Citation
Electrochemistry in microheterogeneous solutions -- microemulsions

Material Information

Title:
Electrochemistry in microheterogeneous solutions -- microemulsions
Creator:
Myers, Stephanie Ann, 1964-
Publication Date:
Language:
English
Physical Description:
xi, 138 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Adsorption ( jstor )
Diffusion coefficient ( jstor )
Electrodes ( jstor )
Kinetics ( jstor )
Moisture content ( jstor )
pH ( jstor )
Quinones ( jstor )
Surfactants ( jstor )
Voltammetry ( jstor )
Water quality ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 132-137).
General Note:
Vita.
Statement of Responsibility:
by Stephanie Ann Myers.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001694775 ( ALEPH )
AJA6880 ( NOTIS )
25248356 ( OCLC )

Downloads

This item has the following downloads:


Full Text












ELECTROCHEMISTRY IN MICROHETEROGENEOUS SOLUTIONS--
MICROEMULSIONS

By

STEPHANIE ANN MYERS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991


































This dissertation is dedicated to my grandparents, Cleo

and Dale Myers.















ACKNOWLEDGEMENTS


I would like to thank my committee, Dr. C. Allen, Dr.

V. Young, Dr. Winefordner, and Dr. K. Schanze. I would

especially like to thank Dr. Anna Brajter-Toth, for her help

and encouragement.

I would also like to acknowledge R.A. Mackay for his

collaboration on this project, and U.S. Army Chemical

Research for their financial support.

For all their assistance and friendship, I would like

to thank my colleagues, especially Liakatali Bodalbhai,

Stacey Boyette, Mike Freund and Allan Witkowski.

I would also like to thank my family, especially my

grandparents who were close enough to provide immediate

assistance, when needed.

I would also like to thank God for His support and the

support of His local representatives at University Baptist

Church and in the graduate student Bible study of

InterVarsity Christian Fellowship.


iii

















TABLE OF CONTENTS


ACKNOWLEDGEMENTS .

LIST OF TABLES .

LIST OF FIGURES .

ABSTRACT .

CHAPTER 1 INTRODUCTION .
Properties and Applications .
Determination of Microstructure
Purpose of this Study .


. iii

. vii


viii


. 1
. 1
. 2
. 7


CHAPTER 2 EXPERIMENTAL .. 10
Materials .... ... 10
Apparatus 11
Methods .. .. .. 11
Preparation of Microemulsions .......... 13
Stability of 1,4-Benzoquinone in Microemulsions 17


CHAPTER 3 DETERMINATION OF MICROEMULSION STRUCTURE
Water Rich Microemulsions .
Diffusion of Ferrocene (Fc) .
Diffusion of Methyl Viologen (MV2) .
Diffusion of Ferricyanide (Fe(CN)3) .
Partitioning .
Determination of Droplet Size .
Bicontinuous Microemulsions .
Structural Changes with Water Dilution
Effect of Oil to Emulsifier Ratio .
Effect of Electrolyte .
Role of Electroactive Probe in Structure
Determination .


CHAPTER 4 PROBE REACTIVITY IN MICROEMULSIONS .
Formal Potentials .
Reactivity of Fc+--Partitioning and
Diffusion Coefficients .
Reactivity of FeCCN)34 .
Reactivity of MV+"I'.. .
Reactivity of MV/ .
Kinetics and Adsorption .


S. 18
18
. 18
21
. 22
22
28
30
30
S. 35
S. 36

S. 38


* 40
* 40

. 40
S. 46
. 46
* 50
. 51











Effect of Surfactant Adsorption on Probe
Kinetics .
Effect of Surfactant Adsorption on Probe
Adsorption .


CHAPTER 5 BIOLOGICAL PROBES IN MICROEMULSIONS--
QUINONES .
Introduction to the Biochemistry of Quinones


Spectroscopy of Quinones .
Electrochemistry of Quinones .
Non-Aqueous Solvents .
Aqueous Solutions .
Organized Media .
Electrochemistry of 1,4-Benzoquinone (BQ)
DMF/TEAP .
Aqueous Solutions .
Electrochemistry in Microemulsions
Electrochemistry of Ubiquinone 0 .
DMF/TEAP .
Aqueous Solutions .
SDS Microemulsions .
Electrochemistry of Ubiquinone 50 .
Non-Aqueous Solutions .
Aqueous Systems .
SDS Microemulsions .
Conclusions .


CHAPTER 6 MICROHETEROGENEOUS SOLUTION MODEL .
Structure .
Reactivity .

CHAPTER 7 MODEL OF ELECTRODE INTERFACE IN
MICROHETEROGENEOUS SOLUTION .
Kinetics .
Adsorption .


APPENDIX A




APPENDIX B




APPENDIX C


APPENDIX D


ROLE OF PARTITIONING IN DEPENDENCE OF
PROBE DIFFUSION COEFFICIENT ON THE
CONCENTRATION .

DEPENDENCE OF FORMAL POTENTIALS ON
DIFFUSION COEFFICIENTS AND PARTITIONING
CONSTANTS .

EFFECT OF PH AND PKa ON FORMAL POTENTIAL
OF QUINONE .

QUINONE MECHANISM AND THE EFFECT OF
INDIVIDUAL STEPS ON FORMAL POTENTIAL


51

54


59
59
63
65
65
70
75
75
75
78
85
90
90
93
94
100
100
101
101
105

108
108
111


112
112
114


115




119


124


128


. .
. .
. .
* .*
. .
. .
* .
. .
. .
. .
. .
. .

. .
. .
. .


. .

. .


r

r










REFERENCE LIST .. 132

BIOGRAPHICAL SKETCH .. 138















LIST OF TABLES


Table page

2-1 SDS Microemulsion Compositions Used in This Work 15

3-1 Diffusion Coefficients and Formal Potentials of
Ferrocene (Fc) in SDS Microemulsions .. 19

3-2 Electrochemical Figures of Merit of Ferrocene (Fc)
in SDS Microemulsions .. 24

3-3 Electrochemical Figures of Merit of Methyl
Viologen (MV+2) in SDS Microemulsions .. 25

3-4 Electrochemical Figures of Merit of Ferricyanide
(Fe(CN)6'3) in SDS Microemulsions .. 26

3-5 Droplet Sizes and Microemulsion Composition 29

5-1 Ubiquinone 50 (UQ50) Absorbance Maxima in
Different Solvents .. 66

5-2 Ubiquinone 0 (UQO) Absorbance Maxima in Different
Solvents .. 67

5-3 Formal Potentials of Quinones in Different Media 69

5-4 Acid Dissociation Constants of Quinones 72

5-5 Cyclic Voltammetric Results for 1,4-Benzoquinone
(BQ) in Aqueous Phosphate Buffer ... .81

5-6 Cyclic Voltammetric Results for 1,4-Benzoquinone
(BQ) in Unbuffered 0.1 M NaCl(q .. 84

5-7 Cyclic Voltammetric Results for 1,4-Benzoquinone
(BQ) in SDS Microemulsions 88

5-8 Cyclic Voltammetic Results for Ubiquinone 0 (UQO)
in SDS Microemulsions .. 98

5-9 Differential Pulse Voltammetric Results for
Ubiquinone 50 (UQ50) in SDS Microemulsions 104


vii















LIST OF FIGURES


Figure page

1-1 Microstructure of Microemulsions (gEs) 3

2-1 Pseudo Three-Component Phase Diagram of SDS ME 14

3-1 Dependence of DR of Fc on ME Composition .. 32

3-2 Dependence of Do of Fe(CN)6"3 and of MV+2 on gE
Compostion 34

3-3 Dependence of DR of Fc on ME Composition for Oil-
to-Emulsifier Ratio of 1:10 and of 2:10 37

4-1 Dependence of E1/2 of Fc on pE Composition 44

4-2 Adsorption of Surfactant on GC Electrode Surface
for both Oil Phase and Aqueous Phase .. 53

4-3 Cyclic Voltammetry of Methyl Viologen 57

5-1 Biologically Significant Quinones .. 60

5-2 Mitochondrial Respiration Cycle 62

5-3 Cyclic Voltammetry of 3.1 mM 1,4-Benzoquinone in
DMF/TEAP .... .77

5-4 Cyclic Voltammetry of 1.0 mM 1,4-Benzoquinone in
Phosphate Buffer (pH = 6.9) ... 79

5-5 Cyclic Voltammetry of 1,4-Benzoquinone in
Unbuffered 0.1 M NaCl(aq) ... 82

5-6 Cyclic Voltammetry of 4.0 mM 1,4-Benzoquinone in
89/1 SDS AE ... .86

5-7 Cyclic Voltammetry of 3.8 mM Ubiquinone 0 in
TEAP/DMF .... .91

5-8 Cyclic Voltammetry of 4.5 mM Ubiquinone 0 in 89/1
SDS gE .95

viii









5-9 Cyclic Voltammetry of 4.0 mM Ubiquinone 0 in 34/6
SDS gE 97

5-10 Cyclic Voltammetry of 1.0 mM Ubiquinone 50 in 45/5
SDS AE .. 102















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ELECTROCHEMISTRY IN MICROHETEROGENEOUS SOLUTIONS--
MICROEMULSIONS

By

Stephanie Ann Myers

August 1991

Chairperson: Anna Brajter-Toth
Major Department: Department of Chemistry

Electrochemical methods were used to determine the

effect of microemulsion (AE) composition on the

microstructure of sodium dodecylsulfate (SDS)/1-

pentanol/dodecane/0.1 M NaCl(aq) gEs and the effect of AE

microstructure on probe reactivity.

Chronocoulometry was used to measure diffusion

coefficients (DR or Do) of electroactive probes. Oil phase

structure was reflected by DR of ferrocene (Fc), Do of

ferricyanide (Fe(CN)6 3) reflected the water phase structure

and Do of methyl viologen (MV'2) reflected the surfactant/

membrane structure. Both droplet and bicontinuous micro-

structures were detected. Droplet sizes were determined

from DR of Fc through the Stokes-Einstein equation.

Changes in electrochemical activity with changes in

microstructure were determined by cyclic voltammetry. Oil-









soluble compounds were modeled by Fc0/o. Water soluble

compounds were modeled by Fe(CN)6-3/4. Probe interactions

with the surfactant were modeled by MV+2/'/0. Quinones,

specifically 1,4-benzoquinone, ubiquinone 0 and ubiquinone

50, modeled biological compounds. Formal potential (E*') is

related to partitioning constants and diffusion

coefficients. Since these are a function of ME composition,

E' can be controlled by altering ME composition.

Alternatively, partitioning constants can be determined by

shifts in E'. Kinetics of electron transfer and probe

adsorption are affected by surfactant adsorption on the

electrode. Kinetics are unchanged if the probe easily

penetrates the surfactant, slowed if the probe is repelled

by adsorbed surfactant or enhanced if the probe is attracted

to adsorbed surfactant. Kinetics can be altered by changes

in ME composition which modify the surfactant layer.

Adsorption of hydrophobic probes was eliminated by probe

solubilization in the oil phase and weak adsorption of

probes with both electrostatic and hydrophobic interactions

with the adsorbed surfactant was observed. Quinones in pEs

react from a protic environment (although not necessarily

the aqueous phase). Exchange across the surfactant layer,

both the membrane phase and that adsorbed on the electrode,

was slow for ubiquinones.















CHAPTER 1
INTRODUCTION


Properties and Applications


Microemulsions (AEs) are thermodynamically stable

mixtures of oil, water and surfactant [1]. Often they also

contain a cosurfactant, which is usually a medium chain

alcohol. Inorganic electrolytes, such as NaCI, may also be

included in the mixture. Besides being thermodynamically

stable, jEs are microscopically heterogeneous with distinct

oil and water regions. Other useful properties of gEs

include low interfacial tensions [2,3], high interfacial

areas [4,5], optical transparency [4,6-8] and controllable

microstructure [2,9].

One application of jEs is as an alternative to

conventional solvents [2,8,10]. Being microscopically

heterogeneous, pEs can solubilize significant amounts of

both oil-soluble and water-soluble compounds [8,11]. For

instance, while the solubility of ferrocene in water is only

0.05 mM [12], cetyltrimethylammonium bromide (CTAB) .Es

containing ca. 90% water can dissolve more than 5 mM of

ferrocene [13]. Since reagents in pEs are localized,

effective local concentrations are increased. This can

increase reaction rates [7,8,11,14,15]. The localization of

1











reactant can also limit possible mechanisms for reactions

[4,8] e.g., reducing side reactions, such as isolating a

fluorophor from a quencher [5]. The rate of reaction can be

controlled when gE structure is changed [5,6,16]. Reactions

can be followed spectroscopically, since MEs are optically

isotropic [4,6,7,8].

The heterogeneity of MEs makes them also of interest as

biomimetic systems [4,6,9,16,17]. As in biological systems,

reactions in /Es often occur within or across an interface

[4,18]. Effects of interfacial environment on biologically

significant reactions were shown by Letts and Mackay [18],

who studied the incorporation of copper into tetraphenyl-

porphine in different AE systems. Khmelnitsky et al. [9]

have shown that catalytic activity of trypsin is determined

by microstructure.


Determination of Microstructure


On the microscopic level, gEs organize into specific

structures, with distinct oil and water regions [1,6,19].

In yEs with high water content, i.e. oil-in-water (O/W) .Es,

oil is confined to discrete droplets and water acts as a

continuous phase. The droplets are surrounded by a well-

defined layer of surfactant and cosurfactant [20], which is

often referred to as the membrane phase (Figure 1-1A).

Similarly, water-in-oil (W/O) yEs have high oil content and

water droplets, surrounded by the membrane phase, exist in a



















water


A







C


Figure 1-1


Microstructures of Microemulsions


O/W droplet ME
W/O droplet AE
Bicontinuous ME


oil

- membrane


D











continuous phase of oil (Figure 1-1B). If both oil and

water content of the solution are significant, the so-called

bicontinuous ME is formed. In such systems, both oil and

water act as continuous phases, with a sponge-like

organization (Figure 1-1C) [21]. As with droplet AEs, the

membrane phase separates the oil from the water [6].

As described above, AE structure is generally

determined by its relative oil and water content. However,

other factors also influence structure. Of these,

cosurfactant chain length has the most significant effect

[22-24]. Medium chain length alcohols, such as butanol and

pentanol, promote bicontinuous structures [22,24]. On the

other hand, longer chain alcohols promote a droplet

structure [22,24]. Other composition effects are observed

primarily in droplet pEs. In W/O PEs, shorter chain oils

are more likely to penetrate into the membrane layer. This

causes a more rigid and curved membrane phase and,

therefore, smaller droplets [23]. The nature of the

surfactant, including headgroup size and charge, counterion

and chain length have only a slight influence on structure

[24]. However, W/O MEs can be perturbed toward bicontinuous

structures with reduction of surfactant chain length [24].

In W/O EEs, droplet size can be increased by increasing the

cosurfactant/surfactant ratio or decreasing electrolyte

concentration [2,23]. Similarly, the droplet size of a O/W

ME can be increased by decreasing the cosurfactant/









5
surfactant ratio or increasing the electrolyte concentration

[2,3,23,25,26].

Many techniques have been used to determine the

microstructure of yEs. Quasielastic light scattering (QELS)

[17,19,25,26,27] and small angle neutron scattering (SANS)

[21,28] have been used to determine droplet size in both O/W

and W/O systems. Fluorescence quenching [29-31] has been

used to determine surfactant aggregation number or the

number of surfactant monomers attached to the droplet. From

this number, droplet size can be determined. Typical

droplet radii are 30-300 A [4,5,17].

The techniques mentioned above are used only to

determine droplet size. Consequently, they provide little

useful information about bicontinuous yEs. Fourier

transform pulsed gradient spin echo nuclear magnetic

resonance (NMR) may be used to determine the microstructure

of both droplet and bicontinuous gEs [1,22,32] through

measurement of the self-diffusion coefficient of each gE

component. If the diffusing species is attached to the jE

droplet, it cannot diffuse over macroscopic distances and,

therefore, the diffusion coefficient measured is the

diffusion coefficient of the droplet (Ddrop) [19,26,33]. For

example, in an O/W ME, the species attached to the droplet

would be either oil or surfactant. The Stokes-Einstein

equation relates Ddrop to droplet size. Typical self-

diffusion coefficients of species confined to AE droplets











are on the order of 10'7 cm2/s [24,32]. On the other hand,

typical self-diffusion coefficients of the continuous phase

species in a droplet MEs are slightly lower than in neat

liquid (DO) due to the obstruction effect [20,32,34-36].

Typical values of D" = 10-5 cm2/s [22,32]. The obstruction

effect slows the self-diffusion coefficient of a component

in a continuous phase by lengthening its diffusion path.

For example, the volume excluded by oil and surfactant in an

O/W pE will lengthen the diffusion path of water, since

water will not penetrate the oil droplets [20]. In

bicontinuous jEs, the volume of excluded phase is larger

than in droplet MEs and the self-diffusion coefficients of

both oil (Doi) and water (Dwate) are lower than in the

continuous phase of a droplet pE. Typical Doi and Dwater

values in bicontinuous AEs are 2-10 X 10-6 cm2/s [24,32].

These self-diffusion coefficients are lower than the self-

diffusion coefficient values of the same component in a neat

liquid and higher than the values for the same component in

droplets. Since the diffusion path of the surfactant is

restricted by both oil and water, its self-diffusion

coefficient (Dsuf) in bicontinuous AEs is lower than either

DOi or Dater, typically ca. 1 X 106 cm2/s [3,24,32].

Electrochemical methods offer a simple and convenient

method to determine pE structure with the same versatility

as NMR. With electrochemical techniques, the diffusion

coefficient of an electroactive probe (D') will measure











diffusion in the phase in which the probe resides

[12,13,19]. Consequently, D' determines gE structure in the

same manner as self-diffusion coefficients from NMR. For

example, a probe which resides in droplets typically has D'

= 10'7 cm2/s [13,19,26] and a probe in a bicontinuous phase

has D' on the order of 10"6 cm2/s [13]. Electrochemical

methods can also be used to determine droplet size from the

D' of a probe attached to the droplet. Like self-diffusion

coefficient values from NMR, D' is related to droplet size

by the Stokes-Einstein equation. Droplet sizes determined

electrochemically compare well with those from other

techniques, such as QELS [13,19,26]. In addition,

electrochemical techniques can be used to study redox and

related chemical reactivity in the microheterogeneous

environment of .Es [11-13,37,38].


Purpose of this Study


In this work, electrochemical methods were used to

determine the structure of an anionic gE of sodium

dodecylsulfate (SDS)/l-pentanol/dodecane/0.1 M NaCl(aq) and

to determine the parameters which control the structure. In

addition, reactivity as a function of AE structure was

evaluated. Since many phospholipids, which are components

of biological membranes, carry a negative charge, an anionic

AE should provide a better model for biological systems than

cationic or nonionic MEs. The large AE region [39] allows











changes in structure to be observed over a wide range of

compositions. Since this AE has been well-characterized in

the literature, there is sufficient data for comparison of

electrochemical results to those obtained by other methods.

Diffusion coefficients of well-characterized probes

were measured and used to determine AE structure at

different compositions. Ferrocene (Fc) was used to probe

the oil phase of the AE. Because of its low solubility in

water [12] compared to dodecane [40], Fc resides almost

completely in the oil phase. Water-soluble ferricyanide

(Fe(CN)6 3) was used to probe the aqueous phase. Since

Fe(CN)6"3 is negatively charged, it does not interact with

the anionic surfactant. Methyl viologen (MVf2) was used to

probe the membrane phase. Since MV+2 is a cationic, water-

soluble probe, it associates with the anionic surfactant

layer.

The effect of AE structure/composition on the

reactivity of these probes was also investigated. Both

formal potential (reactivity) and electrochemical

reversibility (kinetics) were affected by gE composition.

1,4-Benzoquinone (BQ), ubiquinone 0 (UQO) and ubiquinone 50

(UQ50) were used to model changes in reactivity of simple

biological molecules with gE composition.

Effects of AE composition on structure and reactivity

were also shown by comparison of the results of this study

to the results of a study of a CTAB/1-butanol/hexadecane/









9

water AE [13]. Differences in structure of EEs were

demonstrated by a comparison of diffusion coefficients of

probes residing in similar phases. In the CTAB pE, Fc

probed the oil phase, MV+2 probed the aqueous phase and

Fe(CN)6"3 probed the membrane phase. Reactivity and kinetics

of these probes were shown to be different in CTAB than in

SDS AEs.















CHAPTER 2
EXPERIMENTAL


Materials

Sodium lauryl sulfate (sodium dodecylsulfate, SDS),

sodium chloride (NaCl), potassium chloride (KC1), 1,4-

benzoquinone (BQ), n,n'-dimethylformamide (DMF), HPLC grade

acetonitrile (ACN) and potassium ferricyanide (Fe(CN)6-3)

were obtained from Fisher. 1-Pentanol, 2,3-dimethoxy-5-

methyl-l,4-benzoquinone (ubiquinone 0, UQO) and methyl

viologen dichloride hydrate (MV+2) were obtained from

Aldrich. Ferrocene (Fc) was from Arapahoe Chemicals.

Tetraethylammonium perchlorate (TEAP) and tetraethylammonium

chloride (TEAC) were obtained from Kodak. n-Dodecane was

from Alfa products. Water used was deionized and then

distilled. Both DMF and ACN were dried over 4A molecular

sieves (Fisher) before use. All other chemicals were used

without further purification.

Phosphate buffer of ionic strength 1.0 M was prepared

from anhydrous dibasic sodium phosphate, NA2HPO4

(Mallinckrodt), and monobasic sodium phosphate, NAH2PO4'H2O

(Mallinckrodt, Fisher), in deionized distilled water.

Adjustments of pH of the buffer solutions were made by











adding a small amount of either phosphoric acid, H3PO4

(Mallinckrodt), or sodium hydroxide, NaOH (Fisher).


Apparatus


For cyclic voltammetry (CV) and chronocoulometry a

Bioanalytical Systems Electrochemical Analyzer (BAS-100) was

used. In the electrochemical measurements, which were

conducted in a three electrode configuration, the working

electrode was glassy carbon (GC) from High Performance,

Englewood, CA, or Electrosynthesis. Glassy carbon

electrodes were prepared by sealing a glassy carbon rod (3

mm in diameter) in a glass tube with epoxy cement (Dexter).

Mercury was used to electrically connect GC to a copper wire

lead. The auxiliary electrode was a platinum wire and the

reference was a saturated calomel electrode (SCE). Before

each measurement, GC working electrodes were polished with

Gamal gamma alumina/water slurry (Fisher) on a microcloth

using Ecomet 1 polishing wheel (Beuhler). After polishing,

the electrodes were ultrasonicated in deionized distilled

water for about five minutes immediately before use.

Ultraviolet spectra were recorded using a Tracor

Northern TN-6500 diode array spectrophotometer.


Methods


Working electrode areas were determined by

chronocoulometry using 3.1 X 10-3 M Fe(CN)6-3 in 0.5 M KC1 (aq)











Using the diffusion coefficient, Do = 7.6 x 10.6 cm2/s [41],

GC electrode areas were determined to be 0.070.01 cm2. In

the measurements of electrode area, the pulse width was 250

ms and the potential was stepped from +0.400 to -0.100 V.

Typical resistances in pEs were between 100 to 500 n

before compensation and were compensated to less than 50 0

using the BAS-100. Peak potentials (Ep) and peak currents

(ip) were measured after iR compensation. The separation of

anodic (Epa) and cathodic (Epc) peak potentials, AEp, was

used to estimate the kinetics of electron transfer. For

reversible (fast) systems, AEp = 60/n mV, where n = number

of electrons transferred. Systems with slower kinetics

(i.e. quasi-reversible or irreversible) have AEp > 60/n mV.

Peak current (ip) depends on scan rate (v). For diffusion

controlled systems, ip 0 v1/2 and for adsorption controlled

systems, ip v. Thus slopes of 0.5 of a log ip vs. log v

plot indicate diffusion controlled behavior. Slopes > 0.5

indicate adsorption effects. Slopes < 0.5 occur when slow

kinetics decrease ip. Reactivity of an electroactive probe

in solution is related to its formal potential. Formal

potential, E"', was estimated as E' = E1/2 = (Epa + Epc)/2.

As kinetics become slower, E1/2 becomes a less accurate

estimate of E0'.

The potential step window for chronocoulometry was

chosen following CV. The potential was stepped from a

potential where no electrochemical reaction occurs to a











potential where the electrochemical reaction is diffusion

limited. Pulse widths were 250 ms. Diffusion coefficients

for the reduced, Dg, or the oxidized, Do, form of a probe

were calculated from slopes of plots of Q vs t'12 [42]. All

measurements were carried out at 252C and all potentials

(including values from the literature) are cited vs. SCE.


Preparation of Microemulsions



The phase diagram of the SDS AE used in this study

(Figure 2-1) has been reported [39]. The diagram of the

pseudo three-component system represents aqueous (0.1 M

NaCl( ), oil (dodecane) and emulsifier (1:2 ratio of

surfactant (SDS) to cosurfactant (1-pentanol)) phases in

weight percent (w/w). The composition of the gE was varied

along the two straight, solid lines shown in Figure 2-1.

These lines correspond to keeping the ratio of oil to

emulsifier constant at 1:10 (A) or at 2:10 (B), while

changing the ratio of oil to water. The range of

compositions which was investigated corresponds to a

relatively low oil content (< 10% oil) and a range of water

content from 89% to 34%. Specific compositions are

summarized in Table 2-1. In the text, gEs are referred to

by their ratio of water to oil. For example, a SDS gE with

89% water, 1% oil and 10% emulsifier is an 89/1 SDS gE.

Since % water was varied over a wide range, results in the

figures are plotted versus % water. It is apparent that in


















4N



00
cb.
U .
A

C8 O/


80 60 40 20
Water + NaCI 0.1 mol/I


Figure 2-1 Pseudo Three-Component Phase Diagram

From reference 39. Aqueous phase is 0.1 M NaC1i ,
oil phase is dodecane, and emulsifier is a 2:1
ratio of 1-pentanol to SDS. Units are in weight
percent (w/w). The two straight lines indicate
dilution lines used in lE preparation, with
constant oil to emulsifier ratio of 1:10 (A) and
2:10 (B). Exact compositions are listed in Table
2-1. Points on these lines correspond to specific
compositions.











Table 2-1
SDS Microemulsion Compositions Used

brineb %dodecane %SDS

34.02 5.94 20.09

45.00 5.03 16.64

52.02 8.00 13.32

56.12 4.01 13.27

64.00 6.00 10.00

67.02 3.00 10.01

76.00 4.00 6.66

88.02 1.98 3.32

89.00 1.00 3.35


in This Work

%l-pentanol

39.96

33.33

26.66

26.60

20.00

19.96

13.34

6.68

6.66


units are weight percent (w/w)

b0.1 M NaCl(,q), unbuffered, pH z 5.6

coil to emulsifier ratio = 1:10

doil to emulsifier ratio = 2:10


AEa%

34/6c

45/5C

52/8d

56/4c

64/6d

67/3c

76/4d

88/2d

89/1c









16
this investigation changes in pE composition show the effect

of dilution by water.

In preparing yEs, each component was added by weight

and the solution was mechanically stirred until clear and

homogeneous. The AEs were stable for several months and

could be frozen and thawed. Ultrasonication was used to aid

in dissolving the electroactive probes in gEs.

The reduction of oxygen is observed at ca. -0.550 V

in MEs. With the exception of MV+2, the potential window in

which CV was conducted did not overlap with the potential

window for oxygen reduction.

In the case of MV+2, however, the reduction of oxygen

interferes with the first reduction peak of MV2.

Therefore, solutions of MV+2 were deaerated with nitrogen

(N2) before measurements. The solution was purged with N2

using a bubbler containing AE which was first deaerated for

at least 30 minutes. The composition of pE used in the

bubbler was the same as that used to make the solution of

MV+2. Deoxygenation was confirmed by CV which showed

disappearance of the oxygen peak at -0.550 V. A positive

pressure of N2 was maintained throughout CV and

chronocoulometic experiments when MV+2 solutions were

studied.










Stability of 1,4-Benzoquinone in Microemulsions


1,4-Benzoquinone (BQ) reacts in the presence of light

to form hydroquinone (QH2) and 2-hydroxy-l,4-benzoquinone

(QOH) [43].


2BQ L> QH2 + QOH (2-1)

The disappearance of BQ can by monitored by ultraviolet (uv)

spectroscopy, where the absorbance maximum (Ax) of BQ is

255 nm in both aqueous solutions and in gEs. In aqueous

solutions after one hour, the absorbance at Ax, and,

therefore, [BQ], is 80% of the original value. After one

hour, a decrease in [BQ] is also detected by a decrease of

i in CV.

In SDS gEs, BQ is less stable than in aqueous

solutions. The rate of BQ decomposition depends on gE

composition and [BQ]. After one hour, uv spectra show that

[BQ] is 75% of the original concentration in an 89/1 SDS pE

and 70% of the original concentration in a 45/5 SDS pE. The

solutions used in CV were more concentrated than those used

in uv. Therefore, decomposition of BQ in solutions used for

CV is more rapid than in solutions used for uv spectroscopy.

For example, ip of BQ in a 45/5 SDS gE decreases to 20% of

its original value after one hour. Therefore,

electrochemical experiments were conducted immediately

following preparation of BQ solutions and ip errors are

larger than for the other probes.














CHAPTER 3
DETERMINATION OF MICROEMULSION STRUCTURE


Water Rich Microemulsions

Diffusion of Ferrocene (Fc)


Ferrocene (Fc) is a hydrophobic probe with a reported

solubility in water of 0.05 mM [12] and a solubility in

dodecane of 0.15 M [40]. Since Fc concentrations in gEs

were typically 3 mM, i.e. significantly greater than its

water solubility, the probe is expected to reside primarily

in the oil phase. The concentration was limited to 3 mM by

solubility in the pE. In SDS gEs with Fc concentrations

from 1-3 mM, diffusion coefficients (DR) and formal

potentials (E1/2 = (Epa + Epc)/2 E01) were not dependent on

the concentration of the probe (Table 3-1). In CTAB gEs,

dependence of D, on probe concentration was observed at [Fc]

< 5 mM [13]. The oxidation product of Fc, ferricinium

cation (Fc+), is water soluble. Water solubility of Fc' has

been demonstrated in micellar solutions, where Do ; Daq = 6.7

X 10-6 cm2/s [12,38], rather than a lower Do (=10"7 cm2/s)

typical of the electroactive probe interacting with

micelles.











Table 3-1
Diffusion Coefficients and Formal Potentials of Ferrocene
(Fc) in SDS Microemulsions



pEa [Fc] Db X 106 E1/2

(mM) (cm2/s) (mV)

89/1 0.77 0.810.02 +2254
1.84 0.530.03 +2213
2.25 0.580.03 +2193

67/3 0.94 3.230.06 +2755
1.97 2.840.04 +2672
2.88 2.730.04 +2739

45/5 0.83 4.310.04 +29716
1.52 4.060.13 +2913
2.44 3.360.02 +29911
3.15 3.460.05 +2914


aSee Table 2-1 for exact SDS jE compositions.

bD, = D' used in equations 3-4 and 3-5.










In water rich SDS yEs, oil-soluble Fc was expected to

reside in droplets, with DR reflecting the diffusion

coefficient of droplets (Ddrop) In 89/1 SDS AE, Fc DR = 5.8

X 10'7 cm2/s, ca. an order of magnitude lower than in aqueous

solutions (DR, = 6.7 X 10'6 cm2/s [12]) or in dodecane (DR,oit

= 4.4 X 10.6 cm2/s [44]). Therefore, DR does not reflect Fc

diffusion through a continuous phase but is consistent with

the expected diffusion with the droplet and is a measure of

drop [45]. The self-diffusion coefficient of oil in O/W MEs

measured by NMR is typically Doi 10'7 cm2/s [32], in

agreement with this model [22,33,36]. Measurement of

droplet diffusion by QELS also gives Ddr 10-7 cm2/s [26].

Diffusion coefficient is related to droplet size by

the Stokes-Einstein equation:


D = kT/67rlr (3-1)

where D is the diffusion coefficient (cm2/s), k is the

Boltzman constant (J/K), T is the temperature (K), n is the

viscosity of the solvent (P), and r is the radius of the

diffusing species (cm). Since DR of Fc reflects Ddrop, it can

be used to calculate droplet size from equation 3-1.

Typical droplet sizes which were obtained from such

calculations correspond well to droplet sizes determined by

techniques such as QELS [25] and SANS [28]. Calculations of

droplet sizes from electrochemical DR are discussed in

detail in a later section of this chapter.










Diffusion of Methyl VioloQen (MV+2)


Water soluble MV+2 is reduced through a stable cation

radical, MV', to water insoluble MV:


MV+2 + e" MV+" (3-2)


MV"* + e" MV (3-3)


The MV+2 is expected to associate with the anionic SDS in

the membrane layer. Typical MV+2 concentrations were 1 mM,

since at higher concentrations the pE became turbid. This

demonstrates that SDS ME structure is sensitive to

electrolyte concentration and changes in electrolyte

concentration can result in a solution which does not form a

.E.

In water rich MEs, MV+2 should be electrostatically

attached to the anionic membrane layer of the droplet and,

like Fc, can be used to measure droplet diffusion. In all

SDS iEs tested, Do is significantly lower than in aqueous

solutions, where Doaq = 6.56 X 10-6 cm2/s [46]. The low Do

indicates that the probe moves with the aggregates.

However, DO of MV*2 is not as low as Ddrop [3,13,19,26,32],

nor Dsurf [32], both of which are ca. 10'7 cm2/s.

Partitioning of MV+2 between the membrane and aqueous phases

may contribute to higher electrochemical Do. Effects of

partitioning on electrochemical Do will be discussed in

detail in a later section of this chapter.










Diffusion of Ferricyanide (Fe(CN),3)


Due to electrostatic repulsion from the membrane, the

water soluble anions, Fe(CN)6'3 and its reduction product,

Fe(CN)6"4, reside in the aqueous phase of SDS yEs.

Concentrations of Fe(CN)63 were typically 1 mM; similar to

the effect of MV*2, higher concentrations were found to

cause turbidity.

Since Fe(CN)6"3 resides in the aqueous phase, its Do

should be a measure of probe diffusion in water. In an 89/1

SDS ME, the diffusion coefficient of Fe(CN)6"3, Do = 5.9 X

106 cm2/s, is only slightly lower than D ,,ac(aq) = 6.7(0.1) X

10-6 cm2/s and DKCLaq) = 7.6 X 10.6 cm2/s [41]. The small

decrease in Do can be attributed to the obstruction effect.

In NMR studies, a similar obstruction effect was shown to

reduce Dwater. For example, in a O/W SDS/1-butanol/toluene/

water AE, Dwate = 1.5 X 10-5 cm2/s, compared to neat water,

D"water = 2.27 X 10'5 cm2/s [32].

Partitioning


As is apparent from Do values obtained for MV+2 in a

water rich ME, probe partitioning can affect diffusion

coefficients. Partitioning will also occur with other

probes, as demonstrated with Fc in CTAB yEs [13]. In a

multicomponent system, such as a ME, all electrochemical

diffusion coefficients are affected by probe partitioning

[46] because of the resulting multiple diffusional paths.










These paths occur because of place (mass) or electron

exchange across phases. Low concentrations and large

differences in E'' decrease the driving force of an

electron-exchange reaction [47]. In droplet pEs,

partitioning can contribute to higher diffusion coefficient

values than expected for Ddrop. In the iEs studied in this

work, electron exchange is unlikely since it requires a

similar formal potential (E'0) in both hydrophobic and

hydrophilic phases [47]. As shown in Tables 3-2 and 3-3,

E1/2 of Fc and of MV*2 in gEs are significantly different from

the E''aq. (Table 3-4 containing the electrochemical

figures of merit for Fe(CN)6-3 is included following Table

3-2 and 3-3 for comparison.) However, residence times of

probes in pEs are typically ca. 10'5 to 10'3 s [8]. This is

faster than the time scale of chronocoulometry, which was

used to measure diffusion coefficients. Therefore, cross-

phase place exchange may be considered rapid.

The relationship between apparent diffusion

coefficient (D') measured electrochemically and diffusion

coefficient of the droplet (Ddrop) depends on the rate of

exchange across the phases [46]. When exchange between

phases is fast, the D' may be expressed as


D' = D1,f + D2f2 (3-4)

where, for a droplet ME, D1 = Daq, and f, is the fraction of

probe in the aqueous phase; D2 = Ddro and f2 is the fraction












Table 3-2
Electrochemical Figures of Merit of Ferrocene (Fc) in SDS
Microemulsions


[Fc ] MEa

(mM)


4.98 ACNc

2.11 34/6

3.15 45/5

3.13 52/8

2.80 56/4

3.06 64/6

2.88 67/3

2.98 76/4

2.87 88/2

1.54 89/1

-- SDSd

-- aqe


E b
E1/2b

(mV)


+4194

+3113

+2914

+2926

+2821

+2876

+2739

+2687

+2204

+2193

+195

+160


AEpb

(mV)


618

646

678

756

622

686

7418

7214

599

555


iab

(AA)


1605

24.30.1

33.61.7

34.40.6

30.10.6

34.10.4

28.80.9

27.10.7

9.30.1

9.40.2


iWib


0.990.09

1.290.08

1.160.09

1.310.06

1.260.04

1.300.02

1.140.13

1.310.06

1.150.05

1.080.05

--


DR X 106

(cm2/s)


3.87.11

3.46.05

3.30.03

3.04.06

3.26.03

2.73.03

2.38.07

0.32.01

0.58.03

0.61

6.7


aSee Table 2-1 for exact SDS ME compositions.

by = 100 mV/s, iR compensation to < 50 n

C0.5 M TEAC in ACN

d0.28 M SDS in 0.1 M NaCl(aq) [37]

e0.1 M NaCl(aq) [38]





























































































r- 01 H 0 l m r


10
0
x




N


(4
1 U





*0
N
-,

.9-


0

o



a)
0

.r1


M
I



Cm











0
*4
N









Cl

.1



- 4J


44I
QC











C4
0


U)
9-1
r4











cu
0
r-I








04.
aQ)
rz
Sl
(M


.0
n
04>
N






0 ->
ia
JI




.




















N
I *
i,
*^(


O on

0 VD


0 0o
.sr M


n a0






CO
** *
co






o o
'. .o















Table 3-4
Electrochemical Figures of Merit of Ferricyanide (Fe(CN)63)
in SDS Microemulsions


[Fe(CN) 63]

(mM)

1.04

1.37

1.19

1.05

1.14

1.09

1.05

1.10

1.17

2.68

2.46


MEa



34/6

45/5

52/8

56/4

64/6

67/3

76/4

88/2

89/1

SDSc

aqd


E b
E1/2

(mV)

+22211

+20014

+2007

+18013

+17114

+17315

+15436

+15420

+1515

+14023

+17225


AEpb

(mV)

8122

10828

15716

26926

38127

36430

60772

30840

84610

88545

15260


ib

(MA)

4.40.2

6.00.6

4.80.2

2.50.3

5.90.3

6.10.2

4.20.1

8.90.1

9.50.2

22.1.5

31.42.3


i /ib Do' X 106

(cm2/s)

1.180.06 0.540.01

1.130.24 0.320.01

1.090.07 0.920.04

1.000.16 1.00.1

1.590.42 1.80.1

1.220.06 1.60.1

1.760.16 4.00.1

2.020.21 5.30.2

2.370.29 5.90.1

2.210.20 5.20.3

0.980.13 6.7+0.1


aSee Table 2-1 for exact


SDS ME compositions.


by = 100 mV/s, iR compensation to < 50 n

c2.97 mM SDS in 0.1 M NaCl(q)

d0.1 M NaCl(q)
(aq)












27
of the probe in the droplet [46]. For bicontinuous pEs, D1

= Dg and D2 is a diffusion coefficient for a probe in the

continuous oil phase.

If more than one probe is bound to a droplet, D' may

depend on probe concentration, Cx (See Appendix A). The

dependence of D' on Cx has been described by Rusling et al.

[48] where


D' = D1/(l + CK"Cxn-1) + D2CMK"Cxn-1/(1 + CMK"Cxn-1) (3-5)


In equation 3-5, CM = total droplet concentration, n = the

number of probe molecules bound to a droplet, and Kn is the

equilibrium constant for the binding of n solute molecules

to a droplet:


M + nX MXn (3-6)


where M = droplet and X = probe. More specifically, K =

nK'n, where K', is


K'n = [MXn]/([M][X]") (3-7)


In SDS AEs, D' = DR of Fc does not depend on Cx (Table

3-1). According to equation 3-5, this will occur if n = 1.

However, since high concentrations of Fc were used in this

work, it is reasonable that a droplet will contain more than

one probe (n > 1). Thus, n = 1 cannot explain the

independence of DR on [Fc]. If Kn, Cm, or Cxn'" is very low,













D' will be independent of Cx and D' = D, = D Since DR of

Fc << D&, this does also not explain the independence of DR

on [Fc]. However, if K", C, or Cxn"1 is high, D' = D2 = Ddrop.

This behavior is consistent with the observed DR of Fc,

where DR does not change with [Fc] and DR zDdrop. Unlike in

SDS AEs, D' depends on [Fc] in CTAB AEs [13]. Since Cx and

CM are similar in SDS and CTAB jEs, differences in the

dependence of D' on Cx must be due to differences in K". A

higher K" in SDS AEs leads to D' approaching D2 at lower Cx

than in CTAB AEs, resulting in the observed independence of

D' on Cx in SDS pEs in the same concentration range.

Determination of Droplet Size


As discussed previously, DR of Fc Ddrp in SDS AEs.

However, to accurately determine Ddrop partitioning must be

considered. In this work, [Fc] is close to its solubility

limit in SDS EEs. Therefore, the solubility of Fc in water

(5 X 10-3 mM [12]) is used to calculate fl and f2. Using

equation 3-4, these fractions, DR of Fc = D' and Daq = D,,

Drop (D2) is calculated [12,38]. For an 89/1 SDS AE, Ddrop
3.6 X 10"7 cm2/s is calculated. Using the calculated Ddrop and

assuming the viscosity of the continuous phase to be water =

0.0089 P, the droplet radius (r) is 68 A from equation 3-1.

Table 3-5 lists droplet sizes (r) for several O/W iEs.






















o c N



00


0 0
ocU



O -
L 0 0
0 '. U *







So
4.3
U 0 M -



o
0
QM
0)





a)
r-l
a4



E 3 4
0 -






U)
00




g- S ^
t, (0*


Ln
NCN 0 1
r- Ln I" I* tn


r-

ON


0)
U





0
r-


n 0
-44.4


0 0 %0

co rN cO
c c m
o CE
Q Q)


4
0









C4






cw


*
'-4

















co
CQ
10










0


tn
Q A
o a.

>*

a I

O


1 ) II
>4 14

0 II
S II --

)0







-4 0
43 o H







0 0 0 D



4C) 1
H1 V











uc
-4 r-4
C "^
>1 to



















) II4J-I
= r4
+




C 0


.-4

do o

0
oU1





O 0
4J








.H
R *o1


0



as a

4J .0



3 "
004 4








CN
24


I






0



a) 0

-4 C"
go m








o
r- 0 0

0 -









-4 a)
C C
C, M -










aO.




4e r0

o a


- + 0U)

44 m4-)
(,0 i40


wM 0 U
u s-u 0












30
Values in Table 3-5 are consistent with the values obtained

by other methods which are also listed in Table 3-5.

From QELS it has been shown that if ME oil content

increases, droplet size increases [25]. This is confirmed

by electrochemical results obtained here. For example, r =

123 A in an 88/2 SDS AE, when oil content is twice that of

the 89/1 jE, where r = 68 A (Table 3-5). Increasing the

surfactant to cosurfactant ratio (s:c) decreases the

hydrophilicity of the pE and as a result droplet size, but

to a lesser extent than the changes in oil content. For

example, the 89/1 SDS ME, where r = 68 A, has s:c = 1:2, but

if s:c = 2:1, r = 72 A (Table 3-5).


Bicontinuous Microemulsions


Structural Changes with Water Dilution


Diffusion coefficients of electroactive probes in

bicontinuous EEs correspond to values of diffusion

coefficients in neat liquids. However, diffusion

coefficients in AEs are lower because of obstruction due to

the presence of the membrane phase and the phase in which

the probe does not reside. The larger the volume of these

phases, the more obstruction which will occur and the lower

the diffusion coefficient. Since Fc resides in the oil

phase, as the volume of the obstructing water phase













decreases, DR of Fc will increase. Results in Figure 3-1

show this increase in DR as water content decreases.

According to equation 3-1, the observed increasing DR

of Fc will correspond to a decrease in droplet size if Fc

continues to diffuse with the oil droplets. However, with a

decrease in gE water content, oil content increases and,

therefore, size and/or number of oil droplets will increase

[2,25,31,39,49]. Therefore, changes in droplet size cannot

explain the increase in DR. However, with an increase in

the size and number of droplets, coalescence of droplets is

more likely. Thus, a continuous path through the oil phase

is formed and diffusion through this pseudo-continuous phase

becomes important. This new diffusion path leads to an

increase in DR. From results in Figure 3-1, it is concluded

that with decreasing water content, this form of diffusion

becomes more important.

When continuous diffusion paths through both the oil

and water phase exist, the structure is considered

bicontinuous. The transition from droplet to bicontinuous

structures is confirmed by comparing electrochemical and NMR

diffusion coefficients where changes in DR of Fc with

composition follow Doit values from NMR for both SDS and CTAB

MEs. For example, when water content is high, Doit and DR of

Fc are ca. 10-7 cm2/s [22,32,36,50-53], consistent with a pE

droplet structure. From NMR, as water content decreases,

















5.00 -




4.00


CO
13.00

E


o 2.00
0


X
1.00

0.00

0.00 z


Figure 3-1


"aE

r i "


*.*.. 3 mM Fc in SDS A.E
ooooo 5 mM Fc in CTAB A.E
e Fc in dodecone


I l l lll, t 1,1,1 1 Il l l l l l l l l lTllm i l l
0 20 40 60 80
% water in microemulsion


100-
100


Dependence of DR of Fc on AE Composition

Microemulsion composition is expressed in
weight percent water. See Table 2-1 for exact
compositions.


C



O


I













Don increases, approaching D"oi (neat liquid) but not

achieving it [50-52]. This is consistent with a transition

from discrete oil droplets to a bicontinuous structure with

oil as a pseudo-continuous phase. Specifically, in a

bicontinuous SDS/1-butanol/toluene/water AE, Dtotuene = 8 X

10-6 cm2/s, while D*toLne = 2.4 X 105 cm2/s [32]. Similarly,

electrochemically determined DR of Fc increases as the water

content decreases, without reaching DRoit = 4.4 X 10-6 cm2/s

[44] (Figure 3-1).

While D, of Fc corresponds to DolL from NMR, Do of

Fe(CN)6-3 in SDS AEs corresponds to Dater. In AEs with high

water content, Do is slightly less than Do,,act(). Similarly

from NMR, Dwater is slightly less than Dwater [32] in these

systems. Like Dwater, Do is reduced because of obstruction of

aqueous diffusion by oil droplets [33,36,52-54]. The

changes in Do follow changes in Dwater (Figure 3-2). As water

content decreases, Do decreases due to increasing

obstruction of Fe(CN)6-3 diffusion. The increased

obstruction is a result of increasing amount of the

obstructing oil phase as water content decreases. In CTAB

MEs, Do of MV*2 reflects diffusion in the aqueous phase,

since MV*2 is repelled from the CTAB membrane. Like Do of

Fe(CN)6"3 in SDS IEs, D of MV+2 in CTAB AEs decreases as

water content decreases [13] due to obstruction (Figure

3-2).


















