Citation
The application of the complex variable boundary element method to the solution of heat conduction problems in multiply connected domains

Material Information

Title:
The application of the complex variable boundary element method to the solution of heat conduction problems in multiply connected domains
Added title page title:
Multiply connected domains
Creator:
Kassab, Alain Jacques, 1958-
Publication Date:
Language:
English
Physical Description:
x, 192 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Approximation ( jstor )
Boundary conditions ( jstor )
Geometric angles ( jstor )
Income protection insurance ( jstor )
Information technology ( jstor )
Ions ( jstor )
Matrices ( jstor )
Numberings ( jstor )
Stream functions ( jstor )
Subroutines ( jstor )
Boundary element methods ( lcsh )
Boundary value problems ( lcsh )
Dissertations, Academic -- Mechanical Engineering -- UF
Domain structure -- Computer programs ( lcsh )
Functions of complex variables ( lcsh )
Heat -- Conduction ( lcsh )
Mechanical Engineering thesis Ph. D

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 100-104)
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Alain Jacques Kassab.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001507891 ( ALEPH )
21663379 ( OCLC )
AHC0774 ( NOTIS )

Downloads

This item has the following downloads:


Full Text












THE APPLICATION OF THE COMPLEX VARIABLE BOUNDARY ELEMENT
METHOD TO THE SOLUTION OF HEAT CONDUCTION
PROBLEMS IN MULTIPLY CONNECTED DOMAINS













By


ALAIN


JACQUES KASSAB


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
nf TUV Dn ITTTPNPMNT f Infl T-W nPCfi n0 nnl ff'TnOR



























John,


Monique,


Paul,


Linda.


















ACKNOWLEDGEMENTS


would


like


thank


C.K.


Hsieh


suggesting


this


interesting


topic,


providing


support


recommendations


throughout


this


research,


never-ending


patience


reading


revising


this


manuscript


guidance


would


throughout


like


especially


my graduate


studies


thank


spurring my


interests


various


aspects


computational


heat


transfer.


have


learned


much


benefitted


many


ways


as Dr.


Hsieh


student.


would


teaching,


like


for


thank


providing


Kurzweg


with


for


first


valuable


engineering


research


opportunity,


serving


supervisory


committee.


been


a pleasure


have


Roan


as a


teacher,


during


wish


graduate


thank


studies,


for


for


encouragement


serving


supervisory


committee


would


also


like


thank


Oliver


Gater


for


graciously


serving


supervisory


committee.


C.Y.


Choi


kindly


provided


the


RVBEM


data


reported


in th h


Th i


i*n G r


SrfnP rmcr


catlrl w


r'^Ca<^ r'rl-


Iiy-in~y" +- ^


















TABLE OF CONTENTS


ACKNOWLEDGEMENTS. . .

LIST OF TABLES .. ... .. .. ... .. .................


LIST OF


FIGURES .... .. ... .


ABSTRACT .. ... .... ... .... ... ...

CHAPTERS

I INTRODUCTION. ..... ................ ... .... ....

II LITERATURE REVIEW................ .. ..........


MATHEMATICAL BASIS OF THE CVBEM


CONDUCTION HEAT TRANSFER


CVBEM


IN DOUBLY


CONNECTED DOMAINS


Derivation


the


Nodal


Equations


for the


CVBEM in D
Modeling Heat
Conditions


oubly Connected Domains.


Conduction


Boundary


for the CVBEM....


Assembly of the
Equations.


Boundary


Element


Solution


the


Boundary Element


Equations......
CVBEM Approximation


Interior


for


Points....


# and
*. .


I at
. .*. .* S


NUMERICAL APPLICATIONS............................


Description


Example


es.


Results and Discussion.


EXTENSION OF THE CVBEM TO


S. .. ... ... 54
... .. .. ... 63


MULTIPLY


CONNECTED DOMAINS.. .. .


Page










Basi


for


Formulation


Page
of CVBEM


in a Triply


Development


Connected


of Nodal


Domain.


Equations


CVBEM


Development


Evaluati
Development


in a Triply


Connected


of Computer


Terms


of Equations


Codes


(6-1
for


Domain


for


6) .
Interior


Points. .


Numerical


Triply


Application


Connected


the CVBEM


Domain.


Extension


From


Tripl


to Multipl


Connected


CONCLUSIONS


Domain....


RECOMMENDATIONS.. ..... .........


REFERENCES


APPENDIX


IMPLICIT
PROGRAM
DOMAINS


AND


FOR


EXPLICIT


DOUBLY


CVBEM


FORTRAN


CONNECTED


HYBRID


CVBEM


FORTRAN


PROGRAM


FOR


DOUBLY


CONNECTED


DOMAINS.


IMPLICIT
PROGRAM
DOMAINS


AND


EXPLICIT


TRIPLY


CVBEM


FORTRAN


CONNECTED


BIOGRAPHICAL


SKETCH ...... ..... .. ..... .
















LIST OF TABLES


Table


Page


Expression


Equation


Equations


coefficients C,


(4-18) ....


coding rules.


Coefficients


equations


(4-23)


and G.
I (4-24).''


for the


nodal


Implicit,


expli


cit,


hybrid


solution


methods........


Results of
in a hollow


the CVBEM


solution


heat


flow


square.....


Equations for k
ldk


coding


rules. .


Results of


CVBEM


in a triply


rification
connected


example


for the


domain .


A^k


^k

















LIST OF FIGURES


Figure


The


The


CVBEM i

linear
Nj ,2(s)


n a simply


basis


connected


functions


domain .


Nj,1(s)


Evaluation


angle


O(zk+1,


Zk-l;


zk .


Boundary


CVBEM


4-2


discretizat ion


in a doubly


Pictorial


used


connected


representation


to derive


domain.


limiting


process


Zo~4Zj


bz-O


New


numbering


system for


boundary


discretizat ion


for the CVBEM


in a doubly


connected


domain .


Exact


potentials and


streamlines


for


heat


flow


a hollow


square


region..


The CVBEM
problems


applied


in the


in a circular


solution


of three


annulus


Test


solution


convergence o
of a problem


the CVBEM


in the


in a circular


annulus....


CVBEM
domain


applied
imposed


in the
with


solution


three


different


irregular
boundary-


condition


combinations.


Comparison of
RVBEM applied


results


solution


CVBEM


an annulus


imposed


with


a Robin


condition.


Comparison


of three


solution


5-7


Comparison


exact and
C'


CVBEM


generated


59


Page


methods ........









Figure


6-3


A nodal


point


shared


two


boundary


elements.


New numbering system for


boundary


discretization


for


the CVBEM


in a triple


connected


domain.


Verification


example


for the CVBEM


in a triply


connected


domain.


A multiply
holes. .


connected


domain


containing four


Page


















Abstract


of Dissertation


University


Requ i rements


of Florida


for the


Presented


in Partia]
e of Doct


Degre


the Graduate Sch
L Fulfillment of
or of Philosophy


ool
the


THE APPLICATION
METHOD T(


OF THE COMPLEX VARIABLE BOUNDARY ELEMENT
I THE SOLUTION OF HEAT CONDUCTION


PROBLEMS


IN MULTIPLY


ALAIN


JACQUES


CONNECTED DOMAINS


KASSAB


August


1989


Chairman:


Major


Chung K.


Department:


Hsieh


Mechanical


Engineering


complex-variable


boundary


element


method


(CVBEM)


extended


solution


potential


problems


multiply


connected


domains.


doubly


connected


domain


taken


for


analysis,


a finite


width


cut


introduced


domain.


Linear


basis


functions


are


used


derive


CVBEM


nodal


equations


through


limiting


procedure.


was


found


that


stream


functions


along


cut


not


cancel


out


result


additional


term


nodal


equations.


complex


variable


methods,


Cauchy-


Riemann


conditions


must


used


gene rate


additional


equations


relating


stream


functions


heat


fluxes










resulting


nodal


equations


are


described.


analysis


shown


reducible


available


simply


connected


formulation


introducing a new node


numbering system.


The


CVBEM


equations


are


successfully


tested


solving


example


problems


with


available


analytical


solutions.


Dirichlet,


Neumann,


Robin


boundary


conditions


are


tested


using


implicit


method


solution.


The


CVBEM


shown


converge


boundary


discretization


scheme


refined.

variable


example


boundary


comparing


element


method


CVBEM

also


provided.


real

The


three


solution


methods


are


compared,


efficacy


these methods


is discussed.


The


multiply


CVBEM


connected


extended


domains


triply


using


generalized


development


doubly


connected


domains.


The


mechanism


leading


formation


analyzed


double-valued


applied


stream


the


functions


critically


formulation


stream


functions


along


multiple


cuts .


General


nodal


equat ions


are


also derived


an extension


the CVBEM formulation.


















CHAPTER


INTRODUCTION


mathematical


analysis


potential


problems,


one


encounters


differential

conditions.


conduction

parabolic

steady-stat

dimensions.


equations


solution


subject


example,


analysis,

partial c

e heat


ordinary


appropriate


partial


boundary


unsteady-state


temperature


differential

conduction


temperature


equation,


analysis

governed


heat


governed

whereas


multiple


elliptic


partial

difficult

nonlinear


differential


solve;


equation.


however,

system


These


equations


boundary


domains


are


are


conditions


irregular


shape,


problems


cannot


solved


exactly.


Numerical


methods


must


then


used


to solve


them.


numerical


solution


heat-conduction


equations


can


domain


approach


methods


classified

approach


consists

(FDM)1',2a


into


two


broad


boundary


ever


finite


categories,


approach.


element


popular


methods


namely

whole


finite


whole

domain


difference


(FEM)


These


. 1 1


usually


1 .


4m


I


1












finite


difference


finite


element


equations


are


derived


solution.


FDM,


local


energy


balance


invoked


nodal


points


order


derive


set


algebraic


equat ions


equations;


are


whereas


derived


FEM,


basis


algebraic


sat i sfact ion


govern 1 ng


partial


equation


global


sense.


more


difficult


derive


finite


element


equations,


are


more


convenient


use


solution


problems


irregular


recently


domains.


however,


Such


advantage


because


diminishing


advance


grid


generation


techniques.


The


primarily


boundary


approach


represented


numerical


boundary


solution


integral


equation


methods


(BIEM),


which


are


commonly


known


boundary


element

partial


methods (B]

differential


) In t

equations


hese

are


methods,


used


the


governing


conjunction


with


boundary


conditions


derive


integral


equation,


which


consists


contour


domain


integrals


Great


simplicity


arises


situations


where


there


are


no


heat


sources


sinks


vanishes


that


Dealing


only


only


domain;


contour


system


solel


with


then


integrals


boundaries


boundary,


domain


remain.


need


boundary


integral


follows


discretized.


approach


EM












less


than


whole


domain


approach.


However,


coefficient


matrices


generated


the


boundary


approach


are


unsymmetric


matrix


elements


are


nearly


fully


populated.


There


have


been


number


studies


devoted


comparison


boundary


approach


with


whole


domain


approach.


They


are


reviewed


together


with


others


next


chapter.


There


been


much


attention


given


recently


stud ies


BEM.


Indeed,


have


now


been


developed


level


that


competitive


with


FEM.


However,


most


studies


are


confined


real


domain


analyzed


with


real


variables.


This


thesis


is concerned


with


particular


form


called


complex


variable


boundary

boundary

Cauchy


element

integral

integral


methods

equation

formula.


(CVBEM)

in a cor

Using


which I

ex plane


complex


o rmu lat e


based


variables,


the

the

the


methods


conduction


domains


will


used


field


problems


will


shown


solve


simply

later,


two-dimensional


and multiply

the complex


heat-


connected

methods


possess

element


advantages

methods (]


approximating


not


found


RVBEM).


functions


that


real


example,


are


variable


the


analytic


CVBEM


thus


boundary

generate


satisfy


governing


equation


throughout


system


domain


More


mpl<












Errors


CVBEM


can


assessed,


which


further


adds


confidence


these


methods.


thrust


this


work


extend


the


CVBEM


simply


connected


domains


doubly


connected


domains.


methods


will


used


solve


several


verification


examples


heat-conduction


problems


doubly


connected


domains.


The


CVBEM


will


then


extended


solution


potential


problems


in multiply


connected


domains.


















CHAPTER


LITERATURE REVIEW


Boundary


element


methods


(BEM)


can


categorized


real


variable


variable


boundary


boundary


elemel


element me

nt methods


:thods


(RVBEM)


(CVBEM).


There


complex


are


three


types


RVBEM


formulations.


Direct


RVBEM


are


formulated


using Green's

expressed in


identity


real


numbers


with

that


dependent


appear


variables

integral


equations.


equations


Semi-direct


terms


RVBEM

unknown


formulate

functions,


the

such


integral


stream


functions


potential


flows;


these


functions


are


then


related


dependent


variables.


Indirect


RVBEM


express


dependent


distribution


solution


variables


over


governing


terms


boundary


partial


integrals


unit


differential


a density


singular


equation.


contrast,


are


the CVBEM


based


are


Cauchy


formulated


integral


complex


formula.


plane


unknowns


appearing


in the


CVBEM


integral


equations


are


potential


stream


function


components


complex


variable.


such,


CVBEM


can


considered


semi-d i rect


boundary


1 n+nfl'rn 1


m + 1,h rn-


r'- ,, 1F -4- n r I


-,, a -.


. 1












numerical


modeling.


contributed


9-11


maturity


great


of the


many


technique,


authors


and


have


RVBEM


have


now


been


firml


rooted


as a useful


numerical


method


solution


mechanics,


field


problems


geomechan ics,


among


solid n

others.


mechanics

6,12-17


, fluid

Cruse18


reviewed


current


advances


RVBEM


solid


mechanics,


comparing the


state


art


the


RVBEM


with


FEM.


There


been


relatively


little


attention


given


use


RVBEM


solution


heat


transfer


problems


Rizzo


Shippy


used


RVBEM


solve


transient


heat


conduction


problems


while


Chang


developed


constant


element


analysis


to solve


heat


conduction


problems


anisotropic


media.


The


RVBEM


have


been


applied


solution


conditions


conduction


(e.g .,


problems


Dirichlet


with


linear


Neumann,


boundary

Robin


conditions)6'10,21


nonlinear


boundary


conditions


(e.g. ,


radiative


conditions)


They


have


also


been


used


solve


steady


instead


problems


two-


three-


dimensions.


24-29


More


recently,


RVBEM


have


been


used


conjunction


with


optimization


methods


design


thermal


systems.


30-32


only


recently


that


complex


variables


have


been












linear


trial


function


between


boundary


nodes


investigate


multizone,


anisotropic,


two-dimensional


flows


porous


media.


zones


Anisotropic


through


principal


simply


zones


rotation


axes


connected


order


zones


were


transformed


stretching


obtain


isotropic


transformations


domain


governed


about


consisting


Laplace


equation.


These


zones


were


then


coupled


imposing


compatibility


conditions


interfaces.


means


examples,


they


were


able


to show


results


close


agreement


with


available


analytical


extended


analysis


FEM


this


was


analysis


later


solutions.


moving


generalized


Hromadka

boundary


a formalism


and

problem!


now


Guymon34

s: their


referred


to as the


complex variable


boundary


element method


Brebbia


RVBEM,


could


then


credited


Hromadka


principal


could


promoter


considered


major


contributor


development


CVBEM.


idea


expanding


CVBEM


approximation


finite


series


analytic


approximation


functions


CVBEM


that


linked


analytic


function


linear

method


(AFM)


Veer.


36-37


Having


established


theoretical


basis


CVBEM,


Hromadka38


developed


approximation


technique


a heuristic


error minimization.


Here,


through


considerable


computer


effort, an


analytic












(within


given


tolerance)


were


identified


approximate


reduced


where


boundary.


concentrating


approximate


error


additional


boundary


CVBEM


nodes


deviated


was


along


from


then


regions


known


system


boundary.


Hromadka


was


able


establish


relative


error


bounds


CVBEM.39


also


showed


that,


limit


infinitesmally


small 1


discretization


boundary,


CVBEM


solution


approached


exact


solution


limit.


40-42


Hromadka


successfully


tested


CVBEM


variety


steady


two-dimensional


fluid


flow


heat


transfer


problems


for


which


analytical


solutions


were


available.


The


CVBEM


were


found


accurate


results


converged


number


collocation


points


boundary


was


increased.


addition,


integrated


measure


relative


error


was


shown


an


effective


adapt ive


scheme


useful


judiciously


locating


add itional


nodal


points


reduce


overall 1


error.


The


CVBEM


have


also


been


applied


solution


steady


groundwater


flow


soil


freezing


problems.


43-46


such


applications


CVBEM


can


accommodate


large-scale


inhomogeneous


subdomains


Lai47


applied


CVBEM


solution


density-stratified


inviscid


fluid-flow












conditions.


was


found


that


iterative


divided


matrix


approach

However,


multilayer


solution


flow

the


gave s.

global


at isfactory


set


results.

equations


generated


from


assembly


subdomai n


equations


boundary


conditions


was


unsatisfactory.


This


can


ascribed


fact


that,


limit


large


number


subdomains,


CVBEM


approach


formulation


with


each

The


CVBEM

CVBEM


subdomain

literature


becoming


akin


growing


recently.


superelement


The


interested


reader


referred


to Reference


a detailed


review


literature


References


full


exposition


of the methods.


clear


that


result


both


RVBEM


CVBEM


a set


algebraic


equations.


been


pointed


out


Chapter


set


equations


generated


boundary


approach


inherently


smaller


than


those


generated

structures


the

these


whole


domain


equations


approach.


are


quite


However,

different.


coefficient


matrix


algebraic


equations


generated


domain


approach,


although


large,


banded.


This


allows


efficient storage

coefficient matrix


boundary


solution


of the


approach


algorithms.


algebraic


smaller,


equations


yet


contrast,

generated


fully













square


operation


cubic


counts


domain


between


reported


actually


that


f avor


unless


large


problems


are


tackled


major


contributions


operation


counts


considered


study


were


solution


originated


phase


from


arithmetic


number


performed.


storage


However,


Moukerjee


Moraj aria


pointed


out


that,


for


same


level


discretization,


provide


higher


accuracy


than


FEM.


This


them


believe


that


are


computationally more


efficient


than


FEM,


a finding


also


supported


Bane rj


Butterfield


(Reference


sections


addition,


8.11),


level


Ligett


pre-solution


Liu,


Cruze.


phase


preparation


discretization


element


generation


also


strongly


favors


boundary


element


methods.


date,


solution


imposed


CVBEM


potential


with


have


been


problems


Dirichlet


primarily


simply


Neumann


used


connected


boundary


domains


conditions.


There


lack


studies


dealing


with


solution


potential


problems


multiply


connected


domains


whose


boundaries

developed


are


imposed


this


work


with

thus


Robin

fills


conditions.


practical


CVBEM


need


solution


such


problems.


















CHAPTER


MATHEMATICAL BASIS OF THE CVBEM


IN CONDUCTION


HEAT TRANSFER


theoretical


basis


CVBEM


Cauchy


integral


formula,


w(zo)


21
S2ri I
r


w(-z
E-zo


ZoEQ


(3-1)


which


relates


the


value


of a complex analytic


function


w at


point


inside


k-connected


Jordan


domain


complex


plane


integral


that


function


along


boundary


that


domain;


see


Figure


3-1.


The


contour


integral


performed


that


domain


lies


the


left


of the


contour


integration.


Steady


state


heat


conduction


problems


generation


thus


with


are


construct


constant


thermal


governed


complex


conductivity


Laplace


potential,


no


equation.


w(z)=t(z)+it(z),


heat


can


when


solving these


problems


a two-dimensional


plane.


real


part


potential


represent i ng


state


variable,


imaginary


identified


part


temperature;


potential


whereas


representing


zo r


(z),


(z),

















































~~>1


Figure


. The


CVBEM


in a simply


connected


domain.













(3-2)


which


field


relation


(3-3)


3-3),


n represents


outward


drawn


normal


to r,


tangential


coord i nate


along


again


positive


direction


defined


earlier.


Using


Fourier


heat


conduction


left-hand


side


(3-3)


enables


expressed


an


integral


heat


flux.


This


provides


link


between


stream


function


heat


flow.


Cauchy-Reimann


relations


also


imply


that


temperature


stream


function


form an


orthogonal


net


CVBEM


approach


solution


boundary


integral


equation,


two


basic


approximations


are


made


Cauchy


integral


formula


as follows:


The


boundary


is discretized


into


finite-length


segments denoted


The entire


boundary


union


these


segments,


i.e. ,


r.
r^U rJ


see


Figure


3-1.


In analogy to


finite


element


terminology


endpoints


of these


segments are


called


nodal


points.


Since


domain P


is simply


=_ 0
as












(ii)The


potential


w along the discretized


boundary


expanded


used


analytic


for this expansion.


series.


The


Polynomials


order


can


the CVBEM


approximation


thus


hinges


on the degree


polynomial


used.


this


develop


chapter,


CVBEM.


linear


this


elements


effort,


will


used


piecewise


linear


interpolating


boundary


polynomial


complex


will


used


potential.


represent


Referring


Figure


3-2,


linear


basis


functions


Nj,l(s))


are


defined


on each


element


(3-4)


(3-5)


where


O

Using


these


basis


functions,


boundary


coordinate


is expressed


i(s)


parametrically


on


Nj ,2(s)


(3-6)


Notice


that


parameter


related


nodal


points


Nj,()=


s)=


Nj,2(











s=-


s=l


+(s)


Iz
j ++2


fzj


j +l1


1,2


NJ2
Sj+1,1
II


z z. z.
1 j-1 z j+1


z
j+2


ZN


gu re


.The


near


funct


ions


NJ


Nj,i











S-zi
Zj+l1


(3-7)


The


differential


coordinate


along


element


follows


from


(3-6)


(3-8)


j+-z.j)


similar


fashion,


complex


potential


expressed


parametrically


w[E(s)]


Nj ,(s)


(3-9)


Here,


using


specified


Hromadka s


complex


notation,


potential


.j=$(z.j)+i (zj)


nodal


point


Introducing


integral


(3-6),


formula,


(3-8),


equation


(3-9)


(3-1),


into


leads


Cauchy


first-order


approximation


to w(zo)


denoted


A o
W(Zo)


N fl N
2rit(zo) = [ i (
O1


S~f~


- zo


j+l-Z J


(3-10)


Then,


expanding


terms


integrand


rearranging,


can


expressed


sum


first-


j+i j


s>


(")"j+l
Zj+l]












where


(1-s)


Ij(zo)=


s--7


(3-12)


(zo-z .


(3-13)


integral


(3-12)


can


performed


to yield


Ij(zo)=(j +i
3 +1


J+--1
- *) + [7 j.0 +w .(l-7 j)]1n(
\ 3 /+ -7


upon


introducing


from


(3-13),


j+l (Zo-zj) -Wj(


-zj )


zo--Z


Sz.i+
I ^J


-zo
zo (3-14)


Now


fully


specified


each


node


then


equat ion;

b(zo)a

boundary


explicitly.


(3-11)


However r


conditions


boundary


(3-14)

regular

specify


are


sufficient


heat


conduction


any


integral


estimate


problems,


none


problem


thus


them


formed


using


equation


(3-11)


generate


nodal


equations


each


point


to solve


for


unknown


and/or


Cauchy


integral


formula


relation


evaluating tl


analytic


function


any


interior


point;


Ij(zo) = (.j+


--j)+


"j+l


(z.jl-Zj)


(Zj+1












Hromadka


Guymon37


replace


boundary


around


node


j with

limit


a small


e- 0.


circle

Another


radius


technique


E and

I also


evaluate


used


A(zo)
w(zo)


Hromadka


Guymon,


approach


boundary


node


from


interior;


t(zk)=l im
^c2 zo-*11


A (o)
w(Zo)


that

The


iS,

latter


one

approach


takes


will


limit


now


used


develop


the CVBEM


nodal


equations.


Notice


that


terms


which


lead


singularities


equation


(3-11),


nodal


point


approached


from


interior


are


contributed


two


adjacent


elements

arguments


approaches


logarithmic


term


(3-14)


vanishes


equals


unity,


thereby


leading


singularities


integrals


Fortunately,


Ik-1


these


singular


terms


can


manipulated


cancel


each


other


out.


With


this


mind,


contour


integral


equation


(3-11)


first


recast


Ij(zo) +Ik_1(zo) +Ik(zo))


(3-15)


S(zoI=kk (-
J=1
j k,k-l


Then


limit


applied


A \
w(zk)=


Sim
'7'/-& 97-.


I (zk)


or


-r 1


(zo)=












Finally,


(3-14)


introduced


into


(3-16),


after


much


manipulation




2ri 1


this


(zk)=


yields



Zk+1 -Zk
Wkn lzk-1-Zk


N
+

J k,k-1


j+1 (Zk-Zj) -j (Zk-Zj +1)
(z +1-z j


z +1 kz<-
z.-zk (3-17)
Zj k


Equation


(3-17)


useful


deriving


doubly


connected


domains


as


will


shown


the


next


chapter.


time


being,


well


that


Hromadka


studied


existence,


continuity,


convergence


this


approximation


presented


examples


Pe reforming


equations


complex


each


algebra


nodal


(3-17)


point


ields


pair


These


k on


nodal


equations,


one


for


one


can


used


along


with


boundary


conditions


gene rate


set


simultaneous


equations


solve


unknowns


inherent


coupling


nodal


variables


(3-17)


that


leads


nearly


full


populated


unsymmetric


coefficient


matrix,


discussed


literature


review.


Once


have


been


fully


determined


boundary


nodes,


temperature


can


evaluated












closing


this


chapter,


some


comments


are


order


examine


terms


(3-17)


clear


that


(3-17)


complex

logarithr


expansion

ns and


potential


complex


polynomials.


terms


This


natural


expansion


analytic


logarithm


satisfies

is under


the

the


Laplace

summation


equation


can


throughout

expressed


fur.

using


complex variables


,zk)


In Z+1 k
z zk k


d(zj,zk)


+iO(zj+1


,zj;zk)


(3-18)


where


refers


distance


refers


angle.


They


are


in turn


related


nodal-point


locations


d(zj+1 ,zk)


-xk)2+ (yj+l-k)21/2


(3-19)


d(zj,zk)


=[(x-xk)2+ (yj-yk)21/2


(3-20)


arg(z -zk)


(3-21)


Here


principal


value


(- r

taken;


see


Figure


3-1.


However,


confusion


may


arise


evaluating


logarithm


outside


summat ion


(3-17)


this


outside


logarithm,


0(zj +1,Zj ; zk)=arg(Zj +1-zk)


d(zj+l


=[(Xj+1












where


d(zk+l ,zk)


=[(Xk+l-k)2+ (Yk+ l-Yk)2]1/2


(3-23)


d(zk-l,Zk)


=[(xk-1


-Xk)2+ (k-l


(3-24)


and,


angle


re lated


interior


angle 0int


O(zk+1 ,Zk-l k)


= 2--0nt
lnt


(3-25)


illustrated


Figure


3-3.


This


notation


will


used


throughout


this


work.


development


CVBEM


simply

CVBEM


connected


doubly


domains


connected


now


complete


domains


Extension


follows


next


chapter.


as


-yk)2l1/2



















int


Zk+l


Zk /


Zk


k+1


k-1


3 x


figure


3-3.


Evaluat ion


angle


8(zk+l,Zk-1Zk).


















CHAPTER


CVBEM


IN DOUBLY


CONNECTED


DOMAINS


Cauchy


integral


formula


can


applied


solution


potential


problems


a doubly


connected


domain


introducing


boundaries


cut


domain.


connecting


However,


inner


stream


outer


function


component


of the


complex


potential


is double


valued


along


line


analysis.

connected


cut,


54-56


domain


this


Further,


must


must


CVBEM

reducib]


accounted


analysis


that


for


doubly


a simple


connected


domain


the


inner


boundary


vanishes,


(ii)


extendable


that


multiply


connected


domain


more


holes


are


added


domain.


With


these


serving


guidelines


CVBEM


doubly


connected


domains


are


developed


this


chapter.


Derivation


Nodal


Equations


for the CVBEM


in Doubly Connected


Domains


discretization


scheme


illustrated


Figure


useful

A cut


developing


made


the

the


CVBEM


doubly


domain


connected


discrete


domains.

closed































































gure


Bound
CVBEM


ary


secret


a doubly


izat


ion


used


connected


derive


the


domain.












numbered


counterclockwise


direction.


inner


boundary

numbered


discretized


in a clockwise


into


direction.


(N-M)

. The


elements,


cut


which


is shared


are


by two


elements


they


are


equal


length


opposite


direction.


convenience


later


analysis,


these


two


elements


are


separated


small


gap


2z=6x+i6y,


which


will


eventually


order


taken


close


zero


gap.


This


limiting


approach


process


permits


consideration


double


values


complex


potentials


along the


line


cut.


Using


3-2)


Fourier


conduction


recognizing that


stream


points


are


functions


double


points


valued,


M and


complex


potentials at


these


points


are


related


to each


other


&(zM)




U(zN)


(4-1)


(4-2)


Here,


related


total


heat


flow


rate


per


unit


thermal


conductivity


(Q/k)


across


either


system


boundaries


or


_= (Zl)


_= (ZM+I)


rl













end-


starting-point


nodal


locations;


hence,


QM,1


denotes


boundary


total


that


rate


lying


from


heat


flow


point


across


point


outer


Taking


normal


positive


pointing


outward


considering


basic


problem


which


heat


generated


within


QM,1


are


QN,M+1

related


must


opposite


energy


sign,


conservation


their


principle


magnitudes


as


general


value


this


not


QM,nw

known


unless


flux


fully


specified


over


either


boundaries.


with


uniform


boundaries,


Then,


unknown


temperature


then


an


unknown


4 's.


domain


s vanish


determined


trivial


enclosed


a priori


along


case


insulated


definition,


does


double


connected


inner


connected


boundary


domain


vanishes,


becomes


this


simply


becomes


a special


case


analysis


that


follows.


linear


basis


boundary


doubly


element


connected


method


domain


now


shown


developed


Figure 4-


Following the


boundary


limiting


node


process described


approached


in Chapter


from


III,


interior.


a doubly


connected


gap


cut


domain,


also


zero


limit.


necessary to


Thus,


take


following


(3-10),


linear


CVBEM


approximation


Complex


so


QNM+1 I












2riw(zk)=


Sim
6x, 6y-O
Z,"Zk


1o NN (s)w +N.
j, 1 (j j,2
I Lj,1(s)z+Nj,2(


2(s)j+1+l

s)zj+l]


-z.)ds) (4-4)
J/


Equation


(4-4)


can


recast


2ri(zk) =


lim
6x, 6y-O\


lim
Zo Zk


2ri(zo)


(4-5)


Here


limit


inside


parentheses


recognized


that


time


2iriw(zk)


terms


previously


for


derived


j=k-1


(3-17)


fact


summation


this


(3-17)


can


recovered,


inner


limit


expressed


a summation


of Hj(zk)


N N
= Hj (zk)=
=1 i =1
Ji a=


j+l(zk-zj) -z (Zk-j+) Zj +l-Zk
z j+1- J ]1 z j- zk z
J+l J J


Notice


that


j=k-1


terms


have


now


been


included


summat ion


because


k-l+


Zk+l -
Hk=&kln ZkI-
k k zk-1-


Zk
zk


(4-7)


outer


limit


(4-5) is


applied


next,


notice


(4-6)


(zj+1


notice











line


reasoning,


general


expression


for


w(zk)


can


derived,


this


will


based


general izat ion


the derivation


which


follows.


For


nodal


point


one


may


use


(4-5)


(4-6)


write


2xri(z1) =


1rim
6x, 6y-&O


N
Hj(zl)


(4-7)


Since


zM=Zl+6x-i by


zM+ 1=ZN+6x- i 6y


Figure


4-2,


terms


j=1,M-1,


must


sorted


out


from


summation,


2rii (z1)


im y-
6x, 6y-a0


H1(Z1)+


HM-1(zl)+


HM(z) )+


HN(Z1)+


H(zl))


(4-8)


j#1,M-l,M,N


Then


applying


limit


as


indicated


using


(4-1)


relations zN+l=zl


WN+1 W,


there


is derived


/ z2-Z
2riu(z1)= 1ln ZM_--z1 +


ji1


Hj(z1)


,M,N


Z 1-N-l1 lM+1-Zl
zM+1 ZN-1 ZN-l -Z1j


(4-9)


l zM+1M-l-z
ilnzMl-1-Zl ]













P
H-i


P1


zi


ZM+1


^Sz





M-1
"---
L.\


Figure 4-2. Pictorial


representation of the


limiting


process


and bz-+O.


I _


Zo-+Z


6y


8x


M+l












where


natural


logarithm


term


inside


bracket


comes


from


HN-1 (Zl)


term


summation.


This


related


term .


WM+1


is noted


(4-2),


that


because


thus


producing


way


this


(4-9)


extra


is derived,


&(zM)

z(zN)


set


in the


equal


summation


W(ZM+1)


set


equal


this equation.


identical


procedure


can


used


derive


2riA(zM+1) ,



2iri


and



(zk


then


a general


w(zk)


Zk-
in Zk


equation



fI- Zk
-1- Zk
j#t


can


N
+ S
=l1
k-l,k


be deduced




Hj(zk)

,M,N


+. i l M+nl-(-Zk
1 zk


(4-10)


Equation


(4-10)


can


used


for


any


point


boundaries


domain


Figure


long


following


rules


are


adopted:


When


k=l,


k-l=M-1


when


k=M+1,


k-l=N-1.


(ii)


Singularities


logarithmic


terms


can


cancelled


out


limiting procedure.


For


example,


when


k=l,


term


brackets


(4-10)


becomes


zl-1ZN-1 i M+l-Z)+ zl:N-l zl-zl 1


ilnzM+1-z~
191 24-2


w(zl)


Zk-ZN-1 ZM+1-Zkh_ Zk--ZM1nl ( Z1-Zk
-M+1 --ZN-1 N-1 k 1 M-l M-l kj












(iii)Rule


above


also applies


summation.


example,


when


k=1,


k-l=M-1;


then,


HM-l


should


excluded


from


summation


(4-9)


(iv)


summation


terms


Hj(zk)


(4-10)


, (zM)


is set


equal


to ((zl)


W(zM+1)


set


equal


O(zN)


for the


reasons


previously


explained;


see


paragraph


following


(4-9).


Since


Z(zM)


related


to 3(zl)


&(ZM+1)


related


to c(zN)


equations


(4-1)


(4-2),


AM
w(ZM)


i(zN)


equations are


redundant.


CVBEM


developed


above


are


strictly


valid


doubly


connected


domain


shown


Figure


4-1.


order


develop


connected


general

domai n


method

analyzed


that


earlier,


reducible


new


numbering


simply

system


introduced


cut


as


shown


effectively


Figure


eliminated


4-3.


the


new


doubly


system,


connected


domain


The


point


now


takes


place


point


M-l,


point


takes


place


point


N-1


(Figure


4-1).


With


these


changes,


the


new


nodal


equation


can


then


be derived


2ri0 (zk)
an^


{Jzk) z k+


-Zk
- Zk/


























FN r

+1


r-M+1



['-I .


Figure 4-3. New numbering


system


for boundary


discretizat ion for the CVBEM in


a doubly


connected domain.


iy


X Z)-1












where,


depending


location


the


nodal


point


term


is given


one


following


expressions


k#l,M
M+1


-zk z+1- Zk
zk] 1 Zl-Zk


Zk-ZN i ZM+1lZk
ZM+l-Z ZN--Zk
M1C+1 N7 ZN --k


for


(4-12)


special


-- (ln(


---- [I(


ZM+1-z1
M 1


Z-ZNN InzM+1-z1
M+1 N ZN-Z1


-z


--Z


(4-13)


-z


AM+1=


_( ZM--ZN ln(ZMlN
_M+l-N I N-


-z


ZM+1 -ZM Z -Z M1 i ZN-ZM+
Z1-ZM ZM--ZM+1-- I Z-M+l


,/ZN- -ZMM I1-
[Z-zM nzM-I


)+ln(


(4-14)


(4-15)


(4-16)


Notice


that


equations


(4-11)


(4-16)


are


val id


doubly


connected


domain


new


numbering


system


Figure


4-3.


new


numbering


system


when


k=1,


k-l=M


when


k=M+1


k-l=N.


informative


compare


equations


(4-11)


3-17).


Clearly


right-hand


side


exactly


Zk--ZM nfzl
Zl-zM In zM


M+1-ZN >
zl-zN f












where


for

term


subscripts


doubly

ilAk


and s

plays


simply

the


refer


connected


role


nodal


domains, res

pertu rbat i on


equations


pectively.


The


accounts


double


value


along


cut.


simply


connected


domains,


such


a cut


does


not


exist;


summation


braces


terminates


j=M,


i'kAk


term


drops


out.


Equation


(4-11)


thus


reducible


simply


connected


domain


equation


(3-17)


is noted


that,


development


follow


remainder


this


chapter,


node


numbering


will


refer


new


system


Figure


4-3,


unless


noted


otherwise


now


estimated


possible


temperature


to derive


stream


equations


function,


relating


(zkk)


specified


temperature


stream


function,


first


term


right-hand


side


(4-17),


associated


with


single


valued


nodal


equations,


expressed


27ri [(zk)]S=


w(Zk)1ln


d(Zk+l,Zk)
d(zkl ,Zk)


+iG(zk+lZk-1


;zk)


N
+k

j j+lk


L[j+1(zk-zj)


-W(zk- Zj+l)](C+iD)


(4-18)


Here,


have


been


given 1


, (3-23)


3-25).


A
#(k) '








35
Table 4-1.

Expressions for coefficients C, D, A, B, and F


in Equation


[A(xj+1-X) +B(yj+1


[B(xj+1


-xj) -A(yj+1


(4-18)


-Yj)]/F
-y )]/F
J
j~ ]/


where


d(zj+1 ,zk)
d(zj,zk)


o (zj+1,Zj;zk)

(xj+1-Xj)2+ (Yj+1-Yj)2












Next


term Ak


is decomposed


Ak Ak


+iAk


(4-19)


components


can


derived


expanding


(4-12)


(4-16)


into


their


real


imaginary


components


with


help


explicit


expressions


for


(4-19),


giving


= [Ek-CN, k (xk-XN) +DN k (Yk-N) +CM, k (xk-XM) -DM,k (Yk-M)


(4-20)


= [Fk-CN,k (Yk-YN)-DN,k(xk-XN)+CM,k (Yk--YM)+DM,k(xk-XM)]


(4-21)


where


coefficients


D's,


are


listed


Table


4-2.


Coding


rules


for


subscripts


encountered


general


expressions


C's


are


given


table.


Provisions


are


also


made


table


for


modifications


required


to evaluate


nodal


equation


(4-17)


can


now


be written


Ai[(z (
2xi[4 (zk) + i (zk) D


+iAk)


(4-22)


as


Atk


A k


as


C's,


, AM,


M+1'


2ri[ (zk)]S+i (A k









Tab 1


Equat ions


4-2.


coding rules.


Equat ion


=[Ek-CN, k (k-N) +DN,k Yk-N) +CM, k (Xk-M) -DM,k Yk


(4-20)


=[Fk-CN, k Yk


-YN)-DN, k (xk


-xN


) +CM k (Yk-YM) +DM, k (Xk-XM)


(4-21)


where


(ZM+1


,zk)


,zk)


(ZM+1


,zl;zk)


k (Xf -e)

k(xf-xe)


e)l /


-A,k (Yf-


d(zf,zk)
d(ze,zu)


,Ze;


= arg(zf-zk)


arg(ze-zk)


Xf -Xe


(Yf--Ye)


Coding


rules


subscripts


Ce,k


through


equations


given


above:


e=M


f=1l


k= [


A^k


%k


-YM)


^k


k(Yf-Y










Table


4-2


(Continued).


Modifications in Ek through Fe equations for Al' 1M, AM+1'


k=l


:Ek


=ln


d(z


d(zM


,z1)


, Fk=O(ZM+lzM


zl),


(ii)


k=M


(iii)For


k=M+1


: Ek=ln


d(z
d(z


NZM+l)
1,ZM+l)


, Fk=O(zN,Z1


zM+1)


=- N,M+1-=0


(iv)


k=N


CN,N


: CM











as the


following pair of


algebraic


equations:


A_ N
' (zk) =A*'k+B*k .+

j ,j+lk


+G3, jj +4 j j +1+ 5 k


(4-23)


4(zk)=B *k


N
A*ak+E
j=1


[G3, j+G4,j j+l


-G1


(4-24)


,* jj-G 2, jj +1 &5+ 2-k


where,


expressions


A's


,Gi, j


are


given


explic


(4-23)


itly


Tables


(4-24)


4-3.


relate


The


temperature


nodal

t(zk)


equations


stream


function


1l(zk)


nodal


point


the


specified


nodal


temperatures


stream


functions,


along


boundary.


The

solve


nodal


most


equations


potential


derived


problems


above


are


involving


sufficient


only


However,


heat


conduction


problems


involving Neumann


Robin


boundary


derived


conditions,


relate


additional


the


heat


equations


flux


must


shown


next


section.


[G1 .+Gj+i









Tabi


4-3.


Coefficients


equations


(4-23)


G for the
and (4-24).


nodal


d(zk+l


,zk)


d(zk-l,k)
Zk+l Zk-l; zk)


G2 j

3,j


-Y j+l) -C(k-j+l)


2- [C(xk -x ) -D(Yk


- [C(yk


-Xj+1)


-Yj+1) +D(xk


2-[D(xk


-xj) +C(yk


-yj)]


where C and


are


given


Table


4-1.


-yj)


[D(Yk












values


boundary.


However,


when


a Neumann


condition


imposed


boundary,


Cauchy-Reimann


conditions


can


used


to derive


j+1=


(4-25)


Consistent

function


with

the


the

heat


linear


flux


approximation


approximated


the complex

linear over


element


equat ion


(4-25)


becomes


=- J1
*sb. =0.- ,
-J+1 'J O0


[N.j, (


) .j+N.j
3 3 J


-zj)ds
3_


(4-26)


Evaluating the


integral


equation


(4-26)


summing over


elements


gives


a relation


between


j +1 and


.j+3 =ij+E
i-l


(4-27)


where


(4-28)


(As)j+i-=d(zj+iz j+i 1)=- Z+-Z.+i


(4-29)


(kqa,j+i-1 2Lkk/J+i k +-1


k(0)


() +l(zj +l


k a, j+1-1(+1-1]












problem


with


heat


flux


spec ified


along a


boundary,


equation


(4-27)


can


used


prepare


a data set


for


direct


input


into


nodal


equation


(4-23)


(4-24),


depending


method


assembly


equations


chosen


solving


problem.


Robin


convective)


condition


imposed


boundary


is modeled


by the


relation


- 4o0


= 0


(4-30)


Here,


convective


coefficient


(which


may


also


account

ambient


for

source


similar


radiation


or


that


sink


linearized),


temperature.


leading


equation


Following


procedure


(4-27),


stream


functions


are


related


Robin


condition


following expression:


1 1

_- h 1
(4-31)


Here


(h ,


(4-32)


on


j1 h- 1Lh4 i]
j -ti-1 2 +1 ,k j+i-


f( h












again


inner


relation


M>j+l>1


boundary.


between


boundary;


outer


boundary,


Equation (4-31)


stream


however,


N>j +>M+ 1


provides


function


because


on


additional


temperature


complexity,


not


possible


use


as


direct


input


nodal


equations


(4-23)


(4-24).


use


solution


will


discussed


next


section.


Assembly


Boundary


Element


Equations


close


examination


(4-23)


(4-24)


reveals


that


potential


estimated

function


stream


weighted


every


point


on


function


sum

the


point


potential


boundary.


Notice


are


stream


that,


these


equations,


estimated


quantiti


es


are


marked


with


caps


(A) ,


whereas


prescribed


quantities


are


marked


with


bars


(-) C


left-hand


Then,


estimated


side


equations


that


also


appear


depend


prescribed


same


point


right-hand


side


these


equations.


This


a distinct


feature


CVBEM


that


leads


diffe rent


solution


methods


will


discussed


later.


also


noted


that


coefficients


G's


(4-23)


(4-24)


are


solely


dependent


nodal


on












whose


boundaries


are


fully


specified,


coefficients


can


be evaluated.


final


point


related


those


source


terms,


2rA
2Ak,


2r-Ak


(4-23)


(4-24).


They


are


course,


result


perturbat ion


term


(4-17).


shown


(4-20)


(4-21),


these


source


terms


are


related


positions


ZM+1,


Specifically,


they


include


location


point


where


are


eva


luated,


also


those


four


points


which


are


along


original


line


cut.


Calling these


source


terms


STk
^k


2Jk
2A ,


(4-33)


STk


2rtk


(4-34)


possible


combine


(4-23)


(4-24)


matrix


equation


CR, CR,


C C
I, CI


ST,


A


A


(4-35)


Here


subscripts


R and


for


partitioned


matrices


as












equation.


matrix


desirable


These


formulation


that


part it ioned


given


matrices


are


equation


elements


each


order


(4-35)


row


highly


global


coefficient


matrix


sum


one,


outcome


the


uniform-


potential


domain.


50 Furthermore,


partitioned


matrices,

whereas


elements


elements


each


each


row

row


must

must


sum

sum


zero,

one.


These


results are


handy


checking computer


coding.


Prior


examination


planning


equat ion


solution


(4-35)


strategies,


order.


re-


doubly


connected


domain


with


prescribed


inner


outer


boundary


es,


there


are


unknowns


in the


global


coefficient


matrix.


However,


each


component


of the


vector


contains


which,


according


equations


(4-3)


(4-27),


related


heat


flux


boundaries.


the


solution


heat


conduction


problems


with


prescribed


Dirichlet


Neumann


are


conditions,


given


either


temperature


boundaries.


heat-flux


heat


fluxes


values


are,


nevertheless,


related


(4-27).


However,


Robin


condition


imposed


on


boundary,


none


temperatures


or


heat


fluxes


are


given,


yet


they


are


still


related


(4-31).


With


these


serve


as


guidelines,


three


solution


methods


are


developed.


They


are,


namely,












Solution


of the


Boundary


Element


Equations


The


type


solution


method


developed


hinges


specified


evaluated


are


related.


example,


given


nodal


point


Dirichlet


boundary


condition),


then


unknown


this


point.


The


implict


solution


method


formulated


setting


equal


N+k-th


equation


(4-35).


meantime,


since


k-th


given,


equation


longer


deleted


from


unknown;


(4-35).


this


permits


implicit


equation


for


node


then


obtained


rearranging


nodal


equation


(4-24)


N

j=1
j ,j+l1k


[G3, j 4j+G4, j+1


-G1


Sj -G2 j]+
,) 3 02,1 3+11+


(4-36)


This


equation


can


then


used


together


with


other


equations

unknown *1


solve


appears


unknown


both


sides


Inasmuch


(4-35),


this


as


method


called


implicit.


The


method


explicit


that,


solution


since


method


differs


given,


from


can


implicit


set


equal


k-th


equation


(4-35).


other


hand,


A* k


= (B*


2i ^,













equation


node


can


obtained


from


the


nodal


equation


(4-23)


(1-B*) k


N
=A*gk+E
j l=1
j ,j+l1k


[G1, j+G2, j+1


+G3,j j+G4, j +1]


2-A k
2r.k


(4-37)


This


equation


can


then


used


together


with


other


equations


solve


unknown


Notice


that


this


time


unknown


appears


only


left-hand


side


equation


(4-35),


method


thus


named


explicit.


implicit


equations


are


generated


explicit


methods


solve


for


described


unknowns


above,

. This


occurs


when


Dirichlet


Neumann


conditions


are


imposed


boundaries.


However,


when


Robin


condition


imposed


boundary,


both


become


unknowns.


Although


one


may


still


use


either


implicit


or


explicit


method


solve


such


a problem,


there


are


now


unknowns,


one


must


rely


on


(4-31)


supply


additional


equations.


discussed


equation


(4-31)


complicated


because


contains


both


unknowns


direct


input


into


equations


(4-23)


thus


impossible.


must


then


append


(4-31)


(4-35)


raise


; number


equations












(4-35).


same


example


sake


discussion,


discussed


use


earlier.


still


hybrid


made


method,


unknown


set


equal


this


yields


equations


unknowns


This


occurs


even


Dirichlet


Neumann


condition


imposed


boundaries.


equations


Hence,


solved


hybrid


method,


simultaneously


number


always


doubled


compared


with


implicit


explicit


schemes.


This


adds


considerable


effort


computation


solution.


Yet,


evaluated


even


though


given,


this


provides


means


for


checking


accuracy


computation.


Hromadka developed


a computationally


efficient


iterative


method


for


solution


hybrid


scheme.


methods


equation


49,50


should


described


(4-35)


noted


above,


very


that


global


nearly


solution


coefficient


fully


matrix


populated


unsymmetric


Direct


methods


solving


simultaneous


equations


are


thus


useful.


faci 1 itate


readers


structure


matrix


equations


solution


problems


with


three


CVBEM


methods


described


above,


coding


suggestions


are


provided


Table


4-4.


addition,


implicit


explicit


formulations


are


implemented


FORTRAN


program


provided


Appendix










Table


4-4.


Implicit,


explicit,


hybrid


solution


methods.


Implicit


Method:


1S
sol\


(4-24)


specified
le for Ck


zk, then
loading the


set tk=
following


. Also
equation


the matrix equations


N

j kk-1


[G3, jj+G4, j+1


-G1, j-G2, j+1 A
1Ck


A(Z
w(zk) k + Ck


Upon


solution


(4-23) to
the matrix


the matrix equations,


is specified
solve for ~1


zk, then
loading th


set


set k=
following


so


g equation


equations


N
-1)ak+

j kk-l


[G1 jj+G2, jj+G3,+G4, j +G, jj+1 k


Upon


solution


the matrix


equations,


set


w(zk) =k+ k'


Explicit


Method:


(4-23) to sol
in the matrix


spec ified
ve for k
equations:


at
by


z then
loading


set
the


following


Also


use


equation


N
(1-B*) k=A*k +

j kk-l


[Gl jj+G2, jj +1+G3, j j+G4, jj +1] + 4


Upon


solution


the matrix


equations,


set


A A
w(zk) =k +kk


2. If tk i
(4-24) to
the matrix


LS specified


solve


for


zk, then sei
loading the


t


3


fO lowing


Also


use


equation


equations


A* k


=(B*


-A*#k


J 1











Table


4-4


(Continued)


Hybrid


Method:


S. Also
loading
equations


is
use
the


specified
(4-23) and
following


z then
(4-24) t4


two


equat ions


Ck tand
r k a
n the


A
set_ =
d k by
matrix


k= A*#+B*k+
j kk-1


Gl ,I j +G2, j3+l


.iS + G4
, J4+


O= (B*


-1) k-A* + +
Jkk-1


[G3, j +G4, j J+1


1 J J-2,


jS -+l] + ah,


Upon


solution


matrix equations,


set


w(zk)


p. If
ok=ad"
1 oad 1 ng


specified


use


(4-23)


following


z ,
(4- 4)


two


then


set


to solve


equations


set


for
in


matrix


equations:


,jj++G2


+ k-E
jk, k-1


N
k =B k-A k+ t
j Sk ,k-l


+G3 j S+G4


, J++1-1 2-
'~k


, j +G4, j j+l


-G1


,j+-G2, j+l] +
,] 02,]]1


2Ak
2 k


Upon


solution


of the matrix


equations,


set


w(zk)


3, j++1 +2A k


,J J+1


=k^ -+
k+k


+G3


O=A* k+(B*


_+ ^
Ck+k












CVBEM Approximation


for


and


at


Interior Points


Once


where

the


can


louble-valued


are


known


derived


potentials


boundary


focusing


nodes


nodes


attention


, zo)
w{Zo)


only


Figure


4-1.


Cauchy


integral


evaluated


limit


small


gap


goes


zero


A(zo)


lim
Ex by-0


P--Zo


(4-38)


Using


linear


elements,


(4-38)


can


integrated


to yield


A(zo)


lim
6x, byO0


N
1 V'
27rni I
j=1


Hj(zo)
J


(4-39)


account


for


double-valued


complex


potential


points


Figure


4-1,


HM-,


are


sorted


out


from


summation,


they


are


evaluated


complex


indicated


potential


limit.


(zo)


The


CVBEM


the


approximation


numbering


system


of Figure 4-1


then


A /
W;(zo)


N

j=1
J M,N


H (zo)+2-(-zM_ 1 zM_ zo)


_ Zo-zN-1
- z -z


i ZM+1l-zo
z_-zo


(4-40)


as


HM+1'


HN-1'


+ In(ZM+1-Zo
2 z-zo


I














2iriw(zo) =


Hj(zo)


i A


(4-41)


where,


A =(zo--zM 1n(Z)zo+ 1 /zM+l-zo
zIZM/ n zM-zo/ +n zl-zo )


/ Zo-ZN ZM+1-zo
-ZM+1-ZN)\ ZN-o )


(4-42)


Notice


here


that


zo r'.


With


derivation


of the


boundary-


interior-node


nodal-equation


assembly


equations


procedure,


presentation


development


linear


CVBEM


doubly


connected


domains


now


complete.


CVBEM


will


now


applied


solution


heat


conduction


problems.


zoet,


















CHAPTER


NUMERICAL APPLICATIONS


any


numerical


method,


concern


arises


over


accuracy


convergence


CVBEM


solving


problems


doubly


connected


domains.


this


end,


heat


conduction


problems


with


available


exact


solutions


will


solved


using the


CVBEM,


numerical


results


will


compared


with


exact


solutions


error.


These


examples


will


consider


three


type


boundary


conditions,


order


compare


results,


one


examples


will


solved


using


both


the


RVBEM


CVBEM.


addition,


another


example


solved


using


three


solutions


methods


described


previous


chapter.


Description


Examples


Three


geometry


ies


are


used


test.


They


include


square


region


with


concentric


square


hole


punched


out,


(ii)


circular


annulus,


(iii)


Irregular


geometry


enclosing


an


irregular


hole.


conditions


imposed


on


square


region


are


1i 1l1 uuCt rnt


P ~ tnt rm


pE.1


Pn r'


cran ], 11n


Ul ^-l


rf- h n ^d j v


f|I I [


S | r1 I j


I










Exact


solution:


(z)=z


-2


-1


2



1



-1



-2


Equipotential


lines


Figure


5-1. Exact


enti


store


amlines


for


heat


flow


a hollow


square


region


-(


r













equipotential


lines.


Physically,


horizontal


boundaries


are


insulated,


vert ical


boundaries


are


imposed


with


uniform


temperatures.


numerical


solut ion


boundaries


are


d iscret ized


using


ten


nodes,


Dirichlet


boundary


conditions


are


spec ified


nodal


points.


With


chosen


temperature


field,


total


heat


zero;


flow


i.e.,


rate


across


the


either the


(4-3)


are


inner


zero.


or outer


Yet,


boundary


sake of


generality,


taken


as


unknown,


its


value


computed


for


comparison


error.


addition,


value


point


taken


zero.


This


serves


purpose


picking


constant


integration


relative


which


remaining


stream


functions


are


evaluated


noted


that


since


much


known


about


the


heat


transfer


this


square,


this


problem


serves


as


excellent


first


example


testing the CVBEM.


second


geometry


sketched


inset


Figure


5-2.


Here


three


cases


are


tested,


their


exact


solutions


are


given


three


w(z)


equations


legend.


circular


each


boundaries


boundary


boundaries


they


are,


are


are


discretized


consisting


computed


turn,


into


points.


with


used


elements,


values


equations


input


with

the


given,


solving





























0.15 -
0.14 .
0.13 -

0.12 -
0.11 -

0.10

0.09
0.08


0.06 -

0.065


M-12
N-24
Ro-1.0
R1-0.6


Exaot solution
o0 (z)- z
+ J (z)- z2
o (s)- ez


0-speaified on lnner and outer
boundarte of annulus




0


UW El T-~ L -


Node


number


Figure


.The


CVBEM


oblems


applied in t
n a circular


solution


annul


ree












for

heat


the annulus

flow rates


share

over


the

their


same


feature


boundaries


are


that

zero;


the 1

i.e.,


total

Q's


are


zero


(4-3)


Yet,


like


previous


example,


taken


to be


unknown


computed


the


solution.


different


set


Dirichlet


conditions


imposed


boundaries


annulus


shown


Figure


5-3.


Here


exact


solution


taken


ln(z/Ri)
w(z) In(Ro/Ri)'


this


represents


situation


where


heat


supplied


outer


boundary


maintain


uniform


temperature


where


heat


removed


from


Inner


boundary


maintain


uniform


temperature


<=0.


Here


total


heat


flow


rates


across


boundaries


are


not


zero.


With


total


number


this


nodes


example


sequentially


serves


purpose


picked


testing


convergence


of the


numerical


solution.


third


geometry


irregular


domain


sketched


Figure


5-4.


tested


three


different


boundary-


condition


combinations


given


legend.


exact


temperature


distribution


w(z)=ln(z


used


given


relation


generate


conditions


imposed


boundaries.


this


example,


a total


nodal


points


used


to discretize


boundaries.


examples


tested


above,


conditions


=1 ,



















































1 3 5 7 9 11


Node


number


Figure


Test


t


solution


he convergence
of a problem i


n a circ


CVBEM
ular


annul us.

































0.07


1 3 7 0 11


Node


number


Figure


CVBEM
domain


applied
impose


solution


with


three


diff


erent


irregular
boundary-


condition


combinations.












annulus


shown


Figure


5-5


placed


environment


so that


a Robin


condition


imposed


on the


outer


boundary.


The


inner


boundary


maintained


uniform


temperature


analytical


solution


for


this


problem


taken


t(r)


-#Poo


i-umbe
number


ln(r/Ro)
ln(Ri/Ro)


-(1/Bi)
-(1/Bi)'


where


temperature


Bi=hRo/k


Biot


surroundings.


Notice


that


this


problem


actually


serves


two


purposes:


not


only


tests


Robin


condition


it also


compares


results


same


CVBEM


discretization


with


RVBEM.


schemes


are


used


this


on


comparison,


boundaries


both


methods,


two


cases


are


tested


follows.


first


case,


elements


are


used


boundaries,


with


second


each


boundary


case,


consisting


number


nodal


elements


points.


boundaries


are


doubled.


noted


that


the


examples


described


above


are


solved


using


implicit


method


described


Chapter


order


test


other


solution


methods


given


that


chapter


final


example


provided


shown


Figure


5-6.


Here


w(z)=z2


test


case


Figure


5-2


re-studied


effects


solution


methods


used.


The


cross


plotted


for


implicit


method


Figure


is plotted


as square


Figure


5-6.




























a a ag


act Solution


0(r#)-
0l-#*


U-12


Ina(r/Ro)-(1/Bi)
ln(B/Na)-(1/B1)


e,-100 'C


a1-10


o eve


SN=4 > TBKU
& 5VBKU


0.01 0 0

0.00


Node


number


Figure


mpar


applied


ison


res


in the solution


of the CVBEM
an annulus


impo


RVBEM
sed


with


a Robin


condition


0.06


0.0o


0.04

















































1 3 5 7 9 11


Node


number


Figure


Compare


son


of three


solution


methods.












er=-


I w(z)-w
max[ I w(z)


(5-1)


where


w(z)


exact


solution,


A \
w(z)


represents


CVBEM


solution.


computations


were


performed


double


precision


Microsoft


elimination


8-Mhz


Fortran


algorithm


80286


optimizing


with


microcomputer


compiler.


partial


using


Gaussian


pivoting


equilibration


was


used


to solve


simultaneous


equations.


singular


value


decomposition


algorithm


was


also


invoked


dealing


with


solution


matrix


equations


whose


coefficient matrices


are


poorly


conditioned.


Results


Discussion


The


values


square


region


are


accurately


computed


CVBEM;


see


Table


5-1.


addition,


total


heat


flow


rates


across


boundaries


are


computed


'=7.099x10-16


which


excellent


agreement


with


exact


value,

Fact


Exactt0


that,


This

this


good ac

example,


curacy


linear


can


ascribed


elements


have


been


used


w(z)= z,


model

(ii)


(i)

the


first-degree


piecewise


linear


analytic

boundary


function


domain.


For


the al


nnulus


shown in


Figure


5-2,


the


first


case ,










Table


5-1.


Resu 1 ts


of the


CVBEM so
a hollow


lution f
square.


heat


flow


Boundary Conditions Imposed 4- on To and Fi


Node eg e
Number


1 0.OOOOE+O0 0.3706E-14
2 0.1776E-14 0. 1332E-14
3 0.6661E-15 0.1110E-14
4 0.4441E-15 0.1332E-14
5 0.1776E-14 0.8882E-15
6 0.1110E-15 0.1457E-13
7 0.6328E-14 0.2220E-15
8 0.8882E-15 0.1776E-14
9 0.7772E-15 0.1887E-14
10 0.6217E-14 0.1110E-15


Definition of the errors eC and e, above:

e I=CVBEM tEXACTI
e' = CVBEM -DEXACT1












w(z)=z2


problem are


plotted


Figure


5-7.


The


results


show


good


agreement


between


CVBEM


exact


solution


regions


small 1


temperature


gradients.


The


values


for


are


also


computed


cases


SI2z=0.000035,


z2=0.0176,


ez=0.0197
e


Given


small


number


nodal


points


(N=24)


discretized


over


two


boundaries


this


geometry,


such


errors


are


not


unexpected.


These


errors


can


reduced


increasing


number


nodes.


shown


Figure


5-3,


maximum


error


point


effectively


reduced


less


than


when


total


number


nodal


points


increased


from


Corresponding


error


also


reduced


from


1.6%


(for 24


nodes)


to 0.14%


(for


72 nodes).


Attention


now


directed


irregular


geometry


tested


Figure


5-4.


Here


a maximum


error


of 7%


located


point


this


takes


place


when


temperature s


are


imposed


outer


boundary


heat


fluxes


are


imposed


inner


boundary.


other


nodal


points


other


boundary-condition


combinations,


errors


are


less


than


Notice


that


N=50


for


this


example.


Since


errors


can


reduced


increasing


demonstrated


Figure


5-3,


CVBEM


are


still


accurate


solving this


i rregular-geometry


problem.


















-1.20 -1.00 -0.80 -0.80 -0.40 -0.20
1.20 I I


-1.20 1- -- -. .
-1.20 -1.0 -0 -0.80 0.0 -0.40 -0.20 0.00 0.20 0.40 0.80 0.80 1.00


1.20
120


1.00


0.80


0.60


0.40


0.20


0.00


S-0.20


-0.40


-0.50


-0.80


-1.00


-, -1.20
1.20


Figure


5-7.


Comparison
isotherms


of
for


exact


nd CVBEM
)=z pro


generated
blem.












RVBEM

the t


cannot


temperaturee


used tc

errors


evaluate


are


stream


compared


functions,

Figure.


only

Here,


accuracy


both


methods


appears


to be dependent


on the


distance


points


measu red


from


Robin-condition


surface.


The


maximum


error


less


than


CVBEM


when


N=24;


RVBEM


appear


more


accurate


(error


less


than


2.5%


These


errors


tend


converge


rapidly when


value


doubled.


depth


Also


measured


form


errors


become


less


surface,


dependent


maximum


on


error


being


less


than


CVBEM,


error


evaluated


.38%


when


N=24,


drops


down


0.83%


N=48.


The


examples


presented


above


have


been


solved


using


the


impl i


method.


example


Figure


solved


using


three


methods


described


Chapter


comparison


results.


shown


Figure


5-6,


results


than


hybrid


implicit


method


method


appear


slightly


selected


nodal


better


points.


However,


other


points


(not


shown)


results


three


methods


are


comparable.


Inasmuch


as the


hybrid


method


requi res


solution


twice


many


equations


compared


with


either


implicit


or


explicit


method,


while


hybrid


results


not


show


marked


improvement












salient


feature


found


for


implicit


method.


discussed


previous


chapter


implicit


method


discards


nodal


equation


for


whose


value


iven.


pointed


out


Hromadka,


49,50


once


nodal


value


found


implicit


method,


one


can


treat


given


unknown


evaluate


using


(4-23)


or


(4-24).


difference


can


then


used


gauge


errors


numerical


solution.


present


check


work,


this


results.


method


instance,


been


one


used


example


successfully


Figure


(see


data


plotted


diamonds)


which


flux


specified


outer


boundary


temperature


specified


inner


method.


boundary


values


solved
A _


first


are


then


using


evaluated


implicit


reveal


difference


of 0(102)


nodal


points


where


6 values


were


specified.


Noticing


this


large


difference,


situation


number


rectified


nodal


either


points


increasing


switching


total


explicit


method


solution.


data


explicit


estimation


Both


plotted


solution.


also


holds


alternatives


Figure


noted


work


are


that


explicit


satisfactori1


results


such


hybrid


of the


error


methods.


As mentioned


earl ier


1 literature


review,


Hromadka has


(4-4)












Another


concern


arises


positioning


cut


hence


placement


nodes


M+1


boundaries,


see


Figure


4-3.


The


sensitivity


method


position


cut


investigated


re-so


living


problems


Figure


with


cut


positioned


at


addition,


a test


also


mad e


numbering


nodal


say,


points


following


beginning


defined


inside


contour


boundary;


integration


that


direction,


nodes


are


numbered


from


inner


boundary


from


M+1


outer


boundary.


Comparison


of the


results


shows


same


level


accuracy


cases


tested.


solution


methods


thus


appear


insensitive


cut


position


node


numbering order.


Another


point


interest


related


boundary


discretization.


Hromadka,


49,50


solution


potential


problems

position


cause


in simply


coefficient


connected

nodal


matr


domains


points


ices


reported


along


become


that


boundary


ill-conditioned.


This


occurs


more


frequently


when


geometry


symmetric


and

same


when


symmetri c


problem


doubly


discret ization


encountered


connected


domains.


here


these


scheme

solving


problems,


used.


The


problems


diagnosing


eigenvalue


vector


provided


singular


value


on


STT,












backsubstitution .


Alternatively,


discretization


scheme


can


altered


create


more


staggered


nodal


distribution


along


boundary.


condition


number


resulting


coefficient


matrix should


reexamined


prior


final


solution.


examples


above


provide


an


exposition


features


CVBEM


solution


problems


doubly


connected


domains.


The


methods


have


shown


accurate


even


with


boundary


relatively


converge


coarse

with


discret izat ion


refinement


discretization


scheme.


next


chapter,


CVBEM


will


extended


solution


problems


multiply


connected


domains.


















CHAPTER


EXTENSION


OF THE CVBEM TO MULTIPLY


CONNECTED DOMAINS


The


analysis


employed


developing


CVBEM


for


solution


potential


problems


doubly


connected


domains


can


extended


developing


solution


these


problems


multiply


connected


domains.


first


made


triply


connected


domain


shown


Figure


continuation


doubly


connected


analysis.


resulting


analysis


then


generalized


multiply


connected


domains


with


a connectivity


higher than


two .


Some


basic


concepts


useful


for the


doubly


connected


analysis


are


first


reestablished


for triply


connected


domains.


General


Concepts


for Development


the CVBEM


in Multiply Connected


Domain


Comply
Tripl


ex


Potential


Connected


at Nodal


Points


Domain


Refer


domain


shown


Figure


6-1.


Here,


nodal


points


are


again


sequentially


numbered


define


continuous


circuit


around


domain.


positive


direction


about


this


circuit


consistent


with


analysis


simply


doubly


connected


domains


a it n.. e- a ,- an


nnn~r*


F


.J -1


__ _L A .. _


rf-


~LL


~


nr



























































Figure


6-1 Boundary


discretizat ion


used


to derive


CVBEM


a triply


connected


domain.











valued


nodal


point.


similar


fashion,


complex


potentials


points


M+1,


MAB,


MAB+1


are double


valued


follows


that


w(zM)


zl) +i1o,


M,1 -
o0-- k'


(6-1)


w(ZME) =(ZMAB+1)- i E'


qME,MAB+1


(6-2)


W(ZME+1


)=I


(ZMAB) 11PE


(6-3)


Following


(4-27),


stream


functions


points


can


related


those


points


ME+1


and M+1


^(ZN) =(ZME+1) -AT



(ZMAB) = (ZM+1)-AB'


N ,ME+1
k


MAB,M+1


(6-4)


(6-5)


These


five


equations


will


used


later


re late


complex


potentials


double-valued


nodal


points.


Basis


for the


Formulation


of CVBEM


a Triply


Connected


Domain


should


noted


that ,


Figure


6-1,


boundary


=J(


E-


\II.
AT -



AB=












point


while


that


point


inner


boundary


Figure


loop


6-2.


closing


However,


from


stream


above


functions


point


points


see


MAB+1


are


different;


they


are


boundary


loop


closing


from above.


shown


Figures


6-2,


boundary


over to


The

estabiis


loop


point


first


ME+1,


concepts

h the ec


ses


finally


discussed


luivalence


above


of nodal


point


departs


then


an


will


crosses


upward


useful


points


path.


later


derivation


stream


functions


along


lines


cut.


time


being,


basic


equation


will


derived


basis


through


analysis

(4-6),


presented


Chapter


contribution


IV.

the


shown


complex


(4-4)


potential


A(zk)
w(Zk)


any


boundary


element


comes


from


Hj(zk)


term


Hj(zk


)=-W


Zk-
j+1 z]+i


Z ln


ZI-Zk
ZZ k


.Zk-Zj+ Zj+l-Z
-W Z-zj_ In Zi--Z
j+1 3/ j k


(6-6)


Here


first


term on


right-hand


side


accounts


complex


potential


that


located


point


zj+l


while


second


term


accounts


complex


potential


located



















N
M+I


ME


MAB+1


1
M

*M- l


ME+1


MAB


Figure


6-2.


Formation of double-valued stream functions


at the cuts.


f--


---->lj

























Zn+l


n1


n -
n-


Figure


6-3


A nodal


point


shared


two


boundary


elements.













contribution


complex


potential


by this


point


can


be expressed


Zk-Zn-l In
n-zn-zn-


Zn-1-Zk


Zk-Zn+1 nl Zn+l-Zk
Zn+l-zn Zn-Zk


(6-7)


noted


that,


nodal


points


where


comply


potentials

potentials


are d(

remain


ouble


valued,


unchanged,


real


only


components


the


stream


functions


are


double


valued.


Then,


point


used


represent


Figure


any


6-2,


such


excess


points


stream


, ZME,


functions


ZME+1,

these


points


can


derived


sorting


out


stream


function


component


from


(6-7)


writing


AZkn-l (1 Zn-Zk -
nZ p n-Zn-l Zn-1Zk/


Zk-Zn+ll f Zn+1-Zk
zn+l-zn Zn--zk


(6-8)


where


w(Zn)


-wO(zp)


(6-9)


denominator


(6-9)


complex


number


i=J-l.


Here,


for


sake


generality,


first


subscript


is used


represent


specific


point


whose


excess


stream


n-p












(6-9),


as defined


'.
i-p

(6-1)


can


through


expressed


terms


those


(6-5)


Equations


(6-8)


(6-9)


can


now


used


to derive


excess


stream


functions


along


lines


cut.


They


are


first


applied


finding


stream


functions


points M and


along


cut


N/1.


Along this


cut,


AM=*M_ -Z-11 ZM-Zk
MM-l-1 M-l


Zk-ZM+1 IM+1-Zk
-M+1-M I Zk


(6-10)


Z-Z N ZN-Zk
AN=-N-(M+1) ZN ZN-1 zN-l-Zk


Zk N+1
ZN+1 ZN


ZN+-Zk
N k


(6-11)


Then


since


ZM+1-Zk
A +AN= o In M- Zk
z1-zk


_k- N-1 I Z I M+1--Zk
ZM+1-ZN-1 ZN-1-zk


+zk-ZM-1 In z-zk
Z18


- N-(M+1)M-1 o


(6-12)












(4-10)


This


term


accounts


for


double-valued


stream


function


equation


component


(4-10),


doubly


correspondingly,


connected


accounts


nodal


for


double


value


triply


connected


domain.


The


above


analysis


thus


consistent


with


reducible


doubly


connected


domain


formulation


developed


Chapter


For

excess


the t

stream


riply


connected


functions


also


domain

appear


shown


Figure


points


6-1,

ME+1,


they


must


accounted


for.


Applying


(6-8)


these


points and


using the


relation


that


(6-13)


ME-(MAB+1)- (ME+1)-MAB E


gives


_A +A In- ZMAB-Zk zk-ZME+2 in ZMAB-Zk
ME ME+1 WE ZMAB+ Zk ZMAB-ZME+2 ZME+2- k


Zk-ZME-1 ZMEAB+1-zk
ZMAB+1-ZME-1 / ZME-1-zk


(6-14)


now


necessary


return


concepts


established


earlier


this


chapter.


previously


mentioned,


double-valued


stream


functions


only


appear












(6-12)


these


(6-14)


equations


must


are


related ;


equivalent


indeed,


eac


points


other


following


manner:


Nodal


Points


(6-12)


Corresponding


Points


(6-14)


MAB


MAB+1


ME+2


ME-1


Establishing


these


extension


relations


analysis


for


ows


a doubly


for


connected


direct


domain


triply


connected


domain.


particular,


nodal


equation


(4-10)


can


modified


include


an


extra


term


that


accounts


for


double


valued


stream


functions


along


cut


ME/(ME+1)


z
=w(zk)ln z


+iSo[ln(


-Zk
Zk


M+1-zk
1 k


N

j=1
J fk-


Zk-_ZN-
ZM+1 Z


Hj(zk)


l,k,
MA ,M
1 zM+1
In zN
<-1 ^N-1


Zk-ZM-1 In
ZlZ-M-1l


1- zk
ZM-l-Zk


-i E[ln(


ZMAB-zk
ZMAB+1-Zk


Zk-zME+2 I ZMAB -Zk
ZMAB-ZME+2/ ZME+2 Zk


2ri i(


-Zk
-Zk












rules


following


(4-10)


are


accordingly


amended


include


following


relat ions:


In addition


when


k=MAB+1


k-1=ME-1


when


k=MAB


k+1=ME+2.


(iv)


addition


ZMAB+1)


set


equal


to (ZME)


w(ZME+1)


is set


equal


to w(


ZMAB)


are


formulations


for


"(ZME)


zME+1) redundant.


The


other


rules


remain


unchanged.


derivation


developed


repetition


Chapter


only


that


follows,


will


changes


equations


extended,


will


rules


avoid


highlighted.


point


departure,


old


node


numbering


system


given


Figure


changed


new


system


shown


Figure


6-4.


Points


are


renumbered


according


following


scheme:


Points


in Old


System


Corresponding


Points


in New


System


M-1

MAB


MAB+1


ME-1


ME+2

N-I


LT+1


, U(


























































Figure


6-4. New numbering
disc ret i zat ion


system


boundary


for the CVBEM


in a triply


connected


domain.











Development


S- -. -a


Triply Connected


Domain


new


numbering


system,


complex


potential


point


can


evaluated


using


2ri [t(zk)]T=2ri [t(zk)] S+i ($oAk -E k)


(6-16)


Here


subscript


refers


triply


connected.


The


term


2ri [A(zk)] S


addition,


recognized


that


braced


equation


term


been


(4-11)


changed


above


Equations


have


been


given


as


(4-12)


through


(4-16)


new


term Ek


appearing


(6-16)


is defined


"k;kfL,L+1,
LN,LT+1


zk-z LN zL+ -zk zL-Zk
- zL+1 ZLN Z LN- k Z L+1-Zk


Zk-ZLT+1 n
zL-z LT+1


zL-Zk
ZLT+1-Zk]


for


special


k subscripts


of 2,


= ln ZL-ZL+1
[ln LN-ZL+1


-[in ZL-ZLN
ZL+1-ZLN


SL+1-zLT+1 i
ZL-ZLT+1In


_ ZLN-LT+1 1
ZL-ZLT+1 n


ZL-ZL+1
ZLT+1-ZL+l1


ZL ZLN]
zLT+1 ZLN


(6-18)


(6-19)


zL-ZLN nZL+1-ZL zLT+1-ZL
zLL+1-zLN N ZN--Z 1 zIr.I-z, ]


(6-20)


(6-17)


of Nodal


Eaquations


for CVBEM


-L+1












derivation


excess


stream


functions


above,


points


along


cuts


are


shown


equivalent


each


other.


This


also


applies


new


system


close


relationship


thus


expected


between


equations.


Indeed,


careful


comparison


(4-12)


(6-17),


(4-13)


(6-18),


(4-14)


(6-19),


(4-15)


(6-20),


(4-16)


(6-21)


reveal s


that


following


points are equivalent


to each


other:


Points Along Cut


(M+1)/1


Points


Along Cut


(L+1)/1


LT+1


cross


link


thus


established


between


points


equations.


Equations


(4-19)


through


(4-24)


can


then


revised


to develop


computer


codes


for the


evaluation


term


(6-16).


Development


of Computer Codes


for


Evaluating Terms


(6-16)


There


are


three


terms


right-hand


side


(6-16).


The


first


term


can


coded


using


equation


(4-18)


which


constants C and


The


(6-16)


imaginary


components


D have


been


have


been given


defined


been


derived


Table


(4-19)


as


4-1.


real


(4-20)


i$E k












term


new


can


evaluated


revising


previous


coding


First


following


(4-19)


(4-21),


is decomposed


real


imaginary


components


(6-22)


where


=Uk-KLT+l


,k(Xk-XLT+1)+HLT+1,k Yk-YLT+1)


+KLN,k(Xk


=Vk-KLT+l


-XLN) -HLN,k Yk-YLN)


-YLT+1)-HLT+1


(6-23)


k (Xk-XLT+1)


+KLN, k (Yk-YLN) +HLN, k (Xk-XLN)


(6-24)


Here


coefficients


are


given


together


with


their


coding


rules


Table


6-1.


Notice


that


expressions


given


this


table


are


deduced


from


Table


4-2,


in which


nodal-point


locations


are


changed


according to


list


equivalence


points


along


cuts


given


earl ier.


Next


(4-22)


is written


+i~
I~k


-k =-k
-k-k


k (Yk


9k










Tabi


Equat ions


6-1.


coding rules.


Equation


=-Uk-KLT+l k (Xk-XN) +HLT+l, k (Yk-YN)


+KLN, k (Xk -M) -HLN,k (Yk


(6-23)


k =Vk-KLT+1, k (Yk -YN) -HLT+, k (Xk-XN)


+KLN,k (Yk


-YM) +HLN, k (k-M)]


(6-24)


where


(ZL+1,


SZL+1;zk)

k (xf -xe)
-4

k(x -xe)
k (Xf-Xe) -
d(zf ,Zk)
d(ze, z,)


Ak
e,k


e,k (Yf-Ye


e,k (Yf


-Ye)


= arg(zf -zk)


arg(ze-zk)


(Yf--Ye)


Coding rules for subscripts e and f in the Ke,k through Fe


equations


given


above:


e=LN,


f=L+1.


Zk)


,Ze


-Xe


-YM)]


) /










Table 6-1


(Continued).


Modifications


through


e equations


~L+1' LN 'L


-LT+1:


k=L+1


KLN


(ii)


L+1=
k=LN:


Uk=ln

HLN,L+1=

LN LN =


d(zL,


d(ZLN


,ZL+l)


,ZL+l)


, Vk=O(ZL,ZLN;ZL+1),


HLN,LN-


(iii)For


k=L:


Uk=ln


d( zLT+l, ZL)
d(ZL+l, ZL)


, Vk=(ZLT+1,ZL+1 ;zL)'


KLT+1, L


HLT+1, L=0


(iv)


k=LT+1


LT+1, LT+1--


HLT+1 ,LT+1-











Then,


nodal


equations


for


a triply


connected


domain


are


read ly


obtained


A N
S(Zk) =A* k+B* k+
j1k
J ,j+1$k


, jj+G2, j+l


+G3 ,j.+G4


b(zk) =B*4k


jj+l]+ 27


N
- C
j-1
j j+1


-2
2 k


,jj+G4


(6-26)


,j+1 j+l


(6-27)


-E-
2r thk


,j.j+l] +A1


Here


first


three


terms


right-hand


sides


come


from


2,ri [i (zk)]


coefficients


these


S term i

equations


(6-16).


can


Hence,


found


using


expressions given


Table


4-3.


Finally


a matrix


equation


can


constructed


(4-35).


this


equation,


right-hand


side


terms


are


re-


defined


for the


triply


connected


domain


ST4k


6-28)


-A*~


-G ,j-G2
1,a jj G2


=12 (WoAk


--E k)












Once


again,


three


solution


methods


can


used


to solve


matrix


equation


described


Chapter


this


effort,


changes


must


be made


(4-36)


(4-37)


those


equations


Table


4-4


as follows:


2rA
2x9k


2,bk


2- (\OA

(6-30)


derivation


nodal


equations


boundaries


now


complete.


Development


of Equations


for


Interior


Points


derive


equations


interior


points


Zo6E1


use


again


mad e


equations


(4-38)


through


(4-42).


Referring


numbering


system


given


Figure


6-1,


double-valued


stream


functions


points


ZM+r,


ZMAB'


ZMAB+1


can


derived


sorting


out


HM-l


HM+l

from


, HMAB,


HMAB+1


, HME-1,


summation


HME,


(4-39).


HME+1'


Following


HN1,


the


terms


same


limiting


procedure


leading


(4-41) ,


interior


equation


derived


for


triply


connected


domain


new


numbering system


(6-31)


- 2 OA

E Ek)


-E ,k)


2 i[ (zo)] T=2ri[ (z ")]q+i(WoA--FE)












2ii [t (zo)]S=


Hj(zo)


(6-32)


oLN n ZL+1-Zo ZL-Zo
- ZL+-ZLN zLN-Zo zL+1- Z


zo-zLT+1 in ZL-o ZO
zLzLT+1 zLT+10 o


(6-33)


The


above


equation


concludes


derivation


the


CVBEM


equations


for points


inside


a triply


connected


domain.


Numeri


1 Application of
Triply Connected


the CVBEM


Domain


The


domains

problem


development


now

the


verified


rectangular


CVBEM


for


solving


region


triply


heat


illustrated


connected


conduction


Figure


6-5.


With


exact


solution


taken


w(z


this


example


analogous


previously


solved


conduction


problem


hollow


square


region


Figure


5-1.


Here


again,


horizontal


boundaries


are


insulated;


vertical


boundaries


are


imposed


with


uniform


temperatures,


heat


flows steadily from the


right


left.


numerical


solution


this


problem,


boundaries


are


discretized


using


sixteen


nodes,


Dirichlet


conditions


are


specified


at all


nodal


points.


total


rate


heat


flow


across


outer


boundary


)=z,




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EHGZRH7JN_C3CG3W INGEST_TIME 2017-07-11T21:33:15Z PACKAGE AA00002125_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

7+( $33/,&$7,21 2) 7+( &203/(; 9$5,$%/( %281'$5< (/(0(17 0(7+2' 72 7+( 62/87,21 2) +($7 &21'8&7,21 352%/(06 ,1 08/7,3/< &211(&7(' '20$,16 $/$,1 -$&48(6 .$66$% $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7R -RKQ 0RQLTXH 3DXO DQG /LQGD

PAGE 3

$&.12:/('*(0(176 b ZRXOG OLNH WR WKDQN 'U &. +VLHK IRU VXJJHVWLQJ WKLV LQWHUHVWLQJ WRSLF IRU SURYLGLQJ VXSSRUW DQG UHFRPPHQGDWLRQV WKURXJKRXW WKLV UHVHDUFK DQG IRU KLV QHYHUHQGLQJ SDWLHQFH LQ UHDGLQJ DQG UHYLVLQJ WKLV PDQXVFULSW ZRXOG OLNH WR HVSHFLDOO\ WKDQN KLP IRU KLV JXLGDQFH WKURXJKRXW P\ JUDGXDWH VWXGLHV DQG IRU VSXUULQJ P\ LQWHUHVWV LQ WKH YDULRXV DVSHFWV RI FRPSXWDWLRQDO KHDW WUDQVIHU KDYH OHDUQHG PXFK DQG EHQHILWWHG LQ PDQ\ ZD\V DV 'U +VLHKfV VWXGHQW ZRXOG OLNH WR WKDQN 'U .XU]ZHJ IRU KLV YDOXDEOH WHDFKLQJ IRU SURYLGLQJ PH ZLWK P\ ILUVW HQJLQHHULQJ UHVHDUFK RSSRUWXQLW\ DQG IRU VHUYLQJ RQ P\ VXSHUYLVRU\ FRPPLWWHH ,W KDV EHHQ D SOHDVXUH WR KDYH KDG 'U 5RDQ DV D WHDFKHU DQG ZLVK WR WKDQN KLP IRU KLV HQFRXUDJHPHQW GXULQJ P\ JUDGXDWH VWXGLHV DQG IRU VHUYLQJ RQ P\ VXSHUYLVRU\ FRPPLWWHH ZRXOG DOVR OLNH WR WKDQN 'U Â’ LYHU DQG 'U *DWH U IRU JUDFLRXVO\ VHUYLQJ RQ P\ VXSHUYLVRU\ FRPPLWWHH 0U &< &KRL NLQGO\ SURYLGHG WKH 59%(0 GDWD UHSRUWHG LQ WKLV VWXG\ 7KLV UHVHDUFK ZDV SHUIRUPHG XQGHU WKH DXVSLFHV RI WKH 8QLWHG 6WDWHV 1DWLRQDO 6FLHQFH )RXQGDWLRQ JUDQW &%7 LOO

PAGE 4

7$%/( 2) &217(176 $&.12:/('*(0(176 /,67 2) 7$%/(6 /,67 2) ),*85(6 $%675$&7 &+$37(56 ,,1752'8&7,21 3DJH f f f YL f f 9, L[ ,, /,7(5$785( 5(9,(: ,,, 0$7+(0$7,&$/ %$6,6 2) 7+( &9%(0 ,1 &21'8&7,21 +($7 75$16)(5 ,9 &9%(0 ,1 '28%/< &211(&7(' '20$,16 'HULYDWLRQ RI WKH 1RGDO (TXDWLRQV 7RU WKH &9%(0 LQ 'RXEO\ &RQQHFWHG 'RPDLQV 0RGHOLQJ +HDW &RQGXFWLRQ %RXQGDU\ &RQGLWLRQV IRU WKH &9%(0 $VVHPEO\ RI WKH %RXQGDU\ (OHPHQW (TXDWLRQV 6ROXWLRQ RI WKH %RXQGDU\ (OHPHQW (TXDWLRQV &9%(0 $SSUR[LPDWLRQ IRU Mf DQG [S DW ,QWHULRU 3RLQWV 9 180(5,&$/ $33/,&$7,216 'HVFULSWLRQ RI WKH ([DPSOHV 5HVXOWV DQG 'LVFXVVLRQ 9, (;7(16,21 2) 7+( &9%(0 72 08/7,3/< &211(&7(' '20$,16 *HQHUDO &RQFHSWV IRU 'HYHORSPHQW RI WKH &9%(0 LQ 0XOWLSO\ &RQQHFWHG 'RPDLQ &RPSOH[ 3RWHQWLDOV DW 1RGDO 3RLQWV LQ D 7ULSO\ &RQQHFWHG 'RPDLQ L Y

PAGE 5

3DJH %DVLV IRU WKH )RUPXODWLRQ RI &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ 'HYHORSPHQW RI 1RGDO (TXDWLRQV IRU &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ 'HYHORSPHQW RI &RPSXWHU &RGHV IRU (YDOXDWLQJ 7HUPV LQ f 'HYHORSPHQW RI (TXDWLRQV IRU ,QWHULRU 3RLQWV 1XPHULFDO $SSOLFDWLRQ RI WKH &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ ([WHQVLRQ )URP WKH 7ULSO\ WR 0XOWLSO\ &RQQHFWHG 'RPDLQ 9,, &21&/86,216 $1' 5(&200(1'$7,216 5()(5(1&(6 $33(1',; $ ,03/,&,7 $1' (;3/,&,7 &9%(0 )2575$1 352*5$0 )25 '28%/< &211(&7(' '20$,16 % +<%5,' &9%(0 )2575$1 352*5$0 )25 '28%/< &211(&7(' '20$,16 & ,03/,&,7 $1' (;3/,&,7 &9%(0 )2575$1 352*5$0 )25 75,3/< &211(&7(' '20$,16 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

7DEOH /,67 2) 7$%/(6 3DJH ([SUHVVLRQ IRU FRHIILFLHQWV & $ % DQG ) LQ (TXDWLRQ f (TXDWLRQV IRU DQFA DQG FRGLQJ UXOHV &RHIILFLHQWV $r %r DQG *m f IRU WKH QRGDO HTXDWLRQV f DQG ff ,PSOLFLW H[SOLFLW DQG K\EULG VROXWLRQ PHWKRGV 5HVXOWV RI WKH &9%(0 VROXWLRQ IRU KHDW IORZ LQ D KROORZ VTXDUH (TXDWLRQV IRU (A DQG (A DQG FRGLQJ UXOHV 2} WR 5HVXOWV RI WKH YHULILFDWLRQ H[DPSOH IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ 9

PAGE 7

/,67 2) ),*85(6 )LVXUH 3DVH 7KH &9%(0 LQ D VLPSO\ FRQQHFWHG GRPDLQ 7KH OLQHDU EDVLV IXQFWLRQV 1r AVf DQG 1 f Vf (YDOXDWLRQ RI WKH DQJOH ]NOf ]NA %RXQGDU\ GLVFUHWL]DWLRQ XVHG WR GHULYH WKH &9%(0 LQ D GRXEO\ FRQQHFWHG GRPDLQ 3LFWRULDO UHSUHVHQWDWLRQ RI WKH OLPLWLQJ SURFHVV RI ]!]M DQG 6]r 1HZ QXPEHULQJ V\VWHP IRU ERXQGDU\ GLVFUHWL]DWLRQ IRU WKH &9%(0 LQ D GRXEO\ FRQQHFWHG GRPDLQ ([DFW SRWHQWLDOV DQG VWUHDPOLQHV IRU KHDW IORZ LQ D KROORZ VTXDUH UHJLRQ 7KH &9%(0 DSSOLHG LQ WKH VROXWLRQ RI WKUHH SUREOHPV LQ D FLUFXODU DQQXOXV 7HVW RI FRQYHUJHQFH RI WKH &9%(0 LQ WKH VROXWLRQ RI D SUREOHP LQ D FLUFXODU DQQXOXV &9%(0 DSSOLHG LQ WKH VROXWLRQ RI DQ LUUHJXODU GRPDLQ LPSRVHG ZLWK WKUHH GLIIHUHQW ERXQGDU\ FRQGLWLRQ FRPELQDWLRQV &RPSDULVRQ RI WKH UHVXOWV RI WKH &9%(0 WR 59%(0 DSSOLHG LQ WKH VROXWLRQ RI DQ DQQXOXV LPSRVHG ZLWK D 5RELQ FRQGLWLRQ &RPSDULVRQ RI WKUHH VROXWLRQ PHWKRGV &RPSDULVRQ RI WKH H[DFW DQG &9%(0 JHQHUDWHG LVRWKHUPV IRU WKH Z]f ]A SUREOHP %RXQGDU\ GLVFUHWL]DWLRQ XVHG WR GHULYH WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ )RUPDWLRQ RI GRXEOHYDOXHG VWUHDP IXQFWLRQV DW WKH FXWV f f YL

PAGE 8

)LFXUH 3DJH $ QRGDO SRLQW VKDUHG E\ WZR ERXQGDU\ HOHPHQWV 1HZ QXPEHULQJ V\VWHP IRU ERXQGDU\ GLVFUHWL]DWLRQ IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ 9HULILFDWLRQ H[DPSOH IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ $ PXOWLSO\ FRQQHFWHG GRPDLQ FRQWDLQLQJ IRXU KROHV Y L L L

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( $33/,&$7,21 2) 7+( &203/(; 9$5,$%/( %281'$5< (/(0(17 0(7+2' 72 7+( 62/87,21 2) +($7 &21'8&7,21 352%/(06 ,1 08/7,3/< &211(&7(' '20$,16 %\ $/$,1 -$&48(6 .$66$% $XJXVW &KDLUPDQ 'U &KXQJ +VLHK 0DMRU 'HSDUWPHQW 0HFKDQLFDO (QJLQHHULQJ 7KH FRPSOH[YDULDEOH ERXQGDU\ HOHPHQW PHWKRG &9%(0f LV H[WHQGHG WR WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV $ GRXEO\ FRQQHFWHG GRPDLQ LV WDNHQ IRU DQDO\VLV DQG D ILQLWH ZLGWK FXW LV LQWURGXFHG LQ WKH GRPDLQ /LQHDU EDVLV IXQFWLRQV DUH XVHG WR GHULYH WKH &9%(0 QRGDO HTXDWLRQV WKURXJK D OLPLWLQJ SURFHGXUH ,W ZDV IRXQG WKDW WKH VWUHDP IXQFWLRQV DORQJ WKH FXW GR QRW FDQFHO RXW EXW UHVXOW LQ DQ DGGLWLRQDO WHUP LQ WKH QRGDO HTXDWLRQV )RU WKH FRPSOH[ YDULDEOH PHWKRGV WKH &DXFK\ 5LHPDQQ FRQGLWLRQV PXVW EH XVHG WR JHQHUDWH DGGLWLRQDO HTXDWLRQV UHODWLQJ WKH VWUHDP IXQFWLRQV DQG KHDW IOX[HV ZKHQ 1HXPDQQ DQG 5RELQ FRQGLWLRQV DUH VSHFLILHG RQ WKH ERXQGDULHV 7KH &9%(0 HTXDWLRQV IRU LQWHULRU SRLQWV DUH DQG WKUHH PHWKRGV RI VROXWLRQ RI WKH L[ DOVR GHULYHG

PAGE 10

UHVXOWLQJ QRGDO HTXDWLRQV DUH GHVFULEHG 7KH DQDO\VLV LV VKRZQ WR EH UHGXFLEOH WR WKH DYDLODEOH VLPSO\ FRQQHFWHG IRUPXODWLRQ E\ LQWURGXFLQJ D QHZ QRGH QXPEHULQJ V\VWHP 7KH &9%(0 HTXDWLRQV DUH VXFFHVVIXOO\ WHVWHG E\ VROYLQJ H[DPSOH SUREOHPV ZLWK DYDLODEOH DQDO\WLFDO VROXWLRQV 'LULFKOHW 1HXPDQQ DQG 5RELQ ERXQGDU\ FRQGLWLRQV DUH WHVWHG XVLQJ WKH LPSOLFLW PHWKRG RI VROXWLRQ 7KH &9%(0 LV VKRZQ WR FRQYHUJH DV WKH ERXQGDU\ GLVFUHWL]DWLRQ VFKHPH LV UHILQHG $Q H[DPSOH FRPSDULQJ WKH &9%(0 WR WKH UHDO YDULDEOH ERXQGDU\ HOHPHQW PHWKRG LV DOVR SURYLGHG 7KH WKUHH VROXWLRQ PHWKRGV DUH FRPSDUHG DQG WKH HIILFDF\ RI WKHVH PHWKRGV LV GLVFXVVHG 7KH &9%(0 LV H[WHQGHG WR WULSO\ DQG JHQHUDOL]HG WR PXOWLSO\ FRQQHFWHG GRPDLQV E\ XVLQJ WKH GHYHORSPHQW IRU GRXEO\ FRQQHFWHG GRPDLQV 7KH PHFKDQLVP OHDGLQJ WR WKH IRUPDWLRQ RI GRXEOHYDOXHG VWUHDP IXQFWLRQV LV FULWLFDOO\ DQDO\]HG DQG DSSOLHG WR WKH IRUPXODWLRQ RI WKH VWUHDP IXQFWLRQV DORQJ PXOWLSOH FXWV *HQHUDO QRGDO HTXDWLRQV DUH DOVR GHULYHG IRU DQ H[WHQVLRQ RI WKH &9%(0 IRUPXODWLRQ [

PAGE 11

&+$37(5 ,1752'8&7,21 ,Q WKH PDWKHPDWLFDO DQDO\VLV RI SRWHQWLDO SUREOHPV RQH XVXDOO\ HQFRXQWHUV WKH VROXWLRQ RI RUGLQDU\ RU SDUWLDO GLIIHUHQWLDO HTXDWLRQV VXEMHFW WR DSSURSULDWH ERXQGDU\ FRQGLWLRQV )RU H[DPSH L Q DQ XQVWHDG\VWDWH KHDW FRQGXFWLRQ DQDO\VLV WKH WHPSHUDWXUH LV JRYHUQHG E\ D SDUDEROLF SDUWLDO GLIIHUHQWLDO HTXDWLRQ ZKHUHDV LQ D VWHDG\VWDWH KHDW FRQGXFWLRQ DQDO\VLV LQ PXOWLSOH GLPHQVLRQV WKH WHPSHUDWXUH LV JRYHUQHG E\ DQ HOOLSWLF SDUWLDO GLIIHUHQWLDO HTXDWLRQ 7KHVH HTXDWLRQV DUH QRW GLIILFXOW WR VROYH KRZHYHU LI WKH ERXQGDU\ FRQGLWLRQV DUH QRQOLQHDU RU LI WKH V\VWHP GRPDLQV DUH LUUHJXODU LQ VKDSH WKH SUREOHPV FDQQRW EH VROYHG H[DFWO\ 1XPHULFDO PHWKRGV PX VW WKHQ EH XVHG WR VROYH WKHP 7KH QXPHULFDO VROXWLRQ RI WKH KHDWFRQGXFWLRQ HTXDWLRQV FDQ EH FODVVLILHG LQWR WZR EURDG FDWHJRULHV QDPHO\ ZKROH GRPDLQ DSSURDFK DQG ERXQGDU\ DSSURDFK 7KH ZKROH GRPDLQ DSSURDFK FRQVLVWV RI WKH HYHU SRSXODU ILQLWH GLIIHUHQFH PHWKRGV )'0fAnADQG ILQLWH HOHPHQW PHWKRGV )(0fAnA 7KHVH PHWKRGV GLVFUHWL]H WKH ZKROH GRPDLQ LQWR D JULG RI SRLQWV 7KRVH SRLQWV RQ WKH ERXQGDULHV DUH WKXV DQDO\]HG WRJHWKHU ZLWK WKH LQWHULRU SRLQWV WR VROYH IRU WKH WHPSHUDWXUH 7KHUH DUH PDMRU GLIIHUHQFHV KRZHYHU LQ WKH ZD\V WKH

PAGE 12

ILQLWH GLIIHUHQFH DQG ILQLWH HOHPHQW HTXDWLRQV DUH GHULYHG LQ WKH VROXWLRQ ,Q WKH )'0 D ORFDO HQHUJ\ EDODQFH LV LQYRNHG DW WKH QRGDO SRLQWV LQ RUGHU WR GHULYH D VHW RI DOJHEUDLF HTXDWLRQV ZKHUHDV LQ WKH )(0 WKH DOJHEUDLF HTXDWLRQV DUH GHULYHG RQ WKH EDVLV RI VDWLVIDFWLRQ RI WKH JRYHUQLQJ SDUWLDO HTXDWLRQ LQ D JOREDO VHQVH ,W LV PRUH GLIILFXOW WR GHULYH WKH ILQLWH HOHPHQW HTXDWLRQV EXW WKH )(0 DUH PRUH FRQYHQLHQW WR XVH LQ WKH VROXWLRQ RI SUREOHPV LQ LUUHJXODU GRPDLQV 6XFK DQ DGYDQWDJH LV GLPLQLVKLQJ UHFHQWO\ KRZHYHU EHFDXVH RI WKH DGYDQFH RI JULG JHQHUDWLRQ WHFKQLTXHVr 7KH ERXQGDU\ DSSURDFK RI QXPHULFDO VROXWLRQ LV SULPDULO\ UHSUHVHQWHG E\ WKH ERXQGDU\ LQWHJUDO HTXDWLRQ PHWKRGV %,(0f ZKLFK DUH FRPPRQO\ NQRZQ DV WKH ERXQGDU\ HOHPHQW PHWKRGV %(0f ,Q WKHVH PHWKRGV WKH JRYHUQLQJ SDUWLDO GLIIHUHQWLDO HTXDWLRQV DUH XVHG LQ FRQMXQFWLRQ ZLWK WKH ERXQGDU\ FRQGLWLRQV WR GHULYH DQ LQWHJUDO HTXDWLRQ ZKLFK FRQVLVWV RI FRQWRXU DQG GRPDLQ LQWHJUDOV *UHDW VLPSOLFLW\ DULVHV LQ VLWXDWLRQV ZKHUH WKHUH DUH QR KHDW VRXUFHV DQG VLQNV LQ WKH GRPDLQ WKHQ WKH GRPDLQ LQWHJUDO YDQLVKHV DQG RQO\ FRQWRXU LQWHJUDOV UHPDLQ ,W IROORZV WKDW RQO\ WKH V\VWHP ERXQGDULHV QHHG EH GLVFUHWL]HG 'HDOLQJ VROHO\ ZLWK WKH ERXQGDU\ WKH ERXQGDU\ DSSURDFK LV DEOH WR VLPSOLI\ HOHPHQW JHQHUDWLRQ LW DOVR UHGXFHV WKH GLPHQVLRQ RI WKH GLVFUHWL]DWLRQ E\ RQH 7KH QXPEHU RI HTXDWLRQV VROYHG VLPXOWDQHRXVO\ LQ WKH ERXQGDU\ DSSURDFK LV

PAGE 13

OHVV WKDQ WKH ZKROH GRPDLQ DSSURDFK +RZHYHU WKH FRHIILFLHQW PDWULFHV JHQHUDWHG LQ WKH ERXQGDU\ DSSURDFK DUH XQV\PPHWULF DQG WKH PDWUL[ HOHPHQWV DUH QHDUO\ IXOO\ SRSXODWHG 7KHUH KDYH EHHQ D QXPEHU RI VWXGLHV GHYRWHG WR WKH FRPSDULVRQ RI WKH ERXQGDU\ DSSURDFK ZLWK WKH ZKROH GRPDLQ DSSURDFK 7KH\ DUH UHYLHZHG WRJHWKHU ZLWK RWKHUV LQ WKH QH[W FKDSWHU 7KHUH KDV EHHQ PXFK DWWHQWLRQ JLYHQ UHFHQWO\ WR WKH VWXGLHV RI WKH %(0 ,QGHHG WKH %(0 KDYH QRZ EHHQ GHYHORSHG WR D OHYHO WKDW LV FRPSHWLWLYH ZLWK WKH )'0 DQG )(0 +RZHYHU PRVW RI WKH VWXGLHV DUH FRQILQHG LQ D UHDO GRPDLQ DQDO\]HG ZLWK UHDO YDULDEOHV 7KLV WKHVLV LV FRQFHUQHG ZLWK D SDUWLFXODU IRUP RI WKH %(0 FDOOHG WKH FRPSOH[ YDULDEOH ERXQGDU\ HOHPHQW PHWKRGV &9%(0f ZKLFK IRUPXODWH WKH ERXQGDU\ LQWHJUDO HTXDWLRQ LQ D FRPSOH[ SODQH EDVHG RQ WKH &DXFK\ LQWHJUDO IRUPXOD 8VLQJ FRPSOH[ YDULDEOHV WKH PHWKRGV ZLOO EH XVHG WR VROYH WZRGLPHQVLRQDO KHDW FRQGXFWLRQ ILHOG SUREOHPV LQ VLPSO\ DQG PXOWLSO\ FRQQHFWHG GRPDLQV $V ZLOO EH VKRZQ ODWHU WKH FRPSOH[ PHWKRGV SRVVHVV DGYDQWDJHV QRW IRXQG LQ WKH UHDO YDULDEOH ERXQGDU\ HOHPHQW PHWKRGV 59%(0f )RU H[DPSOH WKH &9%(0 JHQHUDWH DSSUR[LPDWLQJ IXQFWLRQV WKDW DUH DQDO\WLF DQG WKXV VDWLVI\ WKH JRYHUQLQJ HTXDWLRQ WKURXJKRXW WKH V\VWHP GRPDLQ 0RUH LPSRUWDQW FRQWRXU LQWHJUDWLRQV DORQJ WKH V\VWHP ERXQGDU\ FDQ EH FDUULHG RXW H[DFWO\ ZKLOH LQ WKH 59%(0 VXFK LQWHJUDWLRQV FDQ RQO\ EH SHUIRUPHG QXPHULFDOO\

PAGE 14

(UURUV LQ WKH &9%(0 FDQ EH DVVHVVHG ZKLFK IXUWKHU DGGV WR WKH FRQILGHQFH LQ WKHVH PHWKRGV ,W LV WKH WKUXVW RI WKLV ZRUN WR H[WHQG WKH &9%(0 LQ VLPSO\ FRQQHFWHG GRPDLQV WR GRXEO\ FRQQHFWHG GRPDLQV 7KH PHWKRGV ZLOO EH XVHG WR VROYH VHYHUDO YHULILFDWLRQ H[DPSOHV RI KHDWFRQGXFWLRQ SUREOHPV LQ GRXEO\ FRQQHFWHG GRPDLQV 7KH &9%(0 ZLOO WKHQ EH H[WHQGHG WR WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV

PAGE 15

&+$37(5 ,, /,7(5$785( 5(9,(: %RXQGDU\ HOHPHQW PHWKRGV %(0f FDQ EH FDWHJRUL]HG DV UHDO YDULDEOH ERXQGDU\ HOHPHQW PHWKRGV 59%(0f DQG FRPSOH[ YDULDEOH ERXQGDU\ HOHPHQW PHWKRGV &9%(0f 7KHUH DUH WKUHH W\SHV RI 59%(0 IRUPXODWLRQV 'LUHFW 59%(0 DUH IRUPXODWHG XVLQJ *UHHQnV LGHQWLW\ ZLWK WKH GHSHQGHQW YDULDEOHV H[SUHVVHG LQ UHDO QXPEHUV WKDW DSSHDU LQ WKH LQWHJUDO HTXDWLRQV 6HPLGLUHFW 59%(0 IRUPXODWH WKH LQWHJUDO HTXDWLRQV LQ WHUPV RI XQNQRZQ IXQFWLRQV VXFK DV VWUHDP IXQFWLRQV LQ SRWHQWLDO IORZV WKHVH IXQFWLRQV DUH WKHQ UHODWHG WR WKH GHSHQGHQW YDULDEOHV ,QGLUHFW 59%(0 H[SUHVV WKH GHSHQGHQW YDULDEOHV LQ WHUPV RI LQWHJUDOV RI D GHQVLW\ GLVWULEXWLRQ RYHU WKH ERXQGDU\ RI WKH XQLW VLQJXODU VROXWLRQ WR WKH JRYHUQLQJ SDUWLDO GLIIHUHQWLDO HTXDWLRQ %\ FRQWUDVW WKH &9%(0 DUH IRUPXODWHG LQ WKH FRPSOH[ SODQH DQG DUH EDVHG RQ WKH &DXFK\ LQWHJUDO IRUPXOD 7KH XQNQRZQV DSSHDULQJ LQ WKH &9%(0 LQWHJUDO HTXDWLRQV DUH WKH SRWHQWLDO DQG VWUHDP IXQFWLRQ FRPSRQHQWV RI D FRPSOH[ YDULDEOH $V VXFK WKH &9%(0 FDQ EH FRQVLGHUHG D VHPLGLUHFW ERXQGDU\ LQWHJUDO PHWKRG IRUPXODWHG LQ WKH FRPSOH[ SODQH $OWKRXJK WKH RULJLQ RI WKH 59%(0 FDQ EH WUDFHG EDFN WR *UHHQ LQ A p %UHEELD LV ZLGHO\ FRQVLGHUHG WR EH UHVSRQVLEOH IRU SURPRWLQJ WKH 59%(0 DV D YLDEOH WRRO IRU

PAGE 16

QXPH ULFDO PRGH LQJ $ PDQ\ DXWKRUV KDYH FRQWULEXWHG WR WKH PDWXULW\ RI WKH WHFKQLTXH DQG WKH 59%(0 KDYH QRZ EHHQ ILUPO\ URRWHG DV D XVHIXO QXPHULFDO PHWKRG LQ WKH VROXWLRQ RI ILHOG SUREOHPV LQ VROLG PHFKDQLFV IOXLG L f L PHFKDQLFV DQG JHRPHFKDQLFV DPRQJ RWKHUV &UXVH KDV UHYLHZHG WKH FXUUHQW DGYDQFHV RI WKH 59%(0 LQ VROLG PHFKDQLFV FRPSDULQJ WKH VWDWH RI WKH DUW LQ WKH 59%(0 ZLWK WKH )(0 7KHUH KDV EHHQ UHODWLYHO\ OLWWOH DWWHQWLRQ JLYHQ WR WKH X VH RI WKH 59%(0 LQ WKH VROXWLRQ RI KHDW WUDQVIHU SUREOHPV 5L]]R DQG 6KLSS\ XVHG WKH 59%(0 WR VROYH WUDQVLHQW KHDW FRQGXFWLRQ SUREOHPV ZKLOH &KDQJ HW DO GHYHORSHG D FRQVWDQW HOHPHQW DQDO\VLV WR VROYH KHDW FRQGXFWLRQ SUREOHPV LQ DQLVRWURSLF PHGLD 7KH 59%(0 KDYH EHHQ DSSOLHG WR WKH VR XWLRQ RI FRQGXFWLRQ SUREOHPV ZLWK OLQHDU ERXQGDU\ FRQGLWLRQV FRQGLWLRQVf H f e f 'LULFKHW 1HXPDQQ DQG 5RE L Q DQG QRQOLQHDU ERXQGDU\ FRQGLWLRQV HJ UDGLDWLYH FRQGLWLRQVf 7KH\ KDYH DOVR EHHQ XVHG WR VROYH VWHDG\ DQG XQVWHDG\ SUREOHPV LQ WZR DQG WKUHH f GLPHQVLRQV 0RUH UHFHQWO\ WKH 59%(0 KDYH EHHQ XVHG LQ FRQMXQFWLRQ ZLWK RSWLPL]DWLRQ PHWKRGV LQ WKH GHVLJQ RI WKHUPDO V\VWHPV ,W LV RQO\ UHFHQWO\ WKDW FRPSOH[ YDULDEOHV KDYH EHHQ XVHG LQ WKH GHYHORSPHQW RI ERXQGDU\ HOHPHQW PHWKRGV +XQW DQG ,VDDFV ZHUH WKH ILUVW WR IRUPXODWH FRPSOH[ YDULDEOH %,(0 EDVHG RQ WKH &DXFK\ LQWHJUDO WKHRUHP 7KH\ XVHG D

PAGE 17

OLQHDU WULDO IXQFWLRQ EHWZHHQ ERXQGDU\ QRGHV WR LQYHVWLJDWH PXOWL]RQH DQLVRWURSLF WZRGLPHQVLRQDO IORZV LQ SRURXV PHGLD $QLVRWURSLF ]RQHV ZHUH WUDQVIRUPHG WR LVRWURSLF ]RQHV WKURXJK URWDWLRQ DQG VWUHWFKLQJ WUDQVIRUPDWLRQV DERXW SULQFLSDO D[HV LQ RUGHU WR REWDLQ D GRPDLQ FRQVLVWLQJ RI VLPSO\ FRQQHFWHG ]RQHV JRYHUQHG E\ WKH /DSODFH HTXDWLRQ 7KHVH ]RQHV ZHUH WKHQ FRXSOHG E\ LPSRVLQJ FRPSDWLELOLW\ FRQGLWLRQV DW WKH LQWHUIDFHV %\ PHDQV RI H[DPSOHV WKH\ ZHUH DEOH WR VKRZ UHVXOWV LQ FORVH DJUHHPHQW ZLWK DYDLODEOH DQDO\WLFDO DQG )(0 VR XWLRQV + URPDGND DQG *X\PRQ H[WHQGHG WKLV DQDO\VLV WR PRYLQJ ERXQGDU\ SUREOHPV WKHLU DQDO\VLV ZDV ODWHU JHQHUDOL]HG WR D IRUPDOLVP QRZ UHIHUUHG WR DV WKH FRPSOH[ YDULDEOH ERXQGDU\ HOHPHQW PHWKRG ,I %UHEELD FRXOG EH FUHGLWHG DV WKH SULQFLSDO SURPRWHU RI WKH 59%(0 WKHQ +URPDGND FRXOG EH FRQVLGHUHG DV WKH PDMRU FRQWULEXWRU WR WKH GHYHORSPHQW RI WKH &9%(0 ,W LV KLV LGHD RI H[SDQGLQJ WKH &9%(0 DSSUR[LPDWLRQ LQ D ILQLWH VHULHV RI DQDO\WLF IXQFWLRQV WKDW LQNHG WKH LQHDU DSSUR[LPDWLRQ RI WKH &9%(0 WR WKH DQDO\WLF IXQFWLRQ PHWKRG $)0f RI 9DQ 'HU 9HHUAp A +DYLQJ HVWDEOLVKHG WKH WKHRUHWLFDO EDVLV IRU WKH &9%(0 +URPDGND GHYHORSHG DQ DSSUR[LPDWLRQ WHFKQLTXH IRU D KHXULVWLF HUURU PLQLPL]DWLRQ +HUH WKURXJK FRQVLGHUDEOH FRPSXWHU HIIRUW DQ DQDO\WLF FRQWLQXDWLRQ FRQFHSW LQYRNHG IRU WKH &9%(0 DSSUR[LPDWLRQ $ GLVFUHWH QXPEHU RI ORFDWLRQV ZKHUH WKH LPSRVHG ERXQGDU\ FRQGLWLRQV ZHUH PHW E\ WKH &9%(0 VROXWLRQ

PAGE 18

ZLWKLQ D JLYHQ WROHUDQFHf ZHUH LGHQWLILHG DV WKH DSSUR[LPDWH ERXQGDU\ 7KH HUURU LQ WKH &9%(0 ZDV WKHQ UHGXFHG E\ FRQFHQWUDWLQJ DGGLWLRQDO QRGHV DORQJ UHJLRQV ZKHUH WKH DSSUR[LPDWH ERXQGDU\ GHYLDWHG IURP WKH NQRZQ V\VWHP ERXQGDU\ +URPDGND ZDV DEOH WR HVWDEOLVK WKH UHODWLYH HUURU ERXQGV IRU WKH &9%(0 +H DOVR VKRZHG WKDW LQ WKH OLPLW RI DQ LQILQLWHVPDO\ VPDOO GLVFUHWL]DWLRQ RI WKH ERXQGDU\ WKH &9%(0 VROXWLRQ DSSURDFKHG WKH H[DFW VROXWLRQ DV D OLPLW +URPDGND HW DOAfA VXFFHVVIXOO\ WHVWHG WKH &9%(0 LQ D YDULHW\ RI VWHDG\ WZRGLPHQVLRQDO IOXLG IORZ DQG KHDW WUDQVIHU SUREOHPV IRU ZKLFK DQDO\WLFDO VROXWLRQV ZHUH DYDLODEOH 7KH &9%(0 ZHUH IRXQG WR EH DFFXUDWH DQG WKH UHVXOWV FRQYHUJHG DV WKH QXPEHU RI WKH FROORFDWLRQ SRLQWV RQ WKH ERXQGDU\ ZDV LQFUHDVHG ,Q DGGLWLRQ WKH LQWHJUDWHG PHDVXUH RI WKH UHODWLYH HUURU ZDV VKRZQ WR EH DQ HIIHFWLYH DGDSWLYH VFKHPH XVHIXO LQ MXGLFLRXVO\ ORFDWLQJ DGGLWLRQDO QRGDO SRLQWV WR UHGXFH WKH RYHUDOO HUURU 7KH &9%(0 KDYH DOVR EHHQ DSSOLHG LQ WKH VROXWLRQ RI VWHDG\ JURXQGZDWHU IORZ DQG VRLO IUHH]LQJ SUREOHPV,Q VXFK DSSOLFDWLRQV WKH &9%(0 FDQ DFFRPRGDWH ODUJHVFDOH D \ LQKRPRJHQHRXV VXEGRPDLQV /DL r DSSOLHG WKH &9%(0 WR WKH VROXWLRQ RI GHQVLW\VWUDWLILHG LQYLVFLG IOXLGIORZ SUREOHPV +H PRGHOHG HDFK OD\HU LQ WKH IORZ DV D &9%(0 DSSUR[LPDWHG VXEGRPDLQ DQG XVHG D OLQHDUL]HG IRUP RI WKH %HUQRXOOL HTXDWLRQ WR LPSRVH LQWHUIDFLDO ERXQGDU\

PAGE 19

FRQGLWLRQV ,W ZDV IRXQG WKDW DQ LWHUDWLYH GLYLGHG PDWUL[ DSSURDFK WR WKH PXOWLOD\HU IORZ JDYH VDWLVIDFWRU\ UHVXOWV +RZHYHU WKH VROXWLRQ RI WKH JOREDO VHW RI HTXDWLRQV JHQHUDWHG IURP WKH DVVHPEO\ RI WKH VXEGRPDLQ HTXDWLRQV DQG ERXQGDU\ FRQGLWLRQV ZDV XQVDWLVIDFWRU\ 7KLV FDQ EH DVFULEHG WR WKH IDFW WKDW LQ WKH OLPLW RI D ODUJH QXPEHU RI VXEGRPDLQV WKH &9%(0 DSSURDFK WKH )(0 IRUPXODWLRQ ZLWK HDFK &9%(0 VXEGRPDLQ EHFRPLQJ DNLQ WR D )(0 VXSHUHOHPHQW 7KH &9%(0 OLWHUDWXUH LV JURZLQJ UHFHQWO\ 7KH LQWHUHVWHG UHDGHU LV UHIHUUHG WR 5HIHUHQFH IRU D GHWDLOHG UHYLHZ RI WKH OLWHUDWXUH DQG WR 5HIHUHQFHV DQG IRU D IXOO H[SRVLWLRQ RI WKH PHWKRGV ,W LV FOHDU WKDW WKH HQG UHVXOW RI ERWK WKH 59%(0 DQG &9%(0 LV D VHW RI DOJHEUDLF HTXDWLRQV $V KDV EHHQ SRLQWHG RXW LQ &KDSWHU WKH VHW RI HTXDWLRQV JHQHUDWHG E\ WKH ERXQGDU\ DSSURDFK LV LQKHUHQWO\ VPDOOHU WKDQ WKRVH JHQHUDWHG E\ WKH ZKROH GRPDLQ DSSURDFK +RZHYHU WKH VWUXFWXUHV RI WKHVH HTXDWLRQV DUH TXLWH GLIIHUHQW 7KH FRHIILFLHQW PDWUL[ RI WKH DOJHEUDLF HTXDWLRQV JHQHUDWHG LQ WKH GRPDLQ DSSURDFK DOWKRXJK ODUJH LV EDQGHG 7KLV DOORZV IRU HIILFLHQW VWRUDJH DQG VROXWLRQ DOJRULWKPV %\ FRQWUDVW WKH FRHIILFLHQW PDWUL[ RI WKH DOJHEUDLF HTXDWLRQV JHQHUDWHG LQ WKH ERXQGDU\ DSSURDFK LV VPDOOHU \HW LW LV IXOO\ SRSXODWHG DQG LV XQV\PPHWULF 7KLV LPSRVHV UHVWULFWLRQV LQ VWRUDJH DQG VROXWLRQ DOJRULWKPV %HWWHVV FRPSDUHG WKH QXPEHU RI RSHUDWLRQV UHTXLUHG WR VROYH SRWHQWLDO SUREOHPV

PAGE 20

LQ D VTXDUH DQG D FXELF GRPDLQ DQG UHSRUWHG WKDW WKH RSHUDWLRQ FRXQWV EHWZHHQ WKH )(0 DQG %(0 DFWXDOO\ IDYRU WKH )(0 XQOHVV ODUJH SUREOHPV DUH WDFNOHG 7KH PDMRU FRQWULEXWLRQV WR WKH RSHUDWLRQ FRXQWV FRQVLGHUHG LQ KLV VWXG\ ZHUH RULJLQDWHG IURP WKH QXPEHU RI VWRUDJH DQG VROXWLRQ SKDVH DULWKPHWLFV SHUIRUPHG +RZHYHU 0RXNHUMHH DQG 0RUDMDULD f SRLQWHG RXW WKDW IRU WKH VDPH OHYHO RI GLVFUHWL]DWLRQ WKH %(0 SURYLGH KLJKHU DFFXUDF\ WKDQ WKH )(0 7KLV OHG WKHP WR EHOLHYH WKDW WKH %(0 DUH FRPSXWDWLRQDOO\ PRUH HIILFLHQW WKDQ WKH )(0 D ILQGLQJ DOVR VXSSRUWHG E\ %DQHUMHH DQG %XWWHUILHOG 5HIHUHQFH ,7 VHFWLRQV DQG f /LJHWW DQG /LX DQG &UX]H ,Q DGGLWLRQ WKH OHYHO RI SUHVROXWLRQ SKDVH SUHSDUDWLRQ LQ GLVFUHWL]DWLRQ DQG HOHPHQW JHQHUDWLRQ DOVR VWURQJO\ IDYRUV WKH ERXQGDU\ HOHPHQW PHWKRGV 7R GDWH WKH &9%(0 KDYH EHHQ SULPDULO\ XVHG LQ WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ VLPSO\ FRQQHFWHG GRPDLQV LPSRVHG ZLWK 'LULFKOHW DQG 1HXPDQQ ERXQGDU\ FRQGLWLRQV 7KHUH LV D ODFN RI VWXGLHV GHDOLQJ ZLWK WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV ZKRVH ERXQGDULHV DUH LPSRVHG ZLWK 5RELQ FRQGLWLRQV 7KH &9%(0 GHYHORSHG LQ WKLV ZRUN WKXV ILOOV WKH SUDFWLFDO QHHG RI VROXWLRQ RI VXFK SUREOHPV

PAGE 21

&+$37(5 ,,, 0$7+(0$7,&$/ %$6,6 2) 7+( &9%(0 ,1 &21'8&7,21 +($7 75$16)(5 7KH WKHRUHWLFDO EDVLV RI WKH &9%(0 LV WKH &DXFK\ LQWHJUDO IRUPXOD f ZKLFK UHODWHV fWKH YDOXH RI D FRPSOH[ DQDO\WLF IXQFWLRQ OM DW D SRLQW ]4 LQVLGH D NFRQQHFWHG -RUGDQ GRPDLQ RI fWKH FRPSOH[ SODQH WR WKH LQWHJUDO RI WKDW IXQFWLRQ DORQJ WKH ERXQGDU\ 7 RI WKDW GRPDLQ VHH )LJXUH 7KH FRQWRXU LQWHJUDO LV SHUIRUPHG VR WKDW WKH GRPDLQ OLHV WR WKH OHIW RI WKH FRQWRXU RI LQWHJUDWLRQ 6WHDG\ VWDWH KHDW FRQGXFWLRQ SUREOHPV ZLWK FRQVWDQW WKHUPDO FRQGXFWLYLW\ DQG QR KHDW JHQHUDWLRQ DUH JRYHUQHG E\ WKH /DSODFH HTXDWLRQ 2QH FDQ WKXV FRQVWUXFW D FRPSOH[ SRWHQWLDO X ]f I! ]f L LS ]f ZKHQ VROYLQJ WKHVH SUREOHPV LQ D WZRGLPHQVLRQDO SODQH 7KH UHDO SDUW RI WKH SRWHQWLDO I!]f UHSUHVHQWLQJ WKH VWDWH YDULDEOH LV LGHQWLILHG DV WKH WHPSHUDWXUH ZKHUHDV WKH LPDJLQDU\ SDUW RI WKH SRWHQWLDO A]f UHSUHVHQWLQJ WKH VWUHDP IXQFWLRQ LV UHODWHG WR WKH WRWDO UDWH RI KHDW IORZ 7KH WZR DUH LQ WXUQ UHODWHG E\ WKH &DXFK\5LHPDQQ FRQGLWLRQV

PAGE 22

)LJXUH 7KH &9%(0 LQ D VLPSO\ FRQQHFWHG GRPDLQ

PAGE 23

G [ GWS G\ DQG GWS [ f ZKLFK \LHOG fWKH UHODWLRQ f ,Q f Q UHSUHVHQWV WKH RXWZDUG GUDZQ QRUPDO WR 7 DQG V LV D WDQJHQWLDO FRRUGLQDWH DORQJ I DJDLQ LQ WKH SRVLWLYH GLUHFWLRQ GHILQHG HDUOLHU 8VLQJ WKH )RXULHU ODZ RI KHDW FRQGXFWLRQ RQ WKH OHIWKDQG VLGH RI f HQDEOHV [S WR EH H[SUHVVHG DV DQ LQWHJUDO RI WKH KHDW IOX[ 7KLV SURYLGHV D OLQN EHWZHHQ WKH VWUHDP IXQFWLR Q DQG WKH KHDW IORZ 7KH &DXFK\5HLPDQQ UHODWLRQV DOVR LPSO\ WKDW WKH WHPSHUDWXUH DQG VWUHDP IXQFWLRQ IRUP DQ RUWKRJRQDO QHW LQ 4 8 I ,Q WKH &9%(0 DSSURDFK WR WKH VROXWLRQ RI D ERXQGDU\ LQWHJUDO HTXDWLRQ WZR EDVLF DSSUR[LPDWLRQV DUH PDGH LQ WKH &DXFK\ LQWHJUDO IRUPXOD DV IROORZV Lf 7KH ERXQGDU\ I LV GLVFUHWL]HG LQWR 1 ILQLWHHQJWK GHQRWHG E\ 7 7KH HQWLUH ERXQGDU\ LV WKH XQLRQ RI WKHVH VHJPHQWV LH Ua7 M O )LJXUH ,Q DQDORJ\ WR ILQLWH HOHPHQW WHUPLQRORJ\ WKH HQGSRLQWV RI WKHVH VHJPHQWV DUH FDOOHG QRGDO SRLQWV 6LQFH WKH GRPDLQ 4 LV VLPSO\ FRQQHFWHG LQ WKLV FKDSWHU ZKHQ M 1 WKHQ MO O DV VKRZQ LQ WKH ILJXUH

PAGE 24

L Lf7KH SRWHQWLDO X DORQJ WKH GLVFUHWL]HG ERXQGDU\ LV H[SDQGHG LQ DQ DQDO\WLF VHULHV 3RO\QRPLDOV FDQ EH XVHG 7RU WKLV H[SDQVLRQ 7KH RUGHU RI WKH &9%(0 DSSUR[LPDWLRQ WKXV KLQJHV RQ WKH GHJUHH R7 WKH SRO\QRPLDO XVHG ,Q WKLV FKDSWHU OLQHDU HOHPHQWV ZLOO EH XVHG WR GHYHORS WKH &9%(0 ,Q WKLV HIIRUW D SLHFHZLVH OLQHDU LQWHUSRODWLQJ SRO\QRPLDO ZLOO EH XVHG WR UHSUHVHQW WKH ERXQGDU\ DQG WKH FRPSOH[ SRWHQWLDO 5HIHUULQJ WR )LJXUH WKH OLQHDU EDVLV IXQFWLRQV 1 Vf DQG 1r Vf DUH f GHILQHG RQ HDFK HOHPHQW 7 DV V L f ,M Mr UM 6f e f L r U f f ZKHUH VO 8VLQJ WKHVH EDVLV IXQFWLRQV WKH ERXQGDU\ FRRUGLQDWH e LV H[SUHVVHG SDUDPHWULFDOO\ RQ I DV e}f 1MLVf ]M 1MAVf ]M O ^ V ` f 1RWLFH WKDW WKH SDUDPHWHU V LV UHODWHG WR WKH QRGDO SRLQWV RQ HDFK HOHPHQW 7 DV -

PAGE 25

1 f )LJXUH 7KH OLQHDU EDVLV IXQFWLRQV 1 Vf DQG 1 RVf f

PAGE 26

‹] =M =M r f U f 7KH GLIIHUHQWLDO FRRUGLQDWH Ge DORQJ WKH HOHPHQW 7 IROORZV IURP f DV GeVf ] L M =M` GV f ,Q D VLPLODU IDVKLRQ WKH FRPSOH[ SRWHQWLDO /L V H[SUHVVHG SDUDPHWULFDOO\ DV X > Vf@ 1 + Vf OM 1 TVf OM M L M ML f +H XVLQJ +URPDGNDfV QRWDWLRQ X! f ] ff L ?S ] ff M! f L ?c! ‘ LV M M WKH VSHFLILHG FRPSOH[ SRWHQWLDO DW WKH QRGDO SRLQW ] e 7 ,QWURGXFLQJ f f DQG f L QWR WKH &DXFK\ LQWHJUDO IRUPXOD HTXDWLRQ f OHDGV WR D ILUVWRUGHU DSSUR[LPDWLRQ WR Z]Ff GHQRWHG E\ Z]4f 1 ULZ]f M O 1MI VfAM 1MVfAMO >1M LVf ] 1 M Vf ] M @ ] R=-O =MfGV` f 7KHQ W!\ H[SDQGLQJ WKH WHUPV L Q WKH LQWHJUDQG DQG UHDUUDQJLQJ e]f FDQ EH H[SUHVVHG DV WKH VXP RI 1 ILUVW RUGHU FRPSOH[ HOHPHQW FRQWULEXWLRQV DV Z]f W e 7 $ M=Rf f

PAGE 27

/ ZKHUH f f§ f ]Ra ]MU ]M L ` ZM pML G f f 7KH LQWHJUDO LQ f FDQ EH SHUIRUPHG WR \LHOG O M]Rf ZM OBZMf AMZM O ZMABMAOQ f7M DQG XSRQ LQWURGXFLQJ IURP f ,M2Rf 2M AMf AM O ]Rf]Mf f X M ]R f§ ] M [ f ]ML]M! ,QO Lr 2nf 1RZ LI OM M LV IXOO\ VSHFLILHG HDFK QRGH ] WKHQ G HTXDWLRQV f WR f DUH VXIILFLHQW WR HVWLPDWH X ]4f +RZHYHU LQ UHJXODU KHDW FRQGXFWLRQ SUREOHPV ERXQGDU\ FRQGLWLRQV VSHFLI\ DQ\ RU QRQH RI WKHP H[SOLFLWO\ $ ERXQGDU\ LQWHJUDO SUREOHP LV WKXV IRUPHG E\ XVLQJ HTXDWLRQ f WR JHQHUDWH QRGDO HTXDWLRQV DW HDFK SRLQW ] f WR VR IRU WKH XQNQRZQ S DQGRU US f 7KH &DXFK\ LQWHJUDO IRUPXD V D UH DWLRQ IRU HYDOXDWLQJ WKH DQDO\WLF IXQFWLRQ X DW DQ\ LQWHULRU SRLQW LW LV VLQJXODU ZKHQ ] R YDO XH RI WKH L QWHJUDO ] U G H[LVWV +RZHYH U WKH SULQFLSDO DQG FDQ EH HYDOXDWHG DQDO\WLFDOO\ 7ZR PHWKRGV FDQ EH XVHG +XQW DQG ,VDDFV

PAGE 28

7 DQG +URPDGND DQG *X\PRQ UHSODFH WKH ERXQGDU\ DURXQG QRGH M ZLWK D VPDOO FLUFOH RI UDGLXV H DQG HYDOXDWH Z]f LQ WKH OLPLW DV Hr $QRWKHU WHFKQLTXH DOVR XVHG E\ +URPDGND DQG 4 *X\PRQ LV WR OHW ]4 DSSURDFK WKH ERXQGDU\ QRGH ]A IURP WKH LQWHULRU WKDW LV RQH WDNHV WKH OLPLW Z] f OLP BX]f 7KH ODWWHU DSSURDFK ZLOO QRZ EH XVHG WR ]r =N GHYHORS WKH &9%(0 QRGDO HTXDWLRQV 1RWLFH WKDW WKH WHUPV ZKLFK OHDG WR WKH VLQJXODULWLHV LQ HTXDWLRQ f DV WKH QRGDO SRLQW ]A LV DSSURDFKHG IURP WKH LQWHULRU DUH FRQWULEXWHG E\ WKH WZR DGMDFHQW HOHPHQWV DQG UrNBA $V ] DSSURDFKHV ]A LQ WKH DUJXPHQWV RI WKH ORJDULWKPLF WHUP LQ f YDQLVKHV RU HTXDOV XQLW\ WKHUHE\ OHDGLQJ WR WKH VLQJXODULWLHV LQ WKH LQWHJUDOV ,NBA DQG A )RUWXQDWHO\ WKHVH VLQJXODU WHUPV FDQ EH PDQLSXODWHG WR FDQFHO HDFK RWKHU RXW :LWK WKLV LQ PLQG WKH FRQWRXU LQWHJUDO LQ HTXDWLRQ f LV ILUVW UHFDVW DV Z]f K e 9]r! ?B ,NO]rf,N ]Rf f M N 7KHQ WKH OLPLW LV DSSOLHG DV 7  Z]Nf L P B 7 L =R ]N Z]f M O MNN M]N! OLP ,NO]RfI OLUQ B,L =T} ] N ]f N f

PAGE 29

)LQDOO\ f LV LQWURGXFHG LQWR f DQG DIWHU PXFK PDQLSXODWLRQ WKLV \LHOGV WW Z]Nf N Q NOfaN N ] N 1 /e L M O MNNO MO]N]MfZM]N ] M =Mf =M Of@OQLAsLA_f M N (TXDWLRQ f LV XVHIXO LQ GHULYLQJ X LQ GRXEO\ FRQQHFWHG GRPDLQV DV ZLOO EH VKRZQ LQ WKH QH[W FKDSWHU )RU WKH WLPH EHLQJ L W LV ZH WR DGG WKDW +URPDGND VWXGLHG WKH H[LVWHQFH FRQWLQXLW\ DQG FRQYH UJHQFH RI WK L V DSSUR[LPDWLRQ DQG SUHVHQWHG H[DPSOHV 3HUIRUPLQJ FRPSOH[ DOJHEUD LQ f \LHOGV D SDLU RI HTXDWLRQV DW HDFK QRGDO SRLQW ] N RQ I 7KHVH QRGDO HTXDWLRQV RQH IRU DQG RQH IRU USA FDQ EH XVHG DORQJ ZLWK WKH ERXQGDU\ FRQGLWLRQV WR JHQHUDWH D RI $ $ VLPXOWDQHRXV HTXDWLRQV WR VROYH IRU WKH XQNQRZQV A DQG USX N ,W LV WKH LQKHUHQW FRXSOLQJ RI WKH QRGDO YDULDEOHV LQ f WKDW HDGV WR D QHDUO\ IXOO\ SRSXODWHG DQG XQV\PPHWULF FRHIILFLHQW PDWUL[ GLVFXVVHG L Q WKH OLWHUDWXUH UHYLHZ 2QFH I! DQG US KDYH EHHQ IXOO\ GHWHUPLQHG DW WKH ERXQGDU\ QRGHV WKH WHPSHUDWXUH FDQ EH HYDOXDWHG E\ HTXDWLRQ f IRU DQ\ SRLQW ]ReXU WKDW LV QRW D ERXQGDU\ QRGH 7KH WHPSHUDWXUH LV WKHQ IXOO\ GHWHUPLQHG DQ\ZKHUH LQ 287 E\ WKH OLQHDU &9%(0

PAGE 30

,Q FORVLQJ WKLV FKDSWHU VRPH FRPPHQWV DUH LQ RUGHU WR H[DPLQH WKH WHUPV LQ f ,W LV FOHDU WKDW f LV D FRPSOH[ H[SDQVLRQ RI WKH SRWHQWLDO OM LQ WHUPV RI QDWXUDO ORJDULWKPV DQG FRPSOH[ SRO\QRPLDOV 7KLV H[SDQVLRQ LV DQDO\WLF DQG VDWLVILHV WKH /DSODFH HTXDWLRQ WKURXJKRXW 4XU 7KH ORJDULWKPV XQGHU WKH VXPPDWLRQ FDQ EH H[SUHVVHG XVLQJ FRPSOH[ YDULDEOHV DV L]ML!]M]Nf LVf ZKHUH G UHIHUV WR GLVWDQFH DQG UHIHUV WR DQJOH 7KH\ DUH LQ WXUQ UHODWHG WR WKH QRGDOSRLQW ORFDWLRQV DV f f f +HUH WKH SULQFLSDO YDOXH RI f§UUf LV WR EH WDNHQ VHH )LJXUH +RZHYHU FRQIXVLRQ PD\ DULVH LQ HYDOXDWLQJ WKH ORJDULWKP RXWVLGH WKH VXPPDWLRQ LQ f )RU WKLV RXWVLGH RJDULWKP L r]NOf]NO]Nff

PAGE 31

ZKHUH G]NLf]Nf .[NL[Nf\NL\NfL f G ]NL f]N! L[NL[Nf \NLANf@ af DQG WKH DQJOH LV UHODWHG WR WKH LQWHULRU DQJOH A DV A]NOf]NO]Nf raHLQW f DV LOOXVWUDWHG LQ )LJXUH 7KLV QRWDWLRQ ZLOO EH XVHG WKURXJKRXW WKLV ZRUN 7KH GHYHORSPHQW RI WKH &9%(0 LQ VLPSO\ FRQQHFWHG GRPDLQV LV QRZ FRPSOHWH ([WHQVLRQ RI WKH &9%(0 WR GRXEO\ FRQQHFWHG GRPDLQV IROORZV LQ WKH QH[W FKDSWHU

PAGE 32

)LJXUH (YDOXDWLRQ RI WKH DQJOH ]MA =-B L f ]Nf r

PAGE 33

&+$37(5 ,9 &9%(0 ,1 '28%/< &211(&7(' '20$,16 7KH &DXFK\ LQWHJUDO IRUPXOD FDQ EH DSSOLHG WR WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ D GRXEO\ FRQQHFWHG GRPDLQ E\ LQWURGXFLQJ D FXW FRQQHFWLQJ WKH LQQHU DQG RXWHU ERXQGDULHV RI WKH GRPDLQ +RZHYHU WKH VWUHDP IXQFWLRQ FRPSRQHQW RI WKH FRPSOH[ SRWHQWLDO X LV GRXEOH YDOXHG DORQJ WKH OLQH RI WKH FXW DQG WKLV PXVW EH DFFRXQWHG IRU LQ WKH DQDO\VLVnAfA )XUWKHU WKH &9%(0 DQDO\VLV LQ D GRXEO\ FRQQHFWHG GRPDLQ PXVW EH Lf UHGXFLEOH WR WKDW LQ D VLPSO\ FRQQHFWHG GRPDLQ LI WKH LQQHU ERXQGDU\ YDQLVKHV DQG L Lf H[WHQGDEOH WR WKDW LQ D PXOWLSO\ FRQQHFWHG GRPDLQ LI PRUH KROHV DUH DGGHG WR WKH GRPDLQ :LWK WKHVH VHUYLQJ DV JXLGHOLQHV WKH &9%(0 LQ GRXEO\ FRQQHFWHG GRPDLQV DUH GHYHORSHG LQ WKLV FKDSWHU 'HULYDWLRQ RI WKH 1RGDO (TXDWLRQV IRU WKH &9%(0 LQ 'RXEO\ &RQQHFWHG 'RPDLQV 7KH GLVFUHWL]DWLRQ VFKHPH LOOXVWUDWHG LQ )LJXUH LV XVHIXO LQ GHYHORSLQJ WKH &9%(0 LQ GRXEO\ FRQQHFWHG GRPDLQV $ FXW LV PDGH LQ WKH GRPDLQ 4 DQG D GLVFUHWH FORVHG FRQWRXU LV GHILQHG VXFK WKDW U UR 8 8 7 A 8 +HUH WKH RXWHU ERXQGDU\ UR LV GLVFUHWL]HG LQWR 0 HOHPHQWV DQG IROORZLQJ WKH SUDFWLFH RI &KDSWHU ,,, WKHVH HOHPHQWV DUH

PAGE 34

)LJXUH %RXQGDU\ GLVFUHWL]DWLRQ XVHG WR GHULYH WKH &9%(0 LQ D GRXEO\ FRQQHFWHG GRPDLQ

PAGE 35

QXPEHUHG LQ D FRXQWHUFORFNZLVH GLUHFWLRQ 7KH LQQHU ERXQGDU\ LV GLVFUHWL]HG LQWR 10f HOHPHQWV ZKLFK DUH QXPEHUHG LQ D FORFNZLVH GLUHFWLRQ 7KH FXW LV VKDUHG E\ WZR HOHPHQWV DQG LQ GLUHFWLRQ )RU WKH FRQYHQLHQFH RI ODWHU DQDO\VLV WKHVH WZR HOHPHQWV DUH VHSDUDWHG E\ D VPDOO JDS ] [ L 6\ ZKLFK ZLOO HYHQWXDOO\ EH WDNHQ WR EH ]HUR LQ D OLPLWLQJ SURFHVV LQ RUGHU WR FORVH WKH JDS 7KLV DSSURDFK SHUPLWV WKH FRQVLGHUDWLRQ RI GRXEOH YDOXHV IRU WKH FRPSOH[ SRWHQWLDOV DORQJ WKH OLQH RI WKH FXW 8VLQJ f DQG WKH )RXULHU ODZ RI FRQGXFWLRQ DQG UHFRJQL]LQJ WKDW WKH VWUHDP IXQFWLRQV DW SRLQWV DQG 0 DQG DW SRLQWV 0O DQG 1 DUH GRXEOH YDOXHG WKH FRPSOH[ SRWHQWLDOV DW WKHVH SRLQWV DUH UHODWHG WR HDFK RWKHU E\ WKH\ DUH HTXDO LQ OHQJWK EXW RSSRVLWH M ]\f LWI f f +HUH LV UHODWHG WR WKH WRWDO KHDW IORZ UDWH SHU XQLW WKHUPDO FRQGXFWLYLW\ 4Nf DFURVV HLWKHU RI WKH V\VWHP ERXQGDULHV I RU E\ 0O N f ,Q f WKH VXEVFULSWV IRU 4 VHTXHQWLDOO\ UHIHU WR WKH

PAGE 36

HQG DQG VWDUWLQJSRLQW QRGDO ORFDWLRQV KHQFH 4 0 GHQRWHV WKH WRWDO UDWH RI KHDW IORZ DFURVV WKH RXWHU ERXQGDU\ WKDW LV O\LQJ IURP SRLQW WR SRLQW 0 7DNLQJ WKH QRUPDO Q WR EH SRVLWLYH SRLQWLQJ RXWZDUG DQG FRQVLGHULQJ D EDVLF SUREOHP LQ ZKLFK QR KHDW LV JHQHUDWHG ZLWKLQ 4 4 0 DQG PXVW EH RSSRVLWH LQ VLJQ DQG WKHLU PDJQLWXGHV DUH UHODWHG E\ WKH HQHUJ\ FRQVHUYDWLRQ SULQFLSOH DV 4 0 4 1 0O ,Q JHQHUDO WKH YDOXH RI WKLV 4 LV QRW NQRZQ XQOHVV WKH ERXQGDULHV ZLWK WKH IOX[ L V IXO O\ VSHF LI L HG 7KHQ L V DQ XQNQRZQ WR NQRZQ f V DQG [S V ,Q WKH RYHU HLWKHU RI WKH EH GHWHUPLQHG DORQJ WULYLDO FDVH RI D XQLIRUP WHPSH UDWX UH GRPDLQ HQH RVHG E\ LQVXDWHG ERXQGDULHV WKHQ WKH 4V YDQLVK D SULRUL DQG E\ GHILQLWLRQ VR GRHV 7KH GRXEO\ FRQQHFWHG GRPDLQ EHFRPHV VLPSO\ FRQQHFWHG LI WKH LQQHU ERXQGDU\ YDQLVKHV DQG WKLV EHFRPHV D VSHFLDO FDVH RI WKH DQDO\VLV WKDW IROORZV 7KH OLQHDU ERXQGDU\ HOHPHQW PHWKRG LV QRZ GHYHORSHG RQ WKH EDVLV RI WKH GRXEO\ FRQQHFWHG GRPDLQ VKRZQ LQ )LJXUH )ROORZLQJ WKH OLPLWLQJ SURFHVV GHVFULEHG LQ &KDSWHU ,,, WKH ERXQGDU\ QRGH DW ] N LV DSSURDFKHG IURP WKH LQWHULRU )RU D GRXEO\ FRQQHFWHG GRPDLQ LW LV DOVR QHFHVVDU\ WR WDNH WKH JDS ] DW WKH FXW WR ]HUR LQ WKH OLPLW 7KXV IROORZLQJ f WKH OLQHDU &9%(0 DSSUR[LPDWLRQ IRU WKH FRPSOH[ SRWHQWLDO DW WKH ERXQGDU\ QRGH ]A LV JLYHQ E\ WKH OLPLW

PAGE 37

LP [ \r 1LOfrL 1L:fL O >1M A Vf]M 1M Vf]M @ ] f (TXDWLRQ f FDQ EH UHFDVW DV L P [ \r f +HUH WKH OLPLW LQVLGH WKH SDUHQWKHVHV LV UHFRJQL]HG WR EH WKDW ULZ]Af SUHYLRXVO\ GHULYHG LQ f ,Q IDFW WKLV WLPH WHUPV IRU M N DQG M N LQ WKH VXPPDWLRQ LQ f FDQ EH UHFRYHUHG DQG WKH LQQHU OLPLW H[SUHVVHG DV D VXPPDWLRQ RI +M]Af DV 1RWLFH WKDW WKH M N DQG M NO WHUPV KDYH LQ WKH VXPPDWLRQ EHFDXVH QRZ EHHQ f f LQFXGHG f 7KH RXWHU OLPLW LQ f LV WKDW IRU WKH RXWHU OLPLW SURF +RZHYHU WKH FRPSOH[ SRWHQWLDOV FDQFHO RXW EXW DUH UHODWHG DV LQ DSSOLHG QH[W DQG QRWLFH HVV =0f= DQG =0f= 1 f DW WKHVH SRLQWV GR QRW f DQG f )URP WKLV

PAGE 38

OLQH R UHDVRQLQJ D JHQHUDO H[SUHVVLRQ IRU ]Af FDQ EH GHULYHG DQG WKLV ZLOO EH EDVHG RQ WKH JHQHUDOL]DWLRQ RI WKH GHULYDWLRQ IRU Z]Af ZKLFK IROORZV )RU WKH QRGDO SRLQW RQH PD\ XVH f DQG f WR ZU L WH Q L XM ]MAf LP [ \r f 6LQFH ]A ]AI [f§ L\ DQG ]A [ f§ L \ LQ )LJXUH WHUPV RI M O0 f§ 0 DQG 1 PXVW EH VRUWHG RXW IURP WKH VXPPDWLRQ WW L /]Af LP ; \r + ]Lf KPL]Lf KP]Lf 1 KQ]Lf M O MAO 0 0 1 +M=Of f 7KHQ E\ DSSO\LQJ WKH OLPLW DV LQGLFDWHG DQG XVLQJ f DQG WKH DW LRQV ] DQG A f WKHUH LV GHULYHG 7  : =Af ZAOQ ] ] 1 ] 0O ] + MO 0O 01 L L>OQ ]}m f§] 0O =} + f§ = 0O 0 =K f§= 1 0O 1

PAGE 39

)LJXUH 3LFWRULDO UHSUHVHQWDWLRQ RI WKH OLPLWLQJ SURFHVV RI ]fr] DQG ]}

PAGE 40

ZKHUH WKH QDWXUDO ORJDULWKP WHUP LQVLGH WKH EUDFNHW FRPHV IURP WKH LQ WKH +ABA]Af WHUP LQ WKH VXPPDWLRQ 7KLV LV UHODWHG WR E\ f WKXV SURGXFLQJ WKLV H[WUD L WHUP ,W LV QRWHG WKDW EHFDXVH RI WKH ZD\ f LV GHULYHG Z]M\_f LV VHW HTXDO WR M]Af DQG LV VHW HTXDO WR Z]MAf LQ WKH VXPPDWLRQ LQ WKLV HTXDWLRQ $Q LGHQWLFDO SURFHGXUH FDQ EH XVHG WR GHULYH WW L X ]M\MBMB f DQG WKHQ D JHQHUDO HTXDWLRQ FDQ EH GHGXFHG DV LUL N ] N 1 M O MAN N01 (TXDWLRQ f FDQ EH XVHG IRU DQ\ SRLQW RQ WKH ERXQGDULHV RI WKH GRPDLQ LQ )LJXUH DV ORQJ DV WKH IROORZLQJ UXOHV DUH DGRSWHG Lf :KHQ N O NO 0O ZKHQ N 0O N 1 LLf 6LQJXODULWLHV LQ WKH ORJDULWKPLF WHUPV FDQ EH FDQFHOOHG RXW LQ WKH OLPLWLQJ SURFHGXUH )RU H[DPSOH ZKHQ N O WKH WHUP LQ WKH EUDFNHWV LQ f EHFRPHV ZKHUH WKH OQ]Af§ ]Af FDQFHOV RXW OHDGLQJ WR WKH WHUP LQ EUDFNHWV LQ f

PAGE 41

LLLf5XOH Lf DERYH DOVR DSSOLHV WR WKH VXPPDWLRQ )RU H[DPSOH ZKHQ N O N 0 WKHQ VKRXOG EH H[FOXGHG IURP WKH VXPPDWLRQ LQ f LYf ,Q WKH VXPPDWLRQ RI WKH WHUPV + ]Af LQ f Z]0f YYf LV VHW HTXDO WR Z]Af DQG Z] 0 O f LV VHW HTXDO WR Z]MAf IRU WKH UHDVRQV SUHYLRXVO\ H[SODLQHG VHH WKH SDUDJUDSK IROORZLQJ f 6LQFH !]Af LV UHODWHG WR Z]Af DQG !]A Af LV UHODWHG Z]0f DQG WR Z]Af E\ HTXDWLRQV f DQG f WKH Z]MAf HTXDWLRQV DUH UHGXQGDQW 7KH &9%(0 GHYHORSHG DERYH DUH VWULFWO\ YDOLG IRU WKH GRXEO\ FRQQHFWHG GRPDLQ VKRZQ LQ )LJXUH ,Q RUGHU WR GHYHORS D JHQHUDO PHWKRG WKDW LV UHGXFLEOH WR WKH VLPSO\ FRQQHFWHG GRPDLQ DQDO\]HG HDUOLHU D QHZ QXPEHULQJ V\VWH P LV LQWURGXFHG DV VKRZQ LQ )LJXUH ,Q WKH QHZ V\VWHP WKH FXW LV HIIHFWLYHO\ HOLPLQDWHG LQ WKH GRXEO\ FRQQHFWHG GRPDLQ 7KH SRLQW 0 QRZ WDNHV WKH SODFH RI WKH ROG SRLQW 0 f§ DQG WKH SRLQW 1 WDNHV WKH SODFH RI WKH ROG SRLQW 1f§ )LJXUH f :LWK WKHVH FKDQJHV WKH QHZ QRGDO HTXDWLRQ FDQ WKHQ EH GHULYHG DV ULZ]Nf ^Z N n 9]N N ] a] N N 1 > ML2 N ]Mf rI]N ] M f M O M M OrN M @ IW ] N N LA$N f

PAGE 42

)LJXUH 1HZ QXPEHULQJ V\VWHP IRU ERXQGDU\ GLVFUHWL]DWLRQ IRU WKH &9%(0 LQ D GRXEO\ FRQQHFWHG GRPDLQ

PAGE 43

ZKHUH GHSHQGLQJ RQ WKH ORFDWLRQ RI WKH QRGDO SRLQW ]N WKH WHUP $N LV JL YHQ E\ RQH RI WKH IROORZLQJ H[SUHVVLRQV $ NNAO0 0O 1 ]Na]0[ =K] ==0 N ] 0 ] N 0 0O ] N ] N N 1 0O 1 fOQ 0O ]N 1 ] N f DQG IRU WKH VSHFLDO NfV $ > Q 0O aa]O =0a= =-A f§] ] 0O ]-OQ =0a= ] 1 f $ 0 >OQ 0Oa=0 ==0 ] 0 ] 1 ] 0O 1 fLQ =0a= ] 1 0 -n f $ 0O 0Oa=0 =a=0 fr ==0? 0 ] 0O QA ] 1 ] ] 0LOf =0nf $ 1 =} K f§= A“ 0O a =L f§] 1 f 1RWLFH WKDW HTXDWLRQV f WR f DUH YDOLG IRU D GRXEO\ FRQQHFWHG GRPDLQ LQ WKH QHZ QXPEHULQJ V\VWHP LQ )LJXUH ,Q WKH QHZ QXPEHULQJ V\VWHP ZKHQ N O NO 0 DQG ZKHQ N 0O N 1 ,W L LQIRUPDWLYH WR FRPSDUH HTXDWLRQV f DQG f &OHDUO\ WKH ULJKWKDQG VLGH RI f LV H[DFWO\ WKH EUDFHG WHUP LQ f $ UHODWLRQ FDQ EH HVWDEOLVKHG DV 7L>Z]Nf@' UL>Z]Nf@V Ln,n$N f

PAGE 44

ZKHUH WKH VXEVFULSWV DQG 6 UHIHU WR WKH QRGDO HTXDWLRQV IRU GRXEO\ DQG VLPSO\ FRQQHFWHG GRPDLQV UHVSHFWLYHO\ 7KH WHUP LA$A SOD\V WKH UROH RI D SHUWXUEDWLRQ DQG DFFRXQWV IRU WKH GRXEOH YDOXH RI OM DORQJ WKH FXW )RU VLPSO\ FRQQHFWHG GRPDLQV VXFK D FXW GRHV QRW H[LVW WKH VXPPDWLRQ RI M LQ WKH EUDFHV WHUPLQDWHV DW M 0 DQG WKH LA$A WHUP GURSV RXW (TXDWLRQ f LV WKXV UHGXFLEOH WR WKH VLPSO\ FRQQHFWHG GRPDLQ HTXDWLRQ f ,W LV QRWHG WKDW IRU WKH GHYHORSPHQW WR IROORZ LQ WKH UHPDLQGHU RI WKLV FKDSWHU DOO QRGH QXPEHULQJ ZLOO UHIHU WR WKH QHZ V\VWHP LQ )LJXUH XQOHVV QRWHG RWKHUZLVH ,W LV QRZ SRVVLEOH WR GHULYH WKH HTXDWLRQV UHODWLQJ WKH $ $ HVWLPDWHG WHPSHUDWXUH DQG VWUHDP IXQFWLRQ S]Af DQG LS ] Af WR WKH VSHFLILHG WHPSHUDWXUH DQG VWUHDP IXQFWLRQ SA DQG LSA 7KH ILUVW WHUP RQ WKH ULJKWKDQG VLGH RI f DVVRFLDWHG ZLWK WKH VLQJOH YDOXHG QRGDO HTXDWLRQV LV H[SUHVVHG DV 1 M O M MOrN 2M O2NB=Mf :M]NB=M OfA&L'f f +HUH G f DQG f KDYH EHHQ JLYHQ LQ f WR f 7KH FRQVWDQWV & DQG DUH JLYHQ LQ 7DEOH

PAGE 45

7DEOH ([SUHVVLRQV 7RU FRHIILFLHQWV & $ % DQG ) LQ (TXDWLRQ f & ZKHUH $ % ) $[ML[Mf %\ML\Mf@) >% [MLf§[ Mf B$\MLB\MfL) Q G ] Mf ] G]M]Nf ] ]f M f M N [ML ;Mf \ML \M!

PAGE 46

1H[W WKH WHUP $A LV GHFRPSRVHG DV f 7KH FRPSRQHQWV RI $A FDQ EH GHULYHG E\ H[SDQGLQJ f WR f LQWR WKHLU UHDO DQG LPDJLQDU\ FRPSRQHQWV DQG ZLWK WKH KHOS RI WKH H[SOLFLW H[SUHVVLRQV IRU $A LQ f JLYLQJ $Na ((Nf§&1N[Nf§[Qf'1N\N\1f&0N;N;0f'0N\NB\0fA f $AN A)N f§&1 N \N\1f B'1 N [NB[1f &0 N \NB\0f '0 N ;N;0fA f ZKHUH WKH FRHIILFLHQWV &fV 'fV ( DQG ) DUH OLVWHG LQ 7DEOH &RGLQJ UXOHV IRU WKH VXEVFULSWV HQFRXQWHUHG LQ WKH JHQHUDO H[SUHVVLRQV RI WKH &"V DQG 'fV DUH JLYHQ LQ WKH WDEOH 3URYLVLRQV DUH DOVR PDGH LQ WKH WDEOH IRU WKH PRGLILFDWLRQV UHTXLUHG WR HYDOXDWH $A $X $ 0 0O DQG $ 1 7KH QRGDO HTXDWLRQ f FDQ QRZ EH ZULWWHQ DV rL>+]Nf L9n]Nf@' UL>Z]Nf@J Lm$A L$A f f N N 7KHQ E\ LQWURGXFLQJ f f DQG f DQG E\ HTXDWLQJ UHDO DQG LPDJLQDU\ SDUWV WKH QRGDO H[SUHVVLRQV IRU WKH WHPSHUDWXUH DQG WKH VWUHDP IXQFWLRQ DUH H[WUDFWHG

PAGE 47

7DEOH (TXDWLRQV IRU $ W! N DQG $ L DQG FRGLQJ YN (TXDWLRQ (T 1R $N(Na&1 N [NB[1f '1 N \N\1f &0 N [Na[0f a'0 N \Nf\0f f $N A)Na&1N\N\1f f§'1 N [Na[Qf &0 NA\NB\0f '0 N ;N;0f f ZKHUH &RGLQJ UXOHV IRU VXEVFULSWV H DQG I LQ WKH & WKURXJK )H m HTXDWLRQV JLYHQ DERYH Lf )RU H 0 I LLf)RU H 1 I 0

PAGE 48

7DEOH &RQWLQXHGf 0RGLILFDWLRQV LQ (!B WKURXJK )H HTXDWLRQV IRU $A $f $ N 0 0O DQG $A Lf )RU N O ( N ,Q G]0Of]Of G]0f]O! f )N A=0 f =0 f ]Of f DQG &0f '0f rr LLf )RU N 0 & 0 0 0 0 LLLf)RU N 0 ( N Q G ] 1 =0 f G]Of=0! &10Of§ r10 LYf )RU N 1 &1 1 '1 1 )N A]1f]O]?OOff DQG

PAGE 49

DV WKH IROORZLQJ SDLU RI DOJHEUDLF HTXDWLRQV 1 ]Nf $rAN %rN ( W*L MrM*MrM O M AM *M*MAM O@ LL$N f 9n]Nf %rN $AN e L*MAM *MAM O MAM OAN MM* M$M O@ $AN ff ZKHUH WKH H[SUHVVLRQV IRU $r%r* rfV DQG $V DUH JLYHQ \ H[SOLFLWO\ LQ 7DEOHV DQG 7KH QRGDO HTXDWLRQV f DQG f UHODWH WKH WHPSHUDWXUH S ]Af DQG VWUH DP IXQFWLRQ US]Af DW WKH QRGDO SRLQW WR WKH VSHFLILHG QRGDO N WHPSHUDWXUHV DQG VWUH DP IXQFWLRQV I! f DQG US DORQJ WKH ERXQGDU\ 7KH QRGDO HTXDWLRQV GHULYHG DERYH DUH VXIILFLHQW WR VROYH PRVW SRWHQWLDO SUREOHPV LQYROYLQJ RQO\ S DQG LS +RZHYHU IRU KHDW FRQGXFWLRQ SUREOHPV LQYROYLQJ 1HXPDQQ DQG 5RELQ ERXQGDU\ FRQGLWLRQV DGGLWLRQDO HTXDWLRQV PX VW EH GHULYHG WR UHODWH LS DQG WKH KHDW IOX[ T DV VKRZQ LQ WKH QH[W VHFWLRQ 0RGHOLQJ +HDW &RQGXFWLRQ %RXQGDU\ &RQGLWLRQV IRU WKH &9%(0 $SSO\LQJ D 'LULFKOHW ERXQGDU\ FRQGLWLRQ SRVHV QR GLIILFXOW\ ZKDWVRHYHU DV LW LV HTXLYDOHQW WR VSHFLI\LQJ WKH

PAGE 50

7DEOH &RHIILFLHQWV $r% HTXDO LRQV DQG f IRU WKH f DQFf-f QRGDO $r ,Q G]NOf]Nf W G]NOf]Nf %r "U ]NLf]NL]Nf JLM WW >'\N \MLfF[N[Mf@ R WR 9 FA ,, WW &[N [ Mf '\N\Mf, M a WW >&\N \M Of'[N [MO *M WW W'[N ;Mf &\N f§\ Mf @ ZKHUH & DQG DUH JLYHQ LQ 7DEOH

PAGE 51

S YDOXHV DW WKH ERXQGDU\ +RZHYHU ZKHQ D 1HXPDQQ FRQGLWLRQ LV LPSRVHG DW WKH ERXQGDU\ WKH &DXFK\5HLPDQQ FRQGLWLRQV FDQ EH XVHG WR GHULYH ]ML "ML J LHU f ] f &RQVLVWHQW ZLWK WKH OLQHDU DSSUR[LPDWLRQ RI WKH FRPSOH[ IXQFWLRQ f WKH KHDW IOX[ LV DSSUR[LPDWHG DV LQHDU RYHU WKH HOHPHQW 7 DQG HTXDWLRQ f EHFRPHV rML rU ‘-L >QM LVf(fM1MV!(fM L.]M L] MfGV f (YDOXDWLQJ WKH LQWHJUDO LQ HTXDWLRQ f DQG VXPPLQJ RYHU HOHPHQWV JLYHV D UHODWLRQ EHWZHHQ } DQG WS f M L L L fD M LO$VfM LO, f ZKHUH "fD M LO>ifM L kM LO@ f $Vf M L G] MLf M LOf ] L ] M L f (TXDWLRQ f FDQ EH XVHG WR HYDOXDWH US RQ ERWK RXWHU DQG LQQHU ERXQGDULHV 2Q WKH RXWHU ERXQGDU\ 0!M! DQG RQ WKH LQQHU ERXQGDU\ 1!M!0 )RU D KHDW FRQGXFWLRQ

PAGE 52

SUREOHP ZLWK KHDW IOX[ VSHFLILHG DORQJ D ERXQGDU\ HTXDWLRQ f FDQ EH XVHG WR SUHSDUH D GDWD VHW IRU GLUHFW LQSXW LQWR WKH QRGDO HTXDWLRQ f RU f GHSHQGLQJ RQ WKH PHWKRG RI DVVHPEO\ RI HTXDWLRQV FKRVHQ IRU VROYLQJ WKH SUREOHP $ 5RELQ RU FRQYHFWLYHf FRQGLWLRQ LPSRVHG RQ WKH ERXQGDU\ LV PRGHOHG E\ WKH UHODWLRQ GM! GQ f +HUH K LV WKH FRQYHFWLYH FRHIILFLHQW ZKLFK PD\ DOVR DFFRXQW IRU UDGLDWLRQ LI OLQHDUL]HGf DQG A LV WKH DPELHQW VRXUFH RU VLQN WHPSHUDWXUH )ROORZLQJ D SURFHGXUH VLPLODU WR WKDW OHDGLQJ WR HTXDWLRQ f WKH VWUHDP IXQFWLRQV DUH UHODWHG E\ WKH 5RELQ FRQGLWLRQ LQ WKH IROORZLQJ H[SUHVVLRQ rML O O f +HUH D M LOfO9N O8N$ L K N f ZKLFK DOVR KROGV IRU WK VWUHDP IXQFWLRQ WR WKH (TXDWLRQ f UHODWHV WKH M MWK VWUHDP IXQFWLRQ DQG RQFH

PAGE 53

DJDLQ 0!M! RQ WKH RXWHU ERXQGDU\ DQG 1! M!0 RQ WKH LQQHU ERXQGDU\ (TXDWLRQ f SURYLGHV DQ DGGLWLRQDO UHODWLRQ EHWZHHQ WKH VWUHDP IXQFWLRQ DQG WKH WHPSHUDWXUH DW WKH ERXQGDU\ KRZHYHU EHFDXVH RI LWV FRPSOH[LW\ LW LV QRW SRVVLEOH WR XVH LW DV GLUHFW LQSXW WR WKH QRGDO HTXDWLRQV f DQG f ,WV XVH LQ WKH VROXWLRQ ZLOO EH GLVFXVVHG LQ WKH QH[W VHFWLRQ $VVHPEO\ RI WKH %RXQGDU\ (OHPHQW (TXDWLRQV $ FORVH H[DPLQDWLRQ RI f DQG f UHYHDOV WKDW WKH SRWHQWLDO DQG VWUHDP IXQFWLRQ DW WKH SRLQW ]A DUH HVWLPDWHG E\ WKH ZHLJKWHG VXP RI SRWHQWLDO DQG VWUHDP IXQFWLRQ DW HYHU\ SRLQW RQ WKH ERXQGDU\ 1RWLFH WKDW LQ WKHVH HTXDWLRQV WKH HVWLPDWHG TXDQWLWLHV DUH PDUNHG ZLWK FDSV Df ZKHUHDV WKH SUHVFULEHG TXDQWLWLHV DUH PDUNHG ZLWK $ $ EDUV f 7KHQ WKH HVWLPDWHG S DQG WS WKDW DSSHDU RQ WKH HIWKDQG V LGH RI WKH HTXDWLRQV DOVR GHSHQG RQ WKH SUHVFULEHG S DQG LS DW WKH VDPH SRLQW EXW RQ WKH ULJKWKDQG VLGH RI WKHVH HTXDWLRQV 7KLV LV D GLVWLQFW IHDWXUH RI WKH &9%(0 WKDW OHDGV WR GLIIHUHQW VROXWLRQ PHWKRGV DV ZLOO EH GLVFXVVHG ODWHU ,W LV DOVR QRWHG WKDW WKH FRHIILFLHQWV $r %r DQG *fV LQ f DQG f DUH VROHO\ GHSHQGHQW RQ WKH QRGDO SRLQW ORFDWLRQV VHH 7DEOHV DQG +HUH $r DQG % IXQFWLRQV RI ] DQG ]?L ZKLOH DOO WKH *fV DUH ODWHG WR ] ZKHUH MANON )RU D GRXEO\ FRQQHFWHG GRPDLQ

PAGE 54

ZKRVH ERXQGDULHV DUH IXOO\ VSHFLILHG DOO WKH FRHIILFLHQWV FDQ EH HYDOXDWHG $ ILQDO SRLQW L V UHODWHG WR WKRVH VRXUFH WHUPV $ r DQG $ r LQ f DQG f 7KH\ DUH RI FRXUVH WKH UHVXOW RI WKH SHUWXUEDWLRQ WHUP LQ f $V VKRZQ LQ f DQG f WKHVH VRXUFH WHUPV DUH UHODWHG WR WKH f f SRVLWLRQV RI ]A ]fr f =0 f ] 0O DQG 6SHFLILFDOO\ WKH\ LQFOXGH WKH ORFDWLRQ RI WKH SRLQW ZKHUH M! DQG US DUH HYDOXDWHG DQG DOVR WKRVH IRXU SRLQWV ZKLFK DUH DORQJ WKH RULJLQDO OLQH RI FXW &DOOLQJ WKHVH VRXUFH WHUPV DV f f LW LV SRVVLEOH WR FRPELQH f DQG f LQ D PDWUL[ HTXDWLRQ DV & Q 5US &7 f§ & W! ?S f +HUH WKH VXEVFULSWV 5 DQG IRU WKH SDUWLWLRQHG PDWULFHV & $ UHIHU WR WKH IDFW WKDW WKH VHW RI 1 AHTXDWLRQV DUH GHULYHG IURP WKH UHDO SDUW RI HTXDWLRQ f DQG WKH VHW RI 1 LQn HTXDWLRQV DUH GHULYHG IURP WKH LPDJLQDU\ SDUW RI WKH VDPH

PAGE 55

HTXDWLRQ 7KHVH SDUWLWLRQHG PDWULFHV DUH RI RUGHU 1 7KH PDWUL[ IRUPXODWLRQ JLYHQ E\ HTXDWLRQ f LV KLJKO\ GHVLUDEOH LQ WKDW WKH HOHPHQWV RI HDFK URZ LQ WKH JOREDO FRHIILFLHQW PDWUL[ VXP WR RQH DQ RXWFRPH RI WKH XQLIRUP SRWHQWLDO GRPDLQ)XUWKHUPRUH LQ WKH SDUWLWLRQHG PDWULFHV DOO HOHPHQWV LQ HDFK URZ RI & PXVW VXP WR ]HUR ZKHUHDV DOO HOHPHQWV LQ HDFK URZ RI &U PXVW VXP WR RQH 7KHVH UHVXOWV DUH KDQG\ LQ FKHFNLQJ FRPSXWHU FRGLQJ 3ULRU WR SODQQLQJ VROXWLRQ VWUDWHJLHV D UHn H[DPLQDWLRQ RI HTXDWLRQ f LV LQ RUGHU )RU D GRXEO\ FRQQHFWHG GRPDLQ ZLWK SUHVFULEHG LQQHU DQG RXWHU ERXQGDULHV WKHUH DUH QR XQNQRZQV LQ WKH JOREDO FRHIILFLHQW PDWUL[ +RZHYHU HDFK FRPSRQHQW RI WKH 67 YHFWRU FRQWDLQV A ZKLFK DFFRUGLQJ WR HTXDWLRQV f DQG f LV UHODWHG WR WKH KHDW IOX[ T RQ WKH ERXQGDULHV ,Q WKH VROXWLRQ RI KHDW FRQGXFWLRQ SUREOHPV ZLWK SUHVFULEHG 'LULFKOHW DQG 1HXPDQQ FRQGLWLRQV HLWKHU WHPSHUDWXUH RU KHDWIOX[ YDOXHV DUH JLYHQ RQ WKH ERXQGDULHV 7KH KHDW IOX[HV DUH QHYHUWKHOHVV UHODWHG WR DV LQ f +RZHYHU IRU D 5RELQ FRQGLWLRQ LPSRVHG RQ WKH ERXQGDU\ QRQH RI WKH WHPSHUDWXUHV RU KHDW IOX[HV DUH JLYHQ \HW WKH\ DUH VWLOO UHODWHG DV LQ f :LWK WKHVH VHUYLQJ DV JXLGHOLQHV WKUHH VROXWLRQ PHWKRGV DUH GHYHORSHG 7KH\ DUH QDPHO\ LPSOLFLW H[SOLFLW DQG K\EULG H[SOLFLWLPSOLFLWf PHWKRGV

PAGE 56

6ROXWLRQ RI WKH %RXQGDU\ (OHPHQW (TXDWLRQV 7KH W\SH RI VROXWLRQ PHWKRG GHYHORSHG KLQJHV RQ KRZ WKH VSHFLILHG DQG HYDOXDWHG S DQG [S DUH UHODWHG )RU H[DPSOH LI SA LV JLYHQ DW QRGDO SRLQW ]A D 'LULFKHW ERXQGDU\ FRQGLWLRQf WKHQ [SA LV XQNQRZQ DW WKLV SRLQW 7KH D LPSOLFW VROXWLRQ PHWKRG LV IRUPXODWHG E\ VHWWLQJ [SA HTXDO WR [S N LQ WKH 1NWK HTXDWLRQ LQ f ,Q WKH PHDQWLPH f§ I? VLQFH SN LV JLYHQ SA LV QR ORQJHU DQ XQNQRZQ WKLV SHUPLWV WKH NWK HTXDWLRQ WR EH GHOHWHG IURP f 7KH LPSOLFLW HTXDWLRQ IRU QRGH N LV WKHQ REWDLQHG E\ UHDUUDQJLQJ WKH [S QRGDO HTXDWLRQ LQ f DV $rS N%r f§ fAN MAM* MAM M 7OAN *OMr7*MrM O $9nN Bf 7KLV HTXDWLRQ FDQ WKHQ EH XVHG WRJHWKHU ZLWK RWKHU HTXDWLRQV WR VROYH IRU WKH XQNQRZQ [SA ,QDVPXFK DV WKH XQNQRZQ [SA DSSHDUV RQ ERWK VLGHV RI f WKLV PHWKRG LV FDOOHG LPSOLFLW 7KH H[SOLFLW VROXWLRQ PHWKRG GLIIHUV IURP WKH LPSOLFLW D PHWKRG LQ WKDW VLQFH SA LV JLYHQ SA FDQ EH VHW HTXDO WR LQ WKH NWK HTXDWLRQ LQ f 2Q WKH RWKHU KDQG !N LV $ B XQNQRZQ RQH FDQ VHW [SA HTXDO WR [S A VR WKDW WKH\ GR QRW N EHFRPH GRXEOH XQNQRZQV :LWK WKLV ODVW VHWWLQJ WKH 1INWK HTXDWLRQ LQ HTXDWLRQ f FDQ EH GHOHWHG 7KH H[SOLFLW

PAGE 57

HTXDWLRQ IRU QRGH N FDQ EH REWDLQHG IURP WKH M! QRGDO HTXDWLRQ LQ f DV L %r N 1 W*O MAM MAM M-ON *M*MAM Oaf 7KLV HTXDWLRQ FDQ WKHQ EH XVHG WRJHWKHU ZLWK RWKHU HTXDWLRQV WR VROYH IRU WKH XQNQRZQ [SA 1RWLFH WKDW WKLV WLPH WKH XQNQRZQ [SA DSSHDUV RQO\ RQ WKH OHIWKDQG VLGH RI HTXDWLRQ f WKH PHWKRG LV WKXV QDPHG H[SOLFLW ,Q WKH LPSOLFLW DQG H[SOLFLW PHWKRGV GHVFULEHG DERYH 1 HTXDWLRQV DUH JHQHUDWHG WR VROYH IRU 1 XQNQRZQV 7KLV RFFXUV ZKHQ 'LULFKOHW DQG 1HXPDQQ FRQGLWLRQV DUH LPSRVHG RQ WKH ERXQGDULHV +RZHYHU ZKHQ D 5RELQ FRQGLWLRQ LV LPSRVHG DW WKH ERXQGDU\ ERWK SA DQG [SA EHFRPH XQNQRZQV $OWKRXJK RQH PD\ VWLOO XVH HLWKHU WKH LPSOLFLW RU WKH H[SOLFLW PHWKRG WR VROYH VXFK D SUREOHP WKHUH DUH QRZ 1 XQNQRZQV DQG RQH PXVW UHO\ RQ f WR VXSS O\ 1 DGGLWLRQDO HTXDWLRQV $V GLVFXVVHG HTXDWLRQ f LV FRPSOLFDWHG EHFDXVH LW FRQWDLQV ERWK XQNQRZQV S DQG [S GLUHFW LQSXW LQWR HTXDWLRQV f LV WKXV LPSRVVLEOH 2QH PXVW WKHQ DSSHQG f WR f WR UDLVH WKH QXPEHU RI HTXDWLRQV VROYHG VLPXOWDQHRXVO\ IRU WKH XQNQRZQV $ K\EULG PHWKRG LV D FRPELQDWLRQ RI WKH LPSOLFLW DQG WKH H[SOLFLW PHWKRG QR HTXDWLRQ LV GHOHWHG IURP HTXDWLRQ

PAGE 58

f )RU WKH WKH VDPH H[DPSOH $ WKH XQNQRZQ [Sr VDNH RI GLVFXVVLRQ XVH LV VWLOO PDGH RI GLVFXVVHG HDUOLHU ,Q WKH K\EULG PHWKRG LV VHW HTXDO WR A DQG WKLV \LHOGV 1 $ $ HTXDWLRQV IRU WKH 1 XQNQRZQV SA DQG USA 7KLV RFFXUV HYHQ IRU D 'LULFKOHW DQG D 1HXPDQQ FRQGLWLRQ LPSRVHG DW WKH ERXQGDULHV +HQFH IRU WKH K\EULG PHWKRG WKH QXPEHU RI HTXDWLRQV WR EH VROYHG VLPXOWDQHRXVO\ LV DOZD\V GRXEOHG FRPSDUHG ZLWK WKH LPSOLFLW DQG H[SOLFLW VFKHPHV 7KLV DGGV FRQVLGHUDEOH HIIRUW WR WKH FRPSXWDWLRQ LQ WKH VROXWLRQ $
PAGE 59

7DEOH ,PSOLFLW H[SOLFLW DQG K\EULG VROXWLRQ PHWKRGV ,PSOLFLW 0HWKRG B $ B ,7 SA LV VSHFLILHG DW WKHQ VHW A A f $OVR XVH f WR VROYH 7RU E\ ORDGLQJ WKH 7ROORZLQJ HTXDWLRQ LQ WKH PDWUL[ HTXDWLRQV $rN %rOfN  MAN?NO 8SRQ VROXWLRQ R7 WKH PDWUL[ HTXDWLRQV VHW X ]Af B $ B ,7 WSr LV VSHFL7LHG DW ]A WKHQ VHW UA? f $OVR XVH f WR VROYH 7RU !A E\ ORDGLQJ WKH 7RO ORZLQJ HTXDWLRQ LQ WKH PDWUL[ HTXDWLRQV >*M*M O*O f 4f f M M -6$ 1 $ rLO! N % MAN N >* M *M O* MM MAM O@ N 8SRQ VROXWLRQ R7 WKH PDWUL[ HTXDWLRQV VHW OM B U? ]N f A f N N ([SOLFLW 0HWKRG ,7 I! N LV VSHFL7LHG DW f WR VROYH 7RU [S N ] WKHQ E\ ORDGLQJ WKH 7R D B  W!? f $OVR !Y ORZLQJ HTXDWLRQ LQ WKH PDWUL[ HTXDWLRQV 1 O%rfUINB$!9Ne >*OM*-AMO*MrM*MIOO$ M AN N N 8SRQ VROXWLRQ R7 WKH PDWUL[ HTXDWLRQV r N9 ,7 [SA LV VSHFL7LHG f WR VROYH 7RU !A WKH PDWUL[ HTXDWLRQV D B DW ]A WKHQ VHW AM A $OVR XVH E\ ORDGLQJ WKH 7ROORZLQJ HTXDWLRQ LQ 1 % f9fN$rN ( A*MAM*MAM M N ‘W! f f§* cAXL@ Wa$ OMUM MAMOU7AAN 8SRQ VROXWLRQ R7 WKH PDWUL[ HTXDWLRQV VHW cMM B 0 ]Nf AO 9fO f N N

PAGE 60

7DEOH &RQWLQXHGf +\EULG 0HWKRG ,I N N $ VR RDGLQJ HTXDWLRQV WKH VSHF L7LHG f DQG 7RRZLQJ $ W! =L WKHQ f WZR HTXDWLRQV N WR VROYH IRU /DQA L Q If DQG WKH B !N N R\ PDWUL[ I! 1 N $AN%AN( M AN N Q L >*OM*MAMO 7 7 *M*MW O@L$ N % 'AN $WW( 1 >*M*MAM O 7 M AN N MB*MO@ $ N 8SRQ VROXWLRQ RI WKH PDWUL[ HTXDWLRQV VHW Z]Nf L N N  AN A A A f $ ORDGLQJ WKH HTXDWLRQV DW ] WKHQ VHW VSHFLILHG f DQG f WR VROYH IROORZLQJ WZR HTXDWLRQV t L Q ALN DQA VHW W!X DQG E\ r9 N PDWUL[ 2 $r%rOf e 1 M AN N >* M9fM* MAM O L 7 M7* M7O@ $$ N N %r $rN e 1 M O M $ N &* M M r* MM *OMAM *MAM A -/D A$N 8SRQ VROXWLRQ RI WKH PDWUL[ HTXDWLRQV VHW 2Nf f§ BB $ N N

PAGE 61

&9%(0 $SSUR[LPDWLRQ IRU S DQG US DW ,QWHULRU 3RLQWV 2QFH DQG US DUH NQRZQ DW DOO ERXQGDU\ QRGHV X ]f ZKHUH ]4 FDQ EH GHULYHG E\ IRFXVLQJ DWWHQWLRQ RQO\ RQ WKH GRXEHYDOXHG SRWHQWLDOV DW QRGHV 0 DQG 1 LQ )LJXUH 7KH &DXFK\ LQWHJUDO LV HYDOXDWHG LQ WKH OLPLW DV WKH VPDOO JDS ] JRHV WR ]HUR e]f LP [ \! W  7WO e= f U 8VLQJ OLQHDU HOHPHQWV f FDQ EH LQWHJUDWHG WR \LHOG Z]f LP A [ \! A X ( 7 1 + M O M]rf f 7R DFFRXQW IRU WKH GRXEHYDOXHG FRPSOH[ SRWHQWLDO DW WKH SRLQWV 0 DQG 1 LQ )LJXUH +0B +0 +0 +1 DQG + 1 DUH VRUWHG RXW IURP WKH VXPPDWLRQ DQG WKH\ DUH HYDOXDWHG LQ WKH LQGLFDWHG OLPLW 7KH &9%(0 DSSUR[LPDWLRQ WR WKH FRPSOH[ SRWHQWLDO X!]f LQ WKH ROG QXPEHULQJ V\VWHP RI )LJXUH LV WKHQ $ X 1 7 L + M O M901 2QFH DJDLQ WUDQVIRUPLQJ WR WKH QHZ QXPEHULQJ V\VWHP JLYHQ LQ )LJXUH UHGXFHV WKH DERYH HTXDWLRQ WR

PAGE 62

ZKHUH + M]f Lm$ f f 1RWLFH KHUH WKDW ](IL EXW ]e7 :LWK WKH GHULYDWLRQ RI WKH ERXQGDU\ DQG LQWHULRUQRGH HTXDWLRQV DQG WKH SUHVHQWDWLRQ RI QRGDOHTXDWLRQ DVVHPEO\ SURFHGXUH WKH GHYHORSPHQW RI WKH OLQHDU &9%(0 LQ GRXEO\ FRQQHFWHG GRPDLQV LV QRZ FRPSOHWH 7KH &9%(0 ZLOO QRZ EH DSSOLHG WR WKH VROXWLRQ RI KHDW FRQGXFWLRQ SUREOHPV

PAGE 63

&+$37(5 9 180(5,&$/ $33/,&$7,216 $V LQ DQ\ QXPHULFDO PHWKRG FRQFHUQ DULVHV RYHU WKH DFFXUDF\ DQG FRQYHUJHQFH RI WKH &9%(0 LQ VROYLQJ SUREOHPV LQ GRXEO\ FRQQHFWHG GRPDLQV 7R WKLV HQG KHDW FRQGXFWLRQ SUREOHPV ZLWK DYDLODEOH H[DFW VROXWLRQV ZLOO EH VROYHG XVLQJ WKH &9%(0 DQG WKH QXPHULFDO UHVXOWV ZLOO EH FRPSDUHG ZLWK WKH H[DFW VROXWLRQV IRU HUURU 7KHVH H[DPSOHV ZLOO FRQVLGHU WKUHH W\SH RI ERXQGDU\ FRQGLWLRQV DQG LQ RUGHU WR FRPSDUH WKH UHVXOWV RQH RI WKH H[DPSOHV ZLOO EH VROYHG E\ XVLQJ ERWK WKH 59%(0 DQG &9%(0 ,Q DGGLWLRQ DQRWKHU H[DPSOH LV VROYHG XVLQJ WKH WKUHH VROXWLRQV PHWKRGV GHVFULEHG LQ WKH SUHYLRXV FKDSWHU 'HVFULSWLRQ RI WKH ([DPSOHV 7KUHH JHRPHWULHV DUH XVHG IRU WHVW 7KH\ LQFOXGH Lf D VTXDUH UHJLRQ ZLWK D FRQFHQWULF VTXDUH KROH SXQFKHG RXW LLf D FLUFXODU DQQXOXV DQG LLLf DQ LUUHJXODU JHRPHWU\ HQFORVLQJ DQ LUUHJXODU KROH 7KH FRQGLWLRQV LPSRVHG RQ WKH VTXDUH UHJLRQ DUH LOOXVWUDWHG LQ )LJXUH :LWK WKH H[DFW VROXWLRQ FKRVHQ DV Z]f ] KHDW IORZV VWHDGLO\ IRUP WKH ULJKW WR WKH OHIW DQG WKH KRUL]RQWDO OLQHV LQ WKH GRPDLQ FRUUHVSRQG WR VWUHDPOLQHV ZKLOH WKH YHUWLFDO OLQHV FRUUHVSRQG WR

PAGE 64

([DFW VROXWLRQ &[f ]f ] (TXLSRWHQWLDO OLQHV )LJXUH ([DFW SRWHQWLDOV DQG VWUHDPOLQHV IRU KHDW IORZ LQ D KROORZ VTXDUH UHJLRQ

PAGE 65

HTXLSRWHQFLDO OLQHV 3K\VLFDOO\ DOO WKH KRUL]RQWDO ERXQGDULHV DUH LQVXODWHG DQG WKH YHUWLFDO ERXQGDULHV DUH LPSRVHG ZLWK XQLIRUP WHPSHUDWXUHV ,Q WKH QXPHULFDO VROXWLRQ WKH ERXQGDULHV DUH GLVFUHWL]HG XVLQJ WHQ QRGHV DQG 'LULFKOHW ERXQGDU\ FRQGLWLRQV DUH VSHFLILHG DW DOO QRGDO SRLQWV :LWK WKH FKRVHQ WHPSHUDWXUH ILHOG WKH WRWDO KHDW IORZ UDWH DFURVV HLWKHU WKH LQQHU RU RXWHU ERXQGDU\ LV ]HUR LH WKH 4"V LQ f DUH ]HUR
PAGE 66

5HODWLYH HUURU L [ 0 1 5R 5Lf§ ([DFW VROXWLRQ ’ /]f ] r &-]f ] 2 8rf D] VSHFLILHG RQ LQQHU DQG RXWHU ERXQGDULHV R DQQXOXV g g L\ g O g g g g R g g V g‘ 1RGH QXPEHU )LJXUH 7KH &9%(0 DSSOLHG LQ WKH VROXWLRQ RI WKUHH SUREOHPV LQ D FLUFXODU DQQXOXV

PAGE 67

IRU WKH DQQXOXV VKDUH WKH VDPH IHDWXUH LQ WKDW WKH WRWDO KHDW IORZ UDWHV RYHU WKHLU ERXQGDULHV DUH ]HUR L H 4fV DUH ]HUR LQ f
PAGE 68

5HODWLYH HUURU RLR ([DFW VROXWLRQ : rf OQ5R5Lf 01 5Rf§ 5Lf§ r ’ 1 1 2 1 ’ W 7 ’ W A L\ VSHFLILHG RQ ,QQHU DQG RXWHU ERXQGDULHV RI DQQXOXD 2 7 r 1RGH QXPEHU )LJXUH 7HVW R WKH VROXWLRQ RI FRQYHUJHQFH RI WKH &9%(0 LQ WKH D SUREOHP LQ D FLUFXODU DQQXOXV

PAGE 69

0 2 RLR t ([DFW VROXWLRQ M]f ,Q ]f L\ 8 1 UR Q Â’ 9 9 IL W Â’ W U 6 Â’ 1RGH QXPEHU )LJXUH &9%(0 DSSOLHG LQ WKH VROXWLRQ RI DQ LUUHJXODU GRPDLQ LPSRVHG ZLWK WKUHH GLIIHUHQW ERXQGDU\ FRQGLWLRQ FRPELQDWLRQV

PAGE 70

DQQXOXV VKRZQ LQ )LJXUH LV SODFHG LQ D KRW HQYLURQPHQW VR WKDW D 5RELQ FRQGLWLRQ LV LPSRVHG RQ WKH RXWHU ERXQGDU\ 7KH LQQHU ERXQGDU\ LV PDLQWDLQHG DW D XQLIRUP WHPSHUDWXUH I! M 7KH +UfW!RR QXPEHU DQG Mf DQDO\WLFDO VROXWLRQ IRU WKLV SUREOHP LV WDNHQ DV QU5Tf f§ % L f OQ55RfO%Lff ZKHUH %L K5N LV WKH %LRW RR LV WKH WHPSHUDWXUH RI WKH KRW VXUURXQGLQJV 1RWLFH WKDW WKLV SUREOHP DFWXDOO\ VHUYHV WZR SXUSRVHV LW QRW RQO\ WHVWV WKH 5RELQ FRQGLWLRQ EXW LW DOVR FRPSDUHV WKH UHVXOWV RI WKH &9%(0 ZLWK WKH 59%(0 ,Q WKLV FRPSDULVRQ WKH VDPH GLVFUHWL]DWLRQ VFKHPHV DUH XVHG RQ WKH ERXQGDULHV LQ ERWK PHWKRGV DQG WZR FDVHV DUH WHVWHG DV IROORZV ,Q WKH ILUVW FDVH HOHPHQWV DUH XVHG RQ WKH ERXQGDULHV ZLWK HDFK ERXQGDU\ FRQVLVWLQJ RI QRGDO SRLQWV ,Q WKH VHFRQG FDVH WKH QXPEHU RI HOHPHQWV RQ WKH ERXQGDULHV DUH GRXEOHG ,W LV QRWHG WKDW WKH H[DPSOHV GHVFULEHG DERYH DUH DOO VROYHG XVLQJ WKH LPSOLFLW PHWKRG GHVFULEHG LQ &KDSWHU ,9 ,Q RUGHU WR WHVW WKH RWKHU VROXWLRQ PHWKRGV JLYHQ LQ WKDW FKDSWHU D ILQDO H[DPSOH LV SURYLGHG DV VKRZQ LQ )LJXUH +HUH WKH Z]f ] WHVW FDVH LQ )LJXUH LV UHVWXGLHG IRU WKH HIIHFWV RI WKH VROXWLRQ PHWKRGV XVHG 7KH FURVV f SORWWHG IRU WKH LPSOLFLW PHWKRG LQ )LJXUH LV SORWWHG DV VTXDUH ’ f LQ )LJXUH ,Q WKH SUHVHQW VWXG\ WKH DFFXUDF\ RI WKH QXPHULFDO VROXWLRQ LV PHDVXUHG E\ WKH UHODWLYH HUURU GHILQHG DV

PAGE 71

5HODWLYH HUURU 1RGH QXPEHU )LJXUH &RPSDULVRQ RI WKH UHVXOWV RI WKH &9%(0 WR 59%(0 DSSOLHG LQ WKH VROXWLRQ RI DQ DQQXOXV LPSRVHG ZLWK D 5RELQ FRQGLWLRQ

PAGE 72

8 2 /L /L FG + ([DFW VROXWLRQ &M]f ] \ 1 ’ ,PSOLFLW ([SOLFLW 2 +\EULG VSHFLILHG RQ LQQHU ERXQGDULHV RI DQQXO ’ ’ L\ ’ aU 1RGH QXPEHU )LJXUH f§ &RPSDULVRQ R WKUHH VROXWLRQ PHWKRGV R

PAGE 73

8 ]f 8f ]f PD[> XM ]f _ ] @ f ZKHUH Z]f LV WKH H[DFW VROXWLRQ DQG X!]f UHSUHVHQWV WKH &9%(0 VROXWLRQ $OO FRPSXWDWLRQV ZHUH SHUIRUPHG LQ GRXEOH f f SUHFLVL RQ RQ DQ 0K] PLFURFRPSXWHU XVLQJ WKH 0LFURVRIW )RUWUDQ RSWLPL]LQJ FRPSLOHU $ *DXVVLDQ HLPLQDWLRQ DOJRULWKP Z L WK SDUWLDO SLYRWLQJ DQG HTXLOLEUDWLRQ ZDV XVHG WR VROYH WKH VLPXOWDQHRXV HTXDWLRQV $ VLQJXODU YDOXH GHFRPSRVLWLRQ DOJRULWKP ZDV DOVR LQYRNHG LQ GHDOLQJ ZLWK WKH VROXWLRQ RI PDWUL[ HTXDWLRQV ZKRVH FRHIILFLHQW PDWULFHV DUH SRRUO\ FRQGLWLRQHG 5HVXOWV DQG 'LVFXVVLRQ 7KH I! DQG US YDOXHV IRU WKH VTXDUH UHJLRQ DUH DFFXUDWHO\ FRPSXWHG E\ WKH &9%(0 VHH 7DEOH ,Q DGGLWLRQ WKH WRWDO KHDW IORZ UDWHV DFURVV WKH ERXQGDULHV DUH FRPSXWHG WR EH ncn [f ZKLFK LV LQ H[FHOOHQW DJUHHPHQW ZLWK WKH H[DFW YDOXH AH[DFWAf 7KLV JRRG DFFXUDF\ FDQ EH DVFULEHG WR WKH IDFW WKDW LQ WKLV H[DPSOH OLQHDU HOHPHQWV KDYH EHHQ XVHG WR PRGHO Lf WKH ILUVWGHJUHH DQDO\WLF IXQFWLRQ X]f ] DQG L Lf WKH SLHFHZLVH OLQHDU ERXQGDU\ RI WKH GRPDLQ )RU WKH DQQXOXV VKRZQ LQ )LJXUH WKH ILUVW FDVH Z]f ] \LHOGV KLJKO\ DFFXUDWH UHVXOWV IRU WKH VDPH UHDVRQ DERYH 7KH RWKHU WZR FDVHV WHVWHG KDYH D PD[LPXP HUURU RI DERXW F 7KH H[DFW DQG &9%(0 JHQHUDWHG LVRWKHUPV IRU WKH

PAGE 74

7DEOH 5HVXOWV RI WKH &9%(0 VROXWLRQ IRU KHDW IORZ LQ D KROORZ VTXDUH %RXQGDU\ &RQGLWLRQV ,PSRVHG I! RQ I DQG 7M 1RGH 1XPEHU ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 'HILQLWLRQ RI WKH HUURUV H DQG HW!a A&9%(0 f A(;$&7 ? H[O!a ,A&9%(0 B ff(;$&7 DERYH

PAGE 75

R Z]f ] SUREOHP DUH SORWWHG LQ )LJXUH 7KH UHVXOWV VKRZ JRRG DJUHHPHQW EHWZHHQ WKH &9%(0 DQG WKH H[DFW VROXWLRQ LQ UHJLRQV RI VPDOO WHPSHUDWXUH JUDGLHQWV 7KH YDOXHV IRU A DUH DOVR FRPSXWHG IRU DOO FDVHV WR EH ] 2 DQG A ] *LYHQ WKH VPDOO QXPEHU RI ]A H QRGDO SRLQWV 1 f GLVFUHWL]HG RYHU WZR ERXQGDULHV RI WKLV JHRPHWU\ VXFK HUURUV DUH QRW XQH[SHFWHG 7KHVH HUURUV FDQ EH UHGXFHG E\ LQFUHDVLQJ WKH QXPEHU RI QRGHV $V VKRZQ LQ )LJXUH WKH PD[LPXP HUURU RI b DW SRLQW LV HIIHFWLYHO\ UHGXFHG WR OHVV WKDQ b ZKHQ WKH WRWDO QXPEHU RI QRGDO SRLQWV LV LQFUHDVHG IURP WR &RUUHVSRQGLQJO\ WKH HUURU LQ 9 LV DOVR UHGXFHG IURP b IRU QRGHVf WR b IRU QRGHVf $WWHQWLRQ LV QRZ GLUHFWHG WR WKH LUUHJXODU JHRPHWU\ WHVWHG LQ )LJXUH +HUH D PD[LPXP HUURU RI b LV ORFDWHG DW SRLQW DQG WKLV WDNHV SODFH ZKHQ WKH WHPSHUDWXUHV DUH LPSRVHG RQ WKH RXWHU ERXQGDU\ DQG WKH KHDW IOX[HV DUH LPSRVHG RQ WKH LQQHU ERXQGDU\ $W RWKHU QRGDO SRLQWV DQG IRU RWKHU ERXQGDU\FRQGLWLRQ FRPELQDWLRQV WKH HUURUV DUH OHVV WKDQ b 1RWLFH WKDW 1 IRU WKLV H[DPSOH 6LQFH WKH HUURUV FDQ EH UHGXFHG E\ LQFUHDVLQJ WKH 1 DV GHPRQVWUDWHG LQ )LJXUH WKH &9%(0 DUH VWLOO DFFXUDWH LQ VRYLQJ WKLV LUUHJXDUJHRPHWU\ SUREOHP 7HVWV RI WKH &9%(0 LQ WKH VROXWLRQ RI 5RELQFRQGLWLRQ SUREOHPV PHW ZLWK HTXDO VXFFHVV VHH )LJXUH 6LQFH WKH

PAGE 76

BB f§ f§ f§ f§ f§ + )LJXUH &RPSDULVRQ RI H[DFW DQG &9%(0 JHQHUDWHG LVRWKHUPV IRU WKH X]f ]A SUREOHP

PAGE 77

59%(0 FDQQRW EH XVHG WR HYDOXDWH WKH VWUHDP IXQFWLRQV RQO\ WKH WHPSHUDWXUH HUURUV DUH FRPSDUHG LQ WKH ILJXUH +HUH WKH DFFXUDF\ RI ERWK PHWKRGV DSSHDUV WR EH GHSHQGHQW RQ WKH GLVWDQFH RI WKH SRLQWV PHDVXUHG IURP WKH 5RELQFRQGLWLRQ VXUIDFH 7KH PD[LPXP HUURU LV OHVV WKDQ b IRU WKH &9%(0 ZKHQ 1 WKH 59%(0 DSSHDU PRUH DFFXUDWH HUURU OHVV WKDQ bf 7KHVH HUURUV WHQG WR FRQYHUJH UDSLGO\ ZKHQ WKH YDOXH RI 1 LV GRXEOHG $OVR WKH HUURUV EHFRPH OHVV GHSHQGHQW RQ WKH GHSWK PHDVXUHG IRUP WKH VXUIDFH WKH PD[LPXP HUURU EHLQJ OHVV WKDQ b )RU WKH &9%(0 WKH HUURU IRU n,n LV HYDOXDWHG WR EH b ZKHQ 1 DQG LW GURSV GRZQ WR b IRU 1 7KH H[DPSOHV SUHVHQWHG DERYH KDYH DOO EHHQ VROYHG E\ XVLQJ WKH LPSOLFLW PHWKRG 2QH H[DPSOH LQ )LJXUH LV VROYHG E\ XVLQJ DOO WKUHH PHWKRGV GHVFULEHG LQ &KDSWHU ,9 IRU FRPSDULVRQ RI UHVXOWV $V VKRZQ LQ )LJXUH WKH UHVXOWV RI WKH K\EULG PHWKRG DSSHDU WR EH VOLJKWO\ EHWWHU b WKDQ WKH LPSOLFLW PHWKRG DW WKH VHOHFWHG QRGDO SRLQWV +RZHYHU DW RWKHU SRLQWV QRW VKRZQf WKH UHVXOWV RI WKH WKUHH PHWKRGV DUH FRPSDUDEOH ,QDVPXFK DV WKH K\EULG PHWKRG UHTXLUHV WKH VROXWLRQ RI WZLFH DV PDQ\ HTXDWLRQV DV FRPSDUHG ZLWK HLWKHU WKH LPSOLFLW RU WKH H[SOLFLW PHWKRG ZKLOH WKH K\EULG UHVXOWV GR QRW VKRZ PDUNHG LPSURYHPHQW LQ DFFXUDF\ VXFK D K\EULG PHWKRG PD\ QRW EH ZDUUDQWHG LQ VROYLQJ JHQHUDO ILHOG SUREOHPV LPSRVHG ZLWK 'LULFKOHW RU 1HXPDQQ ERXQGDU\ FRQGLWLRQV

PAGE 78

$ VDOLHQW fIHDWXUH LV IRXQG IRU WKH LPSOLFLW PHWKRG $V GLVFXVVHG LQ WKH SUHYLRXV FKDSWHU WKH LPSOLFLW PHWKRG GLVFDUGV WKH QRGDO HTXDWLRQ IRU S RU LSf ZKRVH YDOXH LV JLYHQ $V SRLQWHG RXW E\ +URPDGND f RQFH WKH QRGDO YDOXH IRU LS RU Sf LV IRXQG E\ WKH LPSOLFLW PHWKRG RQH FDQ WUHDW WKH JLYHQ S RU LSf DV XQNQRZQ DQG HYDOXDWH LW E\ XVLQJ f RU f 7KH GLIIHUHQFH S f§ Sf FDQ WKHQ EH XVHG WR JDXJH WKH HUURUV LQ WKH QXPHULFDO VROXWLRQ ,Q WKH SUHVHQW ZRUN WKLV PHWKRG KDV EHHQ XVHG WR VXFFHVVIXOO\ FKHFN UHVXOWV )RU LQVWDQFH RQH H[DPSOH LQ )LJXUH VHH GDWD SORWWHG LQ GLDPRQGVf IRU ZKLFK WKH IOX[ LV VSHFLILHG RQ WKH RXWHU ERXQGDU\ DQG WKH WHPSHUDWXUH LV VSHFLILHG RQ WKH LQQHU ERXQGDU\ LV VROYHG ILUVW E\ XVLQJ WKH LPSOLFLW D B PHWKRG 7KH YDOXHV RI S f§ Sf DUH WKHQ HYDOXDWHG WR UHYHDO D GLIIHUHQFH RI f DW WKH QRGDO SRLQWV ZKHUH WKH S YDOXHV ZHUH VSHFLILHG 1RWLFLQJ WKLV ODUJH GLIIHUHQFH WKH VLWXDWLRQ LV UHFWLILHG E\ HLWKHU LQFUHDVLQJ WKH WRWDO QXPEHU RI QRGDO SRLQWV RU E\ VZLWFKLQJ WR WKH H[SOLFLW PHWKRG RI VROXWLRQ %RWK DOWHUQDWLYHV ZRUN VDWLVIDFWRULO\ DQG WKH GDWD SORWWHG LQ )LJXUH DUH WKH UHVXOWV RI WKH H[SOLFLW VROXWLRQ ,W LV QRWHG WKDW VXFK DQ HUURU HVWLPDWLRQ DOVR KROGV IRU WKH H[SOLFLW DQG K\EULG PHWKRGV $V PHQWLRQHG HDUOLHU LQ WKH OLWHUDWXUH UHYLHZ +URPDGND KDV GHPRQVWUDWHG WKH XVH RI WKLV PHDVXUH RI HUURU DV DQ DGDSWLYH GLVFUHWL]DWLRQ WHFKQLTXH

PAGE 79

$QRWKHU FRQFHUQ DULVHV LQ WKH SRVLWLRQLQJ RI WKH FXW DQG KHQFH WKH SODFHPHQW RI WKH QRGHV DQG 0 O RQ WKH ERXQGDULHV VHH )LJXUH 7KH VHQVLWLYLW\ RI WKH PHWKRG WR WKH SRVLWLRQ RI WKH FXW LV LQYHVWLJDWHG E\ UHVROYLQJ WKH SUREOHPV LQ )LJXUH ZLWK WKH FXW SRVLWLRQHG DW 7 f f DQG 7 ,Q DGGLWLRQ D WHVW LV DOVR PDGH E\ QXPEHULQJ WKH QRGDO SRLQWV EHJLQQLQJ DW WKH LQVLGH ERXQGDU\ WKDW LV WR VD\ IROORZLQJ WKH GHILQHG FRQWRXU LQWHJUDWLRQ GLUHFWLRQ WKH QRGHV DUH QXPEHUHG IURP WR 0 RQ WKH LQQHU ERXQGDU\ DQG IURP 0 O WR 1 RQ WKH RXWHU ERXQGDU\ &RPSDULVRQ RI WKH UHVXOWV VKRZV WKH VDPH OHYHO RI DFFXUDF\ IRU DOO WKH FDVHV WHVWHG 7KH VROXWLRQ PHWKRGV WKXV DSSHDU WR EH LQVHQVLWLYH WR WKH FXW SRVLWLRQ DQG WKH QRGH QXPEHULQJ RUGHU $QRWKHU SRLQW RI LQWHUHVW LV UHODWHG WR WKH ERXQGDU\ GLVFUHWL]DWLRQ +URPDGND f LQ KLV VROXWLRQ RI SRWHQWLDO SUREOHPV LQ VLPSO\ FRQQHFWHG GRPDLQV KDV UHSRUWHG WKDW WKH SRVLWLRQLQJ RI WKH QRGDO SRLQWV DORQJ WKH ERXQGDU\ FDQ FDXVH WKH FRHIILFLHQW PDWULFHV WR EHFRPH LOOFRQGLWLRQHG 7KLV RFFXUV PR UH IUHTXHQWO\ ZKHQ WKH JHRPHWU\ LV V\PPHWULF DQG ZKHQ D V\PPHWULF GLVFUHWL]DWLRQ VFKHPH LV XVHG 7KH VDPH SUREOHP LV HQFRXQWHUHG KHUH LQ VROYLQJ WKH SUREOHPV LQ GRXEO\ FRQQHFWHG GRPDLQV ,Q WKHVH SUREOHPV GLDJQRVLQJ WKH HLJHQYDOXH YHFWRU SURYLGHG E\ WKH VLQJXODU YDOXH GHFRPSRVLWLRQ RI WKH FRHIILFLHQW PDWUL[ LV YHU\ XVHIXO LQ XQFRYHULQJ WKH FXOSULW QRGHV 7KH VLWXDWLRQ FDQ WKHQ EH UHFWLILHG E\ GLVFDUGLQJ WKH VPDOO HLJHQYDOXHV EHIRUH

PAGE 80

EDFNVXEVWLWXWLRQ $OWHUQDWLYHO\ WKH GLVFUHWL]DWLRQ VFKHPH FDQ EH DOWHUHG WR FUHDWH D PRUH VWDJJHUHG QRGDO GLVWULEXWLRQ DORQJ WKH ERXQGDU\ 7KH FRQGLWLRQ QXPEHU RI WKH UHVXOWLQJ FRHIILFLHQW PDWUL[ VKRXOG EH UHH[DPLQHG SULRU WR WKH ILQDO VROXWLRQ 7KH H[DPSOHV DERYH SURYLGH DQ H[SRVLWLRQ RI WKH IHDWXUHV RI WKH &9%(0 LQ WKH VROXWLRQ RI SUREOHPV LQ GRXEO\ FRQQHFWHG GRPDLQV 7KH PHWKRGV KDYH VKRZQ WR EH DFFXUDWH HYHQ ZLWK D UHODWLYHO\ FRDUVH G L V LFUHW L]DW LRQ RI WKH ERXQGDU\ DQG WR FRQYHUJH ZLWK D UHILQHPHQW RI WKH GLVFUHWL]DWLRQ VFKHPH ,Q WKH QH[W FKDSWHU WKH &9%(0 ZLOO EH H[WHQGHG WR WKH VROXWLRQ RI SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV

PAGE 81

&+$37(5 9, (;7(16,21 2) 7+( &9%(0 72 08/7,3/< &211(&7(' '20$,16 7KH DQDO\VLV HPSOR\HG LQ GHYHORSLQJ WKH &9%(0 IRU WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ GRXEO\ FRQQHFWHG GRPDLQV FDQ EH H[WHQGHG IRU GHYHORSLQJ WKH VROXWLRQ RI WKHVH SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV 8VH LV ILUVW PDGH RI WKH WULSO\ FRQQHFWHG GRPDLQ VKRZQ LQ )LJXUH IRU D FRQWLQXDWLRQ RI WKH GRXEO\ FRQQHFWHG DQDO\VLV 7KH UHVXOWLQJ DQDO\VLV LV WKHQ JHQHUDOL]HG WR PXOWLSO\ FRQQHFWHG GRPDLQV ZLWK D FRQQHFWLYLW\ KLJKHU WKDQ WZR 6RPH EDVLF FRQFHSWV XVHIXO IRU WKH GRXEO\ FRQQHFWHG DQDO\VLV DUH ILUVW UHHVWDEOLVKHG IRU WULSO\ FRQQHFWHG GRPDLQV *HQHUDO &RQFHSWV IRU 'HYHORSPHQW RI WKH &9%(0 LQ 0XOWLSO\ &RQQHFWHG 'RPDLQ &RPSOH[ 3RWHQWLDOV DW 1RGDO 3RLQWV LQ D 7ULSO\ &RQQHFWHG 'RPDLQ 5HIHU WR WKH GRPDLQ VKRZQ LQ )LJXUH +HUH WKH QRGDO SRLQWV DUH DJDLQ VHTXHQWLDOO\ QXPEHUHG WR GHILQH D FRQWLQXRXV FLUFXLW DURXQG WKH GRPDLQ 7KH SRVLWLYH GLUHFWLRQ DERXW WKLV FLUFXLW LV FRQVLVWHQW ZLWK WKH DQDO\VLV RI WKH VLPSO\ DQG GRXEO\ FRQQHFWHG GRPDLQV LQ WKH SUHYLRXV FKDSWHUV 7KHUH DUH IRXU QRGDO SRLQWV RQ WKH ERXQGDULHV ZKHUH WKH FRPSOH[ SRWHQWLDOV DUH GRXEOH YDOXHG 6WDUWLQJ IURP SRLQW WKH QRGDO SRLQW 0 UHWXUQV WR WKH SRVLWLRQ RI SRLQW WKXV PDNLQJ WKH SRLQW D GRXEOH

PAGE 82

)LJXUH %RXQGDU\ GLVFUHWL]DWLRQ XVHG WR GHULYH WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ

PAGE 83

YDOXHG QRGDO SRLQW ,Q D VLPLODU IDVKLRQ WKH FRPSOH[ SRWHQWLDOV DW SRLQWV 0O 0$% DQG 0$% DUH GRXEOH YDOXHG ,W IROORZV WKDW f Q f§ ? 7 !7 B40( 0$% X ]0Hf aX A=0$%A a f r( N f DQG Z ]0(Of aX =0$%A f§ A( f )ROORZLQJ f WKH VWUHDP IXQFWLRQV DW SRLQWV 1 DQG 0$% FDQ EH UHODWHG WR WKRVH DW SRLQWV 0(I DQG 0O E\ 9c]Qf A]0HLfAD7f r$7 1fcA( f A]0$Ef A]0Lfr$%! nW$% Nn af 7KHVH ILYH HTXDWLRQV ZLOO EH XVHG ODWHU WR UHODWH WKH FRPSOH[ SRWHQWLDOV DW WKH GRXEHYDOXHG QRGDO SRLQWV %DVLV IRU WKH )RUPXODWLRQ RI &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ ,W VKRXOG EH QRWHG WKDW LQ )LJXUH WKH ERXQGDU\ FRQWRXUV DSSURDFK WKH GRXEOHYDOXHG QRGDO SRLQWV LQ WZR GLIIHUHQW ZD\V 7KH GRXEHYDOXHG VWUHDP IXQFWLRQ DW SRLQW LV GXH WR WKH RXWHU ERXQGDU\ ORRS FORVLQJ LQ IURP EHORZ

PAGE 84

WR SRLQW 0 ZKLOH WKDW DW SRLQW 0O LV GXH WR WKH LQQHU ERXQGDU\ ORRS FORVLQJ LQ IURP DERYH WR SRLQW 1 VHH )LJXUH +RZHYHU WKH VWUHDP IXQFWLRQV DW SRLQWV 0$% DQG 0$% DUH GLIIHUHQW WKH\ DUH GXH WR WKH ERXQGDU\ ORRS FORVLQJ LQ IURP DERYH $V VKRZQ LQ )LJXUHV DQG WKH ERXQGDU\ ORRS ILUVW FORVHV LQ WR SRLQW 0( WKHQ LW FURVVHV RYHU WR SRLQW 0( DQG ILQDOO\ GHSDUWV LQ DQ XSZDUG SDWK 7KH FRQFHSWV GLVFXVVHG DERYH ZLOO EH XVHIXO ODWHU WR HVWDEOLVK WKH HTXLYDOHQFH RI QRGDO SRLQWV LQ WKH GHULYDWLRQ RI WKH VWUHDP IXQFWLRQV DORQJ WKH OLQHV RI FXW )RU WKH WLPH EHLQJ D EDVLF HTXDWLRQ ZLOO EH GHULYHG RQ WKH EDVLV RI WKH DQDO\VLV SUHVHQWHG LQ &KDSWHU ,9 $V VKRZQ LQ f WKURXJK f WKH FRQWULEXWLRQ WR WKH FRPSOH[ SRWHQWLDO FM]L f E\ DQ\ ERXQGDU\ HOHPHQW 7 FRPHV IURP WKH +] f WHUP N DV f +HUH WKH ILUVW WHUP RQ WKH ULJKWKDQG VLGH DFFRXQWV IRU WKH FRPSOH[ SRWHQWLDO WKDW LV ORFDWHG DW SRLQW =MBA ZKLOH WKH VHFRQG WHUP DFFRXQWV IRU WKH FRPSOH[ SRWHQWLDO ORFDWHG DW SRLQW ] 7KHQ IRU D VSHFLILF QRGDO SRLQW ]Q WKDW LV VKDUHG E\ WZR ERXQGDU\ HOHPHQWV AQBL DQG IQ )LJXUH f

PAGE 85

0( L\ ; )LJXUH )RUPDWLRQ RI GRXEHYDOXHG VWUHDP IXQFWLRQV DW WKH FXWV

PAGE 86

)LJXUH $ QRGDO SRLQW VKDUHG E\ WZR ERXQGDU\ HOHPHQWV

PAGE 87

‘WKH FR QnW U L EXW L RQ WR WKH FRPSOH[ SRWHQWLDO E\ WKLV SRLQW FDQ EH H[SUHVVHG DV f ,W LV QRWHG WKDW DW WKH QRGDO SRLQWV ZKHUH WKH FRPSOH[ SRWHQWLDOV DUH GRXEOH YDOXHG WKH UHDO FRPSRQHQWV RI WKH SRWHQWLDOV UHPDLQ XQFKDQJHG DQG RQO\ WKH VWUHDP IXQFWLRQV DUH GRXEOH YDOXHG 7KHQ LI WKH SRLQW ] Q LV XVHG WR UHSUHVHQW DQ\ R7 VXFK SRLQWV DV ]f ]0( ] 0 0( DQG ] 1 L Q )LJXUH WKH H[FHVV VWUH DP )XQFWLRQV DW WKHVH SRLQWV FDQ EH GHULYHG E\ VRUWLQJ RXW WKH VWUH DP IXQFWLRQ FRPSRQHQW IURP f DQG ZULWLQJ LW DV ZKHUH f DQG WKH GHQRPLQDWRU LQ f LV WKH FRPSOH[ QXPEHU L 9f§O +HUH IRU WKH VDNH RI JHQHUDOLW\ WKH ILUVW VXEVFULSW RI LV XVHG WR UHSUHVHQW WKH VSHFLILF SRLQW ZKRVH H[FHVV VWUHDP IXQFWLRQ LV HYDOXDWHG DQG WKH VHFRQG VXEVFULSW UHIHUV WR WKH GRXEHYDOXHG FRPSDQLRQ RI WKDW SRLQW )RU H[DPSOH LI Q LV VHW WR 0 WKHQ S LV WDNHQ WR EH :LWK WKH GHILQLWLRQ

PAGE 88

RI f WKH ALBS FDQ EH H[SUHVVHG LQ WHUPV RI WKRVH n3fV DV GHILQHG LQ f WKURXJK f (TXDWLRQV f DQG f FDQ QRZ EH XVHG WR GHULYH WKH H[FHVV VWUHDP IXQFWLRQV DORQJ WKH OLQHV RI FXW 7KH\ DUH ILUVW DSSOLHG WR ILQGLQJ WKH VWUHDP IXQFWLRQV GXH WR WKH SRLQWV 0 DQG 1 DORQJ WKH FXW 1O $ORQJ WKLV FXW DQG f $1r10f f 7KHQ VLQFH r1 0O f f§A0O f§f $0 $1 f 1RWLQJ WKDW WKH DERYH LV WKH VDPH DV WKH WHUP XVHG LQ WKH GRXEO\ FRQQHFWHG GRPDLQ RI )LJXUH HTXDWLRQ f LV WKHQ UHFRJQL]HG DV WKH ODVW WHUP RQ WKH ULJKWKDQG VLGH

PAGE 89

RI f 7KLV WHUP DFFRXQWV 7RU fWKH GRXEHYDOXHG VWUHDP IXQFWLRQ FRPSRQHQW RI WM LQ WKH GRXEO\ FRQQHFWHG QRGDO HTXDWLRQ f DQG FRUUHVSRQGLQJO\ LW DFFRXQWV IRU WKH GRXEOH YDOXH RI X LQ WKH WULSO\ FRQQHFWHG GRPDLQ 7KH DERYH DQDO\VLV LV WKXV FRQVLVWHQW ZLWK DQG UHGXFLEOH WR WKH GRXEO\ FRQQHFWHG GRPDLQ IRUPXODWLRQ GHYHORSHG LQ &KDSWHU ,9 )RU WKH WULSO\ FRQQHFWHG GRPDLQ VKRZQ LQ )LJXUH H[FHVV VWUHDP IXQFWLRQV DOVR DSSHDU DW SRLQWV 0( DQG 0( DQG WKH\ PXVW EH DFFRXQWHG IRU $SSO\LQJ f WR WKHVH SRLQWV DQG XVLQJ WKH UHODWLRQ WKDW 0(0$%fB0(f f§0$%annH f JLYHV $0( $0( 0$% 0$% ] N 0( ] 0$% ] 0( f Q ] 0$% ] 0( N 0( 0$% 0( ] Q 0$% ] 0( f ,W LV QRZ QHFHVVDU\ WR UHWXUQ WR WKH FRQFHSWV HVWDEOLVKHG HDUOLHU LQ WKLV FKDSWHU $V SUHYLRXVO\ PHQWLRQHG WKH GRXEHYDOXHG VW UHDP IXQFWLRQV RQO\ DSSHDU DORQJ WKH L QHV RI FXW DQG IXUWKHUPRUH WKHUH LV D VLJKW GLIIHUHQFH L Q WKH ZD\V WKH VW UHDP IXQFWLRQV DUH GRXEOH YDOXHG DORQJ WKH FXWV VHH )LJXUH f 7KHQ HTXDWLRQV

PAGE 90

VR f DQG f PXVW EH UHODWHG DQG LQGHHG WKH SRLQWV LQ WKHVH HTXDWLRQV DUH HTXLYDOHQW WR HDFK RWKHU LQ WKH IROORZLQJ PDQQHU 1RGDO 3RLQWV LQ f &RUUHVSRQGLQJ 3RLQWV LQ f 0O 0$% 0$% 1O 0( 0O 0( (VWDEOLVKLQJ WKHVH UHODWLRQV DOORZV IRU WKH GLUHFW H[WHQVLRQ RI WKH DQDO\VLV IRU D GRXEO\ FRQQHFWHG GRPDLQ WR D WULSO\ FRQQHFWHG GRPDLQ ,Q SDUWLFXODU WKH QRGDO HTXDWLRQ f FDQ EH PRGLILHG WR LQFOXGH DQ H[WUD WHUP WKDW DFFRXQWV IRU WKH GRXEOH YDOXHG VWUHDP IXQFWLRQV DORQJ WKH FXW 0(0(f DV ]B f f§] rL=Nf =NfOQ8_ABcN 1 N +M=Nf LWW>OQ_=0O]=N M O 0$0 ] f§ ] N 1O =L r f§ ] N ] 0O 1O Q 0O N 1O = N &e0OOQ = =0 ]"LO@ 0O N ]0$%a]N L ncnS >,Q ] (/ O]0$%O N A0( ?OQ =0$%a= = f§ ] ] N 0$% = N 0( O]0(B] N = f§ ] N 0( =} U f§ f§ ] 0$% 0( Q 0$% N 0( = N @ f

PAGE 91

DQG fWKH UXOHV IROORZLQJ f DUH DFFRUGLQJO\ DPHQGHG WR LQFOXGH WKH IROORZLQJ UHODWLRQV Lf ,Q DGGLWLRQ ZKHQ N 0$%O NO 0(O ZKHQ N 0$%NO 0( LYf ,Q DGGLWLRQ ]?D%A VHA HFOXDA Z]0Hff DQA OM ] 0( f LV VHW HTXDO WR FM] 0$% 9f 6 R WKH IRUPXODWLRQV IRU X]AAf DQG X! =?_^"f UHGXQGDQW 7KH RWKHU UXOHV UHPDLQ XQFKDQJHG ,Q WKH GHULYDWLRQ WKDW IROORZV WKH HTXDWLRQV DQG UXOHV GHYHORSHG LQ &KDSWHU ,9 ZLOO EH H[WHQGHG DQG WR DYRLG UHSHWLWLRQ RQO\ WKH FKDQJHV ZLOO EH KLJKOLJKWHG $V D SRLQW RI GHSDUWXUH WKH ROG QRGH QXPEHULQJ V\VWHP JLYHQ LQ )LJX UH L V FKDQJHG WR WKH QHZ V\VWHP VKRZQ L Q )LJXUH 3RLQWV UHQXPEHUHG DFFRUGLQJ WR WKH IROORZLQJ VFKHPH 3RLQWV LQ 2OG 6\VWHP &RUUHVSRQGLQJ 3RLQWV LQ 1HZ 6\VWHP 0O 0 0$% / 0$% /O 0( /1 0( /7 1O 1 7KHQ LQ WKH QHZ V\VWHP ZKHQ N O N 0 ZKHQ N 0O N 1 ZKHQ N /O N /1 DQG ZKHQ N / NO /7O

PAGE 92

)LJXUH 1HZ QXPEHULQJ V\VWHP IRU ERXQGDU\ GLVFUHWL]DWLRQ IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ

PAGE 93

'HYHORSPHQW RI 1RGDO (TXDWLRQV IRU &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ ,Q WKH QHZ QXPEHULQJ V\VWHP WKH FRPSOH[ SRWHQWLDO DW SRLQW ]A FDQ EH HYDOXDWHG XVLQJ f +HUH WKH VXEVFULSW 7 UHIHUV WR WULSO\ FRQQHFWHG 7KH WHUP Q L >Z]Af@J LV UHFRJQL]HG DV WKH EUDFHG WHUP LQ f ,Q DGGLWLRQ WKH A LQ WKDW HTXDWLRQ KDV EHHQ FKDQJHG WR DERYH (TXDWLRQV IRU $A KDYH EHHQ JLYHQ DV f WKURXJK f 7KH QHZ WHUP (A DSSHDULQJ LQ f LV GHILQHG DV N NA/ /O /1/7 F ] N ] /1 /O ] /1 Q ] /O ] N ] /1 N Q ] / N /O ] N ] ] Na]/7O9 =/a= N / /7 ] /7 ] N @ f DQG 7RU WKH VSHFLDO N VXEVFULSWV R 6 f/O >,Q ] / / ] /O ] /7 /1 / / /7 Q / ] /O /7 /O @ f /1 >,Q ] / ] /1 ] /1 /7 ] /O /1 ] / ] /7 M Q ] / ] /1 ] /7 ] /1 @ f / > / ] /O /1 KQ a/ ? QI =/7B=/ ] /1 ] /1 ] / ] /O ] / f /7 > r)`O=r1fOQO DWOA/7O OQ / /7 /O /1 /1 /7 ] /O ] /7L f

PAGE 94

,Q WKH GHULYDWLRQ RI WKH H[FHVV VWUH DP IXQFWLRQV DERYH WKH SRLQWV DORQJ WKH FXWV DUH VKRZQ WR EH HTXLYDOHQW WR HDFK RWKHU 7KLV DO VR DSSOLHV LQ WKH QHZ V\VWHP $ F ORVH UHODWLRQVKLS LV WKXV H[SHFWHG EHWZHHQ WKH $A DQG (N HTXDWLRQV ,QGHHG D FDUHIXO FRPSDULVRQ RI f DQG f f DQG f f DQG r f f DQG f DQG f DQG f UHYHDOV WKDW WKH IROORZLQJ SRLQWV DUH HTXLYDOHQW WR HDFK RWKHU 3RLQWV $ORQJ &XW 0OfO 3RLQWV $ORQJ &XW /OfO /O 0 /1 0O / 1 /7 $ FURVV OLQN LV WKXV HVWDEOLVKHG EHWZHHQ SRLQWV LQ WKH $ N DQG ( N HTXDWLRQV (TXDWLRQV f WKURXJK f FDQ WKHQ EH UHYLVHG WR GHYHORS WKH FRPSXWHU FRGHV IRU WKH HYDOXDWLRQ RI WKH LAJ(A WHUP LQ f 'HYHORSPHQW RI &RPSXWHU &RGHV IRU (YDOXDWLQJ 7HUPV LQ f 7KHUH DUH WKUHH WHUPV RQ WKH ULJKWKDQG VLGH RI f 7KH ILUVW WH UP FDQ EH FRGHG E\ XVLQJ HTXDWLRQ f LQ ZKLFK WKH FRQVWDQWV & DQG KDYH EHHQ JLYHQ LQ 7DEOH 7KH $N LQ f KDV EHHQ GHILQHG LQ f LWV UHDO DQG LPDJLQDU\ FRPSRQHQWV KDYH EHHQ GHULYHG DV LQ f DQG f 7KH FRHIILFLHQWV LQ WKHVH HTXDWLRQV KDYH EHHQ OLVWHG LQ 7DEOH

PAGE 95

7KH (N WHUP LV QHZ DQG FDQ EH HYDOXDWHG E\ UHYLVLQJ WKH SUHYLRXV FRGLQJ IRU )LUVW IROORZLQJ f WR f WKH ( LV GHFRPSRVHG LQ LWV UHDO DQG LPDJLQDU\ FRPSRQHQWV DV f ZKHUH (N8N./7 N[Na[/7Of +/7 N \N\/7Of ./1N[Na[/1f+/1N\N\/1f f DQG +AN 9NB./7 N A\N\/7Of +/7 N [Nf[/7Of ./1NA\NB\/1f+/1NA[N[/1f f +HUH WKH FRHIILFLHQWV .fV DQG +fV DUH JLYHQ WRJHWKHU ZLWK WKHLU FRGLQJ UXOHV LQ 7DEOH 1RWLFH WKDW DOO WKH H[SUHVVLRQV JLYHQ LQ WKLV WDEOH DUH GHGXFHG IURP 7DEOH LQ ZKLFK WKH QRGDOSRLQW ORFDWLRQV DUH FKDQJHG DFFRUGLQJ WR WKH OLVW RI WKH HTXLYDOHQFH RI SRLQWV DORQJ WKH FXWV JLYHQ HDULHU 1H[W f LV ZULWWHQ DV f

PAGE 96

7DEOH (TXDWLRQV 7RU FRG LQJ UXHV (TXDO L RQ (T 1R N >8Na./7O N[N[1f +/7 N\Na\1f ./1N[Na[0fB+/1N\NB\0fO f fAN A9NB./7 f N A\N f§\1f B+/7 NA[NB[1f ./1NA\NB\0f +/1N[NB[0fO f ZKHUH XN Q G ]/f]Nf G ]/Of]N! ,, ]/f]/O]Nf .HN I $H N [If§ [Hf %HN\I\HfO )H +HN $H N f§ > %HN[I[Hf$HN\I\HfO ,Q G=If=Nf G]H]Nf )H %H N ]I]H]Nf DUJ]I]Nf DUJ]H )H [I[Hf \I\Hf &RGLQJ UXOHV 7RU VXEVFULSWV H DQG 7 LQ WKH A 7KURXJK )H HTXDWLRQV JLYHQ DERYH Lf )RU H /1 7 /, LLf )RU H /7O 7 /

PAGE 97

7DEOH &RQWLQXHGf 0RGLILFDWLRQV LQ WKURXJK )H HTXDWLRQV IRU ( /ff/1ff/f DQG ( /7 f Lf )RU N /O A ,Q NOQOL KOQOL G] ] / f /O f G ] ] /1f /O f } YN =/ f=/1 ]/Off DQG LLf )RU N /1 /1 /1f§ +/1/1f G]/7Of] LLLf)RU N / 8 OQ I N G!/Of]/f 9 N ] ] /7f /Of / ]M f DQG /7/ +/7Or LYf )RU N f§/7 ./7/7a +/7/7f r

PAGE 98

7KHQ fWKH QRGDO HTXDWLRQV IRU D 7ULSO\ FRQQHFWHG GRPDLQ DUH UHDGLO\ REWDLQHG DV .]Nf$r9!N %r9N A* MnfM M OAMO M -ON f§ f§ A US ‘I *R I Rf§$ f§ff§f§ s M M U "U N f DQG 1 A]Nf %r9N$rLLN M O M M OrN >*MAM*MOAM O *OMAM*MAM A g$A ( N rfAN f +HUH WKH ILUVW WKUHH WHUPV RQ WKH ULJKWKDQG VLGHV FRPH IURP WKH Q L >X ]Af @ J WHUP LQ f +HQFH WKH FRHIILFLHQWV LQ WKHVH HTXDWLRQV FDQ EH IRXQG E\ XVLQJ WKH H[SUHVVLRQV JLYHQ LQ 7DEOH )LQDOO\ D PDWUL[ HTXDWLRQ FDQ EH FRQVWUXFWHG DV f ,Q WKLV HTXDWLRQ WKH ULJKWKDQG VLGH 67 WHUPV DUH UHn GHILQHG IRU WKH WULSO\ FRQQHFWHG GRPDLQ DV 6b r!LrNnI(9 f 679!N  rr $N a r((AN f f

PAGE 99

2QFH DJDLQ WKH WKUHH VROXWLRQ PHWKRGV FDQ EH XVHG WR VROYH WKH PDWUL[ HTXDWLRQ DV GHVFULEHG LQ &KDSWHU ,9 ,Q WKLV HIIRUW FKDQJHV PXVW EH PDGH LQ f DQG LQ f DQG WR WKRVH HTXDWLRQV LQ 7DEOH DV IROORZV 7KH GHULYDWLRQ RI WKH QRGDO HTXDWLRQV RQ WKH ERXQGDULHV LV QRZ FRPSOHWH 'HYHORSPHQW RI (TXDWLRQV IRU ,QWHULRU 3RLQWV 7R GHULYH HTXDWLRQV IRU WKH LQWHULRU SRLQWV ]( XVH LV DJDLQ PDGH RI HTXDWLRQV f WKURXJK f 5HIHUULQJ WR WKH ROG QXPEHULQJ V\VWHP JLYHQ LQ )LJXUH WKH GRXEOHYDOXHG VWUH DP IXQFWLRQV DW WKH SRLQWV ] 0O 0$%f DQG =0$% FDQ EH GHULYHG E\ VRUWLQJ RXW + +Z + 0O + 0$% + 0$% + 0( + 0( + 0( +1 DQG + 1 WHUPV IURP WKH VXPPDWLRQ LQ f )ROORZLQJ WKH VDPH OLPLWLQJ SURFHGXUH OHDGLQJ WR f DQ LQWHULRU HTXDWLRQ L V GHULYHG IRU WKH WULSO\ FRQQHFWHG GRPDLQ L Q WKH QHZ QXPEHULQJ V\VWHP DV WW >Z]Rf@7 "UL >Z]Nf@JL r(f f ZKHUH $ KDV EHHQ JLYHQ LQ f DQG

PAGE 100

=ra=/7 ?=/a=/7 W=/ar= f@ \]/7L ]r\ f f 7KH DERYH HTXDWLRQ FRQFOXGHV WKH GHULYDWLRQ RI WKH &9%(0 HTXDWLRQV 7RU SRLQWV LQVLGH D WULSO\ FRQQHFWHG GRPDLQ 1XPHULFDO $SSOLFDWLRQ RI WKH &9%(0 LQ D 7ULSO\ &RQQHFWHG 'RPDLQ 7KH GHYHORSPHQW R7 WKH &9%(0 7RU WULSO\ FRQQHFWHG GRPDLQV LV QRZ YHUL7LHG E\ VROYLQJ D KHDW FRQGXFWLRQ SUREOHP LQ WKH UHFWDQJXODU UHJLRQ LOOXVWUDWHG LQ )LJXUH :LWK WKH H[DFW VROXWLRQ WDNHQ DV Z]f ] WKLV H[DPSOH LV DQDORJRXV WR WKH SUHYLRXVO\ VROYHG FRQGXFWLRQ SUREOHP LQ WKH KROORZ VTXDUH UHJLRQ R7 )LJXUH +HUH DJDLQ DOO KRUL]RQWDO ERXQGDULHV DUH LQVXODWHG DOO YHUWLFDO ERXQGDULHV DUH LPSRVHG ZLWK XQL7RUP WHPSHUDWXUHV DQG KHDW 7ORZV VWHDGLO\ 7URP WKH ULJKW WR WKH OH7W ,Q WKH QXPHULFDO VROXWLRQ R7 WKLV SUREOHP WKH ERXQGDULHV DUH GLVFUHWL]HG XVLQJ VL[WHHQ QRGHV DQG 'LULFKOHW FRQGLWLRQV DUH VSHFL7LHG DW DOO QRGDO SRLQWV 7KH WRWDO UDWH R7 KHDW 7ORZ DFURVV WKH RXWHU ERXQGDU\ DQG HLWKHU R7 WKH LQQHU ERXQGDULHV LV ]HUR LH WKH 4"V LQ f DQG f DUH ]HUR +RZHYHU WKH DQG WIJ DUH WDNHQ DV XQNQRZQ DQG WKHLU YDOXHV DUH FRPSXWHG 7RU HUURU

PAGE 101

([DFW VROXWLRQ &]f ] (TXLSRWHQWLDO OLQHV )LJXUH 9HULILFDWLRQ H[DPSOH IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ 6WUHDPOLQHV

PAGE 102

FRPSDULVRQ ,Q DGGLWLRQ WKH FRQVWDQW R LQWHJUDWLRQ LV FKRVHQ E\ WDNLQJ WKH YDOXH R W! DW SRLQW WR EH ]HUR 7KH YDOXHV LRU M! DQG [S LQ WKH UHFWDQJXODU UHJLRQ DUH DFFXUDWHO\ FRPSXWHG E\ WKH &9%(0 VHH 7DEOH ,Q DGGLWLRQ WKH WRWDO KHDW LORZ UDWHV DFURVV WKH ERXQGDULHV DUH FRPSXWHG WR EH L [fA DQG AA [fAA DQG WKHVH YDOXHV DUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH H[DFW YDOXHV H[DFWf ,H[DFW f 7KH I! DQG W! YDOXHV HYDOXDWHG ZLWK WKH &9%(0 DUH RI WKH VDPH RUGHU RI DFFXUDF\ DV LQ WKH FRUUHVSRQGLQJ SUREOHP LQ WKH GRXEO\ FRQQHFWHG GRPDLQ 7KLV H[DPSOH WKXV DGGV FRQILGHQFH WR WKH GHYHORSPHQW RI WKH &9%(0 LQ WULSO\ FRQQHFWHG GRPDLQV ([WHQVLRQ )URP WKH 7ULSO\ WR 0XOWLSO\ &RQQHFWHG 'RPDLQ :LWK WKH SUHVHQWDWLRQ RI WKH &9%(0 LQ WKH WULSO\ FRQQHFWHG GRPDLQ DERYH LW LV HDV\ WR GHYHORS WKH &9%(0 LQ D PXOWLSO\ FRQQHFWHG GRPDLQ ZKLFK HQFORVHV PRUH WKDQ WZR KROHV )RU WKH PXOWLSO\ FRQQHFWHG GRPDLQ VKRZQ LQ )LJXUH HTXDWLRQV f DQG f DUH UHYLVHG WR EH rL >Z]Nf@0 rL >Z]Nf@JL 2R$N; r( L+N L! f ]N*U f L f§ WW >Z]f@ 0 [L >Z]f@ V L AR$A r( 6Mf ]f4 f L O +HUH WKH LQGH[ LQ WKH VXPPDWLRQ UHIHUV WR WKH QXPEHU RI KR OHV L Q H[FHVV RI RQH ZKLFK DUH HQH RVHG E\ WKH RXWHU

PAGE 103

7DEH 5HVXOWV RI WKH YHULILFDWLRQ H[DPSOH IRU WKH &9%(0 LQ D WULSO\ FRQQHFWHG GRPDLQ %RXQGDU\ &RQGLWLRQV ,PSRVHG I! RQ I DQG 1RGH 1XPEH U ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 'HILQLWLRQ RI WKH HUURUV H DQG H M! [S DERYH HS A&9%(0 a A(;$&7 HUS ,A&9%(0 f A(;$&7

PAGE 104

L\ )LJXUH $ PXOWLSO\ FRQQHFWHG GRPDLQ FRQWDLQLQJ WRXU KROHV

PAGE 105

ERXQGDU\ 6LQFH WKH QRGDO SRLQWV DORQJ WKH FXWV $ % DQG & LQ WKH ILJXUH DUH SRVLWLRQHG LQ DQDORJ\ WR WKRVH DORQJ WKH FXW /OfO LQ )LJXUH WKH ( WHUP LQ WKHVH HTXDWLRQV FDQ EH IRUPXODWHG ZLWK WKH VDPH DSSURDFK WKDW LV GHYHORSHG HDUOLHU IRU WKH WULSO\ FRQQHFWHG GRPDLQ 6ROXWLRQ RI WKH SUREOHPV LQ WKH PXOWLSO\ FRQQHFWHG GRPDLQ FDQ WKXV UHDGLO\ EH SHUIRUPHG

PAGE 106

&+$37(5 9,, &21&/86,216 $1' 5(&200(1'$7,216 %DVHG RQ WKH ZRUN SUHVHQWHG LQ WKLV VWXG\ WKH IROORZLQJ FRQFOXVLRQV DUH GUDZQ 7KLV VWXG\ DGYDQFHV WKH FXUUHQW VWDWH RI GHYHORSPHQW RI WKH &9%(0 E\ H[WHQGLQJ WKH PHWKRG WR WKH VROXWLRQ RI SRWHQWLDO SUREOHPV LQ PXOWLSO\ FRQQHFWHG GRPDLQV 7KLV LV DFFRPSOLVKHG E\ D GHWDLOHG DQDO\VLV RI WKH &9%(0 GHYHORSHG E\ +URPDGND IRU VLPSO\ FRQQHFWHG GRPDLQV 7KH DQDO\VLV LQ GRXEO\ FRQQHFWHG GRPDLQV FDQ EH SHUIRUPHG E\ ILUVW LQWURGXFLQJ D FXW LQ WKH GRPDLQ /LQHDU EDVLV IXQFWLRQV DUH WKHQ XVHG LQ GHULYLQJ WKH &9%(0 QRGDO HTXDWLRQV WKURXJK D OLPLWLQJ SURFHGXUH WDNLQJ WKH JDS WR EH ]HUR DQG PRYLQJ DQ LQWHULRU SRLQW WR WKH ERXQGDU\ ,W LV IRXQG WKDW WKH VWUHDP IXQFWLRQV DORQJ WKH FXW GR QRW FDQFHO RXW EXW PXVW EH DFFRXQWHG IRU E\ DQ DGGLWLRQDO WHUP LQ WKH QRGDO HTXDWLRQV )RU WKH FRPSOH[ YDULDEOH PHWKRGV WKH &DXFK\5LHPDQQ FRQGLWLRQV PXVW EH XVHG WR JHQHUDWH DGGLWLRQDO HTXDWLRQV ZKHQ 1HXPDQQ DQG 5RELQ FRQGLWLRQV DUH VSHFLILHG DW WKH ERXQGDULHV 7DNLQJ WKH UHDO DQG LPDJLQDU\ SDUWV RI WKH FRPSOH[ SRWHQWLDO \LHOGV D SDLU RI HTXDWLRQV DW HDFK QRGH RQH IRU WKH WHPSHUDWXUH DQG RQH IRU WKH VWUHDP IXQFWLRQ 7KHVH HTXDWLRQV FDQ EH DVVHPEOHG LQ PDWUL[ IRUP WR VROYH IRU WKH

PAGE 107

XQNQRZQ WHPSHUDWXUHV DQG VWUHDP IXQFWLRQV DORQJ WKH ERXQGDU\ 'HSHQGLQJ RQ ZKLFK HTXDWLRQV DUH NHSW LQ WKH PDWUL[ RQH RI WKUHH VROXWLRQ PHWKRGV LPSOLFLW H[SOLFLW RU K\EULGf UHVXOWV +RZHYHU ZKHQ 5RELQ ERXQGDU\ FRQGLWLRQV DUH VSHFLILHG ERWK WKH WHPSHUDWXUH DQG ERXQGDU\ FRQGLWLRQ HTXDWLRQV PXVW EH XVHG 2QFH WKHVH HTXDWLRQV DUH VROYHG WKH FRPSOH[ SRWHQWLDO LV IXOO\ GHWHUPLQHG DW WKH ERXQGDU\ 7KH FRPSOH[ SRWHQWLDO DW DQ\ LQWHULRU SRLQW FDQ WKHQ EH HYDOXDWHG E\ XVLQJ WKH FRPSXWHG SRWHQWLDO DW WKH ERXQGDU\ DV LQSXW WR WKH GHULYHG HTXDWLRQV IRU WKH LQWHULRU SRLQWV $V GHPRQVWUDWHG LQ WKH YHULILFDWLRQ H[DPSOHV WKH &9%(0 \LHOGV DFFXUDWH UHVXOWV ZLWK D UHODWLYHO\ FRDUVH ERXQGDU\ GLVFUHWL]DWLRQ VFKHPH 7KH &9%(0 FRQYHUJHV DV WKH GLVFUHWL]DWLRQ LV UHILQHG ,Q D FRPSDULVRQ WHVW WKH &9%(0 LV IRXQG WR EH VOLJKWO\ OHVV DFFXUDWH WKDQ WKH 59%(0 ZKHQ D FRDUVH GLVFUHWL]DWLRQ LV XVHG RQ WKH ERXQGDU\ KRZHYHU WKH WZR PHWKRGV \LHOG VLPLOLDU UHVXOWV ZKHQ WKH QXPEHU RI QRGHV LV LQFUHDVHG &RPSDULVRQ RI WKH WKUHH PHWKRGV RI DVVHPEO\ OHDGV WR WKH FRQFOXVLRQ WKDW WKH K\EULG PHWKRG PD\ QRW EH ZDUUDQWHG ZKHQ 'LULFKOHW DQG 1HXPDQQ FRQGLWLRQV DUH VSHFLILHG DW WKH ERXQGDU\ 7KH GHYHORSPHQW IRU GRXEO\ FRQQHFWHG GRPDLQV FDQ EH H[WHQGHG WR WKH &9%(0 LQ WULSO\ DQG PXOWLSO\ FRQQHFWHG GRPDLQV &ULWLFDO DQDO\VLV RI WKH PHFKDQLVP OHDGLQJ WR WKH IRUPDWLRQ RI GRXEOHYDOXHG VWUHDP IXQFWLRQV DORQJ D VLQJOH FXW FDQ EH DSSOLHG WR WKH IRUPXODWLRQ RI WKH VWUHDP IXQFWLRQV DORQJ PXOWLSOH FXWV 1RGDO DQG LQWHULRUSRLQW

PAGE 108

HTXDWLRQV PD\ WKHQ EH GHULYHG DV DQ H[WHQVLRQ RI WKH GRXEO\ FRQQHFWHG IRUPXODWLRQ ,W FDQ DOVR EH VKRZQ WKDW WKH GHULYHG &9%(0 HTXDWLRQV IRU PXOWLSO\ FRQQHFWHG GRPDLQV DUH FRQVLVWHQW ZLWK DQG UHGXFLEOH WR WKH VLPSO\ FRQQHFWHG HTXDWLRQV IRUPXODWHG E\ +URPDGND 7KH IROORZLQJ DUHDV DUH VXJJHVWHG IRU IXWXUH UHVHDUFK ,Q WKH SUHVHQW VWXG\ RQO\ SRWHQWLDO SUREOHPV JRYHUQHG E\ WKH /DSODFH HTXDWLRQ DUH VROYHG $ QDWXUDO H[WHQVLRQ ZLOO EH WKH VROXWLRQ RI SUREOHPV JRYHUQHG E\ WKH 3RLVVRQ HTXDWLRQ WR DFFRXQW IRU WKH SUHVHQFH RI VRXUFHV DQG VLQNV LQ WKH LQYHVWLJDWHG GRPDLQ ,Q WKHVH FDVHV WKH XVH RI WKH SDUWLFXODU VROXWLRQ VKRXOG VXIILFH WR WUDQVIRUP WKH 3RLVVRQ HTXDWLRQ WR WKH /DSODFH HTXDWLRQ $QRWKHU H[WHQVLRQ LV UHODWHG WR WKH WHPSHUDWXUH GHSHQGHQW FRQGXFWLYLW\ ZKLFK OHDGV WR QRQOLQHDU JRYHUQLQJ HTXDWLRQV )RU VXFK SUREOHPV WKH .LUFKKRII WUDQVIRUPDWLRQ LV RIWHQ DWWHPSWHG \HW FRQVWUDLQWV DUH IRXQG LQ WKH WUDQVIRUPHG ERXQGDU\ FRQGLWLRQV 7KHVH SUREOHPV VKRXOG SRVH D UHDO FKDOOHQJH WR WKH XVH RI WKH &9%(0 %RXQGDU\ HOHPHQW PHWKRGV FDQ DFFRXQW IRU ODUJHVFDOH LQKRPRJHQHLWLHV ZLWKLQ WKH PHGLXP ,QYHVWLJDWLRQ RI WKH UHVXOWLQJ &9%(0 PDWUL[ HTXDWLRQV IRU VROYLQJ PXOWLSO\ FRQQHFWHG GRPDLQV RI LQKRPRJHQHRXV PHGLD DQG WKH VROXWLRQ RI WKHVH PDWUL[ HTXDWLRQV VKRXOG UHYHDO WKH OLPLW RI WKH VFDOHV RI WKH LQKRPRJHQHLWLHV WKDW FDQ EH SUDFWLFDOO\ VROYHG ZLWK WKH &9%(0

PAGE 109

/LQHDU EDVLV IXQFWLRQV ZHUH XVHG WR GHULYH WKH &9%(0 QRGDO DQG LQWHULRUSRLQW HTXDWLRQV +URPDGND KDV RXWOLQHG WKH IRUPXODWLRQ RI WKH &9%(0 XVLQJ KLJKHURUGHU EDVLV IXQFWLRQV $ VWXG\ VKRXOG EH DWWHPSWHG LQ WKH IXWXUH WR DSSO\ KLJKHURUGHU HOHPHQWV WR VROYLQJ SUREOHPV LQ VLPSO\ DQG PXOWLSO\ FRQQHFWHG GRPDLQV 7KH VWXG\ VKRXOG LQFOXGH D FRPSDULVRQ RI WKH DFFXUDF\ UHVXOWLQJ IURP WKH XVH RI KLJKHURUGHU HOHPHQWV WR WKH XVH RI D UHILQHG ERXQGDU\ GLVFUHWL]DWLRQ %RXQGDU\ HOHPHQW IRUPXODWLRQV DUH LGHDOO\ VXLWHG WR VROYLQJ GHVLJQ DQG RSWLPL]DWLRQ SUREOHPV DQG WKH UHFHQW OLWHUDWXUH DERXQGV ZLWK WKH DSSOLFDWLRQ RI WKH 59%(0 WR WKH VROXWLRQ RI VXFK SUREOHPV 7KH &9%(0 VKRXOG SURYH XVHIXO LQ WKH VROXWLRQ RI WZRGLPHQVLRQDO GHVLJQ SUREOHPV $ FRPSDULVRQ RI WKH 59%(0 DQG &9%(0 LQ WKH VROXWLRQ RI VXFK SUREOHPV VKRXOG DOVR EH DWWHPSWHG ,Q WKLV ZRUN D OLPLWHG VWXG\ RI D FRQYHFWLYH SUREOHP LQ WKH DQQXOXV ZDV XVHG WR FRPSDUH WKH 59%(0 WR WKH &9%(0 0RUH H[WHQVLYH VWXG\ LV QHHGHG WR FRPSDUH WKRVH PHWKRGV 8QWLO WKHQ WKH UHODWLYH PHULWV RI WKHVH WZR PHWKRGV FDQQRW EH ILUPO\ HVWDEOLVKHG

PAGE 110

5()(5(1&(6 $PHV:) 1XPHULFDO 0HWKRGV IRU 3DUWLDO 'LIIHUHQWLDO (TXDW L RQV $FDGHPLF 3UHVV 1HZ
PAGE 111

&UXVH7$ f1XPHULFDO VROXWLRQV LQ WKUHH GLPHQVLRQDO HODVWRVWDWLFV f ,QWHUQDWLRQDO -RXUQDO RI 6ROLG 6W UXFWX UHV 9RO )HQQHU57 7KH %RXQGDU\ ,QWHJUDO (TXDWLRQ %RXQGDU\ (OHPHQWf 0HWKRG LQ (QJLQHHULQJ 6WUHVV $QDO\VLV 0HHKDQLFDO (QJLQHHULQJ 3XEOLFDWLRQV /WG /RQGRQ &URXFK6/ DQG 6WDUILHG$0 %RXQGDU\ (OHPHQWV LQ 6ROLG 0HFKDQLFV :LWK $SSOLFDWLRQV WR 5RFN 0HFKDQLFV DQG *HRORJLFDO (QJLQHHULQJf *HRUJH $OHQ DQG 8QZLQ /WG /RQGRQ :UREHO/ DQG %UHEELD&$ %RXQGDU\ HOHPHQWV IRU IOXLG IORZ $GYDQFHV LQ :DWHU 5HVRXUFHV -RXUQDO 9Rf /LJJHWW-$ DQG /LX3/) 7KH %RXQGDU\ ,QWHJUDO (TXDWLRQ 0HWKRG IRU 3RURXV 0HGLD )ORZ *HRUJH $OOHQ DQG 8QZLQ /WG /RQGRQ &UXVH7$ f5HFHQW DGYDQFHV LQ &RPSXWHU 0HWKRGV ERXQGDU\ HOHPHQW LQ $SSLHG DQDO\VLV PHWKRGV 0HFKDQLFV DQG (QJLQHHULQJ 9RO 5L]]R)DQG 6KLSS\'f$ PHWKRG RI VROXWLRQ IRU FHUWDLQ SUREOHPV RI WUDQVLHQW KHDW FRQGXFWLRQ $,$$ -RXUQDO 9ROOOf 7KH X RI &KDQJ<3.DQJ&6 DQG &KHQ'JUHHQfV IXQFWLRQV IRU WKH VROXWLRQ RI SUREOHPV RI KHDW ,QWHUQDWLRQDO -RXUQDO FRQGXFWLRQ LQ DQLVRWURSLF PHGLD RI +HDW DQG 0DVV 7UDQVIHU 9RO :UREH /& DQG WKHUPDO SUREOHPV (GV /HZLV5: :LOH\ DQG 6RQV %UHEEL D&$ f%RXQGDU\ HOHPHQWV LQ 1XPHULFDO 0HWKRGV LQ +HDW 7UDQVIHU 0RUJDQ. DQG =LHQNLHZLF]& 1HZ
PAGE 112

3LQD+*/ DQG )HUQDQGHV-/0 7UDQVLHQW +HDW &RQGXFWLRQ 7RSLFV 5HVHDUFK(G 1HZ
PAGE 113

+URPDGND ,,79 DQG *X\PRQ*/ f$ FRPSOH[ YDULDEOH ERXQGDU\ HOHPHQW PHWKRG GHYH RSPHQW f,QWHUQDWLRQDO -RXUQDO IRU 1XPHULFDO 0HWKRGV LQ (QJLQHHULQJ 9RO +URPDGND ,,79 /LQNLQJ WKH FRPSOH[ YDULDEOH ERXQGDU\ HOHPHQW PHWKRG WR WKH DQDO\WLF IXQFWLRQ PHWKRG f 1XPHULFDO +HDW 7UDQVIHU9Rf 9DQ 'HU 9HHU3 f&DOFXODWLRQ PHWKRG IRU WZR GLPHQVLRQDO JURXQGZDWHU IORZf 5LMNVZDWHUVWDDW &RPPXQLFDW LRQV 1R *RYHUQPHQW 3XEOLVKLQ 2IILFH 7KH +DJXH 1HWKHUODQGV +URPDGND HHPHQW ERXQGDUL ,,79 f7KH FRPSOH[ YDULDEOH ERXQGDU\ PHWKRG GHYHORSPHQW RI DSSUR[LPDWLYH HVf (QJLQHHULQJ $QDO\VLV 9ROOf +URPDGND ,,79 IRU WKH &9%(0 n'HWHUPLQLQJ UHODW (QJLQHHULQJ $QDO\VLV YH HUURU ERXQGV 9ROf +URPDGND 79 *X\PRQ*/ DQG
PAGE 114

+URPDGND ,,79 f3UHGLFWLQJ WZRGLPHQVLRQDO VWHDG\ VWDWH VRLO IUHH]LQJ IURQWV XVLQJ WKH &9%(0 f $60(-RXUQDO RI +HDW 7UDQVIHU 9R /DL & f$QDO\VLV RI VWUDWLILHG IORZ E\ WKH FRPSO YDULDEOH ERXQGDU\HOHPHQW PHWKRGf 3URFHHGLQJV RI ,QWHUQDWLRQDO&RQIHUHQFH RQ &RPSXWDWLRQDO 0HFKDQLFV ,&&0 7RN\Rf (GV
PAGE 115

$33(1',; $ ,03/,&,7 $1' (;3/,&,7 &9%(0 )2575$1 352*5$0 )25 '28%/< &211(&7(' '20$,16 Frrr F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 352*5$0 1$0( &9'%/<)25 7+,6 352*5$0 86(6 7+( ,03/,&,7 25 (;3/,&,7 0(7+2' 2) 62/87,21 ,1 7+( &203/(; 9$5,$%/( %281'$5< (/(0(17 0(7+2' )25 '28%%/< &211(&7(' '20$,16 7+( ,1387 ,6 5($' )520 7+( ),/( '&$8&+<'$7 7+( 287387 ,6 35,17(' 72 7+( ),/( '&$8&+<$16 ,1387 )250$7012'112'4,&+4,&+0$7,&+/2$' ; f < f .7<3(f9$/8(f$1*/(f ; f
PAGE 116

R R R QRQ & ,) TN 63(&,),(' $7 12'( & & ,) KN $1' 7,1)LILO7L 63(&,),(' $7 & & 12'( & & & & 5,1O,f 3+,KN & & & & 5,1,f 36,TN7,1),1,7< & & & & & & 7+,6 352*5$0 86(6 7+( 5287,1( '62/9( *$866,$1 & & (/,0,1$7,21 6,08/7$1(286 (48$7,21 62/9(5 :,7+ & & 3$57,$/ 3,927,1* (48,/,%5$7,21,7(5$7,9( & & 5(),1(0(17 ,6 ',6$%/(' '8( 72 /,0,7$7,216 2) & & $9$,/$%/( +,*+(5 7+$1 5($/r 35(&,6,21 & & & & 0$75,; 67$7,67,&6 $5( &20387(' $1' 287387 ,6 *,9(1 & & )25 7+( 0$75,; 1250 $1' &21',7,21,1* 180%(5 & & 7+( /,1),1,7< 1250 ,6 86(' & & & & 6,1*8/$5 9$/8( '(&20326,7,21 ,6 $9$,/$%/( $1' &$1 %( & & 86(' ,) .$f ,6 /$5*( $'',7,21$//< (;$&7 .$f ,6 & & 3529,'(' ,) 69' ,6 86(' & & & Trrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr& ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f ,17(*(5 ,911f7',0$', 0,(5 ',0(16,21 $$1111f%%11f;;11f71111f511f ',0(16,21 &&11f:11f81111f91111f &20021%/.;11f < 11f.7<3(11f5,111f 5,111f 31111f611f $1*/(11f &20021&+.(41&+.3+,&..36, &20021287287,&+4,/2$' &20021 3,7:23, ',0(16,21 5(;11f5(<11f &20387( 3, 3, '$&26' f 7:23, 'r3, ,1387287387 '$7$ ),/(6 $1' 5($' ,1 '$7$ 23(1),/( n'&$8&+<'$7 n f 23(1),/( n'&$8&+<$16 rf 5($'rf 012' 112'4,&+4,&+0$7,/2$' :5,7(f 012'112'4,&+4,&+0$7 :5,7(f 012'112'4,&+4,&+0$7 )50$7;n &9%(0 352*5$0 )25 '28%/< n n&211(&7(' '20$,16 &9')25 ,; n180%(5 2) /$67 287(5 12'( n ,;n180%(5 2) /$67 ,11(5 12'( n,; n >727$/ +($7 )/2:-,81,7 '(37+rN@ n' ;n ,&+4 n,;n0$75,;n n 287387 &+2,&( n; n 212 287387 0$75,; 287387n f '2 112' 5($'rf ;,f<,f.7<3(,f5,1,f5,1,f

PAGE 117

&$// 68%5287,1( $1*/( 72 &20387( 7+( $1*/(6 %(7:((1 7+( 12'(6 7+,6 ,6 7+( $1*/( 86(' ,1 &20387,1* 7+( 7(50 2876,'( 7+( 6800$7,21 6,*1 ,1 (41 &$// &$1*/(012'112'f 287387 352%/(0 6(7 83 $1' *(20(75< :5,7( r f :5,7(f :5,7(f )250$7;n12'$/ *(20(75< $1' ,1387 9$/8(6n ;n12'(n;f;,ff;f<,ff;n.7<3(,ff; n 5,1,f n ; n5,1,f n ; n$1*/(,f n; r 12 n f '2 112' ,),(4012'f :5,7( r r f ,),(4012'f :5,7( r f :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr'3, :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr'3, )250$7,; ; ,;f ;',; f ,;)f 35(3$5( */2%$/ 0$7,&(6 =(52 $55$<6 :5,7(rf :5,7(rf f=(52,1* $55$<6n '2 11 6,f '2 11 '2 11 3,-f &$// 0$75,; /2$',1* 352*5$0 72 $66(0%/( 7+( &9%(0 (48$7,216 &$// /2$'(5012'112'4f *(7 5($'< 72 &$// *$866,$1 (/,0,1$7,21 6,08/7$1(286 (48$7,21 62/9(5 25 6,1*8/$5 '(&203267,21 62/9(5 ,) .$f!69'(36 ),567 6(7 3$5$0(7(56 $',0 11 7',0 11 1 11 7+(1 287387 )25&,1* 9(&725 0$75,; >3@ $1' )25&,1* 9(&725 ^6` ,1 7+( ,03/,&,7 )2508/$7,21 >3,^3+,36,` ^ 6 ` ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 6.,3 0$75,; (416 287387 ,0$; 11 ,),&+0$7(4f 7+(1 :5,7(rf )250$7,; f 0$75,; (48$7,21 287387 6835(66(' %< ,&+0$7 ff *2 72 (/6( ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 287387 0$75,; 5416 9,$ 0$7287

PAGE 118

R R R '2 11 %%,f 6, f '2 11 $$,-f 3,-f &$// 0$7287$$%%,0$;f (1' ,) &$// ,19'(7 $1' $77(037 72 &20387( 7+( &21',7,21,1* 180%(5 '2 0$; '2 ,0$; $$,-f 3,-f '7150 '(70 :5,7(rrf n &$//,1* ,19'(7n &$// ,19'(7$$'7150'(70f & & &20387( /,1),1,7< 12506 2) 7+( 0$75,; 3@ $1' ,76 ,19(56( & & >3@ 5(7851(' %< ,19'(7 $1' 6725(' $6 >$$@f $1' &20387( & , ,, & 7+( &21',7,21,1* 180%(5 2) 7+( 0$75,; >3@ $6 .3f _3_r_3 & 51250$ 5150$, '2 ,0$; 67 672 '2 ,0$; 67 67'$%6$$,-ff 67 67 '$%63,-f f 5150$, '0$;5150$,672Of 51250$ '0$;O51250$67f :5,7(rf51250$5150$, :5,7(f51250$5150$, )50$7;;n0$75,; 67$7,67,&6n,; n ,; n 1250 >$@ n'; nnO; n1250 $f n'f &21' 51250$r5150$, :5,7(rf '7150&21' :5,7(f '7150&21' )250$7,;;nn,;n.$f a n';n+251(%(&.n n $3352;,0$7,21 72 ,19(56( 2) &21',7,21,1* 180%(5n ;f.$f n';n/,1),1,7< 1250 86(' 72 &20387( .$fnf & F F & &+(&. ,19'(7 %< &203$5,1* : 6,08/7$1(286 (48$7,21 62/9(5 86(' & 72 *(7 62/87,21 6725( ,19'(7 $16:(5 ,1 9(&725 ^5`f§! 8186(' & 12: %< '/8' 6,1&( ,7(5$7,9( 5(),1(0(17 7851(' 2)) & '2 ,0$; 672 '2 ,0$; 672 672$$,-fr6-f 5,f 672 &217,18( & & & & &+(&. &21',7,21,1* 180%(5 .$f 6.,3 69' .$f &$// 69'

PAGE 119

RRR RRQRRR RRR :5,7(rf :5,7(f )250$7,;;f&+(&. &21',7,21,1* 180%(5n; n .$f 2' 6.,3 69' $/*25,7+0; r .$f! 2' &$// 69' $/*25,7+0n f 69'(36 ,)&21'/(69'(36f 7+(1 :5,7( r r f r 6.,33,1* 69'n :5,7( r r f f '2 <28 :$17 72 29(55,'( $1' 67,// 86( 69'"n :5,7(rrf :5,7(rrf n (17(5 72 29(55,'( $1' &$// 69'n :5,7( r r f n 72 352&((' :2 69'n 5($' r r f ,1387 ,),1387(4f *2 72 :5,7( r rf :5,7( r f n6.,33(' 69'n ,&+$/* *2 72 (1',) & & & & & & &$//,1* 6,1*8/$5 9$/8( '(&20326,7,21 62/9(5 *,9( 29(55,'( &+2,&( :5,7( r rf :5,7( r rf :5,7( r r f :5,7(rrf :5,7( r r f :5,7( r r f 5($' r rf n 69'(36 (;&(('(' $1' &$//,1* 69'n n '2 <28 :$17 72 29(55,'( $1' 67,// L (17(5 72 29(55,'( $1' &$// 72 352&((' : 69'n ,1387 ,),1387(4f *2 72 :5,7(rrf 86( *("n *(n &$//,1* 69' :5,7( r r f n &$//,1* 69' 62/9(5n &$// 69'36;;11&&89:f *2 72 &$// *$866,$1 (/,0,1$7,21 6,08/7$1(286 (48$7,21 62/9(5 '62/9( 6(7 )25&,1* 9(&725 $1' 0$75,; 72 %( 6(17 72 62/9(5 '2 1 %%f 6 f '2 ,1 $$,,,-f 3,,,-f :5,7(rf :5,7(rf n&$//,1* *$866,$1 (/,0,1$7,21 6,0(41 62/9(5n &$// '62/9($$%%1$',0 7',07,9;;5,(5f &20387( t 35,17 5(6,'8$/ 9(&725 :5,7(f :5,7(f )250$7,;,;n 5(6,'8$/ $1' 62/87,21 9(&7256n ; n&+. 62/1 :f;f62/1 )520 '/8'n; n,n; n5(6 '8$/n

PAGE 120

RQR RRR RRR R R R R RRR ; n,19'(7n ; n6,0(41 62/9(5n; f n; n; f n; f f '2 1 5(6 6,f '2 1 5(6 5(63,-fr;;-f :5,7(f ,5(65,f;;,f :5,7(f ,5(65,f;;,f )250$7,; n n n',2,; n n f f 6(7 6` (48$/ 72 62/87,21 '2 1 6&,f ;;,f $66,*1 %281'$5< 12'$/ 32,17 9$/8(6 '(3(1',1* 21 +2: /2$',1* :$6 3(5)250(' '2 112' ,).7<3(,f(4f *2 72 5(;,f 5,1O,f 5(<,f 6, f *2 72 5(;,f 6,f 5(<,f 5,1,f &217,18( ,),&+4(4Of 7+(1 4 6f 5(
PAGE 121

QRQ R R (1' & & F &9%(0 6833257 68%5287,1(6 & & Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F & 7+,6 68%5287,1( /2$'6 7+( &9%(0 (48$7,216 ,1 7+( */2%$/ 0$75,; & ,7 $&(66(6 7+( ,0/,&,7 $1' (;3/,&,7 /2$'(56 68%5287,1(6 & ,03 $1' (;3 6(( 7$%/( ,1 ',66(57$7,21 & */2%$/ 0$75,; (48$7,216 >3+;;` ^6` & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F F F F F F F F F F F F F F F 68%5287,1( /2$'(5012'112'4f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021&+.(41&+.3+,&+.36, &20021287287,&+4,/2$' &20021 3,7:23, & &rrrrrrrrrrrrrrrrrr 3(5)250 0$75,; /2$',1* rrrrrrrrrrrrrrrrrrrrrrrrrrrrF & & /2$' 3+, 25 36, (48$7,21 )25 ($&+ 12'( :+(5( 11' & '(3(1',1* 21 7+( 9$/8( 2) .7<3(-f & & 6(7 ,&+(41 /2$' ,03/,&,7 (48$7,21 & 6(7 ,&+(41 /2$' (;3/,&,7 (48$7,21 & 6(7 ,&+(41 /2$' 1(80$11 %& (48$7,21 & 6(7 ,&+(41 /2$' 52%,1 %& (48$7,21 & F :5,7(rf :5,7(rf f/2$',1* ,03/,&,7 (48$7,216 ,1 */2%$/ 0$75,;f '2 O112' & &/2$' ,1 ',$*21$/ &2175,%87,21 $7 ),567 ,172 >3@ $1' ^6` & ,( 7+( 7(506 2876,'( 7+( 6800$7,21 ,192/9,1* 7+( ,00(',$7( & 1(,*+%25 (/(0(176 >--@ $1' --@ & 7$.( ,172 $&&2817 '28%/< &211(&7(' *(20(75< & $ % & ' &+.3+, &+.36, :5,7(rr f :5,7(rr f n/2$',1* 12'$/ (48$7,21 $7 12'( f$66,*1 ,&+(41 )25 /2$',1* 2) 12'$/ (48$7,216 ,)-(4012'f 7+(1 ,&+(41 (/6(

PAGE 122

RQR RRRRRRRRRR RRR RRR RR RRRR ,&+(41 (1' ,) & &/2$' 1(80$11 25 52%,1 %& &21',7,216 $1' 6.,3 &9%(0 /2$',1* /223 & ,) ,&+(41 25 & ,),&+(41(4f &$// 1(80$11-f *2 72 ,),&+(41(4f &$// 52%,1-f *2 72 '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ O ,)-(4Of 012' ,)-(4012'f ,)-(4012'f, 112' ,)-(4112'f 012' ,),/2$'(4f :5,7( r r f n &$//,1* ',$*21$/ /2$'(5r &20387( $1*/(6 $1' &203/(; $/*(%5$ &$// &$8&+012'112'-,.$%&'f /2$' ',$*21$/ 7(50 ,172 7+( 0$75,; (48$7,21 ,),&+(41(4f &$// ,03012'112'-,.$&'f ,),&+(41(4f &$// (;3012'112'-,.$&'f /2$' ,1 7+( 5(0$,1,1* &2817285 (/(0(17 &2175,%87,216 ,( 7+( 7(506 81'(5 7+( 6800$7,21 6,*1 ,192/9,1* (/(0(17 *$000$ 01 M :+(5( 0 Q $1' 1 Q ,1 7+( 127(6 $&&2817 )25 '28%/< &211(&7(' *(20(7(5< $/62 6.,3 7+( &2175,%87,216 2) 7+( ',5(&7 1(,*+%256(/(0(176 ,-@ $1' >-. 7+(6( +$9( $/5($'< %((1 /2$'(' 35,25 72 7+,6 /223 '2 1 112' /2*,& 72 &20387( 1O $&&2817,1* )25 %5$1&+ &87 $1' &,5&8,7 $5281' 7+( '28%%/< &211(&7(' '20$,1 13 1 ,)1(4012'f 13 ,)1(4112'f 13O 012'O &6.,3 ',5(&7 1(,*+%25,1* (/(0(176 ,)1(4-2513(4-f *2 72 &&20387( &203/(; $/*(%5$ ,),/2$'(4f:5,7(rf 113 )250$7; n&$//,1* /2$'(5 )25 *$00$ n n n r @ nf &$// &$8&+012'112'-113$%&'f &/2$' (/(0(17 &2175,%87,21 ,172 0$75,; (4$7,21 ,),&+(41(4Of &$// ,03012'112'-113$&'f ,),&+(41(4f &$// (;3012'112'-113$&'f &217,18( &

PAGE 123

QRQ QQQQQQQ QRQ *(7 5($'< 72 &20387( &2175,%87,216 '8(6 72 6285&(66,1.6 673+, t 6736, &217,18( ;2 ;-f <2 <-f 673+, 6736, 6(( ,) 4 ,6 ,1387 $6 =(52 ,) 62 7+(1 6.,3 6285&( 7(50 &20387$7,21 ,),&+41($1'4(4'f *2 72 &20387( 6285&( 7(50 &2175,%87,216 &$// &$8&+6-012'112'4673+,6736,;2<2f 4 ,6 81.12:1 ,),&+4(4f 7+(1 &&+(&. :+(7+(5 ,03/,&,7 25 (;3/,&,7 (48$7,21 ,6 /2$'(' ,),&+(41(4f 7+(1 &,03/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 3-f 673+, ,).7<3(-f(4Of 3-f 6736, (/6( &(;3/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 3-f 6736, ,).7<3(-f(4Of 3-f 673+, (1' ,) (/6( & &4 ,6 *,9(1 21 ,1387 & &&+(&. :+(7+(5 ,03/,&,7 25 (;3/,&,7 (48$7,21 ,6 /2$'(' ,),&+(41(4f 7+(1 &,03/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6-f 6-f673+, ,).7<3(-f(4Of 6-f 6-f6736, (/6( &(;3/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6-f 6-f6736, ,).7<3(-f(4Of 6-f 6-f673+, (1' ,) (1' ,) & ,),&+(41(4Of 7+(1 ,).7<3(-f(4Of :5,7(rrf ,).7<3(-f(4f :5,7(rrf (/6( ,).7<3(-f(4Of :5,7(rrf ,).7<3(-f(4f :5,7(rrf (1' ,) ,).7<3(-f(425.7<3(-f n&+.36, n&+.36, r &+.3+, n&+.3+, &+.3+, n&+.3+, &+.36, n&+.36, (4$f 7+(1 &+. '2 -11 &+. &+.3---f :5,7(rr f r&+.%& n&+. (1' ,) &217,18(

PAGE 124

QRQ QQR RRQQRRRRR RRRRRRRRRRRRRR RRR ),1,6+(' 0$75,; /2$',1* 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ,03/,&,7 ORDGHU 7+,6 68%5287,1( /2$'6 7+( (/(0(17 &2175,%87,216 ,172 7+( */2%$/ 0$75,; (48$7,21 +(5( 7+( 3257,21 2) 7+( (48$7,21 # 7+( 12'( ,6 /2$'(' 7+( (/(0(17 >01@ ,6 /2$'(' :+(5( 1 0 ,) 0 25 1 -O 7+(1 7+( (/(0(17 ,6 7+( /2*$5,7+0,& rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & & F F F F F F F F F F F F 68%5287,1( ,03012'112'-01$&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, 7+,6 68%5287,1( $66(0%/(6 7+( (/(0(176 ,1 7+( */2%$/ 0$75,; 3 :,7+ 9(&7256 2) &2167$176 f6 7+$7 ,6 ,7 /2$'6 /,1( %< /,1( 7+( ,03/,&,7 )2508/$7,21 2) (41 )25 '28%/< &211(&7(' '20$,16 )25 ($&+ 12'( -f ,7 /2$'6 ,1 7+( ,0$*1$5< 3$57 2) 7+( (48$7,21 )25 12'(6 :,7+ .7<3( HTQ LQ WKH QRWHVf $1' 7+( 5($/ 3$57 )25 12'(6 :,7+ .7<3( HT LQ WKH QRWHVf 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -3 -0 -O ,)-(4Of -0O 012' ,)-(4012'f -3 ,)-(4012'f-0O 112' ,)-(4112'f -3O 012'O &20387( 1(,*+%25,1* 32,176 $1' &+(&. ,) 7+(< $5( 7+( ',5(&7 1(,*+%256 2) ,)0(4-0251(4-3f *2 72 & &/2$',1* $ 6800$7,21 7(50 ,172 3@ $1' ^6` & &20387( 7+( &2167$176 86(' ,1 7+( 6800$7,21 7(50 & & ,),/2$'(4f :5,7(rf-01 )250$7n /2$',1* 6800$7,21 7(50>-01@ r,;ff & ;-f;0ffr&<-f<0ffr' & ;-f;0ffr'<-f<0ffr& & ;-f;1ffr&<-f<1ffr'

PAGE 125

RQR RRR R R R R & ;-f;1ffr'<-f<1ffr& &7:3, &7:3, &7:23, &7:3, $66,*1 &2()),&,(176 72 7+( 9$5,$%/(6 ,1 7+( 6800$7,21 7(50 ),567 &+(&. 7+( 7<3( 2) 81.12:1 $7 7+( ',$*21$/ 3+, 25 36, *,9(1 ,).7<3(-f(4f *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 67$7( 9$5,$%/( 3+,.7<3( 86( (48$7,21 ,1 7+( 127(6 ,0$*,1$5< 3$57 2) && && && && *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 675($0 )81&7,21 36,.7<3( 86( (48$7,21 ,1 7+( 127(6 5($/ 3$57 2) && && && && & & /2$' 7+( 6800$7,21 7(50 &2175,%87,21 ,172 >3@ $1' ^6` )25 & (/(0(17 >01f :+(5( 0 $1' 1 127 (48$/ 72 $1' 1 0 & $&&25',1* 72 $ 326,7,9( &2817(5&/2&.:,6( 180%(5,1* &219(17,21 & & &+(&. :+$7 +$5021,&3+, 25 36,,6 63(&,),(' $7 12'(6 0 $1' 1 & &&+(&. 12'( 0 ),567 & ,) .7<3(0f(4f *2 72 & 67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 0.7<3( 6-f 6-f&&r5,10f 3-0f 3-0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 0.7<3( 6-f 6-f&&r5,10f 3-0f 3-0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) &&+(&. 12'( 1 1(;7 ,).7<3(1f(4 f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 1.7<3( 6-f 6-f&&r5,11f 3-1f 3-1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6(

PAGE 126

QR QR QRRQ RQ &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 1.7<3( 6-f 6-f&&r5,11f 3-1f 3-1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 & F & %281'$5< (/(0(17 %(,1* /2$'(' &217$,16 & 12'( ,( /2$',1* ',$*21$/ &2175,%87,216 & F &&+(&. 7<3( 2) ',$*21$/ 81.12:1 & & $= $7:23, %= 7:23,$1*/(-ff7:23, ,),/2$'(4Of :5,7(rf--0--3 )250$7rn /2$',1* ',$*21$/ 7(50 )25 12'(n f *$00$>,-.@f,;ff ,).7<3(-f(4f *2 72 67$7( 9$5,$%/( 3+,f 63(&,),(' $7 12'( -.7<3( 3--f %=O' 6-f 6-f$=r5,1f f &+.36, &+.36,$=%= *2 72 675($0 )81&7,21 nf36,f 63(&,),(' $7 12'( +-f.7<3( 3 f %=r 6-f 6-f$=r5,1-f f &+.3+, &+.3+,$=%= ),1,6+(' /2$',1* 7+( (/(0(17 &217,18( 5(7851 (1' & & &rrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF F F F F F F F F F (;3/,&,7 /2$'(5 7+,6 68%5287,1( /2$'6 7+( (/(0(17 &2175,%87,216 ,172 7+( */2%$/ 0$75,; (48$7,21 +(5( 7+( 3257,21 2) 7+( (48$7,21 # 7+( 12'( -f ,6 /2$'(' 7+( (/(0(17 > 0 1 @ ,6 /2$'(' :+(5( 1 0 ,) 0 25 1 7+(1 7+( (/(0(17 ,6 7+( /2*$5,7+0,& & & & & F F F F F &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF & &

PAGE 127

QQRQRRQ RRQRRQQR RRR 68%5287,1( (;3012'112'-01 $&'f ,03/,&,7 '28%/( 35(&,6,21 $+a=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3, 7:23, & & 7+,6 68%5287,1( $66(0%/(6 7+( (/(0(176 ,1 7+( */2%$/ 0$75,; & 3 :,7+ 9(&7256 2) &2167$176 6 7+$7 ,6 ,7 /2$'6 /,1( & %< /,1( 7+( ,03/,&,7 )2508/$7,21 2) (41 )25 '28%/< & &211(&7(' '20$,16 )25 ($&+ 12'( ,7 /2$'6 ,1 & 7+( ,0$*1$5< 3$57 2) 7+( (48$7,21 )25 12'(6 & :,7+ .7<3( HTQ LQ WKH QRWHVf $1' 7+( 5($/ 3$57 )25 & 12'(6 :,7+ .7<3( HT LQ WKH QRWHVf & 7:23, r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -3 -0 -O ,)-(4Of -0O 012' ,)-(4012'f -3 ,)-(4012'f-0 112' ,)-(4112'f -3O 012'O &20387( 1(,*+%25,1* 32,176 $1' &+(&. ,) 7+(< $5( 7+( ',5(&7 1(,*+%256 2) -f ,)0(4-0O251(4-3f *2 72 /2$',1* $ 6800$7,21 7(50 ,172 >3@ $1' ^6` &20387( 7+( &2167$176 86(' ,1 7+( 6800$7,21 7(50 ,),/2$'(4Of :5,7(rf-01 / )250$7 /2$',1* 6800$7,21 7(50-01@ };,ff & ;-f;0ffr&<-f<0ffr' & ;-f;0ffr'<-f<0ffr& & ;-f;1ffr&<-f<1ffr' & ;-f;1ffr'<-f<1ffr& *O &7:23, &O7:23, &7:23, &7:23, $66,*1 &2()),&,(176 72 7+( 9$5,$%/(6 ,1 7+( 6800$7,21 7(50 ),567 &+(&. 7+( 7<3( 2) 81.12:1 $7 7+( ',$*21$/ 3+, 25 36, *,9(1 ,).7<3(-f(4Of *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 67$7( 9$5,$%/( 3+,.7<3( 86( (48$7,21 36, && && && && *2 72 &

PAGE 128

R R 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 675($0 )81&7,21 36,.7<3( 86( 3+, (48$7,21 && && && && & &/2$' 7+( 6800$7,21 7(50 &2175,%87,21 ,172 >3@ $1' ^6` )25 & (/(0(17 >01@ :+(5( 0 $1' 1 127 (48$/ 72 $1' 1 0 & $&&25',1* 72 $ 326,7,9( &2817(5&/2&.:,6( 180%(5,1* &219(17,21 & & &+(&. :+$7 +$5021,&3+, 25 36,,6 63(&,),(' $7 12'(6 0 $1' 1 & &&+(&. 12'( 0 ),567 & ,) .7<3(0f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 0.7<3( 6-f 6-f&&r5,10f 3-0f 3-0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 0.7<3( 6-f 6-f&&r5,10f 3-0f 3-0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+, && && (1' ,) &&+(&. 12'( 1 1(;7 ,).7<3(1f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 1.7<3( 6-f 6-f&&r5,11f 3-1f 3-1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 1.7<3( 6-f 6-f&&r5,11f 3-1f 3-1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&& && (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 & F & %281'$5< (/(0(17 %(,1* /2$'(' &217$,16 & 12'( ,( /2$',1* ',$*21$/ &2175,%87,216 & F & &+(&. 7<3( 2) ',$*21$/ 81.12:1

PAGE 129

QR RQR RRRRR QR RQ $= $7:3, %= 7:23,$1*/(-f -7:23, ,),/2$'f(4f :5,7(rf--0--3 )250$7n /2$',1* ',$*21$/ 7(50 )25 12'(r r *$00$>,-.@ r,;, f f ,).7<3(-f(4f *2 72 67$7( 9$5,$%/( 36, 63(&,),(' $7 12'( -.7<3( 3--f $= 6-f 6-f%=fr5,1-f &+.36, &+.36,$=%= *2 72 675($0 )81&7,21 3+, 63(&,),(' $7 12'( -.7<3( 3--f $= 6-f 6-f%=fr5,1-f &+.3+, &+.3+,$= %= ),1,6+(' /2$',1* 7+( (/(0(17 &217,18( 5(7851 (1' & Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 1(80$11 %& (48$7,21 /2$'(5 81&200(17(' 7+,6 5287,1( $1' /2$' $&&25',1* 72 /2&$7,21 2) 36,n6 ,1 */2%$/ 0$75,; rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( 1(80$11012'112'-01$&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, &20387( '6 $1' 68064 -0O '; ;-f;-0f '< <-f<-0f ';64 ';r'; '<64 '
PAGE 130

& ,36,& ,36,-0 -0 & 3-,36,-f O' & 3-,36,-0Of O' & 5(7851 & (1' & & TrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrT & & & & & Fr r r F F F F F F F F F F F F F F F F F F F F F F 52%,1 %& (48$7,21 /2$'(5 & 81&200(17 7+,6 5287,1( 72 86( $&&25',1* 72 %&f6 & $1' 3+, $1' 36, /2&$7,216 ,1 7+( */2%$/ 0$75,; & & rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre & 68%5287,1( 52%,1012'112'-01$&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, &20387( '6 $1' 6807,1) -0 -O '; ;-f;-0f '< <-f<-0f ';64 ';r'; '<64 '
PAGE 131

R R & 68%5287,1( 72 &20387( $1*/(6 %(7:((1 7+( $'-$&(17 & 12'(6 $1*/(n-f 86(' ,1 /2$',1* ',$*21$/ 7(506 & 2) (41 &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F F F F 68%5287,1( &$1*/(012'112'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021 3,7:23, '2 112' '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ ,)-(4Of 012' ,)-(4012'f ,)-(4012'f, 112' ,)-(4112'f 012'O & &20387( 326,7,21 2) 7+( (1'32,176 2) 1(,*+%256 5(/$7,9( 72 ;, ;,f;-f <, <,f
PAGE 132

QRQ RQRRQRRR RQRRR QRQ QRQ & 7+( &2167$176 $%&' '(),1(' ,1 7+( (41 21 3$*( & ,QRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ & WKLV SURJUDP HJ LQ SURJUDP &$8+@ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021 3,7:23, & &20387( $1' 6725( r3, 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -0 -3 ,)-(4Of -0O 012' ,)-(4012'f -3 ,)-(4012'f-0O 112' ,)-(4112'f -3O 012'O &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<-ffrr;1f;-ffrrf ;/0 '6457<0f<-ffrr;0f;-ffrrf $ '/2*;/1;/0f &+(&. ,) '($/,1* :,7+ (/(0(176 >--@ $1' >--@ ',$*21$/ 7(50 ,)0(4-0O251(4-3f *2 72 '($/,1* :,7+ (/(0(17 >01@ $1' 12'$/ 32,17 6800$7,21 7(50 '(7(50,1( $1*/( *(20(75< =0; ;0f;-ff =0< <0f<-ff =1; ;1f;-f f =1< <1f
PAGE 133

RRR RRRRRRRRRR & $r;1f;0ff%r<0f<1ff %r;1f;0ff$r<0f<1ff & &) ') 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 287387 68%5287,1( )25 7+( &9%(0 (67,0$7( 2) 81.12:1 12'$/ 9$/8(6 3+, $1' 36, $7 7+( %281'$5< rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( 287387012'112'5(;5(<4f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,1O11f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021 3,7:23, ',0(16,21 5(;11f5(<11f 7+,6 68%5287,1( 2873876 5(68/76 :5,7(f :5,7(f )250$7;n&$8&+< 352*5$0 5(68/76 )25 12'$/ 9$/8(6rf ,),&+4(4Of 7+(1 :5,7(rrf r 4 r4 :5,7(2rf r 4 r 4 (1' ,) :5,7(f :5,7(2f )250$7,;;f12'(f;f67$7(n;n675($0n ; n180%(5n; n9$5,$%/(n; n)81&7,21n f '2 112' ,) (4 012'f :5,7(2rf ,) (4 012' f :5,7(2rf :5,7(rf,5(;,f5(<,f :5,7( f,5(;,f5(<,f )250$7;,;',;ff &217,18( 5(7851 (1' & & & & & F F F F F F F F rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 7+,6 68%5287,1( &20387(6 7+( 9$/8(6 2) 7+( 675($0 )81&7,21 67$7( 9$5,$%/( $7 7+( 12'(6 2) 7+( 352%/(0 *(207(5< 7+,6 ,6 $&&203/,6+(' %< 86,1* 7+( *,9(1 12'$/ 9$/8(6 $1' 7+( &9%(0 (67,0$7(' 12'$/ 9$/8(6 )25 7+( 81.12:1 9$/8(6f $1' 7+( &9%(0 $3352;,0$7,21 72 &$8&+
PAGE 134

QRQ QRQ QRQ RRRQ QRQ 68%5287,1( +20,5(;5(<012'112'4f ,03/,&,7 '28%/( 35(&,6,21$+=f 3$5$0(7(511 f &20021%/.;11f <11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021 3,7:23, ',0(16,21 +,;11f+<11f5(;11f5(<11f 0$,1 /223 '2 O112' +;-f +<-f :5,7(f :5,7(f )250$7;n&9%(0 $3352;,0$7,21 2) 12'$/ 9$/8(6f ;n12'( 67$7( 675($0nf '2 112' &20387( %281'$5< &2175,%87,216 '2 112' 6.,3 $7 7+( (1' 2) 7+,6 /223&20387( $1' $'' 35,1&,3/( 9$/8( .. ,).(4012'f .. ,).(4112'f .. 012'O ,).(4-25..(4-f *2 72 &$// &$8&+012'112'-...$%&'f &O 5(;..fr;-f;.ff5(<..fr<-f<.ff 5(;.fr;-f;..ff5(<.fr<-f<.. f f & 5(;..fr<-f<.ff5(<..fr;-f;.f f 5(;.fr<-f<..ff5(<.fr;-f;..ff +;-f +;-f&r&&r' +<-f +<-f&r'&r& &217,18( &$/&8/$7( 35,1&,3/( 9$/8( &2175,%87,21 -0 -O -3 ,)-(4Of -0 ,)-(4012'f -3 ,)-(4012'f -0 ,)-(4112'f -3 ;/1 '6457<-3f< ;/0 '6457<-0f< $'/2*;/1;/0f %7:23,$1*/(-f +;-f +;-f 5(;+<-f +<-f5(;012' 112' 012' -f f rr;-3f;-ffrr;-0Of;r$-5(<-fr%r%-5(<-fr$ffrrf ffrrf ',9,'( %< r3,rL 7(03 +;-f 7:23, 'r3, +;-f +<-f7:23, +,<-f 7(037:23 &20387( &2175,%87,216 '8(6 72 6285&( 52 O'

PAGE 135

& 5, ,)4(4 r 3 f *2 72 ;2 ;-f <2
PAGE 136

RQR RRR RR RRRRRR F F F F F F ,7 7+(1 32,17 ;*<&f $1 ,17(5,25 32,17 ,) .22 7+(1 32,17 ;2<2f ,6 $ %281'$5< 32,17 &+(&. ,) 32,17 ,6 $1 ,17(5,25 32,17 ,) .(42f *2 72 &+(&. ,) ,6 $ %281'$5< %5$1&+ 12'( 25 012' ,).(425.(4012'f *2 72 ,6 $1 25',1$5< %281'$5< 12'( ;2 ;.f <2 <.f ,) 012' /226( 7+( ),567 7(50 ,).(4012'f *2 72 ,6)/$* 1 0 012' &$// &$8&+401$%&',6)/$*;2<2f & & ' ,) 112' /226( /$67 7(50 ,).(4112'f *2 72 ,6)/$* 1 012'O 0 112' &$// &$8&+401$%&',6)/$*;2<2f & & ' r r &20387( $ $1' % & & & & & ,6)/$* 1 012'O 0 &$// &$8&+401$%&',6)/$*;2<2f $6 $ %6 % 672;O ⩔2;012'ff',r<2<012' 672; & r;2;112'f f'r<2<112' 672
PAGE 137

; ;f <2 < f &$// &$8&+4+ 1 $ %&',6)/$*;2<2f $6 $ %6 % &20387( 6(&21' 7(50 6)/$* 1 012' O 0 112' &$// &$8&+401$%& ',6)/$*;2<2f & & ' 672; & r;2;112'f f'r<2<112'f f 672< & r<2<112'f f'r;2;112'ff 673+, $6672;fr47:23, 6736, %6672
PAGE 138

R R R QR QRQ RRRRRRRRRRR RQR RRR ' r &20387( $ $1' % ,6)/$* 1 01' 0 &$// &$8&+201$%&',6)/$*;2<2f $6 $ &20387( 6285&( 7(50 &2175,%87,216 72 $1 ,17(5,25 32,17 67; &r;2;012'ff'r<2<012'ff 672; & r;2;112'f f' r<2<112'ff 67< &r<2<012'ff'r;2;012'ff 672< &r<2<112'ff'r;2;112'ff 673+, 672;672;$6fr47:23, 6736, 672<672<%6fr47:23, 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 7+,6 68%5287,1( 2873876 7+( %281'$5< (/(0(17 *(20(75,& 9$/8(6 )25 7+( 6285&( 7(50 &2175,%87,216 ,7 ),567 &20387(6 7+( ',67$1&(6 G1-f $1' G0-f #7+( 32,17:+(5( 0 1 7+(1 ,7 &20387(6 7+( $1*/( 7+(7$MMf $1' 7+( &2167$176 $%&' '(),1(' ,1 7+( (41 21 3$*( >QRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ WKLV SURJUDP HJ LQ SURJUDP &$8+@ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+4 0 1 $ % & 6)/$* ;2 <2 f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021 3,7:23, &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<2frr;1f;2frrf ;/0 '6457<0f<2frr;0f;2frrf $ '/2*;/1;/0f '(7(50,1( $1*/( *(20(75< =0; ;0f;2f =0< <0f<2f =1; ;1f;2f =1< <1f<2f &$// &$8&+=1;=1<$1*/(1f &$// &$8&+=0;=0<$1*/(0f % $1*/(1$1*/(0 $&&2817 )25 35,1&,3$/ 9$/8( 2) 7+( /2*$5,7+0 7+( %5$1&+ &87 7$.(1 68&+ 7+$7 3,7+(7$ 3, ,)%/(3,f % %7:23, ,)%*73,f % %7:23, ,),6)/$*(4f 5(7851 &

PAGE 139

& &20387( 7+( &2167$176 & ) ;1f;0ffrr<1f<0ffrr & $r;1f;0ff%r<0f<1ff %r;1f;0ff$r<0f<1ff & &) ') 5(7851 (1' & errrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre F F & 0$7287 287387 2) 0$75,; (48$7,216 68%5287,1( F & & & 7+,6 5287,1( 2873876 ,1 7$%8/$5 )250 2) ,0$; [ 7+( & & &2()),(17 0$75,; > $$ @ 7+(1 7+( 5+6 9(&725 ^%%` $1' 7+( & & /,1),1,7< 1250 2) >$$@ & & & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 68%5287,1( 0$7287$$%%,0$;f ,03/,&,7 '28%/( 35(&,6,21$+2=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f ',0(16,21 $$1111f%%11f ,17(*(5 ,&2/f & & :5,7(f :5,7(f )250$7,;,;n7+,6 ,6 0$75,; >3@nf .7 '2 ,0$; ,&2/f .7 ,),&2/f*7,0$;f *2 72 '2 ,/ ,&2/,/f ,&2/,/f .73 .7 ,).73*(,0$;f .73 ,0$; :5,7(f ,&2/,f, f :5,7(f ,&2/,f f )250$7,;;;ff :5,7(f :5,7(f )250$7,;ff '2 ,0$; :5,7(f ,$$,-f.7.73f :5,7(f ,$$,-f.7.73f )250$7r r, n n f n f f &217,18( .7 .7 :5,7(f :5,7(f )250$7,;;n7+,6 ,6 9(&725 ^6`,;nnf ; n ^6 !n ; r .7<3(,f f; n680-$,-ff f; r680 _$,-f _frf & & ,1,7,$/,=( 12506 51250$ 5150$,

PAGE 140

'2 0$; 67& & 'U2 67 '2 ,0$; 67 67O'$%6$$,f f 67 67$$,-f 5150$ '0$;51250$672Of :5,7(f ,%%,f.7<3(,f6767 :5,7(2 f ,%%, f .7<3( f 6767 )250$7; f n r',2 } f ;, ; f n ',2 } f f f & (1' 2) 0$75,; (48$7,21 28387 5(7851 (1' & & & 6,08/7$1(286 (48$7,216 62/9,1* /,%5$5< & & & 5287,1(6 &$1 %( $&&(66(' & & & & '62/9( /8 '(&20326,7,21 : %$&.6867,787,21 & & ,19'(7 ,19(57 0$75,; : *$866,$1 (/,0,1$7,21 & & 3$57,$/ 3,927,1* $1' (48,/,%5$7,21 & & 69' 6,1*8/$5 9$/8( '(&20326,7,21 : & & %$&.68%67,787,21 & & & & & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre & F & O '62/9( VLPXOWDQHRXV HTXDWLRQ VROYHU & & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF & & & 7+,6 68%5287,1( 62/9(6 7+( $',0;1 6<67(0 2) (48$7,216 $; % & & 9,$ /8 '(&20326,7,21 3$57,$/ 3,927,1* $1' :,7+ ,7(5$7,9( & & 5(),11(17 & & 0$,1 352*5$0 0867 ',0(16,21 '28%/( 35(&,6,21 & & $$',01f77',01f%1f;1f51f & & 0$,1 0867 ',0(16,21 ,17(*(5 ,91f & & 0$,1 0867 '(&/$5( ,17(*(5 7',0$',0,(5 & & & & 1 25'(5 2) 6<67(0 2) (48$7,216 & & 7',0 5:2 ',0(16,21 2) $55$< >7@ & & 7 7:2 ',0(16,21$/ $55$< &217$,1,1* 7+( /8 '(&20326,7,21 & & 2) 7+( &2()),&,(17 0$75,; )520 68%5287,1( '/8' & & ,9 9(&725 &217$,1,* 7+( ,17(5&+$1*( ,1)250$7,21 & & *(1(5$7(' %< 7+( 68%5287,1( '/8' '85,1* 7+( /8 & & '(&20326,7,21 2) 7+( &2()),&,(17 0$75,; & & % 9(&725 &217$,1,1* 7+( 5,*+76,'( 2) 7+( 6<67(0 2) & & /,1($5 (48$7,216 21 ,1387 $1' 7+( 62/87,21 21 287387 & & & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr4 68%5287,1( '62/9($%1$',07',07,9;5,(5f ,03/,&,7 '28%/( 35(&,6,21 $+=f ,17(*(5 ,(5,91f$',07',0 ',0(16,21 $$',0 1f77',01f%1f;1f51f &$// '/8'1$',0$7',07,9f &$// ',51$',0 $ 7',07,9;%5,(5f 5(7851 (1' 68%5287,1( '/8'1 $',0$7',07,9f

PAGE 141

r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 4 & 7+,6 68%5287,1( 3(5)2506 /8 '(&20326,7,21 2) 0$7,; >$@ & 4r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr +4 ,03/,&,7 '28%/( 35(&,6,21$+2=f ,17(*(5 1$',07',0,(5,91f,-..3/ ',0(16,21 $$',01f 7 7',01f ,) $',0/71f *2 72 '2 1 '2 1 7,-f $,-f &217,18( ,91f '2 1 3,9 '$%67..ff ,) .*(1f *2 72 / .3 '2 .31 ,) 3,9*('$%67,.fff *2 72 3,9 '$%67,.ff / &217,18( 9.f / 703 7/. f ,) .1(/f *2 72 ,) 3,9*7'f *2 72 ,91f *2 72 &217,18( ,91f ,91f 7/.f 7.. f 7..f 703 &217,18( 703 703 '2 .31 7,.f 7,.f703 '2 .3 1 703 7/-f 7/-f 7.-f 7.-f 703 '2 .31 7,-f 7,-f7,.fr703 &217,18( &217,18( ,) 3,9(4'f ,91f 5(7851 (1' & 4r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 4 & & & 7+,6 68%5287,1( 62/9(6 7+( 6<67(0 ,$@^;` ^%f 86,1* ,7(5$7,9( & & 5(),10(17 $1' 7+( /8 '(&20326,7,21 2) $ 3529,'(' 9,$ & & 68%5287,1( '/8' 6(( 5$/6721 $1' 5$%,12:,7= )25 7+( ,7(5$7,9( & & 5(),1(0(17 $/*25,7+0 & & & & +2:(9(5 +(5( 7+( ,7(5$7,9( 5(),1(0(17 ,6 7851(' 2)) %< & & 6(77,1* ,(5 %(&$86( 48$'583/( 35(&,6,21 ,6 81$9$,/$%/( & & ,1 06)2575$1 & 4rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr4 F

PAGE 142

R R R R F F 68%5287,1( ',51$',0$7',07,9;%5,(5f ,03/,&,7 '28%/( 35(&,6,21$+2=f ,17(*(5 ,1$',07',0,(5,91f ',0(16,21 $$',01f77',01f % 1 f ; 1 f 5 1 f '28%/( 35(&,6,21 487;151 (5 '2 1 ;,f %,f ,) ,91f(42f 5(7851 4827O'2 &$// '%617',07,9;f ,),(5(42f 5(7851 &$// '$;0%1$',0$;%5f &$// '%617',07, 95f ,(5 ,(5 ;1 51 '2 1 ;1 ;1'$%6;,ff 51 51'$%65,ff ;,f ;,f5, f ,) ;1*7'f 51 51;1 ,) 5151f/(4827f *2 72 ,(5 ,(5 5(7851 &217,18( 4827 51O ,) '51f1('f *2 72 5(7851 (1' 68%5287,1( '%617',07,9%f 7+,6 68%5287,1( 62/9(6 >$@^;` ^%` %< %$&.:$5' 68%6,787,21 & 86,1* 7+( /8 '(&20326,7,21 2) $ 3529,'(' %< 68%5287,1( '/8' & rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre ,03/,&,7 '28%/( 35(&,6,21$+2=f ,17(*(5 17',0,91f,..3/ ',0(16,21 77',01f%1f '2 1 ,) .*(1f *2 72 / ,9.f 703 %/f %/f %.f %.f 703 .3 '2 .31 %,f %,f7,.fr703 &217,18( 1 %.f %.f7..f ,) ./(Of *2 72 703 %.f .3 . '2 %,f %,f7,.3fr703 *2 72 5(7851

PAGE 143

(1' 68%5287,1( '$;0%1$',0$;%5f 4r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr N rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrT & 7+,6 68%5287,1( &$/&8/$7(6 7+( 5(6,'8$/ 9(&725 & & ^5 $@^;`^%` & & 127( )25 7+,6 72 %( 86()8/ 0867 86( +,*+(5 25'(5 35(&,6,21 & & 7+$1 ,1 7+( 27+(5 68%5287,1(66(( %85'(1)$,5(6$1' & & 5(<12/'6 180(5,&$/ $1$/<6,633 (63 & 4r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr e ,17(*(5 1$',0 & +(5( 7+( $55$<6 $1' 9(&7256 6+28/' %( '(&/$5(' +,*+(5 25'(5 & 35(&,6,21 7+$1 '28%/( 35(&,6,21 '28%/( 35(&,6,21 $$',01f;1f%1f51f & +(5( '28%/( 35(&,6,21 $55$<6 $1' 9(&7256 6+28/' %( &219(57(' & 72 +,*+(5 35(&,6,21 %()25( &20387$7,21 '2 1 5,f '2 1 5,f 5,f$,-fr;-f 5,f 5,f%,f 5(7851 (1' Frrrrrrrrrrrrrrrrrrrrrrrrrr ),1,6+ '/8' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF & & & r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrA & & F ,19'(7 68%5287,1( 72 &20387( ,19(56( 2) $ 0$75,; & & & Ar rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 4 & 68%5287,1( &20387(6 7+( ,19(56( 2) $1 1[1 0$75,; &f & & $1' 5(78516 7+( ,19(56( ,1 &O 7+( 0(7+2' 86(' ,6 & & *$866-25'$1 (/,0,1$7,21 :,7+ 3,927,1* $1' (48,/,%5$7,21 & & & & 7+( '(750,1$17 2) >&@ ,6 5(7851(' ,1 '(70 & & 7+( '(7(50,1$17 ',9,'(' %< 7+( (8&/,'($1 1250 2) >&@ ,6 & & 5(7851(' $6 '7150 ,) 7+,6 180%(5 ,6 60$// 7+( 0$75,; ,6 & & ,//&21',7,21(' & & & & 5() +251(%(&. 180(5,&$/ $1$/<6,6 33 & 4r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 4 & & 68%5287,1( ,19'(7&'7150'(70f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f ',0(16,21 &1111f-11 f 1 11 & & &20387( 7+( (67,0$7( 72 7+( (8&/,'($1 1250 & 3' '2 / 1 '' '2 1 '' ''&/.fr&/.f '' '6457''f 3' 3'r'' & ,19(57 0$75,; $1' &20387( '(7(50,1$17 &

PAGE 144

R R R R R R R '(70 '2 / 1 -/f / '2 / 1 && 0 / '2 / 1 ,) '$%6&&f'$%6 & / f f f *('f *2 72 0 && &/.f &217,18( ,)/(40f *2 72 -0f -0f -/ f -/f '2 1 6 &./f & / f &.0f &.0f 6 &//f '(70 '(70r&& '2 0 1 &/0f &/0f&& '2 0 1 ,)/(40f *2 72 && &0/f ,)&&(4'f *2 72 &0/f '2 1 &0.f &0.f&&r&/.f &217,18( &217,18( '2 / 1 ,)-/ f (4/f *2 72 0 / 0 0 ,)-0 f (4/f *2 72 ,)1*70f *2 72 -0f -/ f '2 O1 && &/.f &/.f &0.f &0.f && -/f / &217,18( '(70 '$%6'(70f '7150 '(703' 5(7851 (1' 68%5287,1( 72 62/9( ,//&21',7,21(' 6<67(0 2) (48$7,216 7+,6 5287,1( 62/9(6 7+( 6<67(0 >$@^;` ^%! %< 7+( 6,1*8/$5 9$/8( '(&20326,7,21 2) >$f $1' 68%6(48(17 %$&.68%6,787, 21 2) 02',),(' (,*(19(&725 R R R Q R R R

PAGE 145

X X X XXXXXXR XXXR F F & 7+,6 68%5287,1( 3(5)2506 7+( 6,1*8/$5 9$/8( '(&20326,7,21 2) & & 7+( &2()),&,(17 0$75,; >$@ & & 3520376 7+( 86(5 )25 7+( (*,(19$/8(6 72 ',6&$5' & & (36 60$//(67 (,*(19$/8( .(37 0$.( 7+,6 2) 7+( 25'(5 2) & & 7+( 35(&,6,21 2) $5,7+0(7,& 86(' (36 ( +(5( ,6 *22' & & 3(5)2506 %$&. 68%67,787,21 :02',),(' (,*(19(&725 & & &20387(6 (;$&7 &21',7,21,1* 180%(5 $6 5$7,2 2) /$5*(67 72 & & 60$//(67 (,*1(9$/8(6 & & & & 5() 1XPHULFDO 5HFLSLHV WKH DUW RI 6FLHQWLILF &RPSXWLQJ & & &DPEULGJH 3UHVV & & & FrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF F 68%5287,1( 69'$%;13&89:f ,03/,&,7 '28%/( 35(&,6,21 $+=f ',0(16,21 $1313f%13f81313f:13f ',0(16,21 91313f&13f;13f672:f 1 13 0 &RS\ $ LQWR 8 '2 1 '2 / 1 8 / f $ / f &217,18( / &217,18( 'HFRPSRVH PDWUL[ $ &$// 69'&038111313:9f )LQG PD[LPXP VLQJXODU YDOXH DQG PLQLPXP VLQJXODU YDOXH :0$; :0,1 '2 1 :0$; '0$;:0$;:. f f :0,1 '0,1:0,1:. f f &217,18( &RPSXWH DQG RXWSXW WKH FRQGLWLRQLQJ QXPEHU RI WKH PDWUL[ GHILQHG DV WKH UDWLR .$f :0$;:0,1 :5,7(rrf :5,7(rf :5,7(rr,;$fnf n6LQJXODU YDOXH YHFWRU f :5,7(n,;$fnf n6LQJXODU YDOXH YHFWRU n :5,7(rn;(fff :.f 1f :5,7(n;(fnf :.f 1f &21'12 :0$;O:0,1O :5,7(rf :0$;:0,1&21'12 :5,7(f :0$;:0,1&21'12 )250$7,;,;n0$;,080 6,1*8/$5 9$/8( 2) >$@ n' ;n0,1,080 6,1*8/$5 9$/8( 2) >$@ n' ;n.$f n';n5(68/7 )520 69'nf :5,7( r rf rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

PAGE 146

Q Q Q QRQ QQ QRQ QRQ 5($' r r f 6725( 6,1*8/$5 9$/8(6 72 5('2 62/1 '2 1 672:.f :.f LQSXW (36 DQG GHILQH 6+$//f :5,7( r r f f,1387 (36 )25 69'f 5($' r r f (36 :0,1 :0$;r(36 :5,7(f (36:0,1 )250$7;;fO;n69' 62/1 : (36 n' ;n5(-(&7,1* YMf n'f 6(7 :,f 6725(' :,f '2 1 :.f 672:.f =HUR WKH VPDOO VLQJXODU YDOXHV '2 1 ,) :.f/7:0,1f :.f &217,18( %DFNVXEVWLWXWH IRU HDFK ULJKWKDQG VLGH YHFWRU '2 / 0 :5,7(rf;$,f n f f9HFWRU QXPEHU n/ :5,7(n,;$, f f f n9HFWRU QXPEHU n/ '2 13 &.f %.f &217,18( &$// 69%.6%8:911I1313 & ;f :5,7(rrf n 6ROXWLRQ YHFWRU LVn :5,7( r n ;)f n f ;.f 1f :5,7( r r f n 2ULJLQDO ULJKWKDQG VLGH YHFWRUn :5,7( r n ;)f n f &.f 1f :5,7( r r f n 5HVXOW RI PDWUL[frVROnnQ YHFWRUfn :5,7( r f n 6ROXWLRQ YHFWRU LVn :5,7( n ;)f n f ;.f 1f :5,7(rf n 2ULJLQDO ULJKWKDQG VLGH YHFWRUn :5,7( n,;I )f n f &.f 1f :5,7(rf n 5HVXOW RI PDWUL[frVROnnQ YHFWRUfn '2 1 &.f '2 1 &.f &.f$.-fr;-f &217,18( &217,18( :5,7(rW n ,;) f n f & f 1f :5,7(2 f ,; ) f f f & f 1f &217,18( 5($'rrf :5,7(rrf n72 5('2 62/1 : ',))(5(17 (36 (17(5 n :5,7(rrf n72 (;,7 $/*25,7+0 : /$67 (36 (17(5 f 5($'rrf ,&+ ,) ,&+(4Of *2 72

PAGE 147

5(7851 (1' & F F F F F F F F F F F F rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( 69'&03)25 3(5)2506 6,1*8/$5 9$/8( '(&20326,7,21 2) 7+( 0$75,; >$@ 6(( 9$5$+ r6 3$3(5 $1' 1XPHULFDO 5HFLSLHV 0 33 69' 3529,'(6 7+( 0$75,&(6 >8@ >:@ $1' >9@ ,1 (41 1XPHULFDO 5HFLSLHV :+(5( >9@ ,6 7+( ',$*21$/ 0$75,; &20326(' 2) 7+( (,*(19$/8(6 2) >$@ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & & F F F F F F F F F 68%5287,1( 69'&03$010313:9f 3$5$0(7(5 10$; f ,03/,&,7 '28%/( 35(&,6,21$+2=f ',0(16,21 $0313f:13f91313f5910$;f 6&$/( $1250 '2 1 / 59,f 6&$/(r* 6 6&$/( ,) ,/(0f 7+(1 '2 ,0 6&$/( 6&$/('$%6$.,ff &217,18( ,) 6&$/(1(f 7+(1 '2 ,0 $.,f $.,f6&$/( 6 6$.,fr$.,f &217,18( ) $f 6,*164576f)f + )r*6 $,,f )* ,) ,1(1f 7+(1 '2 /1 6 '2 ,0 6 6$.,fr$.-f &217,18( ) 6+ '2 ,0 $.-f $.-f)r$., f &217,18( &217,18( (1',) '2 ,0 $.,f 6&$/(r$.,f &217,18( (1',) (1',) :,f 6&$/( r*

PAGE 148

6 6&$/(' 2 ,) ,/(0f $1' ,1(1f f 7+(1 '2 / 1 6&$/( 6&$/( '$%6 $ f f &217,18( ,) 6&$/(1(f 7+(1 '2 /1 $,.f $,.f6&$/( 6 6$,.fr$,.f &217,18( ) $,/f 6,*164576f)f + )r*6 $ / f )* '2 /1 59.f $,.f+ &217,18( ,) ,1(0f 7+(1 '2 /+ 6 '2 / 1 6 6$-.fr$, .f &217,18( '2 /1 $-.f $-.f6r59.f &217,18( &217,18( (1',) '2 /1 $,.f 6&$/(r$,.f &217,18( (1',) (1',) $1250 '0$;O$1250'$%6:,ff'$%659O,ffff &217,18( '2 1 ,) ,/71f 7+(1 ,) *1(f 7+(1 '2 /1 9-,f $,-f$,/ff* &217,18( '2 /1 6 '2 /1 6 6 $,.fr9.-f &217,18( '2 /1 9.-f 9.-f6r9.,f &217,18( &217,18( (1',) '2 /1 9,-f} 9-,f &217,18( (1',) 9,,f 59,f / ,

PAGE 149

I &217,18( '2 ,1 r / :,f ,) ,/71f 7+(1 '2 / 1 $,f &217,18( (1',) ,) *1(f 7+(1 * ,) ,1(1f 7+(1 '2 /1 6 '2 /0 6 6$.,fr $ f &217,18( ) 6$ffr* '2 ,0 $.-f $.-f)r$.,f &217,18( &217,18( (1',) '2 ,0 $-,f $-,fr* &217,18( (/6( '2 ,0 $-,f &217,18( (1',) $ ,f $,,f &217,18( '2 1 '2 ,76 '2 / 10 / ,) '$%659/f-$1250f(4$1250f ,) '$%6:10ff$1250f(4$1250f &217,18( & 6 '2 /. ) 6 r59,f ,) '$%6)f$1250f1($1250f 7+(1 :,f + 6457)r)*r*f : f + + + & *r+f 6 )r+f '2 0 < $-10f = $-,f $-10f
PAGE 150

,) /(4.f 7+(1 ,) =/722f 7+(1 :.f = '2 1 9-.f 9-.f &217,18( (1',) *2 72 (1',) ,) ,76(4f 3$86( f1R FRQYHUJHQFH LQ LWHUDWLRQVn ; :/f 10 < :10f 5910f + 59.f ) <=fr<=f*+fr*+f fr+r
PAGE 151

QRQ &217,18( &217,18( 5(7851 (1' & FrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF F F & %$&.68%67,787( 72 62/9( 7+( 6<67(0 >$+;f ^%! :+(5( 7+( & & 0$75,&(6 & 8@ >:@ $1' >9@ $5( 3529,'(' %< 7+( 6,1*8/$5 & & 9$/8( '(&20326,7,21 5287,1( 6&9&03 )25f & & 7+( 62/87,21 9(&725 ^;` ,6 (9$/8$7(' 9,$ (41 ,1 & & 1XPHULFDO 5HFLSLHV & & & TrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF F 68%5287,1( 69%.6%8:9010313%;f 3$5$0(7(5 10$; f ,03/,&,7 '28%/( 35(&,6,21$+2= f ',0(16,21 80313f:13f 91313f%03f;13f70310$;f '2 1 6 ,):-f1(2f7+(1 '2 0 6 68,-fr%,f &217,18( 6 6:-f (1',) 703-f 6 &217,18( '2 1 6 '2 -1 6 69---fr703--f &217,18( ;-f 6 &217,18( 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrr (1' 2) 69' & rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rF

PAGE 152

$33(1',; % +<%5,' &9%(0 )2575$1 352*5$0 )25 '28%/< &211(&7(' '20$,16 Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F & 352*5$0 1$0( &9'0)25 & & & & & & & & & & & & & & & n F F F F F F F F F F F F F F F F F F F F 7+,6 352*5$0 86(6 7+( ,03/,&,7(;3/,&,7 0(7+2' 2) 62/87,21 ,1 7+( &203/(; 9$5,$%/( %281'$5< (/(0(17 0(7+2' )25 '28%/< &211(&7(' '20$,16 $&&28176 )25 )/8; %281'$5< &21',7,216 $1' $&&28176 )25 &$6(6 :+(5( 7+( 6285&( 7(50 ,6 81.12:1 6(( (281'$5< &21',7,21& 7$%/( ,1 $/$,1n6 127(6 3*f 86(6 7+( '28%/< &211(&7(' 12'$/ (48$7,216 '(9(/23(' ,1 7+( 3$3(5 $ .$66$% t &.+6,(+ $33/,&$7,21 2) 7+( &9%(0 72 +($7 &21'8&7,21 352%/(06 ,17 2) 180 0(7+2'6 7+(6( (48$7,216 $5( 2) 7+( )250 2) (48$7,21 21 3$*( 2) +520$'.$ ,,797+( &9%(0 ,1 (1*,1((5,1* $1$/<6,6 7+( ,1387 ,6 5($' )520 7+( ),/( '&$8&+<'$7 7+( 287387 ,6 35,17(' 72 7+( ),/( '&$8&+<$16 ,1387 )250$7 012'112'4,&+4,&+0$7,&+/2$' ;f
PAGE 153

F F F F F F F F F F F F F F +(5( 4 ,6 *,9(1 21 ,1387 /,1( ,&+0$7 m&2()),&,(17 0$75,; 287387 &+2,&( 212 287387 287387 ,&+/2$' 287387 &+2,&( 72 (&+2 (41 /2$',1* 352&('85( 212 287387 287387 ;,f<,f &225',1$7(6 2) 12'( .7<3(,f ,) 3+, 63(&,),(' $7 ,) TN 63(&,),(' $7 ,) + KN 63(&,),(' $7 VW .,1' %& QG .,1' %& UG .,1' %& 5,1O,f 3+,+ ,) .7<3( & 5,1,f TN 3+,,1) ,) .7<3( & & 7+,6 352*5$0 86(6 7+( 5287,1( 69' 6,1*8/$5 & 9$/8( '(&20326,7,21 (48$7,21 62/9(5 ,1 & 5($/r $5,7+0(7,& ,) 1(&(66$5< ,( .$f O( & & 0$75,; 67$7,67,&6 $5( &20387(' $1' 287387 ,6 *,9(1 & )25 7+( 0$75,; 1250 $1' &21',7,21,1* 180%(5 & 7+( /,1),1,7< 1250 ,6 86(' )25 .$f )250 ,19'(7 & $1' / 1250 ,6 86(' )25 .$f )20 69' $/*25,7+0 & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f ,17(*(5 ,911f7',0$',0,(5 ',0(16,21 ;;11f&&11f:11f81111f91111f &20021%/.;11f<11f.7<3(11f5,111f5,111f31111f 611f$1*/(11f &20021,1287,&+4,/2$' &20021&+.(41&+.O&+. &20021 3,7:23, ',0(16,21 5(;11f5(<11f & & &20387( 3, & & & & 3, '$&26'f 7:23, 'r3, ,1387287387 '$7$ ),/(6 $1' 5($' ,1 '$7$ 23(1),/( 23(1),/( f' V&$8&+<'$7n f '&$8&+<$16ff 5($' rf 012'112'4,&+4,&+0$7,/2$' :5,7(f 012'112'4, &+4,&+0$7 :5,7(f 012'112'4,&+4,&+0$7 )50$7;n &255(&7 9(56,21 2) )25 '28%%/< &211(&7('n n '20$,16n; n(;3/,&,7,03/,&,7 0(7+2' &9')25n ;n727$/ +($7 )/2: 5$7( 4 &$1 %( 81.12:1f;+($7 )/8;n n T ,6 ,1387 )25 %& 2) 7+( 6(&21' .,1'n n),/0 &2()) + 7,1) ,1387 )25 7+( 52%,1 7<3( %&n O;n180%(5 2) /$67 287(5 12'( ,;n180%(5 2) /$67 ,11(5 12'( n,; r 727$/ +($7 )/2:@>81,7 '(37+rNf n',; n)/2: 5$7( &$6(n 12 n,; f0$75,; 287387 &+2,&( n, ; f 212 287387 n I ,

PAGE 154

F F n 0$75,; 287387n f '2 112' 5($'rf ;,f<,f.7<3(,f 5,1,f5,1,f &$// 68%5287,1( $1*/( 72 &20387( 7+( $1*/(6 %(7:((1 7+( 12'(6 & 7+,6 ,6 7+( $1*/( 86(' ,1 &20387,1* 7+( 7(50 2876,'( 7+( & 6800$7,21 6,*1 ,1 (41 & & & & & & &$// &$1*/(012'112'f 287387 352%/(0 6(7 83 $1' *(20(75< :5,7(r f :5,7(f :5,7(f )250$7,;n5(68/76 )520 (;3/,&,7,03/,&,7 &9%(0 n 352*5$0 &9'0)25n ; n12'$/ *(20(75< $1' ,1387 9$/8(6n ; n 12'(n; n;,f n; n<,f f; n.7<3(,f n; n5,1. ,f n ; n 5,1 f n ; n $1*/( f n ; n 12 n nO 7 TN ,19n; n KN7,1)nf ; '2 112' ,),(4012'f :5,7(rrf ,),(4012'f :5,7(rf :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr 23, :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr'23, )250$7;,;';f,;';f)f 35(3$5( */2%$/ 0$75,&(6 =(52 $55$<6 :5,7(r f :5,7(r f n=(52,1* $55$<6n '2 11 6,f '2 11 '2 11 3,-f & Frrrrrrrrrrrrrrrrrrrrr 3(5)250 0$75,; /2$',1* rrrrrrrrrrrrrrrrrrrrrrrrrrrrrF & & (48$7,21 /2$',1* &219(17,216 & & & /2$' 3+, $1' 36, (48$7,21 )25 ($&+ 12'( -f :+(5( O112' & '(3(1',1* 21 7+( 9$/8( 2) .7<3(-f & & .7<3(-f 3+, ,6 *,9(1 # 12'( & & 86( 36, (48$7,21 ,03/,&,7/< & 86( 3+, (48$7,21 (;3/,&,7/< & & F F F F F F .7<3(-f TN ,6 *,9(1 # 12'( 86( 3+, (48$7,21 86( 36, (48$7,21 12'(6 012' )520 %& 5(/$7,21 &219(17,21 ,03/,&,7/< (;3/,&,7/< )25 287(5 %< &20387,1* 36, (;3/,&,7/< : 36,f %<

PAGE 155

QRRQ RQ RQQRRR QRQ QQRRRRRRRRQRRQRRQRRRRRRR RQ 86( 7+( ,03/,&,7 36, 12'$/ (48$7,21 )25 12'( 012'L ,) .7<3(-f 7+(5( 86( &$8&+< 5(,0$11 5(/$7,21 )25 1(80$11 %& )25 ,11(5 12'(6 012' 112' .7<3(-f + KN ,6 *,9(1 # 12'( 86( 3+, (48$7,21 ,03/,&,7/< 86( ,03/,&,7 36, 12'$/ (48$7,21 $7 12'(6 t 012' 86( &$8&+< 5(,0$11 5(/$7,21 )25 52%,1 %& $7 $// 27+(5 12'(6 127(6 21 %,* 36, & ,1 7+( 352*5$0 %,* 36, ,6 &$//(' 4 $1' ,76 +$1'/,1* '(3(1'6 21 7+( 9$/8( 2) ,&+4 21 ,1387 ,) ,&+4 7+(1 4 ,6 81.12:1 $1' +$6 %((1 ,1387 $6 4 )25 7+( /2$'(5 68%5287,1( &$8&+6 72 &20387( 7+( &2()),&,(17 6(7 5,1f $1' 7+(1 $7 7+( (1' 2) 7+( /2$',1* /223 ,16(57 673+, 25 6736, ,1 7+( 3/$&( 2) 51f ,( $7 0$75,; (/(0(17 3112'112'f (1' 2) (48$7,21 /2$',1* &219(17,216 & ,) ,&+4(4Of 5,1f :5,7( r f :5,7( r f n/2$',1* ,03/,&,7 (48$7,216 ,1 */2%$/ 0$75,;f %(*,1 /2$',1* [112' 12'$/ (48$7,216 ,1 */2%$/ 0$75,; '2 O112' /2$' ,1 ',$*21$/ &2175,%87,21 $7 ),567 ,172 >3@ $1' ^6 ,( 7+( 7(506 2876,'( 7+( 6800$7,21 ,192/9,1* 7+( ,00(',$7( 1(,*+%25 (/(0(176 >--@ $1' >--@ 7$.( ,172 $&&2817 '28%/< &211(&7(' *(20(75< $ % & ' &+.3+, &+.36, &+. &+. :5,7( r r f :5,7(r rf n/2',1* 12'$/ (48$7,21 $7 12'( f'28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ ,)-(4Of 012' ,)-(4012'f ,)-(4012'f, 112'

PAGE 156

,)-(4112'f 012'O & & ,),/2$'(4f :5,7(rr f f &$//,1* ',$*21$/ /2$'(5 & & &20387( $1*/(6 $1' &203/(; $/*(%5$ & &$// &$8&+012'112'-,.$%&'f & & /2$' ',$*21$/ 7(50 ,172 7+( 0$75,; (48$7,21 & &$// &$8&+012'112'-,.$&'f & & /2$' ,1 7+( 5(0$1,1* &2817285 (/(0(17 &2175,%87,216 ,( 7+( & 7(506 81'(5 7+( 6800$7,21 6,*1 ,192/9,1* (/(0(17 *$000$> 0 1 @ & :+(5( 0 Q $1' 1 Q ,1 7+( 127(6 & & $&&2817 )25 '28%/< &211(&7(' *(20(7(5< & & $/62 6.,3 7+( &2175,%87,216 2) 7+( ',5(&7 1(,*+%256(/(0(176 & ,-f $1' >-. @ 7+(6( +$9( $/5($'< %((1 /2$'(' 35,25 72 7+,6 /223 & '2 1 112' & & /2*,& 72 &20387( 1 O $&&2817,1* )25 %5$1&+ &87 $1' &,5&8,7 $5281' & 7+( '28%/< &211(&7(' '20$,1 & 13 1 ,)1(4012'f 13 ,)1(4112'f 13O 012'O & 6.,3 ',5(&7 1(,*+%25,1* (/(0(176 ,)1(4-2513(4-f *2 72 & &20387( &203/(; $/*(%5$ ,),/2$'(4,f:5,7(r&f 113 )250$7; f&$//,1* /2$'(5 )25 *$00$> f n @ n f &$// &$8&+012'112'-113$%&'f & /2$' (/(0(17 &2175,%87,21 ,172 0$75,; (48$7,21 &$// &$8&+012'112'-113$&'f &217,18( & &20387( &2175,%87,216 '8(6 72 6285&(66,1.6 673+, t 6736, ;2 ;-f <2 <-f 673+, 6736 & & &+(&. ,) 4 ,6 ,1387 $6 .12:1 25 81.12:1 & ,) 4 ,6 ,1387 $6 .12:1 $1' (48$/ 72 =(52 & 7+(1 6.,3 6285&( 7(50 &2175,%87,216 & ,),&+41($1'4(4'f *2 72 &$// &$8&+6-012'112'4673+,6736,;2<2f & & $&&2817 )25 4 3266,%/< %(,1* 81.12:1 & ,),&+4(4f 7+(1 & & ,&+ 7+(1 4 ,6 81.12:1 & 5(3/$&( 36, &2()),&,(17 %< 6285&( 7(50 &2())&,(17 ,1 & 7+( -7+ 3+, 12'$/ (48$7,21 12 0$77(5 7+( %& 6,1&( 7+( (;3/,&,7 & 25 ,03/,&,7 3+, 12'$/ (48$7,21 ,6 $/:$<6 /2$'(' $7 12'( -

PAGE 157

QRQ Q Q Q Q F 3 112'f 673+, & & 5(3/$&( 36, &2()),&,(17 %< 6285&( 7(50 &2()),&,(17 ,1 & 7+( -112'7+ 36, 12'$/ (48$7,21 ,) ,7 ,6 /2$'(' ,( & & .7<3(-f %& 2) ),567 .,1' $1' ,03/,&,7 36, (41 ,6 /2$'(' & .7<3(-f $1' 01' 7+(1 36, ,6 &20387(' : 36,f & $1' (;3/,&,7 )250 2) 36, 12'$/ (48$7,21 ,6 /2$'(' $7 -112' & .7<3(-f $1' 012'O 7+(1 ,03/,&,7 36, (48$7,21 ,6 /2$'(' & $7 12'( -012' & .7<3(-f $1' 25 012' 7+(1 (;3/,&,7 25 ,03/,&7 36, & (48$7,21 ,6 /2$'(' & ,).7<3(-f(4f 3-112'112'f 6736, ,)-*(O$1'-/(012'f$1'.7<3(-f(4ff 3-112'112'f 6736, ,)-(4012'f$1'.7<3(-f(4f 3-112'112'f 6736, ,)-(4O$1'.7<3(-f(4f 3-112'112'f 6736, ,)-(4012'$1'.7<3(-f(4f 3-112'112'f 6736, :5,7(rrf n5(3/$&( /,77/( 36, %< %,* 36,n (/6( ,&+2O 7+(1 4 ,6 *,9(1 $6 ,1387 $'' 6285&( 7(50 72 7+( 5+6 2) 7+( 3+, 12'$/ (48$7,21 6-f 6--673+, $'' 6285&( 7(50 72 7+( 5+6 2) 7+( 36, 12'$/ (48$7,21 ,) ,7 ,6 /2$'(' ,) .7<3(-f(4f 6-112'f 6-112'f6736, ,) -*(O$1'-/(012' f $1' .7<3(-f (4ff 6-112'f 6-112'f6736, ,)-(4O$1'.7<3(-f (4f 6112'f 6112'f6736, ,)-(4012' $1'.7<3(-f (4 f 6112'f 6112'f6736, (1' ,) ),1,6+(' /2$',1* ,1 7+( 7:2 12'$/ $1'25 %& (48$7,216 &+(&. /2$'(' &2()),&,(176 & '2 .7 r112' -112' &+.3+, &+.3+,3-.7f &+.36, &+.36,3--.7f &217,18( ,).7<3(-f(4f 7+(1 :5,7(rrf n&+.36, ,03/,&,7 :5,7(rrf n&+.3+, (;3/,&,7 (1' ,) ,).7<3(-f(4f 7+(1 :5,7(rrf n&+.3+, ,03/,&,7 :5,7(rrf n&+.36, (;3/,&,7 (1' ,) &217,18( f&+.36,&+. n&+.3+,&+. n&+.3+,&+. n&+.36,&+. Frrrrrrrrrrrrrrrrrrrrr ),1,6+(' 0$75,; /2$',1* & & rrrrrrrrrrrrrrrrrr

PAGE 158

R Q R Frrrrrrrrrrrrrrrrrrrrr 3(5)250 62/87,21 3+$6( rrrrrrrrrrrrrrrrrrrF F F *(7 5($'< 72 &$// 6,1*/( 9$/8( '(&20326,7,21 6,08/7$1(286 & (48$7,21 62/9(5 ),567 6(7 3$5$0(7(56 & & & 7+(1 287387 )25&,1* 9(&725 0$75,; >3@ $1' )25&,1* 9(&725 ^6` & ,1 7+( ,03/,&,7 )2508/$7,21 & & >3@ ^3+,36,f ^6` (41 & & ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 6.,3 0$75,; (416 287387 & ,0$; r112' 1 ,0$; ,),&+0$7(4f 7+(1 :5,7(rf )250$7,; n 0$75,; (48$7,21 287387 6835(66(' %< ,&+0$7 f *2 72 (/6( & & ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 287387 0$75,; 5416 9,$ 0$7287 & &$// 0$7287 $$ %% 0$; f & &$// 0$728736,0$;f (1' ,) &$// ,19'(7 $1' $77(037 72 &20387( 7+( &21',7,21,1* 180%(5 '2 ,0$; '2 ,0$; 8,-f 3,-f '7150 '(70 :5,7(rrf n &$//,1* ,19'(7n &$// ,19'(78'7150'(70f & & &20387( /,1),1,7< 12506 2) 7+( 0$75,; >3@ $1' ,76 ,19(56( & & >3@ 5(7851(' %< ,19'(7 $1' 6725(' $6 >$$@f $1' &20387( & , ,, & 7+( &21',7,21,1* 180%(5 2) 7+( 0$75,; >3@ $6 .3f _3_r_3 & 51250$ 5150$, '2 0$; 672O n 672 '2 0$; 672O 672O'$%68,-ff 67 67'$%63,-ff 5150$, '0$;5150$,672Of 51250$ '0$;O51250$67f :5,7(rf51250$5150$, :5,7(f51250$5150$, )250$7,;,;n0$75,; 67$7,67,&6 n,;n1250 >$@ n 1250 >$@ n'f &21' 51250$r5150$, :5,7(rf '7150&21' ; ';n,n,;

PAGE 159

:5,7(2 f '7150 &21' )250$7 ,; ; nn,; n $f f ',2 ; n +251(%(&. r $3352;,0$7,21 72 ,19(56( 2) &21',7,21,1* 180%(5f !;r.$f n';n/,1),1,7< 1250 86(' 72 &20387( .$f nf &+(&. ,19'(7 %< &203$5,1* : 6,08/7$1(286 (48$7,21 62/9(5 86(' 72 *(7 62/87,21 6725( ,19'(7 $16:(5 ,1 9(&725 ^5(;11f`! 8186(' )520 /2$',1* 21 '2:1 72 ),1$/ 12'$/ $66,*10(176 '2 ,0$; 672 'I2 '2 ,0$; 672 6728,-fr6-f 5(;,f 672 &217,18( &+(&. &21',7,21,1* 180%(5 .$f 6.,3 69' $/*25,7+0 .$f! O' 3(5)250 69' $/*25,7+0 :5,7(rf :5,7(2 f )250$7G;,; f&+(&. &21',7,1,1* 180%(5 ; n.$f 2' 6.,3 69' $/*25,7+0f; r .$f! 3(5)250 69' $/*25,7+0ff 69'(36 2' ,)&21'/(69'(36f 7+(1 :5,7(rrf n6.,33(' 69'n :5,7(2rf n6.,33(' 69'n ,&+$/* *2 72 (/6( ,&+$/* (1',) 6(7 )25&,1* 9(&725 $1' 0$75,; 72 %( 6(17 72 62/9(5 &$// 6,08/7$1(286 (48$7,21 62/9(5 '62/9( :5,7(rf :5,7(rf n&$//,1* 69' 6,0(41 62/9(5n &$// 69'36;;11&&89:f &20387( t 35,17 5(6,'8$/ 9(&725 127( 7+$7 7+( 62/87,21 )520 ,19'(7 ,6 12: 6725(' ,1 9(&725 51O11f :5,7(f :5,7(2 f )250$7G;,; n 5(6,'8$/ $1' 62/87,21 9(&7256n ; n&+. 62/1 :n;n62/1 )520 69'n; n,f; f5(6 '8$/n ; n,19'(7n; n6,0(41 62/9(5n; n n; n n; f ; r f ,) 69' :$6 6.,33(' 6(7 62/87,21 (48$/ 72 *$866 (/,0,1$7,21 62/1 ,),&+$/*(4f 7+(1 '2 1 ;;,f 5(;,f (1' ,) '2 1

PAGE 160

QRQ QRRQ QRRQ QR QRRQ QRQ QRQ RRRRRR QRQ 5(6 6,f '2 L1 5(6 5(63,-fr;;f :5,7(f ,5(65(;,f;;,f :5,7(f ,5(65(;,f;;,f )250$7,; n , n n',2,; n n ff 6(7 ^6 (48$/ 72 62/87,21 '2 1 6,f ;;,f rrrrrrrrrrrrrrrrrrr ),1,6+(' 62/87,21 &20387$7,21 3+$6( rrrrrrrrrrrrrrrrF $66,*1 %281'$5< 12'$/ 32,17 9$/8(6 )520 62/87,21 $1' $&&2817 )25 4 %(,1* 81.12:1 '2 112' ,).7<3(,f(4f *2 72 ,).7<3(,f(4f *2 72 12'$/ 81.12:1 ,6 36, .7<3(,f 5(;,f 5,1,f 5(<,f 6,112'f *2 72 12'$/ 81.12:1 ,6 3+, .7<3(,f 5(;,f 6, f 5(<,f 6,112'f *2 72 12'$/ 81.12:16 $5( 3+, $1' 36, .7<3(,f + KN 63(&,),(' 7+(5( 5(;,f 6, f 5(<,f 6,112'f &217,18( $&&2817 )25 4 %(,1* 3266,%/< 81.12:1 ,),&+4(4Of 7+(1 4 6112'f 5(
PAGE 161

QRQ :5,7(rf n&20387( 5(/$7,9( (5525n &$// +20,5(;5(<012'112'4f *,9( 237,21 2) :5,7,1* '$7$ ),/( )25 3267 352&(66,1* :5,7(rf )250$7,;,; n'2 <28 :$17 72 6$9( 12'$/ 9$/8(6 $1'f f /2&$7,216 )25 3267352&(66 ,1* "n,;n(17(5 &+2,&(f f 72 6$9(n;n2127 72 6$9(nf 5($'rrf ,&+ ,),&+(42f 6723 &/26( f &/26( f 23(1),/( n'3267'$7n f :5,7(rf 012'112'4 '2 11 :5,7(rf ;,f <,f 5(;,f5(<, f )250$7;'ff 6723 (1' & & (/(0(17 /2$',1* 68%5287,1( & & errrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre F & 7+,6 68%5287,1( /2$'6 7+( (/(0(17 &2175,%87,216 & ,172 7+( */2%$/ 0$75,; (48$7,21 +(5( 7+( 3257,21 2) & 7+( (48$7,21 # 7+( 12'( ,6 /2$'(' & 7+( (/(0(17 01f ,6 /2$'(' :+(5( 1 0 & r ,) 0 -O 25 1 7+(1 7+( (/(0(17 ,6 7+( /2*$5,7+0,& & /,0,7,1* 9$/8( & errrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre & F F F F F F F F F F F F F F 68%5287,1( &$8&+012'112'-01$&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f <11f.7<3(11f5,111f5,111f31111f 611f$1*/(11f &20021&+.(41&+.&+. &20021,1287,&+4,/2$' &20021 3,7:23, 7+,6 68%5287,1( $66(0%/(6 7+( (/(0(176 ,1 7+( */2%$/ 0$75,; fLS :,7+ 9(&7256 2) &2167$176 6f 7+$7 ,6 ,7 /2$'6 $7 ($&+ 12'( 7:2 (48$7,216 #/,1( ,7 /2$'6 7+( ,03/,&,7 25 (;3/,&,7 )2508/$7,21 2) 7+( +, $3352;,0$7,21 2) 7+( &$8&+< ,17(*5$/ #/,1( -012' ,7 /2$'6 7+( &255(6321',1* (;3/,&,7 25 ,03/,&,7 )2508/$7,21 2) 7+( +, $3352;,0$7,21 2) 7+( &$8&+< ,17(*5$/ 25 %281'$5< &21',7,21 (;35(66,21 6(7 5. 6,1&( TN ,6 ,1387 5. & & '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* & )25 7+( %5$1&+ &87 $7 7+(7$

PAGE 162

QRRQRR RRRRRQR QRQ RRRRR RQQRR -3O -YO -0 ,)-(4Of -0 01' ,)-(4012'f -3 ,)-(4012'f-0O 112' ,)-(4112'f -3 01' &20387( 1(,*+%25,1* 32,176 $1' &+(&. ,) 7+(< $5( 7+( ',5(&7 1(,*+%256 2) ,) 7+(< $5( 7+(1 /2$' ,1 /,0,7 7(506 7(506 2876,'( 7+( 6800$7,21 ,1 7+( 3+, $1' 36, (48$7,216f ,)0(4-0O251(4-3f *2 72 &20387( 7+( &2167$176 86(' ,1 7+( 6800$7,21 7(50 ,),/2$'(4f :5,7(rf-01 )250$76 /2$',1* 6800$7,21 7(50 0 1 @ r,;ff &20387( &2167$176 $1' &2()),&,(176 & ;-f;0ffr&<-f<0ffr' & ;-f;0ffr'<-f<0ffr& & ;-f;1ffr&<-f<1ffr' & ;-f;1ffr'<-f<1ffr& *O &7:23, &O7:23, &7:23, &7:23, &+(&. 7+( 7<3( 2) %281'$5< &21',7,21 $1' /2$' (48$7,216 /2$' 7+( 6800$7,21 7(50 &2175,%87,21 ,172 >3@ $1' ^6` )25 (/(0(17 >01f :+(5( 0 $1' 1 127 (48$/ 72 $1' 1 0 $&&25',1* 72 $ 326,7,9( &2817(5&/2&.:,6( 180%(5,1* &219(17,21 ,).7<3(-f(4f *2 72 ,).7<3(-f(4f *2 72 rrrrrrrr 67$7( 9$5,$%/( ,6 63(&,),(' $7 12'( -0 .7<3(-f rrrrrrrrF /2$' 7+( ,03/,&,7 )250 2) 7+( +, $3352;,0$7,21 )25 36, $7 52: --112' -112' 3--0112'f 3--0112'f* 3--1112'f 3--A1112'f* 3--0f 3--0f* 3--1f 3--1f* &+. &+.**** & & & /2$' 7+( (;3/,&,7 )250 2) 7+( +L $3352;,0$7,21 )25 3+, & $7 52: -& -3--0112'f 3--0112'f*

PAGE 163

QRQ QRQR RRRRRQR R R R R R RQQRRR QRQ 3--1112'f 3--1112'f* 3--0f 3--0f * 3--1f 3--1f* &+. &+.**** *2 72 ),1,6+(' /2$',1* *$00$> 0 1 @ )25 12'( t .7<3(-f !5(7851 &217,18( rrrrrrrr 7KH )/8; TN ,6 63(&,),(' $7 12'( .7<3(-f rrrrrrrF /2$' 7+( ,03/,&,7 )250 2) 7+( +, $3352;,0$7,21 )25 3+, $7 52: --3--0112'f 3--0112'f 3--1112'f 3--1112'f 3--0f 3--0f* 3--1f 3--1f* &+. &+.**** /2$' 7+( 36, 12'$/ 25 '(5,9(' 1(80$11 %281'$5< (48$7,21 $7 52: --112' 112' ,) 012' 7+(1 36, ,6 &20387(' )250 352&(66,1* 2) TN '$7$ : &219(17,21 7+$7 36,f 7+(1 /2$' (;3/,&,7 36, 12'$/ (48$7,21 $7 12'( 012' O /2$' ,03/,&,7 36, 12'$/ (48$7,21 72 $1&+25 7+( 675($0 )81&7,21 $92,' &,5&8/$5 '(),17,21 )520 385( %& /2$',1*f ,)-*($1'-/(012'f7+(1 3--0112'f 3--0112'f* 3--1112'f 3--1112'f* 3--0f 3--0f* 3--I1f 3--1f* &+. &+.**** *2 72 (/6( ,) 012' 112' /2$' 1(80$11 %& (41 ,172 7+( 0$75,; ,11(5 36,f6 &$1127 %( 2%7$,1(' (;3/,&,7/< *2 72 (1' ,) ),1,6+(' /2$',1* *$00$>01@ )25 12'( t .7<3(-f !5(7851 &217,18( & Frrrrrrrrr ),/0 &2()),&,(17 + KN ,6 63(&,),(' $7 12'( .7<3(-f & & /2$' 7+( ,03/,&,7 )250 2) 7+( +, $3352;,0$7,21 )25 3+, & $7 52: -& &217,18( -r r r r 4

PAGE 164

RQ QR RRRRQRRRQRRQR QRQ QRQ F F F F F F F F 3 -0112'f 3--0112'f 3 11.2' f L 1U SL 12' f 3--0f 3--0f* 3--1f 3--1f* &+. &+. *O * /2$' 7+( 36, 12'$/ 25 '(5,9(' 52%,1 %281'$5< (48$7,21 $7 52: -112' $7 12'(6 $1' 012' /2$' (;3/,&,7 25 ,03/,&,7 36, 12'$/ (48$7,21 72 $1&+25 7+( 675($0 )81&7,21 $92,' &,5&8/$5 '(),17,21 )520 385( %& /2$',1*f -112' ,) (4 25 (4 012' f7+(1 3 0112'f 3--0112'f* 3--1112'f 3--1112'f 3--0f 3--0f* 3--1f 3--1f* &+. &+.**** *2 72 (/6( )25 $// 27+(5 12'(6 /2$' 52%,1 %& (41 ,172 7+( 0$75,; *2 72 (1' ,) ),1,6+(' /2$',1* *$00$01@ )25 12'( t .7<3(-f !5(7851 *2 72 & %281'$5< (/(0(17 %(,1* /2$'(' &217$,16 & 12'( -f ,( /2$',1* &2175,%87,216 2876,'( 7+( & 6800$7,21 & & 25 '(5,9(' %281'$5< &21',7,21 ,6 %(,1* /2$'(' ,1 & & &20387( &2167$176 $= $7:23, %= 7:23,$1*/(-ff7:23, ,),/2$'(4f :5,7(rf--0--3 )250$7 n /2$',1* ',$*21$/ 7(506 )25 12'(n, n *$00$,-.@n,;, f f ,).7<3(-f(4f *2 72 ,).7<3(-f(4f *2 72 & &rrrrrrrrrrrr 3+, ,6 63(&,),(' $7 12'( .7<3(-f rrrrrrrrrrrrrrF & & /2$' ,03/,&,7 )2508/$7,21 )25 36, (48$7,21 $7 52: --112' &

PAGE 165

QRQ Q Q Q QRQ QQQQQQQQQQQ QQQRQQ QRQ -112' 3---f 3---f$= 3----f 3----f &+. &+.$=%= --f 3----f%= &+.$= %=' f f /2$' (;3/,&,7 )2508/$7,21 )25 3+, (48$7,21 $7 52: --3----112'f 3----112'f$= 3---f 3---f%= 6-f 6-f5,1-f &+. &+.%=$= *2 72 rrrrrrrrr 7+( )/8; TN ,6 63(&,),(' $7 12'( .7<3(-f rrrrrrrrF /2$' ,03/,&,7 )2508/$7,21 )25 3+, (48$7,21 $7 52: -&217,18( -3----112'f 3----112'f$= 3----f 3----f%='f &+. &+.$= %=' f /2$' %281'$5< (41 )2508/$7,21 )25 36, (48$7,21 $7 52: --112' ,) -012' 7+(1 86( 7+( 1(80$11 %281'$5< &21',7,21 (41 72 &20387( 36,-/f 36,-fNfr680O, 72 /@T-,fT-,ffr$%6=-,f=-,ff 6(( $-. $1' &.+$33/,&$7,21 2) &9%(0 72 ,17-18007+'6(1* ,)-*($1'-/(012'f 7+(1 &20387( 7+( 9$/8( 2) 7+( 675($0 )81&7,21 (41 : 7+( &219(17,21 7+$7 36,f ,)-*7$1'-/(012'f 7+(1 36, / -O '2 / &20387( '6 $1' 6804 '; ;-,f;-,Of '< <-,f<-,Of ';64 ';r'; '<64 '
PAGE 166

R R R R R R R R R R RQQRQRRR RQRRQ RRR 6 :5,7( r r f n&20387(' 36, n36, /2$' 7+( (;3/,&,7 )250 2) 36, $7 12'( --012' -112' 3----f 3----f%= 3---f 3---f$= 6--f 6--f36, &+. &+. $= %= *2 72 (1' ,) ,)-(4012'f 7+(1 /2$' ,03/,&,7 )2508/$7,21 )25 36, (48$7,21 $7 52: --112' -112' 3---f 3---f$= 3----f 3----f%=O'f &+. &+.$=%='f *2 72 (1' ,) ,) 012'O112' 7+(1 /2$' (41 $7 52: --112' 2) 0$75,; : 5()(5(1&( 72 36.012' Of ,( 012'O ,1 7+,6 )2508/$ $1' / 112'012' 36,-/f 36,-fNfr680>, 72 /@T-,fT-,Offr$%6=-,f=-,Off 6(( $-. $1' &.+$33/,&$7,21 2) &9%(0 72 ,17-18007+'6(1* ,)-*7012'$1'-/(112'f 7+(1 -112' &20387( '6 $1' 6804 -0 '; ;-f;-0Of '< <-f<-0f ';64 ';r'; '<64 '
PAGE 167

QRQ QRRQ QRQ QRQ QRQ QRQ QQQQ /2$' 36, (41 )520 52%,1 &21',7,21 )25 12'( $7 52: --012' 25 ,03/,&,7 36, (48$7,21 )25 12'( 25 012' ,) -(4Of 7+(1 7+(1 36, 36, /2$' 7+( (;3/,&,7 )250 2) 36, $7 12'( --012' --112' 3 ----f 3----f%= 3---f 3---f$= 6--f 6--f36, &+. &+.$=%= *2 72 (1' ,) 012' ,)-(4012'f 7+(1 /2$' ,03/,&,7 )2508/$7,21 )25 36, (48$7,21 $7 52: --112' 112' 3---f 3---f$= 3----f 3----f%= f &+. &+.$= %='f *2 72 (1' ,) $// 27+(5 12'(6 7+(1 /2$' (41 $7 52: --112' 6(( $-. $1' &.+$33/,&$7,21 2) &9%(0 72 17-18007+'6(1* -112' &20387( '6 $1' 6807,1) -0 -O '; ;-f;-0Of '< <-f<-0f ';64 ';r'; '<64 '
PAGE 168

QR QRQ RQRRRRR QRQ ),1,6+(' /2$',1* 7+( (/(0(17 &217,18( 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( 72 &20387( $1*/(6 %(7:((1 7+( $'-$&(17 12'(6 $1*/(-f 86(' ,1 /2$',1* ',$*21$/ 7(506 2) (41 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$1*/(012'112'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f31111f 611f$1*/(11f &20021 3, 7:23, '2 112' '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ ,)-(4Of 012' ,)-(4012'f ,)-(4012'f, 112' ,)-(4112'f 012'O &20387( 326,7,21 2) 7+( (1'32,176 2) 1(,*+%256 5(/$7,9( ;, ;,f;f <, <,f<-f ;. ;.f;-f <. <.f<-f & &20387( $1*/( &$// &$8&+;,<,$1*/(,f &$// &$8&+;.<.$1*/(.f % $1*/(,$1*/(. & $1*/( %(7:((1 7:2 12'(6 &$1127 %( 1(*$7,9( % r3, ,)%/72f % %7:23, $1*/(-f % 5(7851 (1' & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 7+,6 68%5287,1( &20387(6 7+( $1*/( 7+$7 7+( & ',5(&7(' 9(&725 )250 7+( 25,*,1 72 7+( 32,17 ;L
PAGE 169

RR QRRRR QRQ QRQ 5(7851 (1' &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 7+,6 68%5287,1( 2873876 7+( %281'$5< (/(0(17 *(20(75,& 9$/8(6 & ,7 ),567 &20387(6 7+( ',67$1&(6 G1-f $1' G0-f #7+( 32,17& :+(5( 0 1 7+(1 ,7 &20387(6 7+( $1*/( 7+(7$MMf $1' & 7+( &2167$176 $%&' '(),1(' ,1 7+( (41 21 3$*( & QRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ & WKLV SURJUDP HJ LQ SURJUDP &$8+@ &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+012'112'-01$%&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f31111f 611f$1*/(11f &20021 3,7:23, & &20387( $1' 6725( r3, 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -0 -O -3 ,)-(4Of -0O 012' ,)-(4012'f -3 ,)-(4012'f-0O 112' ,)-(4112'f -3O 012'O &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<-ffrr;1f;-ffrrf ;/0 '6457<0f<-ffrr;0f;-ffrrf $ '/2*;/1;/0f &+(&. ,) '($/,1* :,7+ (/(0(176 >--@ $1' >--@ ',$*21$/ 7(50 ,)0(4-0O251(4-3f *2 72 & & & & F F '($/,1* :,7+ (/(0(17 01@ $1' 12'$/ 32,17 6800$7,21 7(50 '(7(50,1( $1*/( *(20(75< =0; ;0f;-ff =0< <0f<-ff =1; ;1f;-ff =1< <1f<-ff &$// &$8&+=1;=1<$1*/(1f &$// &$8&+=0;=0<$1*/(0f % $1*/(1$1*/(0 ,) (1'32,176 0 $1' 1 $5( ',5(&7 1(,*+%256 2) 7+(1 7+( ,17(5,25 $1*/( ,6 *,9(1 ,1 7+( ,1387 ,)0(4-0O251(4-3f *2 72 $&&2817 )25 35,1&,3$/ 9$/8( 2) 7+( /2*$5,7+0 7+( 35,1&,3$/ %5$1&+ )25 7+( 5(,0$11 685)$&( 2) 7+( /2*$5,7+0 5(675$,16 7+(7$ 68&+ 7+$7 3,7+(7$ 3, 72 <(,/' $ 6,1*/( 9$/8(' )81&7,21 )25 OQ]f ] 127 ,)%/(3,f % %7:23, ,)%*73,f % %7:23, *2 72 &217,18(

PAGE 170

QRQ RRRRRRRR QRQ 5(7851 &217,18( &20387( 7+( &2167$176 ) ;1f;0f frr<1f<0f frr & $r;1f;0ff%r<0f<1ff %r;1f;0ff$r<0f<1ff & &) ') 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 287387 68%5287,1( )25 7+( &9%(0 (67,0$7( 2) 81.12:1 12'$/ 9$/8(6 3+, $1' 36, $7 7+( %281'$5< rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+012'112'45(;5(
PAGE 171

RQR RRR RRRR QRQ QRQR 12'$/ 9$/8(6 .12:1 $1' &20387(' 72 7+( 5(68/76 2%7$,1(' %< 7+( &9%(0 $3352;,0$7,21 2) &$8&+
PAGE 172

F F F F 12'$/ 9$/8(6 %< 7+( &9%(0 'L6&5(3(1&< .12:1 $1' &20387(' 72 7+( 5(68/76 2%7$,1(' $3352;,0$7,21 2) &$8&+
PAGE 173

RRRRR QRQ RQR RR RRRRQR & ,) 7+(1 32,17 ;2<2f ,6 $1 ,17(5,25 32,17 & ,) .22 7+(1 32,17 ;2<*f ,6 $ %281'$5< 32,17 & & &+(&. ,) 32,17 ,6 $1 ,17(5,25 32,17 & ,) .(42f *2 72 &+(&. ,) ,6 $ %281'$5< %5$1&+ 12'( 25 012' ,).(425.(4012'f *2 72 ,6 $1 25',1$5< %281'$5< 12'( ;2 ;.f <2 <.f ,) 012' /226( 7+( ),567 7(50 ,).(4012'f *2 72 ,6)/$* 1 0 012' &$// &$8&+401$%&',6)/$*;2<2f & & ' ,) 112' /226( /$67 7(50 ,).(4112'f *2 72 ,6)/$* 1 012'O 0 112' &$// &$8&+401$%&',6)/$*;2<2f & & ' r r &20387( $ $1' ,6)/$* 1 012'O 0 &$// &$8&+401$%&',6)/$*;2<2f $6 $ %6 % 672;O ⩔2;012'ff'Or<2<012'ff 672; &r;2;112'ff'r<2<112'ff 672
PAGE 174

RRR QRQR QR QRRQ <
PAGE 175

RQR RRR RR RRR RRRRRRRRRR RRR R R R r r &20387( $ $12 ,6)/$* 1 01' 0O &$// &$8&+401$%&',6)/$*;2 <2f $6 $ %6 % &20387( 6285&( 7(50 &2175,%87,216 72 $1 ,17(5,25 32,17 67; &r;2;012'ff'Or<2<012'ff 672; &r;2;112'ff'r<2<112'ff 67< &r<2<012'ff'Or;2;012'ff 672< &r<2<112'f f' r;2;112'ff 673+, 672;672; $6fr47:23, 6736, 672<672<%6fr47:23, 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 7+,6 68%5287,1( 2873876 7+( %281'$5< (/(0(17 *(20(75,& 9$/8(6 )25 7+( 6285&( 7(50 &2175,%87,216 ,7 ),567 &20387(6 7+( ',67$1&(6 G1-f $1' G0-f #7+( 32,17:+(5( 0 1 7+(1 ,7 &20387(6 7+( $1*/( 7+(7$MMf $1' 7+( &2167$176 $%&' '(),1(' ,1 7+( (41 21 3$*( >QRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ WKLV SURJUDP HJ LQ SURJUDP &$8+@ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+401$%&',6)/$*;2<2f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;O11f<11f.7<3(11f5,111f5,111f31111f 611f$1*/(11f &20021 3,7:23, &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<2frr;1f;2frrf ;/0 '6457<0f<2frr;0f;2fr r f $ '/2*;/1;/0f '(7(50,1( $1*/( *(20(75< =0; ;0f;2f =0< <0f<2f =1; ;1f;2f =1< <1f<2f &$// &$8&+=1;=1<$1*/(1f &$// &$8&+=0;=0<$1*/(0f % $1*/(1$1*/(0 $&&2817 )25 35,1&,3$/ 9$/8( 2) 7+( /2*$5,7+0 7+( %5$1&+ &87 7$.(1 68&+ 7+$7 3,7+(7$ 3, ,)%/(3,f % %7:23, ,)%*73,f % %7:23, ,),6)/$*(4f 5(7851 &20387( 7+( &2167$176

PAGE 176

) ;1f;0ffrr<1f<0ffrr A $r ? ? f rbff m ? N 9 r i r}brf %r;1f;0f f$r<0f<1f f & &) ') 5(7851 (1'

PAGE 177

W $33(1',; & ,03/,&,7 $1' (;3/,&,7 &9%(0 )2575$1 352*5$0 )25 75,3/< &211(&7(' '20$,16 Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 352*5$0 1$0( &973/<)25 7+,6 352*5$0 86(6 7+( ,03/,&,7 25 (;3/,&,7 0(7+2' 2) 62/87,21 ,1 7+( &203/(; 9$5,$%/( %281'$5< (/(0(17 0(7+2' )25 75,3/< &211(&7(' '20$,16 7+( ,1387 ,6 5($' )520 7+( ),/( '&$8&+<'$7 7+( 287387 ,6 35,17(' 72 7+( ),/( '&$8&+<$16 ,1387 )250$7,0,/,/1,1,&+4,&+0$7,&+/2$' 52: ; f < f .7<3( f 9$/8(f$1*/(f 52: ; f < f .7<3( f 9$/8( f $1*/(f 52: ;0f<0f.7<3(0f9$/8(0f$1*/(0f 52:0 :+(5( ,0 ,/ ,/1 ,1 180%(5 2) 7+( /$67 12'( 21 7+( 287(5 %281'$5< 5,*+7 %(/2: 7+( %5$1&+ &87 /$67 12'( ,1 ),567 +2/(7+,6 ,6 / ,1 ',66(57$7,21 /$67 12'( ,1 6(&21 +2/(7+,6 ,6 12'( /1 ,1 ',66(57$7,21 180%(5 2) 7+( /$67 12'( 21 7+( ,11(5 %281'$5< 5,*+7 $%29( 7+( %5$1&+ &87 $/62727$/ 180%(5 2) 12'(6 21 7+( %281'$5< 4 9$/8( 2) %,* 36, ,6 81.12:1 9$/8( 2) %,* 36, ,6 .12:1 $1' ,1387 4 9$/8( 2) %,* 36, ,6 81.12:1 9$/8( 2) %,* 36, ,6 .12:1 $1' ,1387 ,&+4 ,) 4 t 4 ,6 81.12:1 $1' 6(7 72 ,) 4 ,6 .12:1 $1' 9$/8( ,6 ,1387 ,&+0$7 ,) &2()),&,(17 0$75,; $1' )25&,1* 9(&725 $5( 127 72 %( 287387 ,) &2()),&,(17 0$75,; $1' )25&,1* 9(&725 $5( 72 %( 287387 ,&+/2$' ,) /2$',1* 352&('85( ,6 127 72 %( (&+2(' 72 7+( 6&5((1 ,) /2$',1* 352&('85( ,6 72 %( (&+2(' ;,f<,f &225',1$7(6 2) 12'( .7<3(,f ,) 3+, 63(&,),(' $7 12'( & & & & & & & & & & F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F

PAGE 178

QRQ RQR RRRRR F F F F F F F F F F F F F F F F F F F F F ,) 36, 63(&,),(' $7 12'( & ,) TN 63(&,),(' $7 12'( & ,) KN $1' 7,1),1,7< 63(&,),(' $7 & 12'( & & 5,1,f 3+,KN & & 5,1,f 36 ,TN7,1),1,7< & & & 7+,6 352*5$0 86(6 7+( 5287,1( '62/9( *$866,$1 & (/,0,1$7,21 6,08/7$1(286 (48$7,21 62/9(5 :,7+ & 3$57,$/ 3,927,1* (48,/,%5$7,21,7(5$7,9( & 5(),1(0(17 ,6 ',6$%/(' '8( 72 /,0,7$7,216 2) & $9$,/$%/( +,*+(5 7+$1 5($/r 35(&,6,21 & & 0$75,; 67$7,67,&6 $5( &20387(' $1' 287387 ,6 *,9(1 & )25 7+( 0$75,; 1250 $1' &21',7,21,1* 180%(5 & 7+( /,1),1,7< 1250 ,6 86(' & & 6,1*8/$5 9$/8( '(&20326,7,21 ,6 $9$,/$%/( $1' &$1 %( & 86(' ,) .$f ,6 /$5*( $'',7,21$//< (;$&7 .$f ,6 3529,'(' ,) 69' ,6 86(' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF F ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f ,17(*(5 ,911f7',0$',0,(5 ',0(16,21 $$1111f%%11f;;11f71111f511f ',0(16,21 &&11f:11f81111f91111f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021&+.(41&+.3+,&+.36, &20021287287,&+4,/2$' &20021 3,7:23, ',0(16,21 5(;11f5(<11f &20387( 3, 3, '$&26'f 7:23, 'r3, ,1387287387 '$7$ ),/(6 $1' 5($' ,1 '$7$ 23(1),/( f'&$8&+<'$7nf 23(1),/( f'&$8&+<$16f 5($'rf :5,7( :5,7( )250$7,; &211(&7(' n 180%(5 2) n 180%(5 2) f 180%(5 2) f 180%(5 2) f 4 >727$/ n 4 >727$/ ,0 ,/ f ,0 f ,0 '20$, /$67 12'( 12'( /$67 +($7 +($7 ,/1,144,&+4, ,/,/1,144,&+4 ,/,/1,144,&+4 &9%(0 352*5$0 )25 16 &973/<)25 r 287(5 12'( 180%(5 / 180%(5 /1 ,11(5 12'( )/2:@N@ )/2:@N@ &+0$7,/2$' ,&+0$7 ,&+0$7 75,3/< n ,; ,; ,; ,; ,; ',2,; ',2 2 2 2

PAGE 179

QRQ ; ,&+4 n ,; n0$75,; n f 287387 &+2,&( n, ;n 212 287387 0$75,; 287387n f '2 ,1 5($'rf ;,f<,f.7<3(,f5,1,f 5,1,f & :5,7(rrf ,;,f<,f.7<3(,f5,1,f5,1,f & & &$// 68%5287,1( $1*/( 72 &20387( 7+( $1*/(6 %(7:((1 7+( 12'(6 & 7+,6 ,6 7+( $1*/( 86(' ,1 &20387,1* 7+( 7(50 2876,'( 7+( & 6800$7,21 6,*1 ,1 (41 & &$// &$1*/(,0,/,/1,1f & 287387 352%/(0 6(7 83 $1' *(20(75< :5,7(rf :5,7(f :5,7(f )250$7;n12'$/ *(20(75< $1' ,1387 9$/8(6n ; n12'(n; n;, f n; n<,f n ; n.7<3(,f n; n5,1. ,f n; n5,1,f n; n$1*/(,f n; n12 n f '2 ,1 ,),(4,0f :5,7(rrf ,),(4,0f :5,7(rf ,),(4,/f :5,7(rrf ,),(4f,/f :5,7(rf ,),(4,/1 f :5,7(rrf ,),(4,/1 f :5,7(rf :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr'3, :5,7(f ,;,f<,f.7<3(,f5,1,f5,1,f $1*/(,fr 3, )250$7;,;';f,;';f;)f & & 35(3$5( */2%$/ 0$7,&(6 & & =(52 $55$<6 & :5,7(rf :5,7(rf n=(52,1* $55$<6n '2 11 6,f '2 11 '2 11 3,-f &$// 0$75,; /2$',1* 352*5$0 72 $66(0%/( 7+( &9%(0 (48$7,216 &$// /2$'(5,0,/,/1,144f & & *(7 5($'< 72 &$// *$866,$1 (/,0,1$7,21 6,08/7$1(286 & (48$7,21 62/9(5 25 6,1*8/$5 '(&203267,21 62/9(5 ,) .$f!69'(36 & ),567 6(7 3$5$0(7(56 & $',0 11 7',0 11 1 11 & & 7+(1 287387 )25&,1* 9(&725 0$75,; >3@ $1' )25&,1* 9(&725 ^6` & ,1 7+( ,03/,&,7 )2508/$7,21 & & & >3@ 3+,36,` ^6`

PAGE 180

& ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 6.,3 0$75,; (416 287387 & ,0$; 11 ,),&+0$7(4f 7+(1 :5,7(rf )250$7,; f 0$75,; (48$7,21 287387 6835(66(' %< ,&+0$7 nf *2 72 (/6( & ,) 7+( ,1387 &+2,&( ,&+0$7 7+(1 287387 0$75,; 5416 9,$ 0$7287 '2 11 %%,f 6,f '2 11 $$,-f 3,-f &$// 0$7287$$%% ,0$;f (1' ,) & & &$// ,19'(7 $1' $77(037 72 &20387( 7+( &21',7,21,1* 180%(5 & '2 ,0$; '2 ,0$; $$,-f 3, f '7150 '(70 :5,7(rrf n &$//,1* ,19'(7n &$// ,19'(7$$'7150'(70f & & &20387( /,1),1,7< 12506 2) 7+( 0$75,; >3@ $1' ,76 ,19(56( & & >3@ 5(7851(' %< ,19'(7 $1' 6725(' $6 >$$@f $1' &20387( & , ,, & 7+( &21',7,21,1* 180%(5 2) 7+( 0$75,; >3@ $6 .3f _3_r_3 & 51250$ 5150$, '2 ,0$; 67 672 '2 ,0$; 67 67'$%6$$, ff 67 67 '$%63,-f f 5150$, '0$;5150$, 672Of 51250$ '0$;O51250$67f :5,7(rf51250$5150$, :5,7(f51250$5150$, )50$7;;n0$75,; 67$7,67,&6n,; W n ,; n 1250 >$@ n'; nnO; n1250 >$@ n f &21' 51250$r5150$, :5,7(rf '7150&21' :5,7(f '7150&21' )250$7,;;fn,;n.$f a n';‘+251(%(&.n n $3352;,0$7,21 72 ,19(56( 2) &21',7,21,1* 180%(5n ;n.$f n';n/,1),1,7< 1250 86(' 72 &20387( .$fnf & & & &+(&. ,19'(7 %< &203$5,1* : 6,08/7$1(286 (48$7,21 62/9(5 86(' & 72 *(7 62/87,21 6725( ,19'(7 $16:(5 ,1 9(&725 ^5!f§! 8186(' & 12: %< '/8' 6,1&( ,7(5$7,9( 5(),1(0(17 7851(' 2)) & '2 ,0$;

PAGE 181

R R R 672 2 '2 ,0$; 672 672$$ f r6 f 5,f 672 &217,18( & & &+(&. &21',7,21,1* 180%(5 .$f 2' 6.,3 69' & .$f 2' &$// 69' & :5,7(rf :5,7(f )250$7,;,; r &+(&. &21',7,21,1* 180%(5 n ; n.$f 2' 6.,3 69' $/*25,7+0n ; r .$f! 2' &$// 69' $/*25,7+0rf 69'(36 m2' ,)&21'/(69'(36f 7+(1 :5,7(rrf n6.,33,1* 69'f :5,7( r r f r '2 <28 :$17 72 29(55,'( $1' 67,// 86( 69'"n :5,7( r r f :5,7( r r f n (17(5 72 29(55,'( $1' &$// 69'n :5,7(rrf n 72 352&((' :2 69'n 5($' r r f ,1387 ,),1387(42f *2 72 :5,7(rrf :5,7( r f n6.,33(' 69'f ,&+$/* *2 72 (1',) & & &$//,1* 6,1*8/$5 9$/8( '(&20326,7,21 62/9(5 & & & *,9( 29(55,'( &+2,&( & :5,7( r rf :5,7( r r f n 69'(36 (;&(('(' $1' &$//,1* 69'n :5,7(r rf n '2 <28 :$17 72 29(55,'( $1' 67,// 86( *("n :5,7(rrf :5,7(rrf n (17(5 72 29(55,'( $1' &$// *(n :5,7(rrf n 72 352&((' : 69'n 5($'rrf ,1387 ,),1387(4 f *2 72 :5,7(rrf B &$//,1* 69' b :5,7(rrf n &$//,1* 69' 62/9(5n &$// 69'36;;11&&89:f *2 72 & F & &$// *$866,$1 (/,0,1$7,21 6,08/7$1(286 (48$7,21 62/9(5 '62/9( & & 6(7 )25&,1* 9(&725 $1' 0$75,; & '2 ,, 1 %%,,f 6 f '2 ,1 $$,,,-f 3,,,-f :5,7(r f 72 %( 6(17 72 62/9(5

PAGE 182

RRR QRQ RRR QRRQ QRQ RRR :5,7( r f n&$//,1* *$866,$1 (/,0,1$7,21 6,0(41 62/9(5f &$// '62/9($$%%1$',07',07,9;;5,(5f &20387( t 35,17 5(6,'8$/ 9(&725 $ :5,7(f :5,7(f )250$7,;,;n 5(6,'8$/ $1' 62/87,21 9(&7256n ;n&+. 62/1 :};n62/1 )520 '/8'n;n,n;n5(6,'8$/n ; n ,19'(7 r ; n6,0(41 62/9(5n ; n n ; n n ; n n ; n n f '2 1 r 5(6 6,f '2 1 5(6 5(63,-fr;;-f :5,7(f ,5(65,f;;,f :5,7(f ,5(65,f;;,f )250$7,; n n, n n',2,; n f f f 6(7 ^6` (48$/ 72 62/87,21 '2 1 6&,f ;;,f $66,*1 %281'$5< 12'$/ 32,17 9$/8(6 '(3(1',1* 21 +2: /2$',1* :$6 3(5)250(' '2 ,1 ,).7<3(,f(4f *2 72 5(;,f 5,1,,f 5(<,f 6,f *2 72 5(;,f 6,f 5(<,f 5,1,f &217,18( ,),&+4(4Of 7+(1 4 6f 5(
PAGE 183

5($'rrf ,&+ ,),&+(42f 6723 &/26( f &/26( f 23(1),/( n'L3267'$7nf :5,7(rf ,0,/,/1,144 '2 11 :5,7(f ;,f<,f5(;,f5(<,f )250$7;' f f 6723 (1' & & & & & & & & & & & & & & &9%(0 6833257 68%5287,1(6 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 7+,6 68%5287,1( /2$'6 7+( &9%(0 (48$7,216 ,1 7+( */2%$/ 0$75,; ,7 $&(66(6 7+( ,0/,&,7 $1' (;3/,&,7 /2$'(56 68%5287,1(6 ,03 $1' (;3 6(( 7$%/( ,1 ',66(57$7,21 */2%$/ 0$75,; (48$7,216 >3@^;;` ^6! rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & F F F F F F F F F F F F F 68%5287,1( /2$'(5,0,/,/1,144f ,03/,&,7 '28%/( 35(&,6,21 $+2=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,1O11f5,111f 31111f611f$1*/(11f &20021&+.(41&+.3+,&+.36, &20021287287,&+4,/2$' &20021 3,7:23, Frrrrrrrrrrrrrrrrrr 3(5)250 0$75,; /2$',1* rrrrrrrrrrrrrrrrrrrrrrrrrrrrF & & /2$' 3+, 25 36, (48$7,21 )25 ($&+ 12'( :+(5( O112' & '(3(1',1* 21 7+( 9$/8( 2) .7<3(-f & & 6(7 ,&+(41 /2$' ,03/,&,7 (48$7,21 & 6(7 ,&+(41 /2$' (;3/,&,7 (48$7,21 & 6(7 ,&+(41 /2$' 1(80$11 %& (48$7,21 & 6(7 ,&+(41 /2$' 52%,1 %& (48$7,21 & F :5,7(rf r :5,7(rf n/2$',1* ,03/,&,7 (48$7,216 ,1 */2%$/ 0$75,;n '2 -11 ,)--(411f 7+(1 &6(7 6(&21' 12'$/ (48$7,21 )254 ,0 (/6( -(1' ,) & & /2$' ,1 ',$*21$/ &2175,%87,21 $7 -f ),567 ,172 3@ $1' ^6` & ,( 7+( 7(506 2876,'( 7+( 6800$7,21 ,192/9,1* 7+( ,00(',$7( & 1(,*+%25 (/(0(176 >-O-@ $1' >--O@ & 7$.( ,172 $&&2817 '28%/< &211(&7(' *(20(75< &

PAGE 184

QRQ R R R RR RQRRQRRRRRRR Q QRQ QR $ % & ' &+.3+, &+.36, :5,7( r r f :5,7(rrf n/2$',1* 12'$/ (48$7,21 $7 12'( n$66,*1 ,&+(41 )25 /2$',1* 2) 12'$/ (48$7,216 ,)--(4,/O25--(411f 7+(1 ,)--(411f 7+(1 ,&+(41 (/6( ,&+(41 (1' ,) /2$' 1(80$11 25 52%,1 %& ,) ,&+(41 25 &21',7,216 $1' 6.,3 &9%(0 /2$',1* /223 ,),&+(41(4f &$// 1(80$11-f *2 72 ,),&+(41(4f &$// 52%,1-f *2 72 75,3/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ ,)-(4Of ,0 ,)-(4,0f ,)-(4,0f ,1 ,)-(4,/f ,/1 ,)-(4,/f ,/1 ,)-(4,/1f ,/ ,)-(4,/1f ,/ ,)-(4,1f ,0 ,),/2$'(4f :5,7(rr f n &$//,1* ',$*21$/ /2$'(5n &20387( $1*/(6 $1' &203/(; $/*(%5$ &$// &$8&+,0,/,/1,1-,.$%&'f /2$' ',$*21$/ 7(50 ,172 7+( 0$75,; (48$7,21 ,),&+(41(4f &$// ,03,0,/,/1,1---,.$&'f ,),&+(41(4f &$// (;3,0,/,/1,1---,.$&'f & & /2$' ,1 7+( 5(0$,1,1* &2817285 (/(0(17 &2175,%87,216 ,( 7+( & 7(506 81'(5 7+( 6800$7,21 6,*1 ,192/9,1* (/(0(17 *$000$0 1 @ & :+(5( 0 Q $1' 1 Q ,1 7+( 127(6 & & $&&2817 )25 '28%/< &211(&7(' *(20(7(5< &

PAGE 185

RRR RR4RRQRRQ QRRQ R R R RRR RRR $/62 6.,3 7+( &2175,%87,216 2) 7+( ',5(&7 1(,*+%256(/(0(176 >,-@ $1' >-.@ 7+(6( +$9( $/5($'< %O((1 /2$'(' 35,25 72 7+,6 /223 '2 1 ,1 /2*,& 72 &20387( 1O $&&2817,1* )25 %5$1&+ &87 $1' &,5&8,7 $5281' 7+( '28%%/< &211(&7(' '20$,1 13 1 ,)1(4,0f 13 ,)1(4,/f 13 ,/1 ,)1(4,/1f13 ,/ ,)1(4,1f 13 ,0 6.,3 ',5(&7 1(,*+%25,1* (/(0(176 ,)1(4-2513(4-f *2 72 &20387( &203/(; $/*(%5$ ,),/2$'(4f:5,7(rf 113 )250$7;n&$//,1* /2$'(5 )25 *$00$ > n n n n @ n f &$// &$8&+.,0 ,/ ,/1,1-113$%&'f /2$' (/(0(17 &2175,%87,21 ,172 0$75,; (4$7,21 ,),&+(41(4f &$// ,03,0,/,/1,1---113$&'f ,),&+(41(4f &$// (;3,0,/,/1,1---113$&'f &217,18( *(7 5($'< 72 &20387( &2175,%87,216 '8(6 72 6285&(66,1.6 673+, t 6736, &217,18( ;2 ;f <2
PAGE 186

RQ R R R R R R R R QRRRRRRR ,),&+(41(4Of 7+(1 &,03/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6--f 6--f673+, ,).7<3(-f(4f 6--f 6--f6736, (/6( &(;3/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6--f 6--f6736, ,).7<3(-f(4f 6--f 6--f673+, (1' ,) (1' ,) &20387( 4 &2175,%87,216 &$// &$8&+6-,/,/1,/ ,/14673+,6736,;2<2f 4 ,6 81.12:1 ,),&+4(4Of 7+(1 &+(&. :+(7+(5 ,03/,&,7 25 (;3/,&,7 (48$7,21 ,6 /2$'(' ,),&+(41(4f 7+(1 ,03/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 3--11f 673+, ,).7<3(-f(4f 3--11f 6736, (/6( (;3/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 3--11f 6736, ,).7<3(-f(4f 3--11f 673+, (1' ,) (/6( 4 ,6 *,9(1 21 ,1387 &+(&. :+(7+(5 ,03/,&,7 25 (;3/,&,7 (48$7,21 ,6 /2$'(' ,),&+(41(4f 7+(1 ,03/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6--f 6--f673+, ,).7<3(-f(4f 6--f 6--f6736, (/6( (;3/,&,7 (48$7,21 ,6 /2$'(' ,).7<3(-f(4f 6--f 6--f6736, ,).7<3(-f(4f 6--f 6--f673+, (1' ,) (1' ,) ,),&+(41(4f 7+(1 ,).7<3(-f(4f :5,7(rrf n&+.36, n&+.36, ,).7<3(-f(4f :5,7(rrf n&+.3+, &+.3+, (/6( ,).7<3(-f(4f :5,7(rrf f&+.3+, f&+.3+, ,).7<3(-f(4f :5,7(rrf n&+.36, n&+.36, (1' ,) ,).7<3(-f(425.7<3(-f (4 f 7+(1 &+. '2 --11 &+. &+.3----f :5,7(rrf n&+.%& r &+. (1' ,) &217,18( ),1,6+(' 0$75,; /2$',1*

PAGE 187

QRQ QRQ 5(7851 (1' & & & & Trrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & F F F F F F F F ,03/,&,7 /2$'(5 7+,6 68%5287,1( /2$'6 7+( (/(0(17 &2175,%87,216 ,172 7+( */2%$/ 0$75,; (48$7,21 +(5( 7+( 3257,21 2) 7+( (48$7,21 # 7+( 12'( ,6 /2$'(' 7+( (/(0(17 01@ ,6 /2$'(' :+(5( 1 0 ,) 0 25 1 7+(1 7+( (/(0(17 ,6 7+( /2*$5,7+0,& & & & & & & F F F FrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrF 68%5287,1( ,03,0,/,/1,1---01 $&'f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, & & 7+,6 68%5287,1( $66(0%/(6 7+( (/(0(176 ,1 7+( */2%$/ 0$75,; & 3 :,7+ 9(&7256 2) &2167$176 6 7+$7 ,6 ,7 /2$'6 /,1( & %< /,1( 7+( ,03/,&,7 )2508/$7,21 2) (41 )25 '28%/< & &211(&7(' '20$,16 )25 ($&+ 12'( ,7 /2$'6 ,1 & 7+( ,0$*1$5< 3$57 2) 7+( (48$7,21 )25 12'(6 & :,7+ .7<3( HTQ LQ WKH QRWHVf $1' 7+( 5($/ 3$57 )25 & 12'(6 :,7+ .7<3( HT LQ WKH QRWHVf & 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -3 -0 ,)-(4 ,)-(4 ,)-(4 ,)-(4,/f ,)-(4,/f ,)-(4,/1f f ,)-(4,/1f f ,0f ,0 f -0 ,0 -3 -0 ,1 -3 ,/1 -0 ,/1 -3 ,/ -0 ,/ -3 ,0 ,)-(4,1f &20387( 1(,*+%25,1* 32,176 1(,*+%256 2) $1' &+(&. ,) 7+(< $5( 7+( ',5(&7 ,)0(4-0O251(4-3f *2 72 & &/2$',1* $ 6800$7,21 7(50 ,172 >3@ $1' 6f & &20387( 7+( &2167$176 86(' ,1 7+( 6800$7,21 7(50 & & ,),/2$'(4Of :5,7(rf-01 )250$7 n /2$',1* 6800$7,21 7(50>-01 @ n;,ff & ;-f;0ffr&<-f<0ffr'

PAGE 188

QRQ QRQ QQQQ & ;-f;0ffr'<-f<0ffr& & ;-f;1ffr&<-f<1f f r' & ;-f;1ffr'<-f<1f f r& *O &7:23, &O7:23, &7:23, &7:23, $66,*1 &2()),&,(176 72 7+( 9$5,$%/(6 ,1 7+( 6800$7,21 7(50 ),567 &+(&. 7+( 7<3( 2) 81.12:1 $7 7+( ',$*21$/ 3+, 25 36, *,9(1 ,).7<3(-f(4f *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 67$7( 9$5,$%/( 03+,.7<3( 86( (48$7,21 ,1 7+( 127(6 ,0$*,1$5< 3$57 2) && && && && *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 675($0 )81&7,21 36,.7<3( 86( (48$7,21 ,1 7+( 127(6 5($/ 3$57 2) && && && && & &/2$' 7+( 6800$7,21 7(50 &2175,%87,21 ,172 >3@ $1' ^6` )25 & (/(0(17 >01@ :+(5( 0 $1' 1 127 (48$/ 72 $1' 1 0 & $&&25',1* 72 $ 326,7,9( &2817(5&/2&.:,6( 180%(5,1* &219(17,21 & & &+(&. :+$7 +$5021,&3+, 25 36,,6 63(&,),(' $7 12'(6 0 $1' 1 & &&+(&. 12'( 0 ),567 & ,) .7<3(0f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 0.7<3( 6--f 6--f&&r5,1O0f 3--0f 3--0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 0.7<3( 6--f 6--f&&r5,10f 3--0f 3--0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&& && (/6( &+.3+, &+.3+,&&&& (1' ,) &&+(&. 12'( 1 1(;7 ,).7<3(1f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 1.7<3( 6--f 6--f&&r5,11f 3--1f 3--1f&& ,).7<3(-f(4f 7+(1

PAGE 189

QR RQ RRRR RQ &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 +36, 63(&,),(' )25 12'( 1 .7<3( 6--f 6--f&&r5,11f 3--1f 3--1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&& && (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 & F & %281'$5< (/(0(17 %(,1* /2$'(' &217$,16 & 12'( -f ,( /2$',1* ',$*21$/ &2175,%87,216 & F &&+(&. 7<3( 2) ',$*21$/ 81.12:1 & & $= $7:23, %= 7:23,$1*/(-ff7:23, ,),/2$'(4f :5,7(rf--0--3 )250$7 n /2$',1* ',$*21$/ 7(50 )25 12'(n } *$00$>,-.@,;ff ,).7<3(-f(4f *2 72 67$7( 9$5,$%/( 3+, 63(&,),(' $7 12'( -.7<3( 3----f %=O' 6--f 6--f$=r5,1-ff &+.36, &+.36,$=%= *2 72 675($0 )81&7,21 36, 63(&,),(' $7 12'( .7<3( 3----f %=O' 6--f 6--f$=r5,1-ff &+.3+, &+.3+,$=%= ),1,6+(' /2$',1* 7+( (/(0(17 &217,18( 5(7851 (1' & & errrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrre F F & (;3/,&,7 /2$'(5 & & & & 7+,6 68%5287,1( /2$'6 7+( (/(0(17 &2175,%87,216 & & ,172 7+( */2%$/ 0$75,; (48$7,21 +(5( 7+( 3257,21 2) & & 7+( (48$7,21 # 7+( 12'( ,6 /2$'(' & & 7+( (/(0(17 >01, ,6 /2$'(' :+(5( 1 0 & & ,) 0 25 1 -r 7+(1 7+( (/(0(17 ,6 7+( /2*$5,7+0,& & & &

PAGE 190

RRRQRRR RRRQRRRQ RRRRQRQRRRQQ RR rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( (;3,0,/,/1,1---01$&'f ,03/,&,7 '28%/( 35(&,6,21 $+=fr 3$5$0(7(511 f &20021%/.;11f<11 f .7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, 7+,6 68%5287,1( $66(0%/(6 7+( (/(0(176 ,1 7+( */2%$/ 0$75,; LWSX :,7+ 9(&7256 2) &2167$176 6 7+$7 ,6 ,7 /2$'6 /,1( %< /,1( 7+( ,03/,&,7 )2508/$7,21 2) (41 )25 '28%/< &211(&7(' '20$,16 )25 ($&+ 12'( f,7 /2$'6 ,1 7+( ,0$*1$5< 3$57 2) 7+( (48$7,21 )25 12'(6 :,7+ .7<3( HTQ LQ WKH QRWHVf $1' 7+( 5($/ 3$57 )25 12'(6 :,7+ .7<3( HT LQ WKH QRWHVf 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -3 -0 -O ,)-(4Of ,)-(4,0f ,)-(4,0f ,)-(4,/f ,)-(4,/f ,)-(4,/1f ,)-(4,/1f ,)-(4,1f &20387( 1(,*+%25, 1(,*+%256 2) -f -0 ,0 -3 -0 ,1 -3 ,/1 -0 ,/1 -3 ,/ -0 ,/ -3 ,0 1* 32,176 $1' &+(&. ,) 7+(< $5( 7+( ',5(&7 ,)0(4-0O251(4-3f *2 72 /2$',1* $ 6800$7,21 7(50 ,172 >3@ $1' ^6` &20387( 7+( &2167$176 86(' ,1 7+( 6800$7,21 7(50 ,),/2$'(4Of :5,7(rf-01 )250$7 n f /2$',1* 6800$7,21 7(50>-01@ f ,;ff & ;-f;0ffr&<-f<0ffr' & ;-f;0f-r'<-f<0ff r& & ;-f;1ffr&<-f<1ffr' & ;-f;1ffr'<-f<1ffr& *O &7:23, &O7:23, &7:23, &7:23, $66,*1 &2()),&,(176 72 7+( 9$5,$%/(6 ,1 7+( 6800$7,21 7(50 ),567 &+(&. 7+( 7<3( 2) 81.12:1 $7 7+( ',$*21$/ 3+, 25 36, *,9(1 ,).7<3(-f(4Of *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 67$7( 9$5,$%/( 03+,.7<3( 86( (48$7,21 36, 4 2

PAGE 191

QRQ && && && && *2 72 7+( ',$*21$/ 81.12:1 +$5021,& ,6 7+( 675($0 )81&7,21 36,.7<3( 86( 3+, (48$7,21 && && && && & & /2$' 7+( 6800$7,21 7(50 &2175,%87,21 ,172 >3@ $1' ^6` )25 & (/(0(17 01f :+(5( 0 $1' 1 127 (48$/ 72 $1' 1 0 & $&&25',1* 72 $ 326,7,9( &2817(5&/2&.:,6( 180%(5,1* &219(17,21 & & &+(&. :+$7 +$5021,&3+, 25 36,,6 63(&,),(' $7 12'(6 0 $1' 1 & &&+(&. 12'( 0 ),567 & ,) .7<3(0f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 0.7<3( 6--f 6--f&&r5,10f 3--0f 3--0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 0.7<3( 6--f 6--f&&r5,10f 3--0f 3--0f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) &&+(&. 12'( 1 1(;7 ,).7<3(1f(4f *2 72 &67$7( 9$5,$%/( 3+, 63(&,),(' )25 12'( 1.7<3( 6--f 6--f&&r5,11f 3--1f 3--1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &675($0 )81&7,21 36, 63(&,),(' )25 12'( 1.7<3( 6--f 6--f&&r5,11f 3--1f 3--1f&& ,).7<3(-f(4f 7+(1 &+.36, &+.36,&&&& (/6( &+.3+, &+.3+,&&&& (1' ,) *2 72 &

PAGE 192

RQ RRR RRQRR RQ F & %281'$5< (/(0(17 %(,1* /2$'(' &217$,16 & 12'( -f ,( /2$',1* ',$*21$/ &2175, %87,216 & F & &+(&. 7<3( 2) ',$*21$/ 81.12:1 & & $= $7:23, %= 7:23,$1*/(-ff7:23, ,),/2$'(4f :5,7(rf--0--3 )250$7 n /2$',1* ',$*21$/ 7(50 )25 12'( r, n *$00$>,-.@ n,;, f f ,).7<3(-f(4f *2 72 67$7( 9$5,$%/( 36, 63(&,),(' $7 12'( .7<3( 3----f $= 6--f 6--f%=fr5,1-f &+.36, &+.36,$=%= *2 72 675($0 )81&7,21 3+,f 63(&,),(' $7 12'( -.7<3( 3----f $= 6--f 6--f%=fr5,1-f &+.3+, &+.3+,$=%= ),1,6+(' /2$',1* 7+( (/(0(17 &217,18( 5(7851 (1' F Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F F 1(80$11 %& (48$7,21 /2$'(5 & 81&200(17(' 7+,6 5287,1( $1' /2$' $&&25',1* 72 /2&$7,21 & 2) 36,n6 ,1 */2%$/ 0$75,; & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & & 68%5287,1( 1(80$11,0,/,/1,1-01$&'f & ,03/,&,7 '28%/( 35(&,6,21 $+=f & 3$5$0(7(511 f & &20021%/.;11f<11f.7<3(11f5,111f 5,111f & 31111f611f$1*/(11f & &20021287287,&+4,/2$' & &20021&+.(41&+.3+,&+.36, & &20021 3,7:23, & &&20387( '6 $1' 68064 & & -0 -O & '; ;-f;-0f & '< <-f<-0f & ';64 ';r'; & & & & & & & & F

PAGE 193

RRRRRRRRQRQRRRRRR k FR + P PR + + k KL KL :U2W,-U2+U'++ 0 a k k k WQ FLLL k G &L FR &M FRFRFR k k k ; 1 P ‘} FL k k k k 2 +, &O &O k k k k f k &O &O k k = &L P k k P k ] ,, &O ; ; k k k 2 +, k ; k k k f &L __ f ] &O &O .f f§ ] rf§ f ] = k k ] k k f§ f§ r k k k ,, ; k P ] ; P k ] k k k f ] k nf§ &O f &O k &L ] ] k k ] LI 2 r k 2 2 I2 k k f 2 2 Z k k r r k k 2 k ] 2 = P 2 P k ; k k k k k k k k k ] ] ] ] ! r k k k k ; ; QRQRRRRRQQQRQRQQQ f f rm R P R &L &2&222222&L k f§ FZ[[[[] F 1&O ,, WR WR ,, ,, + r AKRRR[[LL P r ,, KL &2 ,, ,, f§ f§ &B_ [ FR]RRRTFLL D P aPk[[arnk FR ] R K r r a k a R R [ [ k +'.; ] R FR ] [ FL FL R WR F k WR ] ] +, = f§ 2 k +r &2 = + &L a f§ F rm f§ R ] 2 = r ; r R P k k KL ] r K R ] R R ] Z P +L &2 .f + ? + .f &_ R f ] = 2 k k R P k Ur KL ] + + P a &2 &L k +r &2 a +, } f§ k .+, f§ = 0 f§ 2 &L ] k +r &2 Z +, k & ; +, 2 ; FR WR P + 31111f611f$1*/(11f &20021287287,&+4,/2$' &20021&+.(41&+.3+,&+.36, &20021 3,7:23, R R R R R Q k R ] ] R ] k ] P r k P U [ ] ] -2 ] ] ,, ] ] ; + ; k P ] ] k +, ] ] ] k ] .f ] ] &2 & = k k k U R +, F Q +, + 2 2 D k Ur P k k P R KL Ur k ] P k R k R Ur ] R 0 ] F ] 1 ] Q R R R R LI LI LI r r + r r LI LI LI LI LI LI LI LI LI LI LI LI LI LI + LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI Q R QRQ ] R k ; ] R k R Q R ] k & OO = ,, Q R Y ] ] k P R ] r k ; k k +, k k Q k R P F R F ] P A R D k P r [ P Q R D R U k R R k U k R R P k ] D = + R r k k +, f ; R k R Q Q LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI LI QRQ RRRQRRRRRRRQR P k ] P R r F k ] k k +L +, f§ a k k &_ &_ k k +, +, &_ &B_ k k = ,, k k k &L +, +, ,, &O &L &O ] f§ ] ,, k ,, f R k f R R k P r k k ] R k k &O ] 2 k 2 R r 2 ] R P k k k k R k ] k k ; k k f§ F &O ] f§ R ,, ,, k k ] Z 1f k &O F a ] R k LI +, R ] k UR 2 k OO 2 k 2 k 2 ; Z R R ; Z R R ; Z R R ; LI R ; UR &BL f = R

PAGE 194

& 3-,3+,-0f 5,1-0fr'6' & 5(7851 & (1' & F rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 68%5287,1( 72 &20387( $1*/(6 %(7:((1 7+( $'-$&(17 & 12'(6 $1*/(-f 86(' ,1 /2$',1* ',$*21$/ 7(506 & 2) (41 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F 68%5287,1( &$1*/(,0,/,/1,1f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f5,111f 31111f611f$1*/(11 f &20021 3,7:23, '2 ,1 '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ & & & 0 ,1 ,/1 ,/1 ,/ ,/ ,0 2) 7+( (1'32,176 2) 1(,*+%256 5(/$7,9( ,)-(4Of ,)-(4,0f ,)-(4,0f ,)-(4,/f ,)-(4,/f ,)-(4,/1f ,)-(4,/1f ,)-(4,1f &20387( 326,7,21 ;, ;,f;-f <, <,f<-f ;. ;.f;f <. <.f<-f &20387( $1*/( &$// &$8&+;,<,$1*/(,f &$// &$8&+;.<.$1*/(. f % $1*/(,$1*/(. &$1*/( %(7:((1 7:2 12'(6 &$1127 %( 1(*$7,9( ,)%/72f % %7:23, $1*/(-f % 5(7851 (1' 72 % r3, rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 7+,6 68%5287,1( &20387(6 7+( $1*/( 7+$7 7+( & ',5(&7(' 9(&725 )250 7+( 25,*,1 72 7+( 32,17 ;L
PAGE 195

R R R R R RRRQR RRR QRRQ QRRQQRQRQRR ,);*7$1'fQRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ WKLV SURJUDP HJ LQ SURJUDP &$8+@ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,1,11f5,1 11f 31111f611f$1*/(11f &20021 3,7:23, &20387( $1' 6725( r3, 7:23, 'r3, '28%%/< &211(&7(' /2*,& )25 $'-$&(17 12'( 180%(5,1* $&&2817,1* )25 7+( %5$1&+ &87 $7 7+(7$ -3 -0 ,)-(4Of ,)-(4,0f ,)-(4,0f ,)-(4,/f ,)-(4,/f ,)-(4,/1f ,)-(4,/1f ,)-(4,1f -0 ,0 -3 -0 ,1 -3 ,/1 -0 ,/1 -3 ,/O -0 ,/ -3 ,0 &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<-ffrr;1f;-ffrrf ;/0 '6457<0f<-ffrr;0f;-ffrrf $ '/2*;/1;/0f &+(&. ,) '($/,1* :,7+ (/(0(176 >--@ $1' >--@ ',$*21$/ 7(50 ,)0(4-0O251(4-3f *2 72 '($/,1* :,7+ (/(0(17 >01@ $1' 12'$/ 32,17 6800$7,21 7(50 '(7(50,1( $1*/( *(20(75< =0; ;0f;f f =0< <0f
PAGE 196

RQR RRRRRRRRRR RRR RRR 7+(7$ 68&+ 7+$7 3,7+(7$ 3, 72 <(,/' $ 6,1*/( 9$/8(' )81&7,21 )25 OQ]f ] 127 ,)%/(3,f % %7:23, ,)%*73,f % %7:23, *2 72 &217,18( % $1*/(-f 5(7851 &217,18( &20387( 7+( &2167$176 ) ;1f;0ffrr<1f<0ff rr & $r;1f;0f f%r<0f<1f f %r;1f;0f f $r<0f<1 f f & &) ') 5(7851 (1' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 287387 68%5287,1( )25 7+( &9%(0 (67,0$7( 2) 81.12:1 12'$/ 9$/8(6 3+, $1' 36, $7 7+( %281'$5< rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( 287387,0,/,/1,15(;5(<44f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,1,11f5,111f 31111f611 f $1*/(11f &20021287287,&+4,/2$' &20021 3,7:23, ',0(16,21 5(;11f5(<11f 7+,6 68%5287,1( 2873876 5(68/76 :5,7(f :5,7(f )250$7;n&$8&+< 352*5$0 5(68/76 )25 12'$/ 9$/8(6nf ,),&+4(4Of 7+(1 :5,7(rrf n 4O n4 :5,7(rrfnrn 4 n4 :5,7(rf n 4O n4 :5,7(rf n 4 n4 (1' ,) :5,7(f :5,7(f )250$7,;;n12'(f;n67$7(f;n675($0n ; n 180%(5n; f 9$5, $%/( } ; n )81&7,21 ff '2 ,1 ,),(4,0 f :5,7(rr f ,),(4,/f :5,7(rr f ,),(4,/1 f :5,7(rr f ,),(4,0f :5,7(r f ,),(4,/ f :5,7(r f

PAGE 197

r Q R QRRQ RQR ,),(4,/1f :5,7( r f :5,7(rf5(;,f5(< f :5,7(f,5(;,f5(<,f )250$7;,;',;ff &217,18( 5(7851 (1' & 4rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 7+,6 68%5287,1( &20387(6 7+( 9$/8(6 2) 7+( 675($0 )81&7,21 & 67$7( 9$5,$%/( $7 7+( 12'(6 2) 7+( 352%/(0 *(207(5< 7+,6 & ,6 $&&203/,6+(' %< 86,1* 7+( *,9(1 12'$/ 9$/8(6 $1' 7+( & &9%(0 (67,0$7(' 12'$/ 9$/8(6 )25 7+( 81.12:1 9$/8(6f $1' & 7+( &9%(0 $3352;,0$7,21 72 &$8&+
PAGE 198

QRQ R RQR RRR RRQ RRR -0 -3 -3 -0 -O ,)-(4 ,)-(4 f ,0f ,0 f ,)-(4 ,)-(4,/f ,)-(4,/ f ,)-(4,/1f ,)-(4,/1f ,)-(4,1f -0 ,0 -3 -0 ,1 -3 ,/1 -0 ,/1 -3 ,/ -+ ,/ -3 ,0 ;/1 '6457<-3Of<-ffrr;-3f ;/0 '6457<-0f<-ffrr;-0f $'/2*;/1;/0f %7:23,$1*/(-f +;-f +;-f 5(;-fr$-5(<-fr%+<-f +<-f 5(;-fr%5(<-fr$; f f r r f ; f f r r f ',9,'( %< r3,r L 7(03 +;-f 7:23 r3, +;-f +<-f7:23, +<-f 7(037:23, &20387( &2175,%87,216 '8(6 72 6285&( ,)4(4f'f *2 72 ;2 ;-f <2 <-f &20387( 4 &2175,%87,21 &$// &$8&+6-,0,0,14673+,6736,;2<2f +;-f +;-f673+, +<-f +<-f6736, &20387( 4 &2175,%87,21 &$// &$8&+6-,/,/1,/,/14673+,6736,;2<2f +;-f +;-f673+, +<-f +<-f6736, ,),(4,0f :5,7(rrf ,),(4,0 f :5,7( r f ,),(4,/ f :5,7( r r f ,),(4,/f :5,7( r f ,)G(4,/1 f :5,7( r r f ,),(4,/1 f :5,7(r f :5,7(f -+;-f+,<-f :5,7(f -+;-f+,<-f )250$7;, ,;',;f f &217,18( &$/&8/$7( 12'$/ 32,17 5(/$7,9( (5525 :5,7(f :5,7(f )250$7; f12'$/ 32,17 5(/$7,9( (5525 9$/8(6

PAGE 199

RQ RRRRRRQQRRRR QRQ QRQ f H =f r; a; n9; :+(5( H ] f Y f Y ] f f f '2 ,1 '$ 5(;,f+O;,f '% 5(<,f+<,f ,),(4,0 f :5,7(rrf ,),(4,0 f :5,7(rf ,),(4,/f :5,7(rrf ,),(4,/f :5,7(rf ,),(4,/1f :5,7(rrf ,),(4,/1f :5,7(rf :5,7( f ,'$'%+O;,f;,f+,<,f<, f :5,7(f ,'$'%+O;,f;,f+<,f<,f )250$7;,;';ff 5(7851 (1' & &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+6 &20387(6 7+( 6285&( 7(50 &2175,%87,216 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 68%5287,1( &$8&+6.,,0,03,14673+,6736,;2<2f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f<11f.7<3(11f5,111f5,111f 31111f611f$1*/(11f &20021 3,7:23, ,1,7,$/,=( &2167$176 $ % & ' & ' & ' & ' & ' ,) 7+(1 32,17 ;2<2f ,6 $1 ,17(5,25 32,17 ,) .22 7+(1 32,17 ;2<2f ,6 $ %281'$5< 32,17 &+(&. ,) 32,17 ,6 $1 ,17(5,25 32,17 ,) .(4f *2 72 &+(&. ,) ,6 $ %281'$5< %5$1&+ 12'( 25 012' ,).(425.(4,03f *2 72 ,6 $1 25',1$5< %281'$5< 12'( ;2 ;. f <2 <. f ,) 012' /226( 7+( ),567 7(50 ,).(4,0f *2 72

PAGE 200

RQ Q RRRRR QRQ RRR ,6)/$* 1 0 ,0 &$// &$8&+401$%&',6)/$*;2<2f & & ' ,) 112' /226( /$67 7(50 ,).(4,1f *2 72 ,6)/$* 1 ,03 0 ,1 &$// &$8&+401$%&',6)/$*;2<2f & & ' r r &20387( $ $1' % ,6)/$* 1 ,03 0 &$// &$8&+401$%&',6)/$*;2<2f $6 $ %6 % 672;O ⩔2;,0ff ',0 <2< ,0ff 672; &r;2;,1ff'r<2<,1ff 672
PAGE 201

;2 ;,03f <2 <,03f &20387( ),567 7(50 ,6)/$* 1 0 ,0 &$// &$8&+401$%&',6)/$*;2<2f & & ' r r &20387( $ $1' % ,6)/$* 1 ,1 0 &$// &$8&+401$%&',6)/$*;2<2f $6 $ %6 % 672;O &r;2;,0ff'r<2<,0ff 672
PAGE 202

RQR RRR RR RRR 5(7851 (1' & Frrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 7+,6 68%5287,1( 2873876 7+( %281'$5< (/(0(17 *(20(75,& 9$/8(6 & )25 7+( 6285&( 7(50 &2175,%87,216 & ,7 ),567 &20387(6 7+( ',67$1&(6 G1-f $1' G0-f #7+( 32,17& :+(5( 0 1 7+(1 ,7 &20387(6 7+( $1*/( 7+(7$MMf $1' & 7+( &2167$176 $ %&' '(),1(' ,1 7+( (41 21 3$*( & >QRWH WKH HTQ RQ WKDW SDJH LV 127 LQ WKH ILQDO IRUP XVHG LQ & WKLV SURJUDP HJ LQ SURJUDP &$8+@ &rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr & 68%5287,1( &$8&+401$%&',6)/$*;2<2f ,03/,&,7 '28%/( 35(&,6,21 $+=f 3$5$0(7(511 f &20021%/.;11f < 11f.7<3(11f5,111f 5,111f 31111f611f$1*/(11f &20021 3,7:23, &20387( 7+( 9(&725 /(1*7+6 G1-f $1' G0-f ;/1 '6457<1f<2fr r ;1f;2fr r f ;/0 '6457<0f<2fr r ;0f;2fr r f $ '/2*;/1;/0f '(7(50,1( $1*/( *(20(75< =0; ;0f;2f =0< <0f<2f =1; ;1f;2f =1< <1f<2f &$// &$8&+=1;=1<$1*/(1f &$// &$8&+=0;=0<$1*/(0f % $1*/(1$1*/(0 $&&2817 )25 35,1&,3$/ 9$/8( 2) 7+( /2*$5,7+0 7$.(1 68&+ 7+$7 3,7+(7$ 3, ,)%/(3,f % %7:23, ,)%*73,f % %7:23, ,),6)/$*(4f 5(7851 7+( %5$1&+ &87 &20387( 7+( &2167$176 ) ;1f;0ffrr<1f<0ffrr & $r;1f;0ff%r<0f<1ff %r;1f;0ff$r<0f<1 f f & &) ') 5(7851 (1'

PAGE 203

%,2*5$3+,&$/ 6.(7&+ 7KH DXWKRU ZDV ERUQ RQ 2FWREHU LQ $OH[DQGULD (J\SW ,Q KH PRYHG ZLWK KLV IDPLO\ WR WKH VXEXUEV RI %HLUXW /HEDQRQ ZKHUH KH DWWHQGHG WKH -HVXLW VFKRRO DW -DPKRXU DQG ODWHU DW WKH $PHULFDQ &RPPXQLW\ VFKRRO ,Q KH LPPLJUDWHG ZLWK KLV IDPLO\ WR WKH 8QLWHG 6WDWHV DQG VHWWOHG LQ -DFNVRQYLOOH )ORULGD $IWHU JUDGXDWLQJ IURP WKH %ROOHV 6FKRRO LQ -DFNVRQYLOOH KH DWWHQGHG WKH 8QLYHUVLW\ RI )ORULGD :KLOH SXUVXLQJ KLV XQGHUJUDGXDWH HQJLQHHULQJ VWXGLHV WKH DXWKRU ZDV LQYROYHG LQ DQ H[FLWLQJ UHVHDUFK SURMHFW GHVLJQLQJ DQG FRQVWUXFWLQJ D VRODU IDFLOLW\ WR GHOLYHU FRQFHQWUDWHG VRODU HQHUJ\ XVHG WR SXPS D OLTXLG 1HRG\QLXP ODVHU 7KH DXWKRU UHFHLYHG D %6 GHJUHH LQ HQJLQHHULQJ VFLHQFHV LQ +H SXUVXHG JUDGXDWH VWXGLHV DW WKH 0HFKDQLFDO (QJLQHHULQJ 'HSDUWPHQW DW WKH 8QLYHUVLW\ RI )ORULGD +H PDUULHG /LQGD &KULVWRSK LQ +H XQGHUWRRN VXFFHVVIXO UHVHDUFK RQ LQYHUVH KHDW FRQGXFWLRQ SUREOHPV LQ V\VWHPV ZLWK SDUWLDOO\ XQVSHFLILHG JHRPHWULHV DQG HDUQHG DQ 06 GHJUHH LQ 7KH DXWKRU ZDV DGPLWWHG DV D GRFWRUDO FDQGLGDWH LQ $IWHU JUDGXDWLRQ KH SODQV RQ SXUVXLQJ DQ DFDGHPLF FDUHHU DQG RQ FRQWLQXLQJ UHVHDUFK LQ WKH ILHOGV RI QXPHULFDO PHWKRGV DQG KHDW WUDQVIHU

PAGE 204

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (QJLQHH ULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI 0HFKDQLFDO (QJLQHH ULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 8OULFK + .XU]ZHJ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HHKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &DOYLQ & 2OLYHU 3URIHVVRU RI 0HFKDQLFDO (QJLQHH ULQJ

PAGE 205

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ U $ *DWHU $VVRFLDWH 3URIHVVRU RI 0HFKDQLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ &ROOHJH RI (QJLQHHULQJ 'HDQ *UDGXDWH 6FKRRO

PAGE 206

81,9(56,7< 2) )/25,'$