Citation
Aluminum effect on growth of citrus roots in solution and soil systems

Material Information

Title:
Aluminum effect on growth of citrus roots in solution and soil systems
Creator:
Lin, Zhongyan, 1946-
Publication Date:
Language:
English
Physical Description:
xiii, 137 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Aluminum ( jstor )
Mandarins ( jstor )
Nutrient solutions ( jstor )
pH ( jstor )
Plant roots ( jstor )
Root growth ( jstor )
Rootstocks ( jstor )
Seedlings ( jstor )
Soil science ( jstor )
Toxicity ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 129-136).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Zhongyan Lin.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001561937 ( ALEPH )
AHH5636 ( NOTIS )
22683050 ( OCLC )

Downloads

This item has the following downloads:


Full Text











ALUMINUM EFFECT ON GROWTH OF CITRUS ROOTS
IN SOLUTION AND SOIL SYSTEMS



by



ZHONGYAN LIN


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1989















ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and deep

gratitude to Drs. Donald L. Myhre, chairman, and Tzu L. Yuan, co-

chairman of his supervisory committee, for their guidance, super-

vision, assistance, encouragement and personal counseling throughout

the graduate program and during the preparation of this dissertation.

Appreciation and gratitude are also extended to Drs. John G.A.

Fiskell, R. Dean Rhue, and Kenneth M. Portier, for serving on the

supervisory committee, and for their constructive suggestions and

efforts to improve the content of his dissertation.

The author is also indebted to Dr. Brian L. McNeal for his

friendship, concern, and assistance during the author's application

and study in the department. Deep appreciation is also given to

Drs. Edward A. Hanlon, Jr. and Donald A. Graetz for their assistance

and for providing laboratory equipment.

The author is grateful to the following people: Mr. L.E. Hudson

for providing access to the Immokalee soil, Mr. H.W. Martin for his

statistical assistance, Mr. Joseph H. Nguyen for his assistance in

the laboratory, and Ms. An T. Nguyen for typing the dissertation.

Special thanks are given to Dr. and Mrs. D.L. Myhre and their

family, and Dr. and Mrs. T.L. Yuan for their love, concern, and help

extended to the author and his family.

Finally, the author sincerely acknowledges his wife, and his two

sons whom the author has not seen for four and a half years, and his










father-in-law and mother-in-law who have taken care of the author's

two sons, for their deep love, patience, understanding, encourage-

ment, support, and sacrifice.
















TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS............................................. ii

LIST OF TABLES............................................... vi

LIST OF FIGURES.............................................. viii

ABSTRACT......................... .............. .............. xii

CHAPTERS

I GENERAL INTRODUCTION... ............................ 1

II LITERATURE REVIEW................................... 4

Beneficial Effects of Aluminum on Plant
Growth................................... 4
Phytotoxicity of Aluminum................... 5
Differential Aluminum Tolerance of Plants... 6
Study Methods for Aluminum Phytotoxicity.... 8
Studies of Aluminum Effects on Citrus....... 10

III SUPERNATANT SOLUTIONS CONTAINING VARIOUS LEVELS OF
ALUMINUM AND SIMILAR CONCENTRATIONS OF PHOSPHORUS
AS CULTURE SOLUTIONS FOR THE ALUMINUM STUDY...... 13

Introduction............................... 13
Materials and Methods....................... 15
Results and Discussion...................... 19
Summary and Conclusions.................... 33

IV DIFFERENTIAL RESPONSE OF CITRUS ROOTSTOCKS TO
ALUMINUM LEVELS IN SOLUTION CULTURE.............. 35

Introduction............................... 35
Materials and Methods....................... 36
Results and Discussion....................... 41
Summary and Conclusions..................... 76

V GROWTH OF CITRUS ROOTS AS AFFECTED BY ALUMINUM LEVEL
IN SOILS UNDER FIELD CONDITIONS.................. 78

Introduction............................... 78
Materials and Methods....................... 79
Results and Discussion...................... 84
Summary and Conclusions..................... 94











VI EFFECTS OF LIME AND PHOSPHOGYPSUM ON FIBROUS CITRUS-
ROOT GROWTH AND PROPERTIES OF THE Bh HORIZON OF A
SPODOSOL........................................ 96

Introduction............................... 96
Materials and Methods....................... 98
Results and Discussion...................... 103
Summary and Conclusions..................... 112

VII OVERALL SUMMARY AND CONCLUSIONS.................... 114

APPENDIX...................................................... 118

LITERATURE CITED............................................. 129

BIOGRAPHICAL SKETCH.......................................... 137















LIST OF TABLES


Table Page

3-1 Effects of pH, and additions of Al and P, on the
concentrations of Al and P, and on EC in filtrates
(aged for 7 days at 250C)................................ 21

3-2 Equations describing effects of pH(x ), Al addition (x ),
and P addition (x3) on concentration of Al (Y ), concen-
tration of P (Y ) and EC (Y ) in filtrates obtained during
Experiment 1 (aged for 7 days at 250C)................... 22

3-3 Elemental additions to solution and concentrations in
filtrates at two pH values after aging for 7 days at 25C
(mixed solution with magnetic stirrers)................... 26

3-4 Elemental additions to solution and concentrations
in supernatants at pH 4.0 after aging for 7 days at room
temperature (mixed solution manually).................... 27

3-5 Shoot height and new-growth shoot height of Rough
lemon in the 3rd 20-day growth period in the supernatant
solution................................................. 30

3-6 Elemental concentrations and EC of supernatant solution
after growing five 7-month-old citrus seedlings in ten
liters of supernatant solution for 20 days................ 32

4-1 Linear regression equations for prediction of new-growth
root length ( c, cm plant ), new-growth shoot height
(H, cm plant ), and new-growth fresh weight (W, g p ant )
of citrus seedlings from Al concentration (Al, mg L ) in
nutrient solution. (A = Carrizo citrange; C = Cleopatra
mandarin; 0 = Sour orange; R = Rough lemon; and S =
Swingle citrumelo)...................................... 51

4-2 Linear regression equations for prediction of relative
new-growth root length (RL, %), relative new-growth shoot
height (RH, %), and relative new-growth shoot weight (RW, %)
of citrus seedlings from Al concentration (Al, mg L ) in
nutrient solution. (A = Carrizo citrange; C = Cleopatra
mandarin; 0 = Sour orange; R = Rough lemon; and S = Swingle
citrumelo).............................................. 55

5-1 Relevant characteristics of the E horizon of the Immokalee
fine sand used for implants.............................. 81











Table Page

5-2 Relevant characteristics of saturation extracts for
soils from five treatments............................... 85

5-3 Fibrous citrus-root growth in implant bags of soil
(3.17 dm ) after 46 d as related to treatments.......... 87

5-4 Concentrations of elements in fibrous citrus-root tissues. 93

6-1 Selected chemical characteristics for the Bh horizon
of the Smyrna fine sand used for implants................ 100

6-2 Contrasts for root-length density as affected by lime
and phosphogypsum (PG) amendments to the Bh horizon of
a Smyrna fine sand...................................... 105

6-3 Contrasts of selected chemical properties of the soils
(four dates) ............................................ 107

6-4 Contrasts of some ions in the saturation extract of soils
(four dates) ........................................... 109

6-5 Coefficients of determination (r2) between acidity and
exchangeable Al (four dates)............................. 110















LIST OF FIGURES
Figure Page

3-1 Phosphorus concentration in filtered nutrient solution
as affected by P addition at two pH values and two
levels of Al addition (aged for 7 days at 25C).
Vertical bars indicate standard deviations............ 24

3-2 Eight-month-old Rough lemon seedlings grown for
60 days in supernatant solution with various
concentrations of Al. From left to right: 0.1, 2.7,
4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L .............. 31

4-1 The root systems of five citrus seedlings which were
submerged in nutrient solutions in pails which were in
turn placed in a water pool........................... 39

4-2 Water circulation in the pool by a pump, which was
maintained at 2510C by passing through a cooling
system................................................ 39

4-3 Citrus seedlings growing in nutrient solutions
in pails which were randomly assigned positions
in the water-filled pool.............................. 40

4-4 Thickened root tips of Sour orange seedlings grown
in solution with 24.4 mg Al L ....................... 43

4-5 Stubby new-growth roots of Rough lemon seedlings
grown in nutrient solution with 24.4 mg Al L ........ 43

4-6 Root tip covered by a root cap with black gelatinous
material for Cleopatra mandarin seedlings grown in
solution of 24.4 mg Al L ............................ 44

4-7 Young leaves of Swingle citrumelo seedlings grown in
nutrient solutions with various concentrations of Al.
From left to right: 0.1, 2.7, 24.4, and 28.4 mg Al
L ................................................... 45

4-8 Shoot with yellow, mottled, and withered young leaves
and aborted terminal of Swingle citrumelo seedling
grown in nutrient solution with 44.6 mg Al L for
60 days............................................... 45

4-9 Effects of increasing Al concentrations in the nutrient
solution on root and shoot growth of 8-month-old
Carrizo citrange seedlings. From left to right: 0.1,
2.7, 4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L ......... 47


viii










Figure Page

4-10 Effects of increasing Al concentrations in the nutrient
solution on root and shoot growth of 8-month-old
Cleopatra mandarin seedlings. From left to right:
0.1, 2.7, 4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L ..... 47

4-11 Effects of increasing Al concentrations in the nutrient
solution on root and shoot growth of 8-month-old
Sour orange seedlings. From left to right: 0.1, 2.7,
4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L ............... 48

4-12 Effects of increasing Al concentrations in the nutrient
solution on root and shoot growth of 8-month-old
Rough lemon seedlings. From left to right: 0.1, 2.7,
4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L ............... 48

4-13 Effects of increasing Al concentrations in the nutrient
solution on root and shoot growth of 8-month-old
Swingle citrumelo seedlings. From left to right: 0.1,
2.7, 4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L .......... 49

4-14 Effects of Al concentrations (Al, mg L- ) in nutrient
solution on new-growth root length (L, cm plant )
of 8-month-old citrus seedlings grown for 60 days..... 50

4-15 Effects of Al concentrations (Al, mg L-1) in nutrient
solution on relative new-growth root length (RL, %)
of 8-month-old citrus seedlings grown for 60 days..... 53

4-16 Effects of Al concentrations (Al, mg L- ) in nutrient
solution on new-growth shoot height (H, cm plant ) of
8-month-old citrus seedlings grown for 60 days........ 56

4-17 Effects of Al concentrations (Al, mg L- ) in nutrient
solution on relative new-growth shoot height (RH, %)
of 8-month-old citrus seedlings grown for 60 days..... 57
-1
4-18 Effects of Al concentrations (Al, mg L ) in nutrient
solution on new-growth fresh weight (W, g plant ) of
8-month-old citrus seedlings grown for 60 days........ 59

4-19 Effects of Al concentrations (Al, mg L- ) in nutrient
solution on relative new-growth fresh weight (RW, %)
of 8-month-old citrus seedlings grown for 60 days..... 60

4-20 Aluminum concentration of 8-month-old citrus seedlings
grown for 60 days in nutrient solution with various
concentrations of Al. (A = Carrizo citrange; C =
Cleopatra mandarin; 0 = Sour orange; R = Rough lemon;
and S = Swingle citrumelo)............................ 62











Figure


4-21 Calcium concentration of 8-month-old citrus seedlings
grown for 60 days in nutrient solution with various
concentrations of Al. (A = Carrizo citrange; C =
Cleopatra mandarin; 0 = Sour orange; R = Rough lemon;
and S = Swingle citrumelo)............................ 64

4-22 Magnesium concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)........... 66

4-23 Potassium concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)........... 67

4-24 Phosphorus concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)........... 68

4-25 Zinc concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo).......... 71

4-26 Manganese concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo).......... 72

4-27 Copper concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo).......... 73

4-28 Iron concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo).......... 75
-1
5-1 Effects of Al concentration (Al, mg L ) in soil
saturation3extract on fibrous root-length density
(D, cm dm ). Critical 1 concentration was
23 mg Al L [i.e., (Al) = 4.8]..................... 90











Figure Page

6-1 Mean root-length densities for three treatments
at four sampling periods............................. 104















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


ALUMINUM EFFECT ON GROWTH OF CITRUS ROOTS
IN SOLUTION AND SOIL SYSTEMS


by

Zhongyan Lin

December 1989


Chairman: Dr. Donald L. Myhre
Cochairman: Dr. Tzu L. Yuan
Major Department: Soil Science

Aluminum phytotoxicity may be a growth-limiting factor for

citrus roots growing in acid soils. Four experiments were conducted

to investigate the effects of Al on citrus root growth in solution

and soil systems.

In a laboratory study, two sets of supernatant nutrient solutions

were prepared and evaluated for Al phytotoxicity studies. For the

pH 4.0 and pH 4.5 sets, actual Al concentrations ranged from 0.1 to

171 mg Al L and from 0.1 to 10 mg Al L and P concentrations were

about 1 mg P L and 0.2 mg P L respectively.

In a greenhouse study, five 6-month-old citrus rootstock

seedlings were grown in supernatant nutrient solutions containing

seven levels of Al at pH 4.0 for 60 days. According to the response

of new-growth fresh weight of whole plants to Al concentrations in

solution, relative Al-tolerances were Cleopatra mandarin (C. reshni

Hort. ex Tan.) > Rough lemon (C. jambhiri Lush.) = Sour orange










(C. aurantium L.) > Swingle citrumelo (C. paradisi x P. trifoliata) >

Carrizo citrange [C. sinensis (L.) Osbeck x Poncirus trifoliata (L.)

Raf.]. The critical Al concentrations in solution for toxic effects

were 12.2, 5.1, 5.1, 4.5, and 1.8 mg Al L-1, respectively, for the

above rootstocks. Concentrations below or above the critical Al

levels caused either beneficial or toxic effects, respectively. When

Al concentrations in nutrient solution increased from 0.1 to 4.8 mg
-1
Al L Al, K, Mg, and P concentrations in roots and Al, K, and P

levels in shoots increased; whereas Ca, Zn, Cu, Mn, and Fe in roots

and Ca, Mg, Cu, and Fe in shoots decreased. Aluminum-tolerant

rootstocks accumulated more Al in their roots than did Al-sensitive

rootstocks. The more Al-tolerant rootstocks contained higher Fe

concentrations in their roots than did the less tolerant ones when

Al concentrations in solution were lower than 8.3 mg Al L-1

In a field experiment, E-horizon soil was treated with either

lime or four levels of Al, placed in porous bags, and then implanted

in the surface horizon of a citrus grove for 46 days. Results

indicated that the critical Al concentration for toxicity in the

saturation extract of soils was 23 mg Al L-1 for root growth of

mature trees of Sour orange rootstock.

In another similar field experiment, Bh-horizon soil was amended

with either lime or phosphogypsum, implanted, and collected after 55,

84, 113, and 139 days. Application of lime significantly increased

fibrous citrus-root growth while phosphogypsum did not. The soil

amended with phosphogypsum had a lower pH, higher salinity and

exchangeable Al; higher Ca2+ and Mg2+ and lower P (H2PO and HPO-)
and C contents in the saturation extract than the non-amended soi.
and Cl contents in the saturation extract than the non-amended soil.


xiii















CHAPTER I

GENERAL INTRODUCTION

Aluminum toxicity is probably the most important growth-limiting

factor for plants in most strongly acid soils. A number of crops

have been studied with respect to their response to Al phytotoxicity.

Citrus grows widely in tropical and subtropical areas in which soils

are highly weathered and generally acidic. Aluminum toxicity may be

an important factor limiting citrus growth in these acid soils.

Few studies have been conducted on the effects of Al on citrus

growth (Haas, 1936; Liebig et al., 1942; Yokomizo and Ishihara, 1973;

Worku et al., 1982). These researchers found that low Al concentra-

tions in solution stimulated, but high concentrations depressed, root

growth of some citrus species. However, no experimental results have

been reported in the literature for screening and evaluation of

citrus rootstocks for Al tolerance. The Al phytotoxicity levels are

still not known for many citrus rootstocks, and few data exist on the

effects of Al on the mineral nutrition of citrus.

Solution culture has been frequently used for Al phytotoxicity

studies. Aluminum effects on roots are confounded by many factors,

such as pH, temperature, concentrations of P, Ca, and Mg (Rhue and

Grogan, 1977). The common problems in the previous studies with

nutrient solution were the confusion of added levels of Al with

actual concentrations of Al in the nutrient solution, and the con-

founding effects of P (Bollard, 1983; Marschner, 1986).










Research on the effects of Al on citrus growth has been mainly

limited to nutrient-solution studies. Field studies are highly

desirable to evaluate Al effects on citrus root growth under field

conditions.

In Florida, Spodosols have been increasingly used for citrus

production. The spodic horizons of these soils are generally very

acid and have high Al contents (Myhre et al., 1987), so it is

probable that Al toxicity problems occurs in these subsoils. Perhaps

it is worthwhile to determine whether phosphogypsum could be used as

an ameliorant for the subsoil acidity syndrome.

The overall objectives of this dissertation research were to

develop a better understanding of Al effects on citrus growth and

nutrient uptake, both in nutrient solution and under field

conditions, and to evaluate citrus rootstocks used in Florida for

Al-tolerance. In addition, lime and phosphogypsum were tested as an

ameliorant for the acidity syndrome of spodic horizon soils.

This dissertation is divided into six parts. Chapter II is a

review of the literature for the entire set of studies. Chapter III

describes a supernatant solution containing various levels of Al and

similar concentrations of P that was prepared as a culture solution

for Al studies. In Chapter IV, five rootstocks were studied in

nutrient solution for their Al-tolerance, and their elemental

composition of roots and shoots as affected by Al concentrations.

In Chapter V, a field experiment was conducted using the implanted

soil-mass technique to evaluate the critical Al concentration in

saturation extracts of soils for toxicity and elemental compositions

in roots as affected by Al concentration under field conditions.





3




In Chapter VI, the effects of lime and phosphogypsum on fibrous

citrus-root growth and properties of Bh horizon soil were studied in

the field using the implanted soil-mass technique. Finally, in

Chapter VII, the studies are summarized and recommendations are

provided for further work.















CHAPTER II

LITERATURE REVIEW

Beneficial Effects of Aluminum on Plant Growth

Aluminum is not regarded as an essential nutrient, but low

concentrations can sometime increase plant growth or produce other

desirable effects. An early report of the stimulation of plant

growth was made by Maz4 (1915), and similar reports have continued

to appear from a number of laboratories. Plants that have shown

positive growth response to Al include rice, maize inbreds,

eucalyptus, tea, peach, sugar beet, tropical legumes, wheat, and pea.

For a more-thorough review on this subject, see Bollard (1983) and

Foy (1984). The growth stimulus is greater for Al-tolerant cultivars

than for Al-sensitive cultivars (Howeler and Cadavid, 1976; Clark,

1977). The stimulating Al concentrations are usually about 1 mg L-

or less. In the tea plant, however, growth stimulation is observed

at Al concentrations as high as 27 mg L-.

The mechanisms of Al beneficial effects are debatable and may be

different for different plant genotypes and growth media. Possible

explanations (Foy, 1984) include (1) increasing P, Fe, and Ca

uptake; (2) preventing toxicities of Cu, Mn, and P; (3) altering

the distribution of growth regulators; and (4) serving as a

fungicide.

The beneficial effects are the exception, however, and toxic

effects of Al on plant growth in soils of low pH are the rule.










Phytotoxicity of Aluminum

Aluminum toxicity is probably the most important growth-limiting

factor for plants in most strongly acid soils and mine spoils (Foy,

1974; McLean, 1976).

The symptoms of Al toxicity are not easily identified. Aluminum

toxicity effects are first detected in the root system, in which

there is reduced growth of the main axis, resulting in short thick

roots, and in the inhibition of lateral root formation (Alam and

Adams, 1979; Bollard, 1983). In plant tops restricted growth is

often the main symptom of toxicity, but sometimes mottling and

necrotic symptoms can appear on leaves as well (Cate and Sukhai,

1964). In some plants the foliar symptoms resemble those of P

deficiency. In others, Al toxicity appears as an induced Ca or Fe

deficiency (Foy, 1984). Young seedlings are generally more

susceptible to Al toxicity than are old plants (Thaworuwong and Van

Diest, 1974).

Several distinct positive modes of Al-toxic mechanisms have been

investigated. Excess Al has been reported to interfere with cell

division in root tips and lateral roots; increase cell-wall rigidity

by cross-linking pectins; reduce DNA replication by increasing the

rigidity of the DNA double helix; fix P in less-available forms in

soils and on root surfaces; decrease root respiration; interfere with

enzymes governing sugar phosphorylation and the deposition of cell

wall polysaccharides; and interfere with the uptake, transport, and

use of several essential nutrient elements, including Ca, Mg, K, P,

and Fe (Foy, 1984).










Excess Al may reduce the uptake of certain essential elements

and increase that of others (Ali, 1973; Alam, 1981; Duncan et al.,

1980). Aluminum toxicity is often associated with Al-induced P

toxicity (McCormick and Borden, 1972) or Al-induced P deficiency

(James et al., 1978). Aluminum-induced Fe deficiency is frequently

mentioned in the literature (Alam, 1981; Clark et al., 1981), and

aluminum x Ca interactions are important in acid soils. Lance and

Pearson (1969) showed that reduced Ca uptake was the first externally

observed symptoms of Al damage on cotton seedling roots. Lund (1970)

found that Ca reduced the detrimental effects of Al in nutrient

solution. However, the data for effects on nutrient uptake are

difficult to interpret in terms of Al toxicity mechanisms. No one

pattern of elemental accumulation applies to all cases of Al injury

(Foy, 1984), with the entire array of elements in the tops of

Al-injured plants probably representing the accumulated systematic

effects of initial root injury by Al. Such effects are generally too

far removed from the initial root injury to reveal Al-toxicity

mechanisms (Foy, 1984). The reduction in levels of some elements is

also a result of reduced root surface area rather than a specific

effect of Al (Clarkson, 1966).

Differential Aluminum Tolerance of Plants

Different plant species and varieties differ widely in their

tolerance to excess Al in the growth medium. There is now consider-

able activity devoted to breeding crop cultivars better adapted to

acid-soil conditions, with work in this field having resulted in the

detection of certain differences between susceptible and tolerant

cultivars. However, the exact physiological mechanisms of Al










tolerance are still being debated; tolerance may be controlled by

different genes, acting through different biochemical pathways in

different plants (Foy, 1984).

Three major mechanisms are involved in Al tolerance: (1)

exclusion from uptake excluderr plants); (2) inactivation in the

roots excluderr, include plants); and (3) accumulation in the

shoots includer plants). Mechanism (3) exists mainly in highly Al

tolerant species of natural vegetation, with only a few cultivated

species being Al includes. In crop species, mechanisms (1) and (2)

predominate, and it is often difficult to differentiate between the

two (Marschner, 1986) The following factors may be of primary

importance in the exclusion mechanism:

1. Rhizosphere pH. When Al is present, some tolerant cultivars

tend to raise the external pH faster than sensitive cultivars, both

in the nutrient solution (Foy et al., 1967) and in the rhizosphere of

soil culture (Mugwira and Petel, 1977). A slight pH increase at the

root surface or in the free space is probably sufficient to lower the

charge of Al, which leads to the formation of Al polymer species.

These polymer species may facilitate P uptake.

2. Aluminum uptake and distribution. Some Al-tolerant plants

have a lower Al concentration in roots than do Al-sensitive plants.

In this case, Al tolerance apparently involves an exclusion

mechanism. Other Al-tolerant plants have either more or less Al in

their tops than do Al-sensitive plants. Such plants have higher

internal tolerance to Al. Tea, certain Hawaiian grasses, pine trees,

and mangrove are examples of Al accumulators (Foy et al., 1978), but

little is known about the forms in which Al may exist in the foliage










of accumulator species (Bollard, 1983). Some effort has been made

to establish critical levels of Al for toxicity in plant tops

(Wallace and Romney, 1977; Duncan, 1982).

+
3. Nutrient uptake. Some Al-tolerant plants are also NH -
+
tolerant. This NH4-tolerance is important in strongly acid soils,

where high concentrations of NH4 may be present (Foy and Fleming,

1982). Aluminum tolerance in certain cultivars of wheat, barley,

soybean, and snapbean has been associated with the ability to resist

Al-induced Ca deficiency (Foy et al., 1978). In many plants, Al

tolerance also appears to be closely related to P-use efficiency

(Foy et al., 1978).

4. Organic Al complexes. Naturally occurring organic acids

in Al-tolerant species chelate Al and thereby reduce the Al-P pre-

cipitation expected at normal pH levels in plant sap (Jones, 1961).

Klimashevskii and Chernysheva (1980) found that the roots of Al-

tolerant varieties of pea, maize and barley contained substantially

higher concentrations of citric acid than did those of Al-sensitive

varieties of the same species. Complexation of Al by organic acids

not only provides protection against the harmful effects of free

Al on root growth, but is also important for the uptake of P

(Marschner, 1986).

Study Methods for Al Phytotoxicity

Study methods for Al phytotoxicity normally include solution

culture, soil culture in the greenhouse, and field experiments.

Solution culture has been used most frequently.

Solution culture (nutrient solution or soil solution) has

been used for studying the relationship between Al speciation and










phytotoxicity. Attempts have been made to relate the concentrations

of Al species in solution (Al3+, hydroxy-Al monomers, hydroxy-Al

polymers, AlSO et al.) as obtained by calculation with GEOCHEM or

other programs to plant-growth parameters in order to find out what

species is most toxic to plant growth. However, there is no clear

consensus as to the species) predominantly responsible for phyto-

toxicity (Blamey et al., 1983; Alva et al., 1986; Parker et al.,

1988, 1989).

Rapid screening methods have been developed, mainly in solution

culture systems. Most workers have found that the primary damage

caused by Al occurs in the roots (Bouma et al., 1981; Bollard, 1983).

In most crop species, the relative root length of plants exposed

versus those not exposed to Al is the most appropriate parameter

(Marschner, 1986). Because Al toxicity to roots is affected by many

factors, such as pH and concentrations of P, Ca, and Mg, the biggest

problem in developing rapid screening techniques is finding an

appropriate combination of these factors to use (Rhue and Grogan,

1977). In some instances the classification of genotypes based on

their Al tolerance via the rapid screening methods correlates well

with the growth response of these genotypes in acid soils (Howeler

and Cadavid, 1976). However, the correlations often are quite poor

(Nelson, 1983). These discrepancies are not surprising and indicate

that a) factors such as rhizosphere pH have been insufficiently

considered, and b) factors other than excessive Al levels may have

been involved and may have had an even more harmful effect on growth.

There has been much work with plants grown in nutrient solution,

on the effects of Al concentration and possible modifying factors on










the growth and elemental composition of plants. There are consid-

erable technical difficulties with such experiments. There is

often confusion about what level of Al is actually present in

solution. A general problem in most studies on the beneficial

effects of Al on plants is the contamination of the nutrient solution

with Al. Reasonably high levels are frequently reported in plants

growing in conventional culture solutions without any added Al

(Wilkinson and Gross, 1967). Moreover, the reduced solubility of

aluminum phosphate with increasing pH greatly restricts the combina-

tions of Al and phosphate concentrations and pH of culture solution

which can be compared. The other problem in some studies is the

confounding effects of P and Al. When zero or small amounts of Al

are added, excessive P levels are quite common (Marschner, 1986).

When large amounts of Al are added, P is often deficient in the

nutrient solution due to the precipitation of aluminum phosphate.

Field experiments are very important in Al-phytotoxicity and

screening studies for Al tolerance (Foy et al., 1974; Mugwira et al.,

1981). However, field experiments are labor-intensive, require

several months or more for completion, and are often influenced by

secondary factors such as the variation of soil properties. Applica-

tion of Al to a large field area is not practical. It also is very

difficult to study root systems of crops in field experiments without

disturbance of the soils and the root system, particularly for large

plants such as trees.

Studies of Aluminum Effects on Citrus

Citrus species are grown widely in tropical and subtropical

areas of high annual rainfall in which the soils are almost always





11




acid. Citrus trees were domesticated from wild ancestors in Eastern

and Southern Area (Hill, 1937), where most soils are highly acid.

Aluminum phytotoxicity may be an important factor limiting citrus

growth in the more acid of these soils. However, only a few studies

have been reported in this field.

An early report of Al effects on citrus growth was made by Haas

(1936). He used leafy-twig cuttings of some citrus in a nutrient

solution and found that low Al concentrations stimulated root growth

while high Al concentrations were toxic. He also found that addition

of Al increased P uptake. Liebig et al. (1942) made similar

findings. They also found that addition of Al reduced Cu toxicity.

Yokomizo and Ishihara (1973) conducted a solution culture with a wide

range of Al additions. They found that, at low Al additions, citrus

root growth increased. At 100 mg Al L-1 addition, however, citrus

root growth was extremely depressed. Worku et al. (1982) conducted a

study with highly weathered Oxisols in Hawaii. They found that high

levels of Al and Mn were toxic to some citrus species. The effects

of Al and Mn, however, were confounded. Other researchers (Sekiya

and Aoba, 1975; Huang, 1983) have linked high Al concentration to

poor citrus growth.

Additional information about Al effects on citrus is needed

and the following aspects are in particular need of further study:

1. Comparing the effects of Al on several citrus species,

to find out the critical Al concentrations for toxicity in solution

culture.

2. Screening Al tolerance of citrus species systematically.











3. Study of the relationship between Al effects and macro- and

micro-nutrients.

4. Study of the mechanisms of beneficial and toxic effects of

Al on citrus.

5. Investigation of the effects of Al on citrus growth in

soils, particularly in the field, and assessment of the critical Al

concentrations in soil solution or in citrus leaves which reflect

toxicity.

6. Testing amendments which may be used practically in citrus

groves to ameliorate Al toxicity.















CHAPTER III

SUPERNATANT SOLUTIONS CONTAINING VARIOUS LEVELS OF ALUMINUM
AND SIMILAR CONCENTRATIONS OF PHOSPHORUS AS CULTURE
SOLUTIONS FOR THE ALUMINUM STUDY

Introduction

Solution culture has been widely used to study the effects of Al

concentration on the growth and elemental composition of plants and

to screen crop species for Al tolerance. Normally, authors report

the amounts of Al added to the solution but not the actual Al concen-

tration in the growth solution. Many nutrient culture studies have

employed high Al additions (up to 7.4 mM or more) (Tanaka and

Navasero, 1966; Yokomizo and Ishihara, 1973), high P additions (up to

0.48 mM) (Moore et al., 1976; Nelson, 1983; Williams, 1982) and high

solution pH (4.8 or higher) (Malavolta et al., 1981; Tanaka and

Navasero, 1966; Williams, 1982). These conditions have probably

resulted in the precipitation of Al(OH)3 and aluminum phosphate

(Blamey et al., 1983; Yokomizo and Ishihara, 1973). Such losses

of Al from the test solutions would be expected to cause an over-

estimation of the threshold concentration for Al toxicity (Asher,

1981). Another general problem in most studies on the effect of

low levels of Al on plant growth has been the contamination of the

nutrient solution with Al even where the Al solution level was

assumed to be zero (Marshner, 1986; Tanaka and Navasero, 1966;

Wilkinson and Gross, 1967). Therefore, there are good reasons to

report the actual Al concentrations of the growth solution.










The precipitation of aluminum phosphate also causes the decrease

of actual P concentration in the solution (Munns, 1965; Tanaka and

Navasero, 1986). For a given pH and P addition, if the amount of

added Al is zero or small, there may be a P-toxicity problem

(Marschner, 1986). If the amount of added Al is large, there may be

a P deficiency problem. Either of these problems may confound the

effects of Al on plant growth. In many previous studies, beneficial

or toxic effects of Al were reported to be related to P (Foy, 1984).

Some researchers also found that P toxicity or deficiency affected

the Al toxicity symptoms and critical concentrations in solution

culture (Tanaka and Navasero, 1966). Therefore, it is necessary to

report the actual concentration of P in the growth medium. It is

also important to get similar concentrations of P in nutrient

solutions with different Al concentrations, although there are

considerable technical difficulties because of uncertainty which

extends even to the prediction of precipitation.

In nutrient solutions with amorphous precipitates of Al(OH)3,

aluminum phosphate, and other compounds, it is difficult to estimate

the actual concentrations of Al, P and other elements which may react

with Al and P to form precipitates during the growth periods. Such

precipitates may become a sink or source for the elements in the

solution. The actual concentrations of the elements in the solution

may dynamically change as well. Furthermore, with continuous

aeration amorphous precipitates may deposit on root surfaces and this

coverage may affect the physiological function of the roots. It is

preferable to use supernatant solution (filtered or siphoned) instead

of turbid solution to grow plants in Al studies.










In earlier work, some techniques were used to avoid precipi-

tation problems. Munns (1965) suggested comparing the effects of

Al concentration in culture nutrient solution only at phosphate

concentration of 19 uM (0.59 mg P L-1) or less, Al concentrations on

the order of 100 uM (2.7 mg Al L-1), and pH values of 4.0-4.2 to

avoid precipitation problems. Nonetheless, many experiments have

been carried out with treatments exceeding such narrow limits. In

order to avoid precipitation of aluminum phosphate, phosphorus has

been omitted (Moore et al., 1976), or plant roots have been

alternately exposed to culture solutions containing either Al or P,

or split-root techniques have been used. These modifications,

however, impose their own constraints on the interpretation of

experimental results (Pierre et al., 1932; Wright, 1937).

The objectives of this study were two-fold: (1) to investigate

the actual concentrations of Al and P in nutrient solution under

different pH and different Al and P additions; and (2) to develop

and test a supernatant-solution method for Al studies, in which the

supernatant solutions contain various levels of Al and similar

concentrations of P.



Materials and Methods

General

All reagents were of analytical grade and double-deionized

water was used. The basal nutrient solution used for this study

contained about one-fourth of the macronutrient concentrations,

except for P, of no. 1 Hoagland and Arnon solution (1950). This

basal nutrient solution has been used previously for some other Al










studies (MacLeod and Jackson, 1967; Yokomizo and Ishihara, 1973).

The basal nutrient solution contained the following elements in mg
-1
L-1: 50 N from NH4NO3, 50 K from K2SO4, 50 Ca from CaC12, 15 Mg from

MgSO4.7H20, 2.0 Fe from FeSO4*7H20, 0.2 Mn from MnSO4 H20, 0.1 Zn

from ZnSO 4*7H20, 0.02 Cu from CuSO 45H20, 0.2 B from H3BO3, and 0.02

Mo from (NH4)6MO7024'4H20. Phosphorus and Al were not included in

the basal nutrient solution. In preparation of mixed solution

aluminum was added from Al 2(SO4 ) 318H2 0 and P from NaH2PO4*H20.

The filter paper used was Whatman 42, which was ashless and had a

minimum particle-retention diameter of 2.5 um. The pH of solution

was measured using a combination glass electrode, and the electrical

conductivity (EC) was measured using a conductivity bridge.

Elemental composition of solution was determined by ICAP (Inductively

coupled argon plasma) emission spectroscopy. In Experiments 1 and 2,

all treatments were replicated three times.

Experiment 1. Effects of pH and Additions of Al and P on EC and
Concentrations of Al and P in Filtrated Nutrient Solution

Six levels of Al addition (0, 5, 25, 50, 100, and 500 mg L-)

were used in factorial combination with two levels of P addition

(3 and 15 mg L-1) and four pH levels (3.5, 4.0, 4.5 and 4.8).

Aluminum or P salt was added separately to each 200 mL of the basal

nutrient solution, and dissolved. The solution containing P then was

added to the Al solution slowly with vigorous stirring by magnetic

stirrer. Then the pH of the mixed solution (400 mL) was adjusted

with 0.5 or 1 M first and then with 0.1 M HC1 or NaOH. The HCl or

NaOH was added to the solution drop by drop, with vigorous stirring

by magnetic stirrer. After aging for seven days at 250C, the solution










was filtered and the filtrate was analyzed for EC and concentrations

of Al and P.

In addition, four trials were conducted to investigate a) the

composition differences between filtered nutrient solution and

supernatant solutions obtained by siphon, b) the effect of equili-

bration time and temperature, and c) the effect of storage

temperature on composition of filtrate.

Experiment 2. Supernatant Solutions Containing Several Levels of Al
and Similar Concentrations of P

Two trials were conducted. The first was to develop one set of

supernatant solutions which contained various levels of Al (0 to 150

mg L- ), with a similar P concentration (1 mg L-1) and at the same pH

(4.0). There were a number of Al-addition levels (0 to 320 mg L )

in factorial combination with a number of P-addition levels (0 to 320

mg L- ). The pH of all mixed solutions was adjusted to 4.0. The

second trial was to develop a second set of supernatant solutions

which contained various levels of Al (0 to 10 mg L-1) with similar P

concentration (0.2 mg L- ) and at the same pH (4.5). There were a

number of Al-addition levels (0 to 160 mg L-1) in factorial combina-

tion with a number of P-addition levels (0 to 160 mg L-1). The pH of

all mixed solutions was adjusted to 4.5. The procedure of mixing,

aging, and filtering were the same as described in Experiment 1. The

filtrates were analyzed for EC, and for concentrations of Al, P, and

other elements.

Experiment 3. Elemental Composition of Large-volume Supernatant
Solutions Prepared Manually in the Greenhouse

In order to make 100 liters of the supernatant solution

developed in Experiment 2 as the first set, 55 liters of basal











nutrient solution was prepared in a 120-liter plastic container.

Aluminum and P solutions were prepared with water, each in separate

20-liter plastic containers. The aluminum solution was mixed with

the basal nutrient solution in a 120-liter container. Then the P

solution was added. The solution was mixed by hand-stirring with a

plastic bar. The pH was adjusted with additions of 3.5 M HC1 or NaOH

from a wash bottle, and the solution was mixed. The mixed solution

was then made up to 100 liters with basal nutrient solution. After

the solution was aged for 7 days at room temperature in the green-

house, the supernatant liquid was siphoned. Electrical conductivity,

and Al and P concentrations in the supernatant solution, were deter-

mined. The supernatant solution was used for Experiment 4 also.

Experiment 4. Test of Supernatant Solutions as Culture Solutions
Using Citrus Seedlings

The objective of this experiment was to use citrus seedlings to

test the first set of supernatant solutions developed in Experiment 2

and prepared in Experiment 3.

Five citrus rootstocks were used: Carrizo citrange [C. sinensis

(L.) Osbeck x Poncirus trifoliata (L.) Raf.], Cleopatra mandarin (C.

reshni Hort. ex Tan.), Rough lemon (C. jambhiri Lush.), Sour orange

(C. aurantium L.), and Swingle citrumelo (C. paradisi x P. trifoliata).

Six-month seedlings (liners) were obtained from nurseries. Uniform

seedlings were selected and their roots were thoroughly washed with

tap water, and then given a final rinsing with deionized water. The

seedlings were transferred to the supernatant solutions prepared in

Experiment 3. Ten-liter pails (25 cm diam. x 21 cm height) were used

to hold the nutrient solution. Five holes were made in the plywood










lid of the pails, one for each of the five rootstock seedlings.

The entire root system of the five seedlings was submerged in the

solution, and the solution was continuously aerated. This also

served to keep the solution uniformly mixed. Air-conditioning was

used in the greenhouse to maintain the air temperature in a range

from 25 to 35C. The pails were put inside pools filled with water

which was circulated by a pump and passed through a cooling system.

The water temperature in the pools, as well as the solution

temperature in the pails, was maintained at 25 IC.

Seven Al concentrations were used. Eight pails contained the

same Al concentration and five rootstock seedlings. A total of 56

pails containing treatment solutions were randomly assigned positions

in the pools. The pH levels were checked every 2 to 3 days and

adjusted to 4.0 by additions of diluted HC1 or NaOH as necessary.

The solution level was maintained by addition of deionized water in

a quantity sufficient to offset loss due to evapotranspiration every

two days. The treatment solutions were renewed every 20 days. The

seedlings grew in the solution for 60 days. At the end of the last

20-day growth period, samples of the solutions were taken to determine

concentrations of Al, P, and other elements. At the beginning and

end of the last 20-day growth period, shoot heights of the seedlings

were measured. Photographs were taken at the end of the experiment.



Results and Discussion

Experiment 1. Effects of pH and Additions of Al and P on EC and on
Concentrations of Al and P in Filtrated Nutrient Solution

Aluminum concentrations increased with increased levels of Al

addition but decreased with increased pH or increased levels of P










addition (Tables 3-1 and 3-2). As pH increased or P addition

increased, more precipitate was found in the mixed solution. When pH

increased from 3.5 to 4.5, Al concentration decreased drastically,

and, when pH increased to 4.8, Al concentration became extremely low,

averaging only a few mg Al L1. Even when 500 mg Al L-1 and only 3

mg P L- were added, the actual Al concentration was only 3.6 mg L-
-1
With small amounts of Al addition, such as 5 mg Al L- together with

15 mg P L-1, Al concentration was essentially zero in the filtered

nutrient solution. The large difference between the amounts of Al

added and actual Al concentrations in the filtered nutrient solution

suggests that it is necessary to report the actual Al concentrations

in the growth nutrient solution for Al studies.

Phosphorus concentrations increased with increasing levels of P

addition, but decreased with increasing pH and addition levels of Al.
-1
It was noteworthy that at pH 4.5 or higher, when 25 mg Al L or more

were added, the P concentration was zero, whether 3 or 15 mg P L-

had been added. These treatments could result in extreme P

deficiency, and would confound the Al-toxicity effects. In contrast,
-1
when Al addition was zero or small, addition of 15 mg P L or more

would be toxic to some plants, and this toxicity would reduce any

beneficial Al effects. Phosphorus supply has been associated

historically with root growth (Tisdale and Nelson, 1975). In Al

phytotoxicity studies, many researchers have used root elongation as

a main parameter. Therefore, levels of P supply may have been a very

important factor influencing the conclusions of Al phytotoxicity

studies. Ideally, it should be best to have the same P concentration

for all levels of Al.









Table 3-1.


Effects of pH, and additions of Al and P, on the concentrations
of Al and P, and on EC, in filtrates (aged for 7 days at 250C).


-i
Al addition, mg L1
0 5 25 50 100 500
-I
pH P addition, mg L
3 15 3 15 3 15 3 15 3 15 3 15


Al concentration, mg L-

3.5 0.1 0.1 4.7 5.0 25.1 22.5 50.2 46.6 93.5 85.3 493.2 487.5
4.0 0.1 0.1 2.9 1.3 17.5 8.6 46.7 26.4 78.0 66.5 385.0 270.9
4.5 0.1 0.1 0.9 0.2 5.1 1.6 7.1 4.0 8.6 8.0 21.0 19.2
4.8 0.1 0.0 0.2 0.0 0.4 0.2 0.7 0.3 1.7 0.9 3.6 2.1

P concentration, mg L-

3.5 3.1 15.1 3.0 14.5 2.9 9.6 2.7 8.5 2.5 8.6 2.3 8.8
4.0 3.1 15.1 2.1 13.0 0.1 1.1 0.3 0.5 0.4 0.5 0.3 0.5
4.5 3.1 15.2 0.6 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.8 3.0 14.9 0.1 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-1
EC, dS m-1

3.5 0.80 0.83 0.89 0.91 0.99 1.02 1.06 1.09 1.26 1.30 2.56 2.64
4.0 0.78 0.81 0.81 0.81 0.97 1.02 1.05 1.10 1.30 1.33 3.19 3.28
4.5 0.74 0.82 0.78 0.80 0.96 1.05 1.10 1.14 1.58 1.60 4.10 4.14
4.8 0.78 0.79 0.87 0.94 0.98 1.14 1.16 1.18 1.60 1.66 4.38 4.47









Table 3-2. Equations describing effects of pH(x ), Al addition (x ),
and P addition (xq) on concentration of Al (Y ),
concentration of P (Y ) and EC (Y3) in filtrates obtained
during Experiment 1 (aged for 7 days at 250C).


Regression equations


R2


Y1 = 0.36 + 4.048x2 0.853x1x2 0.023 x 2x3 + 0.004 x x 3 0.97t
2
Y = 2.06 + 1.9062x 0.0720x + 0.0001x2 0.3367x x
2 3 2 2 13 0.63
0.0002x1X2X3 0.63
2 2
Y = 2.80 0.956091x 0.005863x + 0.111680x + 0.000228x2
3 2.80 .959 2 1 3
0.000002x2 + 0.002962x1x2 0.99



t All values of R2 are significant at P < 0.001.










The EC increased with increasing levels of Al and P addition.

Increased pH caused a rapid increase of EC when Al or P additions

were large. Also, Blamey et al. (1983) reported that the EC of basal

solutions affected the concentrations of Al and P in solution.

After aging for 7 days, the Al and P concentrations and EC in

the filtered nutrient solutions and the supernatant solutions were

the same. Therefore, in the greenhouse studies with large volumes of

culture solution, supernatant liquid in the mixture could be siphoned

instead of filtered for convenience. There were no significant

differences in Al and P concentrations and EC between 7 and 14 days

of aging in the range of pH, Al and P additions of this experiment.

The 7-day aging temperatures of 5, 25, and 450C had no significant

effect, either. The Al and P concentrations and EC in the filtered

nutrient solution did not change after storage in tightly closed

bottles for 20 days.

Experiment 2. Supernatant Solution Containing Several Levels of Al
and Similar Concentrations of P

At certain pH levels, and when Al addition was small, the P

concentrations in the filtered nutrient solution increased

continuously with increased levels of P addition. When large amounts

of Al were added, the P concentrations went up and down several times

with increased P addition (Fig. 3-1). At a certain P concentration,

there might be more than one P addition and more than one corres-

ponding Al concentration which decreased continuously. At different

pH values, however, the upper limits of Al addition for continuous

increases of P concentrations were different (i.e., the higher the

pH, the smaller the upper limit of Al addition). For example, at pH

4.0 and with a 20 mg Al L-1 addition, the P concentration still


























pH 450
Tad 00mg Al L'
T


PH 4.00
' oad 160mg Al L'


II

i


I /
1 '


80 100


160 180


P ADDITION (mg L- )


Figure 3-1.


Phosphorus concentration in filtered nutrient
solution as affected by P addition at two pH
values and two levels of Al addition (aged
for 7 days at 250C). Vertical bars indicate
standard deviations.










continuously increased with increased P additions. However, at pH

4.5 when Al addition was only 15 mg Al L-1, the P concentration was

not increased continuously with increased P additions. An attempt to

interpret these results in terms of the prevailing concept of Al3+

hydrolysis, and of complexation by Al and P, has not been successful.

According to results from mixing the solutions having a number

of levels of Al addition and a number of levels of P addition at two

pH values, two sets of filtered nutrient solutions for the Al study

were found (Table 3-3). In Set A, the filtered solution contained

various levels of Al (0.1 to 171.3 mg Al L-1), but all P concentra-
-1
tions were about 1 mg L The concentrations of other nutrients,

and EC of the filtered solution, were adequate for plant growth.

This set of solutions may be suitable for large seedlings (e.g., tree

seedlings) which are more tolerant to Al and which need more P. In

Set B, the pH was 4.5. Aluminum levels ranged from 0.1 to 10.2 mg Al

L and P concentrations were kept at 0.2 mg P L- in all treatments.

The concentrations of other nutrients and the value of EC were also

adequate. This set of supernatant solutions may be suitable for

small seedlings which are more sensitive to Al, need less P, and

require higher pH. Seedlings of some cereals and vegetables may

adapt to this set of solutions.

Experiment 3. Elemental Composition of Large-volume Supernatant
Solutions Prepared Manually in the Greenhouse

The nutrients added to solutions and their concentrations in

supernatant solutions are shown in Table 3-4. The pH and additions

of Al and P were the same as in Set A of Experiment 2. However, Al,

P, and Fe concentrations, and EC values, were different from those of



























CM CM CMN CN CN N C(

0000000




0000000


4-4

w
0
4-1








co
cc
4-1
CO


02
0)















ca
4-4
CO




0



0a






4-H1
41
CO *

-N



CO C
4-1 -H










u
r. 0
02


par-
C.









ca
r. IV



00)
02e











CO0
0 T-)

T4I CO
U)
T-I'4-
(U




. ca







0








o 0
0 CO















4-4.
'0
CO N-







r4J


EE
COO
(U

















bo
I -
'a 4-J
3

0) i-l
C 0
co e
















Cct
oE







.0
ouh





CO 4J










'E-
TlCO



TI C
'o
pr
CO1^


ect


0000000




0000000



ON 1n In n n n m

' O \O0\O

-4-4 -4-o4-4-4
ddd-r-~l di-~-


N C( C(N C( C(N CN C




f- D 0 0 L '-













0\C00\000


00O NN -
Cmla3DNsC

0000000


00-
r r,
C;, _


CM O ) --
-4 -4 _- C(


CM C( (M CM (N cM C(
0000000




0000000


000

000


0000

0000


0000000




0000000



ILn in Um mn n V
uim m u~ c n u) ir

Lf^ \ L^ p LA .p ^


mL n n in In n
CN CN C(N ( C(N ( C(







C( CM (N CM CM C; (N

0000000NN





-4





00r-CN0C4Cn
o o r- CM co (N (n



0000000
e)' -I 1--4


0

C14




c '

co
1 -0

0
in *



O



3- O

*1









m o
0 M CO
z z
















w C






0 0




o C



0 C
0C 0


m- 0



cO -
O 0














t o a

0 cc
o o















41
O (N
02 -4






SOO


I Fca 2










0)
CO 0










0* w
w CO
M 0




COO M












*T-I *
4J>I-


00000

00000


+-
CI (
0
I-4



0<
02


4J
0)0
cn

























NN
00


(N CN CN

0 0 0


Nh
00


C
-r4
00
cd



4J







)4-
t0






Cc


4-



Cu
ca0



O
1-1
0)










0 4
3
ru









C 0
o00
a0-
0 0
C 3












0 0
S"3






0


















co
E 13
0)



4O -
C Cu
10


0







4-1 I
0 l


oe






03
Cu
oo >
CB t
4- *
) 1~

m-













Ei


I 4-

0 0) C
wacu
u 3 t


I
6


I
I



I
1

I
I
I

I
I
I
I


I
I
I


I
I
1
I
I
I
I


I
I
I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I


CM C


0 0 0


00 0 C, oo N-



0 0 0 0 0 00
CN CO \D CN r, CM
N N CM


0 0 0 0 0


0
O
CN

CO a *0


















Q *
0 N
en a)





c~

o o

C;


O 0





S a
m o












NQ
0 a











C o
z h







m T:

a3












W-
"ro







0 a 0






C 4

C13
00 0
7o a c









Cuo

0 0
r- *
0 cc '3N to


0 0 (M



0 3* (
r Cu Cu
a) a14











4- 0
4C 00 t






0 t 0 0
0
o-i Cu ~


3 C 00




-i-


0 0




0 0
h -

N 0D
- 0


C M M CM m M C




-4 3 -4 3


C 0C 01M 0 0M 0M 0CM



Ln a L) L) U, U %o 1o


0

C
0 0H

O


< <


4-)
Cu



41i
E-










Set A. Electrical conductivities were slightly lower and Fe concen-

trations slightly higher than those in Set A. When levels of Al

addition were large, P concentrations slightly decreased. The big

change from Set A in Experiment 2 was in Al concentrations, which

ranged only from 0.1 to 44.8 mg Al L-1. The main causes for the big

difference in Al concentrations between the supernatants prepared in

Experiments 2 and 3 were the methods used in adjusting the pH of the

solution and mixing the solution. In the preparation of the

equilibrium solution for Experiment 3, more concentrated NaOH

solution was used. Furthermore, a larger amount of NaOH was added

each time in Experiment 3 than in Experiment 2, and the added NaOH

could not be mixed immediately and thoroughly. The local higher

concentration of NaOH reacted with Al to form greater amounts of

amorphous hydroxy-aluminum and, thus, soluble monomeric Al decreased.

The large amount of amorphous hydroxy-aluminum in solutions

representing high Al treatments reacted almost immediately with

phosphate to form precipitates. In contrast, more Al in the Set A

solutions of Experiment 2 was reacted with phosphate to form soluble

complexes (Hsu, 1968). Therefore, the formation of large amounts of

amorphous hydroxy-aluminum caused decreased Al and P concentrations

in the supernatant solution. However, the P-concentration decrease
-1
was small and all of the P concentrations were about 1 mg L This

supernatant solution containing various Al levels and yet similar P

concentrations should be suitable for Al phytotoxicity studies.

Experiment 4. Test of Supernatant Solutions as Culture Solutions
Using Citrus Seedlings

Citrus seedlings were grown in the supernatant solution prepared

in Experiment 3 for 60 days. The seedlings grew rapidly during the










last 20-day period. The data for Rough lemon were chosen to show the

shoot height at the beginning and the new-growth shoot height at the

end of the third 20-day period (Table 3-5). The 2.7 and 4.8 mg Al
-1
L- treatments appeared to have had a beneficial effect, but 8.3 mg
-1
Al L- or more had a toxic effect on shoot growth. Figure 3-2 shows

that the beneficial and toxic effects of different Al concentrations

on Rough lemon were obvious. Growth for the other four rootstocks

was similar to that for Rough lemon. All seedlings responded signifi-

cantly to Al concentrations and no symptoms of nutrient deficiencies

or excesses were found, except that some seedlings (Swingle citrumelo)

showed yellow color, and mottled and withered young leaves and

aborted terminals in the high-Al treatments near the end of 60 days.

These symptoms may have been caused by Al toxicity.

The pH of the supernatant solution during the growth period

normally changed 0.2 units every 3 days. When the roots grew

vigorously at low Al levels near the end of 60 days, the pH decrease

of the solution was greater. This was probably due to the acid

exudate of the citrus roots. During this period, the pH was adjusted

daily.

The nutrient composition of the supernatant solution was

analyzed at the end of the last 20-day period, with results as shown

in Table 3-6. Aluminum concentration changed very little. The

amounts of nutrients remaining in the supernatant solution indicated

that the supernatant solution had the capacity to support large

seedlings growing for 20 days. For 7-month-old citrus seedlings,
+ -1
it appears that more than 25 mg NH4-N L should be applied.










Table 3-5.


Shoot height and new-growth shoot height of Rough lemon in
the 3rd 20-day growth period in the supernatant solution.


Al concentration
Treatment in supernatant Shoot height New-growth shoot
solution at the beginning height at the end

mg L ------- cm plant -------

Al-0 0.1 26.62.7+ 10.71.1

Al-I 2.7 29.63.0 13.71.6

Al-2 4.8 28.42.6 12.51.4

Al-3 8.3 21.71.3 5.80.5

Al-4 24.4 16.80.8 0.90.1

Al-5 28.4 16.70.7 0.80.1

Al-6 44.6 16.70.7 0.80.1



t Aluminum concentration taken as the average of Al concentrations at
the beginning and at the end of the 3rd 20-day growth period.


+ Standard deviation.
























































Figure 3-2.


Eight-month-old Rough lemon seedlings grown for
60 days in supernatant solution with various
concentrations of Al. From left to right: 0O1,
2.7, 4.8, 8.3, 24.4, 28.4, and 44.6 mg Al L .










Table 3-6.


Elemental concentrations and EC of supernatant solution
after growing five 7-month-old citrus seedlings in ten
liters of supernatant solution for 20 days.


Treat-
ment Al P NH NO Ca Mg K Fe Zn Cu Mn B EC
ment 4 3
---------------------mg L- ------------------------- dS m

Al-0 0.1 0.7 9 18 48 14 42 0.6 0.1 0.01 0.1 0.1 0.64

Al-I 2.5 1.0 6 14 45 14 38 0.3 0.2 0.01 0.2 0.1 0.82

Al-2 4.6 0.9 7 16 46 14 39 0.4 0.2 0.01 0.2 0.1 1.47

Al-3 8.2 0.7 11 18 47 14 46 0.5 0.2 0.01 0.2 0.1 2.25

Al-4 24.0 0.7 14 19 48 14 48 0.5 0.2 0.02 0.2 0.2 2.47

Al-5 28.2 0.7 16 21 48 14 49 0.5 0.2 0.02 0.2 0.2 2.60

Al-6 44.4 0.7 18 22 48 14 50 0.6 0.2 0.02 0.2 0.2 2.64











Summary and Conclusions

Precipitation of Al(OH)3 and aluminum phosphate may occur in

nutrient solution if a large amount of Al and P have been added at a

relatively high pH. The objective of this study was to investigate

the actual concentrations of Al and P in nutrient solution under

different pH conditions and varied levels of Al and P addition, and

to develop and test a supernatant-solution method for Al studies in

which the supernatant solutions contained various levels of Al and

similar concentrations of P. The aluminum concentration in super-

natant solutions was greatly reduced when pH was adjusted to 4.5 or

higher. Phosphorus concentration became negligible when pH was 4.5

or higher and Al addition was 25 mg L-1 or more, even when 15 mg P
-1
L was added to the solution. The large changes in P concentration

of the supernatant solution may confound the apparent effects of Al

on plant growth. Two sets of supernatant solutions which contained

various levels of Al and similar concentrations of P at two pH levels

were developed. One set of the supernatant solutions with pH 4.0 was

used in the greenhouse study to test suitability of the supernatant

solutions as culture solutions for Al phytotoxicity studies. Results

showed that the supernatant-solution technique was successful.

Two sets of supernatant solutions are recommended for Al phyto-

toxicity studies. In the pH 4.0 set, Al additions as A12(SO4)3'18H20

are 0, 20, 80, 160, 220, 270, and 320 mg Al L-1 and corresponding P

additions as NaH2PO4 H20 are 0.9, 16, 60, 90, 85, 75, and 27 mg P

L-. The maximum Al concentration will be 171 mg Al L and the P

concentration will be about 1 mg P L1 in all treatments. This set











is suitable for larger seedlings. In the pH 4.5 set, Al additions
-1
are 0, 1, 30, 60, 100, 130, and 160 mg Al L-1 and corresponding P
-1
additions are 0.25, 0.50, 12, 32, 28, 26, and 25 mg P L-1. The
-1
maximum Al concentration will be 10 mg Al L- and the P concentration
-1
will be about 0.2 mg P L- in all treatments. The concentrations of

Al and P are affected by the preparation procedure, such as the

concentrations of alkali and acid used to adjust pH and the speed of

mixing for this solution. This supernatant-solution method makes it

possible to avoid the confounding effects of P on Al, and to report

the actual concentration of Al in solution. Also, this method and

the use of regression procedures make it possible to obtain critical

values of Al concentration of toxic effects to plant growth.















CHAPTER IV

DIFFERENTIAL RESPONSE OF CITRUS ROOTSTOCKS TO ALUMINUM
LEVELS IN NUTRIENT SOLUTIONS


Introduction

Few researchers have studied the effects of Al on citrus root-

stocks in nutrient solutions. Haas (1936) used leafy-twig cuttings

of lemon, Lisbon, and Valencia orange in a nutrient solution and

found that, when Al was present the citrus roots were healthy, more

extensive, and root caps were numerous, but the shoots usually were

retarded. He concluded that "a concentration of 15 to 20 mg L-I of

Al was rather high for the production of the greatest growth" (tops

and roots). His data showed that the addition of Al to the solution

increased the percentage of P in root dry matter. Liebig et al.

(1942) found that the addition of 2.5 to 5 mg Al L- to nutrient

solutions greatly stimulated root development but depressed shoot

growth of Valencia orange and lemon cuttings. Lower concentrations

of Al, i.e., 0.1 and 0.5 mg L-1, did not produce this effect. They

found an antagonistic effect of Al on Cu. Yokomizo and Ishihara

(1973) concluded that root growth of Natsudaidai (C. Natsudaida

Hayata) seedlings improved at low concentration of Al but began to

decrease at an Al addition of 20 mg L and was extremely depressed

at 100 mg L-1 in nutrient solution. Root growth of Satsuma mandarin

trees was apparently increased by the supply of 10 and 20 mg Al L .

However, no results have been reported in the literature for










systematic screening of citrus rootstocks for Al tolerance. The Al

phytotoxicity levels are still not known for many citrus rootstocks,

and few data exist on effects of Al on mineral nutrition of citrus.

A general problem with previous work was that the authors only

reported the amounts of Al added to the solution, not the actual

concentrations in the nutrient solution. The actual concentrations

of Al in the nutrient solution were always lower than the original

concentration due to precipitation of Al(OH)3 and aluminum phosphate

(Yokomizo and Ishihara, 1973; Blamey et al., 1983; Bollard, 1983).

Another problem is the confounding effects of P on Al effects on

plant growth. The use of a supernatant-nutrient-solution method

developed in Chapter III might help to resolve these problems.

The objectives of this study were (1) to evaluate root and

shoot growth responses of citrus rootstocks to different Al concen-

trations in nutrient solution; (2) to estimate the critical Al

phytotoxicity concentrations for citrus rootstocks grown in Florida;

and (3) to evaluate the relationships between elemental concen-

trations in plant tissue and Al effects on plant growth.



Materials and Methods

Plant Material

Five citrus rootstocks were evaluated which account for more

than 90% of the citrus rootstocks used in Florida (Fisher, 1988).

They included: (1) Carrizo citrange [C. sinensis (L.) Osbeck x

Poncirus trifoliata (L.) Raf.], (2) Cleopatra mandarin (C. areshni

Hort. ex Tanaka), (3) Rough lemon (C. jambhiri Lush.), (4) Sour

orange (C. aurantium L.), and (5) Swingle citrumelo (C. paradisi x











P. trifoliata). Six-month-old seedlings were obtained from nurseries.

Uniform seedlings were selected, washed thoroughly with tap water,

and rinsed with deionized water. The root system of each seedling

was spread on a 1-cm grid background and photographed. The photo-

graphs were enlarged and used to measure the original root length

(Tennant, 1975). The fresh weight of whole plant and shoot height

of seedlings were recorded. The seedlings were then transferred to

nutrient solutions.

Nutrient Solution

The first set of supernatant nutrient solutions recommended in

Chapter III was used. The procedure of nutrient-solution preparation

was the same as described in Experiment 3, Chapter III. The

elemental additions and concentrations in the supernatant solutions

were as shown in Table 3-4. The seven Al concentrations in the

supernatant solutions ranged from 0.1 to 44.8 mg Al L-1, with P
-i
concentrations of about 1 mg P L in all treatments. The nutrient

solution was replaced each 20 days (three total replacements).

Before the plants were put into the solutions, and after each 20-day

growth period, aliquots of the solutions were taken for Al analysis.

The initial and final Al concentrations were averaged and were

assumed to represent the Al concentration during this 20-day growth

period. Three 20-day Al concentrations were averaged and the mean

was taken as the Al level during the 60-day growth period.

Equipment

Ten-liter pails were used to hold the nutrient solution. Five

holes were made in the plywood lids of the pails, one for each

seedling. A seedling was held in the hole by a rubber stopper cut










into two parts, with a small hole in the middle. The entire root

system of a seedling was submerged in the solution. One small hole

was also made in the lid for inserting an aeration tube. Continuous

aeration was supplied by an air pump hooked up to plastic tubes which

were attached to airstones in the solution. This also served to keep

the solution uniformly mixed (Fig. 4-1).

The toxicity of a given concentration of Al is highly

temperature-dependent (Konzak et al., 1976; Aniol, 1983). In the

present study, air-conditioning was used in the greenhouse to main-

tain the air temperature between 25 and 380C. Plastic-lined pools

were also set up on the benches in the greenhouse, with the pails

then put inside the pools filled with water. The water in the pools

was circulated by a pump and passed through a cooling system. The

temperature of the water in the pools and in the nutrient solution

in the pails was maintained at 2510C (Fig. 4-2).

Procedure

The study was conducted using a split-plot design with 7 Al

levels as the whole plot, completely randomized in 8 replications

with 5 rootstocks as the subplot. Eight pails contained the same

concentration of Al and 5 rootstock seedlings. A total of 56 pails

containing treatment nutrient solutions were randomly assigned to

positions in the pools (Fig. 4-3).

The pH levels were checked every 2 or 3 days and adjusted to 4.0

by HC1 or NaOH additions when necessary. The solution level was

maintained by addition of deionized water in quantity sufficient to

offset loss due to transpiration every two days. The seedlings grew

in the solution from June 2 to August 2, 1989.



























Figure 4-1.


The root systems of five citrus seedlings which
were submerged in nutrient solutions in pails
which were in turn placed in a water pool.


fr
Id
** T^:


Figure 4-2.


Water circulation in the pool by a pump, which
was maintained at 25t1C by passing through a
cooling system.

























'" 1



r d4-:'


Figure 4-3.


Citrus seedlings growing in nutrient solutions
in pails which were randomly assigned to
positions in the water-filled pool.











At the end of the experiment, plants were washed thoroughly with

tap water and given a final rinsing with deionized water. The root

and shoot morphology was assessed visually and from photographs.

Total root length, shoot height, and fresh weight of whole seedling

were measured. The differences between initial and final

measurements were considered as new-growth root length, new-growth

shoot height, and new-growth fresh weight. Roots and shoots were

dried and analyzed for elemental concentrations. Because of the

small quantities of some seedlings, the roots or shoots of the eight

replications of a given treatment were randomly combined into four

samples, respectively. The roots or shoots were ground to pass a

0.85-mm sieve. Tissue samples of 0.500 g were dry-ashed at 500C in

a muffle furnace for 4 h; the ash was then dissolved in 10 mL of 6 M

HC1, evaporated to dryness, and the temperature increased slightly to

dehydrate SiO2. The residue was dissolved in 6.7 mL of 2 M HC1,

heated to near-boiling, and then filtered. Elemental concentrations

in the solution were determined by inductively coupled argon plasma

(ICAP) emission spectroscopy.

Regression/correlation techniques were employed to relate growth

to Al concentrations in nutrient solution. The growth data were

transformed to natural logs and the Al concentrations to square-root

values.

Results and Discussion

Morphology of Roots and Shoots as Affected by Al Concentration

At 2.7 and 4.8 mg Al L-1 the roots of all rootstocks except

Carrizo citrange grew extremely well. The roots appeared whiter,

healthier, firmer, and straighter than those in 0.1 mg Al L-1










More new roots and lateral roots grew and, near the end of the

experiment, the roots of Rough lemon grew fastest among the five

rootstocks. When the Al concentration was 8.3 mg L-1 or higher, the

growth of roots was retarded. Fewer new roots and lateral roots grew

and root tips became thickened (Fig. 4-4). At the 28.4 and 44.6 mg
-1
Al L- levels, the root system as a whole appeared coralloid, with

stubby new-growth roots (Fig. 4-5). At the 44.6 mg Al L-1 level,

some older roots rotted, with Rough lemon roots deteriorating most

seriously. At 8.3 mg Al L- or higher, some root tips were covered

by a root cap with black gelatinous material (Fig. 4-6). The number

of blackened root caps increased with increased Al concentration in

solution. Among the five rootstocks, Cleopatra mandarin had the

greatest number of blackened root caps. It appeared that the

rootstock which was more tolerant to Al had more of this kind of root

cap. Therefore, the black gelatinous material on the root cap might

be related to avoidance of Al toxicity. What the black gelatinous

material was, how it formed, and what its function was, however, were

not known. The black gelatinous material was probably the excreta of

roots or complexes of the excreta with some components in the

solution, such as Al.
-1
Shoots of the seedlings grew faster in the 2.7 mg Al L- treat-
-1
ment than in the 0.1 mg Al L- treatment. When Al concentration was

8.3 mg L-1 or higher, growth of shoots was retarded. Shoots of five

rootstock seedlings were shorter and leaves were fewer and smaller

(Fig. 4-7) on plants grown of the higher Al concentrations. However,

no Al toxicity symptoms or other elemental toxicity or deficient

symptoms were observed during the first 50 days. Near the end of the





































Figure 4-1.


Figure 4-5.


Thickened root tips of Sour orange seedlings
grown in solution with 24.4 mg Al L'.


Stubby new-growth roots of Rough lemon seedlings
grown in nutrient solution with 24.4 mg Al L






























































Figure 4-6. Root tip covered by a root cap with black
gelatinous material for Cleopatra mandarin
seedlings grown in solution at 24.4 mg Al L




















%t%


Figure 4-7.


Young leaves of Swingle citrumelo seedlings
grown in nutrient solutions with various
concentrations of Al. From left o right:
0.1, 2.7, 24.4, and 28.4 mg Al L



F:.


j -


Figure 4-8. Shoot with yellow, mottled, and withered young
leaves and aborted terminal of Swingle citrumelo
seedling grown in nutrient solution with 44.6 mg
Al L for 60 days.










experiment, at 24.4 mg Al L-1 or higher, young leaves of Swingle

citrumelo were yellow, mottled and withered. Furthermore, the

terminal shoot was aborted (Fig. 4-8). Rough lemon had similar

symptoms but the symptoms were much less pronounced. These symptoms

were different from the symptoms of elemental deficiency or excess

for citrus, as listed by Chapman (1968). The symptoms were probably

caused by Al toxicity.

Growth Responses of Citrus Seedlings to Al Concentrations in Nutrient
Solution

Growth of five rootstock seedlings for 60 days in the nutrient

solution with various concentrations of Al is shown in Figs. 4-9

through 4-13. It was obvious that the growth of roots and shoots

was different among the Al treatments. The differences between the

2.7 mg Al L-1 and 44.6 mg Al L-1 treatments were particularly evident.

The initial, final, and new-growth of three parameters for five

rootstock seedlings were listed in Appendix (Table A-i). The effects

of Al concentration on new-growth root length of five rootstock

seedlings are shown in Fig. 4-14 and the linear regression equations

are given in Table 1. Aluminum concentration in the first treatment

was so low (0.1 mg Al L-, i.e., (Al) = 0.32) that this concen-

tration would not produce any beneficial or toxic effect on citrus

root growth (Liebig et al., 1942). Therefore, the new-

growth root length of this treatment was taken as a control. The

Al concentration at which the new-growth root length was equal to

that of a control was considered as the critical Al concentration.

Concentrations below or above the critical Al levels would cause

beneficial or toxic effects, respectively. In order to get the

critical values, regression equations were calculated. For all





























Figure 4-9.


Figure 4-10.


Effects of increasing Al concentrations in the
nutrient solution on root and shoot growth of
8-month-old Carrizo citrange seedlings.
From left to right: 0.1 2.7, 4.8, 8.3, 24.4,
28.4, and 44.6 mg Al L


(


Effects of increasing Al concentrations in the
nutrient solution on root and shoot growth of
8-month-old Cleopatra mandarin seedlings.
From left to right: 0.1 2.7, 4.8, 8.3, 24.4,
28.4, and 44.6 mg Al L


t.-
tY \rYV
x ,~c~,





































igur --- Effcc:- ncreasing A! concen--acicns in :he
nu-rien: sol:icin f n rooz and shoo: rcw'th of
-mcnth-oh d 0c.,r change seedlings. Fr3n ef_
to r -gL : -.L, 3.3, .. -. and
i-.q3 7?2 ;


Figure I--. Effects of increasing Al concentrations in :he
nutrient sol tion on rooc and shooc rc;: c :
8-month-old Rough lemon seedlings. Fro e
o right: .3, n
-s. mg Ai L



















































Fiura a--3._


Effects of increasing Ak ccncenzra-3s in :he
nutrient solution on root and shect zrcwth of
8-month-cld Swingle citrumelo eedlings.
From lef: :o right: Q0.1 2.7, -.., S.. 2.a.
28.4, and -.6 ng Al L

















7.0


6.5


6.0


5.5


5.0


4.5


4.0


3.5
0.0Th
0


----A.Corrizo citronge
- --- C. Cleopatro mandarin
--O Sour orange
--- R. Rough lemon
--- S. Swingle citrumelo


0
o^"


N
. \
\-.0


A


4 5 6 7


Figure 4-14. Effects of Al concentrations (Al, mg L-1) in
nutrient solution on new-growth root length
(L, cm plant ) of 8-month-old citrus seedlings
grown for 60 days.


0
\ 0


I 2 3

(Al)'2


I I i I A I










Table 4-1.


Linear regression equations for prediction of new-growth
root length (L, cm plant ), new-growth shoot height (,
cm plant ), and new-growth fresh weight (W, g plan )
of citrus seedlings from Al concentration (Al, mg L ) in
nutrient solution. (A = Carrizo citrange; C = Cleopatra
mandarin; 0 = Sour orange; R = Rough lemon; and S =
Swingle citrumelo).


Regression equations r2 Critical Al concentration


- 0.17(Al)
- 0.28(Al)
- 0.38(Al)1
- 0.45(Al)
- 0.23(Al)


- 0.60(Al)
- 0.40(Al)
- 0.47(Al)
- 0.60(A1)1
- 0.45(Al)


- 0.24(Al)
- 0.24(Al)
- 0.27(Al)
- 0.35(Al)
- 0.17(A1)


tAll the values of r2 were significant at P < 0.001.


(LA)
(LC)
(LO)
(LR)
(LS)


(HA)
(Hc)
(H0)
(HR)
(HS)


(WA)

(Wc)
(WR)
(Ws)


= 6.44
= 6.08
= 6.40
= 7.29
= 6.57


= 3.93
= 3.34
= 3.46
= 3.93
= 3.18


= 2.57
= 2.20
= 2.61
= 3.34
= 2.53


<2.7
7.2
3.9
4.6
4.5


4.0
8.8
6.0
3.6
1.8


0.86t
0.81
0.89
0.90
0.86


0.92
0.87
0.93
0.81
0.81


0.91
0.79
0.89
0.85
0.72


1.8
12.2
5.1
5.1
4.5










rootstocks except Carrizo citrange, new-growth root length increased

between the control and the treatment which had highest amount of

new-growth root length, but the curve was uncertain because there was

no treatment between them in most cases. There were 3 or 4 Al

treatments between the treatment which had the largest new-growth

root length and the treatment with the highest Al concentration in

solution, however, and the new-growth root length gradually decreased

between these two treatments. Therefore, the regression equation was

developed for these 5 or 6 Al treatments. Carrizo citrange was an

exception, because new-growth root length gradually decreased from

the control to the treatment with the highest Al concentration in

solution. According to the trend of the other four rootstocks,

it was possible that there might be some Al concentrations lower than

the second treatment (2.7 mg Al L- ) which might still have had a

beneficial effect on root growth. Therefore, the regression equation

was calculated for five treatments from the second treatment (2.7 mg

Al L-1) to the last treatment (44.6 mg Al L-1). The same procedure

was followed for the other parameters shown in Figs. 4-15 to 4-19,

and in Tables 4-1 and 4-2.

The critical concentrations obtained from the regression equa-

tions are shown in Table 4-1. The higher critical Al concentrations

indicated greater Al tolerance. According to these critical values,

the Al tolerance for root growth was as follows (from most tolerant

to least tolerant): Cleopatra mandarin > Rough lemon > Swingle

citrumelo > Sour orange > Carrizo citrange. The effects of Al

concentrations on relative new-growth root length are shown in Fig.

4-15. The root length for the first treatment (0.1 mg Al L ) was















- A. Corrizo citronge
--- C.Cleopatra mandarin
--& O.Sour orange
---C- R. Rough lemon
-- S. Single citrumelo


SI I I I


2 3 4 5 6 7


Figure 4-15.


Effects of Al concentrations (Al, mg L-1) in
nutrient solution on relative new-growth root
length (RL, Z) of 8-month-old citrus seedlings
grown for 60 days.


5.0


0 o


4.5-


4.0k


N


3.0



2.5
0


@\\


0 \
\ 0











taken as 100%. According to the predicted highest percentage values

shown in Table 4-2, the beneficial effects of low Al concentrations

on root growth of five rootstocks were as follows (from most to least

beneficial): Rough lemon > Cleopatra mandarin > Sour orange >

Swingle citrumelo > Carrizo citrange. This order was somewhat

different from the tolerance order. Such difference indicated that

the degree of beneficial effect on root growth at low Al concentra-

tions did not correspond well with the sequential order of tolerance.

According to the predicted lowest percentage values shown in Table

4-2, the toxic effects of high Al concentrations on root growth of

five rootstocks were as follows (from most to least toxic): Rough

lemon > Sour orange > Cleopatra mandarin > Carrizo citrange > Swingle

citrumelo. This order was different from that of the tolerance order

or that of beneficial effect. This difference indicated that the

degree of toxic effect on root growth at high Al concentrations did

not correspond with the tolerance or the degree of beneficial

effects. Rough lemon was in the second position in the tolerance

order, for example, and had the highest beneficial effect from low

Al concentrations, but suffered most from high Al concentrations

among the five rootstocks.

The effects of Al concentrations on new-growth shoot height of

five rootstock seedlings are shown in Figs. 4-16 to 4-17, with the

regression equations being given in Tables 4-1 and 4-2. The effect

of Al concentrations on shoot growth showed a different trend from

root growth. The orders of tolerance, beneficial effects, and toxic

effects for shoot height also were different from those for root

growth. Carrizo citrange and Swingle citrumelo are good examples for










Table 4-2.


Linear regression equations for prediction of relative
new-growth root length (RL, Z), relative new-growth shoot
height (RH, %), and relative new-growth shoot weight (RY,
%) of citrus seedlings from Al concentration (Al, mg L )
in nutrient solution. (A = Carrizo citrange; C =
Cleopatra mandarin; 0 = Sour orange; R = Rough lemon; and
S = Swingle citrumelo.)


Predicted
Predicted lowest percentage
highest at 44.6 mg Al L
Regression equations r2 percentage+ treatment


In (RLA) = 4.62 0.17(Al) 0.86t 76.8 32.6
In (RLC) = 5.35 0.28(A1) 0.81 114.0 32.5
In (RLO) = 5.35 0.38(Al)2 0.89 112.8 16.6
In (RLR) = 5.56 0.45(A1) 0.90 124.0 12.9
In (RLS) = 5.09 0.23(Al) 0.86 111.3 35.0


In (RHA) = 5.81 0.60(Al) 0.92 124.5 6.1
In (RHC) = 5.80 0.40(Al) 0.87 171.2 22.8
In (RHO) = 5.75 0.47(Al) 0.93 145.1 13.6
In (RHR) = 5.73 0.60(A1) 0.81 114.9 5.6
In (RHS) = 5.20 0.45(Al) 0.81 86.5 9.0


In (RWA) = 4.92 0.24(Al) 0.89 92.4 27.6
In (RWC) = 5.42 0.24(A1) 0.79 135.5 45.5
In (RWO) = 5.21 0.27(A1) 0.89 117.5 30.2
In (RWR) = 5.38 0.35(Al) 0.85 122.1 21.0
In (RWS) = 4.95 0.17(Al) 0.72 106.8 45.4
S


tAll the values of r2 were significant at P < 0.001.
+Predicted highest percentage in the treatment (2.7 or
for which the sample percentage was highest.


4.8 mg Al L-1)











3.0


2.5


2.0


1.5


1.0


(Al )/2


Figure 4-16.


-1
Effects of Al concentrations (Al, mg L ) in
nutrient solution on new-growth shoot height
(H, cm plant ) of 8-month-old citrus seedlings
grown for 60 days.


---- A. Carrizo citrange
--o C.Cleopatra mandarin
--n- Q. Sour orange
----1 R.Rough lemon
D ---- S. Swingle citrumelo









0



v\



\o
*


0.5


0.0












--- A.Corrizo citrange
--oC C. n pnntr mnndrrin


N .- 0 Sour orange
---- R. Rough lemo
S'A\ --*-- S. Swingle citru
\\ \o







\, \ -o
0











0
\ \


n
imelo


5.0-


45-


4.0-










2.5-


2.0


1.5
00T
0


I 2 3 4 5 6 7

( AI)1/2


Figure 4-17.


Effects of Al concentrations (Al, mg L ) in
nutrient solution on relative new-growth shoot
height (RH, %) of 8-month-old citrus seedlings
grown for 60 days.


\\


\










showing such differences. For root growth, Carrizo citrange was

least tolerant and did not show a beneficial effect from the 2.7 mg
-1
Al L- treatment. For shoot growth, however, Carrizo citrange had

the third position in the tolerance list and showed a beneficial

effect at 2.7 mg Al L 1. Swingle citrumelo had the third position in
-1
tolerance list and showed a beneficial effect at 2.7 mg Al L- treat-

ment for root growth. For shoot growth, however, Swingle citrumelo

was least tolerant and the predicted relative new-growth shoot height

was less than 100%. Haas (1936) and Liebig et al. (1942) also found

that low concentrations stimulated root growth but depressed top

growth for some citrus species. Several questions need answers: Are

those roots developed by stimulation of low Al concentrations normal

in their absorption of nutrients from the matrix? Are there any

stimulation effects of low Al concentrations on the function of

nutrient absorption by roots instead of on the development of root

length? Are there different physiological effects of absorbed Al on

shoot growth of different citrus rootstocks?

The different growth responses of roots and shoots indicated

that neither of these alone was a good indicator for evaluation of

the Al tolerance of citrus rootstocks. Because fresh-weight values

were the sum for roots and shoots, the fresh-weight response combined

the responses of root length and shoot height. In general, new-growth

fresh weight of whole plants should be a better indicator for evalua-

tion of Al tolerance than the other two parameters. The effect of Al

concentrations on new-growth fresh weight and relative new-growth

fresh weight of five rootstock seedlings are shown in Figs. 4-18

and 4-19, with the regression equations being given in Tables 4-1





59






3.0- -- A.Carrizo citrange
--o C.Cleopotra mandarin
3 ---- 0. Sour orange
----CR. Rough lemon
2.5- s ----S. Swingle citrumeio


2.0- `II

"- o \. A'^ -"
o13

1.5 -

~ I. 4- +.. -





^^-1
05--
O I 2 3 4 5 6 7
( Al)1/2



Figure 4-18. Effects of Al concentrations (Al, mg L-) in
nutrient solution on new-growth fresh weight
(W, g plant ) of 8-month-old citrus seedlings
grown for 60 days.











5.25

5.00

4.75


4.50

4.25

4.00

3.75

3.50

3.25


3.O01
0.o00


( A )1/2


Figure 4-19.


Effects of Al concentrations (Al, mg L-1) in
nutrient solution on relative new-growth fresh
weight (RW, X) of 8-month-old citrus seedlings
grown for 60 days.


--* A.Carrizo citrange
--o C. Cleopatra mandarin
----, O.Sour orange
---OR. Rough lemon
---GS. Swingle citrumelo




\

,\ ,


I f I L (










and 4-2. According to the critical Al concentration, the Al tolerance

for fresh weight increase was as follows (from most tolerant to least

tolerant): Cleopatra mandarin > Rough lemon = Sour orange > Swingle

citrumelo > Carrizo citrange. The benefical-effect order was (from

most to least beneficial : Cleopatra mandarin > Rough lemon > Sour

orange > Swingle citrumelo > Carrizo citrange. This order was

similar to the tolerance order. The toxic-effect order was (from

most to least toxic): Rough lemon > Carrizo citrange > Sour orange >

Swingle citrumelo > Cleopatra mandarin. This order was different

from both the tolerance order and the beneficial-effect order.

Elemental Concentrations in Roots and Shoots as Affected by Al
Concentrations in Growth Solution.

The elemental concentrations and their standard deviations for

roots and shoots of five rootstocks grown in various Al concentra-

tions in solution are listed in the Appendix (Tables A-2a and A-2b).

The standard deviations were small, and the coefficients of variation

were normally less than 5% for each Al treatment and each element

(4 replications). The elemental concentrations in roots and shoots

as affected by Al concentrations in the growth solution are shown in

Figs. 4-20 to 4-28.

Aluminum

At the 0.1 mg Al L-I level, the Al concentrations of roots of

all five rootstocks were similar (about 45 mg Al kg- ). When Al

concentrations in solution increased, furthermore, the Al concentra-

tions of roots of five rootstocks were increased (Fig. 4-20). When
-i
Al concentrations were 2.7, 4.8, and 8.3 mg Al L- in solution, Rough

lemon and Cleopatra mandarin had higher Al concentrations than the

others, while Carrizo citrange had the lowest concentration among the















SHOOTS


--

--
-a
'I --~
d


I I


I I I I


S ROOTS
/"






-F-









) 10 20 30 40 5C

Al Concentration In Growth Solution (mg L'1)


Figure 4-20.


Aluminum concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


0.3k


02-


C,

C
0.0

E 6
c)
U
C
6 5

<:7 ,










five rootstocks. This trend was similar to those for tolerance and

for beneficial effects (Table 4-1 and 4-2). It might be concluded

that the root Al concentrations were higher for Al-tolerant than for

Al-sensitive rootstocks when Al concentrations in solution were 2.7
-1
mg L1 or higher. It might be also concluded that those roots which

accumulated more Al had greater new-root growth. These relationships

imply that Al accumulation in roots was a characteristic associated

with Al beneficial effects and tolerance of roots. When the Al

concentrations in roots were high, such as 6165 mg Al kg-1 for Rough

lemon at the 44.6 mg Al L-1 level, the accumulation of Al in roots

apparently damaged the roots. The Al concentrations in shoots also

increased with increased Al concentration in solution. However, the

increases in Al concentration of the shoots were much less than those

for the roots. Comparison of Fig. 4-20 and Fig. 4-17, led to the

conclusion that there was no certain relation between Al concentra-

tion in shoots and Al-beneficial effects and Al-tolerance of root-

stocks. The relation between Al concentrations in roots and shoots

and Al-tolerance of citrus seedlings did not belong to any of the

three groups described by Foy (1984).

Calcium

The Ca concentrations in the roots of the five rootstocks

decreased with increased Al concentration in solution up to 8.3 mg
-1
L (Fig. 4-21). However, when Al concentrations in solution were

higher than 8.3 mg L-1, the Ca concentrations in the roots of all

rootstocks underwent little further change; i.e., they all remained

similar, with the shoots having higher Ca concentrations than the

roots.




















SHOOTS


OR
Es

---- ----------


ROOTS


I I I I I I


I Ij


O 10 20 30 40 5(
Al Concentration In Growth Solution (mg L')


Figure 4-21.


Calcium concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)










The Al concentrations in the shoots showed the same trend as those

in the roots. Al-induced Ca deficiency has been associated with Al

toxicity effects (Lance and Pearson, 1969; Lund, 1970). In the

present study, the Ca concentrations in roots decreased when Al had a

beneficial effect, while such concentrations remained the same when

Al had a toxic effect. Therefore, Ca concentrations in citrus plants

might not be the main factor related to toxic-Al effects. This con-

clusion could be applied to Zn, Mn, Cu, and Fe as well in the follow-

ing discussion. There was no certain relationship between Ca concen-

trations in roots or shoots and Al-tolerance of citrus rootstocks.

Magnesium

The Mg concentrations in roots of five rootstock seedlings

increased when Al concentrations in solution increased to 2.7, 4.8,

or 8.3 mg L- and then decreased and remained the same when the Al

concentrations were higher than 28.4 mg L- in solution. In

contrast, the Mg concentrations in shoots decreased when Al concen-
-1
tration in solution increased up to 8.3 mg L- Above that Al

concentration, the shoots maintained their Mg concentrations.

Swingle citrumelo accumulated more Mg both in roots and shoots than

did the others. There was no certain relation between Mg concentra-

tions in roots or shoots and Al-beneficial effects or Al-tolerance of

citrus rootstocks.

Potassium and phosphorus

The K and P concentrations in both roots and shoots increased

when Al concentrations in solution increased up to 2.7 or 4.8 mg L-

(Figs. 4-23 and 4-24), with the P concentrations increasing rapidly.

When the Al concentrations were higher than 4.8 mg L1, the K and P
When the Al concentrations were higher than 4.8 mg L the K and P















SHOOTS


N9
-


-









0
C
o_


o
t-

t-)


Al Concentration In Growth Solution (mgL-' )


Figure 4-22.


Magnesium concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


I II I I I I


I I


ROOTS


-4-


10 20 30 40


2F r,
~
I -------












SHOOTS


20


Al





II I I


ROOTS


0 10 20 30 40

Al Concentration In Growth Solution (mg L-')


Figure 4-23.


Potassium concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)












SHOOTS


S- -


Al Concentration in Growth Solution (mg L-l)


Figure 4-24.


Phosphorus concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)










concentrations then decreased. When Al concentrations were higher

than 8.3 mg L-1, the K and P concentrations decreased only slightly,
-1
however. At an Al concentration of 44.6 mg L P concentrations in

both roots and shoots were still higher than those in the 0.1 mg Al
-1
L treatment, while K concentrations were slightly lower. The K and

P concentrations of roots and shoots were not related to Al-tolerance

of the citrus rootstocks.

The mechanisms of beneficial effects of low Al concentration on

plant growth generally have been associated with promoting P uptake

(Mullette, 1975) or with correcting or preventing P toxicity (Clark,

1977). In the present study, there was no confounding effect of P on

Al, because all treatments had nearly the same (adequate) P concentra-

tion in solution. The beneficial effects of Al were not caused by

promotion of P uptake because Carrizo citrange, which roots had not

been affected beneficially by Al at the 2.7 mg Al L1 level, also

evidenced increased P uptake. The beneficial effects were not caused

by correcting or preventing P toxicity either, because there was no

toxic level of P in the solution. Furthermore, the P concentration

in roots of Carrizo citrange was lowest among the five rootstocks.

The mechanism of toxic effects of high Al concentration on plant

growth have been ascribed to Al-induced P accumulation (McCormick and

Borde, 1972) or deficiency (James et al., 1978). In this study, the

highest P concentrations in roots or shoots at low Al treatments did

not depress root or shoot growth. When root or shoot growth continu-

ously decreased with increasing Al concentrations in solutions more

concentrated than 8.3 mg L-1, the P concentrations in the roots or

shoots basically did not change. These data suggest that toxic











effects of Al were not caused by P accumulation. When plant growth

continuously decreased, the P concentrations in the roots or shoots
.-I
were still higher than those in the 0.1 mg Al L treatment. There-

fore, the toxic effects were not caused by P deficiency.

The fact that there was no certain relation between P concentra-

tions in roots or shoots and Al-tolerance of citrus rootstocks also

supports these explanations. It might be concluded that neither

beneficial nor toxic effects of Al on growth of citrus seedlings were

directly caused by P accumulation or deficiency induced by Al supply,

although increased Al concentrations in the matrix caused an increase

in P concentration of the plant tissues. The conclusions about P

which have been made here could be applied to the cases of Mg and K

in this study as well.

Zinc and manganese

The Zn and Mn concentrations in roots of the five rootstocks

greatly decreased with increasing Al concentrations in solution up to
-1
8.3 mg L- (Figs. 4-25 and 4-26). When Al concentrations in solution

were higher than 8.3 mg L-1, Zn and Mn concentrations in roots were

maintained at the same levels or slightly decreased. However, the Zn

and Mn concentrations in shoots basically did not change when Al

concentrations in solution increased continuously from 0.1 to 44.6 mg
-1
L No certain relation was found between Zn and Mn concentrations

in roots or shoots and Al-beneficial effects and Al-tolerance of

citrus rootstocks.

Copper

In the 0.1 mg Al L-I treatment, Carrizo citrange had the lowest

Cu concentration in its roots among the five rootstocks. It seemed
















SHOOTS


200C


0IC-


I I I I-----


300 ROOTS





1 -



-L -- ----------------


10 20 30


Al Concentration In Growth Solution (mg L- )


Figure 4-25.


Zinc concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


U1----


I I I


l l 1 l


SI I I


/~\











































S- ------------ -


10 20


30 40


Al Concentration In Growth Solution (mg L- )


Figure 4-26.


Manganese concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


SHOOTS


ICO



iO .__ -<-


RCOTS


2



100


I


[















SHOOTS


30k


20-


---., _

I I I I S I







--

-------- -

.... .. --: .


I I I I I I I
10 20 30 40 5(

Al Concentration In Growth Solution (mg L-I)


Figure 4-27.


Copper concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


'O





S30
20
(-1








20










that the Al-sensitive rootstock had lower Cu concentrations in their

roots than did the Al-tolerant rootstocks. The Cu concentrations in

roots of all rootstocks except Carrizo citrange greatly decreased

with increased Al concentrations in solution up to 8.3 mg L-1

(Fig. 4-27). Beyond 8.3 mg Al L-1, the Cu concentrations in the

roots changed only slightly. The Cu concentrations of Carrizo

citrange changed only a little with increased Al concentrations in

solution. The Cu concentrations in shoots decreased with increased

Al concentrations in solution up to 2.7 or 4.8 mg L- after those

all rootstocks except Rough lemon changed little. The Cu concen-

trations in shoots of Rough lemon increased dramatically when Al
-I1
concentrations in solution were higher than 4.8 mg L At the 44.6

mg Al L-1 treatment, the shoot Cu concentration of Rough lemon went

up to 41 mg kg- while the corresponding level for other rootstocks

was only about 7 mg kg- At this treatment, Al-toxic effect on

shoot growth was largest for Rough lemon among the five rootstocks

(Table 4-2). There seemed to be certain relation between Cu concen-

trations in roots and Al-tolerance of citrus rootstocks at 0.1 mg Al
-1
L level in solution. Also, there seemed to be a relationship

between Cu and the degrees of toxic effects of Al concentrations.

Iron

The Fe concentrations in roots greatly decreased with increased

Al concentrations in solution up to 8.3 mg L-I (Fig. 4-28). Beyond

that Al concentration, the Fe concentrations in roots changed

relatively little. When Al concentrations were lower than 8.3 mg
-1
L Rough lemon and Cleopatra mandarin had higher Fe concentrations

than did the others, while Carrizo citrange had the lowest values















SHOTS


>- --- ------ -

01 _

O -- -
J ** .- I i-- "- "-


2
b.,.
0--- i----j -
.3- -


) 10 20 30 40 50

Al Concentration In Growth Solution (mg '


Figure 4-28.


Iron concentration of 8-month-old citrus
seedlings grown for 60 days in nutrient solution
with various concentrations of Al. (A = Carrizo
citrange; C = Cleopatra mandarin; 0 = Sour orange;
R = Rough lemon; and S = Swingle citrumelo)


i


i I










among the five rootstocks. By comparing this order and the Al-

tolerance order of roots, suggestion might be made that the more

tolerant rootstocks had the higher Fe concentrations in their roots

when Al concentrations in solution were lower than 8.3 mg L-1

The Fe concentrations in shoots decreased when Al concentrations

in solution increased to 2.7 or 4.8 mg L-1, however. Beyond this

concentration the Fe concentrations in shoots increased only

slightly. No relation between Fe concentrations in shoots and

Al-beneficial effects and Al-tolerance of citrus rootstocks could

be found.



Summary and Conclusions

Very few systematic studies have been conducted on the effects

of Al on the growth and mineral nutrition of citrus. The objectives

of this study were to investigate growth response of the most common

citrus rootstocks in Florida to Al levels, and relations between the

Al effects and elemental concentrations in plant tissue. Five

6-month-old citrus rootstock seedlings were grown in supernatant

solutions which contained 7 levels of Al ranging from 0.1 to 44.6 mg

Al L- and P concentration of 1 mg P L- for 60 days. The temperature

of the growth solution was maintained at 2510C in the greenhouse

during the summer. Before the seedlings were grown in solution,

shoot height and fresh weight of whole plants were measured and the

root length was measured by taking photographs of the roots for the

purpose of later obtaining new-growth parameters. Results showed

that, at high Al treatment levels, plants had thickened root tips and

root caps covered with black gelatinous material. Unique Al injury










symptoms were observed in new leaves and terminals of some seedlings.

The new-growth root length and shoot height had different trends with

respect to response to Al concentrations in the growth solution.

New-growth fresh weight of whole plants might be a better indicator

for Al tolerance than the other two parameters mentioned above.

According to the response of fresh weight to Al concentrations,

relative aluminum tolerance of the rootstocks were Cleopatra mandarin

> Rough lemon = Sour orange > Swingle citrumelo > Carrizo citrange.

The critical Al concentrations in solution with respect to toxic

effects were 12.2, 5.1, 5.1, 4.5 and 1.8 mg Al L-1, respectively.

Concentrations below or above the critical Al levels caused either

beneficial or toxic effects, respectively. Aluminum concentrations

of roots and shoots increased with increased Al concentration in the

growth solution. Aluminum-tolerant rootstocks accumulated more Al in

their roots than did the Al-sensitive rootstocks. When Al concentra-

tions in nutrient solution increased from 0.1 to 4.8 mg Al L-1, K,

Mg, and P concentrations in roots and K and P levels in shoots

increased; whereas Ca, Zn, Cu, Mn, and Fe in roots and Ca, Mg, Cu,

and Fe in shoots decreased. It seemed that Al-sensitive rootstocks

had lower Cu concentrations in their roots than did Al-tolerant

rootstocks at low Al concentration (0.1 mg Al L-1) in solution. The

more tolerant rootstocks contained higher Fe concentrations in their

roots than did the less tolerant ones when Al concentrations in

solution were lower than 8.3 mg Al L-1. Concentrations of the other

elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots appeared to

have no certain relationship with the beneficial or toxic effects of

Al in nutrient solution, or with Al-tolerance of the rootstocks.















CHAPTER V

GROWTH OF CITRUS ROOTS AS AFFECTED BY ALUMINUM LEVEL
IN SOILS UNDER FIELD CONDITIONS



Introduction

Research on the effects of Al on citrus rootstocks has been

essentially limited to nutrient-solution studies. Haas (1936) used

leafy-twig cuttings of lemon, Lisbon and Valencia oranges in solution

cultures. He found that, when Al was present, roots were healthy and

more extensive and root caps were numerous, but tops usually were

retarded in growth. He concluded that "concentration of 15 to 20 ppm

of aluminum was rather high for the production of the greatest

growth" (of tops and roots). His data showed that the addition of Al

to the culture solution also increased the P concentration in root

tissue. Liebig et al. (1942) found that the addition of 2.5 to 5 mg

Al L-1 to base nutrient solutions greatly stimulated root development

but depressed top growth of Valencia orange and lemon cuttings.

Lower concentrations (i.e., 0.1 and 0.5 mg L-1) did not produce this

effect. These researchers also found an antagonistic effect of Al on

Cu uptake. Yokomizo and Ishihara (1973) concluded that root growth

of Natsudaidai (C. Natsudaidai Hayata) seedlings in solution culture

improved at low concentrations of Al but began to decrease when Al

addition was 20 mg Al L-1. Growth was extremely depressed at 100 mg

SL-1
A LL










Worku et al. (1982) found that high levels of Al and Mn were

toxic to Troyer citrange [Pencirus trifoliata Raf. x C. sinensis (L)

Osbeck], Trifoliate orange (P. trifoliata Raf.), and Cleopatra

mandarin (C. reshni Hort. ex. Tan.) grown in highly weathered

Oxisols. However, the growth-inhibiting effects of Al and Mn were

considered jointly. Other researchers (Sekiya and Aoba, 1975; Huang,

1983) have linked low pH and high Al concentrations to poor citrus

growth and shortened lifespan of the tree. However, no experimental

evidence exists to evaluate the effects of different Al levels in

soils on fibrous citrus-root growth under field conditions. Few data

have been reported as well about possible effects of Al on the

mineral nutrition of citrus.

The objective of this study was to use an implanted soil-mass

technique (Garner and Telefair, 1954; Lund et al., 1970) to investi-

gate the effects of different Al levels in soil on growth and mineral

content of citrus fibrous roots under field conditions.



Materials and Methods

The implanted soil-mass technique allows one to study root

development in a natural environment with minimal disturbance and

minimal spatial and genetic variability.

This experiment was conducted using the implanted soil-mass

technique in a commercial citrus grove.

Collection and Characterization of Soil

In order to get effects of high Al concentrations in soil

solution when a certain amount of Al was added to the soil, the soil

used for implanting must have low pH (pH < 5). The implanted soil










must also have low exchangeable Al content in order to obtain low Al

concentration (<0.5 mg Al L-1) in soil solution, so that non-treated

soil could be taken as a control to get critical Al concentration in

soil solution for phytotoxicity.

Soil used for implanting was obtained from the E horizon of an

Immokalee fine sand (an Arenic Haplaquod) from a citrus grove in the

"flatwoods" area of Charlotte County, Florida. The overlying Ap

horizon was first removed by hand-shoveling before collecting the

bulk sample of E horizon. The soil was air-dried and passed through

a 2-mm sieve.

Soil pH was measured with a 1:1 water:soil ratio. Particle-

size analysis was conducted using a pipette sampling method (Soil

Conservation Service, 1972). Soil organic C was determined by a

modified Walkley-Black procedure (Nelson and Sommers, 1982).

Potassium-chloride extractable acidity, exchangeable Al, and exchange-

able H were determined in 1 M KC1 extracts (Thomas, 1982). Effective

CEC of soil was calculated from the sum of exchangeable bases by 1 M

NH 0Ac (pH 7.0) (Chapman, 1965) and exchangeable Al (1 M KC1).

Calcium, Mg, K, Na, P, Al, Zn, Fe, Cu, and Mn were extracted with

double-acid reagent, 0.05 M HC1 and 0.025 M H2SO4 (Mehlich, 1955),

and determined by inductively-coupled argon plasma (ICAP) emission

spectroscopy. Relevant characteristics of the soil are listed in

Table 5-1. It had a high sand content; was strongly acidic; and had

a low exchangeable-Al content.

Addition of Lime, Al, and Fertilizers

There were five treatments (addition of lime and addition of 0,

15, 18, or 24 mg Al kg-I of soil). A loosely woven mesh-saran bag











Table 5-1. Relevant characteristics of the E horizon of the
Immokalee fine sand used for implants.


Soil property


pH

Organic C, g kg-

Particle size
Sand, %
Silt
Clay

ECEC, mmol c kg-
c


1 M KC1 extractable acidity
Total, mmol kg-
.1 C


0.05 M
Ca,
Mg
K


HC1 and

mg kg-I


4.20

0.6



97.5
1.2
1.3

1.31



0.62
0.11
0.51


0.025 M H2SO4 extractable elements
27.9
3.4
3.0
0.4
1.2
1.5
2.4
0.1
0.3
0.1










(hole size 3 x 2 mm) was used to hold 4.5 kg of E-horizon soil. The

limed soil was amended with 125 mg chemically pure CaCO3 kg -, the

amount of lime required to bring soil pH to 6.5 as specified by the

Adams-Evans method (McLean, 1982). The Al was added as solutions of

AIC13 6H20.

Blanket fertilizer additions in solution form also were made to

the soil in each bag. The fertilizer program recommended by Koo et

al. (1984) was taken as a reference. Fertilizer rates (mg kg- ) and

forms were as follows: 5.93 N as Ca(NO 3)24H20; 0.89 P as Ca(H2P04)2

H20; 9.10 Ca as Ca(NO3) 24H20 + Ca(H2PO4)2H20; 5.35 K as KC1; 3.88

Zn as ZnSO 47H20; 1.20 Mg as MgC12 6H20; 0.13 Fe as FeSO 47H 0; 0.22

Mn as MnSO4 H20; 0.13 Cu as CuSO4*5H20; and 0.01 B as H3BO3. After

the lime or Al solution and fertilizer solution had been added, the

soil in each bag was mixed thoroughly and the moisture level was

adjusted to 12%. The soil then was allowed to equilibrate with the

amendments for 18 d at room temperature in the laboratory.

Placement and Collection of Implanted Soil-Mass Bags

A typical commercial citrus grove (with 30-yr-old trees of C.

sinensis, cv. Hamlin/C. aurantium L. sour orange rootstock) in De

Soto County, Florida was selected for the study. The experiment was

conducted according to a randomized complete-block design, with five

treatments assigned randomly in each of 15 blocks. Fifteen healthy-

appearing trees were marked as blocks. Five holes (20-cm deep and

16-cm diameter) were dug at the dripline of each tree (about 3 m from

the tree trunk) with a post-hole digger. The exact location of each

hole used for implant was determined by first digging a hole, screen-

ing out the roots on-site, and comparing the quantity of roots to











prescribed limits (about 8 roots). A bag containing the implant soil

then was placed firmly against the face of the hole on the side

toward the tree trunk. Some original top soil was tamped firmly

around each bag, with the bag then being left open at the soil

surface to approximate the same field conditions as the surrounding

surface soil. All of the holes were dug, and all of the bags were

installed in the holes, on 2 August 1988. The areas under the trees

and within 2 m of the holes were kept free of understory vegetation,

to minimize invasion of the bags by non-citrus roots.

All bags were removed 46 d after their insertion. The roots

around the outside of the bags were cut off with a long knife and

then the bags were removed from the holes. Each bag was trimmed of

protruding roots and placed in separate plastic bags to prevent soil

and moisture loss during transport to the laboratory in Gainesville,

Florida.

Measurement of Roots and Analysis of Implanted Soils

After removal from the bag, the roots separated from the soils

were put on a screen and then washed thoroughly with tap water and

rinsed with deionized water. Root morphology was assessed visually

and root length was measured directly. Root length is a better

indicator of Al effects than is root weight, since shortening and

thickening are common results of Al treatment (Munn and McCollum,

1976). Roots which entered the bag from its surroundings were

classified as primary roots. All branches produced from these

primary roots were classified as secondary.

All roots were dried at 700C and weighed. For tissue analysis,

because of the small quantities recovered per bag, the roots of the











15 replications of a given treatment were randomly combined into 3

samples. The roots were ground in a mortar to pass a 20-mesh sieve.

Tissue samples of 0.2 g were dry-ashed at 500"C in a muffle furnace

for 4 h; the ash was then dissolved in 10 mL of concentrated HC1,

evaporated to dryness, redissolved, and evaporated to dryness again.

This residue was dissolved in 10 mL of 0.1 M HCI and filtered.

Elemental contents in the solution were determined using ICAP

emission spectroscopy.

Just before the amended soil was placed in the grove, and again

after collection, the concentrations of Al and of other elements in

saturation soil extracts (Rhoades, 1982) were determined using ICAP

emission spectroscopy. Electrical conductivity (ECe) and pH were

measured immediately after extraction. Values before implanting and

after collection were averaged to represent the implanted period

(46 d).



Results and Discussion

Selected characteristics of soil saturation extracts are shown

in Table 5-2. When 1.0 kg soil was treated with 15 mg Al, Al concen-

tration and EC sharply increased and pH decreased relative to the

control. As the amount of added Al increased from 15 to 24 mg Al
-1
kg Al concentration increased greatly while pH decreased and EC
e
increased only slightly. Aluminum concentration decreased and pH

increased in lime-amended soil.

At the time of bag removal, we observed some roots which had

grown downward in soil outside but adjacent to the bag's outer

surface, apparently avoiding entry into the soil inside the bag.










Table 5-2. Relevant characteristics of soils from five treatments.


Saturation extract of soilst
Al added Al
Treatment to soil Before After Averaget EC t pHt
implant implant e

mg kg- -----mg L-1---------- dS m-

Al-0 0 0.21 0.05 0.13 d+ 0.30 c 5.1 b

Al-1 15 15.94 2.34 9.14 c 0.71 b 3.7 c

Al-2 18 37.72 5.46 21.59 b 0.83 ab 3.5 c

Al-3 24 59.63 9.57 34.60 a 0.99 a 3.4 c

Lime 0 0.03 0.02 0.03 e 0.32 c 6.4 a


t Each value is the average of 2 means, i.e., mean values just
before implanting or after collection for 15 replications.

+ Values followed by the same letter in a column are not significantly
different at P = 0.05 by Duncan's multiple-range test.










Roots in the soils of the Al-I and Al-2 treatments appeared

healthier, coarser and firmer than those in the control soil.

There were also more secondary roots. These roots were white in

color, whereas roots in the Al-3 treatment displayed abnormal root

symptoms; i.e. they were retarded, stubby and brittle. There were

also fewer secondary roots, the root tips became thickened, and some

of them turned brown.

Average root-length densities (cm root length per dm3 soil) are

given in Table 5-3. Root-length density for the Al-1 treatment (9.14

mg Al L-) was significantly higher than that for the control (0.13

mg Al L-). Root-length density for treatment Al-2 (21.59 mg Al L-1)

was lower than that for treatment Al-I but showed a tendency to be

higher than that for the control. Root-length density for the Al-3

treatment (34.60 mg Al L1) was significantly lower than that for the

control. Factors known to affect Al phytotoxicity include tempera-

ture, pH, organic matter, and soil solution concentrations of Al, Ca,

Mg, and P (Rhue and Grogan, 1976). All treatments were in the same

thermal environment, with air temperatures during the 46 d ranging

from 21 to 370C, and averaging 270C. The pH values of Al-amended

soils were lower than that of the control (pH 5.1), being less than

pH 4 (Table 5-2). Since a large portion of the added Al was in

soluble form, the effect of Al should be much larger than that of pH.

Also, the pH values were similar (3.7, 3.5 and 3.4) across the three

Al treatments. Therefore, pH of the Al-treated soils was probably

not the main cause of the significant differences in root densities.

The EC values ranged from 0.30 to 0.99 dS m-I (Table 5-2).
Citrus root growth should not be significantly affected by EC levels
Citrus root growth should not be significantly affected by EC levels
e






87





CO


a n
4 J 0- ( I E

f- co 1-4 10 r, ^ m cn I-
4.J 41 | n ca
0o 4 i- o o 0o CO U
0 "OE 0 C T IM C C
0 E-O 0 W u -4 02 i
4O- 0 4J 3
0 0 Q
Sl0 p -

4- m Ln

0
cn to e ,1 c co j c p p
02 u0 0 0 0r .0 0 o 4
4-' 0 Ca
o 0 a o u Jt



o co
0 P-H 4-4
0) 4 **-' C
J o --(-
,'-4 V S


aa a t
mo 04 w u 4 a
0o w- u
E l-' I 3 0)





3 .0 0 .0 0 C .

pto
0 -' 0 o C
0d C 0t 0 o C











0 o 0 -
60 & C a co 10 "a 0 ca
cc w 4.4w





: o 4 44 C cu






U 0 C 0
1- oa) o I<











0 0) ,0
.74 CO 1-4
S-i co













41 co
I C 4-1

Cu 0 .0 o 0 a J






I 0 0 0. o r- coC o0 0 0 0)
44-I '0 C) C C) i0 4-' .: CO
Cl I & 4J





0 0 44 % 0 4
0 00 i











0
I ,-I U
T 4.1 Cu





w >(0 0 o
. C4










p to I c a
.0 IJ 4 0 .0 .03 Q U Cu 4. 1r
44F! 0 P)





o 60 o o o -4 o ,c c -
60 a) ( '1 c n CI 4.J
4. 44 U 4.J 1- CU

o 0 00 2C m A









0 = 0 m1 Lr w cn to a to
-Iz M C c 0
C a eIt





uCo0 0 co co
0 o6 0
0I )I 4 02
0 o c o c ca








.- 0) 4JE 4
0 i CMUO 00 O u I
0 3 o01 cr ii 0




-IB0) ) 1 4-I Ir

1 C 0I0 60 C 0ow


Cu t I I I 2 >)3
.0 0) 0 -4 i- -4 i-4 < < u > 2
F-' F-i I *- t<




Full Text

PAGE 1

$/80,180 ())(&7 21 *52:7+ 2) &,7586 52276 ,1 62/87,21 $1' 62,/ 6<67(06 E\ =+21*<$1 /,1 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 7KH DXWKRU ZLVKHV WR H[SUHVV KLV VLQFHUH DSSUHFLDWLRQ DQG GHHS JUDWLWXGH WR 'UV 'RQDOG / 0\KUH FKDLUPDQ DQG 7]X /
PAGE 3

IDWKHULQODZ DQG PRWKHULQODZ ZKR KDYH WDNHQ FDUH RI WKH DXWKRUnV WZR VRQV IRU WKHLU GHHS ORYH SDWLHQFH XQGHUVWDQGLQJ HQFRXUDJHn PHQW VXSSRUW DQG VDFULILFH LLL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLLL $%675$&7 [LL &+$37(56 *(1(5$/ ,1752'8&7,21 ,, /,7(5$785( 5(9,(: %HQHILFLDO (IIHFWV RI $OXPLQXP RQ 3ODQW *URZWK 3K\WRWR[LFLW\ RI $OXPLQXP 'LIIHUHQWLDO $OXPLQXP 7ROHUDQFH RI 3ODQWV 6WXG\ 0HWKRGV IRU $OXPLQXP 3K\WRWR[LFLW\ 6WXGLHV RI $OXPLQXP (IIHFWV RQ &LWUXV ,,,683(51$7$17 62/87,216 &217$,1,1* 9$5,286 /(9(/6 2) $/80,180 $1' 6,0,/$5 &21&(175$7,216 2) 3+263+2586 $6 &8/785( 62/87,216 )25 7+( $/80,180 678'< ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 6XPPDU\ DQG &RQFOXVLRQV ,9',))(5(17,$/ 5(63216( 2) &,7586 5227672&.6 72 $/80,180 /(9(/6 ,1 62/87,21 &8/785( ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 6XPPDU\ DQG &RQFOXVLRQV 9*52:7+ 2) &,7586 52276 $6 $))(&7(' %< $/80,180 /(9(/ ,1 62,/6 81'(5 ),(/' &21',7,216 ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 6XPPDU\ DQG &RQFOXVLRQV LY

PAGE 5

9, ())(&76 2) /,0( $1' 3+263+2*<3680 21 ),%5286 &,7586 5227 *52:7+ $1' 3523(57,(6 2) 7+( %K +25,=21 2) $ 632'262/ ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 6XPPDU\ DQG &RQFOXVLRQV 9,, 29(5$// 6800$5< $1' &21&/86,216 $33(1',; /,7(5$785( &,7(' %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH 3DJH (IIHFWV RI S+ DQG DGGLWLRQV RI $ DQG 3 RQ WKH FRQFHQWUDWLRQV RI $ DQG 3 DQG RQ (& LQ ILOWUDWHV DJHG IRU GD\V DW r&f (TXDWLRQV GHVFULELQJ HIIHFWV RI S+[Af $ DGGLWLRQ [Af DQG 3 DGGLWLRQ [Af RQ FRQFHQWUDWLRQ RI $O < f FRQFHQn WUDWLRQ RI 3 < f DQG (& < f LQ ILOWUDWHV REWDLQHG GXULQJ ([SHULPHQW DJHG IRU GD\V DW r&f (OHPHQWDO DGGLWLRQV WR VROXWLRQ DQG FRQFHQWUDWLRQV LQ ILOWUDWHV DW WZR S+ YDOXHV DIWHU DJLQJ IRU GD\V DW r& PL[HG VROXWLRQ ZLWK PDJQHWLF VWLUUHUVf (OHPHQWDO DGGLWLRQV WR VROXWLRQ DQG FRQFHQWUDWLRQV LQ VXSHUQDWDQWV DW S+ DIWHU DJLQJ IRU GD\V DW URRP WHPSHUDWXUH PL[HG VROXWLRQ PDQXDOO\f 6KRRW KHLJKW DQG QHZJURZWK VKRRW KHLJKW RI 5RXJK OHPRQ LQ WKH UG GD\ JURZWK SHULRG LQ WKH VXSHUQDWDQW VROXWLRQ (OHPHQWDO FRQFHQWUDWLRQV DQG (& RI VXSHUQDWDQW VROXWLRQ DIWHU JURZLQJ ILYH PRQWKROG FLWUXV VHHGOLQJV LQ WHQ OLWHUV RI VXSHUQDWDQW VROXWLRQ IRU GD\V /LQHDU UHJUHVVLRQ HTXDWLRQV IRU SUHGLFWLRQ RI QHZJURZWK URRW OHQJWK A FP SODQW f QHZJURZWK VKRRW KHLJKW + FP SODQW f DQG QHZJURZWK IUHVK ZHLJKW : J SADQW f RI FLWUXV VHHGOLQJV IURP $ FRQFHQWUDWLRQ $O PJ / f LQ QXWULHQW VROXWLRQ $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf /LQHDU UHJUHVVLRQ HTXDWLRQV IRU SUHGLFWLRQ RI UHODWLYH QHZJURZWK URRW OHQJWK 5/ =f UHODWLYH QHZJURZWK VKRRW KHLJKW 5+ =f DQG UHODWLYH QHZJURZWK VKRRW ZHLJKWA5: =f RI FLWUXV VHHGOLQJV IURP $ FRQFHQWUDWLRQ $O PJ / f LQ QXWULHQW VROXWLRQ $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 5HOHYDQW FKDUDFWHULVWLFV RI WKH ( KRUL]RQ RI WKH ,PPRNDOHH ILQH VDQG XVHG IRU LPSODQWV

PAGE 7

7DEOH 3DJH 5HOHYDQW FKDUDFWHULVWLFV RI VDWXUDWLRQ H[WUDFWV IRU VRLOV IURP ILYH WUHDWPHQWV )LEURXV ALWUXVURRW JURZWK LQ LPSODQW EDJV RI VRLO GLQ f DIWHU G DV UHODWHG WR WUHDWPHQWV &RQFHQWUDWLRQV RI HOHPHQWV LQ ILEURXV FLWUXVURRW WLVVXHV 6HOHFWHG FKHPLFDO FKDUDFWHULVWLFV IRU WKH %K KRUL]RQ RI WKH 6P\UQD ILQH VDQG XVHG IRU LPSODQWV &RQWUDVWV IRU URRWOHQJWK GHQVLW\ DV DIIHFWHG E\ OLPH DQG SKRVSKRJ\SVXP 3*f DPHQGPHQWV WR WKH %K KRUL]RQ RI D 6P\UQD ILQH VDQG &RQWUDVWV RI VHOHFWHG FKHPLFDO SURSHUWLHV RI WKH VRLOV IRXU GDWHVf &RQWUDVWV RI VRPH LRQV LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV IRXU GDWHVf &RHIILFLHQWV RI GHWHUPLQDWLRQ Uf EHWZHHQ DFLGLW\ DQG H[FKDQJHDEOH $ IRXU GDWHVf YLL

PAGE 8

)LJXUH /,67 2) ),*85(6 3DJH 3KRVSKRUXV FRQFHQWUDWLRQ LQ ILOWHUHG QXWULHQW VROXWLRQ DV DIIHFWHG E\ 3 DGGLWLRQ DW WZR S+ YDOXHV DQG WZR OHYHOV RI $ DGGLWLRQ DJHG IRU GD\V DW r&f 9HUWLFDO EDUV LQGLFDWH VWDQGDUG GHYLDWLRQV (LJKWPRQWKROG 5RXJK OHPRQ VHHGOLQJV JURZQ IRU GD\V LQ VXSHUQDWDQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O )URP OHIW WR ULJKW DQG PJ $O /BL 7KH URRW V\VWHPV RI ILYH FLWUXV VHHGOLQJV ZKLFK ZHUH VXEPHUJHG LQ QXWULHQW VROXWLRQV LQ SDLOV ZKLFK ZHUH LQ WXUQ SODFHG LQ D ZDWHU SRRO :DWHU FLUFXODWLRQ LQ WKH SRRO E\ D SXPS ZKLFK ZDV PDLQWDLQHG DW sr& E\ SDVVLQJ WKURXJK D FRROLQJ V\VWHP &LWUXV VHHGOLQJV JURZLQJ LQ QXWULHQW VROXWLRQV LQ SDLOV ZKLFK ZHUH UDQGRPO\ DVVLJQHG SRVLWLRQV LQ WKH ZDWHUILOOHG SRRO 7KLFNHQHG URRW WLSV RI 6RXU RUDQJH VHHGOLQJV JURZQ LQ VROXWLRQ ZLWK PJ $O / 6WXEE\ QHZJURZWK URRWV RI 5RXJK OHPRQ VHHGOLQJV JURZQ LQ QXWULHQW VROXWLRQ ZLWK PJ $O / 5RRW WLS FRYHUHG E\ D URRW FDS ZLWK EODFN JHODWLQRXV PDWHULDO IRU &OHRSDWUD PDQGDULQ VHHGOLQJV JURZQ LQ VROXWLRQ RI PJ $O /
PAGE 9

)LJXUH 3DJH (IIHFWV RI LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG &OHRSDWUD PDQGDULQ VHHGOLQJV )URP OHIW WR ULJKW DQG PJ $O / (IIHFWV RI LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG 6RXU RUDQJH VHHGOLQJV )URP OHIW WR ULJKW DQG PJ $O / (IIHFWV RI LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG 5RXJK OHPRQ VHHGOLQJV )URP OHIW WR ULJKW DQG PJ $O / (IIHFWV RI LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG 6ZLQJOH FLWUXPHOR VHHGOLQJV )URP OHIW WR ULJKW DQG PJ $O / (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / LQ QXWULHQW VROXWLRQ RQ QHZJURZWK URRW OHQJWK / FP SODQW f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK URRW OHQJWK 5/ =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ QHZJURZWK VKRRW KHLJKW + FP SODQW f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK VKRRW KHLJKW 5+ =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ QHZJURZWK IUHVK ZHLJKW : J SODQW f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK IUHVK ZHLJKW 5: =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V $OXPLQXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf L[

PAGE 10

)LJXUH 3DJH &DOFLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 0DJQHVLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 3RWDVVLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 3KRVSKRUXV FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf =LQF FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 0DQJDQHVH FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf &RSSHU FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf ,URQ FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf (IIHFWV RI $ FRQFHQWUDWLRQ $O PJ / rf LQ VRLO VDWXUDWLRQAH[WUDFW RQ ILEURXV URRWOHQJWK GHQVLW\ FP GP f &ULWLFDO $ FRQFHQWUDWLRQ ZDV PJ $O / >LH $,. @ [

PAGE 11

)LJXUH 3DJH 0HDQ URRWOHQJWK GHQVLWLHV IRU WKUHH WUHDWPHQWV DW IRXU VDPSOLQJ SHULRGV [L

PAGE 12

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $/80,180 ())(&7 21 *52:7+ 2) &,7586 52276 ,1 62/87,21 $1' 62,/ 6<67(06 E\ =KRQJ\DQ /LQ 'HFHPEHU &KDLUPDQ 'U 'RQDOG / 0\KUH &RFKDLUPDQ 'U 7]X /
PAGE 13

&B DXUDQWLXP /f 6ZLQJOH FLWUXPHOR e SDUDGLVL [ 3 WULIROLDWDf &DUUL]R FLWUDQJH >&A VLQHQVLV /f 2VEHFN [ 3RQFLUXV WULIROLDWD /f 5DI@ 7KH FULWLFDO $ FRQFHQWUDWLRQV LQ VROXWLRQ IRU WR[LF HIIHFWV ZHUH DQG PJ $O / UHVSHFWLYHO\ IRU WKH DERYH URRWVWRFNV &RQFHQWUDWLRQV EHORZ RU DERYH WKH FULWLFDO $ OHYHOV FDXVHG HLWKHU EHQHILFLDO RU WR[LF HIIHFWV UHVSHFWLYHO\ :KHQ $ FRQFHQWUDWLRQV LQ QXWULHQW VROXWLRQ LQFUHDVHG IURP WR PJ $O / ? $O 0J DQG 3 FRQFHQWUDWLRQV LQ URRWV DQG $O DQG 3 OHYHOV LQ VKRRWV LQFUHDVHG ZKHUHDV &D =Q &X 0Q DQG )H LQ URRWV DQG &D 0J &X DQG )H LQ VKRRWV GHFUHDVHG $OXPLQXPWROHUDQW URRWVWRFNV DFFXPXODWHG PRUH $ LQ WKHLU URRWV WKDQ GLG $OVHQVLWLYH URRWVWRFNV 7KH PRUH $OWROHUDQW URRWVWRFNV FRQWDLQHG KLJKHU )H FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG WKH OHVV WROHUDQW RQHV ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH ORZHU WKDQ PJ $O / ,Q D ILHOG H[SHULPHQW (KRUL]RQ VRLO ZDV WUHDWHG ZLWK HLWKHU OLPH RU IRXU OHYHOV RI $O SODFHG LQ SRURXV EDJV DQG WKHQ LPSODQWHG LQ WKH VXUIDFH KRUL]RQ RI D FLWUXV JURYH IRU GD\V 5HVXOWV LQGLFDWHG WKDW WKH FULWLFDO $O FRQFHQWUDWLRQ IRU WR[LFLW\ LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV ZDV PJ $O / A IRU URRW JURZWK RI PDWXUH WUHHV RI 6RXU RUDQJH URRWVWRFN ,Q DQRWKHU VLPLODU ILHOG H[SHULPHQW %KKRUL]RQ VRLO ZDV DPHQGHG ZLWK HLWKHU OLPH RU SKRVSKRJ\SVXP LPSODQWHG DQG FROOHFWHG DIWHU DQG GD\V $SSOLFDWLRQ RI OLPH VLJQLILFDQWO\ LQFUHDVHG ILEURXV FLWUXVURRW JURZWK ZKLOH SKRVSKRJ\SVXP GLG QRW 7KH VRLO DPHQGHG ZLWK SKRVSKRJ\SVXP KDG D ORZHU S+ KLJKHU VDOLQLW\ DQG H[FKDQJHDEOH $O KLJKHU &D DQG 0J DQG ORZHU 3 A32A DQG +32A f DQG &O FRQWHQWV LQ WKH VDWXUDWLRQ H[WUDFW WKDQ WKH QRQDPHQGHG VRLO [LLL

PAGE 14

&+$37(5 *(1(5$/ ,1752'8&7,21 $OXPLQXP WR[LFLW\ LV SUREDEO\ WKH PRVW LPSRUWDQW JURZWKOLPLWLQJ IDFWRU IRU SODQWV LQ PRVW VWURQJO\ DFLG VRLOV $ QXPEHU RI FURSV KDYH EHHQ VWXGLHG ZLWK UHVSHFW WR WKHLU UHVSRQVH WR $ SK\WRWR[LFLW\ &LWUXV JURZV ZLGHO\ LQ WURSLFDO DQG VXEWURSLFDO DUHDV LQ ZKLFK VRLOV DUH KLJKO\ ZHDWKHUHG DQG JHQHUDOO\ DFLGLF $OXPLQXP WR[LFLW\ PD\ EH DQ LPSRUWDQW IDFWRU OLPLWLQJ FLWUXV JURZWK LQ WKHVH DFLG VRLOV )HZ VWXGLHV KDYH EHHQ FRQGXFWHG RQ WKH HIIHFWV RI $ RQ FLWUXV JURZWK +DDV /LHELJ HW DO
PAGE 15

5HVHDUFK RQ WKH HIIHFWV RI $ RQ FLWUXV JURZWK KDV EHHQ PDLQO\ OLPLWHG WR QXWULHQWVROXWLRQ VWXGLHV )LHOG VWXGLHV DUH KLJKO\ GHVLUDEOH WR HYDOXDWH $ HIIHFWV RQ FLWUXV URRW JURZWK XQGHU ILHOG FRQGLWLRQV ,Q )ORULGD 6SRGRVROV KDYH EHHQ LQFUHDVLQJO\ XVHG IRU FLWUXV SURGXFWLRQ 7KH VSRGLF KRUL]RQV RI WKHVH VRLOV DUH JHQHUDOO\ YHU\ DFLG DQG KDYH KLJK $ FRQWHQWV 0\KUH HW DO f VR LW LV SUREDEOH WKDW $O WR[LFLW\ SUREOHPV RFFXUV LQ WKHVH VXEVRLOV 3HUKDSV LW LV ZRUWKZKLOH WR GHWHUPLQH ZKHWKHU SKRVSKRJ\SVXP FRXOG EH XVHG DV DQ DPHOLRUDQW IRU WKH VXEVRLO DFLGLW\ V\QGURPH 7KH RYHUDOO REMHFWLYHV RI WKLV GLVVHUWDWLRQ UHVHDUFK ZHUH WR GHYHORS D EHWWHU XQGHUVWDQGLQJ RI $O HIIHFWV RQ FLWUXV JURZWK DQG QXWULHQW XSWDNH ERWK LQ QXWULHQW VROXWLRQ DQG XQGHU ILHOG FRQGLWLRQV DQG WR HYDOXDWH FLWUXV URRWVWRFNV XVHG LQ )ORULGD IRU $OWROHUDQFH ,Q DGGLWLRQ OLPH DQG SKRVSKRJ\SVXP ZHUH WHVWHG DV DQ DPHOLRUDQW IRU WKH DFLGLW\ V\QGURPH RI VSRGLF KRUL]RQ VRLOV 7KLV GLVVHUWDWLRQ LV GLYLGHG LQWR VL[ SDUWV &KDSWHU ,, LV D UHYLHZ RI WKH OLWHUDWXUH IRU WKH HQWLUH VHW RI VWXGLHV &KDSWHU ,,, GHVFULEHV D VXSHUQDWDQW VROXWLRQ FRQWDLQLQJ YDULRXV OHYHOV RI $O DQG VLPLODU FRQFHQWUDWLRQV RI 3 WKDW ZDV SUHSDUHG DV D FXOWXUH VROXWLRQ IRU $O VWXGLHV ,Q &KDSWHU ,9 ILYH URRWVWRFNV ZHUH VWXGLHG LQ QXWULHQW VROXWLRQ IRU WKHLU $OWROHUDQFH DQG WKHLU HOHPHQWDO FRPSRVLWLRQ RI URRWV DQG VKRRWV DV DIIHFWHG E\ $O FRQFHQWUDWLRQV ,Q &KDSWHU 9 D ILHOG H[SHULPHQW ZDV FRQGXFWHG XVLQJ WKH LPSODQWHG VRLOPDVV WHFKQLTXH WR HYDOXDWH WKH FULWLFDO $O FRQFHQWUDWLRQ LQ VDWXUDWLRQ H[WUDFWV RI VRLOV IRU WR[LFLW\ DQG HOHPHQWDO FRPSRVLWLRQV LQ URRWV DV DIIHFWHG E\ $O FRQFHQWUDWLRQ XQGHU ILHOG FRQGLWLRQV

PAGE 16

,Q &KDSWHU 9, WKH HIIHFWV RI OLPH DQG SKRVSKRJ\SVXP RQ ILEURXV FLWUXVURRW JURZWK DQG SURSHUWLHV RI %K KRUL]RQ VRLO ZHUH VWXGLHG LQ WKH ILHOG XVLQJ WKH LPSODQWHG VRLOPDVV WHFKQLTXH )LQDOO\ LQ &KDSWHU 9,, WKH VWXGLHV DUH VXPPDUL]HG DQG UHFRPPHQGDWLRQV DUH SURYLGHG IRU IXUWKHU ZRUN

PAGE 17

&+$37(5 ,, /,7(5$785( 5(9,(: %HQHILFLDO (IIHFWV RI $OXPLQXP RQ 3ODQW *URZWK $OXPLQXP LV QRW UHJDUGHG DV DQ HVVHQWLDO QXWULHQW EXW ORZ FRQFHQWUDWLRQV FDQ VRPHWLPH LQFUHDVH SODQW JURZWK RU SURGXFH RWKHU GHVLUDEOH HIIHFWV $Q HDUO\ UHSRUW RI WKH VWLPXODWLRQ RI SODQW JURZWK ZDV PDGH E\ 0D]H f DQG VLPLODU UHSRUWV KDYH FRQWLQXHG WR DSSHDU IURP D QXPEHU RI ODERUDWRULHV 3ODQWV WKDW KDYH VKRZQ SRVLWLYH JURZWK UHVSRQVH WR $ LQFOXGH ULFH PDL]H LQEUHGV HXFDO\SWXV WHD SHDFK VXJDU EHHW WURSLFDO OHJXPHV ZKHDW DQG SHD )RU D PRUHWKRURXJK UHYLHZ RQ WKLV VXEMHFW VHH %ROODUG f DQG )R\ f 7KH JURZWK VWLPXOXV LV JUHDWHU IRU $OWROHUDQW FXOWLYDUV WKDQ IRU $OVHQVLWLYH FXOWLYDUV +RZHOHU DQG &DGDYLG &ODUN f 7KH VWLPXODWLQJ $ FRQFHQWUDWLRQV DUH XVXDOO\ DERXW PJ / A RU OHVV ,Q WKH WHD SODQW KRZHYHU JURZWK VWLPXODWLRQ LV REVHUYHG DW $ FRQFHQWUDWLRQV DV KLJK DV PJ / 7KH PHFKDQLVPV RI $ EHQHILFLDO HIIHFWV DUH GHEDWDEOH DQG PD\ EH GLIIHUHQW IRU GLIIHUHQW SODQW JHQRW\SHV DQG JURZWK PHGLD 3RVVLEOH H[SODQDWLRQV )R\ f LQFOXGH f LQFUHDVLQJ 3 )H DQG &D XSWDNH f SUHYHQWLQJ WR[LFLWLHV RI &X 0Q DQG 3 f DOWHULQJ WKH GLVWULEXWLRQ RI JURZWK UHJXODWRUV DQG f VHUYLQJ DV D IXQJLFLGH 7KH EHQHILFLDO HIIHFWV DUH WKH H[FHSWLRQ KRZHYHU DQG WR[LF HIIHFWV RI $ RQ SODQW JURZWK LQ VRLOV RI ORZ S+ DUH WKH UXOH

PAGE 18

3K\WRWR[LFLW\ RI $OXPLQXP $OXPLQXP WR[LFLW\ LV SUREDEO\ WKH PRVW LPSRUWDQW JURZWKOLPLWLQJ IDFWRU IRU SODQWV LQ PRVW VWURQJO\ DFLG VRLOV DQG PLQH VSRLOV )R\ 0F/HDQ f 7KH V\PSWRPV RI $ WR[LFLW\ DUH QRW HDVLO\ LGHQWLILHG $OXPLQXP WR[LFLW\ HIIHFWV DUH ILUVW GHWHFWHG LQ WKH URRW V\VWHP LQ ZKLFK WKHUH LV UHGXFHG JURZWK RI WKH PDLQ D[LV UHVXOWLQJ LQ VKRUW WKLFN URRWV DQG LQ WKH LQKLELWLRQ RI ODWHUDO URRW IRUPDWLRQ $ODP DQG $GDPV %ROODUG f ,Q SODQW WRSV UHVWULFWHG JURZWK LV RIWHQ WKH PDLQ V\PSWRP RI WR[LFLW\ EXW VRPHWLPHV PRWWOLQJ DQG QHFURWLF V\PSWRPV FDQ DSSHDU RQ OHDYHV DV ZHOO &DWH DQG 6XNKDL f ,Q VRPH SODQWV WKH IROLDU V\PSWRPV UHVHPEOH WKRVH RI 3 GHILFLHQF\ ,Q RWKHUV $ WR[LFLW\ DSSHDUV DV DQ LQGXFHG &D RU )H GHILFLHQF\ )R\ f
PAGE 19

([FHVV $O PD\ UHGXFH WKH XSWDNH RI FHUWDLQ HVVHQWLDO HOHPHQWV DQG LQFUHDVH WKDW RI RWKHUV $OL $ODP 'XQFDQ HW DO f $OXPLQXP WR[LFLW\ LV RIWHQ DVVRFLDWHG ZLWK $OLQGXFHG 3 WR[LFLW\ 0F&RUPLFN DQG %RUGHQ f RU $OLQGXFHG 3 GHILFLHQF\ -DPHV HW DO f $OXPLQXPLQGXFHG )H GHILFLHQF\ LV IUHTXHQWO\ PHQWLRQHG LQ WKH OLWHUDWXUH $ODP &ODUN HW DO f DQG DOXPLQXP [ &D LQWHUDFWLRQV DUH LPSRUWDQW LQ DFLG VRLOV /DQFH DQG 3HDUVRQ f VKRZHG WKDW UHGXFHG &D XSWDNH ZDV WKH ILUVW H[WHUQDOO\ REVHUYHG V\PSWRPV RI $O GDPDJH RQ FRWWRQ VHHGOLQJ URRWV /XQG f IRXQG WKDW &D UHGXFHG WKH GHWULPHQWDO HIIHFWV RI $O LQ QXWULHQW VROXWLRQ +RZHYHU WKH GDWD IRU HIIHFWV RQ QXWULHQW XSWDNH DUH GLIILFXOW WR LQWHUSUHW LQ WHUPV RI $O WR[LFLW\ PHFKDQLVPV 1R RQH SDWWHUQ RI HOHPHQWDO DFFXPXODWLRQ DSSOLHV WR DOO FDVHV RI $O LQMXU\ )R\ f ZLWK WKH HQWLUH DUUD\ RI HOHPHQWV LQ WKH WRSV RI $OLQMXUHG SODQWV SUREDEO\ UHSUHVHQWLQJ WKH DFFXPXODWHG V\VWHPDWLF HIIHFWV RI LQLWLDO URRW LQMXU\ E\ $O 6XFK HIIHFWV DUH JHQHUDOO\ WRR IDU UHPRYHG IURP WKH LQLWLDO URRW LQMXU\ WR UHYHDO $OWR[LFLW\ PHFKDQLVPV )R\ f 7KH UHGXFWLRQ LQ OHYHOV RI VRPH HOHPHQWV LV DOVR D UHVXOW RI UHGXFHG URRW VXUIDFH DUHD UDWKHU WKDQ D VSHFLILF HIIHFW RI $O &ODUNVRQ f 'LIIHUHQWLDO $OXPLQXP 7ROHUDQFH RI 3ODQWV 'LIIHUHQW SODQW VSHFLHV DQG YDULHWLHV GLIIHU ZLGHO\ LQ WKHLU WROHUDQFH WR H[FHVV $O LQ WKH JURZWK PHGLXP 7KHUH LV QRZ FRQVLGHUn DEOH DFWLYLW\ GHYRWHG WR EUHHGLQJ FURS FXOWLYDUV EHWWHU DGDSWHG WR DFLGVRLO FRQGLWLRQV ZLWK ZRUN LQ WKLV ILHOG KDYLQJ UHVXOWHG LQ WKH GHWHFWLRQ RI FHUWDLQ GLIIHUHQFHV EHWZHHQ VXVFHSWLEOH DQG WROHUDQW FXOWLYDUV +RZHYHU WKH H[DFW SK\VLRORJLFDO PHFKDQLVPV RI $O

PAGE 20

WROHUDQFH DUH VWLOO EHLQJ GHEDWHG WROHUDQFH PD\ EH FRQWUROOHG E\ GLIIHUHQW JHQHV DFWLQJ WKURXJK GLIIHUHQW ELRFKHPLFDO SDWKZD\V LQ GLIIHUHQW SODQWV )R\ f 7KUHH PDMRU PHFKDQLVPV DUH LQYROYHG LQ $ WROHUDQFH f H[FOXVLRQ IURP XSWDNH H[FOXGHU SODQWVf f LQDFWLYDWLRQ LQ WKH URRWV H[FOXGHU LQFOXGHU SODQWVf DQG f DFFXPXODWLRQ LQ WKH VKRRWV LQFOXGHU SODQWVf 0HFKDQLVP f H[LVWV PDLQO\ LQ KLJKO\ $ WROHUDQW VSHFLHV RI QDWXUDO YHJHWDWLRQ ZLWK RQO\ D IHZ FXOWLYDWHG VSHFLHV EHLQJ $ LQFOXGHUV ,Q FURS VSHFLHV PHFKDQLVPV f DQG f SUHGRPLQDWH DQG LW LV RIWHQ GLIILFXOW WR GLIIHUHQWLDWH EHWZHHQ WKH WZR 0DUVFKQHU f 7KH IROORZLQJ IDFWRUV PD\ EH RI SULPDU\ LPSRUWDQFH LQ WKH H[FOXVLRQ PHFKDQLVP 5KL]RVSKHUH S+ :KHQ $ LV SUHVHQW VRPH WROHUDQW FXOWLYDUV WHQG WR UDLVH WKH H[WHUQDO S+ IDVWHU WKDQ VHQVLWLYH FXOWLYDUV ERWK LQ WKH QXWULHQW VROXWLRQ )R\ HW DO f DQG LQ WKH UKL]RVSKHUH RI VRLO FXOWXUH 0XJZLUD DQG 3HWHO f $ VOLJKW S+ LQFUHDVH DW WKH URRW VXUIDFH RU LQ WKH IUHH VSDFH LV SUREDEO\ VXIILFLHQW WR ORZHU WKH FKDUJH RI $O ZKLFK OHDGV WR WKH IRUPDWLRQ RI $O SRO\PHU VSHFLHV 7KHVH SRO\PHU VSHFLHV PD\ IDFLOLWDWH 3 XSWDNH $OXPLQXP XSWDNH DQG GLVWULEXWLRQ 6RPH $OWROHUDQW SODQWV KDYH D ORZHU $O FRQFHQWUDWLRQ LQ URRWV WKDQ GR $OVHQVLWLYH SODQWV ,Q WKLV FDVH $O WROHUDQFH DSSDUHQWO\ LQYROYHV DQ H[FOXVLRQ PHFKDQLVP 2WKHU $OWROHUDQW SODQWV KDYH HLWKHU PRUH RU OHVV $O LQ WKHLU WRSV WKDQ GR $OVHQVLWLYH SODQWV 6XFK SODQWV KDYH KLJKHU LQWHUQDO WROHUDQFH WR $O 7HD FHUWDLQ +DZDLLDQ JUDVVHV SLQH WUHHV DQG PDQJURYH DUH H[DPSOHV RI $O DFFXPXODWRUV )R\ HW DO f EXW OLWWOH LV NQRZQ DERXW WKH IRUPV LQ ZKLFK $O PD\ H[LVW LQ WKH IROLDJH

PAGE 21

RI DFFXPXODWRU VSHFLHV %ROODUG f 6RPH HIIRUW KDV EHHQ PDGH WR HVWDEOLVK FULWLFDO OHYHOV RI $ IRU WR[LFLW\ LQ SODQW WRSV :DOODFH DQG 5RPQH\ 'XQFDQ f 1XWULHQW XSWDNH 6RPH $OWROHUDQW SODQWV DUH DOVR 1+r WROHUDQW 7KLV 1+AWROHUDQFH LV LPSRUWDQW LQ VWURQJO\ DFLG VRLOV ZKHUH KLJK FRQFHQWUDWLRQV RI 1+A PD\ EH SUHVHQW )R\ DQG )OHPLQJ f $OXPLQXP WROHUDQFH LQ FHUWDLQ FXOWLYDUV RI ZKHDW EDUOH\ VR\EHDQ DQG VQDSEHDQ KDV EHHQ DVVRFLDWHG ZLWK WKH DELOLW\ WR UHVLVW $OLQGXFHG &D GHILFLHQF\ )R\ HW DO f ,Q PDQ\ SODQWV $ WROHUDQFH DOVR DSSHDUV WR EH FORVHO\ UHODWHG WR 3XVH HIILFLHQF\ )R\ HW DO f 2UJDQLF $O FRPSOH[HV 1DWXUDOO\ RFFXUULQJ RUJDQLF DFLGV LQ $OWROHUDQW VSHFLHV FKHODWH $O DQG WKHUHE\ UHGXFH WKH $O3 SUHn FLSLWDWLRQ H[SHFWHG DW QRUPDO S+ OHYHOV LQ SODQW VDS -RQHV f .OLPDVKHYVNLL DQG &KHUQ\VKHYD f IRXQG WKDW WKH URRWV RI $O WROHUDQW YDULHWLHV RI SHD PDL]H DQG EDUOH\ FRQWDLQHG VXEVWDQWLDOO\ KLJKHU FRQFHQWUDWLRQV RI FLWULF DFLG WKDQ GLG WKRVH RI $OVHQVLWLYH YDULHWLHV RI WKH VDPH VSHFLHV &RPSOH[DWLRQ RI $O E\ RUJDQLF DFLGV QRW RQO\ SURYLGHV SURWHFWLRQ DJDLQVW WKH KDUPIXO HIIHFWV RI IUHH $O RQ URRW JURZWK EXW LV DOVR LPSRUWDQW IRU WKH XSWDNH RI 3 0DUVFKQHU f 6WXG\ 0HWKRGV IRU $O 3K\WRWR[LFLW\ 6WXG\ PHWKRGV IRU $O SK\WRWR[LFLW\ QRUPDOO\ LQFOXGH VROXWLRQ FXOWXUH VRLO FXOWXUH LQ WKH JUHHQKRXVH DQG ILHOG H[SHULPHQWV 6ROXWLRQ FXOWXUH KDV EHHQ XVHG PRVW IUHTXHQWO\ 6ROXWLRQ FXOWXUH QXWULHQW VROXWLRQ RU VRLO VROXWLRQf KDV EHHQ XVHG IRU VWXG\LQJ WKH UHODWLRQVKLS EHWZHHQ $O VSHFLDWLRQ DQG

PAGE 22

SK\WRWR[LFLW\ $WWHPSWV KDYH EHHQ PDGH WR UHODWH WKH FRQFHQWUDWLRQV RI $ VSHFLHV LQ VROXWLRQ $ K\GUR[\$O PRQRPHUV K\GUR[\$O SRO\PHUV $6r HW DOf DV REWDLQHG E\ FDOFXODWLRQ ZLWK *(2&+(0 RU RWKHU SURJUDPV WR SODQWJURZWK SDUDPHWHUV LQ RUGHU WR ILQG RXW ZKDW VSHFLHV LV PRVW WR[LF WR SODQW JURZWK +RZHYHU WKHUH LV QR FOHDU FRQVHQVXV DV WR WKH VSHFLHVf SUHGRPLQDQWO\ UHVSRQVLEOH IRU SK\WRn WR[LFLW\ %ODUQH\ HW DO $OYD HW DO 3DUNHU HW DO f 5DSLG VFUHHQLQJ PHWKRGV KDYH EHHQ GHYHORSHG PDLQO\ LQ VROXWLRQ FXOWXUH V\VWHPV 0RVW ZRUNHUV KDYH IRXQG WKDW WKH SULPDU\ GDPDJH FDXVHG E\ $O RFFXUV LQ WKH URRWV %RXPD HW DO %ROODUG f ,Q PRVW FURS VSHFLHV WKH UHODWLYH URRW OHQJWK RI SODQWV H[SRVHG YHUVXV WKRVH QRW H[SRVHG WR $O LV WKH PRVW DSSURSULDWH SDUDPHWHU 0DUVFKQHU f %HFDXVH $O WR[LFLW\ WR URRWV LV DIIHFWHG E\ PDQ\ IDFWRUV VXFK DV S+ DQG FRQFHQWUDWLRQV RI 3 &D DQG 0J WKH ELJJHVW SUREOHP LQ GHYHORSLQJ UDSLG VFUHHQLQJ WHFKQLTXHV LV ILQGLQJ DQ DSSURSULDWH FRPELQDWLRQ RI WKHVH IDFWRUV WR XVH 5KXH DQG *URJDQ f ,Q VRPH LQVWDQFHV WKH FODVVLILFDWLRQ RI JHQRW\SHV EDVHG RQ WKHLU $O WROHUDQFH YLD WKH UDSLG VFUHHQLQJ PHWKRGV FRUUHODWHV ZHOO ZLWK WKH JURZWK UHVSRQVH RI WKHVH JHQRW\SHV LQ DFLG VRLOV +RZHOHU DQG &DGDYLG f +RZHYHU WKH FRUUHODWLRQV RIWHQ DUH TXLWH SRRU 1HOVRQ f 7KHVH GLVFUHSDQFLHV DUH QRW VXUSULVLQJ DQG LQGLFDWH WKDW Df IDFWRUV VXFK DV UKL]RVSKHUH S+ KDYH EHHQ LQVXIILFLHQWO\ FRQVLGHUHG DQG Ef IDFWRUV RWKHU WKDQ H[FHVVLYH $O OHYHOV PD\ KDYH EHHQ LQYROYHG DQG PD\ KDYH KDG DQ HYHQ PRUH KDUPIXO HIIHFW RQ JURZWK 7KHUH KDV EHHQ PXFK ZRUN ZLWK SODQWV JURZQ LQ QXWULHQW VROXWLRQ RQ WKH HIIHFWV RI $O FRQFHQWUDWLRQ DQG SRVVLEOH PRGLI\LQJ IDFWRUV RQ

PAGE 23

WKH JURZWK DQG HOHPHQWDO FRPSRVLWLRQ RI SODQWV 7KHUH DUH FRQVLGn HUDEOH WHFKQLFDO GLIILFXOWLHV ZLWK VXFK H[SHULPHQWV 7KHUH LV RIWHQ FRQIXVLRQ DERXW ZKDW OHYHO RI $ LV DFWXDOO\ SUHVHQW LQ VROXWLRQ $ JHQHUDO SUREOHP LQ PRVW VWXGLHV RQ WKH EHQHILFLDO HIIHFWV RI $ RQ SODQWV LV WKH FRQWDPLQDWLRQ RI WKH QXWULHQW VROXWLRQ ZLWK $O 5HDVRQDEO\ KLJK OHYHOV DUH IUHTXHQWO\ UHSRUWHG LQ SODQWV JURZLQJ LQ FRQYHQWLRQDO FXOWXUH VROXWLRQV ZLWKRXW DQ\ DGGHG $O :LONLQVRQ DQG *URVV f 0RUHRYHU WKH UHGXFHG VROXELOLW\ RI DOXPLQXP SKRVSKDWH ZLWK LQFUHDVLQJ S+ JUHDWO\ UHVWULFWV WKH FRPELQDn WLRQV RI $O DQG SKRVSKDWH FRQFHQWUDWLRQV DQG S+ RI FXOWXUH VROXWLRQ ZKLFK FDQ EH FRPSDUHG 7KH RWKHU SUREOHP LQ VRPH VWXGLHV LV WKH FRQIRXQGLQJ HIIHFWV RI 3 DQG $O :KHQ ]HUR RU VPDOO DPRXQWV RI $O DUH DGGHG H[FHVVLYH 3 OHYHOV DUH TXLWH FRPPRQ 0DUVFKQHU f :KHQ ODUJH DPRXQWV RI $O DUH DGGHG 3 LV RIWHQ GHILFLHQW LQ WKH QXWULHQW VROXWLRQ GXH WR WKH SUHFLSLWDWLRQ RI DOXPLQXP SKRVSKDWH )LHOG H[SHULPHQWV DUH YHU\ LPSRUWDQW LQ $OSK\WRWR[LFLW\ DQG VFUHHQLQJ VWXGLHV IRU $O WROHUDQFH )R\ HW DO 0XJZLUD HW DO f +RZHYHU ILHOG H[SHULPHQWV DUH ODERULQWHQVLYH UHTXLUH VHYHUDO PRQWKV RU PRUH IRU FRPSOHWLRQ DQG DUH RIWHQ LQIOXHQFHG E\ VHFRQGDU\ IDFWRUV VXFK DV WKH YDULDWLRQ RI VRLO SURSHUWLHV $SSOLFDn WLRQ RI $O WR D ODUJH ILHOG DUHD LV QRW SUDFWLFDO ,W DOVR LV YHU\ GLIILFXOW WR VWXG\ URRW V\VWHPV RI FURSV LQ ILHOG H[SHULPHQWV ZLWKRXW GLVWXUEDQFH RI WKH VRLOV DQG WKH URRW V\VWHP SDUWLFXODUO\ IRU ODUJH SODQWV VXFK DV WUHHV 6WXGLHV RI $OXPLQXP (IIHFWV RQ &LWUXV &LWUXV VSHFLHV DUH JURZQ ZLGHO\ LQ WURSLFDO DQG VXEWURSLFDO DUHDV RI KLJK DQQXDO UDLQIDOO LQ ZKLFK WKH VRLOV DUH DOPRVW DOZD\V

PAGE 24

DFLG &LWUXV WUHHV ZHUH GRPHVWLFDWHG IURP ZLOG DQFHVWRUV LQ (DVWHUQ DQG 6RXWKHUQ $UHD +LOO f ZKHUH PRVW VRLOV DUH KLJKO\ DFLG $OXPLQXP SK\WRWR[LFLW\ PD\ EH DQ LPSRUWDQW IDFWRU OLPLWLQJ FLWUXV JURZWK LQ WKH PRUH DFLG RI WKHVH VRLOV +RZHYHU RQO\ D IHZ VWXGLHV KDYH EHHQ UHSRUWHG LQ WKLV ILHOG $Q HDUO\ UHSRUW RI $ HIIHFWV RQ FLWUXV JURZWK ZDV PDGH E\ +DDV f +H XVHG OHDI\WZLJ FXWWLQJV RI VRPH FLWUXV LQ D QXWULHQW VROXWLRQ DQG IRXQG WKDW ORZ $ FRQFHQWUDWLRQV VWLPXODWHG URRW JURZWK ZKLOH KLJK $ FRQFHQWUDWLRQV ZHUH WR[LF +H DOVR IRXQG WKDW DGGLWLRQ RI $ LQFUHDVHG 3 XSWDNH /LHELJ HW DO f PDGH VLPLODU ILQGLQJV 7KH\ DOVR IRXQG WKDW DGGLWLRQ RI $O UHGXFHG &X WR[LFLW\
PAGE 25

6WXG\ RI WKH UHODWLRQVKLS EHWZHHQ $ HIIHFWV DQG PDFUR DQG PLFURQXWULHQWV 6WXG\ RI WKH PHFKDQLVPV RI EHQHILFLDO DQG WR[LF HIIHFWV RI $ RQ FLWUXV ,QYHVWLJDWLRQ RI WKH HIIHFWV RI $ RQ FLWUXV JURZWK LQ VRLOV SDUWLFXODUO\ LQ WKH ILHOG DQG DVVHVVPHQW RI WKH FULWLFDO $ FRQFHQWUDWLRQV LQ VRLO VROXWLRQ RU LQ FLWUXV OHDYHV ZKLFK UHIOHFW WR[LFLW\ 7HVWLQJ DPHQGPHQWV ZKLFK PD\ EH XVHG SUDFWLFDOO\ LQ FLWUXV JURYHV WR DPHOLRUDWH $ WR[LFLW\

PAGE 26

&+$37(5 ,,, 683(51$7$17 62/87,216 &217$,1,1* 9$5,286 /(9(/6 2) $/80,180 $1' 6,0,/$5 &21&(175$7,216 2) 3+263+2586 $6 &8/785( 62/87,216 )25 7+( $/80,180 678'< ,QWURGXFWLRQ 6ROXWLRQ FXOWXUH KDV EHHQ ZLGHO\ XVHG WR VWXG\ WKH HIIHFWV RI $ FRQFHQWUDWLRQ RQ WKH JURZWK DQG HOHPHQWDO FRPSRVLWLRQ RI SODQWV DQG WR VFUHHQ FURS VSHFLHV IRU $ WROHUDQFH 1RUPDOO\ DXWKRUV UHSRUW WKH DPRXQWV RI $ DGGHG WR WKH VROXWLRQ EXW QRW WKH DFWXDO $ FRQFHQn WUDWLRQ LQ WKH JURZWK VROXWLRQ 0DQ\ QXWULHQW FXOWXUH VWXGLHV KDYH HPSOR\HG KLJK $ DGGLWLRQV XS WR P0 RU PRUHf 7DQDND DQG 1DYDVHUR
PAGE 27

7KH SUHFLSLWDWLRQ RI DOXPLQXP SKRVSKDWH DOVR FDXVHV WKH GHFUHDVH RI DFWXDO 3 FRQFHQWUDWLRQ LQ WKH VROXWLRQ 0XQQV 7DQDND DQG 1DYDVHUR f )RU D JLYHQ S+ DQG 3 DGGLWLRQ LI WKH DPRXQW RI DGGHG $ LV ]HUR RU VPDOO WKHUH PD\ EH D 3WR[LFLW\ SUREOHP 0DUVFKQHU f ,I WKH DPRXQW RI DGGHG $ LV ODUJH WKHUH PD\ EH D 3 GHILFLHQF\ SUREOHP (LWKHU RI WKHVH SUREOHPV PD\ FRQIRXQG WKH HIIHFWV RI $ RQ SODQW JURZWK ,Q PDQ\ SUHYLRXV VWXGLHV EHQHILFLDO RU WR[LF HIIHFWV RI $ ZHUH UHSRUWHG WR EH UHODWHG WR 3 )R\ f 6RPH UHVHDUFKHUV DOVR IRXQG WKDW 3 WR[LFLW\ RU GHILFLHQF\ DIIHFWHG WKH $ WR[LFLW\ V\PSWRPV DQG FULWLFDO FRQFHQWUDWLRQV LQ VROXWLRQ FXOWXUH 7DQDND DQG 1DYDVHUR f 7KHUHIRUH LW LV QHFHVVDU\ WR UHSRUW WKH DFWXDO FRQFHQWUDWLRQ RI 3 LQ WKH JURZWK PHGLXP ,W LV DOVR LPSRUWDQW WR JHW VLPLODU FRQFHQWUDWLRQV RI 3 LQ QXWULHQW VROXWLRQV ZLWK GLIIHUHQW $ FRQFHQWUDWLRQV DOWKRXJK WKHUH DUH FRQVLGHUDEOH WHFKQLFDO GLIILFXOWLHV EHFDXVH RI XQFHUWDLQW\ ZKLFK H[WHQGV HYHQ WR WKH SUHGLFWLRQ RI SUHFLSLWDWLRQ ,Q QXWULHQW VROXWLRQV ZLWK DPRUSKRXV SUHFLSLWDWHV RI $+fA DOXPLQXP SKRVSKDWH DQG RWKHU FRPSRXQGV LW LV GLIILFXOW WR HVWLPDWH WKH DFWXDO FRQFHQWUDWLRQV RI $O 3 DQG RWKHU HOHPHQWV ZKLFK PD\ UHDFW ZLWK $ DQG 3 WR IRUP SUHFLSLWDWHV GXULQJ WKH JURZWK SHULRGV 6XFK SUHFLSLWDWHV PD\ EHFRPH D VLQN RU VRXUFH IRU WKH HOHPHQWV LQ WKH VROXWLRQ 7KH DFWXDO FRQFHQWUDWLRQV RI WKH HOHPHQWV LQ WKH VROXWLRQ PD\ G\QDPLFDOO\ FKDQJH DV ZHOO )XUWKHUPRUH ZLWK FRQWLQXRXV DHUDWLRQ DPRUSKRXV SUHFLSLWDWHV PD\ GHSRVLW RQ URRW VXUIDFHV DQG WKLV FRYHUDJH PD\ DIIHFW WKH SK\VLRORJLFDO IXQFWLRQ RI WKH URRWV ,W LV SUHIHUDEOH WR XVH VXSHUQDWDQW VROXWLRQ ILOWHUHG RU VLSKRQHGf LQVWHDG RI WXUELG VROXWLRQ WR JURZ SODQWV LQ $ VWXGLHV

PAGE 28

,Q HDUOLHU ZRUN VRPH WHFKQLTXHV ZHUH XVHG WR DYRLG SUHFLSLn WDWLRQ SUREOHPV 0XQQV f VXJJHVWHG FRPSDULQJ WKH HIIHFWV RI $ FRQFHQWUDWLRQ LQ FXOWXUH QXWULHQW VROXWLRQ RQO\ DW SKRVSKDWH FRQFHQWUDWLRQ RI \0 PJ 3 / Af RU OHVV $ FRQFHQWUDWLRQV RQ WKH RUGHU RI S0 PJ $O / rf DQG S+ YDOXHV RI WR DYRLG SUHFLSLWDWLRQ SUREOHPV 1RQHWKHOHVV PDQ\ H[SHULPHQWV KDYH EHHQ FDUULHG RXW ZLWK WUHDWPHQWV H[FHHGLQJ VXFK QDUURZ OLPLWV ,Q RUGHU WR DYRLG SUHFLSLWDWLRQ RI DOXPLQXP SKRVSKDWH SKRVSKRUXV KDV EHHQ RPLWWHG 0RRUH HW DO f RU SODQW URRWV KDYH EHHQ DOWHUQDWHO\ H[SRVHG WR FXOWXUH VROXWLRQV FRQWDLQLQJ HLWKHU $O RU 3 RU VSOLWURRW WHFKQLTXHV KDYH EHHQ XVHG 7KHVH PRGLILFDWLRQV KRZHYHU LPSRVH WKHLU RZQ FRQVWUDLQWV RQ WKH LQWHUSUHWDWLRQ RI H[SHULPHQWDO UHVXOWV 3LHUUH HW DO :ULJKW f 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WZRIROG f WR LQYHVWLJDWH WKH DFWXDO FRQFHQWUDWLRQV RI $O DQG 3 LQ QXWULHQW VROXWLRQ XQGHU GLIIHUHQW S+ DQG GLIIHUHQW $O DQG 3 DGGLWLRQV DQG f WR GHYHORS DQG WHVW D VXSHUQDWDQWVROXWLRQ PHWKRG IRU $O VWXGLHV LQ ZKLFK WKH VXSHUQDWDQW VROXWLRQV FRQWDLQ YDULRXV OHYHOV RI $O DQG VLPLODU FRQFHQWUDWLRQV RI 3 0DWHULDOV DQG 0HWKRGV *HQHUDO $OO UHDJHQWV ZHUH RI DQDO\WLFDO JUDGH DQG GRXEOHGHLRQL]HG ZDWHU ZDV XVHG 7KH EDVDO QXWULHQW VROXWLRQ XVHG IRU WKLV VWXG\ FRQWDLQHG DERXW RQHIRXUWK RI WKH PDFURQXWULHQW FRQFHQWUDWLRQV H[FHSW IRU 3 RI QR +RDJODQG DQG $UQRQ VROXWLRQ f 7KLV EDVDO QXWULHQW VROXWLRQ KDV EHHQ XVHG SUHYLRXVO\ IRU VRPH RWKHU $O

PAGE 29

VWXGLHV 0DF/HRG DQG -DFNVRQ
PAGE 30

ZDV ILOWHUHG DQG WKH ILOWUDWH ZDV DQDO\]HG IRU (& DQG FRQFHQWUDWLRQV RI $ DQG 3 ,Q DGGLWLRQ IRXU WULDOV ZHUH FRQGXFWHG WR LQYHVWLJDWH Df WKH FRPSRVLWLRQ GLIIHUHQFHV EHWZHHQ ILOWHUHG QXWULHQW VROXWLRQ DQG VXSHUQDWDQW VROXWLRQV REWDLQHG E\ VLSKRQ Ef WKH HIIHFW RI HTXLOLn EUDWLRQ WLPH DQG WHPSHUDWXUH DQG Ff WKH HIIHFW RI VWRUDJH WHPSHUDWXUH RQ FRPSRVLWLRQ RI ILOWUDWH ([SHULPHQW 6XSHUQDWDQW 6ROXWLRQV &RQWDLQLQJ 6HYHUDO /HYHOV RI $ DQG 6LPLODU &RQFHQWUDWLRQV RI 3 7ZR WULDOV ZHUH FRQGXFWHG 7KH ILUVW ZDV WR GHYHORS RQH VHW RI VXSHUQDWDQW VROXWLRQV ZKLFK FRQWDLQHG YDULRXV OHYHOV RI $ WR PJ / Af ZLWK D VLPLODU 3 FRQFHQWUDWLRQ PJ / DQG DW WKH VDPH S+ f 7KHUH ZHUH D QXPEHU RI $ODGGLWLRQ OHYHOV WR PJ / 6 LQ IDFWRULDO FRPELQDWLRQ ZLWK D QXPEHU RI 3DGGLWLRQ OHYHOV WR PJ / f 7KH S+ RI DOO PL[HG VROXWLRQV ZDV DGMXVWHG WR 7KH VHFRQG WULDO ZDV WR GHYHORS D VHFRQG VHW RI VXSHUQDWDQW VROXWLRQV ZKLFK FRQWDLQHG YDULRXV OHYHOV RI $ WR PJ / ZLWK VLPLODU 3 FRQFHQWUDWLRQ PJ / rf DQG DW WKH VDPH S+ f 7KHUH ZHUH D QXPEHU RI $ODGGLWLRQ OHYHOV WR PJ / Af LQ IDFWRULDO FRPELQDn WLRQ ZLWK D QXPEHU RI 3DGGLWLRQ OHYHOV WR PJ / Af 7KH S+ RI DOO PL[HG VROXWLRQV ZDV DGMXVWHG WR 7KH SURFHGXUH RI PL[LQJ DJLQJ DQG ILOWHULQJ ZHUH WKH VDPH DV GHVFULEHG LQ ([SHULPHQW 7KH ILOWUDWHV ZHUH DQDO\]HG IRU (& DQG IRU FRQFHQWUDWLRQV RI $O 3 DQG RWKHU HOHPHQWV ([SHULPHQW (OHPHQWDO &RPSRVLWLRQ RI /DUJHYROXPH 6XSHUQDWDQW 6ROXWLRQV 3UHSDUHG 0DQXDOO\ LQ WKH *UHHQKRXVH ,Q RUGHU WR PDNH OLWHUV RI WKH VXSHUQDWDQW VROXWLRQ GHYHORSHG LQ ([SHULPHQW DV WKH ILUVW VHW OLWHUV RI EDVDO

PAGE 31

QXWULHQW VROXWLRQ ZDV SUHSDUHG LQ D OLWHU SODVWLF FRQWDLQHU $OXPLQXP DQG 3 VROXWLRQV ZHUH SUHSDUHG ZLWK ZDWHU HDFK LQ VHSDUDWH OLWHU SODVWLF FRQWDLQHUV 7KH DOXPLQXP VROXWLRQ ZDV PL[HG ZLWK WKH EDVDO QXWULHQW VROXWLRQ LQ D OLWHU FRQWDLQHU 7KHQ WKH 3 VROXWLRQ ZDV DGGHG 7KH VROXWLRQ ZDV PL[HG E\ KDQGVWLUULQJ ZLWK D SODVWLF EDU 7KH S+ ZDV DGMXVWHG ZLWK DGGLWLRQV RI 0 +& RU 1D2+ IURP D ZDVK ERWWOH DQG WKH VROXWLRQ ZDV PL[HG 7KH PL[HG VROXWLRQ ZDV WKHQ PDGH XS WR OLWHUV ZLWK EDVDO QXWULHQW VROXWLRQ $IWHU WKH VROXWLRQ ZDV DJHG IRU GD\V DW URRP WHPSHUDWXUH LQ WKH JUHHQn KRXVH WKH VXSHUQDWDQW OLTXLG ZDV VLSKRQHG (OHFWULFDO FRQGXFWLYLW\ DQG $ DQG 3 FRQFHQWUDWLRQV LQ WKH VXSHUQDWDQW VROXWLRQ ZHUH GHWHUn PLQHG 7KH VXSHUQDWDQW VROXWLRQ ZDV XVHG IRU ([SHULPHQW DOVR ([SHULPHQW 7HVW RI 6XSHUQDWDQW 6ROXWLRQV DV &XOWXUH 6ROXWLRQV 8VLQJ &LWUXV 6HHGOLQJV 7KH REMHFWLYH RI WKLV H[SHULPHQW ZDV WR XVH FLWUXV VHHGOLQJV WR WHVW WKH ILUVW VHW RI VXSHUQDWDQW VROXWLRQV GHYHORSHG LQ ([SHULPHQW DQG SUHSDUHG LQ ([SHULPHQW )LYH FLWUXV URRWVWRFNV ZHUH XVHG &DUUL]R FLWUDQJH I& VLQHQVLV /f 2VEHFN [ 3RQFLUXV WULIROLDWD /f 5DI@ &OHRSDWUD PDQGDULQ e UHVKQL +RUW H[ 7DQf 5RXJK OHPRQ &B MDPEKLUL /XVKf 6RXU RUDQJH &A DXUDQWLXP /f DQG 6ZLQJOH FLWUXPHOR e SDUDGLVL [ B3 WULIROLDWDf 6L[PRQWK VHHGOLQJV OLQHUVf ZHUH REWDLQHG IURP QXUVHULHV 8QLIRUP VHHGOLQJV ZHUH VHOHFWHG DQG WKHLU URRWV ZHUH WKRURXJKO\ ZDVKHG ZLWK WDS ZDWHU DQG WKHQ JLYHQ D ILQDO ULQVLQJ ZLWK GHLRQL]HG ZDWHU 7KH VHHGOLQJV ZHUH WUDQVIHUUHG WR WKH VXSHUQDWDQW VROXWLRQV SUHSDUHG LQ ([SHULPHQW 7HQOLWHU SDLOV FP GLDP [ FP KHLJKWf ZHUH XVHG WR KROG WKH QXWULHQW VROXWLRQ )LYH KROHV ZHUH PDGH LQ WKH SO\ZRRG

PAGE 32

OLG RI WKH SDLOV RQH IRU HDFK RI WKH ILYH URRWVWRFN VHHGOLQJV 7KH HQWLUH URRW V\VWHP RI WKH ILYH VHHGOLQJV ZDV VXEPHUJHG LQ WKH VROXWLRQ DQG WKH VROXWLRQ ZDV FRQWLQXRXVO\ DHUDWHG 7KLV DOVR VHUYHG WR NHHS WKH VROXWLRQ XQLIRUPO\ PL[HG $LUFRQGLWLRQLQJ ZDV XVHG LQ WKH JUHHQKRXVH WR PDLQWDLQ WKH DLU WHPSHUDWXUH LQ D UDQJH IURP WR r& 7KH SDLOV ZHUH SXW LQVLGH SRROV ILOOHG ZLWK ZDWHU ZKLFK ZDV FLUFXODWHG E\ D SXPS DQG SDVVHG WKURXJK D FRROLQJ V\VWHP 7KH ZDWHU WHPSHUDWXUH LQ WKH SRROV DV ZHOO DV WKH VROXWLRQ WHPSHUDWXUH LQ WKH SDLOV ZDV PDLQWDLQHG DW s r& 6HYHQ $ FRQFHQWUDWLRQV ZHUH XVHG (LJKW SDLOV FRQWDLQHG WKH VDPH $ FRQFHQWUDWLRQ DQG ILYH URRWVWRFN VHHGOLQJV $ WRWDO RI SDLOV FRQWDLQLQJ WUHDWPHQW VROXWLRQV ZHUH UDQGRPO\ DVVLJQHG SRVLWLRQV LQ WKH SRROV 7KH S+ OHYHOV ZHUH FKHFNHG HYHU\ WR GD\V DQG DGMXVWHG WR E\ DGGLWLRQV RI GLOXWHG +& RU 1D2+ DV QHFHVVDU\ 7KH VROXWLRQ OHYHO ZDV PDLQWDLQHG E\ DGGLWLRQ RI GHLRQL]HG ZDWHU LQ D TXDQWLW\ VXIILFLHQW WR RIIVHW ORVV GXH WR HYDSRWUDQVSLUDWLRQ HYHU\ WZR GD\V 7KH WUHDWPHQW VROXWLRQV ZHUH UHQHZHG HYHU\ GD\V 7KH VHHGOLQJV JUHZ LQ WKH VROXWLRQ IRU GD\V $W WKH HQG RI WKH ODVW GD\ JURZWK SHULRG VDPSOHV RI WKH VROXWLRQV ZHUH WDNHQ WR GHWHUPLQH FRQFHQWUDWLRQV RI $O 3 DQG RWKHU HOHPHQWV $W WKH EHJLQQLQJ DQG HQG RI WKH ODVW GD\ JURZWK SHULRG VKRRW KHLJKWV RI WKH VHHGOLQJV ZHUH PHDVXUHG 3KRWRJUDSKV ZHUH WDNHQ DW WKH HQG RI WKH H[SHULPHQW 5HVXOWV DQG 'LVFXVVLRQ ([SHULPHQW (IIHFWV RI S+ DQG $GGLWLRQV RI $ DQG 3 RQ (& DQG RQ &RQFHQWUDWLRQV RI $ DQG 3 LQ )LOWUDWHG 1XWULHQW 6ROXWLRQ $OXPLQXP FRQFHQWUDWLRQV LQFUHDVHG ZLWK LQFUHDVHG OHYHOV RI $ DGGLWLRQ EXW GHFUHDVHG ZLWK LQFUHDVHG S+ RU LQFUHDVHG OHYHOV RI 3

PAGE 33

DGGLWLRQ 7DEOHV DQG f $V S+ LQFUHDVHG RU 3 DGGLWLRQ LQFUHDVHG PRUH SUHFLSLWDWH ZDV IRXQG LQ WKH PL[HG VROXWLRQ :KHQ S+ LQFUHDVHG IURP WR $ FRQFHQWUDWLRQ GHFUHDVHG GUDVWLFDOO\ DQG ZKHQ S+ LQFUHDVHG WR $ FRQFHQWUDWLRQ EHFDPH H[WUHPHO\ ORZ DYHUDJLQJ RQO\ D IHZ PJ $O / A (YHQ ZKHQ PJ $O / A DQG RQO\ PJ 3 / ZHUH DGGHG WKH DFWXDO $ FRQFHQWUDWLRQ ZDV RQO\ PJ / :LWK VPDOO DPRXQWV RI $ DGGLWLRQ VXFK DV PJ $O / A WRJHWKHU ZLWK PJ 3 / $ FRQFHQWUDWLRQ ZDV HVVHQWLDOO\ ]HUR LQ WKH ILOWHUHG QXWULHQW VROXWLRQ 7KH ODUJH GLIIHUHQFH EHWZHHQ WKH DPRXQWV RI $ DGGHG DQG DFWXDO $ FRQFHQWUDWLRQV LQ WKH ILOWHUHG QXWULHQW VROXWLRQ VXJJHVWV WKDW LW LV QHFHVVDU\ WR UHSRUW WKH DFWXDO $ FRQFHQWUDWLRQV LQ WKH JURZWK QXWULHQW VROXWLRQ IRU $ VWXGLHV 3KRVSKRUXV FRQFHQWUDWLRQV LQFUHDVHG ZLWK LQFUHDVLQJ OHYHOV RI 3 DGGLWLRQ EXW GHFUHDVHG ZLWK LQFUHDVLQJ S+ DQG DGGLWLRQ OHYHOV RI $O ,W ZDV QRWHZRUWK\ WKDW DW S+ RU KLJKHU ZKHQ PJ $O / A RU PRUH ZHUH DGGHG WKH 3 FRQFHQWUDWLRQ ZDV ]HUR ZKHWKHU RU PJ 3 / A KDG EHHQ DGGHG 7KHVH WUHDWPHQWV FRXOG UHVXOW LQ H[WUHPH 3 GHILFLHQF\ DQG ZRXOG FRQIRXQG WKH $OWR[LFLW\ HIIHFWV ,Q FRQWUDVW ZKHQ $O DGGLWLRQ ZDV ]HUR RU VPDOO DGGLWLRQ RI PJ 3 / A RU PRUH ZRXOG EH WR[LF WR VRPH SODQWV DQG WKLV WR[LFLW\ ZRXOG UHGXFH DQ\ EHQHILFLDO $O HIIHFWV 3KRVSKRUXV VXSSO\ KDV EHHQ DVVRFLDWHG KLVWRULFDOO\ ZLWK URRW JURZWK 7LVGDOH DQG 1HOVRQ f ,Q $O SK\WRWR[LFLW\ VWXGLHV PDQ\ UHVHDUFKHUV KDYH XVHG URRW HORQJDWLRQ DV D PDLQ SDUDPHWHU 7KHUHIRUH OHYHOV RI 3 VXSSO\ PD\ KDYH EHHQ D YHU\ LPSRUWDQW IDFWRU LQIOXHQFLQJ WKH FRQFOXVLRQV RI $O SK\WRWR[LFLW\ VWXGLHV ,GHDOO\ LW VKRXOG EH EHVW WR KDYH WKH VDPH 3 FRQFHQWUDWLRQ IRU DOO OHYHOV RI $O

PAGE 34

7DEOH (IIHFWV RI S+ DQG DGGLWLRQV RI $ DQG 3 RQ WKH FRQFHQWUDWLRQV RI $ DQG 3 DQG RQ (& LQ ILOWUDWHV DJHG IRU GD\V DW r&f $ DGGLWLRQ PJ / S+ 3 DGGLWLRQ PJ / r $ FRQFHQWUDWLRQ PJ / 3 FRQFHQWUDWLRQ PJ / (& G6 P

PAGE 35

7DEOH (TXDWLRQV GHVFULELQJ HIIHFWV RI S+[Af $ DGGLWLRQ [Af DQG 3 DGGLWLRQ [f RQ FRQFHQWUDWLRQ RI $O < f FRQFHQWUDWLRQ RI 3
PAGE 36

7KH (& LQFUHDVHG ZLWK LQFUHDVLQJ OHYHOV RI $ DQG 3 DGGLWLRQ ,QFUHDVHG S+ FDXVHG D UDSLG LQFUHDVH RI (& ZKHQ $ RU 3 DGGLWLRQV ZHUH ODUJH $OVR %ODUQH\ HW DO f UHSRUWHG WKDW WKH (& RI EDVDO VROXWLRQV DIIHFWHG WKH FRQFHQWUDWLRQV RI $O DQG 3 LQ VROXWLRQ $IWHU DJLQJ IRU GD\V WKH $O DQG 3 FRQFHQWUDWLRQV DQG (& LQ WKH ILOWHUHG QXWULHQW VROXWLRQV DQG WKH VXSHUQDWDQW VROXWLRQV ZHUH WKH VDPH 7KHUHIRUH LQ WKH JUHHQKRXVH VWXGLHV ZLWK ODUJH YROXPHV RI FXOWXUH VROXWLRQ VXSHUQDWDQW OLTXLG LQ WKH PL[WXUH FRXOG EH VLSKRQHG LQVWHDG RI ILOWHUHG IRU FRQYHQLHQFH 7KHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV LQ $O DQG 3 FRQFHQWUDWLRQV DQG (& EHWZHHQ DQG GD\V RI DJLQJ LQ WKH UDQJH RI S+ $O DQG 3 DGGLWLRQV RI WKLV H[SHULPHQW 7KH GD\ DJLQJ WHPSHUDWXUHV RI DQG r& KDG QR VLJQLILFDQW HIIHFW HLWKHU 7KH $O DQG 3 FRQFHQWUDWLRQV DQG (& LQ WKH ILOWHUHG QXWULHQW VROXWLRQ GLG QRW FKDQJH DIWHU VWRUDJH LQ WLJKWO\ FORVHG ERWWOHV IRU GD\V ([SHULPHQW 6XSHUQDWDQW 6ROXWLRQ &RQWDLQLQJ 6HYHUDO /HYHOV RI $O DQG 6LPLODU &RQFHQWUDWLRQV RI 3 $W FHUWDLQ S+ OHYHOV DQG ZKHQ $O DGGLWLRQ ZDV VPDOO WKH 3 FRQFHQWUDWLRQV LQ WKH ILOWHUHG QXWULHQW VROXWLRQ LQFUHDVHG FRQWLQXRXVO\ ZLWK LQFUHDVHG OHYHOV RI 3 DGGLWLRQ :KHQ ODUJH DPRXQWV RI $O ZHUH DGGHG WKH 3 FRQFHQWUDWLRQV ZHQW XS DQG GRZQ VHYHUDO WLPHV ZLWK LQFUHDVHG 3 DGGLWLRQ )LJ f $W D FHUWDLQ 3 FRQFHQWUDWLRQ WKHUH PLJKW EH PRUH WKDQ RQH 3 DGGLWLRQ DQG PRUH WKDQ RQH FRUUHVn SRQGLQJ $O FRQFHQWUDWLRQ ZKLFK GHFUHDVHG FRQWLQXRXVO\ $W GLIIHUHQW S+ YDOXHV KRZHYHU WKH XSSHU OLPLWV RI $O DGGLWLRQ IRU FRQWLQXRXV LQFUHDVHV RI 3 FRQFHQWUDWLRQV ZHUH GLIIHUHQW LH WKH KLJKHU WKH S+ WKH VPDOOHU WKH XSSHU OLPLW RI $O DGGLWLRQf )RU H[DPSOH DW S+ DQG ZLWK D PJ $O / r DGGLWLRQ WKH 3 FRQFHQWUDWLRQ VWLOO

PAGE 37

3 &21&(175$7,21 PJ /BOf  3+ DD cPJ $O O S+ n_ MDG O22PT $O / L / M nU 3 $'',7,21 PJ /nf )LJXUH 3KRVSKRUXV FRQFHQWUDWLRQ LQ ILOWHUHG QXWULHQW VROXWLRQ DV DIIHFWHG E\ 3 DGGLWLRQ DW WZR S+ YDOXHV DQG WZR OHYHOV RI $O DGGLWLRQ DJHG IRU GD\V DW r&f 9HUWLFDO EDUV LQGLFDWH VWDQGDUG GHYLDWLRQV

PAGE 38

FRQWLQXRXVO\ LQFUHDVHG ZLWK LQFUHDVHG 3 DGGLWLRQV +RZHYHU DW S+ ZKHQ $ DGGLWLRQ ZDV RQO\ PJ $O / ? WKH 3 FRQFHQWUDWLRQ ZDV QRW LQFUHDVHG FRQWLQXRXVO\ ZLWK LQFUHDVHG 3 DGGLWLRQV $Q DWWHPSW WR LQWHUSUHW WKHVH UHVXOWV LQ WHUPV RI WKH SUHYDLOLQJ FRQFHSW RI $OA K\GURO\VLV DQG RI FRPSOH[DWLRQ E\ $ DQG 3 KDV QRW EHHQ VXFFHVVIXO $FFRUGLQJ WR UHVXOWV IURP PL[LQJ WKH VROXWLRQV KDYLQJ D QXPEHU RI OHYHOV RI $ DGGLWLRQ DQG D QXPEHU RI OHYHOV RI 3 DGGLWLRQ DW WZR S+ YDOXHV WZR VHWV RI ILOWHUHG QXWULHQW VROXWLRQV IRU WKH $ VWXG\ ZHUH IRXQG 7DEOH f ,Q 6HW $ WKH ILOWHUHG VROXWLRQ FRQWDLQHG YDULRXV OHYHOV RI $ WR PJ $O / Af EXW DOO 3 FRQFHQWUDn WLRQV ZHUH DERXW PJ / A 7KH FRQFHQWUDWLRQV RI RWKHU QXWULHQWV DQG (& RI WKH ILOWHUHG VROXWLRQ ZHUH DGHTXDWH IRU SODQW JURZWK 7KLV VHW RI VROXWLRQV PD\ EH VXLWDEOH IRU ODUJH VHHGOLQJV HJ WUHH VHHGOLQJVf ZKLFK DUH PRUH WROHUDQW WR $ DQG ZKLFK QHHG PRUH 3 ,Q 6HW % WKH S+ ZDV $OXPLQXP OHYHOV UDQJHG IURP WR PJ $ / A DQG 3 FRQFHQWUDWLRQV ZHUH NHSW DW PJ 3 / A LQ DOO WUHDWPHQWV 7KH FRQFHQWUDWLRQV RI RWKHU QXWULHQWV DQG WKH YDOXH RI (& ZHUH DOVR DGHTXDWH 7KLV VHW RI VXSHUQDWDQW VROXWLRQV PD\ EH VXLWDEOH IRU VPDOO VHHGOLQJV ZKLFK DUH PRUH VHQVLWLYH WR $O QHHG OHVV 3 DQG UHTXLUH KLJKHU S+ 6HHGOLQJV RI VRPH FHUHDOV DQG YHJHWDEOHV PD\ DGDSW WR WKLV VHW RI VROXWLRQV ([SHULPHQW (OHPHQWDO &RPSRVLWLRQ RI /DUJHYROXPH 6XSHUQDWDQW 6ROXWLRQV 3UHSDUHG 0DQXDOO\ LQ WKH *UHHQKRXVH 7KH QXWULHQWV DGGHG WR VROXWLRQV DQG WKHLU FRQFHQWUDWLRQV LQ VXSHUQDWDQW VROXWLRQV DUH VKRZQ LQ 7DEOH 7KH S+ DQG DGGLWLRQV RI $O DQG 3 ZHUH WKH VDPH DV LQ 6HW $ RI ([SHULPHQW +RZHYHU $O 3 DQG )H FRQFHQWUDWLRQV DQG (& YDOXHV ZHUH GLIIHUHQW IURP WKRVH RI

PAGE 39

7DEOH (OHPHQWDO DGGLWLRQV WR VROXWLRQ DQG FRQFHQWUDWLRQV LQ ILOWUDWHV DW WZR S+ YDOXHV DIWHU DJLQJ IRU GD\V DW r& PL[HG VROXWLRQ ZLWK PDJQHWLF VWLUUHUVf 6HW $GGLWLRQ WR S+ VROXWLRQ &RQFHQWUDWLRQ LQ ILOWUDWH (& RI 1R $ 3 $ 3 1+ 12 &D 0J )H =Q &X 0Q % ILOWUDWH 7O MF PJ DV P 2 2 % I (OHPHQWDO DGGLWLRQV WR WKH QXWULHQW VROXWLRQ ZHUH DV IROORZV PJ / rf 1 DV QKQR DV .f6 &D DV &D&OA 0J DV 0J62A f+ )H DV )H62 f+ 0Q DV 0Q62 r+ % DV +f% =Q DV =Q62f + &X DV &X62f+ rr DQG 0R DV f9 0rr f+ $ ZDV DGGHG DV $6f r+ 3 ZDV DGGHG DV 1D+ 39 KR 1 2n

PAGE 40

7DEOH (OHPHQWDO DGGLWLRQV WR VROXWLRQ DQG FRQFHQWUDWLRQV LQ VXSHUQDWDQWV DW S+ DIWHU DJLQJ IRU GD\V DW URRP WHPSHUDWXUH PL[HG VROXWLRQ PDQXDOO\f $GGLWLRQ WR &RQFHQWUDWLRQ LQ VXSHUQDWDQW (& RI 7UHDWPHQW VROXWLRQ VXSHU $ 3 $ 3 1+ QR &D 0J )H =Q &X 0Q % QDWDQW M G6 P A PJ $O $O $O $O $O $O $O W (OHPHQWDO DGGLWLRQV WR WKH QXWULHQW VROXWLRQ ZHUH DV IROORZV PJ / Af 1 DV 1+A12A DV ,A62A &D DV &D&O! 0J DV 0J6r+ )H DV )H6+ 0Q DV 0Q62A+A % DV +%! =Q DV =Q62 r+ &X DV &X62 r+f DQG 0R DV 1+ fA0Rf f+f $ ZDV DGGHG DV $f6 f r@+Q 3 ZDV DGGHG DV 1D+f3r+f

PAGE 41

6HW $ (OHFWULFDO FRQGXFWLYLWLHV ZHUH VOLJKWO\ ORZHU DQG )H FRQFHQn WUDWLRQV VOLJKWO\ KLJKHU WKDQ WKRVH LQ 6HW $ :KHQ OHYHOV RI $ DGGLWLRQ ZHUH ODUJH 3 FRQFHQWUDWLRQV VOLJKWO\ GHFUHDVHG 7KH ELJ FKDQJH IURP 6HW $ LQ ([SHULPHQW ZDV LQ $ FRQFHQWUDWLRQV ZKLFK UDQJHG RQO\ IURP WR PJ $O / 7KH PDLQ FDXVHV IRU WKH ELJ GLIIHUHQFH LQ $ FRQFHQWUDWLRQV EHWZHHQ WKH VXSHUQDWDQWV SUHSDUHG LQ ([SHULPHQWV DQG ZHUH WKH PHWKRGV XVHG LQ DGMXVWLQJ WKH S+ RI WKH VROXWLRQ DQG PL[LQJ WKH VROXWLRQ ,Q WKH SUHSDUDWLRQ RI WKH HTXLOLEULXP VROXWLRQ IRU ([SHULPHQW PRUH FRQFHQWUDWHG 1D2+ VROXWLRQ ZDV XVHG )XUWKHUPRUH D ODUJHU DPRXQW RI 1D2+ ZDV DGGHG HDFK WLPH LQ ([SHULPHQW WKDQ LQ ([SHULPHQW DQG WKH DGGHG 1D2+ FRXOG QRW EH PL[HG LPPHGLDWHO\ DQG WKRURXJKO\ 7KH ORFDO KLJKHU FRQFHQWUDWLRQ RI 1D2+ UHDFWHG ZLWK $ WR IRUP JUHDWHU DPRXQWV RI DPRUSKRXV K\GUR[\DOXPLQXP DQG WKXV VROXEOH PRQRPHULF $ GHFUHDVHG 7KH ODUJH DPRXQW RI DPRUSKRXV K\GUR[\DOXPLQXP LQ VROXWLRQV UHSUHVHQWLQJ KLJK $ WUHDWPHQWV UHDFWHG DOPRVW LPPHGLDWHO\ ZLWK SKRVSKDWH WR IRUP SUHFLSLWDWHV ,Q FRQWUDVW PRUH $OA LQ WKH 6HW $ VROXWLRQV RI ([SHULPHQW ZDV UHDFWHG ZLWK SKRVSKDWH WR IRUP VROXEOH FRPSOH[HV +VX f 7KHUHIRUH WKH IRUPDWLRQ RI ODUJH DPRXQWV RI DPRUSKRXV K\GUR[\DOXPLQXP FDXVHG GHFUHDVHG $ DQG 3 FRQFHQWUDWLRQV LQ WKH VXSHUQDWDQW VROXWLRQ +RZHYHU WKH 3FRQFHQWUDWLRQ GHFUHDVH ZDV VPDOO DQG DOO RI WKH 3 FRQFHQWUDWLRQV ZHUH DERXW PJ / 7KLV VXSHUQDWDQW VROXWLRQ FRQWDLQLQJ YDULRXV $ OHYHOV DQG \HW VLPLODU 3 FRQFHQWUDWLRQV VKRXOG EH VXLWDEOH IRU $ SK\WRWR[LFLW\ VWXGLHV ([SHULPHQW 7HVW RI 6XSHUQDWDQW 6ROXWLRQV DV &XOWXUH 6ROXWLRQV 8VLQJ &LWUXV 6HHGOLQJV &LWUXV VHHGOLQJV ZHUH JURZQ LQ WKH VXSHUQDWDQW VROXWLRQ SUHSDUHG LQ ([SHULPHQW IRU GD\V 7KH VHHGOLQJV JUHZ UDSLGO\ GXULQJ WKH

PAGE 42

ODVW GD\ SHULRG 7KH GDWD IRU 5RXJK OHPRQ ZHUH FKRVHQ WR VKRZ WKH VKRRW KHLJKW DW WKH EHJLQQLQJ DQG WKH QHZJURZWK VKRRW KHLJKW DW WKH HQG RI WKH WKLUG GD\ SHULRG 7DEOH f 7KH DQG PJ $ / A WUHDWPHQWV DSSHDUHG WR KDYH KDG D EHQHILFLDO HIIHFW EXW PJ $O / A RU PRUH KDG D WR[LF HIIHFW RQ VKRRW JURZWK )LJXUH VKRZV WKDW WKH EHQHILFLDO DQG WR[LF HIIHFWV RI GLIIHUHQW $ FRQFHQWUDWLRQV RQ 5RXJK OHPRQ ZHUH REYLRXV *URZWK IRU WKH RWKHU IRXU URRWVWRFNV ZDV VLPLODU WR WKDW IRU 5RXJK OHPRQ $OO VHHGOLQJV UHVSRQGHG VLJQLILn FDQWO\ WR $ FRQFHQWUDWLRQV DQG QR V\PSWRPV RI QXWULHQW GHILFLHQFLHV RU H[FHVVHV ZHUH IRXQG H[FHSW WKDW VRPH VHHGOLQJV 6ZLQJOH FLWUXPHORf VKRZHG \HOORZ FRORU DQG PRWWOHG DQG ZLWKHUHG \RXQJ OHDYHV DQG DERUWHG WHUPLQDOV LQ WKH KLJK$O WUHDWPHQWV QHDU WKH HQG RI GD\V 7KHVH V\PSWRPV PD\ KDYH EHHQ FDXVHG E\ $ WR[LFLW\ 7KH S+ RI WKH VXSHUQDWDQW VROXWLRQ GXULQJ WKH JURZWK SHULRG QRUPDOO\ FKDQJHG s XQLWV HYHU\ GD\V :KHQ WKH URRWV JUHZ YLJRURXVO\ DW ORZ $ OHYHOV QHDU WKH HQG RI GD\V WKH S+ GHFUHDVH RI WKH VROXWLRQ ZDV JUHDWHU 7KLV ZDV SUREDEO\ GXH WR WKH DFLG H[XGDWH RI WKH FLWUXV URRWV 'XULQJ WKLV SHULRG WKH S+ ZDV DGMXVWHG GDLO\ 7KH QXWULHQW FRPSRVLWLRQ RI WKH VXSHUQDWDQW VROXWLRQ ZDV DQDO\]HG DW WKH HQG RI WKH ODVW GD\ SHULRG ZLWK UHVXOWV DV VKRZQ LQ 7DEOH $OXPLQXP FRQFHQWUDWLRQ FKDQJHG YHU\ OLWWOH 7KH DPRXQWV RI QXWULHQWV UHPDLQLQJ LQ WKH VXSHUQDWDQW VROXWLRQ LQGLFDWHG WKDW WKH VXSHUQDWDQW VROXWLRQ KDG WKH FDSDFLW\ WR VXSSRUW ODUJH VHHGOLQJV JURZLQJ IRU GD\V )RU PRQWKROG FLWUXV VHHGOLQJV LW DSSHDUV WKDW PRUH WKDQ PJ 1+A1 / A VKRXOG EH DSSOLHG

PAGE 43

7DEOH 6KRRW KHLJKW DQG QHZJURZWK VKRRW KHLJKW RI 5RXJK OHPRQ LQ WKH UG GD\ JURZWK SHULRG LQ WKH VXSHUQDWDQW VROXWLRQ $ FRQFHQWUDWLRQ 7UHDWPHQW LQ VXSHUQDWDQW 6KRRW KHLJKW 1HZJURZWK VKRRW VROXWLRQ DW WKH EHJLQQLQJ KHLJKW DW WKH HQG PJ / FP SODQW $O s $O s $O s $O $O $O $O W $OXPLQXP FRQFHQWUDWLRQ WDNHQ DV WKH DYHUDJH RI $ FRQFHQWUDWLRQV DW WKH EHJLQQLQJ DQG DW WKH HQG RI WKH UG GD\ JURZWK SHULRG 6WDQGDUG GHYLDWLRQ

PAGE 44

)LJXUH (LJKWPRQWKROG 5RXJK OHPRQ VHHGOLQJV JURZQ IRU GD\V LQ VXSHUQDWDQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O )URP OHIW WR ULJKW DQG PJ $O /

PAGE 45

7DEOH (OHPHQWDO FRQFHQWUDWLRQV DQG (& RI VXSHUQDWDQW VROXWLRQ DIWHU JURZLQJ ILYH PRQWKROG FLWUXV VHHGOLQJV LQ WHQ OLWHUV RI VXSHUQDWDQW VROXWLRQ IRU GD\V PHQW $ 3 1+ QR &D 0J )H =Q &X 0Q % (& 7 G6 P PJ $O $O $O $O $O $O $O

PAGE 46

6XPPDU\ DQG &RQFOXVLRQV 3UHFLSLWDWLRQ RI $+fA DQG DOXPLQXP SKRVSKDWH PD\ RFFXU LQ QXWULHQW VROXWLRQ LI D ODUJH DPRXQW RI $ DQG 3 KDYH EHHQ DGGHG DW D UHODWLYHO\ KLJK S+ 7KH REMHFWLYH RI WKLV VWXG\ ZDV WR LQYHVWLJDWH WKH DFWXDO FRQFHQWUDWLRQV RI $ DQG 3 LQ QXWULHQW VROXWLRQ XQGHU GLIIHUHQW S+ FRQGLWLRQV DQG YDULHG OHYHOV RI $ DQG 3 DGGLWLRQ DQG WR GHYHORS DQG WHVW D VXSHUQDWDQWVROXWLRQ PHWKRG IRU $ VWXGLHV LQ ZKLFK WKH VXSHUQDWDQW VROXWLRQV FRQWDLQHG YDULRXV OHYHOV RI $ DQG VLPLODU FRQFHQWUDWLRQV RI 3 7KH DOXPLQXP FRQFHQWUDWLRQ LQ VXSHUn QDWDQW VROXWLRQV ZDV JUHDWO\ UHGXFHG ZKHQ S+ ZDV DGMXVWHG WR RU KLJKHU 3KRVSKRUXV FRQFHQWUDWLRQ EHFDPH QHJOLJLEOH ZKHQ S+ ZDV RU KLJKHU DQG $ DGGLWLRQ ZDV PJ / A RU PRUH HYHQ ZKHQ PJ 3 / A ZDV DGGHG WR WKH VROXWLRQ 7KH ODUJH FKDQJHV LQ 3 FRQFHQWUDWLRQ RI WKH VXSHUQDWDQW VROXWLRQ PD\ FRQIRXQG WKH DSSDUHQW HIIHFWV RI $ RQ SODQW JURZWK 7ZR VHWV RI VXSHUQDWDQW VROXWLRQV ZKLFK FRQWDLQHG YDULRXV OHYHOV RI $ DQG VLPLODU FRQFHQWUDWLRQV RI 3 DW WZR S+ OHYHOV ZHUH GHYHORSHG 2QH VHW RI WKH VXSHUQDWDQW VROXWLRQV ZLWK S+ ZDV XVHG LQ WKH JUHHQKRXVH VWXG\ WR WHVW VXLWDELOLW\ RI WKH VXSHUQDWDQW VROXWLRQV DV FXOWXUH VROXWLRQV IRU $ SK\WRWR[LFLW\ VWXGLHV 5HVXOWV VKRZHG WKDW WKH VXSHUQDWDQWVROXWLRQ WHFKQLTXH ZDV VXFFHVVIXO 7ZR VHWV RI VXSHUQDWDQW VROXWLRQV DUH UHFRPPHQGHG IRU $ SK\WRn WR[LFLW\ VWXGLHV ,Q WKH S+ VHW $ DGGLWLRQV DV $OA62AfAfO6+A2 DUH DQG PJ $O / A DQG FRUUHVSRQGLQJ 3 DGGLWLRQV DV 1D+A32An+A2 DUH DQG PJ 3 / 7KH PD[LPXP $ FRQFHQWUDWLRQ ZLOO EH PJ $O / A DQG WKH 3 FRQFHQWUDWLRQ ZLOO EH DERXW PJ 3 / A LQ DOO WUHDWPHQWV 7KLV VHW

PAGE 47

LV VXLWDEOH IRU ODUJHU VHHGOLQJV ,Q WKH S+ VHW $ DGGLWLRQV DUH DQG PJ $O / A DQG FRUUHVSRQGLQJ 3 DGGLWLRQV DUH DQG PJ 3 / 7KH PD[LPXP $ FRQFHQWUDWLRQ ZLOO EH PJ $O / n DQG WKH 3 FRQFHQWUDWLRQ ZLOO EH DERXW PJ 3 / A LQ DOO WUHDWPHQWV 7KH FRQFHQWUDWLRQV RI $ DQG 3 DUH DIIHFWHG E\ WKH SUHSDUDWLRQ SURFHGXUH VXFK DV WKH FRQFHQWUDWLRQV RI DONDOL DQG DFLG XVHG WR DGMXVW S+ DQG WKH VSHHG RI PL[LQJ IRU WKLV VROXWLRQ 7KLV VXSHUQDWDQWVROXWLRQ PHWKRG PDNHV LW SRVVLEOH WR DYRLG WKH FRQIRXQGLQJ HIIHFWV RI 3 RQ $O DQG WR UHSRUW WKH DFWXDO FRQFHQWUDWLRQ RI $O LQ VROXWLRQ $OVR WKLV PHWKRG DQG WKH XVH RI UHJUHVVLRQ SURFHGXUHV PDNH LW SRVVLEOH WR REWDLQ FULWLFDO YDOXHV RI $O FRQFHQWUDWLRQ RI WR[LF HIIHFWV WR SODQW JURZWK

PAGE 48

&+$37(5 ,9 ',))(5(17,$/ 5(63216( 2) &,7586 5227672&.6 72 $/80,180 /(9(/6 ,1 1875,(17 62/87,216 ,QWURGXFWLRQ )HZ UHVHDUFKHUV KDYH VWXGLHG WKH HIIHFWV RI $ RQ FLWUXV URRWn VWRFNV LQ QXWULHQW VROXWLRQV +DDV f XVHG OHDI\WZLJ FXWWLQJV RI OHPRQ /LVERQ DQG 9DOHQFLD RUDQJH LQ D QXWULHQW VROXWLRQ DQG IRXQG WKDW ZKHQ $ ZDV SUHVHQW WKH FLWUXV URRWV ZHUH KHDOWK\ PRUH H[WHQVLYH DQG URRW FDSV ZHUH QXPHURXV EXW WKH VKRRWV XVXDOO\ ZHUH UHWDUGHG +H FRQFOXGHG WKDW D FRQFHQWUDWLRQ RI WR PJ / r RI $ ZDV UDWKHU KLJK IRU WKH SURGXFWLRQ RI WKH JUHDWHVW JURZWK WRSV DQG URRWVf +LV GDWD VKRZHG WKDW WKH DGGLWLRQ RI $ WR WKH VROXWLRQ LQFUHDVHG WKH SHUFHQWDJH RI 3 LQ URRW GU\ PDWWHU /LHELJ HW DO f IRXQG WKDW WKH DGGLWLRQ RI WR PJ $O / A WR QXWULHQW VROXWLRQV JUHDWO\ VWLPXODWHG URRW GHYHORSPHQW EXW GHSUHVVHG VKRRW JURZWK RI 9DOHQFLD RUDQJH DQG OHPRQ FXWWLQJV /RZHU FRQFHQWUDWLRQV RI $O LH DQG PJ / ? GLG QRW SURGXFH WKLV HIIHFW 7KH\ IRXQG DQ DQWDJRQLVWLF HIIHFW RI $O RQ &X
PAGE 49

V\VWHPDWLF VFUHHQLQJ RI FLWUXV URRWVWRFNV IRU $ WROHUDQFH 7KH $ SK\WRWR[LFLW\ OHYHOV DUH VWLOO QRW NQRZQ IRU PDQ\ FLWUXV URRWVWRFNV DQG IHZ GDWD H[LVW RQ HIIHFWV RI $ RQ PLQHUDO QXWULWLRQ RI FLWUXV $ JHQHUDO SUREOHP ZLWK SUHYLRXV ZRUN ZDV WKDW WKH DXWKRUV RQO\ UHSRUWHG WKH DPRXQWV RI $ DGGHG WR WKH VROXWLRQ QRW WKH DFWXDO FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ 7KH DFWXDO FRQFHQWUDWLRQV RI $ LQ WKH QXWULHQW VROXWLRQ ZHUH DOZD\V ORZHU WKDQ WKH RULJLQDO FRQFHQWUDWLRQ GXH WR SUHFLSLWDWLRQ RI $+fA DQG DOXPLQXP SKRVSKDWH & VLQHQVLV /f 2VEHFN [ 3RQFLUXV WULIROLDWD /f 5DI @ f &OHRSDWUD PDQGDULQ &B DUHVKQL +RUW H[ 7DQDNDf f 5RXJK OHPRQ & MDPEKLUL /XVKf f 6RXU RUDQJH &B DXUDQWLXP /f DQG f 6ZLQJOH FLWUXPHOR e SDUDGLVL [

PAGE 50

B3 WULIROLDWDf 6L[PRQWKROG VHHGOLQJV ZHUH REWDLQHG IURP QXUVHULHV 8QLIRUP VHHGOLQJV ZHUH VHOHFWHG ZDVKHG WKRURXJKO\ ZLWK WDS ZDWHU DQG ULQVHG ZLWK GHLRQL]HG ZDWHU 7KH URRW V\VWHP RI HDFK VHHGOLQJ ZDV VSUHDG RQ D FP JULG EDFNJURXQG DQG SKRWRJUDSKHG 7KH SKRWRn JUDSKV ZHUH HQODUJHG DQG XVHG WR PHDVXUH WKH RULJLQDO URRW OHQJWK 7HQQDQW f 7KH IUHVK ZHLJKW RI ZKROH SODQW DQG VKRRW KHLJKW RI VHHGOLQJV ZHUH UHFRUGHG 7KH VHHGOLQJV ZHUH WKHQ WUDQVIHUUHG WR QXWULHQW VROXWLRQV 1XWULHQW 6ROXWLRQ 7KH ILUVW VHW RI VXSHUQDWDQW QXWULHQW VROXWLRQV UHFRPPHQGHG LQ &KDSWHU ,,, ZDV XVHG 7KH SURFHGXUH RI QXWULHQWVROXWLRQ SUHSDUDWLRQ ZDV WKH VDPH DV GHVFULEHG LQ ([SHULPHQW &KDSWHU ,,, 7KH HOHPHQWDO DGGLWLRQV DQG FRQFHQWUDWLRQV LQ WKH VXSHUQDWDQW VROXWLRQV ZHUH DV VKRZQ LQ 7DEOH 7KH VHYHQ $ FRQFHQWUDWLRQV LQ WKH VXSHUQDWDQW VROXWLRQV UDQJHG IURP WR PJ $O / ZLWK 3 FRQFHQWUDWLRQV RI DERXW PJ 3 / A LQ DOO WUHDWPHQWV 7KH QXWULHQW VROXWLRQ ZDV UHSODFHG HDFK GD\V WKUHH WRWDO UHSODFHPHQWVf %HIRUH WKH SODQWV ZHUH SXW LQWR WKH VROXWLRQV DQG DIWHU HDFK GD\ JURZWK SHULRG DOLTXRWV RI WKH VROXWLRQV ZHUH WDNHQ IRU $ DQDO\VLV 7KH LQLWLDO DQG ILQDO $ FRQFHQWUDWLRQV ZHUH DYHUDJHG DQG ZHUH DVVXPHG WR UHSUHVHQW WKH $ FRQFHQWUDWLRQ GXULQJ WKLV GD\ JURZWK SHULRG 7KUHH GD\ $ FRQFHQWUDWLRQV ZHUH DYHUDJHG DQG WKH PHDQ ZDV WDNHQ DV WKH $ OHYHO GXULQJ WKH GD\ JURZWK SHULRG (TXLSPHQW 7HQOLWHU SDLOV ZHUH XVHG WR KROG WKH QXWULHQW VROXWLRQ )LYH KROHV ZHUH PDGH LQ WKH SO\ZRRG OLGV RI WKH SDLOV RQH IRU HDFK VHHGOLQJ $ VHHGOLQJ ZDV KHOG LQ WKH KROH E\ D UXEEHU VWRSSHU FXW

PAGE 51

LQWR WZR SDUWV ZLWK D VPDOO KROH LQ WKH PLGGOH 7KH HQWLUH URRW V\VWHP RI D VHHGOLQJ ZDV VXEPHUJHG LQ WKH VROXWLRQ 2QH VPDOO KROH ZDV DOVR PDGH LQ WKH OLG IRU LQVHUWLQJ DQ DHUDWLRQ WXEH &RQWLQXRXV DHUDWLRQ ZDV VXSSOLHG E\ DQ DLU SXPS KRRNHG XS WR SODVWLF WXEHV ZKLFK ZHUH DWWDFKHG WR DLUVWRQHV LQ WKH VROXWLRQ 7KLV DOVR VHUYHG WR NHHS WKH VROXWLRQ XQLIRUPO\ PL[HG )LJ f 7KH WR[LFLW\ RI D JLYHQ FRQFHQWUDWLRQ RI $ LV KLJKO\ WHPSHUDWXUHGHSHQGHQW .RQ]DN HW DO $QLRO f ,Q WKH SUHVHQW VWXG\ DLUFRQGLWLRQLQJ ZDV XVHG LQ WKH JUHHQKRXVH WR PDLQn WDLQ WKH DLU WHPSHUDWXUH EHWZHHQ DQG r& 3ODVWLFOLQHG SRROV ZHUH DOVR VHW XS RQ WKH EHQFKHV LQ WKH JUHHQKRXVH ZLWK WKH SDLOV WKHQ SXW LQVLGH WKH SRROV ILOOHG ZLWK ZDWHU 7KH ZDWHU LQ WKH SRROV ZDV FLUFXODWHG E\ D SXPS DQG SDVVHG WKURXJK D FRROLQJ V\VWHP 7KH WHPSHUDWXUH RI WKH ZDWHU LQ WKH SRROV DQG LQ WKH QXWULHQW VROXWLRQ LQ WKH SDLOV ZDV PDLQWDLQHG DW sr& )LJ f 3URFHGXUH 7KH VWXG\ ZDV FRQGXFWHG XVLQJ D VSOLWSORW GHVLJQ ZLWK $O OHYHOV DV WKH ZKROH SORW FRPSOHWHO\ UDQGRPL]HG LQ UHSOLFDWLRQV ZLWK URRWVWRFNV DV WKH VXESORW (LJKW SDLOV FRQWDLQHG WKH VDPH FRQFHQWUDWLRQ RI $O DQG URRWVWRFN VHHGOLQJV $ WRWDO RI SDLOV FRQWDLQLQJ WUHDWPHQW QXWULHQW VROXWLRQV ZHUH UDQGRPO\ DVVLJQHG WR SRVLWLRQV LQ WKH SRROV )LJ f 7KH S+ OHYHOV ZHUH FKHFNHG HYHU\ RU GD\V DQG DGMXVWHG WR E\ +& RU 1D2+ DGGLWLRQV ZKHQ QHFHVVDU\ 7KH VROXWLRQ OHYHO ZDV PDLQWDLQHG E\ DGGLWLRQ RI GHLRQL]HG ZDWHU LQ TXDQWLW\ VXIILFLHQW WR RIIVHW ORVV GXH WR WUDQVSLUDWLRQ HYHU\ WZR GD\V 7KH VHHGOLQJV JUHZ LQ WKH VROXWLRQ IURP -XQH WR $XJXVW

PAGE 52

)LJXUH 7KH URRW V\VWHPV RI ILYH FLWUXV VHHGOLQJV ZKLFK ZHUH VXEPHUJHG LQ QXWULHQW VROXWLRQV LQ SDLOV ZKLFK ZHUH LQ WXUQ SODFHG LQ D ZDWHU SRRO )LJXUH :DWHU FLUFXODWLRQ LQ WKH SRRO E\ D SXPS ZKLFK ZDV PDLQWDLQHG DW sr& E\ SDVVLQJ WKURXJK D FRROLQJ V\VWHP

PAGE 53

)LJXUH &LWUXV VHHGOLQJV JURZLQJ LQ QXWULHQW VROXWLRQV LQ SDLOV ZKLFK ZHUH UDQGRPO\ DVVLJQHG WR SRVLWLRQV LQ WKH ZDWHUILOOHG SRRO

PAGE 54

$W WKH HQG RI WKH H[SHULPHQW SODQWV ZHUH ZDVKHG WKRURXJKO\ ZLWK WDS ZDWHU DQG JLYHQ D ILQDO ULQVLQJ ZLWK GHLRQL]HG ZDWHU 7KH URRW DQG VKRRW PRUSKRORJ\ ZDV DVVHVVHG YLVXDOO\ DQG IURP SKRWRJUDSKV 7RWDO URRW OHQJWK VKRRW KHLJKW DQG IUHVK ZHLJKW RI ZKROH VHHGOLQJ ZHUH PHDVXUHG 7KH GLIIHUHQFHV EHWZHHQ LQLWLDO DQG ILQDO PHDVXUHPHQWV ZHUH FRQVLGHUHG DV QHZJURZWK URRW OHQJWK QHZJURZWK VKRRW KHLJKW DQG QHZJURZWK IUHVK ZHLJKW 5RRWV DQG VKRRWV ZHUH GULHG DQG DQDO\]HG IRU HOHPHQWDO FRQFHQWUDWLRQV %HFDXVH RI WKH VPDOO TXDQWLWLHV RI VRPH VHHGOLQJV WKH URRWV RU VKRRWV RI WKH HLJKW UHSOLFDWLRQV RI D JLYHQ WUHDWPHQW ZHUH UDQGRPO\ FRPELQHG LQWR IRXU VDPSOHV UHVSHFWLYHO\ 7KH URRWV RU VKRRWV ZHUH JURXQG WR SDVV D PP VLHYH 7LVVXH VDPSOHV RI J ZHUH GU\DVKHG DW r& LQ D PXIIOH IXUQDFH IRU K WKH DVK ZDV WKHQ GLVVROYHG LQ PO RI 0 +& HYDSRUDWHG WR GU\QHVV DQG WKH WHPSHUDWXUH LQFUHDVHG VOLJKWO\ WR GHK\GUDWH 6Lr 7KH UHVLGXH ZDV GLVVROYHG LQ P/ RI 0 +& KHDWHG WR QHDUERLOLQJ DQG WKHQ ILOWHUHG (OHPHQWDO FRQFHQWUDWLRQV LQ WKH VROXWLRQ ZHUH GHWHUPLQHG E\ LQGXFWLYHO\ FRXSOHG DUJRQ SODVPD ,&$3f HPLVVLRQ VSHFWURVFRS\ 5HJUHVVLRQFRUUHODWLRQ WHFKQLTXHV ZHUH HPSOR\HG WR UHODWH JURZWK WR $ FRQFHQWUDWLRQV LQ QXWULHQW VROXWLRQ 7KH JURZWK GDWD ZHUH WUDQVIRUPHG WR QDWXUDO ORJV DQG WKH $ FRQFHQWUDWLRQV WR VTXDUHURRW YDOXHV 5HVXOWV DQG 'LVFXVVLRQ 0RUSKRORJ\ RI 5RRWV DQG 6KRRWV DV $IIHFWHG E\ $ &RQFHQWUDWLRQ $W DQG PJ $O / A WKH URRWV RI DOO URRWVWRFNV H[FHSW &DUUL]R FLWUDQJH JUHZ H[WUHPHO\ ZHOO 7KH URRWV DSSHDUHG ZKLWHU KHDOWKLHU ILUPHU DQG VWUDLJKWHU WKDQ WKRVH LQ PJ $O /

PAGE 55

0RUH QHZ URRWV DQG ODWHUDO URRWV JUHZ DQG QHDU WKH HQG RI WKH H[SHULPHQW WKH URRWV RI 5RXJK OHPRQ JUHZ IDVWHVW DPRQJ WKH ILYH URRWVWRFNV :KHQ WKH $ FRQFHQWUDWLRQ ZDV PJ / A RU KLJKHU WKH JURZWK RI URRWV ZDV UHWDUGHG )HZHU QHZ URRWV DQG ODWHUDO URRWV JUHZ DQG URRW WLSV EHFDPH WKLFNHQHG )LJ f $W WKH DQG PJ $O / A OHYHOV WKH URRW V\VWHP DV D ZKROH DSSHDUHG FRUDOORLG ZLWK VWXEE\ QHZJURZWK URRWV )LJ f $W WKH PJ $O / OHYHO VRPH ROGHU URRWV URWWHG ZLWK 5RXJK OHPRQ URRWV GHWHULRUDWLQJ PRVW VHULRXVO\ $W PJ $O / A RU KLJKHU VRPH URRW WLSV ZHUH FRYHUHG E\ D URRW FDS ZLWK EODFN JHODWLQRXV PDWHULDO )LJ f 7KH QXPEHU RI EODFNHQHG URRW FDSV LQFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQ LQ VROXWLRQ $PRQJ WKH ILYH URRWVWRFNV &OHRSDWUD PDQGDULQ KDG WKH JUHDWHVW QXPEHU RI EODFNHQHG URRW FDSV ,W DSSHDUHG WKDW WKH URRWVWRFN ZKLFK ZDV PRUH WROHUDQW WR $ KDG PRUH RI WKLV NLQG RI URRW FDS 7KHUHIRUH WKH EODFN JHODWLQRXV PDWHULDO RQ WKH URRW FDS PLJKW EH UHODWHG WR DYRLGDQFH RI $ WR[LFLW\ :KDW WKH EODFN JHODWLQRXV PDWHULDO ZDV KRZ LW IRUPHG DQG ZKDW LWV IXQFWLRQ ZDV KRZHYHU ZHUH QRW NQRZQ 7KH EODFN JHODWLQRXV PDWHULDO ZDV SUREDEO\ WKH H[FUHWD RI URRWV RU FRPSOH[HV RI WKH H[FUHWD ZLWK VRPH FRPSRQHQWV LQ WKH VROXWLRQ VXFK DV $O 6KRRWV RI WKH VHHGOLQJV JUHZ IDVWHU LQ WKH PJ $O / r WUHDWn PHQW WKDQ LQ WKH PJ $O / A WUHDWPHQW :KHQ $O FRQFHQWUDWLRQ ZDV PJ / A RU KLJKHU JURZWK RI VKRRWV ZDV UHWDUGHG 6KRRWV RI ILYH URRWVWRFN VHHGOLQJV ZHUH VKRUWHU DQG OHDYHV ZHUH IHZHU DQG VPDOOHU )LJ f RQ SODQWV JURZQ RI WKH KLJKHU $O FRQFHQWUDWLRQV +RZHYHU QR $O WR[LFLW\ V\PSWRPV RU RWKHU HOHPHQWDO WR[LFLW\ RU GHILFLHQW V\PSWRPV ZHUH REVHUYHG GXULQJ WKH ILUVW GD\V 1HDU WKH HQG RI WKH

PAGE 56

)LJXUH  7KLFNHQHG URRW WLSV RI 6RXU RUDQJH VHHGOLQJV JURZQ LQ VROXWLRQ ZLWK PJ $O / )LJXUH 6WXEE\ QHZJURZWK URRWV RI 5RXJK OHPRQ VHHGOLQJV JURZQ LQ QXWULHQW VROXWLRQ ZLWK PJ $O /

PAGE 57

D )LJXUH 5RRW WLS FRYHUHG E\ D URRW FDS ZLWK EODFN JHODWLQRXV PDWHULDO IRU &OHRSDWUD PDQGDULQ VHHGOLQJV JURZQ LQ VROXWLRQ DW PJ $O /

PAGE 58

)LJXUH
PAGE 59

H[SHULPHQW DW PJ $O / RU KLJKHU \RXQJ OHDYHV RI 6ZLQJOH FLWUXPHOR ZHUH \HOORZ PRWWOHG DQG ZLWKHUHG )XUWKHUPRUH WKH WHUPLQDO VKRRW ZDV DERUWHG )LJ f 5RXJK OHPRQ KDG VLPLODU V\PSWRPV EXW WKH V\PSWRPV ZHUH PXFK OHVV SURQRXQFHG 7KHVH V\PSWRPV ZHUH GLIIHUHQW IURP WKH V\PSWRPV RI HOHPHQWDO GHILFLHQF\ RU H[FHVV IRU FLWUXV DV OLVWHG E\ &KDSPDQ f 7KH V\PSWRPV ZHUH SUREDEO\ FDXVHG E\ $ WR[LFLW\ *URZWK 5HVSRQVHV RI &LWUXV 6HHGOLQJV WR $ &RQFHQWUDWLRQV LQ 1XWULHQW 6ROXWLRQ *URZWK RI ILYH URRWVWRFN VHHGOLQJV IRU GD\V LQ WKH QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $ LV VKRZQ LQ )LJV WKURXJK ,W ZDV REYLRXV WKDW WKH JURZWK RI URRWV DQG VKRRWV ZDV GLIIHUHQW DPRQJ WKH $ WUHDWPHQWV 7KH GLIIHUHQFHV EHWZHHQ WKH PJ $O / r DQG PJ $O / A WUHDWPHQWV ZHUH SDUWLFXODUO\ HYLGHQW 7KH LQLWLDO ILQDO DQG QHZJURZWK RI WKUHH SDUDPHWHUV IRU ILYH URRWVWRFN VHHGOLQJV ZHUH OLVWHG LQ $SSHQGL[ 7DEOH $Of 7KH HIIHFWV RI $ FRQFHQWUDWLRQ RQ QHZJURZWK URRW OHQJWK RI ILYH URRWVWRFN VHHGOLQJV DUH VKRZQ LQ )LJ DQG WKH OLQHDU UHJUHVVLRQ HTXDWLRQV DUH JLYHQ LQ 7DEOH $OXPLQXP FRQFHQWUDWLRQ LQ WKH ILUVW WUHDWPHQW N ZDV VR ORZ PJ $O / LH $Of f WKDW WKLV FRQFHQn WUDWLRQ ZRXOG QRW SURGXFH DQ\ EHQHILFLDO RU WR[LF HIIHFW RQ FLWUXV URRW JURZWK /LHELJ HW DO f 7KHUHIRUH WKH QHZ JURZWK URRW OHQJWK RI WKLV WUHDWPHQW ZDV WDNHQ DV D FRQWURO 7KH $O FRQFHQWUDWLRQ DW ZKLFK WKH QHZJURZWK URRW OHQJWK ZDV HTXDO WR WKDW RI D FRQWURO ZDV FRQVLGHUHG DV WKH FULWLFDO $O FRQFHQWUDWLRQ &RQFHQWUDWLRQV EHORZ RU DERYH WKH FULWLFDO $O OHYHOV ZRXOG FDXVH EHQHILFLDO RU WR[LF HIIHFWV UHVSHFWLYHO\ ,Q RUGHU WR JHW WKH FULWLFDO YDOXHV UHJUHVVLRQ HTXDWLRQV ZHUH FDOFXODWHG )RU DOO

PAGE 60

)LJXUH (IIHFWV RI LQFUHDVLQJ $O FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG &DUUL]R FLWUDQJH VHHGOLQJV )URP OHIW WR ULJKW DQG PJ $O / )LJXUH (IIHFWV RI LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKROG &OHRSDWUD PDQGDULQ VHHGOLQJV )URP OHIW WF ULJKW DQG PJ $O /

PAGE 61

LQVXUH DB WRQV PH (IIDFWH FI LQFUHDVLQJ $ FRQFHQW QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PFQWKROG 6FXU RUDQJH VHHGOLQJV )UHQ OHIW WR ULJKW X PD $O r DQF DQD

PAGE 62

)LJXUH (IIHFWV RI LQFUHDVLQJ $O FRQFHQWUDWLRQV LQ WKH QXWULHQW VROXWLRQ RQ URRW DQG VKRRW JURZWK RI PRQWKFLG 6ZLQJOH FLWUXPHOR VHHGOLQJV )URP OHIW WR ULJKW 6 DQG A PJ $O

PAGE 63

,Q / f f $ &DUUL]R FLWUDQJH R& &OHRSDWUD PDQGDULQ $2 6RXU RUDQJH ’ 5 5RXJK OHPRQ ‘ 6 6ZLQJOH FLWUXPHOR RDW R M O L $O fW )LJXUH (IIHFWV RI $O FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ QHZJURZWK URRW OHQJWK / FP SODQW f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 64

7DEOH /LQHDU UHJUHVVLRQ HTXDWLRQV IRU SUHGLFWLRQ RI QHZJURZWK URRW OHQJWOML / FP SODQW f QHZJURZWK VKRRW KHLJKW ,MO FP SODQW f DQG QHZJURZWK IUHVK ZHLJKW : J SODQA f RI FLWUXV VHHGOLQJV IURP $ FRQFHQWUDWLRQ $O PJ / f LQ QXWULHQW VROXWLRQ $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 5HJUHVVLRQ HTXDWLRQV &ULWLFDO $ FRQFHQWUDWLRQ ,Q /Af ,Q / f ,Q /Tf ,Q /Uf ,Q /Vf 2QL$Ofr $fne $fn6 $OfA $OfA W ,Q +f $ ,Q +Ff ,Q + f ,Q +Uf ,Q + f $fA $f f $OfnL 2•2$Ofn $fA ,Q : f $fn6 ,Q : f $fn ,Q : f $Ofr X X ,Q :Bf $,. -F ,Q :f $. W$OO WKH YDOXHV RI U ZHUH VLJQLILFDQW DW 3

PAGE 65

URRWVWRFNV H[FHSW &DUUL]R FLWUDQJH QHZJURZWK URRW OHQJWK LQFUHDVHG EHWZHHQ WKH FRQWURO DQG WKH WUHDWPHQW ZKLFK KDG KLJKHVW DPRXQW RI QHZJURZWK URRW OHQJWK EXW WKH FXUYH ZDV XQFHUWDLQ EHFDXVH WKHUH ZDV QR WUHDWPHQW EHWZHHQ WKHP LQ PRVW FDVHV 7KHUH ZHUH RU $ WUHDWPHQWV EHWZHHQ WKH WUHDWPHQW ZKLFK KDG WKH ODUJHVW QHZJURZWK URRW OHQJWK DQG WKH WUHDWPHQW ZLWK WKH KLJKHVW $ FRQFHQWUDWLRQ LQ VROXWLRQ KRZHYHU DQG WKH QHZJURZWK URRW OHQJWK JUDGXDOO\ GHFUHDVHG EHWZHHQ WKHVH WZR WUHDWPHQWV 7KHUHIRUH WKH UHJUHVVLRQ HTXDWLRQ ZDV GHYHORSHG IRU WKHVH RU $ WUHDWPHQWV &DUUL]R FLWUDQJH ZDV DQ H[FHSWLRQ EHFDXVH QHZJURZWK URRW OHQJWK JUDGXDOO\ GHFUHDVHG IURP WKH FRQWURO WR WKH WUHDWPHQW ZLWK WKH KLJKHVW $ FRQFHQWUDWLRQ LQ VROXWLRQ $FFRUGLQJ WR WKH WUHQG RI WKH RWKHU IRXU URRWVWRFNV LW ZDV SRVVLEOH WKDW WKHUH PLJKW EH VRPH $ FRQFHQWUDWLRQV ORZHU WKDQ WKH VHFRQG WUHDWPHQW PJ $O / ZKLFK PLJKW VWLOO KDYH KDG D EHQHILFLDO HIIHFW RQ URRW JURZWK 7KHUHIRUH WKH UHJUHVVLRQ HTXDWLRQ ZDV FDOFXODWHG IRU ILYH WUHDWPHQWV IURP WKH VHFRQG WUHDWPHQW PJ $O / rf WR WKH ODVW WUHDWPHQW PJ $O / Af 7KH VDPH SURFHGXUH ZDV IROORZHG IRU WKH RWKHU SDUDPHWHUV VKRZQ LQ )LJV WR DQG LQ 7DEOHV DQG 7KH FULWLFDO FRQFHQWUDWLRQV REWDLQHG IURP WKH UHJUHVVLRQ HTXDn WLRQV DUH VKRZQ LQ 7DEOH 7KH KLJKHU FULWLFDO $ FRQFHQWUDWLRQV LQGLFDWHG JUHDWHU $ WROHUDQFH $FFRUGLQJ WR WKHVH FULWLFDO YDOXHV WKH $ WROHUDQFH IRU URRW JURZWK ZDV DV IROORZV IURP PRVW WROHUDQW WR OHDVW WROHUDQWf &OHRSDWUD PDQGDULQ 5RXJK OHPRQ 6ZLQJOH FLWUXPHOR 6RXU RUDQJH &DUUL]R FLWUDQJH 7KH HIIHFWV RI $ FRQFHQWUDWLRQV RQ UHODWLYH QHZJURZWK URRW OHQJWK DUH VKRZQ LQ )LJ 7KH URRW OHQJWK IRU WKH ILUVW WUHDWPHQW PJ $O / rf ZDV

PAGE 66

,Q 5/f P & & f§f $ &DUUL]R FLWUDQJH f§R & &OHRSDWUD PDQGDULQ f§$ 6RXU RUDQJH f§25 5RXJK OHPRQ f§‘ 6 6ZLQJOH FLWUXPHOR M L L L L L $Of )LJXUH (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK URRW OHQJWK 5/ =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 67

WDNHQ DV = $FFRUGLQJ WR WKH SUHGLFWHG KLJKHVW SHUFHQWDJH YDOXHV VKRZQ LQ 7DEOH WKH EHQHILFLDO HIIHFWV RI ORZ $ FRQFHQWUDWLRQV RQ URRW JURZWK RI ILYH URRWVWRFNV ZHUH DV IROORZV IURP PRVW WR OHDVW EHQHILFLDOf 5RXJK OHPRQ &OHRSDWUD PDQGDULQ 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &DUUL]R FLWUDQJH 7KLV RUGHU ZDV VRPHZKDW GLIIHUHQW IURP WKH WROHUDQFH RUGHU 6XFK GLIIHUHQFH LQGLFDWHG WKDW WKH GHJUHH RI EHQHILFLDO HIIHFW RQ URRW JURZWK DW ORZ $ FRQFHQWUDn WLRQV GLG QRW FRUUHVSRQG ZHOO ZLWK WKH VHTXHQWLDO RUGHU RI WROHUDQFH $FFRUGLQJ WR WKH SUHGLFWHG ORZHVW SHUFHQWDJH YDOXHV VKRZQ LQ 7DEOH WKH WR[LF HIIHFWV RI KLJK $ FRQFHQWUDWLRQV RQ URRW JURZWK RI ILYH URRWVWRFNV ZHUH DV IROORZV IURP PRVW WR OHDVW WR[LFf 5RXJK OHPRQ 6RXU RUDQJH &OHRSDWUD PDQGDULQ &DUUL]R FLWUDQJH 6ZLQJOH FLWUXPHOR 7KLV RUGHU ZDV GLIIHUHQW IURP WKDW RI WKH WROHUDQFH RUGHU RU WKDW RI EHQHILFLDO HIIHFW 7KLV GLIIHUHQFH LQGLFDWHG WKDW WKH GHJUHH RI WR[LF HIIHFW RQ URRW JURZWK DW KLJK $ FRQFHQWUDWLRQV GLG QRW FRUUHVSRQG ZLWK WKH WROHUDQFH RU WKH GHJUHH RI EHQHILFLDO HIIHFWV 5RXJK OHPRQ ZDV LQ WKH VHFRQG SRVLWLRQ LQ WKH WROHUDQFH RUGHU IRU H[DPSOH DQG KDG WKH KLJKHVW EHQHILFLDO HIIHFW IURP ORZ $ FRQFHQWUDWLRQV EXW VXIIHUHG PRVW IURP KLJK $ FRQFHQWUDWLRQV DPRQJ WKH ILYH URRWVWRFNV 7KH HIIHFWV RI $ FRQFHQWUDWLRQV RQ QHZJURZWK VKRRW KHLJKW RI ILYH URRWVWRFN VHHGOLQJV DUH VKRZQ LQ )LJV WR ZLWK WKH UHJUHVVLRQ HTXDWLRQV EHLQJ JLYHQ LQ 7DEOHV DQG 7KH HIIHFW RI $ FRQFHQWUDWLRQV RQ VKRRW JURZWK VKRZHG D GLIIHUHQW WUHQG IURP URRW JURZWK 7KH RUGHUV RI WROHUDQFH EHQHILFLDO HIIHFWV DQG WR[LF HIIHFWV IRU VKRRW KHLJKW DOVR ZHUH GLIIHUHQW IURP WKRVH IRU URRW JURZWK &DUUL]R FLWUDQJH DQG 6ZLQJOH FLWUXPHOR DUH JRRG H[DPSOHV IRU

PAGE 68

7DEOH /LQHDU UHJUHVVLRQ HTXDWLRQV IRU SUHGLFWLRQ RI UHODWLYH QHZJURZWK URRW OHQJWK 5/ f UHODWLYH QHZJURZWK VKRRW KHLJKW 5+ f DQG UHODWLYH QHZJURZWK VKRRW ZHLJKW 5\ f RI FLWUXV VHHGOLQJV IURP $ FRQFHQWUDWLRQ $O PJ /f LQ QXWULHQW VROXWLRQ $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf 5HJUHVVLRQ HTXDWLRQV 3UHGLFWHG KLJKHVW SHUFHQWDJHr 3UHGLFWHG ORZHVW SHUFHQWDJH DW PJ $O / WUHDWPHQW ,Q 5/f $ ,Q 5/ f ,Q 5/ f ,Q 5/Gf ,Q 5/ f $Ofrr W $OfnL $Ofr $OfA $OfA ,Q 5+ f ,Q 5+ f ,Q 5+ f ,Q 5+ f ,Q 5+ f $. $fr $OfOV AfA $fn ,Q 5: f $ $fA ,Q 5: f $. ,Q & 5: f $OfOV ,Q 5:Uf $f ,Q 5:Jf $OfA $ WKH YDOXHV RI U ZHUH VLJQLILFDQW DW 3 W3UHGLFWHG KLJKHVW SHUFHQWDJH LQ WKH WUHDWPHQW RU PJ $O / IRU ZKLFK WKH VDPSOH SHUFHQWDJH ZDV KLJKHVW

PAGE 69

m$&DUUL]R FLWUDQJH R & &OHRSDWUD PDQGDULQ $ 6RXU RUDQJH )LJXUH (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ QHZJURZWK VKRRW KHLJKW + FP SODQWf RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 70

,Q 5+f U t D Q A B O , L $OfO )LJXUH (IIHFWV RI $ FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK VKRRW KHLJKW 5+ =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 71

VKRZLQJ VXFK GLIIHUHQFHV )RU URRW JURZWK &DUUL]R FLWUDQJH ZDV OHDVW WROHUDQW DQG GLG QRW VKRZ D EHQHILFLDO HIIHFW IURP WKH PJ $O / A WUHDWPHQW )RU VKRRW JURZWK KRZHYHU &DUUL]R FLWUDQJH KDG WKH WKLUG SRVLWLRQ LQ WKH WROHUDQFH OLVW DQG VKRZHG D EHQHILFLDO HIIHFW DW PJ $O / 6ZLQJOH FLWUXPHOR KDG WKH WKLUG SRVLWLRQ LQ WROHUDQFH OLVW DQG VKRZHG D EHQHILFLDO HIIHFW DW PJ $O / r WUHDWn PHQW IRU URRW JURZWK )RU VKRRW JURZWK KRZHYHU 6ZLQJOH FLWUXPHOR ZDV OHDVW WROHUDQW DQG WKH SUHGLFWHG UHODWLYH QHZJURZWK VKRRW KHLJKW ZDV OHVV WKDQ = +DDV f DQG /LHELJ HW DO f DOVR IRXQG WKDW ORZ FRQFHQWUDWLRQV VWLPXODWHG URRW JURZWK EXW GHSUHVVHG WRS JURZWK IRU VRPH FLWUXV VSHFLHV 6HYHUDO TXHVWLRQV QHHG DQVZHUV $UH WKRVH URRWV GHYHORSHG E\ VWLPXODWLRQ RI ORZ $O FRQFHQWUDWLRQV QRUPDO LQ WKHLU DEVRUSWLRQ RI QXWULHQWV IURP WKH PDWUL[" $UH WKHUH DQ\ VWLPXODWLRQ HIIHFWV RI ORZ $O FRQFHQWUDWLRQV RQ WKH IXQFWLRQ RI QXWULHQW DEVRUSWLRQ E\ URRWV LQVWHDG RI RQ WKH GHYHORSPHQW RI URRW OHQJWK" $UH WKHUH GLIIHUHQW SK\VLRORJLFDO HIIHFWV RI DEVRUEHG $O RQ VKRRW JURZWK RI GLIIHUHQW FLWUXV URRWVWRFNV" 7KH GLIIHUHQW JURZWK UHVSRQVHV RI URRWV DQG VKRRWV LQGLFDWHG WKDW QHLWKHU RI WKHVH DORQH ZDV D JRRG LQGLFDWRU IRU HYDOXDWLRQ RI WKH $O WROHUDQFH RI FLWUXV URRWVWRFNV %HFDXVH IUHVKZHLJKW YDOXHV ZHUH WKH VXP IRU URRWV DQG VKRRWV WKH IUHVKZHLJKW UHVSRQVH FRPELQHG WKH UHVSRQVHV RI URRW OHQJWK DQG VKRRW KHLJKW ,Q JHQHUDO QHZJURZWK IUHVK ZHLJKW RI ZKROH SODQWV VKRXOG EH D EHWWHU LQGLFDWRU IRU HYDOXDn WLRQ RI $O WROHUDQFH WKDQ WKH RWKHU WZR SDUDPHWHUV 7KH HIIHFW RI $O FRQFHQWUDWLRQV RQ QHZJURZWK IUHVK ZHLJKW DQG UHODWLYH QHZJURZWK IUHVK ZHLJKW RI ILYH URRWVWRFN VHHGOLQJV DUH VKRZQ LQ )LJV DQG ZLWK WKH UHJUHVVLRQ HTXDWLRQV EHLQJ JLYHQ LQ 7DEOHV

PAGE 72

,Q :f L ’ ‘ $ W *2 f $&DUUL]R FLWUDQJH R&&OHRSDWUD PDQGDULQ $ 6RXU RUDQJH 5 5RXJK OHPRQ %6 6ZLQJOH FLWUXPH-R , , $O fO )LJXUH (IIHFWV RI $O FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ QHZJURZWK IUHVK ZHLJKW : J SODQW f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 73

U F F $O fO )LJXUH (IIHFWV RI $O FRQFHQWUDWLRQV $O PJ / f LQ QXWULHQW VROXWLRQ RQ UHODWLYH QHZJURZWK IUHVK ZHLJKW 5: =f RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V

PAGE 74

DQG $FFRUGLQJ WR WKH FULWLFDO $ FRQFHQWUDWLRQ WKH $ WROHUDQFH IRU IUHVK ZHLJKW LQFUHDVH ZDV DV IROORZV IURP PRVW WROHUDQW WR OHDVW WROHUDQWf &OHRSDWUD PDQGDULQ 5RXJK OHPRQ 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &DUUL]R FLWUDQJH 7KH EHQHILFDOHIIHHW RUGHU ZDV IURP PRVW WR OHDVW EHQHILFDOf &OHRSDWUD PDQGDULQ 5RXJK OHPRQ 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &DUUL]R FLWUDQJH 7KLV RUGHU ZDV VLPLODU WR WKH WROHUDQFH RUGHU 7KH WR[LFHIIHFW RUGHU ZDV IURP PRVW WR OHDVW WR[LFf 5RXJK OHPRQ &DUUL]R FLWUDQJH 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &OHRSDWUD PDQGDULQ 7KLV RUGHU ZDV GLIIHUHQW IURP ERWK WKH WROHUDQFH RUGHU DQG WKH EHQHILFLDOHIIHFW RUGHU (OHPHQWDO &RQFHQWUDWLRQV LQ 5RRWV DQG 6KRRWV DV $IIHFWHG E\ $ &RQFHQWUDWLRQV LQ *URZWK 6ROXWLRQ 7KH HOHPHQWDO FRQFHQWUDWLRQV DQG WKHLU VWDQGDUG GHYLDWLRQV IRU URRWV DQG VKRRWV RI ILYH URRWVWRFNV JURZQ LQ YDULRXV $ FRQFHQWUDn WLRQV LQ VROXWLRQ DUH OLVWHG LQ WKH $SSHQGL[ 7DEOHV $D DQG $Ef 7KH VWDQGDUG GHYLDWLRQV ZHUH VPDOO DQG WKH FRHIILFLHQWV RI YDULDWLRQ ZHUH QRUPDOO\ OHVV WKDQ = IRU HDFK $O WUHDWPHQW DQG HDFK HOHPHQW UHSOLFDWLRQVf 7KH HOHPHQWDO FRQFHQWUDWLRQV LQ URRWV DQG VKRRWV DV DIIHFWHG E\ $O FRQFHQWUDWLRQV LQ WKH JURZWK VROXWLRQ DUH VKRZQ LQ )LJV WR $OXPLQXP $W WKH PJ $O / A OHYHO WKH $O FRQFHQWUDWLRQV RI URRWV RI DOO ILYH URRWVWRFNV ZHUH VLPLODU DERXW PJ $O NJ Af :KHQ $O FRQFHQWUDWLRQV LQ VROXWLRQ LQFUHDVHG IXUWKHUPRUH WKH $O FRQFHQWUDn WLRQV RI URRWV RI ILYH URRWVWRFNV ZHUH LQFUHDVHG )LJ f :KHQ $O FRQFHQWUDWLRQV ZHUH DQG PJ $O / A LQ VROXWLRQ 5RXJK OHPRQ DQG &OHRSDWUD PDQGDULQ KDG KLJKHU $O FRQFHQWUDWLRQV WKDQ WKH RWKHUV ZKLOH &DUUL]R FLWUDQJH KDG WKH ORZHVW FRQFHQWUDWLRQ DPRQJ WKH

PAGE 75

$O &RQFHQWUDWLRQ ,Q *URZWK 6ROXWLRQ PJ /nf )LJXUH $OXPLQXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 76

ILYH URRWVWRFNV 7KLV WUHQG ZDV VLPLODU WR WKRVH IRU WROHUDQFH DQG IRU EHQHILFLDO HIIHFWV 7DEOH DQG f ,W PLJKW EH FRQFOXGHG WKDW WKH URRW $ FRQFHQWUDWLRQV ZHUH KLJKHU IRU $OWROHUDQW WKDQ IRU $OVHQVLWLYH URRWVWRFNV ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH PJ / A RU KLJKHU ,W PLJKW EH DOVR FRQFOXGHG WKDW WKRVH URRWV ZKLFK DFFXPXODWHG PRUH $ KDG JUHDWHU QHZURRW JURZWK 7KHVH UHODWLRQVKLSV LPSO\ WKDW $ DFFXPXODWLRQ LQ URRWV ZDV D FKDUDFWHULVWLF DVVRFLDWHG ZLWK $ EHQHILFLDO HIIHFWV DQG WROHUDQFH RI URRWV :KHQ WKH $ FRQFHQWUDWLRQV LQ URRWV ZHUH KLJK VXFK DV PJ $ NJ A IRU 5RXJK OHPRQ DW WKH PJ $O / r OHYHO WKH DFFXPXODWLRQ RI $ LQ URRWV DSSDUHQWO\ GDPDJHG WKH URRWV 7KH $ FRQFHQWUDWLRQV LQ VKRRWV DOVR LQFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQ LQ VROXWLRQ +RZHYHU WKH LQFUHDVHV LQ $ FRQFHQWUDWLRQ RI WKH VKRRWV ZHUH PXFK OHVV WKDQ WKRVH IRU WKH URRWV &RPSDULVRQ RI )LJ DQG )LJ OHG WR WKH FRQFOXVLRQ WKDW WKHUH ZDV QR FHUWDLQ UHODWLRQ EHWZHHQ $ FRQFHQWUDn WLRQ LQ VKRRWV DQG $OEHQHILFLDO HIIHFWV DQG $OWROHUDQFH RI URRWn VWRFNV 7KH UHODWLRQ EHWZHHQ $ FRQFHQWUDWLRQV LQ URRWV DQG VKRRWV DQG $OWROHUDQFH RI FLWUXV VHHGOLQJV GLG QRW EHORQJ WR DQ\ RI WKH WKUHH JURXSV GHVFULEHG E\ )R\ f &DOFLXP 7KH &D FRQFHQWUDWLRQV LQ WKH URRWV RI WKH ILYH URRWVWRFNV GHFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQ LQ VROXWLRQ XS WR PJ / r )LJ f +RZHYHU ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH KLJKHU WKDQ PJ / ? WKH &D FRQFHQWUDWLRQV LQ WKH URRWV RI DOO URRWVWRFNV XQGHUZHQW OLWWOH IXUWKHU FKDQJH LH WKH\ DOO UHPDLQHG VLPLODU ZLWK WKH VKRRWV KDYLQJ KLJKHU &D FRQFHQWUDWLRQV WKDQ WKH URRWV

PAGE 77

&D &RQFHQWUDWLRQ J NJf )LJXUH &DOFLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 78

7KH $O FRQFHQWUDWLRQV LQ WKH VKRRWV VKRZHG WKH VDPH WUHQG DV WKRVH LQ WKH URRWV $OLQGXFHG &D GHILFLHQF\ KDV EHHQ DVVRFLDWHG ZLWK $ WR[LFLW\ HIIHFWV /DQFH DQG 3HDUVRQ /XQG f ,Q WKH SUHVHQW VWXG\ WKH &D FRQFHQWUDWLRQV LQ URRWV GHFUHDVHG ZKHQ $ KDG D EHQHILFLDO HIIHFW ZKLOH VXFK FRQFHQWUDWLRQV UHPDLQHG WKH VDPH ZKHQ $ KDG D WR[LF HIIHFW 7KHUHIRUH &D FRQFHQWUDWLRQV LQ FLWUXV SODQWV PLJKW QRW EH WKH PDLQ IDFWRU UHODWHG WR WR[LF$O HIIHFWV 7KLV FRQn FOXVLRQ FRXOG EH DSSOLHG WR =Q 0Q &X DQG )H DV ZHOO LQ WKH IROORZn LQJ GLVFXVVLRQ 7KHUH ZDV QR FHUWDLQ UHODWLRQVKLS EHWZHHQ &D FRQFHQn WUDWLRQV LQ URRWV RU VKRRWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV 0DJQHVLXP 7KH 0J FRQFHQWUDWLRQV LQ URRWV RI ILYH URRWVWRFN VHHGOLQJV LQFUHDVHG ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ LQFUHDVHG WR RU PJ / A DQG WKHQ GHFUHDVHG DQG UHPDLQHG WKH VDPH ZKHQ WKH $ FRQFHQWUDWLRQV ZHUH KLJKHU WKDQ PJ / r LQ VROXWLRQ ,Q FRQWUDVW WKH 0J FRQFHQWUDWLRQV LQ VKRRWV GHFUHDVHG ZKHQ $ FRQFHQn WUDWLRQ LQ VROXWLRQ LQFUHDVHG XS WR PJ / $ERYH WKDW $ FRQFHQWUDWLRQ WKH VKRRWV PDLQWDLQHG WKHLU 0J FRQFHQWUDWLRQV 6ZLQJOH FLWUXPHOR DFFXPXODWHG PRUH 0J ERWK LQ URRWV DQG VKRRWV WKDQ GLG WKH RWKHUV 7KHUH ZDV QR FHUWDLQ UHODWLRQ EHWZHHQ 0J FRQFHQWUDn WLRQV LQ URRWV RU VKRRWV DQG $OEHQHILFLDO HIIHFWV RU $OWROHUDQFH RI FLWUXV URRWVWRFNV 3RWDVVLXP DQG SKRVSKRUXV 7KH DQG 3 FRQFHQWUDWLRQV LQ ERWK URRWV DQG VKRRWV LQFUHDVHG ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ LQFUHDVHG XS WR RU PJ / A )LJV DQG f ZLWK WKH 3 FRQFHQWUDWLRQV LQFUHDVLQJ UDSLGO\ :KHQ WKH $ FRQFHQWUDWLRQV ZHUH KLJKHU WKDQ PJ / A WKH DQG 3

PAGE 79

0J &RQFHQWUDWLRQ J NJ rf $L &RQFHQWUDWLRQ ,Q *URZWK 6ROXWLRQ PJ/ f )LJXUH 0DJQHVLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 80

&RQFHQWUDWLRQ J NJ+f $L &RQFHQWUDWLRQ ,Q *URZWK 6ROXWLRQ PJ/nf )LJXUH 3RWDVVLXP FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 81

3 &RQFHQWUDWLRQ )LJXUH 3KRVSKRUXV FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 82

FRQFHQWUDWLRQV WKHQ GHFUHDVHG :KHQ $ FRQFHQWUDWLRQV ZHUH KLJKHU WKDQ PJ / ? WKH DQG 3 FRQFHQWUDWLRQV GHFUHDVHG RQO\ VOLJKWO\ KRZHYHU $W DQ $ FRQFHQWUDWLRQ RI PJ / ? 3 FRQFHQWUDWLRQV LQ ERWK URRWV DQG VKRRWV ZHUH VWLOO KLJKHU WKDQ WKRVH LQ WKH PJ $ / A WUHDWPHQW ZKLOH FRQFHQWUDWLRQV ZHUH VOLJKWO\ ORZHU 7KH DQG 3 FRQFHQWUDWLRQV RI URRWV DQG VKRRWV ZHUH QRW UHODWHG WR $OWROHUDQFH RI WKH FLWUXV URRWVWRFNV 7KH PHFKDQLVPV RI EHQHILFLDO HIIHFWV RI ORZ $ FRQFHQWUDWLRQ RQ SODQW JURZWK JHQHUDOO\ KDYH EHHQ DVVRFLDWHG ZLWK SURPRWLQJ 3 XSWDNH 0XOOHWWH f RU ZLWK FRUUHFWLQJ RU SUHYHQWLQJ 3 WR[LFLW\ &ODUN f ,Q WKH SUHVHQW VWXG\ WKHUH ZDV QR FRQIRXQGLQJ HIIHFW RI 3 RQ $O EHFDXVH DOO WUHDWPHQWV KDG QHDUO\ WKH VDPH DGHTXDWHf 3 FRQFHQWUDn WLRQ LQ VROXWLRQ 7KH EHQHILFLDO HIIHFWV RI $O ZHUH QRW FDXVHG E\ SURPRWLRQ RI 3 XSWDNH EHFDXVH &DUUL]R FLWUDQJH ZKLFK URRWV KDG QRW EHHQ DIIHFWHG EHQHILFLDOO\ E\ $O DW WKH PJ $O / A OHYHO DOVR HYLGHQFHG LQFUHDVHG 3 XSWDNH 7KH EHQHILFLDO HIIHFWV ZHUH QRW FDXVHG E\ FRUUHFWLQJ RU SUHYHQWLQJ 3 WR[LFLW\ HLWKHU EHFDXVH WKHUH ZDV QR WR[LF OHYHO RI 3 LQ WKH VROXWLRQ )XUWKHUPRUH WKH 3 FRQFHQWUDWLRQ LQ URRWV RI &DUUL]R FLWUDQJH ZDV ORZHVW DPRQJ WKH ILYH URRWVWRFNV 7KH PHFKDQLVP RI WR[LF HIIHFWV RI KLJK $O FRQFHQWUDWLRQ RQ SODQW JURZWK KDYH EHHQ DVFULEHG WR $OLQGXFHG 3 DFFXPXODWLRQ 0F&RUPLFN DQG %RUGH f RU GHILFLHQF\ -DPHV HW DO f ,Q WKLV VWXG\ WKH KLJKHVW 3 FRQFHQWUDWLRQV LQ URRWV RU VKRRWV DW ORZ $O WUHDWPHQWV GLG QRW GHSUHVV URRW RU VKRRW JURZWK :KHQ URRW RU VKRRW JURZWK FRQWLQXn RXVO\ GHFUHDVHG ZLWK LQFUHDVLQJ $O FRQFHQWUDWLRQV LQ VROXWLRQV PRUH FRQFHQWUDWHG WKDQ PJ / WKH 3 FRQFHQWUDWLRQV LQ WKH URRWV RU VKRRWV EDVLFDOO\ GLG QRW FKDQJH 7KHVH GDWD VXJJHVW WKDW WR[LF

PAGE 83

HIIHFWV RI $O ZHUH QRW FDXVHG E\ 3 DFFXPXODWLRQ :KHQ SODQW JURZWK FRQWLQXRXVO\ GHFUHDVHG WKH 3 FRQFHQWUDWLRQV LQ WKH URRWV RU VKRRWV ZHUH VWLOO KLJKHU WKDQ WKRVH LQ WKH PJ $O / A WUHDWPHQW 7KHUHn IRUH WKH WR[LF HIIHFWV ZHUH QRW FDXVHG E\ 3 GHILFLHQF\ 7KH IDFW WKDW WKHUH ZDV QR FHUWDLQ UHODWLRQ EHWZHHQ 3 FRQFHQWUDn WLRQV LQ URRWV RU VKRRWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV DOVR VXSSRUWV WKHVH H[SODQDWLRQV ,W PLJKW EH FRQFOXGHG WKDW QHLWKHU EHQHILFLDO QRU WR[LF HIIHFWV RI $ RQ JURZWK RI FLWUXV VHHGOLQJV ZHUH GLUHFWO\ FDXVHG E\ 3 DFFXPXODWLRQ RU GHILFLHQF\ LQGXFHG E\ $ VXSSO\ DOWKRXJK LQFUHDVHG $ FRQFHQWUDWLRQV LQ WKH PDWUL[ FDXVHG DQ LQFUHDVH LQ 3 FRQFHQWUDWLRQ RI WKH SODQW WLVVXHV 7KH FRQFOXVLRQV DERXW 3 ZKLFK KDYH EHHQ PDGH KHUH FRXOG EH DSSOLHG WR WKH FDVHV RI 0J DQG LQ WKLV VWXG\ DV ZHOO =LQF DQG PDQJDQHVH 7KH =Q DQG 0Q FRQFHQWUDWLRQV LQ URRWV RI WKH ILYH URRWVWRFNV JUHDWO\ GHFUHDVHG ZLWK LQFUHDVLQJ $ FRQFHQWUDWLRQV LQ VROXWLRQ XS WR PJ / r )LJV DQG f :KHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH KLJKHU WKDQ PJ / A =Q DQG 0Q FRQFHQWUDWLRQV LQ URRWV ZHUH PDLQWDLQHG DW WKH VDPH OHYHOV RU VOLJKWO\ GHFUHDVHG +RZHYHU WKH =Q DQG 0Q FRQFHQWUDWLRQV LQ VKRRWV EDVLFDOO\ GLG QRW FKDQJH ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ LQFUHDVHG FRQWLQXRXVO\ IURP WR PJ / 1R FHUWDLQ UHODWLRQ ZDV IRXQG EHWZHHQ =Q DQG 0Q FRQFHQWUDWLRQV LQ URRWV RU VKRRWV DQG $OEHQHILFLDO HIIHFWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV &RSSHU ,Q WKH PJ $O / r WUHDWPHQW &DUUL]R FLWUDQJH KDG WKH ORZHVW &X FRQFHQWUDWLRQ LQ LWV URRWV DPRQJ WKH ILYH URRWVWRFNV ,W VHHPHG

PAGE 84

=Q &RQFHQWUDWLRQ PJ NJf )LJXUH =LQF FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 85

0Q &RQFHQWUDWLRQ PJ NJnf 5&276 )LJXUH 0DQJDQHVH FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 86

&X &RQFHQWUDWLRQ PJ NJnf R_ 52276 ,Q ? K 2 , , $O &RQFHQWUDWLRQ ,Q *URZWK 6ROXWLRQ PJ/nf )LJXUH &RSSHU FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 87

WKDW WKH $OVHQVLWLYH URRWVWRFN KDG ORZHU &X FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG WKH $OWROHUDQW URRWVWRFNV 7KH &X FRQFHQWUDWLRQV LQ URRWV RI DOO URRWVWRFNV H[FHSW &DUUL]R FLWUDQJH JUHDWO\ GHFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ VROXWLRQ XS WR PJ )LJ f %H\RQG PJ $O / ? WKH &X FRQFHQWUDWLRQV LQ WKH URRWV FKDQJHG RQO\ VOLJKWO\ 7KH &X FRQFHQWUDWLRQV RI &DUUL]R FLWUDQJH FKDQJHG RQO\ D OLWWOH ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ VROXWLRQ 7KH &X FRQFHQWUDWLRQV LQ VKRRWV GHFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ VROXWLRQ XS WR RU PJ / ? DIWHU WKRVH DOO URRWVWRFNV H[FHSW 5RXJK OHPRQ FKDQJHG OLWWOH 7KH &X FRQFHQn WUDWLRQV LQ VKRRWV RI 5RXJK OHPRQ LQFUHDVHG GUDPDWLFDOO\ ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH KLJKHU WKDQ PJ / A $W WKH PJ $O / A WUHDWPHQW WKH VKRRW &X FRQFHQWUDWLRQ RI 5RXJK OHPRQ ZHQW XS WR PJ NJ ? ZKLOH WKH FRUUHVSRQGLQJ OHYHO IRU RWKHU URRWVWRFNV ZDV RQO\ DERXW PJ NJ A $W WKLV WUHDWPHQW $OWR[LF HIIHFW RQ VKRRW JURZWK ZDV ODUJHVW IRU 5RXJK OHPRQ DPRQJ WKH ILYH URRWVWRFNV 7DEOH f 7KHUH VHHPHG WR EH FHUWDLQ UHODWLRQ EHWZHHQ &X FRQFHQn WUDWLRQV LQ URRWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV DW PJ $ / A OHYHO LQ VROXWLRQ $OVR WKHUH VHHPHG WR EH D UHODWLRQVKLS EHWZHHQ &X DQG WKH GHJUHHV RI WR[LF HIIHFWV RI $ FRQFHQWUDWLRQV ,URQ 7KH )H FRQFHQWUDWLRQV LQ URRWV JUHDWO\ GHFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ VROXWLRQ XS WR PJ / A )LJ f %H\RQG WKDW $ FRQFHQWUDWLRQ WKH )H FRQFHQWUDWLRQV LQ URRWV FKDQJHG UHODWLYHO\ OLWWOH :KHQ $ FRQFHQWUDWLRQV ZHUH ORZHU WKDQ PJ / 5RXJK OHPRQ DQG &OHRSDWUD PDQGDULQ KDG KLJKHU )H FRQFHQWUDWLRQV WKDQ GLG WKH RWKHUV ZKLOH &DUUL]R FLWUDQJH KDG WKH ORZHVW YDOXHV

PAGE 88

&RQFHQWUDWLRQ J NJf 6+2276 rD FF $4 &5 ‘V 2n L 5&&a6 b KY $O &RQFHQWUDWLRQ LQ *URZWK 6ROXWLRQ PJ )LJXUH ,URQ FRQFHQWUDWLRQ RI PRQWKROG FLWUXV VHHGOLQJV JURZQ IRU GD\V LQ QXWULHQW VROXWLRQ ZLWK YDULRXV FRQFHQWUDWLRQV RI $O $ &DUUL]R FLWUDQJH & &OHRSDWUD PDQGDULQ 6RXU RUDQJH 5 5RXJK OHPRQ DQG 6 6ZLQJOH FLWUXPHORf

PAGE 89

DPRQJ WKH ILYH URRWVWRFNV %\ FRPSDULQJ WKLV RUGHU DQG WKH $O WROHUDQFH RUGHU RI URRWV VXJJHVWLRQ PLJKW EH PDGH WKDW WKH PRUH WROHUDQW URRWVWRFNV KDG WKH KLJKHU )H FRQFHQWUDWLRQV LQ WKHLU URRWV ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH ORZHU WKDQ PJ / 7KH )H FRQFHQWUDWLRQV LQ VKRRWV GHFUHDVHG ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ LQFUHDVHG WR RU PJ / A KRZHYHU %H\RQG WKLV FRQFHQWUDWLRQ WKH )H FRQFHQWUDWLRQV LQ VKRRWV LQFUHDVHG RQO\ VOLJKWO\ 1R UHODWLRQ EHWZHHQ )H FRQFHQWUDWLRQV LQ VKRRWV DQG $OEHQHILFLDO HIIHFWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV FRXOG EH IRXQG 6XPPDU\ DQG &RQFOXVLRQV 9HU\ IHZ V\VWHPDWLF VWXGLHV KDYH EHHQ FRQGXFWHG RQ WKH HIIHFWV RI $ RQ WKH JURZWK DQG PLQHUDO QXWULWLRQ RI FLWUXV 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR LQYHVWLJDWH JURZWK UHVSRQVH RI WKH PRVW FRPPRQ FLWUXV URRWVWRFNV LQ )ORULGD WR $ OHYHOV DQG UHODWLRQV EHWZHHQ WKH $ HIIHFWV DQG HOHPHQWDO FRQFHQWUDWLRQV LQ SODQW WLVVXH )LYH PRQWKROG FLWUXV URRWVWRFN VHHGOLQJV ZHUH JURZQ LQ VXSHUQDWDQW VROXWLRQV ZKLFK FRQWDLQHG OHYHOV RI $ UDQJLQJ IURP WR PJ $O / A DQG 3 FRQFHQWUDWLRQ RI PJ 3 / A IRU GD\V 7KH WHPSHUDWXUH RI WKH JURZWK VROXWLRQ ZDV PDLQWDLQHG DW sr& LQ WKH JUHHQKRXVH GXULQJ WKH VXPPHU %HIRUH WKH VHHGOLQJV ZHUH JURZQ LQ VROXWLRQ VKRRW KHLJKW DQG IUHVK ZHLJKW RI ZKROH SODQWV ZHUH PHDVXUHG DQG WKH URRW OHQJWK ZDV PHDVXUHG E\ WDNLQJ SKRWRJUDSKV RI WKH URRWV IRU WKH SXUSRVH RI ODWHU REWDLQLQJ QHZJURZWK SDUDPHWHUV 5HVXOWV VKRZHG WKDW DW KLJK $ WUHDWPHQW OHYHOV SODQWV KDG WKLFNHQHG URRW WLSV DQG URRW FDSV FRYHUHG ZLWK EODFN JHODWLQRXV PDWHULDO 8QLTXH $ LQMXU\

PAGE 90

V\PSWRPV ZHUH REVHUYHG LQ QHZ OHDYHV DQG WHUPLQDOV RI VRPH VHHGOLQJV 7KH QHZJURZWK URRW OHQJWK DQG VKRRW KHLJKW KDG GLIIHUHQW WUHQGV ZLWK UHVSHFW WR UHVSRQVH WR $ FRQFHQWUDWLRQV LQ WKH JURZWK VROXWLRQ 1HZJURZWK IUHVK ZHLJKW RI ZKROH SODQWV PLJKW EH D EHWWHU LQGLFDWRU IRU $ WROHUDQFH WKDQ WKH RWKHU WZR SDUDPHWHUV PHQWLRQHG DERYH $FFRUGLQJ WR WKH UHVSRQVH RI IUHVK ZHLJKW WR $ FRQFHQWUDWLRQV UHODWLYH DOXPLQXP WROHUDQFH RI WKH URRWVWRFNV ZHUH &OHRSDWUD PDQGDULQ 5RXJK OHPRQ 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &DUUL]R FLWUDQJH 7KH FULWLFDO $ FRQFHQWUDWLRQV LQ VROXWLRQ ZLWK UHVSHFW WR WR[LF HIIHFWV ZHUH DQG PJ $O / UHVSHFWLYHO\ &RQFHQWUDWLRQV EHORZ RU DERYH WKH FULWLFDO $ OHYHOV FDXVHG HLWKHU EHQHILFLDO RU WR[LF HIIHFWV UHVSHFWLYHO\ $OXPLQXP FRQFHQWUDWLRQV RI URRWV DQG VKRRWV LQFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQ LQ WKH JURZWK VROXWLRQ $OXPLQXPWROHUDQW URRWVWRFNV DFFXPXODWHG PRUH $ LQ WKHLU URRWV WKDQ GLG WKH $OVHQVLWLYH URRWVWRFNV :KHQ $ FRQFHQWUDn WLRQV LQ QXWULHQW VROXWLRQ LQFUHDVHG IURP WR PJ $O / A 0J DQG 3 FRQFHQWUDWLRQV LQ URRWV DQG DQG 3 OHYHOV LQ VKRRWV LQFUHDVHG ZKHUHDV &D =Q &X 0Q DQG )H LQ URRWV DQG &D 0J &X DQG )H LQ VKRRWV GHFUHDVHG ,W VHHPHG WKDW $OVHQVLWLYH URRWVWRFNV KDG ORZHU &X FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG $OWROHUDQW URRWVWRFNV DW ORZ $ FRQFHQWUDWLRQ PJ $O / LQ VROXWLRQ 7KH PRUH WROHUDQW URRWVWRFNV FRQWDLQHG KLJKHU )H FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG WKH OHVV WROHUDQW RQHV ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH ORZHU WKDQ PJ $O / &RQFHQWUDWLRQV RI WKH RWKHU HOHPHQWV &D 3 0J =Q DQG 0Qf LQ URRWV RU VKRRWV DSSHDUHG WR KDYH QR FHUWDLQ UHODWLRQVKLS ZLWK WKH EHQHILFLDO RU WR[LF HIIHFWV RI $ LQ QXWULHQW VROXWLRQ RU ZLWK $OWROHUDQFH RI WKH URRWVWRFNV

PAGE 91

&+$37(5 9 *52:7+ 2) &,7586 52276 $6 $))(&7(' %< $/80,180 /(9(/ ,1 62,/6 81'(5 ),(/' &21',7,216 ,QWURGXFWLRQ 5HVHDUFK RQ WKH HIIHFWV RI $ RQ FLWUXV URRWVWRFNV KDV EHHQ HVVHQWLDOO\ OLPLWHG WR QXWULHQWVROXWLRQ VWXGLHV +DDV f XVHG OHDI\WZLJ FXWWLQJV RI OHPRQ /LVERQ DQG 9DOHQFLD RUDQJHV LQ VROXWLRQ FXOWXUHV +H IRXQG WKDW ZKHQ $ ZDV SUHVHQW URRWV ZHUH KHDOWK\ DQG PRUH H[WHQVLYH DQG URRW FDSV ZHUH QXPHURXV EXW WRSV XVXDOO\ ZHUH UHWDUGHG LQ JURZWK +H FRQFOXGHG WKDW FRQFHQWUDWLRQ RI WR SSP RI DOXPLQXP ZDV UDWKHU KLJK IRU WKH SURGXFWLRQ RI WKH JUHDWHVW JURZWK RI WRSV DQG URRWVf +LV GDWD VKRZHG WKDW WKH DGGLWLRQ RI $ WR WKH FXOWXUH VROXWLRQ DOVR LQFUHDVHG WKH 3 FRQFHQWUDWLRQ LQ URRW WLVVXH /LHELJ HW DO f IRXQG WKDW WKH DGGLWLRQ RI WR PJ $O / r WR EDVH QXWULHQW VROXWLRQV JUHDWO\ VWLPXODWHG URRW GHYHORSPHQW EXW GHSUHVVHG WRS JURZWK RI 9DOHQFLD RUDQJH DQG OHPRQ FXWWLQJV /RZHU FRQFHQWUDWLRQV LH DQG PJ / rf GLG QRW SURGXFH WKLV HIIHFW 7KHVH UHVHDUFKHUV DOVR IRXQG DQ DQWDJRQLVWLF HIIHFW RI $O RQ &X XSWDNH
PAGE 92

:RUNX HW DO f IRXQG WKDW KLJK OHYHOV RI $ DQG 0Q ZHUH WR[LF WR 7UR\HU FLWUDQJH >3HQFLUXV WULIROLDWD 5DI [ VLQHQVLV /f 2VEHFN@ 7ULIROLDWH RUDQJH 3 WULI ROLDWD 5DIf} DQG &OHRSDWUD PDQGDULQ &/ UHVKQL +RUW H[ 7DQf JURZQ LQ KLJKO\ ZHDWKHUHG 2[LVROV +RZHYHU WKH JURZWKLQKLELWLQJ HIIHFWV RI $O DQG 0Q ZHUH FRQVLGHUHG MRLQWO\ 2WKHU UHVHDUFKHUV 6HNL\D DQG $RED +XDQJ f KDYH OLQNHG ORZ S+ DQG KLJK $O FRQFHQWUDWLRQV WR SRRU FLWUXV JURZWK DQG VKRUWHQHG OLIHVSDQ RI WKH WUHH +RZHYHU QR H[SHULPHQWDO HYLGHQFH H[LVWV WR HYDOXDWH WKH HIIHFWV RI GLIIHUHQW $O OHYHOV LQ VRLOV RQ ILEURXV FLWUXVURRW JURZWK XQGHU ILHOG FRQGLWLRQV )HZ GDWD KDYH EHHQ UHSRUWHG DV ZHOO DERXW SRVVLEOH HIIHFWV RI $O RQ WKH PLQHUDO QXWULWLRQ RI FLWUXV 7KH REMHFWLYH RI WKLV VWXG\ ZDV WR XVH DQ LPSODQWHG VRLOPDVV WHFKQLTXH *DUQHU DQG 7HOHIDLU /XQG HW DO f WR LQYHVWLn JDWH WKH HIIHFWV RI GLIIHUHQW $O OHYHOV LQ VRLO RQ JURZWK DQG PLQHUDO FRQWHQW RI FLWUXV ILEURXV URRWV XQGHU ILHOG FRQGLWLRQV 0DWHULDOV DQG 0HWKRGV 7KH LPSODQWHG VRLOPDVV WHFKQLTXH DOORZV RQH WR VWXG\ URRW GHYHORSPHQW LQ D QDWXUDO HQYLURQPHQW ZLWK PLQLPDO GLVWXUEDQFH DQG PLQLPDO VSDWLDO DQG JHQHWLF YDULDELOLW\ 7KLV H[SHULPHQW ZDV FRQGXFWHG XVLQJ WKH LPSODQWHG VRLOPDVV WHFKQLTXH LQ D FRPPHUFLDO FLWUXV JURYH &ROOHFWLRQ DQG &KDUDFWHUL]DWLRQ RI 6RLO ,Q RUGHU WR JHW HIIHFWV RI KLJK $O FRQFHQWUDWLRQV LQ VRLO VROXWLRQ ZKHQ D FHUWDLQ DPRXQW RI $O ZDV DGGHG WR WKH VRLO WKH VRLO XVHG IRU LPSODQWLQJ PXVW KDYH ORZ S+ S+ f 7KH LPSODQWHG VRLO

PAGE 93

PXVW DOVR KDYH ORZ H[FKDQJHDEOH $ FRQWHQW LQ RUGHU WR REWDLQ ORZ $ FRQFHQWUDWLRQ PJ $O / rf LQ VRLO VROXWLRQ VR WKDW QRQWUHDWHG VRLO FRXOG EH WDNHQ DV D FRQWURO WR JHW FULWLFDO $ FRQFHQWUDWLRQ LQ VRLO VROXWLRQ IRU SK\WRWR[LFLW\ 6RLO XVHG IRU LPSODQWLQJ ZDV REWDLQHG IURP WKH ( KRUL]RQ RI DQ ,PPRNDOHH ILQH VDQG DQ $UHQLF +DSODTXRGf IURP D FLWUXV JURYH LQ WKH IODWZRRGV DUHD RI &KDUORWWH &RXQW\ )ORULGD 7KH RYHUO\LQJ $S KRUL]RQ ZDV ILUVW UHPRYHG E\ KDQGVKRYHOLQJ EHIRUH FROOHFWLQJ WKH EXON VDPSOH RI ( KRUL]RQ 7KH VRLO ZDV DLUGULHG DQG SDVVHG WKURXJK D PP VLHYH 6RLO S+ ZDV PHDVXUHG ZLWK D ZDWHUVRLO UDWLR 3DUWLFOH VL]H DQDO\VLV ZDV FRQGXFWHG XVLQJ D SLSHWWH VDPSOLQJ PHWKRG 6RLO &RQVHUYDWLRQ 6HUYLFH f 6RLO RUJDQLF & ZDV GHWHUPLQHG E\ D PRGLILHG :DONOH\%ODFN SURFHGXUH 1HOVRQ DQG 6RPPHUV f 3RWDVVLXPFKORULGH H[WUDFWDEOH DFLGLW\ H[FKDQJHDEOH $O DQG H[FKDQJHn DEOH + ZHUH GHWHUPLQHG LQ 0 .& H[WUDFWV 7KRPDV f (IIHFWLYH &(& RI VRLO ZDV FDOFXODWHG IURP WKH VXP RI H[FKDQJHDEOH EDVHV E\ 0 1+A2$F S+ f &KDSPDQ f DQG H[FKDQJHDEOH $O 0 .&f &DOFLXP 0J 1D 3 $O =Q )H &X DQG 0Q ZHUH H[WUDFWHG ZLWK GRXEOHDFLG UHDJHQW 0 +& DQG 0 +A62A 0HKOLFK f DQG GHWHUPLQHG E\ LQGXFWLYHO\FRXSOHG DUJRQ SODVPD ,&$3f HPLVVLRQ VSHFWURVFRS\ 5HOHYDQW FKDUDFWHULVWLFV RI WKH VRLO DUH OLVWHG LQ 7DEOH ,W KDG D KLJK VDQG FRQWHQW ZDV VWURQJO\ DFLGLF DQG KDG D ORZ H[FKDQJHDEOH$O FRQWHQW $GGLWLRQ RI /LPH $O DQG )HUWLOL]HUV 7KHUH ZHUH ILYH WUHDWPHQWV DGGLWLRQ RI OLPH DQG DGGLWLRQ RI RU PJ $O NJ A RI VRLOf $ ORRVHO\ ZRYHQ PHVKVDUDQ EDJ

PAGE 94

7DEOH 5HOHYDQW FKDUDFWHULVWLFV RI WKH ( KRUL]RQ RI WKH ,PPRNDOHH ILQH VDQG XVHG IRU LPSODQWV 6RLO SURSHUW\ S+ 2UJDQLF & J NJ 3DUWLFOH VL]H 6DQG 6LOW &OD\ (&(& PPROF NJ A 0 .& H[WUDFWDEOH DFLGLW\ 7RWDO PPRO NJ $ & + 0 +& DQG 0 +f6 a &D PJ NJ H[WUDFWDEOH HOHPHQWV 0J 3 1D $ )H =Q &X 0Q

PAGE 95

KROH VL]H [ PPf ZDV XVHG WR KROG NJ RI (KRUL]RQ VRLO 7KH OLPHG VRLO ZDV DPHQGHG ZLWK PJ FKHPLFDOO\ SXUH &D&2A NJ ? WKH DPRXQW RI OLPH UHTXLUHG WR EULQJ VRLO S+ WR DV VSHFLILHG E\ WKH $GDPV(YDQV PHWKRG 0F/HDQ f 7KH $ ZDV DGGHG DV VROXWLRQV RI $&r+ %ODQNHW IHUWLOL]HU DGGLWLRQV LQ VROXWLRQ IRUP DOVR ZHUH PDGH WR WKH VRLO LQ HDFK EDJ 7KH IHUWLOL]HU SURJUDP UHFRPPHQGHG E\ .RR HW DO f ZDV WDNHQ DV D UHIHUHQFH )HUWLOL]HU UDWHV PJ NJ Af DQG IRUPV ZHUH DV IROORZV 1 DV &D12Aff+ 3 DV &D+3fr + &D DV &D1f"f+" &D+"3f e+A DV .& =Q DV =Q6r+ 0J DV 0J&Of+ )H DV )H6r+ 0Q DV 0Q62 f+A2 &X DV &X62f+R DQG % DV +%&/ $IWHU WKH OLPH RU $O VROXWLRQ DQG IHUWLOL]HU VROXWLRQ KDG EHHQ DGGHG WKH VRLO LQ HDFK EDJ ZDV PL[HG WKRURXJKO\ DQG WKH PRLVWXUH OHYHO ZDV DGMXVWHG WR = 7KH VRLO WKHQ ZDV DOORZHG WR HTXLOLEUDWH ZLWK WKH DPHQGPHQWV IRU G DW URRP WHPSHUDWXUH LQ WKH ODERUDWRU\ 3ODFHPHQW DQG &ROOHFWLRQ RI ,PSODQWHG 6RLO0DVV %DJV $ W\SLFDO FRPPHUFLDO FLWUXV JURYH ZLWK \UROG WUHHV RI e VLQHQVLV FY +DPOLQe DXUDQWLXP / VRXU RUDQJH URRWVWRFNf LQ 'H 6RWR &RXQW\ )ORULGD ZDV VHOHFWHG IRU WKH VWXG\ 7KH H[SHULPHQW ZDV FRQGXFWHG DFFRUGLQJ WR D UDQGRPL]HG FRPSOHWHEORFN GHVLJQ ZLWK ILYH WUHDWPHQWV DVVLJQHG UDQGRPO\ LQ HDFK RI EORFNV )LIWHHQ KHDOWK\ DSSHDULQJ WUHHV ZHUH PDUNHG DV EORFNV )LYH KROHV FP GHHS DQG FP GLDPHWHUf ZHUH GXJ DW WKH GULSOLQH RI HDFK WUHH DERXW P IURP WKH WUHH WUXQNf ZLWK D SRVWKROH GLJJHU 7KH H[DFW ORFDWLRQ RI HDFK KROH XVHG IRU LPSODQW ZDV GHWHUPLQHG E\ ILUVW GLJJLQJ D KROH VFUHHQn LQJ RXW WKH URRWV RQVLWH DQG FRPSDULQJ WKH TXDQWLW\ RI URRWV WR

PAGE 96

SUHVFULEHG OLPLWV DERXW URRWVf $ EDJ FRQWDLQLQJ WKH LPSODQW VRLO WKHQ ZDV SODFHG ILUPO\ DJDLQVW WKH IDFH RI WKH KROH RQ WKH VLGH WRZDUG WKH WUHH WUXQN 6RPH RULJLQDO WRS VRLO ZDV WDPSHG ILUPO\ DURXQG HDFK EDJ ZLWK WKH EDJ WKHQ EHLQJ OHIW RSHQ DW WKH VRLO VXUIDFH WR DSSUR[LPDWH WKH VDPH ILHOG FRQGLWLRQV DV WKH VXUURXQGLQJ VXUIDFH VRLO $OO RI WKH KROHV ZHUH GXJ DQG DOO RI WKH EDJV ZHUH LQVWDOOHG LQ WKH KROHV RQ $XJXVW 7KH DUHDV XQGHU WKH WUHHV DQG ZLWKLQ P RI WKH KROHV ZHUH NHSW IUHH RI XQGHUVWRU\ YHJHWDWLRQ WR PLQLPL]H LQYDVLRQ RI WKH EDJV E\ QRQFLWUXV URRWV $OO EDJV ZHUH UHPRYHG G DIWHU WKHLU LQVHUWLRQ 7KH URRWV DURXQG WKH RXWVLGH RI WKH EDJV ZHUH FXW RII ZLWK D ORQJ NQLIH DQG WKHQ WKH EDJV ZHUH UHPRYHG IURP WKH KROHV (DFK EDJ ZDV WULPPHG RI SURWUXGLQJ URRWV DQG SODFHG LQ VHSDUDWH SODVWLF EDJV WR SUHYHQW VRLO DQG PRLVWXUH ORVV GXULQJ WUDQVSRUW WR WKH ODERUDWRU\ LQ *DLQHVYLOOH )ORULGD 0HDVXUHPHQW RI 5RRWV DQG $QDO\VLV RI ,PSODQWHG 6RLOV $IWHU UHPRYDO IURP WKH EDJ WKH URRWV VHSDUDWHG IURP WKH VRLOV ZHUH SXW RQ D VFUHHQ DQG WKHQ ZDVKHG WKRURXJKO\ ZLWK WDS ZDWHU DQG ULQVHG ZLWK GHLRQL]HG ZDWHU 5RRW PRUSKRORJ\ ZDV DVVHVVHG YLVXDOO\ DQG URRW OHQJWK ZDV PHDVXUHG GLUHFWO\ 5RRW OHQJWK LV D EHWWHU LQGLFDWRU RI $ HIIHFWV WKDQ LV URRW ZHLJKW VLQFH VKRUWHQLQJ DQG WKLFNHQLQJ DUH FRPPRQ UHVXOWV RI $ WUHDWPHQW 0XQQ DQG 0F&ROOXP f 5RRWV ZKLFK HQWHUHG WKH EDJ IURP LWV VXUURXQGLQJV ZHUH FODVVLILHG DV SULPDU\ URRWV $OO EUDQFKHV SURGXFHG IURP WKHVH SULPDU\ URRWV ZHUH FODVVLILHG DV VHFRQGDU\ $OO URRWV ZHUH GULHG DW r& DQG ZHLJKHG )RU WLVVXH DQDO\VLV EHFDXVH RI WKH VPDOO TXDQWLWLHV UHFRYHUHG SHU EDJ WKH URRWV RI WKH

PAGE 97

UHSOLFDWLRQV RI D JLYHQ WUHDWPHQW ZHUH UDQGRPO\ FRPELQHG LQWR VDPSOHV 7KH URRWV ZHUH JURXQG LQ D PRUWDU WR SDVV D PHVK VLHYH 7LVVXH VDPSOHV RI J ZHUH GU\DVKHG DW r& LQ D PXIIOH IXUQDFH IRU K WKH DVK ZDV WKHQ GLVVROYHG LQ P/ RI FRQFHQWUDWHG +& HYDSRUDWHG WR GU\QHVV UHGLVVROYHG DQG HYDSRUDWHG WR GU\QHVV DJDLQ 7KLV UHVLGXH ZDV GLVVROYHG LQ P/ RI 0 +& DQG ILOWHUHG (OHPHQWDO FRQWHQWV LQ WKH VROXWLRQ ZHUH GHWHUPLQHG XVLQJ ,&$3 HPLVVLRQ VSHFWURVFRS\ -XVW EHIRUH WKH DPHQGHG VRLO ZDV SODFHG LQ WKH JURYH DQG DJDLQ DIWHU FROOHFWLRQ WKH FRQFHQWUDWLRQV RI $ DQG RI RWKHU HOHPHQWV LQ VDWXUDWLRQ VRLO H[WUDFWV 5KRDGHV f ZHUH GHWHUPLQHG XVLQJ ,&$3 HPLVVLRQ VSHFWURVFRS\ (OHFWULFDO FRQGXFWLYLW\ (&Af DQG S+ ZHUH PHDVXUHG LPPHGLDWHO\ DIWHU H[WUDFWLRQ 9DOXHV EHIRUH LPSODQWLQJ DQG DIWHU FROOHFWLRQ ZHUH DYHUDJHG WR UHSUHVHQW WKH LPSODQWHG SHULRG Gf 5HVXOWV DQG 'LVFXVVLRQ 6HOHFWHG FKDUDFWHULVWLFV RI VRLO VDWXUDWLRQ H[WUDFWV DUH VKRZQ LQ 7DEOH :KHQ NJ VRLO ZDV WUHDWHG ZLWK PJ $O $ FRQFHQn WUDWLRQ DQG (&A VKDUSO\ LQFUHDVHG DQG S+ GHFUHDVHG UHODWLYH WR WKH FRQWURO $V WKH DPRXQW RI DGGHG $ LQFUHDVHG IURP WR PJ $ NJ $ FRQFHQWUDWLRQ LQFUHDVHG JUHDWO\ ZKLOH S+ GHFUHDVHG DQG (&A LQFUHDVHG RQO\ VOLJKWO\ $OXPLQXP FRQFHQWUDWLRQ GHFUHDVHG DQG S+ LQFUHDVHG LQ OLPHDPHQGHG VRLO $W WKH WLPH RI EDJ UHPRYDO ZH REVHUYHG VRPH URRWV ZKLFK KDG JURZQ GRZQZDUG LQ VRLO RXWVLGH EXW DGMDFHQW WR WKH EDJnV RXWHU VXUIDFH DSSDUHQWO\ DYRLGLQJ HQWU\ LQWR WKH VRLO LQVLGH WKH EDJ

PAGE 98

7DEOH 5HOHYDQW FKDUDFWHULVWLFV RI VRLOV IURP ILYH WUHDWPHQWV 6DWXUDWLRQ H[WUDFW RI VRLOVW 7UHDWPHQW $ DGGHG WR VRLO %HIRUH LPSODQW $ $IWHU LPSODQW $YHUDJHW (& W H S+W $O PJ NJ 7 PJ / f§ G G6 PB F E $O F E F $O E DE F $O D D F /LPH H F D W (DFK YDOXH LV WKH DYHUDJH RI PHDQV LH PHDQ YDOXHV MXVW EHIRUH LPSODQWLQJ RU DIWHU FROOHFWLRQ IRU UHSOLFDWLRQV I 9DOXHV IROORZHG E\ WKH VDPH OHWWHU LQ D FROXPQ DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW 3 E\ 'XQFDQnV PXOWLSOHUDQJH WHVW

PAGE 99

5RRWV LQ WKH VRLOV RI WKH $O DQG $O WUHDWPHQWV DSSHDUHG KHDOWKLHU FRDUVHU DQG ILUPHU WKDQ WKRVH LQ WKH FRQWURO VRLO 7KHUH ZHUH DOVR PRUH VHFRQGDU\ URRWV 7KHVH URRWV ZHUH ZKLWH LQ FRORU ZKHUHDV URRWV LQ WKH $O WUHDWPHQW GLVSOD\HG DEQRUPDO URRW V\PSWRPV LH WKH\ ZHUH UHWDUGHG VWXEE\ DQG EULWWOH 7KHUH ZHUH DOVR IHZHU VHFRQGDU\ URRWV WKH URRW WLSV EHFDPH WKLFNHQHG DQG VRPH RI WKHP WXUQHG EURZQ $YHUDJH URRWOHQJWK GHQVLWLHV FP URRW OHQJWK SHU GP VRLOf DUH JLYHQ LQ 7DEOH 5RRWOHQJWK GHQVLW\ IRU WKH $O WUHDWPHQW PJ $O / rf ZDV VLJQLILFDQWO\ KLJKHU WKDQ WKDW IRU WKH FRQWURO PJ $O / 6 5RRWOHQJWK GHQVLW\ IRU WUHDWPHQW $O PJ $ /Bf ZDV ORZHU WKDQ WKDW IRU WUHDWPHQW $O EXW VKRZHG D WHQGHQF\ WR EH KLJKHU WKDQ WKDW IRU WKH FRQWURO 5RRWOHQJWK GHQVLW\ IRU WKH $O WUHDWPHQW PJ $O / 6 ZDV VLJQLILFDQWO\ ORZHU WKDQ WKDW IRU WKH FRQWURO )DFWRUV NQRZQ WR DIIHFW $ SK\WRWR[LFLW\ LQFOXGH WHPSHUDn WXUH S+ RUJDQLF PDWWHU DQG VRLO VROXWLRQ FRQFHQWUDWLRQV RI $O &D 0J DQG 3 5KXH DQG *URJDQ f $OO WUHDWPHQWV ZHUH LQ WKH VDPH WKHUPDO HQYLURQPHQW ZLWK DLU WHPSHUDWXUHV GXULQJ WKH G UDQJLQJ IURP WR r& DQG DYHUDJLQJ r& 7KH S+ YDOXHV RI $ODPHQGHG VRLOV ZHUH ORZHU WKDQ WKDW RI WKH FRQWURO S+ f EHLQJ OHVV WKDQ S+ 7DEOH f 6LQFH D ODUJH SRUWLRQ RI WKH DGGHG $O ZDV LQ VROXEOH IRUP WKH HIIHFW RI $O VKRXOG EH PXFK ODUJHU WKDQ WKDW RI S+ $OVR WKH S+ YDOXHV ZHUH VLPLODU DQG f DFURVV WKH WKUHH $O WUHDWPHQWV 7KHUHIRUH S+ RI WKH $OWUHDWHG VRLOV ZDV SUREDEO\ QRW WKH PDLQ FDXVH RI WKH VLJQLILFDQW GLIIHUHQFHV LQ URRW GHQVLWLHV 7KH (&J YDOXHV UDQJHG IURP WR G6 PA 7DEOH f &LWUXV URRW JURZWK VKRXOG QRW EH VLJQLILFDQWO\ DIIHFWHG E\ (&J OHYHOV

PAGE 100

7DEOH )LEURXV FLWUXV ‘URRW JURZWK LQ LPSODQW EDJV RI VRLO GP f DIWHU G DV UHODWHG WR WUHDWPHQW 3ULPDU\ URRWV 6HFRQGDU\ URRWV 7RWDO 7UHDWPHQW 1XPEHU /HQJWK 1XPEHU /HQJWK 5RRW GHQVLW\ URRWOHQJWK GHQVLW\ 5RRWV EDJ A FP URRW 5RRWV EDJ A FP URRW 5RRWV FP A FP GP A &RQWURO i E E F E E E $O D E D E D D $O DE E E E D E $O F F G D E F /LPH D D E E DE D W $YHUDJH VHFRQGDU\ URRW GHQVLW\ LV WKH QXPEHU RI VHFRQGDU\ URRWV SHU XQLW OHQJWK RI SULPDU\ URRWV $YHUDJH URRWOHQJWK GHQVLW\ LV WKH WRWDO OHQJWK RI SULPDU\ VHFRQGDU\ DQG WHUWLDU\ URRWV SHU XQLW YROXPH RI VRLOV i 0HDQV IROORZHG E\ WKH VDPH OHWWHU LQ D FROXPQ DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW 3 E\ 'XQFDQnV PXOWLSOHUDQJH WHVW

PAGE 101

LQ WKLV UDQJH %RD] f 7KH RUJDQLF PDWWHU FRQWHQW RI WKH VXUURXQGLQJ VRLO ZDV DOVR ORZ 7DEOH f $OO RI WKH LPSRUWDQW HOHPHQWV H[FHSW $ KRZHYHU ZHUH DVVXPHG WR EH LQ DGHTXDWH VXSSO\ EHFDXVH WKH VDPH DPRXQWV RI QXWULHQWV ZHUH DSSOLHG WR DOO WUHDWPHQWV )RU WKH $OWUHDWHG VRLOV FRQFHQWUDWLRQV RI &D 0J DQG 3 LQ VRLO VDWXUDWLRQ H[WUDFWV ZHUH TXLWH VLPLODU UDQJLQJ IURP WR WR DQG WR PJ / r UHVSHFWLYHO\ 7KXV FRQFHQWUDWLRQV RI WKHVH HOHPHQWV VKRXOG QRW KDYH VLJQLILFDQWO\ LQIOXHQFHG WKH HIIHFWV RI $ RQ URRW JURZWK 5DWKHU $ VXSSO\ SHU VH DSSHDUHG WR EH WKH PDLQ FDXVH RI LQFUHDVHV RU GHFUHDVHV LQ URRW GHQVLW\ IRU WKH $O DPHQGHG VRLOV 7KH IUDFWLRQ RI VRLO $ LQ WKH VRLO VROXWLRQ GLUHFWO\ DIIHFWV URRW JURZWK ,Q WKH SUHVHQW VWXG\ ERWK WKH (&(& DQG WKH H[FKDQJHn DEOH $ OHYHO RI WKH VRLO ZHUH ORZ 7KH RUJDQLF & FRQWHQW RI WKH VRLO ZDV VR ORZ WKDW WKH RUJDQLFPDWWHUERXQG FRQWHQW RI $ ZRXOG KDYH EHHQ VPDOO 7KXV XQGHU WKH FRQGLWLRQV RI WKLV VWXG\ D ODUJH SRUWLRQ RI WKH DGGHG $ UHPDLQHG LQ WKH VRLO VROXWLRQ DV HYLGHQFHG E\ $ LQ WKH VDWXUDWHG VRLO H[WUDFWV 7DEOH f $OXPLQXP LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV VKRXOG EH FORVHO\ UHODWHG WR FLWUXV URRW JURZWK (IIRUWV WR UHODWH SK\WRWR[LFLW\ WR D FHUWDLQ VSHFLHV RI $ LQ WKH VRLO VROXWLRQ KDYH PHW ZLWK YDULDEOH GHJUHHV RI VXFFHVV 7KHUH LV QR FOHDU FRQVHQVXV RQ ZKLFK VSHFLHV $OA K\GUR[\$O PRQRPHUV RU K\GUR[\$O SRO\PHUVf GRPLQDWHV SK\WRWR[LFLW\ $OYD HW DO 3DUNHU HW DO f ,Q RWKHU VWXGLHV URRW JURZWK LQ DFLG VRLOV ZDV VLJQLILFDQWO\ UHODWHG WR WRWDO $O FRQFHQWUDWLRQ LQ WKH VRLO VROXWLRQ 5DJODQG DQG &ROHPDQ $GDPV DQG /XQG %UHQHV DQG

PAGE 102

3HDUVRQ 3DYDQ HW DO :ULJKW HW DO f ,Q WKH SUHVHQW VWXG\ RUJDQLF PDWWHU FRQWHQW RI WKH VRLOV ZDV ORZ DQG WKH UDQJH LQ S+ RI WKH $OWUHDWHG VRLOV ZDV QDUURZ WR f ,Q DGGLWLRQ VDWXUDWLRQ H[WUDFWV RI $OWUHDWHG VRLO KDG VLPLODU FRQFHQ WUDWLRQV RI 62A DQG ) ZKLFK VHHP WR DPHOLRUDWH WR[LFLW\ E\ FRPSOH[LQJ $O &DPHURQ HW DO .LQUDLGH DQG 3DUNHU f 7KXV FRQFHQWUDWLRQV RI $OA RU K\GUR[\$O VKRXOG EH KLJKO\ FRUUHn ODWHG ZLWK WRWDO $O FRQFHQWUDWLRQ 7KHUHIRUH QR PDWWHU ZKDW VSHFLHV RI $O GRPLQDWHV SK\WRWR[LFLW\ WKH WRWDO $O FRQFHQWUDWLRQV LQ VRLO VDWXUDWLRQ H[WUDFWV VKRXOG KDYH SURYLGHG D JRRG UHODWLYH LQGLFDWRU RI OHYHOV RI WR[LF $O VSHFLHV WKDW SRWHQWLDOO\ DIIHFW FLWUXV URRW JURZWK LQ WKLV VWXG\ (IIHFWV RI $O FRQFHQWUDWLRQV LQ VRLO VDWXUDWLRQ H[WUDFWV RQ ILEURXV URRWOHQJWK GHQVLW\ DUH VKRZQ LQ )LJ $OXPLQXP FRQFHQ WUDWLRQ LQ WKH FRQWURO ZDV VR ORZ > PJ / LH $Of @ WKDW WKLV FRQFHQWUDWLRQ ZRXOG QRW SURGXFH DQ\ EHQHILFLDO RU WR[LF HIIHFW RQ FLWUXV URRW JURZWK /LHELJ HW DO f 7KHUHIRUH WKH URRWOHQJWK GHQVLW\ RI WKLV WUHDWPHQW ZDV WDNHQ DV D FRQWURO :KHQ $O FRQFHQWUDWLRQ ZDV PJ / r WKH URRWOHQJWK GHQVLW\ ZDV DOPRVW WZLFH DV KLJK DV WKDW IRU WKH FRQWURO :KHQ $O FRQFHQWUDWLRQ LQFUHDVHG WR PJ / r WKH URRWOHQJWK GHQVLW\ GHFUHDVHG EXW ZDV VWLOO VRPHZKDW KLJKHU WKDQ WKDW IRU WKH FRQWURO +RZHYHU ZKHQ $O FRQFHQWUDWLRQ LQFUHDVHG WR PJ / ? URRWOHQJWK GHQVLW\ GHFUHDVHG WR DERXW ; RI WKH YDOXH IRU WKH FRQWURO 7KH $O FRQFHQWUDWLRQ DW ZKLFK WKH URRWOHQJWK GHQVLW\ ZDV HTXDO WR WKDW RI WKH FRQWURO ZDV FRQVLGHUHG D FULWLFDO $O FRQFHQWUDWLRQ ,Q RUGHU WR JHW WKH FULWLFDO YDOXH D UHJUHVVLRQ HTXDWLRQ ZDV FDOFXODWHG %HWZHHQ WKH FRQWURO DQG

PAGE 103

(IIHFWV RI $O FRQFHQWUDWLRQ $O PJ / f LQ VRLO VDWXUDWLRQAH[WUDFWV RQ ILEURXV URRWOHQJWK GHQVLW\ FP GP &ULWLFDO IO FRQFHQWUDWLRQ ZDV PJ $O / >LH $OfA @ )LJ

PAGE 104

$O WUHDWPHQW URRWOHQJWK GHQVLWLHV LQFUHDVHG EXW WKH FXUYH ZDV XQFHUWDLQ 7KH URRWOHQJWK GHQVLWLHV JUDGXDOO\ GHFUHDVHG IURP WKH $O WR WKH $O WUHDWPHQW WKXV WKH UHJUHVVLRQ HTXDWLRQ ZDV EDVHG RQ WKUHH WUHDWPHQWV $O $ DQG $f )URP )LJ WKH FULWLFDO B X $ YDOXH DSSHDUV WR EH PJ / >LH $Of @ )RU PDWXUH FLWUXV WUHHV ZKHQ $ FRQFHQWUDWLRQ LQ WKH VDWXUDWLRQ H[WUDFW ZDV ORZHU WKDQ PJ / ? $ KDG D EHQHILFLDO HIIHFW RQ ILEURXV URRW JURZWK KLJKHU $ FRQFHQWUDWLRQV GHFUHDVHG URRW JURZWK 7KDZRUXZRQJ DQG 9DQ 'LHVW f IRXQG WKDW \RXQJ VHHGOLQJV ZHUH JHQHUDOO\ PRUH VXVFHSWLEOH WR $ WR[LFLW\ WKDQ ZHUH ROGHU SODQWV 7KH EHQHILFLDO HIIHFWV RI WKH $O DQG $O WUHDWPHQWV ZHUH H[SUHVVHG DV JUHDWHU QXPEHUV RI ERWK SULPDU\ DQG VHFRQGDU\ URRWV DQG LQFUHDVHG DYHUDJH VHFRQGDU\URRW GHQVLW\ 7DEOH f 7KHVH IDFWV LQGLFDWH WKDW PRUH URRWV HQWHUHG WKH EDJ WR JURZ LQ WKH HQYLURQPHQW LQVLGH WKH EDJ DQG WKDW PRUH ODWHUDO URRWV ZHUH SURGXFHG ,W LV XQNQRZQ ZKHWKHU $OLQGXFHG URRW SUROLIHUDWLRQ PLJKW EHQHILW WKH KDUYHVWDEOH SDUW RI WKH SODQW 7KH DYHUDJH OHQJWK RI SULPDU\ DQG VHFRQGDU\ URRWV GLG QRW LQFUHDVH KRZHYHU 7KH DGYHUVH HIIHFWV RI WKH $O WUHDWPHQW ZHUH H[SUHVVHG DV IHZHU SULPDU\ DQG VHFRQGDU\ URRWV DQG D VPDOOHU DYHUDJH OHQJWK RI SULPDU\ URRWV 7KXV IHZHU URRWV JUHZ LQWR WKH EDJ IURP WKH VXUURXQGLQJ HQYLURQPHQW DQG WKH\ SURGXFHG IHZHU ODWHUDO URRWV 7KHVH SULPDU\ URRWV DOVR ZHUH VKRUWHU WKDQ WKRVH RI WKH FRQWURO 7KH URRWV LQ OLPHDPHQGHG VRLOV DSSHDUHG WR EH PRUH YLJRURXV DQG KHDOWKLHU WKDQ WKRVH RI WKH FRQWURO WUHDWPHQW DQG URRWOHQJWK GHQVLW\ ZDV VLJQLILFDQWO\ KLJKHU 7DEOH f 7KH LQFUHDVHG URRW OHQJWK GHQVLW\ GXH WR OLPLQJ DURVH ERWK IURP WKH LQFUHDVHG QXPEHU RI

PAGE 105

SULPDU\ DQG VHFRQGDU\ URRWV DQG LQFUHDVHG DYHUDJH OHQJWK RI SULPDU\ URRWV /LPLQJ DOVR SURGXFHG PRUH WHUWLDU\ URRWV 7KH $ FRQFHQWUDn WLRQV LQ VDWXUDWLRQ H[WUDFWV RI OLPHDPHQGHG VRLO ZHUH ORZHU WKDQ IRU WKH FRQWURO 7DEOH f 7KHUHIRUH WKH DOXPLQXP FRQFHQWUDWLRQV LQ VRLO VROXWLRQV RI OLPHDPHQGHG VRLO SUREDEO\ ZHUH QRW WKH PDLQ FDXVH RI LQFUHDVHG URRWOHQJWK GHQVLW\ 6RPH DXWKRUV KDYH FRQFOXGHG WKDW FLWUXV JURZV EHWWHU QHDU QHXWUDOLW\ WKDQ XQGHU DFLG FRQGLWLRQV +DDV :RUNX HW DO .RR HW DO f 7KH S+ RI WKH OLPH DPHQGHG VRLO KDG EHHQ UDLVHG WR ZKLOH WKH FRQWURO VRLO ZDV 7KXV WKH LQFUHDVHG S+ FRXOG EH WKH PDLQ FDXVH RI LQFUHDVHG URRW OHQJWK GHQVLW\ :KHQ URRW JURZWK RI WKH $O WUHDWPHQW ZDV FRPSDUHG ZLWK WKH OLPH WUHDWPHQW LW VKRZHG WKDW WKH EHQHILFLDO HIIHFW RI $O RQ ILEURXV FLWUXVURRW JURZWK FRXOG EH DV ODUJH DV WKDW RI OLPLQJ 7KH UHVXOWV RI WKLV VWXG\ VXJJHVW WKDW ZKHQ WKH DFWLYH $O OHYHO LQ DQ DFLG VRLO LV EHORZ D FHUWDLQ OHYHO HJ DERXW PJ $O NJ A LQ WKH VDWXUDWHG VRLO H[WUDFWV LQ WKLV VWXG\f WKH EHQHILFLDO HIIHFW RI OLPH LV QRW FDXVHG E\ UHGXFWLRQ RI $O DFWLYLW\ ,QVWHDG OLPH PD\ KDYH HOLPLQDWHG LQKLELWRU\ IDFWRUV UHODWHG WR VRLO S+ RU FRUUHFWHG &D RU 0J GHILFLHQFLHV RU LPSURYHG DYDLODELOLW\ RI RWKHU QXWULHQWV 7KH $O FRQFHQWUDWLRQV RI URRWV LQ WKH $O $O DQG OLPH WUHDWPHQWV ZHUH ORZHU WKDQ WKRVH LQ WKH FRQWURO ZKLOH WKH $O FRQFHQn WUDWLRQV IRU WKH $O WUHDWPHQW ZHUH KLJKHU 7DEOH f $ SRVVLEOH H[SODQDWLRQ IRU WKH ORZHU FRQFHQWUDWLRQV LV WKDW WKH LQFUHDVHG $O RU LQFUHDVHG S+ LQ WKH VRLO JUHDWO\ LQFUHDVHG URRW GU\ PDWWHU WKHUHE\ FDXVLQJ D GLOXWLRQ RI $O FRQFHQWUDWLRQV LQ WKH URRW WLVVXHV 0XQVRQ DQG 1HOVRQ f 7RWDO URRW XSWDNH RI $O SHU EDJ LQ WKH $O

PAGE 106

7DEOH &RQFHQWUDWLRQV RI HOHPHQWV LQ FLWUXV ILEURXV URRWV 7UHDWPHQW &D 0J 3 1D $O )H =Q &X 0Q % J NJ PJ NJ &RQWURO DEW E E D D E D D D D DE $O D DE E D E G E F F F E $O E DE EH D E F F G F F E $O DE D F D D D F FG E E D /LPH D DE D D E G E E E E E W 0HDQV IROORZHG E\ WKH VDPH OHWWHU LQ D FROXPQ DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW 3 E\ 'XQFDQnV PXOWLSOHUDQJH WHVW

PAGE 107

$O DQG OLPH WUHDWPHQWV ZDV PXFK KLJKHU WKDQ WKDW IRU WKH FRQWURO 0HFKDQLVPV IRU WKH EHQHILFLDO HIIHFWV RI $ DUH QRW \HW IXOO\ XQGHUn VWRRG )R\ f 7KH FRQFHQWUDWLRQV RI 1D DQG &X LQ URRWV VKRZHG WUHQGV WKDW ZHUH VLPLODU WR WKDW RI $O ,Q JHQHUDO WKH FRQFHQWUDWLRQV RI =Q )H DQG 0Q LQ URRWV GHFUHDVHG ZLWK LQFUHDVHG DGGLWLRQDO $O LQ WKH VRLO +RZHYHU WKH FRQFHQWUDWLRQV RI &D 0J 3 DQG % LQ URRWV ZHUH VLPLODU IRU DOO ILYH WUHDWPHQWV 'DWD REWDLQHG E\
PAGE 108

EHQHILFLDO HIIHFW RQ JURZWK RI ILEURXV URRWV RI & DXUDQWLXP / VRXU RUDQJH URRWVWRFN $W D FRQFHQWUDWLRQ RI PJ $O / ? URRW GHQVLW\ ZDV DOPRVW WZLFH WKDW RI WKH FRQWURO PJ $O / rf DQG HTXDOOHG WKDW RI WKH OLPH WUHDWPHQW 0RUH URRWV JUHZ LQWR WKH EDJ DQG WKH\ SURGXFHG PRUH ODWHUDO URRWV $OXPLQXP FRQFHQWUDWLRQV LQ URRWV ZHUH ORZHU KRZHYHU WKDQ WKRVH LQ WKH FRQWURO 5RRW JURZWK UHWDUGDWLRQ RFFXUUHG RQO\ ZKHQ $ LQ WKH VDWXUDWLRQ VRLO H[WUDFW H[FHHGHG PJ / ,Q JHQHUDO WKH FRQFHQWUDWLRQV RI =Q )H DQG 0Q LQ URRWV GHFUHDVHG ZLWK LQFUHDVHG $ DSSOLFDWLRQ WR WKH VRLO ZKLOH FRQFHQWUDn WLRQV RI &D 0J 3 DQG % ZHUH XQFKDQJHG

PAGE 109

&+$37(5 9, ())(&76 2) /,0( $1' 3+263+2*<3680 21 ),%5286 &,75865227 *52:7+ $1' 3523(57,(6 2) 7+( %K +25,=21 2) $ 632'262/ ,QWURGXFWLRQ 7KRXVDQGV RI KHFWDUHV RI FLWUXV RQ WKH FHQWUDO )ORULGD ULGJH KDYH EHHQ HOLPLQDWHG GXH WR UHFHQW VHYHUH IUHH]HV 7KHUHIRUH 6RXWK DQG &HQWUDO )ORULGD 6SRGRVROV DUH EHLQJ XVHG LQFUHDVLQJO\ IRU FLWUXV SURGXFWLRQ 7KH GHSWK RI VRLO DYDLODEOH IRU URRW GHYHORSPHQW RI FLWUXV WUHHV LV PXFK OHVV LQ WKH IODWZRRGV 6SRGRVROV WKDQ LQ WKH )ORULGD ULGJH 2XDUW]LSVDPPHQWV '/ 0\KUH XQSXEOLVKHG GDWDf %HFDXVH RI WKLV UHGXFHG URRWLQJ GHSWK IUXLW \LHOGV SHU WUHH DQG SHU KHFWDUH DUH JHQHUDOO\ DERXW SHUFHQW ORZHU RQ WKH IODWZRRGV VRLOV WKDQ RQ WKH ULGJH VRLOV &DOYHUW f 6SRGRVROV LQ WKH 6RXWKHUQ )ORULGD )ODWZRRGV /DQG 5HVRXUFH $UHD &DOGZHOO f DUH JHQHUDOO\ DFLGLF S+ LQ WKH VSRGLF KRUL]RQf 7KH $ FRQFHQWUDWLRQ LQ WKH VRLO VROXWLRQ LQFUHDVHV ZLWK D GHFUHDVH LQ S+ VR WKDW DW S+ $ FRQFHQWUDWLRQV DUH JHQHUDOO\ WR[LF WR SODQWV .DPSUDWK f 6HYHUDO UHVHDUFKHUV +DDV /LHELJ HW DO
PAGE 110

7KH UHGXFHG URRWLQJ GHSWK LQ WKH IODWZRRGV VRLOV LV PRVW OLNHO\ GXH WR KLJK ZDWHU WDEOHV DQG SHUKDSV WR DFLGLW\ LQ WKRVH SRUWLRQV RI WKH VSRGLF KRUL]RQV ZKLFK DUH NHSW DERYH WKH ZDWHU WDEOH E\ DUWLILFLDO GUDLQDJH ,W LV SRVVLEOH WKDW $ WR[LFLW\ PD\ EH RQH RI WKH IDFWRUV LQKLELWLQJ FLWUXVURRW JURZWK LQ %KKRUL]RQ VRLO ,I WKH FKHPLFDO HQYLURQPHQW LQ WKH VXEVRLO RI WKHVH 6SRGRVROV FDQ EH PDGH PRUH IDYRUDEOH IRU URRW JURZWK VRLO URRWLQJ YROXPH DQG IUXLW \LHOG FDQ EH LQFUHDVHG 7KH HIIHFWV RI OLPLQJ DUH SULPDULO\ OLPLWHG WR WKH $S KRUL]RQ RI PDQ\ 6SRGRVROV &DOYHUW HW DO f $FLGLW\ LQ WKH VXEVRLO LV GLIILFXOW WR DOOHYLDWH GXH LQ SDUW WR WKH GLIILFXOW\ RI OLPH SODFHn PHQW DW ORZHU VRLO GHSWKV 3HDUVRQ f &DOYHUW HW DO f PRGLILHG DQ DFLGLF 6SRGRVRO E\ DSSO\LQJ 0J GRORPLWLF OLPH KD A EHIRUH GHHSPL[LQJ RI WKH VRLO WR D GHSWK RI FP 7KLV WUHDWPHQW ZDV UHVSRQVLEOH IRU VLJQLILFDQW FKDQJHV LQ ERWK SK\VLFDO DQG FKHPLFDO SURSHUWLHV RI WKH PL[HG VRLO )LVNHOO DQG &DOYHUW f /LPLQJ GHHSWLOOHG SORWV UHVXOWHG LQ GRXEOLQJ RI WKH FDWLRQ H[FKDQJH FDSDFLW\ LQ WKH FP SURILOH FRPSDUHG WR GHHSWLOODJH DORQH 3KRVSKRJ\SVXP 3*f LV VWRFNSLOHG LQ ODUJH TXDQWLWLHV WKURXJKRXW &HQWUDO DQG 1RUWK )ORULGD ,I 3* FRXOG EH XVHG DV DQ DPHOLRUDQW IRU WKH VXEVRLO DFLGLW\ V\QGURPH VRPH FLWUXV DUHDV FRXOG EHQHILW IURP DSSOLFDWLRQ RI WKLV DPHQGPHQW 7KH XVH RI D VWDWHLQGXVWU\ ZDVWH SURGXFW ZRXOG DOVR DIIRUG WKDW LQGXVWU\ D PHDQV RI GLVSRVLQJ RI D PDWHULDO RWKHUZLVH XQZDQWHG 2QH H[SHULPHQW ZDV LQLWLDWHG LQ LQ D \U ROG JURYH RQ XSODQG ULGJH VRLO $QGHUVRQ f 7KH KLJK UDWH RI 3* DSSOLFDWLRQ 0J KD r RYHU \Uf UHGXFHG WUHH JURZWK FROG WROHUDQFH DQG IUXLW \LHOGV 5HVXOWV RI D UHFHQW

PAGE 111

FROXPQOHDFKLQJ VWXG\ 2DWHV DQG &DOGZHOO f VKRZHG WKDW VXEVWDQWLDO DPRXQWV RI H[FKDQJHDEOH $ FDQ EH UHPRYHG IURP DQ DFLGLF S+ f 3*DPHQGHG VXEVRLO LI DGHTXDWH OHDFKLQJ RFFXUV 6R\EHDQV JURZQ RQ WKLV DPHQGHG VRLO DIWHU OHDFKLQJ KDG VLJQLILFDQWO\ KLJKHU SODQW ZHLJKWV WKDQ VR\EHDQV JURZQ RQ QRQOHDFKHG DPHQGHG VRLO 1R H[SHULPHQWDO GDWD H[LVW KRZHYHU IRU UHFRPPHQGDWLRQ RI VRLO DSSOLFDWLRQ RI 3* WR IODWZRRGV VRLOV XVHG IRU FLWUXV 6LQFH LW LV LPSUDFWLFDO WR DSSO\ DPHQGPHQWV GLUHFWO\ WR WKH %K KRUL]RQ LQSODFH LW ZRXOG EH EHWWHU IRU UHVHDUFK SXUSRVHV WR SODFH VRPH %KKRUL]RQ VRLO LQ WKH VXUIDFH KRUL]RQ ZKHUH WKH HIIHFWV RI WKH DPHQGPHQWV RQ URRW JURZWK FDQ EH PHDVXUHG 7KH LPSODQWHG VRLOPDVV WHFKQLTXH XVHG LQ &KDSWHU 9 RI WKLV GLVVHUWDWLRQ VKRXOG EH VXLWDEOH IRU WKLV SXUSRVH 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR XWLOL]H WKH LPSODQWHG VRLOPDVV WHFKQLTXH WR DVVHVV ILEURXV FLWUXVURRW JURZWK LQ VSRGLF KRUL]RQ VRLO DPHQGHG ZLWK OLPH DQG 3* DQG WR PHDVXUH FKDQJHV LQ $ VWDWXV DQG RWKHU SURSHUWLHV RI VRLOV GXH WR WKH OLPH DQG 3* DPHQGPHQWV XQGHU ILHOG FRQGLWLRQV 0DWHULDOV DQG 0HWKRGV 7KLV H[SHULPHQW ZDV FRQGXFWHG ZLWK WKH LPSODQWHG VRLOPDVV WHFKQLTXH LQ D FLWUXV JURYH &KDUDFWHUL]DWLRQ RI %KKRUL]RQ 6RLO 7KH VRLO XVHG DV LPSODQWHG PDVV LQ WKLV LQYHVWLJDWLRQ ZDV REWDLQHG IURP WKH %K KRUL]RQ RI D 6P\UQD ILQH VDQG $HULH +DSODTXRGf IURP D FLWUXV JURYH LQ WKH IODWZRRGV DUHD RI 'H6RWR &RXQW\ )ORULGD 7KH VRLO ZDV WDNHQ IURP WKH %K KRUL]RQ DIWHU ILUVW UHPRYLQJ WKH

PAGE 112

RYHUO\LQJ $S DQG ( KRUL]RQV 7KH VRLO ZDV NHSW LQ D PRLVW VWDWH DQG SDVVHG WKURXJK D PP VLHYH 6RLO S+ ZDV PHDVXUHG DW D ZDWHUVRLO UDWLR &DOFLXP 0J 3 1D )H =Q &X DQG 0Q ZHUH H[WUDFWHG ZLWK 0 +& DQG 0 +A62A 0HKOLFK f DQG WKH TXDQWLWLHV LQ WKH H[WUDFWV ZHUH GHWHUPLQHG ZLWK LQGXFWLYHO\ FRXSOHG DUJRQ SODVPD ,&$3f HPLVVLRQ VSHFWURVFRS\ 6RLO RUJDQLF PDWWHU ZDV GHWHUPLQHG E\ D PRGLILHG :DONOH\%ODFN SURFHGXUH 1HOVRQ DQG 6RPPHUV f 3RWDVVLXP FKORULGHH[WUDFWDEOH DFLGLW\ H[FKDQJHDEOH $ DQG H[FKDQJHDEOH +f ZDV GHWHUPLQHG E\ D 0 .& PHWKRG 7KRPDV f 7KH VHOHFWHG FKDUDFWHULVWLFV RI WKH VRLO DUH OLVWHG LQ 7DEOH 7KH VRLO ZDV VWURQJO\ DFLGLF DQG KDG D PXFK KLJKHU H[FKDQJHDEOH$O FRQWHQW WKDQ H[FKDQJHDEOH+ FRQWHQW $SSOLFDWLRQ RI $PHQGPHQWV /LPH DQG 3* ZHUH XVHG DV DPHQGPHQWV WR WKH %KKRUL]RQ VRLO 7KH S+ RI WKH 3* ZDV 7KH 3* FRQVLVWHG RI &D 6 3 ) DQG $O ZLWK WKH UHPDLQGHU EHLQJ ERXQG R[\JHQ IUHH ZDWHU DQG LPSXULWLHV $ ORRVHO\ZRYHQ PHVKVDUDQ EDJ ZDV XVHG WR KROG WKH LPSODQWHG %KKRUL]RQ VRLO (DFK EDJ RI VRLO ZHLJKHG DERXW NJ (DFK WUHDWPHQW FRQWURO OLPH DPHQGHG VRLO DQG 3*DPHQGHG VRLOf KDG EDJV RI VRLO 7KH OLPHG VRLO ZDV DPHQGHG ZLWK J &D&2A SHU EDJ ZKLFK ZDV WKH DPRXQW RI OLPH QHHGHG WR EULQJ WKH VRLO S+ WR DV GHWHUPLQHG E\ WKH $GDPV (YDQV EXIIHU OLPHUHTXLUHPHQW WHVW $GDPV DQG (YDQV f 7KH VRLO ZLWK WKH 3* WUHDWPHQW UHFHLYHG D TXDQWLW\ RI 3* HTXDO WR ILYH WLPHV WKH QXPEHU RI $O HTXLYDOHQWV NJ r H[WUDFWHG IURP WKH VRLO E\ 0 .& 7KH DPRXQW RI 3* DGGHG ZDV J SHU EDJ 6RLO ZLWK RU ZLWKRXW WKH

PAGE 113

7DEOH 6HOHFWHG FKHPLFDO FKDUDFWHULVWLFV IRU WKH %K KRUL]RQ RI WKH 6P\UQD ILQH VDQG XVHG IRU LPSODQWV 6RLO SURSHUW\ S+ 2UJDQLF & J NJ 0 .& H[WUDFWDEOH DFLGLW\ 7RWDO FPRO NJ r $ & + 0 +& DQG 0 +f6f &D PJ NJ H[WUDFWDEOH HOHPHQWV 0J 3 1D )H =Q &X 0Q

PAGE 114

DPHQGPHQW LQ HDFK EDJ ZDV PL[HG WKRURXJKO\ DQG GLVWLOOHG ZDWHU ZDV DGGHG WR HDFK EDJ SHULRGLFDOO\ WR NHHS WKH VRLOPRLVWXUH OHYHO DW DSSUR[LPDWHO\ = 7KH VRLO ZDV DOORZHG WR HTXLOLEUDWH ZLWK WKH DPHQGPHQWV IRU G LQ WKH ODERUDWRU\ 3ODFHPHQW DQG &ROOHFWLRQ RI ,PSODQWHG 6RLO0DVV %DJV $ W\SLFDO FLWUXV JURYH ZLWK \U ROG WUHHV +DPOLQ >&B VLQHQLV /f 2VEHFN@6RXU RUDQJH >&B DXUDQWLXP /f@ LQ 'H6RWR &RXQW\ )ORULGD ZDV VHOHFWHG IRU WKH VWXG\ 7KH H[SHULPHQW ZDV FRQGXFWHG DFFRUGLQJ WR D VSOLWSORW GHVLJQ ZLWK D UDQGRPL]HG FRPSOHWHEORFN DUUDQJHPHQW RI WKH ZKROHSORW IDFWRU IRXU VDPSOLQJ GDWHVf 7KH VXESORW IDFWRU ZDV WKUHH WUHDWPHQWV FRQWURO OLPHDPHQGHG VRLO DQG 3*DPHQGHG VRLOf )RUW\ KHDOWK\DSSHDULQJ WUHHV ZHUH VHOHFWHG DQG GLYLGHG LQWR EORFNV (DFK RI IRXU WUHHV LQ HDFK EORFN ZDV VHOHFWHG IRU HDFK RI IRXU VDPSOLQJ GDWHV 7KUHH KROHV FP GHHS DQG FP GLDPHWHUf ZHUH GXJ QHDU HDFK WUHH ZLWK D SRVWKROH GLJJHU RQH IRU HDFK RI WKUHH WUHDWPHQWV (DFK RI WKH WKUHH KROHV ZDV DERXW P DSDUW DQG DERXW P IURP WKH WUHH WUXQN $ EDJ FRQWDLQLQJ WKH VRLO ZDV SODFHG LQ HDFK KROH 7KH EDJ ZDV SODFHG ILUPO\ DJDLQVW WKH IDFH RI WKH KROH RQ WKH VLGH WRZDUG WKH WUHH WUXQN 6RPH RULJLQDO WRS VRLO UHPRYHG IURP WKH KROH ZDV WDPSHG ILUPO\ DURXQG WKH EDJ 7KH EDJV ZHUH OHIW RSHQ DW WKH VRLO VXUIDFH WR DOORZ ZDWHU PRYHPHQW LQWR DQG WKURXJK WKH VRLO LQ WKH EDJ $OO RI WKH KROHV ZHUH GXJ DQG DOO RI WKH EDJV ZHUH LQVWDOOHG LQ WKH KROHV RQ 0D\ ]HUR Gf 7KH DUHDV XQGHU WKH WUHHV DQG ZLWKLQ P RI WKH KROHV ZHUH NHSW IUHH RI DQ\ XQGHUVWRU\ YHJHWDWLRQ WR PLQLPL]H LQYDVLRQ RI WKH VRLO EDJV E\ QRQFLWUXV URRWV 7KH IRXU EDJUHPRYDO GDWHV ZHUH -XO\ Gf

PAGE 115

$XJXVW Gf 6HSWHPEHU Gf DQG 2FWREHU Gf 7KH URRWV DURXQG WKH RXWVLGH RI WKH EDJV ZHUH FXW RII ZLWK D ORQJ NQLIH DQG WKHQ WKH EDJV ZHUH UHPRYHG IURP WKH KROHV (DFK EDJ ZDV WULPPHG RI SURWUXGLQJ URRWV DQG VDPSOHV ZHUH WKHQ SODFHG LQ VHSDUDWH SODVWLF EDJV WR SUHYHQW VRLO ORVV GXULQJ WUDQVSRUW 0HDVXUHPHQW RI 5RRWV DQG $QDO\VLV RI ,PSODQWHG 6RLO $IWHU HDFK VDPSOLQJ WKH URRWOHQJWK GHQVLW\ FP URRW FP VRLOf IRU HDFK EDJ ZDV PHDVXUHG E\ WKH OLQHLQWHUVHFW PHWKRG 7HQQDQW f DQG WRWDO URRW ZHLJKW ZDV GHWHUPLQHG 6RLO S+ .&OH[WUDFWDEOH DFLGLW\ H[FKDQJHDEOH $O DQG H[FKDQJHDEOH + ZHUH GHWHUPLQHG DV WKH\ KDG EHHQ DW WKH VWDUW RI WKH H[SHULPHQW (OHFWULFDO FRQGXFWLYLW\ (&Jf LQ WKH VDWXUDWLRQ H[WUDFW 5KRDGHV f %D&OA7($ S+ f H[FKDQJH WRWDO DFLGLW\ 7KRPDV f DQG LRQV LQ WKH VDWXUDWLRQ H[WUDFW 5KRDGHV f ZHUH DOVR GHWHUPLQHG )RU WKH IRXUWK VDPSOLQJ VRLO &(& E\ 0 1+A2$F S+ f ZDV GHWHUPLQHG DV ZHOO &KDSPDQ f 6ROXEOH &Df IURP WKH OLPH DQG 3* ZHUH KLJK UHVXOWLQJ LQ PXFK KLJKHU H[FKDQJHDEOH &D FRQWHQWV LQ WKH OLPH DQG 3*DPHQGHG VRLO WKDQ LQ WKH FRQWURO 7KHUHIRUH WKH HIIHFWLYH FDWLRQ H[FKDQJH FDSDFLW\ LH WKH VXP RI H[FKDQJHDEOH $O 0 .&f DQG H[FKDQJHDEOH EDVHV DQG &(& DV WKH VXP RI H[FKDQJH WRWDO DFLGLW\ %D&OA7($ S+ f DQG H[FKDQJHDEOH EDVHV ZHUH QRW UHOLDEOH GDWD QRW VKRZQf 7KH YDOXHV RI &(& GHWHUPLQHG E\ 0 1+A2$F S+ f DUH SUHVHQWHG DOWKRXJK WKHUH PD\ EH HUURU GXH WR WKH FRPSHWLWLRQ RI &D ZLWK 1+A IRU VRPH H[FKDQJH VLWHV RQ WKH VRLO

PAGE 116

5HVXOWV DQG 'LVFXVVLRQ )LEURXV5RRW *URZWK LQ WKH %DJV RI 6RLO 7KH PHDQ URRWOHQJWK GHQVLWLHV RI WKUHH WUHDWPHQWV IRU HDFK RI IRXU VDPSOLQJV DUH VKRZQ LQ )LJ 7KH GHQVLW\ YDULDWLRQV IRU WKH FRQWURO RU 3*DPHQGHG VRLOV DPRQJ IRXU VDPSOLQJ GDWHV PLJKW EH GXH WR YDULDWLRQV LQ SK\VLRORJLFDO URRW JURZWK GXULQJ GLIIHUHQW SHULRGV DQG DOVR WR YDULDWLRQV LQ HQYLURQPHQWDO FRQGLWLRQV VXFK DV UDLQIDOO DQG WHPSHUDWXUH 7KH RUWKRJRQDO FRQWUDVWV RI WKH PHDQ URRWOHQJWK GHQVLWLHV DUH OLVWHG LQ 7DEOH 7KH DQDO\VLV RI URRW ZHLJKW VKRZHG WKH VDPH UHVXOWV DV URRWOHQJWK GHQVLW\ EHFDXVH WKHUH ZDV D KLJKO\ VLJQLILFDQW SRVLWLYH FRUUHODWLRQ EHWZHHQ URRW ZHLJKW DQG URRW OHQJWK U 3 f 7DEOH $f 1R VLJQLILFDQW GLIIHUHQFH RFFXUUHG EHWZHHQ WKH FRQWURO DQG WKH OLPHDPHQGHG VRLO DW WKH ILUVW EDJUHPRYDO GDWH +RZHYHU IRU WKH QH[W WKUHH GDWHV OLPHDPHQGHG VRLO KDG KLJKHU PHDQURRW GHQVLWLHV WKDQ WKH FRQWURO ,Q JHQHUDO WKH OLPH DPHQGPHQW VLJQLILFDQWO\ LPSURYHG URRW JURZWK $W WKH ILUVW GDWH WKH URRWOHQJWK GHQVLW\ RI 3*DPHQGHG VRLO ZDV VLJQLILFDQWO\ ORZHU WKDQ WKDW RI WKH FRQWURO $W WKH VHFRQG DQG IRXUWK GDWHV WKH\ ZHUH VLPLODU WR HDFK RWKHU $W WKH WKLUG GDWH WKH URRW GHQVLW\ RI 3*DPHQGHG VRLO ZDV VLJQLILFDQWO\ KLJKHU WKDQ WKDW RI WKH FRQWURO 'XULQJ WKH IRXU URRWJURZWK SHULRGV PHDQ GDLO\ UDLQIDOO DYHUDJHG DQG PP UHVSHFWLYHO\ 7DEOH $f 7KH KLJK PHDQ UDLQIDOO RI WKH WKLUG JURZWK SHULRG PLJKW KDYH FDXVHG KLJKHU URRWOHQJWK GHQVLW\ IRU WKH 3*DPHQGHG VRLO EHFDXVH RI WKH $ OHDFKLQJ HIIHFW 2DWHV DQG &DOGZHOO f ,Q JHQHUDO WKH 3*DPHQGPHQW GLG QRW KDYH DQ\ GHWULPHQWDO RU EHQHILFLDO HIIHFW RQ ILEURXV FLWUXVURRW JURZWK

PAGE 117

5227 /(1*7+ '(16,7< FP FPf *52:7+ 3(5,2' Gf )LJXUH 0HDQ URRWOHQJWK GHQVLWLHV IRU WKUHH WUHDWPHQWV DW IRXU VDPSOLQJ SHULRGV

PAGE 118

7DEOH &RQWUDVWV IRU URRWOHQJWK GHQVLW\ DV DIIHFWHG E\ OLPH DQG SKRVSKRJ\SVXP e3*f DPHQGPHQWV WR WKH %K KRUL]RQ RI D 6P\UQD ILQH VDQG 6DPSOLQJ WLPH VW QG UG WK &RQWUDVW RI PHDQ URRWOHQJWK GHQVLW\ &RQWURO YV OLPH &RQWURO YV 3* 352% ) 2YHUDOO VDPSOHV RI IRXU GDWHV

PAGE 119

6HOHFWHG &KHPLFDO 3URSHUWLHV RI WKH 6RLOV 7KH YDOXHV RI S+ (&H .&OH[WUDFWDEOH DFLGLW\ H[FKDQJHDEOH $O H[FKDQJHDEOH + DQG %D&A7($ H[FKDQJH WRWDO DFLGLW\ IRU HDFK WUHDWPHQW ZHUH VLPLODU LH QRW VLJQLILFDQWO\ GLIIHUHQW 3 f IRU HDFK RI WKH IRXU KDUYHVW GDWHV 7DEOH $f 7KH FRQWUDVWV RI WKHVH SURSHUWLHV EHWZHHQ FRQWURO DQG OLPHDPHQGHG VRLO DQG EHWZHHQ FRQWURO DQG 3*DPHQGHG VRLO DOVR HVVHQWLDOO\ UHPDLQHG WKH VDPH IRU HDFK RI WKH IRXU KDUYHVW GDWHV 7KH VRLOSURSHUW\ PHDQV IRU WKH IRXU GDWHV DORQJ ZLWK WKH FRQWUDVWV EHWZHHQ WKHP DUH OLVWHG LQ 7DEOH 7KH (& YDOXHV RI WKH OLPHDPHQGHG VRLO DQG RI WKH FRQWURO ZHUH H VLPLODU ZKLOH WKH (&J RI WKH 3*DPHQGHG VRLO ZDV VLJQLILFDQWO\ KLJKHU 3 f WKDQ WKDW RI WKH FRQWURO 7KH KLJK (&A RI WKH 3*DPHQGHG VRLO PLJKW KDYH EHHQ GXH WR WKH KLJK VROXEOH&D DQG VXOIDWH FRQWHQWV RI 3* ZKLFK DGGHG J &D DQG J 6A WR HDFK NJ RI VRLO $FFRUGLQJ WR %RD] f FLWUXVURRW JURZWK LV QRW VLJQLILFDQWO\ DIIHFWHG E\ (&J OHYHOV XS WR G6 P A 7KH YDOXHV IRU &(& GHWHUPLQHG E\ 0 1+A2$F S+ f ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW DPRQJ WKH WKUHH WUHDWPHQWV $SSOLFDWLRQ RI OLPH UDLVHG VRLO S+ IURP WR DQG VLJQLILFDQWO\ UHGXFHG H[FKDQJHDEOH$O FRQWHQW H[FKDQJHDEOH+ FRQWHQW .&OH[WUDFWDEOH DFLGLW\ %D&OA7($ H[FKDQJH WRWDO DFLGLW\ DQG $O VDWXUDWLRQ 7KHVH LPSURYHG FRQGLWLRQV DSSHDUHG WR EH IDYRUDEOH WR ILEURXV FLWUXVURRW JURZWK 7KH H[FKDQJHDEOH$O FRQWHQW LQ OLPHDPHQGHG VRLO ZDV PXFK OHVV WKDQ WKDW LQ WKH FRQWURO 7KLV UHGXFWLRQ LQ H[FKDQJHDEOH$O FRQWHQW SUREDEO\ FDXVHG KLJKHU URRW GHQVLW\ LQ OLPHDPHQGHG VRLO WKDQ LQ WKH FRQWURO 7KH 3*DPHQGHG VRLO KDG ORZHU S+ DQG KLJKHU

PAGE 120

7DEOH &RQWUDVWV RI VHOHFWHG FKHPLFDO SURSHUWLHV RI WKH VRLOV IRXU GDWHVf 0HDQ Q f 352% ) &RQWURO /LPH 3* &RQWURO YV /LPH &RQWURO YV 3* S+ (& G6 P f H f§ FPROA NJ W &(& .&OH[WUDFWDEOHr DFLGLW\ ([FK $Or ([FK +r %D&Of7($ H[FK WRWDO DFLGLW\ = $ VDWXUDWLRQr r2QO\ GDWD RI WKH IRXUWK KDUYHVW Q f .&OH[WUDFWDEOH DFLGLW\ ([FK $ ([FK +

PAGE 121

H[FKDQJHDEOH$O FRQWHQW WKDQ GLG WKH FRQWURO ZKLOH ERWK KDG VLPLODU H[FKDQJHDEOH+ FRQWHQW .&OH[WUDFWDEOH DFLGLW\ %D&OA7($ H[FKDQJH WRWDO DFLGLW\ DQG $ VDWXUDWLRQ 7KH RULJLQDO S+ RI WKH %KKRUL]RQ VRLO XVHG IRU DOO WKUHH WUHDWPHQWV ZDV 7DEOH f $IWHU G XQGHU WKH VXUIDFHVRLO FRQGLWLRQV RI D JURYH WKH S+ RI QRQDPHQGHG VRLO ZDV UDLVHG WR E\ R[LGDWLRQ DQG OHDFKLQJ 7KH S+ RI WKH 3* ZDV DQG WKLV ORZ S+ KDG D VWURQJ HIIHFW RQ VRLO S+ 7KH KLJK FRQFHQWUDWLRQV RI VROXEOH VDOWV GXH WR DSSOLHG 3* 7DEOH f PLJKW DOVR KDYH HIIHFWV RQ VRLO S+ 7KHUHIRUH WKH S+ RI WKH 3*DPHQGHG VRLO VKRZHG OHVV RI DQ LQFUHDVH WKDQ WKDW RI WKH FRQWURO DIWHU G 7KH RULJLQDO H[FKDQJHDEOH$O FRQWHQW RI WKH %KKRUL]RQ VRLO ZDV FPROF NJ r 7DEOH f $IWHU G WKH H[FKDQJHDEOH$O FRQWHQW RI WKH QRQDPHQGHG VRLO GHFUHDVHG WR OHVV WKDQ FPRO F NJ 7KH WRWDO UDLQIDOO RI PP RFFXUUHG RQ G GXULQJ WKH G SHULRG 7DEOH $f 7KH GHFUHDVH LQ H[FKDQJHDEOH $ IRU WKH FRQWURO VRLO WKXV PLJKW KDYH EHHQ SDUWLDOO\ GXH WR OHDFKLQJ 7KH H[FKDQJHn DEOH$O FRQWHQW RI WKH 3*DPHQGHG VRLO DOVR GHFUHDVHG DIWHU G WKRXJK LW GLG QRW GHFUHDVH DV PXFK DV IRU WKH QRQDPHQGHG VRLO 7KH KLJKHU H[FKDQJHDEOH$O FRQWHQW IRU WKH 3*DPHQGHG VRLO FRPSDUHG WR WKH QRQDPHQGHG VRLO PLJKW EH GXH WR WKH ORZHU S+ RI WKH 3*DPHQGHG VRLO 7DEOH f $QRWKHU VRXUFH RI H[FKDQJHDEOH $ IRU 3*DPHQGHG VRLO PLJKW KDYH EHHQ WKH $ FRQWHQW RI WKH 3* LWVHOI ZKLFK DGGHG DQRWKHU FPRO $ NJ A RI VRLO +LJKO\VLJQLILFDQW SRVLWLYH FRUUHODWLRQV H[LVWHG EHWZHHQ .&O H[WUDFWDEOH DFLGLW\ DQG H[FKDQJHDEOH$O FRQWHQWV ZLWKLQ DOO WKUHH WUHDWPHQWV DQG DFURVV DOO WUHDWPHQWV 7DEOH f %HFDXVH

PAGE 122

7DEOH &RQWUDVWV RI VRPH LRQV LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV IRXU GDWHVf ,RQV 0HDQ Q f 352% ) &RQWURO /LPH 3* &RQWURO YV /LPH &RQWURO YV 3* O PJ NJ VRLO 3 &D 0J 1D &O 12

PAGE 123

7DEOH &RHIILFLHQWV RI GHWHUPLQDWLRQ Uf EHWZHHQ DFLGLW\ DQG H[FKDQJHDEOH $ IRXU GDWHVf $FLGLW\ &RQWURO Q f /LPH Q f 3* Q f 7RWDO Q f U rrr rrr rrr rrr .&OH[WUDFWDEOH DFLGLW\ rrr r rr rrr %D&OA7($ H[FKDQJH 16W WRWDO DFLGLW\ nNnNfN 6LJQLILFDQW DW WKH OHYHO W 16 QRW VLJQLILFDQW

PAGE 124

,OO H[FKDQJHDEOH+ FRQWHQW ZDV PXFK OHVV WKDQ H[FKDQJHDEOH$O FRQWHQW 7DEOH f .&OH[WUDFWDEOH DFLGLW\ ZDV PDLQO\ UHSUHVHQWHG E\ H[FKDQJHDEOH$O FRQWHQW +LJKO\VLJQLIOHDQW SRVLWLYH FRUUHODWLRQV DOVR RFFXUUHG EHWZHHQ %D&A7($ H[FKDQJH WRWDO DFLGLW\ DQG H[FKDQJHn DEOH$O FRQWHQWV IRU WKH FRQWURO DQG 3*DPHQGHG VRLOV 6RPH ,RQV LQ WKH 6DWXUDWLRQ ([WUDFWV RI 6RLOV $SSOLFDWLRQ RI OLPH GLG QRW VLJQLILFDQWO\ DIIHFW 3 OA32A DQG +32 f &D 1D RU &O FRQWHQWV RI WKH VDWXUDWLRQ H[WUDFWV ZKHUHDV OLPH VLJQLILFDQWO\ UHGXFHG DQG 0J FRQWHQWV DQG LQFUHDVHG 12A FRQWHQW 7DEOH f 7KH GHFUHDVH RI DQG 0J FRQWHQWV LQ OLPHDPHQGHG VRLO PD\ KDYH EHHQ SDUWLDOO\ GXH WR UHSODFHPHQW E\ &D IURP WKH OLPH ZLWK UHSODFHG DQG 0J WKHQ EHLQJ OHDFKHG LQWR VRLO EHQHDWK WKH EDJV 'DQFHU HW DO f IRXQG WKDW LQFUHDVHG S+ GXH WR OLPLQJ IDYRUHG QLWULILFDWLRQ ZKLFK UHVXOWHG LQ DQ LQFUHDVH RI 12A FRQWHQW IRU WKH OLPHDPHQGHG VRLO $SSOLFDWLRQ RI 3* GLG QRW VLJQLILFDQWO\ DIIHFW 1D RU 12A FRQWHQWV RI WKH VDWXUDWLRQ H[WUDFWV WKRXJK LW VLJQLILFDQWO\ UHGXFHG 3 +A32A DQG +32A f DQG &O FRQWHQWV DQG LQFUHDVHG &D DQG 0J FRQWHQWV 7KH GHFUHDVH RI 3 +"3A DQG +32A f FRQWHQW PLJKW EH GXH WR WKH LQWHUDFWLRQ EHWZHHQ 3 +f3 DQG +32 f DQG $O EHFDXVH PRUH $O ZDV UHSODFHG E\ &D IRU WKH 3*DPHQGHG VRLO WKDQ IRU WKH QRQ DPHQGHG VRLO DOWKRXJK VRPH $OA PLJKW EH FRPSOH[HG ZLWK ) $SSOLn FDWLRQ RI 3* UHVXOWHG LQ DQ DGGLWLRQ RI PJ ) NJ A RI VRLO 6RPH &O ZRXOG EH UHSODFHG E\ ) LQ WKH 3*DPHQGHG VRLO DQG VXEVHTXHQWO\ OHDFK LQWR VRLO EHQHDWK WKH EDJV $ VXEVWDQWLDO DPRXQW RI VROXEOH &D IURP WKH 3* DSSOLHG WR WKH VRLO UHVXOWHG LQ D VLJQLILFDQW LQFUHDVH LQ &D RI WKH VDWXUDWLRQ H[WUDFW 7KH &D FRQFHQWUDWLRQ RI 3*

PAGE 125

DPHQGHG VRLO ZDV PXFK KLJKHU WKDQ WKDW RI WKH FRQWURO RU OLPHDPHQGHG VRLO 0XFK PRUH 0J ZDV UHSODFHG E\ &D IRU WKH 3*DPHQGHG VRLO WKDQ IRU WKH QRQDPHQGHG DQG OLPHDPHQGHG VRLOV DQG VRPH 0J PLJKW QRW KDYH EHHQ OHDFKHG LQWR WKH VRLO EHQHDWK WKH EDJ LQ WKH UHODWLYHO\ VKRUW HQVXHLQJ SHULRG Gf 6XPPDU\ DQG &RQFOXVLRQV 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH WR DVVHVV FLWUXV ILEURXVURRW JURZWK LQ %K KRUL]RQ RI D 6SRGRVRO DPHQGHG ZLWK OLPH DQG SKRVSKR J\SVXP 3*f DQG WR PHDVXUH FKDQJHV LQ $ VWDWXV DQG RWKHU SURSHUWLHV RI VRLOV GXH WR OLPH DQG 3* DPHQGPHQWV $Q LPSODQWHG VRLOPDVV WHFKQLTXH ZDV HPSOR\HG WR SODFH VRPH %KKRUL]RQ VRLO LQ WKH VXUIDFH KRUL]RQ RI D FLWUXV JURYH 7KH PL[WXUH SODFHG LQ WKH PHVK EDJV FRQVLVWHG RI %KKRUL]RQ VRLO RI D 6P\UQD ILQH VDQG $HULH +DSODTXRGVf ZLWK DQ LQLWLDO S+ RI DQG DPHQGHG ZLWK HLWKHU OLPH VRLO S+ DGMXVWHG WR f RU 3* ILYH WLPHV WKH QXPEHU RI HTXLYDOHQWV RI $ H[WUDFWHG ZLWK 0 .&f (DFK RI WKH WKUHH WUHDWPHQWV FRQWURO OLPH DQG 3*f ZDV UHSOLFDWHG WLPHV DW HDFK KDUYHVW 7KH EDJV ZHUH UHPRYHG DIWHU DQG G 6RLO DFLGLW\ ZDV PDLQO\ GXH WR H[FKDQJHDEOH $ LQ WKH QRQ DPHQGHG VRLO DQG DOVR LQ WKH OLPH DQG 3*DPHQGHG VRLOV $SSOLFDWLRQ RI OLPH WR %KKRUL]RQ VRLO VLJQLILFDQWO\ LQFUHDVHG ILEURXV FLWUXV URRW JURZWK &RPSDUHG WR QRQDPHQGHG VRLO WKH VRLO DPHQGHG ZLWK OLPH KDG KLJKHU S+ ORZHU VRLO DFLGLW\ DQG ORZHU H[FKDQJHDEOH $ DQG f§ $ VDWXUDWLRQ DV ZHOO DV KLJKHU 1A DQG ORZHU DQG 0Ja FRQWHQWV LQ WKH VDWXUDWLRQ H[WUDFW $SSOLFDWLRQ RI 3* WR %KKRUL]RQ VRLO KDG QR VLJQLILFDQW HIIHFW RQ FLWUXV ILEURXVURRW JURZWK 7KH VRLO

PAGE 126

DPHQGHG ZLWK 3* KDG ORZHU S+ KLJKHU VDOLQLW\ DQG H[FKDQJHDEOH $O DQG KLJKHU &D DQG 0J DQG ORZHU 3 +A32A DQG +32A f DQG &O FRQWHQWV LQ WKH VDWXUDWLRQ H[WUDFW WKDQ WKH QRQDPHQGHG VRLO ,W VHHPHG WKDW 3*DPHQGHG %KKRUL]RQ VRLO DIWHU KHDY\ OHDFKLQJ ZRXOG KDYH LQFUHDVHG URRW JURZWK +RZHYHU WKH SUREDELOLW\ WKDW FLWUXV JURYHV ZRXOG DGDSW WR 3*DSSOLFDWLRQ ZRXOG EH GHWHUPLQHG ODUJHO\ E\ ORQJWHUP HIIHFWV RI 3* RQ VRLOV FLWUXV \LHOG LQFUHDVH DQG HFRQRPLF FRQVLGHUDWLRQV ZKLFK ZHUH EH\RQG WKH VFRSH RI WKLV SURMHFW

PAGE 127

&+$37(5 9,, 29(5$// 6800$5< $1' &21&/86,216 $OXPLQXP SK\WRWR[LFLW\ PD\ EH D JURZWKOLPLWLQJ IDFWRU IRU FLWUXV URRWV JURZLQJ LQ DFLG VRLOV )RXU H[SHULPHQWV ZHUH FRQGXFWHG LQ WKLV GLVVHUWDWLRQ WR LQYHVWLJDWH WKH HIIHFWV RI $ RQ JURZWK RI FLWUXV URRWV LQ VROXWLRQ DQG VRLO V\VWHPV &KDSWHU ,,, GLVFXVVHV WKH SUHSDUDWLRQ RI VXSHUQDWDQW QXWULHQW VROXWLRQV IRU $ SK\WRWR[LFLW\ VWXGLHV &KDSWHU ,9 GLVFXVVHV D QXWULHQWVROXWLRQ FXOWXUH H[SHULPHQW FRQGXFWHG LQ WKH JUHHQKRXVH WR HYDOXDWH WKH HIIHFWV RI $ RQ JURZWK RI ILYH FRPPRQO\JURZQ FLWUXV URRWVWRFNV LQ )ORULGD &KDSWHU 9 UHSRUWV UHVXOWV RI D ILHOG H[SHULPHQW WR HYDOXDWH WKH HIIHFWV RI $ RQ ILEURXV URRW JURZWK LQ D FRPPHUFLDO FLWUXV JURYH &KDSWHU 9, GLVFXVVHV DQRWKHU ILHOG H[SHULPHQW GHVLJQHG WR LQYHVWLJDWH WKH HIIHFWV RI OLPH DQG SKRVSKRJYSVXP RQ ILEURXV URRW JURZWK DQG FKHPLFDO SURSHUWLHV RI %KKRUL]RQ PDWHULDO IURP D 6SRGRVRO 7ZR VHWV RI VXSHUQDWDQW QDWULHQW VROXWLRQV ZHUH SUHSDUHG HYDOXDWHG DQG UHFRPPHQGHG IRU $ SK\WRWR[LFLW\ VWXGLHV ,Q WKH S+ VHW DQG WKH S+ VHW DFWXDO $ FRQFHQWUDWLRQV UDQJHG IURP WR PJ $O / DQG IURP WR PJ $O / ? DQG 3 FRQFHQWUDWLRQ ZDV DERXW PJ 3 / DQG PJ 3 / ? UHVSHFWLYHO\ $FWXDO FRQFHQWUDWLRQV RI $ DQG 3 DUH DIIHFWHG E\ WKH SUHSDUDWLRQ SURFHGXUH )LYH PRQWKROG FLWUXV URRWVWRFN VHHGOLQJV ZHUH JURZQ LQ VXSHUQDWDQW VROXWLRQ IRU GD\V 7KH WRWDO QHZJURZWK IUHVK ZHLJKW PLJKW EH D EHWWHU LQGLFDWRU RI $ HIIHFWV RQ FLWUXV JURZWK WKDQ QHZJURZWK URRW OHQJWK RU QHZJURZWK VKRRW KHLJKW $FFRUGLQJ WR WKH

PAGE 128

UHVSRQVH RI QHZJURZWK IUHVK ZHLJKW RI ZKROH SODQWV WR $ FRQFHQWUDn WLRQ LQ VROXWLRQ UHODWLYH $OWROHUDQFH ZDV &OHRSDWUD PDQGDULQ 5RXJK OHPRQ 6RXU RUDQJH 6ZLQJOH FLWUXPHOR &DUUL]R FLWUDQJH 7KH FULWLFDO $ FRQFHQWUDWLRQV LQ VROXWLRQ DW ZKLFK WR[LF HIIHFWV REVHUYHG ZHUH DQG PJ $O / ? UHVSHFWLYHO\ &RQFHQWUDWLRQV EHORZ RU DERYH WKH FULWLFDO $ OHYHOV FDXVHG HLWKHU EHQHILFLDO RU WR[LF HIIHFWV UHVSHFWLYHO\ $OXPLQXP FRQFHQWUDWLRQV RI URRWV DQG VKRRWV LQFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ WKH JURZWK PHGLXP $OXPLQXPWROHUDQW URRWVWRFNV DFFXPXODWHG PRUH $ LQ WKHLU URRWV WKDQ GLG WKH $OVHQVLWLYH URRWVWRFNV :KHQ $ FRQFHQn WUDWLRQV LQ QXWULHQW VROXWLRQ LQFUHDVHG IURP WR PJ $O / 0J DQG 3 FRQFHQWUDWLRQV LQ URRWV DQG DQG 3 OHYHOV LQ VKRRWV LQFUHDVHG ZKHUHDV &D =Q &X 0Q DQG )H LQ URRWV DQG &D 0J &X DQG )H LQ VKRRWV GHFUHDVHG ,W VHHPHG WKDW $OVHQVLWLYH URRWVWRFNV KDG ORZHU &X FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG $OWROHUDQW URRWVWRFNV DW ORZ $ FRQFHQWUDWLRQ PJ $O / LQ VROXWLRQ 7KH PRUH WROHUDQW URRWVWRFNV FRQWDLQHG KLJKHU )H FRQFHQWUDWLRQV LQ WKHLU URRWV WKDQ GLG WKH OHVV WROHUDQW RQHV ZKHQ $ FRQFHQWUDWLRQV LQ VROXWLRQ ZHUH ORZHU WKDQ PJ $O / &RQFHQWUDWLRQV RI WKH RWKHU HOHPHQWV &D 3 0J =Q DQG 0Qf LQ URRWV RU VKRRWV DSSHDUHG WR KDYH QR FHUWDLQ UHODWLRQVKLS ZLWK WKH EHQHILFLDO RU WR[LF HIIHFWV RI $ LQ QXWULHQW VROXWLRQ RU ZLWK $OWROHUDQFH RI WKH URRWVWRFNV 7KH LPSODQWHG ( KRUL]RQ RI D 6SRGRVRO ZDV WUHDWHG ZLWK HLWKHU OLPH RU IRXU OHYHOV RI $ DQG SODFHG LQ WKH VXUIDFH KRUL]RQ RI D FLWUXV JURYH IRU GD\V 5HVXOWV LQGLFDWHG WKDW WKH FULWLFDO $ FRQFHQWUDWLRQ IRU WR[LF HIIHFWV LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV ZDV PJ $O / A IRU URRW JURZWK RI \UROG WUHHV RI 6RXU RUDQJH

PAGE 129

URRWVWRFN & DXUDQWLXP /f 7KLV FULWLFDO YDOXH ZDV PXFK KLJKHU WKDQ WKDW REWDLQHG IURP WKH VROXWLRQFXOWXUH H[SHULPHQW PHQWLRQHG DERYH RQO\ PJ $O / 9 $W D FRQFHQWUDWLRQ RI PJ $O / ? URRWOHQJWK GHQVLW\ ZDV DOPRVW WZLFH WKDW RI WKH PJ $O / A WUHDWPHQW DQG HTXDOOHG WR WKDW RI WKH OLPH WUHDWPHQW $OXPLQXP FRQFHQWUDWLRQV LQ URRW WLVVXHV ZHUH ORZHU KRZHYHU WKDQ WKRVH LQ WKH PJ $O / A WUHDWPHQW 5RRW JURZWK UHWDUGDWLRQ RFFXUUHG RQO\ ZKHQ WKH FRQFHQWUDWLRQ H[FHHGHG PJ $O / 7KH FRQFHQWUDWLRQV RI =Q )H DQG 0Q LQ URRW WLVVXHV GHFUHDVHG ZLWK LQFUHDVHG $ FRQFHQWUDWLRQV LQ WKH VDWXUDWLRQ H[WUDFW RI VRLOV 6RPH %KKRUL]RQ VRLO DPHQGHG ZLWK HLWKHU OLPH RU SKRVSKRJ\SVXP ZDV DOVR LPSODQWHG LQ WKH VXUIDFH KRUL]RQ RI D FLWUXV JURYH 7KH LPSODQWHG VRLOV ZHUH UHPRYHG DIWHU DQG GD\V 5HVXOWV VKRZHG WKDW DSSOLFDWLRQ RI OLPH WR %KKRUL]RQ VRLO VLJQLILn FDQWO\ LQFUHDVHG ILEURXV FLWUXVURRW JURZWK &RPSDUHG WR QRQDPHQGHG VRLO WKH VRLO DPHQGHG ZLWK OLPH KDG KLJKHU S+ ORZHU VRLO DFLGLW\ DQG ORZHU H[FKDQJHDEOH $ DQG $ VDWXUDWLRQ DV ZHOO DV KLJKHU 1A DQG ORZHU DQG 0J FRQWHQWV LQ WKH VDWXUDWLRQ H[WUDFW $SSOLFDn WLRQ RI SKRVSKRJ\SVXP WR %KKRUL]RQ VRLO KDG QR VLJQLILFDQW HIIHFW RQ ILEURXV FLWUXVURRW JURZWK 7KH VRLO DPHQGHG ZLWK SKRVSKRJ\SVXP KDG ORZHU S+ KLJKHU VDOLQLW\ DQG H[FKDQJHDEOH $O DORQJ ZLWK KLJKHU &D DQG 0J DQG ORZHU 3 +A32A DQG +3a f DQG &O FRQWHQWV LQ WKH VDWXUDWLRQ H[WUDFW WKDQ WKH QRQDPHQGHG VRLO 5HFRPPHQGDWLRQV IRU IXUWKHU UHVHDUFK LQFOXGH f (YDOXDWLRQ RI WKH UHODWLRQVKLS EHWZHHQ RUJDQLFDFLG FRQWHQWV LQ FLWUXV URRWV DQG VKRRWV DQG $OWROHUDQFH RI FLWUXV URRWVWRFNV f $VVHVVPHQW RI WKH SK\VLRORJLFDO IXQFWLRQV RI FLWUXV URRWV GHYHORSHG E\ VWLPXODWLRQ RI

PAGE 130

ORZ $O FRQFHQWUDWLRQV LQ WKH PHGLXP f 'HWHUPLQDWLRQ RI PHFKDQLVPV RI EHQHILFLDO DQG WR[LF HIIHFWV RI $ RQ FLWUXV JURZWK DQG GLIIHUn HQWLDO WROHUDQFH RI FLWUXV URRWVWRFNV $ VSOLWURRW H[SHULPHQWDO WHFKQLTXH PD\ QHHG WR EH XVHG 7KH IROORZLQJ GHWHUPLQDWLRQV PD\ DOVR SURYH KHOSIXO Df URRW FURVVVHFWLRQ PD\ EH H[DPLQHG XVLQJ VFDQQLQJ DQG WUDQVPLVVLRQ HOHFWURQ PLFURJUDSKV Ef WKH GHSRVLWLRQ RI PHWDO r rr nAn LRQV $O )H 0Q DQG &X LRQVf LQ VHOHFWHG URRWV PD\ EH DVVHVVHG XVLQJ HOHFWURQ PLFURSUREH ;UD\ DQDO\VLV Ff WKH UDWH RI FHOO GLYLVLRQ PD\ EH FRXQWHG XVLQJ D SKRWRPLFURVFRSH Gf WKH QXPEHU RI ELQXFOHDWH FHOOV PD\ EH GHWHUPLQHG DQG Hf WKH &(& DQG HOHPHQWDO FRQFHQWUDWLRQV RI URRWV PD\ EH GHWHUPLQHG f ,QYHVWLJDWLRQ RI HIIHFWV DQG FDXVHV RI VSRGLF KRUL]RQV RQ FLWUXV JURZWK ZLWK JUHHQn KRXVH VWXGLHV DQG ILHOG VXUYH\V DQG f 'HYHORSPHQW RI PHWKRGV IRU SUHGLFWLQJ $ WR[LFLW\ WR FLWUXV JURZWK LQ VRLOV

PAGE 132

7DEOH $O ,QLWLDO ILQDO DQG QHZJURZWK RI WKUHH SDUDPHWHUV IRU ILYH URRWVWRFN VHHGOLQJV DW VHYHQ $ OHYHOV LQ VROXWLRQ $ FRQFHQn WUDWLRQ 5RRW OHQJWK 6KRRW KHLJKW )UHVK ZHLJKW RI LQ VROXWLRQ ,QLWLDO )LQDO 1HZ JURZWK ,QLWLDO )LQDO 1HZ JURZWK ,QLWLDO )LQDO 1HZ JURZWK 7L PJ / J SODQW &DUUL]R FLWUDQJH LOW s s + s s s &OHRSDWUD PDQGDULQ s s L s s 5RXJK OHPRQ s s s s s

PAGE 133

7DEOH $O &RQWLQXHG $ FRQFHQn WUDWLRQ LQ VROXWLRQ 5RRW OHQJWK 6KRRW KHLJKW )UHVK ZHLJKW RI ZKROH SODQWV ,QLWLDO )LQDO 1HZ JURZWK ,QLWLDO )LQDO 1HZ JURZWK ,QLWLDO )LQDO 1HZ JURZWK f§ f PJ / J SLDQF 6RXU DUDQJH s 6ZLQJOH L FLWUXPHOR L W ,6WDQGDUG GHYLDWLRQ UHSOLFDWLRQVf

PAGE 134

7DEOH $D (OHPHQWDO FRQWHQWV RI URRWV DQG VKRRWV RI PRQWKROG FLWUXV URRWVWRFN VHHGOLQJV DIWHU JURZLQJ LQ $OFRQWDLQLQJ QXWULHQW VROXWLRQ IRU GD\V $ FRQFHQn WUDWLRQ LQ VROXWLRQ &D 0J 3 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV f§ N PJ / &DUUL]R FLWUDQJH W s &OHRSDWUD PDQGDULQ 5RXJK OHPRQ

PAGE 135

&2 + UU A UR UR UR UR 22 R 0 3 UR 2 &V UR 2 K FQ f F UU 2 UW 21 S A /2 R Lf§ 21 /2 R f§ UU 0r R &Of Wf§f 0 2 2 Q D IW! U L D UR 1 UR UR /2 /2 /2 UR UR UR /2 3 7 D! 21 /Q /Q UR UR UR /2 /Q 2 UR /2 SF U 1 R ‘3 UR Y2 YR YR Y2 R 92 9& 2 R L L L c L 2 R 2 2 R R R 2 R 2 2 2 2 2 2 UW &3 R R R R R R R R R R & R Uf§! Wf§f +f§ IK 21 /Q /Q Y2 /Q DY RY 2Q Y DY /Q /R R Q UU 3 -7r /Q /Q /Q 21 2n 2 /2 /2 /2 /2 /Q /Q E FQ /Q Y2 /2 R UR /2 21 92 DY 92 R ]U UR 92 Y2 Y2 R Y2 S YR 92 S UR R IWf L R 2 2 2 R R 2 R R 2 R 2 R R 2 UU f FQ f§r Wf§r f§r R Wf§ R R R 2 R R R +f§ F RR UR 21 +r 21 Y2 2Y R! YR /Q RR YR Kf§ +f§ }f§r +f§r Wf§f Kf§ 2 2 R Lf§ +f§ !f§f R 7 f§r D! DY R DY ,f§r YR Y2 92 R Wf§f R RR &2 +r &2 DY /2 &2 ff§f f§ UR UR R Q L L R R 2 R R R 2 R 2 2 R 2 R R 2 UU UU f FQ +} R R R R R R R R 2 R 2 F R R & /Q DY /2 R R /Q /2 f§ & 1 +r f§ +f§ UR Lf§r UR R R 2 R Wf§r Wf§f f FQ 92 R RR 92 R R 2 RR Nf§f Wf§ /2 /R /2 /2 /2 RY RR R! ,f§r rf§ DY /R 2 LI FQ F R 2 2 2 R & 2 6& R 2 2 2 R R 2 UU FQ R R R R R R 2 R R R R 2 2 R 21 2Y DY 21 21 R R DR DY YR /Q UR /Q /Q /2 R 0 Qr 7 F If§r Kf§f Wf§r rf§ R f§ f§r QL L R 92 R UR S UR Kr ‘R Wf§ UR f§r L SF /Q /Q f§ /Q UL R R /2 /Q /R 2 L R R 2 UR UR R /Q & 2 n2 /Q R R 2 L R L L O L UW 2 2 R R R R 2 I' R 2 2 2 2 2 2 L FQ L f§r 6 Lf§r UR /2 UR 0 2 + f§ UR +f§ UR Nf§ !f§ L Kf§f Kf§ /2 UR X! /2 /Q L L 3& f§r + Wf§f Wf§r L /Q r R 92 R 2 21 RR 2 /2 UR + L L FQ 2 /2 f§‘ 92 RR /Q /2 Lf§ +r +f§ L UR UR /Q /Q UR /Q 2 nM /Q /Q UR /Q L R L L L R R R 2 R 2 2 2 2 R 2 R 2 2 R L UU L FQ +r +r Lf§r Kf§ /2 2 R UR UR Wf§f /2 UR R UR L 1 ,f§r UR /Q 3 YM 92 /Q 7 /Q UR 92 L L Wf§ UR UR UR UR UR Wf§ f§ + UR R L L D! 2 UR M /Q /2 /2 /Q 21 R! f§ 92 L 3& R 3 92 YR UR Y2 Kf§f L R L L LI L R R 2 2 R R 2 2 2 2 R 2 R 2 R L UU L FQ R R R R f§f 2 R 2 2 R 2 R R 2 L DY 2Y R DY /Q /2 /2 92 YR ff§ L L Wf§r f§ f§r !f§r +f§ Wf§ Lf§r Kf§f f§ R !f§ +f§ R L L FQ 1 /2 2Y 29 /Q 2 f§ 2 YR Kf§r /R UR 2 L U UR UR UR UR 92 92 UR 1 R SA R L R L L L L R R R R R R 2 R R 2 R 2 2 2 R L UU L FQ R R R R R R R R R R 2 2 R R L /R /Q /Q /Q 29 /2 /2 rf§ /2 /Q /2 }f§ L == 7DEOH $D &RQWLQXHG

PAGE 136

7DEOH $E (OHPHQW FRQWHQWV RI URRWV DQG VKRRWV RI PRQWKROG FLWUXV VHHGOLQJV DIWHU JURZLQJ LQ $O FRQWDLQLQJ QXWULHQW VROXWLRQ IRU GD\V $O FRQFH WUDWLRQ LQ VROXWLRQ Q =Q &X 0Q $ )H 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV f§ PJ / &DUUL]R FLWUDQJH s s s s s &OHRSDWUD PDQGDULQ s s s s s s 5RXJK OHPRQ s s

PAGE 137

7DEOH $E &RQWLQXHG $ FRQFHQn WUDWLRQ LQ VROXWLRQ =Q &X 0Q $ )H 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV 5RRWV 6KRRWV NH PJ / .J 6RXU RUDQJH @ 6ZLQJOH FLWUXPHOR W 6WDQGDUG HUURU RI WKH PHDQ UHSOLFDWLRQVf

PAGE 138

7DEOH $ 0HDQV DQG FRUUHODWLRQV RI GHWHUPLQDWLRQ IRU URRW OHQJWK DQG ZHLJKW &RQWURO /LPH WUHDWPHQW 3* WUHDWPHQW 6DPSOLQJ WLPH 5RRW OHQJWK 5RRW GU\ ZHLJKW 5RRW OHQJWK 5RRW GU\ ZHLJKW 5RRW OHQJWK 5RRW GU\ ZHLJKW FP EDJ A J EDJ FP EDJ A J EDJ FP EDJ J EDJ sW s s s s s s s s U U U W s 6WDQGDUG GHYLDWLRQ UHSOLFDWLRQVf $OO YDOXHV RI U DUH VLJQLILFDQW DW 3

PAGE 139

7DEOH $ 'DLO\ PD[LPXP DQG PLQLPXP WHPSHUDWXUHV DQG UDLQIDOO PHDVXUHPHQWV DW WKH ZHDWKHU VWDWLRQ LQ $UFDGLD )ORULGD f 'D\ 0D\ -XQH -XO\ $XJ XVW 6HSWHPEHU 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO r) PP r) PP r) PP r) PP r) PP

PAGE 140

7DEOH $ &RQWLQXHG 'D\ 0D\ -XQH -XO\ $XJ XVW 6HSWHPEHU 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO 7HPS 5DLQIDOO r) PP r) PP r) PP r) PP r) PP W )RU WKH LPSODQWHG VRLOPDVV VWXG\ WKH LPSODQWLQJ GD\ ZDV 0D\ WKH IRXU GD\V ZKHQ VDPSOHV ZHUH UHPRYHG ZHUH -XO\ $XJXVW 6HSWHPEHU DQG 2FWREHU

PAGE 141

7DEOH $ 6HOHFWHG VRLO SURSHUWLHV RI WKUHH WUHDWPHQWV DW IRXU VDPSOLQJ WLPHV 7UHDWn PHQW 6DPSOLQJ WLPH S+ (& H .& H[WUDFWDEOH DFLGLW\ ([FKDQJHDEOH $ ([FKDQJHDEOH + %D&, 7($ H[FKDQJH WRWDO DFLGLW\ $ 4 PA L 3F &O R ,OO F &RQWURO s s s + !f§r R &2 /LPH s s 3* W s 6WDQGDUG GHYLDWLRQ UHSOLFDWLRQVf

PAGE 142

/,7(5$785( &,7(' $GDPV ) DQG &( (YDQV $ UDSLG PHWKRG IRU PHDVXULQJ OLPH UHTXLUHPHQW RI 5HG
PAGE 143

%RXPD ('RZOLQJ DQG ''DYLG 5HODWLRQV EHWZHHQ SODQW DOXPLQXP FRQWHQW DQG WKH JURZWK RI OXFHUQH DQG VXEWHUUDQHDQ FORYHU 7KHLU XVHIXOQHVV LQ WKH GHWHFWLRQ RI DOXPLQXP WR[LFLWLHV $XVW ([S $JULH $QLP +XVEDQG %UHQHV ( DQG 5: 3HDUVRQ 5RRW UHVSRQVHV RI WKUHH JUDPLQDH VSHFLHV WR VRLO DFLGLW\ LQ DQ 2[LVRO DQG DQ 8OWLVRO 6RLO 6FL &DOGZHOO 5( 0DMRU ODQG UHVRXUFH DUHDV LQ )ORULGD 6RLO &URS 6FL 6RF )OD 3URF &DOYHUW '9 &LWUXV SURGXFWLRQ DORQJ )ORULGDnV HDVW FRDVW ZLWK VSHFLDO UHIHUHQFH WR VXEVRLO DFLGLW\ DQG OLPLQJ )OD )HUW DQG /LPH &RQI &DOYHUW '9 +: )RUG (+ 6WHZDUW DQG )* 0DUWLQ *URZWK UHVSRQVH RI WZHOYH FLWUXV URRWVWRFNVFLRQ FRPELQDWLRQV RQ D 6SRGRVRO PRGLILHG E\ GHHS WLOODJH DQG SURILOH GUDLQDJH ,QW 6RF &LWULFXOWXUH 3URF &DPHURQ 56 *63 5LWFKLH DQG $' 5REVRQ 5HODWLYH WR[LFLWLHV RI LQRUJDQLF DOXPLQXP FRPSOH[HV WR EDUOH\ 6RLO 6FL 6RF $P &DWH 5% DQG $3 6XNKDL $ VWXG\ RI DOXPLQXP LQ ULFH VRLOV 6RLO 6FL &KDSPDQ +' &DWLRQH[FKDQJH FDSDFLW\ ,Q %ODFN &$ '' (YDQV /( (QVPLQJHU -/ :KLWH DQG )( &ODUN HGVf 0HWKRGV RI VRLO DQDO\VLV 3DUW SS $P 6RF $JURQ ,QF 0DGLVRQ :, &KDSPDQ +' 7KH PLQHUDO QXWULWLRQ RI FLWUXV AQB 5HXWKHU : /' %DWFKHORU DQG +:HEEHU HGVf 7KH FLWUXV LQGXVWU\ 9ROXPH ,, SS $ &HQWHQQLDO 3XEO 8QLY RI &DOLIRUQLD &ODUN 5% (IIHFW RI DOXPLQXP RQ JURZWK DQG PLQHUDO HOHPHQWV RI $OWROHUDQW DQG $OLQWROHUDQW FRUQ 3ODQW 6RLO &ODUN 5% 3$ 3LHU .QXGVHQ DQG -: 0DUDQYLOOH (IIHFWV RI WUDFH HOHPHQW GHILFLHQFLHV DQG H[FHVVHV RQ PLQHUDO QXWULHQWV LQ VRUJKXP 3ODQW 1XWU &ODUNVRQ '7 (IIHFW RI DOXPLQXP RQ WKH XSWDNH DQG PHWDEROLVP RI SKRVSKRUXV E\ EDUOH\ VHHGOLQJV 3ODQW 3K\VLRO 'DQFHU :6 /$ 3HWHUVRQ DQG &KHVWHUV $PPRQLILFDWLRQ DQG QLWULILFDWLRQ RI 1 DV LQIOXHQFHG E\ VRLO S+ DQG SUHYLRXV 1 WUHDWPHQWV 6RLO 6FL 6RF $P 3URF

PAGE 144

'XQFDQ 55 &RQFHQWUDWLRQV RI FULWLFDO QXWULHQWV LQ WROHUDQW DQG VXVFHSWLEOH VRUJKXP OLQHV XQGHU DFLG VRLO ILHOG FRQGLWLRQV SS B,Q 05 6DULF HGf *HQHWLF VSHFLILFLW\ RI PLQHUDO QXWULWLRQ RI SODQWV 6HUE 6FDG 6FL $UW 6FLHQWLILF $VVHPEOLHV ;,, 'HSW 1DWO 0DWK 6FL QR %HOJUDGH
PAGE 145

+RZHOHU 5+ DQG /) &DGDYLG 6FUHHQLQJ RI ULFH FXOWLYDUV IRU WROHUDQFH WR $OWR[LFLW\ LQ QXWULHQW VROXWLRQV DV FRPSDUHG ZLWK ILHOG VFUHHQLQJ PHWKRG $JURQ +VX 3+ ,QWHUDFWLRQ EHWZHHQ DOXPLQXP DQG SKRVSKDWH LQ DTXHRXV VROXWLRQ $GY &KHP 6HU +XDQJ :/ $FLG VRXUFH DQG LWV DFLGLILFDWLRQ RI FLWUXV VRLOV RI 7DLZDQ $JULH 5HV &KLQD -DPHV + 01 &RXUW '$ 0DF/HRG DQG -: 3DUVRQV 6RLO IDFWRUV DQG P\FRUUKL]DO IDFWRUV DFWLYH RQ EDVDOWLF VRLOV LQ :HVWHUQ 6FRWODQG )RUHVWU\ -RQHV /+ $OXPLQXP XSWDNH DQG WR[LFLW\ LQ SODQWV 3ODQW DQG 6RLO .DPSUDWK ( 6RLO DFLGLW\ LQ ZHOOGUDLQHG VRLOV RI WKH WURSLFV DV D FRQVWUDLQW WR IRRG SURGXFWLRQ SS ,Q 1& %UDG\ HGf 6RLOUHODWHG FRQVWUDLQWV WR IRRG SURGXFWLRQ LQ WKH WURSLFV ,55, /RV %DQRV /DJXQD 3KLOLSSLQHV .LQUDLGH 7% DQG '5 3DUNHUA 1RQSK\WRWR[LFLW\ RI WKH DOXPLQXP VXOIDWH LRQ $,62A 3K\VLRORJLD 3ODQWDUXP .OLPDVKHYVNLL (/ DQG 1) &KHUQ\VKHYD &RQWHQW RI RUJDQLF DFLGV DQG SK\VLRORJLFDOO\ DFWLYH FRPSRXQGVALQ SODQW GLIIHULQJ LQ WKHLU VXVFHSWLELOLW\ WR WKH WR[LFLW\ RI $O 6RY $JULH 6FL f .RQ]DN &) ( 3ROOH DQG -$ .LWWULFN 6FUHHQLQJ VHYHUDO FURSV IRU DOXPLQXP WROHUDQFH ,Q -0 :ULJKW HGf 3ODQW DGDSWDWLRQ WR PLQHUDO VWUHVV LQ SUREOHP VRLOV 6SHFLDO 3XE &RUQHOO 8QLY ([S 6WD ,WKDFD 1< .RR 5&&$ $QGHUVRQ ,YDQ 6WHZDUW '3+ 7XFNHU '9 &DOYHUW DQG +. :XWVFKHU 5HFRPPHQGHG IHUWLOL]HUV DQG QXWULWLRQDO VSUD\V IRU FLWUXV )OD $JULH ([S 6WQ %XO /DQFH -& DQG 5: 3HDUVRQ (IIHFW RI ORZ FRQFHQWUDWLRQV RI DOXPLQXP RQ JURZWK DQG ZDWHU DQG QXWULHQW XSWDNH E\ FRWWRQ URRWV 6RLO 6FL 6RF $P 3URF /LHELJ -U *) $3 9DQVHORZ DQG +' &KDSPDQ (IIHFWV RI DOXPLQXP RQ FRSSHU WR[LFLW\ DV UHYHDOHG E\ VROXWLRQFXOWXUH DQG VSHFWURJUDSKLF VWXGLHV RI FLWUXV 6RLO 6FL /XQG =) 7KH HIIHFW RI FDOFLXP DQG LWV UHODWLRQ WR VRPH RWKHU FDWLRQV RQ VR\EHDQ URRW JURZWK 6RLO 6FL 6RF $P 3URF /XQG =) 5: 3HDUVRQ DQG *$ %XFKDQDQ $Q LPSODQWHG VRLO PDVV WHFKQLTXH WR VWXG\ KHUELFLGH HIIHFWV RQ URRW JURZWK :HHG 6FL

PAGE 146

0DF/HRG /% DQG /3 -DFNVRQ $OXPLQXP WROHUDQFH RI WZR EDUOH\ YDULHWLHV LQ QXWULHQW VROXWLRQ SHDW DQG VRLO FXOWXUH $JURQ 0DODYROWD () 1RJTXHLUD ,3 2OLYHLUD / 1DND\DPD DQG (LPRUL $OXPLQXP WROHUDQFH RI VRUJKXP DQG EHDQ 0HWKRGV DQG UHVXOWV 3ODQW 1XWU 0DUVFKQHU + 0LQHUDO QXWULWLRQ RI KLJKHU SODQWV SS $FDGHPLF 3UHVV ,QF 2UODQGR )/ 0D]H 3 'HWHUPLQDWLRQ RI HOHPHQWV QHFHVVDU\ WR GHYHORSPHQW RI PDL]H &RPSW 5HG $FDG 6FL >3DULV@ $EV LQ ([S 6WD 5HF f 0F&RUPLFN /+ DQG ,< %RUGHQ 3KRVSKDWH IL[DWLRQ E\ DOXPLQXP LQ SODQW URRWV 6RLO 6FL 6RF $P 3URF 0F/HDQ (2 &KHPLVWU\ RI VRLO DOXPLQXP &RPPXQ 6RLO 6FL 3ODQW $QDO 0F/HDQ (2 6RLO S+ DQG OLPH UHTXLUHPHQW /D 3DJH $/ 5+ 0LOOHU DQG '5 .HHQH\ HGVf 0HWKRGV RI VRLO DQDO\VLV 3DUW QG HG SS $P 6RF $JURQ ,QF 0DGLVRQ :, 0HKOLFK $ 6KRUW WHVW PHWKRGV XVHG LQ 6RLO 7HVWLQJ 'LYLVLRQ 1 &DUROLQD 'LYLVLRQ 1 &DUROLQD 'HSW $JULH 0LPHR 3XEO 67'3 1R 0RRUH '3 :( .URQVWDG DQG 50HW]JHU 6FUHHQLQJ ZKHDW IRU DOXPLQXP WROHUDQFH SS ,Q 0:ULJKW DQG 6$ )HUUDUL HGVf 3ODQW DGDSWDWLRQ WR PLQHUDO VWUHVV LQ SUREOHP VRLOV 6SHFLDO SXEO &RUQHOO 8QLY $JULH ([S 6WQ ,WKDFD 1< 0XJZLUD /0 DQG 68 3DWHO 5RRW ]RQH S+ FKDQJHV DQG LRQ XSWDNH LPEDODQFHV E\ WULWLFDOH ZKHDW DQG U\H $JURQ 0XJZLUD /0 97 6DSUD 68 3DWHO DQG 0$ &KRXGU\ $OXPLQXP WROHUDQFH RI WULWLFDOH DQG ZKHDW FXOWLYDUV GHYHORSHG LQ GLIIHUHQW UHJLRQV $JURQ 0XOOHWWH .6WLPXODWLRQV RI JURZWK LQ HXFDO\SWXV GXH WR DOXPLQXP 3ODQW 6RLO 0XQQ '$ DQG 5( 0F&ROOXP 6ROXWLRQ FXOWXUH HYDOXDWLRQ RI VZHHW SRWDWR FXOWLYDU WROHUDQFH WR DOXPLQXP $JURQ

PAGE 147

0XQQV '1 6RLO DFLGLW\ DQG JURZWK RI D OHJXPH ,, 5Hn DFWLRQV RI DOXPLQXP DQG SKRVSKDWH LQ VROXWLRQ DQG HIIHFWV RI DOXPLQXP SKRVSKDWHV FDOFLXP DQG S+ RQ 0HGLFDJR VDWLYD / DQG 7ULIROLXP VXEWHUUDQHXP / LQ VROXWLRQ FXOWXUH $XVW $JULH 5HV 0XQVRQ 50 DQG :/ 1HOVRQ 3ULQFLSOHV DQG SUDFWLFHV LQ SODQW DQDO\VLV SS ,Q /0 :DOVK DQG -' %HDWRQ HGVf 6RLO WHVWLQJ DQG SODQW DQDO\VLV 6RLO 6FL 6RF $P ,QF 0DGLVRQ :, 0\KUH '/ = /LQ 7/
PAGE 148

5KXH 5' DQG &2 *URJDQ 6FUHHQLQJ FRP IRU DOXPLQXP WROHUDQFH S ,Q :ULJKW 0DQG 6$ )HUUDUL HGVf 3ODQW DGDSWDWLRQ WR PLQHUDO VWUHVV LQ SUREOHP VRLOV 6SHFLDO SXEO &RUQHOO 8QLY $JULH ([S 6WQ ,WKDFD 1< 5KXH 5' DQG &2 *URJDQ 6FUHHQLQJ FRP IRU $ WROHUDQFH XVLQJ GLIIHUHQW &D DQG 0J FRQFHQWUDWLRQV $JURQ 6HNL\D DQG $RED 6WXGLHV RQ WKH PLQRU PHWDO HOHPHQWV LQ RUFKDUGV -DSDQ %XOO )UXLW 7UHHV 5HV 6WQ $ 6RLO &RQVHUYDWLRQ 6HUYLFH 86 'HSDUWPHQW RI $JULFXOWXUH 6RLO VXUYH\ ODERUDWRU\ PHWKRGV DQG SURFHGXUHV IRU FROOHFWLQJ VRLO VDPSOHV 86 *RYHUQPHQW 3ULQWLQJ 2IILFH SS 7DQDND $ DQG 6$ 1DYDVHUR $OXPLQXP WR[LFLW\ RI WKH ULFH SODQW XQGHU ZDWHU FXOWXUH FRQGLWLRQV 6RLO 6FL DQG 3ODQW 1XWU 7HQQDQW $ WHVW RI WKH PRGLILHG OLQH LQWHUVHFW PHWKRG RI HVWLPDWLQJ URRW OHQJWK (FRO 7LVGDOV 6/ DQG :/ 1HOVRQ 6RLO IHUWLOLW\ DQG IHUWLOL]HUV SS 0DF0LOODQ 3XEO &R ,QF 1HZ
PAGE 149

:ULJKW 59& %DOLJDU DQG 6) :ULJKW (VWLPDWLRQ RI SK\WRWR[LF DOXPLQXP LQ VRLO VROXWLRQ XVLQJ WKUHH VSHFWURSKRWR PHWULF PHWKRGV 6RLO 6FL
PAGE 150

%,2*5$3+,&$/ 6.(7&+ =KRQJ\DQ /LQ ZDV ERUQ LQ *XDQJGRQJ &KLQD RQ -DQXDU\ +H JUDGXDWHG IURP WKH 6RXWK &KLQD $JULFXOWXUDO 8QLYHUVLW\ *XDQJ]KRX &KLQD LQ )RU \HDUV KH ZDV HPSOR\HG DV D WHDFKHU DW WKH =LMLQ +LJK 6FKRRO *XDQJGRQJ &KLQD ZKHUH KH WDXJKW FKHPLVWU\ )URP WR KH VWXGLHG IRU KLV 0DVWHU RI 6FLHQFH GHJUHH LQ WKH 'HSDUWPHQW RI 6RLO DQG $JURFKHPLVWU\ 6RXWK &KLQD $JULFXOWXUDO 8QLYHUVLW\ +H HDUQHG KLV 0DVWHU RI 6FLHQFH GHJUHH IURP WKH 'HSDUWPHQW RI 6RLO DQG $JURFKHPLVWU\ 1DQMLQJ $JULFXOWXUDO 8QLYHUVLW\ 1DQMLQJ &KLQD LQ +H WKHQ ZRUNHG DV D OHFWXUHU DW WKH 6RXWK &KLQD $JULn FXOWXUDO 8QLYHUVLW\ ,Q -XO\ KH FDPH WR WKH 'HSDUWPHQW RI 6RLO 6FLHQFH 8QLYHUVLW\ RI )ORULGD DV D YLVLWLQJ VFLHQWLVW ,Q -XQH KH ZDV DGPLWWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD DQG EHFDPH D FDQGLGDWH IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ LQ WKH 6RLO 6FLHQFH 'HSDUWPHQW 7KH DXWKRU LV PDUULHG WR +XELDQ =KRQJ DQG WKH\ KDYH WZR FKLOGUHQ
PAGE 151

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7S£ /
PAGE 152

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI 6WDWLVWLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 153

81,9(56,7< 2) )/25,'$

PAGE 154

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ELK1Z65RV_8ZF84I INGEST_TIME 2017-07-12T21:21:07Z PACKAGE AA00003347_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES