Citation
Modeling light penetration through a slash pine (Pinus elliottii) canopy

Material Information

Title:
Modeling light penetration through a slash pine (Pinus elliottii) canopy
Creator:
McKelvey, Kevin Scot, 1956-
Publication Date:
Language:
English
Physical Description:
vii, 136 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Azimuth ( jstor )
Biomass ( jstor )
Branches ( jstor )
Canopy ( jstor )
Integers ( jstor )
Leaves ( jstor )
Light ( jstor )
Modeling ( jstor )
Sensors ( jstor )
Vegetation canopies ( jstor )
Dissertations, Academic -- Forest Resources and Conservation -- UF ( lcsh )
Forest Resources and Conservation thesis Ph. D ( lcsh )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 107-109).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Kevin Scot McKelvey.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001603299 ( ALEPH )
23245351 ( OCLC )
AHM7549 ( NOTIS )

Downloads

This item has the following downloads:


Full Text












MODELING LIGHT PEN
A SLASH PINE (Pinus


ETRATION THROUGH
elliottii)CANOPY


KEVIN


SCOT


MCKELVEY
a


DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY


UNIVERSITY


OF FLORIDA


.,ull(*Y















This


work


is dedicated


wife


Madeleine,


and


daughters


Adrienne


Tara.














ACKNOWLEDGEMENTS


Much


data


this


dissertation


was


the


result


work


many:


Collection


of data


on CO,


assimilation,


foliar


biomass


light


absorption


canopy


were


carried


out


as part


a four-year


study


slash


pine


funded


National


Science


Foundation.


In particular


would


like


thank


Henry


Gholz


Sherry


Vogel


analysis


analysis


biomass


fluctuation,


of assimilation


data,


Wendell


Cropper


Katherine


Ewel


long


hours


of consultation


without


which


this


work


would


not


have


progressed.


there


is good


science


here,


should


receive


a great


deal


credit.
















TABLE


OF CONTENTS


ACKNOWLEDGEMENTS


ABSTRACT


S.


INTRODUCTION


MODELING


HIERARCHICAL


EFFECTS


IN SLASH


PINE


a a. a 14


Characteristic
Evaluation of


of Sla


Model


sh Pine


Approache


* a a. 14


Light


Penetration


Modeling


in Discrete


Space


. 23


A DISCRETE


-SPACE


MODEL


FOR


SLASH


PINE


. 29


Data
Model
Model


Acquisition
Structure
Results


. 29
*. a a 45
*. a a 53


MODELING

MODELING


SEASONAL

LIGHT PE


BELOW


-CANOPY


NETRATION


LIGHT


WITHIN


PENETRATION

CANOPY


* 62


Sa a *. 88


EVALUATING


MODEL


a a a a a a a a 95


CONCLUSIONS


a a a a a a a a a a .a


Discu


ssion


of Light


Penetration


Through


Future


Slash


Research


Pine


Needs


a a a a a a .
. a a a a a a


LITERATURE


CITED


a a a a a a a a a a a a a a


APPENDIX


COMPUTER


CODE


FOR


DISCRETE


-SPACE


MODELING


OF LIGHT


PENETRATION


BIOGRAPHICAL


SKETCH










Abstract


of Dissertation


he University
Requirements


MODELING
A SLASH P


of Florida


Presented


in Partial


Degree


LIGHT


INE


of Doctor


PENETRATION


(Pinus elliotti


Graduate


School


Fulfillment


of Philosophy


THROUGH
i) CANOPY


Kevin


Scot


McKelvey


August,


1990


Chairman:


Major


Katherine


Department:


Ewel


School


Forest


Resources


and


Conservation


Conifer


canopies


are


a hierarchy


of discrete


objects:


crowns,


shoots,


and


needles.


Light


penetration


through


this


hierarchy


is controlled


size


arrangement,


and


opacity


of objects


at each


level.


If light


penetration


patterns


crown


are


level,


dominated


relationship


organization


between


the


light


shoot


or the


penetration


and


leaf


area


will


be indirect.


The


crowns


of slash


pine


are


conic,


and


the


foliage


is clumped.


A discrete


shoot-level


geometric


model


was


created


to determine


the


importance


this


structure


on light


penetration.


Shoot-level


parameters


were


measured


the


laboratory


using


controlled


light.


Light


penetration


data


was


gathered


from


sensor


arrays


placed


above


below


the


canopy.


Seasonal


foliage


biomass


patterns


stand


were


derived


from


destructive


sampling,


litterfall,


and


needle


elongation








Light


penetration


through


canopy


was


simulated


full


range


sun


angles


azimuths.


Azimuth


was


found


to be


an important


controlling


parameter


light


penetration,


and


model


output


reduced


to a single


multiple


regression


equation


based


on sun


angle


and


biomass


per


shoot.


This


simplified


model


was


used


to simulate


light


penetration


days.


Data


mid-sky


simulated


indicated


on uniformly


assuming


that


light


overcas


that


emanated


t days.


diffuse


primarily


Diffuse


light


light


from


was


emanated


from


45-degree


angles


of elevation.


model


duplicated


observed


patterns


seasonal


variation


in below-canopy


light


penetration


and


explained


the


daily


variation


in below-canopy


light


penetration


during


a 2-month


period


centered


on the


winter


solstice.


Light


penetration


within


canopy,


when


simulated


planar


surfaces,


was


similar


to patterns


generated


vertically


stratified,


horizontally


homogeneous


models.


When


light


penetration


the


simulated


shoot


positions


was


modeled,


however,


the


patterns


diverged


due


to self-shade


within


crown.


The


model


accurately


tracked


pattern


light


penetration


over


time


and,


once


calibrated,


could


used


predict


seasonal


changes


in foliar


biomass.


Leaf


area


could


nont


however


be accurately


estimated


directly


from


liaht









penetration


because


proportion


light


interception


to woody


biomass


was


unknown.















INTRODUCTION


Photosynthesis


only


pathway


which


sun


energy


can


enter


an ecosystem


be stored


in a metabolically


utilizable


form.


Ecosystem


metabolism


is dependent


upon


limited

estimate


photosynthetic


of photosynthetic


production.


input


Obtaining


therefore


an accurate


essential


any


attempt


to quantify


energy


or carbon


flow


through


ecosystem.


The


actual


measurement


gross


primary


productivity


(GPP)


difficult


due


to photorespiration.


For


most


practical


purposes,


however,


rate


of CO,


ass


imilation,


which


measurable


, provides


a good


approximation


carbon


input


into


system.


intensity


photosynthetically


active


radiation


(PAR)


the


leaf


surface


acts


as a direct


control


on assimilation


rates.


Because


canopy-level


assimilation


sum


the


assimilation


rates


of all


leaves


leaf


assimilation


can


be scaled


canopy


level


quantity


foliage


and


light


penetration


patterns


through


the


foliage


are


known.











Over


time,


foliage


position


light


penetration


are


coupled.


shift


A change


light


in foliage


penetration


distribution


pattern.


will


shift


cause


in the


light


penetration


pattern


will


turn


cause


a change


foliage


light


distribution


penetration


component


of either


due


to growth


formulations


static


are


or dynam


abscission.


therefore a nece

ic physiological


Accurate


ssary


models.


Life


is defined


pattern,


pattern


exists


at all


levels


of scale


nature.


In science


in general


modeling


in particular,


pattern


is often


ignored


in favor


mean


values.


Models


based


on mean


values


are


simpler


less data


intensive,


but


there


are


dangers


this


approach


if relationships


between


variables


are


nonlinear.


In light


foliage


penetration


is generally


modeling


assumed


through


to lack


forest


spatial


canopies,


pattern,


mean


values


light


penetration


through


canopy


are


used


indirectly


to derive


a variety


of parameters


such


leaf


area


index


(LAI),


photosynthesis


, and


evapotranspiration.


Because


these


parameters


are


related


to light


penetration


through


nonlinear


functions,


heterogeneous


foliage


distribution


can


affect


calculated


examines


value


the


these


effect


parameters


foliage


. This


distribution


dissertation


patterns


- I.a


- a


a a a a


'and


mm m


.


.











Traditional


foliage


light


distribution


penetration


models


homogeneous


assume


space


and


that


that


leaves


are


opaque.


this


assumption


of opacity


valid,


probability


of a beam


light


penetrating


canopy


is simply


probability


that


it will


pass


through


canopy


without


contacting


any


the


leaves


. If


the


leaves


are


randomly


distributed,


number


of contacts


follows


Poisson


distribution


with


contacts


= exp(-uz)


where


contacts


= the


probability


that


a beam


passes


through


canopy


without


intersecting


any


leaves,


= the


average


leaf


area,


and


= the


length


path


that


beam


must


travel


(Oker-Blom


1986).


a large


number


beams


, Pno


contacts


becomes


the


average


through


proportion


canopy.


of light


This


beams


equation,


penetrating


generally


to depth


known


Beer


s law,


is often


expressed


o exp(-kuz)










where


= the


photon


density


at depth


photon


density


above


canopy,


and


= the


ratio


Oker-Blom


projected


(1983)


argues


to measured


that,


leaf


area.


in conifers,


shoots


should


be considered


to be discrete


entities.


the


shoots


are


randomly


distributed


opaque


then


equation


2 is


valid


shoots


as well


needles.


this


case,


light


penetration


penetration


through


through shoots

needles to t


will


differ


extent


tha


front

t the


light

density


shoots


differs


from


density


needles


(Carter


Smith


1985).


This


concept


can


be expanded


to include


all


potential


distribution


canopies


patterns


consist


scales


of a hierarchy


of patterning.


of discrete


Conifer


objects


distributed


space,


from


individual


crowns


down


opaque


particles


within


needles.


At each


level


the


distribution


canopy


of foliage


is contained


is discontinuous.


within


All


individual


the


crowns


foliage


which


are


generally


crowns,


foliage


conic


or paraboloid


is confined


the


in form.


regions


Within


adj acent


actively


growing


meristems


(shoots),


and


within


these


shoots,


foliage


confined


to volumes


defined


individual


needles.


These


levels


u .


hierarchy


ars


i t srrata










in which


foliage


can


exist


and


where


the


probability


existence


volume


zero.


defined


For


branch


crowns


foliage


length


is confined


inclination.


Moving


down


through


the


hierarchy,


each


level


is spatially


bounded


higher


levels


. Shoot


position


is confined


within


crown,


needle


position


within


shoot.


For


any


discrete


array


of n objects


space


, the


proportion


light


penetrating


through


array


K
array


= Po


+ PiK,


+ P2K,


PK,


where


Karray


-= the


total


light


penetrating


the


array,


= the


probability


that


no object


encountered,


p1. pn


= the


probabilities


that


objects


are


encountered,


K,.. .K


= the


proportion


light


penetrating


the


objects


given


that


objects


are


encountered.


If it is


assumed


that


objects


are


identical,


then


defined


average


proportion


of light


penetrating


through


an individual


object.


Equation


then


eQmnlI fo


KobJect


l...n


l...n












K
array


+ C PI.


object


If Kobject


small


(the


objects


are


opaque),


then


Karray


approximately


equal


to P


entirely


dependent


stribution


internal


and


structure


density


. If


objects


dominates,


and


then


not


light


their


penetration


through


canopy


will


be controlled


the


distribution


pattern


of objects


canopy.


Because

discrete ob


conifer


jects


canopies


, equation


are

can


composed o

be applied


f a hierarchy


repeatedly


each


level


to define


overall


light


penetration


through


canopy:


-0 Po + Pi.crown


crown


Crown


P shoo
i.shoot


Ki
shoot


0 + Pi,1eaf


leaf


leaf


~lcel1


When


the


canopy


is viewed


in terms


these


equations


it i


possible


to define


the


precise


effect


of each


level


cell


i; P


Kcanopy


K
ahoot











canopy


potential


errors


involved


in assuming


homogeneity


any


level.


Any


level


hierarchy


homogeneous


density


distributed


objects


. If


that


average


define


density


level


, Object


evenly


of integer


order


, then


homogeneity


can


be defined


as a


special


case


of equation


: all


light


beams


encounter


equal


number


of objects


. As


a system


approaches


homogeneity


, all


the


terms


series


except


the


term


defining


mean


number


of encounters


vanish,


Pmean


approaches


, and


the


system


collapses


the


next


lower


level


the


hierarchy.


If Kobject


approximately


equal


zero


any


level,


then


effects


of all


lower


level


will


vanish.


has


traditionally


been


assumption


light


penetration


through


leaves


. Equation


Therefore,


simply


represents


special


case


: Kleaf
- "leaf


, leaves


are


randomly


distributed,


homogeneity


assumed


higher


level


(shoot


and


crown)


hierarchy.


patterns


above


leaf


level


and


are


ignored,


then


light


penetration


through


canopy


will


always


underestimated


primarily


. The


extent


be a function


underestimation


magnitude


will


the


terms


because


wi th


n P hnmnnnna4n i -nt


lQQiimnI-i nn


C~hOh


Ch rm ~


I 1 *"











dominate


their


respective


series,


errors


of omi


ssion


can


large


. If


= 0.5


instance


, with


a stand


random


has


a measured


distribution


= 4.0


leaf


level


and


homogeneity


calculated


light


shoot


penetration


crown


(equation


level


vertical


light


.135*1


. If


however


foliage


is held


randomly distributed

4.0 and a projected


shoots

shoot a


with


an internal


rea


then


leaf

from


area


equation


, the


Kah~


anticipated


light


2 0.37 + 0.37*0


penetration


18*0


0.42


.0182


case


, three


times


as much


light


expected


penetrate


through


random


shoots


even


though


the


mean


projected


largely


leaf


due


area

the


constant


magnitude


in both


the


cases.


term


Thi

.37).


equal


to 1


.0 in


homogeneous


case,


only


0.37


the


canopy


composed


randomly


placed


shoots


In a field


crowns,


crown


structure


and


position


will


dominate


light


penetration


crowns


are


widely


spaced,


no crown


will


approach


ratio


space


between


crowns


crown


diameter


becomes


large.


For


this


reason,


discrete


and


crown


orchards


model


(Mann


have


et al


been


1980


used


to simulate


Norman


and


row


Well


crops


1983;











point


therefore


crown c

shifts


losure

with


and

high


increases

t. For ve


with


rtical


height.

light


crown


entering


an idealized


closed


stand


composed


of uniform


conic


crowns,


Pno crown


equals


point


crown


closure


and


converges


rapidly


on 1


.0 with


increasing


height


(Figure


In species


with


conic


or parabolic


crowns,


light


penetration


patterns


in the


upper


crown


may


therefore


dominated


crown


form


even


if homogeneity


is a reasonable


assumption


light


penetration


the


forest


floor.


Leaf


area


magnitude


an important


canopy


level


parameter


physiological


determining


processes,


is difficult


measure


directly.


common


practice


sample


light


above


below


canopy


and,


assuming


equation


to be valid,


to compute


leaf


area


(Lang


and


Yuequin,


1986;


Pierce


and


Running,


1988;


Campbell


and


Norman


1989)


inverting


the


function.


The


problem


with


this


approach


that,


there


canopy


structure


the


shoot


crown


levels,


then


k loses


definition


ratio


of projected


to measured


leaf


area.


leaves,


k is generally


close


to 0.5,


the


theoretical


value


angular


distribution


leaves


random


(Campbell


and


Norman


1989)


. This


figure,


or one


very


close,


often


used


in equation


to determine


leaf


area


AI U U -


w v


~,~,,, irrr


r


* ~





































































r* %o wn


-4-


Cod
"4

H O

C
4-'O
ui V
HO)


4~VC
CI~r




>vrO
."LCW











distribution


and


shape


clusters


and


will


be only


indirectly


related


leaf


area.


In general,


on light


the


penetration


effects

are di


of various


fficult


scal


to separate


of

at


patterning

the


forest


floor,


and


may


have


no clear


geometrical


interpretation.


does


not


necessarily


mean


that


Beer


doesn


'work


' for


stand,


simply


that


there


may


uncertainty


as to which


level


of hierarchy


controlling


parameters


Mistakes


in understanding


these


hierarchical


effects


can


lead


to a variety


errors


when


using


inver


sion


techniques.


instance,


example


listed


above


(equation


leaf


area


was


unknown


and


the


was


assumed


to be 0.5


calculated


leaf


area


stand


based


on light


penetration


forest


-In(O


floor


.42)/0


would


= 1.74


rather


than


the


actual


value


of 4.0.


Predictions


based


on inversion


are


prone


to similar


errors.


The


effects


new


foliage


growth


on light


penetration,


instance,


depend


impact


new


leaf


production


terms


at each


level


the


hierarchy











it enters


form


new


shoots


of constant


dimension


then


shoot


area


will


be related


to leaf


area


through


a constant


SIf cluster


location


is random,


slightly


modified


Beer


will


approximate


light


penetration


leaf


densities


=1


o exp(


-kuzq)


where


= a clustering constant

interpretation of the


with

ratio


geometrical


of measured


leaf


area


to projected


cluster


area


(Campbell


and


Norman


1989)


Spatial


independence


new


foliage


in conifers


however,

foliage


biologically


production


improbable.


occur


Because


exclusively


both


the


branch


branch


and


tips,


new


foliage


will


enter


system


at spatial


locations


determined


largely


the


position


the


existing


foliage.


means


that


the


position


the


new


foliage


space


will


be conditioned


foliage,


conditional


position


probabilities


the

will


exi


sting


distort


Poisson


distribution.


If constant


shoot


density


assumed,


increases


in shoot


size


will


translated


into


changes


a S. a


m


..


* *


i d










assumed


that


shoots


are


spherical


in form,


then


ratio


of projected


cluster


area


to projected


leaf


area


will


2/ 4r3


= 3/4r


where


= the


radius


the


shoot


Other


geometrical


forms


will


have


more


complex


relationships,


and


proj ected


area


will


change


with


sun


angle


and


azimuth,


but,


regardless


the


shape


shoot


or crown,


equation


cannot


be considered


to be


valid


model


foliage


growth


associated


with


shoot


elongation


or enlargement


Spatial


heterogeneity


of foliage


can


influence


both


the


quantity


Because


pattern


clustering


of light


can


occur


penetrating


the


level


canopy.


crown,


shoot,


or leaf,


it i


necessary


to determine


the


extent


which


heterogeneity


at each


these


levels


affects


light


penetration


before


measured


light


below


the


canopy


can


reliably


used


to estimate


leaf


area.















MODELING


HIERARCHICAL


EFFECTS


IN SLASH


PINE


Characteristics


Slash


Pine


In slash


pine,


carbon


assimilation


rate


individual


needles


largely


dependent


on the


light


that


those


needles


receive


. Nearly


measured


variance


of CO2


assimilation


in needles


can


be accounted


regressing


ass


imilation


against


photosynthetically


active


radiation


(PAR)


(Figure


The


crowns


of slash


pine


are


conic


, and


distribution


of foliage


spatially


limited


the


volume


defined


branch


length


crown


form


(Figure


, which


. The


turn


canopy


controlled


therefore


collection


needle

needles


conic


distribution

exclusively


units

. Slash

within


each

pine

the


having

s (and


area


own


other

branc


individual


pines)


or stem


produce


wood


created


during


current


season


s growth.


In slash


pine,


needle


retention


ess


than


years


(Gholz


and


Fisher


1982),


reason,


need


are


restricted


branch


area


immediately


adjacent


the


actively


growing


~n1 nztl


marl


'PHI


n~ 4-torn r nrnnlHr'rn4- r f


EtPm~


natt8m


rraitag


" nnn,




























O
C)
LsJ
U)
cnl
*


N
2


N
0

2t


* m
U)
U)'k
00)1
k 04
04
Co
owk
rio


a )


U)
.p c
ri)
C
44C

000


4.4 C
a)4Jr
w. rlI
COO


1) O
rS


Sn




























































1- ') N~ r-


/ ~\ I I I St at-t at .











foliated


foliage


region


surrounding


distribution


in a slash


stem


pine


(Figure


stand


The


therefore


spatially


heterogeneous.


The

on light


previous


discussion


penetration


suggests


the

that


impact

light


of heterogeneity

penetration


through


a slash


pine


canopy


should


be influenced


canopy


structure.


Given


crown


form


and


patterns


foliage


growth,


several


hypotheses


can


be posed:


H1:Light


penetration


through


a slash


pine


canopy


differs


in both


pattern


and


quantity


from


light


penetration


through


a homogeneous


canopy.


H2: For


canopies


made


crowns


of discrete


dimensions,


differences


in spacing


pattern


will


have


a stronger


influence


on light


than


predicted


homogeneous


canopies.


H3: If


crowns


are


arrayed


rows,


the


orientation


rows


will


have


a significant


impact


on light


penetration


on the


timing


of maximum


penetration


through


Evaluation


stand.


of Model


Approaches


To explore


effects


of various


levels


ar 4-a~ ..A a n ar a 4 J- .. 3 ----!-.


,I I


L


'1


*


I


1


















CO



I




I


r


,-


OHr


'C>'

0 r
4rt f



od 0
cc v





wC r
4IW'O r



I 0r

C:r

a)
HHW


4~C0

0 )

Wc,
>4-I
tOWW

010
OCk
9404-4(
4. Z


a2C


f\A Il I L'k-- I I %LkI.\.Il











penetration


through


a canopy


with


detail


at both


crown


cluster


level


. In


most


common


system


modeling


discontinuous


canopies


, sub-canopies


are


represented


as discrete


geometric


solids


. In


type


modeling,


the


sub-canopies


are


usually


defined


level


of individual


plants


(Mann


et al


1979,


1980


Norman


and


Welles


1983


Rook


et al. 1985


Whitfield,


1986


Grace,


1988)


or sometimes


hedgerows


(Charles


-Edwards


and


Thorpe


1976


Cohen


Fuchs


1987)


. In


case


foliage


plant


or hedgerow


assumed


to be confined


within


the


volume


solid


and


equation


generally


assumed


to be valid


within


boundary


. Thi


type


modeling


called


envelope


modeling,


because


the


leaf


area


of each


sub-canopy


strictly


confined


'envelope


generally


defined


as an ellipsoid


rotation.


Envelope


modeling


very


flexible


because


each


envelope


can


be given


individual


transmission


properties,


envelopes


simulate


can


foliated


even


and


nes


non-


inside


foliated


one


portions


another


of a plant


(Norman


and


Welles,


1983).


an array


of canopi


the


light


reaching


a given


point


can


be described


m


P


..










where


= the


extinction


coefficients


sub


-canopi


1... n,


. .zZ


= the


chordal


distances


defined


a beam


of light


as it


passes


through


the


array


from


a point


source


to a target.


Light


penetration


calculating


equation


target


surface


10 repeatedly


computed


a series


of random


locations


on the


surface


and


generating


a statistical


average


(Norman


and


Welles,


1983).


To compute


must


chordal


be geometrically


therefore

simplicity


present

of form


distances

simple. As


enormous


turn


efficiently


lymmetries


computational


leads


the

crown


difficult


to a variety


solids

form


. Thi


of model


artifices


that


may


as severe


those


simple


model


that


they


are


designed


to replace


. Vertical


density


patterns


are


easy


to model


in a homogeneous


canopy


but


are


very


difficult


to model


using


envelopes


. Because


constant


foliage


density


envelope,


generally


vertical


biomass


assumed


profile


throughout


each


a crown


the


cross


-sectional


area


envelope


as a function


height


. For


many


plants


such


as slash


pine


, foliage


concentrated


toward


the


top


and


the


outside


crown


. .kn










longitudinal


(Generally


plants


are


greater


in height


than


in width


To avoid


artifice


it i


necessary


nest


envelopes


envelope.


problem


. Not


with

does


only


lower

not.


does


densities


however


nesting


within


really

present


each


remove

another


sub-canopy

the


level


model

the i


complexity


internal


envelopes


the p

must


roper


position


be based


not


and


density


on their


actual


attributes,


but


rather


way


in which


they


adjust


cross-sectional


area


outer


envelope.


Envelope


modeling


can


be used


to model


canopies


lower


hierarchical


levels


such


individual


shoots


. Many


the


problems


associated


with


representing


crowns


ellipsoids


of rotation


vanish


when


modeling


done


the


shoot


level.


The


effects


clumpiness


on light


penetration


can


be modeled,


transmi


ssion


and


crown


properties


form,


per


shoo


foliage

t can b


placement


e based


and


on data.


Assumptions


of uniformity


in size


density


may


also


more


valid


the


shoot


level.


Shoot


level


modeling


also


has


the


practical


consequence


of concentrating


emphasis


a unit


of vegetation


that


properties


that


are


measurable


either


in a laboratory


or in a chamber


field


A great


deal


current


phys


biological


work


done


-. a. SI


''


m


II


1













work


to be effectively


scaled


the


crown


and


stand


level,


throughout


it is


necessary


canopy.


Ideally,


to integrate


light


these


penetratio


processes

n should


also


modeled


the


same


unit


on which


physiological


measurements


are


taking


place.


Modeling


however,


a stand


requires


of slash


definition


pine


the


the


light


shoot level,

regime at several


hundred


target


surfaces


per


tree


generated


light


penetration


through


several


thousand


potential


shade


objects

several


that

runs


make

will


up the surrounding

be needed to avoid


stand. Fu

artifices


rthermore,


due


particular


patterns


of shoot


placement.


The


problems


associated


with


using


an envelope


model


the


shoot


level


primarily


in computational


expense.


The


modeling


penetration


single


concepts


through


source.


discussed


a canopy


Diffuse


above


light


radiation


compute


emanating


emanates


light

from a


simultaneously


from


points


dome.


Computation


of diffuse


radiation


involves


integrating


the


light


from


entire


sky:


P(X,Y,Z)


jQ(9S) ex
SSg(e


sin( A )nn~( A ~iAa
-- N .-. -


sin( )cos


(11)


ded


(Norman


and


Welles


1983)


D(


sin( Al~nlF:(F3I











where


= the


probability


that


diffuse


light


penetrates


a point


(X,Y,Z),


= the


light


intensity


function


and,


9 and


are


angle


of elevation


azimuth


respectively,


s the


density


of foliage,


and


s the


sum


would


pass


the


z distances


through


if its


that

point


a light beam

of origin lay


along


a vector


starting


the


point


(x,Y


with


a direction


defined


8 and l.


Numerically,


this


equation


is difference


into


a series


of direct

Computing


light computations

diffuse radiation


a grid


patterns


sky


a sing


locations.

le point


with


an integration


step


of 5 degrees


therefore


involves


computing


1300


direct


light


readings.


Liaht


Penetration


ModelinQ


in Discrete


Soace


Most


computational


burden


envelope


modeling


lies


the


calculation


chordal


distances


through


each


sub-canopy


. If,


however,


the


sub-canopies


are


small


and


uniform


in dimension


and


light


penetration


properties,


then


each


sub-canopy


can


treated


as if it


were


particulate











canopy


lies


path


of a beam.


If it does,


then


it will


remove


a certain


proportion


light.


To calculate


the


presence


or absence


of a spherical


sub-canopy


in the


path


of a beam


of light,


a vector


drawn


normal


the


beam


path


from


beam


the


center


the


sub-canopy.


magnitude


vector


is less


than


radius


the


sub-canopy,


the


beam


will


pass


through


sub-canopy;


otherwise


will


not.


This


calculation


is much


simpler


than


computation


a chord.


first


calculation can,


step


in computing


however,


further


a chord.)


The


simplified


the


coordinate


system


itself


aligned


normal


the


beam


path,


with


target


point


the


origin,


and


scaled


that


one


unit


equals


radius


the


sub-canopy.


presence


or absence


sub-canopy


in the


beam


path


can


then


be determined


rounding


the


center


the


sub-canopy


the


nearest


integer


node.


after


rounding,


the


center


sub-canopy


coordinates


(0,0)


the


dimensions


normal


the


beam


path


a magnitude


greater


than


0 in the


dimension


parallel


beam,


sub-


canopy


will


intersect


the


beam.


If all


sub-canopies


are


the


same


size,


then


entire


system


can


be scaled


and


rounded


simultaneously,


and


the


sub-canopies


that


S -











space,


light


penetration


is computed


in discrete


integer


space.


If the


target


surface


itself


is composed


a field


system,


of equal-sized


including


simultaneously


sub-canopy


points


be scaled


and


units,


then


representing


rounded.


entire


target,


light


can


penetration


entire


target


can


then


be determined


through


series


row


searches.


In discrete


dimension.


space,


dimension


sub-canopies


only


lose


reflected


explicit


indirectly


scaling


factor.


Sub-canopies


become


points


with


light


penetration


properties


defined


average


light


penetration


per


unit


area


sub-canopy.


targets


(and


therefore


light


beams)


are


also


restricted


integer


space,


light


penetration


target


point


represents


average


light


penetration


to a grid-sized


area


surrounding


target.


This


discrete


approximation


keeps


fundamental


logic


envelope


model,


modeling


system


as a series


of sub-canopies,


but


allows


application


on a much


finer


scale


or on slower


computers


decrease


in computational


burden.


Using


technique,


modeling


on a cluster


level


can


be accomplished


on micro-computers.


In discrete


space,


homogeneous


medium


of unit











discrete


nature


space


confines


nodes


to integer


locations


, causing


raster


effects


similar


those


seen


low-resolution


computer


graphi


CS.


A plane


diagonal


light


source


will


be represented


model


as a series


of smaller


planes


offset


from


one


another


one


node.


it i


assumed


that


a Beer


s law


model


is appropriate


continuous


shifts,


system,


light


then,


penetration


as the r

through


elative


sun


system


angle

will


decrease


as a function


relative


angle:


= I
i -


o exp(kdz/sin9)


where


= the


relative


angle


between


plane


light


source


If kdz


constant


then


equation


12 simplifies


= I
i


o exp( k/sine)


(13)


where


= a collapsed

penetration


constant


normal


describing


the


light


plane.


- -


-











this


half


one,


same


points


leading


system


will


is modeled


be shaded


to a predicted


as a discrete


points


of 0.252*Io.


entity,


half


this


case


prediction


exponential


error


decline


is less


function


than


Because


is uniformly


convex,


discrete


model


will


always


predict


light


penetration


greater


than


or equal


to a continuous


model.


The


divergence


however,


not


large.


grid


size


decreases,


system


converges


continuous


representation.


Modeling


light


penetration


into


a stand


using


discrete


cluster


level


model


involves


five


steps:


Placing


cluster


into


space


ass


signing


light


penetration


properties


to each


cluster.


Rotating


shoots


to align


system


with


sun


position.


Rounding


clusters


nearest


integer


node.


Searching


presence


of clusters


between


target


nodes


sun.


Quantifying


light


attenuation


caused


shoots


matching


clusters


with


their


specific


light


attenuation


properties.


To summarize


, discontinuous


canopies


can be


modeled


creating


geometric


representations


the


stand


-t S -


a


i


r


.











elipsoids


however,


in real


this


space.


approach


modeling


is extremely


shoot


inefficient.


level,


Discrete


space


models


offer


a more


efficient


alternative


therefore


are


a preferable


approach


shoot


level


modeling.
















A DISCRETE-SPACE


MODEL


FOR


SLASH


PINE


Data


Acquisition


this


study,


a model


was


based


on a stand


plantation-grown


slash


pine.


stand


was


approximately


years.


Total


tree


height


was


approximately


17 m and


crown


depth


was


approximately


Stocking


density


was


approximately


1200


stems*ha-l


parameters


used


to model


location


of foliage


space


were


based


on a data


derived


destructively


sampling


trees


August


1987


trees


in August


1988


. Pertinent


data


obtained


through


sampling


included


number

branch


of branches

length, non


branch


-foliated


position,

branch 1


branch


.ength


angle


total


(length


first


live


side


limb),


number


needle


clusters


(shoots)


per


branch,


biomass


per


branch.


large


one


small


branch


were


removed


from


each


m segment


down


through


crown.


The


segment


began


base


terminal


segments


were


marked


down


stem


base


crown.


Crown


depth


varied


- -


1-I


r


i .











clearly


defined


classes


of branches


exis


within


segment


. If


limbs


were


same


size,


limbs


were


classified


large,


only


one


limb


from


segment


was


sampled


. Large


small


were


therefore


relative


classifications


. The


point


base


terminal


leader


where


top


tree.


segment


terminal,


began

which


was


classified


represented


current


year


s growth,


was


treated


as a branch


was


sampled


. For


each


limb


sampled,


the


position


the


base


limb


tip


limb


relative


tree


were


recorded


. From


these


data


branch


angles


were


determined


using


following


formula


AOEb


= arcsin[(Dtop


- Dbae.)/Lt]


(14)


where


AOEb


= the


branch


angle


from


horizontal,


= the


distance


from


branch


tree,


Dbame


= the


distance


from


base


branch


tree.


- the


total


length


branch.


The


bias


due


sweep


limbs


was


minor


was











Foliage


position


was


determined


assuming


that


foliage


was


branch


restricted


first


region


foliated


from


bifurcation


main


branch.


with


Within


equal


this


region,


foliage


probability,


was


needle


assumed to

biomass was


occur


therefore


uniformly


distributed.


Using


this


technique,


foliage


was


added


to a standardized


stem


composed


segments


to build


a vertical


foliage


profile


stand.


Because


branches


were


angled


between


50 and


degrees

branch


towar

angle


shifted


ertical

the ca


(Figure


Iculated


correcting


position


for

foliage


toward


canopy


(Figure


. For


m long


branch


with


a non-foliated


length


a Db.,e


location


m below


tree


and


an AOEb


of 50


degrees,


this


technique


would


allocate


foliage


m segment,


foliage


to 2


m segment,


only


to 3


m segment


where


branch


originated.


probably


position


Even


placed


. This


after


lower


because


adjustment,


crown


foliage


however,


than


is assumed


foliage


actual


to be evenly


distributed


within


foliated


region


limb,


when,


in fact,


most


foliage


concentrated


toward





















*-0 -


CD
I
NJ


U,




I3


4.


4.


I I p -


1~






















I~


0









in


In
I
4.


-I


O
1


a)




0r)

d4-I











space


was


possible


due


breakage


that


inevitably


accompanied


felling


trees.


each


limb


number


needle


clusters


(apical


growth


meri


stems)


was


counted.


system


used


distribute


foliage


was


also


used


to distribute


clusters,


with


number


of clusters


per


limb


substituted


dry


weight


biomass.


Cluster


distribution


a random


component,


because


number


of clusters


is discrete,


sters


are


placed


with


equal


probability


along


foliated


limb


rather


than


in equal


proportion.


horizontal


distribution


of foliage


around


stem


was


also


determined


using


branch


angle


the


foliated


region


limb.


distance


foliage


from


stem


was


rather


determined


than


sine.


cosine


horizontal


branch


distribution


angle


was


assumed


to be uniform


in regard


to azimuth.


model,


two


techniques


can


be used


to place


foliage

model (


space.


McKelvey,


One,

1988),


which

used


was

the


used


in a preliminary


vertical


distribution


biomass.


this


approach,


needle


clusters


were


assumed


contain


an equal


quantity


of biomass.


Needle


cluster


position


clusters


was


were


therefore


placed


derived


in vertical


from


biomass


space


data,


a weighted


random


--











placement


was


based


on the


branch


length


chosen


height.


second


system


distributing


needle


clusters


uses


vertical


distribution


clusters.


this


approach,

determine


foliage


biomass


extinction


enters


indirectly


coefficient


each


is used


cluster.


This


second


method


was


used


model


presented


here


because


it places


emphasis


on positioning


clusters


accurately


heterogeneity


space.


The


suggests


previous


that


discussion


changes


position


foliage


should


have


more


impact


on light


penetration


than


shifts


in biomass


cluster.


slope


exponential


decline


curve


steepest


values


near


and


progressively


flatter


as values


approach


In a sub-


canopy


model,


where


there


are


gaps


in the


foliage,


model


should


therefore


be most


sensitive


size


gaps


than


properties


foliage


filling


area


between


gaps.


For


purposes


crown


construction,


rules


placing


clusters


space


create


the


gap


structure,


properties


clusters


define


area


between


gaps.


The


priorities


modeling


should


therefore


primarily


to position


needle


sters


accurately


space


a .


I .


.


I


.











direct


light


penetration


is related


to needle


biomass


per


cluster,


whether


orientation


cluster


light


source


affects


either


penetration


or projected


area.


To obtain


these


data


Sa device


was


designed


to allow


controlled


directional


light


to be directed


onto


clusters


from


a variety


of angles


(Figure


. The


device


consisted


of a light


source,


a collimation


tube


a light


sensor


which


was


held


in a fixed


position


relative


light


source.


Cor


A 4


spot


cm parabolic


sensor,


mirror


eliminating


focused


angle


light


coverage


on a Li-


effects


to large


between


objects


such


sensor


as branches.


tube.


Clusters


The


light


were


source


placed


was


mounted


on a stand


with


slip


joints


that


allowed


a full


range


cluster


movement


to remain


three


fixed


dimensions.


light


This


source


allowed


to be moved,


allowing


cluster


to remain


an orientation


similar


natural


orientation


tree.


cluster


was


held


in a movable


stand


(Figure


. By


moving


cluster


vertically


horizontally


through


a series


of fixed


positions


was


possible


to define


a grid


normal


light


source


any


sun


angle.


rotating


cluster


position


clamp


was


possible


to simulate


any


azimuth.

















LIGHT












COLLI MATION
TUBE


SEHSOR


Figure


device


used


to determine


light


penetration


through


clusters.






















































Figure


Apparatus
light pene
horizontal


for positioning needle clusters for
tration measurements. Vertical and
movement of the stand, coupled with











generally


angled


toward


branch


tip.


When


viewed


from


branch


clusters


are


circular,


with


a dense


center


defined


apical


meristem


a maximum


radius


equal


needle


length.


orientation,


clusters


are


circular


with


a radius


of 28


cm regardless


of biomass.


From


side


view,


clusters


are


less


similar


in form.


length


cluster


is a function


growth


rate


over


past


season


or two,


depending


on the


time


year.


In April


, the


cluster


holds


one


cohort


of needles,


October


it holds


two.


In general,


because


new


needles


grow


a very


acute


angle


from


the


stem,


region


beyond


limb


forms


a hemisphere


defined


the


needle


length.


Below


hemispherical


end,


there


a portion


indeterminate


length


that


is cylindrical.


At its


base,


this


cylinder


can


terminate


in a hemisphere


needles


are


droop,


or in


triangle


needles


are


young


are


still


stiff


angled


toward


branch


tip.


Light


diverge


from


penetration


greatest


(parallel


end


projected


extent


when


limb)


cluster


area


cluster


relative


will


is viewed


side


(normal


limb).


Light


penetration


through


the


cluster


from


other


angles


will


encounter


a form


intermediate


between


these


extremes.


Measuring


light


penetration


-~~~I -


r I


I


mm a












range


of penetration


area


projection


from


potential


sun


angles.


Needle


clusters


were


sampled


at 5


cm intervals


over


grid


of 30x30


cm.


With


cm overlap


caused


parabolic


mirror


area


covered


was


approximately


34x34


cm.


This


area


is large


enough


encompass


the


end


views


needle


clusters


in their


entirety.


It encompassed


side


views


of smaller


clusters,


but


larger


clusters


cm long)


projected


beyond


grid.


Sample


clusters


were


centered


grid


using


apical


meristem


as the


center


end


views


midpoint


cluster


side


views.


Light


penetration


was


calculated


clusters


from


side


results


compared


. The


average


light


penetration


values


unit


area


these


two


views


differed


less


than


among


clusters


(average


less


light


penetration


from


side).


Rounded


nearest


compared


using


chi-square


test


of fit


(Table


Figure


clusters


showed


no significant


difference


< 0.05)


and


four


showed


significant


differences


in pattern.


Significant


differences


between


side


views


were


largely


due


increase


in projected


branch


area


when


viewed


from


side.
















E C,




4' W




U ~"4

S4)C

'-
Jr"4







Coa
4)cm,
akooo






Oo o
"4 r CI)
r4-
3 4 00
'p4-'



%C(I



0rwSr
Cr 2w C
UU4U
04 )0


rC


C "4


4)0

V a


3 r ~m~oc
a) Dc 1 0~ t Oe
v1


~~~Or'0 WeOO O
0d r d C dlrlV S(


Y ) ,O O CJC'Je. E 1 INW
"4oc c ooc uc
zr


rr-
U




























I I


Lao
wo
-Z~
liW


STI33 0 30 GlflN


0.




a-

0


^vmmmigmm^I


STI3 40 j36lAlN


I


C
V04'd
0)
rl I4.
On 9
sf- 4)

.C0)



ZO)
0k
0I) .0~


nr cxE


z


ID H
C 0)0)0)0
043r4 1
$4e


CH r
O'-ICV t


0 4'
4-' $4l
0)*4W
acV0)$
0CC 0)
Q0)0)4C)

*rl 0)O
u-I ErI


C~CCa
coVdI~ o
CCVQ~
$4 0, Ci
0)I >0 l


#XXXXXXXXXXXXXXXXXXXXXXX~


6WOWI[ll


#XXXXXXXXXXXXXXXXXXXXXXX~


4


DOOWWO~C~X1


#XXXXXXXXX~n


~owooow


~xxxxxxxx~o


Ipxr~


I -i


r











light


source


changes


. The


larger


clusters


are


similar


density


will


project


as much


as twice


area


when


viewed


from


side


rather


than


from


end.


This


can


lead


to a disparity


projected


area


between


these


modeled


clusters


area


represent


actual


a significant


proportion


total


cluster


population.


To determine


proportion


of proportion


of large


clusters


canopy


lengths


of all


the


clusters


were


measured


on five


trees


with


stem


diameters


ranging


from


15.8


cm to 25.2


cm in diameter


at breast


height


(dbh


1.37


. Of


1585


clusters


sampled,


were


less


than


cm in length


were


less


than


cm in length


(Figure


10).


Based


on this


sample,


the


maximum


error


estimated


cluster


area


due


the


presence


of large


clusters


was


less


than


. At


minimum


biomass


levels,


canopy


is primarily


composed


of clusters


small


enough


to project


equivalent


assumption


that


area


clusters


density


can


from


treated


sun


as points


angles.


with


average


area


uniform


penetration


properties,


necessary


condition


discrete


cluster-level


modeling,


therefore


justified.


A regression


cluster


penetration


as a function


biomass


was


constructed


. For


regression,


light


-~~~' -A-- I -a


^ _m


r r







































O 0
f rn











captures


foliage


regardless


of cluster


length,


because


orientation


clusters


tree


suggests


toward


that


light,


view


limb,


dominates.


which


clusters


represents


grow


change


position


meristem


over


time,


must


roughly


parallel


beams


of light


emanating


from


light


source.)


A log-


linear


(exponential


decline)


curve,


was


chosen


(Figure


because


same


form


exponential


decline


curve


variables


are


analogous


those


used


Beer


s law


modeling.


The


curve


also


stable


properties


when


used


to extrapolate


beyond


edge


data


set.


Model


Structure


Cluster


level


modeling


very


flexible,


a variety


of configurations


can


be used


to model


stand.


For


results


presented


here,


stand


was


modeled


using


following


rules:


trees


were


built


using


same


procedure


(Figure

branch


12).


foliage


angles,


branch


quantity,

lengths


cluster


were


numbers,


identical


trees.


parameters


were


mean


values










a 46





I ,-
U)4r



I
C 4.
0o

0'I o (0
oo CJ


h 4-)
t( 3

o 0 C)
o
I C, 0
a) V


o El
-J 0 C.$





o 0
aa
0 4)C
0




BO H

o Q.4a
OO
o l

0 r Cl I') 4 ID (0 F
i 6 ci 6i c ci 6i OH
I I I I I
E~ 0

Hl
riii\ MAD lfJlr2 *L urI, u-I














LOCATE TREE TOP


MOVE DOWN ONE METER


I COMPUTE BRANCH VECTOR


N




(ORE SECTIONS






DONE


Figure


The


rules


building


a tree


in the


cluster


level


PLACE CLUSTER RANDOMLY
ALONG THE FOLIATED
REGION OF THE BRANCH











of clusters


in both


azimuth


angle


was


random.


trees


were


identical


in height


trees


were


evenly


spaced


on a grid


aligned


with


cardinal


compass


directions.


Rows


columns


ran


exactly


north-south


east-west,


respectively.


the


model,


clusters


are


held


as locations


three-dimensional


space.


Light


penetrates


system


clusters


determine


obliquely


light


as a series


penetration


of parallel


through


beams.


system,


discrete


that


approximation


coordinate


technique


system


outlined


be aligned


above


normal


requires


light


source


before


scaling


rounding.


alignment


accomplished


rotating


cluster


positions


around


arbitrary


origin


until


they


occupy


positions


space


that


they


would


have


they


had


remained


fixed


cartesian


coordinate


system


been


rotated.


The


process


starts


with


an initial


orientation


in which


the


axes


axis


define


is height.


a plane


initial


parallel


sun


location


ground


and


is at 0 degrees


parallel


X axis.


Cluster


rotation


is always


relative


this


initial


configuration


and


is inverse


movement


light


source.


light


source


moves


rinht-


I. I


rlu S atsr


nos i t ions


are


rotated


down


.


t~ha


.


.











axes


with


daily


sun


angles


azimuths


can


be generated


through t

available


rigonometric


in the


relationships,


literature


(Campbell,


equations


1977


are


; Walraven,


1978


Gates,


1980).


Rotation


of points


around


an arbitrary


origin


requires


several


transformations


. The


point


set


must


first


centered


on the


origin,


then


scalar


rotations


are


necessary.


first


aligns


axes


with


the


sun


azimuth,


second


with


AOE.


This


process


can


be accomplished


efficiently


through


use


transition


matrices.


Any


rotation


a group


of points


in Cartesian


space


can


be viewed


as a series


of individual


translations


coordinate


point.


vectors,


rotation


each


vector


algorithm


representing


can


therefore


an individual


be determined


tracing


translation


of a single


coordinate


vector,


through


multiplication


with


a series


transition


matrices


first


I*


translation


can


be written


as C


second


' *


so forth


can,


however


, be substituted


in place


of C


second


translation


can


therefore


be expressed


as ,,~


This


process


can


be continued


as many


transition


steps


as are


necessary


to accomplish


desired


rotation.


single


transition


matrix


is created


which


product


,I A J AA


Fri Ff


r ,,',a


- -.4 -


Ir T2


,-- -


LI











vector


to its


final


position


. The


rotation


process


therefore


always


begins


with


same


of initial


coordinates,


there


no cumulative


buildup


errors


during


rotation.


After


rotation,


each


coordinate


vector


multiplied


integer


a scaling


location.


constant


point


rounded


equidistant


nearest


between


integers,


coordinate


is rounded


the


even


integer.


Once


clusters


have


been


rotated


their


positions


rounded,


be computed.


amount


If all


of light


penetrating


clusters


have


target


equal


can


transmission


properties,


light


penetration


point


can


be computed


= Io


exp(-kn)


(15)


where


= the


number


of clusters.


transmission


properties


are


different,


then


light


penetration


is computed


1 I


o exp[


+ k2d,


+...k-d.)]


(16)


where


lr I, 1-ho ~ ~ ~ ah nil- nr- an ran 4 1 an ~c' a 1


kd,


L t


tha


C3V+I nrti an


aan~











individual


needle


cluster,


d,... d.


= the


densities.


light


penetration


cluster


is known


(rather


than


computed


through


a Beer


s law


relationship),


then


this


calculation


collapses


to a product


series:


n
S I I
i=l


(17)


if the


penetration


is identical


clusters:


= Io


(18)


With


Cartesian


coordinate


system


parallel


solar


radiation


along


X axis,


task


of searching


shade


becomes


the


search


points


that


have


same


Z coordinates


target


larger


X values.


This


search


can


potential


coordinate


accomplished


shade


clusters


values.


efficiently


according


array


can


first


to either


then


sorting


or Z


be searched


progressively.


In certain


cases


may


be beneficial


sort


first


X coordinate


to clip


those


points


with


X values


less


than


target,


because


target


is generally


placed


that


maximum


potential


number


shade


clusters


between


it and


the


sun,


this


sort


is not











model


was


run


angles


azimuths


representing


one


quarter


dome.


Light


penetration


was


simulated


AOE


from


to 85 degrees


azimuths


of 185


to 270


degrees


at 5-degree


intervals.


below-canopy


readings,


target


was


a 5x5x1


m rectangular


region


below


canopy


containing


measurement


points


at random


locations.


measurements


within


canopy,


two


target


arrangements

penetration


were


used.


profile,


To simulate


a series


of 5x5


a generalized

xl m planar t


light


argets


were


placed


at 1


m intervals


within


canopy.


To simulate


light


penetration


cluster


surfaces,


a target


tree


was


used


with


each


cluster


acting


as a measurement


point.


vertical


position


of each


cluster


was


used


to determine


a light


penetration


profile


surface


clusters.


modeling


approach,


an evenly


planted


stand,


allows


simulation


from


potential


angles


(above


degrees)


azimuths


. The


other


three


quarters


dome


can


be filled


in by


assuming


symmetry.


The


minimum


sun


angle


that


can


modeled


is dictated


distance


from


target


edge


simulated


stand


depth


canopy.


question


is whether


a tree


that


is not


modeled


the


potential


to influence


light


environment


at a target


point.


a field


of conic


crowns


a target


base


canoov.


distance











edge


the


system


necessary


ensure


that


edge


effects


affect


light


penetration


target


(19)


= tan(AOE)/


where


= the


distance


edge


system,


= the


depth


canopy.


This f

breaks


unction

rather


becomes

sharply


infinite


below


as AOE

degrees


approaches


AOE.


0 and


In Florida,


direct


light


emanating


from


AOE


greater


than


30 degrees


dominates

solstice,


daily

sun i


light


s higher


integral.


than


Even


degrees


winter

a 5-hour


period


mid-day.


Florida,


30 degrees


therefore


a reasonable


minimum


angle.


more


northern


latitudes,


much


light


may


emanate


from


AOE


less


than


degrees.


Model


Results


In a three


dimensional


model,


asymmetries


in foliage


distribution


may


make


light


penetration


strongly


dependent


on azimuth.


a row


crop,


highest


penetration


through


a~ ~ ~ ~~~~~~ a1 -. L .-- a-.h --A n --n--.


rt,


.',,,,, ~1


rrnr~~r











penetrates


from


an azimuth


of 270


degrees


(Figure


13).


modeled


tree


configuration,


an azimuth


of 270


degrees


is exactly


parallel


rows


. Thi


phenomenon


however,


only


noticeable


at low


only


occurs


sun


azimuth


precisely


aligned


with


row


. An Azimuth


of 185


with


degrees,


row


instance,


orientation.


is only


Azimuth


degrees


therefore


of line


not


significant


factor


in below-canopy


light


penetration


. Thi


means


that


light


penetration


curves


can


be created


based


sun


angle,


which


simpler


to generate


than


azimuth.


Figure


stand


14 shows


with


average


light


light


penetration


penetration


per


through


cluster


2.88x2


m (1


trees


hectare)


spacing


variance


constant


angles


. For


tree


spacing


biomass


level,


curve


can


be used


directly


generate


light


penetration


patterns


over


time.


The


output


cluster


level


model


, in


case


Collapses


single


curve


that


can


be used


in simple


light


penetration


model


as a replacement


exponential


decline


curves.


Over


course


a year


, needle


growth


abscission


approximately


doubles


halves


foliage


canopy


respectively


. In


model


there


are


three


ways


to simulate


doubling


halving


of foliage


. The


first


to keep


nr A1 A .n 71UT n


Fnl(~na


nllr alnr


nrrmknr


fhd aamn


nar


na


n-r -
















43


GOD

cv>o


0
-N
CN


0

CM


0wD


00


tED


000
< <


000
nu,ca


I
0


0D

00 00

0 0


4343


CCC

444


0000


Ca)
SCI
04-


0
-i


o
-t



-In
CN


0)'.0W
0do\ m
Ir45
>1I
'44U
ooC
Cd


.CG)

OJ-)
.Cwo


C cJ


O0 OD


QQ


Co D

000


CM


o
-o0


- a)


) 0) U,

C40
-r C
Q0ld
wa)
HO
Ed 0


airs


10 U) 1010


4J
Cr


~Bos


433



















Or O
+s*9'4

w~ if
La) aI)


Wr ca co

o (fl43

O a)
o~ 0k
-~ cW
I-r ON


O)C
LL 0.0
a m~
O Jrl


U) IC)
to











is roughly


equivalent


to dominance


the


side


view


clusters


. The


second


to increase


or decrease


the


penetration

regression


cluster


(Figure


11).


according


This


the


equivalent


developed

t to dominance


view.


third


possibility


to increase


decrease


density


trees.


This


not


a real


possibility


within


stand,


but


halving


number


trees


approximate


equivalent


to a thinning


operation,


leaving


wide


holes


foliage


between


individual

eliminates


crowns


. Doubling


between-tree


gaps


the

and


number


eliminate


trees

s much


effectively


conic


form


canopy


crown


overlap.


Together


these


three


model


runs


tested


importance


cluster


crown


levels


of hierarchy


on light


penetration


through


canopy.


When


these


three


possibilities


were


simulated


There


was


little


difference


between


light


penetration


patterns


generated


shifting


cluster


area


shifting


cluster


density


(Figure


15).


differences


that


exist


occur


at high


AOE


. This


suggests


that,


below-canopy


light


penetration,


sters


were


acting


as if


they


were


randomly


because


located


position


space.


of each


To a large


cluster


extent


was


they


randomly


were,


chosen





























41













QI
iJ


004
III
004


C

4





4





4


N


I I I I II II I I


U'









~t








'C'








C,
U



a


I I Ii I I III I


ff)
OT
- In

0
U,
nIuJ
w"d
u.
Z
O

0
F

4
1L


0i


1~00 a
W'w-4r1
C4 v-I '-
00rlu
JJC44


ecl


IAAd N I ~WI ITJI1J~d3 Pft'%lIJ*fl3IIl M13I.


i ~n~lY~ ~111 nullu\rlllrn











example


of a Beer


solution


in which


parameters


are


based


on cluster


rather


than


needle


characteristics.


There


were,


however,


significant


differences


between


light


penetration


patterns


due


to changes


of biomass


within


crown


changes


due


to changing


number


crowns


(Figure


15).


These


data


suggest


that


position


trees


is much


more


important


to overall


light


penetration


than


internal


structure


crowns.


Because


model


is insensitive


to whether


foliage


enters


system


as additional


area


or as increased


density


within


same


area,


changing


biomass


within


canopy


was


constant


modeled


changing


keeping the

their light


number


of clusters


penetration


properties.


view


projection


clusters


dominates


over


side


projection


this


view,


area


case,


or if


will


then


clusters


change


keeping


are


with


cluster


small,


shifts


area


cluster


in biomass.


constant


appropriate.


Using


cluster


level


regression


(Figure


11),


light


penetration


potential


penetration


curves


biomass


per


can


created


quantities


cluster


sun


simply


across


shifting


range


angles


light


of potential


values.


This


produces


a family


curves


(Figure


-


i A




















































0J )



S0,
S0)0
ow


tna I I II Ar a nt~~


.1*I

N .c

CJO om

10
L1a hia aL I


? h ~IU


I h











multiple


regression.


equation


to model


output


m spacing


.134


+ 0.130*AOE


- 0.1834*B,


.6E-5*AOE2


(20)


= 0.92


where


= the


fraction


of light


penetrating


base


the


canopy,


= a scalar


producing


varying


between


an average


2.0 and


cluster


light


with


penetration


approximate


median


value


cluster


sample.


A cluster


level


model


was


constructed


slash


pine.


crown

the 1


measured


form


ight


under


was


determined


penetration


controlled


through


through


conditions.


destructive


individual


Model


sampling


clusters


output


was


showed


that


azimuth


was


an important


parameter


controlling


light


behavior


penetration


was


through


captured


canopy.


in a regression


Most


equation


model


based


biomass


AOE.















MODELING


SEASONAL


BELOW-CANOPY


LIGHT


PENETRATION


It is


clear


from


equation


that


most


dynamics


three-dimensional


cluster


level


model


can


collapsed


to a one-dimensional


form.


This


allows


light


penetration


patterns


over


time


to be modeled


using


a much


simpler


model.


Other


than


using


equation


20 rather


than


equation


to a Beer


to predict


s law


light


model


penetration,


a horizontally


a model


identical


homogeneous


canopy


can


be used.


Correct


AOE


can


be generated


through


relatively


simple


entered,


equations,


model


can


biomass


quantities


be validated


can


matching


model


output


with


measured


light


penetration


data


through


the


canopy.


Yearly


biomass


dynamics


were


derived


from


three


sources


of data:


destructive


sampling,


litterfall,


needle


elongation


rates.


Foliage


canopy


any


time


mixture


current


year


s cohort


(new


foliage)


previous


year


s cohort


(old


foliage)


. Over


-year


period,


the


new


foliage


becomes


falls


the


forest


floor


as litterfall.


three


consecutive


years


trees


were


a a a .6-..! a a a I ...fl ----a-. a... 1.. a... __ 1-a -A--.-


,,,, 1


L,, LL, -I


111


? ,











both


cohorts.


In addition


biomass


estimates


described

at bi-week


earlier,

Iv interv


litterfall


(weekly


was


collected


during


in litter


peak


traps


litterfall


period


in November)


. Needle


growth


was


also


measured


need


at bi-weekly


interval


throughout


season


active


growth


(weekly


during


spring


-break).


these


data


, the


destructive


sampling


was


considered


to be


most


accurate


was


used


as a baseline


biomass


calculation


. From


these


data


biomass


quantities


were


calculated


both


forward


backward


through


time


. The


foliage


dynamics


were


tracked


through


litterfall.


Litterfall


was


assumed


to be entirely


foliage


new


foliage


that


fell


into


traps


due


to storm


damage


was


separated


. New


foliage


dynamics


were


based


on needle


elongation


patterns


. Biomass


was


then


converted


into


sided


leaf


area


using


a geometric


technique


(Gholz


et al.


1990)


Based


this


analysis


was


found


that


the


maximum


foliar


biomass


was


approximately


times


minimum


(Figure


that


biomass


pattern


lagged


the


solar


cycle


approximately


three


months


(Figure


. In


model,


smoothed


biomass


curve


shown


in Figure


was


scaled


a mean


of 1


.0 and


used


as input


for


equation












O
c--0---, -o
-0 -in


0
-in
1-


\%

\J



^/
'-0 I


0-
I


!
-- -"I
I
c-0 I--


0
-0


0
-in


o
Io


0
L-iu


U)

r4

'p>1
'.





+T Ic'





4't
HUV
00)
mxII
00r


Sr Ici I-


Y'~fl I1 kwII


I--
I--


---I
--


n~nlc ilu











(S33 93G)


3J1NV NnS


SA S __


rr~











Light


penetration


through


canopy


was


measured


with


a seri


of fixed


sensor


arrays


. The


arrays


consi


sted


twelve


linear


response


diodes


mounted


on aluminum


beams


m intervals


. Each


array


consisted


beams


placed


right


angel


on narrow


triangular


antenna


towers


. The


arrays


were


level


with


ground


. Two


arrays


were


placed


above


the


canopy,


five


were


placed


immediately


beneath


canopy


were


placed


above


shrub


layer


on the


forest

minute


floor


interval


SReadings


at each


throughout


the


sensor


day


were


taken


at 5-


an averaged


value


recorded


was


each


hour


. The


sensors


were


calibrated


to Li


Cor


spot


sensors


Three


Li-Cor


PAR


spot


sensors


were


also


placed


above


canopy


along


with


Li-Cor


full


spectrum


time


sensors.


regressing


system


hourly


was


above


checked


-canopy


drift


readings


over


from


PAR


spot


sensors


against


above-canopy


diode


arrays


. An


additional

sensors ag


check


ainst


was

the


made

full


regressing


spectrum


sensors


PAR


. The


spot

regression


between


PAR


spot


sensors


above-canopy


diode


arrays


period


starting


on November


, 1987


, through


January


-0.508


1989


was


+ 0.9286


(21)


a 1%











where


= the


mean


above-canopy


diode


arrays,


- = the


mean


above-canopy


spot


sensors


There


no indication


of nonlinear


behavior


any


light


intensity


level


or any


sign


sensor


drift.


Because


below-canopy


sensors


were


fixed


space,


possibility


that


readings


were


biased


their


specific


locations


. A check


was


therefore


made


regressing


below-canopy


sensors


against


each


other


combinations


on an hourly


basi


(Table


. These


regressions


demonstrate


that


sensors,


both


below


canopy


above


shrub


layer


tracked


each


other


very


well


values


ranged


from


0.93


to 0


. Only


three


36 combinations


had


an r


value


of 1


ess


than


. The


slopes,


ideally


, ranged


from


to 1.31 with


falling


below


1.0 and


20 above


. The


average


slope


was


.01.


intercepts,


PAR/m2*s


. No


ideally


significant


, ranged


from


difference


was


to -7 (

observed


pmol

between


shrub


level


sensors


below-canopy


sensors,


suggesting


that


distance


from


canopy


was


not


important


influence


on light


readings.


determining


below-canopy


light,


below-


a a a -


---- ~- --


~I _I~_ 3


JA


i.












Table


Regression


below-ca
10, 1989
sensors


nopy


constants


sensor


arrays


for hourly re
from November


. BC sensors were immediately
were above the shrub layer.


be


ladings of pairs
6, 1987,to Octob
neath the canopy,


Model


Slope + SE
( pmol/m2*sec)


Intercept + SE
(pmol/m2*sec)


BC1
BC1
BC1
BC1
BC1
BC1
BC1
BC1
BC1
BC2
BC2
BC2
BC2
BC2
BC2
BC2
BC2
BC31
BC31
BC31
BC31
BC31
BC31
BC31
BC32
BC32
BC32
BC32
BC32
BC32
BC4
BC4
BC4
Rr4


= BC2
= BC31
= BC32
= BC4
= S1
= S2
= S31
= S32
= S4
= BC31
= BC32
= BC4
= S1
= S2
= S31
= S32
= S4
= BC32
-= BC4
= Sl1
= S2
= S31
= S32
= S4
= BC4
= Sl1
= S2
= S31
= S32
= S4
= S1
= S2
= S31
--=R


).90
).86
).85
).88
).88
).82
1.89
1.86
).85
1.88
1.88
.76
1.82
'.89
'.93
.90
.75
.89
.81
.81
.85
.92
.89
.77
.82
.83
.89
.92
.90
.80
.86
.81
.85
01'


1.81
'.97
1.86
.01
.16
.86
.01
.96
.17
.19
.99
.97
.31
.05
.22
.18
.08
.80
.93
.05
.80
.97
.91
.05
.02
.21
.96
.12
.07
.18
.06
.76
.93
OR


).005
).006
).005
1.006
1.006
i.006
'.005
.006
.008
.008
.007
.014
.011
.006
.006
.007
.017
.004
.008
.008
.005
.004
.005
.011
.008
.008
.005
.004
.005
.009
.007
.006
.006
rArn'


..79
..61
..60
..40
..36
..80
..35
..53
..50
..35
.36
'.93
;.85
,.02
.75
.05
.90
.25
.68
.85
.56
.99
.20
.81
.82
.84
.50
.11
.25
.86
.44
.69
.47
rA j


)er
S











figures


were


then


divided


into


daily


sum


the


average


above-canopy


sensor


arrays


to obtain


fractional


below-canopy


1987,


light


continuing


penetration


through


daily


March


beginning


1989.


November


A period


August


1988


is missing


to a lightning


strike


several


other


days


are


also


missing


to equipment


failure.


Light


estimates


were


made


days


potential


days.


With


good


data


sets


both


below-canopy


light


penetration


biomass


fluctuation,


light


penetration


over


time


can


modeled


validated.


To obtain


accurate


estimates


of daily


light


integral,


a simple


model


can


used


to generate


sun


angles


approximate


intensities


(Campbell


1977).


sine-corrected


light


impacting


on a


flat


surface,


SinAOE


= sin((


sin(L)


sin(Dec)


cos


cos


(Dec)


cos[15(t-t)] )


where


SinAOE


= the


sine


AOE


= the


time


of day


in hours


hour


clock),


= solar


noon,


-= the


latitude


in degrees,


* -----------


LL ,











Sine


corrected


solar


intensity


on flat


ground


sea


level


can


be approximated


= sin[I.,


* T./SinAOE]


where


= the


solar


intensity


on flat


ground,


-= the


solar


constant,


, = atmospheric


transmissivity.


determining


proportional


light


penetration,


can


to 1.0,


is dimensionless.


is also


dimensionless


varies


from


on very


clear


days


to 0.6


on hazy


polluted


days


(Campbell


1977)


Light


penetration


through


canopy


was


calculated


hourly


intervals


using


equations


and


. To


obtain


daily


time


constant


integrals,


results


duration


were

hour.


assumed


This


to be


integration


technique


is justified


daily


time


integrals


because,


symmetry


noon,


integrated


in angular


light


will


distribution


be underestimate


around s

d before


olar

noon


overestimated


after


noon


approximately


equal


amounts.


time


series


extended


from


November


, 1987


ha- ---

.al ars.n n a -


4 na-


M ~ Pn n I r I u


u L


I


Ckn


nrrrl h~


I.lh n A


Ot~Ah


A 41PS #MI











a tree


cluster


spacing


is assumed


of 2.88x2.88


to be 70%


light


throughout


penetration


time


series,


simulation


matches


data


until


summer


1988


then


diverges


(Figure


. Light


penetration


overestimated


remainder


time


series.


however,


it is assumed


that


light


penetration


per


cluster


represents


minimum


biomass


levels


(March


1988),


biomass


is allowed


to fluctuate


over


time


according


pattern


shown


in Figure


is greatly


improved


(Figure


19).


Diffuse


light


penetration


canopy


differs


from


direct


beam


radiation


because


it emanates


directly


from


portions


dome


simultaneously.


quantity


diffuse


light


reaching


target


point


within


canopy


will


be decreased


dome


that


an amount


is obscured


proportional


surrounding


area


foliage


light


intensity


those


portions


that


are


obscured.


obscured


portion


dome,


turn,


related


distance


that


shade


object


is from


the


target


diffuse


size


modeling


shade


therefore


object.


One


to compute


approach


dome


coverage


each


target


point.


This


approach


used


Norman


Welles


(1983)


envelope


modeling.


Tha r fh Fa


, -


nrhkl arn


ck


ck: n


L~LIA~LII*A~CI~


LL













0
-0
in)


4'0

Vt-
>1.(
-p4C
OWu

'OW


-0
-o
1-


o~m
0 C4 5-I




4.) *4



OkW4
.Com g


vowG
4)J 0 r
4JP-IE
000E
4tQl(
2*4( r
r4v
U) H


4- tO











Diffuse


patterns


are


quite


predictable


when


heavily


overcast


(Figure


become


very


complex


sunny


days


(Grant


1985).


Diffuse


light


patterns


are


therefore


difficult


to simulate


because


they


shift


with


weather


cannot


be generated


through


trigonometric


techniques


. In


clear


conditions,


direct


light


dominates


pattern


of diffuse


light


is strongly


anisotropic.


Under


heavy


overcast,


diffuse


light


is isotropic.


uniformly


overcast


days,


intensity


per


unit


area


dome


is greatest


the


dome


least


horizon.


greatest


area,


quantity


however,


of light


is greatest


therefore


the


emanates


horizon.


from


mid-


region


(Figure


. Because


azimuth


was


unimportant


to light


modeling


penetration


diffuse


into


light


stand,


assume


a very


that


simple


it all


way


emanates


from


mid-sky.


premise


that


diffuse


light


enters


stand


primarily


from


mid-sky


should


have


the


result


that,


winter,


days


dominated


diffuse


light


should


have


higher

days.


light


This


penetration

because, i


through


n North


canopy


Florida,


the


than


clear


maximum


AOE


direct


beam


radiation


winter


solstice


is 38


degrees.


No direct


light


radiation


enters


canopy


from


-I-,-~~~~~F *A t .


* a


L 1


ALI


rr


- .. 1'1


















C
9-4
V
01
0:

ni
0
'C


CJ
0
Ct


.I-


.Cw
nO


0o


a. -a a aL -a a- -


0


cs)


QGIHO


CSS)


Sg


crm~a,


a~D











be much


more


muted


because


a great


deal


direct


light


emanates


from


mid-sky.


there


a pattern,


it should


reverse


from


winter


pattern


because


-day


direct


light


emanates


from


as high


as 84 degrees.


For


a given


sun


angle,


changes


in above-canopy


PAR


are


to differences


in atmospheric


transmissivity.


Decreased


transmissivity,


proportion


of diffus


to water

e light


or dust,

(Campbell,


increases


1977


the


Spitters


1986).


distributions,


periods


such


with


as exist


similar


sun


around


angle


solstices


, days


with


lowest


integrated


PAR


should


have


highest


proportion


of diffuse


light


those


with


the


highest


PAR


should


have


lowest.


When


a two


month


period


surrounding


each


solstice


was


plotted


against


integrated


PAR,


patterns


supported


hypothesis


that


diffuse


light


emanated


period


solstice,


primarily


extending


there


one


was


from


mid


month


a strong


-sky


on either


negative


(Figure


side


21).


winter


correlation


between


high


above-canopy


PAR


below-canopy


light


penetration.


period


extending


one


month


to either


side


summer


solstice,


there


was


a very


weak


positive


correlation.


Based


this


empirical


support,


diffuse


light


was


aAJ~aA 4n 4-l,


A~ 2 -nA -I


1 .1 A.&. 1 A.


1


--3-'1


*







































































(o o


0CC


(0

0OVC


.C a) )
0)00

S00


ca i


O) ah
.1-


WId AdONVO-3AOBV J0 NOLLDOVY


iVld AdONVO-3AOSV IO NODLLOVUL











days,


randomly


chosen


were


not


sunny;


split


between


direct


diffuse


light


was


purely


random


on those


days


(some


would


be partly


cloudy)


diffuse


light


emanated


from


degrees


AOE.


When


these


rules


were


applied


annual


light


penetration

constancy i


model,


n light


patterns of winter

penetration were d


variance


uplicated


and

with


summer

the


exception


of early


summer


variation


(Figure


22).


early


summer


measured


data


displayed


higher


variation


than


model


predicted.


This


suggests


that


this


approach


to modeling


diffuse


light


captures


a great


deal


the


impact


of cloudy


weather


on canopy


below-canopy


light


penetration,


below-canopy


that


light


pattern


is caused


of variation


differences


observed


in system


sensitivity


to diffuse


radiation


rather


than


differences


weather


pattern.


rules


splitting


days


into


diffuse


direct


light


listed


above


were


largely


arbitrary.


No attempt


was


made


to match


light


penetration


specific


days.


The


proportion


of clear


cloudy


days


was,


however,


reasonably


accurate.


When


total


daily


radiation


days


was


compared


with


theoretical


clear


values,


75.4%


days


were


within


theoretical


values


. The


C 4- ar. r r' av-rn a 4-4 an a4,aa n a 1 A tfltwfA~l fl fn. l


n~a


hnrra 1 aC~nn


khCltnnn


aCrhnn


ChC a 1

















N
N.-
r










I-
NP


FCC

CCQ


0
LO
-0


-0
-0





O
-0
-o


O
-O
r==


N I


Al
4
^Q


0


I











suggests


that


light


penetration


can


be simulated


on a daily


basis if a rule


partitioning


total


light


into


diffuse


direct


components


based


on daily


above-canopy


can


be derived


The


of diffuse


simplest


light


pattern


is a linear


assume


function


that


proportion


of above-canopy


PAR.


period


covered


in Figure


21a,


was


assumed


that


daily


of 100


represented


a uniform


overcast


day


with


100%


diffuse


radiation


of 800


represented


in which


light


entered


stand


as direct


radiation.


When


this


linear


pattern


is modeled,


simulation


tracks


pattern


measured


data,


lower


variation


(Figure


23a)


. This


suggests


that


shift


from


direct


to diffuse


light


is a nonlinear


function


daily

take


PAR

the


In its


form


most


of a switch


extreme


where


form,

the


this

light


nonlinearity


pattern


will


shifts


from


entirely


direct


to entirely


diffuse


at a specific


daily


PAR.


Campbell


(1977)


breaks


diffuse


modeling


into


a clear


model,


which


allocates


to 30%


total


radiation


to diffuse


(depending


on the


amount


haze)


a cloudy


be diffuse.


model


in which


In Campbell


light


s system,


light


is assumed


is assumed
































































dVd AdONVO-3AOa:V JO NOIlOV '


dlVd AdONVD--3AOV JO NOLLDVYL-


cn 1c:m











exist.


If a day


high


atmospheric


transmissivity


partly


cloudy


then,


part


day,


clear


conditions


will


dominate


. Under


these


conditions


there


is a linear


relationship


between


daily


integrated


light


percent


cloud


cover


(Spitters


et al


1986)


. Campbell


models


suggest


that


proportion


of diffuse


radiation


will


also


be linearly


dependent


on the


percent


cloud


cover.


Frontal


weather


will


produce


either


uniformly


cloudy


uniformly


clear


days,


dynamics


should


be much


more


like


with


a switch.


dynamics


A sigmoid


intermediate


a simple


between


nonlinear


a line


function


a switch,


this


pattern


been


shown


to fit


empirical


data


many


sites


(Spitters


et al.


1986)


. When


a sigmoid


function


replaces


linear


dependency,


model


is improved


(Figure


23b).


When


measured


data


are


regressed


simulation,


both


models


account


natural


variation


slope,


ideally


1.0,


is 1


linear


model


sigmoid


model.


Simple


models


diffuse


radiation,


when


coupled


with


regression


duplicate


obtained

observed


through

pattern


cluster

of light


level


modeling,


penetration


through


canopy


on both


a seasonal


a daily


scale.


Because


output


from


cluster


level


model


was


-n A.. A~


4. aI :-a 8. -- i.'


YIIILI CS


m J











identical


input.


Assuming


constant


foliage,


only


divergence


at high


sun


angles


(Figure


24).


When


biomass


dynamics


were


included


, the


Beer


s law


model


matched


identically


winter


spring


but


was


more


sensitive


biomass


buildup


during


summer


(Figure


. Compared


with


measured


light


data,


Beer


s law


model


provided


than


a poorer


cluster


summer


level


model


light


(Figure


penetration


, in


general,


a sine-corrected


Beer


s model


fits


light


patterns


reasonably


well.


To determine


extent


to which


difference


between


Beer'


on the


model


presence


cluster


of clustering,


level


a modified


model


Beer


was


s law


based


model


was


constructed.


this


model,


was


assumed


that


clusters


rather


than


leaves,


were


the


basic


unit.


clusters


were


randomly


positioned,


light


penetration


through


the


clusters


was


based


regression


derived


through


direct


measurement


(Figure


11).


When


output


from


this


model


is compared


with


output


from


discrete


cluster


model,


patterns


are


very


similar


2.88


m spacing


(Figure


27).


This


provided


further


evidence


that,


in the


cluster-level


model,


clusters


were


projecting


randomly


onto


forest


floor.


close


Ha +raa -Inl- nA .I i -


CkA~~


~ CI~ CI 1


,'I


JL 1


* *


II



















































Ur) UI)
to N


0


U)
1F
6





















0J)
C
0Q
.C

r4
4.0
i-lWr
0)


OWd




Sai
WUH



v,C
0a


4- to




































i,
44


4J4


4~J


N4

Qaka


O
-0
Un


-0
-0
4-


4.) S4


4-)4


Co

SH

Sow


m vw
1 d.C


Q1















V0)
CI "4
'a- a




SvlC

WH




'C


remE
20)k
en 'C
0)0
C~a)
wwO


orC


Coo




Cd 0 r
WW.C


Q'W
'Cr4



HWQ.
1.40k
V04C,
04-l
4-SW
0 0)



Y(/0


U*) IC











representation


provided


a numerically


accurate


picture


light


penetration.















MODELING


LIGHT


PENETRATION


WITHIN


CANOPY


Light


penetration


patterns


through


canopy


are


much


more


difficult


to obtain


than


below-canopy


values


are


more


important


canopy


physiology.


The


cluster-level


model


is capable


of simulating


penetration


either


planar


surface


within


canopy


structure


or to a target


tree


in which


light


penetration


is calculated


surface


of each


cluster.


To obtain


a rough


estimate


light


penetration


series


of planes


within


canopy,


five


profiles


were


run


on a uniformly


overcast


day


(Figure


28).


An overcast


day


was


chosen


to minimize


variation


within


canopy.


profiles


were


created


hanging


a small


triangular


antenna


tower


on the


control


plot


swinging


a line


sensor


in a circle


approximately


m in radius


. Light


readings


were


taken


as much


as possible


at 15 degree


intervals


along


arc.


Each


arc


was


therefore


characterized


individual


readings


which


were


then


averaged


to obtain


a single


reading


representing


arc.


Arcs


were


spaced


at 1-m


intervals


from


approximate


I .- -a- -5 -.---, -- -


-A


S tl


-~,,~,,
























































U, UIn In
CO In 4-


U




00











to a depth


of 7


The


7-meter


reading


was


entirely


below


canopy.


When


light


profiles


to a series


of planar


surfaces


were


modeled


, the


measured


values


fell


between


simulated


curves


30 and


degrees


AOE


(Figure


29).


model


therefore


data


a mid


-sky


AOE,


as is appropriate


uniform


overcast


conditions.


It is fair


to question


biological


meaning


of light


penetration


profiles


based


on a series


of planar


surfaces


within


the


canopy.


canopy,


line


sensor


was


primarily


sweeping


empty


space ,


measuring


holes


between


crowns.


base


canopy,


was


primarily


measuring


non-foliated


zone


surrounding


stem,


an area


that


presumably


does


provide


a favorable


environment


to support


foliage.


When


was


assumed


that


planes


clusters,


existed


curves


only


at spatial


looked


quite


locations


different


representing


(Figure


strong


self-shade


depression


was


indicated


high


AOE


zone


immediately


below


layer


of maximum


foliar


biomass


(Figure


this


region,


crown


was


still


narrow


(Figure


some


self shading


was


inevitable.


extent


to which


simulated


self-


shade


depression


was


accurate


depends


validity


rules


cluster


nlnmC 1 a n4 --a a -A


A


'I


T


Ik

















a)

(00

Sa)
CC

C C




C,


r\





coS

0.
0
I-


cl
'C

rIO
Vt


N\ cD in t

















LJ LW L.
000

000
000
MrO in


.


-Co


It,








t


-rm,


I I I I I I I p I-


00


oa)
F'w











presumably


can


grow


of each


other


s way.


A self-shade


depression


should


exist,


is expected


to be smaller


than


was


simulated.


Stratified


Beer


s law


models


were


constructed


both


biomass


profile


adjusted


branch


angle


unadjusted


light


profile


penetration


(Figure


level


6).

the


When

model


below-canopy


based


the


adjusted


biomass


underestimated


light


penetration


the


upper


canopy,


model


based


the


unadjusted


profile


provided


a nearly


perfect


(Figure


. Because


unadjusted


foliage


profile


sted


is clearly


above


incorrect


base


assumed


leader.),


that


this


was


largely


fortuitous.


Returning


discussion


heterogeneity


dense


in the


near


introduction,


canopy.


crowns


no crown


are


small


(equation


will


therefore


should


large


underestimate


computing


(Figure


light


biomass


unadjusted


a homogeneous


penetration.


profile


model


method


shifted


foliage


down


from


actual


position


served


compensate


underestimation


of light


penetration


unit


biomass.




Full Text

PAGE 1

02'(/,1* /,*+7 3(1(75$7,21 7+528*+ $ 6/$6+ 3,1( 3LQXV HOOLRWWLLf&$123< %\ .(9,1 6&27 0&.(/9(< $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7KLV ZRUN LV GHGLFDWHG WR P\ ZLIH 0DGHOHLQH DQG P\ WZR GDXJKWHUV $GULHQQH DQG 7DUD

PAGE 3

$&.12:/('*(0(176 0XFK RI WKH GDWD LQ WKLV GLVVHUWDWLRQ ZDV WKH UHVXOW RI WKH ZRUN RI PDQ\ &ROOHFWLRQ RI GDWD RQ & DVVLPLODWLRQ IROLDU ELRPDVV DQG OLJKW DEVRUSWLRQ E\ WKH FDQRS\ ZHUH FDUULHG RXW DV SDUW RI D IRXU\HDU VWXG\ RI VODVK SLQH IXQGHG E\ WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ ,Q SDUWLFXODU ZRXOG OLNH WR WKDQN +HQU\ *KRO] DQG 6KHUU\ 9RJHO IRU WKH DQDO\VLV RI ELRPDVV IOXFWXDWLRQ :HQGHOO &URSSHU IRU WKH DQDO\VLV RI DVVLPLODWLRQ GDWD DQG .DWKHULQH (ZHO IRU WKH ORQJ KRXUV RI FRQVXOWDWLRQ ZLWKRXW ZKLFK WKLV ZRUN ZRXOG QRW KDYH SURJUHVVHG ,I WKHUH LV JRRG VFLHQFH KHUH VKH VKRXOG UHFHLYH D JUHDW GHDO RI WKH FUHGLW LLL

PAGE 4

7$%/( 2) &217(176 b $&.12:/('*(0(176 LLL $%675$&7 9 ,1752'8&7,21 02'(/,1* +,(5$5&+,&$/ ())(&76 ,1 6/$6+ 3,1( &KDUDFWHULVWLFV RI 6ODVK 3LQH (YDOXDWLRQ RI 0RGHO $SSURDFKHV /LJKW 3HQHWUDWLRQ 0RGHOLQJ LQ 'LVFUHWH 6SDFH $ ',6&5(7(63$&( 02'(/ )25 6/$6+ 3,1( 'DWD $FTXLVLWLRQ 0RGHO 6WUXFWXUH 0RGHO 5HVXOWV 02'(/,1* 6($621$/ %(/2:&$123< /,*+7 3(1(75$7,21 02'(/,1* /,*+7 3(1(75$7,21 :,7+,1 7+( &$123< (9$/8$7,1* 7+( 02'(/ &21&/86,216 'LVFXVVLRQ RI /LJKW 3HQHWUDWLRQ 7KURXJK 6ODVK 3LQH )XWXUH 5HVHDUFK 1HHGV /,7(5$785( &,7(' $33(1',; &20387(5 &2'( )25 ',6&5(7(63$&( 02'(/,1* 2) /,*+7 3(1(75$7,21 %,2*5$3+,&$/ 6.(7&+ LY

PAGE 5

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 02'(/,1* /,*+7 3(1(75$7,21 7+528*+ $ 6/$6+ 3,1( 3LQXV HOOLRWWLLf &$123< %\ .HYLQ 6FRW 0F.HOYH\ $XJXVW &KDLUPDQ .DWKHULQH (ZHO 0DMRU 'HSDUWPHQW 6FKRRO RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ &RQLIHU FDQRSLHV DUH D KLHUDUFK\ RI GLVFUHWH REMHFWV FURZQV VKRRWV DQG QHHGOHV /LJKW SHQHWUDWLRQ WKURXJK WKLV KLHUDUFK\ LV FRQWUROOHG E\ WKH VL]H DUUDQJHPHQW DQG RSDFLW\ RI REMHFWV DW HDFK OHYHO ,I OLJKW SHQHWUDWLRQ SDWWHUQV DUH GRPLQDWHG E\ RUJDQL]DWLRQ DW WKH VKRRW RU WKH FURZQ OHYHO WKH UHODWLRQVKLS EHWZHHQ OLJKW SHQHWUDWLRQ DQG OHDI DUHD ZLOO EH LQGLUHFW 7KH FURZQV RI VODVK SLQH DUH FRQLF DQG WKH IROLDJH LV FOXPSHG $ GLVFUHWH VKRRWOHYHO JHRPHWULF PRGHO ZDV FUHDWHG WR GHWHUPLQH WKH LPSRUWDQFH RI WKLV VWUXFWXUH RQ OLJKW SHQHWUDWLRQ 6KRRWOHYHO SDUDPHWHUV ZHUH PHDVXUHG LQ WKH ODERUDWRU\ XVLQJ FRQWUROOHG OLJKW /LJKW SHQHWUDWLRQ GDWD ZDV JDWKHUHG IURP VHQVRU DUUD\V SODFHG DERYH DQG EHORZ WKH FDQRS\ 6HDVRQDO IROLDJH ELRPDVV SDWWHUQV IRU WKH VWDQG ZHUH GHULYHG IURP GHVWUXFWLYH VDPSOLQJ OLWWHUIDOO DQG QHHGOH HORQJDWLRQ UDWHV Y

PAGE 6

/LJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZDV VLPXODWHG IRU WKH IXOO UDQJH RI VXQ DQJOHV DQG D]LPXWKV $]LPXWK ZDV QRW IRXQG WR EH DQ LPSRUWDQW FRQWUROOLQJ SDUDPHWHU IRU OLJKW SHQHWUDWLRQ DQG PRGHO RXWSXW UHGXFHG WR D VLQJOH PXOWLSOH UHJUHVVLRQ HTXDWLRQ EDVHG RQ VXQ DQJOH DQG ELRPDVV SHU VKRRW 7KLV VLPSOLILHG PRGHO ZDV XVHG WR VLPXODWH OLJKW SHQHWUDWLRQ IRU GD\V 'DWD LQGLFDWHG WKDW OLJKW HPDQDWHG SULPDULO\ IURP WKH PLGVN\ RQ XQLIRUPO\ RYHUFDVW GD\V 'LIIXVH OLJKW ZDV VLPXODWHG E\ DVVXPLQJ WKDW DOO GLIIXVH OLJKW HPDQDWHG IURP GHJUHH DQJOHV RI HOHYDWLRQ 7KH PRGHO GXSOLFDWHG REVHUYHG SDWWHUQV RI VHDVRQDO YDULDWLRQ LQ EHORZFDQRS\ OLJKW SHQHWUDWLRQ DQG H[SODLQHG b RI WKH GDLO\ YDULDWLRQ LQ EHORZFDQRS\ OLJKW SHQHWUDWLRQ GXULQJ D PRQWK SHULRG FHQWHUHG RQ WKH ZLQWHU VROVWLFH /LJKW SHQHWUDWLRQ ZLWKLQ WKH FDQRS\ ZKHQ VLPXODWHG IRU SODQDU VXUIDFHV ZDV VLPLODU WR SDWWHUQV JHQHUDWHG E\ YHUWLFDOO\ VWUDWLILHG KRUL]RQWDOO\ KRPRJHQHRXV PRGHOV :KHQ OLJKW SHQHWUDWLRQ WR WKH VLPXODWHG VKRRW SRVLWLRQV ZDV PRGHOHG KRZHYHU WKH SDWWHUQV GLYHUJHG GXH WR VHOIVKDGH ZLWKLQ WKH FURZQ 7KH PRGHO DFFXUDWHO\ WUDFNHG WKH SDWWHUQ RI OLJKW SHQHWUDWLRQ RYHU WLPH DQG RQFH FDOLEUDWHG FRXOG EH XVHG WR SUHGLFW VHDVRQDO FKDQJHV LQ IROLDU ELRPDVV /HDI DUHD FRXOG QRW KRZHYHU EH DFFXUDWHO\ HVWLPDWHG GLUHFWO\ IURP OLJKW YL

PAGE 7

SHQHWUDWLRQ EHFDXVH WKH SURSRUWLRQ RI OLJKW LQWHUFHSWLRQ GXH WR ZRRG\ ELRPDVV ZDV XQNQRZQ YLL

PAGE 8

,1752'8&7,21 3KRWRV\QWKHVLV LV WKH RQO\ SDWKZD\ E\ ZKLFK VXQ HQHUJ\ FDQ HQWHU DQ HFRV\VWHP DQG EH VWRUHG LQ D PHWDEROLFDOO\ XWLOL]DEOH IRUP (FRV\VWHP PHWDEROLVP LV GHSHQGHQW XSRQ DQG OLPLWHG E\ SKRWRV\QWKHWLF SURGXFWLRQ 2EWDLQLQJ DQ DFFXUDWH HVWLPDWH RI SKRWRV\QWKHWLF LQSXW LV WKHUHIRUH HVVHQWLDO WR DQ\ DWWHPSW WR TXDQWLI\ HQHUJ\ RU FDUERQ IORZ WKURXJK DQ HFRV\VWHP 7KH DFWXDO PHDVXUHPHQW RI JURVV SULPDU\ SURGXFWLYLW\ *33f LV GLIILFXOW GXH WR SKRWRUHVSLUDWLRQ )RU PRVW SUDFWLFDO SXUSRVHV KRZHYHU WKH UDWH RI & DVVLPLODWLRQ ZKLFK LV PHDVXUDEOH SURYLGHV D JRRG DSSUR[LPDWLRQ RI FDUERQ LQSXW LQWR WKH V\VWHP 7KH LQWHQVLW\ RI SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f DW WKH OHDI VXUIDFH DFWV DV D GLUHFW FRQWURO RQ DVVLPLODWLRQ UDWHV %HFDXVH FDQRS\OHYHO DVVLPLODWLRQ LV WKH VXP RI WKH DVVLPLODWLRQ UDWHV RI DOO RI WKH OHDYHV OHDI DVVLPLODWLRQ FDQ EH VFDOHG XS WR WKH FDQRS\ OHYHO LI WKH TXDQWLW\ RI IROLDJH DQG WKH OLJKW SHQHWUDWLRQ SDWWHUQV WKURXJK WKH IROLDJH DUH NQRZQ

PAGE 9

2YHU WLPH IROLDJH SRVLWLRQ DQG OLJKW SHQHWUDWLRQ DUH FRXSOHG $ FKDQJH LQ IROLDJH GLVWULEXWLRQ ZLOO FDXVH D VKLIW LQ WKH OLJKW SHQHWUDWLRQ SDWWHUQ $ VKLIW LQ WKH OLJKW SHQHWUDWLRQ SDWWHUQ ZLOO LQ WXUQ FDXVH D FKDQJH LQ IROLDJH GLVWULEXWLRQ GXH WR JURZWK DQG DEVFLVVLRQ $FFXUDWH OLJKW SHQHWUDWLRQ IRUPXODWLRQV DUH WKHUHIRUH D QHFHVVDU\ FRPSRQHQW RI HLWKHU VWDWLF RU G\QDPLF SK\VLRORJLFDO PRGHOV /LIH LV GHILQHG E\ SDWWHUQ DQG SDWWHUQ H[LVWV DW DOO OHYHOV RI VFDOH LQ QDWXUH ,Q VFLHQFH LQ JHQHUDO fDQG b PRGHOLQJ LQ SDUWLFXODU SDWWHUQ LV RIWHQ LJQRUHG LQ IDYRU RI PHDQ YDOXHV 0RGHOV EDVHG RQ PHDQ YDOXHV DUH VLPSOHU DQG OHVV GDWD LQWHQVLYH EXW WKHUH DUH GDQJHUV LQ WKLV DSSURDFK LI UHODWLRQVKLSV EHWZHHQ YDULDEOHV DUH QRQOLQHDU ,Q OLJKW SHQHWUDWLRQ PRGHOLQJ WKURXJK IRUHVW FDQRSLHV IROLDJH LV JHQHUDOO\ DVVXPHG WR ODFN VSDWLDO SDWWHUQ DQG PHDQ YDOXHV IRU OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ DUH XVHG LQGLUHFWO\ WR GHULYH D YDULHW\ RI SDUDPHWHUV VXFK DV OHDI DUHD LQGH[ /$,f SKRWRV\QWKHVLV DQG HYDSRWUDQVSLUDWLRQ %HFDXVH DOO RI WKHVH SDUDPHWHUV DUH UHODWHG WR OLJKW SHQHWUDWLRQ WKURXJK QRQOLQHDU IXQFWLRQV KHWHURJHQHRXV IROLDJH GLVWULEXWLRQ FDQ DIIHFW WKH FDOFXODWHG YDOXH RI WKHVH SDUDPHWHUV 7KLV GLVVHUWDWLRQ H[DPLQHV WKH HIIHFW RI IROLDJH GLVWULEXWLRQ SDWWHUQV RQ OLJKW SHQHWUDWLRQ WKURXJK D \HDUROG VODVK SLQH 3LQXV HOOLRWWLLf SODQWDWLRQ LQ QRUWK )ORULGD

PAGE 10

7UDGLWLRQDO OLJKW SHQHWUDWLRQ PRGHOV DVVXPH WKDW IROLDJH GLVWULEXWLRQ LV KRPRJHQHRXV LQ VSDFH DQG WKDW OHDYHV DUH RSDTXH ,I WKLV DVVXPSWLRQ RI RSDFLW\ LV YDOLG WKH SUREDELOLW\ RI D EHDP RI OLJKW SHQHWUDWLQJ WKH FDQRS\ LV VLPSO\ WKH SUREDELOLW\ WKDW LW ZLOO SDVV WKURXJK WKH FDQRS\ ZLWKRXW FRQWDFWLQJ DQ\ RI WKH OHDYHV ,I WKH OHDYHV DUH UDQGRPO\ GLVWULEXWHG WKH QXPEHU RI FRQWDFWV IROORZV WKH 3RLVVRQ GLVWULEXWLRQ ZLWK 3QR FRQWDFW H[S8=f f ZKHUH 3QR FRQWDFW WKH SUREDELOLW\ WKDW D EHDP SDVVHV WKURXJK WKH FDQRS\ ZLWKRXW LQWHUVHFWLQJ DQ\ OHDYHV X WKH DYHUDJH OHDI DUHD DQG ] WKH OHQJWK RI WKH SDWK WKDW WKH EHDP PXVW WUDYHO 2NHU%ORP f )RU D ODUJH QXPEHU RI EHDPV 3QR FRQWDFWV EHFRPHV WKH DYHUDJH SURSRUWLRQ RI OLJKW EHDPV SHQHWUDWLQJ WR GHSWK ] WKURXJK WKH FDQRS\ 7KLV HTXDWLRQ JHQHUDOO\ NQRZQ DV %HHUnV ODZ LV RIWHQ H[SUHVVHG DV ,] H[SNX]f f

PAGE 11

ZKHUH ,] WKH SKRWRQ GHQVLW\ DW GHSWK ] ,4 WKH SKRWRQ GHQVLW\ DERYH WKH FDQRS\ DQG N WKH UDWLR SURMHFWHG WR PHDVXUHG OHDI DUHD 2NHU%ORP f DUJXHV WKDW LQ FRQLIHUV VKRRWV VKRXOG EH FRQVLGHUHG WR EH GLVFUHWH HQWLWLHV ,I WKH VKRRWV DUH UDQGRPO\ GLVWULEXWHG DQG RSDTXH WKHQ HTXDWLRQ LV YDOLG IRU VKRRWV DV ZHOO DV IRU QHHGOHV ,Q WKLV FDVH OLJKW SHQHWUDWLRQ WKURXJK VKRRWV ZLOO GLIIHU IURQL OLJKW SHQHWUDWLRQ WKURXJK QHHGOHV WR WKH H[WHQW WKDW WKH GHQVLW\ RI WKH VKRRWV GLIIHUV IURP WKH GHQVLW\ RI WKH QHHGOHV &DUWHU DQG 6PLWK f 7KLV FRQFHSW FDQ EH H[SDQGHG WR LQFOXGH DOO SRWHQWLDO GLVWULEXWLRQ SDWWHUQV DQG VFDOHV RI SDWWHUQLQJ &RQLIHU FDQRSLHV FRQVLVW RI D KLHUDUFK\ RI GLVFUHWH REMHFWV GLVWULEXWHG LQ VSDFH IURP LQGLYLGXDO FURZQV GRZQ WR RSDTXH SDUWLFOHV ZLWKLQ WKH QHHGOHV $W HDFK OHYHO WKH GLVWULEXWLRQ RI IROLDJH LV GLVFRQWLQXRXV $OO WKH IROLDJH LQ WKH FDQRS\ LV FRQWDLQHG ZLWKLQ LQGLYLGXDO FURZQV ZKLFK DUH JHQHUDOO\ FRQLF RU SDUDERORLG LQ IRUP :LWKLQ WKH FURZQV IROLDJH LV FRQILQHG WR WKH UHJLRQV DGMDFHQW WR DFWLYHO\ JURZLQJ PHULVWHPV VKRRWVf DQG ZLWKLQ WKHVH VKRRWV LV FRQILQHG WR YROXPHV GHILQHG E\ LQGLYLGXDO QHHGOHV 7KHVH OHYHOV RI KLHUDUFK\ DUH GLVFUHWH LQ VSDFH EHFDXVH HDFK GLYLGHV VSDFH LQWR GLVWLQFW YROXPHV

PAGE 12

LQ ZKLFK IROLDJH FDQ H[LVW DQG ZKHUH WKH SUREDELOLW\ RI H[LVWHQFH LV ]HUR )RU FURZQV WKH IROLDJH LV FRQILQHG WR D YROXPH GHILQHG E\ EUDQFK OHQJWK DQG LQFOLQDWLRQ 0RYLQJ GRZQ WKURXJK WKH KLHUDUFK\ HDFK OHYHO LV VSDWLDOO\ ERXQGHG E\ DOO RI WKH KLJKHU OHYHOV 6KRRW SRVLWLRQ LV FRQILQHG ZLWKLQ WKH FURZQ QHHGOH SRVLWLRQ ZLWKLQ WKH VKRRW )RU DQ\ GLVFUHWH DUUD\ RI Q REMHFWV LQ VSDFH WKH SURSRUWLRQ RI OLJKW SHQHWUDWLQJ WKURXJK WKH DUUD\ LV .DUUD\ 3 3$ 3. 3Q.Q f ZKHUH .DUUD\ WKH WRWDO OLJKW SHQHWUDWLQJ WKH DUUD\ 3 WKH SUREDELOLW\ WKDW QR REMHFW LV HQFRXQWHUHG 3L3 WKH SUREDELOLWLHV WKDW OQ REMHFWV DUH HQFRXQWHUHG DQG .[ .Q WKH SURSRUWLRQ RI OLJKW SHQHWUDWLQJ WKH REMHFWV JLYHQ WKDW OQ REMHFWV DUH HQFRXQWHUHG ,I LW LV DVVXPHG WKDW DOO REMHFWV DUH LGHQWLFDO WKHQ .REMHFW LV GHILQHG DV WKH DYHUDJH SURSRUWLRQ RI OLJKW SHQHWUDWLQJ WKURXJK DQ LQGLYLGXDO REMHFW (TXDWLRQ WKHQ VLPSOLILHV WR

PAGE 13

/ 3W. L RE M ,I .REMHFW LV VPDOO WKH REMHFWV DUH RSDTXHf WKHQ .DUUD\ LV DSSUR[LPDWHO\ HTXDO WR 3 3 LV HQWLUHO\ GHSHQGHQW RQ WKH GLVWULEXWLRQ DQG GHQVLW\ RI WKH REMHFWV DQG QRW RQ WKHLU LQWHUQDO VWUXFWXUH ,I 3 GRPLQDWHV WKHQ OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZLOO EH FRQWUROOHG E\ WKH GLVWULEXWLRQ SDWWHUQ RI REMHFWV LQ WKH FDQRS\ %HFDXVH FRQLIHU FDQRSLHV DUH FRPSRVHG RI D KLHUDUFK\ RI GLVFUHWH REMHFWV HTXDWLRQ FDQ EH DSSOLHG UHSHDWHGO\ DW HDFK OHYHO WR GHILQH RYHUDOO OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ FDQRS\ Q ( 3L L L FURZQ FURZQ FURZQ ( 3 L O L LVKRRW VKRRW VKRRW Q 3R 3L L O OHDI Q OHDI 3R ( 3LFHOO L O &HO :KHQ WKH FDQRS\ LV YLHZHG LQ WHUPV RI WKHVH HTXDWLRQV WKH RI KLHUDUFK\ RQ WKH RYHUDOO OLJKW SHQHWUDWLRQ WKURXJK WKH

PAGE 14

FDQRS\ DQG WKH SRWHQWLDO HUURUV LQYROYHG LQ DVVXPLQJ KRPRJHQHLW\ DW DQ\ OHYHO $Q\ OHYHO RI WKH KLHUDUFK\ LV KRPRJHQHRXV LI WKH GHQVLW\ RI WKH REMHFWV WKDW GHILQH WKH OHYHO LV HYHQO\ GLVWULEXWHG ,I WKH DYHUDJH GHQVLW\ XREMHFW LV RI LQWHJHU RUGHU HWFf WKHQ KRPRJHQHLW\ FDQ EH GHILQHG DV D VSHFLDO FDVH RI HTXDWLRQ DOO OLJKW EHDPV HQFRXQWHU DQ HTXDO QXPEHU RI REMHFWV $V D V\VWHP DSSURDFKHV KRPRJHQHLW\ DOO WKH WHUPV LQ WKH VHULHV H[FHSW WKH WHUP A GHILQLQJ WKH PHDQ QXPEHU RI HQFRXQWHUV YDQLVK 3PHDQ DSSURDFKHV DQG WKH V\VWHP FROODSVHV WR WKH QH[W ORZHU OHYHO LQ WKH KLHUDUFK\ ,I .RE-HFW LV DSSUR[LPDWHO\ HTXDO WR ]HUR DW DQ\ OHYHO WKHQ WKH HIIHFWV RI DOO ORZHU OHYHOV ZLOO YDQLVK 7KLV KDV WUDGLWLRQDOO\ EHHQ WKH DVVXPSWLRQ IRU OLJKW SHQHWUDWLRQ WKURXJK OHDYHV (TXDWLRQ WKHUHIRUH VLPSO\ UHSUHVHQWV D VSHFLDO FDVH .OHDI OHDYHV DUH UDQGRPO\ GLVWULEXWHG DQG KRPRJHQHLW\ LV DVVXPHG IRU DOO KLJKHU OHYHOV VKRRW DQG FURZQf RI WKH KLHUDUFK\ ,I SDWWHUQV H[LVW DERYH WKH OHDI OHYHO DQG DUH LJQRUHG WKHQ OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZLOO DOZD\V EH XQGHUHVWLPDWHG 7KH H[WHQW RI XQGHUHVWLPDWLRQ ZLOO SULPDULO\ EH D IXQFWLRQ RI WKH PDJQLWXGH RI WKH 3 WHUPV EHFDXVH ZLWK WKH DVVXPSWLRQ RI KRPRJHQHLW\ WKHVH WHUPV DUH DVVXPHG WR EH ]HUR %HFDXVH WKH 3 WHUPV FDQ HDVLO\

PAGE 15

GRPLQDWH WKHLU UHVSHFWLYH VHULHV HUURUV RI RPLVVLRQ FDQ EH ODUJH ,I IRU LQVWDQFH D VWDQG KDV D PHDVXUHG X N ] ZLWK UDQGRP GLVWULEXWLRQ DW WKH OHDI OHYHO DQG KRPRJHQHLW\ DW WKH VKRRW DQG FURZQ OHYHO WKH FDOFXODWHG OLJKW SHQHWUDWLRQ HTXDWLRQ f IRU YHUWLFDO OLJKW LV r,R ,I KRZHYHU WKH IROLDJH LV KHOG RQ UDQGRPO\ GLVWULEXWHG VKRRWV ZLWK DQ LQWHUQDO OHDI DUHD RI DQG D SURMHFWHG VKRRW DUHD RI WKHQ IURP HTXDWLRQ WKH DQWLFLSDWHG OLJKW SHQHWUDWLRQ LV .VKRRW r r f ,Q WKLV FDVH WKUHH WLPHV DV PXFK OLJKW LV H[SHFWHG WR SHQHWUDWH WKURXJK UDQGRP VKRRWV HYHQ WKRXJK WKH PHDQ SURMHFWHG OHDI DUHD LV FRQVWDQW LQ ERWK FDVHV 7KLV LV ODUJHO\ GXH WR WKH PDJQLWXGH RI WKH 34 WHUP f 3 HTXDO WR LQ WKH KRPRJHQHRXV FDVH LV RQO\ LQ WKH FDQRS\ FRPSRVHG RI UDQGRPO\ SODFHG VKRRWV ,Q D ILHOG RI FURZQV FURZQ VWUXFWXUH DQG SRVLWLRQ ZLOO GRPLQDWH OLJKW SHQHWUDWLRQ LI WKH FURZQV DUH ZLGHO\ VSDFHG DQG 3QR FURZQ ZLOO DSSURDFK DV WKH UDWLR RI VSDFH EHWZHHQ FURZQV WR FURZQ GLDPHWHU EHFRPHV ODUJH )RU WKLV UHDVRQ GLVFUHWH FURZQ PRGHOV KDYH EHHQ XVHG WR VLPXODWH URZ FURSV DQG RUFKDUGV 0DQQ HW DO 1RUPDQ DQG :HOOHV 5RRN HW DO :KLWILHOG &RKHQ DQG )XFKV f )RU D ILHOG RI FRQLF FURZQV WKLV UDWLR LV PLQLPL]HG DW WKH

PAGE 16

SRLQW RI FURZQ FORVXUH DQG LQFUHDVHV ZLWK KHLJKW 3QR FURZQ WKHUHIRUH VKLIWV ZLWK KHLJKW )RU YHUWLFDO OLJKW HQWHULQJ DQ LGHDOL]HG FORVHG VWDQG FRPSRVHG RI XQLIRUP FRQLF FURZQV 3QR FURZQ HTXDOV Q DW WKH SRLQW RI FURZQ FORVXUH DQG FRQYHUJHV UDSLGO\ RQ ZLWK LQFUHDVLQJ KHLJKW )LJXUH f ,Q VSHFLHV ZLWK FRQLF RU SDUDEROLF FURZQV OLJKW SHQHWUDWLRQ SDWWHUQV LQ WKH XSSHU FURZQ PD\ WKHUHIRUH EH GRPLQDWHG E\ FURZQ IRUP HYHQ LI KRPRJHQHLW\ LV D UHDVRQDEOH DVVXPSWLRQ IRU OLJKW SHQHWUDWLRQ WR WKH IRUHVW IORRU /HDI DUHD LV DQ LPSRUWDQW SDUDPHWHU IRU GHWHUPLQLQJ WKH PDJQLWXGH RI FDQRS\ OHYHO SK\VLRORJLFDO SURFHVVHV EXW LW LV GLIILFXOW WR PHDVXUH GLUHFWO\ ,W LV FRPPRQ SUDFWLFH WR VDPSOH OLJKW DERYH DQG EHORZ WKH FDQRS\ DQG DVVXPLQJ HTXDWLRQ WR EH YDOLG WR FRPSXWH OHDI DUHD /DQJ DQG
PAGE 17

352%$%,/, ',67$1&( )520 75(( 723 0f )LJXUH 7KH SUREDELOLW\ WKDW YHUWLFDO OLJKW ZLOO QRW LQWHUVHFW D FURZQ DV D IXQFWLRQ RI KHLJKW $Q LGHDOL]HG FRQLF FURZQ IRUP LV DVVXPHG ZLWK [ VSDFLQJ DQG D FURZQ KHLJKW RI P

PAGE 18

GLVWULEXWLRQ DQG VKDSH RI WKH FOXVWHUV DQG ZLOO EH RQO\ LQGLUHFWO\ UHODWHG WR OHDI DUHD ,Q JHQHUDO WKH HIIHFWV RI YDULRXV VFDOHV RI SDWWHUQLQJ RQ OLJKW SHQHWUDWLRQ DUH GLIILFXOW WR VHSDUDWH DW WKH IRUHVW IORRU DQG N PD\ KDYH QR FOHDU JHRPHWULFDO LQWHUSUHWDWLRQ 7KLV GRHV QRW QHFHVVDULO\ PHDQ WKDW %HHUnV ODZ GRHVQnW nZRUNn IRU WKH VWDQG VLPSO\ WKDW WKHUH PD\ EH XQFHUWDLQW\ DV WR ZKLFK OHYHO RI KLHUDUFK\ LV FRQWUROOLQJ LWV SDUDPHWHUV 0LVWDNHV LQ XQGHUVWDQGLQJ WKHVH KLHUDUFKLFDO HIIHFWV FDQ OHDG WR D YDULHW\ RI HUURUV ZKHQ XVLQJ LQYHUVLRQ WHFKQLTXHV ,I IRU LQVWDQFH LQ WKH H[DPSOH OLVWHG DERYH HTXDWLRQ f WKH OHDI DUHD ZDV XQNQRZQ DQG WKH N ZDV DVVXPHG WR EH WKH FDOFXODWHG OHDI DUHD IRU WKH VWDQG EDVHG RQ OLJKW SHQHWUDWLRQ WR WKH IRUHVW IORRU ZRXOG EH OQf f UDWKHU WKDQ WKH DFWXDO YDOXH RI 3UHGLFWLRQV EDVHG RQ LQYHUVLRQ DUH SURQH WR VLPLODU HUURUV 7KH HIIHFWV RI QHZ IROLDJH JURZWK RQ OLJKW SHQHWUDWLRQ IRU LQVWDQFH GHSHQG RQ WKH LPSDFW RI QHZ OHDI SURGXFWLRQ RQ WKH 3 WHUPV DW HDFK OHYHO LQ WKH KLHUDUFK\ ,Q D FOXVWHUHG V\VWHP LI QHZ IROLDJH HQWHUV WKH V\VWHP DW ORFDWLRQV VSDWLDOO\ LQGHSHQGHQW RI WKH H[LVWLQJ IROLDJH DQG

PAGE 19

LI LW HQWHUV LQ WKH IRUP RI QHZ VKRRWV RI FRQVWDQW GLPHQVLRQ WKHQ VKRRW DUHD ZLOO EH UHODWHG WR OHDI DUHD WKURXJK D FRQVWDQW ,I FOXVWHU ORFDWLRQ LV UDQGRP D VOLJKWO\ PRGLILHG %HHUnV ODZ ZLOO DSSUR[LPDWH OLJKW SHQHWUDWLRQ IRU DOO OHDI GHQVLWLHV ,] H[S NX]Tf ZKHUH T D FOXVWHULQJ FRQVWDQW ZLWK WKH JHRPHWULFDO LQWHUSUHWDWLRQ RI WKH UDWLR RI PHDVXUHG OHDI DUHD WR SURMHFWHG FOXVWHU DUHD &DPSEHOO DQG 1RUPDQ f 6SDWLDO LQGHSHQGHQFH RI QHZ IROLDJH LQ FRQLIHUV LV KRZHYHU ELRORJLFDOO\ LPSUREDEOH %HFDXVH ERWK EUDQFK DQG IROLDJH SURGXFWLRQ RFFXU H[FOXVLYHO\ DW WKH EUDQFK WLSV QHZ IROLDJH ZLOO HQWHU WKH V\VWHP DW VSDWLDO ORFDWLRQV GHWHUPLQHG ODUJHO\ E\ WKH SRVLWLRQ RI WKH H[LVWLQJ IROLDJH 7KLV PHDQV WKDW WKH SRVLWLRQ RI WKH QHZ IROLDJH LQ VSDFH ZLOO EH FRQGLWLRQHG E\ WKH SRVLWLRQ RI WKH H[LVWLQJ IROLDJH DQG FRQGLWLRQDO SUREDELOLWLHV ZLOO GLVWRUW WKH 3RLVVRQ GLVWULEXWLRQ ,I FRQVWDQW VKRRW GHQVLW\ LV DVVXPHG LQFUHDVHV LQ VKRRW VL]H ZLOO EH WUDQVODWHG LQWR FKDQJHV LQ SURMHFWHG VKRRW DUHD EDVHG RQ WKH UDWLR RI YROXPH WR SURMHFWHG DUHD IRU WKH VKRRW ,I IRU H[DPSOH LW LV

PAGE 20

DVVXPHG WKDW VKRRWV DUH VSKHULFDO LQ IRUP WKHQ WKH UDWLR RI SURMHFWHG FOXVWHU DUHD WR SURMHFWHG OHDI DUHD ZLOO EH QUQU U f ZKHUH U WKH UDGLXV RI WKH VKRRW 2WKHU JHRPHWULFDO IRUPV ZLOO KDYH PRUH FRPSOH[ UHODWLRQVKLSV DQG SURMHFWHG DUHD ZLOO FKDQJH ZLWK VXQ DQJOH DQG D]LPXWK EXW UHJDUGOHVV RI WKH VKDSH RI WKH VKRRW RU FURZQ HTXDWLRQ FDQQRW EH FRQVLGHUHG WR EH D YDOLG PRGHO IRU IROLDJH JURZWK DVVRFLDWHG ZLWK VKRRW HORQJDWLRQ RU HQODUJHPHQW 6SDWLDO KHWHURJHQHLW\ RI IROLDJH FDQ LQIOXHQFH ERWK WKH TXDQWLW\ DQG SDWWHUQ RI OLJKW SHQHWUDWLQJ WKH FDQRS\ %HFDXVH FOXVWHULQJ FDQ RFFXU DW WKH OHYHO RI WKH FURZQ VKRRW RU OHDI LW LV QHFHVVDU\ WR GHWHUPLQH WKH H[WHQW WR ZKLFK KHWHURJHQHLW\ DW HDFK RI WKHVH OHYHOV DIIHFWV OLJKW SHQHWUDWLRQ EHIRUH PHDVXUHG OLJKW EHORZ WKH FDQRS\ FDQ EH UHOLDEO\ XVHG WR HVWLPDWH OHDI DUHD

PAGE 21

02'(/,1* +,(5$5&+,&$/ ())(&76 ,1 6/$6+ 3,1( &KDUDFWHULVWLFV RI 6ODVK 3LQH ,Q VODVK SLQH WKH FDUERQ DVVLPLODWLRQ UDWH RI LQGLYLGXDO QHHGOHV LV ODUJHO\ GHSHQGHQW RQ WKH OLJKW WKDW WKRVH QHHGOHV UHFHLYH 1HDUO\ b RI WKH PHDVXUHG YDULDQFH b RI & DVVLPLODWLRQ LQ QHHGOHV FDQ EH DFFRXQWHG IRU E\ UHJUHVVLQJ DVVLPLODWLRQ DJDLQVW SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f )LJXUH f 7KH FURZQV RI VODVK SLQH DUH FRQLF DQG WKH GLVWULEXWLRQ RI IROLDJH LV VSDWLDOO\ OLPLWHG WR WKH YROXPH GHILQHG E\ WKH FURZQ IRUP ZKLFK LQ WXUQ LV FRQWUROOHG E\ EUDQFK OHQJWK )LJXUH f 7KH FDQRS\ WKHUHIRUH LV D FROOHFWLRQ RI FRQLF XQLWV HDFK KDYLQJ LWV RZQ LQGLYLGXDO QHHGOH GLVWULEXWLRQ 6ODVK SLQHV DQG RWKHU SLQHVf SURGXFH QHHGOHV H[FOXVLYHO\ ZLWKLQ WKH DUHD RI EUDQFK RU VWHP ZRRG FUHDWHG GXULQJ WKH FXUUHQW VHDVRQnV JURZWK ,Q VODVK SLQH QHHGOH UHWHQWLRQ LV OHVV WKDQ \HDUV *KRO] DQG )LVKHU f DQG IRU WKLV UHDVRQ QHHGOHV DUH UHVWULFWHG WR WKH EUDQFK DUHD LPPHGLDWHO\ DGMDFHQW WR WKH DFWLYHO\ JURZLQJ DSLFDO PHULVWHPV 7KLV SDWWHUQ RI JURZWK FUHDWHV D QRQ

PAGE 22

)LJXUH 7KH HIIHFW RI OLJKW RQ QHHGOH OHYHO DVVLPLODWLRQ UDWHV (DFK SRLQW UHSUHVHQWV WKH PHDQ RI UHDGLQJV : &URSSHU SHUVRQDO FRPPXQLFDWLRQf Wf§ XL

PAGE 23

%5$1&+ /(1*7+ )LJXUH 9(57,&$/ 6(*0(17 0f 'LVWULEXWLRQ RI PHDQ EUDQFK OHQJWK VWDQGDUG GHYLDWLRQV 6'ffWKURXJK WKH FDQRS\ Q f

PAGE 24

IROLDWHG UHJLRQ VXUURXQGLQJ WKH VWHP )LJXUH f 7KH IROLDJH GLVWULEXWLRQ LQ D VODVK SLQH VWDQG LV WKHUHIRUH VSDWLDOO\ KHWHURJHQHRXV 7KH SUHYLRXV GLVFXVVLRQ RI WKH LPSDFW RI KHWHURJHQHLW\ RQ OLJKW SHQHWUDWLRQ VXJJHVWV WKDW OLJKW SHQHWUDWLRQ WKURXJK D VODVK SLQH FDQRS\ VKRXOG EH LQIOXHQFHG E\ WKH FDQRS\ VWUXFWXUH *LYHQ WKH FURZQ IRUP DQG SDWWHUQV RI IROLDJH JURZWK VHYHUDO K\SRWKHVHV FDQ EH SRVHG +,/LJKW SHQHWUDWLRQ WKURXJK D VODVK SLQH FDQRS\ GLIIHUV LQ ERWK SDWWHUQ DQG TXDQWLW\ IURP OLJKW SHQHWUDWLRQ WKURXJK D KRPRJHQHRXV FDQRS\ +)RU FDQRSLHV PDGH XS RI FURZQV RI GLVFUHWH GLPHQVLRQV GLIIHUHQFHV LQ VSDFLQJ SDWWHUQ ZLOO KDYH D VWURQJHU LQIOXHQFH RQ OLJKW WKDQ LV SUHGLFWHG IRU KRPRJHQHRXV FDQRSLHV +,I WKH FURZQV DUH DUUD\HG LQ URZV WKH RULHQWDWLRQ RI WKH URZV ZLOO KDYH D VLJQLILFDQW LPSDFW RQ OLJKW SHQHWUDWLRQ DQG RQ WKH WLPLQJ RI PD[LPXP SHQHWUDWLRQ WKURXJK WKH VWDQG (YDOXDWLRQ RI 0RGHO $SSURDFKHV 7R H[SORUH WKH HIIHFWV RI YDULRXV OHYHOV RI KHWHURJHQHLW\ RQ OLJKW SHQHWUDWLRQ LQ VODVK SLQH LW LV QHFHVVDU\ WR FUHDWH D PRGHO WKDW FDQ VLPXODWH OLJKW

PAGE 25

%5$1&+ /(1*7+ 9(57,&$/ 6(*0(17 0f )LJXUH 'LVWULEXWLRQ RI DYHUDJH WRWDO DQG QRQIROLDWHG EUDQFK OHQJWK WKURXJK WKH FDQRS\ 1RQIROLDWHG EUDQFK OHQJWK LV WKH OHQJWK RI WKH SULPDU\ OLPE PHDVXUHG IURP WKH VWHP WR WKH ILUVW IROLDWHG VHFRQGDU\ OLPE

PAGE 26

SHQHWUDWLRQ WKURXJK D FDQRS\ ZLWK GHWDLO DW ERWK WKH FURZQ DQG WKH FOXVWHU OHYHO ,Q WKH PRVW FRPPRQ V\VWHP IRU PRGHOLQJ GLVFRQWLQXRXV FDQRSLHV VXEFDQRSLHV DUH UHSUHVHQWHG DV GLVFUHWH JHRPHWULF VROLGV ,Q WKLV W\SH RI PRGHOLQJ WKH VXEFDQRSLHV DUH XVXDOO\ GHILQHG DW WKH OHYHO RI LQGLYLGXDO SODQWV 0DQQ HW DO 1RUPDQ DQG :HOOHV 5RRN HW DO :KLWILHOG *UDFH f RU VRPHWLPHV KHGJHURZV &KDUOHV(GZDUGV DQG 7KRUSH &RKHQ DQG )XFKV f ,Q WKLV FDVH DOO WKH IROLDJH RI WKH SODQW RU KHGJHURZ LV DVVXPHG WR EH FRQILQHG ZLWKLQ WKH YROXPH RI WKH VROLG DQG HTXDWLRQ LV JHQHUDOO\ DVVXPHG WR EH YDOLG ZLWKLQ WKLV ERXQGDU\ 7KLV W\SH RI PRGHOLQJ LV FDOOHG HQYHORSH PRGHOLQJ EHFDXVH WKH OHDI DUHD RI HDFK VXEFDQRS\ LV VWULFWO\ FRQILQHG WR DQ nHQYHORSHn JHQHUDOO\ GHILQHG DV DQ HOOLSVRLG RI URWDWLRQ (QYHORSH PRGHOLQJ LV YHU\ IOH[LEOH EHFDXVH HDFK HQYHORSH FDQ EH JLYHQ LQGLYLGXDO WUDQVPLVVLRQ SURSHUWLHV DQG HQYHORSHV FDQ HYHQ EH QHVWHG LQVLGH RQH DQRWKHU WR VLPXODWH IROLDWHG DQG QRQIROLDWHG SRUWLRQV RI D SODQW 1RUPDQ DQG :HOOHV f ,Q DQ DUUD\ RI FDQRSLHV WKH OLJKW UHDFKLQJ D JLYHQ SRLQW FDQ EH GHVFULEHG DV ,L ,4>H[SN]frH[SN]fr H[SNQ]Qf@ f

PAGE 27

ZKHUH NNQ WKH H[WLQFWLRQ FRHIILFLHQWV IRU VXEFDQRSLHV Q DQG ]]Q WKH FKRUGDO GLVWDQFHV GHILQHG E\ D EHDP RI OLJKW DV LW SDVVHV WKURXJK WKH DUUD\ IURP D SRLQW VRXUFH WR D WDUJHW /LJKW SHQHWUDWLRQ WR D WDUJHW VXUIDFH LV FRPSXWHG E\ FDOFXODWLQJ HTXDWLRQ UHSHDWHGO\ IRU D VHULHV RI UDQGRP ORFDWLRQV RQ WKH VXUIDFH DQG JHQHUDWLQJ D VWDWLVWLFDO DYHUDJH 1RUPDQ DQG :HOOHV f 7R FRPSXWH FKRUGDO GLVWDQFHV HIILFLHQWO\ WKH VROLGV PXVW EH JHRPHWULFDOO\ VLPSOH $V\PPHWULHV LQ FURZQ IRUP WKHUHIRUH SUHVHQW HQRUPRXV FRPSXWDWLRQDO GLIILFXOWLHV 7KLV VLPSOLFLW\ RI IRUP LQ WXUQ OHDGV WR D YDULHW\ RI PRGHO DUWLILFHV WKDW PD\ EH DV VHYHUH DV WKRVH RI WKH VLPSOH PRGHOV WKDW WKH\ DUH GHVLJQHG WR UHSODFH 9HUWLFDO GHQVLW\ SDWWHUQV DUH HDV\ WR PRGHO LQ D KRPRJHQHRXV FDQRS\ EXW DUH YHU\ GLIILFXOW WR PRGHO XVLQJ HQYHORSHV %HFDXVH FRQVWDQW IROLDJH GHQVLW\ LV JHQHUDOO\ DVVXPHG WKURXJKRXW HDFK HQYHORSH WKH YHUWLFDO ELRPDVV SURILOH RI D FURZQ LV WKH FURVVVHFWLRQDO DUHD RI WKH HQYHORSH DV D IXQFWLRQ RI KHLJKW )RU PDQ\ SODQWV VXFK DV VODVK SLQH IROLDJH LV FRQFHQWUDWHG WRZDUG WKH WRS DQG WKH RXWVLGH RI WKH FURZQ YROXPH ,I WKLV LV WKH FDVH D FRQVWDQW GHQVLW\ HQYHORSH ZLOO EH DUWLILFLDOO\ GHQVH ZKHQ YLHZHG DORQJ LWV

PAGE 28

ORQJLWXGLQDO D[LV *HQHUDOO\ SODQWV DUH JUHDWHU LQ KHLJKW WKDQ LQ ZLGWKf 7R DYRLG WKLV DUWLILFH LW LV QHFHVVDU\ WR QHVW HQYHORSHV ZLWK ORZHU GHQVLWLHV ZLWKLQ HDFK VXEFDQRS\ HQYHORSH 7KLV GRHV QRW KRZHYHU UHDOO\ UHPRYH WKH SUREOHP 1RW RQO\ GRHV QHVWLQJ UHSUHVHQW DQRWKHU OHYHO RI PRGHO FRPSOH[LW\ EXW WKH SURSHU SRVLWLRQ DQG GHQVLW\ RI WKH LQWHUQDO HQYHORSHV PXVW EH EDVHG QRW RQ WKHLU DFWXDO DWWULEXWHV EXW UDWKHU RQ WKH ZD\ LQ ZKLFK WKH\ DGMXVW WKH FURVVVHFWLRQDO DUHD RI WKH RXWHU HQYHORSH (QYHORSH PRGHOLQJ FDQ EH XVHG WR PRGHO FDQRSLHV DW ORZHU KLHUDUFKLFDO OHYHOV VXFK DV LQGLYLGXDO VKRRWV 0DQ\ RI WKH SUREOHPV DVVRFLDWHG ZLWK UHSUHVHQWLQJ FURZQV DV HOOLSVRLGV RI URWDWLRQ YDQLVK ZKHQ PRGHOLQJ LV GRQH DW WKH VKRRW OHYHO 7KH HIIHFWV RI GXPSLQHVV RQ OLJKW SHQHWUDWLRQ FDQ EH PRGHOHG DQG FURZQ IRUP IROLDJH SODFHPHQW DQG WUDQVPLVVLRQ SURSHUWLHV SHU VKRRW FDQ EH EDVHG RQ GDWD $VVXPSWLRQV RI XQLIRUPLW\ LQ VL]H DQG GHQVLW\ PD\ DOVR EH PRUH YDOLG DW WKH VKRRW OHYHO 6KRRW OHYHO PRGHOLQJ DOVR KDV WKH SUDFWLFDO FRQVHTXHQFH RI FRQFHQWUDWLQJ HPSKDVLV RQ D XQLW RI YHJHWDWLRQ WKDW KDV SURSHUWLHV WKDW DUH PHDVXUDEOH HLWKHU LQ D ODERUDWRU\ RU LQ D FKDPEHU LQ WKH ILHOG $ JUHDW GHDO RI FXUUHQW SK\VLRORJLFDO ZRUN LV GRQH DW WKH OHYHO RI WKH EUDQFK VKRRW DQG HYHQ WKH QHHGOH WKH DVVLPLODWLRQ GDWD SUHVHQWHG KHUH IRU LQVWDQFHf ,I WKLV

PAGE 29

ZRUN LV WR EH HIIHFWLYHO\ VFDOHG XS WR WKH FURZQ DQG WR WKH VWDQG OHYHO LW LV QHFHVVDU\ WR LQWHJUDWH WKHVH SURFHVVHV WKURXJKRXW WKH FDQRS\ ,GHDOO\ OLJKW SHQHWUDWLRQ VKRXOG DOVR EH PRGHOHG IRU WKH VDPH XQLW RQ ZKLFK WKH SK\VLRORJLFDO PHDVXUHPHQWV DUH WDNLQJ SODFH 0RGHOLQJ D VWDQG RI VODVK SLQH DW WKH VKRRW OHYHO KRZHYHU UHTXLUHV GHILQLWLRQ RI WKH OLJKW UHJLPH DW VHYHUDO KXQGUHG WDUJHW VXUIDFHV SHU WUHH JHQHUDWHG E\ OLJKW SHQHWUDWLRQ WKURXJK WKH VHYHUDO WKRXVDQG SRWHQWLDO VKDGH b REMHFWV WKDW PDNH XS WKH VXUURXQGLQJ VWDQG )XUWKHUPRUH VHYHUDO UXQV ZLOO EH QHHGHG WR DYRLG DUWLILFHV GXH WR SDUWLFXODU SDWWHUQV RI VKRRW SODFHPHQW 7KH SUREOHPV DVVRFLDWHG ZLWK XVLQJ DQ HQYHORSH PRGHO DW WKH VKRRW OHYHO OLH SULPDULO\ LQ FRPSXWDWLRQDO H[SHQVH 7KH PRGHOLQJ FRQFHSWV GLVFXVVHG DERYH FRPSXWH OLJKW SHQHWUDWLRQ WKURXJK D FDQRS\ IRU OLJKW HPDQDWLQJ IURP D VLQJOH VRXUFH 'LIIXVH UDGLDWLRQ HPDQDWHV VLPXOWDQHRXVO\ IURP DOO SRLQWV LQ WKH VN\ GRPH &RPSXWDWLRQ RI GLIIXVH UDGLDWLRQ LQYROYHV LQWHJUDWLQJ DOO WKH OLJKW IURP WKH HQWLUH VN\ Tf H[SNG 6eff VLQfFRVf GG f Jef VLQfFRVf GG 1RUPDQ DQG :HOOHV f 3;<=f

PAGE 30

ZKHUH 3 WKH SUREDELOLW\ WKDW GLIIXVH OLJKW SHQHWUDWHV WR J D SRLQW ;<=f WKH OLJKW LQWHQVLW\ IXQFWLRQ DQG DQG A DUH WKH DQJOH RI HOHYDWLRQ DQG D]LPXWK UHVSHFWLYHO\ G WKH GHQVLW\ RI IROLDJH DQG 6 WKH VXP RI WKH ] GLVWDQFHV WKDW D OLJKW EHDP ZRXOG SDVV WKURXJK LI LWV SRLQW RI RULJLQ OD\ DORQJ D YHFWRU VWDUWLQJ DW WKH SRLQW ;<=f ZLWK D GLUHFWLRQ GHILQHG E\ DQG e 1XPHULFDOO\ WKLV HTXDWLRQ LV GLIIHUHQFHG LQWR D VHULHV RI GLUHFW OLJKW FRPSXWDWLRQV IRU D JULG RI VN\ ORFDWLRQV &RPSXWLQJ GLIIXVH UDGLDWLRQ SDWWHUQV IRU D VLQJOH SRLQW ZLWK DQ LQWHJUDWLRQ VWHS RI GHJUHHV WKHUHIRUH LQYROYHV FRPSXWLQJ GLUHFW OLJKW UHDGLQJV /LJKW 3HQHWUDWLRQ 0RGHOLQJ LQ 'LVFUHWH 6SDFH 0RVW RI WKH FRPSXWDWLRQDO EXUGHQ LQ HQYHORSH PRGHOLQJ OLHV LQ WKH FDOFXODWLRQ RI FKRUGDO GLVWDQFHV WKURXJK HDFK VXEFDQRS\ ,I KRZHYHU WKH VXEFDQRSLHV DUH VPDOO DQG XQLIRUP LQ GLPHQVLRQ DQG OLJKW SHQHWUDWLRQ SURSHUWLHV WKHQ HDFK VXEFDQRS\ FDQ EH WUHDWHG DV LI LW ZHUH SDUWLFXODWH LQ QDWXUH ,Q WKLV FDVH LW LV HQRXJK WR NQRZ ZKHWKHU WKH VXE

PAGE 31

FDQRS\ OLHV LQ WKH SDWK RI D EHDP ,I LW GRHV WKHQ LW ZLOO UHPRYH D FHUWDLQ SURSRUWLRQ RI WKH OLJKW 7R FDOFXODWH WKH SUHVHQFH RU DEVHQFH RI D VSKHULFDO VXEFDQRS\ LQ WKH SDWK RI D EHDP RI OLJKW D YHFWRU LV GUDZQ QRUPDO WR WKH EHDP SDWK IURP WKH EHDP WR WKH FHQWHU RI WKH VXEFDQRS\ ,I WKH PDJQLWXGH RI WKH YHFWRU LV OHVV WKDQ WKH UDGLXV RI WKH VXEFDQRS\ WKH EHDP ZLOO SDVV WKURXJK WKH VXEFDQRS\ RWKHUZLVH LW ZLOO QRW 7KLV FDOFXODWLRQ LV PXFK VLPSOHU WKDQ FRPSXWDWLRQ RI D FKRUG ,W LV WKH ILUVW VWHS LQ FRPSXWLQJ D FKRUGf 7KH FDOFXODWLRQ FDQ KRZHYHU EH IXUWKHU VLPSOLILHG LI WKH FRRUGLQDWH V\VWHP LV LWVHOI DOLJQHG QRUPDO WR WKH EHDP SDWK ZLWK WKH WDUJHW SRLQW DW WKH RULJLQ DQG VFDOHG VR WKDW RQH XQLW HTXDOV WKH UDGLXV RI WKH VXEFDQRS\ 7KH SUHVHQFH RU DEVHQFH RI WKH VXEFDQRS\ LQ WKH EHDP SDWK FDQ WKHQ EH GHWHUPLQHG E\ URXQGLQJ WKH FHQWHU RI WKH VXEFDQRS\ WR WKH QHDUHVW LQWHJHU QRGH ,I DIWHU URXQGLQJ WKH FHQWHU RI WKH VXEFDQRS\ KDV FRRUGLQDWHV RI f LQ WKH GLPHQVLRQV QRUPDO WR WKH EHDP SDWK DQG D PDJQLWXGH JUHDWHU WKDQ LQ WKH GLPHQVLRQ SDUDOOHO WR WKH EHDP WKH VXEn FDQRS\ ZLOO LQWHUVHFW WKH EHDP ,I DOO RI WKH VXEFDQRSLHV r r DUH WKH VDPH VL]H WKHQ WKH HQWLUH V\VWHP FDQ EH VFDOHG DQG URXQGHG VLPXOWDQHRXVO\ DQG DOO RI WKH VXEFDQRSLHV WKDW LQWHUVHFW WKH EHDP FDQ EH ORFDWHG DW WKH VDPH WLPH ,Q WKLV DSSURDFK WKH VXEFDQRSLHV DUH SRVLWLRQHG LQ FRQWLQXRXV

PAGE 32

VSDFH EXW OLJKW SHQHWUDWLRQ LV FRPSXWHG LQ GLVFUHWH LQWHJHU VSDFH ,I WKH WDUJHW VXUIDFH LWVHOI LV FRPSRVHG RI D ILHOG RI HTXDOVL]HG VXEFDQRS\ XQLWV WKHQ WKH HQWLUH V\VWHP LQFOXGLQJ WKH SRLQWV UHSUHVHQWLQJ WKH WDUJHW FDQ VLPXOWDQHRXVO\ EH VFDOHG DQG URXQGHG 7KH OLJKW SHQHWUDWLRQ WR WKH HQWLUH WDUJHW FDQ WKHQ EH GHWHUPLQHG WKURXJK D VHULHV RI URZ VHDUFKHV ,Q GLVFUHWH VSDFH VXEFDQRSLHV ORVH H[SOLFLW GLPHQVLRQ 7KH GLPHQVLRQ LV RQO\ UHIOHFWHG LQGLUHFWO\ LQ WKH VFDOLQJ IDFWRU 6XEFDQRSLHV EHFRPH SRLQWV ZLWK OLJKW SHQHWUDWLRQ SURSHUWLHV GHILQHG DV WKH DYHUDJH OLJKW SHQHWUDWLRQ SHU XQLW DUHD RI WKH VXEFDQRS\ 7KH WDUJHWV DQG WKHUHIRUH WKH OLJKW EHDPVf DUH DOVR UHVWULFWHG WR LQWHJHU VSDFH DQG OLJKW SHQHWUDWLRQ WR D WDUJHW SRLQW UHSUHVHQWV WKH DYHUDJH OLJKW SHQHWUDWLRQ WR D JULGVL]HG DUHD VXUURXQGLQJ WKH WDUJHW 7KLV GLVFUHWH DSSUR[LPDWLRQ NHHSV WKH IXQGDPHQWDO ORJLF RI WKH HQYHORSH PRGHO PRGHOLQJ WKH V\VWHP DV D VHULHV RI VXEFDQRSLHV EXW DOORZV LWV DSSOLFDWLRQ RQ D PXFK ILQHU VFDOH RU RQ VORZHU FRPSXWHUV GXH WR WKH GHFUHDVH LQ FRPSXWDWLRQDO EXUGHQ 8VLQJ WKLV WHFKQLTXH PRGHOLQJ RQ D FOXVWHU OHYHO FDQ EH DFFRPSOLVKHG RQ PLFURFRPSXWHUV ,Q GLVFUHWH VSDFH D KRPRJHQHRXV PHGLXP RI XQLW WKLFNQHVV LV UHSUHVHQWHG DV D SODQH RI ILOOHG QRGHV $V WKLV V\VWHP LV URWDWHG LQ UHODWLRQ WR D OLJKW VRXUFH WKH

PAGE 33

GLVFUHWH QDWXUH RI VSDFH FRQILQHV WKH QRGHV WR LQWHJHU ORFDWLRQV FDXVLQJ UDVWHU HIIHFWV VLPLODU WR WKRVH VHHQ LQ ORZUHVROXWLRQ FRPSXWHU JUDSKLFV $ SODQH GLDJRQDO WR WKH OLJKW VRXUFH ZLOO EH UHSUHVHQWHG LQ WKH PRGHO DV D VHULHV RI VPDOOHU SODQHV RIIVHW IURP RQH DQRWKHU E\ RQH QRGH ,I LW LV DVVXPHG WKDW D %HHUnV ODZ PRGHO LV DSSURSULDWH IRU WKH FRQWLQXRXV V\VWHP WKHQ DV WKH UHODWLYH VXQ DQJOH VKLIWV WKH OLJKW SHQHWUDWLRQ WKURXJK WKH V\VWHP ZLOO GHFUHDVH DV D IXQFWLRQ RI WKH UHODWLYH DQJOH ,r ,* H[SNG]VLQ*f f ZKHUH WKH UHODWLYH DQJOH EHWZHHQ WKH SODQH DQG WKH OLJKW VRXUFH ,I NG] LV FRQVWDQW IRU DOO WKHQ HTXDWLRQ VLPSOLILHV WR ,$ H[SNIVLQf f ZKHUH NI D FROODSVHG FRQVWDQW GHVFULELQJ OLJKW SHQHWUDWLRQ QRUPDO WR WKH SODQH ,I NI DQG WKH UHODWLYH DQJOH LV GHJUHHV WKHQ OVLQ DQG ,$ LV SUHGLFWHG WR EH ,F

PAGE 34

,I WKLV VDPH V\VWHP LV PRGHOHG DV D GLVFUHWH HQWLW\ KDOI WKH SRLQWV ZLOO EH VKDGHG E\ WZR SRLQWV DQG KDOI E\ RQH OHDGLQJ WR D SUHGLFWHG ,L RI r,R ,Q WKLV FDVH WKH SUHGLFWLRQ HUURU LV OHVV WKDQ b %HFDXVH WKH H[SRQHQWLDO GHFOLQH IXQFWLRQ LV XQLIRUPO\ FRQYH[ WKH GLVFUHWH PRGHO ZLOO DOZD\V SUHGLFW OLJKW SHQHWUDWLRQ f JUHDWHU WKDQ RU HTXDO WR D FRQWLQXRXV PRGHO 7KH GLYHUJHQFH LV KRZHYHU QRW ODUJH $V WKH JULG VL]H GHFUHDVHV WKH V\VWHP FRQYHUJHV RQ WKH FRQWLQXRXV UHSUHVHQWDWLRQ 0RGHOLQJ OLJKW SHQHWUDWLRQ LQWR D VWDQG XVLQJ WKH GLVFUHWH FOXVWHU OHYHO PRGHO LQYROYHV ILYH VWHSV f 3ODFLQJ WKH FOXVWHUV LQWR VSDFH DQG DVVLJQLQJ OLJKW SHQHWUDWLRQ SURSHUWLHV WR HDFK FOXVWHU f 5RWDWLQJ WKH VKRRWV WR DOLJQ WKH V\VWHP ZLWK WKH VXQ SRVLWLRQ f 5RXQGLQJ WKH FOXVWHUV WR WKH QHDUHVW LQWHJHU QRGH f 6HDUFKLQJ IRU WKH SUHVHQFH RI FOXVWHUV EHWZHHQ WKH WDUJHW QRGHV DQG WKH VXQ f 4XDQWLI\LQJ WKH OLJKW DWWHQXDWLRQ FDXVHG E\ DOO VKRRWV E\ PDWFKLQJ FOXVWHUV ZLWK WKHLU VSHFLILF OLJKW DWWHQXDWLRQ SURSHUWLHV 7R VXPPDUL]H GLVFRQWLQXRXV FDQRSLHV FDQ EH PRGHOHG E\ FUHDWLQJ JHRPHWULF UHSUHVHQWDWLRQV RI WKH VWDQG DQG VLPXODWLQJ DFWXDO OLJKW SHQHWUDWLRQ 7KLV DSSURDFK KDV WUDGLWLRQDOO\ EHHQ DFFRPSOLVKHG E\ PRGHOLQJ FURZQV DV

PAGE 35

HOLSVRLGV LQ UHDO VSDFH )RU PRGHOLQJ DW WKH VKRRW OHYHO KRZHYHU WKLV DSSURDFK LV H[WUHPHO\ LQHIILFLHQW 'LVFUHWH VSDFH PRGHOV RIIHU D PRUH HIILFLHQW DOWHUQDWLYH DQG WKHUHIRUH DUH D SUHIHUDEOH DSSURDFK IRU VKRRW OHYHO PRGHOLQJ

PAGE 36

$ ',6&5(7(63$&( 02'(/ )25 6/$6+ 3,1( 'DWD $FTXLVLWLRQ ,Q WKLV VWXG\ D PRGHO ZDV EDVHG RQ D VWDQG RI SODQWDWLRQJURZQ VODVK SLQH 7KH VWDQG DJH ZDV DSSUR[LPDWHO\ \HDUV 7RWDO WUHH KHLJKW ZDV DSSUR[LPDWHO\ P DQG WKH FURZQ GHSWK ZDV DSSUR[LPDWHO\ P 6WRFNLQJ GHQVLW\ ZDV DSSUR[LPDWHO\ VWHPVrKDB 7KH SDUDPHWHUV XVHG WR PRGHO WKH ORFDWLRQ RI IROLDJH LQ VSDFH ZHUH EDVHG RQ D GDWD VHW GHULYHG E\ GHVWUXFWLYHO\ VDPSOLQJ WUHHV LQ $XJXVW DQG WUHHV LQ $XJXVW 3HUWLQHQW GDWD REWDLQHG WKURXJK VDPSOLQJ LQFOXGHG WKH QXPEHU RI EUDQFKHV EUDQFK SRVLWLRQ EUDQFK DQJOH WRWDO EUDQFK OHQJWK QRQIROLDWHG EUDQFK OHQJWK OHQJWK WR WKH ILUVW OLYH VLGH OLPEf QXPEHU RI QHHGOH FOXVWHUV VKRRWVf SHU EUDQFK DQG ELRPDVV SHU EUDQFK 2QH ODUJH DQG RQH VPDOO EUDQFK ZHUH UHPRYHG IURP HDFK P VHJPHQW GRZQ WKURXJK WKH FURZQ 7KH WRS VHJPHQW EHJDQ DW WKH EDVH RI WKH WHUPLQDO DQG VHJPHQWV ZHUH PDUNHG GRZQ WKH VWHP WR WKH EDVH RI WKH FURZQ &URZQ GHSWK YDULHG EHWZHHQ P DQG P $ VPDOO OLPE ZDV RQO\ PHDVXUHG LI WZR

PAGE 37

FOHDUO\ GHILQHG FODVVHV RI EUDQFKHV H[LVWHG ZLWKLQ WKH VHJPHQW ,I DOO WKH OLPEV ZHUH WKH VDPH VL]H WKH OLPEV ZHUH DOO FODVVLILHG DV ODUJH DQG RQO\ RQH OLPE IURP WKH VHJPHQW ZDV VDPSOHG /DUJH DQG VPDOO ZHUH WKHUHIRUH UHODWLYH FODVVLILFDWLRQV 7KH SRLQW DW WKH EDVH RI WKH WHUPLQDO OHDGHU ZKHUH WKH WRS VHJPHQW EHJDQ ZDV FODVVLILHG DV WKH WRS RI WKH WUHH 7KH WHUPLQDO ZKLFK UHSUHVHQWHG WKH FXUUHQW \HDUnV JURZWK ZDV WUHDWHG DV D EUDQFK DQG ZDV QRW VDPSOHG )RU HDFK OLPE VDPSOHG WKH SRVLWLRQ RI WKH EDVH RI WKH OLPE DQG WKH WLS RI WKH OLPE UHODWLYH WR WKH WUHH WRS ZHUH UHFRUGHG )URP WKHVH GDWD EUDQFK DQJOHV ZHUH GHWHUPLQHG XVLQJ WKH IROORZLQJ IRUPXOD $(E DUFVLQ> 'WRS 'EDVHf/W@ f ZKHUH $(E WKH EUDQFK DQJOH IURP WKH KRUL]RQWDO WRS WKH GLVWDQFH IURP WKH WLS RI WKH EUDQFK WR WKH WRS RI WKH WUHH EDVH WKH GLVWDQFH IURP WKH EDVH RI WKH EUDQFK WR WKH WRS RI WKH WUHH / W WKH WRWDO OHQJWK RI WKH EUDQFK 7KH ELDV GXH WR VZHHS LQ WKH OLPEV ZDV PLQRU DQG ZDV LJQRUHG

PAGE 38

)ROLDJH SRVLWLRQ ZDV GHWHUPLQHG E\ DVVXPLQJ WKDW IROLDJH ZDV UHVWULFWHG WR WKH UHJLRQ IURP WKH WLS RI WKH EUDQFK WR WKH ILUVW IROLDWHG ELIXUFDWLRQ RI WKH PDLQ EUDQFK :LWKLQ WKLV UHJLRQ IROLDJH ZDV DVVXPHG WR RFFXU ZLWK HTXDO SUREDELOLW\ DQG WKH QHHGOH ELRPDVV ZDV WKHUHIRUH XQLIRUPO\ GLVWULEXWHG 8VLQJ WKLV WHFKQLTXH IROLDJH ZDV DGGHG WR D VWDQGDUGL]HG VWHP FRPSRVHG RI P VHJPHQWV WR EXLOG XS D YHUWLFDO IROLDJH SURILOH IRU WKH VWDQG %HFDXVH WKH EUDQFKHV ZHUH DQJOHG EHWZHHQ DQG GHJUHHV WRZDUG WKH YHUWLFDO )LJXUH f FRUUHFWLQJ IRU EUDQFK DQJOH VKLIWHG WKH FDOFXODWHG SRVLWLRQ RI WKH IROLDJH WRZDUG WKH WRS RI WKH FDQRS\ )LJXUH f )RU D P ORQJ EUDQFK ZLWK D QRQIROLDWHG OHQJWK RI P D 'ED%H ORFDWLRQ P EHORZ WKH WRS RI WKH WUHH DQG DQ $(E RI GHJUHHV WKLV WHFKQLTXH ZRXOG DOORFDWH b RI WKH IROLDJH WR WKH WR P VHJPHQW b RI WKH IROLDJH WR WKH WR P VHJPHQW DQG RQO\ b WR WKH WR P VHJPHQW ZKHUH WKH EUDQFK RULJLQDWHG (YHQ DIWHU DGMXVWPHQW KRZHYHU WKH IROLDJH LV SUREDEO\ SODFHG ORZHU LQ WKH FURZQ WKDQ LWV DFWXDO SRVLWLRQ 7KLV LV EHFDXVH IROLDJH LV DVVXPHG WR EH HYHQO\ GLVWULEXWHG ZLWKLQ WKH IROLDWHG UHJLRQ RI WKH OLPE ZKHQ LQ IDFW PRVW RI WKH IROLDJH LV FRQFHQWUDWHG WRZDUG WKH EUDQFK WLS $ XQLIRUP GLVWULEXWLRQ SDWWHUQ ZDV XVHG EHFDXVH PHDVXULQJ WKH DFWXDO GLVWULEXWLRQ RI IROLDJH LQ

PAGE 39

9(57,&$/ 6(*0(17 0f )LJXUH 'LVWULEXWLRQ RI EUDQFK DQJOH 6'f WKURXJK WKH FDQRS\ &2 WR

PAGE 40

)5$&7,21 2) 727$/ )2/,$5 %,20$66 9(57,&$/ 6(*0(17 0f )LJXUH (VWLPDWHG IROLDJH SURILOHV 7KH DGMXVWHG SURILOH LV GHULYHG E\ VKLIWLQJ IROLDJH WR FRPSHQVDWH IRU EUDQFK DQJOH

PAGE 41

VSDFH ZDV QRW SRVVLEOH GXH WR WKH EUHDNDJH WKDW LQHYLWDEO\ DFFRPSDQLHG WKH IHOOLQJ RI WUHHV )RU HDFK OLPE WKH QXPEHU RI QHHGOH FOXVWHUV DSLFDO JURZWK PHULVWHPVf ZDV FRXQWHG 7KH V\VWHP XVHG WR GLVWULEXWH IROLDJH ZDV DOVR XVHG WR GLVWULEXWH FOXVWHUV ZLWK WKH QXPEHU RI FOXVWHUV SHU OLPE VXEVWLWXWHG IRU WKH GU\ ZHLJKW ELRPDVV &OXVWHU GLVWULEXWLRQ KDV D UDQGRP FRPSRQHQW EHFDXVH WKH QXPEHU RI FOXVWHUV LV GLVFUHWH DQG FOXVWHUV DUH SODFHG ZLWK HTXDO SUREDELOLW\ DORQJ WKH IROLDWHG OLPE UDWKHU WKDQ LQ HTXDO SURSRUWLRQ 7KH KRUL]RQWDO GLVWULEXWLRQ RI IROLDJH DURXQG WKH VWHP ZDV DOVR GHWHUPLQHG XVLQJ WKH EUDQFK DQJOH DQG WKH IROLDWHG UHJLRQ RI WKH OLPE 7KH GLVWDQFH RI WKH IROLDJH IURP WKH VWHP ZDV GHWHUPLQHG E\ WKH FRVLQH RI WKH EUDQFK DQJOH UDWKHU WKDQ LWV VLQH 7KH KRUL]RQWDO GLVWULEXWLRQ ZDV DVVXPHG WR EH XQLIRUP LQ UHJDUG WR D]LPXWK ,Q WKH PRGHO WZR WHFKQLTXHV FDQ EH XVHG WR SODFH IROLDJH LQ VSDFH 2QH ZKLFK ZDV XVHG LQ D SUHOLPLQDU\ PRGHO 0F.HOYH\ f XVHG WKH YHUWLFDO GLVWULEXWLRQ RI ELRPDVV ,Q WKLV DSSURDFK QHHGOH FOXVWHUV ZHUH DVVXPHG WR FRQWDLQ DQ HTXDO TXDQWLW\ RI ELRPDVV 1HHGOH FOXVWHU SRVLWLRQ ZDV WKHUHIRUH GHULYHG IURP ELRPDVV GDWD DQG FOXVWHUV ZHUH SODFHG LQ YHUWLFDO VSDFH E\ D ZHLJKWHG UDQGRP SURFHVV EDVHG RQ WKH ELRPDVV GLVWULEXWLRQ +RUL]RQWDO

PAGE 42

SODFHPHQW ZDV EDVHG RQ WKH EUDQFK OHQJWK DW WKH FKRVHQ KHLJKW 7KH VHFRQG V\VWHP IRU GLVWULEXWLQJ QHHGOH FOXVWHUV XVHV WKH YHUWLFDO GLVWULEXWLRQ RI WKH FOXVWHUV ,Q WKLV DSSURDFK IROLDJH ELRPDVV HQWHUV LQGLUHFWO\ DQG LV XVHG WR GHWHUPLQH WKH H[WLQFWLRQ FRHIILFLHQW IRU HDFK FOXVWHU 7KLV VHFRQG PHWKRG ZDV XVHG LQ WKH PRGHO SUHVHQWHG KHUH EHFDXVH LW SODFHV WKH HPSKDVLV RQ SRVLWLRQLQJ WKH FOXVWHUV DFFXUDWHO\ LQ VSDFH 7KH SUHYLRXV GLVFXVVLRQ RI KHWHURJHQHLW\ VXJJHVWV WKDW FKDQJHV LQ WKH SRVLWLRQ RI IROLDJH VKRXOG KDYH PRUH LPSDFW RQ OLJKW SHQHWUDWLRQ WKDQ VKLIWV LQ ELRPDVV SHU FOXVWHU 7KH VORSH RI WKH H[SRQHQWLDO GHFOLQH FXUYH LV VWHHSHVW IRU YDOXHV QHDU DQG SURJUHVVLYHO\ IODWWHU DV YDOXHV DSSURDFK ,Q D VXEn FDQRS\ PRGHO ZKHUH WKHUH DUH JDSV LQ WKH IROLDJH WKH PRGHO VKRXOG WKHUHIRUH EH PRVW VHQVLWLYH WR WKH VL]H RI WKH JDSV WKDQ WR WKH SURSHUWLHV RI WKH IROLDJH ILOOLQJ WKH DUHD EHWZHHQ WKH JDSV )RU SXUSRVHV RI FURZQ FRQVWUXFWLRQ WKH UXOHV IRU SODFLQJ FOXVWHUV LQ VSDFH FUHDWH WKH JDS VWUXFWXUH DQG WKH SURSHUWLHV RI WKH FOXVWHUV GHILQH WKH DUHD EHWZHHQ WKH JDSV 7KH SULRULWLHV IRU PRGHOLQJ VKRXOG WKHUHIRUH SULPDULO\ EH WR SRVLWLRQ WKH QHHGOH FOXVWHUV DFFXUDWHO\ LQ VSDFH 7R GHWHUPLQH OLJKW SHQHWUDWLRQ WKURXJK QHHGOH FOXVWHUV ZLWKLQ WKH FDQRS\ LW LV QHFHVVDU\ WR GHWHUPLQH ZKHWKHU

PAGE 43

GLUHFW OLJKW SHQHWUDWLRQ LV UHODWHG WR QHHGOH ELRPDVV SHU FOXVWHU DQG ZKHWKHU WKH RULHQWDWLRQ RI WKH FOXVWHU WR WKH OLJKW VRXUFH DIIHFWV HLWKHU SHQHWUDWLRQ RU SURMHFWHG DUHD 7R REWDLQ WKHVH GDWD D GHYLFH ZDV GHVLJQHG WR DOORZ FRQWUROOHG GLUHFWLRQDO OLJKW WR EH GLUHFWHG RQWR FOXVWHUV IURP D YDULHW\ RI DQJOHV )LJXUH f 7KH GHYLFH FRQVLVWHG RI D OLJKW VRXUFH D FROOLPDWLRQ WXEH DQG D OLJKW VHQVRU ZKLFK ZDV KHOG LQ D IL[HG SRVLWLRQ UHODWLYH WR WKH OLJKW VRXUFH $ FP SDUDEROLF PLUURU IRFXVHG WKH OLJKW RQ D /L &RU 3$5 VSRW VHQVRU HOLPLQDWLQJ DQJOH FRYHUDJH HIIHFWV GXH WR ODUJH REMHFWV VXFK DV EUDQFKHV &OXVWHUV ZHUH SODFHG EHWZHHQ WKH VHQVRU DQG WKH WXEH 7KH OLJKW VRXUFH ZDV PRXQWHG RQ D VWDQG ZLWK VOLS MRLQWV WKDW DOORZHG D IXOO UDQJH RI PRYHPHQW LQ WKUHH GLPHQVLRQV 7KLV DOORZHG WKH FOXVWHU WR UHPDLQ IL[HG DQG WKH OLJKW VRXUFH WR EH PRYHG DOORZLQJ WKH FOXVWHU WR UHPDLQ LQ DQ RULHQWDWLRQ VLPLODU WR LWV QDWXUDO RULHQWDWLRQ RQ WKH WUHH 7KH FOXVWHU ZDV KHOG LQ D PRYDEOH VWDQG )LJXUH f %\ PRYLQJ WKH FOXVWHU YHUWLFDOO\ DQG KRUL]RQWDOO\ WKURXJK D VHULHV RI IL[HG SRVLWLRQV LW ZDV SRVVLEOH WR GHILQH D JULG QRUPDO WR WKH OLJKW VRLLUFH IRU DQ\ VXQ DQJOH %\ URWDWLQJ WKH FOXVWHU SRVLWLRQ LQ WKH FODPS LW ZDV SRVVLEOH WR VLPXODWH DQ\ D]LPXWK 7KHUH LV OLWWOH YDULDWLRQ LQ WKH DUFKLWHFWXUH RI QHHGOH FOXVWHUV 1HHGOHV UDGLDWH IURP D FHQWUDO OLPE DQG DUH

PAGE 44

/,*+7 7KH GHYLFH XVHG WR GHWHUPLQH OLJKW WKURXJK FOXVWHUV

PAGE 45

)LJXUH $SSDUDWXV IRU SRVLWLRQLQJ QHHGOH FOXVWHUV IRU OLJKW SHQHWUDWLRQ PHDVXUHPHQWV 9HUWLFDO DQG KRUL]RQWDO PRYHPHQW RI WKH VWDQG FRXSOHG ZLWK DQJXODU PRYHPHQW RI WKH OLJKW VRXUFH DOORZV DQ\ DQJOH DQG D]LPXWK WR EH UHSURGXFHG

PAGE 46

JHQHUDOO\ DQJOHG WRZDUG WKH EUDQFK WLS :KHQ YLHZHG IURP WKH EUDQFK WLS FOXVWHUV DUH FLUFXODU ZLWK D GHQVH FHQWHU GHILQHG E\ WKH DSLFDO PHULVWHP DQG D PD[LPXP UDGLXV HTXDO WR WKH QHHGOH OHQJWK ,Q WKLV RULHQWDWLRQ FOXVWHUV DUH FLUFXODU ZLWK D UDGLXV RI FP UHJDUGOHVV RI ELRPDVV )URP WKH VLGH YLHZ FOXVWHUV DUH OHVV VLPLODU LQ IRUP 7KH OHQJWK RI WKH FOXVWHU LV D IXQFWLRQ RI WKH JURZWK UDWH RYHU WKH SDVW VHDVRQ RU WZR GHSHQGLQJ RQ WKH WLPH RI WKH \HDU ,Q $SULO WKH FOXVWHU KROGV RQH FRKRUW RI QHHGOHV DQG LQ 2FWREHU LW KROGV WZR ,Q JHQHUDO EHFDXVH QHZ QHHGOHV JURZ DW D YHU\ DFXWH DQJOH IURP WKH VWHP WKH UHJLRQ EH\RQG WKH WLS RI WKH OLPE IRUPV D KHPLVSKHUH GHILQHG E\ WKH QHHGOH OHQJWK %HORZ WKH KHPLVSKHULFDO HQG WKHUH LV D SRUWLRQ RI LQGHWHUPLQDWH OHQJWK WKDW LV F\OLQGULFDO $W LWV EDVH WKLV F\OLQGHU FDQ WHUPLQDWH LQ D KHPLVSKHUH LI WKH QHHGOHV DUH ROG DQG GURRS RU LQ D WULDQJOH LI WKH QHHGOHV DUH \RXQJ DQG DUH VWLOO VWLII DQG DQJOHG WRZDUG WKH EUDQFK WLS /LJKW SHQHWUDWLRQ DQG SURMHFWHG FOXVWHU DUHD ZLOO GLYHUJH WR WKH JUHDWHVW H[WHQW ZKHQ WKH FOXVWHU LV YLHZHG IURP WKH HQG SDUDOOHO WR WKH OLPEf UHODWLYH WR WKH VLGH QRUPDO WR WKH OLPEf /LJKW SHQHWUDWLRQ WKURXJK WKH FOXVWHU IURP DOO RWKHU DQJOHV ZLOO HQFRXQWHU D IRUP LQWHUPHGLDWH EHWZHHQ WKHVH H[WUHPHV 0HDVXULQJ OLJKW SHQHWUDWLRQ SDUDOOHO DQG SHUSHQGLFXODU WR WKH OLPE WKHUHIRUH EUDFNHWV

PAGE 47

WKH UDQJH RI SHQHWUDWLRQ DQG DUHD SURMHFWLRQ IURP DOO SRWHQWLDO VXQ DQJOHV 1HHGOH FOXVWHUV ZHUH VDPSOHG DW FP LQWHUYDOV RYHU D JULG RI [ FP :LWK WKH FP RYHUODS FDXVHG E\ WKH SDUDEROLF PLUURU WKH DUHD FRYHUHG ZDV DSSUR[LPDWHO\ [ FP 7KLV DUHD LV ODUJH HQRXJK WR HQFRPSDVV WKH HQG YLHZV RI DOO QHHGOH FOXVWHUV LQ WKHLU HQWLUHW\ ,W HQFRPSDVVHG WKH VLGH YLHZV RI VPDOOHU FOXVWHUV EXW ODUJHU FOXVWHUV XS WR FP ORQJf SURMHFWHG EH\RQG WKH JULG 6DPSOH FOXVWHUV ZHUH FHQWHUHG RQ WKH JULG XVLQJ WKH DSLFDO PHULVWHP DV WKH FHQWHU IRU HQG YLHZV DQG WKH PLGSRLQW RI WKH FOXVWHU IRU VLGH YLHZV /LJKW SHQHWUDWLRQ ZDV FDOFXODWHG IRU WHQ FOXVWHUV IURP WKH HQG DQG WKH VLGH DQG WKH UHVXOWV FRPSDUHG 7KH DYHUDJH OLJKW SHQHWUDWLRQ YDOXHV SHU XQLW DUHD IRU WKHVH WZR YLHZV GLIIHUHG E\ OHVV WKDQ b DPRQJ DOO FOXVWHUV DYHUDJH b OHVV OLJKW SHQHWUDWLRQ IURP WKH VLGHf 5RXQGHG WR WKH QHDUHVW b DQG FRPSDUHG XVLQJ D FKLVTXDUH WHVW RI ILW 7DEOH )LJXUH f VL[ FOXVWHUV VKRZHG QR VLJQLILFDQW GLIIHUHQFH S f DQG IRXU VKRZHG VLJQLILFDQW GLIIHUHQFHV LQ SDWWHUQ 6LJQLILFDQW GLIIHUHQFHV EHWZHHQ WKH HQG DQG VLGH YLHZV ZHUH ODUJHO\ GXH WR DQ LQFUHDVH LQ SURMHFWHG EUDQFK DUHD ZKHQ YLHZHG IURP WKH VLGH 6PDOO QHHGOH FOXVWHUV GR QRW FKDQJH GLPHQVLRQ RU OLJKW SHQHWUDWLRQ SURSHUWLHV ZKHQ WKH UHODWLYH GLUHFWLRQ RI WKH

PAGE 48

7DEOH &RPSDULVRQ RI OLJKW SHQHWUDWLRQ WKURXJK FOXVWHUV YLHZHG IURP WKH HQG DQG IURP WKH VLGH /LJKW SHQHWUDWLRQ LV WKH DYHUDJH IUDFWLRQ RI OLJKW SHQHWUDWLQJ D FOXVWHU &OXVWHUV PDUNHG ZLWK DQ DVWHULVN ZHUH VLJQLILFDQWO\ GLIIHUHQW S f LQ SDWWHUQ EDVHG RQ D FKLVTXDUH ;f WH[W RI ILW 7KH ; FULWLFDO SRLQW ZLWK GHJUHHV RI IUHHGRP /LJKW 3HQHWUDWLRQ bf &OXVWHU :LGWK FPf /HQJWK FPf (QG YLHZ 6LGH YLHZ 'LIIHUHQFH ; r r r r

PAGE 49

180%(5 2) &(//6 6,'( 9,(: (1' 9,(: Q $ %(67 ),7 3$77(51 L:L LML V IIL 7L rmL 7L Q /($67 0267 8*+7 3(1(75$7,21 3(5 &(// G X R R D /[&' 6,'( 9,(: (1' 9,(: LMO % :2567 ),7 3$77(51 7L 7L 7L D /($67 8267 8*+7 3(1(75$7,21 3(5 &(// )LJXUH 3DWWHUQV RI OLJKW SHQHWUDWLRQ WKURXJK QHHGOH FOXVWHUV ZKHQ YLHZHG IURP WKH VLGH DQG IURP WKH HQG $ FHOO LV WKH [ FP DUHD UHSUHVHQWHG E\ DQ LQGLYLGXDO OLJKW SHQHWUDWLRQ UHDGLQJ 7KH EHVW ILW DQG ZRUVW ILW SDWWHUQV FRUUHVSRQG WR FOXVWHUV DQG LQ 7DEOH 1!

PAGE 50

OLJKW VRXUFH FKDQJHV 7KH ODUJHU FOXVWHUV DUH VLPLODU LQ GHQVLW\ EXW ZLOO SURMHFW DV PXFK DV WZLFH WKH DUHD ZKHQ YLHZHG IURP WKH VLGH UDWKHU WKDQ IURP WKH HQG 7KLV FDQ OHDG WR D GLVSDULW\ EHWZHHQ PRGHOHG DUHD DQG DFWXDO SURMHFWHG DUHD LI WKHVH FOXVWHUV UHSUHVHQW D VLJQLILFDQW SURSRUWLRQ RI WKH WRWDO FOXVWHU SRSXODWLRQ 7R GHWHUPLQH WKH SURSRUWLRQ RI SURSRUWLRQ RI ODUJH FOXVWHUV LQ WKH FDQRS\ WKH OHQJWKV RI DOO RI WKH FOXVWHUV ZHUH PHDVXUHG RQ ILYH WUHHV ZLWK VWHP GLDPHWHUV UDQJLQJ IURP FP WR FP LQ GLDPHWHU DW EUHDVW KHLJKW GEK Pf 2I WKH FOXVWHUV VDPSOHG b ZHUH OHVV WKDQ FP LQ OHQJWK DQG b ZHUH OHVV WKDQ FP LQ OHQJWK )LJXUH f %DVHG RQ WKLV VDPSOH WKH PD[LPXP HUURU LQ HVWLPDWHG FOXVWHU DUHD GXH WR WKH SUHVHQFH RI ODUJH FOXVWHUV ZDV OHVV WKDQ b $W PLQLPXP ELRPDVV OHYHOV WKH FDQRS\ LV SULPDULO\ FRPSRVHG RI FOXVWHUV VPDOO HQRXJK WR SURMHFW HTXLYDOHQW DUHD DQG GHQVLW\ IURP DOO VXQ DQJOHV 7KH DVVXPSWLRQ WKDW FOXVWHUV FDQ EH WUHDWHG DV SRLQWV ZLWK DYHUDJH DUHD DQG XQLIRUP SHQHWUDWLRQ SURSHUWLHV D QHFHVVDU\ FRQGLWLRQ IRU GLVFUHWH FOXVWHUOHYHO PRGHOLQJ LV WKHUHIRUH MXVWLILHG $ UHJUHVVLRQ IRU FOXVWHU SHQHWUDWLRQ DV D IXQFWLRQ RI ELRPDVV ZDV FRQVWUXFWHG )RU WKH UHJUHVVLRQ OLJKW SHQHWUDWLRQ SDUDOOHO WR WKH OLPE ZDV PHDVXUHG IRU DQ DGGLWLRQDO FOXVWHUV 7KH HQG YLHZ ZDV FKRVHQ EHFDXVH LW

PAGE 51

180%(5 2) &/867(56 &/867(5 /(1*7+ &0f )LJXUH 7KH IUHTXHQF\ GLVWULEXWLRQ RI FOXVWHU OHQJWK LQ WKH FDQRS\

PAGE 52

FDSWXUHV DOO WKH IROLDJH UHJDUGOHVV RI FOXVWHU OHQJWK DQG EHFDXVH WKH RULHQWDWLRQ RI WKH FOXVWHUV RQ WKH WUHH VXJJHVWV WKDW WKH HQG YLHZ GRPLQDWHV ,I FOXVWHUV JURZ WRZDUG OLJKW WKH OLPE ZKLFK UHSUHVHQWV WKH FKDQJH LQ SRVLWLRQ RI WKH PHULVWHP RYHU WLPH PXVW OLH URXJKO\ SDUDOOHO WR WKH EHDPV RI OLJKW HPDQDWLQJ IURP WKH OLJKW VRXUFHf $ ORJOLQHDU H[SRQHQWLDO GHFOLQHf FXUYH ZDV FKRVHQ IRU WKH ILW )LJXUH f EHFDXVH LW LV RI WKH VDPH IRUP DV WKH H[SRQHQWLDO GHFOLQH FXUYH DQG WKH YDULDEOHV DUH DQDORJRXV WR WKRVH XVHG LQ %HHUnV ODZ PRGHOLQJ 7KH FXUYH DOVR KDV VWDEOH SURSHUWLHV ZKHQ XVHG WR H[WUDSRODWH EH\RQG WKH HGJH RI WKH GDWD VHW 0RGHO 6WUXFWXUH &OXVWHU OHYHO PRGHOLQJ LV YHU\ IOH[LEOH DQG D YDULHW\ RI FRQILJXUDWLRQV FDQ EH XVHG WR PRGHO WKH VWDQG )RU DOO RI WKH UHVXOWV SUHVHQWHG KHUH WKH VWDQG ZDV PRGHOHG XVLQJ WKH IROORZLQJ UXOHV f $OO WUHHV ZHUH EXLOW XVLQJ WKH VDPH SURFHGXUH )LJXUH f 7KH IROLDJH TXDQWLW\ FOXVWHU QXPEHUV EUDQFK DQJOHV DQG EUDQFK OHQJWKV ZHUH LGHQWLFDO IRU DOO WUHHV 7KH SDUDPHWHUV ZHUH WKH PHDQ YDOXHV GHULYHG WKURXJK WKH GHVWUXFWLYH VDPSOLQJ :LWKLQ WKH ERXQGV RI WKLV UXOH VHW WKH DFWXDO SODFHPHQW

PAGE 53

/,*+7 3(1(75$7,21 ,Qf Â’ %,20$66 3(5 &/867(5 *f )LJXUH 7KH SDWWHUQ RI OLJKW SHQHWUDWLRQ WKURXJK QHHGOH FOXVWHUV DV D IXQFWLRQ RI DOOVLGHG /$,

PAGE 54

/2&$7( 75(( 723 '21( )LJXUH 7KH UXOHV IRU EXLOGLQJ D WUHH LQ WKH FOXVWHU OHYHO PRGHO

PAGE 55

RI FOXVWHUV LQ ERWK D]LPXWK DQG DQJOH ZDV UDQGRP f $OO WKH WUHHV ZHUH LGHQWLFDO LQ KHLJKW f 7KH WUHHV ZHUH HYHQO\ VSDFHG RQ D JULG DOLJQHG ZLWK WKH FDUGLQDO FRPSDVV GLUHFWLRQV 5RZV DQG FROXPQV UDQ H[DFWO\ QRUWKVRXWK DQG HDVWZHVW UHVSHFWLYHO\ ,Q WKH PRGHO WKH FOXVWHUV DUH KHOG DV ORFDWLRQV LQ WKUHHGLPHQVLRQDO VSDFH /LJKW SHQHWUDWHV WKH V\VWHP RI FOXVWHUV REOLTXHO\ DV D VHULHV RI SDUDOOHO EHDPV 7R GHWHUPLQH OLJKW SHQHWUDWLRQ WKURXJK WKH V\VWHP WKH GLVFUHWH DSSUR[LPDWLRQ WHFKQLTXH RXWOLQHG DERYH UHTXLUHV WKDW WKH FRRUGLQDWH V\VWHP EH DOLJQHG QRUPDO WR WKH OLJKW VRXUFH EHIRUH VFDOLQJ DQG URXQGLQJ 7KH DOLJQPHQW LV DFFRPSOLVKHG E\ URWDWLQJ WKH FOXVWHU SRVLWLRQV DURXQG DQ DUELWUDU\ RULJLQ XQWLO WKH\ RFFXS\ WKH SRVLWLRQV LQ WKH VSDFH WKDW WKH\ ZRXOG KDYH LI WKH\ KDG UHPDLQHG IL[HG DQG WKH FDUWHVLDQ FRRUGLQDWH V\VWHP KDG EHHQ URWDWHG 7KH SURFHVV VWDUWV ZLWK DQ LQLWLDO RULHQWDWLRQ LQ ZKLFK WKH ; DQG = D[HV GHILQH D SODQH SDUDOOHO WR WKH JURXQG DQG WKH < D[LV LV KHLJKW 7KH LQLWLDO VXQ ORFDWLRQ LV DW GHJUHHV $2( DQG SDUDOOHO WR WKH ; D[LV &OXVWHU URWDWLRQ LV DOZD\V UHODWLYH WR WKLV LQLWLDO FRQILJXUDWLRQ DQG LV LQYHUVH WR WKH PRYHPHQW RI WKH OLJKW VRXUFH ,I WKH OLJKW VRXUFH PRYHV XS DQG WR WKH ULJKW WKH FOXVWHU SRVLWLRQV DUH URWDWHG GRZQ DQG WR WKH OHIW $QJOHV RI URWDWLRQ UHTXLUHG WR DOLJQ WKH

PAGE 56

D[HV ZLWK GDLO\ VXQ DQJOHV DQG D]LPXWKV FDQ EH JHQHUDWHG WKURXJK WULJRQRPHWULF UHODWLRQVKLSV DQG HTXDWLRQV DUH DYDLODEOH LQ WKH OLWHUDWXUH &DPSEHOO :DOUDYHQ *DWHV f 5RWDWLRQ RI SRLQWV DURXQG DQ DUELWUDU\ RULJLQ UHTXLUHV VHYHUDO WUDQVIRUPDWLRQV 7KH SRLQW VHW PXVW ILUVW EH FHQWHUHG RQ WKH RULJLQ WKHQ WZR VFDODU URWDWLRQV DUH QHFHVVDU\ 7KH ILUVW DOLJQV WKH D[HV ZLWK WKH VXQ D]LPXWK WKH VHFRQG ZLWK WKH $2( 7KLV SURFHVV FDQ EH DFFRPSOLVKHG HIILFLHQWO\ WKURXJK WKH XVH RI WUDQVLWLRQ PDWULFHV $Q\ URWDWLRQ RI D JURXS RI SRLQWV LQ &DUWHVLDQ VSDFH FDQ EH YLHZHG DV D VHULHV RI LQGLYLGXDO WUDQVODWLRQV RI FRRUGLQDWH YHFWRUV HDFK YHFWRU UHSUHVHQWLQJ DQ LQGLYLGXDO SRLQW 7KH URWDWLRQ DOJRULWKP FDQ WKHUHIRUH EH GHWHUPLQHG E\ WUDFLQJ WKH WUDQVODWLRQ RI D VLQJOH FRRUGLQDWH YHFWRU & WKURXJK PXOWLSOLFDWLRQ ZLWK D VHULHV RI WUDQVLWLRQ PDWULFHV 777Q 7KH ILUVW WUDQVODWLRQ FDQ EH ZULWWHQ DV &n & r 7[ WKH VHFRQG &n & r 7 DQG VR IRUWK & r 7[ FDQ KRZHYHU EH VXEVWLWXWHG LQ SODFH RI & DQG WKH VHFRQG WUDQVODWLRQ FDQ WKHUHIRUH EH H[SUHVVHG DV &n & r 7M r 7 7KLV SURFHVV FDQ EH FRQWLQXHG IRU DV PDQ\ WUDQVLWLRQ VWHSV DV DUH QHFHVVDU\ WR DFFRPSOLVK WKH GHVLUHG URWDWLRQ $ VLQJOH WUDQVLWLRQ PDWUL[ 7I LV FUHDWHG ZKLFK LV WKH SURGXFW RI PDWULFHV 77Q $ VLQJOH YHFWRU PDWUL[ PXOWLSOLFDWLRQ LV WKHQ UHTXLUHG WR URWDWH HDFK FRRUGLQDWH

PAGE 57

YHFWRU WR LWV ILQDO SRVLWLRQ 7KH URWDWLRQ SURFHVV WKHUHIRUH DOZD\V EHJLQV ZLWK WKH VDPH VHW RI LQLWLDO FRRUGLQDWHV DQG WKHUH LV QR FXPXODWLYH EXLOGXS RI HUURUV GXULQJ URWDWLRQ $IWHU URWDWLRQ HDFK FRRUGLQDWH YHFWRU LV PXOWLSOLHG E\ D VFDOLQJ FRQVWDQW DQG URXQGHG WR WKH QHDUHVW LQWHJHU ORFDWLRQ ,I WKH SRLQW LV HTXLGLVWDQW EHWZHHQ WZR LQWHJHUV WKH FRRUGLQDWH LV URXQGHG WR WKH HYHQ LQWHJHU 2QFH WKH FOXVWHUV KDYH EHHQ URWDWHG DQG WKHLU SRVLWLRQV URXQGHG WKH DPRXQW RI OLJKW SHQHWUDWLQJ WR WKH WDUJHW FDQ EH FRPSXWHG ,I DOO WKH FOXVWHUV KDYH HTXDO WUDQVPLVVLRQ SURSHUWLHV OLJKW SHQHWUDWLRQ WR DQ\ SRLQW FDQ EH FRPSXWHG DV ,[ ,H H[SNQf f ZKHUH Q WKH QXPEHU RI FOXVWHUV ,I WKH WUDQVPLVVLRQ SURSHUWLHV DUH GLIIHUHQW WKHQ OLJKW SHQHWUDWLRQ LV FRPSXWHG DV ,L ,F H[SWLNMG NG NQGQf@ f ZKHUH NNQ WKH H[WLQFWLRQ FRHIILFLHQWV IRU HDFK

PAGE 58

LQGLYLGXDO QHHGOH FOXVWHU DQG GAGQ WKH GHQVLWLHV ,I WKH OLJKW SHQHWUDWLRQ SHU FOXVWHU LV NQRZQ UDWKHU WKDQ FRPSXWHG WKURXJK D %HHUnV ODZ UHODWLRQVKLSf WKHQ WKLV FDOFXODWLRQ FROODSVHV WR D SURGXFW VHULHV f RU LI WKH IRU DOO f :LWK WKH &DUWHVLDQ FRRUGLQDWH V\VWHP SDUDOOHO WR WKH VRODU UDGLDWLRQ DORQJ WKH ; D[LV WKH WDVN RI VHDUFKLQJ IRU VKDGH EHFRPHV WKH VHDUFK IRU SRLQWV WKDW KDYH WKH VDPH < DQG = FRRUGLQDWHV DV WKH WDUJHW DQG ODUJHU ; YDOXHV 7KLV VHDUFK FDQ EH DFFRPSOLVKHG HIILFLHQWO\ E\ ILUVW VRUWLQJ WKH SRWHQWLDO VKDGH FOXVWHUV DFFRUGLQJ WR HLWKHU WKH < RU = FRRUGLQDWH YDOXHV 7KH DUUD\ FDQ WKHQ EH VHDUFKHG SURJUHVVLYHO\ ,Q FHUWDLQ FDVHV LW PD\ EH EHQHILFLDO WR VRUW ILUVW E\ WKH ; FRRUGLQDWH DQG WR FOLS WKRVH SRLQWV ZLWK ; YDOXHV OHVV WKDQ WKH WDUJHW EXW EHFDXVH WKH WDUJHW LV JHQHUDOO\ SODFHG VR WKDW WKH PD[LPXP SRWHQWLDO QXPEHU RI VKDGH FOXVWHUV OLH EHWZHHQ LW DQG WKH VXQ WKLV VRUW LV QRW FRGHG LQ WKH $SSHQGL[

PAGE 59

7KH PRGHO ZDV UXQ IRU DQJOHV DQG D]LPXWKV UHSUHVHQWLQJ RQH TXDUWHU RI WKH VN\ GRPH /LJKW SHQHWUDWLRQ ZDV VLPXODWHG IRU $2( IURP WR GHJUHHV DQG D]LPXWKV RI WR GHJUHHV DW GHJUHH LQWHUYDOV )RU EHORZFDQRS\ UHDGLQJV WKH WDUJHW ZDV D [[ P UHFWDQJXODU UHJLRQ EHORZ WKH FDQRS\ FRQWDLQLQJ PHDVXUHPHQW SRLQWV VHW DW UDQGRP ORFDWLRQV )RU PHDVXUHPHQWV ZLWKLQ WKH FDQRS\ WZR WDUJHW DUUDQJHPHQWV ZHUH XVHG 7R VLPXODWH D JHQHUDOL]HG OLJKW SHQHWUDWLRQ SURILOH D VHULHV RI [[ P SODQDU WDUJHWV ZHUH SODFHG DW P LQWHUYDOV ZLWKLQ WKH FDQRS\ 7R VLPXODWH OLJKW SHQHWUDWLRQ WR WKH FOXVWHU VXUIDFHV D WDUJHW WUHH ZDV XVHG ZLWK HDFK FOXVWHU DFWLQJ DV D PHDVXUHPHQW SRLQW 7KH YHUWLFDO SRVLWLRQ RI HDFK FOXVWHU ZDV XVHG WR GHWHUPLQH D OLJKW SHQHWUDWLRQ SURILOH WR WKH VXUIDFH RI WKH FOXVWHUV 7KLV PRGHOLQJ DSSURDFK LQ DQ HYHQO\ SODQWHG VWDQG DOORZV VLPXODWLRQ IURP DOO SRWHQWLDO DQJOHV DERYH GHJUHHVf DQG D]LPXWKV 7KH RWKHU WKUHH TXDUWHUV RI WKH VN\ GRPH FDQ EH ILOOHG LQ E\ DVVXPLQJ V\PPHWU\ 7KH PLQLPXP VXQ DQJOH WKDW FDQ EH PRGHOHG LV GLFWDWHG E\ WKH GLVWDQFH IURP D WDUJHW WR WKH HGJH RI WKH VLPXODWHG VWDQG DQG WKH GHSWK RI WKH FDQRS\ 7KH TXHVWLRQ LV ZKHWKHU D WUHH WKDW LV QRW PRGHOHG KDV WKH SRWHQWLDO WR LQIOXHQFH WKH OLJKW HQYLURQPHQW DW D WDUJHW SRLQW )RU D ILHOG RI FRQLF FURZQV DQG D WDUJHW DW WKH EDVH RI WKH FDQRS\ WKH GLVWDQFH WR WKH

PAGE 60

'H WDQ $2( f]F f ZKHUH 'H WKH GLVWDQFH WR WKH HGJH RI WKH V\VWHP DQG ]F WKH GHSWK RI WKH FDQRS\ 7KLV IXQFWLRQ EHFRPHV LQILQLWH DV $2( DSSURDFKHV DQG EUHDNV UDWKHU VKDUSO\ EHORZ GHJUHHV $2( ,Q )ORULGD GLUHFW OLJKW HPDQDWLQJ IURP $2( JUHDWHU WKDQ GHJUHHV GRPLQDWHV WKH GDLO\ OLJKW LQWHJUDO (YHQ DW WKH ZLQWHU VROVWLFH WKH VXQ LV KLJKHU WKDQ GHJUHHV IRU D KRXU SHULRG LQ WKH PLGGD\ )RU )ORULGD GHJUHHV LV WKHUHIRUH D UHDVRQDEOH PLQLPXP DQJOH )RU PRUH QRUWKHUQ ODWLWXGHV PXFK RI WKH OLJKW PD\ HPDQDWH IURP $2( OHVV WKDQ GHJUHHV 0RGHO 5HVXOWV ,Q D WKUHH GLPHQVLRQDO PRGHO DV\PPHWULHV LQ IROLDJH GLVWULEXWLRQ PD\ PDNH OLJKW SHQHWUDWLRQ VWURQJO\ GHSHQGHQW RQ D]LPXWK ,Q D URZ FURS WKH KLJKHVW SHQHWUDWLRQ WKURXJK WKH FDQRS\ LV H[SHFWHG ZKHQ WKH VXQ D]LPXWK LV SDUDOOHO WR WKH URZV ,Q WKH VLPXODWLRQ DW ORZ $2( PRUH OLJKW

PAGE 61

SHQHWUDWHV IURP DQ D]LPXWK RI GHJUHHV )LJXUH f ,Q WKH PRGHOHG WUHH FRQILJXUDWLRQ DQ D]LPXWK RI GHJUHHV LV H[DFWO\ SDUDOOHO WR WKH URZV 7KLV SKHQRPHQRQ LV KRZHYHU RQO\ QRWLFHDEOH DW ORZ $2( DQG RQO\ RFFXUV LI WKH VXQ D]LPXWK LV SUHFLVHO\ DOLJQHG ZLWK WKH URZ $Q $]LPXWK RI GHJUHHV IRU LQVWDQFH LV RQO\ GHJUHHV RXW RI OLQH ZLWK WKH URZ RULHQWDWLRQ $]LPXWK LV WKHUHIRUH QRW D VLJQLILFDQW IDFWRU LQ EHORZFDQRS\ OLJKW SHQHWUDWLRQ 7KLV PHDQV WKDW OLJKW SHQHWUDWLRQ FXUYHV FDQ EH FUHDWHG EDVHG RQ VXQ DQJOH ZKLFK LV VLPSOHU WR JHQHUDWH WKDQ D]LPXWK )LJXUH VKRZV WKH DYHUDJH OLJKW SHQHWUDWLRQ WKURXJK D VWDQG ZLWK b OLJKW SHQHWUDWLRQ SHU FOXVWHU DQG D [ P WUHHV SHU KHFWDUHf VSDFLQJ 7KH YDULDQFH LV ORZ DQG FRQVWDQW IRU DOO DQJOHV )RU WKLV WUHH VSDFLQJ DQG ELRPDVV OHYHO WKH FXUYH FDQ EH XVHG GLUHFWO\ WR JHQHUDWH OLJKW SHQHWUDWLRQ SDWWHUQV RYHU WLPH 7KH RXWSXW RI WKH FOXVWHU OHYHO PRGHO LQ WKLV FDVH FROODSVHV WR D VLQJOH FXUYH WKDW FDQ EH XVHG LQ VLPSOH OLJKW SHQHWUDWLRQ PRGHOV DV D UHSODFHPHQW IRU H[SRQHQWLDO GHFOLQH FXUYHV 2YHU WKH FRXUVH RI D \HDU QHHGOH JURZWK DQG DEVFLVVLRQ DSSUR[LPDWHO\ GRXEOHV DQG KDOYHV WKH IROLDJH LQ WKH FDQRS\ UHVSHFWLYHO\ ,Q WKH PRGHO WKHUH DUH WKUHH ZD\V WR VLPXODWH WKH GRXEOLQJ DQG KDOYLQJ RI IROLDJH 7KH ILUVW LV WR NHHS WKH VDPH IROLDJH SHU FOXVWHU DQG GRXEOH WKH QXPEHU RI FOXVWHUV 7KLV ZLOO GRXEOH WKH SURMHFWHG FOXVWHU DUHD DQG

PAGE 62

)5$&7,21 2) $%29(&$123< 3$5 3(1(75$7,1* 7+( &$123< $=,087+ '(*5((6f )LJXUH 6LPXODWHG OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ DV D]LPXWK (DFK SRLQW UHSUHVHQWV WKH DYHUDJH RI SHQHWUDWLRQ SHU FOXVWHU ZDV b WUHH VSDFLQJ ZDV D IXQFWLRQ RI $2( DQG ORFDWLRQV /LJKW [ PHWHUV

PAGE 63

)5$&7,21 2) $%29(&$123< 3$5 $1*/( 2) (/(9$7,21 '(*5((6f )LJXUH 6LPXODWHG EHORZ FDQRS\ OLJKW SHQHWUDWLRQ 6'f DV D IXQFWLRQ RI $2( $OO D]LPXWKV DUH LQFOXGHG (DFK SRLQW UHSUHVHQWV VLPXODWLRQV XL &7}

PAGE 64

LV URXJKO\ HTXLYDOHQW WR GRPLQDQFH E\ WKH VLGH YLHZ RI WKH FOXVWHUV 7KH VHFRQG LV WR LQFUHDVH RU GHFUHDVH WKH SHQHWUDWLRQ SHU FOXVWHU DFFRUGLQJ WR WKH GHYHORSHG UHJUHVVLRQ )LJXUH f 7KLV LV HTXLYDOHQW WR GRPLQDQFH E\ WKH HQG YLHZ $ WKLUG SRVVLELOLW\ LV WR LQFUHDVH RU GHFUHDVH WKH GHQVLW\ RI WKH WUHHV 7KLV LV QRW D UHDO SRVVLELOLW\ ZLWKLQ WKH VWDQG EXW KDOYLQJ WKH QXPEHU RI WUHHV LV WKH DSSUR[LPDWH HTXLYDOHQW WR D WKLQQLQJ RSHUDWLRQ OHDYLQJ ZLGH KROHV LQ WKH IROLDJH EHWZHHQ WKH LQGLYLGXDO FURZQV 'RXEOLQJ WKH QXPEHU RI WUHHV HIIHFWLYHO\ HOLPLQDWHV EHWZHHQWUHH JDSV DQG HOLPLQDWHV PXFK RI WKH FRQLF IRUP RI WKH FDQRS\ GXH WR FURZQ RYHUODS 7RJHWKHU WKHVH WKUHH PRGHO UXQV WHVWHG WKH LPSRUWDQFH RI WKH FOXVWHU DQG FURZQ OHYHOV RI KLHUDUFK\ RQ OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ :KHQ WKHVH WKUHH SRVVLELOLWLHV ZHUH VLPXODWHG WKHUH ZDV OLWWOH GLIIHUHQFH EHWZHHQ OLJKW SHQHWUDWLRQ SDWWHUQV JHQHUDWHG E\ WKH VKLIWLQJ FOXVWHU DUHD DQG VKLIWLQJ FOXVWHU GHQVLW\ )LJXUH f 7KH GLIIHUHQFHV WKDW GLG H[LVW RFFXU DW KLJK $2( 7KLV VXJJHVWV WKDW IRU EHORZFDQRS\ OLJKW SHQHWUDWLRQ WKH FOXVWHUV ZHUH DFWLQJ DV LI WKH\ ZHUH UDQGRPO\ ORFDWHG LQ VSDFH 7R D ODUJH H[WHQW WKH\ ZHUH EHFDXVH WKH SRVLWLRQ RI HDFK FOXVWHU ZDV UDQGRPO\ FKRVHQ ZLWKLQ WKH IROLDWHG UHJLRQ RI WKH FDQRS\ 7KLV LV DQ

PAGE 65

)5$&7,21 2) $%29(f§&$12)f< 3$5 )5$&7,21 2) $%29(&$123< 3$5 )LJXUH /LJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZLWK FKDQJLQJ FDQRS\ VWUXFWXUH $f )ROLDJH KDOYHG %f )ROLDJH GRXEOHG &-O

PAGE 66

H[DPSOH RI D %HHUnV ODZ VROXWLRQ LQ ZKLFK WKH SDUDPHWHUV DUH EDVHG RQ FOXVWHU UDWKHU WKDQ QHHGOH FKDUDFWHULVWLFV 7KHUH ZHUH KRZHYHU VLJQLILFDQW GLIIHUHQFHV EHWZHHQ OLJKW SHQHWUDWLRQ SDWWHUQV GXH WR FKDQJHV RI ELRPDVV ZLWKLQ WKH FURZQ DQG FKDQJHV GXH WR FKDQJLQJ WKH QXPEHU RI FURZQV )LJXUH f 7KHVH GDWD VXJJHVW WKDW WKH SRVLWLRQ RI WKH WUHHV LV PXFK PRUH LPSRUWDQW WR RYHUDOO OLJKW SHQHWUDWLRQ WKDQ LV WKH LQWHUQDO VWUXFWXUH RI WKH FURZQV %HFDXVH WKH PRGHO LV LQVHQVLWLYH WR ZKHWKHU IROLDJH HQWHUV WKH V\VWHP DV DGGLWLRQDO DUHD RU DV LQFUHDVHG GHQVLW\ ZLWKLQ WKH VDPH DUHD FKDQJLQJ ELRPDVV ZLWKLQ WKH FDQRS\ ZDV PRGHOHG E\ NHHSLQJ WKH QXPEHU RI FOXVWHUV FRQVWDQW DQG FKDQJLQJ WKHLU OLJKW SHQHWUDWLRQ SURSHUWLHV ,I WKH HQG YLHZ SURMHFWLRQ RI WKH FOXVWHUV GRPLQDWHV RYHU WKH VLGH YLHZ RU LI WKH FOXVWHUV DUH VPDOO WKH FOXVWHU SURMHFWLRQ DUHD ZLOO QRW FKDQJH ZLWK VKLIWV LQ ELRPDVV ,I WKLV LV WKH FDVH WKHQ NHHSLQJ FOXVWHU DUHD FRQVWDQW LV DSSURSULDWH 8VLQJ WKH FOXVWHU OHYHO UHJUHVVLRQ )LJXUH f OLJKW SHQHWUDWLRQ FXUYHV FDQ EH FUHDWHG IRU DOO VXQ DQJOHV DQG SRWHQWLDO ELRPDVV TXDQWLWLHV VLPSO\ E\ VKLIWLQJ WKH OLJKW SHQHWUDWLRQ SHU FOXVWHU DFURVV WKH UDQJH RI SRWHQWLDO YDOXHV 7KLV SURGXFHV D IDPLO\ RI FXUYHV )LJXUH f UHSUHVHQWLQJ D VSHFLILF WUHH FRQILJXUDWLRQ 7KLV IDPLO\ FDQ LQ WXUQ EH FROODSVHG WR D VLQJOH HTXDWLRQ XVLQJ

PAGE 67

)5$&7,21 2) $%29(f§&$123< 3$5 /,*+7 3(1(75$7,21 3(5 &/867(5 2 $ ’ 2 $ ’ + + + + $1*/( 2) (/(9$7,21 '(*5((6f )LJXUH /LJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZLWK FRQVWDQW FOXVWHU DUHD DQG FKDQJLQJ ELRPDVV 7UHH VSDFLQJ ZDV [ P FU} R ’ m

PAGE 68

PXOWLSOH UHJUHVVLRQ 7KH HTXDWLRQ ILW WR PRGHO RXWSXW DW P VSDFLQJ LV ,E r$2( r%I (r$2( f U ZKHUH ,E WKH IUDFWLRQ RI OLJKW SHQHWUDWLQJ WR WKH EDVH RI WKH FDQRS\ DQG %I D VFDODU YDU\LQJ EHWZHHQ DQG ZLWK SURGXFLQJ DQ DYHUDJH FOXVWHU OLJKW SHQHWUDWLRQ RI WKH DSSUR[LPDWH PHGLDQ YDOXH IRU WKH FOXVWHU VDPSOH $ FOXVWHU OHYHO PRGHO ZDV FRQVWUXFWHG IRU VODVK SLQH 7KH FURZQ IRUP ZDV GHWHUPLQHG WKURXJK GHVWUXFWLYH VDPSOLQJ DQG WKH OLJKW SHQHWUDWLRQ WKURXJK LQGLYLGXDO FOXVWHUV ZDV PHDVXUHG XQGHU FRQWUROOHG FRQGLWLRQV 0RGHO RXWSXW VKRZHG WKDW D]LPXWK ZDV QRW DQ LPSRUWDQW SDUDPHWHU IRU FRQWUROOLQJ OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ 0RVW RI WKH PRGHO EHKDYLRU ZDV FDSWXUHG LQ D UHJUHVVLRQ HTXDWLRQ EDVHG RQ ELRPDVV DQG $2(

PAGE 69

02'(/,1* 6($621$/ %(/2:&$123< /,*+7 3(1(75$7,21 ,W LV FOHDU IURP HTXDWLRQ WKDW PRVW RI WKH G\QDPLFV RI WKH WKUHHGLPHQVLRQDO FOXVWHU OHYHO PRGHO FDQ EH FROODSVHG WR D RQHGLPHQVLRQDO IRUP 7KLV DOORZV OLJKW SHQHWUDWLRQ SDWWHUQV RYHU WLPH WR EH PRGHOHG XVLQJ D PXFK VLPSOHU PRGHO 2WKHU WKDQ XVLQJ HTXDWLRQ UDWKHU WKDQ HTXDWLRQ WR SUHGLFW OLJKW SHQHWUDWLRQ D PRGHO LGHQWLFDO WR D %HHUnV ODZ PRGHO IRU D KRUL]RQWDOO\ KRPRJHQHRXV FDQRS\ FDQ EH XVHG &RUUHFW $2( FDQ EH JHQHUDWHG WKURXJK UHODWLYHO\ VLPSOH HTXDWLRQV ELRPDVV TXDQWLWLHV FDQ EH HQWHUHG DQG WKH PRGHO FDQ EH YDOLGDWHG E\ PDWFKLQJ PRGHO RXWSXW ZLWK PHDVXUHG OLJKW SHQHWUDWLRQ GDWD WKURXJK WKH FDQRS\
PAGE 70

IRU ERWK FRKRUWV ,Q DGGLWLRQ WR WKH ELRPDVV HVWLPDWHV GHVFULEHG HDUOLHU OLWWHUIDOO ZDV FROOHFWHG LQ OLWWHU WUDSV DW ELZHHNO\ LQWHUYDOV ZHHNO\ GXULQJ WKH SHDN OLWWHUIDOO SHULRG LQ 1RYHPEHUf 1HHGOH JURZWK ZDV DOVR PHDVXUHG IRU QHHGOHV DW ELZHHNO\ LQWHUYDOV WKURXJKRXW WKH VHDVRQ RI DFWLYH JURZWK ZHHNO\ GXULQJ VSULQJ EXGEUHDNf 2I WKHVH GDWD WKH GHVWUXFWLYH VDPSOLQJ ZDV FRQVLGHUHG WR EH WKH PRVW DFFXUDWH DQG ZDV XVHG DV D EDVHOLQH IRU ELRPDVV FDOFXODWLRQ )URP WKHVH GDWD ELRPDVV TXDQWLWLHV ZHUH FDOFXODWHG ERWK IRUZDUG DQG EDFNZDUG WKURXJK WLPH 7KH ROG IROLDJH G\QDPLFV ZHUH WUDFNHG WKURXJK OLWWHUIDOO /LWWHUIDOO ZDV DVVXPHG WR EH HQWLUHO\ ROG IROLDJH QHZ IROLDJH WKDW IHOO LQWR WKH WUDSV GXH WR VWRUP GDPDJH ZDV VHSDUDWHG 1HZ IROLDJH G\QDPLFV ZHUH EDVHG RQ QHHGOH HORQJDWLRQ SDWWHUQV %LRPDVV ZDV WKHQ FRQYHUWHG LQWR DOO VLGHG OHDI DUHD XVLQJ D JHRPHWULF WHFKQLTXH *KRO] HW DO f %DVHG RQ WKLV DQDO\VLV LW ZDV IRXQG WKDW WKH PD[LPXP IROLDU ELRPDVV ZDV DSSUR[LPDWHO\ WLPHV WKH PLQLPXP )LJXUH f DQG WKDW WKH ELRPDVV SDWWHUQ ODJJHG WKH VRODU F\FOH E\ DSSUR[LPDWHO\ WKUHH PRQWKV )LJXUH f ,Q WKH PRGHO WKH VPRRWKHG ELRPDVV FXUYH VKRZQ LQ )LJXUH ZDV VFDOHG WR D PHDQ RI DQG XVHG DV LQSXW IRU HTXDWLRQ DQG RWKHU VLPLODU HTXDWLRQV WKDW UHSUHVHQW OLJKW SHQHWUDWLRQ WKURXJK GLIIHUHQW WUHH FRQILJXUDWLRQV

PAGE 71

$// 6,'(' /($) $5($ ,1'(; )LJXUH &DOFXODWHG /$, s 6'f RYHU WLPH 7KH WLPH SHULRG VWDUWV RQ DQG H[WHQGV WKURXJK +HQU\ *KRO] SHUVRQDO FRPPXQLFDWLRQ &7}

PAGE 72

$// 6,'(' /($) $5($ ,1'(; )LJXUH $YHUDJH /$, DQG PD[LPXP GDLO\ VXQ DQJOH RYHU WLPH 681 $1*/( '(*5((6f

PAGE 73

/LJKW WKURXJK WKH FDQRS\ ZDV PHDVXUHG ZLWK D VHULHV RI IL[HG VHQVRU DUUD\V 7KH DUUD\V FRQVLVWHG RI WZHOYH OLQHDU UHVSRQVH GLRGHV PRXQWHG RQ DOXPLQXP EHDPV DW P LQWHUYDOV (DFK DUUD\ FRQVLVWHG RI WZR EHDPV SODFHG DW ULJKW DQJOHV RQ QDUURZ WULDQJXODU DQWHQQD WRZHUV 7KH DUUD\V ZHUH OHYHO ZLWK WKH JURXQG 7ZR DUUD\V ZHUH SODFHG DERYH WKH FDQRS\ ILYH ZHUH SODFHG LPPHGLDWHO\ EHQHDWK WKH FDQRS\ DQG VL[ ZHUH SODFHG DERYH WKH VKUXE OD\HU RQ WKH IRUHVW IORRU 5HDGLQJV DW HDFK VHQVRU ZHUH WDNHQ DW PLQXWH LQWHUYDOV WKURXJKRXW WKH GD\ DQG DQ DYHUDJHG YDOXH UHFRUGHG ZDV HDFK KRXU 7KH VHQVRUV ZHUH FDOLEUDWHG WR /L &RU 3$5 VSRW VHQVRUV 7KUHH /L&RU 3$5 VSRW VHQVRUV ZHUH DOVR SODFHG DERYH WKH FDQRS\ DORQJ ZLWK WZR /L&RU IXOO VSHFWUXP VHQVRUV 7KH V\VWHP ZDV FKHFNHG IRU GULIW RYHU WLPH E\ UHJUHVVLQJ KRXUO\ DERYHFDQRS\ IURP WKH 3$5 VSRW VHQVRUV DJDLQVW WKH DERYHFDQRS\ GLRGH DUUD\V $Q DGGLWLRQDO FKHFN ZDV PDGH E\ UHJUHVVLQJ WKH 3$5 VSRW VHQVRUV DJDLQVW WKH IXOO VSHFWUXP VHQVRUV 7KH UHJUHVVLRQ EHWZHHQ WKH 3$5 VSRW VHQVRUV DQG WKH DERYHFDQRS\ GLRGH DUUD\V IRU WKH SHULRG -DQXDU\ ZDV RQ 1RYHPEHU WKURXJK ,L f U

PAGE 74

ZKHUH ,[ WKH PHDQ RI WKH WZR DERYHFDQRS\ GLRGH DUUD\V DQG ,V WKH PHDQ RI WKH DERYHFDQRS\ VSRW VHQVRUV 7KHUH LV QR LQGLFDWLRQ RI QRQOLQHDU EHKDYLRU DW DQ\ OLJKW LQWHQVLW\ OHYHO RU DQ\ VLJQ RI VHQVRU GULIW %HFDXVH WKH EHORZFDQRS\ VHQVRUV ZHUH IL[HG LQ VSDFH WKH SRVVLELOLW\ H[LVWV WKDW WKH UHDGLQJV ZHUH ELDVHG E\ WKHLU VSHFLILF ORFDWLRQV $ FKHFN ZDV WKHUHIRUH PDGH E\ UHJUHVVLQJ WKH EHORZFDQRS\ VHQVRUV DJDLQVW HDFK RWKHU LQ DOO FRPELQDWLRQV RQ DQ KRXUO\ EDVLV 7DEOH f 7KHVH UHJUHVVLRQV GHPRQVWUDWH WKDW WKH VHQVRUV ERWK EHORZ WKH FDQRS\ DQG DERYH WKH VKUXE OD\HU WUDFNHG HDFK RWKHU YHU\ ZHOO U YDOXHV UDQJHG IURP WR f 2QO\ WKUHH RI WKH FRPELQDWLRQV KDG DQ U YDOXH RI OHVV WKDQ 7KH VORSHV LGHDOO\ UDQJHG IURP WR ZLWK IDOOLQJ EHORZ DQG DERYH 7KH DYHUDJH VORSH ZDV 7KH LQWHUFHSWV LGHDOO\ UDQJHG IURP WR SPRO 3$5PrVf 1R VLJQLILFDQW GLIIHUHQFH ZDV REVHUYHG EHWZHHQ WKH VKUXE OHYHO VHQVRUV DQG WKH EHORZFDQRS\ VHQVRUV VXJJHVWLQJ WKDW GLVWDQFH IURP WKH FDQRS\ ZDV QRW DQ LPSRUWDQW LQIOXHQFH RQ OLJKW UHDGLQJV )RU GHWHUPLQLQJ EHORZFDQRS\ OLJKW DOO WKH EHORZ FDQRS\ VHQVRUV ZHUH FRPELQHG WR FUHDWH DQ DYHUDJH UHDGLQJ DQG VXPPHG WR REWDLQ GDLO\ PHDVXUHPHQWV 7KHVH GDLO\

PAGE 75

7DEOH 5HJUHVVLRQ FRQVWDQWV IRU KRXUO\ UHDGLQJV RI SDLUV RI EHORZFDQRS\ VHQVRU DUUD\V IURP 1RYHPEHU WR 2FWREHU %& VHQVRUV ZHUH LPPHGLDWHO\ EHQHDWK WKH FDQRS\ 6 VHQVRUV ZHUH DERYH WKH VKUXE OD\HU 0RGHO U 6ORSH 6( SPROPrVHFf ,QWHUFHSW 6( SPROPrVHFf %& %& %& %& %& %& %& %& %& 6, %& 6 %& 6 %& 6 %& 6 %& %& %& %& %& %& %& 6, %& 6 %& 6 %& 6 %& 6 %& %& %& %& %& 6, %& 6 %& 6 %& 6 %& 6 %& %& %& 6, %& 6 %& 6 %& 6 %& 6 %& 6, %& 6 %& 6 %& 6 %& 6

PAGE 76

ILJXUHV ZHUH WKHQ GLYLGHG LQWR WKH GDLO\ VXP RI WKH DYHUDJH RI WKH WZR DERYHFDQRS\ VHQVRU DUUD\V WR REWDLQ IUDFWLRQDO EHORZFDQRS\ OLJKW SHQHWUDWLRQ GDLO\ EHJLQQLQJ 1RYHPEHU DQG FRQWLQXLQJ WKURXJK 0DUFK $ SHULRG LQ $XJXVW LV PLVVLQJ GXH WR D OLJKWQLQJ VWULNH DQG VHYHUDO RWKHU GD\V DUH DOVR PLVVLQJ GXH WR HTXLSPHQW IDLOXUH /LJKW HVWLPDWHV ZHUH PDGH IRU GD\V RI D SRWHQWLDO GD\V :LWK JRRG GDWD VHWV IRU ERWK EHORZFDQRS\ OLJKW SHQHWUDWLRQ DQG ELRPDVV IOXFWXDWLRQ OLJKW SHQHWUDWLRQ RYHU WLPH FDQ EH PRGHOHG DQG YDOLGDWHG 7R REWDLQ DFFXUDWH HVWLPDWHV RI GDLO\ OLJKW LQWHJUDOV D VLPSOH PRGHO FDQ EH XVHG WR JHQHUDWH VXQ DQJOHV DQG DSSUR[LPDWH LQWHQVLWLHV &DPSEHOO f )RU VLQHFRUUHFWHG OLJKW LPSDFWLQJ RQ D IODW VXUIDFH 6LQ$2( VLQVLQ/f VLQ'HFf FRV/f FRV'HFf FRV>WWf@ f f ZKHUH 6LQ$2( W / WKH VLQH RI WKH $2( WKH WLPH RI GD\ LQ KRXUV KRXU FORFNf VRODU QRRQ WKH ODWLWXGH LQ GHJUHHV DQG WKH GHFOLQDWLRQ LQ GHJUHHV

PAGE 77

6LQH FRUUHFWHG VRODU LQWHQVLW\ RQ IODW JURXQG DW VHD OHYHO FDQ EH DSSUR[LPDWHG E\ ,I VLQ>,VF r 7D6LQ$(@ f ZKHUH ,I WKH VRODU LQWHQVLW\ RQ IODW JURXQG ,VF WKH VRODU FRQVWDQW DQG 7D DWPRVSKHULF WUDQVPLVVLYLW\ )RU GHWHUPLQLQJ SURSRUWLRQDO OLJKW SHQHWUDWLRQ ,VF FDQ EH VHW WR DQG LV GLPHQVLRQOHVV 7D LV DOVR GLPHQVLRQOHVV DQG YDULHV IURP RQ YHU\ FOHDU GD\V WR RQ KD]\ RU SROOXWHG GD\V &DPSEHOO f /LJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZDV FDOFXODWHG DW KRXUO\ LQWHUYDOV XVLQJ HTXDWLRQV DQG 7R REWDLQ GDLO\ WLPH LQWHJUDOV WKH UHVXOWV ZHUH DVVXPHG WR EH FRQVWDQW IRU WKH GXUDWLRQ RI WKH KRXU 7KLV LQWHJUDWLRQ WHFKQLTXH LV MXVWLILHG IRU GDLO\ WLPH LQWHJUDOV EHFDXVH GXH WR WKH V\PPHWU\ LQ DQJXODU GLVWULEXWLRQ DURXQG VRODU QRRQ LQWHJUDWHG OLJKW ZLOO EH XQGHUHVWLPDWHG EHIRUH QRRQ DQG RYHUHVWLPDWHG DIWHU QRRQ E\ DSSUR[LPDWHO\ HTXDO DPRXQWV 7KH WLPH VHULHV H[WHQGHG IURP 1RYHPEHU WR 0DUFK WKH SHULRG ZKHQ DERYH DQG EHORZFDQRS\ VHQVRUV ZHUH LQ SODFH DQG ELRPDVV HVWLPDWHV ZHUH FRPSXWHG

PAGE 78

,I IRU D WUHH VSDFLQJ RI [ P OLJKW SHQHWUDWLRQ SHU FOXVWHU LV DVVXPHG WR EH b WKURXJKRXW WKH WLPH VHULHV WKH VLPXODWLRQ PDWFKHV WKH GDWD XQWLO WKH VXPPHU RI DQG WKHQ GLYHUJHV )LJXUH f /LJKW SHQHWUDWLRQ LV RYHUHVWLPDWHG IRU WKH UHPDLQGHU RI WKH WLPH VHULHV ,I KRZHYHU LW LV DVVXPHG WKDW b OLJKW SHQHWUDWLRQ SHU FOXVWHU UHSUHVHQWV WKH PLQLPXP ELRPDVV OHYHOV 0DUFK f DQG ELRPDVV LV DOORZHG WR IOXFWXDWH RYHU WLPH DFFRUGLQJ WR WKH SDWWHUQ VKRZQ LQ )LJXUH WKH ILW LV JUHDWO\ LPSURYHG )LJXUH f 'LIIXVH OLJKW SHQHWUDWLRQ RI WKH FDQRS\ GLIIHUV IURP GLUHFW EHDP UDGLDWLRQ EHFDXVH LW HPDQDWHV GLUHFWO\ IURP DOO SRUWLRQV RI WKH VN\ GRPH VLPXOWDQHRXVO\ 7KH TXDQWLW\ RI GLIIXVH OLJKW UHDFKLQJ D WDUJHW SRLQW ZLWKLQ WKH FDQRS\ ZLOO EH GHFUHDVHG E\ DQ DPRXQW SURSRUWLRQDO WR WKH DUHD RI WKH VN\ GRPH WKDW LV REVFXUHG E\ VXUURXQGLQJ IROLDJH DQG WKH OLJKW LQWHQVLW\ RI WKRVH SRUWLRQV RI WKH VN\ WKDW DUH REVFXUHG 7KH REVFXUHG SRUWLRQ RI WKH VN\ GRPH LQ WXUQ LV UHODWHG WR WKH GLVWDQFH WKDW WKH VKDGH REMHFW LV IURP WKH WDUJHW DQG WKH VL]H RI WKH VKDGH REMHFW 2QH DSSURDFK WR GLIIXVH PRGHOLQJ LV WKHUHIRUH WR FRPSXWH VN\ GRPH FRYHUDJH IRU HDFK WDUJHW SRLQW 7KLV LV WKH DSSURDFK XVHG E\ 1RUPDQ DQG :HOOHV f IRU HQYHORSH PRGHOLQJ 7KH FKLHI SUREOHP ZLWK WKLV DSSURDFK OLHV LQ WKH GHWHUPLQDWLRQ RI WKH DFWXDO SDWWHUQV RI GLIIXVH UDGLDWLRQ

PAGE 79

)5$&7,21 2) $%29(&$123< 3$5 $ 0($685(' 9$/8(6 '$7( )LJXUH 6LPXODWHG OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ FRPSDUHG ZLWK GDLO\ GDWD ,QLWLDO FOXVWHU SHQHWUDWLRQ ZDV b WUHH VSDFLQJ ZDV [ P &KDQJHV LQ ELRPDVV IROORZHG WKH /$, SDWWHUQ LQ )LJXUH WR

PAGE 80

'LIIXVH SDWWHUQV DUH TXLWH SUHGLFWDEOH ZKHQ WKH VN\ LV KHDYLO\ RYHUFDVW )LJXUH f EXW EHFRPH YHU\ FRPSOH[ RQ VXQQ\ GD\V *UDQW f 'LIIXVH OLJKW SDWWHUQV DUH WKHUHIRUH GLIILFXOW WR VLPXODWH EHFDXVH WKH\ VKLIW ZLWK WKH ZHDWKHU DQG FDQQRW EH JHQHUDWHG WKURXJK WULJRQRPHWULF WHFKQLTXHV ,Q FOHDU VN\ FRQGLWLRQV GLUHFW OLJKW GRPLQDWHV DQG WKH SDWWHUQ RI GLIIXVH OLJKW LV VWURQJO\ DQLVRWURSLF 8QGHU KHDY\ RYHUFDVW GLIIXVH OLJKW LV LVRWURSLF 2Q XQLIRUPO\ RYHUFDVW GD\V WKH LQWHQVLW\ SHU XQLW DUHD RI WKH VN\ GRPH LV JUHDWHVW DW WKH WRS RI WKH GRPH DQG OHDVW DW WKH KRUL]RQ 7KH DUHD KRZHYHU LV JUHDWHVW DW WKH KRUL]RQ 7KH JUHDWHVW TXDQWLW\ RI OLJKW WKHUHIRUH HPDQDWHV IURP WKH PLGVN\ UHJLRQ )LJXUH f %HFDXVH D]LPXWK ZDV XQLPSRUWDQW WR OLJKW SHQHWUDWLRQ LQWR WKH VWDQG D YHU\ VLPSOH ZD\ RI PRGHOLQJ GLIIXVH OLJKW LV WR DVVXPH WKDW LW DOO HPDQDWHV IURP WKH PLGVN\ 7KH SUHPLVH WKDW GLIIXVH OLJKW HQWHUV WKH VWDQG SULPDULO\ IURP WKH PLGVN\ VKRXOG KDYH WKH UHVXOW WKDW LQ WKH ZLQWHU GD\V GRPLQDWHG E\ GLIIXVH OLJKW VKRXOG KDYH KLJKHU OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ WKDQ FOHDU GD\V 7KLV LV EHFDXVH LQ 1RUWK )ORULGD WKH PD[LPXP $2( IRU GLUHFW EHDP UDGLDWLRQ DW WKH ZLQWHU VROVWLFH LV GHJUHHV 1R GLUHFW OLJKW UDGLDWLRQ HQWHUV WKH FDQRS\ IURP WKH PLGVN\ $2( GHJUHHVf ,Q WKH VXPPHU WKH HIIHFW RI GLIIXVH OLJKW RQ EHORZFDQRS\ OLJKW SHQHWUDWLRQ VKRXOG

PAGE 81

)5$&7,21 2) 727$/ 3$5 f§L L L B $1*/( 2) (/(9$7,21 '(*5((6f )LJXUH 0HDVXUHG YDOXHV IRU GLIIXVH OLJKW DV D IXQFWLRQ RI $2( 5HDGLQJV ZHUH WDNHQ RQ XQLIRUPO\ RYHUFDVW GD\V

PAGE 82

EH PXFK PRUH PXWHG EHFDXVH D JUHDW GHDO RI WKH GLUHFW OLJKW HPDQDWHV IURP WKH PLGVN\ ,I WKHUH LV D SDWWHUQ LW VKRXOG EH UHYHUVH IURP WKH ZLQWHU SDWWHUQ EHFDXVH PLGGD\ GLUHFW OLJKW HPDQDWHV IURP $2( DV KLJK DV GHJUHHV )RU D JLYHQ VXQ DQJOH FKDQJHV LQ DERYHFDQRS\ 3$5 DUH GXH WR GLIIHUHQFHV LQ DWPRVSKHULF WUDQVPLVVLYLW\ 'HFUHDVHG WUDQVPLVVLYLW\ GXH WR ZDWHU RU GXVW LQFUHDVHV WKH SURSRUWLRQ RI GLIIXVH OLJKW &DPSEHOO 6SLWWHUV HW DO f )RU SHULRGV ZLWK VLPLODU VXQ DQJOH GLVWULEXWLRQV VXFK DV H[LVW DURXQG WKH VROVWLFHV GD\V ZLWK WKH ORZHVW LQWHJUDWHG 3$5 VKRXOG KDYH WKH KLJKHVW SURSRUWLRQ RI GLIIXVH OLJKW DQG WKRVH ZLWK WKH KLJKHVW 3$5 VKRXOG KDYH WKH ORZHVW :KHQ D WZR PRQWK SHULRG VXUURXQGLQJ HDFK VROVWLFH ZDV SORWWHG DJDLQVW LQWHJUDWHG 3$5 WKH SDWWHUQV VXSSRUWHG WKH K\SRWKHVLV WKDW GLIIXVH OLJKW HPDQDWHG SULPDULO\ IURP WKH PLGVN\ )LJXUH f )RU WKH SHULRG H[WHQGLQJ RQH PRQWK RQ HLWKHU VLGH RI WKH ZLQWHU VROVWLFH WKHUH ZDV D VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ KLJK DERYHFDQRS\ 3$5 DQG EHORZFDQRS\ OLJKW SHQHWUDWLRQ )RU WKH SHULRG H[WHQGLQJ RQH PRQWK WR HLWKHU VLGH RI WKH VXPPHU VROVWLFH WKHUH ZDV D YHU\ ZHDN SRVLWLYH FRUUHODWLRQ %DVHG RQ WKLV HPSLULFDO VXSSRUW GLIIXVH OLJKW ZDV DGGHG WR WKH GLUHFW OLJKW PRGHO ,W ZDV JHQHUDWHG E\ XVLQJ WKH IROORZLQJ UXOHV

PAGE 83

$&7,21 2) $% 29(f§&$1 2 3< 3$5 )5$&7,21 2) $%29(&$123< 3$5 $%29(&$123< 3$5 02/0 }' $
PAGE 84

f b RI WKH GD\V UDQGRPO\ FKRVHQ ZHUH QRW VXQQ\ f WKH VSOLW EHWZHHQ GLUHFW DQG GLIIXVH OLJKW ZDV SXUHO\ UDQGRP RQ WKRVH GD\V VRPH ZRXOG EH SDUWO\ FORXG\f f DOO GLIIXVH OLJKW HPDQDWHG IURP GHJUHHV $2( :KHQ WKHVH UXOHV ZHUH DSSOLHG WR WKH DQQXDO OLJKW SHQHWUDWLRQ PRGHO SDWWHUQV RI ZLQWHU YDULDQFH DQG VXPPHU FRQVWDQF\ LQ OLJKW SHQHWUDWLRQ ZHUH GXSOLFDWHG ZLWK WKH H[FHSWLRQ RI HDUO\ VXPPHU YDULDWLRQ )LJXUH f ,Q WKH HDUO\ VXPPHU WKH PHDVXUHG GDWD GLVSOD\HG KLJKHU YDULDWLRQ WKDQ WKH PRGHO SUHGLFWHG 7KLV VXJJHVWV WKDW WKLV DSSURDFK WR PRGHOLQJ GLIIXVH OLJKW FDSWXUHV D JUHDW GHDO RI WKH LPSDFW RI FORXG\ ZHDWKHU RQ FDQRS\ EHORZFDQRS\ OLJKW SHQHWUDWLRQ DQG WKDW WKH SDWWHUQ RI YDULDWLRQ REVHUYHG LQ EHORZFDQRS\ OLJKW LV FDXVHG E\ GLIIHUHQFHV LQ V\VWHP VHQVLWLYLW\ WR GLIIXVH UDGLDWLRQ UDWKHU WKDQ GLIIHUHQFHV LQ ZHDWKHU SDWWHUQ 7KH UXOHV IRU VSOLWWLQJ GD\V LQWR GLIIXVH DQG GLUHFW OLJKW OLVWHG DERYH ZHUH ODUJHO\ DUELWUDU\ 1R DWWHPSW ZDV PDGH WR PDWFK OLJKW SHQHWUDWLRQ IRU VSHFLILF GD\V 7KH SURSRUWLRQ RI FOHDU DQG FORXG\ GD\V ZDV KRZHYHU UHDVRQDEO\ DFFXUDWH :KHQ WRWDO GDLO\ UDGLDWLRQ IRU GD\V ZDV FRPSDUHG ZLWK WKHRUHWLFDO FOHDU VN\ YDOXHV b RI WKH GD\V ZHUH ZLWKLQ b RI WKH WKHRUHWLFDO YDOXHV 7KH VWURQJ FRUUHODWLRQ EHWZHHQ WRWDO DERYHFDQRS\ 3$5 DQG EHORZFDQRS\ OLJKW SHQHWUDWLRQ VHHQ LQ )LJXUH D KRZHYHU

PAGE 85

)5$&7,21 2) $%29(&$123< 3$5 '$7( )LJXUH 6LPXODWHG SHQHWUDWLRQ RI OLJKW ZLWK D GLIIXVH FRPSRQHQW WKURXJK WKH FDQRS\

PAGE 86

VXJJHVWV WKDW OLJKW SHQHWUDWLRQ FDQ EH VLPXODWHG RQ D GDLO\ EDVLV LI D UXOH IRU SDUWLWLRQLQJ WKH WRWDO OLJKW LQWR GLIIXVH DQG GLUHFW FRPSRQHQWV EDVHG RQ GDLO\ DERYHFDQRS\ 3$5 FDQ EH GHULYHG 7KH VLPSOHVW SDWWHUQ LV WR DVVXPH WKDW WKH SURSRUWLRQ RI GLIIXVH OLJKW LV D OLQHDU IXQFWLRQ RI DERYHFDQRS\ 3$5 )RU WKH SHULRG FRYHUHG LQ )LJXUH D LW ZDV DVVXPHG WKDW GDLO\ 3$5 RI PRO UHSUHVHQWHG D XQLIRUP RYHUFDVW GD\ ZLWK b GLIIXVH UDGLDWLRQ DQG 3$5 RI UHSUHVHQWHG D GD\ LQ ZKLFK DOO RI WKH OLJKW HQWHUHG WKH VWDQG DV GLUHFW UDGLDWLRQ :KHQ WKLV OLQHDU SDWWHUQ LV PRGHOHG WKH VLPXODWLRQ WUDFNV WKH SDWWHUQ RI WKH PHDVXUHG GDWD EXW KDV ORZHU YDULDWLRQ )LJXUH Df 7KLV VXJJHVWV WKDW WKH VKLIW IURP GLUHFW WR GLIIXVH OLJKW LV D QRQOLQHDU IXQFWLRQ RI GDLO\ 3$5 ,Q LWV PRVW H[WUHPH IRUP WKLV QRQOLQHDULW\ ZLOO WDNH WKH IRUP RI D VZLWFK ZKHUH WKH OLJKW SDWWHUQ VKLIWV IURP HQWLUHO\ GLUHFW WR HQWLUHO\ GLIIXVH DW D VSHFLILF GDLO\ 3$5 &DPSEHOO f EUHDNV GLIIXVH PRGHOLQJ LQWR D FOHDU VN\ PRGHO ZKLFK DOORFDWHV b WR b RI WKH WRWDO UDGLDWLRQ WR GLIIXVH GHSHQGLQJ RQ WKH DPRXQW RI KD]Hf DQG D FORXG\ VN\ PRGHO LQ ZKLFK DOO RI WKH OLJKW LV DVVXPHG WR EH GLIIXVH ,Q &DPSEHOOnV V\VWHP DOO OLJKW LV DVVXPHG WR EH GLIIXVH ZKHQHYHU FORXGV REVFXUH WKH VXQ )RU D VHULHV RI GDLO\ OLJKW LQWHJUDOV D YDULHW\ RI FORXG SDWWHUQV ZLOO

PAGE 87

)5$&7,21 2) $%29(&$123< 3$5 )5$&7,21 2) $%29(&$123< 3$5 % '$7( % 121 /,1($5 2 2 6(1625 '$7$ 6,08/$7,21 A frn '$7( )LJXUH 6LPXODWHG DQG PHDVXUHG GDLO\ 3$5 DURXQG WKH ZLQWHU VROVWLFH $f /LQHDU PRGHO %f 7KH QRQOLQHDU PRGHO XVHV D VLJPRLG FXUYH WR SDUWLWLRQ OLJKW RR R

PAGE 88

H[LVW ,I D GD\ KDV KLJK DWPRVSKHULF WUDQVPLVVLYLW\ DQG LV SDUWO\ FORXG\ WKHQ IRU SDUW RI WKH GD\ WKH FOHDU VN\ FRQGLWLRQV ZLOO GRPLQDWH 8QGHU WKHVH FRQGLWLRQV LW WKHUH LV D OLQHDU UHODWLRQVKLS EHWZHHQ GDLO\ LQWHJUDWHG OLJKW DQG WKH SHUFHQW FORXG FRYHU 6SLWWHUV HW DO f &DPSEHOOnV PRGHOV VXJJHVW WKDW WKH SURSRUWLRQ RI GLIIXVH UDGLDWLRQ ZLOO DOVR EH OLQHDUO\ GHSHQGHQW RQ WKH SHUFHQW FORXG FRYHU )URQWDO ZHDWKHU ZLOO SURGXFH HLWKHU XQLIRUPO\ FORXG\ RU XQLIRUPO\ FOHDU GD\V DQG WKH G\QDPLFV VKRXOG EH PXFK PRUH OLNH D VZLWFK $ VLJPRLG LV D VLPSOH QRQOLQHDU IXQFWLRQ ZLWK G\QDPLFV LQWHUPHGLDWH EHWZHHQ D OLQH DQG D VZLWFK DQG WKLV SDWWHUQ KDV EHHQ VKRZQ WR ILW HPSLULFDO GDWD IRU PDQ\ VLWHV 6SLWWHUV HW DO f :KHQ D VLJPRLG IXQFWLRQ UHSODFHV WKH OLQHDU GHSHQGHQF\ WKH PRGHO ILW LV LPSURYHG )LJXUH Ef :KHQ WKH PHDVXUHG GDWD DUH UHJUHVVHG RQ WKH VLPXODWLRQ ERWK PRGHOV DFFRXQW IRU b RI WKH QDWXUDO YDULDWLRQ 7KH VORSH LGHDOO\ LV IRU WKH OLQHDU PRGHO DQG IRU WKH VLJPRLG PRGHO 6LPSOH PRGHOV IRU GLIIXVH UDGLDWLRQ ZKHQ FRXSOHG ZLWK WKH UHJUHVVLRQ REWDLQHG WKURXJK FOXVWHU OHYHO PRGHOLQJ GXSOLFDWH WKH REVHUYHG SDWWHUQ RI OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ RQ ERWK D VHDVRQDO DQG D GDLO\ VFDOH %HFDXVH WKH RXWSXW IURP WKH FOXVWHU OHYHO PRGHO ZDV UHGXFHG WR D VLQJOH UHJUHVVLRQ HTXDWLRQ LW ZDV SRVVLEOH WR FRQWUDVW WKH PRGHO UHVXOWV ZLWK D %HHUnV ODZ PRGHO GULYHQ

PAGE 89

E\ LGHQWLFDO LQSXW $VVXPLQJ FRQVWDQW IROLDJH WKH RQO\ GLYHUJHQFH OD\ DW KLJK VXQ DQJOHV )LJXUH f :KHQ WKH ELRPDVV G\QDPLFV ZHUH LQFOXGHG WKH %HHUnV ODZ PRGHO PDWFKHG LGHQWLFDOO\ LQ WKH ZLQWHU DQG VSULQJ EXW ZDV PRUH VHQVLWLYH WR WKH ELRPDVV EXLOGXS GXULQJ WKH VXPPHU )LJXUH f &RPSDUHG ZLWK WKH PHDVXUHG OLJKW GDWD WKH %HHUnV ODZ PRGHO SURYLGHG D SRRUHU ILW WR WKH VXPPHU OLJKW SHQHWUDWLRQ WKDQ GLG WKH FOXVWHU OHYHO PRGHO )LJXUH f EXW LQ JHQHUDO D VLQHFRUUHFWHG %HHUnV PRGHO ILWV WKH OLJKW SDWWHUQV UHDVRQDEO\ ZHOO 7R GHWHUPLQH WKH H[WHQW WR ZKLFK WKH GLIIHUHQFH EHWZHHQ WKH %HHUnV ODZ PRGHO DQG WKH FOXVWHU OHYHO PRGHO ZDV EDVHG RQ WKH SUHVHQFH RI FOXVWHULQJ D PRGLILHG %HHUnV ODZ PRGHO ZDV FRQVWUXFWHG ,Q WKLV PRGHO LW ZDV DVVXPHG WKDW FOXVWHUV UDWKHU WKDQ OHDYHV ZHUH WKH EDVLF XQLW 7KH FOXVWHUV ZHUH UDQGRPO\ SRVLWLRQHG DQG WKH OLJKW SHQHWUDWLRQ WKURXJK WKH FOXVWHUV ZDV EDVHG RQ WKH UHJUHVVLRQ GHULYHG WKURXJK GLUHFW PHDVXUHPHQW )LJXUH f :KHQ RXWSXW IURP WKLV PRGHO LV FRPSDUHG ZLWK RXWSXW IURP WKH GLVFUHWH FOXVWHU PRGHO WKH SDWWHUQV DUH YHU\ VLPLODU IRU WKH P VSDFLQJ )LJXUH f 7KLV SURYLGHG IXUWKHU HYLGHQFH WKDW LQ WKH FOXVWHUOHYHO PRGHO FOXVWHUV ZHUH SURMHFWLQJ UDQGRPO\ RQWR WKH IRUHVW IORRU 7KH FORVH ILW EHWZHHQ WKHVH WZR PRGHOV DOVR VXJJHVWHG WKDW WKH GLVFUHWH

PAGE 90

)5$&7,21 2) $%29(&$123< 3$5 %((5f6 /$: &/867(5 02'(/ )LJXUH &RPSDULVRQ RI D UHJUHVVLRQ PRGHO DQG D %HHUnV ODZ PRGHO ZLWK FRQVWDQW ELRPDVV RR RR

PAGE 91

)5$&7,21 2) $%29(f§&$123< 3$5 '$7( )LJXUH &RPSDULVRQ RI D UHJUHVVLRQ PRGHO DQG D %HHUfV ODZ PRGHO ZLWK FKDQJLQJ ELRPDVV %LRPDVV VKLIWV IROORZHG WKH /$, SDWWHUQ LQ )LJXUH 2'

PAGE 92

)5$&7,21 2) $%29(f§&$123< 3$5 )LJXUH $ %HHUnV ODZ PRGHO ILW WR WKH EHORZFDQRS\ OLJKW GDWD 7KH PRGHO ZDV UXQ XVLQJ D WLPH VWHS RI KRXU %LRPDVV IROORZHG WKH SDWWHUQ RI /$, LQ )LJXUH

PAGE 93

)5$&7,21 2) $%29(&$123< 3$5 f f &/867(5 02'(/ 02',),(' %((5n6 /$: )LJXUH 6LPXODWHG OLJKW SHQHWUDWLRQ XVLQJ D UHJUHVVLRQ PRGHO DQG D PRGLILHG EDVHG RQ FOXVWHUV UDWKHU WKDQ OHDYHVf %HHUnV ODZ PRGHO 7KH PRGHO ZDV UXQ XVLQJ D WLPH VWHS RI KRXU %LRPDVV IROORZHG WKH SDWWHUQ RI /$, LQ )LJXUH &7L

PAGE 94

UHSUHVHQWDWLRQ SURYLGHG D QXPHULFDOO\ DFFXUDWH SLFWXUH RI OLJKW SHQHWUDWLRQ

PAGE 95

02'(/,1* /,*+7 3(1(75$7,21 :,7+,1 7+( &$123< /LJKW SHQHWUDWLRQ SDWWHUQV WKURXJK WKH FDQRS\ DUH PXFK PRUH GLIILFXOW WR REWDLQ WKDQ EHORZFDQRS\ YDOXHV EXW DUH PRUH LPSRUWDQW WR FDQRS\ SK\VLRORJ\ 7KH FOXVWHUOHYHO PRGHO LV FDSDEOH RI VLPXODWLQJ SHQHWUDWLRQ HLWKHU WR D SODQDU VXUIDFH ZLWKLQ WKH FDQRS\ VWUXFWXUH RU WR D WDUJHW WUHH LQ ZKLFK OLJKW SHQHWUDWLRQ LV FDOFXODWHG WR WKH VXUIDFH RI HDFK FOXVWHU 7R REWDLQ D URXJK HVWLPDWH RI OLJKW SHQHWUDWLRQ WR D VHULHV RI SODQHV ZLWKLQ WKH FDQRS\ ILYH SURILOHV ZHUH UXQ RQ D XQLIRUPO\ RYHUFDVW GD\ )LJXUH f $Q RYHUFDVW GD\ ZDV FKRVHQ WR PLQLPL]H YDULDWLRQ ZLWKLQ WKH FDQRS\ 7KH SURILOHV ZHUH FUHDWHG E\ KDQJLQJ RII D VPDOO WULDQJXODU DQWHQQD WRZHU RQ WKH FRQWURO SORW DQG VZLQJLQJ D OLQH VHQVRU LQ D FLUFOH DSSUR[LPDWHO\ P LQ UDGLXV /LJKW UHDGLQJV ZHUH WDNHQ DV PXFK DV SRVVLEOH DW GHJUHH LQWHUYDOV DORQJ WKH DUF (DFK DUF ZDV WKHUHIRUH FKDUDFWHUL]HG E\ LQGLYLGXDO UHDGLQJV ZKLFK ZHUH WKHQ DYHUDJHG WR REWDLQ D VLQJOH UHDGLQJ UHSUHVHQWLQJ WKH DUF $UFV ZHUH VSDFHG DW P LQWHUYDOV IURP WKH DSSUR[LPDWH WRS RI WKH FDQRS\ DVFHUWDLQHG E\ VLJKWLQJ ZLWK D FOLQRPHWHUf

PAGE 96

)5$&7,21 2) $%29(&$123< 3$5 ',67$1&( )520 &$123< 723 0f )LJXUH /LJKW SHQHWUDWLRQ SURILOHV WKURXJK WKH FDQRS\ (DFK OLQH UHSUHVHQWV DQ LQGLYLGXDO SURILOH 5HDGLQJV ZHUH WDNHQ RQ D XQLIRUPO\ RYHUFDVW GD\

PAGE 97

WR D GHSWK RI P 7KH PHWHU UHDGLQJ ZDV HQWLUHO\ EHORZ WKH FDQRS\ :KHQ OLJKW SURILOHV WR D VHULHV RI SODQDU VXUIDFHV ZHUH PRGHOHG WKH PHDVXUHG YDOXHV IHOO EHWZHHQ WKH VLPXODWHG FXUYHV IRU DQG GHJUHHV $2( )LJXUH f 7KH PRGHO WKHUHIRUH ILW WKH GDWD IRU D PLGVN\ $2( DV LV DSSURSULDWH IRU XQLIRUP RYHUFDVW FRQGLWLRQV ,W LV IDLU WR TXHVWLRQ WKH ELRORJLFDO PHDQLQJ RI OLJKW SHQHWUDWLRQ SURILOHV EDVHG RQ D VHULHV RI SODQDU VXUIDFHV ZLWKLQ WKH FDQRS\ $W WKH WRS RI WKH FDQRS\ WKH OLQH VHQVRU ZDV SULPDULO\ VZHHSLQJ HPSW\ VSDFH PHDVXULQJ WKH KROHV EHWZHHQ WKH FURZQV $W WKH EDVH RI WKH FDQRS\ LW ZDV SULPDULO\ PHDVXULQJ WKH QRQIROLDWHG ]RQH VXUURXQGLQJ WKH VWHP DQ DUHD WKDW SUHVXPDEO\ GRHV QRW SURYLGH D IDYRUDEOH HQYLURQPHQW WR VXSSRUW IROLDJH :KHQ LW ZDV DVVXPHG WKDW WKH SODQHV H[LVWHG RQO\ DW VSDWLDO ORFDWLRQV UHSUHVHQWLQJ FOXVWHUV WKH FXUYHV ORRNHG TXLWH GLIIHUHQW )LJXUH f $ VWURQJ VHOIVKDGH GHSUHVVLRQ ZDV LQGLFDWHG IRU KLJK $2( LQ WKH ]RQH LPPHGLDWHO\ EHORZ WKH OD\HU RI PD[LPXP IROLDU ELRPDVV )LJXUH f ,Q WKLV UHJLRQ WKH FURZQ ZDV VWLOO QDUURZ )LJXUH f DQG VRPH VHOI VKDGLQJ ZDV LQHYLWDEOH 7KH H[WHQW WR ZKLFK WKH VLPXODWHG VHOIVKDGH GHSUHVVLRQ ZDV DFFXUDWH GHSHQGV RQ WKH YDOLGLW\ RI WKH UXOHV IRU FOXVWHU SODFHPHQW ,Q WKH PRGHO FOXVWHUV ZHUH SODFHG UDQGRPO\ LQ VSDFH 2Q WKH WUHHV WKH\ DUH DVVRFLDWHG ZLWK OLPEV DQG

PAGE 98

)5$&7,21 2) $%29(&$123< 3$5 )LJXUH 6LPXODWHG OLJKW SHQHWUDWLRQ SURILOHV WKURXJK WKH FDQRS\ DQG DYHUDJH PHDVXUHG GDWD Q f &OXVWHU SHQHWUDWLRQ ZDV b WUHH VSDFLQJ ZDV [ P

PAGE 99

)5$&7,21 2) $%29(&$123< 3$5 ',67$1&( %(/2: &$123< 723 0f )LJXUH 6LPXODWHG OLJKW SHQHWUDWLRQ WR WKH FOXVWHU VXUIDFHV &OXVWHU SHQHWUDWLRQ ZDV b 7UHH VSDFLQJ ZDV [ P Y2 WR

PAGE 100

SUHVXPDEO\ FDQ JURZ RXW RI HDFK RWKHUnV ZD\ $ VHOIVKDGH GHSUHVVLRQ VKRXOG H[LVW EXW LW LV H[SHFWHG WR EH VPDOOHU WKDQ ZDV VLPXODWHG 6WUDWLILHG %HHUnV ODZ PRGHOV ZHUH FRQVWUXFWHG IRU ERWK WKH ELRPDVV SURILOH DGMXVWHG IRU EUDQFK DQJOH DQG WKH XQDGMXVWHG SURILOH )LJXUH f :KHQ ILW WR WKH EHORZFDQRS\ OLJKW SHQHWUDWLRQ OHYHOV WKH PRGHO EDVHG RQ WKH DGMXVWHG ELRPDVV XQGHUHVWLPDWHG WKH OLJKW SHQHWUDWLRQ LQ WKH XSSHU FDQRS\ EXW WKH PRGHO EDVHG RQ WKH XQDGMXVWHG SURILOH SURYLGHG D QHDUO\ SHUIHFW ILW )LJXUH f %HFDXVH WKH XQDGMXVWHG SURILOH LV FOHDUO\ LQFRUUHFW ,W DVVXPHG WKDW QR IROLDJH H[LVWHG DERYH WKH EDVH RI WKH OHDGHUf WKLV ILW ZDV ODUJHO\ IRUWXLWRXV 5HWXUQLQJ WR WKH GLVFXVVLRQ RI KHWHURJHQHLW\ LQ WKH LQWURGXFWLRQ FURZQV DUH VPDOO DQG GHQVH QHDU WKH WRS RI WKH FDQRS\ 3QR FURYP HTXDWLRQ f ZLOO WKHUHIRUH EH ODUJH )LJXUH f DQG D KRPRJHQHRXV PRGHO VKRXOG XQGHUHVWLPDWH WKH OLJKW SHQHWUDWLRQ 7KH PHWKRG IRU FRPSXWLQJ WKH XQDGMXVWHG ELRPDVV SURILOH VKLIWHG WKH IROLDJH GRZQ IURP LWV DFWXDO SRVLWLRQ DQG VHUYHG WR FRPSHQVDWH IRU WKH XQGHUHVWLPDWLRQ RI OLJKW SHQHWUDWLRQ SHU XQLW ELRPDVV

PAGE 101

)5$&7,21 2) $%29(&$123< 3$5 $'-867(' %,20$66 81$'-867(' %,20$66 0($685(' 9$/8(6 ',67$1&( %(/2: 7+( &$123< 723 0f )LJXUH 6WUDWLILHG %HHUfV ODZ VLPXODWLRQV RI OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ DQG DYHUDJH PHDVXUHG YDOXHV Y'

PAGE 102

(9$/8$7,1* 7+( 02'(/ &OXVWHU OHYHO PRGHOLQJ XS WR WKLV SRLQW ZDV SDUDPHWHUL]HG E\ VKLIWLQJ WKH OLJKW SHQHWUDWLRQ SHU FOXVWHU XQWLO D ILW ZDV REWDLQHG IRU WKH ZLQWHU RI 5HODWLYH VKLIWV LQ ELRPDVV RYHU WLPH ZHUH WKHQ XVHG WR JHQHUDWH OLJKW SHQHWUDWLRQ SDWWHUQV :KHQ WKH OLJKW SHQHWUDWLRQ SHU FOXVWHU ZDV ILW WR WKH ELRPDVV HVWLPDWHV IRU WKH ZLQWHU RI WKH PRGHO UXQV SUHGLFWHG DSSUR[LPDWHO\ b JUHDWHU OLJKW SHQHWUDWLRQ WKDQ ZDV PHDVXUHG 7KHUH DUH VHYHUDO IDFWRUV WKDW FDQ DFFRXQW IRU WKLV GLVFUHSDQF\ 7KH PRGHO ZDV VHQVLWLYH WR VSDFLQJ RI WKH WUHHV 6PDOO VKLIWV LQ WKH VSDFLQJ EHWZHHQ WUHHV IURP P WR P FDXVHG D b PHDQ bf VKLIW LQ VLPXODWHG OLJKW SHQHWUDWLRQ )LJXUH f 7KLV FKDQJH LQ VSDFLQJ FDXVHG D b VKLIW LQ OHDI DUHD DQG D VLPSOH %HHUnV ODZ PRGHO PDWFKHG WR WKH LQLWLDO OLJKW SHQHWUDWLRQ VXJJHVWHG WKDW WKH VKLIW VKRXOG EH DERXW b 7KH GLIIHUHQFH EHWZHHQ WKHVH PRGHO UHVXOWV OD\ LQ WKH FRQLF IRUP RI WKH WUHHV 7KH GLIIHUHQFH LQ SURMHFWHG FURZQ DUHD GXH WR WKH FKDQJH LQ VSDFLQJ ZKHQ YLHZHG IURP GHJUHHV $2( ZDV DSSUR[LPDWHO\ b %HFDXVH WKH WUHHV WKHPVHOYHV KDG QRW

PAGE 103

)5$&7,21 2) $%29(&$123< 3$5 )LJXUH 6LPXODWLRQ RI WKH HIIHFW RI FDQRS\ f f f 0 63$&,1* f§ 0 63$&,1* 0 63$&,1* WUHH VSDFLQJ RQ OLJKW SHQHWUDWLRQ WKURXJK WKH 92 R!

PAGE 104

FKDQJHG WKH OLJKW SHQHWUDWLRQ IRU YHUWLFDO OLJKW DOVR FKDQJHG E\ b ,Q WKH VLPXODWLRQ QRQH RI WKH OLJKW HPDQDWHG IURP GHJUHHV $2( DQG WKH UHODWLYH LQFUHDVH LQ EHWZHHQWUHH JDSV ZDV WKHUHIRUH OHVV 7KH FKDQJH LQ VLPXODWHG OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ WKHUHIRUH OD\ EHWZHHQ WKH HVWLPDWH GHULYHG IRU D KRPRJHQHRXV VWDQG DQG WKH YDOXH EDVHG RQ WKH SHQHWUDWLRQ RI YHUWLFDO OLJKW 7KH VLPXODWHG FURZQV ZHUH SUREDEO\ QDUURZHU WKDQ WKH WUHHV RQ ZKLFK WKH\ ZHUH EDVHG ,Q WKH PRGHO IROLDJH ZDV SODFHG UDQGRPO\ ZLWKLQ WKH IROLDWHG UHJLRQ RI WKH EUDQFKHV ,Q IDFW PRVW RI WKH IROLDJH LV FOXVWHUHG WRZDUG WKH HQG RI WKH EUDQFK ZLWK DQ REOLJDWH FOXVWHU DW WKH EUDQFK WLS 7KH FRQVHTXHQFH RI WKLV GLIIHUHQFH LV WKDW IRU DQ\ VSDFLQJ WKH JDSV EHWZHHQ WKH PRGHOHG WUHHV ZHUH ODUJHU WKDQ WKH JDSV WKURXJK ZKLFK WKH PHDVXUHG OLJKW ZDV SHQHWUDWLQJ 7KLV ZLOO ELDV WKH PRGHO WRZDUG KLJKHU OLJKW SHQHWUDWLRQ IRU DOO IROLDJH GHQVLWLHV 6KDGH FDXVHG E\ ZRRG\ ELRPDVV LV DOVR QRW PRGHOHG 7KH EUDQFKHV DQG VWHPZRRG GLG KRZHYHU VKDGH WKH VHQVRU DUUD\V ,I LW LV DVVXPHG WKDW WKH WUHHV DUH P FRQHV ZLWK EDVDO GLDPHWHUV RI FP HDFK WUHH ZLOO SURMHFW D PD[LPXP RI P RI VKDGRZ &ROOHFWLRQ VXUIDFH LV QRUPDO WR WKH OLJKW VRXUFHf ,I D WUHH GHQVLW\ RI VWHPV SHU KHFWDUH LV DVVXPHG WKHQ WKH PD[LPXP VWHP DUHD LQGH[ 6$,f LV

PAGE 105

6$,P r f( f ZKHUH 6$,Q WKH PD[LPXP SRWHQWLDO 6$, $FWXDO 6$, ZLOO OLH EHWZHHQ WKLV ILJXUH DQG WKH EDVDO DUHD LQGH[ %$,f ZKLFK LQ WKLV FDVH ZRXOG EH ( 7KH DSSUR[LPDWH FDOFXODWLRQ RI 6$, IRU D JLYHQ VXQ DQJOH LV 6$, 6$,Q r FRV$2(f f &RPSOHWH EUDQFK GDWD ZHUH QRW FROOHFWHG EXW WKHUH DUH JRRG HVWLPDWHV RI WKH VL]H DQG QXPEHU RI WKH SULPDU\ EUDQFKHV WKH ORQJHVW FRQWLQXRXV OLPEVf ,I WKH SULPDU\ OLPEV SURMHFW DV WULDQJOHV DQG DUH QRUPDO WR WKH OLJKW WKHQ WKH SURMHFWLRQ DUHD ZLOO EH 'E f ZKHUH $S WKH SURMHFWHG DUHD 'E WKH GLDPHWHU DW WKH EDVH DQG /E OHQJWK RI WKH EUDQFK %DVHG RQ WKLV FDOFXODWLRQ WKH HVWLPDWHG PD[LPXP WRWDO SULPDU\ EUDQFK SURMHFWHG DUHD LV IRU WKH

PAGE 106

GHVWUXFWLYH VDPSOHV P SHU WUHH 3URMHFWLQJ WKLV ILJXUH WR D VWDQG EUDQFK DUHD LQGH[ %U$,f DQG DVVXPLQJ WUHHV SHU KHFWDUH %U$, LV %U$, r fO( f ,I WKH %U$, IRU WKH VHFRQGDU\ OLPEV LV DVVXPHG WR EH HTXDO WR WKH %U$, IRU WKH SULPDU\ OLPEV WKH WRWDO %U$, IRU WKH VWDQG LV DSSUR[LPDWHO\ +HUH DJDLQ WKH DVVXPSWLRQ RI QRUPDOF\ WR WKH OLJKW LV XQUHDOLVWLF ,I LW LV DVVXPHG WKDW WRWDO ZRRG\ DUHD LQGH[ LV KDOI WKH SRWHQWLDO PD[LPXP f WKHQ WKH WRWDO UHGXFWLRQ LQ OLJKW DQWLFLSDWHG IURP LQFOXVLRQ RI EUDQFK DUHD LV ,EE LEI H[Sf f ZKHUH ,EE WKH OLJKW DW WKH EDVH RI WKH EUDQFKHV DQG ,EI WKH OLJKW DW WKH EDVH RI WKH IROLDJH ,I ,EI LV WKH LQFOXVLRQ RI EUDQFK DUHD ZLOO UHGXFH WKLV ILJXUH WR ,QFOXVLRQ RI WKHVH HVWLPDWHV IRU ZRRG\ ELRPDVV EULQJV WKH VLPXODWHG OLJKW SHQHWUDWLRQ WR ZLWKLQ b RI WKH FXUYH WKDW ZDV PDQXDOO\ ILW WR WKH OLJKW SHQHWUDWLRQ GDWD )LJXUH f DW WKH EDVH RI WKH FDQRS\ DQG b DW WKH IRUHVW IORRU )LJXUH f

PAGE 107

)5$&7,21 2) $%29(&$123< 3$5 f )2/,$*( )28$*( %5$1&+ $5($ )2/,$*( %5$1&+ $5($ '$7( )LJXUH 6LPXODWLRQ RI WKH HIIHFWV RI ZRRG\ ELRPDVV RQ EHORZFDQRS\ OLJKW SHQHWUDWLRQ

PAGE 108

&21&/86,216 'LVFXVVLRQ RI /LJKW 3HQHWUDWLRQ WKURXJK 6ODVK 3LQH &RQLIHU FDQRSLHV DUH FRPSRVHG RI D KLHUDUFK\ RI GLVFUHWH REMHFWV IURP WKH FURZQ GRZQ WR WKH QHHGOH 7KH KLJKHU OHYHOV RI WKH KLHUDUFK\ DOZD\V KDYH WKH SRWHQWLDO WR GRPLQDWH OLJKW SHQHWUDWLRQ SDWWHUQV WKURXJK WKH FDQRS\ 7KH H[WHQW RI GRPLQDWLRQ GHSHQGV RQ WKH DUHD GHQVLW\ RI WKH REMHFWV DQG WKHLU RSDFLW\ ,Q WKLV VWDQG VWUXFWXUH DW WKH FURZQ DQG VKRRW OHYHOV GRHV DIIHFW OLJKW SHQHWUDWLRQ WKRXJK WKH HIIHFWV DUH QRW DV SURQRXQFHG DV WKHRU\ VXJJHVWV WKH\ PLJKW EH 7KH ILUVW K\SRWKHVLV WKDW OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ ZLOO GLIIHU IURP D KRPRJHQHRXV FDQRS\ LV QRW IDOVLILHG 7KH EHORZFDQRS\ OLJKW SHQHWUDWLRQ SDWWHUQ ILWV WKH FOXVWHU OHYHO PRGHO EHWWHU WKDQ LW ILWV D VLPSOH %HHUnV ODZ PRGHO 7KH GLIIHUHQFHV DUH KRZHYHU RQO\ VHHQ IRU KLJK $2( 7KH VHFRQG K\SRWKHVLV WKDW FKDQJHV LQ EHWZHHQWUHH VSDFLQJ VKRXOG KDYH D VWURQJHU LQIOXHQFH RQ OLJKW SHQHWUDWLRQ WKDQ LV DQWLFLSDWHG IURP D VLPLODU VKLIW LQ ELRPDVV LQ D KRPRJHQHRXV PRGHO LV DW OHDVW LQ WKH PRGHO

PAGE 109

DOVR QRW IDOVLILHG WKRXJK WKH HIIHFW LV QRW ODUJH 7KH GLYHUJHQFH RI WKH FOXVWHU OHYHO PRGHO IURP D %HHUnV ODZ PRGHO GXH WR D VKLIW LQ VSDFLQJ IURP P WR P LV RQO\ b 7KH WKLUG K\SRWKHVLV WKDW D]LPXWK VKRXOG EH DQ LPSRUWDQW IDFWRU LQ OLJKW SHQHWUDWLRQ LV QRW VXSSRUWHG DW OHDVW IRU EHORZFDQRS\ OLJKW SHQHWUDWLRQ /LJKW SHQHWUDWLRQ GRHV VKLIW ZLWK D]LPXWK EXW H[FHSW IRU WKH XQOLNHO\ RFFXUUHQFH RI ORZ VXQDQJOH OLJKW SDVVLQJ GLUHFWO\ GRZQ D URZ WKH HIIHFWV DUH XQLPSRUWDQW 7KLV PD\ QRW EH WKH FDVH IRU DOO RWKHU VWDQGV EXW ZLOO SUREDEO\ EH YDOLG IRU PRVW FORVHG FDQRSLHV 7KH DELOLW\ RI WKH FOXVWHU OHYHO PRGHO WR VLPXODWH ERWK EHORZ DQG ZLWKLQ FDQRS\ OLJKW SHQHWUDWLRQ GHPRQVWUDWHV WKDW H[SDQVLRQ IURP FOXVWHUV WR FDQRSLHV LV SRVVLEOH DQG WKDW VKLIWV LQ OLJKW SHQHWUDWLRQ GXH WR FKDQJHV LQ ELRPDVV FDQ EH PRGHOHG HIIHFWLYHO\ EDVHG RQ FOXVWHU OHYHO GDWD 7KH FOXVWHU OHYHO PRGHO DSSHDUV WR EH QXPHULFDOO\ VWDEOH 7KH VLPLODULW\ RI LWV RXWSXW WR D KRPRJHQHRXV PRGHO EDVHG RQ FOXVWHU SDUDPHWHUV VXJJHVWV WKDW WKH SRWHQWLDO HUURUV GXH WR WKH DVVXPSWLRQ RI XQLIRUP FOXVWHU SURSHUWLHV DQG UDVWHU HIIHFWV GXH WR GLVFUHWH UHSUHVHQWDWLRQ KDYH D QHJOLJLEOH HIIHFW RQ HVWLPDWLRQV RI OLJKW SHQHWUDWLRQ 2XWSXW IURP WKH FOXVWHU OHYHO PRGHO DW OHDVW LQ D FORVHG VWDQG VLPSOLILHV WR D VLQJOH HTXDWLRQ YHU\ QLFHO\ 7KH PRGHO FDQ WKHUHIRUH EH XVHG WR H[SORUH WKH VSDWLDO FRPSRQHQWV RI OLJKW

PAGE 110

SHQHWUDWLRQ WKURXJK D SDUWLFXODU VWDQG DQG DIWHU WKH V\VWHP LV XQGHUVWRRG WKH PRGHO RXWSXW FDQ EH FROODSVHG IRU PRGHOLQJ H[WHQGHG WLPH VHULHV 7KH DSSURDFK WR PRGHOLQJ GLIIXVH OLJKW ZDV YHU\ VXFFHVVIXO IRU VLPXODWLQJ VHDVRQDO DQG GDLO\ SDWWHUQV RI YDULDWLRQ LQ EHORZFDQRS\ OLJKW 0RGHOLQJ GLIIXVH OLJKW DV OLJKW HPDQDWLQJ IURP D IL[HG PLGVN\ ORFDWLRQ SURYHG WR EH H[WUHPHO\ HIIHFWLYH &RXSOHG ZLWK D VLPSOH UXOH IRU SDUWLWLRQLQJ GLUHFW DQG GLIIXVH OLJKW b RI WKH YDULDWLRQ LQ REVHUYHG EHORZFDQRS\ OLJKW ZDV DFFRXQWHG IRU RYHU D WZR PRQWK SHULRG LQ WKH ZLQWHU RI %HFDXVH ZLQWHU LV WKH WLPH RI WKH \HDU ZKHQ WKH V\VWHP LV PRVW VHQVLWLYH WR WKH SDUWLWLRQLQJ EHWZHHQ GLUHFW DQG GLIIXVH OLJKW D SDUWLWLRQLQJ UXOH FDQ SUREDEO\ EH FUHDWHG WKDW ZLOO DOORZ GDLO\ EHORZFDQRS\ OLJKW SHQHWUDWLRQ WR EH VLPXODWHG DFFXUDWHO\ WKURXJKRXW WKH \HDU ,Q JHQHUDO WKH PRGHOV DSSHDU WR EH YHU\ SRZHUIXO 8VLQJ D VLQJOH HTXDWLRQ WR FRQWURO OLJKW SHQHWUDWLRQ D FXUYH IRU HVWLPDWHG ELRPDVV IOX[ RYHU WLPH DQG VLPSOH UXOHV IRU SURGXFLQJ OLJKW SDWWHUQV RQ FORXG\ GD\V D UDWKHU FRPSOH[ SDWWHUQ RI OLJKW SHQHWUDWLRQ FDQ EH PDWFKHG QRW RQO\ LQ LWV JHQHUDO IRUP EXW LQ LWV SDWWHUQV RI YDULDWLRQ DV ZHOO %RWK WKH PRGHO EDVHG RQ FOXVWHU OHYHO GDWD DQG WKH VLPSOH %HHUnV ODZ PRGHO ILW WKH EHORZFDQRS\ OLJKW SHQHWUDWLRQ SDWWHUQV YHU\ ZHOO ZKHQ FKDQJHV LQ ELRPDVV ZHUH

PAGE 111

LQFOXGHG LQ WKH FDOFXODWLRQ 7KH YDOLGLW\ RI WKH WHFKQLTXH XVHG WR HVWLPDWH VKLIWV LQ IROLDU ELRPDVV RYHU WLPH LV VXSSRUWHG E\ ERWK PRGHOV 7KLV VXJJHVWV WKDW VHDVRQDO IOXFWXDWLRQ LQ ELRPDVV FDQ EH HVWLPDWHG E\ LQYHUWLQJ WKHVH PRGHOV 7KH GLIILFXOW\ LQ PDWFKLQJ OLJKW SHQHWUDWLRQ WR VSHFLILF ELRPDVV HVWLPDWHV GHPRQVWUDWHV WKDW WKHVH PRGHOV FDQQRW EH XVHG WR HVWLPDWH OHDI DUHD GLUHFWO\ EXW FDQ EH XVHG YHU\ HIIHFWLYHO\ WR WUDFN UHODWLYH VKLIWV LQ OHDI DUHD RYHU WLPH 2YHUDOO WKH UHVXOWV RI FOXVWHU OHYHO PRGHOLQJ VXSSRUW WKH XVH RI SURSHUO\ LPSOHPHQWHG VWUDWLILHG %HHUnV ODZ PRGHOV IRU FORVHGFDQRS\ VWDQGV RI FRQLIHUV 7KH PRGHO UHVXOWV GR KRZHYHU UDLVH WKH TXHVWLRQ RI WKH ELRORJLFDO UHOHYDQFH RI SODQDU OLJKW SHQHWUDWLRQ PRGHOLQJ ,I WKHUH LV D JUHDW GHDO RI VHOI VKDGLQJ LQ WKH XSSHU FDQRS\ DW KLJK VXQ DQJOHV WKHQ HVWLPDWHV RI SKRWRV\QWKHVLV RU WUDQVSLUDWLRQ WKDW DUH OLJKWGULYHQ ZLOO EH LQFRUUHFW 6RPH VHOI VKDGH LV LQHYLWDEOH LQ D VSHFLHV VXFK DV VODVK SLQH LQ ZKLFK VR PXFK RI WKH WRWDO IROLDJH LV FRQFHQWUDWHG LQ WKH QDUURZ XSSHU FURZQ 2EWDLQLQJ GDWD WR FODULI\ WKLV LVVXH LV H[WUHPHO\ GLIILFXOW &OXVWHU OHYHO PRGHOLQJ FDQ SURYLGH HVWLPDWHV DQG PRUH VRSKLVWLFDWHG UXOHV IRU FOXVWHU SODFHPHQW ZLOO LPSURYH WKHVH HVWLPDWHV EXW GHILQLQJ WKH UHDO RSHUDWLRQDO HQYLURQPHQW RI WKH IROLDJH LV VWLOO D GLVWDQW JRDO

PAGE 112

7KH FURZQV RI VODVK SLQH DUH WKLQ DQG FOXPS\ ZLWK ZHOO GHILQHG FRQLF IRUPV /LJKW SHQHWUDWLRQ WKURXJK VODVK SLQH FDQRSLHV LV WKHUHIRUH PRUH OLNHO\ WR EH LQIOXHQFHG E\ FDQRS\ VWUXFWXUH WKDQ WKH FDQRSLHV RI PDQ\ RWKHU WUHH VSHFLHV 7KH IDFW WKDW WKH HIIHFWV RI VWUXFWXUH RQ EHORZ FDQRS\ OLJKW SHQHWUDWLRQ DUH YHU\ PXWHG VXJJHVWV WKDW LQ PRVW HYHQO\ VSDFHG FDQRSLHV DQG SDUWLFXODUO\ WKRVH DW KLJKHU ODWLWXGHV FDQRS\ VWUXFWXUH ZLOO EH QRW EH DQ LPSRUWDQW IDFWRU LQ GHWHUPLQLQJ DYHUDJH EHORZFDQRS\ OLJKW LQWHQVLW\ &DQRS\ VWUXFWXUH ZLOO KRZHYHU DOZD\V KDYH DQ LPSRUWDQW LQIOXHQFH RQ OLJKW SHQHWUDWLRQ WKURXJK WKH FDQRS\ 6HOI VKDGH LQ WKH GHQVH XSSHU FDQRS\ PD\ EH PXFK JUHDWHU IRU GHQVH FRQLF IRUPV VXFK DV DUH FKDUDFWHULVWLF RI WKH WUXH ILUV $ELHV VSSf 7KH VHQVLWLYLW\ RI WKH PRGHO WR GLIIHUHQFHV LQ VSDFLQJ VXJJHVWV WKDW WUHDWPHQWV WKDW PRGLI\ VSDFLQJ ZLOO KDYH D JUHDWHU LPSDFW RQ OLJKW SHQHWUDWLRQ WR WKH IRUHVW IORRU WKDQ PD\ EH DQWLFLSDWHG EDVHG RQ WKH ELRPDVV UHPRYDO 7KH FOXVWHU OHYHO PRGHO SURYLGHV D XVHIXO WRRO WR H[SORUH WKH UHODWLRQVKLSV EHWZHHQ VSHFLILF VSDFLQJ SDWWHUQV DQG OLJKW SHQHWUDWLRQ 7KLV DELOLW\ PD\ SURYH XVHIXO IRU GHVLJQLQJ IRUHVW SUDFWLFHV LQ ZKLFK WKH PDQLSXODWLRQ RI WKH XQGHUVWRU\ YHJHWDWLRQ LV LPSRUWDQW DJURIRUHVWU\ FRQWUROOLQJ EUXVK FRPSHWLWLRQ DQG VKHOWHUZRRG SUHVFULSWLRQV

PAGE 113

)XWXUH 5HVHDUFK 1HHGV 7R JHQHUDOL]H WKH UHVXOWV GHULYHG KHUH LW ZLOO EH QHFHVVDU\ WR GHWHUPLQH ZKHWKHU WKH SDWWHUQV RI GLIIXVH OLJKWLQJ DUH WUDQVIHUDEOH WR GLIIHUHQW SODQW DUFKLWHFWXUHV DQG WLPH SHULRGV 7KLV VWXG\ VKRZHG WKDW IRU SHULRGV LQ ZKLFK WKH LQFRPLQJ VRODU HQHUJ\ ZDV VLPLODU DERYHFDQRS\ 3$5 FRXOG EH XVHG WR HVWLPDWH WKH SDUWLWLRQLQJ RI GLIIXVH DQG GLUHFW OLJKW 7R EH XVHG WKURXJKRXW D JURZLQJ VHDVRQ WKH UDWLR RI DERYH FDQRS\ 3$5 WR WKH WKHRUHWLFDO PD[LPXP 3$5 GHULYHG IURP WKH VRODU FRQVWDQWf ZLOO QHHG WR EH XVHG LQVWHDG 7KH HIILFDF\ RI WKLV UDWLR IRU SUHGLFWLQJ OLJKW SDUWLWLRQLQJ ZLOO QHHG WR EH GHWHUPLQHG 6LPLODUO\ WKH DELOLW\ WR FRQGHQVH WKUHHGLPHQVLRQDO RXWSXW WR D VLQJOH HTXDWLRQ ZLOO SUREDEO\ QRW EH SRVVLEOH IRU V\VWHPV LQ ZKLFK D]LPXWK LV DQ LPSRUWDQW SDUDPHWHU IRU GHWHUPLQLQJ OLJKW SHQHWUDWLRQ SDWWHUQV )RU WKHVH V\VWHPV OLJKW SHQHWUDWLRQ SDWWHUQV JHQHUDWHG E\ WKH WKUHH GLPHQVLRQDO PRGHO PD\ QHHG WR EH XVHG WR VLPXODWH HDFK WLPH VWHS

PAGE 114

/,7(5$785( &,7(' !\ &DPSEHOO *6 $Q LQWURGXFWLRQ WR HQYLURQPHQWDO ELRSK\VLFV 6SULQJHU9HUODJ 1HZ
PAGE 115

*UDQW 5+ 7KH LQIOXHQFH RI WKH VN\ UDGLDQFH GLVWULEXWLRQ RQ WKH IOX[ GHQVLW\ LQ WKH VKDGRZ RI D WUHH FURZQ $JULFXOWXUDO DQG )RUHVW 0HWHRURORJ\ /DQJ $5*
PAGE 116

SKRWRV\QWKHVLV 3DUW &RPSRQHQWV RI LQFRPLQJ UDGLDWLRQ $JULFXOWXUDO DQG )RUHVW 0HWHRURORJ\ :DOUDYHQ 5 &DOFXODWLQJ WKH SRVLWLRQ RI WKH VXQ 6RODU (QHUJ\ 9 :KLWILHOG '0 $ VLPSOH PRGHO RI OLJKW SHQHWUDWLRQ LQWR URZ FURSV $JULFXOWXUDO DQG )RUHVW 0HWHRURORJ\

PAGE 117

$33(1',; &20387(5 &2'( )25 ',6&5(7(63$&( 02'(/,1* 2) /,*+7 3(1(75$7,21 ^,QFOXGHG KHUH LV DOO RI FRGH UHTXLUHG WR URWDWH WKH WDUJHWV DQG D VLPSOH FDOOLQJ SURJUDP 7KH SURJUDP LV EXLOW LQ PRGXODU IRUP DFFRUGLQJ WR WKH UXOHV LQ 7XUER 3DVFDO 9 7XUER 3DVFDO LV D WUDGHPDUN RI %RUODQG ,QWHUQDWLRQDOf 6HYHUDO RWKHU PRGXOHV DUH PHQWLRQHG EXW QRW OLVWHG 7KH\ DUH DOO VWDQGDUG OLEUDULHV LQ 7XUER 3DVFDO ZLWK WKH H[FHSWLRQ RI 0DWK ZKLFK FRQWDLQV SRZHU IXQFWLRQV DQG WUDQVFHQGHQWDOV 0DWK LV RI QR VFLHQWLILF LQWHUHVW DQG LV QRW LQFOXGHG KHUH 7KH PRGXOHV DUH OLVWHG LQ RUGHU RI WKHLU GHSHQGHQFLHV *OREDO LV ILUVW EHFDXVH DOO RI WKH RWKHUV UHTXLUH LW DQG WKH FDOOLQJ SURJUDP LV ODVW` rrrrr81,7 */2%$/rrrrrf ^1(96` ^*OREDO FRQWDLQV DOO RI WKH JOREDO YDULDEOHV W\SHV DQG FRQVWDQWV ,W DOVR LQFOXGHV WZR SURFHGXUHV RI JHQHUDO XWLOLW\` 81,7 *OREDO ,17(5)$&( 86(6 &UW'RV ^*OREDO W\SHV DQG FRQVWDQWV` &2167 0D[B3WV 6HOHFWB3WV 0D[B7DUJHWV 0D[B'DWDB3WV 2EVHUYDWLRQV 1R&XUVRU ^WKHVH XVHG LQ JUDSKLFV JG JUDSKLFV GULYHU DQG LV VHW WR GHWHFW PRGH`

PAGE 118

,OO ^JP JUDSKPRGH` *G *P 6FDOH %\ ,QWHJHU ,QWHJHU 6LQJOH 7<3( 6WULQJ &KDU6HW 7DUJHW'LP ,QW&RRUGLQDWHV ,QW&RRUG$UU ,QW&RRUGLQDWHV ,QW7DUJHW$UU ,QW&RRUGLQDWHV ,QW$UU7\SH $UU7\SH ,QW6HOHFW7\SH 6HOHFW7\SH 0DWUL[G 7DUJHW0D[0LQ 6KDGH$UU7\SH &OXVWHU'DWD &OXVWHU$UU ,QW7DUJHW*SKDUU 7DUJHWDUU 6WULQJ>@ 6HW 2) &KDU 0LQ;0D[;0LQ<0D[<0LQ=0D[=f $UUD\>@ 2) ,QWHJHU $UUD\>6HOHFWB3WV@ 2) $UUD\>0D[ 7DUJHWV@ 2) $UUD\>0D[B3WV@ $UUD\>0D[B3WV@ $UUD\>6HOHFWB3WV@ $UUD\>6HOHFWB3WV@ $UUD\>@ $UUD\>7DUJHW'LP@ $UUD\>O2EVHUYDWLRQV@ 5(&25' 2) ,QWHJHU 2) 6LQJOH 2) ,QWHJHU 2) 6LQJOH 2) 6LQJOH 2) 6LQJOH 2) 6LQJOH 6KDGH$UU 6KDGH$UU7\SH 1RW)LUVW7LPH %RROHDQ (1' $UUD\>0D[B7DUJHWV@ $UUD\>0D[B7DUJHWV@ $UUD\>0D[ 7DUJHWV@ 2) &OXVWHU'DWD 2) :RUG 2) 6LQJOH *UDSK&RRUG$UU $UUD\>0D[B7DUJHWV@ 2) 6LQJOH ,QW*UDSK&RRUG$UU $UUD\>0D[B7DUJHWV@ 2) :RUG 'DWD$UUD\ $UUD\>0D[ 'DWD 3WV@ RI VLQJOH $UU3WU ,QW$UU3WU 6HOHFW3WU ,QW6HOHFW3WU ,QW7DUJHW3WU 7DUJHW3WU 'DWD3WU $UU7\SH ,QW$UU7\SH 6HOHFW7\SH ,QW6HOHFW7\SH ,QW7DUJHW*SK$UU 7DUJHW$UU 'DWD$UUD\ ^*OREDO VWDWLF YDULDEOHV` 9$5 ^WKHVH DUH SULPDULO\ IRU /,%5$5<` &OXVWHUOQIR &OXVWHU$UU

PAGE 119

^7DUJHW&HQWHU DUH SURGXFHG LQ 0HQX DQG XVHG JHQHUDOO\` 7DUJHW&HQWHU; 7DUJHW&HQWHU< 7DUJHW&HQWHU= 6LQJOH WKH LQSXW` %DVH;%DVH= $]$2($&,QWHQVLW\ 'DWD3WU 5RZ&RO7DUJHW1R7RWDO7UHHV 7DUJHW5RZ7DUJHW&RO7RWDO2EV 'D\0RQWK ,QWHJHU 7RWDO&OXVWHUV :RUG 5RZ'LP&RO'LP;GLP=GLP 7DUJHW3RV;7DUJHW3RV=/R$2( +L$2(&RQVW$]&RQVW$2( /R$]+L$]0LQ$2(/DWLWXGH 6LQJOH ^*OREDO KHDS SWUV` ([LW9HFW ;G
PAGE 120

(1' rrrrr817 $5$7,2rrrrrf ^$5DWLR GHWHUPLQHV ZKHWKHU D SDUWLFXODU JURXS RI SRLQWV VKRXOG EH FOLSSHG IURP WKH VKDGH VHDUFK 7KH DOJRULWKP ZLOO ZRUN ZLWKRXW LW EXW ZLOO EH VORZHU` 81,7 $5DWLR ,17(5)$&( 86(6 0DWK*OREDO 352&('85( *HW0D[9DO )81&7,21 $2(6HDUFK6Z$]LPXWK$QJ2I(OHYDWLRQ 6LQJOHf %RROHDQ ,03/(0(17$7,21 &2167 7UHH5DG 3L'LY 3HUFHQW 9$5 0D['LP;0D['LP=0LQ'LP; 0LQ'LP=7DUJHW'LP;7DUJHW'LP= 6LQJOH ^)LQG0D['LP VHDUFKHV WKH EDVH DUUD\V DQG ILQGV WKH HGJHV DQG WKH WDUJHWV 7KHVH SRVLWLRQV DUH VFDOHG E\ DQ DUELWUDU\ DPRXQW UHSUHVHQWLQJ WKH DSSUR[LPDWH UDGLXV RI WKH WUHHV` 352&('85( )LQG0D['LP;= 'DWD3WU 7RWDO$UU6] 7DUJHW$UU3RV %\WH 7UHH5DG 6LQJOH 9$5 0D['LP;0D['LP= 7DUJHW'LP;7DUJHW'LP= 0LQ'LP;0LQ'LP= 6LQJOHf 9$5 &W %\WH %(*,1 0D['LP; ( 0D['LP= ( 0LQ'LP= ( 0LQ'LP; ( )25 &W 72 7RWDO$UU6] '2 %(*,1 ,) ;n>&W@ 0D['LP; 7+(1 0D['LP; ;>&W@ ,) ;f>&W@ 0LQ'LP; 7+(1

PAGE 121

0LQ'LP; ;f>&W@ ,) =a>&W@ 0D['LP= 7+(1 0D['LP= =f>&W@ ,) =n>&W@ 0LQ'LP= 7+(1 0LQ'LP= =f>&W@ (1' 7DUJHW'LP; ;r>7DUJHW$UU3RV@ 7DUJHW'LP= =r>7DUJHW$UU3RV@ 0D['LP; 0D['LP; 7UHH5DG 0D['LP= 0D['LP= 7UHH5DG 0LQ'LP= 0LQ'LP= 7UHH5DG 0LQ'LP; 0LQ'LP; 7UHH5DG (1' ^)LQG0D[3RV ILQGV WKH GLVWDQFH DFURVV WKH V\VWHP E\ DVVXPLQJ D UHFWDQJXODU DUUD\ RI WUHHV 'LVWDQFH FRPSXWHG LV WKH K\SRWHQXVH` )81&7,21 )LQG0D[3RV0D[;0D[=7DUJHW;7DUJHW=$]LPXWK 6LQJOHf 6LQJOH 9$5 &ULW$QJ0D['LVW/HQ;/HQ= 6LQJOH %(*,1 /HQ; 0D[; 7DUJHW; /HQ= 0D[= 7DUJHW= &ULW$QJ $UF7DQ/HQ=/HQ;f $]LPXWK $]LPXWK r 'HJ7R5DG ^QRZ WKDW ZH KDYH GHILQHG WKH FRUQHU PD[;PD[=f LI WKH DQJOH LV WKDQ WKH DQJOH GHILQHG E\ WKDW FRUQHU DQG WKH WDUJHW WUHH ZH XVH WKH FRPSOHPHQW WR ILQG WKH K\SRWHQXVH` (1' ,) $]LPXWK &ULW$QJ 7+(1 %(*,1 $]LPXWK 3L'LY $]LPXWK ^FRPSOHPHQW` )LQG0D[3RV /HQ=&RV$]LPXWKf (1' (/6( )LQG0D[3RV /HQ;&RV$]LPXWKf ^6HDUFKLQJ IRU WKH $] YHFWRU LV DOZD\V FRQVLGHUHG WR EH DSSURSULDWH EHFDXVH RI WKH JHQHUDOO\ VTXDUH QDWXUH RI PRVW SRLQW VHWV 7KLV PHDQV WKDW D ODUJH QXPEHU RI SRLQWV ZLOO EH UHPRYHG LQ DQ D]LPXWK VHDUFK 7KH HIILFLHQF\ RI DQ $2( VHDUFK GHSHQGV RQ WKH DQJOH DQG RQ WKH SDWK WKURXJK WKH V\VWHP WKDW D YHFWRU ZLWK WKDW DQJOH PXVW SDVV 7KLV DOJRULWKP PDNHV WKH GHFLVLRQ WR VHDUFK RU QRW EDVHG RQ WKH DVXPSWLRQ RI D KRPRJHQRXV SRLQW VHW b LV WKH FXWRII EHFDXVH WKH VHDUFK LV FKHDSHU QXPHULFDOO\ WKDQ WKH VXEVHTXHQW URWDWLRQ DQG VKDGH VHDUFK`

PAGE 122

)81&7,21 $2(6Z/HQ7RWDO+W$2( 6LQJOHf %RROHDQ 9$5 7DQ$2(7RWDO$UHD 7ULDQJOH+W7ULDQJOH/HQ 7ULDQJOH$UHD$GGLWLRQDODUHD 6LQJOH %(*,1 ,) /HQ 7+(1 %(*,1 ^QRW ZRUWK GRLQJ` $2(6Z )$/6( ([LW (1' 7RWDO$UHD /HQ r 7RWDO+W 7DQ$2( 7DQ'HJ7R5DG r $2(f^D KROGHU` 7ULDQJOH+W 7DQ$2( r /HQ ,) 7ULDQJOH+W 7RWDO+W 7+(1 %(*,1 ^WULDQJXODU DUHD DQG` 7ULDQJOH/HQ 7RWDO+W7DQ$2( ^VTXDUH UHPRYHG` $GGLWLRQDO$UHD /HQ 7ULDQJOH/HQf r 7RWDO+W 7ULDQJOH$UHD 7ULDQJOH/HQ r 7RWDO+W r ^6HDUFK VZLWFK LV WKURZQ E\ DQ DUHD UHPRYDO RI JUHDWHU WKDQ b` $2(6Z 7ULDQJOH$UHD $GGLWLRQDO$UHDf7RWDO$UHD 3HUFHQWf (1' (/6( %(*,1 $2(6Z 7ULDQJOH+W r /HQ r f7RWDO$UHD 3HUFHQWf (1' (1' 352&('85( *HW0D[9DO %(*,1 )LQG0D['LP%DVH;%DVH=7RWDO7UHHV7DUJHW1R7UHH5DG 0D['LP;0D['LP=7DUJHW'LP;7DUJHW'LP= 0LQ'LP;0LQ'LP=f (1' )81&7,21 $2(6HDUFK6Z$]LPXWK$QJ2I(OHYDWLRQ 6LQJOHf %RROHDQ %(*,1 ,) $]LPXWK 7+(1 $2(6HDUFK6Z $(6Z)LQG0D[3RV0D['LP; 7DUJHW'LP= 0LQ'LP=

PAGE 123

$EV$]LPXWKff 'HSWK$QJ2I(OHYDWLRQf (/6( $2(6HDUFK6Z $2(6Z)LQG0D[3RV 0D['LP; 0D['LP= 7DUJHW'LP; 7DUJHW'LP= $]LPXWKf 'HSWK $QJ2I(OHYDWLRQf (1' %(*,1 (1' rrrrr81,7 /,%5$5
PAGE 124

0000000 6LQJOH ^:RUG0RYH XVHV 0296: UDWKHU WKDQ 0296% DQG DFKLHYHV D b VSHHGXS 127( DVVHPEO\ ODQJXDJH` SURFHGXUH :RUG0RYHYDU 6RXUFH'HVW1XPEHU EHJLQ LQOLQH( &%6285&( &%('(67 %(180%(5 6'6( )& 6)6$ )f ^SXVK GV` ^VKU F[O` ^UHS VWRVZ` ^SRS GV` (1' ZRUGf ^7KHVH SURFHGXUHV GHWHUPLQH WKH QXPEHU RI SRLQWV WKDW DUH SRWHQWLDO VKDGLQJ REMHFWV IRU WKH WDUJHW )LQG0D[0LQ FUHDWHV D FXEH DURXQG WKH WDUJHW WKDW GHILQHV LWV ERXQGDULHV &OLS%\$] FUHDWHV OLQHV SDUDOOHO WR WKH VRODU D]LPXWK WKDW ERXQG WKH WDUJHW LQ WKH = GLPHQVLRQ 7KH UHGXFHG VHW RI SRLQWV LV WKHQ &OLSSHG LQ WKH < YHUWLFDOf GLPHQVLRQ E\ FUHDWLQJ OLQHV SDUDOOHO ZLWK WKH VRODU $2( 7KH UHPDLQLQJ SRLQWV DUH WKHQ WUDQVIHUUHG LQWR WKH VWDWLF DUUD\V IRU URWDWLRQ DQG VKDGH VHDUFK 6LQFH WKH WDUJHWV DUH DOZD\V LQ WKH VHOHFWHG JURXS WKH\ DUH WUDQVIHUUHG LQ WKH 0RYH7DUJHWV SURFHGXUH DQG WKHLU SRVLWLRQV DUH QRW FDOFXODWHG LQ &OLS%\$] RU&OLS%\ $2(` 352&('85( )LQG0D[0LQ;<= 9$5 9$5 $UU3WU :RUG 7DUJHW0D[0LQf &W :RUG %(*,1 'HILQH7DUJHW>0LQ;@ ( 'HILQH7DUJHW>0LQ<@ ( 'HILQH7DUJHW>0LQ=@ ( 'HILQH7DUJHW>0D[;@ ( 'HILQH7DUJHW>0D[<@ ( 'HILQH7DUJHW>0D[=@ ( )25 &W 72 7DUJHWV '2 %(*,1 ,) ;f>&W@ 'HILQH7DUJHW>0LQ;@ 7+(1 'HILQH7DUJHW>0LQ;@ ;f>&W@ ,) ;r>&W@ 'HILQH7DUJHW>0D[;@ 7+(1 'HILQH7DUJHW>0D[;@ ;f>&W@ ,) &W@ 'HILQH7DUJHW>0LQ<@ 7+(1 'HILQH7DUJHW>0LQ<@ &W@ ,) &W@ 'HILQH7DUJHW>0D[<@ 7+(1

PAGE 125

'HILQH7DUJHW>0D[<@ &W@ ,) =>&W@ 'HILQH7DUJHW>0LQ=@ 7+(1 'HILQH7DUJHW>0LQ=@ =>&W@ ,) =f>&W@ 'HILQH7DUJHW>0D[=@ 7+(1 'HILQH7DUJHW>0D[=@ =f>&W@ (1' (1' 352&('85( &OLS%\$]$]LPXWK %HJLQ3W 3RLQW1R ; <= ,G 7HPS; 7HPS<7HPS= 7HPSOG 'HILQH7DUJHW 9$5 3RW6KDGH 9$5 =VORSH=+L=/R=LQW+L $GG)RU6DIHW\ &WO %(*,1 6LQJOH ,QWHJHU $UU3WU ,QW$UU3WU 6HOHFW3WU ,QW6HOHFW3WU 7DUJHW0D[0LQ ,QWHJHUf =LQW/R'LII =VORSH 7DQ'HJ7R5DG r $]LPXWKf $GG)RU6DIHW\ &RV$]LPXWK r ([WHQGHG ([WHQGHG ,QWHJHU 'HJ7R5DGf ^$GGLWLRQ RI D VDIHW\ EXIIHU E\ VKLIWLQJ WKH LQWHUFHSW` ^IDU HQRXJK WR PRYH WKH OLQHV XQLW LQ WKH GLUHFWLRQ` ^QRUPDO WR WKH VORSH` =LQW/R 'HILQH7DUJHW>0LQ=@ =VORSH r 'HILQH7DUJHW>0D[;@f $GG)RU6DIHW\ =LQW+L 'HILQH7DUJHW>0D[=@ =VORSH r 'HILQH7DUJHW>0LQ;@f $GG)RU6DIHW\ 'LII =LQW+L =LQW/R 3RW6KDGH %HJLQ3W )25 &WO 6XFF%HJLQ3Wf 72 3RLQW1R '2 %(*,1 ^VWDUW DIWHU WDUJHW SWV` ^GHILQH D EDQG IURP WKH ORZHVW WR KLJKHVW LQFOXVLYH` =+L ;f>&WO@ r =VORSH =LQW+L ,) =f>&WO@ =+Lf $1' =f>&WO@ =+L 'LIIff 7+(1 %(*,1 ,QF3RW6KDGHf ,) 3RW6KDGH 6HOHFWB3WV 7+(1 )DWDO(UURUVn7RR PDQ\ VKDGH SRLQWV

PAGE 126

3URJUDP KDOWHGnf 7HPS;>3RW6KDGH@ ;r>&WO@ 7HPS3RW6KDGH@ &WO@ 7HPS=>3RW6KDGH@ =n>&WO@ 7HPSOGn>3RW6KDGH@ ,Gn>&WO@ (1' (1' (1' 352&('85( &OLS%\$2($2( %HJLQ3W 3RLQW1R ; < = ,G 7;7<7= 7,G 'HILQH7DUJHW 9$5 3RW6KDGH 9$5 ,QWHJHU 6HOHFW3WU ,QW6HOHFW3WU 6HOHFW3WU ,QW6HOHFW3WU 7DUJHW0D[0LQ ,QWHJHUf 0LQ<@ 0D[;@f $GG)RU6DIHW\ 3RW6KDGH %HJLQ3W )25 &WO 6XFF%HJLQ3Wf 72 3RLQW1R '2 %(*,1 VWDUW DIWHU WDUJHW SWVf GHILQH D EDQG IURP WKH ORZHVW WR KLJKHVW LQFOXVLYHf
&WO@ r &WO@ 3RW6KDGH@ ;n>&WO@ 73RW6KDGH@ &WO@ 7=n>3RW6KDGH@ =f>&WO@ 7,Gn>3RW6KDGH@ ,Gn>&WO@ (1' (1' (1'

PAGE 127

352&('85( 0RYH7DUJHWV7DUJHWV ,G 7[7\7] ,G 9$5 %\WH1R :RUG ^KHUH ZH PRYH WKH WDUJHW ILQDO DUUD\V` %(*,1 :RUG ;<= $UU3WU ,QW$UU3WU 6HOHFW3WU ,QW6HOHFW3WUf SRLQWV LQWR WKH WHPSRUDU\ DQG ,QF7DUJHWVf %\WH1R 7DUJHWV r 6L]H2I6LQJOHf ^VLQJOH E\WHV LI [ DEVHQW` :RUG0RYH;f7;f%\WH1Rf :RUG0RYH&WOO@ 6HFRQG $UU>&WO@ 7KLUG $UU>&WO@ )RXUWK $UU>&WO@ &W 3UHG&WOf :+,/( $UU>&W@ 6HFRQGf $1' &W f '2 $UU>6XFF&Wf@ $UU>&W@ 'HF&Wf (1' ,QWHJHU ,QWHJHU $UUD\>6RUW6WDFN7RS@ 2) %(*,1

PAGE 128

,QF&Wf ,) &W &WO 7+(1 %(*,1 $UU>&W@ )LUVW $UU>&W@ 6HFRQG $UU>&W@ 7KLUG $UU>&W@ )RXUWK (1' (1' ,) 6WDFN0DUNHU f 7+(1 *272 )LQ 7RS 6RUW6WDFN$UU>6WDFN0DUNHU@ %RWWRP 6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ 'HF6WDFN0DUNHU f (1' (/6( %(*,1 &W %RWWRP &WO 7RS 5DQGRPVWDUW 5$1'207RS %RWWRPf %RWWRP )LUVW $UU>5DQGRP6WDUW@ 6HFRQG $UU>5DQGRP6WDUW@ 7KLUG $UU>5DQGRP6WDUW@ )RXUWK $UU>5DQGRP6WDUW@ $UU>5DQGRP6WDUW@ $UU>%RWWRP@ -XPS7R4VRUW :+,/( 6HFRQG $UU>&WO@f $1' &WO f '2 'HF&WOf ,) &WO &Wf 7+(1 %(*,1 $UU>&WO@ )LUVW $UU>&W@ 6HFRQG $UU>&W@ 7KLUG $UU>&W@ )RXUWK *272 -XPS7R6RUW6WDFN (1' $UU>&W@ $UU>&WO@ ,QF&Wf :+,/( 6HFRQG $UU>&W@f $1' &W Qf '2 ,QF&Wf ,) &WO &Wf 7+(1 %(*,1 $UU>&W@ )LUVW $UU>&WO@ 6HFRQG $UU>&WO@ 7KLUG $UU>&WO@ )RXUWK &W &WO *272 -XPS7R6RUW6WDFN (1' $UU>&WO@ $UU>&W@ 'HF&WOf *272 -XPS7R4VRUW -XPS7R6RUW6WDFN ,QF6WDFN0DUNHUf ,) 7RS&Wf &W%RWWRPff 7+(1 %(*,1 6RUW6WDFN$UU>6WDFN0DUNHU@ 7RS

PAGE 129

6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ 6XFF&Wf 7RS 3UHG&Wf (1' (/6( %(*,1 6RUW6WDFN$UU>6WDFN0DUNHU@ 3UHG&Wf 6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ %RWWRP %RWWRP 6XFF&Wf (1' (1' (1' )LQ (1' (1' 352&('85( 7DUJHW,QW6RUWQ ,QWHJHU9$5 $UU ,QW7DUJHW$UUf /$%(/ -XPS7R4VRUW-XPS7R6RUW6WDFN)LQ ^< VRUW FKRVHQ` &2167 6HOHFWOQVHUW6RUW 6RUW6WDFN7RS 9$5 7RS%RWWRP6WDFN0DUNHU &WO&W5DQGRP6WDUW ,QWHJHU )LUVW6HFRQG7KLUG)RXUWK ,QWHJHU 6RUW6WDFN$UU $UUD\>6RUW6WDFN7RS@ 2) ,QWHJHU %(*,1 ,) Q 7+(1 %(*,1 6WDFN0DUNHU %RWWRP 7RS Q :+,/( 758( '2 %(*,1 ,) 7RS%RWWRPf 6HOHFWOQVHUW6RUWf 7+(1 %(*,1 )25 &WO 6XFF%RWWRPf 72 7RS '2 %(*,1 )LUVW $UU>&WOO@ 6HFRQG $UU>&WO@ 7KLUG $UU>&WO@ )RXUWK $UU>&WO@ &W 3UHG&WOf :+,/( $UU>&W@ 6HFRQGf $1' &W f '2 %(*,1 $UU>6XFF&Wf@ $UU>&W@ 'HF&Wf (1' ,QF&Wf ,) &W &WO 7+(1 %(*,1 $UU>&WO@ )LUVW $UU>&W@ 6HFRQG $UU>&W@ 7KLUG $UU>&W@ )RXUWK (1'

PAGE 130

(1' ,) 6WDFN0DUNHU f 7+(1 *272 )LQ 7RS 6RUW6WDFN$UU>6WDFN0DUNHU@ %RWWRP 6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ 'HF6WDFN0DUNHUf (1' (/6( %(*,1 &W %RWWRP &WO 7RS 5DQGRP6WDUW 5$1'207RS %RWWRPf %RWWRP )LUVW $UU>5DQGRP6WDUW@ 6HFRQG $UU>5DQGRP6WDUW@ 7KLUG $UU>5DQGRP6WDUW@ )RXUWK $UU>5DQGRP6WDUW@ $UU>5DQGRP6WDUW@ $UU>%RWWRP@ -XPS7R4VRUW :+,/( 6HFRQG $UU>&WO@f $1' &WO f '2 'HF&WOf ,) &WO &Wf 7+(1 %(*,1 $UU>&WO@ )LUVW $UU>&W@ 6HFRQG $UU>&W@ 7KLUG $UU>&W@ )RXUWK *272 -XPS7R6RUW6WDFN (1' $UU>&W@ $UU>&WO@ f ,QF&Wf :+,/( 6HFRQG $UU>&W@f $1' &W Qf '2 ,QF&Wf ,) &WO &Wf 7+(1 %(*,1 $UU>&W@ )LUVW $UU>&WO@ 6HFRQG $UU>&WO@ 7KLUG $UU>&WO@ )RXUWK &W &WO *272 -XPS7R6RUW6WDFN (1' $UU>&WO@ $UU>&W@ 'HF&WOf *272 -XPS7R4VRUW -XPS7R6RUW6WDFN ,QF6WDFN0DUNHUf ,) 7RS&Wf &W%RWWRPff 7+(1 %(*,1 6RUW6WDFN$UU>6WDFN0DUNHU@ 7RS 6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ 6XFF&Wf 7RS 3UHGLFWf (1' (/6( %(*,1 6RUW6WDFN$UU>6WDFN0DUNHU@ 3UHG&Wf 6RUW6WDFN$UU>3UHG6WDFN0DUNHUf@ %RWWRP %RWWRP 6XFF&Wf (1'

PAGE 131

(1' (1' )LQ (1' (1' ^7KHVH SURFHGXUHV FUHDWH WKH URWDWLRQ PDWUL[ URWDWH WKH FRRUGLQDWHV DQG VHDUFK IRU VKDGH 0DWUL[0XOWLSO\ PXOWLSOLHV WZR [ PDWULFHV 0DWUL[ 9HFWRU0XOWLSO\ PXOWLSOLHV D FRRUGLQDWH YHFWRU ;<=f ZLWK D [ PDWUL[ WR WUDQVIRUP LW 3URGXFH5RWDWLRQ0DWUL[ FUHDWHV WKH URWDWLRQ PDWUL[ $OO RI WKH RWKHU SURFHGXUHV &UHDWH<5RWDWLRQ0DWUL[ HWFf SHUIRUP WKH YDULRXV VWHSV QHFHVVDU\ WR FUHDWH D PDWUL[ WKDW ZLOO WUDQVIRUP D VHULHV RI FRRUGLQDWHV VR WKDW WKH SRLQWV GHILQHG E\ WKRVH FRRUGLQDWHV URWDWH DURXQG DQ DUELWUDU\ ;<= ORFDWLRQ 'HWDLOV RI WUDQVIRUPDWLRQ PDWULFHV FDQ EH IRXQG LQ D YDULHW\ RI LQWURGXFWRU\ &RPSXWHU *UDSKLFV WH[WV` 352&('85( 0DWUL[0XOWLSO\9$5 0O 0DWUL[G9$5 0 0DWUL[Gf 9$5 5RZ&ROXPQ ,QWHJHU 7HPS0DW 0DWUL[G %(*,1 )25 5RZ 72 '2 )25 &ROXPQ 72 '2 7HPS0DW>5RZ&ROXPQ@ 0O>5RZO@ r 0>&ROXPQ@ 0O>5RZ@ r 0>&ROXPQ@ 0O>5RZ@ r 0>&ROXPQ@ 0O>5RZ@ r 0>&ROXPQ@ 0O 7HPS0DW (1' 352&('85( 9HFWRU0DWUL[0XOWLSO\3RLQWV :RUG;<= 6HOHFW3WUf 9$5 7HPS;7HPS< 6LQJOH &W :RUG %(*,1 )25 &W 72 3RLQWV '2 %(*,1 7HPS; ;f>&W@ r 0LO
&W@ r 0 =n>&W@ r 0 0 7HPS< ;f>&W@ r 0 <>&W@ r 0 =f>&W@ r 0 0 =f>&W@ ;f>&W@ r 0 &W@ r 0 =f>&W@ r 0 0

PAGE 132

;f>&W@ 7HPS; &W@ 7HPS< (1' (1' 352&('85( &UHDWH7UDQVODWLRQ;<= 6LQJOH 9$5 7 0DWUL[Gf %(*,1 7 ,GHQWLW\G 7>@ ; 7>@ < 7>@ = (1' 352&('85( &UHDWH<5RWDWLRQ0DWUL[ ;,<=$QJOH 6LQJOH 9$5 7HPS0DW 0DWUL[Gf 9$5 7HPS$QJ6LQD &RVD ([WHQGHG 0 0DWUL[G ^VWDUW URWDWLRQ SURFHGXUH` %(*,1 ^WUDQVODWH` &UHDWH7UDQVODWLRQ;,<=7HPS0DWf ^GR < URWDWLRQ` 7HPS$QJ 'HJ7R5DG r $QJOH 6LQD 6LQ7HPS$QJf &RV7HPS$QJf 0 ,GHQWLW\G 0>OO@ 0> @ 0>O@ 0>@ 0DWUL[0XOWLSO\7HPS0DW0f ^LQYHUVH WUDQVODWLRQ` &UHDWH7UDQVODWLRQ;,<=0f 0DWUL[0XOWLSO\7HPS0DW0f (1' 352&('85( &UHDWH=5RWDWLRQ0DWUL[;,<=$QJOH 6LQJOH 9$5 7HPS0DW 0DWUL[Gf 9$5

PAGE 133

7HPS$QJ6LQD &RVD 0 ([WHQGHG 0DWUL[G ^VWDUW URWDWLRQ SURFHGXUH` %(*,1 ;,<=7HPS0DWf ^GR = URWDWLRQ` 7HPS$QJ 6LQD 'HJ7R5DG r $QJOH 6LQ7HPS$QJf &RV7HPS$QJf 0 ,GHQWLW\G 0>@ 0>O@ 0>O@ 0>@ 0DWUL[0XOWLSO\7HPS0DW0f ^LQYHUVH WUDQVODWLRQ` &UHDWH7UDQVODWLRQ;,<=0f 0DWUL[0XOWLSO\7HPS0DW0f (1' 352&('85( 5RWDWH&HQWHU;&HQWHU<&HQWHU=$]LPXWK$2( 6LQJOHf 9$5 7UDQV7UDQV 0DWUL[G %(*,1 &UHDWH<5RWDWLRQ0DWUL[&HQWHU;&HQWHU< &HQWHU=$]LPXWK7UDQVf &UHDWH=5RWDWLRQ0DWUL[&HQWHU;&HQWHU<&HQWHU=$2(7UDQVf 0DWUL[0XOWLSO\7UDQV7UDQVf ^%r&f` 0LO 7UDQVO>OO@ 0 7UDQVO>O@ 0 7UDQV>@ 0 7UDQVO>O@ 0 7UDQV>@ YDOXHV RXW` ^PDNH VLPSOH

PAGE 134

0 7UDQV>@ 0 7UDQV>@ 0 7UDQV>@ 0 7UDQV>@ 0 7UDQV>@ 0 7UDQV>@ 0 7UDQV>@ (1' WKLV SURFHGXUH WUDQVIHUV WKH DUUD\ WR DQ DUUD\ 6FDOH %\ VHWV WKH QRGDO VL]H ` RI PDWUL[ 352&('85( 5RXQG$QG7UDQVIHU3RW6KDGH3WV ; < = ,G ,QW6HOHFW3WUf 9$5 &W %(*,1 ,) 6FDOH%\ )25 &W 7+(1 %(*,1 72 3RW6KDGH3WV '2 %(*,1 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ 5RXQG;a>&W@ 6FDOH%\f 5RXQG<>&W@ 6FDOHB%\f 5RXQG=a>&W@ 6FDOHB%\f ,Ga>&W@ (1' (1' (1' (/6( %(*,1 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ 6HOHFW,QW&RRUG>&W@ (1' 5RXQG;f>&W@f 5RXQG&W@f 5RXQG=f>&W@f ,Ga>&W@ r r 3URFHGXUH 6KDGH6HDUFK HIILFLHQWO\ VHDUFKHV D URXQGHG VHW RI FRRUGLQDWH SRLQWV WR GHWHUPLQH WKH QXPEHU RI VKDGLQJ REMHFWV IRU HDFK WDUJHW SRLQW` 352&('85( 6KDGH6HDUFK2EV1R %\WH 7DUJHWV3RLQWV ,QWHJHU 6HOI6KDGH %RROHDQf 9$5 7DUJHW&RRUG ,QW7DUJHW$UU 7HPS&W&W&W;<=3RV ,QWHJHU %(*,1

PAGE 135

^6HOHFWOQW&RRUG DQG &OXVWHU,QIR DUH DOO *OREDO 9DU` ^0RYH FOXVWHUV LQWR D VHSDUDWH DUUD\` :RUG0RYH6HOHFWOQW&RRUG7DUJHW&RRUG6XFF7DUJHWVf r 6L]H2I,QW&RRUGLQDWHVff ^LI WDUJHWV DUH WR EH UHPRYHG DV SRWHQWLDO VKDGH VRXUFHV VHOI VKDGHf` ^WKHQ ZH UHPRYH WKHQ IURP WKH VKDGH DUUD\` ,) 127 6HOI6KDGH 7+(1 %(*,1 ,) 3RLQWV 7DUJHWV 7+(1 %(*,1 :RUG0RYH6HOHFWOQW&RRUG>6XFF7DUJHWVf@6HOHFWOQW&RRUG>@ 3RLQWV 7DUJHWVf r 6L]H2I,QW&RRUGLQDWHVff 'HF3RLQWV7DUJHWVf (1' (/6( ([LW ^WKHUH LV QR VKDGH` (1' ^6RUW ERWK DUUD\V E\ <` 6HOHFW,QW6RUW3RLQWV6HOHFWOQW&RRUGf 7DUJHW,QW6RUW7DUJHWV7DUJHW&RRUGf 7HPS&W )25 &W 72 7DUJHWV '2 %(*,1 &W 7HPS&W < 7DUJHW&RRUG>&W@ 5(3($7 ,QF&Wf 817,/ 6HOHFWOQW&RRUG>&W@ &W@ ; 7DUJHW&RRUG>&W@ :+,/( &W 3RLQWVf $1' 6HOHFW,QW&RRUG>&W@ &W@ =f $1' 6HOHFW,QW&RRUG>&W@ ;f 7+(1 ,QF&OXVWHU,QIR>7DUJHW&RRUG>&W@@f ,QF&Wf (1' (1' (1' (1'

PAGE 136

^7KLV SURFHGXUH FDOOV DOO RI WKH VLPXODWLRQ URXWLQHV` 352&('85( *HW6KDGH3WV;<= ,G 7RWDO3WV7DUJHWV $2($]LPXWK $UU3WU ,QW$UU3WU :RUG 6LQJOH &HQWHU;&HQWHU< &HQWHU= 6LQJOH 'HILQH7DUJHW 7DUJHW0D[0LQ 2EV1R %\WH 6HOI6KDGH1HZ6LP %RROHDQf ^KHUH ZH XVH GVF WR KROG YDOXHV IURP FDOO WR FDOO` FRQVW 2OG$] VLQJOH ^DQ LQYDOLG QXPEHU` $]3RW6KDGH ,QWHJHU YDU 3RW6KDGH%\WH1R ,QWHJHU^DQ DUELWUDU\ ` 6XFF7DUJHWV ,QWHJHU %(*,1 LI 1HZ6LP WKHQ 2OG$] 0RYHWDUJHWV7DUJHWV;<=,G7HPS;7HPS<7HPS=7HPSOGf ,I $]LPXWK 2OG$] WKHQ EHJLQ &OLS%\$]$]LPXWK7DUJHWV7RWDO3WV ;<=,G7HPS;7HPS< 7HPS=7HPSOG'HILQH7DUJHW $]3RW6KDGHf (1' 3RW6KDGH $]3RW6KDGH LI $2(6HDUFK6Z$2($]LPXWKf WKHQ &OLS%\$2($2(7DUJHWV3RW6KDGH 7HPS;7HPS<7HPS=7HPSOG 7HPS;7HPS<7HPS=7HPSOG 'HILQH7DUJHW3RW6KDGHf HOVH EHJLQ 6XFF7DUJHWV 6XFF7DUJHWVf %\WH1R 3RW6KDGH 7DUJHWVf r 6L]H2I6LQJOHf :RUG0RYH7HPS;>6XFF7DUJHWV@ 7HPS;>6XFF7DUJHWV@ %\WH1Rf :RUG0RYH7HPS<>6XFF7DUJHWV@ 7HPS<>6XFF7DUJHWV@ %\WH1Rf :RUG0RYH7HPS=>6XFF7DUJHWV@ 7HPS=>6XFF7DUJHWV@ %\WH1Rf %\WH1R 3RW6KDGH 7DUJHWVf r :RUG0RYH7HPSOG>6XFF7DUJHWV@ 7HPSOG>6XFF7DUJHWV@

PAGE 137

%\WH1Rf (1' 5RWDWH&HQWHU;&HQWHU<&HQWHU=$]LPXWK$2(f 9HFWRU0DWUL[0XOWLSO\3RW6KDGH7HPS; 7HPS<7HPS=f 5RXQG$QG7UDQVIHU3RW6KDGH7HPS;7HPS< 7HPS=7HPSOGf 6KDGH6HDUFK2EV1R7DUJHWV3RW6KDGH 6HOI6KDGHf (1' %(*,1 (1' rrrrr352*5$0 6,03$6rrrrrf ^6LP UHTXLUHV LQSXW ILOHV WKH VXQ ORFDWLRQV WR VLPXODWH DQG DILOH FRQWDLQLQJ WKH ORFDWLRQ RI WKH FOXVWHUV WKH ORFDWLRQ RI WKH WDUJHW DQG WKH OLJKW SHQHWUDWLRQ SHU FOXVWHU 7KH ILOH WKDW ORFDWHV WKH VXQ PXVW EH LQ WKH IROORZLQJ IRUPDW 1XPEHU RI SRVLWLRQV WR VLPXODWH LQWHJHUf $QJOH $]LPXWK UHDOf 7KH ILOH FRQWDLQLQJ WKH FOXVWHU ORFDWLRQV PXVW KDYH WKH IROORZLQJ IRUPDW 7RWDO QXPEHU RI QRGHV LQWHJHUf 1XPEHU RI QRGHV LQ WKH WDUJHW LQWHJHUf 7DUJHW; 7DUJHW< 7DUJHW= /LJKW3HQ UHDOf 1RQ7DUJHW; 1RQ7DUJHW< 1RQ7DUJHWLJKW3HQ UHDOf 1RWLFH WKDW WKH WDUJHW QRGHV DUH OLVWHG ILUVW ` 86(6 *OREDO&UW6FUHHQO2 /LEUDU\ 9DU WRWDO2EV7DUJHW1R7RWDO1R 1RGDO'LVW ZRUG I

PAGE 138

^FOHDQ WKLQJV XS XSRQ ([LW` ^)`352&('85( 0\([LW^)` %(*,1 6HW&XUVRU&XUVRUf 7H[W$WWU 5HOHDVH+HDS2UJf ([LW3URF ([LW9HFW (1' ^rr7KH VLPXODWLRQ VWDUWV KHUHrr` 352&('85( )LQG&HQWHU7DUJHWGHI 9$5 &HQWHU;&HQWHU<&HQWHU= 'LPHQVLRQ %(*,1 7DUJHW0D[0LQ 6LQJOHf &HQWHU; 7DUJHW'HI>0LQ;@ 7DUJHW'HI>0D[;@ 7DUJHW'HI>0LQ;@f r 'LPHQVLRQ 7DUJHW'HI>0D[<@ 7DUJHW'HI>0LQ<@ &HQWHU< 7DUJHW'HI>0LQ<@ 'LPHQVLRQ r &HQWHU= 7DUJHW'HI>0LQ=@ 7DUJHW'HI>0D[=@ 7DUJHW'HI>0LQ=@f r ,) 6FDOHB%\ 7+(1 %(*,1 &HQWHU; &HQWHU; r 6FDOH%\ &HQWHU< &HQWHU< r 6FDOH%\ &HQWHU= &HQWHU= r 6FDOHB%\ 'LPHQVLRQ 'LPHQVLRQ r 6FDOHB%\ r (1' (1' 352&('85( 6LPXODWH6HOI6KDGH %RROHDQf 9$5 7DUJHW'HILQLWLRQ 7DUJHW0D[0LQ 3RWHQWLDO6KDGH3WV ,QWHJHU &W ,QWHJHU 7$]&[&\&]'LP 6LQJOH )LUVW6LP %RROHDQ %(*,1 )LUVW6LP 7UXH LI )LUVW6LP WKHQ EHJLQ )LQG0D[0LQ;G
PAGE 139

7$] $]f>&W@ ^DGMXVW D]LPXWK WR FDUWHVLDQ VSDFH` *HW6KDGH3WV;G&W@7$] $&,QWHQVLW\>&W@ 7DUJHW'HILQLWLRQ &W6HOI6KDGH)LUVW6LPf )LUVW6LP )DOVH (1' (1' )81&7,21 ([LVWV9$5 )LOH1DPH 6WULQJf %RROHDQ 9$5 ,Q)LO )LOH %(*,1 $VVLJQ,Q)LO)LOH1DPHf 5H6HW,Q)LOf ,) ,25HVXOW 7+(1 ([LVWV )DOVH (/6( %(*,1 &ORVH,Q)LOf ([LVWV 758( (1' (1' 352&('85( )LOH(UURU(UU ,QWHJHU9$5 )LOH7\SH 7H[Wf %(*,1 LI (UU 7+(1 %(*,1 :ULWH/Qn(UURU LQ )LOH 5HDGnf &ORVH)LOH7\SHf +DOW (1' (1' 352&('85( 1RQ([LVWDQW9$5 )LOH7\SH 7H[Wf 9$5 &K FKDU %(*,1 :ULWH/Qn)LOH GRHV QRW H[LVW 5HSHDW ,QSXW" <1fnf &K &KDU,QSXW>n
PAGE 140

3W)LOOQS6XQ)LOOQS-PS %(*,1 &OU6FU 3W)LOOQS :ULWHn7KH 3RLQW )LOH nf 5HDG/Q)LOH1DPHf ,) ([LVWV)LOH1DPHf 7+(1 %(*,1 $VVLJQ,QILO)LOH1DPHf 5H6HW,Q)LOf 5HDG/Q,Q)LO7DUJHW1Rf 5HDG/QLQ)LO1RGDO'LVWf )LOH(UURU,25HVXOW,QILOf &W :+,/( 127 (2),Q)LOf '2 %(*,1 ,) &W 0D[B3W6 7+(1 %(*,1 :ULWH/Qn,QFRPSOHWH 3RLQW 6HWnf *R7R -PS (1' 5HDG/Q,Q)LO ;G>&W@ FW@=Ga>&W@/LJKW3HQ>&W@f ,G9HFW>&W@ &W ,QF&Wf )LOH(UURU,25HVXOW,QILOf (1' 7RWDO1R 3UHG&Wf (1' (/6( %(*,1 1RQ([LVWDQW,Q)LOf *R7R 3W)LOOQS (1' -PS &ORVH,Q)LOf 6XQILOOQS :ULWHn7KH 6XQ 3RVLWLRQ )LOH nf 5HDG/Q)LOH1DPHf ,) ([LVWV)LOH1DPHf 7+(1 %(*,1 $VVLJQ,Q)LOILOH1DPHf 5HVHW,Q)LOf 5HDG/Q,Q)LO7RWDO2EVf )LOH(UURU,25HVXOW,QILOf )25 &W 72 7RWDO2EV '2 %(*,1 5HDG/Q,Q)LO$]f>&W@ $2(f>FW@$&,QWHQVLW\>&W@f )LOH(UURU,25HVXOW,QILOf (1' &ORVH,Q)LOf (1' (/6( %(*,1 1RQ([LVWDQW,Q)LOf *R7R 6XQ)LOOQS (1' (1'

PAGE 141

352&('85( 2XWSXW 9DU &WO&W :RUG 2XW)LO 7H[W )LOH1DPH 6WULQJ /DEHO /223 %(*,1 /223 7H[W$WWU +L9LG &OUVFU *R7R;n&WO@ 6KDGH$UU>&W@f )LOH(UURU,25HVXOW2XW)LOf (1' :ULWH/Q2XW)LOf (1' &ORVH2XW)LOf (1' 352&('85( ,QLWLDOL]H&OXVWHUV7DUJHWV2EVHUYDWLRQV :RUGf 9$5 &WO&W :RUG %(*,1 )LOO&KDU&OXVWHUOQIR6L]HRI&OXVWHUOQIRff )25 &WO WR 7DUJHWV '2 )25 &W WR 2EVHUYDWLRQV '2 &OXVWHU,QIR>&WO@6KDGH$UU>&W@ $&,QWHQVLW\>&W@ (1' 352&('85( *HW0HQXV 9$5 6HOI6KDGH %RROHDQ

PAGE 142

&W6LP1R :RUG %(*,1 ([LW9HFW ([LW3URF ([LW3URF #0\([LW 1HZ$]f 1HZ$2(f 1HZ$&,QWHQVLW\f 1HZ;Gf 1HZn
PAGE 143

%,2*5$3+,&$/ 6.(7&+ .HYLQ 6FRW 0F.HOYH\ ZDV ERUQ RQ 1RYHPEHU +H OLYHG LQ &RORUDGR DQG 0RQWDQD EHIRUH FRPLQJ WR )ORULGD LQ +H UHFHLYHG D KLJK VFKRRO GLSORPD LQ DQG D %DFKHORU RI $UWV GHJUHH LQ KLVWRU\ ZLWK PLQRU LQ (QJOLVK IURP WKH 8QLYHUVLW\ RI 0RQWDQD LQ +H EHFDPH LQWHUHVWHG LQ IRUHVWU\ ZKLOH ZRUNLQJ IRU WKH )RUHVW 6HUYLFH IURP LQ WKH VXPPHUV +H UHFHLYHG D 0DVWHU RI 6FLHQFH GHJUHH LQ IRUHVWU\ IURP WKH 8QLYHUVLW\ RI 0RQWDQD LQ 7KH ILHOG RI VSHFLDOL]DWLRQ ZDV HQWRPRORJ\SDWKRORJ\ +H KDV UHFHLYHG D %ULJKW 0HPRULDO )HOORZVKLS D 0RQWDQD :RRGV 3URGXFWV $VVRFLDWLRQ 6FKRODUVKLS DQG D :3 6KHOOH\ )HOORZVKLS

PAGE 144

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ H VWDQGDUGV RI VFKRODUO\ LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ RSLQLRQ LW FRQIRUPV WR SUHVHQWDWLRQ DQG D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ KHULQH & (ZHO &KDLU 3URIHVVRU RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ f mDW D D D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 4tc6 /RXNDV $UYAQLWLV R 5HVRXUFHV DULG &RQVHUYDWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ IRU WKH GHJUHH RI 'RFWRU RI 3KLORASSK\ RI %RWDQ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLOR +HQU\ RO] RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQGaTXDOLW\ D GLVVHUWDWLRQ IRU WKH GHJUHH RIA%RFWRU RI 3KL (QJLQHHULQJ RI $J

PAGE 145

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 6FKRRO RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ LQ WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 5HVRXUFHV DQG 'HDQ *UDGXDWH 6FKRRO

PAGE 146

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EYBNQJHL0_HE99LL INGEST_TIME 2017-07-11T21:31:56Z PACKAGE AA00002115_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES