 0HGLXP +LJK D D D D E D 0HDQ $ $ $ % 2QLRQ 6TXDVK 6 3HD /RZ D F D +000/0 0HGLXP +LJK D D E D E D 0HDQ $ $ % 2QLRQ 6 3HD 0XVWDUG /RZ D E E +0 /0 00 0HGLXP +LJK D D F D F D 0HDQ $ $ % A0HDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ FURSV E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 70

HQ ‘bL /2: 1. I@ 0(',80 1. A +,*+ 1. Q D Q U 4 A L % 21,21 648$6+ 6 3($ &523),1* 3$77(51 +000/0 )LJ 6RLO QLWURJHQ DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOLVHU PDQDJHPHQW OHYHOV RYHU WZR FURSn SLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ /HWWHUV RQ WKH EDUV LQGLFDWH PHDQ VHSDUDWLRQ DPRQJ IHUWLOL]HU OHYHOV ZLWKLQ HDFK FURS E\ OHDVW VLJQLILn FDQW GLIIHUHQFH MR OHYHO

PAGE 71

SUHYLRXV EXOE RQLRQ DQG SROH EHDQ VLJQLILFDQWO\ FRQWULEXWHG WR KLJKHU VRLO 1 7KHVH UHVXOWV DJUHH ZLWK 5DR DQG 6KDUPD f ZKR UHSRUWHG WKDW VRLO 1 GHFUHDVHG DW ORZ IHUWLOL]HU OHYHOV DIWHU HDFK FURS LQ VL[ FURSSLQJ SDWWHUQV ZKHUHDV VRLO 1 LQFUHDVHG DW KLJK IHUWLOL]HU OHYHOV 6RLO SRWDVVLXP $ FRQVLVWHQW LQFUHDVH LQ GRXEOHDFLG H[WUDFWDEOH VRLO ZDV REVHUYHG ZLWK VXFFHVVLYH FURSSLQJ LQ +0+0+0 EXW QRW ZLWK WKH RWKHU WKUHH FURSSLQJ SDWWHUQV )LJ f )RU HDFK FURSSLQJ SDWWHUQ KLJK IHUWLOL]HU OHYHOV LQFUHDVHG VRLO H[FHSW WKH WKLUG FURS LQ WKH +0 FURSSLQJ SDWWHUQ )LJ f} +RZHYHU UHVLGXDO VRLO UHPDLQHG DOPRVW FRQVWDQW ZLWK VXFFHVVLYH FURSV LQ DOO FURSSLQJ SDWWHUQV H[FHSW WKH +0 FURSSLQJ SDWWHUQ )LJ ff ,Q JHQHUDO UHVLGXDO ZDV KLJKHU WKDQ DSSOLHG IRU WKH /0 FURSSLQJ SDWWHUQ ZKHUHDV +0 DQG 00 YHJHWDEOH FURSV UHTXLUHG VXSSOHPHQn WDO DSSOLFDWLRQV RI DERXW WR NJKD 5HVXOWV IURP WKLV VWXG\ GR QRW DJUHH ZLWK %LVZDV HW DO f DQG 5DR DQG 6KDUPD f ZKR UHSRUWHG WKDW VRLO UHPDLQHG ORZ DIWHU WZR F\FOHV DQG DIWHU KDUYHVW RI GLIIHUHQW FURSV DW YDULRXV IHUWLOL]HU OHYHOV (IIHFWV RI *URR DQG )HUWLOL]HU 0DQDJHPHQW /HYHOV RQ 0DUNHWDEOH
PAGE 72

'28%/W $&,' (;71$&7$%/( SSPf &5233,1* 3$77(51 +000/9, &5&3r1* 3$77(51 +0/000 )LJ r 6RLO SRWDVVLXP DIWHU KDUYHVW RI HDFK FURS DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSn SLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ /HWWHUV RQ WKH EDUV LQGLFDWH PHDQ VHSDUDWLRQ DPRQJ IHUWLOL]HU OHYHOV ZLWKLQ HDFK F[nRS E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO

PAGE 73

WR KLJK UDLQIDOO DQG WHPSHUDWXUH 7DEOH f )HUWLOL]HU OHYHOV GLG QRW LQIOXHQFH SROH EHDQ \LHOG /HDI\ YHJHWDEOH FROODUG UHVSRQGHG HTXDOO\ WR DOO OHYHOV RI IHUWLOL]HU 7DEOH f &URSSLQJ SDWWHUQ /0/0/0 2QO\ (QJOLVK SHD SURGXFHG D ORZ \LHOG DW WKH ORZ IHUWLOL]HU OHYHO 7DEOH f 6XFFHVVLYH SODQWLQJV RI YHJHWDEOH OHJXPHV UHVXOWHG LQ ORZ \LHOG RI WKH WKLUG FURS VRXWKHUQ SHD 7DEOH f 7KLV UHVXOW ZDV FRQVLVWHQW ZLWK SUHYLRXV VWXGLHV f )HUWLOL]HU OHYHOV GLG QRW LQIOXHQFH \LHOGV RI VRXWKHUQ SHD ZKLFK VXSSRUW WKH GDWD UHSRUWHG IURP SUHYLRXV LQYHVWLJDWLRQV f &URSSLQJ SDWWHUQ +000/0 /RZ \LHOG RI EXOE RQLRQ ZDV GXH WR ODWH IDOO SODQWLQJ 7DEOH f &RPELQHG HIIHFWV RI SUHYLRXV VRXWKHUQ SHD UHVLGXH DQG ORZ UHVLGXDO QXWULHQWV LQ VRLO FRQWULEXWHG DOVR WR ORZ \LHOGV /DWH SODQWLQJ SUHGLVSRVHG RQLRQ VHHGOLQJV WR IUHH]LQJ WHPSHn UDWXUHV ZKHUHDV SHD UHVLGXH UHGXFHG JHUPLQDWLRQ DQG VHHGOLQJ VXUYLYDO 6TXDVK SURGXFWLYLW\ ZDV ORZ ZKHQ SODQWHG LQ -XQH EHFDXVH RI KLJK WHPSHn UDWXUH DQG KXPLGLW\ 7DEOH f 7KH KLJK PDQDJHPHQW IHUWLOL]HU OHYHO GLG QRW UHVXOW LQ VLJQLILFDQW \LHOG LQFUHDVH 7DEOH f 6RXWKHUQ SHD SURGXFHG VDWLVIDFWRU\ \LHOGV DIWHU VTXDVK KRZHYHU ORZ \LHOG ZDV REWDLQHG ZLWKRXW IHUWLOL]HU DSSOLFDWLRQ 7DEOH f &URSSLQJ SDWWHUQ +0000 1R VLJQLILFDQW GLIIHUHQFHV LQ \LHOG RI EXOE RQLRQ ZHUH REVHUYHG DV D UHVXOW RI IHUWLOL]HU OHYHOV 7DEOH f 7KHVH \LHOGV KRZHYHU ZHUH JHQHUDOO\ ORZHU WKDQ \LHOGV REWDLQHG IURP FURSSLQJ SDWWHUQ +0+0+0 /RZ \LHOG ZDV WKH UHVXOW RI ODWH SODQWLQJ LQ 1RYHPEHU $ OHZ \LHOG RI VHFRQG FURS VRXWKHUQ SHD ZDV FDXVHG E\ ODWH

PAGE 74

7DEOH 0DUNHWDEOH \LHOGV RI FRPSRQHQW YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ )HUWLOL]HU OHYHO &URS )LUVW 6HFRQG 7KLUG 07KD % 2QLRQ 3 %HDQ &ROODUG /RZ E= D D +0+0+0 0HGLXP D D D +LJK DE D D ( 3HD 6 3HD 6 3HD /RZ E D D /0/0,0 0HGLXP D A f FO D +LJK D D D % 2QLRQ 6TXDVK 3HD /RZ D E E +000/0 0HGLXP D D D +LJK D D D % 2QLRQ 6 3HD 0XVWDUG /RZ D r D +0/000 0HGLXP D D D +LJK D D D AOHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ HDFK FURS E\ 'XQFDQnV PXOWLSOH UDQJH WHVW b OHYHO

PAGE 75

SODQWLQJ LQ -XQH ZKLFK VXEMHFWHG WKH FURS WR KLJK UDLQIDOO DQG WHPSHUDWXUH 0XVWDUG UHVSRQGHG HTXDOO\ WR IHUWLOL]HU OHYHOV 7DEOH O2f )HVRXUFH 8WLOL]DWLRQ RI &URSSLQJ 3DWWHUQV /DERU SURILOH &URSSLQJ SDWWHUQ +0+0+0 ZDV FKDUDFWHUL]HG E\ WKUHH ODERU SHDNV )LJ f 3ODQWLQJ DQG KDUYHVWLQJ FRQVWLWXWHG DQG 6 UHVSHFWLYHO\ RI WKH WRWDO ODERU UHTXLUHPHQWV 7KH KLJK ODERU UHTXLUHG IRU SODQWLQJ DQG KDUYHVWLQJ ZDV GXH WR PDQ\ KRXUV UHTXLUHG IRU WUDQVSODQWLQJ FROODUG KDQGVHHGLQJ SROH EHDQ DQG PXOWLSOH KDUYHVWV RI ERWK FURSV &URSSLQJ SDWWHUQV /0/0/0 +000/0 DQG +0/000 ZHUH FKDUDFWHUn L]HG E\ RQO\ RQH ODERU SHDN IRU KDUYHVWLQJ )LJ f +RZHYHU ODERU UHTXLUHG IRU KDUYHVWLQJ LQ FURSSLQJ SDWWHUQ /0/0/0 ZDV HTXDO WR +0+0+0 EHFDXVH RI PXOWLSOH KDUYHVWV RI WKUHH VXFFHVVLYH YHJHWDEOH OHJXPH FURSV 9HJHWDEOH JURZHUV ZKR KDYH OLPLWHG \HDUURXQG ODERU UHVRXUFHV VKRXOG JURZ D FRPELQDWLRQ RI /0 00 DQG +0 FURSV ZKHUH ODERU GHPDQGV DUH ORZ DQG HYHQO\ GLVWULEXWHG WKURXJKRXW WKH \HDU *URZHUV ZKR KDYH DEXQGDQW ODERU DQG FDVK FDQ SUREDEO\ EHQHILW E\ JURZLQJ +0 YHJHWDEOH FURSV LQ WKHLU \HDUURXQG FURSSLQJ SDWWHUQV *URZHUV ZKR KDYH DEXQGDQW ODERU fRXW DUH OLPLWHG LQ FDVK UHVRXUFH PD\ KDYH DQ DGYDQWDJH E\ JURZLQJ D VHTXHQFH RI /0 YHJHWDEOH FURSV 3URGXFWLRQ FRVWV )RU HDFK FURSSLQJ SDWWHUQ IHUWLOL]HU OHYHOV KDG QR LQIOXHQFH RQ SURGXFWLRQ FRVWV 7DEOH f 7KHUHIRUH FURSSLQJ SDWWHUQV ZHUH FRPSDUHG EDVHG RQ PHDQ SURGXFWLRQ FRVW DFURVV IHUWLOL]HU OHYHOV &URSSLQJ SDWWHUQ +0+0+0 UHTXLUHG WKH KLJKHVW WRWDO PHDQ

PAGE 76

L 3 )) 3O :Of 63 ,5 +$ 35233,1* In$ ,, 51 0 /0/0 /3 QB 3O :Of 3 ,5 &5233,1* 3$ 7) 51 ,,0 +0 +0 +$ G22 R F LU 2 8 L 3 &5233,1* ,5 ,000 )LJ /DERU SURILOH RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ /3ODQG SUHSDUDWLRQ )(IHUWLOL]DWLRQ 3/SODQWLQJ :'ZHHGLQJ 63VSUD\LQJ ,5LUULJDWLQJ +$QDUYHVWLQJ e

PAGE 77

SURGXFWLRQ FRVW RI KD ZKLFK ZDV VLJQLILFDQWO\ GLIIHUHQW IURP WKH RWKHU WKUHH FURSSLQJ SDWWHUQV 7DEOH f ([FHSW IRU PDWHULDO FRVW FURSSLQJ SDWWHUQV /0/0/0 +000/0 DQG +0/000 ZHUH VLPLODU LQ FXOWXUDO DQG KDUYHVW ODERU FRVWV 7DEOH f ,Q WHUPV RI KDUYHVW ODERU FRVW WKH IRXU FURSSLQJ SDWWHUQV ZHUH VLPLODU DOWKRXJKn FURSSLQJ SDWWHUQV +0+0+0 DQG ,0/0/0 UHTXLUHG PRUH KDUYHVW ODERU ,Q JHQHUDO SURGXFWLRQ FRVW GDWD LQGLFDWHG WKDW SODQWLQJ +0 YHJHWDEOH FURSV LQ \HDUURXQG FURSSLQJ SDWWHUQV UHTXLUHG KLJK FDVK DQG ODERU LQSXWV EXW SODQWLQJ D FRPELQDWLRQ RI /0 00 DQG +0 UHGXFHG WRWDO SURGXFWLRQ FRVWV E\ DERXW bf ,QFRPH DQG 5HWXUQV WR 3URGXFWLRQ ,QSXWV *URVV DQG QHW LQFRPH *URVV DQG QHW LQFRPHV ZHUH VLJQLILFDQWO\ KLJKHU LQ FURSSLQJ SDWWHUQ +0+0+0 WKDQ WKH RWKHU WKUHH FURSSLQJ SDWWHUQV f &URSSLQJ SDWWHUQV /0/0,0 +000/0 DQG +0/000 UHVXOWHG LQ VWDWLVWLFDOO\ VLPLODU JURVV LQFRPH DOWKRXJK FURSSLQJ SDWWHUQ +000/0 SURGXFHG WKH ORZHVW JURVV LQFRPH 7DEOH f 7KH ORZ JURVV LQFRPH IURP SDWWHUQ +000/0 ZDV FDXVHG E\ ORZ PDUNHWDEOH \LHOGV RI EXOE RQLRQ DQG VTXDVK 5HJDUGOHVV RI IHUWLOL]HU OHYHOV WKH EHVW SDWWHUQ VHHPHG WR EH +0+0+0 LI JURZHUV FRQVLGHU WRWDO QHW LQFRPH DV WKH FULWHULRQ IRU SURILWDELOLW\ +RZHYHU WKLV SDWWHUQ UHTXLUHG WKH KLJKHVW WRWDO FRVWV DQG ODERU LQSXWV 7DEOH f &URSSLQJ SDWWHUQ +0,000 QHWWHG KD LQFRPH EXW WRWDO SURGXFWLRQ FRVWV ZHUH ORZHU WKDQ +0+0+0 DQG \LHOGV ZHUH VWDEOH WKDQ WKH RWKHU FURSSLQJ SDWWHUQV

PAGE 78

7DEOH 3URGXFWLRQ FRVWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG *DLQHVYLOOH )/ &URSSLQJ )HUWLOL]HU 3URGXFWLRQ LQSXWV 7RWDO SDWWHUQ OHYHO 0DWHULDO &XOWXUDO ODERU +DUYHVW ODERU FRVW &RVWV KD +0+0+0 /RZ 0HGLXP +LJK 0HDQ D= D D $ D D D $ D D D $ D D D $ /0/0/0 /RZ 0HGLXP +LJK D D D D D D D F D D D D D 0HDQ & % $ +000/0 /RZ 0HGLXP +LJK 0HDQ D D D % D D D % D D D $ D D D % +0/000 /RZ 0HGLXP +LJK D D D D D D D D D D D D 0HDQ % $ % UU *OHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ HDFK FURSSLQJ SDWWHUQ E\ OHDVW VLJQLILFDQW GLIIHUHQFH OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 79

7DEOH *URVV DQG QHW LQFRPHV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ &URSSLQJ SDWWHUQ +0+0+0 ,0/0/0 +000/0 +0/000 )HUWLOL]HU 7RWDO OHYHO FRVW /RZ D= 0HGLXP D +LJK D 0HDQ $ /RZ D 0HGLXP D +LJK D 0HDQ % /RZ D 0HGLXP D +LJK D 0HDQ % /RZ D 0HGLXP D +LJK 0HDQ D % ,QFRPH *URVV 1HW KD E D D D D D $ $ D D D D D D % D D D D D D % D D D D D D % % AHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ HDFK FURSSLQJ SDWWHUQ E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 80

5HWXUQV WR SURGXFWLRQ LQSXWV ([FHSW IRU FDVK UHWXUQV WR IHUWLn OL]HU ODERU DQG PDQDJHPHQW RQ D GROODUKD EDVLV ZHUH QRW VLJQLILFDQWO\ LQIOXHQFHG E\ IHUWLOL]HU OHYHOV 7DEOH f &RPSDULQJ UHWXUQV WR IHUWLn OL]HU FDVK DQG ODERU RQ WKH EDVLV RI WRWDO PHDQ LQGLFDWHG WKDW FURSSLQJ SDWWHUQ +0+0+0 SURGXFHG D KLJKHU UHWXUQ WR SURGXFWLRQ LQSXWV 7DEOH f &URSSLQJ SDWWHUQ +000/0 UHVXOWHG LQ ORZHVW UHWXUQV WR IHUWLOL]HU FDVK ODERU DQG PDQDJHPHQW 7DEOH f 5DWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV 5DWH RI UHWXUQ WR SURn GXFWLRQ LQSXWV H[SUHVVHG LQ WHUPV RI GROODUGROODU LV D PHDVXUH RI UHWXUQ SHU XQLW LQYHVWPHQW RI SURGXFWLRQ LQSXWV 7KLV SURYLGHV D PHDVXUH RI UHVRXUFH XVH HIILFLHQF\ IRU HDFK FURSSLQJ SDWWHUQ DQG LV XVHIXO LQ FRPSDULQJ HFRQRPLF SHUIRUPDQFH RI FURSSLQJ SDWWHUQV 5DWHV RI UHWXUQ WR IHUWLOL]HU ZHUH LQIOXHQFHG E\ IHUWLOL]HU OHYHOV LQ FURSSLQJ SDWWHUQ +0+0+0 DQG /0/0/0 EXW QRW LQ +000/0 DQG +0/000 7DEOH f 5DWHV RI UHWXUQ WR IHUWLOL]HU GHFUHDVHG ZLWK LQFUHDVLQJ IHUWLOL]HU OHYHOV IRU HDFK FURSSLQJ SDWWHUQ $PRQJ FURSSLQJ SDWWHUQ PHDQV UDWHV RI UHWXUQ WR IHUWLOL]HU ZHUH VLJQLILFDQWO\ KLJKHU ZLWK /0/0/0 WKDQ WKH RWKHU WKUHH SDWWHUQV 7KLV VXJJHVWHG WKDW JURZHUV ZLWK OLPLWHG IHUWLOL]HU LQSXW FDQ PDNH PRUH HIILFLHQW XVH RI WKLV OLPLWLQJ UHVRXUFH E\ JURZLQJ D VHTXHQFH RI /0 FURSV ZKHUHDV JURZHUV ZKR DGRSW FURSSLQJ SDWWHUQV +0+0+0 DQG +0/000 FDQ SURILW E\ UHGXFLQJ IHUWLOL]HU DSSOLFDWLRQ $OWKRXJK FURSSLQJ SDWWHUQ +0+0+0 SURGXFHG KLJK UHWXUQ WR FDVK RQ D GROODUKD EDVLV 7DEOH f UDWHV RI UHWXUQ WF FDVK RQ D GROODUGROODU EDVLV GLG QRW GLIIHU ZLWK SDWWHUQ /0/0/0 7DEOH f )RU HYHU\ GROODU VSHQW RQ FDVK LQSXW SDWWHUQ +0+0+0 UHVXOWHG LQ

PAGE 81

7DEOH 5HWXUQV WR SURGXFWLRQ LQSXWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ &URSSLQJ )HUWLOL]HU 3URGXFWLRQ LQSXWV SDWWHUQ OHYHO )HUWLOL]HU *DVK /DERU 0DQDJHPHQW 5HWXUQV KD /RZ D= E D D +0+0+0 0HGLXP D D D D +LJK D E I A FO D 0HDQ $ $ $ $ /RZ D D D D /0/0/0 0HGLXP +LJK D D D D D D D D 0HDQ %& %& % %& /RZ D D D D +000/0 0HGLXP D D D D +LJK D D D D 0HDQ & * /RZ D E D D +0,000 0HGLXP D DE D D +LJK D D D D 0HDQ % % % % AOHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ HDFK FURSSLQJ SDWWHUQ E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 82

7DEOH 5DWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DV LQIOXHQFHG E\ FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RYHU WZR FURSSLQJ F\FOHV LQ WKH SHULRG } *DLQHVYLOOH )/ &URSSLQJ )HUWLOL]HU 3URGXFWLRQ LQSXWV SDWWHUQ OHYHO )HUWLOL]HU &DVK /DERU 0DQDJHPHQW 5HWXUQV /RZ D= D D D +0+0+0 0HGLXP D D E E +LJK E D F F 0HDQ % $ $ $ /RZ D O D E D /0/0/0 0HGLXP E D E D +LJK F D D D 0HDQ $ $% $ $ /RZ D D D D +000/0 0HGLXP +LJK D D D D D D D D 0HDQ & & $ /RZ D D EH D +0/000 0HGLXP D D E D +LJK D D D D 0HDQ % % $ $ PHDQ VHSDUDWLRQ LQ FROXPQV ZLWKLQ HDFK FURSSLQJ SDWWHUQ E\ OHDVW VLJQLILFDQW GLIIHUHQFH b OHYHO )HUWLOL]HU PHDQV ORZHU FDVH OHWWHUVf FURSSLQJ SDWWHUQ PHDQV XSSHU FDVH OHWWHUVf

PAGE 83

ZKHUHDV UDWH IRU /0/0/0 ZDV 7DEOH f 5DWHV RI UHWXUQ WR FDVK ZHUH VLPLODU IRU FURSSLQJ SDWWHUQV /0,0/0 DQG +0/000 ZKHUHDV +000/0 SURYLGHG WKH ORZHVW UDWH RI UHWXUQ WR FDVK LQSXW *URZHUV ZLWK OLPLWHG FDVK RIWHQ DGRSW FURSSLQJ SDWWHUQV ZLWK KLJK FDVK UHWXUQV ([FHSW IRU FURSSLQJ SDWWHUQ +000/0 UDWHV RI UHWXUQ WR ODERU ZHUH LQIOXHQFHG E\ IHUWLOL]HU OHYHOV ZLWKLQ FURSSLQJ SDWWHUQ EXW QRW DPRQJ FURSSLQJ SDWWHUQV 7DEOH f ,Q FURSSLQJ SDWWHUQ +0+0+0 LQFUHDVLQJ IHUWLOL]HU OHYHOV VLJQLILFDQWO\ GHFUHDVHG UDWHV RI UHWXUQ WR ODERU ZKHUHDV WKH UHYHUVH ZDV WUXH LQ FURSSLQJ SDWWHUQ /0/0/0 DQG +0/000 7KXV LW SD\V WR LQFUHDVH IHUWLOL]HU OHYHOV ZKHQ ODERU LV OLPLWHG IRU FURSSLQJ SDWWHUQV LQYROYLQJ /0 DQG D FRPELQDWLRQ RI /0 00 DQG +0 YHJHWDEOH FURSV ([FHSW IRU FURSSLQJ SDWWHUQ +0+0+0 IHUWLOL]HU OHYHOV GLG QRW DIIHFW UDWHV RI UHWXUQ WR PDQDJHPHQW 7DEOH f ,Q FURSSLQJ SDWWHUQ +0+0+0 LQFUHDVLQJ IHUWLOL]HU OHYHOV GHFUHDVHG UDWHV RI UHWXUQ WR PDQDJHPHQW 7KXV JURZHUV ZKR IDFH FRQVWUDLQWV WR PDQDJHPHQW FDQ PDNH PRUH HIILFLHQW XVH RI WKHLU PDQDJHPHQW VNLOOV E\ UHGXFLQJ UDWHV RI IHUWLOL]HU LI WKH\ JURZ D VHTXHQFH RI +0 YHJHWDEOH FURSV $PRQJ FURSSLQJ SDWWHUQV +0+0+0 /0/0/0 DQG +0/000 DYHUDJH UDWHV RI UHWXUQ WR PDQDJHPHQW ZHUH VLPLODU 7DEOH f 7KLV LPSOLHV WKDW ORZODERU DQG ORZFDVK UHTXLULQJ FURSSLQJ SDWWHUQV DUH DV HIILFLHQW DQG SURILWDEOH DV FURSSLQJ SDWWHUQV UHTXLULQJ KLJK ODERU DQG KLJK FDVK LQSXWV 7KHUHIRUH JURZHUV ZLWK OLPLWHG UHVRXUFHV FDQ JURZ D VHTXHQFH RI /0 RU D FRPELQDWLRQ RI /0 00 DQG +0 YHJHWDEOH FURSV DQG REWDLQ SURILWDEOH HFRQRPLF UHWXUQV ZLWKRXW QHFHVVDULO\ LQFUHDVLQJ SURGXFWLRQ LQSXWV VXFK DV IHUWLOLVHU

PAGE 84

(FRQRPLF ,PSOLFDWLRQV (FRQRPLF HYDOXDWLRQ RI IRXU FURSSLQJ SDWWHUQV EDVHG RQ FRVWV DQG UHWXUQV DQDO\VLV LQGLFDWHG WKDW UHVRXUFH XVH LQFRPH DQG UHWXUQV WR SURGXFWLRQ LQSXWV ZHUH LQIOXHQFHG E\ PDQDJHPHQW OHYHO DVVRFLDWHG ZLWK FURS JURXSLQJ DQG OHYHOV RI FRPSRQHQW WHFKQRORJ\ ZLWKLQ HDFK JURXS $OWKRXJK OHYHOV RI FRPSRQHQW WHFKQRORJ\ VXFK DV IHUWLOL]HU PDQDJHPHQW GLG QRW FDXVH VLJQLILFDQW GLIIHUHQFHV LQ PDUNHWDEOH \LHOGV UHVRXUFH XVH LQ WHUPV RI SURGXFWLRQ FRVWV DQG UDWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV IRU FURSSLQJ SDWWHUQV ZHUH DIIHFWHG E\ IHUWLOL]HU OHYHOV 7KLV LPSOLHV WKDW LQVLJQLILFDQW GLIIHUHQFH LQ DJURQRPLF \LHOGV PD\ VRPHWLPHV EH PLVLQWHUSUHWHG LQ HFRQRPLF WHUPV HVSHFLDOO\ ZKHQ WKH JURZHU EDVHV SURGXFWLRQ GHFLVLRQV RQ HFRQRPLF FULWHULD &URSSLQJ SDWWHUQV LQYROYLQJ +0 YHJHWDEOH FURSV DUH KLJKO\ SURn GXFWLYH DQG SURILWDEOH EXW PD\ QRW EH PRUH HIILFLHQW LQ WHUPV RI UHVRXUFH XVH DQG UDWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV WKDQ FURSSLQJ SDWWHUQV LQYROYLQJ /0 DQG D FRPELQDWLRQ RI +0 00 DQG /0 YHJHWDEOH FURSV 7KLV ZDV VKRZQ E\ KLJK WRWDO PDUNHWDEOH \LHOG DQG JURVV DQG QHW LQFRPHV EXW QRQVLJQLILFDQW UDWHV RI UHWXUQ WR IHUWLOL]HU FDVK ODERU DQG PDQDJHn PHQW LQ FURSSLQJ SDWWHUQ +0+0+0 :LWK LQFUHDVLQJ FRVWV RI SURGXFWLRQ LQSXWV YHJHWDEOH JURZHUV ZLWK OLPLWHG FDVK IRU SXUFKDVLQJ WKHVH LQSXWV ZLOO KDYH DQ DGYDQWDJH E\ SODQWLQJ HLWKHU D VHTXHQFH RI /0 RU D FRPELn QDWLRQ RI /0 00 DQG +0 FURSV IRU \HDUURXQG FURSSLQJ SDWWHUQV *URZHUV ZKR KDYH DYDLODEOH SURGXFWLRQ UHVRXUFHV FDQ EHQHILW PRUH E\ UHGXFLQJ OHYHOV RI SURGXFWLRQ LQSXWV VXFK DV IHUWLOL]HU LI WKH\ JURZ D VHTXHQFH RI +0 YHJHWDEOH FURSV

PAGE 85

7KLV VWXG\ VKRZHG WKDW FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV FDQ LQIOXHQFH SURGXFWLYLW\ SURILWDELOLW\ DQG LQFRPH LQ \HDUURXQG FURSn SLQJ V\VWHPV LQYROYLQJ YHJHWDEOHV 7KXV HFRQRPLF UHWXUQV DUH D IXQFWLRQ RI IDUPHUnV LQWHJUDWLRQ DQG PDQLSXODWLRQ RI FRPSRQHQW WHFKQRn ORJ\ OHYHOV DQG WKHLU LQWHUDFWLRQ ZLWK ELRORJLFDO SK\VLFDO DQG VRFLRn HFRQRPLF IDFWRUV ,Q XQGHUVWDQGLQJ DQG LPSURYLQJ PDQDJHPHQW RI YHJHWDEOHV LQ \HDUURXQG FURSSLQJ V\VWHPV KRUWLFXOWXULVWV FDQ VWXG\ RWKHU DVSHFWV RI FRPSRQHQW WHFKQRORJLHV VXFK DV LQVHFW SHVW GLVHDVH ZHHG DQG ZDWHU PDQDJHPHQW WKURXJK MRLQW HIIRUW ZLWK HQWRPRORJLVWV SODQW SDWKRORJLVWV ZHHG VFLHQWLVWV DQG HFRQRPLVWV 7KURXJK MRLQW UHVHDUFK HIIRUWV WHFKQRn ORJLHV FDQ EH GHYHORSHG DQG EHFRPH PRUH UHOHYDQW DQG DSSURSULDWH IRU VPDOOVFDOH YHJHWDEOH IDUPHUV

PAGE 86

6800$5< $1' &21&/86,216 $ \HDU VWXG\ RQ IRXU YHJHWDEOH FURSSLQJ SDWWHUQV ZDV FRQGXFWHG DW WKH +RUWLFXOWXUDO 8QLW RI WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH LQ WR f 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR HYDOXDWH SURGXFWLYn LW\ UHVRXUFH XVH DQG SURILWDELOLW\ RI VHYHUDO YHJHWDEOH FURSV SODQWHG LQ IRXU \HDUURXQG FURSSLQJ SDWWHUQV IRU 1RUWK )ORULGD WR GHWHUPLQH DQG HYDOXDWH WKH LQIOXHQFH RI FURS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV RQ SURGXFWLYLW\ LQFRPH DQG QXWULHQW OHYHOV LQ VRLO IURP IRXU YHJHWDEOH FURSSLQJ SDWWHUQV DQG WR GHYHORS DSSURSULDWH FURS DQG IHUWLOL]HU PDQDJHn PHQW SUDFWLFHV IRU VHTXHQWLDO YHJHWDEOH FURSSLQJ V\VWHPV 7R DFKLHYH WKH ILUVW REMHFWLYH VHYHQ YHJHWDEOH FURSV LQFOXGLQJ EXOE RQLRQ SROH EHDQ FROODUG FURRNQHFN VTXDVK (QJOLVK SHD PXVWDUG DQG VRXWKHUQ SHD ZHUH FODVVLILHG LQWR ORZ /0f PHGLXP 00f DQG KLJK +0f PDQDJHPHQW JURXSV 7KHVH PDQDJHPHQW JURXSV ZHUH EDVHG RQ DYHUDJH FRVWV RI IHUWLOL]HUV SHVWLFLGHV FXOWXUDO ODERU DQG D \HDU DYHUDJH KDUYHVWLQJ FRVWV IRU SURGXFLQJ HDFK YHJHWDEOH FURS )RXU EDVLF FURSSLQJ SDWWHUQV ZHUH GHYHORSHG XVLQJ FRPELQDWLRQV RI VHYHQ YHJHWDEOH FURSV 7ZR FURSSLQJ SDWWHUQV ZHUH WKUHH .0 FURSV SODQWHG LQ VHTXHQFH EXOE RQLRQSROH EHDQFROODUGf DQG WKUHH /0 FURSV SODQWHG LQ VHTXHQFH (QJOLVK SHDVRXWKHUQ SHDVRXWKHUQ SHDf 7KH RWKHU WZR FURSSLQJ SDWWHUQV ZHUH D FRPELQDWLRQ RI /0 00 DQG +L FURSV SODQWHG LQ VHTXHQFH DV IROORZV +000/0 EXOE RQLRQVTXDVKVRXWKHUQ SHDf DQG +0/000 EXOE RQLRQVRXWKHUQ SHDPXVWDUGf 7KH IRXU FURSSLQJ SDWWHUQV ZHUH DUUDQJHG LQ D UDQGRPL]HG EORFN GHVLJQ ZLWK IRXU UHSOLFDWLRQV 7R DFKLHYH WKH VHFRQG DQG WKLUG REMHFWLYHV WKUHH OHYHOV RI IHUWLOL]HU 1

PAGE 87

DQG ORZ PHGLXP DQG KLJKf ZHUH VXSHULPSRVHG RQ HDFK RI WKH IRXU FURSSLQJ SDWWHUQ PDLQ SORWV 7KH ORQJHVW FURSSLQJ GXUDWLRQ ZDV GD\V LQ FURSSLQJ SDWWHUQ +0+0+0 ZKLOH WKH VKRUWHVW GXUDWLRQ RI GD\V ZDV REVHUYHG LQ FURSn SLQJ SDWWHUQV /0/0,0 DQG +0/000 &URSV JURZQ GXULQJ ZLQWHU KDG SURORQJHG JURZLQJ SHULRGV ZKLFK GHOD\HG WKH SODQWLQJ RI VHFRQG FURSV LQ FURSSLQJ SDWWHUQV LQYROYLQJ EXOE RQLRQ ,Q JHQHUDO PDUNHWDEOH \LHOGV RI YHJHWDEOHV ZHUH DIIHFWHG E\ SODQWLQJ GDWHV &URSSLQJ SDWWHUQV LQYROYLQJ EXOE RQLRQ UHVXOWHG LQ ODWH SODQWLQJ DQG UHGXFHG \LHOGV RI VHFRQG FURSV &URSSLQJ SDWWHUQV LQYROYLQJ ODUJH FURS UHVLGXHV DOVR GHOD\HG SODQWLQJ RI VXFFHHGLQJ FURSV %XOE RQLRQ SURGXFHG ORZHU \LHOG ZKHQ SODQWHG DIWHU VRXWKHUQ SHD ZKHUH ODUJH FURS UHVLGXH UHPDLQHG LQ WKH VRLO WKDQ RQLRQ SODQWHG DIWHU FROODUG DQG PXVWDUG +LJK UDLQIDOO DQG WHPSHUDWXUH DW IORZHULQJ DQG SRG VHW UHVXOWHG LQ ORZ \LHOGV RI SROH EHDQ LQ ERWK \HDUV 0DUNHWDEOH \LHOG DYHUDJHG RQO\ PHWULF WRQVKD LQ DQG PHWULF WRQVKD LQ 7KHVH \LHOGV ZHUH ORZHU WKDQ WKRVH REWDLQHG IURP QRUPDO VSULQJ SODQWLQJ LQ )ORULGD 0DUNHWDEOH \LHOGV RI (QJOLVK SHD ZHUH ORZHU LQ WKDQ LQ EHFDXVH SURORQJHG ORZ WHPSHUDWXUH VHYHUHO\ UHWDUGHG HDUO\ JURZWK ZKLFK SUHGLVSRVHG VRPH SODQWV WR NLOOLQJ IURVW LQ -DQXDU\ DQG )HEUXDU\
PAGE 88

WR LQFUHDVHG \LHOGV LQ WKDQ LQ ,Q JHQHUDO WKH WKLUG FURS RI VRXWKHUQ SHD SURGXFHG ORZ \LHOGV &URSSLQJ SDWWHUQ /0/0/0 SURYLGHG VRPH ELRORJLFDO VWDELOLW\ EXW \LHOGV RI VRXWKHUQ SHD GHFUHDVHG ZLWK VXFFHVVLYH SODQWLQJV $ KLJK GHJUHH RI ELRORJLFDO VWDELOLW\ ZDV REVHUYHG LQ FURSSLQJ SDWWHUQ +0/000 ,Q FURSSLQJ SDWWHUQV +0+0+0 DQG +000/0 LQFOXVLRQ RI SROH EHDQ DQG VTXDVK UHVXOWHG LQ XQVWDEOH \LHOGV GXH WR LPSURSHU WLPH RI SODQWLQJ &URS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV VLJQLILFDQWO\ LQIOXHQFHG WRWDO VROXEOH VDOWV 766f &URSSLQJ SDWWHUQ +0+0+0 UHVXOWHG LQ KLJKHU 766 DPRQJ WKH IRXU FURSSLQJ SDWWHUQV 'LIIHUHQFHV ZHUH DSSDUHQW DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV )HUWLOL]HU OHYHOV VLJQLILFDQWO\ DIIHFWHG 766 RQO\ LQ FURSSLQJ SDWWHUQ +0+0+0 ZKHUH KLJK OHYHOV RI IHUWLOL]HU ZHUH DSSOLHG +LJK 766 ZDV GXH WR KLJK UDWHV RI IHUWLOL]HU DQG FURS GXUDWLRQ LQ SDWWHUQ +0+0+0 7KH VKRUWHU WKH FURS GXUDWLRQ WKH KLJKHU WKH 766 FRQWHQW ,Q JHQHUDO VRLO S+ GHFUHDVHG DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV 'LIIHUHQFHV LQ VRLO S+ DIWHU ILUVW DQG WKLUG FURSV ZHUH KLJKHU LQ DOO FURSSLQJ SDWWHUQV H[FHSW /0/0/0 &URSSLQJ SDWWHUQ /0/./0 PDLQWDLQHG VRLO S+ DERYH ZKHUHDV FURSSLQJ SDWWHUQV LQYROYLQJ +0 DQG D FRPELQDWLRQ RI +0 00 DQG /0 FURSV UHVXOWHG LQ S+ EHORZ DIWHU WKH WKLUG FURS )HUWLOLVHU OHYHOV VLJQLILFDQWO\ DIIHFWHG VRLO S+ RQO\ DIWHU WKH KDUYHVW RI WKLUG FURSV EXW WKHUH ZDV QR WHQGHQF\ IRU S+ WR GHFUHDVH RU LQFUHDVH ZLWK LQFUHDVLQJ IHUWLOL]HU OHYHOV 6RLO RUJDQLF PDWWHU 20f FRQWHQW GHFUHDVHG ZLWK VXFFHVVLYH FURSn SLQJ LQ DOO FURSSLQJ SDWWHUQV H[FHSW IRU /0/0,0 'LIIHUHQFHV DPRQJ FURSSLQJ SDWWHUQV ZHUH VLJQLILFDQW DIWHU KDUYHVW RI WKLUG FURSV 6RLO 20 GHFUHDVHG IURP WR EHWZHHQ WKH ILUVW DQG WKLUG FURSV LQ

PAGE 89

+0+0+0 ZKHUHDV VRLO 20 LQFUHDVHG IURP WR b LQ /0/0,0 +LJK 20 FRQWHQW LQ SDWWHUQ /0/0/0 ZDV SUREDEO\ GXH WR ODUJH DPRXQW RI FURS UHVLGXHV IURP VRXWKHUQ SHDV (IIHFW RI IHUWLOL]HU OHYHOV RQ VRLO 20 ZDV DSSDUHQW DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV LQ DOO FURSSLQJ SDWWHUQV $IWHU KDUYHVW RI VHFRQG FURSV VRLO 20 FRQWHQW ZDV VLJQLILn FDQWO\ KLJKHU DW KLJK WKDQ DW ORZ IHUWLOL]HU OHYHO EXW WKLV WUHQG ZDV QRW FRQVLVWHQW DW KDUYHVW RI WKLUG FURSV 6LJQLILFDQW GLIIHUHQFHV LQ VRLO QLWURJHQ 1f ZHUH REVHUYHG DPRQJ FURSSLQJ SDWWHUQV DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV &URSSLQJ SDWn WHUQV +0+0+0 DQG +0/000 UHVXOWHG LQ VLJQLILFDQWO\ KLJKHU VRLO 1 WKDQ /0/0/0 DQG +000/0 DIWHU KDUYHVW RI VHFRQG FURSV $IWHU KDUYHVW RI WKLUG FURSV KLJKHVW VRLO 1 SSPf ZDV PHDVXUHG LQ +0+0+0 /RZ VRLO 1 ZDV REVHUYHG LQ FURSSLQJ SDWWHUQV +000/0 +0/000 DQG /0/0/0 HYHQ DIWHU KDUYHVW RI WKLUG FURSV 'LIIHUHQFHV LQ VRLO 1 ZHUH RQO\ REVHUYHG DIWHU FROODUG LQ +0+0+0 $SSOLFDWLRQ RI ORZ PHGLXP RU KLJK IHUWLOL]HU OHYHO UHVXOWHG LQ VLPLODU VRLO 1 DIWHU HDFK FURS LQ FURSSLQJ SDWWHUQV /0/0/0 DQG +0/000 $ FRQVLVWHQW LQFUHDVH LQ VRLO ZDV REVHUYHG ZLWK VXFFHVVLYH FURSSLQJ LQ +0+0+0 EXW QRW ZLWK WKH RWKHU FURSSLQJ SDWWHUQV 6RLO LQFUHDVHG IURP SSP DIWHU EXOE RQLRQ WR SSP DIWHU FROODUG ,Q JHQHUDO VRLO ZDV ORZHVW ZLWK /0/0/0 ZKHUH ORZ OHYHOV RI IHUWLOL]HU ZHUH DSSOLHG EXW DIWHU KDUYHVW RI VHFRQG DQG WKLUG FURSV VRLO ZDV QRW GLIIHUHQW EHWZHHQ FURSSLQJ SDWWHUQV /0/0/0 DQG +000/0 6RLO ZDV LQIOXHQFHG E\ IHUWLOL]HU OHYHOV LQ WKDW LQFUHDVLQJ IHUWLOL]HU OHYHO LQFUHDVHG VRLO IRU HDFK FURS LQ DOO FURSSLQJ SDWWHUQV $SSOLFDWLRQ RI PHGLXP WR KLJK OHYHOV RI IHUWLOL]HU XVXDOO\ UHVXOWHG LQ KLJKHU VRLO WKDQ ORZ IHUWLOL]HU OHYHO 7KH UHVLGXDO VRLO OHYHOV IURP DOO

PAGE 90

IHUWLOL]HU WUHDWPHQWV ZHUH KLJKHU WKDQ DSSOLHG LQGLFDWLQJ WKDW IHUWL OL]HU LV OHVV OLPLWLQJ FRPSDUHG WR 1 IHUWLOL]HU LQ VHTXHQWLDO FURSSLQJ 7KH RYHUDOO HIIHFWV RI IHUWLOL]HU OHYHOV RQ PDUNHWDEOH \LHOGV RI YHJHWDEOH FURSV LQ IRXU FURSSLQJ SDWWHUQV LQGLFDWHG WKDW PRUH UHVSRQVHV ZHUH REVHUYHG RQ ILUVW FURSV WKDQ RQ VHFRQG DQG WKLUG FURSV 'LIIHUHQFH LQ \LHOG UHVSRQVHV GXH WR IHUWLOL]HU OHYHOV ZHUH QRW FRQVLVWHQW ZLWK GLIIHUHQFHV LQ VRLO WHVW YDOXHV IRU 1 DQG ,PSURYHG \LHOGV RI FURSV LQ IRXU FURSSLQJ SDWWHUQV ZHUH DFKLHYHG DW PHGLXP IHUWLOL]HU OHYHO DOWKRXJK PRVW \LHOGV REWDLQHG IURP WKLV OHYHO ZHUH QRW VLJQLILFDQWO\ KLJKHU WKDQ \LHOGV DW ORZ IHUWLOL]HU OHYHO $SSOLFDWLRQ RI KLJK IHUWLn OL]HU UDWH EH\RQG WKH PHGLXP OHYHO UHVXOWHG LQ QR DGGLWLRQDO \LHOG LQFUHDVH IRU PRVW FURSV /DERU UHTXLUHPHQW DQG WRWDO SURGXFWLRQ FRVWV ZHUH VLJQLILFDQWO\ KLJKHU LQ FURSSLQJ SDWWHUQ +0+0+0 WKDQ ,0/0/0 +000/0 DQG +0 /000 DW DOO IHUWLOL]HU OHYHOV )RU HDFK FURSSLQJ SDWWHUQ LQFUHDVLQJ OHYHO RI IHUWLOL]HU GLG QRW VLJQLILFDQWO\ LQFUHDVH WRWDO SURGXFWLRQ FRVWV ,Q JHQHUDO FURSSLQJ SDWWHUQ +0+0+0 SURGXFHG KLJK JURVV DQG QHW LQFRPH DQG UHWXUQV WR SURGXFWLRQ LQSXWV ([FHSW IRU FDVK UHWXUQV WR IHUWLOL]HU ODERU DQG PDQDJHPHQW ZHUH QRW LQIOXHQFHGn E\ IHUWLOL]HU OHYHOV IRU HDFK FURSSLQJ SDWWHUQ $OWKRXJK FURSSLQJ SDWWHUQ +0+0+0 SURGXFHG KLJK JURVV DQG QHW LQFRPHV DQG UHWXUQV WR SURGXFWLRQ LQSXWV RQ D GROLDUGRLODU EDVLV UDWHV RI UHWXUQV WR IHUWLOL]HU FDVK ODERU DQG PDQDJHPHQW GLG QRW GLIIHU ZLWK SDWWHUQV ,0/0/0 DQG +0,000 5DWHV RI UHWXUQ WR IHUWLOL]HU GHFUHDVHG ZLWK LQFUHDVLQJ IHUWLOL]HU OHYHO IRU HDFK FURSSLQJ SDWWHUQ

PAGE 91

5DWHV RI UHWXUQ WR FDVK ZHUH QRW LQIOXHQFHG E\ IHUWLOL]HU OHYHOV ZLWKLQ HDFK FURSSLQJ SDWWHUQ EXW DPRQJ FURSSLQJ SDWWHUQV UDWHV RI UHWXUQ WR FDVK ZHUH VLJQLILFDQWO\ GLIIHUHQW &URSSLQJ SDWWHUQ +0+0+0 KDG VLPLODU UDWHV RI UHWXUQ WR FDVK DV WKH /0/0/0 5DWHV RI UHWXUQ WR ODERU ZHUH LQIOXHQFHG E\ IHUWLOL]HU OHYHOV ZLWKLQ HDFK FURSSLQJ SDWWHUQ EXW QRW DPRQJ FURSSLQJ SDWWHUQV ,Q FURSn SLQJ SDWWHUQ +0+0+0 LQFUHDVLQJ IHUWLOL]HU OHYHO VLJQLILFDQWO\ GHFUHDVHG UDWHV RI UHWXUQ WR ODERU ,Q FURSSLQJ SDWWHUQV /0/0/0 DQG +0/000 KLJK IHUWLOL]HU OHYHO UHVXOWHG LQ KLJKHU UDWH RI UHWXUQ WR ODERU WKDQ PHGLXP DQG ORZ OHYHOV 5DWHV RI UHWXUQ WR PDQDJHPHQW ZHUH QRW DIIHFWHG E\ IHUWLOL]HU OHYHOV H[FHSW IRU FURSSLQJ SDWWHUQ +0+0+0 ZKHUH LQFUHDVLQJ IHUWLOL]HU OHYHOV GHFUHDVHG UDWHV RI UHWXUQ WR PDQDJHPHQW %DVHG RQ WKH UHVXOWV REWDLQHG IURP WKLV VWXG\ WKH IROORZLQJ FRQFOXVLRQV FDQ EH GUDZQ &ODVVLI\LQJ YHJHWDEOHV DFFRUGLQJ WR ORZ PHGLXP DQG KLL PDQDJHPHQW JURXSV DQG JURZLQJ WKHP LQ VHTXHQWLDO FURSSLQJ SDWWHUQV LQIOXHQFHG SURGXFWLYLW\ DQG UHODWLYH HFRQRPLF UHWXUQV ,Q WKLV VWXG\ WKH VHTXHQFH RI +0 YHJHWDEOH FURSV LQFUHDVHG WRWDO VROXEOH VDOWV VRLO 1 DQG EXW GHFUHDVHG VRLO S+ DQG 20 FRQWHQW 7KLV VXJJHVWHG WKDW DGGLWLRQDO IHUWLOL]HU DSSOLFDWLRQV PLJKW QRW KDYH EHHQ UHTXLUHG IRU VXFFHHGLQJ FURSV LQ FURSSLQJ SDWWHUQV LQYROYLQJ +0 FURSV ,QFUHDVLQJ IHUWLOL]HU DSSOLFDWLRQ DERYH WKH UHFRPPHQGHG OHYHOV GLG QRW LQFUHDVH PDUNHWDEOH \LHOGV RI YHJHWDEOH FURSV LQ WKLV VWXG\ 9HJHWDEOH FURSV WKDW EHORQJ WR DQ\ RI WKH PDQDJHPHQW JURXSV GLG QRW UHVSRQG WR KLJK OHYHOV RI DSSOLHG IHUWLOL]HU ZKHQ JURZQ LQ VHTXHQWLDO

PAGE 92

FURSSLQJ SDWWHUQV ,Q WKLV VWXG\ DSSOLFDWLRQV RI WKH VDPH UDWH RI IHUWLOL]HUV WR HDFK FURS LQ VHTXHQWLDO FURSSLQJ SDWWHUQV ZLWK +0 YHJHWDEOH FURSV ZHUH QRW SURILWDEOH 5HVLGXDO IHUWLOL]HU IURP SUHYLRXV FURSV VKRXOG EH FRQVLGHUHG LQ IRUPXODWLQJ IHUWLOL]HU UDWHV IRU VXFFHHGLQJ FURSV 6XFFHVVLYH SODQWLQJV RI UHODWHG /0 FURSV VXFK DV (QJOLVK SHD DQG VRXWKHUQ SHD LQ D \HDUURXQG FURSSLQJ SDWWHUQ UHVXOWHG LQ ORZ \LHOGV RI VXFFHVVLYH FURSV &URSSLQJ SDWWHUQV LQYROYLQJ +0 YHJHWDEOH FURSV ZHUH KLJKO\ SURGXFWLYH DQG SURILWDEOH EXW ZHUH QRW PRUH HIILFLHQW WKDQ FURSSLQJ SDWWHUQV LQYROYLQJ /0 DQG D FRPELQDWLRQ RI +0 00 DQG /0 YHJHWDEOH FURSV LQ WHUPV RI UHVRXUFH XVH DQG UDWHV RI UHWXUQ WR SURGXFWLRQ LQSXWV 7KH ORZODERU DQG ORZFDVK UHTXLULQJ FURSSLQJ SDWWHUQV ZHUH DV HIILFLHQW DQG SURILWDEOH DV FURSSLQJ SDWWHUQV UHTXLULQJ KLJK ODERU DQG FDVK LQSXWV 7KHUHIRUH YHJHWDEOH JURZHUV ZLWK OLPLWHG UHVRXUFHV FDQ JURZ D VHTXHQFH RI /0 RU D FRPELQDWLRQ RI +0 00 DQG /0 FURSV DQG LPSURYH WKHLU LQFRPH ZLWKRXW DGGLWLRQDO SURGXFWLRQ FRVWV

PAGE 93

/,7(5$785( &,7(' $FKDU\D & 0 $ -KD DQG 6 3 -DLQ r 6WXGLHV RQ WKH EXLOGLQJ XS RI VRLO IHUWLOLW\ E\ SKRVSKDWLF IHUWLOL]DWLRQ RI OHJXPHV ,QIOXHQFH RI D OHJXPH URWDWLRQ RQ WKH RUJDQLF PDWWHU OHYHO RI WKH VRLO ,QGLDQ 6RF 6RLO 6FL $LQD ) 6RLO FKDQJHV UHVXOWLQJ IURP ORQJWHUP PDQDJHn PHQW SUDFWLFHV LQ :HVWHUQ 1LJHULD 6RLO 6FL 6RF $P $NKDQGD $ 0 7 0DXFR 9 ( *UHHQ -U DQG 0 3ULQH } 5HOD\ LQWHUFURSSLQJ SHDQXW VR\EHDQ VZHHW SRWDWR DQG SLJHRQ SHD LQ FRUQ 3URF 6RLO DQG &URS 6FL 6RF )OD $OOLVRQ ) ( f 2UJDQLF FDUERQ S LQ & $ %ODFN ' (YDQV / :KLWH / ( (QVPLQJHU DQG ) ( &ODUN HGVf 0HWKRGV RI 6RLO $QDO\VLV 3DUW &KHPLFDO DQG 0LFURELRORJLFDO 3URSHUWLHV $PHU 6RF RI $JURQ 0DGLVRQ :, $QGUHZV 3 DQG $ + .DVVDP 7KH LPSRUWDQFH RI PXOWLSOH FURSSLQJ LQ LQFUHDVLQJ ZRUOG IRRG VXSSOLHV S LQ 5 3DSHQGLFN 3 $ 6DQFKH] DQG % 7ULSOHWW HGVf 0XOWLSOH &URSSLQJ 6SHF 3XE $PHU 6RF $JURQ 0DGLVRQ :, $VLDQ 9HJHWDEOH 5HVHDUFK DQG 'HYHORSPHQW &HQWHU $QQXDO 5HSRUW 6KDQKXD 7DLZDQ 5HS RI &KLQD $\FDUGR + % A 5HOD\ LQWHUFURSSLQJ RI VZHHW FRUQ ZLWK RWKHU YHJHWDEOH FURSV 0 6 7KHVLV 8QLYHUVLW\ RI WKH 3KLOLSSLQHV DW /RV %DQRV 3KLOLSSLQHV %DNHU ( ) DQG : 1RUPDQ &URSSLQJ V\VWHPV LQ 1RUWKHUQ 1LJHULD S A LQ ,QWHUQDWLRQDO 5LFH 5HVHDUFK ,QVWLWXWH 3URFHHGLQJV RI WKH &URSSLQJ 6\VWHPV :RUNVKRS /RV %DQRV 3KLOLSSLQHV %DQWD 5 &RPSDULVRQ RI SRZHU VRXUFHV LQ PXOWLSOH FURSn SLQJ ,55, 6DWXUGD\ 6HPLQDU 3DSHU ,QW 5LFH 5HV ,QVW /FV %DQFV 3KLOLSSLQHV %DUEHU 6 $ &RUQ UHVLGXH DQG VRLO RUJDQLF PDWWHU $JURQ %DUU $ + *RRGQLJKW 3 6DLO : + %ODLU DQG 0 &KLONR 6$6 8VHUfV *XLGH (GLWLRQ 7 +HOZLJ fDQG $ &RXQFLO HGVf 6WDWLVWLFDO $QDO\VLV 6\VWHP ,QVW 5DOHLJK 1 &

PAGE 94

%DYDVNDU 9 6 DQG =HQGH r 6RLO IHUWLOLW\ XQGHU FRQWLQXRXV PDQXULQJ DQG FURSSLQJ ,QGLDQ $JU 6FL %HOO 5 6 7 ( 2GODQG DQG $ / 2ZHQV $ KDOI FHQWXU\ RI FURS URWDWLRQ H[SHULPHQWV 5KRGH ,VODQG $JU ([SW 6WD %XL %LVZDV & 5 6 6HNKRQ DQG 5 6LQJK $FFXPXODWLRQ DQG GHFOLQH RI DYDLODEOH SKRVSKRUXV DQG SRWDVVLXP LQ D VRLO XQGHU PXOWLSOH FURSSLQJ ,QGLDQ 6RF 6RLO 6FL %RXUNH 5 0 $ ORQJ WHUP URWDWLRQ WULDO LQ 1HZ %ULWDLQ 3DSXD 1HZ *XLQHD /RZODQGV $JU ([SW 6WD (HUDZDW (DVW 1HZ %ULWDLQ 3DSXD 1HZ *XLQHD %UDGILHOG 5 0D[LPL]LQJ IRRG SURGXFWLRQ WKURXJK PXOWLSOH FURSSLQJ V\VWHPV FHQWHUHG RQ ULFH S LQ 5LFH 6FLHQFH DQG 0DQ ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV %UDQWOH\ % % 5HVSRQVHV RI VRXWKHUQ SHDV WR SKRWRSHULRG DQG QLWURJHQ 3URF $PHU 6RF +RUW 6FL %UHPQHU 0 } ,QRUJDQLF IRUPV RI QLWURJHQ S LQ $ %ODFN ' (YDQV / :KLWH / ( (QVPLQJHU DQG ) ( &ODUN HGVf 0HWKRGV RI 6RLO $QDO\VLV 3DUW &KHPLFDO DQG 0LFURELRORJLFDO 3URSHUWLHV $PHU 6RF RI $JUFQ 0DGLVRQ :, %URRNH / &RVWV DQG UHWXUQV IURP YHJHWDEOH FURSV LQ )ORULGD 6HDVRQ ZLWK FRPSDULVRQV (FRQ ,QIR 5SW )RRG DQG 5HVRXUFH (FRQ 'HSW ,)$6 8QLY RI )ORULGD *DLQHVYLOOH %U\DQ + + (IIHFW RI SODVWLF PXOFK RQ WKH \LHOG RI VHYHn UDO YHJHWDEOH FURSV LQ 1RUWK )ORULGD 3URF )OD 6WDWH +RUW 6RF DQG 3 'DOWRQ
PAGE 95

*DONLQV 3 + :K\ IDUPHUV SODQW ZKDW WKH\ GR $ VWXG\ RI YHJHWDEOH SURGXFWLRQ WHFKQRORJ\ LQ 7DLZDQ $95'& 7HFK %XL f 6KDQKXD 7DLZDQ 5HS RI &KLQD ‘ ,PSURYLQJ VPDOOVFDOH WRPDWR SURGXFWLRQ LQ WKH WURSLFV S LQ VW ,QWHUQDWLRQDO 6\PSRVLXP RQ 7URSLFDO 7RPDWR $VLDQ 9HJHWDEOH 5HVHDUFK DQG 'HYHORSPHQW &HQWHU 6KDQKXD 7DLZDQ 5HS RI &KLQD &DUDQGDQJ $ 3URVSHFWV RI PXOWLSOH FURSSLQJ LQ WKH 3KLOLSSLQHV 3KLO (FRQ &DUOLVOH 9 : & ( %HHPDQ + +HUEHUW DQG ( / +LQWRQ 6RLO LGHQWLILFDWLRQ KDQGERRN +\SHUWKHUPLF WHPSHUDWH ]RQH 6RLO 6FLHQFH 'HSW ,)$6 8QLY RI )ORULGD *DLQHVYLOOH &KDUUHDX & 6\VWHPV RI FURSSLQJ LQ WKH GU\ WURSLFDO ]RQH RI :HVW $IULFD ZLWK VSHFLDO UHIHUHQFH WR 6HQHJDO S LQ ,QWHUQDWLRQDO :RUNVKRS RQ )DUPLQJ 6\VWHPV ,QW &URSV 5HV ,QVW IRU WKH 6HPL$ULG 7URSLFV ,&5,6$7f +\GHUDEDG ,QGLD &ROHWWH $ : 9HJHWDEOH FURS SURGXFWLRQ EXGJHWV IRU VPDOO IDUPV LQ 1RUWK )ORULGD 6WDII 3DSHU r )RRG DQG 5HV (FRQ 'HSW ,)$6 8QLY RI )ORULGD *DLQHVYLOOH DQG ( $ULDV 5HJLRQDO WHUPLQDO PDUNHW JURZWK SRWHQWLDO IRU 1RUWK )ORULGD SURGXFHG YHJHWDEOHV 3URF )OD 6WDWH +RUW 6RF &RQVXOWDWLYH *URXS RQ ,QWHUQDWLRQDO $JULFXOWXUDO 5HVHDUFK 7HFKQLFDO $GYLVRU\ &RPPLWWHH )DUPLQJ V\VWHPV UHVHDUFK DW WKH LQWHUQDWLRQDO DJULFXOWXUDO UHVHDUFK FHQWHUV $QDO\VLV E\ WKH 7$& 5HYLHZ 7HDP RI IDUPLQJ V\VWHPV UHVHDUFK DW &,$7 ,,7$ ,&5,6$7 DQG ,55, :RUOG %DQN :DVK & &RUJDQ 1 DQG ,]TXLHUGR r %ROWLQJ FRQWURO E\ HWKH SKRQ LQ IDOOSODQWHG VKRUWGD\ RQLRQV $PHU 6RF +RUW 6FL &VL]LQV]N\ $ $ 8WLOL]DWLRQ RI UHVLGXDO IHUWLOL]HUV RI D IDOO WRPDWR FURS E\ GLUHFW VHHGHG DQG WUDQVSODQWHG YHJHWDEOHV $5(& %UDGHQWRQ 5HVHDUFK 5SW *& ,)$6 8QLY RI )ORULGD %UDGHQWRQ )/ (IIHFW RI VDOW RQ VHHG JHUPLQDWLRQ DQG WUDQVSODQW VXUYLYDO RI YHJHWDEOH FURSV )ORULGD 6FLHQWLVW

PAGE 96

'DOU\PSOH 6XUYH\ RI PXOWLSOH FURSSLQJ LQ OHVV GHYHn ORSHG QDWLRQV 86'$ DQG 86$,' :DVK 'DYLV 5 DQG ( 0LFNHOVRQ r $ FOLPDWRORJLFDO VXPPDU\ IRU WKH 1RUWK )ORULGD ([SHULPHQW 6WDWLRQ 1RUWK )ORULGD ([SW 6WD 0LPHR 5SW 1)6 4XLQF\ ), 'LOORQ / 7KH HFRQRPLFV RI V\VWHPV UHVHDUFK $JU 6\VWHPV 'RGG 5 DQG * 3RKOPDQ } 6RPH IDFWRUV DIIHFWLQJ WKH LQIOXHQFH RI VR\EHDQ RDWV DQG RWKHU FURSV RQ WKH VXFFHHGLQJ FURS :HVW 9LUJLQLD $JU ([SW 6WD %XL r 'ROO ( & DQG / $ /LQN r ,QIOXHQFH RI YDULRXV OHJXPHV RQ WKH \LHOGV RI VXFFHHGLQJ FRP DQG ZKHDW DQG QLWURJHQ FRQn WHQW RI WKH VRLO $JURQ } 'RZQV % + 0 -DFREVRQ DQG 3 ( :DJJRQHU 5RWDn WLRQV RUJDQLF PDWWHU DQG YHJHWDEOHV &RQQ $JU ([SW 6WD &LU 'XEHW] 6 & .X]XE DQG ) 'RUPDDU } (IIHFWV RI IHUWLOL]HU EDUQ\DUG PDQXUH DQG FURS UHVLGXHV RQ LUULJDWHG FURS \LHOGV DQG VRLO FKHPLFDO SURSHUWLHV &DQ 6RLO 6FL (GPRQG +LJKOLJKWV RI WKH VPDOO IDUPHU SURJUDP LQ ,)$6 &HQWHU IRU &RPPXQLW\ DQG 5XUDO 'HYHORSPHQW )ORULGD &RRS ([W 6HU 8QLY RI )ORULGD *DLQHVYLOOH (YHUHWW 3 + )HUWLOL]LQJ WRPDWRHV RU FXFXPEHUV DV VHFRQG FURSV RQ SODVWLF PXOFKHG EHGV 3URF )OD 6WDWH +RUW 6RF )HXHU 5 DQG 5 $ 2ERUGR 7KH PXOWLSXUSRVH 5LFH 0LFURNLWV $JURQ $EVW $P 6RF RI $JURQ 0DGLVRQ :, )ORULGD$JULFXOWXUDO 6WDWLVWLFV 9HJHWDEOH VXPPDU\ )ORULGD &URS DQG /LYHVWRFN 5HSRUWLQJ 6HUYLFH 2UODQGR ), )ORULGD 9HJHWDEOH 5HSRUW } )HGHUDO 0DUNHW 1HZV 6HUYLFH 1RUWK 3DOP %HDFK ), )RRG DQG )HUWLOL]HU 7HFKQRORJ\ &HQWHU RI WKH $VLDQ DQG 3DFLILF 5HJLRQ 0XOWLSOH &URSSLQJ 6\VWHPV LQ 7DLZDQ 7DLSHL 7DLZDQ 5HS RI &KLQD )UDQFLV & $ A} ,PSDFW RI QHZ WHFKQRORJ\ RQ VPDOOIDUP DJULFXOWXUH S aLA LQ 3URF ,QWHUQDWLRQDO :RUNVKRS RQ )DUPLQJ 6\VWHPV ,&5,6$7 +\GHUDEDG ,QGLD

PAGE 97

)UDQFLV $ 0XOWLSOH FURSSLQJ SRWHQWLDOV RI EHDQV DQG PDL]H +RUW6FLHQFH )XOOHU $ DQG $QGUHZ 9HJHWDEOH PDUNHWLQJ DQG SURGXFWLRQ LQ &ROXPELD 6XZDQQHH +DPLOWRQ DQG 0DGLVRQ FRXQWLHV 3URF )OD 6WDWH +RUW 6RF *DOODKHU 5 1 } 7ULSOH FURSSLQJ LQ WKH *HRUJLD 3LHGPRQW *HRUJLD $JU 5HV r r 6RLO IHUWLOLW\ PDQDJHPHQW RI GRXEOH FURSn SLQJ V\VWHPV 5HV 5SW 'HSW RI $JURQRP\ ([SHULPHQW *$ *HUDOGVRQ 0 (IIHFWV RI VDOW DFFXPXODWLRQ LQ VDQG\ VSRGRVROV RQ WRPDWR SURGXFWLRQ 3URF 6RLO DQG &URS 6FL 6RF )OD *RPH] $ $ &URSSLQJ V\VWHPV DSSURDFK WR SURGXFWLRQ SURJUDP 7KH 3KLOLSSLQH H[SHULHQFH S BLQ 3URFHHGn LQJV 6\PSRVLXP RQ &URSSLQJ 6\VWHPV 5HVHDUFK DQG 'HYHORSPHQW IRU WKH $VLDQ 5LFH )DUPHU ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV r *XLODUWH 7 & 5 ( 3HUH]/HY\ DQG 0 3ULQH 6RPH GRXEOH FURSSLQJ SRVVLELOLWLHV XQGHU LUULJDWLRQ GXULQJ WKH ZDUP VHDVRQ LQ 1RUWK DQG :HVW )ORULGD )URF 6RLO DQG &URS 6FL 6RF )OD A *X]PDQ 9 / DQG 1 +D\VOLS (IIHFW RI WLPH RI VHHGLQJ DQG YDULHWLHV RQ RQLRQ SURGXFWLRQ DQG TXDOLW\ ZKHQ JURZQ LQ WZR VRLO W\SHV 3URF )OD 6WDWH +RUW 6RF +DOO 9 / r 'HVLJQLQJ DGDSWLYH UHVHDUFK IRU GHYHORSLQJ FRXQWULHV $JUQQ $EVW $PHU 6RF RI $JURQ 0DGLVRQ :, +DOVH\ / + 9DULHW\ WHVWV RI FRPPHUFLDO W\SHV DQG QHZ EUHHGLQJ OLQHV RI VRXWKHUQ SHD 3URF )OD 6WDWH +RUW 6RF r L ,QIOXHQFH RI QLWURJHQ IHUWLOL]DWLRQ DQG VHHG LQRFXODWLRQ OHYHOV RQ \LHOG RI VRXWKHUQ SHDV 3URF $PHU 6RF +RUW 6FL ,, 6RXWKHUQ SHD YDULHWLHV FXOWXUH DQG KDUYHVWn LQJ DV UHODWHG WR SURGXFWLRQ IRU KDQGOLQJ DQG SURFHVVLQJ 3URF )OD 6WDWH +RUW 6RF } 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD 9,, 5RRW DQG EXOE FURSV 5HV 5SW 9& ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH

PAGE 98

+DOVH\ / + 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD 9, /HDI FURSV 5HV 5SW 9& ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH } DQG 5 .RVWHZLF] ([WHQGLQJ WKH SURGXFWLRQ VHDVRQ RI YHJHWDEOHV LQ 1RUWK )ORULGD 3URF )OD 6WDWH +RUW 6RF DQG 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD ,9 /HJXPHV 5HV 5SW 9& ,, ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH DQG 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD ,, 6RODQDFHRXV FURSV 5HV 5SW 9& ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH DQG 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD ,9 &XFXUELWV 5HV 5SW 9& ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH DQG r 6HDVRQDO UHVSRQVH RI YHJHWDEOH FURSV IRU VHOHFWHG FXOWLYDUV LQ 1RUWK )ORULGD 9 &UXFLIHUV 5HV 5SW 9& f ,)$6 9HJ &URSV 'HSW 8QLY RI )ORULGD *DLQHVYLOOH +DUZRRG 5 5 5HVRXUFH XWLOL]DWLRQ DSSURDFK WR FURSSLQJ V\VWHPV LPSURYHPHQW S LQ ,QWHUQDWLRQDO :RUNVKRS RQ )DUPLQJ 6\VWHPV ,&5,6$7 +\GHUDEDG ,QGLD L r )DUP RULHQWHG UHVHDUFK DLPHG DW FURS LQWHQn VLILFDWLRQ S LQ 3URF RI WKH &URSSLQJ 6\VWHPV :RUNn VKRS ,55, /RV %DQRV 3KLOLSSLQHV DQG ( & 3ULFH 0XOWLSOH FURSSLQJ LQ WURn SLFDO $VLD S LQ 5 3DSHQGLFN $ 6DQFKHV DQG % 7ULSOHWW HGVf 0XOWLSOH &URSSLQJ 6SHF 3XE $PHU 6RF $JURQ 0DGLVRQ :, +DYDQDJL 9 DQG + 6 0DQQ (IIHFW RI URWDWLRQ DQG FRQWLQXRXV DSSOLFDWLRQ RI PDQXUHV DQG IHUWLOL]HUV RQ VRLO SURSHUWLHV XQGHU GRU\ IDUPLQJ FRQGLWLRQV ,QGLDQ 6RF 6RLO 6FL +D\DPL $ } &URSSLQJ VHTXHQFHV DQG WKHLU HIIHFW RQ VRLO IHUn WLOLW\ )RRG DQG )HUWLOL]HU 7HFK &HQWHU $VLDQ 3DFLILF 5HJ 7HFK %XL 7DLSHL 7DLZDQ 5HS RI &KLQD

PAGE 99

r +D\VOLS 1 ( +RGJHV : -RQHV DQG $ ( .UHWVFKPHU -U 7RPDWR DQG SDQJOD JUDVV URWDWLRQ IRU VDQG\ VRLOV RI 6RXWK )ORULGD 8QLY RI )ORULGD $JU ([SW 6WD &LU 6f DQG 5 ,OH\ 8VH RI SODVWLF VWULSV RYHU IHUWLOL]HU EDQGV WR UHGXFH OHDFKLQJ 3URF )OD 6WDWH +RUW 6RF r +HDWKFRWH 5 6RLO IHUWLOLW\ XQGHU FRQWLQXRXV FXOWLYDWLRQ LQ 1RUWKHUQ 1LJHULD 7KH UROH RI RUJDQLF PDQXUHV ([SW $JU +HUUHUD : 7 =DQGVWUD DQG 6 3 /LERRQ 7KH PDQDJHPHQW RI PXQJEHDQV LQ ULFHEDVHG FURSSLQJ V\VWHPV S ,,+ LQ 7KH )LUVW ,QWHUQDWLRQDO 6\PSRVLXP RQ 0XQJEHDQ $95'& 6KDQKXD 7DLZDQ 5HS RI &KLQD +LOGHEUDQG 3 ( $ PXOWLGLVFLSOLQDU\ PHWKRGRORJ\ IRU JHQHUDWLQJ QHZ WHFKQRORJ\ IRU VPDOO WUDGLWLRQDO IDUPHUV $ SDSHU SUHVHQWHG DW WKH FRQIHUHQFH RQ GHYHORSLQJ HFRQRPLHV LQ DJUDULDQ UHJLRQV $ VHDUFK IRU PHWKRGRORJ\ 7KH 5RFNHIHOn OHU )RXQGDWLRQ &RQIHUHQFH &HQWHU %HOODJLR ,WDO\ 0XOWLSOH FURSSLQJ V\VWHPV DUH GROODUV DQG VHQVH DJURQRP\ S ALQn5 3DSHQGLFN 3 $ 6DQFKH] DQG % 7ULSOHWW HGVf 0XOWLSOH &URSSLQJ 6SHF 3XE $PHU 6RF $JU RQ 0DGLVRQ :, } *HQHUDWLQJ VPDOO IDUPV WHFKQRORJ\ LQ LQWHJUDWHG PXOWLGLVFLSOLQDU\ V\VWHP 3DSHU JLYHQ DW WK :HVW ,QGLDQ $JU (FRQ &RQIHUHQFH $QWLJXD *HQHUDWLQJ WHFKQRORJ\ IRU WUDGLWLRQDO IDUPHUV 7KH *XDWHPDODQ H[SHULHQFH 6\PSRVLXP RQ 6RFLRn HFRQRPLF &RQVWUDLQWV WR &URS 3URWHFWLRQ 1LQWK ,QWHUQDWLRQDO &RQJUHVV RI 3ODQW 3URWHFWLRQ :DVK & +RXVHU ) $ VWDQGDUG JXLGH WR VRLO IHUWLOLW\ LQYHVWLn JDWLRQV RQ IDUPHUV ILHOGV 6RLOV %XL 1R )RRG DQG $JU 2UJ 5RPH ,WDO\ +XGJHQV 5 ( $GDSWLQJ DJURQRPLF WHFKQRORJ\ IRU VPDOO IDUP EHDQ SURGXFWLRQ LQ KLJKODQG &RORPELD 3K 'LVVHUWDWLRQ 8QLY RI )ORULGD *DLQHVYLOOH ,55, $QQXDO 5HSRUW IRU ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV $QQXDO 5HSRUW IRU ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV

PAGE 100

,55, $QQXDO 5HSRUW IRU r ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV $QQXDO 5HSRUW IRU r ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV -DQHV % ( r 9HJHWDEOH URWDWLRQ VWXGLHV LQ &RQQHFWLFXW ,, 3URF $PHU 6RF +RUW 6FL V 9HJHWDEOH URWDWLRQ VWXGLHV LQ &RQQHFWLFXW ,,, (IIHFW RI VZHHW FRUQ DQG YHWFK RQ WKH JURZWK RI VHYHUDO FURSV ZKLFK IROORZ 3URF $PHU 6RF +RUW 6FL -KXQMKXQZDOD % 0LQLPXP FURSODQG UHTXLUHPHQWV IRU VSHFLn ILHG LQFRPH OHYHOV LQ VHOHFWHG FRXQWLHV RI 1RUWK DQG :HVW )ORULGD 0 6 7KHVLV 8QLY RI )ORULGD *DLQHVYLOOH -RKQVRQ / DQG 5 & $WNLQVRQ 9HJHWDEOH FRVW DQDO\n VLV )DUP 0DQDJHPHQW 'HSW *HRUJLD &RRS ([W 6HU 0LVH 5SW 1R -RQHV 0 (IIHFWV RI SUHYLRXV FURS RQ \LHOG DQG QLWURJHQ UHVSRQVH RI PDL]H DW 6DPDUX 1LJHULD ([SW $JU .DVV & / 3RO\FXOWXUH FURSSLQJ V\VWHPV 5HYLHZ DQG DQDO\VLV &RUQHOO ,QWHUQDWLRQDO $JU %XL 1HZ
PAGE 101

f /HYLQV 5 $ DQG 5 'RZQV r 0DQDJHPHQW KDQGERRN IRU VPDOO IDUPV LQ )ORULGD )ORULGD &RRS ([W 6HU )RRG DQG 5HVRXUFH (FRQ 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH /LQ & ) 7 6 /HH :DQJ $ + &KDQJ DQG < &KHQJ } (IIHFWV RI VRPH ORQJ WHUP IHUWLOL]HU WUHDWPHQWV RQ WKH FKHPLn FDO SURSHUWLHV RI VRLO DQG \LHOG RI ULFH 7DLZDQ $JU 5HV /RU] $ 3 r 3URGXFWLRQ RI VRXWKHUQ SHDV FRZSHDVf LQ )ORULGD )ORULGD $JU 6[SW 6WD %XL 0DFN : % 6WRXW DQG ) : +DOOHU 7KH HIIHFW RI FHUWDLQ WUXFN FURSV RQ WKH \LHOG RI WUXFN FURSV IROORZLQJ WKHP RQ WKH VDPH SORWV LQ WKH QH[X VHDVRQ 3URF $PHU 6RF +RUW 6FL 0DUORZH $ DQG & 0 *HUDOGVRQ 5HVXOWV RI D VROXEOH VDOW VXUYH\ RI FRPPHUFLDO WRPDWR ILHOGV LQ 6RXWKZHVW )ORULGD 3URF )OD 6WDWH +RUW 6RF r 0D\QDUG 1 DQG $ /RUHQ] r 6HYHQW\ILYH \HDUV RI SURJUHVV LQ WKH QXWULWLRQ RI YHJHWDEOH FURSV +RUW6FLHQFH 0HQHJD\ 0 5 } 6RFLRHFRQRPLF IDFWRUV DIIHFWLQJ FURSSLQJ V\VWHPV IRU VHOHFWHG 7DLZDQ IDUPHUV S LQ 3URF RI WKH &URSSLQJ 6\VWHPV :RUNVKRS ,55, /RV %DQRV 3KLOLSSLQHV )DUP PDQDJHPHQW UHVHDUFK RQ FURSSLQJ V\Vn WHPV $95'& 7HFK %XL 1R 6KDQKXD 7DLZDQ 5HS &KLQD 1 +XEEHOO DQG 5 :LOOLDP &URS LQWHQVLW\ LQGH[ $ UHVHDUFK PHWKRG RI PHDVXULQJ ODQG XVH LQ PXOWLSOH FURSSLQJ +RUW6FLHQFH 0LDPL :KROHVDOH )UXLW DQG 9HJHWDEOH 5HSRUW )HGHUDO 6WDWH 0DUNHW 1HZV 6HUYLFH 6RXWK 0LDPL )/ 0RQWHODUR 6TXDVK SURGXFWLRQ JXLGH )ORULGD &RRS ([W 6HU &LU DQG 6 5 .RVWHZLF] } %HDQ SURGXFWLRQ JXLGH )ORULGD &RRS ([W 6HU &LU & 0RUJDQ 0 ) DQG + 0 -DFREVRQ 6RLO PDQDJHPHQW IFU LQWHQVLYH YHJHWDEOH SURGXFWLRQ LQ VDQG\ &RQQHFWLFXW 9DOOH\ ODQG &RQQ $JU ([SW 6WD %XL

PAGE 102

0RXUVL 0 $ 7KH LQIOXHQFH RI WKH SUHFHGLQJ FURS DQG SKRVSKDWLF IHUWLOL]HUV RQ WKH JURZWK PLQHUDO XSWDNH DQG \LHOG RI SHDQXW IUXLW $QQDOV RI $JU 6FL 1DLU 3 5 DQG $ 6LQJK 3URGXFWLRQ SRWHQWLDO HFRQRn PLF SRVVLELOLWLHV DQG LQSXW UHTXLUHPHQWV RI ILYH KLJK LQWHQn VLW\ URWDWLRQV ZLWK ULFH 2U\]D VDWLYD /f ,QGLDQ $JU 6FL $ 6LQJK DQG 6 0RGJDO 0DLQWHQDQFH RI VRLO IHUWLOLW\ XQGHU LQWHQVLYH FURSSLQJ LQ 1RUWKHUQ ,QGLD ,QGLDQ $JU 6FL r 1HKLOH\ 0 r 7KH HIIHFWV RI UHDGDELOLW\ DQG LQIRUPDWLRQ WDUJHWLQJ RQ OLPLWHG UHVRXUFH LQGLYLGXDOV XWLOL]LQJ H[WHQVLRQ HGXFDWLRQDO PDWHULDOV 3K 'LVVHUWDWLRQ )ORULGD 6WDWH 8QLY 7DOODKDVVHH 1HZWRQ DQG -DPHVRQ &URSSLQJ DQG VRLO IHUWLOLW\ VWXGLHV DW .HUDZDW 1HZ %ULWDLQ A 3DSXD 1HZ *XLQHD $JU r 1RUPDQ : 5DWLRQDOL]LQJ PL[HG FURSSLQJ XQGHU LQGLJHn QRXV FRQGLWLRQV 7KH H[DPSOH RI 1RUWKHUQ 1LJHULD 'HY 6WXGLHV 7KH IDUPLQJ V\VWHPV DSSURDFK 5HOHYDQF\ IRU WKH VPDOO IDUPHU 3DSHU SUHVHQWHG WR WKH &(172 6HPLQDU RQ ,QFUHDVLQJ WKH 3URGXFWLYH &DSDFLW\ RI 6PDOO )DUPV /DKRUH 3DNLVWDQ r f )DUPLQJ V\VWHPV UHVHDUFK WR LPSURYH WKH OLYHOLKRRG RI VPDOO IDUPHUV &RQWU 1R B$ 'HSWRI $JU (FRQ .DQVDV $JU ([SW 6WD 0DQKDWWDQ .DQVDV DQG 5 : 3DOPHU-RQHV r (FRQRPLF PHWKRGRORJ\ IRU DVVHVVLQJ FURSSLQJ V\VWHPV S LQ 3URFHHGLQJV 6\PSRVLXP IRU &URSSLQJ 6\VWHPV 5HVHDUFK DQG 'HYHORSPHQW IRU WKH $VLDQ 5LFH )DUPHU ,QW 5LFH 5HV ,QVW /RV %DQRV 3KLOLSSLQHV 2GXP ( 3 7KH HPHUJHQF\ HFRORJ\ DV D QHZ LQWHJUDWLYH GLVFLSOLQH 6FLHQFH 2HVOLJOH ' 5 ( 0F&ROOXP DQG % 7 .DQJ 6RLO IHUWLOLW\ PDQDJHPHQW LQ WURSLFDO PXOWLSOH FURSSLQJ S LQ 5 3DSHQGLFN 3 $ 6DQFKH] DQG % 7ULSOHWW HGV70XOWLSOH &URSSLQJ 6SHF 3XE $PHU 6RF RI $JURQ 0DGLVRQ :,

PAGE 103

2VWHUOL 3 DQG / 0H\HU &URS URWDWLRQ LPSURYHV QLWURJHQ XWLOL]DWLRQ &DOLIRUQLD $JU f 3DODGD 0 & DQG 5 5 +DUZRRG 7KH UHODWLYH UHWXUQ RI FRUQULFH LQWHUFURSSLQJ DQG PRQRFXOWXUH WR QLWURJHQ DSSOLFDWLRQ 3URF &URS 6FL RF 3KLO } 5 :LOOLDP DQG % :DOO $Q HYDOXDWLRQ RI IRXU YHJHWDEOH FURSSLQJ SDWWHUQV IRU 1RUWK )ORULGD 3URF )OD 6WDWH +RUW 6RF LQ SUHVVf DQG ,2 &URS DQG IHUWLOL]HU PDQDJHPHQW OHYHOV LQ IRXU VHTXHQWLDO FURSSLQJ SDWWHUQV LQYROYLQJ YHJHWDEOHV $PHU 6RF +RUW 6FL LQ SUHSDUDWLRQf 3DQHU 9 6 r 0XOWLSOH FURSSLQJ UHVHDUFK LQ WKH 3KLOLSSLQHV S LQ 3URF RI WKH &URSSLQJ 6\VWHPV :RUNVKRS ,55, /RV %DQRV 3KLOLSSLQHV 3DWHUVRQ 5 DQG + 7 %ODFNKXUVW f 6RPH HIIHFWV RI IHUWLOL]HU RQ WKH \LHOG DQG PDWXULW\ RI VRXWKHUQ SHDV 7H[ $JU ([SW 6WD 3URJ 5SW 3LHUFH 3 r 7KH YHJHWDEOH LQGXVWULHV S OB LQ $JULFXOWXUDO *URZWK LQ DQ 8UEDQ $JH ,)$6 8QLY RI )ORULGD *DLQHVYLOOH 3UDWW 3 ) 3RWDVVLXP S LQ & $ %ODFN % (YDQV / :KLWH / ( (QVPLQJHU DQG ) ( &ODUN HGVf 0HWKRGV RI 6RLO $QDO\VLV 3DUW &KHPLFDO DQG 0LFURELRORn JLFDO 3URSHUWLHV $PHU 6RF $JURQ 0DGLVRQ :, 3ULFH ( & r (FRQRPLF FULWHULD IRU FURSSLQJ SDWWHUQ GHVLJQ S LQ 3URFHHGLQJV 6\PSRVLXP RQ &URSSLQJ 6\VWHPV 5HVHDUFK DQG 'HYHORSPHQW IRU WKH $VLDQ 5LFH )DUPHU ,55, /RV %DQRV 3KLOLSSLQHV &RPSDULVRQ RI WKH HFRQRPLF SHUIRUPDQFH RI FURSSLQJ SDWWHUQ WULDOV DQG IDUPHUnV SDWWHUQV 5SW RI WKH &URSSLQJ 6\VWHPV :RUNLQJ *URXS WK &URSSLQJ 6\VWHPV :RUNLQJ *URXS 0HHWLQJ ,55, /RV %DQRV 3KLOLSSLQHV 3ULQH 0 7 & *XLODUWH DQG : 'XQFDQ r &RUQ PDWXUn LW\ GDWHV IRU GLIIHUHQW )ORULGD ORFDWLRQV DQG SODQWLQJ GDWHV EDVHG RQ JURZLQJ GHJUHH GD\V 6RLO DQG &URS 6FL 6RF )OD 3URF 5DKHMD 5 3UDVDG DQG + & -DLQ /RQJWHUP IHUWLn OL]HU VWXGLHV LQ FURS URWDWLRQV ,QW 6\PS 6RLO )HUW (YDO 3URF

PAGE 104

5DR 0 0 DQG & 6KDUPD (IIHFWV RI XSODQG PXOWLSOH FURSSLQJ V\VWHPV DQG IHUWLOL]HU FRQVWUDLQWV RQ VRPH FKHPLFDO SURSHUWLHV RI VRLO ,QGLDQ $JU 6FL 5HGGL + 6 < < 5DR DQG < 3 5DR r 5HVLGXDO HIIHFW RI 1 3 DQG DSSOLHG WR ,5 ULFH RQ VXFFHHGLQJ VR\EHDQ FURS ,QGLDQ $JU 5HV V 5HHYH ( 5 0 0UFFK 5 : %DFNHV DQG 5 3HHO ,QIOXHQFH RI FURS URWDWLRQV DQG IHUWLOL]HU WUHDWPHQW RQ WRPDWR \LHOGV DQG VRLO SURSHUWLHV 3URF $PHU 6RF +RUW 6FL 5XWKHQEHUJ + )DUPLQJ 6\VWHPV LQ WKH 7URSLFV QG HGLWLRQ 2[IRUG &ODUHQGRQ 3UHVV 6DGDQDQGDQDQ 1 DQG & 0DKDSDWUD 6WXG\ RQ WKH VRLO DYDLODEOH SKRVSKRUXV DV DIIHFWHG E\ PXOWLSOH FURSSLQJ LQ XSODQG DOOXYLDO ULFH DUHDV ,QGLDQ 6RF 6RLO 6FL A DQG r 6WXG\ RI H[FKDQJHn DEOH + VWDWXV RI WKH VRLO DV DIIHFWHG E\ PXOWLSOH FURSSLQJ LQ XSODQG DOOXYLDO ULFH DUHDV ,QGLDQ $JURQ DQG r 6WXGLHV RQ PXOWLSOH FURSSLQJ %DODQFH VKHHW RI WRWDO DQG DYDLODEOH SKRVSKRUXV LQ YDULRXV FURSSLQJ SDWWHUQV ,QGLDQ $JURQ DQG 6WXG\ RI WKH QLWURn JHQ VWDWXV RI WKH VRLO DV DIIHFWHG E\ PXOWLSOH FURSSLQJ ,QGLDQ 6RF 6RLO 6FL r 6DQFKH] 3 $ 3URSHUWLHV DQG 0DQDJHPHQW RI 6RLOV LQ WKH 7URSLFV -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 105

6LQJK 0 0 1DUDQJ DQG + 6KDUPD } (IIHFW RI FURS VHTXHQFH DQG IHUWLOL]HUV RQ PDL]H RI 5HV 3XQMDE $JU 8QLY 6LQJK 5 3 6 1DQGDO DQG / 6LQJK } (FRQRPLF DQDO\VLV LQ PXOWLSOH FURSSLQJ LQ +DU\DQD ,Q 6\PSRVLXP RQ 0XOWLSOH &URSSLQJ ,QGLDQ 6RF RI $JURQ HGVf 1HZ 'HOKL 6RXWKHDVWHUQ )UXLW DQG 9HJHWDEOH 5HSRUW } *HRUJLD 'HSW RI $JU 0DUNHW 'LY )HGHUDO 6WDWH 0DUNHW 1HZV *HRUJLD 6WDWH )DUPHUV 0DUNHW 7KRPDVYLOOH *$ 6WDQGLIHU / & DQG 0 1 ,VPDLO } PXOWLSOH FURSSLQJ V\VWHP IRU YHJHWDEOH SURGXFWLRQ XQGHU VXEWURSLFDO KLJK UDLQ FRQGLWLRQV $PHU 6RF +RUW 6FL 6WHSKHQV r &KDQJHV LQ \LHOG DQG IHUWLOL]HU UHVSRQVHV ZLWK FRQWLQXRXV FURSSLQJ LQ 8JDQGD ([SW $JU f 7KH HIIHFWV RI IHUWLOL]HUV PDQXUHV DQG WUDFH HOHPHQWV LQ FRQWLQXRXV URWDWLRQV LQ 6RXWKHUQ DQG :HVWHUQ 8JDQGD (DVW $IULFDQ $JU DQG )RUHVWU\ 6WHYHQVRQ ) 2ULJLQ DQG GLVWULEXWLRQ RI QLWURJHQ LQ VRLO S BLQ : 9 %DUWKRORPHZ DQG ) ( &ODUN HGVf 6RLO 1LWURJHQ $PHU 6RF $JURQ 0DGLVRQ :, 6WHZDUW ) % 7KH HIIHFWV RI VSDFLQJ DQG IHUWLOL]DWLRQ RQ \LHOG RI VRXWKHUQ SHDV $PHU 6RF +RUW 6FL DQG 0 5HHG (IIHFW RI IHUWLOL]DWLRQ RQ \LHOG JURZWK DQG PLQHUDO FRPSRVLWLRQ RI VRXWKHUQ SHDV $PHU 6RF +RUW 6FL 6WURXW $ 0 6RPH GHILQLWLRQDO SUREOHPV ZLWK PXOWLSOH FURS GLYHUVLILFDWLRQ 7KH 3KLO (FRQ 6XLHU $ 9 0LALNDWV DQG PD[L \LHOGV :DU RQ +XQJHU + 6XWWRQ 3 5HVSRQVH RI FROODUGV WR QLWURJHQ SKRVSKRUXV DQG SRWDVVLXP IHUWLOL]DWLRQ 3URF )OD 6WDWH +RUW 6RF 7KRPSVRQ / DQG : 5REHUWVRQ (IIHFW RI URWDWLRQV IHUWLOL]HUV OLPH DQG JUHHQ PDQXUH FURSV RQ FURS \LHOGV DQG RQ VRLO IHUWLOLW\ )OD $JU ([SW 6WD %XL 7XFNHU $ : /OHZHO\Q DQG 1HVPLWK %DODQFH IHUWLOL]DWLRQ RI YHJHWDEOH FURSV WKURXJK FRPSXWHUL]HG LQWHQn VLW\ DQG EDODQFHG VRLO WHVWLQJ 3URF )OD 6WDWH +RUW RF

PAGE 106

7XUN / f 6RPH ,VVXHV (PHUJLQJ IURP 5HFHQW %UHDNWKURXJKV LQ )RRG 3URGXFWLRQ 9DLO%DOORX 3UHVV ,QF %LQJKDPWRQ 1HZ
PAGE 107

:RUOH\ 5 ( $ +HJZRRG DQG 6 $ +DUPRQ (IIHFW RI 1 3 DQG ; RQ \LHOG DQG OHDI DQDO\VLV RI VRXWKHUQ SHD $LUHU 6RF +RUW 6FL f
PAGE 108

%,2*5$3+,&$/ 6.(7&+ 7KH DXWKRU 0DQXHO &HOL] 3DODGD ZDV KRUQ RQ 6HSWHPEHU LQ %DFRORG &LW\ 3KLOLSSLQHV +H UHFHLYHG KLV HOHPHQWDU\ HGXFDWLRQ IURP %DFRORG 1RUWK (OHPHQWDU\ 6FKRRO DQG JUDGXDWHG IURP 1HJURV 2FFLGHQWDO +LJK 6FKRRO LQ ,, DV VDOXWDWRULDQ +H VWXGLHG IRU \HDUV DW /D 6DOOH &ROOHJH %DFRORG &LW\ DQG WRRN EDVLF PDWKHPDWLFV DQG VFLHQFH FRXUVHV SUHSDUDWRU\ WR WKH %DFKHORU RI 6FLHQFH GHJUHH ,Q KH UHFHLYHG WKH %DFKHORU RI 6FLHQFH LQ $JULFXOWXUH %6$f GHJUHH PDMRU LQ DJURQRP\ IURP &HQWUDO 3KLOLSSLQH 8QLYHUVLW\ ,ORLOR &LW\ 3KLOLSSLQHV )URP WR KH VHUYHG DV ,QVWUXFWRU LQ DJURQRP\ DW WKH &ROOHJH RI $JULFXOWXUH &HQWUDO 3KLOLSSLQH 8QLYHUVLW\ )URP 1RYHPEHU WR 'HFHPEHU KH VWXGLHG DW WKH 8QLYHUVLW\ RI WKH 3KLOLSSLQHV DW /RV %DQRV DQG WRRN JUDGXDWH FRXUVHV OHDGLQJ WR WKH 0DVWHU RI 6FLHQFH LQ DJURQRP\ XQGHU WKH ,QWHUQDWLRQDO 5LFH 5HVHDUFK ,QVWLWXWH ,55,f VFKRODUn VKLS SURJUDP +H UHFHLYHG WKH 0 6 LQ DJURQRP\ GHJUHH IURP WKH 8QLYHUVLW\ RI WKH 3KLOLSSLQHV DW /RV %DQRV LQ -DQXDU\ ,PPHGLDWHO\ KH ZDV DSSRLQWHG $VVLVWDQW 3URIHVVRU DQG 3ODQW 6FLHQFH 5HVHDUFK &RRUGLQDWRU &ROOHJH RI $JULFXOWXUH &HQWUDO 3KLOLSSLQH 8QLYHUVLW\ IURP WR -DQXDU\ r +H PRYHG EDFN WR /RV %DQRV DQG ZRUNHG DV ,QVWUXFWRU ,, LQ WKH $JURQRP\ 'HSDUWPHQW 8QLYHUVLW\ RI WKH 3KLOLSSLQHV IURP )HEUXDU\ WR $SULO )URP 0D\ WR -DQXDU\ EH ZDV HPSOR\HG E\ WKH 0XOWLSOH &URSSLQJ 'HSDUWPHQW ,55, DV 5HVHDUFK $VVLVWDQW RUJDQL]HG DQG FRRUGLQDWHG D PRQWK PXOWLSOH FURSSLQJ WUDLQLQJ FRXUVH SDUWLFLSDWHG E\ WUDLQHHV IURP 6RXWKHDVW $VLDQ FRXQWULHV ,Q } EH ZDV SURPRWHG WR 6HQLRU 5HVHDUFK $VVLVWDQW DQG ZDV DVVLJQHG WR ,ORLOR SURYLQFH DV 6LWH &RRUGLQDWRU IRU ,55,%3, %XUHDX RI 3ODQW ,QGXVWU\f &URSSLQJ 6\VWHPV

PAGE 109

)URMHFW FRYHULQJ WZR WRZQVKLSV DQG HLJKW YLOODJHV :KLOH ZRUNLQJ ZLWK ,5%, KH KDG D FKDQFH WR YLVLW 7DLZDQ LQ 2FWREHU A DQG SDUWLFLSDWHG LQ D ZHHN 0XOWLSOH &URSSLQJ 7UDLQLQJ &RXUVH VSRQVRUHG E\ )RRG DQG )HUn WLOL]HU 7HFKQRORJ\ &HQWHU ))7&f RI WKH $VLDQ 3DFLILF UHJLRQ $63$&f ,Q 6HSWHPEHU KH HQWHUHG WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUn VLW\ RI )ORULGD ZLWK D 5RFNHIHOOHU )RXQGDWLRQ JUDGXDWH IHOORZVKLS IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ LQ KRUWLFXOWXUH ZLWK PDMRU LQWHUHVW LQ YHJHWDEOH FURSSLQJ V\VWHPV 0U 3DODGD KDV EHHQ D PHPEHU RI WKH &URS 6FLHQFH 6RFLHW\ RI WKH 3KLOLSSLQHV :HHG 6FLHQFH 6RFLHW\ RI WKH 3KLOLSSLQHV DQG %LRORJ\ 7HDFKHUV $VVRFLDWLRQ RI WKH 3KLOLSSLQHV +H LV D PHPEHU RI $PHULFDQ 6RFLHW\ IRU +RUWLFXOWXUDO 6FLHQFH $PHULFDQ 6RFLHW\ IRU +RUWLFXOWXUDO 6FLHQFH 7URSLFDO 5HJLRQ )ORULGD 6WDWH +RUWLFXOWXUDO 6RFLHW\ $PHULFDQ 6RFLHW\ RI $JURQRP\ &URS 6FLHQFH 6RFLHW\ RI $PHULFD DQG 6RLO 6FLHQFH 6RFLHW\ RI $PHULFD +H LV KDSSLO\ PDUULHG WR (OLVD +RUWHODQR DQG WKH\ KDYH WZR FKLOGUHQ 'DIIRGLO DQG 7HG 3HWHU 7KH DXWKRU KDV DFFHSWHG D \HDU SRVWGRFWRUDO IHOORZVKLS ZLWK WKH 2UJDQLF *DUGHQLQJ DQG )DUPLQJ 5HVHDUFK &HQWHU LQ .XW]WRZQ 3HQQV\On YDQLD WR ZRUN RQ ORZHQHUJ\ LQSXW IDUPLQJ V\VWHPV ZLWK HPSKDVLV RQ VPDOO IDUPV

PAGE 110

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ nL R 'RQDOG 1 0D\QDUG &KDLUPDL 3URIHVVRU RI +RUWLFXOWXUDO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP %OXH 3URIHVVRU RI 6RLO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0 a/ R n9 *RUGRQ 0 3ULQH 3URIHVVRU RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /DZUHQFH + +DOVH\ $VVRFLDWH 3URIHVVRU RI +RUWLFXOWL 6FLHQFH

PAGE 111

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI +RUWLFXOWXU 6FLHQFH 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUFK ,2 ? 'HDQ *UDGXDWH 6FKRRO

PAGE 112

81,9(56,7< 2) )/25,'$