10.00
-



8.00


n:
S6.00
N-



E


o 4.00
0


X
2.00
0
0.00



0.00


1 mM Fe(9CN)63 in SDS AE
ooooo 5 mM MV" in CTAB u.E


'If


20
% water


~~~~~~~~I Ilr I I l ii i.........


I I I I II II I .i ....... ... 1 0I
40 60 80 100
in microemulsion


Figure 3-2


Dependence of Do of Fe(CN)6'3 and of MV+2 on IE
Composition

Microemulsion Composition is expressed in
weight percent water. See Table 2-1 for exact
composition.


--:,
f#













The Do of MV*2 in SDS yEs is a measure of the

diffusion of the membrane or surfactant phase. In SDS pEs,

Do is significantly lower than D0,aq and changes little with

composition (Table 3-3). Similarly, the low Dsurf from NMR

does not change significantly with composition [22,32],

since the movement of surfactant is restricted at all

compositions. In droplet yEs, surfactant, like oil,

diffuses with the droplets. In bicontinuous systems,

diffusion of surfactant is confined to the interface and is

thus slow, typically Dsurf = 1 X 10-6 cm2/s [22,50,51]. The Do

of MV*2, which is ca. 2 X 10"6 cm2/s, is larger than Dsrf,

probably due to a contribution to Do from diffusion of MV*2

in the aqueous phase as a result of MV+2 partitioning

between the membrane and the aqueous phase. In CTAB gEs, Do

of Fe(CN)6-3 reflects Dsf and is lower than Do of MV*2 in SDS

gE [13]. This is due to greater partitioning of Fe(CN)6"3

into the membrane phase.


Effect of Oil to Emulsifier Ratio


As shown for Fc, diffusion of the probe through the

oil phase is significant in bicontinuous systems. Both

electrochemical and NMR results show that diffusion of Fc in

bicontinuous AEs is slower than in neat liquid due to the

obstruction by the surfactant and water phases [50-52].

Consequently, bicontinuous AEs with higher oil to emulsifier













(o:e) ratio will cause less obstruction and, therefore,

higher diffusion coefficients will be measured. This is

shown for Fc in a system with a ratio of o:e = 2:10, where

DR of Fc is higher than in comparable systems where the o:e

= 1:10 (Figure 3-3).


Effect of Electrolyte


The transition from a droplet to a bicontinuous

structure will occur at different compositions, depending on

jE components. For example, Figure 3-1 shows that DR of Fc

in SDS pEs reaches the high (> 1 X 10-6 cm2/s) values which

are characteristic of a bicontinuous AE at higher water

content than in CTAB MEs. Shielding of the droplet charge

by an inorganic electrolyte may lead to more facile droplet

merging [30]. Thus SDS AEs, which contain NaC1, favor a

bicontinuous microstructure at lower oil content than CTAB

gEs which do not contain NaCI. This electrolyte effect can

also be seen when an SDS pE lacks electrolyte. In a 79/5

SDS ME in the absence of 0.1 M NaCIl ), Fc DR = 2.2 X 10.7

cm2/s, typical of DdrI. However, for the same 79/5 system in

the presence of 0.1 M NaC1(a, Fc DR = 1.2 X 10.6 cm2/s. The

higher DR in the presence of NaC1 must reflect bicontinuous

structure since the value is typical of diffusion in a

continuous phase and is significantly larger than Ddrop,

which is typically ca. 10'7 cm2/s. Other studies have shown

















4.00





3.00
e--1~-
C~


E
0 2.00

(0 -
CD


0
X 1.00


0.00


0.00 -


oil:emulsifier = 1:10 4
o000o oil:emulsifier = 2:10
I 1 111i 1 I 1 1' 1 1 1 1 1 11"l I I 1 1 11 1 I I I 1 I 11 i I I 1 i 1 1 I
0 20 40 60 80 100
% water in microemulsion


Figure 3-3 Dependence of DR of Fc on p.E Composition for
Oil-to-Emulsifier Ratio of 1:10 and of 2:10

Microemulsion Composition expressed in weight
percent water. See Table 2-1 for exact
compositions.












38
that droplet size increases when electrolyte is added to the

aqueous phase of an O/W gE [2,23]. An increase in droplet

size should correspond to a decrease in DR (equation 3-1).

Since experimentally, DR with added NaCl is larger, it must

reflect a facile transition of large droplets to a

bicontinuous structure. As ME composition changes, neither

DR of Fc nor Do of Fe(CN)63 show an abrupt change, which

would be expected if the change from droplets to

bicontinuous structures occurred at a specific composition.

Results from NMR also do not show such a change from

droplet to bicontinuous structures [55].


Role of Electroactive Probe in Structure Determination


As is clear from the results, electrochemically

measured diffusion coefficients can be used to determine ME

microstructure by appropriate choice of probes. In both

CTAB and SDS AEs, electrochemically determined DR of Fc is a

measure of diffusion of oil and is comparable to Doi from

NMR (Figure 3-1). Diffusion in the aqueous phase is

measured by Do of Fe(CN)6-3 in SDS AEs and Do of MV+2 in CTAB

MEs, since both are water soluble and do not associate with

the surfactant in the membrane due to electrostatic

repulsion. For this reason, Do values for MV*2 in CTAB IEs

are comparable to values of Do for Fe(CN) 63 in SDS iEs and

Dwater from NMR (Figure 3-2). As with changes in Do of













Fe(CN)63 and Dwater with jE composition, the decrease in MV`2

Do with decreasing water content [13] is due to obstruction.

In SDS LEs, Do of MV+2, like Do of Fe(CN)6 3 in CTAB AEs,

correlates well with Dsurf [32] showing little change in Do

with composition.

In bicontinuous SDS AEs, DR of Fc is larger than in
CTAB yEs of similar compositions (Figure 3-1). This is

probably due to the differences in the viscosity of the oil

phase for each IE and to differences in Fc solubility in

each jE. Viscosity (q) of the hexadecane oil phase in CTAB

AEs is ca. twice that of the dodecane oil phase in SDS gEs

(7hexadecane = 3.34 cP [44], 7odecane = 1.35 cP [44]). It follows
from equation 3-1 that diffusion coefficient will be lower

in hexadecane and consequently DR of Fc will be lower in

CTAB yEs.














CHAPTER 4
PROBE REACTIVITY IN MICROEMULSIONS


Formal Potentials

Reactivity of Fc0+--Partitioning and Diffusion Coefficients


The standard potential, E, is the potential at 25C

when all species in solution are at unit activity. The

potential when the concentration of the oxidized form of the

probe (Ox) and the reduced form (Red) are 1.0 M and pH = 7

is called the standard redox potential (Eo') by biochemists.

In this work, reactivity is measured using the formal

potential, E', where [Ox] = [Red] for specific solutions.

For a reversible system, E0' z E1/2 = (Epa + Epc)/2. As the

system becomes less reversible, the approximation of E0' =

E1/2 becomes less accurate. However, E1/2 can still be used

to observe trends in reactivity.

In droplet 89/1 SDS AE, E1/2 of Fc = +0.2190.003 V,

which is 59 mV more positive than its aqueous formal

potential, E'q = +0.160 V [38]. Since Fc is solubilized

primarily in the oil, and ferricinium ion (Fc*) is

solubilized in water [12,38], their diffusion coefficients,

D, and Do respectively, are not equal. The difference










between DR and Do will cause a shift in E1/2 vs. E'aq [42]

where


E1/ = E 'q + (RT/nF) In (D,/DO)1/2 (4-1)
aq

In this system, Fc DR = 5.8 X 10-7 cm2/s from chrono-

coulometry, and Fc+ Do = Do,aq = 6.7 X 10-6 cm2/s [12,38].

With these values, a negative 31 mV shift vs. E"'a is

predicted from equation 4-1. Since the experimental E1/2 is

more positive than the E" q' differences between DR and Do

cannot account for the observed shift in E1/2. The

partitioning of Fc and Fc* between gE phases directly

affects E1/2 as well. Considering the membrane and oil phase

as one, the relevant equilibria can be expressed as [12,37]


Fc + e" Fc
til tI 1 (4-2)
Fc (oi + e" Fc(oi


where aq and oil represent the aqueous and oil/membrane

phases, respectively. The partitioning constants K, (for

the oxidized form of the probe) and KR (for the reduced form

of the probe) are defined as


Ko = [OX(aq)]/[OX(oiL] = [Fc+(aq)]/[Fc+(oit] (4-3)

and


KR = [Red(q)]/[Red(oit)] = [Fc(aq)]/[Fc(oil)]


(4-4)










In aggregate systems such as droplet PEs, partitioning

constants measured experimentally (K1' and K%') will be


Ko' = [Ox(aq)C/[[Ox(oi1)] = KoC, (4-5)

and


K' = [Red(,q]CM/[Red(Oi,)] = KC (4-6)

where C, is the concentration of aggregates, i.e. droplets

in a droplet AE. In micellar solutions containing

aggregates, typical C, values are in the mM range [29,48]

and ME droplet concentrations should be similar [29]. In a

strict definition of K%' and K' for the equilibria between

aggregates and the probe, C, must be defined as the

concentration of aggregates without a probe. However, if

Poisson distribution is assumed, i.e. that the solubil-

ization of one probe in an aggregate does not affect

solubilization of the next probe, then C, = total droplet

concentration [56].

Ohsawa and Aoyagui [37] have shown that for systems

such as the one described in equation 4-2, E1/2 dependence on

% and Ko can be described by (See Appendix B)


El/2 = E'aq + RT/nF In (D,/DO)1/2
+ RT/nF In (Ko(l+KR)/KR(1+Ko)) (4-7)

Since Fc* is water soluble, K>>1. Therefore, equation 4-7

reduces to










E1/2 = E' + RT/nF In (DR/Do)1/2
+ RT/nF In {(1+KY) /K} (4-8)

Using in equation 4-8, Fc DR = 5.8 X 10-7 cm2/s determined

from chronocoulometry, Do,, for Fc* = Do = 6.7 X 10-6 cm2/s

[12,38], E"'@ = +0.160 V [38] and E1/2 = +0.219 V from CV, KR
is estimated to be 3 X 102. This KR value is consistent

with literature values for binding of hydrophobic probes

[57] to micelles. The KR calculated from the shift in E1/2

is also consistent with Kg calculated from the water

solubility of Fc. Using equation 4-4, [Fc ] = 0.05 mM [38]
and [Fcoit] = [Fctotat] [Fcaq] = 1.49 mM, then KR = 3 X 102.

With decreasing AE water content, E1/2 of Fc becomes

more positive (Figure 4-1). In a 34/6 SDS ME, Fc E/2 =

+0.311 V, 151 mV more positive than E01 (Table 3-2). In

this system, DR has increased to 3.9 X 10-6 cm2/s (Table 3-2)

and Do of Fc+ will be lower than in the 89/1 system because

of the increased obstruction effect. Like Fc, Fe(CN)6'3 and

hydroquinone are water soluble and in pEs of similar

composition, Do = 5.4 X 10'7 cm2/s for Fe(CN)63 and D, = 3 X

10'7 cm2/s for hydroquinone [39]. From these values, the

minimum Do must be 3 X 10-7 cm2/s. Using these values for DR,

Do and K, = 3 X 10-2 in equation 4-8, the maximum E1/2 shift,

due solely to changes in diffusion coefficient with

composition, is +123 mV. While the direction of the shift

is correct, the magnitude is not sufficient to account for

















400-



350-



E 300

LJ
O 250
Cn


> 200
CN%
r-


150-



100-


Figure 4-1


*_*.* 3 mM
0oooo 5 mM
eeeee Fc in


Fc in SDS /JE
Fc in CTAB pE
aqueous solution


IliI I l II I T I I I I Tl l l lT I I I I I I F I I I I I I I I I I I I 1
20 40 60 80 100
% water in microemulsion



Dependence of El/z of Fc on IE Composition

Microemulsion composition is expressed in
weight percent water. See Table 2-1 for
exact compositions.


%%
\.


I5- I:-










the observed +151 mV shift. Therefore, Kg must be a

function of tE composition. Using the values above for DR

and Do in equation 4-8, it follows that for the 34/6 SDS AE,

Kg 5 1 X 10-2, which is a decrease from the KR value in the

89/1 SDS ME. According to equation 4-6, KR will decrease

when C, increases. In the bicontinuous 34/6 SDS ME, C,

obviously cannot be a measure of droplet concentration, as

defined for the 89/1 AE. However, since the probe

partitions into the oil and membrane phases of the ME, CM

must be related to their concentration in bicontinuous yEs.

Oil and surfactant content, thus C,, is greater in the 34/6

AE than in 89/1 pE. Therefore, the observed decrease in Kg

is consistent with equation 4-6.

As shown in Figure 4-1, E1/2 of Fc in CTAB MEs is more

positive than in SDS MEs of similar composition.

Differences in DR do not account for the differences in E1/2

in droplet yEs. Since, DR is about the same in droplet SDS

(Table 3-2) and CTAB MEs [13] and to obtain the more

positive E112, DO would have to be much lower in CTAB than in

the SDS system. This is unlikely since electrostatic

attraction of Fc+ to the SDS predicts lower DO in SDS MEs.

It is more likely that KR is smaller in the CTAB ME, leading

to more positive E1/2 shifts. Smaller KR in CTAB ME is

consistent with larger solubility of Fc in the hexadecane

oil phase of this ME than in the dodecane oil phase of the

SDS ME. However, in bicontinuous MEs, DR of Fc is greater










in SDS jEs than in CTAB MEs. This can also lead to a more

positive E/2.


Reactivity of Fe(CN)-3/-4


For Fe(CN)6"3/' in SDS LEs, there should be little

difference between K, and K1, since neither form is

associated with either oil or surfactant phase. As a result

partitioning constants and diffusion coefficients of both

forms must be approximately equal at any composition (KR z

K% and DR z Do), and, therefore, based on equation 4-7, no

change in E1/2 is expected. In fact, E1/2 of Fe(CN)6-3 in SDS

LEs is within experimental error of E"' (Table 3-4) for
aq
many ME compositions. Differences in partitioning between

Fe(CN)6"3 and Fe(CN)6'4 can shift E1/2.

In CTAB MEs, both forms of the Fe(CN)6'3/'4 couple are

strongly bound to the surfactant interface [13]. As a

result, both forms of the probe are equally affected by

composition and KR Ko and DR z Do. Consequently, E1/2 does

not change with composition in CTAB MEs [13] because the

probe is in a different environment. Therefore, it is the

difference in the environment of Ox and Red, rather than the

environment itself which shifts E/2.


Reactivity of MV+2/+"


Interactions of MV+2/+' with SDS surfactant in a ME

should be similar to interactions with SDS micelles. The










redox couple associates with SDS micelles through a

combination of electrostatic and hydrophobic interactions

[58]. In SDS micelles, K (MV*2) = 1.15 X 10'3 and K, (MV') =

2.4 X 10'4 [58], so it is reasonable that Ko and K << 1 in

SDS EEs. Consequently, equation 4-7 reduces to


E1/2 = E'aq + RT/nF In (DR/Do)'2 + RT/nF In Kg/K (4-9)


From values of K1 and KR in micelles, both MV+2 and MV+'

should reside predominately in the oil/membrane phase.

Therefore, DR D Do, and equation 4-9 reduces even further to


E,1/ = E'aq + RT/nF In KO/IK (4-10)

From equation 4-10, experimental E1/2 = -0.664 V and
E*'/ = -0.690 V for MV2/+*, K /K z 2.8 in the 89/1 SDS AE.

This indicates that the partitioning of MV** into the

oil/membrane phase of the jE is more favorable than the

partitioning of MV+2. This, in turn, suggests that hydro-

phobic interactions between the probe and the oil/membrane

phase may be more important than the electrostatic

interactions, since based solely on electrostatics, MV+2

should be more strongly associated with the surfactant

layer. The predominance of hydrophobic interactions of MV+'

was also observed by Kaifer and Bard in SDS micelles where

K. is about 5 times greater than Kg [58].

The effect of a possible difference between DR and Do on

E1/2 can be analyzed with equation 4-9. For the 89/1 SDS AE,










DR will reach a maximum value when MV* is not associated

with the oil/membrane phase, DRx = D,aq = 6.6 X 10-6 cm2/s

[58]. A minimum value of DR occurs when MV** is strongly

associated with the oil phase. This value can be estimated

as DRmin = Ddrop 6 X 10"7 cm2/s DR of Fc in 89/1 SDS pE.
With experimental Do = 3.3 X 10'6 cm2/s, E,/2 = -0.664 V, E'

= -0.690 V [58] and assuming DRX = 6.6 X 10'6 cm2/s, K/KR "

2 from equation 4-9. Using the same values of Do, E1/2 and

E*'aq and DRmin in equation 4-9, K/IY = 7. Consequently,

regardless of possible differences between DR and Do, the

association of MV*+ with the oil phase is always stronger

than that of MV+2 (Ko>KR) Therefore, DR,min must reflect DR of

MV+" better than DRma and the estimation of KI/KR from

equation 4-10, i.e. assuming Do = DR, will have <60% error.

As the water content of the jE decreases, E1/2 becomes

less negative but Do remains relatively constant (Table

3-3). Since as shown above, MV+" associates more strongly

with the oil/membrane phase than MV+2, its DRx will follow

the D, of Fc. In a 34/6 SDS ME, MV+2/' E1/2 = -0.632 V, Do =

2 X 10"6 cm2/s and DR,mx = Fc DR = 3.9 X 10.6 cm2/s, thus Ko/KR

= 7 from equation 4-9. If MV" is not much more associated

with the oil phase than MV+2 then DRin z Do = 2 X 10'6 cm2/s

and KI/K = 10 from equation 4-9. If DR, like Do, does not

change with composition, the shift in E1/2 from the 89/1 to

the 34/6 ME can be attributed to increasing KG/KR. However,

changes in DR alone may be sufficient to account for the










observed shift in E1/2. For E1/2 shifts to be solely

dependent on diffusion coefficient, MV*' must be associated

with the oil/membrane phase of the PE, so that in the 89/1

SDS fEm DR of MV* = DR of Fc = 6.7 X 10-7 cm2/s and in the

34/6 AE, DR of MV+ = DR of Fc = 3.9 X 10-6 cm2/s.

Association of MV*' with the oil/membrane phase is not

inconsistent with calculated KI/KY values which show that

MV" partitions more into the oil phase than MV*2. However,

since the difference between Kg and KR is less than an order

of magnitude, DR should not be considerably different from

Do. Therefore, the E1/2 shift is probably due to changes in

both DR and K/KR.

The dependence of K/KR on composition can be explained

by considering the solubilization of probe (X) in a gE

droplet (M), which can be described as


nX + M Xn-M (4-11)

where n = number of probes per droplet (equation 4-11 is the

same as equation 3-6). Equations 4-5 and 4-6 assume either

Poisson distribution, where solubilization of a probe in a

droplet does not affect solubilzation of the next probe

(therefore, M = total droplet concentration = C,) or that n

= 1. If neither of these assumptions are valid, and n when

X = Ox is not the same as the n when X = Red, then K/KR

will be a function of AE composition. This is probably the

case for the MV*2/* couple and MV+2 and MV*' may be in










different environments and, therefore, be affected

differently by composition.

The small changes in KI/k with jE composition indicate

little change in partitioning. Since both MV+2 and MV+' are

electrostatically attracted to the surfactant head groups,

both should reside near the membrane/water interface. Since

MV' is more hydrophobic, it will also associate with the

hydrophobic portion of the membrane, thus having a lower

partitioning constant (KR) than MV+2 (1%). However, with

both forms near the interface, effects of ME composition on

partitioning of both forms are similar. In CTAB gEs, MV+'

hydrophobically associates with the oil/membrane phase, MV+2

resides in the water and neither are electrostatically

attracted to the CTAB head groups. With the each form of

the probe in a different environment, the effect of

composition on partitioning is very different for each form.

This is indicated by greater shifts in El/ (due to

differences in /KR) with CTAB ME composition than in SDS

yEs, where the probes were in similar environments.

Reactivity of MV+'/O

In SDS MEs, E1/2 for the MV+'/ couple is less negative

than its E' = -1.020 V. Since both forms of the probe

must reside primarily in the oil phase, DR = Do and equation

4-10 can be used to describe shifts in E1/2. For an 89/1 SDS

ME, E1/2 = -1.015 V, and according to equation 4-10, KI/K










1.2. In a 34/6 SDS ME, E1/2 = -0.944 V and so KI/K, z 19.

Therefore, MVO is more strongly associated with the oil

phase than MV+ for all ME compositions, which is consistent

with their relative solubilities. The K/K, of the MV+*'/

couple is more affected by composition than the MV*2/+'

couple, having a smaller value in 89/1 SDS pE and a larger

value in 34/6 AE.

The reason is that with this couple, MV+" is attracted

to the interface as described before. However, hydrophobic

MVo will partition into the oil phase. According to

equation 4-11, both K, and K should decrease with

decreasing water content (M increases). However, KQ/KR

increases as ME water content decreases. Therefore,

partitioning of MVo must be more affected by pE composition

than that of MV*'.


Kinetics and Adsorption

Effect of Surfactant Adsorption on Probe Kinetics


Since pEs are optically transparent, the distance

between water/oil interfaces in bicontinuous EEs and droplet

size in droplet MEs cannot be more than 500 nm [59]. Since

electrodes are mm in diameter, part of the electrode will be

in contact with the aqueous phase and part with the oil

phase. Regardless of the solution, surfactant adsorbs tail

first onto hydrophobic surfaces, such as GC [59]. For the

fraction of the electrode in contact with the aqueous phase,










the polar head groups extend into the aqueous solution

(Figure 4-2). For the fraction of the electrode in contact

with the oil phase, the polar head groups interact with

other surfactant head groups rather than the non-polar oil

phase. Thus, reverse hemimicelles are formed on that

portion of the electrode surface (Figure 4-2). The

structure on the electrode surface will affect the

electrochemical response by partially blocking the surface

and through electrostatic and hydrophobic interactions

[8,59]. Addition of other compounds to the solution, such

as salt or alcohol, will affect the structure of the

surfactant layer (59].

Since hydrophilic Fe(CN)6'3 resides in the aqueous phase

of the ME, only electrostatic interactions between the probe

and the adsorbed surfactant occur. Consistent with this,

repulsion of Fe(CN)6"3 from like-charged SDS results in

slower electrochemical kinetics. Slow kinetics are shown by

AEp = 846 mV in 89/1 SDS ME and AEp = 885 mV in SDS micelles

compared to AEp = 152 mV in 0.1 M NaC(1~) (Table 3-4). In

CTAB iEs, adsorbed cationic surfactant attracts Fe(CN)6"3 to

the electrode, and the kinetics improve over 0.1 M NaCl(aq)

with AEp = 60 mV [13].

As the water content of the SDS ME decreases, AEp of

Fe(CN)63 decreases (Table 3-4). It has been shown that the

alcohol content in the oil/water interface increases as ME

water content decreases [20]. Changes in solution should












OI


LUI


0
0 '


C


water


Figure 4-2


Adsorption of Surfactant on GC Electrode
Surface for both Oil Phase and Aqueous Phase


O
11.
0 1


O

1










affect the electrode/solution interface in the same way as

the oil/water interface since the surfactant organizes in a

similar manner at both interfaces. With more alcohol at the

electrode/solution interface, the surfactant head groups are

further apart, decreasing charge per area and, thus, the

electrostatic repulsion of the electrode surface toward

Fe(CN)-3/'-. The neutral polar group of the alcohol also

increases the hydrophilicity of the surface [59], which may

also improve the kinetics of the Fe(CN)6'3/'4 couple.

In SDS MEs, AEp of Fc is about 60 mV and does not

change significantly with composition (Table 3-2),

indicating reversible electron transfer. Small changes in

AEp with AE composition may indicate some weak adsorption

effects. Hydrophobic Fc must easily penetrate the

surfactant layer allowing facile electron transfer. A AEp

of 60 mV for Fc is also observed in CTAB jEs [13], SDS

micelles [12] and CTAB micelles [38] where hydrophobic

interactions also allow Fc to easily penetrate the

surfactant layer.

In SDS pEs, AEp of MV+2/* is ca. 60 mV (Table 3-3). The

MV+2 can interact both hydrophobically and electrostatically

with the adsorbed surfactant, allowing for facile electron

transfer. In CTAB AEs, MV+2 will be electrostatically

repelled from CTAB but will still interact hydrophobically.

Since AEp in CTAB AEs is ca. 60 mV [13], hydrophobic









55
interactions must predominate. This is consistent with the

conclusions from E1/2 shifts and calculated KO/K .


Effect of Surfactant Adsorption on Probe Adsorption


In SDS AEs, the electrochemical behavior of Fc on

glassy carbon electrodes is diffusion controlled. This is

indicated by plots of log anodic peak current (i ) vs. log

scan rate (v), where slope is ca. 0.5. Similar plots for

Fe(CN)6"3 show slopes lower than 0.5. The lower slopes are

attributed to kinetic effects [42]. Kinetic effects on the

reduction of Fe(CN)63 are confirmed by the AEp which

increases with v. These results show that no difference in

adsorption behavior occurs in AEs for probes which do not

adsorb on GC in aqueous solutions.

Plots of log i_ vs. log v for the MV+2/+* couple in SDS

AEs have a slope of ca. 0.5 in all AE compositions used,

indicating that MV+2 is not adsorbed in SDS yEs. However,

the ratio (ic/i.)i < 1 and decreases with increasing v.

Since AEp is ca. 60 mV throughout the range of v, this

behavior indicates weak adsorption of MV+'. Kaifer and Bard

also observed weak adsorption of MV+' in SDS solutions which

was eliminated when SDS exceeded its critical micelle

concentration [58].

For the MV+'/ couple in all SDS yEs tested, plots of

log ip versus log v have a slope of ca. 0.5, indicating

that the system is primarily diffusion controlled. The










ratio (ip/ipa)2 > 1 and increases slightly at high (= 500

mV/s) scan rates. This is consistent with greater

adsorption of MV+' than MV. This is unlike aqueous

solutions where significant adsorption of MVO is observed

(Figure 4-3). The decrease of adsorption of MV was

attributed to the solubilization of MVO in the oil phase of

the AE. No adsorption of MV was observed in SDS micelles

[58], which also solubilize MV.

In MEs, strong probe adsorption is eliminated, as shown

for MV. This is attributed to solubilization of the

hydrophobic probe and blocking of the electrode surface by

surfactant. However, weak probe adsorption may occur. If

the adsorption depended soley on electrostatic attraction

between probe and SDS, adsorption of MV+2 would be greater

than adsorption of MV+'. If this adsorption were determined

soley by hydrophobic interactions, adsorption of MVo would

be greater than adsorption of MV". Since greater

adsorption of MV' is observed for both MV+2/*+ and MV+'0

couples, both electrostatic and hydrophobic interactions

must affect adsorption. Blocking of the surface by

surfactant also affects adsorption. Enhanced kinetics of

Fe(CN)6'3 with decreasing AE water content showed that the

adsorbed surfactant layer became more disordered as jE water

content decreased. In SDS micelles, where adsorbed

surfactant efficiently blocks the surface, no adsorption of

MV+" was observed [58]. However, in SDS solutions below
















30-






10
2 ', 2c





22a



-200-






-30-

...... 1.0 MM MV in 0.1 M NaCl(,q)
20 -0 -1400 -1600















Figure 4-3 Cyclic Voltammetry of Methyl Viologen
v = 100 m/s
lo \ '

0 -20- p \


-30-
1.2 mM MV+2 in 67/3 SDS /E
..-... 1.0 mM MV+2 in 0.1 M NaCI(oq)
-- 4 0 I I II1 1 1 11 11 I 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I I I I I 1
-200 -400 -600 -800 -1000 -1200 -1400 -1600
potential (mV)



Figure 4-3 Cyclic Voltammetry of Methyl Viologen
v = 100 mV/s
on GC electrode, area = 0.071








58
cmc, the surface was less blocked and adsorption of MV+' was

observed [58]. In SDS pEs, as the adsorbed surfactant

becomes more disordered (with decreasing AE water content),

coadsorption of MV+" increases. This is indicated by

increasing (ip/ip)2 with decreasing AE water content (Table

3-3).

Shifts in E1/2 indicate that MV*" interacts more with the

oil/membrane phase than MV*2. This is consistent with the

preferential adsorption of MV+' by interaction with the

adsorbed SDS. However, shifts in E1/2 for MV*'/o couple

indicate that MVo is more strongly associated with the

oil/membrane phase than MV+". Since observed adsorption, as

indicated by (ip/iP)2 > 1 (Table 3-3), suggests that MV*'

preferentially interacts with the adsorbed SDS, MVO must be

primarily solubilized in the oil rather than in the membrane

phase. As the oil content increases, the solubilization of

MVo in the oil phase increases, thus less MVo interacts with

the adsorbed surfactant at the electrode and (ip/ipa)2

increases. Thus, the increasing (ip/ip)2 with decreasing

water content supports the model of MVO solubilization in

the oil phase.















CHAPTER 5
BIOLOGICAL PROBES IN MICROEMULSIONS--QUINONES


Introduction to the Biochemistry of Quinones


Quinones are of interest in many biological

systems where reduction of quinone (Q) to quinol (QH2) is an

important step in electron transport. Throughout this work,

"Q" refers to any quinone. More specific symbols are used

for particular quinones. An example of a biologically

important quinone is ubiquinone 50, 2,3-dimethoxy-5-methyl-

1,4-benzoquinone with a sidechain of 10 methylbutenyl units

(Figure 5-1A). It is one of the most studied of biological

quinones due to its importance in mitochondrial respiration

[60].

In a cell, the mitochondria is the organelle

responsible for the production of energy, in the form of

ATP, from carbohydrates, lipids and amino acids [61]. The

mitochondria has two membranes, a smooth, somewhat elastic

outer membrane and an inner membrane with many inward folds

called cristae [61]. It is in the inner membrane that

mitochondrial respiration takes place, transferring

electrons from the NADH/succinate dehydrogenase system

through ubiquinone 50 to molecular oxygen, while producing
59




















































Figure 5-1


Biologically Significant Quinones

A) Ubiquinone; for ubiquinone 50, n = 10
B) Plastoquinone
C) Vitamin K2


CJ
1 C
""2Cn










ATP (Figure 5-2) [61]. The inner membrane of the

mitochondria consists of proteins in a phospholipid bilayer,

where the negatively charged phosphate head groups of the

phospholipid compose the exterior of the bilayer and the

hydrocarbon tails (with typical chain lengths of eighteen

carbons) form a non-polar interior [61].

Ubiquinone 50 (UQ50) resides in the inner membrane of

the mitochondria, where it transfers electrons from NADH and

succinate dehydrogenase to cytochrome b (Figure 5-2) as part

of the respiration cycle [60]. The UQ50 is restricted to a

pool in the middle of the bilayer of the inner membrane.

Diffusion of UQ50 within the hydrophobic pool in the center

of the bilayer is fast but there is little or no diffusion

through the phospholipid head groups into the hydrophilic

exterior [62]. Unlike UQ50, the reduced form, ubiquinol

(UQ50Hg), may penetrate between the phospholipids of the

bilayer [62].

Ubiquinones are commonly referred to by the number of

carbons in the sidechain. However, other names for UQ50

include ubiquinone 10 and coenzyme Q10, where ten refers to

the number of methylbutenyl units ("n" in Figure 5-1A). For

consistency in this work, the first method of nomenclature

is used. While UQ50 is the form of ubiquinone most

frequently found in mammals, ubiquinones with fewer

methylbutenyl units exist in other biological systems [63].

For instance, ubiquinone 30 (UQ30) participates in the


























2-Ketoglutarate
Pyruvate Succinate
\FP, \
FPs FP2

Malate
ATP
\ ATP ATP ATP
Isocitrate \
NAD-- FPi(4Fe-S)---Q -* (2Fe-S) cyt b(Fe-S)cyt ci- cyt c---cyt aa3 --.0
Glutamate Rotenone. Antimycin A Cynnide
amytl

3-Hydroxyacyl-CoA FPi/
Fatty acyl-CoA- 'FP
Glycerol phosphate










Figure 5-2 Mitochondrial Respiration Cycle

FP = flavoprotein, e.g., FP1 = NADH
dehydrogenase; Fe'S = iron-sulfur center; Q =
ubiquinone 50; cyt = cytochrome










respiration of microorganisms such as yeasts [63], and

ubiquinone 0 (UQO) is used as a chemical defense in African

millipedes [64]. Another use of UQ50 is as a cardiovascular

drug. Administration of the drug is thought to correct

deficiencies of natural UQ50, allowing the body to produce

ATP more efficiently [63]. Other important biological

quinones include plastoquinone, a 2,3-dimethyl-1,4-

benzoquinone with up to 9 methylbutenyl units on the 6

carbon (Figure 5-1B), which participates in photosynthetic

electron transport [60] and vitamin K2, a 2-methyl-l,4-

naphthoquinone with a methylbutenyl sidechain containing up

to 12 units (Figure 5-1C), which promotes blood clotting

[60].


Spectroscopy of Quinones

Ultraviolet (uv) spectra of ubiquinones have a strong

absorbance maximum (Ax) between 270 and 280 nm, with a

typical absorptivity (e) of ca. 14 mM-cm'' [62]. This A

has been attributed to a r~r* transition of the enone ring.

As the polarity of the solvent increases, Amx shifts to

longer wavelengths [62]. The reduced form (UQH2) has a weak

max z 290 nm, with typical e = 4 mM-1cm''. The UQH2 ax is
attributed to an n-r* transition and is only slightly

affected by the polarity of the solvent.

Mitochondrial membranes have been modeled by

phospholipid vesicles in uv studies. The uv spectra of










ubiquinones in phospholipid vesicles show that the solvent

environment of the ubiquinone becomes less polar as the

length of the ubiquinone sidechain increases [62]. For

instance, for ubiquinone 5 (UQ5) Amx in lecithin vesicles

Am in water [62]. However, for UQ50 M in vesicles max

in non-polar petroleum ether [62]. Ubiquinones with

sidechain lengths between 5 and 50 carbons have Amx values

in vesicles which are between water and petroleum ether

values, and are approximately equal to MX in ethanol [62].

Changes in Amx with sidechain length indicate that

ubiquinone penetrates deeper into the non-polar center of

the phospholipid bilayer as its sidechain length increases.

The uv spectra of ubiquinones in vesicles have not been

directly compared to spectra in mitochondrial membranes,

since spectra in mitochondrial membranes are complicated by

turbidity, cytochrome absorbance, light scattering and other

interference [62]. However, calorimetry studies of

ubiquinone in the mitochondria suggest the same changes in

microenvironment with ubiquinone sidechain length [65].

Specifically, ubiquinones with shorter sidechains reside in

the more polar region of the phospholipid, causing the

structure to become more rigid and raising the melting

point. On the other hand, UQ50 does not alter the melting

point, indicating that it does not affect the bilayer

structure [66].










Because of the hydrophobicity of UQ50, it must reside

in the oil phase of the yE. However, A.x of UQ50 in SDS MEs

is 275 nm for all ME compositions (Table 5-1). This Imx

indicates that UQ50 resides in a more polar environment than

that of petroleum ether (which should correspond to pure

dodecane), where Am = 270 nm [62]. This can be attributed

to partitioning of alcohol and water into the oil phase [1].

Thus, despite being in the oil phase, UQ50 is in a

relatively polar microenvironment.

The microenvironment of UQO must change with ME

composition, since A.x of UQO is a function of pE

composition (Table 5-2). For UQO in an 89/1 SDS ME, ax -

270 nm = AM in water. Therefore, in yEs with high water

content, UQO exists primarily in the aqueous phase.

However, as water content decreases, the microenvironment

becomes less polar, as indicated by decreasing AIx. This

can be attributed to increased partitioning of UQO into the

oil phase, with increasing ME oil content.


Electrochemistry of Quinones

Non-Aqueous Solvents


Since biological quinones are usually found in the

non-aqueous environment of the phospholipid bilayer

interior, the electrochemistry of many types of quinones in

non-aqueous systems has been studied extensively. In non-

aqueous systems, the quinone (Q) is reduced in two steps,











Table 5-1
Ubiquinone 50 (UQ50) Absorbance Maxima in Different Solvents


solvent A E
(nm) (cm mM)'


watera 287 7

ethanol 275 15

petroleum ethera 270 15

76/4 SDS ME 275 14

52/8 SDS PE 275 13

45/5 SDS ME 275 10


reference 62












Table 5-2
Ubiquinone 0 (UQO) Absorbance Maxima in Different Solvents


solvent


water"

0.1 M NaC1)

ethanol

1-pentanol

petroleum ethera

dodecane

89/1 SDS AE

52/8 SDS tE

45/5 SDS AE


max
(nm)

268

270

263

263

259

260

270

268

265


E
(cm- mM) -1

15

17

15

12

13

15

15

16

14


a reference 62









68
first to the semiquinone anion radical (Q") and then to the

dianion (Q-2) [60,67,68].


Q + e- Q- (5-1)


Q" + e'" Q-2 (5-2)

Experimentally, E' of both reactions is solvent dependent,

becoming less negative as the polarity of the solvent

increases [60,69]. Table 5-3 shows E'' values for several

Q/solvent systems. Adding a weak acid to the solution

(e.g., diethyl malonate at twice the concentration of UQ5

[70]) protonates Q-2 (equation 5-3) and shifts E' of the

second peak to more positive potentials.


Q-2 + H+ QH' (5-3)

Stronger acids (e.g., benzenethiol at ten times the

concentration of UQ5 [70]) protonate Q" (equation 5-4).

Since QH' is easier to reduce than Q, QH' is then reduced

simultaneously with Q (equation 5-5).


Q" + H+ QH" (5-4)


Q + H+ + 2e" e QH' (5-5)

The reaction in Equation 5-5 produces one reduction peak in

CV which is twice the height of the peak for the reaction

in equation 5-1. With a sufficiently high [H*], this peak











Table 5-3
Formal Potentials of Quinones in Different Media


quinone eqna solvent E'' (V) reference


BQ 5-8 pH=0, aqueous +0.457 66

BQ 5-1 ACN/TEAP -0.51 55
5-2 -1.14

BQ 5-1 DMF/TEABF4 -0.401 71
5-2 -1.155

UQO 5-8 pH=6.9, aqueous -0.143 83

UQ5 5-1 DMF/TEABF4 -0.622 71

UQ15 5-1 DMF/TEABF4 -0.611 71

UQ50 5-1 DMF/TEABF4 -0.602 61

UQ50 5-8 pH=7.5, aqueous -0.08 62
SDS micelles


aEquation for redox reaction









70
may occur at more positive potentials than the peak for the

equation 5-1 process [60,70].

In solutions with very strong acids (e.g., perchloric

acid at twice the concentration of UQ5 [70]), Q is

protonated (equation 5-6) and the protonated quinone (QH*)

is the species reduced (equation 5-7).


Q + H+ QH+ (5-6)


QH* + 2e" + H* QH2 (5-7)

If the concentration of acid is not sufficient to completely

protonate the available Q (e.g., 1:1 ratio of perchloric

acid to UQ5 [70]), it is possible to see reduction peaks for

both reactions 5-5 and 5-7 [60,70,71].

Electrochemical behavior is affected by interactions

other than acid/base reactions. For example, Q" or Q-2 may

complex with electrolyte cations. The formation of a

complex by the dianion shifts the potential of the second

peak (equation 5-2) to considerably more positive values.

The shift may be sufficiently large so that CV peaks due to

reactions in equations 5-1 and 5-2 merge so that only one CV

peak is observed [60,72].


Aqueous Solutions


In aqueous solutions, Q undergoes a two electron, two

proton reaction to hydroquinone (QH2):









71
Q + 2H+ + 2e" QH2 (5-8)

According to the Nernst equation, the potential of reaction

5-8 depends on the pH of the solution:


( [Q] [H']2 )
E = E' + (RT/2F) In I---------I
S[QH2]
= E'' + RT/F In [H+] (5-9)

where E is the standard potential, E' is the formal

potential when the concentration of the oxidized form (Q)

equals the concentration of the reduced form (QH2) and the

other symbols have their usual meaning. Since the

dissociation of QH2 (equations 5-10 and 5-11) changes its

concentration, these dissociations,


QH2 QH' + H (5-10)

QH' Q- + H (5-11)

can affect E. The acid dissociation constants for reactions

5-10 and 5-11 are K1 and K2, respectively. Table 5-4 shows

pKas for different acid/base forms of different quinones.

For Q, the E' is when


[Q] = [QH2] + [QH] + [Q-2] (5-12)

At E=EE', E'' may be related to KI and K2 in a straight-

forward fashion (See Appendix C):


E"' = E + (RT/2F) In ([H]2 + [H]KI + K1K2)


(5-13)











Table 5-4
Acid Dissociation Constants of Quinones


acid form

QH2

QH-

QH'

QH*

QH2

QH2

QH2


eqn8

5-10

5-11

5-4

5-6

5-10

5-10

5-10


pKa

10.35

11.4

4.0

-1.0

10.2

10.0

9.9


reference

54

54

54

54

61

61

61


aEquation for acid dissociation reaction


quinone

BQ

BQ

BQ

BQ

UQ30

UQ45

UQ50









73
If pH << pK1, the second and third term under In in equation

5-13 are negligible and the dependence of E' on pH is -60

mV/pH. This means that acid/base reactions have no effect

on E'' and equation 5-13 simplifies to equation 5-9.

Similarly for pK, < pH < pK2, the dependence of E' on pH is

-30 mV/pH, and for pH >> pK2, the dependence is 0 mV/pH.

This dependence of E"' on pH has been experimentally

confirmed by Bailey and Ritchie with 1,4-benzoquinone on

gold electrodes [73].

The exact sequence of electron and proton transfers

for reduction of quinone in aqueous solutions is still under

dispute. The most commonly accepted mechanism was proposed

by Vetter in the fifties. Vetter obtained Tafel plots on

platinum electrodes for benzoquinone (BQ)/benzohydroquinone

(BQH2) in solutions with pH between 0.2 and 7.2 [74].

Between pH 5 and 6, changes in the Tafel slope indicated a

change of mechanism. Specifically, electrochemical reaction

orders indicate the species which undergoes oxidation or

reduction, eg. QH* or Q. The reaction order is determined

by the change in the current as the concentration of one

reactant is varied while the ratio of the other two

reactants is held constant. This determines the

stoichiometry of that reactant involved in the overall

reaction. For example, when [H'] is changed while the ratio

[BQ]/[BQH2] is held constant, the stoichiometric coefficient

of H is determined. Using this approach, Vetter proposed











that two different consecutive charge-transfer reactions

occur within the pH range of 0.2 to 7.2. Below pH 5, the

order of electron and proton transfer was proposed to be

HeHe. For pH greater than 6, the order proposed was eHeH.

Recently Laviron presented a more specific analysis of

the mechanism for the reaction of quinone in aqueous

solutions [75]. Laviron described the possible mechanistic

steps of quinone, including nine possible chemical species

and six possible electron transfers, using the 9-square box

scheme [77]:


Q Q Q- Q-2
tf t4 tf
QH+ QH' QH' (5-14)
ti t4 t4
QH2 +2 QH2 H QH2


The protonations in 5-14 are assumed to be at equilibrium

and the rates of the forward and reverse electrochemical

reactions are assumed to be the same (charge transfer

coefficient, a=0.5). Under these conditions, the apparent

standard potentials for the first and second electron

transfers are simply related to standard potentials (E) and

proton dissociation constants (Ka) of each individual step

in 5-14 (See Appendix D). Individual apparent E and Ka

values were calculated for BQ from experimental results of

Bailey and Ritchie [76]. Using these values and the scheme

in 5-14, Laviron concluded that the primary mechanism of

electron transfer changed from HeHe to eHHe to eHeH as the










pH of the solution increased. The contribution of each

mechanism to current changes with pH. At pH 3.5, half the

current was due to the HeHe mechanism and half due to the

eHHe mechanism. At pH 5.5, half of the current was due to

the eHHe mechanism and half due to the eHeH mechanism. The

change in mechanism changes the apparent rate constants and

apparent E* values, which affect overall potential.


Organized Media


Electrochemical activity of quinones in organized

media has not been extensively studied. In micelles and

phospholipid vesicles, E' of UQ50 is shifted to values more

negative than in aqueous solutions [60,77-79]. The

dependence of E' on pH for UQ50 in buffered solutions of

SDS micelles = -8 mV/pH [78]. This change from -60 mV/pH in

ethanol/water solutions was attributed to a lowering of the

charge transfer coefficient by the surfactant. The E'

dependence on pH of UQ30 in lecithin vesicles [77] and of

UQ50 in asolectin vesicles [79] was the same (-60 mV/pH) as

in aqueous solutions.


Electrochemistry of 1.4-Benzoquinone (BQ)


DMF/TEAP

The solvent system DMF/TEAP was chosen because it gave

good electrochemical results. Unlike in ACN and in DMF with

0.1 M NaCO04, redox couples for the processes described in










equations 5-1 and 5-2 could be observed. Also, peaks in

DMF/TEAP systems were not complicated by adsorption which

occurred in ACN.

Figure 5-3 shows CV of 1,4-benzoquinone (BQ) on a GC

electrode in DMF, with 0.10 M TEAP as electrolyte. Peaks

Ic/Ia are attributed to the reaction described by equation

5-1. The reduction is diffusion controlled, as determined

from a plot of log peak Ic current (i ,,) vs. log scan rate

(v), where the slope = 0.450.01. The kinetics are quasi-

reversible with AEp = 8633 mV. The ratio of peak currents

(iP/i ), = 1.00.1, which is consistent with quasi-

reversible behavior. Experimental E1/2,1 = -0.420.02 V and

corresponds to reported E/2,, = -0.400.02 V [80], in DMF

with tetrabutylammonium tetrafluoroborate as the electrolyte

(DMF/TBABF4) .

Peaks IIc/IIa correspond to the process described by

equation 5-2. This process is also diffusion controlled, as

indicated by a slope of 0.420.03 of a log iP,, vs. log v

plot. This reaction also has quasi-reversible kinetics,

indicated by AEp = 84145 mV and (ip/ipa)I = 0.70.2. The

magnitude of iC11 is about 50% of ipc,, which is attributed

to the disproportionation of Q"[60]:


2Q'" Q + Q-2


(5-15)
















80



40



0



-40-



-80-



-120-
0


-1500 -2000 -2500

(mV)


Figure 5-3


Cyclic Voltammetry of 3.1 mM 1,4-Benzoquinone
in DMF/TEAP


v = 100 mV/s
on GC electrode, area = 0.070 cm2


2


0,

C-


background
BQ
I I 1 I1 I 1 11 I II r 1 '111ii
-500 -1000

potential










Since disproportionation increases [Q-2] as well as

decreasing [Q"], it is also consistent with (ipc/ip),I < 1.

Experimental E/2,11 = -1.020.05 V is more positive than

E1/2,1 = -1.150.04 V reported for DMF/TBABF4 [80]. The more
positive experimental potentials may result from the

reaction of Q-2 with protons in solution (equation 5-3)

[60,68]. Since Q-2 is the most basic species in solution

(Table 5-4), it is the most likely species to be protonated.

In solutions containing only 0.10 M TEAP in DMF

(TEAP/DMF), a cathodic peak at -0.870.04 V, with a reverse

peak at -0.820.1 V, was observed (Figure 5-3). These peaks

show diffusion controlled behavior, with slope = 0.520.05

from log ip vs. log v plot. Since peak IIIc in CV of BQ

(Figure 5-3) occurs at the same potential with approximately

the same magnitude ip (at same v) as the peak in the

DMF/TEAP solution, peak IIIc is not attributed to the

reaction of BQ. The i,1 was measured using the decaying

current of peak IIIc as baseline.


Aqueous Solutions


Figure 5-4 shows CV of BQ on GC in pH 6.9 aqueous

phosphate buffer. The results are consistent with the

mechanisms proposed by Laviron and Vetter. In aqueous

solutions, the apparent formal potential for the second

electron transfer is more positive than for the first.

Thus, only a single, two electron transfer described by









79






40


30


20


10

C
D 0


-10


-20
-30




600 400 200 0 -200 -400 -600

potential (mV)

Figure 5-4 Cyclic Voltammetry of 1.0 mM 1,4-Benzoquinone
in Phosphate Buffer (pH = 6.9)

v = 100 mV/s
on GC electrode, area = 0.070 cm2










equation 5-8 is observed. The process is diffusion

controlled, as determined by the slopes of 0.460.01 of log

ip vs. log v plots. Slow electron transfer kinetics are

indicated by AEp z 360 mV. For the same process on carbon

paste electrodes in the pH range of 2-8, Adams also observed

slow electron transfer, with AEp = 300 mV [81]. The ratio

ipc/ipa changes from 1.5 to 3.0 as the pH increases from 2 to
8 (Table 5-5). As the pH of the solution increases, [QH2]

decreases, due to the deprotonations described in equations

5-10 and 5-11. The decrease in [QH2] is reflected in

decreasing ipS and, consequently, increasing ipc/ip. At pH

6.9, experimental E12 = +0.110.02 V and correlates well

with E1/2 = +0.13 V at pH 6 reported by Adams [81]. The

dependence of E1/2 on pH is -465 mV/pH over the pH window of

2-8. This deviation from the theoretical value of -60 mV/pH

may be due to the change in mechanism over this pH range.

As shown by Laviron [75], a change in mechanism will affect

the apparent formal potential. For reduction of BQ on

carbon paste electrodes, Adams observed a similar dependence

of E12 on pH of ca. -50 mV/pH. From the intercept of E1/2

vs. pH, E" is estimated to be +0.460.02 V which corresponds

to reported E = +0.46 V [67,68,81].

Since yEs used in this work have an unbuffered aqueous

phase of 0.1 M NaC1~q), the electrochemical behavior of BQ

in unbuffered aqueous solutions was studied. Figure 5-5

shows CVs of BQ in unbuffered 0.1 M NaCI ,) at different pH











Table 5-5
Cyclic Voltammetric Results for 1,4-Benzoquinone (BQ) in
Aqueous Phosphate Buffer


AEpb

(mV)


36324

41218

36039

29841


ipC/[BQ]b

(AA/mM)


255

304

343

355


1.520.39

2.250.25

2.870.39

3.100.55


aionic strength = 1.0
by = 100 mV/s, electrode area = 0.075 cm2


pHe


(mE)
(mV)


[BQ]

(mM)


1.42

2.40

1.27

1.75


2.4

5.0

6.9

7.9


+30612

+2249

+11220

+4921
































ci)

U


150-



100



S50



0-



-50-



-100-



-150-
1200


I


' I
'I


3.05
3.41
3.54


mM
mM
mM


BQ, pH 2.5
BO, pH 3.4
BQ, pH 6.6


800 400

potent


TII vI.. .


0 -400 -800

al (mV)


Figure 5-5


Cyclic Voltammetry of 1,4-Benzoquinone in
Unbuffered 0.1 M NaCl(q)

v = 100 mV/s
on GC electrode, area = 0.075 cm2










values. At pH = 2.5, E1/2 = +0.26 0.04 V and AEp = 48580

mV. The AEp indicates slow electron transfer. The reaction

of BQ in all unbuffered 0.1 M NaCl,) solutions with pH < 3

was irreversible with AEp z 400 mV. At pH 6.5, E/ =

-0.150.01 V and AEp = 6711 mV. This AEp indicates quasi-

reversible kinetics for a two electron transfer. In all 0.1

M NaCi1) solutions with pH > 5, the reaction of BQ has E1/2

= -0.150.01 V and AEp = 6614 mV. At pH = 3.4, two redox

couples were observed. One couple corresponds to the

kinetically slow process described for unbuffered solutions

at pH < 3. The other couple corresponds to the quasi-

reversible process described for unbuffered solutions at pH

> 5. As pH increases from 3 to 5, i and ip for the

irreversible process decrease, with a corresponding increase

in ip and ip for the quasi-reversible process. Table 5-6

shows the results from cyclic voltammetry in unbuffered 0.1

M NaCl(q).

The behavior of BQ in unbuffered solutions can be

explained by considering that the pH of the reaction layer

rather than the pH of the solution determines reaction

potential. At pH = 2.5, proton concentration must be

sufficient in the reaction layer for the reaction to proceed

as in buffered solutions at pH z 4 (this pH was estimated

from E,/2). At pH = 6.5, the reduction of BQ consumes the

available protons, leading to a high effective pH in the

reaction layer. According to equation 5-13, the reaction











Table 5-6
Cyclic Voltammetric Results for 1,4-Benzoquinone (BQ) in
Unbuffered 0.1 M NaCIl(a
(aq)


AEpa

(mV)


ipc/[BQ]a ip/ipa

(AA/mM)


3.05 2.51 +25440

3.41 3.39b +26715
-1483

2.45 4.02b +24721
-1466

3.34 5.20 -14710

3.54 6.56 -1486

3.54 7.35 -1478


63780

40729
615

37542
7711

5620

6711

7116


256

51
282

31
312

212

181

161


1.380.48

2.281.07
1.010.13

7.2 1.6
1.100.17

1.100.22

1.070.07

1.10f0.11


"v = 100 mV/s, electrode area = 0.075 cm2

intermediate pH range shows two redox couples


[BQ]

(mM)


E1/2

(mV)










layer pH must be greater than 11.5 in unbuffered solutions

with pH > 5, since E1l2 is no longer dependent on pH.

Because E1,2 is independent of pH in unbuffered 0.1 M NaCl(q

with pH > 5 and is equal to -0.15 V, E1/2 values more

negative than -0.15 V (observed for the reaction of BQ in

gEs) cannot be attributed to pH effects. At an intermediate

pH (i.e. 3 < pH < 5), the reduction of BQ consumes available

protons of the reaction layer. After the reaction layer has

been depleted of protons, the remaining BQ must be reduced

at a high effective pH. Thus, both the irreversible process

typical of BQ in low pH 0.1 M NaCl(aq) and the quasi-

reversible process typical of BQ at high pH are observed.

The ratio of cathodic peak currents of these processes

depends on [BQ] and solution pH. Similar changes in CV with

pH were observed by Bailey and Ritchie in unbuffered 0.1 M

NaC104(aq) [73].


Electrochemistry in Microemulsions


Figure 5-6 shows CV of BQ in 89/1 SDS pE.

Electrochemical behavior in pEs was compared to that in 0.1

M NaCl(, since 0.1 M NaClq) (with pH z 5.6) forms the gE

aqueous phase. In 89/1 SDS AE, plots of log i vs. log v

have a slope = 0.430.10, indicating a diffusion controlled

process. Quasi-reversible kinetics of the two electron

process are indicated by AEp = 574 mV and i /ipa =

1.350.35 at v = 100 mV/s. As described in the previous
















80


60


40


20


00


-20


-40-


-60 11111111111111111111 ll llll llll 111 11 ll n,,liI
100 0 -100 -200 -300 -400 -500 -600

potential (mV)

Figure 5-6 Cyclic Voltammetry of 4.0 mM 1,4-Benzoquinone
in 89/1 SDS gE

v= 25 mV/s
on GC electrode, area = 0.071 cm2
For exact ME composition see Table 2-1.










section, in 0.1 M NaCl( q similar to those used to prepare

the aqueous phase of the .E, the reduction is also diffusion

controlled and quasi-reversible. In the ME, the relative

peak current ip/[BQ] = 17.6 AA/mM at v = 25 mV/s. This is

lower than in unbuffered 0.1 M NaCl(a) where ip/[BQ] = 20.3

AA/mM, at the same scan rate. The lower iP/[BQ] in the AE

is attributed to lower Do of BQ. For BQ in an 89/1 SDS AE,

Do = 8.3 X 10.6 cm2/s compared to 0.1 M KNO3q where D,a =

8.6 X 10-6 cm2/s [81]. As shown in Chapter 3, a probe

residing in the continuous phase of a droplet gE will have a

diffusion coefficient slightly lower than in an aqueous

solution due to obstruction by the droplets. Based on the

Do, BQ must reside in the aqueous continuous phase. Since

the reduced form (BQH2) is more water soluble than BQ [82],

it must also reside in the aqueous phase. Thus, DR z D0.

In this system, E1/2 = -0.1500.002 V, which is about the

same as E'aq = -0.148 0.002 V in 0.1 M NaCl No shift

in E1/2 will be observed if both BQ and BQH2 reside in the

aqueous phase of the pE (See Appendix B). Thus, both

diffusion coefficent and the value of E1/2 are consistent

with BQ and BQH2 residing primarily in the aqueous phase of

the LE.

As gE water content decreases, ip/[BQ] decreases

(Table 5-7). This can be attributed to decreasing Do of BQ.

As shown in Chapter 3 for Fe(CN)63, the diffusion












Cyclic Voltammetric


Table 5-7
Results for 1,4-Benzoquinone (BQ) in SDS
Microemulsions


[BQ] MEa

(mM)


3.07 DMFc


5.98

4.69

4.57

3.98

1.87


34/6

45/5

67/3

89/1

NaCld


E1/2

(mV)


-42317
-102973

-2098

-2023

-1722

-1502

-1454


AEpb

(mV)


8633
84145

416

474

634

574

626


ib

(AA)


282
153

564

527

635

705

384


b/i


1.000.14
0.680.23

1.600.21

1.370.36

1.400.37

1.350.35

1.220.21


"See Table 2-1 for exact SDS ME composition.
by = 25 mV/s, electrode area = 0.071 cm2

CO.1 M TEAP supporting electrolyte. Two redox couples were
observed.

d0.1 M NaCl()
(aq)


iPb/[BQ]

(IA/mM)


9.4

11.1

14.4

17.6

20.3









89
coefficient of a probe residing in the aqueous phase of a ME

decreases as water content decreases.

However, E1/2 becomes more negative as ME water content

decreases (Table 5-7). As shown for unbuffered solutions of

0.1 M NaCl(,q), changes in pH will not shift E1/2 to values

more negative than -0.15 V (Table 5-6). Consequently,

changes in pH cannot account for the observed E1/2 shift.

Thus, partitioning of the probe must change with

composition. For a bicontinuous ME, it is reasonable to

assume that DgR Do, since both probes are in a continuous

microenvironment, even if those microenvironments are

different. Shifts in E1/2 due to partitioning can be

expressed by the following equation (Appendix B):


E12/ = E' + RT/nF ln (DR/D) 1/2

+ RT/nF In (K%(l+KR)/KR(l+%K) (5-15)


For a 34/6 SDS ME, E1/2 = -0.209 V. Substituting DR = Do, E1/2

and E' = -0.15 V into equation 5-15 results in


0.09K Ko = 0.91KRKo (5-16)

Since Kg and K% are positive by definition


0.09KR K, > 0 (5-17)

and


0.09 > K/KR


(5-18)




Full Text

PAGE 1

(/(&752&+(0,675< ,1 0,&52+(7(52*(1(286 62/87,216f§ 0,&52(08/6,216 %\ 67(3+$1,( $11 0<(56 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR P\ JUDQGSDUHQWV &OHR DQG 'DOH 0\HUV

PAGE 3

$&.12:/('*(0(176 ZRXOG OLNH WR WKDQN P\ FRPPLWWHH 'U & $OOHQ 'U 9
PAGE 4

7$%/( 2) &217(176 $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YLL /,67 2) ),*85(6 YLLL $%675$&7 ; &+$37(5 ,1752'8&7,21 3URSHUWLHV DQG $SSOLFDWLRQV 'HWHUPLQDWLRQ RI 0LFURVWUXFWXUH 3XUSRVH RI WKLV 6WXG\ &+$37(5 (;3(5,0(17$/ 0DWHULDOV $SSDUDWXV 0HWKRGV 3UHSDUDWLRQ RI 0LFURHPXOVLRQV 6WDELOLW\ RI %HQ]RTXLQRQH LQ 0LFURHPXOVLRQV &+$37(5 '(7(50,1$7,21 2) 0,&52(08/6,21 6758&785( :DWHU 5LFK 0LFURHPXOVLRQV 'LIIXVLRQ RI )HUURFHQH )Ff 'LIIXVLRQ RI 0HWK\O 9LRORJHQ 09f 'LIIXVLRQ RI )HUULF\DQLGH )H&1fnf 3DUWLWLRQLQJ 'HWHUPLQDWLRQ RI 'URSOHW 6L]H %LFRQWLQXRXV 0LFURHPXOVLRQV 6WUXFWXUDO &KDQJHV ZLWK :DWHU 'LOXWLRQ (IIHFW RI 2LO WR (PXOVLILHU 5DWLR (IIHFW RI (OHFWURO\WH 5ROH RI (OHFWURDFWLYH 3UREH LQ 6WUXFWXUH 'HWHUPLQDWLRQ &+$37(5 352%( 5($&7,9,7< ,1 0,&52(08/6,216 )RUPDO 3RWHQWLDOV 5HDFWLYLW\ RI )Ff§3DUWLWLRQLQJ DQG 'LIIXVLRQ &RHIILFLHQWV 5HDFWLYLW\ RI )H&1ffn 5HDFWLYLW\ RI 09n 5HDFWLYLW\ RI 09n .LQHWLFV DQG $GVRUSWLRQ LY

PAGE 5

(IIHFW RI 6XUIDFWDQW $GVRUSWLRQ RQ 3UREH .LQHWLFV f (IIHFW RI 6XUIDFWDQW $GVRUSWLRQ RQ 3UREH $GVRUSWLRQ &+$37(5 %,2/2*,&$/ 352%(6 ,1 0,&52(08/6,216f§ 48,121(6 ,QWURGXFWLRQ WR WKH %LRFKHPLVWU\ RI 4XLQRQHV 6SHFWURVFRS\ RI 4XLQRQHV (OHFWURFKHPLVWU\ RI 4XLQRQHV 1RQ$TXHRXV 6ROYHQWV $TXHRXV 6ROXWLRQV 2UJDQL]HG 0HGLD (OHFWURFKHPLVWU\ RI %HQ]RTXLQRQH %4f '0)7($3 $TXHRXV 6ROXWLRQV (OHFWURFKHPLVWU\ LQ 0LFURHPXOVLRQV (OHFWURFKHPLVWU\ RI 8ELTXLQRQH '0)7($3 $TXHRXV 6ROXWLRQV 6'6 0LFURHPXOVLRQV (OHFWURFKHPLVWU\ RI 8ELTXLQRQH 1RQ$TXHRXV 6ROXWLRQV $TXHRXV 6\VWHPV 6'6 0LFURHPXOVLRQV &RQFOXVLRQV &+$37(5 0,&52+(7(52*(1(286 62/87,21 02'(/ 6WUXFWXUH 5HDFWLYLW\ ,OO &+$37(5 02'(/ 2) (/(&752'( ,17(5)$&( ,1 0,&52+(7(52*(1(286 62/87,21 .LQHWLFV $GVRUSWLRQ $33(1',; $ 52/( 2) 3$57,7,21,1* ,1 '(3(1'(1&( 2) 352%( ',))86,21 &2()),&,(17 21 7+( &21&(175$7,21 $33(1',; % '(3(1'(1&( 2) )250$/ 327(17,$/6 21 ',))86,21 &2()),&,(176 $1' 3$57,7,21,1* &2167$176 $33(1',; & ())(&7 2) 3+ $1' 3.J 21 )250$/ 327(17,$/ 2) 48,121( $33(1',; 48,121( 0(&+$1,60 $1' 7+( ())(&7 2) ,1',9,'8$/ 67(36 21 )250$/ 327(17,$/ 9

PAGE 6

5()(5(1&( /,67 %,2*5$3+,&$/ 6.(7&+ YL

PAGE 7

/,67 2) 7$%/(6 7DEOH SDJH 6'6 0LFURHPXOVLRQ &RPSRVLWLRQV 8VHG LQ 7KLV :RUN 'LIIXVLRQ &RHIILFLHQWV DQG )RUPDO 3RWHQWLDOV RI )HUURFHQH )Ff LQ 6'6 0LFURHPXOVLRQV (OHFWURFKHPLFDO )LJXUHV RI 0HULW RI )HUURFHQH )Ff LQ 6'6 0LFURHPXOVLRQV (OHFWURFKHPLFDO )LJXUHV RI 0HULW RI 0HWK\O 9LRORJHQ 09f LQ 6'6 0LFURHPXOVLRQV (OHFWURFKHPLFDO )LJXUHV RI 0HULW RI )HUULF\DQLGH )H&1fnf LQ 6'6 0LFURHPXOVLRQV 'URSOHW 6L]HV DQG 0LFURHPXOVLRQ &RPSRVLWLRQ 8ELTXLQRQH 84f $EVRUEDQFH 0D[LPD LQ 'LIIHUHQW 6ROYHQWV 8ELTXLQRQH 842f $EVRUEDQFH 0D[LPD LQ 'LIIHUHQW 6ROYHQWV )RUPDO 3RWHQWLDOV RI 4XLQRQHV LQ 'LIIHUHQW 0HGLD $FLG 'LVVRFLDWLRQ &RQVWDQWV RI 4XLQRQHV &\FOLF 9ROWDPPHWULF 5HVXOWV IRU %HQ]RTXLQRQH %4f LQ $TXHRXV 3KRVSKDWH %XIIHU &\FOLF 9ROWDPPHWULF 5HVXOWV IRU %HQ]RTXLQRQH %4f LQ 8QEXIIHUHG 0 1D&ODTf &\FOLF 9ROWDPPHWULF 5HVXOWV IRU %HQ]RTXLQRQH %4f LQ 6'6 0LFURHPXOVLRQV &\FOLF 9ROWDPPHWLF 5HVXOWV IRU 8ELTXLQRQH 842f LQ 6'6 0LFURHPXOVLRQV 'LIIHUHQWLDO 3XOVH 9ROWDPPHWULF 5HVXOWV IRU 8ELTXLQRQH 84f LQ 6'6 0LFURHPXOVLRQV YLL

PAGE 8

/,67 2) ),*85(6 )LJXUH SDJH 0LFURVWUXFWXUH RI 0LFURHPXOVLRQV (Vf 3VHXGR 7KUHH&RPSRQHQW 3KDVH 'LDJUDP RI 6'6 cMO( 'HSHQGHQFH RI '5 RI )F RQ M( &RPSRVLWLRQ 'HSHQGHQFH RI RI )H&1ff DQG RI 09 RQ P( &RPSRVW LRQ 'HSHQGHQFH RI '5 RI )F RQ IL( &RPSRVLWLRQ IRU 2LO WR(PXOVLILHU 5DWLR RI DQG RI 'HSHQGHQFH RI ( RI )F RQ ( &RPSRVLWLRQ $GVRUSWLRQ RI 6XUIDFWDQW RQ *& (OHFWURGH 6XUIDFH IRU ERWK 2LO 3KDVH DQG $TXHRXV 3KDVH &\FOLF 9ROWDPPHWU\ RI 0HWK\O 9LRORJHQ %LRORJLFDOO\ 6LJQLILFDQW 4XLQRQHV 0LWRFKRQGULDO 5HVSLUDWLRQ &\FOH &\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ '0)7($3 &\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ 3KRVSKDWH %XIIHU S+ f &\FOLF 9ROWDPPHWU\ RI %HQ]RTXLQRQH LQ 8QEXIIHUHG 0 1D&ODTf &\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ 6'6 ( &\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 7($3'0) &\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 6'6 ( YLLL

PAGE 9

&\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 6'6 L( &\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 6'6 Q( L[

PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ (/(&752&+(0,675< ,1 0,&52+(7(52*(1(286 62/87,216f§ 0,&52(08/6,216 %\ 6WHSKDQLH $QQ 0\HUV $XJXVW &KDLUSHUVRQ $QQD %UDMWHU7RWK 0DMRU 'HSDUWPHQW 'HSDUWPHQW RI &KHPLVWU\ (OHFWURFKHPLFDO PHWKRGV ZHUH XVHG WR GHWHUPLQH WKH HIIHFW RI PLFURHPXOVLRQ Q(f FRPSRVLWLRQ RQ WKH PLFURVWUXFWXUH RI VRGLXP GRGHF\OVXOIDWH 6'6f SHQWDQROGRGHFDQH 0 1D&ODTf (V DQG WKH HIIHFW RI PLFURVWUXFWXUH RQ SUREH UHDFWLYLW\ &KURQRFRXORPHWU\ ZDV XVHG WR PHDVXUH GLIIXVLRQ FRHIILFLHQWV '5 RU '4f RI HOHFWURDFWLYH SUREHV 2LO SKDVH VWUXFWXUH ZDV UHIOHFWHG E\ '5 RI IHUURFHQH )Ff RI IHUULF\DQLGH )H&1fnf UHIOHFWHG WKH ZDWHU SKDVH VWUXFWXUH DQG RI PHWK\O YLRORJHQ 09rf UHIOHFWHG WKH VXUIDFWDQW PHPEUDQH VWUXFWXUH %RWK GURSOHW DQG ELFRQWLQXRXV PLFURn VWUXFWXUHV ZHUH GHWHFWHG 'URSOHW VL]HV ZHUH GHWHUPLQHG IURP 'U RI )F WKURXJK WKH 6WRNHV(LQVWHLQ HTXDWLRQ &KDQJHV LQ HOHFWURFKHPLFDO DFWLYLW\ ZLWK FKDQJHV LQ PLFURVWUXFWXUH ZHUH GHWHUPLQHG E\ F\FOLF YROWDPPHWU\ 2LO [

PAGE 11

VROXEOH FRPSRXQGV ZHUH PRGHOHG E\ )F :DWHU VROXEOH FRPSRXQGV ZHUH PRGHOHG E\ )H&1fnn 3UREH LQWHUDFWLRQV ZLWK WKH VXUIDFWDQW ZHUH PRGHOHG E\ 0Yf 4XLQRQHV VSHFLILFDOO\ EHQ]RTXLQRQH XELTXLQRQH DQG XELTXLQRQH PRGHOHG ELRORJLFDO FRPSRXQGV )RUPDO SRWHQWLDO (rnf LV UHODWHG WR SDUWLWLRQLQJ FRQVWDQWV DQG GLIIXVLRQ FRHIILFLHQWV 6LQFH WKHVH DUH D IXQFWLRQ RI -( FRPSRVLWLRQ (r n FDQ EH FRQWUROOHG E\ DOWHULQJ ]( FRPSRVLWLRQ $OWHUQDWLYHO\ SDUWLWLRQLQJ FRQVWDQWV FDQ EH GHWHUPLQHG E\ VKLIWV LQ (rn .LQHWLFV RI HOHFWURQ WUDQVIHU DQG SUREH DGVRUSWLRQ DUH DIIHFWHG E\ VXUIDFWDQW DGVRUSWLRQ RQ WKH HOHFWURGH .LQHWLFV DUH XQFKDQJHG LI WKH SUREH HDVLO\ SHQHWUDWHV WKH VXUIDFWDQW VORZHG LI WKH SUREH LV UHSHOOHG E\ DGVRUEHG VXUIDFWDQW RU HQKDQFHG LI WKH SUREH LV DWWUDFWHG WR DGVRUEHG VXUIDFWDQW .LQHWLFV FDQ EH DOWHUHG E\ FKDQJHV LQ cMO( FRPSRVLWLRQ ZKLFK PRGLI\ WKH VXUIDFWDQW OD\HU $GVRUSWLRQ RI K\GURSKRELF SUREHV ZDV HOLPLQDWHG E\ SUREH VROXELOL]DWLRQ LQ WKH RLO SKDVH DQG ZHDN DGVRUSWLRQ RI SUREHV ZLWK ERWK HOHFWURVWDWLF DQG K\GURSKRELF LQWHUDFWLRQV ZLWK WKH DGVRUEHG VXUIDFWDQW ZDV REVHUYHG 4XLQRQHV LQ ](V UHDFW IURP D SURWLF HQYLURQPHQW DOWKRXJK QRW QHFHVVDULO\ WKH DTXHRXV SKDVHf ([FKDQJH DFURVV WKH VXUIDFWDQW OD\HU ERWK WKH PHPEUDQH SKDVH DQG WKDW DGVRUEHG RQ WKH HOHFWURGH ZDV VORZ IRU XELTXLQRQHV [L

PAGE 12

&+$37(5 ,1752'8&7,21 3URSHUWLHV DQG $SSOLFDWLRQV 0LFURHPXOVLRQV (Vf DUH WKHUPRG\QDPLFDOO\ VWDEOH PL[WXUHV RI RLO ZDWHU DQG VXUIDFWDQW >@ 2IWHQ WKH\ DOVR FRQWDLQ D FRVXUIDFWDQW ZKLFK LV XVXDOO\ D PHGLXP FKDLQ DOFRKRO ,QRUJDQLF HOHFWURO\WHV VXFK DV 1D&O PD\ DOVR EH LQFOXGHG LQ WKH PL[WXUH %HVLGHV EHLQJ WKHUPRG\QDPLFDOO\ VWDEOH (V DUH PLFURVFRSLFDOO\ KHWHURJHQHRXV ZLWK GLVWLQFW RLO DQG ZDWHU UHJLRQV 2WKHU XVHIXO SURSHUWLHV RI (V LQFOXGH ORZ LQWHUIDFLDO WHQVLRQV >@ KLJK LQWHUIDFLDO DUHDV >@ RSWLFDO WUDQVSDUHQF\ >@ DQG FRQWUROODEOH PLFURVWUXFWXUH >@ 2QH DSSOLFDWLRQ RI (V LV DV DQ DOWHUQDWLYH WR FRQYHQWLRQDO VROYHQWV >@ %HLQJ PLFURVFRSLFDOO\ KHWHURJHQHRXV (V FDQ VROXELOL]H VLJQLILFDQW DPRXQWV RI ERWK RLOVROXEOH DQG ZDWHUVROXEOH FRPSRXQGV >@ )RU LQVWDQFH ZKLOH WKH VROXELOLW\ RI IHUURFHQH LQ ZDWHU LV RQO\ P0 >@ FHW\OWULPHWK\ODPPRQLXP EURPLGH &7$%f (V FRQWDLQLQJ FD b ZDWHU FDQ GLVVROYH PRUH WKDQ P0 RI IHUURFHQH >@ 6LQFH UHDJHQWV LQ [(V DUH ORFDOL]HG HIIHFWLYH ORFDO FRQFHQWUDWLRQV DUH LQFUHDVHG 7KLV FDQ LQFUHDVH UHDFWLRQ UDWHV >@ 7KH ORFDOL]DWLRQ RI

PAGE 13

UHDFWDQW FDQ DOVR OLPLW SRVVLEOH PHFKDQLVPV IRU UHDFWLRQV >@ HJ UHGXFLQJ VLGH UHDFWLRQV VXFK DV LVRODWLQJ D IOXRURSKRU IURP D TXHQFKHU >@ 7KH UDWH RI UHDFWLRQ FDQ EH FRQWUROOHG ZKHQ cMO( VWUXFWXUH LV FKDQJHG >@ 5HDFWLRQV FDQ EH IROORZHG VSHFWURVFRSLFDOO\ VLQFH LL(V DUH RSWLFDOO\ LVRWURSLF >@ 7KH KHWHURJHQHLW\ RI cMO(V PDNHV WKHP DOVR RI LQWHUHVW DV ELRPLPHWLF V\VWHPV >@ $V LQ ELRORJLFDO V\VWHPV UHDFWLRQV LQ [(V RIWHQ RFFXU ZLWKLQ RU DFURVV DQ LQWHUIDFH >@ (IIHFWV RI LQWHUIDFLDO HQYLURQPHQW RQ ELRORJLFDOO\ VLJQLILFDQW UHDFWLRQV ZHUH VKRZQ E\ /HWWV DQG 0DFND\ >@ ZKR VWXGLHG WKH LQFRUSRUDWLRQ RI FRSSHU LQWR WHWUDSKHQ\O SRUSKLQH LQ GLIIHUHQW [( V\VWHPV .KPHOQLWVN\ HW DO >@ KDYH VKRZQ WKDW FDWDO\WLF DFWLYLW\ RI WU\SVLQ LV GHWHUPLQHG E\ PLFURVWUXFWXUH 'HWHUPLQDWLRQ RI 0LFURVWUXFWXUH 2Q WKH PLFURVFRSLF OHYHO MW[(V RUJDQL]H LQWR VSHFLILF VWUXFWXUHV ZLWK GLVWLQFW RLO DQG ZDWHU UHJLRQV >@ ,Q MX(V ZLWK KLJK ZDWHU FRQWHQW LH RLOLQZDWHU 29,f LM(V RLO LV FRQILQHG WR GLVFUHWH GURSOHWV DQG ZDWHU DFWV DV D FRQWLQXRXV SKDVH 7KH GURSOHWV DUH VXUURXQGHG E\ D ZHOO GHILQHG OD\HU RI VXUIDFWDQW DQG FRVXUIDFWDQW >@ ZKLFK LV RIWHQ UHIHUUHG WR DV WKH PHPEUDQH SKDVH )LJXUH $f 6LPLODUO\ ZDWHULQRLO :f [(V KDYH KLJK RLO FRQWHQW DQG ZDWHU GURSOHWV VXUURXQGHG E\ WKH PHPEUDQH SKDVH H[LVW LQ D

PAGE 14

)LJXUH 0LFURVWUXFWXUHV RI 0LFURHPOVLRQV $f : GURSOHW OLH %f :2 GURSOHW L( &f %LFRQWLQXRXV L(

PAGE 15

FRQWLQXRXV SKDVH RI RLO )LJXUH %f ,I ERWK RLO DQG ZDWHU FRQWHQW RI WKH VROXWLRQ DUH VLJQLILFDQW WKH VRFDOOHG ELFRQWLQXRXV c-( LV IRUPHG ,Q VXFK V\VWHPV ERWK RLO DQG ZDWHU DFW DV FRQWLQXRXV SKDVHV ZLWK D VSRQJHOLNH RUJDQL]DWLRQ )LJXUH &f >@ $V ZLWK GURSOHW cMO(V WKH PHPEUDQH SKDVH VHSDUDWHV WKH RLO IURP WKH ZDWHU >@ $V GHVFULEHG DERYH LL( VWUXFWXUH LV JHQHUDOO\ GHWHUPLQHG E\ LWV UHODWLYH RLO DQG ZDWHU FRQWHQW +RZHYHU RWKHU IDFWRUV DOVR LQIOXHQFH VWUXFWXUH 2I WKHVH FRVXUIDFWDQW FKDLQ OHQJWK KDV WKH PRVW VLJQLILFDQW HIIHFW >@ 0HGLXP FKDLQ OHQJWK DOFRKROV VXFK DV EXWDQRO DQG SHQWDQRO SURPRWH ELFRQWLQXRXV VWUXFWXUHV >@ 2Q WKH RWKHU KDQG ORQJHU FKDLQ DOFRKROV SURPRWH D GURSOHW VWUXFWXUH >@ 2WKHU FRPSRVLWLRQ HIIHFWV DUH REVHUYHG SULPDULO\ LQ GURSOHW IM(V ,Q : (V VKRUWHU FKDLQ RLOV DUH PRUH OLNHO\ WR SHQHWUDWH LQWR WKH PHPEUDQH OD\HU 7KLV FDXVHV D PRUH ULJLG DQG FXUYHG PHPEUDQH SKDVH DQG WKHUHIRUH VPDOOHU GURSOHWV >@ 7KH QDWXUH RI WKH VXUIDFWDQW LQFOXGLQJ KHDGJURXS VL]H DQG FKDUJH FRXQWHULRQ DQG FKDLQ OHQJWK KDYH RQO\ D VOLJKW LQIOXHQFH RQ VWUXFWXUH >@ +RZHYHU : (V FDQ EH SHUWXUEHG WRZDUG ELFRQWLQXRXV VWUXFWXUHV ZLWK UHGXFWLRQ RI VXUIDFWDQW FKDLQ OHQJWK >@ ,Q : (V GURSOHW VL]H FDQ EH LQFUHDVHG E\ LQFUHDVLQJ WKH FRVXUIDFWDQWVXUIDFWDQW UDWLR RU GHFUHDVLQJ HOHFWURO\WH FRQFHQWUDWLRQ >@ 6LPLODUO\ WKH GURSOHW VL]H RI D : ( FDQ EH LQFUHDVHG E\ GHFUHDVLQJ WKH FRVXUIDFWDQW

PAGE 16

VXUIDFWDQW UDWLR RU LQFUHDVLQJ WKH HOHFWURO\WH FRQFHQWUDWLRQ >@ 0DQ\ WHFKQLTXHV KDYH EHHQ XVHG WR GHWHUPLQH WKH PLFURVWUXFWXUH RI L(V 4XDVLHODVWLF OLJKW VFDWWHULQJ 4(/6f >@ DQG VPDOO DQJOH QHXWURQ VFDWWHULQJ 6$16f >@ KDYH EHHQ XVHG WR GHWHUPLQH GURSOHW VL]H LQ ERWK : DQG : V\VWHPV )OXRUHVFHQFH TXHQFKLQJ >@ KDV EHHQ XVHG WR GHWHUPLQH VXUIDFWDQW DJJUHJDWLRQ QXPEHU RU WKH QXPEHU RI VXUIDFWDQW PRQRPHUV DWWDFKHG WR WKH GURSOHW )URP WKLV QXPEHU GURSOHW VL]H FDQ EH GHWHUPLQHG 7\SLFDO GURSOHW UDGLL DUH ƒ >@ 7KH WHFKQLTXHV PHQWLRQHG DERYH DUH XVHG RQO\ WR GHWHUPLQH GURSOHW VL]H &RQVHTXHQWO\ WKH\ SURYLGH OLWWOH XVHIXO LQIRUPDWLRQ DERXW ELFRQWLQXRXV (V )RXULHU WUDQVIRUP SXOVHG JUDGLHQW VSLQ HFKR QXFOHDU PDJQHWLF UHVRQDQFH 105f PD\ EH XVHG WR GHWHUPLQH WKH PLFURVWUXFWXUH RI ERWK GURSOHW DQG ELFRQWLQXRXV (V >@ WKURXJK PHDVXUHPHQW RI WKH VHOIGLIIXVLRQ FRHIILFLHQW RI HDFK L( FRPSRQHQW ,I WKH GLIIXVLQJ VSHFLHV LV DWWDFKHG WR WKH cMO( GURSOHW LW FDQQRW GLIIXVH RYHU PDFURVFRSLF GLVWDQFHV DQG WKHUHIRUH WKH GLIIXVLRQ FRHIILFLHQW PHDVXUHG LV WKH GLIIXVLRQ FRHIILFLHQW RI WKH GURSOHW 'GURSf >@ )RU H[DPSOH LQ DQ 2: ( WKH VSHFLHV DWWDFKHG WR WKH GURSOHW ZRXOG EH HLWKHU RLO RU VXUIDFWDQW 7KH 6WRNHV(LQVWHLQ HTXDWLRQ UHODWHV 'GURS WR GURSOHW VL]H 7\SLFDO VHOIn GLIIXVLRQ FRHIILFLHQWV RI VSHFLHV FRQILQHG WR MX( GURSOHWV

PAGE 17

DUH RQ WKH RUGHU RI f FPV >@ 2Q WKH RWKHU KDQG W\SLFDO VHOIGLIIXVLRQ FRHIILFLHQWV RI WKH FRQWLQXRXV SKDVH VSHFLHV LQ D GURSOHW Q(V DUH VOLJKWO\ ORZHU WKDQ LQ QHDW OLTXLG 'rf GXH WR WKH REVWUXFWLRQ HIIHFW >@ 7\SLFDO YDOXHV RI 'r n FPV >@ 7KH REVWUXFWLRQ HIIHFW VORZV WKH VHOIGLIIXVLRQ FRHIILFLHQW RI D FRPSRQHQW LQ D FRQWLQXRXV SKDVH E\ OHQJWKHQLQJ LWV GLIIXVLRQ SDWK )RU H[DPSOH WKH YROXPH H[FOXGHG E\ RLO DQG VXUIDFWDQW LQ DQ : IM( ZLOO OHQJWKHQ WKH GLIIXVLRQ SDWK RI ZDWHU VLQFH ZDWHU ZLOO QRW SHQHWUDWH WKH RLO GURSOHWV >@ ,Q ELFRQWLQXRXV ](V WKH YROXPH RI H[FOXGHG SKDVH LV ODUJHU WKDQ LQ GURSOHW Q(V DQG WKH VHOIGLIIXVLRQ FRHIILFLHQWV RI ERWK RLO 'RMOf DQG ZDWHU 'ZDWHUf DUH ORZHU WKDQ LQ WKH FRQWLQXRXV SKDVH RI D GURSOHW cL( 7\SLFDO 'RMO DQG 'ZDWHU YDOXHV LQ ELFRQWLQXRXV ](V DUH ; n FPV >@ 7KHVH VHOIGLIIXVLRQ FRHIILFLHQWV DUH ORZHU WKDQ WKH VHOIn GLIIXVLRQ FRHIILFLHQW YDOXHV RI WKH VDPH FRPSRQHQW LQ D QHDW OLTXLG DQG KLJKHU WKDQ WKH YDOXHV IRU WKH VDPH FRPSRQHQW LQ GURSOHWV 6LQFH WKH GLIIXVLRQ SDWK RI WKH VXUIDFWDQW LV UHVWULFWHG E\ ERWK RLO DQG ZDWHU LWV VHOIGLIIXVLRQ FRHIILFLHQW 'VXUIf LQ ELFRQWLQXRXV O](V LV ORZHU WKDQ HLWKHU 'R8 RU 'ZDWHU W\SLFDOO\ FD ; n FPV >@ (OHFWURFKHPLFDO PHWKRGV RIIHU D VLPSOH DQG FRQYHQLHQW PHWKRG WR GHWHUPLQH ]( VWUXFWXUH ZLWK WKH VDPH YHUVDWLOLW\ DV 105 :LWK HOHFWURFKHPLFDO WHFKQLTXHV WKH GLIIXVLRQ FRHIILFLHQW RI DQ HOHFWURDFWLYH SUREH 'f ZLOO PHDVXUH

PAGE 18

GLIIXVLRQ LQ WKH SKDVH LQ ZKLFK WKH SUREH UHVLGHV >@ &RQVHTXHQWO\ 'n GHWHUPLQHV ( VWUXFWXUH LQ WKH VDPH PDQQHU DV VHOIGLIIXVLRQ FRHIILFLHQWV IURP 105 )RU H[DPSOH D SUREH ZKLFK UHVLGHV LQ GURSOHWV W\SLFDOO\ KDV n FPV >@ DQG D SUREH LQ D ELFRQWLQXRXV SKDVH KDV 'n RQ WKH RUGHU RI n FPV >@ (OHFWURFKHPLFDO PHWKRGV FDQ DOVR EH XVHG WR GHWHUPLQH GURSOHW VL]H IURP WKH 'n RI D SUREH DWWDFKHG WR WKH GURSOHW /LNH VHOIGLIIXVLRQ FRHIILFLHQW YDOXHV IURP 105 'n LV UHODWHG WR GURSOHW VL]H E\ WKH 6WRNHV(LQVWHLQ HTXDWLRQ 'URSOHW VL]HV GHWHUPLQHG HOHFWURFKHPLFDOO\ FRPSDUH ZHOO ZLWK WKRVH IURP RWKHU WHFKQLTXHV VXFK DV 4(/6 >@ ,Q DGGLWLRQ HOHFWURFKHPLFDO WHFKQLTXHV FDQ EH XVHG WR VWXG\ UHGR[ DQG UHODWHG FKHPLFDO UHDFWLYLW\ LQ WKH PLFURKHWHURJHQHRXV HQYLURQPHQW RI (V >@ 3XUSRVH RI WKLV 6WXG\ ,Q WKLV ZRUN HOHFWURFKHPLFDO PHWKRGV ZHUH XVHG WR GHWHUPLQH WKH VWUXFWXUH RI DQ DQLRQLF IL( RI VRGLXP GRGHF\OVXOIDWH 6'6fSHQWDQROGRGHFDQH 0 1D&ODTf DQG WR GHWHUPLQH WKH SDUDPHWHUV ZKLFK FRQWURO WKH VWUXFWXUH ,Q DGGLWLRQ UHDFWLYLW\ DV D IXQFWLRQ RI ( VWUXFWXUH ZDV HYDOXDWHG 6LQFH PDQ\ SKRVSKROLSLGV ZKLFK DUH FRPSRQHQWV RI ELRORJLFDO PHPEUDQHV FDUU\ D QHJDWLYH FKDUJH DQ DQLRQLF 0( VKRXOG SURYLGH D EHWWHU PRGHO IRU ELRORJLFDO V\VWHPV WKDQ FDWLRQLF RU QRQLRQLF P(V 7KH ODUJH P( UHJLRQ >@ DOORZV

PAGE 19

FKDQJHV LQ VWUXFWXUH WR EH REVHUYHG RYHU D ZLGH UDQJH RI FRPSRVLWLRQV 6LQFH WKLV [( KDV EHHQ ZHOOFKDUDFWHUL]HG LQ WKH OLWHUDWXUH WKHUH LV VXIILFLHQW GDWD IRU FRPSDULVRQ RI HOHFWURFKHPLFDO UHVXOWV WR WKRVH REWDLQHG E\ RWKHU PHWKRGV 'LIIXVLRQ FRHIILFLHQWV RI ZHOOFKDUDFWHUL]HG SUREHV ZHUH PHDVXUHG DQG XVHG WR GHWHUPLQH [( VWUXFWXUH DW GLIIHUHQW FRPSRVLWLRQV )HUURFHQH )Ff ZDV XVHG WR SUREH WKH RLO SKDVH RI WKH %HFDXVH RI LWV ORZ VROXELOLW\ LQ ZDWHU >@ FRPSDUHG WR GRGHFDQH >@ )F UHVLGHV DOPRVW FRPSOHWHO\ LQ WKH RLO SKDVH :DWHUVROXEOH IHUULF\DQLGH )H&1fnf ZDV XVHG WR SUREH WKH DTXHRXV SKDVH 6LQFH )H&1fn LV QHJDWLYHO\ FKDUJHG LW GRHV QRW LQWHUDFW ZLWK WKH DQLRQLF VXUIDFWDQW 0HWK\O YLRORJHQ 09f ZDV XVHG WR SUREH WKH PHPEUDQH SKDVH 6LQFH 09r LV D FDWLRQLF ZDWHU VROXEOH SUREH LW DVVRFLDWHV ZLWK WKH DQLRQLF VXUIDFWDQW OD\HU 7KH HIIHFW RI [( VWUXFWXUHFRPSRVLWLRQ RQ WKH UHDFWLYLW\ RI WKHVH SUREHV ZDV DOVR LQYHVWLJDWHG %RWK IRUPDO SRWHQWLDO UHDFWLYLW\f DQG HOHFWURFKHPLFDO UHYHUVLELOLW\ NLQHWLFVf ZHUH DIIHFWHG E\ [( FRPSRVLWLRQ %HQ]RTXLQRQH %4f XELTXLQRQH 842f DQG XELTXLQRQH 84f ZHUH XVHG WR PRGHO FKDQJHV LQ UHDFWLYLW\ RI VLPSOH ELRORJLFDO PROHFXOHV ZLWK O[( FRPSRVLWLRQ (IIHFWV RI Q( FRPSRVLWLRQ RQ VWUXFWXUH DQG UHDFWLYLW\ ZHUH DOVR VKRZQ E\ FRPSDULVRQ RI WKH UHVXOWV RI WKLV VWXG\ WR WKH UHVXOWV RI D VWXG\ RI D &7$%OEXWDQROKH[DGHFDQH

PAGE 20

ZDWHU cL( >@ 'LIIHUHQFHV LQ VWUXFWXUH RI MX(V ZHUH GHPRQVWUDWHG E\ D FRPSDULVRQ RI GLIIXVLRQ FRHIILFLHQWV RI SUREHV UHVLGLQJ LQ VLPLODU SKDVHV ,Q WKH &7$% ( )F SUREHG WKH RLO SKDVH 09 SUREHG WKH DTXHRXV SKDVH DQG )H&1ff SUREHG WKH PHPEUDQH SKDVH 5HDFWLYLW\ DQG NLQHWLFV RI WKHVH SUREHV ZHUH VKRZQ WR EH GLIIHUHQW LQ &7$% WKDQ LQ 6'6 L(V

PAGE 21

&+$37(5 (;3(5,0(17$/ 0DWHULDOV 6RGLXP ODXU\O VXOIDWH VRGLXP GRGHF\OVXOIDWH 6'6f VRGLXP FKORULGH 1D&Of SRWDVVLXP FKORULGH .&f EHQ]RTXLQRQH %4f QQGLPHWK\OIRUPDPLGH '0)f +3/& JUDGH DFHWRQLWULOH $&1f DQG SRWDVVLXP IHUULF\DQLGH )H&1fff ZHUH REWDLQHG IURP )LVKHU 3HQWDQRO GLPHWKR[\ PHWK\OEHQ]RTXLQRQH XELTXLQRQH 842f DQG PHWK\O YLRORJHQ GLFKORULGH K\GUDWH 09rf ZHUH REWDLQHG IURP $OGULFK )HUURFHQH )Ff ZDV IURP $UDSDKRH &KHPLFDOV 7HWUDHWK\ODPPRQLXP SHUFKORUDWH 7($3f DQG WHWUDHWK\ODPPRQLXP FKORULGH 7($&f ZHUH REWDLQHG IURP .RGDN Q'RGHFDQH ZDV IURP $OID SURGXFWV :DWHU XVHG ZDV GHLRQL]HG DQG WKHQ GLVWLOOHG %RWK '0) DQG $&1 ZHUH GULHG RYHU ƒ PROHFXODU VLHYHV )LVKHUf EHIRUH XVH $OO RWKHU FKHPLFDOV ZHUH XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ 3KRVSKDWH EXIIHU RI LRQLF VWUHQJWK 0 ZDV SUHSDUHG IURP DQK\GURXV GLEDVLF VRGLXP SKRVSKDWH 1$+3 0DOOLQFNURGWf DQG PRQREDVLF VRGLXP SKRVSKDWH 1$+3+ 0DOOLQFNURGW )LVKHUf LQ GHLRQL]HG GLVWLOOHG ZDWHU $GMXVWPHQWV RI S+ RI WKH EXIIHU VROXWLRQV ZHUH PDGH E\

PAGE 22

DGGLQJ D VPDOO DPRXQW RI HLWKHU SKRVSKRULF DFLG +3 0DOOLQFNURGWf RU VRGLXP K\GUR[LGH 1D2+ )LVKHUf $SSDUDWXV )RU F\FOLF YROWDPPHWU\ &9f DQG FKURQRFRXORPHWU\ D %LRDQDO\WLFDO 6\VWHPV (OHFWURFKHPLFDO $QDO\]HU %$6f ZDV XVHG ,Q WKH HOHFWURFKHPLFDO PHDVXUHPHQWV ZKLFK ZHUH FRQGXFWHG LQ D WKUHH HOHFWURGH FRQILJXUDWLRQ WKH ZRUNLQJ HOHFWURGH ZDV JODVV\ FDUERQ *&f IURP +LJK 3HUIRUPDQFH (QJOHZRRG &$ RU (OHFWURV\QWKHVLV *ODVV\ FDUERQ HOHFWURGHV ZHUH SUHSDUHG E\ VHDOLQJ D JODVV\ FDUERQ URG PP LQ GLDPHWHUf LQ D JODVV WXEH ZLWK HSR[\ FHPHQW 'H[WHUf 0HUFXU\ ZDV XVHG WR HOHFWULFDOO\ FRQQHFW *& WR D FRSSHU ZLUH OHDG 7KH DX[LOLDU\ HOHFWURGH ZDV D SODWLQXP ZLUH DQG WKH UHIHUHQFH ZDV D VDWXUDWHG FDORPHO HOHFWURGH 6&(f %HIRUH HDFK PHDVXUHPHQW *& ZRUNLQJ HOHFWURGHV ZHUH SROLVKHG ZLWK *DPDO JDPPD DOXPLQDZDWHU VOXUU\ )LVKHUf RQ D PLFURFORWK XVLQJ (FRPHW SROLVKLQJ ZKHHO %HXKOHUf $IWHU SROLVKLQJ WKH HOHFWURGHV ZHUH XOWUDVRQLFDWHG LQ GHLRQL]HG GLVWLOOHG ZDWHU IRU DERXW ILYH PLQXWHV LPPHGLDWHO\ EHIRUH XVH 8OWUDYLROHW VSHFWUD ZHUH UHFRUGHG XVLQJ D 7UDFRU 1RUWKHUQ 71 GLRGH DUUD\ VSHFWURSKRWRPHWHU 0HWKRGV :RUNLQJ HOHFWURGH DUHDV ZHUH GHWHUPLQHG E\ FKURQRFRXORPHWU\ XVLQJ ; n 0 )H&1ff DTf r LQ 0 .&

PAGE 23

8VLQJ WKH GLIIXVLRQ FRHIILFLHQW [ n FPV >@ *& HOHFWURGH DUHDV ZHUH GHWHUPLQHG WR EH s FP ,Q WKH PHDVXUHPHQWV RI HOHFWURGH DUHD WKH SXOVH ZLGWK ZDV PV DQG WKH SRWHQWLDO ZDV VWHSSHG IURP WR 9 7\SLFDO UHVLVWDQFHV LQ MX(V ZHUH EHWZHHQ WR 8 EHIRUH FRPSHQVDWLRQ DQG ZHUH FRPSHQVDWHG WR OHVV WKDQ Q XVLQJ WKH %$6 3HDN SRWHQWLDOV (Sf DQG SHDN FXUUHQWV LSf ZHUH PHDVXUHG DIWHU L5 FRPSHQVDWLRQ 7KH VHSDUDWLRQ RI DQRGLF (SDf DQG FDWKRGLF (SFf SHDN SRWHQWLDOV $(S ZDV XVHG WR HVWLPDWH WKH NLQHWLFV RI HOHFWURQ WUDQVIHU )RU UHYHUVLEOH IDVWf V\VWHPV $(S Q P9 ZKHUH Q QXPEHU RI HOHFWURQV WUDQVIHUUHG 6\VWHPV ZLWK VORZHU NLQHWLFV LH TXDVLUHYHUVLEOH RU LUUHYHUVLEOHf KDYH $(S Q P9 3HDN FXUUHQW LSf GHSHQGV RQ VFDQ UDWH Yf )RU GLIIXVLRQ FRQWUROOHG V\VWHPV LS m Y DQG IRU DGVRUSWLRQ FRQWUROOHG V\VWHPV LS m Y 7KXV VORSHV RI RI D ORJ L YV ORJ Y SORW LQGLFDWH GLIIXVLRQ FRQWUROOHG EHKDYLRU 6ORSHV LQGLFDWH DGVRUSWLRQ HIIHFWV 6ORSHV RFFXU ZKHQ VORZ NLQHWLFV GHFUHDVH LS 5HDFWLYLW\ RI DQ HOHFWURDFWLYH SUREH LQ VROXWLRQ LV UHODWHG WR LWV IRUPDO SRWHQWLDO )RUPDO SRWHQWLDO (n ZDV HVWLPDWHG DV (r n ( (SD (SFf $V NLQHWLFV EHFRPH VORZHU ( EHFRPHV D OHVV DFFXUDWH HVWLPDWH RI (r 7KH SRWHQWLDO VWHS ZLQGRZ IRU FKURQRFRXORPHWU\ ZDV FKRVHQ IROORZLQJ &9 7KH SRWHQWLDO ZDV VWHSSHG IURP D SRWHQWLDO ZKHUH QR HOHFWURFKHPLFDO UHDFWLRQ RFFXUV WR D

PAGE 24

SRWHQWLDO ZKHUH WKH HOHFWURFKHPLFDO UHDFWLRQ LV GLIIXVLRQ OLPLWHG 3XOVH ZLGWKV ZHUH PV 'LIIXVLRQ FRHIILFLHQWV IRU WKH UHGXFHG '5 RU WKH R[LGL]HG '4 IRUP RI D SUREH ZHUH FDOFXODWHG IURP VORSHV RI SORWV RI 4 YV W >@ $OO PHDVXUHPHQWV ZHUH FDUULHG RXW DW sr& DQG DOO SRWHQWLDOV LQFOXGLQJ YDOXHV IURP WKH OLWHUDWXUHf DUH FLWHG YV 6&( 3UHSDUDWLRQ RI 0LFURHPXOVLRQV 7KH SKDVH GLDJUDP RI WKH 6'6 [( XVHG LQ WKLV VWXG\ )LJXUH f KDV EHHQ UHSRUWHG >@ 7KH GLDJUDP RI WKH SVHXGR WKUHHFRPSRQHQW V\VWHP UHSUHVHQWV DTXHRXV 0 1D&OJTff RLO GRGHFDQHf DQG HPXOVLILHU UDWLR RI VXUIDFWDQW 6'6f WR FRVXUIDFWDQW SHQWDQROff SKDVHV LQ ZHLJKW SHUFHQW ZZf 7KH FRPSRVLWLRQ RI WKH cMO( ZDV YDULHG DORQJ WKH WZR VWUDLJKW VROLG OLQHV VKRZQ LQ )LJXUH 7KHVH OLQHV FRUUHVSRQG WR NHHSLQJ WKH UDWLR RI RLO WR HPXOVLILHU FRQVWDQW DW $f RU DW %f ZKLOH FKDQJLQJ WKH UDWLR RI RLO WR ZDWHU 7KH UDQJH RI FRPSRVLWLRQV ZKLFK ZDV LQYHVWLJDWHG FRUUHVSRQGV WR D UHODWLYHO\ ORZ RLO FRQWHQW b RLOf DQG D UDQJH RI ZDWHU FRQWHQW IURP b WR b 6SHFLILF FRPSRVLWLRQV DUH VXPPDUL]HG LQ 7DEOH ,Q WKH WH[W [(V DUH UHIHUUHG WR E\ WKHLU UDWLR RI ZDWHU WR RLO )RU H[DPSOH D 6'6 Q( ZLWK b ZDWHU b RLO DQG b HPXOVLILHU LV DQ 6'6 ( 6LQFH b ZDWHU ZDV YDULHG RYHU D ZLGH UDQJH UHVXOWV LQ WKH ILJXUHV DUH SORWWHG YHUVXV b ZDWHU ,W LV DSSDUHQW WKDW LQ

PAGE 25

)LJXUH 3VHXGR 7KUHH&RPSRQHQW 3KDVH 'LDJUDP )URP UHIHUHQFH $TXHRXV SKDVH LV 0 1D&ODf RLO SKDVH LV GRGHFDQH DQG HPXOVLILHU LV D DT UDWLR RI SHQWDQRO WR 6'6 8QLWV DUH LQ ZHLJKW SHUFHQW ZZf 7KH WZR VWUDLJKW OLQHV LQGLFDWH GLOXWLRQ OLQHV XVHG LQ M[( SUHSDUDWLRQ ZLWK FRQVWDQW RLO WR HPXOVLILHU UDWLR RI $f DQG %f ([DFW FRPSRVLWLRQV DUH OLVWHG LQ 7DEOH 3RLQWV RQ WKHVH OLQHV FRUUHVSRQG WR VSHFLILF FRPSRVLWLRQV

PAGE 26

7DEOH 6'6 0LFURHPXOVLRQ &RPSRVLWLRQV 8VHG LQ 7KLV :RUN 0 (Db EULQHE bGRGHFDQH b6'6 bSHQWDQRO F F G & G F G G OF DXQLWV DUH ZHLJKW @ SHUFHQW ZZf E 0 1D&ODTf XQEXIIHUHG S+ m FRLO WR HPXOVLILHU UDWLR GRLO WR HPXOVLILHU UDWLR

PAGE 27

WKLV LQYHVWLJDWLRQ FKDQJHV LQ ( FRPSRVLWLRQ VKRZ WKH HIIHFW RI GLOXWLRQ E\ ZDWHU ,Q SUHSDULQJ (V HDFK FRPSRQHQW ZDV DGGHG E\ ZHLJKW DQG WKH VROXWLRQ ZDV PHFKDQLFDOO\ VWLUUHG XQWLO FOHDU DQG KRPRJHQHRXV 7KH [(V ZHUH VWDEOH IRU VHYHUDO PRQWKV DQG FRXOG EH IUR]HQ DQG WKDZHG 8OWUDVRQLFDWLRQ ZDV XVHG WR DLG LQ GLVVROYLQJ WKH HOHFWURDFWLYH SUREHV LQ X(V 7KH UHGXFWLRQ RI R[\JHQ LV REVHUYHG DW FD 9 LQ (V :LWK WKH H[FHSWLRQ RI 09r WKH SRWHQWLDO ZLQGRZ LQ ZKLFK &9 ZDV FRQGXFWHG GLG QRW RYHUODS ZLWK WKH SRWHQWLDO ZLQGRZ IRU R[\JHQ UHGXFWLRQ ,Q WKH FDVH RI 09r KRZHYHU WKH UHGXFWLRQ RI R[\JHQ LQWHUIHUHV ZLWK WKH ILUVW UHGXFWLRQ SHDN RI 09 7KHUHIRUH VROXWLRQV RI 09 ZHUH GHDHUDWHG ZLWK QLWURJHQ 1f EHIRUH PHDVXUHPHQWV 7KH VROXWLRQ ZDV SXUJHG ZLWK 1 XVLQJ D EXEEOHU FRQWDLQLQJ MX( ZKLFK ZDV ILUVW GHDHUDWHG IRU DW OHDVW PLQXWHV 7KH FRPSRVLWLRQ RI L( XVHG LQ WKH EXEEOHU ZDV WKH VDPH DV WKDW XVHG WR PDNH WKH VROXWLRQ RI 09 'HR[\JHQDWLRQ ZDV FRQILUPHG E\ &9 ZKLFK VKRZHG GLVDSSHDUDQFH RI WKH R[\JHQ SHDN DW 9 $ SRVLWLYH SUHVVXUH RI 1 ZDV PDLQWDLQHG WKURXJKRXW &9 DQG FKURQRFRXORPHWLF H[SHULPHQWV ZKHQ 09r VROXWLRQV ZHUH VWXGLHG

PAGE 28

6WDELOLW\ RI %HQ]RTXLQRQH LQ 0LFURHPXOVLRQV %HQ]RTXLQRQH %4f UHDFWV LQ WKH SUHVHQFH RI OLJKW WR IRUP K\GURTXLQRQH 4+f DQG K\GUR[\OEHQ]RTXLQRQH 42+f >@ %4 4+ 42+ f 7KH GLVDSSHDUDQFH RI %4 FDQ E\ PRQLWRUHG E\ XOWUDYLROHW XYf VSHFWURVFRS\ ZKHUH WKH DEVRUEDQFH PD[LPXP $PD[f RI %4 LV QP LQ ERWK DTXHRXV VROXWLRQV DQG LQ L(V ,Q DTXHRXV VROXWLRQV DIWHU RQH KRXU WKH DEVRUEDQFH DW $PD[ DQG WKHUHIRUH >%4@ LV b RI WKH RULJLQDO YDOXH $IWHU RQH KRXU D GHFUHDVH LQ >%4@ LV DOVR GHWHFWHG E\ D GHFUHDVH RI L LQ &9 ,Q 6'6 P(V %4 LV OHVV VWDEOH WKDQ LQ DTXHRXV VROXWLRQV 7KH UDWH RI %4 GHFRPSRVLWLRQ GHSHQGV RQ ( FRPSRVLWLRQ DQG >%4@ $IWHU RQH KRXU XY VSHFWUD VKRZ WKDW >%4@ LV b RI WKH RULJLQDO FRQFHQWUDWLRQ LQ DQ 6'6 MX( DQG b RI WKH RULJLQDO FRQFHQWUDWLRQ LQ D 6'6 c-( 7KH VROXWLRQV XVHG LQ &9 ZHUH PRUH FRQFHQWUDWHG WKDQ WKRVH XVHG LQ XY 7KHUHIRUH GHFRPSRVLWLRQ RI %4 LQ VROXWLRQV XVHG IRU &9 LV PRUH UDSLG WKDQ LQ VROXWLRQV XVHG IRU XY VSHFWURVFRS\ )RU H[DPSOH L RI %4 LQ D 6'6 [( GHFUHDVHV WR b RI LWV RULJLQDO YDOXH DIWHU RQH KRXU 7KHUHIRUH HOHFWURFKHPLFDO H[SHULPHQWV ZHUH FRQGXFWHG LPPHGLDWHO\ IROORZLQJ SUHSDUDWLRQ RI %4 VROXWLRQV DQG L HUURUV DUH ODUJHU WKDQ IRU WKH RWKHU SUREHV

PAGE 29

&+$37(5 '(7(50,1$7,21 2) 0,&52(08/6,21 6758&785( :DWHU 5LFK 0LFURHPXOVLRQV 'LIIXVLRQ RI )HUURFHQH )Ff )HUURFHQH )Ff LV D K\GURSKRELF SUREH ZLWK D UHSRUWHG VROXELOLW\ LQ ZDWHU RI P0 >@ DQG D VROXELOLW\ LQ GRGHFDQH RI 0 >@ 6LQFH )F FRQFHQWUDWLRQV LQ MX(V ZHUH W\SLFDOO\ P0 LH VLJQLILFDQWO\ JUHDWHU WKDQ LWV ZDWHU VROXELOLW\ WKH SUREH LV H[SHFWHG WR UHVLGH SULPDULO\ LQ WKH RLO SKDVH 7KH FRQFHQWUDWLRQ ZDV OLPLWHG WR P0 E\ VROXELOLW\ LQ WKH LMO( ,Q 6'6 cM(V ZLWK )F FRQFHQWUDWLRQV IURP P0 GLIIXVLRQ FRHIILFLHQWV '5f DQG IRUPDO SRWHQWLDOV ( (SD (SFf m (rnf ZHUH QRW GHSHQGHQW RQ WKH FRQFHQWUDWLRQ RI WKH SUREH 7DEOH f ,Q &7$% LL(V GHSHQGHQFH RI '5 RQ SUREH FRQFHQWUDWLRQ ZDV REVHUYHG DW >)F@ P0 >@ 7KH R[LGDWLRQ SURGXFW RI )F IHUULFLQLXP FDWLRQ )Ff LV ZDWHU VROXEOH :DWHU VROXELOLW\ RI )F KDV EHHQ GHPRQVWUDWHG LQ PLFHOODU VROXWLRQV ZKHUH m 'DT ; n FPV >@ UDWKHU WKDQ D ORZHU mn FPVf W\SLFDO RI WKH HOHFWURDFWLYH SUREH LQWHUDFWLQJ ZLWK PLFHOOHV

PAGE 30

7DEOH 'LIIXVLRQ &RHIILFLHQWV DQG )RUPDO 3RWHQWLDOV RI )HUURFHQH )Ff LQ 6'6 0LFURHPXOVLRQV 0(D >)F@ '5E ; ( P0f FPVf P9f s s s s s s D6HH 7DEOH IRU H[DFW 6'6 ( FRPSRVLWLRQV Er 'n XVHG LQ HTXDWLRQV DQG

PAGE 31

,Q ZDWHU ULFK 6'6 ](V RLOVROXEOH )F ZDV H[SHFWHG WR UHVLGH LQ GURSOHWV ZLWK '5 UHIOHFWLQJ WKH GLIIXVLRQ FRHIILFLHQW RI GURSOHWV 'GURSf ,Q 6'6 ]( )F '5 ; n FPV FD DQ RUGHU RI PDJQLWXGH ORZHU WKDQ LQ DTXHRXV VROXWLRQV 'U DT ; n FPV >@f RU LQ GRGHFDQH '5 R8 ; r FPV >@f 7KHUHIRUH '5 GRHV QRW UHIOHFW )F GLIIXVLRQ WKURXJK D FRQWLQXRXV SKDVH EXW LV FRQVLVWHQW ZLWK WKH H[SHFWHG GLIIXVLRQ ZLWK WKH GURSOHW DQG LV D PHDVXUH RI 'GURS &r 7KH VHOIGLIIXVLRQ FRHIILFLHQW RI RLO LQ 2: ](V PHDVXUHG E\ 105 LV W\SLFDOO\ 'RMO m n FPV >@ LQ DJUHHPHQW ZLWK WKLV PRGHO >@ 0HDVXUHPHQW RI GURSOHW GLIIXVLRQ E\ 4(/6 DOVR JLYHV 'GURS m LRn FPV >@ 'LIIXVLRQ FRHIILFLHQW LV UHODWHG WR GURSOHW VL]H E\ WKH 6WRNHV(LQVWHLQ HTXDWLRQ N7UUMU f ZKHUH LV WKH GLIIXVLRQ FRHIILFLHQW FPVf N LV WKH %ROW]PDQ FRQVWDQW -.f 7 LV WKH WHPSHUDWXUH .f U LV WKH YLVFRVLW\ RI WKH VROYHQW 3f DQG U LV WKH UDGLXV RI WKH GLIIXVLQJ VSHFLHV FPf 6LQFH '5 RI )F UHIOHFWV 'GURS LW FDQ EH XVHG WR FDOFXODWH GURSOHW VL]H IURP HTXDWLRQ 7\SLFDO GURSOHW VL]HV ZKLFK ZHUH REWDLQHG IURP VXFK FDOFXODWLRQV FRUUHVSRQG ZHOO WR GURSOHW VL]HV GHWHUPLQHG E\ WHFKQLTXHV VXFK DV 4(/6 >@ DQG 6$16 >@ &DOFXODWLRQV RI GURSOHW VL]HV IURP HOHFWURFKHPLFDO '5 DUH GLVFXVVHG LQ GHWDLO LQ D ODWHU VHFWLRQ RI WKLV FKDSWHU

PAGE 32

'LIIXVLRQ RI 0HWK\O 9LRORJHQ 09rf :DWHU VROXEOH 09r LV UHGXFHG WKURXJK D VWDEOH FDWLRQ UDGLFDO 09rr WR ZDWHU LQVROXEOH 09r 09r Hn rr 09rr f 09rr Hn 09r f 7KH 09r LV H[SHFWHG WR DVVRFLDWH ZLWK WKH DQLRQLF 6'6 LQ WKH PHPEUDQH OD\HU 7\SLFDO 09r FRQFHQWUDWLRQV ZHUH P0 VLQFH DW KLJKHU FRQFHQWUDWLRQV WKH c-( EHFDPH WXUELG 7KLV GHPRQVWUDWHV WKDW 6'6 ( VWUXFWXUH LV VHQVLWLYH WR HOHFWURO\WH FRQFHQWUDWLRQ DQG FKDQJHV LQ HOHFWURO\WH FRQFHQWUDWLRQ FDQ UHVXOW LQ D VROXWLRQ ZKLFK GRHV QRW IRUP D + ( ,Q ZDWHU ULFK Q(V 09r VKRXOG EH HOHFWURVWDWLFDOO\ DWWDFKHG WR WKH DQLRQLF PHPEUDQH OD\HU RI WKH GURSOHW DQG OLNH )F FDQ EH XVHG WR PHDVXUH GURSOHW GLIIXVLRQ ,Q DOO 6'6 LL(V WHVWHG LV VLJQLILFDQWO\ ORZHU WKDQ LQ DTXHRXV VROXWLRQV ZKHUH DT ; n FPV >@ 7KH ORZ LQGLFDWHV WKDW WKH SUREH PRYHV ZLWK WKH DJJUHJDWHV +RZHYHU RI 09r LV QRW DV ORZ DV 'GURS >@ QRU '6MUI >@ ERWK RI ZKLFK DUH FD n FPV 3DUWLWLRQLQJ RI 09r EHWZHHQ WKH PHPEUDQH DQG DTXHRXV SKDVHV PD\ FRQWULEXWH WR KLJKHU HOHFWURFKHPLFDO (IIHFWV RI SDUWLWLRQLQJ RQ HOHFWURFKHPLFDO ZLOO EH GLVFXVVHG LQ GHWDLO LQ D ODWHU VHFWLRQ RI WKLV FKDSWHU

PAGE 33

'LIIXVLRQ RI )HUULF\DQLGH )H&1faf 'XH WR HOHFWURVWDWLF UHSXOVLRQ IURP WKH PHPEUDQH WKH ZDWHU VROXEOH DQLRQV )H&1fn DQG LWV UHGXFWLRQ SURGXFW )H&1fn UHVLGH LQ WKH DTXHRXV SKDVH RI 6'6 IM(V &RQFHQWUDWLRQV RI )H&1fn ZHUH W\SLFDOO\ P0 VLPLODU WR WKH HIIHFW RI 09r KLJKHU FRQFHQWUDWLRQV ZHUH IRXQG WR FDXVH WXUELGLW\ 6LQFH )H&1fn UHVLGHV LQ WKH DTXHRXV SKDVH LWV VKRXOG EH D PHDVXUH RI SUREH GLIIXVLRQ LQ ZDWHU ,Q DQ 6'6 ( WKH GLIIXVLRQ FRHIILFLHQW RI )H&1ff ; n FPV LV RQO\ VOLJKWO\ ORZHU WKDQ 1D&ODTf sf ; n FPV DQG .&WDTf ; n FPV >@ 7KH VPDOO GHFUHDVH LQ FDQ EH DWWULEXWHG WR WKH REVWUXFWLRQ HIIHFW ,Q 105 VWXGLHV D VLPLODU REVWUXFWLRQ HIIHFW ZDV VKRZQ WR UHGXFH 'ZDWHS )RU H[DPSOH LQ D : 6'6OEXWDQROWROXHQH ZDWHU ( 'ZDWHU ; n FPV FRPSDUHG WR QHDW ZDWHU 'r ZDWHU r ; n FP9V >@ 3DUWLWLRQLQJ $V LV DSSDUHQW IURP YDOXHV REWDLQHG IRU 09 LQ D ZDWHU ULFK [( SUREH SDUWLWLRQLQJ FDQ DIIHFW GLIIXVLRQ FRHIILFLHQWV 3DUWLWLRQLQJ ZLOO DOVR RFFXU ZLWK RWKHU SUREHV DV GHPRQVWUDWHG ZLWK )F LQ &7$% [(V >@ ,Q D PXOWLFRPSRQHQW V\VWHP VXFK DV D IL( DOO HOHFWURFKHPLFDO GLIIXVLRQ FRHIILFLHQWV DUH DIIHFWHG E\ SUREH SDUWLWLRQLQJ >@ EHFDXVH RI WKH UHVXOWLQJ PXOWLSOH GLIIXVLRQDO SDWKV

PAGE 34

7KHVH SDWKV RFFXU EHFDXVH RI SODFH PDVVf RU HOHFWURQ H[FKDQJH DFURVV SKDVHV /RZ FRQFHQWUDWLRQV DQG ODUJH GLIIHUHQFHV LQ (rn GHFUHDVH WKH GULYLQJ IRUFH RI DQ HOHFWURQH[FKDQJH UHDFWLRQ >@ ,Q GURSOHW ](V SDUWLWLRQLQJ FDQ FRQWULEXWH WR KLJKHU GLIIXVLRQ FRHIILFLHQW YDOXHV WKDQ H[SHFWHG IRU 'GURS ,Q WKH ](V VWXGLHG LQ WKLV ZRUN HOHFWURQ H[FKDQJH LV XQOLNHO\ VLQFH LW UHTXLUHV D VLPLODU IRUPDO SRWHQWLDO (rnf LQ ERWK K\GURSKRELF DQG K\GURSKLOLF SKDVHV >@ $V VKRZQ LQ 7DEOHV DQG ( RI )F DQG RI 09 LQ ](V DUH VLJQLILFDQWO\ GLIIHUHQW IURP WKH (rnDT 7DEOH FRQWDLQLQJ WKH HOHFWURFKHPLFDO ILJXUHV RI PHULW IRU )H&1fn LV LQFOXGHG IROORZLQJ 7DEOH DQG IRU FRPSDULVRQf +RZHYHU UHVLGHQFH WLPHV RI SUREHV LQ ](V DUH W\SLFDOO\ FD n WR f V >@ 7KLV LV IDVWHU WKDQ WKH WLPH VFDOH RI FKURQRFRXORPHWU\ ZKLFK ZDV XVHG WR PHDVXUH GLIIXVLRQ FRHIILFLHQWV 7KHUHIRUH FURVVn SKDVH SODFH H[FKDQJH PD\ EH FRQVLGHUHG UDSLG 7KH UHODWLRQVKLS EHWZHHQ DSSDUHQW GLIIXVLRQ FRHIILFLHQW 'nf PHDVXUHG HOHFWURFKHPLFDOO\ DQG GLIIXVLRQ FRHIILFLHQW RI WKH GURSOHW 'GURSf GHSHQGV RQ WKH UDWH RI H[FKDQJH DFURVV WKH SKDVHV >@ :KHQ H[FKDQJH EHWZHHQ SKDVHV LV IDVW WKH 'n PD\ EH H[SUHVVHG DV 'n 'I 'I f ZKHUH IRU D GURSOHW X( 'DT DQG I LV WKH IUDFWLRQ RI SUREH LQ WKH DTXHRXV SKDVH 'GURS DQG I LV WKH IUDFWLRQ

PAGE 35

7DEOH (OHFWURFKHPLFDO )LJXUHV RI 0HULW RI )HUURFHQH )Ff LQ 6'6 0LFURHPXOVLRQV >)&@ [(D ) N K $(SE L E SD L L E SD -SF 'U ; P0f P9f P9f /W$f FPVf $&1F s s s s s s s s s s s s s s s s s s s s s s s s s s s f§ 6'6G f§ f§ f§ f§ DTH f§ f§ f§ D6HH 7DEOH IRU H[DFW 6'6 X( FRPSRVLWLRQV EY P9V L5 FRPSHQVDWLRQ WR F 0 7($& LQ $&1 G 0 6'6 LQ 0 1D&ODTf >@ H 0 1D&ODTf >@

PAGE 36

(OHFWURFKHPLFDO 7DEOH )LJXUHV RI 0HULW RI 0HWK\O 9LRORJHQ 09f LQ 6'6 0LFURHPXOVLRQV >09@ +(D ( $(SA L E [SF LSFOLSDO ( $(SE L E SF ‘rSFASD 'Un ; P0f P9f P9f 0$f P9f P9f 0$f FPVf s s s s s s s s s s s s s s s s s s s 6'6& DTF f§ D6HH 7DEOH IRU H[DFW 6'6 [( FRPSRVLWLRQV EY P9V L5 FRPSHQVDWLRQ WR Q FDT P0 1D&ODTf 6'6 P0 1D&ODTf P0 6'6 >@

PAGE 37

7DEOH (OHFWURFKHPLFDO )LJXUHV RI 0HULW RI )HUULF\DQLGH )H&1fff LQ 6'6 0LFURHPXOVLRQV >)H&1fn@ O(D ( E A $(SE L L E SFn SD 'n ; P0f P9f P9f 0$f FPVf s s s s s s s 6'6& DTG D6HH 7DEOH IRU H[DFW 6'6 Q( FRPSRVLWLRQV EY P9V L5 FRPSHQVDWLRQ WR Q F P0 6'6 LQ 0 1D&ODTf G 0 1D&ODTf

PAGE 38

RI WKH SUREH LQ WKH GURSOHW >@ )RU ELFRQWLQXRXV P(V 'JT DQG LV D GLIIXVLRQ FRHIILFLHQW IRU D SUREH LQ WKH FRQWLQXRXV RLO SKDVH ,I PRUH WKDQ RQH SUREH LV ERXQG WR D GURSOHW 'n PD\ GHSHQG RQ SUREH FRQFHQWUDWLRQ &[ 6HH $SSHQGL[ $f 7KH GHSHQGHQFH RI 'n RQ &[ KDV EHHQ GHVFULEHG E\ 5XVOLQJ HW DO >@ ZKHUH 'n 'O &0.Q&[Qnf '&0.Q&[QnO &+.Q&[nf f ,Q HTXDWLRQ &0 WRWDO GURSOHW FRQFHQWUDWLRQ Q WKH QXPEHU RI SUREH PROHFXOHV ERXQG WR D GURSOHW DQG .Q LV WKH HTXLOLEULXP FRQVWDQW IRU WKH ELQGLQJ RI Q VROXWH PROHFXOHV WR D GURSOHW 0 Q; m 0;Q f ZKHUH 0 GURSOHW DQG ; SUREH 0RUH VSHFLILFDOO\ .Q Q.n ZKHUH .n LV .nQ >0;->0@>;@Qf f ,Q 6'6 P(V 'n 'U RI )F GRHV QRW GHSHQG RQ &[ 7DEOH f $FFRUGLQJ WR HTXDWLRQ WKLV ZLOO RFFXU LI Q +RZHYHU VLQFH KLJK FRQFHQWUDWLRQV RI )F ZHUH XVHG LQ WKLV ZRUN LW LV UHDVRQDEOH WKDW D GURSOHW ZLOO FRQWDLQ PRUH WKDQ RQH SUREH Q f 7KXV Q FDQQRW H[SODLQ WKH LQGHSHQGHQFH RI '5 RQ >)F@ ,I .Q &+ RU &[Qn LV YHU\ ORZ

PAGE 39

'n ZLOO EH LQGHSHQGHQW RI &[ DQG 'n D 'DT 6LQFH '5 RI )F m 'DT WKLV GRHV DOVR QRW H[SODLQ WKH LQGHSHQGHQFH RI '5 RQ >)F@ +RZHYHU LI .Q &+ RU &[Qr LV KLJK 'n D 'GURS 7KLV EHKDYLRU LV FRQVLVWHQW ZLWK WKH REVHUYHG '5 RI )F ZKHUH '5 GRHV QRW FKDQJH ZLWK >)F@ DQG '5 a'GURS 8QOLNH LQ 6'6 P(V 'n GHSHQGV RQ >)F@ LQ &7$% (V >@ 6LQFH &[ DQG &+ DUH VLPLODU LQ 6'6 DQG &7$% ](V GLIIHUHQFHV LQ WKH GHSHQGHQFH RI 'n RQ &[ PXVW EH GXH WR GLIIHUHQFHV LQ .Q $ KLJKHU .Q LQ 6'6 ](V OHDGV WR 'n DSSURDFKLQJ DW ORZHU &[ WKDQ LQ &7$% Q(V UHVXOWLQJ LQ WKH REVHUYHG LQGHSHQGHQFH RI 'n RQ &[ LQ 6'6 MX(V LQ WKH VDPH FRQFHQWUDWLRQ UDQJH 'HWHUPLQDWLRQ RI 'URSOHW 6L]H $V GLVFXVVHG SUHYLRXVO\ '5 RI )F D 'GURS LQ 6'6 ](V +RZHYHU WR DFFXUDWHO\ GHWHUPLQH 'GURS SDUWLWLRQLQJ PXVW EH FRQVLGHUHG ,Q WKLV ZRUN >)F@ LV FORVH WR LWV VROXELOLW\ OLPLW LQ 6'6 ](V 7KHUHIRUH WKH VROXELOLW\ RI )F LQ ZDWHU ; r P0 >@f LV XVHG WR FDOFXODWH I DQG I 8VLQJ HTXDWLRQ WKHVH IUDFWLRQV '5 RI )F 'n DQG 'JT 'GURS rf rV FDOFXODWHG >@ )RU DQ 6'6 Q( 'GURS ; n FPV LV FDOFXODWHG 8VLQJ WKH FDOFXODWHG 'GURS DQG DVVXPLQJ WKH YLVFRVLW\ RI WKH FRQWLQXRXV SKDVH WR EH U"ZDWHU 3 WKH GURSOHW UDGLXV Uf LV ƒ IURP HTXDWLRQ 7DEOH OLVWV GURSOHW VL]HV Uf IRU VHYHUDO 2: ](V

PAGE 40

'URSOHW 6L]HV DQG 7DEOH 0LFURHPXOVLRQ &RPSRVLWLRQ /O(D bDT bRLO bHP VDOW V FE >)F@ 'n ; ‘: ;f UDGLXVn P0f FPVf FPVf $f 6'6 0 1D&O 6'6 0 1D&O 6'6 0 1D&O 6'6 QRQH E\ IOXRUHVFHQFH >@ &7$% QRQH &7$% b 1D%U E\ 6$16 >@ &7$% b 1D%U E\ 4(/6 >@ DPLFURHPXOVLRQ FRPSRVLWLRQ LQ ZHLJKW SHUFHQW XQOHVV RWKHUZLVH QRWHG 6'6 Q( DT ZDWHU RLO GRGHFDQH HP 6'6OSHQWDQRO VDOW HOHFWURO\WH LQ ZDWHU &7$% ( DT ZDWHU RLO KH[DGHFDQH HP &7$%OEXWDQRO VDOW HOHFWURO\WH LQ Q( EVXUIDFWDQW WR FRVXUIDFWDQW UDWLR GLIIXVLRQ FRHIILFLHQW RI WKH GURSOHW FDOFXODWHG IURP HTXDWLRQ XVLQJ )F ZDWHU VROXELOLW\ P0 >@f DQG 'DT ; f FPV >@ RI )F LQ ZDWHU GUDGLXV FDOFXODWHG IURP 'GURS DQG WKH 6WRNHV(LQVWHLQ HTXDWLRQ f DVVXPLQJ DTXHRXV FRQWLQXRXV SKDVH YLVFRVLW\ U"f 3 .f 9e!

PAGE 41

9DOXHV LQ 7DEOH DUH FRQVLVWHQW ZLWK WKH YDOXHV REWDLQHG E\ RWKHU PHWKRGV ZKLFK DUH DOVR OLVWHG LQ 7DEOH )URP 4(/6 LW KDV EHHQ VKRZQ WKDW LI OL( RLO FRQWHQW LQFUHDVHV GURSOHW VL]H LQFUHDVHV >@ 7KLV LV FRQILUPHG E\ HOHFWURFKHPLFDO UHVXOWV REWDLQHG KHUH )RU H[DPSOH U $ LQ DQ 6'6 Q( ZKHQ RLO FRQWHQW LV WZLFH WKDW RI WKH [( ZKHUH U $ 7DEOH f ,QFUHDVLQJ WKH VXUIDFWDQW WR FRVXUIDFWDQW UDWLR VFf GHFUHDVHV WKH K\GURSKLOLFLW\ RI WKH L( DQG DV D UHVXOW GURSOHW VL]H EXW WR D OHVVHU H[WHQW WKDQ WKH FKDQJHV LQ RLO FRQWHQW )RU H[DPSOH WKH 6'6 [( ZKHUH U $ KDV VF EXW LI VF U $ 7DEOH f %LFRQWLQXRXV 0LFURHPXOVLRQV 6WUXFWXUDO &KDQJHV ZLWK :DWHU 'LOXWLRQ 'LIIXVLRQ FRHIILFLHQWV RI HOHFWURDFWLYH SUREHV LQ ELFRQWLQXRXV [(V FRUUHVSRQG WR YDOXHV RI GLIIXVLRQ FRHIILFLHQWV LQ QHDW OLTXLGV +RZHYHU GLIIXVLRQ FRHIILFLHQWV LQ [(V DUH ORZHU EHFDXVH RI REVWUXFWLRQ GXH WR WKH SUHVHQFH RI WKH PHPEUDQH SKDVH DQG WKH SKDVH LQ ZKLFK WKH SUREH GRHV QRW UHVLGH 7KH ODUJHU WKH YROXPH RI WKHVH SKDVHV WKH PRUH REVWUXFWLRQ ZKLFK ZLOO RFFXU DQG WKH ORZHU WKH GLIIXVLRQ FRHIILFLHQW 6LQFH )F UHVLGHV LQ WKH RLO SKDVH DV WKH YROXPH RI WKH REVWUXFWLQJ ZDWHU SKDVH

PAGE 42

GHFUHDVHV '5 RI )F ZLOO LQFUHDVH 5HVXOWV LQ )LJXUH VKRZ WKLV LQFUHDVH LQ '5 DV ZDWHU FRQWHQW GHFUHDVHV $FFRUGLQJ WR HTXDWLRQ WKH REVHUYHG LQFUHDVLQJ '5 RI )F ZLOO FRUUHVSRQG WR D GHFUHDVH LQ GURSOHW VL]H LI )F FRQWLQXHV WR GLIIXVH ZLWK WKH RLO GURSOHWV +RZHYHU ZLWK D GHFUHDVH LQ [( ZDWHU FRQWHQW RLO FRQWHQW LQFUHDVHV DQG WKHUHIRUH VL]H DQGRU QXPEHU RI RLO GURSOHWV ZLOO LQFUHDVH >@ 7KHUHIRUH FKDQJHV LQ GURSOHW VL]H FDQQRW H[SODLQ WKH LQFUHDVH LQ '5 +RZHYHU ZLWK DQ LQFUHDVH LQ WKH VL]H DQG QXPEHU RI GURSOHWV FRDOHVFHQFH RI GURSOHWV LV PRUH OLNHO\ 7KXV D FRQWLQXRXV SDWK WKURXJK WKH RLO SKDVH LV IRUPHG DQG GLIIXVLRQ WKURXJK WKLV SVHXGRFRQWLQXRXV SKDVH EHFRPHV LPSRUWDQW 7KLV QHZ GLIIXVLRQ SDWK OHDGV WR DQ LQFUHDVH LQ '5 )URP UHVXOWV LQ )LJXUH LW LV FRQFOXGHG WKDW ZLWK GHFUHDVLQJ ZDWHU FRQWHQW WKLV IRUP RI GLIIXVLRQ EHFRPHV PRUH LPSRUWDQW :KHQ FRQWLQXRXV GLIIXVLRQ SDWKV WKURXJK ERWK WKH RLO DQG ZDWHU SKDVH H[LVW WKH VWUXFWXUH LV FRQVLGHUHG ELFRQWLQXRXV 7KH WUDQVLWLRQ IURP GURSOHW WR ELFRQWLQXRXV VWUXFWXUHV LV FRQILUPHG E\ FRPSDULQJ HOHFWURFKHPLFDO DQG 105 GLIIXVLRQ FRHIILFLHQWV ZKHUH FKDQJHV LQ '5 RI )F ZLWK FRPSRVLWLRQ IROORZ 'RLO YDOXHV IURP 105 IRU ERWK 6'6 DQG &7$% (V )RU H[DPSOH ZKHQ ZDWHU FRQWHQW LV KLJK 'RMO DQG '5 RI )F DUH FD n FPV >@ FRQVLVWHQW ZLWK D [( GURSOHW VWUXFWXUH )URP 105 DV ZDWHU FRQWHQW GHFUHDVHV

PAGE 43

L FR 2 ; FU 4 )LJXUH 'HSHQGHQFH RI '5 RI )F RQ &RPSRVLWLRQ 0LFURHPXOVLRQ FRPSRVLWLRQ LV H[SUHVVHG LQ ZHLJKW SHUFHQW ZDWHU 6HH 7DEOH IRU H[DFW FRPSRVLWLRQV

PAGE 44

'R8 LQFUHDVHV DSSURDFKLQJ 'rRLO QHDW OLTXLGf EXW QRW DFKLHYLQJ LW >@ 7KLV LV FRQVLVWHQW ZLWK D WUDQVLWLRQ IURP GLVFUHWH RLO GURSOHWV WR D ELFRQWLQXRXV VWUXFWXUH ZLWK RLO DV D SVHXGRFRQWLQXRXV SKDVH 6SHFLILFDOO\ LQ D ELFRQWLQXRXV 6'6OEXWDQROWROXHQHZDWHU c-( 'WROXHQH ; n FPV ZKLOH 'WROXHQH ; n FPV >@ 6LPLODUO\ HOHFWURFKHPLFDOO\ GHWHUPLQHG '5 RI )F LQFUHDVHV DV WKH ZDWHU FRQWHQW GHFUHDVHV ZLWKRXW UHDFKLQJ '5 RMO ; n FPV >@ )LJXUH f :KLOH 'U RI )F FRUUHVSRQGV WR 'T8 IURP 105 '4 RI )H&1ff LQ 6'6 (V FRUUHVSRQGV WR 'ZDWHU ,Q (V ZLWK KLJK ZDWHU FRQWHQW LV VOLJKWO\ OHVV WKDQ '1D&8DTfr 6LPLODUO\ IURP 105 'ZDWHU LV VOLJKWO\ OHVV WKDQ 'rZDWHU >@ LQ WKHVH V\VWHPV /LNH 'ZDWHU LV UHGXFHG EHFDXVH RI REVWUXFWLRQ RI DTXHRXV GLIIXVLRQ E\ RLO GURSOHWV >@ 7KH FKDQJHV LQ '4 IROORZ FKDQJHV LQ 'ZDWHU )LJXUH f $V ZDWHU FRQWHQW GHFUHDVHV GHFUHDVHV GXH WR LQFUHDVLQJ REVWUXFWLRQ RI )H&1fn GLIIXVLRQ 7KH LQFUHDVHG REVWUXFWLRQ LV D UHVXOW RI LQFUHDVLQJ DPRXQW RI WKH REVWUXFWLQJ RLO SKDVH DV ZDWHU FRQWHQW GHFUHDVHV ,Q &7$% [(V 'T RI 09r UHIOHFWV GLIIXVLRQ LQ WKH DTXHRXV SKDVH VLQFH 09r LV UHSHOOHG IURP WKH &7$% PHPEUDQH /LNH RI )H&1fn LQ 6'6 (V RI 09r LQ &7$% (V GHFUHDVHV DV ZDWHU FRQWHQW GHFUHDVHV >@ GXH WR REVWUXFWLRQ )LJXUH f

PAGE 45

( R &' 2 ; R 2 )LJXUH 'HSHQGHQFH RI 'Q RI )H&1f DQG RI 09 RQ ( &RPSRVLWLRQ 0LFURHPXOVLRQ &RPSRVLWLRQ LV H[SUHVVHG LQ ZHLJKW SHUFHQW ZDWHU 6HH 7DEOH IRU H[DFW FRPSRVLWLRQ

PAGE 46

7KH RI 09r LQ 6'6 (V LV D PHDVXUH RI WKH GLIIXVLRQ RI WKH PHPEUDQH RU VXUIDFWDQW SKDVH ,Q 6'6 IL(V LV VLJQLILFDQWO\ ORZHU WKDQ DT DQG FKDQJHV OLWWOH ZLWK FRPSRVLWLRQ 7DEOH f 6LPLODUO\ WKH ORZ 'VXUI IURP 105 GRHV QRW FKDQJH VLJQLILFDQWO\ ZLWK FRPSRVLWLRQ >@ VLQFH WKH PRYHPHQW RI VXUIDFWDQW LV UHVWULFWHG DW DOO FRPSRVLWLRQV ,Q GURSOHW MX(V VXUIDFWDQW OLNH RLO GLIIXVHV ZLWK WKH GURSOHWV ,Q ELFRQWLQXRXV V\VWHPV GLIIXVLRQ RI VXUIDFWDQW LV FRQILQHG WR WKH LQWHUIDFH DQG LV WKXV VORZ W\SLFDOO\ 'VXUI ; n FPV >@ 7KH RI 09r ZKLFK LV FD ; n FPV LV ODUJHU WKDQ 'VXUI SUREDEO\ GXH WR D FRQWULEXWLRQ WR IURP GLIIXVLRQ RI 09r LQ WKH DJXHRXV SKDVH DV D UHVXOW RI 09r SDUWLWLRQLQJ EHWZHHQ WKH PHPEUDQH DQG WKH DJXHRXV SKDVH ,Q &7$% X(V RI )H&1fn UHIOHFWV 'VXUI DQG LV ORZHU WKDQ '4 RI 09r LQ 6'6 0( >@ 7KLV LV GXH WR JUHDWHU SDUWLWLRQLQJ RI )H&1fn LQWR WKH PHPEUDQH SKDVH (IIHFW RI 2LO WR (PXOVLILHU 5DWLR $V VKRZQ IRU )F GLIIXVLRQ RI WKH SUREH WKURXJK WKH RLO SKDVH LV VLJQLILFDQW LQ ELFRQWLQXRXV V\VWHPV %RWK HOHFWURFKHPLFDO DQG 105 UHVXOWV VKRZ WKDW GLIIXVLRQ RI )F LQ ELFRQWLQXRXV (V LV VORZHU WKDQ LQ QHDW OLTXLG GXH WR WKH REVWUXFWLRQ E\ WKH VXUIDFWDQW DQG ZDWHU SKDVHV >@ &RQVHTXHQWO\ ELFRQWLQXRXV MX(V ZLWK KLJKHU RLO WR HPXOVLILHU

PAGE 47

RHf UDWLR ZLOO FDXVH OHVV REVWUXFWLRQ DQG WKHUHIRUH KLJKHU GLIIXVLRQ FRHIILFLHQWV ZLOO EH PHDVXUHG 7KLV LV VKRZQ IRU )F LQ D V\VWHP ZLWK D UDWLR RI RH ZKHUH 'U RI )F LV KLJKHU WKDQ LQ FRPSDUDEOH V\VWHPV ZKHUH WKH RH )LJXUH f (IIHFW RI (OHFWURO\WH 7KH WUDQVLWLRQ IURP D GURSOHW WR D ELFRQWLQXRXV VWUXFWXUH ZLOO RFFXU DW GLIIHUHQW FRPSRVLWLRQV GHSHQGLQJ RQ ?L( FRPSRQHQWV )RU H[DPSOH )LJXUH VKRZV WKDW '5 RI )F LQ 6'6 [(V UHDFKHV WKH KLJK ; n FPVf YDOXHV ZKLFK DUH FKDUDFWHULVWLF RI D ELFRQWLQXRXV ( DW KLJKHU ZDWHU FRQWHQW WKDQ LQ &7$% O(V 6KLHOGLQJ RI WKH GURSOHW FKDUJH E\ DQ LQRUJDQLF HOHFWURO\WH PD\ OHDG WR PRUH IDFLOH GURSOHW PHUJLQJ >@ 7KXV 6'6 (V ZKLFK FRQWDLQ 1D&O IDYRU D ELFRQWLQXRXV PLFURVWUXFWXUH DW ORZHU RLO FRQWHQW WKDQ &7$% +(V ZKLFK GR QRW FRQWDLQ 1D&O 7KLV HOHFWURO\WH HIIHFW FDQ DOVR EH VHHQ ZKHQ DQ 6'6 ( ODFNV HOHFWURO\WH ,Q D 6'6 ( LQ WKH DEVHQFH RI 0 1D&OJTf )F ; f FPV W\SLFDO RI 'GURS +RZHYHU IRU WKH VDPH V\VWHP LQ WKH SUHVHQFH RI 0 1D&ODTf )F '5 ; f FPV 7KH KLJKHU '5 LQ WKH SUHVHQFH RI 1D&O PXVW UHIOHFW ELFRQWLQXRXV VWUXFWXUH VLQFH WKH YDOXH LV W\SLFDO RI GLIIXVLRQ LQ D FRQWLQXRXV SKDVH DQG LV VLJQLILFDQWO\ ODUJHU WKDQ 'GURS ZKLFK LV W\SLFDOO\ FD n FPV 2WKHU VWXGLHV KDYH VKRZQ

PAGE 48

&2 &0 2 2 2 ; Rr FU 4 On7nL L L L L 0 L LnOO 0 L UU L L L L L L L L 0 LL LL 0 0 L 0 LL LL L L L b ZDWHU LQ PLFURHPXOVLRQ )LJXUH 'HSHQGHQFH RI '5 RI )F RQ Q( &RPSRVLWLRQ IRU 2LOWR(PXOVLILHU 5DWLR RI DQG RI 0LFURHPXOVLRQ &RPSRVLWLRQ H[SUHVVHG LQ ZHLJKW SHUFHQW ZDWHU 6HH 7DEOH IRU H[DFW FRPSRVLWLRQV

PAGE 49

WKDW GURSOHW VL]H LQFUHDVHV ZKHQ HOHFWURO\WH LV DGGHG WR WKH DTXHRXV SKDVH RI DQ : Q( >@ $Q LQFUHDVH LQ GURSOHW VL]H VKRXOG FRUUHVSRQG WR D GHFUHDVH LQ '5 HTXDWLRQ f 6LQFH H[SHULPHQWDOO\ '5 ZLWK DGGHG 1D&O LV ODUJHU LW PXVW UHIOHFW D IDFLOH WUDQVLWLRQ RI ODUJH GURSOHWV WR D ELFRQWLQXRXV VWUXFWXUH $V [( FRPSRVLWLRQ FKDQJHV QHLWKHU 'U RI )F QRU RI )H&1fn VKRZ DQ DEUXSW FKDQJH ZKLFK ZRXOG EH H[SHFWHG LI WKH FKDQJH IURP GURSOHWV WR ELFRQWLQXRXV VWUXFWXUHV RFFXUUHG DW D VSHFLILF FRPSRVLWLRQ 5HVXOWV IURP 105 DOVR GR QRW VKRZ VXFK D FKDQJH IURP GURSOHW WR ELFRQWLQXRXV VWUXFWXUHV >@ 5ROH RI (OHFWURDFWLYH 3UREH LQ 6WUXFWXUH 'HWHUPLQDWLRQ $V LV FOHDU IURP WKH UHVXOWV HOHFWURFKHPLFDOO\ PHDVXUHG GLIIXVLRQ FRHIILFLHQWV FDQ EH XVHG WR GHWHUPLQH [( PLFURVWUXFWXUH E\ DSSURSULDWH FKRLFH RI SUREHV ,Q ERWK &7$% DQG 6'6 [(V HOHFWURFKHPLFDOO\ GHWHUPLQHG '5 RI )F LV D PHDVXUH RI GLIIXVLRQ RI RLO DQG LV FRPSDUDEOH WR 'RMO IURP 105 )LJXUH f 'LIIXVLRQ LQ WKH DTXHRXV SKDVH LV PHDVXUHG E\ RI )H&1fn LQ 6'6 [(V DQG '4 RI 09r LQ &7$% ?L(V VLQFH ERWK DUH ZDWHU VROXEOH DQG GR QRW DVVRFLDWH ZLWK WKH VXUIDFWDQW LQ WKH PHPEUDQH GXH WR HOHFWURVWDWLF UHSXOVLRQ )RU WKLV UHDVRQ YDOXHV IRU 09r LQ &7$% [(V DUH FRPSDUDEOH WR YDOXHV RI '4 IRU )H&1fn LQ 6'6 [(V DQG 'ZDWHU IURLQ 105 )LJXUH f $V ZLWK FKDQJHV LQ RI

PAGE 50

)H&1fn DQG 'ZDWHU ZLWK IL( FRPSRVLWLRQ WKH GHFUHDVH LQ 09 ZLWK GHFUHDVLQJ ZDWHU FRQWHQW >@ LV GXH WR REVWUXFWLRQ ,Q 6'6 IL(V 'T RI 09r OLNH RI )H&1fn LQ &7$% IO(V FRUUHODWHV ZHOO ZLWK 'VXUI >@ VKRZLQJ OLWWOH FKDQJH LQ ZLWK FRPSRVLWLRQ ,Q ELFRQWLQXRXV 6'6 IL(V 'U RI )F LV ODUJHU WKDQ LQ &7$% cMO(V RI VLPLODU FRPSRVLWLRQV )LJXUH f 7KLV LV SUREDEO\ GXH WR WKH GLIIHUHQFHV LQ WKH YLVFRVLW\ RI WKH RLO SKDVH IRU HDFK IL( DQG WR GLIIHUHQFHV LQ )F VROXELOLW\ LQ HDFK IL( 9LVFRVLW\ U"f RI WKH KH[DGHFDQH RLO SKDVH LQ &7$% 0(V LV FD WZLFH WKDW RI WKH GRGHFDQH RLO SKDVH LQ 6'6 IM(V AKH[DGHFDQH r &3 >@ U"GRGHFDQH &3 >@f ,W IROORZV IURP HTXDWLRQ WKDW GLIIXVLRQ FRHIILFLHQW ZLOO EH ORZHU LQ KH[DGHFDQH DQG FRQVHTXHQWO\ '5 RI )F ZLOO EH ORZHU LQ &7$% IL(V

PAGE 51

&+$37(5 352%( 5($&7,9,7< ,1 0,&52(08/6,216 )RUPDO 3RWHQWLDOV 5HDFWLYLW\ RI )Frf§3DUWLWLRQLQJ DQG 'LIIXVLRQ &RHIILFLHQWV 7KH VWDQGDUG SRWHQWLDO (r LV WKH SRWHQWLDO DW r& ZKHQ DOO VSHFLHV LQ VROXWLRQ DUH DW XQLW DFWLYLW\ 7KH SRWHQWLDO ZKHQ WKH FRQFHQWUDWLRQ RI WKH R[LGL]HG IRUP RI WKH SUREH 2[f DQG WKH UHGXFHG IRUP 5HGf DUH 0 DQG S+ LV FDOOHG WKH VWDQGDUG UHGR[ SRWHQWLDO (nf E\ ELRFKHPLVWV ,Q WKLV ZRUN UHDFWLYLW\ LV PHDVXUHG XVLQJ WKH IRUPDO SRWHQWLDO (n ZKHUH >2[@ >5HG@ IRU VSHFLILF VROXWLRQV )RU D UHYHUVLEOH V\VWHP (r n m ( m (SD (SFf $V WKH V\VWHP EHFRPHV OHVV UHYHUVLEOH WKH DSSUR[LPDWLRQ RI ( ( EHFRPHV OHVV DFFXUDWH +RZHYHU ( FDQ VWLOO EH XVHG WR REVHUYH WUHQGV LQ UHDFWLYLW\ ,Q GURSOHW 6'6 c-( ( RI )F s 9 ZKLFK LV P9 PRUH SRVLWLYH WKDQ LWV DTXHRXV IRUPDO SRWHQWLDO (rn 9 >@ 6LQFH )F LV VROXELOL]HG SULPDULO\ LQ WKH RLO DQG IHUULFLQLXP LRQ )Ff LV VROXELOL]HG LQ ZDWHU >@ WKHLU GLIIXVLRQ FRHIILFLHQWV 'U DQG UHVSHFWLYHO\ DUH QRW HTXDO 7KH GLIIHUHQFH

PAGE 52

EHWZHHQ '5 DQG '4 ZLOO FDXVH D VKLIW LQ ( YV (r n >@ ZKHUH HL (rnDT 57Q)f ,Q 'U'f f ,Q WKLV V\VWHP )F '5 ; f FPV IURP FKURQR FRXORPHWU\ DQG )F ' DT ; f FPV >@ :LWK WKHVH YDOXHV D QHJDWLYH P9 VKLIW YV (rn LV SUHGLFWHG IURP HTXDWLRQ 6LQFH WKH H[SHULPHQWDO ( LV PRUH SRVLWLYH WKDQ WKH (fDT GLIIHUHQFHV EHWZHHQ '5 DQG FDQQRW DFFRXQW IRU WKH REVHUYHG VKLIW LQ ( 7KH SDUWLWLRQLQJ RI )F DQG )F EHWZHHQ ( SKDVHV GLUHFWO\ DIIHFWV ( DV ZHOO &RQVLGHULQJ WKH PHPEUDQH DQG RLO SKDVH DV RQH WKH UHOHYDQW HTXLOLEULD FDQ EH H[SUHVVHG DV >@ )&D 7LNR )F DTf RLOf )& nDF WON5 )& DTf RLOf f ZKHUH DT DQG RLO UHSUHVHQW WKH DTXHRXV DQG RLOPHPEUDQH SKDVHV UHVSHFWLYHO\ 7KH SDUWLWLRQLQJ FRQVWDQWV .4 IRU WKH R[LGL]HG IRUP RI WKH SUREHf DQG .5 IRU WKH UHGXFHG IRUP RI WKH SUREHf DUH GHILQHG DV r &2[1f@>2[R8f@ >)FrTf@>)&r8f@ f DQG .N f >5HGm@>5HGR8!@ f

PAGE 53

,Q DJJUHJDWH V\VWHPV VXFK DV GURSOHW [(V SDUWLWLRQLQJ FRQVWDQWV PHDVXUHG H[SHULPHQWDOO\ .Jn DQG .nf ZLOO EH 9 >2f:9WW2f:f f f DQG 9 W5HGDTf@&+>5HGRL'@ 9Q ff ZKHUH &+ LV WKH FRQFHQWUDWLRQ RI DJJUHJDWHV LH GURSOHWV LQ D GURSOHW [( ,Q PLFHOODU VROXWLRQV FRQWDLQLQJ DJJUHJDWHV W\SLFDO &0 YDOXHV DUH LQ WKH P0 UDQJH >@ DQG [( GURSOHW FRQFHQWUDWLRQV VKRXOG EH VLPLODU >@ ,Q D VWULFW GHILQLWLRQ RI .Jn DQG .5 IRU WKH HTXLOLEULD EHWZHHQ DJJUHJDWHV DQG WKH SUREH &+ PXVW EH GHILQHG DV WKH FRQFHQWUDWLRQ RI DJJUHJDWHV ZLWKRXW D SUREH +RZHYHU LI 3RLVVRQ GLVWULEXWLRQ LV DVVXPHG LH WKDW WKH VROXELOn L]DWLRQ RI RQH SUREH LQ DQ DJJUHJDWH GRHV QRW DIIHFW VROXELOL]DWLRQ RI WKH QH[W SUREH WKHQ &0 WRWDO GURSOHW FRQFHQWUDWLRQ >@ 2KVDZD DQG $R\DJXL >@ KDYH VKRZQ WKDW IRU V\VWHPV VXFK DV WKH RQH GHVFULEHG LQ HTXDWLRQ ( GHSHQGHQFH RQ .U DQG .J FDQ EH GHVFULEHG E\ 6HH $SSHQGL[ %f ( (DT 57Q) ,Q '5'Jf 57Q) ,Q .J8.-.AO.Jf ` f 6LQFH )F LV ZDWHU VROXEOH .J}O 7KHUHIRUH HTXDWLRQ UHGXFHV WR

PAGE 54

( (rnDT 57Q) OQ 9'Rf= 57Q) ,Q ^ .MAf.MM` f 8VLQJ LQ HTXDWLRQ )F '5 ; f FPV GHWHUPLQHG IURP FKURQRFRXORPHWU\ DT IRU )F '4 ; n FPV >@ (r nDT 9 >@ DQG ( 9 IURP &9 .5 LV HVWLPDWHG WR EH ; n 7KLV .A YDOXH LV FRQVLVWHQW ZLWK OLWHUDWXUH YDOXHV IRU ELQGLQJ RI K\GURSKRELF SUREHV >@ WR PLFHOOHV 7KH FDOFXODWHG IURP WKH VKLIW LQ ( LV DOVR FRQVLVWHQW ZLWK FDOFXODWHG IURP WKH ZDWHU VROXELOLW\ RI )F 8VLQJ HTXDWLRQ >)FDT@ P0 >@ DQG >)FR8@ >)FWRWDO@ >)FDT@ P0 WKHQ .5 ; f :LWK GHFUHDVLQJ ( ZDWHU FRQWHQW ( RI )F EHFRPHV PRUH SRVLWLYH )LJXUH f ,Q D 6'6 ( )F ( 9 P9 PRUH SRVLWLYH WKDQ (r nDT 7DEOH f ,Q WKLV V\VWHP '5 KDV LQFUHDVHG WR ; f FPV 7DEOH f DQG RI )F ZLOO EH ORZHU WKDQ LQ WKH V\VWHP EHFDXVH RI WKH LQFUHDVHG REVWUXFWLRQ HIIHFW /LNH )F )H&1fn DQG K\GURTXLQRQH DUH ZDWHU VROXEOH DQG LQ cMO(V RI VLPLODU FRPSRVLWLRQ '4 ; f FPV IRU )H&1fn DQG '5 ; f FPV IRU K\GURTXLQRQH >@ )URP WKHVH YDOXHV WKH PLQLPXP PXVW EH ; n FPV 8VLQJ WKHVH YDOXHV IRU '5 DQG .5 ; n LQ HTXDWLRQ WKH PD[LPXP ( VKLIW GXH VROHO\ WR FKDQJHV LQ GLIIXVLRQ FRHIILFLHQW ZLWK FRPSRVLWLRQ LV P9 :KLOH WKH GLUHFWLRQ RI WKH VKLIW LV FRUUHFW WKH PDJQLWXGH LV QRW VXIILFLHQW WR DFFRXQW IRU

PAGE 55

YV 6&( P9f P0 )F LQ 6'6 c[( P0 )F LQ &7$% X( kkkkk )F LQ DTXHRXV VROXWLRQ L L L L L L L L L L L L L LL LL L 0 L L L L L L 0 L L L L L L L b ZDWHU LQ PLFURHPXOVLRQ 'HSHQGHQFH RI ( RI )F RQ X( &RPSRVLWLRQ 0LFURHPXOVLRQ FRPSRVLWLRQ LV H[SUHVVHG LQ ZHLJKW SHUFHQW ZDWHU 6HH 7DEOH IRU H[DFW FRPSRVLWLRQV )LJXUH

PAGE 56

WKH REVHUYHG P9 VKLIW 7KHUHIRUH .J PXVW EH D IXQFWLRQ RI IL( FRPSRVLWLRQ 8VLQJ WKH YDOXHV DERYH IRU '5 DQG LQ HTXDWLRQ LW IROORZV WKDW IRU WKH 6'6 ( .J ; n ZKLFK LV D GHFUHDVH IURP WKH .J YDOXH LQ WKH 6'6 IL( $FFRUGLQJ WR HTXDWLRQ .J ZLOO GHFUHDVH ZKHQ &+ LQFUHDVHV ,Q WKH ELFRQWLQXRXV 6'6 [( &0 REYLRXVO\ FDQQRW EH D PHDVXUH RI GURSOHW FRQFHQWUDWLRQ DV GHILQHG IRU WKH [( +RZHYHU VLQFH WKH SUREH SDUWLWLRQV LQWR WKH RLO DQG PHPEUDQH SKDVHV RI WKH [( &0 PXVW EH UHODWHG WR WKHLU FRQFHQWUDWLRQ LQ ELFRQWLQXRXV IL(V 2LO DQG VXUIDFWDQW FRQWHQW WKXV &+ LV JUHDWHU LQ WKH [( WKDQ LQ IL( 7KHUHIRUH WKH REVHUYHG GHFUHDVH LQ .5 LV FRQVLVWHQW ZLWK HTXDWLRQ $V VKRZQ LQ )LJXUH ( RI )F LQ &7$% [(V LV PRUH SRVLWLYH WKDQ LQ 6'6 IL(V RI VLPLODU FRPSRVLWLRQ 'LIIHUHQFHV LQ '5 GR QRW DFFRXQW IRU WKH GLIIHUHQFHV LQ ( LQ GURSOHW IL(V 6LQFH '5 LV DERXW WKH VDPH LQ GURSOHW 6'6 7DEOH f DQG &7$% IM(V >@ DQG WR REWDLQ WKH PRUH SRVLWLYH ( 'T ZRXOG KDYH WR EH PXFK ORZHU LQ &7$% WKDQ LQ WKH 6'6 V\VWHP 7KLV LV XQOLNHO\ VLQFH HOHFWURVWDWLF DWWUDFWLRQ RI )F WR WKH 6'6 SUHGLFWV ORZHU LQ 6'6 [(V ,W LV PRUH OLNHO\ WKDW .5 LV VPDOOHU LQ WKH &7$% IL( OHDGLQJ WR PRUH SRVLWLYH ( VKLIWV 6PDOOHU .5 LQ &7$% IL( LV FRQVLVWHQW ZLWK ODUJHU VROXELOLW\ RI )F LQ WKH KH[DGHFDQH RLO SKDVH RI WKLV [( WKDQ LQ WKH GRGHFDQH RLO SKDVH RI WKH 6'6 IL( +RZHYHU LQ ELFRQWLQXRXV IL(V '5 RI )F LV JUHDWHU

PAGE 57

LQ 6'6 (V WKDQ LQ &7$% (V 7KLV FDQ DOVR OHDG WR D PRUH SRVLWLYH ( 5HDFWLYLW\ RI )H&1fFan )RU )H&1ffn LQ 6'6 (V WKHUH VKRXOG EH OLWWOH GLIIHUHQFH EHWZHHQ DQG .T VLQFH QHLWKHU IRUP LV DVVRFLDWHG ZLWK HLWKHU RLO RU VXUIDFWDQW SKDVH $V D UHVXOW SDUWLWLRQLQJ FRQVWDQWV DQG GLIIXVLRQ FRHIILFLHQWV RI ERWK IRUPV PXVW EH DSSUR[LPDWHO\ HTXDO DW DQ\ FRPSRVLWLRQ .5 a .T DQG 'U m 'f DQG WKHUHIRUH EDVHG RQ HTXDWLRQ QR FKDQJH LQ ( LV H[SHFWHG ,Q IDFW ( RI )H&1fn LQ 6'6 (V LV ZLWKLQ H[SHULPHQWDO HUURU RI (rnDT 7DEOH f IRU PDQ\ ( FRPSRVLWLRQV 'LIIHUHQFHV LQ SDUWLWLRQLQJ EHWZHHQ )H&1fn DQG )H&1fn FDQ VKLIW ( ,Q &7$% (V ERWK IRUPV RI WKH )H&1ffn FRXSOH DUH VWURQJO\ ERXQG WR WKH VXUIDFWDQW LQWHUIDFH >@ $V D UHVXOW ERWK IRUPV RI WKH SUREH DUH HTXDOO\ DIIHFWHG E\ FRPSRVLWLRQ DQG .5 a .J DQG '5 VV GT &RQVHTXHQWO\ ( GRHV QRW FKDQJH ZLWK FRPSRVLWLRQ LQ &7$% (V >@ EHFDXVH WKH SUREH LV LQ D GLIIHUHQW HQYLURQPHQW 7KHUHIRUH LW LV WKH GLIIHUHQFH LQ WKH HQYLURQPHQW RI 2[ DQG 5HG UDWKHU WKDQ WKH HQYLURQPHQW LWVHOI ZKLFK VKLIWV ( 5HDFWLYLW\ RI 09rrn ,QWHUDFWLRQV RI 09rrn ZLWK 6'6 VXUIDFWDQW LQ D ( VKRXOG EH VLPLODU WR LQWHUDFWLRQV ZLWK 6'6 PLFHOOHV 7KH

PAGE 58

UHGR[ FRXSOH DVVRFLDWHV ZLWK 6'6 PLFHOOHV WKURXJK D FRPELQDWLRQ RI HOHFWURVWDWLF DQG K\GURSKRELF LQWHUDFWLRQV >@ ,Q 6'6 PLFHOOHV .T 09rf ; f DQG .5 09rnf ; f >@ VR LW LV UHDVRQDEOH WKDW .J DQG .5 LQ 6'6 (V &RQVHTXHQWO\ HTXDWLRQ UHGXFHV WR H9 (rnDT 57Q) ,Q 'U'f 57Q) ,Q .R.U f )URP YDOXHV RI .J DQG .5 LQ PLFHOOHV ERWK 09r DQG 09rn VKRXOG UHVLGH SUHGRPLQDWHO\ LQ WKH RLOPHPEUDQH SKDVH 7KHUHIRUH '5 m DQG HTXDWLRQ UHGXFHV HYHQ IXUWKHU WR (L (rnDT 57Q) ,Q 9.U f )URP HTXDWLRQ H[SHULPHQWDO ( 9 DQG (r nDT 9 IRU 09rrn .J.5 m LQ WKH 6'6 cO( 7KLV LQGLFDWHV WKDW WKH SDUWLWLRQLQJ RI 09rf LQWR WKH RLOPHPEUDQH SKDVH RI WKH ( LV PRUH IDYRUDEOH WKDQ WKH SDUWLWLRQLQJ RI 09r 7KLV LQ WXUQ VXJJHVWV WKDW K\GUR SKRELF LQWHUDFWLRQV EHWZHHQ WKH SUREH DQG WKH RLOPHPEUDQH SKDVH PD\ EH PRUH LPSRUWDQW WKDQ WKH HOHFWURVWDWLF LQWHUDFWLRQV VLQFH EDVHG VROHO\ RQ HOHFWURVWDWLFV 09r VKRXOG EH PRUH VWURQJO\ DVVRFLDWHG ZLWK WKH VXUIDFWDQW OD\HU 7KH SUHGRPLQDQFH RI K\GURSKRELF LQWHUDFWLRQV RI 09rn ZDV DOVR REVHUYHG E\ .DLIHU DQG %DUG LQ 6'6 PLFHOOHV ZKHUH .T LV DERXW WLPHV JUHDWHU WKDQ .f >@ 7KH HIIHFW RI D SRVVLEOH GLIIHUHQFH EHWZHHQ '5 DQG RQ ( FDQ EH DQDO\]HG ZLWK HTXDWLRQ )RU WKH 6'6 MX(

PAGE 59

'U ZLOO UHDFK D PD[LPXP YDOXH ZKHQ 09rn LV QRW DVVRFLDWHG ZLWK WKH RLOPHPEUDQH SKDVH '5 _QD[ DT ; n FPV >@ $ PLQLPXP YDOXH RI '5 RFFXUV ZKHQ 09rf LV VWURQJO\ DVVRFLDWHG ZLWK WKH RLO SKDVH 7KLV YDOXH FDQ EH HVWLPDWHG DV '5 PLQ 'GURS a [ n FPV a '5 RI )F LQ 6'6 ( :LWK H[SHULPHQWDO ; n FPV ( 9 (DT 9 >@ DQG DVVXPLQJ '5 PD[ ; n FPV .J. m IURP HTXDWLRQ 8VLQJ WKH VDPH YDOXHV RI ( DQG (DT DQG '5 PMQ LQ HTXDWLRQ .J. m &RQVHTXHQWO\ UHJDUGOHVV RI SRVVLEOH GLIIHUHQFHV EHWZHHQ '5 DQG WKH DVVRFLDWLRQ RI 09rn ZLWK WKH RLO SKDVH LV DOZD\V VWURQJHU WKDQ WKDW RI 09r .4!.5f 7KHUHIRUH '5 PLQ PXVW UHIOHFW '5 RI 09rn EHWWHU WKDQ '5 _QD[ DQG WKH HVWLPDWLRQ RI .T.U IURP HTXDWLRQ LH DVVXPLQJ '4 '5 ZLOO KDYH b HUURU $V WKH ZDWHU FRQWHQW RI WKH Q( GHFUHDVHV ( EHFRPHV OHVV QHJDWLYH EXW UHPDLQV UHODWLYHO\ FRQVWDQW 7DEOH f 6LQFH DV VKRZQ DERYH 09rn DVVRFLDWHV PRUH VWURQJO\ ZLWK WKH RLOPHPEUDQH SKDVH WKDQ 09r LWV '5 PD[ ZLOO IROORZ WKH 'U RI )F ,Q D 6'6 MOL( 09rrn ( 9 '4 ; n FPV DQG '5 )F '5 ; n FPV WKXV .J.5 a IURP HTXDWLRQ ,I 09rn LV QRW PXFK PRUH DVVRFLDWHG ZLWK WKH RLO SKDVH WKDQ 09r WKHQ '5 PMQ m ; n FPV DQG .J.S IURP HTXDWLRQ ,I '5 OLNH '4 GRHV QRW FKDQJH ZLWK FRPSRVLWLRQ WKH VKLIW LQ ( IURP WKH WR WKH Q( FDQ EH DWWULEXWHG WR LQFUHDVLQJ .J.5 +RZHYHU FKDQJHV LQ '5 DORQH PD\ EH VXIILFLHQW WR DFFRXQW IRU WKH

PAGE 60

REVHUYHG VKLIW LQ ( )RU ( VKLIWV WR EH VROHO\ GHSHQGHQW RQ GLIIXVLRQ FRHIILFLHQW 09rf PXVW EH DVVRFLDWHG ZLWK WKH RLOPHPEUDQH SKDVH RI WKH ( VR WKDW LQ WKH 6'6 (P 'U RI 09rf 'U RI )F ; f FPV DQG LQ WKH ( 'U 2I 09rf '5 2I )F ; n FPV $VVRFLDWLRQ RI 09rf ZLWK WKH RLOPHPEUDQH SKDVH LV QRW LQFRQVLVWHQW ZLWK FDOFXODWHG .J.A YDOXHV ZKLFK VKRZ WKDW 09rn SDUWLWLRQV PRUH LQWR WKH RLO SKDVH WKDQ 09r +RZHYHU VLQFH WKH GLIIHUHQFH EHWZHHQ DQG .S LV OHVV WKDQ DQ RUGHU RI PDJQLWXGH '5 VKRXOG QRW EH FRQVLGHUDEO\ GLIIHUHQW IURP '4 7KHUHIRUH WKH ( VKLIW LV SUREDEO\ GXH WR FKDQJHV LQ ERWK 'U DQG .J,A 7KH GHSHQGHQFH RI .J,A RQ FRPSRVLWLRQ FDQ EH H[SODLQHG E\ FRQVLGHULQJ WKH VROXELOL]DWLRQ RI SUREH ;f LQ D ( GURSOHW 0f ZKLFK FDQ EH GHVFULEHG DV Q; 0 m ;Q0 f ZKHUH Q QXPEHU RI SUREHV SHU GURSOHW HTXDWLRQ LV WKH VDPH DV HTXDWLRQ f (TXDWLRQV DQG DVVXPH HLWKHU 3RLVVRQ GLVWULEXWLRQ ZKHUH VROXELOL]DWLRQ RI D SUREH LQ D GURSOHW GRHV QRW DIIHFW VROXELO]DWLRQ RI WKH QH[W SUREH WKHUHIRUH 0 WRWDO GURSOHW FRQFHQWUDWLRQ &0f RU WKDW Q ,I QHLWKHU RI WKHVH DVVXPSWLRQV DUH YDOLG DQG Q ZKHQ ; 2[ LV QRW WKH VDPH DV WKH Q ZKHQ ; 5HG WKHQ .4.5 ZLOO EH D IXQFWLRQ RI ( FRPSRVLWLRQ 7KLV LV SUREDEO\ WKH FDVH IRU WKH 09rrn FRXSOH DQG 09r DQG 09rf PD\ EH LQ

PAGE 61

GLIIHUHQW HQYLURQPHQWV DQG WKHUHIRUH EH DIIHFWHG GLIIHUHQWO\ E\ FRPSRVLWLRQ 7KH VPDOO FKDQJHV LQ .J.5 ZLWK MX( FRPSRVLWLRQ LQGLFDWH OLWWOH FKDQJH LQ SDUWLWLRQLQJ 6LQFH ERWK 09r DQG 09rn DUH HOHFWURVWDWLFDOO\ DWWUDFWHG WR WKH VXUIDFWDQW KHDG JURXSV ERWK VKRXOG UHVLGH QHDU WKH PHPEUDQHZDWHU LQWHUIDFH 6LQFH 09rn LV PRUH K\GURSKRELF LW ZLOO DOVR DVVRFLDWH ZLWK WKH K\GURSKRELF SRUWLRQ RI WKH PHPEUDQH WKXV KDYLQJ D ORZHU SDUWLWLRQLQJ FRQVWDQW .5f WKDQ 09r .Jf +RZHYHU ZLWK ERWK IRUPV QHDU WKH LQWHUIDFH HIIHFWV RI cL( FRPSRVLWLRQ RQ SDUWLWLRQLQJ RI ERWK IRUPV DUH VLPLODU ,Q &7$% LM(V 09rn K\GURSKRELFDOO\ DVVRFLDWHV ZLWK WKH RLOPHPEUDQH SKDVH 09 UHVLGHV LQ WKH ZDWHU DQG QHLWKHU DUH HOHFWURVWDWLFDOO\ DWWUDFWHG WR WKH &7$% KHDG JURXSV :LWK WKH HDFK IRUP RI WKH SUREH LQ D GLIIHUHQW HQYLURQPHQW WKH HIIHFW RI FRPSRVLWLRQ RQ SDUWLWLRQLQJ LV YHU\ GLIIHUHQW IRU HDFK IRUP 7KLV LV LQGLFDWHG E\ JUHDWHU VKLIWV LQ ( GXH WR GLIIHUHQFHV LQ .J.f ZLWK &7$% ( FRPSRVLWLRQ WKDQ LQ 6'6 MX(V ZKHUH WKH SUREHV ZHUH LQ VLPLODU HQYLURQPHQWV 5HDFWLYLW\ RI 09rn ,Q 6'6 P(V ( IRU WKH 09rn FRXSOH LV OHVV QHJDWLYH WKDQ LWV (DT 9 6LQFH ERWK IRUPV RI WKH SUREH PXVW UHVLGH SULPDULO\ LQ WKH RLO SKDVH '5 m DQG HTXDWLRQ FDQ EH XVHG WR GHVFULEH VKLIWV LQ ( )RU DQ 6'6 +( (] 9 DQG DFFRUGLQJ WR HTXDWLRQ .T.U a

PAGE 62

,Q D 6'6 [( ( 9 DQG VR .T. m 7KHUHIRUH 09r LV PRUH VWURQJO\ DVVRFLDWHG ZLWK WKH RLO SKDVH WKDQ 09r IRU DOO ( FRPSRVLWLRQV ZKLFK LV FRQVLVWHQW ZLWK WKHLU UHODWLYH VROXELOLWLHV 7KH .T.A RI WKH 09rn FRXSOH LV PRUH DIIHFWHG E\ FRPSRVLWLRQ WKDQ WKH 09rrn FRXSOH KDYLQJ D VPDOOHU YDOXH LQ 6'6 W( DQG D ODUJHU YDOXH LQ L( 7KH UHDVRQ LV WKDW ZLWK WKLV FRXSOH 09rn LV DWWUDFWHG WR WKH LQWHUIDFH DV GHVFULEHG EHIRUH +RZHYHU K\GURSKRELF 09r ZLOO SDUWLWLRQ LQWR WKH RLO SKDVH $FFRUGLQJ WR HTXDWLRQ ERWK .T DQG .f VKRXOG GHFUHDVH ZLWK GHFUHDVLQJ ZDWHU FRQWHQW 0 LQFUHDVHVf +RZHYHU .T.A LQFUHDVHV DV ( ZDWHU FRQWHQW GHFUHDVHV 7KHUHIRUH SDUWLWLRQLQJ RI 09r PXVW EH PRUH DIIHFWHG E\ Q( FRPSRVLWLRQ WKDQ WKDW RI 09rn .LQHWLFV DQG $GVRUSWLRQ (IIHFW RI 6XUIDFWDQW $GVRUSWLRQ RQ 3UREH .LQHWLFV 6LQFH Q(V DUH RSWLFDOO\ WUDQVSDUHQW WKH GLVWDQFH EHWZHHQ ZDWHURLO LQWHUIDFHV LQ ELFRQWLQXRXV [(V DQG GURSOHW VL]H LQ GURSOHW [(V FDQQRW EH PRUH WKDQ QP >@ 6LQFH HOHFWURGHV DUH PP LQ GLDPHWHU SDUW RI WKH HOHFWURGH ZLOO EH LQ FRQWDFW ZLWK WKH DTXHRXV SKDVH DQG SDUW ZLWK WKH RLO SKDVH 5HJDUGOHVV RI WKH VROXWLRQ VXUIDFWDQW DGVRUEV WDLO ILUVW RQWR K\GURSKRELF VXUIDFHV VXFK DV *& >@ )RU WKH IUDFWLRQ RI WKH HOHFWURGH LQ FRQWDFW ZLWK WKH DTXHRXV SKDVH

PAGE 63

WKH SRODU KHDG JURXSV H[WHQG LQWR WKH DTXHRXV VROXWLRQ )LJXUH f )RU WKH IUDFWLRQ RI WKH HOHFWURGH LQ FRQWDFW ZLWK WKH RLO SKDVH WKH SRODU KHDG JURXSV LQWHUDFW ZLWK RWKHU VXUIDFWDQW KHDG JURXSV UDWKHU WKDQ WKH QRQSRODU RLO SKDVH 7KXV UHYHUVH KHPLPLFHOOHV DUH IRUPHG RQ WKDW SRUWLRQ RI WKH HOHFWURGH VXUIDFH )LJXUH f 7KH VWUXFWXUH RQ WKH HOHFWURGH VXUIDFH ZLOO DIIHFW WKH HOHFWURFKHPLFDO UHVSRQVH E\ SDUWLDOO\ EORFNLQJ WKH VXUIDFH DQG WKURXJK HOHFWURVWDWLF DQG K\GURSKRELF LQWHUDFWLRQV >@ $GGLWLRQ RI RWKHU FRPSRXQGV WR WKH VROXWLRQ VXFK DV VDOW RU DOFRKRO ZLOO DIIHFW WKH VWUXFWXUH RI WKH VXUIDFWDQW OD\HU >@ 6LQFH K\GURSKLOLF )H&1fn UHVLGHV LQ WKH DTXHRXV SKDVH RI WKH ( RQO\ HOHFWURVWDWLF LQWHUDFWLRQV EHWZHHQ WKH SUREH DQG WKH DGVRUEHG VXUIDFWDQW RFFXU &RQVLVWHQW ZLWK WKLV UHSXOVLRQ RI )H&1fn IURP OLNHFKDUJHG 6'6 UHVXOWV LQ VORZHU HOHFWURFKHPLFDO NLQHWLFV 6ORZ NLQHWLFV DUH VKRZQ E\ $(S P9 LQ 6'6 [( DQG $(S P9 LQ 6'6 PLFHOOHV FRPSDUHG WR $(S P9 LQ 0 1D&ODTf 7DEOH f ,Q &7$% L(V DGVRUEHG FDWLRQLF VXUIDFWDQW DWWUDFWV )H&1fn WR WKH HOHFWURGH DQG WKH NLQHWLFV LPSURYH RYHU 0 1D&ODTf ZLWK $(S P9 >@ $V WKH ZDWHU FRQWHQW RI WKH 6'6 ( GHFUHDVHV $(S RI )H&1fn GHFUHDVHV 7DEOH f ,W KDV EHHQ VKRZQ WKDW WKH DOFRKRO FRQWHQW LQ WKH RLOZDWHU LQWHUIDFH LQFUHDVHV DV cMO( ZDWHU FRQWHQW GHFUHDVHV >@ &KDQJHV LQ VROXWLRQ VKRXOG

PAGE 64

)LJXUH $GVRUSWLRQ RI 6XUIDFWDQW RQ *& (OHFWURGH 6XUIDFH IRU ERWK 2LO 3KDVH DQG $TXHRXV 3KDVH

PAGE 65

DIIHFW WKH HOHFWURGHVROXWLRQ LQWHUIDFH LQ WKH VDPH ZD\ DV WKH RLOZDWHU LQWHUIDFH VLQFH WKH VXUIDFWDQW RUJDQL]HV LQ D VLPLODU PDQQHU DW ERWK LQWHUIDFHV :LWK PRUH DOFRKRO DW WKH HOHFWURGHVROXWLRQ LQWHUIDFH WKH VXUIDFWDQW KHDG JURXSV DUH IXUWKHU DSDUW GHFUHDVLQJ FKDUJH SHU DUHD DQG WKXV WKH HOHFWURVWDWLF UHSXOVLRQ RI WKH HOHFWURGH VXUIDFH WRZDUG )H&1fnn 7KH QHXWUDO SRODU JURXS RI WKH DOFRKRO DOVR LQFUHDVHV WKH K\GURSKLOLFLW\ RI WKH VXUIDFH >@ ZKLFK PD\ DOVR LPSURYH WKH NLQHWLFV RI WKH )H&1fnn FRXSOH ,Q 6'6 ](V $(S RI )F LV DERXW P9 DQG GRHV QRW FKDQJH VLJQLILFDQWO\ ZLWK FRPSRVLWLRQ 7DEOH f LQGLFDWLQJ UHYHUVLEOH HOHFWURQ WUDQVIHU 6PDOO FKDQJHV LQ $(S ZLWK Q( FRPSRVLWLRQ PD\ LQGLFDWH VRPH ZHDN DGVRUSWLRQ HIIHFWV +\GURSKRELF )F PXVW HDVLO\ SHQHWUDWH WKH VXUIDFWDQW OD\HU DOORZLQJ IDFLOH HOHFWURQ WUDQVIHU $ $(S RI P9 IRU )F LV DOVR REVHUYHG LQ &7$% ](V >@ 6'6 PLFHOOHV >@ DQG &7$% PLFHOOHV >@ ZKHUH K\GURSKRELF LQWHUDFWLRQV DOVR DOORZ )F WR HDVLO\ SHQHWUDWH WKH VXUIDFWDQW OD\HU ,Q 6'6 ](V $(S RI 09n LV FD P9 7DEOH f 7KH 09r FDQ LQWHUDFW ERWK K\GURSKRELFDOO\ DQG HOHFWURVWDWLFDOO\ ZLWK WKH DGVRUEHG VXUIDFWDQW DOORZLQJ IRU IDFLOH HOHFWURQ WUDQVIHU ,Q &7$% MX(V 09 ZLOO EH HOHFWURVWDWLFDOO\ UHSHOOHG IURP &7$% EXW ZLOO VWLOO LQWHUDFW K\GURSKRELFDOO\ 6LQFH $(S LQ &7$% ](V LV FD P9 >@ K\GURSKRELF

PAGE 66

LQWHUDFWLRQV PXVW SUHGRPLQDWH 7KLV LV FRQVLVWHQW ZLWK WKH FRQFOXVLRQV IURP ( VKLIWV DQG FDOFXODWHG .J. (IIHFW RI 6XUIDFWDQW $GVRUSWLRQ RQ 3UREH $GVRUSWLRQ ,Q 6'6 (V WKH HOHFWURFKHPLFDO EHKDYLRU RI )F RQ JODVV\ FDUERQ HOHFWURGHV LV GLIIXVLRQ FRQWUROOHG 7KLV LV LQGLFDWHG E\ SORWV RI ORJ DQRGLF SHDN FXUUHQW LSDf YV ORJ VFDQ UDWH Yf ZKHUH VORSH LV FD 6LPLODU SORWV IRU )H&1fn VKRZ VORSHV ORZHU WKDQ 7KH ORZHU VORSHV DUH DWWULEXWHG WR NLQHWLF HIIHFWV >@ .LQHWLF HIIHFWV RQ WKH UHGXFWLRQ RI )H&1ff DUH FRQILUPHG E\ WKH $(S ZKLFK LQFUHDVHV ZLWK Y 7KHVH UHVXOWV VKRZ WKDW QR GLIIHUHQFH LQ DGVRUSWLRQ EHKDYLRU RFFXUV LQ (V IRU SUREHV ZKLFK GR QRW DGVRUE RQ *& LQ DTXHRXV VROXWLRQV 3ORWV RI ORJ LA YV ORJ Y IRU WKH 09n FRXSOH LQ 6'6 (V KDYH D VORSH RI FD LQ DOO ( FRPSRVLWLRQV XVHG LQGLFDWLQJ WKDW 09r LV QRW DGVRUEHG LQ 6'6 (V +RZHYHU WKH UDWLR LSFLSDf DQG GHFUHDVHV ZLWK LQFUHDVLQJ Y 6LQFH $(S LV FD P9 WKURXJKRXW WKH UDQJH RI Y WKLV EHKDYLRU LQGLFDWHV ZHDN DGVRUSWLRQ RI 09rn .DLIHU DQG %DUG DOVR REVHUYHG ZHDN DGVRUSWLRQ RI 09rf LQ 6'6 VROXWLRQV ZKLFK ZDV HOLPLQDWHG ZKHQ 6'6 H[FHHGHG LWV FULWLFDO PLFHOOH FRQFHQWUDWLRQ >@ )RU WKH 09rf FRXSOH LQ DOO 6'6 [(V WHVWHG SORWV RI ORJ L YHUVXV ORJ Y KDYH D VORSH RI FD LQGLFDWLQJ WKDW WKH V\VWHP LV SULPDULO\ GLIIXVLRQ FRQWUROOHG 7KH

PAGE 67

UDWLR LSFLSDf DQG LQFUHDVHV VOLJKWO\ DW KLJK m P9Vf VFDQ UDWHV 7KLV LV FRQVLVWHQW ZLWK JUHDWHU DGVRUSWLRQ RI 09r WKDQ 09r 7KLV LV XQOLNH DTXHRXV VROXWLRQV ZKHUH VLJQLILFDQW DGVRUSWLRQ RI 09r LV REVHUYHG )LJXUH f 7KH GHFUHDVH RI DGVRUSWLRQ RI 09r ZDV DWWULEXWHG WR WKH VROXELOL]DWLRQ RI 09r LQ WKH RLO SKDVH RI WKH L( 1R DGVRUSWLRQ RI 09r ZDV REVHUYHG LQ 6'6 PLFHOOHV >@ ZKLFK DOVR VROXELOL]H 09r ,Q [(V VWURQJ SUREH DGVRUSWLRQ LV HOLPLQDWHG DV VKRZQ IRU 09r 7KLV LV DWWULEXWHG WR VROXELOL]DWLRQ RI WKH K\GURSKRELF SUREH DQG EORFNLQJ RI WKH HOHFWURGH VXUIDFH E\ VXUIDFWDQW +RZHYHU ZHDN SUREH DGVRUSWLRQ PD\ RFFXU ,I WKH DGVRUSWLRQ GHSHQGHG VROH\ RQ HOHFWURVWDWLF DWWUDFWLRQ EHWZHHQ SUREH DQG 6'6 DGVRUSWLRQ RI 09r ZRXOG EH JUHDWHU WKDQ DGVRUSWLRQ RI 09rn ,I WKLV DGVRUSWLRQ ZHUH GHWHUPLQHG VROH\ E\ K\GURSKRELF LQWHUDFWLRQV DGVRUSWLRQ RI 09r ZRXOG EH JUHDWHU WKDQ DGVRUSWLRQ RI 09rn 6LQFH JUHDWHU DGVRUSWLRQ RI 09rn LV REVHUYHG IRU ERWK 09rrn DQG 09rn FRXSOHV ERWK HOHFWURVWDWLF DQG K\GURSKRELF LQWHUDFWLRQV PXVW DIIHFW DGVRUSWLRQ %ORFNLQJ RI WKH VXUIDFH E\ VXUIDFWDQW DOVR DIIHFWV DGVRUSWLRQ (QKDQFHG NLQHWLFV RI )H&1fn ZLWK GHFUHDVLQJ ( ZDWHU FRQWHQW VKRZHG WKDW WKH DGVRUEHG VXUIDFWDQW OD\HU EHFDPH PRUH GLVRUGHUHG DV ]( ZDWHU FRQWHQW GHFUHDVHG ,Q 6'6 PLFHOOHV ZKHUH DGVRUEHG VXUIDFWDQW HIILFLHQWO\ EORFNV WKH VXUIDFH QR DGVRUSWLRQ RI 09rn ZDV REVHUYHG >@ +RZHYHU LQ 6'6 VROXWLRQV EHORZ

PAGE 68

FXUUHQW MD$f SRWHQWLDO IP92 9} 6 )LJXUH &\FOLF 9ROWDPPHWU\ RI 0HWK\O 9LRORJHQ Y P9V RQ *& HOHFWURGH DUHD

PAGE 69

FPF WKH VXUIDFH ZDV OHVV EORFNHG DQG DGVRUSWLRQ RI 09rn ZDV REVHUYHG >@ ,Q 6'6 M(V DV WKH DGVRUEHG VXUIDFWDQW EHFRPHV PRUH GLVRUGHUHG ZLWK GHFUHDVLQJ ( ZDWHU FRQWHQWf FRDGVRUSWLRQ RI 09rn LQFUHDVHV 7KLV LV LQGLFDWHG E\ LQFUHDVLQJ L L f ZLWK GHFUHDVLQJ ( ZDWHU FRQWHQW 7DEOH f 6KLIWV LQ ( LQGLFDWH WKDW 09rn LQWHUDFWV PRUH ZLWK WKH RLOPHPEUDQH SKDVH WKDQ 09r 7KLV LV FRQVLVWHQW ZLWK WKH SUHIHUHQWLDO DGVRUSWLRQ RI 09rn E\ LQWHUDFWLRQ ZLWK WKH DGVRUEHG 6'6 +RZHYHU VKLIWV LQ ( IRU 09rn FRXSOH LQGLFDWH WKDW 09r LV PRUH VWURQJO\ DVVRFLDWHG ZLWK WKH RLOPHPEUDQH SKDVH WKDQ 09rn 6LQFH REVHUYHG DGVRUSWLRQ DV LQGLFDWHG E\ LAL f 7DEOH f VXJJHVWV WKDW 09rn SUHIHUHQWLDOO\ LQWHUDFWV ZLWK WKH DGVRUEHG 6'6 09r PXVW EH SULPDULO\ VROXELOL]HG LQ WKH RLO UDWKHU WKDQ LQ WKH PHPEUDQH SKDVH $V WKH RLO FRQWHQW LQFUHDVHV WKH VROXELOL]DWLRQ RI 09r LQ WKH RLO SKDVH LQFUHDVHV WKXV OHVV 09r LQWHUDFWV ZLWK WKH DGVRUEHG VXUIDFWDQW DW WKH HOHFWURGH DQG LSFLSDf LQFUHDVHV 7KXV WKH LQFUHDVLQJ LSFLSDf ZLWK GHFUHDVLQJ ZDWHU FRQWHQW VXSSRUWV WKH PRGHO RI 09r VROXELOL]DWLRQ LQ WKH RLO SKDVH

PAGE 70

&+$37(5 %,2/2*,&$/ 352%(6 ,1 0,&52(08/6,216f§48,121(6 ,QWURGXFWLRQ WR WKH %LRFKHPLVWU\ RI 4XLQRQHV 4XLQRQHV DUH RI LQWHUHVW LQ PDQ\ ELRORJLFDO V\VWHPV ZKHUH UHGXFWLRQ RI TXLQRQH 4f WR TXLQRO 4+f LV DQ LPSRUWDQW VWHS LQ HOHFWURQ WUDQVSRUW 7KURXJKRXW WKLV ZRUN 4 UHIHUV WR DQ\ TXLQRQH 0RUH VSHFLILF V\PEROV DUH XVHG IRU SDUWLFXODU TXLRQHV $Q H[DPSOH RI D ELRORJLFDOO\ LPSRUWDQW TXLQRQH LV XELTXLQRQH GLPHWKR[\PHWK\O EHQ]RTXLQRQH ZLWK D VLGHFKDLQ RI PHWK\OEXWHQ\O XQLWV )LJXUH $f ,W LV RQH RI WKH PRVW VWXGLHG RI ELRORJLFDO TXLRQHV GXH WR LWV LPSRUWDQFH LQ PLWRFKRQGULDO UHVSLUDWLRQ >@ ,Q D FHOO WKH PLWRFKRQGULD LV WKH RUJDQHOOH UHVSRQVLEOH IRU WKH SURGXFWLRQ RI HQHUJ\ LQ WKH IRUP RI $73 IURP FDUERK\GUDWHV OLSLGV DQG DPLQR DFLGV >@ 7KH PLWRFKRQGULD KDV WZR PHPEUDQHV D VPRRWK VRPHZKDW HODVWLF RXWHU PHPEUDQH DQG DQ LQQHU PHPEUDQH ZLWK PDQ\ LQZDUG IROGV FDOOHG FULVWDH >@ ,W LV LQ WKH LQQHU PHPEUDQH WKDW PLWRFKRQGULDO UHVSLUDWLRQ WDNHV SODFH WUDQVIHUULQJ HOHFWURQV IURP WKH 1$'+VXFFLQDWH GHK\GURJHQDVH V\VWHP WKURXJK XELTXLQRQH WR PROHFXODU R[\JHQ ZKLOH SURGXFLQJ

PAGE 71

& )LJXUH %LRORJLFDOO\ 6LJQLILFDQW 4XLQRQHV $f 8ELJXLQRQH IRU XELJXLQRQH Q %f 3ODVWRJXLQRQH &f 9LWDPLQ .

PAGE 72

$73 )LJXUH f >@ 7KH LQQHU PHPEUDQH RI WKH PLWRFKRQGULD FRQVLVWV RI SURWHLQV LQ D SKRVSKROLSLG ELOD\HU ZKHUH WKH QHJDWLYHO\ FKDUJHG SKRVSKDWH KHDG JURXSV RI WKH SKRVSKROLSLG FRPSRVH WKH H[WHULRU RI WKH ELOD\HU DQG WKH K\GURFDUERQ WDLOV ZLWK W\SLFDO FKDLQ OHQJWKV RI HLJKWHHQ FDUERQVf IRUP D QRQSRODU LQWHULRU >@ 8ELTXLQRQH 84f UHVLGHV LQ WKH LQQHU PHPEUDQH RI WKH PLWRFKRQGULD ZKHUH LW WUDQVIHUV HOHFWURQV IURP 1$'+ DQG VXFFLQDWH GHK\GURJHQDVH WR F\WRFKURPH E )LJXUH f DV SDUW RI WKH UHVSLUDWLRQ F\FOH >@ 7KH 84 LV UHVWULFWHG WR D SRRO LQ WKH PLGGOH RI WKH ELOD\HU RI WKH LQQHU PHPEUDQH 'LIIXVLRQ RI 84 ZLWKLQ WKH K\GURSKRELF SRRO LQ WKH FHQWHU RI WKH ELOD\HU LV IDVW EXW WKHUH LV OLWWOH RU QR GLIIXVLRQ WKURXJK WKH SKRVSKROLSLG KHDG JURXSV LQWR WKH K\GURSKLOLF H[WHULRU >@ 8QOLNH 84 WKH UHGXFHG IRUP XELTXLQRO 84+f PD\ SHQHWUDWH EHWZHHQ WKH SKRVSKROLSLGV RI WKH ELOD\HU >@ 8ELTXLQRQHV DUH FRPPRQO\ UHIHUUHG WR E\ WKH QXPEHU RI FDUERQV LQ WKH VLGHFKDLQ +RZHYHU RWKHU QDPHV IRU 84 LQFOXGH XELTXLQRQH DQG FRHQ]\PH 4 ZKHUH WHQ UHIHUV WR WKH QXPEHU RI PHWK\OEXWHQ\O XQLWV Q LQ )LJXUH $f )RU FRQVLVWHQF\ LQ WKLV ZRUN WKH ILUVW PHWKRG RI QRPHQFODWXUH LV XVHG :KLOH 84 LV WKH IRUP RI XELTXLQRQH PRVW IUHTXHQWO\ IRXQG LQ PDPPDOV XELTXLQRQHV ZLWK IHZHU PHWK\OEXWHQ\O XQLWV H[LVW LQ RWKHU ELRORJLFDO V\VWHPV >@ )RU LQVWDQFH XELTXLQRQH 84f SDUWLFLSDWHV LQ WKH

PAGE 73

V.HWRJOXWDUDWH =)H6f ‘ $73 ‘F\W E)Hr6fF\W FL $QWLP\FLQ $ ‘ F\W F $73 ‘ F\W DDM f§ 2L &\DQLGH )LJXUH 0LWRFKRQGULDO 5HVSLUDWLRQ &\FOH )3 IODYRSURWHLQ HJ )3 1$'+ GHK\GURJHQDVH )Hr6 LURQVXOIXU FHQWHU 4 XELTXLQRQH F\W F\WRFKURPH

PAGE 74

UHVSLUDWLRQ RI PLFURRUJDQLVPV VXFK DV \HDVWV >@ DQG XELTXLQRQH 842f LV XVHG DV D FKHPLFDO GHIHQVH LQ $IULFDQ PLOOLSHGHV >@ $QRWKHU XVH RI 84 LV DV D FDUGLRYDVFXODU GUXJ $GPLQLVWUDWLRQ RI WKH GUXJ LV WKRXJKW WR FRUUHFW GHILFLHQFLHV RI QDWXUDO 84 DOORZLQJ WKH ERG\ WR SURGXFH $73 PRUH HIILFLHQWO\ >@ 2WKHU LPSRUWDQW ELRORJLFDO TXLRQHV LQFOXGH SODVWRTXLQRQH D GLPHWK\OO EHQ]RTXLQRQH ZLWK XS WR PHWK\OEXWHQ\O XQLWV RQ WKH FDUERQ )LJXUH %f ZKLFK SDUWLFLSDWHV LQ SKRWRV\QWKHWLF HOHFWURQ WUDQVSRUW >@ DQG YLWDPLQ D PHWK\OO QDSKWKRTXLQRQH ZLWK D PHWK\OEXWHQ\O VLGHFKDLQ FRQWDLQLQJ XS WR XQLWV )LJXUH &f ZKLFK SURPRWHV EORRG FORWWLQJ >@ 6SHFWURVFRS\ RI 4XLQRQHV 8OWUDYLROHW XYf VSHFWUD RI XELTXLQRQHV KDYH D VWURQJ DEVRUEDQFH PD[LPXP $ f EHWZHHQ DQG QP ZLWK D W\SLFDO DEVRUSWLYLW\ Hf RI FD P0nFPn >@ 7KLV $PD[ KDV EHHQ DWWULEXWHG WR D QrQr WUDQVLWLRQ RI WKH HQRQH ULQJ $V WKH SRODULW\ RI WKH VROYHQW LQFUHDVHV VKLIWV WR ORQJHU ZDYHOHQJWKV >@ 7KH UHGXFHG IRUP 84+f KDV D ZHDN AfPD[ a QPn ZLWK W\SLFDO F a P0nFPn 7KH 84+ $PD[ LV DWWULEXWHG WR DQ QUr WUDQVLWLRQ DQG LV RQO\ VOLJKWO\ DIIHFWHG E\ WKH SRODULW\ RI WKH VROYHQW 0LWRFKRQGULDO PHPEUDQHV KDYH EHHQ PRGHOHG E\ SKRVSKROLSLG YHVLFOHV LQ XY VWXGLHV 7KH XY VSHFWUD RI

PAGE 75

XELTXLQRQHV LQ SKRVSKROLSLG YHVLFOHV VKRZ WKDW WKH VROYHQW HQYLURQPHQW RI WKH XELTXLQRQH EHFRPHV OHVV SRODU DV WKH OHQJWK RI WKH XELTXLQRQH VLGHFKDLQ LQFUHDVHV >@ )RU LQVWDQFH IRU XELTXLQRQH 84f $,WD[ LQ OHFLWKLQ YHVLFOHV a $ PD[ LQ ZDWHU >@ +RZHYHU IRU 84 $A LQ YHVLFOHV m $A LQ QRQSRODU SHWUROHXP HWKHU >@ 8ELTXLQRQHV ZLWK VLGHFKDLQ OHQJWKV EHWZHHQ DQG FDUERQV KDYH $A YDOXHV LQ YHVLFOHV ZKLFK DUH EHWZHHQ ZDWHU DQG SHWUROHXP HWKHU YDOXHV DQG DUH DSSUR[LPDWHO\ HTXDO WR $ LQ HWKDQRO >@ &KDQJHV LQ $A ZLWK VLGHFKDLQ OHQJWK LQGLFDWH WKDW XELTXLQRQH SHQHWUDWHV GHHSHU LQWR WKH QRQSRODU FHQWHU RI WKH SKRVSKROLSLG ELOD\HU DV LWV VLGHFKDLQ OHQJWK LQFUHDVHV 7KH XY VSHFWUD RI XELTXLQRQHV LQ YHVLFOHV KDYH QRW EHHQ GLUHFWO\ FRPSDUHG WR VSHFWUD LQ PLWRFKRQGULDO PHPEUDQHV VLQFH VSHFWUD LQ PLWRFKRQGULDO PHPEUDQHV DUH FRPSOLFDWHG E\ WXUELGLW\ F\WRFKURPH DEVRUEDQFH OLJKW VFDWWHULQJ DQG RWKHU LQWHUIHUHQFHV >@ +RZHYHU FDORULPHWU\ VWXGLHV RI XELTXLQRQH LQ WKH PLWRFKRQGULD VXJJHVW WKH VDPH FKDQJHV LQ PLFURHQYLURQPHQW ZLWK XELTXLQRQH VLGHFKDLQ OHQJWK >@ 6SHFLILFDOO\ XELTXLQRQHV ZLWK VKRUWHU VLGHFKDLQV UHVLGH LQ WKH PRUH SRODU UHJLRQ RI WKH SKRVSKROLSLG FDXVLQJ WKH VWUXFWXUH WR EHFRPH PRUH ULJLG DQG UDLVLQJ WKH PHOWLQJ SRLQW 2Q WKH RWKHU KDQG 84 GRHV QRW DOWHU WKH PHOWLQJ SRLQW LQGLFDWLQJ WKDW LW GRHV QRW DIIHFW WKH ELOD\HU VWUXFWXUH >@

PAGE 76

%HFDXVH RI WKH K\GURSKRELFLW\ RI 84 LW PXVW UHVLGH LQ WKH RLO SKDVH RI WKH >L( +RZHYHU $A RI 84 LQ 6'6 MX(V LV QP IRU DOO ( FRPSRVLWLRQV 7DEOH f 7KLV OPD[ LQGLFDWHV WKDW 84 UHVLGHV LQ D PRUH SRODU HQYLURQPHQW WKDQ WKDW RI SHWUROHXP HWKHU ZKLFK VKRXOG FRUUHVSRQG WR SXUH GRGHFDQHf ZKHUH $A QP >@ 7KLV FDQ EH DWWULEXWHG WR SDUWLWLRQLQJ RI DOFRKRO DQG ZDWHU LQWR WKH RLO SKDVH >@ 7KXV GHVSLWH EHLQJ LQ WKH RLO SKDVH 84 LV LQ D UHODWLYHO\ SRODU PLFURHQYLURQPHQW 7KH PLFURHQYLURQPHQW RI 842 PXVW FKDQJH ZLWK cMO( FRPSRVLWLRQ VLQFH $A RI 842 LV D IXQFWLRQ RI IL( FRPSRVLWLRQ 7DEOH f )RU 842 LQ DQ 6'6 MX( $PD[ QP $A LQ ZDWHU 7KHUHIRUH LQ cL(V ZLWK KLJK ZDWHU FRQWHQW 842 H[LVWV SULPDULO\ LQ WKH DTXHRXV SKDVH +RZHYHU DV ZDWHU FRQWHQW GHFUHDVHV WKH PLFURHQYLURQPHQW EHFRPHV OHVV SRODU DV LQGLFDWHG E\ GHFUHDVLQJ $PD[ 7KLV FDQ EH DWWULEXWHG WR LQFUHDVHG SDUWLWLRQLQJ RI 842 LQWR WKH RLO SKDVH ZLWK LQFUHDVLQJ ( RLO FRQWHQW (OHFWURFKHPLVWU\ RI 4XLQRQHV 1RQ$DXHRXV 6ROYHQWV 6LQFH ELRORJLFDO TXLRQHV DUH XVXDOO\ IRXQG LQ WKH QRQDTXHRXV HQYLURQPHQW RI WKH SKRVSKROLSLG ELOD\HU LQWHULRU WKH HOHFWURFKHPLVWU\ RI PDQ\ W\SHV RI TXLRQHV LQ QRQDTXHRXV V\VWHPV KDV EHHQ VWXGLHG H[WHQVLYHO\ ,Q QRQ DTXHRXV V\VWHPV WKH TXLQRQH 4f LV UHGXFHG LQ WZR VWHSV

PAGE 77

7DEOH 8ELTXLQRQH 84f $EVRUEDQFH 0D[LPD LQ 'LIIHUHQW 6ROYHQWV VROYHQW $ H PD[ QPf FP ZDWHU HWKDQRO SHWUROHXP HWKHU 6'6 P( 6'6 P( 6'6 0( 5HIHUHQFH

PAGE 78

7DEOH 8ELTXLQRQH 842f $EVRUEDQFH 0D[LPD LQ 'LIIHUHQW 6ROYHQWV VROYHQW APD[ QPf H FPP0f ZDWHUp 0 1D&ODTf HWKDQRO SHQWDQRO SHWUROHXP HWKHU GRGHFDQH 6'6 c-( 6'6 Q( 6'6 MX( D UHIHUHQFH

PAGE 79

ILUVW WR WKH VHPLTXLQRQH DQLRQ UDGLFDO 4f DQG WKHQ WR WKH GLDQLRQ 4nf >@ 4 H 2nr f 4 Hr 4n f ([SHULPHQWDOO\ (rn RI ERWK UHDFWLRQV LV VROYHQW GHSHQGHQW EHFRPLQJ OHVV QHJDWLYH DV WKH SRODULW\ RI WKH VROYHQW LQFUHDVHV >@ 7DEOH VKRZV (rn YDOXHV IRU VHYHUDO 4VROYHQW V\VWHPV $GGLQJ D ZHDN DFLG WR WKH VROXWLRQ HJ GLHWK\O PDORQDWH DW WZLFH WKH FRQFHQWUDWLRQ RI 84 >@f SURWRQDWHV 4f HTXDWLRQ f DQG VKLIWV ( RI WKH VHFRQG SHDN WR PRUH SRVLWLYH SRWHQWLDOV 4f + rr 4+n f 6WURQJHU DFLGV HJ EHQ]HQHWKLRO DW WHQ WLPHV WKH FRQFHQWUDWLRQ RI 84 >@f SURWRQDWH 4 HTXDWLRQ f 6LQFH 4+n LV HDVLHU WR UHGXFH WKDQ 4 4+n LV WKHQ UHGXFHG VLPXOWDQHRXVO\ ZLWK 4 HTXDWLRQ f 4fr + 4+r f 4 + Hr rr 4+n f 7KH UHDFWLRQ LQ (TXDWLRQ SURGXFHV RQH UHGXFWLRQ SHDN LQ &9 ZKLFK LV WZLFH WKH KHLJKW RI WKH SHDN IRU WKH UHDFWLRQ LQ HTXDWLRQ :LWK D VXIILFLHQWO\ KLJK >+@ WKLV SHDN

PAGE 80

7DEOH )RUPDO 3RWHQWLDOV RI 4XLQRQHV LQ 'LIIHUHQW 0HGLD TXLQRQH HTQD VROYHQW ( r n 9f UHIHUHQFH %4 S+ DTXHRXV %4 $&17($3 %4 GPIWHDEI 842 S+ DTXHRXV 84 GPIWHDEI 84 GPIWHDEI 84 GPIWHDEI 84 S+ DTXHRXV 6'6 PLFHOOHV D(TXDWLRQ IRU UHGR[ UHDFWLRQ

PAGE 81

PD\ RFFXU DW PRUH SRVLWLYH SRWHQWLDOV WKDQ WKH SHDN IRU WKH HTXDWLRQ SURFHVV >@ ,Q VROXWLRQV ZLWK YHU\ VWURQJ DFLGV HJ SHUFKORULF DFLG DW WZLFH WKH FRQFHQWUDWLRQ RI 84 >@f 4 LV SURWRQDWHG HTXDWLRQ f DQG WKH SURWRQDWHG TXLQRQH 4+f LV WKH VSHFLHV UHGXFHG HTXDWLRQ f 4 + 4+ f 4+ Hn + 4+ f ,I WKH FRQFHQWUDWLRQ RI DFLG LV QRW VXIILFLHQW WR FRPSOHWHO\ SURWRQDWH WKH DYDLODEOH 4 HJ UDWLR RI SHUFKORULF DFLG WR 84 >@f LW LV SRVVLEOH WR VHH UHGXFWLRQ SHDNV IRU ERWK UHDFWLRQV DQG >@ (OHFWURFKHPLFDO EHKDYLRU LV DIIHFWHG E\ LQWHUDFWLRQV RWKHU WKDQ DFLGEDVH UHDFWLRQV )RU H[DPSOH 4 RU 4n PD\ FRPSOH[ ZLWK HOHFWURO\WH FDWLRQV 7KH IRUPDWLRQ RI D FRPSOH[ E\ WKH GLDQLRQ VKLIWV WKH SRWHQWLDO RI WKH VHFRQG SHDN HTXDWLRQ f WR FRQVLGHUDEO\ PRUH SRVLWLYH YDOXHV 7KH VKLIW PD\ EH VXIILFLHQWO\ ODUJH VR WKDW &9 SHDNV GXH WR UHDFWLRQV LQ HTXDWLRQV DQG PHUJH VR WKDW RQO\ RQH &9 SHDN LV REVHUYHG >@ $TXHRXV 6ROXWLRQV ,Q DTXHRXV VROXWLRQV 4 XQGHUJRHV D WZR HOHFWURQ WZR SURWRQ UHDFWLRQ WR K\GURTXLQRQH 4+f

PAGE 82

4 + H rr 4+ f $FFRUGLQJ WR WKH 1HUQVW HTXDWLRQ WKH SRWHQWLDO RI UHDFWLRQ GHSHQGV RQ WKH S+ RI WKH VROXWLRQ I>4@>+@ @ ( (r 57)f ,Q O >4+@ f ( 57) ,Q >+@ f ZKHUH (r LV WKH VWDQGDUG SRWHQWLDO (r LV WKH IRUPDO SRWHQWLDO ZKHQ WKH FRQFHQWUDWLRQ RI WKH R[LGL]HG IRUP 4f HTXDOV WKH FRQFHQWUDWLRQ RI WKH UHGXFHG IRUP 4+f DQG WKH RWKHU V\PEROV KDYH WKHLU XVXDO PHDQLQJ 6LQFH WKH GLVVRFLDWLRQ RI 4+ HTXDWLRQV DQG f FKDQJHV LWV FRQFHQWUDWLRQ WKHVH GLVVRFLDWLRQV 4+ r 4+n + f 4+n rr 4n + f FDQ DIIHFW ( 7KH DFLG GLVVRFLDWLRQ FRQVWDQWV IRU UHDFWLRQV DQG DUH DQG UHVSHFWLYHO\ 7DEOH VKRZV S.JV IRU GLIIHUHQW DFLGEDVH IRUPV RI GLIIHUHQW TXLRQHV )RU 4 WKH ( LV ZKHQ >4@ >4+@ >4+n @ >4n@ f $W ( (r (r PD\ EH UHODWHG WR DQG LQ D VWUDLJKWn IRUZDUG IDVKLRQ 6HH $SSHQGL[ &f (r (r 57)f ,Q >+@ >+ @. .Af f

PAGE 83

7DEOH $FLG 'LVVRFLDWLRQ &RQVWDQWV RI 4XLQRQHV TXLQRQH DFLG IRUP HTQD 3.D UHIHUHQFH %4 TK %4 4+n %4 4+n %4 4+ 84 4+ 84 4+ 84 4+ D(TXDWLRQ IRU DFLG GLVVRFLDWLRQ UHDFWLRQ

PAGE 84

,I S+ S. WKH VHFRQG DQG WKLUG WHUP XQGHU ,Q LQ HTXDWLRQ DUH QHJOLJLEOH DQG WKH GHSHQGHQFH RI ( RQ S+ LV P9S+ 7KLV PHDQV WKDW DFLGEDVH UHDFWLRQV KDYH QR HIIHFW RQ ( DQG HTXDWLRQ VLPSOLILHV WR HTXDWLRQ 6LPLODUO\ IRU S. S+ S. WKH GHSHQGHQFH RI (r RQ S+ LV P9S+ DQG IRU S+ } S. WKH GHSHQGHQFH LV P9S+ 7KLV GHSHQGHQFH RI ( RQ S+ KDV EHHQ H[SHULPHQWDOO\ FRQILUPHG E\ %DLOH\ DQG 5LWFKLH ZLWK EHQ]RTXLQRQH RQ JROG HOHFWURGHV >@ 7KH H[DFW VHTXHQFH RI HOHFWURQ DQG SURWRQ WUDQVIHUV IRU UHGXFWLRQ RI TXLQRQH LQ DTXHRXV VROXWLRQV LV VWLOO XQGHU GLVSXWH 7KH PRVW FRPPRQO\ DFFHSWHG PHFKDQLVP ZDV SURSRVHG E\ 9HWWHU LQ WKH ILIWLHV 9HWWHU REWDLQHG 7DIHO SORWV RQ SODWLQXP HOHFWURGHV IRU EHQ]RTXLQRQH %4fEHQ]RK\GURTXLQRQH %4+f LQ VROXWLRQV ZLWK S+ EHWZHHQ DQG >@ %HWZHHQ S+ DQG FKDQJHV LQ WKH 7DIHO VORSH LQGLFDWHG D FKDQJH RI PHFKDQLVP 6SHFLILFDOO\ HOHFWURFKHPLFDO UHDFWLRQ RUGHUV LQGLFDWH WKH VSHFLHV ZKLFK XQGHUJRHV R[LGDWLRQ RU UHGXFWLRQ HJ 4+ RU 4 7KH UHDFWLRQ RUGHU LV GHWHUPLQHG E\ WKH FKDQJH LQ WKH FXUUHQW DV WKH FRQFHQWUDWLRQ RI RQH UHDFWDQW LV YDULHG ZKLOH WKH UDWLR RI WKH RWKHU WZR UHDFWDQWV LV KHOG FRQVWDQW 7KLV GHWHUPLQHV WKH VWRLFKLRPHWU\ RI WKDW UHDFWDQW LQYROYHG LQ WKH RYHUDOO UHDFWLRQ )RU H[DPSOH ZKHQ >+@ LV FKDQJHG ZKLOH WKH UDWLR >%4@>%4+@ LV KHOG FRQVWDQW WKH VWRLFKLRPHWULF FRHIILFLHQW RI + LV GHWHUPLQHG 8VLQJ WKLV DSSURDFK 9HWWHU SURSRVHG

PAGE 85

WKDW WZR GLIIHUHQW FRQVHFXWLYH FKDUJHWUDQVIHU UHDFWLRQV RFFXU ZLWKLQ WKH S+ UDQJH RI WR %HORZ S+ WKH RUGHU RI HOHFWURQ DQG SURWRQ WUDQVIHU ZDV SURSRVHG WR EH +H+H )RU S+ JUHDWHU WKDQ WKH RUGHU SURSRVHG ZDV H+H+ 5HFHQWO\ /DYLURQ SUHVHQWHG D PRUH VSHFLILF DQDO\VLV RI WKH PHFKDQLVP IRU WKH UHDFWLRQ RI TXLQRQH LQ DTXHRXV VROXWLRQV >@ /DYLURQ GHVFULEHG WKH SRVVLEOH PHFKDQLVWLF VWHSV RI TXLQRQH LQFOXGLQJ QLQH SRVVLEOH FKHPLFDO VSHFLHV DQG VL[ SRVVLEOH HOHFWURQ WUDQVIHUV XVLQJ WKH VTXDUH ER[ VFKHPH >@ 4 4 4 WL WL WL 4+ r 4+r r 4+n WL WL WL 4+ m TK r 4+ 7KH SURWRQDWLRQV LQ DUH DVVXPHG WR EH DW HTXLOLEULXP DQG WKH UDWHV RI WKH IRUZDUG DQG UHYHUVH HOHFWURFKHPLFDO UHDFWLRQV DUH DVVXPHG WR EH WKH VDPH FKDUJH WUDQVIHU FRHIILFLHQW D f 8QGHU WKHVH FRQGLWLRQV WKH DSSDUHQW VWDQGDUG SRWHQWLDOV IRU WKH ILUVW DQG VHFRQG HOHFWURQ WUDQVIHUV DUH VLPSO\ UHODWHG WR VWDQGDUG SRWHQWLDOV (rf DQG SURWRQ GLVVRFLDWLRQ FRQVWDQWV .Df RI HDFK LQGLYLGXDO VWHS LQ 6HH $SSHQGL[ 'f ,QGLYLGXDO DSSDUHQW (r DQG .D YDOXHV ZHUH FDOFXODWHG IRU %4 IURP H[SHULPHQWDO UHVXOWV RI %DLOH\ DQG 5LWFKLH >@ 8VLQJ WKHVH YDOXHV DQG WKH VFKHPH LQ /DYLURQ FRQFOXGHG WKDW WKH SULPDU\ PHFKDQLVP RI HOHFWURQ WUDQVIHU FKDQJHG IURP +H+H WR H++H WR H+H+ DV WKH

PAGE 86

S+ RI WKH VROXWLRQ LQFUHDVHG 7KH FRQWULEXWLRQ RI HDFK PHFKDQLVP WR FXUUHQW FKDQJHV ZLWK S+ $W S+ KDOI WKH FXUUHQW ZDV GXH WR WKH +H+H PHFKDQLVP DQG KDOI GXH WR WKH H++H PHFKDQLVP $W S+ KDOI RI WKH FXUUHQW ZDV GXH WR WKH H++H PHFKDQLVP DQG KDOI GXH WR WKH H+H+ PHFKDQLVP 7KH FKDQJH LQ PHFKDQLVP FKDQJHV WKH DSSDUHQW UDWH FRQVWDQWV DQG DSSDUHQW (r YDOXHV ZKLFK DIIHFW RYHUDOO SRWHQWLDO 2UJDQL]HG 0HGLD (OHFWURFKHPLFDO DFWLYLW\ RI TXLRQHV LQ RUJDQL]HG PHGLD KDV QRW EHHQ H[WHQVLYHO\ VWXGLHG ,Q PLFHOOHV DQG SKRVSKROLSLG YHVLFOHV (n RI 84 LV VKLIWHG WR YDOXHV PRUH QHJDWLYH WKDQ LQ DTXHRXV VROXWLRQV >@ 7KH GHSHQGHQFH RI (rn RQ S+ IRU 84 LQ EXIIHUHG VROXWLRQV RI 6'6 PLFHOOHV P9S+ >@ 7KLV FKDQJH IURP P9S+ LQ HWKDQROZDWHU VROXWLRQV ZDV DWWULEXWHG WR D ORZHULQJ RI WKH FKDUJH WUDQVIHU FRHIILFLHQW E\ WKH VXUIDFWDQW 7KH (r GHSHQGHQFH RQ S+ RI 84 LQ OHFLWKLQ YHVLFOHV >@ DQG RI 84 LQ DVROHFWLQ YHVLFOHV >@ ZDV WKH VDPH P9S+f DV LQ DTXHRXV VROXWLRQV (OHFWURFKHPLVWU\ RI %HQ]RFUXLQRQH %2f '0)7($3 7KH VROYHQW V\VWHP '0)7($3 ZDV FKRVHQ EHFDXVH LW JDYH JRRG HOHFWURFKHPLFDO UHVXOWV 8QOLNH LQ $&1 DQG LQ '0) ZLWK 0 1D& UHGR[ FRXSOHV IRU WKH SURFHVVHV GHVFULEHG LQ

PAGE 87

HTXDWLRQV DQG FRXOG EH REVHUYHG $OVR SHDNV LQ '0)7($3 V\VWHPV ZHUH QRW FRPSOLFDWHG E\ DGVRUSWLRQ ZKLFK RFFXUHG LQ $&1 )LJXUH VKRZV &9 RI EHQ]RTXLQRQH %4f RQ D *& HOHFWURGH LQ '0) ZLWK 0 7($3 DV HOHFWURO\WH 3HDNV ,F,D DUH DWWULEXWHG WR WKH UHDFWLRQ GHVFULEHG E\ HTXDWLRQ 7KH UHGXFWLRQ LV GLIIXVLRQ FRQWUROOHG DV GHWHUPLQHG IURP D SORW RI ORJ SHDN ,F FXUUHQW L f YV ORJ VFDQ UDWH Yf ZKHUH WKH VORSH s 7KH NLQHWLFV DUH TXDVL UHYHUVLEOH ZLWK $(S s P9 7KH UDWLR RI SHDN FXUUHQWV LALSJMM s ZKLFK LV FRQVLVWHQW ZLWK TXDVL UHYHUVLEOH EHKDYLRU ([SHULPHQWDO ( s 9 DQG FRUUHVSRQGV WR UHSRUWHG ( M s 9 >@ LQ '0) ZLWK WHWUDEXW\ODPPRQLXP WHWUDIOXRURERUDWH DV WKH HOHFWURO\WH '0)7%$%)3HDNV ,OF,,D FRUUHVSRQG WR WKH SURFHVV GHVFULEHG E\ HTXDWLRQ 7KLV SURFHVV LV DOVR GLIIXVLRQ FRQWUROOHG DV LQGLFDWHG E\ D VORSH RI s RI D ORJ L X YV ORJ Y SORW 7KLV UHDFWLRQ DOVR KDV TXDVLUHYHUVLEOH NLQHWLFV LQGLFDWHG E\ $(S s P9 DQG L LAf s 7KH PDJQLWXGH RI L LV DERXW b RI L ZKLFK LV DWWULEXWHG SF SFL WR WKH GLVSURSRUWLRQDWLRQ RI 4>@ 4 4n 4f r f

PAGE 88

FXUUHQW $f )LJXUH &\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ '0)7($3 Y P9V RQ *& HOHFWURGH DUHD FP

PAGE 89

6LQFH GLVSURSRUWLRQDWLRQ LQFUHDVHV >4n@ DV ZHOO DV GHFUHDVLQJ >4ff@ LW LV DOVR FRQVLVWHQW ZLWK LALSM r ([SHULPHQWDO ( Q s 9 LV PRUH SRVLWLYH WKDQ HL LL frs 9 UHSRUWHG IRU '0)7%$%) >@ 7KH PRUH SRVLWLYH H[SHULPHQWDO SRWHQWLDOV PD\ UHVXOW IURP WKH UHDFWLRQ RI 4n ZLWK SURWRQV LQ VROXWLRQ HTXDWLRQ f >@ 6LQFH 4n LV WKH PRVW EDVLF VSHFLHV LQ VROXWLRQ 7DEOH f LW LV WKH PRVW OLNHO\ VSHFLHV WR EH SURWRQDWHG ,Q VROXWLRQV FRQWDLQLQJ RQO\ 0 7($3 LQ '0) 7($3'0)f D FDWKRGLF SHDN DW s 9 ZLWK D UHYHUVH SHDN DW s 9 ZDV REVHUYHG )LJXUH f 7KHVH SHDNV VKRZ GLIIXVLRQ FRQWUROOHG EHKDYLRU ZLWK VORSH s IURP ORJ L YV ORJ Y SORW 6LQFH SHDN ,,,F LQ &9 RI %4 )LJXUH f RFFXUV DW WKH VDPH SRWHQWLDO ZLWK DSSUR[LPDWHO\ WKH VDPH PDJQLWXGH LS DW VDPH Yf DV WKH SHDN LQ WKH '0)7($3 VROXWLRQ SHDN ,,,F LV QRW DWWULEXWHG WR WKH UHDFWLRQ RI %4 7KH L ZDV PHDVXUHG XVLQJ WKH GHFD\LQJ FXUUHQW RI SHDN ,,,F DV EDVHOLQH $TXHRXV 6ROXWLRQV )LJXUH VKRZV &9 RI %4 RQ *& LQ S+ DTXHRXV SKRVSKDWH EXIIHU 7KH UHVXOWV DUH FRQVLVWHQW ZLWK WKH PHFKDQLVPV SURSRVHG E\ /DYLURQ DQG 9HWWHU ,Q DTXHRXV VROXWLRQV WKH DSSDUHQW IRUPDO SRWHQWLDO IRU WKH VHFRQG HOHFWURQ WUDQVIHU LV PRUH SRVLWLYH WKDQ IRU WKH ILUVW 7KXV RQO\ D VLQJOH WZR HOHFWURQ WUDQVIHU GHVFULEHG E\

PAGE 90

FXUUHQW MD$f )LJXUH &\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ 3KRVSKDWH %XIIHU S+ f Y P9V RQ *& HOHFWURGH DUHD FP

PAGE 91

HTXDWLRQ LV REVHUYHG 7KH SURFHVV LV GLIIXVLRQ FRQWUROOHG DV GHWHUPLQHG E\ WKH VORSHV RI s RI ORJ LA YV ORJ Y SORWV 6ORZ HOHFWURQ WUDQVIHU NLQHWLFV DUH LQGLFDWHG E\ $(S m P9 )RU WKH VDPH SURFHVV RQ FDUERQ SDVWH HOHFWURGHV LQ WKH S+ UDQJH RI $GDPV DOVR REVHUYHG VORZ HOHFWURQ WUDQVIHU ZLWK $(S Z P9 >@ 7KH UDWLR LSFLSD FKDQHV IURP WR DV WKH S+ LQFUHDVHV IURP WR 7DEOH f $V WKH S+ RI WKH VROXWLRQ LQFUHDVHV >4+@ GHFUHDVHV GXH WR WKH GHSURWRQDWLRQV GHVFULEHG LQ HTXDWLRQV DQG 7KH GHFUHDVH LQ >4+@ LV UHIOHFWHG LQ GHFUHDVLQJ LA DQG FRQVHTXHQWO\ LQFUHDVLQJ LSFLSDr $W S+ H[SHULPHQWDO ( s 9 DQG FRUUHODWHV ZHOO ZLWK ( 9 DW S+ UHSRUWHG E\ $GDPV >@ 7KH GHSHQGHQFH RI ( RQ S+ LV s P9S+ RYHU WKH S+ ZLQGRZ RI 7KLV GHYLDWLRQ IURP WKH WKHRUHWLFDO YDOXH RI P9S+ PD\ EH GXH WR WKH FKDQJH LQ PHFKDQLVP RYHU WKLV S+ UDQJH $V VKRZQ E\ /DYLURQ >@ D FKDQJH LQ PHFKDQLVP ZLOO DIIHFW WKH DSSDUHQW IRUPDO SRWHQWLDO )RU UHGXFWLRQ RI %4 RQ FDUERQ SDVWH HOHFWURGHV $GDPV REVHUYHG D VLPLODU GHSHQGHQFH RI ( RQ S+ RI FD P9S+ )URP WKH LQWHUFHSW RI ( YV S+ (r LV HVWLPDWHG WR EH s 9 ZKLFK FRUUHVSRQGV WR UHSRUWHG (r 9 >@ 6LQFH [(V XVHG LQ WKLV ZRUN KDYH DQ XQEXIIHUHG DTXHRXV SKDVH RI 0 1D&ODTf WKH HOHFWURFKHPLFDO EHKDYLRU RI %4 LQ XQEXIIHUHG DTXHRXV VROXWLRQV ZDV VWXGLHG )LJXUH VKRZV &9V RI %4 LQ XQEXIIHUHG 0 1D&ODTf DW GLIIHUHQW S+

PAGE 92

7DEOH &\FOLF 9ROWDPPHWULF 5HVXOWV IRU %HQ]RTXLQRQH %4f $TXHRXV 3KRVSKDWH %XIIHU >%4@ S+ ( $(SE LSF>%4@E L L E SFn SD P0f P9f P9f ]$P0f s s s s s s s s s s s s DLRQLF VWUHQJWK EY P9V HOHFWURGH DUHD FP

PAGE 93

FXUUHQW $f f§ ( P0 %4 S+ P0 %2 S+ f§ f§ P0 %4 S+ , , , , , , , , , , , ,nO , , , , , OaOaO 7,7 ,n 7Oa_ SRWHQWLDO P9f )LJXUH &\FOLF 9ROWDPPHWU\ RI %HQ]RTXLQRQH LQ 8QEXIIHUHG 0 1D&O^JTf Y P9V RQ *& HOHFWURGH DUHD FP

PAGE 94

YDOXHV $W S+ ( s 9 DQG $(S s P9 7KH $(S LQGLFDWHV VORZ HOHFWURQ WUDQVIHU 7KH UHDFWLRQ RI %4 LQ DOO XQEXIIHUHG 0 1D&ODTf VROXWLRQV ZLWK S+ ZDV LUUHYHUVLEOH ZLWK $(S D P9 $W S+ ( s 9 DQG $(S s P9 7KLV $(S LQGLFDWHV TXDVL UHYHUVLEOH NLQHWLFV IRU D WZR HOHFWURQ WUDQVIHU ,Q DOO 0 1D&OJTf VROXWLRQV ZLWK S+ WKH UHDFWLRQ RI %4 KDV ( L 9 DQG $(S LO P9 $W S+ WZR UHGR[ FRXSOHV ZHUH REVHUYHG 2QH FRXSOH FRUUHVSRQGV WR WKH NLQHWLFDOO\ VORZ SURFHVV GHVFULEHG IRU XQEXIIHUHG VROXWLRQV DW S+ 7KH RWKHU FRXSOH FRUUHVSRQGV WR WKH TXDVL UHYHUVLEOH SURFHVV GHVFULEHG IRU XQEXIIHUHG VROXWLRQV DW S+ $V S+ LQFUHDVHV IURP WR L DQG LSD IRU WKH LUUHYHUVLEOH SURFHVV GHFUHDVH ZLWK D FRUUHVSRQGLQJ LQFUHDVH LQ L DQG L IRU WKH TXDVLUHYHUVLEOH SURFHVV 7DEOH VKRZV WKH UHVXOWV IURP F\FOLF YROWDPPHWU\ LQ XQEXIIHUHG 0 1D&ODT! 7KH EHKDYLRU RI %4 LQ XQEXIIHUHG VROXWLRQV FDQ EH H[SODLQHG E\ FRQVLGHULQJ WKDW WKH S+ RI WKH UHDFWLRQ OD\HU UDWKHU WKDQ WKH S+ RI WKH VROXWLRQ GHWHUPLQHV UHDFWLRQ SRWHQWLDO $W S+ SURWRQ FRQFHQWUDWLRQ PXVW EH VXIILFLHQW LQ WKH UHDFWLRQ OD\HU IRU WKH UHDFWLRQ WR SURFHHG DV LQ EXIIHUHG VROXWLRQV DW S+ D WKLV S+ ZDV HVWLPDWHG IURP (f $W S+ WKH UHGXFWLRQ RI %4 FRQVXPHV WKH DYDLODEOH SURWRQV OHDGLQJ WR D KLJK HIIHFWLYH S+ LQ WKH UHDFWLRQ OD\HU $FFRUGLQJ WR HTXDWLRQ WKH UHDFWLRQ

PAGE 95

7DEOH r &2 f+ D 92 ,If 8 2 9f 3 Lf§, c P R m R f+ 3 ‘3 Df 7Df S Df E & & ‘3 U R f+ R X &2 FR &0 U U+ 2 U+ 92 + &0 R U+ R + 2 U+ 2 2 R R D L L r+ &2 &2 U+ 2 2 U R ? &2 &0 2 &0 U+ U+ R U+ t f f+ U+ &0 U+ W U+ U+ U+ U+ ff§n D V YR U+ &0 + &0 &0 U+ m+ L L L 1 LQ LQ FR &2 U+ U+ FR YR ? &0 &0 &2 &0 U+ U+ t r+ 1f§ 2 *? HJ + 2 U+ 92 &2 FP LQ f0r U+ &0 U+ U+ WR L L D ! U K LQ U 92 W U+ Z P R YR U U LQ 92 Q YR f0 &2 R LQ U+ 2 f2n K FR &0 92 + 92 &2 L L +O &1! W FR W 92 ‘ FR % LQ YR fr ‘0 Za &0 &0 U+ &0 U+ U+ U+ U+ ; L+ -4 &;L R &0 2 92 OI! D ,7f FR R &0 LQ &2 f f f f f f &1 FQ LQ 92 Un Lf§L LQ U+ LQ rr \ R ‘0r FR LQ LQ f f f f f f f§ 1 &2 &2 &1&2 &2 &2 2! ,' P9V HOHFWURGH DUHD FPn LQWHUPHGLDWH S+ UDQJH VKRZV WZR UHGR[ FRXSOHV 4

PAGE 96

OD\HU S+ PXVW EH JUHDWHU WKDQ LQ XQEXIIHUHG VROXWLRQV ZLWK S+ VLQFH ( LV QR ORQJHU GHSHQGHQW RQ S+ %HFDXVH ( LV LQGHSHQGHQW RI S+ LQ XQEXIIHUHG 0 1D&ODTf ZLWK S+ DQG LV HTXDO WR 9 ( YDOXHV PRUH QHJDWLYH WKDQ 9 REVHUYHG IRU WKH UHDFWLRQ RI %4 LQ [(Vf FDQQRW EH DWWULEXWHG WR S+ HIIHFWV $W DQ LQWHUPHGLDWH S+ LH S+ f WKH UHGXFWLRQ RI %4 FRQVXPHV DYDLODEOH SURWRQV RI WKH UHDFWLRQ OD\HU $IWHU WKH UHDFWLRQ OD\HU KDV EHHQ GHSOHWHG RI SURWRQV WKH UHPDLQLQJ %4 PXVW EH UHGXFHG DW D KLJK HIIHFWLYH S+ 7KXV ERWK WKH LUUHYHUVLEOH SURFHVV W\SLFDO RI %4 LQ ORZ S+ 0 1D&ODTf DQG WKH TXDVL UHYHUVLEOH SURFHVV W\SLFDO RI %4 DW KLJK S+ DUH REVHUYHG 7KH UDWLR RI FDWKRGLF SHDN FXUUHQWV RI WKHVH SURFHVVHV GHSHQGV RQ >%4@ DQG VROXWLRQ S+ 6LPLODU FKDQJHV LQ &9 ZLWK S+ ZHUH REVHUYHG E\ %DLOH\ DQG 5LWFKLH LQ XQEXIIHUHG 0 1D&DT W@ (OHFWURFKHPLVWU\ LQ 0LFURHPXOVLRQV )LJXUH VKRZV &9 RI %4 LQ 6'6 [( (OHFWURFKHPLFDO EHKDYLRU LQ (V ZDV FRPSDUHG WR WKDW LQ 0 1D&OJTf VLQFH 0 1D&ODTf ZLWK S+ m f IRUPV WKH M[( DTXHRXV SKDVH ,Q 6'6 ( SORWV RI ORJ L YV ORJ Y SF KDYH D VORSH s LQGLFDWLQJ D GLIIXVLRQ FRQWUROOHG SURFHVV 4XDVLUHYHUVLEOH NLQHWLFV RI WKH WZR HOHFWURQ SURFHVV DUH LQGLFDWHG E\ $(S s P9 DQG LALA s DW Y P9V $V GHVFULEHG LQ WKH SUHYLRXV

PAGE 97

&\FOLF 9ROWDPPHWU\ RI P0 %HQ]RTXLQRQH LQ 6'6 L( Y P9V RQ *& HOHFWURGH DUHD FP )RU H[DFW >L( FRPSRVLWLRQ VHH 7DEOH )LJXUH

PAGE 98

VHFWLRQ LQ 0 1D&ODTf VLPLODU WR WKRVH XVHG WR SUHSDUH WKH DTXHRXV SKDVH RI WKH [( WKH UHGXFWLRQ LV DOVR GLIIXVLRQ FRQWUROOHG DQG TXDVLUHYHUVLEOH ,Q WKH [( WKH UHODWLYH SHDN FXUUHQW LA&%4@ [$P0 DW Y P9V 7KLV LV ORZHU WKDQ LQ XQEXIIHUHG 0 1D&ODTf ZKHUH LAW%4@ [$P0 DW WKH VDPH VFDQ UDWH 7KH ORZHU LAW%4@ LQ WKH ]( SF LV DWWULEXWHG WR ORZHU RI %4 )RU %4 LQ DQ 6'6 [( 'T ; n FPV FRPSDUHG WR 0 .1^DTf ZKHUH DT ; n FPV >@ $V VKRZQ LQ &KDSWHU D SUREH UHVLGLQJ LQ WKH FRQWLQXRXV SKDVH RI D GURSOHW [( ZLOO KDYH D GLIIXVLRQ FRHIILFLHQW VOLJKWO\ ORZHU WKDQ LQ DQ DTXHRXV VROXWLRQ GXH WR REVWUXFWLRQ E\ WKH GURSOHWV %DVHG RQ WKH %4 PXVW UHVLGH LQ WKH DTXHRXV FRQWLQXRXV SKDVH 6LQFH WKH UHGXFHG IRUP %4+f LV PRUH ZDWHU VROXEOH WKDQ %4 >@ LW PXVW DOVR UHVLGH LQ WKH DTXHRXV SKDVH 7KXV '5 a '4 ,Q WKLV V\VWHP ( 9 ZKLFK LV DERXW WKH VDPH DV (rn 9 LQ 0 1D&O 1R VKLIW LQ ( ZLOO EH REVHUYHG LI ERWK %4 DQG %4+ UHVLGH LQ WKH DTXHRXV SKDVH RI WKH ]( 6HH $SSHQGL[ %f 7KXV ERWK GLIIXVLRQ FRHIILFHQW DQG WKH YDOXH RI ( DUH FRQVLVWHQW ZLWK %4 DQG %4+ UHVLGLQJ SULPDULO\ LQ WKH DTXHRXV SKDVH RI WKH ]( $V [( ZDWHU FRQWHQW GHFUHDVHV LAI%4@ GHFUHDVHV SF 7DEOH f 7KLV FDQ EH DWWULEXWHG WR GHFUHDVLQJ RI %4 $V VKRZQ LQ &KDSWHU IRU )H&1fn WKH GLIIXVLRQ

PAGE 99

7DEOH &\FOLF 9ROWDPPHWULF 5HVXOWV IRU %HQ]RTXLQRQH %4f LQ 6'6 0LFURHPXOVLRQV >%4@ [(D ( $(SE L E SF : LSFE>%4@ P0f P9f P9f 0$f A$P0f '0)& s s s s s s s s s s s s s s s s s s s s s s 1D&OG s s s D6HH 7DEOH IRU H[DFW 6'6 P( FRPSRVLWLRQ EY P9V HOHFWURGH DUHD FP F2 0 7($3 VXSSRUWLQJ HOHFWURO\WH 7ZR UHGR[ FRXSOHV ZHUH REVHUYHG G 0 1D&ODTf

PAGE 100

FRHIILFLHQW RI D SUREH UHVLGLQJ LQ WKH DTXHRXV SKDVH RI D c( GHFUHDVHV DV ZDWHU FRQWHQW GHFUHDVHV +RZHYHU ( EHFRPHV PRUH QHJDWLYH DV MX( ZDWHU FRQWHQW GHFUHDVHV 7DEOH f $V VKRZQ IRU XQEXIIHUHG VROXWLRQV RI 0 1D&ODTf FKDQJHV LQ S+ ZLOO QRW VKLIW ( WR YDOXHV PRUH QHJDWLYH WKDQ 9 7DEOH f &RQVHTXHQWO\ FKDQJHV LQ S+ FDQQRW DFFRXQW IRU WKH REVHUYHG ( VKLIW 7KXV SDUWLWLRQLQJ RI WKH SUREH PXVW FKDQJH ZLWK FRPSRVLWLRQ )RU D ELFRQWLQXRXV ( LW LV UHDVRQDEOH WR DVVXPH WKDW '5 m VLQFH ERWK SUREHV DUH LQ D FRQWLQXRXV PLFURHQYLURQPHQW HYHQ LI WKRVH PLFURHQYLURQPHQWV DUH GLIIHUHQW 6KLIWV LQ ( GXH WR SDUWLWLRQLQJ FDQ EH H[SUHVVHG E\ WKH IROORZLQJ HTXDWLRQ $SSHQGL[ %f ( (rnDT 57Q) OQ 'U'Rf9 57Q) OQ ^.5f.r Af f f )RU D 6'6 ( ( 9 6XEVWLWXWLQJ '5 D ( DQG (rn 9 LQWR HTXDWLRQ UHVXOWV LQ f r.U ..4 f 6LQFH .U DQG .J DUH SRVLWLYH E\ GHILQLWLRQ .T f DQG .M. f

PAGE 101

7KH UDWLR HTXDWLRQ f LQGLFDWHV WKDW %4 LV PRUH VWURQJO\ DVVRFLDWHG ZLWK WKH RLO DQGRU PHPEUDQH SKDVH WKDQ %4+ ZKLFK LV ZKDW ZRXOG EH SUHGLFWHG IURP WKH UHODWLYH VROXELOLWLHV RI ERWK IRUPV >@ 7KHVH UHVXOWV DOVR LQGLFDWH WKDW .T.A GHFUHDVHV DV [( ZDWHU FRQWHQW GHFUHDVHV VLQFH LQ WKH 6'6 [( .T. m $V GLVFXVVHG LQ &KDSWHU VLPLODU FKDQJHV LQ SDUWLWLRQLQJ DV ZLWK FKDQJLQJ [( FRPSRVLWLRQ KDYH EHHQ REVHUYHG IRU RWKHU SUREHV $V [( ZDWHU FRQWHQW GHFUHDVHV $(S GHFUHDVHV 7KLV GHFUHDVH LQ $(S LQGLFDWHV WKDW WKH UDWH RI HOHFWURQ WUDQVIHU LQFUHDVHV &KDSWHU VKRZHG WKDW WKH OD\HU RI DGVRUEHG VXUIDFWDQW EHFRPHV PRUH GLVRUGHUHG DV [( ZDWHU FRQWHQW GHFUHDVHV DOORZLQJ %4 WR SDUWLWLRQ WKURXJK WKH VXUIDFWDQW PRUH HDVLO\ 6KLIWV LQ ( WR PRUH QHJDWLYH YDOXHV DOVR VKRZ WKDW DV [( ZDWHU FRQWHQW GHFUHDVHV SDUWLWLRQLQJ RI %4 LQWR WKH RLOPHPEUDQH SKDVH LQFUHDVHV 7KXV SDUWLWLRQLQJ RI %4 WKURXJK D VXUIDFWDQW OD\HU WR WKH K\GURSKRELF *& VXUIDFH VKRXOG DOVR LQFUHDVH 7KH IDVWHU NLQHWLFV DUH DWWULEXWHG WR PRUH IDFLOH SDUWLWLRQLQJ RI %4 WKURXJK VXUIDFWDQW DGVRUEHG RQ WKH HOHFWURGH (OHFWURFKHPLVWU\ RI 8ELTXLQRQH '0)7($3 )LJXUH VKRZV &9 RI 842 LQ '0) ZLWK 0 7($3 RQ *& 7KH ILUVW SHDNV SHDNV ,F,Df DUH DWWULEXWHG WR WKH UHDFWLRQ GHVFULEHG E\ HTXDWLRQ 7KH VORSH RI WKH SORW

PAGE 102

FXUUHQW $f )LJXMUH &\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 7($3'0) Y P9V RQ *& HOHFWURGH DUHD FP

PAGE 103

RI ORJ L M YV ORJ Y LV s LQGLFDWLQJ D GLIIXVLRQ FRQWUROOHG SURFHVV $W Y P9V $(S s P9 DQG LSFLA LQGLFDWLQJ TXDVLUHYHUVLEOH NLQHWLFV ([SHULPHQWDO ( 9 LV LQ DJUHHPHQW ZLWK ( 9 UHSRUWHG LQ WKH OLWHUDWXUH IRU 84 LQ '0)7%$%) RQ *& >@ 3HDNV ,OF,,D FRUUHVSRQG WR WKH UHDFWLRQ GHVFULEHG E\ HTXDWLRQ 7KH VORSH RI RI WKH SORW RI ORJ LSF X YV ORJ Y LQGLFDWHV D GLIIXVLRQ FRQWUROOHG SURFHVV $W Y P9V $(S P9 LQGLFDWLQJ WKDW WKLV UHGXFWLRQ LV DOVR TXDVLUHYHUVLEOH $V ZLWK %4 LSF c a b RI LSA DQG LALA PD\ EH DWWULEXWHG WR GLVSURSRUWLRQDWLRQ HTXDWLRQ f ([SHULPHQWDO ( LV LQ DJUHHPHQW ZLWK ( UHSRUWHG IRU WKH UHDFWLRQ GHVFULEHG E\ HTXDWLRQ LQ '0)7%$%) RQ *& >@ 5HDFWLRQV RI 84 RFFXU DW PRUH QHJDWLYH SRWHQWLDOV WKDQ FRUUHVSRQGLQJ UHDFWLRQV RI %4 7KLV LV GXH WR WKH HOHFWURQ GRQDWLQJ FKDUDFWHU RI WKH PHWKR[\ VXEVWLWXHQWV RQ WKH ULQJ >@ 7KH SULPDU\ HIIHFW RI PHWKR[\ VXEVWLWXWLRQ LV WKH PHVRPHULF HIIHFW RI HOHFWURQ GRQDWLRQ UHVXOWLQJ IURP WKH GHORFDOL]DWLRQ RI WKH ORQH SDLU RI HOHFWURQV RQ WKH PHWKR[\ R[\JHQ RYHU WKH HQRQH V\VWHP RI WKH TXLQRQH QXFOHXV &KDQJHV LQ SRWHQWLDO GXH WR VXEVWLWXWLRQ RQ WKH EHQ]HQH ULQJ RI EHQ]RTXLQRQH KDYH EHHQ SUHGLFWHG E\ WKH +DPPHWW HTXDWLRQ >@

PAGE 104

$V LQ &9 RI %4 VROXWLRQV SHDN ,,,F LV QRW DWWULEXWHG WR D UHDFWLRQ RI 842 VLQFH D VLPLODU SHDN RFFXUV LQ &9 RI 7($3'0) )LJXUH f 6LQFH ( LV WKH VDPH LQ VROXWLRQV RI 842 DQG %4 ZKLOH SHDNV RI 842 DUH PRUH QHJDWLYH WKDQ WKRVH RI %4 WKLV LV IXUWKHU HYLGHQFH WKDW SHDN ,,,F LV QRW GXH WR D JXLQRQH UHDFWLRQ $FUXHRXV 6ROXWLRQV 7KH UHGXFWLRQ RI 842 LQ SKRVSKDWH EXIIHU OLNH WKDW RI %4 LV GHVFULEHG E\ HTXDWLRQ DQG WKH GHSHQGHQFH RI ( RQ S+ FDQ EH GHVFULEHG E\ HTXDWLRQ 7KH UHGXFWLRQ LV GLIIXVLRQ FRQWUROOHG DV GHWHUPLQHG IURP SORWV RI ORJ LSF YV ORJ Y ZKHUH VORSH 7KH NLQHWLFV KHUH DV IRU %4 DUH VORZ DV LQGLFDWHG E\ $(S P9 7KH UDWLR LSFLSD YDULHV IURP WR EHWZHHQ S+ $V ZLWK %4 WKLV ZDV DWWULEXWHG WR D GHFUHDVH LQ WKH FRQFHQWUDWLRQ RI WKH FRUUHVSRQGLQJ K\GURTXLQRQH 84+f ZLWK LQFUHDVLQJ S+ GXH WR DFLG GLVVRFLDWLRQ HTXDWLRQV DQG f $W S+ LQ 0 SKRVSKDWH EXIIHU ( 9 ZKLFK LV VLPLODU WR ( 9 UHSRUWHG LQ WKLV EXIIHU RQ PHUFXU\ HOHFWURGHV >@ 7KH GHSHQGHQFH RI ( RQ S+ P9S+ EHWZHHQ S+ ZKLFK LV WKH VDPH DV IRU %4 )URP WKH LQWHUFHSW RI ( YV S+ SORWV (r LV HVWLPDWHG WR EH 9 ,Q 0 1D&OJTf S+ f ( 9 ,I VROXWLRQ S+ LV LQFUHDVHG ( UHPDLQV DW WKLV YDOXH )URP

PAGE 105

WKH SORW RI ORJ YV ORJ Y VORSH s LQGLFDWLQJ D GLIIXVLRQ FRQWUROOHG SURFHVV 6LPLODU WR WKH UHGXFWLRQ RI %4 LQ DTXHRXV XQEXIIHUHG VROXWLRQV WKH UHGXFWLRQ LV TXDVL UHYHUVLEOH ZLWK LALSD DQG $(S DW Y P9V $V LQGLFDWHG E\ $(S WKH NLQHWLFV RI 842 LQ 0 1D&ODTf DUH IDVWHU WKH %4 LQ WKH VDPH VROYHQW 6LQFH 842 LV PRUH K\GURSKRELF WKDQ %4 >@ LW KDV PRUH DIILQLW\ IRU K\GURSKRELF *& WKXV HQKDQFLQJ WKH NLQHWLFV 6'6 0LFURHPXOVLRQV ,Q 6'6 [( WKH HOHFWURFKHPLFDO EHKDYLRU RI 842 DQG %4 LV VLPLODU )LJXUHV DQG f 7KH SORW RI ORJ L YV ORJ Y IRU 842 KDV D VORSH RI WKHUHIRUH WKH UHGXFWLRQ LV GLIIXVLRQ FRQWUROOHG 7KH SURFHVV LV TXDVLUHYHUVLEOH ZLWK $(S DQG LALA DW Y P9V $OVR DW Y P9V UHODWLYH SHDN FXUUHQW LSF >842 @f [$P0 ZKLFK LV OHVV WKDQ LAI842@ [$P0 LQ 0 1D&ODTf 7KH ORZHU LA(842@ LQ [(V LV DWWULEXWHG WR ERWK ORZHU DQG VORZHU NLQHWLFV )RU $(S D P9 IRU D WZR HOHFWURQ V\VWHP LS LV FD b RI LS IRU D UHYHUVLEOH V\VWHP >@ WKXV NLQHWLFV DORQH FDQQRW DFFRXQW IRU WKH UHGXFWLRQ LQ LSF>84@ ([SHULPHQWDO ( 9 FRPSDUHG WR (] 9 LQ 0 1D&ODTf $V VKRZQ E\ HTXDWLRQ WKH VKLIW LQ ( FDQ EH DWWULEXWHG WR GLIIHUHQFHV EHWZHHQ .J DQG .S 6LQFH XY VSHFWUD VKRZ WKDW LQ DQ 6'6 cMO( 842 UHVLGHV LQ WKH

PAGE 106

FXUUHQW $f &\FOLF 9ROWDPPHWU\ RI P0 8ELTXLQRQH LQ 6'6 Q( Y P9V RQ *& HOHFWURGH DUHD FP 6HH 7DEOH IRU H[DFW FRPSRVLWLRQ )LJXUH

PAGE 107

DTXHRXV SKDVH DQG 842+ LV PRUH ZDWHU VROXEOH '5 m '4 ,I WKH VKLIW LQ SRWHQWLDO LV DQDO\]HG XVLQJ HTXDWLRQ ZLWK 'U D DQG WKH SRWHQWLDOV DERYH WKHQ .J,A 7KLV VXJJHVWV WKDW 842 LV PRUH VWURQJO\ DVVRFLDWHG ZLWK WKH RLO DQGRU PHPEUDQH SKDVH WKDQ %4 ZKHUH .J D Af LQ WKLV cMO( 7KH GLIIHUHQFH LQ SDUWLWLRQLQJ EHWZHHQ %4 DQG 842 LV FRQVLVWHQW ZLWK GLIIHUHQFHV LQ VROXELOLW\ ZKHUH WKH ZDWHU VROXELOLW\ RI %4 P0 >@ DQG WKH ZDWHU VROXELOLW\ RI 842 P0 >@ ,Q 6'6 Q(V ZLWK ORZ ZDWHU FRQWHQW WKH FDWKRGLF SHDN VSOLWV )LJXUH f &KDQJHV LQ LA ZLWK Y VKRZ WKDW ERWK SURFHVVHV DUH GLIIXVLRQ UDWKHU WKDQ DGVRUSWLRQ FRQWUROOHG 3HDN LV NLQHWLFDOO\ VORZ DV LQGLFDWHG E\ (S EHFRPLQJ PRUH QHJDWLYH DV Y LQFUHDVHV 6LQFH SHDN ,,, LV PRUH QHJDWLYH WKDQ SHDN EXW OHVV QHJDWLYH WKDQ SHDN ,, SHDNV ,, DQG ,,, PXVW EH D UHGR[ FRXSOH 7KLV FRXSOH LV TXDVL UHYHUVLEOH DV LQGLFDWHG E\ $(S m P9 DW Y P9V DQG (SQ DQG (S ZKLFK DUH LQGHSHQGHQW RI Y IRU Y P9V %RWK (S DQG LS RI SHDNV DQG ,, DUH GHSHQGHQW RQ MX( FRPSRVLWLRQ 7DEOH f $V WKH ZDWHU FRQWHQW RI WKH MX( GHFUHDVHV L LQFUHDVHV ZLWK D FRUUHVSRQGLQJ GHFUHDVH L ,Q WKH 6'6 cMO( L LV WRR VPDOO WR EH REVHUYHG %RWK (S DQG (S EHFRPH PRUH QHJDWLYH DV WKH ZDWHU FRQWHQW RI WKH L( GHFUHDVHV 3HDN LV DWWULEXWHG WR D UHGXFWLRQ RI 842 IURP WKH RLO SKDVH ZKLOH SHDN ,, LV DWWULEXWHG WR D UHGXFWLRQ IURP

PAGE 108

f§ , , , , , , , , , PL , ,, ,, ,, , , , , , , , ,, , , , , SRWHQWLDO P9f &\FOLF 9ROWDPPRJUDP RI P0 8ELTXLQRQH LQ 6'6 Q( Y P9V RQ *& HOHFWURGH DUHD FP 6HH 7DEOH IRU H[DFW FRPSRVLWLRQ )LJXUH

PAGE 109

7DEOH &\FOLF 9ROWDPPHWULF 5HVXOWV RI 8ELTXLQRQH LQ 6'6 0LFURHPXOVLRQV >842@ c (D (SE (3OE (9& $(SF L E $SFO L 3&,, P0f P9f P9f P9f P9f 0$f 0$f '0)G s s s s s s s s s s s s s s s s s s s s s s s s s s s 1D&Op s s s s D6HH 7DEOH IRU H[DFW 6'6 MOL( FRPSRVLWLRQ EY P9V HOHFWURGH DUHD FP F3HDNV ,,,,, FRQVLGHUHG WKH UHGR[ FRXSOH Y P9V G 0 7($3 VXSSRUWLQJ HOHFWURO\WH 7ZR UHGR[ FRXSOHV ZHUH REVHUYHG DTf H 0 1D&O

PAGE 110

WKH DTXHRXV SKDVH ,W LV SRVVLEOH WR VHH ERWK SURFHVVHV VLQFH H[FKDQJH DFURVV WKH PHPEUDQH SKDVH LV VORZ >@ 6LQFH SHDN LV DWWULEXWHG WR UHDFWLRQ IURP WKH RLO SKDVH L M LQFUHDVHV ZLWK LQFUHDVLQJ RLO FRQWHQW $Q LQFUHDVLQJ RLO FRQWHQW ZLOO DOORZ D KLJKHU FRQFHQWUDWLRQ RI SUREH LQ WKDW SKDVH HTXDWLRQ f WKXV D KLJKHU LS 7KLV LQFUHDVH RI >842@ LQ RLO ZLWK GHFUHDVLQJ ZDWHU FRQWHQW LV DOVR LQGLFDWHG E\ XY VSHFWUD ZKHUH WKH PLFURHQYLURQPHQW RI WKH SUREH EHFRPHV OHVV SRODU DV WKH ZDWHU FRQWHQW GHFUHDVHV $V VKRZQ LQ &KDSWHU 6'6 VXUIDFWDQW DGVRUEV RQ *& ,I WKH HOHFWURGH LV LQ FRQWDFW ZLWK WKH RLO SKDVH WKH VXUIDFWDQW WKHQ PXVW DGVRUE LQ WKH IRUP RI UHYHUVH KHPLPLFHOOHV VLQFH ERWK WKH HOHFWURGH DQG VROXWLRQ DUH K\GURSKRELF 6LQFH H[FKDQJH DFURVV WKH ( PHPEUDQH SKDVH LV VORZ >@ H[FKDQJH WKURXJK WKH DGVRUEHG VXUIDFWDQW ZLOO DOVR EH VORZ &RQVHTXHQWO\ 842 GRHV QRW HDVLO\ SDUWLWLRQ IURP WKH RLO WR WKH HOHFWURGH DQG LWV HOHFWURQ WUDQVIHU NLQHWLFV DUH VORZ 3HDN ,, LV DWWULEXWHG WR UHGXFWLRQ RI 842 IURP WKH DTXHRXV SKDVH VLQFH L GHFUHDVHV DV ( ZDWHU FRQWHQW SF GHFUHDVHV HTXDWLRQ f &RQVLVWHQW ZLWK VKLIWV LQ ( WR PRUH QHJDWLYH YDOXHV WKH UHGXFHG IRUP 84+f LV PRUH ZDWHU VROXEOH WKDQ 842 >@ 6LQFH 842+ PXVW UHVLGH LQ WKH DTXHRXV SKDVH SHDN ,,, LV DWWULEXWHG WR WKH R[LGDWLRQ RI

PAGE 111

84+ IURP WKH DTXHRXV SKDVH DQG SHDNV ,, DQG ,,, ZLOO IRUP D UHGR[ FRXSOH DV REVHUYHG H[SHULPHQWDOO\ $V LQGLFDWHG E\ $(S WKLV UHGR[ FRXSOH SHDNV ,,,,,f KDV TXDVLUHYHUVLEOH NLQHWLFV ZKLFK EHFRPH IDVWHU DV ( ZDWHU FRQWHQW GHFUHDVHV $W WKH *& HOHFWURGH LQ FRQWDFW ZLWK WKH DTXHRXV SKDVH VXUIDFWDQW DGVRUEV WDLO ILUVW ZLWK WKH KHDG JURXSV WRZDUG WKH DTXHRXV VROXWLRQV 6HH &KDSWHU f LQVWHDG RI WKH UHYHUVH KHPLPLFHOOHV GHVFULEHG IRU WKH HOHFWURGH LQ FRQWDFW ZLWK WKH RLO SKDVH )RU 842 LQ WKH DTXHRXV SKDVH SDUWLWLRQLQJ WKURXJK WKLV WKLQQHU VXUIDFWDQW OD\HU LV HDVLHU WKDQ WKURXJK WKH UHYHUVH KHPLPLFHOOHV 7KXV WKH UHDFWLRQ LV IDVWHU WKDQ WKH UHDFWLRQ IURP WKH RLO SKDVH $V WKH Q( ZDWHU FRQWHQW GHFUHDVHV WKH DGVRUEHG VXUIDFWDQW EHFRPHV PRUH GLVRUGHUHG 7KHUHIRUH 842 SDUWLWLRQV WKURXJK WKH DGVRUEHG VXUIDFWDQW PRUH HDVLO\ DQG NLQHWLFV EHFRPH IDVWHU 7KH GLVRUGHULQJ RI WKH VXUIDFWDQW OD\HU ZLWK GHFUHDVLQJ IL( ZDWHU FRQWHQW ZDV DOVR REVHUYHG IRU )H&1fn LQ 6'6 cL(V ZKHUH $(S GHFUHDVHG DV ZDWHU FRQWHQW RI WKH LMO( GHFUHDVHG &KDSWHU f (OHFWURFKHPLVWU\ RI 8ELFUXLQRQH 1RQ$FUXHRXV 6ROXWLRQV ,Q 7%$%)'0) RQ *& ( s ZDV REVHUYHG E\ 3ULQFH HW DO >@ 6LQFH WKH VROXELOLW\ RI 84 ZDV ORZ DQG SHDN FXUUHQWV IRU WKH VHFRQG UHGXFWLRQ DUH W\SLFDOO\

PAGE 112

VPDOOHU WKDQ IRU WKH ILUVW UHGXFWLRQ WKH VHFRQG UHGXFWLRQ HTXDWLRQ f ZDV QRW REVHUYHG >@ $TXHRXV 6\VWHPV $OWKRXJK 84 LV QRW ZDWHUVROXEOH ( KDV EHHQ PHDVXUHG LQ DOFRKROZDWHU V\VWHPV ,Q 7ULV+&O EXIIHU LQ PHWKDQROZDWHU VROXWLRQ S+ mf ( 9 >@ DQG LQ 7ULV+&O EXIIHU LQ HWKDQROZDWHU VROXWLRQ S+ m f ( 9 >@ 7KH UHGXFWLRQ LV TXDVL UHYHUVLEOH ZLWK $(S P9 DW Y 9PLQ >@ 6'6 0LFURHPXOVLRQV ,Q 6'6 [( RQH FDWKRGLF SHDN ZKLFK EHFDPH PRUH QHJDWLYH ZLWK LQFUHDVLQJ Y ZDV REVHUYHG )LJXUH f $W P9V (SF s 9 7KH REVHUYHG VKLIW LQ (SF ZLWK Y LV W\SLFDO RI DQ LUUHYHUVLEOH V\VWHP )URP D SORW RI ORJ L YV ORJ Y VORSH s ZKLFK LQGLFDWHV D GLIIXVLRQ FRQWUROOHG SURFHVV %HFDXVH RI LWV ORQJ K\GURSKRELF VLGHFKDLQ 84 ZLOO UHVLGH LQ WKH RLO SKDVH RI WKH [( 6XUIDFWDQW ZLOO DGVRUE RQ *& LQ FRQWDFW ZLWK WKH RLO SKDVH LQ WKH IRUP RI UHYHUVH KHPLPLFHOOHV &KDSWHU f 6LQFH 84 UHVLGHV LQ WKH RLO SKDVH LW PXVW SDUWLWLRQ WKURXJK WKH KHPLPLFHOOHV LQ RUGHU WR UHDFW 6LQFH H[FKDQJH DFURVV WKH VXUIDFWDQW OD\HU ZLOO EH VORZ >@ HOHFWURQ WUDQVIHU NLQHWLFV DUH LUUHYHUVLEOH ,UUHYHUVLEOH NLQHWLFV ZHUH DOVR REVHUYHG IRU 84 LQ WKH [(

PAGE 113

FXUUHQW $f )LJXUH &\FOLF 9ROWDPPRJUDP RI P0 8ELTXLQRQH LQ 6'6 P( Y P9V RQ *& HOHFWURGH DUHD FP 6HH 7DEOH IRU H[DFW FRPSRVLWLRQ

PAGE 114

RLO SKDVH VLQFH WKH H[FKDQJH RI 842 DFURVV D VXUIDFWDQW PHPEUDQH LV DOVR VORZ >@ 'XH WR WKH ORZ VROXELOLW\ RI 84 LQ X(V '39 ZDV XVHG WR GHWHUPLQH VKLIWV LQ SRWHQWLDO ZLWK [( FRPSRVLWLRQ )RU D UHYHUVLEOH V\VWHP (QD[ IURP '39 m ( +RZHYHU IRU DQ LUUHYHUVLEOH UHGXFWLRQ DV ZLWK 84f ( ZLOO EH VKLIWHG WR SRWHQWLDOV PRUH QHJDWLYH WKDQ ( 7DEOH VKRZV WKDW (PD[ LQ [(V LV PRUH QHJDWLYH WKDQ LQ DOFRKRODTXHRXV VROXWLRQV DQG EHFRPHV PRUH QHJDWLYH DV WKH MX( ZDWHU FRQWHQW GHFUHDVHV 6LQFH QHLWKHU 84 QRU LWV UHGXFHG IRUP 84+f DUH ZDWHU VROXEOH >@ ERWK ZLOO UHVLGH SULPDULO\ LQ WKH RLO SKDVH DQG 'U m (TXDWLRQ FDQ EH XVHG WR GHWHUPLQH .J.5 IRU SUREHV UHVLGLQJ SULPDULO\ LQ WKH RLOPHPEUDQH SKDVH 8VLQJ HTXDWLRQ m '5 (r m ( LQ WKH DOFRKROZDWHU VROXWLRQ DQG (_QD[ m ( LQ WKH [( WKHQ IRU DQ 6'6 [( .T.MM ; r 6LQFH (QD[ LV PRUH QHJDWLYH WKDQ WKH WUXH ( WKH UDWLR .T. LV SUREDEO\ QRW DV ORZ DV WKLV FDOFXODWHG YDOXH 6LPLODU FDOFXODWLRQV IRU 6'6 [( VKRZ .J.5 ; n )URP .J,A 84 SDUWLWLRQV PRUH LQWR WKH RLO SKDVH WKDQ GRHV 84+ 6LQFH QHLWKHU 84 RU 84+ DUH ZDWHU VROXEOH .J DQG PD\ EH UHIOHFWLQJ SDUWLWLRQLQJ EHWZHHQ WKH RLO DQG PHPEUDQH SKDVH UDWKHU WKDQ EHWZHHQ RLO DQG ZDWHU &RQVLVWHQW ZLWK JUHDWHU SDUWLWLRQLQJ RI 84 LQWR WKH RLO LQVWHDG RI PHPEUDQH SKDVHf WKDQ 84+ RWKHU VWXGLHV KDYH VKRZQ WKDW 84+ LQWHUDFWV PRUH ZLWK SKRVSKROLSLG PHPEUDQHV WKDQ GRHV 84 >@ $V ZDWHU

PAGE 115

7DEOH 'LIIHUHQWLDO 3XOVH 9ROWDP[QHWULF 5HVXOWV IRU 8ELTXLQRQH LQ 6'6 0LFURHPXOVLRQV >84@ (D (PD[ LS >84 @ P0f P9f 0$f $P0 '0)E s s 0H2+F D6HH 7DEOH IRU H[DFW 6'6 P( FRPSRVLWLRQ E(S IURP &9 LQ '0)7%$%) >@ F( GHWHUPLQHG IURP VDPSOHG '& SRODURJUDSK\ LQ 7ULV+&O EXIIHU LQ PHWKDQROZDWHU f VROXWLRQ S+ a >@

PAGE 116

FRQWHQW GHFUHDVHV .J.5 GHFUHDVHV 6LQFH HDFK IRUP RI WKH SUREH LV LQ D VOLJKWO\ GLIIHUHQW HQYLURQPHQW WKH HIIHFW RI +( FRPSRVLWLRQ RQ WKH SDUWLWLRQLQJ RI HDFK IRUP RI WKH SUREH ZLOO EH VOLJKWO\ GLIIHUHQW &RQFOXVLRQV %RWK %4 DQG 842 UHVLGH SULPDULO\ LQ WKH DTXHRXV HQYLURQPHQW RI ZDWHU ULFK 6'6 [(V 7KLV ZDV GHPRQVWUDWHG E\ RI %4 ZKLFK ZDV VLPLODU IRU ERWK [( DQG IRU DTXHRXV VROXWLRQ DQG E\ RI 842 ZKLFK ZDV WKH VDPH LQ [( DV LQ DTXHRXV VROXWLRQ $OWKRXJK K\GURKRELF 84 PXVW UHVLGH LQ WKH RLO SKDVH WKH UHVXOWV VKRZ WKDW WKLV SKDVH LV QRW FRPSOHWHO\ QRQSRODU )RU LQVWDQFH XY OPD[ LV FRQVLVWHQW ZLWK DQ DOFRKROOLNH HQYLURQPHQW UDWKHU WKDQ D QRQSRODU RQH 6LQFH SURWRQDWHG TXLRQHV UHDFW DW OHVV QHJDWLYH SRWHQWLDOV WKDQ TXLRQHV LQ DQ DSURWLF HQYLURQPHQW H[SHULPHQWDO (r n YDOXHV LQ [(V DUH FRQVLVWHQW ZLWK D VRPHZKDW SURWLF HQYLURQPHQW UDWKHU WKDQ DQ DSURWLF RQH )RU H[DPSOH (r n LQ 6'6 [( LV DERXW WKH VDPH DV LQ 0 1D&ODTf DQG QHYHU EHFRPHV DV QHJDWLYH DV WKH (r n LQ '0) 7DEOH f (YHQ IRU K\GURSKRELF 84 ( LQ f[( LV OHVV QHJDWLYH WKDQ LQ '0) 7DEOH f 3DUWLWLRQLQJ RI ZDWHU DQGRU DOFRKRO LQWR WKH RLO SKDVH FDQ FRQWULEXWH WR WKH SRODULW\ RI WKH RLO HQYLURQPHQW >@ 8ELTXLQRQH GRHV QRW HDVLO\ SHQHWUDWH WKH VXUIDFWDQW OD\HU >@ 7KLV ZDV PRVW REYLRXV LQ WKH VSOLW SHDN

PAGE 117

EHKDYLRU RI 842 ZKHUH WKH WZR UHDFWLRQ SDWKZD\V LQGLFDWH WKDW H[FKDQJH EHWZHHQ ( SKDVHV LH DFURVV WKH VXUIDFWDQWPHPEUDQH OD\HUf LV VORZ 7KH DGVRUEHG VXUIDFWDQW RQ WKH HOHFWURGH DOVR KLQGHUV SDUWLWLRQLQJ RI TXLRQHV IURP VROXWLRQ WR WKH HOHFWURGH 7KLV LV GHPRQVWUDWHG E\ WKH VORZ NLQHWLFV RI HOHFWURQ WUDQVIHU )RU WKH DTXHRXV SDWKZD\ WKH UHGXFWLRQ RI %4 DQG 842 UHVLGLQJ LQ WKH DTXHRXV SKDVH LV TXDVLUHYHUVLEOH DQG EHFRPHV IDVWHU DV WKH DGVRUEHG VXUIDFWDQW EHFRPHV PRUH GLVRUGHUHG ZLWK GHFUHDVLQJ ZDWHU FRQWHQW DV GHVFULEHG LQ &KDSWHU f )RU WKH RLO SDWKZD\ WKH DGVRUEHG VXUIDFWDQW OD\HU ZLOO EH WKLFNHU )LJXUH f PDNLQJ SDUWLWLRQLQJ WKURXJK WKH VXUIDFWDQW PRUH GLIILFXOW WKDQ LQ WKH DTXHRXV SKDVH 7KXV WKH UHGXFWLRQ RI 84 DQG RI 842 UHVLGLQJ LQ WKH RLO SKDVH LV LUUHYHUVLEOH ,I WKHVH UHVXOWV DUH H[WHQGHG WR ELRORJLFDO PHPEUDQHV LW ZRXOG EH SUHGLFWHG WKDW XELTXLQRQHV GR QRW GLIIXVH WKURXJK WKH PHPEUDQH WR WKH K\GURSKLOLF H[WHULRU &RQVLVWHQW ZLWK WKLV /HQD] DQG (VSRVWL >@ KDYH VKRZQ WKDW 84 GRHV QRW HDVLO\ GLIIXVH WKURXJK WKH PHPEUDQH WR WKH K\GURSKLOLF H[WHULRU ,Q 6'6 P(V ( rn YDOXHV IRU DOO TXLRQHV VWXGLHG DUH VKLIWHG WR PRUH QHJDWLYH YDOXHV WKDQ LQ 0 1D&ODTf 7KH QHJDWLYH VKLIW LV FRQVLVWHQW ZLWK JUHDWHU SDUWLWLRQLQJ RI 4 LQWR WKH RLO SKDVH WKDQ RI 4+ 6LQFH WKH ZDWHU VROXELOLW\ RI 4 4+ >@ H[SHULPHQWDO UHVXOWV FRUUHVSRQG WR SRWHQWLDO VKLIWV SUHGLFWHG IURP $SSHQGL[ %

PAGE 118

3DUWLWLRQLQJ RI TXLRQHV ZDV VKRZQ WR EH D IXQFWLRQ RI +( FRPSRVLWLRQ )RU WKHVH SUREHV VKLIWV LQ ( WR PRUH QHJDWLYH YDOXHV ZLWK GHFUHDVLQJ O]( ZDWHU FRQWHQW LQGLFDWHG WKDW 4 SDUWLWLRQV LQWR WKH RLO SKDVH PRUH WKDQ 4+ DV ]( ZDWHU FRQWHQW GHFUHDVHV 7KH LQFUHDVH LQ SDUWLWLRQLQJ RI 842 LQWR WKH RLO SKDVH ZDV DOVR LQGLFDWHG E\ LQFUHDVLQJ L SF IRU WKH SHDN ZKLFK FRUUHVSRQGV WR WKH UHDFWLRQ IURP WKH RLO SKDVH DQG VKLIWV LQ $ WR VKRUWHU ZDYHOHQJWKV DV ]( ZDWHU FRQWHQW GHFUHDVHV 2WKHU HOHFWURFKHPLFDO UHVXOWV HJ NLQHWLFV DQG DGVRUSWLRQf IRU TXLRQHV LQ ](V DUH FRQVLVWHQW ZLWK WKH EHKDYLRU RI RWKHU HOHFWURDFWLYH SUREHV LQ ](V GHVFULEHG LQ &KDSWHU

PAGE 119

&+$37(5 0,&52+(7(52*(1(286 62/87,21 02'(/ 6WUXFWXUH 7KH VWUXFWXUH RI D [QLFURKHWHURJHQHRXV VROXWLRQ GHWHUPLQHV WKH GLIIXVLRQ FRHIILFLHQW RI DQ HOHFWURDFWLYH SUREH 3UREH SDUWLWLRQLQJ GHWHUPLQHV WKH SKDVHV LQ ZKLFK WKH SUREH UHVLGHV DQG LV GHWHUPLQHG E\ ERWK HOHFWURVWDWLF DQG K\GURSKRELF HIIHFWV +\GURSKRELF HIIHFWV KDYH D JUHDWHU LQIOXHQFH RQ SDUWLWLRQLQJ WKDQ HOHFWURVWDWLF HIIHFWV 7KLV ZDV REVHUYHG ZLWK WKH 09rrf FRXSOH LQ 6'6 VROXWLRQV ZKHUH 09rf SDUWLWLRQHG EHWWHU WR WKH DQLRQLF DJJUHJDWH WKDQ WKH PRUH KLJKO\ FKDUJHG 09r LQ ERWK (V DQG PLFHOOHV 7KLV LV SUREDEO\ GXH WR WKH SRVLWLRQ RI WKH SUREH ,I WKH SUREH LV HOHFWURVWDWLFDOO\ ERXQG WR WKH PHPEUDQH LW LV DOVR LQ FRQWDFW ZLWK WKH DTXHRXV SKDVH DOORZLQJ IDFLOH H[FKDQJH EHWZHHQ SKDVHV ,I D SUREH LV K\GURSKRELFDOO\ ERXQG SDUWLWLRQLQJ LV PRUH GLIILFXOW VLQFH WKH SUREH PXVW SDVV WKURXJK WKH PHPEUDQH SKDVH +\GURSKLOLF SUREHV FDQ EH DWWDFKHG WR WKH VXUIDFWDQW KHDG JURXS E\ WKH ZHDNHU HOHFWURVWDWLF LQWHUDFWLRQV 7KLV ZDV REVHUYHG IRU )H&1ff LQ &7$% IM(V DQG 09r LQ 6'6 IM(V &RQVHTXHQWO\ K\GURSKRELF SUREHV UHVLGH SULPDULO\ LQ K\GURSKRELF UHJLRQV DQG K\GURSKLOLF SUREHV UHVLGH LQ DTXHRXV

PAGE 120

UHJLRQV RU PD\ EH HOHFWURVWDWLFDOO\ DWWDFKHG WR WKH VXUIDFWDQWPHPEUDQH SKDVH :KLOH D SUREH PD\ UHVLGH SULPDULO\ LQ RQH SKDVH VRPH IUDFWLRQ RI WKDW SUREH ZLOO DOVR EH SUHVHQW LQ RWKHU SKDVHV 6LQFH DSSDUHQW GLIIXVLRQ FRHIILFLHQW LV UHODWHG WR GLIIXVLRQ FRHIILFLHQWV RI WKH SUREH LQ HDFK RI WKHVH SKDVHV SDUWLWLRQLQJ GLUHFWO\ LQIOXHQFHV DSSDUHQW GLIIXVLRQ FRHIILFLHQW $SSHQGL[ $f ,I D SUREH H[LVWV SULPDULO\ LQ RQH SKDVH WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW JHQHUDOO\ LV D PHDVXUH RI GLIIXVLRQ LQ WKDW SKDVH 7KLV LV WKH FDVH IRU )F LQ LM(V ZKHUH LWV '5 LV D PHDVXUH RI GLIIXVLRQ LQ RLO ,I VLJQLILFDQW IUDFWLRQV RI D SUREH SDUWLWLRQV LQWR WZR SKDVHV WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW LV D PHDVXUH RI GLIIXVLRQ LQ ERWK SKDVHV )RU H[DPSOH RI 09r DFFRXQWV IRU ERWK PHPEUDQH SKDVH DQG DTXHRXV SKDVH GLIIXVLRQ 7KLV PL[HG GLIIXVLRQ EHKDYLRU GXH WR SDUWLWLRQLQJ KDV EHHQ REVHUYHG LQ PDQ\ PLFURKHWHURJHQHRXV V\VWHPV >@ 6WUXFWXUH RI WKH SKDVH LQ ZKLFK WKH SUREH UHVLGHV LV WKH NH\ IDFWRU LQ GHWHUPLQLQJ LWV GLIIXVLRQ FRHIILFLHQW ,I WKH SUREH LV FRQILQHG WR DQ DJJUHJDWH LW FDQ RQO\ GLIIXVH RYHU PDFURVFRSLF GLVWDQFHV E\ GLIIXVLQJ ZLWK WKH DJJUHJDWH 7KHUHIRUH GLIIXVLRQ FRHIILFLHQW ZLOO EH GHWHUPLQHG E\ WKH VL]H RI WKH DJJUHJDWH 6WRNHV(LQVWHLQ HTXDWLRQ f $ SUREH DWWDFKHG WR WKH PHPEUDQH SKDVH RI DQ DJJUHJDWH DOVR GLIIXVHV ZLWK WKH DJJUHJDWH IRU VLPLODU UHDVRQV 7\SLFDO DJJUHJDWH GLIIXVLRQ FRHIILFLHQWV IRU ( GURSOHWV DQG IRU

PAGE 121

PLFHOOHV DUH n FPV )RU ELFRQWLQXRXV ](V D SUREH DWWDFKHG WR WKH PHPEUDQH SKDVH LV OLPLWHG WR WKH LQWHUIDFH EHWZHHQ RLO DQG ZDWHU 7KXV LWV PRYHPHQW LV YHU\ UHVWULFWHG DQG LWV GLIIXVLRQ FRHIILFLHQW ZLOO EH VORZ 7\SLFDO GLIIXVLRQ FRHIILFLHQWV IRU SUREHV LQ WKH LQWHUIDFH RI ELFRQWLQXRXV ](V DUH ; n FPV 2EVWUXFWLRQ E\ WKH PHPEUDQH OD\HU DQG WKH SKDVH LQ ZKLFK WKH SUREH GRHV QRW UHVLGH GHFUHDVHV GLIIXVLRQ FRHIILFLHQWV RI SUREHV LQ D FRQWLQXRXV SKDVH 2EVWUXFWLRQ RI D SUREHnV PRYHPHQW LQ D FRQWLQXRXV SKDVH LQFUHDVHV WKH GLIIXVLRQ SDWK RI WKH SUREH GHFUHDVLQJ WKH GLIIXVLRQ FRHIILFLHQW ,Q GURSOHW ](V WKHUH LV OLWWOH REVWUXFWLRQ IRU D SUREH GLIIXVLQJ LQ D FRQWLQXRXV SKDVH WKXV GLIIXVLRQ FRHIILFLHQWV DUH RQO\ VOLJKWO\ ORZHU WKDQ LQ KRPRJHQHRXV VROXWLRQV )RU H[DPSOH RI )H&1fn ; n FPV LQ 0 1D&ODTf DQG ; n FPV LQ D GURSOHW 6'6 ]( +RZHYHU LQ ELFRQWLQXRXV ](V REVWUXFWLRQ LV VLJQLILFDQW DQG FDXVHV D GHFUHDVH LQ GLIIXVLRQ FRHIILFLHQWV E\ D VXEVWDQWLDO DPRXQW )RU LQVWDQFH RI )H&1fn LQ D ELFRQWLQXRXV ]( LV FD ,; FPV %HFDXVH RI WKH LQIOXHQFH RI ]( VWUXFWXUH RQ SUREH GLIIXVLRQ GLIIXVLRQ FRHIILFLHQWV FDQ EH XVHG WR GHWHUPLQH VWUXFWXUH RI ERWK GURSOHW DQG ELFRQWLQXRXV SKDVHV 6LQFH WKH GLIIXVLRQ FRHIILFLHQW RI SUREHV LQ DJJUHJDWHV UHIOHFWV GLIIXVLRQ RI WKH DJJUHJDWHV LW PD\ EH XVHG WR GHWHUPLQH GURSOHW VL]H 7R LQWHUSUHW GLIIXVLRQ FRHIILFLHQW YDOXHV LQ

PAGE 122

,OO RUGHU WR GHWHUPLQH VWUXFWXUH SDUWLWLRQLQJ RI WKH SUREH GXH WR K\GURSKRELF DQG HOHFWURVWDWLF HIIHFWV PXVW EH FRQVLGHUHG 5HDFWLYLW\ 5HDFWLYLW\ RI D SUREH LQ D PLFURKHWHURJHQHRXV V\VWHP GHSHQGV RQ GLIIXVLRQ FRHIILFLHQWV DQG SDUWLWLRQLQJ FRQVWDQWV RI ERWK WKH R[LGL]HG 2[f DQG UHGXFHG 5HGf IRUPV RI WKH SUREH $SSHQGL[ %f ,I 2[ DQG 5HG UHVLGH LQ GLIIHUHQW PLFURHQYLURQPHQWV WKHLU GLIIXVLRQ FRHIILFLHQWV DUH QRW HTXDO 7KLV DORQH VKLIWV WKH IRUPDO SRWHQWLDO (rn +RZHYHU WKH SDUWLWLRQLQJ FRQVWDQWV ZLOO DOVR QRW EH HTXDO DQG WKLV DOVR VKLIWV (r 6LQFH ERWK GLIIXVLRQ FRHIILFLHQWV DQG SDUWLWLRQLQJ FRQVWDQWV DUH D IXQFWLRQ RI [( FRPSRVLWLRQ (n FDQ EH FRQWUROOHG E\ DOWHULQJ [( FRPSRVLWLRQ $OWHUQDWLYHO\ VLQFH WKH UHODWLRQVKLS EHWZHHQ GLIIXVLRQ FRHIILFLHQWV SDUWLWLRQLQJ FRQVWDQWV DQG SRWHQWLDOV LV NQRZQ $SSHQGL[ %f VKLIWV LQ (rn FDQ EH XVHG WR GHWHUPLQH SDUWLWLRQLQJ FRQVWDQWV 7KH UHODWLRQVKLS EHWZHHQ SDUWLWLRQLQJ FRQVWDQWV DQG (rn FDQ EH DSSOLHG WR PRVW PLFURKHWHURJHQHRXV V\VWHPV LQFOXGLQJ PLFHOOHV >@ SRO\PHU ILOPV >@ DQG ELQGLQJ RI HOHFWURDFWLYH SUREHV WR '1$ >@ DV ZHOO DV WR [(V

PAGE 123

&+$37(5 02'(/ 2) (/(&752'( ,17(5)$&( ,1 0,&52+(7(52*(1(286 62/87,21 .LQHWLFV 6LQFH Q(V DUH RSWLFDOO\ WUDQVSDUHQW WKH RLOZDWHU LQWHUIDFHV URXVW EH OHVV WKDQ QP DSDUW >@ %HFDXVH HOHFWURGHV KDYH PXFK ODUJHU DUHDV RQ WKH RUGHU RI PP WKH\ PXVW EH LQ FRQWDFW ZLWK ERWK WKH RLO DQG ZDWHU SKDVHV +RZHYHU WKH IUDFWLRQ RI WKH HOHFWURGH LQ FRQWDFW ZLWK HDFK SKDVH ZLOO FKDQJH ZLWK FRPSRVLWLRQ 7DLO JURXSV RI VXUIDFWDQW DGVRUE RQWR K\GURSKRELF *& >@ 7KH IUDFWLRQ RI WKH HOHFWURGH LQ FRQWDFW ZLWK WKH DTXHRXV SKDVH KDV WKH SRODU KHDG JURXS RI WKH VXUIDFWDQW H[WHQGHG LQWR WKH DTXHRXV VROXWLRQ )LJXUH f 7KXV SUREHV LQ WKH DTXHRXV SKDVH FDQ EH HOHFWURVWDWLFDOO\ UHSHOOHG IURP RU DWWUDFWHG WR WKH HOHFWURGH PRGLI\LQJ WKH HIIHFW RI DSSOLHG SRWHQWLDO 3UREHV ZKLFK DUH DWWUDFWHG WR WKH HOHFWURGH VKRZ HQKDQFHG NLQHWLFV ZKLOH WKH NLQHWLFV RI SUREHV ZKLFK DUH UHSHOOHG IURP WKH HOHFWURGH DUH KLQGHUHG )RU )H&1fn WKLV EHKDYLRU LV HYLGHQW ,Q 6'6 [(V ZKHUH )H&1ff LV UHSHOOHG IURP DGVRUEHG DQLRQLF VXUIDFWDQW NLQHWLFV DUH PXFK VORZHU WKDQ LQ DTXHRXV VROXWLRQV +RZHYHU LQ &7$% (V ZKHUH )H&1fn LV DWWUDFWHG WR DGVRUEHG

PAGE 124

FDWLRQLF VXUIDFWDQW WKH NLQHWLFV DUH IDVWHU WKDQ LQ DTXHRXV VROXWLRQV &KDQJHV LQ WKH VROXWLRQ HQYLURQPHQW DOWHU WKH OD\HU RI DGVRUEHG VXUIDFWDQW $GGLWLRQ RI HOHFWURO\WH LV NQRZQ WR PDNH VXUIDFWDQW V\VWHPV PRUH RUGHUHG DQG FRPSDFW >@ ZKLOH DGGLWLRQ RI DOFRKRO PDNHV VXUIDFWDQW VROXWLRQV OHVV RUGHUHG >@ ,I WKH VXUIDFWDQW OD\HU LV PRUH GLVRUGHUHG WKH SUREH PD\ PRUH HDVLO\ SHQHWUDWH WKH DGVRUEHG VXUIDFWDQW WKXV LPSURYLQJ NLQHWLFV ,Q M[(V WKH VXUIDFWDQW RQ WKH HOHFWURGH VXUIDFH EHFRPHV PRUH GLVRUGHUHG DV WKH ZDWHU FRQWHQW GHFUHDVHV 7KLV ZDV REVHUYHG IRU ERWK )H&1fn DQG 842 ZKHUH WKH NLQHWLFV LPSURYH DV ]( ZDWHU FRQWHQW GHFUHDVHV 7KH IUDFWLRQ RI WKH HOHFWURGH ZKLFK LV LQ FRQWDFW ZLWK WKH RLO SKDVH ZLOO KDYH D VXUIDFWDQW OD\HU LQ WKH IRUP RI KHPLPLFHOOHV 6LQFH WKH VXUIDFWDQW DGVRUEV WDLO ILUVW RQWR WKH HOHFWURGH LQ WKH RLO HQYLURQPHQW SRODU KHDG JURXSV ZLOO LQWHUDFW ZLWK RWKHU KHDG JURXSV UDWKHU WKDQ RLOf VR WKDW WKH K\GURSKRELF VXUIDFWDQW WDLOV DUH LQ FRQWDFW ZLWK WKH RLO 7KXV UHYHUVH KHPLPLFHOOHV DUH IRUPHG )LJXUH f 6LPLODU IRUPDWLRQ RI QRUPDO KHPLPLFHOOHV RQ K\GURSKLOLF VXUIDFHV KDV EHHQ REVHUYHG >@ 7KH NLQHWLFV RI SUREHV ZKLFK SDVV HDVLO\ WKURXJK WKH VXUIDFWDQW OD\HU ZLOO EH XQDIIHFWHG )RU LQVWDQFH )F KDV UHYHUVLEOH NLQHWLFV LQ DTXHRXV RUJDQLF PLFHOODU DQG ]( VROXWLRQV 2Q WKH RWKHU KDQG 842 GRHV QRW HDVLO\ SHQHWUDWH WKH VXUIDFWDQW

PAGE 125

OD\HU 7KXV UHDFWLRQV DUH REVHUYHG IRU ERWK DTXHRXV DQG RLO SDWKZD\V 6LQFH LQ WKH RLO SDWKZD\ D WKLFNHU VXUIDFWDQW OD\HU LV LQYROYHG LWV NLQHWLFV DUH VORZHU WKDQ IRU WKH DTXHRXV SDWKZD\ $GVRUSWLRQ 3UREH DGVRUSWLRQ GHFUHDVHV LQ PLFURKHWHURJHQHRXV VROXWLRQV VLQFH SUREHV PD\ EH VROXELOL]HG LQ WKH PLFURKHWHURJHQHRXV VROXWLRQ HQYLURQPHQW LQVWHDG RI DGVRUELQJ RQWR WKH HOHFWURGH 7KLV ZDV REVHUYHG IRU K\GURSKRELF 09r ZKLFK VWURQJO\ DGVRUEV RQ *& LQ DTXHRXV VROXWLRQV EXW GRHV QRW DGVRUE LQ 6'6 (V +RZHYHU 09r LV HOHFWURVWDWLFDOO\ DWWUDFWHG WR WKH DGVRUEHG VXUIDFWDQW OD\HU DQG LV K\GURSKRELF HQRXJK WR ZHDNO\ FRDGVRUE ZLWK WKH VXUIDFWDQW RQ WKH HOHFWURGH $V LQGLFDWHG E\ LQFUHDVLQJ LALSD ZLWK GHFUHDVLQJ X( ZDWHU FRQWHQW DGVRUEDQFH RI 09rn LQFUHDVHV ZLWK GHFUHDVLQJ ZDWHU FRQWHQW 7KLV FDQ EH DWWULEXWHG WR WKH GLVRUGHULQJ RI WKH VXUIDFWDQW OD\HU ZKLFK DOORZV PRUH 09n WR FRPH LQ FRQWDFW ZLWK WKH HOHFWURGH RU EHWWHU VROXELOL]DWLRQ RI 09r ZKLFK DOORZV DGVRUSWLRQ RI 09n WR EHFRPH PRUH VLJQLILFDQW ,Q DOO (V WKH DGVRUEHG VXUIDFWDQW OD\HU DQG WKH K\GURSKRELF SKDVH HOLPLQDWH VWURQJ SUREH DGVRUSWLRQ 7KLV GHFUHDVH LQ SUREH DGVRUSWLRQ GXH WR DGVRUSWLRQ RI VXUIDFWDQW RQ WKH HOHFWURGH DQG VROXELOL]DWLRQ RI K\GURSKRELF SUREHV KDV DOVR EHHQ VKRZQ IRU PLFHOOHV >@

PAGE 126

$33(1',; $ 52/( 2) 3$57,7,21,1* ,1 '(3(1'(1&( 2) 352%( ',))86,21 &2()),&,(17 21 7+( &21&(175$7,21 'HULYDWLRQ )RU D GURSOHW FDSDEOH RI ELQGLQJ PXOWLSOH VROXWH PROHFXOHV WKH HTXLOLEULXP PD\ EH ZULWWHQ DV 0 Q; r 0;Q $Of ZKHUH 0 WKH PLFURHPXOVLRQ GURSOHW ; WKH VROXWH PROHFXOH DQG Q QXPEHU RI ; ERXQG WR 0 7KHQ .nQ >0;-^>0@>;@Q` $f ZKHUH .nQ WKH HTXLOLEULXP FRQVWDQW IRU HTXDWLRQ $O 7KH DPRXQW RI ; ERXQG WR WKH PLFURHPXOVLRQ GURSOHW ;E FDQ EH H[SUHVVHG DV ;E Q>0;$f RU ;E >0@Q.nQ[Q $f ZKHUH [ FRQFHQWUDWLRQ RI XQERXQG ; 7KHUHIRUH WKH IUDFWLRQ RI ERXQG ; IE LV IE ;K[ ;Ef $f

PAGE 127

%\ FRPELQLQJ HTXDWLRQV $ DQG $ IE >0@Q.nQ[Q[ >0@ Q.n Q[Qf $f )RU FRQYHQLHQFH Q.nQ LV ZULWWHQ DV DQG ZLWK UHDUUDQJLQJ HTXDWLRQ $ FDQ EH ZULWWHQ DV IE >0@.Q[Qr >0-.9nf $f )RU IDVW H[FKDQJHV EHWZHHQ WKH DTXHRXV SKDVH DQG WKH GURSOHW WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW 'n LV UHODWHG WR WKH GLIIXVLRQ FRHIILFLHQW RI WKH SUREH LQ WKH DTXHRXV SKDVH DQG WKH GLIIXVLRQ FRHIILFLHQW RI WKH GURSOHW E\ >@ 'n OfIEf 'IE $f )URP HTXDWLRQ $ OIE >0@ .Q[Qnf $f DQG VXEVWLWXWLQJ HTXDWLRQV $ DQG $ LQWR HTXDWLRQ $ 'n >0@.Q;Qff '>0@.Q;QfO >0@.Q;Qff $f 6LQFH [ DQG >0@ FDQQRW EH PHDVXUHG WRWDO FRQFHQWUDWLRQV RI SUREH &[ DQG GURSOHWV &+ DUH XVHG LQVWHDG ZKHUH &[ [ >0@.Q[Q $OOf DQG

PAGE 128

&f >0@ Qf >0@.Q;Q $f ZKLFK FDQ EH UHDUUDQJHG WR [ &[ >0@ .Q[Qf $f >0@ &O OQ-.A+f $f 6LQFH WKH H[SUHVVLRQ >0@ .A[ LV WKH H[SUHVVLRQ LQ HTXDWLRQ $ ZKLFK QHHGV WR EH UHIRUPXODWHG > 0 @ .Q[Qf &0.Q&[Qn^ Qf .Q[Qf >0@ .Q[Qnf Q` $f ,I WKH SUREH LV WLJKWO\ ERXQG WR WKH DJJUHJDWH LH [ m &[f WKH DSSUR[LPDWLRQ OQf.Q[Q m DQG >0MOA[n m PD\ EH XVHG WKHQ HTXDWLRQ $ FDQ EH ZULWWHQ DV 'n &0.Q&[Qnf '&0.&[QnO &P.&[ff $f (TXDWLRQ $ ZDV GHULYHG VLPLODUO\ E\ 5XVOLQJ HW DO >@ 6LQJOH 3UREH 3HU $JJUHJDWH ,I LW LV DVVXPHG WKDW WKHUH LV RQO\ RQH SUREH SHU PLFURHPXOVLRQ GURSOHW Q HTXDWLRQ $ FDQ EH ZULWWHQ DV 'n &K.f '&P. &K.f $f (TXDWLRQ $ VKRZV WKDW WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW 'nf LV QRW GHSHQGHQW RQ SUREH FRQFHQWUDWLRQ IRU Q

PAGE 129

/RZ 3UREH &RQFHQWUDWLRQ $W YHU\ ORZ SUREH FRQFHQWUDWLRQV &[ LW ZLOO DOVR EH WUXH WKDW &0.Q&[Qn m (TXDWLRQ $ ZLOO WKHQ EH 'n $f ZKLFK VWDWHV WKDW WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW ZLOO EH HTXDO WR WKH GLIIXVLRQ FRHIILFLHQW LQ WKH DTXHRXV SKDVH 6LPLODUO\ HTXDWLRQ $ ZLOO EH WUXH IRU SRRU ELQGLQT RI SUREH WR WKH GURSOHW .Q +LJK 3UREH &RQFHQWUDWLRQ $W YHU\ KLJK SUREH FRQFHQWUDWLRQV &[Qn !! WKHQ &+.Q&[Qn } (TXDWLRQ $ ZLOO WKHQ EH 'n 'A &+.Q&[Qnf $f DQG VLQFH &A&An } &+.Q&[Qnf m DQG 'n $ f VR WKH DSSDUHQW GLIIXVLRQ FRHIILFLHQW ZLOO EH WKH GLIIXVLRQ FRHIILFLHQW RI WKH GURSOHW 6LPLODUO\ HTXDWLRQ $ ZLOO DOVR EH WUXH IRU YHU\ VWURQJ ELQGLQJ RI SUREH WR WKH GURSOHW .Q !!

PAGE 130

$33(1',; % '(3(1'(1&( 2) )250$/ 327(17,$/6 21 ',))86,21 &2()),&,(176 $1' 3$57,7,21,1* &2167$176 'HULYDWLRQ )RU WKH V\VWHP 2[X Hn rr 5HGX WL WL %Of 2[+ Hn rr 5HG+ ZKHUH 2;\ WKH R[LGL]HG IRUP RI WKH SUREH LQ WKH DTXHRXV SKDVH [+ WKH R[LGL]HG IRUP RI WKH SUREH LQ WKH RLO DQGRU PHPEUDQH SKDVH 2[ WKH R[LGL]HG IRUP RI WKH SUREH LQ WKH HQWLUH PLFURHPXOVLRQ 5HGX WKH UHGXFHG IRUP RI WKH SUREH LQ WKH DTXHRXV SKDVH 5HG+ WKH UHGXFHG IRUP RI WKH SUREH LQ WKH RLO DQGRU PHPEUDQH SKDVH DQG 5HG WKH UHGXFHG IRUP RI WKH SUREH LQ WKH HQWLUH PLFURHPXOVLRQ 8VLQJ WKHVH GHILQLWLRQV WKH IROORZLQJ H[SUHVVLRQV DUH GHILQHG >2[@ >2;\@ >;+@ %f >5HG@ >5HG\@ >5HG%f .R >2[X@>2[0@ %f .U >5HGZ@>5HG0@ %f

PAGE 131

7KH 1HUQVW HTXDWLRQ IRU DTXHRXV VROXWLRQV LV ( (rnDT 57Q) ,Q >2;\@>5HG-f %f ZKHUH ( WKH H[SHULPHQWDO SRWHQWLDO 9f (r nDT WKH DTXHRXV IRUPDO SRWHQWLDO 9f 5 WKH JDV FRQVWDQW &9PROHf.f 7 WKH WHPSHUDWXUH .f Q WKH QXPEHU RI HOHFWURQV HTPROHf ) )DUDGD\nV FRQVWDQW &HTf )URP HTXDWLRQV % WKURXJK % LW PD\ EH VKRZQ WKDW >2[@ >2;\@ >2;\@A %f .T>2[@ .-2;\@ >2;\@ %f .T>2[@ >2;\+.Rf %f .>2;@. f >2;\@ %f DQG VLPLODUO\ .A5HG@A f >5HG\@ %OOf %\ VXEVWLWXWLQJ HTXDWLRQV % DQG %OO LQWR HTXDWLRQ % LW PD\ EH VKRZQ WKDW ( (r nDT 57Q) ,Q ^.J >2[@ .Uf.U>5HG@ .Tf ` %f ZKLFK FDQ DOVR EH ZULWWHQ DV ( (rnDT 57Q) ,Q >2[@>5HG@f 57Q) ,Q ^AAf.5^.4f f %f

PAGE 132

6LQFH ( LV DQ H[SHULPHQWDO SRWHQWLDO GHWHUPLQHG E\ FXUUHQW LW ZLOO EH D IXQFWLRQ RI ERWK FRQFHQWUDWLRQ DQG GLIIXVLRQ FRHIILFLHQW >@ )RU >2[@ m >5HG@ ( (rn 57Q) ,Q 'U'f %f ZKHUH ( WKH H[SHULPHQWDO KDOIZDYH SRWHQWLDO 9f '5 WKH GLIIXVLRQ FRHIILFLHQW RI WKH UHGXFHG IRUP RI WKH SUREH FPVf DQG WKH GLIIXVLRQ FRHIILFLHQW RI WKH R[LGL]HG IRUP RI WKH SUREH FPVf ,Q F\FOLF YROWDPPHWU\ ( (SD (SFf 7KXV HTXDWLRQ % FDQ EH ZULWWHQ DV ( (rnDT 57Q) OQ 9'Rf 57Q) OQ ..5f.5.f ` %f *HRUJHV DQG 'HVPHWWUH >@ DQG 2KVDZD HW DO >@ KDYH DOVR GHULYHG WKLV HTXDWLRQ 2LO6ROXEOH 2[ DQG 5HG %RWK 2[ DQG 5HG DUH VWURQJO\ DVVRFLDWHG ZLWK WKH RLO SKDVH 7KHUHIRUH .T&F, DQG A (TXDWLRQ % LV WKHQ ( (rnDT 57Q) OQ rUGRf 57Q) ,Q 99 %f 6LQFH ERWK SUREHV DUH LQ WKH VDPH PLFURHQYLURQPHQW LW LV DOVR UHDVRQDEOH WKDW '5 a LQ ZKLFK FDVH ( ( r n JT 57Q) ,Q 9.Uf %f

PAGE 133

.DLIHU DQG %DUG XVHG HTXDWLRQ % IRU WKH ELQGLQJ RI 09f WR 6'6 PLFHOOHV >@ .RED\DVKL DQG $QVRQ XVHG WKLV HTXDWLRQ LQ UHIHUHQFH WR SRO\PHU ILOPV >@ DQG &DUWHU HW DO KDYH XVHG HTXDWLRQ % IRU ELQGLQJ RI HOHFWURDFWLYH SUREHV WR '1$ >@ :DWHU6ROXEOH 2[ DQG 5HG +HUH QHLWKHU 2[ QRU 5HG LV VWURQJO\ DVVRFLDWHG ZLWK WKH RLO SKDVH 7KHUHIRUH .J} DQG .f}O (TXDWLRQ % LV WKHQ (L (rnDT 57Q) ,Q '5'4f %f $JDLQ VLQFH ERWK SUREHV DUH LQ WKH VDPH HQYLURQPHQW '5 m DQG ( ( r L DT :DWHU6ROXEOH 2[ %f +HUH 2[ LV SULPDULO\ LQ WKH DTXHRXV SKDVH 7KHUHIRUH .J}O DQG '5r'4 (TXDWLRQ % LV WKHQ ( (rnDT 57Q) OQ 9'Rf 57Q) OQ ^ .5f.5f %f ,I 5HG LV SULPDULO\ LQ WKH RLO SKDVH Am (TXDWLRQ % LV WKHQ (9 (rnDT 57Q) OQ 'U'Tf 57Q) OQ .5f %f

PAGE 134

(TXDWLRQ % ZDV XVHG E\ 2KVDZD DQG $R\DJXL IRU ELQGLQJ RI )F WR &7$% PLFHOOHV >@ :DWHU6ROXEOH 5HG +HUH 5HG LV SULPDULO\ LQ WKH DTXHRXV SKDVH 7KHUHIRUH A!! DQG '5r'4 (TXDWLRQ % LV WKHQ ( (2DT 57Q) OQ 9'Rf 57Q) OQ .T,.Tf` %f ,I 2[ LV SULPDULO\ LQ WKH RLO SKDVH .T&F, DQG ( (r n DT 57Q) OQ 'U'f 57Q) OQ .R %f

PAGE 135

$33(1',; & ())(&7 2) 3+ $1' 3.J 21 )250$/ 327(17,$/ 2) 48,121( 'HULYDWLRQ )RU WKH UHDFWLRQ 4 + Hn rr 4+ &Of ZKHUH 4 DQ\ TXLQRQH + SURWRQ Hn HOHFWURQ DQG 4+ FRUUHVSRQGLQJ K\GURTXLQRQH WKH IROORZLQJ DFLG GLVVRFLDWLRQV FDQ RFFXU TK r 4+n + &f 4+n r 4+f + &f 7KH DFLG GLVVRFLDWLRQ FRQVWDQW IRU HTXDWLRQ & LV DQG LV WKH DFLG GLVVRFLDWLRQ FRQVWDQW IRU HTXDWLRQ & ZKHUH DQG FDQ EH ZULWWHQ DV > 4+ @ > + @ &f >4+@ N >4@ >+@ &f >4+f@ 7KH 1HUQVW HTXDWLRQ IRU HTXDWLRQ &O LV

PAGE 136

57 >4@>+@ ( ( ,Q &f ) >4+@ ZKHUH ( SRWHQWLDO (r VWDQGDUG SRWHQWLDO 5 JDV FRQVWDQW 7 WHPSHUDWXUH ) )DUDGD\fV FRQVWDQW :KHQ WKH FRQFHQWUDWLRQ RI SURGXFWV HTXDOV WKH FRQFHQWUDWLRQ RI UHDFWDQWV DW D JLYHQ S+ ( (nn IRUPDO SRWHQWLDO )RU WKH FDVH RI HTXDWLRQ &O ( (f ZKHQ >4@ >4+@ >4+@ >4@ &f ZKLFK FDQ EH VXEVWLWXWHG LQWR HTXDWLRQ & WR REWDLQ DQ H[SUHVVLRQ IRU WKH IRUPDO SRWHQWLDO 57 >+@ (r n (f ,Q >4+@ >4+n@ >4f@f &f ) >4+@ DQG E\ UHDUUDQJLQJ 57 >+@>4+f@ >+@>4f@ ( ( f§ ,Q >+@ f§ &f Q) ^ >4+@ >4+@ f 6LQFH >+@>4n@ .. &f >4+@ HTXDWLRQV & DQG & FDQ EH VXEVWLWXWHG LQWR & DQG (r (r 57)f ,Q >+@ > + @ ..f &OOf $W r& WKH (rf LQ YROWV FDQ EH H[SUHVVHG DV

PAGE 137

(n (r ORJ >+@ >+ @. ..f &f /RZ S+ ,I WKH S+ m >+@ LV PXFK OHVV WKDQ .f WKHQ WKH WHUPV >+r@A DQG LQ HTXDWLRQ & DUH QHJOLJLEOH 7KHUHIRUH HTXDWLRQ & FDQ EH ZULWWHQ DV (}n H ORJ >+@ &f RU (rn (r S+ &f 7KXV WKH GHSHQGHQFH RI SRWHQWLDO RQ S+ P9S+ ,QWHUPHGLDWH S+ ,I S. S+ m S. WKHQ WKH WHUPV >+@ DQG .. LQ HTXDWLRQ & DUH QHJOLJLEOH 7KHUHIRUH HTXDWLRQ & FDQ EH ZULWWHQ DV (r n (r ORJ >+ @. &f RU ( r (r 2S+ S. &f§f 7KXV WKH GHSHQGHQFH RI SRWHQWLDO RQ S+ P9V

PAGE 138

+LJK S+ ,I S.M m S+ WKHQ WKH WHUPV >+@ DQG >+r@A LQ HTXDWLRQ & ZLOO EH QHJOLJLEOH 7KHUHIRUH HTXDWLRQ & FDQ EH ZULWWHQ DV (n (r ORJ &f RU (r n (r S._ S.f &f ZLWK QR GHSHQGHQFH RI SRWHQWLDO RQ S+

PAGE 139

$33(1',; 48,121( 0(&+$1,60 $1' 7+( ())(&7 2) ,1',9,'8$/ 67(36 21 )250$/ 327(17,$/ 7KH UHGXFWLRQ RI D TXLQRQH 4f WR WKH FRUUHVSRQGLQJ K\GURTXLQRQH 4+f FRQVLVWV RI WZR FRQVHFXWLYH HOHFWURQ WUDQVIHUV DQG WZR SURWRQ WUDQVIHUV $OO WKH SRVVLEOH HOHFWURQ DQG SURWRQ WUDQVIHUV LQ WKH PHFKDQLVP FDQ EH VXPPDUL]HG LQ WKH ER[ VFKHPH DV VKRZQ EHORZ ( r ) r r 4 4 rr 4 W,.M XN WO. 4+ r 4+f 4+n 'Of ) ) r A W ,. WO. WL.M 4+ 4+n 4+ ( r (? ZKHUH (r LV WKH VWDQGDUG SRWHQWLDO IRU WKH HOHFWURQ WUDQVIHU UHDFWLRQ DQG LV >+@ WLPHV WKH HTXLOLEULXP FRQVWDQW IRU WKH SURWRQDWLRQ )RU H[DPSOH (r LV VWDQGDUG SRWHQWLDO IRU WKH UHGXFWLRQ RI 4 WR 4 DQG >4+@>4@ 7KH 1HUQVW HTXDWLRQ LV 57 >2[@ ( ( r ,Q 'f Q) >5HG@

PAGE 140

)RU WKH ILUVW HOHFWURQ WUDQVIHU LQ WKH ER[ VFKHPH HTXDWLRQ 'Of >2;@ >4@ >4+@ >4+@ 'f DQG >5HG@ >4@ >4+f @ >4+@ 'f 7KH IROORZLQJ H[SUHVVLRQV DUH DOVR GHILQHG I .n 'f I . 'f 6XEVWLWXWLQJ IRU I DQG I PD\ DOVR EH ZULWWHQ DV >4+@ >4+@ >4@ >4+@ >4+@ >4+@ >4+f@ >4+f@ >4 @ >4+f @ >4+@ >4+@ 'f 'f 6XEVWLWXWLQJ HTXDWLRQV DQG LQWR DQG JLYHV UHVSHFWLYHO\ I > 2[ @ > 4+ @ 'f I >5HG@ >4+f @ 'f 6XEVWLWXWLQJ HTXDWLRQV DQG LQWR HTXDWLRQ ZKHUH Q O OHDGV WR

PAGE 141

57 I >4+@ ( (r f§ ,Q 'OOf ) I>4+@ ZKLFK FDQ EH ZULWWHQ DV 57 I 57 >4+@ ( ( r f§ ,Q f§ ,Q 'f ) I ) >4+n@ $OVR WKH SRWHQWLDO (f IRU WKH UHGXFWLRQ 4+ Hf r 4+n 'f FDQ EH ZULWWHQ DV 57 >4+@ ( (r ,Q 'f ) >4+n@ $W HTXLOLEULXP DOO UHGXFWLRQV WDNH SODFH DW WKH VDPH SRWHQWLDO 7KHUHIRUH ( LQ HTXDWLRQ PXVW HTXDO ( LQ HTXDWLRQ DW HTXLOLEULXP HTXDWLRQ PD\ EH VXEVWLWXWHG LQ 7KXV 57 I ( (r f§ ,Q ( ( r 'f ) I$ ZKLFK DIWHU UHDUUDQTHPHQW LV ( r ( r 57 f§ ,Q ) 'f 6LQFH (r H[SUHVVHV WKH DSSDUHQW VWDQGDUG SRWHQWLDO IRU WKH UHGXFWLRQ RI DOO IRUPV RI TXLQRQH LW LV GHILQHG DV (r (U

PAGE 142

DQG WKH H[SUHVVLRQ IRU WKH UHODWLRQVKLS EHWZHHQ VWDQGDUG SRWHQWLDOV IRU WKH LQGLYLGXDO PHFKDQLVPV DQG WKH HTXLOLEULXP FRQVWDQWV IRU WKH LQGLYLGXDO SURWRQDWLRQV LV LGHQWLFDO WR WKDW GHULYHG E\ /DYLURQ >@ (U (r 57)f ,Q IIf 'f 7KH H[SUHVVLRQ IRU WKH SRWHQWLDO RI WKH VHFRQG HOHFWURQ WUDQVIHU (U FDQ EH GHULYHG LQ D VLPLODU PDQQHU XVLQJ WKH VHFRQG SDUW RI WKH ER[ VFKHPH 'Of ZKHUH >R[@ >4a@ >4+f @ >4+f@ 'f >UHG@ >4r@ >4+@ >4+@ 'f I .V 9 'f )URP WKLV (S ( 57)f ,Q IIf 'f 7KH HTXLOLEULXP SRWHQWLDO (rWf IRU WKH RYHUDOO UHDFWLRQ RI 4 + Hn rr 4+ 'f LV WKHQ GHILQHG DV ( r W (U (Uf 'f

PAGE 143

5()(5(1&( /,67 6( )ULEHUJ 3 %RWKRUHO 0LFURHPXOVLRQV 6WUXFWXUH DQG '\QDPLFV &5& 3UHVV %RFD 5DWRQ )/ 0/ 5REELQV %RFN -6 +XDQJ &ROORLG ,QWHUIDFH 6FL +7 'DYLV -) %RGHW /( 6FULYHQ :* 0LOOHU 3K\VLFD $ 5( %DUGHQ 6/ +ROW 6ROXWLRQ &KHPLVWU\ RI 6XUIDFWDQWV ./ 0LWWDO (G 3OHQXP 3UHVV 1HZ
PAGE 144

5 6FKRPDHFNHU %+ 5RELQVRQ 3', )OHWFKHU &KHP 6RF )DUDGD\ 7UDQV %. 0LVKUD %6 9DODXOLNDU -7 .XQMDSSX & 0DQRKDU &ROORLG ,QWHUIDFH 6FL & +HUPDQVN\ 5$ 0DFND\ &ROORLG ,QWHUIDFH 6FL /HWWV 5$ 0DFND\ ,QRUJ &KHP 5$ 0DFND\ 16 'L[LW 5 $JDUZDO 53 6HLGHUV 'LVSHUVLRQ 6FL 7HFKQ -& 5XVVHOO '* :KLWWHQ $P &KHP 6RF (: .DOHU +7 'DYLQ /( 6FULYHQ &KHP 3K\V 3 6WLOEV 5DSDFNL % /LQGPDQ &ROORLG ,QWHUIDFH 6FL 5 /HXQJ '2 6KDK &ROORLG ,QWHUIDFH 6FL $ &HJOLH .3 'DV % /LQGPDQ &ROORLGV 6XUIDFHV +0 &KHXQJ 6 4XWXEXGGLQ 59 (GZDUGV DQG -$ 0DQQ -U /DQJPXLU 6 4XWXEXGGLQ .5 &KRVKL $ %KDWLD $ +XVVDQ $Q (OHFWURFKHPLFDO ,QYHVWLJDWLRQ RI DQ 2LOLQ:DWHU 0LFURHPXOVLRQ 6\PSRVLXP RQ 0LFURHPXOVLRQV $,&K( $QQXDO 0HHWLQJ &KLFDJR 1RYHPEHU $ (VKXLV +DUEHUV ''RRUQLQN 3) 0LMQOLHII /DQJPXLU /0DJLG 5 7ULROR -6 -RKQVRQ -U 3K\V &KHP 0 $OPJUHQ -( /RIURWK &ROORLG ,QWHUIDFH 6FL $ 0DOOLDULV /DQJ 6WXUQ 5 =DQD 3K\V &KHP 3 /LDQRV /DQJ & 6WUD]LHOOH 5 =DQD 3K\V &KHP

PAGE 145

% /LQGPDQ 3 6WLOEV 0( 0RVHOH\ &ROORLG ,QWHUIDFH 6FL % -QVVRQ + :HQQHUVWURP 3* 1LOVVRQ 3 /LQVH &ROORLG 3RO\PHU 6FL 6KLQRGD 0 $UDNL $ 6DGDJKLDQL $ .KDQ % /LQGPDQ 3K\V &KHP :2 3DUNHU -U 3 $OERQLFR ( %RUJDUHOOR %OXWH &ROORLGV 6XUIDFHV '0 $QGHUVRQ + :HQQHUVWURP 3K\V &KHP < 2KVDZD < 6KLPD]DNL 6 $R\DJXL (OHFWURDQDO &KHP < 2KVDZD 6 $R\DJXL (OHFWURDQDO &KHP *HRUJHV -: &KHQ &ROORLG 3RO\PHU 6FL *HRUJHV $ %HUWKRG (OHFWURDQDO &KHP 0 6WDFNHOEHUJ 0 3LOJUDP 0 7RRPH = (OHFWURFKHP $%DUG /5 )DXONQHU (OHFWURFKHPLFDO 0HWKRGV )XQGDPHQWDOV DQG $SSOLFDWLRQV :LOH\ DQG 6RQV 1HZ
PAGE 146

-) 5XVOLQJ &1 6KL 7) .XPRVLQVNL $QDO &KHP $ 5RX[ 5RX['HVJUDQJHV -3 ( *UROLHU $ 9LDOODUG &ROORLG ,QWHUIDFLDO 6FL 6KLQRGD 0 $UDNL $ 6DGDJKLDQL $ .KDQ % /LQGPDQ 3K\V &KHP % /LQGPDQ 6KLQRGD 8 2OVVRQ $QGHUVRQ .DHOVWUP + :HQQHUVWURP &ROORLGV 6XUIDFHV % /LQGPDQ 1 .DPHQND 70 .DWKRSRXOLV % )UXQ 3* 1LOVVRQ 3K\V &KHP % /LQGPDQ 2 6RGHUPDQ + :HQQHUVWURP 6XUIDFWDQW 6ROXWLRQV 1HZ 0HWKRGV RI ,QYHVWLJDWLRQ 5 =DQD HG 0DUFHO 'HNNHU 1HZ
PAGE 147

5+ 7KRPSVRQ 1DWXUDOO\ 2FFXUULQJ 4XLQRQHV ,,, 5HFHQW $GYDQFHV &KDSPDQ DQG +DOO 1HZ
PAGE 148

5 $GDPV (OHFWURFKHPLVWU\ DW 6ROLG (OHFWURGHV 0DUFHO 'HNNHU 1HZ
PAGE 149

%,2*5$3+,&$/ 6.(7&+ 6WHSKDQLH $QQ 0\HUV ZDV ERUQ LQ %DWWOH &UHHN 0LFKLJDQ RQ 6HSWHPEHU 6KH OLYHG PRVW RI KHU OLIH LQ 8QLRQ &LW\ 0LFKLJDQ JUDGXDWLQJ IURP 8QLRQ &LW\ +LJK 6FKRRO LQ -XQH 6KH WKHQ DWWHQGHG $GULDQ &ROOHJH LQ $GULDQ 0LFKLJDQ ZKHUH VKH UHFHLYHG D %6 GHJUHH LQ FKHPLVWU\ ZLWK D PDWKHPDWLFV PLQRU LQ $SULO ,Q WKH IDOO RI VKH EHJDQ JUDGXDWH VFKRRO DW WKH 8QLYHUVLW\ RI )ORULGD 6KH FRPSOHWHG D 0DVWHU RI 6FLHQFH GHJUHH LQ 'HFHPEHU XQGHU WKH GLUHFWLRQ RI 'U $QQD %UDMWHU7RWK 6KH FRQWLQXHG KHU UHVHDUFK ZRUNLQJ WRZDUG D GRFWRUDWH ZLWK 'U %UDMWHU7RWK

PAGE 150

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ DB $QQD %U $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ &KDLUPDQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ V ':LQHIRUGQHU LXDWH 5HVHDUFK 3URIHVVRU RI FQHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 9DQHLFD
PAGE 151

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 152

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EHKFY36YT_LLP82J INGEST_TIME 2011-07-29T20:04:50Z PACKAGE AA00003307_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES