Citation
Acyclic diene metathesis, a new equilibrium step propagation, condensation polymerization

Material Information

Title:
Acyclic diene metathesis, a new equilibrium step propagation, condensation polymerization
Creator:
Nel, Jan Geldenhuys, 1960-
Publication Date:
Language:
English
Physical Description:
viii, 154 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Alkenes ( jstor )
Carbon ( jstor )
Catalysts ( jstor )
Dienes ( jstor )
Metathesis ( jstor )
Molecular weight ( jstor )
Monomers ( jstor )
Polymerization ( jstor )
Polymers ( jstor )
Styrenes ( jstor )
Diolefins ( lcsh )
Metathesis ( lcsh )
Polymerization ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 146-153).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Jan Geldenhuys Nel.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001540912 ( ALEPH )
AHF4387 ( NOTIS )
22427119 ( OCLC )

Downloads

This item has the following downloads:


Full Text










ACYCLIC DIENE METATHESIS, A NEW EQUILIBRIUM STEP PROPAGATION,
CONDENSATION POLYMERIZATION












By

JAN GELDENHUYS EL


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE
UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1989


























Opgedra aan my huisgesin,
Pa-Jan, Ma-Beatrice,
Hanli, Basson en Clarissa Nel.










ACKNOWLEDGEMENTS


I wish to thank all the members of my supervisory committee:
Dr. K.B. Wagener, Dr. J.M. Boncella, Dr. R.C. Stoufer, Dr. W.R. Dolbier
and Dr. C.D. Batich.
Thanks go to all my past and present colleagues for their
support and friendship. The friendly, yet serious atmosphere of the
polymer floor has been wonderful; I'll remember it all my life.
Thanks also go to Mark Hillmyer and Joe Morelli for washing glass
and assisting me. Special thanks go to Lorraine Williams and Pat
Hargraves, our beloved secretaries, who were cheerful even on
deadline days. A word of acknowledgement goes to Dr. R. King for
NMR assistance and to Dr. D Powell for mass spectroscopy analysis.
I also thank Dr. R.P. Duttweiler and Dr. J.M. Boncella for preparing the
catalyst.
Special thanks are given to Rudy Strohschein and Dick Moshier
in the glass shop. Many an hour was spent mentally recovering by
sharing laughs and fishing. Thanks for teaching me the art and
beauty of glassblowing; I'll always love "gloo-blasting".
Words cannot express my gratitude to Lucy Kuykendall for her
patience and encouragement in preparing this manuscript. Thank you
very much for all the hours of typing over the weekends; it is deeply
appreciated.
Words fail me in expressing my gratitude towards Dr. Ken
Wagener. Thank you for your unselfish support and encouragement
throughout my studies. "Don't give up" will always be my motto.













TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS............................................................................... iii

A BST RA C T ..................................................................................................... vii

CHAPTER

1. INTRODUCTION

The Nature of Step Polymerization Chemistry................. 1
The Olefin Metathesis Reaction............................................ 5
Brief History of Olefin Metathesis.................................. 8
The Mechanism for Metathesis Chemistry........................ 11
Catalysts Used in Olefin Metathesis................................... 12
Ring Opening Metathesis Polymerization (ROMP)............ 13
Acyclic Diene Metathesis Polymerization (ADMET)........ 15


2. EXPERIMENTAL

General Inform ation.......................... ..... ............................. 18
High Vacuum and Schlenk Line Techniques...................... 1 9
Schlenk Vacuum Line Techniques................................. 1 9
High Vacuum Line Techniques............................................ 21
Purification of Monomers, Reagents and Solvents....... 24
Attempted Metathesis of Styrene Using a
Lewis Acid Containing Catalyst........................................ 26
Attempted Metathesis of Fluorinated Styrenes Using
a Lewis Acid Containing Catalyst System.................. 30
Preparation of Fluorinated Polystyrene Via
Anionic Polymerization Techniques............................. 31
Metathesis of Styrene Using a Lewis
Acid Free Catalyst.................................................. ........ 34
Metathesis of Fluorinated Styrenes
Using a Lewis Acid Free Catalyst.................................. 38








Metathesis of Substituted Styrenes
Using a Lewis Acid Free Catalyst................................... 40
Acyclic Diene Metathesis (ADMET)
Polymerization of 1,9-Decadiene.............................. 41
General Polymerization Procedure.............................. 41
Reaction Conditions for 1,9-Decadiene
Polym erizations................... ........................................... 4 7
Acyclic Diene Metathesis (ADMET)
Polymerization of 1,5-Hexadiene............................... 53
General Polymerization Procedure............................... 53
Reaction Conditions for 1,5-Hexadiene
Polym erizations.................................................................... 5 3


3. THE KEY TO SUCCESSFUL ACYCLIC DIENE METATHESIS
(ADMET) POLYMERIZATION CHEMISTRY

Styrene as a Model Compound............................. ........... 57
Preventing the Cationic Polymerization of Styrene...... 60
Investigation of a Lewis Acid Free Catalyst System
with Styrene as Model Compound................................... 64
Investigation of a Lewis Acid Free Catalyst System
with Substituted Styrenes as Model Compounds....... 68


4. ACYCLIC DIENE METATHESIS POLYMERIZATION (ADMET).
SYNTHESIS OF POLYOCTENAMER USING 1,9-DECADIENE
AS A MONOMER

Acyclic Diene Metathesis as a Polymerization
Reaction................................ .................. .......................... 8 1
Bulk Polymerization Conditions......................... ........ 84
Tailoring of Acyclic Diene Metathesis Formed
Polym ers...................................................... .................. 8 6
Determining the Stereochemistry of the Olefin
Units in Polyoctenamer......................................................... 87
Effects of Percentage Trans Stereochemistry on the
Melting and Recrystallization Temperatures of
Polyoctenam er................................................ ..................... 9 3
Determination of the Molecular Weights of the
Polyoctenamer Samples Produced by Acyclic
Diene Metathesis Polymerization................................ 100
Determination of the Mark-Howink-Sakurada








Constants, "K" and "a", for Polyoctenamer
at 25C in Toluene ........................................................ 1 08
Testing calculated Mark-Howink-Sakurada constants 117
An Investigation of the Possible Formation of
Macrocycles During Acyclic Diene Metathesis
Polym erization....................................................................... 1 1 7


5. THE STEP PROPAGATION, CONDENSATION NATURE OF
ACYCLIC DIENE METATHESIS POLYMERIZATION

Determining the Linearity of Acyclic Diene
Metathesis Produced Polybutadiene................................ 1 24
Determining Optimal Reaction Conditions for
Acyclic Diene Metathesis Polymerizations................. 134
Large Volume of Solvent............................... ........... 1 36
Bulk polymerization conditions................................. 1 38
An Evaluation of the Equilibrium Step Propagation
Condensation Nature of Acyclic Diene Metathesis
Polym erization ............................................... ............. 1 40


REFERENC ES ................................................................................................ 14 6


BIOGRAPHICAL SKETCH................................................................................. 1 54














Abstract of Dissertation Presented to the Graduate School of the
University of Florida in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

ACYCLIC DIENE METATHESIS, A NEW EQUILIBRIUM STEP PROPAGATION,
CONDENSATION POLYMERIZATION

By

Jan Geldenhuys Nel

December 1989

Chairman: Dr. Kenneth B. Wagener
Major Department: Chemistry


The first high molecular weight polymers synthesized by
acyclic diene metathesis (ADMET) polymerization are reported
herein. Prior to the research discussed in this dissertation, the
catalyst requirements and the reaction conditions required to
produce high molecular weight polymers by acyclic diene metathesis
polymerization techniques were unknown. Thus, this reaction
becomes one of only three room temperature step polymerizations
known today.
Model compound studies were investigated to eliminate all
competing side reactions. The metathesis of styrene, catalyzed by a
Lewis acid free catalyst under bulk and high vacuum reaction
conditions, yielded stilbene quantitatively, without any traces of








side reactions. Substituted styrenes also metathesized cleanly and
quantitatively.
A series of 1,9-decadiene polymerizations facilitated the
direct comparison of products formed by acyclic diene metathesis
polymerization with ring opening metathesis polymerization
samples. High molecular weight polyoctenamer samples were
produced which had a high percentage trans stereochemistry that
resulted in high melting points. A prediction of the melting and
recrystallization temperatures of 100% trans polyoctenamer was
made. The Mark-Houwink-Sakurada constants for polyoctenamer
were calculated for the molecular weight range 103-105.
Since acyclic diene metathesis produces exclusively linear
polymers with no branching, ADMET was applied to 1,5-hexadiene
and exclusively linear poly-1,4-butadiene resulted, as indicated by
the absence of 1,2-vinyl linkage.
The possibility of acyclic diene metathesis (ADMET)
cyclization side reactions and the subsequent ring opening
metathesis polymerization were studied by mass spectroscopy and
size exclusion chromatography. Parent ion peaks corresponding to
linear polymer were observed in both the 1,5-hexadiene and 1,9-
decadiene polymerizations. The continued presence of ethylene
throughout the course of the reaction indicated the condensation
nature of ADMET. A polydispersity approaching 2 was obtained for
high molecular weight polyoctenamer and polybutadiene samples.
Thus, acyclic diene metathesis polymers are formed by a step
propagation mechanism.


viii














CHAPTER 1
INTRODUCTION


During the past 20 years, the olefin metathesis reaction has
been explored extensively for its ability to create polymers.
Principally, the method investigated has been the ring opening
metathesis polymerization (ROMP) of strained cycloalkenes, and as a
result several polymers presently are produced commercially using
ROMP chemistry [1]. Ring opening metathesis polymerizations are
driven by the release of ring strain, and thus ring opening
metathesis is limited to the polymerization of strained alkene rings
[2].
The polymerization of acyclic dienes has been attempted as
well, but with little success prior to the research reported herein
[3]. This dissertation reports the first successful metathesis
reactions in the equilibrium step propagation condensation
polymerization of acyclic dienes, thereby broadening the scope of
metathesis polymerization. A variety of acyclic dienes exist that
could become monomers for acyclic diene metathesis
polymerizations, producing new and unique polymers.





2


The Nature of Step Polymerization Chemistry
As the name implies, step polymerization proceed in a step-
wise manner [4]. Initially, monomer reacts with monomer to produce
a dimer, and the dimer can react, in turn, with monomer or another
dimer to form either a trimer or tetramer. The step-wise
mechanism by which a polymer is progressively formed is
illustrated in Figure 1-1.

monomer + monomer dimer
dimer + monomer trimer
dimer + dimer tetramer
trimer + monomer tetramer
trimer + dimer pentamer
trimer + trimer hexamer
etc.


Figure 1-1. Equilibrium step polymerization growth


Monomer disappears early in step propagation reactions, and a
range of molecular weight oligomers and polymer chains result. The
step-wise growth of monomer to oligomers, eventually reaching high
molecular weight polymers, imparts stringent requirements for any
chemical reaction to be used in an equilibrium step polymerization

[5].
In general, for a small-molecule reaction to be useful in a step
polymerization reaction, a favorable equilibrium is necessary. The
formation of unstrained rings, as opposed to linear polymer, is an
example of an unfavorable equilibrium reaction that can prevent
acyclic diene metathesis polymerization.








High conversion (i.e., extent of reaction) is one of the more
important criteria required for the synthesis of high molecular
weight polymer by step polymerization chemistry. In small
molecule synthesis, the reaction is considered to be a success if
90% conversion is achieved. In contrast, a conversion greater than
99% is needed for any step polymerization to produce high molecular
weight polymer.
W.H. Carothers [6], derived equation (1) which correlates
molecular weight and percentage conversion.

Xn = 1/(1-p) (1)

According to Carothers, Xn is the number average degree of
polymerization, and p is the extent or fraction of conversion of
functional group to polymer, illustrating the importance of a high
extent of conversion. A perfect balance of stoichiometry is assumed
in this relationship, and it can be seen that when p equals 0.9
(corresponding to 90% conversion), the "polymer" which results
possesses only 10 repeating units, which is an oligomer, not a
polymer. A conversion of 99.5% produces a polymer consisting of
200 repeating units and, depending on the molecular weight of the
repeating unit, a moderate molecular weight. A step condensation
reaction only produces high molecular weight polymer when a high
extent of conversion is achieved. Figure 1-2 portrays the
relationship between the extent of conversion and the molecular
weight of polymer. Chemical reactions that are useful for step
polymerizations include esterification, amidation, the formation of
urethanes, aromatic substitution and only a few others [4].











200


P Xn

0.8 5
0.9 10 Xn
0.95 20
0.99 100
0.995 200
0
0.00 1.00

Figure 1-2. Variation of molecular weight with conversion
for equilibrium step polymerizations


Two general types of monomers can be employed in step
polymerizations. The first type of monomer has two different
bifunctional and/or polyfunctional groups with each monomer

possessing only one type of functional group. The second type has a
single bifunctional monomer containing two different functional

groups.or the same monomer. The two groups of reactions can be

represented by the following equations, where A and B are the two
different types of functional groups.



n A-A + n B-B -[-A-AB-B -,n (2)


n A-B


-- A--B--


L





5


Metathesis represents another reaction in addition to those
already mentioned that can be employed as a equilibrium step
polymerization mechanism. The monomers that would be suitable
for this mechanism have double bonds (i.e., enes) as functional
groups, represented schematically as A-A. An equilibrium step
propagation condensation type polymerization (4) will produce a
repeat unit contain an internal olefin (-B-) and a small molecule (C):


catalyst
n A-A t -B--- + nC (4)
n



The removal of the by-product (a small molecule) provides the
driving force for a productive polymerization reaction.


The Olefin Metathesis Reaction
The word metathesis is derived from the Greek words meta
(change) and tithemi (place), and as a grammatical term, it means
the transposition of sounds or letters in a word [7]. For chemistry,
metathesis corresponds to the interchange of atoms between two
molecules. Olefin metathesis refers to the interchange of carbon
atoms between a pair of double bonds (olefins).
Olefin metathesis reactions (Figure 1-3) fall into three broad
categories: exchange (5), ring opening polymerization (ROMP) (6),
and cyclization reactions (7).








RCH=CHR
+
CH2= CH2


catalyst


catalyst


= =CHCH2-R-CH2CH=





30


catalyst


Figure 1-3. Olefin metathesis reactions.


Acyclic diene metathesis (ADMET) polymerization (Figure 1-4)
provides the possibility of extending exchange olefin metathesis
reactions into a polymerization scheme. Demonstrating the
feasibility of employing exchange olefin metathesis as an
equilibrium step condensation type polymerization has been the goal
of this investigative effort.


1 R1 catalyst
n (s(( R2x)x C .)-n + n


R1


Figure 1-4. The acyclic diene metathesis polymerization reaction.


RCH
CH2


Cw
+ II
CH2


(5)








Metathesis reactions generally are reversible, and with an
effective catalyst system, an equilibrium can be obtained in a
relatively short time. The reversibility of the olefin metathesis
reaction results in either a productive or degenerate metathesis
product. A productive metathesis reaction produces two chemically
different molecules, and a specific example of such a reaction is
shown in Figure 1-5, where propene produces 2-butene and ethylene.


CH3CH=CH2
+C 2
CH3CH=CH2


catalyst


CHCH CH2
113CH + H2
CH3OH CH2


Figure 1-5. The productive metathesis of propylene.


On the other hand, no new chemical compound results when a
degenerate metathesis reaction occurs. Degenerate metathesis is
illustrated with a specific example in Figure 1-6: propene is the
reagent, and propene is also the resultant product.


CH3CH=CH2
+
CH2= CHCH3


catalyst


CH3CH CH2
CH+ HCH
Cd- CHCH3


Figure 1-6. The degenerate metathesis of propene.


Isotopic labeling studies have shown that degenerate
metathesis is much faster than productive metathesis for terminal


L








olefins [8]. By carefully controlling the reaction conditions and
catalyst system, the possibility exists that productive metathesis
can become the dominant reaction. Productive metathesis must
produce yields of better than 99% for olefin metathesis to become a
viable reaction in a polymerization scheme. Obtaining the optimum
reaction conditions that lead to productive metathesis is one of the
criteria to be met before acyclic diene metathesis reactions can
produce a step condensation type polymer.
The principal side reactions that can occur during olefin
metathesis are; alkylation, isomerization, cyclization, and addition
across the double bond. The following precautions have been found
to minimize side reactions [9, 10]:
(i) The proper choice of solvent to suppress alkylation
reactions; halogenated solvents such as chlorobenzene
are preferred.
(ii) The use of a base to suppress cationic side reactions;
alkali metal hydroxides can be added to supported
catalysts, and tertiary amines or other polar additives
can be added to catalyst systems in solution.
(iii) The careful selection of the order of addition of catalyst,
cocatalyst, and substrate; and,
(iv) The use of as low a temperature as possible during the
reaction.


Brief History of Olefin Metathesis
A patent disclosure by Eleuterio in 1957 on reaction 5 (Figure
1-3), and the norbornene reaction shown in Figure 1-7 were the first








metathesis reactions reported. The first literature published on
metathesis polymerizations, in 1960 by Truett, concerned the ring
opening polymerization of norbornene to polynorbornene (Figure 1-7)
[11].




7n catalyst --CHH-



Figure 1-7. The polymerization of norbornene.


Exchange metathesis reactions such as those shown in Figure 1-8
were first published in 1964 by Banks [12].
Calderon, in 1967, coined the expression olefinn metathesis"
[13]. Prior to 1967, the chemistry of exchange reactions and of ring
opening metathesis polymerization reactions had developed
independently. The connection between the two types of reactions
was not immediately apparent because different catalysts and
conditions were involved.
Calderon's discovery that the catalyst system
WCI6/EtAICI2/EtOH would bring about not only the very rapid
polymerization of cyclooctene and 1,5-cyclooctadiene [14], but also
the disproportionation of 2-pentene [15] at room temperature
provided the bridge leading to the realization that olefin
disproportionation and ring opening metathesis polymerization were
the same chemical reaction. Calderon [16] demonstrated that the








double bonds are completely broken in the reaction (Figure 1-8) and
lead to the exchange of alkyldiene moieties.


CH3CH=CHCH3 WCI6/EtAICI2/EtOH CH3CH CHCH3
+ 11 + I
CD3CD=CDCD3 CD3CD CDCD3

Figure 1-8. Metathesis reaction illustrating the exchange
of alkyldiene moieties.


Consequently, transalkylidenation reactions became known as olefin
metathesis reactions. Mol [17], Levisalles [18] and K. Tanaka [19]
separately confirmed Calderon's findings, but used isotopically
labelled samples with different catalyst systems. Dall'Asta [20]
proved that the double bond is completely broken during ring opening
metathesis polymerizations of cycloalkenes.
Chemists were quite impressed by the beauty and elegance of
the olefin metathesis reaction. Earlier authors frequently used the
words, "fascinating, intriguing, exciting and even doubly exciting
(commercially and academically)" to describe these reactions. K. J.
Ivin [21] wrote about olefin metathesis, "We now know quite a lot
about this beautiful woman metathesiss) but she still has a few
secrets locked away".
One of those hidden secrets, Acyclic Diene Metathesis
Polymerization (ADMET polymerization), has been uncovered by the
research reported herein. The beauty and elegance of ADMET
polymerizations will be discussed in subsequent chapters.








The Mechanism of Metathesis Chemistry
Originally, metathesis was [22] thought to occur when two
double bonds approached one another in the vicinity of the transition
metal catalyst site. Transition metal orbitals were proposed to
overlap with olefin double bonds to allow exchange to occur via a
weakly held cyclobutane type complex. This "pairwise mechanism"
(Figure 1-9) has been discarded in favor of the metal carbene chain
mechanism [23].



S C C-------C C=C
[M] [M] [M]
C C -------C =C


Figure 1-9. The pairwise mechanism.


Herisson and Chauvin first proposed that a metal carbene
species might be involved in olefin metathesis [24]. The research
describing the initial products of cross metathesis of cyclo- and
acyclic olefins, and the identification of both initiating and
propagating metal carbenes by 1 H and 13C NMR spectroscopy [25, 26,
27, 28] (between 1979 and 1982), is regarded as unequivocal proof
of the metal carbene mechanism. Numerous experiments have
confirmed the metal carbene mechanism, and it is generally
accepted for olefin metathesis reactions. In the metal carbene chain
mechanism, the propagating compound is a metal carbene formed in
some way from the catalyst/substrate system. Generalized
propagating steps are shown in Figure 1-10, where











C C C-C C C
[M] C J IM]- C_ [M]=C


Figure 1-10. The metal carbene mechanism.


propagation proceeds via a metallacyclobutane species. During the
process a metal carbene is regenerated at every stage.


Catalysts Used In Olefin Metathesis
Numerous catalyst systems exist that will initiate olefin
metathesis reactions. Currently, several researchers [28, 29, 30]
are actively pursuing catalytic reactions in search of yet more
reactive and better defined organometallic complexes. Metathesis
catalyst systems can be divided into three types:
(a) those consisting of an actual metal carbene;
(b) those containing an alkyl or allyl group in one of the
components, e.g. EtAICI2, from which a carbene ligand

can readily be generated; and,
(c) those having neither a preformed carbene nor an alkyl
group in any component. In this case, a metal carbene
can only formed by interaction of the substrate olefin
with the transition metal center.
Eleven transition metals are the most commonly used as
catalysts: Ti, Zr, Hf, Nb, Ta, Mo, W, Re, Ru, Os and Ir. Compounds








containing non-transition metals are not commonly used as a
catalyst, with A1203 [31] and EtAICI2 [32] being two rare examples.
The metathesis of acyclic olefins is usually thermoneutral.
Therefore, if an equilibrium is to be obtained quickly, only the most
active Mo-, W-, Re- and Ta- based systems should be used.
A cocatalyst normally consists of an organometallic compound
of a non-transition metal from groups I-IV, and the function of the
cocatalyst may be severalfold. The cocatalyst may provide an alkyl
ligand to the transition metal that can be converted into an
alkyldiene ligand. Alternately, the cocatalyst itself may act as a
ligand and thereby modify the electron density of the transition
metal atom. Presently, much emphasis has been placed on catalyst
systems which consist of an actual metal carbene and do not require
cocatalysts or activators [28, 29].


Ring Opening Metathesis Polymerization (ROMP).
Eleuterio's (1957) and Truett's (1960) norbornene
polymerization disclosures were the first ring opening metathesis
reactions performed. These were followed by Natta and Dall'Asta
(1964), who reported the metathesis polymerization of
cyclopentene using a transition metal catalyst system [33]. Since
that time there have been numerous reports of successful
polymerizations of cyclic olefins [34-46], and as stated previously,
the ring opening metathesis polymerizations (Figure 1-11) are
driven by the release of ring strain.









-C catalyst
n R I "- ICH = CH R--R
CH


Figure 1-11. Ring opening metathesis polymerization (ROMP).


Schrock, Grubbs, and Osborn investigations have resulted in
new metathesis catalysts that are broadening the scope of ring
opening metathesis polymerization [28, 29, 30]. The ring opening
metathesis polymerization (ROMP) of strained cycloolefins has been
the only metathesis reaction leading to the formation of useful
polymers. Polyoctenamer [47] (formed from cyclooctene, marketed
in 1980) and polynorbornene [48, 49] (formed from norbornene,
marketed in 1976) are examples of ring opened polymers that are
commercially available.
Extensive research has been done on ring opening metathesis
polymerization reactions, and researchers are actively pursuing
ROMP chemistry [1]. The effects of ring size, substituents on rings,
formation of cyclic oligomers and several other aspects of ROMP
reactions have been investigated thoroughly. The use of monocyclic,
bicyclic, and tricyclic alkenes as monomers have also been studied
[50], and copolymers of cycloalkenes and cross metathesis telomers,
formed between cyclic and acyclic olefins were also investigated
[51].
Recent studies have revealed, in certain cases at least, that
ring opening metathesis polymerization is a living polymerization








reaction, and polyuniformities approaching the ideal value of 1.0
have been found [34, 42]. A uniformities of 1.0 demonstrates that
the catalyst does not dissociate from the living-chain end and can
lead to the formation of block copolymers. However, ring opening
metathesis polymerization chemistry is hampered by the fact that
monomers are restricted to strained cyclic olefins.


Acyclic Diene Metathesis Polymerization (ADMET)
Acyclic diene metathesis polymerization (ADMET) (Figure 1-4)
presents another opportunity to exploit the metathesis reaction to
create polymers. Acyclic diene metathesis polymerization is
completely different from ring opening metathesis polymerization
and offers possibilities not available when one is constrained to
cyclic monomers.




R1 )x R1 catalyst +
-n -(--(R2)x + n
R,

Figure 1-4. Acyclic diene metathesis polymerization (ADMET).


The metathesis reaction of acyclic dienes is an equilibrium
reaction that generally has an overall change in free energy close to
zero. Reactions do not proceed to high molecular weight polymer,
and only oligomers are formed if the equilibrium is not shifted in
favor of the forward reaction. Removing the byproduct (small








molecule) provides an opportunity to shift the equilibrium and drive
the polymerization to high molecular weight.
Side reactions (e.g. the formation of cyclic compounds as
opposed to linear products) also limit equilibrium step condensation
polymerization reactions [52]. It is especially true for step
condensation reactions in which the cyclic product formed is more
stable than the linear product and thus becomes the principal
product of the reaction. The percentage conversion of monomer to
polymer is reduced by cyclization reactions, and according to the
Carothers equation (1), only low molecular weight oligomers can be
expected [5, 6].
Early studies show that six membered rings are preferentially
formed from acyclic dienes where double bonds are separated by
four carbon atoms [53]. For example, cis,cis-2,8-decadiene produces
cyclohexene in 90% yields.



-_ catalyst



Figure 1-13. The formation of cyclic compounds
via acyclic diene metathesis chemistry.


Researchers studied the metathesis reaction of 1,7-octadiene [49]
to gain insight into the mechanism of metathesis. Several catalyst
systems were used, and without exception the products are
cyclohexene and small quantities of oligomers.








Reactions with isotopically labeled terminal olefins revealed
that degenerate metathesis is much faster than productive
metathesis [8]. Subsequently, degenerate metathesis explains the
fact that for acyclic dienes, without exception, only oligomers are
formed under the reaction conditions employed. One reaction that
received significant attention was the attempted acyclic diene
metathesis polymerization of 1,5-hexadiene to polybutadiene [54,
55]. It was eventually concluded that ADMET polymerization of 1,5-
hexadiene was impossible because degenerate metathesis is
strongly favoured [56].
By the late 1970s it was generally accepted that acyclic
dienes would not produce linear polymers by acyclic diene
metathesis. What would have been the first new step condensation
type polymerization reaction in 20 years was abandoned, and
polymerization efforts were focused on ring opening metathesis
polymerization reactions.
This dissertation demonstrates unequivocally that acyclic
diene metathesis (ADMET) polymerization is possible. It elaborates
on the requirements necessary for acyclic diene metathesis to
become a feasible polymerization reaction. Specific model
compound studies were performed to gain insight regarding the
requirements necessary for acyclic diene metathesis to be used as a
polymerization reaction. Two important polymers were prepared by
acyclic diene metathesis polymerizations and reaction conditions
and the properties of the formed polymers were delineated.














CHAPTER 2
EXPERIMENTAL


General Information
A Varian XL-Series NMR Superconducting Spectrometer system
was used to obtain IH NMR 200 MHz and 13C NMR 50 MHz spectra.
Chemical shifts are reported in parts per million downfield from the
internal reference tetramethylsilane. Infrared spectral analysis
was performed on a Perkin-Elmer 281 Infrared Spectrophotometer
with KBr pellets and percent transmission being recorded relative to
wavenumber. Ulraviolet spectroscopy was done with a Perkin-Elmer
Lambda 9 UV/Vis/NIR spectrometer using THF as solvent. Elemental
analyses were done by Atlantic Microlab inc. in Norcross, Georgia.
Mass Spectroscopic data were obtained from a Finnigan 4600 Gas
Chromatographic Mass Spectrometer. Differential scanning
calorimetry data were obtained with the Perkin-Elmer 7 Series
Therm Analysis system, equipped with a data station. The
instrument was calibrated by a two point method using cyclohexane
and indium. Dry argon was used as purge gas, and a scan rate of 100C
per minute was used.
Size exclusion chromatograph data was obtained using a
Waters Associates Liquid Chromatograph apparatus equipped with an
RI detector. Tetrahydrofuran or toluene were used as solvent and g-








styragel columns covering the region of interest were employed. A
constant flow rate of 1.04 ml/min was maintained and the
instrument calibrated by using polybutadiene or polystyrene
standards (Polysciences, Inc.) that covered the region of interest.
Intrinsic viscosities were determined using an Oswaltd dilution
viscometer at 25 C with toluene as the solvent. A Wescan Vapor
Pressure Osmometer model 233 was used for osmometry. Toluene
was the solvent of choice at an operating temperature of 51C.


High Vacuum and Schlenk Line Techniques
The catalysts used for metathesis reactions vary in their
sensitivity toward impurities, such as moisture and oxygen[57].
Since little is known about the exact conditions required for
metathesis to occur when vinyl bonds are used, a variety of reaction
conditions were employed to optimize the synthesis of model
compounds, and polymers.


Schlenk Vacuum Line Techniques
The first polymerizations of 1,9-decadiene and 1,5-hexadiene
were carried out with a Lewis acid containing catalyst system
(WCL6/ETAICI2) using Schlenk line techniques [58]. Schlenk
techniques also were used initially in the model compound studies.
A specially designed flask (Figure 2-1) equipped with a porthole
having a Suba SealT rubber septum and a ground glass joint (14/20)
was designed, and the ground glass joint was connected to a gas trap
in the system. All condensed gases were analyzed with a gas
chromatography equipped with a flame ionization detector, or a










To Vacuum

.


Septum -,


Gas Trap


Figure 2-1. Schlenk vacuum line apparatus








mass spectrometer.
In a typical experiment, freshly sublimed tungsten
hexachloride (WCI6) was added into the flask described above, which
was placed in a dry box free of oxygen and moisture. When
chlorobenzene was used as solvent, a 1.0 M solution of WCI6 in
chlorobenzene was used instead of powderous WCI6. The flask was
sealed using a septum and a RotafloTM stopcock. This apparatus was
connected to a Schlenk vacuum line via a ground glass joint and then
evacuated. The gastrap of the apparatus was closed off from the
vacuum line using an in-line RotafloT stopcock, and the system was
filled with dry argon. The reagent and the co-catalyst were added
via a syringe.
Schlenk methods allowed for the addition of reagents in
varying order and quantities. The gas trap was cooled in liquid
nitrogen while the reaction mixture was chilled in an ice bath. A
moderate vacuum was applied to the system by opening the RotafloT
joint of the gas trap, and the condensed gases were removed for
further analysis.


High Vacuum Line Techniques
Due to the high oxygen and moisture sensitivity of the Lewis
acid free catalyst system (Catalyst 2; W(CH-t-Bu)(N-2,6-C6H3-i-
Pr2)[OCMe(CF3)2]2, Figure 2-2), high vacuum line techniques had to
be employed when this catalyst was used. A vacuum system,
custom-made in the University of Florida glass shop [59], was
constructed entirely of PyrexTM glass and consisted of a rotary oil
pump in conjunction with an oil diffusion pump. High vacuum PyrexT











C(CH3)3
I
CH
(CH3),(CH3)CO I
(CH3)2(CH3)CO N





Catalyst 1






C(CH3)3
CH

(CF3)2(CH3)CO



(CF Catalyst 2


Catalyst 2


Figure 2-2. Lewis acid free catalysts used in metathesis reactions.








ground glass joints were used at various junctions in the line to
permit evacuation of reaction vessels and to transfer solvents and
reagents from one vessel to another. A mercury McCleod gauge,
attached to the manifold, was used to monitor the pressure in the
system.
The PyrexT glass vessels used in the reactions were self
designed and built with the use of a hand-held gas and oxygen torch
(Figures 2-4, 2-7, 2-8, 2-9 and 2-10). The manipulations required
for various reactions, such as catalyst addition and transfer of
reagents, were performed in vacua using breakseal techniques [60,
61]. All glassware used was cleaned in the following order:
KOH/isopropanol (15% W/V), water and acetone. The apparatus was
oven dried before attaching it to the vacuum line. The entire system
was evacuated and dried thoroughly with a torch to remove traces of
adsorbed water vapor and oxygen from the surface of the glass. The
system then was checked for the presence of pinholes using a Tesla
high voltage discharge coil. Reactions were carried out only after
confirming that a "sticking vacuum" (10-6 mm Hg) existed, as
registered on the McCleod gauge.
The reactions were terminated by disconnecting the apparatus
from the vacuum line and then opening the Rotaflow joints, which
allowed air into the system to destroy the catalyst. Following these
operations, the apparatus had to be cut into smaller sections to
remove the products.








Purification of Monomers. Reagents and Solvents
All chemicals were of high grade purity (>98%). Due to the
sensitive nature of catalysts 1 and 2 (Figure 2-2), all monomers,
reagents and solvents used in conjunction with these catalysts were
of greater than 99% purity. In order to ensure absolute dryness and
an oxygen free atmosphere, all chemicals used were dried over
calcium hydride for 24 hours, degassed several times using freeze-
pump-thawing cycles, and then vacuum transferred into a potassium
mirrored flask. The reagents were stirred for a half hour and then
vacuum transferred into a divider. Break-seals filled with the
desired amounts of reagent were frozen in liquid nitrogen and sealed
under a 10-6 mm Hg vacuum (Figure 2-3).
In cases where a reagent had impurities not removed by drying
techniques, the reagent was allowed to react with a single aliquot
(20 mg) of catalyst 2 for 15 minutes, then the purified reagent was
vacuum transferred into a new breakseal and sealed under high
vacuum. Allowing any impurities to react with catalyst (in effect
destroying the catalyst) and then removing the remainder of the pure
reagent from the reaction vessel, proved effective for removing
impurities that would otherwise poison the catalyst and prevent
metathesis. Without exception, reagents purified by exposure to
catalyst metathesized and produced only the expected products in
high yields.
The reagents used with the classical catalyst system,
WCl6/EtAICI2, were purified in an identical fashion up to the point
that they were sealed in breakseal ampules. The reagents were
vacuum transferred from the potassium mirrored reaction vessel







High Vacuum Line Manifold


Potassium Mirrored
Flask


Breakseals


Figure 2-3. High vacuum line purification setup.








into a 50 ml round bottom flask by cooling the flask in a liquid
nitrogen bath. After the reagents were allowed to thaw, the flask
was filled with argon and sealed with a rubber septum. Storing the
reagent under argon in a round bottom flask facilitated the use of
Schlenk vacuum line techniques (i.e., transfer through double ended
needles under argon).

Attempted Metathesis of Styrene Using a Lewis Acid
Containing Catalyst
An attempted model metathesis reaction of styrene to stilbene
was conducted repeatedly to determine the reaction conditions and
catalyst system which would lead to the expansion of the
metathesis reaction into a equilibrium step propagation,
condensation type polymerization. The order in which the catalyst,
co-catalyst, and styrene were added was varied, as was the time
that the catalyst and co-catalyst were allowed to react,
particularly when the reagent was added last. The variations were
done to investigate the possibility of eliminating side reactions.
Styrene generally was added while the apparatus was cooled in an
ice bath, after which the reaction was allowed to warm to room
temperature. The first reaction was started at -780C, and once all
reagents were added, the reaction was allowed to slowly warm to
room temperature. Also, several reactions were started at room
temperature. The above variations in reaction conditions were
employed using both Schlenk and high vacuum techniques.
Tungsten hexachloride (Aldrich) was stored in a dry box and
periodically sublimed in order to ensure purity. Tungsten








hexachloride (0.9929g) was dissolved in 25 ml of chlorobenzene to
produce a 0.1M solution which was stored in a Schlenk flask under
argon. A variety of co-catalysts (i.e., EtAICl2, Et2AICI and Et3AI)
were used as 1.0 M solutions in hexane in separate reactions. The
co-catalyst was added to the reaction vessel via a syringe. The
ratio of the cocatalyst to WC16 was 4:1. Hexane was removed from
the reaction vessel and replaced with argon. The apparatus was
cooled in an ice-bath, and the reagent was added to the vessel via a
syringe through the septum. Typically, 0.82 ml of a 0.1 M WC16
(0.082 mmol) in chlorobenzene was used with 1 ml of styrene (9.6
mmol) and 0.33 ml of a 1.0 M EtAICI2 (0.33 mmol) in hexane. The
reactions performed, utilizing the above variations in reaction
conditions, were allowed to continue for varying lengths of time and
were terminated with an excess of methanol. 1H and 13C NMR
spectra of the products indicated that only polystyrene was
produced. The gases produced in these reactions were analyzed at 5-
minute intervals by removal of a 50 p~l aliquot with a gastight
syringe. A mixture of ethane and ethylene, as analyzed by GC/MS,
was observed with ethane as the major product. Varying the solvent
and the addition sequence of reagents did not produce stilbene.
It was concluded that different reaction conditions had to be
utilized to eliminate the side reaction that produced polystyrene and
inhibited metathesis. High vacuum techniques were employed.
Tungsten hexachloride (0.82 ml of a 0.1 M in chlorobenzene) and
EtAICl2 (0.33 ml of a 1.0 M in hexane), at a ratio of 1:4, were added,
in a dry box, into break-seal ampules via a syringe. The break-seal
ampules were sealed with rubber septa and then removed from the








dry box. After freezing them in liquid nitrogen, a vacuum was
applied using a needle pierced through the septum. The break-seal
ampules were then sealed under vacuum using a hand held gas and
oxygen torch. Styrene (8.6 ml) was purified as described previously
and sealed in a break-seal ampule to give a 100:1 mol ratio with
respect to WCl6. The ratio of catalyst: co-catalyst: reagent,
typically were 1:4:100.
The break-seal ampules containing the catalyst, co-catalyst
and reagent were joined to a reaction vessel (Figure 2-4) and the
reaction vessel was connected to the high vacuum line via a ground
glass 14/35 joint and evacuated. After closing the gas trap by
closing the RotafloT stopcock, the reagents were added in varying
order by breaking the break-seal ampules. Hexane (solvent for the
co-catalysts) was evacuated after the breakseal containing the co-
catalyst was broken. At this point the reaction vessel was sealed
off from the vacuum line to prevent any impurities from entering the
reaction. By opening the RotafloT stopcock of the gas trap and
cooling the trap in liquid nitrogen, a steady vacuum was applied, and
any gases produced in the reaction could be removed and condensed.
Thus, a constant vacuum used to drive the reactions could be
maintained. No gases were produced, and the only product was
polystyrene, which was corroborated by the following analysis.
13C NMR (CDCl3, 50 MHz, 8 in PPM): 41 (methine carbons), 43-

46 (methylene carbons), 145-146 (aromatic carbons).
CHN : %C= 92.31, %H = 7.69 (Theory)
%C = 92.29, %H = 7.72 (Found)















To Vacuum


WCI + Solvent


Gas Trap


Figure 2-4. High vacuum breakseal apparatus.







Attempted Metathesis of Fluorinated Styrenes Using a Lewis Acid
Containing Catalyst System
In order to investigate the possibility of metathesizing
fluorinated styrenes, four different fluorinated styrenes were used:
2-fluorostyrene, 3-fluorostyrene, 4-fluorostyrene and 2,3,4,5,6-
pentafluorostyrene. The experimental procedures for these
reactions were identical to those adopted for the metathesis of
styrene. The results also were identical: monofluorinated styrenes
produced fluorinated polystyrenes. Authentic fluorinated
polystyrenes samples were not available and were subsequently
prepared by means of anionic polymerization techniques discussed in
the next section of this chapter. Spectral data of fluorinated
polystyrenes formed when a Lewis acid cocatalyst is used are:
Polv-2-fluorostyrene
13C NMR (CDCl3, 50 MHz, 6 in PPM): 35 (methine carbons),40-41

(methylene carbons), 114-129 (aromatic carbons), 131 (substituted
aromatic quarternary carbons), 160,5d, JC-F = 246 Hz (fluorinated
aromatic carbons).
Poly-3-fluorostyrene
13C NMR (CDC13, 50 MHz, 6 in PPM): 40 (methine carbons), 41-46

(methylene carbons), 113-130 (aromatic carbons), 147 (substituted
aromatic quarternary carbons), 162,5d, JC-F = 243 Hz (fluorinated
aromatic carbons).
2,3,4,5,6-Pentafluorostyrene did not react under the reaction
conditions described. In order to determine if the catalyst was
active, experiments were run in which 1,9-decadiene (shown in this
work to metathesize) was added to the reaction of 2,3,4,5,6-








pentafluorostyrene after approximately 24 hours. 1,9-Decadiene
(0.5 ml) was syringed into the reaction vessel through the septum
after the vessel was filled with argon while using Schlenk vacuum
line techniques. 1,9-Decadiene oligomerized, indicating that the
catalyst was active.
When high vacuum line techniques were used, 1,9-decadiene
again was employed to test for catalyst activity. Under high vacuum
conditions, breakseal ampules containing purified 1,9-decadiene (0.5
ml) were incorporated into the reaction vessel prior to the start of
the reaction to allow for the addition of 1,9-decadiene at any stage
of the reaction. The breakseal ampules were used as a precaution
against contamination of the reaction with oxygen or moisture. NMR
analysis indicated that 1,9-decadiene oligomerized to
polyoctenamer, whereas 2,3,4,5,6-pentafluorostyrene did not
metathesize or polymerize. Thus, the catalyst was active but did
not cause 2,3,4,5,6-pentafluorostyrene to react.

Preparation of Fluorinated Polystyrene by Anionic Polymerization
Techniques
Authentic fluorinated polystyrenes were unavailable for
comparison with the products formed when a Lewis acid containing
catalyst is reacted with fluorinated styrenes, and so high vacuum
line techniques were used to make authentic fluorinated
polystyrenes. The apparatus illustrated in Figure 2-5 was used in
the preparation of these polymers.
All fluorinated styrene reagents were dried over calcium
hydride and then distilled on a vacuum line into a round bottom
















Monomer


To Vacuum
t


Septum


Dry-ice/CCI i-
Dry-ice/lsopropanol


Figure 2-5. Anionic polymerization apparatus.


Methanol








flask, which was coated with potassium metal. After stirring for
30 minutes the monomer was transferred into a breakseal ampule
and sealed under vacuum. Approximately 2 ml of the monomer was
sealed in each breakseal ampule and vacuum sealed
The apparatus was connected to the vacuum line, evacuated,
flame dried to ensure absolute dryness and then filled with dry
argon. One milliliter of a 1.6 molar solution of t-butyllithium, used
as the initiator, was syringed into the vessel through the septum.
The reaction section of the apparatus was cooled in liquid nitrogen.
The whole apparatus was evacuated, after which the sidearm with
the septum was sealed off using a gas/oxygen flame. Dry
tetrahydrofuran, approximately 50 ml, was distilled into the vessel,
and the apparatus was sealed from the vacuum line.
Tetrahydrofuran and t-butyllithium (0.1 ml) were allowed to
warm to -78C and were kept at this temperature in a dry-
ice/isopropanol bath. The breakseal ampule containing the
fluorinated styrene (5 ml) under study was broken, and the reagent
was allowed to flow into the round bottom flask that had been
cooled to -200C using a dry-ice/carbon tetrachloride bath. Addition
occurred over a one hour period to facilitate the slow and controlled
transfer of the monomer into the reaction section of the apparatus.
The reaction was allowed to continue for 2 hours at -780C and was
slowly warmed to room temperature; then stirred for an additional 2
hours. In each case, dry methanol was used to terminate the
reaction.
These anionically prepared reference polymers were
precipitated using an excess of methanol and further purified by








dissolving them in benzene, followed by precipitation in methanol.
The NMR spectra of all of these polymers were identical to those of
the products formed when a Lewis acid was used as co-catalyst in
the metathesis reactions, described previously. These results
confirm that fluorinated polystyrenes result when a Lewis acid
containing catalyst is reacted with fluorinated styrenes as reagents.
Typical data for the polymers are as follows:
Polv-2-fluorostyrene
13C NMR (CDCI3, 50 MHz, 8 in PPM): 35 (methine carbons), 40-41

(methylene carbons), 114-129 (aromatic carbons), 131 (substituted
aromatic quarternary carbons), 160,5d, JC-F = 246 Hz (fluorinated
aromatic carbons).
Poly-3-fluorostyrene
13C NMR (CDCI3, 50 MHz, 8 in PPM): 40 (methine carbons), 41-46

(methylene carbons), 113-130 (aromatic carbons), 147 (substituted
aromatic quarternary carbons), 162,5d, JC-F = 243Hz (fluorinated
aromatic carbons).
Polv-2.3.4.5.6-Dentafluorostyrene
13C NMR (CDCI3, 50 MHz, 8 in PPM): 33 (methine carbons), 37-39

(methylene carbons), 115 (substituted aromatic quarternary
carbons), 135.5m, 138m, 140.5m, 143m, 148m (fluorinated aromatic
carbons)


Metathesis of Styrene Using a Lewis Acid Free Catalyst
The catalytic ability of a Lewis acid free catalyst was
examined using styrene as a model reaction. Styrene (Fisher) was
purified by stirring over calcium hydride for 24 hours, followed by








fractional distillation under vacuum (750C/95 mmHg). The middle
fraction was collected in a breakseal ampule, and the ampule was
attached to the apparatus (Figure 2-6), then evacuated. A side arm
containing freshly cut potassium metal was heated gently with a
torch to form a shiny mirror in the main flask. The break-seal
ampule containing styrene was broken and the styrene was stirred
for 30 minutes over the potassium mirror to ensure absolute purity.
After degassing, the liquid was distilled into a divider, and the
break-seals of each ampule were carefully sealed off and stored in a
freezer.
Catalyst 2 W(CH-t-Bu)(N-2,6-C6H3-i-Pr2)[OCMe(CF3)2]2,
(Figure 2-2, page 22), stored in a dry-box because of its oxygen and
moisture sensitivity, was dissolved in pentane (20 mg/2 ml) and
transferred to a break-seal ampule via a syringe. The break-seal
was then removed from the dry box and sealed under vacuum.
Break-seals containing styrene (1.5 ml) and the catalyst (ratio of
500:1) were connected to the apparatus illustrated in Figure 2-7.
The apparatus then was connected to the high vacuum line via a
14/35 ground glass joint and evacuated. The entire apparatus was
flame dried and the gas trap was closed. The catalyst was
introduced into the reaction flask and the solvent (pentane)
removed by evacuation, after which the apparatus was sealed off
and removed from the line. As soon as styrene was introduced, the
vacuum trap was opened and the gasses that were produced were
condensed with a liquid nitrogen bath. After approximately 2 hours,
the reaction mixture had turned into a light yellow solid, which was
determined to be trans stilbene. The product was dissolved in a











To Vacuum


Styrene


Side Arm


Divider


Potassium Metal


Breakseals


Figure 2-6. Styrene purification over a potassium mirror.










To Vacuum


Condenser


Reagent Catalyst


Gas Trap


Figure 2-7. Reaction flask for metathesis of various
styrene reagents.








minimum amount of hot ether and allowed to precipitate in the
freezer. Typical data obtained from these reactions are as follows:
Trans stilbene
1H NMR (CDC13, 200 MHz, 8 in PPM): 7.05 (vinyl methine protons),
7.15-7.5 (aromatic protons).
13C NMR (CDCL3, 50 MHz, 5 in PPM): 126.4, 127.5 and 128.6

(aromatic carbons), 128.7 (methine carbons), 137.3 (substituted
aromatic quarternary carbons).
CHN: %C = 93.3, %H = 6.67 (Theory)
%C = 93.2, %H = 6.62 (Found)

Metathesis of Fluorinated Styrenes Using a Lewis
Acid Free Catalyst
The ability of the Lewis acid free catalyst to initiate
metathesis on electron deficient vinyl bonds was tested by
employing fluorinated styrenes as reagents. 2-Fluorostyrene
(Lancaster Synthesis Ltd), 3-fluorostyrene (Lancaster Synthesis Ltd)
and 4-fluorostyrene (Lancaster Synthesis Ltd) were all purified and
reacted with catalyst 2. The reactions were all conducted in the
exact manner as described for styrene i.e., approximately 1.5 ml of
reagent was reacted with 20 mg of catalyst 2.
All products were dissolved in hot ether and allowed to
precipitate in a freezer. The products of the reaction of
4-fluorostyrene formed long white needle like crystals was
determined to be pure 4,4'-difluorostilbene. The data for the
product, corroborated by the literature data for 4,4'-fluorostilbene,
follows:








1H NMR (CDCl3, 200 MHz, 8 in PPM): 6.94 (vinyl methine protons),

6.97-7.46 (aromatic protons)
13C NMR (CDCI3, 50 MHz, 8 in PPM): 115,6d, JC-F = 20 Hz, 128,8d,

JC-F = 5 Hz (aromatic), 127,2 (vinyl), 133,3d, JC-F =3 Hz
(substituted aromatic), 162,3d, JC-F = 245 Hz (fluorinated
aromatic).
CHN: %C = 77.77, %H = 4.66 (Theory)
%C = 77.82, %H = 4.72 (Found)
The products of the 2-fluorostyrene reaction and
3-fluorostyrene reaction did not crystallize as well as those from
the 4-fluorostyrene reaction. However, the NMR and CHN data, listed
below confirm them to be 2,2'-difluorostilbene and
3,3'-difluorostilbene, respectively.
2,2'-Difluorostilbene
1H NMR (CDCI3, 200 MHz, 8 in PPM): 7.33 (vinyl methine protons),
7.0-7.3 and 7.58-7.68 (aromatic protons).
13C NMR (CDCI3, 50 MHz, 8 in PPM): 115,8d, JC-F = 25 Hz, 122,9,

124,3, 129,1d, JC-F = 8 Hz (aromatic), 127,1 (vinyl), 125,1d, JC-F
=10 Hz (substituted aromatic), 160,5d, JC-F = 246 Hz (fluorinated
aromatic).
CHN: %C = 77.77, %H = 4.66 (Theory)
%C = 75.51, %H = 5.00 (Found)
3.3'-Difluorostilbene
1H NMR (CDC13, 200 MHz, 8 in PPM): 7.1 (vinyl methine protons),
6.89-7.0 and 7.3-7.34 (aromatic protons)
13C NMR (CDCI3, 50 MHz, 8 in PPM): 112,9d, JC-F = 21 Hz, 114,6d,

JC-F = 18 Hz, 122,6, 130,0d, JC-F = 10 Hz (aromatic), 128,8 (vinyl),








139,1d, JC-F =10 Hz (substituted aromatic), 163,2d, JC-F = 243 Hz
(fluorinated aromatic).
CHN: %C = 77.77, %H = 4.66 (Theory)
%C = 77.75, %H = 4.68 (Found)

Metathesis of Substituted Styrenes Using a Lewis
Acid Free Catalyst
4-Bromostyrene and 3-methylstyrene were metathesized in
the exact manner as for styrene and produced, exclusively, their
substituted stilbene analogues. The data obtained were:
4.4'-Dibromostilbene
1H NMR (CDCI3, 200 MHz, 8 in PPM): 7.01 (vinyl methine protons),

7.26-7.5 (aromatic protons).
13C NMR (CDCI3, 50 MHz, 8 in PPM): 121.6 (aromatic substituted

quarternary carbons), 127 and 128 (aromatic carbons), 131.9
(vinyl methine carbons), 135.8 brominatedd aromatic carbons).
CHN: %C = 49.73, %H = 2.96 (Theory)
%C = 49.12, %H = 2.55 (Found)
3.3'-dimethylstilbene
1H NMR (CDC13, 200 MHz, 8 in PPM): 2.34 (methyl protons), 7.05

(vinyl methine protons), 7.1-7.35 (aromatic protons).
13C NMR (CDC13, 50 MHz, 8 in PPM): 21.4 (methyl carbons), 123,

127 and 128 (aromatic carbons), 137.3 (substituted aromatic
quarternary carbons), 138.0 (methylated aromatic carbons)
CHN: %C = 92.31, %H = 7.69 (Theory)
%C = 86.89, %H = 7.78 (Found)







Acyclic Diene Metathesis (ADMET) Polymerization
of 1.9-Decadiene
General Polymerization Procedure.
Several acyclic diene metathesis (ADMET) polymerizations
were investigated using a Lewis acid free catalyst and 1,9-
decadiene as the monomer. The monomer was dried over calcium
hydride, then subjected to four freeze thaw vacuum cycles to remove
dissolved gases. To insure absolute dryness, the monomer was
transferred in a vacuum line to a flask containing a potassium
mirror, where it was stirred for approximately one hour. The
purified monomer was transferred under vacuum to breakseal
ampules and were sealed under high vacuum.
1,9-Decadiene (Aldrich) was 98% pure (as determined by
GC/MS), and the impurities that were not eliminated by the drying
techniques just described, were removed by allowing the monomer
to react with a single aliquot (20 mg) of catalyst 2 for 15 minutes.
The purified monomer was vacuum transferred into new breakseal
ampules, then sealed under high vacuum. Allowing impurities to
react with the catalyst, in effect destroying a portion of the
catalyst, proved to be an effective method to eliminate impurities.
Monomers purified by this method, without exception, exclusively
metathesized and produced only the expected products in
quantitative yields.
Catalyst 2, W(CH-t-Bu)(N-2,6-C6H3-i-Pr2)[OCMe(C F3)2]2,
was prepared according to published procedures [62, 63]. Twenty
mg of catalyst 2 were dissolved in 2 ml pentane and transferred
into a breakseal ampule. The transfer was performed in a dry box,








in an argon atmosphere, and the breakseal ampule containing the
catalyst solution was sealed with a rubber septum and removed
from the dry box. After freezing the catalyst solution in liquid
nitrogen and applying a high vacuum via a needle pierced through
the septum, the breakseal ampule was sealed using a gas/oxygen
flame.
Breakseal ampules containing aliquots of the catalyst solution
and the purified monomer were connected to a single reaction
vessel, which itself was designed specifically to perform these
polymerizations. Prior to all polymerizations, the entire apparatus
was connected to a high vacuum line and flame dried to remove all
traces of oxygen and moisture adsorbed onto the glass.
The first reaction was performed using the apparatus
illustrated in Figure 2-7. Solvent (i.e., toluene) could not be added
once the reaction was started; thus, the apparatus had to be
modified.
A new apparatus (Figure 2-8) subsequently was designed which
allowed for the removal of ethylene by opening RotafloTM
stopcock A. However, this apparatus produced only oligomers due
to the precipitation of the reaction product in the breakseal
connection arms and was not used further.
This precipitation in the breakseals was eliminated by placing
the breakseals above the condenser (Figure 2-9). The apparatus
allowed higher molecular weight polymers to be produced, but
reaction times were lengthy. Even so, some monomer and solvent
condensed in the gas trap, due to ineffective refluxing. Monomer
and solvent were removed from the apparatus when the












To Vacuum


RotafloT Stopcock A


Gas Trap


Dry-ice/Isopropanol
Condenser


Monomer


Liquid Nitrogen
Condenser




Catalyst


Figure 2-8. Acyclic diene metathesis polymerization apparatus





44
Monomer


To Vacuum


Gas Trap


Dry-ice/Isopropanol
Condenser


Catalyst


Liquid Nitrogen
Condenser


Figure 2-9. Acyclic diene metathesis polymerization apparatus with
monomer and catalyst breakseals above reaction section.








ethylene was pumped out, resulting in lower yields, and the use of
this apparatus was discontinued.
A major problem in conducting the polymerizations proved to be
the premature precipitation of the product. In order to decrease
reaction times by more effective refluxing of solvent and
monomer, modifications were made to the apparatus (Figure 2-10).
Modifications allowed for the controlled removal of ethylene
without loss of monomer. The polymer could be heated
continuously while kept in solution, thereby, remaining in contact
with the catalyst.
All polymerizations were conducted by first transferring the
catalyst solution from a breakseal ampule to the reaction vessel,
then removing the solvent (pentane, in this case). A solid deposit
of catalyst residue remained, and the monomer was introduced
from its breakseal ampule directly into the reaction vessel
containing this catalyst. Upon addition of the monomer, a gas was
released instantly, which was determined to be pure ethylene by GC
mass spectrometry. Ethylene was continuously removed from the
vessel and solidified in a liquid nitrogen trap built into the
reaction vessel. The monomer also distilled in the process, but
was trapped with a partial condenser and returned to the reaction
vessel.
All polymerizations either were performed using carefully dried
toluene as the solvent, or under bulk conditions (no solvent at all).
The temperature of the reaction was varied between 20-750C. All
polymerizations were terminated by exposure to the atmosphere.
The products were purified by dissolving in benzene and






Catalyst


Liquid Nitrogen
Condenser


Dry-ice/Isopropanol
Condenser


Figure 2-10. Acyclic diene metathesis polymerization apparatus with
capillary return line, spiral gas trap and bubble condenser.


46
Monomer








precipitation with methanol. White solids for the high molecular
weight samples and soft elastomers for the oligomers were found.


Reaction Conditions for 1.9-Decadiene Polymerizations
To optimize the reaction conditions for the acyclic diene
metathesis polymerization of 1,9-decadiene several different
reactions were performed with the goal of obtaining high
molecular weight polymer samples in the shortest possible
reaction times. The effect of a large volume of solvent on the
molecular weight of the resulting polymer was examined in this
reaction.


Reaction 1. Approximately 2 ml of purified 1,9-decadiene and 40
ml of toluene were used. Four successive additions of catalyst 2, 8
hours apart, were made. The reaction temperature was kept at
250C for a total reaction time of 32 hours. The reaction time was
not optimal, since the experimental conditions were unknown and
had to be refined. The results of the reaction were:
1H NMR (CDCI3, 200 MHz, 8 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDCI3, 50 MHz, 8 in PPM): 139.1 ppm (terminal vinyl

methylene carbons),130.4 and 129.8 ppm (trans and cis internal
olefinic carbons), 114.1 ppm (terminal vinyl methine carbons), 32.7
and 27.3 ppm (trans and cis methylene carbons adjacent to internal
olefinic carbons), 29.8 and 29.1 ppm (methylene carbons).


Molecular Weight (Mn): 1700 (end-group analysis).










Reaction 2. In order to evaluate bulk polymerization
conditions,1,9-decadiene (25 ml) and 3 additions of catalyst 2
were added 12 hours apart. The temperature was raised by 5C
increments in order to keep the polymer in the liquid state, up to
500C. No solvent was used. The total reaction time was 40 hours.
A long reaction time was used due to the ineffective refluxing of
the monomer that prevented it from being in constant contact with
catalyst. The following results revealed that polyoctenamer was
produced:
1H NMR (CDC13, 200 MHz, 8 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDCI3, 50 MHz, 8 in PPM): 139.1 ppm (terminal vinyl

methylene carbons),130.4 and 129.8 ppm (trans and cis internal
olefinic carbons), 114.1 ppm (terminal vinyl methine carbons), 32.7
and 27.3 ppm (trans and cis methylene carbons adjacent to internal
olefinic carbons), 29.8 and 29.1 ppm (methylene carbons).

CHN: %C = 87.27, %H = 12.73 (Theory)

%C = 87.16, %H = 12.68 (Found)

Molecular Weight (Mn): 11 000 (end-group analysis); 12 000 (VPO).
Viscosity [n]: 0.26 dL/g


Reaction 3. Approximately 2 ml of monomer was run under bulk
conditions at 25C for I 1/2 hours during which the polymer
completely solidified. A large volume of toluene, approximately








100 ml, was vacuum transferred into the reaction vessel, and the
reaction temperature was increased from 25C to 50C. Two more
additions of catalyst 2 were made fifteen hours apart, and the
reaction was exposed to continuous vacuum for 40 hours. In order
to compare Reaction 3 with previous reactions, a long reaction
time was employed. Oligomeric polyoctenamer was produced as
indicated by the following results:
1H NMR (CDCI3, 200 MHz, 8 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDC13, 50 MHz, 8 in PPM): 139.1 ppm (terminal vinyl
methylene carbons), 130.4 and 129.8 ppm (trans and cis internal
olefinic carbons), 114.1 ppm (terminal vinyl methine carbons), 32.7
and 27.3 ppm (trans and cis methylene carbons adjacent to internal
olefinic carbons), 29.8 and 29.1 ppm (methylene carbons).

Molecular Weight (Mn): 1600 (end-group analysis).


Reaction 4. The minimum amount of solvent that would facilitate
magnetic agitation, and its effect on the reaction was tested.
Approximately 2 ml of monomer was used and 3 additions of
catalyst 2 were made; one at the start of the reaction and the rest
as described below. The temperature was slowly raised to 50C
and when the polymer solidified, 10 ml of toluene were added
together with another aliquot of catalyst at 250C. The reaction
temperature was raised slowly to 500C over a period of six hours.
A third addition of catalyst 2 was made after which the reaction








allowed to continue for an additional 24 hours. The following
results were obtained:
1H NMR (CDCI3, 200 MHz, 6 in PPM): 5.35 ppm (internal olefinic
protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDCl3, 50 MHz, 8 in PPM): 130.4 and 129.8 ppm (trans

and cis internal olefinic carbons), 32.7 and 27.3 ppm (trans and cis
methylene carbons adjacent to internal olefinic carbons), 29.8 and
29.1 ppm (methylene carbons).
CHN: %C = 87.27, %H = 12.73 (Theory)
%C = 87.11, %H = 12.68 (Found)

Molecular Weight (Mn): 57 000 (SEC); (Mw): 108 000 (SEC)
Viscosity [n]: 0.89 dL/g


Reaction 5. The effect of increased reaction temperature on the
activity of the catalyst was investigated. Approximately 2 ml of
monomer was polymerized using a double addition of catalyst 2.
The second addition of catalyst 2 was made after one week, and no
solvent was used throughout the reaction. A temperature of
approximately 75C was maintained while a high vacuum was
applied for 2 weeks. Results of the benzene soluble portion were:
1H NMR (CDC13, 200 MHz, 6 in PPM): 5.35 ppm (internal olefinic
protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDCl3, 50 MHz, 8 in PPM): 139.1 ppm (terminal vinyl

methylene carbons),130.4 and 129.8 ppm (trans and cis internal
olefinic carbons), 114.1 ppm (terminal vinyl methine carbons), 32.7








and 27.3 ppm (trans and cis methylene carbons adjacent to internal
olefinic carbons), 29.8 and 29.1 ppm (methylene carbons).

Molecular Weight (Mn): 3000 (end-group analysis).



Reaction 6. The possible formation of cyclic compounds at short
reaction times was investigated. Monomer (0.5 ml of 1,9-
decadiene) was added to 20 mg of catalyst 2 after removal of
pentane from the catalyst, and bulk polymerization conditions were
employed. The reaction temperature was kept at 25C and after 20
minutes the monomer had polymerized sufficiently to solidify,
after which the reaction was terminated by exposure to the
atmosphere. The obtained results were:
1H NMR (CDC13, 200 MHz, 6 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDC13, 50 MHz, 6 in PPM): 139.1 ppm (terminal vinyl

methylene carbons), 130.4 and 129.8 ppm (trans and cis internal
olefinic carbons), 114.1 ppm (terminal vinyl methine carbons), 32.7
and 27.3 ppm (trans and cis methylene carbons adjacent to internal
olefinic carbons), 29.8 and 29.1 ppm (methylene carbons).

Molecular Weight (Mn): 2500 (end-group analysis).

Reaction 7. Bulk reaction conditions over a shortened reaction
time were investigated. A bulk polymerization was carried out on
1 ml of 1,9-decadiene, using a single addition of catalyst 2. The
polymer solidified after 30 minutes and the temperature was
raised to between 50 and 55C. A high vacuum was applied for 10








hours after which the reaction was terminated. The following
results were obtained:
1H NMR (CDC13, 200 MHz, 8 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDCI3, 50 MHz, 8 in PPM): 130.4 and 129.8 ppm (trans

and cis internal olefinic carbons), 32.7 and 27.3 ppm (trans and cis
methylene carbons adjacent to internal olefinic carbons), 29.8 and
29.1 ppm (methylene carbons).
CHN: %C = 87.27, %H = 12.73 (Theory)
%C = 87.18, %H = 12.69 (Found)

Molecular Weight (Mn): 25 000 (VPO).
Viscosity [n]: 0.39 dL/g


Reaction 8. The possibility of further polymerizing an existing
polymer was investigated. A portion of the polyoctenamer sample
(1 g) formed in reaction 2 was dissolved in 20 ml of toluene,
syringed into the reaction vessel and then subjected to four
freeze-thaw-vacuum cycles. A single addition of catalyst 2 was
made, and the reaction temperature was slowly raised to 650C.
The reaction was allowed to proceed for 36 hours after which it
was terminated by exposure to the atmosphere, obtaining the
following results:
1H NMR (CDCI3, 200 MHz, 8 in PPM): 5.35 ppm (internal olefinic

protons), 1.95 and 1.25 ppm (methylene protons).
13C NMR (CDC13, 50 MHz, 8 in PPM): 130.4 and 129.8 ppm (trans

and cis internal olefinic carbons), 32.7 and 27.3 ppm (trans and cis








methylene carbons adjacent to internal olefinic carbons), 29.8 and
29.1 ppm (methylene carbons).
CHN: %C = 87.27, %H = 12.73 (Theory)
%C = 87.20, %H = 12.71 (Found)

Molecular Weight (Mv): 83 000 (viscosity).
Viscosity [n]: 0.76 dL/g

The Acyclic Diene Metathesis (ADMET) Polymerization
of 1.5-Hexadiene.
General polymerization Procedure.
The metathesis of 1,5-hexadiene to linear poly-1,4-butadiene
was investigated, using a Lewis acid free catalyst. The monomer,
1,5-hexadiene, was purified in the same manner as for 1,9-
decadiene. The catalyst solution and apparatus were unchanged from
that used in producing polyoctenamer (ie., 20 mg of catalyst 2,
W(CH-t-Bu)(N-2,6-C6H3-i-Pr2)[OCMe(CF3)2]2, and the apparatus
shown in Figure 2-10).


Reaction Conditions for 1.5-Hexadiene polymerizations
Two polymerizations were conducted. In the first
polymerization, 50 ml toluene (2.53 x 10-5 mol) were used as the
solvent. Three additions of catalyst, 20 mg per addition, were made
to approximately 5 ml (6.0 x 10-2 mol) of 1,5-hexadiene. The three
additions of catalyst were made approximately 24 hours apart. The
reaction temperature was kept at 25C, while the reaction was
continuously stirred for a period of two months. Since the reaction
had been reported to be impossible [56], an excessively long reaction








time was used in the first reaction. The lifetime of the catalyst is
also unknown and an extensive reaction time was used to give some
indication of the activity of the catalyst over a long period of time.
A slight vacuum was occasionally applied to remove the ethylene
produced.
The product was purified by dissolving in benzene and
precipitating the polymer with methanol. The resulting elastomeric
polymer, obtained in a quantitative yield, was light yellow in color.
The following results were obtained:
1H NMR (CDC13, 200 MHz, 8 in PPM): 5.42 ppm (internal olefinic
protons) and 2.05 ppm (methylene protons)
13C NMR (CDCI3, 50 MHz, 8 in PPM): 130.0 and 129.4 ppm (trans and

cis internal olefinic carbons) and 32.7 and 27.5 ppm (trans and cis
methylene carbons)
CHN: %C = 88.82, %H = 11.18 (Theory)
%C = 88.61, %H = 11.16 (Found)

Molecular Weight (Mn): 8300 (SEC); (Mw): 16 400 (SEC)
The second reaction was done in order to compare the ability
of the catalyst to polymerize 1,5-hexadiene under bulk reaction
conditions. The reaction was modeled after reaction 7 of the 1,9-
decadiene series, where bulk reaction conditions were employed. A
single aliquot (20 mg.; 2.5 x 10-5 mol) of catalyst and 2 ml (0.024
mol) of 1,5-hexadiene was used. The reaction temperature was
maintained at 250C until the polymer could no longer be stirred by
magnetic agitation. The reaction temperature was then increased to
520C and a continuous high vacuum (10-6 mmHg) applied. The








polymer's viscosity increased over the next 5 hours, after which it
could no longer be agitated and the reaction was terminated. The
total reaction time of the second reaction was 10 hours.
The product was purified by dissolving it in benzene and
precipitating with methanol. The resulting elastomeric polymer,
obtained in near quantitative yields, was light yellow in color. The
following results were obtained:
1H NMR (CDCI3, 200 MHz, 8 in PPM): 5.42 ppm (internal olefinic
protons) and 2.05 ppm (methylene protons)
13C NMR (CDC13, 50 MHz, 8 in PPM): 130.0 and 129.4 ppm (trans and

cis internal olefinic carbons) and 32.7 and 27.5 ppm (trans and cis
methylene carbons)
CHN: %C = 88.82, %H = 11.18 (Theory)
%C = 88.54, %H = 11.22 (Found)

Molecular Weight (Mn): 14 000 (SEC); (Mw): 28 000 (SEC)















CHAPTER 3
THE KEY TO SUCCESSFUL ACYCLIC DIENE METATHESIS (ADMET)
POLYMERIZATION CHEMISTRY.


Competing side reactions are one of the major factors that
determine if a given reaction is suitable for equilibrium step
propagation, condensation type polymerization. Even a very small
percentage of side reactions will prevent the principal reaction
from producing high molecular weight polymer, leading instead to
the formation of low molecular weight oligomers, and perhaps other
undesirable by-products.
Previous polymerization studies on acyclic dienes revealed
that more than olefin metathesis polymerization was taking place
[58]. While metathesis chemistry appears to be the dominant
reaction, vinyl addition chemistry does compete with acyclic olefin
metathesis. Thus, vinyl addition reactions must be eliminated
completely in order for acyclic diene metathesis polymerization to
be useful chemistry.









(CH2)x
Acyclic Diene



WC16 /
EtAIC2 / EtOH
R
I
-[--CH-CH-(CH2)n--
I -+ (CH2)x' + n C2H4
-+-CH-CH-(CH2)n-
I Acyclic Diene Metathesis
Polymerization
A Vinyl Addition Reaction

Figure 3-1. The possible reactions that can occur when a
Lewis acid is used as cocatalyst.



Styrene as a Model Compound
A model compound study was undertaken to investigate the
elimination of side reactions. Vinyl addition chemistry was
expected to be the principal side reaction that was occurring, and a
model compound system that would allow a simultaneous
investigation of vinyl addition and metathesis chemistry was
selected. The reaction of styrene was chosen, since benzyl
carbocations can be formed quite easily, which would permit the
vinyl addition reaction to compete directly with metathesis. In order
to study the competition between metathesis and vinyl addition
chemistry (Figure 3-1), bulk reactions of styrene were examined








with WCI6/EtAICI2 as the catalyst. The styrene reaction is an

excellent model system, since vinyl addition would lead to
polystyrene [64], whereas metathesis would lead to stilbene. Both
styrene and stilbene can be readily identified by spectroscopic
methods [65] even when a mixture of products is produced. In fact,
vinyl addition chemistry proved to be the only reaction occurring,
presumably because of the cationic polymerization of styrene
(Figure 3-2) with no stilbene being observed.




Metathesis does
not occur
Vinyl addition 6

WC16
EtAlC12/ EtOH H 2
nCH2
CH2
-(- CH2-CH--H2



Polystyrene Stilbene


Figure 3-2. Attempted metathesis of styrene using a
Lewis acid catalyst system.
The main competing side reaction is believed to be the cationic
polymerization of styrene. Cationic polymerization can be initiated
by the Lewis acid used as cocatalyst in the classical reaction
scheme (Figure 3-2), and consequently, model reactions were
conducted to eliminate these vinyl addition reactions.








The minimization of vinyl addition reaction (polymerization)
was investigated by varying the sequence of addition of reactants
into the reaction vessel (Table 3-1).


Table 3-1. Order of addition of reactants in the
styrene model reaction.
First Second Last
Catalyst Co-catalyst Styrene
Catalyst Reagent Cocatalyst
Cocatalyst Reagent Catalyst
Cocatalyst Catalyst Reagent
Reagent Catalyst Cocatalyst
Reagent Cocatalyst Catalyst


The catalyst and cocatalyst were allowed to react for varying
amounts of time at various temperatures prior to the addition of
reagent. No change in the products was observed, and only
polystyrene was identified as the product of the reaction.
The cocatalyst solvent, hexane, was removed either
immediately after the catalyst and cocatalyst were combined, or
after the catalyst and cocatalyst were allowed to react for some
time. No change in the chemistry was observed.
Three solvents were examined, including chlorobenzene, which
is the most widely used solvent with this specific catalyst system
[66]. Because cationic polymerization of styrene occurs instead of
metathesis, solvents of lower dielectric constants were used.
Solvents of low dielectric constant are known to eliminate the








formation of ions [67], thus possibly preventing cationic
polymerization. Carbon tetrachloride (2.0) and hexane (5.7) were
tried, but no change in the chemistry was observed.
When Schlenk vacuum line techniques were used, the analysis
of the gases produced frequently indicated the presence of ethane.
Evidently, trace amounts of moisture were present that reacted with
the EtAICI2 to produce ethane. In order to assure absolute purity and
dryness of the reagents, and the apparatus, high vacuum techniques
were employed. Under these conditions no ethylene was observed in
the styrene reactions, indicating that metathesis did not occur, and
only cationic polymerization was observed.
Since the Lewis acid (EtAICI2) initiated vinyl addition,
different cocatalysts (Et2AICI and Et3AI) were tried. No stilbene
was produced, and as before, only polystyrene resulted.
The use of different reaction conditions, addition sequences,
solvents, and Lewis acid cocatalysts proved to be unsuccessful, and
it can be concluded that the metathesis of styrene does not occur
when WCI6 and an alkyl-aluminum containing Lewis acid is used as
the catalyst system.


Preventing the Cationic Polymerization of Styrene
In an effort to destabilize styrene toward cationic
polymerization, four fluorinated styrenes (2-fluorostyrene, 3-
fluorostyrene, 4-fluorostyrene and 2,3,4,5,6-pentafluorostyrene)
were investigated with the WCI6/ETAICL2 catalyst system. By
reducing the electron density in the vinyl bond of styrene the
likelihood of forming styrene carbocations might be eliminated,








thereby reducing styrene's propensity to undergo vinyl addition
polymerizations. In each case, however, vinyl addition predominated.
Although the reaction proceeded at a slower rate, the only products
observed were fluorinated polystyrenes. A comparison of the NMR
spectra of the products formed with NMR spectra of authentic
fluorinated polystyrenes (Spectra 3-1, 3-2), prepared by anionic
polymerization, indicates that only fluorinated polystyrenes were
produced. 2,3,4,5,6-Pentafluorostyrene polymerized the slowest of
all the fluorinated styrenes that were used, and when high vacuum
techniques were employed, 2,3,4,5,6-pentafluorostyrene did not
react at all, indicating that destabilization of the carbocation does
indeed prevent carbocation formation.
In order to test for catalyst activity in the fluorinated
systems, an acyclic diene known to undergo metathesis
oligomerization (i.e., 1,9-decadiene), was added to the reaction after
24 hours, which metathesized to give polyoctenamer of low
molecular weight and some intractable material [58]. A metathesis
active catalyst system obviously was present, and apparently, the
electron withdrawing nature and the bulkiness of the fluorine groups
on the 2,3,4,5,6-pentafluorostyrene prevent this reagent from either
polymerizing or metathesizing









i



j


UC


_ _


o
0lq









-8




















































12:





u. L


-4


CL
a.
























a




a




a


























a
CL






















-7e







Investigation of a Lewis Acid Free Catalyst System with
Styrene as the Model Compound
The use of Lewis acid free catalysts could obviate the
formation of carbocations, thereby eliminating vinyl addition
reactions. Efforts were focused on choosing an appropriate catalyst
system which would be less acidic and would not induce vinyl
addition polymerization. The homogeneous metathesis catalyst
prepared by Schrock [62, 63] was chosen because it is free of Lewis
acids. Schrock reported that the catalyst was extremely active for
the metathesis of internal olefins, yet, under the reaction conditions
reported, styrene, 1-octene, and allyltrimethylsilane metathesized
slowly [62].
While these results were encouraging, it was not apparent if
these catalysts would be suitable for acyclic diene metathesis
polymerization. Two derivatives of the catalyst, types 1 and 2
(Figure 2-2, page 22), were chosen since they are reported to be the
least active (catalyst 1) and most (catalyst 2) active metathesis
catalysts for internal olefins. Catalyst 1 produced stilbene from
styrene. However, under similar reaction conditions, the reaction
rates were much slower compared to catalyst 2. Preliminary
styrene metathesis results and the metathesis of cis-2-pentene [63]
led to the exclusive use of catalyst 2 in subsequent studies.
Reaction conditions were chosen that were appropriate for
modeling bulk polymerization reactions. Specifically, no solvent
was used as is appropriate for equilibrium step propagation,
condensation polymerization chemistry [68], and when using








catalyst 2 (page 22), the mechanism for the styrene reaction
changed completely from vinyl addition to metathesis chemistry
(Figure 3-3).



Vinyl addition does th
not occur Metathesis

C(CH3)3
CH
(R)2(CH3)CO, I CH
(R)2(CH3)CO + C,
-CH2-CH CH2

I Catalyst_2 R = CF3

Polystyrene Stilbene

Figure 3-3. Styrene metathesis using a
Lewis acid free catalyst.


Metathesis occurs quantitatively, a result which represents a
spectacular change from the previous result shown in Figure 3-2.
The reaction was permitted to continue over a two hour period, and
no side reactions (i.e., vinyl addition reactions) were observed. The
NMR spectrum 3-3 of the unpurified product only shows resonances
that are indicative of trans stilbene. No other products were
present.
The gas formed during the reaction was analyzed by mass
spectroscopy (Spectrum 3-4), which shows that only ethylene was
produced by the reaction (expected if only metathesis occurred).






66























CZ





CL4-
n
V







CZ


cTz
(n3


(3)

Cl(
CU
0 C


rcn

C)






'a,

cj E


cr)
CIO




c.E

Q
C,
a-
C'





67






C,

a)



Ea
(D



z0


a)
D a)

a) e



C)
Ca
>,




cn
8- o
0-o
D 0)

C C.




O





o
c= C
a)


E




CV) 0
0






a)
cf



d E
_________R; ^.
&________________________C Q


I .









Investigation of a Lewis Acid Free Catalyst System with Substituted
Stvrenes as Model Compounds
In order to demonstrate the potential of this olefin metathesis
reaction, a variety of substituted styrenes were investigated, and
the reactions in Figure 3-4 indicate the versatility of the Lewis acid
free catalyzed metathesis reaction. Using a Lewis acid free
catalyst system, 2-fluorostyrene (Reaction A), 3-fluorostyrene
(Reaction B) and 4-fluorostyrene (Reaction C) all metathesize
cleanly and produce the analogous substituted stilbenes in a manner
much the same as for styrene.
The reactions were carried out over a 24 hour period in the
reaction vessel (Figure 2-5) designed for styrene reactions.
Powderous, substituted stilbenes in essentially quantitative yields
were obtained. Reaction times were not optimal, nor were they
indicative of the rate of the reactions, and it is expected that under
optimal reaction conditions, reaction times will be considerably
shortened. The products were pure as is shown by the NMR spectra
3-5, 3-6 and 3-7. Elemental analysis substantiated the exclusive
formation of substituted stilbenes without a trace of any vinyl
addition products.














Metathesis
Catalyst 2
Catalyst_2


Reaction A


Reaction B


Reaction C


Reaction D


Reaction E


R,=R3=R4=H ;R2=F


R,=R2=R4=H ;R3=F


R,=R2=R3=L1 ;R4=F


R1=R2=R4=H ;R3=Br


R,=R2=R3=H ;R4=CH3


Figure 3-4. The Metathesis of substituted styrenes.



Producing substituted stilbenes in high yields and purity is

in sharp contrast to the previous methods used to prepare these

products [69 70, 71 72]. The preparation of 4,4-difluorostilbene by

Ager [73] in 1972, using the synthetic route shown in Figure 3-5, is

a prime example of the lengthy, low yield reactions previously used


RI



2 :O
R3
R4


R1







70

















U)
cn
a)







CZ,
C.














0~



~CU
cau
a>a




4-


0






U)
o



r~N 00

0
Va)



-c






04-









OC;
LO











E


CL
-4-.

0 v
a)e
0O
0I
_ N Cr






71
















CL
cu





a.
(D

CD

2%
E

a)






0 C
Lc
F4-





cn

0 -


L- cza




CI c
Cf)











C3
C/)
0





N 05
lC;

0-
Va;
c,"
Cyv,




l2o

N0


O'-

LOO

Cno




E

01

a)
0,
























V)
U,


-cc
a)





a,
E






aa

-o
a,
c (





ca,

(D-

u,
0




-c
c0

CUa







N0



100







in the synthesis of substituted stilbene compounds. Obviously,
metathesis provides a much more efficient, single step synthetic
method. Yields of previous synthetic methods ranged from 10-30 %,
and mixtures of products were always observed which made
purification difficult.

CHO

F- CH2CI g F- CH2MgC +
Et20
F

(1) 2 hours, heat
(2) NH4C (aq.)


F-\CH2-CHOH -- F

P205
benzene
heat

\/ CH\=CH F


Column
Chromatography


trans 4,4'-difluorostilbene (10% yield)


Figure 3-5. Synthesis of 4,4'-difluorostilbene








2,3,4,5,6-Pentafluorostyrene did not react at all under these
reaction conditions. If the reaction is heated to 700C, poly-
2,3,4,5,6-pentafluorostyrene is formed (Spectrum 3-8). A second
addition of catalyst also proved to be ineffective. No
decafluorostilbene was produced. Two possible reasons why
2,3,4,5,6-pentafluorostyrene does not metathesize are:
(1) The five fluorine atoms have such a strong electron
withdrawing effect on the molecule that the electron density of the
vinyl bond is diminished to the extent that it cannot coordinate with
the already electron deficient catalyst metal center. The tungsten
carbon double bond in the analogous benzylidene metal complex was
found to be shorter when fluorinated alkoxide ligands were present
than in the presence of non-fluorinated ligands [63]. Shortening of
the tungsten carbon double bond was attributed to the electron
withdrawing nature of the hexa-fluoro alkoxide ligand. A
combination of the electron withdrawing effect of the hexafluoro
alkoxide ligands and the diminished electron density of the
pentafluorostyrene vinyl bond provide a plausible explanation for the
unreactivity of 2,3,4,5,6-pentafluorostyrene.
(2) Fluorine atoms are relatively small. Due to a high
electron density, repulsion are experienced over long ranges, thus
making fluorine bulky in terms of stereochemistry [63]. This
"bulkiness" could be a factor in preventing the vinyl bond of
2,3,4,5,6-pentafluorostyrene from coming into close proximity with
the catalyst to produce the metallocyclobutane ring intermediate,
essential for metathesis to occur [25, 26, 27]. X-ray structural
analysis of W(CHPh)(NAr)[OCMe(CF3)2]2 indicates that the two


























(3
(D0
r L>
U-)
0 4
ca






a ) c
~Cl
E-

0
aca

EO









-u



0a)
.4-U


4.-'



0

0

0
N LV
a)V
LO'








alkoxide ligands are turned away from each other and also that the
two tryfluoromethyl groups, in each alkoxide, are turned away from
the benzylidene and imido ligands [62]. The presence of fluorine
atoms at the two ortho positions of 2,3,4,5,6-pentafluorostyrene
result in bigger steric repulsion between the alkoxide ligands and
the pentafluoro benzylidene ligand. Van der Waals interactions
between trifluoromethyl and hydrocarbon groups, as well as any
interaction between triflouromethyl and the ortho fluorines on the
pentaflourobenzylidene ligand must be diminished for a
metallocyclobutane ring to be formed. Stereochemical overcrowding
at the metal center may prevent a second 2,3,4,5,6-
pentafluorostyrene molecule from approaching, thereby preventing
the formation of a metallocyclobutane intermediate and
subsequently metathesis.
4-Bromostyrene (Reaction D; Figure 3-4, page 69) and 3-
methylstyrene (Reaction E Figure 3-4, page 69) metathesize cleanly
and form the respective substituted stilbenes in quantitative yields,
as confirmed by elemental analysis and NMR spectroscopy (Spectra
3-9,10). Cadogan and Inward [74] investigated the three possible
methods [75, 76, 77] for the preparation of trans-4,4'-
dibromostilbene and found that a modified version of the Bance,
Barber and Woolman method [77], was the most satisfactory with
yields slightly higher than 40%. The other two methods gave
stilbene yields ranging from 3%-40%. All three methods involved
multistep reactions and rigorous purification of the starting
materials. It is evident that the single step metathesis reaction























U)
C)
ca
r0
a)
E
0a


-c














08
o
-0



(3 -


















0.
Coa
ocu













a)

2

In








E



a-





Qd


cu











-vu









cu



--m


















to


C
13


E


CL
aO








procedure with its essentially quantitative yield is the preferred
route to produce stilbenes..
These model reactions demonstrate the versatility of the
metathesis reaction system, and show that vinyl addition side
reactions can been eliminated completely. The essentially
quantitative yields fulfill the prerequisite of high percentage
conversion (>99%) of monomer to polymer, required by step
condensation type polymerization.
Expanding small molecule metathesis chemistry into a
polymerization reaction is the next challenge. Acyclic diene
metathesis polymerization would be the first new equilibrium step
propagation condensation type polymerization in 20 years.
Subsequent chapters elaborate on the feasibility and implementation
of the acyclic diene metathesis polymerization technique.














CHAPTER 4
ACYCLIC DIENE METATHESIS POLYMERIZATION (ADMET).
THE SYNTHESIS OF POLYOCTENAMER USING 1,9-DECADIENE AS
A MONOMER.



The first high molecular weight polymer synthesized by
acyclic diene metathesis polymerization is reported herein. Prior to
the research discussed below, the catalyst requirements and the
reaction conditions required to produce high molecular weight
polymers by acyclic diene metathesis polymerization techniques
were unknown. Following the successful metathesis of styrene and
its derivatives, the focus of the research turned toward the
polymerization of 1,9-decadiene to demonstrate that acyclic diene
metathesis (ADMET) could produce high molecular weight
polyoctenamer.
Polyoctenamer was chosen as a target model polymer since it
is well characterized [78]. The physical properties of polyoctenamer
prepared by ring opening metathesis polymerization are known [78];
thus it was possible to compare the properties of acyclic diene
metathesis polymerization samples directly with polymers formed
by ring opening metathesis polymerization.
Eight polymerizations were performed to establish the most
suitable conditions to yield high molecular weight polymers, and to








investigate the different properties of the polyoctenamer samples
produced. A discussion of the molecular weights obtained under
different experimental conditions, as well as the physical
properties of the polymers formed, follows.


Acyclic Diene Metathesis as a Polymerization Reaction
The polymerization chemistry under investigation (Figure 4-1)
yields only two products, polyoctenamer and ethylene, and by

ZC2=CH-(CH2)6-C=CH2
1,9-decadiene

Catalyst : Monomer
1 :5000
Vacuum (10-6mmHg)
Heat (25-65oC)


--CH=CH-(CH2)6-)- + CH2=CH2
polyoctenamer
Figure 4-1. Acyclic Diene Metathesis Polymerization
of 1,9-decadiene.


removing ethylene the polymerization could be driven to produce
high molecular weight polyoctenamer. No accompanying reactions
were observed. The first four reactions specifically were done to
show that high molecular weight polyoctenamer can be produced by
ADMET polymerization (Table 4-1).









Table 4-1. Molecular weights of first four polyoctenamer samples
prepared by acyclic diene metathesis polymerization


Polyoctenamer Viscositya Molecular Weight
Reaction (d/g) ((Mn)
1 1 700b


2 0.26 11 000b
12 000C


3 1 600b


4 0.89 57 000d


(a) 250C in toluene; (b) Endgroup analysis by 3C NMR;
(c) Mn by VPO analysis; (d) Mw (108000) and Mn were
measured assuming the polymer to be polystyrene, the
calibration standard, and multiplied by 0.45. This
factor is the estimated ratio of the unperturbed
dimensions, , for polystyrene and polyoctenamer.



Three additions of catalyst were made, and a large volume of
solvent was used in the first reaction. While a low molecular
weight (1700) pure polyoctenamer sample with a trans content of
65% was produced in the first reaction, it was encouraging that no
intractable material was observed. The low molecular weight of the
polymer is attributed to the oligomers solidifying in the breakseal
ampules (Figure 2-7, page 37) that contained the catalyst and








monomer, which prevented metathesis. Thus, oligomers were
prevented from constant contact with the catalyst thereby reducing
polymerization rates and allowing only the formation of oligomeric
material.
Placing the monomer and catalyst ampules above the reflux
condenser prevented the precipitation of polymer in the breakseal
ampules. An increase in both the molecular weight and trans
stereochemistry percentage of the product produced in the second
polymerization reaction was achieved. More efficient refluxing and
return of the unreacted monomer and solvent to the reaction vessel
could increase the molecular weight and simultaneously decrease
the reaction time.
When large volumes of solvent are used, it becomes evident
from reaction 3 that only low molecular weight oligomers with a
low stereochemical trans content are formed. In light of Reaction 3
results, it seems as if higher temperatures and a minimal amount of
solvent could produce the desired high molecular weight polymers.
A minimal amount of solvent and reaction temperature of
55C produced a polymer of high molecular weight and high
percentage trans stereochemistry. Based on the results of Reaction
4, acyclic diene metathesis (ADMET) polymerization can produce high
molecular weight polyoctenamer. Experiments followed in which
different reaction conditions were examined.









Table 4-2. Molecular weights of polyoctenamer samples produced
under bulk acyclic diene metathesis polymerization conditions.


Reaction % transa Molecular weight
(Mn)


5 85 3000b


6 90 2000b


7 91 25000c


(a) As determined by quantitative 1C NMR; (b)
Endgroup analysis utilizing "C NMR; (c) Mn
determined by VPO.


Bulk Polymerization Conditions
Bulk polymerizations are the most common method used for
step polymerization since they yield fast reactions which can easily
be controlled.
Bulk polymerizations [68]. are performed generally above the
melting point of the polymer to facilitate agitation. Calderon [79]
reported that 100% trans polyoctenamer melts at 73C, and so a
polymerization temperature of 75C was chosen for the first bulk
polymerization (Reaction 5, Table 4-2). A fraction of the product
formed at 750C was soluble in boiling benzene and had a low number
average molecular weight.








Two additional reactions were performed under bulk
polymerization conditions. Reaction 6 was allowed to proceed for
20 minutes at 25C under bulk reaction conditions and a low
molecular weight, 91% trans polyoctenamer resulted. No intractable
material was produced indicating that no side reactions occurred at
the lower temperature.
Effective agitation of polyoctenamer samples formed under
bulk conditions at 25C becomes impossible after approximately one
half hour due to the increased viscosity of the reaction product. By
raising the reaction temperature to 55C, it was possible to reduce
the viscosity of the sample and magnetic agitation again became
possible. However, after an additional four hours, the polymer's
viscosity increased to the point where magnetic agitation ceased.
These manipulations increased the molecular weight to a value of
25000. The increased molecular weight observed in reaction 7
indicates that polyoctenamer can successfully be prepared by
acyclic diene metathesis polymerization under bulk reaction
conditions at 55 OC.
Higher molecular weights can be achieved in shorter times
with agitation from high torque mechanical stirring. Results from
bulk polymerizations indicated that the catalyst does not decompose
at 55 oC. A polymer of high trans stereochemistry (approximately
90%) with moderate molecular weight can be produced in a
relatively short time under bulk conditions. Better agitation
undoubtedly will produce even higher molecular weights.







Tailoring of Acyclic Diene Metathesis Formed Polymers
The ability to tailor acyclic diene metathesis polymerization
reaction conditions to produce a wide variety of polymers with
varying molecular weights and physical properties (e.g., melting and
crystallization points) was investigated in this experiment.
Termination of acyclic diene metathesis polymerization is achieved
by exposing the polymerization to oxygen and moisture, which
decomposes the catalyst. Because the catalyst is not permanently
fixed to the chain ends, both chain ends of the polymer retain vinyl
bonds that can be further polymerized by acyclic diene metathesis
techniques if the polymer is to be reacted with active catalyst
(Figure 4-2).

/f-C6 -=C-\

I ADMET


C6 -= y- C6

where Y >>> X


Figure 4-2. Continued telechelomer ADMET polymerization to
high molecular weight polyoctenamer.
A polyoctenamer sample that had a reduced viscosity of 0.26
dL/g was converted to a higher molecular weight polymer, as
indicated by an increased reduced viscosity number of 0.76 dL/g.
The trans olefin content increased from 78% to 88% which resulted








in higher melting and crystallization points for the produced
polymer.
Acyclic diene metathesis polymerization eliminates the
possibility of producing a polymer with undesirable physical
properties, provided these properties can be altered by an increase
in molecular weight. The ability to increase the molecular weight of
a sample and tailor its physical properties indicates the advantage
that acyclic diene metathesis polymerization has over other
polymerization techniques.

Determining the Stereochemistry of the Olefin Units in
Polyoctenamer
The stereochemistry of the internal olefin units of
polyoctenamer varies [78], depending on the method and reaction
conditions used to produce the polymer sample. Because the
physical properties of a specific polyoctenamer sample depend on
the stereochemistry of the internal olefin units, it is important that
the cis/trans ratio of the internal olefin units be determined
accurately. Three spectroscopic techniques can used to determine
the cis and trans stereochemistry, 1H NMR, 13C NMR and infrared
spectroscopy. All three methods were employed to characterize the
polymer samples that are described in this dissertation and the
accuracy of the cis/trans ratios assigned by these methods was
individually accessed.
The proton NMR spectra for all of the polymer.samples
prepared by acyclic diene metathesis essentially were identical
(Spectrum 4-1), with the exception of cis/trans ratios. Hatada [80,





























H










co
0a
-a


L.


E



CLU
Maa



0
~a-c

LC.)
ca,v



CI
=0



Z
0C


N
N

E

00
C~l -








81] used spin decoupling to distinguish between the cis and trans
proton signals of 1,4-polybutadiene, a technique which can be
applied to polyoctenamer. Spin decoupling was applied to
polyoctenamer by Sato [82], whereby the olefinic protons of
polyoctenamer can be separated into cis and trans peaks. However,
the use of quantitative 13C NMR would lead to much more accurate
assignment of cis/trans ratios for polyoctenamer, because the
separation between the two decoupled proton NMR peaks, is minimal
(only 0.5 ppm without baseline separation). A comparison of the 13C
NMR resonances for polyoctenamer reported by Katz [83] and those
found for the polyoctenamer samples prepared by acyclic diene
metathesis polymerization indicates that only linear polyoctenamer
is produced (Spectrum 4-2).
Prior to performing any quantitative 13C NMR experiments, the
Ti relaxation times of all the carbon atoms present in a repeat unit
of polyoctenamer were determined with a Varian XL 200
spectrometer [84]. Reliable carbon integration can only be obtained
from fully relaxed 13C NMR spectra [85], and relaxation times were
measured for 3 different polyoctenamer samples in order to
determine the longest T1 present in a repeating unit. Spectrum 4-3
indicates the 8 different relaxation times used and the effect of the
relaxation times on the signals of the different carbon atoms in a
repeat unit. The Ti relaxation times found for the 8 carbon atoms in
a repeat unit are listed in Table 4-3.







































; i


vi


q.

I a
IA'


LU



70
n


(1)
C.)
Q
0

0c
CL
a)
E
c

0cU

cXa)

a)V
CZ


0
Co,


coc




c~J
N
N (D
E

0 0






4-'
C.,
E


a)
a
U)

























C
0

ca















IF-




O'4-C3






E cn
ZC
00

,- M
o >
>% (D
ca c



a),

C:l'
z C:
0 C

cn CZ
N C :

N %




LO a- *r







Table 4-3. Relaxation times of carbon atoms in a
repeat unit of polyoctenamer.


Peak(ppm) T1 (sec.) Error(sec.)

139.1 10.42 2.73
130.3 1.99 0.03
129.9 1.49 0.15
114.1 4.89 0.95
32.7 0.99 0.02
29.6 1.15 0.02
29.2 1.27 0.14
29.0 1.13 0.02
27.2 1.21 0.11



Based on this information, a single pulse delay mode and delay
times more than four times that of the longest T1 were used for
quantitative carbon experiments.
Using 13C NMR spectroscopy, it is possible to distinguish
between both the cis and trans internal olefin carbons and the
allylic carbon adjacent to the internal olefin carbon. The internal
cis olefin carbon appears at 129.8 ppm and the trans internal olefinic
appears at 130.4 ppm. Several researchers [86, 87, 88, 89, 90, 91]
have demonstrated that the carbon atom adjacent to the internal
olefinic carbon has two different resonances, (i.e., the cis carbon at
27.3 ppm and the trans carbon at 32.7 ppm). The resonances at 32.7
ppm were reported to be weak or unobserved for the predominantly
cis-polyoctenamers produced by ring opening metathesis. A one to
one correlation between the peak intensities of these allylic carbon
resonances and those of the internal olefin carbons corroborates the




Full Text

PAGE 1

$&<&/,& ',(1( 0(7$7+(6,6 $ 1(: (48,/,%5,80 67(3 3523$*$7,21 &21'(16$7,21 32/<0(5,=$7,21 %\ 9 -$1 *(/'(1+8<6L1(/ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

2SJHGUD DDQ P\ KXLVJHVLQ 3D-DQ 0D%HDWULFH +DQOL %DVVRQ HQ &ODULVVD 1HO

PAGE 3

$&.12:/('*(0(176 ZLVK WR WKDQN DOO WKH PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 'U .% :DJHQHU 'U -0 %RQFHOOD 'U 5& 6WRXWHU 'U :5 'ROELHU DQG 'U &' %DWLFK 7KDQNV JR WR DOO P\ SDVW DQG SUHVHQW FROOHDJXHV IRU WKHLU VXSSRUW DQG IULHQGVKLS 7KH IULHQGO\ \HW VHULRXV DWPRVSKHUH RI WKH SRO\PHU IORRU KDV EHHQ ZRQGHUIXO ,nOO UHPHPEHU LW DOO P\ OLIH 7KDQNV DOVR JR WR 0DUN +LOOP\HU DQG -RH 0RUHOOL IRU ZDVKLQJ JODVV DQG DVVLVWLQJ PH 6SHFLDO WKDQNV JR WR /RUUDLQH :LOOLDPV DQG 3DW +DUJUDYHV RXU EHORYHG VHFUHWDULHV ZKR ZHUH FKHHUIXO HYHQ RQ GHDGOLQH GD\V $ ZRUG RI DFNQRZOHGJHPHQW JRHV WR 'U 5 .LQJ IRU 105 DVVLVWDQFH DQG WR 'U 3RZHOO IRU PDVV VSHFWURVFRS\ DQDO\VLV DOVR WKDQN 'U 53 'XWWZHLOHU DQG 'U -0 %RQFHOOD IRU SUHSDULQJ WKH FDWDO\VW 6SHFLDO WKDQNV DUH JLYHQ WR 5XG\ 6WURKVFKHLQ DQG 'LFN 0RVKLHU LQ WKH JODVV VKRS 0DQ\ DQ KRXU ZDV VSHQW PHQWDOO\ UHFRYHULQJ E\ VKDULQJ ODXJKV DQG ILVKLQJ 7KDQNV IRU WHDFKLQJ PH WKH DUW DQG EHDXW\ RI JODVVEORZLQJ ,nOO DOZD\V ORYH JORREODVWLQJ :RUGV FDQQRW H[SUHVV P\ JUDWLWXGH WR /XF\ .X\NHQGDOO IRU KHU SDWLHQFH DQG HQFRXUDJHPHQW LQ SUHSDULQJ WKLV PDQXVFULSW 7KDQN \RX YHU\ PXFK IRU DOO WKH KRXUV RI W\SLQJ RYHU WKH ZHHNHQGV LW LV GHHSO\ DSSUHFLDWHG :RUGV IDLO PH LQ H[SUHVVLQJ P\ JUDWLWXGH WRZDUGV 'U .HQ :DJHQHU 7KDQN \RX IRU \RXU XQVHOILVK VXSSRUW DQG HQFRXUDJHPHQW WKURXJKRXW P\ VWXGLHV 'RQnW JLYH XS ZLOO DOZD\V EH P\ PRWWR

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL $%675$&7 YLL &+$37(5 ,1752'8&7,21 7KH 1DWXUH RI 6WHS 3RO\PHUL]DWLRQ &KHPLVWU\ 7KH 2OHILQ 0HWDWKHVLV 5HDFWLRQ %ULHI +LVWRU\ RI 2OHILQ 0HWDWKHVLV 7KH 0HFKDQLVP IRU 0HWDWKHVLV &KHPLVWU\ &DWDO\VWV 8VHG LQ 2OHILQ 0HWDWKHVLV 5LQJ 2SHQLQJ 0HWDWKHVLV 3RO\PHUL]DWLRQ 5203f $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ $'0(7f (;3(5,0(17$/ *HQHUDO ,QIRUPDWLRQ +LJK 9DFXXP DQG 6FKOHQN /LQH 7HFKQLTXHV 6FKOHQN 9DFXXP /LQH 7HFKQLTXHV +LJK 9DFXXP /LQH 7HFKQLTXHV 3XULILFDWLRQ RI 0RQRPHUV 5HDJHQWV DQG 6ROYHQWV $WWHPSWHG 0HWDWKHVLV RI 6W\UHQH 8VLQJ D /HZLV $FLG &RQWDLQLQJ &DWDO\VW $WWHPSWHG 0HWDWKHVLV RI )OXRULQDWHG 6W\UHQHV 8VLQJ D /HZLV $FLG &RQWDLQLQJ &DWDO\VW 6\VWHP 3UHSDUDWLRQ RI )OXRULQDWHG 3RO\VW\UHQH 9LD $QLRQLF 3RO\PHUL]DWLRQ 7HFKQLTXHV 0HWDWKHVLV RI 6W\UHQH 8VLQJ D /HZLV $FLG )UHH &DWDO\VW 0HWDWKHVLV RI )OXRULQDWHG 6W\UHQHV 8VLQJ D /HZLV $FLG )UHH &DWDO\VW

PAGE 5

0HWDWKHVLV RI 6XEVWLWXWHG 6W\UHQHV 8VLQJ D /HZLV $FLG )UHH &DWDO\VW $F\FOLF 'LHQH 0HWDWKHVLV $'0(7f 3RO\PHUL]DWLRQ RI 'HFDGLHQH *HQHUDO 3RO\PHUL]DWLRQ 3URFHGXUH 5HDFWLRQ &RQGLWLRQV IRU 'HFDGLHQH 3RO\PHUL]DWLRQV $F\FOLF 'LHQH 0HWDWKHVLV $'0(7f 3RO\PHUL]DWLRQ RI +H[DGLHQH *HQHUDO 3RO\PHUL]DWLRQ 3URFHGXUH 5HDFWLRQ &RQGLWLRQV IRU +H[DGLHQH 3RO\PHUL]DWLRQV 7+( .(< 72 68&&(66)8/ $&<&/,& ',(1( 0(7$7+(6,6 $'0(7f 32/<0(5,=$7,21 &+(0,675< 6W\UHQH DV D 0RGHO &RPSRXQG 3UHYHQWLQJ WKH &DWLRQLF 3RO\PHUL]DWLRQ RI 6W\UHQH ,QYHVWLJDWLRQ RI D /HZLV $FLG )UHH &DWDO\VW 6\VWHP ZLWK 6W\UHQH DV 0RGHO &RPSRXQG ,QYHVWLJDWLRQ RI D /HZLV $FLG )UHH &DWDO\VW 6\VWHP ZLWK 6XEVWLWXWHG 6W\UHQHV DV 0RGHO &RPSRXQGV $&<&/,& ',(1( 0(7$7+(6,6 32/<0(5,=$7,21 $'0(7f 6<17+(6,6 2) 32/<2&7(1$0(5 86,1* '(&$',(1( $6 $ 02120(5 $F\FOLF 'LHQH 0HWDWKHVLV DV D 3RO\PHUL]DWLRQ 5HDFWLRQ %XON 3RO\PHUL]DWLRQ &RQGLWLRQV 7DLORULQJ RI $F\FOLF 'LHQH 0HWDWKHVLV )RUPHG 3RO\PHUV 'HWHUPLQLQJ WKH 6WHUHRFKHPLVWU\ RI WKH 2OHILQ 8QLWV LQ 3RO\RFWHQDPHU (IIHFWV RI 3HUFHQWDJH 7UDQV 6WHUHRFKHPLVWU\ RQ WKH 0HOWLQJ DQG 5HFU\VWDOOL]DWLRQ 7HPSHUDWXUHV RI 3RO\RFWHQDPHU 'HWHUPLQDWLRQ RI WKH 0ROHFXODU :HLJKWV RI WKH 3RO\RFWHQDPHU 6DPSOHV 3URGXFHG E\ $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ 'HWHUPLQDWLRQ RI WKH 0DUN+RZLQN6DNXUDGD Y

PAGE 6

&RQVWDQWV DQG Df IRU 3RO\RFWHQDPHU DW r& LQ 7ROXHQH 7HVWLQJ FDOFXODWHG 0DUN+RZLQN6DNXUDGD FRQVWDQWV $Q ,QYHVWLJDWLRQ RI WKH 3RVVLEOH )RUPDWLRQ RI 0DFURF\FOHV 'XULQJ $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ 7+( 67(3 3523$*$7,21 &21'(16$7,21 1$785( 2) $&<&/,& ',(1( 0(7$7+(6,6 32/<0(5,=$7,21 'HWHUPLQLQJ WKH /LQHDULW\ RI $F\FOLF 'LHQH 0HWDWKHVLV 3URGXFHG 3RO\EXWDGLHQH 'HWHUPLQLQJ 2SWLPDO 5HDFWLRQ &RQGLWLRQV IRU $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQV /DUJH 9ROXPH RI 6ROYHQW %XON SRO\PHUL]DWLRQ FRQGLWLRQV $Q (YDOXDWLRQ RI WKH (TXLOLEULXP 6WHS 3URSDJDWLRQ &RQGHQVDWLRQ 1DWXUH RI $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+

PAGE 7

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $&<&/,& ',(1( 0(7$7+(6,6 $ 1(: (48,/,%5,80 67(3 3523$*$7,21 &21'(16$7,21 32/<0(5,=$7,21 %\ -DQ *HOGHQKX\V 1HO 'HFHPEHU &KDLUPDQ 'U .HQQHWK % :DJHQHU 0DMRU 'HSDUWPHQW &KHPLVWU\ 7KH ILUVW KLJK PROHFXODU ZHLJKW SRO\PHUV V\QWKHVL]HG E\ DF\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQ DUH UHSRUWHG KHUHLQ 3ULRU WR WKH UHVHDUFK GLVFXVVHG LQ WKLV GLVVHUWDWLRQ WKH FDWDO\VW UHTXLUHPHQWV DQG WKH UHDFWLRQ FRQGLWLRQV UHTXLUHG WR SURGXFH KLJK PROHFXODU ZHLJKW SRO\PHUV E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ WHFKQLTXHV ZHUH XQNQRZQ 7KXV WKLV UHDFWLRQ EHFRPHV RQH RI RQO\ WKUHH URRP WHPSHUDWXUH VWHS SRO\PHUL]DWLRQV NQRZQ WRGD\ 0RGHO FRPSRXQG VWXGLHV ZHUH LQYHVWLJDWHG WR HOLPLQDWH DOO FRPSHWLQJ VLGH UHDFWLRQV 7KH PHWDWKHVLV RI VW\UHQH FDWDO\]HG E\ D /HZLV DFLG IUHH FDWDO\VW XQGHU EXON DQG KLJK YDFXXP UHDFWLRQ FRQGLWLRQV \LHOGHG VWLOEHQH TXDQWLWDWLYHO\ ZLWKRXW DQ\ WUDFHV RI

PAGE 8

VLGH UHDFWLRQV 6XEVWLWXWHG VW\UHQHV DOVR PHWDWKHVL]HG FOHDQO\ DQG TXDQWLWDWLYHO\ $ VHULHV RI GHFDGLHQH SRO\PHUL]DWLRQV IDFLOLWDWHG WKH GLUHFW FRPSDULVRQ RI SURGXFWV IRUPHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ ZLWK ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ VDPSOHV +LJK PROHFXODU ZHLJKW SRO\RFWHQDPHU VDPSOHV ZHUH SURGXFHG ZKLFK KDG D KLJK SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ WKDW UHVXOWHG LQ KLJK PHOWLQJ SRLQWV $ SUHGLFWLRQ RI WKH PHOWLQJ DQG UHFU\VWDOOL]DWLRQ WHPSHUDWXUHV RI b WUDQV SRO\RFWHQDPHU ZDV PDGH 7KH 0DUN+RXZLQN6DNXUDGD FRQVWDQWV IRU SRO\RFWHQDPHU ZHUH FDOFXODWHG IRU WKH PROHFXODU ZHLJKW UDQJH 6LQFH DF\FOLF GLHQH PHWDWKHVLV SURGXFHV H[FOXVLYHO\ OLQHDU SRO\PHUV ZLWK QR EUDQFKLQJ $'0(7 ZDV DSSOLHG WR KH[DGLHQH DQG H[FOXVLYHO\ OLQHDU SRO\EXWDGLHQH UHVXOWHG DV LQGLFDWHG E\ WKH DEVHQFH RI YLQ\O OLQNDJH 7KH SRVVLELOLW\ RI DF\FOLF GLHQH PHWDWKHVLV $'0(7f F\FOL]DWLRQ VLGH UHDFWLRQV DQG WKH VXEVHTXHQW ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ ZHUH VWXGLHG E\ PDVV VSHFWURVFRS\ DQG VL]H H[FOXVLRQ FKURPDWRJUDSK\ 3DUHQW LRQ SHDNV FRUUHVSRQGLQJ WR OLQHDU SRO\PHU ZHUH REVHUYHG LQ ERWK WKH KH[DGLHQH DQG GHFDGLHQH SRO\PHUL]DWLRQV 7KH FRQWLQXHG SUHVHQFH RI HWK\OHQH WKURXJKRXW WKH FRXUVH RI WKH UHDFWLRQ LQGLFDWHG WKH FRQGHQVDWLRQ QDWXUH RI $'0(7 $ SRO\GLVSHUVLW\ DSSURDFKLQJ ZDV REWDLQHG IRU KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU DQG SRO\EXWDGLHQH VDPSOHV 7KXV DF\FOLF GLHQH PHWDWKHVLV SRO\PHUV DUH IRUPHG E\ D VWHS SURSDJDWLRQ PHFKDQLVP 9,,,

PAGE 9

&+$37(5 ,1752'8&7,21 'XULQJ WKH SDVW \HDUV WKH ROHILQ PHWDWKHVLV UHDFWLRQ KDV EHHQ H[SORUHG H[WHQVLYHO\ IRU LWV DELOLW\ WR FUHDWH SRO\PHUV 3ULQFLSDOO\ WKH PHWKRG LQYHVWLJDWHG KDV EHHQ WKH ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ 5203f RI VWUDLQHG F\FORDONHQHV DQG DV D UHVXOW VHYHUDO SRO\PHUV SUHVHQWO\ DUH SURGXFHG FRPPHUFLDOO\ XVLQJ 5203 FKHPLVWU\ >@ 5LQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQV DUH GULYHQ E\ WKH UHOHDVH RI ULQJ VWUDLQ DQG WKXV ULQJ RSHQLQJ PHWDWKHVLV LV OLPLWHG WR WKH SRO\PHUL]DWLRQ RI VWUDLQHG DONHQH ULQJV >@ 7KH SRO\PHUL]DWLRQ RI DF\FOLF GLHQHV KDV EHHQ DWWHPSWHG DV ZHOO EXW ZLWK OLWWOH VXFFHVV SULRU WR WKH UHVHDUFK UHSRUWHG KHUHLQ >@ 7KLV GLVVHUWDWLRQ UHSRUWV WKH ILUVW VXFFHVVIXO PHWDWKHVLV UHDFWLRQV LQ WKH HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ SRO\PHUL]DWLRQ RI DF\FOLF GLHQHV WKHUHE\ EURDGHQLQJ WKH VFRSH RI PHWDWKHVLV SRO\PHUL]DWLRQ $ YDULHW\ RI DF\FOLF GLHQHV H[LVW WKDW FRXOG EHFRPH PRQRPHUV IRU DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV SURGXFLQJ QHZ DQG XQLTXH SRO\PHUV

PAGE 10

7KH 1DWXUH RI 6WHS 3RO\PHUL]DWLRQ &KHPLVWU\ $V WKH QDPH LPSOLHV VWHS SRO\PHUL]DWLRQ SURFHHG LQ D VWHSn ZLVH PDQQHU >@ ,QLWLDOO\ PRQRPHU UHDFWV ZLWK PRQRPHU WR SURGXFH D GLPHU DQG WKH GLPHU FDQ UHDFW LQ WXUQ ZLWK PRQRPHU RU DQRWKHU GLPHU WR IRUP HLWKHU D WULPHU RU WHWUDPHU 7KH VWHSZLVH PHFKDQLVP E\ ZKLFK D SRO\PHU LV SURJUHVVLYHO\ IRUPHG LV LOOXVWUDWHG LQ )LJXUH PRQRPHU PRQRPHU GLPHU GLPHU PRQRPHU WULPHU GLPHU GLPHU WHWUDPHU WULPHU PRQRPHU WHWUDPHU WULPHU GLPHU SHQWDPHU WULPHU HWF WULPHU f§f§ KH[DPHU )LJXUH (TXLOLEULXP VWHS SRO\PHUL]DWLRQ JURZWK 0RQRPHU GLVDSSHDUV HDUO\ LQ VWHS SURSDJDWLRQ UHDFWLRQV DQG D UDQJH RI PROHFXODU ZHLJKW ROLJRPHUV DQG SRO\PHU FKDLQV UHVXOW 7KH VWHSZLVH JURZWK RI PRQRPHU WR ROLJRPHUV HYHQWXDOO\ UHDFKLQJ KLJK PROHFXODU ZHLJKW SRO\PHUV LPSDUWV VWULQJHQW UHTXLUHPHQWV IRU DQ\ FKHPLFDO UHDFWLRQ WR EH XVHG LQ DQ HTXLOLEULXP VWHS SRO\PHUL]DWLRQ >@ ,Q JHQHUDO IRU D VPDOOPROHFXOH UHDFWLRQ WR EH XVHIXO LQ D VWHS SRO\PHUL]DWLRQ UHDFWLRQ D IDYRUDEOH HTXLOLEULXP LV QHFHVVDU\ 7KH IRUPDWLRQ RI XQVWUDLQHG ULQJV DV RSSRVHG WR OLQHDU SRO\PHU LV DQ H[DPSOH RI DQ XQIDYRUDEOH HTXLOLEULXP UHDFWLRQ WKDW FDQ SUHYHQW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ

PAGE 11

+LJK FRQYHUVLRQ LH H[WHQW RI UHDFWLRQf LV RQH RI WKH PRUH LPSRUWDQW FULWHULD UHTXLUHG IRU WKH V\QWKHVLV RI KLJK PROHFXODU ZHLJKW SRO\PHU E\ VWHS SRO\PHUL]DWLRQ FKHPLVWU\ ,Q VPDOO PROHFXOH V\QWKHVLV WKH UHDFWLRQ LV FRQVLGHUHG WR EH D VXFFHVV LI b FRQYHUVLRQ LV DFKLHYHG ,Q FRQWUDVW D FRQYHUVLRQ JUHDWHU WKDQ b LV QHHGHG IRU DQ\ VWHS SRO\PHUL]DWLRQ WR SURGXFH KLJK PROHFXODU ZHLJKW SRO\PHU :+ &DURWKHUV >@ GHULYHG HTXDWLRQ f ZKLFK FRUUHODWHV PROHFXODU ZHLJKW DQG SHUFHQWDJH FRQYHUVLRQ ;Q Sf f $FFRUGLQJ WR &DURWKHUV ;Q LV WKH QXPEHU DYHUDJH GHJUHH RI SRO\PHUL]DWLRQ DQG S LV WKH H[WHQW RU IUDFWLRQ RI FRQYHUVLRQ RI IXQFWLRQDO JURXS WR SRO\PHU LOOXVWUDWLQJ WKH LPSRUWDQFH RI D KLJK H[WHQW RI FRQYHUVLRQ $ SHUIHFW EDODQFH RI VWRLFKLRPHWU\ LV DVVXPHG LQ WKLV UHODWLRQVKLS DQG LW FDQ EH VHHQ WKDW ZKHQ S HTXDOV FRUUHVSRQGLQJ WR b FRQYHUVLRQf WKH SRO\PHU ZKLFK UHVXOWV SRVVHVVHV RQO\ UHSHDWLQJ XQLWV ZKLFK LV DQ ROLJRPHU QRW D SRO\PHU $ FRQYHUVLRQ RI b SURGXFHV D SRO\PHU FRQVLVWLQJ RI UHSHDWLQJ XQLWV DQG GHSHQGLQJ RQ WKH PROHFXODU ZHLJKW RI WKH UHSHDWLQJ XQLW D PRGHUDWH PROHFXODU ZHLJKW $ VWHS FRQGHQVDWLRQ UHDFWLRQ RQO\ SURGXFHV KLJK PROHFXODU ZHLJKW SRO\PHU ZKHQ D KLJK H[WHQW RI FRQYHUVLRQ LV DFKLHYHG )LJXUH SRUWUD\V WKH UHODWLRQVKLS EHWZHHQ WKH H[WHQW RI FRQYHUVLRQ DQG WKH PROHFXODU ZHLJKW RI SRO\PHU &KHPLFDO UHDFWLRQV WKDW DUH XVHIXO IRU VWHS SRO\PHUL]DWLRQV LQFOXGH HVWHULILFDWLRQ DPLGDWLRQ WKH IRUPDWLRQ RI XUHWKDQHV DURPDWLF VXEVWLWXWLRQ DQG RQO\ D IHZ RWKHUV >@

PAGE 12

)LJXUH 9DULDWLRQ RI PROHFXODU ZHLJKW ZLWK FRQYHUVLRQ IRU HTXLOLEULXP VWHS SRO\PHUL]DWLRQV 7ZR JHQHUDO W\SHV RI PRQRPHUV FDQ EH HPSOR\HG LQ VWHS SRO\PHUL]DWLRQV 7KH ILUVW W\SH RI PRQRPHU KDV WZR GLIIHUHQW ELIXQFWLRQDO DQGRU SRO\IXQFWLRQDO JURXSV ZLWK HDFK PRQRPHU SRVVHVVLQJ RQO\ RQH W\SH RI IXQFWLRQDO JURXS 7KH VHFRQG W\SH KDV D VLQJOH ELIXQFWLRQDO PRQRPHU FRQWDLQLQJ WZR GLIIHUHQW IXQFWLRQDO JURXSVRU WKH VDPH PRQRPHU 7KH WZR JURXSV RI UHDFWLRQV FDQ EH UHSUHVHQWHG E\ WKH IROORZLQJ HTXDWLRQV ZKHUH $ DQG % DUH WKH WZR GLIIHUHQW W\SHV RI IXQFWLRQDO JURXSV Q $$ Q %% I$ f§ $% % +fQ f I$%LQ f Q $%

PAGE 13

0HWDWKHVLV UHSUHVHQWV DQRWKHU UHDFWLRQ LQ DGGLWLRQ WR WKRVH DOUHDG\ PHQWLRQHG WKDW FDQ EH HPSOR\HG DV D HTXLOLEULXP VWHS SRO\PHUL]DWLRQ PHFKDQLVP 7KH PRQRPHUV WKDW ZRXOG EH VXLWDEOH IRU WKLV PHFKDQLVP KDYH GRXEOH ERQGV LH HQHVf DV IXQFWLRQDO JURXSV UHSUHVHQWHG VFKHPDWLFDOO\ DV $$ $Q HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ f ZLOO SURGXFH D UHSHDW XQLW FRQWDLQ DQ LQWHUQDO ROHILQ %f DQG D VPDOO PROHFXOH &f FDWDO\VW Q $$ f§ I%7 Q & f Q 7KH UHPRYDO RI WKH E\SURGXFW D VPDOO PROHFXOHf SURYLGHV WKH GULYLQJ IRUFH IRU D SURGXFWLYH SRO\PHUL]DWLRQ UHDFWLRQ 7KH 2OHILQ 0HWDWKHVLV 5HDFWLRQ 7KH ZRUG PHWDWKHVLV LV GHULYHG IURP WKH *UHHN ZRUGV PHWD FKDQJHf DQG WLWKHPL SODFHf DQG DV D JUDPPDWLFDO WHUP LW PHDQV WKH WUDQVSRVLWLRQ RI VRXQGV RU OHWWHUV LQ D ZRUG >@ )RU FKHPLVWU\ PHWDWKHVLV FRUUHVSRQGV WR WKH LQWHUFKDQJH RI DWRPV EHWZHHQ WZR PROHFXOHV 2OHILQ PHWDWKHVLV UHIHUV WR WKH LQWHUFKDQJH RI FDUERQ DWRPV EHWZHHQ D SDLU RI GRXEOH ERQGV ROHILQVf 2OHILQ PHWDWKHVLV UHDFWLRQV )LJXUH f IDOO LQWR WKUHH EURDG FDWHJRULHV H[FKDQJH f ULQJ RSHQLQJ SRO\PHUL]DWLRQ 5203f f DQG F\FOL]DWLRQ UHDFWLRQV f

PAGE 14

5&+ &+5 FK FK FDWDO\VW 5&+ &+5 Q Q FK FK f )LJXUH 2OHILQ PHWDWKHVLV UHDFWLRQV $F\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQ )LJXUH f SURYLGHV WKH SRVVLELOLW\ RI H[WHQGLQJ H[FKDQJH ROHILQ PHWDWKHVLV UHDFWLRQV LQWR D SRO\PHUL]DWLRQ VFKHPH 'HPRQVWUDWLQJ WKH IHDVLELOLW\ RI HPSOR\LQJ H[FKDQJH ROHILQ PHWDWKHVLV DV DQ HTXLOLEULXP VWHS FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ KDV EHHQ WKH JRDO RI WKLV LQYHVWLJDWLYH HIIRUW Q FDWDO\VW Q 5 )LJXUH 7KH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQ

PAGE 15

0HWDWKHVLV UHDFWLRQV JHQHUDOO\ DUH UHYHUVLEOH DQG ZLWK DQ HIIHFWLYH FDWDO\VW V\VWHP DQ HTXLOLEULXP FDQ EH REWDLQHG LQ D UHODWLYHO\ VKRUW WLPH 7KH UHYHUVLELOLW\ RI WKH ROHILQ PHWDWKHVLV UHDFWLRQ UHVXOWV LQ HLWKHU D SURGXFWLYH RU GHJHQHUDWH PHWDWKHVLV SURGXFW $ SURGXFWLYH PHWDWKHVLV UHDFWLRQ SURGXFHV WZR FKHPLFDOO\ GLIIHUHQW PROHFXOHV DQG D VSHFLILF H[DPSOH RI VXFK D UHDFWLRQ LV VKRZQ LQ )LJXUH ZKHUH SURSHQH SURGXFHV EXWHQH DQG HWK\OHQH &+&+ &+ FDWDO\VW &+V&+ &+ &+&+ FK FKFK FK )LJXUH 7KH SURGXFWLYH PHWDWKHVLV RI SURS\OHQH 2Q WKH RWKHU KDQG QR QHZ FKHPLFDO FRPSRXQG UHVXOWV ZKHQ D GHJHQHUDWH PHWDWKHVLV UHDFWLRQ RFFXUV 'HJHQHUDWH PHWDWKHVLV LV LOOXVWUDWHG ZLWK D VSHFLILF H[DPSOH LQ )LJXUH SURSHQH LV WKH UHDJHQW DQG SURSHQH LV DOVR WKH UHVXOWDQW SURGXFW FDWDO\VW )LJXUH 7KH GHJHQHUDWH PHWDWKHVLV RI SURSHQH ,VRWRSLF ODEHOLQJ VWXGLHV KDYH VKRZQ WKDW GHJHQHUDWH PHWDWKHVLV LV PXFK IDVWHU WKDQ SURGXFWLYH PHWDWKHVLV IRU WHUPLQDO

PAGE 16

ROHILQV >@ %\ FDUHIXOO\ FRQWUROOLQJ WKH UHDFWLRQ FRQGLWLRQV DQG FDWDO\VW V\VWHP WKH SRVVLELOLW\ H[LVWV WKDW SURGXFWLYH PHWDWKHVLV FDQ EHFRPH WKH GRPLQDQW UHDFWLRQ 3URGXFWLYH PHWDWKHVLV PXVW SURGXFH \LHOGV RI EHWWHU WKDQ b IRU ROHILQ PHWDWKHVLV WR EHFRPH D YLDEOH UHDFWLRQ LQ D SRO\PHUL]DWLRQ VFKHPH 2EWDLQLQJ WKH RSWLPXP UHDFWLRQ FRQGLWLRQV WKDW OHDG WR SURGXFWLYH PHWDWKHVLV LV RQH RI WKH FULWHULD WR EH PHW EHIRUH DF\FOLF GLHQH PHWDWKHVLV UHDFWLRQV FDQ SURGXFH D VWHS FRQGHQVDWLRQ W\SH SRO\PHU 7KH SULQFLSDO VLGH UHDFWLRQV WKDW FDQ RFFXU GXULQJ ROHILQ PHWDWKHVLV DUH DON\ODWLRQ LVRPHUL]DWLRQ F\FOL]DWLRQ DQG DGGLWLRQ DFURVV WKH GRXEOH ERQG 7KH IROORZLQJ SUHFDXWLRQV KDYH EHHQ IRXQG WR PLQLPL]H VLGH UHDFWLRQV > @ Lf 7KH SURSHU FKRLFH RI VROYHQW WR VXSSUHVV DON\ODWLRQ UHDFWLRQV KDORJHQDWHG VROYHQWV VXFK DV FKORUREHQ]HQH DUH SUHIHUUHG LLf 7KH XVH RI D EDVH WR VXSSUHVV FDWLRQLF VLGH UHDFWLRQV DONDOL PHWDO K\GUR[LGHV FDQ EH DGGHG WR VXSSRUWHG FDWDO\VWV DQG WHUWLDU\ DPLQHV RU RWKHU SRODU DGGLWLYHV FDQ EH DGGHG WR FDWDO\VW V\VWHPV LQ VROXWLRQ LLLf 7KH FDUHIXO VHOHFWLRQ RI WKH RUGHU RI DGGLWLRQ RI FDWDO\VW FRFDWDO\VW DQG VXEVWUDWH DQG LYf 7KH XVH RI DV ORZ D WHPSHUDWXUH DV SRVVLEOH GXULQJ WKH UHDFWLRQ %ULHI +LVWRU\ RI 2OHILQ 0HWDWKHVLV $ SDWHQW GLVFORVXUH E\ (OHXWHULR LQ RQ UHDFWLRQ )LJXUH f DQG WKH QRUERUQHQH UHDFWLRQ VKRZQ LQ )LJXUH ZHUH WKH ILUVW

PAGE 17

PHWDWKHVLV UHDFWLRQV UHSRUWHG 7KH ILUVW OLWHUDWXUH SXEOLVKHG RQ PHWDWKHVLV SRO\PHUL]DWLRQV LQ E\ 7UXHWW FRQFHUQHG WKH ULQJ RSHQLQJ SRO\PHUL]DWLRQ RI QRUERUQHQH WR SRO\QRUERUQHQH )LJXUH f >@ )LJXUH 7KH SRO\PHUL]DWLRQ RI QRUERUQHQH ([FKDQJH PHWDWKHVLV UHDFWLRQV VXFK DV WKRVH VKRZQ LQ )LJXUH ZHUH ILUVW SXEOLVKHG LQ E\ %DQNV >@ &DOGHURQ LQ FRLQHG WKH H[SUHVVLRQ ROHILQ PHWDWKHVLV >@ 3ULRU WR WKH FKHPLVWU\ RI H[FKDQJH UHDFWLRQV DQG RI ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQV KDG GHYHORSHG LQGHSHQGHQWO\ 7KH FRQQHFWLRQ EHWZHHQ WKH WZR W\SHV RI UHDFWLRQV ZDV QRW LPPHGLDWHO\ DSSDUHQW EHFDXVH GLIIHUHQW FDWDO\VWV DQG FRQGLWLRQV ZHUH LQYROYHG &DOGHURQnV GLVFRYHU\ WKDW WKH FDWDO\VW V\VWHP :&,J(W$,&A(W2+ ZRXOG EULQJ DERXW QRW RQO\ WKH YHU\ UDSLG SRO\PHUL]DWLRQ RI F\FORRFWHQH DQG F\FORRFWDGLHQH >@ EXW DOVR WKH GLVSURSRUWLRQDWLRQ RI SHQWHQH >@ DW URRP WHPSHUDWXUH SURYLGHG WKH EULGJH OHDGLQJ WR WKH UHDOL]DWLRQ WKDW ROHILQ GLVSURSRUWLRQDWLRQ DQG ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ ZHUH WKH VDPH FKHPLFDO UHDFWLRQ &DOGHURQ >@ GHPRQVWUDWHG WKDW WKH

PAGE 18

GRXEOH ERQGV DUH FRPSOHWHO\ EURNHQ LQ WKH UHDFWLRQ )LJXUH f DQG OHDG WR WKH H[FKDQJH RI DON\OGLHQH PRLHWLHV &+&+ &+&+ FGFG FGFG :&,(W$,&,(W2+ &KA&+ &+&+ r LL LL FGFG JGFG )LJXUH 0HWDWKHVLV UHDFWLRQ LOOXVWUDWLQJ WKH H[FKDQJH RI DON\OGLHQH PRLHWLHV &RQVHTXHQWO\ WUDQVDON\OLGHQDWLRQ UHDFWLRQV EHFDPH NQRZQ DV ROHILQ PHWDWKHVLV UHDFWLRQV 0RO >@ /HYLVDOOHV >@ DQG 7DQDND >@ VHSDUDWHO\ FRQILUPHG &DOGHURQnV ILQGLQJV EXW XVHG LVRWRSLFDOO\ ODEHOOHG VDPSOHV ZLWK GLIIHUHQW FDWDO\VW V\VWHPV 'DOOn$VWD >@ SURYHG WKDW WKH GRXEOH ERQG LV FRPSOHWHO\ EURNHQ GXULQJ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQV RI F\FORDONHQHV &KHPLVWV ZHUH TXLWH LPSUHVVHG E\ WKH EHDXW\ DQG HOHJDQFH RI WKH ROHILQ PHWDWKHVLV UHDFWLRQ (DUOLHU DXWKRUV IUHTXHQWO\ XVHG WKH ZRUGV IDVFLQDWLQJ LQWULJXLQJ H[FLWLQJ DQG HYHQ GRXEO\ H[FLWLQJ FRPPHUFLDOO\ DQG DFDGHPLFDOO\f WR GHVFULEH WKHVH UHDFWLRQV ,YLQ >@ ZURWH DERXW ROHILQ PHWDWKHVLV :H QRZ NQRZ TXLWH D ORW DERXW WKLV EHDXWLIXO ZRPDQ PHWDWKHVLVf EXW VKH VWLOO KDV D IHZ VHFUHWV ORFNHG DZD\ 2QH RI WKRVH KLGGHQ VHFUHWV $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ $'0(7 SRO\PHUL]DWLRQf KDV EHHQ XQFRYHUHG E\ WKH UHVHDUFK UHSRUWHG KHUHLQ 7KH EHDXW\ DQG HOHJDQFH RI $'0(7 SRO\PHUL]DWLRQV ZLOO EH GLVFXVVHG LQ VXEVHTXHQW FKDSWHUV

PAGE 19

7KH 0HFKDQLVP RI 0HWDWKHVLV &KHPLVWU\ 2ULJLQDOO\ PHWDWKHVLV ZDV >@ WKRXJKW WR RFFXU ZKHQ WZR GRXEOH ERQGV DSSURDFKHG RQH DQRWKHU LQ WKH YLFLQLW\ RI WKH WUDQVLWLRQ PHWDO FDWDO\VW VLWH 7UDQVLWLRQ PHWDO RUELWDOV ZHUH SURSRVHG WR RYHUODS ZLWK ROHILQ GRXEOH ERQGV WR DOORZ H[FKDQJH WR RFFXU YLD D ZHDNO\ KHOG F\FOREXWDQH W\SH FRPSOH[ 7KLV SDLUZLVH PHFKDQLVP )LJXUH f KDV EHHQ GLVFDUGHG LQ IDYRU RI WKH PHWDO FDUEHQH FKDLQ PHFKDQLVP >@ S S F F F F Q >0@ 0 L >0@ L >0@ F F F & )LJXUH 7KH SDLUZLVH PHFKDQLVP +HULVVRQ DQG &KDXYLQ ILUVW SURSRVHG WKDW D PHWDO FDUEHQH VSHFLHV PLJKW EH LQYROYHG LQ ROHILQ PHWDWKHVLV >@ 7KH UHVHDUFK GHVFULELQJ WKH LQLWLDO SURGXFWV RI FURVV PHWDWKHVLV RI F\FOR DQG DF\FOLF ROHILQV DQG WKH LGHQWLILFDWLRQ RI ERWK LQLWLDWLQJ DQG SURSDJDWLQJ PHWDO FDUEHQHV E\ + DQG & 105 VSHFWURVFRS\ > @ EHWZHHQ DQG f LV UHJDUGHG DV XQHTXLYRFDO SURRI RI WKH PHWDO FDUEHQH PHFKDQLVP 1XPHURXV H[SHULPHQWV KDYH FRQILUPHG WKH PHWDO FDUEHQH PHFKDQLVP DQG LW LV JHQHUDOO\ DFFHSWHG IRU ROHILQ PHWDWKHVLV UHDFWLRQV ,Q WKH PHWDO FDUEHQH FKDLQ PHFKDQLVP WKH SURSDJDWLQJ FRPSRXQG LV D PHWDO FDUEHQH IRUPHG LQ VRPH ZD\ IURP WKH FDWDO\VWVXEVWUDWH V\VWHP *HQHUDOL]HG SURSDJDWLQJ VWHSV DUH VKRZQ LQ )LJXUH ZKHUH

PAGE 20

F F F F F F ,, ,, >0@ & -0@ & >0@ & )LJXUH 7KH PHWDO FDUEHQH PHFKDQLVP SURSDJDWLRQ SURFHHGV YLD D PHWDOODF\FOREXWDQH VSHFLHV 'XULQJ WKH SURFHVV D PHWDO FDUEHQH LV UHJHQHUDWHG DW HYHU\ VWDJH &DWDO\VWV 8VHG ,Q 2OHILQ 0HWDWKHVLV 1XPHURXV FDWDO\VW V\VWHPV H[LVW WKDW ZLOO LQLWLDWH ROHILQ PHWDWKHVLV UHDFWLRQV &XUUHQWO\ VHYHUDO UHVHDUFKHUV > @ DUH DFWLYHO\ SXUVXLQJ FDWDO\WLF UHDFWLRQV LQ VHDUFK RI \HW PRUH UHDFWLYH DQG EHWWHU GHILQHG RUJDQRPHWDOOLF FRPSOH[HV 0HWDWKHVLV FDWDO\VW V\VWHPV FDQ EH GLYLGHG LQWR WKUHH W\SHV Df WKRVH FRQVLVWLQJ RI DQ DFWXDO PHWDO FDUEHQH Ef WKRVH FRQWDLQLQJ DQ DON\O RU DOO\O JURXS LQ RQH RI WKH FRPSRQHQWV HJ (W$,&O IURP ZKLFK D FDUEHQH OLJDQG FDQ UHDGLO\ EH JHQHUDWHG DQG Ff WKRVH KDYLQJ QHLWKHU D SUHIRUPHG FDUEHQH QRU DQ DON\O JURXS LQ DQ\ FRPSRQHQW ,Q WKLV FDVH D PHWDO FDUEHQH FDQ RQO\ IRUPHG E\ LQWHUDFWLRQ RI WKH VXEVWUDWH ROHILQ ZLWK WKH WUDQVLWLRQ PHWDO FHQWHU (OHYHQ WUDQVLWLRQ PHWDOV DUH WKH PRVW FRPPRQO\ XVHG DV FDWDO\VWV 7L =U +I 1E 7D 0R : 5H 5X 2V DQG ,U &RPSRXQGV

PAGE 21

FRQWDLQLQJ QRQWUDQVLWLRQ PHWDOV DUH QRW FRPPRQO\ XVHG DV D FDWDO\VW ZLWK $,2 >@ DQG (W$,&O >@ EHLQJ WZR UDUH H[DPSOHV 7KH PHWDWKHVLV RI DF\FOLF ROHILQV LV XVXDOO\ WKHUPRQHXWUDO 7KHUHIRUH LI DQ HTXLOLEULXP LV WR EH REWDLQHG TXLFNO\ RQO\ WKH PRVW DFWLYH 0R : 5H DQG 7D EDVHG V\VWHPV VKRXOG EH XVHG $ FRFDWDO\VW QRUPDOO\ FRQVLVWV RI DQ RUJDQRPHWDOOLF FRPSRXQG RI D QRQWUDQVLWLRQ PHWDO IURP JURXSV O,9 DQG WKH IXQFWLRQ RI WKH FRFDWDO\VW PD\ EH VHYHUDOIROG 7KH FRFDWDO\VW PD\ SURYLGH DQ DON\O OLJDQG WR WKH WUDQVLWLRQ PHWDO WKDW FDQ EH FRQYHUWHG LQWR DQ DON\OGLHQH OLJDQG $OWHUQDWHO\ WKH FRFDWDO\VW LWVHOI PD\ DFW DV D OLJDQG DQG WKHUHE\ PRGLI\ WKH HOHFWURQ GHQVLW\ RI WKH WUDQVLWLRQ PHWDO DWRP 3UHVHQWO\ PXFK HPSKDVLV KDV EHHQ SODFHG RQ FDWDO\VW V\VWHPV ZKLFK FRQVLVW RI DQ DFWXDO PHWDO FDUEHQH DQG GR QRW UHTXLUH FRFDWDO\VWV RU DFWLYDWRUV > @ 5LQD 2SHQLQJ 0HWDWKHVLV 3RO\PHUL]DWLRQ 52037 (OHXWHULRnV f DQG 7UXHWWnV f QRUERUQHQH SRO\PHUL]DWLRQ GLVFORVXUHV ZHUH WKH ILUVW ULQJ RSHQLQJ PHWDWKHVLV UHDFWLRQV SHUIRUPHG 7KHVH ZHUH IROORZHG E\ 1DWWD DQG 'DOOn$VWD f ZKR UHSRUWHG WKH PHWDWKHVLV SRO\PHUL]DWLRQ RI F\FORSHQWHQH XVLQJ D WUDQVLWLRQ PHWDO FDWDO\VW V\VWHP >@ 6LQFH WKDW WLPH WKHUH KDYH EHHQ QXPHURXV UHSRUWV RI VXFFHVVIXO SRO\PHUL]DWLRQV RI F\FOLF ROHILQV >@ DQG DV VWDWHG SUHYLRXVO\ WKH ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQV )LJXUH f DUH GULYHQ E\ WKH UHOHDVH RI ULQJ VWUDLQ

PAGE 22

Q &+ FDWDO\VW ^f§ &+ &+f§5+U / Q &+ )LJXUH 5LQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ 5203f 6FKURFN *UXEEV DQG 2VERUQ LQYHVWLJDWLRQV KDYH UHVXOWHG LQ QHZ PHWDWKHVLV FDWDO\VWV WKDW DUH EURDGHQLQJ WKH VFRSH RI ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ > @ 7KH ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ 5203f RI VWUDLQHG F\FORROHILQV KDV EHHQ WKH RQO\ PHWDWKHVLV UHDFWLRQ OHDGLQJ WR WKH IRUPDWLRQ RI XVHIXO SRO\PHUV 3RO\RFWHQDPHU >@ IRUPHG IURP F\FORRFWHQH PDUNHWHG LQ f DQG SRO\QRUERUQHQH > @ IRUPHG IURP QRUERUQHQH PDUNHWHG LQ f DUH H[DPSOHV RI ULQJ RSHQHG SRO\PHUV WKDW DUH FRPPHUFLDOO\ DYDLODEOH ([WHQVLYH UHVHDUFK KDV EHHQ GRQH RQ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQV DQG UHVHDUFKHUV DUH DFWLYHO\ SXUVXLQJ 5203 FKHPLVWU\ >@ 7KH HIIHFWV RI ULQJ VL]H VXEVWLWXHQWV RQ ULQJV IRUPDWLRQ RI F\FOLF ROLJRPHUV DQG VHYHUDO RWKHU DVSHFWV RI 5203 UHDFWLRQV KDYH EHHQ LQYHVWLJDWHG WKRURXJKO\ 7KH XVH RI PRQRF\FOLF ELF\FOLF DQG WULF\FOLF DONHQHV DV PRQRPHUV KDYH DOVR EHHQ VWXGLHG >@ DQG FRSRO\PHUV RI F\FORDONHQHV DQG FURVV PHWDWKHVLV WHORPHUV IRUPHG EHWZHHQ F\FOLF DQG DF\FOLF ROHILQV ZHUH DOVR LQYHVWLJDWHG >@ 5HFHQW VWXGLHV KDYH UHYHDOHG LQ FHUWDLQ FDVHV DW OHDVW WKDW ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ LV D OLYLQJ SRO\PHUL]DWLRQ

PAGE 23

UHDFWLRQ DQG SRO\XQLIRUPLWLHV DSSURDFKLQJ WKH LGHDO YDOXH RI KDYH EHHQ IRXQG > @ $ XQLIRUPLWLHV RI GHPRQVWUDWHV WKDW WKH FDWDO\VW GRHV QRW GLVVRFLDWH IURP WKH OLYLQJFKDLQ HQG DQG FDQ OHDG WR WKH IRUPDWLRQ RI EORFN FRSRO\PHUV +RZHYHU ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ FKHPLVWU\ LV KDPSHUHG E\ WKH IDFW WKDW PRQRPHUV DUH UHVWULFWHG WR VWUDLQHG F\FOLF ROHILQV $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ $'0(7f $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ $'0(7f )LJXUH f SUHVHQWV DQRWKHU RSSRUWXQLW\ WR H[SORLW WKH PHWDWKHVLV UHDFWLRQ WR FUHDWH SRO\PHUV $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV FRPSOHWHO\ GLIIHUHQW IURP ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ DQG RIIHUV SRVVLELOLWLHV QRW DYDLODEOH ZKHQ RQH LV FRQVWUDLQHG WR F\FOLF PRQRPHUV Q FDWDO\VW )LJXUH $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ $'0(7f 7KH PHWDWKHVLV UHDFWLRQ RI DF\FOLF GLHQHV LV DQ HTXLOLEULXP UHDFWLRQ WKDW JHQHUDOO\ KDV DQ RYHUDOO FKDQJH LQ IUHH HQHUJ\ FORVH WR ]HUR 5HDFWLRQV GR QRW SURFHHG WR KLJK PROHFXODU ZHLJKW SRO\PHU DQG RQO\ ROLJRPHUV DUH IRUPHG LI WKH HTXLOLEULXP LV QRW VKLIWHG LQ IDYRU RI WKH IRUZDUG UHDFWLRQ 5HPRYLQJ WKH E\SURGXFW VPDOO

PAGE 24

PROHFXOHf SURYLGHV DQ RSSRUWXQLW\ WR VKLIW WKH HTXLOLEULXP DQG GULYH WKH SRO\PHUL]DWLRQ WR KLJK PROHFXODU ZHLJKW 6LGH UHDFWLRQV HJ WKH IRUPDWLRQ RI F\FOLF FRPSRXQGV DV RSSRVHG WR OLQHDU SURGXFWVf DOVR OLPLW HTXLOLEULXP VWHS FRQGHQVDWLRQ SRO\PHUL]DWLRQ UHDFWLRQV >@ ,W LV HVSHFLDOO\ WUXH IRU VWHS FRQGHQVDWLRQ UHDFWLRQV LQ ZKLFK WKH F\FOLF SURGXFW IRUPHG LV PRUH VWDEOH WKDQ WKH OLQHDU SURGXFW DQG WKXV EHFRPHV WKH SULQFLSDO SURGXFW RI WKH UHDFWLRQ 7KH SHUFHQWDJH FRQYHUVLRQ RI PRQRPHU WR SRO\PHU LV UHGXFHG E\ F\FOL]DWLRQ UHDFWLRQV DQG DFFRUGLQJ WR WKH &DURWKHUV HTXDWLRQ f RQO\ ORZ PROHFXODU ZHLJKW ROLJRPHUV FDQ EH H[SHFWHG > @ (DUO\ VWXGLHV VKRZ WKDW VL[ PHPEHUHG ULQJV DUH SUHIHUHQWLDOO\ IRUPHG IURP DF\FOLF GLHQHV ZKHUH GRXEOH ERQGV DUH VHSDUDWHG E\ IRXU FDUERQ DWRPV >@ )RU H[DPSOH FLVFLVGHFDGLHQH SURGXFHV F\FORKH[HQH LQ b \LHOGV )LJXUH 7KH IRUPDWLRQ RI F\FOLF FRPSRXQGV YLD DF\FOLF GLHQH PHWDWKHVLV FKHPLVWU\ 5HVHDUFKHUV VWXGLHG WKH PHWDWKHVLV UHDFWLRQ RI RFWDGLHQH >@ WR JDLQ LQVLJKW LQWR WKH PHFKDQLVP RI PHWDWKHVLV 6HYHUDO FDWDO\VW V\VWHPV ZHUH XVHG DQG ZLWKRXW H[FHSWLRQ WKH SURGXFWV DUH F\FORKH[HQH DQG VPDOO TXDQWLWLHV RI ROLJRPHUV

PAGE 25

5HDFWLRQV ZLWK LVRWRSLFDOO\ ODEHOHG WHUPLQDO ROHILQV UHYHDOHG WKDW GHJHQHUDWH PHWDWKHVLV LV PXFK IDVWHU WKDQ SURGXFWLYH PHWDWKHVLV >@ 6XEVHTXHQWO\ GHJHQHUDWH PHWDWKHVLV H[SODLQV WKH IDFW WKDW IRU DF\FOLF GLHQHV ZLWKRXW H[FHSWLRQ RQO\ ROLJRPHUV DUH IRUPHG XQGHU WKH UHDFWLRQ FRQGLWLRQV HPSOR\HG 2QH UHDFWLRQ WKDW UHFHLYHG VLJQLILFDQW DWWHQWLRQ ZDV WKH DWWHPSWHG DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH WR SRO\EXWDGLHQH > @ ,W ZDV HYHQWXDOO\ FRQFOXGHG WKDW $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH ZDV LPSRVVLEOH EHFDXVH GHJHQHUDWH PHWDWKHVLV LV VWURQJO\ IDYRXUHG >@ %\ WKH ODWH V LW ZDV JHQHUDOO\ DFFHSWHG WKDW DF\FOLF GLHQHV ZRXOG QRW SURGXFH OLQHDU SRO\PHUV E\ DF\FOLF GLHQH PHWDWKHVLV :KDW ZRXOG KDYH EHHQ WKH ILUVW QHZ VWHS FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ UHDFWLRQ LQ \HDUV ZDV DEDQGRQHG DQG SRO\PHUL]DWLRQ HIIRUWV ZHUH IRFXVHG RQ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQV 7KLV GLVVHUWDWLRQ GHPRQVWUDWHV XQHTXLYRFDOO\ WKDW DF\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQ LV SRVVLEOH ,W HODERUDWHV RQ WKH UHTXLUHPHQWV QHFHVVDU\ IRU DF\FOLF GLHQH PHWDWKHVLV WR EHFRPH D IHDVLEOH SRO\PHUL]DWLRQ UHDFWLRQ 6SHFLILF PRGHO FRPSRXQG VWXGLHV ZHUH SHUIRUPHG WR JDLQ LQVLJKW UHJDUGLQJ WKH UHTXLUHPHQWV QHFHVVDU\ IRU DF\FOLF GLHQH PHWDWKHVLV WR EH XVHG DV D SRO\PHUL]DWLRQ UHDFWLRQ 7ZR LPSRUWDQW SRO\PHUV ZHUH SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV DQG UHDFWLRQ FRQGLWLRQV DQG WKH SURSHUWLHV RI WKH IRUPHG SRO\PHUV ZHUH GHOLQHDWHG

PAGE 26

&+$37(5 (;3(5,0(17$/ *HQHUDO ,QIRUPDWLRQ $ 9DUDQ ;/6HULHV 105 6XSHUFRQGXFWLQJ 6SHFWURPHWHU V\VWHP ZDV XVHG WR REWDLQH n+ 105 0+] DQG & 105 0+] VSHFWUD &KHPLFDO VKLIWV DUH UHSRUWHG LQ SDUWV SHU PLOOLRQ GRZQILHOG IURP WKH LQWHUQDO UHIHUHQFH WHWUDPHWK\OVLODQH ,QIUDUHG VSHFWUDO DQDO\VLV ZDV SHUIRUPHG RQ D 3HUNLQ(OPHU ,QIUDUHG 6SHFWURSKRWRPHWHU ZLWK .%U SHOOHWV DQG SHUFHQW WUDQVPLVVLRQ EHLQJ UHFRUGHG UHODWLYH WR ZDYHQXPEHU 8OUDYLROHW VSHFWURVFRS\ ZDV GRQH ZLWK D 3HUNLQ(OPHU /DPEGD 899LV1,5 VSHFWURPHWHU XVLQJ 7+) DV VROYHQW (OHPHQWDO DQDO\VHV ZHUH GRQH E\ $WODQWLF 0LFURODE LQF LQ 1RUFURVV *HRUJLD 0DVV 6SHFWURVFRSLF GDWD ZHUH REWDLQHG IURP D )LQQLJDQ *DV &KURPDWRJUDSKLF 0DVV 6SHFWURPHWHU 'LIIHUHQWLDO VFDQQLQJ FDORULPHWU\ GDWD ZHUH REWDLQHG ZLWK WKH 3HUNLQ(OPHU 6HULHV 7KHUP $QDO\VLV V\VWHP HTXLSSHG ZLWK D GDWD VWDWLRQ 7KH LQVWUXPHQW ZDV FDOLEUDWHG E\ D WZR SRLQW PHWKRG XVLQJ F\FORKH[DQH DQG LQGLXP 'U\ DUJRQ ZDV XVHG DV SXUJH JDV DQG D VFDQ UDWH RI r& SHU PLQXWH ZDV XVHG 6L]H H[FOXVLRQ FKURPDWRJUDSK GDWD ZDV REWDLQHG XVLQJ D :DWHUV $VVRFLDWHV /LTXLG &KURPDWRJUDSK DSSDUDWXV HTXLSSHG ZLWK DQ 5O GHWHFWRU 7HWUDK\GURIXUDQ RU WROXHQH ZHUH XVHG DV VROYHQW DQG S

PAGE 27

VW\UDJHO FROXPQV FRYHULQJ WKH UHJLRQ RI LQWHUHVW ZHUH HPSOR\HG $ FRQVWDQW IORZ UDWH RI POPLQ ZDV PDLQWDLQHG DQG WKH LQVWUXPHQW FDOLEUDWHG E\ XVLQJ SRO\EXWDGLHQH RU SRO\VW\UHQH VWDQGDUGV 3RO\VFLHQFHV ,QFf WKDW FRYHUHG WKH UHJLRQ RI LQWHUHVW ,QWULQVLF YLVFRVLWLHV ZHUH GHWHUPLQHG XVLQJ DQ 2VZDOWG GLOXWLRQ YLVFRPHWHU DW r& ZLWK WROXHQH DV WKH VROYHQW $ :HVFDQ 9DSRU 3UHVVXUH 2VPRPHWHU PRGHO ZDV XVHG IRU RVPRPHWU\ 7ROXHQH ZDV WKH VROYHQW RI FKRLFH DW DQ RSHUDWLQJ WHPSHUDWXUH RI r& +LJK 9DFXXP DQG 6FKOHQN /LQH 7HFKQLTXHV 7KH FDWDO\VWV XVHG IRU PHWDWKHVLV UHDFWLRQV YDU\ LQ WKHLU VHQVLWLYLW\ WRZDUG LPSXULWLHV VXFK DV PRLVWXUH DQG R[\JHQ>@ 6LQFH OLWWOH LV NQRZQ DERXW WKH H[DFW FRQGLWLRQV UHTXLUHG IRU PHWDWKHVLV WR RFFXU ZKHQ YLQ\O ERQGV DUH XVHG D YDULHW\ RI UHDFWLRQ FRQGLWLRQV ZHUH HPSOR\HG WR RSWLPL]H WKH V\QWKHVLV RI PRGHO FRPSRXQGV DQG SRO\PHUV 6FKOHQN 9DFXXP /LQH 7HFKQLTXHV 7KH ILUVW SRO\PHUL]DWLRQV RI GHFDGLHQH DQG KH[DGLHQH ZHUH FDUULHG RXW ZLWK D /HZLV DFLG FRQWDLQLQJ FDWDO\VW V\VWHP :&/(7$,&,f XVLQJ 6FKOHQN OLQH WHFKQLTXHV >@ 6FKOHQN WHFKQLTXHV DOVR ZHUH XVHG LQLWLDOO\ LQ WKH PRGHO FRPSRXQG VWXGLHV $ VSHFLDOO\ GHVLJQHG IODVN )LJXUH f HTXLSSHG ZLWK D SRUWKROH KDYLQJ D 6XED 6HDOr1 UXEEHU VHSWXP DQG D JURXQG JODVV MRLQW f ZDV GHVLJQHG DQG WKH JURXQG JODVV MRLQW ZDV FRQQHFWHG WR D JDV WUDS LQ WKH V\VWHP $OO FRQGHQVHG JDVHV ZHUH DQDO\]HG ZLWK D JDV FKURPDWRJUDSK\ HTXLSSHG ZLWK D IODPH LRQL]DWLRQ GHWHFWRU RU D

PAGE 28

7R 9DFXXP )LJXUH 6FKOHQN YDFXXP OLQH DSSDUDWXV

PAGE 29

PDVV VSHFWURPHWHU ,Q D W\SLFDO H[SHULPHQW IUHVKO\ VXEOLPHG WXQJVWHQ KH[DFKORULGH :&,f ZDV DGGHG LQWR WKH IODVN GHVFULEHG DERYH ZKLFK ZDV SODFHG LQ D GU\ ER[ IUHH RI R[\JHQ DQG PRLVWXUH :KHQ FKORUREHQ]HQH ZDV XVHG DV VROYHQW D 0 VROXWLRQ RI :&, LQ FKORUREHQ]HQH ZDV XVHG LQVWHDG RI SRZGHURXV :&, 7KH IODVN ZDV VHDOHG XVLQJ D VHSWXP DQG D 5RWDIORr1 VWRSFRFN 7KLV DSSDUDWXV ZDV FRQQHFWHG WR D 6FKOHQN YDFXXP OLQH YLD D JURXQG JODVV MRLQW DQG WKHQ HYDFXDWHG 7KH JDVWUDS RI WKH DSSDUDWXV ZDV FORVHG RII IURP WKH YDFXXP OLQH XVLQJ DQ LQOLQH 5RWDIORr1 VWRSFRFN DQG WKH V\VWHP ZDV ILOOHG ZLWK GU\ DUJRQ 7KH UHDJHQW DQG WKH FRFDWDO\VW ZHUH DGGHG YLD D V\ULQJH 6FKOHQN PHWKRGV DOORZHG IRU WKH DGGLWLRQ RI UHDJHQWV LQ YDU\LQJ RUGHU DQG TXDQWLWLHV 7KH JDV WUDS ZDV FRROHG LQ OLTXLG QLWURJHQ ZKLOH WKH UHDFWLRQ PL[WXUH ZDV FKLOOHG LQ DQ LFH EDWK $ PRGHUDWH YDFXXP ZDV DSSOLHG WR WKH V\VWHP E\ RSHQLQJ WKH 5RWDIORr1 MRLQW RI WKH JDV WUDS DQG WKH FRQGHQVHG JDVHV ZHUH UHPRYHG IRU IXUWKHU DQDO\VLV +LRK 9DFXXP /LQH 7HFKQLTXHV 'XH WR WKH KLJK R[\JHQ DQG PRLVWXUH VHQVLWLYLW\ RI WKH /HZLV DFLG IUHH FDWDO\VW V\VWHP &DWDO\VW :&+W%Xf1&+L 3Uf>2&0H&)f@ )LJXUH f KLJK YDFXXP OLQH WHFKQLTXHV KDG WR EH HPSOR\HG ZKHQ WKLV FDWDO\VW ZDV XVHG $ YDFXXP V\VWHP FXVWRPPDGH LQ WKH 8QLYHUVLW\ RI )ORULGD JODVV VKRS >@ ZDV FRQVWUXFWHG HQWLUHO\ RI 3\UH[r1 JODVV DQG FRQVLVWHG RI D URWDU\ RLO SXPS LQ FRQMXQFWLRQ ZLWK DQ RLO GLIIXVLRQ SXPS +LJK YDFXXP 3\UH[r1

PAGE 30

&&+f &DWDO\VW )LJXUH /HZLV DFLG IUHH FDWDO\VWV XVHG LQ PHWDWKHVLV UHDFWLRQV

PAGE 31

JURXQG JODVV MRLQWV ZHUH XVHG DW YDULRXV MXQFWLRQV LQ WKH OLQH WR SHUPLW HYDFXDWLRQ RI UHDFWLRQ YHVVHOV DQG WR WUDQVIHU VROYHQWV DQG UHDJHQWV IURP RQH YHVVHO WR DQRWKHU $ PHUFXU\ 0F&OHRG JDXJH DWWDFKHG WR WKH PDQLIROG ZDV XVHG WR PRQLWRU WKH SUHVVXUH LQ WKH V\VWHP 7KH 3\UH[r1 JODVV YHVVHOV XVHG LQ WKH UHDFWLRQV ZHUH VHOI GHVLJQHG DQG EXLOW ZLWK WKH XVH RI D KDQGKHOG JDV DQG R[\JHQ WRUFK )LJXUHV DQG f 7KH PDQLSXODWLRQV UHTXLUHG IRU YDULRXV UHDFWLRQV VXFK DV FDWDO\VW DGGLWLRQ DQG WUDQVIHU RI UHDJHQWV ZHUH SHUIRUPHG LQ YDFXD XVLQJ EUHDNVHDO WHFKQLTXHV > @ $OO JODVVZDUH XVHG ZDV FOHDQHG LQ WKH IROORZLQJ RUGHU .2+LVRSURSDQRO b :9f ZDWHU DQG DFHWRQH 7KH DSSDUDWXV ZDV RYHQ GULHG EHIRUH DWWDFKLQJ LW WR WKH YDFXXP OLQH 7KH HQWLUH V\VWHP ZDV HYDFXDWHG DQG GULHG WKRURXJKO\ ZLWK D WRUFK WR UHPRYH WUDFHV RI DGVRUEHG ZDWHU YDSRU DQG R[\JHQ IURP WKH VXUIDFH RI WKH JODVV 7KH V\VWHP WKHQ ZDV FKHFNHG IRU WKH SUHVHQFH RI SLQKROHV XVLQJ D 7HVOD KLJK YROWDJH GLVFKDUJH FRLO 5HDFWLRQV ZHUH FDUULHG RXW RQO\ DIWHU FRQILUPLQJ WKDW D VWLFNLQJ YDFXXP nPP +Jf H[LVWHG DV UHJLVWHUHG RQ WKH 0F&OHRG JDXJH 7KH UHDFWLRQV ZHUH WHUPLQDWHG E\ GLVFRQQHFWLQJ WKH DSSDUDWXV IURP WKH YDFXXP OLQH DQG WKHQ RSHQLQJ WKH 5RWDIORr1 MRLQWV ZKLFK DOORZHG DLU LQWR WKH V\VWHP WR GHVWUR\ WKH FDWDO\VW )ROORZLQJ WKHVH RSHUDWLRQV WKH DSSDUDWXV KDG WR EH FXW LQWR VPDOOHU VHFWLRQV WR UHPRYH WKH SURGXFWV

PAGE 32

3XULILFDWLRQ RI 0RQRPHUV 5HDJHQWV DQG 6ROYHQWV $OO FKHPLFDOV ZHUH RI KLJK JUDGH SXULW\ !bf 'XH WR WKH VHQVLWLYH QDWXUH RI FDWDO\VWV DQG )LJXUH f DOO PRQRPHUV UHDJHQWV DQG VROYHQWV XVHG LQ FRQMXQFWLRQ ZLWK WKHVH FDWDO\VWV ZHUH RI JUHDWHU WKDQ b SXULW\ ,Q RUGHU WR HQVXUH DEVROXWH GU\QHVV DQG DQ R[\JHQ IUHH DWPRVSKHUH DOO FKHPLFDOV XVHG ZHUH GULHG RYHU FDOFLXP K\GULGH IRU KRXUV GHJDVVHG VHYHUDO WLPHV XVLQJ IUHH]H SXPSWKDZLQJ F\FOHV DQG WKHQ YDFXXP WUDQVIHUUHG LQWR D SRWDVVLXP PLUURUHG IODVN 7KH UHDJHQWV ZHUH VWLUUHG IRU D KDOI KRXU DQG WKHQ YDFXXP WUDQVIHUUHG LQWR D GLYLGHU %UHDNVHDOV ILOOHG ZLWK WKH GHVLUHG DPRXQWV RI UHDJHQW ZHUH IUR]HQ LQ OLTXLG QLWURJHQ DQG VHDOHG XQGHU D nPP +J YDFXXP )LJXUH f ,Q FDVHV ZKHUH D UHDJHQW KDG LPSXULWLHV QRW UHPRYHG E\ GU\LQJ WHFKQLTXHV WKH UHDJHQW ZDV DOORZHG WR UHDFW ZLWK D VLQJOH DOLTXRW PJf RI FDWDO\VW IRU PLQXWHV WKHQ WKH SXULILHG UHDJHQW ZDV YDFXXP WUDQVIHUUHG LQWR D QHZ EUHDNVHDO DQG VHDOHG XQGHU KLJK YDFXXP $OORZLQJ DQ\ LPSXULWLHV WR UHDFW ZLWK FDWDO\VW LQ HIIHFW GHVWUR\LQJ WKH FDWDO\VWf DQG WKHQ UHPRYLQJ WKH UHPDLQGHU RI WKH SXUH UHDJHQW IURP WKH UHDFWLRQ YHVVHO SURYHG HIIHFWLYH IRU UHPRYLQJ LPSXULWLHV WKDW ZRXOG RWKHUZLVH SRLVRQ WKH FDWDO\VW DQG SUHYHQW PHWDWKHVLV :LWKRXW H[FHSWLRQ UHDJHQWV SXULILHG E\ H[SRVXUH WR FDWDO\VW PHWDWKHVL]HG DQG SURGXFHG RQO\ WKH H[SHFWHG SURGXFWV LQ KLJK \LHOGV 7KH UHDJHQWV XVHG ZLWK WKH FODVVLFDO FDWDO\VW V\VWHP :&,(W$,&O ZHUH SXULILHG LQ DQ LGHQWLFDO IDVKLRQ XS WR WKH SRLQW WKDW WKH\ ZHUH VHDOHG LQ EUHDNVHDO DPSXOHV 7KH UHDJHQWV ZHUH YDFXXP WUDQVIHUUHG IURP WKH SRWDVVLXP PLUURUHG UHDFWLRQ YHVVHO

PAGE 33

+LJK 9DFXXP /LQH 0DQLIROG %UHDNVHDOV )LJXUH +LJK YDFXXP OLQH SXULILFDWLRQ VHWXS

PAGE 34

LQWR D PO URXQG ERWWRP IODVN E\ FRROLQJ WKH IODVN LQ D OLTXLG QLWURJHQ EDWK $IWHU WKH UHDJHQWV ZHUH DOORZHG WR WKDZ WKH IODVN ZDV ILOOHG ZLWK DUJRQ DQG VHDOHG ZLWK D UXEEHU VHSWXP 6WRULQJ WKH UHDJHQW XQGHU DUJRQ LQ D URXQG ERWWRP IODVN IDFLOLWDWHG WKH XVH RI 6FKOHQN YDFXXP OLQH WHFKQLTXHV LH WUDQVIHU WKURXJK GRXEOH HQGHG QHHGOHV XQGHU DUJRQf $WWHPSWHG 0HWDWKHVLV RI 6WYUHQH 8VLQJ D /HZLV $FLG &RQWDLQLQJ &DWDO\VW $Q DWWHPSWHG PRGHO PHWDWKHVLV UHDFWLRQ RI VW\UHQH WR VWLOEHQH ZDV FRQGXFWHG UHSHDWHGO\ WR GHWHUPLQH WKH UHDFWLRQ FRQGLWLRQV DQG FDWDO\VW V\VWHP ZKLFK ZRXOG OHDG WR WKH H[SDQVLRQ RI WKH PHWDWKHVLV UHDFWLRQ LQWR D HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ 7KH RUGHU LQ ZKLFK WKH FDWDO\VW FRFDWDO\VW DQG VW\UHQH ZHUH DGGHG ZDV YDULHG DV ZDV WKH WLPH WKDW WKH FDWDO\VW DQG FRFDWDO\VW ZHUH DOORZHG WR UHDFW SDUWLFXODUO\ ZKHQ WKH UHDJHQW ZDV DGGHG ODVW 7KH YDULDWLRQV ZHUH GRQH WR LQYHVWLJDWH WKH SRVVLELOLW\ RI HOLPLQDWLQJ VLGH UHDFWLRQV 6W\UHQH JHQHUDOO\ ZDV DGGHG ZKLOH WKH DSSDUDWXV ZDV FRROHG LQ DQ LFH EDWK DIWHU ZKLFK WKH UHDFWLRQ ZDV DOORZHG WR ZDUP WR URRP WHPSHUDWXUH 7KH ILUVW UHDFWLRQ ZDV VWDUWHG DW r& DQG RQFH DOO UHDJHQWV ZHUH DGGHG WKH UHDFWLRQ ZDV DOORZHG WR VORZO\ ZDUP WR URRP WHPSHUDWXUH $OVR VHYHUDO UHDFWLRQV ZHUH VWDUWHG DW URRP WHPSHUDWXUH 7KH DERYH YDULDWLRQV LQ UHDFWLRQ FRQGLWLRQV ZHUH HPSOR\HG XVLQJ ERWK 6FKOHQN DQG KLJK YDFXXP WHFKQLTXHV 7XQJVWHQ KH[DFKORULGH $OGULFKf ZDV VWRUHG LQ D GU\ ER[ DQG SHULRGLFDOO\ VXEOLPHG LQ RUGHU WR HQVXUH SXULW\ 7XQJVWHQ

PAGE 35

KH[DFKORULGH Jf ZDV GLVVROYHG LQ PO RI FKORUREHQ]HQH WR SURGXFH D 0 VROXWLRQ ZKLFK ZDV VWRUHG LQ D 6FKOHQN IODVN XQGHU DUJRQ $ YDULHW\ RI FRFDWDO\VWV LH (W$,&, (W$,&, DQG (W$,f ZHUH XVHG DV 0 VROXWLRQV LQ KH[DQH LQ VHSDUDWH UHDFWLRQV 7KH FRFDWDO\VW ZDV DGGHG WR WKH UHDFWLRQ YHVVHO YLD D V\ULQJH 7KH UDWLR RI WKH FRFDWDO\VW WR :&,J ZDV +H[DQH ZDV UHPRYHG IURP WKH UHDFWLRQ YHVVHO DQG UHSODFHG ZLWK DUJRQ 7KH DSSDUDWXV ZDV FRROHG LQ DQ LFHEDWK DQG WKH UHDJHQW ZDV DGGHG WR WKH YHVVHO YLD D V\ULQJH WKURXJK WKH VHSWXP 7\SLFDOO\ PO RI D 0 :&, PPROf LQ FKORUREHQ]HQH ZDV XVHG ZLWK PO RI VW\UHQH PPROf DQG PO RI D 0 (W$,&, PPROf LQ KH[DQH 7KH UHDFWLRQV SHUIRUPHG XWLOL]LQJ WKH DERYH YDULDWLRQV LQ UHDFWLRQ FRQGLWLRQV ZHUH DOORZHG WR FRQWLQXH IRU YDU\LQJ OHQJWKV RI WLPH DQG ZHUH WHUPLQDWHG ZLWK DQ H[FHVV RI PHWKDQRO + DQG & 105 VSHFWUD RI WKH SURGXFWV LQGLFDWHG WKDW RQO\ SRO\VW\UHQH ZDV SURGXFHG 7KH JDVHV SURGXFHG LQ WKHVH UHDFWLRQV ZHUH DQDO\]HG DW PLQXWH LQWHUYDOV E\ UHPRYDO RI D SL DOLTXRW ZLWK D JDVWLJKW V\ULQJH $ PL[WXUH RI HWKDQH DQG HWK\OHQH DV DQDO\]HG E\ *&06 ZDV REVHUYHG ZLWK HWKDQH DV WKH PDMRU SURGXFW 9DU\LQJ WKH VROYHQW DQG WKH DGGLWLRQ VHTXHQFH RI UHDJHQWV GLG QRW SURGXFH VWLOEHQH ,W ZDV FRQFOXGHG WKDW GLIIHUHQW UHDFWLRQ FRQGLWLRQV KDG WR EH XWLOL]HG WR HOLPLQDWH WKH VLGH UHDFWLRQ WKDW SURGXFHG SRO\VW\UHQH DQG LQKLELWHG PHWDWKHVLV +LJK YDFXXP WHFKQLTXHV ZHUH HPSOR\HG 7XQJVWHQ KH[DFKORULGH PO RI D 0 LQ FKORUREHQ]HQHf DQG (W$,&, PO RI D 0 LQ KH[DQHf DW D UDWLR RI ZHUH DGGHG LQ D GU\ ER[ LQWR EUHDNVHDO DPSXOHV YLD D V\ULQJH 7KH EUHDNVHDO DPSXOHV ZHUH VHDOHG ZLWK UXEEHU VHSWD DQG WKHQ UHPRYHG IURP WKH

PAGE 36

GU\ ER[ $IWHU IUHH]LQJ WKHP LQ OLTXLG QLWURJHQ D YDFXXP ZDV DSSOLHG XVLQJ D QHHGOH SLHUFHG WKURXJK WKH VHSWXP 7KH EUHDNVHDO DPSXOHV ZHUH WKHQ VHDOHG XQGHU YDFXXP XVLQJ D KDQG KHOG JDV DQG R[\JHQ WRUFK 6W\UHQH POf ZDV SXULILHG DV GHVFULEHG SUHYLRXVO\ DQG VHDOHG LQ D EUHDNVHDO DPSXOH WR JLYH D PRO UDWLR ZLWK UHVSHFW WR :&, 7KH UDWLR RI FDWDO\VW FRFDWDO\VW UHDJHQW W\SLFDOO\ ZHUH 7KH EUHDNVHDO DPSXOHV FRQWDLQLQJ WKH FDWDO\VW FRFDWDO\VW DQG UHDJHQW ZHUH MRLQHG WR D UHDFWLRQ YHVVHO )LJXUH f DQG WKH UHDFWLRQ YHVVHO ZDV FRQQHFWHG WR WKH KLJK YDFXXP OLQH YLD D JURXQG JODVV MRLQW DQG HYDFXDWHG $IWHU FORVLQJ WKH JDV WUDS E\ FORVLQJ WKH 5RWDIORr1 VWRSFRFN WKH UHDJHQWV ZHUH DGGHG LQ YDU\LQJ RUGHU E\ EUHDNLQJ WKH EUHDNVHDO DPSXOHV +H[DQH VROYHQW IRU WKH FRFDWDO\VWVf ZDV HYDFXDWHG DIWHU WKH EUHDNVHDO FRQWDLQLQJ WKH FRn FDWDO\VW ZDV EURNHQ $W WKLV SRLQW WKH UHDFWLRQ YHVVHO ZDV VHDOHG RII IURP WKH YDFXXP OLQH WR SUHYHQW DQ\ LPSXULWLHV IURP HQWHULQJ WKH UHDFWLRQ %\ RSHQLQJ WKH 5RWDIORr1 VWRSFRFN RI WKH JDV WUDS DQG FRROLQJ WKH WUDS LQ OLTXLG QLWURJHQ D VWHDG\ YDFXXP ZDV DSSOLHG DQG DQ\ JDVHV SURGXFHG LQ WKH UHDFWLRQ FRXOG EH UHPRYHG DQG FRQGHQVHG 7KXV D FRQVWDQW YDFXXP XVHG WR GULYH WKH UHDFWLRQV FRXOG EH PDLQWDLQHG 1R JDVHV ZHUH SURGXFHG DQG WKH RQO\ SURGXFW ZDV SRO\VW\UHQH ZKLFK ZDV FRUURERUDWHG E\ WKH IROORZLQJ DQDO\VLV F 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf DURPDWLF FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf

PAGE 37

7R 9DFXXP )LJXUH +LJK YDFXXP EUHDNVHDO DSSDUDWXV

PAGE 38

$WWHPSWHG 0HWDWKHVLV RI )OXRULQDWHG 6W\UHQHV 8VLQJ D /HZLV $FLG &RQWDLQLQJ &DWDO\VW 6\VWHP ,Q RUGHU WR LQYHVWLJDWH WKH SRVVLELOLW\ RI PHWDWKHVL]LQJ IOXRULQDWHG VW\UHQHV IRXU GLIIHUHQW IOXRULQDWHG VW\UHQHV ZHUH XVHG IOXRURVW\UHQH IOXRURVW\UHQH IOXRURVW\UHQH DQG SHQWDIOXRURVW\UHQH 7KH H[SHULPHQWDO SURFHGXUHV IRU WKHVH UHDFWLRQV ZHUH LGHQWLFDO WR WKRVH DGRSWHG IRU WKH PHWDWKHVLV RI VW\UHQH 7KH UHVXOWV DOVR ZHUH LGHQWLFDO PRQRIOXRULQDWHG VW\UHQHV SURGXFHG IOXRULQDWHG SRO\VW\UHQHV $XWKHQWLF IOXRULQDWHG SRO\VW\UHQHV VDPSOHV ZHUH QRW DYDLODEOH DQG ZHUH VXEVHTXHQWO\ SUHSDUHG E\ PHDQV RI DQLRQLF SRO\PHUL]DWLRQ WHFKQLTXHV GLVFXVVHG LQ WKH QH[W VHFWLRQ RI WKLV FKDSWHU 6SHFWUDO GDWD RI IOXRULQDWHG SRO\VW\UHQHV IRUPHG ZKHQ D /HZLV DFLG FRFDWDO\VW LV XVHG DUH 3ROYIOXRURVWYUHQH & 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf DURPDWLF FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf G -FI +] IOXRULQDWHG DURPDWLF FDUERQVf 3ROYIOXRURVWYUHQH & 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf DURPDWLF FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf G -F) +] IOXRULQDWHG DURPDWLF FDUERQVf 3HQWDIOXRURVW\UHQH GLG QRW UHDFW XQGHU WKH UHDFWLRQ FRQGLWLRQV GHVFULEHG ,Q RUGHU WR GHWHUPLQH LI WKH FDWDO\VW ZDV DFWLYH H[SHULPHQWV ZHUH UXQ LQ ZKLFK GHFDGLHQH VKRZQ LQ WKLV ZRUN WR PHWDWKHVL]Hf ZDV DGGHG WR WKH UHDFWLRQ RI

PAGE 39

SHQWDIOXRURVW\UHQH DIWHU DSSUR[LPDWHO\ KRXUV 'HFDGLHQH POf ZDV V\ULQJHG LQWR WKH UHDFWLRQ YHVVHO WKURXJK WKH VHSWXP DIWHU WKH YHVVHO ZDV ILOOHG ZLWK DUJRQ ZKLOH XVLQJ 6FKOHQN YDFXXP OLQH WHFKQLTXHV 'HFDGLHQH ROLJRPHUL]HG LQGLFDWLQJ WKDW WKH FDWDO\VW ZDV DFWLYH :KHQ KLJK YDFXXP OLQH WHFKQLTXHV ZHUH XVHG GHFDGLHQH DJDLQ ZDV HPSOR\HG WR WHVW IRU FDWDO\VW DFWLYLW\ 8QGHU KLJK YDFXXP FRQGLWLRQV EUHDNVHDO DPSXOHV FRQWDLQLQJ SXULILHG GHFDGLHQH POf ZHUH LQFRUSRUDWHG LQWR WKH UHDFWLRQ YHVVHO SULRU WR WKH VWDUW RI WKH UHDFWLRQ WR DOORZ IRU WKH DGGLWLRQ RI GHFDGLHQH DW DQ\ VWDJH RI WKH UHDFWLRQ 7KH EUHDNVHDO DPSXOHV ZHUH XVHG DV D SUHFDXWLRQ DJDLQVW FRQWDPLQDWLRQ RI WKH UHDFWLRQ ZLWK R[\JHQ RU PRLVWXUH 105 DQDO\VLV LQGLFDWHG WKDW GHFDGLHQH ROLJRPHUL]HG WR SRO\RFWHQDPHU ZKHUHDV SHQWDIOXRURVW\UHQH GLG QRW PHWDWKHVL]H RU SRO\PHUL]H 7KXV WKH FDWDO\VW ZDV DFWLYH EXW GLG QRW FDXVH SHQWDIOXRURVW\UHQH WR UHDFW 3UHSDUDWLRQ RI )OXRULQDWHG 3RO\VW\UHQH EY $QLRQLF 3RO\PHUL]DWLRQ 7HFKQLTXHV $XWKHQWLF IOXRULQDWHG SRO\VW\UHQHV ZHUH XQDYDLODEOH IRU FRPSDULVRQ ZLWK WKH SURGXFWV IRUPHG ZKHQ D /HZLV DFLG FRQWDLQLQJ FDWDO\VW LV UHDFWHG ZLWK IOXRULQDWHG VW\UHQHV DQG VR KLJK YDFXXP OLQH WHFKQLTXHV ZHUH XVHG WR PDNH DXWKHQWLF IOXRULQDWHG SRO\VW\UHQHV 7KH DSSDUDWXV LOOXVWUDWHG LQ )LJXUH ZDV XVHG LQ WKH SUHSDUDWLRQ RI WKHVH SRO\PHUV $OO IOXRULQDWHG VW\UHQH UHDJHQWV ZHUH GULHG RYHU FDOFLXP K\GULGH DQG WKHQ GLVWLOOHG RQ D YDFXXP OLQH LQWR D URXQG ERWWRP

PAGE 40

0RQRPHU 0HWKDQRO )LJXUH $QLRQLF SRO\PHUL]DWLRQ DSSDUDWXV

PAGE 41

IODVN ZKLFK ZDV FRDWHG ZLWK SRWDVVLXP PHWDO $IWHU VWLUULQJ IRU PLQXWHV WKH PRQRPHU ZDV WUDQVIHUUHG LQWR D EUHDNVHDO DPSXOH DQG VHDOHG XQGHU YDFXXP $SSUR[LPDWHO\ PO RI WKH PRQRPHU ZDV VHDOHG LQ HDFK EUHDNVHDO DPSXOH DQG YDFXXP VHDOHG 7KH DSSDUDWXV ZDV FRQQHFWHG WR WKH YDFXXP OLQH HYDFXDWHG IODPH GULHG WR HQVXUH DEVROXWH GU\QHVV DQG WKHQ ILOOHG ZLWK GU\ DUJRQ 2QH PLOOLOLWHU RI D PRODU VROXWLRQ RI WEXW\OOLWKLXP XVHG DV WKH LQLWLDWRU ZDV V\ULQJHG LQWR WKH YHVVHO WKURXJK WKH VHSWXP 7KH UHDFWLRQ VHFWLRQ RI WKH DSSDUDWXV ZDV FRROHG LQ OLTXLG QLWURJHQ 7KH ZKROH DSSDUDWXV ZDV HYDFXDWHG DIWHU ZKLFK WKH VLGHDUP ZLWK WKH VHSWXP ZDV VHDOHG RII XVLQJ D JDVR[\JHQ IODPH 'U\ WHWUDK\GURIXUDQ DSSUR[LPDWHO\ PO ZDV GLVWLOOHG LQWR WKH YHVVHO DQG WKH DSSDUDWXV ZDV VHDOHG IURP WKH YDFXXP OLQH 7HWUDK\GURIXUDQ DQG WEXW\OOLWKLXP POf ZHUH DOORZHG WR ZDUP WR r& DQG ZHUH NHSW DW WKLV WHPSHUDWXUH LQ D GU\ LFHLVRSURSDQRO EDWK 7KH EUHDNVHDO DPSXOH FRQWDLQLQJ WKH IOXRULQDWHG VW\UHQH POf XQGHU VWXG\ ZDV EURNHQ DQG WKH UHDJHQW ZDV DOORZHG WR IORZ LQWR WKH URXQG ERWWRP IODVN WKDW KDG EHHQ FRROHG WR r& XVLQJ D GU\LFHFDUERQ WHWUDFKORULGH EDWK $GGLWLRQ RFFXUUHG RYHU D RQH KRXU SHULRG WR IDFLOLWDWH WKH VORZ DQG FRQWUROOHG WUDQVIHU RI WKH PRQRPHU LQWR WKH UHDFWLRQ VHFWLRQ RI WKH DSSDUDWXV 7KH UHDFWLRQ ZDV DOORZHG WR FRQWLQXH IRU KRXUV DW r& DQG ZDV VORZO\ ZDUPHG WR URRP WHPSHUDWXUH WKHQ VWLUUHG IRU DQ DGGLWLRQDO KRXUV ,Q HDFK FDVH GU\ PHWKDQRO ZDV XVHG WR WHUPLQDWH WKH UHDFWLRQ 7KHVH DQLRQLFDOO\ SUHSDUHG UHIHUHQFH SRO\PHUV ZHUH SUHFLSLWDWHG XVLQJ DQ H[FHVV RI PHWKDQRO DQG IXUWKHU SXULILHG E\

PAGE 42

GLVVROYLQJ WKHP LQ EHQ]HQH IROORZHG E\ SUHFLSLWDWLRQ LQ PHWKDQRO 7KH 105 VSHFWUD RI DOO RI WKHVH SRO\PHUV ZHUH LGHQWLFDO WR WKRVH RI WKH SURGXFWV IRUPHG ZKHQ D /HZLV DFLG ZDV XVHG DV FRFDWDO\VW LQ WKH PHWDWKHVLV UHDFWLRQV GHVFULEHG SUHYLRXVO\ 7KHVH UHVXOWV FRQILUP WKDW IOXRULQDWHG SRO\VW\UHQHV UHVXOW ZKHQ D /HZLV DFLG FRQWDLQLQJ FDWDO\VW LV UHDFWHG ZLWK IOXRULQDWHG VW\UHQHV DV UHDJHQWV 7\SLFDO GDWD IRU WKH SRO\PHUV DUH DV IROORZV 3ROYIOXRURVWYUHQH & 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf DURPDWLF FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf G -TI +] IOXRULQDWHG DURPDWLF FDUERQVf 3ROYIOXRURVWYUHQH & 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf DURPDWLF FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf G -FI +] IOXRULQDWHG DURPDWLF FDUERQVf 3ROYSHQWDIOXRURVWYUHQH & 105 &'&, 0+] LQ 330f PHWKLQH FDUERQVf PHWK\OHQH FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf P P P P P IOXRULQDWHG DURPDWLF FDUERQVf 0HWDWKHVLV RI 6WYUHQH 8VLQD D /HZLV $FLG )UHH &DWDO\VW 7KH FDWDO\WLF DELOLW\ RI D /HZLV DFLG IUHH FDWDO\VW ZDV H[DPLQHG XVLQJ VW\UHQH DV D PRGHO UHDFWLRQ 6W\UHQH )LVKHUf ZDV SXULILHG E\ VWLUULQJ RYHU FDOFLXP K\GULGH IRU KRXUV IROORZHG E\

PAGE 43

IUDFWLRQDO GLVWLOODWLRQ XQGHU YDFXXP r& PP+Jf 7KH PLGGOH IUDFWLRQ ZDV FROOHFWHG LQ D EUHDNVHDO DPSXOH DQG WKH DPSXOH ZDV DWWDFKHG WR WKH DSSDUDWXV )LJXUH f WKHQ HYDFXDWHG $ VLGH DUP FRQWDLQLQJ IUHVKO\ FXW SRWDVVLXP PHWDO ZDV KHDWHG JHQWO\ ZLWK D WRUFK WR IRUP D VKLQ\ PLUURU LQ WKH PDLQ IODVN 7KH EUHDNVHDO DPSXOH FRQWDLQLQJ VW\UHQH ZDV EURNHQ DQG WKH VW\UHQH ZDV VWLUUHG IRU PLQXWHV RYHU WKH SRWDVVLXP PLUURU WR HQVXUH DEVROXWH SXULW\ $IWHU GHJDVVLQJ WKH OLTXLG ZDV GLVWLOOHG LQWR D GLYLGHU DQG WKH EUHDNVHDOV RI HDFK DPSXOH ZHUH FDUHIXOO\ VHDOHG RII DQG VWRUHG LQ D IUHH]HU &DWDO\VW = :&+W%Xf1&+L3Uf>2&0H&)f@ )LJXUH SDJH f VWRUHG LQ D GU\ER[ EHFDXVH RI LWV R[\JHQ DQG PRLVWXUH VHQVLWLYLW\ ZDV GLVVROYHG LQ SHQWDQH PJ POf DQG WUDQVIHUUHG WR D EUHDNVHDO DPSXOH YLD D V\ULQJH 7KH EUHDNVHDO ZDV WKHQ UHPRYHG IURP WKH GU\ ER[ DQG VHDOHG XQGHU YDFXXP %UHDNVHDOV FRQWDLQLQJ VW\UHQH POf DQG WKH FDWDO\VW UDWLR RI f ZHUH FRQQHFWHG WR WKH DSSDUDWXV LOOXVWUDWHG LQ )LJXUH 7KH DSSDUDWXV WKHQ ZDV FRQQHFWHG WR WKH KLJK YDFXXP OLQH YLD D JURXQG JODVV MRLQW DQG HYDFXDWHG 7KH HQWLUH DSSDUDWXV ZDV IODPH GULHG DQG WKH JDV WUDS ZDV FORVHG 7KH FDWDO\VW ZDV LQWURGXFHG LQWR WKH UHDFWLRQ IODVN DQG WKH VROYHQW SHQWDQHf UHPRYHG E\ HYDFXDWLRQ DIWHU ZKLFK WKH DSSDUDWXV ZDV VHDOHG RII DQG UHPRYHG IURP WKH OLQH $V VRRQ DV VW\UHQH ZDV LQWURGXFHG WKH YDFXXP WUDS ZDV RSHQHG DQG WKH JDVVHV WKDW ZHUH SURGXFHG ZHUH FRQGHQVHG ZLWK D OLTXLG QLWURJHQ EDWK $IWHU DSSUR[LPDWHO\ KRXUV WKH UHDFWLRQ PL[WXUH KDG WXUQHG LQWR D OLJKW \HOORZ VROLG ZKLFK ZDV GHWHUPLQHG WR EH WUDQV VWLOEHQH 7KH SURGXFW ZDV GLVVROYHG LQ D

PAGE 44

7R 9DFXXP )LJXUH 6W\UHQH SXULILFDWLRQ RYHU D SRWDVVLXP PLUURU

PAGE 45

9DFXX P )LJXUH 5HDFWLRQ IODVN IRU PHWDWKHVLV RI YDULRXV VW\UHQH UHDJHQWV

PAGE 46

PLQLPXP DPRXQW RI KRW HWKHU DQG DOORZHG WR SUHFLSLWDWH LQ WKH IUHH]HU 7\SLFDO GDWD REWDLQHG IURP WKHVH UHDFWLRQV DUH DV IROORZV 7UDQV VWLOEHQH + 105 &'&, 0+] LQ 330f YLQ\O PHWKLQH SURWRQVf DURPDWLF SURWRQVf F 105 &'&/ 0+] LQ 330f DQG DURPDWLF FDUERQVf PHWKLQH FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0HWDWKHVLV RI )OXRULQDWHG 6WYUHQHV 8VLQJ D /HZLV $FLG )UHH &DWDO\VW 7KH DELOLW\ RI WKH /HZLV DFLG IUHH FDWDO\VW WR LQLWLDWH PHWDWKHVLV RQ HOHFWURQ GHILFLHQW YLQ\O ERQGV ZDV WHVWHG E\ HPSOR\LQJ IOXRULQDWHG VW\UHQHV DV UHDJHQWV )OXRURVW\UHQH /DQFDVWHU 6\QWKHVLV /WGf IOXRURVW\UHQH /DQFDVWHU 6\QWKHVLV /WGf DQG IOXRURVW\UHQH /DQFDVWHU 6\QWKHVLV /WGf ZHUH DOO SXULILHG DQG UHDFWHG ZLWK FDWDO\VW 7KH UHDFWLRQV ZHUH DOO FRQGXFWHG LQ WKH H[DFW PDQQHU DV GHVFULEHG IRU VW\UHQH LH DSSUR[LPDWHO\ PO RI UHDJHQW ZDV UHDFWHG ZLWK PJ RI FDWDO\VW $OO SURGXFWV ZHUH GLVVROYHG LQ KRW HWKHU DQG DOORZHG WR SUHFLSLWDWH LQ D IUHH]HU 7KH SURGXFWV RI WKH UHDFWLRQ RI IOXRURVW\UHQH IRUPHG ORQJ ZKLWH QHHGOH OLNH FU\VWDOV ZDV GHWHUPLQHG WR EH SXUH nGLIOXRURVWLOEHQH 7KH GDWD IRU WKH SURGXFW FRUURERUDWHG E\ WKH OLWHUDWXUH GDWD IRU nIOXRURVWLOEHQH IROORZV

PAGE 47

+ 105 &'&, 0+] LQ 330f YLQ\O PHWKLQH SURWRQVf DURPDWLF SURWRQVf F 105 &'&, 0+] LQ 330f G -&) +] G -FI +] DURPDWLFf YLQ\Of G -F) +] VXEVWLWXWHG DURPDWLFf G -FI +] IOXRULQDWHG DURPDWLFf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 7KH SURGXFWV RI WKH IOXRURVW\UHQH UHDFWLRQ DQG IOXRURVW\UHQH UHDFWLRQ GLG QRW FU\VWDOOL]H DV ZHOO DV WKRVH IURP WKH IOXRURVW\UHQH UHDFWLRQ +RZHYHU WKH 105 DQG &+1 GDWD OLVWHG EHORZ FRQILUP WKHP WR EH nGLIOXRURVWLOEHQH DQG nGLIOXRURVWLOEHQH UHVSHFWLYHO\ n'LIOXRURVWLOEHQH + 105 &'&, 0+] LQ 330f YLQ\O PHWKLQH SURWRQVf DQG DURPDWLF SURWRQVf F 105 &'&, 0+] LQ 330f G -F) +] G -F) +] DURPDWLFf YLQ\Of G -F) +] VXEVWLWXWHG DURPDWLFf G -FI +] IOXRULQDWHG DURPDWLFf &+1 b& b+ 7KHRU\f b& b+ )RXQGf n'LIOXRURVWLOEHQH + 105 &'&, 0+] LQ 330f YLQ\O PHWKLQH SURWRQVf DQG DURPDWLF SURWRQVf F 105 &'&, 0+] LQ 330f G -F) +] G -&) +] G -F) +] DURPDWLFf YLQ\Of

PAGE 48

G -FI +] VXEVWLWXWHG DURPDWLFf G -F) +] IOXRULQDWHG DURPDWLFf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0HWDWKHVLV RI 6XEVWLWXWHG 6W\UHQHV 8VLQJ D /HZLV $FLG )UHH &DWDO\VW %URPRVW\UHQH DQG PHWK\OVW\UHQH ZHUH PHWDWKHVL]HG LQ WKH H[DFW PDQQHU DV IRU VW\UHQH DQG SURGXFHG H[FOXVLYHO\ WKHLU VXEVWLWXWHG VWLOEHQH DQDORJXHV 7KH GDWD REWDLQHG ZHUH n'LEURPRVWLOEHQH + 105 &'&, 0+] LQ 330f YLQ\O PHWKLQH SURWRQVf DURPDWLF SURWRQVf & 105 &'&, 0+] LQ 330f DURPDWLF VXEVWLWXWHG TXDUWHUQDU\ FDUERQVf DQG DURPDWLF FDUERQVf YLQ\O PHWKLQH FDUERQVf EURPLQDWHG DURPDWLF FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf nGLPHWKYOVWLOEHQH + 105 &'&, 0+] LQ 330f PHWK\O SURWRQVf YLQ\O PHWKLQH SURWRQVf DURPDWLF SURWRQVf F 105 &'&, 0+] LQ 330f PHWK\O FDUERQVf DQG DURPDWLF FDUERQVf VXEVWLWXWHG DURPDWLF TXDUWHUQDU\ FDUERQVf PHWK\ODWHG DURPDWLF FDUERQVf &+1 b& m b+ 7KHRU\f b& b+ )RXQGf

PAGE 49

$F\FOLF 'LHQH 0HWDWKHVLV $'0(7f 3RO\PHUL]DWLRQ RI 'HFDGLHQH *HQHUDO 3RO\PHUL]DWLRQ 3URFHGXUH 6HYHUDO DF\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQV ZHUH LQYHVWLJDWHG XVLQJ D /HZLV DFLG IUHH FDWDO\VW DQG GHFDGLHQH DV WKH PRQRPHU 7KH PRQRPHU ZDV GULHG RYHU FDOFLXP K\GULGH WKHQ VXEMHFWHG WR IRXU IUHH]H WKDZ YDFXXP F\FOHV WR UHPRYH GLVVROYHG JDVHV 7R LQVXUH DEVROXWH GU\QHVV WKH PRQRPHU ZDV WUDQVIHUUHG LQ D YDFXXP OLQH WR D IODVN FRQWDLQLQJ D SRWDVVLXP PLUURU ZKHUH LW ZDV VWLUUHG IRU DSSUR[LPDWHO\ RQH KRXU 7KH SXULILHG PRQRPHU ZDV WUDQVIHUUHG XQGHU YDFXXP WR EUHDNVHDO DPSXOHV DQG ZHUH VHDOHG XQGHU KLJK YDFXXP 'HFDGLHQH $OGULFKf ZDV b SXUH DV GHWHUPLQHG E\ *&06f DQG WKH LPSXULWLHV WKDW ZHUH QRW HOLPLQDWHG E\ WKH GU\LQJ WHFKQLTXHV MXVW GHVFULEHG ZHUH UHPRYHG E\ DOORZLQJ WKH PRQRPHU WR UHDFW ZLWK D VLQJOH DOLTXRW PJf RI FDWDO\VW IRU PLQXWHV 7KH SXULILHG PRQRPHU ZDV YDFXXP WUDQVIHUUHG LQWR QHZ EUHDNVHDO DPSXOHV WKHQ VHDOHG XQGHU KLJK YDFXXP $OORZLQJ LPSXULWLHV WR UHDFW ZLWK WKH FDWDO\VW LQ HIIHFW GHVWUR\LQJ D SRUWLRQ RI WKH FDWDO\VW SURYHG WR EH DQ HIIHFWLYH PHWKRG WR HOLPLQDWH LPSXULWLHV 0RQRPHUV SXULILHG E\ WKLV PHWKRG ZLWKRXW H[FHSWLRQ H[FOXVLYHO\ PHWDWKHVL]HG DQG SURGXFHG RQO\ WKH H[SHFWHG SURGXFWV LQ TXDQWLWDWLYH \LHOGV &DWDO\VW :&+W%Xf1&+L3Uf>2&0H&)f@ ZDV SUHSDUHG DFFRUGLQJ WR SXEOLVKHG SURFHGXUHV > @ 7ZHQW\ PJ RI FDWDO\VW ZHUH GLVVROYHG LQ PO SHQWDQH DQG WUDQVIHUUHG LQWR D EUHDNVHDO DPSXOH 7KH WUDQVIHU ZDV SHUIRUPHG LQ D GU\ ER[

PAGE 50

LQ DQ DUJRQ DWPRVSKHUH DQG WKH EUHDNVHDO DPSXOH FRQWDLQLQJ WKH FDWDO\VW VROXWLRQ ZDV VHDOHG ZLWK D UXEEHU VHSWXP DQG UHPRYHG IURP WKH GU\ ER[ $IWHU IUHH]LQJ WKH FDWDO\VW VROXWLRQ LQ OLTXLG QLWURJHQ DQG DSSO\LQJ D KLJK YDFXXP YLD D QHHGOH SLHUFHG WKURXJK WKH VHSWXP WKH EUHDNVHDO DPSXOH ZDV VHDOHG XVLQJ D JDVR[\JHQ IODPH %UHDNVHDO DPSXOHV FRQWDLQLQJ DOLTXRWV RI WKH FDWDO\VW VROXWLRQ DQG WKH SXULILHG PRQRPHU ZHUH FRQQHFWHG WR D VLQJOH UHDFWLRQ YHVVHO ZKLFK LWVHOI ZDV GHVLJQHG VSHFLILFDOO\ WR SHUIRUP WKHVH SRO\PHUL]DWLRQV 3ULRU WR DOO SRO\PHUL]DWLRQV WKH HQWLUH DSSDUDWXV ZDV FRQQHFWHG WR D KLJK YDFXXP OLQH DQG IODPH GULHG WR UHPRYH DOO WUDFHV RI R[\JHQ DQG PRLVWXUH DGVRUEHG RQWR WKH JODVV 7KH ILUVW UHDFWLRQ ZDV SHUIRUPHG XVLQJ WKH DSSDUDWXV LOOXVWUDWHG LQ )LJXUH 6ROYHQW LH WROXHQHf FRXOG QRW EH DGGHG RQFH WKH UHDFWLRQ ZDV VWDUWHG WKXV WKH DSSDUDWXV KDG WR EH PRGLILHG $ QHZ DSSDUDWXV )LJXUH f VXEVHTXHQWO\ ZDV GHVLJQHG ZKLFK DOORZHG IRU WKH UHPRYDO RI HWK\OHQH E\ RSHQLQJ 5RWDIORr1 VWRSFRFN $ +RZHYHU WKLV DSSDUDWXV SURGXFHG RQO\ ROLJRPHUV GXH WR WKH SUHFLSLWDWLRQ RI WKH UHDFWLRQ SURGXFW LQ WKH EUHDNVHDO FRQQHFWLRQ DUPV DQG ZDV QRW XVHG IXUWKHU 7KLV SUHFLSLWDWLRQ LQ WKH EUHDNVHDOV ZDV HOLPLQDWHG E\ SODFLQJ WKH EUHDNVHDOV DERYH WKH FRQGHQVHU )LJXUH f 7KH DSSDUDWXV DOORZHG KLJKHU PROHFXODU ZHLJKW SRO\PHUV WR EH SURGXFHG EXW UHDFWLRQ WLPHV ZHUH OHQJWK\ (YHQ VR VRPH PRQRPHU DQG VROYHQW FRQGHQVHG LQ WKH JDV WUDS GXH WR LQHIIHFWLYH UHIOX[LQJ 0RQRPHU DQG VROYHQW ZHUH UHPRYHG IURP WKH DSSDUDWXV ZKHQ WKH

PAGE 51

7R 9DFXXP )LJXUH $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DSSDUDWXV

PAGE 52

0RQRPHU &DWDO\VW )LJXUH $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DSSDUDWXV ZLWK a a PRQRPHU DQG FDWDO\VW EUHDNVHDOV DERYH UHDFWLRQ VHFWLRQ

PAGE 53

HWK\OHQH ZDV SXPSHG RXW UHVXOWLQJ LQ ORZHU \LHOGV DQG WKH XVH RI WKLV DSSDUDWXV ZDV GLVFRQWLQXHG $ PDMRU SUREOHP LQ FRQGXFWLQJ WKH SRO\PHUL]DWLRQV SURYHG WR EH WKH SUHPDWXUH SUHFLSLWDWLRQ RI WKH SURGXFW ,Q RUGHU WR GHFUHDVH UHDFWLRQ WLPHV E\ PRUH HIIHFWLYH UHIOX[LQJ RI VROYHQW DQG PRQRPHU PRGLILFDWLRQV ZHUH PDGH WR WKH DSSDUDWXV )LJXUH f 0RGLILFDWLRQV DOORZHG IRU WKH FRQWUROOHG UHPRYDO RI HWK\OHQH ZLWKRXW ORVV RI PRQRPHU 7KH SRO\PHU FRXOG EH KHDWHG FRQWLQXRXVO\ ZKLOH NHSW LQ VROXWLRQ WKHUHE\ UHPDLQLQJ LQ FRQWDFW ZLWK WKH FDWDO\VW $OO SRO\PHUL]DWLRQV ZHUH FRQGXFWHG E\ ILUVW WUDQVIHUULQJ WKH FDWDO\VW VROXWLRQ IURP D EUHDNVHDO DPSXOH WR WKH UHDFWLRQ YHVVHO WKHQ UHPRYLQJ WKH VROYHQW SHQWDQH LQ WKLV FDVHf $ VROLG GHSRVLW RI FDWDO\VW UHVLGXH UHPDLQHG DQG WKH PRQRPHU ZDV LQWURGXFHG IURP LWV EUHDNVHDO DPSXOH GLUHFWO\ LQWR WKH UHDFWLRQ YHVVHO FRQWDLQLQJ WKLV FDWDO\VW 8SRQ DGGLWLRQ RI WKH PRQRPHU D JDV ZDV UHOHDVHG LQVWDQWO\ ZKLFK ZDV GHWHUPLQHG WR EH SXUH HWK\OHQH E\ *& PDVV VSHFWURPHWU\ (WK\OHQH ZDV FRQWLQXRXVO\ UHPRYHG IURP WKH YHVVHO DQG VROLGLILHG LQ D OLTXLG QLWURJHQ WUDS EXLOW LQWR WKH UHDFWLRQ YHVVHO 7KH PRQRPHU DOVR GLVWLOOHG LQ WKH SURFHVV EXW ZDV WUDSSHG ZLWK D SDUWLDO FRQGHQVHU DQG UHWXUQHG WR WKH UHDFWLRQ YHVVHO $OO SRO\PHUL]DWLRQV HLWKHU ZHUH SHUIRUPHG XVLQJ FDUHIXOO\ GULHG WROXHQH DV WKH VROYHQW RU XQGHU EXON FRQGLWLRQV QR VROYHQW DW DOOf 7KH WHPSHUDWXUH RI WKH UHDFWLRQ ZDV YDULHG EHWZHHQ r& $OO SRO\PHUL]DWLRQV ZHUH WHUPLQDWHG E\ H[SRVXUH WR WKH DWPRVSKHUH 7KH SURGXFWV ZHUH SXULILHG E\ GLVVROYLQJ LQ EHQ]HQH DQG

PAGE 54

0RQRPHU &DWDO\VW )LJXUH $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DSSDUDWXV ZLWK FDSLOODU\ UHWXUQ OLQH VSLUDO JDV WUDS DQG EXEEOH FRQGHQVHU

PAGE 55

SUHFLSLWDWLRQ ZLWK PHWKDQRO :KLWH VROLGV IRU WKH KLJK PROHFXODU ZHLJKW VDPSOHV DQG VRIW HODVWRPHUV IRU WKH ROLJRPHUV ZHUH IRXQG 5HDFWLRQ &RQGLWLRQV IRU 'HFDGLHQH 3RO\PHUL]DWLRQV 7R RSWLPL]H WKH UHDFWLRQ FRQGLWLRQV IRU WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI GHFDGLHQH VHYHUDO GLIIHUHQW UHDFWLRQV ZHUH SHUIRUPHG ZLWK WKH JRDO RI REWDLQLQJ KLJK PROHFXODU ZHLJKW SRO\PHU VDPSOHV LQ WKH VKRUWHVW SRVVLEOH UHDFWLRQ WLPHV 7KH HIIHFW RI D ODUJH YROXPH RI VROYHQW RQ WKH PROHFXODU ZHLJKW RI WKH UHVXOWLQJ SRO\PHU ZDV H[DPLQHG LQ WKLV UHDFWLRQ 5HDFWLRQ $SSUR[LPDWHO\ PO RI SXULILHG GHFDGLHQH DQG PO RI WROXHQH ZHUH XVHG )RXU VXFFHVVLYH DGGLWLRQV RI FDWDO\VW KRXUV DSDUW ZHUH PDGH 7KH UHDFWLRQ WHPSHUDWXUH ZDV NHSW DW r& IRU D WRWDO UHDFWLRQ WLPH RI KRXUV 7KH UHDFWLRQ WLPH ZDV QRW RSWLPDO VLQFH WKH H[SHULPHQWDO FRQGLWLRQV ZHUH XQNQRZQ DQG KDG WR EH UHILQHG 7KH UHVXOWV RI WKH UHDFWLRQ ZHUH + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f SSP WHUPLQDO YLQ\O PHWK\OHQH FDUERQVf DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf SSP WHUPLQDO YLQ\O PHWKLQH FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf 0ROHFXODU :HLJKW 0Qf HQGJURXS DQDO\VLVf

PAGE 56

5HDFWLRQ ,Q RUGHU WR HYDOXDWH EXON SRO\PHUL]DWLRQ FRQGLWLRQVGHFDGLHQH POf DQG DGGLWLRQV RI FDWDO\VW ZHUH DGGHG KRXUV DSDUW 7KH WHPSHUDWXUH ZDV UDLVHG E\ r& LQFUHPHQWV LQ RUGHU WR NHHS WKH SRO\PHU LQ WKH OLTXLG VWDWH XS WR r& 1R VROYHQW ZDV XVHG 7KH WRWDO UHDFWLRQ WLPH ZDV KRXUV $ ORQJ UHDFWLRQ WLPH ZDV XVHG GXH WR WKH LQHIIHFWLYH UHIOX[LQJ RI WKH PRQRPHU WKDW SUHYHQWHG LW IURP EHLQJ LQ FRQVWDQW FRQWDFW ZLWK FDWDO\VW 7KH IROORZLQJ UHVXOWV UHYHDOHG WKDW SRO\RFWHQDPHU ZDV SURGXFHG + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf & 105 &'&, 0+] LQ 330f SSP WHUPLQDO YLQ\O PHWK\OHQH FDUERQVf DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf SSP WHUPLQDO YLQ\O PHWKLQH FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Qf HQGJURXS DQDO\VLVf 932f 9LVFRVLW\ >Q@ G/J 5HDFWLRQ $SSUR[LPDWHO\ PO RI PRQRPHU ZDV UXQ XQGHU EXON FRQGLWLRQV DW r& IRU , KRXUV GXULQJ ZKLFK WKH SRO\PHU FRPSOHWHO\ VROLGLILHG $ ODUJH YROXPH RI WROXHQH DSSUR[LPDWHO\

PAGE 57

PO ZDV YDFXXP WUDQVIHUUHG LQWR WKH UHDFWLRQ YHVVHO DQG WKH UHDFWLRQ WHPSHUDWXUH ZDV LQFUHDVHG IURP r& WR r& 7ZR PRUH DGGLWLRQV RI FDWDO\VW ZHUH PDGH ILIWHHQ KRXUV DSDUW DQG WKH UHDFWLRQ ZDV H[SRVHG WR FRQWLQXRXV YDFXXP IRU KRXUV ,Q RUGHU WR FRPSDUH 5HDFWLRQ ZLWK SUHYLRXV UHDFWLRQV D ORQJ UHDFWLRQ WLPH ZDV HPSOR\HG 2OLJRPHULF SRO\RFWHQDPHU ZDV SURGXFHG DV LQGLFDWHG E\ WKH IROORZLQJ UHVXOWV + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f SSP WHUPLQDO YLQ\O PHWK\OHQH FDUERQVf DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf SSP WHUPLQDO YLQ\O PHWKLQH FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf 0ROHFXODU :HLJKW 0Qf HQGJURXS DQDO\VLVf 5HDFWLRQ 7KH PLQLPXP DPRXQW RI VROYHQW WKDW ZRXOG IDFLOLWDWH PDJQHWLF DJLWDWLRQ DQG LWV HIIHFW RQ WKH UHDFWLRQ ZDV WHVWHG $SSUR[LPDWHO\ PO RI PRQRPHU ZDV XVHG DQG DGGLWLRQV RI FDWDO\VW ZHUH PDGH RQH DW WKH VWDUW RI WKH UHDFWLRQ DQG WKH UHVW DV GHVFULEHG EHORZ 7KH WHPSHUDWXUH ZDV VORZO\ UDLVHG WR r& DQG ZKHQ WKH SRO\PHU VROLGLILHG PO RI WROXHQH ZHUH DGGHG WRJHWKHU ZLWK DQRWKHU DOLTXRW RI FDWDO\VW DW r& 7KH UHDFWLRQ WHPSHUDWXUH ZDV UDLVHG VORZO\ WR r& RYHU D SHULRG RI VL[ KRXUV $ WKLUG DGGLWLRQ RI FDWDO\VW ZDV PDGH DIWHU ZKLFK WKH UHDFWLRQ

PAGE 58

DOORZHG WR FRQWLQXH IRU DQ DGGLWLRQDO KRXUV 7KH IROORZLQJ UHVXOWV ZHUH REWDLQHG + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Qf 6(&f 0Zf 6(&f 9LVFRVLW\ >Q@ G/J 5HDFWLRQ 7KH HIIHFW RI LQFUHDVHG UHDFWLRQ WHPSHUDWXUH RQ WKH DFWLYLW\ RI WKH FDWDO\VW ZDV LQYHVWLJDWHG $SSUR[LPDWHO\ PO RI PRQRPHU ZDV SRO\PHUL]HG XVLQJ D GRXEOH DGGLWLRQ RI FDWDO\VW 7KH VHFRQG DGGLWLRQ RI FDWDO\VW ZDV PDGH DIWHU RQH ZHHN DQG QR VROYHQW ZDV XVHG WKURXJKRXW WKH UHDFWLRQ $ WHPSHUDWXUH RI DSSUR[LPDWHO\ r& ZDV PDLQWDLQHG ZKLOH D KLJK YDFXXP ZDV DSSOLHG IRU ZHHNV 5HVXOWV RI WKH EHQ]HQH VROXEOH SRUWLRQ ZHUH + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f SSP WHUPLQDO YLQ\O PHWK\OHQH FDUERQVf DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf SSP WHUPLQDO YLQ\O PHWKLQH FDUERQVf

PAGE 59

DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf 0ROHFXODU :HLJKW 0Qf HQGJURXS DQDO\VLVf 5HDFWLRQ 7KH SRVVLEOH IRUPDWLRQ RI F\FOLF FRPSRXQGV DW VKRUW UHDFWLRQ WLPHV ZDV LQYHVWLJDWHG 0RQRPHU PO RI GHFDGLHQHf ZDV DGGHG WR PJ RI FDWDO\VW DIWHU UHPRYDO RI SHQWDQH IURP WKH FDWDO\VW DQG EXON SRO\PHUL]DWLRQ FRQGLWLRQV ZHUH HPSOR\HG 7KH UHDFWLRQ WHPSHUDWXUH ZDV NHSW DW r& DQG DIWHU PLQXWHV WKH PRQRPHU KDG SRO\PHUL]HG VXIILFLHQWO\ WR VROLGLI\ DIWHU ZKLFK WKH UHDFWLRQ ZDV WHUPLQDWHG E\ H[SRVXUH WR WKH DWPRVSKHUH 7KH REWDLQHG UHVXOWV ZHUH + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf & 105 &'&, 0+] LQ 330f SSP WHUPLQDO YLQ\O PHWK\OHQH FDUERQVf DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf SSP WHUPLQDO YLQ\O PHWKLQH FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf 0ROHFXODU :HLJKW 0Qf HQGJURXS DQDO\VLVf 5HDFWLRQ %XON UHDFWLRQ FRQGLWLRQV RYHU D VKRUWHQHG UHDFWLRQ WLPH ZHUH LQYHVWLJDWHG $ EXON SRO\PHUL]DWLRQ ZDV FDUULHG RXW RQ PO RI GHFDGLHQH XVLQJ D VLQJOH DGGLWLRQ RI FDWDO\VW 7KH SRO\PHU VROLGLILHG DIWHU PLQXWHV DQG WKH WHPSHUDWXUH ZDV UDLVHG WR EHWZHHQ DQG r& $ KLJK YDFXXP ZDV DSSOLHG IRU

PAGE 60

KRXUV DIWHU ZKLFK WKH UHDFWLRQ ZDV WHUPLQDWHG 7KH IROORZLQJ UHVXOWV ZHUH REWDLQHG + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Qf 932f 9LVFRVLW\ >Q@ G/J 5HDFWLRQ 7KH SRVVLELOLW\ RI IXUWKHU SRO\PHUL]LQJ DQ H[LVWLQJ SRO\PHU ZDV LQYHVWLJDWHG $ SRUWLRQ RI WKH SRO\RFWHQDPHU VDPSOH Jf IRUPHG LQ UHDFWLRQ ZDV GLVVROYHG LQ PO RI WROXHQH V\ULQJHG LQWR WKH UHDFWLRQ YHVVHO DQG WKHQ VXEMHFWHG WR IRXU IUHH]HWKDZYDFXXP F\FOHV $ VLQJOH DGGLWLRQ RI FDWDO\VW ZDV PDGH DQG WKH UHDFWLRQ WHPSHUDWXUH ZDV VORZO\ UDLVHG WR r& 7KH UHDFWLRQ ZDV DOORZHG WR SURFHHG IRU KRXUV DIWHU ZKLFK LW ZDV WHUPLQDWHG E\ H[SRVXUH WR WKH DWPRVSKHUH REWDLQLQJ WKH IROORZLQJ UHVXOWV + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf F 105 &'&, 0+] LQ 330f DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf DQG SSP WUDQV DQG FLV

PAGE 61

PHWK\OHQH FDUERQV DGMDFHQW WR LQWHUQDO ROHILQLF FDUERQVf DQG SSP PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Yf YLVFRVLW\f 9LVFRVLW\ >Q@ G/J 7KH $F\FOLF 'LHQH 0HWDWKHVLV $'0(7 3RO\PHUL]DWLRQ RI +H[DGLHQH *HQHUDO SRO\PHUL]DWLRQ 3URFHGXUH 7KH PHWDWKHVLV RI KH[DGLHQH WR OLQHDU SRO\EXWDGLHQH ZDV LQYHVWLJDWHG XVLQJ D /HZLV DFLG IUHH FDWDO\VW 7KH PRQRPHU KH[DGLHQH ZDV SXULILHG LQ WKH VDPH PDQQHU DV IRU GHFDGLHQH 7KH FDWDO\VW VROXWLRQ DQG DSSDUDWXV ZHUH XQFKDQJHG IURP WKDW XVHG LQ SURGXFLQJ SRO\RFWHQDPHU LH PJ RI FDWDO\VW :&+W%Xf1&+L3Uf>2&0H&)f@! DQG WKH DSSDUDWXV VKRZQ LQ )LJXUH f 5HDFWLRQ &RQGLWLRQV IRU +H[DGLHQH SRO\PHUL]DWLRQV 7ZR SRO\PHUL]DWLRQV ZHUH FRQGXFWHG ,Q WKH ILUVW SRO\PHUL]DWLRQ PO WROXHQH [ n PROf ZHUH XVHG DV WKH VROYHQW 7KUHH DGGLWLRQV RI FDWDO\VW PJ SHU DGGLWLRQ ZHUH PDGH WR DSSUR[LPDWHO\ PO [ n PROf RI KH[DGLHQH 7KH WKUHH DGGLWLRQV RI FDWDO\VW ZHUH PDGH DSSUR[LPDWHO\ KRXUV DSDUW 7KH UHDFWLRQ WHPSHUDWXUH ZDV NHSW DW r& ZKLOH WKH UHDFWLRQ ZDV FRQWLQXRXVO\ VWLUUHG IRU D SHULRG RI WZR PRQWKV 6LQFH WKH UHDFWLRQ KDG EHHQ UHSRUWHG WR EH LPSRVVLEOH >@ DQ H[FHVVLYHO\ ORQJ UHDFWLRQ

PAGE 62

WLPH ZDV XVHG LQ WKH ILUVW UHDFWLRQ 7KH OLIHWLPH RI WKH FDWDO\VW LV DOVR XQNQRZQ DQG DQ H[WHQVLYH UHDFWLRQ WLPH ZDV XVHG WR JLYH VRPH LQGLFDWLRQ RI WKH DFWLYLW\ RI WKH FDWDO\VW RYHU D ORQJ SHULRG RI WLPH $ VOLJKW YDFXXP ZDV RFFDVLRQDOO\ DSSOLHG WR UHPRYH WKH HWK\OHQH SURGXFHG 7KH SURGXFW ZDV SXULILHG E\ GLVVROYLQJ LQ EHQ]HQH DQG SUHFLSLWDWLQJ WKH SRO\PHU ZLWK PHWKDQRO 7KH UHVXOWLQJ HODVWRPHULF SRO\PHU REWDLQHG LQ D TXDQWLWDWLYH \LHOG ZDV OLJKW \HOORZ LQ FRORU 7KH IROORZLQJ UHVXOWV ZHUH REWDLQHG + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf & 105 &'&, 0+] LQ 330f DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf DQG DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Qf 6(&f 0Zf 6(&f 7KH VHFRQG UHDFWLRQ ZDV GRQH LQ RUGHU WR FRPSDUH WKH DELOLW\ RI WKH FDWDO\VW WR SRO\PHUL]H KH[DGLHQH XQGHU EXON UHDFWLRQ FRQGLWLRQV 7KH UHDFWLRQ ZDV PRGHOHG DIWHU UHDFWLRQ RI WKH GHFDGLHQH VHULHV ZKHUH EXON UHDFWLRQ FRQGLWLRQV ZHUH HPSOR\HG $ VLQJOH DOLTXRW PJ [ PROf RI FDWDO\VW DQG PO PROf RI KH[DGLHQH ZDV XVHG 7KH UHDFWLRQ WHPSHUDWXUH ZDV PDLQWDLQHG DW r& XQWLO WKH SRO\PHU FRXOG QR ORQJHU EH VWLUUHG E\ PDJQHWLF DJLWDWLRQ 7KH UHDFWLRQ WHPSHUDWXUH ZDV WKHQ LQFUHDVHG WR r& DQG D FRQWLQXRXV KLJK YDFXXP PP+Jf DSSOLHG 7KH

PAGE 63

SRO\PHUnV YLVFRVLW\ LQFUHDVHG RYHU WKH QH[W KRXUV DIWHU ZKLFK LW FRXOG QR ORQJHU EH DJLWDWHG DQG WKH UHDFWLRQ ZDV WHUPLQDWHG 7KH WRWDO UHDFWLRQ WLPH RI WKH VHFRQG UHDFWLRQ ZDV KRXUV 7KH SURGXFW ZDV SXULILHG E\ GLVVROYLQJ LW LQ EHQ]HQH DQG SUHFLSLWDWLQJ ZLWK PHWKDQRO 7KH UHVXOWLQJ HODVWRPHULF SRO\PHU REWDLQHG LQ QHDU TXDQWLWDWLYH \LHOGV ZDV OLJKW \HOORZ LQ FRORU 7KH IROORZLQJ UHVXOWV ZHUH REWDLQHG + 105 &'&, 0+] LQ 330f SSP LQWHUQDO ROHILQLF SURWRQVf DQG SSP PHWK\OHQH SURWRQVf & 105 &'&, 0+] LQ 330f DQG SSP WUDQV DQG FLV LQWHUQDO ROHILQLF FDUERQVf DQG DQG SSP WUDQV DQG FLV PHWK\OHQH FDUERQVf &+1 b& b+ 7KHRU\f b& b+ )RXQGf 0ROHFXODU :HLJKW 0Qf 6(&f 0Zf 6(&f

PAGE 64

&+$37(5 7+( .(< 72 68&&(66)8/ $&<&/,& ',(1( 0(7$7+(6,6 $'0(7f 32/<0(5,=$7,21 &+(0,675< &RPSHWLQJ VLGH UHDFWLRQV DUH RQH RI WKH PDMRU IDFWRUV WKDW GHWHUPLQH LI D JLYHQ UHDFWLRQ LV VXLWDEOH IRU HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ (YHQ D YHU\ VPDOO SHUFHQWDJH RI VLGH UHDFWLRQV ZLOO SUHYHQW WKH SULQFLSDO UHDFWLRQ IURP SURGXFLQJ KLJK PROHFXODU ZHLJKW SRO\PHU OHDGLQJ LQVWHDG WR WKH IRUPDWLRQ RI ORZ PROHFXODU ZHLJKW ROLJRPHUV DQG SHUKDSV RWKHU XQGHVLUDEOH E\SURGXFWV 3UHYLRXV SRO\PHUL]DWLRQ VWXGLHV RQ DF\FOLF GLHQHV UHYHDOHG WKDW PRUH WKDQ ROHILQ PHWDWKHVLV SRO\PHUL]DWLRQ ZDV WDNLQJ SODFH >@ :KLOH PHWDWKHVLV FKHPLVWU\ DSSHDUV WR EH WKH GRPLQDQW UHDFWLRQ YLQ\O DGGLWLRQ FKHPLVWU\ GRHV FRPSHWH ZLWK DF\FOLF ROHILQ PHWDWKHVLV 7KXV YLQ\O DGGLWLRQ UHDFWLRQV PXVW EH HOLPLQDWHG FRPSOHWHO\ LQ RUGHU IRU DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ WR EH XVHIXO FKHPLVWU\

PAGE 65

$F\FOLF 'LHQH If§&+f§&+f§&+fQf§f§Wf§&+f§&+f§&+fQf§M O 5 $ 9LQ\O $GGLWLRQ 5HDFWLRQ A&+f[? AG Q Q &+ $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ )LJXUH 7KH SRVVLEOH UHDFWLRQV WKDW FDQ RFFXU ZKHQ D /HZLV DFLG LV XVHG DV FRFDWDO\VW 6WYUHQH DV D 0RGHO &RPSRXQG $ PRGHO FRPSRXQG VWXG\ ZDV XQGHUWDNHQ WR LQYHVWLJDWH WKH HOLPLQDWLRQ RI VLGH UHDFWLRQV 9LQ\O DGGLWLRQ FKHPLVWU\ ZDV H[SHFWHG WR EH WKH SULQFLSDO VLGH UHDFWLRQ WKDW ZDV RFFXUULQJ DQG D PRGHO FRPSRXQG V\VWHP WKDW ZRXOG DOORZ D VLPXOWDQHRXV LQYHVWLJDWLRQ RI YLQ\O DGGLWLRQ DQG PHWDWKHVLV FKHPLVWU\ ZDV VHOHFWHG 7KH UHDFWLRQ RI VW\UHQH ZDV FKRVHQ VLQFH EHQ]\O FDUERFDWLRQV FDQ EH IRUPHG TXLWH HDVLO\ ZKLFK ZRXOG SHUPLW WKH YLQ\O DGGLWLRQ UHDFWLRQ WR FRPSHWH GLUHFWO\ ZLWK PHWDWKHVLV ,Q RUGHU WR VWXG\ WKH FRPSHWLWLRQ EHWZHHQ PHWDWKHVLV DQG YLQ\O DGGLWLRQ FKHPLVWU\ )LJXUH f EXON UHDFWLRQV RI VW\UHQH ZHUH H[DPLQHG

PAGE 66

ZLWK :&,#(W$,&, DV WKH FDWDO\VW 7KH VW\UHQH UHDFWLRQ LV DQ H[FHOOHQW PRGHO V\VWHP VLQFH YLQ\O DGGLWLRQ ZRXOG OHDG WR SRO\VW\UHQH >@ ZKHUHDV PHWDWKHVLV ZRXOG OHDG WR VWLOEHQH %RWK VW\UHQH DQG VWLOEHQH FDQ EH UHDGLO\ LGHQWLILHG E\ VSHFWURVFRSLF PHWKRGV >@ HYHQ ZKHQ D PL[WXUH RI SURGXFWV LV SURGXFHG ,Q IDFW YLQ\O DGGLWLRQ FKHPLVWU\ SURYHG WR EH WKH RQO\ UHDFWLRQ RFFXUULQJ SUHVXPDEO\ EHFDXVH RI WKH FDWLRQLF SRO\PHUL]DWLRQ RI VW\UHQH )LJXUH f ZLWK QR VWLOEHQH EHLQJ REVHUYHG 3RO\VW\UHQH 6WLOEHQH )LJXUH $WWHPSWHG PHWDWKHVLV RI VW\UHQH XVLQJ D /HZLV DFLG FDWDO\VW V\VWHP 7KH PDLQ FRPSHWLQJ VLGH UHDFWLRQ LV EHOLHYHG WR EH WKH FDWLRQLF SRO\PHUL]DWLRQ RI VW\UHQH &DWLRQLF SRO\PHUL]DWLRQ FDQ EH LQLWLDWHG E\ WKH /HZLV DFLG XVHG DV FRFDWDO\VW LQ WKH FODVVLFDO UHDFWLRQ VFKHPH )LJXUH f DQG FRQVHTXHQWO\ PRGHO UHDFWLRQV ZHUH FRQGXFWHG WR HOLPLQDWH WKHVH YLQ\O DGGLWLRQ UHDFWLRQV

PAGE 67

7KH PLQLPL]DWLRQ RI YLQ\O DGGLWLRQ UHDFWLRQ SRO\PHUL]DWLRQf ZDV LQYHVWLJDWHG E\ YDU\LQJ WKH VHTXHQFH RI DGGLWLRQ RI UHDFWDQWV LQWR WKH UHDFWLRQ YHVVHO 7DEOH f 7DEOH 2UGHU RI DGGLWLRQ RI UHDFWDQWV LQ WKH VW\UHQH PRGHO UHDFWLRQ )LUVW 6HFRQG /DVW &DWDO\VW &RFDWDO\VW 6W\UHQH &DWDO\VW 5HDJHQW &RFDWDO\VW &RFDWDO\VW 5HDJHQW &DWDO\VW &RFDWDO\VW &DWDO\VW 5HDJHQW 5HDJHQW &DWDO\VW &RFDWDO\VW 5HDJHQW &RFDWDO\VW &DWDO\VW 7KH FDWDO\VW DQG FRFDWDO\VW ZHUH DOORZHG WR UHDFW IRU YDU\LQJ DPRXQWV RI WLPH DW YDULRXV WHPSHUDWXUHV SULRU WR WKH DGGLWLRQ RI UHDJHQW 1R FKDQJH LQ WKH SURGXFWV ZDV REVHUYHG DQG RQO\ SRO\VW\UHQH ZDV LGHQWLILHG DV WKH SURGXFW RI WKH UHDFWLRQ 7KH FRFDWDO\VW VROYHQW KH[DQH ZDV UHPRYHG HLWKHU LPPHGLDWHO\ DIWHU WKH FDWDO\VW DQG FRFDWDO\VW ZHUH FRPELQHG RU DIWHU WKH FDWDO\VW DQG FRFDWDO\VW ZHUH DOORZHG WR UHDFW IRU VRPH WLPH 1R FKDQJH LQ WKH FKHPLVWU\ ZDV REVHUYHG 7KUHH VROYHQWV ZHUH H[DPLQHG LQFOXGLQJ FKORUREHQ]HQH ZKLFK LV WKH PRVW ZLGHO\ XVHG VROYHQW ZLWK WKLV VSHFLILF FDWDO\VW V\VWHP >@ %HFDXVH FDWLRQLF SRO\PHUL]DWLRQ RI VW\UHQH RFFXUV LQVWHDG RI PHWDWKHVLV VROYHQWV RI ORZHU GLHOHFWULF FRQVWDQWV ZHUH XVHG 6ROYHQWV RI ORZ GLHOHFWULF FRQVWDQW DUH NQRZQ WR HOLPLQDWH WKH

PAGE 68

IRUPDWLRQ RI LRQV >@ WKXV SRVVLEO\ SUHYHQWLQJ FDWLRQLF SRO\PHUL]DWLRQ &DUERQ WHWUDFKORULGH f DQG KH[DQH f ZHUH WULHG EXW QR FKDQJH LQ WKH FKHPLVWU\ ZDV REVHUYHG :KHQ 6FKOHQN YDFXXP OLQH WHFKQLTXHV ZHUH XVHG WKH DQDO\VLV RI WKH JDVHV SURGXFHG IUHTXHQWO\ LQGLFDWHG WKH SUHVHQFH RI HWKDQH (YLGHQWO\ WUDFH DPRXQWV RI PRLVWXUH ZHUH SUHVHQW WKDW UHDFWHG ZLWK WKH (W$,&, WR SURGXFH HWKDQH ,Q RUGHU WR DVVXUH DEVROXWH SXULW\ DQG GU\QHVV RI WKH UHDJHQWV DQG WKH DSSDUDWXV KLJK YDFXXP WHFKQLTXHV ZHUH HPSOR\HG 8QGHU WKHVH FRQGLWLRQV QR HWK\OHQH ZDV REVHUYHG LQ WKH VW\UHQH UHDFWLRQV LQGLFDWLQJ WKDW PHWDWKHVLV GLG QRW RFFXU DQG RQO\ FDWLRQLF SRO\PHUL]DWLRQ ZDV REVHUYHG 6LQFH WKH /HZLV DFLG (W$,&,f LQLWLDWHG YLQ\O DGGLWLRQ GLIIHUHQW FRFDWDO\VWV (W$,&, DQG (W$,f ZHUH WULHG 1R VWLOEHQH ZDV SURGXFHG DQG DV EHIRUH RQO\ SRO\VW\UHQH UHVXOWHG 7KH XVH RI GLIIHUHQW UHDFWLRQ FRQGLWLRQV DGGLWLRQ VHTXHQFHV VROYHQWV DQG /HZLV DFLG FRFDWDO\VWV SURYHG WR EH XQVXFFHVVIXO DQG LW FDQ EH FRQFOXGHG WKDW WKH PHWDWKHVLV RI VW\UHQH GRHV QRW RFFXU ZKHQ :&, DQG DQ DON\ODOXPLQXP FRQWDLQLQJ /HZLV DFLG LV XVHG DV WKH FDWDO\VW V\VWHP 3UHYHQWLQJ WKH &DWLRQLF 3RO\PHUL]DWLRQ RI 6WYUHQH ,Q DQ HIIRUW WR GHVWDELOL]H VW\UHQH WRZDUG FDWLRQLF SRO\PHUL]DWLRQ IRXU IOXRULQDWHG VW\UHQHV IOXRURVW\UHQH IOXRURVW\UHQH IOXRURVW\UHQH DQG SHQWDIOXRURVW\UHQHf ZHUH LQYHVWLJDWHG ZLWK WKH :&,(7$,&/ FDWDO\VW V\VWHP %\ UHGXFLQJ WKH HOHFWURQ GHQVLW\ LQ WKH YLQ\O ERQG RI VW\UHQH WKH OLNHOLKRRG RI IRUPLQJ VW\UHQH FDUERFDWLRQV PLJKW EH HOLPLQDWHG

PAGE 69

WKHUHE\ UHGXFLQJ VW\UHQHnV SURSHQVLW\ WR XQGHUJR YLQ\O DGGLWLRQ SRO\PHUL]DWLRQV ,Q HDFK FDVH KRZHYHU YLQ\O DGGLWLRQ SUHGRPLQDWHG $OWKRXJK WKH UHDFWLRQ SURFHHGHG DW D VORZHU UDWH WKH RQO\ SURGXFWV REVHUYHG ZHUH IOXRULQDWHG SRO\VW\UHQHV $ FRPSDULVRQ RI WKH 105 VSHFWUD RI WKH SURGXFWV IRUPHG ZLWK 105 VSHFWUD RI DXWKHQWLF IOXRULQDWHG SRO\VW\UHQHV 6SHFWUD f SUHSDUHG E\ DQLRQLF SRO\PHUL]DWLRQ LQGLFDWHV WKDW RQO\ IOXRULQDWHG SRO\VW\UHQHV ZHUH SURGXFHG 3HQWDIOXRURVW\UHQH SRO\PHUL]HG WKH VORZHVW RI DOO WKH IOXRULQDWHG VW\UHQHV WKDW ZHUH XVHG DQG ZKHQ KLJK YDFXXP WHFKQLTXHV ZHUH HPSOR\HG SHQWDIOXRURVW\UHQH GLG QRW UHDFW DW DOO LQGLFDWLQJ WKDW GHVWDELOL]DWLRQ RI WKH FDUERFDWLRQ GRHV LQGHHG SUHYHQW FDUERFDWLRQ IRUPDWLRQ ,Q RUGHU WR WHVW IRU FDWDO\VW DFWLYLW\ LQ WKH IOXRULQDWHG V\VWHPV DQ DF\FOLF GLHQH NQRZQ WR XQGHUJR PHWDWKHVLV ROLJRPHUL]DWLRQ LH GHFDGLHQHf ZDV DGGHG WR WKH UHDFWLRQ DIWHU KRXUV ZKLFK PHWDWKHVL]HG WR JLYH SRO\RFWHQDPHU RI ORZ PROHFXODU ZHLJKW DQG VRPH LQWUDFWDEOH PDWHULDO >@ $ PHWDWKHVLV DFWLYH FDWDO\VW V\VWHP REYLRXVO\ ZDV SUHVHQW DQG DSSDUHQWO\ WKH HOHFWURQ ZLWKGUDZLQJ QDWXUH DQG WKH EXONLQHVV RI WKH IOXRULQH JURXSV RQ WKH SHQWDIOXRURVW\UHQH SUHYHQW WKLV UHDJHQW IURP HLWKHU SRO\PHUL]LQJ RU PHWDWKHVL]LQJ

PAGE 70

6SHFWUXP 0+] & 105 RI SRO\IOXRURVW\UHQH IRUPHG E\ DQLRQLF SRO\PHUL]DWLRQ WHFKQLTXHV

PAGE 71

6SHFWUXP 0+] & 105 RI SRO\IOXRURVW\UHQH IRUPHG E\ DQLRQLF SRO\PHUL]DWLRQ WHFKQLTXHV

PAGE 72

,QYHVWLJDWLRQ RI D /HZLV $FLG )UHH &DWDO\VW 6\VWHP ZLWK 6WYUHQH DV WKH 0RGHO &RPSRXQG 7KH XVH RI /HZLV DFLG IUHH FDWDO\VWV FRXOG REYLDWH WKH IRUPDWLRQ RI FDUERFDWLRQV WKHUHE\ HOLPLQDWLQJ YLQ\O DGGLWLRQ UHDFWLRQV (IIRUWV ZHUH IRFXVHG RQ FKRRVLQJ DQ DSSURSULDWH FDWDO\VW V\VWHP ZKLFK ZRXOG EH OHVV DFLGLF DQG ZRXOG QRW LQGXFH YLQ\O DGGLWLRQ SRO\PHUL]DWLRQ 7KH KRPRJHQHRXV PHWDWKHVLV FDWDO\VW SUHSDUHG E\ 6FKURFN > @ ZDV FKRVHQ EHFDXVH LW LV IUHH RI /HZLV DFLGV 6FKURFN UHSRUWHG WKDW WKH FDWDO\VW ZDV H[WUHPHO\ DFWLYH IRU WKH PHWDWKHVLV RI LQWHUQDO ROHILQV \HW XQGHU WKH UHDFWLRQ FRQGLWLRQV UHSRUWHG VW\UHQH RFWHQH DQG DOO\OWULPHWK\OVLODQH PHWDWKHVL]HG VORZO\ >@ :KLOH WKHVH UHVXOWV ZHUH HQFRXUDJLQJ LW ZDV QRW DSSDUHQW LI WKHVH FDWDO\VWV ZRXOG EH VXLWDEOH IRU DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 7ZR GHULYDWLYHV RI WKH FDWDO\VW W\SHV DQG )LJXUH SDJH f ZHUH FKRVHQ VLQFH WKH\ DUH UHSRUWHG WR EH WKH OHDVW DFWLYH FDWDO\VW f DQG PRVW FDWDO\VW f DFWLYH PHWDWKHVLV FDWDO\VWV IRU LQWHUQDO ROHILQV &DWDO\VW SURGXFHG VWLOEHQH IURP VW\UHQH +RZHYHU XQGHU VLPLODU UHDFWLRQ FRQGLWLRQV WKH UHDFWLRQ UDWHV ZHUH PXFK VORZHU FRPSDUHG WR FDWDO\VW 3UHOLPLQDU\ VW\UHQH PHWDWKHVLV UHVXOWV DQG WKH PHWDWKHVLV RI FLVSHQWHQH >@ OHG WR WKH H[FOXVLYH XVH RI FDWDO\VW LQ VXEVHTXHQW VWXGLHV 5HDFWLRQ FRQGLWLRQV ZHUH FKRVHQ WKDW ZHUH DSSURSULDWH IRU PRGHOLQJ EXON SRO\PHUL]DWLRQ UHDFWLRQV 6SHFLILFDOO\ QR VROYHQW ZDV XVHG DV LV DSSURSULDWH IRU HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ SRO\PHUL]DWLRQ FKHPLVWU\ >@ DQG ZKHQ XVLQJ

PAGE 73

FDWDO\VW SDJH f WKH PHFKDQLVP IRU WKH VW\UHQH UHDFWLRQ FKDQJHG FRPSOHWHO\ IURP YLQ\O DGGLWLRQ WR PHWDWKHVLV FKHPLVWU\ )LJXUH f )LJXUH 6W\UHQH PHWDWKHVLV XVLQJ D /HZLV DFLG IUHH FDWDO\VW 0HWDWKHVLV RFFXUV TXDQWLWDWLYHO\ D UHVXOW ZKLFK UHSUHVHQWV D VSHFWDFXODU FKDQJH IURP WKH SUHYLRXV UHVXOW VKRZQ LQ )LJXUH 7KH UHDFWLRQ ZDV SHUPLWWHG WR FRQWLQXH RYHU D WZR KRXU SHULRG DQG QR VLGH UHDFWLRQV LH YLQ\O DGGLWLRQ UHDFWLRQVf ZHUH REVHUYHG 7KH 105 VSHFWUXP RI WKH XQQXULILHG SURGXFW RQO\ VKRZV UHVRQDQFHV WKDW DUH LQGLFDWLYH RI WUDQV VWLOEHQH 1R RWKHU SURGXFWV ZHUH SUHVHQW 7KH JDV IRUPHG GXULQJ WKH UHDFWLRQ ZDV DQDO\]HG E\ PDVV VSHFWURVFRS\ 6SHFWUXP f ZKLFK VKRZV WKDW RQO\ HWK\OHQH ZDV SURGXFHG E\ WKH UHDFWLRQ H[SHFWHG LI RQO\ PHWDWKHVLV RFFXUUHGf

PAGE 74

6SHFWUXP 0+] + 105 RI XQSXULILHG WUDQV VWLOEHQH SURGXFHG E\ WKH PHWDWKHVLV RI VW\UHQH ZLWK D /HZLV DFLG IUHH FDWDO\VW

PAGE 75

f 2f 1 f" LV L UH ,7 -O Q] f ,f n aO U 6SHFWUXP 0DVV 6SHFWUXP VKRZLQJ SDUHQW LRQ SHDNV RI HWK\OHQH UHOHDVHG ZKHQ PHWDWKHVLV UHDFWLRQV DQG SRO\PHUL]DWLRQV DUH SHUIRUPHG XVLQJ D /HZLV DFLG IUHH FDWDO\VW

PAGE 76

,QYHVWLJDWLRQ RI D /HZLV $FLG )UHH &DWDO\VW 6\VWHP ZLWK 6XEVWLWXWHG 6WYUHQHV DV 0RGHO &RPSRXQGV ,Q RUGHU WR GHPRQVWUDWH WKH SRWHQWLDO RI WKLV ROHILQ PHWDWKHVLV UHDFWLRQ D YDULHW\ RI VXEVWLWXWHG VW\UHQHV ZHUH LQYHVWLJDWHG DQG WKH UHDFWLRQV LQ )LJXUH LQGLFDWH WKH YHUVDWLOLW\ RI WKH /HZLV DFLG IUHH FDWDO\]HG PHWDWKHVLV UHDFWLRQ 8VLQJ D /HZLV DFLG IUHH FDWDO\VW V\VWHP IOXRURVW\UHQH 5HDFWLRQ $f IOXRURVW\UHQH 5HDFWLRQ %f DQG IOXRURVW\UHQH 5HDFWLRQ 4Bf DOO PHWDWKHVL]H FOHDQO\ DQG SURGXFH WKH DQDORJRXV VXEVWLWXWHG VWLOEHQHV LQ D PDQQHU PXFK WKH VDPH DV IRU VW\UHQH 7KH UHDFWLRQV ZHUH FDUULHG RXW RYHU D KRXU SHULRG LQ WKH UHDFWLRQ YHVVHO )LJXUH f GHVLJQHG IRU VW\UHQH UHDFWLRQV 3RZGHURXV VXEVWLWXWHG VWLOEHQHV LQ HVVHQWLDOO\ TXDQWLWDWLYH \LHOGV ZHUH REWDLQHG 5HDFWLRQ WLPHV ZHUH QRW RSWLPDO QRU ZHUH WKH\ LQGLFDWLYH RI WKH UDWH RI WKH UHDFWLRQV DQG LW LV H[SHFWHG WKDW XQGHU RSWLPDO UHDFWLRQ FRQGLWLRQV UHDFWLRQ WLPHV ZLOO EH FRQVLGHUDEO\ VKRUWHQHG 7KH SURGXFWV ZHUH SXUH DV LV VKRZQ E\ WKH 105 VSHFWUD DQG (OHPHQWDO DQDO\VLV VXEVWDQWLDWHG WKH H[FOXVLYH IRUPDWLRQ RI VXEVWLWXWHG VWLOEHQHV ZLWKRXW D WUDFH RI DQ\ YLQ\O DGGLWLRQ SURGXFWV

PAGE 77

5HDFWLRQ $ 5HDFWLRQ % 5HDFWLRQ & 5HDFWLRQ 5HDFWLRQ ( 5M f§ 5 f§ 5 f§ + 5 f§ ) 5M 5 5 + 5 ) 5M 5 5 + 5 ) 5M 5 U + 5 %U 5M U U + 5 &+ )LJXUH 7KH 0HWDWKHVLV RI VXEVWLWXWHG VW\UHQHV 3URGXFLQJ VXEVWLWXWHG VWLOEHQHV LQ KLJK \LHOGV DQG SXULW\ LV LQ VKDUS FRQWUDVW WR WKH SUHYLRXV PHWKRGV XVHG WR SUHSDUH WKHVH SURGXFWV > @ 7KH SUHSDUDWLRQ RI GLIOXRURVWLOEHQH E\ $JHU >@ LQ XVLQJ WKH V\QWKHWLF URXWH VKRZQ LQ )LJXUH LV D SULPH H[DPSOH RI WKH OHQJWK\ ORZ \LHOG UHDFWLRQV SUHYLRXVO\ XVHG

PAGE 79

6SHFWUXP 0+] & 105 RI nGLIOXRURVWLOEHQH SURGXFHG E\ WKH PHWDWKHVLV RI IOXRURVW\UHQH ZLWK D /HZLV DFLG IUHH FDWDO\VW

PAGE 80

6SHFWUXP 0+] & 105 RI nGLIOXRURVWLOEHQH SURGXFHG E\ WKH PHWDWKHVLV RI IOXRURVW\UHQH ZLWK D /HZLV DFLG IUHH FDWDO\VW

PAGE 81

LQ WKH V\QWKHVLV RI VXEVWLWXWHG VWLOEHQH FRPSRXQGV 2EYLRXVO\ PHWDWKHVLV SURYLGHV D PXFK PRUH HIILFLHQW VLQJOH VWHS V\QWKHWLF PHWKRG
PAGE 82

3HQWDIOXRURVW\UHQH GLG QRW UHDFW DW DOO XQGHU WKHVH UHDFWLRQ FRQGLWLRQV ,I WKH UHDFWLRQ LV KHDWHG WR r& SRO\ SHQWDIOXRURVW\UHQH LV IRUPHG 6SHFWUXP f $ VHFRQG DGGLWLRQ RI FDWDO\VW DOVR SURYHG WR EH LQHIIHFWLYH 1R GHFDIOXRURVWLOEHQH ZDV SURGXFHG 7ZR SRVVLEOH UHDVRQV ZK\ SHQWDIOXRURVW\UHQH GRHV QRW PHWDWKHVL]H DUH f 7KH ILYH IOXRULQH DWRPV KDYH VXFK D VWURQJ HOHFWURQ ZLWKGUDZLQJ HIIHFW RQ WKH PROHFXOH WKDW WKH HOHFWURQ GHQVLW\ RI WKH YLQ\O ERQG LV GLPLQLVKHG WR WKH H[WHQW WKDW LW FDQQRW FRRUGLQDWH ZLWK WKH DOUHDG\ HOHFWURQ GHILFLHQW FDWDO\VW PHWDO FHQWHU 7KH WXQJVWHQ FDUERQ GRXEOH ERQG LQ WKH DQDORJRXV EHQ]\OLGHQH PHWDO FRPSOH[ ZDV IRXQG WR EH VKRUWHU ZKHQ IOXRULQDWHG DONR[LGH OLJDQGV ZHUH SUHVHQW WKDQ LQ WKH SUHVHQFH RI QRQIOXRULQDWHG OLJDQGV >@ 6KRUWHQLQJ RI WKH WXQJVWHQ FDUERQ GRXEOH ERQG ZDV DWWULEXWHG WR WKH HOHFWURQ ZLWKGUDZLQJ QDWXUH RI WKH KH[DIOXRUR DONR[LGH OLJDQG $ FRPELQDWLRQ RI WKH HOHFWURQ ZLWKGUDZLQJ HIIHFW RI WKH KH[DIOXRUR DONR[LGH OLJDQGV DQG WKH GLPLQLVKHG HOHFWURQ GHQVLW\ RI WKH SHQWDIOXRURVW\UHQH YLQ\O ERQG SURYLGH D SODXVLEOH H[SODQDWLRQ IRU WKH XQUHDFWLYLW\ RI SHQWDIOXRURVW\UHQH f )OXRULQH DWRPV DUH UHODWLYHO\ VPDOO 'XH WR D KLJK HOHFWURQ GHQVLW\ UHSXOVLRQ DUH H[SHULHQFHG RYHU ORQJ UDQJHV WKXV PDNLQJ IOXRULQH EXON\ LQ WHUPV RI VWHUHRFKHPLVWU\ >@ 7KLV EXONLQHVV FRXOG EH D IDFWRU LQ SUHYHQWLQJ WKH YLQ\O ERQG RI SHQWDIOXRURVW\UHQH IURP FRPLQJ LQWR FORVH SUR[LPLW\ ZLWK WKH FDWDO\VW WR SURGXFH WKH PHWDOORF\FOREXWDQH ULQJ LQWHUPHGLDWH HVVHQWLDO IRU PHWDWKHVLV WR RFFXU > @ ;UD\ VWUXFWXUDO DQDO\VLV RI :&+3Kf1$Uf>2&0H&)f@ LQGLFDWHV WKDW WKH WZR

PAGE 83

nVL HQ W W U USU U LLLL KnWW U W_ UUQ @ WL L U ULa LaU L S U L L L LaW  LGR OLOL MYL L U L L L L A L L L L L L L L L L L L L L L L L A L L L L L L L L L W L L L UUUU 6SHFWUXP 0+] & 105 RI SRO\SHQWDIOXRURVW\UHQH IRUPHG GXH WR WKH GHFRPSRVLWLRQ RI WKH /HZLV DFLG IUHH PHWDWKHVLV FDWDO\VW DW r&

PAGE 84

DONR[LGH OLJDQGV DUH WXUQHG DZD\ IURP HDFK RWKHU DQG DOVR WKDW WKH WZR WU\IOXRURPHWK\O JURXSV LQ HDFK DONR[LGH DUH WXUQHG DZD\ IURP WKH EHQ]\OLGHQH DQG LPLGR OLJDQGV >@ 7KH SUHVHQFH RI IOXRULQH DWRPV DW WKH WZR RUWKR SRVLWLRQV RI SHQWDIOXRURVW\UHQH UHVXOW LQ ELJJHU VWHULF UHSXOVLRQ EHWZHHQ WKH DONR[LGH OLJDQGV DQG WKH SHQWDIOXRUR EHQ]\OLGHQH OLJDQG 9DQ GHU :DDOV LQWHUDFWLRQV EHWZHHQ WULIOXRURPHWK\O DQG K\GURFDUERQ JURXSV DV ZHOO DV DQ\ LQWHUDFWLRQ EHWZHHQ WULIORXURPHWK\O DQG WKH RUWKR IOXRULQHV RQ WKH SHQWDIORXUREHQ]\OLGHQH OLJDQG PXVW EH GLPLQLVKHG IRU D PHWDOORF\FOREXWDQH ULQJ WR EH IRUPHG 6WHUHRFKHPLFDO RYHUFURZGLQJ DW WKH PHWDO FHQWHU PD\ SUHYHQW D VHFRQG SHQWDIOXRURVW\UHQH PROHFXOH IURP DSSURDFKLQJ WKHUHE\ SUHYHQWLQJ WKH IRUPDWLRQ RI D PHWDOORF\FOREXWDQH LQWHUPHGLDWH DQG VXEVHTXHQWO\ PHWDWKHVLV %URPRVW\UHQH 5HDFWLRQ )LJXUH SDJH f DQG PHWK\OVW\UHQH 5HDFWLRQ ( )LJXUH SDJH f PHWDWKHVL]H FOHDQO\ DQG IRUP WKH UHVSHFWLYH VXEVWLWXWHG VWLOEHQHV LQ TXDQWLWDWLYH \LHOGV DV FRQILUPHG E\ HOHPHQWDO DQDO\VLV DQG 105 VSHFWURVFRS\ 6SHFWUD f &DGRJDQ DQG ,QZDUG >@ LQYHVWLJDWHG WKH WKUHH SRVVLEOH PHWKRGV > @ IRU WKH SUHSDUDWLRQ RI WUDQVn GLEURPRVWLOEHQH DQG IRXQG WKDW D PRGLILHG YHUVLRQ RI WKH %DQFH %DUEHU DQG :RROPDQ PHWKRG >@ ZDV WKH PRVW VDWLVIDFWRU\ ZLWK \LHOGV VOLJKWO\ KLJKHU WKDQ b 7KH RWKHU WZR PHWKRGV JDYH VWLOEHQH \LHOGV UDQJLQJ IURP bb $OO WKUHH PHWKRGV LQYROYHG PXOWLVWHS UHDFWLRQV DQG ULJRURXV SXULILFDWLRQ RI WKH VWDUWLQJ PDWHULDOV ,W LV HYLGHQW WKDW WKH VLQJOH VWHS PHWDWKHVLV UHDFWLRQ

PAGE 85

6SHFWUXP 0+] & 105 RI fGLEURPRVWLOEHQH SURGXFHG E\ WKH PHWDWKHVLV RI EURPRVW\UHQH ZLWK D /HZLV DFLG IUHH FDWDO\VW

PAGE 86

6SHFWUXP 0+] & 105 RI 66nGLPHWK\OVWLOEHQH SURGXFHG E\ WKH PHWDWKHVLV RI PHWK\OVW\UHQH ZLWK D /HZLV DFLG IUHH FDWDO\VW

PAGE 87

SURFHGXUH ZLWK LWV HVVHQWLDOO\ TXDQWLWDWLYH \LHOG LV WKH SUHIHUUHG URXWH WR SURGXFH VWLOEHQHV 7KHVH PRGHO UHDFWLRQV GHPRQVWUDWH WKH YHUVDWLOLW\ RI WKH PHWDWKHVLV UHDFWLRQ V\VWHP DQG VKRZ WKDW YLQ\O DGGLWLRQ VLGH UHDFWLRQV FDQ EHHQ HOLPLQDWHG FRPSOHWHO\ 7KH HVVHQWLDOO\ TXDQWLWDWLYH \LHOGV IXOILOO WKH SUHUHTXLVLWH RI KLJK SHUFHQWDJH FRQYHUVLRQ !bf RI PRQRPHU WR SRO\PHU UHTXLUHG E\ VWHS FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ ([SDQGLQJ VPDOO PROHFXOH PHWDWKHVLV FKHPLVWU\ LQWR D SRO\PHUL]DWLRQ UHDFWLRQ LV WKH QH[W FKDOOHQJH $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ ZRXOG EH WKH ILUVW QHZ HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ LQ \HDUV 6XEVHTXHQW FKDSWHUV HODERUDWH RQ WKH IHDVLELOLW\ DQG LPSOHPHQWDWLRQ RI WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ WHFKQLTXH

PAGE 88

&+$37(5 $&<&/,& ',(1( 0(7$7+(6,6 32/<0(5,=$7,21 $'0(7f 7+( 6<17+(6,6 2) 32/<2&7(1$0(5 86,1* '(&$',(1( $6 $ 02120(5 7KH ILUVW KLJK PROHFXODU ZHLJKW SRO\PHU V\QWKHVL]HG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV UHSRUWHG KHUHLQ 3ULRU WR WKH UHVHDUFK GLVFXVVHG EHORZ WKH FDWDO\VW UHTXLUHPHQWV DQG WKH UHDFWLRQ FRQGLWLRQV UHTXLUHG WR SURGXFH KLJK PROHFXODU ZHLJKW SRO\PHUV E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ WHFKQLTXHV ZHUH XQNQRZQ )ROORZLQJ WKH VXFFHVVIXO PHWDWKHVLV RI VW\UHQH DQG LWV GHULYDWLYHV WKH IRFXV RI WKH UHVHDUFK WXUQHG WRZDUG WKH SRO\PHUL]DWLRQ RI GHFDGLHQH WR GHPRQVWUDWH WKDW DF\FOLF GLHQH PHWDWKHVLV $'0(7f FRXOG SURGXFH KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU 3RO\RFWHQDPHU ZDV FKRVHQ DV D WDUJHW PRGHO SRO\PHU VLQFH LW LV ZHOO FKDUDFWHUL]HG >@ 7KH SK\VLFDO SURSHUWLHV RI SRO\RFWHQDPHU SUHSDUHG E\ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ DUH NQRZQ >@ WKXV LW ZDV SRVVLEOH WR FRPSDUH WKH SURSHUWLHV RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ VDPSOHV GLUHFWO\ ZLWK SRO\PHUV IRUPHG E\ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ (LJKW SRO\PHUL]DWLRQV ZHUH SHUIRUPHG WR HVWDEOLVK WKH PRVW VXLWDEOH FRQGLWLRQV WR \LHOG KLJK PROHFXODU ZHLJKW SRO\PHUV DQG WR

PAGE 89

LQYHVWLJDWH WKH GLIIHUHQW SURSHUWLHV RI WKH SRO\RFWHQDPHU VDPSOHV SURGXFHG $ GLVFXVVLRQ RI WKH PROHFXODU ZHLJKWV REWDLQHG XQGHU GLIIHUHQW H[SHULPHQWDO FRQGLWLRQV DV ZHOO DV WKH SK\VLFDO SURSHUWLHV RI WKH SRO\PHUV IRUPHG IROORZV $F\FOLF 'LHQH 0HWDWKHVLV DV D 3RO\PHUL]DWLRQ 5HDFWLRQ 7KH SRO\PHUL]DWLRQ FKHPLVWU\ XQGHU LQYHVWLJDWLRQ )LJXUH f \LHOGV RQO\ WZR SURGXFWV SRO\RFWHQDPHU DQG HWK\OHQH DQG E\ &+ &+f§&+f&+ &+ GHFDGLHQH &DWDO\VW 0RQRPHU 9DFXXP nPP+Jf +HDW r&f I27&+f§&+fA &+ &+ SRO\RFWHQDPHU )LJXUH $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ RI GHFDGLHQH UHPRYLQJ HWK\OHQH WKH SRO\PHUL]DWLRQ FRXOG EH GULYHQ WR SURGXFH KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU 1R DFFRPSDQ\LQJ UHDFWLRQV ZHUH REVHUYHG 7KH ILUVW IRXU UHDFWLRQV VSHFLILFDOO\ ZHUH GRQH WR VKRZ WKDW KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU FDQ EH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ 7DEOH f

PAGE 90

7DEOH 0ROHFXODU ZHLJKWV RI ILUVW IRXU SRO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 3RO\RFWHQDPHU 5HDFWLRQ 9LVFRVLW\ G/9Jf 0ROHFXODU :HLJKW 0Qf E E F f§ E G Df r& LQ WROXHQH Ef (QGJURXS DQDO\VLV E\ & 105 Ff 0Q E\ 932 DQDO\VLV Gf 0Z f DQG 0Q ZHUH PHDVXUHG DVVXPLQJ WKH SRO\PHU WR EH SRO\VW\UHQH WKH FDOLEUDWLRQ VWDQGDUG DQG PXOWLSOLHG E\ 7KLV IDFWRU LV WKH HVWLPDWHG UDWLR RI WKH XQSHUWXUEHG GLPHQVLRQV /0! IRU SRO\VW\UHQH DQG SRO\RFWHQDPHU 7KUHH DGGLWLRQV RI FDWDO\VW ZHUH PDGH DQG D ODUJH YROXPH RI VROYHQW ZDV XVHG LQ WKH ILUVW UHDFWLRQ :KLOH D ORZ PROHFXODU ZHLJKW f SXUH SRO\RFWHQDPHU VDPSOH ZLWK D WUDQV FRQWHQW RI b ZDV SURGXFHG LQ WKH ILUVW UHDFWLRQ LW ZDV HQFRXUDJLQJ WKDW QR LQWUDFWDEOH PDWHULDO ZDV REVHUYHG 7KH ORZ PROHFXODU ZHLJKW RI WKH SRO\PHU LV DWWULEXWHG WR WKH ROLJRPHUV VROLGLI\LQJ LQ WKH EUHDNVHDO DPSXOHV )LJXUH SDJH f WKDW FRQWDLQHG WKH FDWDO\VW DQG

PAGE 91

PRQRPHU ZKLFK SUHYHQWHG PHWDWKHVLV 7KXV ROLJRPHUV ZHUH SUHYHQWHG IURP FRQVWDQW FRQWDFW ZLWK WKH FDWDO\VW WKHUHE\ UHGXFLQJ SRO\PHUL]DWLRQ UDWHV DQG DOORZLQJ RQO\ WKH IRUPDWLRQ RI ROLJRPHULF PDWHULDO 3ODFLQJ WKH PRQRPHU DQG FDWDO\VW DPSXOHV DERYH WKH UHIOX[ FRQGHQVHU SUHYHQWHG WKH SUHFLSLWDWLRQ RI SRO\PHU LQ WKH EUHDNVHDO DPSXOHV $Q LQFUHDVH LQ ERWK WKH PROHFXODU ZHLJKW DQG WUDQV VWHUHRFKHPLVWU\ SHUFHQWDJH RI WKH SURGXFW SURGXFHG LQ WKH VHFRQG SRO\PHUL]DWLRQ UHDFWLRQ ZDV DFKLHYHG 0RUH HIILFLHQW UHIOX[LQJ DQG UHWXUQ RI WKH XQUHDFWHG PRQRPHU DQG VROYHQW WR WKH UHDFWLRQ YHVVHO FRXOG LQFUHDVH WKH PROHFXODU ZHLJKW DQG VLPXOWDQHRXVO\ GHFUHDVH WKH UHDFWLRQ WLPH :KHQ ODUJH YROXPHV RI VROYHQW DUH XVHG LW EHFRPHV HYLGHQW IURP UHDFWLRQ WKDW RQO\ ORZ PROHFXODU ZHLJKW ROLJRPHUV ZLWK D ORZ VWHUHRFKHPLFDO WUDQV FRQWHQW DUH IRUPHG ,Q OLJKW RI 5HDFWLRQ UHVXOWV LW VHHPV DV LI KLJKHU WHPSHUDWXUHV DQG D PLQLPDO DPRXQW RI VROYHQW FRXOG SURGXFH WKH GHVLUHG KLJK PROHFXODU ZHLJKW SRO\PHUV $ PLQLPDO DPRXQW RI VROYHQW DQG UHDFWLRQ WHPSHUDWXUH RI r& SURGXFHG D SRO\PHU RI KLJK PROHFXODU ZHLJKW DQG KLJK SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ %DVHG RQ WKH UHVXOWV RI 5HDFWLRQ DF\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQ FDQ SURGXFH KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU ([SHULPHQWV IROORZHG LQ ZKLFK GLIIHUHQW UHDFWLRQ FRQGLWLRQV ZHUH H[DPLQHG

PAGE 92

7DEOH 0ROHFXODU ZHLJKWV RI SRO\RFWHQDPHU VDPSOHV SURGXFHG XQGHU EXON DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FRQGLWLRQV 5HDFWLRQ b WUDQV 0ROHFXODU ZHLJKW 0Qf E E r Df $V GHWHUPLQHG E\ TXDQWLWDWLYH & 105 Ef (QGJURXS DQDO\VLV XWLOL]LQJ & 105 Ff 0Q GHWHUPLQHG E\ 932 %XON 3RO\PHUL]DWLRQ &RQGLWLRQV %XON SRO\PHUL]DWLRQV DUH WKH PRVW FRPPRQ PHWKRG XVHG IRU VWHS SRO\PHUL]DWLRQ VLQFH WKH\ \LHOG IDVW UHDFWLRQV ZKLFK FDQ HDVLO\ EH FRQWUROOHG %XON SRO\PHUL]DWLRQV >@ DUH SHUIRUPHG JHQHUDOO\ DERYH WKH PHOWLQJ SRLQW RI WKH SRO\PHU WR IDFLOLWDWH DJLWDWLRQ &DOGHURQ >@ UHSRUWHG WKDW b WUDQV SRO\RFWHQDPHU PHOWV DW r& DQG VR D SRO\PHUL]DWLRQ WHPSHUDWXUH RI r& ZDV FKRVHQ IRU WKH ILUVW EXON SRO\PHUL]DWLRQ 5HDFWLRQ 7DEOH f $ IUDFWLRQ RI WKH SURGXFW IRUPHG DW r& ZDV VROXEOH LQ ERLOLQJ EHQ]HQH DQG KDG D ORZ QXPEHU DYHUDJH PROHFXODU ZHLJKW

PAGE 93

7ZR DGGLWLRQDO UHDFWLRQV ZHUH SHUIRUPHG XQGHU EXON SRO\PHUL]DWLRQ FRQGLWLRQV 5HDFWLRQ ZDV DOORZHG WR SURFHHG IRU PLQXWHV DW r& XQGHU EXON UHDFWLRQ FRQGLWLRQV DQG D ORZ PROHFXODU ZHLJKW b WUDQV SRO\RFWHQDPHU UHVXOWHG 1R LQWUDFWDEOH PDWHULDO ZDV SURGXFHG LQGLFDWLQJ WKDW QR VLGH UHDFWLRQV RFFXUUHG DW WKH ORZHU WHPSHUDWXUH (IIHFWLYH DJLWDWLRQ RI SRO\RFWHQDPHU VDPSOHV IRUPHG XQGHU EXON FRQGLWLRQV DW r& EHFRPHV LPSRVVLEOH DIWHU DSSUR[LPDWHO\ RQH KDOI KRXU GXH WR WKH LQFUHDVHG YLVFRVLW\ RI WKH UHDFWLRQ SURGXFW %\ UDLVLQJ WKH UHDFWLRQ WHPSHUDWXUH WR r& LW ZDV SRVVLEOH WR UHGXFH WKH YLVFRVLW\ RI WKH VDPSOH DQG PDJQHWLF DJLWDWLRQ DJDLQ EHFDPH SRVVLEOH +RZHYHU DIWHU DQ DGGLWLRQDO IRXU KRXUV WKH SRO\PHUnV YLVFRVLW\ LQFUHDVHG WR WKH SRLQW ZKHUH PDJQHWLF DJLWDWLRQ FHDVHG 7KHVH PDQLSXODWLRQV LQFUHDVHG WKH PROHFXODU ZHLJKW WR D YDOXH RI 7KH LQFUHDVHG PROHFXODU ZHLJKW REVHUYHG LQ UHDFWLRQ LQGLFDWHV WKDW SRO\RFWHQDPHU FDQ VXFFHVVIXOO\ EH SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ XQGHU EXON UHDFWLRQ FRQGLWLRQV DW r& +LJKHU PROHFXODU ZHLJKWV FDQ EH DFKLHYHG LQ VKRUWHU WLPHV ZLWK DJLWDWLRQ IURP KLJK WRUTXH PHFKDQLFDO VWLUULQJ 5HVXOWV IURP EXON SRO\PHUL]DWLRQV LQGLFDWHG WKDW WKH FDWDO\VW GRHV QRW GHFRPSRVH DW r& $ SRO\PHU RI KLJK WUDQV VWHUHRFKHPLVWU\ DSSUR[LPDWHO\ bf ZLWK PRGHUDWH PROHFXODU ZHLJKW FDQ EH SURGXFHG LQ D UHODWLYHO\ VKRUW WLPH XQGHU EXON FRQGLWLRQV %HWWHU DJLWDWLRQ XQGRXEWHGO\ ZLOO SURGXFH HYHQ KLJKHU PROHFXODU ZHLJKWV

PAGE 94

7DLORULQJ RI $F\FOLF 'LHQH 0HWDWKHVLV )RUPHG 3RO\PHUV 7KH DELOLW\ WR WDLORU DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQ FRQGLWLRQV WR SURGXFH D ZLGH YDULHW\ RI SRO\PHUV ZLWK YDU\LQJ PROHFXODU ZHLJKWV DQG SK\VLFDO SURSHUWLHV HJ PHOWLQJ DQG FU\VWDOOL]DWLRQ SRLQWVf ZDV LQYHVWLJDWHG LQ WKLV H[SHULPHQW 7HUPLQDWLRQ RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV DFKLHYHG E\ H[SRVLQJ WKH SRO\PHUL]DWLRQ WR R[\JHQ DQG PRLVWXUH ZKLFK GHFRPSRVHV WKH FDWDO\VW %HFDXVH WKH FDWDO\VW LV QRW SHUPDQHQWO\ IL[HG WR WKH FKDLQ HQGV ERWK FKDLQ HQGV RI WKH SRO\PHU UHWDLQ YLQ\O ERQGV WKDW FDQ EH IXUWKHU SRO\PHUL]HG E\ DF\FOLF GLHQH PHWDWKHVLV WHFKQLTXHV LI WKH SRO\PHU LV WR EH UHDFWHG ZLWK DFWLYH FDWDO\VW )LJXUH f ZKHUH < }! ; )LJXUH &RQWLQXHG WHOHFKHORPHU $'0(7 SRO\PHUL]DWLRQ WR KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU $ SRO\RFWHQDPHU VDPSOH WKDW KDG D UHGXFHG YLVFRVLW\ RI G/J ZDV FRQYHUWHG WR D KLJKHU PROHFXODU ZHLJKW SRO\PHU DV LQGLFDWHG E\ DQ LQFUHDVHG UHGXFHG YLVFRVLW\ QXPEHU RI G/J 7KH WUDQV ROHILQ FRQWHQW LQFUHDVHG IURP b WR b ZKLFK UHVXOWHG

PAGE 95

LQ KLJKHU PHOWLQJ DQG FU\VWDOOL]DWLRQ SRLQWV IRU WKH SURGXFHG SRO\PHU $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ HOLPLQDWHV WKH SRVVLELOLW\ RI SURGXFLQJ D SRO\PHU ZLWK XQGHVLUDEOH SK\VLFDO SURSHUWLHV SURYLGHG WKHVH SURSHUWLHV FDQ EH DOWHUHG E\ DQ LQFUHDVH LQ PROHFXODU ZHLJKW 7KH DELOLW\ WR LQFUHDVH WKH PROHFXODU ZHLJKW RI D VDPSOH DQG WDLORU LWV SK\VLFDO SURSHUWLHV LQGLFDWHV WKH DGYDQWDJH WKDW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ KDV RYHU RWKHU SRO\PHUL]DWLRQ WHFKQLTXHV 'HWHUPLQLQJ WKH 6WHUHRFKHPLVWU\ RI WKH 2OHILQ 8QLWV LQ 3ROYRFWHQDPHU 7KH VWHUHRFKHPLVWU\ RI WKH LQWHUQDO ROHILQ XQLWV RI SRO\RFWHQDPHU YDULHV >@ GHSHQGLQJ RQ WKH PHWKRG DQG UHDFWLRQ FRQGLWLRQV XVHG WR SURGXFH WKH SRO\PHU VDPSOH %HFDXVH WKH SK\VLFDO SURSHUWLHV RI D VSHFLILF SRO\RFWHQDPHU VDPSOH GHSHQG RQ WKH VWHUHRFKHPLVWU\ RI WKH LQWHUQDO ROHILQ XQLWV LW LV LPSRUWDQW WKDW WKH FLVWUDQV UDWLR RI WKH LQWHUQDO ROHILQ XQLWV EH GHWHUPLQHG DFFXUDWHO\ 7KUHH VSHFWURVFRSLF WHFKQLTXHV FDQ XVHG WR GHWHUPLQH WKH FLV DQG WUDQV VWHUHRFKHPLVWU\ + 105 & 105 DQG LQIUDUHG VSHFWURVFRS\ $OO WKUHH PHWKRGV ZHUH HPSOR\HG WR FKDUDFWHUL]H WKH SRO\PHU VDPSOHV WKDW DUH GHVFULEHG LQ WKLV GLVVHUWDWLRQ DQG WKH DFFXUDF\ RI WKH FLVWUDQV UDWLRV DVVLJQHG E\ WKHVH PHWKRGV ZDV LQGLYLGXDOO\ DFFHVVHG 7KH SURWRQ 105 VSHFWUD IRU DOO RI WKH SRO\PHUVDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV HVVHQWLDOO\ ZHUH LGHQWLFDO 6SHFWUXP f ZLWK WKH H[FHSWLRQ RI FLVWUDQV UDWLRV +DWDGD >

PAGE 96

6SHFWUXP 0+] + 105 RI OLQHDU SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 97

@ XVHG VSLQ GHFRXSOLQJ WR GLVWLQJXLVK EHWZHHQ WKH FLV DQG WUDQV SURWRQ VLJQDOV RI SRO\EXWDGLHQH D WHFKQLTXH ZKLFK FDQ EH DSSOLHG WR SRO\RFWHQDPHU 6SLQ GHFRXSOLQJ ZDV DSSOLHG WR SRO\RFWHQDPHU E\ 6DWR >@ ZKHUHE\ WKH ROHILQLF SURWRQV RI SRO\RFWHQDPHU FDQ EH VHSDUDWHG LQWR FLV DQG WUDQV SHDNV +RZHYHU WKH XVH RI TXDQWLWDWLYH & 105 ZRXOG OHDG WR PXFK PRUH DFFXUDWH DVVLJQPHQW RI FLVWUDQV UDWLRV IRU SRO\RFWHQDPHU EHFDXVH WKH VHSDUDWLRQ EHWZHHQ WKH WZR GHFRXSOHG SURWRQ 105 SHDNV LV PLQLPDO RQO\ SSP ZLWKRXW EDVHOLQH VHSDUDWLRQf $ FRPSDULVRQ RI WKH & 105 UHVRQDQFHV IRU SRO\RFWHQDPHU UHSRUWHG E\ .DW] >@ DQG WKRVH IRXQG IRU WKH SRO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LQGLFDWHV WKDW RQO\ OLQHDU SRO\RFWHQDPHU LV SURGXFHG 6SHFWUXP f 3ULRU WR SHUIRUPLQJ DQ\ TXDQWLWDWLYH & 105 H[SHULPHQWV WKH 7L UHOD[DWLRQ WLPHV RI DOO WKH FDUERQ DWRPV SUHVHQW LQ D UHSHDW XQLW RI SRO\RFWHQDPHU ZHUH GHWHUPLQHG ZLWK D 9DUDQ ;/ VSHFWURPHWHU >@ 5HOLDEOH FDUERQ LQWHJUDWLRQV FDQ RQO\ EH REWDLQHG IURP IXOO\ UHOD[HG & 105 VSHFWUD >@ DQG UHOD[DWLRQ WLPHV ZHUH PHDVXUHG IRU GLIIHUHQW SRO\RFWHQDPHU VDPSOHV LQ RUGHU WR GHWHUPLQH WKH ORQJHVW 7L SUHVHQW LQ D UHSHDWLQJ XQLW 6SHFWUXP LQGLFDWHV WKH GLIIHUHQW UHOD[DWLRQ WLPHV XVHG DQG WKH HIIHFW RI WKH UHOD[DWLRQ WLPHV RQ WKH VLJQDOV RI WKH GLIIHUHQW FDUERQ DWRPV LQ D UHSHDW XQLW 7KH 7_ UHOD[DWLRQ WLPHV IRXQG IRU WKH FDUERQ DWRPV LQ D UHSHDW XQLW DUH OLVWHG LQ 7DEOH

PAGE 98

6SHFWUXP 0+] & 105 RI OLQHDU SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 99

6SHFWUXP 0+] & 105 RI OLQHDU SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ VKRZLQJ WKH HIIHFW RI HLJKW GLIIHUHQW 7 UHOD[DWLRQ WLPHV RQ WKH LQWHQVLW\ RI WKH YDULRXV VLJQDOV

PAGE 100

7DEOH 5HOD[DWLRQ WLPHV RI FDUERQ DWRPV LQ D UHSHDW XQLW RI SRO\RFWHQDPHU 3HDNSSPf 7AVHFf (UURUVHFf %DVHG RQ WKLV LQIRUPDWLRQ D VLQJOH SXOVH GHOD\ PRGH DQG GHOD\ WLPHV PRUH WKDQ IRXU WLPHV WKDW RI WKH ORQJHVW 7L ZHUH XVHG IRU TXDQWLWDWLYH FDUERQ H[SHULPHQWV 8VLQJ & 105 VSHFWURVFRS\ LW LV SRVVLEOH WR GLVWLQJXLVK EHWZHHQ ERWK WKH FLV DQG WUDQV LQWHUQDO ROHILQ FDUERQV DQG WKH DOO\OLF FDUERQ DGMDFHQW WR WKH LQWHUQDO ROHILQ FDUERQ 7KH LQWHUQDO FLV ROHILQ FDUERQ DSSHDUV DW SSP DQG WKH WUDQV LQWHUQDO ROHILQLF DSSHDUV DW SSP 6HYHUDO UHVHDUFKHUV > @ KDYH GHPRQVWUDWHG WKDW WKH FDUERQ DWRP DGMDFHQW WR WKH LQWHUQDO ROHILQLF FDUERQ KDV WZR GLIIHUHQW UHVRQDQFHV LH WKH FLV FDUERQ DW SSP DQG WKH WUDQV FDUERQ DW SSPf 7KH UHVRQDQFHV DW SSP ZHUH UHSRUWHG WR EH ZHDN RU XQREVHUYHG IRU WKH SUHGRPLQDQWO\ FLVSRO\RFWHQDPHUV SURGXFHG E\ ULQJ RSHQLQJ PHWDWKHVLV $ RQH WR RQH FRUUHODWLRQ EHWZHHQ WKH SHDN LQWHQVLWLHV RI WKHVH DOO\OLF FDUERQ UHVRQDQFHV DQG WKRVH RI WKH LQWHUQDO ROHILQ FDUERQV FRUURERUDWHV WKH

PAGE 101

DVVLJQPHQW RI SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ IRU D VSHFLILF SRO\PHU VDPSOH 7KH SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ DV GHWHUPLQHG E\ TXDQWLWDWLYH FDUERQ 105 RI SRO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV VXPPDUL]HG LQ 7DEOH SDJH 2Q RFFDVLRQ FLV DQG WUDQV VWHUHRFKHPLVWU\ FDQ EH GHWHUPLQHG E\ LQIUDUHG VSHFWURVFRS\ KRZHYHU WKLV LV GLIILFXOW IRU SRO\RFWHQDPHU 7KH )7,5 VSHFWUXP 6SHFWUXP f RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ LOOXVWUDWHV WKH GLIILFXOWLHV DVVRFLDWHG ZLWK DVVLJQLQJ WKH SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ SUHVHQW LQ D SRO\RFWHQDPHU VDPSOH $ W\SLFDO SRO\RFWHQDPHU VDPSOH KDV WZR DEVRUSWLRQ EDQGV DW DQG FPn DULVLQJ UHVSHFWLYHO\ IURP LQSODQH EHQGLQJ RI WKH FLV XQLW DQG RXWRISODQH GHIRUPDWLRQ RI WKH WUDQV XQLW KRZHYHU D VWURQJ PHWK\OHQH VFLVVRULQJ DEVRUSWLRQ EDQG DW FP PDNHV LW GLIILFXOW WR VHSDUDWH WKH WUDQV DEVRUSWLRQ EDQG SURSHUO\ >@ 'XH WR WKLV RYHUODSSLQJ RI WUDQV DEVRUSWLRQV (IIHFWV RI 3HUFHQWDJH 7UDQV 6WHUHRFKHPLVWU\ RQ 0HOWLQJ DQG &U\VWDOOL]DWLRQ 7HPSHUDWXUHV RI 3RO\RFWHQDPHU &DOGHURQ ILUVW UHSRUWHG WKDW D OLQHDU UHODWLRQVKLS H[LVWV EHWZHHQ WKH SHUFHQW WUDQV VWHUHRFKHPLVWU\ DQG WKH PHOWLQJ SRLQW RI D VSHFLILF SRO\RFWHQDPHU VDPSOH SUHSDUHG E\ ULQJ RSHQLQJ PHWDWKHVLV >@ ,W LV RI JUHDW LQWHUHVW WR GHWHUPLQH ZKHWKHU SRO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ SRVVHVV WKH VDPH WKHUPDO FKDUDFWHULVWLFV DV WKRVH VDPSOHV SURGXFHG E\ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ

PAGE 102

6SHFWUXP ,QIUDUHG VSHFWUXP RI OLQHDU SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 103

8VLQJ GLIIHUHQWLDO VFDQQLQJ FDORULPHWU\ WKH SRO\RFWHQDPHU VDPSOHV GHVFULEHG SUHYLRXVO\ ZHUH VXEMHFWHG WR UHSHDWHG KHDWLQJ DQG FRROLQJ F\FOHV 8QOLNH &DOGHURQ ZKR GHWHFWHG D GHSHQGHQFH RQ WKHUPDO KLVWRU\ IRU 5203 SRO\RFWHQDPHU >@ QR GHSHQGHQFH RQ SUHYLRXV WKHUPDO KLVWRULHV ZDV REVHUYHG IRU $'0(7 SRO\RFWHQDPHU $IWHU WKHVH $'0(7 VDPSOHV ZHUH TXHQFKHG LGHQWLFDO PHOWLQJ SRLQWV ZHUH REVHUYHG DV EHIRUH 6SHFWUXP f ZKLFK LQGLFDWHV WKDW WKH $'0(7 SRO\PHUV PHOW DQG FU\VWDOOL]H DW VSHFLILF WHPSHUDWXUHV LQGHSHQGHQW RI SUHYLRXV WKHUPDO KLVWRULHV 8VLQJ (TXDWLRQ &DOGHURQ >@ SUHGLFWHG WKDW b WUDQV SRO\RFWHQDPHU ZRXOG KDYH D PHOWLQJ SRLQW RI s r& DQG )ORU\ >@ KDV VKRZQ WKDW (TXDWLRQ DSSOLHV WR WKH PHOWLQJ SRLQW RI DQ\ FRSRO\PHU KDYLQJ UDQGRPO\ SODFHG FU\VWDOOL]DEOH UHSHDW 7\SH 7f DQG QRQFU\VWDOOL]DEOH 7\SH &f UHSHDW XQLWV 7Pf 7P2f 5$+8f /Q 1 ZKHUH 1W LV WKH PROH IUDFWLRQ RI UHSHDW XQLWV RI W\SH 7 7Pr LV WKH PHOWLQJ SRLQW ZKHQ 1W 7P LV WKH PHOWLQJ SRLQW IRU DQ\ JLYHQ YDOXH RI 1W $+8 LV WKH KHDW RI IXVLRQ SHU PROH RI UHSHDW XQLW RI W\SH 7 DQG 5 LV WKH XQLYHUVDO JDV FRQVWDQW ,Q WKH FDVH RI SRO\RFWHQDPHU )ORU\nV WKHRU\ DVVXPHV D UDQGRP GLVWULEXWLRQ RI FU\VWDOOL]DEOH WUDQVROHILQ XQLWV 7\SH 7f DQG QRQFU\VWDOOL]DEOH FLVROHILQ XQLWV 7\SH &f

PAGE 104

+DDW )ORZ &Q9f 6SHFWUXP 'LIIHUHQWLDO VFDQQLQJ FDORULPHWU\ GDWD RI OLQHDU SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH +RRW )ORZ D9f

PAGE 105

3RO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV H[KLELW D OLQHDU UHODWLRQVKLS EHWZHHQ PHOWLQJ SRLQW DQG SHUFHQWDJH WUDQV ROHILQ XQLWV )LJXUH f 7KH GDWD XVHG WR FRQVWUXFW )LJXUH LV OLVWHG LQ 7DEOH 7DEOH 0HOWLQJ DQG FU\VWDOOL]DWLRQ WHPSHUDWXUHV RI SRO\RFWHQDPHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 5HDFWLRQ b WUDQV 0HOWLQJ SRLQW r&f &U\VWDOL]DWLRQ 3RLQW r&f 32 32 EHLQJ D SRO\RFWHQDPHU VDPSOH SUHSDUHG E\ PHDQV RI ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ 8VLQJ WKHVH GDWD D WKHRUHWLFDO PD[LPXP PHOWLQJ SRLQW RI r& r& LV FDOFXODWHG IURP WKH LQWHUFHSW RI WKH OLQH VKRZQ LQ )LJXUH ZKLFK LV r& KLJKHU WKDQ &DOGHURQ SUHGLFWHG 7KH GLIIHUHQFH FDQ EH DWWULEXWHG WR OLPLWDWLRQV LQ WKH DFFXUDF\ RI WKH PHWKRGV DQG LQVWUXPHQWDWLRQ XVHG E\ &DOGHURQ QRW WR D GLIIHUHQFH LQ SRO\PHU SURSHUWLHV 8WLOL]LQJ TXDQWLWDWLYH & 105 LH LQWHJUDWLRQ RI SHDNV WKDW DUH VHSDUDWHG E\ SSPf LV PRUH DFFXUDWH LQ DVVLJQLQJ WKH SHUFHQW WUDQV VWHUHRFKHPLVWU\ SUHVHQW LQ SRO\RFWHQDPHU WKDQ ,5 RU

PAGE 106

7P .f H \ H[ 5 H &' H H + ‘ f§ H H H /Q 1W H )LJXUH /LQHDU UHODWLRQVKLS EHWZHHQ 7P DQG /Q 1W IRU HOXFLGDWLRQ RI WKH PHOWLQJ SRLQW RI b WUDQV SRO\RFWHQDPHU

PAGE 107

!+ 105 PHWKRGV 7R LQVXUH KLJK DFFXUDF\ WKH PHOWLQJ SRLQWV ZHUH GHWHUPLQHG XVLQJ D 3HUNLQ (OPHU GLIIHUHQWLDO VFDQQLQJ FDORULPHWU\ V\VWHP WKDW KDYH ERWK DQ DFFXUDF\ DQG SUHFLVLRQ RI s r& 7KH LQVWUXPHQW ZDV FDOLEUDWHG UHSHDWHGO\ E\ D WZR SRLQW PHWKRG DQG VWDQGDUGV WKDW EUDFNHWHG WKH PHOWLQJ UDQJH RI WKH SRO\PHU VDPSOHV 7ZR FRPPHUFLDO VDPSOHV RI SRO\RFWHQDPHU 9HVWDQDPHU r1 DQG 9HVWDQDPHU r1 DOVR IDOO RQ WKH VDPH OLQH DV WKH SRO\PHU VDPSOHV SUHSDUHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 7KH FRPPHUFLDO SRO\PHUV ZHUH SURGXFHG XVLQJ ULQJ RSHQLQJ PHWDWKHVLV SURFHGXUHV >@ VLPLODU WR WKRVH XWLOL]HG E\ &DOGHURQ 7KH PRODU KHDW RI IXVLRQ $+Xf RI WKH WUDQV ROHILQLF UHSHDW XQLW FDQ EH FDOFXODWHG IURP WKH VORSH RI WKH OLQH LQ )LJXUH 7KH OHDVWVTXDUHV YDOXH REWDLQHG IRU WKH KHDW RI IXVLRQ ZDV FDOPROH ZLWK D b FRQILGHQFH OLPLWV RI s FDOPROH 7KH HQWURS\ RI IXVLRQ +X7Pr ZDV FDOPROHGHJ $JDLQ WKH GLIIHUHQFH EHWZHHQ WKHVH UHVXOWV DQG WKDW RI &DOGHURQ LV DWWULEXWHG WR DQDO\VLV HUURU DQG QRW D GLIIHUHQFH LQ SRO\PHU FRPSRVLWLRQ 7KH SRO\RFWHQDPHU VDPSOHV SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV KDYH D KLJK SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ ZKLFK LV LQ FRQWUDVW WR SRO\RFWHQDPHU SURGXFHG E\ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ 7KH UHFU\VWDOOL]DWLRQ WHPSHUDWXUH RI SRO\RFWHQDPHU FDQ DOVR EH UHODWHG WR WKH SHUFHQW WUDQV VWHUHRFKHPLVWU\ RI WKH SRO\PHU D SRLQW WKDW KDV QRW EHHQ PDGH EHIRUH 5HFU\VWDOOL]DWLRQ WHPSHUDWXUHV RI SRO\RFWHQDPHU SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV DUH LQGHSHQGHQW RI WKHLU WKHUPDO KLVWRULHV DQG WKXV LW LV SRVVLEOH WR

PAGE 108

SUHGLFW UHFU\VWDOOL]DWLRQ WHPSHUDWXUHV UHODWLYH WR WKH SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ RI WKH VDPSOH 7KLV LV LQ FRQWUDVW ZLWK WKH UHFU\VWDOOL]DWLRQ WHPSHUDWXUHV RI ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ SRO\RFWHQDPHU ZKLFK H[KLELW GHSHQGHQFH RQ SUHYLRXV WKHUPDO KLVWRU\ >@ GXH WR ORZ SHUFHQW WUDQV VWHUHR FKHPLVWU\ 7KH YDULDWLRQV LQ UHFU\VWDOOL]DWLRQ WHPSHUDWXUHV SUHYLRXVO\ PDGH LW LPSRVVLEOH WR SUHGLFW UHFU\VWDOOL]DWLRQ SRLQWV UHODWLYH WR SHUFHQWDJH WUDQV VWHUHRFKHPLVWU\ IRU 5203 SRO\RFWHQDPHU VDPSOHV >@ 8WLOL]LQJ GLIIHUHQWLDO VFDQQLQJ FDORULPHWU\ LW ZDV SRVVLEOH WR DFFXUDWHO\ GHWHUPLQH WKH UHFU\VWDOOL]DWLRQ WHPSHUDWXUHV RI VDPSOHV SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DV ZHOO DV WKH KLJKHU WUDQV FRPPHUFLDO ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ VDPSOH 9HVWHQDPHU r1 7DEOH SDJH f 8VLQJ (TXDWLRQ DQG SORWWLQJ 7FYV/Q 1W D OLQHDU UHODWLRQVKLS EHWZHHQ WKH WZR YDULDEOHV ZDV HVWDEOLVKHG )URP WKH LQWHUFHSW RI WKH OLQH )LJXUH f D UHFU\VWDOOL]DWLRQ WHPSHUDWXUH RI sr& IRU b WUDQV SRO\RFWHQDPHU FDQ EH SUHGLFWHG 'HWHUPLQDWLRQ RI WKH 0ROHFXODU :HLJKWV RI WKH 3RO\RFWHQDPHU 6DPSOHV 3URGXFHG EY $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ 6LQFH WKH SK\VLFDO SURSHUWLHV RI DQ\ SRO\PHU GHSHQG RQ LWV PROHFXODU ZHLJKW LW LV HVVHQWLDO WR EH DEOH WR DFFXUDWHO\ GHWHUPLQH WKLV TXDQWLW\ 9HU\ IHZ PHWKRGV H[LVW ZKLFK GLUHFWO\ GHWHUPLQH WKH PROHFXODU ZHLJKW RI D SRO\PHU VDPSOH 0RVW LQVWUXPHQWDO PHWKRGV SURGXFH FRPSDULVRQ PROHFXODU ZHLJKWV LH WKH PROHFXODU ZHLJKW RI DQ XQNQRZQ VDPSOH LV GHWHUPLQHG E\ FRPSDULQJ LW WR VHYHUDO VDPSOHV

PAGE 109

7F .f )LJXUH /LQHDU UHODWLRQVKLS EHWZHHQ 7& DQG /Q 1W IRU HOXFLGDWLRQ RI WKH FU\VWDOOL]DWLRQ SRLQW RI b WUDQV SRO\RFWHQDPHU

PAGE 110

RI NQRZQ PROHFXODU ZHLJKWf 0RUH RIWHQ WKDQ QRW WKH XQNQRZQ PROHFXODU ZHLJKW SRO\PHU DQG VWDQGDUGL]HG PROHFXODU ZHLJKW SRO\PHUV KDYH GLIIHUHQW UHSHDWLQJ XQLWV LH QRW WKH VDPH FKHPLFDO VWUXFWXUHf 6HYHUDO PDWKHPDWLFDO UHODWLRQVKLSV H[LVW ZKLFK FRUUHODWH WKH SK\VLFDO SURSHUWLHV RI D SRO\PHU VDPSOH ZLWK LWV LQIOXHQFH RQ WKH PROHFXODU ZHLJKW RI D VDPSOH >@ 7KH YLVFRVLW\ PROHFXODU ZHLJKW (TXDWLRQ f LV RQH VXFK UHODWLRQVKLS WKDW FRUUHFWV IRU WKH FKDQJHV LQ SK\VLFDO SURSHUWLHV /Q >Q@ /Q D /Q >0YM E\ XVLQJ WKH WKH 0DUN+RZLQN6DNXUDGD FRQVWDQWV DQG D :LWKRXW WKHVH FRQVWDQWV RQO\ UHODWLYH PROHFXODU ZHLJKW FRPSDULVRQV FDQ EH PDGH EHWZHHQ GLIIHUHQW VDPSOHV RI WKH VDPH W\SH RI SRO\PHU &RQVHTXHQWO\ LW LV LPSRUWDQW WR NQRZ WKH 0DUN +RZLQN6DNXUDGD FRQVWDQWV IRU DQ\ SRO\PHU 7KHVH FRQVWDQWV ZKLFK ZHUH XQNQRZQ IRU SRO\RFWHQDPHU KDYH EHHQ GHWHUPLQHG LQ WKH FRXUVH RI WKLV ZRUN 7KHUH H[LVW VHYHUDO GLIIHUHQW PHWKRGV IRU WKH GHWHUPLQDWLRQ RI WKH PROHFXODU ZHLJKW RI D SRO\PHU VDPSOH (PSOR\LQJ VHYHUDO GLIIHUHQW PROHFXODU ZHLJKW GHWHUPLQDWLRQ WHFKQLTXHV YDOXHV IRU WKH DQG D ZHUH FDOFXODWHG IRU SRO\RFWHQDPHU VDPSOHV KDYLQJ PROHFXODU ZHLJKWV LQ WKH UDQJH 6LQFH WKH 0DUN +RZLQN 6DNXUDGD FRQVWDQWV RI SRO\RFWHQDPHU DW r& XVLQJ WROXHQH DV VROYHQW ZHUH XQNQRZQ WKH LQWULQVLF YLVFRVLWLHV GHWHUPLQHG FRXOG QRW EH FRQYHUWHG WR PROHFXODU ZHLJKWV XVLQJ HTXDWLRQ (VWLPDWHG 0DUN+RZLQN6DNXUDGD FRQVWDQWV

PAGE 111

ZHUH FDOFXODWHG IURP WKH PROHFXODU ZHLJKWV GHWHUPLQHG E\ 105 HQGJURXS DQGRU YDSRU SUHVVXUH RVPRPHWU\ DQDO\VLV IRU SRO\PHUV SURGXFHG LQ WZR VHSDUDWH H[SHULPHQWV 7KH PROHFXODU ZHLJKWV QHHGHG IRU WKHVH FDOFXODWLRQV ZHUH GHWHUPLQHG DV GHVFULEHG EHORZ ,W LV SRVVLEOH WR GHWHFW WKH YLQ\O HQGJURXSV RI ORZ PROHFXODU ZHLJKW SRO\RFWHQDPHU VDPSOHV SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ E\ & 105 VSHFWURVFRS\ 6SHFWUXP f 1XPEHU DYHUDJH PROHFXODU ZHLJKWV UDQJLQJ IURP WR ZHUH GHWHUPLQHG E\ & 105 HQGJURXS DQDO\VLV IRU $'0(7 SRO\RFWHQDPHU 7DEOH 3DJH DQG 7DEOH SDJH f 7KLV RSSRUWXQLW\ GRHV QRW DOZD\V H[LVW LQ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ VLQFH WKH 5203 SRO\PHUV SRVVHVV DQ XQNQRZQ FKDLQ FDSSLQJ JURXS RQ WKH WHUPLQDWLRQ HQG DQG WKH DON\OHGLHQH OLJDQG LQLWLDOO\ SUHVHQW RQ WKH FDWDO\VW RQ WKH LQLWLDWLRQ HQG ,Q RUGHU WR YHULI\ WKHVH QXPEHU DYHUDJH PROHFXODU ZHLJKWV REWDLQHG E\ HQGJURXS DQDO\VLV WKH PROHFXODU ZHLJKWV RI SRO\RFWHQDPHU VDPSOHV SURGXFHG LQ WZR VHSDUDWH H[SHULPHQWV ZHUH GHWHUPLQHG E\ YDSRU SUHVVXUH RVPRPHWU\ 6XFURVH RFWDDFHWDWH 0: f ZDV XVHG WR FDOLEUDWH WKH YDSRU SUHVVXUH RVPRPHWHU DW r& XVLQJ WROXHQH DV VROYHQW DQG D FDOLEUDWLRQ IDFWRU RI ZDV REWDLQHG ZKLFK LV LQ JRRG FRUUHODWLRQ ZLWK WKH YDOXH RI UHSRUWHG E\ WKH PDQXIDFWXUHU >@ RI WKH LQVWUXPHQW )LJXUH f $ QXPEHU DYHUDJH PROHFXODU ZHLJKW RI )LJXUH f ZDV REWDLQHG IRU RQH VDPSOH ZKLFK LV LQ H[FHOOHQW DJUHHPHQW ZLWK WKH YDOXH RI IRXQG E\ 105 HQGJURXS DQDO\VLV $ VHFRQG SRO\PHU VDPSOH SURGXFHG D 932 YDOXH RI )LJXUH f

PAGE 113

9F )LJXUH \ [ 5 9DSRU SUHVVXUH RVPRPHWHU FDOLEUDWLRQ FXUYH XVLQJ VXFURVH RFWDDFHWDWH DV WKH VWDQGDUG

PAGE 114

9& )LJXUH \ ; )8 9DSRU SUHVVXUH RVPRPHWU\ GDWD RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ 7KH 0Q LV

PAGE 115

\ [ 5 FRQF J/f )LJXUH 9DSRU SUHVVXUH RVPRPHWU\ GDWD RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ 7KH 0Q LV

PAGE 116

'HWHUPLQDWLRQ RI WKH 0DUN+RZLQN6DNXUDGD &RQVWDQWV DQGBD IRU 3ROYRFWHQDPHU DW r& LQ 7ROXHQH 7KH PRVW ZLGHO\ XVHG PHWKRG RI GHWHUPLQLQJ WKH 0DUN+RZLQN 6DNXUDGD FRQVWDQWV HPSOR\V YHU\ QDUURZ PROHFXODU ZHLJKW IUDFWLRQDWHG SRO\PHU VDPSOHV >@ ZKHUH PROHFXODU ZHLJKW LV GHWHUPLQHG XVLQJ DEVROXWH PHWKRGV VXFK DV OLJKW VFDWWHULQJ RU RVPRPHWU\ )UDFWLRQDWLRQ LV GRQH WR HQVXUH YHU\ QDUURZ PROHFXODU ZHLJKW XQLIRUPLW\ 0Z0Q IRU ZKLFK 0Z 0Q 0Y SURYLGHV D JRRG DSSUR[LPDWLRQf 7KH OLJKW VFDWWHULQJ PROHFXODU ZHLJKW 0Zf RU RVPRPHWU\ PROHFXODU ZHLJKW 0Qf QRZ FDQ EH XVHG WR VROYH WKH YLVFRVLW\ PROHFXODU ZHLJKW (TXDWLRQ f VLQFH WKHVH PROHFXODU ZHLJKWV DUH YLUWXDOO\ HTXLYDOHQW ZKHQ WKH SRO\GLVSHUVLW\ UDWLR DSSURDFKHV XQLW\ 2QH LPSRUWDQW FODVV RI SRO\PHUV ZKLFK FRQVWLWXWHV DQ H[FHSWLRQ WR WKH UHVWULFWLRQ RI QDUURZ PROHFXODU ZHLJKW GLVWULEXWLRQ FRQVLVWV RI OLQHDU SRO\DPLGHV DQG SRO\HVWHUV SRO\PHUL]HG XQGHU HTXLOLEULXP FRQGLWLRQV )RU HTXLOLEULXP FRQGLWLRQ VDPSOHV WKH PROHFXODU ZHLJKW XQLIRUPLWLHV DUH DOZD\V UDQGRP DQG >Q@ .a0QD (TXDWLRQ FDQ EH DSSOLHG >@ )RU WKLV JURXS LQ ZKLFK 0Z 0Qf ZKROH SRO\PHU VDPSOHV FDQ EH XVHG LQ FDOFXODWLRQV $F\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV DQ H[DPSOH RI DQ HTXLOLEULXP SRO\PHUL]DWLRQ DQG VKRXOG OHDG WR PROHFXODU ZHLJKW XQLIRUPLWLHV DSSUR[LPDWLQJ DQG WKHUHIRUH WKH SRO\RFWHQDPHU

PAGE 117

VDPSOHV SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ IDOO LQWR WKH FDWHJRU\ RI HTXLOLEULXP SRO\PHUV 7KXV HTXDWLRQ FDQ EH DSSOLHG 0DUN+RZLQN6DNXUDGD FRQVWDQWV DUH QRW VWULFWO\ LQGHSHQGHQW RI WKH PROHFXODU ZHLJKW UDQJH RYHU ZKLFK WKH\ DUH GHWHUPLQHG 2OLJRPHUV OHVV WKDQ DERXW UHSHDWLQJ XQLWV LQ PRVW YLQ\O SRO\PHUVf RIWHQ FRQIRUP WR (TXDWLRQ >Q@ .a0Yr ZKHUH DQG WKH H[SRQHQW D DUH LQGHSHQGHQW RI WKH VROYHQW >@ 6LQFH VROYHQW LQGHSHQGHQFH LV DVVXPHG LH D WKHWD VROYHQW WKH D YDOXH IRU WKH LGHDO VWDWLVWLFDO FRLO LV DQG DSSOLHV WR WKHVH ROLJRPHUV $EVROXWH PROHFXODU ZHLJKWV RI SRO\RFWHQDPHU VDPSOHV SURGXFHG LQ WZR DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV ZHUH GHWHUPLQHG DV ZHOO DV WKH LQWULQVLF YLVFRVLWLHV RI ERWK SRO\PHU VDPSOHV DQG 0DUN+RZLQN6DNXUDGD FRQVWDQWV IRU SRO\RFWHQDPHU ZHUH FDOFXODWHG XVLQJ HTXDWLRQ $ YDOXH RI [ BDQG DQ H[SRQHQW D RI ZHUH REWDLQHG IURP WKHVH FDOFXODWLRQV %RWK SRO\PHUV IDOO LQ WKH PROHFXODU ZHLJKW UDQJH ZKLFK LV DERYH WKH ORZHU OLPLW RI FDOLEUDWLRQ UHSHDWLQJ XQLWVf $ YDOXH RI FORVH WR EXW VOLJKWO\ KLJKHU LV H[SHFWHG VLQFH DSSUR[LPDWHO\ LGHDO FKDLQ EHKDYLRU LV UHDOLVWLF IRU WKLV PROHFXODU ZHLJKW UDQJH LQ D JRRG VROYHQW 5HGXFHG YLVFRVLWLHV RI WKH SRO\RFWHQDPHU VDPSOHV RI KLJKHU PROHFXODU ZHLJKW ZHUH GHWHUPLQHG E\ YLVFRPHWU\ )LJXUHV DQG VKRZ WKH SORWV RI >Q@VSF DQG >Q@PKF YHUVXV

PAGE 118

>Q@ \ 2[ 5 Â’ >Q@ LQK \ [ 5 r >QO V3F FRQH G/Jf )LJXUH 9LVFRVLW\ RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ

PAGE 119

FRQH G/9Jf )LJXUH 9LVFRVLW\ RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ

PAGE 120

\ [ 5 4 >Q@ LQK \ [ 5 f >Q@ VSF )LJXUH 9LVFRVLW\ RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ

PAGE 121

)LJXUH 9LVFRVLW\ RI SRO\RFWHQDPHU SURGXFHG LQ UHDFWLRQ E\ $'0(7 SRO\PHUL]DWLRQ

PAGE 122

FRQFHQWUDWLRQ IRU IRXU GLIIHUHQW VDPSOHV 5HGXFHG YLVFRVLWLHV H[WUDSRODWHG IURP WKHVH ILJXUHV DUH OLVWHG LQ WKH H[SHULPHQWDO VHFWLRQ 6L]H H[FOXVLRQ FKURPDWRJUDSK\ ZDV DOVR GRQH WR GHWHUPLQH PROHFXODU ZHLJKW DQG WKH XQLIRUPLW\ RI $'0(7 SRO\PHU VDPSOHV >@ $ WKUHH SRLQW FDOLEUDWLRQ FXUYH ZDV FRQVWUXFWHG XVLQJ SRO\VW\UHQH VWDQGDUGV GLVVROYHG LQ WROXHQH DW URRP WHPSHUDWXUH )LJXUH f 7KH SRO\PHU WKDW IRUPHG ZKHQ D PLQLPDO DPRXQW RI VROYHQW ZDV XVHG )LJXUH f ZDV GHWHUPLQHG WR KDYH D 0Z DQG 0Q DFFRUGLQJ WR SRO\VW\UHQH FDOLEUDWLRQ 7KHVH DUH QRW SRO\RFWHQDPHU PROHFXODU ZHLJKWV DQG KDG WR EH FRQYHUWHG 7KH XQLYHUVDO FDOLEUDWLRQ FXUYH (TXDWLRQ f SURSRVHG E\ -9 'DZNLQV > @ /RJ 0S /RJ 0SV /RJ $SV$S ZDV XVHG WR FRQYHUW WKH DERYH PROHFXODU ZHLJKW YDOXHV WR DFWXDO SRO\RFWHQDPHU PROHFXODU ZHLJKWV 7KHVH SRO\VW\UHQH PROHFXODU ZHLJKWV FDQ EH FRQYHUWHG WR SRO\RFWHQDPHU PROHFXODU ZHLJKWV E\ PXOWLSO\LQJ E\ >@ ZKLFK UHSUHVHQWV WKH HVWLPDWHG UDWLR RI WKH XQSHUWXUEHG GLPHQVLRQV $ /!0f IRU SRO\VW\UHQH GLYLGHG E\ WKDW RI SRO\RFWHQDPHU 7KXV WKH DFWXDO PROHFXODU ZHLJKWV RI WKLV SRO\RFWHQDPHU VDPSOH LV 0Z DQG 0Q 0ROHFXODU ZHLJKWV RI WKLV RUGHU RI PDJQLWXGH FRQILUP WKDW KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU FDQ EH SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 7KH SRO\XQLIRUPLW\ RI WKH VDPSOH LV LQGLFDWLQJ WKDW WKH VDPSOH ZDV SURGXFHG E\ D VWHS SURSDJDWLRQ W\SH

PAGE 123

)LJXUH 6L]H H[FOXVLRQ FKURPDWRJUDSK\ FDOLEUDWLRQ FXUYH XVLQJ WKUHH SRO\VW\UHQH VWDQGDUGV

PAGE 124

)LJXUH 6L]H H[FOXVLRQ FKURPDWRJUDSK\ GDWD RI KLJK PROHFXODU ZHLJKW SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 125

SRO\PHUL]DWLRQ ZKLFK LV H[SHFWHG LQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV 7HVWLQJ FDOFXODWHG 0DUN+RZLQN6DNXUDGD FRQVWDQWV $ WHVW RI WKH YDOLGLW\ RI WKH 0DUN+RZLQN6DNXUDGD FRQVWDQWV OLHV LQ XVLQJ WKHP WR FDOFXODWH WKH PROHFXODU ZHLJKW RI WKH KLJKHVW PROHFXODU ZHLJKW VDPSOH SUHSDUHG &DOFXODWHG 0+6 FRQVWDQWV FDQ EH FRPSDUHG WR WKH IDFWRU f XVHG WR FRQYHUW WKH SRO\VW\UHQH PROHFXODU ZHLJKWV WR SRO\RFWHQDPHU PROHFXODU ZHLJKWV ,Q GRLQJ VR LW ZDV IRXQG WKDW WKH KLJK PROHFXODU ZHLJKW VDPSOH ZKLFK KDV DQ LQWULQVLF YLVFRVLW\ RI KDV D 0Y RI 7KH PROHFXODU ZHLJKWV REWDLQHG E\ VL]H H[FOXVLRQ FKURPDWRJUDSK\ 0Z DQG 0Q DUH LQ H[FHOOHQW FRUUHODWLRQ WR ZKDW ZRXOG EH H[SHFWHG LH 0Z 0Y } 0Q 7KH YDOLGLW\ RI WKH DVVXPSWLRQV SUHYLRXVO\ PDGH > @ LQ XVLQJ WKH XQLYHUVDO FDOLEUDWLRQ HTXDWLRQ WR FRQYHUW SRO\VW\UHQH FDOLEUDWLRQ PROHFXODU ZHLJKWV WR SRO\RFWHQDPHU PROHFXODU ZHLJKWV E\ XVLQJ D FRQYHUVLRQ IDFWRU RI >@ ZDV FRQILUPHG $GGLWLRQDOO\ IRU WKH ILUVW WLPH D UHOLDEOH VHW RI 0DUN+RZLQN 6DNXUDGD FRQVWDQWV IRU SRO\RFWHQDPHU KDV EHHQ PHDVXUHG ,QYHVWLJDWLRQ RI WKH 3RVVLEOH )RUPDWLRQ RI 0DFURFYFOHV 'XULQJ $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ 7KH DELOLW\ RI PHWDWKHVLV WR SURGXFH ERWK ULQJ DQG OLQHDU FRPSRXQGV KDV KDG D JUHDW LQIOXHQFH RQ LWV DSSOLFDELOLW\ DV D SRO\PHUL]DWLRQ UHDFWLRQ $V H[SHFWHG WKH GRXEOH ERQGV LQ D OLQHDU

PAGE 126

GLHQH VHSDUDWHG E\ FDUERQ DWRPV PHWDWKHVL]H WR SURGXFH F\FORKH[HQH LQ b \LHOGV DQG QR SRO\PHU LV IRUPHG >@ &\FOL]DWLRQ PHWDWKHVLV LV DQ H[DPSOH ZKHUH WKH IRUPDWLRQ RI D F\FOLF FRPSRXQG SUHYHQWV PHWDWKHVLV IURP EHLQJ XVHG DV D SRO\PHUL]DWLRQ UHDFWLRQ 2Q WKH RWKHU KDQG WKH ULQJ RSHQLQJ RI VWUDLQHG F\FOLF FRPSRXQGV E\ PHWDWKHVLV KDV SURYHQ WR EH DQ H[FHOOHQW SRO\PHUL]DWLRQ WHFKQLTXH >@ 6LQFH PHWDWKHVLV FKHPLVWU\ LV FDSDEOH RI \LHOGLQJ ERWK F\FOL]DWLRQ DQG SRO\PHUL]DWLRQ UHDFWLRQV WKH SRVVLELOLW\ RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI GHFDGLHQH EHLQJ D FRPELQDWLRQ RI WKHVH WZR UHDFWLRQV ZDV LQYHVWLJDWHG $F\FOLF GLHQH PHWDWKHVLV PLJKW ILUVW F\FOL]H WKH PRQRPHU GHFDGLHQH WR F\FORRFWHQH ZKLFK PLJKW VXEVHTXHQWO\ ULQJ RSHQ SRO\PHUL]H .LQHWLFDOO\ WKH SUREDELOLW\ RI DQ ROLJRPHU UHDFWLQJ ZLWK LWV RZQ FKDLQ HQG LV ORZ EHFDXVH WKHUH LV D KLJK FRQFHQWUDWLRQ RI RWKHU GLHQH PROHFXOHV DW WKH RXWVHW RI WKH UHDFWLRQ )URP DQ HQWURS\ SHUVSHFWLYH KRZHYHU F\FOL]DWLRQ RI GHFDGLHQH LV IDYRUHG VLQFH WZR PROHFXOHV F\FORRFWHQH DQG HWK\OHQH DUH SURGXFHG ,Q RUGHU WR H[DPLQH WKH OLNHOLKRRG RI F\FOL]DWLRQ FKHPLFDO LRQL]DWLRQ PDVV VSHFWURVFRS\ ZDV SHUIRUPHG RQ WZR ZHOO FKDUDFWHUL]HG SRO\RFWHQDPHU VDPSOHV ZLWK VLPLODU QXPEHU DYHUDJH PROHFXODU ZHLJKWV af RQH SURGXFHG LQ PLQXWHV XQGHU EXON UHDFWLRQ FRQGLWLRQV DQG WKH RWKHU SURGXFHG LQ VROXWLRQ 7KH PDVV VSHFWUXP 6SHFWUXP f RI WKH ILUVW VDPSOH VKRZHG SDUHQW LRQ SHDNV DW PH DQG ZKLFK LV FRQVLVWHQW ZLWK OLQHDU GLPHUV DQG WULPHUV LH WKH YLQ\O HQGJURXSV DUH SUHVHQWf RI SRO\RFWHQDPHU )UDFWLRQV RI OLQHDU SRO\RFWHQDPHU PROHFXODU ZHLJKW

PAGE 127

6SHFWUXP &KHPLFDO LRQL]DWLRQ PDVV VSHFWUXP RI ROLJRPHUV RI SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 128

SHU OLQHDU UHSHDWLQJ XQLWf DQGRU PDFURF\FOLF SRO\RFWHQDPHU PROHFXODU ZHLJKW SHU F\FOLF UHSHDWLQJ XQLWf DUH LQGLFDWHG E\ SDUHQW LRQ SHDNV DW PH DQG 0DVV VSHFWUXP RI WKH VHFRQG VDPSOH 6SHFWUXP f H[KLELWV SDUHQW LRQ SHDNV DW PH DQG ZKLFK DUH FRQVLVWHQW ZLWK WKH SUHVHQFH RI OLQHDU ROLJRPHUV RI WKH VWRLFKLRPHWU\ &+Lf &V+Lf[ ZKHUH [ YDULHV EHWZHHQ DQG 3DUHQW LRQ SHDNV UHSUHVHQWDWLYH RI D OLQHDU IUDFWLRQ DQGRU PDFURF\FOLF SRO\RFWHQDPHU ZHUH PLQXWH RU DEVHQW IRU WKLV VDPSOH :KLOH SDUHQW LRQ SHDNV DUH SUHVHQW WKDW DUH FRQVLVWHQW ZLWK OLQHDU ROLJRPHUV RI SRO\RFWHQDPHU LQGLFDWLQJ WKDW DF\FOLF GLHQH PHWDWKHVLV RFFXUV LQ ERWK UHDFWLRQV WKHVH GDWD DORQH GR QRW HOLPLQDWH WKH SRVVLELOLW\ RI PDFURF\FOHV RI SRO\RFWHQDPHU EHLQJ IRUPHG $QRWKHU PHWKRG WR H[DPLQH ULQJ IRUPDWLRQ LV WR PRQLWRU WKH HYROXWLRQ RI HWK\OHQH GXULQJ WKH UHDFWLRQ (WK\OHQH IRUPV RQO\ ZKHQ ULQJ FORVXUH RFFXUV DQG QRW GXULQJ ULQJ RSHQLQJ SRO\PHUL]DWLRQ 7KXV LI ULQJ FORVXUH LV WKH RQO\ UHDFWLRQ WDNLQJ SODFH QR HWK\OHQH FDQ EH SURGXFHG LQ ODWHU VWDJHV RI WKH SRO\PHUL]DWLRQ > @ 7KH GHWHFWLRQ RI HWK\OHQH DW ODWH VWDJHV LQ WKH UHDFWLRQ DQG WKH IRUPDWLRQ RI SUHGRPLQDQWO\ GLYLQ\O OLQHDU SRO\PHUV LQGLFDWHV WKDW DF\FOLF GLHQH PHWDWKHVLV RFFXUV DV RSSRVHG WR ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ VLQFH ERWK WKHUPRG\QDPLFV DQG NLQHWLFV OLPLW WKH IRUPDWLRQ RI ULQJV DW ODWHU VWDJHV RI WKH UHDFWLRQ 7KH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH SURYLGHV IXUWKHU HYLGHQFH IRU WKH HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ SRO\PHUL]DWLRQ QDWXUH RI $'0(7 FKHPLVWU\

PAGE 129

,0WL 0 := 6SHFWUXP g ,0 0 L M&2 0 ‘ &KHPLFDO LRQL]DWLRQ PDVV VSHFWUXP RI ROLJRPHUV RI SRO\RFWHQDPHU SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI GHFDGLHQH

PAGE 130

7KH IROORZLQJ FKDSWHU SUHVHQWV WKH SRO\PHUL]DWLRQ RI KH[DGLHQH HOXFLGDWLQJ LWV VWHS SURSDJDWLRQ QDWXUH WKH OLQHDULW\ RI SRO\PHUV SURGXFHG DQG WKH DSSURSULDWH UHDFWLRQ FRQGLWLRQV IRU $'0(7 SRO\PHUL]DWLRQV

PAGE 131

&+$37(5 7+( 67(3 3523$*$7,21 &21'(16$7,21 1$785( 2) $&<&/,& ',(1( 0(7$7+(6,6 32/<0(5,=$7,21 7KH DF\FOLF GLHQH PHWDWKHVLV UHDFWLRQ RI KH[DGLHQH )LJXUH f LV GHVFULEHG LQ WKLV FKDSWHU DQG UHSUHVHQWV WKH VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH QDWXUH RI WKH SRO\PHUL]DWLRQ LWVHOI KH[DGLHQH $'0(7 3RO\PHUL]DWLRQ ; KF FK 3RO\EXWDGLHQH DQG (WK\OHQH )LJXUH $F\FOLF 'LHQH 0HWDWKHVLV RI +H[DGLHQH 9LQ\O DGGLWLRQ VLGH UHDFWLRQV SUHYLRXVO\ SUHYHQWHG DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ IURP SURGXFLQJ KLJK PROHFXODU ZHLJKW SRO\PHUV DQG KDG WR EH HOLPLQDWHG EHIRUH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FRXOG EHFRPH D YLDEOH SRO\PHUL]DWLRQ WHFKQLTXH 7KH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH ZDV SUHYLRXVO\ WKRXJKW WR EH XQOLNHO\ VLQFH VLGH UHDFWLRQV GRPLQDWHG DQG FRXOG QRW EH HOLPLQDWHG >@ $ FKDOOHQJH H[LVWHG WR SURGXFH SHUIHFWO\ OLQHDU SHUIHFWO\ SRO\EXWDGLHQH IURP KH[DGLHQH E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ WHFKQLTXHV 7KH HOLPLQDWLRQ RI YLQ\O DGGLWLRQ VLGH UHDFWLRQV ZDV LQYHVWLJDWHG E\ GHWHUPLQLQJ ZKHWKHU DQ\ YLQ\O OLQNDJHV DUH

PAGE 132

SUHVHQW LQ WKH SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH 7KH HOLPLQDWLRQ RI YLQ\O OLQNDJHV ZRXOG UHVXOW LQ WKH IRUPDWLRQ RI SHUIHFWO\ OLQHDU SRO\EXWDGLHQH 6LPLODU UHDFWLRQ FRQGLWLRQV ZHUH XVHG LQ WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH DV WKRVH HPSOR\HG LQ WKH SRO\PHUL]DWLRQ RI GHFDGLHQH $V D UHVXOW PROHFXODU ZHLJKW FRPSDULVRQV ZHUH SRVVLEOH IRU WKH WZR GLIIHUHQW SRO\PHUV IRUPHG XQGHU VLPLODU UHDFWLRQ FRQGLWLRQV DQG E\ WKH VDPH SRO\PHUL]DWLRQ WHFKQLTXH $'0(7f ZHUH SRVVLEOH 7KH DEVHQFH RI F\FOL]DWLRQ VLGH UHDFWLRQV LQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV SURSRVHG WR EH D IXQGDPHQWDO GLIIHUHQFH EHWZHHQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DQG ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ $OVR WKH SRO\GLVSHUVLWLHV RI SRO\EXWDGLHQH IRUPHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH FRXOG YHULILHV WKH DVVXPSWLRQ WKDW DF\FOLF GLHQH PHWDWKHVLV LV DQ VWHS SURSDJDWLRQ W\SH SRO\PHUL]DWLRQ UHDFWLRQ )XUWKHU WKH PDVV VSHFWURVFRS\ GDWD RI WKH SRO\PHU DQG JDVVHV SURGXFHG HOXFLGDWHV WKH FRQGHQVDWLRQ QDWXUH RI $'0(7 SRO\PHUL]DWLRQV 7KH UHVXOWV RI WKHVH LQYHVWLJDWLRQV DUH UHSRUWHG LQ WKLV FKDSWHU VSHFLILFDOO\ DGGUHVVLQJ WKH VWHS SURSDJDWLRQ FRQGHQVDWLRQ QDWXUH RI $'0(7 SRO\PHUL]DWLRQV 'HWHUPLQLQJ WKH /LQHDULW\ RI $F\FOLF 'LHQH 0HWDWKHVLV 3URGXFHG 3ROYEXWDGLHQH 7UDGLWLRQDOO\ SRO\EXWDGLHQH KDV EHHQ SURGXFHG E\ RQH RI VHYHUDO GLIIHUHQW FKDLQ SRO\PHUL]DWLRQ PHWKRGV >@ 7KH PRQRPHU XVHG LQ WKHVH FKDLQ SRO\PHUL]DWLRQV LV EXWDGLHQH D FRQMXJDWHG

PAGE 133

GLHQH FDSDEOH RI XQGHUJRLQJ ERWK DQG DGGLWLRQ UHDFWLRQV >@ DQG WKH SRO\PHUV WKDW UHVXOW FRQVLVW RI D FRPELQDWLRQ RI WKUHH SRVVLEOH UHSHDW XQLWV )LJXUH f I&)8 &+f§f &+ &IU FLV ROHILQ UHSHDW XQLW &+A &+ &+? FKf WUDQV ROHILQ UHSHDW XQLW I&+OW &+ ,, FK YLQ\O UHSHDW XQLW )LJXUH 7KH 7KUHH 3RVVLEOH 5HSHDW 8QLWV RI 3RO\EXWDGLHQH 7KH SK\VLFDO SURSHUWLHV RI D SRO\EXWDGLHQH VDPSOH GHSHQG RQ WKH UDWLR DQG GLVWULEXWLRQ RI WKHVH UHSHDW XQLWV DQG FRQVHTXHQWO\ UHVHDUFK KDV EHHQ FRQGXFWHG LQ RUGHU WR FRQWURO WKH QXPEHU DQG W\SH RI UHSHDW XQLWV SUHVHQW DQG XOWLPDWHO\ SURGXFH VWHUHRFKHPLFDOO\ SXUH SRO\PHUV :KLOH WKH UHODWLYH DPRXQW RI HDFK UHSHDW XQLW SUHVHQW LV GHSHQGHQW RQ WKH UHDFWLRQ FRQGLWLRQV DQG SRO\PHUL]DWLRQ WHFKQLTXH XVHG WKH PHFKDQLVP RI DQ\ FRQMXJDWHG YLQ\O DGGLWLRQ FKDLQ SRO\PHUL]DWLRQ VXJJHVWV WKDW DOO WKUHH RI WKH SRVVLEOH UHSHDW XQLWV VKRXOG EH SUHVHQW DW OHDVW WR VRPH GHJUHH )LJXUH f

PAGE 134

,W LV GHEDWDEOH ZKHWKHU SHUIHFWO\ OLQHDU SRO\EXWDGLHQH KDV HYHU EHHQ SURGXFHG WKRXJK UHVHDUFKHUV KDYH UHSRUWHG WKDW VDPSOHV ZLWKRXW WKH SUHVHQFH RI YLQ\O OLQNDJHV KDYH EHHQ PDGH >@ $OWKRXJK HPSOR\LQJ FHUWDLQ UHDFWLRQ FRQGLWLRQV FDQ PLQLPL]H WKH IRUPDWLRQ RI YLQ\O OLQNDJHV LQ D SRO\EXWDGLHQH VDPSOH WKH PHFKDQLVP E\ ZKLFK WKHVH UHDFWLRQV SURFHHG SUHVHQWV WKH SRVVLELOLW\ IRU DGGLWLRQ DV VKRZQ LQ )LJXUH IRU DQLRQLF FKDLQ SRO\PHUL]DWLRQ &+ &+&+ &+ EXWDGLHQH 5 /L 5f§&+f§&+ &+f§&+n /L &+ &+&+ &+ &+ HWF LL &+ W YLQ\O OLQNDGJH )LRXUH 3RO\EXWDGLHQH IRUPHG E\ DQLRQLF SRO\PHUL]DWLRQ LQGLFDWLQJ WKH IRUPDWLRQ RI D YLQ\O OLQNDJH YLD D DGGLWLRQ UHDFWLRQ

PAGE 135

*HQHUDOO\ RUJDQROLWKLXP LQLWLDWLRQ LQ K\GURFDUERQ VROYHQWV \LHOGV SRO\EXWDGLHQH FRQWDLQLQJ b WUDQV ROHILQ b FLV ROHILQ DQG b YLQ\O UHSHDW XQLWV >@ ,I 7+) LV XVHG DV VROYHQW WKH SRO\PHU WKDW LV SURGXFHG FRQWDLQV b YLQ\O UHSHDW XQLWV 1XPHURXV RWKHU LQLWLDWRUV DQG VROYHQW V\VWHPV H[LVW DQG WKH SHUFHQWDJH RI YLQ\O XQLWV FDQ EH PLQLPL]HG >@ ,Q FRQWUDVW WR WKLV VLWXDWLRQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ SURFHHGV YLD D SRO\PHUL]DWLRQ PHFKDQLVP WKDW FRPSOHWHO\ HOLPLQDWHV WKH SRVVLELOLW\ RI IRUPLQJ YLQ\O UHSHDW XQLWV DQG WKXV KH[DGLHQH SURGXFHV SRO\EXWDGLHQH ZLWKRXW WKH SUHVHQFH RI SRO\EXWDGLHQH 7KH UHDFWLRQ FRQGLWLRQV DUH SUHVHQWHG LQ )LJXUH DQG WKH PHFKDQLVP IRU WKLV UHDFWLRQ LV VKRZQ LQ )LJXUH 3DJH f FK FKf§FKfRWFK KH[DGLHQH &DWDO\VW 0RQRPHU 9DFXXP fPP +Jf +HDW r&f I&+ &+f§&+ffSc Q &+ &+ 3HUIHFWO\ /LQHDU 3HUIHFWO\ 3RO\EXWDGLHQH )LJXUH $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ RI +H[DGLHQH 3URGXFLQJ 3HUIHFWO\ /LQHDU 3RO\EXWDGLHQH

PAGE 136

7KUHH PHWKRGV ZHUH XVHG WR SUREH IRU WKH SUHVHQFH RI D YLQ\O OLQNDJH SURWRQ 105 FDUERQ 105 DQG LQIUDUHG VSHFWURVFRS\ 7KH SURWRQ 105 VSHFWUXP RI WKH SURGXFW IRUPHG IURP WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH 6SHFWUXP f FRQILUPV WKH SUHVHQFH RI SHUIHFWO\ OLQHDU SRO\EXWDGLHQH ZLWK QR EUDQFKLQJ EHLQJ REVHUYHG >@ $OO VLJQDOV UHVXOW IURP WKH WZR VHWV RI SURWRQV SUHVHQW LQ WKH UHSHDWLQJ XQLW $ VLQJOHW DW SSP FRUUHVSRQGV WR WKH LQWHUQDO ROHILQLF SURWRQV DQG DQRWKHU VLQJOHW DW SSP FRUUHVSRQGV WR WKH IRXU PHWK\OHQH SURWRQV SUHVHQW LQ WKH UHSHDWLQJ XQLW 7KHVH SURWRQ 105 UHVXOWV VKRZ WKDW VLGH UHDFWLRQV VXFK DV YLQ\O DGGLWLRQ GR QRW RFFXU 0DUNHGO\ DEVHQW LQ WKH & 105 VSHFWUD 6SHFWUXP f DUH UHVRQDQFHV GXH WR OLQNDJHV ZKLFK DUH HYLGHQW LQ SRO\PHUV SURGXFHG E\ FKDLQ SRO\PHUL]DWLRQ WHFKQLTXHV 7KH PHWK\OHQH FDUERQ UHVRQDQFHV RI D OLQNDJH DUH IRXQG DW DQG SSP >@ 1XPHURXV RWKHU VLJQDOV DUH SRVVLEOH GXH WR WKH VWHUHRFKHPLFDO HQYLURQPHQW VXUURXQGLQJ WKH OLQNDJH 1RQH RI WKHVH SHDNV ZHUH REVHUYHG LQ SRO\EXWDGLHQH SURGXFHG E\ $'0(7 2QO\ WZR VLJQDOV ZHUH REVHUYHG LQ WKH PHWK\OHQH UHJLRQ RI WKH & 105 LH D FLVFLV UHVRQDQFH DW SSP DQG D WUDQVWUDQV UHVRQDQFH DW SSP 7KH PHWK\OHQH UHVRQDQFHV UHVXOWLQJ EHWZHHQ D FLVWUDQV FRQILJXUDWLRQ LV UHSRUWHG WR UHVRQDWH DW DQG SSP LQ PRGHO FRPSRXQGV >@ 7KHVH UHVRQDQFHV ZHUH LQGLVWLQJXLVKDEOH IURP WKH FLVFLV DQG WUDQVWUDQV VLJQDOV LQ WKH SRO\PHU VDPSOHV SURGXFHG E\ $'0(7

PAGE 137

6SHFWUXP 0+] + 105 RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 138

6SHFWUXP 0+] & 105 RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 139

3URWRQ GHFRXSOHG TXDQWLWDWLYH & VSHFWUD RI WKH ROHILQLF UHJLRQ FRQILUPV WKH DEVHQFH RI DQ\ YLQ\O XQLW UHVRQDQFHV EHWZHHQ DQG SSP > @ 2QO\ WZR UHVRQDQFHV FRUUHVSRQGLQJ WR D FLVFLV OLQNDJH DW SSP DQG D WUDQVWUDQV OLQNDJH DW SSP DUH REVHUYHG LQ WKH ROHILQLF FDUERQ UHJLRQ $Q DWWDFKHG SURWRQ FDUERQ 105 $37f VSHFWUXP 6SHFWUXP f RI WKH SURGXFW IRUPHG XQGHU EXON UHDFWLRQ FRQGLWLRQV DOVR LQGLFDWHV WKH DEVHQFH RI YLQ\O XQLWV $Q $37 FDUERQ 105 FOHDUO\ GHOLQHDWHV EHWZHHQ PHWKLQH DQG PHWK\OHQH FDUERQ DWRPV DQG 6SHFWUXP LQGLFDWHV WKDW QR YLQ\O PHWK\OHQH UHVRQDQFHV DUH IRXQG EHWZHHQ DQG SSP QRU ZHUH PHWKLQH UHVRQDQFHV REVHUYHG LQ WKH UHJLRQ SSP 7KH DEVHQFH RI DQ\ & UHVRQDQFHV UHVXOWLQJ IURP WKH SUHVHQFH RI D OLQNDJH SURYLGHV IXUWKHU HYLGHQFH WKDW SHUIHFWO\ OLQHDU SRO\EXWDGLHQH LV SURGXFHG ,QIUDUHG DEVRUSWLRQ VSHFWUD RI WKH SRO\EXWDGLHQH SURGXFW DOVR VXSSRUW WKLV FRQFOXVLRQ $ PLQXWH DEVRUSWLRQ DW FP FDQ EH DWWULEXWHG WR WKH YLQ\O HQG JURXSV RI WKH SRO\EXWDGLHQH VDPSOH RI ORZHU PROHFXODU ZHLJKW DQG QRW WR WKH SUHVHQFH RI YLQ\O UHSHDW XQLWV 6SHFWUXP f 9LQ\O HQGJURXSV DOVR DUH REVHUYHG LQ WKH 105 VSHFWUD RI D ORZ PROHFXODU ZHLJKW VDPSOH DQG VXEVWDQWLDWH WKLV DVVLJQPHQW 7KH SUHGRPLQDWH DEVRUSWLRQ DW FP UHVXOWV IURP D ODUJH FRQFHQWUDWLRQ RI WUDQV ROHILQ UHSHDWLQJ XQLWV > @ $ PXFK VPDOOHU DEVRUSWLRQ EDQG LV REVHUYHG LQ WKH FLV ROHILQ DEVRUSWLRQ UHJLRQ UDQJLQJ IURP FP 7KH FLV EDQG KDV EHHQ UHSRUWHG WR EH VHQVLWLYH WR LWV HQYLURQPHQW > @ DQG D VKDUS SHDN LV REVHUYHG DW FP LQGLFDWLQJ D FRQVLVWHQW

PAGE 140

6SHFWUXP 0+] & 105 DWWDFKHG SURWRQ WHVWf RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 141

6SHFWUXP ,QIUDUHG VSHFWUXP RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 142

HQYLURQPHQW VXUURXQGLQJ WKH FLV ROHILQ XQLWV ZKLFK LQGLFDWHV WKDW QR DEVRUSWLRQV GXH WR FLV OLQNDJHV DUH SUHVHQW 7KH DEVHQFH RI SRO\EXWDGLHQH LQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FDQ EH H[SODLQHG PHFKDQLVWLFDOO\ $V LOOXVWUDWHG LQ )LJXUH WKH IRUPDWLRQ RI YLQ\O OLQNDJHV XQGHU DF\FOLF GLHQH PHWDWKHVLV FRQGLWLRQV LV LPSRVVLEOH 7KH SRO\PHUL]DWLRQ PHFKDQLVP VKRZV WKDW LI DQ LQWHUQDO ROHILQ XQLW UHDFWV ZLWK FDWDO\VW UHYHUVH RI VWHSV DQG f RQO\ PRQRPHU RU ROLJRPHUVf DQG D QHZ PHWDO FDUEHQH ZLOO UHVXOW 2QO\ WKH UHDFWLRQ RI YLQ\O XQLWV UHVXOWV LQ SURGXFWLYH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ DQG DQ LQFUHDVH LQ PROHFXODU ZHLJKW 7KXV DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV WKH ILUVW V\QWKHWLF URXWH WKDW PHFKDQLVWLFDOO\ HOLPLQDWHV WKH SRVVLELOLW\ RI DQ\ YLQ\O UHSHDW XQLWV DQG SURGXFHV OLQHDU SRO\ EXWDGLHQH 'HWHUPLQLQJ 2SWLPDO 5HDFWLRQ &RQGLWLRQV IRU $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQV 3RO\RFWHQDPHU SRO\PHUL]DWLRQ H[SHULPHQWV KDYH VKRZQ WKDW ODUJH YROXPHV RI VROYHQW SURGXFH ORZ PROHFXODU ZHLJKW SRO\PHUV DQG WKDW PDJQHWLFDOO\ DJLWDWHG EXON UHDFWLRQV DUH OLPLWHG WR SURGXFLQJ SRO\PHUV ZLWK PROHFXODU ZHLJKWV LQ WKH UDQJH ,Q RUGHU WR FRPSDUH WKH UHVXOWV REWDLQHG LQ WKH V\QWKHVLV RI SRO\RFWHQDPHU KH[DGLHQH SRO\PHUL]DWLRQV ZHUH SHUIRUPHG XVLQJ UHDFWLRQ SURFHGXUHV VLPLODU WR WKDW XVHG IRU GHFDGLHQH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV

PAGE 143

&+ &+f§ &+f&+ &+ >0@ &+ FK FK FKf FKFK KH[DGLHQH FDWDO\VW >0@f§&+ f &+ &+f§ &+f&+>0@ &+ &+&+f&+&+ f &+ &+&+f2+ >0@ &+ &+f§ &+f&+ FK 3HUIHFWO\ 3RO\EXWDGLHQH DQG (WK\OHQH )LJXUH 0HFKDQLVP IRU $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 144

/DUJH 9ROXPH RI 6ROYHQW 7KH ILUVW UHDFWLRQ ZDV SHUIRUPHG XVLQJ D ODUJH YROXPH P/f RI WROXHQH DV VROYHQW $ UHDFWLRQ WHPSHUDWXUH RI DSSUR[LPDWHO\ r& ZDV PDLQWDLQHG ZKLOH D SDUWLDO YDFXXP PP+Jf ZDV DSSOLHG DW KRXU LQWHUYDOV LQ RUGHU WR UHPRYH WKH HWK\OHQH SURGXFHG 7KH UHDFWLRQ ZDV DOORZHG WR FRQWLQXH IRU D ORQJ SHULRG RI WLPH LQ WKH H[SHFWDWLRQ WKDW HTXLOLEULXP FRQGLWLRQV ZRXOG EH DFKLHYHG DQG D SRO\PHU ZLWK D SRO\XQLIRUPLW\ RI DSSUR[LPDWHO\ ZRXOG UHVXOW 7KH PROHFXODU ZHLJKW RI SRO\EXWDGLHQH IRUPHG FDQ EH FRPSDUHG WR WKH SRO\RFWHQDPHU VDPSOH IRUPHG XQGHU VLPLODU UHDFWLRQ FRQGLWLRQV 0ROHFXODU ZHLJKWV ZHUH REWDLQHG E\ VL]H H[FOXVLRQ FKURPDWRJUDSK\ DQG SRO\EXWDGLHQH IRUPHG ZKHQ ODUJH YROXPHV RI VROYHQW DQG ORQJ UHDFWLRQ WLPHV ZHUH XVHG H[KLELWV D 0Z RI ; DQG DQ 0Q RI [ )LJXUH f 7KH XQLIRUPLW\ RI WKH VDPSOH LV H[DFWO\ DV SUHGLFWHG IRU DQ HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ 7KHVH UHVXOWV FRQILUP WKDW LI ODUJH YROXPHV RI VROYHQW DUH XVHG LQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV LH GLOXWLRQ RI IXQFWLRQDOLW\ UHGXFHV UHDFWLRQ UDWHVf ORZ PROHFXODU ZHLJKWV UHVXOW 3RO\RFWHQDPHU VDPSOHV IRUPHG XQGHU VLPLODU FRQGLWLRQV KDG FRPSDUDEO\ ORZ PROHFXODU ZHLJKWV 5HDVRQV ZK\ WKH XVH RI ODUJH YROXPHV RI VROYHQW LQ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV UHVXOW LQ ORZ PROHFXODU ZHLJKW SRO\PHUV DUH K\SRWKHVL]HG $ ODUJH YROXPH RI VROYHQW FDXVHV FRROLQJ RI WKH UHDFWLRQ VHFWLRQ RI WKH DSSDUDWXV EHFDXVH FROG VROYHQW

PAGE 145

)LJXUH 6L]H H[FOXVLRQ FKURPDWRJUDSK\ FXUYH RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 146

DSSUR[LPDWHO\ r&f LV FRQVWDQWO\ UHWXUQHG LQWR WKH UHDFWLRQ VHFWLRQ RI WKH DSSDUDWXV E\ WKH FRQGHQVHU 7KXV WKH UHDFWLRQ WHPSHUDWXUH LV ORZHUHG EHORZ WKH GHVLUHG r& UDQJH DQG DOORZV SUHFLSLWDWLRQ RI WKH SRO\PHU RQ WKH VLGHV RI WKH UHDFWLRQ YHVVHO 3RO\PHU WKDW KDG SUHFLSLWDWHG RQ WKH VLGHV RI WKH UHDFWLRQ YHVVHO ZDV QR ORQJHU LQ FRQWDFW HIIHFWLYHO\ ZLWK WKH FDWDO\VW UHQGHULQJ LW LQDFFHVVLEOH WR DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 7KH PDLQ GULYLQJ IRUFH EHKLQG DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV LV WKH HIILFLHQW UHPRYDO RI HWK\OHQH 7KH UHWXUQ RI VROYHQW DQG PRQRPHU LQWR WKH UHDFWLRQ VHFWLRQ IURP WKH JDV WUDS SUHYHQWHG HIILFLHQW UHPRYDO RI HWK\OHQH DQG UHVXOWV LQ VORZHU UHDFWLRQV 7KH IRUPDWLRQ RI ORZ PROHFXODU ZHLJKW SRO\PHU E\ $'0(7 SRO\PHUL]DWLRQ LV DWWULEXWHG WR UHDFWLRQ FRQGLWLRQV HPSOR\HG DQG QRW DQ LQHIILFLHQW FKHPLFDO UHDFWLRQ %XON SRO\PHUL]DWLRQ FRQGLWLRQV 8QGHU EXON UHDFWLRQ FRQGLWLRQV D SRO\PHUL]DWLRQ ZDV SHUIRUPHG XQGHU EXON UHDFWLRQ FRQGLWLRQV DQG WKH UHDFWLRQ WHPSHUDWXUH ZDV LQFUHDVHG IURP r& WR r& $ WRWDO UHDFWLRQ WLPH RI KRXUV ZDV FKRVHQ LQ RUGHU WR FRPSDUH WKH PROHFXODU ZHLJKW RI WKH SRO\PHU IRUPHG ZLWK WKH SRO\RFWHQDPHU IRUPHG XQGHU VLPLODU UHDFWLRQ FRQGLWLRQV 7KH SURGXFW IRUPHG XQGHU EXON UHDFWLRQ FRQGLWLRQV KDG D 0Z [ DQG D 0Q [ FRUUHVSRQGLQJ WR D GLVSHUVLW\ RI )LJXUH f 8QGHU PDJQHWLF DJLWDWLRQ DQG EXON UHDFWLRQ FRQGLWLRQV DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV ZHUH OLPLWHG WR WKH PROHFXODU ZHLJKW UDQJH %RWK SRO\RFWHQDPHU DQG

PAGE 147

)LJXUH 6L]H H[FOXVLRQ FKURPDWRJUDSK\ FXUYH RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 148

SRO\EXWDGLHQH KDG YLVFRVLWLHV WKDW SUHYHQWHG PDJQHWLF DJLWDWLRQ DW r& RQFH WKH SRO\PHU UHDFKHG WKH PROHFXODU ZHLJKW UDQJH +LJK WRUTXH VWLUULQJ GHYLFHV ZLOO RYHUFRPH WKH SUREOHP RI DJLWDWLRQ DQG DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV ZLOO SURGXFH KLJKHU PROHFXODU ZHLJKW SRO\PHUV XQGHU EXON FRQGLWLRQV LI DJLWDWHG HIIHFWLYHO\ $Q (YDOXDWLRQ RI WKH (TXLOLEULXP 6WHS 3URSDJDWLRQ &RQGHQVDWLRQ 1DWXUH RI $F\FOLF 'LHQH 0HWDWKHVLV 3RO\PHUL]DWLRQV &KDSWHU JLYHV D GHWDLOHG GLVFXVVLRQ RI WKH GLIIHUHQFHV EHWZHHQ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ FKDLQ SURSDJDWLRQf DQG $'0(7 SRO\PHUL]DWLRQ VWHS SURSDJDWLRQf PHFKDQLVPV DQG )LJXUH LOOXVWUDWHV WKH FKHPLVWU\ XQGHU FRQVLGHUDWLRQ 7KH IROORZLQJ UHVXOWV FRQILUP WKH DVVXPSWLRQ WKDW $'0(7 SURFHHGV E\ D VWHS SURSDJDWLRQ FRQGHQVDWLRQ PHFKDQLVP 6L]H H[FOXVLRQ FKURPDWRJUDSK\ GDWD FDQ EH XVHG WR GLVWLQJXLVK EHWZHHQ SRO\PHUV IRUPHG E\ VWHS RU FKDLQ SRO\PHUL]DWLRQ PHFKDQLVPV 7KH SRO\GLVSHUVLWLHV RI WKH SRO\EXWDGLHQH VDPSOHV SURGXFHG IURP WKH SRO\PHUL]DWLRQ RI KH[DGLHQH E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FRQILUP WKDW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ SURFHHGV E\ D VWHS JURZWK SRO\PHUL]DWLRQ PHFKDQLVP 3RO\GLVSHUVLWLHV RI DQG DUH REVHUYHG IRU WKH WZR SRO\EXWDGLHQH VDPSOHV SUHSDUHG WKXV LQGLFDWLQJ WKDW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV DQ HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH UHDFWLRQ

PAGE 149

KH[DGLHQH $'0(7 GLPHUL]DWLRQf 'LPHU (WK\OHQH $'0(7 3RO\PHUL]DWLRQ VWHS SURSDJDWLRQf ; 3RO\EXWDGLHQH $1' (WKYOHQH 5203 FKDLQ SURSDJDWLRQf 21/< 3RO\EXWDGLHQH )LJXUH $F\FOLF GLHQH PHWDWKHVLV RI KH[DGLHQH 3RO\GLVSHUVLWLHV DSSURDFKLQJ DUH LQ FRQWUDVW WR ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQV > @ ZKLFK KDYH EHHQ VKRZQ WR EH OLYLQJ SRO\PHUL]DWLRQV RFFXUULQJ E\ D FKDLQ JURZWK PHFKDQLVP ZKLFK SURGXFHV SRO\XQLIRUPLWLHV DSSURDFKLQJ XQLW\ 7KH VWHS SURSDJDWLRQ QDWXUH RI $'0(7 FDQ EH FRQILUPHG E\ GHWHFWLQJ OLQHDU SRO\PHU ZLWK YLQ\O HQGJURXS 0DVV VSHFWURVFRS\ LV

PAGE 150

D WHFKQLTXH ZKLFK LGHQWLILHV PROHFXOHV WKURXJK WKHLU SDUHQW LRQ SHDNV DQG ZDV XVHG WR GHWHFW OLQHDU SRO\EXWDGLHQH DQG SRO\RFWHQDPHU 2EVHUYLQJ SDUHQW LRQ SHDNV WKDW UHVXOW IURP PDFURF\FOLF FRPSRXQGV RU OLQHDU IUDFWLRQ RI SRO\RFWHQDPHU LQ WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI GHFDGLHQH PLJKW LQGLFDWH WKDW DF\FOLF GLHQH PHWDWKHVLV LV F\FOL]LQJ GHFDGLHQH ,I VR F\FORRFWHQH DQG ODUJHU F\FORROHILQV PLJKW EH SRO\PHUL]HG E\ ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ FKHPLVWU\ LPSO\LQJ WKDW DF\FOLF GLHQH PHWDWKHVLV LV OLPLWHG WR VPDOO PROHFXOH V\QWKHVLV DQG WKXV LV QRW D WUXH SRO\PHUL]DWLRQ UHDFWLRQ 2OLJRPHULF SRO\ EXWDGLHQH ZDV DQDO\]HG E\ FKHPLFDO LRQL]DWLRQ PDVV VSHFWURVFRS\ WR GHWHUPLQH WKH GRPLQDQW UHDFWLRQ PHFKDQLVP RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ 0DVV VSHFWURVFRS\ VKRZV WKDW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ LV WKH GRPLQDQW UHDFWLRQ :KLOH SDUHQW LRQ SHDNV DUH SUHVHQW WKDW FRUUHVSRQG WR HLWKHU IUDFWLRQV RI OLQHDU SRO\ EXWDGLHQH RU PDFURF\FOLF SRO\EXWDGLHQH WKH PDMRULW\ RI WKH SDUHQW LRQ SHDNV FRUUHVSRQG WR OLQHDU SRO\EXWDGLHQH IUDFWLRQV DQG FRQWDLQHG YLQ\O HQGJURXSV 7KH WKUHH PH GRPLQDQW SHDNV 6SHFWUXP f DW DQG UHVXOW IURP IUDFWLRQDWLRQ RI D WULPHU P f RI EXWDGLHQH &\FOL]DWLRQ RI KH[DGLHQH WR PDFURF\FOLF SRO\EXWDGLHQH FDQQRW EH UXOHG RXW KRZHYHU DSSDUHQWO\ LW LV QRW WKH SULQFLSOH UHDFWLRQ RFFXUULQJ XQGHU WKH H[SHULPHQWDO FRQGLWLRQV HPSOR\HG ,I SUHVHQW PDFURF\FOHV DUH LQ ORZ FRQFHQWUDWLRQV DQG ULQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ LV LQVLJQLILFDQW DQG GRHV QRW

PAGE 151

6SHFWUXP &KHPLFDO LRQL]DWLRQ PDVV VSHFWUXP RI OLQHDU SRO\EXWDGLHQH SURGXFHG E\ $'0(7 SRO\PHUL]DWLRQ RI KH[DGLHQH

PAGE 152

HIIHFW WKH SRO\GLVSHUVLWLHV RI SRO\PHUV SURGXFHG E\ DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ RI KH[DGLHQH 7KH VWHS SURSDJDWLRQ DQG DOVR WKH FRQGHQVDWLRQ QDWXUH RI $'0(7 SRO\PHUL]DWLRQ LV IXUWKHU GHPRQVWUDWHG E\ WKH IRUPDWLRQ RI HWK\OHQH )LJXUH f 7KH SURGXFWLRQ RI HWK\OHQH WKURXJKRXW WKH GXUDWLRQ RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FRQILUPV WKDW $'0(7 LV D FRQGHQVDWLRQ W\SH UHDFWLRQ 5LQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ GRHV QRW SURGXFH HWK\OHQH ,I WKH KH[DGLHQH KDG EHHQ F\FOL]HG LQLWLDOO\ LQWR PDFURF\FOHV QR HWK\OHQH ZRXOG EH SURGXFHG GXULQJ WKH ODWHU VWDJHV RI WKH SRO\PHUL]DWLRQ 7KXV WKH FRQWLQLRXV IRUPDWLRQ RI HWK\OHQH FRQILUPV WKH GRPLQDQFH RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ ,Q OLJKW RI WKH UHDFWLRQV UHSRUWHG KHUHLQ KLJK PROHFXODU ZHLJKW SRO\EXWDGLHQH FDQ EH V\QWKHVL]HG IURP KH[DGLHQH E\ DQ HTXLOLEULXP VWHS SURSDJDWLRQ FRQGHQVDWLRQ W\SH SRO\PHUL]DWLRQ $F\FOLF GLHQH PHWDWKHVLV $'0(7f SRO\PHUL]DWLRQ RI KH[DGLHQH SURGXFHV SHUIHFWO\ OLQHDU SRO\EXWDGLHQH ZLWKRXW D WUDFH RI DQ\ VLGH UHDFWLRQV 6LGH UHDFWLRQV WKDW SUHYLRXVO\ OLPLWHG DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV WR WKH IRUPDWLRQ RI ROLJRPHUV DQG XQGHVLUDEOH LQWUDFWDEOH SURGXFWV >@ KDYH EHHQ VXFFHVVIXOO\ HOLPLQDWHG DQG WKH ILUVW V\QWKHWLF URXWH E\ ZKLFK YLQ\O UHSHDWLQJ XQLWV FDQ EH FRPSOHWHO\ HOLPLQDWHG LQ WKH IRUPDWLRQ RI SRO\EXWDGLHQH KDV EHHQ GHVFULEHG 7KH RSWLPXP UHDFWLRQ FRQGLWLRQV KDYH E\ QR PHDQV EHHQ IRXQG EXW EXON UHDFWLRQV ZLWK PHFKDQLFDO VWLUULQJ VHHP WR EH WKH PRVW SURPLVLQJ 7KH GHYHORSPHQW RI QHZ FDWDO\VWV DQG PRUH HIIHFWLYH

PAGE 153

UHDFWLRQ FRQGLWLRQV LV \HW DQRWKHU FKDOOHQJH WKDW DZDLWV WKH DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ FKHPLVW 7KH QXPEHU RI QHZ DQG H[FLWLQJ SRO\PHUV WKDW FDQ QRZ EH V\QWKHVL]HG E\ PHDQV RI DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQV DUH HQGOHVV $V D UHVXOW D QHZ ILHOG IRU WKH LPDJLQDWLRQ DQG FUHDWLYLW\ RI WKH SRO\PHU FKHPLVW KDV RSHQHG 5LQJ RSHQLQJ PHWDWKHVLV SRO\PHUL]DWLRQ LV QR ORQJHU WKH RQO\ PHWDWKHVLV SRO\PHUL]DWLRQ UHDFWLRQ ,W LV ILUPO\ EHOLHYHG WKDW DF\FOLF GLHQH PHWDWKHVLV SRO\PHUL]DWLRQ ZLOO SURYH WR EH D ZRUWK\ EHDUHU RI WKH ROHILQ PHWDWKHVLV IDPLO\ QDPH

PAGE 154

5()(5(1&(6 ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ &KDSWHUV DQG f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ 3DJH f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ &KDSWHUV DQG f 2GLDQ 3ULQFLSOHV RI 3RO\PHUL]DWLRQ 6HFRQG (GLWLRQ -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 155

&DOGHURQ 1 2IVWHDG ( $ DQG -XG\ : $ 3RO\PHU 6FL $L e f &DOGHURQ 1 &KHQ + < DQG 6FRWW : 7HWUDKHGURQ /HWW f &DOGHURQ 1 2IVWHDG ( $ :DUG 3 -XG\ : $ DQG 6FRWW :f $P &KHP 6RF e f 0RO -& 0RXOLMQ $ DQG %RHOKRXZHU & &KHP 6RF &KHP &RPPXQ f /HYLVDOOHV 5XGOHU + DQG 9LOOHPLQ 2UDDQRPHW &KHP f 6FKURFN 5 5 5RFNODJH 6 :HQJURYLXV 5XSSUHFKW DQG )HOOPDQ 0RO &DWDO f 7DQDND 7DQDND DQG 0L\DKDUD &KHP6RF &KHP &RPPXQ f 'DOOn$VWD DQG 0RWURQL (XURS 3RO\PHU f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ SDJH f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ SDJH f *UXEEV 5 + DQG +RSSLQ & 5 $P &KHP 6RF f +HULVVRQ / DQG &KDXYLQ < 0DNURPRO &KHP f :HQJURYLXV + 6FKURFN 5 5 &KXUFKLOO 0 5 0LVVHUW 5 DQG
PAGE 156

6ZDJHU 7 0 'RXJKHUW\ $ DQG *UXEEV 5 + $P &KHP 6RF f .QROO .URXVH 6 $ DQG 6FKURFN 5 5 $P &KHP 6RF f .UHVV 2VERUQ $ *UHHQH 5 0 ( ,YLQ DQG 5RRQH\ $PHU &KHP 6RF f ,VDJXO\DQWV 9 DQG 5DU / ) ,]Y $NDG 1DXN 6665 6HU .KLP f ,YLQ 5RRQH\ DQG 6WHZDUG & &KHP 6RF &KHP &RPPXQ f 1DWWD DQG 'DOOn$VWD $QJHZ &KHP ,QW (G f *LOOLRP / 5 DQG *UXEEV 5 + $P &KHP 6RF f 6ZDJHU 70 DQG *UXEEV 5+ $P &KHP 6RF f 6FKURFN 55 )HOGPDQ &DQQL]]R /) DQG *UXEEV 5+ 0DFURPROHFXOHV f &DQQL]]R /) DQG *UXEEV 5+ 0DFURPROHFXOHV 4 f 1RYDN %0 DQG *UXEEV 5+ $P &KHP 6RF f 6ZDJHU 70 'RXJKHUW\ '$ DQG *UXEEV 5+ $P &KHP 6RF f &DQQL]]R /) DQG *UXEEV 5+ 0DFURPROHFXOHV f :DOODFH .& DQG 6FKURFN 55 0DFURPROHFXOHV f

PAGE 157

0XUG]HN 6 DQG 6FKURFN 5 5 0DFURPROHFXOHV e4 f .QROO .URXVH 6$ DQG 6FKURFN 55 $P &KHP 6RF f .URXVH 6$ DQG 6FKURFN 55 0DFURPROHFXOHV f :DOODFH .& /LX $ + 'HZDQ -& DQG 6FKURFN 55 $P &KHP 6RF P f 6FKDYHULHQ &'HZDQ & DQG 6FKURFN 55 $P &KHP 6RF f 6WUHFN 5f 0RO &DWD/ f /H 'HOOLRX 3 &DRXW 3ODVW f 2KP 5 ) &KHPWHFK f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ &KDSWHUV DQG f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ &KDSWHU f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ SDJH WDEOH OLVW SXEOLFDWLRQVf f =XHFK ( $ +XJKHV : % .XELFHN + DQG .LWWOHPDQ ( 7 $P &KHP 6RF f 'R\OH *f &DWDO f 'DOOn$VWD 6WLJ/LDQL *UHFR $DQG 0RWWD / &KLP ,QG 0LODQf f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ SDJH f ,YLQ 2OHILQ 0HWDWKHVLV $FDGHPLF 3UHVV /RQGRQ &KDSWHU f

PAGE 158

/LQGPDUN+DPEHUJ 0DQG :DJHQHU .% 0DFURPROHFXOHV f 6WURKVFKHLQ 5 DQG 0RVKLHU 8QLYHUVLW\ RI )ORULGD 0RUWRQ 0 $QLRQLF 3RO\PHUL]DWLRQ 3ULQFLSOHV DQG 3UDFWLFH $FDGHPLF 3UHVV 1HZ
PAGE 159

6DLQW5XI *DQG %XX+RL 13 %XOO 6RF &KLP )U f )Uf f $JHU ,5 3KLOOLSV / 7HZVRQ 7DQG :UD\ 9 & 6 3HUNLQ f &DGRJDQ -,* DQG ,QZDUG 3: &KHP 6RF f 6WDQILHOG DQG 5H\QROGV $PHU &KHP 6RF f 6FKPLG DQG .DUUHU +HOY &KLP $FWD f %DQFH %DUEHU DQG :RROPDQ &KHP 6RF f 'UD\OHU $ .DXWVFKXN 8 *XPPL .XQVWVWRIIH f &DOGHURQ -DQG 0RUULV 0& 3ROYP 6FL 3DUW $ f +DWDGD 7DQDND < 7HUDZDNL
PAGE 160

)XUXNDZD .RED\DVKL 7 .DZDJRH 7 .DWVXNL 1DQG ,PDQDQ 0 3ROYP 6FL 3DUW % f (OJHUW .) 0DNURPRO &KHP f &KHQ +< 3ROYP6F/3ROYP /HWW (G f *DWWL *DQG &DUERQDUR $0DNURPRO &KHP f 7RV & &LDPSLOOL 7DQG 'DOOn$VWD 3ROYP 6FL 3RO\ &KHP (G f )ORU\ 3 3ULQFLSOHV RI 3RO\PHU &KHPLVWU\ &RUQHOO 8QLY 3UHVV ,WKDFD 1< Df S Ef f &ROOLQV ( $ %DUHV -DQG %LOOPH\HU ) : ([SHULPHQWV LQ 3RO\PHU 6FLHQFH :LOH\OQWHUVFLHQFH 3XEOLFDWLRQ 1HZ
PAGE 161

'ROJRSORVN %$ 0DNRYHWVN\ ./ *ROHQNR 7* .RUVKDN <9 7LQ\DNRYD (, (XU 3ROYP f +HULVVRQ -/DQG &KDXYLQ < 0DNURPRO &KHP f )HVVHQGHQ DQG )HVVHQGHQ 2UJDQLF &KHPLVWU\ 7KLUG (GLWLRQf %URRNV DQG &ROH 3XEOLVKLQJ &R 0RQWHUH\ 3DJH f %UDQGUXS -DQG ,PPHUJXW (+ 3RO\PHU +DQGERRN -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 162

%,2*5$3+,&$/ 6.(7&+ -DQ *HOGHQKX\V 1HO ZDV ERUQ RQ D EULJKW DQG VXQQ\ WK RI 1RYHPEHU LQ 3RUW (OL]DEHWK 6RXWK $IULFD +LV HDUO\ \HDUV ZHUH VSHQW RQ WKH IDPLO\ IDUP OHDUQLQJ WKH IXQGDPHQWDOV RI OLIH ,Q 'HFHPEHU RI KH JUDGXDWHG IURP KLJK VFKRRO REWDLQLQJ D FXPXODWLYH $ DJJUHJDWH RQ WKH VWDWH ZLGH PDWULFXODWLRQ H[DPLQDWLRQV $IWHU \HDUV KH UHFHLYHG KLV %6 LQ FKHPLVWU\ DQG SK\VLFV DW WKH 8QLYHUVLW\ RI 3RUW (OL]DEHWK $ \HDU ODWHU KH REWDLQHG KLV %6 +RQRUV GHJUHH DQG SURFHHGHG WR GR D PDVWHUV GHJUHH LQ LQRUJDQLF FKHPLVWU\ DW WKH 8QLYHUVLW\ RI 3RUW (OL]DEHWK 7KH RSSRUWXQLW\ WR VWXG\ FKHPLVWU\ LQ WKH 86$ ZDV D FKDOOHQJH WKDW FRXOG QRW EH UHMHFWHG 6XEVHTXHQWO\ -DQ DUULYHG LQ *DLQHVYLOOH RQ D KRWWHVW RI 0D\ $Q H[FLWLQJ DQG HQOLJKWHQLQJ \HDUV ZHUH VSHQW GRLQJ UHVHDUFK XQGHU 'U .HQ 'RQnW *LYH 8S :DJHQHU 7LPH ZLOO WHOO ZKDW WKH IXWXUH KROGV LQ *RG ZH WUXVW

PAGE 163

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ f§,VM/. , .HQQHWK % :DJHQHU &KDLUPDQ $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW & 6WRXWHU $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 4 A-DPHV 0 %RQFHOOD $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 5 'ROELHU 3URIHVVRU RI &KHPLVWU\

PAGE 164

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KULVWRSKHU %DWLFK 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ET12I1T07_XWVU3S INGEST_TIME 2017-07-12T20:54:59Z PACKAGE AA00003350_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES