Citation
Instabilities of gravity-capillary water waves

Material Information

Title:
Instabilities of gravity-capillary water waves
Creator:
Perlin, Marc, 1951-
Publication Date:
Language:
English
Physical Description:
xi, 129 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Amplitude ( jstor )
Harmonics ( jstor )
Maps ( jstor )
Noise spectra ( jstor )
Sidebands ( jstor )
Signals ( jstor )
Surface water ( jstor )
Water waves ( jstor )
Wave interaction ( jstor )
Waves ( jstor )
Gravity waves -- Mathematical models ( lcsh )
Water waves -- Mathematical models ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 125-128).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Marc Perlin.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001515130 ( ALEPH )
AHC8155 ( NOTIS )
21969379 ( OCLC )

Downloads

This item has the following downloads:


Full Text










INSTABILITIES OF GRAVITY-CAPILLARY WATER WAVES


By

MARC PERLIN

















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1989








ACKNOWLEDGMENTS


I must express my gratitude to Dr. J. L. Hammack for providing a truly state-

of-the-art facility, a tremendous working environment and encouragement when

need be. To the person who introduced me to the study of water waves and coastal/

ocean engineering. Dr. R. G. Dean, I am eternally indebted. I thank my friend,

colleague, and committee member, Dr. J. T. Kirby for his support, both analyti-

cally and in general. Dr. H. Segur provided much needed insight to the dynamics

of water waves, both through Dr. Hammack and directly. And to Dr. U. H.

Kurzweg, who served as a member of my committee and is responsible for helping

me bring my mathematics up-to-par, 1 am thankful. I would also like to thank my

long-time associates and former fellow students. Dr. W. R. Dally and Dr. D. L.

Kriebel, for their friendship.

The above persons are responsible for helping me with the technical part of

the dissertation and education. but the people who really suffered are my family.

My wife, Terry, not only had to listen to my trials and tribulations, but had to do

without me so much of the time. (Of course, some people would probably say that

she was better off, but I dare say she doesn't feel that way.) Believe it or not. she

often brought dinner to me to save me the trouble of going home during my quali-

fier studying days. There is no way to properly express my gratitude to her. My

two children, Ian and Sarah, also suffered, but hardly realized it since they knew

little else. And finally, to my parents. I am grateful. I thank them for giving me, in

addition to all of the usual parental guidance and love. something so vital in life's

survival, a near perfect work ethic.















TABLE OF CONTENTS




ACKNOWLEDGMENTS ............ ... ...... ................. ii

LIST O F FIG U RES ................................ ............... v

ABSTRACT ....................................................... x

CHAPTERS

1. GENERAL INTRODUCTION ................................ 1

2. INTRODUCTION TO GRAVITY-CAPILLARY INSTABILITIES:
PA RT 1 .............. ........................ ........... 3

3. THEORETICAL CONSIDERATIONS FOR PART 1 ................ 8

3.1 Review of the NLS Model ................. ............ 10
3.2 The Stationary, NLS Model ............................... 18

4. EXPERIMENTAL FACILITIES, PROCEDURES AND IMAGE
ANALYSIS FOR PART 1 ................................... 24

4.1 The Imaging and Computer Systems ........................ 28
4.2 Data Analysis Procedures ................................ 29
4.3 Lighting and Image Effects ................................ 33

5. RESULTS AND DISCUSSION OF PART 1 ....................... 39

5.1 Evolution of Quasi-steady Wavefields ....................... 39
5.2 Experimental Results and Comparison with sNLS Theory ..... 47
5.2.1 The 25 Hz W avetrain ............................... 47
5.2.2 The 17 Hz Wavetrain ............................... 55
5.2.3 The 13.6 Hz Wavetrain ............................. 61


iii








5.2.4 The 9.8 Hz Wavetrain, Wilton's Ripples ................ 66
5.2.5 The 8 Hz W avetrain ................................ 72

6. SUMMARY AND CONCLUSIONS OF PART 1 ................... 78

7. INTRODUCTION TO THREE-WAVE RESONANCE: PART 2 ....... 80

8. RESONANT INTERACTION THEORY .......................... 83

9. RIT AND RIPPLES ..................... ...... ....... ............. 87

10. EXPERIMENTAL FACILITIES FOR PART 2 ..................... 94

11. REVIEW OF PREVIOUS EXPERIMENTS ON RIPPLE TRIADS ..... 97

11.1 The 25 Hz Wavetrain: Spatial Data ...................... 97
11.2 The 25 Hz Wavetrain: Temporal Data .................... 100
11.3 Other Wavetrains with Frequencies Exceeding 19.6 Hz ........ 103

12. RESONANT TRIAD SELECTION .......................... 107

13. EVOLUTION OF A RIPPLE WAVETRAIN IN THE PRESENCE
OF RANDOM WAVES ...................................... 115

14. SUMMARY AND CONCLUSIONS OF PART 2 ................... 121

15. GENERAL SUMMARY AND CONCLUSIONS ................. 123

REFERENCES ...........................................125

BIOGRAPHICAL SKETCH .......................................... 129















LIST OF FIGURES


Figure Description Page


3.1 The fluid domain and a definition sketch. ..................... 9

3.2 Parameter space of the nonlinear Schroedinger equation showing
regions of stability (S) and instability (U) of a wavetrain to long-
itudinal modulations. Curve Ci corresponds to zeros of X; curves
C4 and C5 correspond to zeros of v; Curves C2 and C3 correspond
to singularities of v. The location of parameters (*) for each exper-
iment is also shown. (Hammack, private communication. 1989). 15

3.3 The dispersion relation of (3.30) calculated for a 25 Hz wavetrain
with a=0.04 cm. The (p.q) coordinate system is shown along with a
degenerate, side-band quartet. The dashed line is a circle, centered
at (0,0), with a radius equal to the parabolic vertex coordinate..... 21

4.1 The experimental facility and coordinate system. An elevation view
is shown in (a) and a plan view in (b). ....................... 25

4.2 A typical quiescent background image (taken prior to each exper-
iment) with a frame superposed to depict the region used by the
two-dimensional transform. ................. ................ 30

4.3 An overhead image of an 8 Hz experiment (GC0806). ........... 30

4.4 Demonstration of the "criss-cross" effect caused by the numerical
two-dimensional FFT. These contour maps of vwavenumber spectra
are for sine waves with: (a) k=6.325 and -=420. (b) k=6.325 and
E=450, (c) k=6.325 and ==480. and (d) k=6.200 and E=450. ...... 34

4.5 Average intensity level, K. versus inclination angle of light from
vertical. A. for a quiescent water surface (shown by asterisks).
Diamonds represent the plane projection light intensity of the light
source versus angle. ....................................... 36









Figure Description Page

5.1 Two seconds of a time series from experiment GC2504 .......... 40

5.2 Demonstration of the quasi-steadiness of the 25 Hz wavefield of
experiment GC2504. These contour maps of wavenumber spectra
represent the wavefield (a) 1/25 sec, (b) 1/5 sec. (c) 1/2 sec. and (d)
1 sec after the contour map shown in figure 5.9. ................ 41

5.3 A time series of a 24 Hz wavetrain from wavemaker startup ....... 43

5.4 A time-sequence of contour maps of wavenumber spectra for a 24 Hz
wavetrain approaching quasi-steadiness: (a) 3 sec, (b) 9 sec, (c) 21
sec, (d) 33 sec. (e) 45 sec, (f) 46 sec. (g) 47 sec, and (h) 57 sec
(theoretical (- -) prediction of the sNLS eq.) into the experiment 44

5.5 Overhead images of experiments (a) GC2502. (b) GC2503, and
(c) GC2504. ........................ ................... 49

5.6 The amplitude-frequency spectra for experiments (a) GC2502,
(b) GC2503, and (c) GC2504. ................................ 50

5.7 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 25 Hz wavetrain of experiment GC2502.
Dispersion relation (- -) of the sNLS equation: the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ..................... 51

5.8 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 25 Hz wavetrain of experiment GC2503.
Dispersion relation (- --) of the sNLS equation: the region of
spreading ( --) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ..................... 52

5.9 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 25 Hz wavetrain of experiment GC2504.
Dispersion relation (- -) of the sNLS equation: the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ..................... 53









Figure Description Page

5.10 The amplitude-frequency spectra for experiments (a) GC1702,
(b) GC1704. and (c) GC1706. .............................. 56

5.11 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 17 Hz wavetrain of experiment GC1702.
Dispersion relation (- -) of the sNLS equation: the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ...................... 57

5.12 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 17 Hz wavetrain of experiment GC1704.
Dispersion relation (- -) of the sNLS equation: the region of
spreading ( -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. .......... ......... 58

5.13 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 17 Hz wavetrain of experiment GC1706.
Dispersion relation (- -) of the sNLS equation: the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ....................... 59

5.14 The amplitude-frequency spectra for experiments (a) GC13601.
(b) GC13605, and (c) GC13606. .............................. 62

5.15 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 13.6 Hz wavetrain of experiment GC13601.
Dispersion relation (- -) of the sNLS equation: the region of
spreading ( ) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ....................... 63

5.16 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 13.6 Hz wavetrain of experiment GC13605.
Dispersion relation (- -) of the sNLS equation: the region of
spreading ( --) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ...................... 64








Figure Description Page

5.17 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 13.6 Hz wavetrain of experiment GC13606.
Dispersion relation (- -) of the sNLS equation: the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis. ....................... 65

5.18 The amplitude-frequency spectra for experiments (a) GC9801.
(b) GC9802, (c) GC9804, and (d) GC9810. ..................... 67

5.19 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 9.8 Hz wavetrain of experiment GC9801. 68

5.20 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 9.8 Hz wavetrain of experiment GC9802. 69

5.21 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 9.8 Hz wavetrain of experiment GC9804. 70

5.22 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 9.8 Hz wavetrain of experiment GC9810. 71

5.23 The amplitude-frequency spectra for experiments (a) GC0802,
(b) GC0804, and (c) GC0806. ................................ 73

5.24 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 8 Hz wavetrain of experiment GC0802. .. 74

5.25 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 8 Hz wavetrain of experiment GC0804. .. 75

5.26 Contour map of the amplitude-wavenumber spectrum (see inset for a
perspective view) for the 8 Hz wavetrain of experiment GC0806.
Dispersion relation (- -) of the sNLS equation for a 24 Hz
wavetrain. ......................... .............. ...... 76

9.1 Graphical solution of the kinematic resonance conditions (after
Simmons 1969) for collinear triads of a 25 Hz test wave.
(Henderson and Hammack. 1987). ............................ 89









Description


9.2 Theoretical interaction coefficients for ripple triads. (a) Y2 'vs. f2 for
a series of test waves. (b) Interaction coefficients and initial growth
rate for a 25 Hz test wave- Y: 2;- ---3;
100. withe = :r/2, al = 0.02 mm (Henderson and
H am m ack, 1987)...................................... 92

11.1 Overhead view showing spatial evolution of a 25 Hz wavetrain with
increasing ks1 -values of (a) 0.04, (b) 0.23, (c) 0.29. (d) 0.46, (e) 0.67
and (f) 1.08. (Henderson and Hammack. 1987). ................. 99

11.2 Temporal wave profiles and corresponding periodograms for the 25
Hz wavetrains of figures 11.1 (b), (c), (d) and (e). respectively.
(Henderson and Hammack. 1987). ............................ 101

11.3 Periodograms for 8 wavetrains. Generation parameters and results
are presented in Table 11.1. (Henderson and Hammack. 1987) ..... 104

12.1 Amplitude spectra of computer generated command signals for a 25
Hz sine wave with an amplitude of 1.2 v. (a) DEC MicroPDP-11
(b) DEC VAXstation II. .................................... 109

12.2 Amplitude spectral evolution for a 25 Hlz wavetrain seeded with a 57
Hz wavetrain with 1/10 of its amplitude at the wavemaker ......... 113

13.1 Average amplitude spectra at .r = 7 cm for (a) natural background
noise in the wave tank and (b) random waves generated by the
wavemaker. ................ .... ................... ........ 118

13.2 Average amplitude spectra showing the transfer of energy by non-
linear interactions between a 25 Hz test wave and random waves
(white noise) generated with a S/N = 10. ............ .... ..... 119


Figure















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

INSTABILITIES OF GRAVITY-CAPILLARY WATER WAVES

By

MARC PERLIN

August 1989


Chairman: Joseph L. Hammack. Jr.
Major Department: Aerospace Engineering. Mechanics, and
Engineering Science

In Part 1 of this study, gravity-capillary waves, generated mechanically on

clean, deep water in a wide channel, are shown to be spatially unstable due to a

degenerate four-wave interaction. This instability occurs for wavetrains with fre-

quencies greater than 9.8 Hz. and manifests itself as quasi-steady in time but spa-

tially disordered. Experimental measurements are made using a high-speed imag-

ing system which allows the wavenumber spectrum of the water surface to be

calculated. Wavetrains with small to moderate amplitudes and frequencies greater

than 9.8 Hz show directional spreading of energy during propagation. This transfer

of energy is found to be modeled accurately by solutions of a stationary, nonlinear

Schroedinger (NLS) equation involving two (surface) space coordinates. Experi-

mental wavetrains with cyclic frequencies of 25. 17. 13.6. 9.8 and 8 Hz are investi-

gated. The 9.8 Hz wavetrain (Wilton's ripples) is unstable due to second harmonic

resonance; however, it exhibits some directional spreading of energy as well. The 8








Hz wavetrain is stable until a detuned, third harmonic resonance occurs, and then

the third harmonic (24 Hz) becomes spatially unstable. Reasonable agreement be-

tween quantities predicted by a linear stability analysis (i.e., the region of spread-

ing and the most unstable spatial sidebands) of the stationary, NLS equation and

the measured data is shown for all the wavetrains with frequencies greater than 9.8

Hz.

The second part of the study concentrates on experimental waves with frequen-

cies greater than 19.6 Hz where a continuum of resonant three-wave interactions

are theoretically admissible. Rather than the entire continuum being excited, tem-

poral data show that a dominant resonant triad(s) evolves due to the presence of

exceedingly small background waves at distinct frequencies. If. in addition to a

primary wavetrain, a broad-banded frequency spectrum of background waves is

generated. the entire continuum of admissible triads is excited in a manner consis-

tent with resonant interaction theory for a single triad.















CHAPTER 1


GENERAL INTRODUCTION



For over a hundred years, water waves have been studied by observation in

nature, experiments, mathematical analyses, and, more recently. by numerical

techniques. Original interest appears to have been motivated by the study of the

tides. More recently, interest has broadened to include the entire spectrum of

ocean surface waves which includes many length scales. Waves for which surface

tension and gravitation are important driving forces are known as gravity-capillary

(G-C) waves or simply ripples. These waves have typical frequencies in the range

of 5 through 50 Hertz (Hz) and wavelengths of about 5 through 0.5 cm. In the last

few years, remote sensing of the ocean surface to obtain information about larger-

scale gravity waves has actually focused attention on these smaller-scale waves.

They seem to play a very important role in the manner in which the high-frequency

radar waves are.scattered, apparently because of the proximity of their respective

wavelengths. Herein, we will investigate two different instabilities of G-C water

waves.

Previous research has demonstrated that plane. G-C waves generated in a labo-

ratory are fraught with instabilities which occur rapidly. even for wavetrains of

sensible (low to moderate wave steepnesses) amplitudes. These initially one-

dimensional surface patterns quickly evolve into two-dimensional surfaces. These

instabilities are investigated both experimentally and analytically by two distinct

approaches; a degenerate, four-wave interaction and a resonant three-wave interac-








tion. In the first analysis, Part 1, it is shown that the stationary, nonlinear

Schroedinger 'equation governs the spatial disordering of the wavetrain. Thus, a

mechanism for the directional spreading of energy is established. This analysis

encompasses Chapters 2 through 6.

In Part 2, Chapters 7 through 14, the resonant three-wave (triad) equations are

presented and reviewed. Experimental evidence of the selection mechanism for

triads is presented. It is shown that one or more resonant triads can be excited by a

high frequency seed wave of exceedingly small amplitude. The evolution of a rip-

ple wavetrain in the presence of random waves is also addressed. It is shown that if

no seed waves are present, the entire continuum of admissible triads is excited in a

manner consistent with resonant interaction theory for a single triad.

Since ripple dynamics are similar in many respects to other nonlinear dynami-

cal systems, this work should be of interest to persons in these related areas. In

fact, several of the governing equations derived in the context of G-C waves, such

as the three-wave resonance equations and the nonlinear Schroedinger equation,

are nearly identical to those in other areas of waves in dispersive media; the differ-

ences arise in the coefficients, only. These areas include optics, rigid-body me-

chanics, hydrodynamic stability, and plasma physics.

The second part of this study is essentially a reprint of a research paper by

Hammack, Perlin, and Henderson (to appear, 1989), which was presented by Pro-

fessor Hammack during a series of lectures at the International School of Physics

"Enrico Fermi," Course CIX. This research was conducted prior to installation of

the imaging system that is used extensively in the study of Part 1.















CHAPTER 2


INTRODUCTION TO GRAVITY-CAPILLARY INSTABILITIES: PART 1


Waves on the oceans' surface have stimulated the curiosity of observers for

many years. Contemporary scientific interests in ocean waves appears to have be-

gun with the study and prediction of tides. Airy (1845) was the first to analyze

tides using the equations of motion derived from Newtonian mechanics. Since the

seminal work of Airy, water waves have been studied intensely using observations,

experiments, mathematical analyses, and. more recently. numerical techniques.

Interests have broadened to include the entire spectrum of the oceans' surface

waves, especially those generated by wind. When wind blows over a water surface,

waves are generated whose primary restoring forces are gravitation for the longer

waves and surface tension for the shorter waves. When both restoring forces are

important, the waves are termed gravity-capillary (G-C) waves, or simply ripples.

These are the waves of interest in this study.

Ripples are omnipresent on the ocean surface. In addition to wind generation,

they result from breaking gravity waves, rain, and other disturbances which have

length-scales of about 1 cm. Kelvin (1871) first examined infinitesimal G-C waves

theoretically, and obtained their "dispersion" relation for deep water (i.e. water

depth much greater than 1 cm). This relation between the radian frequency, w and

the wavenumber magnitude. k for a wavetrain of infinitesimal amplitude was given

by Kelvin as










to = gk + Tk- (2.1)

where g represents the acceleration of gravity and T is the kinematic surface ten-

sion. According to (2.1), the cyclic wave frequency, f = w/2x at which gravity

and surface tension effects are equal on a clean surface. T = 73 cm3/sec2 (T=73

dyn/cm per mass density.p), is 13.6 Hz. The corresponding wavelength, 21r/k is

about 1.7 cm. Rayleigh (1890) investigated ripples on clean and greasy surfaces

both experimentally and analytically, and used (2.1) to determine the surface ten-

sion, T from measured values of o and k. Faraday (1883) studied ripples, or

"crispations" as he termed them, by vibrating a glass plate vertically which was

covered with a layer of water. This vibration generated standing waves on the

water surface whose crests were orthogonal: the excited waves had a period which

was twice that of the vibration. In these studies, an implicit assumption was made

that the wavetrains are stable.


Unfortunately. small-amplitude G-C wavetrains are unstable, i.e. they do not

propagate without significant distortions. The first example of a ripple instability

was found by Harrison (1909) and explained by Wilton (1915). Wilton showed that

a wavetrain of 9.8 Hz (on clean, deep water) is unstable to its second, or 19.6 Hz.

harmonic. In fact, there exists a countable set of these "internal resonances" for

G-C waves, where each wave is unstable to one of its higher harmonics. One ex-

ample of importance herein is an 8.38 Hz wavetrain which is unstable to its third

harmonic (25.14 Hz).


In addition to internal resonances, small-amplitude trains of water waves are

subject to a variety of instabilities that arise from interactions with small, back-

ground perturbations. Perhaps. the best-known instability of this type is that which

results from longitudinal perturbations in the amplitudes of plane gravity waves.






5


The existence of this instability was first recognized by Benjamin and Feir (1967).

Whitham (1967), and Lighthill (1965), and is known as the Benjamin-Feir (B-F)

instability. A more detailed analysis of the Benjamin-Feir instability was presented

by Benney and Newell (1967), Zakharov (1968) and Hasimoto and Ono (1972),

who derived the nonlinear Schroedinger (NLS) equation for the evolution of an

unstable one-dimensional (plane) wavetrain. This equation plays an especially im-

portant role in this study, and has the form (e.g. Ablowitz and Segur, 1979)



iA, + A.,, + | A i A = 0. (2.2)


In (2.2), A represents a suitably normalized complex-amplitude "envelope" of the

wavetrain, t is the time, and +x is the direction of propagation. The NLS equation

can be solved exactly, for arbitrary initial data. using the methods of "Inverse

Scattering Theory" as long as the envelope decays to zero at infinity. This solution

shows that the Benjamin-Feir instability leads to very ordered "soliton" behavior

and recurrence.

Typically, plane G-C wavetrains theoretically manifest the Benjamin-Feir in-

stabilitiy. Also, G-C waves are subject to other instabilities when the perturbations

occur obliquely to the direction of propagation. These instabilities result from

three-wave, four-wave, etc., resonances which are described by the fundamental

ideas of resonant interactions formulated by Phillips (1960). Resonant triads are

the first to occur on clean, deep water when the frequency of a G-C wavetrain is

greater than 19.6 Hz. McGoldrick (1965) showed that standing G-C waves may

display three-wave resonances (resonant triads). Simmons (1969) presented a more

general derivation for propagating waves which included spatial variations. (In

fact, Wilton's ripples are a degenerate three-wave resonance.) Experiments on

three-wave resonance have been presented by McGoldrick (1970). Bannerjee and









Korpel (1982), and Henderson and Hammack (1987). Ma (1982) investigated the

bifurcation from two-dimensional G-C waves into three-dimensional waves. Chen

and Saffman (1985) investigated the three-dimensional stability and bifurcation of

capillary and gravity waves. Zhang and Melville (1986 and 1987) have numerically

studied three-dimensional instabilities of two-dimensional, G-C waves. Aside from

the interactions due to the NLS equation, waves with frequencies of less than 19.6

Hz exhibit resonant four-wave interactions; they do not admit resonant triads.

While resonant quartets have been studied in considerable detail for gravity waves,

there has been very little attention given to four-wave interactions for G-C waves.

(In fact, the Benjamin-Feir instability of gravity waves can be viewed as a degener-

ate four-wave resonance.) Yet. there is clear experimental evidence that these

waves are indeed unstable (Henderson and Lee (1986) and Henderson, 1986).

When a wavetrain with a frequency less than 19.6 Hz is generated mechanically in

a wide channel, a spatially disordered wavefield occurs. Modulations are present in

both surface directions; however, frequency spectra show that the energy present is

concentrated at the input wave and superharmonic frequencies only.

The objective of the first part of this study is to examine this instability, both

experimentally and analytically. Experimental measurements of G-C wavetrains

are made using a high-speed imaging system. These spatial data are used to calcu-

late the wavenumber spectrum. Wavetrains are generated with small to moderate

amplitudes; all wavetrains with frequencies greater than 9.8 Hz show that the input

energy spreads directionally during wave propagation. This transfer of energy is

modeled accurately by solutions of a NLS equation similar to (2.2). in which the

independent variables (t,.r) are replaced by the surface coordinates (.,y). This in-

stability occurs for all wavetrains on clean, deep water with frequencies greater

than 9.8 Hz.









An outline of Part 1 of this dissertation is as follows. Chapter 3 presents theo-

retical considerations including an outline of the derivation of the two space dimen-

sions plus time (2+1) NLS equation, and the most unstable sidebands, spatial

growth rates, and the limiting angles of the directional spreading which can occur

according to a linear stability analysis. Chapter 4 describes the experimental facili-

ties and procedures, with an emphasis on imaging techniques and the interpreta-

tion of wavenumber spectra. Chapter 5 presents the experimental results for

wavetrains with frequencies of 25, 17, 13.6, 9.8 and 8 Hz and a comparison with

the prediction of the stationary, nonlinear Schroedinger equation. Finally, Chapter

6 summarizes the results and conclusions of this study.















CHAPTER 3

THEORETICAL CONSIDERATIONS FOR PART 1


Consider the fluid domain shown in figure 3.1 which consists of a water layer

with uniform, quiescent depth h, that is bounded below by a rigid impermeable

boundary and bounded above by a free surface with a tension, T. A Cartesian

coordinate system is located such that the x and v axes lie in the quiescent water

surface and the z axis is vertically upward, parallel to a downward gravitational

force per unit mass, g. Vertical deformations of the water surface from the quies-

cent position are denoted by (.r.y,t). It is well known (e.g. Lamb, 1932) that the

inviscid. irrotational, incompressible motions of this fluid layer can be formulated

in terms of a velocity potential. <(x,y.z,t) as


V 2 = 0,


-h < z < '(,v.V,t)


with boundary conditions



= 0. = -/h



+ 0., x + 0v = : .


(3.1)


(3.2a)


(3.2b)


1 = T|x.(l + C) + ,v-(1 + C) 2. v C.
g + 0, + IV2(i = T( 2+ .2
2 (1 + x + 12)3/2


, z = (3.2c)


: = ,






















































Figure 3.1


The fluid domain and a definition sketch.








Equations (3.1) and (3.2) are analytically intractable. Therefore, approximations

are used. Herein, the approximation of interest is an evolution equation for the

envelope of a modulated wavetrain on water of finite depth, the nonlinear

Schroedinger equation.

3.1 Review of the NLS Model

The characteristic length scales of the water wave problem of (3.1) and (3.2)

are the reciprocal wavevector magnitude, k~', the wave amplitude, a, and the water

depth, h. The important dimensionless parameters determined from these scales

are the wave steepness, ka, and the relative water depth, kh. Herein, we represent

the two-dimensional wave vector by k = (1,m) and use ko to represent the wavenum-
ber of the plane wave input during experiments.

In order to derive the general NLS equation (following Ablowitz and Segur,

1979), it is necessary to make the following assumptions; (1) small amplitude

waves (E = ka < 1), (2) slowly varying modulations (61/k < 1 ), (3) almost

one-dimensional waves (ImI/k < 1), and (4) a balance of these effects. To avoid

shallow water, we require (kh)2 > E. If we now expand the dependent variables.

4 and of (3.1) and (3.2), in terms of a power series in the small parameter, E,

and employ a Taylor series to represent functions in terms of their behavior at the

known reference position, z=0, we obtain an infinite set of linear equations ordered

in powers of E to replace (3.1) and (3.2). The first order, linear, homogeneous

problem has the solution



J cosh k(z + h) l
cosh k ep (k -t) ) cc] (3.3)
L cosh kh


with the dispersion relation









w2 = (gk + Tk3) tanh kh (3.4)


(Herein, "cc" denotes the complex conjugate.)


In order to allow slow modulations of the wavetrain at second and higher or-

ders (i.e. a non-uniform wavetrain which is narrow-banded), the method of multi-

ple scales is used to expand independent variables (x.y,t). In addition, 4 and t are

expanded such that the amplitude and mean motion (which arises at second order

for a uniform wavetrain) are allowed to vary slowly. Slow scales are introduced as

follows,


x E = Ex, yi = Ey, tt = Et, t2 = E2t (3.5)


and the expansions of 4 and t are


C = c,,yi,, t, ) shk(z+ h) |t(. 1y,,,.2) exp(i(k.v -wt)) + cc] )+ O(2)
Scosh kkh



C (g iw A exp (i(kx-wt)) + cc+O(2) (3.6)



where <( represents the mean motion. At 0(e2), the removal of secular terms pro-

duces an evolution equation which requires that the wave envelope travel with its

group velocity (Cs = dw/dk).


A,, + C, Ax, = 0. (3.7)



An additional equation for the mean motion is obtained (see Ablowitz and Segur,

1979).








To obtain the NLS equation, the expansion is carried to the next order, O(e3).
When secularity is removed, and the results are cast into dimensionless form using
the following scaling

E = Ek(x-Ct). 'i = eky, r = E2(gk)/2t
(3.8)
A = k2(gk)-'2A, 4 = k'(gk)-'/2 ,

the evolution equations are


i Ar + 2 Ag + pi A, = IAX A + xi A (t (3.9a)

a i +


where a = tanh kh, T = k2 T/g (3.10a)

w2 = gk( 1+ t ), wo = gk. A = k2- / 2wo (3.1Ob)


S= k2( / 2w = -kCg (3.1Oc)
()7m2j 2o w


o(o (1- r?) (9 ) + P7(3 ) (7-r)
4 (wo{(-2)( T3- o) +

(00J8 o2 2 (1 -2)2 (1 +T) (3.10Od)
S4wJ T

Z1 = 1 + (1 2w

a = (gh C) /gh (3.1Of)

f 1 ) + (3.10g)
o kJ w k 1 + T


(3.10h)


1 = X X1f /a








Equations (3.9a) and (3.9b) are the NLS equation in two space dimensions and

time, i.e. (2+1), coupled with a long-wave equation for the mean motion. The NLS

equation in two spatial dimensions for gravity waves was derived by Zakharov

(1968), Benney and Roskes (1969), and Davey and Stewartson (1974). Djordjevic
and Redekopp (1977) and Ablowitz and Segur (1979) derived the equations in the

form (3.9), which includes surface tension. The coefficients of (3.9) given in (3.10)

are calculated using the wavevector k = (lo, mo = 0) of the underlying wavetrain.

Misprints in Djordjevic and Redekopp (1977) and Ablowitz and Segur (1979) have

been corrected in (3.9) and (3.10).

Equation (3.9) does not appear to be analytically tractable (Ablowitz and
Segur, 1979); however, a variety of approximations are. For example, neglecting

transverse variations, i.e. a/aq = 0, (3.9b) can be integrated, and thus (3.9) yields




i Ar + AA = rA I A (3.11)

I = -[3/a I A |2. (3.12)



Equation (3.11) is the NLS equation in one space and one time dimension (1+1),

and it describes the evolution of a wavetrain whose envelope is modulated in the

longitudinal direction. This equation was derived by Benney and Newell (1967) and
Hasimoto and Ono (1972). Zakharov and Shabat (1972). found a scattering prob-
lem that allowed (3.11) to be solved exactly using Inverse Scattering Theory. They

showed that initial data, which vanishes sufficiently fast as 0. -s ., evolves into a

finite number of envelope solitons and a continuous spectrum of oscillatory waves.

The solution of (3.11) depends critically on the signs of the coefficients of the

equations. The critical dividing lines are established by the sign of the quantity,








(Xv). When Xv<0, the region is unstable (this represents all three unstable regions

and is known'as the Benjamin-Feir (B-F) instability); conversely, when Xv>0, the

region is stable. A map of parameter space showing where sign changes occur and

regions of stability (S) and instability (U) is presented in figure 3.2. A similar

figure was used by Djordjevic and Redekopp (1977), Ablowitz and Segur (1979),

and Henderson and Lee (1986). For large kh, X changes sign at approximately 6.4

Hz (or 7= 0.1547) or across curve Ci. Along curve C2, v has a singularity which

corresponds to second harmonic resonance known as Wilton Ripples. The curve,

C3, across which a and v change sign and v is singular, signifies that a long wave-
short wave resonance has occurred. (This case has been investigated by Djordjevic

and Redekopp, 1977). The parameter locations for the experiments presented

herein, are also shown in figure 3.2; they occur in three separate regions. The 8 Hz

experiments are in a stable region, while the 9.8 Hz wavetrains. located on curve,

C2, correspond to Wilton ripples. The remaining experimental wavetrains are in a
B-F unstable region.

We present an outline of the stability analysis of the NLS equation which fol-

lows that of Hasimoto and Ono (1972). Transforming (3.11) to a dimensional

equation using = E2(gk)/b' c = Ek, and A = k0(gk)-'/ A. yields


i Ai + AA-, = t IA 2 A (3.13)


where = v k4(gk)-/2 and A = 2 k-(gk)'/. First. we seek a nonlinear plane

wave solution of the NLS equation which has an oscillatory envelope of the form

A(r, A,) = A e ,L, t (3.14)


where A0 is a constant (possibly complex) amplitude, 02 is the modulation fre-


































2-




1.1105


1 -




0.1547


0-
(








Figure 3.2


* 25 HZ

24 HZ


S17 HZ



13.6 HZ
S


9.8 HZ


1.3628


Parameter space of the nonlinear Schroedinger equation showing
regions of stability (S) and instability (U) of a wavetrain to long-
itudinal modulations. Curve C1 corresponds to zeros of A; curves
C4 and C5 correspond to zeros of v: Curves C2 and C3 correspond
to singularities of v. The location of parameters (e) for each exper-
iment is also shown. (Hammack, private communication, 1989).








quency, and K is the modulation wavenumber. Substituting (3.14) into (3.13) yields
the dispersion relation for the wave envelope

Q = -2A K IAo|. (3.15)


If we set K=0 and Ao = i(g + Tk')ao/2w, where ao represents the physical wave

amplitude, then (3.15) gives the dispersion relation for a uniform wavetrain with a

nonlinear correction to its linear frequency. For gravity waves (T=0), this wavetrain

represents the well-known Stokes solution with the third order frequency correction

(,i = w +(1/2) k2a ).

To determine whether a wavetrain is stable, we introduce a perturbation of the
form


A(i, A) = (Ao + e B) e ,ui + 'hi (3.16)


and determine its time evolution. In (3.16), B = B(ri.) is a pure imaginary pertur-

bation of the complex amplitude, b = b(rT, ) is a real perturbation of wave phase,

and e < 1 is a small ordering parameter. Substitution of (3.16) into (3.13), and

retaining terms through first order, yields two equations. The zeroth order equation

is satisfied identically. The first order equation, for which the real and imaginary

parts must be satisfied separately, gives


-i Bi + 2 (Ao( b. = 0 (3.17a)

iA B i 2 V IAJ2 B + IAio br = 0 (3.17b)



Equations (3.17a) and (3.17b) are a coupled set of linear differential equations

with constant coefficients; hence, we assume solutions of the form










B(i, ) = Bo e' (cX wil cc (3.18a)

b(i, ) = bo e' (W wi) + cc (3.18b)



where B0 and bo are taken to be real constants and K and W are the perturbation
wavenumber and frequency. When W is pure imaginary and positive, the perturba-
tion will grow at an exponential rate, IWI. Substitution of (3.18) into (3.17) yields


-W Bo JA AoI K-2 bo = 0 (3.19a)

( 2 v IAo12 + A ) B0 + W IA()bo = 0. (3.19b)



The determinant of (3.19) must vanish for nontrivial solutions. This condition
leads to a dispersion relation for the perturbation wavenumber and frequency,
namely


S= A: A2 ( + ( 2Ai, IA)/I. ) (3.20)


When AV is positive, W is real and the perturbations do not grow. However, when

Av is negative, W can be imaginary and positive so that the pertubation grows, i.e.
the wavetrain is unstable. Instability occurs when


A < (-2i,/A)'/- A,,I. (3.21)


Also, we define the limiting wavenumber as /max- = (- 1;/2)1/ |IAol Therefore.

as shown by Hasimoto and Ono (1972), gravity waves (T = 0) in the regime

where A; is negative (kh > 1.3628) and (3.21) is valid, are unstable. For the modu-









nation wavenumbers which satisfy (3.21) and for which Af2 is negative, the growth

rate is


IW = (- 22 i, IAo2 K A2 k4 2. (3.22)


Finally, the most unstable sideband, Km, and its growth rate, IWI, occur where the

derivative of (3.22) with respect to kA vanishes. This calculation yields



S= ( -'/ )1/2 A, (3.23)

I W m = -li' A,2 (3.24)


Obviously, the maximum unstable wavenumber. the maximum growth rate, and

the most unstable sidebands are functions of the wavetrain amplitude. (Also, note

that kmnx = v72 km ).


3.2 The Stationary. NLS Model


The motivation for the following model is based on experimental measure-

ments in which the envelopes appear to be steady. Also, the transverse modula-

tional wavenumbers are larger than the longitudinal values. If the latter of these

two observations is assumed, the terms in (3.9), which contain derivatives in (, are

negligible at leading order. These equations decouple, and (3.9a) becomes


i A, + p A,, = X I A 2 A (3.25)


Transforming (3.25) to laboratory coordinates and dimensional form. using the

transformation









x = e-'k-' + -2C,(gk)-1/2r y = -lk-l


t = e-2(gk)-'/2 A = k2(gk)-l/2A (3.26)


we obtain


i (A, + C, A, ) + (ik-2(gk)'/2) A = ( k(gk)- /2) A12 A 2 (3.27)


Experimental results show that our wavefields are quasi-steady (herein, quasi-
steady describes a process which is steady (has no temporal dependence) over
many periods of the underlying wave); therefore, the time derivative term in (3.27)
is negligible. These approximations result in a stationary NLS (sNLS) equation
with the form


i A, + /i Ayy = X IA 2 A (3.28)



where ji = u k-2(gk)'1/Cg-1 and X = k (gk)-'2Cg-' Equation (3.28) has the

same form as (3.13); however, the independent variables (it.) have been replaced

by (x,y), and the coefficients, (A, f), have been replaced by (yl, _). Since the equa-
tions are analogous, we may glean our results directly from the stability analysis in
Section 3.1.

If we assume oscillatory modulations in space of the form


A(., y) = A0, e -" -q v)


(3.29)









we obtain the dispersion relation for the wave envelope, analogous to (3.15) as



q2 + p IoI (3.30)


Figure 3.3 shows this dispersion relation, which is a parabola in the wavenumber

plane, for the 25 Hz experiment presented in figure 5.1. The shape of the parabola

is nearly circular in the vicinity of the input wavevector as shown by the dashed,

circular arc in figure 3.3. This approximation is reasonably accurate to angles of

30*. Since the magnitudes of the wavenumbers along this portion of the curve

are nearly constant, the frequencies calculated from (3.4) are nearly equal. There-

fore, although many waves propagating in different directions may be present,

frequency spectra will only show energy at one frequency.


Any coordinate along the parabola in figure 3.3 represents a wavevector,

which forms a degenerate quartet (four-wave resonance) with the input wavevec-

tor; one quartet is shown in figure 3.3. (Note that the input wavevector does not lie

on the parabola.) If the transverse wavevector, q, is zero, a degenerate, collinear

quartet is present. In the derivation of the NLS equation one assumes weak, two

dimensionality, and so equation (3.30) should only be valid for small values of p

and q.


For the sNLS equation, (3.28), we present analogous results to the linear sta-

bility analysis of Hasimoto and Ono (1972) presented in Section 3.1. Rather than

determining the most unstable wavenumber. the maximum wavenumber of the

instability, and the temporal growth rate, the analysis now predicts the most unsta-

ble wavenumber in the y direction, the maximum wavenumber of the instability in

the y direction, and the spatial growth rate in the x direction. We will use perturba-

tion wavenumbers, P and Q, for the x and y directions, respectively. According to
























(cm-)


0. 4. 8.


S(cm-')


Figure 3.3


The dispersion relation of (3.30) calculated for a 25 Hz wavetrain
with a=0.04 cm. The (p,q) coordinate system is shown along with a
degenerate, side-band quartet. The dashed line is a circle, centered
at (0,0), with a radius equal to the parabolic vertex coordinate.








the linear stability analysis, P must be imaginary and positive for perturbations to

grow in space, and therefore, it restricts the admissible wavenumbers in the y

direction. We set q=0 so the wavetrain represents a nonlinear plane, G-C wavetrain

in space (with Ao = [- i(g + Tk')/(2w)J ao for a real, physical wave amplitude, a0,

and a slightly different wavenumber than for the linear wavetrain), and then seek

instabilities which grow in space. The following inequality (and the maximum

sideband value) must be valid in order that the perturbation grow and an instability

result


Q < (- 2 X/t)'1/2 IA,) max (3.31)

The most unstable sideband and maximum spatial growth rate are


m = (- X/li)/2 |Ao and IPI,, = IA, (3.32)


Herein, Q,,,ax will be shown in figures to indicate the allowable spreading of

wave energy according to this linear stability analysis. The angle associated with

this spreading is termed 0 As noted by Yuen and Lake (1982), the fact that the

instability of the waves can only occur in a fairly narrow band (about the input k),

preserves the assumption of a narrow-banded spectra used to derive the evolution

equations.

For gravity waves, the analogous equation to (3.28) has a different sign for the

nonlinear term (ie. X changes sign and has a positive value). This form of the NLS

equation cannot be unstable. Thus, the instability we present is uniquely applicable

to G-C waves.

While three-dimensional instabilities of G-C waves have been studied previ-

ously, e.g. by Zhang and Melville (1986 and 1987) and Chen and Saffman (1985),








the stationary, spatial instability described above appears to have been overlooked.

This is a consequence of examining instabilities by positing perturbations whose

temporal behavior is used to define stable and unstable regimes.

In our experiments, amplitudes vary significantly in space due to viscous
damping (and also due to the instability we are investigating); however, we will use
only one measured amplitude, au as a representative value. Since the unstable

sidebands depend on ao and growth rates depend on u02, some discrepancies be-

tween theoretical and experimental results are anticipated. To predict an amplitude

at a specific location using a value from another location requires a viscous model.

Henderson and Lee (1986) have shown that an immobile-surface model is appro-
priate when the facilities and procedures used herein are employed. According to
this model, the amplitude envelope decays as


A(x) = Ao exp (-6x ) (3.33)

( ko(v w/2)'/2cosh2koh
where 6 = F + k Csinh 2k'1 J
C. sinh 2koh

S= ( )/2 ( 2koh + C + (3.34)
2 2 sinh 2koh b

b is the channel width, and v. is the kinematic viscosity of water. Hence, the

e-folding distance for viscous damping is 1/8. In addition to damping, viscosity

causes wavelengths to decrease slightly from those predicted by the inviscid disper-
sion relation.















CHAPTER 4


EXPERIMENTAL FACILITIES, PROCEDURES AND IMAGE ANALYSIS FOR
PART 1


The experimental facility was specifically designed and constructed to study

gravity-capillary (G-C) waves. It consists of six systems: (1) the wave tank, (2) the

wave generator and its electronics, (3) the water supply and filtering system, (4)

the wave gauge and its attendant electronics, (5) the computer system, and (6) the

high-speed imaging system. Systems (1) through (4) have been discussed in detail

by Henderson and Hammack (1987). and they are described briefly herein. The

computer and high-speed imaging systems have been recently integrated into the

laboratory. These two systems provide unique measurements of spatial wave data

which is of special importance to the results reported herein. Hence, they are

described in detail. Data analysis techniques are also discussed with an emphasis on

the spatial data obtained by the imaging system.

The wave tank. shown schematically in figure 4.1, is 91 cm wide, 183 cm long

and 15 cm deep. It consists of tempered glass sidewalls and bottom in an alumi-

num frame with aluminum end walls. A sheet of white plexiglass is located be-

neath the glass bottom. (This sheet is required for imaging purposes.) Temporary

wave guides made of (wetted) aluminum are set adjacent to the wavemaker paddle

to create a wave channel 30.5 cm wide within the 91 cm width of the basin. The

tank is supported by a steel frame which rests on vibration-isolation pads. The

entire inside of the tank is cleaned before and after experiments with ethyl alcohol.























































Figure 4.1


The experimental facility and coordinate system. An elevation view
is shown in (a) and a plan view in (b).
























































Figure 4.1--continued









The wavemaker paddle is supported by an electrodynamic shaker connected to

another steel frame which straddles the wave tank and rests on vibration-isolation

pads as shown in figure 4.1. The paddle is an aluminum right-angled wedge with a

length of 30.4 cm, a height (H) of 0.90 cm. and a width (w) of 0.44 cm. In figure

4.1 an enlarged view of the paddle is shown, including its position with respect to

the water surface. It should be emphasized that the paddle submergence, s, must

be duplicated among experiments in order to obtain repeatable results. Herein, all

experiments have a depth of paddle submergence of 0.24 cm. An eddy-current

displacement transducer monitors the vertical motion of the paddle and provides a

position-feedback signal to a servo-controller. The controller compares the pro-

grammed displacement signal with the feedback signal, and corrects wavemaker

motion to strictly follow the desired motion. The maximum displacement of the

wavemaker is 6 mm (which corresponds to a 6-volt command signal): however for

the experiments reported herein, displacements never exceed 3 mm. For the ex-

periments reported in Part 1, all wavemaker input signals are sinusoidal.


The water supply system contains 80 gallons of water stored in two closed

polyethylene containers that are connected to the wave basin by PVC piping and

valves. The Sybron filtration system consists of a 0.2 micron particle filter, a car-

bon-absorption filter, and an organic removal filter. The water is gravity-fed into

the wave tank, and pumped very slowly through the filtration system at the conclu-

sion of an experiment.


A capacitance-type wave gauge is used to record the water surface elevation as

a function of time at a fixed location. (xo.Y0). in the basin. The water-penetrating

probe is a sealed glass tube enclosing a conductor and has diameter of 1.17 mm.

Unlike the probe used by H-H, the dynamic response of this gauge is essentially

constant until about 30 Hz. The wave gauge is calibrated dynamically by oscillating









it vertically with a known frequency and amplitude, and then comparing this ampli-

tude to the voltage of the output signal. (See H-H for details of the calibration

procedure.)

4.1 The Imaging and Computer Systems

The computer system used in these experiments is a DEC VAXstation 11. This

32-bit system contains an analog-output system (AAV11-DA), with up to 4 chan-

nels of output, and an analog input system (ADVI 1-DA) with up to 16 channels of

input. Two real-time clocks (KWVI 1-C) are used in conjunction with the digital-to-

analog output and the analog-to-digital input. Data acquisition and analysis, as well

as command signals to the wave generator, are performed by the computer system

via the command language of Signal Technology's Interactive Laboratory System

(ILS) software. A command procedure of ILS instructions, once initiated, auto-

matically acquires time series data and analyzes it in near real-time. Numerical

and graphical programs from the DEC VAXlab software are also used. A 71 mega-

byte (RD53) system disk and a 456 mega-byte (RA81) storage disk are used for

data acquisition and processing. In addition to the wave gauge data. the command

and feedback signals of the wavemaker are also recorded simultaneously and ana-

lyzed. The computer is interfaced to the imaging system through an RS-232 con-

nection which allows transfer of control commands and data between the two sys-

tems.

The high-speed video imaging system is a Kodak Ektapro 1000, computer-

based device, capable of processing data from two imagers at framing rates up to

1000 Hz. Each frame can be divided into as many as 6 pictures to produce up to

6000 pictures per second. Each image is formed from a 240 (horizontal) by 192

(vertical) pixel-array with a resolution of 256 gray levels (intensity) per pixel. Im-

ages are recorded on one-half inch instrument tape and, during playback, are then








digitized by the processor at a rate of 30 frames per second. Both imagers are used

in the experimental program (though not necessarily concurrently); one imager is

located directly above the water surface and the other is located at the end of the

tank to give an oblique view of the wavefield. A 25 mm TV lens, with an f/stop as

low as 0.95, is used with the overhead imagery. while an 11-66 mm zoom lens is

used with the other imager.

Using Kodak's command language, digitized images can be downloaded

through the RS-232 connector from the Ektapro 1000's computer memory to the

VAXstation II system. Since it is desirable to maintain the array size as a multiple

of "2" in order to be compatible for numerical analysis, a 128 x 128 pixel array is

transferred. Figure 4.2 shows a typical overhead image of the quiescent water

surface when viewed on the system monitor. A rectangular border has been

marked to delineate the area of the image which is transferred and processed in

the analyses. Note that this sampling area is oriented at an angle of about 450 to

the channel axis (also see figure 4.1). The reason for this orientation will be dis-

cussed in the next section. The channel sidewalls are also visible in figure 4.2.

Figure 4.3 shows a typical overhead image from an experiment in which an 8 Hz

wavetrain has been generated. The dominant light and dark bands transverse to the

channel axis represent the crests and troughs, respectively, of the 8 Hlz wavetrain.

(Even the 24 Hz superharmonic of the 8 Hz wavetrain is visible in figure 4.3!)

More details concerning the interpretation of these overhead images will be pre-

sented shortly.

4.2 Data Analysis Procedures

Wave gauge data are digitized and analyzed by the computer in near real-time.

These data are analyzed to produce amplitude-frequency spectra (amplitude

periodograms). The time series of water surface elevation. (o0,j0), are low-pass



























Figure 4.2


A typical quiescent background image (taken prior to each exper-
iment) with a frame superposed to depict the region used by the
two-dimensional transform.


An overhead image of an 8 Hz experiment (GC0806).


Figure 4.3








analog (Butterworth) filtered with a cutoff frequency of 100 Hz, digitized at a rate

of 250 Hz, amplified by 20 decibels, high-pass analog filtered at a cutoff frequency

of 1 Hz, and then amplified by another 20 decibels. (A 20 decibel amplification

corresponds to a factor of 10.) The duration of the time series is 65.532 seconds,

or equivalently, 16,384 samples. The temporal resolution is 0.004 sec, and the

resolution in the amplitude-frequency spectra is 0.0153 Hz. Thus, the Nyquist

(folding) frequency is 125 Hz. Therefore, analog filtering at 100 Hz removes any

corruption due to aliasing of the amplitude-frequency spectra. The command signal

to the wavemaker is provided by analog output from a 2500 Hz digital signal. The

command and feedback signals of the wavemaker system are also digitized and

analyzed to provide a check on the experimental input. Note that all frequency

spectra herein are presented in terms of decibel wave amplitudes, instead of cm-

wave amplitudes. The decibel amplitude is 20 logi0 (amplitude signal). The fre-

quency spectra are computed by using fast Fourier transforms (FFT) of the time

series.

The overhead images, such as the one shown in figure 4.3. are analyzed using

a two-dimensional FFT to obtain the amplitude-wavenumber spectrum of the

wavefield. An array of 27 x 27 (16,384) samples is used by the transform. Prior to

the analysis of the wavefield image, an image of the quiescent water surface, ob-

tained prior to each experiment (e.g. see figure 4.2), is subtracted from the

wavefield data. This removes any variation in background lighting and/or in-

homogeneities in the response of the imager sensors. Second. a mean-value of the

gray-levels for the wavefield image is subtracted from each pixel value. Of a possi-

ble 256 gray-levels available per pixel, experiments, herein, used as many as 225

gray-levels. The resolution of the images is 0.174 cm which gives a wavenumber

resolution of 0.284 rad/cm. The folding (Nyquist) wavenumber is 18.055 rad/cm,









or equivalently, a free wave with a frequency of 106.5 Hz. Although no method for

analog filtering of the image is available, it is believed that no significant wave

activity is present at, or beyond, this frequency in our experiments. The image

resolution (0.174 cm for the experiments, herein) was determined by viewing a

linear scale located in the plane of the quiescent water surface. Then, the imager's

reticle was used to determine the number of pixels along a known distance on the

scale. This procedure was then repeated in a direction perpendicular to the first

orientation to insure that both axes of the imager gave identical resolutions. The

framing rate of the imager for the experiments presented herein is 125 Hz.


As already shown in figures 4.2 and 4.3, the imaged area of the water surface

was oriented at an angle of about 450 to the axis of the channel. This orientation is

advantageous due to the manner in which the FFT algorithm computes the ampli-

tudes corresponding to a given wavenumber. The algorithm only associates ampli-

tudes with the (+l,+m) quadrant of the wavenumber plane. Hence, it "folds" ampli-

tudes for wavevectors oriented in the -m direction (i.e. waves propagating such

that they have a component wavenumber in the -y direction, across the channel)

into the +m-direction. Similarly, it folds amplitudes in the -/ direction. Hence,

orienting the image at an angle of about 450 allows us to distinguish wave direc-

tions up to 450 from the +x-channel axis. Since the waves in these experiments

are concentrated within an angle of 450 to the channel axis, the folding does not

contaminate the computed spectra in a significant manner.


One problem with numerical calculations, such as the use of FFT's, is the

"smearing" of information which results from representing continuous functions

with discrete functions. In the calculation of the wavenumber spectra, amplitudes

are smeared to adjacent wavevectors. In order to determine how this discretization

affects wavenumber spectra, an analytical sinusoidal wavetrain was digitized and









used as direct input to the two-dimensional FFT. This effect is shown in figure 4.4

where computed spectral contour maps in the wavenumber plane are presented.

The first three maps have been calculated with an input wavenumber of 6.325 (25

Hz) and input angles with respect to the abscissa. E. of 420. 450 and 480. Note that

the smearing for the 420 wavevector is mostly in the abscissa direction while the

smearing for the wavevector oriented at 480 is mostly in the ordinate direction. The

"criss-cross" effect is present in the case of a 450 wavevector, although smaller,

and, in fact, this contour map very much resembles the 17 Hz, small-amplitude

case (see figure 5.7). The fourth map in the figure is also a 450 wavevector, how-

ever its input wavenumber magnitude is now 6.20. By simply changing the

wavenumber so that it falls near the midpoint of adjacent wavenumber "bins", the

"criss-cross" effect has been significantly increased, both in extent and breadth. It

is noted that this effect would be reduced by decreasing the discretization interval

between image gray-levels (i.e. a larger number of known gray-levels for the same

physical area). This "criss-cross" effect will appear in many of the contour maps.

It is important to remember the numerical smearing (caused by the transform)

when interpreting the contour maps of wavenumber space, since the spreading of

wave amplitude caused by the physics of water waves is the main focus of Part 1.


4.3 Lighting and Image Effects


The major factor affecting images of the ripple surface is lighting. The images

are very sensitive to the manner in which the surface is illuminated. Various light-

ing techniques were tried: however, the rear lighting is believed to be superior and,

consequently, is used (note the position of the lights in figure 4.1). Two mechani-

cally coupled, 600 watt halogen lights, in reflector housings. provide the lighting.

The lights are centered on the wave channel. If the lighting is too direct, the imagery













(cml)


4.


Lx


8. 0.


-1
' (cm )


-1
1' (cm )


Figure 4.4


Demonstration of the "criss-cross" effect caused by the numerical
two-dimensional FFT. These contour maps of wavenumber spectra
are for sine waves with: (a) k=6.325 and E=420, (b) k=6.325 and
==450, (c) k=6.325 and ==480, and (d) k=6.200 and ==450.


-1
(cm)









is "overpowered" (i.e. the gray-level values reach 255). Too little light results in

the opposite effect. Also, duplicate experiments, with varied lighting gave slightly

different results. It is believed that the dominant wavenumber properties of the

surface are being measured.


An explanation of the genesis of the image is now presented. Again, reference

is made to figure 4.1; the bottom of the tank is shown to be tempered glass under-

laid with a white, plastic sheet. The plastic sheet is used to help diffuse light. It is

conjectured that light which penetrates the water surface and the glass bottom, is

diffused by the plastic sheet; then, as it passes back through the water surface, it is

refracted (i.e. water wave crests focus light while troughs reduce light intensity).

Thus, an image has bright bands along wave crests and dark bands along troughs

(see figure 4.3). Occasionally, images have extremely small, bright spots present,

believed to be specular reflection. If the white plastic sheet is removed, the video

image is essentially destroyed.


In order to demonstrate that the image is a consequence of diffuse rather than

specular light, a simple, rather crude experiment was conducted. Using the over-

head imager, and a quiescent water surface, the angle of the halogen lights, with

respect to the vei-tical, was measured. An image of the water surface was recorded,

transferred to the computer, and an average gray-level was computed. The angle of

incident light was then changed and the process was repeated. The data from this

experiment are represented by the asterisks in figure 4.5. The angle of the light

source, A, as measured from the vertical is shown versus the average image inten-

sity, K. A significant reduction of light intensity from the maximum value meas-

ured is noted. (If the water surface was specular, the water surface would always

appear black except when the light was originating from the imager direction.)

Next, a light-intensity meter was used to measure the intensity of light versus de-














250.





200.





150.


100.





50.





0.


A (deg)


Figure 4.5


Average intensity level. K. versus inclination angle of light from
vertical, A, for a quiescent water surface (shown by asterisks).
Diamonds represent the plane projection light intensity of the
light source versus angle.


0 0
*








o o
0 0




0 0
S* *
*









aviation angle along the vertical centerline of a plane projection. The maximum

intensity levels measured using the light meter were then normalized by the maxi-

mum average intensity obtained from the video images. These values are repre-

sented by the diamonds in figure 4.5. It is clear that the "surface" is diffuse reflec-

tive because the two curves are similar. The white plastic sheet is apparently re-

sponsible for the surface appearing to be diffuse. The intensity level differences

between the two measurements is due to the difference between projecting light

onto a perpendicular surface and onto an inclined surface and is consistent.


The following tests were performed in order to gain additional insight into the

nature of the data obtained from the imaging system. as well as the interpretation

of their wavenumber spectra. First, simple square-wave, planform patterns were

drawn with black ink on white paper, placed in the wave tank, imaged and trans-

formed. These patterns have known Fourier transforms which could then be com-

pared with the results from the imaging. Reasonable agreement was found. Sec-

ond, various known wavefields in terms of sea-surface elevation were generated

numerically by superposing sinusoidal waves with different (known) wavevectors.

For each wavefield, the maximum sea level was given a gray-level intensity of 255

and the minimum sea level a value of 0; intermediate water levels were assigned

corresponding gray-levels by interpolation. This water surface to gray-level corre-

spondence was used to generate an image on paper, and then the video system was

used to image and transform it. A comparison between the known, input wavevec-

tors and the wavenumber plane as calculated from the transformed image showed

that the system was functioning well.


Finally, as with most remote sensing techniques, a question arises as to what is

actually being measured, in this case, by the imaging and computing systems (i.e.

amplitude, amplitude squared, or some other quantity). Verification that we are, in






38

fact, measuring amplitude is as follows. For low values of k0s, that is, wavenumber

magnitude times paddle stroke, when the energy is nearly all confined to the input

wavenumber vector, if the stroke is doubled, say, the amplitude of the peak con-

centrated at that wavenumber also approximately doubles. This is true as long as

the energy is concentrated at the input wavenumber vector and it verifies qualita-

tively that we are measuring the amplitude (or the wave steepness, ku) and not

another quantity.















CHAPTER 5


RESULTS AND DISCUSSION OF PART 1


The results of the experimental program are presented and discussed in this

chapter. The first section gives experimental evidence as to the quasi-steadiness of

the wavefield, and a time-series of wavenumber contour maps during temporal

evolution preceding quasi-steadiness. In the second section, we present the experi-

mental results and compare them to the sNLS theoretical predictions. A complete

list of these experiments and important parameters are shown in Table 5.1.


5.1 Evolution of Ouasi-steadv Wavefields

In order to show that the wavefield is quasi-steady, figure 5.1 presents 2 sec-

onds (-50 waves) of a typical time series for a moderate amplitude. 25 Hz experi-

ment. (See Table 5.1, experiment GC2504. for the important parameters.) Modula-

tions of the wavetrain are present; however, the frequency spectrum of this experi-

ment's time series (see figure 5.6(c)), clearly shows that identifiable peaks exist

only for the 25-Hz input wavetrain and its super harmonics. This wavetrain had the

largest stroke of the 25 Hz experiments presented and. therefore, it is not expected

to be well-represented by the theory. In fact. figure 5.5(c) shows a photograph of

the image as seen on the video monitor, and one can see 1800 phase shifts present

in the wavefield. In spite of this strongly, nonlinear wavefield, the four contour

maps of wavenumber spectra presented in figure 5.2 are remarkably similar. These

spectra were calculated from images 1/25, 1/5, 1/2 and 1 second, respectively,

after the spectrum of figure 5.9. Very little difference exists between the contour


























(x 0.00075cm)
0

-25

-50 1

48.00 48.50 49.00 49.50 50.00
48.25 48.75 49.25 49.75


time (sec)


Two seconds of a time series from experiment GC2504.


Figure 5.1











8.

m'

(cm )
4.




Al


8.
m'
-1
(cm)
4.




0.


/ Z
/


V; I-


-+ 31'


8. 0.


-1
1' (cm )


-1
l' (cm )


Figure 5.2


Demonstration of the quasi-steadiness of the 25 Hz wavefield of
experiment GC2504. These contour maps of wavenumber spectra
represent the wavefield (a) 1/25 sec, (b) 1/5 sec, (c) 1/2 sec, and (d)
1 sec after the contour map shown in figure 5.9.


O


O









maps. It is reasonable, then to state that the experiment is quasi-steady. We have

thus shown that our experiments are not modulated in a "regular" fashion. How-

ever, modulations, in time, do exist but do not have a unique frequency at which

energy appears in the frequency spectrum. Hence, the modulations appear in a

random manner, and are partially attributed to "noise" in the experimental facility

(e.g. air currents).

We now further define what is meant by quasi-steady. The time series for a 24

Hz wavetrain which precedes a quasi-steady wavefield is shown in figure 5.3. The

length of this time series is 65.532 sec. Digitization of the wave gauge data began

simultaneously with the start of the wavemaker. A time-sequence (3, 9. 21, 33, 45,

46, 47, and 57 sec) of contour maps of wavenumber spectra are presented in figure

5.4. Clearly, the wavenumber spectra are evolving as is evidenced by the large

changes in the contours. Figures 5.4(c) and 5.4(d) show that numerical smearing

of the data is present (i.e. the "criss-cross" effect). The evolution has reached a

quasi-steady state at approximately 45 sec into the experiment. One second (-24

waves) has elapsed between recording of the images used to produce figures 5.4(e)

and 5.4(f), yet the contour maps are very similar. A comparison of figures 5.4(f)

and 5.4(g) shows little change, also. The wavefield imaged to produce figure 5.4(h)

shows that slight evolution was still occurring, but on a longer time-scale.


5.2 Experimental Results and Comparison with sNLS Theory


In order to show that the sNLS equation predicts the directional spreading of

amplitude for G-C waves of frequencies greater than 9.8 Hz. and that its prediction

of stability for frequencies less than 9.8 Hz (but greater than 6.4 Hz) for deep,

clean water is correct, five sets of experiments are presented. Paddle-driven

wavetrains with frequencies of 25, 17, 13.6, 9.8, and 8 Hz are presented for three,


























(x 0.00075cm


0.0 16.38 32.77 49.15 65.54


8.192


24.57


40.96


57.34


time (sec)


A time series of a 24 Hz wavetrain from wavemaker startup.


Figure 5.3












8.

m

(cmi)

4.
-L

m








8.

m'
-1
(cm)
4.





0.


N -1


O~4


8. 0.


-1
1' (cm )


-1
I' (cm )


Figure 5.4


A time-sequence of contour maps of wavenumber spectra for a 24
Hz wavetrain approaching quasi-steadiness: (a) 3 sec, (b) 9 sec, (c)
21 sec, (d) 33 sec, (e) 45 sec, (f) 46 sec, (g) 47 sec, and (h) 57 sec
(theoretical (- -) prediction of the sNLS eq.) into the experiment.


I __ _






45





8. (e) (f

m'

(cm






0.

I -



8. (g) (h)

m'
-I
(cm)

S4.

(\

0. ---- -

0. 4. 8. 0. 4. 8.



-1 -l
1' (cm ) I' (cm )


Figure 5.4--continued















Table 5.1. Summary of experiments



All experiments used the following:
Paddle immersion = 0.24 mm, Surface tension = 73 dyn/cm,
Channel width = 30.5 cm, water depth = 4.92 cm, and y = -4.7 cm.


Exper. Input
freq.
(Hz)


GC2502

GC2503

GC2504

GC1702

GC1704

CC1706

GC13601

CC13605

GC13606

GC9801

GC9802

GC9804

GC9810

GC0802

GC0804

GC0806


25

25

25

17

17

17

13.6

13.6

13.6

9.8

9.8

9.8

9.8

8

8

8


kos x koa


(cm)


0.13

0.19

0.25

0.09

0.18

0.27

0.04

0.18

0.22

0.03

0.05

0.10

0.26

0.04

0.08

0.12


0.08

0.16

0.18

0.11

0.11

0.34

0.04

0.09

0.14

0.03

0.04

0.07

0.26

0.05

0.11

0.16


i -X

sec"
(cm) (s )
cm5


0.079

0.079

0.079

0.110

0.110

0.110

0.135

0.135

0.135


0.119

0.119

0.119

0.105

0.105

0.105

0.125

0.125

0.125


2r.
Qm,
(cm)




31.7

16.5

14.2

22.8

22.0

7.3

56.6

24.6

14.9


+

(")




2.5

4.9

5.6

4.9

5.1

14.9

2.4

5.6

9.2


(W-1

(cm)




333.3

90.9

66.7

125.0

111.1

12.3

500.0

111.1

41.7


( -


(cm)




11.0

11.0

11.0

15.4

15.4

15.4

19.0

19.0

19.0

27.3

27.3

27.3

27.3

36.2

36.2

36.2









small to moderate amplitude experiments. For the interesting case of Wilton's

ripples. 9.8 Hz, we present a fourth, additional experiment. The 25, 17, 9.8, and 8

Hz experiments were conducted with the imager positioned such that the first re-

corded gray-level was 23 cm from the wave generator (see Table 5.1). Recall that

the imager axis was oriented about 450 from the primary wavevector (see figure

4.1). In the 13.6 Hz experiment, the imager was located such that the first imaged

pixel used in the spatial transform was 37 cm downstream. This was done because

the wavetrain extended farther downstream, evolving spatially more slowly. The

wave-gauge frequency spectra were all recorded at the same location as the first

gray-level used from the image (see Table 5.1). For each frequency presented, all

wavenumber spectra are normalized by the largest amplitude obtained by the two-

dimensional FFT of all the cases for that particular frequency. In other words, all

25 Hz experiments, for example, are contoured using the same maximum-ampli-

tude value chosen from among the three. 25 Hz experiments.


5.2.1 The 25 Hz Wavetrain


Resonant three-wave (triad) interactions are studied in Part 2. Therein, it is

shown that in the absence of "seed" waves. no distinct triad interactions occur.

The 25 Hz wave is in the admissible triad regime: however, no seed waves of

sufficient amplitude to initiate triad growth are present in the experiments reported

in Part 1. And yet, the water surface is still spatially disordered as is shown in the

three photographs of figure 5.5. Note that as wavemaker stroke is increased, the

wavefield becomes increasingly more disordered. The three amplitude-frequency

spectra which were computed from experiments GC2502. GC2503 and GC2504

(shown in figure 5.5) are presented in figure 5.6. The corresponding contour maps

of the wavenumber spectra, and an inset perspective view of the wavenumber spec-

tra, are presented in figures 5.7 through 5.9. As mentioned previously, note the



























K.


I


__.LA I


Figure 5.5


Overhead images of experiments
(c) GC2504.


(a) GC2502, (b) GC2503, and


__






















1 3 20 SO 100
2 3 10 30 70






10
120






I 3 7 20 50 100
2 5 10 30 70


5 10 30 70


frequency (Hz)


Figure 5.6


The amplitude-frequency spectra for experiments (a) GC2502,
(b) GC2503, and (c) GC2504.


amplitude

(db)











































I,


8.

1' (cm-1)


Figure 5.7


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 25 Hz wavetrain of experiment GC2502.
Dispersion relation ( -) of the sNLS equation; the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis.


12.


(cmf1)

8.






4.


m


ll


'


12.























12.


(cm-1)

8.






4.






0.


0. 4. 8. 12.


1' (cm-1)


Figure 5.8


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 25 Hz wavetrain of experiment GC2503.
Dispersion relation (- -) of the sNLS equation; the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis.























12.

m '

(cnim


Figure 5.9


0. 4. 8. 12.

1' (cm-1)
Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 25 Hz wavetrain of experiment GC2504.
Dispersion relation (- -) of the sNLS equation; the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis.









rotation of the coordinate system. Superposed on the contour maps of the

wavenumber spectra are the dispersion relations of the sNLS equation as predicted

by (3.30). The maximum angle of directional spreading, as predicted by the linear

stability analysis, is depicted by radial lines. Also, the most unstable sidebands,

represented by X's, are shown. The values of the most unstable sidebands, along

with a complete summary of the experiments, are presented in Table 5.1.

In figure 5.7, the numerical smearing of the "spike" at the input wavevector is

present. In accordance with figure 4.4(c), where the angle, H. is greater than 450,

the smearing here is along the m -axis. Although little directional spreading of

amplitude can be seen in the contour map along the dispersion relation, it is clearly

visible in the perspective view. Also visible in the inset view is the second spatial

harmonic; however, an insufficient number of contours has been used to identify

it, and so it is not visible in the contour map. This is consistent with the amplitude-

frequency spectrum of figure 5.6(a) which has a very small, but discernible peak at

50 Hz. In all of the contour maps presented, herein, 10 contours were used based

on the largest peak from each of the sets of different frequency experiments.

As mentioned previously, as spreading of wave amplitude occurs, the numeri-

cal smearing which causes the "criss-cross" appears to diminish as is seen in fig-

ures 5.8 and 5.9. As the wavemaker stroke is increased, so is the directional

spreading. However, the spreading of amplitude to adjacent wavevectors is not

monotonic nor smooth, but rather occurs as local extrema. In figures 5.8 and 5.9,

it is seen that the most unstable sidebands are in the vicinity of the local extrema.

Note that the second-harmonic wa\e amplitudes have also spread directionally.

These "forced" waves (i.e. waves that do not satisfy the linear dispersion relation,

(3.4), are termed forced, while waves that do satisfy the linear dispersion relation









are called "free") travel with the primary waves and are thus forced to spread

directionally. *

An inspection of the three frequency spectra of figure 5.6, reveals that the

width of the peak present at 25 Hz is increasing as wavemaker nonlinearity (kOs) is

increased. This effect is due to the presence of free waves (sidebands) at slightly

different wavenumber magnitudes than the input wave which are necessarily of

slightly different frequencies. Recall that in figure 3.2, the dispersion relation of

the sNLS equation and the circle (representing waves of constant wavenumber

magnitude) are not perfectly matched, so that very slight frequency differences are

expected. This phenomenon is essentially a spatial, Benjamin-Feir sideband.

Rather than causing modulations of a one-dimensional wavetrain, the spatial insta-

bility causes directional spreading of energy of a two-dimensional wavetrain. In the

first two frequency spectra of figure 5.6. two harmonics are distinct, while in the

third spectrum, the third harmonic is now visible. In all of the amplitude-frequency

spectra of figure 5.6. the superharmonics have significantly less amplitude than the

primary wave. The amplitudes are ordered corresponding to the O(E") at which

they occur (i.e. the third harmonic has less amplitude than the second harmonic,

etc.).

The directional spreading, as predicted by the dispersion relation, (3.30), of

linear oscillations of the sNLS equation, have been superposed on the contour

maps. Clearly, the energy spreading is occurring along these curves. The direc-

tional spreading seems to have occurred along the dispersion relation even when

there were 1800 phase shifts present in the wavefield as in experiment GC2504.

The most unstable sideband predictions are in reasonable agreement with local

extrema along the curve. It is also evident that the maximum directional spreading

as predicted by the linear analysis is somewhat underpredicting the total spreading








occurring in the experiments. In the perspective inset of figure 5.9, the direction-

ally-spread disturbance has nearly traversed the entire quadrant: the disturbance

lies along the dispersion curve. There is also spreading of the wavevectors trans-

verse to the dispersion parabola.

5.2.2 The 17 Hz Wavetrain

The 17 Hz wavetrain lies below the 19.6 Hz parametric boundary for admissi-

ble triads, and therefore, none are expected to occur in a significant manner. In

figures 5.10 (a) through (c), we present the amplitude-frequency spectra for ex-

periments GC1702 through GC1706, respectively. As occurred with the 25 Hz ex-

periments, the widening of the peak at 17 Hz has increased with increased

wavemaker stroke. As with the previous set of experiments, this is attributed to the

presence of wavevector sidebands which are free waves and thus of slightly differ-

ent frequencies. Some identifiable, low-frequency energy was present in the first

two spectra at between 2 Hz and 3 Hz, but for the GC1706 experiment, it has

shifted to between 3 Hz and 4 Hz. These amplitude-peaks were never as large as

the second harmonic. (Recall that the frequency spectra have log-scales.) in the

GC1702 experiment, aside from the primary wave, only the second harmonic (34

Hz) is identifiable. Three harmonics are distinct in the GC1704 frequency spec-

trum, and, at least, four harmonics are discernible in figure 5.10(c).

In figures 5.11, 5.12, and 5.13, the wavenumber spectra are presented for the

17 Hz experiments. Here, the relative sizes of the second harmonics (as compared

to the primary waves) were larger than in the 25 Hz experiments. The maximum

amplitude peak occurs in experiment GC1704 which has a smaller wavemaker

motion than experiment GC1706. Presumably. this is due to the significant amount

of directional spreading occurring in the GC1706 (largest stroke) experiment.

There were also more low-wavenumber amplitudes present in the 17 Hz experi-





















2 5 10 30 70


amplitude

(db)


t1 30 70


2 5 10 30 70


frequency (Hz)


Figure 5.10 The amplitude-frequency spectra for experiments (a) GC1702,
(b) GC1704, and (c) GC1706.























12.


m '

(cm-1)

8.






4.






0.


0. 4. 8. 12.


1' (cm-1)


Figure 5.11


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 17 Hz wavetrain of experiment GC1702.
Dispersion relation (- -) of the sNLS equation; the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis.























12.

m '

(cm-1)

8.






4.






0.


Figure 5.12


0. 4. 8. 12.

1' (cm 1)

Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 17 Hz wavetrain of experiment GC1704.
Dispersion relation (- -) of the sNLS equation; the region of
spreading (- -) and the most unstable sidebands (X) as
predicted by the linear stability analysis.























12.

m '

(cm-1)

8.






4.






0.


0. 4. 8. 12.


S' (cm-1)


Figure 5.13


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 17 Hz wavetrain of experiment GC1706.
Dispersion relation (- -) of the sNLS equation; the region of
spreading (-- ) and the most unstable sidebands (X) as
predicted by the linear stability analysis.









ments than there were in the 25 Hz experiments. Some of the low-wavenumber

amplitudes were due to viscous effects as discussed in Chapter 3. Again, the am-

plitude-wavenumber contour maps show that the most unstable sidebands are pre-

dicted reasonably well, and, that the directional spectra spread in accord with the

prediction of the sNLS equation. As with the 25 Hz experiments, these wavetrains'

second harmonics were directionally spread. The numerical smearing of the large-

amplitude peaks is also visible. Also, notice the asymmetry in the contour map of

the wavenumber spectrum of figure 5.13. In the perspective view. it is seen that the

wavenumbers, along the dispersion curve clockwise from the /-axis, are present;

however, they have less amplitude than those in the counter-clockwise direction.

Possibly, this is due to lighting effects.

Upon comparison of figures 5.10(c) and 5.13, we see that there are some

contradictions. The local extremum shown in figure 5.13, which has a wavenumber

magnitude of about k = 3.6 (less than the input wavevector). but has an identical

direction, has a free-wave frequency of 13.3 Hz. It is not identifiable in the fre-

quency spectrum. However, there is energy present at 3.7 Hz in the frequency

spectrum which corresponds to a free-wave wavenumber of 0.54. There is no en-

ergy in the wavenumber spectrum at about 0.5. We assume that the waves appear-

ing in either of the two measurement techniques which do not correspond to free-

waves are thus forced-waves (or possibly spurious noise).


5.2.3 The 13.6 Hz Wavetrain


At approximately 13.6 Hz. the phase velocity and the group velocity of G-C

waves are equal. Although this does not represent a frequency for which anything

significant occurs as relates to the NLS equation (see figure 3.2), it is a unique

frequency as regards ripples and so it is investigated. (Benney, 1976 investigated








the non-collinear case where phase velocity equals the projection of the group ve-

locity in the context of resonant interaction theory.)

Experimental results for GC13601, GC13605 and GC13606 are shown in fig-

ures 5.14(a) through 5.14(c), 5.15, 5.16, and 5.17. The results are very similar to

the 25 Hz and 17 Hz experiments with the exception that there is almost no identi-

fiable second-harmonic amplitude in the frequency spectrum, nor in the wavenum-

ber spectrum for the GC13601 experiment. In fact, this is the first perspective view

of the wavenumber spectrum in which almost no directional energy spreading is

present. (Experiment GC13601 had the smallest value of kos of the wavetrains for

which the sNLS equation is valid.) For the 13.6 Hz experiments, the most unstable

sidebands and the maximum spreading of the energy as predicted by the linear

stability analysis are in reasonable agreement. Note that in the wavenumber per-

spective views of figures 5.16 and 5.17, the sidebands grow considerably. In fact,

their magnitude, in figure 5.17 is about one-third that of the primary wavevector.

The "criss-cross" effect is present, also. Recall that these spectra were computed

from images taken 37 cm downstream as opposed to the other experiments which

were recorded at 23 cm. This apparent slower spatial development is consistent

with the 25 and 17 Hz cases, which we expect should occur more quickly in space

(and do); and the 9.8 Hz wavetrain, which we know will occur more quickly be-

cause its evolution (resonance) occurs at second order.

5.2.4 The 9.8 Hz Wavetrain, Wilton's Ripples

As shown in figure 3.2, 9.8 Hz lies on a boundary in parameter space of the

NLS equation. For frequencies greater than 9.8 Hz. the NLS equation predicts an

unstable region (for sufficiently deep water). Wavetrains. with a frequency less

than 9.8 Hz, and greater than about 6.4 Hz. are stable as regards the NLS equa-

tion. Wilton's ripples (a 9.8 Hz wavetrain for deep-water with a surface tension




















5 10 30 70


2 5 10 30 70


2 5 10 30 70


Figure 5.14


frequency (Hz)






The amplitude-frequency spectra for experiments (a) GC13601,
(b) GC13605, and (c) GC13606.


amplitude

(db)








































12.


1 (cm-1)


Figure 5.15


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 13.6 Hz wavetrain of experiment
GC13601. Dispersion relation (- -) of the sNLS equation; the re-
gion of spreading (- -) and the most unstable sidebands (X)
as predicted by the linear stability analysis.


12.

m'
(cm-')
8.





4.





0.


A/R
\ t )_ \\


















m'
t,


-0" / /




// \
Iz_ \______.


12.


1 (cm-1)


Figure 5.16


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 13.6 Hz wavetrain of experiment
GC13605. Dispersion relation (- -) of the sNLS equation; the re-
gion of spreading (-- ) and the most unstable sidebands (X)
as predicted by the linear stability analysis.


12.


(cm-1)

8.






4.






0.























12.


(cm-1)

8.





4.





0.


Figure 5.17


0. 4. 8. 12.
S' (cm-1)

Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 13.6 Hz wavetrain of experiment
GC13606. Dispersion relation (- -) of the sNLS equation; the re-
gion of spreading (- -) and the most unstable sidebands (X)
as predicted by the linear stability analysis.









coefficient of 73 dyn/cm), is a degenerate, three-wave (internal) resonance which

occurs at second order. In addition, the second harmonic (19.6 Hz) represents a

parametric boundary in ripple dynamics. It is the low-frequency boundary at which

resonant interaction theory no longer admits triads. Therefore, Wilton's ripples are

a very unstable wavetrain. The parabolic-shaped, directional spreading as predicted

by the sNLS equation is no longer applicable. It is expected that second harmonic

(19.6 Hz) resonance will dominate the evolution.

Four experiments were conducted for Wilton's ripples, and the amplitude-fre-

quency spectra are presented in figure 5.18. The second harmonic was present in

all of the spectra, and adjacent frequencies were also excited as the energy spread

directionally. As in the previous experiments, the width of the peak at 9.8 Hz (in

the frequency spectra) increased as wavemaker stroke was increased. For Wilton's

ripples, this phenomenon also occurred for the 19.6 Hz second harmonic. In the

GC9810 experiment shown in figure 5.18(d). at least 6 harmonics are identifiable.

Also in figure 5.18(d), background waves, which were "flat" in the other spectra,

are seen to have been excited, but at a significantly less energetic level.

In figures 5.19 through 5.22, we present the contour maps and perspective

views of the wavenumber spectra. First, note that parabolic-shaped spreading does

not occur (although significant spreading does occur in experiment GC9810). In

figure 5.20, notice the magnitude of the second harmonic in the perspective view.

It is already approaching the size of the input wave. This is in disagreement with

the frequency spectrum for this experiment, figure 5.18(b). which shows an in-

crease in amplitude of the second harmonic, but not to this extent. In fact. none of

the frequency spectra show that the magnitude of the 19.6 Hz waves grow to the

size of the 9.8 Hz waves. Remember, however, that the frequency spectra are from

point measurements at 23 cm, while the spatial information covers an area about































amplitude

(db)


2 5 10 30 70


10 30 70


2 5 10 30 70


frequency (Hz)




Figure 5.18 The amplitude-frequency spectra for experiments (a) GC9801,
(b) GC9802, (c) GC9804, and (d) GC9810.













































8.


1' (cm-1)


Figure 5.19


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 9.8 Hz wavetrain of experiment
GC9801.


12.


m

(ci


F,


m


/


12.



















12.

m'
(cm-1)
8.









n-


4. 8. 12.


1' (cm1)


Figure 5.20


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 9.8 Hz wavetrain of experiment
GC9802.

















m' /1'




12.

m '

(cm-')

8.










m 1
4. -






0.

0. 4. 8. 12.

1' (cm1)


Figure 5.21 Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 9.8 Hz wavetrain of experiment
GC9804.






















12.

m '

(cm-1)

8.





4.





0.


0. 4. 8. 12.


1' (cm-1)


Figure 5.22


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 9.8 Hz wavetrain of experiment
GC9810.









22 cm by 22 cm beginning at 23 cm downstream. Thus, the frequency spectra do

not contain any spatial information, and the wavenumber spectra contain no tem-

poral information. So, it is not surprising that they do not agree in this respect,

especially since these wavetrains are evolving in space (and more slowly in time).

In figure 5.21, the first and second harmonics are shown to be of comparable

magnitude by the wavenumber spectrum. Numerical smearing is present, again, as

is seen in figures 5.20 through 5.22. In figure 5.22, the directional spreading has

occurred for the first three harmonics along an apparently. almost straight line

(perpendicular to the input wavevector).

5.2.5 The 8 Hz Wavetrain

According to the NLS equation, an input frequency of 8 Hz is a stable

wavetrain. Note that for clean, deep water, frequencies less than 9.8 Hz through

6.4 Hz are stable. Referring again to figure 3.2, along curve C1, A changes sign,

and upon crossing this curve toward lower wavenumbers, the region is again Ben-

jamin-Feir unstable. In figure 5.23. the amplitude-frequency spectra are presented

for experiments GC0802, GC0804, and GC0806. In figures 5.23a and 5.23b, the

second harmonic and the second, third, and fourth harmonics have distinct, or-

dered peak-magnitudes, respectively. However, in figure 5.23(c), the magnitude of

the third harmonic has surpassed the magnitude of the second harmonic!

In figures 5.24 through 5.26. we present the wavenumber spectra for these

three experiments. Notice the presence of a significant "criss-cross" effect reminis-

cent of the numerical smearing of figure 4.4(d). The 8 Hz wavevectors in figures

5.24 and 5.25 show no other directional spreading of energy in agreement with the

theory. However, in figure 5.26, we see the dramatic emergence of a directionally

spread third harmonic whose central peak is about one-half the peak of the pri-

mary wave. In fact, the spreading is predicted fairly well by the dispersion relation













150 -

120






S 3 7 20 50 10
2 5 10 30 70


amplitude

(db)


2 5 10 30 70


10 30 70


frequency (Hz)







Figure 5.23 The amplitude-frequency spectra for experiments (a) GC0802,
(b) GC0804, and (c) GC0806.























12.


i '

(cm-1)

8.





4.





0.


4. 8. 12.


l' (cm-1)


Figure 5.24


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 8 Hz wavetrain of experiment GC0802.






















12.

m '
(cm-1)

8.





4.





0.


0. 4. 8. 12.


I' (cm-1)


Figure 5.25


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 8 Hz wavetrain of experiment GC0804.























12.


i '

(cm-1)


0. 4. 8. 12.


1' (cm-)


Figure 5.26


Contour map of the amplitude-wavenumber spectrum (see inset for
a perspective view) for the 8 Hz wavetrain of experiment GC0806.
Theoretical (- -) prediction of the sNLS equation for a 24 Hz
wavetrain.









of the sNLS equation which has been superposed on the figure. It appears that the

24 Hz (third 'harmonic) is resonating with the primary wave by third-harmonic

resonance. Thus, the explanation of the large third harmonic frequency peak in

figure 5.23c. In fact, the photograph, shown in figure 4.3, clearly shows the pres-

ence of the third harmonic. Theoretically, third-harmonic resonance should occur

for an 8.38 Hz wavetrain and a 25.14 Hz wavetrain. Apparently, this is a case of

detuned, third-harmonic resonance. McGoldrick (1972) presented results which

show that the ratio of an 8 Hz response to an 8.55 Hz response (his peak response)

is about 8%. His results give a ratio of the 8 Hz response to the 8.38 Hz response

(the theoretical third-harmonic resonance) of about 13%.. Therefore, it is somewhat

surprising that the magnitude of the 24 Hz wavetrain grew so large.















CHAPTER 6


SUMMARY AND CONCLUSIONS OF PART 1


In the preceding sections, we have investigated a previously unexplored insta-

bility of G-C waves. It represents a plausible model of the instabilities of ripple

wavetrains generated mechanically in a wide. laboratory channel. The stationary,

NLS model predicts the directional spreading of amplitude reasonably well. Also,

it provides a mechanism by which energy is available at various angles, so that

non-collinear triad and quartet resonances can occur.

Three sets of wavetrains with frequencies of 25. 17 and 13.6 Hz. which are in

the sNLS unstable regime, are shown to display this instability. Using wavenumber

spectra, all of these wavetrains are shown to directionally spread their amplitude

along a dispersion curve as predicted by assuming linear modulations of the sNLS

equation. Energy appears in the vicinity of the most unstable sidebands. As non-

linearity in the wavefield in increased, this spreading of energy increases.

Wilton's ripples (9.8 Hz for clean, deep water), for which a degenerate, three-

wave (internal) resonance exists, resonates with its second harmonic and both

spread their energy directionally: however, the transfer of energy is along a path

perpendicular to the input wavevector in the wavenumber plane. Experiments with

8 Hz wavetrains which are theoretically stable according to the NLS equation, are

shown to remain stable until third harmonic resonance occurs. Then, the third

harmonic, which is now a free wave, exhibits the sNLS instability and spreads its

amplitude accordingly. One possible explanation of why the 8 and 24 Hz waves









resonate when the theory predicts 8.38 Hz and 25.14 Hz is that of detuned reso-

nance.

As mentioned earlier, one very important phenomenon neglected entirely by

the derivation of the NLS equation is viscosity. Herein, viscous effects preclude

any attempt to see whether recurrence is present in our experiments. Also, viscous

effects hamper analytic comparisons between experiment and theory.

Further experiments are required in which spatial disorder is investigated in

the presence of triads (forced to occur by wave seeding). Other related experi-

ments include modulating the wavemaker in time (problems arise because of the

difference waves generated by the wavemaker, especially if two waves are super-

posed to drive the wavemaker and thus the modulation) and the case in which

finite-water depth effects are more significant (i.e. mean, long-wave motion is sig-

nificant).

Finally, quantitative measurements of the phenomenon for use in comparison

to numerical simulations with linear viscosity included. would be useful. However,

before quantitative measurements can be made, two improvements would be bene-

ficial. First, the wave gauge probe should be replaced by a nonintrusive, laser

gauge (this is currently being developed). Second, a better understanding of the

lighting used to remotely sense the wavefield, along with a calibration of the entire

method of obtaining the wavenumber spectrum, is required.















CHAPTER 7


INTRODUCTION TO THREE-WAVE RESONANCE: PART 2


(Chapters 7 through 14 are essentially the research paper by Hammack, Perlin,

and Henderson (to appear, 1989). This material was prepared prior to the installa-

tion of the high-speed imaging system used in the study reported in Chapters 2

through 6.)

Waves for which both gravitation and surface tension are important are ubiqui-

tous on the ocean surface. These gravity-capillary waves (or simply "ripples") have

typical frequencies in the range of approximately 5-50 Hz and lengths of approxi-

mately 50-5 mm. Relative to longer gravity-induced waves, ripples have received

little attention in oceanography. However, recent interest in remote sensing of the

sea surface with satellite-based radar has focused new attention on ripples. Ripple

wavelengths are comparable to those of high-frequency radar waves, causing them

to play a major role in the backscatter of radar waves by the ocean surface. It is

somewhat paradoxical that oceanographic measurements on global scales is im-

pacted so fundamentally by surface waves with the smallest of scales.

Ripple dynamics exhibit a variety of interesting phenomena that are generic to

many nonlinear dynamical systems. One-dimensional periodic wavetrains are

fraught with instabilites which occur quickly when ripples with sensible amplitudes

are generated mechanically in a laboratory channel. The one-dimensional

wavetrains evolve rapidly into two-dimensional surface patterns which can appear

very irregular. (Herein, we refer to waves as one- or two-dimensional according to









whether their surface patterns are one- or two-dimensional. Their corresponding

velocity fields' are one dimension higher.) In Part 1, we investigated one of these

instabilities which had been unexplored previously. These instabilities are exam-

ined, herein, experimentally and analytically from the point of view of resonant

interaction theory (RIT). Theoretical results indicate that ripple wavetrains with

frequencies greater than 19.6 Hz (on a perfectly clean surface) can excite resonant

triad interactions; other than the spatial instability discussed in Part 1, quartic

resonances are the first indicated for wavetrains with frequencies less than

19.6 Hz. Experiments are presented for wavetrains in the resonant-triad regime

since these data are more definitive and analytical results are more readily avail-

able. These wavetrains are generated with and without background perturbations,

which include smaller waves with distinct frequencies and smaller waves with a

broad band of frequencies (random waves). The major conclusions from these

experiments are as follows. First, we find that a selection mechanism exists which

causes certain triads from a possible continuum to dominate the evolution of a

ripple wavetrain. Second, we show that this selection results from a "seeding" of

low-frequency wave(s) in the triad continuum by difference interactions between

the generated wavetrain and high-frequency perturbations. These perturbations

must have distinct frequencies; their amplitudes may be as small as 250 that of

the generated wave. Although a theorem by Hasselmann (1967) is not violated, the

existence of this selection mechanism is contrary to expectations because the dif-

ference interactions occur at higher-order than the triad interactions, and yet. they

determine the evolution of the wavefield. Third. we demonstrate a cycling of wave

energy among the excited members of a wave triad during their spatial evolution.

(Indeed, this is the primary mechanism we use to distinguish resonant from non-

resonant interactions.) Finally, when a ripple wavetrain is generated along with a

wide spectrum of random-wave perturbations, there is no selection and the entire









continuum of admissible triads is excited in a manner consistent with the form of

the interaction coefficients for a single triad.

An outline of the remainder of Part 2 is as follows. In Chapter 8 we present a

general summary of RIT, followed in Chapter 9 with its specific application to

ripples for resonant triad interactions. In Chapter 10 a brief description of the

laboratory facilities is presented. Previous experimental results on triad selection

are reviewed in Chapter 11. In Chapter 12 this selection process is explained and

the previous experiments are reinterpreted. Finally, in Chapter 13 we demonstrate

the evolution of a ripple wavetrain in the presence of white noise.















CHAPTER 8


RESONANT INTERACTION THEORY


The fundamental notion of RIT was formulated by Phillips (1960) for gravity

waves on deep water. Benney (1962) inter alios realized the general nature of its

application to dynamical systems. The basic idea is that the effects of weak non-

linearity may be dominated by certain wave-wave interactions which satisfy "reso-

nance" conditions. A general outline of RIT is as follows (also, see Segur, 1984).

Consider a nonlinear energy-conserving dynamical system which we represent by


N(q) = 0. (8.1)


where N is a nonlinear operator. 0(x, t) is a solution of (8.1), x = (.,y,z) is a posi-

tion vector and t is time. Suppose 0 = 0 is an equilibrium solution of (8.1) that is

neutrally stable; then infinitesimal deformations from this equilibrium state are

found by linearizing (8.1) to find


L(0) = 0. (8.2)


We then seek normal mode solutions to the linear operator L of (8.2), and, if L has

constant coefficients, this amounts to seeking solutions with the form:


01- expli(k x t +a) (8.3)


where k is a wavevector, o is the wave frequency, and a is an arbitrary and

constant phase angle. Substituting (8.3) into (8.2) yields a dispersion relation for









the linear problem:


w = W(k). (8.4)


We require that o exists in the sense that for fixed k there is a countable set of

possible values for o and that W(k) is real-valued for real-valued k. Now return to

(8.1) and seek small-but-finite deformations from the equilibrium state by means

of a formal power series:
00
(x, t; E) = en(x, t) 0 < E 1. (8.5)
n= I

At leading order in e, 01 of (8.5) satisfies (8.2). so 0 can be represented by a

superposition of M linear waves, i.e.

Al
1i= (Ae'am + Ame-io'() (8.6a)
m=

where Am is the complex wave amplitude, Am is its complex conjugate, and


O m = k,, w,,t. (8.6b)


The first nonlinear effects appear at order E: where


L(Oz) = Q(01). (8.7)


and Q is a quadratic operator. Substituting (8.6) into Q produces terms with the

form:



AA;A + Aje'2 2 + AAe- + AjAe'',+2 + A.Ae'"'-:(' + (8.8)


on the right-hand side (RHS) of (8.7). The first three terms in (8.8) correspond to

self-interactions of wave m=1; the first term represents a "mean" flow for 02 while









the second and third terms correspond to its second harmonic (first superhar-

monic). The other two terms shown in (8.8), and their complex conjugates, corre-

spond to sum and difference waves between waves m=l and m=2. (There are

analogous terms for all of the M waves in (8.6).) Supposing these quadratic inter-

actions do not vanish identically, we can examine the terms of (8.8) to see if any

of the sum and difference waves also satisfy the dispersion relation of (8.4), i.e.

does

01 02 = (k, k2) x (w (2)t = k3 x ( w3)t = 03 ? (8.9)


If so, then these waves will lead to secular terms (linear growth) for 02, and the

"three waves" of (8.9) are said to form a "resonant" triad. Eventually the resonant

terms will dominate nonresonant terms due to their secular growth; thus the non-

resonant terms are neglected in further considerations of RIT. For water waves

W(k)=W(-k). so that without loss of generality we can write the cinematic resonant

conditions of (8.9) for a resonant triad as

ki = k: k3 (8.10a)

wl = w2 w3. (8.10b)

The existence of triad resonances depends on the specific dynamical system (dis-

persion relation) being considered. If there are no terms on the RHS of (8.7) which

satisfy the resonance conditions of (8.10), then we can proceed to order E3 where

cubic interactions are encountered. Here, resonant quartets occur when the

kinematic conditions:

kl k: = k3 k4 (8.11a)

w1 W = W3 w4 (8.11b)

are satisfied. Unlike triad resonances, quartic resonances are always possible for









the dynamical systems considered here. For example, a rhombus quartet always

exists in which tW = w2 = w3 = w4 and Jk, = Ik2J = jk3j = jk4|. These procedures

can be continued to higher-order to find analogous conditions for resonances at

every order in E; though one seldom goes beyond quartic resonances.


When resonance occurs, a separate analysis is required to follow wave evolu-

tion since the secular terms will eventually disorder the expansion of (8.5). Typi-

cally, the waves in a single triad (i.e. M = 3 in (8.6a)) or a single quartet (M = 4)

are studied. Two common methods of analysis are (i) the method of multiple

scales (e.g. McGoldrick, 1972) and (ii) variational techniques (e.g. Simmons,

1969). Both methods lead to a set of coupled nonlinear partial differential equa-

tions for the complex wave amplitudes. These equations are similar for all dynami-

cal systems, differing only in real-valued "interaction coefficients" ,Ym among the

M-waves. For example, the equations for a single resonant triad (3-\\ave equa-

tions) have the form:


(a,+ U, V)Am = iymAn,,iAr,+2. (8.12)



where m is interpreted modulo 3 and U, are the respective (constant) group ve-

locities. When the nonlinear system is not energy-conserving. the 3-wave equations

of (8.12) must be modified. In the case of linear damping, (8.12) takes the form

(Craik, 1986):


(i,+U,,, V)A,, + 6,A, = iymA,,Ai+Am+:. (8.13)


where 6m are real-valued decay coefficients whose form depends on the the specific

dynamical system under consideration.















CHAPTER 9


RIT AND RIPPLES



The linear dispersion relation for gravity-capillary waves on water of quiescent

depth h has been known since Kelvin (e.g. see Rayleigh, 1945, and the reference

cited there) and has the (dimensional) form:


w2 = (gk+ Tk3)tanhkh (9.1)


where w is the radian frequency, k is the magnitude of the wavevector, g is the

gravitational force per unit mass, r is the surface tension, h is the quiescent water

depth, and Q is the mass density of the water. The kinematic possibility of reso-

nance is most easily found by a graphical procedure outlined by Simmons (1969)

for ripples. Figure 9.1 (after Simmons. 1969) shows the graphical solution of

(8.10) using (9.1) when the wavevector of each triad is collinear. (We will general-

ize to the non-collinear case from this simpler case.) The figure is constructed and

interpreted as follows. First, the dispersion relation of (9.1) is shown in (w,k)

space with an origin at 01. In the calculations for figure 9.1 we have taken

h = 4.9 cm and T = 73 dyn/cm which corresponds to values in the experiments to

be described later, and, for clarity, only one branch of (9.1) is presented. Second,

a point on the dispersion curve corresponding to a "test" wave is chosen as the

origin 02 for a graph of all branches of the dispersion relation. (The test wave

corresponds to the one generated by the wavemaker in the experiments to follow.)

In figure 9.1 a test wave with a cyclic frequency f= w/2n = 25 Hz is chosen









which corresponds to one of our experiments. (Herein, we will identify the test

wave as k, anld w,.) The intersection points of the two dispersion curves at A, B,

and C, represent the collinear, resonant triads that are possible for the particular

test wave. The individual members of each triad are found easily as shown for the

A-triad.


When the test-wave frequency is lowered in figure 9.1 by sliding 02 down the

dispersion curve, the triads at A and B will eventually coalesce, then disappear,

leaving only the triad at C for lower test-wave frequencies. Coalescence occurs at a

frequency of 2w, = 19.6 Hz for a clean water surface. The special role of this wave

frequency follows from a theorem by Hasselmann (1967). According to this theo-

rem, if only one member of a resonant triad is present initially with significant

energy, then it must have the highest frequency in the triad in order to excite the

other two members. Since the test waves in the experiments are input by the

wavemaker, and the other triad waves must be excited from (small) background

"noise," Hasselmann's theorem requires the test waves to have the highest fre-

luencies so that only the sum triads of (8.6) are possible. Hence, the C-triad of

figure 9.1 should not be excited and no triads should be available for test-wave

frequencies less than 19.6 Hz.


Figure 9.1 may be generalized to waves with non-collinear wavevectors by

rotation of the dispersion curves about the frequency axes. When rotation is per-

formed (see Simmons, 1969), the A- and B-triads are found to lie on a closed curve

providing a continuum of possible triads. The minimum frequency of any wave in

this continuum is that of the lowest-frequency wave in the collinear A-triad. i.e. tw3

in figure 9.1; the maximum frequency in the continuum is (uw wo). The C-triad in

figure 9.1 is found to lie on an open curve whose lowest frequency is (w, + w3).

The conclusions above regarding the 19.6 Hz parametric boundary for collinear




































8 10 12
k (cm-')


Figure 9.1


Graphical solution of the kinematic resonance conditions (after
Simmons, 1969) for collinear triads of a 25 Hz test wave.
(Henderson and Hammack, 1987).


(I)

(s-00
300


200




Full Text

PAGE 1

,167$%,/,7,(6 2) *5$9,7<&$3,//$5< :$7(5 :$9(6 %\ 0$5& 3(5/1 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 PXVW H[SUHVV P\ JUDWLWXGH WR 'U / +DPPDFN IRU SURYLGLQJ D WUXO\ VWDWH RIWKHDUW IDFLOLW\ D WUHPHQGRXV ZRUNLQJ HQYLURQPHQW DQG HQFRXUDJHPHQW ZKHQ QHHG EH 7R WKH SHUVRQ ZKR LQWURGXFHG PH WR WKH VWXG\ RI ZDWHU ZDYHV DQG FRDVWDO RFHDQ HQJLQHHULQJ 'U 5 'HDQ DP HWHUQDOO\ LQGHEWHG WKDQN P\ IULHQG FROOHDJXH DQG FRPPLWWHH PHPEHU 'U 7 .LUE\ IRU KLV VXSSRUW ERWK DQDO\WLn FDOO\ DQG LQ JHQHUDO 'U + 6HJXU SURYLGHG PXFK QHHGHG LQVLJKW WR WKH G\QDPLFV RI ZDWHU ZDYHV ERWK WKURXJK 'U +DPPDFN DQG GLUHFWO\ $QG WR 'U 8 + .XU]ZHJ ZKR VHUYHG DV D PHPEHU RI P\ FRPPLWWHH DQG LV UHVSRQVLEOH IRU KHOSLQJ PH EULQJ P\ PDWKHPDWLFV XSWRSDU DP WKDQNIXO ZRXOG DOVR OLNH WR WKDQN P\ ORQJWLPH DVVRFLDWHV DQG IRUPHU IHOORZ VWXGHQWV 'U : 5 'DOO\ DQG 'U / .ULHEHO IRU WKHLU IULHQGVKLS 7KH DERYH SHUVRQV DUH UHVSRQVLEOH IRU KHOSLQJ PH ZLWK WKH WHFKQLFDO SDUW RI WKH GLVVHUWDWLRQ DQG HGXFDWLRQ EXW WKH SHRSOH ZKR UHDOO\ VXIIHUHG DUH P\ IDPLO\ 0\ ZLIH 7HUU\ QRW RQO\ KDG WR OLVWHQ WR P\ WULDOV DQG WULEXODWLRQV EXW KDG WR GR ZLWKRXW PH VR PXFK RI WKH WLPH 2I FRXUVH VRPH SHRSOH ZRXOG SUREDEO\ VD\ WKDW VKH ZDV EHWWHU RII EXW GDUH VD\ VKH GRHVQfW IHHO WKDW ZD\f %HOLHYH LW RU QRW VKH RIWHQ EURXJKW GLQQHU WR PH WR VDYH PH WKH WURXEOH RI JRLQJ KRPH GXULQJ P\ TXDOLn ILHU VWXG\LQJ GD\V 7KHUH LV QR ZD\ WR SURSHUO\ H[SUHVV P\ JUDWLWXGH WR KHU 0\ WZR FKLOGUHQ ,DQ DQG 6DUDK DOVR VXIIHUHG EXW KDUGO\ UHDOL]HG LW VLQFH WKH\ NQHZ OLWWOH HOVH $QG ILQDOO\ WR P\ SDUHQWV DP JUDWHIXO WKDQN WKHP IRU JLYLQJ PH LQ DGGLWLRQ WR DOO RI WKH XVXDO SDUHQWDO JXLGDQFH DQG ORYH VRPHWKLQJ VR YLWDO LQ OLIHnV VXUYLYDO D QHDU SHUIHFW ZRUN HWKLF LW

PAGE 3

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 cL /,67 2) ),*85(6 Y $%675$&7 [ &+$37(56 *(1(5$/ ,1752'8&7,21 ,1752'8&7,21 72 *5$9,7<&$3,//$5< ,167$%,/,7,(6 3$57 7+(25(7,&$/ &216,'(5$7,216 )25 3$57 5HYLHZ RI WKH 1/6 0RGHO 7KH 6WDWLRQDU\ 1/6 0RGHO (;3(5,0(17$/ )$&,/,7,(6 352&('85(6 $1' ,0$*( $1$/<6,6 )25 3$57 7KH ,PDJLQJ DQG &RPSXWHU 6\VWHPV 'DWD $QDO\VLV 3URFHGXUHV /LJKWLQJ DQG ,PDJH (IIHFWV 5(68/76 $1' ',6&866,21 2) 3$57 (YROXWLRQ RI 4XDVLVWHDG\ :DYHILHOGV ([SHULPHQWDO 5HVXOWV DQG &RPSDULVRQ ZLWK V1/6 7KHRU\ 7KH +] :DYHWUDLQ 7KH +] :DYHWUDLQ 7KH +] :DYHWUDLQ LLL

PAGE 4

7KH +] :DYHWUDLQ :LOWRQnV 5LSSOHV 7KH +] :DYHWUDLQ 6800$5< $1' &21&/86,216 2) 3$57 ,1752'8&7,21 72 7+5((:$9( 5(621$1&( 3$57 5(621$17 ,17(5$&7,21 7+(25< 5,7 $1' 5,33/(6 (;3(5,0(17$/ )$&,/,7,(6 )25 3$57 5(9,(: 2) 35(9,286 (;3(5,0(176 21 5,33/( 75,$'6 7KH +] :DYHWUDLQ 6SDWLDO 'DWD 7KH +] :DYHWUDLQ 7HPSRUDO 'DWD 2WKHU :DYHWUDLQV ZLWK )UHTXHQFLHV ([FHHGLQJ +] 5(621$17 75,$' 6(/(&7,21 (92/87,21 2) $ 5,33/( :$9(75$,1 ,1 7+( 35(6(1&( 2) 5$1'20 :$9(6 6800$5< $1' &21&/86,216 2) 3$57 *(1(5$/ 6800$5< $1' &21&/86,216 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

/,67 2) ),*85(6 )LJXUH 'HVFULSWLRQ 3DJH 7KH IOXLG GRPDLQ DQG D GHILQLWLRQ VNHWFK 3DUDPHWHU VSDFH RI WKH QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ VKRZLQJ UHJLRQV RI VWDELOLW\ 6f DQG LQVWDELOLW\ 8f RI D ZDYHWUDLQ WR ORQJn LWXGLQDO PRGXODWLRQV &XUYH & FRUUHVSRQGV WR ]HURV RI FXUYHV & DQG & FRUUHVSRQG WR ]HURV RI Y &XUYHV & DQG & FRUUHVSRQG WR VLQJXODULWLHV RI Y 7KH ORFDWLRQ RI SDUDPHWHUV ff IRU HDFK H[SHUn LPHQW LV DOVR VKRZQ +DPPDFN SULYDWH FRPPXQLFDWLRQ f 7KH GLVSHUVLRQ UHODWLRQ RI f FDOFXODWHG IRU D +] ZDYHWUDLQ ZLWK X FP 7KH STf FRRUGLQDWH V\VWHP LV VKRZQ DORQJ ZLWK D GHJHQHUDWH VLGHEDQG TXDUWHW 7KH GDVKHG OLQH LV D FLUFOH FHQWHUHG DW f ZLWK D UDGLXV HTXDO WR WKH SDUDEROLF YHUWH[ FRRUGLQDWH 7KH H[SHULPHQWDO IDFLOLW\ DQG FRRUGLQDWH V\VWHP $Q HOHYDWLRQ YLHZ LV VKRZQ LQ Df DQG D SODQ YLHZ LQ Ef $ W\SLFDO TXLHVFHQW EDFNJURXQG LPDJH WDNHQ SULRU WR HDFK H[SHUn LPHQWf ZLWK D IUDPH VXSHUSRVHG WR GHSLFW WKH UHJLRQ XVHG E\ WKH WZRGLPHQVLRQDO WUDQVIRUP $Q RYHUKHDG LPDJH RI DQ +] H[SHULPHQW *&f 'HPRQVWUDWLRQ RI WKH fFULVVFURVV HIIHFW FDXVHG E\ WKH QXPHULFDO WZRGLPHQVLRQDO ))7 7KHVH FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD DUH IRU VLQH ZDYHV ZLWK Df  DQG ( Ef  DQG + Ff  DQG ( DQG Gf  DQG = $YHUDJH LQWHQVLW\ OHYHO N YHUVXV LQFOLQDWLRQ DQJOH RI OLJKW IURP YHUWLFDO $ IRU D TXLHVFHQW ZDWHU VXUIDFH VKRZQ E\ DVWHULVNVf 'LDPRQGV UHSUHVHQW WKH SODQH SURMHFWLRQ OLJKW LQWHQVLW\ RI WKH OLJKW VRXUFH YHUVXV DQJOH Y

PAGE 6

)LJXUH 'HVFULSWLRQ 3DJH 7ZR VHFRQGV RI D WLPH VHULHV IURP H[SHULPHQW *& 'HPRQVWUDWLRQ RI WKH TXDVLVWHDGLQHVV RI WKH +] ZDYHILHOG RI H[SHULPHQW *& 7KHVH FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD UHSUHVHQW WKH ZDYHILHOG Df VHF Ef VHF Ff VHF DQG Gf VHF DIWHU WKH FRQWRXU PDS VKRZQ LQ ILJXUH $ WLPH VHULHV RI D +] ZDYHWUDLQ IURP ZDYHPDNHU VWDUWXS $ WLPHVHTXHQFH RI FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD IRU D +] ZDYHWUDLQ DSSURDFKLQJ TXDVLVWHDGLQHVV Df VHF Ef VHF Ff VHF Gf VHF Hf VHF If VHF Jf VHF DQG Kf VHF WKHRUHWLFDO f SUHGLFWLRQ RI WKH V1/6 HTf LQWR WKH H[SHULPHQW 2YHUKHDG LPDJHV RI H[SHULPHQWV Df *& Ef *& DQG Ff *& 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV &RQWRXU PDS RI WKH DPSOLWXGHZD[ HQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV 9,

PAGE 7

)LJXUH 'HVFULSWLRQ 3DJH 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&O 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV YLL

PAGE 8

)LJXUH 'HVFULSWLRQ 3DFH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& Hf *& DQG Gf *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&6 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ IRU D +] ZDYHWUDLQ *UDSKLFDO VROXWLRQ RI WKH NLQHPDWLF UHVRQDQFH FRQGLWLRQV DIWHU 6LPPRQV f IRU FROOLQHDU WULDGV RI D +] WHVW ZDYH +HQGHUVRQ DQG +DPPDFN f YLLL

PAGE 9

)LJXUH 'HVFULSWLRQ 3DJH 7KHRUHWLFDO LQWHUDFWLRQ FRHIILFLHQWV IRU ULSSOH WULDGV Df < YV IRU D VHULHV RI WHVW ZDYHV Ef ,QWHUDFWLRQ FRHIILFLHQWV DQG LQLWLDO JURZWK UDWH IRU D +] WHVW ZDYH a
PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ ,167$%,/,7,(6 2) *5$9,7<&$3,//$5< :$7(5 :$9(6 %\ 0$5& 3(5/,1 $XJXVW &KDLUPDQ -RVHSK / +DPPDFN -U 0DMRU 'HSDUWPHQW $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH ,Q 3DUW RI WKLV VWXG\ JUDYLW\FDSLOODU\ ZDYHV JHQHUDWHG PHFKDQLFDOO\ RQ FOHDQ GHHS ZDWHU LQ D ZLGH FKDQQHO DUH VKRZQ WR EH VSDWLDOO\ XQVWDEOH GXH WR D GHJHQHUDWH IRXUZDYH LQWHUDFWLRQ 7KLV LQVWDELOLW\ RFFXUV IRU ZDYHWUDLQV ZLWK IUHn TXHQFLHV JUHDWHU WKDQ )O] DQG PDQLIHVWV LWVHOI DV TXDVLVWHDGY LQ WLPH EXW VSDn WLDOO\ GLVRUGHUHG ([SHULPHQWDO PHDVXUHPHQWV DUH PDGH XVLQJ D KLJKVSHHG LPDJn LQJ V\VWHP ZKLFK DOORZV WKH ZDYHQXPEHU VSHFWUXP RI WKH ZDWHU VXUIDFH WR EH FDOFXODWHG :DYHWUDLQV ZLWK VPDOO WR PRGHUDWH DPSOLWXGHV DQG IUHTXHQFLHV JUHDWHU WKDQ +] VKRZ GLUHFWLRQDO VSUHDGLQJ RI HQHUJ\ GXULQJ SURSDJDWLRQ 7KLV WUDQVIHU RI HQHUJ\ LV IRXQG WR EH PRGHOHG DFFXUDWHO\ E\ VROXWLRQV RI D VWDWLRQDU\ QRQOLQHDU 6FKURHGLQJHU 1/6f HTXDWLRQ LQYROYLQJ WZR VXUIDFHf VSDFH FRRUGLQDWHV ([SHULn PHQWDO ZDYHWUDLQV ZLWK F\FOLF IUHTXHQFLHV RI DQG +] DUH LQYHVWLn JDWHG 7KH +] ZDYHWUDLQ :LOWRQnV ULSSOHVf LV XQVWDEOH GXH WR VHFRQG KDUPRQLF UHVRQDQFH KRZHYHU LW H[KLELWV VRPH GLUHFWLRQDO VSUHDGLQJ RI HQHUJ\ DV ZHOO 7KH [

PAGE 11

+] ZDYHWUDLQ LV VWDEOH XQWLO D GHWXQHG WKLUG KDUPRQLF UHVRQDQFH RFFXUV DQG WKHQ WKH WKLUG KDUPRQLF +]f EHFRPHV VSDWLDOO\ XQVWDEOH 5HDVRQDEOH DJUHHPHQW EHn WZHHQ TXDQWLWLHV SUHGLFWHG E\ D OLQHDU VWDELOLW\ DQDO\VLV LH WKH UHJLRQ RI VSUHDGn LQJ DQG WKH PRVW XQVWDEOH VSDWLDO VLGHEDQGVf RI WKH VWDWLRQDU\ 1/6 HTXDWLRQ DQG WKH PHDVXUHG GDWD LV VKRZQ IRU DOO WKH ZDYHWUDLQV ZLWK IUHTXHQFLHV JUHDWHU WKDQ +] 7KH VHFRQG SDUW RI WKH VWXG\ FRQFHQWUDWHV RQ H[SHULPHQWDO ZDYHV ZLWK IUHTXHQn FLHV JUHDWHU WKDQ +] ZKHUH D FRQWLQXXP RI UHVRQDQW WKUHHZDYH LQWHUDFWLRQV DUH WKHRUHWLFDOO\ DGPLVVLEOH 5DWKHU WKDQ WKH HQWLUH FRQWLQXXP EHLQJ H[FLWHG WHPn SRUDO GDWD VKRZ WKDW D GRPLQDQW UHVRQDQW WULDGVf HYROYHV GXH WR WKH SUHVHQFH RI H[FHHGLQJO\ VPDOO EDFNJURXQG ZDYHV DW GLVWLQFW IUHTXHQFLHV ,I LQ DGGLWLRQ WR D SULPDU\ ZDYHWUDLQ D EURDGEDQGHG IUHTXHQF\ VSHFWUXP RI EDFNJURXQG ZDYHV LV JHQHUDWHG WKH HQWLUH FRQWLQXXP RI DGPLVVLEOH WULDGV LV H[FLWHG LQ D PDQQHU FRQVLVn WHQW ZLWK UHVRQDQW LQWHUDFWLRQ WKHRU\ IRU D VLQJOH WULDG ;,

PAGE 12

&+$37(5 *(1(5$/ ,1752'8&7,21 )RU RYHU D KXQGUHG \HDUV ZDWHU ZDYHV KDYH EHHQ VWXGLHG E\ REVHUYDWLRQ LQ QDWXUH H[SHULPHQWV PDWKHPDWLFDO DQDO\VHV DQG PRUH UHFHQWO\ E\ QXPHULFDO WHFKQLTXHV 2ULJLQDO LQWHUHVW DSSHDUV WR KDYH EHHQ PRWLYDWHG E\ WKH VWXG\ RI WKH WLGHV 0RUH UHFHQWO\ LQWHUHVW KDV EURDGHQHG WR LQFOXGH WKH HQWLUH VSHFWUXP RI RFHDQ VXUIDFH ZDYHV ZKLFK LQFOXGHV PDQ\ OHQJWK VFDOHV :DYHV IRU ZKLFK VXUIDFH WHQVLRQ DQG JUDYLWDWLRQ DUH LPSRUWDQW GULYLQJ IRUFHV DUH NQRZQ DV JUDYLW\FDSLOODU\ *&f ZDYHV RU VLPSO\ ULSSOHV 7KHVH ZDYHV KDYH W\SLFDO IUHTXHQFLHV LQ WKH UDQJH RI WKURXJK +HUW] +]f DQG ZDYHOHQJWKV RI DERXW WKURXJK FP ,Q WKH ODVW IHZ \HDUV UHPRWH VHQVLQJ RI WKH RFHDQ VXUIDFH WR REWDLQ LQIRUPDWLRQ DERXW ODUJHU VFDOH JUDYLW\ ZDYHV KDV DFWXDOO\ IRFXVVHG DWWHQWLRQ RQ WKHVH VPDOOHUVFDOH ZDYHV 7KH\ VHHP WR SOD\ D YHU\ LPSRUWDQW UROH LQ WKH PDQQHU LQ ZKLFK WKH KLJKIUHTXHQF\ UDGDU ZDYHV DUH VFDWWHUHG DSSDUHQWO\ EHFDXVH RI WKH SUR[LPLW\ RI WKHLU UHVSHFWLYH ZDYHOHQJWKV +HUHLQ ZH ZLOO LQYHVWLJDWH WZR GLIIHUHQW LQVWDELOLWLHV RI *& ZDWHU ZDYHV 3UHYLRXV UHVHDUFK KDV GHPRQVWUDWHG WKDW SODQH *& ZDYHV JHQHUDWHG LQ D ODERn UDWRU\ DUH IUDXJKW ZLWK LQVWDELOLWLHV ZKLFK RFFXU UDSLGO\ HYHQ IRU ZDYHWUDLQV RI VHQVLEOH ORZ WR PRGHUDWH ZDYH VWHHSQHVVHVf DPSOLWXGHV 7KHVH LQLWLDOO\ RQHn GLPHQVLRQDO VXUIDFH SDWWHUQV TXLFNO\ HYROYH LQWR WZRGLPHQVLRQDO VXUIDFHV 7KHVH LQVWDELOLWLHV DUH LQYHVWLJDWHG ERWK H[SHULPHQWDOO\ DQG DQDO\WLFDOO\ E\ WZR GLVWLQFW DSSURDFKHV D GHJHQHUDWH IRXUZDYH LQWHUDFWLRQ DQG D UHVRQDQW WKUHHZDYH LQWHUDF

PAGE 13

WLRQ ,Q WKH ILUVW DQDO\VLV 3DUW LW LV VKRZQ WKDW WKH VWDWLRQDU\ QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ JRYHUQV WKH VSDWLDO GLVRUGHULQJ RI WKH ZDYHWUDLQ 7KXV D PHFKDQLVP IRU WKH GLUHFWLRQDO VSUHDGLQJ RI HQHUJ\ LV HVWDEOLVKHG 7KLV DQDO\VLV HQFRPSDVVHV &KDSWHUV WKURXJK ,Q 3DUW &KDSWHUV WKURXJK WKH UHVRQDQW WKUHHZDYH WULDGf HTXDWLRQV DUH SUHVHQWHG DQG UHYLHZHG ([SHULPHQWDO HYLGHQFH RI WKH VHOHFWLRQ PHFKDQLVP IRU WULDGV LV SUHVHQWHG ,W LV VKRZQ WKDW RQH RU PRUH UHVRQDQW WULDGV FDQ EH H[FLWHG E\ D KLJK IUHTXHQF\ VHHG ZDYH RI H[FHHGLQJO\ VPDOO DPSOLWXGH 7KH HYROXWLRQ RI D ULSn SOH ZDYHWUDLQ LQ WKH SUHVHQFH RI UDQGRP ZDYHV LV DOVR DGGUHVVHG ,W LV VKRZQ WKDW LI QR VHHG ZDYHV DUH SUHVHQW WKH HQWLUH FRQWLQXXP RI DGPLVVLEOH WULDGV LV H[FLWHG LQ D PDQQHU FRQVLVWHQW ZLWK UHVRQDQW LQWHUDFWLRQ WKHRU\ IRU D VLQJOH WULDG 6LQFH ULSSOH G\QDPLFV DUH VLPLODU LQ PDQ\ UHVSHFWV WR RWKHU QRQOLQHDU G\QDPLn FDO V\VWHPV WKLV ZRUN VKRXOG EH RI LQWHUHVW WR SHUVRQV LQ WKHVH UHODWHG DUHDV ,Q IDFW VHYHUDO RI WKH JRYHUQLQJ HTXDWLRQV GHULYHG LQ WKH FRQWH[W RI *& ZDYHV VXFK DV WKH WKUHHZDYH UHVRQDQFH HTXDWLRQV DQG WKH QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ DUH QHDUO\ LGHQWLFDO WR WKRVH LQ RWKHU DUHDV RI ZDYHV LQ GLVSHUVLYH PHGLD WKH GLIIHUn HQFHV DULVH LQ WKH FRHIILFLHQWV RQO\ 7KHVH DUHDV LQFOXGH RSWLFV ULJLGERG\ PHn FKDQLFV K\GURG\QDPLF VWDELOLW\ DQG SODVPD SK\VLFV 7KH VHFRQG SDUW RI WKLV VWXG\ LV HVVHQWLDOO\ D UHSULQW RI D UHVHDUFK SDSHU E\ +DPPDFN 3HUOLQ DQG +HQGHUVRQ WR DSSHDU f ZKLFK ZDV SUHVHQWHG E\ 3URn IHVVRU +DPPDFN GXULQJ D VHULHV RI OHFWXUHV DW WKH ,QWHUQDWLRQDO 6FKRRO RI 3K\VLFV f(QULFR )HUPLf &RXUVH &,; 7KLV UHVHDUFK ZDV FRQGXFWHG SULRU WR LQVWDOODWLRQ RI WKH LPDJLQJ V\VWHP WKDW LV XVHG H[WHQVLYHO\ LQ WKH VWXG\ RI 3DUW

PAGE 14

&+$37(5 ,1752'8&7,21 72 *5$9,7<&$3,//$5< ,167$%,/,7,(6 3$57 :DYHV RQ WKH RFHDQVf VXUIDFH KDYH VWLPXODWHG WKH FXULRVLW\ RI REVHUYHUV IRU PDQ\ \HDUV &RQWHPSRUDU\ VFLHQWLILF LQWHUHVWV LQ RFHDQ ZDYHV DSSHDUV WR KDYH EHn JXQ ZLWK WKH VWXG\ DQG SUHGLFWLRQ RI WLGHV $LU\ f ZDV WKH ILUVW WR DQDO\]H WLGHV XVLQJ WKH HTXDWLRQV RI PRWLRQ GHULYHG IURP 1HZWRQLDQ PHFKDQLFV 6LQFH WKH VHPLQDO ZRUN RI $LU\ ZDWHU ZDYHV KDYH EHHQ VWXGLHG LQWHQVHO\ XVLQJ REVHUYDWLRQV H[SHULPHQWV PDWKHPDWLFDO DQDO\VHV DQG PRUH UHFHQWO\ QXPHULFDO WHFKQLTXHV ,QWHUHVWV KDYH EURDGHQHG WR LQFOXGH WKH HQWLUH VSHFWUXP RI WKH RFHDQVf VXUIDFH ZDYHV HVSHFLDOO\ WKRVH JHQHUDWHG E\ ZLQG :KHQ ZLQG EORZV RYHU D ZDWHU VXUIDFH ZDYHV DUH JHQHUDWHG ZKRVH SULPDU\ UHVWRULQJ IRUFHV DUH JUDYLWDWLRQ IRU WKH ORQJHU ZDYHV DQG VXUIDFH WHQVLRQ IRU WKH VKRUWHU ZDYHV :KHQ ERWK UHVWRULQJ IRUFHV DUH LPSRUWDQW WKH ZDYHV DUH WHUPHG JUDYLW\FDSLOODU\ *&f ZDYHV RU VLPSO\ ULSSOHV 7KHVH DUH WKH ZDYHV RI LQWHUHVW LQ WKLV VWXG\ 5LSSOHV DUH RPQLSUHVHQW RQ WKH RFHDQ VXUIDFH ,Q DGGLWLRQ WR ZLQG JHQHUDWLRQ WKH\ UHVXOW IURP EUHDNLQJ JUDYLW\ ZD[HV UDLQ DQG RWKHU GLVWXUEDQFHV ZKLFK KDYH OHQJWKVFDOHV RI DERXW FP .HOYLQ f ILUVW H[DPLQHG LQILQLWHVLPDO *& ZDYHV WKHRUHWLFDOO\ DQG REWDLQHG WKHLU fGLVSHUVLRQ UHODWLRQ IRU GHHS ZDWHU LH ZDWHU GHSWK PXFK JUHDWHU WKDQ FPf 7KLV UHODWLRQ EHWZHHQ WKH UDGLDQ IUHTXHQF\ D! DQG WKH ZDYHQXPEHU PDJQLWXGH N IRU D ZDYHWUDLQ RI LQILQLWHVLPDO DPSOLWXGH ZDV JLYHQ E\ .HOYLQ DV

PAGE 15

mU JN 7Na f ZKHUH J UHSUHVHQWV WKH DFFHOHUDWLRQ RI JUDYLW\ DQG 7 LV WKH NLQHPDWLF VXUIDFH WHQn VLRQ $FFRUGLQJ WR f WKH F\FOLF ZDYH IUHTXHQF\ m!MW DW ZKLFK JUDYLW\ DQG VXUIDFH WHQVLRQ HIIHFWV DUH HTXDO RQ D FOHDQ VXUIDFH 7 FPVHF A G\QFP SHU PDVV GHQVLW\Sf LV +] 7KH FRUUHVSRQGLQJ ZDYHOHQJWK [N LV DERXW FP 5D\OHLJK f LQYHVWLJDWHG ULSSOHV RQ FOHDQ DQG JUHDV\ VXUIDFHV ERWK H[SHULPHQWDOO\ DQG DQDO\WLFDOO\ DQG XVHG f WR GHWHUPLQH WKH VXUIDFH WHQn VLRQ 7 IURP PHDVXUHG YDOXHV RI Z DQG N )DUDGD\ f VWXGLHG ULSSOHV RU fFULVSDWLRQV DV KH WHUPHG WKHP E\ YLEUDWLQJ D JODVV SODWH YHUWLFDOO\ ZKLFK ZDV FRYHUHG ZLWK D OD\HU RI ZDWHU 7KLV YLEUDWLRQ JHQHUDWHG VWDQGLQJ ZDYHV RQ WKH ZDWHU VXUIDFH ZKRVH FUHVWV ZHUH RUWKRJRQDO WKH H[FLWHG ZDYHV KDG D SHULRG ZKLFK ZDV WZLFH WKDW RI WKH YLEUDWLRQ ,Q WKHVH VWXGLHV DQ LPSOLFLW DVVXPSWLRQ ZDV PDGH WKDW WKH ZDYHWUDLQV DUH VWDEOH 8QIRUWXQDWHO\ VPDOODPSOLWXGH *& ZDYHWUDLQV DUH XQVWDEOH LH WKH\ GR QRW SURSDJDWH ZLWKRXW VLJQLILFDQW GLVWRUWLRQV 7KH ILUVW H[DPSOH RI D ULSSOH LQVWDELOLW\ ZDV IRXQG E\ +DUULVRQ f DQG H[SODLQHG E\ :LOWRQ f :LOWRQ VKRZHG WKDW D ZDYHWUDLQ RI +] RQ FOHDQ GHHS ZDWHUf LV XQVWDEOH WR LWV VHFRQG RU +] KDUPRQLF ,Q IDFW WKHUH H[LVWV D FRXQWDEOH VHW RI WKHVH fLQWHUQDO UHVRQDQFHV IRU *& ZDYHV ZKHUH HDFK ZDYH LV XQVWDEOH WR RQH RI LWV KLJKHU KDUPRQLFV 2QH H[n DPSOH RI LPSRUWDQFH KHUHLQ LV DQ +] ZDYHWUDLQ ZKLFK LV XQVWDEOH WR LWV WKLUG KDUPRQLF +]f ,Q DGGLWLRQ WR LQWHUQDO UHVRQDQFHV VPDOODPSOLWXGH WUDLQV RI ZDWHU ZDYHV DUH VXEMHFW WR D YDULHW\ RI LQVWDELOLWLHV WKDW DULVH IURP LQWHUDFWLRQV ZLWK VPDOO EDFNn JURXQG SHUWXUEDWLRQV 3HUKDSV WKH EHVWNQRZQ LQVWDELOLW\ RI WKLV W\SH LV WKDW ZKLFK UHVXOWV IURP ORQJLWXGLQDO SHUWXUEDWLRQV LQ WKH DPSOLWXGHV RI SODQH JUDYLW\ ZDYHV

PAGE 16

7KH H[LVWHQFH RI WKLV LQVWDELOLW\ ZDV ILUVW UHFRJQL]HG E\ %HQMDPLQ DQG )HLU f :KLWKDP f DQG /LJKWKLOO f DQG LV NQRZQ DV WKH %HQMDPLQ)HLU %)f LQVWDELOLW\ $ PRUH GHWDLOHG DQDO\VLV RI WKH %HQMDPLQ)HLU LQVWDELOLW\ ZDV SUHVHQWHG E\ %HQQH\ DQG 1HZHOO f =DNKDURY f DQG +DVLPRWR DQG 2QR f ZKR GHULYHG WKH QRQOLQHDU 6FKURHGLQJHU 1/6f HTXDWLRQ IRU WKH HYROXWLRQ RI DQ XQVWDEOH RQHGLPHQVLRQDO SODQHf ZDYHWUDLQ 7KLV HTXDWLRQ SOD\V DQ HVSHFLDOO\ LPn SRUWDQW UROH LQ WKLV VWXG\ DQG KDV WKH IRUP HJ $EORZLW] DQG 6HJXU f L$ $[[ + $ $ f ,Q f $ UHSUHVHQWV D VXLWDEO\ QRUPDOL]HG FRPSOH[DPSOLWXGH fHQYHORSH RI WKH ZDYHWUDLQ W LV WKH WLPH DQG Y LV WKH GLUHFWLRQ RI SURSDJDWLRQ 7KH 1/6 HTXDWLRQ FDQ EH VROYHG H[DFWO\ IRU DUELWUDU\ LQLWLDO GDWD XVLQJ WKH PHWKRGV RI f,QYHUVH 6FDWWHULQJ 7KHRU\ DV ORQJ DV WKH HQYHORSH GHFD\V WR ]HUR DW LQILQLW\ 7KLV VROXWLRQ VKRZV WKDW WKH %HQMDPLQ)HLU LQVWDELOLW\ OHDGV WR YHU\ RUGHUHG fVROLWRQ EHKDYLRU DQG UHFXUUHQFH 7\SLFDOO\ SODQH *& ZDYHWUDLQV WKHRUHWLFDOO\ PDQLIHVW WKH %HQMDPLQ)HLU LQn VWDELOLW\ $OVR *& ZDYHV DUH VXEMHFW WR RWKHU LQVWDELOLWLHV ZKHQ WKH SHUWXUEDWLRQV RFFXU REOLTXHO\ WR WKH GLUHFWLRQ RI SURSDJDWLRQ 7KHVH LQVWDELOLWLHV UHVXOW IURP WKUHHZDYH IRXUZDYH HWF UHVRQDQFHV ZKLFK DUH GHVFULEHG E\ WKH IXQGDPHQWDO LGHDV RI UHVRQDQW LQWHUDFWLRQV IRUPXODWHG E\ 3KLOOLSV f 5HVRQDQW WULDGV DUH WKH ILUVW WR RFFXU RQ FOHDQ GHHS ZDWHU ZKHQ WKH IUHTXHQF\ RI D *& ZDYHWUDLQ LV JUHDWHU WKDQ +] 0F*ROGULFN f VKRZHG WKDW VWDQGLQJ *& ZDYHV PD\ GLVSOD\ WKUHHZDYH UHVRQDQFHV UHVRQDQW WULDGVf 6LPPRQV f SUHVHQWHG D PRUH JHQHUDO GHULYDWLRQ IRU SURSDJDWLQJ ZDYHV ZKLFK LQFOXGHG VSDWLDO YDULDWLRQV ,Q IDFW :LOWRQnV ULSSOHV DUH D GHJHQHUDWH WKUHHZDYH UHVRQDQFHf ([SHULPHQWV RQ WKUHHZDYH UHVRQDQFH KDYH EHHQ SUHVHQWHG E\ 0F*ROGULFN f %DQQHUMHH DQG

PAGE 17

.RUSHO f DQG +HQGHUVRQ DQG +DPPDFN f 0D f LQYHVWLJDWHG WKH ELIXUFDWLRQ IURP WZRGLPHQVLRQDO *& ZDYHV LQWR WKUHHGLPHQVLRQDO ZDYHV &KHQ DQG 6DIIPDQ f LQYHVWLJDWHG WKH WKUHHGLPHQVLRQDO VWDELOLW\ DQG ELIXUFDWLRQ RI FDSLOODU\ DQG JUDYLW\ ZDYHV =KDQJ DQG 0HOYLOOH DQG f KDYH QXPHULFDOO\ VWXGLHG WKUHHGLPHQVLRQDO LQVWDELOLWLHV RI WZRGLPHQVLRQDO *& ZDYHV $VLGH IURP WKH LQWHUDFWLRQV GXH WR WKH 1/6 HTXDWLRQ ZDYHV ZLWK IUHTXHQFLHV RI OHVV WKDQ +] H[KLELW UHVRQDQW IRXUZDYH LQWHUDFWLRQV WKH\ GR QRW DGPLW UHVRQDQW WULDGV :KLOH UHVRQDQW TXDUWHWV KDYH EHHQ VWXGLHG LQ FRQVLGHUDEOH GHWDLO IRU JUDYLW\ ZDYHV WKHUH KDV EHHQ YHU\ OLWWOH DWWHQWLRQ JLYHQ WR IRXUZDYH LQWHUDFWLRQV IRU *& ZDYHV ,Q IDFW WKH %HQMDPLQ)HLU LQVWDELOLW\ RI JUDYLW\ ZDYHV FDQ EH YLHZHG DV D GHJHQHUn DWH IRXUZDYH UHVRQDQFHf
PAGE 18

$Q RXWOLQH RI 3DUW RI WKLV GLVVHUWDWLRQ LV DV IROORZV &KDSWHU SUHVHQWV WKHRn UHWLFDO FRQVLGHUDWLRQV LQFOXGLQJ DQ RXWOLQH RI WKH GHULYDWLRQ RI WKH WZR VSDFH GLPHQn VLRQV SOXV WLPH f 1/6 HTXDWLRQ DQG WKH PRVW XQVWDEOH VLGHEDQGV VSDWLDO JURZWK UDWHV DQG WKH OLPLWLQJ DQJOHV RI WKH GLUHFWLRQDO VSUHDGLQJ ZKLFK FDQ RFFXU DFFRUGLQJ WR D OLQHDU VWDELOLW\ DQDO\VLV &KDSWHU GHVFULEHV WKH H[SHULPHQWDO IDFLOLn WLHV DQG SURFHGXUHV ZLWK DQ HPSKDVLV RQ LPDJLQJ WHFKQLTXHV DQG WKH LQWHUSUHWDn WLRQ RI ZDYHQXPEHU VSHFWUD &KDSWHU SUHVHQWV WKH H[SHULPHQWDO UHVXOWV IRU ZDYHWUDLQV ZLWK IUHTXHQFLHV RI DQG +] DQG D FRPSDULVRQ ZLWK WKH SUHGLFWLRQ RI WKH VWDWLRQDU\ QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ )LQDOO\ &KDSWHU VXPPDUL]HV WKH UHVXOWV DQG FRQFOXVLRQV RI WKLV VWXG\

PAGE 19

&+$37(5 7+(25(7,&$/ &216,'(5$7,216 )25 3$57 &RQVLGHU WKH IOXLG GRPDLQ VKRZQ LQ ILJXUH ZKLFK FRQVLVWV RI D ZDWHU OD\HU ZnLWK XQLIRUP TXLHVFHQW GHSWK K WKDW LV ERXQGHG EHORZ E\ D ULJLG LPSHUPHDEOH ERXQGDU\ DQG ERXQGHG DERYH E\ D IUHH VXUIDFH ZLWK D WHQVLRQ 7 $ &DUWHVLDQ FRRUGLQDWH V\VWHP LV ORFDWHG VXFK WKDW WKH Y DQG \ D[HV OLH LQ WKH TXLHVFHQW ZDWHU VXUIDFH DQG WKH ] D[LV LV YHUWLFDOO\ XSZDUG SDUDOOHO WR D GRZQZDUG JUDYLWDWLRQDO IRUFH SHU XQLW PDVV J 9HUWLFDO GHIRUPDWLRQV RI WKH ZDWHU VXUIDFH IURP WKH TXLHVn FHQW SRVLWLRQ DUH GHQRWHG E\ eYYIf ,W LV ZHOO NQRZQ HJ /DPE f WKDW WKH LQYLVFLG LUURWDWLRQDO LQFRPSUHVVLEOH PRWLRQV RI WKLV IOXLG OD\HU FDQ EH IRUPXODWHG LQ WHUPV RI D YHORFLW\ SRWHQWLDO !YY]If DV 9 f K ] JY \ Wf f ZLWK ERXQGDU\ FRQGLWLRQV Df J \ J\ 9 .\ f Ef "e 7_9_ 7 Ff

PAGE 20

, )LJXUH 7KH IOXLG GRPDLQ DQG D GHILQLWLRQ VNHWFK

PAGE 21

(TXDWLRQV f DQG f DUH DQDO\WLFDOO\ LQWUDFWDEOH 7KHUHIRUH DSSUR[LPDWLRQV DUH XVHG +HUHLQ WKH DSSUR[LPDWLRQ RI LQWHUHVW LV DQ HYROXWLRQ HTXDWLRQ IRU WKH HQYHORSH RI D PRGXODWHG ZDYHWUDLQ RQ ZDWHU RI ILQLWH GHSWK WKH QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ 5HYLHZ RI WKH 1/6 0RGHO 7KH FKDUDFWHULVWLF OHQJWK VFDOHV RI WKH ZDWHU ZDYH SUREOHP RI f DQG f DUH WKH UHFLSURFDO ZDYHYHFWRU PDJQLWXGH Na? WKH ZDYH DPSOLWXGH D DQG WKH ZDWHU GHSWK K 7KH LPSRUWDQW GLPHQVLRQOHVV SDUDPHWHUV GHWHUPLQHG IURP WKHVH VFDOHV DUH WKH ZDYH VWHHSQHVV ND DQG WKH UHODWLYH ZDWHU GHSWK NOL +HUHLQ ZH UHSUHVHQW WKH WZRGLPHQVLRQDO ZDYH YHFWRU E\ N OPf DQG XVH NR WR UHSUHVHQW WKH ZDYHQXPn EHU RI WKH SODQH ZDYH LQSXW GXULQJ H[SHULPHQWV ,Q RUGHU WR GHULYH WKH JHQHUDO 1/6 HTXDWLRQ IROORZLQJ $EORZLW] DQG 6HJXU f LW LV QHFHVVDU\ WR PDNH WKH IROORZLQJ DVVXPSWLRQV f VPDOO DPSOLWXGH ZDYHV H ND f f VORZO\ YDU\LQJ PRGXODWLRQV ON f f DOPRVW RQHGLPHQVLRQDO ZDYHV ?P?N i f DQG f D EDODQFH RI WKHVH HIIHFWV 7R DYRLG VKDOORZ ZDWHU ZH UHTXLUH NKf ,I ZH QRZ H[SDQG WKH GHSHQGHQW YDULDEOHV } DQG e RI f DQG f LQ WHUPV RI D SRZHU VHULHV LQ WKH VPDOO SDUDPHWHU H DQG HPSOR\ D 7D\ORU VHULHV WR UHSUHVHQW IXQFWLRQV LQ WHUPV RI WKHLU EHKDYLRU DW WKH NQRZQ UHIHUHQFH SRVLWLRQ ] ZH REWDLQ DQ LQILQLWH VHW RI OLQHDU HTXDWLRQV RUGHUHG LQ SRZHUV RI H WR UHSODFH f DQG f 7KH ILUVW RUGHU OLQHDU KRPRJHQHRXV SUREOHP KDV WKH VROXWLRQ FRVK N] Kf FRVK NK f ZLWK WKH GLVSHUVLRQ UHODWLRQ

PAGE 22

f WR JN 7Nf WDQK NK +HUHLQ fFFf GHQRWHV WKH FRPSOH[ FRQMXJDWHf ,Q RUGHU WR DOORZ VORZ PRGXODWLRQV RI WKH ZDYHWUDLQ DW VHFRQG DQG KLJKHU RUn GHUV LH D QRQXQLIRUP ZDYHWUDLQ ZKLFK LV QDUURZEDQGHGf WKH PHWKRG RI PXOWLn SOH VFDOHV LV XVHG WR H[SDQG LQGHSHQGHQW YDULDEOHV [\Wf ,Q DGGLWLRQ DQG e DUH H[SDQGHG VXFK WKDW WKH DPSOLWXGH DQG PHDQ PRWLRQ ZKLFK DULVHV DW VHFRQG RUGHU IRU D XQLIRUP ZDYHWUDLQf DUH DOORZHG WR YDU\ VORZO\ 6ORZ VFDOHV DUH LQWURGXFHG DV IROORZV 9L HY 9_ HY W` HW W f DQG WKH H[SDQVLRQV RI M! DQG e DUH FRVK N^] Kf ‘ $ A FS H O!L_\ILUf f§f§$Y Y LIf H[S ^WN[LRWff FF 2HAf FRVKNK LFR 7N ƒ H[S LN[RMWff FF? ^Hf AM Uf f ZKHUH UHSUHVHQWV WKH PHDQ PRWLRQ $W Hf WKH UHPRYDO RI VHFXODU WHUPV SURn GXFHV DQ HYROXWLRQ HTXDWLRQ ZKLFK UHTXLUHV WKDW WKH ZDYH HQYHORSH WUDYHO ZLWK LWV JURXS YHORFLW\ &J GLRGNf \ & $ & f $Q DGGLWLRQDO HTXDWLRQ IRU WKH PHDQ PRWLRQ LV REWDLQHG VHH $EORZLW] DQG 6HJXU f

PAGE 23

7R REWDLQ WKH 1/6 HTXDWLRQ WKH H[SDQVLRQ LV FDUULHG WR WKH QH[W RUGHU Hf :KHQ VHFXODUO\ LV UHPRYHG DQG WKH UHVXOWV DUH FDVW LQWR GLPHQVLRQOHVV IRUP XVLQJ WKH IROORZLQJ VFDOLQJ e HN[&[Wf W@ HN\ U HJNf@W $ NJN\O$ NJNfaOL! f WKH HYROXWLRQ HTXDWLRQV DUH L $7 ; $ IL $P [ 0O $ ;? D !A !Z L __ fI Df Ef ZKHUH D WDQK NK I N 7J Z JNX Wf ZJ Jr N Z Df Ef Ff ‘ WHO f§ UUfUf W Df UUf Ra 7 FUf Df UU I M I =L f§f§ Rrf 7f FY D JK &Mf JK OLrF ‘‘ : 2X NK -< -2 Uf 8 L UM 2Gf 2Hf 2If Jf ; ;LS m f 2Kf

PAGE 24

(TXDWLRQV Df DQG Ef DUH WKH 1/6 HTXDWLRQ LQ WZR VSDFH GLPHQVLRQV DQG WLPH LH f FRXSOHG ZLWK D ORQJZDYH HTXDWLRQ IRU WKH PHDQ PRWLRQ 7KH 1/6 HTXDWLRQ LQ WZR VSDWLDO GLPHQVLRQV IRU JUDYLW\ ZDYHV ZDV GHULYHG E\ =DNKDURY f %HQQH\ DQG 5RVNHV f DQG 'DYH\ DQG 6WHZDUWVRQ f 'MRUGMHYLF DQG 5HGHNRSS f DQG $EORZLW] DQG 6HJXU f GHULYHG WKH HTXDWLRQV LQ WKH IRUP f ZKLFK LQFOXGHV VXUIDFH WHQVLRQ 7KH FRHIILFLHQWV RI f JLYHQ LQ f DUH FDOFXODWHG XVLQJ WKH ZDYHYHFWRU N f RI WKH XQGHUO\LQJ ZDYHWUDLQ 0LVSULQWV LQ 'MRUGMHYLF DQG 5HGHNRSS f DQG $EORZLW] DQG 6HJXU f KDYH EHHQ FRUUHFWHG LQ f DQG f (TXDWLRQ f GRHV QRW DSSHDU WR EH DQDO\WLFDOO\ WUDFWDEOH $EORZLW] DQG 6HJXU f KRZHYHU D YDULHW\ RI DSSUR[LPDWLRQV DUH )RU H[DPSOH QHJOHFWLQJ WUDQVYHUVH YDULDWLRQV LH Ef FDQ EH LQWHJUDWHG DQG WKXV f \LHOGV ƒ7 ; ƒJ Y ƒ f O! SD $ f (TXDWLRQ f LV WKH 1/6 HTXDWLRQ LQ RQH VSDFH DQG RQH WLPH GLPHQVLRQ f DQG LW GHVFULEHV WKH HYROXWLRQ RI D ZDYHWUDLQ ZKRVH HQYHORSH LV PRGXODWHG LQ WKH ORQJLWXGLQDO GLUHFWLRQ 7KLV HTXDWLRQ ZDV GHULYHG E\ %HQQH\ DQG 1HZHOO f DQG +DVLPRWR DQG 2QR f =DNKDURY DQG 6KDEDW f IRXQG D VFDWWHULQJ SUREn OHP WKDW DOORZHG f WR EH VROYHG H[DFWO\ XVLQJ ,QYHUVH 6FDWWHULQJ 7KHRU\ 7KH\ VKRZHG WKDW LQLWLDO GDWD ZKLFK YDQLVKHV VXIILFLHQWO\ IDVW DV _e_ } RF HYROYHV LQWR D ILQLWH QXPEHU RI HQYHORSH VROLWRQV DQG D FRQWLQXRXV VSHFWUXP RI RVFLOODWRU\ ZDYHV 7KH VROXWLRQ RI f GHSHQGV FULWLFDOO\ RQ WKH VLJQV RI WKH FRHIILFLHQWV RI WKH HTXDWLRQV 7KH FULWLFDO GLY LGLQJ OLQHV DUH HVWDEOLVKHG E\ WKH VLJQ RI WKH TXDQWLW\

PAGE 25

?Yf :KHQ ?Y WKH UHJLRQ LV XQVWDEOH WKLV UHSUHVHQWV DOO WKUHH XQVWDEOH UHJLRQV DQG LV NQRZQ DV WKH %HQMDPLQ)HLU %)f LQVWDELOLW\f FRQYHUVHO\ ZKHQ ?Y! WKH UHJLRQ LV VWDEOH $ PDS RI SDUDPHWHU VSDFH VKRZLQJ ZKHUH VLJQ FKDQJHV RFFXU DQG UHJLRQV RI VWDELOLW\ 6f DQG LQVWDELOLW\ 8f LV SUHVHQWHG LQ ILJXUH $ VLPLODU ILJXUH ZDV XVHG E\ 'MRUGMHYLF DQG 5HGHNRSS f $EORZLW] DQG 6HJXU f DQG +HQGHUVRQ DQG /HH f )RU ODUJH NK ? FKDQJHV VLJQ DW DSSUR[LPDWHO\ +] RU I f RU DFURVV FXUYH &? $ORQJ FXUYH & Y KDV D VLQJXODULW\ ZKLFK FRUUHVSRQGV WR VHFRQG KDUPRQLF UHVRQDQFH NQRZQ DV :LOWRQ 5LSSOHV 7KH FXUYH & DFURVV ZKLFK D DQG Y FKDQJH VLJQ DQG Y LV VLQJXODU VLJQLILHV WKDW D ORQJ ZDYH VKRUW ZDYH UHVRQDQFH KDV RFFXUUHG 7KLV FDVH KDV EHHQ LQYHVWLJDWHG E\ 'MRUGMHYLF DQG 5HGHNRSS f 7KH SDUDPHWHU ORFDWLRQV IRU WKH H[SHULPHQWV SUHVHQWHG KHUHLQ DUH DOVR VKRZQ LQ ILJXUH WKH\ RFFXU LQ WKUHH VHSDUDWH UHJLRQV 7KH +] H[SHULPHQWV DUH LQ D VWDEOH UHJLRQ ZKLOH WKH +] ZDYHWUDLQV ORFDWHG RQ FXUYH & FRUUHVSRQG WR :LOWRQ ULSSOHV 7KH UHPDLQLQJ H[SHULPHQWDO ZDYHWUDLQV DUH LQ D %) XQVWDEOH UHJLRQ :H SUHVHQW DQ RXWOLQH RI WKH VWDELOLW\ DQDO\VLV RI WKH 1/6 HTXDWLRQ ZKLFK IROn ORZV WKDW RI +DVLPRWR DQG 2QR f 7UDQVIRUPLQJ f WR D GLPHQVLRQDO HTXDWLRQ XVLQJ U fJNfO] e HNe DQG $ NJNfa@ $ \LHOGV ƒI ; ƒJ Y __ $ f ZKHUH L! Y N$^JN\[A DQG ƒ $ NaJNf A )LUVW ZH VHHN D QRQOLQHDU SODQH ZDYH VROXWLRQ RI WKH 1/6 HTXDWLRQ ZKLFK KDV DQ RVFLOODWRU\ HQYHORSH RI WKH IRUP $Uf ƒfHL^8L rrn f ZKHUH LV D FRQVWDQW SRVVLEO\ FRPSOH[f DPSOLWXGH 4 LV WKH PRGXODWLRQ IUH

PAGE 26

)LJXUH 3DUDPHWHU VSDFH RI WKH QRQOLQHDU 6FKURHGLQJHU HTXDWLRQ VKRZLQJ UHJLRQV RI VWDELOLW\ 6f DQG LQVWDELOLW\ 8f RI D ZDYHWUDLQ WR ORQJn LWXGLQDO PRGXODWLRQV &XUYH & FRUUHVSRQGV WR ]HURV RI ƒ FXUYHV & DQG & FRUUHVSRQG WR ]HURV RI Y &XUYHV &n DQG & FRUUHVSRQG WR VLQJXODULWLHV RI Y 7KH ORFDWLRQ RI SDUDPHWHUV ff IRU HDFK H[SHUn LPHQW LV DOVR VKRZQ +DPPDFN SULYDWH FRPPXQLFDWLRQ f

PAGE 27

TXHQF\ DQG LV WKH PRGXODWLRQ ZDYHQXPEHU 6XEVWLWXWLQJ f LQWR f \LHOGV WKH GLVSHUVLRQ UHODWLRQ IRU WKH ZDYH HQYHORSH 4 ;. Y _W_ f ,I ZH VHW $ DQG $ LJ 7NfDQXf ZKHUH DR UHSUHVHQWV WKH SK\VLFDO ZDYH DPSOLWXGH WKHQ f JLYHV WKH GLVSHUVLRQ UHODWLRQ IRU D XQLIRUP ZDYHWUDLQ ZLWK D QRQOLQHDU FRUUHFWLRQ WR LWV OLQHDU IUHTXHQF\ )RU JUDYLW\ ZDYHV 7 f WKLV ZDYHWUDLQ UHSUHVHQWV WKH ZHOONQRZQ 6WRNHV VROXWLRQ ZLWK WKH WKLUG RUGHU IUHTXHQF\ FRUUHFWLRQ MM Z f NDO f f 7R GHWHUPLQH ZKHWKHU D ZDYHWUDLQ LV VWDEOH ZH LQWURGXFH D SHUWXUEDWLRQ RI WKH IRUP ƒLf $ f %f H LLI Kf f DQG GHWHUPLQH LWV WLPH HYROXWLRQ ,Q f % %W ef cV D S/LUH LPDJLQDU` SHUWXUn EDWLRQ RI WKH FRPSOH[ DPSOLWXGH E EU ef LV D UHDO SHUWXUEDWLRQ RI ZDYH SKDVH DQG i LV D VPDOO RUGHULQJ SDUDPHWHU 6XEVWLWXWLRQ RI f LQWR f DQG UHWDLQLQJ WHUPV WKURXJK ILUVW RUGHU \LHOGV WZR HTXDWLRQV 7KH ]HURWK RUGHU HTXDWLRQ LV VDWLVILHG LGHQWLFDOO\ 7KH ILUVW RUGHU HTXDWLRQ IRU ZKLFK WKH UHDO DQG LPDJLQDU\ SDUWV PXVW EH VDWLVILHG VHSDUDWHO\ JLYHV %L ; _$LO Df L ; %J L Y _$L_ % _$L_ EI Ef (TXDWLRQV Df DQG Ef DUH D FRXSOHG VHW RI OLQHDU GLIIHUHQWLDO HTXDWLRQV ZLWK FRQVWDQW FRHIILFLHQWV KHQFH ZH DVVXPH VROXWLRQV RI WKH IRUP

PAGE 28

%U6f %f Hf FF Df EL _f L In n UO FF Ef ZKHUH %R DQG ER DUH WDNHQ WR EH UHDO FRQVWDQWV DQG $ DQG : DUH WKH SHUWXUEDWLRQ ZDYHQXPEHU DQG IUHTXHQF\ :KHQ : LV SXUH LPDJLQDU\ DQG SRVLWLYH WKH SHUWXUEDn WLRQ ZLOO JURZ DW DQ H[SRQHQWLDO UDWH _:_ 6XEVWLWXWLRQ RI f LQWR f \LHOGV 99 T f§ ; _$f_ .f !R Df Lf _f_f ; Naf %R : Ef 7KH GHWHUPLQDQW RI f PXVW YDQLVK IRU QRQWULYLDO VROXWLRQV 7KLV FRQGLWLRQ OHDGV WR D GLVSHUVLRQ UHODWLRQ IRU WKH SHUWXUEDWLRQ ZDYHQXPEHU DQG IUHTXHQF\ QDPHO\ : $ $ $ ;Y _ƒf_f f ‘ f :KHQ $U LV SRVLWLYH ,9 LV UHDO DQG WKH SHUWXUEDWLRQV GR QRW JURZ +RZHYHU ZKHQ ;Ln LV QHJDWLYH : FDQ EH LPDJLQDU\ DQG SRVLWLYH VR WKDW WKH SHUWXEDWLRQ JURZV LH WKH ZDYHWUDLQ LV XQVWDEOH ,QVWDELOLW\ RFFXUV ZKHQ $n U$f _$f_ f $OVR ZH GHILQH WKH OLPLWLQJ ZDYHQXPEHU DV $PD[ }n$f r _$R_ 7KHUHIRUH DV VKRZQ E\ +DVLPRWR DQG 2QR f JUDYLW\ ZDYHV 7 f LQ WKH UHJLPH ZKHUH ;Y LV QHJDWLYH NK f DQG f LV YDOLG DUH XQVWDEOH )RU WKH PRGX

PAGE 29

ODWLRQ ZDYHQXPEHUV ZKLFK VDWLVI\ f DQG IRU ZKLFK $Y LV QHJDWLYH WKH JURZWK UDWH LV 0O ƒ I __ $ $f f )LQDOO\ WKH PRVW XQVWDEOH VLGHEDQG .P DQG LWV JURZWK UDWH _:_P RFFXU ZKHUH WKH GHULYDWLYH RI f ZLWK UHVSHFW WR YDQLVKHV 7KLV FDOFXODWLRQ \LHOGV .P Y$ fn ƒf f :?P Y 0_ f 2EYLRXVO\ WKH PD[LPXP XQVWDEOH ZDYHQXPEHU WKH PD[LPXP JURZWK UDWH DQG WKH PRVW XQVWDEOH VLGHEDQGV DUH IXQFWLRQV RI WKH ZDYHWUDLQ DPSOLWXGH $OVR QRWH WKDW PD[ Y $Pf 7KH 6WDWLRQDU\ 1/6 0RGHO 7KH PRWLYDWLRQ IRU WKH IROORZLQJ PRGHO LV EDVHG RQ H[SHULPHQWDO PHDVXUHn PHQWV LQ ZKLFK WKH HQYHORSHV DSSHDU WR EH VWHDG\ $OVR WKH WUDQVYHUVH PRGXOD WLRQDO ZDYHQXPEHUV DUH ODUJHU WKDQ WKH ORQJLWXGLQDO YDOXHV ,I WKH ODWWHU RI WKHVH WZR REVHUYDWLRQV LV DVVXPHG WKH WHUPV LQ f ZKLFK FRQWDLQ GHULYDWLYHV LQ e DUH QHJOLJLEOH DW OHDGLQJ RUGHU 7KHVH HTXDWLRQV GHFRXSOH DQG Df EHFRPHV L ƒ7 LW ƒP [ ? $ ? ƒ f 7UDQVIRUPLQJ f WR ODERUDWRU\ FRRUGLQDWHV DQG GLPHQVLRQDO IRUP XVLQJ WKH WUDQVIRUPDWLRQ

PAGE 30

[ Fa@Na@W fn&JJN\A7 \ faONa@f@ W faJNf@7 $ NJNfaAƒ f ZH REWDLQ L $ &J ƒ f MLWJNfnf ƒ\\ [EJNf@f ƒ ƒ ‘ f ([SHULPHQWDO UHVXOWV VKRZ WKDW RXU ZDYHILHOGV DUH TXDVLVWHDG\ KHUHLQ TXDVLn VWHDG\ GHVFULEHV D SURFHVV ZKLFK LV VWHDG\ KDV QR WHPSRUDO GHSHQGHQFHf RYHU PDQ\ SHULRGV RI WKH XQGHUO\LQJ ZDYHf WKHUHIRUH WKH WLPH GHULYDWLYH WHUP LQ f LV QHJOLJLEOH 7KHVH DSSUR[LPDWLRQV UHVXOW LQ D VWDWLRQDU\ 1/6 V1/6f HTXDWLRQ ZLWK WKH IRUP $ ƒ\\ ;?$? f ZKHUH IF L NaJNfO&\n DQG [ ; N$JN\O&IaO (TXDWLRQ f KDV WKH VDPH IRUP DV f KRZHYHU WKH LQGHSHQGHQW YDULDEOHV If KDYH EHHQ UHSODFHG E\ Y\f DQG WKH FRHIILFLHQWV ƒ L!f KDYH EHHQ UHSODFHG E\ LI;f 6LQFH WKH HTXDn WLRQV DUH DQDORJRXV ZH PD\ JOHDQ RXU UHVXOWV GLUHFWO\ IURP WKH VWDELOLW\ DQDO\VLV LQ 6HFWLRQ ,I ZH DVVXPH RVFLOODWRU\ PRGXODWLRQV LQ VSDFH RI WKH IRUP ƒ[ \f Wf F n ^S [ T\f f

PAGE 31

ZH REWDLQ WKH GLVSHUVLRQ UHODWLRQ IRU WKH ZDYH HQYHORSH DQDORJRXV WR f DV 3 T S ; .O f f )LJXUH VKRZV WKLV GLVSHUVLRQ UHODWLRQ ZKLFK LV D SDUDEROD LQ WKH ZDYHQXPEHU SODQH IRU WKH +] H[SHULPHQW SUHVHQWHG LQ ILJXUH 7KH VKDSH RI WKH SDUDEROD LV QHDUO\ FLUFXODU LQ WKH YLFLQLW\ RI WKH LQSXW ZDYHYHFWRU DV VKRZQ E\ WKH GDVKHG FLUFXODU DUF LQ ILJXUH 7KLV DSSUR[LPDWLRQ LV UHDVRQDEO\ DFFXUDWH WR DQJOHV RI sr 6LQFH WKH PDJQLWXGHV RI WKH ZDYHQXPEHUV DORQJ WKLV SRUWLRQ RI WKH FXUYH DUH QHDUO\ FRQVWDQW WKH IUHTXHQFLHV FDOFXODWHG IURP f DUH QHDUO\ HTXDO 7KHUHn IRUH DOWKRXJK PDQ\ ZDYHV SURSDJDWLQJ LQ GLIIHUHQW GLUHFWLRQV PD\ EH SUHVHQW IUHTXHQF\ VSHFWUD ZLOO RQO\ VKRZ HQHUJ\ DW RQH IUHTXHQF\ $Q\ FRRUGLQDWH DORQJ WKH SDUDEROD LQ ILJXUH UHSUHVHQWV D ZDYHYHFWRU ZKLFK IRUPV D GHJHQHUDWH TXDUWHW IRXUZDYH UHVRQDQFHf ZLWK WKH LQSXW ZDYHYHFn WRU RQH TXDUWHW LV VKRZQ LQ ILJXUH 1RWH WKDW WKH LQSXW ZDYHYHFWRU GRHV QRW OLH RQ WKH SDUDERODf ,I WKH WUDQVYHUVH ZDYHYHFWRU T LV ]HUR D GHJHQHUDWH FROOLQHDU TXDUWHW LV SUHVHQW ,Q WKH GHULYDWLRQ RI WKH 1/6 HTXDWLRQ RQH DVVXPHV ZHDN WZR GLPHQVLRQDOLW\ DQG VR HTXDWLRQ f VKRXOG RQO\ EH YDOLG IRU VPDOO YDOXHV RI S DQG T )RU WKH V1/6 HTXDWLRQ f ZH SUHVHQW DQDORJRXV UHVXOWV WR WKH OLQHDU VWDn ELOLW\ DQDO\VLV RI +DVLPRWR DQG 2QR f SUHVHQWHG LQ 6HFWLRQ 5DWKHU WKDQ GHWHUPLQLQJ WKH PRVW XQVWDEOH ZDYHQXPEHU WKH PD[LPXP ZDYHQXPEHU RI WKH LQVWDELOLW\ DQG WKH WHPSRUDO JURZWK UDWH WKH DQDO\VLV QRZ SUHGLFWV WKH PRVW XQVWDn EOH ZDYHQXPEHU LQ WKH \ GLUHFWLRQ WKH PD[LPXP ZDYHQXPEHU RI WKH LQVWDELOLW\ LQ WKH \ GLUHFWLRQ DQG WKH VSDWLDO JURZWK UDWH LQ WKH Y GLUHFWLRQ :H ZLOO XVH SHUWXUEDn WLRQ ZDYHQXPEHUV 3 DQG 4 IRU WKH Y DQG \ GLUHFWLRQV UHVSHFWLYHO\ $FFRUGLQJ WR

PAGE 32

FP @f )LJXUH 7KH GLVSHUVLRQ UHODWLRQ RI f FDOFXODWHG IRU D +] ZDYHWUDLQ ZLWK D FP 7KH STf FRRUGLQDWH V\VWHP LV VKRZQ DORQJ ZLWK D GHJHQHUDWH VLGHEDQG TXDUWHW 7KH GDVKHG OLQH LV D FLUFOH FHQWHUHG DW f ZLWK D UDGLXV HTXDO WR WKH SDUDEROLF YHUWH[ FRRUGLQDWH

PAGE 33

WKH OLQHDU VWDELOLW\ DQDO\VLV 3 PXVW EH LPDJLQDU\ DQG SRVLWLYH IRU SHUWXUEDWLRQV WR JURZ LQ VSDFH DQG WKHUHIRUH LW UHVWULFWV WKH DGPLVVLEOH ZDYHQXPEHUV LQ WKH \ GLUHFWLRQ :H VHW T VR WKH ZDYHWUDLQ UHSUHVHQWV D QRQOLQHDU SODQH *& ZDYHWUDLQ LQ VSDFH ZLWK > LJ 7Nf^D!f? RQ IRU D UHDO SK\VLFDO ZDYH DPSOLWXGH DR DQG D VOLJKWO\ GLIIHUHQW ZDYHQXPEHU WKDQ IRU WKH OLQHDU ZDYHWUDLQf DQG WKHQ VHHN LQVWDELOLWLHV ZKLFK JURZ LQ VSDFH 7KH IROORZLQJ LQHTXDOLW\ DQG WKH PD[LPXP VLGHEDQG YDOXHf PXVW EH YDOLG LQ RUGHU WKDW WKH SHUWXUEDWLRQ JURZ DQG DQ LQVWDELOLW\ UHVXOW 4 [S<= 0R_ &"PD[ ‘ f 7KH PRVW XQVWDEOH VLGHEDQG DQG PD[LPXP VSDWLDO JURZWK UDWH DUH 4P [Sfn 0RO DQG ?3?P [ 0RO f f +HUHLQ s4PD[ ZLOO EH VKRZQ LQ ILJXUHV WR LQGLFDWH WKH DOORZDEOH VSUHDGLQJ RI ZDYH HQHUJ\ DFFRUGLQJ WR WKLV OLQHDU VWDELOLW\ DQDO\VLV 7KH DQJOH DVVRFLDWHG ZLWK WKLV VSUHDGLQJ LV WHUPHG $V QRWHG E\
PAGE 34

WKH VWDWLRQDU\ VSDWLDO LQVWDELOLW\ GHVFULEHG DERYH DSSHDUV WR KDYH EHHQ RYHUORRNHG 7KLV LV D FRQVHTXHQFH RI H[DPLQLQJ LQVWDELOLWLHV E\ SRVLWLQJ SHUWXUEDWLRQV ZKRVH WHPSRUDO EHKDYLRU LV XVHG WR GHILQH VWDEOH DQG XQVWDEOH UHJLPHV ,Q RXU H[SHULPHQWV DPSOLWXGHV YDU\ VLJQLILFDQWO\ LQ VSDFH GXH WR YLVFRXV GDPSLQJ DQG DOVR GXH WR WKH LQVWDELOLW\ ZH DUH LQYHVWLJDWLQJf KRZHYHU ZH ZLOO XVH RQO\ RQH PHDVXUHG DPSOLWXGH DR DV D UHSUHVHQWDWLYH YDOXH 6LQFH WKH XQVWDEOH VLGHEDQGV GHSHQG RQ DR DQG JURZWK UDWHV GHSHQG RQ XR VRPH GLVFUHSDQFLHV EHn WZHHQ WKHRUHWLFDO DQG H[SHULPHQWDO UHVXOWV DUH DQWLFLSDWHG 7R SUHGLFW DQ DPSOLWXGH DW D VSHFLILF ORFDWLRQ XVLQJ D YDOXH IURP DQRWKHU ORFDWLRQ UHTXLUHV D YLVFRXV PRGHO +HQGHUVRQ DQG /HH f KDYH VKRZQ WKDW DQ LPPRELOHVXUIDFH PRGHO LV DSSURn SULDWH ZKHQ WKH IDFLOLWLHV DQG SURFHGXUHV XVHG KHUHLQ DUH HPSOR\HG $FFRUGLQJ WR WKLV PRGHO WKH DPSOLWXGH HQYHORSH GHFD\V DV $Yf f H[S f§ U [ f f f E LV WKH FKDQQHO ZLGWK DQG }} LV WKH NLQHPDWLF YLVFRVLW\ RI ZDWHU +HQFH WKH HIROGLQJ GLVWDQFH IRU YLVFRXV GDPSLQJ LV ,Q DGGLWLRQ WR GDPSLQJ YLVFRVLW\ FDXVHV ZDYHOHQJWKV WR GHFUHDVH VOLJKWO\ IURP WKRVH SUHGLFWHG E\ WKH LQYLVFLG GLVSHUn VLRQ UHODWLRQ

PAGE 35

&+$37(5 (;3(5,0(17$/ )$&,/,7,(6 352&('85(6 $1' ,0$*( $1$/<6,6 )25 3$57 7KH H[SHULPHQWDO IDFLOLW\ ZDV VSHFLILFDOO\ GHVLJQHG DQG FRQVWUXFWHG WR VWXG\ JUDYLW\FDSLOODU\ *&f ZDYHV ,W FRQVLVWV RI VL[ V\VWHPV f WKH ZDYH WDQN f WKH ZDYH JHQHUDWRU DQG LWV HOHFWURQLFV f WKH ZDWHU VXSSO\ DQG ILOWHULQJ V\VWHP f WKH ZDYH JDXJH DQG LWV DWWHQGDQW HOHFWURQLFV f WKH FRPSXWHU V\VWHP DQG f WKH KLJKVSHHG LPDJLQJ V\VWHP 6\VWHPV f WKURXJK f KDYH EHHQ GLVFXVVHG LQ GHWDLO E\ +HQGHUVRQ DQG +DPPDFN f DQG WKH\ DUH GHVFULEHG EULHIO\ KHUHLQ 7KH FRPSXWHU DQG KLJKVSHHG LPDJLQJ V\VWHPV KDYH EHHQ UHFHQWO\ LQWHJUDWHG LQWR WKH ODERUDWRU\ 7KHVH WZR V\VWHPV SURYLGH XQLTXH PHDVXUHPHQWV RI VSDWLDO ZDYH GDWD ZKLFK LV RI VSHFLDO LPSRUWDQFH WR WKH UHVXOWV UHSRUWHG KHUHLQ +HQFH WKH\ DUH GHFULEHG LQ GHWDLO 'DWD DQDO\VLV WHFKQLTXHV DUH DOVR GLVFXVVHG ZLWK DQ HPSKDVLV RQ WKH VSDWLDO GDWD REWDLQHG E\ WKH LPDJLQJ V\VWHP 7KH ZDYH WDQN VKRZQ VFKHPDWLFDOO\ LQ ILJXUH LV FP ZLGH FP ORQJ DQG FP GHHS ,W FRQVLVWV RI WHPSHUHG JODVV VLGHZDOOV DQG ERWWRP LQ DQ DOXPLn QXP IUDPH ZLWK DOXPLQXP HQG ZDOOV $ VKHHW RI ZKLWH SOH[LJODVV LV ORFDWHG EHn QHDWK WKH JODVV ERWWRP 7KLV VKHHW LV UHTXLUHG IRU LPDJLQJ SXUSRVHVf 7HPSRUDU\ ZDYH JXLGHV PDGH RI ZHWWHGf DOXPLQXP DUH VHW DGMDFHQW WR WKH ZDYHPDNHU SDGGOH WR FUHDWH D ZDYH FKDQQHO FP ZLGH ZLWKLQ WKH FP ZLGWK RI WKH EDVLQ 7KH WDQN LV VXSSRUWHG E\ D VWHHO IUDPH ZKLFK UHVWV RQ YLEUDWLRQLVRODWLRQ SDGV 7KH HQWLUH LQVLGH RI WKH WDQN LV FOHDQHG EHIRUH DQG DIWHU H[SHULPHQWV ZLWK HWK\O DOFRKRO

PAGE 36

)LJXUH 7KH H[SHULPHQWDO IDFLOLW\ DQG FRRUGLQDWH V\VWHP $Q HOHYDWLRQ YLHZ LV VKRZQ LQ Df DQG D SODQ YLHZ LQ Ef

PAGE 37

Ef )LJXUH FRQWLQXHG

PAGE 38

7KH ZDYHPDNHU SDGGOH LV VXSSRUWHG E\ DQ HOHFWURG\QDPLF VKDNHU FRQQHFWHG WR DQRWKHU VWHHO IUDPH ZKLFK VWUDGGOHV WKH ZDYH WDQN DQG UHVWV RQ YLEUDWLRQLVRODWLRQ SDGV DV VKRZQ LQ ILJXUH 7KH SDGGOH LV DQ DOXPLQXP ULJKWDQJOHG ZHGJH ZLWK D OHQJWK RI FP D KHLJKW +f RI FP DQG D ZLGWK Zf RI FP ,Q ILJXUH DQ HQODUJHG YLHZ RI WKH SDGGOH LV VKRZQ LQFOXGLQJ LWV SRVLWLRQ ZLWK UHVSHFW WR WKH ZDWHU VXUIDFH ,W VKRXOG EH HPSKDVL]HG WKDW WKH SDGGOH VXEPHUJHQFH V PXVW EH GXSOLFDWHG DPRQJ H[SHULPHQWV LQ RUGHU WR REWDLQ UHSHDWDEOH UHVXOWV +HUHLQ DOO H[SHULPHQWV KDYH D GHSWK RI SDGGOH VXEPHUJHQFH RI FP $Q HGG\FXUUHQW GLVSODFHPHQW WUDQVGXFHU PRQLWRUV WKH YHUWLFDO PRWLRQ RI WKH SDGGOH DQG SURYLGHV D SRVLWLRQIHHGEDFN VLJQDO WR D VHUYRFRQWUROOHU 7KH FRQWUROOHU FRPSDUHV WKH SURn JUDPPHG GLVSODFHPHQW VLJQDO ZLWK WKH IHHGEDFN VLJQDO DQG FRUUHFWV ZDYHPDNHU PRWLRQ WR VWULFWO\ IROORZ WKH GHVLUHG PRWLRQ 7KH PD[LPXP GLVSODFHPHQW RI WKH ZDYHPDNHU LV PP ZKLFK FRUUHVSRQGV WR D YROW FRPPDQG VLJQDOf KRZHYHU IRU WKH H[SHULPHQWV UHSRUWHG KHUHLQ GLVSODFHPHQWV QHYHU H[FHHG PP )RU WKH H[n SHULPHQWV UHSRUWHG LQ 3DUW DOO ZDYHPDNHU LQSXW VLJQDOV DUH VLQXVRLGDO 7KH ZDWHU VXSSO\ V\VWHP FRQWDLQV JDOORQV RI ZDWHU VWRUHG LQ WZR FORVHG SRO\HWK\OHQH FRQWDLQHUV WKDW DUH FRQQHFWHG WR WKH ZDYH EDVLQ E\ 39& SLSLQJ DQG YDOYHV 7KH 6\EURQ ILOWUDWLRQ V\VWHP FRQVLVWV RI D PLFURQ SDUWLFOH ILOWHU D FDUn ERQDEVRUSWLRQ ILOWHU DQG DQ RUJDQLFV UHPRYDO ILOWHU 7KH ZDWHU LV JUDYLW\IHG LQWR WKH ZDYH WDQN DQG SXPSHG YHU\ VORZO\ WKURXJK WKH ILOWUDWLRQ V\VWHP DW WKH FRQFOXn VLRQ RI DQ H[SHULPHQW $ FDSDFLWDQFHW\SH ZDYH JDXJH LV XVHG WR UHFRUG WKH ZDWHU VXUIDFH HOHYDWLRQ DV D IXQFWLRQ RI WLPH DW D IL[HG ORFDWLRQ YRn2f LQ WKH EDVLQ 7KH ZDWHUSHQHWUDWLQJ SUREH LV D VHDOHG JODVV WXEH HQFORVLQJ D FRQGXFWRU DQG KDV GLDPHWHU RI PP 8QOLNH WKH SUREH XVHG E\ ++ WKH G\QDPLF UHVSRQVH RI WKLV JDXJH LV HVVHQWLDOO\ FRQVWDQW XQWLO DERXW +] 7KH ZDYH JDXJH LV FDOLEUDWHG G\QDPLFDOO\ E\ RVFLOODWLQJ

PAGE 39

LW YHUWLFDOO\ ZLWK D NQRZQ IUHTXHQF\ DQG DPSOLWXGH DQG WKHQ FRPSDULQJ WKLV DPSOLn WXGH WR WKH YROWDJH RI WKH RXWSXW VLJQDO 6HH ++ IRU GHWDLOV RI WKH FDOLEUDWLRQ SURFHGXUHf 7KH ,PDJLQJ DQG &RPSXWHU 6\VWHPV 7KH FRPSXWHU V\VWHP XVHG LQ WKHVH H[SHULPHQWV LV D '(& 9$;VWDWLRQ ,, 7KLV ELW V\VWHP FRQWDLQV DQ DQDORJRXWSXW V\VWHP $$9'$f ZLWK XS WR FKDQn QHOV RI RXWSXW DQG DQ DQDORJ LQSXW V\VWHP $'9'$f ZLWK XS WR FKDQQHOV RI LQSXW 7ZR UHDOWLPH FORFNV .:9&f DUH XVHG LQ FRQMXQFWLRQ ZLWK WKH GLJLWDOWR DQDORJ RXWSXW DQG WKH DQDORJWRGLJLWDO LQSXW 'DWD DFTXLVLWLRQ DQG DQDO\VLV DV ZHOO DV FRPPDQG VLJQDOV WR WKH ZDYH JHQHUDWRU DUH SHUIRUPHG E\ WKH FRPSXWHU V\VWHP YLD WKH FRPPDQG ODQJXDJH RI 6LJQDO 7HFKQRORJ\nV ,QWHUDFWLYH /DERUDWRU\ 6\VWHP ,/6f VRIWZDUH $ FRPPDQG SURFHGXUH RI /6 LQVWUXFWLRQV RQFH LQLWLDWHG DXWRn PDWLFDOO\ DFTXLUHV WLPH VHULHV GDWD DQG DQDO\]HV LW LQ QHDU UHDOWLPH 1XPHULFDO DQG JUDSKLFDO SURJUDPV IURP WKH '(& 9$;,DE VRIWZDUH DUH DOVR XVHG $ PHJDn E\WH 5'f V\VWHP GLVN DQG D PHJDE\WH 5$f VWRUDJH GLVN DUH XVHG IRU GDWD DFTXLVLWLRQ DQG SURFHVVLQJ ,Q DGGLWLRQ WR WKH ZDYH JDXJH GDWD WKH FRPPDQG DQG IHHGEDFN VLJQDOV RI WKH ZDYHPDNHU DUH DOVR UHFRUGHG VLPXOWDQHRXVO\ DQG DQDn O\]HG 7KH FRPSXWHU LV LQWHUIDFHG WR WKH LPDJLQJ V\VWHP WKURXJK DQ 56 FRQn QHFWLRQ ZKLFK DOORZV WUDQVIHU RI FRQWURO FRPPDQGV DQG GDWD EHWZHHQ WKH WZR V\Vn WHPV 7KH KLJKVSHHG YLGHR LPDJLQJ V\VWHP LV D .RGDN (NWDSUR FRPSXWHU EDVHG GHYLFH FDSDEOH RI SURFHVVLQJ GDWD IURP WZR LPDJHUV DW IUDPLQJ UDWHV XS WR +] (DFK IUDPH FDQ EH GLYLGHG LQWR DV PDQ\ DV SLFWXUHV WR SURGXFH XS WR SLFWXUHV SHU VHFRQG (DFK LPDJH LV IRUPHG IURP D KRUL]RQWDOf E\ YHUWLFDOf SL[HODUUD\ ZLWK D UHVROXWLRQ RI JUD\ OHYHOV LQWHQVLW\f SHU SL[HO ,Pn DJHV DUH UHFRUGHG RQ RQHKDOI LQFK LQVWUXPHQW WDSH DQG GXULQJ SOD\EDFN DUH WKHQ

PAGE 40

GLJLWL]HG E\ WKH SURFHVVRU DW D UDWH RI IUDPHV SHU VHFRQG %RWK LPDJHUV DUH XVHG LQ WKH H[SHULPHQWDO SURJUDP WKRXJK QRW QHFHVVDULO\ FRQFXUUHQWO\f RQH LPDJHU LV ORFDWHG GLUHFWO\ DERYH WKH ZDWHU VXUIDFH DQG WKH RWKHU LV ORFDWHG DW WKH HQG RI WKH WDQN WR JLYH DQ REOLTXH YLHZ RI WKH ZDYHILHOG $ PP 79 OHQV ZLWK DQ IVWRS DV ORZ DV LV XVHG ZLWK WKH RYHUKHDG LPDJHU ZKLOH DQ PP ]RRP OHQV LV XVHG ZLWK WKH RWKHU LPDJHU 8VLQJ .RGDNfV FRPPDQG ODQJXDJH GLJLWL]HG LPDJHV FDQ EH GRZQORDGHG WKURXJK WKH 56 FRQQHFWRU IURP WKH (NWDSUR nV FRPSXWHU PHPRU\ WR WKH 9$;VWDWLRQ ,, V\VWHP 6LQFH LW LV GHVLUDEOH WR PDLQWDLQ WKH DUUD\ VL]H DV D PXOWLSOH RI ff LQ RUGHU WR EH FRPSDWLEOH IRU QXPHULFDO DQDO\VLV D [ SL[HO DUUD\ LV WUDQVIHUUHG )LJXUH VKRZV D W\SLFDO RYHUKHDG LPDJH RI WKH TXLHVFHQW ZDWHU VXUIDFH ZKHQ YLHZHG RQ WKH V\VWHP PRQLWRU $ UHFWDQJXODU ERUGHU KDV EHHQ PDUNHG WR GHOLQHDWH WKH DUHD RI WKH LPDJH ZKLFK LV WUDQVIHUUHG DQG SURFHVVHG LQ WKH DQDO\VHV 1RWH WKDW WKLV VDPSOLQJ DUHD LV RULHQWHG DW DQ DQJOH RI DERXW WR WKH FKDQQHO D[LV DOVR VHH ILJXUH f 7KH UHDVRQ IRU WKLV RULHQWDWLRQ ZLOO EH GLVn FXVVHG LQ WKH QH[W VHFWLRQ 7KH FKDQQHO VLGHZDOOV DUH DOVR YLVLEOH LQ ILJXUH )LJXUH VKRZV D W\SLFDO RYHUKHDG LPDJH IURP DQ H[SHULPHQW LQ ZKLFK DQ +] ZDYHWUDLQ KDV EHHQ JHQHUDWHG 7KH GRPLQDQW OLJKW DQG GDUN EDQGV WUDQVYHUVH WR WKH FKDQQHO D[LV UHSUHVHQW WKH FUHVWV DQG WURXJKV UHVSHFWLYHO\ RI WKH +] ZDYHWUDLQ (YHQ WKH +] VXSHUKDUPRQLF RI WKH +] ZDYHWUDLQ LV YLVLEOH LQ ILJXUH f 0RUH GHWDLOV FRQFHUQLQJ WKH LQWHUSUHWDWLRQ RI WKHVH RYHUKHDG LPDJHV ZLOO EH SUHn VHQWHG VKRUWO\ 'DWD $QDO\VLV 3URFHGXUHV :DYH JDXJH GDWD DUH GLJLWL]HG DQG DQDO\]HG E\ WKH FRPSXWHU LQ QHDU UHDOWLPH 7KHVH GDWD DUH DQDO\]HG WR SURGXFH DPSOLWXGHIUHTXHQF\ VSHFWUD DPSOLWXGH SHULRGRJUDPVf 7KH WLPH VHULHV RI ZDWHU VXUIDFH HOHYDWLRQ AYR\Rf DUH ORZSDVV

PAGE 41

)LJXUH $ W\SLFDO TXLHVFHQW EDFNJURXQG LPDJH WDNHQ SULRU WR HDFK H[SHUn LPHQWf ZLWK D IUDPH VXSHUSRVHG WR GHSLFW WKH UHJLRQ XVHG E\ WKH WZRGLPHQVLRQDO WUDQVIRUP )LJXUH $Q RYHUKHDG LPDJH RI DQ +] H[SHULPHQW *&f

PAGE 42

DQDORJ %XWWHUZRUWKf ILOWHUHG ZLWK D FXWRII IUHTXHQF\ RI +] GLJLWL]HG DW D UDWH RI +] DPSOLILHG E\ GHFLEHOV KLJKSDVV DQDORJ ILOWHUHG DW D FXWRII IUHTXHQF\ RI +] DQG WKHQ DPSOLILHG E\ DQRWKHU GHFLEHOV $ GHFLEHO DPSOLILFDWLRQ FRUUHVSRQGV WR D IDFWRU RI f 7KH GXUDWLRQ RI WKH WLPH VHULHV LV VHFRQGV RU HTXLYDOHQWO\ VDPSOHV 7KH WHPSRUDO UHVROXWLRQ LV VHF DQG WKH UHVROXWLRQ LQ WKH DPSOLWXGHIUHTXHQF\ VSHFWUD LV +] 7KXV WKH 1\TXLVW IROGLQJf IUHTXHQF\ LV +] 7KHUHIRUH DQDORJ ILOWHULQJ DW +] UHPRYHV DQ\ FRUUXSWLRQ GXH WR DOLDVLQJ RI WKH DPSOLWXGHIUHTXHQF\ VSHFWUD 7KH FRPPDQG VLJQDO WR WKH YYDYHPDNHU LV SURYLGHG E\ DQDORJ RXWSXW IURP D +] GLJLWDO VLJQDO 7KH FRPPDQG DQG IHHGEDFN VLJQDOV RI WKH ZDYHPDNHU V\VWHP DUH DOVR GLJLWL]HG DQG DQDO\]HG WR SURYLGH D FKHFN RQ WKH H[SHULPHQWDO LQSXW 1RWH WKDW DOO IUHTXHQF\ VSHFWUD KHUHLQ DUH SUHVHQWHG LQ WHUPV RI GHFLEHO ZDYH DPSOLWXGHV LQVWHDG RI FP ZDYH DPSOLWXGHV 7KH GHFLEHO DPSOLWXGH LV ORJ R DPSOLWXGH VLJQDOf 7KH IUHn TXHQF\ VSHFWUD DUH FRPSXWHG E\ XVLQJ IDVW )RXULHU WUDQVIRUPV ))7f RI WKH WLPH VHULHV 7KH RYHUKHDG LPDJHV VXFK DV WKH RQH VKRZQ LQ ILJXUH DUH DQDO\]HG XVLQJ D WZRGLPHQVLRQDO ))7 WR REWDLQ WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP RI WKH ZDYHILHOG $Q DUUD\ RI [ f VDPSOHV LV XVHG E\ WKH WUDQVIRUP 3ULRU WR WKH DQDO\VLV RI WKH ZDYHILHOG LPDJH DQ LPDJH RI WKH TXLHVFHQW ZDWHU VXUIDFH REn WDLQHG SULRU WR HDFK H[SHULPHQW HJ VHH ILJXUH f LV VXEWUDFWHG IURP WKH ZDYHILHOG GDWD 7KLV UHPRYHV DQ\ YDULDWLRQ LQ EDFNJURXQG OLJKWLQJ DQGRU LQn KRPRJHQHLWLHV LQ WKH UHVSRQVH RI WKH LPDJHU VHQVRUV 6HFRQG D PHDQYDOXH RI WKH JUD\OHYHOV IRU WKH ZDYHILHOG LPDJH LV VXEWUDFWHG IURP HDFK SL[HO YDOXH 2I D SRVVLn EOH JUD\OHYHOV DYDLODEOH SHU SL[HO H[SHULPHQWV KHUHLQ XVHG DV PDQ\ DV JUD\OHYHOV 7KH UHVROXWLRQ RI WKH LPDJHV LV FP ZKLFK JLYHV D ZDYHQXPEHU UHVROXWLRQ RI UDGFP 7KH IROGLQJ 1\TXLVWf ZDYHQXPEHU LV UDGFP

PAGE 43

RU HTXLYDOHQWO\ D IUHH ZDYH ZLWK D IUHTXHQF\ RI +] $OWKRXJK QR PHWKRG IRU DQDORJ ILOWHULQJ RI WKH LPDJH LV DYDLODEOH LW LV EHOLHYHG WKDW QR VLJQLILFDQW ZDYH DFWLYLW\ LV SUHVHQW DW RU EH\RQG WKLV IUHTXHQF\ LQ RXU H[SHULPHQWV 7KH LPDJH UHVROXWLRQ FP IRU WKH H[SHULPHQWV KHUHLQf ZDV GHWHUPLQHG E\ YLHZLQJ D OLQHDU VFDOH ORFDWHG LQ WKH SODQH RI WKH TXLHVFHQW ZDWHU VXUIDFH 7KHQ WKH LPDJHUnV UHWLFOH ZDV XVHG WR GHWHUPLQH WKH QXPEHU RI SL[HOV DORQJ D NQRZQ GLVWDQFH RQ WKH VFDOH 7KLV SURFHGXUH ZDV WKHQ UHSHDWHG LQ D GLUHFWLRQ SHUSHQGLFXODU WR WKH ILUVW RULHQWDWLRQ WR LQVXUH WKDW ERWK D[HV RI WKH LPDJHU JDYH LGHQWLFDO UHVROXWLRQV 7KH IUDPLQJ UDWH RI WKH LPDJHU IRU WKH H[SHULPHQWV SUHVHQWHG KHUHLQ LV +] $V DOUHDG\ VKRZQ LQ ILJXUHV DQG WKH LPDJHG DUHD RI WKH ZDWHU VXUIDFH ZDV RULHQWHG DW DQ DQJOH RI DERXW WR WKH D[LV RI WKH FKDQQHO 7KLV RULHQWDWLRQ LV DGYDQWDJHRXV GXH WR WKH PDQQHU LQ ZKLFK WKH ))7 DOJRULWKP FRPSXWHV WKH DPSOLn WXGHV FRUUHVSRQGLQJ WR D JLYHQ ZDYHQXPEHU 7KH DOJRULWKP RQO\ DVVRFLDWHV DPSOLn WXGHV ZLWK WKH OPf TXDGUDQW RI WKH ZDYHQXPEHU SODQH +HQFH LW fIROGV DPSOLn WXGHV IRU ZDYHYHFWRUV RULHQWHG LQ WKH P GLUHFWLRQ LH ZDYHV SURSDJDWLQJ VXFK WKDW WKH\ KDYH D FRPSRQHQW ZDYHQXPEHU LQ WKH \ GLUHFWLRQ DFURVV WKH FKDQQHOf LQWR WKH PGLUHFWLRQ 6LPLODUO\ LW IROGV DPSOLWXGHV LQ WKH GLUHFWLRQ +HQFH RULHQWLQJ WKH LPDJH DW DQ DQJOH RI DERXW DOORZV XV WR GLVWLQJXLVK ZDYH GLUHFn WLRQV XS WR s IURP WKH YFKDQQHO D[LV 6LQFH WKH ZDYHV LQ WKHVH H[SHULPHQWV DUH FRQFHQWUDWHG ZLWKLQ DQ DQJOH RI s WR WKH FKDQQHO D[LV WKH IROGLQJ GRHV QRW FRQWDPLQDWH WKH FRPSXWHG VSHFWUD LQ D VLJQLILFDQW PDQQHU 2QH SUREOHP ZLWK QXPHULFDO FDOFXODWLRQV VXFK DV WKH XVH RI ))7nV LV WKH fVPHDULQJ RI LQIRUPDWLRQ ZKLFK UHVXOWV IURP UHSUHVHQWLQJ FRQWLQXRXV IXQFWLRQV ZLWK GLVFUHWH IXQFWLRQV ,Q WKH FDOFXODWLRQ RI WKH ZDYHQXPEHU VSHFWUD DPSOLWXGHV DUH VPHDUHG WR DGMDFHQW ZDYHYHFWRUV ,Q RUGHU WR GHWHUPLQH KRZ WKLV GLVFUHWL]DWLRQ DIIHFWV ZDYHQXPEHU VSHFWUD DQ DQDO\WLFDO VLQXVRLGDO ZDYHWUDLQ ZDV GLJLWL]HG DQG

PAGE 44

XVHG DV GLUHFW LQSXW WR WKH WZRGLPHQVLRQDO ))7 7KLV HIIHFW LV VKRZQ LQ ILJXUH ZKHUH FRPSXWHG VSHFWUDO FRQWRXU PDSV LQ WKH ZDYHQXPEHU SODQH DUH SUHVHQWHG 7KH ILUVW WKUHH PDSV KDYH EHHQ FDOFXODWHG ZLWK DQ LQSXW ZDYHQXPEHU RI +]f DQG LQSXW DQJOHV ZLWK UHVSHFW WR WKH DEVFLVVD ( RI DQG 1RWH WKDW WKH VPHDULQJ IRU WKH ZDYHYHFWRU LV PRVWO\ LQ WKH DEVFLVVD GLUHFWLRQ ZKLOH WKH VPHDULQJ IRU WKH ZDYHYHFWRU RULHQWHG DW LV PRVWO\ LQ WKH RUGLQDWH GLUHFWLRQ 7KH fFULVVFURVVf HIIHFW LV SUHVHQW LQ WKH FDVH RI D ZDYHYHFWRU DOWKRXJK VPDOOHU DQG LQ IDFW WKLV FRQWRXU PDS YHU\ PXFK UHVHPEOHV WKH +] VPDOODPSOLWXGH FDVH VHH ILJXUH f 7KH IRXUWK PDS LQ WKH ILJXUH LV DOVR D ZDYHYHFWRU KRZn HYHU LWV LQSXW ZDYHQXPEHU PDJQLWXGH LV QRZ %\ VLPSO\ FKDQJLQJ WKH ZDYHQXPEHU VR WKDW LW IDOOV QHDU WKH PLGSRLQW RI DGMDFHQW ZDYHQXPEHU fELQVf WKH fFULVVFURVVf HIIHFW KDV EHHQ VLJQLILFDQWO\ LQFUHDVHG ERWK LQ H[WHQW DQG EUHDGWK ,W LV QRWHG WKDW WKLV HIIHFW ZRXOG EH UHGXFHG E\ GHFUHDVLQJ WKH GLVFUHWL]DWLRQ LQWHUYDO EHWZHHQ LPDJH JUD\OHYHOV LH D ODUJHU QXPEHU RI NQRZQ JUD\OHYHOV IRU WKH VDPH SK\VLFDO DUHDf 7KLV fFULVVFURVVf HIIHFW ZLOO DSSHDU LQ PDQ\ RI WKH FRQWRXU PDSV ,W LV LPSRUWDQW WR UHPHPEHU WKH QXPHULFDO VPHDULQJ FDXVHG E\ WKH WUDQVIRUPf ZKHQ LQWHUSUHWLQJ WKH FRQWRXU PDSV RI ZDYHQXPEHU VSDFH VLQFH WKH VSUHDGLQJ RI ZDYH DPSOLWXGH FDXVHG E\ WKH SK\VLFV RI ZDWHU ZDYHV LV WKH PDLQ IRFXV RI 3DUW /LJKWLQJ DQG ,PDJH (IIHFWV 7KH PDMRU IDFWRU DIIHFWLQJ LPDJHV RI WKH ULSSOH VXUIDFH LV OLJKWLQJ 7KH LPDJHV DUH YHU\ VHQVLWLYH WR WKH PDQQHU LQ ZKLFK WKH VXUIDFH LV LOOXPLQDWHG 9DULRXV OLJKWn LQJ WHFKQLTXHV ZHUH WULHG KRZHYHU WKH UHDU OLJKWLQJ LV EHOLHYHG WR EH VXSHULRU DQG FRQVHTXHQWO\ LV XVHG QRWH WKH SRVLWLRQ RI WKH OLJKWV LQ ILJXUH f 7ZR PHFKDQLn FDOO\ FRXSOHG ZDWW KDORJHQ OLJKWV LQ UHIOHFWRU KRXVLQJV SURYLGH WKH OLJKWLQJ 7KH OLJKWV DUH FHQWHUHG RQ WKH ZDYH FKDQQHO ,I WKH OLJKWLQJ LV WRR GLUHFW WKH LPDJHU

PAGE 45

n FP f n FP f )LJXUH 'HPRQVWUDWLRQ RI WKH fFULVVFURVV HIIHFW FDXVHG E\ WKH QXPHULFDO WZRGLPHQVLRQDO ))7 7KHVH FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD DUH IRU VLQH ZDYHV ZLWK Df e DQG Ef e DQG Ff e DQG ( DQG Gf e DQG

PAGE 46

LV fRYHUSRZHUHG LH WKH JUD\OHYHO YDOXHV UHDFK f 7RR OLWWOH OLJKW UHVXOWV LQ WKH RSSRVLWH HIIHFW $OVR GXSOLFDWH H[SHULPHQWV ZLWK YDULHG OLJKWLQJ JDYH VOLJKWO\ GLIIHUHQW UHVXOWV ,W LV EHOLHYHG WKDW WKH GRPLQDQW ZDYHQXPEHU SURSHUWLHV RI WKH VXUIDFH DUH EHLQJ PHDVXUHG $Q H[SODQDWLRQ RI WKH JHQHVLV RI WKH LPDJH LV QRZ SUHVHQWHG $JDLQ UHIHUHQFH LV PDGH WR ILJXUH WKH ERWWRP RI WKH WDQN LV VKRZQ WR EH WHPSHUHG JODVV XQGHUn ODLG ZLWK D ZKLWH SODVWLF VKHHW 7KH SODVWLF VKHHW LV XVHG WR KHOS GLIIXVH OLJKW ,W LV FRQMHFWXUHG WKDW OLJKW ZKLFK SHQHWUDWHV WKH ZDWHU VXUIDFH DQG WKH JODVV ERWWRP LV GLIIXVHG E\ WKH SODVWLF VKHHW WKHQ DV LW SDVVHV EDFN WKURXJK WKH ZDWHU VXUIDFH LW LV UHIUDFWHG LH ZDWHU ZDYH FUHVWV IRFXV OLJKW ZKLOH WURXJKV UHGXFH OLJKW LQWHQVLW\f 7KXV DQ LPDJH KDV EULJKW EDQGV DORQJ ZDYH FUHVWV DQG GDUN EDQGV DORQJ WURXJKV VHH ILJXUH f 2FFDVLRQDOO\ LPDJHV KDYH H[WUHPHO\ VPDOO EULJKW VSRWV SUHVHQW EHOLHYHG WR EH VSHFXODU UHIOHFWLRQ ,I WKH ZKLWH SODVWLF VKHHW LV UHPRYHG WKH YLGHR LPDJH LV HVVHQWLDOO\ GHVWUR\HG ,Q RUGHU WR GHPRQVWUDWH WKDW WKH LPDJH LV D FRQVHTXHQFH RI GLIIXVH UDWKHU WKDQ VSHFXODU OLJKW D VLPSOH UDWKHU FUXGH H[SHULPHQW ZDV FRQGXFWHG 8VLQJ WKH RYHUn KHDG LPDJHU DQG D TXLHVFHQW ZDWHU VXUIDFH WKH DQJOH RI WKH KDORJHQ OLJKWV ZLWK UHVSHFW WR WKH YHUWLFDO ZDV PHDVXUHG $Q LPDJH RI WKH ZDWHU VXUIDFH ZDV UHFRUGHG WUDQVIHUUHG WR WKH FRPSXWHU DQG DQ DYHUDJH JUD\OHYHO ZDV FRPSXWHG 7KH DQJOH RI LQFLGHQW OLJKW ZDV WKHQ FKDQJHG DQG WKH SURFHVV ZDV UHSHDWHG 7KH GDWD IURP WKLV H[SHULPHQW DUH UHSUHVHQWHG E\ WKH DVWHULVNV LQ ILJXUH 7KH DQJOH RI WKH OLJKW VRXUFH $ DV PHDVXUHG IURP WKH YHUWLFDO LV VKRZQ YHUVXV WKH DYHUDJH LPDJH LQWHQn VLW\ N $ VLJQLILFDQW UHGXFWLRQ RI OLJKW LQWHQVLW\ IURP WKH PD[LPXP YDOXH PHDVn XUHG LV QRWHG ,I WKH ZDWHU VXUIDFH ZDV VSHFXODU WKH ZDWHU VXUIDFH ZRXOG DOZD\V DSSHDU EODFN H[FHSW ZKHQ WKH OLJKW ZDV RULJLQDWLQJ IURP WKH LPDJHU GLUHFWLRQf 1H[W D OLJKWLQWHQVLW\ PHWHU ZDV XVHG WR PHDVXUH WKH LQWHQVLW\ RI OLJKW YHUVXV GH

PAGE 47

. )LJXUH $ GHJf $YHUDJH LQWHQVLW\ OHYHO N YHUVXV LQFOLQDWLRQ DQJOH RI OLJKW IURP YHUWLFDO $ IRU D TXLHVFHQW ZDWHU VXUIDFH VKRZQ E\ DVWHULVNVf 'LDPRQGV UHSUHVHQW WKH SODQH SURMHFWLRQ OLJKW LQWHQVLW\ RI WKH OLJKW VRXUFH YHUVXV DQJOH

PAGE 48

YLDWLRQ DQJOH DORQJ WKH YHUWLFDO FHQWHUOLQH RI D SODQH SURMHFWLRQ 7KH PD[LPXP LQWHQVLW\ OHYHOV PHDVXUHG XVLQJ WKH OLJKW PHWHU ZHUH WKHQ QRUPDOL]HG E\ WKH PD[Ln PXP DYHUDJH LQWHQVLW\ REWDLQHG IURP WKH YLGHR LPDJHV 7KHVH YDOXHV DUH UHSUHn VHQWHG E\ WKH GLDPRQGV LQ ILJXUH ,W LV FOHDU WKDW WKH fVXUIDFHf LV GLIIXVH UHIOHFn WLYH EHFDXVH WKH WZR FXUYHV DUH VLPLODU 7KH ZKLWH SODVWLF VKHHW LV DSSDUHQWO\ UHn VSRQVLEOH IRU WKH VXUIDFH DSSHDULQJ WR EH GLIIXVH 7KH LQWHQVLW\ OHYHO GLIIHUHQFHV EHWZHHQ WKH WZR PHDVXUHPHQWV LV GXH WR WKH GLIIHUHQFH EHWZHHQ SURMHFWLQJ OLJKW RQWR D SHUSHQGLFXODU VXUIDFH DQG RQWR DQ LQFOLQHG VXUIDFH DQG LV FRQVLVWHQW 7KH IROORZLQJ WHVWV ZHUH SHUIRUPHG LQ RUGHU WR JDLQ DGGLWLRQDO LQVLJKW LQWR WKH QDWXUH RI WKH GDWD REWDLQHG IURP WKH LPDJLQJ V\VWHP DV ZHOO DV WKH LQWHUSUHWDWLRQ RI WKHLU ZDYHQXPEHU VSHFWUD )LUVW VLPSOH VTXDUHZDYH SODQIRUP SDWWHUQV ZHUH GUDZQ ZLWK EODFN LQN RQ ZKLWH SDSHU SODFHG LQ WKH ZDYH WDQN LPDJHG DQG WUDQVn IRUPHG 7KHVH SDWWHUQV KDYH NQRZQ )RXULHU WUDQVIRUPV ZKLFK FRXOG WKHQ EH FRPn SDUHG ZLWK WKH UHVXOWV IURP WKH LPDJLQJ 5HDVRQDEOH DJUHHPHQW ZDV IRXQG 6HFn RQG YDULRXV NQRZQ ZDYHILHOGV LQ WHUPV RI VHDVXUIDFH HOHYDWLRQ ZHUH JHQHUDWHG QXPHULFDOO\ E\ VXSHUSRVLQJ VLQXVRLGDO ZDYHV ZLWK GLIIHUHQW NQRZQf ZDYHYHFWRUV )RU HDFK ZDYHILHOG WKH PD[LPXP VHD OHYHO ZDV JLYHQ D JUD\OHYHO LQWHQVLW\ RI DQG WKH PLQLPXP VHD OHYHO D YDOXH RI LQWHUPHGLDWH ZDWHU OHYHOV ZHUH DVVLJQHG FRUUHVSRQGLQJ JUD\OHYHOV E\ LQWHUSRODWLRQ 7KLV ZDWHU VXUIDFH WR JUD\OHYHO FRUUHn VSRQGHQFH ZDV XVHG WR JHQHUDWH DQ LPDJH RQ SDSHU DQG WKHQ WKH YLGHR V\VWHP ZDV XVHG WR LPDJH DQG WUDQVIRUP LW $ FRPSDULVRQ EHWZHHQ WKH NQRZQ LQSXW ZDYHYHFn WRUV DQG WKH ZDYHQXPEHU SODQH DV FDOFXODWHG IURP WKH WUDQVIRUPHG LPDJH VKRZHG WKDW WKH V\VWHP ZDV IXQFWLRQLQJ ZHOO )LQDOO\ DV ZLWK PRVW UHPRWH VHQVLQJ WHFKQLTXHV D TXHVWLRQ DULVHV DV WR ZKDW LV DFWXDOO\ EHLQJ PHDVXUHG LQ WKLV FDVH E\ WKH LPDJLQJ DQG FRPSXWLQJ V\VWHPV LH DPSOLWXGH DPSOLWXGH VTXDUHG RU VRPH RWKHU TXDQWLW\f 9HULILFDWLRQ WKDW ZH DUH LQ

PAGE 49

IDFW PHDVXULQJ DPSOLWXGH LV DV IROORZV )RU ORZ YDOXHV RI NRV WKDW LV ZDYHQXPEHU PDJQLWXGH WLPHV SDGGOH VWURNH ZKHQ WKH HQHUJ\ LV QHDUO\ DOO FRQILQHG WR WKH LQSXW ZDYHQXPEHU YHFWRU LI WKH VWURNH LV GRXEOHG VD\ WKH DPSOLWXGH RI WKH SHDN FRQn FHQWUDWHG DW WKDW ZDYHQXPEHU DOVR DSSUR[LPDWHO\ GRXEOHV 7KLV LV WUXH DV ORQJ DV WKH HQHUJ\ LV FRQFHQWUDWHG DW WKH LQSXW ZDYHQXPEHU YHFWRU DQG LW YHULILHV TXDOLWDn WLYHO\ WKDW ZH DUH PHDVXULQJ WKH DPSOLWXGH RU WKH ZDYH VWHHSQHVV NDf DQG QRW DQRWKHU TXDQWLW\

PAGE 50

&+$37(5 5(68/76 $1' ',6&866,21 2) 3$57 7KH UHVXOWV RI WKH H[SHULPHQWDO SURJUDP DUH SUHVHQWHG DQG GLVFXVVHG LQ WKLV FKDSWHU 7KH ILUVW VHFWLRQ JLYHV H[SHULPHQWDO HYLGHQFH DV WR WKH TXDVLVWHDGLQHVV RI WKH ZDYHILHOG DQG D WLPHVHULHV RI ZDYHQXPEHU FRQWRXU PDSV GXULQJ WHPSRUDO HYROXWLRQ SUHFHGLQJ TXDVLVWHDGLQHVV ,Q WKH VHFRQG VHFWLRQ ZH SUHVHQW WKH H[SHULn PHQWDO UHVXOWV DQG FRPSDUH WKHP WR WKH V1/6 WKHRUHWLFDO SUHGLFWLRQV $ FRPSOHWH OLVW RI WKHVH H[SHULPHQWV DQG LPSRUWDQW SDUDPHWHUV DUH VKRZQ LQ 7DEOH 7 (YROXWLRQ RI 4XDVLVWHDGY :DYHILHOGV ,Q RUGHU WR VKRZ WKDW WKH ZDYHILHOG LV TXDVLVWHDG\ ILJXUH SUHVHQWV VHFn RQGV ZDYHVf RI D W\SLFDO WLPH VHULHV IRU D PRGHUDWH DPSOLWXGH +] H[SHULn PHQW 6HH 7DEOH H[SHULPHQW *& IRU WKH LPSRUWDQW SDUDPHWHUVf 0RGXODn WLRQV RI WKH ZDYHWUDLQ DUH SUHVHQW KRZHYHU WKH IUHTXHQF\ VSHFWUXP RI WKLV H[SHULn PHQWfV WLPH VHULHV VHH ILJXUH Fff FOHDUO\ VKRZV WKDW LGHQWLILDEOH SHDNV H[LVW RQO\ IRU WKH +] LQSXW ZDYHWUDLQ DQG LWV VXSHU KDUPRQLFV 7KLV ZDYHWUDLQ KDG WKH ODUJHVW VWURNH RI WKH +] H[SHULPHQWV SUHVHQWHG DQG WKHUHIRUH LW LV QRW H[SHFWHG WR EH ZHOOUHSUHVHQWHG E\ WKH WKHRU\ ,Q IDFW ILJXUH Ff VKRZV D SKRWRJUDSK RI WKH LPDJH DV VHHQ RQ WKH YLGHR PRQLWRU DQG RQH FDQ VHH SKDVH VKLIWV SUHVHQW LQ WKH ZDYHILHOG ,Q VSLWH RI WKLV VWURQJO\ QRQOLQHDU ZDYHILHOG WKH IRXU FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD SUHVHQWHG LQ ILJXUH DUH UHPDUNDEO\ VLPLODU 7KHVH VSHFWUD ZHUH FDOFXODWHG IURP LPDJHV DQG VHFRQG UHVSHFWLYHO\ DIWHU WKH VSHFWUXP RI ILJXUH 9HU\ OLWWOH GLIIHUHQFH H[LVWV EHWZHHQ WKH FRQWRXU

PAGE 51

WLPH VHFf )LJXUH 7ZR VHFRQGV RI D WLPH VHULHV IURP H[SHULPHQW *&

PAGE 52

FP f n FP f )LJXUH 'HPRQVWUDWLRQ RI WKH TXDVLVWHDGLQHVV RI WKH +] ZDYHILHOG RI H[SHULPHQW *& 7KHVH FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD UHSUHVHQW WKH ZDYHILHOG Df VHF Ef VHF Ff VHF DQG Gf VHF DIWHU WKH FRQWRXU PDS VKRZQ LQ ILJXUH

PAGE 53

PDSV ,W LV UHDVRQDEOH WKHQ WR VWDWH WKDW WKH H[SHULPHQW LV TXDVLVWHDG\ :H KDYH WKXV VKRZQ WKDW RXU H[SHULPHQWV DUH QRW PRGXODWHG LQ D fUHJXODUf IDVKLRQ +RZn HYHU PRGXODWLRQV LQ WLPH GR H[LVW EXW GR QRW KDYH D XQLTXH IUHTXHQF\ DW ZKLFK HQHUJ\ DSSHDUV LQ WKH IUHTXHQF\ VSHFWUXP +HQFH WKH PRGXODWLRQV DSSHDU LQ D UDQGRP PDQQHU DQG DUH SDUWLDOO\ DWWULEXWHG WR fQRLVH LQ WKH H[SHULPHQWDO IDFLOLW\ HJ DLU FXUUHQWVf :H QRZ IXUWKHU GHILQH ZKDW LV PHDQW E\ TXDVLVWHDG\ 7KH WLPH VHULHV IRU D +] ZDYHWUDLQ ZKLFK SUHFHGHV D TXDVLVWHDG\ ZDYHILHOG LV VKRZQ LQ ILJXUH 7KH OHQJWK RI WKLV WLPH VHULHV LV VHF 'LJLWL]DWLRQ RI WKH ZDYH JDXJH GDWD EHJDQ VLPXOWDQHRXVO\ ZLWK WKH VWDUW RI WKH ZDYHPDNHU $ WLPHVHTXHQFH DQG VHFf RI FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD DUH SUHVHQWHG LQ ILJXUH &OHDUO\ WKH ZDYHQXPEHU VSHFWUD DUH HYROYLQJ DV LV HYLGHQFHG E\ WKH ODUJH FKDQJHV LQ WKH FRQWRXUV )LJXUHV Ff DQG Gf VKRZ WKDW QXPHULFDO VPHDULQJ RI WKH GDWD LV SUHVHQW LH WKH fFULVVFURVV HIIHFWf 7KH HYROXWLRQ KDV UHDFKHG D TXDVLVWHDG\ VWDWH DW DSSUR[LPDWHO\ VHF LQWR WKH H[SHULPHQW 2QH VHFRQG ZDYHVf KDV HODSVHG EHWZHHQ UHFRUGLQJ RI WKH LPDJHV XVHG WR SURGXFH ILJXUHV Hf DQG If \HW WKH FRQWRXU PDSV DUH YHU\ VLPLODU $ FRPSDULVRQ RI ILJXUHV If DQG Jf VKRZV OLWWOH FKDQJH DOVR 7KH ZDYHILHOG LPDJHG WR SURGXFH ILJXUH Kf VKRZV WKDW VOLJKW HYROXWLRQ ZDV VWLOO RFFXUULQJ EXW RQ D ORQJHU WLPHVFDOH ([SHULPHQWDO 5HVXOWV DQG &RPSDULVRQ ZLWK V1/6 7KHRU\ ,Q RUGHU WR VKRZ WKDW WKH V1/6 HTXDWLRQ SUHGLFWV WKH GLUHFWLRQDO VSUHDGLQJ RI DPSOLWXGH IRU *& ZDYHV RI IUHTXHQFLHV JUHDWHU WKDQ +] DQG WKDW LWV SUHGLFWLRQ RI VWDELOLW\ IRU IUHTXHQFLHV OHVV WKDQ +] EXW JUHDWHU WKDQ +]f IRU GHHS FOHDQ ZDWHU LV FRUUHFW ILYH VHWV RI H[SHULPHQWV DUH SUHVHQWHG 3DGGOHGULYHQ ZDYHWUDLQV ZLWK IUHTXHQFLHV RI DQG +] DUH SUHVHQWHG IRU WKUHH

PAGE 54

W U O O L L L WLPH VHFf )LJXUH $ WLPH VHULHV RI D +] ZDYHWUDLQ IURP ZDYHPDNHU VWDUWXS

PAGE 55

n FP rf n FP f )LJXUH $ WLPHVHTXHQFH RI FRQWRXU PDSV RI ZDYHQXPEHU VSHFWUD IRU D +] ZDYHWUDLQ DSSURDFKLQJ TXDVLVWHDGLQHVV Df VHF Ef VHF Ff VHF Gf VHF Hf VHF If VHF Jf VHF DQG Kf VHF WKHRUHWLFDO f SUHGLFWLRQ RI WKH V1/6 HTf LQWR WKH H[SHULPHQW

PAGE 56

A FP f n FP f )LJXUH FRQWLQXHG

PAGE 57

7DEOH 6XPPDU\ RI H[SHULPHQWV $OO H[SHULPHQWV XVHG WKH IROORZLQJ 3DGGOH LPPHUVLRQ PP 6XUIDFH WHQVLRQ G\QFP &KDQQHO ZLGWK FP ZDWHU GHSWK FP DQG \ FP ([SHU ,QSXW IUHT +]f NRV ; FPf NRD FPf VHF Mf FUUU MW 4P FPf s } rf ,9 FPf U FPf *& *& *& *& *& *& *& *& *& *& *& *& *& *& *& *&

PAGE 58

VPDOO WR PRGHUDWH DPSOLWXGH H[SHULPHQWV )RU WKH LQWHUHVWLQJ FDVH RI :LOWRQnV ULSSOHV +] ZH SUHVHQW D IRXUWK DGGLWLRQDO H[SHULPHQW 7KH DQG +] H[SHULPHQWV ZHUH FRQGXFWHG ZLWK WKH LPDJHU SRVLWLRQHG VXFK WKDW WKH ILUVW UHn FRUGHG JUD\OHYHO ZDV FP IURP WKH ZDYH JHQHUDWRU VHH 7DEOH f 5HFDOO WKDW WKH LPDJHU D[LV ZDV RULHQWHG DERXW IURP WKH SULPDU\ ZDYHYHFWRU VHH ILJXUH f ,Q WKH +] H[SHULPHQW WKH LPDJHU ZnDV ORFDWHG VXFK WKDW WKH ILUVW LPDJHG SL[HO XVHG LQ WKH VSDWLDO WUDQVIRUP ZDV FP GRZQVWUHDP 7KLV ZDV GRQH EHFDXVH WKH ZDYHWUDLQ H[WHQGHG IDUWKHU GRZQVWUHDP HYROYLQJ VSDWLDOO\ PRUH VORZO\ 7KH ZDYHJDXJH IUHTXHQF\ VSHFWUD ZHUH DOO UHFRUGHG DW WKH VDPH ORFDWLRQ DV WKH ILUVW JUD\OHYHO XVHG IURP WKH LPDJH VHH 7DEOH f )RU HDFK IUHTXHQF\ SUHVHQWHG DOO ZDYHQXPEHU VSHFWUD DUH QRUPDOL]HG E\ WKH ODUJHVW DPSOLWXGH REWDLQHG E\ WKH WZR GLPHQVLRQDO ))7 RI DOO WKH FDVHV IRU WKDW SDUWLFXODU IUHTXHQF\ ,Q RWKHU ZRUGV DOO +] H[SHULPHQWV IRU H[DPSOH DUH FRQWRXUHG XVLQJ WKH VDPH PD[LPXPDPSOLn WXGH YDOXH FKRVHQ IURP DPRQJ WKH WKUHH +] H[SHULPHQWV 7KH +] :DYHWUDLQ 5HVRQDQW WKUHHZDYH WULDGf LQWHUDFWLRQV DUH VWXGLHG LQ 3DUW 7KHUHLQ LW LV VKRZQ WKDW LQ WKH DEVHQFH RI VHHG ZDYHV QR GLVWLQFW WULDG LQWHUDFWLRQV RFFXU 7KH +] ZDYH LV LQ WKH DGPLVVLEOH WULDG UHJLPH KRZHYHU QR VHHG ZDYHV RI VXIILFLHQW DPSOLWXGH WR LQLWLDWH WULDG JURZWK DUH SUHVHQW LQ WKH H[SHULPHQWV UHSRUWHG LQ 3DUW $QG \HW WKH ZDWHU VXUIDFH LV VWLOO VSDWLDOO\ GLVRUGHUHG DV LV VKRZQ LQ WKH WKUHH SKRWRJUDSKV RI ILJXUH 1RWH WKDW DV ZDYHPDNHU VWURNH LV LQFUHDVHG WKH ZDYHILHOG EHFRPHV LQFUHDVLQJO\ PRUH GLVRUGHUHG 7KH WKUHH DPSOLWXGHIUHTXHQF\ VSHFWUD ZKLFK ZHUH FRPSXWHG IURP H[SHULPHQWV *& *& DQG *& VKRZQ LQ ILJXUH f DUH SUHVHQWHG LQ ILJXUH 7KH FRUUHVSRQGLQJ FRQWRXU PDSV RI WKH ZDYHQXPEHU VSHFWUD DQG DQ LQVHW SHUVSHFWLYH YLHZ RI WKH ZDYHQXPEHU VSHFn WUD DUH SUHVHQWHG LQ ILJXUHV WKURXJK $V PHQWLRQHG SUHYLRXVO\ QRWH WKH

PAGE 59

)LJXUH 2YHUKHDG LPDJHV RI H[SHULPHQWV Df *& Ef *& DQG Ff *&

PAGE 60

IUHTXHQF\ +]f )LJXUH 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *&

PAGE 61

)LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 62

n FP f )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 63

n FP Of )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 64

URWDWLRQ RI WKH FRRUGLQDWH V\VWHP 6XSHUSRVHG RQ WKH FRQWRXU PDSV RI WKH ZDYHQXPEHU 6SHFWUD DUH WKH GLVSHUVLRQ UHODWLRQV RI WKH V1/6 HTXDWLRQ DV SUHGLFWHG E\ f 7KH PD[LPXP DQJOH RI GLUHFWLRQDO VSUHDGLQJ DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV LV GHSLFWHG E\ UDGLDO OLQHV $OVR WKH PRVW XQVWDEOH VLGHEDQGV UHSUHVHQWHG E\ ;nV DUH VKRZQ 7KH YDOXHV RI WKH PRVW XQVWDEOH VLGHEDQGV DORQJ ZLWK D FRPSOHWH VXPPDU\ RI WKH H[SHULPHQWV DUH SUHVHQWHG LQ 7DEOH ,Q ILJXUH WKH QXPHULFDO VPHDULQJ RI WKH fVSLNHf DW WKH LQSXW ZDYHYHFWRU LV SUHVHQW ,Q DFFRUGDQFH ZLWK ILJXUH Ff ZKHUH WKH DQJOH + LV JUHDWHU WKDQ WKH VPHDULQJ KHUH LV DORQJ WKH P D[LV $OWKRXJK OLWWOH GLUHFWLRQDO VSUHDGLQJ RI DPSOLWXGH FDQ EH VHHQ LQ WKH FRQWRXU PDS DORQJ WKH GLVSHUVLRQ UHODWLRQ LW LV FOHDUO\ YLVLEOH LQ WKH SHUVSHFWLYH YLHZ $OVR YLVLEOH LQ WKH LQVHW YLHZ LV WKH VHFRQG VSDWLDO KDUPRQLF KRZHYHU DQ LQVXIILFLHQW QXPEHU RI FRQWRXUV KDV EHHQ XVHG WR LGHQWLI\ LW DQG VR LW LV QRW YLVLEOH LQ WKH FRQWRXU PDS 7KLV LV FRQVLVWHQW ZLWK WKH DPSOLWXGH IUHTXHQF\ VSHFWUXP RI ILJXUH Df ZKLFK KDV D YHU\ VPDOO EXW GLVFHUQLEOH SHDN DW +] ,Q DOO RI WKH FRQWRXU PDSV SUHVHQWHG KHUHLQ FRQWRXUV ZHUH XVHG EDVHG RQ WKH ODUJHVW SHDN IURP HDFK RI WKH VHWV RI GLIIHUHQW IUHTXHQF\ H[SHULPHQWV $V PHQWLRQHG SUHYLRXVO\ DV VSUHDGLQJ RI ZDYH DPSOLWXGH RFFXUV WKH QXPHULn FDO VPHDULQJ ZKLFK FDXVHV WKH fFULVVFURVVf DSSHDUV WR GLPLQLVK DV LV VHHQ LQ ILJn XUHV DQG $V WKH ZDYHPDNHU VWURNH LV LQFUHDVHG VR LV WKH GLUHFWLRQDO VSUHDGLQJ +RZHYHU WKH VSUHDGLQJ RI DPSOLWXGH WR DGMDFHQW ZDYHYHFWRUV LV QRW PRQRWRQLF QRU VPRRWK EXW UDWKHU RFFXUV DV ORFDO H[WUHPD ,Q ILJXUHV DQG LW LV VHHQ WKDW WKH PRVW XQVWDEOH VLGHEDQGV DUH LQ WKH YLFLQLW\ RI WKH ORFDO H[WUHPD 1RWH WKDW WKH VHFRQGKDUPRQLF ZDYH DPSOLWXGHV KDYH DOVR VSUHDG GLUHFWLRQDOO\ 7KHVH fIRUFHGf ZDYHV LH ZDYHV WKDW GR QRW VDWLVI\ WKH OLQHDU GLVSHUVLRQ UHODWLRQ f DUH WHUPHG IRUFHG ZKLOH ZDYHV WKDW GR VDWLVI\ WKH OLQHDU GLVSHUVLRQ UHODWLRQ

PAGE 65

DUH FDOOHG fIUHHff WUDYHO ZLWK WKH SULPDU\ ZDYHV DQG DUH WKXV IRUFHG WR VSUHDG GLUHFWLRQDOO\ f $Q LQVSHFWLRQ RI WKH WKUHH IUHTXHQF\ VSHFWUD RI ILJXUH UHYHDOV WKDW WKH ZLGWK RI WKH SHDN SUHVHQW DW +] LV LQFUHDVLQJ DV ZDYHPDNHU QRQOLQHDULW\ $RAf LV LQFUHDVHG 7KLV HIIHFW LV GXH WR WKH SUHVHQFH RI IUHH ZDYHV VLGHEDQGVf DW VOLJKWO\ GLIIHUHQW ZDYHQXPEHU PDJQLWXGHV WKDQ WKH LQSXW ZDYH ZKLFK DUH QHFHVVDULO\ RI VOLJKWO\ GLIIHUHQW IUHTXHQFLHV 5HFDOO WKDW LQ ILJXUH WKH GLVSHUVLRQ UHODWLRQ RI WKH V1/6 HTXDWLRQ DQG WKH FLUFOH UHSUHVHQWLQJ ZDYHV RI FRQVWDQW ZDYHQXPEHU PDJQLWXGHf DUH QRW SHUIHFWO\ PDWFKHG VR WKDW YHU\ VOLJKW IUHTXHQF\ GLIIHUHQFHV DUH H[SHFWHG 7KLV SKHQRPHQRQ LV HVVHQWLDOO\ D VSDWLDO %HQMDPLQ)HLU VLGHEDQG 5DWKHU WKDQ FDXVLQJ PRGXODWLRQV RI D RQHGLPHQVLRQDO ZDYHWUDLQ WKH VSDWLDO LQVWDn ELOLW\ FDXVHV GLUHFWLRQDO VSUHDGLQJ RI HQHUJ\ RI D WZRGLPHQVLRQDO ZDYHWUDLQ ,Q WKH ILUVW WZR IUHTXHQF\ VSHFWUD RI ILJXUH WZR KDUPRQLFV DUH GLVWLQFW ZKLOH LQ WKH WKLUG VSHFWUXP WKH WKLUG KDUPRQLF LV QRZ YLVLEOH ,Q DOO RI WKH DPSOLWXGHIUHTXHQF\ VSHFWUD RI ILJXUH WKH VXSHUKDUPRQLFV KDYH VLJQLILFDQWO\ OHVV DPSOLWXGH WKDQ WKH SULPDU\ ZDYH 7KH DPSOLWXGHV DUH RUGHUHG FRUUHVSRQGLQJ WR WKH Hf DW ZKLFK WKH\ RFFXU LH WKH WKLUG KDUPRQLF KDV OHVV DPSOLWXGH WKDQ WKH VHFRQG KDUPRQLF HWFf 7KH GLUHFWLRQDO VSUHDGLQJ DV SUHGLFWHG E\ WKH GLVSHUVLRQ UHODWLRQ f RI OLQHDU RVFLOODWLRQV RI WKH V1/6 HTXDWLRQ KDYH EHHQ VXSHUSRVHG RQ WKH FRQWRXU PDSV &OHDUO\ WKH HQHUJ\ VSUHDGLQJ LV RFFXUULQJ DORQJ WKHVH FXUYHV 7KH GLUHFn WLRQDO VSUHDGLQJ VHHPV WR KDYH RFFXUUHG DORQJ WKH GLVSHUVLRQ UHODWLRQ HYHQ ZKHQ WKHUH ZHUH SKDVH VKLIWV SUHVHQW LQ WKH ZDYHILHOG DV LQ H[SHULPHQW *& 7KH PRVW XQVWDEOH VLGHEDQG SUHGLFWLRQV DUH LQ UHDVRQDEOH DJUHHPHQW ZLWK ORFDO H[WUHPD DORQJ WKH FXUYH ,W LV DOVR HYLGHQW WKDW WKH PD[LPXP GLUHFWLRQDO VSUHDGLQJ DV SUHGLFWHG E\ WKH OLQHDU DQDO\VLV LV VRPHZKDW XQGHUSUHGLFWLQJ WKH WRWDO VSUHDGLQJ

PAGE 66

RFFXUULQJ LQ WKH H[SHULPHQWV ,Q WKH SHUVSHFWLYH LQVHW RI ILJXUH WKH GLUHFWLRQn DOO\VSUHDG GLVWXUEDQFH KDV QHDUO\ WUDYHUVHG WKH HQWLUH TXDGUDQW WKH GLVWXUEDQFH OLHV DORQJ WKH GLVSHUVLRQ FXUYH 7KHUH LV DOVR VSUHDGLQJ RI WKH YYDYHYHFWRUV WUDQVn YHUVH WR WKH GLVSHUVLRQ SDUDEROD 7KH +] :DYHWUDLQ 7KH +] ZDYHWUDLQ OLHV EHORZ WKH +] SDUDPHWULF ERXQGDU\ IRU DGPLVVLn EOH WULDGV DQG WKHUHIRUH QRQH DUH H[SHFWHG WR RFFXU LQ D VLJQLILFDQW PDQQHU ,Q ILJXUHV Df WKURXJK Ff ZUH SUHVHQW WKH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[n SHULPHQWV *& WKURXJK *&O UHVSHFWLYHO\ $V RFFXUUHG ZLWK WKH +] H[n SHULPHQWV WKH ZLGHQLQJ RI WKH SHDN DW +] KDV LQFUHDVHG ZLWK LQFUHDVHG ZDYHPDNHU VWURNH $V ZLWK WKH SUHYLRXV VHW RI H[SHULPHQWV WKLV LV DWWULEXWHG WR WKH SUHVHQFH RI ZDYHYHFWRU VLGHEDQGV ZKLFK DUH IUHH ZDYHV DQG WKXV RI VOLJKWO\ GLIIHUn HQW IUHTXHQFLHV 6RPH LGHQWLILDEOH ORZIUHTXHQF\ HQHUJ\ ZDV SUHVHQW LQ WKH ILUVW WZnR VSHFWUD DW EHWZHHQ +] DQG +] EXW IRU WKH *&O H[SHULPHQW LW KDV VKLIWHG WR EHWZHHQ +] DQG +] 7KHVH DPSOLWXGHSHDNV ZHUH QHYHU DV ODUJH DV WKH VHFRQG KDUPRQLF 5HFDOO WKDW WKH IUHTXHQF\ VSHFWUD KDYH ORJVFDOHVf ,Q WKH *&O H[SHULPHQW DVLGH IURP WKH SULPDU\ ZDYH RQO\ WKH VHFRQG KDUPRQLF +]f LV LGHQWLILDEOH 7KUHH KDUPRQLFV DUH GLVWLQFW LQ WKH *&O IUHTXHQF\ VSHFn WUXP DQG DW OHDVW IRXU KDUPRQLFV DUH GLVFHUQLEOH LQ ILJXUH Ff ,Q ILJXUHV DQG WKH ZDYHQXPEHU VSHFWUD DUH SUHVHQWHG IRU WKH +] H[SHULPHQWV +HUH WKH UHODWLYH VL]HV RI WKH VHFRQG KDUPRQLFV DV FRPSDUHG WR WKH SULPDU\ ZDYHVf ZHUH ODUJHU WKDQ LQ WKH +] H[SHULPHQWV 7KH PD[LPXP DPSOLWXGH SHDN RFFXUV LQ H[SHULPHQW *&O ZKLFK KDV D VPDOOHU ZDYHPDNHU PRWLRQ WKDQ H[SHULPHQW *&O 3UHVXPDEO\ WKLV LV GXH WR WKH VLJQLILFDQW DPRXQW RI GLUHFWLRQDO VSUHDGLQJ RFFXUULQJ LQ WKH *&O ODUJHVW VWURNHf H[SHULPHQW 7KHUH ZHUH DOVR PRUH ORZZDYHQXPEHU DPSOLWXGHV SUHVHQW LQ WKH +] H[SHUL

PAGE 67

IUHTXHQF\ +]f )LJXUH 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *&

PAGE 68

On FPf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 69

O f FPf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 70

n FP rf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHJLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 71

PHULWV WKDQ WKHUH ZHUH LQ WKH +] H[SHULPHQWV 6RPH RI WKH ORZZDYHQXPEHU DPSOLWXGHV ZHUH GXH WR YLVFRXV HIIHFWV DV GLVFXVVHG LQ &KDSWHU $JDLQ WKH DPn SOLWXGHZDYHQXPEHU FRQWRXU PDSV VKRZ WKDW WKH PRVW XQVWDEOH VLGHEDQGV DUH SUHn GLFWHG UHDVRQDEO\ ZHOO DQG WKDW WKH GLUHFWLRQDO VSHFWUD VSUHDG LQ DFFRUG ZLWK WKH SUHGLFWLRQ RI WKH V1/6 HTXDWLRQ $V ZLWK WKH +] H[SHULPHQWV WKHVH ZDYHWUDLQVf VHFRQG KDUPRQLFV ZHUH GLUHFWLRQDOO\ VSUHDG 7KH QXPHULFDO VPHDULQJ RI WKH ODUJH DPSOLWXGH SHDNV LV DOVR YLVLEOH $OVR QRWLFH WKH DV\PPHWU\ LQ WKH FRQWRXU PDS RI WKH ZDYHQXPEHU VSHFWUXP RI ILJXUH ,Q WKH SHUVSHFWLYH YLHZ LW LV VHHQ WKDW WKH ZDYHQXPEHUV DORQJ WKH GLVSHUVLRQ FXUYH FORFNZLVH IURP WKH D[LV DUH SUHVHQW KRZHYHU WKH\ KDYH OHVV DPSOLWXGH WKDQ WKRVH LQ WKH FRXQWHUFORFNZLVH GLUHFWLRQ 3RVVLEO\ WKLV LV GXH WR OLJKWLQJ HIIHFWV 8SRQ FRPSDULVRQ RI ILJXUHV Ff DQG ZH VHH WKDW WKHUH DUH VRPH FRQWUDGLFWLRQV 7KH ORFDO H[WUHPXP VKRZQ LQ ILJXUH ZKLFK KDV D ZDYHQXPEHU PDJQLWXGH RI DERXW N OHVV WKDQ WKH LQSXW ZDYHYHFWRUf EXW KDV DQ LGHQWLFDO GLUHFWLRQ KDV D IUHHZDYH IUHTXHQF\ RI +] ,W LV QRW LGHQWLILDEOH LQ WKH IUHn TXHQF\ VSHFWUXP +RZHYHU WKHUH LV HQHUJ\ SUHVHQW DW +] LQ WKH IUHTXHQF\ VSHFWUXP ZKLFK FRUUHVSRQGV WR D IUHHZDYH ZDYHQXPEHU RI 7KHUH LV QR HQn HUJ\ LQ WKH ZDYHQXPEHU VSHFWUXP DW DERXW :H DVVXPH WKDW WKH ZDYHV DSSHDUn LQJ LQ HLWKHU RI WKH WZR PHDVXUHPHQW WHFKQLTXHV ZKLFK GR QRW FRUUHVSRQG WR IUHH ZDYHV DUH WKXV IRUFHGZDYHV RU SRVVLEO\ VSXULRXV QRLVHf 7KH +] :DYHWUDLQ $W DSSUR[LPDWHO\ +] WKH SKDVH YHORFLW\ DQG WKH JURXS YHORFLW\ RI *& ZDYHV DUH HTXDO $OWKRXJK WKLV GRHV QRW UHSUHVHQW D IUHTXHQF\ IRU ZKLFK DQ\WKLQJ VLJQLILFDQW RFFXUV DV UHODWHV WR WKH 1/6 HTXDWLRQ VHH ILJXUH f LW LV D XQLTXH IUHTXHQF\ DV UHJDUGV ULSSOHV DQG VR LW LV LQYHVWLJDWHG %HQQH\ LQYHVWLJDWHG

PAGE 72

WKH QRQFROOLQHDU FDVH ZKHUH SKDVH YHORFLW\ HTXDOV WKH SURMHFWLRQ RI WKH JURXS YHn ORFLW\ LQ WKH FRQWH[W RI UHVRQDQW LQWHUDFWLRQ WKHRU\f ([SHULPHQWDO UHVXOWV IRU *& *& DQG *& DUH VKRZQ LQ ILJn XUHV Df WKURXJK Ff DQG 7KH UHVXOWV DUH YHU\ VLPLODU WR WKH +] DQG +] H[SHULPHQWV ZLWK WKH H[FHSWLRQ WKDW WKHUH LV DOPRVW QR LGHQWLn ILDEOH VHFRQGKDUPRQLF DPSOLWXGH LQ WKH IUHTXHQF\ VSHFWUXP QRU LQ WKH ZDYHQXPn EHU VSHFWUXP IRU WKH *& H[SHULPHQW ,Q IDFW WKLV LV WKH ILUVW SHUVSHFWLYH YLHZ RI WKH ZDYHQXPEHU VSHFWUXP LQ ZKLFK DOPRVW QR GLUHFWLRQDO HQHUJ\ VSUHDGLQJ LV SUHVHQW ([SHULPHQW *& KDG WKH VPDOOHVW YDOXH RI N46 RI WKH ZDYHWUDLQV IRU ZKLFK WKH V1/6 HTXDWLRQ LV YDOLGf )RU WKH +] H[SHULPHQWV WKH PRVW XQVWDEOH VLGHEDQGV DQG WKH PD[LPXP VSUHDGLQJ RI WKH HQHUJ\ DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV DUH LQ UHDVRQDEOH DJUHHPHQW 1RWH WKDW LQ WKH ZDYHQXPEHU SHUn VSHFWLYH YLHZV RI ILJXUHV DQG WKH VLGHEDQGV JURZ FRQVLGHUDEO\ ,Q IDFW WKHLU PDJQLWXGH LQ ILJXUH LV DERXW RQHWKLUG WKDW RI WKH SULPDU\ ZDYHYHFWRU 7KH fFULVVFURVVf HIIHFW LV SUHVHQW DOVR 5HFDOO WKDW WKHVH VSHFWUD ZHUH FRPSXWHG IURP LPDJHV WDNHQ FP GRZQVWUHDP DV RSSRVHG WR WKH RWKHU H[SHULPHQWV ZKLFK ZHUH UHFRUGHG DW FP 7KLV DSSDUHQW VORZHU VSDWLDO GHYHORSPHQW LV FRQVLVWHQW ZLWK WKH DQG +] FDVHV ZKLFK ZH H[SHFW VKRXOG RFFXU PRUH TXLFNO\ LQ VSDFH DQG GRf DQG WKH +] ZDYHWUDLQ ZKLFK ZH NQRZ ZLOO RFFXU PRUH TXLFNO\ EHn FDXVH LWV HYROXWLRQ UHVRQDQFHf RFFXUV DW VHFRQG RUGHU 7KH +] :DYHWUDLQ :LOWRQnV 5LSSOHV $V VKRZQ LQ ILJXUH +] OLHV RQ D ERXQGDU\ LQ SDUDPHWHU VSDFH RI WKH 1/6 HTXDWLRQ )RU IUHTXHQFLHV JUHDWHU WKDQ +] WKH 1/6 HTXDWLRQ SUHGLFWV DQ XQVWDEOH UHJLRQ IRU VXIILFLHQWO\ GHHS ZDWHUf :DYHWUDLQV ZLWK D IUHTXHQF\ OHVV WKDQ +] DQG JUHDWHU WKDQ DERXW +] DUH VWDEOH DV UHJDUGV WKH 1/6 HTXDn WLRQ :LOWRQfV ULSSOHV D +] ZDYHWUDLQ IRU GHHSZDWHU ZLWK D VXUIDFH WHQVLRQ

PAGE 73

IUHTXHQF\ +]f )LJXUH 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *&

PAGE 74

n FUUIf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHn JLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 75

n FP Of )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHn JLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 76

n FP f )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 'LVSHUVLRQ UHODWLRQ f RI WKH V1/6 HTXDWLRQ WKH UHn JLRQ RI VSUHDGLQJ f DQG WKH PRVW XQVWDEOH VLGHEDQGV ;f DV SUHGLFWHG E\ WKH OLQHDU VWDELOLW\ DQDO\VLV

PAGE 77

FRHIILFLHQW RI G\QFPf LV D GHJHQHUDWH WKUHHZDYH LQWHUQDOf UHVRQDQFH ZKLFK RFFXUV DW VHFRQG RUGHU ,Q DGGLWLRQ WKH VHFRQG KDUPRQLF +]f UHSUHVHQWV D SDUDPHWULF ERXQGDU\ LQ ULSSOH G\QDPLFV ,W LV WKH ORZIUHTXHQF\ ERXQGDU\ DW ZKLFK UHVRQDQW LQWHUDFWLRQ WKHRU\ QR ORQJHU DGPLWV WULDGV 7KHUHIRUH :LOWRQnV ULSSOHV DUH D YHU\ XQVWDEOH ZDYHWUDLQ 7KH SDUDEROLFVKDSHG GLUHFWLRQDO VSUHDGLQJ DV SUHGLFWHG E\ WKH V1/6 HTXDWLRQ LV QR ORQJHU DSSOLFDEOH ,W LV H[SHFWHG WKDW VHFRQG KDUPRQLF +]f UHVRQDQFH ZLOO GRPLQDWH WKH HYROXWLRQ )RXU H[SHULPHQWV ZHUH FRQGXFWHG IRU :LOWRQnV ULSSOHV DQG WKH DPSOLWXGHIUHn TXHQF\ VSHFWUD DUH SUHVHQWHG LQ ILJXUH 7KH VHFRQG KDUPRQLF ZDV SUHVHQW LQ DOO RI WKH VSHFWUD DQG DGMDFHQW IUHTXHQFLHV ZHUH DOVR H[FLWHG DV WKH HQHUJ\ VSUHDG GLUHFWLRQDOO\ $V LQ WKH SUHYLRXV H[SHULPHQWV WKH ZLGWK RI WKH SHDN DW +] LQ WKH IUHTXHQF\ VSHFWUDf LQFUHDVHG DV ZDYHPDNHU VWURNH ZDV LQFUHDVHG )RU :LOWRQnV ULSSOHV WKLV SKHQRPHQRQ DOVR RFFXUUHG IRU WKH +] VHFRQG KDUPRQLF ,Q WKH *& H[SHULPHQW VKRZQ LQ ILJXUH Gf DW OHDVW KDUPRQLFV DUH LGHQWLILDEOH $OVR LQ ILJXUH Gf EDFNJURXQG ZDYHV ZKLFK ZHUH fIODW LQ WKH RWKHU VSHFWUD DUH VHHQ WR KDYH EHHQ H[FLWHG EXW DW D VLJQLILFDQWO\ OHVV HQHUJHWLF OHYHO ,Q ILJXUHV WKURXJK ZH SUHVHQW WKH FRQWRXU PDSV DQG SHUVSHFWLYH YLHZV RI WKH ZDYHQXPEHU VSHFWUD )LUVW QRWH WKDW SDUDEROLFVKDSHG VSUHDGLQJ GRHV QRW RFFXU DOWKRXJK VLJQLILFDQW VSUHDGLQJ GRHV RFFXU LQ H[SHULPHQW *&f ,Q ILJXUH QRWLFH WKH PDJQLWXGH RI WKH VHFRQG KDUPRQLF LQ WKH SHUVSHFWLYH YLHZ ,W LV DOUHDG\ DSSURDFKLQJ WKH VL]H RI WKH LQSXW ZDYH 7KLV LV LQ GLVDJUHHPHQW ZLWK WKH IUHTXHQF\ VSHFWUXP IRU WKLV H[SHULPHQW ILJXUH Ef ZKLFK VKRZV DQ LQn FUHDVH LQ DPSOLWXGH RI WKH VHFRQG KDUPRQLF EXW QRW WR WKLV H[WHQW ,Q IDFW QRQH RI WKH IUHTXHQF\ VSHFWUD VKRZ WKDW WKH PDJQLWXGH RI WKH +] ZDYHV JURZ WR WKH VL]H RI WKH +] ZDYHV 5HPHPEHU KRZHYHU WKDW WKH IUHTXHQF\ VSHFWUD DUH IURP SRLQW PHDVXUHPHQWV DW FP ZKLOH WKH VSDWLDO LQIRUPDWLRQ FRYHUV DQ DUHD DERXW

PAGE 78

IUHTXHQF\ +]f )LJXUH 7KH DPSOLWXGHIUHTXHQF\ VSHFWUD IRU H[SHULPHQWV Df *& Ef *& Ff *& DQG Gf *&

PAGE 79

P n FPf + P n FP rf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 80

P n FQIf n FQIf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 81

P n FQIf ,Q n FP /f )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 82

n FP rf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 83

FP E\ FP EHJLQQLQJ DW FP GRZQVWUHDP 7KXV WKH IUHTXHQF\ VSHFWUD GR QRW FRQWDLQ DK\ VSDWLDO LQIRUPDWLRQ DQG WKH ZDYHQXPEHU VSHFWUD FRQWDLQ QR WHPn SRUDO LQIRUPDWLRQ 6R LW LV QRW VXUSULVLQJ WKDW WKH\ GR QRW DJUHH LQ WKLV UHVSHFW HVSHFLDOO\ VLQFH WKHVH ZDYHWUDLQV DUH HYROYLQJ LQ VSDFH DQG PRUH VORZO\ LQ WLPHf ,Q ILJXUH WKH ILUVW DQG VHFRQG KDUPRQLFV DUH VKRZQ WR EH RI FRPSDUDEOH PDJQLWXGH E\ WKH ZDYHQXPEHU VSHFWUXP 1XPHULFDO VPHDULQJ LV SUHVHQW DJDLQ DV LV VHHQ LQ ILJXUHV WKURXJK ,Q ILJXUH WKH GLUHFWLRQDO VSUHDGLQJ KDV RFFXUUHG IRU WKH ILUVW WKUHH KDUPRQLFV DORQJ DQ DSSDUHQWO\ DOPRVW VWUDLJKW OLQH SHUSHQGLFXODU WR WKH LQSXW ZDYHYHFWRUf 7KH +] :DYHWUDLQ $FFRUGLQJ WR WKH 1/6 HTXDWLRQ DQ LQSXW IUHTXHQF\ RI +] LV D VWDEOH ZDYHWUDLQ 1RWH WKDW IRU FOHDQ GHHS ZDWHU IUHTXHQFLHV OHVV WKDQ +] WKURXJK +] DUH VWDEOH 5HIHUULQJ DJDLQ WR ILJXUH DORQJ FXUYH & FKDQJHV VLJQ DQG XSRQ FURVVLQJ WKLV FXUYH WRZDUG ORZHU ZDYHQXPEHUV WKH UHJLRQ LV DJDLQ %HQ MDPLQ)HLU XQVWDEOH ,Q ILJXUH WKH DPSOLWXGHIUHTXHQF\ VSHFWUD DUH SUHVHQWHG IRU H[SHULPHQWV *& *& DQG *& ,Q ILJXUHV D DQG E WKH VHFRQG KDUPRQLF DQG WKH VHFRQG WKLUG DQG IRXUWK KDUPRQLFV KDYH GLVWLQFW RUn GHUHG SHDNPDJQLWXGHV UHVSHFWLYHO\ +RZHYHU LQ ILJXUH Ff WKH PDJQLWXGH RI WKH WKLUG KDUPRQLF KDV VXUSDVVHG WKH PDJQLWXGH RI WKH VHFRQG KDUPRQLF ,Q ILJXUHV WKURXJK ZH SUHVHQW WKH ZDYHQXPEHU VSHFWUD IRU WKHVH WKUHH H[SHULPHQWV 1RWLFH WKH SUHVHQFH RI D VLJQLILFDQW fFULVVFURVV HIIHFW UHPLQLVn FHQW RI WKH QXPHULFDO VPHDULQJ RI ILJXUH Gf 7KH +] ZDYHYHFWRUV LQ ILJXUHV DQG VKRZ QR RWKHU GLUHFWLRQDO VSUHDGLQJ RI HQHUJ\ LQ DJUHHPHQW ZLWK WKH WKHRU\ +RZHYHU LQ ILJXUH ZH VHH WKH GUDPDWLF HPHUJHQFH RI D GLUHFWLRQDOO\ VSUHDG WKLUG KDUPRQLF ZKRVH FHQWUDO SHDN LV DERXW RQHKDOI WKH SHDN RI WKH SULn PDU\ ZDYH ,Q IDFW WKH VSUHDGLQJ LV SUHGLFWHG IDLUO\ ZHOO E\ WKH GLVSHUVLRQ UHODWLRQ

PAGE 84

IUHTXHQF\ +]f )LJXUH 7KH DPSOLWXGHIUHTXHQFY VSHFWUD IRU H[SHULPHQWV Df *& Ef *& DQG Ff *&

PAGE 85

+ P n FQIf n FQIf )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 86

L P n FQIf n FP f )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *&

PAGE 87

n FP Of )LJXUH &RQWRXU PDS RI WKH DPSOLWXGHZDYHQXPEHU VSHFWUXP VHH LQVHW IRU D SHUVSHFWLYH YLHZf IRU WKH +] ZDYHWUDLQ RI H[SHULPHQW *& 7KHRUHWLFDO f SUHGLFWLRQ RI WKH V1/6 HTXDWLRQ IRU D +] ZDYHWUDLQ

PAGE 88

RI WKH V1/6 HTXDWLRQ ZKLFK KDV EHHQ VXSHUSRVHG RQ WKH ILJXUH ,W DSSHDUV WKDW WKH +] WKLUG KDUPRQLFf LV UHVRQDWLQJ ZLWK WKH SULPDU\ ZDYH E\ WKLUGKDUPRQLF UHVRQDQFH 7KXV WKH H[SODQDWLRQ RI WKH ODUJH WKLUG KDUPRQLF IUHTXHQF\ SHDN LQ ILJXUH F ,Q IDFW WKH SKRWRJUDSK VKRZQ LQ ILJXUH FOHDUO\ VKRZV WKH SUHVn HQFH RI WKH WKLUG KDUPRQLF 7KHRUHWLFDOO\ WKLUGKDUPRQLF UHVRQDQFH VKRXOG RFFXU IRU DQ +] ZDYHWUDLQ DQG D +] ZDYHWUDLQ $SSDUHQWO\ WKLV LV D FDVH RI GHWXQHG WKLUGKDUPRQLF UHVRQDQFH 0F*ROGULFN f SUHVHQWHG UHVXOWV ZKLFK VKRZ WKDW WKH UDWLR RI DQ +] UHVSRQVH WR DQ +] UHVSRQVH KLV SHDN UHVSRQVHf LV DERXW b +LV UHVXOWV JLYH D UDWLR RI WKH +] UHVSRQVH WR WKH +] UHVSRQVH WKH WKHRUHWLFDO WKLUGKDUPRQLF UHVRQDQFHf RI DERXW UF 7KHUHIRUH LW LV VRPHZKDW VXUSULVLQJ WKDW WKH PDJQLWXGH RI WKH +] ZDYHWUDLQ JUHZ VR ODUJH

PAGE 89

&+$37(5 6800$5< $1' &21&/86,216 2) 3$57 ,Q WKH SUHFHGLQJ VHFWLRQV ZH KDYH LQYHVWLJDWHG D SUHYLRXVO\ XQH[SORUHG LQVWDn ELOLW\ RI *& ZDYHV ,W UHSUHVHQWV D SODXVLEOH PRGHO RI WKH LQVWDELOLWLHV RI ULSSOH ZDYHWUDLQV JHQHUDWHG PHFKDQLFDOO\ LQ D ZLGH ODERUDWRU\ FKDQQHO 7KH VWDWLRQDU\ 1/6 PRGHO SUHGLFWV WKH GLUHFWLRQDO VSUHDGLQJ RI DPSOLWXGH UHDVRQDEO\ ZHOO $OVR LW SURYLGHV D PHFKDQLVP E\ ZKLFK HQHUJ\ LV DYDLODEOH DW YDULRXV DQJOHV VR WKDW QRQFROOLQHDU WULDG DQG TXDUWHW UHVRQDQFHV FDQ RFFXU 7KUHH VHWV RI ZDYHWUDLQV ZLWK IUHTXHQFLHV RI DQG +] ZKLFK DUH LQ WKH V1/6 XQVWDEOH UHJLPH DUH VKRZQ WR GLVSOD\ WKLV LQVWDELOLW\ 8VLQJ ZDYHQXPEHU VSHFWUD DOO RI WKHVH ZDYHWUDLQV DUH VKRZQ WR GLUHFWLRQDOO\ VSUHDG WKHLU DPSOLWXGH DORQJ D GLVSHUVLRQ FXUYH DV SUHGLFWHG E\ DVVXPLQJ OLQHDU PRGXODWLRQV RI WKH V1/6 HTXDWLRQ (QHUJ\ DSSHDUV LQ WKH YLFLQLW\ RI WKH PRVW XQVWDEOH VLGHEDQGV $V QRQn OLQHDULW\ LQ WKH ZDYHILHOG LQ LQFUHDVHG WKLV VSUHDGLQJ RI HQHUJ\ LQFUHDVHV :LOWRQnV ULSSOHV +] IRU FOHDQ GHHS ZDWHUf IRU ZKLFK D GHJHQHUDWH WKUHH ZDYH LQWHUQDOf UHVRQDQFH H[LVWV UHVRQDWHV ZLWK LWV VHFRQG KDUPRQLF DQG ERWK VSUHDG WKHLU HQHUJ\ GLUHFWLRQDOO\ KRZHYHU WKH WUDQVIHU RI HQHUJ\ LV DORQJ D SDWK SHUSHQGLFXODU WR WKH LQSXW ZDYHYHFWRU LQ WKH ZDYHQXPEHU SODQH ([SHULPHQWV ZLWK +] ZDYHWUDLQV ZKLFK DUH WKHRUHWLFDOO\ VWDEOH DFFRUGLQJ WR WKH 1/6 HTXDWLRQ DUH VKRZQ WR UHPDLQ VWDEOH XQWLO WKLUG KDUPRQLF UHVRQDQFH RFFXUV 7KHQ WKH WKLUG KDUPRQLF ZKLFK LV QRZ D IUHH ZDYH H[KLELWV WKH V1/6 LQVWDELOLW\ DQG VSUHDGV LWV DPSOLWXGH DFFRUGLQJO\ 2QH SRVVLEOH H[SODQDWLRQ RI ZK\ WKH DQG +] ZDYHV

PAGE 90

UHVRQDWH ZKHQ WKH WKHRU\ SUHGLFWV +] DQG +] LV WKDW RI GHWXQHG UHVRn QDQFH $V PHQWLRQHG HDUOLHU RQH YHU\ LPSRUWDQW SKHQRPHQRQ QHJOHFWHG HQWLUHO\ E\ WKH GHULYDWLRQ RI WKH 1/6 HTXDWLRQ LV YLVFRVLW\ +HUHLQ YLVFRXV HIIHFWV SUHFOXGH DQ\ DWWHPSW WR VHH ZKHWKHU UHFXUUHQFH LV SUHVHQW LQ RXU H[SHULPHQWV $OVR YLVFRXV HIIHFWV KDPSHU DQDO\WLF FRPSDULVRQV EHWZHHQ H[SHULPHQW DQG WKHRU\ )XUWKHU H[SHULPHQWV DUH UHTXLUHG LQ ZKLFK VSDWLDO GLVRUGHU LV LQYHVWLJDWHG LQ WKH SUHVHQFH RI WULDGV IRUFHG WR RFFXU E\ ZDYH VHHGLQJf 2WKHU UHODWHG H[SHULn PHQWV LQFOXGH PRGXODWLQJ WKH ZDYHPDNHU LQ WLPH SUREOHPV DULVH EHFDXVH RI WKH GLIIHUHQFH ZDYHV JHQHUDWHG E\ WKH ZDYHPDNHU HVSHFLDOO\ LI WZR ZDYHV DUH VXSHUn SRVHG WR GULYH WKH ZDYHPDNHU DQG WKXV WKH PRGXODWLRQf DQG WKH FDVH LQ ZKLFK ILQLWHZnDWHU GHSWK HIIHFWV DUH PRUH VLJQLILFDQW LH PHDQ ORQJZDYH PRWLRQ LV VLJn QLILFDQWf )LQDOO\ TXDQWLWDWLYH PHDVXUHPHQWV RI WKH SKHQRPHQRQ IRU XVH LQ FRPSDULVRQ WR QXPHULFDO VLPXODWLRQV ZLWK OLQHDU YLVFRVLW\ LQFOXGHG ZRXOG EH XVHIXO +RZHYHU EHIRUH TXDQWLWDWLYH PHDVXUHPHQWV FDQ EH PDGH WZR LPSURYHPHQWV ZRXOG EH EHQHn ILFLDO )LUVW WKH ZDYH JDXJH SUREH VKRXOG EH UHSODFHG E\ D QRQLQWUXVLYH ODVHU JDXJH WKLV LV FXUUHQWO\ EHLQJ GHYHORSHGf 6HFRQG D EHWWHU XQGHUVWDQGLQJ RI WKH OLJKWLQJ XVHG WR UHPRWHO\ VHQVH WKH ZDYHILHOG DORQJ Z LWK D FDOLEUDWLRQ RI WKH HQWLUH PHWKRG RI REWDLQLQJ WKH ZDYHQXPEHU VSHFWUXP LV UHTXLUHG

PAGE 91

&+$37(5 ,1752'8&7,21 72 7+5((:$9( 5(621$1&( 3$57 &KDSWHUV WKURXJK DUH HVVHQWLDOO\ WKH UHVHDUFK SDSHU E\ +DPPDFN 3HUOLQ DQG +HQGHUVRQ WR DSSHDU f 7KLV PDWHULDO ZDV SUHSDUHG SULRU WR WKH LQVWDOODn WLRQ RI WKH KLJKVSHHG LPDJLQJ V\VWHP XVHG LQ WKH VWXG\ UHSRUWHG LQ &KDSWHUV WKURXJK f :DYHV IRU ZKLFK ERWK JUDYLWDWLRQ DQG VXUIDFH WHQVLRQ DUH LPSRUWDQW DUH XELTXLn WRXV RQ WKH RFHDQ VXUIDFH 7KHVH JUDYLW\FDSLOODU\ ZDYHV RU VLPSO\ fULSSOHVf KDYH W\SLFDO IUHTXHQFLHV LQ WKH UDQJH RI DSSUR[LPDWHO\ +] DQG OHQJWKV RI DSSUR[Ln PDWHO\ PP 5HODWLYH WR ORQJHU JUDYLW\LQGXFHG ZDYHV ULSSOHV KDYH UHFHLYHG OLWWOH DWWHQWLRQ LQ RFHDQRJUDSK\ +RZHYHU UHFHQW LQWHUHVW LQ UHPRWH VHQVLQJ RI WKH VHD VXUIDFH ZLWK VDWHOOLWHEDVHG UDGDU KDV IRFXVHG QHZ DWWHQWLRQ RQ ULSSOHV 5LSSOH ZDYHOHQJWKV DUH FRPSDUDEOH WR WKRVH RI KLJKIUHTXHQF\ UDGDU ZDYHV FDXVLQJ WKHP WR SOD\ D PDMRU UROH LQ WKH EDFNVFDWWHU RI UDGDU ZDYHV E\ WKH RFHDQ VXUIDFH ,W LV VRPHZKDW SDUDGR[LFDO WKDW RFHDQRJUDSKLF PHDVXUHPHQWV RQ JOREDO VFDOHV LV LPn SDFWHG VR IXQGDPHQWDOO\ E\ VXUIDFH ZDYHV ZLWK WKH VPDOOHVW RI VFDOHV 5LSSOH G\QDPLFV H[KLELW D YDULHW\ RI LQWHUHVWLQJ SKHQRPHQD WKDW DUH JHQHULF WR PDQ\ QRQOLQHDU G\QDPLFDO V\VWHPV 2QHGLPHQVLRQDO SHULRGLF ZDYHWUDLQV DUH IUDXJKW ZLWK LQVWDELOLWHV ZKLFK RFFXU TXLFNO\ ZKHQ ULSSOHV ZLWK VHQVLEOH DPSOLWXGHV DUH JHQHUDWHG PHFKDQLFDOO\ LQ D ODERUDWRU\ FKDQQHO 7KH RQHGLPHQVLRQDO ZDYHWUDLQV HYROYH UDSLGO\ LQWR WZRGLPHQVLRQDO VXUIDFH SDWWHUQV ZKLFK FDQ DSSHDU YHU\ LUUHJXODU +HUHLQ ZH UHIHU WR ZDYHV DV RQH RU WZRGLPHQVLRQDO DFFRUGLQJ WR

PAGE 92

ZKHWKHU WKHLU VXUIDFH SDWWHUQV DUH RQH RU WZRGLPHQVLRQDO 7KHLU FRUUHVSRQGLQJ YHORFLW\ ILHOGV DUH RQH GLPHQVLRQ KLJKHUf -Q 3DUW ZH LQYHVWLJDWHG RQH RI WKHVH LQVWDELOLWLHV ZKLFK KDG EHHQ XQH[SORUHG SUHYLRXVO\ 7KHVH LQVWDELOLWLHV DUH H[DPn LQHG KHUHLQ H[SHULPHQWDOO\ DQG DQDO\WLFDOO\ IURP WKH SRLQW RI YLHZ RI UHVRQDQW LQWHUDFWLRQ WKHRU\ 57f 7KHRUHWLFDO UHVXOWV LQGLFDWH WKDW ULSSOH ZDYHWUDLQV ZLWK IUHTXHQFLHV JUHDWHU WKDQ +] RQ D SHUIHFWO\ FOHDQ VXUIDFHf FDQ H[FLWH UHVRQDQW WULDG LQWHUDFWLRQV RWKHU WKDQ WKH VSDWLDO LQVWDELOLW\ GLVFXVVHG LQ 3DUW TXDUWLF UHVRQDQFHV DUH WKH ILUVW LQGLFDWHG IRU ZDYHWUDLQV ZLWK IUHTXHQFLHV OHVV WKDQ +] ([SHULPHQWV DUH SUHVHQWHG IRU ZDYHWUDLQV LQ WKH UHVRQDQWWULDG UHJLPH VLQFH WKHVH GDWD DUH PRUH GHILQLWLYH DQG DQDO\WLFDO UHVXOWV DUH PRUH UHDGLO\ DYDLOn DEOH 7KHVH ZDYHWUDLQV DUH JHQHUDWHG ZLWK DQG ZLWKRXW EDFNJURXQG SHUWXUEDWLRQV ZKLFK LQFOXGH VPDOOHU ZDYHV ZLWK GLVWLQFW IUHTXHQFLHV DQG VPDOOHU ZDYHV ZLWK D EURDG EDQG RI IUHTXHQFLHV UDQGRP ZDYHVf 7KH PDMRU FRQFOXVLRQV IURP WKHVH H[SHULPHQWV DUH DV IROORZV )LUVW ZH ILQG WKDW D VHOHFWLRQ PHFKDQLVP H[LVWV ZKLFK FDXVHV FHUWDLQ WULDGV IURP D SRVVLEOH FRQWLQXXP WR GRPLQDWH WKH HYROXWLRQ RI D ULSSOH ZDYHWUDLQ 6HFRQG ZH VKRZ WKDW WKLV VHOHFWLRQ UHVXOWV IURP D fVHHGLQJ RI ORZIUHTXHQF\ ZDYHVf LQ WKH WULDG FRQWLQXXP E\ GLIIHUHQFH LQWHUDFWLRQV EHWZHHQ WKH JHQHUDWHG ZDYHWUDLQ DQG KLJKIUHTXHQF\ SHUWXUEDWLRQV 7KHVH SHUWXUEDWLRQV PXVW KDYH GLVWLQFW IUHTXHQFLHV WKHLU DPSOLWXGHV PD\ EH DV VPDOO DV WKDW RI WKH JHQHUDWHG ZDYH $OWKRXJK D WKHRUHP E\ +DVVHOPDQQ f LV QRW YLRODWHG WKH H[LVWHQFH RI WKLV VHOHFWLRQ PHFKDQLVP LV FRQWUDU\ WR H[SHFWDWLRQV EHFDXVH WKH GLIn IHUHQFH LQWHUDFWLRQV RFFXU DW KLJKHURUGHU WKDQ WKH WULDG LQWHUDFWLRQV DQG \HW WKH\ GHWHUPLQH WKH HYROXWLRQ RI WKH ZDYHILHOG 7KLUG ZH GHPRQVWUDWH D F\FOLQJ RI ZDYH HQHUJ\ DPRQJ WKH H[FLWHG PHPEHUV RI D ZDYH WULDG GXULQJ WKHLU VSDWLDO HYROXWLRQ ,QGHHG WKLV LV WKH SULPDU\ PHFKDQLVP ZH XVH WR GLVWLQJXLVK UHVRQDQW IURP QRQn UHVRQDQW LQWHUDFWLRQVf )LQDOO\ ZKHQ D ULSSOH ZDYHWUDLQ LV JHQHUDWHG DORQJ ZLWK D ZLGH VSHFWUXP RI UDQGRPZDYH SHUWXUEDWLRQV WKHUH LV QR VHOHFWLRQ DQG WKH HQWLUH

PAGE 93

FRQWLQXXP RI DGPLVVLEOH WULDGV LV H[FLWHG LQ D PDQQHU FRQVLVWHQW ZLWK WKH IRUP RI WKH LQWHUDFWLRQ FRHIILFLHQWV IRU D VLQJOH WULDG $Q RXWOLQH RI WKH UHPDLQGHU RI 3DUW LV DV IROORZV ,Q &KDSWHU ZH SUHVHQW D JHQHUDO VXPPDU\ RI 5,7 IROORZHG LQ &KDSWHU ZLWK LWV VSHFLILF DSSOLFDWLRQ WR ULSSOHV IRU UHVRQDQW WULDG LQWHUDFWLRQV ,Q &KDSWHU D EULHI GHVFULSWLRQ RI WKH ODERUDWRU\ IDFLOLWLHV LV SUHVHQWHG 3UHYLRXV H[SHULPHQWDO UHVXOWV RQ WULDG VHOHFWLRQ DUH UHYLHZHG LQ &KDSWHU ,, ,Q &KDSWHU WKLV VHOHFWLRQ SURFHVV LV H[SODLQHG DQG WKH SUHYLRXV H[SHULPHQWV DUH UHLQWHUSUHWHG )LQDOO\ LQ &KDSWHU ZH GHPRQVWUDWH WKH HYROXWLRQ RI D ULSSOH ZDYHWUDLQ LQ WKH SUHVHQFH RI ZKLWH QRLVH

PAGE 94

&+$37(5 5(621$17 ,17(5$&7,21 7+(25< 7KH IXQGDPHQWDO QRWLRQ RI 5,7 ZDV IRUPXODWHG E\ 3KLOOLSV f IRU JUDYLW\ ZDYHV RQ GHHS ZDWHU %HQQH\ f LQWHU DOLRV UHDOL]HG WKH JHQHUDO QDWXUH RI LWV DSSOLFDWLRQ WR G\QDPLFDO V\VWHPV 7KH EDVLF LGHD LV WKDW WKH HIIHFWV RI ZHDN QRQn OLQHDULW\ PD\ EH GRPLQDWHG E\ FHUWDLQ ZDYHZDYH LQWHUDFWLRQV ZKLFK VDWLVI\ fUHVRn QDQFH FRQGLWLRQV $ JHQHUDO RXWOLQH RI 5,7 LV DV IROORZV DOVR VHH 6HJXU f &RQVLGHU D QRQOLQHDU HQHUJ\FRQVHUYLQJ G\QDPLFDO V\VWHP ZKLFK ZH UHSUHVHQW E\ 1Sf f ZKHUH 1 LV D QRQOLQHDU RSHUDWRU [ If LV D VROXWLRQ RI f [ Y\]f LV D SRVLn WLRQ YHFWRU DQG W LV WLPH 6XSSRVH LV DQ HTXLOLEULXP VROXWLRQ RI f WKDW LV QHXWUDOO\ VWDEOH WKHQ LQILQLWHVLPDO GHIRUPDWLRQV IURP WKLV HTXLOLEULXP VWDWH DUH IRXQG E\ OLQHDUL]LQJ f WR ILQG f f :H WKHQ VHHN QRUPDO PRGH VROXWLRQV WR WKH OLQHDU RSHUDWRU / RI f DQG LI / KDV FRQVWDQW FRHIILFLHQWV WKLV DPRXQWV WR VHHNLQJ VROXWLRQV ZLWK WKH IRUP H?SN f [ WXW Df f ZKHUH N LV D ZDYHYHFWRU Z LV WKH ZDYH IUHTXHQF\ DQG D LV DQ DUELWUDU\ DQG FRQVWDQW SKDVH DQJOH 6XEVWLWXWLQJ f LQWR f \LHOGV D GLVSHUVLRQ UHODWLRQ IRU

PAGE 95

WKH OLQHDU SUREOHP -' :Nf f :H UHTXLUH WKDW Z H[LVWV LQ WKH VHQVH WKDW IRU IL[HG N WKHUH LV D FRXQWDEOH VHW RI SRVVLEOH YDOXHV IRU Z DQG WKDW +ANf LV UHDOYDOXHG IRU UHDOYDOXHG N 1RZ UHWXUQ WR f DQG VHHN VPDOOEXWILQLWH GHIRUPDWLRQV IURP WKH HTXLOLEULXP VWDWH E\ PHDQV RI D IRUPDO SRZHU VHULHV RR [ W?ff ; fQSQ[ Wf H e f Q $W OHDGLQJ RUGHU LQ H S? RI f VDWLVILHV f VR L FDQ EH UHSUHVHQWHG E\ D VXSHUSRVLWLRQ RI 0 OLQHDU ZDYHV LH ?W L ; $PHnrP $PHnPf Df P ZKHUH LV WKH FRPSOH[ ZDYH DPSOLWXGH $P LV LWV FRPSOH[ FRQMXJDWH DQG a NP [ f§ XMQLW Ef 7KH ILUVW QRQOLQHDU HIIHFWV DSSHDU DW RUGHU fa ZKHUH f 4S Lf f DQG 4 LV D TXDGUDWLF RSHUDWRU 6XEVWLWXWLQJ f LQWR 4 SURGXFHV WHUPV ZLWK WKH IRUP $@FL $?$H QRAIKf $?$]H f RQ WKH ULJKWKDQG VLGH 5+6f RI f 7KH ILUVW WKUHH WHUPV LQ f FRUUHVSRQG WR VHOILQWHUDFWLRQV RI ZDYH P WKH ILUVW WHUP UHSUHVHQWV D fPHDQf IORZ IRU ZKLOH

PAGE 96

WKH VHFRQG DQG WKLUG WHUPV FRUUHVSRQG WR LWV VHFRQG KDUPRQLF ILUVW VXSHUKDU PRQLFf 7KH RWKHU WZR WHUPV VKRZQ LQ f DQG WKHLU FRPSOH[ FRQMXJDWHV FRUUHn VSRQG WR VXP DQG GLIIHUHQFH ZDYHV EHWZHHQ ZDYHV P O DQG P 7KHUH DUH DQDORJRXV WHUPV IRU DOO RI WKH 0 ZDYHV LQ ff 6XSSRVLQJ WKHVH TXDGUDWLF LQWHUn DFWLRQV GR QRW YDQLVK LGHQWLFDOO\ ZH FDQ H[DPLQH WKH WHUPV RI f WR VHH LI DQ\ RI WKH VXP DQG GLIIHUHQFH ZDYHV DOVR VDWLVI\ WKH GLVSHUVLRQ UHODWLRQ RI f LH GRHV ? s If N s Nf f [ XT s LRfW s N f [ s D}fI %\ f ,I VR WKHQ WKHVH ZDYHV ZLOO OHDG WR VHFXODU WHUPV OLQHDU JURZWKf IRU DQG WKH fWKUHH ZDYHVf RI f DUH VDLG WR IRUP D fUHVRQDQW WULDG (YHQWXDOO\ WKH UHVRQDQW WHUPV ZLOO GRPLQDWH QRQUHVRQDQW WHUPV GXH WR WKHLU VHFXODU JURZWK WKXV WKH QRQn UHVRQDQW WHUPV DUH QHJOHFWHG LQ IXUWKHU FRQVLGHUDWLRQV RI 5,7 )RU ZDWHU ZDYHV :Nf O9Nf VR WKDW ZLWKRXW ORVV RI JHQHUDOLW\ ZH FDQ ZULWH WKH NLQHPDWLF UHVRQDQW FRQGLWLRQV RI f IRU D UHVRQDQW WULDG DV Nf N s N :? f s 2-M Df Ef 7KH H[LVWHQFH RI WULDG UHVRQDQFHV GHSHQGV RQ WKH VSHFLILF G\QDPLFDO V\VWHP GLVn SHUVLRQ UHODWLRQf EHLQJ FRQVLGHUHG ,I WKHUH DUH QR WHUPV RQ WKH 5+6 RI f ZKLFK VDWLVI\ WKH UHVRQDQFH FRQGLWLRQV RI f WKHQ ZH FDQ SURFHHG WR RUGHU H ZKHUH FXELF LQWHUDFWLRQV DUH HQFRXQWHUHG +HUH UHVRQDQW TXDUWHWV RFFXU ZKHQ WKH NLQHPDWLF FRQGLWLRQV N s N N s N Df 8? s 8! &2 s WR Ef DUH VDWLVILHG 8QOLNH WULDG UHVRQDQFHV TXDUWLF UHVRQDQFHV DUH DOZD\V SRVVLEOH IRU

PAGE 97

WKH G\QDPLFDO V\VWHPV FRQVLGHUHG KHUH )RU H[DPSOH D UKRPEXV TXDUWHW DOZD\V H[LVWV LQ ZKLFK XM? X! : FG DQG -N _N_ _NL_ NDf 7KHVH SURFHGXUHV FDQ EH FRQWLQXHG WR KLJKHURUGHU WR ILQG DQDORJRXV FRQGLWLRQV IRU UHVRQDQFHV DW HYHU\ RUGHU LQ e WKRXJK RQH VHOGRP JRHV EH\RQG TXDUWLF UHVRQDQFHV :KHQ UHVRQDQFH RFFXUV D VHSDUDWH DQDO\VLV LV UHTXLUHG WR IROORZ ZDYH HYROXn WLRQ VLQFH WKH VHFXODU WHUPV ZLOO HYHQWXDOO\ GLVRUGHU WKH H[SDQVLRQ RI f 7\SLn FDOO\ WKH ZDYHV LQ D VLQJOH WULDG LH 0 LQ Dff RU D VLQJOH TXDUWHW 0 f DUH VWXGLHG 7ZR FRPPRQ PHWKRGV RI DQDO\VLV DUH Lf WKH PHWKRG RI PXOWLSOH VFDOHV HJ 0F*ROGULFN f DQG LLf YDULDWLRQDO WHFKQLTXHV HJ 6LPPRQV f %RWK PHWKRGV OHDG WR D VHW RI FRXSOHG QRQOLQHDU SDUWLDO GLIIHUHQWLDO HTXDn WLRQV IRU WKH FRPSOH[ ZDYH DPSOLWXGHV 7KHVH HTXDWLRQV DUH VLPLODU IRU DOO G\QDPLn FDO V\VWHPV GLIIHULQJ RQO\ LQ UHDOYDOXHG fLQWHUDFWLRQ FRHIILFLHQWVf


PAGE 98

&+$37(5 5,7 $1' 5,33/(6 7KH OLQHDU GLVSHUVLRQ UHODWLRQ IRU JUDYLW\FDSLOODU\ ZDYHV RQ ZDWHU RI TXLHVFHQW GHSWK K KDV EHHQ NQRZQ VLQFH .HOYLQ HJ VHH 5D\OHLJK DQG WKH UHIHUHQFH FLWHG WKHUHf DQG KDV WKH GLPHQVLRQDOf IRUP RU JN f§ $f WDQK NL f 4 ZKHUH Xf LV WKH UDGLDQ IUHTXHQF\ N LV WKH PDJQLWXGH RI WKH YYDYHYHFWRU J LV WKH JUDYLWDWLRQDO IRUFH SHU XQLW PDVV U LV WKH VXUIDFH WHQVLRQ K LV WKH TXLHVFHQW ZDWHU GHSWK DQG 4 LV WKH PDVV GHQVLW\ RI WKH ZDWHU 7KH NLQHPDWLF SRVVLELOLW\ RI UHVRn QDQFH LV PRVW HDVLO\ IRXQG E\ D JUDSKLFDO SURFHGXUH RXWOLQHG E\ 6LPPRQV f IRU ULSSOHV )LJXUH DIWHU 6LPPRQV f VKRZV WKH JUDSKLFDO VROXWLRQ RI f XVLQJ f ZKHQ WKH ZDYHYHFWRU RI HDFK WULDG LV FROOLQHDU :H ZLOO JHQHUDOn L]H WR WKH QRQFROOLQHDU FDVH IURP WKLV VLPSOHU FDVHf 7KH ILJXUH LV FRQVWUXFWHG DQG LQWHUSUHWHG DV IROORZV )LUVW WKH GLVSHUVLRQ UHODWLRQ RI f LV VKRZQ LQ ZNf VSDFH ZLWK DQ RULJLQ DW ? ,Q WKH FDOFXODWLRQV IRU ILJXUH ZH KDYH WDNHQ FP DQG U G\QFP ZKLFK FRUUHVSRQGV WR YDOXHV LQ WKH H[SHULPHQWV WR EH GHVFULEHG ODWHU DQG IRU FODULW\ RQO\ RQH EUDQFK RI f LV SUHVHQWHG 6HFRQG D SRLQW RQ WKH GLVSHUVLRQ FXUYH FRUUHVSRQGLQJ WR D fWHVW ZDYH LV FKRVHQ DV WKH RULJLQ 2] IRU D JUDSK RI DOO EUDQFKHV RI WKH GLVSHUVLRQ UHODWLRQ 7KH WHVW ZDYH FRUUHVSRQGV WR WKH RQH JHQHUDWHG E\ WKH ZDYHPDNHU LQ WKH H[SHULPHQWV WR IROORZf ,Q ILJXUH D WHVW ZDYH ZLWK D F\FOLF IUHTXHQF\ I WXML +] LV FKRVHQ

PAGE 99

ZKLFK FRUUHVSRQGV WR RQH RI RXU H[SHULPHQWV +HUHLQ ZH ZLOO LGHQWLI\ WKH WHVW ZDYH DV N DQG WRf 7KH LQWHUVHFWLRQ SRLQWV RI WKH WZR GLVSHUVLRQ FXQHV DW $ % DQG & UHSUHVHQW WKH FROOLQHDU UHVRQDQW WULDGV WKDW DUH SRVVLEOH IRU WKH SDUWLFXODU WHVW ZDYH 7KH LQGLYLGXDO PHPEHUV RI HDFK WULDG DUH IRXQG HDVLO\ DV VKRZQ IRU WKH WULDG :KHQ WKH WHVWZDYH IUHTXHQF\ LV ORZHUHG LQ ILJXUH E\ VOLGLQJ GRZQ WKH GLVSHUVLRQ FXUYH WKH WULDGV DW $ DQG % ZLOO HYHQWXDOO\ FRDOHVFH WKHQ GLVDSSHDU OHDYLQJ RQO\ WKH WULDG DW & IRU ORZHU WHVWZDYH IUHTXHQFLHV &RDOHVFHQFH RFFXUV DW D IUHTXHQF\ RI D!r +] IRU D FOHDQ ZDWHU VXUIDFH 7KH VSHFLDO UROH RI WKLV ZDYH IUHTXHQF\ IROORZnV IURP D WKHRUHP E\ +DVVHOPDQQ f $FFRUGLQJ WR WKLV WKHRn UHP LI RQO\ RQH PHPEHU RI D UHVRQDQW WULDG LV SUHVHQW LQLWLDOO\ ZLWK VLJQLILFDQW HQHUJ\ WKHQ LW PXVW KDYH WKH KLJKHVW IUHTXHQF\ LQ WKH WULDG LQ RUGHU WR H[FLWH WKH RWKHU WZR PHPEHUV 6LQFH WKH WHVW ZDYHV LQ WKH H[SHULPHQWV DUH LQSXW E\ WKH ZDYHPDNHU DQG WKH RWKHU WULDG ZDYHV PXVW EH H[FLWHG IURP VPDOOf EDFNJURXQG fQRLVHf +DVVHOPDQQfV WKHRUHP UHTXLUHV WKH WHVW ZDYHV WR KDYH WKH KLJKHVW IUHn TXHQFLHV VR WKDW RQO\ WKH VXP WULDGV RI f DUH SRVVLEOH +HQFH WKH &WULDG RI ILJXUH VKRXOG QRW EH H[FLWHG DQG QR WULDGV VKRXOG EH DYDLODEOH IRU WHVWZDYH IUHTXHQFLHV OHVV WKDQ +] )LJXUH PD\ EH JHQHUDOL]HG WR ZDYHV ZLWK QRQFROOLQHDU ZDYHYHFWRUV E\ URWDWLRQ RI WKH GLVSHUVLRQ FXUYHV DERXW WKH IUHTXHQF\ D[HV :KHQ URWDWLRQ LV SHUn IRUPHG VHH 6LPPRQV f WKH $ DQG ILWULDGV DUH IRXQG WR OLH RQ D FORVHG FXUYH SURYLGLQJ D FRQWLQXXP RI SRVVLEOH WULDGV 7KH PLQLPXP IUHTXHQF\ RI DQ\ ZDYH LQ WKLV FRQWLQXXP LV WKDW RI WKH ORZnHVWIUHTXHQF\ ZDYH LQ WKH FROOLQHDU WULDG LH FXA LQ ILJXUH WKH PD[LPXP IUHTXHQF\ LQ WKH FRQWLQXXP LV DM? DM\f 7KH &WULDG LQ ILJXUH LV IRXQG WR OLH RQ DQ RSHQ FXUYH ZKRVH ORZHVW IUHTXHQF\ LV X!LD!f 7KH FRQFOXVLRQV DERYH UHJDUGLQJ WKH +] SDUDPHWULF ERXQGDU\ IRU FROOLQHDU

PAGE 100

)LJXUH *UDSKLFDO VROXWLRQ RI WKH NLQHPDWLF UHVRQDQFH FRQGLWLRQV DIWHU 6LPPRQV f IRU FROOLQHDU WULDGV RI D +] WHVW ZDYH +HQGHUVRQ DQG +DPPDFN f

PAGE 101

WULDGV UHPDLQ DSSOLFDEOH WR WKH QRQFROOLQHDU FDVH +HQFH WULDGV ZLWK IUHTXHQFLHV DERYH FR Xf VKRXOG EH H[FOXGHG LQ WKH H[SHULPHQWV E\ +DVVHOPDQQnV WKHRUHP +RZHYHU +DVVHOPDQQfV WKHRUHP GRHV QRW GLVDOORZ WKHVH KLJKHUIUHTXHQF\ ZDYHV WR IRUP VXP DQG GLIIHUHQFH ZDYH LQWHUDFWLRQV ZKLFK DUH QRQUHVRQDQWf 7KH GLVWLQFW IUHTXHQF\ ERXQGDU\ RI Zr +] IRU WULDGV DOVR KDV RWKHU VSHn FLDO VLJQLILFDQFH LW LV WKH VHFRQG KDUPRQLF RI DQRWKHU LPSRUWDQW DQG ZHOONQRZQ XQVWDEOH ZDYHWUDLQ ILUVW GLVFRYHUHG E\ +DUULVRQ f DQG H[SODLQHG E\ :LOWRQ f f:LOWRQfV ULSSOHVff KDYH D F\FOLF IUHTXHQF\ RI +] RQ D FOHDQ VXUn IDFH WKH\ DUH XQVWDEOH WR WKHLU VHFRQG KDUPRQLF ZKLFK DOVR VDWLVILHV WKH GLVSHUVLRQ UHODWLRQ RI f 7KLV LQVWDELOLW\ PD\ EH FRQVLGHUHG D GHJHQHUDWH UHVRQDQW WULDG VXFK WKDW Nf N N N Nr DQG FY? m‘ Z X WRr +DVVHOPDQQnV WKHRUHP LV QRW DSSOLFDEOH WR WKLV VSHFLDO FDVHf ,Q IDFW D FRXQWDEOH VHW RI XQVWDEOH ULSSOHV H[LVWV ZKRVH ZDYHQXPEHUV DUH JLYHQ E\ Naf JJLQ Q HDFK LV XQVWDEOH WR LWV XK KDUPRQLF 7KH WULDG LQWHUDFWLRQ FRHIILFLHQWV IRU ULSSOHV ZHUH GHULYHG E\ 6LPPRQV f DQG DUH JLYHQ E\ NP A


PAGE 102

fn YDULHV VPRRWKO\ ZLWK WKH IUHTXHQF\ RI DGPLVVLEOH WULDGV KHQFH WKHUH LV QR VWURQJ VHQVLWLYLW\ WR D VLQJOH IUHTXHQF\ $OO WKUHH LQWHUDFWLRQ FRHIILFLHQWV DUH VKRZQ LQ ILJXUH Ef IRU D +] WHVW ZDYH (DFK FRHIILFLHQW YDULHV VPRRWKO\ DQG KDV DQ H[WUHPXP DW D QHDUVXEKDUPRQLF IUHTXHQF\ RI +] 7KLV ODFN RI VHQVLWLYLW\ WR DQ\ VSHFLILF IUHTXHQF\ OHG 6LPPRQV f WR FRQMHFWXUH WKDW DOO ZDYHV LQ WKH EDQG RI DGPLVVLEOH IUHTXHQFLHV ZRXOG EH H[FLWHG E\ D WHVW ZDYH 6LQFH YLVFRXV HIIHFWV DUH VLJQLILFDQW IRU ULSSOHV SULPDULO\ GXH WR WKH LQYDULDEOH SUHVHQFH RI VXUIDFH ILOPVf LW LV XVHIXO WR FRQVLGHU WKH ZDYH HTXDWLRQV LQ WKH IRUP RI f ,Q WHUPV RI WKH UHDOYDOXHG ZDYH DPSOLWXGH DP DQG SKDVH f PD\ EH ZULWWHQ DV GcP A tP8P A 8PLWPf f§ -P @8P


PAGE 103

$ Vff )LJXUH 7KHRUHWLFDO LQWHUDFWLRQ FRHIILFLHQWV IRU ULSSOH WULDGV Df
PAGE 104

IRU HDFK RI WKH EDFNJURXQG ZDYHV ,Q H[SHULPHQWV XVLQJ WKH VDPH IDFLOLWLHV DQG SURFHGXUHV DV XVHG KHUHLQ +HQGHUVRQ DQG /HH f IRXQG WKDW WKH ZDWHU VXUn IDFHV \LHOGHG GDPSLQJ FKDUDFWHULVWLFV IRU ULSSOH ZDYHWUDLQV WKDW ZHUH PRGHOOHG ZHOO E\ DVVXPLQJ WKH VXUIDFH WR EH fLQH[WHQVLEOHf /DPE f VR WKDW f ZKHUH Y LV WKH NLQHPDWLF YLVFRVLW\ RI ZDWHU 8VLQJ f DQG f LW LV HDVLO\ VKRZQ WKDW \P KHQFH DFFRUGLQJ WR f $ LV UHDOYDOXHG )XUWKHU D WKUHVKROG DPSOLWXGH LV UHTXLUHG RI WKH JHQHUDWHG ZDYH LQ RUGHU IRU WKH EDFNJURXQG ZDYHV WR JURZ $!f 7KH WKUHVKROG DPSOLWXGH LV PLQLPXP IRU WW DQG IRXQG IURP f WR EH f )LJXUH Ef VKRZV WKH LQLWLDO JURZWK UDWH IRU D +] WHVW ZDYH ZLWK X? PP DQG MW /LNH WKH LQWHUDFWLRQ FRHIILFLHQWV $ YDULHV VPRRWKO\ ZLWK WKH DGPLVVLn EOH WULDG IUHTXHQFLHV DQG KDV D PD[LPXP DW WKH VXEKDUPRQLF IUHTXHQF\ RI WKH JHQHUDWHG ZDYH +HQFH HYHQ ZKHQ YLVFRXV HIIHFWV DUH FRQVLGHUHG WKHUH GRHV QRW DSSHDU WR EH DQ\ VSHFLDO VHQVLWLYLW\ WR D VLQJOH WULDG DPRQJ WKH FRQWLQXXP DYDLOn DEOH

PAGE 105

&+$37(5 (;3(5,0(17$/ )$&,/,7,(6 )25 3$57 7KH H[SHULPHQWV RQ ULSSOHV ZHUH SHUIRUPHG LQ D ODERUDWRU\ IDFLOLW\ HVSHFLDOO\ GHVLJQHG IRU WKHLU VWXG\ 7KHVH VSHFLDO IDFLOLWLHV DQG SURFHGXUHV ZHUH UHTXLUHG WR VWXG\ ULSSOHV H[SHULPHQWDOO\ GXH WR WKHLU YHU\ VPDOO DPSOLWXGHV DQG WKH FRPSOLn FDWHG QDWXUH RI VXUIDFH ILOPV RQ D UHDO DQG VWUDLQLQJ ZDWHU VXUIDFH %RWK WKH SURFHn GXUHV DQG IDFLOLWHV GHYHORSHG WR FRSH ZLWK WKHVH GLIILFXOWLHV KDYH EHHQ GHVFULEHG LQ GHWDLO E\ +HQGHUVRQ DQG /HH f DV ZHOO DV ++ f +HQFH KHUH ZH ZLOO IRFXV RQ RQO\ WKRVH GHWDLOV QRW GHVFULEHG LQ WKH FLWHG UHIHUHQFHV ZKLFK ZHUH VXEVHn TXHQWO\ IRXQG WR EH UHOHYDQW WR ULSSOH H[SHULPHQWV 7KH UHOHYDQFH RI WKHVH GHWDLOV PD\ QRW EH DSSDUHQW WLOO ODWHUf 7KH ULSSOH ODERUDWRU\ DW WKH 8QLYHUVLW\ RI )ORULGD FRQVLVWV RI Lf D ZDYH WDQN ZLWK LQVWUXPHQWSRVLWLRQLQJ V\VWHP LLf ZDYH JHQHUDWRU DQG DVVRFLDWHG HOHFWURQLFV LLLf ZDWHUVXSSO\ V\VWHP LYf ZDYH JDXJH WUDQVGXFHUV ZLWK HOHFWURQLFILOWHULQJ V\Vn WHP Yf WZR VWDQGDORQH FRPSXWHU V\VWHPV YLf DQG D KLJKVSHHG YLGHR V\VWHP ZLWK FRPSXWHU LQWHUIDFH ,WHPV LfLYf ZHUH GHVFULEHG LQ WKH UHIHUHQFHV FLWHG DERYH %ULHIO\ WKH ZDYH EDVLQ ZDV FRQVWUXFWHG RI JODVV DQG PHDVXUHV FP ZLGH FP ORQJ DQG FP GHHS 7KH ZDYHPDNHU SDGGOH FRQVLVWHG RI D VOHQGHU DOXn PLQXP ZHGJH ZKLFK ZDV FP Z LGH DQG ZDV ORFDWHG DVWULGH WKH EDVLQnV ORQJ D[LV 7KH SDGGOH ZDV VXSSRUWHG DERYH WKH ZDWHU VR WKDW WKH TXLHVFHQW ZDWHU VXUIDFH LQWHUFHSWHG WKH ZHGJH QHDU LWV PLGSRLQW $OXPLQXP VLGHZDOOV ZHUH SODFHG LQVLGH WKH JODVV EDVLQ DGMDFHQW WR WKH SDGGOH VR DV WR SURYLGH D WHVWZDYH FKDQQHO WKDW

PAGE 106

ZDV FP ZLGH DQG FP ORQJ 7KH SDGGOH ZDV RVFLOODWHG YHUWLFDOO\ E\ D %UXHO DQG .MDHU 0LQL6KDNHU 7\SH f ZKRVH PRWLRQ ZDV VHUYRFRQWUROOHG ZLWK SRVLn WLRQ IHHGEDFN $ RQHYROW DPSOLWXGH VLJQDO FDXVHG WKH VKDNHU WR PRYH PPf 7KH ZDWHUVXSSO\ V\VWHP SURYLGHG LRQLFDOO\ SXUH ZDWHU ZKLFK ZDV DOVR ILOWHUHG RI RUn JDQLF PDWHULDO DQG SDUWLFXODWH PDWWHU ZLWK VL]HV DERYH SP :DWHU VXUIDFH HOHn YDWLRQV DW IL[HG VSDWLDO ORFDWLRQV Y9R LQ WKH WDQN ZHUH PHDVXUHG DV D IXQFn WLRQ RI WLPH XVLQJ LQ VLWX FDSDFLWDQFH JDXJHV 7KH SUREH GLDPHWHU ZDV PP LQ WKH H[SHULPHQWV RI ++ DQG WKRVH SUHVHQWHG LQ &KDSWHU ,Q WKH H[SHULPHQWV RI &KDSWHUV DQG WKH SUREH GLDPHWHU ZDV UHGXFHG WR PP 7KH ODWWHU SUREH KDG D IODW UHVSRQVH IRU IUHTXHQFLHV XS WR +] ZKHUHDV WKH PP SUREHnV UHVSRQVH ZDV IODW WLOO DERXW +] SDVW ZKLFK WKH VLJQDO DWWHQXDWHG DV WKH IUHTXHQF\ LQFUHDVHG VHH ++ f :DYH DPSOLWXGHV DV VPDOO DV PP ZHUH UHVROYHG E\ WKHVH JDXJHVf 7KH DQDORJ JDXJH VLJQDOV ZHUH ORZSDVV ILOWHUHG EHIRUH SURFHVVn LQJ E\ WKH FRPSXWHU V\VWHPV ,Q WKH H[SHULPHQWV RI ++ ZnKLFK DUH UHYLHZHG LQ &KDSWHU DOO RI WKH VLQXVRLGDO FRPPDQG VLJQDOV WR WKH ZDYH JHQHUDWRU ZHUH SURYLGHG E\ D '(& 0LFUR3'3 FRPSXWHU V\VWHP XVLQJ D 'DWD 7UDQVODWLRQ DQDORJRXWSXW V\VWHP '7f :DYH JDXJH GDWD ZHUH DOVR GLJLWL]HG DQG DQDO\]HG XVLQJ WKLV FRPSXWHU V\VWHP DQG D 'DWD 7UDQVODWLRQ DQDORJLQSXW V\VWHP '7f 'DWD DQDO\VLV ZDV VRPHZKDW OLPLWHG LQ UHVROXWLRQ GXH WKH ELW QDWXUH RI 3'3 V\VWHPV )RU H[DPn SOH ))7fV RI WLPH VHULHV IURP ZDYH JDXJHV LQ WKHVH H[SHULPHQWV ZHUH REWDLQHG ZLWK D IUHTXHQF\ UHVROXWLRQ RI +] ZLWKLQ D EDQG RI +] 0RUH UHFHQWO\ D '(& 9$;VWDWLRQ ,, FRPSXWHU V\VWHP KDV EHHQ LQVWDOOHG LQ WKH ODERUDWRU\ JUHDWO\ HQKDQFLQJ WKH GDWD FROOHFWLRQ DQG DQDO\VLV FDSDELOLWLHV 7KLV ELW V\VWHP FRQWDLQV D '(& DQDORJRXWSXW V\VWHP $$9'$f DQG DQDORJLQSXW V\VWHP $'9'$f DQG ZDV XVHG IRU WKH H[SHULPHQWV UHSRUWHG LQ &KDSWHUV DQG 6RIWZDUH FRQWURO

PAGE 107

RI WKHVH V\VWHPV DV ZHOO DV GDWD DQDO\VLV DQG JUDSKLFDO RXWSXW ZHUH SURYLGHG E\ 6LJQDO 7HFKQRORJ\fV ,QWHUDFWLYH /DERUDWRU\ 6\VWHP 8VLQJ WKLV FRPSXWHU V\VWHP WKH ))7fV RI ZDYH JDXJH GDWD ZHUH UHVROYHG WR D IUHTXHQF\ UHVROXWLRQ RI +] RYHU D EDQG RI +] $OO RI WKH TXDQWLWDWLYH GDWD SUHVHQWHG SUHYLRXVO\ E\ ++ DUH WHPSRUDO LQ QDn WXUH LH WLPH VHULHV DW IL[HG VSDWLDO ORFDWLRQV )URP WKHVH GDWD ZH FDQ REWDLQ TXDQWLWDWLYH LQIRUPDWLRQ LQ WKH IUHTXHQF\ GRPDLQ DQG WHVW WKH NLQHPDWLF UHVRQDQFH FRQGLWLRQV RI Ef DQG Ef :H GLG QRW UHFRUG VSDWLDO GDWD IRU WKH WULDG H[SHULPHQWV IURP ZKLFK D WHVW RI WKH UHVRQDQFH FRQGLWLRQ RQ ZDYHYHFWRUV JLYHQ E\ Df DQG Df FRXOG EH PDGH EHFDXVH WKH KLJKVSHHG LPDJLQJ V\VWHP ZDV QRW \HW FRPSOHWHO\ RSHUDWLRQDO DW WKH WLPH RI WKHVH H[SHULPHQWV +HQFH LW LV GLIILFXOW WR GLVWLQJXLVK UHVRQDQW IURP QRQUHVRQDQW LQWHUDFWLRQV LQ WKH H[SHULPHQWV :H LQIHU UHVRQDQFH IURP G\QDPLFDO DVSHFWV RI ZDYH PRWLRQ VXFK DV WKH F\FOLQJ RI HQHUJ\ DPRQJ ZDYHVf 8OWLPDWHO\ WKLV GDWD ZLOO SURYLGH TXDQWLWDWLYH LQIRUPDWLRQ RQ WKH ZDYHYHFWRU GLVWULEXWLRQV RI VXUIDFH ZDYH SDWWHUQV DQG DOORZ GLUHFW WHVWV RQ WKH UHVRQDQFH FRQGLWLRQV RI Df DQG Df

PAGE 108

&+$37(5 5(9/(: 2) 35(9,286 (;3(5,0(176 21 5,33/( 75,$'6 ++ f SUHVHQWHG D VHULHV RI H[SHULPHQWV RQ ULSSOH WULDGV XVLQJ WHVW ZDYHV ZLWK IUHTXHQFLHV RI +] :LOWRQnV ULSSOHVf +] DQG KLJKHU WKHLU UHVXOWV DQG FRQFOXVLRQV DUH UHYLHZHG KHUH 0RUH UHFHQW LQWHUSUHWDWLRQV RI WKHLU UHVXOWV ZLOO EH GLVFXVVHG LQ &KDSWHU f )LUVW TXDOLWDWLYH VSDWLDO GDWD DUH SUHVHQWHG ZKLFK FRQVLVW RI SKRWRJUDSKV VKRZLQJ WKH ZDYH SDWWHUQV IRU D +] WHVW ZDYH DV LWV LQLWLDO DPSOLWXGH LV YDULHG IURP EHORZ WKH YLVFRXV WKUHVKROG RI f WLOO VXEKDUn PRQLF FURVV ZDYHV IRUP DW WKH ZDYHPDNHU SDGGOH 6HFRQG WLPH VHULHV RI ZDJH JDXJH GDWD DUH SUHVHQWHG DORQJ ZLWK WKHLU SHULRGRJUDPV 7KH DQDORJ JDXJH VLJQDOV ZHUH ORZSDVV ILOWHUHG ZLWK D +] FXWRII IRU UHFRUG OHQJWKV RI V DQG WKHQ GLJLWL]HG DW D UDWH RI +] 7KH SHULRGRJUDPV ZKLFK VKRZ WKH HQHUJ\ GHQVLW\ 5 DV D IXQFWLRQ RI IUHTXHQF\ LQ WKH EDQG +] ZHUH FRPSXWHG XVLQJ ))7nV DQG KDYH D UHVROXWLRQ RI +] 7KH +] :DYHWUDLQ 6SDWLDO 'DWD ,Q RUGHU WR VKRZ TXDOLWDWLYHO\ WKH VSDWLDO HYROXWLRQ RI ULSSOH ZDYHWUDLQV IURP JHQHUDWLRQ WR QHDU H[WLQFWLRQ E\ YLVFRXV GDPSLQJ VSDWLDO YLHZV RI VL[ GLIIHUHQW +] WHVW ZDYHV DUH VKRZQ LQ ILJXUH $FFRUGLQJ WR f N? FPn RU WKH ZDYHOHQJWK /? QN? FP IRU WKLV ZDYHWUDLQf (DFK SKRWRJUDSK SUHVHQWV DQ RYHUKHDG YLHZ ORRNLQJ XS WKH WHVW FKDQQHO WRZDUG WKH ZDYHPDNHU 7KH YHUWLFDO VWURNH DPSOLWXGH V RI WKH ZDYHPDNHU LV YDULHG IURP NV? LQ ILJXUH Df WR NVL LQ ILJXUH If 7KH SDUDPHWHU NV? LV UHODWHG WR WKH VWUHQJWK RI QRQ

PAGE 109

OLQHDULW\ LQ ZDYH JHQHUDWLRQ ZKLFK LV DOVR UHODWHG WR WKH QRQOLQHDULW\ RU VWHHSQHVV LQ WKH SURJUHVVLQJ WHVW ZDYHf 7KH ZDYH SDWWHUQ LQ ILJXUH Df UHPDLQV RQHGLPHQVLRQDO IURP JHQHUDWLRQ WR H[WLQFWLRQ E\ YLVFRVLW\ WKHUH LV QR YLVLEOH HYLGHQFH RI LQVWDELOLWLHV $V WKH DPSOLn WXGH RI WKH WHVW ZDYH LV LQFUHDVHG LQ ILJXUH Ef WKURXJK ILJXUH Hf WZR GLPHQVLRQDO LQVWDELOLWHV DSSHDU WLOO WKH ZDYH SDWWHUQ EHFRPHV TXLWH LUUHJXODU LQ ILJXUHV Gf DQG Hf 7KH LUUHJXODU UHJLRQ LV ILQLWH LQ H[WHQW EHJLQQLQJ D IHZ ZDYHOHQJWKV IURP WKH ZDYHPDNHU SDGGOH DQG GHFOLQLQJ DIWHU DERXW WZHQW\ ZDYHn OHQJWKV +HQFHIRUWK WKH ZDYH SDWWHUQ LV PRUH UHJXODU EXW WZRGLPHQVLRQDOLW\ SHUn VLVWV LQ WKH IRUP RI VKRUWFUHVWHG ZDYHV XQWLO WKH\ DUH H[WLQJXLVKHG E\ YLVFRVLW\ 7KHVH VKRUWFUHVWHG ZDYHV DSSHDU DV D SDWWHUQ RI RIIVHW OLJKW DQG GDUN EDQGV LQ WKH SKRWRJUDSKV )LQDOO\ QRQOLQHDULW\ LQ ZDYH JHQHUDWLRQ LV VR VWURQJ LQ ILJXUH If WKDW FURVV ZDYHV DSSHDU DW WKH ZDYHPDNHU 7KHVH FURVV ZDYHV KDYH FUHVWV QRUPDO WR WKH SDGGOH WKDW YLVLEO\ H[WHQG IRU DW OHDVW WHQ ZDYHOHQJWKV GRZQ WKH FKDQQHO 7KH ZDYH HYROXWLRQ SLFWXUHG LQ ILJXUH LV W\SLFDO RI DOO ULSSOH H[SHULPHQWV LQFOXGLQJ WHVW ZDYHV ZLWK IUHTXHQFLHV OHVV WKDQ +] 7KHUH LV D UHJLRQ QHDU WKH ZDYHPDNHU ZKHUH ZDYHV DUH HVVHQWLDOO\ RQHGLPHQVLRQDO EXW QDVFHQW LQVWDELOLWLHV DUH JURZLQJ 7KLV LV IROORZHG E\ D UHJLRQ RI WZRGLPHQVLRQDO ZDYHV WKDW EHFRPH TXLWH LUUHJXODU DV ZDYH QRQOLQHDULW\ LV LQFUHDVHG )LQDOO\ WKH ZDYH SDWWHUQ EHFRPHV fZHDNO\ WZRGLPHQVLRQDO FKDUDFWHUL]HG E\ VKRUWFUHVWHG ZDYHV XQWLO H[WLQJXLVKHG E\ YLVFRVLW\ 7KH ZDYH PHDVXUHPHQWV SUHVHQWHG KHUHLQDIWHU DUH PDGH LQ WKH VHFRQG UHJLRQ ZKHUH UHVRQDQW WULDGV DQGRU TXDUWHWV TXLQWHWV HWF"f DSSHDU WR EH RFFXUn ULQJ 7KH +] :DYHWUDLQ 7HPSRUDO 'DWD ++ VKRZ WKDW WKH ZDYH DPSOLWXGH LQ WKH H[SHULPHQW RI ILJXUH Df WIL PP LV EHORZ WKH WKUHVKROG YDOXH RI PP UHTXLUHG E\ f KHQFH

PAGE 110

)LJXUH 2YHUKHDG YLHZ VKRZLQJ VSDWLDO HYROXWLRQ RI D +] ZDYHWUDLQ ZLWK LQFUHDVLQJ NVL YDOXHV RI Df Ef Ff Gf Hf DQG If +HQGHUVRQ DQG +DPPDFN f

PAGE 111

QR LQVWDELOLWLHV VKRXOG RFFXU DV REVHUYHG :H ZLOO DOVR RPLW DQ\ GDWD RU GLVFXVn VLRQ RI WKH H[SHULPHQW LQ ILJXUH If VLQFH FURVV ZDYHV DUH D VWURQJO\ QRQOLQHDU SKHQRPHQRQf )LJXUH VKRZV SRUWLRQV RI WKH ZDYH JDXJH GDWD REWDLQHG IRU HDFK RI WKH H[SHULPHQWV SLFWXUHG LQ ILJXUHV Ef WKURXJK Hf 7LPH VHULHV RI WKH ZDWHU VXUIDFH HOHYDWLRQ UHODWLYH WR WKH TXLHVFHQW ZDWHU OHYHO INL DUH SUHVHQWHG DV D IXQFWLRQ RI WLPH WI? IRU WKUHH GLIIHUHQW ORFDWLRQV GRZQVWUHDP RI WKH ZDYHPDNHU SDGGOH 7KH FRRUGLQDWH V\VWHP LV VKRZQ LQ ILJXUH Dff 3HULRGRJUDPV IRU WKH FRPSOHWH WLPH VHULHV DW HDFK JDXJH VLWH DUH DOVR SUHVHQWHG 7KHVH HQHUJ\ VSHFWUD DUH VFDOHG WKH VDPH IRU HDFK H[SHULPHQW KHQFH FRPSDULVRQV EHWZHHQ H[SHULPHQWV DUH PHDQLQJIXO 7KH WLPH VHULHV VKRZQ LQ ILJXUH VKRZ WKDW WKH ZDYH VWHHSQHVV QRQn OLQHDULW\f DW WKH ILUVW JDJH VLWH LQFUHDVHV IURP N?8? LQ ILJXUH Df WR N@WL? LQ ILJXUH Ff EHIRUH GHFUHDVLQJ WR N?LL? LQ ILJXUH Gf 7KH GHFUHDVH RI ZDYH VWHHSQHVV LQ ILJXUH Gf RFFXUV HYHQ WKRXJK WKH ZDYHPDNHU VWURNH LV ODUJHU WKHUH WKDQ LQ WKH RWKHU H[SHULPHQWV $PSOLWXGHV RI WKH +] ZDYHV GHFUHDVH GXULQJ SURSDJDWLRQ GRZQ WKH FKDQQHO LQ HDFK H[SHULPHQW 7KLV GHFUHDVH LQ DPSOLWXGH LV VXEVWDQWLDOO\ PRUH VHH ++ f WKDQ WKDW SUHGLFWHG E\ WKH ZDYHGDPSLQJ PRGHO RI f 3UHVXPDEO\ WKH HQHUJ\ ORVV IURP WKH +] ZDYH XQDFFRXQWHG IRU E\ YLVFRXV GDPSLQJ LV WKH FRQVHTXHQFH RI WUDQVIHUV WKURXJK QRQOLQHDU LQWHUDFWLRQV $OO RI WKH SHULRGRJUDPV LQ ILJXUH LQGLFDWH D UHPDUNDEO\ VLPSOH UHVXOW DV WKH +] ZDYH SURSDJDWHV LW H[FLWHV WZR ZDYHV ZLWK IUHTXHQFLHV RI +] DQG +] %RWK RI WKHVH ZDYHV OLH LQ WKH EDQG RI DGPLVVLEOH WULDGV +]f DQG FOHDUO\ VDWLVI\ WKH NLQHPDWLF FRQGLWLRQ RI Ef 7KHVH WKUHH ZDYHV SHUVLVW DW DOO JDXJH VLWHV LQ WKH ODWWHU WZR H[SHULPHQWV DQG WKHLU HQHUJ\ ILUVW GHFUHDVHV WKHQ LQFUHDVHV GXULQJ SURSDJDWLRQ LQ ILJXUH Gf 7KH F\FOLQJ RI HQHUJ\ GXULQJ ZDYH

PAGE 112

)LJXUH 7HPSRUDO ZDYH SURILOHV DQG FRUUHVSRQGLQJ SHULRGRJUDPV IRU WKH +] ZDYHWUDLQV RI ILJXUHV Ef Ff Gf DQG Hf UHVSHFWLYHO\ +HQGHUVRQ DQG +DPPDFN f

PAGE 113

+]f } +]f )LJXUH FRQWLQXHG

PAGE 114

SURSDJDWLRQ LV QRW SRVVLEOH IRU QRQUHVRQDQW LQWHUDFWLRQV DQG ZH LQIHU WKDW WKHVH WKUHH ZDYHV IRUP D UHVRQDQW WULDG 7KH VHOHFWLRQ RI WKLV f +] WULDG ZDV IRXQG WR EH H[WUHPHO\ UREXVW E\ ++ RFFXUULQJ UHSHDWDEO\ IRU DOO +] WHVW ZDYHV ZKHQ WKHLU LQLWLDO DPSOLWXGH H[FHHGV WKH YLVFRXV WKUHVKROG RI f 2WKHU :DYHWUDLQV ZLWK )UHTXHQFLHV ([FHHGLQJ +] 7KH WULDG VHOHFWLRQ DSSDUHQW IRU WKH +] ZDYHWUDLQ ZDV DOVR IRXQG WR H[LVW IRU RWKHU WHVWZDYHV 7KLV VHOHFWLRQ LV LOOXVWUDWHG LQ ILJXUH ZKHUH SHULRGRJUDPV IRU HLJKW RWKHU ZDYHWUDLQV LQ WKH IUHTXHQF\ UDQJH RI +] DUH VKRZQ )RU EUHYLW\ RQO\ D VLQJOH SHULRGRJUDP LV SUHVHQWHG IRU HDFK WHVW ZDYH $ VXPPDU\ RI WKH GRPLQDQW WULDG H[FLWHG LQ HDFK H[SHULPHQW LV SUHVHQWHG LQ WDEOH ZKLFK DOVR OLVWV WKH ZDYHYHFWRU FRPSRQHQWV N ""f IRU HDFK RI WKH WULDGV EDVHG RQ WKH GLVSHUVLRQ UHODWLRQ RI f ,Q WKH HLJKW H[SHULPHQWV RI ILJXUH D YDULHW\ RI ZDYH WULDGV HYROYH ZKLFK VDWLVI\ WKH UHVRQDQW FRQGLWLRQ RI Ef %RWK WKH +] WHVW ZDYH RI ILJXUH Df DQG WKH +] WHVW ZDYH RI ILJXUH Ef H[FLWH ZD[HV ZKRVH IUHTXHQFLHV FRUUHVSRQG ZLWK WKRVH RI WKH ORZHVWIUHTXHQF\ FROOLQHDU WULDG IURP WKH EDQG RI DGPLVVLEOH UHVRQDQW ZDYHV 7KH ZDWHUVXUIDFH SDWWHUQ LQ WKHVH WZR H[SHULPHQWV VWLOO DSSHDUHG WZRGLPHQVLRQDO VLPLODU WR WKDW RI ILJXUH Gff 7KH +] WHVW ZDYH RI ILJXUH If H[FLWHV LWV VXEKDUPRQLF WULDG ++ UHSRUW WKDW FDUHIXO REn VHUYDWLRQV RI WKH ZDYHILHOG QHDU WKH SDGGOH IRXQG QR LQGLFDWLRQ WKDW FURVV ZDYHV ZHUH SUHVHQW LQ WKLV H[SHULPHQWf 7KH RWKHU WHVW ZD[HV H[KLELW QR DSSDUHQW SDWWHUQ LQ WKH H[FLWHG ZDYHV KRZHYHU WKH WULDG RI H[RO[LQJ ZD[HV DOZD\V VDWLVILHV WKH UHVRQDQFH FRQGLWLRQ RI Ef ,Q HDFK RI WKH HLJKW H[SHULPHQWV RI ILJXUH DQG IRU WKH WHVW ZD[H LQ WKH H[SHULPHQWV RI ILJXUH D VLQJOH WULDG RI ZD[HV GRPLQDWHG WHPSRUDO HYROXWLRQ 7KH VHOHFWHG WULDG DOZD\V KDG IUHTXHQFLHV LQ WKH DGPLVVLEOH EDQG IRU UHVRQDQW

PAGE 115

+]f )LJXUH 3HULRGRJUDPV IRU ZDYHWUDLQV *HQHUDWLRQ SDUDPHWHUV DQG UHVXOWV DUH SUHVHQWHG LQ 7DEOH +HQGHUVRQ DQG +DPPDFN f

PAGE 116

WULDGV DQG VDWLVILHG WKH UHVRQDQFH FRQGLWLRQ RI Ef ,Q FRQWUDGLFWLRQ RI WKHVH UHVXOWV ++ IRXQG WKDW WHVW ZDYHV ZLWK IUHTXHQFLHV RI +] DQG +] GLG QRW H[FLWH WULDGV ,Q WKHVH H[SHULPHQWV HQHUJ\ SHDNV RFFXUUHG RQO\ DW WKH IUHTXHQFLHV RI WKH WHVW ZDYH DQG DW LWV VHFRQG DQG WKLUG VXSHUKDUPRQLFV 7KLV EHKDYLRU SHUn VLVWHG UHJDUGOHVV RI WKH LQLWLDO DPSOLWXGH RI WKH WHVW ZDYH RU WKH ORFDWLRQ RI ZDYH PHDVXUHPHQW (YHQ ZKHQ QR VHOHFWLRQ ZDV DSSDUHQW WKH VXUIDFH SDWWHUQ RI WKH ZDYHILHOG UHPDLQHG WZRGLPHQVLRQDO ++ RIIHUHG QR H[SODQDWLRQ IRU WKH SUHVHQFH RI D VHOHFWLRQ SURFHVV LQ VRPH H[SHULPHQWV DQG LWV DEVHQFH LQ RWKHU H[SHULPHQWV &HUWDLQO\ EDVHG RQ WKH IRUP RI WKH LQWHUDFWLRQ FRHIILFLHQWV IRU ULSSOHV JLYHQ E\ f DQG VKRZQ LQ ILJXUH 5,7 GRHV QRW LQGLFDWH WKDW VXFK D VHOHFWLRQ SURFHVV VKRXOG EH SUHVHQW 7KLV FRQFOXVLRQ UHJDUGLQJ 5,7 KDV EHHQ FRQILUPHG E\ +HQGHUVRQ SULYDWH FRPPXQLFDWLRQ f ZKR VROYHG WKH ZDYH HTXDWLRQV RI f IRU ULSSOHV QXPHULFDOO\ DQG IRXQG QR HYLGHQFH RI VHOHFWLRQ ,QVWHDG DOO RI WKH SRVVLEOH WULDGV ZHUH H[FLWHG DV FRQMHFWXUHG E\ 6LPPRQV f

PAGE 117

7DEOH 6XPPDU\ RI H[SHULPHQWDO SDUDPHWHUV DQG UHVXOWV IRU HOHYHQ H[SHULPHQWV LQ WKH WULDG IUHTXHQF\ UDQJH )UHTXHQFLHV I? DUH PHDVXUHG IURP SHULRGRJUDPV LQ WKH LQGLFDWHG ILJXUHV ZDYHYHF WRUV N OPf DUH FDOFXODWHG IURP WKH OLQHDU GLVSHUVLRQ UHODWLRQ +HQGHUVRQ DQG +DPPDFN f 7HVW ZDYH ([FLWHG WULDG ZDYHV :DYHPDNHU IUHTXHQF\ \ N I N P +]f +]f FPf FPAf NV A [/ M \/ A +]f _FPrfFPrfFPnf QRQH QRQH

PAGE 118

&+$37(5 5(621$17 75,$' 6(/(&7,21 7KH GLVFRYHU\ RI WKH VHOHFWLRQ PHFKDQLVP UHVSRQVLEOH IRU WKH WULDGV LQ &KDSWHU UHVXOWHG IURP WKH LQVWDOODWLRQ RI WKH 9$;VWDWLRQ ,, FRPSXWHU V\VWHP 2QFH LQn VWDOODWLRQ ZDV FRPSOHWH DWWHPSWV ZHUH PDGH WR UHSHDW HDUOLHU H[SHULPHQWV 7KH UHVXOWV ZHUH VXUSULVLQJ DQG XQVHWWOLQJ QR VHOHFWLRQ RFFXUUHG XVLQJ WKH 9$;VWDWLRQ ,, ,QVWHDG RQO\ WKH WHVW ZDYHV DQG WKHLU VXSHUKDUPRQLFV HYROYHG 7KH VXUIDFH SDWWHUQV KRZHYHU UHPDLQHG WZRGLPHQVLRQDO OLNH WKRVH LQ ILJXUH f ,PPHGLn DWHO\ WKH HDUOLHU H[SHULPHQWV ZHUH UHSHDWHG ZLWK WKH 0LFUR3'3 DQG VHOHFWLRQ UHWXUQHG &OHDUO\ WKH VHOHFWLRQ PHFKDQLVP ZDV UHODWHG WR GLIIHUHQFHVf LQ FRPn SXWHU V\VWHPV DIWHU VRPH HIIRUW WKH LPSRUWDQW GLIIHUHQFH ZDV LVRODWHG 7KH WULDG VHOHFWLRQ PHFKDQLVP LQ WKH H[SHULPHQWV RI ++ UHVXOWHG IURP ZDYH VHHGLQJ E\ QRQOLQHDU LQWHUDFWLRQ EHWZHHQ WKH WHVW ZDYH DQG DQ H[FHHGLQJO\ VPDOO DQG VKRUWOLYHG +] ZDYH 7KH +] ZDWHU ZDYH ZDV WKH FRQVHTXHQFH RI VPDOO GLIIHUHQFHV LQ WKH ORZ OHYHOV RI +] HOHFWURQLF QRLVH LQ WKH FRPPDQG VLJQDOV IURP WKH FRPSXWHU V\VWHPV WR WKH ZDYH JHQHUDWRU (OHFWURQLF QRLVH DW +] LV XELTXLWRXV LQ QHDUO\ DOO HOHFWULFDO V\VWHPV LQ WKH 8 6 )RU H[DPSOH WKH SHULRGRJUDP RI DQ\ XQILOWHUHGf HOHFWULFDO VLJQDO ZLOO VKRZ D GLVWLQFW HQHUJ\ SHDN DW +] DV FDQ EH VHHQ LQ QHDUO\ DOO RI WKH SHULRGRJUDPV RI &KDSWHU (YHQ ZKHQ WKH ZDYH JDXJH LV SRZHUHG EXW QRW LPPHUVHG LQ ZDWHU LWV RXWSXW VLJQDO VWLOO KDV DQ HQHUJ\ SHDN DW +]f 7KH ELW DQDORJRXWSXW V\VWHP RI WKH 9$;VWDWLRQ ,, FRQn WDLQHG VOLJKWO\ OHVV HQHUJ\ LQ WKH +] SHDN WKDQ WKDW RI WKH 0LFUR3'3 ,W VKRXOG

PAGE 119

EH HPSKDVL]HG WKDW ERWK ELW DQDORJRXWSXW V\VWHPV DUH KLJKTXDOLW\ XQLWV DQG WKHVH V\VWHPVn ZHUH JURXQGHG DFFRUGLQJ WR PDQXIDFWXUHUVf VSHFLILFDWLRQV $OO FDn EOLQJ EHWZHHQ WKH FRPSXWHUV DQG HTXLSPHQW XVHG WZLVWHG Z LUHV ZLWK VKLHOGLQJ DQG ZDV FRQQHFWHG LQ WKH PRVW QRLVHIUHH FRQILJXUDWLRQ $ FRPSDULVRQ RI WKH DPSOLWXGH VSHFWUD QRW HQHUJ\ DV LQ SUHYLRXV SHULRGRJUDPV LQ 3DUW f IRU +] FRPPDQG VLJQDOV ZLWK DPSOLWXGHV RI Y IURP HDFK RI WKHVH FRPSXWHU V\VWHPV LV SUHVHQWHG LQ ILJXUH 7KLV LV WKH VDPH YROWDJH XVHG LQ WKH FRPPDQG VLJQDO RI WKH H[SHULPHQW VKRZQ LQ ILJXUH Gf 5HFDOO WKDW D Y VLJQDO FDXVHV WKH ZDYHPDNHU SDGGOH WR GLVSODFH PPf 7KHVH DPSOLWXGH VSHFWUD ZHUH REWDLQHG XVLQJ D ))7 RI GDWD SRLQWV IURP D V UHFRUG RI HDFK FRPPDQG VLJQDO KHQFH WKH IUHTXHQF\ UHVROXWLRQ LQ WKHVH VSHFWUD LV +] 7KH DQDORJ FRPPDQG VLJQDOV ZHUH ILUVW ORZSDVV ILOWHUHG DW D FXWRII RI +] DQG WKHQ GLJLWL]HG DW D UDWH RI +]f 7KH DPSOLWXGH DW HDFK IUHTXHQF\ LQ WKH EDQG RI +] LV VKRZQ LQ DUELWUDULO\ VFDOHG XQLWV RI GE GE FRUUHVSRQGV WR D IDFWRU RI LQ DPSOLWXGHf WKH VFDOH LV WKH VDPH IRU ERWK VSHFWUD %RWK VLJQDOV FRQWDLQ GLVWLQFW +] SHDNV KRZHYHU WKDW RI WKH 0LFUR3'3 LV DERXW GE D IDFWRU RI f ODUJHU WKDQ WKDW RI WKH 9$;VWDWLRQ ,, ,W WXUQV RXW WKDW WKH DPSOLWXGH RI WKH +] SHDN LQ WKH RXWSXW RI WKH 9$;VWDWLRQ ,, LV MXVW EHORZ WKH WKUHVKROG UHTXLUHG WR SUHFLSLWDWH WULDG VHOHFWLRQ ,I D +] FRPPDQG VLJQDO ZLWK DQ DPSOLn WXGH RI RQO\ Y LV DGGHG WR WKH +] FRPPDQG RI WKH 9$;VWDWLRQ ,, WKH f +] WULDG LV VHOHFWHG $ Y VLJQDO LV WKH VPDOOHVW RXWSXW RXU ELW DQDORJRXWSXW V\VWHPV FDQ SURGXFH KHQFH D VTXDUH UDWKHU WKDQ VLQXVRLGDO ZDYH LV JHQHUDWHGf $OWKRXJK LW LV GLIILFXOW WR SLQSRLQW WKH DFWXDO VHTXHQFH RI HYHQWV OHDGLQJ WR WULDG VHOHFWLRQ IURP RXU IUHTXHQF\GRPDLQ GDWD RQH VFHQDULR IRU VHOHFWLQJ WKH f +] WULDG LQ WKH H[SHULPHQW RI ILJXUH Gf LV DV IROORZV $ TXDGUDWLF

PAGE 120

+]f +]f )LJXUH $PSOLWXGH VSHFWUD RI FRPSXWHU JHQHUDWHG FRPPDQG VLJQDOV IRU D +] VLQH ZDYH ZLWK DQ DPSOLWXGH RI Y Df '(& 0LFUR3'3 Ef '(& 9$;VWDWLRQ ,,

PAGE 121

QR LQWHUDFWLRQ EHWZHHQ ODUJHf +] ZDYHV DQG VPDOOf +] ZDYHV IRUPV D GLIIHUn HQFH ZDYH RIn +] 7KLV ZDYH DSSHDUV LQ WKH SHULRGRJUDPV DW WKH ILUVW DQG ODVW PHDVXUHPHQW VLWHV LQ ILJXUH Gf DQG ZDV HUURQHRXVO\ DWWULEXWHG WR VSXULRXV PHFKDQLFDO YLEUDWLRQV RI WKH SDGGOH DVVHPEO\ E\ ++ ,I WKLV TXDGUDWLF LQWHUDFWLRQ LV QRQUHVRQDQW WKHQ WKH ND RI WKH +] ZDYH VKRXOG QRW EH ODUJHU WKDQ HLWKHU SDUHQW ZDYH DQG LWV ZDYHYHFWRU VKRXOG EH FROOLQHDU ZLWK WKHP ,I WKH LQWHUDFWLRQ LV UHVRQDQW WKHQ WKH VWHHSQHVV RI WKH +] PD\ EH ODUJHU WKDQ WKDW RI LWV VPDOOHU SDUHQW ZDYH LW LV ODUJHU WKDQ WKH +] ZDYH DW ERWK WKH ILUVW DQG ODVW PHDVXUHn PHQW VLWHVf EXW LWV ZDYHYHFWRU FDQQRW EH FROOLQHDU ZLWK HLWKHU SDUHQW ZH GRQnW NQRZf 7KH +] ZDYH WKHQ IRUPV GLIIHUHQFH ZDYHV ZLWK WKH +] ZDYH DQG LWV +] VXSHUKDUPRQLF WR VHHG WKH +] DQG +] ZDYHV LQ WKH SURSHU GLUHFWLRQV WR SUHFLSLWDWH WKH f +] UHVRQDQW WULDG 7KHUH DUH VRPH VXUSULVLQJ DVSHFWV WR WKH VFHQDULR GHVFULEHG DERYH )LUVW DOO RI WKH HYHQWV RFFXU ZLWKLQ VHYHQ +]f ZDYHOHQJWKV RI WKH ZDYHPDNHU SDGGOH 6HFn RQG WKH TXDGUDWLF LQWHUDFWLRQ EHWZHHQ WKH +] DQG +] ZDYHV PXVW EH UHVRn QDQW LQ RUGHU WR SURGXFH VXFK D ODUJH +] ZDYH
PAGE 122

,OO [ /? DQG WKH +] SHDN JURZV VLJQLILFDQWO\ E\ [ / 7KLUG LI WKH f +]nDQG f +] WULDGV DUH UHVRQDQW WKHQ WKH GLUHFWLRQV RI HQHUJ\ IOX[ PXVW GLIIHU IURP WKH WKRVH RI FRUUHVSRQGLQJ QRQUHVRQDQW ZDYHV +HQFH WKH +] ZDYH LQSXW DW WKH ZDYHPDNHU PXVW UDSLGO\ H[FLWH D +] ZDYH LQ D GLIIHUHQW GLUHFWLRQ WKH +] QRQUHVRQDQW ZDYH FROOLQHDU ZLWK WKH LQSXW ZDYHVf PXVW UDSn LGO\ H[FLWH D +] ZDYH LQ D GLIIHUHQW GLUHFWLRQ DQG VR RQ 7KLV GLUHFWLRQDO VSUHDGLQJ RI DPSOLWXGH FDQ EH H[SODLQHG E\ WKH UHVXOWV RI 3DUW f )XUWKHU RQFH VXFK D SUROLIHUDWLRQ RI HYHQWV LV DFFHSWHG LW LV HDV\ WR FRQMHFWXUH WKDW VRPH RI WKH HQHUJLHV DW WKH f +] SHDNV LQ ILJXUH DUH GXH WR D UHVRQDQW TXDUWHW &RQILUPDWLRQ RI WKH VHOHFWLRQ SURFHVV GHVFULEHG DERYH ZDV HVWDEOLVKHG E\ DGGn LQJ D VHFRQG WHVW ZDYH WR WKH ZDYHPDNHU FRPPDQG VLJQDO JHQHUDWHG E\ WKH 9$;VWDWLRQ ,, %RWK WKH IUHTXHQFLHV DQG DPSOLWXGHV RI WKHVH VHFRQG ZDYHV ZHUH YDULHG UHODWLYH WR WKRVH RI WKH SULPDU\ WHVW ZDYHV %HIRUH SUHVHQWLQJ DQ H[DPSOH RI WKHVH GDWD D FDXWLRQDU\ QRWH VKRXOG EH PHQWLRQHG UHJDUGLQJ WKH VLPXOWDQHRXV JHQn HUDWLRQ RI WZR ZDYHV E\ D VLQJOH ZDYHPDNHU :DYHPDNHUV DUH LQKHUHQWO\ QRQOLQHDU GHYLFHV WKRXJK ZLWK SURSHU GHVLJQ WKH\ DUH ZHDNO\ QRQOLQHDU 7KH % t 0LQL 6KDNHU XVHG LQ WKHVH H[SHULPHQWV LV ZHDNO\ QRQOLQHDU DQG VWURQJ UHVRQDQFHV LQ LWV G\QDPLFV GR QRW DSSHDU DW WKH IUHTXHQFLHV DQG VWURNHV ZH XVHf +HQFH ZKHQ FRPPDQGHG ZLWK D VLQJOH VLQXVRLGDO VLJQDO WKH\ UHVSRQG E\ RVFLOODWLQJ DW LWV IUHn TXHQF\ DV ZHOO DV DW WKH IUHTXHQFLHV RI LWV VXSHUKDUPRQLFV 7KHVH VXSHUKDUPRQLF PRWLRQV JHQHUDWH fIUHHf ZDWHU ZDYHV ZKLFK VDWLVI\ WKH GLVSHUVLRQ UHODWLRQ ZKLOH WKH fERXQGf VXSHUKDUPRQLFV UHVXOWLQJ IURP QRQOLQHDULW\ RI WKH ZDWHUZDYH PRWLRQ GR QRW 2I FRXUVH QHLWKHU SHULRGRJUDPV QRU DPSOLWXGH VSHFWUD IURP ZDYH JDXJH UHn FRUGV FDQ GLVWLQJXLVK EHWZHHQ ERXQG DQG IUHH ZDYHV ZLWK WKH VDPH IUHTXHQF\ :KHQ D ZHDNO\ QRQOLQHDU ZDYHPDNHU LV FRPPDQGHG WR JHQHUDWH WZR VLQXVRLGDO ZDYHV VLPXOWDQHRXVO\ LW DOVR JHQHUDWHV IUHH ZDWHU ZD[HV DW WKH VXP DQG GLIIHUHQFH

PAGE 123

IUHTXHQFLHV RI WKH WZR WHVW ZDYHV HJ VHH )OLFN DQG *X]D f 7KHVH ZDYHV FDQQRW EH GLVWLQJXLVKHG LQ WKH GDWD DQDO\VLV HLWKHU EXW WKH\ FDQ FRQWULEXWH WR WKH UHVRQDQW DQG QRQUHVRQDQW LQWHUDFWLRQV EHWZHHQ DOO WKH FRPSRQHQW ZDYHV LQ WKH V\VWHP 7KLV EHKDYLRU VKRXOG EH UHPHPEHUHG LQ LQWHUSUHWLQJ WKH H[SHULPHQWV RI ++ ZKHUH WKH VHFRQG ZDYH +]f ZDV DGGHG LQDGYHUWHQWO\ DQG LQ WKH H[SHULn PHQWV WR IROORZ ZKHUH VHFRQG ZDYHV DUH DGGHG GHOLEHUDWHO\ ,W VKRXOG DOVR EH QRWHG WKDW ZH PRQLWRU WKH FRPPDQG VLJQDO WKH PRWLRQ IHHGEDFN RI WKH ZDYHPDNHU SDGn GOH DV ZHOO DV WKH ZDYH PRWLRQ LQ WKHVH H[SHULPHQWV +HUH RQO\ WKH ZDYH JDXJH GDWD DQG WKHLU DPSOLWXGH VSHFWUD DUH SUHVHQWHG ,Q RUGHU WR GHPRQVWUDWH WKH VHOHFWLRQ SURFHVV ZLWK RWKHU WKDQ +] QRLVH ILJXUH VKRZV D VHTXHQFH RI SHULRGRJUDPV FRPSXWHG DW YDULRXV GRZQVWUHDP SRVLWLRQV ZKHQ D +] ZDYHWUDLQ ZLWK D FRPPDQG YROWDJH RI Y LV VXSHUSRVHG ZLWK D +] ZDYHWUDLQ ZKRVH FRPPDQG DPSOLWXGH LV Y 7KH DPSOLWXGHV RI WKH JHQHUDWHG ZDYHV DUH SURSRUWLRQDO WR WKH FRPPDQG YROWDJH DQG N? IRU WKH +] ZDYHWUDLQ DW [ / DV LQ ILJXUH Gf 7KH FRPPDQG VLJQDO LV JHQHUn DWHG E\ WKH 9$;VWDWLRQ ,, VR WKDW +] QRLVH ZLOO QR ORQJHU SUHFLSLWDWH WULDGV -XVW DV LQ DOO SUHYLRXV H[SHULPHQWV WKHUH LV D SUROLIHUDWLRQ RI VXP DQG GLIIHUn HQFH ZDYHV LQ WKH DPSOLWXGH VSHFWUXP DW WKH ILUVW PHDVXUHPHQW VLWH $ UDQN RUGHUn LQJ RI ZDYHV E\ DPSOLWXGH DW [ /? LV DV IROORZV DQG +] IROORZHG E\ DQG +] ZDYHV ZKLFK DUH DERXW HTXDO LQ DPSOLWXGH 7KH +] WHVW ZDYH HLWKHU GHFD\V VOLJKWO\ EHWZHHQ JDXJH VLWHV RU VWD\V WKH VDPH GXULQJ WKH ZDYHOHQJWKV RI PHDVXUHPHQW )XUWKHU H[DPLQDWLRQ RI WKH GRZQVWUHDP DPSOLWXGH VSHFWUD VKRZV WKDW WKH IROORZLQJ ZDYHV H[KLELW UHVRn QDQWOLNH GHFD\JURZWK F\FOHVf RI YDU\LQJ DPRXQWV DQG +] %RWK WKH +] DQG +] ZDYHV QHDUO\ GLVDSSHDU EHIRUH UHJDLQLQJ VWUHQJWK GXULQJ SURSDJDWLRQ 7KH JURZWKGHFD\ F\FOH IRU WKH DPSOLWXGH RI WKH +] ZDYH LV

PAGE 124

DPSOLWXGH GEf +]f )LJXUH $PSOLWXGH VSHFWUDO HYROXWLRQ IRU D +] ZDYHWUDLQ VHHGHG ZLWK D +] ZDYHWUDLQ ZLWK RI LWV DPSOLWXGH DW WKH ZDYHPDNHU

PAGE 125

YHU\ VPDOO 7KH +] ZDYH KDV WKH ODUJHVW DPSOLWXGH DW WKH ODVW PHDVXUHPHQW VLWH ZKHUH PRVW ZDYHV KDYH GLVDSSHDUHG SUHVXPDEO\ GXH WR YLVFRXV GDPSLQJf H[FHSW IRU WZR UHVRQDQW WULDGV f +] DQG f +] %RWK RI WKHVH WULDGV ZHUH VHOHFWHG E\ WKH VPDOO +] ZDYH LQSXW DW WKH ZDYHPDNHU ZKLFK HVVHQWLDOO\ GLVDSn SHDUHG IURP WKH ZDYHILHOG E\ [ /? ,Q DOO RI WKH H[SHULPHQWV ZH KDYH SHUIRUPHG ZH ZHUH DEOH WR VHHG UHVRQDQW WULDGV LQ D SUHGLFWDEOH PDQQHU E\ LQSXWWLQJ D VPDOO ZDYH ZKRVH IUHTXHQF\ ZDV KLJKHU WKDQ WKDW RI WKH WHVW ZDYH 2I FRXUVH WKLV IUHTXHQF\ PXVW OLH LQ WKH EDQG RI DGPLVVLEOH WULDGV DERYH WKH &WULDG VKRZQ LQ &KDSWHU f :H KDYH H[FLWHG WULDGV ZKHQ WKH DPSOLWXGH RI WKH KLJKIUHTXHQF\ SHUWXUEDWLRQ ZDV RQO\ WKDW RI WKH WHVW ZDYH ,Q WKH UDQJH RI RXU H[SHULPHQWV WKH FKDQJH LQ ZDYH VWHHSQHVV LV FRPSDUDn EOH WR WKH FKDQJH LQ DPSOLWXGH VLQFH ZDYHYHFWRU PDJQLWXGHV FKDQJH OLWWOHf (YHQ WKRXJK VRPH RI WKH GHWDLOV RI WKH VHOHFWLRQ SURFHVV DUH REVFXUHG E\ RXU ODFN RI ZDYHYHFWRU GDWD LW LV FOHDU WKDW H[FHHGLQJO\ VPDOO KLJKIUHTXHQF\ SHUWXUEDWLRQV ZLWK GLVWLQFW IUHTXHQFLHV FDQ VHOHFW WKH UHVRQDQW WULDGVf ZKLFK XOWLPDWHO\ GRPLQDWH ZDYH HYROXWLRQ

PAGE 126

&+$37(5 (92/87,21 2) $ 5,33/( :$9(75$,1 ,1 7+( 35(6(1&( 2) 5$1'20 :$9(6 :KHQ EDFNJURXQG QRLVH ZDV PLQLPXP LQ H[SHULPHQWV DQG QR SHUWXUEDWLRQV ZLWK GLVWLQFW IUHTXHQFLHV ZHUH DGGHG LQWHQWLRQDOO\ WKH WHVW ZDYHV GLG QRW H[FLWH DQ\ GRPLQDQW WULDGV 6WLOO WKH VXUIDFH SDWWHUQV UHPDLQHG WZRGLPHQVLRQDO IRU DOO VHQVLn EOH WHVWZDYH DPSOLWXGHVf ,QVWHDG QR VLJQLILFDQW QRQOLQHDU LQWHUDFWLRQV DSSHDUHG RWKHU WKDQ VXSHUKDUPRQLFVf GXULQJ ZDYHWUDLQ HYROXWLRQ ,Q WKLV VHFWLRQ ZH SUHVHQW GDWD IRU H[SHULPHQWV LQ ZKLFK WKH EDFNJURXQG HQHUJ\ DW DOO IUHTXHQFLHV ZDV LQn FUHDVHG LQWHQWLRQDOO\ 7KLV ZDV DFFRPSOLVKHG E\ SURJUDPPLQJ WKH ZDYHPDNHU WR JHQHUDWH D WHVW ZDYH DQG SVXHGRUDQGRP ZDYHV VLPXOWDQHRXVO\ 2I FRXUVH WKH ZDYHYHFWRUV IRU DOO WKH UDQGRP ZDYHV DQG WKH WHVW ZDYH ZHUH FROOLQHDU DW WKH ZDYHPDNHUf 7KH DPSOLWXGHV RI WKH UDQGRP ZDYHV ZHUH IDLUO\ XQLIRUP RYHU DOO IUHTXHQFLHV LH WKH EDFNJURXQG ZDYHV FRUUHVSRQGHG WR fZKLWH QRLVH 7KH VLJQDO WRQRLVH UDWLR 61f EDVHG RQ URRWPHDQVTXDUH PHDVXUHV RI VLJQDO DPSOLWXGHV ZDV GHFUHDVHG KROGLQJ WKH WHVWZDYH VLJQDO FRQVWDQWf XQWLO QRQOLQHDU LQWHUDFWLRQV EHn WZHHQ WKH WHVW ZDYH DQG EDFNJURXQG ZDYHV ZHUH REVHUYHG $Q H[SHULPHQW ZDV FRQGXFWHG LQ WKH IROORZLQJ PDQQHU )LUVW WLPH VHULHV RI ZDYH JDXJH GDWD ZHUH REWDLQHG IRU WKH QDWXUDO EDFNJURXQG QRLVH LQ WKH WDQN ZKHQ WKH ZDYHPDNHU ZDV SRZHUHG EXW QRW PRYLQJ HDFK WLPH VHULHV ZDV VHF LQ GXUDWLRQ 7KHVH WLPH VHULHV ZHUH GLJLWL]HG DW D UDWH RI +] DQG DPSOLWXGH VSHFn WUD ZHUH FRPSXWHG XVLQJ GDWD SRLQWV IRU HDFK VSHFWUXP $OO DQDORJ JDXJH

PAGE 127

VLJQDOV ZHUH ORZSDVV ILOWHUHG ZLWK D FXWRII IUHTXHQF\ RI +] SULRU WR GLJLWL]LQJf 7KHVH DPSOLWXGH VSHFWUD ZHUH WKHQ DYHUDJHG DW HDFK IUHTXHQF\ WR REWDLQ DQ DYHUDJH DPSOLWXGH VSHFWUXP IRU WKH QDWXUDO EDFNJURXQG QRLVH ^` LQ WKH WDQN 7KHQ H[SHULPHQWV ZHUH FRQGXFWHG XVLQJ GLIIHUHQW ZKLWHQRLVH FRPPDQG VLJn QDOV WR WKH ZDYHPDNHU 7KHVH WLPH KLVWRULHV RI ZDYH JDXJH GDWD ZHUH DQDO\]HG DV EHIRUH WR ILQG DQ DYHUDJH DPSOLWXGH VSHFWUXP IRU WKH UDQGRP ZDYHV LQ WKH SUHVHQFH RI WKH WDQNfV QDWXUDO EDFNJURXQG QRLVH ^b` 7KHQ H[SHULPHQWV ZHUH SHUIRUPHG ZLWK RQO\ WKH WHVW ZDYH WR \LHOG DQ DYHUDJH DPSOLWXGH VSHFWUXP IRU WKH WHVW ZDYH ZLWK WKH WDQNnV EDFNJURXQG QRLVH ^7` 7KH WHVWZDYH VLJQDO ZDV WKHQ DGGHG WR WKH FRPPDQG VLJQDOV RI ZKLWH QRLVH DQG PRUH H[SHULPHQWV ZHUH FRQGXFWHG DQG DQDO\]HG WR ILQG DQ DYHUDJH DPSOLWXGH VSHFWUXP IRU WKH WHVW ZDYH ZLWK UDQGRP ZDYHV DQG WKH WDQNnV EDFNJURXQG QRLVH ^7IW!` 7KHVH IRXU DYHUDJH VSHFWUD FDQ WKHQ EH FRPELQHG WR ILQG WKH VLJQDWXUH RI WKH UDQGRP ZDYHV DORQH LH ^t` ^b`^` WKH WHVW ZDYH DORQH LH ^7` ^7p`^L%` DV ZHOO DV WR GLVSOD\ HIIHFWV UHVXOWLQJ IURP QRQOLQHDU LQWHUDFWLRQV 7KH ODWWHU UHVXOW ZDV IRXQG E\ FRPn SXWLQJ ^MY` ^7bL%`^F-`^b`^p` f KHQFH ^-I` LV QXOO LI WKHUH DUH QR VLJQLILFDQW QRQOLQHDU LQWHUDFWLRQV 7KLV SURFHGXUH DVVXPHV WKDW WKH QDWXUDO EDFNJURXQG QRLVH LQ WKH WDQN LV VXIILFLHQWO\ VPDOO VR DV QRW WR LQWHUDFW VLJQLILFDQWO\ ZLWK HLWKHU WKH UDQGRP ZDYH RU WKH WHVW ZDYHV 7KHVH DVVXPSWLRQV DUH FRQVLVWHQW ZLWK RXU H[SHULPHQWDO REVHUYDWLRQV 7KH HQWLUH VHULHV RI H[SHULPHQWV DQG FDOFXODWLRQV RXWOLQHG DERYH ZHUH SHUIRUPHG DW WKUHH JDXJH VLWHV GRZQVWUHDP RI WKH ZDYHPDNHU ,Q DGGLWLRQ WR ZDYH JDXJH GDWD ZH DOVR DQDO\]HG WKH WLPH VHULHV IRU WKH FRPPDQG VLJQDOV DQG WKH DFWXDO SDGGOH PRWLRQ GXULQJ HDFK H[SHULPHQW $OO PHDVXUHPHQWV UHVXOWHG LQ WKH FROOHFWLRQ DQG DQDO\VLV RI PHJDn E\WHV RI GDWD DW HDFK JDXJH VLWHf

PAGE 128

$Q H[DPSOH RI RXU H[SHULPHQWDO UHVXOWV LV VKRZQ LQ ILJXUHV DQG IRU D +] WHVW ZDYH DQG UDQGRP ZDYHV ZLWK 61 7KLV WHVW ZDYH LV LGHQWLFDO WR WKDW LQ ILJXUH Ff ZKHUH LWV LQLWLDO QRQOLQHDULW\ ZDV PHDVXUHG WR EH DERXW N?LL@ f )LJXUH Df VKRZV WKH DYHUDJH DPSOLWXGH VSHFWUXP IRU WKH QDWXUDO EDFNJURXQG QRLVH ^IW` LQ WKH WDQN DW [ FP ZKLFK LV HTXDO WR VHYHQ WHVW ZDYHn OHQJWKV IRU WKH +] ZDYHWUDLQ 7KLV UHVXOW LV W\SLFDO RI DOO EDFNJURXQG QRLVH PHDVXUHPHQWVf 7KH DPSOLWXGHV RI EDFNJURXQG QRLVH DUH VPRRWKO\ GLVWULEXWHG RYHU WKH IUHTXHQF\ EDQG +] DQG GHFUHDVH XQLIRUPO\ ZLWK LQFUHDVLQJ IUHTXHQF\ 7KH GLVWLQFW SHDN DW +] LV GXH WR HOHFWURQLF QRLVHf )LJXUH Ef VKRZV WKH DYHUDJH DPSOLWXGH VSHFWUXP DW [ FP IRU WKH UDQGRP ZDYHILHOG ^IW` $PSOLWXGHV DUH QHDUO\ ]HUR DW IUHTXHQFLHV EHORZ +] DIWHU ZKLFK WKH DPSOLWXGHV LQFUHDVH VORZO\ UHDFKLQJ D PD[LPXP OHYHO RI DERXW GE DURXQG +] (YHQ WKRXJK WKH VSHFWUXP RI WKH UDQGRP ZDYHV LV QRW FRPSOHWHO\ fZKLWH LW LV LQGHHG EURDG EDQGHG 7KH PDLQ UHVXOWV RI WKLV H[SHULPHQW DUH SUHVHQWHG LQ ILJXUH 8QIRUWXn QDWHO\ WKH GDWD XVHG WR FDOFXODWH WKH DYHUDJH DPSOLWXGH VSHFWUXP RI WKH WHVW ZDYH ZLWK EDFNJURXQG QRLVH ^7IW` ZHUH QRW UHFRUGHG VHSDUDWHO\ +HQFH ILJXUH VKRZV ^-I`^7` ^7IW`^IW`^IW` UDWKHU WKDQ ^-I` DORQH LH WKH WHVW ZDYH VLJQDO LV VWLOO SUHVHQW DPRQJ WKH PHDVXUH RI QRQOLQHDU LQWHUDFWLRQV /DWHU PHDVXUHPHQWV RI WKH WHVW ZDYH HYROXWLRQ VKRZ WKDW RQO\ WKH SULPDU\ ZDYH DQG LWV ILUVW WZR VXSHUKDUPRQLFV ZHUH SUHVHQWf &OHDUO\ VLJQLILFDQW QRQOLQHDU LQWHUDFWLRQV DUH RFFXUULQJ LQ ILJXUH 7KH UDQGRP ZDYHV LQ WKH IUHTXHQF\ EDQG RI DERXW +] KDYH LQWHUDFWHG JURZQf PRVW VLJQLILFDQWO\ WKLV LV WKH EDQG RI DGPLVVLEOH UHVRQDQW WULDGV IRU D +] ZDYH DV GLVFXVVHG LQ

PAGE 129

+]f DPSOLWXGH GEf +]f )LJXUH $YHUDJH DPSOLWXGH VSHFWUD DW [ FP IRU Df QDWXUDO EDFNJURXQG QRLVH LQ WKH ZDYH WDQN DQG Ef UDQGRP ZDYHV JHQHUDWHG E\ WKH ZDYHPDNHU

PAGE 130

DPSOLWXGH GEf )LJXUH +]f $YHUDJH DPSOLWXGH VSHFWUD VKRZLQJ WKH WUDQVIHU RI HQHUJ\ E\ QRQn OLQHDU LQWHUDFWLRQV EHWZHHQ D +] WHVW ZDYH DQG UDQGRP ZDYHV ZKLWH QRLVHf JHQHUDWHG ZLWK D 61

PAGE 131

&KDSWHU 7KH DPSOLWXGHV RI WKH ZDYHV LQ WKLV UHVRQDQW EDQG FRQWLQXH WR JURZ LQ WKH GRZQVWUHDP GLUHFWLRQ LQ VSLWH RI YLVFRXV HIIHFWV ,Q IDFW WKH EDQG RI JURZLQJ WULDGV DSSHDUV WR H[FLWH VXSHUKDUPRQLF EDQGV EHKLQG WKH VXSHUKDUPRQLFV RI WKH WHVW ZDYH )XUWKHUPRUH WKH GLVWULEXWLRQ RI DPSOLWXGHV LQ WKH WULDG EDQG RI +] LV ELPRGDO DW DOO WKUHH JDXJH VLWHV ZLWK PD[LPD RFFXUULQJ DW IUHTXHQFLHV RI DERXW +] DQG +] DQG D PLQLPXP DW DERXW +] 7KLV PHDVXUHG DPSOLWXGH GLVWULEXn WLRQ LQ WKH UHVRQDQW WULDG EDQG LV UHPDUNDEO\ VLPLODU LQ H[WUHPD IUHTXHQFLHV WR WKRVH RI WKH LQWHUDFWLRQ FRHIILFLHQW \L RI f ZKLFK LV DOVR VKRZQ LQ ILJXUH Ef ,Q RUGHU WR HPSKDVL]H WKLV VLPLODULW\ ZH KDYH VXSHUSRVHG D SORW RI `nL RQWR WKH DPSOLWXGH VSHFWUXP RI -I`^7f LQ ILJXUH Ef \L FDQ EH LQWHUSUHWHG DV D PHDVn XUH RI WKH DPRXQW RI DPSOLWXGH HQHUJ\f H[FKDQJHG IURP WKH WHVW ZDYH WR RWKHU PHPEHUV RI DGPLVVLEOH WULDGV +HQFH WKH VLPLODULW\ LV QRW IRUWXLWRXV LW VKRXOG EH H[SHFWHG ,W LV FOHDU LQ ILJXUH WKDW UHVRQDQW LQWHUDFWLRQV ZLWK EDFNJURXQG QRLVH RI VXIILFLHQW VL]H DOORZ D ULSSOH ZDYHWUDLQ WR GLVWULEXWH LWV HQHUJ\ WR D ZLGH EDQG RI ORZHUIUHTXHQF\ ZDYHV

PAGE 132

&+$37(5 6800$5< $1' &21&/86,216 2) 3$57 7KH VLPSOHSHULRGLF RQHGLPHQVLRQDO YYDYHWUDLQ LV WKH FRUQHUVWRQH RI ZDYH PHn FKDQLFV KDYLQJ VHUYHG VLQFH $LU\ f DQG 6WRNHV f DV WKH IXQGDPHQWDO EXLOGLQJ EORFN IRU VWXG\LQJ WKH HIIHFWV RI ZHDN QRQOLQHDULW\ +HUHLQ ZH KDYH XVHG WKHVH ZDYHWUDLQV LQ WKH WKHRUHWLFDO DQG H[SHULPHQWDO VWXG\ RI WKH G\QDPLFV RI JUDYn LW\FDSLOODU\ ZDYHV 7KHRUHWLFDO FRQVLGHUDWLRQV ZHUH EDVHG RQ 5,7 UHVRQDQW LQWHUn DFWLRQ WKHRU\f ZKLOH LQ WKH H[SHULPHQWV ZH JHQHUDWHG ULSSOH ZDYHWUDLQV PHFKDQLn FDOO\ LQ D ZLGH FKDQQHO RI XQLIRUP EUHDGWK DQG GHSWK 7KH H[SHULPHQWV XVHG WHVW ZDYHV ZLWK IUHTXHQFLHV JUHDWHU WKDQ +] ZKHUH 5,7 LQGLFDWHG WKDW WULDG UHVRn QDQFHV ZHUH WKH ILUVW WR RFFXU DQG D FRQWLQXXP RI UHVRQDQW WULDGV ZDV DYDLODEOH 5DWKHU H[WUHPH SUHFDXWLRQV ZHUH WDNHQ LQ WKH H[SHULPHQWV WR PDLQWDLQ WKH SXULW\ RI WKH ZDWHU VXUIDFH WR NHHS WKH QDWXUDO EDFNJURXQG QRLVH LQ WKH ODERUDWRU\ DW D PLQLPXP OHYHO DQG WR JHQHUDWH WKH ZDYHWUDLQV DV FOHDQO\ DV SRVVLEOH ,Q VSLWH RI WKHVH SUHFDXWLRQV WKH H[SHULPHQWDO ZDYHWUDLQV UDSLGO\ EHFDPH XQVWDEOH UHWDLQLQJ WKHLU RQHGLPHQVLRQDO VXUIDFH SDWWHUQ IRU D GLVWDQFH RI RQO\ D IHZ ZDYHOHQJWKV EHIRUH GLVLQWHJUDWLQJ LQWR WZRGLPHQVLRQDO SDWWHUQV 7KLV VSDWLDO EHKDYLRU SHUVLVWHG IRU DOO ZDYHWUDLQV ZLWK VHQVLEOH DPSOLWXGHV LH ID 7HPSRUDO GDWD LQ WKH WZRGLPHQVLRQDO UHJLRQ VKRZHG WKDW UHVRQDQW WULDGV GLG RFFXU LQ DJUHHPHQW ZLWK 5,7 +RZHYHU ZH DOVR IRXQG WKDW RQH RU PRUH UHVRQDQW WULDGV FRXOG EH H[FLWHG E\ D KLJKIUHTXHQF\ VHHG ZDYH RI H[FHHGLQJO\ VPDOO DPSOLWXGH VWHHSQHVVf :KHQ VSHFLILF WULDGV ZHUH VHOHFWHG E\ D VHHG ZDYH WKH\ GRPLQDWHG HYROXWLRQ RI WKH

PAGE 133

YYDYHILHOG :KHQ QR VHHG ZDYHV ZHUH SUHVHQW DQG WKH EDFNJURXQG QRLVH LQ DQ H[n SHULPHQW ZDVnLQFUHDVHG LQWHQWLRQDOO\ E\ JHQHUDWLQJ D EURDG VSHFWUXP RI UDQGRP ZDYHV D WHVW ZDYH H[FLWHG WKH HQWLUH FRQWLQXXP RI DGPLVVLEOH WULDGV LQ D PDQQHU FRQVLVWHQW ZLWK 5,7 IRU D VLQJOH WULDG 7KHVH UHVXOWV FOHDUO\ VKRZHG WKDW D VLQJOH ULSSOH ZDYHWUDLQ FDQ GLVWULEXWH LWV HQHUJ\ WR D ZLGH EDQG RI ORZHU IUHTXHQF\ ZDYHV WKURXJK UHVRQDQW LQWHUDFWLRQV 7KH FRPSOH[LW\ RI ULSSOH G\QDPLFV ZH KDYH REVHUYHG LQ WKH SULVWLQH DQG FRQn WUROOHG HQYLURQPHQW RI D ODERUDWRU\ LV OLNHO\ WR EH D VPDOO VXEVHW RI WKH FRPSOH[LW\ ZKLFK RFFXUV RQ WKH RFHDQnV VXUIDFH ZKHUH VWUDLQLQJ E\ ODUJHU JUDYLW\ ZDYHV DQG VXUIDFH ILOPV DUH XELTXLWRXV

PAGE 134

&+$37(5 *(1(5$/ 6800$5< $1' &21&/86,216 :DYHWUDLQV ZLWK IUHTXHQFLHV JUHDWHU WKDQ +] DUH VSDWLDOO\ XQVWDEOH DQG VSUHDG WKHLU HQHUJ\ DFFRUGLQJ WR WKH V1/6 HTXDWLRQ ZLWK ORFDO HQHUJ\ PD[LPD DSSHDULQJ LQ WKH UHJLRQ RI WKH PRVW XQVWDEOH VLGHEDQGV DQG VSUHDGLQJ WKURXJKRXW WKH DGPLVVLEOH UHJLRQ RI LQVWDELOLW\ DV SUHGLFWHG E\ OLQHDU VWDELOLW\ WKHRU\ :LOWRQnV ULSSOHV DV H[SHFWHG LV VKRZQ WR EH XQVWDEOH WR LWV VHFRQG KDUPRQLF ZHOONQRZQ VHFRQG KDUPRQLF UHVRQDQFHf DQG VKRZQ WR VSUHDG LWV HQHUJ\ VLJQLILFDQWO\ LQ ZDYHQXPEHU VSDFH $Q H[SHULPHQW IRU DQ +] ZDYHWUDLQ LV SUHVHQWHG LQ ZKLFK WKH ILUVW DQG VHFRQG VXSHUKDUPRQLFV DSSHDU DQG WKHQ WKH VHFRQG VXSHUKDUPRQLF LV VKRZQ WR UHVRQDWH ZLWK WKH SULPDU\ ZDYH WKLUG KDUPRQLF UHVRQDQFHf DQG RQFH LW DWWDLQV VLJQLILFDQW IUHH ZDYH HQHUJ\ LW VSUHDGV LWV HQHUJ\ DFFRUGLQJ WR WKH V1/6 HTXDWLRQ ,Q WKH VHFRQG SDUW RI WKH VWXG\ ZDYHWUDLQV DUH VWXGLHG WKHRUHWLFDOO\ XVLQJ UHVRQDQW LQWHUDFWLRQ WKHRU\ DQG H[SHULPHQWDOO\ E\ WKH PHFKDQLFDO JHQHUDWLRQ RI ULSSOH ZDYHWUDLQV LQ D FKDQQHO RI XQLIRUP GHSWK HVVHQWLDOO\ GHHS ZDWHU IRU WKHVH KLJK IUHTXHQF\ ZDYHVf DQG EUHDGWK 7KH IUHTXHQFLHV RI WKHVH ZDYHWUDLQV ZHUH DOO JUHDWHU WKDQ +] 7KHRU\ SUHGLFWV WKDW WULDG UHVRQDQFHV DUH WKH ILUVW WR RFFXU IRU WKHVH IUHTXHQFLHV ,W ZDV IRXQG WKDW H[FHHGLQJO\ VPDOO VHHG ZDYHV FDQ FDXVH WULDGV WR RFFXU $OVR WKH VHOHFWLRQ SURFHVV XQH[SODLQHG E\ ++ KDV QRZ EHHQ DWWULEXWHG WR WKH SUHVHQFH RI +] HOHFWURQLF QRLVH ZKLFK DFWHG DV D KLJKIUHn TXHQF\ VHHG ZDYH :KHQ VSHFLILF WULDGV ZHUH VHOHFWHG E\ D VHHG ZDYH WKH\ GRPL

PAGE 135

QDWHG WKH WHPSRUDO HYROXWLRQ RI WKH ZDYHILHOG 7KH IDFW WKDW D YHU\ VPDOO VHHG ZDYH ZKRVH GLIIHUHQFH ZDYHV ZLWK WKH SULPDU\ ZDYH VHHG WKH ORZIUHTXHQF\ ZDYHV LQ WKH DGPLVVLEOH WULDG UHJLPH DQG WKXV WULJJHU WULDG JHQHUDWLRQ ZDV WRWDOO\ XQH[n SHFWHG ,W ZDV DOVR GHPRQVWUDWHG WKDW D EURDG EDFNJURXQG RI ZKLWH QRLVH FRXOG EH LQWURGXFHG DQG ZKHQ WKH OHYHO RI WKLV EDFNJURXQG QRLVH ZDV LQFUHDVHG WR D SDUWLFXn ODU VLJQDOWRQRLVH UDWLR D FRQWLQXXP RI DGPLVVLEOH WULDGV ZDV H[FLWHG LQ D PDQQHU FRQVLVWHQW ZLWK UHVRQDQW LQWHUDFWLRQ WKHRU\nV SUHGLFWLRQ IRU D VLQJOH WULDG ,Q WKH IXWXUH H[SHULPHQWV PXVW EH SHUIRUPHG LQ ZKLFK WULDGV DUH VHHGHG DQG VSDWLDO GDWD LV REWDLQHG 2QO\ WKHQ ZLOO WKH UHODWLYH RUGHULQJ RI VSDWLDO GLVLQWHJUDn WLRQ DQG WULDG JHQHUDWLRQ EH GLVHQWDQJOHG &DQ ZH SURGXFH WULDGV ZLWK HVVHQWLDOO\ QR HQHUJ\ VSUHDGLQJ SUHVHQW" ,Q IDFW LW PD\ EH WKH HQHUJ\ VSUHDGLQJ GXH WR WKH V1/6 HTXDWLRQ ZKLFK SURGXFHV ZDYH RULHQWHG LQ WKH SURSHU GLUHFWLRQ WR DOORZ WKH QRQFROOLQHDU WULDGV WR RFFXU

PAGE 136

5()(5(1&(6 $%/2:,7= 0 t 6(*85 + 2Q WKH HYROXWLRQ RI SDFNHWV RI ZDWHU ZDYHV )OXLG 0HFK $,5< % 7LGHV DQG :DYHV (QF\FORSDHGLD 0HWURSROLWDQD %$11(5-(( 3 3 t .253(/ $ 6XEKDUPRQLF JHQHUDWLRQ E\ UHVRQDQW WKUHHZDYH LQWHUDFWLRQ RI GHHSZDWHU FDSLOODU\ ZDYHV 3K\V )OXLGV %(1-$0,1 7 % t )(,5 ( 7KH GLVLQWHJUDWLRQ RI ZDYHWUDLQV RQ GHHS ZDWHU 3DUW 7KHRU\ )OXLG 0HFK %(11(< 1RQOLQHDU JUDYLW\ ZDYH LQWHUDFWLRQV )OXLG 0HFK %(11(< t 1(:(// $ & 7KH SURSDJDWLRQ RI QRQOLQHDU ZDYH HQYHn ORSHV 0DWK DQG 3K\V %(11(< t 526.(6 :DYH LQVWDELOLWLHV 6WXG $SSO 0DWK &+(1 % t 6$))0$1 3 7KUHHGLPHQVLRQDO VWDELOLW\ DQG ELIXUFDWLRQ RI FDSLOODU\ DQG JUDYLW\ ZDYHV RQ GHHS ZDWHU 6WXG $SSO 0DWK &5$. $ ' ([DFW VROXWLRQV RI QRQFRQVHUYDWLYH HTXDWLRQV IRU WKUHH ZDYH DQG VHFRQGKDUPRQLF UHVRQDQFH 3URF 5 6RF /RQG $ '$9(< $ t 67(:$57621 2Q WKUHHGLPHQVLRQDO SDFNHWV RI VXUIDFH ZDYHV 3URF 5R\ 6RF /RQG $ '-25'-(9,& 9 t 5('(.233 / 2Q WZRGLPHQVLRQDO SDFNHWV RI FDSLOODU\ JUDYLW\ ZDYHV )OXLG 0HFK )$5$'$< 0 2Q WKH &ULVSDWLRQV RI )OXLG UHVWLQJ XSRQ D 9LEUDWLQJ 6XSSRUW 3KLO 0DJ [YL

PAGE 137

)/,&. 5 ( t *8=$ 5 7 3DGGOH JHQHUDWHG ZDYHV LQ ODERUDWRU\ FKDQQHOV :DWHUZD\ 3RUW &RDVWDO 2FHDQ (QJ $6&( +$00$&. / 3(5/,1 0 t +(1'(5621 0 WR DSSHDUf /HFWXUH SUHVHQWHG DW WKH ,QWHUQDWLRQDO 6FKRRO RI 3K\VLFV f(QULFR )HUPL &RXUVH &,; +$00$&. / t 6(*85 + 7KH .RUWHZHJGH 9ULHV HTXDWLRQ DQG ZDWHU ZDYHV 3DUW &RPSDULVRQ ZLWK H[SHULPHQWV )OXLG 0HFK +$00$&. / t 6(*85 + 7KH .RUWHZHJGH 9ULHV HTXDWLRQ DQG ZDWHU ZDYHV 3DUW 2VFLOODWRU\ ZDYHV )OXLG 0HFK +$55,621 : 7KH LQIOXHQFH RI YLVFRVLW\ DQG FDSLOODULW\ RQ ZDYHV RI ILQLWH DPSOLWXGH 3URF /RQGRQ 0DWK 6RF f +$6,0272 + t 212 + 1RQOLQHDU PRGXODWLRQ RI JUDYLW\ ZDYHV 3K\V 6RF -DSDQ +$66(/0$11 $ FULWHULRQ IRU QRQOLQHDU ZDYH VWDELOLW\ )OXLG 0HFK +(1'(5621 0 5HVRQDQW ,QWHUDFWLRQV $PRQJ 5LSSOHV 0DVWHU RI 6FLn HQFH 7KHVLV (QJU 6FL 'HSW 8QLY RI )ORULGD +(1'(5621 0 t +$00$&. / ([SHULPHQWV RQ ULSSOH LQVWDELOLn WLHV 3DUW 5HVRQDQW WULDGV )OXLG 0HFK +(1'(5621 0 t /(( 5 & /DERUDWRU\ JHQHUDWLRQ DQG SURSDJDWLRQ RI ULSSOHV 3K\V )OXLGV f .(/9,1 /25' +\GURNLQHWLF 6ROXWLRQV DQG 2EVHUYDWLRQV 3KLO 0DJ [OLL f /$.( % 0 <8(1 + & 581*$/',(5 + t )(5*8621 : ( 1RQn OLQHDU GHHSZDWHU ZDYHV WKHRU\ DQG H[SHULPHQW 3DUW (YROXWLRQ RI D FRQn WLQXRXV ZDYHWUDLQ )OXLG 0HFK /$0% + +\GURG\QDPLFV 1HZ
PAGE 138

0$ <& 7KH SHUWXUEHG SODQHZDYH VROXWLRQV RI WKH FXELF 6FKURHGLQJHU (TXDWLRQ 6WXGLHV $SSO 0DWK 0$ <& :HDNO\ QRQOLQHDU VWHDG\ JUDYLW\FDSLOODU\ ZDYHV 3K\V )OXLGV f 0F*2/'5,&. / ) 5HVRQDQW LQWHUDFWLRQV DPRQJ JUDYLW\FDSLOODU\ ZDYHV )OXLG 0HFK 0F*2/'5,&. / $Q H[SHULPHQW RQ VHFRQGRUGHU FDSLOODU\JUDYLW\ UHVR QDQW ZDYH LQWHUDFWLRQV )OXLG 0HFK 0F*2/'5,&. / ) 2Q WKH ULSSOLQJ RI VPDOO ZDYHV D KDUPRQLF QRQn OLQHDU QHDUO\ UHDVRQDQW LQWHUDFWLRQ )OXLG 0HFK 3(5(*5,1( ), :DWHU ZDYHV QRQOLQHDU 6FKURHGLQJHU HTXDWLRQV DQG WKHLU VROXWLRQV $XVWUDO 0DWK 6RF 6HU % 3+,//,36 2 0 2Q WKH G\QDPLFV RI XQVWHDG\ JUDYLW\ ZDYHV RI ILQLWH DPn SOLWXGH 3DUW 7KH HOHPHQWDU\ LQWHUDFWLRQV )OXLG 0HFK 3+,//,36 2 0 7KH '\QDPLFV RI WKH 8SSHU 2FHDQ /RQGRQ (QJODQG &DPEULGJH 8QLYHUVLW\ 3UHVV 5$
PAGE 139

<8(1 + & t /$.( % 0 1RQOLQHDU GHHS ZDWHU ZDYHV WKHRU\ DQG H[n SHULPHQW 3K\V )OXLGV =$.+$529 9 ( 6WDELOLW\ RI SHULRGLF ZDYHV RI ILQLWH DPSOLWXGH RQ WKH VXUIDFH RI D GHHS IOXLG $SSO 0HFK 7HFK 3K\V =$.+$529 9 ( $1' 6+$%$7 $% ([DFW WKHRU\ RI WZRGLPHQVLRQDO VHOIIRFXVVLQJ DQG RQHGLPHQVLRQDO VHOIPRGXODWLRQ RI ZDYHV LQ QRQOLQHDU PHn GLD 6RYLHW 3K\V -(73 =+$1* t 0(/9,//( : 2Q WKH VWDELOLW\ RI ZHDNO\QRQOLQHDU JUDYLW\n FDSLOODU\ ZDYHV :DYH 0RWLRQ =+$1* t 0(/9,//( : 7KUHHGLPHQVLRQDO LQVWDELOLWLHV RI QRQOLQHDU JUDYLW\FDSLOODU\ ZDYHV )OXLG 0HFK

PAGE 140

%,2*5$3+,&$/ 6.(7&+ 0DUF 3HUOLQ ZDV ERUQ WR 0LOWRQ DQG /RUUDLQH 3HUOLQ RQ 0D\ LQ /DNHZRRG 1HZ -HUVH\ $IWHU JUDGXDWLQJ /DNHZRRG +LJK 6FKRRO LQ -XQH KH DWWHQGHG 'UH[HO 8QLYHUVLW\ JUDGXDWLQJ ZLWK D % 6 LQ FLYLO HQJLQHHULQJ ZLWK KRQn RUV LQ -XQH $W WKLV WLPH KH EHJDQ ZRUNLQJ DV D ILHOG HQJLQHHU LQ SULYDWH LQGXVWU\ $IWHU RQO\ \HDUV LQ LQGXVWU\ KH UHWXUQHG WR WKH 8QLYHUVLW\ RI 'HODn ZDUH FRPSOHWHG KLV PDVWHUVf GHJUHH ZRUN LQ 2FWREHU DQG WKXV UHFHLYHG KLV GHJUHH LQ -XQH )RU D \HDU KH ZRUNHG DW WKH &RDVWDO (QJLQHHULQJ 5HVHDUFK &HQWHU ZKLFK KH WKHQ OHIW WR MRLQ D ODUJH FRQVXOWLQJ HQJLQHHULQJ ILUP ZKHUH KH ZDV DEOH WR WUDYHO H[WHQVLYHO\ $IWHU WLULQJ RI WUDYHO KH MRLQHG D VPDOO KLJK WHFK FRQn VXOWLQJ ILUP ZKHUH KH UHPDLQHG IRU WKUHH \HDUV $W WKLV SRLQW 0DUF DFFHSWHG WKH SRVLWLRQ DV 'LUHFWRU RI WKH 8QLYHUVLW\ RI )ORULGDnV &RDVWDO DQG 2FHDQRJUDSKLF (QJLn QHHULQJ /DERUDWRU\ ZLWK WKH LGHD WKDW KH FRXOG SXUVXH KLV 3K' FRQFXUUHQWO\ $IWHU IRXU \HDUV RI GLUHFWLQJ WKH ODERUDWRU\ DQG DWWHQGLQJ JUDGXDWH VFKRRO KH GHFLGHG RQFH KH KDG SDVVHG WKH TXDOLI\LQJ H[DP LQ $SULO WR UHVLJQ KLV SRVLWLRQ DQG GHGLFDWH KLV WLPH H[FOXVLYHO\ WRZDUG KLV GRFWRUDO UHVHDUFK

PAGE 141

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ n-RVHSK / +DPPDFN -U &QDUUPDQ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QHLQHHULQH 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW 'HDQ *UDGXDWH 5HVHDUFK 3URIHVVRU RI &RDVWDO DQG 2FHDQRJUDSKLF (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ KnF 8OULFK + .XU]ZHJ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHHMDe(`RFWRU RI 3KLORVSK\ nPHV 7 .LUE\ $VVRFLDWH 3URIHVVRU RI &RDVWDO DQG 2FHDQRJUDSKLF (QJLQHHULQJ

PAGE 142

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 143

81,9(56,7< 2) )/25,'$

PAGE 144

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ET2XB6ZBO_B8B88L INGEST_TIME 2017-07-12T21:06:46Z PACKAGE AA00003352_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES