Citation
Dynamics of thin walls in space-times with stress-energy

Material Information

Title:
Dynamics of thin walls in space-times with stress-energy
Creator:
Vuille, Charles Christopher, 1951-
Publication Date:
Language:
English
Physical Description:
vii, 120 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Coordinate systems ( jstor )
Distance functions ( jstor )
Eggshells ( jstor )
Einstein equations ( jstor )
Equations of state ( jstor )
Flux density ( jstor )
Hypersurfaces ( jstor )
Spacetime ( jstor )
Symmetry ( jstor )
Velocity ( jstor )
Astrophysics ( lcsh )
Cosmology ( lcsh )
Relativity ( lcsh )
Space and time ( lcsh )
World line (Physics) ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 118-119).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Charles Christopher Vuille.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001483557 ( ALEPH )
AGZ5603 ( NOTIS )
21095046 ( OCLC )

Downloads

This item has the following downloads:


Full Text








DYNAMICS OF THIN WALLS IN SPACE-TIMES WITH STRESS-ENERGY


By

CHARLES CHRISTOPHER VUILLE














A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1989

























To James H. Vuille, Janet Sutor Vuille,
Dianne Kowing, and Kira Vuille-Kowing















ACKNOWLEDGEMENTS








I acknowledge gratefully the help of David Garfinkle and Jim
Ipser in the preparation of this manuscript. I thank also John
Challifour of Indiana University and the members of my committee,

Louis Block, Steve Detweiler, Jim Fry, and Pierre Sikivie, for their
encouragement and support.














TABLE OF CONTENTS



page
ACKNOWLEDGMENTS..................................................................... iii

ABSTRACT..................................................................................................vi

CHAPTERS

1 PRELIMINARIES....................................................... 1

Introduction.................................................................

The Thin Shell Approximation of Israel..............4
2 THIN WALLS IN REGIONS WITH VACUUM
EN ERG Y ........................................................................9

Spherical W alls......................................................... 9

Planar W alls .............................................................49
3 THIN WALLS AND PLANE-SYMMETRIC FLUIDS WITH
PRESSURE EQUAL TO ENERGY DENSITY............77

Introduction............................................................... 77

Taub-Tabensky Space-Times................................ 78

Derivation of the Jump Conditions......................80

Static Space-Time..................................... .......... 83

Dynamic Space-Time.................... .................... 87

Global Structure .....................................................89












4 THIN WALLS IN DUST UNIVERSES..........................94

Introduction......................................................... ...94

Plane-Symmetric Dust Space-Times.................95

Derivation of the Jump Conditions.....................98

Global Structure............................... .............................104

5 CONCLUSIONS.............................................................112

REFERENCES............................................................................118

BIOGRAPHICAL SKETCH... ...................................................120











Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


DYNAMICS OF THIN WALLS IN SPACE-TIMES WITH STRESS-ENERGY

By

Charles Christopher Vuille

May 1989


Chairman: James R. Ipser
Major Department: Physics


The motion of a thin wall is treated in general relativity in the
case where the regions on either side of the wall have non-zero
stress-energy. The space-times studied here are the following: (i)
spherically symmetric with vacuum energy, (ii) plane-symmetric with
vacuum energy, (iii) plane-symmetric fluids with pressure equal to

energy density, and (iv) plane-symmetric dust with vacuum energy.
In connection with the latter case, new classes of exact solutions to
Einstein's equation are presented, corresponding to plane-symmetric
non-homogeneous dust universes. The equation of state of the thin

wall is taken to be T=IF, where z is the tension in the wall, a is the










energy density, and 0< F<1. Particular cases of interest are F=0,

corresponding to a dust wall, and F=1, corresponding to a domain wall.

The dynamics of the thin wall depend on both the stress-energy of
the wall and that of the space-time on either side of the wall.
Oscillation about a point of stable equilibrium is found to be possible
for walls with certain values of the parameters in cases (i)-(iii). In
each such case, the metric on either side of the wall is static. There
are various other possible dynamics, such as expansion followed by
collapse, deflation followed by expansion, simple translation, and
asymptotic approach to points of unstable equilibrium. Finally, the
global structure for each type of space-time is discussed. This permits
the elucidation of the structure of the corresponding wall space-times.













CHAPTER 1
PRELIMINARIES

Introduction


One of the intriguing possible consequences of the hot big bang
model of cosmology is that the universe may have undergone phase
transitions in its early history. These phase transitions can give rise
to various soliton-like structures, such as magnetic monopoles, cosmic
strings, and domain walls.1,2 The dynamics of the latter hypothetical
object, as a special case of a more general class of thin walls, will be
the focus here. The space-time stress-energy on either side of the
wall will be taken to contain, in turn, (i) vacuum energy, (ii) fluid with
pressure equal to energy density, and (iii) dust with vacuum energy.

In connection with the last case, new classes of exact solutions to
Einstein's equation will be presented, corresponding to

non-homogeneous dust universes. Most previous work, with the
exceptions noted below, has dealt simply with vacuum.
Thin walls may arise from contributions by particle fields to the
space-time stress-energy. A simple field theory giving rise to thin

walls contains a real scalar field 4 with a potential V(4), where V(O) is

taken to have two local minima. Let 0+ and 0_ denote the values of 4

corresponding to these minima. During a phase transition, the field 4

1











takes on values near 0+ in one region of space ( the 0+- domain"),

and near 4_ in an adjacent region of space ( the domain "). The

region between the 0+ and 4_ domains has a high energy density, both

because the field takes on values which don't minimize V, and
because there is energy associated with spatial changes in the field.
This high-energy region is designated a domain wall.

To make these ideas more concrete, take a particle field

together with a potential V( ), and the Lagrangian

L=-(1/2)(Va)2--V(O). The contribution to the energy-momentum of

space-time by this field is given by


Tab = (VaO)(VbO) (1/2)gab( VC~Vc + 2V(O)). (1.1)


If 4 is approximately constant throughout a region of space-time, then

the first two terms on the right of (1.1) are negligible in that region,
whereas the third term is a multiple of the metric. Hence in the

0+-domain, say, the contribution to the stress-energy is



Tab+ = -V(+)gab (1.2)


A solution to Einstein's equation with a contribution such as this to
the stress energy is the same as a solution of equations having a











cosmological constant, with A+ = KV(O+) where i is Einstein's

constant. An identical situation holds in the 0_-domain.

Under the conditions described above, the thin wall
approximation developed by Israel3 provides a possible model for a
space-time containing such a wall. To make the calculations tractable,
the wall is assumed to have plane or spherical symmetry, at least,
and often complete reflection symmetry as well. Mathematically, this

latter condition is expressed by Kab+=-Kab-, where Kab is the

extrinsic curvature (defined in the next section). The work done on
planar walls by Vilenkin4, Ipser and Sikivie5, and Ipser6 treated the

case V(O+)=V(_ )=0. Most of the work on spherical domain walls has

been restricted to special values of the four parameters A+ A_, m+ ,

and m3,5,7-17, with some numerical work on the general casel8

Garfinkle and Vuille19 studied the general case V(4+)*V(O_), for both

spherical and plane-symmetric walls. Very little has been done in the
case where there is energy-momentum other than vacuum energy.
Kuchar20 examined special cases involving collapse of a charged shell,
while Maeda21 specialized the method of Israel to space-times
containing an ambient fluid without examining wall dynamics.
To find the motion and the gravitational field of the wall, it is
first necessary to solve Einstein's equation in the presence of the
stress-energy of the wall, the vacuum energy of the domains on











either side of the wall, and the energy-momentum contributed by any
other distributions of matter or fields. This gives the gravity field of

the space-time. Israel's thin shell approximation, discussed in the next
section, gives an equation for the jump in the extrinsic curvature in
terms of the stress-energy of the fluid composing the wall. This leads
to the equation of motion giving the dynamics of the wall in the
space-time. In Chapter Two, the dynamics of thin walls in regions
with vacuum energy will be addressed, for both spherical and planar
symmetry. In Chapters Three and Four the space-times under study
will be plane-symmetric and contain fluid with pressure equal to
energy density, and dust with vacuum energy, respectively.


2. The Thin Shell Approximation of Israel


In the thin shell approximation of Israel3 a thin shell of matter
is idealized as having zero thickness (for a rigorous justification of this

approximation, see reference 22). The history of the thin shell is just a
three-dimensional timelike hypersurface, and thus the space-time

consists of a smooth manifold M, a metric gab and a smooth

three-dimensional timelike hypersurface X. The hypersurface divides

the manifold M into two manifolds with boundary, called M+ and M-.

In M+ and M- separately gab is a smooth solution of Einstein's

equation. Let na be the unit normal to I pointing from M- to M+. Then











in each region M+ and M- the space-time metric gab induces on the

hypersurface I an intrinsic metric hab and an extrinsic curvature Kab

given by


hab= gab nanb (1.3)

Kab = hacVcnb (1.4)


The latter quantity may differ depending on whether it is

calculated in M+ or M-. Denote by 0+ the value of a tensor 0 on I

calculated in M+; define 0_ similarly. The appropriate conditions on

the change in hab and Kab across I are3



hab+ hab_= 0 (1.5)

Kab+ Kab = -K[Sab-(1/2) S hab] (1.6)


where Sab is the so-called surface stress-energy tensor of the shell

and the scalar S is given by S=habSab. Sab may be interpreted as the

limit, as the thickness of the shell goes to zero, of the shell
stress-energy integrated over the thickness of the shell.
Equations (1.5) and (1.6), together with Einstein's equation in
M+ and M- separately, are equivalent to Einstein's equation in all of











M. Thus one can obtain a solution to Einstein's equation in the thin
shell approximation as follows: first choose two smooth solutions to
Einstein's equation on the two manifolds M+ and M-. Then in each

manifold choose a timelike hypersurface (Z+ and E- respectively).

The hypersurface 1+ divides M+ into two regions. Choose one of the

two regions. Then the union of this region with I+ forms a manifold

with boundary which we call M+. In the corresponding way obtain the

manifold with boundary M- from I- and one of the two regions of

M -. Then identify the points of E+ and I- to produce a single

hypersurface E and thus a single manifold M which is essentially M+

and M- "glued together." The surfaces I+ and I- and the map which

identifies them must be chosen so that equations (1.5) and (1.6) are
satisfied. When the surfaces and the map are so chosen, the resulting
space-time M is a solution of Einstein's equation in the thin shell
approximation.

The stress-energy tensor of the general (two-dimensional)
perfect fluid is given by



Sab = (O'-)vavb thab (1.7)



where a and T are scalars, the energy density and tension of the wall,

respectively, and va is a unit timelike vector, the space-time velocity
of the fluid. The properties of a perfect fluid are given by its equation











of state, a relation which gives t as a function of a A domain wall

has a particularly simple equation of state: t = a. It then follows from

conservation of stress-energy that a is constant and that



Sab = -hab (1.8)



In this work a more general equation of state, t = Fo, will be

assumed, where F is a constant satisfying 0 < F < 1 This equation of

state is also used in references 5,6,7, and 18. Here, only the case a > 0

is considered. Call the class of thin perfect fluid walls with this

equation of state "F-walls". Domain walls correspond to F-walls with

F=l. Hence the class of F-walls is more general than domain walls, but

less general than the whole class of perfect fluid walls with arbitrary
equation of state. It follows from the equation of state that the

stress-energy of a F-wall is



Sab = o[(l-F)vab hab] (1.9)



Using equation (1.9) in (1.6) gives the change, for a F-wall, in the

extrinsic curvature Kab across :


Kab+ Kab = -Kc{(l-F)vavb + (1/2)hab}


(1.10)








8



This is the key equation that will be used to obtain equations of
motion for thin walls under the various conditions. As will be seen in
the next section, the left-hand side involves components of the metric
and its derivatives, and hence depends on the ambient stress-energy
on either side of the wall.













CHAPTER 2
THIN WALLS IN REGIONS WITH VACUUM ENERGY


Spherical Walls


To find the motion and gravitational field of a spherical wall it is
first necessary to find two spherically symmetric solutions of the
vacuum Einstein equation with cosmological constant. A space-time is
spherically symmetric if its symmetry group contains the symmetry
group of the 2-sphere. The general spherically symmetric solution of

the vacuum Einstein equation with cosmological constant A is either
the Schwarzschild-de Sitter metric or the Nariai metric.23 In the
Nariai space-time all the 2-spheres of symmetry have the same area,
and so it is unsuitable for describing an expanding or contracting shell
and will not be considered here. The Schwarzschild-de Sitter metric
has the following form:23


ds2 = -Fdt2 + F-ldr2 + r2(d02 + sin20 d02) (2.1)


where the function F is defined by


F= 1 2mr-1 (/3)Ar2 (2.2)











and m is a constant. This space-time can be regarded as a black hole

of mass m in a space-time which is asymptotically de Sitter. In the

case m=0 the space-time is de Sitter space-time, while in the case A=0

the space-time is Schwarzschild. Note that the expression in equation

(2.1) is badly behaved at points where F=0. This is simply because the
coordinate t is badly behaved at these points. In fact, the metric is
smooth for all values of r greater than zero.
Each of the space-times M+ and M- are taken to have a metric of

the form given in equation (2.1). Let A+ and m+ be the values of the

constants A and m, respectively, for the metric on M +, and

correspondingly define A_ and m_. The cases considered here are

those for which all four of these parameters are greater than or equal
to zero.

Next, it is necessary to find timelike hypersurfaces, I' and I-, in

M+ and M-, and calculate the intrinsic metric and extrinsic curvature

induced on these hypersurfaces. Since the wall is spherically

symmetric, X+ and 1- must be spherically symmetric also. First

consider a general spherically symmetric timelike hypersurface I in

a space-time M of the form given in (2.1). Later, these results will
be applied to M + and M separately. A three-dimensional
hypersurface in a four-dimensional space-time is specified by giving
the four space-time coordinates as functions of any three parameters.

Choose the coordinates r, 0, and 4 as the three parameters. Then the










surface is specified by giving the remaining coordinate t as a function

of the three parameters. Since the surface I is spherically

symmetric, t on E must be a function of r alone. Thus E is
specified by a relation of the form


t = T(r) (2.3)


A normal co-vector Na to the hypersurface I is given by



Na = a(t T(r)) = ( 1 -dT/dr O) (2.4)


Define the scalar Q by Q=NaNa Then equations (2.1) and (2.4) give



Q = F(dT/dr)2 F-1 (2.5)


Since I is timelike, any normal to I must be spacelike. Thus Q must
be greater than zero. Thus the general timelike spherically symmetric
hypersurface in M is given by a relation of the form in equation (2.3)
satisfying the condition that the right-hand side of (2.5) is greater

than zero. Let na be a unit normal to .. Then it follows from the


definition of Q and Na that











na = EQ-1/2Na (2.6)


where = 1. Note that there are two different unit normals

corresponding to the two different possible values of e.

Define the tensor qab by



qabdxadxb = r2(d02 + sin20 d02) (2.7)


Then the metric can be written as


ds2 = -Fdt2 + F-ldr2 + qabdxadxb (2.8)


Thus qab is the "2-sphere part" of gab. A perfect fluid wall has a fluid

velocity va which is a timelike unit vector, tangent to the wall. A
spherically symmetric wall must have spherically symmetric va. Thus
the conditions on va are


vaa = -1 (2.9a)

vana = 0 (2.9b)

vaqab = 0 (2.9c)


Using these conditions and equations (2.4), (2.6), and (2.7), obtain












va = Q-1/2( -F(dT/dr), F-1 ) (2.10)


where 8 =1. It follows, using equations (2.4)-(2.8) and (2.10), that



gab = nanb VaVb + qab (2.11)


Inserting equation (2.11) into (1.3) yields the following expression for
the intrinsic metric:


hab = -Vab + qab (2.12)


Since hab is spherically symmetric, it determines a set of

2-sphere subspaces of I (the spaces of constant r). The metric induced

on a constant r subspace is qab and the area of the subspace is 4X7r2

Thus both qab and r are determined by hab It then follows from

equation (2.12) that vaVb is determined by hab.

Using equations (1.3) and (1.4) and the fact that na is
hypersurface orthogonal, it can be shown that24


Kab = (1/2)fnhab ,


(2.13)










where n denotes the Lie derivative with respect to the vector na

Inserting equation (2.12) results in


Kab = (1/2)(nqab va nvb vb'nva) (2.14)


The Lie derivatives of qab and va are computed by expressing the

Lie derivative in terms of the coordinate derivative operator24 Da

and using the expressions for the coordinate components of qab va

and na. Some straightforward algebra then yields


nqab = nc+cqab + qcbaanc + qac bnc=

= -2er Q-1/2F(dT/dr)qab (2.15)



nva = nbabva + vbanb=

= -(d/dr){EQ 1/2F(dT/dr)}a (2.16)


Define the scalar L by


L= EQ-1/2F(dT/dr) (2.17)


Then equations (2.14)-(2.17) give













Kab = (dL/dr)vavb r-1qab (2.18)


The quantity L can be expressed in two different and useful
ways. First, using equations (2.4), (2.6). (2.8) and (2.17), obtain


na ar = Q- 1/2Na ar = -L = -siLI (2.19)


with the quantity s defined by


s = L/ILI (2.20)


The quantity s can be interpreted as follows: the surface I divides
M into two regions. A region is an "exterior" if r increases along the

direction normal to I and pointing into the region. A region is called

an "interior" if r decreases along the direction normal to I and

pointing into the region. Then divides M into an exterior and an
interior. If s = 1 then na points to the interior. If s = -1, then na
points into the exterior.
The other useful expression for L can be derived using
equations (2.1), (2.11), and (2.19) :


F=gll = (n1)2-(v1)2 =L2 (v1)2.


(2.21)












Then equation (2.20) results in


L = s{F + (vl)2 1/2


(2.22)


Choose a constant r subspace S of I and for each point p E I

and let X(p) be the proper time along the integral curve of va from

S to p. Then there is a function R(X) such that on Z


r = R(?).


(2.23)


It follows that on I


va ar= v1 = dR/dk .


(2.24)


Thus from equation (2.22) there results


L = s(F + (dR/dk)2)1/2


(2.25)


Next it will be shown that the surface is essentially

determined by the function R(X). Given the function R(X) and

equation (2.23), the quantities dR/dX and L2 are determined as

functions of r. Equations (2.3) and (2.24) give












vavat = (dT/dr)(dR/dX) (2.26)


Then equations (2.8), (2.9a), (2.24), and (2.26) result in


-1 = gabvab = -F(va at)2 + F-1 var)2 =

= (dR/d)2{ -F(dT/dr)2 + F-1 (2.27)


Solving for (dT/dr)2 and using equation (3.25) yields


(dT/dr)2 = {L/F(dR/dX)}2. (2.28)


Since the right-hand side of (2.28) is determined as a function of r, it
follows that the function T(r) is determined up to a change of sign and

addition of a constant. Thus if I and .' are two surfaces in M

corresponding to the same R(,), then one can take I to Z' by
changing the coordinate t on M by the addition of a constant and
(possibly) a change of sign. But this coordinate transformation is an

isometry. Thus the space-time M with the surface I is identical to

the space-time M with the surface 1'. So in this sense the surface I

is determined by the function R(,).

These results can now be applied to the surfaces I+ and I-,

which are glued together to form the surface E. Since hab+ hab-= 0,











it follows that if 0 is any tensor defined on YI+ and 1- such that O

is determined by hab, then 0+ = 0. Thus



qab+ qab- = 0, (2.29)

r+ r_ = 0 (2.30)

(Vab)+- (VaVb)- = 0 (2.31)


Choose the origin of X and the direction of va to be the same on I+

and E-. Then it follows from (2.31) that



)+ -? = 0, (2.32)


and from equations (2.23), (2.30), and (2.32) that



R(X+) R(X_) = 0, (2.33)



so that the surfaces Z+ and Y- are described by the same function

R(X). So when the points of I+ are identified with those of Y-, each

point must be identified with a point which has the same value of X in
order to comply with equation (2.30). Similarly each point must be

identified with a point which has the same values of 0 and 0 (up to an

overall rotation) in order to comply with equation (2.29). When the










surfaces are identified in this manner, it follows from equation (2.12)
that the condition hab+-hab_=0 is satisfied.

Now the only condition left to be satisfied in order that M be a
solution of the Einstein equation for a F-wall in the thin shell
approximation is equation (1.10). Using equations (2.18) and
(2.29)-(2.31) yields


Kab+- Kab-= vaVb(d/dr){L+- L} qabr-1 {L+- L_) (2.34)


while equations (1.10) and (2.12) give


Kab+- Kab-= (1/2)Ko{vavb(2F-1) qab} (2.35)




Thus Einstein's equation reduces to the following pair of equations:


(d/dr){L+- L_} = K~[F-(1/2)] and (2.36)



r-1 (L- L_} = (1/2)Ko (2.37)


To obtain a first integral of these equations, multiply equation (2.36)
by r1-2F, multiply equation (2.37) by (1-2F)r12F, and add the










resulting two equations to obtain


rl-2F(d/dr)L, L_} + (1-2F)rl-2F{L+- L_} = 0, (2.38)

(d/dr){rl-21(L- L)} = 0 and (2.39)

L- L_ = cor2-1, (2.40)


where co is a constant. Note that it follows from equations (2.37) and

(2.40) that


o= 2co0 -1r2-2. (2.41)


Since the walls treated here have positive energy density, co > 0. Let

F+ and s+ be the values of F and s on IX, with F_ and s_ defined

similarly. Using equations (2.23), (2.25) and (2.40), obtain


s+(F+ + (dR/dX)2)1/2 s_(F_ + (dR/dX)2)1/2 = c0R2-1. (2.42)


Now using the general interpretation of the quantity s, it is

possible to interpret the quantities s+ and s_ as follows: since na

points from M- to M+, the unit normal pointing into M+ is na and the

unit normal pointing into M- is -na. Hence if s+= 1 then M+ is an










interior; if s+=-I then M+ is an exterior. Correspondingly if s_= 1 then

M- is an exterior; if s_=-1 then M- is an interior. Since co> 0, it follows

from (2.42) that the case s+=-l, s_= 1 is forbidden. However, all other

possible combinations are allowed. Thus the thin wall space-time M
can consist of an exterior glued to an interior or two interiors glued
together, but cannot consist of two exteriors glued together.

Next, eliminate s+ and s_ from the equation of motion for R(Q).

Adding s_(F_+ (dR/dX)2)1/2 to both sides of equation (2.42) and

squaring gives


-s_(F_ + (dR/dX)2)1/2 =

= (1/2)(F_- F+)co-1R1-2+(1/2)R2F-1 (2.43)


Squaring equation (2.43) results in


(dR/dX)2 = {(F_- F+)/2coR2r-}2 +

+ (1/4)co2R4r-2 (1/2)(F++F_) (2.44)



A solution R(X) of equation (2.44) determines the constants s+ and s.

as follows: given R(,) that satisfies (2.44), solve equation (2.43) for s.










Then solve (2.42) for s+. The function R(X) determines the surfaces I+

and 1-. The quantity s+ determines which region of M+ (the exterior

or the interior) forms with E+ the manifold M+. The corresponding

result holds for s_ and M-. Note that s_ changes sign when the

right-hand side of equation (2.43) changes sign. This does not

correspond to any pathological behavior of the surface I- or of the

manifold M-, but is simply a point where the vectors va and (3/ar)a

in M- are parallel. The corresponding result holds for s+. Thus given

the space-times M+ and M-, a solution of equation (2.44) determines

the motion of the F-wall.
Using equations (2.2) and (2.44), obtain


(dR/dX)2 = ([(m+- m_) + (1/6)(A+-A_)R3]/coR2F 2 +

+ (1/4)co2R4-2-1 + (m+ + m_)R-1 + (1/6)(A+ + A_)R2 (2.45)


Define the constants a, b, c, f, and E and the variable I by


a 2(m+- m_)/co2 (2.46a)

b= (A+-A_)/3co2 (2.46b)

c =4(m+ + m_)/Co2 (2.46c)

f 2(A+ + A_)/3c2 (2.46d)











E -4/co2 (2.46e)

Sco,/2 (2.46f)


Then equation (2.45) becomes


(dR/d2)2 + V(R) = E (2.47)


where V(R) is given by


Y(R) = -(aR-2F+ bR3-2F)2 R4F-2- cR-1 fR2 (2.48)


Equation (2.47) is just the equation of motion for a particle with
energy E moving in one dimension in a potential V(R). Here R plays

the role of the spatial coordinate, plays the role of time, and the

mass of the "particle" is 2. Note that R takes on only positive values
and that E takes on only negative values. Thus the problem of the

motion of the F-wall has been reduced to an equivalent problem in

one-dimensional mechanics. The properties of the one-dimensional

particle motion, and thus of the r-wall motion, depend on the
properties of the function V(r) and on the value of the constant E. Any
local minimum of V(R) represents a possible point of stable
equilibrium, while any local maximum of V(R) represents a possible
point of unstable equilibrium. Any point where V(R) = E represents a











possible turning point of the motion.

The properties of the function V(R) depend on the values of the

constants a, b, c, f, and F. In this work, certain restrictions have been

placed on the values of these constants. Recall that 0< F <1, and that

A+, A_ m+, and m_ are all non-negative. It then follows that



21al < c and (2.49a)
21bl < f. (2.49b)


Thus the constants c and f are nonnegative. It then follows from
(2.48) that V(R)<0 for all R.

Various special cases of the wall's equation of motion have been
treated previously. These include the case a=b=f=0 treated in 5,7; the

case F=1, a=c=0 treated in 8, 9, 10; the case F=1, a=c/2 treated in

11-16; the case F=b=f=0, a=c/2 treated in 3; and the case F=1, a=0

treated in 17. In addition, a numerical treatment of the general
problem has been done in 18. The method of reference 18 is to choose

various values of the parameters (a,b,c,f,F) and numerically produce

plots of the corresponding potentials. Since the potential has so many
parameters, this is a somewhat unwieldy way to obtain information
about the wall's motion. In this work, analytic methods will be used
to determine, as a function of the parameters, certain features of the
wall's motion: the asymptotic values of R, whether the wall's motion
has a turning point and whether the wall oscillates about stable











equilibrium.
The possible values of the parameters c and f can be divided
into a "generic" case: cP0, f*O, and three "exceptional" cases: (i) c=0,
f*0; (ii) c*O, f=0, and (iii) c=f=0.


Case 1: c*0, f*O


Under these conditions it follows from equation (2.48) that V is
unbounded below both as R- 0 and as R-+*. This means V(R) must
have at least one local maximum. In fact, it is possible to demonstrate

that there is a number Fc such that if r>Fc then V(R) has at least one

local maximum and no other stationary points. Assume that r>0. Let

Rs be a stationary point of V(R), and let a prime denote differentiation

with respect to R. Then V'(Rs) = 0. It follows from equation (2.48)

that


V"(Rs) = {R-(d/dR)(Rd/dR)} =

= -16F2a2Rs-4-2(6-4F)2b2Rs4-4- 2(3-4F)2abRsl-4F

cRs-3 4f (4F-2)2Rs4-4. (2.50)


Rearranging the terms on the right-hand side of (2.50) results in the
following equation:












Y"(Rs) = -16-2Rs-4r-2{ar2+ b(F-(3/4))2R3 }2 +

+ 18F-2b2Rs4-4FIF 3(2- /2)8-1} ( 3(2 + /2)8-1} cRs-3

-4f-(4F- 2)2Rs4F-4 (2.51)


All terms on the right-hand side of (2.51) except for the second are

manifestly negative. In the second term, since F<1 it follows that the

factor F 3(2+/ 2)8-1} is negative. Now define Fc by



c = 3(2-,2)/8 (2.52)


Then if F>Fc it follows that the second term on the right-hand side of

equation (2.51) is manifestly negative. Consider the case >Fc Then

V"(Rs) is negative. Thus V(Rs) is a local maximum, and any stationary

point of V(R) is a local maximum. Since V(R) is smooth it follows that
it can have at most one maximum, and since it has at least one
maximum, it has exactly one maximum.
The one-dimensional motion of a particle in a potential with one
maximum and no other stationary points is fairly simple. The motion
has either one turning point or no turning points depending on
whether the energy is less than the maximum. Since equation (2.47)
is time-reversal invariant, for any possible motion of the wall, the











time-reversed motion is also possible.

Let Vmax be the maximum value of V(R) and let R, be the value

of R which maximizes V(R). Then the possible motions of the wall

depend on Ymax and E. For E> Vmax the possible motions of the wall

are as follows: (i) the wall appears with zero size and expands forever
to unbounded size; (ii) the time-reverse of the motion in (i). For E=

Vmax the possible motions of the wall are as follows: (i) the wall

remains in unstable equilibrium with R=Rs; (ii) the wall appears with

zero size and expands with R asymptotically approaching Rs; (iii) the

wall contracts from unbounded size with R asymptotically

approaching Rs; (iv) the time-reverse of the motion in (ii); (v) the

time-reverse of the motion in (iii). For E< Vmax the possible motions

of the wall are as follows: (i) the wall appears with zero size, expands

to a maximum R less than Rs, contracts to zero size and disappears; (ii)

the wall contracts from unbounded size to a minimum R greater than

Rs and then expands to unbounded size.

An exhaustive description of the possible motions of the wall

has been given, in the generic case, for F> Fc. The F< Fc is more

difficult. One of the features of the motion in the F> Fc case is that

stable equilibrium is not possible. This feature is not always shared

by the F< Fc case. That is, there are some values of the constants a, b,











c, f, E and F, with F< Fc, such that the wall is in stable equilibrium. In

particular, choose r=0 and let b be greater than 4. Choose a,c, and f as

follows: a=-3b2, c=6b2, f=9b3. Then using these choices in equation
(2.48) results in


V'(R) = 6b2(-R5+3bR2-3bR+R-2) + 2R-3. (2.53)


It follows from (2.53) that V'(1)=2, so that in particular


V'(1)>0 (2.54)


Now define a by a=(3b2)-1/8. Note that a
obtain


V'(a)=6b2a-2(1+, 3-35/8bl/4) (2.55)


Since b>4 it follows that V'(a)<0. This means V' changes from negative

to positive as R goes from a to 1, and hence there must be a local
minimum at some value of R in that interval. It follows that for
certain energies the one-dimensional motion in the potential V(R) is
an oscillation about a point of stable equilibrium. The wall, therefore,
can undergo spherical ocillations about a radius of stable equilibrium.

Since y(R) is smooth in the parameters (a, b, c, f, F), any set of











parameters sufficiently near the ones given will also give a V(R)
which has a local minimum and thus give rise to walls with similar
dynamics.


Case 2: c=0. f*0


Under these conditions, it follows from equation (2.49a) that

a=0. Thus m+=m =0 and the space-times M+ and M- are both regions

of de Sitter space-time. From equation (2.48) it follows that


V(R) = -b2R6-4 R4F-2 fR2. (2.56)


It follows from (2.56) that V(R) is unbounded below as R-+*. It also
follows from (2.56) that the behavior of V(R) as R-*0 depends on the

value of F. For r<1/2, V(R) is unbounded below as R-+0. For F=1/2,

limR,0 V(R)=-I. For F>1/2, limR,0 Y(R)=O. For 1>1/2 it follows from

equation (2.56) that V(R) has no stationary points. For F<1/2 one can

show using (2.56) that Y(R) has exactly one maximum and no other

stationary points. In this latter case, let Vmax and Rs be respectively

the maximum value of V(R) and the value of R at which V(R) attains

this maximum. Then the possible motions of the wall depend on F,

Vmax, and E. For F<1/2, E< Vmax the possible motions of the wall are

as follows: (i) the wall appears with zero size, expands to a maximum











R less than Rs, contracts to zero size and disappears; (ii) the wall

contracts from unbounded size to a minimum R greater than Rs and

then expands to unbounded size. For F<1/2, E= Vmax the possible

motions of the wall are: (i) the wall remains in unstable equilibrium

with R=Rs; (ii) the wall appears with zero size and expands with R

asymptotically approaching Rs; (iii) the wall contracts from

unbounded size with R asymptotically approaching Rs; (iv) the

time-reverse of the motion in (ii); (v) the time-reverse of the motion

in (iii). For r<1/2, E>Vmax the possible motions of the wall are as

follows: (i) the wall appears with zero size and expands to unbounded

size; (ii) the time-reverse of the motion in (i). For F=1/2, E<-l the

motion of the wall is as follows: the wall contracts from unbounded

size to a minimum R and then expands to unbounded size. For F=1/2,
E=-1 the possible motions of the wall are as follows: (i) the wall
contracts from unbounded size with R asymptotically approaching

zero; (ii) the time-reverse of the motion in (i). For r=1/2, E>-1 the

possible motion of the wall is: (i) the wall contracts from unbounded
size to zero size and disappears; (ii) the time-reverse of the motion in

(i). For r>1/2 the motion of the wall is as follows: the wall contracts
from unbounded size to a minimum R and then expands to
unbounded size.











Case 3. c0O. f=0


From equation (2.49b) it follows that b=0. Thus A+=A_=0;

therefore the vacuum energy outside the wall is zero and the
space-times M+ and M- are both regions of Schwarzschild space-time.
It then follows from equation (2.48) that


V(R)= -a2R-4F-R4F-2-cR-l. (2.57)


It follows from (2.57) that V(R) is unbounded below as R-*0. For F>1/2
it follows from equation (2.57) that V(R) is unbounded from below as

R-**. For F=1/2, limR-+* V(R)=-1. For F<1/2, limR* VY(R)=0. For <11/2

it follows from equation (2.57) that V(R) has no stationary points.

Once can show using equation (2.57) that for 1>1/2, V(R) has exactly

one maximum and no other stationary points. For F>1/2 define Rs and

Vmax as before. The possible motions depend on F, Vmax, and E. For

F
size, expands to a maximum R, contracts to zero size and disappears.

For F=1/2, E<-1 the motion of the wall is as follows: the wall appears
with zero size, expands to a maximum R, contracts to zero size and

disappears. For F=1/2, E > -1 the possible motions of the wall are as

follows: (i) the wall appears with zero size and expands to unbounded











size; (ii) the time-reverse of the motion in (i). For F>1/2, E< Vmax the

possible motions of the wall are as follows: (i) the wall appears with

zero size, expands to a maximum R less than Rs, contracts to zero size

and disappears: (ii) the wall contracts from unbounded size to a

minimum R greater than Rs and then expands to unbounded size. For

[>1/2, E=Vmax the possible motions of the wall are as follows: (i) the

wall remains in unstable equilibrium with R=Rs; (ii) the wall appears

with zero size and expands with R asymptotically approaching Rs; (iii)

the wall contracts from unbounded size with R asymptotically

approaching Rs; (iv) the time-reverse of the motion in (ii); (v) the

time-reverse of the motion in (iii). For F>1/2, E> Vmax the possible

motions of the wall are as follows: (i) the wall appears with zero size
and expands to unbounded size; (ii) the time-reverse of the motion in

(i).


Case 4: c=f=0


From equations (2.49a) and (2.49b) it follows that a=b=0. Thus

A+=A_=m+=m =0 and M+ and M- are both regions of Minkowski

space-time. It then follows from equation (2.48) that


(2.58)













For F<1/2 it follows from equation (2.58) that limR- Y(R)=0, V(R) is

unbounded from below as R- 0 and V(R) has no stationary points. For

F=1/2, it follows from (2.58) that V(R)=-I. For F>1/2, limR,0 V(R)=O,

V(R) is unbounded below as R- and V(R) has no stationary points.

The dynamics of the wall depend on F and E. For F>1/2 the motion of

the wall is as follows: the wall contracts from unbounded size to a

minimum radius and then expands to unbounded size. For r=1/2, E=-l

the motion of the wall is as follows: the wall remains with R at a fixed

value. For r=1/2, E >-1 the possible motions of the wall are as follows:

(i) the wall appears with zero size and expands to unbounded size; (ii)

the time-reverse of the motion given in (i). For F<1/2 the motion of

the wall is as follows: the wall appears with zero size, expands to a
maximum radius, contracts to zero size and disappears.


Global Structure


The wall space-time consists of two regions of Schwarzschild-de
Sitter space-time attached along timelike spherically symmetric
surfaces. Thus we first examine the global structure of
Schwarzschild-de Sitter space-time. The expression given for the
Schwarzschild-de Sitter metric in equation (2.1) is badly behaved at

points where F=0; however the curvature scalar aRabcd cd diverges











only as r- 0. Thus the coordinate system in equation (2.1) covers a
region of the manifold where F is nonzero and may not cover the
entire space-time. It is desirable to find a coordinate system which
does cover the entire space-time. To do this, first examine the
behavior of radial null geodesics.
Consider the two-dimensional metric


ds2 = -Fdt2 + F-ldr2. (2.59)


Null geodesics in this metric are the same as radial null geodesics in
the metric of equation (2.1). In the two dimensional metric of
equation (2.59) let ka be the tangent vector to a null geodesic with

affine parameter X. Then there is a constant o such that


o= ka(a/at)a = -F(dt/dX) (2.60)



Since kaka=0 it follows that



0 = -F(dt/d,)2 + F-1(dr/d,)2 =

SF-1 {(dr/dX)2-2}. (2.61)


Thus


(2.62a)


r = tco + ci, and











t = c2 -F-1dr (2.62b)


where cl and c2 are constants. If F is nonzero for all values of r then

it follows from equations (2.62a-b) that for any incomplete null
geodesic, r approaches zero as the affine parameter approaches the

limiting value. If F is zero for some value of r, let ro be the smallest

such value. The it follows from equations (2.62a-b) that the

space-time has incomplete null geodesics for which r approaches ro as

the affine parameter approaches the limiting value.
Introduce the coordinates u and v by


u -t + fOr F-l(r)dr, (2.63a)



v= t + Or F-l(r)dr. (2.63b)


Then the metric in the coordinates (u,r) is


ds2 = 2dudr Fdu2, (2.64)


and in the coordinates (v,r),


ds2 = 2dvdr Fdv2. (2.65)











The metric in equation (2.64) is smooth for < u < and 0< r< *.

For 0< r < ro the metrics in equations (2.64) and (2.59) are isometric.

Thus the space-time in equation (2.64) is an extension of the
space-time in equation (2.59). The corresponding results hold for the
metric in equation (2.65). Using equations (2.63a-b), one finds that

for 0 < r < ro the (u,r) coordinate patch and the (v,r) coordinate patch

overlap. The overlap map is


v= -u + 2f rF -(r)d. (2.66)


This larger space-time contains both the (u,r) coordinate patch and
the (v,r) coordinate patch. In general it takes more than one (u,r) and
one (v,r) coordinate patch to cover the entire space-time. Introducing
the appropriate (u,r) and (v,r) coordinate patches and appropriate
overlap maps, it is possible to obtain a space-time with the property
that, on every incomplete null geodesic, r approaches 0 as the affine
parameter approaches its limiting value. The extended space-time
with this property is called the complete extension.
To display some information about the complete extension in a

simple graphic form, introduce coordinates and such that the

metric has the form ds2= 0 2(-d2 + dN2) for some function Q and

such that all null geodesics approach finite values of and y as their

affine parameters tend to or to a limiting value. Then in the (,Vy)











plane draw the limit points of the null geodesics (including those at
"infinite affine parameter"). These points can be regarded as a
boundary attached to the space-time. Also draw in the points where
F=0. Points representing a curvature singularity are drawn with a
sawtooth line. In the case m=0 there is no curvature singularity and
the points at r=0 are drawn with a dotted line. Each point of the
resulting diagram (called a Penrose diagram) can be regarded as a
2-sphere of symmetry in Schwarzschild-de Sitter space-time. Since
radial null geodesics are lines which make an angle of 450 with the
vertical, it follows that the path of the wall, which is a timelike curve
on this diagram, always makes an angle of less than 450 with the
vertical. In drawing the Penrose diagram, choose a time orientation
for the space-time. Choosing the opposite time orientation simply
results in the same diagram "upside down."
The nature of the complete extension depends on the values of

m and A. Recall that only the cases where A and m are nonnegative

are considered here. There are two "generic" cases: (i) 9m2A > 1, (ii)

0<9m2A<1; and four "exceptional" cases: (i) 9m2A=1, (ii) m=A=0, (iii)

m=0, A*0, (iv) m*0, A=0. The second generic case is covered in

reference 25 and last three exceptional cases are covered in reference
26, so the results for these cases will be only briefly presented. Some
information about the first generic and first exceptional cases is
presented in reference 16.

In the generic case 9m2A>l, it follows from equation (2.2) that










F<0 for all r. Thus the (r,t) coordinate patch covers the complete

extension. Define the coordinates and xV and the constant ,. by



S= t (2.67)

S-Or F-1(r)dr (2.68)

= limr-+*. (2.69)


Then it follows from equation (2.59) that


ds2 = -F(-dA2 + dy2). (2.70)


The points at 4=0 correspond to r=0; those at = 00. correspond to r=-.

The Penrose diagram of this space-time is shown in figure 1, page 42.
The lines are labelled with the corresponding values of r.

In the exceptional case 9m2A=1, it follows from equation (2.2)

that F and (dF/dr) vanish at r=ro where ro=3m. For all r*ro, F(r)<0.

The complete extension is covered with coordinate patches (un, r) and

(vn, r), one for each integer n. The metric on each (un, r) coordinate

patch has the form given in equation (2.64) and in each (vn, r)

coordinate patch the metric has the form given in equation (2.65).

Each (un, r) coordinate patch overlaps with the (vn, r) coordinate











patch for r>ro and with the (vn+1, r) coordinate patch for r< ro. The

overlap maps are, for r>ro


Vn =Un 2f r** FI(r)dr,


(2.71)


and for r< r


Vn+1 = -un + 2f r F-1(r)dr.


(2.72)


Using the geodesic equation one can show that all null geodesics in

this space-time either have r=ro and are complete or have r take on

all values between 0 and and are incomplete only as r 0.

Next, introduce the coordinates 5 and y as follows: for 0< i< r

define un and vn in terms of 5 and y as follows: for

(27n-)

un = cot{((+V)/2.


(2.73)


For {27(n-1) + }

vn= cot{(--V)/2).


(2.74)












Define r in terms of and y as follows: for Ay + =27nn or V-z=27n, r=ro.

For other values of y and t (with 0<
(2.74) and either (2.71) or (2.72). Then it follows that un and vn are

C" functions of 4 and y and that r is a C1 function of 4 and V. The

metric in the and y coordinates is


ds2= -F(-d42 + dv2){4sin2[(4+V)/2]sin2[(4-v)/2] }-1, (2.75)


where r is regarded as a function of 4 and y and the metric

coefficients are defined by continuity at those points where r=ro. The

Penrose diagram for this space-time is shown in figure 2, page 43.

The geodesic limit points with r=0 occur at 4=0, W*27in; those with r=*

occur at =Tc, yV(2n+l)t; those with r=ro occur at =0, y=2nn and =Tn,

V=(2n+l)7r.

The Penrose diagram for the space-time with 0<9m2A shown in figure 3, page 44.25 In this case, F(r) vanishes at two values

of r, designated r+ and r.

Finally the results for the last three exceptional cases will be

presented.26 The case m=A=0 is Minkowski space-time. Here F=l and
there is no curvature singularity. The Penrose diagram for Minkowski

space-time is shown in figure 4, page 45. The case m=0, A*0 is de











Sitter space-time, with F=0 at r=(3/A)1/2 and no curvature

singularity (figure 5, page 46). The case m*O, A=0 is Schwarzschild

space-time, where F=0 at r=2m (figure 6, page 47).

There are many possibilities for the global structure of the wall
space-time. Each of the manifolds M+ and M- is a region of
Schwarzschild-de Sitter space-time with a boundary which is a
timelike spherically symmetric surface. Thus the Penrose diagram of
M+ or M- consists of a piece of one of the Penrose diagrams of figures
1-6 bounded by a timelike curve. The Penrose diagram of the wall
space-time consists of the Penrose diagrams for M+ and M- with the
boundaries identified at corresponding values of r. Figure 7, page 48,
is the Penrose diagram for one possible wall space-time. In this case

9m+ 2A>l and 0<9m 2A_<1. The curved dotted lines represent the

paths of the wall in M+ and M- and are identified.























r=co












r=O


Figure 1. The Penrose diagram for Schwarzschild-de Sitter
space-time in the case 9m2A>1.






















r=oo r=oo r= oo




ro0 o ro ro






r=0 r=0

Figure 2. The Penrose diagram for Schwarzschild-de Sitter
space-time in the case 9m A=l.









44










r=0 r=O
r=oo T=oo









rT=oo r=o
r=O r=0

Figure 3. The Penrose diagram for Schwarzschild-de Sitter
space-time in the case 0<9m2A



















t=00


r=oo







r=O





r= oo

t=-oo








Figure 4. The Penrose diagram for Minkowski space-time
(m= A = 0).














r=00






ro ro

r=O
rr=0

















(m=O, A* 0). Here, ro-(3/A)1/2






















r=0


r=oo "r=oo




r=oo r=oo


r=0



Figure 6. The Penrose diagram for Schwarzschild space-time
(m*0, A=0). r = 2m and t = O on the inner diagonals.





















r=O r=oo r=oo










r=0 r=0


Figure 7. The Penrose diagram for a possible spherical
wall space-time. 9m+2A>l, 0<9m 2A<1. The dotted lines
are identified.










Planar Walls


To find the motion of a planar wall one must first find two
solutions of the vacuum Einstein equation with cosmological constant
with planar symmetry. A space-time has planar symmetry if its
symmetry group contains the symmetry group of the Euclidean
2-plane. The general planar symmetric solution of the vacuum Einstein

equation with cosmological constant A has the form23


ds2 = -Hdp2 + 2drdp + r2(dx2 + dy2) (2.76)


where the function H is defined by


H = y/r Ar2/3 (2.77)


and y is a constant. The surfaces of constant r and p are surfaces of

planar symmetry. In the case y*0 this space-time has a curvature

singularity at r=0, while y=0 corresponds to de Sitter space-time, and

y=A=0 is Minkowski space-time.

There is another type of planar symmetry in Minkowski
space-time. Writing the Minkowski metric in the usual Cartesian
coordinates,


ds2 = -dt2 + dz2 + dx2 + dy2,


(2.78)













it is manifest that the surfaces of constant t and z are surfaces of
planar symmetry. However, the volume element on these surfaces is
independent of t and z. This form of planar symmetry is therefore not
suitable for describing an expanding or contracting wall and will not
be considered here.

In the case where y 0 or A*0 one can rewrite the metric in

equation (2.76) by introducing the coordinate p defined by

p=-13+fH-1dr. Then the metric in equation (2.76) is given by


ds2 = -Hdp2 + H-dr2 + r2(dx2 + dy2) (2.79)


This is similar to the expression in equation (2.1) for the spherically
symmetric case.
Choose M+ and M- to be space-times with metrics of the form

given in equation (4.1). Let A+ and y+ be the values of the constants A

and y in M+, respectively, and in the same way define A_ and y_. Here,

only the cases where both A+ and A_ are greater than or equal to zero

will be considered.
The procedure for treating planar walls and deriving their
equation of motion is completely analogous to the method used in the
last section for spherical walls. Therefore we omit the derivation and
simply present the results. The wall hypersurface is specified by a











relation of the form


r = R() ,


(2.80)


where X is proper time on a world-line tangent to the wall and

orthogonal to the 2-planes of symmetry. The energy density of the
wall is given by


Y = 2c0 K_1R2F-2


(2.81)


where co is a constant. The equation of motion of the wall is



s+{H, + (dR/dX)2 }1/2 s_ H_ + (dR/dX)2} 1/2= CR2-1. (2.82)



The quantities H+ and H_ denote the values of H on I+ and I-

respectively. The constants s+ and s_ are defined as in the spherical

case. From equation (2.82) obtain


(dR/dX)2 = (H_- H+)2(2coR2F-1)-2 + co2R4-2/4 -


-(H+ + H_)/2 .


(2.83)


Then, using equation (2.77), obtain












(dR/dk)2= {(7_- y+)+(1/3)(A+- A_)R3 2(2coR2F)-2 + (1/4)co2R4-2


-(1/2)(y + y_)R-1 + (1/6) (A + A_)R2 .


Define the constants a, b, c, and f and the variable .k by


a (y_- y+)/co2

b (A+- A_)/3co2,

2
c -2(y++y_)/co2,

f- 2(A++ A_)/3co2,

2= cok/2


Then equation (2.84) becomes


(dR/d.)2 + V(R) = 0 ,


where V(R) is given by


Y(R) -{aR-2F+ bR3-2)2 R4F-2 cR-1 fR2.


Equation (2.86) is the equation of motion for a particle with zero


(2.84)


(2.85a)

(2.85b)

(2.85c)

(2.85d)

(2.85e)


(2.86)


(2.87)











energy moving in one dimension in a potential V(R). The variable R
takes on values in the open interval (0, *). The special case a=b=f=0
has been treated in references 4,5,6, and 7.

Since A+ and A_ are nonnegative, it follows that



21b < f. (2.88)


Thus the constant f is nonnegative also. Note, however, that there is no
restriction on the sign of the constant c. Consider the case c >0. It then
follows from equation (2.87) that V(R)<0 for all R. The motion of a
particle of zero energy has no turning points in a potential that is

everywhere negative. If a, c, and F satisfy the special conditions a=c=0,

F>1/2, then limR 0 V(R)=0 and the possible motions of the wall are as

follows: (i) the wall contracts from unbounded values of R with R

asymptotically approaching zero; (ii) the time reverse of the motion in

(i). If these special conditions on a, c, and F are not satisfied then the

possible motions of the wall are as follows: (i) the wall appears with
R=0 and expands forever to unbounded values of R; (ii) the time
reverse of the motion in (i).
Next consider the case c<0. Introduce the variable Z by


Z= R32. (2.89)











Note that Z is a monotonic function of R; thus dZ/dL, has the same sign

as dR/d&.. Rewriting equation (2.86) in terms of the variable Z results
in


(4/9)(dZ/dk)2 + W(Z) = c (2.90)


where the function W(Z) is defined by


W(Z) -Z(2-8F)/3{a+bZ2}2 z(8F-2)/3- fZ2. (2.91)


Equation (2.90) is the equation of motion of a particle of mass 8/9 and
energy c moving in a potential W(Z).
Next, examine the properties of the function W(Z). Consider a
"generic" case: F*l/4, a*0 and three "exceptional" cases: (i) F=l/4, a*0;

(ii) 1/4, a=0 and (iii) F=1/4, a=0.


Case 1: r 1/4. a*0


From equation (2.91) it follows that W(Z) is unbounded from
below both as Z 0 and as Z-+*-. Thus W(Z) must have at least one local

maximum. There is a number Fc such that if F>Fc then W(Z) has

exactly one local maximum and no other stationary points. To see this,

let Zs be a stationary point of W(Z) and let a prime denote










differentiation with respect to Z. Then W'(Zs)=0. It then follows from

equation (2.91) that


W"( Z ) = {Z-I[ZW']'}( Zs)

= -(4/9) Zs(-4-8F)/3{a2(4F-1)2+2ab(4F-4)2 Zs2+ b2(4F-7)2 Z4 -


-(4/9)(4F-1)2 Zs(8F-8)/3 4f.


(2.92)


Rearranging terms on the right-hand side, arrive at


W"( Zs) = -(4/9)(4F-1)2 Zs(-4-8)/3 { a+b(4F-4)2(4'-1)-2 Zs22 +

+ 128b2(4F-1)-2 ZS(8-8r)/3 {I-(8+3/2)8-1 {F-(8-3/2)8-1 -


-(4/9)(4F-1)2 Zs(8F-8)/3 4f.


(2.93)


All terms on the right-hand side of (2.93) are manifestly negative
except for the second term. In the second term, since F<1 it follows

that the factor r-(8+3v2)8-1 is negative. Now define the number Fc by


Fc (8-3/ 2)/8


(2.94)


Then if F>Fc it follows that the second term on the right-hand side of

(2.93) is manifestly negative. Consider the case F>Fc. Then W"( Zs) is











negative. Thus W( Zs) is a local maximum. This means any stationary

point of W(Z) is a local maximum. Since W(Z) is smooth it follows that
it can have at most one maximum, and since it has at least one
maximum, it has exactly one maximum.

Let Wmax be the maximum value of W(Z) and let Zs be the

value of Z at which W(Z) attains this maximum. Define Rs by Rs- Zs2/3

For c>Wmax the possible motions of the wall are as follows: (i) the

wall appears with R=0 and expands to unbounded values of R; (ii) the

time reverse of the motion in (i). For c= Wmax the possible motions of

the wall are as follows: (i) the wall is in unstable equilibrium with

R=Rs; (ii) the wall appears with R=0 and expands with R asymptotically

approaching Rs; (iii) the wall contracts from unbounded values of R

with R asymptotically approaching Rs; (iv) the time reverse of the

motion in (ii); (v) the time reverse of the motion in (iii). For c< Wmax

the possible motions of the wall are as follows: (i) the wall appears

with R=0, expands to a maximum R less than Rs, contracts to R=0 and

disappears; (ii) the wall contracts from unbounded values of R to a

minimum R greater than Rs and then expands to unbounded values of

R.

The generic case when F<.Fc is more difficult, but, as in the

spherical case, it is possible to demonstrate that for some choices of










the parameters a, b, c, f, and F the wall can undergo oscillations about
a point of stable equilibrium. Let F be any number satisfying 0<.<1/4.
Choose a=-2b and f=b2. Note that for this choice of f to be compatible
with equation (2.88) one must have b2>4. Then, using equation (2.81),
find


W'(Z)=-(2/3)b2Z-(1+8F)/3(Z2-2) {(7-4F)Z2+ (8F-2)} -


-2b2Z + (2/3)(1-4)Z(8F-5)/3 (2.95)


From (2.95) it follows that


W'(1) = (2/3)b2(2+4F) + (2/3)(1-4r), (2.96)


so W'(1)>0. Define Z1 by Zl~{(2-8F)/(7-4F) 1/2. Then Zl<1 and



W'( Zp)=-2Zl{b2-(1/3)(1-4r)Zl(8F-8)/3 }. (2.97)


Choose b so that b2>(1/3)(1-4F) Z(8F-8)/3. Then from (2.97) it follows

that W'( Z1) < 0. Therefore it follows that W(Z) has a local minimum at

some Z between Z1 and 1. Hence for some values of the "energy" c and

initial value of R the wall undergoes oscillations about a point of stable











equilibrium.


Case 2: F=1/4. a*0


From equation (2.91) it follows that


W(Z) = -(a+bZ2)2 1 fZ2. (2.98)


From equation (2.98) the following properties hold for the function
W(Z): (i) if (2ab+f)<0 then W(Z) has exactly one local maximum and no
other stationary points; (ii) if (2ab+f)>0 then W(Z) has neither local
maxima nor local minima; (iii) limZ,0W(Z)=-(l+a2); (iv) if f=O then

(from equation (2.88)) b=0 and W(Z)=-(1+a2). Recall that Z takes on
values only in the open interval (0, *), so one must take limits as Z- 0
and Z=0 cannot considered as a possible location for a minimum or

maximum of W(Z). For (2ab+f)<0 let Wmax be the maximum value of

W(Z), let Zs be the value of Z at which this maximum is achieved, and

let Rs be given by Rs=Zs2/3. The dynamics of the wall depend on 2ab+f

and c. For (2ab+f)<0, c>Wmax the possible motions of the wall are as

follows: (i) the wall appears with R=0 and expands to unbounded
values of R; (ii) the time-reverse of the motion in (i). For (2ab+f)<0,

c=Wmax the possible motions of the wall are as follows: (i) the wall is











in unstable equilibrium with R=Rs; (ii) the wall appears with R=0 and

expands with R asymptotically approaching Rs; (iii) the wall contracts

from unbounded values of R with R asymptotically approaching Rs;

(iv) the time-reverse of the motion in (ii); (v) the time-reverse of the

motion in (iii). For (2ab+f)<0, -(1+a2)< c
the wall are as follows: (i) the wall appears with R=0, expands to a
maximum value of R less than Rs, contracts to R=0 and disappears; (ii)

the wall contracts from unbounded values of R to a minimum value of

R greater than Rs and then expands to unbounded values of R. For

(2ab+f) <0, c <-(1+a2) the wall contracts from unbounded values of R

to a minimum value of R greater than Rs and then expands to

unbounded values of R. For (2ab+f) >0, c >-(l+a2) the possible motions
of the wall are: (i) the wall appears with R=0 and expands forever to
unbounded values of R; (ii) the time-reverse of the motion in (i). For
(2ab+f)>0, c<-(l+a2) the wall contracts from unbounded values of R to a
minimum value of R greater than Rs and then expands to unbounded

values of R. For (2ab+f)>0, f*0, c=-(l+a2) the possible motions of the
wall are as follows: (i) the wall contracts from unbounded values of R
with R asymptotically approaching zero; (ii) the time-reverse of the
motion in (i). For f=0, c=-(l+a2) the wall remains with R at any
constant value.











Case 3: r*1/4, a=0


From equation (2.91) it follows that


W(Z) = -b2Z(14-8r)/3 Z(8F-2)/3 fZ2. (2.99)


From (2.99), the following properties hold for the function W(Z): (i) if

r>1/4 then limZ,0W(Z)=0 and W(Z) has no stationary points; (ii) if

F<1/4 and f=0 then b=0, limZ,*.W(Z)=0 and W(Z) has no stationary

points; (iii) if F<1/4 and f*0 then W(Z) has exactly one maximum and

no other stationary points. For r<1/4, f*O define Wmax, Zs, and Rs as

before. The dynamics of the wall depend on the values of F, f, and c.

For F>1/4 the wall contracts from unbounded values of R to a
minimum value of R and then expands to unbounded values of R. For

r
R, contracts to R=0 and disappears. For F<1/4, f*0, c>Wmax the

possible motions of the wall are: (i) the wall appears with R=0 and
expands forever to unbounded values of R; (ii) the time-reverse of the

motion in (i). For F<1/4, f*0, c=Wmax the possible motions of the wall

are:(i) the wall remains in unstable equilibrium with R=Rs; (ii) the wall

appears with R=0 and expands with R asymptotically approaching Rs;











(iii) the wall contracts from unbounded values of R with R

asymptotically approaching Rs; (iv) the time-reverse of the motion in

(ii); (v) the time-reverse of the motion in (iii). For r<1/4, f*0, c
the possible motions of the wall are: (i) the wall appears with R=0,

expands to a maximum value of R less than Rs, contracts to R=0 and

disappears; (ii) the wall contracts from unbounded values of R to a

minimum value of R greater than Rs and then expands to unbounded

values of of R.


Case 4: F=1/4, a=0


From equation (2.91) it follows that


W(Z)= -b2Z4 1 fZ2 (2.100)


From (2.100) the following properties hold for the function W(Z): (i)

limZOW(Z)=-l; (ii) if f=0 then W(Z)=-1; (iii) if f*0 then W(Z) has no

stationary points. The dynamics of the wall depend on the values of f
and c. For c>-1 the possible motions of the wall are: (i) the wall
appears with R=0 and expands forever to unbounded values of R; (ii)
the time-reverse of the motion in (i). For c=-l, f 0 the possible
motions of the wall are: (i) the wall contracts from unbounded values
of R with R asymptotically approaching zero; (ii) the time-reverse of











the motion in (i). For c=-l, f=0 the wall remain at any constant value of
R. For c<-l, f must be nonzero and the wall contracts from unbounded
values of R to a minimum value of R and then expands to unbounded
values of R.


Global Structure


The global structure of the wall space-time consists of two
regions of space-times of the form given in equation (2.76) attached
along timelike plane symmetric surfaces. Begin by considering the
properties of plane orthogonal null geodesics, that is, null geodesics
which are orthogonal to the symmetry 2-planes. Consider the two
dimensional metric


ds2 = 2drd3 Hd32. (2.101)


Null geodesics in this metric are the same as plane-orthogonal null
geodesics in the metric of equation (2.76). If H is nonzero for all values

of r then one can show that for any incomplete null geodesic in the
metric of equation (2.101) r approaches zero as the affine parameter
approaches its limiting value. If H vanishes at some value of r,
introduce new coordinates to extend the space-time. In either case,
obtain a space-time, the complete extension, in which any incomplete
null geodesic has the property that r approaches zero as the affine











parameter approaches its limiting value.
To illustrate the properties of the complete extension, introduce

coordinates 4 and y such that the metric has the form

ds2=Q2(-d42+dy2) for some function C1 and all null geodesics approach

finite values of 4 and y as their affine parameters tend to + or to a
limiting value. Then produce the Penrose diagram of the space-time

by drawing, in the 4,y plane, the limit points of the null geodesics and
the places where H vanishes. Each point in the Penrose diagram can be
regarded as a 2-plane in the four-dimensional space-time. Curvature

singularities are again represented by sawtooth lines; if y=0 then there
is no curvature singularity and the places where r=0 are represented
by broken lines.

The nature of the complete extension depends on the values of y

and A. There are two "generic" cases: (i) y<0,A>0; (ii) y>O, A>0; and four

"exceptional" cases: (i) y=A=-; (ii) y=0, A>0; (iii) y>0, A=-; (iv) y<0, A-0.

In the generic case y<0, A>0, it follows from equation (2.77) that

H<0 for all r. Thus the (P,r) coordinate patch covers the entire

space-time. Define the coordinates 4 and y and the constant .* by



S-f0rH-1 (r)dr (2.102)

V 3 + (2.103)

*= limr-*.4 (2.104)












It then follows from equation (2.101) that


ds2 = -H(-d2 + dy2) (2.105)


The points at t=0 correspond to r=0; those at S=*. correspond to r= *.

The Penrose diagram of this space-time is shown in figure 8, page 70.

In the generic case y>0, A>0, define the constant cl by



cl {33y/A}1/3. (2.106)


Then it follows from equation (2.77) that


H= (A/3r)(c13 -r3). (2.107)


Thus H(cl)=0. For r< cl, H>0; for r>cl, H<0. The coordinates in equation

(2.101) only cover part of the space-time, so new coordinates must be
introduced to extend the space-time. Define the function S(r) by


S(r) = (4/3Ac12r)(r2+ clr + c12)3/2 X

X expf(3 {(n/6)-tan-1 [(2r+c1)/cl,/3] } (2.108)











Then for r< cl it follows from equations (2.107) and (2.108) that



(d/dr){ln(S/H)} = AcH-1. (2.109)


For r< c1 define the coordinates A and B by



A= exp{-Acclp/2}, (2.110)

AB= (2/Acc)2H/S (2.111)


Then, using equations (2.101) and (2.109-2.111), obtain


ds2 = SdAdB (2.112)


Here r is a function of A and B given by equation (2.111). The metric
in (2.112) is smooth for all values of A and B. The region A>0, B>0 is

isometric to the (p, r) coordinate patch. This space-time is the complete
extension of the space-time of metric (2.101).

Define the coordinates 5 and y by


A =tan{((v-)/2} (2.113)

B = tan{(v+t)/2) (2.114)











Then, using equations (2.111) and (2.112), obtain


ds2 = {4cos2[(N-4)/2]cos2[(v+)/2]}-1S(-d42+ dV2), and (2.115)

{(cos-cosV)/(cos4+cosV)} = (2/Ac1)2H/S (2.116)


The points at r=0 correspond to y=-n/2 or V=n/2; those at r=*

correspond to cos4=-cos(V)tanh(7t/2I 3) The Penrose diagram for this
space-time is shown in figure 9, page 71.

In the exceptional case y=A=0, H=0 and thus


ds2 = 2drd3 (2.117)


All null geodesics in this metric either have r=constant and P varying

linearly with the affine parameter, or P=constant and r varying
linearly with the affine parameter. Thus on all incomplete null
geodesics r approaches zero as the affine parameter tends to its
limiting value. Introduce the coordinates 5 and V by


r = tan{(v+t)/2} (2.118)

S= tan ((V-)/2} (2.119)


Substituting into equation (2.117) results in










ds2= {2cos2[(V+4)/2]cos2[(N-4)/2] -1 {-d2 + dV2) (2.120)


The points at Ny+=0 correspond to r=0; those at N+4=nC correspond to
r=*. The Penrose diagram for this space-time is in figure 10, page 72.
In the last three exceptional cases, H is nowhere zero and thus
the (3, r) coordinate patch covers the entire space-time. In the cases

where H>0 introduce the coordinates 5 and y by


3 = tan{(V-)/2} (2.121)
2fH-ldr= sin(y) {cos[(V+4)/2]cos[(y-4)/2])-1. (2.122)


In cases where H<0, introduce the coordinates N and 5 by


0 = tan{((-V)/2) (2.123)
2fH-ldr= sin(v) {cos[(t+v)/2]cos[(-V)/2] }-1. (2.124)


In both cases the metric (2.101) takes the form


ds2= {4cos2[(4+/)/2]cos2[(4-V)/2] }-1HI {-dd2 + dy2} (2.125)


In the exceptional case y=0, A>0, H= -Ar2/3<0. Using equation
(2.124) obtain











(6/Ar) = sin(v) cos[L( +V)/2]cos[((-v)/2] -1. (2.126)


Solving for r and substituting into (2.125) results in


ds2 = (3/A) {-d[ 2 + dy2} /sin2S (2.127)


The points at 4+y=Tt or -V=7tt correspond to r=0; those at =0 correspond
to r=*-. The Penrose diagram for this space-time is figure 11, page 73.

In the exceptional case y>0, A=0, H=y/r>0. Using equation (2.122)
results in


r2/y = sin(v) {cos[(v+)/2]cos[(v-4)/2] }-1. (2.128)


Solving for r and subtituting into (2.125), obtain the metric


ds2={16y-1sin(y)cos3[(yV+)/2]cos3 [(V-_)/2] }-1/2{ d42 + dy2}. (2.129)


The points at V=0 correspond to r=0; those at yV+=n or Vy-=t correspond
to r=*. The Penrose diagram for this space-time is figure 12, page 74.

Finally, in the exceptional case y<0, A=0, H=y/r<0. From equation
(2.124) arrive at


r2/y = sin(v){cocos[(+N-)/2]cos[(-V)/2]}-1


(2.130)













As before, use this and equation (2.125) to get


ds2= { 16y-sin()cos3[(W+)/2]cos3[(v-t)/2] }-1/2{-d2 + dN2).(2.131)


The points at =0 correspond to r=0; those at t+y=-xT or 5-y=-7

correspond to r=*. The Penrose diagram for this space-time is figure
13, page 75.
There are many possibilities for the global structure of the
planar wall space-time. The Penrose diagram for each of the manifolds
M+ and M- consists of a piece of one of the Penrose diagrams of figures
8-13 bounded by a timelike curve. The Penrose diagram of the wall
space-time consists of the Penrose diagrams of M+ and M- with the
boundaries identified at corresponding values of r. Figure 14, page 76,
is the Penrose diagram for one possible wall space-time. In this case

A+>0, y+<0, A_> 0, and y_> 0. The paths of the wall in M+ and M- are

identified.




















r= o


r=0



Figure 8. The Penrose diagram for the plane-symmetric
space-time in the case y<0, A>0.



















r=oo







r=O r=O








r=oo


Figure 9. The Penrose diagram for the plane-symmetric
space-time with y> 0, A > 0. The inner diagonals correspond
to r= c1.























r= oo


r=O


Figure 10. The Penrose diagram for the planar
symmetric space-time with y=A=O.





















N


r=O


r=O


r=00


Figure 11. The Penrose diagram for the plane-symmetric
space-time with y=0, A=O.
































r=O





rI'= 00











Figure 12. The Penrose diagram for the plane-symmetric
space-time in the case y > 0, A > 0.























r = 0
r=0













r=oo r= c00





Figure 13. The Penrose diagram for the plane-symmetric
space-time in the case y<0, A=0.

























r= OO








*


r=0
r=O



Figure 14. The Penrose diagram for a possible planar
symmetric wall space-time. A+>0, y+< 0, A_> 0, y_> 0.

The dotted lines are identified.














CHAPTER 3
THIN WALLS AND PLANE-SYMMETRIC FLUIDS
WITH PRESSURE EQUAL TO ENERGY DENSITY


Introduction


In this chapter the motion of a thin wall is treated in general
relativity for the case where the regions on either side of the wall are
filled with fluid. The fluid is taken to be irrotational and

plane-symmetric, with the pressure p equal to the energy density p.

As before, the wall is assumed to have the equation of state T = o ,

where 0 < F < 1 being the tension in the wall and a its

energy-density. Unlike the treatment in chapter two, the wall
space-times are taken to be completely reflection symmetric (as in

references 5,6, and 7) in order to make the equations tractable.

Mathematically, this means Kab+=-Kab-. A class of static space-times

is found to permit oscillatory solutions whenever F>l/4. In a

separate class, which includes a Robertson-Walker space-time, the
walls simply translate through space without turning points. The
treatment extends to fluid space-times previous results involving thin
walls in vacuum, as studied in references 5 and 6. The global structure
of the wall space-time is discussed in the final section of the chapter.
77











Taub-Tabensky Space-Times


To derive the metric, start from Einstein's equation, which is


Rab (1/2) Rgab = KTab ,with (3.1)



Tab = (P + P)uab + Pgab (3.2)



where p, p and ua are the energy density, pressure, and

four-velocity of the ambient fluid, respectively. Outside the wall the

scalar field 0 makes no contribution to Tab since 4 is approximately

constant and V(O) is taken to be vanishingly small.
Tabensky and Taub27 solved equation (3.1) under the

assumption that the energy density p equaled the pressure p, and that
the fluid was irrotational. With these conditions it follows from the

conservation of Tab that there exists a function F such that



ua = VaF/(-VcF VF)(1/2) (3.3)


and that equation (3.1) becomes


Rab = 2cpuaub = VaF VbF


(3.4)











The pressure and energy density of the fluid is given by


2Kp = 2Kp = -VcF VCF,


(3.5)


while the equation of motion is


VCVcF = O.


(3.6)


With the above equations and the assumption
symmetry, one can proceed as in Tabensky and Taub, and
solution


ds2 = + t-1/2exp()( -dt2 + dz2 ) + t( dx2 + dy2)


of plane
obtain the


(3.7)


where Q is an arbitrary line integral in the t-z plane,


Q = ft{( F,t2 + F,z2)dt + 2F,tF,zdz) ,


(3.8)


with comma designating partial derivative. In these coordinates F
satisfies


F,zz = F,tt + t1 F,t .


(3.9)











Note that either t or z can act as a time coordinate, depending
on the choice of sign in equation (3.7). The choice of solution in (3.9)
determines the metric.


Derivation of the Jump Conditions


The Tabensky-Taub space-time metric takes the form


ds2 = eH(t,z)(-dt2 + dz2) + t(dx2 + dy2) ,


(3.10)


where e= + 1 and H = -(1/2)exp(Q), with Q as defined in the previous

section. Specify the hypersurface I by z=P(t). Then in the coordinates

( t, z, x, y) a normal covector to I is given by


Na = (-P,t, 0, 0)


(3.11)


Thus the unit covector na and the F-fluid four-velocity va are given


na =jQ-(1/2)( -P't 1 ,0,0), and

Va Q-(1/2)( 1 ,-P,t,0,0 ),


(3.12)

(3.13)










where Q = eH-_[-(P,t)2 + 1] the norm of Na and 8 and j are +1 ,

corresponding to the two possible directions of these covectors. Using
(3.12) and (3.13) one can write


gab = -Vab + nanb + qab (3.14)


just as in equation (2.11). Here, qabdxadxb = t( dx2 + dy2) The

intrinsic metric of the wall will then be hab= -VaVb + qab With this

expression the extrinsic curvature can again be computed from
equation (2.13). A straightforward computation yields


n(va) = jeH-1I(Q-1/2 Pt),t + (Q-1/2)z}va (3.15)


n(qab) = jeHlt-l(Q-(1/2)Pt)qab (3.16)


and hence


Kab = -VabeH-1( L,t + j(Q-1/2),z) + (1/2)qabEH-lt-1L (3.17)


where L = jQ-1/2pt Equations (1.10), (3.14), and (3.17) give two

equations for Kab+- Kab- one in terms of the stress-energy of the

wall, and the other in terms of the purely geometric quantities of











equation (3.17). Equating the parts tangential and orthogonal to va
results in the jump conditions:


(1/2)eH + t- L+ (1/2)EH_-1 t-L_= -(1/2)ic ,


(3.18)


-eH -( L+,t + j+(Q-1/2),) + eH_-( L_,t + j_(Q_-1/2),) =


= (r- 1/2) ica .


(3.19)


From vaa = -1 and the above definitions a useful expression

for L can be found:


L = sH( (va at )2 -EH-1)1/2


(3.20)


Here s=+l, and will be interpreted in the following sections.
Substituting into equation (2.10) results in


(1/2)et-s((vav t)2 EH+-1)1/2 -(1/2)t-1 s_((a at)2 EH_-1)1/2


= -(1/2)K .


(3.21)


In the next two sections, the equations developed thus far will be used
to study the motion of thin walls in two particular Tabensky-Taub
space-times.











Static Space-Time


Choose F= az a a constant, for the solution of equation (3.9),

and let E =-1 in the metric (3.10), so that the four-velocity of the

ambient fluid will be timelike and at rest with respect to these
coordinates. Using equations (3.7) and (3.8) results in the metric:


ds2 = t-1/2exp(a2t2/2)(-dz2 + dt2) + t( dx2 + dy2) (3.22)


Note that z is the time coordinate here, and t a space
coordinate, so the metric is static. The energy density and pressure of
the fluid is


p = p = (1/2)K-la2tl/2exp(-a2t2) (3.23)


which is smooth for all t > 0. Before invoking the assumption of
reflection symmetry, it will be necessary to interpret the quantity s

in (3.20), and then examine (3.21) to determine what values of s+ and

s_ might be allowed. For e=-1 it follows that



naVat = n = -slLIH-1, (3.24)


which says that, in the direction of na, t decreases when s=l, and











increases when s=-l. Looking then at equation (3.21), it is clear that if

the energy density of the wall, a is to be positive, either s+=l and

s_=-l, or s+=s_=l with the additional proviso that H+ > H-1 The

assumption of reflection symmetry leaves only the former possibility.
Hence in a direction perpendicular to the wall and pointing into M+ t
is decreasing, and area elements are, from (3.22), shrinking. M+, as in
chapter two, is designated an "interior." Note that na points from M- to
M +, so the same calculation in M- must be done using -na This

means that s_=-1 also corresponds to an interior. Thus the wall

space-time will consist of two interiors glued together at the wall.
In view of the above considerations, it is now possible to

specialize equations (3.18) and (3.19) to the present case, Kab+=-Kab_:



-H -1 t-lL = -Ko/2 (3.25)

2H -IL+,t = (2F 1)Ko/2 (3.26)



Equations (8.4) and (8.5) can be integrated, yielding


L+ = Cot(2F-1)/2, (3.27)


and so the energy density of the r-fluid, from (3.18), is











o = 2ic-1CotF-lexp(-a2t2/2) .


(3.28)


From (3.18) (3.20) and (3.23) comes the equation of motion


I (v av a2 + H1 1/2 = Cotrexp(-a2t2/2).


(3.29)


Squaring both sides of this equation leads to the pseudo-Newtonian
energy equation


(vaVat)2 + V(t) = 0,


(3.30)


where


V(t) = tl/2exp(-a2t2/2)f 1 Co2t(4-1)/2exp(-a2t2/2) (3.31)


The effective energy of the F-wall is zero in these coordinates. The

motion of the wall can now be completely analyzed for every F.


Case 1: F< (1/4)


Write (3.31) as V(t)=t2Fexp(-a2t2){t(1-4F)/2- Co2exp(-2t2/2)}.

Note that the first multiplicative factor is positive definite for t > 0,











hence acts only as an amplitude. Focus the attention, therefore, on the

second term, (t(1-4F)/2- Co2exp(-a2t2/2)}. For small enough t, this

term is strictly negative, as long as CO is non-zero (as it must be, by

(3.23)). As t increases, t(1-4F)/2 increases monotonically, while the
exponential term similarly decreases. Therefore there will be a point

tmax at which V(t) ceases to be negative and becomes positive for all

t > tmax The possible motion of the wall is simple: it emerges from

t=0, expands to tmax and returns.


Case 2: F= (1/4)


In this case, (3.31) becomes


V(t) = tl/2exp(-a2t2){ 1 Co2exp(-a2t2/2)}. (3.32)


If ICol < 1, no motion is possible. If ICol > 1 then V will be negative

on (0, tmax) for some tmax and positive on (tmax ), as before. The

wall expands to tmax and then contracts.











Case 3: (1/4) < F


This case includes F= 1, corresponding to domain walls. Set

B(t)= { 1-Co2t(4F-l)/2exp(-c2t2/2)}, the second multiplicative factor on

the right-hand side of equation (3.31). Note that B(t) has one critical
point for t > 0, which clearly corresponds to a minimum. It then

follows that if the expression {[(4F-1)/4]-lln(Co2) + ln[(4r-1)/2a2]} is

less than one, no motion is possible, while if it is greater than or equal
to one there is a point of stability around which the wall may oscillate,
or remain at rest. Hence in this case the motion of the wall depends

critically on the choice of the parameters Co, a, and F.


Dynamic Space-Time


Choose F=b In(t), b a constant, for the solution of equation

(3.9), and let e = +1 in the metric (3.10). This gives


ds2 = to(-dt2+ dz2) + t(dx2 + dy2) (3.33)


where co=b2-1/2. The energy density and pressure of the fluid are


p = p = (1/2)&-lb2t-(o+2)


(3.34)











Again, the ambient fluid is at rest relative these coordinates.
The metric is singular at t = 0, and the wall space-time consists of two
interiors glued together, just as in the previous case. Proceeding in the

same way as before yields L+=-CotF-1/2. The energy density of the

F-fluid is given by


o = 2i-1CotF-co-3/2. (3.35)


An explicit expression for the ordinary velocity, dz/dt, can be easily
found:


dz/dt = +.Cot( C2t21 + 1 )-1/2 (3.36)



where p=F-(b2/2) (1/4) .While this expression can be exactly

integrated only for special values of the parameters, it is nonetheless
clear by inspection what the possible motions of the wall must be.


Case 1: > 0



Here the wall starts from rest at some zo and accelerates to the

speed of light in the limit as t goes to infinity.















In this case the wall proceeds at some uniform velocity in either
the positive or negative z-direction.


Case 3: D < 0


The wall moves initially at the speed of light and slows to zero
in the limit as t goes to infinity.


Case 4. b=(3/2)1/2


This corresponds to a Robertson-Walker metric, as can be seen
by setting T=(2/3)t3/2, which puts the metric in the usual form,

ds2=-dT2+a(T)(dx2+dy2+ dz2 ). Here (3 = r-1, which means that domain

walls will translate at uniform velocity through the space-time. As the
wall expands, space is opened up and fluid is created at the expense
of the energy density of the wall.


Global Structure


As discussed previously, for the space-times considered here
one must glue together two interiors. In both cases, there is a real
singularity at t=0, time-like for the static space-times and space-like











for the dynamic space-times. These space-times are topologically R4
To draw the Penrose diagrams, consider the two dimensional metric


ds2= eH(t,z)[-dt2+dz2] (3.37)


Each point of the diagram will correspond to a 2-plane. The null
geodesics issue from the singularity at t=0 and extend to arbitrarily
large parameter values. Since t is strictly positive in these space-times,
the Penrose diagrams will be very similar to the diagram for
Minkowski space in spherical coordinates26, with the exception that
t=0 will correspond to a real singularity, rather than simply a
coordinate singularity. The desired coordinate transformation is


t= tan((t*+z*)/2) + tan((t*-z*)/2) (3.38)
z = tan((t*+z*)/2) tan((t*-z*)/2) (3.39)


This transformation yields the two-metric


ds2= EHsec2((t*+z*)/2)sec2((t*-z*)/2) -dt*2+dz*2} (3.40)


Figures 15 and 16, pages 92 and 93, are Penrose diagrams for the
static and dynamic cases, respectively, each with a sample trajectory.

To construct the Penrose diagram for the F-wall space-times studied

here, cut along the trajectory of the wall, taking the piece in which the








91


area elements are shrinking in the direction normal to the wall. This
piece corresponds to the interior. Gluing this piece to its mirror image
gives the desired diagram.


































t= 0 o




Z=-00









Figure 15. The Penrose diagram for static Tabensky-Taub
space-time, with sample trajectory.








93


















t= 00 t= c


Z=- 00 Z= 00








t=0


Figure 16. The Penrose diagram for dynamic Tabensky-Taub
space-time, with sample trajectory.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EHB7H0GP9_D0EYWR INGEST_TIME 2017-07-12T21:06:38Z PACKAGE AA00003359_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

'<1$0,&6 2) 7+,1 :$//6 ,1 63$&(7,0(6 :,7+ 675(66(1(5*< %\ &+$5/(6 &+5,6723+(5 98,//( $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7R -DPHV + 9XLOOH -DQHW 6XWRU 9XLOOH 'LDQQH .RZLQJ DQG .LUD 9XLOOH.RZLQJ

PAGE 3

$&.12:/('*(0(176 DFNQRZOHGJH JUDWHIXOO\ WKH KHOS RI 'DYLG *DUILQNOH DQG -LP ,SVHU LQ WKH SUHSDUDWLRQ RI WKLV PDQXVFULSW WKDQN DOVR -RKQ &KDOOLIRXU RI ,QGLDQD 8QLYHUVLW\ DQG WKH PHPEHUV RI P\ FRPPLWWHH /RXLV %ORFN 6WHYH 'HWZHLOHU -LP )U\ DQG 3LHUUH 6LNLYLH IRU WKHLU HQFRXUDJHPHQW DQG VXSSRUW P

PAGE 4

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL $%675$&7 YL &+$37(56 35(/,0,1$5,(6 ,QWURGXFWLRQ 7KH 7KLQ 6KHOO $SSUR[LPDWLRQ RI ,VUDHO 7+,1 :$//6 ,1 5(*,216 :,7+ 9$&880 (1(5*< 6SKHULFDO :DOOV 3ODQDU :DOOV 7+,1 :$//6 $1' 3/$1(6<00(75,& )/8,'6 :,7+ 35(6685( (48$/ 72 (1(5*< '(16,7< ,QWURGXFWLRQ 7DXE7DEHQVN\ 6SDFH7LPHV 'HULYDWLRQ RI WKH -XPS &RQGLWLRQV 6WDWLF 6SDFH7LPH '\QDPLF 6SDFH7LPH *OREDO 6WUXFWXUH ,9

PAGE 5

7+,1 :$//6 ,1 '867 81,9(56(6 ,QWURGXFWLRQ 3ODQH6\PPHWULF 'XVW 6SDFH7LPHV 'HULYDWLRQ RI WKH -XPS &RQGLWLRQV *OREDO 6WUXFWXUH &21&/86,216 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ '<1$0,&6 2) 7+,1 :$//6 ,1 63$&(7,0(6 :,7+ 675(66(1(5*< %\ &KDUOHV &KULVWRSKHU 9XLOOH 0D\ &KDLUPDQ -DPHV 5 ,SVHU 0DMRU 'HSDUWPHQW 3K\VLFV 7KH PRWLRQ RI D WKLQ ZDOO LV WUHDWHG LQ JHQHUDO UHODWLYLW\ LQ WKH FDVH ZKHUH WKH UHJLRQV RQ HLWKHU VLGH RI WKH ZDOO KDYH QRQ]HUR VWUHVVHQHUJ\ 7KH VSDFHWLPHV VWXGLHG KHUH DUH WKH IROORZLQJ Lf VSKHULFDOO\ V\PPHWULF ZLWK YDFXXP HQHUJ\ LLf SODQHV\PPHWULF ZLWK YDFXXP HQHUJ\ LLLf SODQHV\PPHWULF IOXLGV ZLWK SUHVVXUH HTXDO WR HQHUJ\ GHQVLW\ DQG LYf SODQHV\PPHWULF GXVW ZLWK YDFXXP HQHUJ\ ,Q FRQQHFWLRQ ZLWK WKH ODWWHU FDVH QHZ FODVVHV RI H[DFW VROXWLRQV WR (LQVWHLQnV HTXDWLRQ DUH SUHVHQWHG FRUUHVSRQGLQJ WR SODQHV\PPHWULF QRQKRPRJHQHRXV GXVW XQLYHUVHV 7KH HTXDWLRQ RI VWDWH RI WKH WKLQ ZDOO LV WDNHQ WR EH 7 7D ZKHUH [ LV WKH WHQVLRQ LQ WKH ZDOO D LV WKH YL

PAGE 7

HQHUJ\ GHQVLW\ DQG B 7B 3DUWLFXODU FDVHV RI LQWHUHVW DUH 7 FRUUHVSRQGLQJ WR D GXVW ZDOO DQG 7 O FRUUHVSRQGLQJ WR D GRPDLQ ZDOO 7KH G\QDPLFV RI WKH WKLQ ZDOO GHSHQG RQ ERWK WKH VWUHVVHQHUJ\ RI WKH ZDOO DQG WKDW RI WKH VSDFHWLPH RQ HLWKHU VLGH RI WKH ZDOO 2VFLOODWLRQ DERXW D SRLQW RI VWDEOH HTXLOLEULXP LV IRXQG WR EH SRVVLEOH IRU ZDOOV ZLWK FHUWDLQ YDOXHV RI WKH SDUDPHWHUV LQ FDVHV LfLLLf ,Q HDFK VXFK FDVH WKH PHWULF RQ HLWKHU VLGH RI WKH ZDOO LV VWDWLF 7KHUH DUH YDULRXV RWKHU SRVVLEOH G\QDPLFV VXFK DV H[SDQVLRQ IROORZHG E\ FROODSVH GHIODWLRQ IROORZHG E\ H[SDQVLRQ VLPSOH WUDQVODWLRQ DQG DV\PSWRWLF DSSURDFK WR SRLQWV RI XQVWDEOH HTXLOLEULXP )LQDOO\ WKH JOREDO VWUXFWXUH IRU HDFK W\SH RI VSDFHWLPH LV GLVFXVVHG 7KLV SHUPLWV WKH HOXFLGDWLRQ RI WKH VWUXFWXUH RI WKH FRUUHVSRQGLQJ ZDOO VSDFHWLPHV 9OO

PAGE 8

&+$37(5 35(/,0,1$5,(6 ,QWURGXFWLRQ 2QH RI WKH LQWULJXLQJ SRVVLEOH FRQVHTXHQFHV RI WKH KRW ELJ EDQJ PRGHO RI FRVPRORJ\ LV WKDW WKH XQLYHUVH PD\ KDYH XQGHUJRQH SKDVH WUDQVLWLRQV LQ LWV HDUO\ KLVWRU\ 7KHVH SKDVH WUDQVLWLRQV FDQ JLYH ULVH WR YDULRXV VROLWRQOLNH VWUXFWXUHV VXFK DV PDJQHWLF PRQRSROHV FRVPLF 2 VWULQJV DQG GRPDLQ ZDOOV f 7KH G\QDPLFV RI WKH ODWWHU K\SRWKHWLFDO REMHFW DV D VSHFLDO FDVH RI D PRUH JHQHUDO FODVV RI WKLQ ZDOOV ZLOO EH WKH IRFXV KHUH 7KH VSDFHWLPH VWUHVVHQHUJ\ RQ HLWKHU VLGH RI WKH ZDOO ZLOO EH WDNHQ WR FRQWDLQ LQ WXUQ Lf YDFXXP HQHUJ\ LLf IOXLG ZLWK SUHVVXUH HTXDO WR HQHUJ\ GHQVLW\ DQG LLLf GXVW ZLWK YDFXXP HQHUJ\ ,Q FRQQHFWLRQ ZLWK WKH ODVW FDVH QHZ FODVVHV RI H[DFW VROXWLRQV WR (LQVWHLQnV HTXDWLRQ ZLOO EH SUHVHQWHG FRUUHVSRQGLQJ WR QRQKRPRJHQHRXV GXVW XQLYHUVHV 0RVW SUHYLRXV ZRUN ZLWK WKH H[FHSWLRQV QRWHG EHORZ KDV GHDOW VLPSO\ ZLWK YDFXXP 7KLQ ZDOOV PD\ DULVH IURP FRQWULEXWLRQV E\ SDUWLFOH ILHOGV WR WKH VSDFHWLPH VWUHVVHQHUJ\ $ VLPSOH ILHOG WKHRU\ JLYLQJ ULVH WR WKLQ ZDOOV FRQWDLQV D UHDO VFDODU ILHOG _! ZLWK D SRWHQWLDO 9M!f ZKHUH 9W!f LV WDNHQ WR KDYH WZR ORFDO PLQLPD /HW f! DQG -!B GHQRWH WKH YDOXHV RI _! FRUUHVSRQGLQJ WR WKHVH PLQLPD 'XULQJ D SKDVH WUDQVLWLRQ WKH ILHOG E

PAGE 9

WDNHV RQ YDOXHV QHDU _f LQ RQH UHJLRQ RI VSDFH WKH _! GRPDLQf DQG QHDU f LQ DQ DGMDFHQW UHJLRQ RI VSDFH WKH ^!B GRPDLQ f 7KH UHJLRQ EHWZHHQ WKH f! DQG ?! GRPDLQV KDV D KLJK HQHUJ\ GHQVLW\ ERWK EHFDXVH WKH ILHOG WDNHV RQ YDOXHV ZKLFK GRQnW PLQLPL]H 9 DQG EHFDXVH WKHUH LV HQHUJ\ DVVRFLDWHG ZLWK VSDWLDO FKDQJHV LQ WKH ILHOG 7KLV KLJKHQHUJ\ UHJLRQ LV GHVLJQDWHG D GRPDLQ ZDOO 7R PDNH WKHVH LGHDV PRUH FRQFUHWH WDNH D SDUWLFOH ILHOG _! WRJHWKHU ZLWK D SRWHQWLDO 9-!f DQG WKH /DJUDQJLDQ / f9 !f‘ 9!f 7KH FRQWULEXWLRQ WR WKH HQHUJ\PRPHQWXP RI VSDFHWLPH E\ WKLV ILHOG LV JLYHQ E\ 7DE \DWf.YEOff OfJDE 9&!9&-f 9Mfff f ,I _f LV DSSUR[LPDWHO\ FRQVWDQW WKURXJKRXW D UHJLRQ RI VSDFHWLPH WKHQ WKH ILUVW WZR WHUPV RQ WKH ULJKW RI f DUH QHJOLJLEOH LQ WKDW UHJLRQ ZKHUHDV WKH WKLUG WHUP LV D PXOWLSOH RI WKH PHWULF +HQFH LQ WKH `!GRPDLQ VD\ WKH FRQWULEXWLRQ WR WKH VWUHVVHQHUJ\ LV 7DE YW!fJDE f $ VROXWLRQ WR (LQVWHLQnV HTXDWLRQ ZLWK D FRQWULEXWLRQ VXFK DV WKLV WR WKH VWUHVV HQHUJ\ LV WKH VDPH DV D VROXWLRQ RI HTXDWLRQV KDYLQJ D

PAGE 10

FRVPRORJLFDO FRQVWDQW ZLWK $ N9-! f ZKHUH N LV (LQVWHLQnV FRQVWDQW $Q LGHQWLFDO VLWXDWLRQ KROGV LQ WKH `! GRPDLQ 8QGHU WKH FRQGLWLRQV GHVFULEHG DERYH WKH WKLQ ZDOO DSSUR[LPDWLRQ GHYHORSHG E\ ,VUDHO SURYLGHV D SRVVLEOH PRGHO IRU D VSDFHWLPH FRQWDLQLQJ VXFK D ZDOO 7R PDNH WKH FDOFXODWLRQV WUDFWDEOH WKH ZDOO LV DVVXPHG WR KDYH SODQH RU VSKHULFDO V\PPHWU\ DW OHDVW DQG RIWHQ FRPSOHWH UHIOHFWLRQ V\PPHWU\ DV ZHOO 0DWKHPDWLFDOO\ WKLV ODWWHU FRQGLWLRQ LV H[SUHVVHG E\ .DM .DMB ZKHUH .DA LV WKH H[WULQVLF FXUYDWXUH GHILQHG LQ WKH QH[W VHFWLRQf 7KH ZRUN GRQH RQ SODQDU ZDOOV E\ 9LOHQNLQA ,SVHU DQG 6LNLYLHA DQG ,SVHUA WUHDWHG WKH FDVH 9_f f 9Mf f 0RVW RI WKH ZRUN RQ VSKHULFDO GRPDLQ ZDOOV KDV EHHQ UHVWULFWHG WR VSHFLDO YDOXHV RI WKH IRXU SDUDPHWHUV $ $ P T F ,4 DQG PB f f ZLWK VRPH QXPHULFDO ZRUN RQ WKH JHQHUDO FDVH *DUILQNOH DQG 9XLOOHA VWXGLHG WKH JHQHUDO FDVH 9_ffr9MfBf IRU ERWK VSKHULFDO DQG SODQHV\PPHWULF ZDOOV 9HU\ OLWWOH KDV EHHQ GRQH LQ WKH FDVH ZKHUH WKHUH LV HQHUJ\PRPHQWXP RWKHU WKDQ YDFXXP HQHUJ\ .XFKDU X H[DPLQHG VSHFLDO FDVHV LQYROYLQJ FROODSVH RI D FKDUJHG VKHOO ZKLOH 0DHGD VSHFLDOL]HG WKH PHWKRG RI ,VUDHO WR VSDFHWLPHV FRQWDLQLQJ DQ DPELHQW IOXLG ZLWKRXW H[DPLQLQJ ZDOO G\QDPLFV 7R ILQG WKH PRWLRQ DQG WKH JUDYLWDWLRQDO ILHOG RI WKH ZDOO LW LV ILUVW QHFHVVDU\ WR VROYH (LQVWHLQnV HTXDWLRQ LQ WKH SUHVHQFH RI WKH VWUHVVHQHUJ\ RI WKH ZDOO WKH YDFXXP HQHUJ\ RI WKH GRPDLQV RQ

PAGE 11

HLWKHU VLGH RI WKH ZDOO DQG WKH HQHUJ\PRPHQWXP FRQWULEXWHG E\ DQ\ RWKHU GLVWULEXWLRQV RI PDWWHU RU ILHOGV 7KLV JLYHV WKH JUDYLW\ ILHOG RI WKH VSDFHWLPH ,VUDHOnV WKLQ VKHOO DSSUR[LPDWLRQ GLVFXVVHG LQ WKH QH[W VHFWLRQ JLYHV DQ HTXDWLRQ IRU WKH MXPS LQ WKH H[WULQVLF FXUYDWXUH LQ WHUPV RI WKH VWUHVVHQHUJ\ RI WKH IOXLG FRPSRVLQJ WKH ZDOO 7KLV OHDGV WR WKH HTXDWLRQ RI PRWLRQ JLYLQJ WKH G\QDPLFV RI WKH ZDOO LQ WKH VSDFHWLPH ,Q &KDSWHU 7ZR WKH G\QDPLFV RI WKLQ ZDOOV LQ UHJLRQV ZLWK YDFXXP HQHUJ\ ZLOO EH DGGUHVVHG IRU ERWK VSKHULFDO DQG SODQDU V\PPHWU\ ,Q &KDSWHUV 7KUHH DQG )RXU WKH VSDFHWLPHV XQGHU VWXG\ ZLOO EH SODQHV\PPHWULF DQG FRQWDLQ IOXLG ZLWK SUHVVXUH HTXDO WR HQHUJ\ GHQVLW\ DQG GXVW ZLWK YDFXXP HQHUJ\ UHVSHFWLYHO\ 7KH 7KLQ 6KHOO $SSUR[LPDWLRQ RI ,VUDHO ,Q WKH WKLQ VKHOO DSSUR[LPDWLRQ RI ,VUDH3 D WKLQ VKHOO RI PDWWHU LV LGHDOL]HG DV KDYLQJ ]HUR WKLFNQHVV IRU D ULJRURXV MXVWLILFDWLRQ RI WKLV DSSUR[LPDWLRQ VHH UHIHUHQFH f 7KH KLVWRU\ RI WKH WKLQ VKHOO LV MXVW D WKUHHGLPHQVLRQDO WLPHOLNH K\SHUVXUIDFH DQG WKXV WKH VSDFHWLPH FRQVLVWV RI D VPRRWK PDQLIROG 0 D PHWULF JDA DQG D VPRRWK WKUHHGLPHQVLRQDO WLPHOLNH K\SHUVXUIDFH = 7KH K\SHUVXUIDFH GLYLGHV WKH PDQLIROG 0 LQWR WZR PDQLIROGV ZLWK ERXQGDU\ FDOOHG 0 DQG 0a ,Q 0 DQG 0 VHSDUDWHO\ JDA LV D VPRRWK VROXWLRQ RI (LQVWHLQnV HTXDWLRQ /HW QD EH WKH XQLW QRUPDO WR = SRLQWLQJ IURP 0f WR 0 7KHQ

PAGE 12

LQ HDFK UHJLRQ 0 DQG 0n WKH VSDFHWLPH PHWULF LQGXFHV RQ WKH K\SHUVXUIDFH ; DQ LQWULQVLF PHWULF KDA DQG DQ H[WULQVLF FXUYDWXUH .DA JLYHQ E\ KDE iDE r QDQE f .DE KfF9Q F E f 7KH ODWWHU TXDQWLW\ PD\ GLIIHU GHSHQGLQJ RQ ZKHWKHU LW LV FDOFXODWHG LQ 0 RU 0a 'HQRWH E\ WKH YDOXH RI D WHQVRU RQ FDOFXODWHG LQ 0 GHILQH VLPLODUO\ 7KH DSSURSULDWH FRQGLWLRQV RQ WKH FKDQJH LQ KDE DQG .DA DFURVV e DUH KDE n KDEf f .DE .DE m>6DE2f 6 KDEA f ZKHUH 6DA LV WKH VRFDOOHG VXUIDFH VWUHVVHQHUJ\ WHQVRU RI WKH VKHOO DQG WKH VFDODU 6 LV JLYHQ E\ 6 KDr6DA 6DA PD\ EH LQWHUSUHWHG DV WKH OLPLW DV WKH WKLFNQHVV RI WKH VKHOO JRHV WR ]HUR RI WKH VKHOO VWUHVVHQHUJ\ LQWHJUDWHG RYHU WKH WKLFNQHVV RI WKH VKHOO (TXDWLRQV f DQG f WRJHWKHU ZLWK (LQVWHLQnV HTXDWLRQ LQ 0 DQG 0a VHSDUDWHO\ DUH HTXLYDOHQW WR (LQVWHLQnV HTXDWLRQ LQ DOO RI

PAGE 13

0 7KXV RQH FDQ REWDLQ D VROXWLRQ WR (LQVWHLQnV HTXDWLRQ LQ WKH WKLQ VKHOO DSSUR[LPDWLRQ DV IROORZV ILUVW FKRRVH WZR VPRRWK VROXWLRQV WR (LQVWHLQnV HTXDWLRQ RQ WKH WZR PDQLIROGV 0 DQG 0Ba 7KHQ LQ HDFK PDQLIROG FKRRVH D WLPHOLNH K\SHUVXUIDFH ; DQG ea UHVSHFWLYHO\f 7KH K\SHUVXUIDFH ; GLYLGHV 0 LQWR WZR UHJLRQV &KRRVH RQH RI WKH WZR UHJLRQV 7KHQ WKH XQLRQ RI WKLV UHJLRQ ZLWK ; IRUPV D PDQLIROG ZLWK ERXQGDU\ ZKLFK ZH FDOO 0 ,Q WKH FRUUHVSRQGLQJ ZD\ REWDLQ WKH PDQLIROG ZLWK ERXQGDU\ 0 IURP ;a DQG RQH RI WKH WZR UHJLRQV RI 0 n 7KHQ LGHQWLI\ WKH SRLQWV RI ; DQG ;n WR SURGXFH D VLQJOH K\SHUVXUIDFH e DQG WKXV D VLQJOH PDQLIROG 0 ZKLFK LV HVVHQWLDOO\ 0 DQG 0f JOXHG WRJHWKHU 7KH VXUIDFHV ; DQG ;n DQG WKH PDS ZKLFK LGHQWLILHV WKHP PXVW EH FKRVHQ VR WKDW HTXDWLRQV f DQG f DUH VDWLVILHG :KHQ WKH VXUIDFHV DQG WKH PDS DUH VR FKRVHQ WKH UHVXOWLQJ VSDFHWLPH 0 LV D VROXWLRQ RI (LQVWHLQnV HTXDWLRQ LQ WKH WKLQ VKHOO DSSUR[LPDWLRQ 7KH VWUHVVHQHUJ\ WHQVRU RI WKH JHQHUDO WZRGLPHQVLRQDOf SHUIHFW IOXLG LV JLYHQ E\ VDE rWfYDYE 7KDE !f ZKHUH D DQG [ DUH VFDODUV WKH HQHUJ\ GHQVLW\ DQG WHQVLRQ RI WKH ZDOO UHVSHFWLYHO\ DQG YD LV D XQLW WLPHOLNH YHFWRU WKH VSDFHWLPH YHORFLW\ RI WKH IOXLG 7KH SURSHUWLHV RI D SHUIHFW IOXLG DUH JLYHQ E\ LWV HTXDWLRQ

PAGE 14

RI VWDWH D UHODWLRQ ZKLFK JLYHV [ DV D IXQFWLRQ RI D $ GRPDLQ ZDOO KDV D SDUWLFXODUO\ VLPSOH HTXDWLRQ RI VWDWH [ D ,W WKHQ IROORZV IURP FRQVHUYDWLRQ RI VWUHVVHQHUJ\ WKDW R LV FRQVWDQW DQG WKDW VDE rKDE f f ,Q WKLV ZRUN D PRUH JHQHUDO HTXDWLRQ RI VWDWH [ )R ZLOO EH DVVXPHG ZKHUH U LV D FRQVWDQW VDWLVI\LQJ ) 7KLV HTXDWLRQ RI VWDWH LV DOVR XVHG LQ UHIHUHQFHV DQG +HUH RQO\ WKH FDVH R! LV FRQVLGHUHG &DOO WKH FODVV RI WKLQ SHUIHFW IOXLG ZDOOV ZLWK WKLV HTXDWLRQ RI VWDWH f7ZDOOV 'RPDLQ ZDOOV FRUUHVSRQG WR 7ZDOOV ZLWK U O +HQFH WKH FODVV RI 7ZDOOV LV PRUH JHQHUDO WKDQ GRPDLQ ZDOOV EXW OHVV JHQHUDO WKDQ WKH ZKROH FODVV RI SHUIHFW IOXLG ZDOOV ZLWK DUELWUDU\ HTXDWLRQ RI VWDWH ,W IROORZV IURP WKH HTXDWLRQ RI VWDWH WKDW WKH VWUHVVHQHUJ\ RI D )ZDOO LV 6DE r>UfYDYE )KDE@ f 8VLQJ HTXDWLRQ f LQ f JLYHV WKH FKDQJH IRU D 7ZDOO LQ WKH H[WULQVLF FXUYDWXUH .DA DFURVV = .DE f .DE .DOUfYDYE OfKDEf f

PAGE 15

7KLV LV WKH NH\ HTXDWLRQ WKDW ZLOO EH XVHG WR REWDLQ HTXDWLRQV RI PRWLRQ IRU WKLQ ZDOOV XQGHU WKH YDULRXV FRQGLWLRQV $V ZLOO EH VHHQ LQ WKH QH[W VHFWLRQ WKH OHIWKDQG VLGH LQYROYHV FRPSRQHQWV RI WKH PHWULF DQG LWV GHULYDWLYHV DQG KHQFH GHSHQGV RQ WKH DPELHQW VWUHVVHQHUJ\ RQ HLWKHU VLGH RI WKH ZDOO

PAGE 16

&+$37(5 7+,1 :$//6 ,1 5(*,216 :,7+ 9$&880 (1(5*< 6SKHULFDO :DOOV 7R ILQG WKH PRWLRQ DQG JUDYLWDWLRQDO ILHOG RI D VSKHULFDO ZDOO LW LV ILUVW QHFHVVDU\ WR ILQG WZR VSKHULFDOO\ V\PPHWULF VROXWLRQV RI WKH YDFXXP (LQVWHLQ HTXDWLRQ ZLWK FRVPRORJLFDO FRQVWDQW $ VSDFHWLPH LV VSKHULFDOO\ V\PPHWULF LI LWV V\PPHWU\ JURXS FRQWDLQV WKH V\PPHWU\ JURXS RI WKH VSKHUH 7KH JHQHUDO VSKHULFDOO\ V\PPHWULF VROXWLRQ RI WKH YDFXXP (LQVWHLQ HTXDWLRQ ZLWK FRVPRORJLFDO FRQVWDQW $ LV HLWKHU WKH 6FKZDU]VFKLOGGH 6LWWHU PHWULF RU WKH 1DULDL PHWULF ,Q WKH 1DULDL VSDFHWLPH DOO WKH VSKHUHV RI V\PPHWU\ KDYH WKH VDPH DUHD DQG VR LW LV XQVXLWDEOH IRU GHVFULELQJ DQ H[SDQGLQJ RU FRQWUDFWLQJ VKHOO DQG ZLOO QRW EH FRQVLGHUHG KHUH 7KH 6FKZDU]VFKLOGGH 6LWWHU PHWULF KDV WKH IROORZLQJ IRUP )GW )nAGU UG VLQ Gc!f f ZKHUH WKH IXQFWLRQ ) LV GHILQHG E\ ) PUa Of$U f

PAGE 17

DQG P LV D FRQVWDQW 7KLV VSDFHWLPH FDQ EH UHJDUGHG DV D EODFN KROH RI PDVV P LQ D VSDFHWLPH ZKLFK LV DV\PSWRWLFDOO\ GH 6LWWHU ,Q WKH FDVH P WKH VSDFHWLPH LV GH 6LWWHU VSDFHWLPH ZKLOH LQ WKH FDVH $ WKH VSDFHWLPH LV 6FKZDU]VFKLOG 1RWH WKDW WKH H[SUHVVLRQ LQ HTXDWLRQ f LV EDGO\ EHKDYHG DW SRLQWV ZKHUH ) 7KLV LV VLPSO\ EHFDXVH WKH FRRUGLQDWH W LV EDGO\ EHKDYHG DW WKHVH SRLQWV ,Q IDFW WKH PHWULF LV VPRRWK IRU DOO YDOXHV RI U JUHDWHU WKDQ ]HUR (DFK RI WKH VSDFHWLPHV 0 DQG 0 DUH WDNHQ WR KDYH D PHWULF RI WKH IRUP JLYHQ LQ HTXDWLRQ f /HW $ DQG P EH WKH YDOXHV RI WKH FRQVWDQWV $ DQG P UHVSHFWLYHO\ IRU WKH PHWULF RQ 0 DQG FRUUHVSRQGLQJO\ GHILQH $ DQG P 7KH FDVHV FRQVLGHUHG KHUH DUH WKRVH IRU ZKLFK DOO IRXU RI WKHVH SDUDPHWHUV DUH JUHDWHU WKDQ RU HTXDO WR ]HUR 1H[W LW LV QHFHVVDU\ WR ILQG WLPHOLNH K\SHUVXUIDFHV ; DQG ; LQ 0 DQG 0Bn DQG FDOFXODWH WKH LQWULQVLF PHWULF DQG H[WULQVLF FXUYDWXUH LQGXFHG RQ WKHVH K\SHUVXUIDFHV 6LQFH WKH ZDOO LV VSKHULFDOO\ V\PPHWULF ; DQG ;n PXVW EH VSKHULFDOO\ V\PPHWULF DOVR )LUVW FRQVLGHU D JHQHUDO VSKHULFDOO\ V\PPHWULF WLPHOLNH K\SHUVXUIDFH ; LQ D VSDFHWLPH 0 RI WKH IRUP JLYHQ LQ f /DWHU WKHVH UHVXOWV ZLOO EH DSSOLHG WR 0 DQG 0 VHSDUDWHO\ $ WKUHHGLPHQVLRQDO K\SHUVXUIDFH LQ D IRXUGLPHQVLRQDO VSDFHWLPH LV VSHFLILHG E\ JLYLQJ WKH IRXU VSDFHWLPH FRRUGLQDWHV DV IXQFWLRQV RI DQ\ WKUHH SDUDPHWHUV &KRRVH WKH FRRUGLQDWHV U DQG ^f DV WKH WKUHH SDUDPHWHUV 7KHQ WKH

PAGE 18

VXUIDFH LV VSHFLILHG E\ JLYLQJ WKH UHPDLQLQJ FRRUGLQDWH W DV D IXQFWLRQ RI WKH WKUHH SDUDPHWHUV 6LQFH WKH VXUIDFH =B LV VSKHULFDOO\ V\PPHWULF W RQ = PXVW EH D IXQFWLRQ RI U DORQH 7KXV =B LV VSHFLILHG E\ D UHODWLRQ RI WKH IRUP W 7Uf f $ QRUPDO FRYHFWRU 1t WR WKH K\SHUVXUIDFH = LV JLYHQ E\ 1D 9DW 7Uff G7GU f f 'HILQH WKH VFDODU 4 E\ 4 1D1t 7KHQ HTXDWLRQV f DQG f JLYH 4 )G7GUf )a f 6LQFH = LV WLPHOLNH DQ\ QRUPDO WR = PXVW EH VSDFHOLNH 7KXV 4 PXVW EH JUHDWHU WKDQ ]HUR 7KXV WKH JHQHUDO WLPHOLNH VSKHULFDOO\ V\PPHWULF K\SHUVXUIDFH LQ 0 LV JLYHQ E\ D UHODWLRQ RI WKH IRUP LQ HTXDWLRQ f VDWLVI\LQJ WKH FRQGLWLRQ WKDW WKH ULJKWKDQG VLGH RI f LV JUHDWHU WKDQ ]HUR /HW QD EH D XQLW QRUPDO WR = 7KHQ LW IROORZV IURP WKH GHILQLWLRQ RI 4 DQG 1 WKDW D

PAGE 19

f QD H4r1D f ZKHUH H sO 1RWH WKDW WKHUH DUH WZR GLIIHUHQW XQLW QRUPDOV FRUUHVSRQGLQJ WR WKH WZR GLIIHUHQW SRVVLEOH YDOXHV RI H 'HILQH WKH WHQVRU TDA E\ TDAG[DG[A UG VLQ G!ff f 7KHQ WKH PHWULF FDQ EH ZULWWHQ DV GV )GW )nAGU TDAG[DG[A f 7KXV TDM LV WKH VSKHUH SDUW RI JDA $ SHUIHFW IOXLG ZDOO KDV D IOXLG YHORFLW\ YD ZKLFK LV D WLPHOLNH XQLW YHFWRU WDQJHQW WR WKH ZDOO $ VSKHULFDOO\ V\PPHWULF ZDOO PXVW KDYH VSKHULFDOO\ V\PPHWULF YD 7KXV WKH FRQGLWLRQV RQ YD DUH S S ,, Df R ,, & Ef $DE f Ff 8VLQJ WKHVH FRQGLWLRQV DQG HTXDWLRQV f f DQG f REWDLQ

PAGE 20

f YD 4n )G7GUf )f f ZKHUH s ,W IROORZV XVLQJ HTXDWLRQV ff DQG f WKDW 6DE QDE f YDYE 2DE f Xf ,QVHUWLQJ HTXDWLRQ f LQWR f \LHOGV WKH IROORZLQJ H[SUHVVLRQ IRU WKH LQWULQVLF PHWULF KDE YDYE fODE f f 6LQFH KDA LV VSKHULFDOO\ V\PPHWULF LW GHWHUPLQHV D VHW RI VSKHUH VXEVSDFHV RI e WKH VSDFHV RI FRQVWDQW Uf 7KH PHWULF LQGXFHG RQ D FRQVWDQW U VXEVSDFH LV TDA DQG WKH DUHD RI WKH VXEVSDFH LV QU 7KXV ERWK TDN DQG U DUH GHWHUPLQHG E\ KDA ,W WKHQ IROORZV IURP HTXDWLRQ f WKDW YDYA LV GHWHUPLQHG E\ K 8VLQJ HTXDWLRQV f DQG f DQG WKH IDFW WKDW QD LV K\SHUVXUIDFH RUWKRJRQDO LW FDQ EH VKRZQ WKDWA ADE OfeQKDE } f

PAGE 21

ZKHUH eQ GHQRWHV WKH /LH GHULYDWLYH ZLWK UHVSHFW WR WKH YHFWRU QD ,QVHUWLQJ HTXDWLRQ f UHVXOWV LQ .DE 2A;0DE YDeQYE n YEeQYD! f f 7KH /LH GHULYDWLYHV RI TDA DQG YD DUH FRPSXWHG E\ H[SUHVVLQJ WKH /LH GHULYDWLYH LQ WHUPV RI WKH FRRUGLQDWH GHULYDWLYH RSHUDWRU D DQG XVLQJ WKH H[SUHVVLRQV IRU WKH FRRUGLQDWH FRPSRQHQWV RI TDA YD DQG QD 6RPH VWUDLJKWIRUZDUG DOJHEUD WKHQ \LHOGV 0DE ADE :D DFEQ& HU4)G7GUfTDE f eQYD QE9D 9DQE GGUfH4n)G7GUffYD f 'HILQH WKH VFDODU / E\ / e4r)G7GUf f 7KHQ HTXDWLRQV ff JLYH

PAGE 22

f .DE G/GUfYDYE UA/TA 7KH TXDQWLW\ / FDQ EH H[SUHVVHG LQ WZR GLIIHUHQW DQG XVHIXO ZD\V )LUVW XVLQJ HTXDWLRQV f f f DQG f REWDLQ QD9DU H4n1D9DU / V,/, f ZLWK WKH TXDQWLW\ V GHILQHG E\ V /,/, f 7KH TXDQWLW\ V FDQ EH LQWHUSUHWHG DV IROORZV WKH VXUIDFH = GLYLGHV 0 LQWR WZR UHJLRQV $ UHJLRQ LV DQ H[WHULRU LI U LQFUHDVHV DORQJ WKH GLUHFWLRQ QRUPDO WR = DQG SRLQWLQJ LQWR WKH UHJLRQ $ UHJLRQ LV FDOOHG DQ LQWHULRU LI U GHFUHDVHV DORQJ WKH GLUHFWLRQ QRUPDO WR = DQG SRLQWLQJ LQWR WKH UHJLRQ 7KHQ = GLYLGHV 0 LQWR DQ H[WHULRU DQG DQ LQWHULRU ,I V WKHQ QD SRLQWV WR WKH LQWHULRU ,I V WKHQ QD SRLQWV LQWR WKH H[WHULRU 7KH RWKHU XVHIXO H[SUHVVLRQ IRU / FDQ EH GHULYHG XVLQJ HTXDWLRQV f f DQG f ) J QfYf / Yf f

PAGE 23

7KHQ HTXDWLRQ f UHVXOWV LQ / V^) Yf` f &KRRVH D FRQVWDQW U VXEVSDFH 6 RI DQG IRU HDFK SRLQW S H e DQG OHW ;Sf EH WKH SURSHU WLPH DORQJ WKH LQWHJUDO FXUYH RI YD IURP 6 WR S 7KHQ WKHUH LV D IXQFWLRQ 5Af VXFK WKDW RQ e W 5;f f ,W IROORZV WKDW RQ e YDYDU Y G5G"L f 7KXV IURP HTXDWLRQ f WKHUH UHVXOWV / V) G5$5ff f 1H[W LW ZLOO EH VKRZQ WKDW WKH VXUIDFH eB LV HVVHQWLDOO\ GHWHUPLQHG E\ WKH IXQFWLRQ 5;f *LYHQ WKH IXQFWLRQ 5$f DQG HTXDWLRQ f WKH TXDQWLWLHV G5G$ DQG / DUH GHWHUPLQHG DV IXQFWLRQV RI U (TXDWLRQV f DQG f JLYH

PAGE 24

YDYDW G7GUfG5F5f f 7KHQ HTXDWLRQV f Df f DQG f UHVXOW LQ JDW!YDYE )YD9DWf )BYD9DUf G5G"Lf^)G7GUf )f f 6ROYLQJ IRU G7GUf DQG XVLQJ HTXDWLRQ f \LHOGV G7GUf /)G5G$f` f 6LQFH WKH ULJKWKDQG VLGH RI f LV GHWHUPLQHG DV D IXQFWLRQ RI U LW IROORZV WKDW WKH IXQFWLRQ 7Uf LV GHWHUPLQHG XS WR D FKDQJH RI VLJQ DQG DGGLWLRQ RI D FRQVWDQW 7KXV LI = DQG =n DUH WZR VXUIDFHV LQ 0 FRUUHVSRQGLQJ WR WKH VDPH 5f WKHQ RQH FDQ WDNH =B WR =Bn E\ FKDQJLQJ WKH FRRUGLQDWH W RQ 0 E\ WKH DGGLWLRQ RI D FRQVWDQW DQG SRVVLEO\f D FKDQJH RI VLJQ %XW WKLV FRRUGLQDWH WUDQVIRUPDWLRQ LV DQ LVRPHWU\ 7KXV WKH VSDFHWLPH 0B ZLWK WKH VXUIDFH = LV LGHQWLFDO WR WKH VSDFHWLPH 0B ZLWK WKH VXUIDFH =n 6R LQ WKLV VHQVH WKH VXUIDFH = LV GHWHUPLQHG E\ WKH IXQFWLRQ 5;f 7KHVH UHVXOWV FDQ QRZ EH DSSOLHG WR WKH VXUIDFHV = DQG =f ZKLFK DUH JOXHG WRJHWKHU WR IRUP WKH VXUIDFH = 6LQFH KDA KA

PAGE 25

LW IROORZV WKDW LI k LV DQ\ WHQVRU GHILQHG RQ ; DQG ; VXFK WKDW LV GHWHUPLQHG E\ KA WKHQ k k 7KXV DE ADE p f f U U f YDYE! YDYE! f &KRRVH WKH RULJLQ RI ; DQG WKH GLUHFWLRQ RI YD WR EH WKH VDPH RQ ; DQG ;n 7KHQ LW IROORZV IURP f WKDW ;;B f DQG IURP HTXDWLRQV f f DQG f WKDW 5;f 5;Bf f VR WKDW WKH VXUIDFHV ; DQG ; DUH GHVFULEHG E\ WKH VDPH IXQFWLRQ 5;f 6R ZKHQ WKH SRLQWV RI ; DUH LGHQWLILHG ZLWK WKRVH RI ;n HDFK SRLQW PXVW EH LGHQWLILHG ZLWK D SRLQW ZKLFK KDV WKH VDPH YDOXH RI ; LQ RUGHU WR FRPSO\ ZLWK HTXDWLRQ f 6LPLODUO\ HDFK SRLQW PXVW EH LGHQWLILHG ZLWK D SRLQW ZKLFK KDV WKH VDPH YDOXHV RI DQG f! XS WR DQ RYHUDOO URWDWLRQf LQ RUGHU WR FRPSO\ ZLWK HTXDWLRQ f :KHQ WKH

PAGE 26

VXUIDFHV DUH LGHQWLILHG LQ WKLV PDQQHU LW IROORZV IURP HTXDWLRQ f WKDW WKH FRQGLWLRQ KDEBKDE LV VDWLVILHG 1RZ WKH RQO\ FRQGLWLRQ OHIW WR EH VDWLVILHG LQ RUGHU WKDW 0 EH D VROXWLRQ RI WKH (LQVWHLQ HTXDWLRQ IRU D 7ZDOO LQ WKH WKLQ VKHOO DSSUR[LPDWLRQ LV HTXDWLRQ f 8VLQJ HTXDWLRQV f DQG ff \LHOGV .DE .DEf YDYEGGUA/n /! n bE7nOA/a /! f f ZKLOH HTXDWLRQV f DQG f JLYH .DEa .DEa fNR^YDYEUOf TDE` f 7KXV (LQVWHLQnV HTXDWLRQ UHGXFHV WR WKH IROORZLQJ SDLU RI HTXDWLRQV GGUf^/ /.D>7Of@ DQG f UB^/ /fNJ f 7R REWDLQ D ILUVW LQWHJUDO RI WKHVH HTXDWLRQV PXOWLSO\ HTXDWLRQ f E\ UAfU PXOWLSO\ HTXDWLRQ f E\ O7fUAU DQG DGG WKH

PAGE 27

UHVXOWLQJ WZR HTXDWLRQV WR REWDLQ GGUf^/ /` OUfUnU/ /f GGUf^UnU/ /f` DQG f 7 U UU O FRU f ZKHUH F4 LV D FRQVWDQW 1RWH WKDW LW IROORZV IURP HTXDWLRQV f DQG f WKDW R F.nAUUa f 6LQFH WKH ZDOOV WUHDWHG KHUH KDYH SRVLWLYH HQHUJ\ GHQVLW\ F4 /HW ) DQG V EH WKH YDOXHV RI ) DQG V RQ ZLWK ) DQG VB GHILQHG VLPLODUO\ 8VLQJ HTXDWLRQV f f DQG f REWDLQ V) G5$5ff VB) G5GAff F5U0 f 1RZ XVLQJ WKH JHQHUDO LQWHUSUHWDWLRQ RI WKH TXDQWLW\ V LW LV SRVVLEOH WR LQWHUSUHW WKH TXDQWLWLHV V DQG VB DV IROORZV VLQFH QD SRLQWV IURP 0a WR 0 WKH XQLW QRUPDO SRLQWLQJ LQWR 0 LV QD DQG WKH XQLW QRUPDO SRLQWLQJ LQWR 0a LV QD +HQFH LI V WKHQ 0 LV DQ

PAGE 28

LQWHULRU LI V O WKHQ 0 LV DQ H[WHULRU &RUUHVSRQGLQJO\ LI V WKHQ 0 LV DQ H[WHULRU LI VB O WKHQ 0n LV DQ LQWHULRU 6LQFH F4! LW IROORZV IURP f WKDW WKH FDVH V O V LV IRUELGGHQ +RZHYHU DOO RWKHU SRVVLEOH FRPELQDWLRQV DUH DOORZHG 7KXV WKH WKLQ ZDOO VSDFHWLPH 0 FDQ FRQVLVW RI DQ H[WHULRU JOXHG WR DQ LQWHULRU RU WZR LQWHULRUV JOXHG WRJHWKHU EXW FDQQRW FRQVLVW RI WZR H[WHULRUV JOXHG WRJHWKHU 1H[W HOLPLQDWH V DQG VB IURP WKH HTXDWLRQ RI PRWLRQ IRU 5$f $GGLQJ VB)B G5G;ff A WR ERWK VLGHV RI HTXDWLRQ f DQG VTXDULQJ JLYHV VB)B G5$5ff f) )fF OfF5U0 f 6TXDULQJ HTXDWLRQ f UHVXOWV LQ G5G$f ^)B )fF5U0` OfF45U f))f f $ VROXWLRQ 5Af RI HTXDWLRQ f GHWHUPLQHV WKH FRQVWDQWV V DQG V DV IROORZV JLYHQ 5;f WKDW VDWLVILHV f VROYH HTXDWLRQ f IRU VB

PAGE 29

7KHQ VROYH f IRU V 7KH IXQFWLRQ 5Af GHWHUPLQHV WKH VXUIDFHV / DQG ,a 7KH TXDQWLW\ V GHWHUPLQHV ZKLFK UHJLRQ RI 0 WKH H[WHULRU RU WKH LQWHULRUf IRUPV ZLWK = WKH PDQLIROG 0 7KH FRUUHVSRQGLQJ UHVXOW KROGV IRU VB DQG 0a 1RWH WKDW VB FKDQJHV VLJQ ZKHQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f FKDQJHV VLJQ 7KLV GRHV QRW FRUUHVSRQG WR DQ\ SDWKRORJLFDO EHKDYLRU RI WKH VXUIDFH ef RU RI WKH PDQLIROG 0a EXW LV VLPSO\ D SRLQW ZKHUH WKH YHFWRUV YD DQG UfD LQ 0a DUH SDUDOOHO 7KH FRUUHVSRQGLQJ UHVXOW KROGV IRU V 7KXV JLYHQ WKH VSDFHWLPHV 0 DQG 0B D VROXWLRQ RI HTXDWLRQ f GHWHUPLQHV WKH PRWLRQ RI WKH 7ZDOO 8VLQJ HTXDWLRQV f DQG f REWDLQ G5G"Lf ^>P Pf Of$$-5@F5U` OfF5UnO P P-5n f$ $f5 f 'HILQH WKH FRQVWDQWV D E F I DQG ( DQG WKH YDULDEOH ; E\ D P PBfF4 Df E $ $fF Ef F P PBfF4 Ff I $ $fF Gf

PAGE 30

( F Hf ; &T; If 7KHQ HTXDWLRQ f EHFRPHV G5F5f 95f ( f ZKHUH 9B5f LV JLYHQ E\ 95f D5nU E5nUf 5Un F5n I5 f (TXDWLRQ f LV MXVW WKH HTXDWLRQ RI PRWLRQ IRU D SDUWLFOH ZLWK HQHUJ\ ( PRYLQJ LQ RQH GLPHQVLRQ LQ D SRWHQWLDO 9B5f +HUH 5 SOD\V WKH UROH RI WKH VSDWLDO FRRUGLQDWH SOD\V WKH UROH RI WLPH DQG WKH PDVV RI WKH SDUWLFOH LV 1RWH WKDW 5 WDNHV RQ RQO\ SRVLWLYH YDOXHV DQG WKDW ( WDNHV RQ RQO\ QHJDWLYH YDOXHV 7KXV WKH SUREOHP RI WKH PRWLRQ RI WKH 7ZDOO KDV EHHQ UHGXFHG WR DQ HTXLYDOHQW SUREOHP LQ RQHGLPHQVLRQDO PHFKDQLFV 7KH SURSHUWLHV RI WKH RQHGLPHQVLRQDO SDUWLFOH PRWLRQ DQG WKXV RI WKH 7ZDOO PRWLRQ GHSHQG RQ WKH SURSHUWLHV RI WKH IXQFWLRQ 9BUf DQG RQ WKH YDOXH RI WKH FRQVWDQW ( $Q\ ORFDO PLQLPXP RI 9B5f UHSUHVHQWV D SRVVLEOH SRLQW RI VWDEOH HTXLOLEULXP ZKLOH DQ\ ORFDO PD[LPXP RI 95f UHSUHVHQWV D SRVVLEOH SRLQW RI XQVWDEOH HTXLOLEULXP $Q\ SRLQW ZKHUH 9B5f ( UHSUHVHQWV D

PAGE 31

SRVVLEOH WXUQLQJ SRLQW RI WKH PRWLRQ 7KH SURSHUWLHV RI WKH IXQFWLRQ 9B5f GHSHQG RQ WKH YDOXHV RI WKH FRQVWDQWV D E F I DQG 7 ,Q WKLV ZRUN FHUWDLQ UHVWULFWLRQV KDYH EHHQ SODFHG RQ WKH YDOXHV RI WKHVH FRQVWDQWV 5HFDOO WKDW 7 DQG WKDW $ $B P DQG PB DUH DOO QRQQHJDWLYH ,W WKHQ IROORZV WKDW ODO F DQG Df OEO I Ef 7KXV WKH FRQVWDQWV F DQG I DUH QRQQHJDWLYH ,W WKHQ IROORZV IURP f WKDW 95f IRU DOO 5 9DULRXV VSHFLDO FDVHV RI WKH ZDOOnV HTXDWLRQ RI PRWLRQ KDYH EHHQ WUHDWHG SUHYLRXVO\ 7KHVH LQFOXGH WKH FDVH D E I WUHDWHG LQ WKH FDVH 7 O D F WUHDWHG LQ WKH FDVH 7 O D F WUHDWHG LQ WKH FDVH 7 E I D F WUHDWHG LQ DQG WKH FDVH 7 O D WUHDWHG LQ ,Q DGGLWLRQ D QXPHULFDO WUHDWPHQW RI WKH JHQHUDO SUREOHP KDV EHHQ GRQH LQ 7KH PHWKRG RI UHIHUHQFH LV WR FKRRVH YDULRXV YDOXHV RI WKH SDUDPHWHUV DEFI7f DQG QXPHULFDOO\ SURGXFH SORWV RI WKH FRUUHVSRQGLQJ SRWHQWLDOV 6LQFH WKH SRWHQWLDO KDV VR PDQ\ SDUDPHWHUV WKLV LV D VRPHZKDW XQZLHOG\ ZD\ WR REWDLQ LQIRUPDWLRQ DERXW WKH ZDOOnV PRWLRQ ,Q WKLV ZRUN DQDO\WLF PHWKRGV ZLOO EH XVHG WR GHWHUPLQH DV D IXQFWLRQ RI WKH SDUDPHWHUV FHUWDLQ IHDWXUHV RI WKH ZDOOnV PRWLRQ WKH DV\PSWRWLF YDOXHV RI 5 ZKHWKHU WKH ZDOOnV PRWLRQ KDV D WXUQLQJ SRLQW DQG ZKHWKHU WKH ZDOO RVFLOODWHV DERXW VWDEOH

PAGE 32

HTXLOLEULXP 7KH SRVVLEOH YDOXHV RI WKH SDUDPHWHUV F DQG I FDQ EH GLYLGHG LQWR D JHQHULF FDVH Fr Ir DQG WKUHH H[FHSWLRQDO FDVHV Lf F Ir LLf Fr I DQG LLLf F I &DVH Fr Ir 8QGHU WKHVH FRQGLWLRQV LW IROORZV IURP HTXDWLRQ f WKDW 9B LV XQERXQGHG EHORZ ERWK DV 5! DQG DV 5} 7KLV PHDQV 95f PXVW KDYH DW OHDVW RQH ORFDO PD[LPXP ,Q IDFW LW LV SRVVLEOH WR GHPRQVWUDWH WKDW WKHUH LV D QXPEHU 7F VXFK WKDW LI 7!7& WKHQ 9B5f KDV DW OHDVW RQH ORFDO PD[LPXP DQG QR RWKHU VWDWLRQDU\ SRLQWV $VVXPH WKDW 7! /HW 5i EH D VWDWLRQDU\ SRLQW RI 9B5f DQG OHW D SULPH GHQRWH GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR 5 7KHQ 9n56f ,W IROORZV IURP HTXDWLRQ f WKDW 956f ^5BGG5f5G9G5f` UD5VnUfUfE5VfU 7fDE5VnU F5Vn I 7f5VUn f 5HDUUDQJLQJ WKH WHUPV RQ WKH ULJKWKDQG VLGH RI f UHVXOWV LQ WKH IROORZLQJ HTXDWLRQ

PAGE 33

<56f Un5VnUn^DU EUff5V` UBE5VfU^U fn` ^7 fB` F5Vn I U f=5 f $OO WHUPV RQ WKH ULJKWKDQG VLGH RI f H[FHSW IRU WKH VHFRQG DUH PDQLIHVWO\ QHJDWLYH ,Q WKH VHFRQG WHUP VLQFH 7 LW IROORZV WKDW WKH IDFWRU ^7 ffr` LV QHJDWLYH 1RZ GHILQH 7F E\ UF f f 7KHQ LI U!7F LW IROORZV WKDW WKH VHFRQG WHUP RQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f LV PDQLIHVWO\ QHJDWLYH &RQVLGHU WKH FDVH U!7F 7KHQ 956f LV QHJDWLYH 7KXV 9B56f LV D ORFDO PD[LPXP DQG DQ\ VWDWLRQDU\ SRLQW RI 95f LV D ORFDO PD[LPXP 6LQFH 95f LV VPRRWK LW IROORZV WKDW LW FDQ KDYH DW PRVW RQH PD[LPXP DQG VLQFH LW KDV DW OHDVW RQH PD[LPXP LW KDV H[DFWO\ RQH PD[LPXP 7KH RQHGLPHQVLRQDO PRWLRQ RI D SDUWLFOH LQ D SRWHQWLDO ZLWK RQH PD[LPXP DQG QR RWKHU VWDWLRQDU\ SRLQWV LV IDLUO\ VLPSOH 7KH PRWLRQ KDV HLWKHU RQH WXUQLQJ SRLQW RU QR WXUQLQJ SRLQWV GHSHQGLQJ RQ ZKHWKHU WKH HQHUJ\ LV OHVV WKDQ WKH PD[LPXP 6LQFH HTXDWLRQ f LV WLPHUHYHUVDO LQYDULDQW IRU DQ\ SRVVLEOH PRWLRQ RI WKH ZDOO WKH

PAGE 34

WLPHUHYHUVHG PRWLRQ LV DOVR SRVVLEOH /HW 9PD[ EH WKH PD[LPXP YDOXH RI 9B5f DQG OHW 5V EH WKH YDOXH RI 5 ZKLFK PD[LPL]HV 9B5f 7KHQ WKH SRVVLEOH PRWLRQV RI WKH ZDOO GHSHQG RQ 9BPD[ DQG ( )RU (! 9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV IRUHYHU WR XQERXQGHG VL]H LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU ( f§PD[ 3RVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO UHPDLQV LQ XQVWDEOH HTXLOLEULXP ZLWK 5 5i LLf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5i LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LYf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLLf )RU ( 9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H H[SDQGV WR D PD[LPXP 5 OHVV WKDQ 5V FRQWUDFWV WR ]HUR VL]H DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP 5 JUHDWHU WKDQ 5i DQG WKHQ H[SDQGV WR XQERXQGHG VL]H $Q H[KDXVWLYH GHVFULSWLRQ RI WKH SRVVLEOH PRWLRQV RI WKH ZDOO KDV EHHQ JLYHQ LQ WKH JHQHULF FDVH IRU 7! 7F 7KH 7 7F LV PRUH GLIILFXOW 2QH RI WKH IHDWXUHV RI WKH PRWLRQ LQ WKH 7! 7F FDVH LV WKDW VWDEOH HTXLOLEULXP LV QRW SRVVLEOH 7KLV IHDWXUH LV QRW DOZD\V VKDUHG E\ WKH 7 7F FDVH 7KDW LV WKHUH DUH VRPH YDOXHV RI WKH FRQVWDQWV D E

PAGE 35

F I ( DQG 7 ZLWK 7 UF VXFK WKDW WKH ZDOO LV LQ VWDEOH HTXLOLEULXP ,Q SDUWLFXODU FKRRVH U DQG OHW E EH JUHDWHU WKDQ &KRRVH DF DQG I DV IROORZV D E F E I E 7KHQ XVLQJ WKHVH FKRLFHV LQ HTXDWLRQ f UHVXOWV LQ 9f5f E5E5E55nf 5n f ,W IROORZV IURP f WKDW 9BnOf VR WKDW LQ SDUWLFXODU 9ff! f 1RZ GHILQH D E\ D EfaA 1RWH WKDW DO 8VLQJ HTXDWLRQ f REWDLQ 9nDf ERFfOEf f 6LQFH E! LW IROORZV WKDW 9nDf 7KLV PHDQV 9n FKDQJHV IURP QHJDWLYH WR SRVLWLYH DV 5 JRHV IURP D WR DQG KHQFH WKHUH PXVW EH D ORFDO PLQLPXP DW VRPH YDOXH RI 5 LQ WKDW LQWHUYDO ,W IROORZV WKDW IRU FHUWDLQ HQHUJLHV WKH RQHGLPHQVLRQDO PRWLRQ LQ WKH SRWHQWLDO <5f LV DQ RVFLOODWLRQ DERXW D SRLQW RI VWDEOH HTXLOLEULXP 7KH ZDOO WKHUHIRUH FDQ XQGHUJR VSKHULFDO RFLOODWLRQV DERXW D UDGLXV RI VWDEOH HTXLOLEULXP 6LQFH 9B5f LV VPRRWK LQ WKH SDUDPHWHUV D E F I 7f DQ\ VHW RI

PAGE 36

SDUDPHWHUV VXIILFLHQWO\ QHDU WKH RQHV JLYHQ ZLOO DOVR JLYH D
PAGE 37

5 OHVV WKDQ 5i FRQWUDFWV WR ]HUR VL]H DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG VL]H )RU UO ( 9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO UHPDLQV LQ XQVWDEOH HTXLOLEULXP ZLWK 5 56 LLf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LYf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLLf )RU UO (!9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV WR XQERXQGHG VL]H LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU 7 O ( WKH PRWLRQ RI WKH ZDOO LV DV IROORZV WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP 5 DQG WKHQ H[SDQGV WR XQERXQGHG VL]H )RU 7 ( O WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ ]HUR LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU 7 O (! WKH SRVVLEOH PRWLRQ RI WKH ZDOO LV Lf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR ]HUR VL]H DQG GLVDSSHDUV LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU U!O WKH PRWLRQ RI WKH ZDOO LV DV IROORZV WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP 5 DQG WKHQ H[SDQGV WR XQERXQGHG VL]H

PAGE 38

&DVH Fr I )URP HTXDWLRQ Ef LW IROORZV WKDW E 7KXV $ $ WKHUHIRUH WKH YDFXXP HQHUJ\ RXWVLGH WKH ZDOO LV ]HUR DQG WKH VSDFHWLPHV 0 DQG 0f DUH ERWK UHJLRQV RI 6FKZDU]VFKLOG VSDFHWLPH ,W WKHQ IROORZV IURP HTXDWLRQ f WKDW 95f D5nU5UnF5B f ,W IROORZV IURP f WKDW 95f LV XQERXQGHG EHORZ DV 5} )RU 7!O LW IROORZV IURP HTXDWLRQ f WKDW
PAGE 39

VL]H LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU U!O ( 9BPf< WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H H[SDQGV WR D PD[LPXP 5 OHVV WKDQ 5V FRQWUDFWV WR ]HUR VL]H DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG VL]H )RU 7!O ( 9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO UHPDLQV LQ XQVWDEOH HTXLOLEULXP ZLWK 5 56 LLf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LYf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLLf )RU 7!O (! 9BPD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV WR XQERXQGHG VL]H LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf &DVH F I )URP HTXDWLRQV Df DQG Ef LW IROORZV WKDW D E 7KXV $ $ P PB DQG 0 DQG 0 DUH ERWK UHJLRQV RI 0LQNRZVNL VSDFHWLPH ,W WKHQ IROORZV IURP HTXDWLRQ f WKDW U 95f 5 f

PAGE 40

)RU 7O LW IROORZV IURP HTXDWLRQ f WKDW OLPA} 95f 9B5f LV XQERXQGHG IURP EHORZ DV 5} DQG 9B5f KDV QR VWDWLRQDU\ SRLQWV )RU 7 O LW IROORZV IURP f WKDW 95f )RU 7! OLPA4 95f 9B5f LV XQERXQGHG EHORZ DV 5} DQG <5f KDV QR VWDWLRQDU\ SRLQWV 7KH G\QDPLFV RI WKH ZDOO GHSHQG RQ U DQG ( )RU 7! WKH PRWLRQ RI WKH ZDOO LV DV IROORZV WKH ZDOO FRQWUDFWV IURP XQERXQGHG VL]H WR D PLQLPXP UDGLXV DQG WKHQ H[SDQGV WR XQERXQGHG VL]H )RU 7 O ( O WKH PRWLRQ RI WKH ZDOO LV DV IROORZV WKH ZDOO UHPDLQV ZLWK 5 DW D IL[HG YDOXH )RU 7 O ( !O WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK ]HUR VL]H DQG H[SDQGV WR XQERXQGHG VL]H LLf WKH WLPHUHYHUVH RI WKH PRWLRQ JLYHQ LQ Lf )RU 7 WKH PRWLRQ RI WKH ZDOO LV DV IROORZV WKH ZDOO DSSHDUV ZLWK ]HUR VL]H H[SDQGV WR D PD[LPXP UDGLXV FRQWUDFWV WR ]HUR VL]H DQG GLVDSSHDUV *OREDO 6WUXFWXUH 7KH ZDOO VSDFHWLPH FRQVLVWV RI WZR UHJLRQV RI 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH DWWDFKHG DORQJ WLPHOLNH VSKHULFDOO\ V\PPHWULF VXUIDFHV 7KXV ZH ILUVW H[DPLQH WKH JOREDO VWUXFWXUH RI 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH 7KH H[SUHVVLRQ JLYHQ IRU WKH 6FKZDU]VFKLOGGH 6LWWHU PHWULF LQ HTXDWLRQ f LV EDGO\ EHKDYHG DW SRLQWV ZKHUH ) KRZHYHU WKH FXUYDWXUH VFDODU 5DEFFM5DNFFr GLYHUJHV

PAGE 41

RQO\ DV U! 7KXV WKH FRRUGLQDWH V\VWHP LQ HTXDWLRQ f FRYHUV D UHJLRQ RI WKH PDQLIROG ZKHUH ) LV QRQ]HUR DQG PD\ QRW FRYHU WKH HQWLUH VSDFHWLPH ,W LV GHVLUDEOH WR ILQG D FRRUGLQDWH V\VWHP ZKLFK GRHV FRYHU WKH HQWLUH VSDFHWLPH 7R GR WKLV ILUVW H[DPLQH WKH EHKDYLRU RI UDGLDO QXOO JHRGHVLFV &RQVLGHU WKH WZRGLPHQVLRQDO PHWULF GV )GW )BGU f 1XOO JHRGHVLFV LQ WKLV PHWULF DUH WKH VDPH DV UDGLDO QXOO JHRGHVLFV LQ WKH PHWULF RI HTXDWLRQ f ,Q WKH WZR GLPHQVLRQDO PHWULF RI HTXDWLRQ f OHW ND EH WKH WDQJHQW YHFWRU WR D QXOO JHRGHVLF ZLWK DIILQH SDUDPHWHU ; 7KHQ WKHUH LV D FRQVWDQW FR VXFK WKDW f§ NDDWfD )GW$5f f 6LQFH NDN LW IROORZV WKDW G )GWG!f ) GUG $f )n ^GUG$fp` f 7KXV U sWR$ &M DQG Df

PAGE 42

W & s )nAGU Ef ZKHUH &M DQG & DUH FRQVWDQWV ,I ) LV QRQ]HUR IRU DOO YDOXHV RI U WKHQ LW IROORZV IURP HTXDWLRQV DEf WKDW IRU DQ\ LQFRPSOHWH QXOO JHRGHVLF U DSSURDFKHV ]HUR DV WKH DIILQH SDUDPHWHU DSSURDFKHV WKH OLPLWLQJ YDOXH ,I ) LV ]HUR IRU VRPH YDOXH RI U OHW U4 EH WKH VPDOOHVW VXFK YDOXH 7KH LW IROORZV IURP HTXDWLRQV DEf WKDW WKH VSDFHWLPH KDV LQFRPSOHWH QXOO JHRGHVLFV IRU ZKLFK U DSSURDFKHV U4 DV WKH DIILQH SDUDPHWHU DSSURDFKHV WKH OLPLWLQJ YDOXH ,QWURGXFH WKH FRRUGLQDWHV X DQG Y E\ X + W U )n UfGU Df Y W 4U )n UfGU Ef 7KHQ WKH PHWULF LQ WKH FRRUGLQDWHV XUf LV GVA GXGU )GXA f DQG LQ WKH FRRUGLQDWHV YUf GVA GYGU )GYA f

PAGE 43

7KH PHWULF LQ HTXDWLRQ f LV VPRRWK IRU X DQG U )RU U U4 WKH PHWULFV LQ HTXDWLRQV f DQG f DUH LVRPHWULF 7KXV WKH VSDFHWLPH LQ HTXDWLRQ f LV DQ H[WHQVLRQ RI WKH VSDFHWLPH LQ HTXDWLRQ f 7KH FRUUHVSRQGLQJ UHVXOWV KROG IRU WKH PHWULF LQ HTXDWLRQ f 8VLQJ HTXDWLRQV DEf RQH ILQGV WKDW IRU U U4 WKH XUf FRRUGLQDWH SDWFK DQG WKH YUf FRRUGLQDWH SDWFK RYHUODS 7KH RYHUODS PDS LV Y X U)fUfGU f 7KLV ODUJHU VSDFHWLPH FRQWDLQV ERWK WKH XUf FRRUGLQDWH SDWFK DQG WKH YUf FRRUGLQDWH SDWFK ,Q JHQHUDO LW WDNHV PRUH WKDQ RQH XUf DQG RQH YUf FRRUGLQDWH SDWFK WR FRYHU WKH HQWLUH VSDFHWLPH ,QWURGXFLQJ WKH DSSURSULDWH XUf DQG YUf FRRUGLQDWH SDWFKHV DQG DSSURSULDWH RYHUODS PDSV LW LV SRVVLEOH WR REWDLQ D VSDFHWLPH ZLWK WKH SURSHUW\ WKDW RQ HYHU\ LQFRPSOHWH QXOO JHRGHVLF U DSSURDFKHV DV WKH DIILQH SDUDPHWHU DSSURDFKHV LWV OLPLWLQJ YDOXH 7KH H[WHQGHG VSDFHWLPH ZLWK WKLV SURSHUW\ LV FDOOHG WKH FRPSOHWH H[WHQVLRQ 7R GLVSOD\ VRPH LQIRUPDWLRQ DERXW WKH FRPSOHWH H[WHQVLRQ LQ D VLPSOH JUDSKLF IRUP LQWURGXFH FRRUGLQDWHV ??U DQG b VXFK WKDW WKH PHWULF KDV WKH IRUP GV 4 G( G?M f IRU VRPH IXQFWLRQ 4 DQG VXFK WKDW DOO QXOO JHRGHVLFV DSSURDFK ILQLWH YDOXHV RI e DQG ?_ DV WKHLU DIILQH SDUDPHWHUV WHQG WR srr RU WR D OLPLWLQJ YDOXH 7KHQ LQ WKH AYMf

PAGE 44

SODQH GUDZ WKH OLPLW SRLQWV RI WKH QXOO JHRGHVLFV LQFOXGLQJ WKRVH DW LQILQLWH DIILQH SDUDPHWHUf 7KHVH SRLQWV FDQ EH UHJDUGHG DV D ERXQGDU\ DWWDFKHG WR WKH VSDFHWLPH $OVR GUDZ LQ WKH SRLQWV ZKHUH ) 3RLQWV UHSUHVHQWLQJ D FXUYDWXUH VLQJXODULW\ DUH GUDZQ ZLWK D VDZWRRWK OLQH ,Q WKH FDVH P WKHUH LV QR FXUYDWXUH VLQJXODULW\ DQG WKH SRLQWV DW U DUH GUDZQ ZLWK D GRWWHG OLQH (DFK SRLQW RI WKH UHVXOWLQJ GLDJUDP FDOOHG D 3HQURVH GLDJUDPf FDQ EH UHJDUGHG DV D VSKHUH RI V\PPHWU\ LQ 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH 6LQFH UDGLDO QXOO JHRGHVLFV DUH OLQHV ZKLFK PDNH DQ DQJOH RI r ZLWK WKH YHUWLFDO LW IROORZV WKDW WKH SDWK RI WKH ZDOO ZKLFK LV D WLPHOLNH FXUYH RQ WKLV GLDJUDP DOZD\V PDNHV DQ DQJOH RI OHVV WKDQ r ZLWK WKH YHUWLFDO ,Q GUDZLQJ WKH 3HQURVH GLDJUDP FKRRVH D WLPH RULHQWDWLRQ IRU WKH VSDFHWLPH &KRRVLQJ WKH RSSRVLWH WLPH RULHQWDWLRQ VLPSO\ UHVXOWV LQ WKH VDPH GLDJUDP XSVLGH GRZQ 7KH QDWXUH RI WKH FRPSOHWH H[WHQVLRQ GHSHQGV RQ WKH YDOXHV RI P DQG $ 5HFDOO WKDW RQO\ WKH FDVHV ZKHUH $ DQG P DUH QRQQHJDWLYH DUH FRQVLGHUHG KHUH 7KHUH DUH WZR JHQHULF FDVHV Lf P $ LLf PA$O DQG IRXU H[FHSWLRQDO FDVHV Lf PA$ O LLf P $ LLLf P $r LYf Pr $ 7KH VHFRQG JHQHULF FDVH LV FRYHUHG LQ UHIHUHQFH DQG ODVW WKUHH H[FHSWLRQDO FDVHV DUH FRYHUHG LQ UHIHUHQFH VR WKH UHVXOWV IRU WKHVH FDVHV ZLOO EH RQO\ EULHIO\ SUHVHQWHG 6RPH LQIRUPDWLRQ DERXW WKH ILUVW JHQHULF DQG ILUVW H[FHSWLRQDO FDVHV LV SUHVHQWHG LQ UHIHUHQFH ,Q WKH JHQHULF FDVH P]n$!O LW IROORZV IURP HTXDWLRQ f WKDW

PAGE 45

) IRU DOO U 7KXV WKH UWf FRRUGLQDWH SDWFK FRYHUV WKH FRPSOHWH H[WHQVLRQ 'HILQH WKH FRRUGLQDWHV W DQG ??U DQG WKH FRQVWDQW E\ 9 V W f -RU )nUfGU f V OLPUAf f 7KHQ LW IROORZV IURP HTXDWLRQ f WKDW GV )GA G?_f f 7KH SRLQWV DW e FRUUHVSRQG WR U WKRVH DW FRUUHVSRQG WR U rr 7KH 3HQURVH GLDJUDP RI WKLV VSDFHWLPH LV VKRZQ LQ ILJXUH SDJH 7KH OLQHV DUH ODEHOOHG ZLWK WKH FRUUHVSRQGLQJ YDOXHV RI U ,Q WKH H[FHSWLRQDO FDVH P $ LW IROORZV IURP HTXDWLRQ f WKDW ) DQG G)GUf YDQLVK DW U U4 ZKHUH U4 P )RU DOO UrU4 )Uf 7KH FRPSOHWH H[WHQVLRQ LV FRYHUHG ZLWK FRRUGLQDWH SDWFKHV XQ Uf DQG YQ Uf RQH IRU HDFK LQWHJHU Q 7KH PHWULF RQ HDFK XQ Uf FRRUGLQDWH SDWFK KDV WKH IRUP JLYHQ LQ HTXDWLRQ f DQG LQ HDFK YQ Uf FRRUGLQDWH SDWFK WKH PHWULF KDV WKH IRUP JLYHQ LQ HTXDWLRQ f (DFK XQ Uf FRRUGLQDWH SDWFK RYHUODSV ZLWK WKH YQ Uf FRRUGLQDWH

PAGE 46

SDWFK IRU U!U4 DQG ZLWK WKH YQ c Uf FRRUGLQDWH SDWFK IRU U U 7KH RYHUODS PDSV DUH IRU U!U4 9Q 8Q U )nUfGU f DQG IRU U U4 YQO BXQ U )BOfG, f f 8VLQJ WKH JHRGHVLF HTXDWLRQ RQH FDQ VKRZ WKDW DOO QXOO JHRGHVLFV LQ WKLV VSDFHWLPH HLWKHU KDYH U U4 DQG DUH FRPSOHWH RU KDYH U WDNH RQ DOO YDOXHV EHWZHHQ DQG DQG DUH LQFRPSOHWH RQO\ DV U! 1H[W LQWURGXFH WKH FRRUGLQDWHV e DQG \ DV IROORZV IRU e N GHILQH XQ DQG YQ LQ WHUPV RI e DQG ??U DV IROORZV IRU LQAf?_WQOf XQ FRW^A9f` f )RU ^LQOf A`9fUQAf YQ FRW^ef§?_f` f

PAGE 47

'HILQH U LQ WHUPV RI e DQG \ DV IROORZV IRU \ W QQ RU \e WQ U U4 )RU RWKHU YDOXHV RI \ DQG e ZLWK 2FKHWHf GHILQH U E\ HTXDWLRQV f f DQG HLWKHU f RU f 7KHQ LW IROORZV WKDW XQ DQG YQ DUH & IXQFWLRQV RI e DQG \ DQG WKDW U LV D & IXQFWLRQ RI e DQG \ 7KH PHWULF LQ WKH b DQG ?M FRRUGLQDWHV LV GV )GA G?Mf^VLQA>AA?f@ `B f ZKHUH U LV UHJDUGHG DV D IXQFWLRQ RI A DQG \ DQG WKH PHWULF FRHIILFLHQWV DUH GHILQHG E\ FRQWLQXLW\ DW WKRVH SRLQWV ZKHUH U U4 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV VKRZQ LQ ILJXUH SDJH 7KH JHRGHVLF OLPLW SRLQWV ZLWK U RFFXU DW e \rWQ WKRVH ZLWK U rr RFFXU DW A W \rQ OfW WKRVH ZLWK U U4 RFFXU DW e \ LQ DQG W Q \ QOfW 7KH 3HQURVH GLDJUDP IRU WKH VSDFHWLPH ZLWK PA$O LV VKRZQ LQ ILJXUH SDJH ,Q WKLV FDVH )Uf YDQLVKHV DW WZR YDOXHV RI U GHVLJQDWHG U DQG U )LQDOO\ WKH UHVXOWV IRU WKH ODVW WKUHH H[FHSWLRQDO FDVHV ZLOO EH SUHVHQWHG r 7KH FDVH P $ LV 0LQNRZVNL VSDFHWLPH +HUH ) DQG WKHUH LV QR FXUYDWXUH VLQJXODULW\ 7KH 3HQURVH GLDJUDP IRU 0LQNRZVNL VSDFHWLPH LV VKRZQ LQ ILJXUH SDJH 7KH FDVH P $r LV GH

PAGE 48

6LWWHU VSDFHWLPH ZLWK ) DW U $fAA DQG QR FXUYDWXUH VLQJXODULW\ ILJXUH SDJH f 7KH FDVH Pr $ LV 6FKZDU]VFKLOG VSDFHWLPH ZKHUH ) DW U P ILJXUH SDJH f 7KHUH DUH PDQ\ SRVVLELOLWLHV IRU WKH JOREDO VWUXFWXUH RI WKH ZDOO VSDFHWLPH (DFK RI WKH PDQLIROGV 0 DQG 0 LV D UHJLRQ RI 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH ZLWK D ERXQGDU\ ZKLFK LV D WLPHOLNH VSKHULFDOO\ V\PPHWULF VXUIDFH 7KXV WKH 3HQURVH GLDJUDP RI 0 RU 0 FRQVLVWV RI D SLHFH RI RQH RI WKH 3HQURVH GLDJUDPV RI ILJXUHV ERXQGHG E\ D WLPHOLNH FXUYH 7KH 3HQURVH GLDJUDP RI WKH ZDOO VSDFHWLPH FRQVLVWV RI WKH 3HQURVH GLDJUDPV IRU 0 DQG 0a ZLWK WKH ERXQGDULHV LGHQWLILHG DW FRUUHVSRQGLQJ YDOXHV RI U )LJXUH SDJH LV WKH 3HQURVH GLDJUDP IRU RQH SRVVLEOH ZDOO VSDFHWLPH ,Q WKLV FDVH P $ DQG P $ 7KH FXUYHG GRWWHG OLQHV UHSUHVHQW WKH SDWKV RI WKH ZDOO LQ 0 DQG 0 DQG DUH LGHQWLILHG

PAGE 49

U RR U )LJXUH 7KH 3HQURVH GLDJUDP IRU 6FKZDU]VFKLOGGH 6LWWHU f VSDFHWLPH LQ WKH FDVH P $!

PAGE 50

U RR U RR U RR )LJXUH 7KH 3HQURVH GLDJUDP IRU 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH LQ WKH FDVH PA$ O

PAGE 51

U U )LJXUH 7KH 3HQURVH GLDJUDP IRU 6FKZDU]VFKLOGGH 6LWWHU VSDFHWLPH LQ WKH FDVH PA$O

PAGE 52

)LJXUH 7KH 3HQURVH GLDJUDP IRU 0LQNRZVNL VSDFHWLPH P $ f

PAGE 53

U RR )LJXUH 7KH 3HQURVH GLDJUDP IRU GH 6LWWHU VSDFHWLPH P $r f +HUH U $f

PAGE 54

U )LJXUH 7KH 3HQURVH GLDJUDP IRU 6FKZDU]VFKLOG VSDFHWLPH Pr $ f U P DQG W RQ WKH LQQHU GLDJRQDOV

PAGE 55

U U )LJXUH 7KH 3HQURVH GLDJUDP IRU D SRVVLEOH VSKHULFDO ZDOO VSDFHWLPH PA$!O PBA$O 7KH GRWWHG OLQHV DUH LGHQWLILHG

PAGE 56

3ODQDU :DOOV 7R ILQG WKH PRWLRQ RI D SODQDU ZDOO RQH PXVW ILUVW ILQG WZR VROXWLRQV RI WKH YDFXXP (LQVWHLQ HTXDWLRQ ZLWK FRVPRORJLFDO FRQVWDQW ZLWK SODQDU V\PPHWU\ $ VSDFHWLPH KDV SODQDU V\PPHWU\ LI LWV V\PPHWU\ JURXS FRQWDLQV WKH V\PPHWU\ JURXS RI WKH (XFOLGHDQ SODQH 7KH JHQHUDO SODQDU V\PPHWULF VROXWLRQ RI WKH YDFXXP (LQVWHLQ HTXDWLRQ ZLWK FRVPRORJLFDO FRQVWDQW $ KDV WKH IRUP GV +GS GUGS AG[ G\f f ZKHUH WKH IXQFWLRQ + LV GHILQHG E\ + \U $U f DQG \ LV D FRQVWDQW 7KH VXUIDFHV RI FRQVWDQW U DQG S DUH VXUIDFHV RI SODQDU V\PPHWU\ ,Q WKH FDVH \r WKLV VSDFHWLPH KDV D FXUYDWXUH VLQJXODULW\ DW U ZKLOH \ FRUUHVSRQGV WR GH 6LWWHU VSDFHWLPH DQG \ $ LV 0LQNRZVNL VSDFHWLPH 7KHUH LV DQRWKHU W\SH RI SODQDU V\PPHWU\ LQ 0LQNRZVNL VSDFHWLPH :ULWLQJ WKH 0LQNRZVNL PHWULF LQ WKH XVXDO &DUWHVLDQ FRRUGLQDWHV GV GW G] G[ G\ f

PAGE 57

LW LV PDQLIHVW WKDW WKH VXUIDFHV RI FRQVWDQW W DQG ] DUH VXUIDFHV RI SODQDU V\PPHWU\ +RZHYHU WKH YROXPH HOHPHQW RQ WKHVH VXUIDFHV LV LQGHSHQGHQW RI W DQG ] 7KLV IRUP RI SODQDU V\PPHWU\ LV WKHUHIRUH QRW VXLWDEOH IRU GHVFULELQJ DQ H[SDQGLQJ RU FRQWUDFWLQJ ZDOO DQG ZLOO QRW EH FRQVLGHUHG KHUH ,Q WKH FDVH ZKHUH \r RU $ r RQH FDQ UHZULWH WKH PHWULF LQ HTXDWLRQ f E\ LQWURGXFLQJ WKH FRRUGLQDWH S GHILQHG E\ S +nAGU 7KHQ WKH PHWULF LQ HTXDWLRQ f LV JLYHQ E\ GV +GS +BGU UG[ G\f f 7KLV LV VLPLODU WR WKH H[SUHVVLRQ LQ HTXDWLRQ f IRU WKH VSKHULFDOO\ V\PPHWULF FDVH &KRRVH 0 DQG 0Bf WR EH VSDFHWLPHV ZLWK PHWULFV RI WKH IRUP JLYHQ LQ HTXDWLRQ f /HW $ DQG \ EH WKH YDOXHV RI WKH FRQVWDQWV $ DQG \ LQ 0 UHVSHFWLYHO\ DQG LQ WKH VDPH ZD\ GHILQH $B DQG \ +HUH RQO\ WKH FDVHV ZKHUH ERWK $ DQG $B DUH JUHDWHU WKDQ RU HTXDO WR ]HUR ZLOO EH FRQVLGHUHG 7KH SURFHGXUH IRU WUHDWLQJ SODQDU ZDOOV DQG GHULYLQJ WKHLU HTXDWLRQ RI PRWLRQ LV FRPSOHWHO\ DQDORJRXV WR WKH PHWKRG XVHG LQ WKH ODVW VHFWLRQ IRU VSKHULFDO ZDOOV 7KHUHIRUH ZH RPLW WKH GHULYDWLRQ DQG VLPSO\ SUHVHQW WKH UHVXOWV 7KH ZDOO K\SHUVXUIDFH LV VSHFLILHG E\ D

PAGE 58

UHODWLRQ RI WKH IRUP U 5;f f ZKHUH ; LV SURSHU WLPH RQ D ZRUOGOLQH WDQJHQW WR WKH ZDOO DQG RUWKRJRQDO WR WKH SODQHV RI V\PPHWU\ 7KH HQHUJ\ GHQVLW\ RI WKH ZDOO LV JLYHQ E\ D FT NnA5A f ZKHUH F4 LV D FRQVWDQW 7KH HTXDWLRQ RI PRWLRQ RI WKH ZDOO LV V^+ G5G" ` VB^+ G5G!` F5U0 f 7KH TXDQWLWLHV + DQG +B GHQRWH WKH YDOXHV RI + RQ / DQG en UHVSHFWLYHO\ 7KH FRQVWDQWV V DQG VB DUH GHILQHG DV LQ WKH VSKHULFDO FDVH )URP HTXDWLRQ f REWDLQ G5G;f + +fF5Uffn F5UB + + f f 7KHQ XVLQJ HTXDWLRQ f REWDLQ

PAGE 59

G5G"Lf ^
PAGE 60

HQHUJ\ PRYLQJ LQ RQH GLPHQVLRQ LQ D SRWHQWLDO 9B5f 7KH YDULDEOH 5 WDNHV RQ YDOXHV LQ WKH RSHQ LQWHUYDO f 7KH VSHFLDO FDVH D E I KDV EHHQ WUHDWHG LQ UHIHUHQFHV DQG 6LQFH $ DQG $B DUH QRQQHJDWLYH LW IROORZV WKDW OEO I f 7KXV WKH FRQVWDQW I LV QRQQHJDWLYH DOVR 1RWH KRZHYHU WKDW WKHUH LV QR UHVWULFWLRQ RQ WKH VLJQ RI WKH FRQVWDQW F &RQVLGHU WKH FDVH F ,W WKHQ IROORZV IURP HTXDWLRQ f WKDW 9B5f IRU DOO 5 7KH PRWLRQ RI D SDUWLFOH RI ]HUR HQHUJ\ KDV QR WXUQLQJ SRLQWV LQ D SRWHQWLDO WKDW LV HYHU\ZKHUH QHJDWLYH ,I D F DQG 7 VDWLVI\ WKH VSHFLDO FRQGLWLRQV D F 7!O WKHQ OLPAA4 9B5f DQG WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ ]HUR LLf WKH WLPH UHYHUVH RI WKH PRWLRQ LQ Lf ,I WKHVH VSHFLDO FRQGLWLRQV RQ D F DQG 7 DUH QRW VDWLVILHG WKHQ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV IRUHYHU WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPH UHYHUVH RI WKH PRWLRQ LQ Lf 1H[W FRQVLGHU WKH FDVH F ,QWURGXFH WKH YDULDEOH = E\ = 5 f

PAGE 61

1RWH WKDW = LV D PRQRWRQLF IXQFWLRQ RI 5 WKXV G=GA KDV WKH VDPH VLJQ DV G5GA 5HZULWLQJ HTXDWLRQ f LQ WHUPV RI WKH YDULDEOH = UHVXOWV LQ fG=$5f :=f F f ZKHUH WKH IXQFWLRQ :=f LV GHILQHG E\ :=f B]nUf^DE=` ]U! I= f (TXDWLRQ f LV WKH HTXDWLRQ RI PRWLRQ RI D SDUWLFOH RI PDVV DQG HQHUJ\ F PRYLQJ LQ D SRWHQWLDO :=f 1H[W H[DPLQH WKH SURSHUWLHV RI WKH IXQFWLRQ :=f &RQVLGHU D JHQHULF FDVH 7r Dr DQG WKUHH H[FHSWLRQDO FDVHV Lf 7 O Dr LLf 7r D DQG LLLf 7 O D &DVH Ur Dr )URP HTXDWLRQ f LW IROORZV WKDW :=f LV XQERXQGHG IURP EHORZ ERWK DV =! DQG DV =!rr 7KXV :=f PXVW KDYH DW OHDVW RQH ORFDO PD[LPXP 7KHUH LV D QXPEHU 7F VXFK WKDW LI U!7FWKHQ :=f KDV H[DFWO\ RQH ORFDO PD[LPXP DQG QR RWKHU VWDWLRQDU\ SRLQWV 7R VHH WKLV OHW =V EH D VWDWLRQDU\ SRLQW RI :=f DQG OHW D SULPH GHQRWH

PAGE 62

GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR = 7KHQ :n=Vf ,W WKHQ IROORZV IURP HTXDWLRQ f WKDW : =V f ^=B>=:7` =Vf f =VnUf^DUfDEUf =V EUf =V` fUOf =VUf I f 5HDUUDQJLQJ WHUPV RQ WKH ULJKWKDQG VLGH DUULYH DW : =Vf f7Of =VfnUf^DEUfUOfn =i` EUOfn =VfUf^Uf`^Uff` fUOf =VUf I f $OO WHUPV RQ WKH ULJKWKDQG VLGH RI f DUH PDQLIHVWO\ QHJDWLYH H[FHSW IRU WKH VHFRQG WHUP ,Q WKH VHFRQG WHUP VLQFH 7B LW IROORZV WKDW WKH IDFWRU UfA LV QHJDWLYH 1RZ GHILQH WKH QXPEHU 7f E\ 9 7F f f 7KHQ LI U!7F LW IROORZV WKDW WKH VHFRQG WHUP RQ WKH ULJKWKDQG VLGH RI f LV PDQLIHVWO\ QHJDWLYH &RQVLGHU WKH FDVH 7!UF 7KHQ : =Vf LV

PAGE 63

QHJDWLYH 7KXV : =Vf LV D ORFDO PD[LPXP 7KLV PHDQV DQ\ VWDWLRQDU\ SRLQW RI :=f LV D ORFDO PD[LPXP 6LQFH :=f LV VPRRWK LW IROORZV WKDW LW FDQ KDYH DW PRVW RQH PD[LPXP DQG VLQFH LW KDV DW OHDVW RQH PD[LPXP LW KDV H[DFWO\ RQH PD[LPXP /HW :PD[ EH WKH PD[LPXP YDOXH RI :=f DQG OHW =V EH WKH YDOXH RI = DW ZKLFK :=f DWWDLQV WKLV PD[LPXP 'HILQH 5V E\ 5V =VA )RU F!:PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPH UHYHUVH RI WKH PRWLRQ LQ Lf )RU F :PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO LV LQ XQVWDEOH HTXLOLEULXP ZLWK 5 5i LLf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5i LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LYf WKH WLPH UHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPH UHYHUVH RI WKH PRWLRQ LQ LLLf )RU F :PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK 5 H[SDQGV WR D PD[LPXP 5 OHVV WKDQ 5i FRQWUDFWV WR 5 DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 7KH JHQHULF FDVH ZKHQ U/UF LV PRUH GLIILFXOW EXW DV LQ WKH VSKHULFDO FDVH LW LV SRVVLEOH WR GHPRQVWUDWH WKDW IRU VRPH FKRLFHV RI

PAGE 64

WKH SDUDPHWHUV D E F I DQG U WKH ZDOO FDQ XQGHUJR RVFLOODWLRQV DERXW D SRLQW RI VWDEOH HTXLOLEULXP /HW 7 EH DQ\ QXPEHU VDWLVI\LQJ 7O &KRRVH D E DQG I E 1RWH WKDW IRU WKLV FKRLFH RI I WR EH FRPSDWLEOH ZLWK HTXDWLRQ f RQH PXVW KDYH E 7KHQ XVLQJ HTXDWLRQ f ILQG :n=f fE=nUf=f^Uf= 7f` E= fOUf]Uff f f )URP f LW IROORZV WKDW Y :fOf fEUf fOUf f VR :ff! 'HILQH = E\ =I^6UfOUf`O 7KHQ =M DQG :f=f =^EOfO=Unf` f &KRRVH E VR WKDW E! f7f =MAAnA 7KHQ IURP f LW IROORZV WKDW :f =Mf 7KHUHIRUH LW IROORZV WKDW :=f KDV D ORFDO PLQLPXP DW VRPH = EHWZHHQ =M DQG +HQFH IRU VRPH YDOXHV RI WKH HQHUJ\ F DQG LQLWLDO YDOXH RI 5 WKH ZDOO XQGHUJRHV RVFLOODWLRQV DERXW D SRLQW RI VWDEOH

PAGE 65

HTXLOLEULXP &DVH U O Dr )URP HTXDWLRQ f LW IROORZV WKDW :=f DE=f I= f )URP HTXDWLRQ f WKH IROORZLQJ SURSHUWLHV KROG IRU WKH IXQFWLRQ :=f Lf LI DEIf WKHQ :=f KDV H[DFWO\ RQH ORFDO PD[LPXP DQG QR RWKHU VWDWLRQDU\ SRLQWV LLf LI DEIf! WKHQ :=f KDV QHLWKHU ORFDO PD[LPD QRU ORFDO PLQLPD LLLf OLPAT?9=f D$f LYf LI I WKHQ IURP HTXDWLRQ ff E DQG :=f ODf 5HFDOO WKDW = WDNHV RQ YDOXHV RQO\ LQ WKH RSHQ LQWHUYDO f VR RQH PXVW WDNH OLPLWV DV =} DQG = FDQQRW FRQVLGHUHG DV D SRVVLEOH ORFDWLRQ IRU D PLQLPXP RU PD[LPXP RI :=f )RU DEIf OHW :PD[ EH WKH PD[LPXP YDOXH RI :=f OHW =V EH WKH YDOXH RI = DW ZKLFK WKLV PD[LPXP LV DFKLHYHG DQG OHW 5V EH JLYHQ E\ 56 =6A 7KH G\QDPLFV RI WKH ZDOO GHSHQG RQ DEI DQG F )RU DEIf F!:PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU DEIf F :PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO LV

PAGE 66

LQ XQVWDEOH HTXLOLEULXP ZLWK 5 5i LLf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5i LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5i LYf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLLf )RU DEIf D f F :PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO DSSHDUV ZLWK 5 H[SDQGV WR D PD[LPXP YDOXH RI 5 OHVV WKDQ 5i FRQWUDFWV WR 5 DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 JUHDWHU WKDQ 5i DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 )RU DEIf F OD f WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 )RU DEIf F !OD f WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV IRUHYHU WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU DEIf! FOD f WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 )RU DEIf! Ir F ODAf WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH DV IROORZV Lf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ ]HUR LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU I F ODAf WKH ZDOO UHPDLQV ZLWK 5 DW DQ\ FRQVWDQW YDOXH

PAGE 67

&DVH 7r D )URP HTXDWLRQ f LW IROORZV WKDW :=f E]Uf =Uf I= f )URP f WKH IROORZLQJ SURSHUWLHV KROG IRU WKH IXQFWLRQ :=f Lf LI U!O WKHQ OLPA T:=f DQG :=f KDV QR VWDWLRQDU\ SRLQWV LLf LI 7O DQG I WKHQ E OLPAAR :=f DQG :=f KDV QR VWDWLRQDU\ SRLQWV LLLf LI 7O DQG Ir WKHQ :=f KDV H[DFWO\ RQH PD[LPXP DQG QR RWKHU VWDWLRQDU\ SRLQWV )RU UO Ir GHILQH :PD[ =V DQG 5V DV EHIRUH 7KH G\QDPLFV RI WKH ZDOO GHSHQG RQ WKH YDOXHV RI 7 I DQG F )RU 7! WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 )RU UO I WKH ZDOO DSSHDUV ZLWK 5 H[SDQGV WR D PD[LPXP YDOXH RI 5 FRQWUDFWV WR 5 DQG GLVDSSHDUV )RU 7O Ir F!:PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV IRUHYHU WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU 7O Ir F :PD[ WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUHLf WKH ZDOO UHPDLQV LQ XQVWDEOH HTXLOLEULXP ZLWK 5 56 LLf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5i

PAGE 68

LLLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ 5V LYf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLf Yf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ LLLf )RU 7O Ir F:UQf< WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO DSSHDUV ZLWK 5 H[SDQGV WR D PD[LPXP YDOXH RI 5 OHVV WKDQ 5i FRQWUDFWV WR 5 DQG GLVDSSHDUV LLf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 JUHDWHU WKDQ 5V DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI RI 5 &DVH 7 O D )URP HTXDWLRQ f LW IROORZV WKDW :=f E= I= f )URP f WKH IROORZLQJ SURSHUWLHV KROG IRU WKH IXQFWLRQ :=f Lf OLP]B!:=f O LLf LI I WKHQ :=f LLLf LI Ir WKHQ :=f KDV QR VWDWLRQDU\ SRLQWV 7KH G\QDPLFV RI WKH ZDOO GHSHQG RQ WKH YDOXHV RI I DQG F )RU F!O WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO DSSHDUV ZLWK 5 DQG H[SDQGV IRUHYHU WR XQERXQGHG YDOXHV RI 5 LLf WKH WLPHUHYHUVH RI WKH PRWLRQ LQ Lf )RU F O Ir WKH SRVVLEOH PRWLRQV RI WKH ZDOO DUH Lf WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 ZLWK 5 DV\PSWRWLFDOO\ DSSURDFKLQJ ]HUR LLf WKH WLPHUHYHUVH RI

PAGE 69

WKH PRWLRQ LQ Lf )RU F O I WKH ZDOO UHPDLQ DW DQ\ FRQVWDQW YDOXH RI 5 )RU FO I PXVW EH QRQ]HUR DQG WKH ZDOO FRQWUDFWV IURP XQERXQGHG YDOXHV RI 5 WR D PLQLPXP YDOXH RI 5 DQG WKHQ H[SDQGV WR XQERXQGHG YDOXHV RI 5 *OREDO 6WUXFWXUH 7KH JOREDO VWUXFWXUH RI WKH ZDOO VSDFHWLPH FRQVLVWV RI WZR UHJLRQV RI VSDFHWLPHV RI WKH IRUP JLYHQ LQ HTXDWLRQ f DWWDFKHG DORQJ WLPHOLNH SODQH V\PPHWULF VXUIDFHV %HJLQ E\ FRQVLGHULQJ WKH SURSHUWLHV RI SODQH RUWKRJRQDO QXOO JHRGHVLFV WKDW LV QXOO JHRGHVLFV ZKLFK DUH RUWKRJRQDO WR WKH V\PPHWU\ SODQHV &RQVLGHU WKH WZR GLPHQVLRQDO PHWULF GV GUGS +GS f 1XOO JHRGHVLFV LQ WKLV PHWULF DUH WKH VDPH DV SODQHRUWKRJRQDO QXOO JHRGHVLFV LQ WKH PHWULF RI HTXDWLRQ f ,I + LV QRQ]HUR IRU DOO YDOXHV RI U WKHQ RQH FDQ VKRZ WKDW IRU DQ\ LQFRPSOHWH QXOO JHRGHVLF LQ WKH PHWULF RI HTXDWLRQ f U DSSURDFKHV ]HUR DV WKH DIILQH SDUDPHWHU DSSURDFKHV LWV OLPLWLQJ YDOXH ,I + YDQLVKHV DW VRPH YDOXH RI U LQWURGXFH QHZ FRRUGLQDWHV WR H[WHQG WKH VSDFHWLPH ,Q HLWKHU FDVH REWDLQ D VSDFHWLPH WKH FRPSOHWH H[WHQVLRQ LQ ZKLFK DQ\ LQFRPSOHWH QXOO JHRGHVLF KDV WKH SURSHUW\ WKDW U DSSURDFKHV ]HUR DV WKH DIILQH

PAGE 70

SDUDPHWHU DSSURDFKHV LWV OLPLWLQJ YDOXH 7R LOOXVWUDWH WKH SURSHUWLHV RI WKH FRPSOHWH H[WHQVLRQ LQWURGXFH FRRUGLQDWHV ( DQG ??U VXFK WKDW WKH PHWULF KDV WKH IRUP ILQLWH YDOXHV RI b DQG ??W DV WKHLU DIILQH SDUDPHWHUV WHQG WR srr RU WR D OLPLWLQJ YDOXH 7KHQ SURGXFH WKH 3HQURVH GLDJUDP RI WKH VSDFHWLPH E\ GUDZLQJ LQ WKH SODQH WKH OLPLW SRLQWV RI WKH QXOO JHRGHVLFV DQG WKH SODFHV ZKHUH + YDQLVKHV (DFK SRLQW LQ WKH 3HQURVH GLDJUDP FDQ EH UHJDUGHG DV D SODQH LQ WKH IRXUGLPHQVLRQDO VSDFHWLPH &XUYDWXUH VLQJXODULWLHV DUH DJDLQ UHSUHVHQWHG E\ VDZWRRWK OLQHV LI \ WKHQ WKHUH LV QR FXUYDWXUH VLQJXODULW\ DQG WKH SODFHV ZKHUH U DUH UHSUHVHQWHG E\ EURNHQ OLQHV 7KH QDWXUH RI WKH FRPSOHWH H[WHQVLRQ GHSHQGV RQ WKH YDOXHV RI \ DQG $ 7KHUH DUH WZR JHQHULF FDVHV Lf \$! LLf \! $! DQG IRXU H[FHSWLRQDO FDVHV Lf \ $ LLf A $! LLLf \! $ LYf \ $ ,Q WKH JHQHULF FDVH \ $! LW IROORZV IURP HTXDWLRQ f WKDW + IRU DOO U 7KXV WKH 3Uf FRRUGLQDWH SDWFK FRYHUV WKH HQWLUH VSDFHWLPH 'HILQH WKH FRRUGLQDWHV A DQG ?_ DQG WKH FRQVWDQW E\ V U+n,OfGO Y 3 b FRV f f f f

PAGE 71

,W WKHQ IROORZV IURP HTXDWLRQ f WKDW GV +GA G\f f 7KH SRLQWV DW A FRUUHVSRQG WR U WKRVH DW e } FRUUHVSRQG WR U 7KH 3HQURVH GLDJUDP RI WKLV VSDFHWLPH LV VKRZQ LQ ILJXUH SDJH ,Q WKH JHQHULF FDVH \! $! GHILQH WKH FRQVWDQW &M E\ &M K ^\$` f 7KHQ LW IROORZV IURP HTXDWLRQ f WKDW + $Uf&O Uf f 7KXV +FAf )RU U &M +! IRU U!&M + 7KH FRRUGLQDWHV LQ HTXDWLRQ f RQO\ FRYHU SDUW RI WKH VSDFHWLPH VR QHZ FRRUGLQDWHV PXVW EH LQWURGXFHG WR H[WHQG WKH VSDFHWLPH 'HILQH WKH IXQFWLRQ 6Uf E\ 6Uf $FUfU FAU &MfA ; ; H[S^^LfWDQnA>U&MfF@`` f

PAGE 72

7KHQ IRU U &M LW IROORZV IURP HTXDWLRQV f DQG f WKDW GGUf^OQ6+f` $F+n f )RU U &M GHILQH WKH FRRUGLQDWHV $ DQG % E\ $ H[S^$FM3` f $% $FM f+6 f 7KHQ XVLQJ HTXDWLRQV f DQG f REWDLQ GV 6G$G% f +HUH U LV D IXQFWLRQ RI $ DQG % JLYHQ E\ HTXDWLRQ f 7KH PHWULF LQ f LV VPRRWK IRU DOO YDOXHV RI $ DQG % 7KH UHJLRQ $! %! LV LVRPHWULF WR WKH S Uf FRRUGLQDWH SDWFK 7KLV VSDFHWLPH LV WKH FRPSOHWH H[WHQVLRQ RI WKH VSDFHWLPH RI PHWULF f 'HILQH WKH FRRUGLQDWHV e DQG \ E\ $ WDQ ^?Mf§A f` % WDQ^\ef` f f

PAGE 73

7KHQ XVLQJ HTXDWLRQV f DQG f REWDLQ GV ^FRV>?MAf@FRV>?MAf@`n6GA G?_f DQG f ^FRVAFRV?`fFRVAFRV\f` $FMf+6 f 7KH SRLQWV DW U FRUUHVSRQG WR ?_ W RU ?M WF WKRVH DW U rr FRUUHVSRQG WR FRVA FRV?_fWDQKL f 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV VKRZQ LQ ILJXUH SDJH ,Q WKH H[FHSWLRQDO FDVH \ $ + DQG WKXV GV GUGS f $OO QXOO JHRGHVLFV LQ WKLV PHWULF HLWKHU KDYH U FRQVWDQW DQG 3 YDU\LQJ OLQHDUO\ ZLWK WKH DIILQH SDUDPHWHU RU S FRQVWDQW DQG U YDU\LQJ OLQHDUO\ ZLWK WKH DIILQH SDUDPHWHU 7KXV RQ DOO LQFRPSOHWH QXOO JHRGHVLFV U DSSURDFKHV ]HUR DV WKH DIILQH SDUDPHWHU WHQGV WR LWV OLPLWLQJ YDOXH ,QWURGXFH WKH FRRUGLQDWHV e DQG ?_ E\ U WDQ^\Af` S WDQ^?_Af` f f 6XEVWLWXWLQJ LQWR HTXDWLRQ f UHVXOWV LQ

PAGE 74

f GV ^FRV>\Af@FRV>\f@ `nA^GA G\` 7KH SRLQWV DW ?_A FRUUHVSRQG WR U WKRVH DW \e L FRUUHVSRQG WR U rr 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV LQ ILJXUH SDJH ,Q WKH ODVW WKUHH H[FHSWLRQDO FDVHV + LV QRZKHUH ]HUR DQG WKXV WKH S Uf FRRUGLQDWH SDWFK FRYHUV WKH HQWLUH VSDFHWLPH ,Q WKH FDVHV ZKHUH +! LQWURGXFH WKH FRRUGLQDWHV e DQG \ E\ S WDQ^\Af` +nAGU VLQ\f^FRV>\Af@FRV>\f@`nO f f ,Q FDVHV ZKHUH + LQWURGXFH WKH FRRUGLQDWHV \ DQG e E\ S WDQ^A\f` f +nAGU VLQ\f^FRV>e\f@FRV>A\f@ `r f ,Q ERWK FDVHV WKH PHWULF f WDNHV WKH IRUP GV ^FRV>A\f@FRV>A\f@ `B,+, ^GAG\` f 2 ,Q WKH H[FHSWLRQDO FDVH \ $! + $U 8VLQJ HTXDWLRQ f REWDLQ

PAGE 75

$Uf VLQ?_f^FRV>A\f@FRV>A\f@`nA f 6ROYLQJ IRU U DQG VXEVWLWXWLQJ LQWR f UHVXOWV LQ GV $f ^GA G?_` VLQ f 7KH SRLQWV DW ?`U W RU e\ W FRUUHVSRQG WR U WKRVH DW e FRUUHVSRQG WR U rr 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV ILJXUH SDJH ,Q WKH H[FHSWLRQDO FDVH \! $ + \U! 8VLQJ HTXDWLRQ f UHVXOWV LQ U\ VLQ?Mf^FRV>?_Af@FRV>YLAf@`n f 6ROYLQJ IRU U DQG VXEWLWXWLQJ LQWR f REWDLQ WKH PHWULF GV ^ \nAVLQ?MfFRVA>?MAf@FRVA>?_Af@ `fA^GA G\` f 7KH SRLQWV DW \ FRUUHVSRQG WR U WKRVH DW \A W RU \e Q FRUUHVSRQG WR U rr 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV ILJXUH SDJH )LQDOO\ LQ WKH H[FHSWLRQDO FDVH \ $ + \U )URP HTXDWLRQ f DUULYH DW U\ VLQ\f^FRV>A\f@FRV>A?_f@` f

PAGE 76

$V EHIRUH XVH WKLV DQG HTXDWLRQ f WR JHW GVA ^\nAVLQAfFRVA>?MAf@FRVA>?_Af@ `aA^GA G?MA`f 7KH SRLQWV DW e FRUUHVSRQG WR U WKRVH DW e\ L RU e?_ W FRUUHVSRQG WR U rr 7KH 3HQURVH GLDJUDP IRU WKLV VSDFHWLPH LV ILJXUH SDJH 7KHUH DUH PDQ\ SRVVLELOLWLHV IRU WKH JOREDO VWUXFWXUH RI WKH SODQDU ZDOO VSDFHWLPH 7KH 3HQURVH GLDJUDP IRU HDFK RI WKH PDQLIROGV 0 DQG 0 FRQVLVWV RI D SLHFH RI RQH RI WKH 3HQURVH GLDJUDPV RI ILJXUHV ERXQGHG E\ D WLPHOLNH FXUYH 7KH 3HQURVH GLDJUDP RI WKH ZDOO VSDFHWLPH FRQVLVWV RI WKH 3HQURVH GLDJUDPV RI 0 DQG 0a ZLWK WKH ERXQGDULHV LGHQWLILHG DW FRUUHVSRQGLQJ YDOXHV RI U )LJXUH SDJH LV WKH 3HQURVH GLDJUDP IRU RQH SRVVLEOH ZDOO VSDFHWLPH ,Q WKLV FDVH $ \ $ DQG \ 7KH SDWKV RI WKH ZDOO LQ 0 DQG 0 DUH LGHQWLILHG

PAGE 77

U )LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF VSDFHWLPH LQ WKH FDVH \ $!

PAGE 78

U RR )LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF VSDFHWLPH ZLWK \! $ 7KH LQQHU GLDJRQDOV FRUUHVSRQG WR U &L

PAGE 79

)LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQDU V\PPHWULF VSDFHWLPH ZLWK \ $

PAGE 80

? Z ? Z 1 U A U Z 1 Z ? ? ? U RR )LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF VSDFHWLPH ZLWK \ $

PAGE 81

)LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF VSDFHWLPH LQ WKH FDVH \ $ !

PAGE 82

U 2 )LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF VSDFHWLPH LQ WKH FDVH \ $

PAGE 83

U )LJXUH 7KH 3HQURVH GLDJUDP IRU D SRVVLEOH SODQDU V\PPHWULF ZDOO VSDFHWLPH $! \ $B! \! 7KH GRWWHG OLQHV DUH LGHQWLILHG

PAGE 84

&+$37(5 7+,1 :$//6 $1' 3/$1(6<00(75,& )/8,'6 :,7+ 35(6685( (48$/ 72 (1(5*< '(16,7< ,QWURGXFWLRQ ,Q WKLV FKDSWHU WKH PRWLRQ RI D WKLQ ZDOO LV WUHDWHG LQ JHQHUDO UHODWLYLW\ IRU WKH FDVH ZKHUH WKH UHJLRQV RQ HLWKHU VLGH RI WKH ZDOO DUH ILOOHG ZLWK IOXLG 7KH IOXLG LV WDNHQ WR EH LUURWDWLRQDO DQG SODQHV\PPHWULF ZLWK WKH SUHVVXUH S HTXDO WR WKH HQHUJ\ GHQVLW\ S $V EHIRUH WKH ZDOO LV DVVXPHG WR KDYH WKH HTXDWLRQ RI VWDWH [ 7R ZKHUH B 7 B [ EHLQJ WKH WHQVLRQ LQ WKH ZDOO DQG D LWV HQHUJ\GHQVLW\ 8QOLNH WKH WUHDWPHQW LQ FKDSWHU WZR WKH ZDOO VSDFHWLPHV DUH WDNHQ WR EH FRPSOHWHO\ UHIOHFWLRQ V\PPHWULF DV LQ UHIHUHQFHV DQG f LQ RUGHU WR PDNH WKH HTXDWLRQV WUDFWDEOH 0DWKHPDWLFDOO\ WKLV PHDQV .DA .DAB $ FODVV RI VWDWLF VSDFHWLPHV LV IRXQG WR SHUPLW RVFLOODWRU\ VROXWLRQV ZKHQHYHU 7!O ,Q D VHSDUDWH FODVV ZKLFK LQFOXGHV D 5REHUWVRQ:DONHU VSDFHWLPH WKH ZDOOV VLPSO\ WUDQVODWH WKURXJK VSDFH ZLWKRXW WXUQLQJ SRLQWV 7KH WUHDWPHQW H[WHQGV WR IOXLG VSDFHWLPHV SUHYLRXV UHVXOWV LQYROYLQJ WKLQ ZDOOV LQ YDFXXP DV VWXGLHG LQ UHIHUHQFHV DQG 7KH JOREDO VWUXFWXUH RI WKH ZDOO VSDFHWLPH LV GLVFXVVHG LQ WKH ILQDO VHFWLRQ RI WKH FKDSWHU

PAGE 85

7DXE7DEHQVNY 6SDFH7LPHV 7R GHULYH WKH PHWULF VWDUW IURP (LQVWHLQfV HTXDWLRQ ZKLFK LV 5DE f 5iDE .7DE ZLWK Wf 7DE 3 3fXDXE 3iDE f ZKHUH S S DQG XD DUH WKH HQHUJ\ GHQVLW\ SUHVVXUH DQG IRXUYHORFLW\ RI WKH DPELHQW IOXLG UHVSHFWLYHO\ 2XWVLGH WKH ZDOO WKH VFDODU ILHOG _f PDNHV QR FRQWULEXWLRQ WR 7DA VLQFH f! LV DSSUR[LPDWHO\ FRQVWDQW DQG 9M!f LV WDNHQ WR EH YDQLVKLQJO\ VPDOO 7DEHQVN\ DQG 7DXE VROYHG HTXDWLRQ f XQGHU WKH DVVXPSWLRQ WKDW WKH HQHUJ\ GHQVLW\ S HTXDOHG WKH SUHVVXUH S DQG WKDW WKH IOXLG ZDV LUURWDWLRQDO :LWK WKHVH FRQGLWLRQV LW IROORZV IURP WKH FRQVHUYDWLRQ RI 7DA WKDW WKHUH H[LVWV D IXQFWLRQ ) VXFK WKDW XD 9D)9F) YF)f! f DQG WKDW HTXDWLRQ f EHFRPHV 5DE OF3XDXE YD)YE) f f

PAGE 86

7KH SUHVVXUH DQG HQHUJ\ GHQVLW\ RI WKH IOXLG LV JLYHQ E\ NS NS 9e) 9&) f ZKLOH WKH HTXDWLRQ RI PRWLRQ LV 9&9&) f :LWK WKH DERYH HTXDWLRQV DQG WKH DVVXPSWLRQ RI SODQH V\PPHWU\ RQH FDQ SURFHHG DV LQ 7DEHQVN\ DQG 7DXE DQG REWDLQ WKH VROXWLRQ GVA WaAH[S4f GWA G]A f W G[A G\Af f ZKHUH  LV DQ DUELWUDU\ OLQH LQWHJUDO LQ WKH W] SODQH 4 W^ ) )]fGW )W)]G]f f ZLWK FRPPD GHVLJQDWLQJ SDUWLDO GHULYDWLYH ,Q WKHVH FRRUGLQDWHV ) VDWLVILHV )f== )! WW WB)W f

PAGE 87

1RWH WKDW HLWKHU W RU ] FDQ DFW DV D WLPH FRRUGLQDWH GHSHQGLQJ RQ WKH FKRLFH RI VLJQ LQ HTXDWLRQ f 7KH FKRLFH RI VROXWLRQ LQ f GHWHUPLQHV WKH PHWULF 'HULYDWLRQ RI WKH -XPS &RQGLWLRQV 7KH 7DEHQVN\7DXE VSDFHWLPH PHWULF WDNHV WKH IRUP GVA H+W]fGWA G]Af WG[A G\Af f ZKHUH H DQG + WnAAH[S4f ZLWK 4 DV GHILQHG LQ WKH SUHYLRXV VHFWLRQ 6SHFLI\ WKH K\SHUVXUIDFH = E\ ] 3Wf 7KHQ LQ WKH FRRUGLQDWHV W ] [ \f D QRUPDO FRYHFWRU WR ( LV JLYHQ E\ 1D 3W f f 7KXV WKH XQLW FRYHFWRU QD DQG WKH 7IOXLG IRXUYHORFLW\ YD DUH JLYHQ E\ QD f4f 3W f DQG f YD 4! 3W f f

PAGE 88

L R ZKHUH 4 H+ >3Wf @ WKH QRUP RI 1D DQG DQG M DUH s FRUUHVSRQGLQJ WR WKH WZR SRVVLEOH GLUHFWLRQV RI WKHVH FRYHFWRUV 8VLQJ f DQG f RQH FDQ ZULWH 6DE YDYE QDQE ADE f f MXVW DV LQ HTXDWLRQ f +HUH TDAfG[DG[rf W G[A G\Af 7KH LQWULQVLF PHWULF RI WKH ZDOO ZLOO WKHQ EH KDA YDYA TDA :LWK WKLV H[SUHVVLRQ WKH H[WULQVLF FXUYDWXUH FDQ DJDLQ EH FRPSXWHG IURP HTXDWLRQ f $ VWUDLJKWIRUZDUG FRPSXWDWLRQ \LHOGV eQYDf MH+n.49 3fW 4f]fYD f efTDEf MH+W4fSWfTDE f DQG KHQFH .DE 9D9EH+n / M4aff OfTDEH+n U>/ f ZKHUH / M4fA3W (TXDWLRQV f f DQG f JLYH WZR HTXDWLRQV IRU .DA .DA RQH LQ WHUPV RI WKH VWUHVVHQHUJ\ RI WKH ZDOO DQG WKH RWKHU LQ WHUPV RI WKH SXUHO\ JHRPHWULF TXDQWLWLHV RI

PAGE 89

HTXDWLRQ f (TXDWLQJ WKH SDUWV WDQJHQWLDO DQG RUWKRJRQDO WR YD UHVXOWV LQ WKH MXPS FRQGLWLRQV OfH+ nWn/ OfH+BW/B fNJ f H+f /W M4f]f H+ B / W MB4f]f UOf.2 f )URP YDYD DQG WKH DERYH GHILQLWLRQV D XVHIXO H[SUHVVLRQ IRU / FDQ EH IRXQG / V+ YD9DW f H+nf f +HUH V sBO DQG ZLOO EH LQWHUSUHWHG LQ WKH IROORZLQJ VHFWLRQV 6XEVWLWXWLQJ LQWR HTXDWLRQ f UHVXOWV LQ Of(WfVYD9DWf H+ Bf OfeWnVYD9DWf H+f f§ fNJ f ,Q WKH QH[W WZR VHFWLRQV WKH HTXDWLRQV GHYHORSHG WKXV IDU ZLOO EH XVHG WR VWXG\ WKH PRWLRQ RI WKLQ ZDOOV LQ WZR SDUWLFXODU 7DEHQVN\7DXE VSDFHWLPHV

PAGE 90

6WDWLF 6SDFH7LPH &KRRVH ) D] D D FRQVWDQW IRU WKH VROXWLRQ RI HTXDWLRQ f DQG OHW H O LQ WKH PHWULF f VR WKDW WKH IRXUYHORFLW\ RI WKH DPELHQW IOXLG ZLOO EH WLPHOLNH DQG DW UHVW ZLWK UHVSHFW WR WKHVH FRRUGLQDWHV 8VLQJ HTXDWLRQV f DQG f UHVXOWV LQ WKH PHWULF GV IAH[SDWfG] GWf W G[ G\f f 1RWH WKDW ] LV WKH WLPH FRRUGLQDWH KHUH DQG W D VSDFH FRRUGLQDWH VR WKH PHWULF LV VWDWLF 7KH HQHUJ\ GHQVLW\ DQG SUHVVXUH RI WKH IOXLG LV S S fN DWAAH[SDWAf f ZKLFK LV VPRRWK IRU DOO W %HIRUH LQYRNLQJ WKH DVVXPSWLRQ RI UHIOHFWLRQ V\PPHWU\ LW ZLOO EH QHFHVVDU\ WR LQWHUSUHW WKH TXDQWLW\ V LQ f DQG WKHQ H[DPLQH f WR GHWHUPLQH ZKDW YDOXHV RI V DQG V PLJKW EH DOORZHG )RU H O LW IROORZV WKDW QD9DW Qr V,/,+ f ZKLFK VD\V WKDW LQ WKH GLUHFWLRQ RI QD W GHFUHDVHV ZKHQ V O DQG

PAGE 91

LQFUHDVHV ZKHQ V O /RRNLQJ WKHQ DW HTXDWLRQ f LW LV FOHDU WKDW LI WKH HQHUJ\ GHQVLW\ RI WKH ZDOO R LV WR EH SRVLWLYH HLWKHU V O DQG VB O RU V VB O ZLWK WKH DGGLWLRQDO SURYLVR WKDW +ar + 7KH DVVXPSWLRQ RI UHIOHFWLRQ V\PPHWU\ OHDYHV RQO\ WKH IRUPHU SRVVLELOLW\ +HQFH LQ D GLUHFWLRQ SHUSHQGLFXODU WR WKH ZDOO DQG SRLQWLQJ LQWR 0 W LV GHFUHDVLQJ DQG DUHD HOHPHQWV DUH IURP f VKULQNLQJ 0 DV LQ FKDSWHU WZR LV GHVLJQDWHG DQ LQWHULRU 1RWH WKDW QD SRLQWV IURP 0 WR 0 VR WKH VDPH FDOFXODWLRQ LQ 0a PXVW EH GRQH XVLQJ QD 7KLV PHDQV WKDW V O DOVR FRUUHVSRQGV WR DQ LQWHULRU 7KXV WKH ZDOO VSDFHWLPH ZLOO FRQVLVW RI WZR LQWHULRUV JOXHG WRJHWKHU DW WKH ZDOO ,Q YLHZ RI WKH DERYH FRQVLGHUDWLRQV LW LV QRZ SRVVLEOH WR VSHFLDOL]H HTXDWLRQV f DQG f WR WKH SUHVHQW FDVH .DA .DA +B I/ NJ f +f/ W 7 fNJ f (TXDWLRQV f DQG f FDQ EH LQWHJUDWHG \LHOGLQJ / &WUnf f DQG VR WKH HQHUJ\ GHQVLW\ RI WKH 7IOXLG IURP f LV

PAGE 92

D N H[SDAWAf f )URP f f DQG f FRPHV WKH HTXDWLRQ RI PRWLRQ ^ YD9DWf +n ` &WUH[SDWf f 6TXDULQJ ERWK VLGHV RI WKLV HTXDWLRQ OHDGV WR WKH SVHXGR1HZWRQLDQ HQHUJ\ HTXDWLRQ YD9DWf 9Wf f ZKHUH 9Wf WAH[SDWf^ &WAUAH[SDWf ` f 7KH HIIHFWLYH HQHUJ\ RI WKH 7ZDOO LV ]HUR LQ WKHVH FRRUGLQDWHV 7KH PRWLRQ RI WKH ZDOO FDQ QRZ EH FRPSOHWHO\ DQDO\]HG IRU HYHU\ 7 &DVH 7 0 :ULWH f DV 9Wf WAH[SDWf^WAa7fB &4H[SDWf` 1RWH WKDW WKH ILUVW PXOWLSOLFDWLYH IDFWRU LV SRVLWLYH GHILQLWH IRU W

PAGE 93

KHQFH DFWV RQO\ DV DQ DPSOLWXGH )RFXV WKH DWWHQWLRQ WKHUHIRUH RQ WKH VHFRQG WHUP ^W7fB &4AH[SDAWAf` )RU VPDOO HQRXJK W WKLV WHUP LV VWULFWO\ QHJDWLYH DV ORQJ DV &4 LV QRQ]HUR DV LW PXVW EH E\ ff $V W LQFUHDVHV WOUf LQFUHDVHV PRQRWRQLFDOO\ ZKLOH WKH H[SRQHQWLDO WHUP VLPLODUO\ GHFUHDVHV 7KHUHIRUH WKHUH ZLOO EH D SRLQW WPD[ DW ZKLFK 9Wf FHDVHV WR EH QHJDWLYH DQG EHFRPHV SRVLWLYH IRU DOO W WPD[ 7KH SRVVLEOH PRWLRQ RI WKH ZDOO LV VLPSOH LW HPHUJHV IURP W H[SDQGV WR WPD[ DQG UHWXUQV &DVH U f ,Q WKLV FDVH f EHFRPHV 9Wf WAH[SDWf^ &H[SDWf` f ,I ,&4, QR PRWLRQ LV SRVVLEOH ,I ,&4, WKHQ 9 ZLOO EH QHJDWLYH RQ WPD[f IRU VRPH WPD[ DQG SRVLWLYH RQ WPD[ rrf DV EHIRUH 7KH ZDOO H[SDQGV WR WPD[ DQG WKHQ FRQWUDFWV

PAGE 94

&DVH f U 7KLV FDVH LQFOXGHV 7 O FRUUHVSRQGLQJ WR GRPDLQ ZDOOV 6HW %Wf ^ O&AWUOfH;SBDWf`L WAH VHFRQG PXOWLSOLFDWLYH IDFWRU RQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f 1RWH WKDW %Wf KDV RQH FULWLFDO SRLQW IRU W ZKLFK FOHDUO\ FRUUHVSRQGV WR D PLQLPXP ,W WKHQ IROORZV WKDW LI WKH H[SUHVVLRQ ^>UOf@a0Q&f OQ>UOfD@` LV OHVV WKDQ RQH QR PRWLRQ LV SRVVLEOH ZKLOH LI LW LV JUHDWHU WKDQ RU HTXDO WR RQH WKHUH LV D SRLQW RI VWDELOLW\ DURXQG ZKLFK WKH ZDOO PD\ RVFLOODWH RU UHPDLQ DW UHVW +HQFH LQ WKLV FDVH WKH PRWLRQ RI WKH ZDOO GHSHQGV FULWLFDOO\ RQ WKH FKRLFH RI WKH SDUDPHWHUV &4 D DQG 7 '\QDPLF 6SDFH7LPH &KRRVH ) E OQWf E D FRQVWDQW IRU WKH VROXWLRQ RI HTXDWLRQ f DQG OHW H LQ WKH PHWULF f 7KLV JLYHV GV WZGW G]f WG[ G\f f ZKHUH FR E 7KH HQHUJ\ GHQVLW\ DQG SUHVVXUH RI WKH IOXLG DUH S S O.Egpf f

PAGE 95

$JDLQ WKH DPELHQW IOXLG LV DW UHVW UHODWLYH WKHVH FRRUGLQDWHV 7KH PHWULF LV VLQJXODU DW W DQG WKH ZDOO VSDFHWLPH FRQVLVWV RI WZR LQWHULRUV JOXHG WRJHWKHU MXVW DV LQ WKH SUHYLRXV FDVH 3URFHHGLQJ LQ WKH VDPH ZD\ DV EHIRUH \LHOGV / &WAnA 7KH HQHUJ\ GHQVLW\ RI WKH 7IOXLG LV JLYHQ E\ F .n&WUBDfn f $Q H[SOLFLW H[SUHVVLRQ IRU WKH RUGLQDU\ YHORFLW\ G]GW FDQ EH HDVLO\ IRXQG G]GW &4W3 &W3 fn f nZKHUH 3 7E f f :KLOH WKLV H[SUHVVLRQ FDQ EH H[DFWO\ LQWHJUDWHG RQO\ IRU VSHFLDO YDOXHV RI WKH SDUDPHWHUV LW LV QRQHWKHOHVV FOHDU E\ LQVSHFWLRQ ZKDW WKH SRVVLEOH PRWLRQV RI WKH ZDOO PXVW EH &DVH IW +HUH WKH ZDOO VWDUWV IURP UHVW DW VRPH ]4 DQG DFFHOHUDWHV WR WKH VSHHG RI OLJKW LQ WKH OLPLW DV W JRHV WR LQILQLW\

PAGE 96

&DVH IW 2 ,Q WKLV FDVH WKH ZDOO SURFHHGV DW VRPH XQLIRUP YHORFLW\ LQ HLWKHU WKH SRVLWLYH RU QHJDWLYH ]GLUHFWLRQ &DVH 3 7KH ZDOO PRYHV LQLWLDOO\ DW WKH VSHHG RI OLJKW DQG VORZV WR ]HUR LQ WKH OLPLW DV W JRHV WR LQILQLW\ &DVH E f 7KLV FRUUHVSRQGV WR D 5REHUWVRQ:DONHU PHWULF DV FDQ EH VHHQ E\ VHWWLQJ 7 fWAA ZKLFK SXWV WKH PHWULF LQ WKH XVXDO IRUP GVf G7AD7fG[AG\A G]A f +HUH S 7O ZKLFK PHDQV WKDW GRPDLQ ZDOOV ZLOO WUDQVODWH DW XQLIRUP YHORFLW\ WKURXJK WKH VSDFHWLPH $V WKH ZDOO H[SDQGV VSDFH LV RSHQHG XS DQG IOXLG LV FUHDWHG DW WKH H[SHQVH RI WKH HQHUJ\ GHQVLW\ RI WKH ZDOO *OREDO 6WUXFWXUH $V GLVFXVVHG SUHYLRXVO\ IRU WKH VSDFHWLPHV FRQVLGHUHG KHUH RQH PXVW JOXH WRJHWKHU WZR LQWHULRUV ,Q ERWK FDVHV WKHUH LV D UHDO VLQJXODULW\ DW W WLPHOLNH IRU WKH VWDWLF VSDFHWLPHV DQG VSDFHOLNH

PAGE 97

IRU WKH G\QDPLF VSDFHWLPHV 7KHVH VSDFHWLPHV DUH WRSRORJLFDOO\ 5A 7R GUDZ WKH 3HQURVH GLDJUDPV FRQVLGHU WKH WZR GLPHQVLRQDO PHWULF GVA H+W]f>GWAG]A@ f (DFK SRLQW RI WKH GLDJUDP ZLOO FRUUHVSRQG WR D SODQH 7KH QXOO JHRGHVLFV LVVXH IURP WKH VLQJXODULW\ DW W DQG H[WHQG WR DUELWUDULO\ ODUJH SDUDPHWHU YDOXHV 6LQFH W LV VWULFWO\ SRVLWLYH LQ WKHVH VSDFHWLPHV WKH 3HQURVH GLDJUDPV ZLOO EH YHU\ VLPLODU WR WKH GLDJUDP IRU 0LQNRZVNL VSDFH LQ VSKHULFDO FRRUGLQDWHVA ZLWK WKH H[FHSWLRQ WKDW W ZLOO FRUUHVSRQG WR D UHDO VLQJXODULW\ UDWKHU WKDQ VLPSO\ D FRRUGLQDWH VLQJXODULW\ 7KH GHVLUHG FRRUGLQDWH WUDQVIRUPDWLRQ LV W WDQWr]rff WDQWr]rff f ] WDQWr]rff WDQWr]rff f 7KLV WUDQVIRUPDWLRQ \LHOGV WKH WZRPHWULF GVA H+VHFAWr]rffVHFWr]rff^GWrG]rA` f )LJXUHV DQG SDJHV DQG DUH 3HQURVH GLDJUDPV IRU WKH VWDWLF DQG G\QDPLF FDVHV UHVSHFWLYHO\ HDFK ZLWK D VDPSOH WUDMHFWRU\ 7R FRQVWUXFW WKH 3HQURVH GLDJUDP IRU WKH 7ZDOO VSDFHWLPHV VWXGLHG KHUH FXW DORQJ WKH WUDMHFWRU\ RI WKH ZDOO WDNLQJ WKH SLHFH LQ ZKLFK WKH

PAGE 98

DUHD HOHPHQWV DUH VKULQNLQJ LQ WKH GLUHFWLRQ QRUPDO WR WKH ZDOO 7KLV SLHFH FRUUHVSRQGV WR WKH LQWHULRU *OXLQJ WKLV SLHFH WR LWV PLUURU LPDJH JLYHV WKH GHVLUHG GLDJUDP

PAGE 99

)LJXUH 7KH 3HQURVH GLDJUDP IRU VWDWLF 7DEHQVN\7DXE VSDFHWLPH ZLWK VDPSOH WUDMHFWRU\

PAGE 100

)LJXUH 7KH 3HQURVH GLDJUDP IRU G\QDPLF 7DEHQVN\7DXE VSDFHWLPH ZLWK VDPSOH WUDMHFWRU\

PAGE 101

&+$37(5 7+,1 :$//6 ,1 '867 81,9(56(6 ,QWURGXFWLRQ ,Q WKLV FKDSWHU WKH PRWLRQ RI D WKLQ ZDOO LV WUHDWHG LQ JHQHUDO UHODWLYLW\ IRU WKH FDVH ZKHUH WKH UHJLRQV RQ HLWKHU VLGH RI WKH ZDOO DUH ILOOHG ZLWK GXVW $V LQ FKDSWHU WKUHH WKH VSDFHWLPH LV WDNHQ WR EH SODQH DQG UHIOHFWLRQV\PPHWULF .DA .DA DQG GHSHQGHQW RQO\ RQ WLPH $V EHIRUH WKH ZDOO LV DVVXPHG WR KDYH HTXDWLRQ RI VWDWH [ 7R 7 ZKHUH [ LV WKH WHQVLRQ DQG R LV WKH HQHUJ\ GHQVLW\ RI WKH ZDOO 7ZR FODVVHV RI H[DFW VROXWLRQV WR (LQVWHLQnV HTXDWLRQ DUH SUHVHQWHG ERWK FRUUHVSRQGLQJ WR D SODQHV\PPHWULF GXVW ZLWK FRVPRORJLFDO FRQVWDQW 7R PDNH WKH HTXDWLRQV WUDFWDEOH WKH DUELWUDU\ IXQFWLRQ RI ] LQ WKHVH PHWULFV LV WDNHQ WR EH D FRQVWDQW VR WKH ]GHSHQGHQFH LV HOLPLQDWHG 8VLQJ WKHVH PHWULFV FODVVHV RI VSDFHWLPHV DUH IRXQG LQ ZKLFK WKH WKLQ ZDOO XQGHUJRHV WUDQVODWLRQ ZLWKRXW WXUQLQJ SRLQWV LQLWLDOO\ FRPRYLQJ WKH ZDOO DFFHOHUDWHV WR VRPH PD[LPXP YHORFLW\ DQG UHWXUQV WR FRPRYLQJ LQ WKH OLPLW DV WLPH JRHV WR LQILQLW\ 7KH ZDOO WHQGV WR D OLPLWLQJ YDOXH RI WKH VSDFH FRRUGLQDWH 2WKHU FODVVHV DUH IRXQG LQ ZKLFK WKH ZDOO H[LWV IURP WKH LQLWLDO VLQJXODULW\ DW KLJK YHORFLW\ DQG DJDLQ UHWXUQV WR FRPRYLQJ ZLWK WKH DPELHQW IOXLG

PAGE 102

3ODQH6YPPHWULF 'XVW 6SDFH7LPHV (LQVWHLQnV HTXDWLRQ LV JLYHQ E\ 5DE n f5iDE $ADE f .7DE ‘ Wf +HUH 7DA SXDXA S WKH HQHUJ\ GHQVLW\ RI WKH GXVW DQG XD LWV IRXUYHORFLW\ 8VLQJ FRPRYLQJ FRRUGLQDWHV DQG VWDUWLQJ IURP WKH PHWULF GV HYW]fGW HAW]fG] G[ G\@ f LW LV SRVVLEOH WR GHULYH DQ H[DFW VROXWLRQ RI f ZKLFK ELIXUFDWHV ZKHQ RQH RI WKH SDUDPHWHUV JRHV WR ]HUR 9D7DE JLYHV Y] 7KH ILHOG HTXDWLRQV DUH *r <9Y^
PAGE 103

7DNH
PAGE 104

HQHUJ\ GHQVLW\ S IURP HTXDWLRQ Df ZKLFK LV .S Wf> $fW FWf @ 9A9 f 7KLV HTXDWLRQ VKRZV WKDW LQ WKH F VSDFHWLPHV WKH HQHUJ\ GHQVLW\ RI WKH GXVW LV FRXSOHG GLUHFWO\ WR WKH YDFXXP HQHUJ\ LQ FRQWUDVW WR WKH Fr FDVH 7KH PHWULFV LQ WKH WZR FDVHV DUH H[SOLFLWO\ GV >$fW FW@B GW > $fW FW@^$W>$fWFW@n%`G] W>G[G\DQG Df GV $fWnGW $fW>$fn$Wn %@G] W>G[G\@ Ef 7KH PHWULF FRHIILFLHQWV LQ Df UHVHPEOH WKRVH RI WKH SODQHV\PPHWULF 6FKZDU]VFKLOG'H 6LWWHU PHWULF ZLWK W DQG ] UHYHUVLQJ UROHV 7KHVH VROXWLRQV DSSDUHQWO\ QHZ DUH LQWHUHVWLQJ SDUWLFXODUO\ LQ WKDW WKH\ ERWK DSSURDFK 5REHUWVRQ:DONHU VSDFHWLPH LQ WKH OLPLW RI ODUJH W ZKHQ % LV D FRQVWDQW 7KH\ PD\ EH WDNHQ DV QRQKRPRJHQHRXV GXVW XQLYHUVHV ZKLFK IRU DSSURSULDWH FKRLFH RI $ DQG % DSSURDFK D VWDQGDUG PRGHO DV W EHFRPHV ODUJH

PAGE 105

'HULYDWLRQ RI WKH -XPS &RQGLWLRQV 1H[W ZH WXUQ WR WKH HTXDWLRQV RI ,VUDHO JLYLQJ WKH MXPS LQ WKH H[WULQVLF FXUYDWXUH DFURVV D WKLQ VKHOO RI VWUHVVHQHUJ\ 7KH FDOFXODWLRQ SURFHHGV SUHFLVHO\ DV LQ SUHYLRXV FKDSWHUV /HW GV IWfGW KW]fG] W>G[ G\@ f 6SHFLI\ WKH K\SHUVXUIDFH E\ ] 3Wf DV LQ FKDSWHU WKUHH ,Q WKH FRRUGLQDWHV W ] [ \f D QRUPDO FRYHFWRU WR e LV JLYHQ E\ 1D 3W f ZKHUH WKH FRPPD GHQRWHV SDUWLDO GHULYDWLYH 7KHQ QD DQG YD DUH JLYHQ E\ D M4n SI rrf DQG f YD 4n I Kn UKO3W f f ZKHUH 4 >K I 3Wf @ LV WKH VTXDUHG QRUP RI 1D DQG M DQG DUH s FRUUHVSRQGLQJ WR WKH WZR SRVVLEOH FKRLFHV RI GLUHFWLRQ IRU WKHVH FRYHFWRUV (TXDWLRQ f JDA aYDYE QDQE ADE f KROGV MXVW DV EHIRUH ZLWK TDAG[DG[K WG[ G\f 7KH LQWULQVLF PHWULF RI WKH ZDOO LV DJDLQ KDA YDYA TDA DQG WKH H[WULQVLF FXUYDWXUH FDQ EH

PAGE 106

FRPSXWHG IURP HTXDWLRQ f .DA OfeQ KDAf 7KLV FRPSXWDWLRQ UHVXOWV LQ .DEa fIKf^ /W 3Wff,/]fYDYE ^IK-n9n/LTA f ZKHUH / M3 ,QVHUWLQJ f LQWR WKH OHIW KDQG VLGH RI f DQG HTXDWLQJ SDUWV SDUDOOHO DQG QRUPDO WR Yt JLYHV WKH MXPS FRQGLWLRQV ZKLFK VSHFLDOL]HG WR WKH DVVXPSWLRQV RI UHIOHFWLRQ V\PPHWU\ DQG GHSHQGHQFH RQO\ RQ WLPH \LHOG IK U/ .D7Of DQG f IKfWf/ NR f (OLPLQDWLQJ R DQG LQWHJUDWLQJ WKHVH HTXDWLRQV \LHOGV / &W,0 f 1RZ Y9D Wf IfO IKfnA/ DQG YD9D]f Kf/ VR WRJHWKHU ZLWK f LW LV SRVVLEOH WR REWDLQ DQ H[SOLFLW H[SUHVVLRQ IRU WKH RUGLQDU\ YHORFLW\ RI WKH ZDOO DV D IXQFWLRQ RI WLPH MXVW DV ZDV GRQH LQ &KDSWHU 7KUHH

PAGE 107

,G]GWO &IKn>KWnU &U f :DOO '\QDPLFV 8VLQJ HTXDWLRQ f LW LV QRZ SRVVLEOH WR DQDO\]H WKH PRWLRQ RI WKH ZDOO 6HYHUDO FDVHV ZLOO EH FRQVLGHUHG ZLWK $ % F DQG $ WDNHQ WR EH QRQQHJDWLYH FRQVWDQWV &DVH F! $! %! $r +HUH HTXDWLRQ f EHFRPHV GV IGW I> $WIA %@G] W> G[ G\@ f ZKHUH I > $fW FW @r ZKLOH .S $FW^$W % > $fW FW @`B f $V W} WKH HQHUJ\ GHQVLW\ .S} ZKLOH IaW DQG KaW A VR WKDW OG]GWOaWUA IURP f ZKLFK JRHV WR ]HUR LQ WKH OLPLW DV W} $V W} .S} IaW DQG KaW DQG f JLYHV ,G]GWOf§ WUa VR DJDLQ WKH YHORFLW\ JRHV WR ]HUR LQ WKH OLPLW 6LQFH WKHUH DUH QR WXUQLQJ SRLQWV WKH JURVV IHDWXUHV RI WKH PRWLRQ RI WKH ZDOO DUH WKH ZDOO H[LWV IURP WKH LQLWLDO VLQJXODULW\ ZKLOH FRPRYLQJ ZLWK WKH DPELHQW IOXLG DFFHOHUDWHV

PAGE 108

WR VRPH PD[LPXP YDOXH WKHQ GHFHOHUDWHV EDFN WR WKH FRPRYLQJ VWDWH ,Q WKHVH FRRUGLQDWHV LW DOVR IROORZV WKDW WKH YDOXH RI ] DW ZKLFK WKH ZDOO UHWXUQV WR FRPRYLQJ LV DV\PSWRWLFDOO\ DSSURDFKHG &DVH F! $! %! $ :LWK YDFXXP HQHUJ\ HTXDO WR ]HUR WKH PHWULF WDNHV WKH IRUP f ZLWK I WF ([SOLFLWO\ WKLV LV GV WFfGW FWf^$FAW% `G] WG[ G\f f 7KH HQHUJ\ GHQVLW\ LV JLYHQ E\ [S $FWn^ $W%FWfA` f ZKLFK GLYHUJHV DV W} DQG IDOOV RII WR ]HUR DV W!rr $V +2 KaWfA VR FOHDUO\ f JLYHV OG]GWOaWLI OU!B DQG LI 7 ,Q HLWKHU FDVH WKH YHORFLW\ JRHV WR ]HUR LQ WKH OLPLW $V W} KaW DQG OG]GWOaW n } IRU WKH YDOXHV RI 7 XQGHU FRQVLGHUDWLRQ +HQFH WKH TXDOLWDWLYH EHKDYLRU LV WKH VDPH DV LQ FDVH DV ORQJ DV 7 2WKHUZLVH WKH ZDOO ZLOO QRW DV\PSWRWLFDOO\ DSSURDFK D OLPLWLQJ YDOXH RI WKH ]FRRUGLQDWH DV Wr

PAGE 109

&DVH F! $! % $r 7KLV FDVH FRUUHVSRQGV WR D FODVV RI 5REHUWVRQ:DONHU VSDFHWLPHV 7KH PHWULF DQG HQHUJ\ GHQVLW\ DUH JLYHQ E\ GVA >$fWA FWUAGWA WA> G]A G[A G\A@ DQG f [S FWA f 6HWWLQJ W DVLQKA>7f ZLWK D DQG FRQVWDQWV FRQYHUWV f LQWR WKH XVXDO IRUP GVA G7AD7fG]AG[AG\Af ,Q WKLV FDVH DV W} IaW DQG KaWA VR IURP f OG]GWOa W )RU W} IaWfA DQG KaWA VR U OG]GWOaW ,W LV HDV\ WR VHH WKDW IRU DOO YDOXHV RI 7 EHWZHHQ ]HUR DQG RQH WKH ZDOO H[LWV WKH VLQJXODULW\ DW KLJK YHORFLW\ DQG IDOOV RII WR ]HUR YHORFLW\ LQ WKH OLPLW DV W! p DSSURDFKLQJ VRPH ILQLWH YDOXH RI ] DV\PSWRWLFDOO\ &DVH F! $! % $ $V LQ FDVH WKUHH WKHVH VSDFHWLPHV DUH REYLRXVO\ RI 5REHUWVRQ:DONHU W\SH 7KH PHWULF DQG HQHUJ\ GHQVLW\ DUH GVA WFfGWA WAG]A G[A G\Af DQG f

PAGE 110

.S FI f +HUH IaW DQG KaW VR OG]GWOaWnA DV W} $V W!p OG]GWOaWUaar $V LQ FDVH WZR WKH ZDOO H[LWV DW KLJK YHORFLW\ IURP WKH LQLWLDO VLQJXODULW\ DQG JUDGXDOO\ IDOOV WR ]HUR YHORFLW\ WKRXJK LW UHPDLQV DW ERXQGHG ] LQ WKHVH FRRUGLQDWHV RQO\ ZKHQ U &DVH F $r ,Q WKLV FDVH WKH PHWULF Ef PXVW EH XVHG VLQFH F LQ Df JLYHV S ,Q WKH FDVH RI Ef WKH PHWULF DQG HQHUJ\ GHQVLW\ RI WKH GXVW DUH JLYHQ E\ GV $fWaGW $fW^$fn$I %`G] W^G[ G\` DQG f N3 $$^$ %W$f`B f $ DQG % DUH KHUH WDNHQ WR EH FRQVWDQWV WKHLU SUHFLVH YDOXHV KDYLQJ D GLUHFW HIIHFW RQ WKH SHUPLWWHG GRPDLQ RI W &KRRVLQJ $ %$f PDQGDWHV W!O WR DYRLG D GXVW ZLWK QHJDWLYH HQHUJ\ GHQVLW\ IRU YDOXHV OHVV WKDQ W O $V W JRHV WR WKHUH LV DJDLQ D VLQJXODULW\ ZLWK OG]GWOaWW f 7KH ZDOO H[LWV DW KLJK YHORFLW\ DQG JRHV WR LQILQLW\ LQ WKH OLPLW DV W ZKLOH LWV YHORFLW\ IDOOV RII WR ]HUR OLNH WAnA

PAGE 111

*OREDO 6WUXFWXUH $V LQ FKDSWHU WKUHH WKH JOREDO VWUXFWXUH RI WKH ZDOO VSDFHWLPH FRQVLVWV RI WZR LQWHULRUV JOXHG WRJHWKHU RQH WKH PLUURU LPDJH RI WKH RWKHU $V EHIRUH EHJLQ E\ VWXG\LQJ WKH EHKDYLRU RI SODQHRUWKRJRQDO QXOO JHRGHVLFV &RQVLGHU WKH GLPHQVLRQDO PHWULF GV IWfGW KWfG] f 7KHQ DV LQ FKDSWHU WZR WKHUH H[LVWV D FRQVWDQW WR VXFK WKDW WR NED]fE N KG]G;f f )RU QXOO JHRGHVLFV IGW$5f KG]G"Lf IGWGNf KAFR f DQG VR LW IROORZV WKDW FRG"L sIKfGW f +HQFH LQ FDVH ZKHUH $ % F DQG $ DUH SRVLWLYH FRQVWDQWV

PAGE 112

WR GA sr^$W>$fWFW@n %` GW f )RU VPDOO W FR7 DWA %W D D FRQVWDQW SOXV DQ DUELWUDU\ FRQVWDQW ZKLFK FDQ EH VHW HTXDO WR ]HUR 6R DV ; JRHV WR ]HUR DOO SODQHRUWKRJRQDO QXOO JHRGHVLFV HQFRXQWHU WKH VLQJXODULW\ DW W DQG DUH SDVW LQFRPSOHWH 2Q WKH RWKHU KDQG IRU ODUJH W DW G D DQG G FRQVWDQWV VR WKDW DV W! VR GRHV ; DQG WKH SODQHRUWKRJRQDO QXOO JHRGHVLFV DUH IXWXUH FRPSOHWH DQG LQH[WHQGLEOH 1RZ GHILQH WKH FRRUGLQDWH 7 E\ 7 MO IKfGW f 7KLV FRRUGLQDWH WUDQVIRUPDWLRQ ZLOO EH XVHG LQ HDFK RI WKH IROORZLQJ FDVHV VRPHWLPHV WDNHQ WR EH LPSURSHU LQ LWV ORZHU OLPLW 7KH LQWHJUDQG LV SRVLWLYH GHILQLWH VR 7Wf LV D VWULFWO\ LQFUHDVLQJ IXQFWLRQ RI W 6LQFH WKH LQWHJUDQG JRHV OLNH W IRU VPDOO W DQG W IRU ODUJH W 7 LV ERXQGHG DERYH 6HW 7PD[ rrIKfAGW 7KH PHWULF LV JLYHQ E\ GV KG7 G]f f DQG WKH 3HQURVH GLDJUDP LV GLVSOD\HG LQ ILJXUH SDJH 1H[W FRQVLGHU WKH FDVH F! $! %! DQG $ 'HILQH 7Wf DV EHIRUH WKLV WLPH REWDLQLQJ

PAGE 113

7Wf O W^F$W %F-AGW f ZKLFK LQ WKLV FDVH GLYHUJHV LQ WKH OLPLW DV W JRHV WR LQILQLW\ 7KH FRRUGLQDWH 7 SXWV WKH PHWULF LQ WKH IRUP f 1RZ GHILQH 7 WDQ^Wr]rf` WDQ^Wr]rf` ] WDQ^Wr]rf` WDQ^Wr]rf` Df Ef 7KH UHVXOWLQJ PHWULF LV GV KVHF^Wr]rf`VHF^Wr]rf` ^GWr G]r` f 7KH 3HQURVH GLDJUDP LV JLYHQ LQ ILJXUH SDJH ,Q FDVH F! $! $! DQG % &KDQJH WKH WLPH FRRUGLQDWH ZLWK 7Wf OLP[A4MDW Wn ^$fW FWf AGW 7KH 3HQURVH GLDJUDP LV LGHQWLFDO WR WKDW RI FDVH JLYHQ LQ ILJXUH SDJH ,Q FDVH ZLWK F! $! % DQG $ WKH WLPH FRRUGLQDWH WUDQVIRUPDWLRQ f UHVXOWV LQ W F7f SXWWLQJ WKH PHWULF LQ WKH IRUP GV F7f ^G7 G]` +HUH XVLQJ WKH WUDQVIRUPDWLRQ DEf D PHWULF RI WKH IRUP f LV DJDLQ REWDLQHG 7KH 3HQURVH GLDJUDP LV LGHQWLFDO WR WKDW RI FDVH VKRZQ LQ ILJXUH S 3XWWLQJ F $! FKRRVH PHWULF Ef ZKLFK JLYHV FDVH

PAGE 114

&KRRVLQJ % $fA$ PDNHV WKH HQHUJ\ GHQVLW\ SRVLWLYH GHILQLWH IRU W DQG SODFHV WKH VLQJXODULW\ DW W O 2WKHU FKRLFHV OHDG WR VLPLODU VSDFHWLPHV )RU H[DPSOH LW LV SRVVLEOH WR DUUDQJH PDWWHUV VR WKDW WKH VLQJXODULW\ LV LQ WKH IXWXUH UDWKHU WKDQ WKH SDVW DPRXQWLQJ WR D UHIOHFWLRQ LQ WLPH :LWK WKH JLYHQ FKRLFHV LW FDQ HDVLO\ EH IRXQG WKDW IRU DOO QXOO JHRGHVLFV RUWKRJRQDO WR WKH SODQHV RI V\PPHWU\ FR; W WAfr &M f ZKHUH HTXDWLRQ f ZDV XVHG )URP f LW LV FOHDU WKDW WKH SODQHRUWKRJRQDO QXOO JHRGHVLFV DUH SDVW LQFRPSOHWH DQG IXWXUH FRPSOHWH 7KH WUDQVIRUPDWLRQ f VOLJKWO\ PRGLILHG QRZ JLYHV WKH QHZ FRRUGLQDWH 7Wf $fWrrWOWAfnAGW 1RWH WKDW LQILQLW\ DQG ]HUR H[FKDQJH SODFHV LQ WKLV FRRUGLQDWH WUDQVIRUPDWLRQ 8VLQJ WKH WUDQVIRUPDWLRQV DEf LW LV WKHQ SRVVLEOH WR SXW WKH PHWULF LQ WKH IRUP f 7KH 3HQURVH GLDJUDP LV JLYHQ LQ ILJXUH SDJH 7KH 3HQURVH GLDJUDP RI WKH ZDOO VSDFHWLPH PD\ EH REWDLQHG DV LQ FKDSWHU ILJXUHV DQG E\ FXWWLQJ DORQJ WKH WUDMHFWRU\ RI WKH ZDOO WDNLQJ WKH LQWHULRU SLHFH DQG DWWDFKLQJ LW WR D PLUURULPDJH 6XFK D VSDFHWLPH LV LOOXVWUDWHG LQ ILJXUH SDJH

PAGE 115

W RR W )LJXUH 7KH 3HQURVH GLDJUDP IRU D SODQHV\PPHWULF GXVW VSDFHWLPH LQ WKH FDVH F! $! %! DQG $! 7KH VDPH GLDJUDP KROGV IRU FDVH FRQVWDQWV DV LQ FDVH ZLWK % f

PAGE 116

)LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF GXVW VSDFHWLPH RI FDVH ZLWK F! $! %! DQG $ 7KH VDPH GLDJUDP KROGV IRU FDVH F $ % DV DERYH EXW ZLWK % f

PAGE 117

)LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF GXVW VSDFHWLPH RI FDVH ZLWK F $! %! DQG $!

PAGE 118

)LJXUH 7KH 3HQURVH GLDJUDP IRU WKH SODQHV\PPHWULF ZDOO VSDFHWLPH RI FDVH ZLWK F! $! % DQG $! 7KH OHIWKDQG VLGH LV DQ LQWHULRU DQG WKH ULJKWKDQG VLGH LWV UHIOHFWLRQ 7KH WZR SLHFHV DUH LGHQWLILHG DORQJ WKH GRWWHG OLQHV WKH WUDMHFWRU\ RI WKH ZDOO

PAGE 119

&+$37(5 &21&/86,216 ,Q WKH FRXUVH RI WKLV ZRUN WKH G\QDPLFV RI WKLQ ZDOOV KDYH EHHQ H[DPLQHG LQ VSDFHWLPHV ZLWK QRQ]HUR VWUHVVHQHUJ\ 6SHFLILFDOO\ WKH VSDFHWLPHV VWXGLHG KHUH LQFOXGHG Lf VSKHULFDOO\ V\PPHWULF ZLWK YDFXXP HQHUJ\ LLf SODQHV\PPHWULF ZLWK YDFXXP HQHUJ\ LLLf SODQHV\PPHWULF IOXLGV ZLWK SUHVVXUH HTXDO WR HQHUJ\ GHQVLW\ DQG LYf SODQHV\PPHWULF GXVW ZLWK YDFXXP HQHUJ\ (DFK RI WKHVH ZLOO EH GLVFXVVHG LQ WXUQ 7KH G\QDPLFV RI D VSKHULFDO RU SODQDU 7ZDOO LQ UHJLRQV RI YDFXXP HQHUJ\ GHSHQG RQ VHYHUDO GLIIHUHQW SDUDPHWHUV WKH YDFXXP HQHUJ\ $ DQG WKH PDVV SDUDPHWHU P RU \ RI WKH UHJLRQV WKH HTXDWLRQ RI VWDWH SDUDPHWHU 7 DQG WKH FRQVWDQW F4 ZKLFK DUH UHODWHG WR WKH HQHUJ\ GHQVLW\ DQG WHQVLRQ RI WKH ZDOO 7KH GHSHQGHQFH RI WKH ZDOO PRWLRQ RQ WKHVH SDUDPHWHUV LV IDLUO\ FRPSOLFDWHG DQG WKHUH DUH PDQ\ SRVVLELOLWLHV ZKLFK KDYH EHHQ H[DPLQHG FDVH E\ FDVH IRU WKH PRWLRQ RI WKH ZDOO 7KLV ZRUN JHQHUDOL]HV WKH ZRUN RI SUHYLRXV DXWKRUV ZKR H[DPLQHG ZDOO G\QDPLFV IRU YDULRXV VSHFLDO YDOXHV RI WKH SDUDPHWHUV ,Q DOO FDVHV WKH SUREOHP RI WKH ZDOOnV PRWLRQ LV UHGXFHG WR DQ HTXLYDOHQW RQHGLPHQVLRQDO PHFKDQLFV SUREOHP 7KH UDGLXV 5 RI WKH ZDOO SURSHU WLPH DORQJ WKH ZDOO DQG WKH IXQFWLRQ 9B5f SOD\ WKH UROHV

PAGE 120

RI VSDWLDO FRRUGLQDWH WLPH DQG SRWHQWLDO UHVSHFWLYHO\ 7KH IRUP RI WKH SRWHQWLDO GHSHQGV RQ WKH YDOXHV RI WKH SDUDPHWHUV $ $ DQG HLWKHU P P RU \ \B ,Q WKH FDVH RI VSKHULFDO ZDOOV WKH SRVVLEOH YDOXHV RI WKH SDUDPHWHUV FDQ EH GLYLGHG LQWR D JHQHULF FDVH DQG VHYHUDO H[FHSWLRQDO FDVHV ,Q DOO WKH H[FHSWLRQDO FDVHV WKH SRWHQWLDO KDV DW PRVW RQH PD[LPXP DQG QR PLQLPD 7KXV WKH ZDOOnV PRWLRQ KDV DW PRVW RQH WXUQLQJ SRLQW ZKLFK LV D SRLQW ZKHUH G5G$ FKDQJHV VLJQ ,Q WKH JHQHULF FDVH IRU VXIILFLHQWO\ VWLII HTXDWLRQV RI VWDWH LH 7 JUHDWHU WKDQ VRPH YDOXH WKH SRWHQWLDO KDV H[DFWO\ RQH PD[LPXP DQG QR PLQLPD 7KHUHIRUH WKH ZDOOnV PRWLRQ KDV DW PRVW RQH WXUQLQJ SRLQW $ GRPDLQ ZDOO 7 Of LV D SDUWLFXODU H[DPSOH RI D ZDOO ZLWK D VWLII HTXDWLRQ RI VWDWH ,Q WKH JHQHULF FDVH IRU VXIILFLHQWO\ VRIW HTXDWLRQV RI VWDWH LH 7 OHVV WKDQ VRPH YDOXH WKHUH DUH DOZD\V YDOXHV RI WKH RWKHU SDUDPHWHUV IRU ZKLFK WKH SRWHQWLDO KDV D ORFDO PLQLPXP 7KXV WKH ZDOOnV PRWLRQ FDQ KDYH WZR WXUQLQJ SRLQWV ZKLFK PHDQV LW FDQ XQGHUJR RVFLOODWLRQV DERXW D UDGLXV RI VWDEOH HTXLOLEULXP $ GXVW ZDOO 7 f LV D SDUWLFXODU H[DPSOH RI D ZDOO ZLWK D VRIW HTXDWLRQ RI VWDWH ,Q WKH FDVH RI SODQDU ZDOOV WKH PRWLRQ H[KLELWV QR WXUQLQJ SRLQWV LI WKH SDUDPHWHU \ \B LV QRQSRVLWLYH :KHQ \ \ LV SRVLWLYH WKH SRVVLEOH YDOXHV RI WKH SDUDPHWHUV FDQ EH GLYLGHG LQWR D JHQHULF FDVH DQG VHYHUDO H[FHSWLRQDO FDVHV ,Q DOO RI WKH H[FHSWLRQDO FDVHV WKH SRWHQWLDO KDV DW PRVW RQH PD[LPXP DQG QR PLQLPD 7KHUHIRUH WKH

PAGE 121

ZDOOnV PRWLRQ KDV DW PRVW RQH WXUQLQJ SRLQW ,Q WKH JHQHULF FDVH IRU VXIILFLHQWO\ VWLII HTXDWLRQV RI VWDWH WKH SRWHQWLDO KDV H[DFWO\ RQH PD[LPXP DQG QR PLQLPD 7KHUHIRUH WKH ZDOOnV PRWLRQ KDV DW PRVW RQH WXUQLQJ SRLQW ,Q WKH JHQHULF FDVH IRU VXIILFLHQWO\ VRIW HTXDWLRQV RI VWDWH WKHUH DUH DOZD\V YDOXHV RI WKH RWKHU SDUDPHWHUV IRU ZKLFK WKH SRWHQWLDO KDV D ORFDO PLQLPXP 6R DV LQ WKH VSKHULFDO FDVH WKH ZDOOnV PRWLRQ FDQ KDYH WZR WXUQLQJ SRLQWV DQG WKHUH FDQ EH RVFLOODWLRQ DERXW D UDGLXV RI VWDEOH HTXLOLEULXP ,Q FRQWUDVW WR WKH UHVXOWV IRU VWDWLF SODQDU VSDFHWLPHV ZLWK YDFXXP HQHUJ\ VWDWLF IOXLG VSDFHWLPHV ZLWK S S GR QRW SHUPLW RVFLOODWRU\ VROXWLRQV IRU 7 f 2Q WKH RWKHU KDQG VXFK VROXWLRQV DUH SHUPLWWHG IRU 9 f ZKHUHDV LQ WKH YDFXXP HQHUJ\ FDVH WKH\ DUH QRW IRU 7 f 7KLV UHYHUVDO DSSHDUV WR EH GXH WR WKH H[FKDQJLQJ RI WKH UROHV RI W DQG ] LQ WKLV FODVV RI VSDFHWLPHV )RU WKH G\QDPLF VSDFHWLPHV XQLIRUP YHORFLW\ DFFHOHUDWHG PRWLRQ DQG GHFHOHUDWHG PRWLRQ DUH DOO SRVVLEOH ZLWKRXW WXUQLQJ SRLQWV :KHQ WKH SDUDPHWHUV DUH FKRVHQ DSSURSULDWHO\ WKH ZDOO GHFHOHUDWHV IURP KLJK YHORFLW\ DIWHU H[LWLQJ IURP WKH LQLWLDO VLQJXODULW\ 7KH HQHUJ\ GHQVLW\ ERWK RI WKH ZDOO DQG RI WKH DPELHQW IOXLG IDOO RII ZLWK WKH HQVXLQJ H[SDQVLRQ DV ZRXOG EH H[SHFWHG LQ D PRGHO RI DQ H[SDQGLQJ XQLYHUVH 7KH G\QDPLF GXVW XQLYHUVH LV VLPLODU WR WKH G\QDPLF XQLYHUVH ZLWK S S LQ WKDW WKHUH DUH QR WXUQLQJ SRLQWV LQ WKH FDVHV XQGHU VWXG\ ,W LV LQWHUHVWLQJ WKDW WKH FRVPRORJLFDO FRQVWDQW WHUP PDNHV QR HVVHQWLDO GLIIHUHQFH IRU WKH FODVVHV RI SDUDPHWHU YDOXHV FKRVHQ KHUH DV ORQJ DV

PAGE 122

U )RU GRPDLQ ZDOOV ZLWK 7 O WKH GLIIHUHQFH LQYROYHV DV\PSWRWLF DSSURDFK WR D OLPLWLQJ YDOXH RI ] LQ WKH SUHVHQFH RI QRQ]HUR YDFXXP HQHUJ\ DV FRPSDUHG WR HVFDSH WR LQILQLW\ LQ WKH DEVHQFH RI YDFXXP HQHUJ\ ,Q HYHU\ FDVH WKH ZDOO PRYHV ZLWKRXW WXUQLQJ SRLQWV UHJDUGOHVV RI WKH YDOXH RI 7 ,W LV LQWHUHVWLQJ WR FRQMHFWXUH DV WR ZKHWKHU RU QRW DQ DEVHQFH RI WXUQLQJ SRLQWV LV D IHDWXUH RI G\QDPLF VSDFHWLPHV LQ JHQHUDO ,I WKH XQLYHUVH ZHUH FORVHG VXFK WXUQLQJ SRLQWV ZRXOG KDYH WR H[LVW LQ RSHQ XQLYHUVHV WKH\ ZRXOGQnW EH H[SHFWHG H[FHSW SHUKDSV ORFDOO\ 7KH 6FKZDU]VFKLOGGH 6LWWHU PHWULF DQG LWV SODQHV\PPHWULF DQDORJXH DUH GHVFULSWLYH RI HVVHQWLDOO\ ORFDO SLHFHV RI VSDFHWLPH ZKHUHDV WKH IOXLG DQG GXVW VSDFHWLPHV DUH PRUH DSSURSULDWH DV GHVFULSWLRQV RI WKH XQLYHUVH LQ WKH ODUJH $JDLQ LW LVQnW FOHDU ZKDW LQIHUHQFHV FDQ EH PDGH ZLWKRXW D FRPSOHWH VROXWLRQ WR WKH JHQHUDO SUREOHP $V VHHQ LQ WKH WH[W WKHUH DUH DOVR PDQ\ SRVVLELOLWLHV IRU WKH JOREDO VWUXFWXUH RI WKH ZDOO VSDFHWLPH ,Q WKH YDFXXP HQHUJ\ JHQHULF FDVHV LH FDVHV ZKHUH WKH YDFXXP HQHUJLHV DQG PDVV SDUDPHWHUV GR QRW KDYH VSHFLDO YDOXHV ZH ILQG WKDW LQ WKH VSKHULFDO FDVH WKH UHJLRQV RQ HLWKHU VLGH RI WKH ZDOO KDYH D JOREDO VWUXFWXUH HLWKHU DV GHSLFWHG LQ ILJXUH LI PA$!Of SDJH RU ILJXUH LI PA$Of SDJH +HUH WKH VLQJXODULWLHV DQG LQILQLW\ DUH VSDFHOLNH ,Q WKH JHQHULF SODQDU YDFXXP HQHUJ\ FDVH WKH JOREDO VWUXFWXUH RI WKHVH UHJLRQV LV WKH VRUW GHSLFWHG LQ HLWKHU ILJXUH LI \ $!f SDJH RU ILJXUH LI \ $!f SDJH +HUH DJDLQ LQILQLW\ LV VSDFHOLNH DQG WKH VLQJXODULWLHV DUH

PAGE 123

VSDFHOLNH IRU \ DQG WLPHOLNH IRU \ 7KHVH JOREDO VWUXFWXUHV DUH TXLWH GLIIHUHQW IURP WKRVH RI GH 6LWWHU 0LQNRZVNL DQG 6FKZDU]VFKLOG VSDFHWLPHV DQG WKHLU SODQDU DQDORJXHV 7KXV D JHQHULF 7ZDOO LQ UHJLRQV RI YDFXXP HQHUJ\ KDV D VWUXFWXUH YHU\ GLIIHUHQW IURP WKDW RI WKH VLPSOHVW IDOVH YDFXXP EXEEOHV RU WKDW RI D 7ZDOO LQ YDFXXP 7KLV LV DOVR WUXH WR D OHVVHU H[WHQW IRU ZDOOV LQ WKH IOXLG DQG GXVW VSDFHWLPHV VWXGLHG 7KHVH VSDFHWLPHV PDLQO\ EHFDXVH RI WKH DVVXPSWLRQ RI UHIOHFWLRQ V\PPHWU\ KDYH D VLPSOHU VWUXFWXUH WKDQ PRVW RI WKHLU FRXQWHUSDUWV LQ WKH YDFXXP HQHUJ\ FDVH 7KH DVVXPSWLRQ RI UHIOHFWLRQ V\PPHWU\ ZKLOH SK\VLFDOO\ UHDVRQDEOH JUHDWO\ UHGXFHV WKH JHQHUDOLW\ ,Q FKDSWHU WKUHH WKH VWDWLF 7DEHQVN\7DXE VSDFHWLPHV H[KLELW D WLPHOLNH VLQJXODULW\ ZKLOH WKH G\QDPLF VSDFHWLPHV KDYH D VSDFHOLNH VLQJXODULW\ 7KH GXVW PHWULFV RI FKDSWHU IRXU DUH RI WKUHH W\SHV )LJXUH SDJH H[KLELWV D VSDFHOLNH VLQJXODULW\ DQG VSDFHOLNH LQILQLW\ ZKLFK LV WKH JHQHUDO FDVH ZLWK WKH SDUDPHWHUV F $ % DQG $ DOO SRVLWLYH 6HWWLQJ % GRHVQnW FKDQJH WKH GLDJUDP 7DNLQJ F $ DQG % SRVLWLYH DQG $ JLYHV WKH GLDJUDP RI ILJXUH SDJH LQ ZKLFK WKH VLQJXODULW\ LV DJDLQ VSDFHOLNH $V EHIRUH VHWWLQJ % GRHV QRW DIIHFW WKH GLDJUDP 7KH ILQDO W\SH ZLWK F DQG $ % DQG $ SRVLWLYH FRUUHVSRQGV WR WKH DOWHUQDWH GXVW PHWULF Ef 7KH GLDJUDP RQ SDJH H[KLELWV VSDFHOLNH LQILQLW\ ZKLOH WKH VLQJXODULW\ LV QXOO LQ WKHVH FRRUGLQDWHV 7KH FRUUHVSRQGLQJ ZDOO VSDFHWLPHV DUH FUHDWHG ZLWK PLUURU LPDJHV RI VSDFHWLPH LQWHULRUV IRU ERWK WKH GXVW DQG IOXLG FDVHV

PAGE 124

7KHUH UHPDLQ D QXPEHU RI LQWHUHVWLQJ XQVROYHG SUREOHPV FRQFHUQLQJ WKLQ ZDOOV LQ JHQHUDO UHODWLYLW\ )RU H[DPSOH WKH G\QDPLFV RI D UDGLDWLQJ ZDOO SRVHV WKH GLIILFXOW SUREOHP WKDW WKH MXPS FRQGLWLRQV GHSHQG RQ ERWK D WLPH DQG D VSDFH FRRUGLQDWH VR WKH HTXDWLRQV DUH SDUWLDO GLIIHUHQWLDO HTXDWLRQV QRW WKH RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV WUHDWHG LQ WKLV DQG SUHYLRXV ZRUN 7KHUH LV DOVR WKH TXHVWLRQ DV WR ZKHWKHU RU QRW WKLFNHU ZDOOV ZRXOG EH H[SHFWHG WR H[KLELW WKH VDPH G\QDPLFV DV WKH WKLQ ZDOOV RI ,VUDHOnV DSSUR[LPDWLRQ ZKLFK DUH WDNHQ WR KDYH QHJOLJLEOH WKLFNQHVV $QRWKHU TXHVWLRQ FRQFHUQV WKH IDFW WKDW LQ IOXLG DQG GXVW XQLYHUVHV DPELHQW VWUHVVHQHUJ\ LV FUHDWHG RXW RI WKH HQHUJ\ GHQVLW\ RI WKH ZDOO DV LW H[SDQGV RU FRQYHUVHO\ LV DEVRUEHG DV WKH ZDOO FRQWUDFWV 7KLV LV SX]]OLQJ DQG VRPHZKDW DUWLILFLDO VLQFH WKHUH LV QR PHFKDQLVP IRU LW 7KH LQWHUHVWLQJ DQG LPSRUWDQW SRLQW KRZHYHU LV WKDW ,VUDHOnV PHWKRG FDQ EH VXFFHVVIXOO\ DSSOLHG WR VSDFHWLPHV FRQWDLQLQJ VWUHVVHQHUJ\ DQG WKDW H[DFW DQVZHUV FDQ EH REWDLQHG FRQFHUQLQJ WKH G\QDPLFV RI WKH ZDOOV

PAGE 125

5()(5(1&(6 O7 : .LEEOH 3K\V $ f A
PAGE 126

OA$ $XULOLD 'HQDUGR ) /HJRYLQD DQG ( 6SDOOXFFL 1XF 3K\V % f OA. 6DWR .RGDPD 0 6DVDNL DQG 0DHGD 3K\V /HWW % f 0DHGD 6DWR 0 6DVDNL DQG .RGDPD 3K\V /HWW % f : +LVFRFN 3K\V 5HY f OA. /DNH DQG 5 :HYULFN &DQ 3K\V f G *DUILQNOH DQG & 9XLOOH 7KLQ ZDOOV LQ UHJLRQV ZLWK YDFXXP HQHUJ\ VXEPLWWHG WR 3K\V 5HY f .XFKDU &]HFK 3K\V % f r. 0DHGD *HQ 5HO DQG *UDY YRO QR f 5 *HURFK DQG 7UDVFKHQ 3K\V 5HY f .UDPHU + 6WHSKDQL ( +HUOW DQG 0 0DF&DOOXP ([DFW 6ROXWLRQV RI (LQVWHLQnV )LHOG (TXDWLRQV &DPEULGJH 8QLYHUVLW\ 3UHVV f A5 0 :DOG *HQHUDO 5HODWLYLW\ 8QLYHUVLW\ RI &KLFDJR 3UHVV f : *LEERQV DQG 6 : +DZNLQJ 3K\V 5HY f 6 : +DZNLQJ DQG ) 5 (OOLV 7KH /DUJH 6FDOH 6WUXFWXUH RI 6SDFHWLPH &DPEULGJH 8QLYHUVLW\ 3UHVV f 5 7DEHQVN\ DQG $ 7DXE &RPP 0DWK 3K\V f

PAGE 127

%,2*5$3+,&$/ 6.(7&+ &KDUOHV &KULVWRSKHU 9XLOOH ZDV ERUQ RQ 2FWREHU LQ 6DLQW 3HWHUVEXUJ )ORULGD +LV ILUVW DFTXDLQWDQFH ZLWK JHQHUDO UHODWLYLW\ ZDV DW WKH DJH RI IRXU XSRQ WKH RFFDVLRQ RI (LQVWHLQnV GHDWK IURP QHZVSDSHU DUWLFOHV UHDG WR KLP E\ KLV IDWKHU -DPHV + 9XLOOH $ TXRWDWLRQ DWWULEXWHG WR (LQVWHLQ WKH VKRUWHVW SDWK EHWZHHQ WZR SRLQWV LV D FXUYH PDGH D SURIRXQG LPSUHVVLRQ RQ KLP VLQFH LW VHHPHG WR YLRODWH KLV HYHU\GD\ H[SHULHQFH ,Q DIWHU D QXPEHU RI RGG MREV D VHULRXV ERXW ZLWK NLGQH\ GLVHDVH DQG WZR EDFKHORUnV GHJUHHV KLV LQWHUHVW LQ JHQHUDO UHODWLYLW\ ZDV UHNLQGOHG GXULQJ SRROVLGH FRQYHUVDWLRQV ZLWK 5RJHU 3DUVRQV 3$0 'LUDFnV ODVW VWXGHQW 7KLV OHG WR KLV REWDLQLQJ PDVWHUnV GHJUHHV LQ DSSOLHG DQG SXUH PDWKHPDWLFV IURP WKH 8QLYHUVLW\ RI )ORULGD DQG ,QGLDQD 8QLYHUVLW\ UHVSHFWLYHO\ :LWK WKLV SUHSDUDWLRQ LQ PDWKHPDWLFDO IRXQGDWLRQV KH UHWXUQHG WR WKH 8QLYHUVLW\ RI )ORULGD WR VWXG\ SK\VLFV FRPSOHWLQJ KLV GRFWRUDO GLVVHUWDWLRQ LQ VSULQJ RI

PAGE 128

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ cDV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ U -MDPHV ,SVSU &KDLUPDQ 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ +/n 3LHUUH 6LNLYLH 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ L ^/YB &f / \ L A LMOF Z" 6WHYHQ 'HWZHLOHU 3URIHVVRU RI 3K\VLFV  FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ L ? IMF U -DPHV )U\ $VVLVWDQW 3URIHVVRU I 3K\VLFV

PAGE 129

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /RXLV %ORFN 3URIHVVRU RI 0DWKHPDWLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI 3K\VLFV LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 130

81,9(56,7< 2) )/25,'$