Citation
The effects of drying and burning on human bones and teeth

Material Information

Title:
The effects of drying and burning on human bones and teeth
Creator:
Burns, Karen Ramey, 1947-
Publication Date:
Language:
English
Physical Description:
vi, 95 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Anthropology ( jstor )
Bones ( jstor )
Burning ( jstor )
Diameters ( jstor )
Drying ( jstor )
Fibula ( jstor )
Mandible ( jstor )
Teeth ( jstor )
Test ranges ( jstor )
Tooth enamel ( jstor )
Bones -- Effect of combustion on ( lcsh )
Bones -- Effect of drying on ( lcsh )
Teeth -- Effect of combustion on ( lcsh )
Teeth -- Effect of drying on ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1987.
Bibliography:
Includes bibliographical references (leaves 90-94).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Karen Ramey Burns.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001031188 ( ALEPH )
AFB3328 ( NOTIS )
18150226 ( OCLC )

Downloads

This item has the following downloads:


Full Text

















THE EFFECTS OF DRYING AND BURNING
ON HUMAN BONES AND TEETH



By


KAREN RAMEY BURNS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1987












ACKNOWLEDGMENTS


Many people and several institutions have participated

in the development of this research project. I would first

like to thank my committee chairman, William R. Maples,

Ph.D. His support and guidance have been invaluable. I

would also like to thank my committee members, Linda C.

Jackson, Ph.D, Harold R. Stanley, D.D.S., Otto von Mering,

Ph.D., and Elizabeth S. Wing, Ph.D., for their advice and

critical reviews. Each brought a unique and valuable per-

spective to the work.

I am also grateful to David J. Simmons, Ph.D., for

training and experience in bone microstructure research as

well as for the use of his microradiographic and photogra-

phic equipment at the University of Texas Medical Branch in

Galveston.

Other equipment was provided by Charles Peters, Ph.D.,

University of Georgia Anthropology Department, and James

Spaulding of the Center for Applied Isotope Studies.

The osteological materials were made available by

Emory University Medical School and the University of Flo-

rida Medical School. I am grateful to the anatomical board

directors, Dr. Claudia Adkison of Emory and Dr. Lynn Rom-

rell of Florida, for permission to use the materials.







I am indebted to Norman Herz, Ph.D., Director of the

Center for Archaeological Sciences at the University of

Georgia for laboratory space and basic equipment. I am

also grateful for the space and courtesy provided by the

Florida State Museum in Gainesville and by the Division of

Orthopaedic Surgery at the University of Texas Medical

Branch in Galveston.


iii















TABLE OF CONTENTS


ACKNOWLEDGMENTS .


ABSTRACT .


INTRODUCTION .


Statement of Problem .
Review of Literature .
Hypotheses ..
Definition of Terms


MATERIALS AND METHODS .


Sample Description .
Experimental Methods .
Measurement Methods
Statistical Methods


RESULTS & DISCUSSION .


Fibulae Results .
Tooth-Mandible Results


SUMMARY & CONCLUSIONS .


APPENDIX A SAMPLE DESCRIPTI


APPENDIX B FORM3.WK1 .


APPENDIX C TABLES OF RESULT


REFERENCES .


Pace


. ii


. iv



. 1
. 1
. 2
. 7




. 81
. 11


. 11
. 15
. 27
. 30


. 32


. 32
. 41




ON 57


.. 60

'S 62


. 90


BIOGRAPHICAL SKETCH .


* 0 95


. .


. .


* .











Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE EFFECTS OF DRYING AND BURNING ON HUMAN BONES AND TEETH

By

Karen Ramey Burns

December 1987

Chairman: William R. Maples, Ph.D.
Major Department: Anthropology

Morphometric analyses require precise measurements

together with a thorough awareness of the limits of those

measurements. A number of reports have been published

about changes in human calcified tissues after death. The

reports have appeared to be inconsistent and sometimes

contradictory. For example, drying and burning have been

reported to cause gross measurements to decrease by 1% to

25%, whereas burning has been reported to cause microscopic

measurements to increase.

This experiment was designed to examine the effects of

drying and burning on human calcified tissues. Bone (fibu-

la and mandible) and teeth (lower anterior) were removed

from forty-six dissecting-room cadavers. Each sample was

divided into four parts, a control, a subsample to be

dried, a subsample to burn at 500 C. and a subsample to

burn at 950 C. By this method, it was possible to compare






each sample with itself, thereby diminishing the error

caused by differences in age, sex, and state of health.

All samples were embedded in plastic. Radiographs,

microradiographs, and xerographic copies were used to help

overcome the difficulties of working with extremely fragile

tissue.

Linear measurements were taken of fibula diameters,

mandible height and labio-lingual width, tooth length and

width, root length, and osteon diameters. Osteons per unit

area were counted, and a Merz grid was used to estimate

bone porosity.

There was a major size reduction in bone and dentin

burned at 950 C. No significant size change occurred in

enamel. The average shrinkage for separate measurements

varied from 12% to 21%. Less shrinkage occurred in dentin

than in bone, with an overlap at 16%. The extent of change

varied between bones and between dimensions measured.

Very little change took place during either drying or

500-degree burning and statistical significance varied.

The average shrinkage for separate measurements varied from

0% to 4%.

There was a trend toward a decreasing number of os-

teons per unit area in both dried and burned (500 C.)

tissue and a 26% increase in number of osteons in cremated

(950 C.) tissue. Porosity increased significantly in burn-

ed bone.












INTRODUCTION


Statement of the Problem


Anthropologists rely heavily upon information derived

from calcified tissues. Bones and teeth frequently pro-

vide the only means by which to identify an individual or

study a population. A large quantity of information can be

derived from calcified tissues [1]. Microstructure of both

bone and teeth is used to estimate the age of unknown

individuals [2-15). Unfortunately, the quality of informa-

tion obtained through the study and measurement of calci-

fied tissues is likely to be dependent upon the presumed

static nature of these tissues. It is, however, well-known

that calcified tissues are not static, either during life

or after death. The morphologist is therefore plagued by

the question of how to allow for changes, particularly

severe post-mortem changes resulting from prolonged drying,

burning or cremation. Riddick, a forensic pathologist,

stated the problem well.

Scientific identification of severely damaged
human remains requires the use of all available
material, techniques, expertise, persistence,
and some degree of imagination and luck. In-
cinerated, partially carbonized skeletal re-
mains present unique problems in evaluation and
identification [16,p.267]








Review of the Literature


Accuracy of measurement is of critical importance to

the morphologist. Todd [17] published a study on the

effect of maceration and drying upon the linear dimensions

of the green (fresh) skull. He stated that great indivi-

dual variation occurs, but, on the average, shrinkage a-

mounts to about 1.1% of the final dried measurement. He

also said that changes in temperature and humidity affect

shrinkage and may even result in slight fleeting increases

in dimension.

Albrecht [18] also reported that humidity alone can be

a source of bone measurement error. He compared the mea-

surements of ten macaque skulls before and after subjecting

them to a humidity chamber. The greatest length of the

skull increased by about 0.9 mm. (0.57%). The immediate

assumption is that osteological collections in museums

cannot be relied upon to correspond to recently macerated

bone or to ancient bone from a moist burial environment

unless a numerical range can be established for this type

of shrinkage.

Burned bone has been the subject of more experimental

studies than dried bone. These studies tend to focus on

descriptions of changes in appearance and size, usually

linear shrinkage. Some have reported weight changes re-

sulting from burning. As might expected in an anthropolo-








gical context, many of the studies are directly linked to

investigations of cremation practices [19-23].

Several investigators reported that green bone res-

ponds differently to fire than dry bone. [19,20,24]. Burnt

green bone tends to warp and form longer, deeper cracks,

whereas dry bone remains relatively stable and forms a

surface pattern of small cracks or checks. Shrinkage has

been reported regularly, but the extent of shrinkage is

widely varied, from less than 1% [23] to more than 25%

[25]. Different values are reported by each investigator

and different values are reported for each bone.

Trotter and Peterson [26] dried and degreased whole

skeletons from 17 embalmed cadavers. They then ashed (cre-

mated) the bones and compared the dry, fat-free weight with

the ash weight. The ash, or the mineral component, com-

prised 64.8% to 66.9% of the bone. Bone shrinkage, as

evaluated from linear measurements, could not be expected

to reach the relative value of 33% because of the amount of

void space left in the bone.

Dokladal [27] carried out an interesting study in

which he burned one half and macerated the other half of

five cadavers, split sagittally. He found no more than 10%

difference in the final measurements of the two halves. A

gas crematorium was used and the temperature was in the

range of 700- to 1000-degrees C. with a duration of burning

in the range of 30 to 50 minutes.








Both Herrmann [28] and Van Vark [29] performed experi-

ments in which the temperature changes were carefully re-

corded. They both reported significant shrinkage occurring

between the temperatures of 700 and 800 degrees C. Herr-

mann found slight shrinkage at temperatures under 700 C.

and Van Vark found no shrinkage below 600 C. Van Vark also

stated that there was no further shrinkage above the criti-

cal 700-800 degree level and that longer burning did not

increase the amount of shrinkage.

Herrmann [28] stated that bone mineral crystals (hy-

droxyapatite) fuse in fires reaching temperatures higher

than 700-800 degrees C. He also pointed out that much of

the microstructure is unrecognizable with light microscopy,

even with polarized light. With the use of microradio-

graphy, however, structures are discernible.

There have been very few studies of microstructure.

Osteon shrinkage was reported by Herrmann [28] and Van Vark

[29]. Bradtmiller and Buikstra [30], however, reported

somewhat contradictory results in a preliminary study from

sample of one individual (two femora). They burned bone at

600 degrees C. and studied the resulting changes in micro-

structure. The osteons were uniformly larger in the burned

bone. They concluded that bone burned at 600C. retains all

of the structures necessary for microscopic aging and bone

shrinkage does not appear to have a significant effect on

the age estimate.








In studying the effect of age on water content in

human teeth, Toto [31] removed enamel and pulp contents of

ten teeth, five from a 10- to 20-year-old group and five

from a 50- to 80-year-old group. He dehydrated the teeth

at 105 degrees C. A weight-loss comparison showed a signi-

ficantly greater loss in the young teeth than in the old

teeth. Toto attributed this difference to a greater water

content in the young teeth than in the old teeth. He did

not report any linear measurements.

Experimental work with burnt teeth is sparse. Visual-

ization of morphology rather than morphometry is the usual

goal and standard dental radiography is the usual approach.

Work of this nature is frequently reported in the forensic

odontology literature [32-34]. Mannerberg [35] reported

experimental results on the weight of burnt teeth. He

found that the greatest loss in weight is between 100 and

300 degrees C. As with Toto's work, water loss is probably

the main factor.

In a recently reported study, Bell [36] burned resec-

ted jaws at 1600 degrees F. (871 degrees C.) and 2400

degrees F. (1315 degrees C.) He said that shrinkage was

observed in all structures except the enamel crowns. He

also burned extracted teeth at 1500-2000 degrees F. (815-

1093 degrees C.) Measurements taken before and after burn-

ing showed approximately 20% shrinkage of the roots only.

The enamel crowns exhibited little, if any, shrinkage and








very little distortion except in the region of the cemento-

enamel junction.

The only comparative work available on bone and tooth

changes is by Shipman et al. [37]. They did not use human

bones and teeth, but rather bones and teeth of sheep and

goats. Color, morphology, crystal structure, and shrinkage

were studied. The temperature range was 20 to 940 degrees

C. Shipman et al. stated that "changes in both color and

microscopic morphology of burnt bones and teeth can be

divided into five stages--each of which is typical of a

particular temperature range, although the stages based on

color do not correlate exactly with those based on micro-

morphology." (p.307) They said that these stages can be

used to determine, "(1) if specimens of unknown taphonomic

history were burnt and (2) the maximum temperature reached

by those specimens."

Shipman et al. used powder X-ray diffraction studies

to examine heat-related changes. They were able to show

that heating causes an increase in the crystal size of

hydroxyapatite, the major inorganic component of bones and

teeth. They concluded that the change in hydroxyapatite

together with the microscopic morphology can be used to

confirm deduced heating to 645C. or more. In delimiting

the critical temperature for hydroxyapatite change, Shipman

et al. seem to differ from Herrmann [26] who reports 700-

800 degrees C. as a critical temperature. There is, how-








ever, no real disagreement because the crystal change takes

place prior to the major shrinkage.

Herrmann stated, "Neither color nor hardness is a

useful criterion in judging the degree of incineration."

[26,p.101] Seven years later, Shipman et al. published a

polynomial expression that summarizes percentage shrinkage

as a function of the maximum temperature reached by bones.

They concluded that "the original size of specimens can be

reconstructed within limits since the maximum temperature

reached by the bones can be deduced on the basis of color,

microscopic morphology and/or powder X-ray diffraction

patterns." [37,p.103]



Hypotheses


This study focused on the effects of drying and burn-

ing on both bone and teeth. It was formulated to describe

and compare the amount of change in bone with the amount of

change in teeth when both have been subjected to the same

conditions. The immediate goal is to provide quantitative

information (TABLE 1). The long-range goal is to provide a

bridge between what is known about structural changes in

calcified tissues and the application of that knowledge in

archaeological and forensic investigations. In order to

achieve these goals, two hypotheses are offered.

(1) Post-mortem dehydration and pyrolysis have

measurable effects on the structure of bone and teeth.









(2) The magnitude of change in bone is different from

that in teeth.

Both linear measurements and counts were used to test

these hypotheses. A summary of measurements is provided in

TABLE 1. These measurements are explained in detail in the

chapter, Materials and Methods, under the subheading,

Measurement Methods.



Definition of Terms


The organization of materials and procedures is impor-

tant to the understanding of this study. For this reason,

a short glossary is provided. Some of these terms may have

slightly different meanings in other publications, but the

definition given here is the one which is used consistently


throughout this text.


Burned In this work, "to burn" and "to cremate" have

separate meanings. The- "burned" tissue has been

heated to 500 degrees Centigrade. It appears char-

red or blackened.


Cremated The "cremated" tissue has been heated to 950

degrees Centigrade. It appears calcined or whitened.


Experimental Group The group of sections which received

the same experimental procedure (Group W, X, Y, or Z).








Individuals Each body, or cadaver, from which fibula and

mandible sections were collected.


Sample The section of tissue (fibula or mandible) which

was removed from a single individual (B03...B58).


Sample Population The human bodies used for dissection in

anatomy classes at the medical schools of Emory and

Florida. The population is generally white, over 50

years of age at death and near-equally representative

of both sexes.

Section As a noun, a section is a piece or part of a

structure delimited from the remainder. As a verb,

"to section" is the act of cutting.


Subsample The portion of a sample which received a speci-

fic experimental treatment. (BO3W...B58Z)


Thin section As a noun, the thin slice removed from a

subsample for microscopy and/or microradiography. In

this study, thin sections are 100-250 millimicrons

thick. As a verb, "to thin section" is to cut a thin

section.








TABLE 1. Summary of Measurements and Counts


OBJECT MEASUREMENT OR COUNT


FIBULA FIBULA DIAMETER, average of maximum and
minimum cross-sectional diameters (mm.)

OSTEON DIAMETER, average of maximum and
minimum diameters (microns)

OSTEON COUNT, number of osteons in a
100X circular field (2.86 mm.sq.)

OSTEON COUNT, number of osteons in a
100X square field (0.96 mm.sq.)

BONE AREA, an estimate of porosity
presented as a percentage

TOOTH TOTAL TOOTH LENGTH, incisal edge to
root apex (mm.)

ROOT LENGTH, cemento-enamel junction
to root apex (mm.)

TOOTH WIDTH, perpendicular to the
length and excluding the enamel (mm.)

TOOTH & MANDIBLE TOTAL HEIGHT, from incisal edge of the
tooth to the most inferior point on
the mandible (mm.)

MANDIBLE MANDIBULAR HEIGHT, from inferior mandi-
bular border to alveolar ridge (mm.)

LABIO-LINGUAL WIDTH, perpendicular to a
line drawn between the superior labial
edge of the tooth socket and the most
anterior projection of the chin.












MATERIALS AND METHODS


Sample Description


The sample was collected from a dissecting room popu-

lation at the medical schools of the University of Florida

and Emory University between February, 1984 and May, 1985.

Permission was granted by each anatomical board director,

Dr. Lynn Romrell of the University of Florida and Dr.

Claudia Adkison of Emory University. The sample was num-

bered sequentially, B03 through B58. Each number repre-

sents a single cadaver from which sections were removed. A

complete list is provided in APPENDIX A. Not every number

is present in the final sample because of complications

caused by the Emory University teaching schedule. The

fibula sections were available one term before the

mandibular sections were available. In some cases, samples

had to be rejected because of damage during the second

term.

All samples were removed with a Stryker ) saw after

the skin and muscle mass were rejected in the immediate

area. Enough soft tissue was left on the bony surfaces to

assure that the periosteum was not stripped. About one to








one half centimeter of flesh remained in place on each

bone. Teeth were left undisturbed in their sockets.

The cadavers had all been embalmed with a standard

formaldehyde and phenol solution used at both schools for

dissection room work. It has been established that embalm-

ing has no significant effect on bone density [38]. It was

assumed for the purposes of this study that embalming has

had no significant effect.

The cadavers were kept damp but not soaked while being

used by the medical students. When the samples were

removed, they were immersed in a 10% formaldehyde solution.

The fibula sections were 4-5 cm. in length. They were

removed from the mid-shaft, as measured from the major

crease in the popliteal fossa to the most lateral protuber-

ance of the distal fibula. No preference was made for

right or left leg.

The mandibular sections were selected only if they

contained a minimum of four anterior teeth. (The major

impediment in sample collection was finding dissection room

cadavers with teeth.) The medial section of the mandible

was removed by making bilateral cuts through the molar

region of the body of the mandible. In this population,

the area distal to the canine teeth was often edentulous

and atrophied. It therefore provided less resistance to

cutting and the sections were consistently good.









TABLE 2. Sample description by age and sex


TOTAL SAMPLE
Number Sex Age

B15 M 34.6
B07 M 41.8
B35 F 51.6
B22 M 52.2
B21 ,F 54.1
B49 M 55.2
B20 M 56.4
B30 F 57.3
B14 F 59.0
B45 M 59.1
B32 F 60.2
B25 F 61.6
B13 F 62.3
B43 F 62.7
B36 F 64.0
B17 M 64.0
B29 M 64.1
B26 F 65.2
B23 F 67.2
B39 F 67.4
B44 F 67.6
B06 F 67.9
B51 F 68.1
B11 M 68.2
B58 M 68.2
B40 F 68.4
B24 M 69.2
B03 M 71.0
B42 M 71.1
B04 F 71.5
B38 M 71.6
B56 M 76.4
B41 M 76.5
B37 M 76.6
B19 M 76.8
B46 M 76.9
B28 F 79.2
B53 F 79.8
B18 M 82.1
B16 F 82.2
B31 F 82.2
B55 F 84.7
B50 F 85.9
B47 F 88.2
B33 F 91.2
B57 F 92.8
-------------------


FEMALE SAMPLE
Number Sex Age


B35 F
B21 F
B30 F
B14 F

B32 F
B25 F
B13 F
B43 F
B36 F
B26 F
B23 F
B39 F
B44 F
B06 F
B51 F
B40 F

B04 F
B28 F
B53 F

B16 F
B31 F
B55 F
B50 F
B47 F


51.6
54.1
57.3
59.0

60.2
61.6
62.3
62.7
64.0
65.2
67.2
67.4
67.6
67.9
68.1
68.4

71.5
79.2
79.8

82.2
82.2
84.7
85.9
88.2


B33 F 91.2
B57 F 92.8
-----------------
AVG. AGE = 70.9

(N = 26)


MALE SAMPLE
Number Sex Age

B15 M 34.6

B07 M 41.8

B22 M 52.2
B49 M 55.2
B20 M 56.4
B45 M 59.1

B17 M 64.0
B29 M 64.1
B11 M 68.2
B58 M 68.2
B24 M 69.2

B03 M 71.0
B42 M 71.1
B38 M 71.6
B56 M 76.4
B41 M 76.5
B37 M 76.6
B19 M 76.8
B46 M 76.9

B18 M 82.1
-----------------
AVG. AGE = 65.6

(N = 20)


AVG. AGE = 68.6 (N = 46)








The following list of data was collected with each

piece of tissue.

1. Sample number (Bxx)
2. Morgue number (official medical school record)
3. Race
4. Sex
5. Date of death
6. Date of birth
7. Cause of death


Individuals were rejected if the available records

included any mention of diseases known to affect calcified

tissues (e.g. diabetes or osteomyelitis). Unfortunately,

the possibility of significant disease could not be

completely rejected because the full medical records for

these individuals were not available due to the rights of

privacy accorded to medical donors.

The final sample was derived from 46 individuals, 26

females and 20 males, all Caucasians. A summary is pro-

vided in TABLE 2. The total sample is listed in age order,

then divided by sexes and listed by decade.

The total age range is 34-92 years. The female mean

age is 70.9 years, and the male mean age is 65.6.(TABLE 3.)


TABLE 3. Summary of total sample age

Sex N Age Range Mean Median Mode


female 26 51.6-92.8 70.9 67.7 67.5

male 20 34.6-82.1 65.6 68.7 76.6








When an age-balanced sample was needed for analysis,

individuals outside the 50-90 year range were excluded from

the sample. Since the male group contained the only two

individuals under 50 years, and the female group, the only

two over 90 years, these four were removed. The female

mean age was then 69.1 years, and the male mean age was

68.6 years. (TABLE 4.)



TABLE 4. Summary of age-balanced sample

Sex N Age Range Mean Median Mode


female 24 51.6-88.2 69.1 67.5 67.5

male 18 52.2-82.1 68.6 69.6 76.6



Experimental Methods


The experiment was designed to make possible the com-

parison of calcified tissue responses to drying and burn-

ing. In order to isolate the experimental variables, an

effort was made to minimize interference from such

variables as age, sex, or general health of the individual

persons from whom the sample was drawn. The sample des-

cription shows this to be a sample of uniform race, similar

age, and near-equal division of sexes. In order to further

minimize variation, each individual sample was subdivided

into four subsamples. By this method, enough material was








available for three experimental procedures and a control

from each individual.

The fibula sections were cut into four equal cross

sections, each approximately one centimeter in length. The

mandible sections were divided into four pieces by cutting

vertically, between the teeth, and keeping the axis of each

tooth as near as possible to the center of each piece. The

pieces of tissue, both bone and tooth, were designated

W,X,Y, or Z and stored separately in formalin. The group

designation letters were added to the sample numbers so

that the individual identification and the experimental

procedure could be recognized in each subsample number.

For example, sample number B04 became fibula subsample

numbers B04W, B04X, B04Y, and B04Z and mandibular subsample

numbers BO4W, B04X, B04Y, and B04Z. In other words, the

sample obtained from each individual cadaver provided eight

subsamples, four from the fibula and four from the

mandible.

A record was made of every subsample before any exper-

imental procedure began. The mandibular sections were

radiographed at the Florida State Museum, using a Hewlett

Packard 43805N X-Ray System, Faxitron Series, and Polaroid

4x5 Land Film, Type 55/Positive-Negative. The manual set-

tings were 85-90 KVP for 2.7 minutes. Lead numbers and

letters were radiographed along with the tissue in order to

provide identification. The radiographs showed the tooth








roots within the sockets and made possible the measurements

of tooth shrinkage within the mandible.

The fibula records were made by a xerographic copier

and are referred to as photocopies. The xerographic pro-

cess has been tested and recommended for recording the

morphology of hard tissues [39]. The features of the bone

samples are copied in the same way as any printed material,

preserving their real dimensions. The copying machine was

checked for possible distortion by copying a ruler in

several locations on the plate. No measurable differences

were observed in the ruler copies.

The real advantage in this method was in the allowance

for soft tissue. Direct measurement with calipers is ade-

quate when measuring the diameter of dry long bone, but

soft tissue interferes with the calipers in a wet sample

such as this. A xerographic copy is produced with an

intense light which shines through soft tissue and delimin-

ates bone. The photocopy can then be measured.

Each experimental group was copied as a unit, using a

template in order to copy the sample number along with the

fibula section. The photocopies were very useful in that

they provided a back-up inventory system as well as a

record of size changes. Fibulae are unique in cross sec-

tion and can be recognized by form and size.

The sample was regrouped into experimental pairs, each

pair consisting of a fibula section and a tooth-mandible








section with the same number. Samples with the same number

were from the same individual and in the same experimental

group. In order to differentiate the two burned groups by

name, Group Y was referred to as the "burned" group, and

Group Z, the "cremated" group.


Group W-Control Group

Group W was maintained in formalin until the other

experimental procedures were completed. The tooth-mandible

sections were then embedded in plastic, re-radiographed and

measured. The fibula sections were also embedded in plas-

tic, re-photocopied, thin sectioned and measured.


Group X-Dried Group

Group X was dried but not burned. It was placed in a

dessicator, under vacuum, with anhydrous calcium sulfate as

a desiccant. The tissue was considered to be "dry" when a

color change could no longer be generated in fresh color-

sensitive desiccant after 24 hours. The tooth-mandible

sections were then embedded in plastic, re-radiographed and

measured. The fibula sections were also embedded in

plastic, re-photocopied, thin sectioned and measured.


Group Y-Burned Group

Group Y was burned for 90 minutes at 500 degrees C.

(932 F.) in a Sybron Thermolyne 10500 Furnace. The 500

degree burning temperature was selected because it lies

between the upper limit of 300 C. reported by Mannerberg








[35] for tooth weight loss and the lower limits of 700 C.

[26) and 645 C. [37] for bone mineral fusion. A 500 degree

temperature is also useful in that it falls within the

range of ignition temperatures for modern fuels [40]. The

tooth-mandible sections were then embedded in plastic, re-

radiographed and measured. The fibula sections were also

embedded in plastic, re-photocopied, thin sectioned and

measured.


Group Z-Cremated Group

Group Z was burned for 90 minutes at 950 degrees C.

(1742 F.). A Sybron Thermolyne 10500 Furnace was used

again. The 950 degree burning temperature was selected

because it is higher than the upper temperature of 800 C.

reported by Herrmann [26] and is in the range of standard

cremation temperatures [41]. In both burned groups, the

90-minute timer was not started until the the oven reached

the planned temperature. The tooth-mandible sections were

then embedded in plastic, re-radiographed and measured.

The fibula sections were also embedded in plastic, re-

photocopied, thin-sectioned, and measured.

After the experimental procedures of drying and burn-

ing were completed, each piece of tissue was prepared for

thin sectioning by embedding it in plastic. Castolite ,

an embedding medium marketed by Buehler, Ltd., was used.

The burned and cremated groups were embedded as soon as

they had cooled. In most cases, the tissue was embedded in









the same dish that was used for the burning in order to

avoid the disturbance caused by transfer. Vacuum was ap-

plied in order to remove major bubbles. The vacuum time

was kept to a minimum (60 seconds or less) to avoid vapor-

izing the catalyst.

The embedding process was simple and, in fact, non-

essential for Groups W and X. They were embedded in plas-

tic in order to maintain uniformity with Groups Y and Z.

In both heat-treated groups, the tissue needed the

added support of an embedding medium before being handled.

Thin sectioning also would have been impossible without the

added matrix. Pressure would have produced harder blocks

which are easier to thin section, but pressure caused the

extremely fragile cremated tissue (Group Z) to pulverize.

It was not even possible to soak the cremated tissue in

uncatalyzed plastic without causing total disintegration of

the tissue. The best results were obtained when the tissue

was treated as gently as possible. In other words, no

pressure, no heat, and slow, long-term drying of the

plastic. A week or more was necessary for drying time.

Final radiographs and photocopies were made of the

processed and embedded sample. In order to photocopy the

fibula samples, the surface of the fibula was exposed by

carefully polishing away excess plastic with a Buehler

Ecomet (D Grinder. All tissue pieces were oriented and

positioned in the same manner as they had been in the









preliminary radiographs and photocopies. The same machines

were used with the same protocol.

Thin sections were cut on a Buehler Isomet low

speed saw. A great deal of effort was placed in developing

a technique for obtaining sections of consistent thickness.

The best results were obtained under the following condi-

tions: (1)1ow speed no higher than 6 on the Isomet dial,

(2)1ow weight no more than 15 grams or 3 units, (3) water

coolant rather than oil. Thin sections were immediately

measured then pressed between separate numbered glass

slides. It was noted that the control tissue (Group W) had

to be cut "thinner" in order for the resulting thin sec-

tion to be the same thickness as that of the burned tissue.

The difference on the Isomet micrometer dial was 1.33, the

equivalent of 34 micromillimeters. Perhaps the burned

tissue looses microscopic chips of mineral while being

sawed due to lack of intact binding collagen.

Many attempts were made to see the microstructure of

the heat-treated groups with the use of standard light

microscopy. Tissue was re-embedded after initial section-

ing then polished to maximum thinness. Numerous polishing

techniques were attempted. Some of the burned tissue was

soaked in benzene in an effort to clear it. Limited re-

sults were obtained on the burned tissue (Group Y), but no

consistency was realized and some of the tissue was ruined

for further study. Microstructure could be seen but cement









lines were indistinct and accurate measurement was impos-

sible.

No success whatsoever was obtained with cremated tis-

sue (Group Z). Microradiography seemed to provide the only

possible means to consistent visualization of the micro-

structure of heat-treated tissue. Microradiographs have

been recommended by others working with burned tissue and

fragile archaeological material [30,42-44].

Each fibula section was microradiographed on a Soren-

sen 1030-20, manufactured by the Raytheon Company. The

settings were dependent on the thickness of the tissue.



TABLE 5. Recommended Settings for Microradiography

Thickness Kilovolts Milliamps Minutes
(millimicrons)
100 10 20 10
125 12 20 10
150 13 20 10
175 13 20 15
200 13 20 15
225 13 20 20
250 13 20 20



Kodak High Resolution Film (ESTAR Thick Base) SO-343

was used instead of the traditional Kodak Spectroscopic

Plate 649-0. The film had a number of advantages over the

plates, the most outstanding ones being lower cost and

easier availability. The high resolution film is available

from stock whereas the spectroscopic plates are made only

on special order. Also, the film was easier to tailor to









individual needs. It was possible to cut the film with a

paper cutter rather than having to score and break glass to

the right size.

One slight disadvantage of the High Resolution Film

was the difficulty of developing several films at a time.

The spectroscopic plates could be placed in glass histolo-

gical staining racks and developed in standard staining

dishes. The films would float and stick to one another

under the same conditions. This problem was solved by

adding a paper clip to each side of each film before plac-

ing it in the staining rack. The paper clips did not touch

the image area of the film.

The exposed films were developed for 3.5-4.0 minutes

with Kodak D-19 developer, mixed 1:1 with water. They were

fixed in Kodak Rapid Fixer, used full strength. The micro-

radiographs were then evaluated and measured at 100x magni-

fication with transmitted light.

For microscope viewing and storage, the microradio-

graphs were taped to standard l"x 3" microscope slides.

The heat from the microscope light caused the film to tem-

porarily warp, making focusing difficult. This was solved

by making use of the clips supplied on some microscope

stages. The film could also be sandwiched between glass

slides, but this was a less desirable alternative. Micro-

structure detail was slightly less apparent when a second

glass slide was used.



















































FIGURE 1. Photomicrograph of dried bone, 47X magnification.
Sample No. B14X (top) and B19X (bottom).





















































FIGURE 2. Photomicrograph of microradiograph of burned bone,
47X magnification. B14Y (top) and B19Y (bottom).




















































FIGURE 3. Photomicrograph of microradiograph of cremated
bone, 47X magnification, B14Z(top) and B19Z(bottom).









Measurement Methods


Gross Fibulae Measurements

Three sets of measurements were made on each fibula

subsample. Standard metric dial calipers were used to

measure minimum and maximum diameter. The first two sets

of measurements were made from the preliminary photocopy

and the final photocopy. The third set was made directly

from the tissue itself after embedding it in plastic and

exposing the face of the cross section. Each photocopy was

measured separately and the numbers were recorded next to

the image. The direct measurements were recorded on

separate data cards. Thus each measurement was made

without reference to any other measurement.

The preliminary set of measurements served as a con-

trol for the specific subsample. The second set provided a

measure of the size change which takes place during the

experimental procedure. The third set of measurements

served as a back-up for the second set. Ideally, the

second and third sets of measurements should be identical.

The differences between them provided a tangible way of

estimating error in the measurement methods.


Bone Microstructure Measurements

Microstructure measurements were made at lOOx magnifi-

cation, using an eyepiece micrometer which had been cali-

brated with the use of a stage micrometer. Each fibula









thin section was evaluated on the basis of condition and

microstructure visibility. The percent of bone per unit

area was estimated with the use of a Merz grid [45,46].

The percent of bone was based on the number of hits on bone

out of 36 possible.

A count was made of the number of osteons per unit

area in each corner (usually three) of the fibula sections.

The whole 100X circular field was to have been counted in

each corner on all samples. The actual area of this field

was 2.86 mm. sq. A problem developed in carrying out this

count. Cremated bones were often so small that the

microscope field could not be filled with bone. In order

to compare osteon counts between cremated and non-cremated

bones, a different, smaller, field had to be defined. The

square Merz grid was available and was a more appropriate

size (0.96 mm.sq.) for the cremated tissue. In order to

obtain comparable results, osteons were counted within the

limits of the Merz grid on all sections, whether the tissue

filled the complete field or not.

The diameters of thirty osteons were measured on each

section. Only relatively round osteons were measured. For

each osteon, the greatest diameter was measured first, then

a second diameter was measured perpendicular to the first

measurement. This provided sixty measurements from which

to compute the average osteon diameter for each fibula

section. The visual scan for whole osteons began at the









most pointed corner of the section and proceeded clockwise,

as seen through the microscope. Fragments were not mea-

sured. All microscopic bone measurements were entered

directly on a Lotus 1-2-3 spreadsheet. (APPENDIX B,

FORM3.WKl) The spreadsheet was designed to convert the

eyepiece micrometer units into millimicrons and to

calculate averages, standard deviations, and standard error

for each measurement. A separate data sheet was printed for

each microscope slide.


Gross Tooth and Mandible Measurements

Tooth and mandible measurements were taken directly

from the radiographs which had been made before and after

the experimental procedures. The radiographs were placed

on a horizontal light table and dial calipers were used.

Total height was measured from the incisal edge of the

tooth to the most inferior point on the mandible. Any

change in this measurement reflected both tooth and bone

changes. The other measurements sorted into those which

reflect tooth changes and those which reflect mandibular

bone changes. The mandibular measurements were maximum

height and width. Height was measured from the inferior

mandibular border to the alveolar ridge. Width was mea-

sured at right angles to a line drawn from the labial edge

of the tooth socket to the most anterior projection of the

mental protuberance.









The tooth measurements were total length, root length,

and maximum width. Total tooth length was measured from

the incisal edge to the apex. Root length was measured

from the cemento-enamel junction to the apex. Maximum

width was measured at right angles to the long axis of the

tooth and excluded the enamel. This could only be measured

on radiographs because the greatest width on an intact

tooth is normally on the enamel. The enamel was usually

loosened or fragmented in the burning process, therefore a

width measurement made on the crown in Groups W and X would

not always have a comparable measurement in the Y and Z

groups.



Statistical Methods


The data from all measurements were tabulated on Lotus

1-2-3 K spreadsheets. Paired t-tests were used to test

the significance of logarithm differences in the

experimental groups. Chi-square tests were used to check

the data for normal distribution.

The spreadsheets were designed to accept columns of

data and compute the sample mean, standard deviation,

standard error, t-values, 95% significance range (p=.05),

and chi-square values. Bar graphs were produced from the

spreadsheets. The graphs are representations of the actual

measurements as well as the differences between groups.





31


Standard deviations were graphed with the averages (sample

means) and confidence limits were graphed with percentages.

If a computed t-value shows a set of measurements to be

less than significant at the 95% level of significance, the

values were reported on the bar graph with "N.S." (not

significant) above the bar instead of a numerical value.












RESULTS AND DISCUSSION


Fibula Results


Visual Description

The burned and cremated groups could be easily

recognized and distinguished by appearance. The bone in

the burned group looked charred. They were charcoal black

in color and were usually dull but sometimes shiny or

greasy looking. The bone samples in the cremated group

were typical of ashed or calcined bone. They were white

with shades of yellow or gray and seemed dry and chalk-

like.

The burned samples were somewhat fragile and broke

easily. The cremated samples were extremely fragile and

crumbled easily. Whereas the burned samples could be lift-

ed in the fingers with care, the cremated samples could be

destroyed in the simple act of lifting.

Thin yellowish flakes were present on the outer sur-

faces of the burned bone. This appeared to be a residue

left by the burned soft tissue and not circumferential

bone, itself. The flaking on the surface of cremated bone

was the bone surface, itself.








Gross Measurements (Tables 6-9, Figures 4-5)

The gross fibula measurements were cross-sectional

diameters taken from photocopies and by direct measurements

as described in the Methods section. All four experimental

groups were measured. The control group measurements were

used specifically to test the measurement method. No dif-

ference was found between the preliminary photocopy, the

final photocopy, and the direct measurements taken from the

bone. The photocopy method worked well as a measurement

method. (Table 6, Figures 4-5)

The measurements of the dried group showed no statis-

tically significant difference between the preliminary

measurements and the final measurements. The average

shrinkage for both the photocopy measurement and the direct

measurement was less than 1%. (Table 7, Figures 4-5)

Both heat-treated groups showed a statistically signi-

ficant decrease in size at the 99% level. In the burned

group, the fibulae decreased in average diameter by approx-

imately 4%. In the cremated group, the fibulae decreased

by 20 to 21%. (Tables 8 and 9, Figures 4-5).

The amount of shrinkage in the burned and cremated

fibulae was within the upper part of the range already

reported in the literature. The advanced age of the sample

population may be a factor contributing to the amount of

shrinkage. This can be examined in future studies.










FIGURE 4. Fibula Cross-sectional Diameters.


131 13.0 13.1

























CONTROL(W)


13.1 13.2 130

























DRiED' 'i


7- 12.6 12.6
























BURNED(Y)


/ 10.5 10,4




















CREMATED(Z)


=PHOTOCOPY#2


DIRECT MEASURE


FIGURE 5. Relative Change in Fibula Diameter.


DRIED(X)


BURNED(Y)


CREMATED(Z)


LOWE UPPER 95% C.L.


PHOTOCOPY# 1


24% -

22% -

20% -

18% -

16% -

14%

12%

10%


22%
20% 21%















/

4% 4%II



NS.5 N.S.


CONTROL(W)


= AVERAGE


LOWER 95% C.L.








Microstructure Measurements

(Tables 10-13, Figures 1-3 and 6-12)

As explained in the Methods section, several types of

microstructure parameters were studied. Osteon diameters

were measured, osteon counts were taken within defined

areas, and porosity was estimated.

In measurements of osteon diameters, the average dia-

meter for the control group was 222 (+/- 21) millimicrons.

This measurement was consistent with the osteon size range

reported by Jowsey [47] in her comprehensive work on the

study of Haversian systems.

Osteon diameters showed little change in size when

fibulae were dried or burned. The average shrinkage in the

dried group was 2.2%. The average shrinkage in the burned

group was 2.6%. The change in size was significant at the

95% level in burned bone but not in dried bone. The

average osteon shrinkage in cremated bone was highly signi-

ficant at 18.2%. (Table 10, Figures 6-7)

Osteon counts were examined in the light of two

separate questions. First, is there a significant change

in the number of osteons per field between experimental

groups, and second, is a smaller field size adequate and

comparable to the full field size generally used for osteon

counts in age investigations?

The change in the number of osteons per field was

statistically significant only in the cremated group. The









FIGURE 6. Osteon Diameters, Microradiograph Measurements.


260 -

240 -

220 -

200 -

180 -

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -


CONTROL(W)

= +1 S.D.


FIGURE 7. Relative Change in Osteon Diameters.


24% -

22% -

20% -

18%

16%

14% -

12%

10%

8% -


N.S.






N.S. DRIED(X)


= AVERAGE


242 238 237.


202
202 196 196 196
181

167


DRIED(X)


SURNED(Y)


= AVERAGE


CREMATED(Z)


M -1 S.D


15%


20%














/


16%

77~














/


5%


BURNED(Y)


CREMATED(Z)


= 957. C.L.


M 95% C.L.








osteon counts in both the square grid and the full field

were 26% greater than the original count. In other words,

within the defined area, there were 26% more osteons in the

cremated bone than in the control bone. The 95% signifi-

cance range for this count extended from 19% to 32%. This

shrinkage phenomenon would seriously effect any attempt to

apply Kerley's method for age determination [8-10].

The dried and burned groups were interesting in that

the number of osteons per area decreased and the effect was

more pronounced in the grid counts than the field counts.

It would appear that the osteons were either swelling or

spreading apart during drying and burning. The osteon

enlargement observed by Bradtmiller and Buikstra [30] would

support the idea that there is a time during which the

osteons swell in spite of overall bone shrinkage. In this

particular sample, however, an increase in osteon size was

observed in only a few sections. The average effect was

always shrinkage. The evidence therefore supports the

assumption that a slight spreading of osteons is occurring

rather than swelling. (Tables 11-12, Figures 8-10)

It is not surprising that the grid count reflects the

decrease in number of osteons more than the field count.

The concentration of Haversian systems tends to be in the

center of the bone and the grid count is more a measure of

the center than is the whole field count.









FIGURE 8. Osteon Counts in Complete Circular Field.


70

62

60 -


50 46 47 46

41
40- 38 38 38

30 30 30
30 -



20 -


10 -


CONTROL(W)

= +1 S.D


DRIED(X)


BURNED(Y)


= AVERAGE


CREMATED(Z)


M- -1 S.D.


FIGURE 9. Osteon Counts in Merz Grid Square Field.

24
22
22 -

20- 7x 19

18 -
17
16 16 16 15

14 14

12 -11 11 1

10 -

8 -



4

2 -


BURNED(Y)


AEA -1 S.D.


CONTROL(W)

[77] +1 S.D.


DRIEDr x


CREMATED(Z)


AVERAGE










FIGURE 10. Relative Change in Osteon Counts.


26%


26%


25% -


20% -


15% -


10% -


5% -
57-





0% -
0 -





-5% -


-10% -


DRIED(>)

P7"71 FIELD COUNT


BURNED(Y)

= GRID COUNT


Changes in bone porosity accompanied heat treatment.

This can be seen in the photomicrographs, Figures 1-3.

There was a significant decrease in bone area and an in-

crease in void space, i.e. porosity, in burned and cremated

bone. There was no significant change in dried bone. The

porosity of burned bone changed by nearly 3%, and the poro-

sity of cremated bone changed by almost 8%. (Table 13,

Figures 11-12)

Heat related changes in bone porosity should by consi-

dered when examining bone for signs of pathology. In

archaeological bone, thermal effects may possibly be mis-

taken for infection or endocrine failure.


N.S


N.S.


CREMATED(Z)


I I I la I











FIGURE 11. % Bone Area. Relative Amount of Bone.


110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%


CONTROL


DRIED


BURNED


CREMATED


[ AVERAGE


E=7_ -1 S.D.


FIGURE 12. Relative Change in Porosity.


3%




777/ \\\


NS.


4%




////


BURNED(Y)


8%


6%










/


10%











loII


CREMAIED(Z)


MOE UPPER 95% C.L


95.7 95.5 94.5
901 89.4 906 89.9
7-, 86.6 M9















811 /
-I //"9/,

-//. ... Y/. x//
- / \ .--., .. \\!.. -..-


= +1 S.D.


1 2%


11% -

10% -


8%

7%

6%

5%

4%

3%

2%

1%

0%

-1%

-2%


DRIED(X)


AVERAGE


LOWER 95% C.L


N.S.


-

-

-

~

-

-

-

-









Tooth-Mandible Results



Visual Description


The mandible sections had the same general appearance

as the fibula sections when burned and cremated. The tooth

enamel was the only part which actually appeared different

after heat treatment. The enamel darkened into a pearly

gray when the bone around it was a charred black. As the

bone turned white with higher temperature, the enamel be-

came a lighter gray, but did not become white. As the bone

shrank, the enamel frequently cracked and fell off the

tooth, breaking off varying amounts of dentin with it and

usually leaving a cone-shaped stub. In spite of extreme

care in handling, crowns remained on only 24 of the

original 31 teeth in the burned group and 23 out of 31 in

the cremated group. If the burned and cremated teeth had

been handled casually, very few, if any, of the crowns

would have remained in place.



Tooth Measurements (Tables 14-16. Figures 13-18)


The change in total tooth length was very small in the

dried and burned teeth and was statistically significant

only in the cremated group where the teeth decreased in

size by an average of 10.7%. (Tables 14-16, Figures 13-14)








Tooth root shrinkage was significant in both burned

and cremated teeth. The burned root decreased in size by

an average of 3.4%, the cremated root, by 12.5%. (Tables

14-16, Figures 15-16)

Tooth width shrinkage was significant in all three

groups. The dried group showed a 1.3% average shrinkage,

the burned group, 3.7% shrinkage, and the cremated group,

15.5%. (Tables 14-16, Figures 17-18)

These values were small compared to the 20% root

shrinkage reported by Bell [36]. He burned extracted teeth

at 815-1093 degrees C. His temperatures were comparable to

those of the Group Z teeth but they were burned after ex-

traction rather than in the bone. Also the ages of the

tooth donors were not given. Either of these factors might

account for the differences in our observations. Greater

shrinkage can be expected of younger, less mineralized

tooth roots.






43


FIGURE 13. Total Tooth Length. Average Measurements in mm.


DRIEDi'Y


BURNED(Y)


CREMATED(Z)


7-71 BEFORE PROCEDURE


r7" AFTER PROCEDURE


FIGURE 14. Relative Change in Total Length after Each
Experimental Procedure.


16% -


12% -

10% -
B--
8%
6--
6%
4--
4% -

2%


9%





/I


13%


N.S.


0 1 1%
07-


DRIED(0>)


BURNED(Y)


N.S.


CREMATED(Z)


ME UPPER 95% C.L.


23.7
22.0 21.8 22.6 22.2 2
20_8


LOWER 95% C.L.


' 1 AVERAGE




44

FIGURE 15. Tooth Root Length. Average Measurements in mm.


DRIED(X)


BURNED(Y)


CREMATED(Z)


=77 BEFORE PROCEDURE


= AFTER PROCEDURE


FIGURE 16. Relative Change in Root Length after Each
Experimental Procedure.
18%
17% -
16% -


3%
2%


BURNED(Y)


14%





F///


13%




I77


5%


7


11




//


CREMATED(Z)


M]E UPPER 95% C.L.


15.2
14.2 14.0 14.3
S/13.6 13.3


15% -
14% -
13% -
12% -
11%
10%


N.S.


DRIED(X)


= AVERAGE


LOWER 95% C.L.









FIGURE 17. Tooth Width. Average Measurements in mm.

8

7 6.8
6.3 6.2 6.4 6.1
6 5, y5.8

5



3-

2-

1-
nJ


DRIED(X)


BURNED(Y)


71 BEFORE PROCEDURE


=X AFTER PROCEDURE


14%

7-


CREMATED(Z)


FIGURE 18. Relative Change in Tooth Width after Each
Experimental Procedure.


18% -
17% -
16% -
15% -
14% -
13% -
12% -
11% -
10% -


4%
P77\V\\\


- 2%
017
~7-^\\\-


DRIED(X)


5%


7


BUPNED(Y)


16%









I X"


17%














/


CREMATED(Z)


E= UPPER 95% C.L.


. IX


f


I


N-'; AVERAGE


LOWER 95% C.L.








Mandibular Bone Measurements

(Tables 17-19, Figures 19-24)


The first measurement, total mandibular height, in-

cluded the tooth crown as well as the mandibular bone. The

average shrinkage of the dried and burned groups was

slightly over 1%. The cremated samples were reduced in

total height by 14%. (Tables 17-19, Figures 19-20)

As expected, the mandibular height shrinkage was

larger than the total mandibular shrinkage which included

the tooth crown. The dried and burned groups were reduced

by 2% and the height of the cremated samples was reduced by

16%. (Tables 17-19, Figures 21-22)

The mandibular width (labio-lingual width) decreased

an average of 2% in both the dried and the burned groups,

but the range of values was greater in the burned group.

The width of the cremated samples was reduced by an average

of 17%. (Tables 17-19, Figures 23-24)

The average mandibular bone shrinkage was slightly

less than the average fibula shrinkage in this sample

(Figure 25). The ranges overlap on all of the bone

shrinkage estimates. The slight differences could be

attributed to the differences in density and infrastructure

of the two bones. Density differences alone could be

attributed to the age structure of the sample population.









FIGURE 19. Total Mandibular Height (including Tooth Crown).
Average Measurements in mm.


DRIED(X)


BURNED(Y)


CREMATED(Z)


77 BEFORE PROCEDURE


= AFTER PROCEDURE


FIGURE 20. Relative Change in Total Mandibular Height after
Each Experimental Procedure.


1% 2%
77~f^


DRIED(x)


2%


BURNED(Y)


L R UPPER 957 C.L.


41 8 41 2 41 7 41 0 41 6

36.1
/ "X -/ N-/\. .- ./ / 6
*//// ..... \\\\\ !
/__//_ ^ ^ / ^ /


20%
19% -
18% -
17% -
16% -
15% -
14% -
13% -
12% -
11% -
10% -
9 -
9%
8%


14%


-7


15%







7
/f#/
///#


13%











/I


CREMATED(Z)


= AVERAGE


LOWER 95% C L










FIGURE 21. Mandibular Height, Average Measurements.



35 -
31.7 31.1 31.4 30.8 31.5

30 -

26.5

25 -


20 -
LJ


15 -


10 -



5-
0-


DRIED(X)


BURNED(Y)


CREMATED(Z)


= BEFORE PROCEDURE


FIGURE 22.


20%
19%
18%
17%
16%
15% -
14%
13% -
12%
11%
10%
9% -
8% -
7% -
6% -
5% -
7%




3% -
6%
5%
4%
3%



0%


=X AFTER PROCEDURE


Relative Change in Mandibular Height after
Each Experimental Procedure.


2% 2% 2%


3%


DRIED(X)


15%


















/


BURNED(Y)


16%



















7


17%


CREMATED(Z)


=OWE UPPER 95% C.L


1. -.44,


= AVERAGE


LOWER 95% C.L.












FIGURE 23. Mandibular Labio-lingual Width, Average
Measurements in mm.

15 ,
17 -
16 -
15 14 14.6 14.6 14.3 14.2
14 '// ,\ /\
13 -
12 11.9
I 11"
i 10 -


7
6 -

5-
4
3 -


BURNED(Y)


BEFORE PROCEDURE


CREMATED(Z)


AFTER PROCEDURE


FIGURE 24. Relative Change in Mandibular Labio-lingual
Width after Each Experimental Procedure.


4%


15%



















/


BURNED(Y)


17%


18%










7
"//1
A--,-.


& a.~a.. I ~


CREMATED(Z)


L UPPER 95% C.L.


DRIED(w,)


20%7.
19% -
18% -
17% -
16% -
15% -
14% -
13% -
12% -
11% -
10% -
9% -
8% -
7% -
6% -
5% -
4%


3% -
2%
37-




1% -
5%
-%


2%
or


3%
2% ///


DRIED(x)


LOWER 95% C.L


f';; AVERAGE











SUMMARY AND CONCLUSIONS


The first hypothesis stated that post-mortem dehydra-

tion and pyrolysis have measurable effects on the structure

of bone and teeth. The hypothesis was accepted with some

qualifications. In this study, eight types of linear mea-

surements clearly demonstrated that the magnitude of change

resulting from high-temperature burning (950 C.) is differ-

ent from the magnitude of change resulting from either low-

temperature burning (500 C.) or simple drying. This

phenomenon is the evidence of a phase change (fusion or

melting) which takes place in hydroxyapatite crystals

between the temperatures of 700 and 800 degrees C. [26,37].

The changes in size resulting from drying and 500 C.

burning were minor. Only the mandibular measurements and

the tooth width were statistically significant in the dried

group. All except the tooth length were statistically

significant in the burned group. The dried group and the

burned group were virtually indistinguishable from each

other in the mandibular measurements, osteon diameters, and

tooth length. (FIGURE 25.) It appears that there is little

difference between simple water loss and partial reduction

of the organic component of bone by burning. The organic

component has been reported to comprise a constant 49.2% of









the volume of mature bone [49] and it is obvious that loss

of the organic component affects the bone volume [26].

However, it is shown here that the loss of the organic

component has little effect on linear dimensions. It is

the changes in the mineral component of bone that make the

critical difference in linear dimensions of bone.

The lack of uniformity between types of measurements

(width, length, diameter, etc.) is probably due to ultra-

structure differences. (FIGURE 27.) Herrmann [26] suggests

that the ratio of cancellous to compact bone relative to

the plane of measurement dictates the amount of shrinkage

possible at a given temperature. The results of this study

tend to support Herrmann's assumption. With this evidence,

it seems impractical to search for a standard correction

factor for burned bone unless a mineral density factor can

be included as well as a temperature factor. A correction

factor for dentin also seems impractical because of the

wide range of mineralization possible at different ages.

The second hypothesis stated that the change in bone

is different from that in teeth. This was also accepted

with qualifications. Enamel and dentin behave differently

when burned or cremated. The mineral content of enamel is

greater than dentin. The final comparison was really

between enamel, dentin and bone. When the entire tooth was

measured, the tooth appeared to shrink only about half the

amount that bone shrinks. (FIGURE 27.) When the enamel was









excluded from the measurement, and the several different

bone measurements were averaged, it appeared that the den-

tin behaved very much like bone. (FIGURE 28.) The age

range of the sample should be considered in applying this

bone-tooth comparison. Age undoubtedly plays an important

role in that the bones of the elderly tend to become less

mineralized while their teeth become more mineralized. A

sample of larger age range would be useful to study this

ratio.

The diversity of experiments and conclusions found in

the literature is due in part to a lack of basic under-

standing of the actual physical changes taking place as

calcified tissue burns. The following is a step-by-step

description of heat-related changes. The information is a

synthesis of information found in the literature review,

basic knowledge, and observations made in the course of

this work. The main source is Shipman et al. [37].

(1) Drying. Free water molecules escape from bone sur-

faces in direct relation to the surrounding humidity.

(2) 100-360C. Rapid drying. Hydroxyl bonds are broken in

hydroxyapatite crystals and the water molecules adher-

ing to the surface of the crystals are removed. Water

is released from the organic material (collagen and

ground substance). The loss of water from all areas

causes extensive cracking, checking and warping. [19-

24]









(3) 360-525C. Decomposition of the organic component.

Variability in hue, chroma and value increases [37].

Most or all of the organic material in the bone is

burned off in this range.

(4) 645-750C. Increase in hydroxyapatite crystal size.

These changes have been interpreted as indicating

conversion of hydroxyapatite into tricalcium phosphate

but Shipman et al. [37] suggests that larger crystals

of hydroxyapatite are formed instead. This tempera-

ture is lower than the reported melting point of pure

geological apatite (1200C.) [49]. Shipman et al.

explain that the lower temperature may be caused by

the presence of other substances that may act as a

flux for hydroxyapatite.

(5) 700-800+C. Phase change. Fusion, or melting, of the

hydroxyapatite crystals, occurs. [28,29,37]


In light of the information now available, several

recommendations can be offered. (1) Dried and burned bone

and teeth can be analyzed as if they were fresh, i.e. aging

techniques and stature estimates can be applied. However,

a wider range of confidence must be reported. (2) If it is

suspected that the tissue reached 600 degrees C. or more,

the range of confidence should be increased greatly. (3) If

the tissue has reached the point of full cremation, it must

be analyzed by a different set of standards. Guidelines







for those standards are given in the tables and figures

provided in this text. (4) Since the amount of outer

cortex remaining after cremation is variable, Kerley's

method for determination of age at death should not be used

on cremated material until a larger age range can be stu-

died.

There is more information to be gained from this

sample. Age and sex differences do seem to exist and

should be defined. Tooth microstructure can provide infor-

mation when examined by microradiograph but it will be

necessary to devote time to the development of a reliable

technique for thin-sectioning burned and cremated teeth.

Age estimates can be attempted on cremated bone using the

smaller square field instead of the full microscope field.

Actual density measurements could be taken and compared

with the amount of shrinkage.











FIGURE 25.



24%

22%

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%


Comparison of Bone Shrinkage, Both Gross
Measurements and Osteon Measurements.


MANDIBLE HT. MANDIBLE WTH. OSTEON DIA. FIBULA DIA.


= DRIED


= BURNED


= CREMATED


FIGURE 26.

24%.

22%

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%


Comparison of Tooth Shrinkage.


TOOTH LENGTH. ROOT LNGTH. TOOTH WDTH.


M CREMATED


77 DRIED


BURNED











FIGURE 27. Summary of Gross Measurement Averages.


24%

22%

20%

18%

16%

14%

12%

10%

8%

6%


I
TOOTH LNGTH.


= DRIED


I I I I
ROOT LNGTH. TOOTH WDTH. MANDIBLE HT. MANDIBLE WTH.,


= BURNED


FIBULA DIA


E77 CREMATED


FIGURE 28. Comparison of Dentin and Bone Shrinkage.


24%

22% -

20% -

18% 18%

16% -///,
14%
14% -

12% -

10% -


DENTIN BONE


E= CREMATED


217
-


17%
16% 16%



1 2%



-/



S / v/ 2 /// 2

N.S N.S .S^ ,%%
S-i _/i/^ I// //i/-


-

-


[77 DRIED


= BURNED









APPENDIX A.
SAMPLE DESCRIPTION


Sample
Number

B03

B04

B06

B07

B11

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B28

B29

B30

B31


Morgue
Number

EM2880

EM2924

EM2934

EM2896

EM2872

EM2914

EM2948

EM2930

EM2893

EM2801

EM2799

EM2853

EM2870

EM2908

EM2928

EM2931

EM2985

EM2935

EM2903

EM2922

EM2895

EM2901

UF4365


Sex

M

F

F

M

M

F

F

M

F

M

M

M

M

F

M

F

M

F

F

F

M

F

F


DOB

06-15-12

04-03-12

12-24-15

09-17-41

02-17-15

05-29-21

12-26-24

04-29-49

05-30-01

11-17-18

10-17-00

06-29-06

12-30-26

08-01-29

08-24-31

08-10-16

12-12-14

04-22-22

05-28-18

08-24-04

06-11-19

04-10-26

07-07-01


DOD

06-12-83

10-12-83

11-12-83

07-18-83

05-25-83

09-15-83

12-06-83

11-07-83

07-13-83

11-13-82

11-05-82

04-01-83

05-20-83

09-01-83

11-01-83

11-08-83

02-20-84

11-13-83

08-19-83

10-06-83

07-16-83

08-11-83

09-30-83


Age Cause of Death

71.0 cardiac arrest

71.5 cancer, pancreas

67.9 cancer, lung

41.8 cancer, lung

68.2 cancer, lung

62.3 cancer, respir-
atory failure
59.0 cancer, meta-
static
34.6 seizure, men-
tally retarded
82.2 cancer

64.0 refractory
anemia
82.1 heart attack

76.8 myocardial
infarction
56.4 not given

54.1 stroke, renal
failure
52.2 cancer, lung

67.2 cardiac arrest

69.2 myocardial
infarction
61.6 epilepsy

65.2 cardio-resp.
arrest (CRA)
79.2 resp. failure,
GI bleeding
64.1 not given

57.3 cardiac arrest

82.2 brain stem in-
farction









Sample Morgue
Number Number


Sex


DOB


DOD


Age Cause of Death


B58 EM3150 M 12-15-16 02-05-85


B32

B33

B34

B35

B36

B37

B38

B39

B40

B41

B42

B43

B44

B45

B46

B47

B49

B50

B51

B53

B55

B56

B57


UF4418

UF4416

EM2936

EM2961

EM2973

EM2977

EM2994

EM2996

EM3004

EM3007

EM3049

UF4668

UF4480

UF4578

UF4597

UF4601

EM3082

EM3072

EM3084

EM3071

EM3099

EM3112

EM3067


F 10-08-23

F 11-21-92

F 05-28-15

F 05-07-32

F 01-30-20

M 06-26-07

M 08-20-12

F 10-13-16

F 11-18-15

M 10-05-07

M 06-12-13

F 01-06-22

F 07-31-16

M 05-23-25

M 07-11-07

F 04-30-96

M 08-05-29

F 10-28-98

F 09-16-16

F 12-11-04

F 03-17-00

M 07-10-08

F 11-09-91


12-17-83

01-30-84

11-14-83

12-28-83

01-20-84

01-31-84

03-09-84

03-11-84

04-04-84

04-09-84

07-10-84

09-19-84

02-25-84

06-10-84

06-29-84

06-28-84

10-05-84

09-07-84

10-08-84

09-06-84

11-01-84

12-04-84

08-22-84


60.2 cancer, lung

91.2 stroke, dehy-
dration senility
68.5 CVA, glanuloma

51.6 cancer

64.0 cardiac arrest,
renal failure
76.6 cardiac arrest,
renal failure
71.6 recurrent
pneumonia
67.4 myocard. infarc.
chr.obs.pul.dis.
68.4 cerebrovascular
accident
76.5 brain tumor

71.1 cancer

62.7 CRA,
ovarian cancer
67.6 myocard. infarc.
chr.obs.pul.dis.
59.1 myocardial
infarction, CRA
76.9 cardiac arrest,
mylofibrosis
88.2 cerebrovascular
accident
55.2 pulmonary arrest,
lymphoma
85.9 pneumonia

68.1 cancer, liver

79.8 chronic obstr.
pulmonary dis.
84.7 old age

76.4 cancer, kidney
failure
92.8 CVA

68.2 heart disease























APPENDIX B

FORM3.WK1


FORM3.WK1 is an example of the Lotus 1-2-3 spreadsheet

used for microstructure measurements. The unseen formulae

in the summary cells carried out computations automatically

as the data were entered from the microscope. Each com-

pleted spreadsheet was saved and printed then a clean sheet

was called up for the next thin section.








APPENDIX B
FORM. WK1






FIBULA SAMPLE NUMBER:

ADJUSTMENT FACTOR: 61.22 units = 1 mm.
(correction for grid size)


SAMPLE DESCRIPTION:

section thickness in microns .


OSTEON DIAMETERS/OPACITY


greatest least


1-3
scale*


(mark one) calcified section (CS) (1)
(2)
microradiograph (MR) (3)
(4)
CONDITION: (5)
(6)
(mark any) publication quality (7)
(8)
clear, easy to read (9)
(10)
dark, hard to read (11)
(12)
COMMENT: (13)
(14)
VISIBLE STRUCTURES: (15)
(16)
(mark any) osteons ...... .__ (17)
(18)
osteon fragments (19)
(20)
osteocyte lacunae (21)
(22)
zonal osteons (23)
(density variations) (24)
----=- -= -==, -- (25)
FIELD COUNTS: (26)
Area Osteons Frag- Osteons Frag- (27)
(Merz) (grid) ments (field) ments (28)
(29)
I ____ (30)


II

III

IV

AVG
STD
VAR


AVG 0.0 0.0 0.0
STD 0.0 0.0
___ VAR 0.0 0.0 (units)

Opacity scale:


0.0
0.0
0.0


0.0
0.0
0.0


0.0
0.0
0.0


0.0
0.0
0.0


0.0
0.0
0.0


1 = radiolucent
2 = average
3 radiopaque


% BONE TISSUE:
% VOID SPACE:
(porosity)


0.0%
100.0%


AVERAGE OSTEON DIAMETER:
STANDARD DEVIATION:
[# ] VARIANCE:


0 microns
0 microns
0 microns


DATE:























APPENDIX C

TABLES OF RESULTS



TABLES 6-19. Data and Statisics. These tables pro-

vide the reference material for the Results and Discussion.

Each table is two pages long with the page division between

the measurements and the statistics.








TABLE 6. Gross Fibula Measurements, Control Group (W).
Average Cross-Sectional Diameters in Millimeters.



GROSS FIBULA MEASUREMENTS (mm.) FILENAME: FIBULA-W
(AVERAGE CROSS-SECTIONAL DIAMETER)

CONTROL PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A) XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
-----------------------------------------------------------
B03W 14.2 14.2 14.1 -0.00153 -0.00307
B04W 11.2 10.7 10.8 -0.01789 -0.01385
B06W 12.9 12.9 12.9 -0.00169 0.00000
B07W 14.6 14.3 14.6 -0.01054 0.00000
B11W 14.3 15.0 14.7 0.01931 0.01050
B13W 11.0 11.5 11.4 0.01931 0.01551
B14W 13.0 12.6 12.9 -0.01357 -0.00335
B15W 11.6 11.8 11.4 0.00746 -0.00759
B16W 11.7 11.7 12.0 0.00000 0.00918
B17W 14.3 13.1 13.4 -0.03820 -0.02833
B18W 16.1 15.8 16.0 -0.00955 -0.00271
B19W 10.3 10.4 9.8 0.00422 -0.01950
B20W 15.6 15.7 15.7 0.00417 0.00417
B21W 13.4 13.9 13.3 0.01597 -0.00163
B22W 15.3 14.2 15.6 -0.03098 0.00985
B23W 12.0 12.4 12.3 0.01249 0.00895
B24W 13.9 12.9 14.0 -0.03411 0.00156
B25W 11.8 11.9 11.5 0.00184 -0.01308
B26W 11.8 12.0 11.9 0.00730 0.00366
B28W 12.2 12.8 13.1 0.02085 0.02925
B29W 12.3 12.7 12.5 0.01390 0.00526
B30W 12.6 12.0 12.3 -0.02119 -0.01223
B31W 13.3 12.5 12.8 -0.02531 -0.01501
B32W 14.2 13.6 -0.01875
B33W 13.3 14.0 13.2 0.02228 -0.00328
B34W 13.4 12.2 11.5 -0.04253 -0.06830
B35W 11.8 11.7 12.1 -0.00370 0.00911
B36W 12.3 11.8 12.1 -0.01987 -0.00712
B37W 16.2 15.3 16.3 -0.02348 0.00268
B38W 13.4 14.2 13.7 0.02365 0.00803
B39W 12.8 12.1 12.3 -0.02452 -0.01737
B40W 12.3 12.3 12.4 0.00000 0.00352
B41W 15.4 15.8 15.7 0.00976 0.00838
B42W 15.8 15.5 -0.00833
B43W 12.2 12.3 12.7 0.00356 0.01923
B44W 12.3 12.2 -0.00356
B45W 14.7 15.3 14.9 0.01737 0.00441
B46W 13.5 13.8 13.5 0.00958 0.00000
B47W 11.8 11.8 12.2 0.00000 0.01448
B49W 13.5 13.8 13.7 0.00955 0.00480
B51W 12.5 12.3 12.3 -0.00703 -0.00526
B53W 10.7 11.3 11.2 0.02177 0.01789
B55W 11.9 11.9 12.3 -0.00183 0.01259
B56W 12.8 12.7 12.8 -0.00341 0.00000
B57W 12.8 12.8 12.9 0.00000 0.00339
B58W 13.7 13.8 14.0 0.00158 0.00785








TABLE 6--continued. Gross Fibula Measurements, Control
Group (W). Statistics Summary.





GROSS FIBULA MEASUREMENTS (mm.) FILENAME: FIBULA-W
(AVERAGE CROSS-SECTIONAL DIAMETER)
CONTROL PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A) XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
-----+-------------------------------------------------------
N 46 43 46 43 46
AVERAGE 13.09 12.95 13.06 -0.00198 -0.00083
STD DEV 1.43 1.37 1.46 0.01719 0.01504
STD ERR 0.21 0.21 0.22 0.00262 0.00222
t-TEST Sample t-values 0.754 0.373
Value of t at 95% level 2.021 2.014
Value of t at 99% level 2.704 2.690
n.s. n.s.
Average antilogg) 0.995 0.998
Upper 95% confidence point 1.001 1.003
Lower 95% confidence point 0.990 0.994
AVERAGE SHRINKAGE 0.5% 0.2%

95% shrinkage range from -0.1% -0.3%
to 1.0% 0.6%
CHI-SQUARE TEST AVG-0.675STD= -0.01358 -0.01098
for normalcy AVG= -0.00198 -0.00083
AVG+0.675STD= 0.00963 0.00933
COMPARISON OF PRELIM XEROX & FINAL XEROX
##Obs. Expected Dif. Sq. Sum/Expected
10 10.75 0.56 0.81
9 10.75 3.06
11 10.75 0.06 IF Sum/expected is < 3.60,
13 10.75 5.06 the distribution is normal.
43 Total
COMPARISON OF PRELIM XEROX & DIRECT MEASUREMENT
##Obs. Expected Dif. Sq. Sum/Expected
9 10.75 3.06 7.37
10 10.75 0.56
19 10.75 68.06 IF Sum/expected is < 3.60,
8 10.75 7.56 the distribution is normal.
46 Total
CONCLUSION: There is no significant difference between the
results obtained by xerographic process and the results
obtained by direct measurement.








TABLE 7.


Gross Fibula Measurements. Dried Group (X).
Average Cross-Sectional Diameters in Millimeters.


GROSS FIBULA MEASUREMENTS (mm.)
(AVERAGE CROSS-SECTIONAL DIAMETER)


FILENAME: FIBULA-X


DRIED PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
------------------- -----------------------------------------


B03X
B04X
B06X
B07X
B11X
B13X
B14X
B15X
B16X
B17X
B18X
B19X
B20X
B21X
B22X
B23X
B24X
B25X
B26X
B28X
B29X
B30X
B31X
B32X
B33X
B34X
B35X
B36X
B37X
B38X
B39X
B40X
B41X
B42X
B43X
B44X
B45X
B46X
B47X
B49X
B51X
B53X
B55X
B56X
B57X
B58X


13.9
11.4
12.7
14.3
14.2
11.4
12.9
12.1
11.9
14.2
15.5
10.5
15.9
13.1
14.9
11.9
14.8
13.3
12.1
12.4
12.4
11.9
13.3
13.7
12.9
12.4
11.7
12.1
16.3
13.2
12.8
12.6
16.5
16.1
12.7
12.1
15.1
13.4
11.9
13.9
12.2
8.1
12.8
12.7
12.8
13.8


14.2
11.5
13.1
14.8
14.6
11.8
14.0
12.0
11.8
14.5
15.5
10.5
16.0
13.3
15.0
12.1
14.7
13.3
12.3
12.9
12.7
12.1
13.0
14.0
12.6
12.6
11.8
12.2
16.1
13.3
12.6
12.4
16.6
15.7
12.2
12.3
15.3
13.1
11.8
13.9
12.1
8.5
12.1
12.8
12.9
14.0


13.9
11.2
12.8
14.0
14.6
11.3
12.9
12.0
11.8
14.3
15.6
9.9
15.9
13.0
15.0
11.9
14.3
13.3
12.3
12.5
12.2
11.9
12.8
13.2
12.8
12.2
11.8
12.0
16.1
13.6
12.5
12.4
15.6
15.4
12.3
12.1
15.1
13.1
12.1
13.7
12.4
8.8
12.0
12.8
13.1
13.8


0.00931
0.00570
0.01352
0.01498
0.01211
0.01313
0.03398
-0.00360
-0.00184
0.00758
0.00000
-0.00207
0.00272
0.00494
0.00290
0.00907
-0.00147
0.00164
0.00535
0.01548
0.01042
0.00724
-0.00995
0.01100
-0.00853
0.00522
0.00370
0.00179
-0.00671
0.00164
-0.00514
-0.00522
0.00263
-0.01096
-0.01744
0.00712
0.00573
-0.00821
-0.00366
0.00000
-0.00179
0.02093
-0.02622
0.00341
0.00508
0.00470


0.00000
-0.00772
0.00512
-0.00924
0.01211
-0.00575
-0.00169
-0.00360
-0.00368
0.00305
0.00279
-0.02775
0.00000
-0.00500
0.00145
0.00183
-0.01498
0.00000
0.00535
0.00349
-0.00709
0.00000
-0.01671
-0.01456
-0.00169
-0.00706
0.00370
-0.00542
-0.00671
0.01296
-0.00860
-0.00522
-0.02444
-0.01795
-0.01390
0.00000
0.00000
-0.00821
0.00544
-0.00629
0.00885
0.03600
-0.02803
0.00341
0.01176
-0.00158









TABLE 7--continued. Gross Fibula Measurements, Dried
Group (X). Statistics Summary.




GROSS FIBULA MEASUREMENTS (mm.) FILENAME: FIBULA-X
(AVERAGE CROSS-SECTIONAL DIAMETER)
DRIED PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
--------------------- ---------------------------------------
N 46 46 46 46 46
AVERAGE 13.08 13.16 12.98 0.00283 -0.00295
STD DEV 1.56 1.55 1.49 0.00988 0.01101
STD ERR 0.23 0.23 0.22 0.00146 0.00162
----------------------------------------- -------------------
t-TEST Sample t-values 1.943 1.816
Value of t at 95% level 2.014 2.014
Value of t at 99% level 2.690 2.690
n.s. n.s.
Average antilogg) 1.007 0.993
Upper 95% confidence point 1.009 0.997
Lower 95% confidence point 1.004 0.990

AVERAGE SHRINKAGE -0.7% 0.7%

95% shrinkage range from -0.9% 0.3%
to -0.4% 1.0%
------------------------------------------------------------
CHI-SQUARE TEST AVG-0.675STD= -0.00384 -0.01038
for normalcy AVG= 0.00283 -0.00295
AVG+0.675STD= 0.00950 0.00448

COMPARISON OF PRELIM XEROX & FINAL XEROX
##Obs.Expected Dif. Sq. Sum/Expected
9 11.5 6.25 2.35
13 11.5 2.25
15 11.5 12.25 IF Sum/Expected is < 3.60,
9 11.5 6.25 the distribution is normal.
46 Total
COMPARISON OF PRELIM XEROX & DIRECT MEASURE
##Obs.Expected Dif. Sq. Sum/Expected
8 11.5 12.25 4.43
14 11.5 6.25
16 11.5 20.25 IF Sum/Expected is < 3.60,
8 11.5 12.25 the distribution is normal.
46 Total

CONCLUSION: The differences in size between wet and dried
fibulae are not statistically significant. The photocopy
measurements are normally distributed but the direct
measurements are not.








TABLE 8. Gross Fibula Measurements, Burned Group (Y).
Average Cross-Sectional Diameters in Millimeters.


GROSS FIBULA MEASUREMENTS (mm.)
(AVERAGE CROSS-SECTIONAL DIAMETER)


FILENAME: FIBULA-Y


BURNED PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
-------------------------------------------------------------


B03Y
B04Y
B06Y
B07Y
BUY
B13Y
B14Y
B15Y
B16Y
B17Y
B18Y
B19Y
B20Y
B21Y
B22Y
B23Y
B24Y
B25Y
B26Y
B28Y
B29Y
B30Y
B31Y
B32Y
B33Y
B34Y
B35Y
B36Y
B37Y
B38Y
B39Y
B40Y
B41Y
B42Y
B43Y
B45Y
B46Y
B47Y
B49Y
B51Y
B55Y
B56Y
B57Y
B58Y


13.8
11.4
13.8
15.0
14.7
12.2
12.9
10.9
11.6
17.7
15.6
10.3
15.9
13.5
14.5
12.5
15.8
12.4
11.9
12.2
11.7
11.2
13.0
13.6
13.1
12.4
11.2
11.8
17.7
13.2
12.6
12.0
15.9
15.1
7.9
14.3
13.5
12.5
13.6
11.2
12.2
12.5
12.5
14.4


13.5
10.8
13.0
13.8
13.9
11.0
12.8
10.7
11.1
16.7
15.3
9.5
15.6
12.8
14.0
11.3
14.9
13.1
11.6
12.1
11.3
10.7
12.5
13.3
12.0
11.8
11.0
11.4
16.4
12.2
11.8
11.5
15.3
14.5
7.6
13.2
12.5
12.1
13.1
11.3
12.0
12.1
12.1
14.1


13.5
10.9

14.3
14.2
11.1
12.6
10.8
11.3
16.3
15.3
9.6
15.6
12.6
14.1
11.9
14.7
12.1
11.7
12.2
11.4
10.8
12.7
13.1
12.5
12.2
11.3
11.5
16.5
12.4
11.8
11.5
15.6
14.8
7.4
13.6
12.6
12.1
12.9
11.3
12.0
12.3
12.4
14.1


-0.00955
-0.02359
-0.02603
-0.03476
-0.02282
-0.04318
-0.00508
-0.00605
-0.01914
-0.02526
-0.00846
-0.03529
-0.00827
-0.02482
-0.01524
-0.04209
-0.02555
0.02219
-0.01109
-0.00537
-0.01325
-0.01983
-0.01536
-0.00809
-0.03643
-0.02338
-0.00783
-0.01504
-0.03190
-0.03421
-0.02861
-0.02038
-0.01671
-0.01911
-0.01681
-0.03476
-0.03181
-0.01412
-0.01793
0.00386
-0.00718
-0.01592
-0.01592
-0.00914


-0.01116
-0.01957

-0.02083
-0.01355
-0.04121
-0.01195
-0.00402
-0.01138
-0.03579
-0.00704
-0.03072
-0.00967
-0.03169
-0.01215
-0.01962
-0.02996
-0.01243
-0.00922
-0.00178
-0.01133
-0.01579
-0.01018
-0.01467
-0.02044
-0.00706
0.00386
-0.01123
-0.02926
-0.02891
-0.02676
-0.01848
-0.00827
-0.00872
-0.02840
-0.02180
-0.02835
-0.01412
-0.02464
0.00193
-0.00899
-0.00877
-0.00349
-0.00914








TABLE 8--continued. Gross Fibula Measurements, Burned
Group (Y). Statistics Summary.




GROSS FIBULA MEASUREMENTS (mm.) FILENAME: FIBULA-Y
(AVERAGE CROSS-SECTIONAL DIAMETER)
BURNED PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
-------- -----------------------------+-- -------------------
N 44 44 43 44 43
AVERAGE 13.11 12.56 12.62 -0.01862 -0.01597
STD DEV 1.88 1.77 1.78 0.01244 0.01027
STD ERR 0.28 0.27 0.27 0.00188 0.00157
------------------------------------------------------------
t-TEST Sample t-values 9.928 10.196
Value of t at 95% level 2.021 2.021
Value of t at 99% level 2.704 2.704
Average antilogg) 0.958 0.964
Upper 95% confidence point 0.962 0.967
Lower 95% confidence point 0.954 0.961
AVERAGE SHRINKAGE 4.2% 3.6%

95% shrinkage range from 3.8% 3.3%
to 4.6% 3.9%
CHI-SQUARE TEST AVG-0.675STD= -0.02702 -0.02290
for normalcy AVG= -0.01862 -0.01597
AVG+0.675STD= -0.01022 -0.00904
COMPARISON OF PRELIM XEROX & FINAL XEROX
##Obs.Expected Dif. Sq. Sum/Expected
10 11 1.00 0.18
11 11 0.00
11 11 0.00 IF Sum/Expected is < 3.60,
12 11 1.00 the distribution is normal.
44 Total
COMPARISON OF PRELIM XEROX & DIRECT MEASURE
##Obs.Expected Dif. Sq. Sum/Expected
11 11 0.00 3.73
6 11 25.00
15 11 16.00 IF Sum/Expected is < 3.60,
11 11 0.00 the distribution is normal.
43 Total
CONCLUSION: The differences in size between wet and burned
fibulae are statistically significant at the 99% level.
The photocopy measurements are normally distributed but
the direct measurements are not.








TABLE 9. Gross Fibula Measurements, Cremated Group (Z).
Average Cross-Sectional Diameters in Millimeters.


GROSS FIBULA MEASUREMENTS (mm.)
(AVERAGE CROSS-SECTIONAL DIAMETER)


FILENAME: FIBULA-Z


CREMATE PRELIM FINAL DIRECT LOG(B) LOG(C)
GROUP XEROX(A) XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
--------+------------------------------+---------------------


B03Z
B04Z
B06Z
B07Z
B11Z
B13Z
B14Z
B15Z
B16Z
B17Z
B18Z
B19Z
B20Z
B21Z
B22Z
B23Z
B24Z
B25Z
B26Z
B31Z
B32Z
B33Z
B34Z
B35Z
B36Z
B37Z
B38Z
B39Z
B40Z
B41Z
B42Z
B43Z
B44Z
B45Z
B46Z
B47Z
B49Z
B51Z
B53Z
B55Z
B56Z
B57Z
B58Z


13.6
11.3
13.2
15.1
14.4
11.2
13.0
12.4
11.7
14.4
15.5
10.4
16.3
12.9
14.3
12.8
15.1
12.8
12.2
13.3
13.6
13.2
13.0
11.5
11.5
16.8
12.4
12.4
12.0
16.8
14.9
13.6
11.9
14.5
13.3
12.3
13.6
11.9
9.3
12.0
12.6
12.9
14.5


10.5
8.5
10.5
12.6
11.3
8.9
10.2
9.7
9.3
11.6
12.0
7.6
13.1
10.3
11.3
9.9
11.3
9.8
9.7
11.2
11.7
10.6
11.1
9.8
9.4
14.2
10.3
10.7
9.9
14.1
11.7
10.5
8.5
11.3
10.4
9.0
11.7
9.3
7.8
9.4
10.0
10.5
11.7


10.6
8.5
10.4
12.2
11.3
8.6
10.1
9.6
9.1
11.5
11.7
7.7
12.9
10.4
11.4
9.5
11.3
9.8
9.1
11.1
11.3
10.6
10.9
9.8
9.1
14.3
10.2
10.6
9.6
14.1
11.6
10.4
8.5
11.0
10.5
9.1
11.6
9.5
7.7
9.4
9.9
10.7
11.7


-0.1123
-0.1237
-0.1015
-0.0789
-0.1053
-0.0998
-0.1053
-0.1049
-0.1002
-0.0924
-0.1097
-0.1391
-0.0966
-0.0978
-0.1027
-0.1099
-0.1245
-0.1182
-0.1000
-0.0746
-0.0672
-0.0957
-0.0669
-0.0676
-0.0899
-0.0733
-0.0827
-0.0643
-0.0857
-0.0763
-0.1035
-0.1128
-0.1469
-0.1102
-0.1068
-0.1357
-0.0656
-0.1052
-0.0764
-0.1084
-0.0986
-0.0915
-0.0917


-0.1103
-0.1237
-0.1056
-0.0930
-0.1053
-0.1147
-0.1118
-0.1117
-0.1073
-0.0980
-0.1207
-0.1334
-0.1033
-0.0936
-0.0988
-0.1278
-0.1264
-0.1182
-0.1255
-0.0785
-0.0824
-0.0957
-0.0768
-0.0698
-0.1017
-0.0687
-0.0848
-0.0664
-0.0969
-0.0748
-0.1073
-0.1170
-0.1443
-0.1220
-0.1027
-0.1333
-0.0694
-0.0983
-0.0820
-0.1084
-0.1030
-0.0832
-0.0935









TABLE 9--continued. Gross Fibula Measurements, Cremated
Group (Z). Statistics Summary.


GROSS FIBULA MEASUREMENTS (mm.)
(AVERAGE CROSS-SECTIONAL DIAMETER)


FILENAME: FIBULA-Z


CREMATE PRELIM FINAL DIRECT LOG (B) LOG (C)
GROUP XEROX(A) XEROX(B) MEASURE(C) -LOG(A) -LOG(A)
--------+-----------------------------+-----------------
N 43 43 43 43 43
AVERAGE 13.15 10.51 10.41 -0.09815 -0.10209
STD DEV 1.58 1.42 1.42 0.01967 0.01928
STD ERR 0.24 0.22 0.22 0.00300 0.00294
--------------------- -----------------SS---------
t-TEST Sample t-values 32.722 34.724
Value of t at 95% level 2.021 2.021
Value of t at 99% level 2.704 2.704

Average antilogg) 0.798 0.791
Upper 95% confidence point 0.804 0.796
Lower 95% confidence point 0.792 0.785
AVERAGE SHRINKAGE 20.2% 20.9%

95% shrinkage range from 19.6% 20.4%
to 20.8% 21.5%


CHI-SQUARE TEST
for normalcy


AVG-0.675STD=
AVG=
AVG+0.675STD=


-0.11142 -0.11510
-0.09815 -0.10209
-0.08487 -0.08907


COMPARISON OF PRELIM XEROX & FINAL XEROX
##Obs.Expected Dif. Sq. Sum/Expected
8 10.75 7.56 3.98
16 10.75 27.56
8 10.75 7.56 IF Sum/expected is < 3.60,
11 10.75 0.06 the distribution is normal.
43 Total
COMPARISON OF PRELIM XEROX & DIRECT MEASURE
##Obs.Expected Dif. Sq. Sum/Expected
11 10.75 0.06 0.44
12 10.75 1.56
9 10.75 3.06 IF Sum/expected is < 3.60,
11 10.75 0.06 the distribution is normal.
43 Total
CONCLUSION: Shrinkage is significant at the 99% level
in cremated bone. The chi-square tests are different
between the photocopy and direct measurements, but
the numbers are close otherwise.








TABLE 10. Average Osteon Diameters in Microns.






AVERAGE OSTEON DIAMETER (in microns) FILENAME: DIAMETER
(WHOLE SAMPLE)

ID# AGE SEX GROUP W GROUP X GROUP Y GROUP Z LOG(X) LOG(Y) LOG(Z)
Control Dried Burned Cremated -LOG(W) -LOG(W) -LOG(W)
------------------------- -----------------------------------------------
B03 71 M 209 203 198 181 -0.0127 -0.0235 -0.0625
B04 71 F 222 232 222 162 0.0191 0.0000 -0.1368
B06 67 F 240 261 250 195 0.0364 0.0177 -0.0902
B07 41 M 235 244 247 206 0.0163 0.0216 -0.0572
B11 68 M 235 231 237 195 -0.0075 0.0037 -0.0810
B13 62 F 229 222 211 178 -0.0135 -0.0356 -0.1094
B14 59 F 254 235 242 192 -0.0338 -0.0210 -0.1215
B15 34 M 202 201 202 174 -0.0022 0.0000 -0.0648
B17 64 M 235 213 217 179 -0.0427 -0.0346 -0.1182
B18 82 M 247 220 223 186 -0.0503 -0.0444 -0.1232
B19 76 M 234 245 242 194 0.0200 0.0146 -0.0814
B21 54 F 222 232 211 191 0.0191 -0.0221 -0.0653
B25 61 F 235 205 212 196 -0.0593 -0.0447 -0.0788
B26 65 F 254 253 244 197 -0.0017 -0.0174 -0.1104
B29 64 M 223 224 227 176 0.0019 0.0077 -0.1028
B31 82 F 204 201 206 172 -0.0064 0.0042 -0.0741
B32 60 F 225 248 230 187 0.0423 0.0095 -0.0803
B33 91 F 181 184 196 163 0.0071 0.0346 -0.0455
B36 64 F 226 234 245 194 0.0151 0.0351 -0.0663
B38 71 M 231 205 202 184 -0.0519 -0.0583 -0.0988
B40 68 F 156 164 155 130 0.0217 -0.0028 -0.0792
B43 62 F 205 195 217 184 -0.0217 0.0247 -0.0469
B45 59 M 210 205 196 184 -0.0105 -0.0300 -0.0574
B46 76 M 216 213 207 191 -0.0061 -0.0185 -0.0534
B47 88 F 227 208 203 182 -0.0380 -0.0485 -0.0960
B49 55 M 237 223 224 179 -0.0264 -0.0245 -0.1219
B53 79 F 208 197 199 160 -0.0236 -0.0192 -0.1139
B55 84 F 234 214 210 174 -0.0388 -0.0470 -0.1287
B56 76 M 214 199 219 169 -0.0316 0.0100 -0.1025
B58 68 M 207 201 189 188 -0.0128 -0.0395 -0.0418









TABLE 10--continued. Average Osteon Diameters.
Statistics Summary.


AVERAGE OSTEON DIAMETER (in microns)


FILENAME: DIAMETER


GROUP W GROUP X GROUP Y GROUP Z LOG(X) LOG(Y) LOG(Z)
Control Dried Burned Cremated -LOG(W) -LOG(W) -LOG(W)
------------------------------------------------------------------------
N 30 30 30 30 30 30 30
AVG 221.90 217.07 216.10 181.43 -0.0097 -0.0116 -0.0870
STD 20.21 21.38 20.59 14.58 0.0262 0.0260 0.0271
STD ERR 3.69 3.90 3.76 2.66 0.0048 0.0047 0.0050

t-TEST Sample t values 2.037 2.447 17.572
Value of t at 95% level 2.045 2.045 2.045
Value of t at 99% level 2.756 2.756 2.756
n.s.
Average (Antilog) 0.978 0.974 0.818
Upper 95% confidence point 1.000 0.996 0.838
Lower 95% confidence point 0.956 0.952 0.800


AVERAGE CHANGE (Shrinkage)
95% significance range:


CHI-SQUARE Test for normalcy.AVG-0.675STD=
AVG=
AVG+0.675STD=
CHANGE IN DRIED TISSUE
##Obs.Expt.Dif.Sq. Sum/Expected
8 7.5 0.25 0.67
9 7.5 2.25
7 7.5 0.25 IF Sum/Expected is <
6 7.5 2.25 the distribution is n
30 Total
CHANGE IN BURNED TISSUE
##Obs.Expt.Dif.Sq. Sum/Expected
9 7.5 2.25 1.47
7 7.5 0.25
5 7.5 6.25 IF Sum/Expected is <
9 7.5 2.25 the distribution is n
30 Total
CHANGE IN CREMATED TISSUE
##Obs.Expt.Dif. Sq. Sum/Expected
9 7.5 2.25 2.27
5 7.5 6.25
6 7.5 2.25 IF Sum/Expected is <
10 7.5 6.25 the distribution is ni
30 Total


from
to


2.2% 2.6% 18.2%
-0.0% 0.4% 16.2%
4.4% 4.8% 20.0%


-0.0274
-0.0097
0.0079


-0.0291
-0.0116
0.0059


-0.1053
-0.0870
-0.0687


3.60,
normal.


3.60,
normal.


3.60,
normal.


CONCLUSION: The change in osteon diameter is significant in burned bone
at the 95% level and significant in cremated bone at the 99% level.
There is no significant change in osteon diameter size in dried bone.


------------------------------------------------------------------------


-------------------------









TABLE 11. Number of Osteons per Field at 100X.


NUMBER OF OSTEONS PER FIELD AT 10OX


FILENAME: FIELD-CT


ID# AGE SEX GROUP W GROUP X GROUP Y GROUP Z LOG(W) LOG(W) LOG(W)
Control Dried Burned Cremated -LOG(X) -LOG(Y) -LOG(Z)
--___-_ ..------------------------------------- -- -4 ------- ----------- -------


B03
B04
B07
B11
B13
B14
B15
B17
B18
B19
B21
B24
B26
B29
B32
B38
B40
B43
B46
B47
B49


44.0
37.8
25.8
37.8
32.7
30.5
48.5
33.0
45.6
29.0
34.8
30.0
39.0
35.5
32.0
43.7
60.5
36.3
43.3
41.8
41.0


41.8
33.8
26.2
41.8
28.5
26.8
49.8
36.8
45.8
31.3

30.8
34.5
36.8
25.8
47.5
60.5
41.0
41.3
45.0
41.3


39.5
34.3
27.5
40.5
25.8
26.0
49.5
39.5
51.4
39.0
41.8
31.8
30.8
37.0
28.8
45.5
53.8
40.7
33.5
44.0
37.5


53.5
44.8
40.7
48.8
35.3
42.4
77.5
65.5
69.0
43.0
58.0
46.5
54.0
48.0
45.5
61.3
57.0
62.0
37.5
50.7
49.0


0.0223
0.0486
-0.0075
-0.0437
0.0597
0.0562
-0.0115
-0.0473
-0.0017
-0.0331

-0.0110
0.0532
-0.0156
0.0935
-0.0367
0.0000
-0.0529
0.0205
-0.0320
-0.0032


0.0469
0.0422
-0.0286
-0.0300
0.1029
0.0693
-0.0089
-0.0781
-0.0513
-0.1287
-0.0796
-0.0253
0.1025
-0.0180
0.0458
-0.0180
0.0510
-0.0497
0.1114
-0.0223
0.0388


-0.0849
-0.0738
-0.1983
-0.1109
-0.0332
-0.1431
-0.2036
-0.2977
-0.1796
-0.1711
-0.2218
-0.1903
-0.1413
-0.1310
-0.1529
-0.1475
0.0259
-0.2325
0.0625
-0.0838
-0.0774









TABLE 11--continued. Number of Osteons per Field at 100X.
Statistics Summary.


NUMBER OF OSTEONS PER FIELD AT 100X


FILENAME: FIELD-CT


GROUP W GROUP X GROUP Y GROUP Z LOG(W) LOG(W) LOG(W)
Control Dried Burned Cremated -LOG(X) -LOG(Y) -LOG(Z)
- -----------------------------------------------+------------------------
N 21 20 21 21 20 21 21
AVG 38.22 38.35 38.01 51.90 0.0029 0.0034 -0.1327
STD 7.73 8.76 7.87 10.53 0.0402 0.0640 0.0837
STD ERR 1.69 1.96 1.72 2.30 0.0090 0.0140 0.0183
t-TEST Sample t values 0.321 0.247 7.266
Value of t at 95% level 2.093 2.086 2.086
Value of t at 99% level 2.861 2.845 2.845
n.s. n.s.
Average (Antilog) 1.007 1.008 0.737
Upper 95% confidence point 1.051 1.078 0.804
Lower 95% confidence point 0.964 0.943 0.675


AVERAGE CHANGE (Increase in count)


95% significance range:


from
to


-0.7% -0.8% 26.3%
-5.1% -7.8% 19.6%
3.6% 5.7% 32.5%


CHI-SQUARE Test for normalcy.AVG-0.675STD-
AVG=
AVG+0.675STD=
CHANGE IN DRIED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
6 5 1 2.80
7 5 4
2 5 9 IF Sum/expt. is < 3.60
5 5 0
20 Total
CHANGE IN BURNED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
5 5.25 0.0625 0.71
7 5.25 3.0625
6 5.25 0.5625 IF Sum/expt. is < 3.60
5 5.25 0.0625
21 Total
CHANGE IN CREMATED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
4 5.25 1.5625 2.05
8 5.25 7.5625
5 5.25 0.0625 IF Sum/expt. is < 3.60
4 5.25 1.5625
21 Total


-0.0243
0.0029
0.0301


-0.0397
0.0034
0.0466


-0.1892
-0.1327
-0.0762


, the distribution is normal.





, the distribution is normal.





, the distribution is normal.
,the distribution is normal.


CONCLUSION: The change in osteon count is significant in
cremated bone but not in dried or burned bone. All three
groups of measurements are normally distributed.


------------------------------------------------------------------------









Number of Osteons per Grid at 100X.


NUMBER OF OSTEONS PER GRID AT 10OX FILENAME: GRID-CT

ID# AGE SEX GROUP W GROUP X GROUP Y GROUP Z LOG(W) LOG(W) LOG(W)
Control Dried Burned Cremated -LOG(X) -LOG(Y) -LOG(Z)
-----------4--------------------------------------------------------


B04
B06
B07
B11
B13
B14
B15
B17
B18
B19
B25
B26
B29
B31
B32
B36
B38
B40
B43
B45
B46
B47
B49
B53
B58


14.3
12.3
9.1
14.5
12.7
11.3
14.8
13.0
17.5
11.8
12.3
13.0
13.8
15.5
12.0
11.3
15.1
21.0
15.8
9.3
17.0
14.8
14.5
18.3
12.3


13.3
10.3
9.8
14.8
11.0
9.5
16.0
12.5
15.4
11.0
10.8
12.5
13.8
14.8

14.0
16.9
18.5
13.3
10.5
16.3
14.8
14.0
16.5
12.2


8.8
10.5
14.0
11.3
9.8
17.3
15.5
19.6
12.8
11.0
9.8
12.7
12.8

12.5
15.4
16.5
14.3
13.8
11.5
15.3
13.5
15.8
13.7


25.5
18.8
14.4
16.0
16.5
15.8
23.3
19.3
24.4
16.3
14.3
18.5
18.3
19.3
15.7
15.8
20.1
20.8
21.3
21.3
12.5
20.8
15.0
25.5
20.5


0.0315
0.0771
-0.0346
-0.0089
0.0624
0.0754
-0.0339
0.0170
0.0555
0.0305
0.0565
0.0170
0.0000
0.0201

-0.0930
-0.0489
0.0550
0.0748
-0.0527
0.0183
0.0000
0.0152
0.0450
0.0035


0.1454
-0.0645
0.0152
0.0507
0.0641
-0.0678
-0.0764
-0.0485
-0.0353
0.0485
0.1227
0.0361
0.0831

-0.0438
-0.0085
0.1047
0.0433
-0.1714
0.1698
-0.0144
0.0310
0.0638
-0.0468


-0.2512
-0.1843
-0.2017
-0.0428
-0.1137
-0.1447
-0.1971
-0.1716
-0.1444
-0.1403
-0.0654
-0.1532
-0.1226
-0.0952
-0.1167
-0.1456
-0.1242
0.0042
-0.1297
-0.3599
0.1335
-0.1478
-0.0147
-0.1441
-0.2218


TABLE 12.









TABLE 12--continued. Number of Osteons per Grid at 100X.
Statistics Summary.


NUMBER OF OSTEONS PER GRID AT 100X STATISTICS


FILENAME: GRID-CT


GROUP W GROUP X GROUP Y GROUP Z LOG(W) LOG(W) LOG(W)
Control Dried Burned Cremated -LOG(X) -LOG(Y) -LOG(Z)
------------------------------------------------------------------------
N 25 24 23 25 24 23 25
AVG 13.89 13.44 13.40 18.80 0.0160 0.0174 -0.1318
STD 2.68 2.43 2.59 3.51 0.0438 0.0795 0.0908
STD ERR 0.54 0.50 0.54 0.70 0.0089 0.0166 0.0182
- ------------------------------------------------ m------- m------ m------
t-TEST Sample t values 1.784 1.052 7.254
Value of t at 95% level 2.069 2.074 2.064
Value of t at 99% level 2.807 2.819 2.797
n.e. n.s.
Average (Antilog) 1.037 1.041 0.738
Upper 95% confidence point 1.083 1.127 0.805
Lower 95% confidence point 0.994 0.962 0.677


AVERAGE CHANGE (Increase in count)


95% significance range:


CHI-SQUARE Test for normalcy.AVG-0.675STD=
AVG=
AVG+0.675STD=
CHANGE IN DRIED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
5 6 1 0.67
5 6 1
7 6 1 IF Sum/expt. is < 3.60
7 6 1
24 Total
CHANGE IN BURNED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
7 5.75 1.5625 1.17
4 5.75 3.0625
7 5.75 1.5625 IF Sum/expt. is < 3.60
5 5.75 0.5625
23 Total
CHANGE IN CREMATED TISSUE
##Obs.Expt.Dif.Sq. Sum/expt.
5 6.25 1.5625 1.72
9 6.25 7.5625
6 6.25 0.0625 IF Sum/expt. is < 3.60
5 6.25 1.5625
25 Total


from
to


-3.7% -4.1% 26.2%

-8.3% -12.7% 19.5%
0.6% 3.8% 32.3%


-0.0136 -0.0362 -0.1931
0.0160 0.0174 -0.1318
0.0455 0.0711 -0.0705


------------------------the distribution is normal.





, the distribution is normal.





, the distribution is normal.
,the distribution is normal.


CONCLUSION: The change in the number of osteons counted in a Nerz
grid is significant in cremated bone but not in dried or burned bone.
All sets of measurements are normally distributed.


------------------------------------------------------------------------









TABLE 13. % Bone Tissue by Count on Merz Grid.


% BONE TISSUE BY COUNT ON MERZ
FORMATEDD AS PERCENTAGES)


GRID (hits/36)


FILENAME: MERZ-CT
and POR.WK1


ID# AGE SEX GROUP W GROUP X GROUP Y GROUP Z LOG(X) LOG(Y) LOG(Z)
Control Dried Burned Cremated -LOG(W) -LOG(W) -LOG(W)
------------4----------------------------------+------------------------


B03
B04
B06
B07
811
B13
B14
815
B17
B18
819
B24
B25
B26
B29
B31
B32
B36
B38
B40
B43
B45
B46
B47
B49
B53
B56
B58


86.1
91.7
90.7
95.8
91.7
90.7
93.1
98.6
97.2
94.4
93.8
96.5
93.8
91.7
90.3
91.7
93.1
87.5
92.4
94.4
93.1
97.2
88.9
93.1
93.1
93.8
92.4
94.4


88.2
92.4
87.0
93.8
93.1
92.4
84.0
98.6
92.4
94.4
94.4
96.5
89.6
94.4
91.7
91.7
93.1
89.6
93.1
90.3
93.1
95.1
88.2
95.1
95.1
91.7
93.1
96.3


90.3
88.2
81.3
93.8
92.4
84.7
91.0
96.5
90.3
89.8
93.1
88.2
91.0
89.6
92.6
86.8
79.2
90.3
92.4
88.0
95.1
94.4
95.1
90.3
94.4
94.4
91.0
91.7


79.2
84.0
80.6
86.8
86.1
79.9
86.8
82.6
93.8
85.2
81.9
79.6
82.4
84.7
93.1
85.4
88.9
85.4
87.5
84.7
91.0
84.7
90.3
89.6
93.1
83.3
86.1
88.9


0.0105
0.0033
-0.0181
-0.0092
0.0066
0.0081
-0.0447
0.0000
-0.0220
0.0000
0.0028
0.0000
-0.0199
0.0126
0.0067
0.0000
0.0000
0.0103
0.0033
-0.0193
0.0000
-0.0095
-0.0034
0.0092
0.0092
-0.0098
0.0033
0.0087


0.0207
-0.0169
-0.0475
-0.0092
0.0033
-0.0297
-0.0099
-0.0093
-0.0320
-0.0217
-0.0033
-0.0391
-0.0132
-0.0101
0.0109
-0.0238
-0.0702
0.0137
0.0000
-0.0305
0.0092
-0.0127
0.0293
-0.0133
0.0060
0.0028
-0.0066
-0.0126


-0.0363
-0.0381
-0.0513
-0.0428
-0.0274
-0.0551
-0.0304
-0.0769
-0.0155
-0.0445
-0.0589
-0.0836
-0.0563
-0.0345
0.0133
-0.0309
-0.0200
-0.0106
-0.0237
-0.0471
-0.0099
-0.0598
0.0068
-0.0166
0.0000
-0.0516
-0.0307
-0.0261









TABLE 13--continued. % Bone Tissue by Count on Merz Grid.
Statistics Summary.





% BONE TISSUE BY COUNT ON NERZ GRID (hits/36) FILENAME: MERZ-CT
GROUP W GROUP X GROUP Y GROUP Z LOG(X) LOG(Y) LOG(Z)
Control Dried Burned Cremated -LOG(W) -LOG(W) -LOG(W)
--------------------------------------- ------------------
N 28 28 28 28 28 28 28
AVG 92.90 92.44 90.57 85.91 -0.0022 -0.0113 -0.0342
STD 2.77 3.08 3.93 4.01 0.0127 0.0208 0.0230
STD ERR 0.52 0.58 0.74 0.76 0.0024 0.0039 0.0043
t-TEST Sample t values 0.912 2.864 7.882
Value of t at 95% level 2.052 2.052 2.052
Value of t at 99% level 2.771 2.771 2.771
n.s.
Average (Antilog) 0.995 0.974 0.924
Upper 95% confidence point 1.006 0.993 0.943
Lower 95% confidence point 0.984 0.956 0.905
AVERAGE CHANGE 0.5% 2.6% 7.6%
95% significance range: from -0.6% 0.7% 5.7%
to 1.6% 4.4% 9.5%
CHI-SQUARE Test for normalcy.AVG-0.675STD= -0.0108 -0.0253 -0.0497
AVG= -0.0022 -0.0113 -0.0342
AVG+0.675STD= 0.0064 0.0028 -0.0187
CHANGE IN DRIED TISSUE ---------------
# #Obs.Expt.Dif.Sq. Sum/Expected
5 7 4 3.71
4 7 9
10 7 9 IF Sum/Expected is < 3.60,
9 7 4 the distribution is normal.
28 Total
CHANGE IN BURNED TISSUE
##Obs.Expt.Dif.Sq. Sum/Expected
6 7 1 0.29
7 7 0
7 7 0 IF Sum/Expected is < 3.60,
8 7 1 the distribution is normal.
28 Total
CHANGE IN CREMATED TISSUE
##Obs.Expt.Dif.Sq. Sum/Expected
8 7 1 0.29
6 7 1
7 7 0 IF Sum/Expected is < 3.60,
7 7 0 the distribution is normal.
28 Total
CONCLUSION: There is a significant decrease in bone and an increase
in void space (i.e. porosity) in burned and cremated bone. There is
no significant change in dried bone.








TABLE 14. Comparison of Tooth Measurements, Dried Goup.


A COMPARISON OF TOOTH MEASUREMENTS (nm.)
(AGE-MATCHED WITH OTHER GROUPS)


FILENAME: TEETH-X


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
DRIED tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
-.------------------- L-----..J-------------- ---------------------- &-------------


B20aX
B21X
B22X
B23X
B25X
B26X
B28X
B29X
B30X
B31X
B32X
B33X
B34aX
B35X
B36X
B38X
B39aX
B40X
B41X
B42aX
B43X
B44X
B45X
B46X
B47aX
B49aX
B51X
B53X
B55aX
B56aX
B57X
B58aX


25.9
22.7
21.4
20.3
23.8
18.0
20.8
21.0
21.5
19.9
17.7
20.3
21.3
19.4
21.8
21.8
20.3
23.2
19.6
24.2
20.0
24.0
20.9
22.5
24.1
25.4
21.3
22.1
23.4
29.6
22.0
22.8


18.5
13.9
13.6
13.5
16.8
11.0
12.5
14.3
13.8
12.6
11.6
13.5
12.6
13.2
12.7
13.2
13.1
16.1
12.8
15.7
12.5
16.6
13.1
15.6
15.9
16.7
13.1
11.1
15.7
19.4
14.3
16.1


8.1
6.1
6.6
6.0
6.2
5.3
5.6
6.2
5.7
5.9
6.0
6.5
5.5
5.4
7.5
5.8
6.9
6.7
5.9
6.6
5.9
7.6
5.8
6.3
6.1
6.6
5.7
5.7
5.7
7.9
7.1
5.7


25.9
22.5
21.5
20.3
23.8
17.8
20.7
20.8
21.4
19.7
17.7
19.9
21.3
19.8
21.6
21.6
20.2
22.9
19.2
24.2
19.7
23.8
20.9
22.4
23.7
25.2
21.0
21.8
23.4
29.4
22.0
22.8


18.1
13.3
13.6
13.5
16.8
10.9
11.9
13.4
13.7
12.6
11.3
13.1
12.0
12.8
12.5
13.2
12.9
16.0
12.7
15.5
12.2
16.2
13.1
15.7
15.8
16.6
12.6
11.0
15.6
19.4

15.9


8.1
6.1
6.4
5.9
6.3
5.2
5.6
6.3
5.4
6.3
5.7
6.3
5.3
5.5
7.4
5.6
7.2
6.4
5.7
6.4
5.8
7.6
5.5
6.3
5.9
6.5
5.6
5.6
5.7
7.8
7.0
5.8


0.0000
-0.0038
0.0020
0.0000
0.0000
-0.0049
-0.0021
-0.0042
-0.0020
-0.0044
0.0000
-0.0086
0.0000
0.0089
-0.0040
-0.0040
-0.0021
-0.0057
-0.0090
0.0000
-0.0066
-0.0036
0.0000
-0.0019
-0.0073
-0.0034
-0.0062
-0.0059
0.0000
-0.0029
0.0000
0.0000


-0.0095
-0.0192
0.0000
0.0000
0.0000
-0.0040
-0.0214
-0.0282
-0.0032
0.0000
-0.0114
-0.0131
-0.0212
-0.0134
-0.0069
0.0000
-0.0067
-0.0027
-0.0034
-0.0056
-0.0106
-0.0106
0.0000
0.0028
-0.0027
-0.0026
-0.0169
-0.0039
-0.0028
0.0000

-0.0054


0.0000
0.0000
-0.0134
-0.0073
0.0069
-0.0083
0.0000
0.0069
-0.0235
0.0285
-0.0223
-0.0136
-0.0161
0.0080
-0.0058
-0.0152
0.0185
-0.0199
-0.0150
-0.0134
-0.0074
0.0000
-0.0231
0.0000
-0.0145
-0.0066
-0.0077
-0.0077
0.0000
-0.0055
-0.0062
0.0076






79



TABLE 14--continued. Comparison of Tooth Measurements,


Dried Group.



A COMPARISON OF TOOTH MEASUREMENTS (mm.)


Statistics Summary.



FILENAME: TEETH-X


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
DRIED tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
_ -____-----_------------ --------------------+--------------------------
N 32 32 32 32 31 32 32 31 32
AVG 21.97 14.22 6.27 21.84 14.00 6.19 -0.0026 -0.0072 -0.0055
STD 2.34 2.01 0.72 2.33 2.09 0.74 0.0035 0.0076 0.0116
STD ER 0.41 0.36 0.13 0.41 0.38 0.13 0.0006 0.0014 0.0020
t-TEST Sample t values 4.154 5.249 2.687
Value of t at 95% level 2.042 2.042 2.042
Value of t at 99% level 2.750 2.750 2.750
Average (Antilog) 0.994 0.984 0.987
Upper 95% confidence point 0.997 0.990 0.997
Lower 95% confidence point 0.991 0.977 0.978

AVERAGE SHRINKAGE 0.6% 1.6% 1.3%

95% shrinkage range from 0.3% 1.0% 0.3%
to 0.9% 2.3% 2.2%


CHI-SQUARE Test for normalcy.


TOOTH LENGTH
##Obs.
8
8
4
12
32 1


ROOT LENGTH
##Obs.
7
4
12
8
31
TOOTH WIDTH
##Obs.
11
8
7
6


Expt.
8
8
8
8
total


Expt.
7.75
7.75
7.75
7.75
Total

Expt.
8
8
8
8


32 Total


Dif.Sq
0
0
16
16

Dif.Sq
0.562
14.06
18.06
0.062

Dif.Sq
9
0
1
4


AVG-0.675STD--0.0049
AVG= -0.0026
AVG+0.675STD--0.0002


------------------------
Sum/Expected
4.00

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
4.23

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.75

IF Sum/Expected is < 3.60,
the distribution is normal.


CONCLUSION: There seems to be a significant measurement difference
between wet (control) and dried teeth. The measurements are
normally distributed in the width measurement, but not in the
total length or root length groups.


-0.0123
-0.0072
-0.0020


-0.0133
-0.0055
0.0023





80



TABLE 15. Comparison of Tooth Measurements, Burned Group.






A COMPARISON OF TOOTH MEASUREMENTS (Bn.) FILENAME: TEETH-Y
(AGE-MATCHED WITH OTHER GROUPS)

PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
BURNED tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
----+----- ---------------+-------------------------------------------

B20Y 24.0 18.4 6.3 15.8 5.9 -0.0662 -0.0285
B21Y 22.4 13.4 6.3 22.0 12.8 5.9 -0.0078 -0.0199 -0.0285
B22Y 19.2 11.9 5.5 18.6 11.9 5.2 -0.0138 0.0000 -0.0244
B23aY 22.6 15.2 6.7 22.6 13.9 6.5 0.0000 -0.0388 -0.0132
B25Y 21.6 14.3 6.3 21.8 13.4 6.1 0.0040 -0.0282 -0.0140
B26Y 17.6 10.0 5.1 10.0 5.0 0.0000 -0.0086
B28Y 21.9 13.3 6.9 21.9 12.4 6.7 0.0000 -0.0304 -0.0128
B29Y 20.6 12.3 5.6 20.6 11.9 5.3 0.0000 -0.0144 -0.0239
B30Y 21.0 13.7 5.7 21.3 13.3 5.5 0.0062 -0.0129 -0.0155
B31Y 17.8 10.9 6.0 16.9 10.5 5.6 -0.0225 -0.0162 -0.0300
B32Y 20.7 13.6 6.1 20.6 13.6 6.2 -0.0021 0.0000 0.0071
B33Y 24.0 5.0 7.9 24.6 4.5 7.7 0.0107 -0.0458 -0.0111
B34aY 21.8 13.4 5.9 22.6 13.1 5.6 0.0157 -0.0098 -0.0227
B35Y 24.6 16.0 6.8 25.2 16.7 6.3 0.0105 0.0186 -0.0332
B36aY 17.8 11.3 5.3 18.1 11.2 5.2 0.0073 -0.0039 -0.0083
B38aY 23.6 14.5 6.2 14.0 5.9 -0.0152 -0.0215
B39aY 21.1 14.0 6.2 21.4 13.3 6.1 0.0061 -0.0223 -0.0071
B40Y 28.3 19.3 7.8 7.4 -0.0229
B41aY 27.3 17.8 6.8 17.3 6.1 -0.0124 -0.0472
B42Y 23.8 15.7 6.6 23.4 15.4 6.5 -0.0074 -0.0084 -0.0066
B43Y 21.3 13.5 6.1 22.1 13.8 6.0 0.0160 0.0095 -0.0072
B44Y 21.0 15.1 6.6 20.3 13.9 -0.0147 -0.0360
B45Y 24.3 14.7 8.3 21.7 14.2 7.9 -0.0491 -0.0150 -0.0215
B46Y 23.6 16.8 6.4 15.9 6.2 -0.0239 -0.0138
B47Y 24.5 15.5 6.8 24.3 15.0 6.6 -0.0036 -0.0142 -0.0130
B49bY 25.9 16.8 6.2 25.9 16.4 6.4 0.0000 -0.0105 0.0138
B51Y 22.6 14.0 6.0 22.9 14.1 5.8 0.0057 0.0031 -0.0147
B53Y 23.7 14.7 6.2 14.3 6.0 -0.0120 -0.0142
B55aY 25.7 16.3 6.6 25.7 15.7 6.3 0.0000 -0.0163 -0.0202
B56bY 24.5 16.9 6.2 24.7 16.4 5.8 0.0035 -0.0130 -0.0290
B57Y 20.0 13.8 5.9 12.9 6.0 -0.0293 0.0073
B58aY 22.7 14.5 6.4 23.4 15.0 6.0 0.0132 0.0147 -0.0280










TABLE 15--continued.


Comparison of
Burned Group.


Tooth Measurements,
Statistics Summary.


A COMPARISON OF TOOTH MEASUREMENTS (mm.)


FILENAME: TEETH-Y


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
BURNED tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
-- --------------------------- ---------------------- ----
N 32 32 32 24 31 31 24 31 31
AVG 22.55 14.27 6.37 22.19 13.63 6.12 -0.0009 -0.0151 -0.0166
STD 2.54 2.65 0.68 2.27 2.42 0.65 0.0137 0.0172 0.0124
STD ER 0.45 0.47 0.12 0.46 0.44 0.12 0.0028 0.0031 0.0022

t-TEST Sample t values 0.330 4.888 7.433
Value of t at 95% level 2.069 2.042 2.042
Value of t at 99% level 2.807 2.750 2.750
Average (Antilog) 0.998 0.966 0.963
Upper 95% confidence point 1.011 0.980 0.973
Lower 95% confidence point 0.985 0.952 0.953

AVERAGE SHRINKAGE 0.2% 3.4% 3.7%

95% shrinkage range from -1.1% 2.0% 2.7%
to 1.5% 4.8% 4.7%


CHI-SQUARE Test for normalcy.


TOOTH LENGTH
##Obs. Expt
4.0
4.0
11.0
5.0
24 Total
ROOT LENGTH
##Obs. Expt
7 7.7
6 7.7
11 7.7
7 7.7;
31 Total
TOOTH WIDTH
##Obs. Expt
7 7.7!
7 7.7


6
6
6
6



5
5
5
5


5
5


11 7.75
6 7.75
31 Total
CONCLUSION: Shrinkage
level of significance
total tooth cannot be


AVG-0.675STD--0.0102
AVG= -0.0009
AVG+0.675STD= 0.0084


-0.0268
-0.0151
-0.0035


-0.0249
-0.0166
-0.0082


Dif.Sq Sum/Expected
4 5.67


Dif.Sq
0.562
3.062
10.56
D.562

Dif.Sq
0.562
0.562
10.56
3.062


IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.90

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.90

IF Sum/Expected is < 3.60,
the distribution is normal.


in burned teeth can be measured at the 99%
when measuring the root and the width. The
measured with accuracy.


------------------------


1
I

I

1









TABLE 16.


Comparison of Tooth Measurements,
Cremated Group.


A COMPARISON OF TOOTH MEASUREMENTS (am.)
(AGE-MATCHED WITH OTHER GROUPS)


FILENAME: TEETH-Z


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
CREMAT tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
----------- -----------.--------------------------14 ----------------


20.3 13.7
16.5
17.2 10.7
23.5 13.8
15.5
9.3
13.6
18.7 12.8
19.5
19.1 14.2
16.7 9.7
21.3 14.1
23.8 13.7
11.2
18.3 10.2
23.1 14.7
20.9 12.2
19.5 13.9
13.0
20.3 12.3
13.4
21.3 13.6
19.7 12.2
18.0
20.5 13.1
15.8
23.6 13.1
24.4 12.8
22.1 13.3
22.4 15.5
18.5 10.9
23.1 14.7


5.1
6.8
4.7
6.7
6.5
5.0
6.3
5.4
5.1
5.3
5.2
5.9
5.5
5.1
5.2
6.5
7.2
5.3
5.8
5.1
6.7
7.5
4.5
5.9
5.2
6.7
5.1
5.4
5.5
5.5
5.4
7.1


-0.0561

-0.0386
-0.0406


-0.1011
-0.0938
-0.0473
-0.0277
-0.0257
-0.0317

-0.0364
-0.0613
-0.0601
-0.0792

-0.0209

-0.0626
-0.0359

-0.0575

-0.0353
-0.0359
-0.0412
-0.0529
-0.0339
-0.0580


-0.0781
-0.0256
-0.0388
-0.0828
-0.0601
-0.0922
-0.0126
-0.0571

-0.0518
-0.0777
-0.0151
-0.0306
-0.0714
-0.0633
-0.0631
-0.1040
-0.0501
-0.0592
-0.0531
-0.0282
-0.0786
-0.0407
-0.0479
-0.0674
-0.0638
-0.0559
-0.0859
-0.0748
-0.0376
-0.0525
-0.0554


-0.1120
-0.0760
-0.0838
-0.0660
-0.0847
-0.0719
-0.0757
-0.0738
-0.0778
-0.1018
-0.0548
-0.0617
-0.1230
-0.0406
-0.0621
-0.0792
-0.0565
-0.0819
-0.0626
-0.0778
-0.0490
-0.0492
-0.0628
-0.0925
-0.0399
-0.0547
-0.0633
-0.0872
-0.0726
-0.0857
-0.0872
-0.0678


B20Z
B21Z
B22Z
B23Z
B25aZ
B26Z
B28aZ
B29Z
B30Z
B31Z
B32Z
B33Z
B34Z
B35Z
B36Z
B38Z
B39Z
B40Z
B41Z
B42Z
B43Z
B44Z
B45Z
B46Z
B47Z
B49Z
B51Z
B53Z
B55Z
B56aZ
B57Z
B58Z


23.1
26.7
18.8
25.8
26.2
19.1
24.0
23.6
24.2
21.3
17.8
22.6
25.6
20.0
19.9
26.6
24.0
23.4
23.4
21.3
23.4
24.6
21.4
30.3
23.4
29.0
25.6
26.5
24.3
25.3
20.0
26.4


16.4
17.5
11.7
16.7
17.8
11.5
14.0
14.6
16.4
16.0
11.6
14.6
14.7
13.2
11.8
17.0
15.5
15.6
14.9
13.9
14.3
16.3
13.4
20.1
15.3
18.3
14.9
15.6
15.8
16.9
12.3
16.7


6.6
8.1
5.7
7.8
7.9
5.9
7.5
6.4
6.1
6.7
5.9
6.8
7.3
5.6
6.0
7.8
8.2
6.4
6.7
6.1
7.5
8.4
5.2
7.3
5.7
7.6
5.9
6.6
6.5
6.7
6.6
8.3









TABLE 16--continued. Comparison of Tooth Measurements,
Cremated Group. Statistics Summary.




A COMPARISON OF TOOTH MEASUREMENTS (mm.) FILENAME: TEETH-Z
PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
CREMAT tooth root tooth tooth root tooth tooth root tooth
GROUP length length width length length width length length width
-+---------------------------- ------------ ---------
N 32 32 32 23 31 32 23 31 32
AVG 23.68 15.17 6.81 20.77 13.27 5.76 -0.0493 -0.0573 -0.0730
STD 2.89 2.04 0.88 2.15 1.92 0.78 0.0204 0.0216 0.0186
STD ER 0.51 0.36 0.16 0.45 0.34 0.14 0.0042 0.0039 0.0033
t-TEST Sample t values 11.601 14.762 22.194
Value of t at 95% level 2.074 2.042 2.042
Value of t at 99% level 2.819 2.750 2.750
Average (Antilog) 0.893 0.876 0.845
Upper 95% confidence point 0.911 0.893 0.858
Lower 95% confidence point 0.875 0.861 0.832
AVERAGE SHRINKAGE 10.7% 12.4% 15.5%
95% shrinkage range from 8.9% 10.7% 14.2%
to 12.5% 13.9% 16.8%
CHI-SQUARE Test for normalcy. AVG-0.675STD--0.0630 -0.0719 -0.0855
AVG= -0.0493 -0.0573 -0.0730
AVG+0.675STD--0.0355 -0.0427 -0.0604
TOOTH LENGTH
##Obs. Expt. Dif.Sq Sum/Expected
3 5.75 7.562 1.87
7 5.75 1.562
7 5.75 1.562 IF Sum/Expected is < 3.60,
6 5.75 0.062 the distribution is normal.
23 Total
ROOT LENGTH
##Obs. Expt. Dif.Sq Sum/Expected
8 7.75 0.062 0.10
7 7.75 0.562
8 7.75 0.062 IF Sum/Expected is < 3.60,
8 7.75 0.062 the distribution is normal.
31 Total
TOOTH WIDTH
##Obs. Expt. Dif.Sq Sum/Expected
7 8 1 0.50
9 8 1
9 8 1 IF Sum/Expected is < 3.60,
7 8 1 the distribution is normal.
32 Total
CONCLUSION: The observed measurement differences in the cremated
teeth are all significant at the 99% level and the sample
distributions are normal.










Comparison of Mandibular Measurements.
Dried Group.


A COMPARISON OF MANDIBULAR MEASUREMENTS (MBm.)
(AGE-MATCHED WITH OTHER GROUPS)


FILENAME: MAND-X


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
DRIED total mandibular total mandibular total mandibular
GROUP height height width height height width height height width
-----& --------- ------ ------4------------------- 4-----


33.9 17.1
28.9 14.5
13.5
32.8 17.7
34.4 11.7
25.6 14.1
28.2 14.1
30.2 13.1
27.6 14.0
32.2 13.1
33.9 14.4
28.9 14.7
32.9 13.1
30.8 15.6
27.5 11.2
37.3 14.6
24.2 12.2
36.3 18.7
31.5 17.3
32.5 14.8
28.5 14.5
29.7 15.6
36.3 15.6
35.8 15.7
32.2 14.0
30.8 12.7
26.7 12.2
32.3 12.8
30.5 18.5
31.6 16.1
25.2 12.1
34.3 16.4


-0.0080
-0.0087
-0.0055
-0.0053
-0.0070
-0.0049
-0.0033
-0.0075
-0.0078
-0.0043
-0.0069
-0.0079
-0.0056
-0.0077
-0.0011
-0.0009
-0.0053
-0.0044
-0.0090
-0.0050
-0. 0058
-0.0087
0.0000
-0.0028
-0.0107
-0.0052
-0.0068
-0.0029
-0.0031
-0.0052
-0.0036
-0.0038


-0.0064 -0.0125
-0.0074 -0.0089
-0.0095
-0.0105 -0.0049
-0.0087 -0.0110
-0.0117 -0.0031
-0.0106 0.0093
-0.0071 0.0101
-0.0139 -0.0152
-0.0133 -0.0257
-0.0064 -0.0119
-0.0074 0.0000
0.0000 -0.0033
-0.0111 -0.0055
-0.0109 0.0198
-0.0058 -0.0232
-0.0089 -0.0174
-0.0048 -0.0069
-0.0055 0.0000
-0.0079 -0.0087
-0.0090 -0.0059
-0.0073 -0.0217
-0.0071 -0.0137
-0.0036 -0.0109
-0.0120 -0.0241
-0.0042 -0.0034
-0.0081 -0.0071
-0.0093 -0.0067
-0.0071 -0.0047
-0.0095 -0.0027
-0.0068 -0.0210
-0.0088 -0.0130


TABLE 17.


B20aX
B21X
B22X
B23X
B25X
B26X
B28X
B29X
B30X
B31X
B32X
B33X
B34aX
B35X
B36X
B38X
B39aX
B40X
B41X
B42aX
B43X
B44X
B45X
B46X
B47aX
B49aX
B51X
B53X
B55aX
B56aX
B57X
B58aX


44.0
40.4
39.9
41.4
43.5
36.0
40.2
40.7
39.3
40.7
44.1
38.7
47.2
39.8
38.1
49.2
32.8
49.1
43.8
43.7
37.8
40.3
46.4
46.6
41.1
41.9
38.7
44.9
41.6
42.3
35.9
45.9


34.4
29.4
32.3
33.6
35.1
26.3
28.9
30.7
28.5
33.2
34.4
29.4
32.9
31.6
28.2
37.8
24.7
36.7
31.9
33.1
29.1
30.2
36.9
36.1
33.1
31.1
27.2
33.0
31.0
32.3
25.6
35.0


17.6
14.8
13.8
17.9
12.0
14.2
13.8
12.8
14.5
13.9
14.8
14.7
13.2
15.8
10.7
15.4
12.7
19.0
17.3
15.1
14.7
16.4
16.1
16.1
14.8
12.8
12.4
13.0
18.7
16.2
12.7
16.9


43.2
39.6
39.4
40.9
42.8
35.6
39.9
40.0
38.6
40.3
43.4
38.0
46.6
39.1
38.0
49.1
32.4
48.6
42.9
43.2
37.3
39.5
46.4
46.3
40.1
41.4
38.1
44.6
41.3
41.8
35.6
45.5






85


TABLE 17--continued. Comparison of Mandibular Measurements,
Dried Group. Statistics Summary.


A COMPARISON OF MANDIBULAR

PRELIMINARY X-RAY
DRIED total mandibular
GROUP height height width
-----+--------------------.
N 32 32 32
AVG 41.75 31.68 14.84
STD 3.75 3.29 1.99
STD ER 0.66 0.58 0.35
t-TEST Sample t valui
Value of t at
Value of t at

Average (Anti:
Upper 95% con;
Lower 95% con;

AVERAGE
95% sh:

CHI-SQUARE Test for normalcy


TOTAL HEIGHT
##obs. Expt.
9 8
6 8
8 8
9 8
32 Total
MANDIBULAR HEIGHT
#Obs. Expt.
8 7.75
7 7.75
10 7.75
6 7.75
31 Total
MANDIBULAR WIDTH
##Obs. Expt.
7 8
9 8
11 8
5 8
32 Total


Dif.Sq
1
4
0
1

Dif.Sq
0.062
0.562
5.062
3.062

Dif.Sq
1
1
9
9


MEASUREMENTS (mm.) FILENAME: MAND-X

FINAL X-RAY LOG CHANGE IN SIZE
total mandibular total mandibular
height height width height height width
+--------------------+-----------------------
32 31 32 32 31 32
41.23 31.08 14.55 -0.0055 -0.0081 -0.0082
3.79 3.36 1.93 0.0025 0.0029 0.0098
0.67 0.60 0.34 0.0004 0.0005 0.0017
es 12.445 15.567 4.753
95% level 2.042 2.042 2.042
99% level 2.750 2.750 2.750

log) 0.988 0.982 0.981
fidence point 0.990 0.984 0.989
fidence point 0.985 0.979 0.973
E SHRINKAGE 1.2% 1.8% 1.9%
rinkage range from 1.0% 1.6% 1.1%
to 1.5% 2.1% 2.7%
y. AVG-0.675STD--0.0071 -0.0101 -0.0149
AVG= -0.0055 -0.0081 -0.0082
AVG+0.675STD=-0.0038 -0.0061 -0.0016
------------------------
Sum/Expected
0.75

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.13

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
2.50
IF Sum/Expected is < 3.60,
the distribution is normal.


CONCLUSIONS: Changes in dried mandibular bone are significant at
the 99% level in all measurements. The actual shrinkage is
small (1-2.7%) but seems to be significant.










TABLE 18.


Comparison of Mandibular Measurements.
Burned Group.


A COMPARISON OF TOOTH MEASUREMENTS (am.)
(AGE-MATCHED WITH OTHER GROUPS)


FILENAME: MAND-Y


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
BURNED total mandibular total mandibular total mandibular
GROUP height height width height height width height height width
------+--------------------+-------------------+------------------------


B20Y
B21Y
B22Y
B23aY
B25Y
B26Y
B28Y
B29Y
B30Y
B31Y
B32Y
B33Y
B34aY
B35Y
B36aY
B38aY
B39aY
B40Y
B4 laY
B42Y
B43Y
B44Y
B45Y
B46Y
B47Y
B49bY
B51Y
B53Y
B55aY
B56bY
B57Y
B58aY


45.3
40.3
38.5
42.2
44.1
35.7
41.0
40.3
38.6
40.3
43.6
38.9
47.8
38.9
38.6
50.3
32.9
48.2
44.9
43.4
38.9
39.2
47.0
47.7
39.9
42.5
37.3
43.9
38.7
43.3
35.8
46.8


34.5
30.0
30.4
34.1
35.7
26.2
30.6
29.6
27.9
31.7
34.3
30.1
33.7
30.7
28.7
37.5
23.5
36.3
32.4
33.2
29.3
28.4
35.8
36.6
29.9
30.9
27.1
32.7
28.8
31.3
26.3
35.7


18.7
15.3
15.6
14.9
12.4
15.3
12.0
12.2
14.3
13.9
14.6
15.3
12.9
19.3
12.9
13.9
11.7
15.6
19.3
13.8
16.7
14.5
15.1
14.0
13.9
12.6
14.4
11.8
17.6
15.4
10.9
16.4


39.9
38.2
41.2
43.7
32.2
40.4
40.4
38.3
39.4
43.5
38.8
47.4
39.0
38.3
48.7
33.6

43.9
42.7
38.3
38.7
45.9
46.3
39.1
42.3
37.5

39.1
42.7

47.0


33.7
29.3
29.5
33.9
34.5
25.4
29.7
29.1
27.9
31.9
33.7
29.4
31.3
31.1
28.6
36.3
23.4
34.5
32.6
32.4
27.2
28.1
35.5
36.3
29.6
29.5
26.9
32.0
28.9
31.2
26.7
34.8


18.3
14.4
14.7
14.2
11.0
14.5
11.9
11.8
14.5
14.2
14.9
15.2
14.6
19.2
12.6
13.1
11.3
15.4
17.2
13.4
14.5
14.9
15.0
13.1
14.7
13.9
13.9
11.9
17.4
15.7
10.0
15.3


-0.0043
-0.0034
-0.0104
-0.0040
-0.0448
-0.0064
0.0011
-0.0034
-0.0098
-0.0010
-0.0011
-0.0036
0.0011
-0.0034
-0.0140
0.0091

-0.0098
-0.0071
-0.0068
-0.0056
-0.0103
-0.0129
-0.0088
-0.0020
0.0023

0.0045
-0.0061

0.0019


-0.0102
-0.0103
-0.0131
-0.0026
-0.0148
-0.0135
-0.0130
-0.0074
0.0000
0.0027
-0.0077
-0.0102
-0.0321
0.0056
-0.0015
-0.0141
-0.0019
-0.0221
0.0027
-0.0106
-0.0323
-0.0046
-0.0037
-0.0036
-0.0044
-0.0201
-0.0032
-0.0094
0.0015
-0.0014
0.0066
-0.0111


-0.0094
-0.0263
-0.0258
-0.0209
-0.0520
-0.0233
-0.0036
-0.0145
0.0060
0.0093
0.0088
-0.0028
0.0538
-0.0023
-0.0102
-0.0257
-0.0151
-0.0056
-0.0500
-0.0128
-0.0613
0.0118
-0.0029
-0.0289
0.0243
0.0426
-0.0153
0.0037
-0.0050
0.0084
-0.0374
-0.0302










TABLE 18--continued.


Comparison of
Burned Group.


Mandibular Measurements,
Statistics Summary.


A COMPARISON OF MANDIBULAR MEASUREMENTS (mm.)


FILENAME: MAND-Y


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
BURNED total mandibular total mandibular total mandibular
GROUP height height width height height width height height width
---- --------------------+----------------- ---+------ ---------
N 32 32 32 28 32 32 28 32 32
AVG 41.71 31.37 14.60 40.95 30.78 14.27 -0.0057 -0.0081 -0.0098
STD 4.08 3.38 2.10 3.86 3.20 2.00 0.0092 0.0092 0.0243
STD ER 0.72 0.60 0.37 0.73 0.57 0.35 0.0017 0.0016 0.0043
t-TEST Sample t values 3.273 4.964 2.275
Value of t at 95% level 2.052 2.042 2.042
Value of t at 99% level 2.771 2.750 2.750
Average (Antilog of average) 0.987 0.981 0.978
Upper 95% confidence point 0.995 0.989 0.998
Lower 95% confidence point 0.979 0.974 0.958

AVERAGE SHRINKAGE 1.3% 1.9% 2.2%
95% shrinkage range: from 0.5% 1.1% 0.2%
to 2.1% 2.6% 4.2%


CHI-SQUARE Test for normalcy.


TOTAL HEIGHT
##Obs. Expt.
3 7
9 7
10 7
6 7
28 Total
MANDIBULAR HEIGHT
##Obs. Expt.
5 8
10 8
9 8
8 8
32 Total
MANDIBULAR WIDTH
##Obs. Expt.
7 8
9 8
9 8
7 8


AVG-0.675STD--0.0119
AVG= -0.0057
AVG+0.675STD= 0.0005


-0.0143
-0.0081
-0.0019


-0.0262
-0.0098
0.0066


Dif.Sq Sum/Expected
16 4.29


Dif.Sq
9
4
1
0

Dif.Sq
1
1
1
1


IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.75

IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/expt.
0.50
IF Sum/Expected is < 3.60,
the distribution is normal.


32 Total
CONCLUSION: The total height measurement, which includes the tooth
crown, appears significant, but is not normally distributed.
The other mandibular bone height measurement is significant at


------------------------










TABLE 19. Comparison of Mandibular Measurements.
Cremated Group.


A COMPARISON OF MANDIBULAR MEASUREMENTS (mM.)
(AGE-MATCHED WITH OTHER GROUPS)


FILENAME: MAND-Z


PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
CREMAT total mandibular total mandibular total .aandibular
GROUP height height width height height width height height width
---- -------------------+-------------------------------------------


36.4 29.1
25.1
32.9 23.1
36.0 26.6
28.7
22.4
25.0
25.8
31.6 25.1
35.1 27.3
39.2 29.5
35.8 26.4
41.5 28.6
28.2
34.7 24.3
41.1 30.1
30.8 22.2
40.1 29.7
29.3
36.1 26.5
26.1
33.4 24.2
41.0 29.3
32.3
34.3 25.5
26.4
34.4 23.4
37.9 27.1
33.7 24.1
36.5 26.2
31.6 21.4
39.7 29.2


14.6
10.2
12.2
11.4
9.1
10.9
11.2
10.4
11.4
10.9
10.7
13.5
10.4
16.1
11.2
13.8
12.7
13.2
12.8
10.2
13.1
13.3
12.4
13.4
11.2
12.2
10.2
9.4
14.2
13.2
7.6
12.5


-0.0911 -0.0876
-0.0846
-0.0783 -0.1178
-0.0617 -0.0897
-0.0646
-0.0795
-0.0835
-0.0908
-0.0925 -0.0552
-0.0546 -0.0690
-0.0462 -0.0667
-0.0394 -0.0497
-0.0531 -0.0674
-0.0508
-0.0606 -0.0798
-0.0647 -0.0680
-0.0339 -0.0636
-0.0817 -0.0701
-0.0477
-0.0739 -0.1057
-0.0705
-0.0772 -0.0904
-0.0519 -0.0735
-0.0578
-0.0635 -0.0662
-0.0584
-0.0644 -0.0872
-0.0528 -0.0681
-0.0744 -0.0922
-0.0722 -0.0745
-0.0554 -0.0928
-0.0761 -0.0848


B20Z
B21Z
B22Z
B23Z
B25aZ
B26Z
B28aZ
B29Z
B30Z
B31Z
B32Z
B33Z
B34Z
B35Z
B36Z
B38Z
B39Z
B40Z
B41Z
B42Z
B43Z
B44Z
B45Z
B46Z
B47Z
B49Z
B51Z
B53Z
B55Z
B56aZ
B57Z
B58Z


44.9
40.0
39.4
41.5
43.4
36.3
41.4
41.2
39.1
39.8
43.6
39.2
46.9
38.6
39.9
47.7
33.3
48.4
41.3
42.8
39.0
39.9
46.2
48.2
39.7
41.5
39.9
42.8
40.0
43.1
35.9
47.3


35.6
30.5
30.3
32.7
33.3
26.9
30.3
31.8
28.5
32.0
34.4
29.6
33.4
31.7
29.2
35.2
25.7
34.9
32.7
33.8
30.7
29.8
34.7
36.9
29.7
30.2
28.6
31.7
29.8
31.1
26.5
35.5


18.4
12.8
15.6
13.7
12.0
12.9
13.2
14.0
13.1
13.0
12.7
15.4
11.8
17.9
12.2
15.7
15.1
16.1
15.5
13.1
15.1
16.2
14.9
17.3
13.4
12.3
12.8
10.6
17.0
15.9
9.5
16.0


-0.1005
-0.0986
-0.1068
-0.0798
-0.1201
-0.0732
-0.0714
-0.1291
-0.0604
-0.0765
-0.0744
-0.0572
-0.0548
-0.0460
-0.0371
-0.0560
-0.0752
-0.0863
-0.0831
-0.1087
-0.0617
-0.0857
-0.0798
-0.1109
-0.0779
-0.0035
-0.0986
-0.0522
-0.0782
-0.0808
-0.0969
-0.1072










TABLE 19--continued. Comparison of Mandibular Measurements,
Cremated Group. Statistics Summary.





A COMPARISON OF MANDIBULAR MEASUREMENTS (ram.) FILENAME: MAND-Z
PRELIMINARY X-RAY FINAL X-RAY LOG CHANGE IN SIZE
CREMAT total mandibular total mandibular total mandibular
GROUP height height width height height width height height width
----- --------.-----------+----- ---------------+-------------------
N 32 32 32 22 32 32 22 32 32
AVG 41.63 31.49 14.23 36.08 26.51 11.86 -0.0645 -0.0752 -0.0790
STD 3.60 2.75 2.08 3.17 2.59 1.76 0.0152 0.0161 0.0256
STD ER 0.64 0.49 0.37 0.68 0.46 0.31 0.0032 0.0028 0.0045
----------------------------------------------------------------------
t-TEST Sample t values 19.970 26.497 17.465
Value of t at 95% level 2.080 2.042 2.042
Value of t at 99% level 2.831 2.750 2.750
Average (Antilog) 0.862 0.841 0.834
Upper 95% confidence point 0.875 0.852 0.852
Lower 95% confidence point 0.849 0.830 0.816
AVERAGE SHRINKAGE 13.8% 15.9% 16.6%

95% shrinkage range from 12.5% 14.8% 14.8%
to 15.1% 17.0% 18.4%
CHI-SQUARE Test for normalcy. AVG-0.675STD--0.0748 -0.0861 -0.0963
AVG= -0.0645 -0.0752 -0.0790
AVG+0.675STD=-0.0543 -0.0644 -0.0617


TOTAL HEIGHT
##Obs. Expt.
6 5.5
4 5.5
6 5.5
6 5.5
22 Total
MANDIBULAR HEIGHT
##Obs. Expt.
9 8
5 8
11 8
7 8
32 Total
MANDIBULAR WIDTH
##Obs. Expt.
10 8
6 8
7 8
9 8
32 Total


Dif.Sq
0.25
2.25
0.25
0.25

Dif.Sq
1
9
9
1

Dif.Sq
4
4
1
1


Sum/Expected
0.55
IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
2.50
IF Sum/Expected is < 3.60,
the distribution is normal.

Sum/Expected
1.25
IF Sum/Expected is < 3.60,
the distribution is normal.


CONCLUSION: In all measurements of cremated mandibular bone,
shrinkage is significant at the 99% level.













REFERENCES


[1] Stewart, T.D., Essentials of Forensic Anthropology,
Charles C. Thomas, Publisher, Springfield, IL., 1979,
pp. 59-68.

[2] Ahlquist, J. and Damsten, 0., "A Modification of
Kerley's Method for the Microscopic Determination of
Age in Human Bone," Journal of Forensic Sciences,
Vol.14, No.1, 1969, pp.205-212.

[3] Bang, G. and Ramm, E., "Determination of Age in Humans
from Root Dentin Transparency," Acta Odontologica
Scandinavia, Vol.28, No.1, 1970, pp.3-35.

[4] Bouvier, M. and Ubelaker, D., "A Comparison of Two
Methods for the Microscopic Determination of Age at
Death," American Journal of Physical Anthropology,
Vol.46, No.3, 1977, pp.391-394.

[5] Burns, K.R. and Maples, W.R., "Estimation of Age from
Individual Adult Teeth," Journal of Forensic Sciences,
Vol.21, No.2, 1976, pp.343-356.

[6] Dequeker, J., Remans, J., Franssen, R., and Waes, J.,
"Aging Patterns of Trabecular and Cortical Bone and
Their Relationship," Calcified Tissue Research, Vol.7,
1971, pp.23-30.

[7] Gustafson, G., "Dental Determination of Age," Journal
of the American Dental Association, Vol.41, No.1,
1950, pp.45-54.

[8] Kerley, E.R., "The Microscopic Determination of Age in
Human Bone," American Journal of Physical Anthropo-
logy, Vol.23, No.1, 1965, pp.149-163.

[9] Kerley, E.R., "Age Determination of Bone Fragments,"
Journal of Forensic Sciences, Vol.14, No.1, 1969,
pp.59-67.

[10] Kerley, E.R. and Ubelaker, D.H., "Revisions in the
Microscopic Method of Estimating Age at Death in Human
Cortical Bone," American Journal of Physical Anthropo-
logy, Vol.49, No.4, 1978, pp.545-546.








[11] Maples, W.R., "An Improved Technique Using Dental
Histology for Estimation of Adult Age," Journal of
Forensic Sciences, Vol.23, No.4, 1978, pp.764-770.

[12] Maples, W.R. and Rice, P.M., "Some Difficulties in the
Gustafson Dental Age Estimations," Journal of Forensic
Sciences, Vol.24, No.1, 1979, pp.168-172.

[13] Stout, S.D. and Gehlert, S.J., "The Relative Accuracy
and Reliability of Histological Aging Methods," Foren-
sic Science International, Vol.15, No.3, 1980, pp.181-
190.

[14] Thompson, D.D., "Age Changes in Bone Mineralization,
Cortical Thickness, and Haversian Canal Area," Calci-
fied Tissue International, Vol.31, No.l, 1980, pp.5-
11.

[15] Thompson, D.D., "Microscopic Determination of Age at
Death in an Autopsy Series," Journal of Forensic Sci-
ences, Vol.26, No.3, 1981, pp.470-475.

[16] Riddick, L., Brogdon, B.G., Lasswell-Hoff, J., and
Delmas, B., "Radiographic Identification of Charred
Human Remains Through Use of the Dorsal Defect of the
Patella," Journal of Forensic Sciences, Vol.28, No.1,
1983, pp.263-267.

[17] Todd, T.W., "The Effect of Maceration and Drying Upon
the Linear Dimensions of the Green Skull," Journal of
Anatomy, Vol.57, 1923, pp.336-356.

[18] Albrecht, G.H., "Humidity as a Source of Measurement
Error on Osteometrics," American Journal of Physical
Anthropology, Vol.60, No.4, 1983, pp.517-522.

[19] Baby, R.S., "Hopewell Cremation Practices," Ohio
Historical Society Papers in Archaeology, Vol.1, 1954,
pp.1-7.

[20] Binford, L.R., "An Analysis of Cremations from Three
Michigan Sites," Wisconsin Archeoloqist, Vol.44, 1963,
pp.98-110.

[21] Buikstra, J. and Goldstein, L., "The Perrins Ledge
Crematory," Reports of Investigation, No.28, 1973,
Springfield: Illinois State Museum.

[22] Webb, W.S. and Snow, C.E., "The Adena People," Reports
in Archaeology and Anthropology, No.6, 1945, Univer-
sity of Kentucky.








[23] Wells, C., "A Study of Cremation," Antiquity, Vol.34,
No.133, 1960, pp.29-37.

[24] Thurman, M.D., and Willmore, L.S., "A Replicative
Cremation Experiment," North American Archaeologist,
Vol.2, No.4, 1980-1981, pp.275-283.

[25] Dokladal, M., "Uber die Moglichkeiten der Identifika-
tion von Knochen aus Leichenbranden," Mitteilungen der
Sektion Anthropologie, Vol.6, 1962, p.15.

[26] Trotter, M., and Peterson, R.R., "Ash Weight of Human
Skeletons in Percent of Their Dry, Fat-Free Weight,"
Anatomical Record, Vol.123, No.3, 1955, pp.341-368.

[27] Dokladal, M., "Ergebnisse Experimanteller Verbrennun-
gen Zur Feststellung Von Form Und Grossenveranderun-
gen Von Menschenknochen Unter Dem Einfluss Von Hohen
Temperaturen," Anthropologie, Vol.8, 1970, pp.3-17.

[28] Herrmann, B., "On Histological Investigations of Cre-
mated Human Remains," Journal of Human Evolution,
Vol.6, No.2, 1977, pp.101-103.

[29] Van Vark, G.N., Some Statistical Procedures for the
Investigation of Prehistoric Human Skeletal Material,
V.R.B. Offsetdrukkerij, Groningen, 1970.

[30] Bradtmiller, B. and Buikstra, J.E., "Effects of Burn-
ing on Human Bone Microstructure: A Preliminary
Study," Journal of Forensic Sciences, Vol.29, No.2,
1984, pp.535-540.

[31] Toto, P.D., "Effect of Age on Water Content in Human
Teeth," Journal of Dental Research, Vol.50, No.5,
1971, pp.1284-1285.

[32] Clement, A.J.. "Variations in the Microstructure and
Biochemistry of Human Teeth," In Brothwell, D.R.,
(Ed.), Dental Anthropology, Symposium of the Society
for the Study of Human Biology, Pergamon Press, New
York, 1963, pp.245-269.

[33] Farrell, W.L., "Forensic Identification of Burn Vic-
tims," Journal of the American Dental Association,
Vol.99, No.1, 1979, pp.51-56.

[34] Johanson, G. and Saldeen, T., "Identification of Burnt
Victims with the Aid of Tooth and Bone Fragments,"
Journal of Forensic Medicine, Vol.16, No.l, 1969,
pp.16-25.









[35] Mannerberg, F., "0m dimensionella forandringar hos
tander efter uttorkning och efter branning samt
viktsforandringar hos tander efter branning," Svenska
Tandlakare-Sallskapets Festskrift, Stockholm, 1951,
pp.168-187.

[36] Bell, G.L., "Observed Affects of High Temperatures on
Extracted Teeth and Resected Jaws," Abstract F21,
American Academy of Forensic Sciences Program, Feb.
1987, p.94.

[37] Shipman, P., Foster, G., and Schoeninger, M., "Burnt
Bones and Teeth: an Experimental Study of Color, Mor-
phology, Crystal Structure and Shrinkage," Journal
of Archaeological Science, Vol.11, No.4, 1984, pp.307-
325.

[38] Blanton, P. and Biggs, N.L., "Density of Fresh and
Embalmed Human Compact and Cancellous Bone," American
Journal of Physical Anthropology, Vol.29, No.1, 1968,
pp. 39-44.

[39] Lane, J. and Ralis, Z.A., "Changes in Dimensions of
Large Cancellous Bone Specimens During Histological
Preparation as Measured on Slabs from Human Femoral
Heads," Calcified Tissue International, Vol.35, No.1,
1983, pp.1-4.

[40] Carroll, J.R., Physical and Technical Aspects of Fire
and Arson Investigation, Charles C Thomas, Spring-
field, 1979, pp.51.

[41] Eckert, W.G., "The Medicolegal and Forensic Aspects of
Fires," American Journal of Forensic Medicine and
Pathology, Vol.2, No.4, 1981, pp.347-357.

[42] Stout, S.D., "Histological Structure and Its Preserva-
tion in Ancient Bone," Current Anthropology, Vol.19,
No.3, 1978, pp.601-604.

[43] Stout, S.D. and Simmons, D.J., "Use of Histology in
Ancient Bone Research," Yearbook of Physical Anthropo-
logy, Vol.22, 1979, pp.228-249.

[44] Stout, S.D. and Teitelbaum, S.L., "Histological Analy-
sis of Undecalcified Thin Sections of Archeological
Bone," American Journal of Physical Anthropology,
Vol.44, No.2, 1976, pp.263-270.

[45] Merz, W.A. and Schenk, R.K., "Quantitative Structural
Analysis of Human Cancellous Bone," Acta Anatomica,
Vol.75, No.1, 1970, pp. 54-66.









[46] Merz, W.A. and Schenk, R.K., "A Quantitative Histolo-
gical Study on Bone Formation in Human Cancellous
Bone," Acta Anatomica, Vol.76, No.1, 1970, pp.1-15.

[47] Jowsey, J., "Studies of Haversian Systems in Man and
Some Animals," Journal of Anatomy, Vol.100, No.4,
1966, pp.857-864.

[48] Reid, S.A. and Boyde, A., "Changes in the Mineral
Density Distribution in Human Bone with Age: Image
Analysis Using Backscattered Electrons in the SEM,"
Journal of Bone and Mineral Research, Vol.2, No.1,
1987, pp.13-22.

[49] Black, J. and Mattson, R.U., "Relationship Between
Porosity and Mineralization in the Haversian Osteon,"
Calcified Tissue International, Vol.34, 1982, pp. 332-
336.

[50] Dennen, W.H., Principles of Mineralogy, Ronald Press
Company, New York, 1959.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ER541JDVV_RE7RY0 INGEST_TIME 2017-07-12T21:13:08Z PACKAGE AA00003371_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

7+( ())(&76 2) '5<,1* $1' %851,1* 21 +80$1 %21(6 $1' 7((7+ %\ .$5(1 5$0(< %8516 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

$&.12:/('*0(176 0DQ\ SHRSOH DQG VHYHUDO LQVWLWXWLRQV KDYH SDUWLFLSDWHG LQ WKH GHYHORSPHQW RI WKLV UHVHDUFK SURMHFW ZRXOG ILUVW OLNH WR WKDQN P\ FRPPLWWHH FKDLUPDQ :LOOLDP 5 0DSOHV 3K' +LV VXSSRUW DQG JXLGDQFH KDYH EHHQ LQYDOXDEOH ZRXOG DOVR OLNH WR WKDQN P\ FRPPLWWHH PHPEHUV /LQGD & -DFNVRQ 3K' +DUROG 5 6WDQOH\ ''6 2WWR YRQ 0HULQJ 3K' DQG (OL]DEHWK 6 :LQJ 3K' IRU WKHLU DGYLFH DQG FULWLFDO UHYLHZV (DFK EURXJKW D XQLTXH DQG YDOXDEOH SHUn VSHFWLYH WR WKH ZRUN DP DOVR JUDWHIXO WR 'DYLG 6LPPRQV 3K' IRU WUDLQLQJ DQG H[SHULHQFH LQ ERQH PLFURVWUXFWXUH UHVHDUFK DV ZHOO DV IRU WKH XVH RI KLV PLFURUDGLRJUDSKLF DQG SKRWRJUDn SKLF HTXLSPHQW DW WKH 8QLYHUVLW\ RI 7H[DV 0HGLFDO %UDQFK LQ *DOYHVWRQ 2WKHU HTXLSPHQW ZDV SURYLGHG E\ &KDUOHV 3HWHUV 3K' 8QLYHUVLW\ RI *HRUJLD $QWKURSRORJ\ 'HSDUWPHQW DQG -DPHV 6SDXOGLQJ RI WKH &HQWHU IRU $SSOLHG ,VRWRSH 6WXGLHV 7KH RVWHRORJLFDO PDWHULDOV ZHUH PDGH DYDLODEOH E\ (PRU\ 8QLYHUVLW\ 0HGLFDO 6FKRRO DQG WKH 8QLYHUVLW\ RI )ORn ULGD 0HGLFDO 6FKRRO DP JUDWHIXO WR WKH DQDWRPLFDO ERDUG GLUHFWRUV 'U &ODXGLD $GNLVRQ RI (PRU\ DQG 'U /\QQ 5RP UHOO RI )ORULGD IRU SHUPLVVLRQ WR XVH WKH PDWHULDOV

PAGE 4

, DP LQGHEWHG WR 1RUPDQ +HU] 3K' 'LUHFWRU RI WKH &HQWHU IRU $UFKDHRORJLFDO 6FLHQFHV DW WKH 8QLYHUVLW\ RI *HRUJLD IRU ODERUDWRU\ VSDFH DQG EDVLF HTXLSPHQW DP DOVR JUDWHIXO IRU WKH VSDFH DQG FRXUWHV\ SURYLGHG E\ WKH )ORULGD 6WDWH 0XVHXP LQ *DLQHVYLOOH DQG E\ WKH 'LYLVLRQ RI 2UWKRSDHGLF 6XUJHU\ DW WKH 8QLYHUVLW\ RI 7H[DV 0HGLFDO %UDQFK LQ *DOYHVWRQ LLL

PAGE 5

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL $%675$&7 LY ,1752'8&7,21 6WDWHPHQW RI 3UREOHP 5HYLHZ RI /LWHUDWXUH +\SRWKHVHV 'HILQLWLRQ RI 7HUPV 0$7(5,$/6 $1' 0(7+2'6 6DPSOH 'HVFULSWLRQ ([SHULPHQWDO 0HWKRGV 0HDVXUHPHQW 0HWKRGV 6WDWLVWLFDO 0HWKRGV 5(68/76 t ',6&866,21 )LEXODH 5HVXOWV 7RRWK0DQGLEOH 5HVXOWV 6800$5< t &21&/86,216 $33(1',; $ 6$03/( '(6&5,37,21 $33(1',; % )50:. $33(1',; & 7$%/(6 2) 5(68/76 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ LY

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( ())(&76 2) '5<,1* $1' %851,1* 21 +80$1 %21(6 $1' 7((7+ %\ .DUHQ 5DPH\ %XUQV 'HFHPEHU &KDLUPDQ :LOOLDP 5 0DSOHV 3K' 0DMRU 'HSDUWPHQW $QWKURSRORJ\ 0RUSKRPHWULF DQDO\VHV UHTXLUH SUHFLVH PHDVXUHPHQWV WRJHWKHU ZLWK D WKRURXJK DZDUHQHVV RI WKH OLPLWV RI WKRVH PHDVXUHPHQWV $ QXPEHU RI UHSRUWV KDYH EHHQ SXEOLVKHG DERXW FKDQJHV LQ KXPDQ FDOFLILHG WLVVXHV DIWHU GHDWK 7KH UHSRUWV KDYH DSSHDUHG WR EH LQFRQVLVWHQW DQG VRPHWLPHV FRQWUDGLFWRU\ )RU H[DPSOH GU\LQJ DQG EXUQLQJ KDYH EHHQ UHSRUWHG WR FDXVH JURVV PHDVXUHPHQWV WR GHFUHDVH E\ b WR b ZKHUHDV EXUQLQJ KDV EHHQ UHSRUWHG WR FDXVH PLFURVFRSLF PHDVXUHPHQWV WR LQFUHDVH 7KLV H[SHULPHQW ZDV GHVLJQHG WR H[DPLQH WKH HIIHFWV RI GU\LQJ DQG EXUQLQJ RQ KXPDQ FDOFLILHG WLVVXHV %RQH ILEXn OD DQG PDQGLEOHf DQG WHHWK ORZHU DQWHULRUf ZHUH UHPRYHG IURP IRUW\VL[ GLVVHFWLQJURRP FDGDYHUV (DFK VDPSOH ZDV GLYLGHG LQWR IRXU SDUWV D FRQWURO D VXEVDPSOH WR EH GULHG D VXEVDPSOH WR EXUQ DW & DQG D VXEVDPSOH WR EXUQ DW & %\ WKLV PHWKRG LW ZDV SRVVLEOH WR FRPSDUH Y

PAGE 7

HDFK VDPSOH ZLWK LWVHOI WKHUHE\ GLPLQLVKLQJ WKH HUURU FDXVHG E\ GLIIHUHQFHV LQ DJH VH[ DQG VWDWH RI KHDOWK $OO VDPSOHV ZHUH HPEHGGHG LQ SODVWLF 5DGLRJUDSKV PLFURUDGLRJUDSKV DQG [HURJUDSKLF FRSLHV ZHUH XVHG WR KHOS RYHUFRPH WKH GLIILFXOWLHV RI ZRUNLQJ ZLWK H[WUHPHO\ IUDJLOH WLVVXH /LQHDU PHDVXUHPHQWV ZHUH WDNHQ RI ILEXOD GLDPHWHUV PDQGLEOH KHLJKW DQG ODELROLQJXDO ZLGWK WRRWK OHQJWK DQG ZLGWK URRW OHQJWK DQG RVWHRQ GLDPHWHUV 2VWHRQV SHU XQLW DUHD ZHUH FRXQWHG DQG D 0HU] JULG ZDV XVHG WR HVWLPDWH ERQH SRURVLW\ 7KHUH ZDV D PDMRU VL]H UHGXFWLRQ LQ ERQH DQG GHQWLQ EXUQHG DW & 1R VLJQLILFDQW VL]H FKDQJH RFFXUUHG LQ HQDPHO 7KH DYHUDJH VKULQNDJH IRU VHSDUDWH PHDVXUHPHQWV YDULHG IURP b WR b /HVV VKULQNDJH RFFXUUHG LQ GHQWLQ WKDQ LQ ERQH ZLWK DQ RYHUODS DW b 7KH H[WHQW RI FKDQJH YDULHG EHWZHHQ ERQHV DQG EHWZHHQ GLPHQVLRQV PHDVXUHG 9HU\ OLWWOH FKDQJH WRRN SODFH GXULQJ HLWKHU GU\LQJ RU GHJUHH EXUQLQJ DQG VWDWLVWLFDO VLJQLILFDQFH YDULHG 7KH DYHUDJH VKULQNDJH IRU VHSDUDWH PHDVXUHPHQWV YDULHG IURP b WR b 7KHUH ZDV D WUHQG WRZDUG D GHFUHDVLQJ QXPEHU RI RVn WHRQV SHU XQLW DUHD LQ ERWK GULHG DQG EXUQHG &f WLVVXH DQG D b LQFUHDVH LQ QXPEHU RI RVWHRQV LQ FUHPDWHG &f WLVVXH 3RURVLW\ LQFUHDVHG VLJQLILFDQWO\ LQ EXUQn HG ERQH YL

PAGE 8

,1752'8&7,21 6WDWHPHQW RI WKH 3UREOHP $QWKURSRORJLVWV UHO\ KHDYLO\ XSRQ LQIRUPDWLRQ GHULYHG IURP FDOFLILHG WLVVXHV %RQHV DQG WHHWK IUHTXHQWO\ SURn YLGH WKH RQO\ PHDQV E\ ZKLFK WR LGHQWLI\ DQ LQGLYLGXDO RU VWXG\ D SRSXODWLRQ $ ODUJH TXDQWLW\ RI LQIRUPDWLRQ FDQ EH GHULYHG IURP FDOFLILHG WLVVXHV >@ 0LFURVWUXFWXUH RI ERWK ERQH DQG WHHWK LV XVHG WR HVWLPDWH WKH DJH RI XQNQRZQ LQGLYLGXDOV >@ 8QIRUWXQDWHO\ WKH TXDOLW\ RI LQIRUPDn WLRQ REWDLQHG WKURXJK WKH VWXG\ DQG PHDVXUHPHQW RI FDOFLn ILHG WLVVXHV LV OLNHO\ WR EH GHSHQGHQW XSRQ WKH SUHVXPHG VWDWLF QDWXUH RI WKHVH WLVVXHV ,W LV KRZHYHU ZHOONQRZQ WKDW FDOFLILHG WLVVXHV DUH QRW VWDWLF HLWKHU GXULQJ OLIH RU DIWHU GHDWK 7KH PRUSKRORJLVW LV WKHUHIRUH SODJXHG E\ WKH TXHVWLRQ RI KRZ WR DOORZ IRU FKDQJHV SDUWLFXODUO\ VHYHUH SRVWPRUWHP FKDQJHV UHVXOWLQJ IURP SURORQJHG GU\LQJ EXUQLQJ RU FUHPDWLRQ 5LGGLFN D IRUHQVLF SDWKRORJLVW VWDWHG WKH SUREOHP ZHOO 6FLHQWLILF LGHQWLILFDWLRQ RI VHYHUHO\ GDPDJHG KXPDQ UHPDLQV UHTXLUHV WKH XVH RI DOO DYDLODEOH PDWHULDO WHFKQLTXHV H[SHUWLVH SHUVLVWHQFH DQG VRPH GHJUHH RI LPDJLQDWLRQ DQG OXFN ,Qn FLQHUDWHG SDUWLDOO\ FDUERQL]HG VNHOHWDO UHn PDLQV SUHVHQW XQLTXH SUREOHPV LQ HYDOXDWLRQ DQG LGHQWLILFDWLRQ >S@

PAGE 9

5HYLHZ RI WKH /LWHUDWXUH $FFXUDF\ RI PHDVXUHPHQW LV RI FULWLFDO LPSRUWDQFH WR WKH PRUSKRORJLVW 7RGG >@ SXEOLVKHG D VWXG\ RQ WKH HIIHFW RI PDFHUDWLRQ DQG GU\LQJ XSRQ WKH OLQHDU GLPHQVLRQV RI WKH JUHHQ IUHVKf VNXOO +H VWDWHG WKDW JUHDW LQGLYLn GXDO YDULDWLRQ RFFXUV EXW RQ WKH DYHUDJH VKULQNDJH D PRXQWV WR DERXW b RI WKH ILQDO GULHG PHDVXUHPHQW +H DOVR VDLG WKDW FKDQJHV LQ WHPSHUDWXUH DQG KXPLGLW\ DIIHFW VKULQNDJH DQG PD\ HYHQ UHVXOW LQ VOLJKW IOHHWLQJ LQFUHDVHV LQ GLPHQVLRQ $OEUHFKW >@ DOVR UHSRUWHG WKDW KXPLGLW\ DORQH FDQ EH D VRXUFH RI ERQH PHDVXUHPHQW HUURU +H FRPSDUHG WKH PHDn VXUHPHQWV RI WHQ PDFDTXH VNXOOV EHIRUH DQG DIWHU VXEMHFWLQJ WKHP WR D KXPLGLW\ FKDPEHU 7KH JUHDWHVW OHQJWK RI WKH VNXOO LQFUHDVHG E\ DERXW PP bf 7KH LPPHGLDWH DVVXPSWLRQ LV WKDW RVWHRORJLFDO FROOHFWLRQV LQ PXVHXPV FDQQRW EH UHOLHG XSRQ WR FRUUHVSRQG WR UHFHQWO\ PDFHUDWHG ERQH RU WR DQFLHQW ERQH IURP D PRLVW EXULDO HQYLURQPHQW XQOHVV D QXPHULFDO UDQJH FDQ EH HVWDEOLVKHG IRU WKLV W\SH RI VKULQNDJH %XUQHG ERQH KDV EHHQ WKH VXEMHFW RI PRUH H[SHULPHQWDO VWXGLHV WKDQ GULHG ERQH 7KHVH VWXGLHV WHQG WR IRFXV RQ GHVFULSWLRQV RI FKDQJHV LQ DSSHDUDQFH DQG VL]H XVXDOO\ OLQHDU VKULQNDJH 6RPH KDYH UHSRUWHG ZHLJKW FKDQJHV UHn VXOWLQJ IURP EXUQLQJ $V PLJKW H[SHFWHG LQ DQ DQWKURSROR

PAGE 10

JLFDO FRQWH[W PDQ\ RI WKH VWXGLHV DUH GLUHFWO\ OLQNHG WR LQYHVWLJDWLRQV RI FUHPDWLRQ SUDFWLFHV >@ 6HYHUDO LQYHVWLJDWRUV UHSRUWHG WKDW JUHHQ ERQH UHVn SRQGV GLIIHUHQWO\ WR ILUH WKDQ GU\ ERQH >@ %XUQW JUHHQ ERQH WHQGV WR ZDUS DQG IRUP ORQJHU GHHSHU FUDFNV ZKHUHDV GU\ ERQH UHPDLQV UHODWLYHO\ VWDEOH DQG IRUPV D VXUIDFH SDWWHUQ RI VPDOO FUDFNV RU FKHFNV 6KULQNDJH KDV EHHQ UHSRUWHG UHJXODUO\ EXW WKH H[WHQW RI VKULQNDJH LV ZLGHO\ YDULHG IURP OHVV WKDQ b >@ WR PRUH WKDQ b >@ 'LIIHUHQW YDOXHV DUH UHSRUWHG E\ HDFK LQYHVWLJDWRU DQG GLIIHUHQW YDOXHV DUH UHSRUWHG IRU HDFK ERQH 7URWWHU DQG 3HWHUVRQ >@ GULHG DQG GHJUHDVHG ZKROH VNHOHWRQV IURP HPEDOPHG FDGDYHUV 7KH\ WKHQ DVKHG FUHn PDWHGf WKH ERQHV DQG FRPSDUHG WKH GU\ IDWIUHH ZHLJKW ZLWK WKH DVK ZHLJKW 7KH DVK RU WKH PLQHUDO FRPSRQHQW FRPn SULVHG b WR b RI WKH ERQH %RQH VKULQNDJH DV HYDOXDWHG IURP OLQHDU PHDVXUHPHQWV FRXOG QRW EH H[SHFWHG WR UHDFK WKH UHODWLYH YDOXH RI b EHFDXVH RI WKH DPRXQW RI YRLG VSDFH OHIW LQ WKH ERQH 'RNODGDO >@ FDUULHG RXW DQ LQWHUHVWLQJ VWXG\ LQ ZKLFK KH EXUQHG RQH KDOI DQG PDFHUDWHG WKH RWKHU KDOI RI ILYH FDGDYHUV VSOLW VDJLWWDOO\ +H IRXQG QR PRUH WKDQ b GLIIHUHQFH LQ WKH ILQDO PHDVXUHPHQWV RI WKH WZR KDOYHV $ JDV FUHPDWRULXP ZDV XVHG DQG WKH WHPSHUDWXUH ZDV LQ WKH UDQJH RI WR GHJUHHV & ZLWK D GXUDWLRQ RI EXUQLQJ LQ WKH UDQJH RI WR PLQXWHV

PAGE 11

%RWK +HUUPDQQ >@ DQG 9DQ 9DUN >@ SHUIRUPHG H[SHULn PHQWV LQ ZKLFK WKH WHPSHUDWXUH FKDQJHV ZHUH FDUHIXOO\ UHn FRUGHG 7KH\ ERWK UHSRUWHG VLJQLILFDQW VKULQNDJH RFFXUULQJ EHWZHHQ WKH WHPSHUDWXUHV RI DQG GHJUHHV & +HUUn PDQQ IRXQG VOLJKW VKULQNDJH DW WHPSHUDWXUHV XQGHU & DQG 9DQ 9DUN IRXQG QR VKULQNDJH EHORZ & 9DQ 9DUN DOVR VWDWHG WKDW WKHUH ZDV QR IXUWKHU VKULQNDJH DERYH WKH FULWLn FDO GHJUHH OHYHO DQG WKDW ORQJHU EXUQLQJ GLG QRW LQFUHDVH WKH DPRXQW RI VKULQNDJH +HUUPDQQ >@ VWDWHG WKDW ERQH PLQHUDO FU\VWDOV K\n GUR[\DSDWLWHf IXVH LQ ILUHV UHDFKLQJ WHPSHUDWXUHV KLJKHU WKDQ GHJUHHV & +H DOVR SRLQWHG RXW WKDW PXFK RI WKH PLFURVWUXFWXUH LV XQUHFRJQL]DEOH ZLWK OLJKW PLFURVFRS\ HYHQ ZLWK SRODUL]HG OLJKW :LWK WKH XVH RI PLFURUDGLRn JUDSK\ KRZHYHU VWUXFWXUHV DUH GLVFHUQLEOH 7KHUH KDYH EHHQ YHU\ IHZ VWXGLHV RI PLFURVWUXFWXUH 2VWHRQ VKULQNDJH ZDV UHSRUWHG E\ +HUUPDQQ >@ DQG 9DQ 9DUN >@ %UDGWPLOOHU DQG %XLNVWUD >@ KRZHYHU UHSRUWHG VRPHZKDW FRQWUDGLFWRU\ UHVXOWV LQ D SUHOLPLQDU\ VWXG\ IURP VDPSOH RI RQH LQGLYLGXDO WZR IHPRUDf 7KH\ EXUQHG ERQH DW GHJUHHV & DQG VWXGLHG WKH UHVXOWLQJ FKDQJHV LQ PLFURn VWUXFWXUH 7KH RVWHRQV ZHUH XQLIRUPO\ ODUJHU LQ WKH EXUQHG ERQH 7KH\ FRQFOXGHG WKDW ERQH EXUQHG DW & UHWDLQV DOO RI WKH VWUXFWXUHV QHFHVVDU\ IRU PLFURVFRSLF DJLQJ DQG ERQH VKULQNDJH GRHV QRW DSSHDU WR KDYH D VLJQLILFDQW HIIHFW RQ WKH DJH HVWLPDWH

PAGE 12

,Q VWXG\LQJ WKH HIIHFW RI DJH RQ ZDWHU FRQWHQW LQ KXPDQ WHHWK 7RWR >@ UHPRYHG HQDPHO DQG SXOS FRQWHQWV RI WHQ WHHWK ILYH IURP D WR \HDUROG JURXS DQG ILYH IURP D WR \HDUROG JURXS +H GHK\GUDWHG WKH WHHWK DW GHJUHHV & $ ZHLJKWORVV FRPSDULVRQ VKRZHG D VLJQLn ILFDQWO\ JUHDWHU ORVV LQ WKH \RXQJ WHHWK WKDQ LQ WKH ROG WHHWK 7RWR DWWULEXWHG WKLV GLIIHUHQFH WR D JUHDWHU ZDWHU FRQWHQW LQ WKH \RXQJ WHHWK WKDQ LQ WKH ROG WHHWK +H GLG QRW UHSRUW DQ\ OLQHDU PHDVXUHPHQWV ([SHULPHQWDO ZRUN ZLWK EXUQW WHHWK LV VSDUVH 9LVXDOn L]DWLRQ RI PRUSKRORJ\ UDWKHU WKDQ PRUSKRPHWU\ LV WKH XVXDO JRDO DQG VWDQGDUG GHQWDO UDGLRJUDSK\ LV WKH XVXDO DSSURDFK :RUN RI WKLV QDWXUH LV IUHTXHQWO\ UHSRUWHG LQ WKH IRUHQVLF RGRQWRORJ\ OLWHUDWXUH >@ 0DQQHUEHUJ >@ UHSRUWHG H[SHULPHQWDO UHVXOWV RQ WKH ZHLJKW RI EXUQW WHHWK +H IRXQG WKDW WKH JUHDWHVW ORVV LQ ZHLJKW LV EHWZHHQ DQG GHJUHHV & $V ZLWK 7RWRnV ZRUN ZDWHU ORVV LV SUREDEO\ WKH PDLQ IDFWRU ,Q D UHFHQWO\ UHSRUWHG VWXG\ %HOO >@ EXUQHG UHVHFn WHG MDZV DW GHJUHHV ) GHJUHHV &f DQG GHJUHHV ) GHJUHHV &f +H VDLG WKDW VKULQNDJH ZDV REVHUYHG LQ DOO VWUXFWXUHV H[FHSW WKH HQDPHO FURZQV +H DOVR EXUQHG H[WUDFWHG WHHWK DW GHJUHHV ) GHJUHHV &f 0HDVXUHPHQWV WDNHQ EHIRUH DQG DIWHU EXUQn LQJ VKRZHG DSSUR[LPDWHO\ b VKULQNDJH RI WKH URRWV RQO\ 7KH HQDPHO FURZQV H[KLELWHG OLWWOH LI DQ\ VKULQNDJH DQG

PAGE 13

YHU\ OLWWOH GLVWRUWLRQ H[FHSW LQ WKH UHJLRQ RI WKH FHPHQWR HQDPHO MXQFWLRQ 7KH RQO\ FRPSDUDWLYH ZRUN DYDLODEOH RQ ERQH DQG WRRWK FKDQJHV LV E\ 6KLSPDQ HW DO >@ 7KH\ GLG QRW XVH KXPDQ ERQHV DQG WHHWK EXW UDWKHU ERQHV DQG WHHWK RI VKHHS DQG JRDWV &RORU PRUSKRORJ\ FU\VWDO VWUXFWXUH DQG VKULQNDJH ZHUH VWXGLHG 7KH WHPSHUDWXUH UDQJH ZDV WR GHJUHHV & 6KLSPDQ HW DO VWDWHG WKDW FKDQJHV LQ ERWK FRORU DQG PLFURVFRSLF PRUSKRORJ\ RI EXUQW ERQHV DQG WHHWK FDQ EH GLYLGHG LQWR ILYH VWDJHVf§HDFK RI ZKLFK LV W\SLFDO RI D SDUWLFXODU WHPSHUDWXUH UDQJH DOWKRXJK WKH VWDJHV EDVHG RQ FRORU GR QRW FRUUHODWH H[DFWO\ ZLWK WKRVH EDVHG RQ PLFUR PRUSKRORJ\ S f 7KH\ VDLG WKDW WKHVH VWDJHV FDQ EH XVHG WR GHWHUPLQH f LI VSHFLPHQV RI XQNQRZQ WDSKRQRPLF KLVWRU\ ZHUH EXUQW DQG f WKH PD[LPXP WHPSHUDWXUH UHDFKHG E\ WKRVH VSHFLPHQV 6KLSPDQ HW DO XVHG SRZGHU ;UD\ GLIIUDFWLRQ VWXGLHV WR H[DPLQH KHDWUHODWHG FKDQJHV 7KH\ ZHUH DEOH WR VKRZ WKDW KHDWLQJ FDXVHV DQ LQFUHDVH LQ WKH FU\VWDO VL]H RI K\GUR[\DSDWLWH WKH PDMRU LQRUJDQLF FRPSRQHQW RI ERQHV DQG WHHWK 7KH\ FRQFOXGHG WKDW WKH FKDQJH LQ K\GUR[\DSDWLWH WRJHWKHU ZLWK WKH PLFURVFRSLF PRUSKRORJ\ FDQ EH XVHG WR FRQILUP GHGXFHG KHDWLQJ WR & RU PRUH ,Q GHOLPLWLQJ WKH FULWLFDO WHPSHUDWXUH IRU K\GUR[\DSDWLWH FKDQJH 6KLSPDQ HW DO VHHP WR GLIIHU IURP +HUUPDQQ >@ ZKR UHSRUWV GHJUHHV & DV D FULWLFDO WHPSHUDWXUH 7KHUH LV KRZ

PAGE 14

HYHU QR UHDO GLVDJUHHPHQW EHFDXVH WKH FU\VWDO FKDQJH WDNHV SODFH SULRU WR WKH PDMRU VKULQNDJH +HUUPDQQ VWDWHG 1HLWKHU FRORU QRU KDUGQHVV LV D XVHIXO FULWHULRQ LQ MXGJLQJ WKH GHJUHH RI LQFLQHUDWLRQ >S@ 6HYHQ \HDUV ODWHU 6KLSPDQ HW DO SXEOLVKHG D SRO\QRPLDO H[SUHVVLRQ WKDW VXPPDUL]HV SHUFHQWDJH VKULQNDJH DV D IXQFWLRQ RI WKH PD[LPXP WHPSHUDWXUH UHDFKHG E\ ERQHV 7KH\ FRQFOXGHG WKDW WKH RULJLQDO VL]H RI VSHFLPHQV FDQ EH UHFRQVWUXFWHG ZLWKLQ OLPLWV VLQFH WKH PD[LPXP WHPSHUDWXUH UHDFKHG E\ WKH ERQHV FDQ EH GHGXFHG RQ WKH EDVLV RI FRORU PLFURVFRSLF PRUSKRORJ\ DQGRU SRZGHU ;UD\ GLIIUDFWLRQ SDWWHUQV >S@ +\SRWKHVHV 7KLV VWXG\ IRFXVHG RQ WKH HIIHFWV RI GU\LQJ DQG EXUQn LQJ RQ ERWK ERQH DQG WHHWK ,W ZDV IRUPXODWHG WR GHVFULEH DQG FRPSDUH WKH DPRXQW RI FKDQJH LQ ERQH ZLWK WKH DPRXQW RI FKDQJH LQ WHHWK ZKHQ ERWK KDYH EHHQ VXEMHFWHG WR WKH VDPH FRQGLWLRQV 7KH LPPHGLDWH JRDO LV WR SURYLGH TXDQWLWDWLYH LQIRUPDWLRQ 7$%/( f 7KH ORQJUDQJH JRDO LV WR SURYLGH D EULGJH EHWZHHQ ZKDW LV NQRZQ DERXW VWUXFWXUDO FKDQJHV LQ FDOFLILHG WLVVXHV DQG WKH DSSOLFDWLRQ RI WKDW NQRZOHGJH LQ DUFKDHRORJLFDO DQG IRUHQVLF LQYHVWLJDWLRQV ,Q RUGHU WR DFKLHYH WKHVH JRDOV WZR K\SRWKHVHV DUH RIIHUHG f 3RVWPRUWHP GHK\GUDWLRQ DQG S\URO\VLV KDYH PHDVXUDEOH HIIHFWV RQ WKH VWUXFWXUH RI ERQH DQG WHHWK

PAGE 15

f 7KH PDJQLWXGH RI FKDQJH LQ ERQH LV GLIIHUHQW IURP WKDW LQ WHHWK %RWK OLQHDU PHDVXUHPHQWV DQG FRXQWV ZHUH XVHG WR WHVW WKHVH K\SRWKHVHV $ VXPPDU\ RI PHDVXUHPHQWV LV SURYLGHG LQ 7$%/( 7KHVH PHDVXUHPHQWV DUH H[SODLQHG LQ GHWDLO LQ WKH FKDSWHU 0DWHULDOV DQG 0HWKRGV XQGHU WKH VXEKHDGLQJ 0HDVXUHPHQW 0HWKRGV 'HILQLWLRQ RI 7HUPV 7KH RUJDQL]DWLRQ RI PDWHULDOV DQG SURFHGXUHV LV LPSRUn WDQW WR WKH XQGHUVWDQGLQJ RI WKLV VWXG\ )RU WKLV UHDVRQ D VKRUW JORVVDU\ LV SURYLGHG 6RPH RI WKHVH WHUPV PD\ KDYH VOLJKWO\ GLIIHUHQW PHDQLQJV LQ RWKHU SXEOLFDWLRQV EXW WKH GHILQLWLRQ JLYHQ KHUH LV WKH RQH ZKLFK LV XVHG FRQVLVWHQWO\ WKURXJKRXW WKLV WH[W %XUQHG ,Q WKLV ZRUN WR EXUQ DQG WR FUHPDWH KDYH VHSDUDWH PHDQLQJV 7KH EXUQHG WLVVXH KDV EHHQ KHDWHG WR GHJUHHV &HQWLJUDGH ,W DSSHDUV FKDUn UHG RU EODFNHQHG &UHPDWHG 7KH FUHPDWHG WLVVXH KDV EHHQ KHDWHG WR GHJUHHV &HQWLJUDGH ,W DSSHDUV FDOFLQHG RU ZKLWHQHG ([SHULPHQWDO *URXS 7KH JURXS RI VHFWLRQV ZKLFK UHFHLYHG WKH VDPH H[SHULPHQWDO SURFHGXUH *URXS : ; < RU =f

PAGE 16

,QGLYLGXDOV (DFK ERG\ RU FDGDYHU IURP ZKLFK ILEXOD DQG PDQGLEOH VHFWLRQV ZHUH FROOHFWHG 6DPSOH 7KH VHFWLRQ RI WLVVXH ILEXOD RU PDQGLEOHf ZKLFK ZDV UHPRYHG IURP D VLQJOH LQGLYLGXDO %%f 6DPSOH 3RSXODWLRQ 7KH KXPDQ ERGLHV XVHG IRU GLVVHFWLRQ LQ DQDWRP\ FODVVHV DW WKH PHGLFDO VFKRROV RI (PRU\ DQG )ORULGD 7KH SRSXODWLRQ LV JHQHUDOO\ ZKLWH RYHU \HDUV RI DJH DW GHDWK DQG QHDUHTXDOO\ UHSUHVHQWDWLYH RI ERWK VH[HV 6HFWLRQ $V D QRXQ D VHFWLRQ LV D SLHFH RU SDUW RI D VWUXFWXUH GHOLPLWHG IURP WKH UHPDLQGHU $V D YHUE WR VHFWLRQ LV WKH DFW RI FXWWLQJ 6XEVDPSOH 7KH SRUWLRQ RI D VDPSOH ZKLFK UHFHLYHG D VSHFLn ILF H[SHULPHQWDO WUHDWPHQW %:%=f 7KLQ VHFWLRQ $V D QRXQ WKH WKLQ VOLFH UHPRYHG IURP D VXEVDPSOH IRU PLFURVFRS\ DQGRU PLFURUDGLRJUDSK\ ,Q WKLV VWXG\ WKLQ VHFWLRQV DUH PLOOLPLFURQV WKLFN $V D YHUE WR WKLQ VHFWLRQ LV WR FXW D WKLQ VHFWLRQ

PAGE 17

7$%/( 6XPPDU\ RI 0HDVXUHPHQWV DQG &RXQWV 2%-(&7 0($685(0(17 25 &2817 ),%8/$ ),%8/$ ',$0(7(5 DYHUDJH RI PD[LPXP DQG PLQLPXP FURVVVHFWLRQDO GLDPHWHUV PPf 267(21 ',$0(7(5 DYHUDJH RI PD[LPXP DQG PLQLPXP GLDPHWHUV PLFURQVf 267(21 &2817 QXPEHU RI RVWHRQV LQ D ; FLUFXODU ILHOG PPVTf 267(21 &2817 QXPEHU RI RVWHRQV LQ D ; VTXDUH ILHOG PPVTf %21( $5($ DQ HVWLPDWH RI SRURVLW\ SUHVHQWHG DV D SHUFHQWDJH 7227+ 727$/ 7227+ /(1*7+ LQFLVDO HGJH WR URRW DSH[ PPf 5227 /(1*7+ FHPHQWRHQDPHO MXQFWLRQ WR URRW DSH[ PPf 7227+ :,'7+ SHUSHQGLFXODU WR WKH OHQJWK DQG H[FOXGLQJ WKH HQDPHO PPf 7227+ t 0$1',%/( 727$/ +(,*+7 IURP LQFLVDO HGJH RI WKH WRRWK WR WKH PRVW LQIHULRU SRLQW RQ WKH PDQGLEOH PPf 0$1',%/( 0$1',%8/$5 +(,*+7 IURP LQIHULRU PDQGLn EXODU ERUGHU WR DOYHRODU ULGJH PPf /$%,2/,1*8$/ :,'7+ SHUSHQGLFXODU WR D OLQH GUDZQ EHWZHHQ WKH VXSHULRU ODELDO HGJH RI WKH WRRWK VRFNHW DQG WKH PRVW DQWHULRU SURMHFWLRQ RI WKH FKLQ

PAGE 18

0$7(5,$/6 $1' 0(7+2'6 6DPSOH 'HVFULSWLRQ 7KH VDPSOH ZDV FROOHFWHG IURP D GLVVHFWLQJ URRP SRSXn ODWLRQ DW WKH PHGLFDO VFKRROV RI WKH 8QLYHUVLW\ RI )ORULGD DQG (PRU\ 8QLYHUVLW\ EHWZHHQ )HEUXDU\ DQG 0D\ 3HUPLVVLRQ ZDV JUDQWHG E\ HDFK DQDWRPLFDO ERDUG GLUHFWRU 'U /\QQ 5RPUHOO RI WKH 8QLYHUVLW\ RI )ORULGD DQG 'U &ODXGLD $GNLVRQ RI (PRU\ 8QLYHUVLW\ 7KH VDPSOH ZDV QXPn EHUHG VHTXHQWLDOO\ % WKURXJK % (DFK QXPEHU UHSUHn VHQWV D VLQJOH FDGDYHU IURP ZKLFK VHFWLRQV ZHUH UHPRYHG $ FRPSOHWH OLVW LV SURYLGHG LQ $33(1',; $ 1RW HYHU\ QXPEHU LV SUHVHQW LQ WKH ILQDO VDPSOH EHFDXVH RI FRPSOLFDWLRQV FDXVHG E\ WKH (PRU\ 8QLYHUVLW\ WHDFKLQJ VFKHGXOH 7KH ILEXOD VHFWLRQV ZHUH DYDLODEOH RQH WHUP EHIRUH WKH PDQGLEXODU VHFWLRQV ZHUH DYDLODEOH ,Q VRPH FDVHV VDPSOHV KDG WR EH UHMHFWHG EHFDXVH RI GDPDJH GXULQJ WKH VHFRQG WHUP $OO VDPSOHV ZHUH UHPRYHG ZLWK D 6WU\NHU if VDZ DIWHU WKH VNLQ DQG PXVFOH PDVV ZHUH UHVHFWHG LQ WKH LPPHGLDWH DUHD (QRXJK VRIW WLVVXH ZDV OHIW RQ WKH ERQ\ VXUIDFHV WR DVVXUH WKDW WKH SHULRVWHXP ZDV QRW VWULSSHG $ERXW RQH WR

PAGE 19

RQH KDOI FHQWLPHWHU RI IOHVK UHPDLQHG LQ SODFH RQ HDFK ERQH 7HHWK ZHUH OHIW XQGLVWXUEHG LQ WKHLU VRFNHWV 7KH FDGDYHUV KDG DOO EHHQ HPEDOPHG ZLWK D VWDQGDUG IRUPDOGHK\GH DQG SKHQRO VROXWLRQ XVHG DW ERWK VFKRROV IRU GLVVHFWLRQ URRP ZRUN ,W KDV EHHQ HVWDEOLVKHG WKDW HPEDOPn LQJ KDV QR VLJQLILFDQW HIIHFW RQ ERQH GHQVLW\ >@ ,W ZDV DVVXPHG IRU WKH SXUSRVHV RI WKLV VWXG\ WKDW HPEDOPLQJ KDV KDG QR VLJQLILFDQW HIIHFW 7KH FDGDYHUV ZHUH NHSW GDPS EXW QRW VRDNHG ZKLOH EHLQJ XVHG E\ WKH PHGLFDO VWXGHQWV :KHQ WKH VDPSOHV ZHUH UHPRYHG WKH\ ZHUH LPPHUVHG LQ D b IRUPDOGHK\GH VROXWLRQ 7KH ILEXOD VHFWLRQV ZHUH FP LQ OHQJWK 7KH\ ZHUH UHPRYHG IURP WKH PLGVKDIW DV PHDVXUHG IURP WKH PDMRU FUHDVH LQ WKH SRSOLWHDO IRVVD WR WKH PRVW ODWHUDO SURWXEHUn DQFH RI WKH GLVWDO ILEXOD 1R SUHIHUHQFH ZDV PDGH IRU ULJKW RU OHIW OHJ 7KH PDQGLEXODU VHFWLRQV ZHUH VHOHFWHG RQO\ LI WKH\ FRQWDLQHG D PLQLPXP RI IRXU DQWHULRU WHHWK 7KH PDMRU LPSHGLPHQW LQ VDPSOH FROOHFWLRQ ZDV ILQGLQJ GLVVHFWLRQ URRP FDGDYHUV ZLWK WHHWKf 7KH PHGLDO VHFWLRQ RI WKH PDQGLEOH ZDV UHPRYHG E\ PDNLQJ ELODWHUDO FXWV WKURXJK WKH PRODU UHJLRQ RI WKH ERG\ RI WKH PDQGLEOH ,Q WKLV SRSXODWLRQ WKH DUHD GLVWDO WR WKH FDQLQH WHHWK ZDV RIWHQ HGHQWXORXV DQG DWURSKLHG ,W WKHUHIRUH SURYLGHG OHVV UHVLVWDQFH WR FXWWLQJ DQG WKH VHFWLRQV ZHUH FRQVLVWHQWO\ JRRG

PAGE 20

7$%/( 6DPSOH GHVFULSWLRQ E\ DJH DQG VH[ 727$/ 6$03/( )(0$/( 6$03/( 0$/( 6$03/( 1XPEHU 6H[ $JH 1XPEHU 6H[ $JH 1XPEHU 6H[ $JH % 0 % ) % 0 % 0 % ) % ) % ) % 0 % 0 % ) % f ) % 0 % 0 % ) % 0 % 0 % ) % 0 % ) % ) % 0 % ) % ) % 0 % ) % 0 % ) % ) % 0 % ) % ) %OO 0 % ) % ) % 0 % ) % ) % 0 % ) % ) % 0 % ) % 0 % 0 % ) % 0 % ) % 0 % ) % ) % 0 % ) % ) % 0 % ) % ) % 0 % ) % 0 % ) % ) % 0 %OO 0 % ) % 0 % ) % 0 % ) % ) % 0 % ) $9* $*( % 0 % 0 % ) 1 f % ) % ) % 0 % 0 $9* $*( % 0 % 0 1 f % 0 % 0 % ) % ) % 0 % ) % ) % ) % ) % ) % ) % ) 1 f $9* $*(

PAGE 21

7KH IROORZLQJ OLVW RI GDWD ZDV FROOHFWHG ZLWK HDFK SLHFH RI WLVVXH 6DPSOH QXPEHU %[[f 0RUJXH QXPEHU RIILFLDO PHGLFDO VFKRRO UHFRUGf 5DFH 6H[ 'DWH RI GHDWK 'DWH RI ELUWK &DXVH RI GHDWK ,QGLYLGXDOV ZHUH UHMHFWHG LI WKH DYDLODEOH UHFRUGV LQFOXGHG DQ\ PHQWLRQ RI GLVHDVHV NQRZQ WR DIIHFW FDOFLILHG WLVVXHV HJ GLDEHWHV RU RVWHRP\HOLWLVf 8QIRUWXQDWHO\ WKH SRVVLELOLW\ RI VLJQLILFDQW GLVHDVH FRXOG QRW EH FRPSOHWHO\ UHMHFWHG EHFDXVH WKH IXOO PHGLFDO UHFRUGV IRU WKHVH LQGLYLGXDOV ZHUH QRW DYDLODEOH GXH WR WKH ULJKWV RI SULYDF\ DFFRUGHG WR PHGLFDO GRQRUV 7KH ILQDO VDPSOH ZDV GHULYHG IURP LQGLYLGXDOV IHPDOHV DQG PDOHV DOO &DXFDVLDQV $ VXPPDU\ LV SURn YLGHG LQ 7$%/( 7KH WRWDO VDPSOH LV OLVWHG LQ DJH RUGHU WKHQ GLYLGHG E\ VH[HV DQG OLVWHG E\ GHFDGH 7KH WRWDO DJH UDQJH LV \HDUV 7KH IHPDOH PHDQ DJH LV \HDUV DQG WKH PDOH PHDQ DJH LV 7$%/( f 7$%/( 6XPPDU\ RI WRWDO VDPSOH DJH 6H[ 1 $JH 5DQJH 0HDQ 0HGLDQ 0RGH IHPDOH PDOH

PAGE 22

:KHQ DQ DJHEDODQFHG VDPSOH ZDV QHHGHG IRU DQDO\VLV LQGLYLGXDOV RXWVLGH WKH \HDU UDQJH ZHUH H[FOXGHG IURP WKH VDPSOH 6LQFH WKH PDOH JURXS FRQWDLQHG WKH RQO\ WZR LQGLYLGXDOV XQGHU \HDUV DQG WKH IHPDOH JURXS WKH RQO\ WZR RYHU \HDUV WKHVH IRXU ZHUH UHPRYHG 7KH IHPDOH PHDQ DJH ZDV WKHQ \HDUV DQG WKH PDOH PHDQ DJH ZDV \HDUV 7$%/( f 7$%/( 6XPPDU\ RI DJHEDODQFHG VDPSOH 6H[ 1 $JH 5DQJH 0HDQ 0HGLDQ 0RGH IHPDOH PDOH ([SHULPHQWDO 0HWKRGV 7KH H[SHULPHQW ZDV GHVLJQHG WR PDNH SRVVLEOH WKH FRPn SDULVRQ RI FDOFLILHG WLVVXH UHVSRQVHV WR GU\LQJ DQG EXUQn LQJ ,Q RUGHU WR LVRODWH WKH H[SHULPHQWDO YDULDEOHV DQ HIIRUW ZDV PDGH WR PLQLPL]H LQWHUIHUHQFH IURP VXFK YDULDEOHV DV DJH VH[ RU JHQHUDO KHDOWK RI WKH LQGLYLGXDO SHUVRQV IURP ZKRP WKH VDPSOH ZDV GUDZQ 7KH VDPSOH GHVn FULSWLRQ VKRZV WKLV WR EH D VDPSOH RI XQLIRUP UDFH VLPLODU DJH DQG QHDUHTXDO GLYLVLRQ RI VH[HV ,Q RUGHU WR IXUWKHU PLQLPL]H YDULDWLRQ HDFK LQGLYLGXDO VDPSOH ZDV VXEGLYLGHG LQWR IRXU VXEVDPSOHV %\ WKLV PHWKRG HQRXJK PDWHULDO ZDV

PAGE 23

DYDLODEOH IRU WKUHH H[SHULPHQWDO SURFHGXUHV DQG D FRQWURO IURP HDFK LQGLYLGXDO 7KH ILEXOD VHFWLRQV ZHUH FXW LQWR IRXU HTXDO FURVV VHFWLRQV HDFK DSSUR[LPDWHO\ RQH FHQWLPHWHU LQ OHQJWK 7KH PDQGLEOH VHFWLRQV ZHUH GLYLGHG LQWR IRXU SLHFHV E\ FXWWLQJ YHUWLFDOO\ EHWZHHQ WKH WHHWK DQG NHHSLQJ WKH D[LV RI HDFK WRRWK DV QHDU DV SRVVLEOH WR WKH FHQWHU RI HDFK SLHFH 7KH SLHFHV RI WLVVXH ERWK ERQH DQG WRRWK ZHUH GHVLJQDWHG :;< RU = DQG VWRUHG VHSDUDWHO\ LQ IRUPDOLQ 7KH JURXS GHVLJQDWLRQ OHWWHUV ZHUH DGGHG WR WKH VDPSOH QXPEHUV VR WKDW WKH LQGLYLGXDO LGHQWLILFDWLRQ DQG WKH H[SHULPHQWDO SURFHGXUH FRXOG EH UHFRJQL]HG LQ HDFK VXEVDPSOH QXPEHU )RU H[DPSOH VDPSOH QXPEHU % EHFDPH ILEXOD VXEVDPSOH QXPEHUV %: %; %< DQG %= DQG PDQGLEXODU VXEVDPSOH QXPEHUV %: %; %< DQG %= ,Q RWKHU ZRUGV WKH VDPSOH REWDLQHG IURP HDFK LQGLYLGXDO FDGDYHU SURYLGHG HLJKW VXEVDPSOHV IRXU IURP WKH ILEXOD DQG IRXU IURP WKH PDQGLEOH $ UHFRUG ZDV PDGH RI HYHU\ VXEVDPSOH EHIRUH DQ\ H[SHUn LPHQWDO SURFHGXUH EHJDQ 7KH PDQGLEXODU VHFWLRQV ZHUH UDGLRJUDSKHG DW WKH )ORULGD 6WDWH 0XVHXP XVLQJ D +HZOHWW 3DFNDUG 1 ;5D\ 6\VWHP )D[LWURQ 6HULHV DQG 3RODURLG [ /DQG )LOP 7\SH 3RVLWLYH1HJDWLYH 7KH PDQXDO VHWn WLQJV ZHUH .93 IRU PLQXWHV /HDG QXPEHUV DQG OHWWHUV ZHUH UDGLRJUDSKHG DORQJ ZLWK WKH WLVVXH LQ RUGHU WR SURYLGH LGHQWLILFDWLRQ 7KH UDGLRJUDSKV VKRZHG WKH WRRWK

PAGE 24

URRWV ZLWKLQ WKH VRFNHWV DQG PDGH SRVVLEOH WKH PHDVXUHPHQWV RI WRRWK VKULQNDJH ZLWKLQ WKH PDQGLEOH 7KH ILEXOD UHFRUGV ZHUH PDGH E\ D [HURJUDSKLF FRSLHU DQG DUH UHIHUUHG WR DV SKRWRFRSLHV 7KH [HURJUDSKLF SURn FHVV KDV EHHQ WHVWHG DQG UHFRPPHQGHG IRU UHFRUGLQJ WKH PRUSKRORJ\ RI KDUG WLVVXHV >@ 7KH IHDWXUHV RI WKH ERQH VDPSOHV DUH FRSLHG LQ WKH VDPH ZD\ DV DQ\ SULQWHG PDWHULDO SUHVHUYLQJ WKHLU UHDO GLPHQVLRQV 7KH FRS\LQJ PDFKLQH ZDV FKHFNHG IRU SRVVLEOH GLVWRUWLRQ E\ FRS\LQJ D UXOHU LQ VHYHUDO ORFDWLRQV RQ WKH SODWH 1R PHDVXUDEOH GLIIHUHQFHV ZHUH REVHUYHG LQ WKH UXOHU FRSLHV 7KH UHDO DGYDQWDJH LQ WKLV PHWKRG ZDV LQ WKH DOORZDQFH IRU VRIW WLVVXH 'LUHFW PHDVXUHPHQW ZLWK FDOLSHUV LV DGHn TXDWH ZKHQ PHDVXULQJ WKH GLDPHWHU RI GU\ ORQJ ERQH EXW VRIW WLVVXH LQWHUIHUHV ZLWK WKH FDOLSHUV LQ D ZHW VDPSOH VXFK DV WKLV $ [HURJUDSKLF FRS\ LV SURGXFHG ZLWK DQ LQWHQVH OLJKW ZKLFK VKLQHV WKURXJK VRIW WLVVXH DQG GHOLPLQ DWHV ERQH 7KH SKRWRFRS\ FDQ WKHQ EH PHDVXUHG (DFK H[SHULPHQWDO JURXS ZDV FRSLHG DV D XQLW XVLQJ D WHPSODWH LQ RUGHU WR FRS\ WKH VDPSOH QXPEHU DORQJ ZLWK WKH ILEXOD VHFWLRQ 7KH SKRWRFRSLHV ZHUH YHU\ XVHIXO LQ WKDW WKH\ SURYLGHG D EDFNXS LQYHQWRU\ V\VWHP DV ZHOO DV D UHFRUG RI VL]H FKDQJHV )LEXODH DUH XQLTXH LQ FURVV VHFn WLRQ DQG FDQ EH UHFRJQL]HG E\ IRUP DQG VL]H 7KH VDPSOH ZDV UHJURXSHG LQWR H[SHULPHQWDO SDLUV HDFK SDLU FRQVLVWLQJ RI D ILEXOD VHFWLRQ DQG D WRRWKPDQGLEOH

PAGE 25

VHFWLRQ ZLWK WKH VDPH QXPEHU 6DPSOHV ZLWK WKH VDPH QXPEHU ZHUH IURP WKH VDPH LQGLYLGXDO DQG LQ WKH VDPH H[SHULPHQWDO JURXS ,Q RUGHU WR GLIIHUHQWLDWH WKH WZR EXUQHG JURXSV E\ QDPH *URXS < ZDV UHIHUUHG WR DV WKH EXUQHG JURXS DQG *URXS = WKH FUHPDWHG JURXS *URXS :&RQWURO *URXS *URXS : ZDV PDLQWDLQHG LQ IRUPDOLQ XQWLO WKH RWKHU H[SHULPHQWDO SURFHGXUHV ZHUH FRPSOHWHG 7KH WRRWKPDQGLEOH VHFWLRQV ZHUH WKHQ HPEHGGHG LQ SODVWLF UHUDGLRJUDSKHG DQG PHDVXUHG 7KH ILEXOD VHFWLRQV ZHUH DOVR HPEHGGHG LQ SODVn WLF UHSKRWRFRSLHG WKLQ VHFWLRQHG DQG PHDVXUHG *URXS ;'ULHG *URXS *URXS ; ZDV GULHG EXW QRW EXUQHG ,W ZDV SODFHG LQ D GHVVLFDWRU XQGHU YDFXXP ZLWK DQK\GURXV FDOFLXP VXOIDWH DV D GHVLFFDQW 7KH WLVVXH ZDV FRQVLGHUHG WR EH GU\ ZKHQ D FRORU FKDQJH FRXOG QR ORQJHU EH JHQHUDWHG LQ IUHVK FRORU VHQVLWLYH GHVLFFDQW DIWHU KRXUV 7KH WRRWKPDQGLEOH VHFWLRQV ZHUH WKHQ HPEHGGHG LQ SODVWLF UHUDGLRJUDSKHG DQG PHDVXUHG 7KH ILEXOD VHFWLRQV ZHUH DOVR HPEHGGHG LQ SODVWLF UHSKRWRFRSLHG WKLQ VHFWLRQHG DQG PHDVXUHG *URXS <%XUQHG *URXS *URXS < ZDV EXUQHG IRU PLQXWHV DW GHJUHHV & )f LQ D 6\EURQ 7KHUPRO\QH )XUQDFH 7KH GHJUHH EXUQLQJ WHPSHUDWXUH ZDV VHOHFWHG EHFDXVH LW OLHV EHWZHHQ WKH XSSHU OLPLW RI & UHSRUWHG E\ 0DQQHUEHUJ

PAGE 26

>@ IRU WRRWK ZHLJKW ORVV DQG WKH ORZHU OLPLWV RI & >@ DQG & >@ IRU ERQH PLQHUDO IXVLRQ $ GHJUHH WHPSHUDWXUH LV DOVR XVHIXO LQ WKDW LW IDOOV ZLWKLQ WKH UDQJH RI LJQLWLRQ WHPSHUDWXUHV IRU PRGHUQ IXHOV >@ 7KH WRRWKPDQGLEOH VHFWLRQV ZHUH WKHQ HPEHGGHG LQ SODVWLF UHn UDGLRJUDSKHG DQG PHDVXUHG 7KH ILEXOD VHFWLRQV ZHUH DOVR HPEHGGHG LQ SODVWLF UHSKRWRFRSLHG WKLQ VHFWLRQHG DQG PHDVXUHG *URXS =&UHPDWHG *URXS *URXS = ZDV EXUQHG IRU PLQXWHV DW GHJUHHV & )f $ 6\EURQ 7KHUPRO\QH )XUQDFH ZDV XVHG DJDLQ 7KH GHJUHH EXUQLQJ WHPSHUDWXUH ZDV VHOHFWHG EHFDXVH LW LV KLJKHU WKDQ WKH XSSHU WHPSHUDWXUH RI & UHSRUWHG E\ +HUUPDQQ >@ DQG LV LQ WKH UDQJH RI VWDQGDUG FUHPDWLRQ WHPSHUDWXUHV >@ ,Q ERWK EXUQHG JURXSV WKH PLQXWH WLPHU ZDV QRW VWDUWHG XQWLO WKH WKH RYHQ UHDFKHG WKH SODQQHG WHPSHUDWXUH 7KH WRRWKPDQGLEOH VHFWLRQV ZHUH WKHQ HPEHGGHG LQ SODVWLF UHUDGLRJUDSKHG DQG PHDVXUHG 7KH ILEXOD VHFWLRQV ZHUH DOVR HPEHGGHG LQ SODVWLF UHn SKRWRFRSLHG WKLQVHFWLRQHG DQG PHDVXUHG $IWHU WKH H[SHULPHQWDO SURFHGXUHV RI GU\LQJ DQG EXUQn LQJ ZHUH FRPSOHWHG HDFK SLHFH RI WLVVXH ZDV SUHSDUHG IRU WKLQ VHFWLRQLQJ E\ HPEHGGLQJ LW LQ SODVWLF &DVWROLWH DQ HPEHGGLQJ PHGLXP PDUNHWHG E\ %XHKOHU /WG ZDV XVHG 7KH EXUQHG DQG FUHPDWHG JURXSV ZHUH HPEHGGHG DV VRRQ DV WKH\ KDG FRROHG ,Q PRVW FDVHV WKH WLVVXH ZDV HPEHGGHG LQ

PAGE 27

WKH VDPH GLVK WKDW ZDV XVHG IRU WKH EXUQLQJ LQ RUGHU WR DYRLG WKH GLVWXUEDQFH FDXVHG E\ WUDQVIHU 9DFXXP ZDV DSn SOLHG LQ RUGHU WR UHPRYH PDMRU EXEEOHV 7KH YDFXXP WLPH ZDV NHSW WR D PLQLPXP VHFRQGV RU OHVVf WR DYRLG YDSRUn L]LQJ WKH FDWDO\VW 7KH HPEHGGLQJ SURFHVV ZDV VLPSOH DQG LQ IDFW QRQ HVVHQWLDO IRU *URXSV : DQG ; 7KH\ ZHUH HPEHGGHG LQ SODVn WLF LQ RUGHU WR PDLQWDLQ XQLIRUPLW\ ZLWK *URXSV < DQG = ,Q ERWK KHDWWUHDWHG JURXSV WKH WLVVXH QHHGHG WKH DGGHG VXSSRUW RI DQ HPEHGGLQJ PHGLXP EHIRUH EHLQJ KDQGOHG 7KLQ VHFWLRQLQJ DOVR ZRXOG KDYH EHHQ LPSRVVLEOH ZLWKRXW WKH DGGHG PDWUL[ 3UHVVXUH ZRXOG KDYH SURGXFHG KDUGHU EORFNV ZKLFK DUH HDVLHU WR WKLQ VHFWLRQ EXW SUHVVXUH FDXVHG WKH H[WUHPHO\ IUDJLOH FUHPDWHG WLVVXH *URXS =f WR SXOYHUL]H ,W ZDV QRW HYHQ SRVVLEOH WR VRDN WKH FUHPDWHG WLVVXH LQ XQFDWDO\]HG SODVWLF ZLWKRXW FDXVLQJ WRWDO GLVLQWHJUDWLRQ RI WKH WLVVXH 7KH EHVW UHVXOWV ZHUH REWDLQHG ZKHQ WKH WLVVXH ZDV WUHDWHG DV JHQWO\ DV SRVVLEOH ,Q RWKHU ZRUGV QR SUHVVXUH QR KHDW DQG VORZ ORQJWHUP GU\LQJ RI WKH SODVWLF $ ZHHN RU PRUH ZDV QHFHVVDU\ IRU GU\LQJ WLPH )LQDO UDGLRJUDSKV DQG SKRWRFRSLHV ZHUH PDGH RI WKH SURFHVVHG DQG HPEHGGHG VDPSOH ,Q RUGHU WR SKRWRFRS\ WKH ILEXOD VDPSOHV WKH VXUIDFH RI WKH ILEXOD ZDV H[SRVHG E\ FDUHIXOO\ SROLVKLQJ DZD\ H[FHVV SODVWLF ZLWK D %XHKOHU (FRPHW Jf *ULQGHU $OO WLVVXH SLHFHV ZHUH RULHQWHG DQG SRVLWLRQHG LQ WKH VDPH PDQQHU DV WKH\ KDG EHHQ LQ WKH

PAGE 28

SUHOLPLQDU\ UDGLRJUDSKV DQG SKRWRFRSLHV 7KH VDPH PDFKLQHV ZHUH XVHG ZLWK WKH VDPH SURWRFRO 7KLQ VHFWLRQV ZHUH FXW RQ D %XHKOHU ,VRPHW p ORZ VSHHG VDZ $ JUHDW GHDO RI HIIRUW ZDV SODFHG LQ GHYHORSLQJ D WHFKQLTXH IRU REWDLQLQJ VHFWLRQV RI FRQVLVWHQW WKLFNQHVV 7KH EHVW UHVXOWV ZHUH REWDLQHG XQGHU WKH IROORZLQJ FRQGLn WLRQV OfORZ VSHHG QR KLJKHU WKDQ RQ WKH ,VRPHW GLDO fORZ ZHLJKW QR PRUH WKDQ JUDPV RU XQLWV f ZDWHU FRRODQW UDWKHU WKDQ RLO 7KLQ VHFWLRQV ZHUH LPPHGLDWHO\ PHDVXUHG WKHQ SUHVVHG EHWZHHQ VHSDUDWH QXPEHUHG JODVV VOLGHV ,W ZDV QRWHG WKDW WKH FRQWURO WLVVXH *URXS :f KDG WR EH FXW WKLQQHU LQ RUGHU IRU WKH UHVXOWLQJ WKLQ VHFn WLRQ WR EH WKH VDPH WKLFNQHVV DV WKDW RI WKH EXUQHG WLVVXH 7KH GLIIHUHQFH RQ WKH ,VRPHW PLFURPHWHU GLDO ZDV WKH HTXLYDOHQW RI PLFURPLOOLPHWHUV 3HUKDSV WKH EXUQHG WLVVXH ORRVHV PLFURVFRSLF FKLSV RI PLQHUDO ZKLOH EHLQJ VDZHG GXH WR ODFN RI LQWDFW ELQGLQJ FROODJHQ 0DQ\ DWWHPSWV ZHUH PDGH WR VHH WKH PLFURVWUXFWXUH RI WKH KHDWWUHDWHG JURXSV ZLWK WKH XVH RI VWDQGDUG OLJKW PLFURVFRS\ 7LVVXH ZDV UHHPEHGGHG DIWHU LQLWLDO VHFWLRQn LQJ WKHQ SROLVKHG WR PD[LPXP WKLQQHVV 1XPHURXV SROLVKLQJ WHFKQLTXHV ZHUH DWWHPSWHG 6RPH RI WKH EXUQHG WLVVXH ZDV VRDNHG LQ EHQ]HQH LQ DQ HIIRUW WR FOHDU LW /LPLWHG UHn VXOWV ZHUH REWDLQHG RQ WKH EXUQHG WLVVXH *URXS
PAGE 29

OLQHV ZHUH LQGLVWLQFW DQG DFFXUDWH PHDVXUHPHQW ZDV LPSRVn VLEOH 1R VXFFHVV ZKDWVRHYHU ZDV REWDLQHG ZLWK FUHPDWHG WLVn VXH *URXS =f 0LFURUDGLRJUDSK\ VHHPHG WR SURYLGH WKH RQO\ SRVVLEOH PHDQV WR FRQVLVWHQW YLVXDOL]DWLRQ RI WKH PLFURn VWUXFWXUH RI KHDWWUHDWHG WLVVXH 0LFURUDGLRJUDSKV KDYH EHHQ UHFRPPHQGHG E\ RWKHUV ZRUNLQJ ZLWK EXUQHG WLVVXH DQG IUDJLOH DUFKDHRORJLFDO PDWHULDO >@ (DFK ILEXOD VHFWLRQ ZDV PLFURUDGLRJUDSKHG RQ D 6RUHQn VHQ PDQXIDFWXUHG E\ WKH 5D\WKHRQ &RPSDQ\ 7KH VHWWLQJV ZHUH GHSHQGHQW RQ WKH WKLFNQHVV RI WKH WLVVXH 7$%/( 5HFRPPHQGHG 6HWWLQJV IRU 0LFURUDGLRJUDSK\ 7KLFNQHVV .LORYROWV 0LOOLDPSV 0LQXWHV PLOOLPLFURQVf .RGDN +LJK 5HVROXWLRQ )LOP (67$5 7KLFN %DVHf 62 ZDV XVHG LQVWHDG RI WKH WUDGLWLRQDO .RGDN 6SHFWURVFRSLF 3ODWH 7KH ILOP KDG D QXPEHU RI DGYDQWDJHV RYHU WKH SODWHV WKH PRVW RXWVWDQGLQJ RQHV EHLQJ ORZHU FRVW DQG HDVLHU DYDLODELOLW\ 7KH KLJK UHVROXWLRQ ILOP LV DYDLODEOH IURP VWRFN ZKHUHDV WKH VSHFWURVFRSLF SODWHV DUH PDGH RQO\ RQ VSHFLDO RUGHU $OVR WKH ILOP ZDV HDVLHU WR WDLORU WR

PAGE 30

LQGLYLGXDO QHHGV ,W ZDV SRVVLEOH WR FXW WKH ILOP ZLWK D SDSHU FXWWHU UDWKHU WKDQ KDYLQJ WR VFRUH DQG EUHDN JODVV WR WKH ULJKW VL]H 2QH VOLJKW GLVDGYDQWDJH RI WKH +LJK 5HVROXWLRQ )LOP ZDV WKH GLIILFXOW\ RI GHYHORSLQJ VHYHUDO ILOPV DW D WLPH 7KH VSHFWURVFRSLF SODWHV FRXOG EH SODFHG LQ JODVV KLVWRORn JLFDO VWDLQLQJ UDFNV DQG GHYHORSHG LQ VWDQGDUG VWDLQLQJ GLVKHV 7KH ILOPV ZRXOG IORDW DQG VWLFN WR RQH DQRWKHU XQGHU WKH VDPH FRQGLWLRQV 7KLV SUREOHP ZDV VROYHG E\ DGGLQJ D SDSHU FOLS WR HDFK VLGH RI HDFK ILOP EHIRUH SODFn LQJ LW LQ WKH VWDLQLQJ UDFN 7KH SDSHU FOLSV GLG QRW WRXFK WKH LPDJH DUHD RI WKH ILOP 7KH H[SRVHG ILOPV ZHUH GHYHORSHG IRU PLQXWHV ZLWK .RGDN GHYHORSHU PL[HG ZLWK ZDWHU 7KH\ ZHUH IL[HG LQ .RGDN 5DSLG )L[HU XVHG IXOO VWUHQJWK 7KH PLFURn UDGLRJUDSKV ZHUH WKHQ HYDOXDWHG DQG PHDVXUHG DW O22[ PDJQLn ILFDWLRQ ZLWK WUDQVPLWWHG OLJKW )RU PLFURVFRSH YLHZLQJ DQG VWRUDJH WKH PLFURUDGLRn JUDSKV ZHUH WDSHG WR VWDQGDUG O[ PLFURVFRSH VOLGHV 7KH KHDW IURP WKH PLFURVFRSH OLJKW FDXVHG WKH ILOP WR WHPn SRUDULO\ ZDUS PDNLQJ IRFXVLQJ GLIILFXOW 7KLV ZDV VROYHG E\ PDNLQJ XVH RI WKH FOLSV VXSSOLHG RQ VRPH PLFURVFRSH VWDJHV 7KH ILOP FRXOG DOVR EH VDQGZLFKHG EHWZHHQ JODVV VOLGHV EXW WKLV ZDV D OHVV GHVLUDEOH DOWHUQDWLYH 0LFURn VWUXFWXUH GHWDLO ZDV VOLJKWO\ OHVV DSSDUHQW ZKHQ D VHFRQG JODVV VOLGH ZDV XVHG

PAGE 31

),*85( 3KRWRPLFURJUDSK RI GULHG ERQH ; PDJQLILFDWLRQ 6DPSOH 1R %; WRSf DQG %; ERWWRPf

PAGE 32

),*85( 3KRWRPLFURJUDSK RI PLFURUDGLRJUDSK RI EXUQHG ERQH ; PDJQLILFDWLRQ %< WRSf DQG %< ERWWRPf

PAGE 33

),*85( 3KRWRPLFURJUDSK RI PLFURUDGLRJUDSK RI FUHPDWHG ERQH ; PDJQLILFDWLRQ %=WRSf DQG %=ERWWRPf

PAGE 34

0HDVXUHPHQW 0HWKRGV *URVV )LEXODH 0HDVXUHPHQWV 7KUHH VHWV RI PHDVXUHPHQWV ZHUH PDGH RQ HDFK ILEXOD VXEVDPSOH 6WDQGDUG PHWULF GLDO FDOLSHUV ZHUH XVHG WR PHDVXUH PLQLPXP DQG PD[LPXP GLDPHWHU 7KH ILUVW WZR VHWV RI PHDVXUHPHQWV ZHUH PDGH IURP WKH SUHOLPLQDU\ SKRWRFRS\ DQG WKH ILQDO SKRWRFRS\ 7KH WKLUG VHW ZDV PDGH GLUHFWO\ IURP WKH WLVVXH LWVHOI DIWHU HPEHGGLQJ LW LQ SODVWLF DQG H[SRVLQJ WKH IDFH RI WKH FURVV VHFWLRQ (DFK SKRWRFRS\ ZDV PHDVXUHG VHSDUDWHO\ DQG WKH QXPEHUV ZHUH UHFRUGHG QH[W WR WKH LPDJH 7KH GLUHFW PHDVXUHPHQWV ZHUH UHFRUGHG RQ VHSDUDWH GDWD FDUGV 7KXV HDFK PHDVXUHPHQW ZDV PDGH ZLWKRXW UHIHUHQFH WR DQ\ RWKHU PHDVXUHPHQW 7KH SUHOLPLQDU\ VHW RI PHDVXUHPHQWV VHUYHG DV D FRQn WURO IRU WKH VSHFLILF VXEVDPSOH 7KH VHFRQG VHW SURYLGHG D PHDVXUH RI WKH VL]H FKDQJH ZKLFK WDNHV SODFH GXULQJ WKH H[SHULPHQWDO SURFHGXUH 7KH WKLUG VHW RI PHDVXUHPHQWV VHUYHG DV D EDFNXS IRU WKH VHFRQG VHW ,GHDOO\ WKH VHFRQG DQG WKLUG VHWV RI PHDVXUHPHQWV VKRXOG EH LGHQWLFDO 7KH GLIIHUHQFHV EHWZHHQ WKHP SURYLGHG D WDQJLEOH ZD\ RI HVWLPDWLQJ HUURU LQ WKH PHDVXUHPHQW PHWKRGV %RQH 0LFURVWUXFWXUH 0HDVXUHPHQWV 0LFURVWUXFWXUH PHDVXUHPHQWV ZHUH PDGH DW O22[ PDJQLILn FDWLRQ XVLQJ DQ H\HSLHFH PLFURPHWHU ZKLFK KDG EHHQ FDOLn EUDWHG ZLWK WKH XVH RI D VWDJH PLFURPHWHU (DFK ILEXOD

PAGE 35

WKLQ VHFWLRQ ZDV HYDOXDWHG RQ WKH EDVLV RI FRQGLWLRQ DQG PLFURVWUXFWXUH YLVLELOLW\ 7KH SHUFHQW RI ERQH SHU XQLW DUHD ZDV HVWLPDWHG ZLWK WKH XVH RI D 0HU] JULG >@ 7KH SHUFHQW RI ERQH ZDV EDVHG RQ WKH QXPEHU RI KLWV RQ ERQH RXW RI SRVVLEOH $ FRXQW ZDV PDGH RI WKH QXPEHU RI RVWHRQV SHU XQLW DUHD LQ HDFK FRUQHU XVXDOO\ WKUHHf RI WKH ILEXOD VHFWLRQV 7KH ZKROH ; FLUFXODU ILHOG ZDV WR KDYH EHHQ FRXQWHG LQ HDFK FRUQHU RQ DOO VDPSOHV 7KH DFWXDO DUHD RI WKLV ILHOG ZDV PP VT $ SUREOHP GHYHORSHG LQ FDUU\LQJ RXW WKLV FRXQW &UHPDWHG ERQHV ZHUH RIWHQ VR VPDOO WKDW WKH PLFURVFRSH ILHOG FRXOG QRW EH ILOOHG ZLWK ERQH ,Q RUGHU WR FRPSDUH RVWHRQ FRXQWV EHWZHHQ FUHPDWHG DQG QRQFUHPDWHG ERQHV D GLIIHUHQW VPDOOHU ILHOG KDG WR EH GHILQHG 7KH VTXDUH 0HU] JULG ZDV DYDLODEOH DQG ZDV D PRUH DSSURSULDWH VL]H PPVTf IRU WKH FUHPDWHG WLVVXH ,Q RUGHU WR REWDLQ FRPSDUDEOH UHVXOWV RVWHRQV ZHUH FRXQWHG ZLWKLQ WKH OLPLWV RI WKH 0HU] JULG RQ DOO VHFWLRQV ZKHWKHU WKH WLVVXH ILOOHG WKH FRPSOHWH ILHOG RU QRW 7KH GLDPHWHUV RI WKLUW\ RVWHRQV ZHUH PHDVXUHG RQ HDFK VHFWLRQ 2QO\ UHODWLYHO\ URXQG RVWHRQV ZHUH PHDVXUHG )RU HDFK RVWHRQ WKH JUHDWHVW GLDPHWHU ZDV PHDVXUHG ILUVW WKHQ D VHFRQG GLDPHWHU ZDV PHDVXUHG SHUSHQGLFXODU WR WKH ILUVW PHDVXUHPHQW 7KLV SURYLGHG VL[W\ PHDVXUHPHQWV IURP ZKLFK WR FRPSXWH WKH DYHUDJH RVWHRQ GLDPHWHU IRU HDFK ILEXOD VHFWLRQ 7KH YLVXDO VFDQ IRU ZKROH RVWHRQV EHJDQ DW WKH

PAGE 36

PRVW SRLQWHG FRUQHU RI WKH VHFWLRQ DQG SURFHHGHG FORFNZLVH DV VHHQ WKURXJK WKH PLFURVFRSH )UDJPHQWV ZHUH QRW PHDn VXUHG $OO PLFURVFRSLF ERQH PHDVXUHPHQWV ZHUH HQWHUHG GLUHFWO\ RQ D /RWXV VSUHDGVKHHW $33(1',; % )50:.f 7KH VSUHDGVKHHW ZDV GHVLJQHG WR FRQYHUW WKH H\HSLHFH PLFURPHWHU XQLWV LQWR PLOOLPLFURQV DQG WR FDOFXODWH DYHUDJHV VWDQGDUG GHYLDWLRQV DQG VWDQGDUG HUURU IRU HDFK PHDVXUHPHQW $ VHSDUDWH GDWD VKHHW ZDV SULQWHG IRU HDFK PLFURVFRSH VOLGH *URVV 7RRWK DQG 0DQGLEOH 0HDVXUHPHQWV 7RRWK DQG PDQGLEOH PHDVXUHPHQWV ZHUH WDNHQ GLUHFWO\ IURP WKH UDGLRJUDSKV ZKLFK KDG EHHQ PDGH EHIRUH DQG DIWHU WKH H[SHULPHQWDO SURFHGXUHV 7KH UDGLRJUDSKV ZHUH SODFHG RQ D KRUL]RQWDO OLJKW WDEOH DQG GLDO FDOLSHUV ZHUH XVHG 7RWDO KHLJKW ZDV PHDVXUHG IURP WKH LQFLVDO HGJH RI WKH WRRWK WR WKH PRVW LQIHULRU SRLQW RQ WKH PDQGLEOH $Q\ FKDQJH LQ WKLV PHDVXUHPHQW UHIOHFWHG ERWK WRRWK DQG ERQH FKDQJHV 7KH RWKHU PHDVXUHPHQWV VRUWHG LQWR WKRVH ZKLFK UHIOHFW WRRWK FKDQJHV DQG WKRVH ZKLFK UHIOHFW PDQGLEXODU ERQH FKDQJHV 7KH PDQGLEXODU PHDVXUHPHQWV ZHUH PD[LPXP KHLJKW DQG ZLGWK +HLJKW ZDV PHDVXUHG IURP WKH LQIHULRU PDQGLEXODU ERUGHU WR WKH DOYHRODU ULGJH :LGWK ZDV PHDn VXUHG DW ULJKW DQJOHV WR D OLQH GUDZQ IURP WKH ODELDO HGJH RI WKH WRRWK VRFNHW WR WKH PRVW DQWHULRU SURMHFWLRQ RI WKH PHQWDO SURWXEHUDQFH

PAGE 37

7KH WRRWK PHDVXUHPHQWV ZHUH WRWDO OHQJWK URRW OHQJWK DQG PD[LPXP ZLGWK 7RWDO WRRWK OHQJWK ZDV PHDVXUHG IURP WKH LQFLVDO HGJH WR WKH DSH[ 5RRW OHQJWK ZDV PHDVXUHG IURP WKH FHPHQWRHQDPHO MXQFWLRQ WR WKH DSH[ 0D[LPXP ZLGWK ZDV PHDVXUHG DW ULJKW DQJOHV WR WKH ORQJ D[LV RI WKH WRRWK DQG H[FOXGHG WKH HQDPHO 7KLV FRXOG RQO\ EH PHDVXUHG RQ UDGLRJUDSKV EHFDXVH WKH JUHDWHVW ZLGWK RQ DQ LQWDFW WRRWK LV QRUPDOO\ RQ WKH HQDPHO 7KH HQDPHO ZDV XVXDOO\ ORRVHQHG RU IUDJPHQWHG LQ WKH EXUQLQJ SURFHVV WKHUHIRUH D ZLGWK PHDVXUHPHQW PDGH RQ WKH FURZQ LQ *URXSV : DQG ; ZRXOG QRW DOZD\V KDYH D FRPSDUDEOH PHDVXUHPHQW LQ WKH < DQG = JURXSV 6WDWLVWLFDO 0HWKRGV 7KH GDWD IURP DOO PHDVXUHPHQWV ZHUH WDEXODWHG RQ /RWXV 5f VSUHDGVKHHWV 3DLUHG WWHVWV ZHUH XVHG WR WHVW WKH VLJQLILFDQFH RI ORJDULWKP GLIIHUHQFHV LQ WKH H[SHULPHQWDO JURXSV &KLVTXDUH WHVWV ZHUH XVHG WR FKHFN WKH GDWD IRU QRUPDO GLVWULEXWLRQ 7KH VSUHDGVKHHWV ZHUH GHVLJQHG WR DFFHSW FROXPQV RI GDWD DQG FRPSXWH WKH VDPSOH PHDQ VWDQGDUG GHYLDWLRQ VWDQGDUG HUURU WYDOXHV b VLJQLILFDQFH UDQJH S f DQG FKLVTXDUH YDOXHV %DU JUDSKV ZHUH SURGXFHG IURP WKH VSUHDGVKHHWV 7KH JUDSKV DUH UHSUHVHQWDWLRQV RI WKH DFWXDO PHDVXUHPHQWV DV ZHOO DV WKH GLIIHUHQFHV EHWZHHQ JURXSV

PAGE 38

6WDQGDUG GHYLDWLRQV ZHUH JUDSKHG ZLWK WKH DYHUDJHV VDPSOH PHDQVf DQG FRQILGHQFH OLPLWV ZHUH JUDSKHG ZLWK SHUFHQWDJHV ,I D FRPSXWHG WYDOXH VKRZV D VHW RI PHDVXUHPHQWV WR EH OHVV WKDQ VLJQLILFDQW DW WKH b OHYHO RI VLJQLILFDQFH WKH YDOXHV ZHUH UHSRUWHG RQ WKH EDU JUDSK ZLWK 16 QRW VLJQLILFDQWf DERYH WKH EDU LQVWHDG RI D QXPHULFDO YDOXH

PAGE 39

5(68/76 $1' ',6&866,21 )LEXOD 5HVXOWV 9LVXDO 'HVFULSWLRQ 7KH EXUQHG DQG FUHPDWHG JURXSV FRXOG EH HDVLO\ UHFRJQL]HG DQG GLVWLQJXLVKHG E\ DSSHDUDQFH 7KH ERQH LQ WKH EXUQHG JURXS ORRNHG FKDUUHG 7KH\ ZHUH FKDUFRDO EODFN LQ FRORU DQG ZHUH XVXDOO\ GXOO EXW VRPHWLPHV VKLQ\ RU JUHDV\ ORRNLQJ 7KH ERQH VDPSOHV LQ WKH FUHPDWHG JURXS ZHUH W\SLFDO RI DVKHG RU FDOFLQHG ERQH 7KH\ ZHUH ZKLWH ZLWK VKDGHV RI \HOORZ RU JUD\ DQG VHHPHG GU\ DQG FKDONn OLNH 7KH EXUQHG VDPSOHV ZHUH VRPHZKDW IUDJLOH DQG EURNH HDVLO\ 7KH FUHPDWHG VDPSOHV ZHUH H[WUHPHO\ IUDJLOH DQG FUXPEOHG HDVLO\ :KHUHDV WKH EXUQHG VDPSOHV FRXOG EH OLIWn HG LQ WKH ILQJHUV ZLWK FDUH WKH FUHPDWHG VDPSOHV FRXOG EH GHVWUR\HG LQ WKH VLPSOH DFW RI OLIWLQJ 7KLQ \HOORZLVK IODNHV ZHUH SUHVHQW RQ WKH RXWHU VXUn IDFHV RI WKH EXUQHG ERQH 7KLV DSSHDUHG WR EH D UHVLGXH OHIW E\ WKH EXUQHG VRIW WLVVXH DQG QRW FLUFXPIHUHQWLDO ERQH LWVHOI 7KH IODNLQJ RQ WKH VXUIDFH RI FUHPDWHG ERQH ZDV WKH ERQH VXUIDFH LWVHOI

PAGE 40

*URVV 0HDVXUHPHQWV 7DEOHV )LJXUHV f 7KH JURVV ILEXOD PHDVXUHPHQWV ZHUH FURVVVHFWLRQDO GLDPHWHUV WDNHQ IURP SKRWRFRSLHV DQG E\ GLUHFW PHDVXUHPHQWV DV GHVFULEHG LQ WKH 0HWKRGV VHFWLRQ $OO IRXU H[SHULPHQWDO JURXSV ZHUH PHDVXUHG 7KH FRQWURO JURXS PHDVXUHPHQWV ZHUH XVHG VSHFLILFDOO\ WR WHVW WKH PHDVXUHPHQW PHWKRG 1R GLIn IHUHQFH ZDV IRXQG EHWZHHQ WKH SUHOLPLQDU\ SKRWRFRS\ WKH ILQDO SKRWRFRS\ DQG WKH GLUHFW PHDVXUHPHQWV WDNHQ IURP WKH ERQH 7KH SKRWRFRS\ PHWKRG ZRUNHG ZHOO DV D PHDVXUHPHQW PHWKRG 7DEOH )LJXUHV f 7KH PHDVXUHPHQWV RI WKH GULHG JURXS VKRZHG QR VWDWLVn WLFDOO\ VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH SUHOLPLQDU\ PHDVXUHPHQWV DQG WKH ILQDO PHDVXUHPHQWV 7KH DYHUDJH VKULQNDJH IRU ERWK WKH SKRWRFRS\ PHDVXUHPHQW DQG WKH GLUHFW PHDVXUHPHQW ZDV OHVV WKDQ b 7DEOH )LJXUHV f %RWK KHDWWUHDWHG JURXSV VKRZHG D VWDWLVWLFDOO\ VLJQLn ILFDQW GHFUHDVH LQ VL]H DW WKH b OHYHO ,Q WKH EXUQHG JURXS WKH ILEXODH GHFUHDVHG LQ DYHUDJH GLDPHWHU E\ DSSUR[n LPDWHO\ b ,Q WKH FUHPDWHG JURXS WKH ILEXODH GHFUHDVHG E\ WR b 7DEOHV DQG )LJXUHV f 7KH DPRXQW RI VKULQNDJH LQ WKH EXUQHG DQG FUHPDWHG ILEXODH ZDV ZLWKLQ WKH XSSHU SDUW RI WKH UDQJH DOUHDG\ UHSRUWHG LQ WKH OLWHUDWXUH 7KH DGYDQFHG DJH RI WKH VDPSOH SRSXODWLRQ PD\ EH D IDFWRU FRQWULEXWLQJ WR WKH DPRXQW RI VKULQNDJH 7KLV FDQ EH H[DPLQHG LQ IXWXUH VWXGLHV

PAGE 41

0,//,0(7(56 ),*85( ),*85( )LEXOD &URVVVHFWLRQDO 'LDPHWHUV f 3+272&23< O? ?O 3+7&3< A=? ',5(&7 0($685( 5HODWLYH &KDQJH LQ )LEXOD 'LDPHWHU /2:(5 b & / O??O $9(5$*( 9ƒ 833(5 b & /

PAGE 42

0LFURVWUXFWXUH 0HDVXUHPHQWV 7DEOHV )LJXUHV DQG f $V H[SODLQHG LQ WKH 0HWKRGV VHFWLRQ VHYHUDO W\SHV RI PLFURVWUXFWXUH SDUDPHWHUV ZHUH VWXGLHG 2VWHRQ GLDPHWHUV ZHUH PHDVXUHG RVWHRQ FRXQWV ZHUH WDNHQ ZLWKLQ GHILQHG DUHDV DQG SRURVLW\ ZDV HVWLPDWHG ,Q PHDVXUHPHQWV RI RVWHRQ GLDPHWHUV WKH DYHUDJH GLDn PHWHU IRU WKH FRQWURO JURXS ZDV f PLOOLPLFURQV 7KLV PHDVXUHPHQW ZDV FRQVLVWHQW ZLWK WKH RVWHRQ VL]H UDQJH UHSRUWHG E\ -RZVH\ >@ LQ KHU FRPSUHKHQVLYH ZRUN RQ WKH VWXG\ RI +DYHUVLDQ V\VWHPV 2VWHRQ GLDPHWHUV VKRZHG OLWWOH FKDQJH LQ VL]H ZKHQ ILEXODH ZHUH GULHG RU EXUQHG 7KH DYHUDJH VKULQNDJH LQ WKH GULHG JURXS ZDV b 7KH DYHUDJH VKULQNDJH LQ WKH EXUQHG JURXS ZDV b 7KH FKDQJH LQ VL]H ZDV VLJQLILFDQW DW WKH b OHYHO LQ EXUQHG ERQH EXW QRW LQ GULHG ERQH 7KH DYHUDJH RVWHRQ VKULQNDJH LQ FUHPDWHG ERQH ZDV KLJKO\ VLJQLn ILFDQW DW b 7DEOH )LJXUHV f 2VWHRQ FRXQWV ZHUH H[DPLQHG LQ WKH OLJKW RI WZR VHSDUDWH TXHVWLRQV )LUVW LV WKHUH D VLJQLILFDQW FKDQJH LQ WKH QXPEHU RI RVWHRQV SHU ILHOG EHWZHHQ H[SHULPHQWDO JURXSV DQG VHFRQG LV D VPDOOHU ILHOG VL]H DGHTXDWH DQG FRPSDUDEOH WR WKH IXOO ILHOG VL]H JHQHUDOO\ XVHG IRU RVWHRQ FRXQWV LQ DJH LQYHVWLJDWLRQV" 7KH FKDQJH LQ WKH QXPEHU RI RVWHRQV SHU ILHOG ZDV VWDWLVWLFDOO\ VLJQLILFDQW RQO\ LQ WKH FUHPDWHG JURXS 7KH

PAGE 43

0,&5216 ),*85( 2VWHRQ 'LDPHWHUV 0LFURUDGLRJUDSK 0HDVXUHPHQWV ),*85( 5HODWLYH &KDQJH LQ 2VWHRQ 'LDPHWHUV 9a$ b &/ O??O $9(5$*( 9=A b &/

PAGE 44

RVWHRQ FRXQWV LQ ERWK WKH VTXDUH JULG DQG WKH IXOO ILHOG ZHUH b JUHDWHU WKDQ WKH RULJLQDO FRXQW ,Q RWKHU ZRUGV ZLWKLQ WKH GHILQHG DUHD WKHUH ZHUH b PRUH RVWHRQV LQ WKH FUHPDWHG ERQH WKDQ LQ WKH FRQWURO ERQH 7KH b VLJQLILn FDQFH UDQJH IRU WKLV FRXQW H[WHQGHG IURP b WR b 7KLV VKULQNDJH SKHQRPHQRQ ZRXOG VHULRXVO\ HIIHFW DQ\ DWWHPSW WR DSSO\ .HUOH\nV PHWKRG IRU DJH GHWHUPLQDWLRQ >@ 7KH GULHG DQG EXUQHG JURXSV ZHUH LQWHUHVWLQJ LQ WKDW WKH QXPEHU RI RVWHRQV SHU DUHD GHFUHDVHG DQG WKH HIIHFW ZDV PRUH SURQRXQFHG LQ WKH JULG FRXQWV WKDQ WKH ILHOG FRXQWV ,W ZRXOG DSSHDU WKDW WKH RVWHRQV ZHUH HLWKHU VZHOOLQJ RU VSUHDGLQJ DSDUW GXULQJ GU\LQJ DQG EXUQLQJ 7KH RVWHRQ HQODUJHPHQW REVHUYHG E\ %UDGWPLOOHU DQG %XLNVWUD >@ ZRXOG VXSSRUW WKH LGHD WKDW WKHUH LV D WLPH GXULQJ ZKLFK WKH RVWHRQV VZHOO LQ VSLWH RI RYHUDOO ERQH VKULQNDJH ,Q WKLV SDUWLFXODU VDPSOH KRZHYHU DQ LQFUHDVH LQ RVWHRQ VL]H ZDV REVHUYHG LQ RQO\ D IHZ VHFWLRQV 7KH DYHUDJH HIIHFW ZDV DOZD\V VKULQNDJH 7KH HYLGHQFH WKHUHIRUH VXSSRUWV WKH DVVXPSWLRQ WKDW D VOLJKW VSUHDGLQJ RI RVWHRQV LV RFFXUULQJ UDWKHU WKDQ VZHOOLQJ 7DEOHV )LJXUHV f ,W LV QRW VXUSULVLQJ WKDW WKH JULG FRXQW UHIOHFWV WKH GHFUHDVH LQ QXPEHU RI RVWHRQV PRUH WKDQ WKH ILHOG FRXQW 7KH FRQFHQWUDWLRQ RI +DYHUVLDQ V\VWHPV WHQGV WR EH LQ WKH FHQWHU RI WKH ERQH DQG WKH JULG FRXQW LV PRUH D PHDVXUH RI WKH FHQWHU WKDQ LV WKH ZKROH ILHOG FRXQW

PAGE 45

),*85( ),*85( 2VWHRQ &RXQWV LQ &RPSOHWH &LUFXODU )LHOG >=a 6' >9?O $9(5$*( nƒ 2VWHRQ &RXQWV LQ 0HU] *ULG 6TXDUH )LHOG >=+ 6' O? ?O $9(5$*( 9ƒ 6'

PAGE 46

),*85( 5HODWLYH &KDQJH LQ 2VWHRQ &RXQWV > ),(/' &2817 >? n? *5,' &2817 &KDQJHV LQ ERQH SRURVLW\ DFFRPSDQLHG KHDW WUHDWPHQW 7KLV FDQ EH VHHQ LQ WKH SKRWRPLFURJUDSKV )LJXUHV 7KHUH ZDV D VLJQLILFDQW GHFUHDVH LQ ERQH DUHD DQG DQ LQn FUHDVH LQ YRLG VSDFH LH SRURVLW\ LQ EXUQHG DQG FUHPDWHG ERQH 7KHUH ZDV QR VLJQLILFDQW FKDQJH LQ GULHG ERQH 7KH SRURVLW\ RI EXUQHG ERQH FKDQJHG E\ QHDUO\ b DQG WKH SRURn VLW\ RI FUHPDWHG ERQH FKDQJHG E\ DOPRVW b 7DEOH )LJXUHV f +HDW UHODWHG FKDQJHV LQ ERQH SRURVLW\ VKRXOG E\ FRQVLn GHUHG ZKHQ H[DPLQLQJ ERQH IRU VLJQV RI SDWKRORJ\ ,Q DUFKDHRORJLFDO ERQH WKHUPDO HIIHFWV PD\ SRVVLEO\ EH PLVn WDNHQ IRU LQIHFWLRQ RU HQGRFULQH IDLOXUH

PAGE 47

),*85( ),*85( b %RQH $UHD 5HODWLYH $PRXQW RI %RQH :? 6' ,7;O $9(5$*( 7; 6' 5HODWLYH &KDQJH LQ 3RURVLW\ /2:(5 &/ 9? $9(5$*( 9; 833(5 &/

PAGE 48

7RRWK0DQGLEOH 5HVXOWV 9LVXDO 'HVFULSWLRQ 7KH PDQGLEOH VHFWLRQV KDG WKH VDPH JHQHUDO DSSHDUDQFH DV WKH ILEXOD VHFWLRQV ZKHQ EXUQHG DQG FUHPDWHG 7KH WRRWK HQDPHO ZDV WKH RQO\ SDUW ZKLFK DFWXDOO\ DSSHDUHG GLIIHUHQW DIWHU KHDW WUHDWPHQW 7KH HQDPHO GDUNHQHG LQWR D SHDUO\ JUD\ ZKHQ WKH ERQH DURXQG LW ZDV D FKDUUHG EODFN $V WKH ERQH WXUQHG ZKLWH ZLWK KLJKHU WHPSHUDWXUH WKH HQDPHO EHn FDPH D OLJKWHU JUD\ EXW GLG QRW EHFRPH ZKLWH $V WKH ERQH VKUDQN WKH HQDPHO IUHTXHQWO\ FUDFNHG DQG IHOO RII WKH WRRWK EUHDNLQJ RII YDU\LQJ DPRXQWV RI GHQWLQ ZLWK LW DQG XVXDOO\ OHDYLQJ D FRQHVKDSHG VWXE ,Q VSLWH RI H[WUHPH FDUH LQ KDQGOLQJ FURZQV UHPDLQHG RQ RQO\ RI WKH RULJLQDO WHHWK LQ WKH EXUQHG JURXS DQG RXW RI LQ WKH FUHPDWHG JURXS ,I WKH EXUQHG DQG FUHPDWHG WHHWK KDG EHHQ KDQGOHG FDVXDOO\ YHU\ IHZ LI DQ\ RI WKH FURZQV ZRXOG KDYH UHPDLQHG LQ SODFH 7RRWK 0HDVXUHPHQWV 7DEOHV )LJXUHV f 7KH FKDQJH LQ WRWDO WRRWK OHQJWK ZDV YHU\ VPDOO LQ WKH GULHG DQG EXUQHG WHHWK DQG ZDV VWDWLVWLFDOO\ VLJQLILFDQW RQO\ LQ WKH FUHPDWHG JURXS ZKHUH WKH WHHWK GHFUHDVHG LQ VL]H E\ DQ DYHUDJH RI b 7DEOHV )LJXUHV f

PAGE 49

7RRWK URRW VKULQNDJH ZDV VLJQLILFDQW LQ ERWK EXUQHG DQG FUHPDWHG WHHWK 7KH EXUQHG URRW GHFUHDVHG LQ VL]H E\ DQ DYHUDJH RI b WKH FUHPDWHG URRW E\ b 7DEOHV )LJXUHV f 7RRWK ZLGWK VKULQNDJH ZDV VLJQLILFDQW LQ DOO WKUHH JURXSV 7KH GULHG JURXS VKRZHG D b DYHUDJH VKULQNDJH WKH EXUQHG JURXS b VKULQNDJH DQG WKH FUHPDWHG JURXS b 7DEOHV )LJXUHV f 7KHVH YDOXHV ZHUH VPDOO FRPSDUHG WR WKH b URRW VKULQNDJH UHSRUWHG E\ %HOO >@ +H EXUQHG H[WUDFWHG WHHWK DW GHJUHHV & +LV WHPSHUDWXUHV ZHUH FRPSDUDEOH WR WKRVH RI WKH *URXS = WHHWK EXW WKH\ ZHUH EXUQHG DIWHU H[n WUDFWLRQ UDWKHU WKDQ LQ WKH ERQH $OVR WKH DJHV RI WKH WRRWK GRQRUV ZHUH QRW JLYHQ (LWKHU RI WKHVH IDFWRUV PLJKW DFFRXQW IRU WKH GLIIHUHQFHV LQ RXU REVHUYDWLRQV *UHDWHU VKULQNDJH FDQ EH H[SHFWHG RI \RXQJHU OHVV PLQHUDOL]HG WRRWK URRWV

PAGE 50

0,//,0(7(56 ),*85( ),*85( 7RWDO 7RRWK /HQJWK $YHUDJH 0HDVXUHPHQWV LQ PP %()25( 352&('85( O??O $)7(5 352&('85( 5HODWLYH &KDQJH LQ 7RWDO /HQJWK DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 b &/ ,9? $9(5$*( 9; 833(5 b &/

PAGE 51

0,//,0(7(56 ),*85( 7RRWK 5RRW /HQJWK $YHUDJH 0HDVXUHPHQWV LQ PP %()25( 352&('85( I?;, $)7(5 352&('85( ),*85( 5HODWLYH &KDQJH LQ 5RRW /HQJWK DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 b &/ I?;O $9(5$*( <=? 833(5 b &/

PAGE 52

0,//,0(7(56 ),*85( ),*85( 7RRWK :LGWK $YHUDJH 0HDVXUHPHQWV LQ PP ,n ? %()25( 352&('85( I?;, $)7(5 352&('85( 5HODWLYH &KDQJH LQ 7RRWK :LGWK DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 & / O??O $9(5$*( ?ƒ 833(5 7 &/

PAGE 53

0DQGLEXODU %RQH 0HDVXUHPHQWV 7DEOHV )LJXUHV f 7KH ILUVW PHDVXUHPHQW WRWDO PDQGLEXODU KHLJKW LQn FOXGHG WKH WRRWK FURZQ DV ZHOO DV WKH PDQGLEXODU ERQH 7KH DYHUDJH VKULQNDJH RI WKH GULHG DQG EXUQHG JURXSV ZDV VOLJKWO\ RYHU b 7KH FUHPDWHG VDPSOHV ZHUH UHGXFHG LQ WRWDO KHLJKW E\ b 7DEOHV )LJXUHV f $V H[SHFWHG WKH PDQGLEXODU KHLJKW VKULQNDJH ZDV ODUJHU WKDQ WKH WRWDO PDQGLEXODU VKULQNDJH ZKLFK LQFOXGHG WKH WRRWK FURZQ 7KH GULHG DQG EXUQHG JURXSV ZHUH UHGXFHG E\ b DQG WKH KHLJKW RI WKH FUHPDWHG VDPSOHV ZDV UHGXFHG E\ b 7DEOHV )LJXUHV f 7KH PDQGLEXODU ZLGWK ODELROLQJXDO ZLGWKf GHFUHDVHG DQ DYHUDJH RI b LQ ERWK WKH GULHG DQG WKH EXUQHG JURXSV EXW WKH UDQJH RI YDOXHV ZDV JUHDWHU LQ WKH EXUQHG JURXS 7KH ZLGWK RI WKH FUHPDWHG VDPSOHV ZDV UHGXFHG E\ DQ DYHUDJH RI b 7DEOHV )LJXUHV f 7KH DYHUDJH PDQGLEXODU ERQH VKULQNDJH ZDV VOLJKWO\ OHVV WKDQ WKH DYHUDJH ILEXOD VKULQNDJH LQ WKLV VDPSOH )LJXUH f 7KH UDQJHV RYHUODS RQ DOO RI WKH ERQH VKULQNDJH HVWLPDWHV 7KH VOLJKW GLIIHUHQFHV FRXOG EH DWWULEXWHG WR WKH GLIIHUHQFHV LQ GHQVLW\ DQG LQIUDVWUXFWXUH RI WKH WZR ERQHV 'HQVLW\ GLIIHUHQFHV DORQH FRXOG EH DWWULEXWHG WR WKH DJH VWUXFWXUH RI WKH VDPSOH SRSXODWLRQ

PAGE 54

0,//,0(7(56 ),*85( 7RWDO 0DQGLEXODU +HLJKW LQFOXGLQJ 7RRWK &URZQf $YHUDJH 0HDVXUHPHQWV LQ PP %()25( 352&('85( Ua?@ $)7(5 352&('85( ),*85( 5HODWLYH &KDQJH LQ 7RWDO 0DQGLEXODU +HLJKW DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 &/ >?? $9(5$*( 833(5 &/

PAGE 55

0,//,0(7(56 ),*85( 0DQGLEXODU +HLJKW $YHUDJH 0HDVXUHPHQWV L %()25( 352&('85( )?@ $)7(5 352&('85( ),*85( 5HODWLYH &KDQJH LQ 0DQGLEXODU +HLJKW DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 b &/ O? ?O $9(5$*( 9$ 833(5 b & /

PAGE 56

0,//,0(7(36 ),*85( 0DQGLEXODU /DELROLQJXDO :LGWK $YHUDJH 0HDVXUHPHQWV LQ PP ? %()25( 352&('85( ,9?@ $)7(5 352&('85( ),*85( 5HODWLYH &KDQJH LQ 0DQGLEXODU /DELROLQJXDO :LGWK DIWHU (DFK ([SHULPHQWDO 3URFHGXUH /2:(5 b &/ _?? $9(5$*( 9ƒ 833(5 b &/

PAGE 57

6800$5< $1' &21&/86,216 7KH ILUVW K\SRWKHVLV VWDWHG WKDW SRVWPRUWHP GHK\GUDn WLRQ DQG S\URO\VLV KDYH PHDVXUDEOH HIIHFWV RQ WKH VWUXFWXUH RI ERQH DQG WHHWK 7KH K\SRWKHVLV ZDV DFFHSWHG ZLWK VRPH TXDOLILFDWLRQV ,Q WKLV VWXG\ HLJKW W\SHV RI OLQHDU PHDn VXUHPHQWV FOHDUO\ GHPRQVWUDWHG WKDW WKH PDJQLWXGH RI FKDQJH UHVXOWLQJ IURP KLJKWHPSHUDWXUH EXUQLQJ &f LV GLIIHUn HQW IURP WKH PDJQLWXGH RI FKDQJH UHVXOWLQJ IURP HLWKHU ORZ WHPSHUDWXUH EXUQLQJ &f RU VLPSOH GU\LQJ 7KLV SKHQRPHQRQ LV WKH HYLGHQFH RI D SKDVH FKDQJH IXVLRQ RU PHOWLQJf ZKLFK WDNHV SODFH LQ K\GUR[\DSDWLWH FU\VWDOV EHWZHHQ WKH WHPSHUDWXUHV RI DQG GHJUHHV & >@ 7KH FKDQJHV LQ VL]H UHVXOWLQJ IURP GU\LQJ DQG & EXUQLQJ ZHUH PLQRU 2QO\ WKH PDQGLEXODU PHDVXUHPHQWV DQG WKH WRRWK ZLGWK ZHUH VWDWLVWLFDOO\ VLJQLILFDQW LQ WKH GULHG JURXS $OO H[FHSW WKH WRRWK OHQJWK ZHUH VWDWLVWLFDOO\ VLJQLILFDQW LQ WKH EXUQHG JURXS 7KH GULHG JURXS DQG WKH EXUQHG JURXS ZHUH YLUWXDOO\ LQGLVWLQJXLVKDEOH IURP HDFK RWKHU LQ WKH PDQGLEXODU PHDVXUHPHQWV RVWHRQ GLDPHWHUV DQG WRRWK OHQJWK ),*85( f ,W DSSHDUV WKDW WKHUH LV OLWWOH GLIIHUHQFH EHWZHHQ VLPSOH ZDWHU ORVV DQG SDUWLDO UHGXFWLRQ RI WKH RUJDQLF FRPSRQHQW RI ERQH E\ EXUQLQJ 7KH RUJDQLF FRPSRQHQW KDV EHHQ UHSRUWHG WR FRPSULVH D FRQVWDQW b RI

PAGE 58

WKH YROXPH RI PDWXUH ERQH >@ DQG LW LV REYLRXV WKDW ORVV RI WKH RUJDQLF FRPSRQHQW DIIHFWV WKH ERQH YROXPH >@ +RZHYHU LW LV VKRZQ KHUH WKDW WKH ORVV RI WKH RUJDQLF FRPSRQHQW KDV OLWWOH HIIHFW RQ OLQHDU GLPHQVLRQV ,W LV WKH FKDQJHV LQ WKH PLQHUDO FRPSRQHQW RI ERQH WKDW PDNH WKH FULWLFDO GLIIHUHQFH LQ OLQHDU GLPHQVLRQV RI ERQH 7KH ODFN RI XQLIRUPLW\ EHWZHHQ W\SHV RI PHDVXUHPHQWV ZLGWK OHQJWK GLDPHWHU HWFf LV SUREDEO\ GXH WR XOWUDn VWUXFWXUH GLIIHUHQFHV ),*85( f +HUUPDQQ >@ VXJJHVWV WKDW WKH UDWLR RI FDQFHOORXV WR FRPSDFW ERQH UHODWLYH WR WKH SODQH RI PHDVXUHPHQW GLFWDWHV WKH DPRXQW RI VKULQNDJH SRVVLEOH DW D JLYHQ WHPSHUDWXUH 7KH UHVXOWV RI WKLV VWXG\ WHQG WR VXSSRUW +HUUPDQQnV DVVXPSWLRQ :LWK WKLV HYLGHQFH LW VHHPV LPSUDFWLFDO WR VHDUFK IRU D VWDQGDUG FRUUHFWLRQ IDFWRU IRU EXUQHG ERQH XQOHVV D PLQHUDO GHQVLW\ IDFWRU FDQ EH LQFOXGHG DV ZHOO DV D WHPSHUDWXUH IDFWRU $ FRUUHFWLRQ IDFWRU IRU GHQWLQ DOVR VHHPV LPSUDFWLFDO EHFDXVH RI WKH ZLGH UDQJH RI PLQHUDOL]DWLRQ SRVVLEOH DW GLIIHUHQW DJHV 7KH VHFRQG K\SRWKHVLV VWDWHG WKDW WKH FKDQJH LQ ERQH LV GLIIHUHQW IURP WKDW LQ WHHWK 7KLV ZDV DOVR DFFHSWHG ZLWK TXDOLILFDWLRQV (QDPHO DQG GHQWLQ EHKDYH GLIIHUHQWO\ ZKHQ EXUQHG RU FUHPDWHG 7KH PLQHUDO FRQWHQW RI HQDPHO LV JUHDWHU WKDQ GHQWLQ 7KH ILQDO FRPSDULVRQ ZDV UHDOO\ EHWZHHQ HQDPHO GHQWLQ DQG ERQH :KHQ WKH HQWLUH WRRWK ZDV PHDVXUHG WKH WRRWK DSSHDUHG WR VKULQN RQO\ DERXW KDOI WKH DPRXQW WKDW ERQH VKULQNV ),*85( f :KHQ WKH HQDPHO ZDV

PAGE 59

H[FOXGHG IURP WKH PHDVXUHPHQW DQG WKH VHYHUDO GLIIHUHQW ERQH PHDVXUHPHQWV ZHUH DYHUDJHG LW DSSHDUHG WKDW WKH GHQn WLQ EHKDYHG YHU\ PXFK OLNH ERQH ),*85( f 7KH DJH UDQJH RI WKH VDPSOH VKRXOG EH FRQVLGHUHG LQ DSSO\LQJ WKLV ERQHWRRWK FRPSDULVRQ $JH XQGRXEWHGO\ SOD\V DQ LPSRUWDQW UROH LQ WKDW WKH ERQHV RI WKH HOGHUO\ WHQG WR EHFRPH OHVV PLQHUDOL]HG ZKLOH WKHLU WHHWK EHFRPH PRUH PLQHUDOL]HG $ VDPSOH RI ODUJHU DJH UDQJH ZRXOG EH XVHIXO WR VWXG\ WKLV UDWLR 7KH GLYHUVLW\ RI H[SHULPHQWV DQG FRQFOXVLRQV IRXQG LQ WKH OLWHUDWXUH LV GXH LQ SDUW WR D ODFN RI EDVLF XQGHUn VWDQGLQJ RI WKH DFWXDO SK\VLFDO FKDQJHV WDNLQJ SODFH DV FDOFLILHG WLVVXH EXUQV 7KH IROORZLQJ LV D VWHSE\VWHS GHVFULSWLRQ RI KHDWUHODWHG FKDQJHV 7KH LQIRUPDWLRQ LV D V\QWKHVLV RI LQIRUPDWLRQ IRXQG LQ WKH OLWHUDWXUH UHYLHZ EDVLF NQRZOHGJH DQG REVHUYDWLRQV PDGH LQ WKH FRXUVH RI WKLV ZRUN 7KH PDLQ VRXUFH LV 6KLSPDQ HW DO >@ f 'U\LQJ )UHH ZDWHU PROHFXOHV HVFDSH IURP ERQH VXUn IDFHV LQ GLUHFW UHODWLRQ WR WKH VXUURXQGLQJ KXPLGLW\ f & 5DSLG GU\LQJ +\GUR[\O ERQGV DUH EURNHQ LQ K\GUR[\DSDWLWH FU\VWDOV DQG WKH ZDWHU PROHFXOHV DGKHUn LQJ WR WKH VXUIDFH RI WKH FU\VWDOV DUH UHPRYHG :DWHU LV UHOHDVHG IURP WKH RUJDQLF PDWHULDO FROODJHQ DQG JURXQG VXEVWDQFHf 7KH ORVV RI ZDWHU IURP DOO DUHDV FDXVHV H[WHQVLYH FUDFNLQJ FKHFNLQJ DQG ZDUSLQJ > @

PAGE 60

f & 'HFRPSRVLWLRQ RI WKH RUJDQLF FRPSRQHQW 9DULDELOLW\ LQ KXH FKURPD DQG YDOXH LQFUHDVHV >@ 0RVW RU DOO RI WKH RUJDQLF PDWHULDO LQ WKH ERQH LV EXUQHG RII LQ WKLV UDQJH f & ,QFUHDVH LQ K\GUR[\DSDWLWH FU\VWDO VL]H 7KHVH FKDQJHV KDYH EHHQ LQWHUSUHWHG DV LQGLFDWLQJ FRQYHUVLRQ RI K\GUR[\DSDWLWH LQWR WULFDOFLXP SKRVSKDWH EXW 6KLSPDQ HW DO >@ VXJJHVWV WKDW ODUJHU FU\VWDOV RI K\GUR[\DSDWLWH DUH IRUPHG LQVWHDG 7KLV WHPSHUDn WXUH LV ORZHU WKDQ WKH UHSRUWHG PHOWLQJ SRLQW RI SXUH JHRORJLFDO DSDWLWH &f >@ 6KLSPDQ HW DO H[SODLQ WKDW WKH ORZHU WHPSHUDWXUH PD\ EH FDXVHG E\ WKH SUHVHQFH RI RWKHU VXEVWDQFHV WKDW PD\ DFW DV D IOX[ IRU K\GUR[\DSDWLWH f & 3KDVH FKDQJH )XVLRQ RU PHOWLQJ RI WKH K\GUR[\DSDWLWH FU\VWDOV RFFXUV >@ ,Q OLJKW RI WKH LQIRUPDWLRQ QRZ DYDLODEOH VHYHUDO UHFRPPHQGDWLRQV FDQ EH RIIHUHG f 'ULHG DQG EXUQHG ERQH DQG WHHWK FDQ EH DQDO\]HG DV LI WKH\ ZHUH IUHVK LH DJLQJ WHFKQLTXHV DQG VWDWXUH HVWLPDWHV FDQ EH DSSOLHG +RZHYHU D ZLGHU UDQJH RI FRQILGHQFH PXVW EH UHSRUWHG f ,I LW LV VXVSHFWHG WKDW WKH WLVVXH UHDFKHG GHJUHHV & RU PRUH WKH UDQJH RI FRQILGHQFH VKRXOG EH LQFUHDVHG JUHDWO\ f ,I WKH WLVVXH KDV UHDFKHG WKH SRLQW RI IXOO FUHPDWLRQ LW PXVW EH DQDO\]HG E\ D GLIIHUHQW VHW RI VWDQGDUGV *XLGHOLQHV

PAGE 61

IRU WKRVH VWDQGDUGV DUH JLYHQ LQ WKH WDEOHV DQG ILJXUHV SURYLGHG LQ WKLV WH[W f 6LQFH WKH DPRXQW RI RXWHU FRUWH[ UHPDLQLQJ DIWHU FUHPDWLRQ LV YDULDEOH .HUOH\nV PHWKRG IRU GHWHUPLQDWLRQ RI DJH DW GHDWK VKRXOG QRW EH XVHG RQ FUHPDWHG PDWHULDO XQWLO D ODUJHU DJH UDQJH FDQ EH VWXn GLHG 7KHUH LV PRUH LQIRUPDWLRQ WR EH JDLQHG IURP WKLV VDPSOH $JH DQG VH[ GLIIHUHQFHV GR VHHP WR H[LVW DQG VKRXOG EH GHILQHG 7RRWK PLFURVWUXFWXUH FDQ SURYLGH LQIRUn PDWLRQ ZKHQ H[DPLQHG E\ PLFURUDGLRJUDSK EXW LW ZLOO EH QHFHVVDU\ WR GHYRWH WLPH WR WKH GHYHORSPHQW RI D UHOLDEOH WHFKQLTXH IRU WKLQVHFWLRQLQJ EXUQHG DQG FUHPDWHG WHHWK $JH HVWLPDWHV FDQ EH DWWHPSWHG RQ FUHPDWHG ERQH XVLQJ WKH VPDOOHU VTXDUH ILHOG LQVWHDG RI WKH IXOO PLFURVFRSH ILHOG $FWXDO GHQVLW\ PHDVXUHPHQWV FRXOG EH WDNHQ DQG FRPSDUHG ZLWK WKH DPRXQW RI VKULQNDJH

PAGE 62

),*85( ),*85( &RPSDULVRQ RI %RQH 6KULQNDJH %RWK *URVV 0HDVXUHPHQWV DQG 2VWHRQ 0HDVXUHPHQWV O9O '5,(' O??O %851(' 8$ &5(0$7(' &RPSDULVRQ RI 7RRWK 6KULQNDJH '5,(' O??O %851(' 9ƒ &5(0$7('

PAGE 63

),*85( ),*85( 6XPPDU\ RI *URVV 0HDVXUHPHQW $YHUDJHV >= '5,(' >9?@ %851(' 9ƒ &5(0$7(' &RPSDULVRQ RI 'HQWLQ DQG %RQH 6KULQNDJH > '5,(' O??O %851(' == &5(0$7('

PAGE 64

$33(1',; $ 6$03/( '(6&5,37,21 6DPSOH 1XPEHU 0RUJXH 1XPEHU 6H[ '2% '2' $JH &DXVH RI 'HDWK % (0 0 FDUGLDF DUUHVW % (0 ) FDQFHU SDQFUHDV % (0 ) FDQFHU OXQJ % (0 0 FDQFHU OXQJ %OO (0 0 FDQFHU OXQJ % (0 ) FDQFHU UHVSLUn DWRU\ IDLOXUH % (0 ) FDQFHU PHWDn VWDWLF % (0 0 VHL]XUH PHQn WDOO\ UHWDUGHG % (0 ) FDQFHU % (0 0 UHIUDFWRU\ DQHPLD % (0 0 KHDUW DWWDFN % (0 0 P\RFDUGLDO LQIDUFWLRQ % (0 0 QRW JLYHQ % (0 ) VWURNH UHQDO IDLOXUH % (0 0 FDQFHU OXQJ % (0 ) FDUGLDF DUUHVW % (0 0 P\RFDUGLDO LQIDUFWLRQ % (0 ) HSLOHSV\ % (0 ) FDUGLRUHVS DUUHVW &5$f % (0 ) UHVS IDLOXUH *, EOHHGLQJ % (0 0 QRW JLYHQ % (0 ) FDUGLDF DUUHVW % 8) ) EUDLQ VWHP LQn IDUFWLRQ

PAGE 65

6DPSOH 1XPEHU 0RUJXH 1XPEHU 6H[ '2% '2' $JH &DXVH RI 'HDWK % 8) ) FDQFHU OXQJ % 8) ) VWURNH GHK\n GUDWLRQ VHQLOLW\ % (0 ) &9$ JODQXORPD % (0 ) FDQFHU % (0 ) FDUGLDF DUUHVW UHQDO IDLOXUH % (0 0 FDUGLDF DUUHVW UHQDO IDLOXUH % (0 0 UHFXUUHQW SQHXPRQLD % (0 ) P\RFDUG LQIDUF FKUREVSXOGLV % (0 ) FHUHEURYDVFXODU DFFLGHQW % (0 0 EUDLQ WXPRU % (0 0 FDQFHU % 8) ) &5$ RYDULDQ FDQFHU % 8) ) P\RFDUG LQIDUF FKUREVSXOGLV % 8) 0 P\RFDUGLDO LQIDUFWLRQ &5$ % 8) 0 FDUGLDF DUUHVW P\ORILEURVLV % 8) ) FHUHEURYDVFXODU DFFLGHQW % (0 0 SXOPRQDU\ DUUHVW O\PSKRPD % (0 ) SQHXPRQLD % (0 ) FDQFHU OLYHU % (0 ) FKURQLF REVWU SXOPRQDU\ GLV % (0 ) ROG DJH % (0 0 FDQFHU NLGQH\ IDLOXUH % (0 ) &9$ % (0 0 KHDUW GLVHDVH

PAGE 66

$33(1',; % )50:. )50:. LV DQ H[DPSOH RI WKH /RWXV VSUHDGVKHHW XVHG IRU PLFURVWUXFWXUH PHDVXUHPHQWV 7KH XQVHHQ IRUPXODH LQ WKH VXPPDU\ FHOOV FDUULHG RXW FRPSXWDWLRQV DXWRPDWLFDOO\ DV WKH GDWD ZHUH HQWHUHG IURP WKH PLFURVFRSH (DFK FRPn SOHWHG VSUHDGVKHHW ZDV VDYHG DQG SULQWHG WKHQ D FOHDQ VKHHW ZDV FDOOHG XS IRU WKH QH[W WKLQ VHFWLRQ

PAGE 67

$33(1',; % )50:. ),%8/$ 6$03/( +80%(5 '$7( $'-8670(17 )$&725 XQLWV PP FRUUHFWLRQ IRU JULG VL]Hf 6$03/( '(6&5,37,21 VHFWLRQ WKLFNQHVV LQ PLFURQV 267(21 ',$0(7(5623$&,7< JUHDWHVW OHDVW VFDOHr PDUN RQHf FDOFLILHG VHFWLRQ &6f f f PLFURUDGLRJUDSK 05f f f &21',7,21 f f PDUN DQ\f SXEOLFDWLRQ TXDOLW\ f f FOHDU HDV\ WR UHDG f f GDUN KDUG WR UHDG f f &200(17 f f 9,6,%/( 6758&785(6 f f PDUN DQ\f RVWHRQV f f RVWHRQ IUDJPHQWV f f RVWHRF\WH ODFXQDH f f ]RQDO RVWHRQV f GHQVLW\ YDULDWLRQVf f ),(/' &28176 $UHD 2VWHRQV 0HU]f JULGf )UDJn PHQWV 2VWHRQV ILHOGf )UDJn PHQWV f f f f f B ,, $9* 67' ,,, 9$5 XQLWVf ,9 $9* 67' 9$5 UDGLROXFHQW DYHUDJH UDGLRSDTXH b %21( 7,668( b 92,' 63$&( SRURVLW\f b b > $9(5$*( 267(21 67$1'$5' ',$0(7(5 PLFURQV '(9,$7,21 PLFURQV 9$5,$1&( PLFURQV

PAGE 68

$33(1',; & 7$%/(6 2) 5(68/76 7$%/(6 'DWD DQG 6WDWLVLFV 7KHVH WDEOHV SURn YLGH WKH UHIHUHQFH PDWHULDO IRU WKH 5HVXOWV DQG 'LVFXVVLRQ (DFK WDEOH LV WZR SDJHV ORQJ ZLWK WKH SDJH GLYLVLRQ EHWZHHQ WKH PHDVXUHPHQWV DQG WKH VWDWLVWLFV

PAGE 69

7$%/( *URVV )LEXOD 0HDVXUHPHQWV &RQWURO *URXS :f $YHUDJH &URVV6HFWLRQDO 'LDPHWHUV LQ 0LOOLPHWHUV *5266 ),%8/$ 0($685(0(176 PPf ),/(1$0( ),%8/$: $9(5$*( &52666(&7,21$/ ',$0(7(5f &21752/ *5283 35(/,0 ;(52;$f ),1$/ ;(52;%f ',5(&7 0($685(&f /2*%f /2*$f /2*&f /2*$f %: %: %: %: %: %: %: %: %: %: %: %: %: %: %: % : %: %: % : %: %: % : %: %: %: %: %: % : %: %: %: % : %: %: % : %: % : % : %: % : %: %: %: %: %: %:

PAGE 70

7$%/( f§FRQWLQXHG *URVV )LEXOD 0HDVXUHPHQWV &RQWURO *URXS :f 6WDWLVWLFV 6XPPDU\ *5266 ),%8/$ 0($685(0(176 QXQf ),/(1$0( ),%8/$: $9(5$*( &52666(&7,21$/ ',$0(7(5f &21752/ 35(/,0 ),1$/ ',5(&7 /2* %f /2*&f *5283 ;(52;$f ;(52;%f 0($685(&f /2*$f /2*$f 1 $9(5$*( f 67' '(9 67' (55 W7(67 6DPSOH WYDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO Q V QV $YHUDJH DQWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b VKULQNDJH UDQJH IURP b b WR b b &+,648$5( 7(67 $9*67' IRU QRUPDOF\ $9* $9*67' &203$5,621 2) 35(/,0 ;(52; t ),1$/ ;(52; EV ([SHFWHG 'LI 6T 6XP([SHFWHG ,) 6XPH[SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 7RWDO &203$5,621 2) 35(/,0 ;(52; t ',5(&7 0($685(0(17 2EV ([SHFWHG 'LI 6T 6XP([SHFWHG ,) 6XPH[SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 7RWDO &21&/86,21 7KHUH LV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH UHVXOWV REWDLQHG E\ [HURJUDSKLF SURFHVV DQG WKH UHVXOWV REWDLQHG E\ GLUHFW PHDVXUHPHQW

PAGE 71

7$%/( *URVV )LEXOD 0HDVXUHPHQWV 'ULHG *URXS ;f $YHUDJH &URVV6HFWLRQDO 'LDPHWHUV LQ 0LOOLPHWHUV *5266 ),%8/$ 0($685(0(176 PPf $9(5$*( &52666(&7,21$/ ',$0(7(5f ),/(1$0( ),%8/$ '5,(' *5283 35(/,0 ;(52;$ ),1$/ ;(52;%f ',5(&7 0($685(&f /2* %f /2*$f /2*&f /2*$f %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; %; % ; %; %; %; % ; %; %; %; %; %; %; %; %; %; %;

PAGE 72

7$%/( f§FRQWLQXHG *URVV )LEXOD 0HDVXUHPHQWV 'ULHG *URXS ;f 6WDWLVWLFV 6XPPDU\ *5266 ),%8/$ 0($685(0(176 PPf $9(5$*( &52666(&7,21$/ ',$0(7(5f ),/(1$0( ),%8/$; '5,(' 35(/,0 ),1$/ ',5(&7 /2* %f /2*&f *5283 ;(52;$ ;(52;%f 0($685(&f /2*$f /2*$f 1 $9(5$*( ‘ 67' '(9 67' (55 W7(67 6DPSOH WYDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO QV QV $YHUDJH DQWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( f f f f R L b b VKULQNDJH UDQJH IURP b b WR b b &+,648$5( 7(67 IRU QRUPDOF\ $9*67' $9* $9*267' &203$5,621 2) 35(/,0 ;(52; t ),1$/ ;(52; 2EV([SHFWHG 'LI 6T 6XP([SHFWHG 7RWDO &203$5,621 2) 35(/,0 ;(52; ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO t ',5(&7 0($685( 2EV([SHFWHG 'LI 6T 6XP([SHFWHG 7RWDO ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 7KH GLIIHUHQFHV LQ VL]H EHWZHHQ ZHW DQG GULHG ILEXODH DUH QRW VWDWLVWLFDOO\ VLJQLILFDQW 7KH SKRWRFRS\ PHDVXUHPHQWV DUH QRUPDOO\ GLVWULEXWHG EXW WKH GLUHFW PHDVXUHPHQWV DUH QRW

PAGE 73

7$%/( *URVV )LEXOD 0HDVXUHPHQWV %XUQHG *URXS
PAGE 74

7$%/( f§FRQWLQXHG *URVV )LEXOD 0HDVXUHPHQWV %XUQHG *URXS
PAGE 75

7$%/( *URVV )LEXOD 0HDVXUHPHQWV &UHPDWHG *URXS =f $YHUDJH &URVV6HFWLRQDO 'LDPHWHUV LQ 0LOOLPHWHUV *5266 ),%8/$ 0($685(0(176 $9(5$*( &52666(&7,21$/ PPf ',$0(7(5f ),/(1$0( ),%8/$= &5(0$7( *5283 35(/,0 ;(52;$f ),1$/ ;(52;%f ',5(&7 0($685(&f /2* %f /2*$f /2*&f /2*$f %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= %= % = %= %= %= %= %= %= % = %= %= %= %= %= %= %=

PAGE 76

7$%/( f§FRQWLQXHG *URVV )LEXOD 0HDVXUHPHQWV &UHPDWHG *URXS =f 6WDWLVWLFV 6XPPDU\ *5266 ),%8/$ 0($685(0(176 PPf ),/(1$0( ),%8/$= $9(5$*( &5266 f6(&7,21$/ ',$0(7(5f &5(0$7( 35(/,0 ),1$/ ',5(&7 /2*%f /2*&f *5283 ;(52;$f ;(52;%f 0($685(&f /2*$f /2*$f 1 $9(5$*( 67' '(9 67' (55 W7(67 6DPSOH WYDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH DQWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b VKULQNDJH UDQJH IURP WR b b b b &+,648$5( 7(67 IRU QRUPDOF\ $9*67' $9* $9*67' &203$5,621 2) 35(/,0 2EV([SHFWHG 'LI 7RWDO &203$5,621 2) 35(/,0 ;(52; 2E6 ([SHFWHG 'LI 6T 7RWDO ;(52; t ),1$/ ;(52; 6T 6XP([SHFWHG ,) 6XPH[SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO t ',5(&7 0($685( !XP([SHFWHG ,) 6XPH[SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 6KULQNDJH LV VLJQLILFDQW DW WKH b OHYHO LQ FUHPDWHG ERQH 7KH FKLVTXDUH WHVWV DUH GLIIHUHQW EHWZHHQ WKH SKRWRFRS\ DQG GLUHFW PHDVXUHPHQWV EXW WKH QXPEHUV DUH FORVH RWKHUZLVH

PAGE 77

7$%/( $YHUDJH 2VWHRQ 'LDPHWHUV LQ 0LFURQV $9(5$*( 267(21 ',$0(7(5 LQ PLFURQVf :+2/( 6$03/(f ),/(1$0( ',$0(7(5 ,' $*( 6(; *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2*;f /2*:f /2*
PAGE 78

7$%/( f§FRQWLQXHG $YHUDJH 2VWHRQ 'LDPHWHUV 6WDWLVWLFV 6XPPDU\ $9(5$*( 267(21 ',$0(7(5 LQ PLFURQVf ),/(1$0( ',$0(7(5 *5283 : *5283 ; &RQWURO 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2* ;f /2*:f /2*
PAGE 79

7$%/( 1XPEHU RI 2VWHRQV SHU )LHOG DW ; 180%(5 2) 267(216 3(5 ),(/' $7 ,22; ),/(1$0( ),(/'&7 ,' $*( 6(; *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2* :f /2*;f /2*:f /2*:f f§/2*
PAGE 80

7$%/( f§FRQWLQXHG 1XPEHU RI 2VWHRQV SHU )LHOG DW ; 6WDWLVWLFV 6XPPDU\ 180%(5 2) 267(216 3(5 ),(/' $7 ; ),/(1$0( ),(/'&7 *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2*:f /2*:f /2*;f /2*
PAGE 81

7$%/( 1XPEHU RI 2VWHRQV SHU *ULG DW ; 180%(5 2) 267(216 3(5 *5,' $7 ; ),/(1$0( *5,'&7 ,' $*( 6(; *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2* :f /2*;f /2*:f /2*:f f§/2*
PAGE 82

7$%/( f§FRQWLQXHG 1XPEHU RI 2VWHRQV SHU *ULG DW ; 6WDWLVWLFV 6XPPDU\ 180%(5 2) 267(216 3(5 *5,' $7 ; 67$7,67,&6 ),/(1$0( *5,'&7 *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2*:f /2*:f /2*:f /2*;f /2*
PAGE 83

7$%/( b %RQH 7LVVXH E\ &RXQW RQ 0HU] *ULG b %21( 7,668( %< &2817 21 0(5= *5,' KLWVf )250$7(' $6 3(5&(17$*(6f ),/(1$0( 0(5=&7 DQG SRUZNL ,' $*( 6(; *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2* ;f /2* 9Lf /2*
PAGE 84

7$%/( f§FRQWLQXHG b %RQH 7LVVXH E\ &RXQW RQ 0HU] *ULG 6WDWLVWLFV 6XPPDU\ b %21( 7,668( %< &2817 21 0(5= *5,' KLWVf ),/(1$0( 0(5=&7 VVVVVJVVVJVVVJ *5283 : &RQWURO *5283 ; 'ULHG *5283 < %XUQHG *5283 = &UHPDWHG /2* ;f /2*:f f /2*
PAGE 85

7$%/( &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV 'ULHG *RXS $ &203$5,621 2) 7227+ 0($685(0(176 $*(0$7&+(' :,7+ 27+(5 *52836f PPf ),/(1$0( 7((7+ ; '5,(' *5283 35(/,0,1$5< WRRWK URRW OHQJWK OHQJWK ;5$< WRRWK ZLGWK ),1$/ ;5$< WRRWK URRW WRRWK OHQJWK OHQJWK ZLGWK /2* &+$1*( ,1 WRRWK URRW OHQJWK OHQJWK 6,=( WRRWK ZLGWK %D; %; %; %; %; %; %; %; %; %; %; %; %D; %; %; %; %D; % ; %; %D; %; %; % ; % ; %D; %D; %; %; %D; %D; %; %D;

PAGE 86

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV 'ULHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 7227+ 0($685(0(176 PPf ),/(1$0( 7((7+; 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( '5,(' *5283 WRRWK OHQJWK URRW OHQJWK WRRWK WRRWK ZLGWK OHQJWK URRW WRRWK OHQJWK ZLGWK WRRWK OHQJWK URRW OHQJWK WRRWK ZLGWK 1 $9* 67' 67' (5 W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b b VKULQNDJH UDQJH IURP b b b WR b b b &+,648$5( 7HVW IRU QRUPDOF\ $9*67' $9* $9*67(! 7227+ /(1*7+ 2EV ([SW 'LI6T 7RWDO 5227 /(1*7+ 2EV ([SW 'LI6T 7RWDO 7227+ :,'7+ 2EV ([SW 'LI6T 7RWDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 7KHUH VHHPV WR EH D VLJQLILFDQW PHDVXUHPHQW GLIIHUHQFH EHWZHHQ ZHW FRQWUROf DQG GULHG WHHWK 7KH PHDVXUHPHQWV DUH QRUPDOO\ GLVWULEXWHG LQ WKH ZLGWK PHDVXUHPHQW EXW QRW LQ WKH WRWDO OHQJWK RU URRW OHQJWK JURXSV

PAGE 87

7$%/( &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV %XUQHG *URXS $ &203$5,621 2) 7227+ 0($685(0(176 PPf $*(0$7&+(' :,7+ 27+(5 *52836f ),/(1$0( 7((7+< %851(' *5283 35(/,0,1$5< ;5$< WRRWK URRW WRRWK OHQJWK OHQJWK ZLGWK ),1$/ ;5$< WRRWK URRW WRRWK OHQJWK OHQJWK ZLGWK /2* &+$1*( ,1 6,=( WRRWK URRW WRRWK OHQJWK OHQJWK ZLGWK %< %< %< %D< %< %< %< %< %< %< %< %< %D< %< %D< %D< %D< % < % OD< %< %< %< % < % < %< %E< %< %< %D< %E< %< %D<

PAGE 88

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV %XUQHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 7227+ 0($685(0(176 PPf ),/(1$0( 7((7+< %851(' *5283 35(/,0,1$5< ;5$< ),1$/ ;5$< WRRWK URRW WRRWK WRRWK URRW WRRWK OHQJWK OHQJWK ZLGWK OHQJWK OHQJWK ZLGWK /2* &+$1*( ,1 WRRWK URRW OHQJWK OHQJWK 6,=( WRRWK ZLGWK 1 $9* 67' 67' (5 f W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b b VKULQNDJH UDQJH IURP WR b b b b b b &+,648$5( 7HVW IRU QRUPDOF\ $9*67' $9* $9*67' EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO WKH GLVWULEXWLRQ LV QRUPDO 5227 /(1*7+ EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO WKH GLVWULEXWLRQ LV QRUPDO 7227+ :,'7+ REV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 6KULQNDJH LQ EXUQHG WHHWK FDQ EH PHDVXUHG DW WKH b OHYHO RI VLJQLILFDQFH ZKHQ PHDVXULQJ WKH URRW DQG WKH ZLGWK 7KH WRWDO WRRWK FDQQRW EH PHDVXUHG ZLWK DFFXUDF\

PAGE 89

7$%/( &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV &UHPDWHG *URXS $ &203$5,621 2) 7227+ 0($685(0(176 PPf ),/(1$0( 7((7+= $*(0$7&+(' :,7+ 27+(5 *52836f 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( &5(0$7 *5283 WRRWK OHQJWK URRW OHQJWK WRRWK ZLGWK WRRWK OHQJWK URRW OHQJWK WRRWK WRRWK URRW WRRWK ZLGWK OHQJWK OHQJWK ZLGWK %= %= %= %= %D= %= % D= %= %= %= %= %= %= %= %= %= %= %= %= %= %= % = %= %= %= % = %= %= %= % D= %= %=

PAGE 90

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 7RRWK 0HDVXUHPHQWV &UHPDWHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 7227+ 0($685(0(176 PPf 35(/,0,1$5< ;5$< ),1$/ ;5$< ),/(1$0( 7((7+= /2* &+$1*( ,1 6,=( &5(0$7 *5283 WRRWK OHQJWK URRW OHQJWK WRRWK WRRWK ZLGWK OHQJWK URRW OHQJWK WRRWK ZLGWK WRRWK OHQJWK URRW OHQJWK WRRWK ZLGWK 1 $9* 67' 67' (5 W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b VKULQNDJH UDQJH IURP WR b b b b b b b b b &+,648$5( 7HVW IRU QRUPDOF\ 7227+ /(1*7+ 2EV ([SW 'LI6T 7RWDO 5227 /(1*7+ EV ([SW 'LI6T 7RWDO 7227+ :,'7+ 2EV ([SW 'LI6T 7RWDO $9*67' $9* $9*67' 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 6XP([SHFWHG ,) 6XP([SHFWHG  WKH GLVWULEXWLRQ LV QRUPDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 7KH REVHUYHG PHDVXUHPHQW GLIIHUHQFHV LQ WKH FUHPDWHG WHHWK DUH DOO VLJQLILFDQW DW WKH b OHYHO DQG WKH VDPSOH GLVWULEXWLRQV DUH QRUPDO

PAGE 91

7$%/( &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV 'ULHG *URXS $ &203$5,621 2) 0$1',%8/$5 0($685(0(176 PPf ),/(1$0( 0$1'; $*(0$7&+(' :,7+ 27+(5 *52836f 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( '5,(' WRWDO PDQGLEXODU WRWDO PDQGLEXODU WRWDO PDQGLEXODU *5283 KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK %D; %; %; %; % ; % ; %; %; %; %; %; %; %D; %; %; %; %D; % ; %; % D; %; % ; % ; %; % D; %D; %; %; %D; %D; %; %D;

PAGE 92

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV 'ULHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 0$1',%8/$5 0($685(0(176 PPf ),/(1$0( 0$1'; 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( '5,(' WRWDO PDQGLEXODU WRWDO PDQGLEXODU WRWDO PDQGLEXODU *5283 KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK 1 $9* 67' 67' (5 W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b VKULQNDJH UDQJH IURP WR b b b b b b b b b &+,648$5( 7HVW IRU QRUPDOF\ $9*67' $9* $9*67' 727$/ +(,*+7 EV ([SW 'LI6T 6OLP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO 0$1',%8/$5 +(,*+7 WKH GLVWULEXWLRQ LV QRUPDO 2EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO 0$1',%8/$5 :,'7+ WKH GLVWULEXWLRQ LV QRUPDO 2EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV 7RWDO WKH GLVWULEXWLRQ LV QRUPDO &21&/86,216 &KDQJHV LQ GULHG PDQGLEXODU ERQH DUH VLJQLILFDQW DW WKH b OHYHO LQ DOO PHDVXUHPHQWV 7KH DFWXDO VKULQNDJH LV VPDOO bf EXW VHHPV WR EH VLJQLILFDQW

PAGE 93

7$%/( &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV %XUQHG *URXS $ &203$5,621 2) 7227+ 0($685(0(176 PPf ),/(1$0( 0$1'< $*(0$7&+(' :,7+ 27+(5 *52836f 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( %851(' *5283 WRWDO KHLJKW PDQGLEXODU KHLJKW ZLGWK WRWDO KHLJKW PDQGLEXODU WRWDO PDQGLEXODU KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK %< %< %< %D< %< %< %< %< %< %< %< %< %D< %< %D< %D< %D< %< % OD< %< %< %< %< % < %< % E< %< %< %D< %E< %< %D<

PAGE 94

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV %XUQHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 0$1',%8/$5 0($685(0(176 QXQf ),/(1$0( 0$1'< 35(/,0,1$5< ;5$< ),1$/ ;5$< %851(' WRWDO PDQGLEXODU WRWDO PDQGLEXODU *5283 KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK /2* &+$1*( ,1 6,=( WRWDO PDQGLEXODU KHLJKW KHLJKW ZLGWK 1 $9* 67' 67' (5 ‘ ‘ W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJ RI DYHUDJHf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b b VKULQNDJH UDQJH IURP WR b b b b b b &+,648$5( 7HVW IRU QRUPDOF\ $9*67' $9* $9*67' 727$/ +(,*+7 2EV ([SW 'LI6T 7RWDO 0$1',%8/$5 +(,*+7 2EV ([SW 'LI6T 7RWDO 0$1',%8/$5 :,'7+ 2EV ([SW 'LI6T 7RWDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 6XPH[SW ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO &21&/86,21 7KH WRWDO KHLJKW PHDVXUHPHQW ZKLFK LQFOXGHV WKH WRRWK FURZQ DSSHDUV VLJQLILFDQW EXW LV QRW QRUPDOO\ GLVWULEXWHG 7KH RWKHU PDQGLEXODU ERQH KHLJKW PHDVXUHPHQW LV VLJQLILFDQW DW

PAGE 95

7$%/( &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV &UHPDWHG *URXS $ &203$5,621 2) 0$1',%8/$5 0($685(0(176 PPf $*(0$7&+(' :,7+ 27+(5 *52836f 35(/,0,1$5< ;5$< ),1$/ ;5$< ),/(1$0( 0$1'= /2* &+$1*( ,1 6,=( &5(0$7 *5283 WRWDO KHLJKW PDQGLEXODU KHLJKW ZLGWK WRWDO KHLJKW PDQGLEXODU WRWDO PDQGLEXODU KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK %= %= %= %= %D= %= %D= %= %= %= %= %= %= %= %= %= %= %= %= %= % = % = %= %= % = % = %= %= %= %D= %= %=

PAGE 96

7$%/( f§FRQWLQXHG &RPSDULVRQ RI 0DQGLEXODU 0HDVXUHPHQWV &UHPDWHG *URXS 6WDWLVWLFV 6XPPDU\ $ &203$5,621 2) 0$1',%8/$5 0($685(0(176 PPf ),/(1$0( 0$1'= 35(/,0,1$5< ;5$< ),1$/ ;5$< /2* &+$1*( ,1 6,=( &5(0$7 WRWDO PDQGLEXODU WRWDO PDQGLEXODU WRWDO PDQGLEXODU *5283 KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK KHLJKW KHLJKW ZLGWK 1 $9* 67' 67' (5 ‘ ‘ W7(67 6DPSOH W YDOXHV 9DOXH RI W DW b OHYHO 9DOXH RI W DW b OHYHO $YHUDJH $QWLORJf 8SSHU b FRQILGHQFH SRLQW /RZHU b FRQILGHQFH SRLQW $9(5$*( 6+5,1.$*( b b b b VKULQNDJH UDQJH IURP WR b b b b b b &+,648$5( 7HVW IRU QRUPDOF\ $9*67' $9* $9*67' 727$/ +(,*+7 2EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([A!HFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 7RWDO 0$1',%8/$5 +(,*+7 2EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 7RWDO 0$1',%8/$5 :,'7+ EV ([SW 'LI6T 6XP([SHFWHG ,) 6XP([SHFWHG LV WKH GLVWULEXWLRQ LV QRUPDO 7RWDO &21&/86,21 ,Q DOO PHDVXUHPHQWV RI FUHPDWHG PDQGLEXODU ERQH VKULQNDJH LV VLJQLILFDQW DW WKH b OHYHO

PAGE 97

5()(5(1&(6 >@ 6WHZDUW 7' (VVHQWLDOV RI )RUHQVLF $QWKURSRORJ\ &KDUOHV & 7KRPDV 3XEOLVKHU 6SULQJILHOG ,/ SS >@ $KOTXLVW DQG 'DPVWHQ $ 0RGLILFDWLRQ RI .HUOH\nV 0HWKRG IRU WKH 0LFURVFRSLF 'HWHUPLQDWLRQ RI $JH LQ +XPDQ %RQH -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1R SS >@ %DQJ DQG 5DPP ( 'HWHUPLQDWLRQ RI $JH LQ +XPDQV IURP 5RRW 'HQWLQ 7UDQVSDUHQF\ $FWD 2GRQWROJLFD 6FDQGLQDYLD 9RO 1RO SS >@ %RXYLHU 0 DQG 8EHODNHU $ &RPSDULVRQ RI 7ZR 0HWKRGV IRU WKH 0LFURVFRSLF 'HWHUPLQDWLRQ RI $JH DW 'HDWK $PHULFDQ -RXUQDO RI 3K\VLFDO $QWKURSRORJ\ 9RO 1R SS >@ %XUQV .5 DQG 0DSOHV :5 (VWLPDWLRQ RI $JH IURP ,QGLYLGXDO $GXOW 7HHWK -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1R SS >@ 'HTXHNHU 5HPDQV )UDQVVHQ 5 DQG :DHV $JLQJ 3DWWHUQV RI 7UDEHFXODU DQG &RUWLFDO %RQH DQG 7KHLU 5HODWLRQVKLS &DOFLILHG 7LVVXH 5HVHDUFK 9RO SS >@ *XVWDIVRQ 'HQWDO 'HWHUPLQDWLRQ RI $JH -RXUQDO RI WKH $PHULFDQ 'HQWDO $VVRFLDWLRQ 9RO 1RO SS >@ .HUOH\ (5 7KH 0LFURVFRSLF 'HWHUPLQDWLRQ RI $JH LQ +XPDQ %RQH $PHULFDQ -RXUQDO RI 3K\VLFDO $QWKURSRn ORJ\ 9RO 1RO SS >@ .HUOH\ (5 $JH 'HWHUPLQDWLRQ RI %RQH )UDJPHQWV -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1RO SS >@ .HUOH\ (5 DQG 8EHODNHU '+ 5HYLVLRQV LQ WKH 0LFURVFRSLF 0HWKRG RI (VWLPDWLQJ $JH DW 'HDWK LQ +XPDQ &RUWLFDO %RQH $PHULFDQ -RXUQDO RI 3K\VLFDO $QWKURSRn ORJ\ 9RO 1R SS

PAGE 98

>@ 0DSOHV :5 $Q ,PSURYHG 7HFKQLTXH 8VLQJ 'HQWDO +LVWRORJ\ IRU (VWLPDWLRQ RI $GXOW $JH -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1R SS >@ 0DSOHV :5 DQG 5LFH 30 6RPH 'LIILFXOWLHV LQ WKH *XVWDIVRQ 'HQWDO $JH (VWLPDWLRQV -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1RO SS >@ 6WRXW 6' DQG *HKOHUW 67KH 5HODWLYH $FFXUDF\ DQG 5HOLDELOLW\ RI +LVWRORJLFDO $JLQJ 0HWKRGV )RUHQn VLF 6FLHQFH ,QWHUQDWLRQDO 9RO 1R SS >@ 7KRPSVRQ '' $JH &KDQJHV LQ %RQH 0LQHUDOL]DWLRQ &RUWLFDO 7KLFNQHVV DQG +DYHUVLDQ &DQDO $UHD &DOFLn ILHG 7LVVXH ,QWHUQDWLRQDO 9RO 1RO SS >@ 7KRPSVRQ '' 0LFURVFRSLF 'HWHUPLQDWLRQ RI $JH DW 'HDWK LQ DQ $XWRSV\ 6HULHV -RXUQDO RI )RUHQVLF 6FLn HQFHV 9RO 1R SS >@ 5LGGLFN / %URJGRQ %* /DVVZHOO+RII DQG 'HOPDV % 5DGLRJUDSKLF ,GHQWLILFDWLRQ RI &KDUUHG +XPDQ 5HPDLQV 7KURXJK 8VH RI WKH 'RUVDO 'HIHFW RI WKH 3DWHOOD -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1RO SS >@ 7RGG 7: 7KH (IIHFW RI 0DFHUDWLRQ DQG 'U\LQJ 8SRQ WKH /LQHDU 'LPHQVLRQV RI WKH *UHHQ 6NXOO -RXUQDO RI $QDWRP\ 9RO SS >@ $OEUHFKW *+ +XPLGLW\ DV D 6RXUFH RI 0HDVXUHPHQW (UURU RQ 2VWHRPHWULHV $PHULFDQ -RXUQDO RI 3K\VLFDO $QWKURSRORJ\ 9RO 1R SS >@ %DE\ 56 +RSHZHOO &UHPDWLRQ 3UDFWLFHV 2KLR +LVWRULFDO 6RFLHW\ 3DSHUV LQ $UFKDHRORJ\ 9ROO SS >@ %LQIRUG /5 $Q $QDO\VLV RI &UHPDWLRQV IURP 7KUHH 0LFKLJDQ 6LWHV :LVFRQVLQ $UFKHRORJLVW 9RO SS >@ %XLNVWUD DQG *ROGVWHLQ / 7KH 3HUULQV /HGJH &UHPDWRU\ 5HSRUWV RI ,QYHVWLJDWLRQ 1R 6SULQJILHOG ,OOLQRLV 6WDWH 0XVHXP >@ :HEE :6 DQG 6QRZ &( 7KH $GHQD 3HRSOH 5HSRUWV LQ $UFKDHRORJ\ DQG $QWKURSRORJ\ 1R 8QLYHUn VLW\ RI .HQWXFN\

PAGE 99

>@ :HOOV & $ 6WXG\ RI &UHPDWLRQ $QWLTXLW\ 9RO 1R SS >@ 7KXUPDQ 0' DQG :LOOPRUH /6 $ 5HSOLFDWLYH &UHPDWLRQ ([SHULPHQW 1RUWK $PHULFDQ $UFKDHRORJLVW 9RO 1R SS >@ 'RNODGDO 0 8EHU GLH 0RJOLFKNHLWHQ GHU ,GHQWLILND WLRQ YRQ .QRFKHQ DXV /HLFKHQEU£QGHQ 0LWWHLOXQTHQ GHU 6HNWLRQ $QWKURSRORTLH 9RO S >@ 7URWWHU 0 DQG 3HWHUVRQ 55 $VK :HLJKW RI +XPDQ 6NHOHWRQV LQ 3HUFHQW RI 7KHLU 'U\ )DW)UHH :HLJKW $QDWRPLFDO 5HFRUG 9RO 1R SS >@ 'RNODGDO 0 (UJHEQLVVH ([SHULPDQWHOOHU 9HUEUHQQXQ JHQ =XU )HVWVWHOOXQJ 9RQ )RUP 8QG *UVVHQYHU£QGHUXQ JHQ 9RQ 0HQVFKHQNQRFKHQ 8QWHU 'HP (LQIOXVV 9RQ +RKHQ 7HPSHUDWXUHQ $QWKURSRORTLH 9RO SS >@ +HUUPDQQ % 2Q +LVWRORJLFDO ,QYHVWLJDWLRQV RI &UHn PDWHG +XPDQ 5HPDLQV -RXUQDO RI +XPDQ (YROXWLRQ 9RO 1R SS >@ 9DQ 9DUN *1 6RPH 6WDWLVWLFDO 3URFHGXUHV IRU WKH ,QYHVWLJDWLRQ RI 3UHKLVWRULF +XPDQ 6NHOHWDO 0DWHULDO 95% 2IIVHWGUXNNHULM *URQLQJHQ >@ %UDGWPLOOHU % DQG %XLNVWUD -( (IIHFWV RI %XUQn LQJ RQ +XPDQ %RQH 0LFURVWUXFWXUH $ 3UHOLPLQDU\ 6WXG\ -RXUQDO RI )RUHQVLF 6FLHQFHV 9RO 1R SS >@ 7RWR 3' (IIHFW RI $JH RQ :DWHU &RQWHQW LQ +XPDQ 7HHWK -RXUQDO RI 'HQWDO 5HVHDUFK 9RO 1R SS >@ &OHPHQW $9DULDWLRQV LQ WKH 0LFURVWUXFWXUH DQG %LRFKHPLVWU\ RI +XPDQ 7HHWK ,Q %URWKZHOO '5 (Gf 'HQWDO $QWKURSRORJ\ 6\PSRVLXP RI WKH 6RFLHW\ IRU WKH 6WXG\ RI +XPDQ %LRORJ\ 3HUJDPRQ 3UHVV 1HZ @ )DUUHOO :/ )RUHQVLF ,GHQWLILFDWLRQ RI %XUQ 9LFn WLPV -RXUQDO RI WKH $PHULFDQ 'HQWDO $VVRFLDWLRQ 9RO 1R SS >@ -RKDQVRQ DQG 6DOGHHQ 7 ,GHQWLILFDWLRQ RI %XUQW 9LFWLPV ZLWK WKH $LG RI 7RRWK DQG %RQH )UDJPHQWV -RXUQDO RI )RUHQVLF 0HGLFLQH 9RO 1RO SS

PAGE 100

>@ 0DQQHUEHUJ ) 2P GLPHQVLRQHOOD IRUDQGULQJDU KRV WDQGHU HIWHU XWWRUNQLQJ RFK HIWHU EUDQQLQJ VDPW YLNWVIRUDQGULQJDU KRV WDQGHU HIWHU EUDQQLQJ 6YHQVND 7DQGODNDUH6DOOVNDSHWV )HVWVNULIW 6WRFNKROP SS >@ %HOO */ 2EVHUYHG $IIHFWV RI +LJK 7HPSHUDWXUHV RQ ([WUDFWHG 7HHWK DQG 5HVHFWHG -DZV $EVWUDFW ) $PHULFDQ $FDGHP\ RI )RUHQVLF 6FLHQFHV 3URJUDP )HE S >@ 6KLSPDQ 3 )RVWHU DQG 6FKRHQLQJHU 0 %XUQW %RQHV DQG 7HHWK DQ ([SHULPHQWDO 6WXG\ RI &RORU 0RUn SKRORJ\ &U\VWDO 6WUXFWXUH DQG 6KULQNDJH -RXUQDO RI $UFKDHRORJLFDO 6FLHQFH 9ROOO 1R SS >@ %ODQWRQ 3 DQG %LJJV 1/ 'HQVLW\ RI )UHVK DQG (PEDOPHG +XPDQ &RPSDFW DQG &DQFHOORXV %RQH $PHULFDQ -RXUQDO RI 3K\VLFDO $QWKURSRORJ\ 9RO 1RO SS >@ /DQH DQG 5DOLV =$ &KDQJHV LQ 'LPHQVLRQV RI /DUJH &DQFHOORXV %RQH 6SHFLPHQV 'XULQJ +LVWRORJLFDO 3UHSDUDWLRQ DV 0HDVXUHG RQ 6ODEV IURP +XPDQ )HPRUDO +HDGV &DOFLILHG 7LVVXH ,QWHUQDWLRQDO 9RO 1RO SS >@ &DUUROO -5 3K\VLFDO DQG 7HFKQLFDO $VSHFWV RI )LUH DQG $UVRQ ,QYHVWLJDWLRQ &KDUOHV & 7KRPDV 6SULQJ ILHOG SS >@ (FNHUW :* 7KH 0HGLFROHJDO DQG )RUHQVLF $VSHFWV RI )LUHV $PHULFDQ -RXUQDO RI )RUHQVLF 0HGLFLQH DQG 3DWKRORJ\ 9RO 1R SS >@ 6WRXW 6' +LVWRORJLFDO 6WUXFWXUH DQG ,WV 3UHVHUYDn WLRQ LQ $QFLHQW %RQH &XUUHQW $QWKURSRORJ\ 9RO 1R SS >@ 6WRXW 6' DQG 6LPPRQV 8VH RI +LVWRORJ\ LQ $QFLHQW %RQH 5HVHDUFK @ 6WRXW 6' DQG 7HLWHOEDXP 6/ +LVWRORJLFDO $QDO\n VLV RI 8QGHFDOFLILHG 7KLQ 6HFWLRQV RI $UFKHRORJLFDO %RQH $PHULFDQ RXUQDO RI 3K\VLFDO $QWKURSRORJ\ 9RO 1R SS >@ 0HU] :$ DQG 6FKHQN 5. 4XDQWLWDWLYH 6WUXFWXUDO $QDO\VLV RI +XPDQ &DQFHOORXV %RQH $FWD $QDWPLFD 9RO 1RO SS

PAGE 101

>@ 0HU] :$ DQG 6FKHQN 5. $ 4XDQWLWDWLYH +LVWRORn JLFDO 6WXG\ RQ %RQH )RUPDWLRQ LQ +XPDQ &DQFHOORXV %RQH $FWD $QDWPLFD 9RO 1RO SS >@ -RZVH\ 6WXGLHV RI +DYHUVLDQ 6\VWHPV LQ 0DQ DQG 6RPH $QLPDOV -RXUQDO RI $QDWRP\ 9RO 1R SS >@ 5HLG 6$ DQG %R\GH $ &KDQJHV LQ WKH 0LQHUDO 'HQVLW\ 'LVWULEXWLRQ LQ +XPDQ %RQH ZLWK $JH ,PDJH $QDO\VLV 8VLQJ %DFNVFDWWHUHG (OHFWURQV LQ WKH 6(0 -RXUQDO RI %RQH DQG 0LQHUDO 5HVHDUFK 9RO 1RO SS >@ %ODFN DQG 0DWWVRQ 58 5HODWLRQVKLS %HWZHHQ 3RURVLW\ DQG 0LQHUDOL]DWLRQ LQ WKH +DYHUVLDQ 2VWHRQ &DOFLILHG 7LVVXH ,QWHUQDWLRQDO 9RO SS >@ 'HQQHQ :+ 3ULQFLSOHV RI 0LQHUDORJ\ 5RQDOG 3UHVV &RPSDQ\ 1HZ
PAGE 102

%,2*5$3+,&$/ 6.(7&+ .DUHQ 5DPH\ %XUQV ZDV ERUQ LQ &LQFLQQDWL 2KLR -DQn XDU\ 6KH LV PDUULHG WR /DZUHQFH $ %XUQV DQG LV WKH PRWKHU RI WKUHH FKLOGUHQ 7DVKD \HDUV ROG /DUD \HDUV ROG DQG $OH[DQGHU \HDUV ROG .5% LV D JUDGXDWH RI WKH 8QLYHUVLW\ RI 0LDPL $% f DQG WKH 8QLYHUVLW\ RI )ORULGD 0$ f 6KH LV D PHPEHU RI WKH $PHULFDQ $VVRFLDWLRQ RI 3K\VLFDO $QWKURSRORn JLVWV DQG D SURYLVLRQDO PHPEHU RI WKH $PHULFDQ $FDGHP\ RI )RUHQVLF 6FLHQFHV 7KH PDLQ HPSKDVLV RI KHU HGXFDWLRQ KDV EHHQ LQ WKH EURDG ILHOG RI ELRORJ\ SDUWLFXODUO\ WKH ELRn ORJ\ RI PDQ LQFOXGLQJ VSHHFK VFLHQFH SK\VLFDO DQWKURSRn ORJ\ DQG GHQWDO VFLHQFH 7KH DSSOLFDWLRQ RI WKHVH GLVFLn SOLQHV WR WKH IRUHQVLF VFLHQFHV LV D FKLHI LQWHUHVW )ROORZLQJ JUDGXDWLRQ .5% ZLOO FRQWLQXH DW WKH &HQWHU IRU $UFKDHRORJLFDO 6FLHQFHV 8QLYHUVLW\ RI *HRUJLD DV $VVRFLDWH 'LUHFWRU

PAGE 103

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 5 0DSOHVA&KDLUPDQ 3URIHVVRU RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 88DAA9Y 6Q-IX (OL]DEHWK 6 :LQJ i‘ 3URIHVVRU RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI $QWKURSRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /LQGD &ROOLHU -£FNVRQ $VVRFLDWH 3URIHVVRU RI $QWKURSRORJ\

PAGE 104

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI $QWKURSRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 105

81,9(56,7< 2) )/25,'$