Citation
The effect of chromium on the atmospheric corrosion resistance of weathering steels

Material Information

Title:
The effect of chromium on the atmospheric corrosion resistance of weathering steels
Creator:
Wurth, Laura, 1967-
Publication Date:
Language:
English
Physical Description:
vi, 175 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Alloys ( jstor )
Atmospherics ( jstor )
Chromium ( jstor )
Corrosion ( jstor )
Drying ( jstor )
Electrolytes ( jstor )
Iron ( jstor )
Oxygen ( jstor )
Steels ( jstor )
Weathering processes ( jstor )
Dissertations, Academic -- Materials Science and Engineering -- UF
Materials Science and Engineering thesis, Ph. D

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1995.
Bibliography:
Includes bibliographical references (leaves 172-174).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Laura Wurth.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002070309 ( ALEPH )
34336941 ( OCLC )
AKQ8574 ( NOTIS )

Downloads

This item has the following downloads:


Full Text












THE EFFECT OF CHROMIUM ON THE ATMOSPHERIC CORROSION
RESISTANCE OF WEATHERING STEELS
/


BY

LAURA WURTH


DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA















ACKNOWLEDGMENTS


I vould like to express my deepest gratitude and appreciation to my research


advisor, Dr. Ellis Verink for his guidance, encouragement, generous support, and


assistance throughout the course of this project.

Dr. Holloway, Dr. DeHoff, Dr. Ambrose, and Dr


My sincere thanks are also extended to

. Winefordner for their participation on


the doctoral committee.

Sincere thanks must also go to Dr. Priya Bendale for her guidance and assistance.

Sincere appreciation is also extended to David Daniels for his assistance in the great

corrosion laboratory clean-up.

I would also like to thank my husband, Jim Plaia, for his encouragement, support,

and infinite patience.

















TABLE OF CONTENTS

ACKNOW LEDGM E NT S .i.i... ............... ...................... 44* ............. ....i*

*AB ST R A C TS ........................................ .. .... ...................... v


CHAPTERS


* *4 *4 4~~*~~* *~ *4~4 *4~4~**4** ** ** 4*~**~~* *44~4~~ *4~9*~44~~4 4**** I


Alloy-Based Exposure Studies........................
Characterization Of The Weathering Steel Pat
Corrosion Product Basics................................
Electrochemistry Of Iron And Iron-Chromium
Atmospheric Corrosion Fundamentals.............


.a...
ina ..


44~9*~
ABc


. ..... .. .. .....''. .. '..' ...... 5
. . . 9
... .. ......... ............... 14
)y s............. ......... ......... 17

. .. .. .. .2 0


Sam ple Fabrication..............................................
Potentiodynamic Polarization Experiments..........
Long-term Chromium Enrichment Experiments...
Oxygen Uptake Experiments ...............................
X-ray Diffraction And SEM Analysis Of Corrosic


Initial Exposure Experiments...........
One Year Equivalent Exposure.......
Three Year Equivalent Exposures...
Base Metal Electrochemistry...........
Neutron Activation Analysis Studies


1


* 4**** 4~4~4~~** *4~4~4*~ .. .. .. .
* ** *99~~4~4~4 44**~4* 4'~*~~ ~4 44*~* .~41
* *4** ~ 4* *4 ** *~ ..
* 4~*~4~~~ 4*~~ *4* *4~4~t~ '15
fl Products


* *..4....... 4~** *4*4~~~~*4 .4 *4~~~9~4 ~ *.......... .52
* *4 *4* 4~***~ *44~~4 ~ 4~*~4~* *~ *44*~9 *~ .88
* 4~~~4~~~ *4 4*~* ~ 4~4*~**~~~ 4*~*~~ *44~~ .99
* *4~~~4~~ 4*~~**~* *4** *4*4*~~~.. *4*~*~** *~ *~ 126










APPENDICES

A SAMPLE FABRICATION AND VERIFICATION............ 144


Suppliers And Purities Of Pure Materials.........
Average Composition Of Fabricated Samples..
Microstructure Of Samples............................


.... ...... ... ................... .4 4


... .........14













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE EFFECT OF CHROMIUM ON THE ATMOSPHERIC CORROSION
RESISTANCE OF WEATHERING STEELS

By


Laura Wurth


December, 1995


Chairman:


Dr. Ellis D.


Verink


Major Department:


Materials Science and Engineering


Weathering steels are low-alloy steels which contain less than three percent total of


copper, chromium, nickel, phosphorous, and silicon.


When exposed in atmospheric


environments, these steels display a corrosion resistance two to eight times that of plain-


carbon steel

exposures.


s.


No enhanced corrosion resistance is observed for continuous immersion


The goal of this study was to discover the role of the chromium addition in the


superior corrosion resistance displayed by weathering steels.


During atmospheric corrosion, steels are subjected to alternate periods of wetting


and drying as a result of precipitation and subsequent evaporation.


Under these









thin electrolyte layer present.


A barometric technique was used to study the effect of


small chromium additions on the electrochemistry of iron during wetting and drying.


Iron-


chromium binary alloys with chromium concentrations in the range of zero to five weight


percent were used.


Alloys were studied after various periods ofpre-exposure ranging


from the first four wet/dry cycles to three years equivalent'exposure.


Corrosion product phase form and composition were analyzed with x-ray
C


diffraction.

microscopy.


Corrosion product morphology was analyzed with scanning electron

Chromium distribution in the corrosion product layers of corroded samples


were determined by applying electron microprobe wavelength-dispersive x-ray analysis to


cross-sectioned samples.


Electrochemical characteristics of iron-chromium binary alloys


was determined by potentiostatic polarization in solutions similar to those found on the

surfaces of atmospherically-exposed steels.
















CHAPTER 1
INTRODUCTION


Weathering steels are low-alloy steels


which display enhanced resistance to


atmospheric corrosion when compared with plain carbon steels.


The alloying elements


include copper, chromium, nickel, phosphorous, and silicon, with less than 3w/o total


alloying additions.


Results of both field and laboratory studies have shown that, in an


exposure environment where the steels are periodically wetted and dried, the corrosion


rate is between two and eight times less than that displayed by plain carbon steels.


improved performance is only seen when the steels are exposed in periodic wetting, and,

no improvement is seen for continuous immunersion environments.3


The chromium concentrations in weathering steel are insufficient to cause the

formation of an epitaxial, mixed-metal oxide passive film such as those found on stainless


steels


It is thought that the alloying additions function by promoting the formation of a


dense, adherent layer of iron corrosion products.


Many studies have been done to


characterize this protective corrosion product layer, or, "patina".4"21


From these studies,


the structure, morphology, and chemical properties of the weathering steel patina are fairly
S


well known.


What is not well-understood, however, is the role of individual alloying


C *t~* -. A, n~. A-.. n~.






2


this study is to discover the role of the chromium addition in the enhanced atmospheric

corrosion performance of weathering steels exposed in SO2-contaminated environments.


As atmospheric corrosion is electrochemical in nature, corrosion reactions on the


steel surface will consist of both anodic and cathodic reactions.


reaction is metal dissolution.


In this case, the anodic


Due to the small thickness of electrolyte layers which are


present during atmospheric corrosion, oxygen is readily available, and, therefore, is almost
C


always the predominant cathodic reaction.


Resistance to atmospheric corrosion will be


increased if the rate of either the anodic or the cathodic reactions is decreased.


Since the


chromium levels in weathering steel are too low to promote the formation of a epitaxial,

mixed-metal oxide passive film, it is unlikely that the chromium in weathering steels is


having a significant effect on the metal dissolution reaction.


22-24


It is more likely,


therefore, that chromium is affecting the cathodic reaction.


Since oxygen for the oxygen reduction reaction is supplied by the gas phase (air)

above the electrolyte layer, it must diffuse through the electrolyte until it reaches a surface


which is in electrical contact with the dissolving metal.


Rapid rates of oxygen reduction


are, therefore, dependent on a continuous physical and electrical pathway to the metal


surface.


A tight, nonporous patina of corrosion products will decrease the rate of oxygen


reduction simply by decreasing the rate of oxygen mass-transport.


If the chromium


addition is able to promote the formation of denser, less porous iron corrosion products,






3


would enable higher rates of oxygen reduction than could be supported on the bare metal


surface.


Since many iron corrosion products are conductive, their formation can increase,


rather than decrease the rate of atmospheric corrosion on steels.


If the chromium addition


in the steel can decrease the electrical conductivity of the corrosion product patina, the

rate of oxygen-reduction on the metal surface will decrease, as will the corrosion rate.


Intuitively, limiting the rate of oxygen reduction appeared to be the most likely

method by which the chromium additions could decrease the overall corrosion rate of


weathering steels.


Experiments were conducted which allowed the measurement of the


rate of oxygen reduction on samples as a function of the chromium concentration in the


metal


Chromium concentrations were initially limited to




to the chromium concentrations found in commercial weathering steels.


Since periodic


wetting and drying is essential to the performance of weathering steels, oxygen reduction


experiments were done under conditions of periodic wetting.3


Samples were studied both


in the first few wet/dry cycles and after one, and three years equivalent wetting and drying


exposure using a special dynamic alternate immersion apparatus.


A non-invasive


barometric technique was used to measure the rate of oxygen reduction during different

parts of single wetting and drying cycles on pure iron and various iron-chromium binary

alloys.


Since the density, porosity, and electrical conductivity of the corrosion product






4


Corrosion product morphology and porosity were determined by observation with


scanning electron microscopy (SEM).


Corrosion product phase form was determined


using x-ray diffraction (XRD).


A few previous long-duration field studies have shown that, after extremely long

periods of periodic wetting exposure, many of the weathering steel alloying additions will


enrich at the rust/metal interface. '2'3


It is known from potentiodynamic electrochemical


studies of iron-chromium binary alloys, that, at concentrations as low as 5w/o, chromium


gives promise of facilitating iron passivation.


22-24


If the corrosion reaction were able to


enrich chromium to these levels, it would explain the effect on the metal dissolution


reaction, as well as the oxygen reduction reaction.


iron-chromium binary alloys containing


In order to investigate this possibility,


w/o Cr were tested using the same apparatus


and procedures as were applied to the lower chromium alloys, and the results were


compared.


Of particular importance was the observation that chromium enrichment was


observed, but was not effective until the local chromium concentration at the reaction


interface approached about 5%.


Chromium enrichment was determined by cross-


sectioning samples after testing and estimating chromium levels by x-ray wavelength

dispersive spectroscopy.
















CHAPTER


LITERATURE SURVEY
Discussion of previous weathering steel studies is divided into five different

sections: alloy-based exposure studies, characterization of weathering steel corrosion
4
products, structure and formation of iron oxides and oxyhydroxides, electrochemistry of

iron-chromium alloys, and fundamental atmospheric corrosion studies.


Alloy-Based Exposure Studies
Several investigations have been conducted to find the effect of individual alloying


additions on the corrosion rate.


In all of these studies, the quantity of each alloying


element was systematically varied, and the resulting change in corrosion rate was


measured.


Exposure protocols included both field and laboratory environments.


Field Exposure Studies
In a study by Larrabee and Coburn, 270 different samples were exposed in various


locations for 1


.5 years.


Performance was determined by weight-loss methods.


Table


1 shows the variation of metal loss with chromium concentration for samples exposed in


an SO2 environment.


One sample of each composition was used.


In a study by Taylor, Boden, and Holmes, steel samples with various chromium

concentratinns were ennsdi fnr thrse mnnthc dlirno hnth mmmar an.t unntAr in on cLr






6


In a study by Hudson and Stanner, steel wire and plate samples of various


chromium concentrations were exposed for 1


years.


The metal losses for each


shape sample and exposure duration were averaged and expressed as a corrosion index in


microns per year.


These results are shown in Table 2-3.


In a study by Maxwell, various iron-chromium binary alloys were exposed for 10


years.28S


One sample of each chromium concentration was exposed.


These results are


shown in Table 2-4.


As can be seen in Tables


led to a decrease in corrosion rate.


1 through 2-4, an increase in chromium concentration

The one exception to this trend is the Fe-0.61 w/o Cr


sample in the study by Larrabee and Coburn where the chromium addition resulted in

1.44X increase in corrosion rate.

Accelerated (laboratory) Tests
Although accelerated laboratory tests cannot exactly duplicate the type of

exposure seen in the field, they do provide a more controlled environment for quantifying


the effect of alloying additions.


The results of the two studies described below show how


metal loss varied with chromium concentration in a variety of controlled exposure

environments.










Table


Metal Loss vs Cr Concentration For 15 Years Exposure


Chromium Concentration Metal Loss milss) Percent Improvement Over
(%) Base
<0.1 28.8 base
0.61 41.7 -45
1.20 16.5 43

(Larrabee and Coburn, 1961)25
4



Table 2-2
Metal Loss vs Cr Concentration For Three Month Exposure Durations

Cr composition Summer Metal Percent Winter Metal Percent
(%) Loss (mg/cm2) Improvement Loss (mg/cm2) Improvement
0 15.2 base 11.1 base
1 11.3 26 9.4 15
5 8.4 45 5.6 50
10 2.7 82 3.0 73

(Taylor, Boden, and Holmes, 1971)26




Table 2-3
Annual Metal Loss vs Cr Concentration

Cr Concentration (%) Corrosion Index (pl/yr) Percent Improvement
0 93.5 base
1 64.5 31
1.5 61.2 35











Table


Metal Loss vs Cr Concentration For Ten Years Exposure Duration


(Maxwell)28


Cr Concentration (%) Metal Loss (g/cm2) Percent Improvement
0 0.18 base
3.1 0.04 78
5.7 0.038 79
7.7 0.014 92





9


In a study by Taylor, Boden and Holmes, pure iron and various iron-chromium


binary alloys were subjected to continuous exposure in a fog chamber.

exposed 300 hours in 90% relative humidity (RH), and 0.01lppm SO2.


Samples were


The results of their


study are shown below in Table


In a study by Schwitter and Bohni, steels with chromium contents between


O.Olw/o and 0.75w/o were exposed to cyclic wetting and drying.


Two different


protocols were used: one in which samples were wet 46% of the time, and one where


samples were wet 77% of the time.


In each protocol, the SO2 concentration was 20ppm.


The results of their study are shown below in Table 2-6.


From the results of both field and accelerated exposure studies, it can be seen that

in general, chromium in low concentrations causes some improvement in the atmospheric

corrosion performance of iron and steels.

Characterization Of The Weathering Steel Patina
Heretofore, the great majority of weathering steel studies have been aimed toward


characterization of the protective patina which forms on the steels during exposure.


most of these studies, weathering steels were exposed either in the field, or by accelerated


methods, and the resulting corrosion products were studied by a variety of methods.

review of these studies is broken down by type of characteristics investigated; these

include composition and phase form; morphology, porosity, and surface area; and
1 1 *










Table


Metal Loss vs Chromium Content For Continuous Humid Exposure

Alloy Metal Loss Percent
(mg/cm2) Improvement
pure Fe 3.49 base
Fe-lw/oCr 3.32 5
Fe-5w/oCr 0.85 76


(Taylor,


Boden, and Holmes, 1971)26


Table 2-6
Metal Loss vs Chromium Content In Cyclic Wetting And Drying


(Schwitter and Bohni, 1980)29


Alloy weight loss Percent weight loss Percent
(w/oCr) (46% wet time) Improvement (77% wet time) Improvement
0.01 78 g/m2 base 161 g/m2 base
0.75 61 g/m2 22 122 g/m2 24









Morphology. Porosity. and Surface Area


Protective weathering steel rust


have been found to have a "two-layer" structure.


Observation by optical microscopy has shown the inner layer to be optically inactive, and


the outer layer optically active.4 According

crystallized, and the inner layer amorphous.


,ly, the outer layer was considered to be well-


The inner (amorphous) layer was found to


be more compact and uniform than plain-carbon steel rusts, and was also found to contain


a larger fraction of bound water.6


Separate analysis of inner and outer weathering steel


layers has shown a higher number of pores in outer layer.


The inner (amorphous) layer in


the weathering steel patina is generally thought to be responsible for the enhanced

corrosion resistance displayed by weathering steels.8


Surface area studies using BET analysis have shown that, while the specific surface

area of weathering steel rusts is higher than that of plain carbon steels, the average pore


diameters were smaller.


When the size distribution of these defects was measured as a


function of time, the average size of the pores in the weathering steel rusts decreased with


time, while those of plain carbon steels did not.10


with radioactive


This result is important since studies


S have shown that sulfate ions penetrate rust films only through


macroscopic defects such as cracks and large pores. 10


SEM observation of weathering


steel rusts showed particle sizes between 0.5mm and 4.5mm, layer thicknesses of 0.5mm

to 1.0mm, and four or five layers total."


Elemental analvmic nFhnth filrd Ynnucrp ecmnlc antI arlarattaA tactinn coamhae









extent in and below the corrosion product layer.12


In some studies, enrichment of alloying


elements was only found in the atmospheric corrosion pits.13


The results of these studies indicate that weathering steel rust patinas are denser,

less porous, and, therefore, better able to impede the transfer of oxygen to the metal

surface.

Phase Form and Composition
Weathering steel patinas consist of a xture of different iron oxides and
Weathering steel patinas consist of a mixture of different iron oxides and


hydroxides.


Many studies have been undertaken to determine the phase forms of these


oxides and hydroxides in both the inner and outer layers of the patina.


Misawa, Asami,


Hashimoto, and Shimodaira, using infra-red (IR) spectroscopy, XRD, and SEM found the

inner, amorphous layer of the weathering steel patina to consist of amorphous ferric

oxyhydroxides, whereas Brown and Keiser, using Raman spectroscopy, found it to consist


almost exclusively of 8-FeOOH.14,15


A similar analysis using Mossbauer spectroscopy


showed both inner and outer layers to consist of a mixture of a and y-FeOOH, with the


inner layer having a a-FeOOH fraction almost twice as high as the outer layer.16


Separate


analysis of the inner and outer layers of the weathering steel patina by Meybaum showed


both layers to consist of a mixture of a, y,


and 6-FeOOH, as well as a small quantity of


magnetite.


Mossbauer spectroscopy has been used to study not only the overall phase form,






13


Mossbauer spectroscopy (XMS) were used to study weathering steel rusts from samples


exposed in both rural and marine environments. '


The results showed the rusts from both


sites to consist of a mixture of ferrihydrite, y-FeOOH, and a-FeOOH.


Additionally, they


found that longer wetting durations tended to favor smaller a-FeOOH crystallite sizes.

Additional XMS and CEMS studies by Cook on a 5.4 year marine exposure and a 5.7 year

rural exposure revealed an overall rust composition of ferrihydrite and a-FeOOH plus a


crusty "amorphous oxyhydroxide" that was not possible to characterize.


A study by


Namura using CEMS and XMS on a weathering steel sample exposed 15 years in an

urban environment showed the rust patina to consist of a mixture of a-FeOOH, y-FeOOH,

y-Fe2O3, and magnetite.12


As shown in the results of the studies above, the composition and phase forms of

iron oxides and oxyhydroxides vary widely with both exposure location and exposure


time.


The composition of the poorly-crystallized components of the patina is not clear.


Electrochemical Characteristics


Electrochemical studies of weathering steels have included both potentiostatic


polarizations and galvanostatic reduction. Potentiodynamic polarizations were conducted

mainly to obtain general electrochemical characteristics. Galvanostatic reduction


experiments were often conducted in combination with a spectroscopic technique which

allowed detection of species formed and species reduced during the galvanostatic
c' *n4a






14


Schwitter and Bohni ran anodic polarizations on both plain-carbon and weathering


steels subjected to an "accelerated exposure"


cycles with a wet-time fraction of 46%


consisting of fourteen twelve-hour wet/dry


Both the plain-carbon and weathering steels


showed a large, broad anodic peak between -400mV SCE and 400mV SCE.


The anodic


peak on the weathering steel was forty percent lower than that of the plain carbon steel.

Matsushima and Ueno used potentiodynamic techniques to measure the open-circuit

corrosion current of plain-carbon and weathering steels periodically throughout the course

of a two year exposure.20 The corrosion currents on the weathering steel samples were

consistently between 30% and 80% lower than those on the plain carbon steel samples.


The same investigators examined the cathodic polarization behavior of


month


exposure weathering steel in both aerated and deaerated sodium sulfate solution.


change in limiting current density on changing from aerated to deaerated solution

indicated that oxygen reduction was not the sole reduction reaction occurring on the metal


surface.


From these results it was inferred that trivalent iron oxyhydroxide species were


being reduced on the metal surface.


Suzuki, Masuko, and Hisamatsu performed galvanostatic reduction experiments on

weathering steel and plain carbon steel samples exposed three years in an urban


environment. 21


Reduction was performed in dearated 0.1M sodium sulfate solution.


ray diffraction was used to track the formation of magnetite as a function of current


passed.


The results of the experiment showed that.


while the electrode notentials of









reduction experiment by Okada on plain carbon and


weathering steel samples subjected to


five years of urban exposure showed a larger reduction plateau between -930mV SCE and


-950mV SCE for the weathering steel sample.


Although this is the electrode potential


normally associated with magnetite, XRD showed the weathering steel sample to contain


less magnetite than the plain carbon steel sample.


The reduction plateau was, therefore,


attributed to an "amorphous, spinel-type" iron oxide.

Galvanostatic reduction of the er layer of a weathering steel patina was
Galvanostatic reduction of the inner layer of a weathering steel patina was


performed by Brown and Keiser. The authors separated inner and outer layers by

sanding off the outer layers with abrasive paper. Results of their work showed a reduction


peak between -0.83 and


FeOOH.


-1.00V SCE, corresponding to reduction of a mixture of 8 and y-


IR spectra taken before and after reduction confirmed the initial corrosion


products to be 5 and y-FeOOH, and showed the reduction product to be magnetite.


From the results of the studies described above, it can be seen that exposed

weathering steels exhibit a lower rate of anodic dissolution than a similarly exposed plain


carbon steel


It has also been shown that the corrosion products in the weathering steel


patina can be reduced electrochemically, and that the reduction products are normally

magnetite, or another spinel type oxide.

Corrosion Product Basics
A considerable amount of work has been done in characterizing the structures and






16


metals, their results are useful for predicting the likelihood of various phase

transformations of corrosion products.


The most comprehensive study of formation mechanisms of iron oxides and


oxyhydroxides was done by Misawa, Hashimoto, and Shimodaira. Figure


I shows a


schematic which summarizes the reaction pathways described in their study.


Table


contains a summary of crystallographic information for the iron oxides


and oxyhydroxides which can form on steel exposed in SO2 environments.


From a


corrosion standpoint, some of the most important crystallographic information is the type


of close-packed oxygen lattice that forms the basis for the oxide.


Species both of which


are based on the same type of oxygen close-packed lattices will require less time and


energy to transform.


This becomes important in predicting whether or not a certain


species is likely to form under reducing conditions.


Investigations have been made into the effect of Cu


morphology of colloidally-formed y-FeOOH.


on the structure and


In one, y-FeOOH was synthesized from


an FeSO4 solution with 0 to 50 atomic percent CuSO4 added.


SEM observation of the


resultant y-FeOOH particles showed the particles to be roughly elliptical in shape with the


length decreasing as the Cu


concentration increased.


XRD analysis showed that the


interplanar spacing of the (031) plane increased from 0.247nm to 0.252nm with Cu


doping.


This increase in interplanar spacing was thought to be due to lattice distortion










































































































-- _-


1- I I I I I










Table


Crystallographic Information For Various Iron Corrosion Products


Compound Crystal Dimensions Oxygen layer Structure Notes
System (rnm) sequence
green rust II hexagonal a=0.317 -ABAC- 4 oxygen layers
c=1.09
Fe304 cubic a=0.83963 -ABC- inverse spinel
(magnetite)
y-FeOOH orthorhombic a=0.388 -ABC- based on ccp
(lepidocrocite) b=1.254 oxygen
_________c= 0.307
a-FeOOH orthorhombic a=0.464 -AB- based on hcp
goethitee) b=1.00 oxygen

c=0.303
6-FeOOH hexagonal a=0.2941 -AB- disordered CdI2
c=0.449 structure
y-Fe203 cubic a=0.833 -ABC- spinel


(Fasiska, 1967)3 '





19


important for atmospheric corrosion resistance since a lower conductivity rust layer will


result in a lower oxygen reduction rate, and, therefore, a lower overall corrosion rate.


Electrochemistry Of Iron And Iron-Chromium Allovs


Although, as stated earlier, it is unlikely that the chromium additions in weathering

steels promote the formation of a mixed-metal oxide passive film such as those seen in

stainless steel, it is possible that the chromium additions still have an effect on the anodic


dissolution during atmospheric exposure.


Since any decrease in the rate of either the


anodic or cathodic reactions will result in an improvement in corrosion resistance, it is

important to investigate the known effect of chromium on anodic dissolution of iron.


Diagrams have been constructed which show regions of stability for various iron

and chromium species vs potential and pH.34 These diagrams can be used to predict the

species formed when the metal surface is covered with a thick, reasonably dilute


electrolyte layer.


As the metal dries and the electrolyte layer thins, the rate of the oxygen


reduction reaction increases, as does the


pH and concentration of species in solution.


Unfortunately, due to the extremely small thickness of the electrolyte layer during drying,


measurement of corrosion potential and solution composition is very difficult.


For this


reason, the potential and pH parameters necessary to use these diagrams are not well

known for drying conditions, therefore, the use of these diagrams to predict stable species

under drying conditions is not advisable.









consists of an outer layer resembling y-Fe2O3 with an inner layer of Fe304.


In all cases,


the structure was cubic with the cation concentration decreasing from the inside to the


outer surface..


Thickness varied with exposure time, but, the greatest thickness, measured


after several hours in air, was


2.5nm.


In iron-chromium alloys, this film also contained tri-


valent chromium, which tended to make it more protective.


Several studies have been conducted to determine the effect of low-level chromium


additions on the electrochemical properties of iron in acidic sulfate solutions.


22,23,24.37


Since the SO2-contaminated water layers on weathering steels range from neutral to acidic

sulfate environments, the results of these studies provide useful information on how

chromium weathering steel additions might affect metal dissolution during exposure.


Tables 2-8 through


10, list the results of various anodic polarization studies of


Fe-Cr binary alloys in acidic-sulfate solutions.


In all cases, samples displayed active to


passive transitions with the potential and current required for passivation varying with

chromium concentration.


In all cases, an increase in chromium concentration resulted in a decrease in


the charge necessary to passivate.


most cases, examination of the passive film with x-


ray photoelectron spectroscopy (XPS), and auger electron spectroscopy (AES) showed a

chromium enrichment between three and sixteen times that found in the base metal with

the largest enrichments being seen for alloys with less than one percent chromium in the






21



Table 2-8
Potentiostatic Polarization Results For Fe-Cr Binary Alloys In
Dearated 0.5M sulfate solution, pH=3


Alloy E open circuit E passive I critical to passivate
________(mV vs NHE) (mV vs NHE) (A/cm2)
Fe-5Cr -400 +300 0.10
Fe-7.5Cr -420 +100 0.01
Fe-I 0Cr -400 -100 0.0075
(El-Basiouny and Haruyama, 1976)22

Table 2-9
Potentiodynamic Polarization Of Fe-Cr Binary Alloys In Dearated 0.5M H2SO4,
Sweep Rate 0. Imy/s, Sample Diameter 3mm

Alloy E open circuit E passive I critical to passivate
(mV vs Hg/HgSO4) (mV vs Hg/HgSO4) (A/cm2)
pure Fe -957 -112 2.8
Fe-6Cr -989 -184 2.4
Fe-9Cr -1005 -752 0.80
(Dobbelar, Herman, and DeWit, 1992)23

Table 2-10
Potentiostatic Polarization Of Fe-Cr Binary Alloys In Dearated 1 .ON H2SO4

Alloy E open circuit E passive I critical to passivate
(mV vs SHE) (mV vs SHE) (A/cm2)
pure Fe -300 +625 0.5
Fe-lCr -250 +563 0.5
Fe-6Cr -250 +375 0.25
Fe- 10Cr -250 +219 0.025


(Kirchheim Heine. Fischmeister Hofman Knote and Staiz lO Ro4








current required for passivation dropped by 47.5%


From these results it seems that


chromium enrichment at the metal surface facilitated passivation in the environments


studied


Although both studies showed a correlation between Cr enrichment and ease of


passivation, neither study gave much information on the distribution of Cr relative to the

oxide/metal interface.


Atmospheric Corrosion Fundamentals


In this section a review is made of studies whose goal was a better understanding

of some of the fundamental processes which govern atmospheric corrosion in general.

Although none of these studies dealt specifically with weathering steels, their results can


be directly applied to weathering steels exposed in S02-contamninated environments.


section has been divided into five sections, each dealing with a different fundamental

process in atmospheric corrosion.

Formation of an Electrolyte
Formation of a water layer begins with H20 adsorption onto the oxyhydroxides in


the outer layers of the native oxide.


Adsorptive bonding occurs by bonding of H20


molecules to the OH groups of the oxyhydroxides by formation of H-bridges.39 The water

which attaches in this manner is bound to the native oxide and, therefore, can not serve as


an electrolyte.


If the metal surface is free from salts and other impurities, an extremely


high RH is necessary to start the accumulation of free water for an electrolyte.


hydrosgopic salts are present on the metal surface, free water will begin to accumulate








which coarsen as more and more water is adsorbed onto the surface.


This discontinuous


nature of the water formation is at least partially responsible for the discontinuous sulfate


distribution on exposed metal surfaces.


Once corrosion products have formed, the


quantity of water present on the metal surface will increase due to the capillary action.4143

SO, Interactions
Atmospheric SO2 dissolved in the water layer on a metal surface is hydrolyzed and


oxidized to form sulfate ions b-y a variety of reactions.42-45


varies with RH.


The adsorption rate of SO2


below 60-70%RH, no SO2 adsorption was measurable, but above


70%RH the adsorption increased dramatically.


Presence of corrosion products on the


metal surface will also facilitate SO2 adsorption.42


In the absence of chlorides or other corrosive contaminants, no significant


corrosion will occur without SO2.


46 In addition to increasing the conductivity of the


surface water layer, sulfate ions can participate directly in the corrosion reactions.


Some


investigators have proposed that SO2 acts as a cathodic depolarizer according to the

reaction below:4"


2S02 + 4e


+S04


2- (2-1)


As sulfide compounds have not been observed on atmospherically-exposed steels,


the likelihood of this reaction is considered very small.42


Many more studies have


concerned themselves with the effect of sulfate ion on metal oxidation reactions.41,'42









Fe(II) sulfate salt


The iron in the salt is later converted to an oxyhydroxide, liberating the


sulfate ion for reuse.


The distribution of sulfate on the surface of atmospherically exposed iron and


steels is not homogeneous, but tends to form "sulfate nests"


A cross-section


schematic of a typical sulfate nest is shown in Figure 2-2.

Anodic and Cathodic Reactions in Atmospheric Conditions


The most important distinction between atmospheric electrochemical reactions and
The most important distinction between atmospheric electrochemical reactions and


immersion electrochemical reactions is the thickness of the electrolyte layer.


In the case of


immersion conditions, concentrations of dissolved solids remain fairly low, and the supply


of dissolved gases is limited.


In atmospheric exposure, electrochemical reactions often


occur in extremely thin layers of electrolyte where dissolved gases are much more readily

available, and concentrations of dissolved solids can become very high.

Anodic Reactions
According to Barton, charge transfer is the rate limiting step in metal oxidation. I


this case, the metal oxidation is considered to follow the Butler-Volmer equation.42


Since


conditions are favorable, for corrosion product formation, the dissolution is thought to


occur through a layer of corrosion products.


Rosenfeld conducted an investigation


comparing anodic polarization behavior of iron in 160pm electrolyte films to that in


immersion conditions.41


For current values of 2


iA/cm2, the thin film samples polarized


7SfmV mnre than the immAr'inn camnlc


Fnr anrrent vnine nf


I


O. A/eam2 thp thin film






























-- QO
-"Jwz
-1h-o


I-<


DI <.0
00
00z
_ LL < :




0)
C,'
0
C.
w
I

U
C)
C4
C,'
0
4..






'2
Do

4..
0)
z
4)
4-
z
U,
*<
(4-
0

0
* -
*"~
C.)
C)
tfl
I
In
C,)
0
I-
U









observed even at current values as high as


10 OmA/cm2


Results of AC impedance studies


on thin-film covered iron samples showed the presence of a conductive oxide film.49

Cathodic reactions
Because of the high availability of oxygen in thin films, oxygen reduction is the


major cathodic reaction occurring on atmospherically exposed iron surfaces.


reaction path will vary with solution pH and availability of a catalyst.


The specific


Typical oxygen


reduction reactions are listed:42


02 + 2H20 +


= H202 + 201


(basic)


H202 + 2e


= 20H


(2-3)


02 + 2IT


H202 + 2IW


= H202


+2e


= 2H20


(acidic)


(2-4)


(2-3)


(catalyst)


0~~+2W


+ 2e" = H20


(2-6)


The rate of charge transfer of the oxygen reduction reaction is dependent on the


substrate on which it is occurring.


Potential-current relationships for oxygen reduction on


iron, chromium, and iron oxide are shown in Table


11.42


Because of the low solubility of oxygen in water (2


* 10'"M), oxygen can be


=










Table


Potential-Current Relationships for Oxygen Reduction on Various Substrates


(Barton, 1976)42


Substrate E for E for
_____i=5A/m2 i=10A/m2
Fe 1.00 1.07
Cr 1.15 1.20
Fe203 1.11 1.26









estimation of the limiting oxygen reduction current can be made by applying Fick'


law for semi-infinite linear diffusion:


= (DnFc)/(d)


(2-7)


where: iD = diffusion-limited current


D = diffusion coefficient


= Faraday'


Constant


n = number of electrons passed


c = oxygen concentration


d = diffusion-limited layer thickness


The expression for the diffusion coefficient is given by:


= (RT/N)(6xvr)"1


where: R


T


(2-8)


= gas constant


= temperature (K)


= Avogadro's


number






29

Combination of these two expressions gives an expression for diffusion-limited

oxygen reduction current:


= (RTvFc)/(6dNnr)


(2-9)


This expression is limited to conditions where non convective stirring occurs.

constraint usually limits application to films thinner than 30pm and isothermal

conditions.42


Rosenfeld used cathodic polarization on various thickness electrolyte films to study


the effect of film thickness on the rate of the oxygen reduction reaction4'


Under


conditions of constant film thickness, the rates of oxygen reduction on the thin film


samples were three to four times higher than those of immersion samples.


The same


experiments were performed under vaporizing conditions by varying the RH above the


thin films. The results of cathodic polarization under vaporizing conditions showed two

distinct trends. First, when relative humidities were kept constant, but the initial layer


thickness was decreased, the oxygen reduction currents increased.


Secondly, when the


initial layer thicknesses were kept constant, but relative humidities were lowered, oxygen


reduction currents also increased.


From these results, it was concluded that the oxygen


diffusion length was varying independently of the actual film thickness.


Work by Levich


and Eisher showed that small temperature variations could result in surface tension


rhanoes which nulrd canse "canillarv cnnventinn"


50 Fnr thin electrnlvte nlavers the rate of





30


Although Rosenfeld was able to study fairly thin layers under vaporizing

conditions, he was not able to study the effect of drying to near completion since solution

from the reference electrode could contaminate the sample surface under these conditions.

A technique developed by Stratmann and Streckel allowed the measurement of corrosion


potential to complete drying.


Their technique involved the measurement of sample


surface work function with a non-invasive probe known as a Kelvin probe.


work function could then be related directly to corrosion potential.

not contact the sample, sample contamination was avoided. Using


The surface


Since this probe did


the Kelvin probe as the


reference electrode of a three electrode system, it was possible to conduct cathodic and

anodic polarizations on pure Fe in 1M Na2SO4 with electrolyte layers as thin as 2-3 pm.

Summaries of the corrosion current, corrosion potential, and critical current to passivate


vs film thickness are listed in Tables


12 and


The maximum in corrosion current with decreasing film thickness was due to a

simultaneous increase in the rate of oxygen reduction and decrease in the rate of metal


dissolution.51


As seen from the results of Tables


12 and


film thickness has a


significant effect on electrochemical characteristics.


When metal surfaces are covered with thick electrolyte layers, the slow rate of

oxygen mass-transfer to the reaction interface limits the rate of the overall corrosion


reaction.


As the electrolyte layer thins and becomes self-stirring, however, very high rates










Table


Current To Passivate


vs Film Thickness


(Stratmann and Streckel, 1990)5"


Table


Corrosion Current and Potential vs Film Thickness


(Stratmann and Streckel, 1990)51


film thickness (pm) current to passivate (A/cm2)
285 0.03
10 0.002
2-3 0.0004


film thickness (pm) icorr (pA/cm2) Ecorr (mV SHE)
bulk 48 -311
285 594 -207
10 836 0
2-3 109 293






32


rates of anodic reactions are not high enough to keep up, and the overall corrosion


reaction becomes limited by the metal dissolution reactions.


This switch from cathodic to


anodic control has been demonstrated by Justo and Ferreira who measured the limiting

current for oxygen reduction on thin-film cells.49 The measured value of oxygen reduction


limiting-current exceeded the open circuit corrosion current,


so, it was concluded that the


sample was corroding under. anodic control.

Effect of Wet/dry Cycling
During wet/dry cycling, the thickness of the electrolyte layer on the metal surface


varies from a few millimeters to practically zero.


Since the availability of oxygen varies


with the thickness of the electrolyte layer, the electrochemical reactions which occur on a


rust-covered metal surface will also vary.


Because of the variation of reactions and


reaction rates with electrolyte layer thickness, it is reasonable to expect the rates and types

of reactions on exposed metal surfaces to vary with the progress of single wet/dry cycles.

Mansfeld conducted experiments using a laminated cell consisting of alternating layers of

iron and zinc separated by sheets of polyester film.4 Laminated cells were wet with a


known thickness of electrolyte, then allowed to dry. Galvanic current flowing between the

iron and zinc was measured as a function of drying time. As drying progressed, currents


increased moderately, then increased drastically just before complete drying.


oxygen resulted in little or no galvanic current.


Exclusion of


The results of this experiment demonstrate


the variation of reaction rates during wetting and drying.









Stage One (wetting): During this stage the rust/covered metal surface is covered

with a thick layer of electrolyte. Due to the thickness of the electrolyte layer, mass-


transport of oxygen to the reaction interface near the rust/metal interface is slow, and,


therefore, the corresponding rate of oxygen reduction is also slow.


Because of the low


rate of oxygen reduction, metal dissolution is balanced by reduction of trivalent iron


oxyhydroxide species in the rust layer.


Reaction rates during this stage are fairly low.(See


Figure


Stage Two (drying) During this stage the rust covered metal surface is still


covered by a fairly thick layer of electrolyte, so, the rate of the oxygen reduction reaction


is still very low.


At this point, however, all the reducible species in the rust layer have


been exhausted, so, metal dissolution is now balanced by oxygen reduction.


Reaction


rates in this stage are also fairly low.(See Figure 2-4).


Stage Three (critical wetting) In this stage the electrolyte layer has thinned due to


evaporation.


Now the rate of mass transport of oxygen to the reaction interface is very


rapid, and, consequently, the rate of oxygen reduction is very high.


Now the rate of


oxygen reduction is high enough to support not only a high rate of metal dissolution, but


also to reoxidize the species which were reduced in Stage One. It is during this part of the

wet/dry cycle that the majority of the metal loss occurs.(See Figure 2-5).


This three stage model was confirmed by the results of work by Stratmann,










STAGE


anodic:


- Fe(II) +


cathodic:


8FeOOH + Fe2


+ 2e


3Fe3O4


4H20


Figure 2-3
Stage One Of Wetting And Drying
Because of low rates of oxygen reduction, metal dissolution is balanced by reduction of
trivalent oxyhydroxide species in the rust film.


ONE











anodic:


Fe(II)


cathodic:





O


1/20


20H


Figure,2-4
Stage Two Of Wetting And Drying
Metal dissolution is now balanced by oxygen reduction.


STAGE


TWO










STAGE


anodic:


- Fe(II)


3Fe3O4


cathodic:


+ 3/4 0,


1/20


9/2HO -9FeOOH


p


20H



02
I


Figure 2-5
Stage Three Of Wetting And Drying
The rate of oxygen reduction is high enough to support not only a high rate of metal
dissolution, by also to reoxidize the species which were reduced during Stage One.


THREE









during the course of single wet/dry cycles.


The rate of metal dissolution was measured


using a magnetic technique which allowed detection of quantities of iron metal and iron


spinels


The rate of oxygen reduction was measured using a barometric technique which


relied on the change in oxygen partial pressure from reaction of gaseous molecular


oxygen.


Wet/dry cycling was achieved by flushing the sample to deposit an electrolyte


layer, then heating the sample to dry it.


In the case of pure iron, both oxygen reduction


and metal dissolution currents were between zero and 209iA/cm2 for the first two thirds


of drying period, then jumped to approximately 930pA/cm2 for the last third.


Rates of


both metal dissolution and oxygen uptake dropped to zero as the sample reached complete


drying.


The initial period of low current corresponds to stages one and two, and, the


period of higher current corresponds to stage three.


The same experiments run with an


Fe-0.5Cu alloy showed maximum currents (stage three) of only 500pA/cm2


Continued


cycling of the pure iron samples showed no decrease in maximum currents, whereas the

Fe-0.5Cu samples showed a progressive decrease in maximum (stage three) current with

each cycle.


Additional information on the effect of copper on the cyclic wetting and drying

behavior of iron was provided in a study by Stratmann and Streckel using the Kelvin probe


to monitor corrosion potential during drying.5'


Pure iron samples exhibited a rise in


corrosion potential on drying from -450mV SHE to +200mV SHE.


The copper-bearing


.1 t S a fl n trnrr








corrosion potential would be expected.


Since the copper additions lead to a simultaneous


decrease in both corrosion potential and corrosion current, it was thought that the copper

was acting to inhibit the rate of the oxygen reduction reaction.


From the results of Stratmann and Streckel'


study, it is obvious that an inhibition


of the oxygen reduction reaction should lead to a decrease in the corrosion current


exhibited during the third stage of wetting and drying.


Many studies have shown that the


site of the oxygen reduction reaction on a rust-covered metal surface is not at the

rust/metal interface, but at the oxide/electrolyte interface within electrolyte-filled pores in


the rust layer.56'57"


In order for oxygen reduction to occur on the corrosion product


surfaces, there must be an electrically continuous path to the metal surface. In order to

achieve this path, the corrosion products must be at least partially conductive. At first

glance, the presence of an electrically conductive rust layer seems unlikely. Although

magnetite is somewhat conductive, it is not always present in every rust layer. The other


main constituents of rust, goethite and lepidocrocite, are not considered to be very


conductive.


During reduction in stage one, however, lepidocrocite is partially reduced,


turning it into an n-type semiconductor and greatly increasing its conductivity.

Reduction of Corrosion Products
Since the partial reduction of corrosion products during stage one provides the

conductive path for the high rate of oxygen reduction during stage three, the reduction of


atmospheric corrosion products has been the subject of several studies.


Work by Suzuki,









magnetite, while the a-FeOOH phase remained intact.21


This phase change was ascribed


to a solid state reduction reaction since colorimetric analysis did not detect any Fe


Fe in solution.


Detection of phase changes in this study was done using XRD, which


required that the reduction be halted, and the sample removed from solution.


Other


investigators have used a variety of in-situ techniques to study the phase changes which

occur in atmospheric rust layers during reduction.sS

o
Stratmann, Bohnenkamp, and Engell used an in-situ magnetic technique to monitor

the quantity of magnetite present during potentiostatic reduction of an atmospherically


formed rust film.ss


Magnetite formation was measured as a function of pH, Fe


concentration, and reduction potential.


Their results showed that magnetite formation


began only at potentials below -400mV SHE, and was favored by higher solution pH's


and presence of Fe" in solution.


As in the XRD study by Suzuki, Masuko, and


Hisamatsu, magnetite was found to have formed from y-FeOOH, with no changes in the


a-FeOOH being noted.


Reduction was thought to occur by two different pathways.


First,


in conditions of no solution Fe


and lower pH, a partially reduced intermediate is thought


to form on the surface of the y-FeOOH according to the reaction below:


y-FeOOH + I-


+ e = {Fe*OH*OH}


(2-10)


Since this intermediate is partially reduced, it would be very conductive, and could

serve as a conductive pathway for oxygen reduction to occur in the rust laver during stage









y-FeOOH to magnetite by solid state transformation.


presence of FeC


This is thought to occur in the


according to the reaction below:


2y-FeOOH + Fe"+


= Fe304


+2H


This direct conversion by solid state transformation is thought to be quite likely

due to the similarities of their crystal structures. y-FeOOH having a ccp oxygen lattice


with Fe+ in octahedral sites, and magnetite having a ccp lattice with Fe&


octahedral and tetrahedral sites.


and Fe++ in


Transformation ofy-FeOOH to magnetite would simply


involve movement ofFe+ into the lattice and movement of IH


out of it.


High mobilities


of both species in the y-FeOOH have been previously documented.


Another in-situ study by Stratmann and Hoffinan involved the use of in-situ

Mossbauer spectroscopy to better characterize the reduction intermediate identified in the


study described above.


Based on Mossbauer spectra taken at both 298K and 85K, the


reduction product was thought to be similar in structure to Fe(OH)2, but strained.


From


this information, it was concluded that the reduction intermediate grew on the surface of

the y-FeOOH and the observed strain was due lattice mismatch.


Dunnwald and Otto used in-situ Raman spectroscopy to study the effects of

potentiostatic reduction and reoxidation on the phase forms present in atmospherically


formed rusts.'


The phases present in the rust layer consisted ofy-FeOOH, a-FeOOH,








and appearance of a magnetite peak.


Reduction below -600mV resulted in reduction of


the a-FeOOH to magnetite.


Samples were reoxidized by exposure to air.


The air


exposure did not result in any reoxidation of the magnetite.


The work of this study is


consistent with previous studies involving reduction of'y-FeOOH in atmospheric rust

layers.















CHAPTER 3
EXPERIMENTAL PROCEDURES

Sample Fabrication


Samples were fabricated from pure iron, pure chromium, and pure copper from


various suppliers.

Appendix A. Sar

melting. Larger s


Purities and suppliers for each element are listed i Table A-1 of


mples were fabricated using either arc-melting or vacuum-induction


samples (>50g) were fabricated by vacuum-induction melting, and all


others were fabricated by arc-melting.

Arc-melting procedures
Small pieces of pure materials were weighed out to desired compositions, then


cleaned ultrasonically in ethanol. Clean pi

placed on the water-chilled copper hearth.

avoid oxidation of pure materials. Sample


eces were then transferred to the arc-melter and

Melting was performed in an Ar atmosphere to

;s to be used in electrochemical experiments


were soldered to brass, flat-head screws and machined to a uniform 1cm diameter.

Samples were then mounted in epoxy and ground so that only the front face was exposed.

Samples to be used in long-term exposure, (e.g.chromium-enrichment)studies were

prepared in a similar manner except for the machining to uniform diameter.

Induction-melting procedures









susceptor.


Because of the high melting point of chromium, it was necessary to add


chromium in the form of Fe-20Cr and Fe-30Cr master alloy buttons.


buttons were fabricated by arc-melting.


solidified under Ar.


The master alloy


Samples were melted under vacuum, then


Induction-melted samples to be used in oxygen-uptake experiments


were machined into hollow cylinders.


Schematics of all samples are given in Figure 3-1.


All alloyed samples were checked with WDS on the electron microprobe to ensure
a.


composition and homogeneity


Results of the EPMA checks can be found in Tables A-2


through A-6 of Appendix A.


According to the ternary phase diagram for iron, chromium, and copper, the

microstructure of all samples used should consist of single-phase a-ferrite with chromium


and copper in solid solution.


microscopy.


Microstructures of all samples were confirmed by optical


Representative microstructures of arc-melted and vacuum-induction melted


samples can be found Figures A-1 through A-4 in Appendix 1.


Potentiodynamic Polarization Experiments
In order to better understand how chromium affects metal dissolution, anodic

potentiodynamic scans were performed on pure iron and a variety of iron-chromium binary


alloys.


Polarizations were performed in deareated 0.05M Na2S04.


Deaeration was


performed by purging with nitrogen.


Sample preparation required grinding with SiC paper


to a 600 grit finish, rinsing with deionized water, rinsing with ethanol, then drying in warm










44

























a

C
C
IC
C
0
S.
-
*
o a..
4: 4)
a
C
0'e {1
4- aM
SIC
2w



0.


VI

a.)
0
-n
I

0.0
I-cu



a- e- C,)
S U
o -
U) 4-
Cu
2
4)
a
U
E S
C
-c En
U
o
4- a
C
4) -
a-
w
C
- a
-
o
E x
4/) C

I
a,








used was 0.1 mV/s, and, scans went to 1400mV positive of open-circuit. The platinum

counter electrode was separated from the working electrode by a glass frit. The saturated


calomel reference electrode was used with a luggin capillary positioned just below the


working electrode surface


Polarization was performed using a Princeton Applied


Reaserch model 273 potentiostat interfaced to a 386 computer.

Long-term Chromium Enrichment Experiments
In this series of experiments, various iron-chromium binary alloys were subjected

to wet/dry cycling by alternate immersion and then analyzed to determine the distribution


of chromium in the corrosion products and at the rust/metal interface.


Chromium


distribution in the outer parts of the rust layer was analyzed with neutron activation


analysis


Chromium distribution of the inner layers and the rust/metal interface was


determined by cross-sectioning and analysis with electron microprobe, wavelength

dispersive spectroscopy.


Alternate immersion exposure was performed using a testing apparatus, a


schematic of which is shown in Figure 3


positioned evenly around the rim of the whe


The tester could accommodate six samples

el The tester could be set to rotate


intermittently,


giving each of the six samples a set amount of immersion time.


Since only


the sample min the lowest position could be immersed, the ratio of immersed time to non-


immersed time was always 1:6.


The ratio of wet time to dry time, however, varied with


the rate at which samlDies dried after having been immersed.


In general longer cycle times










































/

a)





47


Neutron Activation Analysis (NAA) samples consisted of large, arc-melted


buttonsmounted in epoxy and ground to expose only one side.


The exposed area of each


samplewas approximately 8cm2


, and, six such samples were exposed at one time.


At the


end of an exposure period, exposed NAA samples were removed from the wheel and


corrosion products were removed for analysis

layers using squares of clear, strapping tape.


Corrosion products were removed in


Since the tape did not contain any elements


which activated upon irradiation, it did not interfere with the chromium analysis.


Squares


of tape were laid over each sample, rubbed with a teflon scraper, and peeled off to remove


a layer of corrosion products.


This procedure was repeated until no more corrosion


products could be removed (normally four times). In this manner, it was possible to

obtain a rough depth profile of chromium concentration. In order to obtain an adequate


signal-to-noise ratio with NAA, it was necessary to have at least 250mg of each sample.


In order to reach this weight,


it was necessary to combine similar layers of all six exposed


samples.


Microprobe samples consisted of small, arc-melted samples mounted in epoxy and


ground to expose only one side.


0.79cm2


The exposed area of each sample was approximately


. At the end of an exposure period, samples were removed from the wheel, and,


the entire sample vacuum-mounted in epoxy. Samples were then cross-sectioned using a

diamond watering blade and polished to a 0.3um finish. A schematic of a cross-sectioned


sample is shown in Figure 3-3.


In order to avoid charging of the corrosion product laver









48















r

I

a
0~
0)

a,
S







cn




0


a-
en0
en4)




-o
03
C
0
m
4-
C)
4)
LO
S
cn
cn
0
I-.
U








=1
L
0~
C
0
a
&





49


Oxygen Uptake Experiments
In order to better understand the effect of chromium on cathodic reactions during

wet/dry cycling, experiments were designed to monitor the rate of oxygen reduction


during wetting and drying


These experiments essentially involved placing the sample to


be studied in an airtight chamber with an oxygen atmosphere, allowing it to wet and dry,


and measuring the resultant pressure drop.


The change in oxygen partial pressure can be


related to an oxygen reduction current through the use of Faraday'


Law.


A schematic of


the cell used for the oxygen uptake experiments is shown in Figure 3-4.


The samples were


hollow and screwed onto a plastic coupler which was attached to the sample holder.

Chilled fluid could be circulated through the hollow sample via the sample holder,


allowing the sample surface temperature to be varied during the experiment.


The cell


contained a temperature control bath which was filled with a saturated solution of CaCl2 .

When the CaCI2 solution was at room temperature in the sealed cell, it established a


relative humidity of 35%.


bath.


Higher relative humidities could be established by heating the


Sample contamination by CaCl2 was avoided by placing a splash guard between the


bath and the sample.


The cell was equipped with a humidity/temperature sensor which


was used to monitor relative humidity throughout the course of each experiment.


Itwas


necessary to monitor relative humidity because, during the course of a wet/dry cycle,

water vapor partial pressure changes were significant and constituted a significant fraction


of the total measured pressure change.


Measured variations in water vapor partial


* .1I I a-. I




































.3 1
-B
I









subtracted from the total pressure before reduction currents were calculated.


Total


pressure was monitored through use of an absolute pressure transducer.


At the start of each experiment, dry samples were attached to the sample holder


and inserted into the cell.


To begin wetting, the sample surface temperature was lowered


by circulating chilled anti-freeze fluid through the hollow sample interior.


The relative


humidity of the chamber was simultaneously raised by heating the solution of saturated
4'


CaCI2.


To ensure even wetting over the entire sample surface, two valves were opened,


and humid oxygen was blown through the cell at a rate of 1


Hour (SCFH).


Standard Cubic Feet Per


After one hour of wetting with flowing, humid oxygen, the outlet valve


was closed and cell pressure was adjusted to


17 ton-rr.


At this point, monitoring of cell


pressure for oxygen reduction rate determination began.


For the first hour of monitoring,


the sample was forced to remain wet by continuing the circulation of chilled fluid through


the sample interior and heating in the CaCI2 bath.


One hour into the monitored portion of


the experiment, the sample chilling and bath heating were shut off and the sample was

allowed to dry.


The quantity of reduced oxygen at any point in the experiment is given by the

formula below:


An(O2)


= (V/RT)[(Pm aed tO-PN20o to)


- (Pmcamued t-PmoH20t)]


(3-1)









= gas constant


= gas phase temperature at time t


Pmeaed to = measured pressure at start of experiment


PH20 to


PHas0rd t


PHmot=


= initial water vapor pressure


= measured pressure at time t


water vapor pressure at time t


The rate of oxygen reduction is given by:


i(02)


= 4F{d[An(O2)/A]/dt}


(3-2)


where: i(O2)=oxygen reduction current


F=Faraday' s


constant


A=sample area


Since it was not possible to introduce corrosive gases directly into the oxygen

uptake measurement cell, all samples received a pre-corrosion exposure before


introduction into the measurement cell.


Long-term exposure samples received the


equivalent of either one or three years of cyclic wetting exposure (assuming one cycle per


eJ a. A n .UL ~L al4a..mnn4n *s4..ina...ne..: nfl Sasans la.tt LZ qi -- 1 1 L L -





53


X-ray Diffraction And SEM Analysis Of Corrosion Products


After completion of oxygen uptake experiments, corrosion products were removed

from the sample surface with a pointed scalpel and examined using x-ray diffraction, and,


where appropriate, with SEM.


SEM examination was only performed for the longer-


duration exposure samples since the corrosion products from these samples tended to be

thicker and could be removed intact, while those of the initial exposure samples could not.


All SEM samples were coated with Au-Pd to avoid charging during examination.


examination was performed with a JEOL 6400.


SEM


XRD samples were ground to a


particle size and attached to glass-slides with collodian amyl acetate.


Diffraction scans


were run at a rate of 0.01degree per second, with a collection interval of 0.05 degrees.

ray diffraction was performed on a Phillips 3520 powder diffractometer, using Cu Ka


radiation.


Quantitative analysis was performed using matrix-flushing, a variation of the


method of internal standards.


The confidence interval was +/-5%.















CHAPTER 4
EXPERIMENTAL RESULTS


Results are divided into three sections based on exposure time.


The first section


deals with samples exposed for only the first four wet/dry cycles, the second with samples


exposed for 365 wet/dry cycles, or one year'


equivalent exposure; and the third with


samples exposed for 1095 wet/dry cycles, or three year'


equivalent exposure.


Results of


potentiodynamic and NAA experiments are listed separately.

Initial Exposure Experiments
Initial exposure samples were first subjected to a three hour pre-corrosion


exposure in a humid sulfur dioxide/oxygen environment.


After the precorrosion


treatment, samples were transferred to the oxygen uptake measurement chamber where


they were subjected to four measured wet/dry cycles.

pure Fe, Fe-0.5Cr, Fe-0.5Cu, and Fe-0.5Cu-0.5Cr. 1


The first samples to be tested were


[hese sample compositions were used


first since they are most representative of chromium and copper concentrations found in


many commercial weathering steels.


Although the purpose of the study is to determine


the role of chromium in weathering steel performance, the copper-bearing alloys have

been much more thoroughly studied and can, therefore provide a good reference for

comparison.


























a)
C2

W -
XC
0>


C
Cu
a

IC
'Ito)
00
4)).,
3-


o 04


000


4.~
nfl-






















C)-

C>
4J~


C)
C)
>1S~
xc
0>


tflOLflOU'~O&flOtOOW)Ou)or)ouotoo


a
66666666666666 6dddcc


Cu
-



4;
Cu



I 4)
too


O -

I I


C)

C
a
s-tn


















0
a
0~
*0
0>
Q40)


Cu


xc
0>


0 tO 0 '0 0 In 0
o~cJ~Nr-tDcD
6666666


4-
0.


@2
too
@2>l

-


10 10 ^- FO
00000


V
C
0!'





















































I
4)



4)
4)
I
4)
2


O~O~OLflOLnoLnotnoLnoLnou~otnotno


a
e00666666666666666666oo


II






59


to the three-stage model of wetting and drying, the oxygen-uptake vs time curves


shouldcontain four distinct regions corresponding to stage I,


stage II,


stage III, and


complete drying


According to this model,


the rate of oxygen uptake should be low


during stage I,


slightly higher during stage II, significantly higher during stage II, and


approximately zero during complete drying. Regions corresponding to stages I, II, III, and


complete drying are shown on each curve.


As can be seen in Figures 4-1 through 4-4, the


shape of the oxygen uptake vs time curves conforms fairly well to the shape predicted by


the three-stage model.


There are two areas in which the shape of the time-dependent


oxygen uptake curves differs from that predicted by the three-stage model.


First, during


the first 3000-4000s of each experiment, the rate of oxygen uptake becomes negative,


indicating an off-gassing process.


These negative values are attributed to the inaccuracies


of temperature measurement during this part of the experiment.


Due to simultaneous


heating of the internal bath and chilling of the sample, temperature gradients were set up in

the cell which could not be completely accounted for by the in-situ temperature sensors.

After the end of the first hour of stagnant wetting, both the sample and bath temperatures

returned quickly to room temperature, and measured temperatures corresponded to actual


gas-phase temperatures. The second area of discrepancy is in the relative rates of oxygen

uptake during stage I and stage II. According to the three-stage model, the thickness of


the electrolyte layer present during stage II is still fairly thick, and,


therefore, the rate of


oxygen uptake during stage II should not be significantly higher than that of stage I. A








difference in the morphology of the electrolyte layers in each case.


The three-stage model


assumes a single, continuous layer of electrolyte covering the entire sample surface.


Since


the samples in this study were wet by condensation, the electrolyte was present in the form


of droplets with a distribution of sizes. During the wetting phase, the mean droplet size

increased, but a distribution of sizes was still present. As the sample was allowed to dry,


the smaller droplets dried more quickly, and, thus reached the critical thickness for self-


stirring, or, stage III, much sooner than the larger droplets.


If the samples had been


allowed to continue to cycle and a continuous layer of corrosion products had been

allowed to form, the capillary properties of the corrosion products would control the


morphology of the condensing water,


giving a curve shape much more consistent with the


predictions of the three-stage model, as will be seen for longer exposure durations.


Certain aspects of the time dependent oxygen uptake curves can be related directly

to properties of the corrosion product layer and overall atmospheric corrosion resistance.

These aspects include: total drying time, maximum current, and total per-cycle oxygen


uptake.


Total drying time is defined as the time from the start of the experiment to the


point at which complete drying is achieved. Total drying time gives a measure of the

ability of the corrosion product layer to retain moisture. The moisture retention properties


of a corrosion product layer will depend on many things such as thickness, total


continuous pore volume, and average pore diameter.

can only give a measure of the combined effects. Mu


Unfortunately, the total drying time


iximum current can be calculated









limited almost exclusively by the conductivity of the corrosion products themselves.


maximum current can, therefore, be used as a measure of corrosion product conductivity.

Total per-cycle oxygen uptake is defined as the total number of moles of oxygen reduced


per wet/dry cycle.


Since the total number of moles of oxygen reduced and metal dissolved


per cycle are equal, the total per-cycle oxygen uptake gives a direct measure of the

corrosion resistance at any given point in the exposure lifetime.

A plot of total drying time vs number of cycles is shown for all compositions
A plot of total drying time vs number of cycles is shown for all compositions in


Figure 4-5.


As can be seen in Figure 4-5, there is no real trend in total drying time with


either composition or number of cycles.


This lack of trend is more than likely due to the


fact that the corrosion products which form in the first four cycles are both thin and sparse

and are, therefore, unable to retain much moisture.


Plots of maximum current vs number of cycles are shown for all compositions in


Figures 4-6a and 4-6b. As can be seen in these figures, the maximum current does tend to

decrease with increased cycling. This is consistent with the conclusion that, while the


corrosion products are too thin and sparse to contain a significant quantity of moisture,


they are thick enough to impede the diffusion of oxygen to the reaction interface.


Figure


4-7 shows the variation in maximum current for the fourth wet/dry cycle with alloy


composition.


As can be seen in Figure 4-7, the addition of 0.5w/o chromium alone


decreases the maximum current only slightly, whereas the addition of 0.5 w/o copper,























*UL)
U:4 tO

'-II
~0v


I...
CD-c
E
tn
S
4-h

gJ


oo o o o
o 0 0 0 0
o a a oi o
o0 0 0 0 0
00 0 CM 0 10
00000














































m
a,
no
Cs,
I.-.
0
L..
a)
.0


z


\9&L
fl.-0

cc


z
C-


U) C





















































































o U')
CN~~ C LI)
C
S


@2
a)
C.)

C)


In')
I-
tOo
I I
It


a)
.0









65









a-
a)
C-
C-
0
C.)
0

In
0
0

0
-
*
so
-o
0
42
1) -~
cv
t Ca
-
o
4) I-.
-4 -c4)
o A

CV
-.. -
S -C
o
C) C) 0mb
U, (V 'd~ S
-c
inc
o ~
0.
C
V Li
5., tcnz

C~) U)
r..
C
0~
S
S
-I
x

*~ca
cU 43
c~u~
U'-
4)
0 0 0 0 0 0.0

S C0
S S
o 0 0 0 0 0 0 0

02
14
'.9 0
CS)
U
o
E u

x.ic
-





66


effecting a significant decrease in the conductivity of the corrosion products which form in


the first four cycles.


This decrease in conductivity could be due to either a densification of


the products, or a decrease in the electrical conductivity of the products.


A densification


of the corrosion products would result in a decrease in the rate of mass transport of


oxygen to the reaction interface.


A decrease in product electrical conductivity would


prevent oxygen reduction from occurring on the corrosion product surfaces, thereby

reducing the total cathode surface area and forcing the oxygen to diffuse to the rust/metal

interface to react.


Plots of total per-cycle oxygen uptake are shown for all compositions in Figures 4-


8a and 4-8b.


As can be seen from these figures, the total per cycle uptake decreases with


increasing numbers of cycles.


This decrease is attributed to an increased resistance to


atmospheric corrosion, most likely due to a thickening of the corrosion product layer.

Figure 4-9 shows the variation in total per-cycle oxygen uptake with alloy composition.


As can be seen in Figure 4-9, addition of 0


total per-cycle oxygen uptake, while addition of 0.


change.


w/o Cu results in a significant decrease in


w/o Cr alone results in very little


The reasons for this decrease are considered to be similar to those proposed for


the decrease in maximum current.


Photographs of the side of each sample were taken at the end of the fourth cycles


and are shown in Figures 4-10 through 4-13


As can be seen in Figures 4-10 through 4-13,


- a S a a -. -- -






































t



C,
a)

C-)

0
L.
a?
.0
(NE

z


IOOU)O~)0~)OU~0U)OUOW)O
C CD WI in nn CNJ r'4


'0 0


<-0


000


o00oooo


0 0


0 0


*
































I I I I I I I I p


I I I I I I I I I


.1)
0'~
z


CNJC4
oooco666


u~o
























































6 S N
C









































Figure 4-10


Side View Photo Of Pure Fe Initial Exposure Sample










































Figure 4-11


Side View Photo Of Fe-0.5Cr Initial Exposure Sample









































Figure 4-12


Side View Photo Of Fe-0.5Cu Initial Exposure Sample










































Figure 4-13


Side View Photo Of Fe-0.5Cr-0.5Cu Initial Expsoure Sample





74


At the end of the fourth wet/dry cycle the corrosion products were removed from


each sample and analyzed with XRD.


The results of the XRD analysis are shown in Table


Full XRD spectra of these and other XRD scans can be found in Appendix B.


Table 4-1 reveals that the corrosion products consisted of a binary mixture of


lepidocrocite and magnetite.


When the effect of alloying elements are considered, it can


be seen that copper additions favor the formation of lepidocrocite over magnetite, while
chromium additions have ittle or no eect on the relative actions oflepidocrocite and
chromium additions have little or no effect on the relative fractions of lepidocrocite and


magnetite in the corrosion products.


Since magnetite is more conductive than


lepidocrocite, a decrease in magnetite fraction should lead to a decrease in corrosion

product layer conductivity, and, thereby, to an increase in atmospheric corrosion


resistance.


These results are consistent with the results of the oxygen uptake experiments


shown in Figures 4-7 through 4-9.


Since the results of both oxygen uptake and XRD studies have shown that an

addition of 0.5%Cr alone has very little effect on atmospheric corrosion resistance of iron,

similar experiments were run on iron-chromium binary alloys with higher chromium


concentration

and Fe-5Cr.


IS.


The higher chromium concentration samples included Fe-lCr, Fe-2Cr,


Time-dependent oxygen uptake curves for these higher chromium


concentration samples are shown in Figure 4-14, 4-1


and 4-16, respectively.


Just like


the lower-chromium samples, shown min Figures 4-1 and 4-2 these curves display the





75



Table 4-1
Species And Phase Forms Present In Corrosion Products


Alloy %lepidocrocite goethitee %magnetite
pure Fe 66 not detected 34
Fe-0.5%Cr 65 not detected 35
Fe-0.5%Cu 88 not detected 12
Fe-0.5%Cr-0.5%Cu 82 not detected 18









76













C-
C
'S
C>







0>


I
C
0
C
L~.
*
-
*
C,
0
o ow
C
0 w
** -I 1~~)
L.
t
'*0
0
0
o I-
to
LN
U4
4
'0 CU
1 ____
o~ 0.
4 -J
C.)
** *w*g) -~
CN92
4- ~CO
C) C
-4
OW L.X
r-~r
In
C)
S.-


q) *. 0
I-N
'V I '-I
t C C
S 0.
-*-* **** *** 4)




*- *- *
In p
'4 S..
02 I-.
QI
Ott) Ott) Ott) GIn Ott) Oto OW) C toO 'no


4 4 o 4)
OO)O~~r-NWflttflrflCNCNr-O0O~

I I

C)

C

0
a






















































S
4


t
S

I
S
S





a
S
I
S
p
*


S


0
C
C
LO
m

0~

CO


m


OLOOLOOLOOLOOLOOu)OIflOW)OLOOU)OLOO

S S
-dodddddd6ddcSd6ddoooci6d
I I


4)
0>

0
ed

i"o

















4)
0.
0

4.J~

'C)
a)'


0>


K







h



U

to

U)


I I I I I I I I I I I I

t








S


II I I


N
U)
S
'U
.6.)


C)
C
4d~


-ooooooocooddooododaded
0II


C)
M
C
*J -
or'


I






79

Figure 4-17 shows the variation of drying time with number of cycles for the


higher Cr alloys.


Unlike the lower-chromium alloys, the higher-chromium samples all


show a decrease in drying time with continued cycling.


Figure 4-18 shows the variation of


drying time on the fourth wet/dry cycle with chromium concentration.


Figure 4-18


confirms that there is no significant trend in drying time with chromium concentration.


Figure 4-19 shows the variation of maximum current with number of cycles for the
4
higher Cr alloys. As shown in Figure 4-19, maximum currents do not vary significantly

with continued cycling. Figure 4-20 shows the variation in maximum current on the


fourth wet/dry cycle with Cr concentration.


As can be seen in Figure 4-20, chromium in


concentrations of 1 w/o or more produces a significant decrease in the maximum current


sustained during each wet/dry cycle.


A comparison to Figure 4-7 shows that the effect of


1-5w/o Cr additions are similar to those produced by the addition of0.5w/o Cu.


Figure 4-21 shows the variation of total per-cycle oxygen uptake with number of


cycles for the higher-chromium alloys.


As can be seen in Figure 4-21


the total per-cycle


uptake decreases with increased cycling, indicating that the corrosion products are


becoming more protective with continued cycling. Figure 4-22 shows the variation of

total per-cycle oxygen uptake with chromium concentration. Just as in the case of the


maximum current (see Figure 4-20), the total per-cycle oxygen uptake shows a significant

decrease with the addition of one to five w/o Cr.























L)QL)
I I I
0CC)
rz4z4rz~

0.t~


0/



> 00 0




> 0 0 0n 0 0
0 CO 0 0 0 C
tOOOOO0 1 C








81

























C
o 0
-
tO
CU
I-
in -C
-~ t

0
s-I t0

C
2
C) cU~
C ~0
*" 4-.
o
C) 4)0
0 C)
Lfl*J
(Nw
-~

-
a-
0)
'4 '4.
*04 ~ C'
H 2
an
C
* ~"4
in
ci

o cC
*
o
In
o 0 0 0 0 0 016
o 0 0 0 0 0 0 o
o 0 0 0 0 0 0 c
o tO 0 tO 0 tO 0 U,
CN (N -
4)
I-
0)
v
F-
~1%
I-Il'.
CCC
Co
a-C)

0'-








82













La S..
ouu
-cv to
I I I
vww





LI)
C,,
4)
0) -
-~ U
Cdfri U
(6~
0
I-.
'-4 4.)
o .0

V
.0
S n.~ C'-

Z Ls>~
C)
en
C.) O\E~

o 4Z
C) ( 14
4)
.0
z .-G)


z
Qo
S
C
-
S S
S .- U,
x
~
Lu.
z
U
o Ut 0 Ut 0 0 22
c'~i (N 0 0
o 0 0 0 0 0 0


4)
54
5.4
C.)


C)








83






'U-
-o



-C
C)
cv
C)
Of)
C
-
I-

*0
*0
0)
LI) C
In I.

C
o 10
4)
Lw
LV I-
Ut
C.)
Ce.. B
0) .
C) *0
N.
O~C
o S
U 0
00
tfl~ I.
C)
CC
U) L.
0 en
CN~ QO)
0) Cd
CC,
Eo
0) CNO .- C.)
00
eQ LQu>~

E P
-

E I
bcu
Zen
QO)
9 C)
2'
ES
o
(N 0 CD Ut (N CI
r 0 0 0 0 C)
S 5 2
o o o o o 6 6 o
I-
4J 0
0
V
'.4
5-
-
U
0
EN U,
C
0
-
-
C
C.)C)























00
cQto
I I
WV


ci,
w
C.)
U
a'-
0
a)
-o
S

z


a)
C
4-)


C
0)
aD
x
0


C


ow)
001
-o


ddd6666555~,4A


C4)

'-4)






~CTI
4-. I-

-o
C
4)0)

Xc.


u~0
I- -






















































Lc~
*
4-)
00
*1~
CN4~
C
'no)
*c)

0


1.-i Li L3


00


00


Cooco









lower-chromium samples.


The results of the XRD of the higher-Cr samples is show in


Table 4-2.


Refering to Table 4-2, the corrosion products on the higher-chromium-containing


alloys consist of a binary mixture of lepodocrocite and magnetite.


When the relative


fractions oflepidocrocite and magnetite in the samples with chromium concentrations of

one to five w/o are compared to those of the pure Fe and Fe-0.5Cr samples (see Table 4-

1), it is evident that the magnetite fraction is higher in the higher-chromium samples.

Since a higher magnetite fraction results in a more conductive, and therefore less

protective, corrosion product layer, it is unlikely that the superior corrosion resistance

indicated by the results of the oxygen uptake experiments is due to a more protective

corrosion product layer.


Photographs of the sides of each of the three higher-chromium samples were taken


at the end of the fourth wet/dry cycle and are shown in Figures 4-23,


4-24


and 4-25.


Clearly, the coverage by corrosion products is much less for the higher chromium-


containing alloys than for lower-Cr samples.


sample shown in Figure 4-25.


This effect is most obvious for the Fe-5Cr


This lower coverage is attributed to the more protective


oxide which forms on the higher chromium alloys.


Since the naive oxide layer on the


higher-chromium samples is thicker and more protective, there are fewer sites available for

sulfate nest initiation, and hence, fewer sulfate nests after comparable exposure times.






87



Table 4-2
Species And Phase Forms Present In Corrosion Products


Alloy %lepidocrocite goethitee %magnetite
Fe-1Cr 37 1 62
Fe-2Cr 52 1 47
Fe-5Cr 38 not present 62





88




































Figure 4-23 Side View Photo Of Fe-lCr Initial Exposure Sample










































Figure 4-24


Side View Photo Of Fe-2Cr Initial Exposure Sample





90



































Figure 4-25 Side View Photo Of Fe-5Cr Initial Exposure Sample






91

samples correlate with the smaller number of sulfate nests, which, in turn, reflect the more

protective native oxide on these alloys.


From the results of the initial exposure experiments, it is clear that, for short


duration exposures, copper and chromium behave quite differently.


Copper additions


appear to decrease the rate of atmospheric corrosion by favoring the formation of less-

conductive reaction product species in the rust film, while chromium merely decreases the


number of anodic sites on the metal surface.


The presence of the protective, pre-existing


film on the chromium-containing alloys is believed to account for the superior atmospheric

corrosion resistance of these alloys in long duration tests despite almost a complete

coverage by corrosion products.

One Year Equivalent Exposure
Samples were exposed by alternate immersion to give 365 wet/dry cycles, or,


approximately one year's equivalent exposure.


After this exposure, the samples were


subjected to the same oxygen-uptake tests as were the initial exposure samples.


compositions included pure Fe, Fe-0.5Cr, Fe-lCr, Fe-2Cr, and Fe-5Cr.


Alloy


After the "one


year", alternate-immersion pre-exposure, all samples were covered with a continuous layer


of corrosion products.


Figures 4-26, 4-27,4-28,4-29,and 4-30, respectively show the time dependent


oxygen uptake curves for pure Fe, Fe-0.5Cr, F


e-1Cr, Fe-2Cr, and Fe-5Cr, respectively.

















a)
C.
0


~4V





xc


N(DU~tflC~rOQ)~NcD~
r 1~ o a a a


6


-o 0
00


a)
C
.3 r-.
0
*
















































0)
x
CO







0
* -







5 -I
0





(0





o -0t N


*
- --- 0


W~NCDW)tflc'J


00


* 0
00


a)














































































N(DU~


O)~NCDU~tflc'J


- I- 6


0000




Full Text

PAGE 1

7+( ())(&7 2) &+520,80 21 7+( $70263+(5,& &25526,21 5(6,67$1&( 2) :($7+(5,1* 67((/6 %< /$85$ :857+ 6 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$ 81,9(56,7< 2) )/25,'$ /,%5$5,(6

PAGE 2

$&.12:/('*0(17 6 ZRXOG OLNH WR H[SUHVV P\ GHHSHVW JUDWLWXGH DQG DSSUHFLDWLRQ WR P\ UHVHDUFK DGYLVRU 'U (OOLV 9HULQN IRU KLV JXLGDQFH HQFRXUDJHPHQW JHQHURXV VXSSRUW DQG m DVVLVWDQFH WKURXJKRXW WKH FRXUVH RI WKLV SURMHFW 0\ VLQFHUH WKDQNV DUH DOVR H[WHQGHG WR 'U +ROORZD\ 'U 'H+RII 'U $PEURVH DQG 'U :LQHIRUGQHU IRU WKHLU SDUWLFLSDWLRQ RQ WKH GRFWRUDO FRPPLWWHH 6LQFHUH WKDQNV PXVW DOVR JR WR 'U 3UL\D %HQGDOH IRU KHU JXLGDQFH DQG DVVLVWDQFH 6LQFHUH DSSUHFLDWLRQ LV DOVR H[WHQGHG WR 'DYLG 'DQLHOV IRU KLV DVVLVWDQFH LQ WKH JUHDW FRUURVLRQ ODERUDWRU\ FOHDQXS ZRXOG DOVR OLNH WR WKDQN P\ KXVEDQG -LP 3ODLD IRU KLV HQFRXUDJHPHQW VXSSRUW DQG LQILQLWH SDWLHQFH

PAGE 3

7$%/( 2) &217(176 $&.12:/('*0(17 6 LL $%675$&7 Y &+$37(56 ,1752'8&7,21 /,7(5$785( 6859(< $OOR\%DVHG ([SRVXUH 6WXGLHV &KDUDFWHUL]DWLRQ 2I 7KH :HDWKHULQJ 6WHHO 3DWLQD &RUURVLRQ 3URGXFW %DVLFV (OHFWURFKHPLVWU\ 2I ,URQ $QG ,URQ&KURPLXP $OOR\V $WPRVSKHULF &RUURVLRQ )XQGDPHQWDOV (;3(5,0(17$/ 352&('85(6 6DPSOH )DEULFDWLRQ 3RWHQWLRG\QDPLF 3RODUL]DWLRQ ([SHULPHQWV /RQJWHUP &KURPLXP (QULFKPHQW ([SHULPHQWV 2[\JHQ 8SWDNH ([SHULPHQWV ;UD\ 'LIIUDFWLRQ $QG 6(0 $QDO\VLV 2I &RUURVLRQ 3URGXFWV (;3(5,0(17$/ 5(68/76 ,QLWLDO ([SRVXUH ([SHULPHQWV 2QH
PAGE 4

$33(1',&(6 $ 6$03/( )$%5,&$7,21 $1' 9(5,),&$7,21 6XSSOLHUV $QG 3XULWLHV 2I 3XUH 0DWHULDOV $YHUDJH &RPSRVLWLRQ 2I )DEULFDWHG 6DPSOHV 0LFURVWUXFWXUH 2I 6DPSOHV % ;5$< ',))5$&7,21 63(&75$ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ LY

PAGE 5

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( ())(&7 2) &+520,80 21 7+( $70263+(5,& &25526,21 5(6,67$1&( 2) :($7+(5,1* 67((/6 %\ /DXUD :XUWK 'HFHPEHU &KDLUPDQ 'U (OOLV 9HULQN 0DMRU 'HSDUWPHQW 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ :HDWKHULQJ VWHHOV DUH ORZDOOR\ VWHHOV ZKLFK FRQWDLQ OHVV WKDQ WKUHH SHUFHQW WRWDO RI FRSSHU FKURPLXP QLFNHO SKRVSKRURXV DQG VLOLFRQ :KHQ H[SRVHG LQ DWPRVSKHULF HQYLURQPHQWV WKHVH VWHHOV GLVSOD\ D FRUURVLRQ UHVLVWDQFH WZR WR HLJKW WLPHV WKDW RI SODLQ FDUERQ VWHHOV 1R HQKDQFHG FRUURVLRQ UHVLVWDQFH LV REVHUYHG IRU FRQWLQXRXV LPPHUVLRQ H[SRVXUHV 7KH JRDO RI WKLV VWXG\ ZDV WR GLVFRYHU WKH UROH RI WKH FKURPLXP DGGLWLRQ LQ WKH VXSHULRU FRUURVLRQ UHVLVWDQFH GLVSOD\HG E\ ZHDWKHULQJ VWHHOV 'XULQJ DWPRVSKHULF FRUURVLRQ VWHHOV DUH VXEMHFWHG WR DOWHUQDWH SHULRGV RI ZHWWLQJ DQG GU\LQJ DV D UHVXOW RI SUHFLSLWDWLRQ DQG VXEVHTXHQW HYDSRUDWLRQ 8QGHU WKHVH FRQGLWLRQV HOHFWURFKHPLFDO UHDFWLRQV FRQVLVW PDLQO\ RI R[\JHQ UHGXFWLRQ DQG LURQ GLVVROXWLRQ &RUURVLRQ FXUUHQW FDQ EH PRQLWRUHG EDURPHWULFDOO\ ZLWKRXW GLVWXUELQJ WKH

PAGE 6

WKLQ HOHFWURO\WH OD\HU SUHVHQW $ EDURPHWULF WHFKQLTXH ZDV XVHG WR VWXG\ WKH HIIHFW RI VPDOO FKURPLXP DGGLWLRQV RQ WKH HOHFWURFKHPLVWU\ RI LURQ GXULQJ ZHWWLQJ DQG GU\LQJ ,URQ FKURPLXP ELQDU\ DOOR\V ZLWK FKURPLXP FRQFHQWUDWLRQV LQ WKH UDQJH RI ]HUR WR ILYH ZHLJKW SHUFHQW ZHUH XVHG $OOR\V ZHUH VWXGLHG DIWHU YDULRXV SHULRGV RI SUHH[SRVXUH UDQJLQJ IURP WKH ILUVW IRXU ZHWGU\ F\FOHV WR WKUHH \HDUV HTXLYDOHQW H[SRVXUH &RUURVLRQ SURGXFW SKDVH IRUP DQG FRPSRVLWLRQ ZHUH DQDO\]HG ZLWK [UD\ GLIIUDFWLRQ &RUURVLRQ SURGXFW PRUSKRORJ\ ZDV DQDO\]HG ZLWK VFDQQLQJ HOHFWURQ PLFURVFRS\ &KURPLXP GLVWULEXWLRQ LQ WKH FRUURVLRQ SURGXFW OD\HUV RI FRUURGHG VDPSOHV ZHUH GHWHUPLQHG E\ DSSO\LQJ HOHFWURQ PLFURSUREH ZDYHOHQJWKGLVSHUVLYH [UD\ DQDO\VLV WR FURVVVHFWLRQHG VDPSOHV (OHFWURFKHPLFDO FKDUDFWHULVWLFV RI LURQFKURPLXP ELQDU\ DOOR\V ZDV GHWHUPLQHG E\ SRWHQWLRVWDWLF SRODUL]DWLRQ LQ VROXWLRQV VLPLODU WR WKRVH IRXQG RQ WKH VXUIDFHV RI DWPRVSKHULFDOO\H[SRVHG VWHHOV YL

PAGE 7

&+$37(5 ,1752'8&7,21 :HDWKHULQJ VWHHOV DUH ORZDOOR\ VWHHOV ZKLFK GLVSOD\ HQKDQFHG UHVLVWDQFH WR DWPRVSKHULF FRUURVLRQ ZKHQ FRPSDUHG ZLWK SODLQ FDUERQ VWHHOV 7KH DOOR\LQJ HOHPHQWV LQFOXGH FRSSHU FKURPLXP QLFNHO SKRVSKRURXV DQG VLOLFRQ ZLWK OHVV WKDQ ZR WRWDO DOOR\LQJ DGGLWLRQV 5HVXOWV RI ERWK ILHOG DQG ODERUDWRU\ VWXGLHV KDYH VKRZQ WKDW LQ DQ H[SRVXUH HQYLURQPHQW ZKHUH WKH VWHHOV DUH SHULRGLFDOO\ ZHWWHG DQG GULHG WKH FRUURVLRQ UDWH LV EHWZHHQ WZR DQG HLJKW WLPHV OHVV WKDQ WKDW GLVSOD\HG E\ SODLQ FDUERQ VWHHOV 7KLV LPSURYHG SHUIRUPDQFH LV RQO\ VHHQ ZKHQ WKH VWHHOV DUH H[SRVHG LQ SHULRGLF ZHWWLQJ DQG QR LPSURYHPHQW LV VHHQ IRU FRQWLQXRXV LPPHUVLRQ HQYLURQPHQWV 7KH FKURPLXP FRQFHQWUDWLRQV LQ ZHDWKHULQJ VWHHO DUH LQVXIILFLHQW WR FDXVH WKH IRUPDWLRQ RI DQ HSLWD[LDO PL[HGPHWDO R[LGH SDVVLYH ILOP VXFK DV WKRVH IRXQG RQ VWDLQOHVV VWHHOV ,W LV WKRXJKW WKDW WKH DOOR\LQJ DGGLWLRQV IXQFWLRQ E\ SURPRWLQJ WKH IRUPDWLRQ RI D GHQVH DGKHUHQW OD\HU RI LURQ FRUURVLRQ SURGXFWV 0DQ\ VWXGLHV KDYH EHHQ GRQH WR FKDUDFWHUL]H WKLV SURWHFWLYH FRUURVLRQ SURGXFW OD\HU RU fSDWLQDfn )URP WKHVH VWXGLHV WKH VWUXFWXUH PRUSKRORJ\ DQG FKHPLFDO SURSHUWLHV RI WKH ZHDWKHULQJ VWHHO SDWLQD DUH IDLUO\ ZHOO NQRZQ :KDW LV QRW ZHOOXQGHUVWRRG KRZHYHU LV WKH UROH RI LQGLYLGXDO DOOR\LQJ DGGLWLRQV LQ WKH IRUPDWLRQ RI WKLV SURWHFWLYH SDWLQD 6LQFH WKH FKHPLVWULHV RI WKH DOOR\LQJ DGGLWLRQV DUH GLIIHUHQW LW LV XQOLNHO\ WKDW HDFK RQH ZLOO KDYH WKH VDPH HIIHFW 7KH JRDO RI

PAGE 8

WKLV VWXG\ LV WR GLVFRYHU WKH UROH RI WKH FKURPLXP DGGLWLRQ LQ WKH HQKDQFHG DWPRVSKHULF FRUURVLRQ SHUIRUPDQFH RI ZHDWKHULQJ VWHHOV H[SRVHG LQ 6FRQWDPLQDWHG HQYLURQPHQWV $V DWPRVSKHULF FRUURVLRQ LV HOHFWURFKHPLFDO LQ QDWXUH FRUURVLRQ UHDFWLRQV RQ WKH VWHHO VXUIDFH ZLOO FRQVLVW RI ERWK DQRGLF DQG FDWKRGLF UHDFWLRQV ,Q WKLV FDVH WKH DQRGLF UHDFWLRQ LV PHWDO GLVVROXWLRQ 'XH WR WKH VPDOO WKLFNQHVV RI HOHFWURO\WH OD\HUV ZKLFK DUH SUHVHQW GXULQJ DWPRVSKHULF FRUURVLRQ R[\JHQ LV UHDGLO\ DYDLODEOH DQG WKHUHIRUH LV DOPRVW DOZD\V WKH SUHGRPLQDQW FDWKRGLF UHDFWLRQ 5HVLVWDQFH WR DWPRVSKHULF FRUURVLRQ ZLOO EH LQFUHDVHG LI WKH UDWH RI HLWKHU WKH DQRGLF RU WKH FDWKRGLF UHDFWLRQV LV GHFUHDVHG 6LQFH WKH FKURPLXP OHYHOV LQ ZHDWKHULQJ VWHHO DUH WRR ORZ WR SURPRWH WKH IRUPDWLRQ RI D HSLWD[LDO PL[HGPHWDO R[LGH SDVVLYH ILOP LW LV XQOLNHO\ WKDW WKH FKURPLXP LQ ZHDWKHULQJ VWHHOV LV $ KDYLQJ D VLJQLILFDQW HIIHFW RQ WKH PHWDO GLVVROXWLRQ UHDFWLRQ n ,W LV PRUH OLNHO\ WKHUHIRUH WKDW FKURPLXP LV DIIHFWLQJ WKH FDWKRGLF UHDFWLRQ 6LQFH R[\JHQ IRU WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LV VXSSOLHG E\ WKH JDV SKDVH DLUf DERYH WKH HOHFWURO\WH OD\HU LW PXVW GLIIXVH WKURXJK WKH HOHFWURO\WH XQWLO LW UHDFKHV D VXUIDFH ZKLFK LV LQ HOHFWULFDO FRQWDFW ZLWK WKH GLVVROYLQJ PHWDO 5DSLG UDWHV RI R[\JHQ UHGXFWLRQ DUH WKHUHIRUH GHSHQGHQW RQ D FRQWLQXRXV SK\VLFDO DQG HOHFWULFDO SDWKZD\ WR WKH PHWDO VXUIDFH $ WLJKW QRQSRURXV SDWLQD RI FRUURVLRQ SURGXFWV ZLOO GHFUHDVH WKH UDWH RI R[\JHQ UHGXFWLRQ VLPSO\ E\ GHFUHDVLQJ WKH UDWH RI R[\JHQ PDVVWUDQVSRUW ,I WKH FKURPLXP DGGLWLRQ LV DEOH WR SURPRWH WKH IRUPDWLRQ RI GHQVHU OHVV SRURXV LURQ FRUURVLRQ SURGXFWV WKH UDWH RI R[\JHQ UHGXFWLRQ DQG WKHUHIRUH WKH UDWH RI FRUURVLRQ ZLOO GHFUHDVH ,I D FRUURVLRQ SURGXFW OD\HU LV FRQGXFWLYH LW FDQ SURYLGH DQ HQRUPRXV HDVLO\DFFHVVLEOH VXUIDFH IRU R[\JHQUHGXFWLRQ WR WDNH SODFH ,Q WKLV FDVH WKH FRUURVLRQ SURGXFW SDWLQD

PAGE 9

ZRXOG HQDEOH KLJKHU UDWHV RI R[\JHQ UHGXFWLRQ WKDQ FRXOG EH VXSSRUWHG RQ WKH EDUH PHWDO VXUIDFH 6LQFH PDQ\ LURQ FRUURVLRQ SURGXFWV DUH FRQGXFWLYH WKHLU IRUPDWLRQ FDQ LQFUHDVH UDWKHU WKDQ GHFUHDVH WKH UDWH RI DWPRVSKHULF FRUURVLRQ RQ VWHHOV ,I WKH FKURPLXP DGGLWLRQ LQ WKH VWHHO FDQ GHFUHDVH WKH HOHFWULFDO FRQGXFWLYLW\ RI WKH FRUURVLRQ SURGXFW SDWLQD WKH UDWH RI R[\JHQUHGXFWLRQ RQ WKH PHWDO VXUIDFH ZLOO GHFUHDVH DV ZLOO WKH FRUURVLRQ UDWH ,QWXLWLYHO\ OLPLWLQJ WKH UDWH RI R[\JHQ UHGXFWLRQ DSSHDUHG WR EH WKH PRVW OLNHO\ PHWKRG E\ ZKLFK WKH FKURPLXP DGGLWLRQV FRXOG GHFUHDVH WKH RYHUDOO FRUURVLRQ UDWH RI ZHDWKHULQJ VWHHOV ([SHULPHQWV ZHUH FRQGXFWHG ZKLFK DOORZHG WKH PHDVXUHPHQW RI WKH UDWH RI R[\JHQ UHGXFWLRQ RQ VDPSOHV DV D IXQFWLRQ RI WKH FKURPLXP FRQFHQWUDWLRQ LQ WKH PHWDO &KURPLXP FRQFHQWUDWLRQV ZHUH LQLWLDOO\ OLPLWHG WR OZR LQ RUGHU WR UHPDLQ FORVH WR WKH FKURPLXP FRQFHQWUDWLRQV IRXQG LQ FRPPHUFLDO ZHDWKHULQJ VWHHOV 6LQFH SHULRGLF ZHWWLQJ DQG GU\LQJ LV HVVHQWLDO WR WKH SHUIRUPDQFH RI ZHDWKHULQJ VWHHOV R[\JHQ UHGXFWLRQ H[SHULPHQWV ZHUH GRQH XQGHU FRQGLWLRQV RI SHULRGLF ZHWWLQJ 6DPSOHV ZHUH VWXGLHG ERWK LQ WKH ILUVW IHZ ZHWGU\ F\FOHV DQG DIWHU RQH DQG WKUHH \HDUV HTXLYDOHQW ZHWWLQJ DQG GU\LQJ H[SRVXUH XVLQJ D VSHFLDO G\QDPLF DOWHUQDWH LPPHUVLRQ DSSDUDWXV $ QRQLQYDVLYH EDURPHWULF WHFKQLTXH ZDV XVHG WR PHDVXUH WKH UDWH RI R[\JHQ UHGXFWLRQ GXULQJ GLIIHUHQW SDUWV RI VLQJOH ZHWWLQJ DQG GU\LQJ F\FOHV RQ SXUH LURQ DQG YDULRXV LURQFKURPLXP ELQDU\ DOOR\V 6LQFH WKH GHQVLW\ SRURVLW\ DQG HOHFWULFDO FRQGXFWLYLW\ RI WKH FRUURVLRQ SURGXFW OD\HU FDQ VXEVWDQWLDOO\ LQIOXHQFH WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LW ZDV QHFHVVDU\ WR GHWHUPLQH ZKDW HIIHFW LI DQ\ WKDW FKURPLXP KDV RQ WKH PRUSKRORJ\ SKDVH IRUP DQG SRURVLW\ RI WKH FRUURVLRQ SURGXFWV ZKLFK IRUPHG GXULQJ F\FOLF ZHWWLQJ DQG GU\LQJ

PAGE 10

&RUURVLRQ SURGXFW PRUSKRORJ\ DQG SRURVLW\ ZHUH GHWHUPLQHG E\ REVHUYDWLRQ ZLWK VFDQQLQJ HOHFWURQ PLFURVFRS\ 6(0f &RUURVLRQ SURGXFW SKDVH IRUP ZDV GHWHUPLQHG XVLQJ [UD\ GLIIUDFWLRQ ;5'f $ IHZ SUHYLRXV ORQJGXUDWLRQ ILHOG VWXGLHV KDYH VKRZQ WKDW DIWHU H[WUHPHO\ ORQJ SHULRGV RI SHULRGLF ZHWWLQJ H[SRVXUH PDQ\ RI WKH ZHDWKHULQJ VWHHO DOOR\LQJ DGGLWLRQV ZLOO HQULFK DW WKH UXVWPHWDO LQWHUIDFH ,W LV NQRZQ IURP SRWHQWLRG\QDPLF HOHFWURFKHPLFDO VWXGLHV RI LURQFKURPLXP ELQDU\ DOOR\V WKDW DW FRQFHQWUDWLRQV DV ORZ DV ZR FKURPLXP r 2 JLYHV SURPLVH RI IDFLOLWDWLQJ LURQ SDVVLYDWLRQ n ,I WKH FRUURVLRQ UHDFWLRQ ZHUH DEOH WR HQULFK FKURPLXP WR WKHVH OHYHOV LW ZRXOG H[SODLQ WKH HIIHFW RQ WKH PHWDO GLVVROXWLRQ UHDFWLRQ DV ZHOO DV WKH R[\JHQ UHGXFWLRQ UHDFWLRQ ,Q RUGHU WR LQYHVWLJDWH WKLV SRVVLELOLW\ LURQFKURPLXP ELQDU\ DOOR\V FRQWDLQLQJ ZR &U ZHUH WHVWHG XVLQJ WKH VDPH DSSDUDWXV DQG SURFHGXUHV DV ZHUH DSSOLHG WR WKH ORZHU FKURPLXP DOOR\V DQG WKH UHVXOWV ZHUH FRPSDUHG 2I SDUWLFXODU LPSRUWDQFH ZDV WKH REVHUYDWLRQ WKDW FKURPLXP HQULFKPHQW ZDV REVHUYHG EXW ZDV QRW HIIHFWLYH XQWLO WKH ORFDO FKURPLXP FRQFHQWUDWLRQ DW WKH UHDFWLRQ LQWHUIDFH DSSURDFKHG DERXW b &KURPLXP HQULFKPHQW ZDV GHWHUPLQHG E\ FURVV VHFWLRQLQJ VDPSOHV DIWHU WHVWLQJ DQG HVWLPDWLQJ FKURPLXP OHYHOV E\ [UD\ ZDYHOHQJWK GLVSHUVLYH VSHFWURVFRS\

PAGE 11

&+$37(5 /,7(5$785( 6859(< 'LVFXVVLRQ RI SUHYLRXV ZHDWKHULQJ VWHHO VWXGLHV LV GLYLGHG LQWR ILYH GLIIHUHQW VHFWLRQV DOOR\EDVHG H[SRVXUH VWXGLHV FKDUDFWHUL]DWLRQ RI ZHDWKHULQJ VWHHO FRUURVLRQ SURGXFWV VWUXFWXUH DQG IRUPDWLRQ RI LURQ R[LGHV DQG R[\K\GUR[LGHV HOHFWURFKHPLVWU\ RI LURQFKURPLXP DOOR\V DQG IXQGDPHQWDO DWPRVSKHULF FRUURVLRQ VWXGLHV $OOR\%DVHG ([SRVXUH 6WXGLHV 6HYHUDO LQYHVWLJDWLRQV KDYH EHHQ FRQGXFWHG WR ILQG WKH HIIHFW RI LQGLYLGXDO DOOR\LQJ DGGLWLRQV RQ WKH FRUURVLRQ UDWH ,Q DOO RI WKHVH VWXGLHV WKH TXDQWLW\ RI HDFK DOOR\LQJ HOHPHQW ZDV V\VWHPDWLFDOO\ YDULHG DQG WKH UHVXOWLQJ FKDQJH LQ FRUURVLRQ UDWH ZDV PHDVXUHG ([SRVXUH SURWRFROV LQFOXGHG ERWK ILHOG DQG ODERUDWRU\ HQYLURQPHQWV )LHOG ([SRVXUH 6WXGLHV ,Q D VWXG\ E\ /DUUDEHH DQG &REXP GLIIHUHQW VDPSOHV ZHUH H[SRVHG LQ YDULRXV ORFDWLRQV IRU \HDUV 3HUIRUPDQFH ZDV GHWHUPLQHG E\ ZHLJKWORVV PHWKRGV 7DEOH VKRZV WKH YDULDWLRQ RI PHWDO ORVV ZLWK FKURPLXP FRQFHQWUDWLRQ IRU VDPSOHV H[SRVHG LQ DQ 62 HQYLURQPHQW 2QH VDPSOH RI HDFK FRPSRVLWLRQ ZDV XVHG ,Q D VWXG\ E\ 7D\ORU %RGHQ DQG +ROPHV VWHHO VDPSOHV ZLWK YDULRXV FKURPLXP FRQFHQWUDWLRQV ZHUH H[SRVHG IRU WKUHH PRQWKV GXULQJ ERWK VXPPHU DQG ZLQWHU LQ DQ 62 FRQWDPLQDWHG HQYLURQPHQW 2QH VDPSOH RI HDFK FRPSRVLWLRQ ZDV XVHG 3HUIRUPDQFH ZDV GHWHUPLQHG E\ ZHLJKW ORVV 7KHVH UHVXOWV DUH VKRZQ LQ 7DEOH

PAGE 12

,Q D VWXG\ E\ +XGVRQ DQG 6WDQQHU VWHHO ZLUH DQG SODWH VDPSOHV RI YDULRXV FKURPLXP FRQFHQWUDWLRQV ZHUH H[SRVHG IRU DQG \HDUV 7KH PHWDO ORVVHV IRU HDFK VKDSH VDPSOH DQG H[SRVXUH GXUDWLRQ ZHUH DYHUDJHG DQG H[SUHVVHG DV D FRUURVLRQ LQGH[ LQ PLFURQV SHU \HDU 7KHVH UHVXOWV DUH VKRZQ LQ 7DEOH ,Q D VWXG\ E\ 0D[ZHOO YDULRXV LURQFKURPLXP ELQDU\ DOOR\V ZHUH H[SRVHG IRU A 2 \HDUV 2QH VDPSOH RI HDFK FKURPLXP FRQFHQWUDWLRQ ZDV H[SRVHG 7KHVH UHVXOWV DUH f VKRZQ LQ 7DEOH $V FDQ EH VHHQ LQ 7DEOHV WKURXJK DQ LQFUHDVH LQ FKURPLXP FRQFHQWUDWLRQ OHG WR D GHFUHDVH LQ FRUURVLRQ UDWH 7KH RQH H[FHSWLRQ WR WKLV WUHQG LV WKH )H ZR &U VDPSOH LQ WKH VWXG\ E\ /DUUDEHH DQG &REXUQ ZKHUH WKH FKURPLXP DGGLWLRQ UHVXOWHG LQ ; LQFUHDVH LQ FRUURVLRQ UDWH $FFHOHUDWHG nODERUDWRU\ f 7HVWV $OWKRXJK DFFHOHUDWHG ODERUDWRU\ WHVWV FDQQRW H[DFWO\ GXSOLFDWH WKH W\SH RI H[SRVXUH VHHQ LQ WKH ILHOG WKH\ GR SURYLGH D PRUH FRQWUROOHG HQYLURQPHQW IRU TXDQWLI\LQJ WKH HIIHFW RI DOOR\LQJ DGGLWLRQV 7KH UHVXOWV RI WKH WZR VWXGLHV GHVFULEHG EHORZ VKRZ KRZ PHWDO ORVV YDULHG ZLWK FKURPLXP FRQFHQWUDWLRQ LQ D YDULHW\ RI FRQWUROOHG H[SRVXUH HQYLURQPHQWV

PAGE 13

7DEOH 0HWDO /RVV YV &U &RQFHQWUDWLRQ )RU
PAGE 14

7DEOH 0HWDO /RVV YV &U &RQFHQWUDWLRQ )RU 7HQ
PAGE 15

,Q D VWXG\ E\ 7D\ORU %RGHQ DQG +ROPHV SXUH LURQ DQG YDULRXV LURQFKURPLXP ELQDU\ DOOR\V ZHUH VXEMHFWHG WR FRQWLQXRXV H[SRVXUH LQ D IRJ FKDPEHU 6DPSOHV ZHUH H[SRVHG KRXUV LQ b UHODWLYH KXPLGLW\ 5+f DQG SSP 62 7KH UHVXOWV RI WKHLU VWXG\ DUH VKRZQ EHORZ LQ 7DEOH ,Q D VWXG\ E\ 6FKZLWWHU DQG %RKQL VWHHOV ZLWK FKURPLXP FRQWHQWV EHWZHHQ `4 ZR DQG ZR ZHUH H[SRVHG WR F\FOLF ZHWWLQJ DQG GU\LQJ 7ZR GLIIHUHQW SURWRFROV ZHUH XVHG RQH LQ ZKLFK VDPSOHV ZHUH ZHW b RI WKH WLPH DQG RQH ZKHUH VDPSOHV ZHUH ZHW b RI WKH WLPH ,Q HDFK SURWRFRO WKH 62 FRQFHQWUDWLRQ ZDV SSP 7KH UHVXOWV RI WKHLU VWXG\ DUH VKRZQ EHORZ LQ 7DEOH )URP WKH UHVXOWV RI ERWK ILHOG DQG DFFHOHUDWHG H[SRVXUH VWXGLHV LW FDQ EH VHHQ WKDW LQ JHQHUDO FKURPLXP LQ ORZ FRQFHQWUDWLRQV FDXVHV VRPH LPSURYHPHQW LQ WKH DWPRVSKHULF FRUURVLRQ SHUIRUPDQFH RI LURQ DQG VWHHOV &KDUDFWHUL]DWLRQ 2I 7KH :HDWKHULQJ 6WHHO 3DWLQD +HUHWRIRUH WKH JUHDW PDMRULW\ RI ZHDWKHULQJ VWHHO VWXGLHV KDYH EHHQ DLPHG WRZDUG FKDUDFWHUL]DWLRQ RI WKH SURWHFWLYH SDWLQD ZKLFK IRUPV RQ WKH VWHHOV GXULQJ H[SRVXUH ,Q PRVW RI WKHVH VWXGLHV ZHDWKHULQJ VWHHOV ZHUH H[SRVHG HLWKHU LQ WKH ILHOG RU E\ DFFHOHUDWHG PHWKRGV DQG WKH UHVXOWLQJ FRUURVLRQ SURGXFWV ZHUH VWXGLHG E\ D YDULHW\ RI PHWKRGV 7KH UHYLHZ RI WKHVH VWXGLHV LV EURNHQ GRZQ E\ W\SH RI FKDUDFWHULVWLFV LQYHVWLJDWHG WKHVH LQFOXGH FRPSRVLWLRQ DQG SKDVH IRUP PRUSKRORJ\ SRURVLW\ DQG VXUIDFH DUHD DQG HOHFWURFKHPLFDO SURSHUWLHV

PAGE 16

7DEOH 0HWDO /RVV YV &KURPLXP &RQWHQW )RU &RQWLQXRXV +XPLG ([SRVXUH $OOR\ 0HWDO /RVV PJFPf 3HUFHQW ,PSURYHPHQW SXUH )H EDVH )HOZR &U )HZR &U 7D\ORU %RGHQ DQG +ROPHV f 7DEOH 0HWDO /RVV YV &KURPLXP &RQWHQW ,Q &\FOLF :HWWLQJ $QG 'U\LQJ $OOR\ ZR&Uf ZHLJKW ORVV b ZHW WLPHf 3HUFHQW ,PSURYHPHQW ZHLJKW ORVV b ZHW WLPHf 3HUFHQW ,PSURYHPHQW JP EDVH JP EDVH JP JP 6FKZLWWHU DQG %RKQL f

PAGE 17

0RUSKRORJ\ 3RURVLW\ DQG 6XUIDFH $UHD 3URWHFWLYH ZHDWKHULQJ VWHHO UXVWV KDYH EHHQ IRXQG WR KDYH D fWZROD\HUf VWUXFWXUH 2EVHUYDWLRQ E\ RSWLFDO PLFURVFRS\ KDV VKRZQ WKH LQQHU OD\HU WR EH RSWLFDOO\ LQDFWLYH DQG WKH RXWHU OD\HU RSWLFDOO\ DFWLYH $FFRUGLQJO\ WKH RXWHU OD\HU ZDV FRQVLGHUHG WR EH ZHOO FU\VWDOOL]HG DQG WKH LQQHU OD\HU DPRUSKRXV 7KH LQQHU DPRUSKRXVf OD\HU ZDV IRXQG WR EH PRUH FRPSDFW DQG XQLIRUP WKDQ SODLQFDUERQ VWHHO UXVWV DQG ZDV DOVR IRXQG WR FRQWDLQ D ODUJHU IUDFWLRQ RI ERXQG ZDWHU 6HSDUDWH DQDO\VLV RI LQQHU DQG RXWHU ZHDWKHULQJ VWHHO r OD\HUV KDV VKRZQ D KLJKHU QXPEHU RI SRUHV LQ RXWHU OD\HU 7KH LQQHU DPRUSKRXVf OD\HU LQ WKH ZHDWKHULQJ VWHHO SDWLQD LV JHQHUDOO\ WKRXJKW WR EH UHVSRQVLEOH IRU WKH HQKDQFHG R FRUURVLRQ UHVLVWDQFH GLVSOD\HG E\ ZHDWKHULQJ VWHHOV 6XUIDFH DUHD VWXGLHV XVLQJ %(7 DQDO\VLV KDYH VKRZQ WKDW ZKLOH WKH VSHFLILF VXUIDFH DUHD RI ZHDWKHULQJ VWHHO UXVWV LV KLJKHU WKDQ WKDW RI SODLQ FDUERQ VWHHOV WKH DYHUDJH SRUH GLDPHWHUV ZHUH VPDOOHU :KHQ WKH VL]H GLVWULEXWLRQ RI WKHVH GHIHFWV ZDV PHDVXUHG DV D IXQFWLRQ RI WLPH WKH DYHUDJH VL]H RI WKH SRUHV LQ WKH ZHDWKHULQJ VWHHO UXVWV GHFUHDVHG ZLWK WLPH ZKLOH WKRVH RI SODLQ FDUERQ VWHHOV GLG QRW 7KLV UHVXOW LV LPSRUWDQW VLQFH VWXGLHV ZLWK UDGLRDFWLYH "6 KDYH VKRZQ WKDW VXOIDWH LRQV SHQHWUDWH UXVW ILOPV RQO\ WKURXJK PDFURVFRSLF GHIHFWV VXFK DV FUDFNV DQG ODUJH SRUHV 6(0 REVHUYDWLRQ RI ZHDWKHULQJ VWHHO UXVWV VKRZHG SDUWLFOH VL]HV EHWZHHQ PP DQG PP OD\HU WKLFNQHVVHV RI PP WR PP DQG IRXU RU ILYH OD\HUV WRWDO (OHPHQWDO DQDO\VLV RI ERWK ILHOG H[SRVXUH VDPSOHV DQG DFFHOHUDWHG WHVWLQJ VDPSOHV KDV VKRZQ WKDW FRSSHU FKURPLXP SKRVSKRURXV DQG VXOIXU HDFK ZDV HQULFKHG WR VRPH

PAGE 18

2 H[WHQW LQ DQG EHORZ WKH FRUURVLRQ SURGXFW OD\HU ,Q VRPH VWXGLHV HQULFKPHQW RI DOOR\LQJ HOHPHQWV ZDV RQO\ IRXQG LQ WKH DWPRVSKHULF FRUURVLRQ SLWV 7KH UHVXOWV RI WKHVH VWXGLHV LQGLFDWH WKDW ZHDWKHULQJ VWHHO UXVW SDWLQDV DUH GHQVHU OHVV SRURXV DQG WKHUHIRUH EHWWHU DEOH WR LPSHGH WKH WUDQVIHU RI R[\JHQ WR WKH PHWDO VXUIDFH 3KDVH )RUP DQG &RPSRVLWLRQ :HDWKHULQJ VWHHO SDWLQDV FRQVLVW RI D PL[WXUH RI GLIIHUHQW LURQ R[LGHV DQG K\GUR[LGHV 0DQ\ VWXGLHV KDYH EHHQ XQGHUWDNHQ WR GHWHUPLQH WKH SKDVH IRUPV RI WKHVH R[LGHV DQG K\GUR[LGHV LQ ERWK WKH LQQHU DQG RXWHU OD\HUV RI WKH SDWLQD 0LVDZD $VDPL +DVKLPRWR DQG 6KLPRGDLUD XVLQJ LQIUDUHG /5f VSHFWURVFRS\ ;5' DQG 6(0 IRXQG WKH LQQHU DPRUSKRXV OD\HU RI WKH ZHDWKHULQJ VWHHO SDWLQD WR FRQVLVW RI DPRUSKRXV IHUULF R[\K\GUR[LGHV ZKHUHDV %URZQ DQG .HLVHU XVLQJ 5DPDQ VSHFWURVFRS\ IRXQG LW WR FRQVLVW DOPRVW H[FOXVLYHO\ RI )H22+ $ VLPLODU DQDO\VLV XVLQJ 0RVVEDXHU VSHFWURVFRS\ VKRZHG ERWK LQQHU DQG RXWHU OD\HUV WR FRQVLVW RI D PL[WXUH RI D DQG \)H22+ ZLWK WKH LQQHU OD\HU KDYLQJ D D)H22+ IUDFWLRQ DOPRVW WZLFH DV KLJK DV WKH RXWHU OD\HU 6HSDUDWH DQDO\VLV RI WKH LQQHU DQG RXWHU OD\HUV RI WKH ZHDWKHULQJ VWHHO SDWLQD E\ 0H\EDXP VKRZHG ERWK OD\HUV WR FRQVLVW RI D PL[WXUH RI D \ DQG )H22+ DV ZHOO DV D VPDOO TXDQWLW\ RI PDJQHWLWH 0RVVEDXHU VSHFWURVFRS\ KDV EHHQ XVHG WR VWXG\ QRW RQO\ WKH RYHUDOO SKDVH IRUP EXW DOVR SDUWLFOH VL]HV LQ ZHDWKHULQJ VWHHO UXVWV ,Q D VWXG\ E\ 5H]DLH DQG &RRN FRQYHUVLRQ HOHFWURQ 0RVVEDXHU VSHFWURVFRS\ &(06f DQG WUDQVPLVVLRQ HOHFWURQ

PAGE 19

0RVVEDXHU VSHFWURVFRS\ ;06f ZHUH XVHG WR VWXG\ ZHDWKHULQJ VWHHO UXVWV IURP VDPSOHV H[SRVHG LQ ERWK UXUDO DQG PDULQH HQYLURQPHQWV 7KH UHVXOWV VKRZHG WKH UXVWV IURP ERWK VLWHV WR FRQVLVW RI D PL[WXUH RI IHUULK\GULWH \)H22+ DQG D)H22+ $GGLWLRQDOO\ WKH\ IRXQG WKDW ORQJHU ZHWWLQJ GXUDWLRQV WHQGHG WR IDYRU VPDOOHU D)H22+ FU\VWDOOLWH VL]HV $GGLWLRQDO ;06 DQG &(06 VWXGLHV E\ &RRN RQ D \HDU PDULQH H[SRVXUH DQG D \HDU UXUDO H[SRVXUH UHYHDOHG DQ RYHUDOO UXVW FRPSRVLWLRQ RI IHUULK\GULWH DQG D)H22+ SOXV D FUXVW\ fDPRUSKRXV R[\K\GUR[LGHf WKDW ZDV QRW SRVVLEOH WR FKDUDFWHUL]H $ VWXG\ E\ 1DPXUD XVLQJ &(06 DQG ;06 RQ D ZHDWKHULQJ VWHHO VDPSOH H[SRVHG \HDUV LQ DQ XUEDQ HQYLURQPHQW VKRZHG WKH UXVW SDWLQD WR FRQVLVW RI D PL[WXUH RI D)H22+ \)H22+ \)H2M DQG PDJQHWLWH $V VKRZQ LQ WKH UHVXOWV RI WKH VWXGLHV DERYH WKH FRPSRVLWLRQ DQG SKDVH IRUPV RI LURQ R[LGHV DQG R[\K\GUR[LGHV YDU\ ZLGHO\ ZLWK ERWK H[SRVXUH ORFDWLRQ DQG H[SRVXUH WLPH 7KH FRPSRVLWLRQ RI WKH SRRUO\FU\VWDOOL]HG FRPSRQHQWV RI WKH SDWLQD LV QRW FOHDU (OHFWURFKHPLFDO &KDUDFWHULVWLFV (OHFWURFKHPLFDO VWXGLHV RI ZHDWKHULQJ VWHHOV KDYH LQFOXGHG ERWK SRWHQWLRVWDWLF SRODUL]DWLRQV DQG JDOYDQRVWDWLF UHGXFWLRQ 3RWHQWLRG\QDPLF SRODUL]DWLRQV ZHUH FRQGXFWHG PDLQO\ WR REWDLQ JHQHUDO HOHFWURFKHPLFDO FKDUDFWHULVWLFV *DOYDQRVWDWLF UHGXFWLRQ H[SHULPHQWV ZHUH RIWHQ FRQGXFWHG LQ FRPELQDWLRQ ZLWK D VSHFWURVFRSLF WHFKQLTXH ZKLFK DOORZHG GHWHFWLRQ RI VSHFLHV IRUPHG DQG VSHFLHV UHGXFHG GXULQJ WKH JDOYDQRVWDWLF UHGXFWLRQ

PAGE 20

6FKZLWWHU DQG %RKQL UDQ DQRGLF SRODUL]DWLRQV RQ ERWK SODLQFDUERQ DQG ZHDWKHULQJ VWHHOV VXEMHFWHG WR DQ fDFFHOHUDWHG H[SRVXUHf FRQVLVWLQJ RI IRXUWHHQ WZHOYHKRXU ZHWGU\ F\FOHV ZLWK D ZHWWLPH IUDFWLRQ RI b %RWK WKH SODLQFDUERQ DQG ZHDWKHULQJ VWHHOV VKRZHG D ODUJH EURDG DQRGLF SHDN EHWZHHQ P9 6&( DQG P9 6&( 7KH DQRGLF SHDN RQ WKH ZHDWKHULQJ VWHHO ZDV IRUW\ SHUFHQW ORZHU WKDQ WKDW RI WKH SODLQ FDUERQ VWHHO 0DWVXVKLPD DQG 8HQR XVHG SRWHQWLRG\QDPLF WHFKQLTXHV WR PHDVXUH WKH RSHQFLUFXLW FRUURVLRQ FXUUHQW RI SODLQFDUERQ DQG ZHDWKHULQJ VWHHOV SHULRGLFDOO\ WKURXJKRXW WKH FRXUVH RI D WZR \HDU H[SRVXUH 7KH FRUURVLRQ FXUUHQWV RQ WKH ZHDWKHULQJ VWHHO VDPSOHV ZHUH FRQVLVWHQWO\ EHWZHHQ b DQG b ORZHU WKDQ WKRVH RQ WKH SODLQ FDUERQ VWHHO VDPSOHV 7KH VDPH LQYHVWLJDWRUV H[DPLQHG WKH FDWKRGLF SRODUL]DWLRQ EHKDYLRU RI PRQWK H[SRVXUH ZHDWKHULQJ VWHHO LQ ERWK DHUDWHG DQG GHDHUDWHG VRGLXP VXOIDWH VROXWLRQ 7KH FKDQJH LQ OLPLWLQJ FXUUHQW GHQVLW\ RQ FKDQJLQJ IURP DHUDWHG WR GHDHUDWHG VROXWLRQ LQGLFDWHG WKDW R[\JHQ UHGXFWLRQ ZDV QRW WKH VROH UHGXFWLRQ UHDFWLRQ RFFXUULQJ RQ WKH PHWDO VXUIDFH )URP WKHVH UHVXOWV LW ZDV LQIHUUHG WKDW WULYDOHQW LURQ R[\K\GUR[LGH VSHFLHV ZHUH EHLQJ UHGXFHG RQ WKH PHWDO VXUIDFH 6X]XNL 0DVXNR DQG +LVDPDWVX SHUIRUPHG JDOYDQRVWDWLF UHGXFWLRQ H[SHULPHQWV RQ ZHDWKHULQJ VWHHO DQG SODLQ FDUERQ VWHHO VDPSOHV H[SRVHG WKUHH \HDUV LQ DQ XUEDQ A HQYLURQPHQW 5HGXFWLRQ ZDV SHUIRUPHG LQ GHDUDWHG 0 VRGLXP VXOIDWH VROXWLRQ ; UD\ GLIIUDFWLRQ ZDV XVHG WR WUDFN WKH IRUPDWLRQ RI PDJQHWLWH DV D IXQFWLRQ RI FXUUHQW SDVVHG 7KH UHVXOWV RI WKH H[SHULPHQW VKRZHG WKDW ZKLOH WKH HOHFWURGH SRWHQWLDOV RI ZHDWKHULQJ VWHHO DQG SODLQ FDUERQ VWHHO VDPSOHV ZHUH VLPLODU WKH UDWH RI IRUPDWLRQ RI FU\VWDOOLQH PDJQHWLWH ZDV PXFK ORZHU RQ WKH ZHDWKHULQJ VWHHO VDPSOH $ JDOYDQRVWDWLF

PAGE 21

UHGXFWLRQ H[SHULPHQW E\ 2NDGD RQ SODLQ FDUERQ DQG ZHDWKHULQJ VWHHO VDPSOHV VXEMHFWHG WR ILYH \HDUV RI XUEDQ H[SRVXUH VKRZHG D ODUJHU UHGXFWLRQ SODWHDX EHWZHHQ P9 6&( DQG P9 6&( IRU WKH ZHDWKHULQJ VWHHO VDPSOH $OWKRXJK WKLV LV WKH HOHFWURGH SRWHQWLDO QRUPDOO\ DVVRFLDWHG ZLWK PDJQHWLWH ;5' VKRZHG WKH ZHDWKHULQJ VWHHO VDPSOH WR FRQWDLQ OHVV PDJQHWLWH WKDQ WKH SODLQ FDUERQ VWHHO VDPSOH 7KH UHGXFWLRQ SODWHDX ZDV WKHUHIRUH DWWULEXWHG WR DQ fDPRUSKRXV VSLQHOW\SHf LURQ R[LGH b *DOYDQRVWDWLF UHGXFWLRQ RI WKH LQQHU OD\HU RI D ZHDWKHULQJ VWHHO SDWLQD ZDV SHUIRUPHG E\ %URZQ DQG 5HLVHU 7KH DXWKRUV VHSDUDWHG LQQHU DQG RXWHU OD\HUV E\ VDQGLQJ RII WKH RXWHU OD\HUV ZLWK DEUDVLYH SDSHU 5HVXOWV RI WKHLU ZRUN VKRZHG D UHGXFWLRQ SHDN EHWZHHQ DQG 9 6&( FRUUHVSRQGLQJ WR UHGXFWLRQ RI D PL[WXUH RI DQG \ )H22+ ,5 VSHFWUD WDNHQ EHIRUH DQG DIWHU UHGXFWLRQ FRQILUPHG WKH LQLWLDO FRUURVLRQ SURGXFWV WR EH DQG \)H22+ DQG VKRZHG WKH UHGXFWLRQ SURGXFW WR EH PDJQHWLWH )URP WKH UHVXOWV RI WKH VWXGLHV GHVFULEHG DERYH LW FDQ EH VHHQ WKDW H[SRVHG ZHDWKHULQJ VWHHOV H[KLELW D ORZHU UDWH RI DQRGLF GLVVROXWLRQ WKDQ D VLPLODUO\ H[SRVHG SODLQ FDUERQ VWHHO ,W KDV DOVR EHHQ VKRZQ WKDW WKH FRUURVLRQ SURGXFWV LQ WKH ZHDWKHULQJ VWHHO SDWLQD FDQ EH UHGXFHG HOHFWURFKHPLFDOO\ DQG WKDW WKH UHGXFWLRQ SURGXFWV DUH QRUPDOO\ PDJQHWLWH RU DQRWKHU VSLQHO W\SH R[LGH &RUURVLRQ 3URGXFW %DVLFV $ FRQVLGHUDEOH DPRXQW RI ZRUN KDV EHHQ GRQH LQ FKDUDFWHUL]LQJ WKH VWUXFWXUHV DQG PHFKDQLVPV RI IRUPDWLRQ RI LURQ R[LGHV DQG R[\K\GUR[LGHVn $OWKRXJK PRVW RI WKHVH VWXGLHV KDYH EHHQ GRQH RQ VDPSOHV IRUPHG GLUHFWO\ IURP VROXWLRQ UDWKHU WKDQ RQ FRUURGLQJ

PAGE 22

PHWDOV WKHLU UHVXOWV DUH XVHIXO IRU SUHGLFWLQJ WKH OLNHOLKRRG RI YDULRXV SKDVH WUDQVIRUPDWLRQV RI FRUURVLRQ SURGXFWV 7KH PRVW FRPSUHKHQVLYH VWXG\ RI IRUPDWLRQ PHFKDQLVPV RI LURQ R[LGHV DQG R[\K\GUR[LGHV ZDV GRQH E\ 0LVDZD +DVKLPRWR DQG 6KLPRGDLUD )LJXUH VKRZV D VFKHPDWLF ZKLFK VXPPDUL]HV WKH UHDFWLRQ SDWKZD\V GHVFULEHG LQ WKHLU VWXG\ 7DEOH FRQWDLQV D VXPPDU\ RI FU\VWDOORJUDSKLF LQIRUPDWLRQ IRU WKH LURQ R[LGHV DQG R[\K\GUR[LGHV ZKLFK FDQ IRUP RQ VWHHO H[SRVHG LQ 62 HQYLURQPHQWV )URP D FRUURVLRQ VWDQGSRLQW VRPH RI WKH PRVW LPSRUWDQW FU\VWDOORJUDSKLF LQIRUPDWLRQ LV WKH W\SH RI FORVHSDFNHG R[\JHQ ODWWLFH WKDW IRUPV WKH EDVLV IRU WKH R[LGH 6SHFLHV ERWK RI ZKLFK DUH EDVHG RQ WKH VDPH W\SH RI R[\JHQ FORVHSDFNHG ODWWLFHV ZLOO UHTXLUH OHVV WLPH DQG HQHUJ\ WR WUDQVIRUP 7KLV EHFRPHV LPSRUWDQW LQ SUHGLFWLQJ ZKHWKHU RU QRW D FHUWDLQ VSHFLHV LV OLNHO\ WR IRUP XQGHU UHGXFLQJ FRQGLWLRQV ,QYHVWLJDWLRQV KDYH EHHQ PDGH LQWR WKH HIIHFW RI &X RQ WKH VWUXFWXUH DQG PRUSKRORJ\ RI FROORLGDOO\IRUPHG \)H22+ ,Q RQH \)H22+ ZDV V\QWKHVL]HG IURP DQ )H6 VROXWLRQ ZLWK WR DWRPLF SHUFHQW &X6 DGGHG 6(0 REVHUYDWLRQ RI WKH UHVXOWDQW \)H22+ SDUWLFOHV VKRZHG WKH SDUWLFOHV WR EH URXJKO\ HOOLSWLFDO LQ VKDSH ZLWK WKH OHQJWK GHFUHDVLQJ DV WKH &X FRQFHQWUDWLRQ LQFUHDVHG ;5' DQDO\VLV VKRZHG WKDW WKH LQWHUSODQDU VSDFLQJ RI WKH f SODQH LQFUHDVHG IURP QP WR QP ZLWK &X r GRSLQJ 7KLV LQFUHDVH LQ LQWHUSODQDU VSDFLQJ ZDV WKRXJKW WR EH GXH WR ODWWLFH GLVWRUWLRQ IURP VXEVWLWXWLRQ RI WKH ODUJHU GLDPHWHU &X r LRQ IRU )Hr 0RVW LPSRUWDQWO\ WKH &X GRSHG \)H22+ KDG D ORZHU HOHFWULFDO FRQGXFWLYLW\ WKDQ XQGRSHG \)H22+ 7KLV LV

PAGE 23

S+ $ ),2+,M )}+! )2+r ) r f 2 U ? G)m22+ \r DJLQJ D 2+ 7 ,)m2+f M & , %U 8 ) f 2+ DJ L QJ 2+ VROLG VSHFLHV GLVVROYHG VSHFLHV fROLG ODOH UHDFWLRQ RU UHDFWLRQ LQ VROXWLRQ SUHFLSL WDW LRQ G L V L R X LRQUHSUHF LSL WDW LRQ YYLROHQW R[LGDWLRQ DDHUDWLRQV DUUDSLG DHUDWLRQ DVVORZ DHUDWLRQ 2+2+ DGGLWLRQ *&,, 3L L , '5&GDUN UHG FRPSOH[ ,) , f )H 2+f JUHHQ FRPSOH[ ,, ) H , f U ) H , f [ r1 f-P 0LVDZD +DVKLPRWR DQG 6KLPRGDLUD f "R )LJXUH 5HDFWLRQ 3DWKZD\V )RU )RUPDWLRQ $QG 7UDQVIRUPDWLRQ 2I ,URQ &RUURVLRQ 3URGXFWV

PAGE 24

7DEOH &U\VWDOORJUDSKLF ,QIRUPDWLRQ )RU 9DULRXV ,URQ &RUURVLRQ 3URGXFWV &RPSRXQG &U\VWDO 6\VWHP 'LPHQVLRQV QPf 2[\JHQ OD\HU VHTXHQFH 6WUXFWXUH 1RWHV JUHHQ UXVW ,, KH[DJRQDO D F O $%$& R[\JHQ OD\HUV )HA2L PDJQHWLWHf FXELF D $%& LQYHUVH VSLQHO \)H22+ OHSLGRFURFLWHf RUWKRUKRPELF D E F $%& EDVHG RQ FFS R[\JHQ D)H22+ JRHWKLWHf RUWKRUKRPELF D E F $% EDVHG RQ KHS R[\JHQ )H22+ KH[DJRQDO D F $% GLVRUGHUHG &G, VWUXFWXUH \)H FXELF D $%& VSLQHO )DVLVND f

PAGE 25

LPSRUWDQW IRU DWPRVSKHULF FRUURVLRQ UHVLVWDQFH VLQFH D ORZHU FRQGXFWLYLW\ UXVW OD\HU ZLOO UHVXOW LQ D ORZHU R[\JHQ UHGXFWLRQ UDWH DQG WKHUHIRUH D ORZHU RYHUDOO FRUURVLRQ UDWH (OHFWURFKHPLVWU\ 2I ,URQ $QG ,URQ&KURPLXP $OOR\V $OWKRXJK DV VWDWHG HDUOLHU LW LV XQOLNHO\ WKDW WKH FKURPLXP DGGLWLRQV LQ ZHDWKHULQJ VWHHOV SURPRWH WKH IRUPDWLRQ RI D PL[HGPHWDO R[LGH SDVVLYH ILOP VXFK DV WKRVH VHHQ LQ VWDLQOHVV VWHHO LW LV SRVVLEOH WKDW WKH FKURPLXP DGGLWLRQV VWLOO KDYH DQ HIIHFW RQ WKH DQRGLF GLVVROXWLRQ GXULQJ DWPRVSKHULF H[SRVXUH 6LQFH DQ\ GHFUHDVH LQ WKH )DWH RI HLWKHU WKH DQRGLF RU FDWKRGLF UHDFWLRQV ZLOO UHVXOW LQ DQ LPSURYHPHQW LQ FRUURVLRQ UHVLVWDQFH LW LV LPSRUWDQW WR LQYHVWLJDWH WKH NQRZQ HIIHFW RI FKURPLXP RQ DQRGLF GLVVROXWLRQ RI LURQ 'LDJUDPV KDYH EHHQ FRQVWUXFWHG ZKLFK VKRZ UHJLRQV RI VWDELOLW\ IRU YDULRXV LURQ DQG FKURPLXP VSHFLHV YV SRWHQWLDO DQG S+ 7KHVH GLDJUDPV FDQ EH XVHG WR SUHGLFW WKH VSHFLHV IRUPHG ZKHQ WKH PHWDO VXUIDFH LV FRYHUHG ZLWK D WKLFN UHDVRQDEO\ GLOXWH HOHFWURO\WH OD\HU $V WKH PHWDO GULHV DQG WKH HOHFWURO\WH OD\HU WKLQV WKH UDWH RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LQFUHDVHV DV GRHV WKH S+ DQG FRQFHQWUDWLRQ RI VSHFLHV LQ VROXWLRQ 8QIRUWXQDWHO\ GXH WR WKH H[WUHPHO\ VPDOO WKLFNQHVV RI WKH HOHFWURO\WH OD\HU GXULQJ GU\LQJ PHDVXUHPHQW RI FRUURVLRQ SRWHQWLDO DQG VROXWLRQ FRPSRVLWLRQ LV YHU\ GLIILFXOW )RU WKLV UHDVRQ WKH SRWHQWLDO DQG S+ SDUDPHWHUV QHFHVVDU\ WR XVH WKHVH GLDJUDPV DUH QRW ZHOO NQRZQ IRU GU\LQJ FRQGLWLRQV WKHUHIRUH WKH XVH RI WKHVH GLDJUDPV WR SUHGLFW VWDEOH VSHFLHV XQGHU GU\LQJ FRQGLWLRQV LV QRW DGYLVDEOH (OHFWURFKHPLFDO PHWDO GLVVROXWLRQ LQ DOPRVW DQ\ HQYLURQPHQW LQLWLDOO\ UHTXLUHV SHQHWUDWLRQ RI WKH QDWLYH R[LGH RU fDLUIRUPHG ILOPf RQ WKH PHWDO VXUIDFH 6WXGLHV XVLQJ FDWKRGLF UHGXFWLRQ DQG HOHFWURQ GLIIUDFWLRQ KDYH VKRZQ WKDW WKH QDWLYH R[LGH RQ SXUH LURQ

PAGE 26

FRQVLVWV RI DQ RXWHU OD\HU UHVHPEOLQJ \)H ZLWK DQ LQQHU OD\HU RI )HM2} ,Q DOO FDVHV WKH VWUXFWXUH ZDV FXELF ZLWK WKH FDWLRQ FRQFHQWUDWLRQ GHFUHDVLQJ IURP WKH LQVLGH WR WKH RXWHU VXUIDFH 7KLFNQHVV YDULHG ZLWK H[SRVXUH WLPH EXW WKH JUHDWHVW WKLFNQHVV PHDVXUHG DIWHU VHYHUDO KRXUV LQ DLU ZDV QP ,Q LURQFKURPLXP DOOR\V WKLV ILOP DOVR FRQWDLQHG WUL YDOHQW FKURPLXP ZKLFK WHQGHG WR PDNH LW PRUH SURWHFWLYH 6HYHUDO VWXGLHV KDYH EHHQ FRQGXFWHG WR GHWHUPLQH WKH HIIHFW RI ORZOHYHO FKURPLXP r 2O RR DGGLWLRQV RQ WKH HOHFWURFKHPLFDO SURSHUWLHV RI LURQ LQ DFLGLF VXOIDWH VROXWLRQV n f 6LQFH WKH 6FRQWDPLQDWHG ZDWHU OD\HUV RQ ZHDWKHULQJ VWHHOV UDQJH IURP QHXWUDO WR DFLGLF VXOIDWH HQYLURQPHQWV WKH UHVXOWV RI WKHVH VWXGLHV SURYLGH XVHIXO LQIRUPDWLRQ RQ KRZ FKURPLXP ZHDWKHULQJ VWHHO DGGLWLRQV PLJKW DIIHFW PHWDO GLVVROXWLRQ GXULQJ H[SRVXUH 7DEOHV WKURXJK OLVW WKH UHVXOWV RI YDULRXV DQRGLF SRODUL]DWLRQ VWXGLHV RI )H&U ELQDU\ DOOR\V LQ DFLGLFVXOIDWH VROXWLRQV ,Q DOO FDVHV VDPSOHV GLVSOD\HG DFWLYH WR SDVVLYH WUDQVLWLRQV ZLWK WKH SRWHQWLDO DQG FXUUHQW UHTXLUHG IRU SDVVLYDWLRQ YDU\LQJ ZLWK FKURPLXP FRQFHQWUDWLRQ ,Q DOO FDVHV DQ LQFUHDVH LQ FKURPLXP FRQFHQWUDWLRQ UHVXOWHG LQ D GHFUHDVH LQ WKH FKDUJH QHFHVVDU\ WR SDVVLYDWH ,Q PRVW FDVHV H[DPLQDWLRQ RI WKH SDVVLYH ILOP ZLWK [ UD\ SKRWRHOHFWURQ VSHFWURVFRS\ ;36f DQG DXJHU HOHFWURQ VSHFWURVFRS\ $(6f VKRZHG D FKURPLXP HQULFKPHQW EHWZHHQ WKUHH DQG VL[WHHQ WLPHV WKDW IRXQG LQ WKH EDVH PHWDO ZLWK WKH ODUJHVW HQULFKPHQWV EHLQJ VHHQ IRU DOOR\V ZLWK OHVV WKDQ RQH SHUFHQW FKURPLXP LQ WKH EDVH PHWDO $ VLPLODU VWXG\ ZDV GRQH XVLQJ D IXOO ZHDWKHULQJ VWHHO DOOR\ LQ ERUDWH EXIIHU VROXWLRQ 8QGHU FRQGLWLRQV ZKLFK OHDG WR FKURPLXP HQULFKPHQW DW WKH VXUIDFH WKH

PAGE 27

7DEOH 3RWHQWLRVWDWLF 3RODUL]DWLRQ 5HVXOWV )RU )H&U %LQDU\ $OOR\V ,Q 'HDUDWHG 0 VXOIDWH VROXWLRQ S+ $OOR\ ( RSHQ FLUFXLW P9 YV 1+(f ( SDVVLYH P9 YV 1+(f FULWLFDO WR SDVVLYDWH $FPf )H&U )H&U )H&U (O%DVLRXQ\ DQG +DUX\DPD f 7DEOH 3RWHQWLRG\QDPLF 3RODUL]DWLRQ 2I )H&U %LQDU\ $OOR\V ,Q 'HDUDWHG 0 +62 6ZHHS 5DWH OPYV 6DPSOH 'LDPHWHU PP $OOR\ ( RSHQ FLUFXLW P9 YV +J+J6f ( SDVVLYH P9 YV +J+J6f FULWLFDO WR SDVVLYDWH $FPf SXUH )H )H&U )H&U 'REEHODU +HUPDQ DQG 'H:LW f 7DEOH 3RWHQWLRVWDWLF 3RODUL]DWLRQ 2I )H&U %LQDU\ $OOR\V ,Q 'HDUDWHG 21 +62 $OOR\ ( RSHQ FLUFXLW P9 YV 6+(f ( SDVVLYH P9 YV 6+(f FULWLFDO WR SDVVLYDWH $FPf SXUH )H )H &U )H&U )H 2&U .LUFKKHLP +HLQH )LVFKPHLVWHU +RIPDQ .QRWH DQG 6WRO] f

PAGE 28

FXUUHQW UHTXLUHG IRU SDVVLYDWLRQ GURSSHG E\ b )URP WKHVH UHVXOWV LW VHHPV WKDW FKURPLXP HQULFKPHQW DW WKH PHWDO VXUIDFH IDFLOLWDWHG SDVVLYDWLRQ LQ WKH HQYLURQPHQWV VWXGLHG $OWKRXJK ERWK VWXGLHV VKRZHG D FRUUHODWLRQ EHWZHHQ &U HQULFKPHQW DQG HDVH RI SDVVLYDWLRQ QHLWKHU VWXG\ JDYH PXFK LQIRUPDWLRQ RQ WKH GLVWULEXWLRQ RI &U UHODWLYH WR WKH R[LGHPHWDO LQWHUIDFH $WPRVSKHULF &RUURVLRQ )XQGDPHQWDOV ,Q WKLV VHFWLRQ D UHYLHZ LV PDGH RI VWXGLHV ZKRVH JRDO ZDV D EHWWHU XQGHUVWDQGLQJ RI VRPH RI WKH IXQGDPHQWDO SURFHVVHV ZKLFK JRYHUQ DWPRVSKHULF FRUURVLRQ LQ JHQHUDO $OWKRXJK QRQH RI WKHVH VWXGLHV GHDOW VSHFLILFDOO\ ZLWK ZHDWKHULQJ VWHHOV WKHLU UHVXOWV FDQ EH GLUHFWO\ DSSOLHG WR ZHDWKHULQJ VWHHOV H[SRVHG LQ 6FRQWDPLQDWHG HQYLURQPHQWV 7KLV VHFWLRQ KDV EHHQ GLYLGHG LQWR ILYH VHFWLRQV HDFK GHDOLQJ ZLWK D GLIIHUHQW IXQGDPHQWDO SURFHVV LQ DWPRVSKHULF FRUURVLRQ )RUPDWLRQ RI DQ (OHFWURO\WH )RUPDWLRQ RI D ZDWHU OD\HU EHJLQV ZLWK + DGVRUSWLRQ RQWR WKH R[\K\GUR[LGHV LQ WKH RXWHU OD\HUV RI WKH QDWLYH R[LGH $GVRUSWLYH ERQGLQJ RFFXUV E\ ERQGLQJ RI + PROHFXOHV WR WKH 2+ JURXSV RI WKH R[\K\GUR[LGHV E\ IRUPDWLRQ RI +EULGJHV 7KH ZDWHU ZKLFK DWWDFKHV LQ WKLV PDQQHU LV ERXQG WR WKH QDWLYH R[LGH DQG WKHUHIRUH FDQ QRW VHUYH DV DQ HOHFWURO\WH ,I WKH PHWDO VXUIDFH LV IUHH IURP VDOWV DQG RWKHU LPSXULWLHV DQ H[WUHPHO\ KLJK 5+ LV QHFHVVDU\ WR VWDUW WKH DFFXPXODWLRQ RI IUHH ZDWHU IRU DQ HOHFWURO\WH ,I K\GURVJRSLF VDOWV DUH SUHVHQW RQ WKH PHWDO VXUIDFH IUHH ZDWHU ZLOO EHJLQ WR DFFXPXODWH ZKHQ WKH UHODWLYH KXPLGLW\ LV HTXDO WR WKH UHODWLYH KXPLGLW\ LQ HTXLOLEULXP ZLWK D VDWXUDWHG VROXWLRQ RI WKDW VDOW :KHQ IUHH ZDWHU OD\HUV GR IRUP WKH\ DUH QRW W\SLFDOO\ FRQWLQXRXV RU KRPRJHQHRXV ,URQ VXUIDFHV HVSHFLDOO\ WHQG WR IDYRU WKH IRUPDWLRQ RI fZDWHU FOXVWHUVf

PAGE 29

ZKLFK FRDUVHQ DV PRUH DQG PRUH ZDWHU LV DGVRUEHG RQWR WKH VXUIDFH 7KLV GLVFRQWLQXRXV QDWXUH RI WKH ZDWHU IRUPDWLRQ LV DW OHDVW SDUWLDOO\ UHVSRQVLEOH IRU WKH GLVFRQWLQXRXV VXOIDWH GLVWULEXWLRQ RQ H[SRVHG PHWDO VXUIDFHV 2QFH FRUURVLRQ SURGXFWV KDYH IRUPHG WKH TXDQWLW\ RI ZDWHU SUHVHQW RQ WKH PHWDO VXUIDFH ZLOO LQFUHDVH GXH WR WKH FDSLOODU\ DFWLRQ 62" ,QWHUDFWLRQV $WPRVSKHULF 62 GLVVROYHG LQ WKH ZDWHU OD\HU RQ D PHWDO VXUIDFH LV K\GURO\]HG DQG R[LGL]HG WR IRUP VXOIDWH LRQV E\ D YDULHW\ RI UHDFWLRQV 7KH DGVRUSWLRQ UDWH RI 62 YDULHV ZLWK 5+ EHORZ b5+ QR 62 DGVRUSWLRQ ZDV PHDVXUDEOH EXW DERYH b5+ WKH DGVRUSWLRQ LQFUHDVHG GUDPDWLFDOO\ 3UHVHQFH RI FRUURVLRQ SURGXFWV RQ WKH PHWDO VXUIDFH ZLOO DOVR IDFLOLWDWH 62 DGVRUSWLRQ ,Q WKH DEVHQFH RI FKORULGHV RU RWKHU FRUURVLYH FRQWDPLQDQWV QR VLJQLILFDQW FRUURVLRQ ZLOO RFFXU ZLWKRXW 62 ,Q DGGLWLRQ WR LQFUHDVLQJ WKH FRQGXFWLYLW\ RI WKH VXUIDFH ZDWHU OD\HU VXOIDWH LRQV FDQ SDUWLFLSDWH GLUHFWO\ LQ WKH FRUURVLRQ UHDFWLRQV 6RPH LQYHVWLJDWRUV KDYH SURSRVHG WKDW 6 DFWV DV D FDWKRGLF GHSRODUL]HU DFFRUGLQJ WR WKH UHDFWLRQ EHORZ 6 Hf 6n 6 f f $V VXOILGH FRPSRXQGV KDYH QRW EHHQ REVHUYHG RQ DWPRVSKHULFDOO\H[SRVHG VWHHOV WKH OLNHOLKRRG RI WKLV UHDFWLRQ LV FRQVLGHUHG YHU\ VPDOO 0DQ\ PRUH VWXGLHV KDYH $ $ 2 FRQFHUQHG WKHPVHOYHV ZLWK WKH HIIHFW RI VXOIDWH LRQ RQ PHWDO R[LGDWLRQ UHDFWLRQV f 6XOIDWH LV JHQHUDOO\ WKRXJKW WR DVVLVW LQ PHWDO R[LGDWLRQ E\ DOORZLQJ IRU IRUPDWLRQ RI DQ

PAGE 30

)H,,f VXOIDWH VDOW 7KH LURQ LQ WKH VDOW LV ODWHU FRQYHUWHG WR DQ R[\K\GUR[LGH OLEHUDWLQJ WKH VXOIDWH LRQ IRU UHXVH 7KH GLVWULEXWLRQ RI VXOIDWH RQ WKH VXUIDFH RI DWPRVSKHULFDOO\ H[SRVHG LURQ DQG VWHHOV LV QRW KRPRJHQHRXV EXW WHQGV WR IRUP fVXOIDWH QHVWVf $ FURVVVHFWLRQ VFKHPDWLF RI D W\SLFDO VXOIDWH QHVW LV VKRZQ LQ )LJXUH $QRGLF DQG &DWKRGLF 5HDFWLRQV LQ $WPRVSKHULF &RQGLWLRQV r 7KH PRVW LPSRUWDQW GLVWLQFWLRQ EHWZHHQ DWPRVSKHULF HOHFWURFKHPLFDO UHDFWLRQV DQG LPPHUVLRQ HOHFWURFKHPLFDO UHDFWLRQV LV WKH WKLFNQHVV RI WKH HOHFWURO\WH OD\HU ,Q WKH FDVH RI LPPHUVLRQ FRQGLWLRQV FRQFHQWUDWLRQV RI GLVVROYHG VROLGV UHPDLQ IDLUO\ ORZ DQG WKH VXSSO\ RI GLVVROYHG JDVHV LV OLPLWHG ,Q DWPRVSKHULF H[SRVXUH HOHFWURFKHPLFDO UHDFWLRQV RIWHQ RFFXU LQ H[WUHPHO\ WKLQ OD\HUV RI HOHFWURO\WH ZKHUH GLVVROYHG JDVHV DUH PXFK PRUH UHDGLO\ DYDLODEOH DQG FRQFHQWUDWLRQV RI GLVVROYHG VROLGV FDQ EHFRPH YHU\ KLJK $QRGLF 5HDFWLRQV $FFRUGLQJ WR %DUWRQ FKDUJH WUDQVIHU LV WKH UDWH OLPLWLQJ VWHS LQ PHWDO R[LGDWLRQ ,Q WKLV FDVH WKH PHWDO R[LGDWLRQ LV FRQVLGHUHG WR IROORZ WKH %XWOHU9ROPHU HTXDWLRQ 6LQFH FRQGLWLRQV DUH IDYRUDEOH IRU FRUURVLRQ SURGXFW IRUPDWLRQ WKH GLVVROXWLRQ LV WKRXJKW WR RFFXU WKURXJK D OD\HU RI FRUURVLRQ SURGXFWV 5RVHQIHOG FRQGXFWHG DQ LQYHVWLJDWLRQ FRPSDULQJ DQRGLF SRODUL]DWLRQ EHKDYLRU RI LURQ LQ SP HOHFWURO\WH ILOPV WR WKDW LQ LPPHUVLRQ FRQGLWLRQV )RU FXUUHQW YDOXHV RI S$FP WKH WKLQ ILOP VDPSOHV SRODUL]HG P9 PRUH WKDQ WKH LPPHUVLRQ VDPSOHV )RU FXUUHQW YDOXHV RI S$FP WKH WKLQ ILOP VDPSOHV SRODUL]HG P9 PRUH WKDQ WKH LPPHUVLRQ VDPSOHV 1R SDVVLYDWLRQ ZDV

PAGE 31

)LJXUH &URVV6HFWLRQ 2I $ 6XOIDWH 1HVW )RUPHG 2Q $WPRVSKHULFDOO\([SRVHG ,URQ

PAGE 32

REVHUYHG HYHQ DW FXUUHQW YDOXHV DV KLJK DV P$FP 5HVXOWV RI $& LPSHGDQFH VWXGLHV RQ WKLQILOP FRYHUHG LURQ VDPSOHV VKRZHG WKH SUHVHQFH RI D FRQGXFWLYH R[LGH ILOP &DWKRGLF UHDFWLRQV %HFDXVH RI WKH KLJK DYDLODELOLW\ RI R[\JHQ LQ WKLQ ILOPV R[\JHQ UHGXFWLRQ LV WKH PDMRU FDWKRGLF UHDFWLRQ RFFXUULQJ RQ DWPRVSKHULFDOO\ H[SRVHG LURQ VXUIDFHV 7KH VSHFLILF UHDFWLRQ SDWK ZLOO YDU\ ZLWK VROXWLRQ S+ DQG DYDLODELOLW\ RI D FDWDO\VW 7\SLFDO R[\JHQ UHGXFWLRQ UHDFWLRQV DUH OLVWHG +]2 H + ,7 EDVLFf f + H + f + H + DFLGLFf f + )7 H + f 2 DGVRUEHG FDWDO\VWf f DGVRUEHG + f +2 f 7KH UDWH RI FKDUJH WUDQVIHU RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LV GHSHQGHQW RQ WKH VXEVWUDWH RQ ZKLFK LW LV RFFXUULQJ 3RWHQWLDOFXUUHQW UHODWLRQVKLSV IRU R[\JHQ UHGXFWLRQ RQ LURQ FKURPLXP DQG LURQ R[LGH DUH VKRZQ LQ 7DEOH %HFDXVH RI WKH ORZ VROXELOLW\ RI R[\JHQ LQ ZDWHU r 2A0f R[\JHQ FDQ EH GHSOHWHG HDVLO\ DW WKH UHDFWLRQ VXUIDFH DQG PXVW GLIIXVH IURP WKH JDVHOHFWURO\WH LQWHUIDFH )RU WKLV UHDVRQ WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LV QRUPDOO\ PDVVWUDQVIHU OLPLWHG $Q

PAGE 33

7DEOH 3RWHQWLDO&XUUHQW 5HODWLRQVKLSV IRU 2[\JHQ 5HGXFWLRQ RQ 9DULRXV 6XEVWUDWHV 6XEVWUDWH ( IRU L $P ( IRU L $P )H &U f )H %DUWRQ f

PAGE 34

HVWLPDWLRQ RI WKH OLPLWLQJ R[\JHQ UHGXFWLRQ FXUUHQW FDQ EH PDGH E\ DSSO\LQJ )LFNfV ILUVW ODZ IRU VHPLLQILQLWH OLQHDU GLIIXVLRQ L' 'Q)FfGf f ZKHUH /' GLIIXVLRQOLPLWHG FXUUHQW GLIIXVLRQ FRHIILFLHQW ) )DUDGD\fV &RQVWDQW Q QXPEHU RI HOHFWURQV SDVVHG F R[\JHQ FRQFHQWUDWLRQ G GLIIXVLRQOLPLWHG OD\HU WKLFNQHVV 7KH H[SUHVVLRQ IRU WKH GLIIXVLRQ FRHIILFLHQW LV JLYHQ E\ 571;•7WYUfn f ZKHUH 5 JDV FRQVWDQW 7 WHPSHUDWXUH .f 1 $YRJDGURfV QXPEHU Y HOHFWURO\WH YLVFRVLW\ U PROHFXODU UDGLXV RI R[\JHQ

PAGE 35

&RPELQDWLRQ RI WKHVH WZR H[SUHVVLRQV JLYHV DQ H[SUHVVLRQ IRU GLIIXVLRQOLPLWHG R[\JHQ UHGXFWLRQ FXUUHQW L' 57Y)FfG1WUf f 7KLV H[SUHVVLRQ LV OLPLWHG WR FRQGLWLRQV ZKHUH QRQ FRQYHFWLYH VWLUULQJ RFFXUV 7KLV FRQVWUDLQW XVXDOO\ OLPLWV DSSOLFDWLRQ WR ILOPV WKLQQHU WKDQ SP DQG LVRWKHUPDO FRQGLWLRQV 5RVHQIHOG XVHG FDWKRGLF SRODUL]DWLRQ RQ YDULRXV WKLFNQHVV HOHFWURO\WH ILOPV WR VWXG\ WKH HIIHFW RI ILOP WKLFNQHVV RQ WKH UDWH RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ 8QGHU FRQGLWLRQV RI FRQVWDQW ILOP WKLFNQHVV WKH UDWHV RI R[\JHQ UHGXFWLRQ RQ WKH WKLQ ILOP VDPSOHV ZHUH WKUHH WR IRXU WLPHV KLJKHU WKDQ WKRVH RI LPPHUVLRQ VDPSOHV 7KH VDPH H[SHULPHQWV ZHUH SHUIRUPHG XQGHU YDSRUL]LQJ FRQGLWLRQV E\ YDU\LQJ WKH 5+ DERYH WKH WKLQ ILOPV 7KH UHVXOWV RI FDWKRGLF SRODUL]DWLRQ XQGHU YDSRUL]LQJ FRQGLWLRQV VKRZHG WZR GLVWLQFW WUHQGV )LUVW ZKHQ UHODWLYH KXPLGLWLHV ZHUH NHSW FRQVWDQW EXW WKH LQLWLDO OD\HU WKLFNQHVV ZDV GHFUHDVHG WKH R[\JHQ UHGXFWLRQ FXUUHQWV LQFUHDVHG 6HFRQGO\ ZKHQ WKH LQLWLDO OD\HU WKLFNQHVVHV ZHUH NHSW FRQVWDQW EXW UHODWLYH KXPLGLWLHV ZHUH ORZHUHG R[\JHQ UHGXFWLRQ FXUUHQWV DOVR LQFUHDVHG )URP WKHVH UHVXOWV LW ZDV FRQFOXGHG WKDW WKH R[\JHQ GLIIXVLRQ OHQJWK ZDV YDU\LQJ LQGHSHQGHQWO\ RI WKH DFWXDO ILOP WKLFNQHVV :RUN E\ /HYLFK DQG (LVKHU VKRZHG WKDW VPDOO WHPSHUDWXUH YDULDWLRQV FRXOG UHVXOW LQ VXUIDFH WHQVLRQ FKDQJHV ZKLFK FRXOG FDXVH fFDSLOODU\ FRQYHFWLRQf )RU WKLQ HOHFWURO\WH OD\HUV WKH UDWH RI FDSLOODU\ FRQYHFWLRQ H[FHHGHG WKDW RI QRUPDO KHDWGULYHQ FRQYHQWLRQ %DVHG RQ WKLV LW ZDV FRQFOXGHG WKDW HYDSRUDWLQJ WKLQ HOHFWURO\WH OD\HUV ZHUH VHOIVWLUULQJ

PAGE 36

$OWKRXJK 5RVHQIHOG ZDV DEOH WR VWXG\ IDLUO\ WKLQ OD\HUV XQGHU YDSRUL]LQJ FRQGLWLRQV KH ZDV QRW DEOH WR VWXG\ WKH HIIHFW RI GU\LQJ WR QHDU FRPSOHWLRQ VLQFH VROXWLRQ IURP WKH UHIHUHQFH HOHFWURGH FRXOG FRQWDPLQDWH WKH VDPSOH VXUIDFH XQGHU WKHVH FRQGLWLRQV $ WHFKQLTXH GHYHORSHG E\ 6WUDWPDQQ DQG 6WUHFNHO DOORZHG WKH PHDVXUHPHQW RI FRUURVLRQ SRWHQWLDO WR FRPSOHWH GU\LQJ 7KHLU WHFKQLTXH LQYROYHG WKH PHDVXUHPHQW RI VDPSOH VXUIDFH ZRUN IXQFWLRQ ZLWK D QRQLQYDVLYH SUREH NQRZQ DV D .HOYLQ SUREH 7KH VXUIDFH ZRUN IXQFWLRQ FRXOG WKHQ EH UHODWHG GLUHFWO\ WR FRUURVLRQ SRWHQWLDO 6LQFH WKLV SUREH GLG QRW FRQWDFW WKH VDPSOH VDPSOH FRQWDPLQDWLRQ ZDV DYRLGHG 8VLQJ WKH .HOYLQ SUREH DV WKH UHIHUHQFH HOHFWURGH RI D WKUHH HOHFWURGH V\VWHP LW ZDV SRVVLEOH WR FRQGXFW FDWKRGLF DQG DQRGLF SRODUL]DWLRQV RQ SXUH )H LQ 0 1D6 ZLWK HOHFWURO\WH OD\HUV DV WKLQ DV SP 6XPPDULHV RI WKH FRUURVLRQ FXUUHQW FRUURVLRQ SRWHQWLDO DQG FULWLFDO FXUUHQW WR SDVVLYDWH YV ILOP WKLFNQHVV DUH OLVWHG LQ 7DEOHV DQG 7KH PD[LPXP LQ FRUURVLRQ FXUUHQW ZLWK GHFUHDVLQJ ILOP WKLFNQHVV ZDV GXH WR D VLPXOWDQHRXV LQFUHDVH LQ WKH UDWH RI R[\JHQ UHGXFWLRQ DQG GHFUHDVH LQ WKH UDWH RI PHWDO GLVVROXWLRQ $V VHHQ IURP WKH UHVXOWV RI 7DEOHV DQG ILOP WKLFNQHVV KDV D VLJQLILFDQW HIIHFW RQ HOHFWURFKHPLFDO FKDUDFWHULVLWFV :KHQ PHWDO VXUIDFHV DUH FRYHUHG ZLWK WKLFN HOHFWURO\WH OD\HUV WKH VORZ UDWH RI R[\JHQ PDVVWUDQVIHU WR WKH UHDFWLRQ LQWHUIDFH OLPLWV WKH UDWH RI WKH RYHUDOO FRUURVLRQ UHDFWLRQ $V WKH HOHFWURO\WH OD\HU WKLQV DQG EHFRPHV VHOIVWLUULQJ KRZHYHU YHU\ KLJK UDWHV RI R[\JHQ UHGXFWLRQ DUH VXSSRUWDEOH 2[\JHQ UHGXFWLRQ FXUUHQWV LQ H[FHVV RI S $FP KDYH EHHQ PHDVXUHG IRU GU\LQJ ILOPV ZLWK D SP WKLFNQHVV $W FXUUHQWV WKLV KLJK WKH

PAGE 37

7DEOH &XUUHQW 7R 3DVVLYDWH YV )LOP 7KLFNQHVV ILOP WKLFNQHVV SPf FXUUHQW WR SDVVLYDWH $FPf 6WUDWPDQQ DQG 6WUHFNHO f 7DEOH &RUURVLRQ &XUUHQW DQG 3RWHQWLDO YV )LOP 7KLFNQHVV ILOP WKLFNQHVV SPf LFRUU S$FPf (FRUU P9 6+(f EXON 6WUDWPDQQ DQG 6WUHFNHO f

PAGE 38

UDWHV RI DQRGLF UHDFWLRQV DUH QRW KLJK HQRXJK WR NHHS XS DQG WKH RYHUDOO FRUURVLRQ UHDFWLRQ EHFRPHV OLPLWHG E\ WKH PHWDO GLVVROXWLRQ UHDFWLRQV 7KLV VZLWFK IURP FDWKRGLF WR DQRGLF FRQWURO KDV EHHQ GHPRQVWUDWHG E\ -XVWR DQG )HUUHLUD ZKR PHDVXUHG WKH OLPLWLQJ FXUUHQW IRU R[\JHQ UHGXFWLRQ RQ WKLQILOP FHOOV 7KH PHDVXUHG YDOXH RI R[\JHQ UHGXFWLRQ OLPLWLQJFXUUHQW H[FHHGHG WKH RSHQ FLUFXLW FRUURVLRQ FXUUHQW VR LW ZDV FRQFOXGHG WKDW WKH VDPSOH ZDV FRUURGLQJ XQGHU DQRGLF FRQWURO (IIHFW RI :HWGUY &\FOLQJ 'XULQJ ZHWGU\ F\FOLQJ WKH WKLFNQHVV RI WKH HOHFWURO\WH OD\HU RQ WKH PHWDO VXUIDFH YDULHV IURP D IHZ PLOOLPHWHUV WR SUDFWLFDOO\ ]HUR 6LQFH WKH DYDLODELOLW\ RI R[\JHQ YDULHV ZLWK WKH WKLFNQHVV RI WKH HOHFWURO\WH OD\HU WKH HOHFWURFKHPLFDO UHDFWLRQV ZKLFK RFFXU RQ D UXVWFRYHUHG PHWDO VXUIDFH ZLOO DOVR YDU\ %HFDXVH RI WKH YDULDWLRQ RI UHDFWLRQV DQG UHDFWLRQ UDWHV ZLWK HOHFWURO\WH OD\HU WKLFNQHVV LW LV UHDVRQDEOH WR H[SHFW WKH UDWHV DQG W\SHV RI UHDFWLRQV RQ H[SRVHG PHWDO VXUIDFHV WR YDU\ ZLWK WKH SURJUHVV RI VLQJOH ZHWGU\ F\FOHV 0DQVIHOG FRQGXFWHG H[SHULPHQWV XVLQJ D ODPLQDWHG FHOO FRQVLVWLQJ RI DOWHUQDWLQJ OD\HUV RI LURQ DQG ]LQF VHSDUDWHG E\ VKHHWV RI SRO\HVWHU ILOP /DPLQDWHG FHOOV ZHUH ZHW ZLWK D NQRZQ WKLFNQHVV RI HOHFWURO\WH WKHQ DOORZHG WR GU\ *DOYDQLF FXUUHQW IORZLQJ EHWZHHQ WKH LURQ DQG ]LQF ZDV PHDVXUHG DV D IXQFWLRQ RI GU\LQJ WLPH $V GU\LQJ SURJUHVVHG FXUUHQWV LQFUHDVHG PRGHUDWHO\ WKHQ LQFUHDVHG GUDVWLFDOO\ MXVW EHIRUH FRPSOHWH GU\LQJ ([FOXVLRQ RI R[\JHQ UHVXOWHG LQ OLWWOH RU QR JDOYDQLF FXUUHQW 7KH UHVXOWV RI WKLV H[SHULPHQW GHPRQVWUDWH WKH YDULDWLRQ RI UHDFWLRQ UDWHV GXULQJ ZHWWLQJ DQG GU\LQJ :RUN E\ (YDQV DQG RWKHU LQYHVWLJDWRUV KDV VKRZQ WKDW DWPRVSKHULF FRUURVLRQ RI LURQ FDQ EH GLYLGHG LQWR WKUHH VWDJHV

PAGE 39

6WDJH 2QH ZHWWLQJf 'XULQJ WKLV VWDJH WKH UXVWFRYHUHG PHWDO VXUIDFH LV FRYHUHG ZLWK D WKLFN OD\HU RI HOHFWURO\WH 'XH WR WKH WKLFNQHVV RI WKH HOHFWURO\WH OD\HU PDVV WUDQVSRUW RI R[\JHQ WR WKH UHDFWLRQ LQWHUIDFH QHDU WKH UXVWPHWDO LQWHUIDFH LV VORZ DQG WKHUHIRUH WKH FRUUHVSRQGLQJ UDWH RI R[\JHQ UHGXFWLRQ LV DOVR VORZ %HFDXVH RI WKH ORZ UDWH RI R[\JHQ UHGXFWLRQ PHWDO GLVVROXWLRQ LV EDODQFHG E\ UHGXFWLRQ RI WULYDOHQW LURQ R[\K\GUR[LGH VSHFLHV LQ WKH UXVW OD\HU 5HDFWLRQ UDWHV GXULQJ WKLV VWDJH DUH IDLUO\ ORZ6HH )LJXUH f 6WDJH 7ZR GU\LQJf 'XULQJ WKLV VWDJH WKH UXVW FRYHUHG PHWDO VXUIDFH LV VWLOO FRYHUHG E\ D IDLUO\ WKLFN OD\HU RI HOHFWURO\WH VR WKH UDWH RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ LV VWLOO YHU\ ORZ $W WKLV SRLQW KRZHYHU DOO WKH UHGXFLEOH VSHFLHV LQ WKH UXVW OD\HU KDYH EHHQ H[KDXVWHG VR PHWDO GLVVROXWLRQ LV QRZ EDODQFHG E\ R[\JHQ UHGXFWLRQ 5HDFWLRQ UDWHV LQ WKLV VWDJH DUH DOVR IDLUO\ ORZ6HH )LJXUH f 6WDJH 7KUHH FULWLFDO ZHWWLQJf ,Q WKLV VWDJH WKH HOHFWURO\WH OD\HU KDV WKLQQHG GXH WR HYDSRUDWLRQ 1RZ WKH UDWH RI PDVV WUDQVSRUW RI R[\JHQ WR WKH UHDFWLRQ LQWHUIDFH LV YHU\ UDSLG DQG FRQVHTXHQWO\ WKH UDWH RI R[\JHQ UHGXFWLRQ LV YHU\ KLJK 1RZ WKH UDWH RI R[\JHQ UHGXFWLRQ LV KLJK HQRXJK WR VXSSRUW QRW RQO\ D KLJK UDWH RI PHWDO GLVVROXWLRQ EXW DOVR WR UHR[LGL]H WKH VSHFLHV ZKLFK ZHUH UHGXFHG LQ 6WDJH 2QH ,W LV GXULQJ WKLV SDUW RI WKH ZHWGU\ F\FOH WKDW WKH PDMRULW\ RI WKH PHWDO ORVV RFFXUV 6HH )LJXUH f 7KLV WKUHH VWDJH PRGHO ZDV FRQILUPHG E\ WKH UHVXOWV RI ZRUN E\ 6WUDWPDQQ %RKQHQNDPS DQG 5DPFKDQGUDQ 7KHLU VWXG\ LQYROYHG WKH XVH RI D FRPELQDWLRQ RI WHFKQLTXHV WR LQGHSHQGHQWO\ PHDVXUH WKH UDWH RI R[\JHQ XSWDNH DQG PHWDO GLVVROXWLRQ

PAGE 40

DQRGLF )H f§ )H,,f Hf FDWKRGLF )H22+ )H Hn f§ )H + )LJXUH 6WDJH 2QH 2I :HWWLQJ $QG 'U\LQJ %HFDXVH RI ORZ UDWHV RI R[\JHQ UHGXFWLRQ PHWDO GLVVROXWLRQ LV EDODQFHG E\ UHGXFWLRQ RI WULYDOHQW R[\K\GUR[LGH VSHFLHV LQ WKH UXVW ILOP

PAGE 41

67$*( 7:2 DQRGLF )H f§ )H,,f H FDWKRGLF + H f§ + )LJXUH 6WDJH 7ZR 2I :HWWLQJ $QG 'U\LQJ 0HWDO GLVVROXWLRQ LV QRZ EDODQFHG E\ R[\JHQ UHGXFWLRQ

PAGE 42

DQRGLF )H f§ )H,,f H )H LPS f§ )H22+ FDWKRGLF + 2 H f§ + )LJXUH 6WDJH 7KUHH 2I :HWWLQJ $QG 'U\LQJ 7KH UDWH RI R[\JHQ UHGXFWLRQ LV KLJK HQRXJK WR VXSSRUW QRW RQO\ D KLJK UDWH RI PHWDO GLVVROXWLRQ E\ DOVR WR UHR[LGL]H WKH VSHFLHV ZKLFK ZHUH UHGXFHG GXULQJ 6WDJH 2QH

PAGE 43

GXULQJ WKH FRXUVH RI VLQJOH ZHWGU\ F\FOHV 7KH UDWH RI PHWDO GLVVROXWLRQ ZDV PHDVXUHG XVLQJ D PDJQHWLF WHFKQLTXH ZKLFK DOORZHG GHWHFWLRQ RI TXDQWLWLHV RI LURQ PHWDO DQG LURQ VSLQHOV 7KH UDWH RI R[\JHQ UHGXFWLRQ ZDV PHDVXUHG XVLQJ D EDURPHWULF WHFKQLTXH ZKLFK UHOLHG RQ WKH FKDQJH LQ R[\JHQ SDUWLDO SUHVVXUH IURP UHDFWLRQ RI JDVHRXV PROHFXODU R[\JHQ :HWGU\ F\FOLQJ ZDV DFKLHYHG E\ IOXVKLQJ WKH VDPSOH WR GHSRVLW DQ HOHFWURO\WH OD\HU WKHQ KHDWLQJ WKH VDPSOH WR GU\ LW ,Q WKH FDVH RI SXUH LURQ ERWK R[\JHQ UHGXFWLRQ DQG PHWDO GLVVROXWLRQ FXUUHQWV ZHUH EHWZHHQ ]HUR DQG S$FP IRU WKH ILUVW WZR WKLUGV RI GU\LQJ SHULRG WKHQ MXPSHG WR DSSUR[LPDWHO\ _L$FP IRU WKH ODVW WKLUG 5DWHV RI ERWK PHWDO GLVVROXWLRQ DQG R[\JHQ XSWDNH GURSSHG WR ]HUR DV WKH VDPSOH UHDFKHG FRPSOHWH GU\LQJ 7KH LQLWLDO SHULRG RI ORZ FXUUHQW FRUUHVSRQGV WR VWDJHV RQH DQG WZR DQG WKH SHULRG RI KLJKHU FXUUHQW FRUUHVSRQGV WR VWDJH WKUHH 7KH VDPH H[SHULPHQWV UXQ ZLWK DQ )H&X DOOR\ VKRZHG PD[LPXP FXUUHQWV VWDJH WKUHHf RI RQO\ S$FP &RQWLQXHG F\FOLQJ RI WKH SXUH LURQ VDPSOHV VKRZHG QR GHFUHDVH LQ PD[LPXP FXUUHQWV ZKHUHDV WKH )H&X VDPSOHV VKRZHG D SURJUHVVLYH GHFUHDVH LQ PD[LPXP VWDJH WKUHHf FXUUHQW ZLWK HDFK F\FOH $GGLWLRQDO LQIRUPDWLRQ RQ WKH HIIHFW RI FRSSHU RQ WKH F\FOLF ZHWWLQJ DQG GU\LQJ EHKDYLRU RI LURQ ZDV SURYLGHG LQ D VWXG\ E\ 6WUDWPDQQ DQG 6WUHFNHO XVLQJ WKH .HOYLQ SUREH WR PRQLWRU FRUURVLRQ SRWHQWLDO GXULQJ GU\LQJ 3XUH LURQ VDPSOHV H[KLELWHG D ULVH LQ FRUURVLRQ SRWHQWLDO RQ GU\LQJ IURP P9 6+( WR P9 6+( 7KH FRSSHUEHDULQJ VDPSOHV RQ WKH RWKHU KDQG VKRZHG D ULVH LQ FRUURVLRQ SRWHQWLDO IURP P9 6+( WR RQO\ P 9 6+( ,I WKH FRSSHU DGGLWLRQV ZHUH GHFUHDVLQJ WKH FRUURVLRQ UDWHV E\ GHFUHDVLQJ WKH UDWH RI PHWDO GLVVROXWLRQ DQ LQFUHDVH UDWKHU WKDQ D GHFUHDVH LQ ILQDO

PAGE 44

FRUURVLRQ SRWHQWLDO ZRXOG EH H[SHFWHG 6LQFH WKH FRSSHU DGGLWLRQV OHDG WR D VLPXOWDQHRXV GHFUHDVH LQ ERWK FRUURVLRQ SRWHQWLDO DQG FRUURVLRQ FXUUHQW LW ZDV WKRXJKW WKDW WKH FRSSHU ZDV DFWLQJ WR LQKLELW WKH UDWH RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ )URP WKH UHVXOWV RI 6WUDWPDQQ DQG 6WUHFNHOfV VWXG\ LW LV REYLRXV WKDW DQ LQKLELWLRQ RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ VKRXOG OHDG WR D GHFUHDVH LQ WKH FRUURVLRQ FXUUHQW H[KLELWHG GXULQJ WKH WKLUG VWDJH RI ZHWWLQJ DQG GU\LQJ 0DQ\ VWXGLHV KDYH VKRZQ WKDW WKH VLWH RI WKH R[\JHQ UHGXFWLRQ UHDFWLRQ RQ D UXVWFRYHUHG PHWDO VXUIDFH LV QRW DW WKH UXVWPHWDO LQWHUIDFH EXW DW WKH R[LGHHOHFWURO\WH LQWHUIDFH ZLWKLQ HOHFWURO\WHILOOHG SRUHV LQ WKH UXVW OD\HU ,Q RUGHU IRU R[\JHQ UHGXFWLRQ WR RFFXU RQ WKH FRUURVLRQ SURGXFW VXUIDFHV WKHUH PXVW EH DQ HOHFWULFDOO\ FRQWLQXRXV SDWK WR WKH PHWDO VXUIDFH ,Q RUGHU WR DFKLHYH WKLV SDWK WKH FRUURVLRQ SURGXFWV PXVW EH DW OHDVW SDUWLDOO\ FRQGXFWLYH $W ILUVW JODQFH WKH SUHVHQFH RI DQ HOHFWULFDOO\ FRQGXFWLYH UXVW OD\HU VHHPV XQOLNHO\ $OWKRXJK PDJQHWLWH LV VRPHZKDW FRQGXFWLYH LW LV QRW DOZD\V SUHVHQW LQ HYHU\ UXVW OD\HU 7KH RWKHU PDLQ FRQVWLWXHQWV RI UXVW JRHWKLWH DQG OHSLGRFURFLWH DUH QRW FRQVLGHUHG WR EH YHU\ FRQGXFWLYH 'XULQJ UHGXFWLRQ LQ VWDJH RQH KRZHYHU OHSLGRFURFLWH LV SDUWLDOO\ UHGXFHG WXUQLQJ LW LQWR DQ QW\SH VHPLFRQGXFWRU DQG JUHDWO\ LQFUHDVLQJ LWV FRQGXFWLYLW\ 5HGXFWLRQ RI &RUURVLRQ 3URGXFWV 6LQFH WKH SDUWLDO UHGXFWLRQ RI FRUURVLRQ SURGXFWV GXULQJ VWDJH RQH SURYLGHV WKH FRQGXFWLYH SDWK IRU WKH KLJK UDWH RI R[\JHQ UHGXFWLRQ GXULQJ VWDJH WKUHH WKH UHGXFWLRQ RI DWPRVSKHULF FRUURVLRQ SURGXFWV KDV EHHQ WKH VXEMHFW RI VHYHUDO VWXGLHV :RUN E\ 6X]XNL 0DVXNR DQG +LVDPDWVX XVLQJ DQ DOOUXVW HOHFWURGH IURP H[SRVHG ZHDWKHULQJ VWHHO VKRZHG WKDW XQGHU JDOYDQRVWDWLF UHGXFWLRQ WKH \)H22+ SKDVH LQ WKH UXVW ZDV UHGXFHG WR

PAGE 45

PDJQHWLWH ZKLOH WKH D)H22+ SKDVH UHPDLQHG LQWDFW 7KLV SKDVH FKDQJH ZDV DVFULEHG WR D VROLG VWDWH UHGXFWLRQ UHDFWLRQ VLQFH FRORULPHWULF DQDO\VLV GLG QRW GHWHFW DQ\ )H RU )Hr LQ VROXWLRQ 'HWHFWLRQ RI SKDVH FKDQJHV LQ WKLV VWXG\ ZDV GRQH XVLQJ ;5' ZKLFK UHTXLUHG WKDW WKH UHGXFWLRQ EH KDOWHG DQG WKH VDPSOH UHPRYHG IURP VROXWLRQ 2WKHU LQYHVWLJDWRUV KDYH XVHG D YDULHW\ RI LQVLWX WHFKQLTXHV WR VWXG\ WKH SKDVH FKDQJHV ZKLFK RFFXU LQ DWPRVSKHULF UXVW OD\HUV GXULQJ UHGXFWLRQ 6WUDWPDQQ %RKQHQNDPS DQG (QJHOO XVHG DQ LQVLWX PDJQHWLF WHFKQLTXH WR PRQLWRU WKH TXDQWLW\ RI PDJQHWLWH SUHVHQW GXULQJ SRWHQWLRVWDWLF UHGXFWLRQ RI DQ DWPRVSKHULFDOO\ f f f IRUPHG UXVW ILOP 0DJQHWLWH IRUPDWLRQ ZDV PHDVXUHG DV D IXQFWLRQ RI S+ )H FRQFHQWUDWLRQ DQG UHGXFWLRQ SRWHQWLDO 7KHLU UHVXOWV VKRZHG WKDW PDJQHWLWH IRUPDWLRQ EHJDQ RQO\ DW SRWHQWLDOV EHORZ P9 6+( DQG ZDV IDYRUHG E\ KLJKHU VROXWLRQ S+fV DQG SUHVHQFH RI )Hr LQ VROXWLRQ $V LQ WKH ;5' VWXG\ E\ 6X]XNL 0DVXNR DQG +LVDPDWVX PDJQHWLWH ZDV IRXQG WR KDYH IRUPHG IURP \)H22+ ZLWK QR FKDQJHV LQ WKH D)H22+ EHLQJ QRWHG 5HGXFWLRQ ZDV WKRXJKW WR RFFXU E\ WZR GLIIHUHQW SDWKZD\V )LUVW LQ FRQGLWLRQV RI QR VROXWLRQ )H DQG ORZHU S+ D SDUWLDOO\ UHGXFHG LQWHUPHGLDWH LV WKRXJKW WR IRUP RQ WKH VXUIDFH RI WKH \)H22+ DFFRUGLQJ WR WKH UHDFWLRQ EHORZ \)H22+ + H ^)Hr2+r2+` f 6LQFH WKLV LQWHUPHGLDWH LV SDUWLDOO\ UHGXFHG LW ZRXOG EH YHU\ FRQGXFWLYH DQG FRXOG VHUYH DV D FRQGXFWLYH SDWKZD\ IRU R[\JHQ UHGXFWLRQ WR RFFXU LQ WKH UXVW OD\HU GXULQJ VWDJH WKUHH RI ZHWWLQJ DQG GU\LQJ 7KH VHFRQG UHGXFWLRQ SDWKZD\ LQYROYHV GLUHFW FRQYHUVLRQ RI

PAGE 46

\)H22+ WR PDJQHWLWH E\ VROLG VWDWH WUDQVIRUPDWLRQ 7KLV LV WKRXJKW WR RFFXU LQ WKH SUHVHQFH RI )H r DFFRUGLQJ WR WKH UHDFWLRQ EHORZ \)H22+ )H )H + f 7KLV GLUHFW FRQYHUVLRQ E\ VROLG VWDWH WUDQVIRUPDWLRQ LV WKRXJKW WR EH TXLWH OLNHO\ GXH WR WKH VLPLODULWLHV RI WKHLU FU\VWDO VWUXFWXUHV \)H22+ KDYLQJ D FFS R[\JHQ ODWWLFH ZLWK )H r LQ RFWDKHGUDO VLWHV DQG PDJQHWLWH KDYLQJ D FFS ODWWLFH ZLWK )Ha DQG )H LQ RFWDKHGUDO DQG WHWUDKHGUDO VLWHV 7UDQVIRUPDWLRQ RI \)H22+ WR PDJQHWLWH ZRXOG VLPSO\ LQYROYH PRYHPHQW RI )H r LQWR WKH ODWWLFH DQG PRYHPHQW RI )I RXW RI LW +LJK PRELOLWLHV RI ERWK VSHFLHV LQ WKH \)H22+ KDYH EHHQ SUHYLRXVO\ GRFXPHQWHG $QRWKHU LQVLWX VWXG\ E\ 6WUDWPDQQ DQG +RIIPDQ LQYROYHG WKH XVH RI LQVLWX 0RVVEDXHU VSHFWURVFRS\ WR EHWWHU FKDUDFWHUL]H WKH UHGXFWLRQ LQWHUPHGLDWH LGHQWLILHG LQ WKH VWXG\ GHVFULEHG DERYH %DVHG RQ 0RVVEDXHU VSHFWUD WDNHQ DW ERWK DQG WKH UHGXFWLRQ SURGXFW ZDV WKRXJKW WR EH VLPLODU LQ VWUXFWXUH WR )H2+f EXW VWUDLQHG )URP WKLV LQIRUPDWLRQ LW ZDV FRQFOXGHG WKDW WKH UHGXFWLRQ LQWHUPHGLDWH JUHZ RQ WKH VXUIDFH RI WKH \)H22+ DQG WKH REVHUYHG VWUDLQ ZDV GXH ODWWLFH PLVPDWFK 'XQQZDOG DQG 2WWR XVHG LQVLWX 5DPDQ VSHFWURVFRS\ WR VWXG\ WKH HIIHFWV RI SRWHQWLRVWDWLF UHGXFWLRQ DQG UHR[LGDWLRQ RQ WKH SKDVH IRUPV SUHVHQW LQ DWPRVSKHULFDOO\ IRUPHG UXVWV 7KH SKDVHV SUHVHQW LQ WKH UXVW OD\HU FRQVLVWHG RI \)H22+ D)H22+ DQG DQ DPRUSKRXV FRQVWLWXHQW 5HGXFWLRQ DW P9 6&( UHVXOWHG LQ GLVDSSHDUDQFH RI WKH DPRUSKRXV FRQVWLWXHQW 5HGXFWLRQ EHORZ P9 UHVXOWHG LQ ORVV RI WKH \)H22+

PAGE 47

DQG DSSHDUDQFH RI D PDJQHWLWH SHDN 5HGXFWLRQ EHORZ P9 UHVXOWHG LQ UHGXFWLRQ RI WKH D)H22+ WR PDJQHWLWH 6DPSOHV ZHUH UHR[LGL]HG E\ H[SRVXUH WR DLU 7KH DLU H[SRVXUH GLG QRW UHVXOW LQ DQ\ UHR[LGDWLRQ RI WKH PDJQHWLWH 7KH ZRUN RI WKLV VWXG\ LV FRQVLVWHQW ZLWK SUHYLRXV VWXGLHV LQYROYLQJ UHGXFWLRQ RI \)H22+ LQ DWPRVSKHULF UXVW OD\HUV

PAGE 48

&+$37(5 (;3(5,0(17$/ 352&('85(6 6DPSOH )DEULFDWLRQ 6DPSOHV ZHUH IDEULFDWHG IURP SXUH LURQ SXUH FKURPLXP DQG SXUH FRSSHU IURP YDULRXV VXSSOLHUV 3XULWLHV DQG VXSSOLHUV IRU HDFK HOHPHQW DUH OLVWHG L 7DEOH $O RI $SSHQGL[ $ 6DPSOHV ZHUH IDEULFDWHG XVLQJ HLWKHU DUFPHOWLQJ RU YDFXXPLQGXFWLRQ PHOWLQJ /DUJHU VDPSOHV !Jf ZHUH IDEULFDWHG E\ YDFXXPLQGXFWLRQ PHOWLQJ DQG DOO RWKHUV ZHUH IDEULFDWHG E\ DUFPHOWLQJ $UFPHOWLQJ SURFHGXUHV 6PDOO SLHFHV RI SXUH PDWHULDOV ZHUH ZHLJKHG RXW WR GHVLUHG FRPSRVLWLRQV WKHQ FOHDQHG XOWUDVRQLFDOO\ LQ HWKDQRO &OHDQ SLHFHV ZHUH WKHQ WUDQVIHUUHG WR WKH DUFPHOWHU DQG SODFHG RQ WKH ZDWHUFKLOOHG FRSSHU KHDUWK 0HOWLQJ ZDV SHUIRUPHG LQ DQ $U DWPRVSKHUH WR DYRLG R[LGDWLRQ RI SXUH PDWHULDOV 6DPSOHV WR EH XVHG LQ HOHFWURFKHPLFDO H[SHULPHQWV ZHUH VROGHUHG WR EUDVV IODWKHDG VFUHZV DQG PDFKLQHG WR D XQLIRUP FP GLDPHWHU 6DPSOHV ZHUH WKHQ PRXQWHG LQ HSR[\ DQG JURXQG VR WKDW RQO\ WKH IURQW IDFH ZDV H[SRVHG 6DPSOHV WR EH XVHG LQ ORQJWHUP H[SRVXUH HJFKURPLXPHQULFKPHQWfVWXGLHV ZHUH SUHSDUHG LQ D VLPLODU PDQQHU H[FHSW IRU WKH PDFKLQLQJ WR XQLIRUP GLDPHWHU ,QGXFWLRQPHOWLQJ SURFHGXUHV /DUJH F\OLQGULFDO VDPSOHV ZHUH IDEULFDWHG E\ YDFXXPLQGXFWLRQ PHOWLQJ 3XUH PDWHULDOV ZHUH PHOWHG LQ D F\OLQGULFDO DOXPLQD FUXFLEOH VXUURXQGHG E\ D JUDSKLWH

PAGE 49

VXVFHSWRU %HFDXVH RI WKH KLJK PHOWLQJ SRLQW RI FKURPLXP LW ZDV QHFHVVDU\ WR DGG FKURPLXP LQ WKH IRUP RI )H&U DQG )H&U PDVWHU DOOR\ EXWWRQV 7KH PDVWHU DOOR\ EXWWRQV ZHUH IDEULFDWHG E\ DUFPHOWLQJ 6DPSOHV ZHUH PHOWHG XQGHU YDFXXP WKHQ VROLGLILHG XQGHU $U ,QGXFWLRQPHOWHG VDPSOHV WR EH XVHG LQ R[\JHQXSWDNH H[SHULPHQWV ZHUH PDFKLQHG LQWR KROORZ F\OLQGHUV 6FKHPDWLFV RI DOO VDPSOHV DUH JLYHQ LQ )LJXUH $OO DOOR\HG VDPSOHV ZHUH FKHFNHG ZLWK :'6 RQ WKH HOHFWURQ PLFURSUREH WR HQVXUH FRPSRVLWLRQ DQG KRPRJHQHLW\ 5HVXOWV RI WKH (30$ FKHFNV FDQ EH IRXQG LQ 7DEOHV $ WKURXJK $ RI $SSHQGL[ $ $FFRUGLQJ WR WKH WHUQDU\ SKDVH GLDJUDP IRU LURQ FKURPLXP DQG FRSSHU WKH PLFURVWUXFWXUH RI DOO VDPSOHV XVHG VKRXOG FRQVLVW RI VLQJOHSKDVH DIHUULWH ZLWK FKURPLXP DQG FRSSHU LQ VROLG VROXWLRQ 0LFURVWUXFWXUHV RI DOO VDPSOHV ZHUH FRQILUPHG E\ RSWLFDO PLFURVFRS\ 5HSUHVHQWDWLYH PLFURVWUXFWXUHV RI DUFPHOWHG DQG YDFXXPLQGXFWLRQ PHOWHG VDPSOHV FDQ EH IRXQG )LJXUHV $O WKURXJK $ LQ $SSHQGL[ 3RWHQWLRGYQDPLF 3RODUL]DWLRQ ([SHULPHQWV ,Q RUGHU WR EHWWHU XQGHUVWDQG KRZ FKURPLXP DIIHFWV PHWDO GLVVROXWLRQ DQRGLF SRWHQWLRG\QDPLF VFDQV ZHUH SHUIRUPHG RQ SXUH LURQ DQG D YDULHW\ RI LURQFKURPLXP ELQDU\ DOOR\V 3RODUL]DWLRQV ZHUH SHUIRUPHG LQ GHDUHDWHG 0 1D6 'HDHUDWLRQ ZDV SHUIRUPHG E\ SXUJLQJ ZLWK QLWURJHQ 6DPSOH SUHSDUDWLRQ UHTXLUHG JULQGLQJ ZLWK 6L& SDSHU WR D JULW ILQLVK ULQVLQJ ZLWK GHLRQL]HG ZDWHU ULQVLQJ ZLWK HWKDQRO WKHQ GU\LQJ LQ ZDUP DLU 6DPSOHV ZHUH LQVHUWHG LQWR VROXWLRQ DW RSHQFLUFXLW SRWHQWLDO DQG DOORZHG WR VLW DW RSHQFLUFXLW IRU RQH PLQXWH WR DOORZ WKH RSHQFLUFXLW SRWHQWLDO WR VWDELOL]H 7KH VFDQ UDWH

PAGE 50

6PDOO (OHFWURFKHPLVWU\ 6DPSOH EUDVV VHUH} 2[\JHQ 8S D N H 6DPS 1HXWURQ $FWLYWLRQ $QDO\VLV 6DPSOH )LJXUH 6FKHPDWLFV RI )DEULFDWHG 6DPSOHV

PAGE 51

XVHG ZDV P9V DQG VFDQV ZHQW WR P9 SRVLWLYH RI RSHQFLUFXLW 7KH SODWLQXP FRXQWHU HOHFWURGH ZDV VHSDUDWHG IURP WKH ZRUNLQJ HOHFWURGH E\ D JODVV IULW 7KH VDWXUDWHG FDORPHO UHIHUHQFH HOHFWURGH ZDV XVHG ZLWK D OXJJLQ FDSLOODU\ SRVLWLRQHG MXVW EHORZ WKH ZRUNLQJ HOHFWURGH VXUIDFH 3RODUL]DWLRQ ZDV SHUIRUPHG XVLQJ D 3ULQFHWRQ $SSOLHG 5HDVHUFK PRGHO SRWHQWLRVWDW LQWHUIDFHG WR D FRPSXWHU /RQJWHUP &KURPLXP (QULFKPHQW ([SHULPHQWV ,Q WKLV VHULHV RI H[SHULPHQWV YDULRXV LURQFKURPLXP ELQDU\ DOOR\V ZHUH VXEMHFWHG WR ZHWGU\ F\FOLQJ E\ DOWHUQDWH LPPHUVLRQ DQG WKHQ DQDO\]HG WR GHWHUPLQH WKH GLVWULEXWLRQ RI FKURPLXP LQ WKH FRUURVLRQ SURGXFWV DQG DW WKH UXVWPHWDO LQWHUIDFH &KURPLXP GLVWULEXWLRQ LQ WKH RXWHU SDUWV RI WKH UXVW OD\HU ZDV DQDO\]HG ZLWK QHXWURQ DFWLYDWLRQ DQDO\VLV &KURPLXP GLVWULEXWLRQ RI WKH LQQHU OD\HUV DQG WKH UXVWPHWDO LQWHUIDFH ZDV GHWHUPLQHG E\ FURVVVHFWLRQLQJ DQG DQDO\VLV ZLWK HOHFWURQ PLFURSUREH ZDYHOHQJWK GLVSHUVLYH VSHFWURVFRS\ $OWHUQDWH LPPHUVLRQ H[SRVXUH ZDV SHUIRUPHG XVLQJ D WHVWLQJ DSSDUDWXV D VFKHPDWLF RI ZKLFK LV VKRZQ LQ )LJXUH 7KH WHVWHU FRXOG DFFRPPRGDWH VL[ VDPSOHV SRVLWLRQHG HYHQO\ DURXQG WKH ULP RI WKH ZKHHO 7KH WHVWHU FRXOG EH VHW WR URWDWH LQWHUPLWWHQWO\ JLYLQJ HDFK RI WKH VL[ VDPSOHV D VHW DPRXQW RI LPPHUVLRQ WLPH 6LQFH RQO\ WKH VDPSOH LQ WKH ORZHVW SRVLWLRQ FRXOG EH LPPHUVHG WKH UDWLR RI LPPHUVHG WLPH WR QRQ LPPHUVHG WLPH ZDV DOZD\V 7KH UDWLR RI ZHW WLPH WR GU\ WLPH KRZHYHU YDULHG ZLWK WKH UDWH DW ZKLFK VDPSOHV GULHG DIWHU KDYLQJ EHHQ LPPHUVHG ,Q JHQHUDO ORQJHU F\FOH WLPHV WHQGHG WR IDYRU D KLJKHU GU\WLPH WR ZHWWLPH UDWLR

PAGE 52

)LJXUH $OWHUQDWH,PPHUVLRQ $FFHOHUDWHG ([SRVXUH 7HVWHU

PAGE 53

1HXWURQ $FWLYDWLRQ $QDO\VLV 1$$f VDPSOHV FRQVLVWHG RI ODUJH DUFPHOWHG EXWWRQVPRXQWHG LQ HSR[\ DQG JURXQG WR H[SRVH RQO\ RQH VLGH 7KH H[SRVHG DUHD RI HDFK VDPSOHZDV DSSUR[LPDWHO\ FP DQG VL[ VXFK VDPSOHV ZHUH H[SRVHG DW RQH WLPH $W WKH HQG RI DQ H[SRVXUH SHULRG H[SRVHG 1$$ VDPSOHV ZHUH UHPRYHG IURP WKH ZKHHO DQG FRUURVLRQ SURGXFWV ZHUH UHPRYHG IRU DQDO\VLV &RUURVLRQ SURGXFWV ZHUH UHPRYHG LQ OD\HUV XVLQJ VTXDUHV RI FOHDU VWUDSSLQJ WDSH 6LQFH WKH WDSH GLG QRW FRQWDLQ DQ\ HOHPHQWV ZKLFK DFWLYDWHG XSRQ LUUDGLDWLRQ LW GLG QRW LQWHUIHUH ZLWK WKH FKURPLXP DQDO\VLV 6TXDUHV RI WDSH ZHUH ODLG RYHU HDFK VDPSOH UXEEHG ZLWK D WHIORQ VFUDSHU DQG SHHOHG RII WR UHPRYH D OD\HU RI FRUURVLRQ SURGXFWV 7KLV SURFHGXUH ZDV UHSHDWHG XQWLO QR PRUH FRUURVLRQ SURGXFWV FRXOG EH UHPRYHG QRUPDOO\ IRXU WLPHVf ,Q WKLV PDQQHU LW ZDV SRVVLEOH WR REWDLQ D URXJK GHSWK SURILOH RI FKURPLXP FRQFHQWUDWLRQ ,Q RUGHU WR REWDLQ DQ DGHTXDWH VLJQDOWRQRLVH UDWLR ZLWK 1$$ LW ZDV QHFHVVDU\ WR KDYH DW OHDVW PJ RI HDFK VDPSOH ,Q RUGHU WR UHDFK WKLV ZHLJKW LW ZDV QHFHVVDU\ WR FRPELQH VLPLODU OD\HUV RI DOO VL[ H[SRVHG VDPSOHV 0LFURSUREH VDPSOHV FRQVLVWHG RI VPDOO DUFPHOWHG VDPSOHV PRXQWHG LQ HSR[\ DQG JURXQG WR H[SRVH RQO\ RQH VLGH 7KH H[SRVHG DUHD RI HDFK VDPSOH ZDV DSSUR[LPDWHO\ r FP $W WKH HQG RI DQ H[SRVXUH SHULRG VDPSOHV ZHUH UHPRYHG IURP WKH ZKHHO DQG WKH HQWLUH VDPSOH YDFXXPPRXQWHG LQ HSR[\ 6DPSOHV ZHUH WKHQ FURVVVHFWLRQHG XVLQJ D GLDPRQG ZDIHULQJ EODGH DQG SROLVKHG WR D XP ILQLVK $ VFKHPDWLF RI D FURVVVHFWLRQHG VDPSOH LV VKRZQ LQ )LJXUH ,Q RUGHU WR DYRLG FKDUJLQJ RI WKH FRUURVLRQ SURGXFW OD\HU GXULQJ PLFURSUREH DQDO\VLV WKH SROLVKHG VXUIDFH ZDV FDUERQFRDWHG

PAGE 54

PHWG )LJXUH &URVV6HFWLRQHG 6DPSOH )RU :'6 $QDO\VLV

PAGE 55

2[\JHQ 8SWDNH ([SHULPHQWV ,Q RUGHU WR EHWWHU XQGHUVWDQG WKH HIIHFW RI FKURPLXP RQ FDWKRGLF UHDFWLRQV GXULQJ ZHWGU\ F\FOLQJ H[SHULPHQWV ZHUH GHVLJQHG WR PRQLWRU WKH UDWH RI R[\JHQ UHGXFWLRQ GXULQJ ZHWWLQJ DQG GU\LQJ 7KHVH H[SHULPHQWV HVVHQWLDOO\ LQYROYHG SODFLQJ WKH VDPSOH WR EH VWXGLHG LQ DQ DLUWLJKW FKDPEHU ZLWK DQ R[\JHQ DWPRVSKHUH DOORZLQJ LW WR ZHW DQG GU\ DQG PHDVXULQJ WKH UHVXOWDQW SUHVVXUH GURS 7KH FKDQJH LQ R[\JHQ SDUWLDO SUHVVXUH FDQ EH UHODWHG WR DQ R[\JHQ UHGXFWLRQ FXUUHQW WKURXJK WKH XVH RI )DUDGD\fV /DZ $ VFKHPDWLF RI WKH FHOO XVHG IRU WKH R[\JHQ XSWDNH H[SHULPHQWV LV VKRZQ LQ )LJXUH 7KH VDPSOHV ZHUH KROORZ DQG VFUHZHG RQWR D SODVWLF FRXSOHU ZKLFK ZDV DWWDFKHG WR WKH VDPSOH KROGHU &KLOOHG IOXLG FRXOG EH FLUFXODWHG WKURXJK WKH KROORZ VDPSOH YLD WKH VDPSOH KROGHU DOORZLQJ WKH VDPSOH VXUIDFH WHPSHUDWXUH WR EH YDULHG GXULQJ WKH H[SHULPHQW 7KH FHOO FRQWDLQHG D WHPSHUDWXUH FRQWURO EDWK ZKLFK ZDV ILOOHG ZLWK D VDWXUDWHG VROXWLRQ RI &D&O :KHQ WKH &D&, VROXWLRQ ZDV DW URRP WHPSHUDWXUH LQ WKH VHDOHG FHOO LW HVWDEOLVKHG D UHODWLYH KXPLGLW\ RI b +LJKHU UHODWLYH KXPLGLWLHV FRXOG EH HVWDEOLVKHG E\ KHDWLQJ WKH EDWK 6DPSOH FRQWDPLQDWLRQ E\ &D&O ZDV DYRLGHG E\ SODFLQJ D VSODVK JXDUG EHWZHHQ WKH EDWK DQG WKH VDPSOH 7KH FHOO ZDV HTXLSSHG ZLWK D KXPLGLW\WHPSHUDWXUH VHQVRU ZKLFK ZDV XVHG WR PRQLWRU UHODWLYH KXPLGLW\ WKURXJKRXW WKH FRXUVH RI HDFK H[SHULPHQW ,W ZDV QHFHVVDU\ WR PRQLWRU UHODWLYH KXPLGLW\ EHFDXVH GXULQJ WKH FRXUVH RI D ZHWGU\ F\FOH ZDWHU YDSRU SDUWLDO SUHVVXUH FKDQJHV ZHUH VLJQLILFDQW DQG FRQVWLWXWHG D VLJQLILFDQW IUDFWLRQ RI WKH WRWDO PHDVXUHG SUHVVXUH FKDQJH 0HDVXUHG YDULDWLRQV LQ ZDWHU YDSRU SDUWLDO SUHVVXUH GXULQJ ZHWGU\ F\FOLQJ DPRXQWHG WR DV PXFK DV WRUU ZKLOH WRWDO SUHVVXUH FKDQJHV PHDVXUHG EHWZHHQ WRUU DQG WRUU &RQWLQXRXV LQVLWX PRQLWRULQJ RI UHODWLYH KXPLGLW\ DQG WHPSHUDWXUH DOORZHG WKH ZDWHU YDSRU SDUWLDO SUHVVXUH WR EH

PAGE 56

UDQ}GXFU )LJXUH 6FKHPDWLF RI 2[\JHQ8SWDNH 0HDVXUHPHQW &HOO

PAGE 57

VXEWUDFWHG IURP WKH WRWDO SUHVVXUH EHIRUH UHGXFWLRQ FXUUHQWV ZHUH FDOFXODWHG 7RWDO SUHVVXUH ZDV PRQLWRUHG WKURXJK XVH RI DQ DEVROXWH SUHVVXUH WUDQVGXFHU $W WKH VWDUW RI HDFK H[SHULPHQW GU\ VDPSOHV ZHUH DWWDFKHG WR WKH VDPSOH KROGHU DQG LQVHUWHG LQWR WKH FHOO 7R EHJLQ ZHWWLQJ WKH VDPSOH VXUIDFH WHPSHUDWXUH ZDV ORZHUHG b E\ FLUFXODWLQJ FKLOOHG DQWLIUHH]H IOXLG WKURXJK WKH KROORZ VDPSOH LQWHULRU 7KH UHODWLYH KXPLGLW\ RI WKH FKDPEHU ZDV VLPXOWDQHRXVO\ UDLVHG E\ KHDWLQJ WKH VROXWLRQ RI VDWXUDWHG &D&O 7R HQVXUH HYHQ ZHWWLQJ RYHU WKH HQWLUH VDPSOH VXUIDFH WZR YDOYHV ZHUH RSHQHG DQG KXPLG R[\JHQ ZDV EORZQ WKURXJK WKH FHOO DW D UDWH RI 6WDQGDUG &XELF )HHW 3HU +RXU 6&)+f $IWHU RQH KRXU RI ZHWWLQJ ZLWK IORZLQJ KXPLG R[\JHQ WKH RXWOHW YDOYH ZDV FORVHG DQG FHOO SUHVVXUH ZDV DGMXVWHG WR WRUU $W WKLV SRLQW PRQLWRULQJ RI FHOO SUHVVXUH IRU R[\JHQ UHGXFWLRQ UDWH GHWHUPLQDWLRQ EHJDQ )RU WKH ILUVW KRXU RI PRQLWRULQJ WKH VDPSOH ZDV IRUFHG WR UHPDLQ ZHW E\ FRQWLQXLQJ WKH FLUFXODWLRQ RI FKLOOHG IOXLG WKURXJK WKH VDPSOH LQWHULRU DQG KHDWLQJ LQ WKH &D&O EDWK 2QH KRXU LQWR WKH PRQLWRUHG SRUWLRQ RI WKH H[SHULPHQW WKH VDPSOH FKLOOLQJ DQG EDWK KHDWLQJ ZHUH VKXW RII DQG WKH VDPSOH ZDV DOORZHG WR GU\ 7KH TXDQWLW\ RI UHGXFHG R[\JHQ DW DQ\ SRLQW LQ WKH H[SHULPHQW LV JLYHQ E\ WKH IRUPXOD EHORZ $Qf 957f>3PHDXUHGW23+WRf 3PHDVXUHGU3I*2Wf@ f ZKHUH $Qf TXDQWLW\ RI R[\JHQ UHGXFHG DW WLPH W 9 FHOO YROXPH FP

PAGE 58

5 JDV FRQVWDQW 7 JDV SKDVH WHPSHUDWXUH DW WLPH W 3L PHDVXUHG WR PHDVXUHG SUHVVXUH DW VWDUW RI H[SHULPHQW 3+ WR LQLWLDO ZDWHU YDSRU SUHVVXUH 3PHDVXUHG W PHDVXUHG SUHVVXUH DW WLPH W 3PR W ZDWHU YDSRU SUHVVXUH DW WLPH W 7KH UDWH RI R[\JHQ UHGXFWLRQ LV JLYHQ E\ Lf )^G>$Qf$@GWf f ZKHUH Lf R[\JHQ UHGXFWLRQ FXUUHQW ) )DUDGD\fV FRQVWDQW $ VDPSOH DUHD 6LQFH LW ZDV QRW SRVVLEOH WR LQWURGXFH FRUURVLYH JDVHV GLUHFWO\ LQWR WKH R[\JHQ XSWDNH PHDVXUHPHQW FHOO DOO VDPSOHV UHFHLYHG D SUHFRUURVLRQ H[SRVXUH EHIRUH LQWURGXFWLRQ LQWR WKH PHDVXUHPHQW FHOO /RQJWHUP H[SRVXUH VDPSOHV UHFHLYHG WKH HTXLYDOHQW RI HLWKHU RQH RU WKUHH \HDUV RI F\FOLF ZHWWLQJ H[SRVXUH DVVXPLQJ RQH F\FOH SHU GD\f ZLWK WKH DOWHUQDWH LPPHUVLRQ WHVWHU ,QLWLDO H[SRVXUH VDPSOHV UHFHLYHG D WKUHHKRXU H[SRVXUH LQ D b 5+ 6 HQYLURQPHQW 6 FRQFHQWUDWLRQV ZHUH b D OHYHO ZKLFK FRUUHVSRQGV WR WKH 6 FRQFHQWUDWLRQ LQ D KHDYLO\ SROOXWHG LQGXVWULDO DUHD

PAGE 59

;UDY 'LIIUDFWLRQ $QG 6(0 $QDO\VLV 2I &RUURVLRQ 3URGXFWV $IWHU FRPSOHWLRQ RI R[\JHQ XSWDNH H[SHULPHQWV FRUURVLRQ SURGXFWV ZHUH UHPRYHG IURP WKH VDPSOH VXUIDFH ZLWK D SRLQWHG VFDOSHO DQG H[DPLQHG XVLQJ [UD\ GLIIUDFWLRQ DQG ZKHUH DSSURSULDWH ZLWK 6(0 6(0 H[DPLQDWLRQ ZDV RQO\ SHUIRUPHG IRU WKH ORQJHU GXUDWLRQ H[SRVXUH VDPSOHV VLQFH WKH FRUURVLRQ SURGXFWV IURP WKHVH VDPSOHV WHQGHG WR EH WKLFNHU DQG FRXOG EH UHPRYHG LQWDFW ZKLOH WKRVH RI WKH LQLWLDO H[SRVXUH VDPSOHV FRXOG QRW $OO 6(0 VDPSOHV ZHUH FRDWHG ZLWK $X3G WR DYRLG FKDUJLQJ GXULQJ H[DPLQDWLRQ 6(0 H[DPLQDWLRQ ZDV SHUIRUPHG ZLWK D -(2/ ;5' VDPSOHV ZHUH JURXQG WR D S SDUWLFOH VL]H DQG DWWDWFKHG WR JODVVVOLGHV ZLWK FROORGLDQ DP\O DFHWDWH 'LIIUDFWLRQ VFDQV ZHUH UXQ DW D UDWH RI 22OGHJUHH SHU VHFRQG ZLWK D FROOHFWLRQ LQWHUYDO RI GHJUHHV ; UD\ GLIIUDFWLRQ ZDV SHUIRUPHG RQ D 3KLOOLSV SRZGHU GLIIUDFWRPHWHU XVLQJ &X .D UDGLDWLRQ 4XDQWLWDWLYH DQDO\VLV ZDV SHUIRUPHG XVLQJ PDWUL[IOXVKLQJ D YDULDWLRQ RI WKH PHWKRG RI LQWHUQDO VWDQGDUGV 7KH FRQILGHQFH LQWHUYDO ZDV b

PAGE 60

&+$37(5 (;3(5,0(17$/ 5(68/76 5HVXOWV DUH GLYLGHG LQWR WKUHH VHFWLRQV EDVHG RQ H[SRVXUH WLPH 7KH ILUVW VHFWLRQ GHDOV ZLWK VDPSOHV H[SRVHG IRU RQO\ WKH ILUVW IRXU ZHWGU\ F\FOHV WKH VHFRQG ZLWK VDPSOHV H[SRVHG IRU ZHWGU\ F\FOHV RU RQH \HDUfV HTXLYDOHQW H[SRVXUH DQG WKH WKLUG ZLWK VDPSOHV H[SRVHG IRU ZHWGU\ F\FOHV RU WKUHH \HDUfV HTXLYDOHQW H[SRVXUH 5HVXOWV RI SRWHQWLRG\QDPLF DQG 1$$ H[SHULPHQWV DUH OLVWHG VHSDUDWHO\ ,QLWLDO ([SRVXUH ([SHULPHQWV ,QLWLDO H[SRVXUH VDPSOHV ZHUH ILUVW VXEMHFWHG WR D WKUHH KRXU SUHFRUURVLRQ H[SRVXUH LQ D KXPLG VXOIXU GLR[LGHR[\JHQ HQYLURQPHQW $IWHU WKH SUHFRUURVLRQ WUHDWPHQW VDPSOHV ZHUH WUDQVIHUUHG WR WKH R[\JHQ XSWDNH PHDVXUHPHQW FKDPEHU ZKHUH WKH\ ZHUH VXEMHFWHG WR IRXU PHDVXUHG ZHWGU\ F\FOHV 7KH ILUVW VDPSOHV WR EH WHVWHG ZHUH SXUH )H )H&U )H&X DQG )H&X&U 7KHVH VDPSOH FRPSRVLWLRQV ZHUH XVHG ILUVW VLQFH WKH\ DUH PRVW UHSUHVHQWDWLYH RI FKURPLXP DQG FRSSHU FRQFHQWUDWLRQV IRXQG LQ PDQ\ FRPPHUFLDO ZHDWKHULQJ VWHHOV $OWKRXJK WKH SXUSRVH RI WKH VWXG\ LV WR GHWHUPLQH WKH UROH RI FKURPLXP LQ ZHDWKHULQJ VWHHO SHUIRUPDQFH WKH FRSSHUEHDULQJ DOOR\V KDYH EHHQ PXFK PRUH WKRURXJKO\ VWXGLHG DQG FDQ WKHUHIRUH SURYLGH D JRRG UHIHUHQFH IRU FRPSDULVRQ 7KH R[\JHQ XSDNH YV WLPH FXUYHV IRU SXUH )H DQG )H&U )H&X DQG )H &X&U VDPSOHV DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ $FFRUGLQJ

PAGE 61

3XUH )H 2[\JHQ 8SWDNH PROHV02 f R[\JHQ XSWDNH YDULDQFH HQYHORSH /Q /Q )LJXUH 3XUH )H 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH

PAGE 62

)H f§&U 2[\JHQ 8SWDNH PROHVr f R[\JHQ XSWDNH YDULDQFH HQYHORSH WLPH VHFRQGVf )LJXUH )H &U 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH /Q 2

PAGE 63

)H&X 2[\JHQ 8SWDNH PROHVr f WLPH VHFRQGVf )LJXUH )H &X 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH R[\JHQ XSWDNH YDULDQFH HQYHORSH

PAGE 64

)H f§ &X&U 2[\JHQ 8SWDNH PROHVr f WLPH VHFRQGVf R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U &X 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH

PAGE 65

WR WKH WKUHHVWDJH PRGHO RI ZHWWLQJ DQG GU\LQJ WKH R[\JHQXSWDNH YV WLPH FXUYHV VKRXOGFRQWDLQ IRXU GLVWLQFW UHJLRQV FRUUHVSRQGLQJ WR VWDJH VWDJH ,, VWDJH ,,, DQG FRPSOHWH GU\LQJ $FFRUGLQJ WR WKLV PRGHO WKH UDWH RI R[\JHQ XSWDNH VKRXOG EH ORZ GXULQJ VWDJH VOLJKWO\ KLJKHU GXULQJ VWDJH ,, VLJQLILFDQWO\ KLJKHU GXULQJ VWDJH ,,, DQG DSSUR[LPDWHO\ ]HUR GXULQJ FRPSOHWH GU\LQJ 5HJLRQV FRUUHVSRQGLQJ WR VWDJHV ,, ,,, DQG FRPSOHWH GU\LQJ DUH VKRZQ RQ HDFK FXUYH $V FDQ EH VHHQ LQ )LJXUHV WKURXJK WKH VKDSH RI WKH R[\JHQ XSWDNH YV WLPH FXUYHV FRQIRUPV IDLUO\ ZHOO WR WKH VKDSH SUHGLFWHG E\ WKH WKUHHVWDJH PRGHO 7KHUH DUH WZR DUHDV LQ ZKLFK WKH VKDSH RI WKH WLPHGHSHQGHQW R[\JHQ XSWDNH FXUYHV GLIIHUV IURP WKDW SUHGLFWHG E\ WKH WKUHHVWDJH PRGHO )LUVW GXULQJ WKH ILUVW V RI HDFK H[SHULPHQW WKH UDWH RI R[\JHQ XSWDNH EHFRPHV QHJDWLYH LQGLFDWLQJ DQ RIIJDVVLQJ SURFHVV 7KHVH QHJDWLYH YDOXHV DUH DWWULEXWHG WR WKH LQDFFXUDFLHV RI WHPSHUDWXUH PHDVXUHPHQW GXULQJ WKLV SDUW RI WKH H[SHULPHQW 'XH WR VLPXOWDQHRXV KHDWLQJ RI WKH LQWHUQDO EDWK DQG FKLOOLQJ RI WKH VDPSOH WHPSHUDWXUH JUDGLHQWV ZHUH VHW XS LQ WKH FHOO ZKLFK FRXOG QRW EH FRPSOHWHO\ DFFRXQWHG IRU E\ WKH LQVLWX WHPSHUDWXUH VHQVRUV $IWHU WKH HQG RI WKH ILUVW KRXU RI VWDJQDQW ZHWWLQJ ERWK WKH VDPSOH DQG EDWK WHPSHUDWXUHV UHWXUQHG TXLFNO\ WR URRP WHPSHUDWXUH DQG PHDVXUHG WHPSHUDWXUHV FRUUHVSRQGHG WR DFWXDO JDVSKDVH WHPSHUDWXUHV 7KH VHFRQG DUHD RI GLVFUHSDQF\ LV LQ WKH UHODWLYH UDWHV RI R[\JHQ XSWDNH GXULQJ VWDJH DQG VWDJH ,, $FFRUGLQJ WR WKH WKUHHVWDJH PRGHO WKH WKLFNQHVV RI WKH HOHFWURO\WH OD\HU SUHVHQW GXULQJ VWDJH ,, LV VWLOO IDLUO\ WKLFN DQG WKHUHIRUH WKH UDWH RI R[\JHQ XSWDNH GXULQJ VWDJH ,, VKRXOG QRW EH VLJQLILFDQWO\ KLJKHU WKDQ WKDW RI VWDJH $V FDQ EH VHHQ LQ )LJXUHV WKURXJK WKH UDWH RI XSWDNH GXULQJ VWDJH ,, LV TXLWH D ELW KLJKHU WKDQ WKDW RI VWDJH 7KLV GHYLDWLRQ IURP WKH WKUHH VWDJH PRGHO LV DWWULEXWHG WR D

PAGE 66

GLIIHUHQFH LQ WKH PRUSKRORJ\ RI WKH HOHFWURO\WH OD\HUV LQ HDFK FDVH 7KH WKUHHVWDJH PRGHO DVVXPHV D VLQJOH FRQWLQXRXV OD\HU RI HOHFWURO\WH FRYHULQJ WKH HQWLUH VDPSOH VXUIDFH 6LQFH WKH VDPSOHV LQ WKLV VWXG\ ZHUH ZHW E\ FRQGHQVDWLRQ WKH HOHFWURO\WH ZDV SUHVHQW LQ WKH IRUP RI GURSOHWV ZLWK D GLVWULEXWLRQ RI VL]HV 'XULQJ WKH ZHWWLQJ SKDVH WKH PHDQ GURSOHW VL]H LQFUHDVHG EXW D GLVWULEXWLRQ RI VL]HV ZDV VWLOO SUHVHQW $V WKH VDPSOH ZDV DOORZHG WR GU\ WKH VPDOOHU GURSOHWV GULHG PRUH TXLFNO\ DQG WKXV UHDFKHG WKH FULWLFDO WKLFNQHVV IRU VHOIn VWLUULQJ RU VWDJH ,,, PXFK VRRQHU WKDQ WKH ODUJHU GURSOHWV ,I WKH VDPSOHV KDG EHHQ DOORZHG WR FRQWLQXH WR F\FOH DQG D FRQWLQXRXV OD\HU RI FRUURVLRQ SURGXFWV KDG EHHQ DOORZHG WR IRUP WKH FDSLOODU\ SURSHUWLHV RI WKH FRUURVLRQ SURGXFWV ZRXOG FRQWURO WKH PRUSKRORJ\ RI WKH FRQGHQVLQJ ZDWHU JLYLQJ D FXUYH VKDSH PXFK PRUH FRQVLVWHQW ZLWK WKH SUHGLFWLRQV RI WKH WKUHHVWDJH PRGHO DV ZLOO EH VHHQ IRU ORQJHU H[SRVXUH GXUDWLRQV &HUWDLQ DVSHFWV RI WKH WLPH GHSHQGHQW R[\JHQ XSWDNH FXUYHV FDQ EH UHODWHG GLUHFWO\ WR SURSHUWLHV RI WKH FRUURVLRQ SURGXFW OD\HU DQG RYHUDOO DWPRVSKHULF FRUURVLRQ UHVLVWDQFH 7KHVH DVSHFWV LQFOXGH WRWDO GU\LQJ WLPH PD[LPXP FXUUHQW DQG WRWDO SHUF\FOH R[\JHQ XSWDNH 7RWDO GU\LQJ WLPH LV GHILQHG DV WKH WLPH IURP WKH VWDUW RI WKH H[SHULPHQW WR WKH SRLQW DW ZKLFK FRPSOHWH GU\LQJ LV DFKLHYHG 7RWDO GU\LQJ WLPH JLYHV D PHDVXUH RI WKH DELOLW\ RI WKH FRUURVLRQ SURGXFW OD\HU WR UHWDLQ PRLVWXUH 7KH PRLVWXUH UHWHQWLRQ SURSHUWLHV RI D FRUURVLRQ SURGXFW OD\HU ZLOO GHSHQG RQ PDQ\ WKLQJV VXFK DV WKLFNQHVV WRWDO FRQWLQXRXV SRUH YROXPH DQG DYHUDJH SRUH GLDPHWHU 8QIRUWXQDWHO\ WKH WRWDO GU\LQJ WLPH FDQ RQO\ JLYH D PHDVXUH RI WKH FRPELQHG HIIHFWV 0D[LPXP FXUUHQW FDQ EH FDOFXODWHG IURP WKH PD[LPXP RU VWDJH ,,, VORSH XVLQJ )DUDGD\fV /DZ 'XULQJ VWDJH ,,, WKH GLIIXVLRQ OHQJWK IRU R[\JHQ WUDQVSRUW WKURXJK WKH HOHFWURO\WH LV FRQVWDQW VR WKH FXUUHQW LV

PAGE 67

OLPLWHG DOPRVW H[FOXVLYHO\ E\ WKH FRQGXFWLYLW\ RI WKH FRUURVLRQ SURGXFWV WKHPVHOYHV 7KH PD[LPXP FXUUHQW FDQ WKHUHIRUH EH XVHG DV D PHDVXUH RI FRUURVLRQ SURGXFW FRQGXFWLYLW\ 7RWDO SHUF\FOH R[\JHQ XSWDNH LV GHILQHG DV WKH WRWDO QXPEHU RI PROHV RI R[\JHQ UHGXFHG SHU ZHWGU\ F\FOH 6LQFH WKH WRWDO QXPEHU RI PROHV RI R[\JHQ UHGXFHG DQG PHWDO GLVVROYHG SHU F\FOH DUH HTXDO WKH WRWDO SHUF\FOH R[\JHQ XSWDNH JLYHV D GLUHFW PHDVXUH RI WKH FRUURVLRQ UHVLVWDQFH DW DQ\ JLYHQ SRLQW LQ WKH H[SRVXUH OLIHWLPH $ SORW RI WRWDO GU\LQJ WLPH YV QXPEHU RI F\FOHV LV VKRZQ IRU DOO FRPSRVLWLRQV LQ )LJXUH $V FDQ EH VHHQ LQ )LJXUH WKHUH LV QR UHDO WUHQG LQ WRWDO GU\LQJ WLPH ZLWK HLWKHU FRPSRVLWLRQ RU QXPEHU RI F\FOHV 7KLV ODFN RI WUHQG LV PRUH WKDQ OLNHO\ GXH WR WKH IDFW WKDW WKH FRUURVLRQ SURGXFWV ZKLFK IRUP LQ WKH ILUVW IRXU F\FOHV DUH ERWK WKLQ DQG VSDUVH DQG DUH WKHUHIRUH XQDEOH WR UHWDLQ PXFK PRLVWXUH 3ORWV RI PD[LPXP FXUUHQW YV QXPEHU RI F\FOHV DUH VKRZQ IRU DOO FRPSRVLWLRQV LQ )LJXUHV D DQG E $V FDQ EH VHHQ LQ WKHVH ILJXUHV WKH PD[LPXP FXUUHQW GRHV WHQG WR GHFUHDVH ZLWK LQFUHDVHG F\FOLQJ 7KLV LV FRQVLVWHQW ZLWK WKH FRQFOXVLRQ WKDW ZKLOH WKH FRUURVLRQ SURGXFWV DUH WRR WKLQ DQG VSDUVH WR FRQWDLQ D VLJQLILFDQW TXDQWLW\ RI PRLVWXUH WKH\ DUH WKLFN HQRXJK WR LPSHGH WKH GLIIXVLRQ RI R[\JHQ WR WKH UHDFWLRQ LQWHUIDFH )LJXUH VKRZV WKH YDULDWLRQ LQ PD[LPXP FXUUHQW IRU WKH IRXUWK ZHWGU\ F\FOH ZLWK DOOR\ FRPSRVLWLRQ $V FDQ EH VHHQ LQ )LJXUH WKH DGGLWLRQ RI ZR FKURPLXP DORQH GHFUHDVHV WKH PD[LPXP FXUUHQW RQO\ VOLJKWO\ ZKHUHDV WKH DGGLWLRQ RI ZR FRSSHU GHFUHDVHV WKH PD[LPXP FXUUHQW VLJQLILFDQWO\ 7KH PD[LPXP FXUUHQW IRU WKH WHUQDU\ DOOR\V ZKLOH QRW DV ORZ DV WKDW RI WKH )HZR &X LV VWLOO PXFK ORZHU WKDQ WKDW RI HLWKHU SXUH )H RU )H ZR &U )URP WKHVH UHVXOWV LW ZRXOG VHHP WKDW WKH FRSSHU DGGLWLRQ LV

PAGE 68

'U\LQJ 7LPH VHFRQGVf 7RWDO 'U\LQJ 7LPH YV 1XPEHU RI &\FOHV 2 SXUH )H f )H&U 9 )H&X )H&U&X 1XPEHU RI &\FOHV )LJXUH 7RWDO 'U\LQJ 7LPH YV 1XPEHU 2I &\FOHV 7KHUH LV QR UHDO WUHQG LQ WRWDO GU\LQJ WLPH ZLWK HLWKHU FRPSRVLWLRQ RU QXPEHU RI F\FOHV

PAGE 69

0D[LPXP &XUUHQW YV 1XPEHU RI &\FOHV 1XPEHU RI &\FOHV 2 SXUH )H f )H&U )LJXUH Df SXUH )H DQG )H &U 7KH PD[LPXP FXUUHQW GRHV WHQG WR GHFUHDVH ZLWK LQFUHDVHG F\FOLQJ

PAGE 70

0D[LPXP &XUUHQW YV 1XPEHU RI &\FOHV 1XPEHU RI &\FOHV 2 )H&X&U )H&X 2n fW )LJXUH Ef )H &X DQG )H &X &U 7KH PD[LPXP FXUUHQW GRHV WHQG WR GHFUHDVH ZLWK LQFUHDVHG F\FOLQJ

PAGE 71

0D[LPXP &XUUHQW YV &RPSRVLWLRQ 0D[LPXP &XUUHQW P$FPf 2n /Q )LJXUH 0D[LPXP &XUUHQW YV &RPSRVLWLRQ 7KH DGGLWLRQ RI ZR FKURPLXP DORQH GHFUHDVHV WKH PD[LPXP FXUUHQW RQO\ VOLJKWO\ ZKHUHDV WKH DGGLWLRQ RI ZR FRSSHU GHFUHDVHV WKH PD[LPXP FXUUHQW VLJQLILFDQWO\

PAGE 72

HIIHFWLQJ D VLJQLILFDQW GHFUHDVH LQ WKH FRQGXFWLYLW\ RI WKH FRUURVLRQ SURGXFWV ZKLFK IRUP LQ WKH ILUVW IRXU F\FOHV 7KLV GHFUHDVH LQ FRQGXFWLYLW\ FRXOG EH GXH WR HLWKHU D GHQVLILFDWLRQ RI WKH SURGXFWV RU D GHFUHDVH LQ WKH HOHFWULFDO FRQGXFWLYLW\ RI WKH SURGXFWV $ GHQVLILFDWLRQ RI WKH FRUURVLRQ SURGXFWV ZRXOG UHVXOW LQ D GHFUHDVH LQ WKH UDWH RI PDVV WUDQVSRUW RI R[\JHQ WR WKH UHDFWLRQ LQWHUIDFH $ GHFUHDVH LQ SURGXFW HOHFWULFDO FRQGXFWLYLW\ ZRXOG SUHYHQW R[\JHQ UHGXFWLRQ IURP RFFXUULQJ RQ WKH FRUURVLRQ SURGXFW VXUIDFHV WKHUHE\ UHGXFLQJ WKH WRWDO FDWKRGH VXUIDFH DUHD DQG IRUFLQJ WKH R[\JHQ WR GLIIXVH WR WKH UXVWPHWDO LQWHUIDFH WR UHDFW 3ORWV RI WRWDO SHUF\FOH R[\JHQ XSWDNH DUH VKRZQ IRU DOO FRPSRVLWLRQV LQ )LJXUHV D DQG E $V FDQ EH VHHQ IURP WKHVH ILJXUHV WKH WRWDO SHU F\FOH XSWDNH GHFUHDVHV ZLWK LQFUHDVLQJ QXPEHUV RI F\FOHV 7KLV GHFUHDVH LV DWWULEXWHG WR DQ LQFUHDVHG UHVLVWDQFH WR DWPRVSKHULF FRUURVLRQ PRVW OLNHO\ GXH WR D WKLFNHQLQJ RI WKH FRUURVLRQ SURGXFW OD\HU )LJXUH VKRZV WKH YDULDWLRQ LQ WRWDO SHUF\FOH R[\JHQ XSWDNH ZLWK DOOR\ FRPSRVLWLRQ $V FDQ EH VHHQ LQ )LJXUH DGGLWLRQ RI ZR &X UHVXOWV LQ D VLJQLILFDQW GHFUHDVH LQ WRWDO SHUF\FOH R[\JHQ XSWDNH ZKLOH DGGLWLRQ RI ZR &U DORQH UHVXOWV LQ YHU\ OLWWOH FKDQJH 7KH UHDVRQV IRU WKLV GHFUHDVH DUH FRQVLGHUHG WR EH VLPLODU WR WKRVH SURSRVHG IRU WKH GHFUHDVH LQ PD[LPXP FXUUHQW 3KRWRJUDSKV RI WKH VLGH RI HDFK VDPSOH ZHUH WDNHQ DW WKH HQG RI WKH IRXUWK F\FOHV DQG DUH VKRZQ LQ )LJXUHV WKURXJK $V FDQ EH VHHQ LQ )LJXUHV WKURXJK WKH SURGXFWV DUH IDLUO\ HYHQO\ GLVWULEXWHG RYHU WKH VDPSOH VXUIDFH EXW E\ QR PHDQV IRUP D FRPSOHWH OD\HU 7KLV LQKRPRJHQHRXV FRUURVLRQ SURGXFW FRYHUDJH LV FKDUDFWHULVWLF RI LURQ DQG ORZDOOR\ VWHHOV H[SRVHG LQ 6 RU VXOIDWHFRQWDPLQDWHG HQYLURQPHQWV

PAGE 73

7RWDO 2[\JHQ 8SWDNH PROHVrf 7RWDO 2[\JHQ 8SWDNH YV 1XPEHU RI &\FOHV 1XPEHU RI &\FOHV 2 SXUH )H f )HO&U )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV 1XPEHU 2I &\FOHV Df 3XUH )H DQG )H &U &RPSDUH ZLWK )LJXUH Df

PAGE 74

7RWDO 2[\JHQ 8SWDNH PROHVr 4f 7RWDO 2[\JHQ 8SWDNH YV 1XPEHU RI &\FOHV 2 )H&X&U f )H &X 1XPEHU RI &\FOHV )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV 1XPEHU RI &\FOHV Ef )H &X DQG )H &X &U &RPSDUH ZLWK )LJXUH Ef

PAGE 75

PROHV R[\JHQ WKRXVDQGWKVf 7RWDO 2[\JHQ 8SWDNH YV &RPSRVLWLRQ )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV &RPSRVLWLRQ &RPSDUH ZLWK )LJXUH

PAGE 76

)LJXUH 6LGH 9LHZ 3KRWR 2I 3XUH )H ,QLWLDO ([SRVXUH 6DPSOH

PAGE 77

)LJXUH 6LGH 9LHZ 3KRWR 2I )H&U ,QLWLDO ([SRVXUH 6DPSOH

PAGE 78

)LJXUH 6LGH 9LHZ 3KRWR 2I )H&X ,QLWLDO ([SRVXUH 6DPSOH

PAGE 79

)LJXUH 6LGH 9LHZ 3KRWR 2I )H&U &X ,QLWLDO ([SVRXUH 6DPSOH

PAGE 80

$W WKH HQG RI WKH IRXUWK ZHWGU\ F\FOH WKH FRUURVLRQ SURGXFWV ZHUH UHPRYHG IURP HDFK VDPSOH DQG DQDO\]HG ZLWK ;5' 7KH UHVXOWV RI WKH ;5' DQDO\VLV DUH VKRZQ LQ 7DEOH )XOO ;5' VSHFWUD RI WKHVH DQG RWKHU ;5' VFDQV FDQ EH IRXQG LQ $SSHQGL[ % 7DEOH UHYHDOV WKDW WKH FRUURVLRQ SURGXFWV FRQVLVWHG RI D ELQDU\ PL[WXUH RI OHSLGRFURFLWH DQG PDJQHWLWH :KHQ WKH HIIHFW RI DOOR\LQJ HOHPHQWV DUH FRQVLGHUHG LW FDQ EH VHHQ WKDW FRSSHU DGGLWLRQV IDYRU WKH IRUPDWLRQ RI OHSLGRFURFLWH RYHU PDJQHWLWH ZKLOH FKURPLXP DGGLWLRQV KDYH OLWWOH RU QR HIIHFW RQ WKH UHODWLYH IUDFWLRQV RI OHSLGRFURFLWH DQG PDJQHWLWH LQ WKH FRUURVLRQ SURGXFWV 6LQFH PDJQHWLWH LV PRUH FRQGXFWLYH WKDQ OHSLGRFURFLWH D GHFUHDVH LQ PDJQHWLWH IUDFWLRQ VKRXOG OHDG WR D GHFUHDVH LQ FRUURVLRQ SURGXFW OD\HU FRQGXFWLYLW\ DQG WKHUHE\ WR DQ LQFUHDVH LQ DWPRVSKHULF FRUURVLRQ UHVLVWDQFH 7KHVH UHVXOWV DUH FRQVLVWHQW ZLWK WKH UHVXOWV RI WKH R[\JHQ XSWDNH H[SHULPHQWV VKRZQ LQ )LJXUHV WKURXJK 6LQFH WKH UHVXOWV RI ERWK R[\JHQ XSWDNH DQG ;5' VWXGLHV KDYH VKRZQ WKDW DQ DGGLWLRQ RI b&U DORQH KDV YHU\ OLWWOH HIIHFW RQ DWPRVSKHULF FRUURVLRQ UHVLVWDQFH RI LURQ VLPLODU H[SHULPHQWV ZHUH UXQ RQ LURQFKURPLXP ELQDU\ DOOR\V ZLWK KLJKHU FKURPLXP FRQFHQWUDWLRQV 7KH KLJKHU FKURPLXP FRQFHQWUDWLRQ VDPSOHV LQFOXGHG )HO&U )H&U DQG )H&U 7LPHGHSHQGHQW R[\JHQ XSWDNH FXUYHV IRU WKHVH KLJKHU FKURPLXP FRQFHQWUDWLRQ VDPSOHV DUH VKRZQ LQ )LJXUH DQG UHVSHFWLYHO\ -XVW OLNH WKH ORZHUFKURPLXP VDPSOHV VKRZQ LQ )LJXUHV DQG WKHVH FXUYHV GLVSOD\ WKH JHQHUDO FKDUDFWHULVWLFV SUHGLFWHG E\ WKH WKUHH VWDJH PRGHO DV ZHOO DV WKH VDPH GHYLDWLRQV

PAGE 81

7 DEOH 6SHFLHV $QG 3KDVH )RUPV 3UHVHQW ,Q &RUURVLRQ 3URGXFWV $OOR\ bOHSLGRFURFLWH bJRHWKLWH bPDJQHWLWH SXUH )H QRW GHWHFWHG )Hb&U QRW GHWHFWHG )Hb&X QRW GHWHFWHG )Hb&Ub&X QRW GHWHFWHG

PAGE 82

2[\JHQ 8SWDNH PROHVr ,4f )HO&U 7LPH VHFRQGVf R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )HO&U 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH

PAGE 83

)Hf§&U 2[\JHQ 8SWDNH T PROHVr f 2 7LPH VHFRQGVf )LJXUH )H&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH R[\JHQ XSWDNH YDULDQFH HQYHORSH

PAGE 84

)Hf§&U 2[\JHQ 8SWDNH PROHVr f 7LPH VHFRQGVf R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U 7LPH'HSHQGDQW 2[\JHQ 8SWDNH ,QLWLDO ([SRVXUH

PAGE 85

)LJXUH VKRZV WKH YDULDWLRQ RI GU\LQJ WLPH ZLWK QXPEHU RI F\FOHV IRU WKH KLJKHU &U DOOR\V 8QOLNH WKH ORZHUFKURPLXP DOOR\V WKH KLJKHUFKURPLXP VDPSOHV DOO VKRZ D GHFUHDVH LQ GU\LQJ WLPH ZLWK FRQWLQXHG F\FOLQJ )LJXUH VKRZV WKH YDULDWLRQ RI GU\LQJ WLPH RQ WKH IRXUWK ZHWGU\ F\FOH ZLWK FKURPLXP FRQFHQWUDWLRQ )LJXUH FRQILUPV WKDW WKHUH LV QR VLJQLILFDQW WUHQG LQ GU\LQJ WLPH ZLWK FKURPLXP FRQFHQWUDWLRQ )LJXUH VKRZV WKH YDULDWLRQ RI PD[LPXP FXUUHQW ZLWK QXPEHU RI F\FOHV IRU WKH r KLJKHU &U DOOR\V $V VKRZQ LQ )LJXUH PD[LPXP FXUUHQWV GR QRW YDU\ VLJQLILFDQWO\ ZLWK FRQWLQXHG F\FOLQJ )LJXUH VKRZV WKH YDULDWLRQ LQ PD[LPXP FXUUHQW RQ WKH IRXUWK ZHWGU\ F\FOH ZLWK &U FRQFHQWUDWLRQ $V FDQ EH VHHQ LQ )LJXUH FKURPLXP LQ FRQFHQWUDWLRQV RI ZR RU PRUH SURGXFHV D VLJQLILFDQW GHFUHDVH LQ WKH PD[LPXP FXUUHQW VXVWDLQHG GXULQJ HDFK ZHWGU\ F\FOH $ FRPSDULVRQ WR )LJXUH VKRZV WKDW WKH HIIHFW RI OZR &U DGGLWLRQV DUH VLPLODU WR WKRVH SURGXFHG E\ WKH DGGLWLRQ RI ZR &X )LJXUH VKRZV WKH YDULDWLRQ RI WRWDO SHUF\FOH R[\JHQ XSWDNH ZLWK QXPEHU RI F\FOHV IRU WKH KLJKHUFKURPLXP DOOR\V $V FDQ EH VHHQ LQ )LJXUH WKH WRWDO SHUF\FOH XSWDNH GHFUHDVHV ZLWK LQFUHDVHG F\FOLQJ LQGLFDWLQJ WKDW WKH FRUURVLRQ SURGXFWV DUH EHFRPLQJ PRUH SURWHFWLYH ZLWK FRQWLQXHG F\FOLQJ )LJXUH VKRZV WKH YDULDWLRQ RI WRWDO SHUF\FOH R[\JHQ XSWDNH ZLWK FKURPLXP FRQFHQWUDWLRQ -XVW DV LQ WKH FDVH RI WKH PD[LPXP FXUUHQW VHH )LJXUH f WKH WRWDO SHUF\FOH R[\JHQ XSWDNH VKRZV D VLJQLILFDQW GHFUHDVH ZLWK WKH DGGLWLRQ RI RQH WR ILYH ZR &U $W WKH HQG RI WKH IRXUWK ZHWGU\ F\FOH WKH FRUURVLRQ SURGXFWV ZHUH UHPRYHG IURP WKH KLJKHU&UFRQWDLQLQJ VDPSOHV DQG DQDO\]HG ZLWK ;5' LQ WKH VDPH PDQQHU DV ZHUH WKH

PAGE 86

'U\LQJ 7LPH VHFRQGVf 2 )HO&U f )H&U 9 )H&U )LJXUH 'U\LQJ 7LPH YV 1XPEHU 2I &\FOHV

PAGE 87

'U\LQJ 7LPH YV &U &RQFHQWUDWLRQ 'U\LQJ 7LPH VHFRQGVf &U FRQFHQWUDWLRQ ZRf )LJXUH 'U\LQJ 7LPH YV &KURPLXP &RQFHQWUDWLRQ 7KHUH LV QR VLJQLILFDQW WUHQG LQ GU\LQJ WLPH ZLWK FKURPLXP FRQFHQWUDWLRQ

PAGE 88

0D[LPXP &XUUHQW P$FPf 1XPEHU RI &\FOHV 2 )HO&U f )H&U 9 )H&U )LJXUH 0D[LPXP &XUUHQW YV 1XPEHU 2I &\FOHV 0D[LPXP FXUUHQWV GR QRW YDU\ VLJQLILFDQWO\ ZLWK QXPEHU RI F\FOHV

PAGE 89

0D[LPXP &XUUHQW YV &U &RQFHQWUDWLRQ 0D[LPXP &XUUHQW P$FPf &U FRQFHQWUDWLRQ ZRf /2 )LJXUH 0D[LPXP &XUUHQW YV &KURPLXP &RQFHQWUDWLRQ &KURPLXP LQ FRQFHQWUDWLRQV RI ZR RU PRUH SURGXFHV D VLJQLILFDQW GHFUHDVH LQ WKH PD[LPXP FXUUHQW VXVWDLQHG GXULQJ HDFK ZHWGU\ F\FOH

PAGE 90

PROHV R[\JHQ WKRXVDQGWKVf 7RWDO 2[\JHQ 8SWDNH YV 1XPEHU RI &\FOHV 1XPEHU RI &\FOHV 2 )Hf§O&U f )H&U 9 )H&U )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV 1XPEHU 2I &\FOHV 7KH WRWDO SHUF\FOH XSWDNH GHFUHDVHV ZLWK LQFUHDVHG F\FOLQJ

PAGE 91

PROHV R[\JHQ WKRXVDQGWKVf &U FRQFHQWUDWLRQ ZRf )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV &KURPLXP &RQFHQWUDWLRQ 7RWDO SHUF\FOH R[\JHQ XSWDNH VKRZV D VLJQLILFDQW GHFUHDVH ZLWK LQFUHDVLQJ FKURPLXP FRQFHQWUDWLRQ

PAGE 92

ORZHUFKURPLXP VDPSOHV 7KH UHVXOWV RI WKH ;5' RI WKH KLJKHU&U VDPSOHV LV VKRZ LQ 7DEOH 5HIHULQJ WR 7DEOH WKH FRUURVLRQ SURGXFWV RQ WKH KLJKHUFKURPLXPFRQWDLQLQJ DOOR\V FRQVLVW RI D ELQDU\ PL[WXUH RI OHSRGRFURFLWH DQG PDJQHWLWH :KHQ WKH UHODWLYH W IUDFWLRQV RI OHSLGRFURFLWH DQG PDJQHWLWH LQ WKH VDPSOHV ZLWK FKURPLXP FRQFHQWUDWLRQV RI RQH WR ILYH ZR DUH FRPSDUHG WR WKRVH RI WKH SXUH )H DQG )H &U VDPSOHV VHH 7DEOH f LW LV HYLGHQW WKDW WKH PDJQHWLWH IUDFWLRQ LV KLJKHU LQ WKH KLJKHUFKURPLXP VDPSOHV 6LQFH D KLJKHU PDJQHWLWH IUDFWLRQ UHVXOWV LQ D PRUH FRQGXFWLYH DQG WKHUHIRUH OHVV SURWHFWLYH FRUURVLRQ SURGXFW OD\HU LW LV XQOLNHO\ WKDW WKH VXSHULRU FRUURVLRQ UHVLVWDQFH LQGLFDWHG E\ WKH UHVXOWV RI WKH R[\JHQ XSWDNH H[SHULPHQWV LV GXH WR D PRUH SURWHFWLYH FRUURVLRQ SURGXFW OD\HU 3KRWRJUDSKV RI WKH VLGHV RI HDFK RI WKH WKUHH KLJKHUFKURPLXP VDPSOHV ZHUH WDNHQ DW WKH HQG RI WKH IRXUWK ZHWGU\ F\FOH DQG DUH VKRZQ LQ )LJXUHV DQG &OHDUO\ WKH FRYHUDJH E\ FRUURVLRQ SURGXFWV LV PXFK OHVV IRU WKH KLJKHU FKURPLXP FRQWDLQLQJ DOOR\V WKDQ IRU ORZHU&U VDPSOHV 7KLV HIIHFW LV PRVW REYLRXV IRU WKH )H&U VDPSOH VKRZQ LQ )LJXUH 7KLV ORZHU FRYHUDJH LV DWWULEXWHG WR WKH PRUH SURWHFWLYH R[LGH ZKLFK IRUPV RQ WKH KLJKHU FKURPLXP DOOR\V 6LQFH WKH QDLYH R[LGH OD\HU RQ WKH KLJKHUFKURPLXP VDPSOHV LV WKLFNHU DQG PRUH SURWHFWLYH WKHUH DUH IHZHU VLWHV DYDLODEOH IRU VXOIDWH QHVW LQLWLDWLRQ DQG KHQFH IHZHU VXOIDWH QHVWV DIWHU FRPSDUDEOH H[SRVXUH WLPHV 6LQFH VXOIDWH QHVWV FRQVWLWXWH WKH DUHDV RI PRVW UDSLG PHWDO GLVVROXWLRQ D UHGXFWLRQ LQ WKH QXPEHU RI QHVWV UHVXOWV LQ DQ VXEVWDQWLDO GHFUHDVH LQ WKH FRUURVLRQ FXUUHQW IRU WKH VDPSOH 7KH ORZHU YDOXHV RI PD[LPXP FXUUHQW DQG RYHUDOO XSWDNH VHHQ LQ WKH KLJKHU FKURPLXP

PAGE 93

7DEOH 6SHFLHV $QG 3KDVH )RUPV 3UHVHQW ,Q &RUURVLRQ 3URGXFWV $OOR\ bOHSLGRFURFLWH bJRHWKLWH bPDJQHWLWH )HO&U )H&U )H&U QRW SUHVHQW

PAGE 94

)LJXUH 6LGH 9LHZ 3KRWR 2I )HO&U ,QLWLDO ([SRVXUH 6DPSOH

PAGE 95

)LJXUH 6LGH 9LHZ 3KRWR 2I )H&U ,QLWLDO ([SRVXUH 6DPSOH

PAGE 96

)LJXUH 6LGH 9LHZ 3KRWR 2I )H&U ,QLWLDO ([SRVXUH 6DPSOH

PAGE 97

VDPSOHV FRUUHODWH ZLWK WKH VPDOOHU QXPEHU RI VXOIDWH QHVWV ZKLFK LQ WXUQ UHIOHFW WKH PRUH SURWHFWLYH QDWLYH R[LGH RQ WKHVH DOOR\V )URP WKH UHVXOWV RI WKH LQLWLDO H[SRVXUH H[SHULPHQWV LW LV FOHDU WKDW IRU VKRUW GXUDWLRQ H[SRVXUHV FRSSHU DQG FKURPLXP EHKDYH TXLWH GLIIHUHQWO\ &RSSHU DGGLWLRQV DSSHDU WR GHFUHDVH WKH UDWH RI DWPRVSKHULF FRUURVLRQ E\ IDYRULQJ WKH IRUPDWLRQ RI OHVV FRQGXFWLYH UHDFWLRQ SURGXFW VSHFLHV LQ WKH UXVW ILOP ZKLOH FKURPLXP PHUHO\ GHFUHDVHV WKH r QXPEHU RI DQRGLF VLWHV RQ WKH PHWDO VXUIDFH 7KH SUHVHQFH RI WKH SURWHFWLYH SUHH[LVWLQJ ILOP RQ WKH FKURPLXPFRQWDLQLQJ DOOR\V LV EHOLHYHG WR DFFRXQW IRU WKH VXSHULRU DWPRVSKHULF FRUURVLRQ UHVLVWDQFH RI WKHVH DOOR\V LQ ORQJ GXUDWLRQ WHVWV GHVSLWH DOPRVW D FRPSOHWH FRYHUDJH E\ FRUURVLRQ SURGXFWV 2QH
PAGE 98

2[\JHQ 8SWDNH PROHVr ,4f 3XUH )H R[\JHQ XSWDNH YDULDQFH HQYHORSH 9' K2 )LJXUH 3XUH )H 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 2QH
PAGE 99

2[\JHQ 8SWDNH PROHVf )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H &U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 2QH
PAGE 100

2[\JHQ 8SWDNH PROHVr ,4f )H O&U R[\JHQ XSWDNH YDULDQFH HQYHOR )LJXUH )HO&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 2QH
PAGE 101

2[\JHQ 8SWDNH PROHV04f )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH Y' )LJXUH )H&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 2QH
PAGE 102

2[\JHQ 8SWDNH PROHVr ,4f )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 2QH
PAGE 103

, WKH R[\JHQ XSWDNH UDWHV GXULQJ VWDJH ,, DUH VLPLODU WR WKRVH RI VWDJH 7KLV EHWWHU FRQIRUPLW\ WR WKH WKUHH VWDJH PRGHO LV EHOLHYHG WR EH GXH WR WKH WKLFNHU DQG PRUH FRQWLQXRXV OD\HUV RI FRUURVLRQ SURGXFWV ZKLFK KDYH IRUPHG GXULQJ WKH fRQH \HDUf HTXLYDOHQW H[SRVXUH 'XULQJ ZHWWLQJ LQVWHDG RI IRUPLQJ D GLVWULEXWLRQ RI GURSOHWV RQ WKH PHWDO VXUIDFH FRQGHQVLQJ PRLVWXUH ILUVW ILOOV WKH FDSLOODU\ YRLG VSDFHV LQ WKH UXVW OD\HU DQG WKHQ IRUPV D fIUHHf OD\HU RQFH WKH SRUH VSDFHV KDYH EHHQ ILOOHG $V WKH PRLVWXUH HYDSRUDWHV GXULQJ GU\LQJ LW ZLOO GR VR PRUH RI OHVV HYHQO\ RYHU WKH VXUIDFH RI WKH HQWLUH VDPSOH 7KXV WKH HQWLUH VDPSOH VXUIDFH ZLOO UHDFK VWDJH ,,, DW WKH VDPH WLPH UHVXOWLQJ LQ DQ PRUH SURQRXQFHG GLIIHUHQFH LQ WKH UDWHV RI R[\JHQ XSWDNH GXULQJ VWDJHV ,, DQG ,,, WKDQ ZDV VHHQ LQ WKH LQLWLDO H[SRVXUH VDPSOHV )LJXUH VKRZV WKH YDULDWLRQ RI WRWDO GU\LQJ WLPH ZLWK FKURPLXP FRQFHQWUDWLRQ $V FDQ EH VHHQ LQ )LJXUH LQFUHDVLQJ WKH FKURPLXP FRQFHQWUDWLRQV IURP ]HUR WR ZR UHVXOWV LQ D VWHDG\ GHFUHDVH LQ GU\LQJ WLPH ,QFUHDVLQJ WKH FKURPLXP FRQFHQWUDWLRQ WR ZR KRZHYHU UHVXOWV LQ DQ LQFUHDVH LQ GU\LQJ WLPH )LJXUH VKRZV WKH YDULDWLRQ RI PD[LPXP FXUUHQW DV D IXQFWLRQ RI FKURPLXP FRQFHQWUDWLRQ ,QFUHDVLQJ FKURPLXP FRQFHQWUDWLRQV IURP ]HUR WR ZR UHVXOWV LQ D VWHDG\ GHFUHDVH LQ WKH PD[LPXP FXUUHQW UHDFKHG LQ HDFK ZHWGU\ F\FOH )URP WKLV UHVXOW LW ZRXOG VHHP WKDW KLJKHU FKURPLXP FRQFHQWUDWLRQV LQ WKH PHWDO DUH UHVXOWLQJ LQ D FRUURVLRQ SURGXFW OD\HU ZKLFK LV HLWKHU PRUH UHVLVWDQW WR WKH SDVVDJH RI R[\JHQ RU KDV D ORZHU HOHFWULFDO FRQGXFWLYLW\ RU ERWKf

PAGE 104

'U\LQJ 7LPH VHFRQGVf 7RWDO 'U\LQJ 7LPH YV &U &RQFHQWUDWLRQ RQH \HDU HTXLYDOHQW H[SRVXUHf &U &RQFHQWUDWLRQ ZRf )LJXUH 'U\LQJ 7LPH YV &KURPLXP &RQFHQWUDWLRQ

PAGE 105

0D[LPXP &XUUHQW YV &U &RQFHQWUDWLRQ 0D[LPXP &XUUHQW P$FP f 4 &U &RQFHQWUDWLRQ ZRf )LJXUH 0D[LPXP &XUUHQW YV &KURPLXP &RQFHQWUDWLRQ RQH \HDU HTXLYDOHQW H[SRVXUHf 7 7

PAGE 106

)LJXUH VKRZV WKH YDULDWLRQ RI WRWDO SHUF\FOH R[\JHQ ZLWK FKURPLXP FRQFHQWUDWLRQ ,QFUHDVLQJ FKURPLXP IURP ]HUR WR ZR UHVXOWV LQ D VWHDG\ GHFUHDVH LQ WKH WRWDO SHUF\FOH R[\JHQ XSWDNH 7KHVH UHVXOWV DUH VLPLODU LQ IRUP WR WKRVH VHHQ LQ )LJXUH IRU WKH YDULDWLRQ LQ PD[LPXP FXUUHQW ZLWK FKURPLXP FRQFHQWUDWLRQ %DVHG RQ WKH UHVXOWV VHHQ LQ )LJXUH LW LV FOHDU WKDW LQFUHDVLQJ WKH FKURPLXP FRQFHQWUDWLRQ LQ WKH DOOR\ UHVXOWV LQ LPSURYHG DWPRVSKHULF FRUURVLRQ UHVLVWDQFH IRU H[SRVXUH GXUDWLRQV DSSUR[LPDWLQJ RQH \HDU 7DEOH VKRZV WKH UHVXOWV RI ;5' DQDO\VLV GRQH RQ HDFK RI WKH fRQH \HDU HTXLYDOHQWf H[SRVXUH VDPSOHV 7KH UHVXOWV RI 7DEOH VKRZ WKDW DIWHU WKH fHTXLYDOHQW RI RQH \HDU WKH FRUURVLRQ SURGXFWV UHPRYHG IURP HDFK VDPSOH FRQVLVWHG RI D WHUQDU\ PL[WXUH RI OHSLGRFURFLWH JRHWKLWH DQG PDJQHWLWH $ FRPSDULVRQ WR WKH UHVXOWV VKRZQ LQ 7DEOHV DQG VKRZ WKDW ZKLOH WKH IUDFWLRQV RI PDJQHWLWH DUH URXJKO\ VLPLODU WR WKRVH VHHQ LQ WKH LQLWLDO H[SRVXUH VDPSOHV WKH IUDFWLRQV RI OHSLGRFURFLWH DUH ORZHU DQG WKH IUDFWLRQV RI JRHWKLWH DUH KLJKHU 7KLV UHVXOW LV W\SLFDO RI LURQ DQG ORZDOOR\ VWHHOV ZKLFK KDYH EHHQ H[SRVHG IRU ORQJ SHULRGV RI WLPH :LWK FRQWLQXHG ZHWGU\ F\FOLQJ OHSLGRFURFLWH WUDQVIRUPV WR JRHWKLWH WKURXJK D GLVVROXWLRQUHSUHFLSLWDWLRQ SURFHVV $V WKH FKURPLXP FRQFHQWUDWLRQ LQFUHDVHG WKH UDWLR RI OHSLGRFURFLWHJRHWKLWH LQFUHDVHG VOLJKWO\ 7KLV VXJJHVWV WKDW FKURPLXP LV LQKLELWLQJ WKH WUDQVIRUPDWLRQ RI OHSLGRFURFLWHWR JRHWKLWH +RZHYHU WKLV LGHD LV QRW FRQVLVWHQW ZLWK WKH UHVXOWV RI WKH R[\JHQ XSWDNH H[SHULPHQWV ZKLFK VKRZHG WKDW FKURPLXP ZDV GHFUHDVLQJ WKH RYHUDOO FRQGXFWLYLW\ RI WKH FRUURVLRQ SURGXFW OD\HU /HSLGRFURFLWH LV YHU\ VXVFHSWLEOH WR SDUWLDO UHGXFWLRQ RQ ZHWWLQJ 7KLV SDUWLDO UHGXFWLRQ UHVXOWV LQ D YHU\ FRQGXFWLYH SURGXFW ZKLFK FDQ WKHQ DFW D ODUJH

PAGE 107

7RWDO 2[\JHQ 8SWDNH YV &U FRQFHQWUDWLRQ 7RDO 2[\JHQ 8SWDNH ‘f PROHVr f &U &RQFHQWUDWLRQ ZRf RQH \HDU HTXLYDOHQW H[SRVXUHf )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV &KURPLXP &RQFHQWUDWLRQ ,,

PAGE 108

7DEOH ;5' 5HVXOWV )RU 2QH
PAGE 109

VXUIDFH IRU R[\JHQ UHGXFWLRQ GXULQJ GU\LQJ 7KH JRHWKLWH SKDVH LV PXFK OHVV VXVFHSWLEOH WR WKLV SDUWLDO UHGXFWLRQ $ FRUURVLRQ SURGXFW OD\HU ZKLFK KDV D KLJKHU OHSLGRFURFLWH WR JRHWKLWH UDWLR ZLOO WKHUHIRUH EH PRUH FRQGXFWLYH DQG VKRXOG VKRZ ERWK D KLJKHU PD[LPXP FXUUHQW DQG WRWDO R[\JHQ XSWDNH 6LQFH WKLV ZDV QRW WKH FDVH RI WKH KLJKHU FKURPLXP VDPSOHV LW ZRXOG VHHP WKDW WKH VDOXWDU\ HIIHFW RI WKH FKURPLXP DGGLWLRQV GLG QRW LQFOXGH WKH IDYRULQJ RI ORZHU FRQGXFWLYLW\ FRUURVLRQ SURGXFWV 7KUHH
PAGE 110

2[\JHQ 8SWDNH PROHVr ,4f 3XUH )H R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH 3XUH )H O LPH 'HSHQGDQW 2[\JHQ 8SWDNH 7KUHH
PAGE 111

2[\JHQ 8SWDNH PROHV ,4f )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U OLPH 'HSHQGDQW 2[\JHQ 8SWDNH 7KUHH
PAGE 112

2[\JHQ 8SWDNH PROHVrf )HO&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )HO&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 7KUHH
PAGE 113

2[\JHQ 8SWDNH PROHVr f )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U 7LPH 'HSHQGDQW 2[\JHQ 8SWDNH 7KUHH
PAGE 114

2[\JHQ 8SWDNH PROHVr f )H&U R[\JHQ XSWDNH YDULDQFH HQYHORSH )LJXUH )H&U O LPH 'HSHQGDQW 2[\JHQ 8SWDNH 7KUHH
PAGE 115

SUHGLFWHG E\ WKH WKUHHVWDJH PRGHO 7KH RQH H[FHSWLRQ WR WKLV JHQHUDO DGKHUHQFH ZDV WKH )H&U ZKLFK GLG QRW GLVSOD\ D VWDJH ,,, UHJLRQ )LJXUH VKRZV WKH YDULDWLRQ LQ WRWDO GU\LQJ WLPH ZLWK FKURPLXP FRQFHQWUDWLRQ IRU WKUHH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV $V FDQ EH VHHQ LQ WKLV ILJXUH WKHUH LV YHU\ OLWWOH FRUUHODWLRQ EHWZHHQ FKURPLXP FRQFHQWUDWLRQ DQG WRWDO GU\LQJ WLPH IRU WKLV H[SRVXUH GXUDWLRQ )LJXUH VKRZV WKH YDULDWLRQ LQ PD[LPXP FXUUHQW ZLWK FKURPLXP FRQFHQWUDWLRQ 7KH PD[LPXP FXUUHQW GHFUHDVHV VWHDGLO\ ZLWK LQFUHDVLQJ FKURPLXP FRQFHQWUDWLRQ )LJXUH VKRZV WKH YDULDWLRQ LQ WRWDO SHUF\FOH R[\JHQ XSWDNH ZLWK FKURPLXP FRQFHQWUDWLRQ -XVW DV LQ WKH FDVH RI WKH PD[LPXP FXUUHQW DQ LQFUHDVH LQ FKURPLXP FRQFHQWUDWLRQ UHVXOWV LQ D VWHDG\ GHFUHDVH LQ WRWDO SHUF\FOH R[\JHQ XSWDNH 7KH FRUURVLRQ SURGXFWV ZKLFK IRUPHG RQ WKH WKUHH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV ZHUH UHPRYHG DQG DQDO\]HG ZLWK ;5' 7KH UHVXOWV RI WKH ;5' DQDO\VLV RI WKH WKUHH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV DUH VKRZQ LQ 7DEOH 7DEOH UHYHDOV WKDW WKH FRUURVLRQ SURGXFWV FRQVLVWHG RI D WHUQDU\ PL[WXUH RI OHSLGRFURFLWH JRHWKLWH DQG PDJQHWLWH $ FRPSDULVRQ WR WKH UHVXOWV RI 7DEOH VKRZV WKDW ZLWK FRQWLQXHG F\FOLQJ WKH PDJQHWLWH IUDFWLRQ UHPDLQV FRQVWDQW WKH OHSLGRFURFLWH IUDFWLRQ GURSV DQG WKH JRHWKLWH IUDFWLRQ ULVHV 2QFH DJDLQ WKLV LV FRQVLVWHQW ZLWK HDUOLHU VWXGLHV ZKLFK VKRZHG WKDW OHSLGRFURFLWH WUDQVIRUPV WR JRHWKLWH ZKHQ VXEMHFWHG WR ZHWGU\ F\FOLQJ $V WKH FKURPLXP FRQFHQWUDWLRQ LV LQFUHDVHG WKH PDJQHWLWH IUDFWLRQ UHPDLQV PRUH RU OHVV FRQVWDQW

PAGE 116

'U\LQJ 7LPH VHFRQGVf Lf§ 7RWt@ 'U\LQJ 7LPH YV &U &RQFHQWUDWLRQ WKUHH \HDU HTXLYDOHQW H[SRVXUHf 2 7 L / 7 7 O f /B / / B &U FRQFHQWUDWLRQ ZRf )LJXUH 7RWDO 'U\LQJ 7LPH YV &KURPLXP &RQFHQWUDWLRQ 9HU\ OLWWOH FRUUHODWLRQ H[LVWV EHWZHHQ WRWDO GU\LQJ WLPH DQG FKURPLXP FRQFHQWUDWLRQ

PAGE 117

0D[LPXP &XUUHQW YV &U &RQFHQWUDWLRQ 0D[LPXUML &XUUHQW P$FP f &U &RQFHQWUDWLRQ ZRf WKUHH \HDU HTXLYDOHQW H[SRVXUHf L L L L L Uaf§L U X , O / , O O / )LJXUH 0D[LPXP &XUUHQW YV &KURPLXP &RQFHQWUDWLRQ WKH PD[LPXP FXUUHQW GHFUHDVHV VWHDGLO\ ZLWK LQFUHDVLQJ FKURPLXP FRQFHQWUDWLRQ

PAGE 118

7RWDO 2[\JHQ 8SWDNH YV &U &RQFHQWUDWLRQ 0ROHV 2[\JHQ PROHVr f WKUHH \HDUV HTXLYDOHQW H[SRVXUHf W K &U &RQFHQWUDWLRQ ZRf )LJXUH 7RWDO 3HU&\FOH 2[\JHQ 8SWDNH YV &KURPLXP &RQFHQWUDWLRQ $LL QFUHDVH LQ FKURPLXP FRQFHQWUDWLRQ UHVXOWV LQ D VWHDG\ GHFUHDVH LQ SHUF\FOH R[\JHQ XSWDNH

PAGE 119

7DEOH ;5' 5HVXOWV )RU 7KUHH
PAGE 120

ZKLOH WKH OHSLGRFURFLWHWRJRHWKLWH UDWLR LQFUHDVHV 7KLV LV VLPLODU WR WKH UHVXOWV VKRZQ LQ 7DEOH IRU WKH RQH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV 2QFH DJDLQ FKURPLXP DSSHDUV WR EH LQKLELWLQJ WKH WUDQVIRUPDWLRQ RI OHSLGRFURFLWH WR JRHWKLWH 7KH UHVXOWV VKRZQ LQ )LJXUHV WKURXJK DUH VLPLODU WR WKRVH VKRZQ LQ )LJXUHV WKURXJK IRU WKH RQH\HDU HTXLYDOHQW H[SRVXUHV :KLOH KDYLQJ OLWWOH HIIHFW RQ GU\LQJ WLPH FKURPLXP DGGLWLRQV KDYH D VLJQLILFDQW HIIHFW RQ ERWK PD[LPXP FXUUHQW DQG WRWDO SHUF\FOH R[\JHQ XSWDNH 7KLV VXSRUWV WKH FRQFOXVLRQ WKDW ZLWK ORQJHU GXUDWLRQ H[SRVXUHV FKURPLXP LV UHGXFLQJ WKH RYHUDOO FRQGXFWLYLW\ RI WKH UXVW OD\HU DQG WKHUHE\ VLJQLILFDQWO\ LQFUHDVLQJ DWPRVSKHULF FRUURVLRQ UHVLVWDQFH DV LQGLFDWHG E\ D ORZHU WRWDO SHUF\FOH R[\JHQ XSWDNHf +RZHYHU WKHVH UHVXOWV GR QRW DSSHDU FRQVLVWHQW ZLWK WKH UHVXOWV RI WKH ;5' VWXGLHV )URP WKH UHVXOWV RI WKH ;5' VWXGLHV LW ZRXOG VHHP WKDW LI DQ\WKLQJ LQFUHDVLQJ FKURPLXP VKRXOG UHVXOW LQ D KLJKHU FRQGXFWLYLW\ UXVW OD\HU VLQFH LW VWDELOL]HV WKH PRUH HDVLO\ UHGXFLEOH OHSLGRFURFLWH SKDVH ,W LV FOHDU WKHQ WKDW WKH PHFKDQLVP E\ ZKLFK WKH FKURPLXP DGGLWLRQV FRQWULEXWH WR LQFUHDVHG DWPRVSKHULF FRUURVLRQ UHVLVWDQFH GRHV QRW LQFOXGH DOWHUDWLRQ RI WKH SKDVH IRUP DQG FRPSRVLWLRQ RI WKH LURQ FRUURVLRQ SURGXFWV LQ WKH UXVW OD\HU $ FRPSDULVRQ RI WKH UHVXOWV RI LQLWLDO H[SRVXUH VDPSOHV DQG WKRVH RI ORQJHU GXUDWLRQ H[SRVXUHV VKRZV WKDW KLJKHU QXPEHUV RI ZHWGU\ F\FOHV DUH QHFHVVDU\ IRU WKH EHQHILFLDO HIIHFWV RI FKURPLXP WR EHFRPH DSSDUHQW HVSHFLDOO\ IRU VDPSOHV ZLWK FKURPLXP FRQFHQWUDWLRQV OHVV WKDQ ZR 6LQFH WKH ORQJHU H[SRVXUH WLPHV VHHP WR EH VR LPSRUWDQW IRU WKH REVHUYDWLRQ RI DQ\ VDOXWDU\ FKURPLXP HIIHFWV DGGLWLRQDO WHVWV ZHUH PDGH RI WKH WKUHH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV 7KH ILUVW RI WKHVH WHVWV LQFOXGHG REVHUYDWLRQ RI WKH SURGXFWV ZLWK 6(0

PAGE 121

WR GHWHUPLQH ZKHWKHU RU QRW FKURPLXP ZDV SURGXFLQJ D QRWLFHDEOH HIIHFW RQ SURGXFW PRUSKRORJ\ DQG SRURVLW\ /DUJH SLHFHV RI FRUURVLRQ SURGXFW ZHUH UHPRYHG IURP UDQGRP DUHDV RYHU WKH HQWLUH VXUIDFH RI HDFK VDPSOH DQG REVHUYHG :LWK WKH 6(0 7KH UHVXOWV RI WKH 6(0 DQDO\VLV DUH VKRZQ LQ )LJXUHV WKURXJK 6WUXFWXUHV VKRZQ LQ HDFK SKRWR DUH UHSUHVHQWDWLYH RI WKRVH VHHQ RYHU PRVW RI WKH VDPSOH VXUIDFH :LWK WKH H[FHSWLRQ RI WKH )H&U VDPSOH HDFK DUHD ZDV SKRWRJUDSKHG DW ERWK ; DQG ; PDJQLILFDWLRQV ,Q WKH FDVH RI WKH )H&U VDPSOH WKH UHPRYHG SURGXFWV ZHUH WRR VPDOO WR EH REVHUYHG DW ; VR PDJQLILFDWLRQV RI ; DQG ; ZHUH XVHG $V FDQ EH VHHQ LQ )LJXUHV WKURXJK WKH JHQHUDO PRUSKRORJ\ RI FRUURVLRQ SURGXFWV ZKLFK IRUPHG RQ VDPSOHV ZLWK WR ZR &U ZDV VLPLODU 1R VLJQLILFDQW GLIIHUHQFH LQ SRURVLW\ LV REVHUYDEOH :KLOH WKH FRUURVLRQ SURGXFWV ZHUH EHLQJ UHPRYHG IURP WKH VDPSOH VXUIDFHV WKH DGKHUHQFH WR WKH VDPSOH VXUIDFH ZDV QRWHG )RU VDPSOHV ZLWK FKURPLXP FRQFHQWUDWLRQV RI WR ZR QR GLIIHUHQFH LQ DGKHUHQFH FRXOG EH REVHUYHG 7KH FRUURVLRQ SURGXFW DGKHUHQFH RQ WKH )H&U VDPSOH VHHPHG WR EH ORZHU WKDQ WKDW RI WKH ORZHUFKURPLXP VDPSOHV EXW WKLV FRXOG KDYH EHHQ GXH WR WKH VPDOOHU WKLFNQHVV RI WKH FRUURVLRQ SURGXFW OD\HU ZKLFK KDG IRUPHG RQ WKH )H&U VDPSOH 7KH VHFRQG DGGLWLRQDO WHVW SHUIRUPHG RQ WKH WKUHH \HDU HTXLYDOHQW H[SRVXUH VDPSOHV ZDV WKH REVHUYDWLRQ RI WKH GLVWULEXWLRQ RI FKURPLXP LQ WKH FRUURVLRQ SURGXFWV 7KLV ZDV DFFRPSOLVKHG E\ FURVVVHFWLRQLQJ PRXQWHG VDPSOHV DQG DQDO\]LQJ WKHP ZLWK :'6 RQ WKH HOHFWURQ PLFURSUREH /RZ PDJQLILFDWLRQ ;f VHFRQGDU\ HOHFWURQ LPDJHV ZHUH WDNHQ RI HDFK LQWHUIDFH LQ RUGHU JHW DQ LGHD RI WKH SRURVLW\ RI WKH FRUURVLRQ SURGXFW OD\HU DQG WKH URXJKQHVV RI WKH PHWDO LQWHUIDFH 7KHVH ORZPDJQLILFDWLRQ LPDJHV DUH VKRZQ

PAGE 122

Df 22; 0DJQLILFDWLRQ Ef ; 0DJQLILFDWLRQ )LJXUH 3XUH )H &RUURVLRQ 3URGXFW

PAGE 123

Df 22; 0DJQLILFDWLRQ Ef ; 0DJQLILFDWLRQ )LJXUH )H&U &RUURVLRQ 3URGXFW

PAGE 124

Ef ; )LJXUH )HO&U &RUURVLRQ 3URGXFW

PAGE 125

Df 22; 0DJQLILFDWLRQ Ef ; )LJXUH )H&U &RUURVLRQ 3URGXFW

PAGE 126

Df ; Ef ; )LJXUH )H&U &RUURVLRQ 3URGXFW

PAGE 127

LQ )LJXUH DH $V FDQ EH VHHQ LQ )LJXUH DOO RI WKH FRUURVLRQ SURGXFW OD\HUV FRQWDLQHG QXPHURXV FUDFNV DQG YRLGV ,Q RUGHU WR JHW DQ LGHD RI FKURPLXP GLVWULEXWLRQ ERWK VHFRQGDU\ HOHFWURQ DQG :'6 [UD\ GRW PDSV ZHUH WDNHQ DW ; PDJQLILFDWLRQ ; UD\ PDSV ZHUH PDGH XVLQJ )H.D &U.D DQG 6.D OLQHV $UHDV ZLWK KLJKHU FRQFHQWUDWLRQV RI WKH HOHPHQW LQ TXHVWLRQ DSSHDU EULJKWHU )LJXUH DG VKRZV VHFRQGDU\ )H.D &U.D DQG 6.D LPDJHV UHVSHFWLYHO\ IRU SXUH )H $V ZRXOG EH H[SHFWHG WKH &U.D [UD\ PDS LV DOPRVW FRPSOHWHO\ EODFN LPSO\LQJ WKDW RQO\ WUDFH DPRXQWV RI FKURPLXP ZHUH SUHVHQW 7KH 6.D [UD\ PDS LV DOVR DOPRVW EODFN LPSO\LQJ WKDW YHU\ OLWWOH VXOIXU ZDV SUHVHQW )LJXUH DG VKRZV VHFRQGDU\ )H.D &U.D DQG 6.D LPDJHV UHVSHFWLYHO\ IRU )H&U 7KH &U.D [UD\ PDS VKRZV FKURPLXP SUHVHQW ERWK DW WKH UXVWPHWDO LQWHUIDFH DQG WKURXJKRXW WKH FRUURVLRQ SURGXFW OD\HU LQ FRQFHQWUDWLRQV URXJKO\ VLPLODU WR WKRVH RI WKH EDVH PHWDO 7KH 6.D [UD\ PDS VKRZV VXOIXU WR EH FRQFHQWUDWHG VOLJKWO\ QHDU WKH UXVWPHWDO LQWHUIDFH )LJXUH DG VKRZV VHFRQGDU\ )H.D &U.D DQG 6.D LPDJHV UHVSHFWLYHO\ IRU )HO&U $V FDQ EH VHHQ IURP WKH &U.D [UD\ PDS FKURPLXP LV SUHVHQW ERWK DW WKH UXVWPHWDO LQWHUIDFH DQG WKURXJKRXW WKH FRUURVLRQ SURGXFW OD\HU 8QOLNH WKH FDVH RI WKH )H&U DOOR\ WKH FKURPLXP LV SUHVHQW LQ OHYHOV KLJKHU WKDQ WKRVH RI WKH EDVH PHWDO 7KH FKURPLXP FRQFHQWUDWLRQV VHHP WR EH WKH KLJKHVW LQ VPDOO LVODQGV DORQJ WKH UXVWPHWDO LQWHUIDFH 7KH 6.D VKRZV WKDW VXOIXU OLNH FKURPLXP LV FRQFHQWUDWHG DW WKH UXVWPHWDO LQWHUIDFH )LJXUH DG VKRZV VHFRQGDU\ )H.D &U.D DQG 6.D LPDJHV UHVSHFWLYHO\ IRU )H&U 7KH &U.D [UD\ PDS VKRZV WKDW FKURPLXP LV SUHVHQW ERWK LQ WKH FRUURVLRQ SURGXFW OD\HU DQG DW WKH UXVWPHWDO LQWHUIDFH %\ FRPSDULQJ WKH EULJKWQHVV RI WKH FKURPLXPULFK DUHDV DW WKH

PAGE 128

Df SXUH )H Ef )H&U )LJXUH 6HFRQGDU\ (OHFWURQ ,PDJH RI &URVV 6HFWLRQ ;

PAGE 129

Ff )HO&U Gf )H&U )LJXUH f§FRQWLQXHG

PAGE 130

Hf )H&U )LJXUH f§FRQWLQXHG

PAGE 131

Df VHFRQGDU\ HOHFWURQ LPDJH ; Rf )LJXUH [FMYX [UD\ PDS :'6 $QDO\VLV R

PAGE 132

Ff &U.D [UD\ PDS Gf 6.D [UD\ PDS )LJXUH aFRQWLQXHG

PAGE 133

Df VHFRQGDU\ HOHFWURQ LPDJH Ef )H.D [UD\ LPDJH )LJXUH :'6 $QDO\VLV RI )H&U

PAGE 134

Ff &U.D [UD\ PDS Gf 6.D [UD\ PDS )LJXUH f§FRQWLQXHG

PAGE 135

Df VHFRQGDU\ HOHFWURQ LPDJH )LJXUH Y U :'6 $QDO\VLV

PAGE 136

Ff &U.D [UD\ PDS Gf 6.D [UD\ PDS )LJXUH f§FRQWLQXHG

PAGE 137

Df VHFRQGDU\ HOHFWURQ LPDJH Ef )H.D [UD\ PDS )LJXUH :'6 $QDO\VLV RI )H&U

PAGE 138

Gf 6.FF [UD\ )LJXUH f§FRQWLQXHG

PAGE 139

UXVWPHWDO LQWHUIDFH DQG LQ WKH FRUURVLRQ SURGXFW OD\HU WR WKDW RI WKH EDVH PHWDO LW FDQ EH VHHQ WKDW FKURPLXP KDV HQULFKHG VLJQLILFDQWO\ 7KH KLJKHVW OHYHOV RI HQULFKPHQW DUH IRXQG LQ D SLWWHG DUHD RI WKH UXVWPHWDO LQWHUIDFH 7KH 6.D [UD\ PDS VKRZV WKDW WKH DUHDV RI VXOIXU HQULFKPHQW FRLQFLGH IDLUO\ ZHOO ZLWK WKRVH RI FKURPLXP HQULFKPHQW )LJXUH DG VKRZV VHFRQGDU\ )H.D &U.D DQG 6.D LPDJHV UHVSHFWLYHO\ IRU )H&U 7KH &U.D [UD\ PDS VKRZV WKDW RQFH DJDLQ FKURPLXP LV SUHVHQW ERWK DW WKH UXVWPHWDO LQWHUIDFH DQG WKURXJKRXW WKH FRUURVLRQ SURGXFW OD\HU LQ FRQFHQWUDWLRQV KLJKHU WKDQ WKRVH RI WKH EDVH PHWDO ,QVWHDG RI EHLQJ SUHVHQW RQO\ DV LVODQGV DORQJ WKH UXVWPHWDO LQWHUIDFH WKH FKURPLXPULFK DUHDV QRZ FRYHU D VLJQLILFDQW IUDFWLRQ RI WKH UXVWPHWDO LQWHUIDFH 7KH 6 .D [UD\ PDS VKRZV WKDW YHU\ OLWWOH VXOIXU LV SUHVHQW HLWKHU LQ WKH FRUURVLRQ SURGXFWV RU DW WKH UXVWPHWDO LQWHUIDFH %DVH 0HWDO (OHFWURFKHPLVWU\ ,Q RUGHU WR JHW D EDVLF LGHD RI WKH HOHFWURFKHPLFDO EHKDYLRU RI WKH LURQFKURPLXP ELQDU\ DOOR\V LQ D QHXWUDO VXOIDWH VROXWLRQ SRWHQWLRG\QDPLF VFDQV ZHUH UXQ RQ SXUH )H )H &U )HO&U )H&U DQG )H&U LQ 0 1D6&! 7KHVH DSSHDU LQ )LJXUH WKURXJK 6DPSOHV FRQWDLQLQJ FKURPLXP FRQFHQWUDWLRQV OHVV WKDQ ILYH SHUFHQW VKRZHG QR DSSDUDQW SDVVLYDWLRQ +RZHYHU WKH )H&U VDPSOH VKRZHG D GLVWLQFW DFWLYHSDVVLYH WUDQVLWLRQ DW P9 6&( DQG D FXUUHQWWRSDVVLYDWH RI P$FP 7KHVH UHVXOWV DUH QRW FRQVLVWHQW ZLWK WKRVH FLWHG LQ WKH OLWHUDWXUH VXUYH\ ZKLFK VKRZHG SXUH )H DQG )H&U DOOR\V SDVVLYDWLQJ DW SRWHQWLDOV RI P9 WR P9 6&( 7KLV GLVFUHSDQF\ FRXOG EH GXH WR WKH PHWKRGV RI VDPSOH SUHSDUDWLRQ XVHG LQ HDFK FDVH ,Q WKH FLWHG VWXGLHV WKH VDPSOHV ZHUH HLWKHU DOORZHG WR VLW LQ DLU IRU VHYHUDO KRXUV EHIRUH SRODUL]DWLRQ RU ZHUH FDWKRGLFDOO\

PAGE 140

Df VHFRQGDU\ HOHWURQ LPDJH )LJXUH Ef )H.D [UD\ PDS :'6 $QDO\VLV F

PAGE 141

Ff &U.D [UD\ PDS Gf 6.D [UD\ PDS )LJXUH f§FRQWLQXHG

PAGE 142

R 3XUH )H L /RJ FXUUHQW GHQVLW\ $FPf 7 7 U 3RWHQWLDO P9 YV 6&(f )LJXUH 3XUH )H 3RWHQWLRG\QDPLF 6FDQ

PAGE 143

@ /RJ &XUUHQW 'HQVLW\ $FPf L )H f§&U L 3RWHQWLDO P9 YV 6&(f U Q R )LJXUH )H &U 3RWHQWLRG\QDPLF 6FDQ

PAGE 144

)HO&U L U /RJ &XUUHQW 'HQVLW\ $FPf , , SRWHQWLDO P9 YV 6&(f )LJXUH )HO&U 3RWHQWLRG\QDPLF 6FDQ

PAGE 145

)Hf§&U 7 f /RJ &XUUHQW 'HQVLW\ $FPf /B 3RWHQWLDO P9 YV 6&(f )LJXUH )H&U 3RWHQWLRG\QDPLF 6FDQ

PAGE 146

)H&U /RJ &XUUHQW 'HQVLW\ $FPf , , f§ SRWHQWLDO P9 YV 6&(f )LJXUH )H&U 3RWHQWLRG\QDPLF 6FDQ

PAGE 147

SRODUL]HG IRU VHYHUDO PLQXWHV EHIRUH VWDUWLQJ WKH DQRGLF VZHHS %RWK RI WKHVH WZR DFWLRQV FRXOG VHUYH WR IDFLOLWDWH SDVVLYDWLRQ 1HXWURQ $FWLYDWLRQ $QDO\VLV 6WXGLHV ,Q RUGHU WR FRQILUP WKH UHVXOWV RI WKH :'6 VWXGLHV DQG WR JHW D EHWWHU LGHD RI WKH FKURPLXP GLVWULEXWLRQ LQ WKH UXVW OD\HU RI VDPSOHV H[SRVHG IRU VKRUWHU GXUDWLRQV VDPSOHV ZLWK FKURPLXP FRQFHQWUDWLRQV EHWZHHQ DQG ZR ZHUH H[SRVHG IRU ZHWGU\ F\FOHV DQG WKHLU FRUURVLRQ SURGXFWV DQDO\]HG XVLQJ QHXWURQ DFWLYDWLRQ DQDO\VLV 1$$f $V GHVFULEHG LQ WKH H[SHULPHQWDO SURFHGXUHV D TXDOLWDWLYH GHSWK SURILOLQJ ZDV DFFRPSOLVKHG E\ UHPRYLQJ VXFFHVVLYH OD\HUV RI FRUURVLRQ SURGXFWV ZLWK FOHDU VWUDSSLQJWDSH DQG DQDO\]LQJ IRU FKURPLXP WKH FRUURVLRQ SURGXFWV OLIWHG IURP WKH VDPSOH ZLWK HDFK WDSH H[WUDFWLRQ 7KH UHVXOWV RI WKLV DQDO\VLV DUH VKRZQ LQ 7DEOHV WKURXJK 2Q WKH SXUH )H )H&U DQG )HO&U VDPSOHV LW ZDV SRVVLEOH WR UHPRYH IRXU GLVWLQFW OD\HUV 2Q WKH )H&U VDPSOH KRZHYHU WKH FRUURVLRQ SURGXFW OD\HU ZDV VR WKLQ WKDW LW ZDV SRVVLEOH WR UHPRYH RQO\ WZR OD\HUV ZKLFK DUH OLVWHG DV DQG UHVSHFWLYHO\ LQ 7DEOH $V FDQ EH VHHQ IURP 7DEOHV WKURXJK FKURPLXP FRQFHQWUDWLRQV LQ WKH FRUURVLRQ SURGXFWV LQFUHDVH ERWK ZLWK LQFUHDVLQJ FKURPLXP OHYHOV LQ WKH EDVH PHWDO DQG ZLWK SUR[LPLW\ WR WKH PHWDO LQWHUIDFH 7KHVH UHVXOWV DUH FRQVLVWHQW ZLWK WKRVH RI WKH :'6 VWXGLHV

PAGE 148

7DEOH &U &RQFHQWUDWLRQ YV 7DSH /D\HU )RU )HO&U /D\HU &U FRQFHQWUDWLRQ PJJf XQFHUWDLQW\ bf RXWHUPRVWf LQQHUPRVWf 7DEOH &U &RQFHQWUDWLRQ YV 7DSH /D\HU )RU )HO&U /D\HU &U &RQFHQWUDWLRQ PJJf XQFHUWDLQW\ bf RXWHUPRVWf LQQHUPRVWf 7DEOH &U &RQFHQWUDWLRQ YV 7DSH /D\HU )RU )H&U /D\HU &U &RQFHQWUDWLRQ PJJf XQFHUWDLQW\ bf RXWHUPRVWf LQQHUPRVWf

PAGE 149

&+$37(5 ',6&866,21 )URP WKH UHVXOWV RI WKH R[\JHQ XSWDNH H[SHULPHQWV LW LV FOHDU WKDW IRU ORQJ GXUDWLRQ H[SRVXUHV FKURPLXP DGGLWLRQV UHVXOW LQ DQ LQFUHDVH LQ DWPRVSKHULF FRUURVLRQ UHVLVWDQFH DV VKRZQ E\ UHGXFWLRQV LQ ERWK PD[LPXP FXUUHQW DQG WRWDO SHUF\FOH R[\JHQ XSWDNH %DVHG RQ WKH UHVXOWV RI WKH [UD\ GLIIUDFWLRQ VWXGLHV LW LV FOHDU WKDW WKLV LPSURYHPHQW LV QRW GXH WR D PRGLILFDWLRQ LQ SKDVH IRUP RU FRPSRVLWLRQ RI WKH FRUURVLRQ SURGXFWV 6HFRQGDU\ HOHFWURQ LPDJHV RI ERWK WRS VXUIDFHV DQG FURVVVHFWLRQV RI WKH FRUURVLRQ SURGXFW OD\HU VKRZHG WKDW FKURPLXP ZDV QRW DVVLVWLQJ LQ WKH IRUPDWLRQ RI D GHQVHU RU PRUH DGKHUHQW FRUURVLRQ SURGXFW OD\HU )URP WKH :'6 [UD\ PDSV KRZHYHU LW LV FOHDU WKDW ORQJ GXUDWLRQ H[SRVXUHV LQ SHULRGLF ZHWWLQJ HQYLURQPHQWV UHVXOW LQ HQULFKPHQW RI FKURPLXP WR OHYHOV PXFK KLJKHU WKDQ WKRVH LQ WKH PHWDO DOOR\ %DVHG RQ WKH ORFDWLRQ RI WKH FKURPLXPULFK UHJLRQV LQ WKH FRUURVLRQ SURGXFW OD\HU WKHUH DUH WZR PDLQ PHWKRGV E\ ZKLFK WKH FKURPLXPULFK DUHDV FRQWULEX WR WKH LPSURYHG DWPRVSKHULF FRUURVLRQ UHVLVWDQFH GLVSOD\HG E\ WKHVH DOOR\V &KURPLXPULFK DUHDV DW WKH UXVWPHWDO LQWHUIDFH LI WKH\ ZHUH FRQWLQXRXV DQG FRQWDLQHG VXIILFLHQWO\ KLJK OHYHOV RI FKURPLXP FRXOG UHVXOW LQ SDVVLYDWLRQ VLPLODU WR WKDW VHHQ LQ VWDLQOHVV VWHHOV 7KH LGHD RI SDVVLYDWLRQ GXULQJ GU\LQJ KDV EHHQ LQYHVWLJDWHG E\ RWKHU DXWKRUV ZKR IRXQG WKDW WKH KLJK FXUUHQWV DVVRFLDWHG ZLWK R[\JHQUHGXFWLRQ GXULQJ VWDJH ,,, H[FHHGHG WKH WKUHVKROG FXUUHQWV IRU SDVVLYDWLRQ LQ WKH HOHFWURO\WHV SUHVHQW

PAGE 150

8VLQJ WKH .HOYLQ SUREH 6WUDWPDQQ DQG 6WUHFNHO REVHUYHG FXUUHQWV DQG SRWHQWLDOV DVVRFLDWHG ZLWK DQ DFWLYHWRSDVVLYH WUDQVLWLRQ RQ D GU\LQJ SXUHLURQ VDPSOH 7KH SUREOHP ZLWK WKH fSDVVLYH ILOPf REVHUYHG LQ WKHVH VWXGLHV ZDV LWV VXVFHSWLELOLW\ WR UHGXFWLRQ XSRQ UHZHWWLQJ 2Q WKH SXUH LURQ DQG ORZFKURPLXP VDPSOHV REVHUYHG LQ WKHLU VWXGLHV WKH VXUIDFH SDVVLYDWHG GXULQJ VWDJH ,,, UHVXOWLQJ LQ D OLPLWDWLRQ RI FXUUHQW GXULQJ WKDW ZHWGU\ F\FOH 8SRQ UHZHWWLQJ DQG VXEVHTXHQW UHGU\LQJ KRZHYHU WKH VDPSOHV H[KLELWHG WKH VDPH KLJK FXUUHQW OHYHOV DV ZHUH VHHQ EHIRUH SDVVLYDWLRQ 3DUWLDO UHGXFWLRQ XSRQ UHn ZHWWLQJ UHQGHUHG WKH SDVVLYH ILOPV OHVV SURWHFWLYH WKXV DOORZLQJ KLJK FXUUHQWV WR EH GUDZQ DV VRRQ DV R[\JHQ EHFDPH UHDGLO\ DYDLODEOH ,I WKH SDVVLYH ILOPV IRUPHG GXULQJ VWDJH ,,, ZHUH UHVLVWDQW WR UHGXFWLRQ VXEVHTXHQW F\FOHV ZRXOG QRW UHVXOW LQ KLJK FRUURVLRQ FXUUHQWV &KURPLXPULFK SDVVLYH ILOPV WHQG WR EH UHVLVWDQW WR UHGXFWLRQ LQ WKH S+fV DQG HOHFWURO\WHV SUHVHQW LQ 6&AFRQWDPLQDWHG DWPRVSKHULF H[SRVXUH HQYLURQPHQWV 7KH SUHVHQFH RI D FKURPLXPULFK SDVVLYH ILOP VKRXOG WKHUHIRUH UHVXOW LQ LPSURYHG DWPRVSKHULF FRUURVLRQ UHVLVWDQFH 7KH IRUPDWLRQ RI D SURWHFWLYH SDVVLYH ILOP ZRXOG OLPLW WKH UDWH RI PHWDO GLVVROXWLRQ PDNLQJ LW WKH UDWHOLPLWLQJ VWHS ,QFUHDVLQJ WKH DYDLODELOLW\ RI R[\JHQ ZRXOG QRW WKHUHIRUH UHVXOW LQ DQ\ LQFUHDVH LQ FRUURVLRQ FXUUHQW 7KH WLPHGHSHQGHQW R[\JHQ XSWDNH SORWV RI VXFK D VDPSOH ZRXOG QRW FRQWDLQ D VWDJH ,,, UHJLRQ DW DOO 7KH WLPH GHSHQGHQW R[\JHQ XSWDNH FXUYH RI WKH )H&U WKUHH \HDU H[SRVXUH VDPSOH GLG QRW FRQWDLQ D VWDJH ,,, UHJLRQ 7KH UHVXOWV RI WKH SRWHQWLRG\QDPLF H[SHULPHQWV VKRZHG WKDW WKLV DOOR\ ZDV FDSDEOH RI SDVVLYDWLQJ LQ D VOLJKWO\DFLGLF VXOIDWH HQYLURQPHQW :KLOH WKH PD[LPXP FXUUHQW GHQVLWLHV PHDVXUHG GXULQJ ZHWGU\ F\FOLQJ ZHUH PXFK VPDOOHU WKDQ WKH WKUHVKROG FXUUHQW GHQVLWLHV

PAGE 151

IRU SDVVLYDWLRQ PHDVXUHG LQ WKH SRWHQWLRG\QDPLF H[SHULPHQWV LW VKRXOG EH QRWHG WKDW WKH PD[LPXP FXUUHQW GHQVLWLHV PHDVXUHG IURP R[\JHQ XSWDNH H[SHULPHQWV UHSUHVHQW DQ DYHUDJH RYHU WKH HQWLUH VDPSOH VXUIDFH %HFDXVH RI WKH LQKRPRJHQHRXV QDWXUH RI WKH FRUURVLRQ SURFHVV PXFK RI WKLV FXUUHQW ZDV EHLQJ GUDZQ IURP VPDOO KHDYLO\SLWWHG DUHDV XQGHU WKH VXOIDWH QHVWV ,W LV SUREDEOH WKDW WKH FXUUHQW GHQVLW\ LQ WKHVH VXOIDWH QHVWV PRUH WKDQ H[FHHGHG WKH WKUHVKROG FXUUHQWWRSDVVLYDWH IRU WKH )H&U fWKUHH \HDUf H[SRVXUH VDPSOH 7KH OHYHOV RI FKURPLXP HQULFKPHQW LQ GHHSO\ SLWWHG DUHDV WHQGHG WR EH KLJKHU WKDQ WKDW LQ OHVV KHDYLO\ SLWWHG DUHDV 6LQFH WKH FXUUHQWWRSDVVLYDWH GHFUHDVHV ZLWK FKURPLXP FRQFHQWUDWLRQ LW LV OLNHO\ WKDW WKH ODFN RI D VWDJH ,,, UHJLRQ ZDV D UHVXOW RI SDVVLYDWLRQ DQG VXEVHTXHQW OLPLWDWLRQ RI WKH UDWH RI DQRGLF GLVVROXWLRQ &KURPLXPULFK DUHDV LQ WKH FRUURVLRQ SURGXFWV VKRXOG QRW EH FDSDEOH RI OLPLWLQJ DQRGLF GLVVROXWLRQ VLQFH WKH\ DUH VHYHUDO PLFURQV DZD\ IURP WKH UXVWPHWDO LQWHUIDFH ,W LV KRZHYHU SRVVLEOH WKDW WKH\ DUH OLPLWLQJ WKH R[\JHQ UHGXFWLRQ UHDFWLRQ ,I WKH FKURPLXP LQ WKH FKURPLXPULFK DUHDV IRUPHG D K\GUDWHG WULYDOHQW R[LGH RU WULYDOHQW K\GUR[LGH WKDW ILOOHG FUDFNV DQG YRLG VSDFHV LQ WKH FRUURVLRQ SURGXFW DQ HIIHFWLYH EDUULHU WR R[\JHQ PDVV WUDQVSRUW ZRXOG UHVXOW 1R FKURPLXP R[LGH RU K\GUR[LGH FRPSRXQGV ZHUH GHWHFWHG KRZHYHU ,I FKURPLXP VXEVWLWXWHG IRU LURQ LQ WKH OHSLGRFURFLWH ODWWLFH LW ZRXOG EH SRVVLEOH IRU WKH FKURPLXP WR PRGLI\ WKH ODWWLFH SDUDPHWHUV DQG HOHFWURQLF VWUXFWXUH PDNLQJ WKH OHSLGRFURFLWH OHVV VXVFHSWLEOH WR UHGXFWLRQ GXULQJ UHZHWWLQJ 7KLV WKHRU\ LV FRQVLVWHQW ZLWK WKH UHVXOWV RI WKH [UD\ GLIIUDFWLRQ VWXGLHV ZKLFK VKRZHG WKDW FKURPLXP VWDELOL]HG OHSLGRFURFLWH

PAGE 152

7KH FRLQFLGHQFH RI VXOIXUULFK DQG FKURPLXPULFK UHJLRQV LQ WKH FRUURVLRQ SURGXFWV SUHVHQWV D WKLUG SRVVLEOH UROH IRU FKURPLXP 7KH FRLQFLGHQFH RI VXOIXU DQG FKURPLXP LQ WKH FRUURVLRQ SURGXFW OD\HU LV OLNHO\ WR EH GXH WR WKH IRUPDWLRQ RI D VWDEOH FKURPLXPVXOIXU FRPSRXQG 6LQFH VXOIDWHV DUH WKH PRVW VWDEOH VXOIXU FRPSRXQGV DW WKH S+fV DQG SRWHQWLDOV H[SHULHQFHG RQ WKH H[SRVHG PHWDO VXUIDFHV WKH IRUPDWLRQ RI D K\GUDWHG &U,,,f VXOIDWH ZRXOG EH OLNHO\ ,I VXFK D FRPSRXQG ZHUH VWDEOH LWfV IRUPDWLRQ ZRXOG HIIHFWLYHO\ WLH XS VXOIDWH LRQV DQG VWRS WKH VXOIDWH UHJHQHUDWLRQ F\FOH 6LQFH WKH VXOIDWH LRQV QRW RQO\ LQFUHDVH WKH FRQGXFWLYLW\ RI WKH HOHFWURO\WH EXW DOVR SDUWLFLSDWH GLUHFWO\ LQ WKH PHWDO GLVVROXWLRQ UHDFWLRQ UHGXFLQJ WKHLU FRQFHQWUDWLRQ VKRXOG OHDG WR DQ LPSURYHPHQW LQ DWPRVSKHULF FRUURVLRQ EHKDYLRU 1R VXFK FKURPLXP FRPSRXQGV ZHUH GHWHFWHGKRZHYHU

PAGE 153

&+$37(5 &21&/86,216 %DVHG RQ WKH UHVXOWV RI WKLV VWXG\ WKH IROORZLQJ FRQFOXVLRQV FDQ EH PDGH b f &KURPLXP DGGLWLRQV LQ WKH UDQJH RI WR ZR VLJQLILFDQWO\ LPSURYH DWPRVSKHULF FRUURVLRQ UHVLVWDQFH RI LURQ IRU ERWK VKRUW DQG ORQJ GXUDWLRQ H[SRVXUHV f ,PSURYHPHQW LQ DWPRVSKHULF FRUURVLRQ RQ VKRUW GXUDWLRQ H[SRVXUHV LV GXH WR WKH SUHVHQFH RI D SURWHFWLYH QDWLYH R[LGH ZKLFK OLPLWV IRUPDWLRQ RI VXOIDWH QHVWV f ,PSURYHPHQW LQ DWPRVSKHULF FRUURVLRQ UHVLVWDQFH IRU ORQJ GXUDWLRQ H[SRVXUHV LV GXH WR HQULFKPHQW RI FKURPLXP DW WKH UXVWPHWDO LQWHUIDFH HVSHFLDOO\ LQ GHHSO\ SLWWHG DUHDV &KURPLXP HQULFKPHQW DOORZV IRU WKH IRUPDWLRQ RI FKURPLXPULFK SDVVLYH ILOPV ZKLFK OLPLW WKH UDWH RI WKH PHWDO GLVVROXWLRQ UHDFWLRQ

PAGE 154

$33(1',; $ 6$03/( )$%5,&$7,21 $1' 9(5,),&$7,21 6XR'OLHUV $QG 3XULWLHV 2I 3XUH 0DWHULDOV 7DEOH $O (OHPHQW 6XSSOLHU 3XULW\ )H -RKQVRQ 0DWWKH\ bn &U -RKQVRQ 0DWWKH\ b &X -RKQVRQ 0DWWKH\ b $YHUDJH &RPSRVLWLRQV 2I )DEULFDWHG 6DPSOHV &RPSRVLWLRQ DQG KRPRJHQHLW\ ZHUH FRQILUPHG E\ DQDO\]LQJ VHYHUDO SRLQWV DFURVV WKH VDPSOH VXUIDFH ZLWK WKH HOHFWURQ PLFURSUREH 7KH QXPEHU RI SRLQWV WDNHQ IRU HDFK VDPSOH LV LQGLFDWHG EHORZ 5HVXOWV RI FRPSRVLWLRQKRPRJHQHLW\ FKHFNV DUH OLVWHG E\ VDPSOH W\SH LQ 7DEOHV $ WKURXJK $ EHORZ 7DEOH $ 9DFXXP,QGXFWLRQ 0HOWHG 6DPSOHV )RU .HOYLQ 3UREH ([SHULPHQWV $OOR\ WDUJHW FRPSRVLWLRQ LQ ZRf SRLQWV DQDO\]HG PHDQ FRPSRVLWLRQ ZRf VWDQGDUG GHYLDWLRQ )H &U r f )HO2&U r 2n )H&U r n

PAGE 155

7DEOH $ 9DFXXP,QGXFWLRQ 0HOWHG 6DPSOHV )RU 2[\JHQ8SWDNH ([SHULPHQWV $OOR\ WDUJHW FRPSRVLWLRQ LQ ZRf SRLQWV DQDO\]HG PHDQ FRPSRVLWLRQ ZRf VWDQGDUG GHYLDWLRQ )H&U rn )HO2&U r f )H&U r n )H&U r 2n )H&X r f )H&U&X &Uf &Xf r 2n &Uf r f &Xf 7DEOH $ $UF0HOWHG 6DPSOHV )RU (OHFWURFKHPLFDO 6WXGLHV $OOR\ WDUJHW FRPSRVLWLRQ LQ ZRf SRLQWV DQDO\]HG PHDQ FRPSRVLWRQ ZRf VWDQGDUG GHYLDWLRQ )H&U r 2f )HO2&U r 2n )H&U r 2f )H 2&U r 2f

PAGE 156

7DEOH $ /DUJH $UF0HOWHG 6DPSOHV )RU /RQJ7HUP &U(QULFKPHQW ([SHULPHQWV $OOR\ WDUJHW FRPSRVLWLRQ LQ ZRf SRLQWV DQDO\]HG PHDQ FRPSRVLWLRQ ZRf VWDQGDUG GHYLDWLRQ )H&U $f r n )H&U %f r 2n )H&U &f rf )HO2&U 'f rf )HO2&U (f r )HO2&U )f r f )H&U $f r n )H&U %f r n )H&U &f r f )H&U 'f r n )H&U (f r f )H&U )f r f )H&U $f r )H&U %f r 2f )H&U &f r n )H&U 'f r )H&U (f r n )H 2&U )f r 2f

PAGE 157

7DEOH $ 6PDOO $UF0HOWHG 6DPSOHV )RU /RQJ7HUP &U(QULFKPHQW ([SHULPHQWV $OOR\ WDUJHW FRPSRVLWRQ LQ ZRf QXPEHU SRLQWV PHDQ FRPSRVLWLRQ ZRf VWDQGDUG GHYLDWLRQ )H&U $f WRPR )H&U %f rn )HO2&U $f rf )HO2&U %f r n )H 2&U $f r 2n )H&U %f r n )H&U $f r f )H&U %f r f 0LFURVWUXFWXUHV 2I 6DPSOHV )LJXUHV $ WKURXJK $ VKRZ UHSUHVHQWDWLYH PLFURVWUXFWXUHV RI GLIIHUHQW VDPSOHV XVHG 6LQFH IRUPDWLRQ RI D VHFRQG SKDVH LV PRVW OLNHO\ LQ WKH PRUH KLJKO\ DOOR\HG VDPSOHV WKH PLFURVWUXFWXUH RI SXUH )H )H&U LQGXFWLRQPHOWHG VDPSOHV DQG )H&U DQG )H &U&X DUFPHOWHG VDPSOHV DUH VKRZQ

PAGE 158

)LJXUH $ $UF0HOWHG 3XUH )H ;f )LJXUH $ $UF0HOWHG )H&U ;f

PAGE 159

)LJXUH $ ,QGXFWLRQ0HOWHG )H&U ;f )LJXUH $ ,QGXFWLRQ0HOWHG )H&U&X ;f

PAGE 160

$33(1',; % ;5$< ',))5$&7,21 63(&75$ 7KLV DSSHQGL[ FRQWDLQV WKH WZRWKHWD YV LQWHQVLW\ SORWV IURP WKH [UD\ GLIIUDFWLRQ RI FRUURVLRQ SURGXFWV (DFK SORW OLVWV WKH DOOR\ FRPSRVLWLRQ DQG H[SRVXUH GXUDWLRQ RI WKH VDPSOH IURP ZKLFK WKH FRUURVLRQ SURGXFWV ZHUH WDNHQ

PAGE 161

;O2 L I -9 ,,,.& W9_OOO 9UWLFLOO &$A80,,& ;UD\ 6SHFWUXP IRU &RUURVLRQ 3URGXFWV r LRR r f O f OHSLGRFURFLWH SHDN JRHWKLWH SHDN PDJQHWLWH SHDN 7 7 7 W

PAGE 163

A 2222222242 2 2 &' &2 A &?f 2 &' ,' 7I &0 ''A?''A? ; &0 2 2 2 2 2R R R R

PAGE 164

H &U WKUHH \HDUV HTXLYDOHQW H[SRVXUH

PAGE 165

3XUH )H WKUHH \HDUV HTXLYDOHQW H[SRVXUH ;L2

PAGE 166

[LR n F[SVRVXUH ;UD\ VSHFWUXP IRU &RUURVLRQ 3URGXFWV r OHSLGRFURFLWH JRHWKLWH

PAGE 167

)H&U RQH \HDUV HTXLYDOHQW H[SRVXUH [ ‘ f n O n

PAGE 169

, H &U RQH \HDU HTXLYDOHQW H[SRVXUH ;

PAGE 170

3XUH )H RQH \HDU HTXLYDOHQW H[SRVXUH [

PAGE 171

;UD\ 6SHFWUXP IRU &RUURVLRQ 3URGXFW $ 8 n n n 7 7 7 7 7 OHSLGRFURFLWH r JRHWKLWH & PDJQHWLWH 7 7 7 7 7 7 7 7

PAGE 172

KH-U LQLWLDO H[SRVXUH FQ RRRRRRRRRR RR LQRLQRLQRLQRLQ RRRRRRRRRR RLQRLQRLQRPRP [ LQ 7I UQ P FX FX A R LQ A A P P F?M F?M R

PAGE 173

)H,&U LQLWLDO H[SRVXUH ; n r f n n n

PAGE 174

)H&U&X LQLWLDO H[SRVXUH [LR n n n 7 7 7 7 7 7

PAGE 175

UFYLMYLL LPXDL H[SRVXUH ;

PAGE 176

U FZ MYAU LQLWLDO H[SRVXUH r n f ‘ ‘ 7 n f 7 7 7 7 7 7 7 7 7 7 7 7 7 7

PAGE 177

3XUH )H LQLWLDO H[SRVXUH [

PAGE 178

5()(5(1&(6 +( 7RZQVHQG 0 6LPSVRQ DQG */ -RKQVRQ &RUURVLRQ f 0 ( .RPS 0DWHULDOV 3HUIRUPDQFH S 0 ( .RPS )+:$ )RUXP RQ :HDWKHULQJ 6WHHO S -% +RUWRQ f7KH 5XVWLQJ RI /RZ$OOR\ 6WHHOV ,Q 7KH $WPRVSKHUHf 3LWWVEXUJ 5HJLRQDO 7HFKQLFDO 0HHWLQJ RI WKH $PHULFDQ ,URQ DQG 6WHHO ,QVWLWXWH f + 2NDGD < +RVRL
PAGE 179

& 3 /DUUDEHH DQG 6 &REXP f7KH $WPRVSKHULF &RUURVLRQ 2I 6WHHOV $V ,QIOXHQFHG %\ &KDQJHV ,Q &KHPLFDO &RPSRVLWLRQf )LUVW ,QWHUQDWLRQDO &RQJUHVV 2Q 0HWDOOLF &RUURVLRQ /RQGRQ f 0 ) 7D\ORU 3 %RGHQ DQG ( +ROPHV %ULWLVK &RUURVLRQ -RXUQDO f -& +XGVRQ DQG ) 6WDQQHU ,URQ DQG 6WHHO ,QVW f ; 0D[ZHOO 6E .RUUR]L\Q 0HWDOORY 0 *DVNKLPL]GDW f + 6FKZLWWHU DQG+ %RKQL (OHFWURFKHP 6RF f 7 0LVDZD +DVKLPRWR DQG 6 6KLPRGDLUD &RUURVLRQ 6FLHQFH f ( )DVLVND &RUURVLRQ 6FLHQFH f ,QRX\H ,FKLPXUD .DQHNR DQG 7 ,VKLNDZD &RUURVLRQ 6FLHQFH f ,QRX\H &ROORLGDO DQG ,QWHUIDFLDO 6FLHQFH f 0 3RXUEDL[ $WODV RI (OHFWURFKHPLFDO (TXLOLEULD LQ $TXHRXV 6ROXWLRQV 3HUPDJRQ &HEHOFRU 3 % 6HZHOO & 6WRFNEULGJH DQG 0 &RKHQ (OHFWURFKHP 6RF f 0 &RKHQ (OHFWURFKHP 6RF f 6 +DXSW DQG+ + 6WUHKEORZ &RUURVLRQ 6FLHQFH f 6FKDPZHEHU : )RUNHU DQG 5DKQHU &RUURVLRQ f (LFKKRP DQG :)RUNHU &RUURVLRQ 6FLHQFH f ) 0DQVHOG DQG 9 .HQNHO &RUURVLRQ 6FLHQFH f / 5RVHQIHOG $WPRVSKHULF &RUURVLRQ 2I 0HWDOV 1$&( +RXVWRQ 7; f %DUWRQ 3URWHFWLRQ $JDLQVW $WPRVSKHULF &RUURVLRQ -RKQ :LOH`f DQG 6RQV 1HZ
PAGE 180

% 1 (UVKOHU =K )L] .KLP f 0 6WUDWPDQQ DQG + 6WUHFNHO &RUURVLRQ 6FLHQFH f / 5R]HQIHOG DQG $ =KLJDORY 'RNO $ 1 6665 f 8 5 (YDQV 7UDQV ,QVW 0HW )LQLVK f 8 5 (YDQV 1DWXUH f 0 6WUDWPDQQ .%RKQHQNDPS DQG7 5DPFKDQGUDQ &RUURVLRQ 6FLHQFH f 0XOOHU 'LSORPDUEHLW 'XVVHOGRUI f 0XOOHU 'LVVHUWDWLRQ 'XVVHOGRUI f 0 6WUDWPDQQ %RKQHQNDPS DQG + (QJHOO &RUURVLRQ 6FLHQFH f 'XQQZDOG $ 2WWR &RUURVLRQ 6FLHQFH f 0 6WUDWPDQQ DQG +RIIPDQQ &RUURVLRQ 6FLHQFH f

PAGE 181

%,2*5$3+,&$/ 6.(7&+ /DXUD :XUWK ZDV ERUQ RQ -XO\ LQ $OH[DQGULD 9LUJLQLD 6KH UHFHLYHG KHU EDFKHORUfV GHJUHH LQ PDWHULDOV VFLHQFH DW WKH 8QLYHUVLW\ RI )ORULGD LQ 6KH EHJDQ JUDGXDWH VWXGLHV DW WKH 8QLYHUVLW\ RI )ORULGD WKDW VDPH \HDU 6KH UHFHLYHG KHU 0 6 GHJUHH LQ PDWHULDOV VFLHQFH LQ :KLOH SXUVXLQJ ERWK PDVWHUfV DQG GRFWRUDO GHJUHHV VKH ZRUNHG DV D UHVHDUFK DVVLVWDQW LQ WKH FRUURVLRQ JURXS LQ WKH 'HSDUWPHQW RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 182

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'LVWLQJXLVKHG 6HUYLFH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ IN\$$R IDPHV :LQHIRU DGXDWH 5HVHDUFK 3URIHVVRU RI &KHPLVWU\

PAGE 183

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -RKQ $PEURVH $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 184

/' 8f9r


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ENZUF6I92_ZUEWZG INGEST_TIME 2017-07-11T21:57:18Z PACKAGE AA00002057_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES