Citation
Dislocations at lattice mismatched widegap II-VI/GaAs heterointerfaces as laser light scatterers

Material Information

Title:
Dislocations at lattice mismatched widegap II-VI/GaAs heterointerfaces as laser light scatterers experiment and theory
Creator:
Rouleau, Christopher M., 1966-
Publication Date:
Language:
English
Physical Description:
xv, 83 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Cleaning ( jstor )
Electric fields ( jstor )
Emission spectra ( jstor )
Hydrogen ( jstor )
Lasers ( jstor )
Light scattering ( jstor )
Oxides ( jstor )
Plasmas ( jstor )
Signals ( jstor )
Surface temperature ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 79-82).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Christopher M. Rouleau.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002018859 ( ALEPH )
AKK6295 ( NOTIS )
32769129 ( OCLC )

Downloads

This item has the following downloads:


Full Text







DISLOCATIONS AT LATTICE MISMATCHED WIDEGAP II-VI/GaAs
HETEROINTERFACES AS LASER LIGHT SCATTERERS:
EXPERIMENT AND THEORY













By

CHRISTOPHER M. ROULEAU


DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY





























Dedicated to my father












ACKNOWLEDGEMENTS


I would like to express my sincere appreciation to Professor Robert M.


Park, my supervisory


committee chairman and dissertation advisor, for his


constant


professional


guidance,


support,


encouragement


during


research


studies.


The


knowledge


skills


that


shared


greatly


enhanced my learning experience.

I would also like to thank Drs. Paul H. Holloway, Joseph H. Simmons,


Kevin S. Jones, and David B.


Tanner for serving as my doctoral committee.


Their assistance and interest in my work are gratefully appreciated.


I am also indebted to Christopher


Santana,


colleague,


whose


expertise


transmission


electron


microscopy


sample


preparation


analysis was instrumental in developing this dissertation.

Many thanks are also due to Dr. James V. Masi, professor of Electrical


Engineering at


Western New


England


College,


who, as my undergraduate


professor and mentor, encouraged me always to "keep the spirit and curious

mind."







A special word of thanks is also extended to my best friend and wife,


Mary


who


provided


support


encouragement throughout my


graduate


studies.














TABLE OF CONTENTS


ACKNOWLEDGEMENTS

LIST OF TABLES.....

LIST OF FIGURES

ABSTRACT


. S C S S S S S S S S a a S S S S S S S


a. S S S S S S S S S S S 9 5 S a S S S S S S 1jj


CHAPTERS


INTRODUCTION


Background and Motivation .
Outline of Dissertation Contents


* a a a
* S .


2 GaAs SUBSTRATE CLEANING FOR HETEROEPITAXY


Background.
Experimental
MBE S)
Charact
UHV C
Precision
In Situ GaAs i


Apparatus 7
stem Configuration . 7
erization of Optical System .. 10
compatible rf Plasma Source ............... 12
n Substrate Temperature Calibration ......... 21
Surface Cleaning . 25


Conclusions


1 TA OTD T T/-TAT'T


D8~Ze


C1~ ~ r~eb T~T/1 I


~~m~hr~


.


.








33


Experimental Apparatus
MBE Growth Chambel
Laser Probe Apparatus
Heteroepitaxy
Particle Contamination
Ex Situ Substrate Prep
Laser Light Scattering


Laser Light Scattering
Structural Characterization.
Lattice Mismatch Sensitivity
Conclusions .


* C 34
r....................... 34

37
Considerations 37
aration 40
from Typical Epilayers .. 41
from Very Thick Epilayers .... 47
.51
C C a 579
. 59


4 THEORY


The Role of Electric Microfields


Deformation Potential . ... 61
Charged Dislocation Potential 64
Piezoelectric Potential .. 66
The Linear Electro-optic Effect. . 71
Conclusions .. 73


5 CONCLUSIONS . .



BIOGRAPHICAL SKETCH ... .


Background.












LIST OF TABLES


IaWle


uage


ZnSe


material


parameters


necessary


evaluate


coefficient of the microelectric field induced by the deformation


potential (Eq.


S. 0 0 65


ZnSe


material


coefficient
dislocation


parameters


of the m
potential


necessary


licroelectric


(Eq.


field
GaAs


evaluate


induced
material


the
the (


scalar
chargedd


parameters


used in some cases (denoted by a superscript a) since values for
ZnSe were unavailable.. .


scalar












LIST OF FIGURES


Figure


Dage


Schematic


custom-designed


molecular


beam


epitaxy


system showing conventional effusion sources, reflection high


energy


electron


diffraction


system,


ultra-high


vacuum


compatible rf plasma source fitted with a precision leak valve
and gas line for hydrogen. Also illustrated is a schematic of the
experimental setup used to characterize the surface morphology


of GaAs during
light (or lack 1


geometry


cleaning by recording the scattered HeNe laser


thereof)


indicated


during the


in the


figure


cleaning
provides


procedures.


The


simultaneous


reflection high energy electron diffraction analysis as shown.


. 9


Schematic


apparatus


employed


characterize


camera-based detection system transfer function at 632.8nm.


. 1


Camera-based


detection


system


transfer


function


recorded


632.8nm.


Schematic of the ultra-high vacuum compatible rf plasma source


used to generate a flux of atomic hydrogen.


conditions were 320W


Typical operating


forward power (<2W reflected) with an


equilibrium background pressure of H in the
maintained at 5xlO"mbar.


growth chamber


Schematic of the experimental setup used to record the optical
emission spectrum associated with the hydrogen plasma created
in the discharge region of the ultra-high vacuum compatible rf


nl ncm cnnrrp indilata, in ;irra


1 arnA A


u








characteristic optical


emission


spectrum recorded


from


hydrogen plasma region of the ultra-high vacuum compatible rf
plasma source illustrating emission lines characteristic of atomic


hydrogen.


The rf power used to create the discharge was 320W


reflected) while an equilibrium


hydrogen


in the


molecular


beam


background pressure of


epitaxy


growth


chamber


5xlOmbar was maintained.


Inset shows an emission spectrum


from an ECR plasma source (from Sugata et al.1).


Evolution
recorded


vacuum


Spectrum


characteristic


from


compatible


was


hydrogen


plasma


recorded


optical


plasma


source


days


emission


region


as a function


after


that


spectrum
ultra-high


time.


Fig.


Spectrum (b) was recorded after evacuating the H feed line with


a pump for


minutes and then back-filling the line with H.


Spectrum (c) was recorded 24 hours later and spectrum (d) was


recorded


after


several times.


evacuating


back-filling


feed


line


Note: the source was on during recording of the


spectra and off otherwise.


. 20


Schematic of the experimental setup used to calibrate precisely
the substrate temperature by recording the change in scattered
HeNe laser light corresponding to the formation of a eutectic


compound from selected binary alloys.


22


plot


temperature
formation.


substrate surface
showing the


temperature


points


versus


associated


thermocouple


with


eutectic


Inset indicates that there was no more then +1/-4%


error


(normalized


regime explored.


T/C


temperature)


over


temperature


S24


A plot of the intensity of laser light scattering versus substrate


temperature (ramp rate


100C/minute).


The data was recorded


during conventional thermal treatment and during a combined


thermal/H-atom
resnectivelv


treatment


(001)GaAs


wafers,


1/;








Representative


reflection


high


energy


electron


patterns recorded from atomically clean GaAs surfaces resulting


from


conventional


thermal


treatment


thermal/H-atom treatment and after removal of the H-atom flux,
(a), (b), and (c), respectively. .. .. .


Schematic of the experimental setup used to record elastically
scattered laser light (ELLS) and specularly reflected laser light


during


molecular


beam


VI/GaAs heterostructures.


epitaxial


growth


widegap


4 a S S 4 4 5 5 5 4 4 4 5 5 35


Dark-field 1
densities res
continuous (
respectively.
micrographs.


optical
sulting


micrographs


from


seconds)


cleaving,


flow


indicating


burst


cleaning,


typical


particle


cleaning
(b). and


Note: the cleave line runs horizontally through the
S. 39


Intensity
supplied


scattering
American


occurring


Xtal


near


Technology)


ZnSe/GaAs (GaAs
heterointerface as a


function of ZnSe epitaxial deposition time and layer thickness.
Also included in the figure is a laser reflection interferogram to
compare signal phasing. . .


Intensity


scattering


occurrmng


near the


ZnSe/GaAs


(GaAs


supplied by Sumitomo Electric) heterointerface as a function of


ZnSe epitaxial
included in the


deposition
figure is


tunme
a laser


nd layer
reflection


thickness.


Also


interferogram


compare signal phasing.


A ray model illustrating the employment of a HeNe laser beam


to probe
deposition.


ZnSe/GaAs


Defect evolution


heterointerface


gives


during


a scattered


epitaxial


signal


which was detected and quantified using the apparatus shown


in Fig.


C S C S C S 4 4 C S S S S C S S C S C


a aa 4.aa -


*uFlll Ez* *w* I' S ** Ell *r .rln .a u n n .E f'ffUnlf 'V fff a i* ar. a n S .


1r~*4n~


dif~f~raction


combined


n.. nrnr


/n


rr~luu -








thick


30pm)


film.


Also


included


in the


figure


is a laser


reflection interferogram.
this case.


Note that the signals are in phase for
. a a a a a a a a a a .


Plan-view


scanning


electron


micrographs


ZnSe/GaAs)


indicating the surface features present on a thin (-60nm), thick


-840nm)


very


thick


30pm)


film,


respectively.


. a a a a a a a a a


matrix


plan-view


transmission


(70,000X) comparing and contrasting the defects present near
the ZnSe/GaAs heterointerface as a function of film thickness


micrographs


(row


through


= 60,


120,


300,


360,


respectively) and substrate type (column


600,


Xtal Technology and Sumitomo Electric, respectively).

Recompilation of laser scattering data presented in Figs.


840nm,


= ~Amei


52

14 and


15 which compares and contrasts the laser scattering from an
epilayer grown on an American Xtal Technology GaAs wafer


that


wafer.


an epilayer


grown


on a Sumitomo


Epilayers of the thicknesses


indicated


Electric


by the


arrows were targeted for structural characterization.


GaAs


vertical


difference in the detectable onset (in terms of layer thickness)


of scattering.


S* S S a a a S S a a a a a a .. 54


representative


resolution


selected


cross-sectional


area


diffraction


transmission


pattern


electron


and high-
micrograph


which are indicative of the crystallinity and defect type present
in the epilayers represented by the micrographs shown in Figs.


19(g)-(i).


. a a a a a a a a S S S S S S S S S a a a a S S


Elastically scattered laser light data recorded in real-time during
the deposition of ZnSe/GaAs and ZnTe/GaAs heterostructures.


The


room


lattice-mismatches


temperature


indicated


lattice-mismatches.


figure


Note


correspond


the difference


detectable onset (in terms of laver thicknlma nf crnttprin


electron


and 2


Note the


CI1








cartesian


showing


mesh


plot


electric


function


field


intensity


presented in Eq. 1
to the deformation


potential as a function of position around the dislocation core.
The dislocation core lies along the electric field intensity axis.


cartesian


mesh


plot


function


presented


showing the electric field intensity due to a charged dislocation


as a function


position


around


dislocation


core.


The


dislocation core lies along the electric field intensity axis.


cartesian


showing


mesh


plot


piezoelectric


function


field


position around the dislocation core.
along the electric field intensity axis.


mtensity


presented


function


The dislocation core lies
. S S S .












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


DISLOCATIONS AT LATTICE MISMATCHED


WIDEGAP II-VI/GaAs


HETEROINTERFACES AS LASER LIGHT SCATTERERS:


EXPERIMENT


Christopher M.


August,


Chairperson: Robert M.


Park


AND THEORY


Rouleau


1994


Major Department: Materials Science and Engineering

This work concerned an investigation using real-time in situ electron

and laser beam probes of GaAs substrate surfaces intended for epitaxy and


strain


relief


process


associated


with


growing


ZnmS cGaAs


heterostructures by the molecular beam epitaxy technique.


GaAs


surface


cleaning


process


was


developed


using


remote H atom flux supplied by an ultra-high vacuum compatible rf plasma


source.


GaAs surface cleanliness and morphology were monitored in situ


and in ralnt-time nqino rtflprtinn hioh i npirov plpstrnn diffimtinn (RHFr.FTn








From RHEED observations, GaAs surfaces were found to clean readily


at temperatures near


350C using the


H atom treatment as opposed to the


conventional


thermal


treatment,


which requires


temperatures


near


6000C.


The


atomically


clean


GaAs


surfaces


were


found


specular


ELLSS


observations)


when


prepared


using


atom


treatment,


hydrogen


stabilization of the surface is suggested from the RHEED observations.

In terms ofheteroepitaxial growth, a near-normal incidence HeNe laser


probe was


employed


that generated both a specularly


reflected laser light


signal


an ELLS


signal


beyond


a critical


epilayer thickness.


was


determined that the ELLS


signal


was


generated locally at the ZnSe/GaAs


heterointerface, as opposed to the free-surface, based on the observation of


a it phase


difference


between


two


signals,


which


were


monitored


simultaneously.


postulated,


based


theoretical


model,


that


dislocations arising at the ZnSe/GaAs heterointerface can act as laser light

scatterers due to strong microelectric fields that surround the defects and that

perturb the refractive index in a localized manner.

Postgrowth, ex situ transmission electron microscopy was performed

on a selection of heterostructures, and a high degree of correlation was found







defect structure present near the heterointerface,


which strongly supports the


theoretical model.












CHAPTER 1
INTRODUCTION


Background and Motivation


The quality


of a heteroepitaxial structure,


which for the purposes of


work


is a system


comprising


an interface


between


two


dissimilar


materials,


namely


a film


material


a substrate


material,


critically


dependent upon the nature of the substrate surface prior to epitaxy and the


degree


of lattice


parameter


thermal


expansion


coefficient


mismatch


between the two materials.


Photonic devices are particularly sensitive to the


presence


structural


defects


that


arnse


as a consequence


nonideal


substrate surface preparation and/or significant lattice parameter and thermal

expansion coefficient mismatches.

Traditionally, the results of mismatched heteroepitaxy and/or nonideal

surface preparation are revealed by performing postgrowth characterization

of suitably processed samples using techniques such as transmission electron


mimrrnornr, QTIu nk hihronl'rulinn v_ rlA4rnnaa Car naInnna a.., rae a


U~~1Mt~U









characterization


techniques


cannot readily


distinguish


between


sources


defects (substrate surface irregularities, lattice mismatch strain,


etc.).


The


work of this dissertation focused on addressing independently the nature of


a substrate


surface and


issue


of plastic


deformation


a mismatched


heterointerface.


The


subject


material


system


concerned


ZnSe/GaAs


heterostructures.

The primary motivation of the project was to develop in situ optical

probes that could be used to assess wafer quality and to study strain relief


in real-time during epitaxial growth.


An objective was to correlate optical


data recorded during film growth with structural defect analysis data obtained


postgrowth.


Another issue of major concern in this project was to develop


an in situ cleaning technique for GaAs that would provide an ideal surface


epitaxy


namely


a contamination-free,


stoichiometric,


atomically


smooth surface.


Again, the idea was to develop an in situ probe that would


be capable of providing useful information


on the nature of the substrate


surface during in situ processing.


Real-time,


in situ monitoring


techniques,


general,


represent very










energy


electron


diffraction


(RHEED)


employed


on a routine


basis


determine


surface


reconstruction


assess


quality


substrate


surfaces and subsequent epilayers.


Recently, however,


optical


techniques


have become increasing popular due to their noninvasive nature and their


ability


provide


information


on properties


other


than


crystal


structure.


Ellipsometry, for instance, has far-reaching capabilities that include real-time,


monitoring


control


alloy


composition,


growth


rate,


substrate


temperature


during


MBE


deposition."-3


Also,


real-time,


momtormg


free


carter


concentration


doped


ZnSe


films


quantitative cathodoluminescence analysis has


been reported.4


In addition,


Lavoie et al.5 have reported real-time, in situ monitoring of the GaAs oxide


desorption process prior to epitaxial


growth


by measuring the intensity


elastically scattered laser light at the GaAs surface and have concluded that


there is


an associated roughening


of the GaAs


surface.


Also along these


lines, Pidduck et al.6'7 and Robbins et al.' have performed similar elastic laser


light scattering measurements


during


Si MBE


SiGe/Si


heteroepitaxy,


respectively


and have concluded


that changes


surface morphology


r








4
As will be described in the following chapters, we have developed our


own


optical


probing


methods


study


real-time


ZnSe/GaAs


heteroepitaxial


system,


will


demonstrated


that


heterointerface


defects,


rather


than


surface


irregularities,


result


laser


light


scattering


following


plastic


deformation


particular


material


observation of heterointerface laser light scattering is novel.


Outline of Dissertation Contents


system.


The


The dissertation is composed of 5 chapters.


Chapter


presents the


background and motivation for the project.


Chapter


pertains


GaAs


substrate


cleaning


epitaxy


subdivided


into


three


main


sections


describing


experimental


apparatus,


conventional


thermal and combined


thermal/H-atom


cleaning studies,


relevant conclusions.

Chapter 3 pertains to ZnSe/GaAs heteroepitaxy and is subdivided into


three


main


sections


describing


experimental


apparatus,


results


optical


monitoring


during


heteroepitaxy


under


various


conditions,


relevant









Chapter


presents


a theoretical model


account


for the observed


laser


light


scattering


during


ZnSe/GaAs


epilayer


growth,


chapter


summarizes the important findings of the research effort.













CHAPTER 2
GaAs SUBSTRATE CLEANING FOR HETEROEPITAXY


Background


The conventional procedure employed in cleaning GaAs substrates for


epitaxy


which involves wet chemical processing followed by in situ heating


prior to MBE growth, has been extensively studied, for example, by Contour


et al.9


and Vasquez, Lewis and Grunthaner,'o


and by authors cited in these


references.


Problems with this technique, however, include the requirement


of a processing temperature in the vicinity


of 6000C and the fact that the


resultant GaAs surface can be rough on the atomic level.


In recent years,


various novel cleaning procedures have been reported,


including in situ chemical etching of GaAs by gaseous HC1,"


photochemical


processing of GaAs,n and preliminary work on


the removal


of the native


oxides


from the GaAs


surface


using various


hydrogen plasmas.13"


These


plasma


techniques


have


been


applied


with


varymg


degrees


success


Aaiandin a


hrno


nl an mt


a. r*Co j.


UUIIUII~~~~~~~~~lIIIE~~an naea 4..l .a na. C AIIi iII ilI~ Iili:Ir r irnIIIFl


,,,,:,d


~b~YIII~UI)I~M









GaAs


particles


ions


generated


m some


plasmas


degrade surface electronic properties.1'


In an effort to explore new soft procedures, Schaefer et al.,


19 Petit et


20 and Petit and Houzay21 recently reported on the interaction of atomic


hydrogen,


generated by


dissociating H2


via a hot filament,


with


the GaAs


native oxides, concluding that the oxides can be reduced to a large extent by


such a


technique whilst limiting As desorption,


GaAs decomposition,


dopant deactivation.

With these reports in mind, one of the objectives of this work was to


investigate


the use


of an


ultra-high


vacuum


(UHV)


compatible rf plasma


source to generate an atomic hydrogen flux for GaAs oxide reduction.


had previously developed such an rf plasma source for doping ZnSe p-type

via an atomic nitrogen beam.2


Experimental Apparatus


MBE System Confieuration


Growth


chamber.


The


experiments


were


carried


min a custom-








8
UHV compatible rfplasma source manufactured by Oxford Applied Research

(Oxfordshire, UK), which was previously used as a source of nitrogen atoms


for doping ZnSe p-type.


In addition to these conventional components, the


MBE chamber was also configured with a laser probe apparatus as illustrated


in Fig.


Laser probe apparatus.


The apparatus consisted of a imW HeNe laser


(X=632.8nm) mounted


outside


MBE


growth


chamber,


laser beam


being directed through a viewport towards the substrate, which was mounted


on a heated


substrate


holder.


The


detector/amplifier


stage


apparatus consisted of a color, charged coupled device (CCD) video camera


(with a light intensity sensitivity of 2.51ux) and a color video monitor.


The


camera was mounted outside the system on its own viewport, its optical axis

lying along the sample normal, which was 100 away from the optical axis of


the incident laser beam.


This particular geometry provided for simultaneous


RHEED analysis as indicated in the figure.


The camera was focused on the


substrate surface, and the visible spot arising from elastically scattered laser

light (ELLS) due to surface morphology changes (roughening) was displayed








rf Plasma Source


Phosphor
Screen


Movable
Ion
Gauge


Mirror


H Atoms
",


UHV


CCDC


Heated
GaAs
Substrate


Zjnc


HeNe
Laser


Electron
Gun
(RHEED)


Monitor


Bias Network


ELLS Signal
to Recorder


Si photodiode

Figure 1 Schematic of the custom-designed molecular beam epitaxy system
showing conventional effusion sources, reflection high energy electron
diffraction system, and ultra-high vacuum compatible rf plasma source fitted
with a nrecisinn leak valve and oan lin few IhvgrnmC n Aln l ;liitratl ; a


H2


v \J









to the monitor'


cathode ray tube (CRT) over the image of the spot, and the


output voltage from its respective bias network was recorded as a function


of time.


this experiment.


Characterization of Optical System


It should be noted that the specular reflection was not utilized in


Due


the unorthodox nature


of the


detection


system


employed in


quantifying the intensity of elastically


scattered laser light, it was deemed


important to characterize the transfer function of the camera-based detection

system, and the apparatus illustrated schematically in Fig. 2 was employed


to perform this task.


tungsten lamp,


lens,


diffuser,


and laser line filter


combination was used to provide a monochromatic (X=632.8nm) input signal


whose intensity could be varied over a wide dynamic range.


To quantify the


intensity of light entering the camera system from the source, a beam splitter

was placed in front of the camera lens to direct a portion of the input light


towards a photodiode.


The output voltage from the bias network associated


with this photodiode was then proportional to the light intensity directed into








W Lamp



Lens


DiffUser


Laser Line Filter (632.8nm)


Glass
Slide

Neutral
Densityr
Filter


- I-.


Bias Networks


XY Recorder

to Computer


Lens


Si Photodiodes


CCD
Camera


Monitor


~L--LI


I








12
the input voltage, both intensities being recorded simultaneously with an XY

recorder as indicated in the figure.


illustrated


detection


system


exhibited a


threshold


beyond


which


linear


regime


was


observed.


input


intensity


increased,


system


responded


an increasingly


nonlinear fashion


indicated


figure.


This


was


most


likely


automatic


gain


control


circuitry


both


CCD


camera


monitor.


further


increases in input intensity


the system response was clamped, presumably


m response


saturation


of the


CCD


array.


Using this


information,


attempts were made throughout the experiments to keep the detection system


in a regime


where


clamping


occur.


The


system


was,


however,


allowed to operate in the linear/nonlinear regimes so that a reasonable degree

of dynamic range could be achieved.


UHV


Compatible rf Plasma Source


work,


plasma


source


was


fitted


with


an additional


precision leak valve and hydrogen gas line (see Fig.


which allowed for







































Input Intensity (arb.


units)


Figure
632.8n


Camera-based


detection


system


transfer


function


recorded










gas introduced into the discharge chamber.


Figure 4 shows a schematic of


the rf plasma source as configured for hydrogen atom production.

Coupled rf (13.56MHz) energy is manually adjusted with a capacitive


power


matching


unit


so that


reflected


power


is usually


than


approximately


Gas


flow


into


pyrolytic


boron


nitride


(PBN)


discharge chamber is controlled via a UHV


compatible precision leak valve.


water-cooled rf induction


surrounds


the discharge chamber,


silicon-diode-based optical emission monitor provides a measure of plasma


intensity


inside


discharge


chamber.


PBN


multi-aperture


disk


positioned at the end of the discharge chamber allows the hydrogen species


to exit into the growth chamber as shown.


The source of hydrogen was a


conventional high pressure (-2000psig) cylinder ofultra-high-purity (99.999%


H, and <3ppm H20) hydrogen,


which was regulated to


1 Opsig before being


introduced into the precision leak valve.


Characteristic


hydrogen


spectrum.


examine


species


plasma,


optical


emission


spectroscopy


(OES)


was


performed


using


apparatus


shown


Fig.


Following


removal


optical


emission


-


--























4),
0

ro


C
Pca




S





'3


o


a


a

i
at'-

o
.-
-~: 0J
4)


a
'9
14


OI~


$%o


,~rS~6

\ O
trf~$


trS1










UHV\
D Plasma
Discharge


Ziuc


16





Movable
rfPlasma Source Ion
7 Gauge


UHV
SH Atoms
\I


Heated
Substrate
Holder


SFocusing Lens


Grating


IR intensified
Linear Diode Array


Monoc


bromnator


(0.3 m)


Multichannmel
AnMlyzer


I


I


Minor








17
(150 grooves/mm) contained in the monochromator dispersed the light onto


a linear array of 760 IR-intensified silicon diodes.


A multichannel analyzer


converted the signals from the diode array into an emission spectrum.

Figure 6 illustrates a typical optical emission spectrum recorded from


hydrogen


plasma


region


under


standard


operating


conditions


source.


The rf power used to create the discharge


was


320W


while the


equilibrium background pressure of hydrogen in the MBE growth chamber


was 5x10"6mbar.


The emission spectrum shown in Fig.


6 is similar to that


reported


cyclotron


Sugata


resonance


(see


(ECR)


6 inset)


microwave


who


discharge


employed


source,


an electron


although


present spectrum only atomic hydrogen lines are evident as suggested by the


featureless


baseline


strong


emission


lines


commonly


associated


with


electronic


transitions


neutral


hydrogen


atom.


The


emission


lines


designated H, Hp, and I-, represent the first three lines in the characteristic


visible spectrum (Balmer series) of the hydrogen atom,2


and consequently,


atomic hydrogen would seem to compose a significant fraction of the flux

emanating from the rf plasma source.











H (656)


ICl


,
U,
4)


I I
400 500 600

Wavelength (nm)


HW(486)





34)


I. I I


a a a U I


. I


- I


& I I a
- K p t a a p a a


400


450


500


550


600


650


700


750


800


Wavelength (nm)
Figure 6 A acteristic optical emission spectrum recorded from the
hydrogen plasma region of the ultra-high vacuum compatible rf plasma


r


I


I










production,


time-dependent OES


was


performed over a


period of 14 days


following


attainment


hydrogen


plasma


shown


More


specifically


plasma


was


ignited


on selected


days


stabilized,


optical emission spectrum was recorded, and then the rf plasma source was


shut down.


Figure 7 is a compilation of those results, and it should be noted


that all spectra are the same scale.


As indicated in Fig.


7(a), the spectrum recorded on day


indicated


a lack of the characteristic H7 and Hp lines and a broadening of the H, line.


New


features


were


also


present


near


580,


780nm.


After


mechanical pump was used to evacuate the hydrogen feed line for 5 minutes


and the line was back-filled with hydrogen, Fig.


7(b) indicated a return of


the characteristic and Hn lines and a corresponding narrowing of the H,


line.


The features near 580 and 755nm, however,


were not present.


After


24 hours, however,


the features near 580 and 755nm returned as indicated


figure


(see


7(c)).


The


optimum


spectrum,


as indicated


characteristic


hydrogen


emission


lines


featureless


baseline,


represented by Fig.


7(d) and was obtained by evacuating and back-filling the








20

SH H Ha

-\ (a)


0


-(b)







-*





-






400 450 500 550 600 650 700 750 800


Wavelength (nm)
Figure 7 Evolution of the characteristic optical emission spectrum recorded
from the hydrogen plasma region of the ultra-high vacuum compatible rf
plasma source as a function of time. Spectrum (a) was recorded 13 days
after that of Fig.6. Spectrum (b) was recorded after evacuating the H feed
I- ....AL 1-... L_ r a .4 4 44 ,a V .4








21
adopted as a standard operating procedure for all future experiments in which

the rf plasma source was employed.


It is


interesting to


note that the


positions


of the


additional


features


present in Figs.


7(a) and (c) correspond well with emission band locations


associated with active nitrogen,


which is not surprising since the source had


previously


been


used


with


nitrogen24


therefore


likely


most


probable contaminant along with air in the feed line.


Precision Substrate


Temperature Calibration


Before the oxide desorption experiments,


was employed


the laser scattering apparatus


to calibrate precisely the temperature at the surface of the


substrate


monitoring


formation


of a


eutectic


from


selected


binary


alloys.


The melting temperature of In was also used as a low temperature


calibration point.


shown


in Fig.


the heated substrate


holder, having


an integral


thermocouple (T/C) that was displaced from the substrate, was tilted such

that the angle of incidence of the impinging laser beam was 700 since it was










Phosphor
Screen


Eutectic
Alloys


Movable
Ion
Gauge
c-

|


UHV


Mirror -

CCD Ca



HeNe
Laser


















Si photodiode


Zjac


Heated
lubstrate
Holder


Electron
Gun
(RHEED)


Monitor


Bias Network


ELLS Signal
to Recorder


Figure 8 Schematic of the experimental setup used to calibrate precisely the
substrate temperature by recording the change in scattered HeNe laser light









formation.


The specular reflection


was


found to be


least sensitive to this


event, hence the use of the scattered laser light signal.


Temperature


reference


standards


were


formed


electron


beam


evaporation


selected


metals


onto


appropnate


substrates.


Specifically


1000A of Al was deposited onto Si and 1000A of Au was deposited onto Ge

since the eutectic formation temperatures of these binary alloys are 577 and


356C


, respectively.


A third reference standard was formed by attaching a


piece


wire


GaAs


which


upon


reaching


156C


melting


temperature of In,


would


wilt over.


Prior to


being mounted


MBE


growth


chamber, all three references were soldered to a single


Mo holder


with


99.9999%


pure


then


immediately


transferred


a load-lock


mounted on the MBE growth chamber.


The calibration curve shown in Fig.


increasing the


9 was arrived at by very slowly


T/C temperature from room temperature to 6500C and then


ascribing the reference temperatures to events (i.e.,


wilting of the In wire,


Au/Ge eutectic


formation, Al/Si


eutectic formation) as they


occurred.


indicated in the inset of Fig. 9, the erro


r (normalized with respect to the


T/C










600
Teu(AI/Si)



500


400-

T,,(Au/Ge)


300-




200 -

Tm(In)

100 -



0-


100


200


300


400


500


600


T/C Temperature (oC)









250-5000C.


increases


This


with


is a reasonable


increasing


variation


temperature


because


while


the emissivity


thermal


of Mo


conductivity


decreases with increasing temperature.


It should be noted that the calibration


was used in all future experiments to convert monitored, or


T/C, temperature


actual


substrate temperature so reported


temperatures


would


be system


unspecific allowing the present results to be compared to the literature.


In Situ GaAs Surface Cleaning


The


substrates


used


cleaning


study


were


epi-ready,


vertical


gradient freeze (VGF) grown GaAs(001) oriented 20 towards [110] supplied


American Xtal Technology (Dublin,


CA).


Prior to being mounted in the


MBE


growth


chamber,


substrates were


soldered


a Mo


holder with


99.9999% pure In, and then immediately transferred to a load-lock mounted

on the MBE growth chamber.


The


laser


light


scattering


data recorded


from


GaAs


wafers


treated


thermally and using a combined thermal/H-atom treatment are compared and


contrasted in Fig. 10.


A 10C/minute temperature ramp, which was achieved











































1 \
II


--r


0
u,


o
0-



o
0




0
-o-


Sac

B

'C
va


0
- 0O
CO


oW W
o^a
g's
Os
o85'-
III








27
temperature from room temperature to the maximum operating temperature

(6300C) of the heater station as shown in the figure.


indicated in Fig.


10(a),


conventional


thermal


treatment of GaAs


resulted in an associated surface roughening upon oxide desorption, the oxide


desorption


process


being


observed


simultaneous


monitoring


RHEED pattern.


et al.


This result is in agreement with the observations of Lavoie


In contrast, however, surface roughening did not accompany the oxide


desorption process in the case of the combined thermal/H-atom treatment as


evidenced


lack


of laser


scatterng


oxide


desorption regime


indicated


Fig.


10O(b).


Also,


oxide


desorption


temperature


significantly


lower in the case of the combined thermal/H-atom


treatment


than in the case of conventional thermal treatment, 350-3600C versus 610-


6200C,


respectively.


Similar


oxide


desorption


temperatures


have


been


reported in the literature whenever activated hydrogen has been employed to


clean


GaAs. 15-17,19-21


cases,


reduction


in temperature


been


attributed to the fact that the oxygen in the mixed As/Ga oxide (As2O3 and

GaO03) readily reacts with hydrogen at reduced temperatures, more so in the









to be reduced at a very slow rate,


which can be greatly increased by heating


the substrate during processing.


be seen


from Fig.


10(b),


surface


roughening was not observed using the combined thermal/H-atom treatment;


apparently


such


an observation


would


require


operation


substrate


heater beyond its maximum rated power level.

As indicated above, simultaneous monitoring of the RHEED pattern


during


each


treatment


indicated


when


oxide


desorption


process


was


completed.


Upon completion of the oxide desorption process, representative


RHEED patterns of the atomically clean GaAs surfaces were recorded, and


these patterns are shown in Fig.


As indicated in Fig.


11(a), the pattern


resulting from conventional thermal treatment of GaAs is characteristic of a

reconstructed surface, a result that is not surprising because of the presence


of dangling bonds at the free-surface upon oxide desorption.


In contrast, the


RHEED pattern shown in Fig. 11 l(b), which was recorded from a surface that

experienced the thermal/H-atom treatment, is indicative of an unreconstructed


surface, a surface where the atoms maintain


their bulk-like positions.


removing the H-atom flux and raising the temperature to 5500C,


however,









29









~~ Il


V'0







a
0.



9.4


tat'.5
6 U-
Cu
a- V
0B

'a
0J
a

CIta





h rl BC
Vrd .
iffs:










thermally


cleaned surfaces.


It is interesting to note that upon lowering the


temperature


1500C


reapplying


H-atom


flux,


reconstruction


reversed, as indicated by a RHEED pattern that returned to that of Fig. 1 l(b),


suggesting


that


atoms


were


terminating


dangling


bonds.


reconstructed surface was again achieved by removing the H-atom flux and


raising the temperature to 5500C,


is reversible.


which suggests that the termination effect


Finally, exposure to unexcited hydrogen gas (H,) had no effect


on the surface reconstruction,


which clearly illustrates the enhanced reaction


between


atomic


GaAs


surface.


These


observations


(i.e.,


effectiveness of H, reconstruction reversibility, and ineffectiveness of H) are


in agreement with


those


of O'Keeffe


a1.26


and it would


seem


that


impinging hydrogen atoms terminate the dangling bonds, thus allowing the


surface atoms to maintain their bulk-like positions.


Although not specifically


determined in this case, it can be speculated that the GaAs surface is As-rich


following


oxide


desorption


during


treatment


because


of the


similitude


between the present results and those of O'Keeffe et al.? Specifically


were able to compare a deliberately


they


As-stabilized GaAs surface obtained at









temperature corresponded to a two-folded structure (As-stable 2


at low temperature.


1 pattern)


Therefore, they concluded that the reconstructed GaAs


surface following H treatment must be an As-stable 2 X


of the similarity they observed between RHEED patterns.


surface because

It then follows,


based on this final conclusion, that the GaAs surface prior to reconstruction


(during H treatment) must necessarily be As-rich.


It should be noted that the


ZnSe


epilayers


considered


following


chapter


were


grown


unreconstructed GaAs surfaces (i.e.


GaAs surfaces immediately following


H treatment).


Conclusions


GaAs


surfaces


readily


cleaned


temperatures


or below


350C


prior to


MBE


growth


when


prepared


using


combined


thermal/H-atom


treatment,


H-atom


flux


being


derived


from


a UHV


compatible


plasma


source,


opposed


conventional


thermal


treatment,


which requires temperatures in the vicinity of 6000C.


A further


benefit associated with


atom


treatment is


that the atomically


clean









than conventional thermally treated GaAs surfaces,


which are considerably


rougher, as evidenced by laser light scattering observations.












CHAPTER 3
LASER LIGHT SCATTERING DURING ZnSe/GaAs HETEROEPITAXY


Background


Following breakthroughs in the ZnSe p-type doping area24,27


emphasis


has shifted recently in the wide-bandgap II-VI semiconductor research field


toward


provision


lattice-matched


widegap


II-VI/GaAs


epitaxial


structures


blue/green


diode


laser


application.28


Although


first


blue/green


diode


lasers


represented


considerable


achievement29'30


structures employed in the fabrication of these devices were not completely


lattice-matched and, consequently


devices exhibited short lifetimes even at


reduced temperatures.

It is generally accepted that perfect lattice-matching between widegap

II-VI epitaxial materials and GaAs substrates will be a primary requirement

with regard to the development of long-lived (at room temperature) ZnSe-


based blue/green diode lasers.


At present, however, time consuming ex situ


character nation


tec~hninne~c


llrh


ac hiorh


rsnlirtinf n


V 1"t'Ol


AiF~FFFFFFFFFFFFFFFFra~n tn








34
cross-sectional transmission electron microscopy are applied to determine the


extent of lattice-matching in widegap


II-VI/GaAs heterostructures.


The primary objectives of this portion of the work were to develop an

in situ optical probe which could be used to study the strain relief process


associated


with


mismatched


epitaxy


real-time


during


growth


attempt through theoretical and experimental approaches to correlate optical


information


obtained


in situ with major


structural


defects


associated


with


plastic deformation.


Experimental Apparatus


MBE Growth Chamber


As in chapter 2, the experiments were carried out in a custom-designed

molecular beam epitaxy system equipped with conventional effusion sources

for Zn, Se, and Te, a reflection high energy electron diffraction system for

assessing substrate surface quality and subsequent epilayer quality, and an

ultra-high vacuum compatible rf plasma source which was used to remove


GaAs


oxide


prior


epitaxy.


addition


these


conventional








Bias Network


LRI Signal
to Recorder


H2,
Srf Plasma Source


Si I
Photodiode


Phosphor
Screen


Movable
Ion
Gauge

UHV


Mirror


ESe,


CCD C


GaAs
Substrate


HeNe
Laser


zinc


ZnSe
Epilayer


Electron
Gun
(RHEED)


Monitor


ELLS Signal
to Recorder


Bias Network


Si photodiode


~clcL~









Laser Probe Apparatus


The apparatus (slightly


different than that of chapter


2) consisted of


a 1mW HeNe laser (X=632.8nm) mounted outside the MBE growth chamber,

the laser beam being directed through a viewport towards the substrate which


was mounted on a heated Mo substrate holder.


The detector/amplifier stage


of the apparatus consisted of a color CCD camera and a video monitor.


The


camera was mounted outside the system on its own viewport, its optical axis


lying


away from


the optical axis of the incident laser beam,


the laser


beam


having


near-normal


incidence.


The


camera


was


focused


on the


substrate


surface


visible


spot


arising


from


ELLS


defect


evolution was displayed on the video monitor.


The intensity of the scattered


laser light was quantified by attaching a Si photodiode to the monitor's CRT

over the image of the spot and the output voltage from its respective bias

network was recorded as a function of time.


The


specularly


reflected


beam


was


utilized


experiment


monitor film


thickness in situ by employing laser reflection interferometry


(LRI).4


As can


be seen from the figure,


the HeNe


laser was employed to








37
intensity of the reflected signal varied sinusoidally with time during growth

due to interference between the reflection occurring at the growing ZnSe free


surface and the reflection occurring at the ZnSe/GaAs heterointerface.


film


thickness


measurements


performed


on calibration


samples


using


cross-sectional scanning electron microscopy (XSEM) revealed actual film


thicknesses


which


allowed


a correlation


made


between


oscillation


period and film thickness.


Specifically, an oscillation period was determined


to correspond to -120nm of deposited material.


This oscillation period/film


thickness calibration


was


used to deduce the thickness


of the


ZnSe/GaAs


films in real-time during deposition.


It should be noted that the intensities


of both the scattered laser light and the specularly reflected laser light were

recorded simultaneously so that signal phasing could be compared.


Heteroepitaxy


Particle Con


nation Considerations


It was


very


important that prior to


heteroepitaxy,


wafer surface


remain smooth and specular such that any subsequent scattering


could be


could be









promoted such a condition.


This condition, however,


was only


guaranteed


provided the wafer enter the MBE chamber in a smooth and specular state

(i.e., free of surface defects, particulate matter, etc.).


an effort to characterized


the state


of the


wafer


surface prior to


transfer into the load-lock, a full 2"


diameter as-received wafer was scanned


with a HeNe laser and it was found that scattering could not be detected.

Upon cleaving (a practice generally used to economize material), however,

the state of the surface was dramatically altered.


As indicated in Fig.


13(a), a number of particles were generated in the


vicinity of the cleave line, their number density being -1700cm"2


.In an effort


remove


particulate


matter,


short


burst


compressed


chlorodifluoromethane gas from a non-residue dust remover (ultra-filtered to

<0.2pm) was directed at the wafer surface which reduced the particle count


to -1100cm


, a reduction of -35% (see Fig.


13(b)).


As shown in Fig. 13(c),


further exposure to the gas stream (-5 seconds) had a detrimental effect as


evidenced by a substantial increase in particle density,


-10600 to -35800cm-2


depending


on the count location.


The most probable explanation


for the









39
'C5


i-a
dC


CS
01
le
a
we








*a C
rdU
n



^ ~In








40
stream to be accelerated towards the wafer by the impinging gas molecules.

Electrostatic forces then bind the particles to the wafer surface making them


very


difficult to remove.


Based


on this study,


it was decided


that full 2"


diameter as-received wafers would be used for the heteroepitaxy


study to


ensure that scattering could be attributed to heteroepitaxy.


Ex Situ Substrate Preparation


Two types of substrates were used in the heteroepitaxy study.


The


first type was epi-ready,


vertical gradient freeze (VGF) grown


GaAs(001)


oriented 2 towards [110] whereas the second type was liquid encapsulated


Czochralski (LEC) grown GaAs(001) also oriented 20 towards


[110]; their


respective manufacturers were American Xtal Technology (AXT) of Dublin,


CA and Sumitomo Electric of Hyogo, Japan.


Prior to being soldered to a


Mo holder with 99.9999% pure In, the Sumitomo wafers were first cleaned

and oxidized by placing them in an ultra-violet (UV) ozone cleaning system


manufactured by UVOCS Incorporated for 6 minutes.


The combination of


UV (X=254 and 185nm) radiation and ozone generated by these systems have










alternative to thermal and air formed oxides.32 The


AXT


wafers, however,


were untreated as they were epi-ready and required no pre-cleaning before


being


soldered


underwent


holder.


any wet


chemical


a result,


processing and


neither


following


substrate


material


mounting,


they


were immediately transferred to a load-lock mounted on the


MBE growth


chamber.


Laser Light Scattering from


Typical Epilayers


illustrated in Fig.


the case of heteroepitaxy


on the


AXT


wafers,


laser light scattering was not detectable (by the detection system)


upon ZnSe growth initiation until approximately 390nm of material had been


deposited


whereupon


increasingly


intense


scattering


was


detected


with


increasing film


thickness.


The waveform also had an


oscillatory form as


shown


figure.


should


noted


that


order


observe


scattering upon growth initiation, it was imperative that the GaAs surface be


specular following oxide removal as discussed in chapter 2.


The growth was


terminated near 840nm to avoid saturating the detection system as discussed










(s!un


qJe) AIssuesui leu6!s iuI


SE -


C


SJ


o




0





-o
- 0






a
-0






-0


" CN~
E
S

U) "
1=O
Cs)

E C


CO




0
--



t

0
-0


- *









heteroepitaxy on the Sumitomo wafers as indicated in Fig.


Observation


of the RHEED pattern following deposition in each case indicated a smooth


ZnSe


free-surface


which


suggested


that the


source


observed


laser


scattering was at a location other than the free-surface.


The most striking feature of Figs.


14 and 15 is the t phase difference


between the ELLS signal and the LRI signal which, using optical ray tracing,

can be explained by placing an emitter at the heterointerface and considering


intense scattering at the heterointerface as opposed to the free surface.


explain further, the qualitative model illustrated in Fig.


16 was developed.


indicated in Fig.


laser beam


impinges


on the


sample at


near-normal


incidence


a portion


of the


beam


transmitted


into


epilayer and proceeds towards the heterointerface.


It is considered, that in


addition to specular reflection off the heterointerface, a small portion of the


beam


scattered


into


other (nonspecular)


angles


presence of


defects which occur during epitaxy.


For simplicity


only that angle which


points in the direction of the detection system as indicated in the figure is


considered.


The scattered


beam


traverses


the epilayer and


in addition










(si!un qJe) A!suelul leu6gs iui


-s t US


h '3


020






0


0
o





0
O
0
CD





rO
-0




o
- 0


6II


0
- o
cO,


:2'


I!

























CI'-I
Sin





CCI


4'

.-I-


strr


BU


vi



ig
I 3
'-a


'N


ti~;~cta~P2


r: n









free-surface.


Since the index step from epilayer to vacuum is negative, no


phase shift is introduced upon reflection.


The reflected portion of the beam


again traverses the epilayer, reflects off the heterointerface, and then makes

a final pass through the epilayer to emerge on the vacuum side of the free-


surface.


At this point, a x+28 phase shift has been introduced,


7i resulting


from prior reflection off the heterointerface and 28 resulting from traversing


the epilayer twice.


The phase difference, AELS, between the newly emergent


beam and the original portion of the scattered beam is then 28 + x which is

necessarily a function of the wavelength of the laser, K, the refractive index


epilayer,


thickness


epilayer,


angle


transmittance within the epilayer,


In a similar manner, it can be easily


shown


that A


S28 since 69L ELS


due to the small angles involved.


Finally


AELLS" LRI


= 7i and hence the i phase difference between the ELLS


signal and the LRI signal as observed in Figs.


14 and 15.


It is interesting to compare the present results with those of Olson and

Kibbler" who employed a similar technique to monitor scattering from GaP


during


MOCVD


GaP/Si.


The


GaP/Si


system


very


similar









under similar conditions, similar results may be achieved.


Comparing sets


of data, it is apparent that their data resembles the LRI data in Figs.


14 and


15 which would place the source of their scattering outside the epilayer or


more appropriately,


at the free-surface.


They do indeed attribute their ELLS


signal


surface


scattering


quite


easy,


usmg


corollaries


arguments above, to show the lack of a it phase difference between a ELLS

signal and a LRI signal for such a case.


Laser Light Scattering from


Very


Thick Epilayers


To experimentally


demonstrate the case of surface scattering, a very


thick


(>30pm)


ZnSe


film


was


grown


on an AXT


wafer


since


we had


observed in the past via RHEED observations that the surfaces of very thick


ZnSe


layers


appear to


be rather rough.


Upon initiating


growth,


data


resembled that of Fig.


14 in that the ELLS and LRI signal phasing was n.


Very much later on, however, the ELLS and LRI signal phasing shifted to,


remained


as can


observed


Fig.


Observation


RHEED pattern following deposition suggested a rough surface as indicated









(sv!un


qje) Aii!sualui leu!6is I-


0
N
r)


r
-~

r


cr


0





r
_o





0+


U


oo
a r*

* ,M


O *
*S




'pg




4 ag
.0 *0.u




^*rt


's


'0
u~iz


- 0j


'4-4
aO


- mpg'


Sc~


-0
- o
0o









surface had degraded as expected.


Scanning electron microscopy (SEM) was


employed to explore the nature of the degradation and the micrographs in


compare


contrast the


surfaces


of a


very


uki


(60nm)


film,


typical film (840nm), and the very thick (~


that all the films presented in Fig.


30pm) film.


18 were grown on AX


The very thin and typical film, Figs.


It should be noted

[T wafers.


18(a) and (b), respectively


were


essentially featureless except for some debris which aided in focusing the


scanning electron microscope.


As suspected, however,


the very thick film


presented a radical departure from a typical specular surface as evidenced by


the presence of a large number of features as shown in Fig.


18(c).


As can


be observed in the figure, the surface was covered with large faceted features


13800cm-2)


smaller


interspersed


features


7000cm-2)


which


could


possibly


features,


serve


as seeds


because


their


larger


size,


features.


shape,


These


distribution,


large


small


were


clearly


responsible for the observed scattering and substantiate, to a large extent, the

premise that a it phase shift is indicative of heterointerface scattering while


a 0 phase shift is indicative of surface scattering.


Consequently, the present
























I



it


#~',

Ih,* fl

t~~~t -.
~:


~'I,i


- 10pm










Structural Characterization


Many


of the characteristics of the optical data presented in Figs.


, such as the amplitude of the modulation and the


"DC component"


ELLS


signal,


dependent


optical


properties


heterointerface as well as its morphological properties, these characteristics


being


controlled by the multiplication and


propagation of defects near the


heterointerface while the film is growing.


mvestigate


defect


structure


near


heterointerface


function


of film


thickness


with


respect


both


AXT


Sumitomo


wafers


, two series of 6 epilayers were grown to thicknesses of 60,


,300,


360, 600, and 840nm.


Plan-view transmission electron micrographs (PTEM)


of these epilayers are compared and contrasted in Fig.


As can be observed from Fig.


there is a general trend in defect


density which mirrors the increase in optical scattering data presented in Fig.


20, a compilation of Figs.


14 and


Furthermore, the optical data in Fig.


suggests


there


was


a difference


epilayer


quality


which


was


dependent on the tvoe of substrate used.


Specifically.


the detectable onset
































































lFnrP 1 A WnatixY nf nta.-vieTw trmnTmihqirn slrtrn tin mmr'ronhe


~


vll















































-cC


114
* 1"1
IE rr


















































Is.


"orE

II n


*6 P II
0I ~c I



i-fl.


I"I




Cs)

dl.h


w 'a


I









280nm (see Fig. 20(b)).


This difference can most likely be attributed to the


different defect structure present near the heterointerface for layer thicknesses


ranging


from


300nm


(compare


Figs.


19(a)-(c)


Figs.


19(g)-(i)).


Specifically, the micrographs of epilayers grown on AXT


wafers indicate a


typical defect evolution from nearly dislocation free material (see Figs.


and (b)) to dislocated material (see Fig.


19(a)


19(c)) as a result of exceeding the


critical thickness (~


180nm)34 for ZnSe/GaAs.


Those micrographs associated


with


epilayers


grown


on Sumitomo


wafers


(see


Figs.


19(g)-(i)),


however,


indicate some other defect structure near the heterointerface whose density


increased


with


increasing


film


thickness


300nm.


High


resolution


transmission electron microscopy (HRTEM) was performed on these films


despite


presence


of these


defects,


epilayers


remained


single


crystal


excellent


registry


was


maintained


across


ZnSe/GaAs


heterointerface.


A representative selected area diffraction pattern (SADP)


high


resolution


cross-sectional


transmission


electron


micrograph


(HRXTEM) are shown in Figs.


21(a) and (b), respectively


to corroborate


these observations.









































































V~p

I.


It V ./
1 ,. ;-


~g


'awrsP s.. p








57
density which correlates well with the similitude of the optical data following

500nm of film deposition (see Fig. 20).


Lattice Mismatch Sensitivity


The laser probe technique was also applied during the MBE growth


of ZnTe/GaAs epilayers in an effort to explore the technique'


lattice-mismatch.


sensitivity to


The scattering data recorded from the ZnTe/GaAs system


is compared and contrasted to that observed from the ZnSe/GaAs system in


It should be noted that these epilayers were grown on Sumitomo


wafers in an effort to minimize consumption of AXT


wafers.


As can be seen from the figure, the detectable onset of scattering from


the ZnTe/GaAs material system occurred at


-140nm whereas the detectable


onset of scattering from the ZnSe/GaAs material system occurred at -280nm,


much later in terms of layer thickness.


Furthermore,


the rate of change of


scattering


(with


respect


layer


thickness)


was


greater


case


ZnTe/GaAs.


Both of these observations seem to be highly correlated with


the degree of lattice-mismatch as indicated in the figure which would suggest
































4)a

.0


n


a~ n


I 1










Conclusions


conclusion,


in situ


optical


probe


described


above


is entirely


capable of detecting plastic deformation in lattice-mismatched heteroepitaxial


systems,


such


ZnSe/GaAs


real-time


during


epitaxial


deposition.


Furthermore, the technique by its real-time nature is appropriate for defect

evolution monitoring.

It is further concluded that the observation of a x phase shift between

the LRI signal and the ELLS signal is indicative of heterointerface scattering

rather than surface scattering in the ZnSe/GaAs heterostructure case.

Finally, should perfectly lattice-matched structures be grown on "ideal"


substrates,


laser


light


scattering reported


here


should not


detected


which


could


have


important


consequences


provision


lattice-


matched structures for widegap II-VI/GaAs diode lasers, for instance.













CHAPTER


THEORY


The Role of Electric Microfields


general


trend


been


observed


that


band-edge


absorption


in a semiconductor


shifted


lower


energies


upon


plastic


deformation of the crystal, the magnitude of the energy shift being dependent


upon the extent of the deformation."35


An interesting explanation which has


been


proposed


account


absorption-edge


shifting


phenomenon


concerns


presence


strong


electric


fields


around


resultant


dislocations.3 It has been argued, in fact, that the similitude of the absorption

behavior in strong electric fields (Franz-Keldysh effect) and following plastic


deformation is striking.3"


Also, arguments have been made which suggest that


in order to present a unified theory of exponential absorption edges in both

ionic and covalent materials, electric microfields must be considered.36 Based


on the


aforementioned


evidence


possibility


nn f'*, IA ^4a..a 4... ^


considered


that


. *r


electric

l nd4,na


rr nAA A: nCrr~


~ A EA nlrr








61
mismatch strain relief, are responsible for the observed laser light scattering

local to the ZnSe/GaAs heterointerface.


The


following


discussion


pertains


consideration


electric


microfields.


The


field distribution around a dislocation is


first considered


with regard to three different potentials,


namely the deformation potential,


the charged dislocation potential, and the piezoelectric potential.


Second, the


magnitudes of these fields are considered and subsequently the electro-optic


effect


evoked


order


argue


that


a refractive


index


perturbation


sufficient to scatter


light


could result in


present material


system


as a


consequence of electric microfields.


Deformation Potential


As a result of the


strain field surrounding the core of a dislocation


line, strong local distortions of the crystal potential occur in the vicinity of


the dislocation's core.


Farvacque and Lenglart37


originally


formulated the


Fourier


transform


Farvacque38


deformation


calculated


inverse


potential


Fourier transform


later


which


Vignaud


results











E.r)=


ZeNb (1


sin(e)I(r/A)


16t 4EoL(1


where


I(r/XG)


IK
oK


+(r/XG)2


cos(RK/r)JC(K)dK


1.03 +0.283(r/AG) +0.7198(r/IX)


and where r and 6 are cylindrical coordinates, Z is the number of valence


electrons (Z=4 on average for zincblende structures),


e is the charge on an


electron, N is the number density of atoms, b0 is the edge component of the


Burgers


vector,


v is Poisson's


ratio,


is a screening


length,


permittivity of free space, se

the core of the central ion


is the dielectric constant, R is the radius around

where its pseudopotential is taken as zero (for


R=0 in practice the approximation above follows), and Jj(x) is the first order


Bessel function of the first kind.


The magnitude of Eq.


was plotted above


the x-y plane as shown in Fig. 23 for values of x ranging from


to+1









































Figure 23 A catesian mesh plot of the function presented in Eq. 1 showing
the electric field intensity due to the deformation potential as a fimetinn of









The scalar coefficient in the Eq.


was


found to be -600 kV/cm for


ZnSe,


this value being derived by


considering the parameters


presented in


table


Charged Dislocation Potential


potential


developed


presence


dangling


unsatisfied


bonds


the core


of a


dislocation.


Specifically,


if a


bond


considered to be occupied by one ground state electron, it can either accept


another


electron


or it


can


donate the


ground


state electron


the crystal.


This process can result in a net negative or positive line charge depending


upon


degree


which


dislocation


donates


or accepts


electrons.


Schroter"


first modeled


electric


field


resulting


from


charged


carners


trapped on a dislocation line and later,

a refined form of the model as shown ii


~ecjr)


Vignaud and Farvacque3s presented

i Ea. 2.


KI(r/AG)


2neo Lb. G





















Table


ZnSe


material


parameters


necessary


evaluate


scalar


coefficient of the microelectric field induced by the deformation
potential (Eq. 1).


"for an ideal 600 dislocation


b8~n2


where n=2.434 for ZnSe at 632.8nm


Parameter Value

N (m"3) 4.39x 102
b, (m)i) '3.47xl10
v ~--0.33
EL b5.92










Again, Eq. 2 was plotted above the x-y plane as shown in Fig.


24 for values


of x and y ranging as before.


before,


the scalar component


of Eq.


was


found to equal


-120


kV/cm for ZnSe, this value being derived from the parameter values shown

in table 2.


Piezoelectric Potential


non-centrosymmetnc


compounds


such


materials


having


zincblende


crystal


structure/'"


long range


strain


fields


associated


with


dislocations in this class of compounds induces an electric polarity within the


crystalline lattice via the piezoelectric effect.


The expression of the Fourier


transform


of the total piezo-potential


was


first calculated by


Vignaud and


Farvacque41


later,


expression


was


refined


same


authors3"


which allowed the piezoelectric field to be expressed in real space as shown
A#


in Eq.


F (A =


f2(O) G(rIXG f)4()r/XG)


e,,b,













U4


0

a-







21

U)


40.0



30.0



20.0"



10.0



0.0


-1.0


4


Figure 24 A cartesian mesh plot of the fimunction presented in
the electric field intensity due to a charged dislncation as


Eq. 2 showing
a fimctinn of




















Table 2


ZnSe


material


parameters


necessary


evaluate


scalar


coefficient
dislocation


of the


potential


microelectric


(Eq.


field
GaAs


induced
material


charged


parameters


used in some cases (denoted by a superscript a) since values for
ZnSe were unavailable.


"Vignaud and Farvacque"


bfor an ideal 600


dislocation


Parameter Value

f (electron/site) -'0.1
Ao (m) -'lOOxlO-10
b (m) b4.o01x10-1









where


1 -


i-iu


f2(0)---sin(20)+ --cos(20)
2


K2 (rK)
0K2 +G(r//2


a1+bi(rI/,) +cI(r/XG)2


f4(O)


= isin(4) + cos(40)
4 A


and where e14 is the piezo-modulus, a2=a4


, b2=0.04, b4=0.


c2=0.001


c4=0.064.


As before, Eq.


3 was plotted as shown in Fig. 25 over the same


domain as before.


Lastly


the scalar coefficient in Eq.


3 was found to be -60 kV/cm for


ZnSe, this value being derived with el4 assumed to be -0.1


C/m


(ref 38).


In summary,


the magnitudes of the electric microfields near the core


I,(rlX )
















U

0


'0
0


* -
.



U
0
0
0
N3
0
-


40.0



30.0'



20.0


10.0


0.0


-1.0


Figure 25 A cesian mesh plot of the function pi
the piezoelectric field intensity as a function


eseted in Eq. 3 showing
of position around the


PI









dislocation'


core (see


Figs.


22-24).


Furthermore,


the deformation electric


field is


also


largest in magnitude and extent (compare


Figs.


23-25) which


may


make


deformation


potential


largely


responsible


for the


observed


scattering.


It is interesting to note that Moriya,


42 has theoretically predicted


experimentally


crystals


confirmed


could be sufficiently


scattering


explained


dislocations


sapphire


considering the changes


in the


dielectric


constant


consequence


strain


fields


around


dislocations,


which would tend to support the present hypothesis.


As a final note, it should be mentioned that, since in some cases (as

noted) parameter values for ZnSe were not available, known GaAs parameter

values were used in order that our calculations could be performed.


The Linear Electro-optic Effect


semiconductors


(such


ZnSe)


which


are normally


optically


isotropic, the presence of an electric field induces biaxial birefringence which

means that the refractive index in the direction of the field is unaltered while


the refractive indices in the transverse directions are changed by


43 This










An3=
An(E) rE
2


where n is the refractive index of the material (2.434 for ZnSe at 632.8nm),


the electro-optic coefficient (-2x10"7


cm/kV


ZnSe),"44


and E is


magnitude of the electric field which, in this case, can range from


kV/cm as stated earlier.


10 to 300


It is interesting to note that the magnitudes of these


fields


comparable


those


employed


during


electroabsorption


electro-optic


modulation


ZnSe/ZnS0oSeo0,


waveguides44


(30-40kV/cm)


which would tend to support the hypothesis.

Using the values above, An is found to range from -1.4x105 to -4.3xl04,

which represents a significant perturbation of the refractive index local to the


dislocation's


core.


Recalling


that


field


extends


approximately


(which


on the


order


100A),


a dislocation


could


modeled


as a


filament with radius ~-A and refractive index n +


A mass ensemble of


such


objects (i.e.,


the dislocation substructure) could


then account for the


observed


scattering


of laser


light


near


heterointerface


as postulated










Conclusions


conclude,


refractive


on account


present


index perturbations required to


theoretical


produce the


analysis,


observed laser


light


scattering at ZnSe/GaAs heterointerfaces could adequately be a consequence

of microelectric fields present around the heterointerface defects.












CHAPTER 5
CONCLUSIONS


GaAs


surface


cleaning


process


was


developed


using


remote H atom flux supplied by a UHV


compatible rf plasma source.


GaAs


surface cleanliness and morphology were monitored in situ and in real-time

using RHEED and a laser light scattering technique, respectively.

From RHEED observations, GaAs surfaces were found to readily clean


at temperatures near


3500C using the


H atom treatment as opposed to the


conventional thermal treatment which requires temperatures near 6000C.


The


atomically clean GaAs surfaces were found to be specular, as evidenced by


laser


light


scattering


observations,


when


prepared


using


atom


treatment.


RHEED observations also suggested that hydrogen stabilization


of the


GaAs


surface


occurred,


stabilization


effect


being


reversible


evidenced


observation


a reversible


surface


reconstruction


RHEED.


Although


not investigated,


suggested


that


future


work


performed to elucidate the influence of this phenomena on interface states,








75
the key aspect of this portion of the work was that the provision of smooth,


specular GaAs


surfaces was a necessary prerequisite


for subsequent laser


scattering measurements during heteroepitaxy since it was important that any

scattering be attributed to epitaxy and not a rough GaAs surface.

The laser light scattering (at X=632.8nm) characteristics of undoped


ZnSe/(100)GaAs


epilayers


have


been


studied


situ,


in real-time


during


MBE


growth


it has


been


shown


a laser


light


scattering


signal


originates near the


heterointerface in these


films


, as opposed to


their free


surfaces, when the film thickness exceeds the critical thickness.


Specifically,


a near-normal incidence


HeNe


laser probe was employed during


epitaxial


deposition


ZnSe/GaAs


epilayers,


laser


probe


generating


both


specularly reflected signal as well


as nonspecular signals.


By monitoring


both the intensity of laser light scattered into a particular direction (100 away

from the incident/reflected beam) and the intensity of the specularly reflected


laser light simultaneously,


it was observed that the relative temporal phasing


between


signals


was x.


Such an


observation suggested


(based


on an


optical ray tracing model) that the source of scattering was located within the









observations revealed smooth,


featureless film surfaces which


would seem


to rule out the possibility of significant surface scattering.

Similar experiments were carried out on a very thick ZnSe/(100)GaAs

epilayer and it was observed that the relative signal phasing in this case was

0, rather than a7, which is consistent with predictions derived from the optical


tracing


model


when


surface


scattering


considered.


Thus,


concluded that a relative temporal phasing of 7t between the two signals is

indicative of a source of scattering within the epilayer itself.


From


theoretical


considerations,


postulated,


fact,


that


dislocations arising at the ZnSe/(100)GaAs heterointerface as a consequence

of strain relief act as laser light scatterers and these defects are therefore the


source of the observed scattering.


The theory


question suggested


that


strong


microelectric


fields


surround


resultant


defects


perturb


refractive


index


(via


the electro-optic effect) in a localized manner.


It is


postulated that the collective ensemble of such perturbations is sufficient to


scatter


laser


light


incident


ZnSe/(100)GaAs


heterointerface.


Calculations indicated that the field intensities near typical dislocations are








77

To further support the theoretical model, however, post-growth, ex situ

structural characterization (transmission electron microscopy) was performed


on a selection of ZnSe/(100)GaAs heterostructures


in an effort to correlate


optical


data


with


defect


structure


near


ZnSe/(100)GaAs


heterointerface.


In general, the structural data mirrored the optical data in


that both the amount of defects (evaluated qualitatively) and the intensity of

scattering increased with increasing film thickness, leveling off after 500nm


of ZnSe had been deposited.


Furthermore, the optical data was also sensitive


to the type of defect structure occurring near the heterointerface, the type of


defect


structure


being


dependent


on the


source


GaAs


substrate


material.


Thus,


conclusion,


high


degree


correlation


observed


between


laser


light


scattering


data


defect


structure


near the


heterointerface


supports


theoretical findings


concerning the


laser


light


scattering potential of misfit related defects in the ZnSe/(100)GaAs material

system.


further


concluded


that


given


conditions


where


a x phase


difference


present,


optical


probe


indeed


monitoring









heterointerface) in such films.


Furthermore, it can be concluded that should


perfectly lattice-matched structures be grown (i.e., defect-free material), laser


light


scattering


should


observed


during


growth


which


could


have


important consequences


for the provision of lattice-matched


structures


widegap II-VI/GaAs diode lasers, for instance.












REFERENCE LIST


R.H. Hartley, M.A. Folkard, D. Can, P.J. Orders, D. Rees, I.K. Varga,
V. Kumar, G. Shen, T.A. Steele, H. Buskes and J.B. Lee, J. Vac. Sci.
Technol. B 10, 1410 (1992).


G.N. Maracas, J.L. Edwards, K.
Jobs and J.A. Woolam, J. Vac.


Shiralagi, K.Y. Choi, R. Droopad, B.
Sci. Technol. A 10, 1832 (1992).


W.E. Quinn, D.E. Aspnes,
Schwarz, M.C. Tamargo, S.
Technol. B 10, 759 (1992).


M.J.S.P.
Gregory


Brasil, M.A.A.
and R.E. Nahoc


1*


Pudensi,
r. J. Vac.


S.A.
Sci.


C.M. Rouleau and R.M. Park, Appl. Phys. Lett.


60, 2723 (1992).


C. Lavoie,
Buuren, J.


S.R. Johnson, J.A. Mackenzie, T.
Vac. Sci. Technol. A 10, 930 (1992).


A.J. Pidduck, D.J. Robbins,
Glasper, J. Electrochem. Soc.


A.J. Pidduck, D.J. Robbins,
Glasper, J. Electrochem. Soc.


A.G. Cullis, D.B.
136, 3083 (1989).


D.B. Gasson, C.
136, 3088 (1989).


Tiedje


Gasson


Pickering


D.J. Robbins, A.G.
9, 2048 (1991).


Cullis and A.J. Pidduck, J.


Vac.


Technol. B


J.P. Contour, J. Massies, A. Saletes and P. Staib, Appl. Phys. A 38,
(1985).


R.P. Vasauez. B.F. Lewis and FR


Gnmthaner Annl Phv T .ett


n










Contour, J.
Rochette, J.


Hirose, S.


Massies, A.


Vac.


Saletes, M.


Technol. B 5,


Yokoyama and Y


Outrequin, F.
730 (1987).


Yamakage, J.


Vac.


Simondet and


Technol. B


1445 (1985).


R.P.H. Chang, C.C. Chang and S. Dirack, J.


Vac. Sci.


Technol. 20,


(1982).

A. Takamori, S. Sugata, K. Asakawa, E. Miyauchi and H. Hashimoto,
Jpn. J. Appl. Phys. 26, L142 (1987).


S. Sugata, A.
Hashimoto, J.


Takamori, N.


Vac.


Takado, K.


Technol. B 6,


Asakawa, E. Miyauchi and H.


1087


(1988).


P. Friedel and J. Landesman, Philos. Mag. B 55,


Lu, M.T


(1987).


Schmidt, D. Chen and R.M. Osgood Jr., Appl. Phys. Lett.


1143 (1991).


Cherchour,


Proix and


Sebenne,


Rev.


Phys.


Appl.


22, 285


(1987).


J.A.


Schaefer,


Europhys. Lett.


r. Persch, S. Stock,
12, 563 (1990).


Allinger and A.


Goldmann,


Petit, F.


Houzay


and J.M. Moison, J.


Vac.


Technol.


2172 (1992).


E.J. Petit and F. Houzay, J.


Vac. Sci.


Technol. B


12, 547


(1994).


R.M. Park, J.


B.W.


Vac. Sci.


Shore and D.H.


Technol. A 10,


Menzel, Principles of


(1992).


A tomic Spectra (Wiley,


m










T.B.


Massalski,


., Binary


Materials Park,


Okamoto,


A lloy


OH,


Phase
1990).


P.R.


Subramanian


Diagrams,


(ASM


Kacprzak,


International,


P. O'Keeffe


Den,


O'Moram, S.


. Morikawa and


Komuro, M.


Ishii,


Aoyagi, Jpn.


Meguro,


Appl.


. Iimura,


Phys.


3301


(1992).


Ohkawa, T


Karasawa and T


Mitsuyu, Jpn. J


Appl.


Phys. 30, L152


(1991).


Okuyama,


Akimoto, Electron.


Miyajima,


Lett. 28,


r. Morinaga, F
1798 (1992).


Hiei, M.


Ozawa and K.


M.A. Haase, J
1272 (1991).


Qiu, J.M. DePuydt and H. Cheng, Appl. Phys. Lett. 59,


H. Jeon, J.


Ding,


Patterson, A.


Nurmikko,


D.C.


Grillo,


Kobayashi and R.L.


Gunshor, Appl.


Phys.


Lett. 59


, 3619 (1991).


J.R.


Vig, J


.Vac.


Technol. A 3


1027


(1985).


Ingrey,


W.M.


Lau and N.S.


McIntyre,


. Vac.


Technol.


984 (1986).


J.M.


Olson and A.


Kibbler, J.


Cryst.


Growth


182 (1986).


J. Kleiman, R.M. Park and S.B.


Qadri, J


Appl. Phys.


,2067 (1987).


Vignaud and J.L.


Farvacque, J


Appl.


Phys.


1261


(1989).


J.D.


Dow, Phys. Rev. B 5, 594 (1972).


Farvacque and P


Lenglart, Phys. Status Solidi B 80,


(1977).










M.E.


Lines


A.M.


Glass,


Principles


and


Applications


Ferroelectrics and Related Matenals (Clarendon Press, Oxford, 1977).


Vignaud and J.L.


Farvacque, Phys.


Status Solidi B 125,


785 (1984).


Moriya, Philos.


Mag. B 64,


425 (1991).


J.I. Pankove, Optical Processes in Semiconductors (Dover, New
1971).


York,


M.H.
Quan.


Jupina,


E.M.


Elect. 28,


Garmire,


Shibata and


embutsu,


IEEE J.


663 (1992).












BIOGRAPHICAL SKETCH


Christopher M. Rouleau was born on March 23,


1966, in Springfield,


Massachusetts.


attended


school


Hampden,


Massachusetts,


graduated


from


Minnechaug


Regional


High


School


(Wilbraham,


Massachusetts) in


1984.


He entered


Western


New


England


College (WNEC) in


Springfield,


Massachusetts,


that same year to pursue a degree in electrical engineering


and qualified for the dean's list every semester.


While attending WNEC, he


received


a number


awards,


including


1986


Sophomore


Academic


Award, the


1986 Kenneth A. Macleod Scholarship Award, and the 1987 and


1988


Electrical Engineering Departmental Awards.


Christopher graduated


in 1988 from


Western New England College with a Bachelor of Science in


Electrical


Engineering


degree.


supenor


academic


achievement


was


recognized at graduation as he was not only awarded the honor of summa


cum


laude but was also given special recognition for attaining the highest


cumulative grade Doint average among sraduatine seniors









In the fall of 1988


, Christopher came to the University


of Florida to


pursue a master's degree in materials science and engineering.


1991 he


earned


that


Robert


degree;


Park,


thesis,


was


titled


conducted


Growth


under the


Molecular


direction


Beam


of Professor


Epitaxy


Electrical Characterization of Cl-doped ZnSe/(100)GaAs Epitaxial Layers.


While at the University


of Florida,


Christopher continued his pursuit


excellence.


was


awarded


first


prize


1992


Student


Poster


Competition at the 21st Annual Symposium on Applied Vacuum Science and


Technology, the


1991


Outstanding Bent Award (Tau Beta Pi,


Florida alpha


chapter),


prestigious


1993


Materials


Research


Society


Graduate


Student Award.


Christopher


currently


an active


member


four


honor


societies


(Sigma Beta


Tau,


Tau Beta Pi, Phi Kappa Phi, and Alpha Sigma Mu) and


professional


societies


(American


Vacuum


Society


Materials


Research Society).


He has also authored or coauthored


publications to


date and has presented papers at three national meetings.

Christopher plans to pursue a postdoctoral appointment at Oak Ridge










MBE)


technique


with


view


towards


fabrication


high-efficiency


photovoltaic cells.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EZ85YXM07_T4AR5X INGEST_TIME 2012-01-27T21:46:29Z PACKAGE AA00003224_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

',6/2&$7,216 $7 /$77,&( 0,60$7&+(' :,'(*$3 ,,9,*D$V +(7(52,17(5)$&(6 $6 /$6(5 /,*+7 6&$77(5(56 (;3(5,0(17 $1' 7+(25< %\ &+5,6723+(5 0 528/($8 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

'HGLFDWHG WR P\ IDWKHU

PAGE 3

$&.12:/('*(0(176 ZRXOG OLNH WR H[SUHVV P\ VLQFHUH DSSUHFLDWLRQ WR 3URIHVVRU 5REHUW 0 3DUN P\ VXSHUYLVRU\ FRPPLWWHH FKDLUPDQ DQG GLVVHUWDWLRQ DGYLVRU IRU KLV FRQVWDQW SURIHVVLRQDO JXLGDQFH VXSSRUW DQG HQFRXUDJHPHQW GXULQJ P\ UHVHDUFK DQG VWXGLHV 7KH NQRZOHGJH DQG VNLOOV WKDW KH VKDUHG JUHDWO\ HQKDQFHG P\ OHDUQLQJ H[SHULHQFH ZRXOG DOVR OLNH WR WKDQN 'UV 3DXO + +ROORZD\ -RVHSK + 6LPPRQV .HYLQ 6 -RQHV DQG 'DYLG % 7DQQHU IRU VHUYLQJ DV P\ GRFWRUDO FRPPLWWHH 7KHLU DVVLVWDQFH DQG LQWHUHVW LQ P\ ZRUN DUH JUDWHIXOO\ DSSUHFLDWHG DP DOVR LQGHEWHG WR &KULVWRSKHU 6DQWDQD P\ FROOHDJXH ZKRVH H[SHUWLVH LQ WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ VDPSOH SUHSDUDWLRQ DQG DQDO\VLV ZDV LQVWUXPHQWDO LQ GHYHORSLQJ WKLV GLVVHUWDWLRQ 0DQ\ WKDQNV DUH DOVR GXH WR 'U -DPHV 9 0DVL SURIHVVRU RI (OHFWULFDO (QJLQHHULQJ DW :HVWHUQ 1HZ (QJODQG &ROOHJH ZKR DV P\ XQGHUJUDGXDWH SURIHVVRU DQG PHQWRU HQFRXUDJHG PH DOZD\V WR NHHS WKH VSLULW DQG FXULRXV ,, LQGf LQ

PAGE 4

$ VSHFLDO ZRUG RI WKDQNV LV DOVR H[WHQGHG WR P\ EHVW IULHQG DQG ZLIH 0DU\ ZKR SURYLGHG VXSSRUW DQG HQFRXUDJHPHQW WKURXJKRXW P\ JUDGXDWH VWXGLHV ,9

PAGE 5

7$%/( 2) &217(176 $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YLL /,67 2) ),*85(6 YLLL $%675$&7 [LLL &+$37(56 ,1752'8&7,21 %DFNJURXQG DQG 0RWLYDWLRQ 2XWOLQH RI 'LVVHUWDWLRQ &RQWHQWV *D$V 68%675$7( &/($1,1* )25 +(7(52(3,7$;< %DFNJURXQG ([SHULPHQWDO $SSDUDWXV ,, &KDUDFWHUL]DWLRQ RI 2SWLFDO 6\VWHP 8+9 &RPSDWLEOH UI 3ODVPD 6RXUFH 3UHFLVLRQ 6XEVWUDWH 7HPSHUDWXUH &DOLEUDWLRQ ,Q 6LWX *D$V 6XUIDFH &OHDQLQJ &RQFOXVLRQV /$6(5 /,*+7 6&$77(5,1* '85,1* =Q6H*D$V +(7(52(3,7$;< Y

PAGE 6

%DFNJURXQG ([SHULPHQWDO $SSDUDWXV 0%( *URZWK &KDPEHU /DVHU 3UREH $SSDUDWXV +HWHURHSLWD[\ 3DUWLFOH &RQWDPLQDWLRQ &RQVLGHUDWLRQV ([ 6LWX 6XEVWUDWH 3UHSDUDWLRQ /DVHU /LJKW 6FDWWHULQJ IURP 7\SLFDO (SLOD\HUV /DVHU /LJKW 6FDWWHULQJ IURP 9HU\ 7KLFN (SLOD\HUV 6WUXFWXUDO &KDUDFWHUL]DWLRQ /DWWLFH 0LVPDWFK 6HQVLWLYLW\ &RQFOXVLRQV 7+(25< 7KH 5ROH RI (OHFWULF 0LFURILHOGV 'HIRUPDWLRQ 3RWHQWLDO &KDUJHG 'LVORFDWLRQ 3RWHQWLDO 3LH]RHOHFWULF 3RWHQWLDO 7KH /LQHDU (OHFWURRSWLF (IIHFW &RQFOXVLRQV &21&/86,216 5()(5(1&( /,67 %,2*5$3+,&$/ 6.(7&+ YL

PAGE 7

/,67 2) 7$%/(6 7DEOH =Q6H ,, DWHULDO SDUDPHWHUV QHFHVVDU\ WR HYDOXDWH WKH VFDODU FRHIILFLHQW RI WKH PLFURHOHFWULF ILHOG LQGXFHG E\ WKH GHIRUPDWLRQ SRWHQWLDO (T f =Q6H PDWHULDO SDUDPHWHUV QHFHVVDU\ WR HYDOXDWH WKH VFDODU FRHIILFLHQW RI WKH PLFURHOHFWULF ILHOG LQGXFHG E\ WKH FKDUJHG GLVORFDWLRQ SRWHQWLDO (T f *D$V PDWHULDO SDUDPHWHUV DUH XVHG LQ VRPH FDVHV GHQRWHG E\ D VXSHUVFULSW Df VLQFH YDOXHV IRU =Q6H ZHUH XQDYDLODEOH SDJH 9OO

PAGE 8

/,67 2) ),*85(6 )LJXUH 6FKHPDWLF RI WKH FXVWRPGHVLJQHG PROHFXODU EHDP HSLWD[\ V\VWHP VKRZLQJ FRQYHQWLRQDO HIIXVLRQ VRXUFHV UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ V\VWHP DQG XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH ILWWHG ZLWK D SUHFLVLRQ OHDN YDOYH DQG JDV OLQH IRU K\GURJHQ $OVR LOOXVWUDWHG LV D VFKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR FKDUDFWHUL]H WKH VXUIDFH PRUSKRORJ\ RI *D$V GXULQJ FOHDQLQJ E\ UHFRUGLQJ WKH VFDWWHUHG +H1H ODVHU OLJKW RU ODFN WKHUHRIf GXULQJ WKH FOHDQLQJ SURFHGXUHV 7KH JHRPHWU\ LQGLFDWHG LQ WKH ILJXUH SURYLGHV IRU VLPXOWDQHRXV UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ DQDO\VLV DV VKRZQ 6FKHPDWLF RI WKH DSSDUDWXV HPSOR\HG WR FKDUDFWHUL]H WKH FDPHUDEDVHG GHWHFWLRQ V\VWHP WUDQVIHU IXQFWLRQ DW QP &DPHUDEDVHG GHWHFWLRQ V\VWHP WUDQVIHU IXQFWLRQ UHFRUGHG DW QP 6FKHPDWLF RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH XVHG WR JHQHUDWH D IOX[ RI DWRPLF K\GURJHQ 7\SLFDO RSHUDWLQJ FRQGLWLRQV ZHUH : IRUZDUG SRZHU : UHIOHFWHGf ZLWK DQ HTXLOLEULXP EDFNJURXQG SUHVVXUH RI + LQ WKH JURZWK FKDPEHU PDLQWDLQHG DW [OAPEDU 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR UHFRUG WKH RSWLFDO HPLVVLRQ VSHFWUXP DVVRFLDWHG ZLWK WKH K\GURJHQ SODVPD FUHDWHG LQ WKH GLVFKDUJH UHJLRQ RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH LQGLFDWHG LQ )LJV DQG YP

PAGE 9

$ FKDUDFWHULVWLF RSWLFDO HPLVVLRQ VSHFWUXP UHFRUGHG IURP WKH K\GURJHQ SODVPD UHJLRQ RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH LOOXVWUDWLQJ HPLVVLRQ OLQHV FKDUDFWHULVWLF RI DWRPLF K\GURJHQ 7KH UI SRZHU XVHG WR FUHDWH WKH GLVFKDUJH ZDV : : UHIOHFWHGf ZKLOH DQ HTXLOLEULXP EDFNJURXQG SUHVVXUH RI K\GURJHQ LQ WKH PROHFXODU EHDP HSLWD[\ JURZWK FKDPEHU RI 6[O2APEDU ZDV PDLQWDLQHG ,QVHW VKRZV DQ HPLVVLRQ VSHFWUXP IURP DQ (&5 SODVPD VRXUFH IURP 6XJDWD HW DOf (YROXWLRQ RI WKH FKDUDFWHULVWLF RSWLFDO HPLVVLRQ VSHFWUXP UHFRUGHG IURP WKH K\GURJHQ SODVPD UHJLRQ RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH DV D IXQFWLRQ RI WLPH 6SHFWUXP Df ZDV UHFRUGHG GD\V DIWHU WKDW RI )LJ 6SHFWUXP Ef ZDV UHFRUGHG DIWHU HYDFXDWLQJ WKH + IHHG OLQH ZLWK D SXPS IRU PLQXWHV DQG WKHQ EDFNILOOLQJ WKH OLQH ZLWK + 6SHFWUXP Ff ZDV UHFRUGHG KRXUV ODWHU DQG VSHFWUXP Gf ZDV UHFRUGHG DIWHU HYDFXDWLQJ DQG EDFNILOOLQJ WKH + IHHG OLQH VHYHUDO WLPHV 1RWH WKH VRXUFH ZDV RQ GXULQJ UHFRUGLQJ RI WKH VSHFWUD DQG RII RWKHUZLVH 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR FDOLEUDWH SUHFLVHO\ WKH VXEVWUDWH WHPSHUDWXUH E\ UHFRUGLQJ WKH FKDQJH LQ VFDWWHUHG +H1H ODVHU OLJKW FRUUHVSRQGLQJ WR WKH IRUPDWLRQ RI D HXWHFWLF FRPSRXQG IURP VHOHFWHG ELQDU\ DOOR\V $ SORW RI VXEVWUDWH VXUIDFH WHPSHUDWXUH YHUVXV WKHUPRFRXSOH WHPSHUDWXUH VKRZLQJ WKH SRLQWV DVVRFLDWHG ZLWK HXWHFWLF IRUPDWLRQ ,QVHW LQGLFDWHV WKDW WKHUH ZDV QR PRUH WKHQ Ob HUURU QRUPDOL]HG WR 7& WHPSHUDWXUHf RYHU WKH WHPSHUDWXUH UHJLPH H[SORUHG $ SORW RI WKH LQWHQVLW\ RI ODVHU OLJKW VFDWWHULQJ YHUVXV VXEVWUDWH WHPSHUDWXUH UDPS UDWH r&PLQXWHf 7KH GDWD ZDV UHFRUGHG GXULQJ FRQYHQWLRQDO WKHUPDO WUHDWPHQW DQG GXULQJ D FRPELQHG WKHUPDO+DWRP WUHDWPHQW RI 22Of*D$V ZDIHUV Df DQG Ef UHVSHFWLYHO\ ,;

PAGE 10

5HSUHVHQWDWLYH UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ SDWWHUQV UHFRUGHG IURP DWRPLFDOO\ FOHDQ *D$V VXUIDFHV UHVXOWLQJ IURP FRQYHQWLRQDO WKHUPDO WUHDWPHQW DQG WKH FRPELQHG WKHUPDO+DWRP WUHDWPHQW DQG DIWHU UHPRYDO RI WKH +DWRP IOX[ Df Ef DQG Ff UHVSHFWLYHO\ 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR UHFRUG HODVWLFDOO\ VFDWWHUHG ODVHU OLJKW (//6f DQG VSHFXODUO\ UHIOHFWHG ODVHU OLJKW GXULQJ WKH PROHFXODU EHDP HSLWD[LDO JURZWK RI ZLGHJDS ,, 9,*D$V KHWHURVWUXFWXUHV 'DUNILHOG RSWLFDO PLFURJUDSKV LQGLFDWLQJ W\SLFDO SDUWLFOH GHQVLWLHV UHVXOWLQJ IURP FOHDYLQJ JDV EXUVW FOHDQLQJ DQG FRQWLQXRXV a VHFRQGVf JDV IORZ FOHDQLQJ Df Ef DQG Ff UHVSHFWLYHO\ 1RWH WKH FOHDYH OLQH UXQV KRUL]RQWDOO\ WKURXJK WKH PLFURJUDSKV ,QWHQVLW\ RI VFDWWHULQJ RFFXUULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ $PHULFDQ ;WDO 7HFKQRORJ\f KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV $OVR LQFOXGHG LQ WKH ILJXUH LV D ODVHU UHIOHFWLRQ LQWHUIHURJUDP WR FRPSDUH VLJQDO SKDVLQJ ,QWHQVLW\ RI VFDWWHULQJ RFFXUULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ 6XPLWRPR (OHFWULFf KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV LQFOXGHG LQ WKH ILJXUH LV D ODVHU UHIOHFWLRQ LQWHUIHURJUD $OVR WR FRPSDUH VLJQDO SKDVLQJ $ UD\ PRGHO LOOXVWUDWLQJ WKH HPSOR\PHQW RI D +H1H ODVHU EHD WR SUREH WKH =Q6H*D$V KHWHURLQWHUIDFH GXULQJ HSLWD[LDO GHSRVLWLRQ 'HIHFW HYROXWLRQ JLYHV ULVH WR D VFDWWHUHG VLJQDO ZKLFK ZDV GHWHFWHG DQG TXDQWLILHG XVLQJ WKH DSSDUDWXV VKRZQ LQ )LJ ,QWHQVLW\ RI VFDWWHULQJ RFFXUULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ 6XPLWRPR (OHFWULFf KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV IRU D YHU\ [

PAGE 11

WKLFN aSPf ILOP UHIOHFWLRQ LQWHUIHURJUDM WKLV FDVH ,, $OVR LQFOXGHG LQ WKH ILJXUH LV D ODVHU O 1RWH WKDW WKH VLJQDOV DUH LQ SKDVH IRU 3ODQYLHZ VFDQQLQJ HOHFWURQ PLFURJUDSKV RI =Q6H*D$Vf LQGLFDWLQJ WKH VXUIDFH IHDWXUHV SUHVHQW RQ D WKLQ aQPf WKLFN aQPf DQG YHU\ WKLFN aJPf ILOP Df Ef DQG Ff UHVSHFWLYHO\ $ PDWUL[ RI SODQYLHZ WUDQVPLVVLRQ HOHFWURQ PLFURJUDSKV ;f FRPSDULQJ DQG FRQWUDVWLQJ WKH GHIHFWV SUHVHQW QHDU WKH =Q6H*D$V KHWHURLQWHUIDFH DV D IXQFWLRQ RI ILOP WKLFNQHVV URZ WKURXJK DQG QP UHVSHFWLYHO\f DQG VXEVWUDWH W\SH FROXPQ DQG $PHULFDQ ;WDO 7HFKQRORJ\ DQG 6XPLWRPR (OHFWULF UHVSHFWLYHO\f 5HFRPSLODWLRQ RI ODVHU VFDWWHULQJ GDWD SUHVHQWHG LQ )LJV DQG ZKLFK FRPSDUHV DQG FRQWUDVWV WKH ODVHU VFDWWHULQJ IURP DQ HSLOD\HU JURZQ RQ DQ $PHULFDQ ;WDO 7HFKQRORJ\ *D$V ZDIHU WR WKDW RI DQ HSLOD\HU JURZQ RQ D 6XPLWRPR (OHFWULF *D$V ZDIHU (SLOD\HUV RI WKH WKLFNQHVVHV LQGLFDWHG E\ WKH YHUWLFDO DUURZV ZHUH WDUJHWHG IRU VWUXFWXUDO FKDUDFWHUL]DWLRQ 1RWH WKH GLIIHUHQFH LQ WKH GHWHFWDEOH RQVHW LQ WHUPV RI OD\HU WKLFNQHVVf RI VFDWWHULQJ $ UHSUHVHQWDWLYH VHOHFWHG DUHD GLIIUDFWLRQ SDWWHUQ DQG KLJK UHVROXWLRQ FURVVVHFWLRQDO WUDQVPLVVLRQ HOHFWURQ PLFURJUDSK ZKLFK DUH LQGLFDWLYH RI WKH FU\VWDOOLQLW\ DQG GHIHFW W\SH SUHVHQW LQ WKH HSLOD\HUV UHSUHVHQWHG E\ WKH PLFURJUDSKV VKRZQ LQ )LJV J!Lf (ODVWLFDOO\ VFDWWHUHG ODVHU OLJKW GDWD UHFRUGHG LQ UHDOWLPH GXULQJ WKH GHSRVLWLRQ RI =Q6H*D$V DQG =Q7H*D$V KHWHURVWUXFWXUHV 7KH ODWWLFHPLVPDWFKHV LQGLFDWHG LQ WKH ILJXUH FRUUHVSRQG WR URRP WHPSHUDWXUH ODWWLFHPLVPDWFKHV 1RWH WKH GLIIHUHQFH LQ GHWHFWDEOH RQVHW LQ WHUPV RI OD\HU WKLFNQHVVf RI VFDWWHULQJ [L

PAGE 12

$ FDUWHVLDQ PHVK SORW RI WKH IXQFWLRQ SUHVHQWHG LQ (T VKRZLQJ WKH HOHFWULF ILHOG LQWHQVLW\ GXH WR WKH GHIRUPDWLRQ SRWHQWLDO DV D IXQFWLRQ RI SRVLWLRQ DURXQG WKH GLVORFDWLRQ FRUH 7KH GLVORFDWLRQ FRUH OLHV DORQJ WKH HOHFWULF ILHOG LQWHQVLW\ D[LV $ FDUWHVLDQ PHVK SORW RI WKH IXQFWLRQ SUHVHQWHG LQ (T VKRZLQJ WKH HOHFWULF ILHOG LQWHQVLW\ GXH WR D FKDUJHG GLVORFDWLRQ DV D IXQFWLRQ RI SRVLWLRQ DURXQG WKH GLVORFDWLRQ FRUH 7KH GLVORFDWLRQ FRUH OLHV DORQJ WKH HOHFWULF ILHOG LQWHQVLW\ D[LV $ FDUWHVLDQ PHVK SORW RI WKH IXQFWLRQ SUHVHQWHG LQ (T VKRZLQJ WKH SLH]RHOHFWULF ILHOG LQWHQVLW\ DV D IXQFWLRQ RI SRVLWLRQ DURXQG WKH GLVORFDWLRQ FRUH 7KH GLVORFDWLRQ FRUH OLHV DORQJ WKH HOHFWULF ILHOG LQWHQVLW\ D[LV f f ;OO

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ ',6/2&$7,216 $7 /$77,&( 0,60$7&+(' :,'(*$3 ,,9,*D$V +(7(52,17(5)$&(6 $6 /$6(5 /,*+7 6&$77(5(56 (;3(5,0(17 $1' 7+(25< %\ &KULVWRSKHU 0 5RXOHDX $XJXVW &KDLUSHUVRQ 5REHUW 0 3DUN 0DMRU 'HSDUWPHQW 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 7KLV ZRUN FRQFHUQHG DQ LQYHVWLJDWLRQ XVLQJ UHDOWLPH LQ VLWX HOHFWURQ DQG ODVHU EHDP SUREHV RI *D$V VXEVWUDWH VXUIDFHV LQWHQGHG IRU HSLWD[\ DQG RI WKH VWUDLQ UHOLHI SURFHVV DVVRFLDWHG ZLWK JURZLQJ =Q6H*D$V KHWHURVWUXFWXUHV E\ WKH PROHFXODU EHDP HSLWD[\ WHFKQLTXH $Q LQ VLWX *D$V VXUIDFH FOHDQLQJ SURFHVV ZDV GHYHORSHG XVLQJ D UHPRWH + DWRP IOX[ VXSSOLHG E\ DQ XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH *D$V VXUIDFH FOHDQOLQHVV DQG PRUSKRORJ\ ZHUH PRQLWRUHG LQ VLWX DQG LQ UHDOWLPH XVLQJ UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ 5+(('f DQG DQ HODVWLF ODVHU OLJKW VFDWWHULQJ (//6f WHFKQLTXH UHVSHFWLYHO\ ;OOO

PAGE 14

)URP 5+((' REVHUYDWLRQV *D$V VXUIDFHV ZHUH IRXQG WR FOHDQ UHDGLO\ DW WHPSHUDWXUHV QHDU r& XVLQJ WKH + DWRP WUHDWPHQW DV RSSRVHG WR WKH FRQYHQWLRQDO WKHUPDO WUHDWPHQW ZKLFK UHTXLUHV WHPSHUDWXUHV QHDU r& 7KH DWRPLFDOO\ FOHDQ *D$V VXUIDFHV ZHUH IRXQG WR EH VSHFXODU (//6 REVHUYDWLRQVf ZKHQ SUHSDUHG XVLQJ WKH + DWRP WUHDWPHQW DQG K\GURJHQ VWDELOL]DWLRQ RI WKH VXUIDFH LV VXJJHVWHG IURP WKH 5+((' REVHUYDWLRQV ,Q WHUPV RI KHWHURHSLWD[LDO JURZWK D QHDUQRUPDO LQFLGHQFH +H1H ODVHU SUREH ZDV HPSOR\HG WKDW JHQHUDWHG ERWK D VSHFXODUO\ UHIOHFWHG ODVHU OLJKW VLJQDO DQG DQ (//6 VLJQDO EH\RQG D FULWLFDO HSLOD\HU WKLFNQHVV ,W ZDV GHWHUPLQHG WKDW WKH (//6 VLJQDO ZDV JHQHUDWHG ORFDOO\ DW WKH =Q6H*D$V KHWHURLQWHUIDFH DV RSSRVHG WR WKH IUHHVXUIDFH EDVHG RQ WKH REVHUYDWLRQ RI D Q SKDVH GLIIHUHQFH EHWZHHQ WKH WZR VLJQDOV ZKLFK ZHUH PRQLWRUHG VLPXOWDQHRXVO\ ,W LV SRVWXODWHG EDVHG RQ D WKHRUHWLFDO PRGHO WKDW GLVORFDWLRQV DULVLQJ DW WKH =Q6H*D$V KHWHURLQWHUIDFH FDQ DFW DV ODVHU OLJKW VFDWWHUHUV GXH WR VWURQJ PLFURHOHFWULF ILHOGV WKDW VXUURXQG WKH GHIHFWV DQG WKDW SHUWXUE WKH UHIUDFWLYH LQGH[ LQ D ORFDOL]HG PDQQHU 3RVWJURZWK H[ VLWX WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ ZDV SHUIRUPHG RQ D VHOHFWLRQ RI KHWHURVWUXFWXUHV DQG D KLJK GHJUHH RI FRUUHODWLRQ ZDV IRXQG EHWZHHQ WKH RSWLFDO GDWD UHFRUGHG GXULQJ ILOP JURZWK DQG WKH QDWXUH RI WKH [LY

PAGE 15

GHIHFW VWUXFWXUH SUHVHQW QHDU WKH KHWHURLQWHUIDFH ZKLFK VWURQJO\ VXSSRUWV WKH WKHRUHWLFDO PRGHO [Y

PAGE 16

&+$37(5 ,1752'8&7,21 %DFNJURXQG DQG 0RWLYDWLRQ 7KH TXDOLW\ RI D KHWHURHSLWD[LDO VWUXFWXUH ZKLFK IRU WKH SXUSRVHV RI WKLV ZRUN LV D V\VWHP FRPSULVLQJ DQ LQWHUIDFH EHWZHHQ WZR GLVVLPLODU DWHUDLV QDPHO\ D ILO ,, DQG D VXEVWUDWH PDWHULDO LV FULWLFDOO\ GHSHQGHQW XSRQ WKH QDWXUH RI WKH VXEVWUDWH VXUIDFH SULRU WR HSLWD[\ DQG WKH GHJUHH RI ODWWLFH SDUDPHWHU DQG WKHUPDO H[SDQVLRQ FRHIILFLHQW PLVPDWFK EHWZHHQ WKH WZR PDWHULDOV 3KRWRQLF GHYLFHV DUH SDUWLFXODUO\ VHQVLWLYH WR WKH SUHVHQFH RI VWUXFWXUDO GHIHFWV WKDW DULVH DV D FRQVHTXHQFH RI QRQLGHDO VXEVWUDWH VXUIDFH SUHSDUDWLRQ DQGRU VLJQLILFDQW ODWWLFH SDUDPHWHU DQG WKHUPDO H[SDQVLRQ FRHIILFLHQW PLVPDWFKHV 7UDGLWLRQDOO\ WKH UHVXOWV RI PLVPDWFKHG KHWHURHSLWD[\ DQGRU QRQLGHDO VXUIDFH SUHSDUDWLRQ DUH UHYHDOHG E\ SHUIRUPLQJ SRVWJURZWK FKDUDFWHUL]DWLRQ RI VXLWDEO\ SURFHVVHG VDPSOHV XVLQJ WHFKQLTXHV VXFK DV WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ DQG KLJK UHVROXWLRQ [UD\ GLIIUDFWLRQ IRU LQVWDQFH +RZHYHU LQ DGGLWLRQ WR EHLQJ WLPH FRQVXPLQJ DQG H[SHQVLYH VXFK SRVWJURZWK

PAGE 17

FKDUDFWHUL]DWLRQ WHFKQLTXHV FDQQRW UHDGLO\ GLVWLQJXLVK EHWZHHQ VRXUFHV RI GHIHFWV VXEVWUDWH VXUIDFH LUUHJXODULWLHV ODWWLFH PLVPDWFK VWUDLQ HWFf 7KH ZRUN RI WKLV GLVVHUWDWLRQ IRFXVHG RQ DGGUHVVLQJ LQGHSHQGHQWO\ WKH QDWXUH RI D VXEVWUDWH VXUIDFH DQG WKH LVVXH RI SODVWLF GHIRUPDWLRQ DW D PLVPDWFKHG KHWHURLQWHUIDFH 7KH VXEMHFW PDWHULDO V\VWHP FRQFHUQHG =Q6H*D$V KHWHURVWUXFWXUHV 7KH SULPDU\ PRWLYDWLRQ RI WKH SURMHFW ZDV WR GHYHORS LQ VLWX RSWLFDO SUREHV WKDW FRXOG EH XVHG WR DVVHVV ZDIHU TXDOLW\ DQG WR VWXG\ VWUDLQ UHOLHI LQ UHDOWLPH GXULQJ HSLWD[LDO JURZWK $Q REMHFWLYH ZDV WR FRUUHODWH RSWLFDO GDWD UHFRUGHG GXULQJ ILOP JURZWK ZLWK VWUXFWXUDO GHIHFW DQDO\VLV GDWD REWDLQHG SRVWJURZWK $QRWKHU LVVXH RI PDMRU FRQFHUQ LQ WKLV SURMHFW ZDV WR GHYHORS DQ LQ VLWX FOHDQLQJ WHFKQLTXH IRU *D$V WKDW ZRXOG SURYLGH DQ LGHDO VXUIDFH IRU HSLWD[\ QDPHO\ D FRQWDPLQDWLRQIUHH VWRLFKLRPHWULF DQG DWRPLFDOO\ VPRRWK VXUIDFH $JDLQ WKH LGHD ZDV WR GHYHORS DQ LQ VLWX SUREH WKDW ZRXOG EH FDSDEOH RI SURYLGLQJ XVHIXO LQIRUPDWLRQ RQ WKH QDWXUH RI WKH VXEVWUDWH VXUIDFH GXULQJ LQ VLWX SURFHVVLQJ 5HDOWLPH LQ VLWX PRQLWRULQJ WHFKQLTXHV LQ JHQHUDO UHSUHVHQW YHU\ SRZHUIXO FDSDELOLWLHV ZLWK UHJDUG WR SURFHVV GLDJQRVLV DQG FRQWURO )RU H[DPSOH ZLWK UHVSHFW WR PROHFXODU EHDP HSLWD[\ 0%(f UHIOHFWLRQ KLJK

PAGE 18

HQHUJ\ HOHFWURQ GLIIUDFWLRQ 5+(('f LV HPSOR\HG RQ D URXWLQH EDVLV WR GHWHUPLQH VXUIDFH UHFRQVWUXFWLRQ DQG WR DVVHVV WKH TXDOLW\ RI VXEVWUDWH VXUIDFHV DQG VXEVHTXHQW HSLOD\HUV 5HFHQWO\ KRZHYHU RSWLFDO WHFKQLTXHV KDYH EHFRPH LQFUHDVLQJ SRSXODU GXH WR WKHLU QRQLQYDVLYH QDWXUH DQG WKHLU DELOLW\ WR SURYLGH LQIRUPDWLRQ RQ SURSHUWLHV RWKHU WKDQ FU\VWDO VWUXFWXUH (OOLSVRPHWU\ IRU LQVWDQFH KDV IDUUHDFKLQJ FDSDELOLWLHV WKDW LQFOXGH UHDOWLPH LQ VLWX PRQLWRULQJ DQG FRQWURO RI DOOR\ FRPSRVLWLRQ JURZWK UDWH DQG VXEVWUDWH WHPSHUDWXUH GXULQJ 0%( GHSRVLWLRQ $OVR UHDOWLPH LQ VLWX RQLWRULQJ RI WKH IUHH FDUULHU FRQFHQWUDWLRQ LQ GRSHG =Q6H ILOPV E\ TXDQWLWDWLYH FDWKRGROXPLQHVFHQFH DQDO\VLV KDV EHHQ UHSRUWHG ,Q DGGLWLRQ /DYRLH HW DO KDYH UHSRUWHG UHDOWLPH LQ VLWX PRQLWRULQJ RI WKH *D$V R[LGH GHVRUSWLRQ SURFHVV SULRU WR HSLWD[LDO JURZWK E\ PHDVXULQJ WKH LQWHQVLW\ RI HODVWLFDOO\ VFDWWHUHG ODVHU OLJKW DW WKH *D$V VXUIDFH DQG KDYH FRQFOXGHG WKDW WKHUH LV DQ DVVRFLDWHG URXJKHQLQJ RI WKH *D$V VXUIDFH $OVR DORQJ WKHVH OLQHV 3LGGXFN HW DO DQG 5REELQV HW DO KDYH SHUIRUPHG VLPLODU HODVWLF ODVHU OLJKW VFDWWHULQJ PHDVXUHPHQWV GXULQJ 6L 0%( DQG 6L*H6L KHWHURHSLWD[\ UHVSHFWLYHO\ DQG KDYH FRQFOXGHG WKDW FKDQJHV LQ WKH VXUIDFH PRUSKRORJ\ RFFXUULQJ GXULQJ OD\HU SURFHVVLQJ FDQ FRQYHQLHQWO\ EH PRQLWRUHG DQG FKDUDFWHUL]HG E\ VXFK PHDQV

PAGE 19

$V ZLOO EH GHVFULEHG LQ WKH IROORZLQJ FKDSWHUV ZH KDYH GHYHORSHG RXU RZQ RSWLFDO SURELQJ PHWKRGV WR VWXG\ LQ UHDOWLPH WKH =Q6H*D$V KHWHURHSLWD[LDO V\VWHP DQG LW ZLOO EH GHPRQVWUDWHG WKDW KHWHURLQWHUIDFH GHIHFWV UDWKHU WKDQ VXUIDFH LUUHJXODULWLHV UHVXOW LQ ODVHU OLJKW VFDWWHULQJ IROORZLQJ SODVWLF GHIRUPDWLRQ LQ WKLV SDUWLFXODU PDWHULDO V\VWHP 7KH REVHUYDWLRQ RI KHWHURLQWHUIDFH ODVHU OLJKW VFDWWHULQJ LV QRYHO 2XWOLQH RI 'LVVHUWDWLRQ &RQWHQWV 7KH GLVVHUWDWLRQ LV FRPSRVHG RI FKDSWHUV &KDSWHU SUHVHQWV WKH EDFNJURXQG DQG PRWLYDWLRQ IRU WKH SURMHFW &KDSWHU SHUWDLQV WR *D$V VXEVWUDWH FOHDQLQJ IRU HSLWD[\ DQG LV VXEGLYLGHG LQWR WKUHH PDLQ VHFWLRQV GHVFULELQJ H[SHULPHQWDO DSSDUDWXV FRQYHQWLRQDO WKHUPDO DQG FRPELQHG WKHUPDO+DWRP FOHDQLQJ VWXGLHV DQG UHOHYDQW FRQFOXVLRQV &KDSWHU SHUWDLQV WR =Q6H*D$V KHWHURHSLWD[\ DQG LV VXEGLYLGHG LQWR WKUHH PDLQ DSSDUDWXV ,, RQLWRULQJ GXULQJ KHWHURHSLWD[\ XQGHU YDULRXV FRQGLWLRQV DQG UHOHYDQW FRQFOXVLRQV

PAGE 20

&KDSWHU SUHVHQWV D WKHRUHWLFDO PRGHO WR DFFRXQW IRU WKH REVHUYHG OLJKW VFDWWHULQJ GXULQJ =Q6H*D$V HSLOD\HU JURZWK DQG VXPPDUL]HV WKH LPSRUWDQW ILQGLQJV RI WKH UHVHDUFK HIIRUW

PAGE 21

} &+$37(5 *D$V 68%675$7( &/($1,1* )25 +(7(52(3,7$;< %DFNJURXQG 7KH FRQYHQWLRQDO SURFHGXUH HPSOR\HG LQ FOHDQLQJ *D$V VXEVWUDWHV IRU HSLWD[\ ZKLFK LQYROYHV ZHW FKHPLFDO SURFHVVLQJ IROORZHG E\ LQ VLWX KHDWLQJ SULRU WR 0%( JURZWK KDV EHHQ H[WHQVLYHO\ VWXGLHG IRU H[DPSOH E\ &RQWRXU HW DO\ DQG 9DVTXH] /HZLV DQG *UXQWKDQHU DQG E\ DXWKRUV FLWHG LQ WKHVH UHIHUHQFHV 3UREOHPV ZLWK WKLV WHFKQLTXH KRZHYHU LQFOXGH WKH UHTXLUHPHQW RI D SURFHVVLQJ WHPSHUDWXUH LQ WKH YLFLQLW\ RI r& DQG WKH IDFW WKDW WKH UHVXOWDQW *D$V VXUIDFH FDQ EH URXJK RQ WKH DWRPLF OHYHO ,Q UHFHQW \HDUV YDULRXV QRYHO FOHDQLQJ SURFHGXUHV KDYH EHHQ UHSRUWHG LQFOXGLQJ LQ VLWX FKHPLFDO HWFKLQJ RI *D$V E\ JDVHRXV +& SKRWRFKHPLFDO SURFHVVLQJ RI *D$V DQG SUHOLPLQDU\ ZRUN RQ WKH UHPRYDO RI WKH QDWLYH R[LGHV IURP WKH *D$V VXUIDFH XVLQJ YDULRXV K\GURJHQ SODVPDV 7KHVH SODVPD WHFKQLTXHV KDYH EHHQ DSSOLHG ZLWK YDU\LQJ GHJUHHV RI VXFFHVV GHSHQGLQJ RQ WKH W\SH RI SODVPD DQG VXUIDFH WHPSHUDWXUH UHTXLUHG 8QIRUWXQDWHO\ WKHVH WHFKQLTXHV KDYH SUREOHPV VLQFH + UDSLGO\ GHFRPSRVHV

PAGE 22

*D$V DQG WKH IDVW SDUWLFOHV DQG LRQV JHQHUDWHG LQ VRPH RI WKH SODVPDV GHJUDGH VXUIDFH HOHFWURQLF SURSHUWLHV ,Q DQ HIIRUW WR H[SORUH QHZ VRIW SURFHGXUHV 6FKDHIHU HW DO 3HWLW HW DO DQG 3HWLW DQG +RX]D\ UHFHQWO\ UHSRUWHG RQ WKH LQWHUDFWLRQ RI DWRPLF K\GURJHQ JHQHUDWHG E\ GLVVRFLDWLQJ + YLD D KRW ILODPHQW ZLWK WKH *D$V QDWLYH R[LGHV FRQFOXGLQJ WKDW WKH R[LGHV FDQ EH UHGXFHG WR D ODUJH H[WHQW E\ VXFK D WHFKQLTXH ZKLOVW OLPLWLQJ $V GHVRUSWLRQ *D$V GHFRPSRVLWLRQ DQG GRSDQW GHDFWLYDWLRQ :LWK WKHVH UHSRUWV LQ PLQG RQH RI WKH REMHFWLYHV RI WKLV ZRUN ZDV WR LQYHVWLJDWH WKH XVH RI DQ XOWUDKLJK YDFXXP 8+9f FRPSDWLEOH UI SODVPD VRXUFH WR JHQHUDWH DQ DWRPLF K\GURJHQ IOX[ IRU *D$V R[LGH UHGXFWLRQ :H KDG SUHYLRXVO\ GHYHORSHG VXFK DQ UI SODVPD VRXUFH IRU GRSLQJ =Q6H SW\SH YLD DQ DWRPLF QLWURJHQ EHDP ([SHULPHQWDO $SSDUDWXV 0%( 6\VWHP &RQILJXUDWLRQ *URZWK FKDPEHU 7KH H[SHULPHQWV ZHUH FDUULHG RXW LQ D FXVWRP GHVLJQHG 0%( V\VWHP HTXLSSHG ZLWK FRQYHQWLRQDO HIIXVLRQ VRXUFHV IRU =Q 6H DQG 7H D 5+((' V\VWHP IRU DVVHVVLQJ VXEVWUDWH VXUIDFH TXDOLW\ DQG D

PAGE 23

8+9 FRPSDWLEOH UI SODVPD VRXUFH PDQXIDFWXUHG E\ 2[IRUG $SSOLHG 5HVHDUFK 2[IRUGVKLUH 8.f ZKLFK ZDV SUHYLRXVO\ XVHG DV D VRXUFH RI QLWURJHQ DWRPV IRU GRSLQJ =Q6H SW\SH ,Q DGGLWLRQ WR WKHVH FRQYHQWLRQDO FRPSRQHQWV WKH 0%( FKDPEHU ZDV DOVR FRQILJXUHG ZLWK D ODVHU SUREH DSSDUDWXV DV LOOXVWUDWHG LQ )LJ /DVHU SUREH DSSDUDWXV 7KH DSSDUDWXV FRQVLVWHG RI D OP: +H1H ODVHU ; QPf PRXQWHG RXWVLGH WKH 0%( JURZWK FKDPEHU WKH ODVHU EHDP EHLQJ GLUHFWHG WKURXJK D YLHZSRUW WRZDUGV WKH VXEVWUDWH ZKLFK ZDV PRXQWHG 0R VXEVWUDWH KROGHU 7KH GHWHFWRUDPSOLILHU WKH DSSDUDWXV FRQVLVWHG RI D FRORU FKDUJHG FRXSOHG GHYLFH &&'f YLGHR FDPHUD ZLWK D OLJKW LQWHQVLW\ VHQVLWLYLW\ RI X[f DQG D FRORU YLGHR PRQLWRU 7KH FDPHUD ZDV PRXQWHG RXWVLGH WKH V\VWHP RQ LWV RZQ YLHZSRUW LWV RSWLFDO D[LV O\LQJ DORQJ WKH VDPSOH QRUPDO ZKLFK ZDV r DZD\ IURP WKH RSWLFDO D[LV RI WKH LQFLGHQW ODVHU EHDP 7KLV SDUWLFXODU JHRPHWU\ SURYLGHG IRU VLPXOWDQHRXV 5+((' DQDO\VLV DV LQGLFDWHG LQ WKH ILJXUH 7KH FDPHUD ZDV IRFXVHG RQ WKH VXEVWUDWH VXUIDFH DQG WKH YLVLEOH VSRW DULVLQJ IURP HODVWLFDOO\ VFDWWHUHG ODVHU OLJKW (//6f GXH WR VXUIDFH PRUSKRORJ\ FKDQJHV URXJKHQLQJf ZDV GLVSOD\HG RQ WKH YLGHR PRQLWRU DW D PDJQLILFDWLRQ RI ; 7KH LQWHQVLW\ RI WKH VFDWWHUHG ODVHU OLJKW ZDV TXDQWLILHG E\ DWWDFKLQJ D 6L ZLGHDUHD SKRWRGLRGH

PAGE 24

UI 3ODVPD 6RXUFH 3KRVSKRU 6FUHHQ 0RYDEOH ,RQ *DXJH rY 0LUURU + $WRPV 8+9 &&' HUD +HDWHG *D$V 6XEVWUDWH =LQF +H1H /DVHU (OHFWURQ *XQ 5+(('f 0RQLWRU %LDV 1HWZRUN \ AA (//6 6LJQDO WR 5HFRUGHU ,, 6L SKRWRGLRGH )LJXUH 6FKHPDWLF RI WKH FXVWRPGHVLJQHG PROHFXODU EHDP HSLWD[\ V\VWH VKRZLQJ FRQYHQWLRQDO HIIXVLRQ VRXUFHV UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ V\VWHP DQG XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH ILWWHG ZLWK D SUHFLVLRQ OHDN YDOYH DQG JDV OLQH IRU K\GURJHQ $OVR LOOXVWUDWHG LV D VFKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR FKDUDFWHUL]H WKH VXUIDFH PRUSKRORJ\ RI *D$V GXULQJ FOHDQLQJ E\ UHFRUGLQJ WKH VFDWWHUHG +H1H ODVHU OLJKW RU ODFN WKHUHRIf GXULQJ FOHDQLQJ SURFHGXUHV 7KH ,, HWU\ LQGLFDWHG LQ WKH ILJXUH SURYLGHV IRU VLPXOWDQHRXV UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ DQDO\VLV DV VKRZQ

PAGE 25

WR WKH PRQLWRUnV FDWKRGH UD\ WXEH &57f RYHU WKH LPDJH RI WKH VSRW DQG WKH RXWSXW YROWDJH IURP LWV UHVSHFWLYH ELDV QHWZRUN ZDV UHFRUGHG DV D IXQFWLRQ RI WLPH ,W VKRXOG EH QRWHG WKDW WKH VSHFXODU UHIOHFWLRQ ZDV QRW XWLOL]HG LQ WKLV H[SHULPHQW &KDUDFWHUL]DWLRQ RI 2SWLFDO 6\VWHP 'XH WR WKH XQRUWKRGR[ QDWXUH RI WKH GHWHFWLRQ V\VWHP HPSOR\HG LQ TXDQWLI\LQJ WKH LQWHQVLW\ RI HODVWLFDOO\ VFDWWHUHG ODVHU OLJKW LW ZDV GHHPHG LPSRUWDQW WR FKDUDFWHUL]H WKH WUDQVIHU IXQFWLRQ RI WKH FDPHUDEDVHG GHWHFWLRQ V\VWHP DQG WKH DSSDUDWXV LOOXVWUDWHG VFKHPDWLFDOO\ LQ )LJ ZDV HPSOR\HG WR SHUIRUP WKLV WDVN $ WXQJVWHQ ODPS OHQV GLIIXVHU DQG ODVHU OLQH ILOWHU FRPELQDWLRQ ZDV XVHG WR SURYLGH D PRQRFKURPDWLF $ QPf LQSXW VLJQDO ZKRVH LQWHQVLW\ FRXOG EH YDULHG RYHU D ZLGH G\QDPLF UDQJH 7R TXDQWLI\ WKH LQWHQVLW\ RI OLJKW HQWHULQJ WKH FDPHUD V\VWHP IURP WKH VRXUFH D EHDP VSOLWWHU ZDV SODFHG LQ IURQW RI WKH FDPHUD OHQV WR GLUHFW D SRUWLRQ RI WKH LQSXW OLJKW WRZDUGV D SKRWRGLRGH 7KH RXWSXW YROWDJH IURP WKH ELDV QHWZRUN DVVRFLDWHG ZLWK WKLV SKRWRGLRGH ZDV WKHQ SURSRUWLRQDO WR WKH OLJKW LQWHQVLW\ GLUHFWHG LQWR WKH FDPHUD V\VWHP WUDQVIHU IXQFWLRQ ZDV GHGXFHG E\ FRPSDULQJ WKH RXWSXW YROWDJH IURP WKH RWKHU ELDV QHWZRUN ZLWK

PAGE 26

: /DPS /HQV 1HXWUDO 'LIIXVHU /DVHU /LQH )LOWHU QPf 0RQLWRU )LJXUH 6FKHPDWLF RI WKH DSSDUDWXV HPSOR\HG WR FKDUDFWHUL]H WKH FDPHUDEDVHG GHWHFWLRQ V\VWHP WUDQVIHU IXQFWLRQ DW QP

PAGE 27

WKH LQSXW YROWDJH ERWK LQWHQVLWLHV EHLQJ UHFRUGHG VLPXOWDQHRXVO\ ZLWK DQ ;< UHFRUGHU DV LQGLFDWHG LQ WKH ILJXUH $V LOOXVWUDWHG LQ )LJ WKH GHWHFWLRQ V\VWHP H[KLELWHG D WKUHVKROG EH\RQG ZKLFK D OLQHDU UHJLPH ZDV REVHUYHG $V WKH LQSXW LQWHQVLW\ LQFUHDVHG WKH V\VWHP UHVSRQGHG LQ DQ LQFUHDVLQJO\ QRQOLQHDU IDVKLRQ DV LQGLFDWHG LQ WKH ILJXUH 7KLV ZDV PRVW OLNHO\ GXH WR WKH DXWRPDWLF JDLQ FRQWURO FLUFXLWU\ LQ ERWK WKH &&' FDPHUD DQG WKH PRQLWRU )RU IXUWKHU LQFUHDVHV LQ LQSXW LQWHQVLW\ WKH V\VWHP UHVSRQVH ZDV FODPSHG SUHVXPDEO\ LQ UHVSRQVH WR WKH VDWXUDWLRQ RI WKH &&' DUUD\ 8VLQJ WKLV LQIRUPDWLRQ DWWHPSWV ZHUH PDGH WKURXJKRXW WKH H[SHULPHQWV WR NHHS WKH GHWHFWLRQ V\VWHP LQ D UHJLPH ZKHUH FODPSLQJ GLG QRW RFFXU 7KH V\VWHP ZDV KRZHYHU DOORZHG WR RSHUDWH LQ WKH OLQHDUQRQOLQHDU UHJLPHV VR WKDW D UHDVRQDEOH GHJUHH RI G\QDPLF UDQJH FRXOG EH DFKLHYHG 8+9 &RPSDWLEOH UI 3ODVPD 6RXUFH ,Q WKLV ZRUN WKH UI SODVPD VRXUFH ZDV ILWWHG ZLWK DQ DGGLWLRQDO SUHFLVLRQ OHDN YDOYH DQG K\GURJHQ JDV OLQH VHH )LJ f ZKLFK DOORZHG IRU WKH SURGXFWLRQ RI D K\GURJHQ RU D QLWURJHQ UDGLFDO EHDP GHSHQGLQJ RQ WKH

PAGE 28

2XWSXW ,QWHQVLW\ DUE XQLWVf fff r ? f f f f g U A }f U I f§ 2SHUDWLQJ 5HJLPH f f ,QSXW ,QWHQVLW\ DUE XQLWVf )LJXUH &DPHUDEDVHG GHWHFWLRQ V\VWHP WUDQVIHU IXQFWLRQ UHFRUGHG DW QP

PAGE 29

JDV LQWURGXFHG LQWR WKH GLVFKDUJH FKDPEHU )LJXUH VKRZV D VFKHPDWLF RI WKH UI SODVPD VRXUFH DV FRQILJXUHG IRU K\GURJHQ DWRP SURGXFWLRQ &RXSOHG UI 0+]f HQHUJ\ LV PDQXDOO\ DGMXVWHG ZLWK D FDSDFLWLYH SRZHU PDWFKLQJ XQLW VR WKDW WKH UHIOHFWHG SRZHU LV XVXDOO\ OHVV WKDQ RU DSSUR[LPDWHO\ : *DV IORZ LQWR WKH S\URO\WLF ERURQ QLWULGH 3%1f GLVFKDUJH FKDPEHU LV FRQWUROOHG YLD D 8+9 FRPSDWLEOH SUHFLVLRQ OHDN YDOYH $ ZDWHUFRROHG UI LQGXFWLRQ FRLO VXUURXQGV WKH GLVFKDUJH FKDPEHU DQG D VLOLFRQGLRGHEDVHG RSWLFDO HPLVVLRQ PRQLWRU SURYLGHV D PHDVXUH RI SODVPD LQWHQVLW\ LQVLGH WKH GLVFKDUJH FKDPEHU $ 3%1 PXOWLDSHUWXUH GLVN SRVLWLRQHG DW WKH HQG RI WKH GLVFKDUJH FKDPEHU DOORZV WKH K\GURJHQ VSHFLHV WR H[LW LQWR WKH JURZWK FKDPEHU DV VKRZQ 7KH VRXUFH RI K\GURJHQ ZDV D FRQYHQWLRQDO KLJK SUHVVXUH aSVLJf F\OLQGHU RI XOWUDKLJKSXULW\ b + DQG SSP +f K\GURJHQ ZKLFK ZDV UHJXODWHG WR O2SVLJ EHIRUH EHLQJ LQWURGXFHG LQWR WKH SUHFLVLRQ OHDN YDOYH &KDUDFWHULVWLF K\GURJHQ VSHFWUXP 7R H[DPLQH WKH VSHFLHV LQ WKH SODVPD RSWLFDO HPLVVLRQ VSHFWURVFRS\ 2(6f ZDV SHUIRUPHG XVLQJ WKH DSSDUDWXV VKRZQ LQ )LJ )ROORZLQJ UHPRYDO RI WKH RSWLFDO HPLVVLRQ PRQLWRU VHH )LJ f OLJKW IURP WKH SODVPD UHJLRQ ZDV JXLGHG LQWR WKH SP VOLW RI WKH PRQRFKURPDWRU XVLQJ D PLUURU DQG D OHQV 7KH GLIIUDFWLRQ JUDWLQJ

PAGE 30

0+] : PD[LPXPf ,QWHJUDWHG 3ODVPD ,QWHQVLW\ 6LJQDO 2XWSXW 3UHFLVLRQ 'LVFKDUJH &KDPEHU + +r ? ? 3%1 0XOWL$SHUWXUH 'LVN )LJXUH 6FKHPDWLF RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH XVHG WR JHQHUDWH D IOX[ RI DWRPLF K\GURJHQ 7\SLFDO RSHUDWLQJ FRQGLWRQV ZHUH : IRUZDUG SRZHU : UHIOHFWHGf ZLWK DQ HTXLOLEULXP /DLQWDLQHG DW [ 7 EDFNJURXQG SUHVVXUH RI + LQ WKH JURZWK EHU EDU

PAGE 31

0LUURU 0RYDEOH )LJXUH 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR UHFRUG WKH RSWLFDO HPLVVLRQ VSHFWUXP DVVRFLDWHG ZLWK WKH K\GURJHQ SODVPD FUHDWHG LQ WKH GLVFKDUJH UHJLRQ RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH LQGLFDWHG LQ )LJV DQG

PAGE 32

JURRYHVPPf FRQWDLQHG LQ WKH PRQRFKURPDWRU GLVSHUVHG WKH OLJKW RQWR D OLQHDU DUUD\ RI ,5LQWHQVLILHG VLOLFRQ GLRGHV $ PXOWLFKDQQHO DQDO\]HU FRQYHUWHG WKH VLJQDOV IURP WKH GLRGH DUUD\ LQWR DQ HPLVVLRQ VSHFWUXP )LJXUH LOOXVWUDWHV D W\SLFDO RSWLFDO HPLVVLRQ VSHFWUXP UHFRUGHG IURP WKH K\GURJHQ SODVPD UHJLRQ XQGHU VWDQGDUG RSHUDWLQJ FRQGLWLRQV RI WKH VRXUFH 7KH UI SRZHU XVHG WR FUHDWH WKH GLVFKDUJH ZDV : ZKLOH WKH HTXLOLEULXP EDFNJURXQG SUHVVXUH RI K\GURJHQ LQ WKH 0%( JURZWK FKDPEHU ZDV 6[O2APEDU 7KH HPLVVLRQ VSHFWUXP VKRZQ LQ )LJ LV VLPLODU WR WKDW UHSRUWHG E\ 6XJDWD HW DO VHH )LJ LQVHWf ZKR HPSOR\HG DQ HOHFWURQ F\FORWURQ UHVRQDQFH (&5f PLFURZDYH GLVFKDUJH VRXUFH DOWKRXJK LQ WKH SUHVHQW VSHFWUXP RQO\ DWRPLF K\GURJHQ OLQHV DUH HYLGHQW DV VXJJHVWHG E\ WKH IHDWXUHOHVV EDVHOLQH DQG VWURQJ HPLVVLRQ OLQHV FRPPRQO\ DVVRFLDWHG ZLWK HOHFWURQLF WUDQVLWLRQV LQ WKH QHXWUDO K\GURJHQ DWRP 7KH HPLVVLRQ OLQHV GHVLJQDWHG +D +S DQG +A UHSUHVHQW WKH ILUVW WKUHH OLQHV LQ WKH FKDUDFWHULVWLF YLVLEOH VSHFWUXP %DOPHU VHULHVf RI WKH K\GURJHQ DWRP DQG FRQVHTXHQWO\ DWRPLF K\GURJHQ ZRXOG VHHP WR FRPSRVH D VLJQLILFDQW IUDFWLRQ RI WKH IOX[ HPDQDWLQJ IURP WKH UI SODVPD VRXUFH +\GURJHQ VSHFWUXP HYROXWLRQ 7R IXUWKHU H[SORUH WKH RSHUDWLQJ FKDUDFWHULVWLFV RI WKH UI SODVPD VRXUFH ZKLOVW FRQILJXUHG IRU K\GURJHQ DWRP

PAGE 33

:DYHOHQJWK QPf )LJXUH $ FKDUDFWHULVWLF RSWLFDO HPLVVLRQ VSHFWUXP UHFRUGHG IURP WKH K\GURJHQ SODVPD UHJLRQ RI GLH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH LOOXVWUDWLQJ HPLVVLRQ OLQHV FKDUDFWHULVWLF RI DWRPLF K\GURJHQ 7KH UI SRZHU XVHG WR FUHDWH WKH GLVFKDUJH ZDV : : UHIOHFWHGf ZKLOH DQ HTXLOLEULXP EDFNJURXQG SUHVVXUH RI K\GURJHQ LQ WKH PROHFXODU EHDP HSLWD[\ JURZWK FKDPEHU RI [OM PEDU ZDV PDLQWDLQHG ,QVHW VKRZV DQ HPLVVLRQ VSHFWUXP IURP DQ (&5 SODVPD VRXUFH IURP 6XJDWD HW DOf

PAGE 34

SURGXFWLRQ WLPHGHSHQGHQW 2(6 ZDV SHUIRUPHG RYHU D SHULRG RI GD\V IROORZLQJ DWWDLQPHQW RI WKH K\GURJHQ SODVPD VKRZQ LQ )LJ 0RUH VSHFLILFDOO\ WKH SODVPD ZDV LJQLWHG RQ VHOHFWHG GD\V DQG VWDELOL]HG DQ RSWLFDO HPLVVLRQ VSHFWUXP ZDV UHFRUGHG DQG WKHQ WKH UI SODVPD VRXUFH ZDV VKXW GRZQ )LJXUH LV D FRPSLODWLRQ RI WKRVH UHVXOWV DQG LW VKRXOG EH QRWHG WKDW DOO VSHFWUD DUH WKH VDPH VFDOH $V LQGLFDWHG LQ )LJ Df WKH VSHFWUXP UHFRUGHG RQ GD\ LQGLFDWHG D ODFN RI WKH FKDUDFWHULVWLF )A DQG +S OLQHV DQG D EURDGHQLQJ RI WKH +D OLQH 1HZ IHDWXUHV ZHUH DOVR SUHVHQW QHDU DQG QP $IWHU D PHFKDQLFDO SXPS ZDV XVHG WR HYDFXDWH WKH K\GURJHQ IHHG OLQH IRU PLQXWHV DQG WKH OLQH ZDV EDFNILOOHG ZLWK K\GURJHQ )LJ Ef LQGLFDWHG D UHWXUQ RI WKH FKDUDFWHULVWLF +A DQG +S OLQHV DQG D FRUUHVSRQGLQJ QDUURZLQJ RI WKH +D OLQH 7KH IHDWXUHV QHDU DQG QP KRZHYHU ZHUH QRW SUHVHQW $IWHU KRXUV KRZHYHU WKH IHDWXUHV QHDU DQG QP UHWXUQHG DV LQGLFDWHG LQ WKH ILJXUH VHH )LJ Fff 7KH RSWLPXP VSHFWUXP DV LQGLFDWHG E\ FKDUDFWHULVWLF K\GURJHQ HPLVVLRQ OLQHV DQG D IHDWXUHOHVV EDVHOLQH LV UHSUHVHQWHG E\ )LJ Gf DQG ZDV REWDLQHG E\ HYDFXDWLQJ DQG EDFNILOOLQJ WKH K\GURJHQ IHHG OLQH VHYHUDO WLPHV $V D UHVXOW WKLV SURFHGXUH LH HYDFXDWHEDFNILOO WKH OLQH VHYHUDO WLPHV SULRU WR XVLQJ WKH VRXUFHf ZDV

PAGE 35

,f§,f§,f§,f§,f§,f§,f§,f§,f§,f§,f§,f§,f§,f§, , , , , , , , , ,f§,f§,f§,f§,f§ fLf§Lf§Lf§Lf§_ L L L L L L L L L L L L L L U L L L L L L L Lf§Lf§_f§Lf§Lf§Lf§L :DYHOHQJWK QPf )LJXUH (YROXWLRQ RI WKH FKDUDFWHULVWLF RSWLFDO HPLVVLRQ VSHFWUXP UHFRUGHG IURP WKH K\GURJHQ SODVPD UHJLRQ RI WKH XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH DV D IXQFWLRQ RI WLPH 6SHFWUXP Df ZDV UHFRUGHG GD\V DIWHU WKDW RI )LJ 6SHFWUXP Ef ZDV UHFRUGHG DIWHU HYDFXDWLQJ WKH + IHHG OLQH ZLWK D SXPS IRU PLQXWHV DQG WKHQ EDFNILOOLQJ WKH OLQH ZLWK + 6SHFWUXP Ff ZDV UHFRUGHG KRXUV ODWHU DQG VSHFWUXP Gf ZDV UHFRUGHG DIWHU HYDFXDWLQJ DQG EDFNILOOLQJ WKH + IHHG OLQH VHYHUDO WLPHV 1RWH WKH VRXUFH ZDV RQ GXULQJ UHFRUGLQJ RI WKH VSHFWUD DQG RII RWKHUZLVH

PAGE 36

DGRSWHG DV D VWDQGDUG RSHUDWLQJ SURFHGXUH IRU DOO IXWXUH H[SHULPHQWV LQ ZKLFK WKH UI SODVPD VRXUFH ZDV HPSOR\HG ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH SRVLWLRQV RI WKH DGGLWLRQDO IHDWXUHV SUHVHQW LQ )LJV Df DQG Ff FRUUHVSRQG ZHOO ZLWK HPLVVLRQ EDQG ORFDWLRQV DVVRFLDWHG ZLWK DFWLYH QLWURJHQ ZKLFK LV QRW VXUSULVLQJ VLQFH WKH VRXUFH KDG SUHYLRXVO\ EHHQ XVHG ZLWK QLWURJHQ DQG WKHUHIRUH LW LV OLNHO\ WKH PRVW SUREDEOH FRQWDPLQDQW DORQJ ZLWK DLU LQ WKH IHHG OLQH 3UHFLVLRQ 6XEVWUDWH 7HPSHUDWXUH &DOLEUDWLRQ %HIRUH WKH R[LGH GHVRUSWLRQ H[SHULPHQWV WKH ODVHU VFDWWHULQJ DSSDUDWXV ZDV HPSOR\HG WR FDOLEUDWH SUHFLVHO\ WKH WHPSHUDWXUH DW WKH VXUIDFH RI WKH VXEVWUDWH E\ PRQLWRULQJ WKH IRUPDWLRQ RI D HXWHFWLF IURP VHOHFWHG ELQDU\ DOOR\V 7KH PHOWLQJ WHPSHUDWXUH RI ,Q ZDV DOVR XVHG DV D ORZ WHPSHUDWXUH FDOLEUDWLRQ SRLQW $V VKRZQ LQ )LJ WKH KHDWHG VXEVWUDWH KROGHU KDYLQJ DQ LQWHJUDO WKHUPRFRXSOH 7&f WKDW ZDV GLVSODFHG IURP WKH VXEVWUDWH ZDV WLOWHG VXFK WKDW WKH DQJOH RI LQFLGHQFH RI WKH LPSLQJLQJ ODVHU EHDP ZDV r VLQFH LW ZDV GHWHUPLQHG WKDW WKLV DQJOH SURYLGHG WKH ODUJHVW FKDQJH LQ WKH LQWHQVLW\ RI ODVHU OLJKW VFDWWHUHG LQ WKH GLUHFWLRQ RI WKH GHWHFWLRQ V\VWHP XSRQ HXWHFWLF

PAGE 37

3KRVSKRU 0RYDEOH 0LUURU +H1H /DVHU %LDV 1HWZRUN (//6 6LJQDO WR 5HFRUGHU 6L SKRWRGLRGH )LJXUH 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR FDOLEUDWH SUHFLVHO\ WKH VXEVWUDWH WHPSHUDWXUH E\ UHFRUGLQJ WKH FKDQJH LQ VFDWWHUHG +H1H ODVHU OLJKW FRUUHVSRQGLQJ WR WKH IRUPDWLRQ RI D HXWHFWLF FRPSRXQG IURP VHOHFWHG ELQDU\ DOOR\V

PAGE 38

IRUPDWLRQ 7KH VSHFXODU UHIOHFWLRQ ZDV IRXQG WR EH OHDVW VHQVLWLYH WR WKLV HYHQW KHQFH WKH XVH RI WKH VFDWWHUHG ODVHU OLJKW VLJQDO 7HPSHUDWXUH UHIHUHQFH VWDQGDUGV ZHUH IRUPHG E\ HOHFWURQ EHD ,, HYDSRUDWLRQ RI VHOHFWHG PHWDOV RQWR DSSURSULDWH VXEVWUDWHV 6SHFLILFDOO\ ƒ RI $ ZDV GHSRVLWHG RQWR 6L DQG ƒ RI $X ZDV GHSRVLWHG RQWR *H VLQFH WKH HXWHFWLF IRUPDWLRQ WHPSHUDWXUHV RI WKHVH ELQDU\ DOOR\V DUH DQG r& UHVSHFWLYHO\ $ WKLUG UHIHUHQFH VWDQGDUG ZDV IRUPHG E\ DWWDFKLQJ D SLHFH RI ,Q ZLUH WR *D$V ZKLFK XSRQ UHDFKLQJ r& WKH PHOWLQJ WHPSHUDWXUH RI ,Q ZRXOG ZLOW RYHU 3ULRU WR EHLQJ PRXQWHG LQ WKH 0%( JURZWK FKDPEHU DOO WKUHH UHIHUHQFHV ZHUH VROGHUHG WR D VLQJOH 0R KROGHU ZLWK b SXUH ,Q DQG WKHQ LPPHGLDWHO\ WUDQVIHUUHG WR D ORDGORFN PRXQWHG RQ WKH 0%( JURZWK FKDPEHU 7KH FDOLEUDWLRQ FXUYH VKRZQ LQ )LJ ZDV DUULYHG DW E\ YHU\ VORZO\ LQFUHDVLQJ WKH 7& WHPSHUDWXUH IURP URRP WHPSHUDWXUH WR r& DQG WKHQ DVFULELQJ WKH UHIHUHQFH WHPSHUDWXUHV WR HYHQWV LH ZLOWLQJ RI WKH ,Q ZLUH $X*H HXWHFWLF IRUPDWLRQ $O6L HXWHFWLF IRUPDWLRQf DV WKH\ RFFXUUHG $V LQGLFDWHG LQ WKH LQVHW RI )LJ WKH HUURU QRUPDOL]HG ZLWK UHVSHFW WR WKH 7& WHPSHUDWXUHf UDQJHV IURP DSSUR[LPDWHO\ b QHDU r& WR DSSUR[LPDWHO\ b QHDU r& ZLWK EHVW OLQHDULW\ s bf EHLQJ DFKLHYHG LQ WKH UDQJH RI

PAGE 39

)LJXUH $ SORW RI VXEVWUDWH VXUIDFH WHPSHUDWXUH YHUVXV WKHUPRFRXSOH WHPSHUDWXUH VKRZLQJ WKH SRLQWV DVVRFLDWHG ZLWK HXWHFWLF IRUPDWLRQ ,QVHW LQGLFDWHV WKDW WKHUH ZDV QR PRUH WKDQ Ob HUURU QRUPDOL]HG WR 7& WHPSHUDXUHf RYHU WKH WHPSHUDWXUH UHJLPH H[SORUHG

PAGE 40

r& 7KLV LV D UHDVRQDEOH YDULDWLRQ EHFDXVH WKH HPLVVLYLW\ RI 0R LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ZKLOH LWV WKHUPDO FRQGXFWLYLW\ GHFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ,W VKRXOG EH QRWHG WKDW WKH FDOLEUDWLRQ ZDV XVHG LQ DOO IXWXUH H[SHULPHQWV WR FRQYHUW PRQLWRUHG RU 7& WHPSHUDWXUH WR DFWXDO VXEVWUDWH WHPSHUDWXUH VR UHSRUWHG WHPSHUDWXUHV ZRXOG EH V\VWHP XQVSHFLILF DOORZLQJ WKH SUHVHQW UHVXOWV WR EH FRPSDUHG WR WKH OLWHUDWXUH ,Q 6LWX *D$V 6XUIDFH &OHDQLQJ 7KH VXEVWUDWHV XVHG LQ WKH FOHDQLQJ VWXG\ ZHUH HSLUHDG\ YHUWLFDO JUDGLHQW IUHH]H 9*)f JURZQ *D$V22Of RULHQWHG r WRZDUGV >@ VXSSOLHG E\ $PHULFDQ ;WDO 7HFKQRORJ\ 'XEOLQ &$f 3ULRU WR EHLQJ PRXQWHG LQ WKH 0%( JURZWK FKDPEHU WKH VXEVWUDWHV ZHUH VROGHUHG WR D 0R KROGHU ZLWK b SXUH ,Q DQG WKHQ LPPHGLDWHO\ WUDQVIHUUHG WR D ORDGORFN PRXQWHG RQ WKH 0%( JURZWK FKDPEHU 7KH ODVHU OLJKW VFDWWHULQJ GDWD UHFRUGHG IURP *D$V ZDIHUV WUHDWHG WKHUPDOO\ DQG XVLQJ D FRPELQHG WKHUPDO+DWRP WUHDWPHQW DUH FRPSDUHG DQG FRQWUDVWHG LQ )LJ $ r&PLQXWH WHPSHUDWXUH UDPS ZKLFK ZDV DFKLHYHG XVLQJ D SURJUDPPDEOH WHPSHUDWXUH FRQWUROOHU ZDV XVHG WR VZHHS WKH

PAGE 41

)LJXUH $ SORW RI WKH LQWHQVLW\ RI ODVHU OLJKW VFDWWHULQJ YHUVXV VXEVWUDWH WHPSHUDWXUH UDPS UDWH r&PLQXWHf 7KH GDWD ZDV UHFRUGHG GXULQJ FRQYHQWLRQDO WKHUPDO WUHDWPHQW DQG GXULQJ D FRPELQHG WKHUPDO+DWRP WUHDWPHQW RI f*D$V ZDIHUV Df DQG Ef UHVSHFWLYHO\ WR 2Y

PAGE 42

WHPSHUDWXUH IURP URRP WHPSHUDWXUH WR WKH PD[LPXP RSHUDWLQJ WHPSHUDWXUH r&f RI WKH KHDWHU VWDWLRQ DV VKRZQ LQ WKH ILJXUH $V LQGLFDWHG LQ )LJ Df FRQYHQWLRQDO WKHUPDO WUHDWPHQW RI *D$V UHVXOWHG LQ DQ DVVRFLDWHG VXUIDFH URXJKHQLQJ XSRQ R[LGH GHVRUSWLRQ WKH R[LGH GHVRUSWLRQ SURFHVV EHLQJ REVHUYHG E\ VLPXOWDQHRXV PRQLWRULQJ WKH 5+((' SDWWHUQ 7KLV UHVXOW LV LQ DJUHHPHQW ZLWK WKH REVHUYDWLRQV RI /DYRLH HW DO ,Q FRQWUDVW KRZHYHU VXUIDFH URXJKHQLQJ GLG QRW DFFRPSDQ\ WKH R[LGH GHVRUSWLRQ SURFHVV LQ WKH FDVH RI WKH FRPELQHG WKHUPDO+DWRP WUHDWPHQW DV HYLGHQFHG E\ WKH ODFN RI ODVHU VFDWWHULQJ LQ WKH R[LGH GHVRUSWLRQ UHJLPH LQGLFDWHG LQ )LJ Ef $OVR WKH R[LGH GHVRUSWLRQ WHPSHUDWXUH LV VLJQLILFDQWO\ ORZHU LQ WKH FDVH RI WKH FRPELQHG WKHUPDO+DWRP WUHDWPHQW WKDQ LQ WKH FDVH RI FRQYHQWLRQDO WKHUPDO WUHDWPHQW r& YHUVXV r& UHVSHFWLYHO\ 6LPLODU R[LGH GHVRUSWLRQ WHPSHUDWXUHV KDYH EHHQ UHSRUWHG LQ WKH OLWHUDWXUH ZKHQHYHU DFWLYDWHG K\GURJHQ KDV EHHQ HPSOR\HG WR FOHDQ *D$Vn ,Q DOO FDVHV WKH UHGXFWLRQ LQ WHPSHUDWXUH KDV EHHQ DWWULEXWHG WR WKH IDFW WKDW WKH R[\JHQ LQ WKH PL[HG $V*D R[LGH $V DQG *DAf UHDGLO\ UHDFWV ZLWK K\GURJHQ DW UHGXFHG WHPSHUDWXUHV PRUH VR LQ WKH FDVH RI WKH DUVHQLF R[LGH 6SHFLILFDOO\ WKH OLWHUDWXUH VXJJHVWV WKDW WKH DUVHQLF R[LGH LV UHDGLO\ UHGXFHG QHDU URRP WHPSHUDWXUH OHDYLQJ WKH JDOOLXP R[LGH

PAGE 43

WR EH UHGXFHG DW D YHU\ VORZ UDWH ZKLFK FDQ EH JUHDWO\ LQFUHDVHG E\ KHDWLQJ WKH VXEVWUDWH GXULQJ SURFHVVLQJ $V FDQ EH VHHQ IURP )LJ Ef VXUIDFH URXJKHQLQJ ZDV QRW REVHUYHG XVLQJ WKH FRPELQHG WKHUPDO+DWRP WUHDWPHQW DSSDUHQWO\ VXFK DQ REVHUYDWLRQ ZRXOG UHTXLUH RSHUDWLRQ RI WKH VXEVWUDWH KHDWHU EH\RQG LWV PD[LPXP UDWHG SRZHU OHYHO $V LQGLFDWHG DERYH VLPXOWDQHRXV PRQLWRULQJ RI WKH 5+((' SDWWHUQ GXULQJ HDFK WUHDWPHQW LQGLFDWHG ZKHQ WKH R[LGH GHVRUSWLRQ SURFHVV ZDV FRPSOHWHG 8SRQ FRPSOHWLRQ RI WKH R[LGH GHVRUSWLRQ SURFHVV UHSUHVHQWDWLYH 5+((' SDWWHUQV RI WKH DWRPLFDOO\ FOHDQ *D$V VXUIDFHV ZHUH UHFRUGHG DQG WKHVH SDWWHUQV DUH VKRZQ LQ )LJ $V LQGLFDWHG LQ )LJ Df WKH SDWWHUQ UHVXOWLQJ IURP FRQYHQWLRQDO WKHUPDO WUHDWPHQW RI *D$V LV FKDUDFWHULVWLF RI D UHFRQVWUXFWHG VXUIDFH D UHVXOW WKDW LV QRW VXUSULVLQJ EHFDXVH RI WKH SUHVHQFH RI GDQJOLQJ ERQGV DW WKH IUHHVXUIDFH XSRQ R[LGH GHVRUSWLRQ ,Q FRQWUDVW WKH 5+((' SDWWHUQ VKRZQ LQ )LJ Ef ZKLFK ZDV UHFRUGHG IURP D VXUIDFH WKDW H[SHULHQFHG WKH WKHUPDO+DWRP WUHDWPHQW LV LQGLFDWLYH RI DQ XQUHFRQVWUXFWHG VXUIDFH D VXUIDFH ZKHUH WKH DWRPV PDLQWDLQ WKHLU EXONOLNH SRVLWLRQV %\ UHPRYLQJ WKH +DWRP IOX[ DQG UDLVLQJ WKH WHPSHUDWXUH WR r& KRZHYHU WKH VXUIDFH UHFRQVWUXFWHG DV LQGLFDWHG E\ WKH 5+((' SDWWHUQ VKRZQ LQ )LJ Ff ZKLFK VXJJHVWV WKH SUHVHQFH RI GDQJOLQJ ERQGV DV LQ WKH FDVH RI

PAGE 44

)LJXUH 5HSUHVHQWDWLYH UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIOUDWLRQ SDWWHUQV UHFRUGHG IURP DWRPLFDOO\ FOHDQ *D$V VXUIDFHV UHVXOWLQJ IURP FRQYHQWLRQDO WKHUPDO WUHDWPHQW DQG WKH FRPELQHG WKHUPDO+DWRP WUHDWPHQW DQG DIWHU UHPRYDO RI WKH +DWRP IOX[ Df Ef DQG Ff UHVSHFWLYHO\ .!

PAGE 45

WKHUPDOO\ FOHDQHG VXUIDFHV ,W LV LQWHUHVWLQJ WR QRWH WKDW XSRQ ORZHULQJ WKH WHPSHUDWXUH WR r& DQG UHDSSO\LQJ WKH +DWRP IOX[ WKH UHFRQVWUXFWLRQ UHYHUVHG DV LQGLFDWHG E\ D 5+((' SDWWHUQ WKDW UHWXUQHG WR WKDW RI )LJ Ef VXJJHVWLQJ WKDW WKH + DWRPV ZHUH WHUPLQDWLQJ WKH GDQJOLQJ ERQGV $ UHFRQVWUXFWHG VXUIDFH ZDV DJDLQ DFKLHYHG E\ UHPRYLQJ WKH +DWRP IOX[ DQG UDLVLQJ WKH WHPSHUDWXUH WR r& ZKLFK VXJJHVWV WKDW WKH WHUPLQDWLRQ HIIHFW LV UHYHUVLEOH )LQDOO\ H[SRVXUH WR XQH[FLWHG K\GURJHQ JDV +f KDG QR HIIHFW RQ WKH VXUIDFH UHFRQVWUXFWLRQ ZKLFK FOHDUO\ LOOXVWUDWHV WKH HQKDQFHG UHDFWLRQ EHWZHHQ DWRPLF + DQG WKH *D$V VXUIDFH 7KHVH REVHUYDWLRQV LH WKH HIIHFWLYHQHVV RI + UHFRQVWUXFWLRQ UHYHUVLELOLW\ DQG LQHIIHFWLYHQHVV RI +f DUH LQ DJUHHPHQW ZLWK WKRVH RI 2n.HHIIH HW DO DQG LW ZRXOG VHHP WKDW WKH LPSLQJLQJ K\GURJHQ DWRPV WHUPLQDWH WKH GDQJOLQJ ERQGV WKXV DOORZLQJ WKH VXUIDFH DWRPV WR PDLQWDLQ WKHLU EXONOLNH SRVLWLRQV $OWKRXJK QRW VSHFLILFDOO\ GHWHUPLQHG LQ WKLV FDVH LW FDQ EH VSHFXODWHG WKDW WKH *D$V VXUIDFH LV $VULFK IROORZLQJ R[LGH GHVRUSWLRQ GXULQJ + WUHDWPHQW EHFDXVH RI WKH VLPLOLWXGH EHWZHHQ WKH SUHVHQW UHVXOWV DQG WKRVH RI 2n.HHIIH HW DO 6SHFLILFDOO\ WKH\ ZHUH DEOH WR FRPSDUH D GHOLEHUDWHO\ $VVWDELOL]HG *D$V VXUIDFH REWDLQHG DW KLJK WHPSHUDWXUH ar&f WR RQH REWDLQHG DW ORZ WHPSHUDWXUH ar&f DQG WKH\ FRQILUPHG WKDW D WZRIROGHG VWUXFWXUH $VVWDEOH ; SDWWHUQf DW KLJK

PAGE 46

WHPSHUDWXUH FRUUHVSRQGHG WR D WZRIROGHG VWUXFWXUH $VVWDEOH ; SDWWHUQf DW ORZ WHPSHUDWXUH 7KHUHIRUH WKH\ FRQFOXGHG WKDW WKH UHFRQVWUXFWHG *D$V VXUIDFH IROORZLQJ + WUHDWPHQW PXVW EH DQ $VVWDEOH ; VXUIDFH EHFDXVH RI WKH VLPLODULW\ WKH\ REVHUYHG EHWZHHQ 5+((' SDWWHUQV ,W WKHQ IROORZV EDVHG RQ WKLV ILQDO FRQFOXVLRQ WKDW WKH *D$V VXUIDFH SULRU WR UHFRQVWUXFWLRQ GXULQJ + WUHDWPHQWf PXVW QHFHVVDULO\ EH $VULFK ,W VKRXOG EH QRWHG WKDW WKH =Q6H HSLOD\HUV FRQVLGHUHG LQ WKH IROORZLQJ FKDSWHU ZHUH JURZQ RQ XQUHFRQVWUXFWHG *D$V VXUIDFHV LH *D$V VXUIDFHV LPPHGLDWHO\ IROORZLQJ + WUHDWPHQWf &RQFOXVLRQV *D$V VXUIDFHV FDQ EH UHDGLO\ FOHDQHG DW WHPSHUDWXUHV DW RU EHORZ r& SULRU WR 0%( JURZWK ZKHQ SUHSDUHG LQ VLWX XVLQJ RXU FRPELQHG WKHUPDO+DWRP WUHDWPHQW WKH +DWRP IOX[ EHLQJ GHULYHG IURP D 8+9 FRPSDWLEOH UI SODVPD VRXUFH DV RSSRVHG WR WKH FRQYHQWLRQDO WKHUPDO WUHDWPHQW ZKLFK UHTXLUHV WHPSHUDWXUHV LQ WKH YLFLQLW\ RI r& $ IXUWKHU EHQHILW DVVRFLDWHG ZLWK WKH + DWRP WUHDWPHQW LV WKDW WKH DWRPLFDOO\ FOHDQ *D$V VXUIDFHV DUH VSHFXODU PDNLQJ WKHP PRUH VXLWDEOH IRU HSLWD[LDO JURZWK

PAGE 47

WKDQ FRQYHQWLRQDO WKHUPDOO\ WUHDWHG *D$V VXUIDFHV URXJKHU DV HYLGHQFHG E\ ODVHU OLJKW VFDWWHULQJ REVHUYDWLRQV

PAGE 48

&+$37(5 /$6(5 /,*+7 6&$77(5,1* '85,1* =Q6H*D$V +(7(52(3,7$;< %DFNJURXQG )ROORZLQJ EUHDNWKURXJKV LQ WKH =Q6H SW\SH GRSLQJ DUHD HPSKDVLV KDV VKLIWHG UHFHQWO\ LQ WKH ZLGHEDQGJDS ,,9, VHPLFRQGXFWRU UHVHDUFK ILHOG WRZDUG WKH SURYLVLRQ RI ODWWLFHPDWFKHG ZLGHJDS ,,9,*D$V HSLWD[LDO VWUXFWXUHV IRU EOXHJUHHQ GLRGH ODVHU DSSOLFDWLRQ $OWKRXJK WKH ILUVW EOXHJUHHQ GLRGH ODVHUV UHSUHVHQWHG D FRQVLGHUDEOH DFKLHYHPHQW WKH VWUXFWXUHV HPSOR\HG LQ WKH IDEULFDWLRQ RI WKHVH GHYLFHV ZHUH QRW FRPSOHWHO\ ODWWLFHPDWFKHG DQG FRQVHTXHQWO\ GHYLFHV H[KLELWHG VKRUW OLIHWLPHV HYHQ DW UHGXFHG WHPSHUDWXUHV ,W LV JHQHUDOO\ DFFHSWHG WKDW SHUIHFW ODWWLFHPDWFKLQJ EHWZHHQ ZLGHJDS ,,9, HSLWD[LDO PDWHULDOV DQG *D$V VXEVWUDWHV ZLOO EH D SULPDU\ UHTXLUHPHQW ZLWK UHJDUG WR WKH GHYHORSPHQW RI ORQJOLYHG DW URRP WHPSHUDWXUHf =Q6H EDVHG EOXHJUHHQ GLRGH ODVHUV $W SUHVHQW KRZHYHU WLPH FRQVXPLQJ H[ VLWX FKDUDFWHUL]DWLRQ WHFKQLTXHV VXFK DV KLJK UHVROXWLRQ [UD\ GLIIUDFWLRQ DQG

PAGE 49

FURVVVHFWLRQDO WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ DUH DSSOLHG WR GHWHUPLQH WKH H[WHQW RI ODWWLFHPDWFKLQJ LQ ZLGHJDS ,,9,*D$V KHWHURVWUXFWXUHV 7KH SULPDU\ REMHFWLYHV RI WKLV SRUWLRQ RI WKH ZRUN ZHUH WR GHYHORS DQ LQ VLWX RSWLFDO SUREH ZKLFK FRXOG EH XVHG WR VWXG\ WKH VWUDLQ UHOLHI SURFHVV DVVRFLDWHG ZLWK PLVPDWFKHG HSLWD[\ LQ UHDOWLPH GXULQJ JURZWK DQG WR DWWHPSW WKURXJK WKHRUHWLFDO DQG H[SHULPHQWDO DSSURDFKHV WR FRUUHODWH RSWLFDO LQIRUPDWLRQ REWDLQHG LQ VLWX ZLWK PDMRU VWUXFWXUDO GHIHFWV DVVRFLDWHG ZLWK SODVWLF GHIRUPDWLRQ ([SHULPHQWDO $SSDUDWXV 0%( *URZWK &KDPEHU $V LQ FKDSWHU WKH H[SHULPHQWV ZHUH FDUULHG RXW LQ D FXVWRPGHVLJQHG ,, ROHFXODU EHDP HSLWD[\ V\VWHP HTXLSSHG ZLWK FRQYHQWLRQDO HIIXVLRQ VRXUFHV IRU =Q 6H DQG 7H D UHIOHFWLRQ KLJK HQHUJ\ HOHFWURQ GLIIUDFWLRQ V\VWHP IRU DVVHVVLQJ VXEVWUDWH VXUIDFH TXDOLW\ DQG VXEVHTXHQW HSLOD\HU TXDOLW\ DQG DQ XOWUDKLJK YDFXXP FRPSDWLEOH UI SODVPD VRXUFH ZKLFK ZDV XVHG WR UHPRYH WKH *D$V R[LGH SULRU WR HSLWD[\ ,Q DGGLWLRQ WR WKHVH FRQYHQWLRQDO FRPSRQHQWV WKH PROHFXODU EHDP HSLWD[\ FKDPEHU ZDV DOVR FRQILJXUHG ZLWK D ODVHU SUREH DSSDUDWXV DV LOOXVWUDWHG LQ )LJ

PAGE 50

%LDV 1HWZRUN /5, 6LJQDO WR 5HFRUGHU 0RYDEOH 3KRWRGLRGH 0LUURU +H1H /DVHU (//6 6LJQDO WR 5HFRUGHU 6L SKRWRGLRGH )LJXUH 6FKHPDWLF RI WKH H[SHULPHQWDO VHWXS XVHG WR UHFRUG HODVWLFDOO\ VFDWWHUHG ODVHU OLJKW (//6f DQG VSHFXODUO\ UHIOHFWHG ODVHU OLJKW GXULQJ WKH ROHFXODU EHDP HSLWD[LDO JURZWK RI ZLGHJDS ,,<,*D$V KHWHURVWUXFWXUHV

PAGE 51

/DVHU 3UREH $SSDUDWXV 7KH DSSDUDWXV VOLJKWO\ GLIIHUHQW WKDQ WKDW RI FKDSWHU f FRQVLVWHG RI D OP: +H1H ODVHU $ QPf PRXQWHG RXWVLGH WKH 0%( JURZWK FKDPEHU WKH ODVHU EHDP EHLQJ GLUHFWHG WKURXJK D YLHZSRUW WRZDUGV WKH VXEVWUDWH ZKLFK ZDV PRXQWHG RQ D KHDWHG 0R VXEVWUDWH KROGHU 7KH GHWHFWRUDPSOLILHU VWDJH RI WKH DSSDUDWXV FRQVLVWHG RI D FRORU &&' FDPHUD DQG D YLGHR PRQLWRU 7KH FDPHUD ZDV PRXQWHG RXWVLGH WKH V\VWHP RQ LWV RZQ YLHZSRUW LWV RSWLFDO D[LV O\LQJ r DZD\ IURP WKH RSWLFDO D[LV RI WKH LQFLGHQW ODVHU EHDP WKH ODVHU EHDP KDYLQJ QHDUQRUPDO LQFLGHQFH 7KH FDPHUD ZDV IRFXVHG RQ WKH VXUIDFH DQG WKH YLVLEOH VSRW DULVLQJ ,, (//6 GXH WR GHIHFW HYROXWLRQ ZDV GLVSOD\HG RQ WKH YLGHR PRQLWRU 7KH LQWHQVLW\ RI WKH VFDWWHUHG ODVHU OLJKW ZDV TXDQWLILHG E\ DWWDFKLQJ D 6L SKRWRGLRGH WR WKH PRQLWRUnV &57 RYHU WKH LPDJH RI WKH VSRW DQG WKH RXWSXW YROWDJH IURP LWV UHVSHFWLYH ELDV QHWZRUN ZDV UHFRUGHG DV D IXQFWLRQ RI WLPH 7KH VSHFXODUO\ UHIOHFWHG EHDP ZDV XWLOL]HG LQ WKLV H[SHULPHQW WR RQLWRU ILOP WKLFNQHVV LQ VLWX E\ HPSOR\LQJ ODVHU UHIOHFWLRQ LQWHUIHURPHWU\ /5,f $V FDQ EH VHHQ IURP WKH ILJXUH WKH +H1H ODVHU ZDV HPSOR\HG WR SURYLGH D QHDUQRUPDO LQFLGHQW EHDP DW WKH VDPSOH GXULQJ 0%( JURZWK DQG D VLOLFRQ ZLGHDUHD SKRWRGLRGH ZDV XVHG WR GHWHFW WKH UHIOHFWHG VLJQDO 7KH

PAGE 52

LQWHQVLW\ RI WKH UHIOHFWHG VLJQDO YDULHG VLQXVRLGDOO\ ZLWK WLPH GXULQJ JURZWK GXH WR LQWHUIHUHQFH EHWZHHQ WKH UHIOHFWLRQ RFFXUULQJ DW WKH JURZLQJ =Q6H IUHH VXUIDFH DQG WKH UHIOHFWLRQ RFFXUULQJ DW WKH =Q6H*D$V KHWHURLQWHUIDFH ([ VLWX ILOP WKLFNQHVV PHDVXUHPHQWV SHUIRUPHG RQ FDOLEUDWLRQ VDPSOHV XVLQJ FURVVVHFWLRQDO VFDQQLQJ HOHFWURQ PLFURVFRS\ ;6(0f UHYHDOHG DFWXDO ILOP WKLFNQHVVHV ZKLFK DOORZHG D FRUUHODWLRQ WR EH PDGH EHWZHHQ RVFLOODWLRQ SHULRG DQG ILOP WKLFNQHVV 6SHFLILFDOO\ DQ RVFLOODWLRQ SHULRG ZDV GHWHUPLQHG WR FRUUHVSRQG WR aQP RI GHSRVLWHG PDWHULDO 7KLV RVFLOODWLRQ SHULRGIL/ ,, WKLFNQHVV FDOLEUDWLRQ ZDV XVHG WR GHGXFH WKH WKLFNQHVV RI WKH =Q6H*D$V ILOPV LQ UHDOWLPH GXULQJ GHSRVLWLRQ ,W VKRXOG EH QRWHG WKDW WKH LQWHQVLWLHV RI ERWK WKH VFDWWHUHG ODVHU OLJKW DQG WKH VSHFXODUO\ UHIOHFWHG ODVHU OLJKW ZHUH UHFRUGHG VLPXOWDQHRXVO\ VR WKDW VLJQDO SKDVLQJ FRXOG EH FRPSDUHG +HWHURHSLWD[Y 3DUWLFOH &RQWDPLQDWLRQ &RQVLGHUDWLRQV ,W ZDV YHU\ LPSRUWDQW WKDW SULRU WR KHWHURHSLWD[\ WKH ZDIHU VXUIDFH UHPDLQ VPRRWK DQG VSHFXODU VXFK WKDW DQ\ VXEVHTXHQW VFDWWHULQJ FRXOG EH DWWULEXWHG WR HSLWD[\ DQG QRW WR SUHJURZWK H[ YDFXR ZDIHU SURFHVVLQJ ,Q FKDSWHU LW ZDV GHWHUPLQHG WKDW WKHUPDOO\ DVVLVWHG K\GURJHQ FOHDQLQJ

PAGE 53

SURPRWHG VXFK D FRQGLWLRQ 7KLV FRQGLWLRQ KRZHYHU ZDV RQO\ JXDUDQWHHG SURYLGHG WKH ZDIHU HQWHU WKH 0%( FKDPEHU LQ D VPRRWK DQG VSHFXODU VWDWH LH IUHH RI VXUIDFH GHIHFWV SDUWLFXODWH PDWWHU HWFf ,Q DQ HIIRUW WR FKDUDFWHUL]HG WKH VWDWH RI WKH ZDIHU VXUIDFH SULRU WR WUDQVIHU LQWR WKH ORDGORFN D IXOO GLDPHWHU DVUHFHLYHG ZDIHU ZDV VFDQQHG ZLWK D +H1H ODVHU DQG LW ZDV IRXQG WKDW VFDWWHULQJ FRXOG QRW EH GHWHFWHG 8SRQ FOHDYLQJ D SUDFWLFH JHQHUDOO\ XVHG WR HFRQRPL]H PDWHULDOf KRZHYHU WKH VWDWH RI WKH VXUIDFH ZDV GUDPDWLFDOO\ DOWHUHG $V LQGLFDWHG LQ )LJ Df D QXPEHU RI SDUWLFOHV ZHUH JHQHUDWHG LQ WKH YLFLQLW\ RI WKH FOHDYH OLQH WKHLU QXPEHU GHQVLW\ EHLQJ a FPn ,Q DQ HIIRUW WR UHPRYH WKH SDUWLFXODWH PDWWHU D VKRUW EXUVW RI FRPSUHVVHG FKORURGLIOXRURPHWKDQH JDV IURP D QRQUHVLGXH GXVW UHPRYHU XOWUDILOWHUHG WR SPf ZDV GLUHFWHG DW WKH ZDIHU VXUIDFH ZKLFK UHGXFHG WKH SDUWLFOH FRXQW WR FPr D UHGXFWLRQ RI b VHH )LJ Eff $V VKRZQ LQ )LJ Ff IXUWKHU H[SRVXUH WR WKH JDV VWUHDP VHFRQGVf KDG D GHWULPHQWDO HIIHFW DV HYLGHQFHG E\ D VXEVWDQWLDO LQFUHDVH LQ SDUWLFOH GHQVLW\ WR FP GHSHQGLQJ RQ WKH FRXQW ORFDWLRQ 7KH PRVW SUREDEOH H[SODQDWLRQ IRU WKH LQFUHDVHG SDUWLFOH FRXQW LV DLUERUQH SDUWLFOHV EHLQJ GUDZQ LQWR WKH ORZ SUHVVXUH ]RQH VXUURXQGLQJ WKH IORZLQJ JDV VWUHDP DQG WKHQ HQWHULQJ WKH

PAGE 54

Df Ef Ff )LJXUH 'DUNILHOG RSWLFDO PLFURJUDSKV VKRZLQJ W\SLFDO SDUWLFOH GHQVLWLHV UHVXOWLQJ IURP FOHDYLQJ JDV EXUVW FOHDQLQJ DQG FRQWLQXRXV a VHFRQGVf JDV IORZ FOHDQLQJ Df Ef DQG Ff UHVSHFWLYHO\ 1RWH KRUL]RQWDOO\ WKURXJK WKH PLFURJUDSKV WKH FOHDYH OLQH UXQV

PAGE 55

VWUHDP WR EH DFFHOHUDWHG WRZDUGV WKH ZDIHU E\ WKH LPSLQJLQJ JDV PROHFXOHV (OHFWURVWDWLF IRUFHV WKHQ ELQG WKH SDUWLFOHV WR WKH ZDIHU VXUIDFH PDNLQJ WKHP YHU\ GLIILFXOW WR UHPRYH %DVHG RQ WKLV VWXG\ LW ZDV GHFLGHG WKDW IXOO GLDPHWHU DVUHFHLYHG ZDIHUV ZRXOG EH XVHG IRU WKH KHWHURHSLWD[\ VWXG\ WR HQVXUH WKDW VFDWWHULQJ FRXOG EH DWWULEXWHG WR KHWHURHSLWD[\ ([ 6LWX 6XEVWUDWH 3UHSDUDWLRQ 7ZR W\SHV RI VXEVWUDWHV ZHUH XVHG LQ WKH KHWHURHSLWD[\ VWXG\ 7KH ILUVW W\SH ZDV HSLUHDG\ YHUWLFDO JUDGLHQW IUHH]H 9*)f JURZQ *D$V22Of RULHQWHG r WRZDUGV >@ ZKHUHDV WKH VHFRQG W\SH ZDV OLTXLG HQFDSVXODWHG &]RFKUDOVNL /(&f JURZQ *D$V22Of DOVR RULHQWHG r WRZDUGV >@ WKHLU UHVSHFWLYH PDQXIDFWXUHUV ZHUH $PHULFDQ ;WDO 7HFKQRORJ\ $;7f RI 'XEOLQ &$ DQG 6XPLWRPR (OHFWULF RI +\RJR -DSDQ 3ULRU WR EHLQJ VROGHUHG WR D 0R KROGHU ZLWK b SXUH ,Q WKH 6XPLWRPR ZDIHUV ZHUH ILUVW FOHDQHG DQG R[LGL]HG E\ SODFLQJ WKHP LQ DQ XOWUDYLROHW 89f R]RQH FOHDQLQJ V\VWHP DQXIDFWXUHG E\ 892&6 ,QFRUSRUDWHG IRU PLQXWHV 7KH FRPELQDWLRQ RI 89 $ DQG QPf UDGLDWLRQ DQG R]RQH JHQHUDWHG E\ WKHVH V\VWHPV KDYH EHHQ VKRZQ WR FDXVH UDSLG R[LGDWLRQ DQG UHPRYDO RI WUDFH RUJDQLF UHVLGXHV )XUWKHUPRUH R[LGHV IRUPHG IURP R]RQH H[SRVXUH SURYLGH D PRUH FRQWUROOHG

PAGE 56

DOWHUQDWLYH WR WKHUPDO DQG DLU IRUPHG R[LGHV 7KH $;7 ZDIHUV KRZHYHU ZHUH XQWUHDWHG DV WKH\ ZHUH HSLUHDG\ DQG UHTXLUHG QR SUHFOHDQLQJ EHIRUH EHLQJ VROGHUHG WR WKH 0R KROGHU $V D UHVXOW QHLWKHU VXEVWUDWH PDWHULDO XQGHUZHQW DQ\ ZHW FKHPLFDO SURFHVVLQJ DQG IROORZLQJ ,Q PRXQWLQJ WKH\ ZHUH LPPHGLDWHO\ WUDQVIHUUHG WR D ORDGORFN PRXQWHG RQ WKH 0%( JURZWK FKDPEHU IURP 7\SLFDO (SLODYHUV $V LOOXVWUDWHG LQ )LJ LQ WKH FDVH RI KHWHURHSLWD[\ RQ WKH $;7 ZDIHUV ODVHU OLJKW VFDWWHULQJ ZDV QRW GHWHFWDEOH E\ WKH GHWHFWLRQ V\VWHPf XSRQ =Q6H JURZWK LQLWLDWLRQ XQWLO DSSUR[LPDWHO\ QP RI PDWHULDO KDG EHHQ GHSRVLWHG ZKHUHXSRQ LQFUHDVLQJO\ LQWHQVH VFDWWHULQJ ZDV GHWHFWHG ZLWK LQFUHDVLQJ ILOP WKLFNQHVV 7KH ZDYHIRUP DOVR KDG DQ RVFLOODWRU\ IRUP DV VKRZQ LQ WKH ILJXUH ,W VKRXOG EH QRWHG WKDW LQ RUGHU QRW WR REVHUYH VFDWWHULQJ XSRQ JURZWK LQLWLDWLRQ LW ZDV LPSHUDWLYH WKDW WKH *D$V VXUIDFH EH VSHFXODU IROORZLQJ R[LGH UHPRYDO DV GLVFXVVHG LQ FKDSWHU 7KH JURZWK ZDV WHUPLQDWHG QHDU QP WR DYRLG VDWXUDWLQJ WKH GHWHFWLRQ V\VWHP DV GLVFXVVHG LQ FKDSWHU :LWK WKH H[FHSWLRQ RI D GHWHFWDEOH RQVHW RI VFDWWHULQJ DW DSSUR[LPDWHO\ QP D VLPLODU ZDYHIRUP ZDV REWDLQHG IRU WKH FDVH RI

PAGE 57

(//6 6LJQDO ,QWHQVLW\ DUE XQLWVf *URZWK 7LPH PLQf )LOP 7KLFNQHVV QPf )LJXUH ,QWHQVLW\ RI ODVHU OLJKW VFDWWHULQJ RFFXULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ $PHULFDQ ;WDO 7HFKQRORJ\f KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV $OVR LQFOXGHG LQ WKH ILJXUH LV D ODVHU UHIOHFWLRQ LQWHUIHURJUDP WR FRPSDUH SKDVLQJ /5, 6LJQDO ,QWHQVLW\ DUE XQLWVf

PAGE 58

KHWHURHSLWD[\ RQ WKH 6XPLWRPR ZDIHUV DV LQGLFDWHG LQ )LJ 2EVHUYDWLRQ RI WKH 5+((' SDWWHUQ IROORZLQJ GHSRVLWLRQ LQ HDFK FDVH LQGLFDWHG D VPRRWK =Q6H IUHHVXUIDFH ZKLFK VXJJHVWHG WKDW WKH VRXUFH RI WKH REVHUYHG ODVHU VFDWWHULQJ ZDV DW D ORFDWLRQ RWKHU WKDQ WKH IUHHVXUIDFH 7KH PRVW VWULNLQJ IHDWXUH RI )LJV DQG LV WKH Q SKDVH GLIIHUHQFH EHWZHHQ WKH (//6 VLJQDO DQG WKH /5, VLJQDO ZKLFK XVLQJ RSWLFDO UD\ WUDFLQJ FDQ EH H[SODLQHG E\ SODFLQJ DQ HPLWWHU DW WKH KHWHURLQWHUIDFH DQG FRQVLGHULQJ LQWHQVH VFDWWHULQJ DW WKH KHWHURLQWHUIDFH DV RSSRVHG WR WKH IUHH VXUIDFH 7R H[SODLQ IXUWKHU WKH TXDOLWDWLYH PRGHO LOOXVWUDWHG LQ )LJ ZDV GHYHORSHG $V LQGLFDWHG LQ )LJ WKH ODVHU EHDP LPSLQJHV RQ WKH VDPSOH DW QHDUQRUPDO LQFLGHQFH DQG D SRUWLRQ RI WKH EHDP LV WUDQVPLWWHG LQWR WKH HSLOD\HU DQG SURFHHGV WRZDUGV WKH KHWHURLQWHUIDFH ,W LV FRQVLGHUHG WKDW LQ DGGLWLRQ WR VSHFXODU UHIOHFWLRQ RII WKH KHWHURLQWHUIDFH D VPDOO SRUWLRQ RI WKH EHDP LV VFDWWHUHG LQWR RWKHU QRQVSHFXODUf DQJOHV GXH WR WKH SUHVHQFH RI GHIHFWV ZKLFK RFFXU GXULQJ HSLWD[\ )RU VLPSOLFLW\ RQO\ WKDW DQJOH ZKLFK SRLQWV LQ WKH GLUHFWLRQ RI WKH GHWHFWLRQ V\VWHP DV LQGLFDWHG LQ WKH ILJXUH LV FRQVLGHUHG 7KH VFDWWHUHG EHDP WUDYHUVHV WKH HSLOD\HU DQG LQ DGGLWLRQ WR WUDQVPLVVLRQ WKURXJK WKH IUHH VXUIDFH D SRUWLRQ RI WKH EHDP LV UHGLUHFWHG EDFN WRZDUGV WKH KHWHURLQWHUIDFH E\ UHIOHFWLRQ RII WKH HSLOD\HU VLGH RI WKH

PAGE 59

(//6 6LJQDO ,QWHQVLW\ DUE XQLWVf *URZWK 7LPH PLQf _ , O O O )LOP 7KLFNQHVV QPf )LJXUH ,QWHQVLW\ RI ODVHU OLJKW VFDWWHULQJ RFFXULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ 6XPLWRPR (OHFWULFf KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV $OVR LQFOXGHG LQ WKH ILJXUH LV D ODVHU UHIOHFWLRQ LQWHUIHURJUDP WR FRPSDUH SKDVLQJ /5, 6LJQDO ,QWHQVLW\ DUE XQLWVf

PAGE 60

'LVORFDWLRQV )LJXUH $ UD\ PRGHO LOOXVWUDWLQJ WKH HPSOR\PHQW RI D +H1H ODVHU EHDP WR SUREH WKH =Q6H*D$V KHWHURLQWHUIDFH GXULQJ HSLWD[LDO GHSRVLWLRQ 'HIHFW HYROXWLRQ JLYHV ULVH WR D VFDWWHUHG VLJQDO ZKLFK ZDV GHWHFWHG DQG TXDQWLILHG XVLQJ WKH DSSDUDWXV VKRZQ LQ )LJ A ,QFLGHQW 6SHFXODU 5HIOHFWLRQ WR 3KRWRGLRGH /5, 6LJQDOf 6FDWWHUHG 5HIOHFWLRQ WR &DPHUD 6\VWHP (//6 6LJQDOf /DVHU %HDP

PAGE 61

IUHHVXUIDFH 6LQFH WKH LQGH[ VWHS IURP HSLOD\HU WR YDFXXP LV QHJDWLYH QR SKDVH VKLIW LV LQWURGXFHG XSRQ UHIOHFWLRQ 7KH UHIOHFWHG SRUWLRQ RI WKH EHDP DJDLQ WUDYHUVHV WKH HSLOD\HU UHIOHFWV RII WKH KHWHURLQWHUIDFH DQG WKHQ PDNHV D ILQDO SDVV WKURXJK WKH HSLOD\HU WR HPHUJH RQ WKH YDFXXP VLGH RI WKH IUHH VXUIDFH $W WKLV SRLQW D WL SKDVH VKLIW KDV EHHQ LQWURGXFHG Q UHVXOWLQJ IURP SULRU UHIOHFWLRQ RII WKH KHWHURLQWHUIDFH DQG UHVXOWLQJ IURP WUDYHUVLQJ WKH HSLOD\HU WZLFH 7KH SKDVH GLIIHUHQFH $ (//6f EHWZHHQ WKH QHZO\ HPHUJHQW EHDP DQG WKH RULJLQDO SRUWLRQ RI WKH VFDWWHUHG EHDP LV WKHQ ZKLFK LV QHFHVVDULO\ D IXQFWLRQ RI WKH ZDYHOHQJWK RI WKH ODVHU ; WKH UHIUDFWLYH LQGH[ RI WKH HSLOD\HU Q WKH WKLFNQHVV RI WKH HSLOD\HU ] DQG WKH DQJOH RI WUDQVPLWWDQFH ZLWKLQ WKH HSLOD\HU ,Q D VLPLODU PDQQHU LW FDQ EH HDVLO\ VKRZQ WKDW $/5, } VLQFH r /5, (//6 GXH WR WKH VPDOO DQJOHV LQYROYHG )LQDOO\ $(//6 $/5, Q DQG KHQFH WKH Q SKDVH GLIIHUHQFH EHWZHHQ WKH (//6 VLJQDO DQG WKH /5, VLJQDO DV REVHUYHG LQ )LJV DQG ,W LV LQWHUHVWLQJ WR FRPSDUH WKH SUHVHQW UHVXOWV ZLWK WKRVH RI 2OVRQ DQG .LEEOHU ZKR HPSOR\HG D VLPLODU WHFKQLTXH WR PRQLWRU VFDWWHULQJ IURP *D3 GXULQJ 02&9' RI *D36L 7KH *D36L V\VWHP LV YHU\ VLPLODU WR WKH =Q6H*D$V V\VWHP ZLWK UHVSHFW WR ODWWLFH PLVPDWFK bf DQG UHIUDFWLYH LQGH[ VWHSV DW QP DQG WKHUHIRUH LW VHHPV UHDVRQDEOH WR DVVXPH WKDW

PAGE 62

XQGHU VLPLODU FRQGLWLRQV VLPLODU UHVXOWV PD\ EH DFKLHYHG &RPSDULQJ VHWV RI GDWD LW LV DSSDUHQW WKDW WKHLU GDWD UHVHPEOHV WKH /5, GDWD LQ )LJV DQG ZKLFK ZRXOG SODFH WKH VRXUFH RI WKHLU VFDWWHULQJ RXWVLGH WKH HSLOD\HU RU PRUH DSSURSULDWHO\ DW WKH IUHHVXUIDFH 7KH\ GR LQGHHG DWWULEXWH WKHLU (//6 VLJQDO WR VXUIDFH VFDWWHULQJ DQG LW LV TXLWH HDV\ XVLQJ FRUROODULHV WR WKH DUJXPHQWV DERYH WR VKRZ WKH ODFN RI D W SKDVH GLIIHUHQFH EHWZHHQ D (//6 VLJQDO DQG D /5, VLJQDO IRU VXFK D FDVH /DVHU /LJKW 6FDWWHULQJ IURP 9HU\ 7KLFN 7R H[SHULPHQWDOO\ GHPRQVWUDWH WKH FDVH RI VXUIDFH VFDWWHULQJ D YHU\ WKLFN !SPf =Q6H ILOP ZDV JURZQ RQ DQ $;7 ZDIHU VLQFH ZH KDG REVHUYHG LQ WKH SDVW YLD 5+((' REVHUYDWLRQV WKDW WKH VXUIDFHV RI YHU\ WKLFN =Q6H OD\HUV DSSHDU WR EH UDWKHU URXJK 8SRQ LQLWLDWLQJ JURZWK WKH GDWD UHVHPEOHG WKDW RI )LJ LQ WKDW WKH (//6 DQG /5, VLJQDO SKDVLQJ ZDV Q 9HU\ PXFK ODWHU RQ KRZHYHU WKH (//6 DQG /5, VLJQDO SKDVLQJ VKLIWHG WR DQG UHPDLQHG DW DV FDQ EH REVHUYHG LQ )LJ 2EVHUYDWLRQ RI WKH 5+((' SDWWHUQ IROORZLQJ GHSRVLWLRQ VXJJHVWHG D URXJK VXUIDFH DV LQGLFDWHG E\ D VSRWW\ SDWWHUQ 8SRQ UHPRYLQJ WKH ILOP IURP WKH JURZWK FKDPEHU LW ZDV REVHUYHG WKDW LW KDG D FORXG\ DSSHDUDQFH ZKLFK VXJJHVWHG WKDW WKH

PAGE 63

(//6 6LJQDO ,QWHQVLW\ DUE XQLWVf Q L L L L L L L L LaLaLaU L L LaL U L L L L L L W L L M L L L L L L P L L L L L L L WWWWWL L L L L L L L L L U L L L U L L L L L L L L LaL 'DWD $TXLVLWLRQ 7LPH PLQf L L L L L L L L Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§UQf§Lf§_f§LLf§Lf§Pf§SQf§UQf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§Lf§Lf§Lf§_f§Lf§L )LOP 7KLFNQHVV SPf )LJXUH ,QWHQVLW\ RI VFDWWHULQJ RFFXUULQJ QHDU WKH =Q6H*D$V *D$V VXSSOLHG E\ 6XPLWRPR (OHFWULFf KHWHURLQWHUIDFH DV D IXQFWLRQ RI =Q6H HSLWD[LDO GHSRVLWLRQ WLPH DQG OD\HU WKLFNQHVV IRU D YHU\ WKLFN aSPf ILOP $OVR LQFOXGHG LQ WKH ILJXUH LV D ODVHU UHIOHFWLRQ LQWHUIHURJUDP 1RWH WKDW WKH VLJQDOV DUH LQ SKDVH IRU WKLV FDVH 22 /5, 6LJQDO ,QWHQVLW\ DUE XQLWVf

PAGE 64

VXUIDFH KDG GHJUDGHG DV H[SHFWHG 6FDQQLQJ HOHFWURQ PLFURVFRS\ 6(0f ZDV HPSOR\HG WR H[SORUH WKH QDWXUH RI WKH GHJUDGDWLRQ DQG WKH PLFURJUDSKV LQ )LJ FRPSDUH DQG FRQWUDVW WKH VXUIDFHV RI D YHU\ WKLQ QPf ILOP D W\SLFDO ILOP QPf DQG WKH YHU\ WKLFN aSPf ILOP ,W VKRXOG EH QRWHG WKDW DOO WKH ILOPV SUHVHQWHG LQ )LJ ZHUH JURZQ RQ $;7 ZDIHUV 7KH YHU\ WKLQ DQG W\SLFDO ILOP )LJV Df DQG Ef UHVSHFWLYHO\ ZHUH HVVHQWLDOO\ IHDWXUHOHVV H[FHSW IRU VRPH GHEULV ZKLFK DLGHG LQ IRFXVLQJ WKH VFDQQLQJ HOHFWURQ PLFURVFRSH $V VXVSHFWHG KRZHYHU WKH YHU\ WKLFN ILO SUHVHQWHG D UDGLFDO GHSDUWXUH IURP D W\SLFDO VSHFXODU VXUIDFH DV HYLGHQFHG E\ WKH SUHVHQFH RI D ODUJH QXPEHU RI IHDWXUHV DV VKRZQ LQ )LJ Ff $V FDQ EH REVHUYHG LQ WKH ILJXUH WKH VXUIDFH ZDV FRYHUHG ZLWK ODUJH IDFHWHG IHDWXUHV a FPnf DQG VPDOOHU LQWHUVSHUVHG IHDWXUHV aFPnf ZKLFK FRXOG SRVVLEO\ VHUYH DV VHHGV IRU WKH ODUJHU IHDWXUHV 7KHVH ODUJH DQG VPDOO IHDWXUHV EHFDXVH RI WKHLU VL]H VKDSH DQG GLVWULEXWLRQ ZHUH FOHDUO\ UHVSRQVLEOH IRU WKH REVHUYHG VFDWWHULQJ DQG VXEVWDQWLDWH WR D ODUJH H[WHQW WKH SUHPLVH WKDW D Q SKDVH VKLIW LV LQGLFDWLYH RI KHWHURLQWHUIDFH VFDWWHULQJ ZKLOH D SKDVH VKLIW LV LQGLFDWLYH RI VXUIDFH VFDWWHULQJ &RQVHTXHQWO\ WKH SUHVHQW UHVXOWV FOHDUO\ GLIIHU IURP SUHYLRXVO\ SXEOLVKHG UHVXOWV WKDW KDYH FRQFHUQHG VXUIDFH VFDWWHULQJ

PAGE 65

)LJXUH 3ODQYLHZ VFDQQLQJ HOHFWURQ PLFURJUDSKV RI =Q6H*D$Vf LQGLFDWLQJ WKH VXUIDFH IHDWXUHV SUHVHQW RQ D WKLQ aQPf WKLFN aQPf DQG YHU\ WKLFN aSPf ILOP Df Ef DQG Ff UHVSHFWLYHO\

PAGE 66

6WUXFWXUDO &KDUDFWHUL]DWLRQ 0DQ\ RI WKH FKDUDFWHULVWLFV RI WKH RSWLFDO GDWD SUHVHQWHG LQ )LJV DQG VXFK DV WKH DPSOLWXGH RI WKH PRGXODWLRQ DQG WKH '& FRPSRQHQW RI WKH (//6 VLJQDO DUH GHSHQGHQW RQ WKH RSWLFDO SURSHUWLHV RI WKH KHWHURLQWHUIDFH DV ZHOO DV LWV PRUSKRORJLFDO SURSHUWLHV WKHVH FKDUDFWHULVWLFV EHLQJ FRQWUROOHG E\ WKH PXOWLSOLFDWLRQ DQG SURSDJDWLRQ RI GHIHFWV QHDU WKH KHWHURLQWHUIDFH ZKLOH WKH ILOP LV JURZLQJ 7R LQYHVWLJDWH WKH GHIHFW VWUXFWXUH QHDU WKH KHWHURLQWHUIDFH DV D IXQFWLRQ RI ILOP WKLFNQHVV ZLWK UHVSHFW WR ERWK WKH $;7 DQG 6XPLWRPR ZDIHUV WZR VHULHV RI HSLOD\HUV ZHUH JURZQ WR WKLFNQHVVHV RI DQG QP 3ODQYLHZ WUDQVPLVVLRQ HOHFWURQ PLFURJUDSKV 37(0f RI WKHVH HSLOD\HUV DUH FRPSDUHG DQG FRQWUDVWHG LQ )LJ $V FDQ EH REVHUYHG IURP )LJ WKHUH LV D JHQHUDO WUHQG LQ GHIHFW GHQVLW\ ZKLFK PLUURUV WKH LQFUHDVH LQ RSWLFDO VFDWWHULQJ GDWD SUHVHQWHG LQ )LJ D FRPSLODWLRQ RI )LJV DQG )XUWKHUPRUH WKH RSWLFDO GDWD LQ )LJ VXJJHVWV WKDW WKHUH ZDV D GLIIHUHQFH LQ HSLOD\HU TXDOLW\ ZKLFK ZDV GHSHQGHQW RQ WKH W\SH RI VXEVWUDWH XVHG 6SHFLILFDOO\ WKH GHWHFWDEOH RQVHW RI VFDWWHULQJ LQ WKH FDVH RI HSLOD\HUV JURZQ RQ $;7 ZDIHUV ZDV QHDU P ,, VHH )LJ Dff ZKLOH WKDW RI HSLOD\HUV JURZQ RQ 6XPLWRPR ZDIHUV ZDV QHDU

PAGE 67

)LJXUH $ PDWUL[ RI SODQYLHZ WUDQVPLVVLRQ HOHFWURQ PLFURJUDSKV ;f FRPSDULQJ DQG FRQWUDVWLQJ WKH GHIHFWV SUHVHQW QHDU WKH =Q6H*D$V KHWHURLQWHUIDFHV DV D IXQFWLRQ RI ILOP WKLFNQHVV URZ WKURXJK DQG QP UHVSHFWLYHO\f DQG VXEVWUDWH W\SH FROXPQ DQG $PHULFDQ ;WDO 7HFKQRORJ\ DQG 6XPLWRPR (OHFWULF UHVSHFWLYHO\f

PAGE 68

)LJXUH &RQWLQXHG

PAGE 69

)LOP 7KLFNQHVV QPf )LJXUH 5HFRPSLODWLRQ RI ODVHU VFDWWHULQJ GDWD SUHVHQWHG LQ )LJV DQG ZKLFK FR ODVHU VFDWWHULQJ IURP DQ HSLOD\HU JURZQ RQ DQ $PHULFDQ ;WDO 7HFKQRORJ\ *D$V ZDIHU WR WKDW RI DQ HSLOD\HU JURZQ RQ D 6XPLWRPR (OHFWULF *D$V ZDIHU (SLOD\HUV RI WKH WKLFNQHVVHV LQGLFDWHG E\ WKH YHUWLFDO DUURZV ZHUH WDUJHWHG SDUHV DQG FRQWUDVWV WKH VWUXFWXUDO FKDUDFWHUL]DWLRQ 1RWH WKH GLIIHUHQFH LQ WKH GHWHFWDEOH RQVHW LQ ,, RI OD\HU WKLFNQHVVf RI VFDWWHULQJ /r

PAGE 70

QP VHH )LJ Eff 7KLV GLIIHUHQFH FDQ PRVW OLNHO\ EH DWWULEXWHG WR WKH GLIIHUHQW GHIHFW VWUXFWXUH SUHVHQW QHDU WKH KHWHURLQWHUIDFH IRU OD\HU WKLFNQHVVHV UDQJLQJ IURP WR QP FRPSDUH )LJV DfFf DQG )LJV JfLff 6SHFLILFDOO\ WKH PLFURJUDSKV RI HSLOD\HUV JURZQ RQ $;7 ZDIHUV LQGLFDWH D W\SLFDO GHIHFW HYROXWLRQ IURP QHDUO\ GLVORFDWLRQ IUHH PDWHULDO VHH )LJV Df DQG Eff WR GLVORFDWHG PDWHULDO VHH )LJ Fff DV D UHVXOW RI H[FHHGLQJ WKH FULWLFDO WKLFNQHVV aQPf IRU =Q6H*D$V 7KRVH PLFURJUDSKV DVVRFLDWHG ZLWK HSLOD\HUV JURZQ RQ 6XPLWRPR ZDIHUV VHH )LJV JfLff KRZHYHU LQGLFDWH VRPH RWKHU GHIHFW VWUXFWXUH QHDU WKH KHWHURLQWHUIDFH ZKRVH GHQVLW\ LQFUHDVHG ZLWK LQFUHDVLQJ ILOP WKLFNQHVV WR QP +LJK UHVROXWLRQ WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ +57(0f ZDV SHUIRUPHG RQ WKHVH ILOPV DQG GHVSLWH WKH SUHVHQFH RI WKHVH GHIHFWV WKH HSLOD\HUV UHPDLQHG VLQJOH FU\VWDO DQG H[FHOOHQW UHJLVWU\ ZDV PDLQWDLQHG DFURVV WKH =Q6H*D$V KHWHURLQWHUIDFH $ UHSUHVHQWDWLYH VHOHFWHG DUHD GLIIUDFWLRQ SDWWHUQ 6$'3f DQG KLJK UHVROXWLRQ FURVVVHFWLRQDO WUDQVPLVVLRQ HOHFWURQ PLFURJUDSK +5;7(0f DUH VKRZQ LQ )LJV Df DQG Ef UHVSHFWLYHO\ WR FRUURERUDWH WKHVH REVHUYDWLRQV %H\RQG QP WKH GHIHFW VWUXFWXUHV RI WKH HSLOD\HUV ZLWK UHVSHFW WR VXEVWUDWH W\SH EHFDPH LQFUHDVLQJO\ VLPLODU ZLWK UHVSHFW WR GHIHFW W\SH DQG

PAGE 71

)LJXUH $ UHSUHVHQWDWLYH VHOHFWHG DUHD GLIIUDFWLRQ SDWWHUQ DQG KLJKUHVROXWLRQ FURVVVHFWLRQDO WUDQVPLVVLRQ HOHFWURQ PLFURJUDSK ZKLFK DUH LQGLFDWLYH RI WKH FU\VWDOOLQLW\ DQG GHIHFW W\SH SUHVHQW LQ WKH HSLOD\HUV UHSUHVHQWHG E\ WKH PLFURJUDSKV VKRZQ LQ )LJV JfLf

PAGE 72

GHQVLW\ ZKLFK FRUUHODWHV ZHOO ZLWK WKH VLPLOLWXGH RI WKH RSWLFDO GDWD IROORZLQJ QP RI ILOP GHSRVLWLRQ VHH )LJ f /DWWLFH 0LVPDWFK 6HQVLWLYLW\ 7KH ODVHU SUREH WHFKQLTXH ZDV DOVR DSSOLHG GXULQJ WKH 0%( JURZWK RI =Q7H*D$V HSLOD\HUV LQ DQ HIIRUW WR H[SORUH WKH WHFKQLTXHnV VHQVLWLYLW\ WR ODWWLFHPLVPDWFK 7KH VFDWWHULQJ GDWD UHFRUGHG IURP WKH =Q7H*D$V V\VWH ,, LV FRPSDUHG DQG FRQWUDVWHG WR WKDW REVHUYHG IURP WKH =Q6H*D$V V\VWHP LQ )LJ ,W VKRXOG EH QRWHG WKDW WKHVH HSLOD\HUV ZHUH JURZQ RQ 6XPLWRPR ZDIHUV LQ DQ HIIRUW WR PLQLPL]H FRQVXPSWLRQ RI $;7 ZDIHUV $V FDQ EH VHHQ IURP WKH ILJXUH WKH GHWHFWDEOH RQVHW RI VFDWWHULQJ IUR WKH =Q7H*D$V PDWHULDO V\VWHP RFFXUUHG DW aQP ZKHUHDV WKH GHWHFWDEOH RQVHW RI VFDWWHULQJ IURP WKH =Q6H*D$V PDWHULDO V\VWHP RFFXUUHG DW aQP PXFK ODWHU LQ WHUPV RI OD\HU WKLFNQHVV )XUWKHUPRUH WKH UDWH RI FKDQJH RI VFDWWHULQJ ZLWK UHVSHFW WR OD\HU WKLFNQHVVf ZDV JUHDWHU LQ WKH FDVH RI =Q7H*D$V %RWK RI WKHVH REVHUYDWLRQV VHHP WR EH KLJKO\ FRUUHODWHG ZLWK WKH GHJUHH RI ODWWLFHPLVPDWFK DV LQGLFDWHG LQ WKH ILJXUH ZKLFK ZRXOG VXJJHVW WKDW WKH RSWLFDO V\VWHP LV HQWLUHO\ VXLWDEOH IRU GHWHUPLQLQJ WKH H[WHQW RI ODWWLFH PLVPDWFK

PAGE 73

(//6 6LJQDO ,QWHQVLW\ DUE XQLWVf )LJXUH (ODVWLFDOO\ VFDWWHUHG ODVHU OLJKW GDWD UHFRUGHG LQ UHDOWLPH GXULQJ WKH GHSRVLWLRQ RI =Q6H*D$V DQG =Q7H*D$V KHWHURVWUXFWXUHV 7KH ODWWLFHPLV ,, LQGLFDWHG FRUUHVSRQG ,, WKH GLIIHUHQFH LQ GHWHFWDEOH RQVHW LQ WHUPV RI OD\HU WKLFNQHVVf RI VFDWWHULQJ WHPSHUDWXUH ODWWLFHPLVPDWFKHV

PAGE 74

&RQFOXVLRQV ,Q FRQFOXVLRQ WKH LQ VLWX RSWLFDO SUREH GHVFULEHG DERYH LV HQWLUHO\ FDSDEOH RI GHWHFWLQJ SODVWLF GHIRUPDWLRQ LQ ODWWLFHPLVPDWFKHG KHWHURHSLWD[LDO V\VWHPV VXFK DV =Q6H*D$V LQ UHDOWLPH GXULQJ HSLWD[LDO GHSRVLWLRQ )XUWKHUPRUH WKH WHFKQLTXH E\ LWV UHDOWLPH QDWXUH LV DSSURSULDWH IRU GHIHFW HYROXWLRQ PRQLWRULQJ ,W LV IXUWKHU FRQFOXGHG WKDW WKH REVHUYDWLRQ RI D SKDVH VKLIW EHWZHHQ WKH /5, VLJQDO DQG WKH (//6 VLJQDO LV LQGLFDWLYH RI KHWHURLQWHUIDFH VFDWWHULQJ UDWKHU WKDQ VXUIDFH VFDWWHULQJ LQ WKH =Q6H*D$V KHWHURVWUXFWXUH FDVH )LQDOO\ VKRXOG SHUIHFWO\ ODWWLFHPDWFKHG VWUXFWXUHV EH JURZQ RQ LGHDO VXEVWUDWHV WKH ODVHU OLJKW VFDWWHULQJ UHSRUWHG KHUH VKRXOG QRW EH GHWHFWHG ZKLFK FRXOG KDYH LPSRUWDQW FRQVHTXHQFHV IRU WKH SURYLVLRQ RI ODWWLFH ,, DWFKHG VWUXFWXUHV IRU ZLGHJDS ,,9,*D$V GLRGH ODVHUV IRU LQVWDQFH

PAGE 75

&+$37(5 7+(25< 7KH 5ROH RI (OHFWULF 0LFURILHOGV $ JHQHUDO WUHQG WKDW KDV EHHQ REVHUYHG LV WKDW WKH EDQGHGJH DEVRUSWLRQ LQ D VHPLFRQGXFWRU LV VKLIWHG WR ORZHU HQHUJLHV XSRQ SODVWLF GHIRUPDWLRQ RI WKH FU\VWDO WKH PDJQLWXGH RI WKH HQHUJ\ VKLIW EHLQJ GHSHQGHQW XSRQ WKH H[WHQW RI WKH GHIRUPDWLRQ $Q LQWHUHVWLQJ H[SODQDWLRQ ZKLFK KDV DFFRXQW DEVRUSWLRQHGJH VKLIWLQJ HQRQ FRQFHUQV WKH SUHVHQFH RI VWURQJ HOHFWULF ILHOGV DURXQG WKH UHVXOWDQW GLVORFDWLRQV ,W KDV EHHQ DUJXHG LQ IDFW WKDW WKH VLPLOLWXGH RI WKH DEVRUSWLRQ EHKDYLRU LQ VWURQJ HOHFWULF ILHOGV )UDQ].HOG\VK HIIHFWf DQG IROORZLQJ SODVWLF GHIRUPDWLRQ LV VWULNLQJ $OVR DUJXPHQWV KDYH EHHQ PDGH ZKLFK VXJJHVW WKDW LQ RUGHU WR SUHVHQW D XQLILHG WKHRU\ RI H[SRQHQWLDO DEVRUSWLRQ HGJHV LQ ERWK LRQLF DQG FRYDOHQW PDWHULDOV HOHFWULF PLFURILHOGV PXVW EH FRQVLGHUHG %DVHG RQ WKH DIRUHPHQWLRQHG HYLGHQFH WKH SRVVLELOLW\ LV FRQVLGHUHG WKDW HOHFWULF PLFURILHOGV DVVRFLDWHG ZLWK KHWHURLQWHUIDFH GHIHFWV DULVLQJ GXH WR ODWWLFH

PAGE 76

PLVPDWFK VWUDLQ UHOLHI DUH UHVSRQVLEOH IRU WKH REVHUYHG ODVHU OLJKW VFDWWHULQJ ORFDO WR WKH =Q6H*D$V KHWHURLQWHUIDFH 7KH IROORZLQJ GLVFXVVLRQ SHUWDLQV WR FRQVLGHUDWLRQ RI HOHFWULF ,, LFURILHOGV 7KH ILHOG GLVWULEXWLRQ DURXQG D GLVORFDWLRQ LV ILUVW FRQVLGHUHG ZLWK UHJDUG WR WKUHH GLIIHUHQW SRWHQWLDOV QDPHO\ WKH GHIRUPDWLRQ SRWHQWLDO WKH FKDUJHG GLVORFDWLRQ SRWHQWLDO DQG WKH SLH]RHOHFWULF SRWHQWLDO 6HFRQG WKH PDJQLWXGHV RI WKHVH ILHOGV DUH FRQVLGHUHG DQG VXEVHTXHQWO\ WKH HOHFWURRSWLF HIIHFW LV HYRNHG LQ RUGHU WR DUJXH WKDW D UHIUDFWLYH LQGH[ SHUWXUEDWLRQ VXIILFLHQW WR VFDWWHU OLJKW FRXOG UHVXOW LQ WKH SUHVHQW PDWHULDO V\VWHP DV D FRQVHTXHQFH RI HOHFWULF PLFURILHOGV 'HIRUPDWLRQ 3RWHQWLDO $V D UHVXOW RI WKH VWUDLQ ILHOG VXUURXQGLQJ WKH FRUH RI D GLVORFDWLRQ OLQH VWURQJ ORFDO GLVWRUWLRQV RI WKH FU\VWDO SRWHQWLDO RFFXU LQ WKH YLFLQLW\ RI WKH GLVORFDWLRQnV FRUH )DUYDFTXH DQG /HQJODUW RULJLQDOO\ IRUPXODWHG WKH )RXULHU WUDQVIRUP RI WKH GHIRUPDWLRQ SRWHQWLDO DQG ODWHU 9LJQDXG DQG )DUYDFTXH FDOFXODWHG LWV LQYHUVH )RXULHU WUDQVIRUP ZKLFK UHVXOWV LQ WKH GHIRUPDWLRQ HOHFWULF ILHOG DV D IXQFWLRQ RI UHDO VSDFH DV VKRZQ LQ (T

PAGE 77

ZKHUH U$*f I FRV^5.,Uf-.fG.r $7U$*f U$*fU$*f DQG ZKHUH U DQG DUH F\OLQGULFDO FRRUGLQDWHV = LV WKH QXPEHU RI YDOHQFH HOHFWURQV = RQ DYHUDJH IRU ]LQFEOHQGH VWUXFWXUHVf H LV WKH FKDUJH RQ DQ HOHFWURQ 1 LV WKH QXPEHU GHQVLW\ RI DWRPV EF LV WKH HGJH FRPSRQHQW RI WKH %XUJHUV YHFWRU Y LV 3RLVVRQnV UDWLR $A LV D VFUHHQLQJ OHQJWK H LV WKH SHUPLWWLYLW\ RI IUHH VSDFH H/ LV WKH GLHOHFWULF FRQVWDQW 5 LV WKH UDGLXV DURXQG WKH FRUH RI WKH FHQWUDO LRQ ZKHUH LWV SVHXGRSRWHQWLDO LV WDNHQ DV ]HUR IRU 5 LQ SUDFWLFH WKH DSSUR[LPDWLRQ DERYH IROORZVf DQG -[f LV WKH ILUVW RUGHU %HVVHO IXQFWLRQ RI WKH ILUVW NLQG 7KH PDJQLWXGH RI (T ZDV SORWWHG DERYH WKH [\ SODQH DV VKRZQ LQ )LJ IRU YDOXHV RI [ UDQJLQJ IURP WR DQG YDOXHV RI \ UDQJLQJ IURP WR ZKHUH U$AA[A\ DQG WDQ f\[f

PAGE 78

WKH HOHFWULF ILH8rWR6LV7W\GWRWWrGH"P&W" SUHVHRWHG K! (T VKRZLQJ WKH GLVORFDWLRQ FRUH SWHQWLDL mD ILPFWIW+I HOHFWULF ILHOG LQWHVLW\ D[LV 7KH GLVORFDWLRQ FRUH WLHV IWr

PAGE 79

7KH VFDODU FRHIILFLHQW LQ WKH (T ZDV IRXQG WR EH N9FUD IRU =Q6H WKLV YDOXH EHLQJ GHULYHG E\ FRQVLGHULQJ WKH SDUDPHWHUV SUHVHQWHG LQ WDEOH &KDUJHG 'LVORFDWLRQ 3RWHQWLDO $ SRWHQWLDO FDQ EH GHYHORSHG GXH WR WKH SUHVHQFH RI GDQJOLQJ RU XQVDWLVILHG ERQGV LQ WKH FRUH RI D GLVORFDWLRQ 6SHFLILFDOO\ LI D ERQG LV FRQVLGHUHG WR EH RFFXSLHG E\ RQH JURXQG VWDWH HOHFWURQ LW FDQ HLWKHU DFFHSW DQRWKHU HOHFWURQ RU LW FDQ GRQDWH WKH JURXQG VWDWH HOHFWURQ WR WKH FU\VWDO 7KLV SURFHVV FDQ UHVXOW LQ D QHW QHJDWLYH RU SRVLWLYH OLQH FKDUJH GHSHQGLQJ XSRQ WKH GHJUHH WR ZKLFK WKH GLVORFDWLRQ GRQDWHV RU DFFHSWV HOHFWURQV 6FKURWHU ILUVW PRGHOHG WKH HOHFWULF ILHOG UHVXOWLQJ IURP FKDUJHG FDUULHUV WUDSSHG RQ D GLVORFDWLRQ OLQH DQG ODWHU 9LJQDXG DQG )DUYDFTXH SUHVHQWHG D UHILQHG IRUP RI WKH PRGHO DV VKRZQ LQ (T (-Uf HI QH4H/E;* .UcN*f f ZKHUH I LV WKH GLVORFDWLRQ VWDWHV RFFXSDQF\ UDWLR E LV WKH %XUJHUV YHFWRU DQG .M[f LV WKH ILUVW RUGHU PRGLILHG %HVVHO IXQFWLRQ RI WKH VHFRQG NLQG

PAGE 80

7DEOH =Q6H PDWHULDO SDUDPHWHUV QHFHVVDU\ WR HYDOXDWH WKH VFDODU FRHIILFLHQW RI WKH PLFURHOHFWULF ILHOG LQGXFHG E\ WKH GHIRUPDWLRQ SRWHQWLDO (T f DIRU DQ LGHDO r GLVORFDWLRQ EH Q ZKHUH Q IRU =Q6H DW QP

PAGE 81

$JDLQ (T ZDV SORWWHG DERYH WKH [\ SODQH DV VKRZQ LQ )LJ IRU YDOXHV RI [ DQG \ UDQJLQJ DV EHIRUH $V EHIRUH WKH VFDODU FRPSRQHQW RI (T ZDV IRXQG WR HTXDO N9FP IRU =Q6H WKLV YDOXH EHLQJ GHULYHG IURP WKH SDUDPHWHU YDOXHV VKRZQ LQ WDEOH 3LH]RHOHFWULF 3RWHQWLDO ,Q QRQFHQWURV\PPHWULF FRPSRXQGV VXFK DV PDWHULDOV KDYLQJ WKH ]LQFEOHQGH FU\VWDO VWUXFWXUH WKH ORQJ UDQJH VWUDLQ ILHOGV DVVRFLDWHG ZLWK GLVORFDWLRQV LQ WKLV FODVV RI FRPSRXQGV LQGXFHV DQ HOHFWULF SRODULW\ ZLWKLQ WKH FU\VWDOOLQH ODWWLFH YLD WKH SLH]RHOHFWULF HIIHFW 7KH H[SUHVVLRQ RI WKH )RXULHU WUDQVIRUP RI WKH WRWDO SLH]RSRWHQWLDO ZDV ILUVW FDOFXODWHG E\ 9LJQDXG DQG )DUYDFTXH DQG ODWHU WKH H[SUHVVLRQ ZDV UHILQHG E\ WKH VDPH DXWKRUV ZKLFK DOORZHG WKH SLH]RHOHFWULF ILHOG WR EH H[SUHVVHG LQ UHDO VSDFH DV VKRZQ LQ (T HX. r?OYfHHL$* f

PAGE 82

\ )LJXUH $ FDUWHVLDQ PHVK SORW RI WKH IXQFWLRQ SUHVHQWHG LQ (T VKRZLQJ WKH HOHFWULF ILHOG LQWHQVLW\ GXH WR D FKDUJHG GLVORFDWLRQ DV D IXQFWLRQ RI SRVLWLRQ DURXQG WKH GLVORFDWLRQ FRUH 7KH GLVORFDWLRQ FRUH OLHV DORQJ WKH HOHFWULF ILHOG LQWHQVLW\ D[LV

PAGE 83

7DEOH =Q6H DWHULDO SDUDPHWHUV QHFHVVDU\ WR HYDOXDWH WKH VFDODU FRHIILFLHQW RI WKH PLFURHOHFWULF ILHOG LQGXFHG E\ WKH FKDUJHG GLVORFDWLRQ SRWHQWLDO (T f *D$V PDWHULDO SDUDPHWHUV DUH XVHG LQ VRPH FDVHV GHQRWHG E\ D VXSHUVFULSW Df VLQFH YDOXHV IRU =Q6H ZHUH XQDYDLODEOH 9DOXH af fO22[O2 E[O 3DUDPHWHU I HOHFWURQVLWHf E Pf f9LJQDXG DQG )DUYDFTXH EIRU DQ LGHDO r GLVORFDWLRQ

PAGE 84

ZKHUH f§FRVf AFRVf Y DQG ZKHUH H LV WKH SLH]RPRGXOXV D D E E F DQG F $V EHIRUH (T ZDV SORWWHG DV VKRZQ LQ )LJ RYHU WKH VDPH GRPDLQ DV EHIRUH /DVWO\ WKH VFDODU FRHIILFLHQW LQ (T ZDV IRXQG WR EH a N9FP IRU =Q6H WKLV YDOXH EHLQJ GHULYHG ZLWK H DVVXPHG WR EH a &P UHI f ,Q VXL 0LOO DU\ WKH PDJQLWXGHV RI WKH HOHFWULF PLFURILHOGV QHDU WKH FRUH RI D GLVORFDWLRQ DUH ODUJH RQ WKH RUGHU RI WR N9FP ZKHQ HYDOXDWHG DW DQG r WKHVH YDOXHV LQFUHDVLQJ ZLWK LQFUHDVLQJ SUR[LPLW\ WR WKH

PAGE 85

)LJXUH $ FDWHVLDQ PHVK SORW RI WKH IXQFWLRQ SUHVHQWHG LQ (T VKRZLQJ WKH SLH]RHOHFWULF ILHOG LQWHQVLW\ DV D IXQFWLRQ RI SRVLWLRQ DURXQG WKH GLVORFDWLRQ FRUH 7KH GLVORFDWLRQ FRUH OLHV DORQJ WKH HOHFWULF ILHOG LQWHVLW\ D[LV

PAGE 86

GLVORFDWLRQnV FRUH VHH )LJV f )XUWKHUPRUH WKH GHIRUPDWLRQ HOHFWULF ILHOG LV DOVR ODUJHVW LQ PDJQLWXGH DQG H[WHQW FRPSDUH )LJV f ZKLFK PD\ PDNH WKH GHIRUPDWLRQ SRWHQWLDO ODUJHO\ UHVSRQVLEOH IRU WKH REVHUYHG VFDWWHULQJ ,W LV LQWHUHVWLQJ WR QRWH WKDW 0RUL\D KDV WKHRUHWLFDOO\ SUHGLFWHG DQG H[SHULPHQWDOO\ FRQILUPHG WKDW VFDWWHULQJ E\ GLVORFDWLRQV LQ VDSSKLUH FU\VWDOV FRXOG EH VXIILFLHQWO\ H[SODLQHG E\ FRQVLGHULQJ WKH FKDQJHV LQ WKH GLHOHFWULF FRQVWDQW DV D FRQVHTXHQFH RI WKH VWUDLQ ILHOGV DURXQG WKH GLVORFDWLRQV ZKLFK ZRXOG WHQG WR VXSSRUW WKH SUHVHQW K\SRWKHVLV $V D ILQDO QRWH LW VKRXOG EH PHQWLRQHG WKDW VLQFH LQ VRPH FDVHV DV QRWHGf SDUDPHWHU YDOXHV IRU =Q6H ZHUH QRW DYDLODEOH NQRZQ *D$V SDUDPHWHU YDOXHV ZHUH XVHG LQ RUGHU WKDW RXU FDOFXODWLRQV FRXOG EH SHUIRUPHG 7KH /LQHDU (OHFWURRSWLF (IIHFW ,Q VHPLFRQGXFWRUV VXFK DV =Q6Hf ZKLFK DUH QRUPDOO\ RSWLFDOO\ LVRWURSLF WKH SUHVHQFH RI DQ HOHFWULF ILHOG LQGXFHV ELD[LDO ELUHIULQJHQFH ZKLFK PHDQV WKDW WKH UHIUDFWLYH LQGH[ LQ WKH GLUHFWLRQ RI WKH ILHOG LV XQDOWHUHG ZKLOH WKH UHIUDFWLYH LQGLFHV LQ WKH WUDQVYHUVH GLUHFWLRQV DUH FKDQJHG E\ $Q 7KLV LV NQRZQ DV 3RFNHOV HIIHFW RU WKH OLQHDU HOHFWURRSWLF HIIHFW DQG WKH PDJQLWXGH RI $Q FDQ EH GHVFULEH E\ WKH IXQFWLRQ JLYHQ LQ (T

PAGE 87

ZKHUH Q LV WKH UHIUDFWLYH LQGH[ RI WKH PDWHULDO IRU =Q6H DW QPf U LV WKH HOHFWURRSWLF FRHIILFLHQW a[Of FPN9 IRU =Q6Hf DQG ( LV WKH PDJQLWXGH RI WKH HOHFWULF ILHOG ZKLFK LQ WKLV FDVH FDQ UDQJH IURP WR N9FP DV VWDWHG HDUOLHU ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH PDJQLWXGHV RI WKHVH ILHOGV DUH FRPSDUDEOH WR WKRVH HPSOR\HG GXULQJ HOHFWURDEVRUSWLRQ DQG HOHFWURRSWLF PRGXODWLRQ LQ =Q6H=Q6 6H ZDYHJXLGHV N9FPf ZKLFK ZRXOG WHQG WR VXSSRUW WKH K\SRWKHVLV 8VLQJ WKH YDOXHV DERYH $Q LV IRXQG WR UDQJH IURP a[On WR a[On ZKLFK UHSUHVHQWV D VLJQLILFDQW SHUWXUEDWLRQ RI WKH UHIUDFWLYH LQGH[ ORFDO WR WKH GLVORFDWLRQnV FRUH 5HFDOOLQJ WKDW WKH ILHOG H[WHQGV WR DSSUR[LPDWHO\ $A ZKLFK LV RQ WKH RUGHU RI ƒf D GLVORFDWLRQ FRXOG EH PRGHOHG DV D ILODPHQW ZLWK UDGLXV $A DQG UHIUDFWLYH LQGH[ Q $Q $ PDVV HQVHPEOH RI VXFK REMHFWV LH WKH GLVORFDWLRQ VXEVWUXFWXUHf FRXOG WKHQ DFFRXQW IRU WKH REVHUYHG VFDWWHULQJ RI ODVHU OLJKW QHDU WKH KHWHURLQWHUIDFH DV SRVWXODWHG HDUOLHU

PAGE 88

&RQFOXVLRQV 7R FRQFOXGH RQ DFFRXQW RI WKH SUHVHQW WKHRUHWLFDO DQDO\VLV WKH UHIUDFWLYH LQGH[ SHUWXUEDWLRQV UHTXLUHG WR SURGXFH WKH REVHUYHG ODVHU OLJKW VFDWWHULQJ DW =Q6H*D$V KHWHURLQWHUIDFHV FRXOG DGHTXDWHO\ EH D FRQVHTXHQFH RI PLFURHOHFWULF ILHOGV SUHVHQW DURXQG WKH KHWHURLQWHUIDFH GHIHFWV

PAGE 89

&+$37(5 &21&/86,216 $Q LQ VLWX *D$V VXUIDFH FOHDQLQJ SURFHVV ZDV GHYHORSHG XVLQJ D UHPRWH + DWRP IOX[ VXSSOLHG E\ D 8+9 FRPSDWLEOH UI SODVPD VRXUFH *D$V VXUIDFH FOHDQOLQHVV DQG PRUSKRORJ\ ZHUH PRQLWRUHG LQ VLWX DQG LQ UHDOWLPH XVLQJ 5+((' DQG D ODVHU OLJKW VFDWWHULQJ WHFKQLTXH UHVSHFWLYHO\ )URP 5+((' REVHUYDWLRQV *D$V VXUIDFHV ZHUH IRXQG WR UHDGLO\ FOHDQ DW WHPSHUDWXUHV QHDU r& XVLQJ WKH + DWRP WUHDWPHQW DV RSSRVHG WR WKH FRQYHQWLRQDO WKHUPDO WUHDWPHQW ZKLFK UHTXLUHV WHPSHUDWXUHV QHDU r& 7KH DWRPLFDOO\ FOHDQ *D$V VXUIDFHV ZHUH IRXQG WR EH VSHFXODU DV HYLGHQFHG E\ OLJKW VFDWWHULQJ REVHUYDWLRQV SUHSDUHG XVLQJ WKH + DWRP WUHDWPHQW 5+((' REVHUYDWLRQV DOVR VXJJHVWHG WKDW K\GURJHQ VWDELOL]DWLRQ RI WKH *D$V VXUIDFH RFFXUUHG WKH VWDELOL]DWLRQ HIIHFW EHLQJ UHYHUVLEOH DV REVHUYDWLRQ VXUIDFH UHFRQVWUXFWLRQ 5+((' $OWKRXJK QRW LQYHVWLJDWHG LW LV VXJJHVWHG WKDW IXWXUH ZRUN EH SHUIRUPHG WR HOXFLGDWH WKH LQIOXHQFH RI WKLV SKHQRPHQD RQ LQWHUIDFH VWDWHV LQLWLDO JURZWK PRGH HWF LQ WKH VXEMHFW =Q6H*D$V PDWHULDO V\VWHP )LQDOO\

PAGE 90

WKH NH\ DVSHFW RI WKLV SRUWLRQ RI WKH ZRUN ZDV WKDW WKH SURYLVLRQ RI VPRRWK VSHFXODU *D$V VXUIDFHV ZDV D QHFHVVDU\ SUHUHTXLVLWH IRU VXEVHTXHQW ODVHU VFDWWHULQJ PHDVXUHPHQWV GXULQJ KHWHURHSLWD[\ VLQFH LW ZDV LPSRUWDQW WKDW DQ\ VFDWWHULQJ EH DWWULEXWHG WR HSLWD[\ DQG QRW D URXJK *D$V VXUIDFH 7KH ODVHU OLJKW VFDWWHULQJ DW $ QPf FKDUDFWHULVWLFV RI XQGRSHG =Q6Hf*D$V HSLOD\HUV KDYH EHHQ VWXGLHG LQ VLWX LQ UHDOWLPH GXULQJ 0%( JURZWK DQG LW KDV EHHQ VKRZQ WKDW D ODVHU OLJKW VFDWWHULQJ VLJQDO RULJLQDWHV QHDU WKH KHWHURLQWHUIDFH LQ WKHVH ILOPV DV RSSRVHG WR WKHLU IUHH VXUIDFHV ZKHQ WKH ILOP WKLFNQHVV H[FHHGV WKH FULWLFDO WKLFNQHVV 6SHFLILFDOO\ D QHDUQRUPDO LQFLGHQFH +H1H ODVHU SUREH ZDV HPSOR\HG GXULQJ HSLWD[LDO GHSRVLWLRQ RI =Q6H*D$V HSLOD\HUV WKH ODVHU SUREH JHQHUDWLQJ ERWK D VSHFXODUO\ UHIOHFWHG VLJQDO DV ZHOO DV QRQVSHFXODU VLJQDOV %\ PRQLWRULQJ ERWK WKH LQWHQVLW\ RI ODVHU OLJKW VFDWWHUHG LQWR D SDUWLFXODU GLUHFWLRQ r DZD\ IURP WKH LQFLGHQWUHIOHFWHG EHDPf DQG WKH LQWHQVLW\ RI WKH VSHFXODUO\ UHIOHFWHG ODVHU OLJKW VLPXOWDQHRXVO\ LW ZDV REVHUYHG WKDW WKH UHODWLYH WHPSRUDO SKDVLQJ EHWZHHQ WKH VLJQDOV ZDV Q 6XFK DQ REVHUYDWLRQ VXJJHVWHG EDVHG RQ DQ RSWLFDO UD\ WUDFLQJ PRGHOf WKDW WKH VRXUFH RI VFDWWHULQJ ZDV ORFDWHG ZLWKLQ WKH ILOP ,Q VXSSRUW RI WKLV FRQFOXVLRQ VFDQQLQJ HOHFWURQ PLFURVFRS\

PAGE 91

REVHUYDWLRQV UHYHDOHG VPRRWK IHDWXUHOHVV ILOP VXUIDFHV ZKLFK ZRXOG VHHP WR UXOH RXW WKH SRVVLELOLW\ RI VLJQLILFDQW VXUIDFH VFDWWHULQJ 6LPLODU H[SHULPHQWV ZHUH FDUULHG RXW RQ D YHU\ WKLFN =Q6Hf*D$V HSLOD\HU DQG LW ZDV REVHUYHG WKDW WKH UHODWLYH VLJQDO SKDVLQJ LQ WKLV FDVH ZDV UDWKHU WKDQ Q ZKLFK LV FRQVLVWHQW ZLWK SUHGLFWLRQV GHULYHG IURP WKH RSWLFDO UD\ WUDFLQJ PRGHO ZKHQ VXUIDFH VFDWWHULQJ LV FRQVLGHUHG 7KXV LW LV FRQFOXGHG WKDW D UHODWLYH WHPSRUDO SKDVLQJ RI Q EHWZHHQ WKH WZR VLJQDOV LV LQGLFDWLYH RI D VRXUFH RI VFDWWHULQJ ZLWKLQ WKH HSLOD\HU LWVHOI )URP WKHRUHWLFDO FRQVLGHUDWLRQV LW LV SRVWXODWHG LQ IDFW WKDW WKH GLVORFDWLRQV DULVLQJ DW WKH =Q6Hf*D$V KHWHURLQWHUIDFH DV D FRQVHTXHQFH RI VWUDLQ UHOLHI DFW DV ODVHU OLJKW VFDWWHUHUV DQG WKHVH GHIHFWV DUH WKHUHIRUH WKH VRXUFH RI WKH REVHUYHG VFDWWHULQJ 7KH WKHRU\ LQ TXHVWLRQ VXJJHVWHG WKDW VWURQJ PLFURHOHFWULF ILHOGV VXUURXQG WKH UHVXOWDQW GHIHFWV DQG SHUWXUE WKH UHIUDFWLYH LQGH[ YLD WKH HOHFWURRSWLF HIIHFWf LQ D ORFDOL]HG PDQQHU ,W LV SRVWXODWHG WKDW WKH FROOHFWLYH HQVHPEOH RI VXFK SHUWXUEDWLRQV LV VXIILFLHQW WR VFDWWHU WKH ODVHU OLJKW LQFLGHQW RQ D =Q6Hf*D$V KHWHURLQWHUIDFH &DOFXODWLRQV LQGLFDWHG WKDW WKH ILHOG LQWHQVLWLHV QHDU W\SLFDO GLVORFDWLRQV DUH DURXQG N 9FP

PAGE 92

7R IXUWKHU VXSSRUW WKH WKHRUHWLFDO PRGHO KRZHYHU SRVWJURZWK H[ VLWX VWUXFWXUDO FKDUDFWHUL]DWLRQ WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\f ZDV SHUIRUPHG RQ D VHOHFWLRQ RI =Q6Hf*D$V KHWHURVWUXFWXUHV LQ DQ HIIRUW WR FRUUHODWH WKH RSWLFDO GDWD ZLWK WKH GHIHFW VWUXFWXUH QHDU WKH =Q6Hf*D$V KHWHURLQWHUIDFH ,Q JHQHUDO WKH VWUXFWXUDO GDWD PLUURUHG WKH RSWLFDO GDWD LQ WKDW ERWK WKH DPRXQW RI GHIHFWV HYDOXDWHG TXDOLWDWLYHO\f DQG WKH LQWHQVLW\ RI VFDWWHULQJ LQFUHDVHG ZLWK LQFUHDVLQJ ILOP WKLFNQHVV OHYHOLQJ RII DIWHU QP RI =Q6H KDG EHHQ GHSRVLWHG )XUWKHUPRUH WKH RSWLFDO GDWD ZDV DOVR VHQVLWLYH WR WKH W\SH RI GHIHFW VWUXFWXUH RFFXUULQJ QHDU WKH KHWHURLQWHUIDFH WKH W\SH RI GHIHFW VWUXFWXUH EHLQJ GHSHQGHQW RQ WKH VRXUFH RI WKH *D$V VXEVWUDWH ,, DWHULDO 7KXV LQ FRQFOXVLRQ WKH KLJK GHJUHH RI FRUUHODWLRQ REVHUYHG EHWZHHQ WKH ODVHU OLJKW VFDWWHULQJ GDWD DQG WKH GHIHFW VWUXFWXUH QHDU WKH KHWHURLQWHUIDFH VXSSRUWV WKH WKHRUHWLFDO ILQGLQJV FRQFHUQLQJ WKH ODVHU OLJKW VFDWWHULQJ SRWHQWLDO RI PLVILW UHODWHG GHIHFWV LQ WKH =Q6Hf*D$V PDWHULDO V\VWHP ,W FDQ EH IXUWKHU FRQFOXGHG WKDW JLYHQ FRQGLWLRQV ZKHUH D Q SKDVH GLIIHUHQFH LV SUHVHQW WKH RSWLFDO SUREH LV LQGHHG PRQLWRULQJ WKH KHWHURLQWHUIDFH DV RSSRVHG WR WKH IUHH VXUIDFH VXJJHVWLQJ WKH RSWLFDO SURELQJ WHFKQLTXH WR EH HPLQHQWO\ VXLWDEOH IRU PRQLWRULQJ GHIHFW HYROXWLRQ QHDU WKH

PAGE 93

KHWHURLQWHUIDFHf LQ VXFK ILOPV )XUWKHUPRUH LW FDQ EH FRQFOXGHG WKDW VKRXOG SHUIHFWO\ ODWWLFHPDWFKHG VWUXFWXUHV EH JURZQ LH GHIHFWIUHH PDWHULDOf ODVHU OLJKW VFDWWHULQJ VKRXOG QRW EH REVHUYHG GXULQJ JURZWK ZKLFK FRXOG KDYH LPSRUWDQW FRQVHTXHQFHV IRU WKH SURYLVLRQ RI ODWWLFHPDWFKHG VWUXFWXUHV IRU ZLGHJDS ,,9,*D$V GLRGH ODVHUV IRU LQVWDQFH

PAGE 94

5()(5(1&( /,67 5+ +DUWOH\ 0$ )RONDUG &DUU 32UGHUV 5HHV ,. 9DUJD 9 .XPDU 6KHQ 7$ 6WHHOH + %XVNHV DQG -% /HH 9DF 6FL 7HFKQRO % f *1 0DUDFDV -/ (GZDUGV 6KLUDODJL .< &KRL 5 'URRSDG % -RKV DQG -$ :RRODP 9DF 6FL 7HFKQRO $ f :( 4XLQQ '( $VSQHV 0-63 %UDVLO 0$$ 3XGHQVL 6$ 6FKZDU] 0& 7DPDUJR 6 *UHJRU\ DQG 5( 1DKRU\ 9DF 6FL 7HFKQRO % f &0 5RXOHDX DQG 50 3DUN $SSO 3K\V /HWW f & /DYRLH 65 -RKQVRQ -$ 0DFNHQ]LH 7 7LHGMH DQG 7 YDQ %XXUHQ 9DF 6FL 7HFKQRO $ f $3LGGXFN '5REELQV $* &XOOLV '% *DVVRQ DQG -/ *ODVSHU (OHFWURFKHP 6RF f $3LGGXFN '5REELQV '% *DVVRQ & 3LFNHULQJ DQG -/ *ODVSHU (OHFWURFKHP 6RF f '5REELQV $* &XOOLV DQG $3LGGXFN 9DF 6FL 7HFKQRO % f -3 &RQWRXU 0DVVLHV $ 6DOHWHV DQG 3 6WDLE $SSO 3K\V $ f 53 9DVTXH] %) /HZLV DQG )*UXQWKDQHU $SSO 3K\V /HWW f

PAGE 95

-3 &RQWRXU 0DVVLHV $ 6DOHWHV 0 2XWUHTXLQ ) 6LPRQGHW DQG -) 5RFKHWWH 9DF 6FL 7HFKQRO % f 0 +LURVH 6
PAGE 96

7% 0DVVDOVNL + 2NDPRWR 35 6XEUDPDQLDQ DQG / .DFSU]DN (GV %LQDU\ $OOR\ 3KDVH 'LDJUDPV YRO $60 ,QWHUQDWLRQDO 0DWHULDOV 3DUN 2+ f 3 2n.HHIIH & 2n0RUDLQ 6 .RPXUR 0 ,VKLL 7 0HJXUR < ,LUDXUD 6 'HQ 7 0RULNDZD DQG < $R\DJL -SQ $SSO 3K\V f 2KNDZD 7 .DUDVDZD DQG 7 0LWVX\X -SQ $SSO 3K\V /, f + 2NX\DPD 7 0L\DMLPD < 0RULQDJD ) +LHL 0 2]DZD DQG $NLPRWR (OHFWURQ /HWW f 0$ +DDVH 4LX -0 'H3X\GW DQG + &KHQJ $SSO 3K\V /HWW f + -HRQ 'LQJ : 3DWWHUVRQ $9 1XUPLNNR : ;LH '& *ULOOR 0 .RED\DVKL DQG 5/ *XQVKRU $SSO 3K\V /HWW f -5 9LJ 9DF 6FL 7HFKQRO $ f 6 ,QJUH\ :0 /DX DQG 16 0F,QW\UH 9DF 6FL 7HFKQRO $ f -0 2OVRQ DQG $ .LEEOHU &U\VW *URZWK f .OHLPDQ 50 3DUN DQG 6% 4DGUL $SSO 3K\V f 9LJQDXG DQG -/ )DUYDFTXH $SSO 3K\V f -' 'RZ 3K\V 5HY % f -/ )DUYDFTXH DQG 3 /HQJODUW 3K\V 6WDWXV 6ROLGL % f 9LJQDXG DQG -/ )DUYDFTXH $SSO 3K\V f : 6FKURWHU 3K\V 6WDWXV 6ROLGL $ f

PAGE 97

0( /LQHV DQG $0 *ODVV 3ULQFLSOHV DQG $SSOLFDWLRQV RI )HUURHOHFWULFV DQG 5HODWHG 0DWHULDOV &ODUHQGRQ 3UHVV 2[IRUG f 9LJQDXG DQG -/ )DUYDFTXH 3K\V 6WDWXV 6ROLGL % f 0RUL\D 3KLORV 0DJ % f -, 3DQNRYH 2SWLFDO 3URFHVVHV LQ 6HPLFRQGXFWRUV 'RYHU 1HZ
PAGE 98

%,2*5$3+,&$/ 6.(7&+ &KULVWRSKHU 0 5RXOHDX ZDV ERP RQ 0DUFK LQ 6SULQJILHOG 0DVVDFKXVHWWV +H DWWHQGHG VFKRRO LQ +DPSGHQ 0DVVDFKXVHWWV DQG JUDGXDWHG IURP 0LQQHFKDXJ 5HJLRQDO +LJK 6FKRRO :LOEUDKDP 0DVVDFKXVHWWVf LQ +H HQWHUHG :HVWHUQ 1HZ (QJODQG &ROOHJH :1(&f LQ 6SULQJILHOG 0DVVDFKXVHWWV WKDW VDPH \HDU WR SXUVXH D GHJUHH LQ HOHFWULFDO HQJLQHHULQJ DQG TXDOLILHG IRU WKH GHDQnV OLVW HYHU\ VHPHVWHU :KLOH DWWHQGLQJ :1(& KH UHFHLYHG D QXPEHU RI DZDUGV LQFOXGLQJ WKH 6RSKRPRUH $FDGHPLF $ZDUG WKH .HQQHWK $ 0DFOHRG 6FKRODUVKLS $ZDUG DQG WKH DQG (OHFWULFDO (QJLQHHULQJ 'HSDUWPHQWDO $ZDUGV &KULVWRSKHU JUDGXDWHG LQ IURP :HVWHUQ 1HZ (QJODQG &ROOHJH ZLWK D %DFKHORU RI 6FLHQFH LQ (OHFWULFDO (QJLQHHULQJ GHJUHH +LV VXSHULRU DFDGHPLF DFKLHYHPHQW ZDV UHFRJQL]HG DW JUDGXDWLRQ DV KH ZDV QRW RQO\ DZDUGHG WKH KRQRU RI VXPPD FXP ODXGH EXW ZDV DOVR JLYHQ VSHFLDO UHFRJQLWLRQ IRU DWWDLQLQJ WKH KLJKHVW FXPXODWLYH JUDGH SRLQW DYHUDJH DPRQJ JUDGXDWLQJ VHQLRUV

PAGE 99

,Q WKH IDOO RI &KULVWRSKHU FDPH WR WKH 8QLYHUVLW\ RI )ORULGD WR SXUVXH D PDVWHUnV GHJUHH LQ PDWHULDOV VFLHQFH DQG HQJLQHHULQJ ,Q KH HDUQHG WKDW GHJUHH KLV WKHVLV FRQGXFWHG XQGHU WKH GLUHFWLRQ RI 3URIHVVRU 5REHUW 0 ZDV WLWOHG *URZWK EY 0ROHFXODU %HDP (SLWD[\ DQG (OHFWULFDO &KDUDFWHUL]DWLRQ RI &OGRQHG =Q6HG22O*D$V (SLWD[LDO /DYHUV :KLOH DW WKH 8QLYHUVLW\ RI )ORULGD &KULVWRSKHU FRQWLQXHG KLV SXUVXLW RI H[FHOOHQFH +H ZDV DZDUGHG ILUVW SUL]H LQ WKH 6WXGHQW 3RVWHU &RPSHWLWLRQ DW WKH VW $QQXDO 6\PSRVLXP RQ $SSOLHG 9DFXXP 6FLHQFH DQG 7HFKQRORJ\ WKH 2XWVWDQGLQJ %HQW $ZDUG 7DX %HWD 3L )ORULGD DOSKD FKDSWHUf DQG WKH SUHVWLJLRXV 0DWHULDOV 5HVHDUFK 6RFLHW\ *UDGXDWH 6WXGHQW $ZDUG &KULVWRSKHU LV FXUUHQWO\ DQ DFWLYH PHPEHU RI IRXU KRQRU VRFLHWLHV 6LJPD %HWD 7DX 7DX %HWD 3L 3KL .DSSD 3KL DQG $OSKD 6LJPD 0Xf DQG WZR SURIHVVLRQDO VRFLHWLHV $PHULFDQ 9DFXXP 6RFLHW\ DQG 0DWHULDOV 5HVHDUFK 6RFLHW\f +H KDV DOVR DXWKRUHG RU FRDXWKRUHG SXEOLFDWLRQV WR GDWH DQG KDV SUHVHQWHG SDSHUV DW WKUHH QDWLRQDO PHHWLQJV &KULVWRSKHU SODQV WR SXUVXH D SRVWGRFWRUDO DSSRLQWPHQW DW 2DN 5LGJH 1DWLRQDO /DERUDWRU\ 2DN 5LGJH 7HQQHVVHHf WKDW LQYROYHV WKH GHSRVLWLRQ RI VHOHFWHG PDWHULDOV YLD D QRYHO ODVHUVRXUFHG PROHFXODU EHDP HSLWD[\ /DVHU

PAGE 100

0%(f WHFKQLTXH ZLWK D YLHZ WRZDUGV IDEULFDWLRQ RI KLJKHIILFLHQF\ SKRWRYROWDLF FHOOV

PAGE 101

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW 0 3DUN &KDLUPDQ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3DXO + +ROORZD\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ .HYLQ 6 -RQHV $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6LPPRQV IHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 102

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG % 7DQQHU 3URIHVVRU RI 3K\VLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO