Citation
Quantization and representation independent propagators

Material Information

Title:
Quantization and representation independent propagators
Creator:
Tomé, Wolfgang, 1962-
Publication Date:
Language:
English
Physical Description:
ix, 168 leaves : ; 29 cm.

Subjects

Subjects / Keywords:
Algebra ( jstor )
Coordinate systems ( jstor )
Hilbert spaces ( jstor )
Lagrangian function ( jstor )
Lie groups ( jstor )
Mathematical theorems ( jstor )
Mathematical vectors ( jstor )
Mathematics ( jstor )
Quantum mechanics ( jstor )
Von Neumann algebra ( jstor )
Dissertations, Academic -- Physics -- UF
Mathematical physics ( lcsh )
Physics thesis, Ph. D

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1995.
Bibliography:
Includes bibliographical references (leaves 161-167).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Wolfgang Tomé.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002058177 ( ALEPH )
33849120 ( OCLC )
AKP6221 ( NOTIS )

Downloads

This item has the following downloads:


Full Text
















QUANTIZATION
AND
REPRESENTATION INDEPENDENT PROPAGATORS


By

WOLFGANG TOME


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
































For Marie-Jacqueline and Anne-Sophie































"The highest reward for a man's toil is

not what he gets for it, but what he becomes by it."
-John Ruskin












ACKNOWLEDGEMENTS




I would like to thank Prof. Dr. John R. Klauder for being my thesis advisor for


the past 4 years.


His ideas, guidance, constructive criticism, advice, encouragement,


support, trust and confidence in me are greatly appreciated.

I wish to thank Prof. Dr. Stanley P. Gudder, from the University of Denver, for

introducing me to the foundations of quantum theory and for serving as my master's

thesis advisor. I also would like to thank Prof. Dr. Alwyn van der Merwe for making

my stay at the Department of Physics at the University of Denver possible.


Prof. Dr. James


couragement,


Dufty is cordially thanked for his advice, support, and en-


without which this work might never have been completed.


I also would like to thank Prof. Dr.


Gerard G. Emch and Prof. Dr. Stephen J.


Summers for their constructive criticism at an early stage of this work and Prof.


Dr. Bernard F


Whiting for helpful discussions on the classical limit of the represen-


station independent propagator. I also wish to thank Prof. Dr. Khandkar Muttalib for

his service on my committee.


I am grateful to Prof. Dr. Hajo Leschke from the University of Erlangen,


Ger-


many for his helpful remarks on the universal propagator for affine coherent states,


during the Conference on Path Integrals in Physics, held in Bangkok,


the Winter of 1993.

my investigations.


Thailand, in


His remarks proved to be very valuable in the further course of

I am also grateful to Dr. Max Brocker from the Studienstiftung







Finally, I wish to express my gratitude to my wife Marie-Jacqueline, who has al-

ways been a supportive and understanding companion in the at times very demanding

life of a physicist.
Financial support for the work presented here has been provided in part by a


doctoral fellowship from the Studienstiftung des deutschen


Volkes and by a graduate


research award from the Division of Sponsored Research at the University of Florida.












TABLE OF CONTENTS


ACKNOWLEDGEMENTS


S S S S mi


ABSTRACT


CHAPTERS


INTRODUCTION


* 8 1


The Fiducial Vector Independent Propagator for the Heisenberg Weyl


Group
1.1.1


Examples of the Fiducial Vector Independent Propagator


General Overview of the Thesis


A REVIEW OF SOME MEANS TO DEFINE THE FEYNMAN


PATH INTEGRAL ON GROUP


The Feynman Path Integral on Rd


2.1.1
2.1.2


AND SYMMETRIC SPACES


, Group, and Symmetric Spaces


Introduction .
The Feynman Path Integral on Ri


2.1.3 The Feynman Path Integral on Group Spaces .
2.1.4 The Feynman Path Integral on Symmetric Spaces
Coherent States and Coherent State Path Integrals .
2.2.1 Introduction . .


Coherent States: Minimum Requirements.


2.2.4
2.2.5


Group Coherent States .
Continuous Representation


* S
* S 5 0 8


The Coherent State Propagator for Group Coherent States


NOTATIONS AND PRELIMINARIES


Notations


. 42
. 46


Preliminaries


THE REPRESENTATION INDEPENDENT PROPAGATOR
FOR A GENERAL LIE GROUP


Coherent States for General Lie Groups. .
The Representation Independent Propagator for Compact Lie Groups


__ **__* -, 1 in 1 T- i f/^t T rt


L'r






Page
Missing
or
Unavailable












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
QUANTIZATION
AND
REPRESENTATION INDEPENDENT PROPAGATORS
By

WOLFGANG TOME


August 1995


Chairman:


Dr. John R. Klauder


Major Department:


Physics


The quantization of physical systems moving on group and symmetric spaces


been an area of active and


on-going research


over the past three decades.


is shown in this work that it is possible to introduce a representation independent


propagator for


a real,


separable,


connected


and simply


connected


Lie group


with


irreducible, square integrable representations.


For a given set of kinematical variables


this propagator is a single generalized function independent of any particular choice

of fiducial vector and the irreducible representations of the Lie group generated by


these


kinematical variable


es, which nonetheless,


correctly propagates each


element


of a continuous representation


based on the coherent states associated with


these


kinematical variables.

Furthermore, it is shown that it is possible to construct regularized lattice phase-

space path integrals for a real, separable, connected and simply connected Lie group


with irreducible, square integrable representations,


and although the configuration







path integral quantization is obtained for general physical systems whose kinematical


variables are the generators of a connected and simply connected Lie group. This

novel phase-space path integral quantization is (a) more general than, (b) exact, and

(c) free from the limitations of the previously considered path integral quantizations

of free physical systems moving on group manifolds.


To illustrate the general theory, a representation independent propagator is


plicitly constructed for SU(


) and the affine group.












CHAPTER 1
INTRODUCTION


In non-relativistic quantum mechanics the states of a quantum mechanical system


are given by unit vectors, such as b


4, or 77,


in some complex, separable Hilbert space


For a single canonical degree of freedom problem the basic kinematical variables


are represented on H by two unbounded self-adjoint operators P


, the momentum,


and Q


the position,


with a common dense invariant domain D


. These operators


satisfy the Canonical (Heisenberg) Commutation Relation (CCR)


[Q, P]


= iI,


where h


. Let


Wi(P, Q)


be the Hamilton operator of a quantum system,


then


the time evolution of this quantum system in the state 4


E D(Q) is given by the


time-dependent Schrddinger equation


iat(t)


= Wt(P, Q).(t)


Since only self-adjoint operators may be exponentiated to give one-parameter uni-


groups which


give the dynamics of a quantum system


it will always be as-


sumed that the Hamilton operator is essentially self-adjoint, i.e.


adjoint.


its closure is self-


If the Hamilton operator is not explicitly time dependent then a solution


to Schridinger's


equation is given in terms of the strongly continuous one-parameter


unitary Schridinger group,


U(t)


= exp(-itW),






2

variables P and Q are realized by the following two unbounded symmetric operators


-id/dq and q,


or p and id/dp, respectively.


These operators are essentially self-adjoint


on the dense subspace S(1R)


of L2(IR)


the space of infinitely often


differentiable


functions that together with their derivatives fall off faster than the inverse of any


polynomial.


Furthermore, since these operators leave S(R) invariant,


one can choose


S(R)


C L2(R) as the common dense invariant domain for these operators.


calls these operators together with their common dense invariant domain


(11) the


Schrbdinger representation on q-space,


or on p-space,


which is denoted by b(q)


(R) or (p)


However,


(R), respectively (cf.


we would like


Appendix V]).


to emphasize that there is nothing sacred about this


choice of representation other than the time-honored custom of doing so.


One can also


choose one of the so-called continuous representations based on canonical coherent


states


[60]).


In this representation


the states are given


by certain


bounded,


continuous, square integrable functions of two real parameters p and q.

these functions by ',(p, q). The functions i,(p, q) span a subspace L(1R2


We denote


) of L(R2),


where the subscript i7 denotes a unit fiducial vector in the Hilbert space H on which the


canonical coherent states are based.


Let r)(x)


E L2(JR) be a fixed normalized function


S(z)


L (JR)


be arbitrary,


then an


explicit representation


of the functions


n(p, q) can be given as follows


v%(P, q)


r(x) exp(


-ipxz)t (x + q)dx.


(1.1)


FYom this form of the representation it may be seen that one obtains the Schrbdinger


representation in q-space or in p-space in appropriate limits.


In particular, one obtains


the Schrbdinger representation on q-space by suitably scaling the 4n(p, q) so that the


1 a 1 a I f ...! a 1 -_ l J a a U 1a-


J27


,1 L0 -






3

With each of these various representations one can associate a propagator:

in q-space by


"; q', t') (q'


,t')dq'


in p-space by


'(p"'


,t')dp'


and finally in the continuous representation based on canonical coherent states by


,P(p"


K,(p"


q,t ',(


',t')dp'dq'.


Of course each one of these propagators generally depends on the representation one


has chosen.


Physically, these propagators represent the probability amplitude for the


quantum system under discussion to undergo a transition from an initial configuration


to some final configuration,

for the quantum system. LU


and they contain all the relevant dynamical information

et us ask whether it is possible to find a single propagator


t') such that


P1 0(p11


I", ")


holds for an arbitrary fiducial vector.


It'), ,(p'


,q',t')dp'dq',


Stated otherwise, is there a propagator that is


independent of the chosen continuous representation


but which


, nonetheless, propa-


gates the elements of any representation space Lr(R2) in such a way that they stay in


the representation space L2(nR)?


The answer is yes.


We now outline the construction


of this propagator for the Heisenberg Weyl group


for an alternative construction of


this propagator see Klauder [65].


The Fiducial Vector Independent Propagator for the Heisenberg Weyl Group


Let P


and I be an irreducible, self-adjoint representation of the Heisenberg


r rl T


nf D Ti


Sa- TT-


II I .. I* I j I l .-


Than few an arbitrary normalized


r n


.


J(q"


S(q"


L(p"


, q",t"


K (p"


K(p"


nrn -


1 1 1







where V(p, q)


E exp(


-iqP) exp(ipQ).


In fact these states are the familiar canonical


coherent states which form a strongly continuous,


a fixed, normalized fiducial vector 7n


overcomplete family of states for


E H and they admit the following resolution of


identity:


> )dpdq.


The map C,


-4 L(IR2


, dpdq)


defined for any


EH by:


[C,p](p,q)


1
V/27?


= ((p, q)


yields a representation of the Hilbert space H by bounded, continuous, square inte-
grable functions on a proper closed subspace L2(R2) of L2(R2). Using the resolution


of identity one finds


K,(p, q;p'


q') dp'dq'


where,


K, (p, q; p'


',q'))


- (,(p, q),S (p


=<( ,


1
i2n;


V'(p, q)V(p'


is the reproducing kernel


which is the kernel of a projection operator from L (1R2)


onto the reproducing kernel Hilbert space L2(R2).


Let D


be the common dense


invariant domain of P and Q that is also invariant under V(p, q),


then one can easily


show that the following relations hold on D:


-iaV* (p, q)


V (p, q)P,


(1.2)


(q + ip)V* (p, q)


V*(p, q)Q.


(1.3)


Notice, that the operator V*(p, q) intertwines the representation of the Heisenberg-


1
V-T


r(p,q) (l(p,q),


= C0(P,q)


, V* (p,q) )


,') ,(p'


)(P, q)





5

and an appropriate core for these operators is given by the continuous representation


of D


= C,(D).


Let 'H(P, Q) be the essentially self-adjoint Hamilton operator of


a quantum system on H,


then using the intertwining relations (1.2) and (1.3) one


finds for the time evolution of an arbitrary element '(p, q,t) of D,


C L(R2) the


following


K, (, q, t; p


', t')dp'dq'


where,


K,(, q, t; P'


(r(p, q), exp[-i(t


1
V/27


- t')(P, Q)1p '))


V*(p, q) exp[-


1
V/27


-t')(P, Q)}V(p'


- t')N(


-i8,q + iQp)] (,


1
J2v


v (p,q)V(p'


where the closure of the Hamilton operator has been denoted by the same symbol.


This construction holds for any 7r


EH


therefore


one can choose any complete or-


thonormal system {(j>&}=1 in H and write down the following propagator


K(p, q, t; p'


K, (p, q, t; p',


i(t- t')n(


-iq, q + ip)] Z j


1
V/27T:


V*(p,q)V(p


-ioq, q + i8p)


tr[V* (p, q) V (p'


Let us now evaluate etr[V*(p,q)V(p', q'
complete orthonormal systems in L2 (R).


{a(x) }=1i


{k (z) }=i


be two


Then using the representation in (1.1) we


1
V^TT


1
J2


,D,


,t'), (p'


t(p, q, t)


- t') (


---










tr[V(p, q)V(p'


-ipQe)qP (e. P\, eip'Q4 )


k, =
kc,/=l '


#1 (x)exp(


-ipx)lk(X + q)dx


+ q')lk(x


/ k(x' + q') exp(ip'a')fl(x')dx'


+ q) exp[i(p'x'


- px)]dxdx'


Sexp[-


- x')S[(x'


- p')z]{


- q')]dx'}dx


-x)


-q')


- p')6(q


- p')x]dx


- q'),


the fourth line follows from using the completeness relations for the '(sx) and k (x).


Hence


, the propagator K(p, q, t; p'


, t') is given by:


K(p, g, t; p'


- exp[-


-ia,, q + i8p)]S(p


-q').


(1.4)


As shown in [65] this propagator propagates the elements of any reproducing kernel
Hilbert space L1(R2) correctly, i.e.


,p(p,q,t)


K(p,q,t; p


', ', t')In(p'


,t')dp'dq',


(1.5)


The propagator in (1.4) is clearly independent of the chosen fiducial vector.


A suf-


ficiently large set of test functions for this propagator is given by C(R2) n L2(i2),


where C(o2) is the set of all continuous functions on JRZ


Hence


every element of


L()4R2) is an allowed test function for this propagator.


From (1.4) it is easily seen


that the fiducial vector independent propagator is a weak solution to Schrbdinger


equation,


i9tK(p,q,t; p'


=w-


ig, q + i.p)K(p, q,t;p'


- t .


-(q


( ,e


6i() 1(x}^WCk (x'


- )t'(





7

We now interpret (1.6) as a Schrbdinger equation appropriate to two separate and in-


dependent canonical degrees of freedom.


Hence


, p and q are viewed as "coordinates,


and we are looking at the irreducible Schrodinger representation of a special class of


two-variable Hamilton operators,


ones where the classical Hamiltonian is restricted


to have the form 7U(k, q


- x) instead of the most general form U(k, q,p).


In fact


the operators given by equation (1.2) and (1.3) are elements of the right invariant


enveloping algebra of a two dimensional Schrbdinger representation.


interpretation following standard procedures (cf.


Based on this


[63]) one can give the fiducial vec-


tor independent propagator for the Heisenberg Weyl group the following regularized

standard phase space lattice prescription:


K(p,q,t;p'


lim
N-+oo


. .*/


exp{i


(qe+1 qj)


(qj+1 + qj)/


- xj+1


)]} J dp-dqj f dkj+i/2dCj+/, 2


where (pVN+1,


qN+l)


_= (P, )


(Po, qo)


= (p'


and e


- -(t


- t')/(N + 1).


Observe


that the Hamiltonian has


been used in the special form dictated by the differential


operators in equations (1.2) an

After a change of variables (see


(1.3)


and that


Weyl ordering has


been adopted.


[65]) the fiducial vector independent propagator for


the Heisenberg Weyl Group becomes


K(p, q,t;p'


lim
N-+o


S./


N1
exp{it (qj+l + qj)(pj+i
j=o


- pi)


- xj+l/2(pj+l


- p)


+ k+1l


(qj+i


-qj)


- eW(k,+i/2,


)] Jdpdqj /2dZ+1/2
i=1 i=o (2.r


Tankiner an imnrnnpr


limit


hv intprhanatrinaT thp limit. with rsnnPrtt


tn N


with thP


- eH(Cj+i


-pj) + k+1


(pj+l










K(p, q, t; p'


here


= M


denote


/exp i


momentt"


Jqp


- zp + k4


conjugate to the


7/(k, x)]dt p:qDkDx,


"coordinates"


respectively.
Despite the fact that the fiducial vector independent propagator has been con-


structed as a propagator appropriate to two (canonical) degrees of freedom,


it is


nonetheless true that its classical limit refers to a single (canonical) degree of freedom


[65]).


1.1.1


Examples of the Fiducial Vector Independent Propagator


1.1.1.1 Vanishing Hamiltonian


We now look at two examples of the fiducial vector independent propagator.


first example is that of the vanishing Hamiltonian which leads to


K(p, q, t;p'


exp


/(qp+ k4


- xp)dt


DpDqDkDx


exp (i


- p') (q


This is of course a trivial example; however


Sqpdt 6{4} 6{p}VpTdq

q').

r, it shows that the fiducial vector inde-


pendent propagator fulfills the correct initial condition as is expected from equation

(1.6).


1.1.1.2


The Hamiltonian I7


= (P2 + w2Q2)/2


The second


example we consider is that of the Hamiltonian


l(k, z)


= (k2


w2z2)/2.


Here the fiducial vector independent propagator takes the following form:


1(- n t *tn


n' '







csc(wT/2)


exp i (q + q'(p


1
-p')+ cot(wT/2)
4


1
-(p
W


-p ')


+w(q


where T


= t -t'


. This is an unusual result for the propagator of the harmonic os-


cillator.


This result has the appearance of a propagator for a two- dimensional free


particle in a uniform magnetic field (cf.


64]).


However,


when one brings up


an element of any of the reproducing kernel Hilbert spaces L (R2) then this prop-


agator acts like the conventional propagator for the harmonic oscillator


in the appropriate limits one can recover the


Moreover,


usual propagators in the Schrbdinger


representation (see [65]).


General Overview of the Thesis


This thesis is organized into six chapters and three appendices.


is this introduction and the last chapter is a conclusion.


The first chapter


The results of our research


are contained in chapters 3,


and 5.


The three appendices have been added to make


this thesis reasonably self-contained.

In chapter 2 we discuss the construction of path integrals on group and symmetric


spaces.


In section 2.1 we review the Feynman path integral on flat,


group, and sym-


metric spaces. Section


is devoted to the study of group coherent states associated


with a compact group and the construction of coherent state path integrals based on

group coherent states associated with a compact group.

In chapter 3 we introduce the notations and basic definitions used throughout


the thesis.


The main result of this chapter is Theorem 3.2.1,


in which we derive an


operator version of the generalized Maurer-Cartan form.

Chapter 4 contains the construction of the representation independent propagator


- q')








locally compact, connected and simply connected Lie group1 with irreducible square


integrable representations2


as a general Lie group.


For a given set of kinematical


variables this propagator is a single generalized function independent of any particular


choice of fiducial vector


and the irreducible representation of the general Lie group


generated by these kinematical variables. In section 4.1 we define coherent states for

a general Lie group and prove Lemma 4.1.4 and the Corollary 4.1.5 which we apply in

the construction of the representation independent propagator and the construction

of regularized lattice phase-space path integral representations of the representation

independent propagator.

Prior to constructing the representation independent propagator for a general


Lie group,


we construct in section 4.2 the representation independent propagator for


any real compact Lie group.


It is shown in


Theorem 4.2.2 that the representation


independent propagator for any compact group correctly propagates the elements of

any reproducing kernel Hilbert space associated with an arbitrary irreducible unitary


representation of G.


As an example the representation independent propagator for


SU(2) is constructed.

In section 4.3 this construction is then suitably extended to a general Lie group

and we show in Theorem 4.4.2 that the result obtained in Theorem 4.2.2 holds for a


general Lie group.


In Proposition 4.4.4 we establish that it is possible to construct


regularized phase-space path integrals for a general Lie group.

the group space is a multidimensional curved manifold, it is s


Even though generally


hown that the resulting


phase-space path integral has the form of a lattice phase-space path integral on a mul-


tidimensional flat manifold.


Hence


, we obtain a novel and very natural phase-space


path integral quantization for systems whose kinematical variables are the generators


ar\ Tll.njlnn 'r^i ra+l kn nrc 1 +br'i.?^ +rbo rnnnran4 n+Srv an n Aanan


nFf ft WAmtAft T /i mr"i







In chapter 5 we discuss the classical limit of the representation independent prop-

agator of a general Lie group and show that its classical limit refers indeed to the


degrees of freedom associated with the general Lie group.


Sections 5.1 and 5.2 con-


tain a detailed discussion of the classical limit of the coherent state propagator for

compact Lie groups and non-compact Lie groups.

In section 5.3 we prove that the equations of motion obtained from the action

functional of the representation independent propagator for a general Lie group imply


the equations of motion obtained from


the most general action functional of the


coherent state propagator for a general Lie group (cf. Proposition 5.3.1).











CHAPTER 2


A REVIEW OF SOME MEANS
INTEGRAL ON GROUP


TO DEFINE THE FEYNMAN PATH
AND SYMMETRIC SPACES


This chapter is somewhat independent of the rest of this thesis and serves as

an introduction to some of the ways of constructing path integrals on group and


issue again with rigor in chapter 4.


path integral on JRd, gr<

to a preliminary study


of group coherent states,


but we will confront the


Section 2.2 is devoted


detail in chapter 4.


The remaining part of section 2.2 is devoted to the construction


of coherent state path integrals based on group coherent states.


The Feynman Path Integral on Rd


year


1925


can be seen


as the


beginning


modern


quantum


mechanics


marked by the two almost simultaneously published papers of Heisenberg [52] and


The former proposes the formalism of matrix mechanics,


the latter proposes the formalism of wave mechanics.


Schridinger f92


while


first showed


that the two formulations are physically equivalent. Both of these approaches where


combined heuristically by


Dirac [24]


into a more general formulation of quantum


mechanics.


The mathematically rigorous development of this general formulation of


quantum mechanics was subsequently carried out by von Neumann [104].

This general formulation of quantum mechanics is based on an analogy with the


symmetric spaces.


Our arguments will be largely heuristic,


In section


oup, and symmetric spaces is discussed.


the construction of the Feynman


we take this subject up in more


Introduction


, Group, and Symmetric Spaces


Schridinger








quantum mechanics, except in the suggestive derivation of Schridinger's wave equa-


tion from the Hamilton-Jacobi equation by the substitution,


-ihln('0),


where S


denotes the Hamilton principal function.

The first hint of the possible importance of the Lagrangian in quantum mechanics

was given by Dirac [23]; he remarked that the quantum transformation (qt qto) corre-


sponds to the classical quantity exp[(i/h) ft Ldt].

led Feynman in 1941, then a student at Princeton,


It was this remark by Dirac that

to a new formulation of quantum


mechanics (see the account in [47


126-129])


. This new approach did certainly not


break any barriers that could not be overcome from the operator or Hamiltonian point


of view.


Nevertheless, one might have gained in two ways from Feynman's work [35


and the ensuing work of other authors [21, 20,


, 58, 60,


61, 80, 97]


. From a


practical point of view, as pointed out by Feynman [35


this approach to quantum


mechanics allows one to reduce a problem that involves the interaction of system A


with system B, to a problem, let us say, involving system A alone.


This is clearly use-


ful if one wants to restrict oneself to questions concerning only one system.


one has benefitted from Feynman's approach


Another


to quantum mechanics is in the


conceptual understanding of quantum mechanics, specifically in the understanding of


the connection of quantum mechanics and classical mechanics (cf.


,60, 61]).


There are several books and review articles on the subject of path integrals.


selection presented is not meant to be comprehensive but is rather reflective of the


author's taste.


Feynman and Hibbs


37] give a heuristic introduction to the subject,


whereas


Schulman


gives


a more


rigorous introduction


to the


Feynman


path


integral on configuration space and considers a number of applications of the method


in different fields of physics.


For a good and thorough introduction to the subject of








contains many applications of the path integral method to problems in


quantum


mechanics, statistical,


and polymer physics.


Moreover


Inomata et al.


[54] discuss


various techniques of path integration not covered in the aforementioned monographs.


2.1.2


The Feynman Path Integral on Rtd


We will now describe a simple derivation of Feynman's


path integral on the basis


of the canonical formalism of quantum mechanics which was first published by To-


bocman [97].


The idea is to find an appropriate approximation for the time evolution


operator, U(t"


- t')


= exp[-


(i/h)(t"


- t')9i] (introduced in chapter 1),


at small times


and then to construct step by step the time evolution operator at finite times.

start from the identity


U(t"


which holds for any


- t')


= [U((t"


- t')/(N + 1))1N+


Let us now consider the case of large N


then the step


size e


- (t"


- t')/(N + 1) is small and we have the following approximate identity to


first order in e


t
S1 -
.1Cfc


To ensure that the quantized Hamilton operator 1{(P, Q) is unambiguous, i.e.


in order


to avoid operator ordering problems, we consider the following simple Hamiltonian


Ha (p, q) = 1


(2.1)


where q


= (qi,


..., qd) and p


- (pi


Furthermore,


we use the mixed (p, q)


matrix element of the time evolution operator U(t):


(q"JU(t"


- t')lq')


/(q"IP') (p


U(t"


- t')lq'>dp',


j--_ L i __ ---_____ ... _t i TI* *!I .... A-t 11


U(e)


+ V(q),


. .., pd).








- -H(p, q)](p|q)


- (pq)]
ft


(Pq) ,


(2.2)


valid to first order in E.


Here


, (p, q) is defined


1H(p, q)


For the simple Hamilton operator


'1(P, Q)


= (1/


+ V(Q) we are considering


A(p, q) coincides with the classical Hamiltonian Hd(p, q).


Note that for more corn-


plicated Hamilton operators this has no longer to be true (see below)


. Using (


and the fact that (p q)


=(27r)


-d
exp


(i/h)pq] we find that


t"; q', t')


(q" IU(t"


- t')lq')


lim (qf(U (C)]+
N-*oo


lim
N- oo


f l .+iIU(e) J d
C C


lim
N-too


" exp


[Pj+i


(q +1 q)


- eHd(pj+i


N

j=1


N

j+1/2=0


(2.3)


dpj+l/
(271)


where qo


= q' and qN+1


= q". It follows from (


.3) that the q-space propagator


q', t') satisfies the following initial condition:


q', t')


= 6(q"


as it should


ts very definition.


Observe that in the phase-space path integral


representation (2.3) there is always one more integral over the p than there is over


1ml ,1 a I J r r A..-!


- A. S.. n:J -.


qj)~


(p|7H(P, Q)lq)


(Pl|q)


J(q",


J(q"


- q'),


lim J(q"
t"- t'







with respect to N with the integrals we find the following formal standard phase-space

path integral


J(q"


I- (p(t), q(t))
ti


DqDp,


where,


- Ha(p, q)]dt.


This formal phase-space path integral for the q-space propagator J(q"


first written by Feynman [36, Appendix B.],


q',t') was


and then was subsequently rediscovered


other authors (see for instance Davies (20] and Garrod [40]).


The integration


ranges over all paths in 2d-dimensional phase-space which are pinned at q


Sq,"


' and


, while the integration over the moment is unrestricted.


The Lagrangian form of the path integral


as originally proposed by Feynman


can be obtained form (2.3) by integrating out the moment.


done follows from the fact that the moment enter quadraticly.


That this can be


Hence, if we carry


out the N + 1 Fourier transformations in (2.3) which are of the form:


i .
exppy
z '
S dij+/2

2'rihc~


2 1
- q) 2Pj++/2J


(q j+


(27)d


(2.6)


then we find the following result:


J(q"


... exp


-Id(q(t))
hi


c (q(t))


-V(q)


, where q(t')


= q"


', q(t")


(2.7)


This is the formal Feynman path integral over paths in configuration space pinned at


q' and q"


. Before leaving this subsection we would like to make a number of remarks


- S -1 -


]l(p(t);q(t))


dpj+l/2


i(q-+i


-qj)







invariant under general canonical transformations. However, this is not the case.


As shown by Klauder [63,


section II] the regularized lattice phase-space prescrip-


tion (2.3) for the q-space propagator is only invariant, or better covariant,

the subset of point transformations among all canonical transformations.


Operator ordering.


under


If the Hamiltonian is no longer of the simple form we have


considered in (2.1) but has a more complicated (p, q)-dependence, then one has


to confront the issue of operator ordering in the Hamiltonian.


is the case for a free particle moving on a Riemannian manifold,


Hd(p, q)


For example,


for which


gi(q)pipj.


The basic principles one uses for the resolution of the operator ordering prob-

lem are (a) the Hamilton operator has to be symmetric and, (b) if the classical


system has a symmetry group,


the corresponding quantum theory must have


this symmetry.


As Marinov remarks


, "the first of these conditions is evident


while the second is more arbitrary and not always constructive" [75,


In particular, condition (a)
cal Hamiltonian Hda(p, q) =


implies that we should associate with the classi-


SF(q)p the following quantized Hamilton operator


9i(P,Q)


= (1/2)[PF(Q) + F(Q)P].


Using the principles (a) and (b) in the


resolution of the operator ordering problem might lead to additional correction


terms proportional to h2 in the action functional (cf.


Integral over configuration-space trajectories.

(2.7) was obtained for the Hamiltonian (2.1).


[95]).


The Feynman path integral in

If the p-dependence of the Hamil-


tonian is no longer simply quadratic but more complicated,


then the integral in


(2.6) is no longer a simple Gaussian integral and does not result in the classical







2.1.3


The Feynman Path Integral on Group Spaces


The quantization of a free particle moving on a group manifold has been con-


sidered in a number of works


, 48,


, 56,


, 76,


Schulman [94


introduced


starting from the known semiclassical approximation,


propagator for a free particle moving on the group manifolds of SO(3) and SU(2).

However, Schulman did not present a simple path integral solution for the problem,


(cf. the remarks in Ref. 71,


chapter 8)


Dowker [28, 29] extended Schulman's


approach


to simple Lie groups, considering explicitly the motion of a free particle on the group


manifold of SU(n).


It is shown in Ref.


28 that the semiclassical approximation is


only exact for the motion of a free particle on the group manifold of a semisimple Lie

group and that it can in general not be expected that the semiclassical approximation


is exact for all symmetric spaces,


since it is not exact for the n-sphere,


SO(n + 1)/SO(n),


n> 3.


The question as to what is the largest class of spaces for which


approximation is exact seems still to be an open one.


the semiclassical


The beauty of the above result,


as Dowker points out,


is that in the


cases


for which the semiclassical approximation is


exact


, the propagator is obtained by summing only over classical paths. A Feynman


path integral treatment of the motion of a free particle on compact simple Lie groups


and spheres of arbitrary dimension has


been


proposed


Marinov and Terentyev


, 77].
Before we consider their proposal we briefly outline the construction of path inte-


grals on Riemannian manifolds.


DeWitt [22] observed that for a free physical system


moving on a d-dimensional unbounded Riemannian manifold with constant scalar


nn+..... ...., oi m+,- toncnr fi-nl


l th nrnnacratnr for infinitesimal time is riven


,94].







where


q', t')


= (2rih)


(q")D(q"


q', t')g


D(q"


q',t')


= det


21ia


agOq'iqk


is van


Vleck'


determinant.


Here g(q)


and Id


-
, 2 JC


gij*1'qdt is


the classical action functional.


As observed by Marinov [75],


this simple form of the


semiclassical approximation is only valid for unbounded Riemannian manifolds,


since


the proof of the theorem that two points q"
connected by only one classical path (cf. [108,


and q'


at fixed small t"


- t' may be


pp. 58-64]) uses the unboundedness of


the manifold in an essential way.


On the other hand,


as is pointed out in Refs. 29 and


75, if one is dealing with bounded Riemannian manifolds there might exist a number
of classical paths connecting two points on the manifold, each of these paths then


enters into (2.8) possibly with a phase;


Berry and Mount [9].

is multiply connected,


see also in this respect the review article by


As an example we mention the case when the bounded manifold

the classical paths connecting two points on the manifold then


divide into distinct homotopy classes;


see the example below of a free particle moving


on a circle and Schulman [95,


197-205] for a discussion of this point.


For this case


the semiclassical approximation takes the following form:


J (q,"


q', t')


Am (q"


_i ,,t.,


q', t') exp


q', t')


(2.9)


where the sum is over all classical paths connecting q"


and q'


If is the classical


action functional along the mth path


and 7m is an integer that depends in general


on all the arguments.


Also note, as is remarked in Ref.


that the semiclassical


9) 11'2


-d/2 [g


A(q"


det[gj (q)]


1 I








particle.


For the case of an unbounded Riemannian manifold the propagator at finite


times is constructed by folding N + 1 propagators of the form (2.8)


q', t')


N

k=


tk+1; qk,tk) Jdqk,


(2.10)


where dqk


= V dgi.


Taking the limit N


-- oo one obtains a functional integral


over all intermediate coordinates that can be interpreted as the path integral.


final result is a path integral of the form (2.7)


however,


the Lagrangian needs to


be modified


a term


proportional


to h2R.


DeWitt


found this term


to be


h2 (R/12); this modification of the Lagrangian was also discussed by McLaughlin and


Schulmann [73].


In the context of curvlinear coordinates the reason for modifying the


path integral has been discussed by


Arthurs [2,


Edward


and Gulyaev [32], and


in the context of quantization of non-linear field theories by Gervais and Jevicki

and Salomonson [90].


If on the other hand


, one applies this approach to a bounded Riemannian mani-


fold, as is the case for compact Lie groups, then the resulting path integral,


as pointed


out in Ref.


, is far from simple.


Since one then has to use the semiclassical ap-


proximation presented in (


"coordinates


9) and in addition to integrating over all intermediate


, one also has to sum over all the different classical paths connecting q"


and q'.

Nevertheless, if the bounded manifold M in question is isomorphic to a quotient


KN/lr


space /r/F


is an unbounded Riemannian manifold


where I is a transformation group acting on NA


then one can


and A


, as proposed by Marinov and


Terentyev [77],


construct a propagator on M by summing over the group F


JM (q"


q', t')


J (q"


JNr7


J(q"


r, t'>}







shown by Marinov and Terentyev [77] that this approach is valid for any compact Lie


group.


In their work, see Ref.


, Marinov and Terentyev take for AN the Lie algebra


that is associated with the Lie group they wish to consider and for r the characteristic

lattice of the group.

As an application of this general formalism of Marinov and Terentyev we now


consider the free motion of a particle on a circle.


We will revisit this problem in


chapter 4 where we present an exact path integral treatment of this problem without

reliance on the semiclassical approximation.

Let us consider a particle of mass m constrained to move on a circle of radius p.


If we choose the arclength the particle has traveled as our generalized coordinate,


Lagrangian is given by


L(q, S)


1
-- I


Here I


= mp2 denotes the moment of inertia of the particle and the angular variable


4 ranges form 0


, where we identify the points 4


= 0 and 4


= 27r


. The


solution of the equations of motion is found to be


-A <>


+ 4t,


where 4o and w are arbitrary integration constants.


4' and ending at #"'


Considering a motion starting at


we find for the classical action functional:


', t')


S-(t')(


- 27rn)


(2.12)


where n


= 0, 1, 2,


So we find that the classical action functional does not only


depend on the initial and final position but also on the so-called winding number n,

the number of times the particle moves counterclockwise minus the number of times


it moves clockwise past the point 6'


Hence, the paths break up into distinct classes


Sd (#








The canonical quantization for this example is straightforward,


since p7


= 8L


16, we find for the Hamilton operator


h2
2I "'


which has the following normalized eigenfunctions and eigenvalues:


1
S2W


lbm(4)


exp(im),


= -(hm)


where m


= 0, 1, 2,....


The propagator is given in terms of the eigenfunctions


bm(4) by the following spectral expansion:


(") (') exp


n=-oo


n=5--oo


- -E (tt


- i-h(t"
2I


-t)n


The sum over n is related to the Jacobi theta function,
+00oo


exp(iirtn2


+ 2inz).


n=- oo


Therefore


, with the following identifications we can write the propagator in closed


form.


-t')


then we find


03 2


-hnT
24Il


where A4)


=6 "


'and T


= t"


'. Using the following property of 03,


which follows


from the Poisson summation formula (see


,pp.


63-65]),


= (t1/2 exp(


z2 z
-it- (73 -
nft t


the propagator can also be written as a sum over classical paths,

series,


i.e. as a semiclassical


- ix-


1
ti


- t')


J("


- ')n


03 (Z,


-h(t"


J("


03 (Z,






23

Observe that each of the propagators J in the series (2.13) is of the same form as the

propagator of a free particle moving on the real line R and that the series as a whole


is a function of period 2,r


. The series (


13) is a particular example of the general


principle (2.11).

Folding the propagator in (2.13) N + 1-times leads to the following path integral

representation


.2w
lim o
N-+o0 o


"."0
0o


2= N

j=o


I
irihe


nj =--0


i i(j+l -


- 2rny)


j=1


where N +1


= t", to


= ,


ande


= T/(N+ 1).


If we now shift the integration variable


at each step,


we can extend the N intermediate integrals to the whole real line, i.e.


ni=-o0


2(nj+l)ir

r


+oo0

-00


d4,j.


As a final result


we find


J( "


lim
N-*oo


2Xihe


(N+1)/2


n=-oo


+00

-00


+00
. ..
'O0


- U)


N
d1 dt ,


(2.14)


where ON+1


= and 4o


= t' + 2rn.


Note that the circle is the group manifold of


the simplest compact Lie group U(1) whose faithful irreducible representations are


given by


= exp(i4) and D-1( )


-=exp(


It is well known that the one-


dimensional abelian translation group Ti of the real line JR is the universal covering


group of U(1).


Furthermore,


the translations by 27rn,


=- El, +2,


form the


cyclic subgroup (27r) of T1


which is the kernel of the homomorphism Ti


x -+ f(x)


exp(ix)


e U(1).


a ,


Therefore,


by the Fundamental Homomorphism Theorem we have


J(w"


I( +1


D()


-i>).






24

for the path integral, but one which involves the summation over the lattice group at


each infinitesimal step.


Nevertheless


, Marinov and Terentyev have shown that in the


case of the motion of a free particle on the group manifold of a compact simple Lie


group the resulting path integral representation is of the from (2.14),


difference that the Lagrangian has to be modified to include a 'quantum'


proportional to h2


with the only


potential


. One might ask if the approach of Marinov and Terentyev could


be extended to more general systems than the free particle


as we have mentioned above


The answer is no, since,


, the semiclassical approximation is only exact for the


case of the free particle moving on the group manifold of a semisimple Lie group.


2.1.4


The Feynman Path Integral on Symmetric Spaces


More recently Bbhm and Junker have used zonal spherical functions to construct

path integral representations for a free particle moving on the group manifolds of


compact and non-compact rotation groups (B6hm and Junker [12,


14]),


the Euclidian


group (BShm and Junker [13]),


and on symmetric spaces1


(Junker [56]).


However,


a careful analysis of the construction presented in [56] reveals that it applies only


to the case of a compact transformation group G


acting on a compact symmetric


space of the form G/H


where H


is a massive2 subgroup of G.


We will extend


this construction below to a general unimodular transformation group G acting on a


symmetric space M


= G/H


where H is a massive compact subgroup of G.


This will


complete the argument of Junker


56] and achieve his proposed unification of the work


1Let (S, 7) and (T, U) be two topological spaces. A continuous one-to-one map f of S onto T is
called a homeomorphism if f-1 is continuous. A topological space (S,7) is called homogeneous if


for any pair u, v


S there exists a homeomorphism f of (S, 7) onto itself such that f(u)


G be a connected Lie group and let a be an involutive automorphism of G,


i.e. a2


= v. Let


= 1 and a #l.


Denote by G, the closed subgroup of G consisting of all elements G that are fixed points of o, i.e.


= g, and by GC the identity component of G,.


SHC GC,,


Let H be a closed subgroup of G such that


then one calls the quotient space G/H a symmetric (homogeneous) space (defined


The n-sDhere S" is an example of a symmetric space.


by a).






Page
Missing
or
Unavailable






26

valid to first order in e, and dxj denotes the invariant measure on M.


the cases we are considering,


Note that for


where G is a unimodular Lie group and H is a massive


compact subgroup, an invariant measure always exists (cf.

what follows we ask that the short time propagator (2.16)


transformation group G


Corollary 4.3.1]).


be invariant under the


that


J(gxj+l, gxj; e)


= J(xj+l


,x,; e)


gEG,


(2.17)


for j


=0.1


As we will


. ,


see below


this is a crucial assumption since it implies


that A is an invariant elliptic4 operator in the enveloping algebra5 on G.6


This can


be seen by using the form (2.16) of the short time propagator valid to first order in e


in (2.17)


From which it follows that the Hamilton operator 71 has to be an invariant


operator for G if (2.


17) is to hold


this in turn implies the above statement.


'Denote by a
length of a by


= (1, ... ,am


a multiindex consisting of m non-negative integers


Define the


For every z


S"m let


=nI


Let P be a polynomial of m variables of degree r, which has the form


where


ca are arbitrary complex numbers and ca # 0 for at least one a with |a|


= r. Then we denote


the formal differential operator generated by P by:


P(-iV)


=


where V


= (O,,


, **


,0,m).


The formal differential operator P(-iV) is called elliptic, if there exists


0 such that


- e- r


(-i)ola'
J=l


=5:


- k


1 A i j __ i ilr 't^ ^ I*' r i i r ^ a








Let a be a fixed point of M whose stability group is H, i.e.


one has ha = a for


all h


Since G acts transitively on M we can write each xj


EM as


for some gj


eG.


(2.18)


Hence, using this construction one can view the short time propagator as a function

on the group G:

J(xi, xj;e) = J(gj+l, g; ).

Using the translation invariance of the short time propagator it follows that the short


time propagator can only be a function of g-gj+', hence,


J (g,+, gj; e) = J(ggj+1, ggj; ) = J(g 1j+l; e).


(2.19)


Since ha = a for any


, we see that (2.18)


is invariant with respect to right


multiplication with elements of the stability group H

time propagator is invariant with respect to right m


. This implies that the short


ultiplication with elements of


From (2.19) we see that the short time propagator is also invariant with respect


to left multiplication with elements of H


. Hence,


we conclude that the short time


propagator J(g; c) is a constant function on the two sided costs HgH with respect


to the subgroup H


J(high2; ) = J(g; e),


for any hi, h2


EH.


Let UC be an unitary irreducible representation of class 1 on the Hilbert space RC. Let


us choose any complete orthonormal system {(}mo 1 in RC


then we can associate


with UC the following matrix elements


D((g) = (<, UU q).


(2.20)


xj = gja


(2.20)






28

Dt(g) are the regular eigenfunctions of a maximal set of commuting operators in the
enveloping algebra, if this maximal set of commuting operators contains an elliptic


operator (cf.


Proposition 14.2.2]).


This property is often the starting point for


an explicit calculation of the Dt (g),
in some detail for the case of SU(2)


in section 4.3 we consider such a calculation

If the maximal set of commuting operators


does not contain an elliptic operator then the matrix elements D (g) are generalized


functions, i.e. distributions (cf.


[7, Theorem 14.2.13).


In chapter 4 we will consider the


construction of path integrals for the cases in which the matrix elements Dt are either


not explicitly known, or are generalized functions.


This construction will make no


explicit use of the functions D (g) but will only use the facts that they exist and form


a complete orthonormal set.


Note that for the cases considered in this chapter the


set of maximal commuting operators always contains the Laplace-Beltrami operator


which


as we have remarked above


enveloping algebra of G.


Hence,


, is an elliptic operator in the center of the


the matrix elements Dt(g) are regular functions


on G.


This shows that the assumption that the short time propagator should be


invariant under the transformation group G is crucial and can not be relaxed.


Since H is a massive subgroup of G,

a E 7& that is invariant relative to H. U


there exists a unique normalized vector


sing the Gram-Schmidt orthogonalization


procedure we can choose our complete orthonormal basis in such a way that

= a.


Our interest now focuses on the (00)-matrix elements


= (t0,


(2.21)


One can easily convince oneself that this function is constant on the two-sided costs


HgH with respect to H


. The function defined in (2.21) is called the zonal spherical


function of the irreducible representation U relative to H


If we take G


= SO(3),


Doo (g)


US4o).







Let us denote by G the set of all inequivalent irreducible unitary class 1 represen-


stations of G relative to H


. Then it is known


, since H is a massive subgroup of the


unimodular group G that any function f(g) that is constant on the two-sided costs


HgH


with respect to H


can be decomposed in zonal spherical functions Doo(g),


, of unitary irreducible representations of class 1 (see [103, pp.50-55]):


dccDoo(g9),


Do (g) f (g) dg.


Here


stands for the discrete or continuous orthogonal sum of all inequivalent


irreducible unitary representations of class 1 of G with respect to H


. The constant


de appearing in (2.22) is given by


= d c(C


(2.24)


where in suitable coordinates


if G is discrete,
if G is continuous.


For the case of compact groups the constant de is the dimension of the representa-


tion space 7R


of the unitary irreducible representation U


, see also in this respect


remark 4.1.1.
We have now collected all the tools we need to construct the path integral repre-


sentation for a free particle moving on M.


We have seen above that the short time


propagator is a constant function on the two-sided costs HgH


with respect to H


hence using (2.22) we can decompose it in zonal spherical functions:


D (g) Doo (g)dg







Moreover


,let f


e LI(G),


where L1(G) is the space of all integrable functions on G,


then one has (cf.


Corrolary 4.3.1])


f(g)dg


f(gh)dhdx,


JM H


which reduces for f


e Li(H\G/H) to


f(g)dg


f(g)dx


f(g)dx,


(2.27)


since


f(high2)


= /f () Vhl


E H and where we have chosen


fi dh


because H


is compact.


Using (2.25) and (2.27) in (


.15) one finds


J(x"


x', t')


lim
N-oo G


.G. .


J dgj.


(2.28)


Using the orthogonality relations for the functions /d'D\ and the left invariance of
dg one can easily show that the following relation holds


00


Sr'gj+l)Do(gj1gj)dgj


= 6({, C+i)D)o(g~i gy.j+)


(2.29)


Using (


29) the N intermediate integration in (


.28) can easily be performed and


one finds as a final result that


J(x"


x', t')


{ lim [c(e)]N+ dD~ (g'-1
N-d+Do


Let us now evaluate the limit N


-+ oo in the above expression,


for large N one can


write c((c) as


= cc(0) +


valid to first order in e.


The value of c(0) can be found from (2.26),


using the fact


that the short time propagator satisfies the following initial condition


him J(g7 5j+i; e)


-9j+i)


= Se(gj


c6,+ ()Doo+ (gI gj+l)


dt+1


d"+i


cC ( )


7







Or if we set E


= ih (0),


we find


lim
N.. c


(4)N+l


= exp(


- (t"


It is shown in Ref.


56 that the


(0) are the eigenvalues of the Laplace-Beltrami oper-


ator A on M


Since in the proof of this statement no use is made of the compactness


of M it applies to the present situation as well.


Finally using the group property


= E


kDio(g')Do(g1") we can write (2.30) in the more familiar form


J(x"


X', tl)


(2.31)


where


YCk(9)


-= dDio(g)


One calls the matrix elements D50o(g) the associated spherical functions and they are


the eigenfunctions of the Laplace-Beltrami operator on M.


the two sphere


For the case that M is


the functions 1/dD, o(O, ) are the classical spherical harmonics


which,


as is well known


operator on the two sphere


, are the eigenfunctions of the Laplace-Beltrami


Hence, (


31) is the well known spectral expansion of


the propagator in terms of normalized eigenfunctions of the Hamilton operator.

specific examples we refer the interested reader to Ref. 56.


Let us close this section with two remarks


, the first is that this approach can


also be applied to Lie groups if we choose H as the closed subgroup consisting of the


identity element,


e, i.e. H


= {e}


Then instead of using the zonal spherical functions


one has to use the matrix elements Dt(g).


However,


it should be clear from the


remarks after (2.20) that one can construct path integrals this way only for a handful


of groups.


In chapter 4 we will overcome the reliance on the matrix elements D (g),


-t')E,


D,(g


'-l g)


-'(t"
h^


YCk(x')Ya,(x ),


Yie(0),







as we have seen in


this chapter and


will see in chapter


4 the study


of quantum


dynamics on group manifolds uses interesting and deep mathematics. It is therefore,


of considerable mathematical interest.


Nevertheless, there are also physical reasons


why the study of quantum dynamics on group manifolds is of interest,


for instance the


dynamics on a group manifold is of interest in some modern quantum field theories

such as a-models and non-abelian lattice gauge field theories.


Coherent States and Coherent State Path Integrals


2.2.1


Introduction


The origin of coherent states can be traced back to the beginning of modern quan-


turn mechanics.


SchrSdinger [93] introduced a set of non-orthogonal wave functions


to describe non-spreading wave packets for quantum oscillators.


mann


In 1932 von Neu-


104] used a subset of these wave functions to study the position and momentum


measurement process in quantum theory. It was not until thirty four years later that


the detailed study of coherent states began ([6,


,58])


Klauder


58] introduced boson


and fermion coherent states and used them both in the construction of path integrals

for boson and spinor fields, respectively, whose action functional in each case is given


by the familiar classical c-number expression.


In 1963 Glauber [44,


, 46] named


the set of wave functions introduced by Schrodinger "coherent states"


in the field of quantum optics [67


coherent laser beam.


and used them


83] for the quantum theoretical description of a


At about the same time Klauder published two papers [59, 60]


dealing with the formulation of continuous representation theory,


that contain the


seminal ideas for the construction of coherent states on general Lie groups.


Coherent


states for the non-compact affine group or ax + b group and the continuous represen-

tation theory using the affine group where introduced by Aslaksen and Klauder [4, 5]






33

Several books and review articles consider the definition and properties of coherent


states ([17


34, 68,


85, 109]).


Klauder and Skagerstam [68] provide an introduction


to the subject of coherent states in the form of a primer and offer a comprehensive

overview of the literature until 1985 in the form of reprinted relevant articles dealing


with the subject of coherent states.


Perelomov [85] considers the usefulness of coherent


states in the study of unitary representations of Lie groups and considers a number


of applications.


The review article by Zhang et al.


[109] and the recently published


proceedings of the International Symposium on Coherent States [34


also deserve to


be mentioned.


Coherent States: Minimum Requirements


Let us denote by H a complex separable


Hilbert space, and by


a topological


space, whose finite dimensional subspaces are locally euclidian.


For a family of vectors


)}LEC on H to be a set of coherent states it must fulfill the following two conditions.


The first condition is:


Continuity:

That is forall e


The vector


1) is a strongly continuous function of the label 1.


> 0 there exists a 6


> 0 such that


Sfor all 2'


Here,


., *)1/2


E C with


* I| denotes the norm on H induced by the inner product on H, i.e. II| || =
. Or stated differently, the family of vectors {I )}I on H form a continuous


(usually connected) submanifold of H.


We assume that (Il )


> 0 for all I


E C. In the


applications we are considering the continuity property is always fulfilled.
The second condition a set of coherent states has to fulfill is:


Completeness (Resolution of the Identity):


There exists a sigma-finite posi-








resolution of identity


) d (1)


(2.32)


In general,


as pointed out in Ref. 68, p.


, "one has to interpret this formal resolution


of identity in the sense of weak convergence, namely, that arbitrary matrix elements

of the indicated expression converge as desired."


2.2.3


Group Coherent States


To avoid unnecessary mathematical complication at this point we restrict our


discussion to compact Lie groups.


However


, we would like to point out to the reader


that the discussion applies to a general Lie group,


as defined in chapter


Let us


denote by G a compact d-dimensional Lie group.


It is well known that for compact


groups all representations of the group are bounded and that all irreducible repre-


sentations are finite dimensional.


Moreover, one can always choose a scalar product


on the representation space in such a way that every representation of G is unitary,


Theorem


7.1.1]).


Therefore


, without loss in generality we assume that we are


dealing with a finite dimensional strongly continuous irreducible unitary representa-


tion U of G on a dc-dimensional representation space H


Let us denote by {Xk}dI=l


the set of finite dimensional self-adjoint generators of the representation U


The Xk,


..., d, form an irreducible representation of the Lie algebra L associated with


, whose commutation relations are given by
d


[Xi, Xj


=i-


where cj


denote the structure constants.


The physical operators are defined by


= iXk.


For definiteness it is assumed that there exists a parameterization for G


such that


cekX,








following set of vectors on He


17(1) = VdUz(ln?.


(2.33)


It follows from the strong continuity of Ug(I) that the set of vectors defined in (2.33)

forms a family of strongly continuous vectors on He. Furthermore, let us consider the

operator


0=


(2.34)


where dg(1) denotes the normalized,


invariant measure on G.


It is not hard to show,


using the invariance of dg, that the operator O commutes with all Ug9(, I


LC. Since


Ug() is a unitary irreducible representation one has by Schur's


Lemma that 0 =


AIH .


Taking the trace of both sides of (


.34) we learn that


tr(AIH) = Ad


trt[r(') (r)(/'),


> dg>(')


dc i77


dg(l')


Hence, the family of vectors defined in (2.33) gives rise to the following resolution of

identity:


)>dg(l).


Therefore


(2.35)


, we find that the family of vectors defined in (2.33) satisfies the requirements


set forth in subsection


2.2.2


for a set of vectors to be a set of coherent states.


we conclude that the vectors defined in


(2.33) form a set of coherent states for the


compact Lie group G, corresponding to the irreducible unitary representation Ug(.


2.2.4


Continuous Representation


*)dg ('),


rl(')(()


r7(1)(}7(1),










L (G, dg)


[c,& ] (0)


This yields a representation of the space H


by bounded,


continuous, square integrable


functions8 on some closed subspace L((G) of L2(G).


operator on H


Let us denote by B any bounded


then using the map C, and the resolution of identity we find that


(2.35)


(t (Z)


Bn(1')) (r(


(2.36)


holds.


Choosing B


=/H


we find


,(1)


(2.37)


where


K, (; ') = 4

One calls (2.37) the reproducing property.


(Furthermore, as shown in ),Appendix B.('))

Furthermore, as shown in Appendix B.2,


the kernel K(l'


1) is an element of L2(G) for fixed I


Therefore


the kernel


1) is a reproducing kernel and L (G) is a reproducing kernel Hilbert space (cf.


Appendix B.2).


Note that a reproducing kernel Hilbert space can never have more


than one reproducing kernel
of continuous functions, K(l'


Claim B


1) is unique.


Therefore, since L (G) is a space


Moreover


since the coherent states are


strongly continuous the reproducing kernel ,(l'


1) is a jointly continuous function,


nonzero for I


= 1', and therefore, nonzero in a neighborhood of I


This means that


(2.37) is a real restriction on the admissible functions in the continuous representation


Of course a similar equation holds for the SchrSdinger representation, however


KM'(


E C.


=-(q W(),


= ), ()


'), ) dg (')


(W(1), B )


of He.








from L2(G) onto the reproducing kernel Hilbert space L2(G) (cf.


Claim B.2.2).


This


ends our discussion of the kinematics (framework) and brings us to the subject of

dynamics.


The Coherent State Propagator for Group Coherent States


Let 'i


E Hc and denote by 7(X1,..., Xd) the bounded Hamilton operator of the


quantum system under discussion, then the


Schridinger equation on He is given by


ihdt h = (X ..1 d)

since 7t is assumed to be self-adjoint and does not explicitly depend on time, a solution


to Schridinger's


equation is given by:


b(t") = exp


Now making use of (2.36) we find


14 (I"


K,(l"


,t";1'


,t')dg(l'),


where


K,(Z"


,t') = (7(l"),exp


- t')7t


Note that the coherent state propagator K,(l"


, t"; 1'


, t') satisfies the following initial


condition


lim K,(1"
t' -. tt'


,t') = (l"


Hence,


as t"


-- t' we obtain


the reproducing


kernel


C,(l""


which,


as we


have


remarked above, is the integral kernel of a projection operator from L2 (G) onto L2 (G).


Moreover, since /,(l";1') is unique,


we see that if we change the fiducial vector from


v1 to 7', save for a change of phase, then the resulting coherent state propagator is no
1,-,,,, .. L- -1. .. -. -- .1 .. 1.. .. 1 T..IT:1 L. ... T.2 rf2 r


Ii
Ptl


- t')(


.(t').


,t') ,(l'


,t")


(t"
- i(f11


q(l')).






38
Following standard methods in Refs. 63 and 68 we now derive a coherent state path


integral representation for the coherent state propagator.


We start as in section 2.1.2


from the basic idea


t
Ii(t"


i
-r a


where e


= (t"


therefore


we find


K, ("


((/"), exp


-(t"
?r


-t')


l7('))


(i1(I")


i
- -)


exp (


Inserting the resolution of identity (


.35) N-times this becomes


N (

3 =0


---e inl)
.t N-
/ **--


where 1N+1


= l" and 1


= '
-4.,


This expression holds for any


and therefore


it holds


as well in the limit N


- oo or e


= lim
fso.


N


i. N
h- 7 (l)> jdg( ).


Hence, one has to evaluate (7(lj+1), exp (


- e)ri(lj)) for small e.


For small e one can


make the approximation


i


- 'l 7 ))
P~tn


,_ ()(lj+}),
th (n7(Ij+l)


- (l
Pt


K ,(Ij+i; l) exp


- -H(l+; lj)


(2.39)


"'a'))


K (2"


t"; 1'


1, (l))
3, '(l))


- t')


- t')/(N + 1)


K,(1"


(77(lj+1), exp(


(<(2+l)


7lj+i(lj),


,(l+1; l) xp








Inserting (2.39) into (2.38) yields


I', t')


=lim
--O


Nj=
*...JJ KK(li+i
j=0


lj) exp



--cH,(ly+,.
A


N
fldg(l)


. (2.40)


This is the form of the coherent state path integral one typically encounters in the

literature. It is worth reemphasing that the coherent state path integral representation

of the coherent state propagator (2.40) depends strongly on the fiducial vector.

2.2.5.1 Formal Coherent State Path Integral

Even though there exists no mathematical justification whatsoever we now take


in analogy to what we have done in sections


1 and 2.2 an improper limit of (2.40)


by interchanging the operation of integration with the limit e


-+ 0. As pointed out in


Ref. 68, p.


, one can imagine


as e -+ 0 that the set of points ij, j


. ..


defines


in the limit a (possibly generalized) function l(t), t'


Following Ref.


68, pp.


63-64,


we now derive an expression for the integrand in (2.40) valid for continuous


and differentiable paths *(t).

in (2.33) is not normalized,


the reproducing kernel K, (/Z+i; l)


Note that the set of coherent states rl(1) we have defined

but is of constant norm given by d'2. We now rewrite


= ((lb+i), r(lj)) in the following way


(bj+i)


- '(j))


dc[1

deex


- d-((l+), (l(j+)


dr' ((ij+i), r(1+1


this approximation is valid whenever


W(lj+1)


- ()(l)


...


Hence, as


e -+ 0 the approximation becomes increasingly better since the rl(1) form a continuous


family of vectors.


Therefore


one finds


a- '


9


t- 1 I It \


,. \'t1


iA ja'


Sf f Ik a -j n --- I --gA-f *I U -I f-- U NE S U


- )


- -(l))]

) (1)],


g(l"


(,7(1j+i)


rl(lj))


(W7(j+i)


p








following form:


I,
11
- -
dc vo


(7l(1), dr)(l)


i ft


H, (1(t))dt


where


Hr,(l(t))


-= ()


7(X1,


X...)


and where we have introduced the coherent state differential


dr(1)


-7(1 + dl)


-f(l).


Hence,


we find the following formal coherent state path integral expression for the


coherent state propagator:


exp x t


K, ("


ih(,(l)


(2.42)


where


--= U(1)7


VDg(l)


lim
N-+oo


(d)N+l' fdg(l).
j=1


A discussion of what is right and what is wrong with (2.42) can be found in Ref 68,


64-66


, we only remark here that (2.42) depends strongly on the choice of the fiducial


vector and on the choice of the irreducible unitary representation of G.


Hence


has to reformulate the path integral representation for the coherent state propagator

every time one changes the fiducial vector and keeps the irreducible representation


the same, or if one changes the irreducible unitary representation of G.


Now in many


applications it is often convenient to choose the fiducial vector as the ground state

of the Hamilton operator Ii of the quantum system one considers; see for instance


Troung [100, 101].


Hence, one has to face the problem of various fiducial vectors.


chaDter 4 we develoD a reDresentation indeDendent DroDafator.


which nevertheless.


d


dt gg(1),


l',t')


H, ()







Also note that coherent state path integrals afford an alternative way of con-

structing path integrals for quantum systems moving on group manifolds and on


homogeneous spaces.


For instance Klauder has used in Ref.


62 the coherent state


path integral to describe the motion of a quantum system with spin


moving on the


two sphere


and in Ref.


64 to describe the motion of a quantum system on the


Lobachevsky plane.


Klauder has also discussed a quantization procedure for phys-


ical systems moving on group manifolds and homogeneous spaces using the action


functional in (2.42),


see Refs.


60 and 61, and has therefore, provided an alternative


method of quantization to the quantization methods discussed in subsections 2.1.3

and 2.1.4.












CHAPTER 3
NOTATIONS AND PRELIMINARIES




3.1 Notations


In this chapter,


G is a real, separable, connected and simply connected, locally


compact Lie group' with fixed left invariant Haar measure dg,


i.e. d(hg)


= dg


A(g)


be the modular function for the group G; i.e.


d(gh)


= A(h)dg.


If A(g)


then the group G is called unimodular. It is known that the following Lie groups are


unimodular (cf.


39, p.


50] and [53,


chapter


, 1]):


Every compact Lie group.

Every semisimple Lie group.


Every connected nilpotent Lie group.


affine group,


which


we will


consider in


chapter


is an


example of a non-


unimodular Lie group.


compact support on G (cf.


D(G)


be the space of regular


[15] and (78, pp.


68-69])


Bruhat functions with


Let T be a closeable operator on


some Hilbert space H,


spending to G with basis xl,


then we denote its closure by T


.. Z .Xd.


Let L be the Lie algebra corre-


Then we denote by XI


= U(Zd)


a representation of the basis of the Lie algebra L by symmetric operators on some


Hilbert space H with common dense invariant domain D.


The commutation relations


take the form [Xi,Xj]


- i =1Ci jkXk.


A vector 4


E H is called an analytic vector


= U(x1),


. .., Xd


_ __ I I I LI ___






43
the representation U of the Lie algebra L satisfies Hypothesis (A) if and only if U is

a representation of the Lie algebra L on a dense invariant domain D of vectors that


are analytic for all symmetric representatives Xk


= U(xk) of a basis X1,..., Xd.


Hypothesis (A) is satisfied then by


Theorem 3 of Flato et al.


the representation


, Xd of the Lie algebra L on H is integrable to a unique unitary representation


of the corresponding connected and simply connected Lie group G on H.


We will


always assume that a representation of L by symmetric operators satisfies Hypoth-


esis (A).


Therefore, the representation of L by symmetric operators is integrable to


a unique global unitary representation of the associated connected and simply con-


nected Lie group G on H.


Let there exist a parameterization of G such


that the


unitary representation U of G can be written in terms of the


H exp(


-i TXj)


- exp(


-ilX1)


...exp(


-ilXd),


(3.1)


f exp(ilVXj)


= exp(ildXd)


...exp(ilXt),


for some ordering, where I is an element of a d-dimensional parameter space C


. The


parameter space Q is all of jd if the group is non-compact and a subset of Id$ if the

group is compact or has a compact subgroup.


Remark 3.1.1


Note that one obtains in this way a representation of all elements of


G that are connected to the identity element.


Since we are considering a connected


and simply connected Lie group we have that Ug(


is a representation of G.


Since


G is a manifold one needs in general a collection of proper coordinate charts that


cover G (see Appendix A.4),


by the d-tuple 1.


we will relabel the coordinates in each of these charts


Nevertheless, in practice it is often possible to work with a single


proper coordinate chart (parameterization) as the following example shows. However,


, .








half times the Pauli matrices


and satisfy the following well known commutation relations


Xi, Xj


= icijkXk,


where,


for (ijk) an even permutation of (123),
for (ijk) an odd permutation of (123),
otherwise.


One possible parameterization of SU(


) is given in terms of the Euler angles by


u(O, ,)


exp(


4X3) exp(


-iOX2) exp(


cos(0/


sin(0/2)


where,


Note that the points 0


= 0 and 9


= w have to


be excluded since at these points


only +


and -


are determined, respectively.


The Euler angles are analogous


to geographical coordinates on


the sphere


in JR3


Just as,


on S2


, geographical


coordinates are not uniquely determined at the north and south pole, the parameters


are not uniquely determined at the singular points 0


= 0 and 0


. Hence, at


these singular points of the parameter space, and


unitary matrix uniquely.


no longer define a unimodular


Therefore, the set of matrices for which the parameterization


introduced above is unique is a proper subset of SU(


However


, as far as integration


over the group


) is concerned the above parameterization is adequate since the


0 S 0t


=


ei( -0)/2 sin(0/2)


-27 <


< 27r


= 7"


-i(d-


-i(4+


ei(+()/2 COS(/


< 2x7.








1.2.1]) associated with the Lie group one considers;


these matrices are then taken


as the group generators.


as in the case of SU(2),


considered above, one then


determines a suitable parameterization and generates the group elements connected

to the identity element in parameterized form by exponentiating the group genera-


tors.


Note that the choice of parameterization of G can be made in many ways and


should ideally be made such that singularities in Q about the identity element are


avoided.


Finally, a representation of the form (3.1) is obtained by exponentiating


the self-adjoint representatives {


k} of the basis {xk} of the Lie algebra associated


with G using the parameters one has determined in the representation of the group


elements connected to the identity element.


Let (U, H) and (U', H') be unitary representations of G.


operator


A densely defined closed


S from H to H' is called semi-invariant with weight a if


gsvU


=- (g)


SG.


In what follows we shall need a common dense invariant domain for X1,


S.., Xd that


is also invariant under the one-parameter groups exp(itXk),


- 1,


Define D


... *


as the intersection of the domains of all monomials


. ., ik


.. Xi. for all 1


By definition D contains D,


hence is dense in H.


Then by Lemma 3 of Ref.


38 the


restriction of X1,.


* S


d to D is a representation of L and by Lemma 4 of Ref. 38 D


is invariant under all one-parameter groups exp(itXk),


- 1,


Let Am


k((g()) and pm


k (g()) be functions such that on D the following relations


hold:


exp(ila


a=m+l


exp(-


b-X,


k((l))Xk,


E^Am


(3.3)


b=m+l


m-1


m-1


-F -r .- -r SC U


. *


m








ces [A


-1mk(f(1))] and [p


-. k (g(I))] exist.


Furthermore, let U(1) be the d x d matrix


whose mk-element is Um


k(l) such that on D


Us -XmUg(l)


U9Q)X mUg*


holds.


k()X&k,


(3.5)


(3.6)


-,k(l)


One can easily check that U(1) is given by exponentiating the adjoint repre-


sentation of L,


= exp(lCk),


here ck denotes the matrix formed from the structure constants such that Ck


Preliminaries


Theorem 3.2.1


On the common dense invariant domain D of X1,


the fol-


lowing relations hold,


For all I


E U~() dUgQc)


k (g())dlm


=-i


k,m=l
k(g(0)).


and Lg(lo)Am


k(g())


For all I


E G, dU,


Z Pm


k(g(1))dlmXk,


and Rg(Lo)pm


t(g(t))


k,m=-


- Pm


Proof.


(i) Let '1'


E D be arbitrary, then since Ug() leaves D invariant, i.e.


u9(L)D


we define the differential of Ug,() as follows:


- Ug(l,...,ltd)


lim
A --,O


(3.7)


Now since Ug()


is the product of one-parameter unitary groups one finds for the


-cG(i)


SAm


m=l


S...,Xd,


CD,


,...,vld)


dUg(I)








Therefore,


U9() dUg(l)9


exp(ilZ


exp(--il


b)mdlZ


m=l a=m+l


b=m+1


k(g(1))dlm-Xk'L


Since 4


e D was arbitrary, one finds that on D


, the following relation holds


U*(i)dUg(1


k

To establish the second part of (i) let 4'


k(g() )drXk,


E D be arbitrary then


$gll)dUg(l)'


= U (n o


Ug(lo


dUg(1)


- Ul(lo)(10)(1dU9


Therefore


, using (


the fact that


both


{dlZ m=1


are linearly


independent families one finds


Lg)(o)Am


k(g(0))


-- m


= Am


k g(Z))


(ii) The first part of (ii) is similar to the first part of (i)


(ii) one can proceed as follows, let 14


To prove the second part of


E D be arbitrary, then


dUg(l)U9(1) /


= dU,(


U,(10o)U(,*o


wU9


Therefore


, by the same reasoning as above


Pmk 9)


= pmk (g(l)g(o))


Since the Amk(g(1)) are left invariant functions on the Lie group G, the relation

(i) can be viewed as an operator version of the generalized Maurer-Cartan form on


(, cf.


p. 92]).


-1(lo)W(O)


= Pm


m,kc=l


-1(lo)9()


= dUg(l)g(lo)U (l)g(


k))


Ro(zo







Proof.


Let v


E D be arbitrary then by Theorem 3.


1 (ii),


dU,() U,Ui


pm (g (1) )dlmX c U,() U(


c,m=1


Since Ugc,


leaves D invariant, set


U-T*


E D


, then multiplying the resulting


relation from the left by UZ*, yields,


-i r
c,mn=1l


pmc(g(l))dlmU;(,


Using Theorem 3.


.1 (i) and the definition of Um


k(1) the Corollary easily follows.


Corollary 3


functions Pm


k(g(1))


and Am


k(g(0))


satisfy the following equa-


tions


- kn((/))


- in


-1\ 9(}


-=


cjk1P


-1 (9(1),


-k (g(9))


- On


- 1 ((0)}


=z


Cjkf


A' (g(1))dm [A


-'s (g(


-z


)}O [p


where Cjk1


are the structure constants for G.


Proof.


(i) Let b


E D be arbitrary then one easily finds using (3.7) that


am Dgn Ugci}1P


-a
-


Ojm Ugq)tb,


holds. Now picking out the terms Ojm Ug,() and 9pn


Ug() in Theorem 3.


1 (ii) one finds


-ipnW(g())


_;a. ^ aI,(1'tl1-


aUg(I)] 4


n n


i- [


-ipm


g"())X g] g


- .Irr -.... -


- 1(


-1 a(


cUg(l) .


dUgn-)


-Ika(g(


(9(1))]p


-ls b(g())].


Pmn(g(


_ .







one can set 6


+ i, I[Pm


= Ug(1) and rearranging the terms yields

p= PnC(g(1))Pm(g(Q))E,'Xa"b]".


Now making use of the commutation relations [Xa, Xe]
becomes


= i El=, c~sf X this equation


Om [Pno(g(l))


- d.n


(()] +


pnitg (())pmb(g(1))Ca6


Finally using the fact that the operators {


is arbitrary one concludes


{Ol [p, (g(l)


- ln


- 3 PnS(g1))Pmt(g(())cjf!


f(g()]}


(3.9)


Now contracting both sides of (3.9) with p


-1a (gQ()) yields


,-I (g(O)]pa(g(Q))


- 9n


-11a(gQ())]Pm


(g(1) )pg(l) )c, p- (g)),


where,


8ac [PP


-k (g(())


k(g(0),


has been used. Finally contract both sides with p-m (g(l))p


desired relation,
d


{ [P-ViO(()]p


-k(g())


- 8n[p' (g())]p


cjk/(g())p


-fa(g()).


(ii) The nroof of (ii) is similar to the nroof of (i.


Since Ug() leaves D invariant,


Sk} =1 form a basis for g and that 4)


-1 "(g(1)) to obtain the


-1(n)


E {


-iagm[p, (g(1))


(g(1))


E(8".


(g(O)}


8a[p- k (g(l))Pm


k (g()1P






50
This equation can be simplified as follows
d


Pn (g(Zl))Uvjh()Om[U-1


t(l)p


ian [Pm


$(g(l))]p


hj,t=l


h (1)atm[pln(g(l))Ujh(1)])


din [Pm


hj=l


Differentiating the product and rearranging the terms yields:


[PnT(g())] -n [Pm


Pn (g(1)),m [Uj"(1)]U1


Next using 6,mUjh(1) = Pm


W(g())cs


"U^(1),


which is proved along the same lines as


Theorem 3.2.1 (ii),


we find


,m[p (g())] -an [pm


(g(1))] =


Pngp(1))Pm


'(g(l))cjd


which is equation (3.9)


and therefore, establishes (iii). E


One could ask if it is really necessary to use unbounded symmetric operators in

the representation theory of Lie algebras or stated differently, can one develop a rep-


presentation theory of Lie algebras using only bounded symmetric operators.


We could


then discard almost all the technical difficulties we have encountered in this chapter.

This interesting problem has been considered by Doebner and Melsheimer [27] who


have shown that


Theorem 3.2.4


(Doebner


Melsheimer


[27])


A nontrivial


representation


non-compact Lie algebra by symmetric operators contains at least one unbounded op-


erator.


Since we are interested in quantum ph
,,.,,. .. ^ 1 .. .,l :.. ..1 .. i .. .1 ,I,,.,- -_ -


we have to represent our basic kine-


LI j- w nr .n a a. -r a a a in an a h n an a at 4 *a I: n


-1 ( )


-'tb(9(1))


f(g(l))].


S (1).


(g(l))] =


j,h=l






51

light of the above result, we can not avoid the use of unbounded symmetric operators

when we are dealing with non-compact Lie algebras and Lie groups.











CHAPTER 4
THE REPRESENTATION INDEPENDENT PROPAGATOR FOR A GENERAL
LIE GROUP


Coherent States for General Lie Groups


Let U be a fixed continuous, unitary, irreducible representation of a d-dimensional


real, separable, locally compact,


connected and simply connected Lie group G on the


Hilbert space H.


Let ,


e H


then


the function G


9 -+ (<,


>) is called a


coefficient of the representation U.


Definition 4.1.1


A continuous, unitary irreducible representation U is called square


integrable if it has a nonzero square integrable coefficient,


E H such that (Uag


0 and


By a general Lie group G we mean in the following a real,


separable,


locally compact,


connected and simply connected Lie group G with continuous, irreducible, square


integrable,


unitary representations.


For continuous, irreducible,


square integrable,


unitary representations one can


prove the following Theorem:


Theorem 4.1.2


(Duflo and Moore


30]) Let U


be a continuous, irreducible, square


integrable, unitary representation of G,


self-adjoint, positive,


then there exists a unique operator K


in H


if there exist vectors 6,


semi-invariant with weight A


and satisfying the following


-l(g),







Let x'


EH


, and ,'


ED(K


Then one has


(x, U


, x')dg


(x, x')(K


(4.1)


(For the proof see Ref.


Remark 4.1.1


Theorem 3.)


Condition (i) shows that if a representation is square integrable then


there exists a dense set S of vectors in H such that for E


E S the factor (Ug,, )


is square integrable for all 4


EH.


One refers to condition (ii) as the orthogonality


relations for U


A result similar to (ii) has been obtained by Carey [16, Theorem 4.3]


by realizing the square integrable representation U in a reproducing kernel Hilbert


space.


For the Heisenberg-Weyl group these othogonality relations have first been


proved by Moyal [81].


The operator K is called the formal degree of the representation


. When G is unimodular, K is a scalar multiple of the identity operator which is


the usual formal degree.


Let X1,


..., Xd be an irreducible representation of the basis of the Lie algebra L


corresponding to G,


by symmetric operators on H satisfying Hypothesis (A),


then


L is integrable to a unique unitary representation of G on H.


Let there exist a


parameterization of G such that,
d


flexp(


-il'Xk)


= exp(


-ilXi)


il Xd);


where I


E.


Now let n}


E D(K1


then we define the set of coherent states for G, correspond-


ing to the fixed continuous,


irreducible, square integrable, unitary representation Ug


= Ug()K'/2r;


t E D(K1


-1.


(4.2)


, K-1/2 ).


-1/2C'


)(U,('


... exp(-





54

where dg(l) is the left invariant Haar measure of G given in the chosen parameteri-
zation by


dg(l)


= 7() dlk


(4.4)


where 7(l)


det[Am


Remark 4.1.2 It follows from the strong continuity of Ug() that the family of states de-
fined in (4.2) is strongly continuous. Moreover, these states give rise to the resolution


of identity (4.3).
set forth in subse


Hence, the family of states defined in (4.2) satisfies the requirements


action


2 for a family of states to be a family of coherent states.


The map C,


-4 L(G)


defined for any 4


EHby:


[c,](1)


- (-(1)


=(U


(4.5)


yields a representation of the Hilbert space H by bounded,


continuous


, square in-


tegrable functions on a proper closed subspace L~(G) of L2(G);


see Appendix B.1.


Using the resolution of identity one finds


()(0


l')t,(l')dg(l')


(4.6)


where


,(t; 2')


- ((0)


= (q, K'


/2U,- (l)g(l)K1/217)


and K1


-1OsC')K


denotes the closure of the operator K'/2Ug-


1(1)(1)KK/2


.One


calls (4.6) the reproducing property.


Furthermore, as shown in Appendix B.2,


kernel KP,(l'


1) is an element of Lg(G) for fixed I


E G. Therefore, the kernel K,(l'; 1) is a


reproducing kernel and L (G) is a reproducing kernel Hilbert space; see Appendix B.2.
One easily verifies (see Appendix B.1) that the map C, is an isometric isomorphism


from H to LT(G).


Now let the map A


9 g '-* A0 be defined by left translation,


k(5(0)


r, i),


= (1)


r(l'))







It is straightforward to show (see Appendix A.5
continuous, unitary representation of G on L2(G


) that the map defined in (4.7) is a
). This representation is called the


left regular representation of


Lemma 4.1.3


The isometric


isomorphism C, intertwines the representation Ug,(


H with a subrepresentation of the left regular representation Ag() on L((G).


Proof:


Let


E H be arbitrary, then we have


Since, ,


E H was arbitrary and C, is bounded we conclude that


= Ag(n,)C ;


hence


, C, intertwines the representation U with a subrepresentation of the left regular


representation A on L~(G).


Therefore, (U, H) is unitarily equivalent to a subrepresentation of the left regular
representation (A, L2(G)).

Lemma 4.1.4 The unitary representation U,(L) intertwines the operator representa-


tion Fnn


of L on H,


with the representation of L by right and left invariant dif-


ferential operators on any one of the reproducing kernel Hilbert spaces L2(G)


L2(G).


In fact setting V


= (8 1


...,O/d) the


following relations hold:


(< (1),


-1 (fl')g(1))


[CWKOU] (1)


Ug. (a ) )


UmgK'I2h,


, (g


c, u,g,









k (iV


-km(9(l))(i81m )


S1,
-aI


d. then:


m=l


SXk ,


k(iV


l)Ug(O)


- s


ED.


A common dense invariant domain for these differential operators on any one of the


L2(G)


C L2(G) is given by the continuous representation of D,


a C,(D).


Proof.


arbitrary,


then


using the fact


that O9mUg(l)U;*(O


-Ug()


,pmU*;)1 it follows from


Theorem 3


1 (ii) that


-i8. U*( m


After contracting both sides with p


Pm,(g(1))vU,*


= 1,..., d.


km(g()) one finds


p k(m9))(


-iaim


-= U;()Xk,


=1,


hence,


-iV


= U';(


= 1,


.* ., d.


Using Corollary 3.2.3 (i) one obtains,


-iV


-i~am


p-l/"(g(1))(


[pm(g())(
m,n=l


({. [P-'m(g(1))]p


' (g ())


- Dl[p-i}m(}g())lp


(g))} (-i,)


m=l n=l


p- km(g(l))(


Cij k(


-iV


iL. : a1.-F.+;n 01 aarmofa r o


I --T


r 1d


with cmmon dense invariant


m=l


. ., d,


S, I,)U


1), i(-


-iagn


-ialm


i


rrti- .-^ -


*I i l / I .








Corollary 4.1.5


The differential operators {xk(-i


sentially self-adjoint on any one of the reproducing kernel Hilbert spaces


L2(G)


can be identified with the generators


({P(


=,) of a subrepresentation


of the


Proof.


left (right) regular representation of G


Let 4


= 1,..., d.


on L(G)


the other


hand,


Ugsk(t)


= exp(


-itX


- 1,.. ,d,


be one-parameter


subgroups of G.


Then [C,iXk]](I) can also be written


Cr,X ](l)


C lim
I (-+


1

(,(gk


Agk(t)


4(1)


where the A(Xk)


Agk(t)


= 1,.


.., d, are the generators of a subrepre-


sensation of the left regular representation of G on L (G)


. Hence


, one can identify


',l) with A(


k) on D,, i.e.


Clearly, the operators


S1,.


,l), k


= 1,..., d, are symmetric, since the operators

nd since C, is an isometric isomorphism from


H onto L!(G)


)({


,I)L =1)are


E D then it follows from Lemma 4.1.4 that


)r,ip)


. 7


= 1, .d.


.., d, are symmetric on H a


-iVI, 1), (1)


- --S--


=A(


k ,] (1)


= [C,


Ugk(t)


S(O^(r )


(t)g(l))


- ,(s(1))


fc); (Q>


.







each Xk,


= 1,..., d, is self-adjoint. Hence, the restriction of each Xk,


= 1,...,d,


to D is essentially self-adjoint.


Since, C, is an isometric isomorphism from H onto


Lg(G) we have that the closure of each Xk(


-iV


-1,
a^


.., d, contains a dense set


of analytic vectors, namely, C,(D),


hence


, is by Lemma 5.1 in Ref.


82 self-adjoint.


particular, each tk(


-iV


..., d, is essentially self-adjoint on D1n"


Similarly one can


prove that the operators {ik(iV


/)k=1l


adjoint and that they can be identified with the generators {P(
presentation of the right regular representation of G on L"(G). E


are essentially self-

k)}k=i of a subrep-


Corollary 4.1.6


commutes with the


The family of right invariant differential operators {xk(
family of left invariant differential operators {i(iVVi,


-iV


)}L=1


Proof:


Let i{(-


1) and


i,l) be arbitrary, then


(ii'-


-ilmn


m,n=1


d d
E E
d d
E L
n=l \m=1


-l im(g(l))8im


p-1"((1))


jl(g(1))] -


-if (g(l))8,,[p


A-11m(g())Om(p


-1)]


-1"(g)] Pm(g())}


-1"(g())])


d d

En=1 =1
n=l L/=1


~-lm(g(l))Ogm(p


m=l


where we have used Corollary 3


3 (iii) in the fourth line.


Therefore,


OIkd=r1


-1 (g())


A- gn(g(1))( i8


A-imW())8m


- "(g())]) } .


A-'/(g(1))8f;[p-' n(g(1))]






59

The Representation Independent Propagator for Compact Lie Groups


In this section we follow our presentation in Ref.


Let G be a d-dimensional,


connected and simply connected


real compact Lie group G.


For compact Lie groups


all irreducible representations are finitely dimensional (cf.[7


Theorem 7.1.3]).


Hence,


let us denote the finite dimensional irreducible representations of G by Uc and their


finite dimensional representation spaces by H


We denote the dimension of the rep-


presentation space H


by de.


One calls d,


the degree of the representation U'


. Let


...,Xd be an irreducible representation of the basis of L by bounded symmetric


operators on H(.

since all vectors ir


Then Hypothesis (A) is trivially fulfilled for this family of operators


iH


are analytic vectors for these operators, hence this representa-


tion of the Lie algebra L is integrable to a unique unitary representation of G on He.

Let there exist a parameterization of G such that,
d


= Texp(


--ilkXk)


- exp(


-ilXi)


ildXd),


where I


EG.


Since G is compact,


the parameter space C is a bounded set,


therefore,


all irreducible representations are trivially square integrable.


The positive self-adjoint


operator K is given by K


= dcl


hence


, we can choose any normalized vector i


E He


and the coherent states for a compact Lie group G corresponding to a fixed irreducible

unitary representation become:


= d U'


see equation (4


As we have seen in chapter 2,


the resolution of identity has the


form


=~


...exp(-


r(1) ((1)


, *)dg(l),







Since all operators Xk, k


E He,


= 1,


..., d are bounded we have by Lemma 4.1.4 for any


using the continuous representation C,


- L2(G),


that


-iV


= [CXk](),


Note that this relation holds independently of r7.
Since G is compact the center of the von Neumann algebra A(A) generated by

the left regular representation A of G contains a compact self-adjoint operator whose


eigenspaces are A-invariant (cf.


Lemma IV.3.1]).


Hence, A can be decomposed


into a direct sum of irreducible representations.


In fact A is completely reducible into


a direct sum of all irreducible unitary representations of G


where each U7 occurs


with multiplicity d,


(see [7


Theorem 7.1.4]), i.e.


GdcU
CEO


where G denotes the dual space of G


G is the set of equivalence classes of all con-


tinuous, irreducible unitary representations of G.


Denote


W(Xk)


the self-adjoint Hamilton operator


of a quantum mechani-


cal system on H .


Then for UC


the continuous representation of the solution to


Schrbdinger's


equation,


= exp


-


where ht


, is given on


L (G) by


i (1, t)


K,(2, t; I'


where,


K,Q(, t; l', t')


(<7(1), exp


- t') C(Xt)X}(L)>


[C, exp


- t')')


, t')dg(l'),


- t') (Xk)( )


I,1)[C,](1)


, Mt'),('







In this construction r was arbitrary, hence it holds for any i


E H(.


Therefore, one


can choose any orthonormal basis (ONB) {q, }


xinH


and write down the following


generalized propagator


KH (, t; l'


= (t


- t') dtr[U9(c)


(4.8)


where


- tr[


Lemma 4.2.1


The propagator KHt (l,t; ',t')


given in (4.8) correctly propagates al


elements of any reproducing kernel Hilbert space


L (G)


associated with the irreducible


unitary representation U9


of the compact Lie group G.


Proof.


Let r/


E He be arbitrary, then for ,(l''


L~(G) one has


KH, (I, t; 1'


,t')dg(1') =


- t')dcx


dcU(t


U(* U
g(J* ) (
(O u(


U9(1) U9


j,n=l


1)4n.


[Cn exp


- t')91(X)]'(bQ')](1)


Therefore,


a


- t')d


,t')dg(l')


-t')( U,


; ', t')


-1(1)g(l'))


-'(1)g(l'))


,t').(1'


u(t


-1(l)g(l''))


'), 0(t'))dg(l')


)< ) n (t')) )d (l')


dd(, n)U(t


)(t'))


(1, t).







Hence,


we have succeeded in constructing for the irreducible representation UC


a propagator KH, that correctly propagates each element of an arbitrary reproducing


kernel Hilbert space L((G), i.e., we have succeeded in constructing a fiduc

independent propagator for a fixed irreducible unitary representation of G.

fact that the set {} i1 is an ONB one can rewrite the group character xc(g


in terms of the matrix elements D (1)


zial vector


Using the

-1(1)g(l'))


E (4,U Ug>) of UC as follows,


D{()Dt (l').


(4.9)


Therefore, KHe can be written alternatively as


KHC (l, t; 1'


,t') =(t t')


(4.10)


this construction


unitary irreducible representation


was


arbitrary,


hence one can introduce such a propagator for each inequivalent unitary represen-


station of G,


one can


write down


the following propagator for the left regular


representation Ag(, of G on L2(G)


K(l, t; '


t') -


KH (l, t; l'


,t') =u(t


cet ij=l


Now it is well known from the Peter-Weyl Theorem that the functions


Vo/ D o(1),

form a complete orthonormal system


EG,


(ONS) in L2(G)


Theorem


7.2.1].


completeness relation of this ONS is given by


DQ(l)D(l') = 6e(g


-()g(l')) =


x9(g


deDi,(1)D (,(l').


- M(1)g(1')),


/L ffl- ^







Therefore


we find as our final result


K(l, t; 1', t')


= exp [-i(t


- t')7t(k(-iV


Q)y e(9


-1 (9 ))


(4.12)


This propagator, which is a tempered distribution,


is clearly independent of the fidu-


cial vector and the representation chosen for the basic kinematical variables {Xk}.=.


A sufficiently large set of test functions for this propagator is given by C(G),


the set


of all continuous functions on G.


Hence


, we have shown the first part of the following


Theorem:


Theorem 4.2.2


propagator


K(1, t; '


(4.12) is a propagator for the left


regular representation of the compact Lie group G


on LZ(G),


which correctly propa-


gates all elements of any reproducing kernel Hilbert space L (G), associated with an


arbitrary irreducible unitary representation Ug(1)


of the compact Lie group G


Proof.


To prove the second part of Theorem 4.2


, let U ,


and 77


EH


be arbitrary,


then for any ,(l) in some L (G),


associated with U,) one clearly has that {,(l)


C(G).


Hence


one can write


K (, t; I'


, t')dg (')


KHQ (1, t; h'


(2, t; 1'


,t') ,('


, t')dg(')


-= ,,(2, t).

The second equality holds since the elements of different representation spaces are


mutually orthogonal, hence, only the C'-term remains.


In the last step Lemma 4.2.1


has been used.


Hence,


for any compact Lie group G we have constructed


a propagator that


is independent of the chosen irreducible unitary renresentation of (.


We call this


,t') ( d


,t')W(


1h, (t'))dg(l1')






64

integral representation (see Proposition 4.4.4 or [98]):


|G|
I -lim
JvyF)^N-* ^oc


.../
* ii


x exp i


*(j+1


-lj)


kC(Pj+l/2; 1 j+1, j))


x fdli


(4.13)


where lN+1


= ",


and


= (t"f


- t')/(N + 1).


The sum


appearing in the


above expression is defined


PN+1/2


1


PN-.1/2


Z 1
K
P3/2


the sums are over the spectrum of the operator


-itV


defined in section 4.4.


where K is the appropriate normalization constant such that


K Xy(/")7(l') p


Pk (lik


- rk)


=e (g9


The arguments of the Hamiltonian in (4.13) are given by the following functions:


+ p


Remark 4.2.1 Observe, that the


Pmi+i/2i,


attice expression for the representation independent


propagator exhibits the correct time reversal symmetry, which means that


K(l",t"


l',t')


= K(l'


Also note that in the construction of the representation independent propagator for

compact Lie groups and its path integral representation no explicit use is made of the


ONS v/32D,(L),


CE and i,


- 1,..., de,


in L2(G) whose existence is guaranteed by


,t"; ', t')


Xk (Pj+l


m=l


t").


*** d


K(l"


- 7-(t


Pj+l


... dlf,


-1 n ),


- w(g(l))






65

path integral representation (4.13) can be used to describe the motion of a general

physical system, not just that of a free particle, on the group manifold of any compact


Lie group and it does not matter if the Dj(1) are explicitly known or not.


Hence,


(4.13) represents a clear improvement over the path integral formulations describing
the motion of a free particle on a group manifold presented in chapter 2. O


Example:


The Representation Independent Propagator for SU(2)


While the Peter-Weyl


Theorem assures that


the ONS


EA


= 1,


... ,de exists and is complete, the construction of such a set is frequently a


difficult task.


The functions J/dqDj(1) are known only for a limited class of groups


and will now be constructed for SU(2)


monic analysis.

ators in L2(SU(


It turns out that this is an exercise in har-


We will now explicitly describe the maximal set of commuting oper-


We will take the set of infinitely often differentiable functions,


Co(


SU(2))


as their common dense invariant domain.


Since SU(2) is a rank one


group, there exists one two-sided invariant operator C1 in the center of the enveloping


algebra E of SU(2).


right (left) i

gebra R (E


Moreover, since SU(2) is compact the maximal set of commuting


nvariant differential operators in the right (left) invariant enveloping al-

L), can be associated with the Casimir operator of the maximal subgroup


U(1) of SU(2).


Let S1


and S3 be an arbitrary irreducible representation of the Lie algebra


su(2) by self-adjoint operators satisfying the commutation relations
3


Ss,.


Since the Casimir operator of SU(2)


of the Lie algebra su(2),


4ijkSk*


commutes with all the generators


-=


its eigenspaces are invariant under the Lie algebra, and all


VdD,4(1),







irreducible representations of SU(2) on any of the H


by Ul


. One can show that every


irreducible representation U of SU(2) is equivalent to one of the representations U(


-=0,1/


[103, Theorem III.5.1]).


. S..


For SU(2) in the Euler angle parameterization an arbitrary unitary irreducible

representation of SU(2) is given by


exp(


-iS3) exp


-i0S2) exp(-


iCS3


where the domain of the parameters 0,


4, and


C is given by


< 2r


, -27w


<27


With


choice


parameterization


the operators


{(k=L1


defined


Lemma 4.1.4 (i) are given by:


-i90,


-i0,c 0,4,


i sin 40e + i cot 0 cos 4 i cos t csc e00,


-iO,,


-isa


-i cos 10e + i cot 0 sin 480


- i sin csc 0D8,


-ia, 0, 4',


-i9,.


(4.14)


By Corollary 4.1.5 these operators can be identified with the generators of a subrepre-


sentation of the left regular representation of SU(2),


belong to the right invariant


Lie algebra of SU(2))


. Similarly the operators {


k k=1 defined in Lemma 4.1.4 (ii)


are given by:


i(ioe,


i8A, i04


i sin aeo


csc 6 cos (08 + cot 0 cos C8,


(i9e,


i cos gde + i


csc 0 sin (a9


- i cot 0 sin t(f,


3(iOe, i9,, i,0, 4, C)


(4.15)


and can be identified with the generators of a subrepresentation of the right regular


O,4,0) =


-i~e,


-ie0,


-i8e,


-i4,,


i i9 i ,0,, ,







For the Casimir operator of SU(2) one finds


-(1 z)8


-1-z


-2z


9 c + i),


(4.17)


where


= cos 0 and the identity


- sin O9cos G


= 09 has been used.


Since C1 comriutes


with all elements of the enveloping algebra


is irreducible,


multiple of the identity on any one of the reproducing kernel Hilbert spaces L4(SU(


associated with the irreducible representation U,,


1 = C


Let {b,}


+ 1)IL2(SU(2))


be an orthonormal basis in H(,


(4.18)


then we can associate with each


irreducible representation U^(8,^,),


where


= 0,1/2,1,


the following matrix ele-


S.*..


ments


Dn,(0, t,


= (m,


m, n


We shall now determine the matrix elements D&,(6, B, () as the common eigen-


functions of the operators A1, B1, C1.

common eigenfunctions of the operators


D (0, )


Equations (4.16) and (4.17) suggest that the


and C1 are of the form


-i(m+n) p (cos 0).


Using this form of DL, (0, ,


C) in (4.18) one finds:


-z2


d
z -P4n(z) +
dz


- 2mnz)


-z22


= C(C


+ 1)Pn (z).


The functions Pijn(z),


which are known as the Wigner functions, are given by


2m


(C m)!(C


4+ m)!


p(m-n,m+n)
(-mi


where p(_m-n'm+n)(
where. -m


z) are Jacobi polynomials, (see [103,


125]).


Also observe that


a-


~I I as -~ aI a -a-


-C


UIr(,,Ct)


) -p (
' dPz mnv


z)+


p (
-rn\


( )('!(1
( n)!(+n)!


i I


I








as pointed out above these functions form a complete ONS on L2(SU(2)).


The com-


pleteness relation for this ONS takes the form, see (4.11),


+1)D ,(0"


m,n=


, ")oD (e'


16wr2
s 6(0"
sin 9


By equation (4.12) the representation independent propagator for SU(2) is then

found to be:


l',t')


167r2 exp[-i(t"


- t') l-l(-iV


(-iV, /),


1
sin 0


- )


where 1


= (0, ,E) and


= (8e, 9 ,,-).


Equation 4.13 the regularized lattice


phase-space path integral representation for the representation independent propaga-

tor for SU(2) is given by


0' ,


167w2 r
sin sin lim
o'sin 9" sin O' moo


+/3j+1/2( j+1 Cj) +


. .


exp{i [OLj+1/2(j+1 j)
j=0


N
7j+l/2(Ej+i j) t(sk(Pj+1/2; lj+1, Zj)3} J7J djdjd ,
j='


where,


1
2(sin &+1 + sin gj)&j+1/2
2


- (cot 0%j^ cos 4-1 + cot Oj cos Cj)/ j+1/2

-(cos 4jy+ CSC 0+l + Ccos (j csc Oj)7Yj+l/2,


1


j+1/2 + cos Cj)tj+1/2


1
- (cot 6jQl sin j+1 + cot 0j sin j) 3j+1/2
2


0+il sin j+l +


csc Oj sin #j)7y+l/2,


JI


,)=


S3(-iV


-0')6("


- ') "


-('.


1,))]>


K(l"


- e')("


')(('"


K(0"


(Pj+1/2; j+1 ,j )


(Pj+1/2; j+l j)








2),2C(


-iV


-iV


-iV

-iV


-iV


2I


4.3.1


The Hamilton Operator 7i(&1


St, S3)


= 1
21


As announced in chapter 2 we now revisit the free particle moving on a circle


and present its exact path integral treatment.


The Hamiltonian t-(


i, S2,


= 32/21


describes a free particle moving on a circle with fixed axis, like a bead on a hoop.


We analyze this problem in two steps.


First we proceed naively, assuming that the


Hamilton operator is self-adjoint.


In particular we assume that 83


adjoint on L2([0, 27r)) and has a spectrum of the form f/


=nq1n


= 0, 1,


= -io8 is self-


Then in


a second step we reexamine this assumption and show that


-i98 self-adjoint with


spectrum /3


= n is only one particular choice of uncountably many.


With this choice


of Hamilton operator the representation independent propagator takes the form


, ", ,"


I ',('


,t')


16r2


/sin O" sin 0'


lim
N--oo


...


S
a,'v


exp{i


- 6,) + %-A-i


( k+1


+ 7j+i


167r2
sin 6("


(j+1 j) -


- 6') 6C("


Pj+1/2
21


) lim
N-*oo


=-00


E exp i
=-0o


j*+1


(41+1


- 4j) _
2/- a~


N

,j=1


This last integral can be evaluated as follows


N+1


lim
N--too


.. .


n+l/i2=p-oo


01/2==-o


N
E 1 11


>} de0jd3 dy


.. **


1j
2ir


exp{i 5[tij+i


(j+l


- j)


1)w3


31(~i-


+ S23).


K(e"


- *)


(0441


j+il


Su+4










j=1
1= 1


NN
(4^ )+j-1/2) 2- +1/2} j
j=o0 j=1


1/2


exp i[ N+1/2"


2I


NJ+1/2


J+1/2] j+1/2 j-1/
j--=1


exp i


T
- #) 2
2I


Hence we find for the representation independent propagator


.1 9,


."6("0"
smin" 8"


- 0') 6(("


exp i


n= --oo


T
- ') n
2I


The sum over n is related to the Jacobi theta function,
00


exp(iirtn2


+ 2inz).


n=-oo


Therefore, with the following identifications we can write the representation indepen-


dent propagator in closed form.


-qS')


then our final result for the representation independent propagator becomes


8fr
t') = s 6(0""
' sin 0"


- 0') 6("


- ()03


-T
'27IrI


This result agrees with the one found by Schulman [94] expect for an arbitrary phase

factor.


We now follow our analysis in Ref.


99, section III.c.


It is well known that the


symmetric operator


-i9 on L2([0, 27r)) with domain


A "T


lim
N->oo


Q=-oo


, ", "


- f1/2 '


w("


K(6"


n(4"


03(z,t) =


-')


K(0"







which we denote by -i9


-iOa with the domain


2w
* L
S


oo, i(27r)


= e'"(0)},


where 8


-r, 7) (see [87


257-


Note that the choice 6


= 0 corresponds


to the case of periodic boundary conditions,


spectrum of each


which


we have assumed above.


-il, is straightforwardly found as follows, let A


ER then


this implies that the eigenfunctions are given by


'()


= iA


Fitting the boundary conditions rf(27r)


= e'i(0)


yields the following set of eigen-


values,


= n n+


Therefore, the spectrum of


nEZ


S. ,


-i96 is given by


spec(-


6
n + -
"2^


= A


E [-7, 7r)


nE Z .


Hence, the choice of periodic boundary conditions is only one of uncountable many


possibilities.


If we choose instead the boundary conditions 4(27r)


where


= e- (0),


E [-i, x) is arbitrary,


our expression for the representation independent propagator


becomes


, ', '


87sin f(


- 6') 6(s"


- ')


exp i


n=-oo


6
2v}


T
--n+
21


2ir


={


D(-


59]).


-ia~iW~


= A()


,0, +1,


K(0"


n+


-')


--A


1









72

Therefore, with the following identifications we can write the representation indepen-


dent propagator again in closed form.


-4,')


then our final result for the representation independent propagator with arbitrary 6

becomes


,t", ,e


87r
sin "6( "
sin 0


- 0') 6(C"


-C)


iS("


iT62


87i 2


- ')


T6


This result exhibits the same -dependence

which also encompasses all spins.


as does the one found Schulman [94


4.3.2


The Hamilton Operator ?7(


1, '2,


-=7(


Our second example is that of the Hamilton operator 7%(


1, 2,


where C1(0, 4,


() is the Casimir operator of SU(2)


given in


(4.17).


Note that the


Hamilton operator WI(


1,2, 3)


4) is essentially self-adjoint since C1(0, 4, 4)


= C1(, ,


is a symmetric and elliptic central element of the enveloping algebra E of SU(2),


Corollary


VI.3.1]).


This Hamiltonian describes the motion


of a free particle


on the group manifold of SU(2)


With


this choice of the Hamilton operator the


representation independent propagator becomes:


, ", (
A'ElC1


O', >' (' t' )

-i-C1 ("
21


", ,(")
^ C)"


1
sin 8,(0"
sime 0


- e')6("'


- ')


- ')


T
-i c (e"
21


4, 4,n


E
m,i=-


(2( + 1)DS4(0"


-an


-x


.T


af\ \


I .i I I | k^ll ,-. I [ I II l R I I J-, t. r r /


a4\


I


-1 n.l1


i1l A.1\ lid 9


-T1
'274r


,")D6,('


, ',('


K(0"


- ')


+ j)


K(0"


I lir' \







the element g


-1(0",


, ') by (9, ) one finds:


Xc(9(0,,


)]Pm(cos 0)


m=Observe that, the character of the group can be expressed as a function of a single
Observe that, the character of the group can be expressed as a function of a single


variable as follows.


It is well known that the character as a function of the group is


constant on conjugacy classes, i.e.


for any two elements g and gl one has


(919911


Therefore,


= Xc (9)


to show that xc (g) is a function of one variable, it is sufficient to show


that the conjugacy classes of SU(2) can be labeled by a single parameter.


known from linear algebra any unitary unimodular


As is well


x 2 matrix g can be written as


, where gl


SSU(


) and 7 is of the following diagonal matrix


-i(r/2)


Furthermore, among all matrices equivalent to g there exists only one other diagonal


matrix 7' obtained from 7 by complex conjugation.


Therefore, each conjugacy class


of elements of SU(


) is labeled by one parameter r


, ranging from


2r and


where r and


-r give the same class.


Hence, the characters xc(g) can be regarded as


functions of one variable r that varies between 0 and 27r.


The geometrical meaning


of the parameter r is that it is equal to the angle of rotation corresponding to the


matrix g.


In terms of the Euler angles (9"


,C") and (0U


, #,, ') r is given by


= arccos[cos(0"


- O') cos(4"


- ') cos(("


-C)


- cos(0"


+ 9') sin(t"


- ') sin(('"


-(4.19)]
(4.19)


One can derive an explicit formula for xc(g) as a function of r


U'(,r,o) that corresponds to 7


Note that the matrix


E SU(2) is given by the diagonal matrix of rank 2C +1


-= 9g17g1


,(")g(e'


-im(( +


ei(r/2)






74

Hence, the group character can be written as


-1(0"


where r is given in (4.19).


,',C))


Therefore


sin(C


+ 1/2)r


sin r/2


, one finds for the representation independent


propagator


, E",


,t"; 0',


16trr
vi. sn 0, flim
Jsm 0 sn -+


exp{i


...


(0,+1 -0) + /j+1


-Cj)


{(,O,}


- cC1(0j+i


+ 1)exp


(t"
--/


- t')


+1)


+1/2)r


sin r/2


This result agrees with the one found by Schulman [94] which was obtained by the


methods mentioned in chapter


The Representation Independent Propagator for General Lie Groups


4.4.1


Construction of the Representation Independent Propagator


Now let G be a general Lie group.

square integrable unitary representative


Let us again denote by U an arbitrary, fixed,

n of G. Then it is a direct consequence of


Lemma 4.1.4 (i) that for any 4


= [C1,


kl]()0,


= 1,


..., d.


holds independently of ir.


Therefore


, the isometric isomorphism C, intertwines the


representation of the Lie algebra L on H,


invariant


with a subrepresentation of L by right-


, essentially self-adjoint differential operators on any one of the reproducing


kernel Hilbert spaces L'(G}.


To summarize, we found in section 4.1 that any square


xd (


2E(


, ", ") g(0'


K(0"


[aj+i


(5+1


4, () ]}} dejd~jdf>


+ 7i+i


I,)[c,](







Let (X


, H) be a representation of G


then we denote by A(4r) the von Neumann


algebra generated by the operators 79


g G (cf.


Appendix A.2).


By Proposition


5.6.4 in Ref. 25 there exists a projection operator PI in the center of the von Neumann
algebra A(A) such that the restriction A1 of A to the closed subspace PI[L2(G)] of


L2(G) is of type I,


and such that the restriction of A to the orthogonal complement of


P[L2(G)] has no type I part.


Since G is separable and locally compact there exists by


Theorem 5.1 in Ref.


30 a standard Borel measure v on G


, the set of all inequivalent


irreducible unitary representations of G,


and a v-measurable field


unitary representations of G


such that the type I part of A,


can be decomposed


into a direct integral,


where UC


Ic is a representation of G


xG on H


Denote by
system on He.


7L(Xk) the essentially self-adjoint Hamilton operator of a quantum
Then the continuous representation of the solution to Schrbdinger's


equation,


= exp


- t')1(Xk(t')


takes


, on L(G)


the following form


K,,(Q, t; I'


, t') (1'


,t')dg(


where,


-


[C exp[-


k )3flC')3(2)


- t')[)


-t')(QhK


(4.20)


- t'); '),


;', t')


,Hep


d ((),


,(,t)





76
Note that for non-compact Lie groups it is not true that every symmetric Hamilton


operator is also essentially self-adjoint,
illustrate this important fact, we consid


Example 4.4.1:


as was the case for compact Lie groups.


ler the following two examples:


Let G be the non-compact two parameter group of transformations


p < oo,


-00


oo of the real line JR and let H


= L (Rj),


where 1R"


= (0,


An irreducible unitary representation of G on H is given by the


formula:


(Ug, ) )(k)


= p-/2e-iqk?(p


E H.


The generators of the one-parameter unitary subgroups are given by


U(X,)


U(X2)


i d
2 dk


d
dk


We choose the set


(Ri)


as the common dense invariant domain for these operators.


As our first example we consider the operator


i d d
2 dk dk


D(T1)


(IR).


Clearly the operator T1 is symmetric.


To show that Ti is essentially self-adjoint it is


necessary and sufficient to show that the kernel of the operator Tj + iI


ker(Tj* + ii),


consists only of the zero vector,


ker(Tt


+ iI)


= {0}


. In other words we have to


show that the equation:


has no solutions in H other than + (k)


One finds the following solution for the


above equation


1 it 1


T{q(k)


= tfi+(k),


=k,


= kf2


U(X2 +


.,,, / i .







Both of these functions are not in H


, since they are not square integrable.


function


M+(k)


diverges at infinity and the function


diverges at the origin.


Therefore,


we conclude that T1 is essentially self-adjoint.


As our second example we consider the operator


r d
ki- +
dk


i d d i d d
- k-+- + k + k k
2 dk dk 2 dk dk


\ dIf dd
dk dk c


D(T2)


(Rfl).


This operator is clearly symmetric, and one determines the following solutions for the


equation T'*4+(k)


= +ig((k):


exp


+ (k)


_(-k)


1
-4k
4kc2


1 ?
exp


Clearly (k) is not integrable since it has a non-removable singularity at the origin,


however 4+(k) is square integrable,


and hence, belongs to H. Therefore,


even though


the operator T2 is symmetric it is not essentially self-adjoint and can also not be
extended to a self-adjoint operator since it has deficiency indices (1,0). O


We now proceed with our construction of the representation independent propa-


gator.


Let a, f


E D(G),


then put


U(a)


a(g(l)) Ug(


a'(g(1))


SA(g


-1(1)),


and define the map DT(G)


x D(G)


3 (a, 3) -+ a*/0 e


-1 .\ -


u(X2x


dk
dk r


+X


dg(l,


-'(1))a(g







With these definitions we find that:

K,(a,) -)=


/2r7)a(g(l))f( g(l'))dg l)dg(l')


a(g(1))/(g(1)g(l'))dg(1)


r>)(a"* 3)(g(l'))dg(l')


U(a*


Note that Kf(a, 1) is a bilinear, separately continuous form on 1D(G)


the bilinear separately continuous forms on 2D(G)
that K/(a, 3) is a left invariant kernel, that is


C, (Lga, Lgf0)


x (G).


x 1D(G) kernels on G.


for every g


We call


Also observe


E D (G).


Therefore


, we can write (4.20)


K,(a,t; t')


- t')}a, 8).


In the above construction in


E D(K1


) was arbitrary, furthermore as shown else-


where [30,


Corollary


] for


a E V(G)


the operator


is trace class.


Therefore


, we can choose any ONS


{j})jev in D(K1/2) and write


KH(a, 3)


=


K (a, /)


= trt[K/2U(a* fl)K1/2]


Note that KH(Ca, /) is a left invariant kernel on


G, since each K1j (a; /3) is a left


invariant kernel on G.


Therefore,


Proposition


VI.6.5 in Ref.


78 there exists a


unique distribution


S in )'(G) such that KH(a, /)


= S(Q* /).


In fact we see that


dg(')


K,(l; l')a(g(l))W(g(l'))dg(l)dg(l')


(7,K


-K()g(


(O, KI


U7(zKI


({h,Ki2Ug( )K1


(r, K1


* ))K1


= K, (a, 3),


, a,


-u (t


K'/2U(a)K1/2






79

Remark 4.4.1 This propagator is clearly independent of ij the fiducial vector that fixes


a coherent state representation.


However,


this propagator is in general no longer a


continuous function but a linear functional acting on {D(G)


. We will see below that


the elements of any reproducing kernel Hilbert space lie in the set of test functions


for this propagator.


Lemma 4.4.1


The propagator KH(1,


given in (4.21) correctly propagates all


elements


any reproducing


kernel


Hilbert space


associated


irre-


ducible, square integrable unitary representation Ug(1)


of the general Lie group G.


Proof.


Let i


E D(K1/2) be arbitrary, then for 4,(1'


E L2(G) one can write


KH (, t; 2'

-= u(t


,t')dg(l') =


,t') (l'


- t')tr[KU/2 Ug-l()g(l')K-/2]),(l'


,t')dg(l')


U(t -t')


U(t- t')(K1/2U(


(., K1/2 U9g- ()9(l,)K1/2 j) (UlgI')K1/2 (t') ) dg (')


(fjr }7>j,


[C, exp[-i(t -t'))](t')](

(Jt ),


where the fourth equality holds by


Theorem 4.1.2.


Therefore,


(l,it) =


KH(1, t; 1


,t')dg(l'),


the propagator propagates the elements of any


L2 (G) correctly.


In the above construction the unitary irreducible representation Ug()


was arbi-


tirTTnT hono Tx r r on n+TrAln/aO ciivr-h 7 nrnnTsQrnr fAr ono r Tnonr111Tlonf 11n +TTlnr r7onre_


E D(K/2),


}(t'))


', t') (l'








a semi-invariant operator of weight A (g


-1) in Hc for v-almost all


E G such that for


P [D(G)]


6e(a* *) =


tr[K/2U( )K1/2
trtK~~ V ~ /5


(4.22)


is well defined;


see Appendix B.3. Here,


s(a* p) =


and 6e(g


-(1)g(l')) is given in the chosen parameterization by


-(1)g(l')) = y 6(lk
v(1) =1


Hence,


we can write down the following propagator for A1 of G on L2(G),


K(a, t; f, t')


u(t -t')


U(t t')


tr[KI/2UC(a* 1)K1/2


]dv(C)


u(t t')S-*


*fl).


Therefore,


we find


the following propagator for the type


part of the left regular


representation AI:


K(1, t; I'


,t') = exp[-i(t t')7H((k(-iVl, l))]6e(g


- (I)g(').


(4.23)


Remark 4.4.2


Observe, that this propagator is clearly independent of the fiducial vec-


tor and the irreducible


, square integrable unitary representation one has chosen for G.


A sufficiently large set of test functions for this propagator is given by C(G) n L2(G),


1-f ln t nn 4-b n nr n- nCl


- ()g(') )a(g(t) )3(g(l') )dg(1)dg(Z'),


_ 'k)


]dv(C),


KH (a, t; t') dv( ()


ICH((cu; )dv


wrrtl nrn v^^\ fC 'f /n Cnrnr iC n9 f^ +l^ f^^- /+ r ll ^/^t^t' /\Il^4i t-/^ ~ \^ /








Theorem 4.4.2


The propagator K(l, t; 1'


, t') in (4.23) is a propagator for the type I


part of the left regular representation of the general Lie group G which correctly prop-
agates all elements of any reproducing kernel Hilbert space L4(G) associated with an


arbitrary irreducible,


quare integrable unitary representation U1)


of G


Proof.


To prove the second part of Theorem 4.4.2,


let U and 7K'
g(1)


ED(


arbitrary. For any ic, (1)


E L2
,


associated with U',


we can write


JGK(l, t; '
G


= [c,,


- t')6e(g


~ 9 )U 'K. 1/2
-l(1)gl ))(Uri,)K, tiC,


(t'fl(2)


-- = (lt)


Therefore


S(, t)


for all rk,


E D(K,/2) and any C'


, i.e. this propagator propagates all elements of


any reproducing kernel Hilbert space L


(G) associated with an arbitrary irreducible


representation UC) correctly.


Hence, we have succeeded in constructing a representation independent propagator

for a general Lie group.


4.4.2


Path Integral Formulation of the Representation Independent Propagator


From (4.23) it is easily seen that the representation independent propagator is a


weak solution to Schrbdinger's


equation,


--, Xd(


-= H(\.


-iV


L))K(, t; 1'


(4.24)


;1',t


t')dg ('),


e 4


t'),{(l' t')dg(l')


n(t'))dg(l')


- '[C,,(t](


- U(t


- t')n(


i8,K((, t; 1'


_








Remark 4.4.3


Observe that the coherent state propagator given in (4.20) is also a


weak solution to the Schridinger equation


(4.24).


However


it satisfies the initial


value problem


im K,I(


C,(2


(4.26)


Therefore


we can write


iOtK#(, t; '


-iV


=-i(1


., Zd(


-iV


l))IK (, t; 2'


(4.27)


where K# denotes either K, or K


Note that the initial conditions, i.e.


either (4.25)


or (4.26) determine which function is under consideration.


We now interpret the SchrSdinger equation (4.27) with the initial condition (4.25)

as a Schrbdinger equation appropriate to d separate and independent canonical de-


grees of freedom.


Hence, I1


Id are viewed


,...,


as d "coordinates"


, and we are looking


at the irreducible Schrbdinger representation of a special class of d-variable Hamil-


ton operators,


ones where the classical Hamiltonian is restricted to have the form


'(Ui(p, ),


...,Xd(p, 1))


instead of the most general form fl(pl,


..., pd11


, ...,d).


In fact


the differential operators given in Lemma 4.1.4(i) are elements of the right invariant


enveloping algebra of the d-dimensional Schrodinger representation on L2(G)


. Based


on this interpretation one can give the representation independent propagator the fol-

lowing standard formal phase-space path integral formulation in which the integrand

assumes the form appropriate to continuous and differentiable paths


K(l"


exp i


pmlm


-(


i(p,l)


m=


" ,sd(p,))dt t',t
tEt (',tlf


dl(t)dp(t),


a


i8 K,,(


...,Xd(


; ', t')


, t"; l',) t')


-iV,,1))K(,t; '


N(Wl






Page
Missing
or
Unavailable








normalized such that


, *.*


l"d l,


Sp Pp'd)


, .


Sd)


I 6(p ,pjk)


where


6(P, pk)


6 ,, /
Fkrk


If the spectrum of Pq& is discrete
If the spectrum of PT& is continuous


and giving rise to the resolutions of identity


dg(l)


spec


...xspec(Cd


Ip) (pdp


spec(Pi )x


...xspec(P d


where


..., d) and ]p)


S-IPl,.


Remark 4.4.4


If the spectrum of P-k is discrete then dpk denotes a pure point measure


such that the integration over pk reduces to summation over spec(Pc-).


On L2(G) these operators can be represented


= -ialo.


1-


(4.29)


= -i[o.a


where D


the set of functions of rapid decrease on G,


dense invariant domain of these operators.


is chosen as the common


Here ra(0) is defined as r(0)


-= al In y7()


and where 7(l) is given in (4


It is easily seen that these operators satisfy the CCR,


are symmetric on L2(G),


and that


-iV


t has the following generalized eigenfunctions


(l)exp (i


where


S= (8^1


..., ad) We normalize these functions so that


K -y'7tr("'') exp[i


pk "kU


- r)ldpl


... dpd


=6e (g


I 1 -i -1 ------_- .. a C- -


mx. ra~n


Pk k


-1 n ),


- p'k)


.,Pd)"


- r ')y),


C.. 1 L, rl,, n Arm nl: nn~


']r








We call (4.29) a d-dimensional Schridinger representation on L2(G).


Moreover


differential operators {k


Lemma 4.4.3


-iV


)}=1 can be written as follows:


given in (4. 9) the right


invariant differential operators {xk


-iV


defined in Lemma 4.1.4


(i) can be


written as:


-iaim


-i1im)p


-1 (g(1))],


. ,


(4.31)


where


Proof.


Since -iBda


-iao.


+ (i


- 1,


. ..,,


the differential operators


{Xk(


-iVt, l)},-= become after substitution of this expression


- + (i/2)r(),


..., -iOld + (if


)rd(, 11


-ij'm


r-m(1)]


-1'k (g())(


El1/
m=1


-^jm


-ia'm


Using [p-'


-itfm


= im p-km( ((1)) and the definition of r"(l) yields


..., -i^Od + (i/


-1km


27(1) m
m=1


-km(g(l))


m[p k (()].


Since the operators 4r

Hilbert-space L(G) (cf.


-iV


1, 1) are essentially self-adjoint on any reproducing kernel


Corollary 4.1.5) and since 7(l)


0 one concludes that


-'1km(g())7()]


= 0,


= 1,


Using the differential operators {-it^o}=1


-iV


-'k (1())(


m=l


S= (


..,
.. ,By


P-'1 mg())


m=l


d 1
E9


* ..


d. d


I)}L


p)r(t)


-'k"( (l))(


1km m)


)+p


km (f( ),


-i~p


)rd( ,


.. d)


)r'(1),


+(i/


8^lm
-th


)+(


-iim








Remark 4.4.5


This Lemma shows that the differential operators {hk


-are


elements of the right invariant enveloping algebra of the d-dimensional Schrbdinger


representation on L2(G).


Adapting methods used in Refs.


63 and 68 we can give the representation inde-


pendent propagator the following regularized lattice prescription.


Proposition 4.4.4


operators on H,


Let 7,


where


be a sequence of regularized Hamilton

Then provided the indicated integrals


= (t"


exist (see below) the representation independent propagator in (4


following d-dimensional lattice phase-space path integral representation:


lim
N-*oo


x exp i


[pj+I


-Il)


- e1,((k(pj+1


4+I, j))


x Jdl
j=1


dpu+1/2


... dl


...dpCj+i/2


(4.32)


j+1/2=0


where lN+1


= l"I


= 1' and the


arguments


of the Hamiltonian are


given by the


following functions:


p- km(g(lj+)) + P-kmt))


Xk (Pj+


j+l1


Pm+ /2,


m=l


Remark 4.4.6 If part of the parameter space C


is compact then


we denote by


the class of moment conjugate to the restricted range or periodic "coordinates". If

pk E R then dpk denotes a pure point measure such that the integration over phj+1/2


reduces to summation over the discrete spectrum of Pr.-


For the case of a compact


parameter space C (4.32) reduces to (4.13).


) can be given the


.. .S


. *


-= 7-(I + e?12)


- t')/(N + 1)


, t"; ', t')


K(I"


(l,,)y ( t,)


(l1-l








Then it is straightforward to show,


by using the Spectral Theorem and the Monotone


Convergence Theorem,


that for all 4


E D(N)


C H one has


s-lim 916
6--0


-=


and that on all of H one has


s-lim [I
N--oo


- ie91,


N+1 = exp[-i(t"


where E


- (t"


- t')/(N + 1)


. Now in order to obtain the lattice phase-space path


integral in (4.32) one can proceed as follows.


{&}


be an arbitrary ONS in


CH


then


K(l"


= exp


,5a))r


(a" exp


Sk(Pc"


,C))]I>r


<*|>) (k,


Xk(PcG


lim
N--oo


lim (1"

lim /
N-*oo


(Irl, k)(k,


- i'H k(Pc"


- iE (k (Pco


ca))N+


N


i,} n ^w"


where 1"


= IN+1,


= o10, and (


*) denotes the generalized inner product. Note that


the third line holds true since each


E 4 gives rise to a linear functional acting on


* in the following manner Lb()


= (41 )


=- (<, for all


. Hence


one has


that (kl exp[-


= L4k (exp[-


- t')] j)


= k, exp


The fourth line follows from the fact that 4"


C H and that the approximation we are


r9nn hnlAlre ew all olomaont nf -I


(Co alhnvpV


That we rran interchanre the limit


- t') ],


a))N+">1 kI)


... d


E 4


- t')w(


- t')(


,c)^io


- t')W(


1- i ,(ik(Pcl


-t )W).


-i-t'


-t')








Limits Theorem (see [31,


Lemma I.7.6])


Hence


we find the following expression for


r, t'):


, t"; l', t')


lim
N -oo


N


-ieH,(


Xk(aPc;


lj+l ,j))


lij) 7(lj)dl2


(4.33)


Therefore, we have to evaluate (lj+< I[1


- ill(


This can be done as follows:


- i ",


k(PcO


ie ,(




/2) (Pj+l


) (ljpj+1/2


Xk (PCG


1 itC,(~k (pj+1


where


P- km(gj+))+ p


lj+1,


-1 k(mC))


~,7p+1I2,


S1, ... d.


m=l


Substituting the right hand side of (4.30) into the above expression yields


(lj+ ll


- icU


e pj+1/2


- i ", (


k (pj+1l


S)) dPj+l/2
j


(4.34)


Now inserting (4.34) into (4.33) yields


K ("


, t"; 2', t')


= lim
') N-oo


x exp i


tpj+i


S(1j+1


N
- li) 1
5 =0


- iE',(kO(pj+1/2; -j+


x n dl


... dpS+*/2


...dld


(4.35)


j+1/2=0


Eauation (4.35M represents a valid lattice phase-space path integral representation of


l+1,


Zk (p+1


1
f7(li+W) ( >


K(l"


...dl


K(l"


(/j+lI[1


lj )} Ijldp


hWPj +1


lj+1


dplj+l/2








expression:


x exp i


[pj+I


* (+1 lj) fd,(xkj+1/2; j+1' j))I


N
1 d3
x j=..1dl-
j=l


N

j+1/2=0


dplp+1/


. .. dpdg+l/2


which is the desired expression.


Remark 4.4.7 Observe that even though the group manifold is a curved manifold the


regularized lattice expression for the representation independent propagator


- save for


the prefactor 1/Xy(l") ')


- has the conventional form of a lattice phase-space path


integral on a d-dimensional flat manifold.


Also note that the lattice expression for the


representation independent propagator exhibits the correct time reversal symmetry.


Furthermore


, we have made no assumptions about the nature of the physical


systems we are considering,


other than that their Hamilton operators be essentially


self-adjoint. Hence, one can use (4.32) in principle to describe the motion of a general

physical system, not just that of a free particle, on the group manifold of a general


Lie group G.


In addition


there are no h2


corrections present in the Lagrangian.


Therefore


we have arrived at an extremely natural path integral formulation for the


motion of a general physical system on


that is (a) more general than,


(b) exact,


the group manifold of a general Lie group

and (c) free from the limitations present in


the path integral formulations for the motion of a free physical system on the group

manifold of a unimodular general group discussed in chapter 2. O

4.5 Example: A Representation Independent Propagator for the Affine Group


We now introduce a representation independent propagator for the affine group.


,t "; ', t')


..9.


K(I"







one-dimensional systems for which


the canonical momentum


p is restricted to be


positive for all times.


For further applications of the affine group in quantum physics


the reader is referred to Ref.

example of a locally compact,


adopted parameterization is given


64 and references there in.

non-unimodular Lie group,


A(g(p, q))


The affine group is also an

its modular function in the


and its left invariant Haar


measure is given by dg(p, q)


4.5.1


Affine Coherent States


us denote by


and X2 a representation


of the basis of the Lie algebra


associated with the affine group by self-adjoint operators with common dense invariant


domain D on some Hilbert space H.


Since X1 and X2


are a representation of the basis


of the Lie algebra associated with the affine group, it follows that these operators

satisfy the commutation relations


[X2, XZ


-iX1.


From these commutation relations it is easily seen that the Lie algebra associated with


the affine group is solvable,


therefore


, the affine group is a solvable Lie group.


Since


X1 and X2 are chosen to be self-adjoint they can be exponentiated to one-parameter


unitary subgroups of the affine group,


example 4.4.1.


Since the affine group is


a connected solvable Lie group every group element can be written as the product


of these one-parameter unitary subgroups (cf.


Theorem 3.5.1]).


With the above


parameterization the map:


g(P,q)


- Ug(pg)


- exp(-


iqX1) exp(iln pX2)


provides a unitary representation of the affine group on H


for all (p, q) P+


where


= {(P,q)


--00 <


< 00}


- -. S


The unitary representations of the affine


= dpdq.








and one for which X1


is a negative self-adjoint operator.


We denote the irreducible


unitary representation of the affine group corresponding to X1 positive by U7,q) and

to X1 negative by U2( ,), respectively.

The continuous representation theory using the affine group has been investigated


by Aslaksen and Klauder [5] where it was shown that for (,


SH


0 the factor


,2, is square integrable if and only if


E D(C-1/2


where the


operator C is given by C


=
27T


and X1


is restricted to be positive.


Hence


irreducible unitary representations of the affine group are square integrable for a


dense set of vectors in H.


Moreover, in Ref.


5 the following orthogonality relations


have been established for the irreducible unitary representations of the affine group:


, x')dpdq


= (X'


= 1.2


where X'


eH


eD(C


Hence


, each of the irreducible unitary repre-


sentations can be used to define a set of coherent states:


r (p, q)


= UC ,qC
- j^ r1)


where ,?


E D(C'


) and


These states give rise to a resolution of identity


and a continuous representation of the Hilbert space H on any one of the reproducing


kernel Hilbert spaces L (P+)


4.5.2


C L2(P+).


The Representation Independent Propagator


Using Theorem 3.2.1(ii) we find:


idUU
g(p,q) g(p,q)


Xdq + (qXx -
p


from which we identify the following


1
X)dp
p


-1.2


coefficient matrix [Pm


k(g(p, q))]:


(a(f v.a I))


, < #


= 1


I |


U(U)(,


(x, U )(U'


,C-1/2 ,


,x)(C


I v TT1


I




Full Text

PAGE 1

48$17,=$7,21 $1' 5(35(6(17$7,21 ,1'(3(1'(17 3523$*$7256 :2/)*$1* 720‹ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

)RU 0DULH-DFTXHOLQH DQG $QQH6RSKLH

PAGE 3

f7KH KLJKHVW UHZDUG IRU D PDQfV WRLO LV QRW ZKDW KH JHWV IRU LW EXW ZKDW KH EHFRPHV E\ LWf -RKQ 5XVNLQ

PAGE 4

$&.12:/('*(0(176 ZRXOG OLNH WR WKDQN 3URI 'U -RKQ 5 .ODXGHU IRU EHLQJ P\ WKHVLV DGYLVRU IRU WKH SDVW \HDUV +LV LGHDV JXLGDQFH FRQVWUXFWLYH FULWLFLVP DGYLFH HQFRXUDJHPHQW VXSSRUW WUXVW DQG FRQILGHQFH LQ PH DUH JUHDWO\ DSSUHFLDWHG ZLVK WR WKDQN 3URI 'U 6WDQOH\ 3 *XGGHU IURP WKH 8QLYHUVLW\ RI 'HQYHU IRU LQWURGXFLQJ PH WR WKH IRXQGDWLRQV RI TXDQWXP WKHRU\ DQG IRU VHUYLQJ DV P\ PDVWHUfV WKHVLV DGYLVRU DOVR ZRXOG OLNH WR WKDQN 3URI 'U $OZ\Q YDQ GHU 0HUZH IRU PDNLQJ P\ VWD\ DW WKH 'HSDUWPHQW RI 3K\VLFV DW WKH 8QLYHUVLW\ RI 'HQYHU SRVVLEOH 3URI 'U -DPHV : 'XIW\ LV FRUGLDOO\ WKDQNHG IRU KLV DGYLFH VXSSRUW DQG HQn FRXUDJHPHQW ZLWKRXW ZKLFK WKLV ZRUN PLJKW QHYHU KDYH EHHQ FRPSOHWHG DOVR ZRXOG OLNH WR WKDQN 3URI 'U *HUDUG (PFK DQG 3URI 'U 6WHSKHQ 6XPPHUV IRU WKHLU FRQVWUXFWLYH FULWLFLVP DW DQ HDUO\ VWDJH RI WKLV ZRUN DQG 3URI 'U %HUQDUG ) :KLWLQJ IRU KHOSIXO GLVFXVVLRQV RQ WKH FODVVLFDO OLPLW RI WKH UHSUHVHQn WDWLRQ LQGHSHQGHQW SURSDJDWRU DOVR ZLVK WR WKDQN 3URI 'U .KDQGNDU 0XWWDOLE IRU KLV VHUYLFH RQ P\ FRPPLWWHH DP JUDWHIXO WR 3URI 'U +DMR /HVFKNH IURP WKH 8QLYHUVLW\ RI (UODQJHQ *HUn PDQ\ IRU KLV KHOSIXO UHPDUNV RQ WKH XQLYHUVDO SURSDJDWRU IRU DIILQH FRKHUHQW VWDWHV GXULQJ WKH &RQIHUHQFH RQ 3DWK ,QWHJUDOV LQ 3K\VLFV KHOG LQ %DQJNRN 7KDLODQG LQ WKH :LQWHU RI +LV UHPDUNV SURYHG WR EH YHU\ YDOXDEOH LQ WKH IXUWKHU FRXUVH RI P\ LQYHVWLJDWLRQV DP DOVR JUDWHIXO WR 'U 0D[ %URFNHU IURP WKH 6WXGLHQVWLIWXQJ GHV GHXWVFKHQ 9RONHV ZKRVH YDOXHG DVVLVWDQFH DQG VXSSRUW KDYH PDGH LW SRVVLEOH IRU PH WR DWWHQG WKH DIRUHPHQWLRQHG FRQIHUHQFH DQG YDULRXV RWKHU PHHWLQJV IURP ZKLFK KDYH EHQHILWWHG D JUHDW GHDO ,9

PAGE 5

)LQDOO\ ZLVK WR H[SUHVV P\ JUDWLWXGH WR P\ ZLIH 0DULH-DFTXHOLQH ZUKR KDV DOn ZD\V EHHQ D VXSSRUWLYH DQG XQGHUVWDQGLQJ FRPSDQLRQ LQ WKH DW WLPHV YHU\ GHPDQGLQJ OLIH RI D SK\VLFLVW )LQDQFLDO VXSSRUW IRU WKH ZnRUN SUHVHQWHG KHUH KDV EHHQ SURYLGHG LQ SDUW E\ D GRFWRUDO IHOORZVKLS IURP WKH 6WXGLHQVWLIWXQJ GHV GHXWVFKHQ 9RONHV DQG E\ D JUDGXDWH UHVHDUFK DZDUG IURP WKH 'LYLVLRQ RI 6SRQVRUHG 5HVHDUFK DW WKH 8QLYHUVLW\ RI )ORULGD Y

PAGE 6

7$%/( 2) &217(176 $&.12:/('*(0(176 LLL $%675$&7 YLL &+$37(56 ,1752'8&7,21 7KH )LGXFLDO 9HFWRU ,QGHSHQGHQW 3URSDJDWRU IRU WKH +HLVHQEHUJ :H\O *URXS ([DPSOHV RI WKH )LGXFLDO 9HFWRU ,QGHSHQGHQW 3URSDJDWRU *HQHUDO 2YHUYLHZ RI WKH 7KHVLV $ 5(9,(: 2) 620( 0($16 72 '(),1( 7+( )(<10$1 3$7+ ,17(*5$/ 21 *5283 $1' 6<00(75,& 63$&(6 7KH )H\QPDQ 3DWK ,QWHJUDO RQ O5G *URXS DQG 6\PPHWULF 6SDFHV ,QWURGXFWLRQ 7KH )H\QPDQ 3DWK ,QWHJUDO RQ O5G 7KH )H\QPDQ 3DWK ,QWHJUDO RQ *URXS 6SDFHV 7KH )H\QPDQ 3DWK ,QWHJUDO RQ 6\PPHWULF 6SDFHV &RKHUHQW 6WDWHV DQG &RKHUHQW 6WDWH 3DWK ,QWHJUDOV ,QWURGXFWLRQ &RKHUHQW 6WDWHV 0LQLPXP 5HTXLUHPHQWV *URXS &RKHUHQW 6WDWHV &RQWLQXRXV 5HSUHVHQWDWLRQ 7KH &RKHUHQW 6WDWH 3URSDJDWRU IRU *URXS &RKHUHQW 6WDWHV 127$7,216 $1' 35(/,0,1$5,(6 1RWDWLRQV 3UHOLPLQDULHV 7+( 5(35(6(17$7,21 ,1'(3(1'(17 3523$*$725 )25 $ *(1(5$/ /,( *5283 &RKHUHQW 6WDWHV IRU *HQHUDO /LH *URXSV 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU &RPSDFW /LH *URXSV ([DPSOH 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU 68f 7KH +DPLOWRQ 2SHUDWRU :VL f f A 7KH +DPLOWRQ 2SHUDWRU bVL6!6f AA Vif f f f f 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU *HQHUDO /LH *URXSV &RQVWUXFWLRQ RI WKH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU YL

PAGE 7

3DJH 0LVVLQJ RU 8QDYDLODEOH

PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 48$17,=$7,21 $1' 5(35(6(17$7,21 ,1'(3(1'(17 3523$*$7256 %\ :2/)*$1* 720‹ $XJXVW &KDLUPDQ 'U -RKQ 5 .ODXGHU 0DMRU 'HSDUWPHQW 3K\VLFV 7KH TXDQWL]DWLRQ RI SK\VLFDO V\VWHPV PRYLQJ RQ JURXS DQG V\PPHWULF VSDFHV KDV EHHQ DQ DUHD RI DFWLYH DQG RQJRLQJ UHVHDUFK RYHU WKH SDVW WKUHH GHFDGHV ,W LV VKRZQ LQ WKLV ZRUN WKDW LW LV SRVVLEOH WR LQWURGXFH D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D UHDO VHSDUDEOH FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV )RU D JLYHQ VHW RI NLQHPDWLFDO YDULDEOHV WKLV SURSDJDWRU LV D VLQJOH JHQHUDOL]HG IXQFWLRQ LQGHSHQGHQW RI DQ\ SDUWLFXODU FKRLFH RI ILGXFLDO YHFWRU DQG WKH LUUHGXFLEOH UHSUHVHQWDWLRQV RI WKH /LH JURXS JHQHUDWHG E\ WKHVH NLQHPDWLFDO YDULDEOHV ZKLFK QRQHWKHOHVV FRUUHFWO\ SURSDJDWHV HDFK HOHPHQW RI D FRQWLQXRXV UHSUHVHQWDWLRQ EDVHG RQ WKH FRKHUHQW VWDWHV DVVRFLDWHG ZLWK WKHVH NLQHPDWLFDO YDULDEOHV )XUWKHUPRUH LW LV VKRZQ WKDW LW LV SRVVLEOH WR FRQVWUXFW UHJXODUL]HG ODWWLFH SKDVH VSDFH SDWK LQWHJUDOV IRU D UHDO VHSDUDEOH FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV DQG DOWKRXJK WKH FRQILJXUDWLRQ VSDFH LV LQ JHQHUDO D PXOWLGLPHQVLRQDO FXUYHG PDQLIROG LW LV VKRZQ WKDW WKH UHVXOWLQJ ODWWLFH SKDVHVSDFH SDWK LQWHJUDO KDV WKH IRUP RI D ODWWLFH SKDVHVSDFH SDWK LQWHJUDO RQ D PXOWLGLPHQVLRQDO IODW PDQLIROG +HQFH D QRYHO DQG H[WUHPHO\ QDWXUDO SKDVHVSDFH YP

PAGE 9

SDWK LQWHJUDO TXDQWL]DWLRQ LV REWDLQHG IRU JHQHUDO SK\VLFDO V\VWHPV ZKRVH NLQHPDWLFDO YDULDEOHV DUH WKH JHQHUDWRUV RI D FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS 7KLV QRYHO SKDVHVSDFH SDWK LQWHJUDO TXDQWL]DWLRQ LV Df PRUH JHQHUDO WKDQ Ef H[DFW DQG Ff IUHH IURP WKH OLPLWDWLRQV RI WKH SUHYLRXVO\ FRQVLGHUHG SDWK LQWHJUDO TXDQWL]DWLRQV RI IUHH SK\VLFDO V\VWHPV PRYLQJ RQ JURXS PDQLIROGV 7R LOOXVWUDWH WKH JHQHUDO WKHRU\ D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LV H[n SOLFLWO\ FRQVWUXFWHG IRU 68f DQG WKH DIILQH JURXS ,;

PAGE 10

&+$37(5 ,1752'8&7,21 ,Q QRQUHODWLYLVWLF TXDQWXP PHFKDQLFV WKH VWDWHV RI D TXDQWXP PHFKDQLFDO V\VWHP DUH JLYHQ E\ XQLW YHFWRUV VXFK DV LS S RU LQ VRPH FRPSOH[ VHSDUDEOH +LOEHUW VSDFH + )RU D VLQJOH FDQRQLFDO GHJUHH RI IUHHGRP SUREOHP WKH EDVLF NLQHPDWLFDO YDULDEOHV DUH UHSUHVHQWHG RQ + E\ WZR XQERXQGHG VHOIDGMRLQW RSHUDWRUV 3 WKH PRPHQWXP DQG 4 WKH SRVLWLRQ ZLWK D FRPPRQ GHQVH LQYDULDQW GRPDLQ 7KHVH RSHUDWRUV VDWLVI\ WKH &DQRQLFDO +HLVHQEHUJf &RPPXWDWLRQ 5HODWLRQ &&5f SM X ZKHUH IW /HW 334f EH WKH +DPLOWRQ RSHUDWRU RI D TXDQWXP V\VWHP WKHQ WKH WLPH HYROXWLRQ RI WKLV TXDQWXP V\VWHP LQ WKH VWDWH LS f '+f LV JLYHQ E\ WKH WLPHGHSHQGHQW 6FKURGLQJHU HTXDWLRQ LGWLS^Wf +^34fLSWf 6LQFH RQO\ VHOIDGMRLQW RSHUDWRUV PD\ EH H[SRQHQWLDWHG WR JLYH RQHSDUDPHWHU XQLn WDU\ JURXSV ZKLFK JLYH WKH G\QDPLFV RI D TXDQWXP V\VWHP LW ZLOO DOZD\V EH DVn VXPHG WKDW WKH +DPLOWRQ RSHUDWRU LV HVVHQWLDOO\ VHOIDGMRLQW LH LWV FORVXUH LV VHOI DGMRLQW ,I WKH +DPLOWRQ RSHUDWRU LV QRW H[SOLFLWO\ WLPH GHSHQGHQW WKHQ D VROXWLRQ WR 6FKURGLQJHUfV HTXDWLRQ LV JLYHQ LQ WHUPV RI WKH VWURQJO\ FRQWLQXRXV RQHSDUDPHWHU XQLWDU\ 6FKURGLQJHU JURXS 8Wf H[S ^f§2+f E\ L3Wf 8WWnfL3Wnf )RU D VLQJOH SDUWLFOH V\VWHP RQH WUDGLWLRQDOO\ FKRRVHV IRU WKH +LOEHUW VSDFH + WKH VSDFHV /O5GTf RU /O5GSf 2Q WKHVH +LOEHUW VSDFHV WKH EDVLF NLQHPDWLFDO

PAGE 11

YDULDEOHV 3 DQG 4 DUH UHDOL]HG E\ WKH IROORZLQJ WZR XQERXQGHG V\PPHWULF RSHUDWRUV f§LGGT DQG T RU S DQG LGGS UHVSHFWLYHO\ 7KHVH RSHUDWRUV DUH HVVHQWLDOO\ VHOIDGMRLQW RQ WKH GHQVH VXEVSDFH 60f RI /-5f WKH VSDFH RI LQILQLWHO\ RIWHQ GLIIHUHQWLDEOH IXQFWLRQV WKDW WRJHWKHU ZLWK WKHLU GHULYDWLYHV IDOO RII IDVWHU WKDQ WKH LQYHUVH RI DQ\ SRO\QRPLDO )XUWKHUPRUH VLQFH WKHVH RSHUDWRUV OHDYH 65f LQYDULDQW RQH FDQ FKRRVH 65f & /5f DV WKH FRPPRQ GHQVH LQYDULDQW GRPDLQ IRU WKHVH RSHUDWRUV 2QH FDOOV WKHVH RSHUDWRUV WRJHWKHU ZLWK WKHLU FRPPRQ GHQVH LQYDULDQW GRPDLQ 65f WKH 6FKUGLQJHU UHSUHVHQWDWLRQ RQ TVSDFH RU RQ SVSDFH ZKLFK LV GHQRWHG E\ LSTf 6@5f RU [SSf e 65f UHVSHFWLYHO\ FI > $SSHQGL[ 9@f +RZHYHU ZH ZRXOG OLNH WR HPSKDVL]H WKDW WKHUH LV QRWKLQJ VDFUHG DERXW WKLV FKRLFH RI UHSUHVHQWDWLRQ RWKHU WKDQ WKH WLPHKRQRUHG FXVWRP RI GRLQJ VR 2QH FDQ DOVR FKRRVH RQH RI WKH VRFDOOHG FRQWLQXRXV UHSUHVHQWDWLRQV EDVHG RQ FDQRQLFDO FRKHUHQW VWDWHV FI >@f ,Q WKLV UHSUHVHQWDWLRQ WKH VWDWHV DUH JLYHQ E\ FHUWDLQ ERXQGHG FRQWLQXRXV VTXDUH LQWHJUDEOH IXQFWLRQV RI WZR UHDO SDUDPHWHUV S DQG T :H GHQRWH WKHVH IXQFWLRQV E\ AS Tf 7KH IXQFWLRQV [S7fS Tf VSDQ D VXEVSDFH /+f RI /5f ZKHUH WKH VXEVFULSW GHQRWHV D XQLW ILGXFLDO YHFWRU LQ WKH +LOEHUW VSDFH + RQ ZKLFK WKH FDQRQLFDO FRKHUHQW VWDWHV DUH EDVHG /HW Uc[f f /@5f EH D IL[HG QRUPDOL]HG IXQFWLRQ DQG LS[f H /5f EH DUELWUDU\ WKHQ DQ H[SOLFLW UHSUHVHQWDWLRQ RI WKH IXQFWLRQV LS^STf FDQ EH JLYHQ DV IROORZV )URP WKLV IRUP RI WKH UHSUHVHQWDWLRQ LW PD\ EH VHHQ WKDW RQH REWDLQV WKH 6FKUGLQJHU UHSUHVHQWDWLRQ LQ TVSDFH RU LQ SVSDFH LQ DSSURSULDWH OLPLWV ,Q SDUWLFXODU RQH REWDLQV WKH 6FKUGLQJHU UHSUHVHQWDWLRQ RQ TVSDFH E\ VXLWDEO\ VFDOLQJ WKH LSYS Tf VR WKDW WKH VFDOHG ILGXFLDO YHFWRU DSSURDFKHV LQ WKH OLPLW D GHOWD IXQFWLRQ DQG WKH 6FKUGLQJHU UHSUHVHQWDWLRQ RQ SVSDFH DV WKH ILGXFLDO YHFWRU DSSURDFKHV WKH LQGLFDWRU IXQFWLRQ RI 5 WLPHV WKH FRQVWDQW HWSJ VHH >@f

PAGE 12

:LWK HDFK RI WKHVH YDULRXV UHSUHVHQWDWLRQV RQH FDQ DVVRFLDWH D SURSDJDWRU LQ TVSDFH E\ Wf -: WnfGT? LQ SVSDFH E\ [c!^SWf /SWSnWnfLS^SnWnfGSn DQG ILQDOO\ LQ WKH FRQWLQXRXV UHSUHVHQWDWLRQ EDVHG RQ FDQRQLFDO FRKHUHQW VWDWHV E\ 2I FRXUVH HDFK RQH RI WKHVH SURSDJDWRUV JHQHUDOO\ GHSHQGV RQ WKH UHSUHVHQWDWLRQ RQH KDV FKRVHQ 3K\VLFDOO\ WKHVH SURSDJDWRUV UHSUHVHQW WKH SUREDELOLW\ DPSOLWXGH IRU WKH TXDQWXP V\VWHP XQGHU GLVFXVVLRQ WR XQGHUJR D WUDQVLWLRQ IURP DQ LQLWLDO FRQILJXUDWLRQ WR VRPH ILQDO FRQILJXUDWLRQ DQG WKH\ FRQWDLQ DOO WKH UHOHYDQW G\QDPLFDO LQIRUPDWLRQ IRU WKH TXDQWXP V\VWHP /HW XV DVN ZKHWKHU LW LV SRVVLEOH WR ILQG D VLQJOH SURSDJDWRU .^S T W?S? Tn Wnf VXFK WKDW KROGV IRU DQ DUELWUDU\ ILGXFLDO YHFWRU 6WDWHG RWKHUZLVH LV WKHUH D SURSDJDWRU WKDW LV LQGHSHQGHQW RI WKH FKRVHQ FRQWLQXRXV UHSUHVHQWDWLRQ EXW ZKLFK QRQHWKHOHVV SURSDn JDWHV WKH HOHPHQWV RI DQ\ UHSUHVHQWDWLRQ VSDFH /,5f LQ VXFK D ZD\ WKDW WKH\ VWD\ LQ WKH UHSUHVHQWDWLRQ VSDFH /5f" 7KH DQVZHU LV \HV :H QRZ RXWOLQH WKH FRQVWUXFWLRQ RI WKLV SURSDJDWRU IRU WKH +HLVHQEHUJ :H\O JURXS IRU DQ DOWHUQDWLYH FRQVWUXFWLRQ RI WKLV SURSDJDWRU VHH .ODXGHU >@ 7KH )LGXFLDO 9HFWRU ,QGHSHQGHQW 3URSDJDWRU IRU WKH +HLVHQEHUJ :H\O *URXS /HW 3 4 DQG EH DQ LUUHGXFLEOH VHOIDGMRLQW UHSUHVHQWDWLRQ RI WKH +HLVHQEHUJ DOJHEUD >4 3@ LOK >4 ,@ >3 ,@ RQ + 7KHQ IRU DQ DUELWUDU\ QRUPDOL]HG YHFWRU f + GHILQH WKH IROORZLQJ VHW RI VWDWHV 9Sf 9W Y^S f

PAGE 13

ZKHUH 9STf H[Sf§LT3f H[SLS4f ,Q IDFW WKHVH VWDWHV DUH WKH IDPLOLDU FDQRQLFDO FRKHUHQW VWDWHV ZKLFK IRUP D VWURQJO\ FRQWLQXRXV RYHUFRPSOHWH IDPLO\ RI VWDWHV IRU D IL[HG QRUPDOL]HG ILGXFLDO YHFWRU UM + DQG WKH\ DGPLW WKH IROORZLQJ UHVROXWLRQ RI LGHQWLW\ c+ U`^34fY^3TfffGSGT 7KH PDS + f§ /5 GSGTf GHILQHG IRU DQ\ LS + E\ >FYLS@STf 0SL4f Y^STf7Sf \LHOGV D UHSUHVHQWDWLRQ RI WKH +LOEHUW VSDFH + E\ ERXQGHG FRQWLQXRXV VTXDUH LQWHn JUDEOH IXQFWLRQV RQ D SURSHU FORVHG VXEVSDFH /5f RI /5f 8VLQJ WKH UHVROXWLRQ RI LGHQWLW\ RQH ILQGV 9nUM3f Tf f§ I&7^ST?SnTnfW3U^SnTnfGSnGTn ZKHUH SSAf"Sn!nff Y r S TfY S TnfAYf LV WKH UHSURGXFLQJ NHUQHO ZKLFK LV WKH NHUQHO RI D SURMHFWLRQ RSHUDWRU IURP /,5f RQWR WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /,5f /HW EH WKH FRPPRQ GHQVH LQYDULDQW GRPDLQ RI 3 DQG 4 WKDW LV DOVR LQYDULDQW XQGHU 9STf WKHQ RQH FDQ HDVLO\ VKRZ WKDW WKH IROORZLQJ UHODWLRQV KROG RQ LG49STf 9STf3 f T LGSf9nSTf 9STf4 f 1RWLFH WKDW WKH RSHUDWRU 9rSTf LQWHUWZLQHV WKH UHSUHVHQWDWLRQ RI WKH +HLVHQEHUJ DOJHEUD RQ WKH +LOEHUW VSDFH + ZLWK WKH UHSUHVHQWDWLRQ RI WKH +HLVHQEHUJDOJHEUD E\ ULJKW LQYDULDQW GLIIHUHQWLDO RSHUDWRUV RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /5f )XUWKHUPRUH WKHVH GLIIHUHQWLDO RSHUDWRUV DUH HVVHQWLDOO\ VHOIDGMRLQW

PAGE 14

DQG DQ DSSURSULDWH FRUH IRU WKHVH RSHUDWRUV LV JLYHQ E\ WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI ' eeff /HW +A3 4f EH WKH HVVHQWLDOO\ VHOIDGMRLQW +DPLOWRQ RSHUDWRU RI D TXDQWXP V\VWHP RQ + WKHQ XVLQJ WKH LQWHUWZLQLQJ UHODWLRQV f DQG f RQH ILQGV IRU WKH WLPH HYROXWLRQ RI DQ DUELWUDU\ HOHPHQW LSYS TWf RI & /5f WKH IROORZLQJ A3f .US T WSn T? T? WnfGSnGTn ZKHUH .Y^STW?Sn4n?Wnf 7@S Tf H[S>f§]L 4f@UMSn Tnff YL 9rSTfH[S>LW Wnfn+3 4f@9Sn Tnff§\ U`f 97 Y7 H[S>f§L WnfAA} 4 LGSf?rK ArS! Tf9^SnTnfaL Yf \ 7 9A77 ZKHUH WKH FORVXUH RI WKH +DPLOWRQ RSHUDWRU KDV EHHQ GHQRWHG E\ WKH VDPH V\PERO 7KLV FRQVWUXFWLRQ KROGV IRU DQ\ + WKHUHIRUH RQH FDQ FKRRVH DQ\ FRPSOHWH RU LQ + DQG ZULWH GRZQ WKH IROORZLQJ SURSDJDWRU WKRQRUPDO V\VWHP ^A` .STWSnTnWnf 22 /HW XV QRZ HYDOXDWH 7WU>9rSTf9SnTnf? /HW ^A]f`A DQG ^L3NLAMN/ EH WZR FRPSOHWH RUWKRQRUPDO V\VWHPV LQ /5f 7KHQ XVLQJ WKH UHSUHVHQWDWLRQ LQ f ZH FDQ IRUPDOO\ ZULWH

PAGE 15

WKH IRXUWK OLQH IROORZV IURP XVLQJ WKH FRPSOHWHQHVV UHODWLRQV IRU WKH ![f DQG A[f +HQFH WKH SURSDJDWRU .STW@SnTnWnf LV JLYHQ E\ .^STWSnTnWnf H[S>LW W"f+LGT T LGSf@S Snf6T Tnf f $V VKRZQ LQ >@ WKLV SURSDJDWRU SURSDJDWHV WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /5f FRUUHFWO\ LH 9USf f 7KH SURSDJDWRU LQ f LV FOHDUO\ LQGHSHQGHQW RI WKH FKRVHQ ILGXFLDO YHFWRU $ VXIn ILFLHQWO\ ODUJH VHW RI WHVW IXQFWLRQV IRU WKLV SURSDJDWRU LV JLYHQ E\ &5f Q /5f ZKHUH &5f LV WKH VHW RI DOO FRQWLQXRXV IXQFWLRQV RQ 5 +HQFH HYHU\ HOHPHQW RI /5f LV DQ DOORZHG WHVW IXQFWLRQ IRU WKLV SURSDJDWRU )URP f LW LV HDVLO\ VHHQ WKDW WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU LV D ZHDN VROXWLRQ WR 6FKURGLQJHUfV HTXDWLRQ LH LGW.S T W Sn T? Wnf T LGSf.S T W?Sn Tn Wnf 7DNLQJ LQ f WKH OLPLW W Wn RQH ILQGV WKH IROORZLQJ LQLWLDO YDOXH SUREOHP LGW.STWSnTnWnf +f§LGTT LGSf.STWSnTn Wnf OLP .^STW?SnTnWnf S Snf ^T Tnf f

PAGE 16

:H QRZ LQWHUSUHW f DV D 6FKUGLQJHU HTXDWLRQ DSSURSULDWH WR WZR VHSDUDWH DQG LQn GHSHQGHQW FDQRQLFDO GHJUHHV RI IUHHGRP +HQFH S DQG T DUH YLHZHG DV fFRRUGLQDWHVf DQG ZH DUH ORRNLQJ DW WKH LUUHGXFLEOH 6FKUGLQJHU UHSUHVHQWDWLRQ RI D VSHFLDO FODVV RI WZRYDULDEOH +DPLOWRQ RSHUDWRUV RQHV ZKHUH WKH FODVVLFDO +DPLOWRQLDQ LV UHVWULFWHG WR KDYH WKH IRUP 7L^NT f§ [f LQVWHDG RI WKH PRVW JHQHUDO IRUP LN[TSf ,Q IDFW WKH RSHUDWRUV JLYHQ E\ HTXDWLRQ f DQG f DUH HOHPHQWV RI WKH ULJKW LQYDULDQW HQYHORSLQJ DOJHEUD RI D WZR GLPHQVLRQDO 6FKUGLQJHU UHSUHVHQWDWLRQ %DVHG RQ WKLV LQWHUSUHWDWLRQ IROORZLQJ VWDQGDUG SURFHGXUHV FI >@f RQH FDQ JLYH WKH ILGXFLDO YHFn WRU LQGHSHQGHQW SURSDJDWRU IRU WKH +HLVHQEHUJ :H\O JURXS WKH IROORZLQJ UHJXODUL]HG VWDQGDUG SKDVH VSDFH ODWWLFH SUHVFULSWLRQ .STW@STnWnf OLP 12& H[S^L A>[-LSML 3Mf NMLTML M R 4Mf 1 1 W+&M_L "M TMf ;Mf@` -GSMGTM GNMLG;M? A" ZKHUH S1XT1Lf STf SRf Sn4nf! DQG F "f1 f 2EVHUYH WKDW WKH +DPLOWRQLDQ KDV EHHQ XVHG LQ WKH VSHFLDO IRUP GLFWDWHG E\ WKH GLIIHUHQWLDO RSHUDWRUV LQ HTXDWLRQV f DQG f DQG WKDW :H\O RUGHULQJ KDV EHHQ DGRSWHG $IWHU D FKDQJH RI YDULDEOHV VHH >@f WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU IRU WKH +HLVHQEHUJ :H\O *URXS EHFRPHV .^STWSnTnWnf OLP 12& a 3Mf a [MO3MO 1 NMLTML Tf Hn+NML;MLf@`>[S NT f§ +NT f§ [f@GW ? 9S9T9N9[ 1 GNMLG;ML 7f

PAGE 17

DQG .STWSnTnWnf 0 -H[S >TS [S NT +N[f@GWA 9S9T9N9[ UHVSHFWLYHO\ 'HVSLWH WKH IDFW WKDW WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU KDV EHHQ FRQn VWUXFWHG DV D SURSDJDWRU DSSURSULDWH WR WZR FDQRQLFDOf GHJUHHV RI IUHHGRP LW LV QRQHWKHOHVV WUXH WKDW LWV FODVVLFDO OLPLW UHIHUV WR D VLQJOH FDQRQLFDOf GHJUHH RI IUHHGRP FI >@f ([DPSOHV RI WKH )LGXFLDO 9HFWRU ,QGHSHQGHQW 3URSDJDWRU 9DQLVKLQJ +DPLOWRQLDQ :H QRZ ORRN DW WZR H[DPSOHV RI WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU 2XU ILUVW H[DPSOH LV WKDW RI WKH YDQLVKLQJ +DPLOWRQLDQ ZKLFK OHDGV WR .^STW@SnTnWnf 0 H[S TS NT f§ [SfGW 9S9T9N9[ $I H[S TSGWnM ^J` ^Sf9S9T 6SSnf6T Tnf 7KLV LV RI FRXUVH D WULYLDO H[DPSOH KRZHYHU LW VKRZV WKDW WKH ILGXFLDO YHFWRU LQGHn SHQGHQW SURSDJDWRU IXOILOOV WKH FRUUHFW LQLWLDO FRQGLWLRQ DV LV H[SHFWHG IURP HTXDWLRQ f 7KH +DPLOWRQLDQ + 3 Xf 7KH VHFRQG H[DPSOH ZH FRQVLGHU LV WKDW RI WKH +DPLOWRQLDQ "A$[f N X[f +HUH WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU WDNHV WKH IROORZLQJ IRUP .STWSnTnWnf 9S9T9N9[

PAGE 18

B FVFX7f U ; H[3 AFRWXUf ZKHUH 7 W f§ Wn 7KLV LV DQ XQXVXDO UHVXOW IRU WKH SURSDJDWRU RI WKH KDUPRQLF RVn FLOODWRU 7KLV UHVXOW KDV WKH DSSHDUDQFH RI D SURSDJDWRU IRU D WZR GLPHQVLRQDO IUHH SDUWLFOH LQ D XQLIRUP PDJQHWLF ILHOG FI > S @f +RZHYHU ZKHQ RQH EULQJV XS DQ HOHPHQW RI DQ\ RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /@5f WKHQ WKLV SURSn DJDWRU DFWV OLNH WKH FRQYHQWLRQDO SURSDJDWRU IRU WKH KDUPRQLF RVFLOODWRU 0RUHRYHU LQ WKH DSSURSULDWH OLPLWV RQH FDQ UHFRYHU WKH XVXDO SURSDJDWRUV LQ WKH 6FKUGLQJHU UHSUHVHQWDWLRQ VHH >@f *HQHUDO 2YHUYLHZ RI WKH 7KHVLV 7KLV WKHVLV LV RUJDQL]HG LQWR VL[ FKDSWHUV DQG WKUHH DSSHQGLFHV 7KH ILUVW FKDSWHU LV WKLV LQWURGXFWLRQ DQG WKH ODVW FKDSWHU LV D FRQFOXVLRQ 7KH UHVXOWV RI RXU UHVHDUFK DUH FRQWDLQHG LQ FKDSWHUV DQG 7KH WKUHH DSSHQGLFHV KDYH EHHQ DGGHG WR PDNH WKLV WKHVLV UHDVRQDEO\ VHOIFRQWDLQHG ,Q FKDSWHU ZH GLVFXVV WKH FRQVWUXFWLRQ RI SDWK LQWHJUDOV RQ JURXS DQG V\PPHWULF VSDFHV ,Q VHFWLRQ ZH UHYLHZ WKH )H\QPDQ SDWK LQWHJUDO RQ IODW JURXS DQG V\Pn PHWULF VSDFHV 6HFWLRQ LV GHYRWHG WR WKH VWXG\ RI JURXS FRKHUHQW VWDWHV DVVRFLDWHG ZLWK D FRPSDFW JURXS DQG WKH FRQVWUXFWLRQ RI FRKHUHQW VWDWH SDWK LQWHJUDOV EDVHG RQ JURXS FRKHUHQW VWDWHV DVVRFLDWHG ZLWK D FRPSDFW JURXS ,Q FKDSWHU ZH LQWURGXFH WKH QRWDWLRQV DQG EDVLF GHILQLWLRQV XVHG WKURXJKRXW WKH WKHVLV 7KH PDLQ UHVXOW RI WKLV FKDSWHU LV 7KHRUHP LQ ZKLFK ZH GHULYH DQ RSHUDWRU YHUVLRQ RI WKH JHQHUDOL]HG 0DXUHU&DUWDQ IRUP &KDSWHU FRQWDLQV WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV :H UHIHU KHUHDIWHU WR D UHDO VHSDUDEOH

PAGE 19

ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV DV D JHQHUDO /LH JURXS )RU D JLYHQ VHW RI NLQHPDWLFDO YDULDEOHV WKLV SURSDJDWRU LV D VLQJOH JHQHUDOL]HG IXQFWLRQ LQGHSHQGHQW RI DQ\ SDUWLFXODU FKRLFH RI ILGXFLDO YHFWRU DQG WKH LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH JHQHUDO /LH JURXS JHQHUDWHG E\ WKHVH NLQHPDWLFDO YDULDEOHV ,Q VHFWLRQ ZH GHILQH FRKHUHQW VWDWHV IRU D JHQHUDO /LH JURXS DQG SURYH /HPPD DQG WKH &RUROODU\ ZKLFK ZH DSSO\ LQ WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU DQG WKH FRQVWUXFWLRQ RI UHJXODUL]HG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQV RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU 3ULRU WR FRQVWUXFWLQJ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQHUDO /LH JURXS ZH FRQVWUXFW LQ VHFWLRQ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU DQ\ UHDO FRPSDFW /LH JURXS ,W LV VKRZQ LQ 7KHRUHP WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU DQ\ FRPSDFW JURXS FRUUHFWO\ SURSDJDWHV WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH DVVRFLDWHG ZLWK DQ DUELWUDU\ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI $V DQ H[DPSOH WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU 68f LV FRQVWUXFWHG ,Q VHFWLRQ WKLV FRQVWUXFWLRQ LV WKHQ VXLWDEO\ H[WHQGHG WR D JHQHUDO /LH JURXS DQG ZH VKRZ LQ 7KHRUHP WKDW WKH UHVXOW REWDLQHG LQ 7KHRUHP KROGV IRU D JHQHUDO /LH JURXS ,Q 3URSRVLWLRQ ZH HVWDEOLVK WKDW LW LV SRVVLEOH WR FRQVWUXFW UHJXODUL]HG SKDVHVSDFH SDWK LQWHJUDOV IRU D JHQHUDO /LH JURXS (YHQ WKRXJK JHQHUDOO\ WKH JURXS VSDFH LV D PXOWLGLPHQVLRQDO FXUYHG PDQLIROG LW LV VKRZQ WKDW WKH UHVXOWLQJ SKDVHVSDFH SDWK LQWHJUDO KDV WKH IRUP RI D ODWWLFH SKDVHVSDFH SDWK LQWHJUDO RQ D PXOn WLGLPHQVLRQDO IODW PDQLIROG +HQFH ZH REWDLQ D QRYHO DQG YHU\ QDWXUDO SKDVHVSDFH SDWK LQWHJUDO TXDQWL]DWLRQ IRU V\VWHPV ZKRVH NLQHPDWLFDO YDULDEOHV DUH WKH JHQHUDWRUV RI D JHQHUDO /LH JURXS 7R LOOXVWUDWH WKH JHQHUDO WKHRU\ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS LV FRQVWUXFWHG 6HH $SSHQGL[ $ IRU D GHILQLWLRQ RI WKHVH WHUPV 6HH 6HFWLRQ DQG $SSHQGL[ $ IRU WKH GHILQLWLRQ RI WKHVH WHUPV

PAGE 20

,Q FKDSWHU ZH GLVFXVV WKH FODVVLFDO OLPLW RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSn DJDWRU RI D JHQHUDO /LH JURXS DQG VKRZ WKDW LWV FODVVLFDO OLPLW UHIHUV LQGHHG WR WKH GHJUHHV RI IUHHGRP DVVRFLDWHG ZLWK WKH JHQHUDO /LH JURXS 6HFWLRQV DQG FRQn WDLQ D GHWDLOHG GLVFXVVLRQ RI WKH FODVVLFDO OLPLW RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU FRPSDFW /LH JURXSV DQG QRQFRPSDFW /LH JURXSV ,Q VHFWLRQ ZH SURYH WKDW WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH DFWLRQ IXQFWLRQDO RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQHUDO /LH JURXS LPSO\ WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO DFWLRQ IXQFWLRQDO RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU D JHQHUDO /LH JURXS FI 3URSRVLWLRQ f

PAGE 21

&+$37(5 $ 5(9,(: 2) 620( 0($16 72 '(),1( 7+( )(<10$1 3$7+ ,17(*5$/ 21 *5283 $1' 6<00(75,& 63$&(6 7KLV FKDSWHU LV VRPHZKDW LQGHSHQGHQW RI WKH UHVW RI WKLV WKHVLV DQG VHUYHV DV DQ LQWURGXFWLRQ WR VRPH RI WKH ZD\V RI FRQVWUXFWLQJ SDWK LQWHJUDOV RQ JURXS DQG V\PPHWULF VSDFHV 2XU DUJXPHQWV ZLOO EH ODUJHO\ KHXULVWLF EXW ZH ZLOO FRQIURQW WKH LVVXH DJDLQ ZLWK ULJRU LQ FKDSWHU ,Q VHFWLRQ WKH FRQVWUXFWLRQ RI WKH )H\QPDQ SDWK LQWHJUDO RQ O5G JURXS DQG V\PPHWULF VSDFHV LV GLVFXVVHG 6HFWLRQ LV GHYRWHG WR D SUHOLPLQDU\ VWXG\ RI JURXS FRKHUHQW VWDWHV ZH WDNH WKLV VXEMHFW XS LQ PRUH GHWDLO LQ FKDSWHU 7KH UHPDLQLQJ SDUW RI VHFWLRQ LV GHYRWHG WR WKH FRQVWUXFWLRQ RI FRKHUHQW VWDWH SDWK LQWHJUDOV EDVHG RQ JURXS FRKHUHQW VWDWHV 7KH )H\QPDQ 3DWK ,QWHJUDO RQ O5G *URXS DQG 6\PPHWULF 6SDFHV ,QWURGXFWLRQ 7KH \HDU FDQ EH VHHQ DV WKH EHJLQQLQJ RI PRGHUQ TXDQWXP PHFKDQLFV PDUNHG E\ WKH WZ[! DOPRVW VLPXOWDQHRXVO\ SXEOLVKHG SDSHUV RI +HLVHQEHUJ >@ DQG 6FKURGLQJHU >@ 7KH IRUPHU SURSRVHV WKH IRUPDOLVP RI PDWUL[ PHFKDQLFV ZKLOH WKH ODWWHU SURSRVHV WKH IRUPDOLVP RI ZUDYH PHFKDQLFV 6FKURGLQJHU >@ ILUVW VKRZHG WKDW WKH WZR IRUPXODWLRQV DUH SK\VLFDOO\ HTXLYDOHQW %RWK RI WKHVH DSSURDFKHV ZKHUH FRPELQHG KHXULVWLFDOO\ E\ 'LUDF >@ LQWR D PRUH JHQHUDO IRUPXODWLRQ RI TXDQWXP PHFKDQLFV 7KH PDWKHPDWLFDOO\ ULJRURXV GHYHORSPHQW RI WKLV JHQHUDO IRUPXODWLRQ RI TXDQWXP PHFKDQLFV Z7DV VXEVHTXHQWO\ FDUULHG RXW E\ YRQ 1HXPDQQ >@ 7KLV JHQHUDO IRUPXODWLRQ RI TXDQWXP PHFKDQLFV LV EDVHG RQ DQ DQDORJ\ ZLWK WKH +DPLOWRQ IRUPDOLVP RI FODVVLFDO PHFKDQLFV ,W LV ZHOO NQRZQ WKDW WKH /DJUDQJLDQ IRUPDOLVP RI FODVVLFDO PHFKDQLFV KDV DOPRVW QR SODFH LQ WKLV JHQHUDO IRUPXODWLRQ RI

PAGE 22

TXDQWXP PHFKDQLFV H[FHSW LQ WKH VXJJHVWLYH GHULYDWLRQ RI 6FKURGLQJHUfV ZDYH HTXDn WLRQ IURP WKH +DPLOWRQ-DFREL HTXDWLRQ E\ WKH VXEVWLWXWLRQ 6 LK?QLSf ZKHUH 6 GHQRWHV WKH +DPLOWRQ SULQFLSDO IXQFWLRQ 7KH ILUVW KLQW RI WKH SRVVLEOH LPSRUWDQFH RI WKH /DJUDQJLDQ LQ TXDQWXP PHFKDQLFV ZDV JLYHQ E\ 'LUDF >@ KH UHPDUNHG WKDW WKH TXDQWXP WUDQVIRUPDWLRQ ^TW?TWRf FRUUHn VSRQGV WR WKH FODVVLFDO TXDQWLW\ H[S>LILf Ir /GW? ,W ZDV WKLV UHPDUN E\ 'LUDF WKDW OHG )H\QPDQ LQ WKHQ D VWXGHQW DW 3ULQFHWRQ WR D QHZ IRUPXODWLRQ RI TXDQWXP PHFKDQLFV VHH WKH DFFRXQW LQ > @f 7KLV QHZ DSSURDFK GLG FHUWDLQO\ QRW EUHDN DQ\ EDUULHUV WKDW FRXOG QRW EH RYHUFRPH IURP WKH RSHUDWRU RU +DPLOWRQLDQ SRLQW RI YLHZ 1HYHUWKHOHVV RQH PLJKW KDYH JDLQHG LQ WZR ZD\V IURP )H\QPDQfV ZRUN >@ DQG WKH HQVXLQJ ZRUN RI RWKHU DXWKRUV > @ )URP D SUDFWLFDO SRLQW RI YLHZ DV SRLQWHG RXW E\ )H\QPDQ >@ WKLV DSSURDFK WR TXDQWXP PHFKDQLFV DOORZV RQH WR UHGXFH D SUREOHP WKDW LQYROYHV WKH LQWHUDFWLRQ RI V\VWHP $ ZLWK V\VWHP % WR D SUREOHP OHW XV VD\ LQYROYLQJ V\VWHP $ DORQH 7KLV LV FOHDUO\ XVHn IXO LI RQH ZDQWV WR UHVWULFW RQHVHOI WR TXHVWLRQV FRQFHUQLQJ RQO\ RQH V\VWHP $QRWKHU ZD\ RQH KDV EHQHILWWHG IURP )H\QPDQfV DSSURDFK WR TXDQWXP PHFKDQLFV LV LQ WKH FRQFHSWXDO XQGHUVWDQGLQJ RI TXDQWXP PHFKDQLFV VSHFLILFDOO\ LQ WKH XQGHUVWDQGLQJ RI WKH FRQQHFWLRQ RI TXDQWXP PHFKDQLFV DQG FODVVLFDO PHFKDQLFV FI > @f 7KHUH DUH VHYHUDO ERRNV DQG UHYLHZ DUWLFOHV RQ WKH VXEMHFW RI SDWK LQWHJUDOV 7KH VHOHFWLRQ SUHVHQWHG LV QRW PHDQW WR EH FRPSUHKHQVLYH EXW LV UDWKHU UHIOHFWLYH RI WKH DXWKRUfV WDVWH )H\QPDQ DQG +LEEV >@ JLYH D KHXULVWLF LQWURGXFWLRQ WR WKH VXEMHFW ZKHUHDV 6FKXOPDQ >@ JLYHV D PRUH ULJRURXV LQWURGXFWLRQ WR WKH )H\QPDQ SDWK LQWHJUDO RQ FRQILJXUDWLRQ VSDFH DQG FRQVLGHUV D QXPEHU RI DSSOLFDWLRQV RI WKH PHWKRG LQ GLIIHUHQW ILHOGV RI SK\VLFV )RU D JRRG DQG WKRURXJK LQWURGXFWLRQ WR WKH VXEMHFW RI SKDVHVSDFH SDWK LQWHJUDOV .ODXGHUfV %HUQ /HFWXUH 1RWHV >@ DQG KLV /HFWXUHV >@ DUH DQ H[FHOOHQW FKRLFH 7KH UHYLHZ DUWLFOHV E\ %HUU\ DQG 0RXQW >@ DQG 0DULQRY >@ DOVR GHVHUYH WR EH PHQWLRQHG ,Q DGGLWLRQ .OHLQHUWfV >@ UHFHQWO\ SXEOLVKHG ERRN

PAGE 23

FRQWDLQV PDQ\ DSSOLFDWLRQV RI WKH SDWK LQWHJUDO PHWKRG WR SUREOHPV LQ TXDQWXP PHFKDQLFV VWDWLVWLFDO DQG SRO\PHU SK\VLFV 0RUHRYHU ,QRPDWD HW DO >@ GLVFXVV YDULRXV WHFKQLTXHV RI SDWK LQWHJUDWLRQ QRW FRYHUHG LQ WKH DIRUHPHQWLRQHG PRQRJUDSKV 7KH )H\QPDQ 3DWK ,QWHJUDO RQ 5G :H ZLOO QRZ GHVFULEH D VLPSOH GHULYDWLRQ RI )H\QPDQfV SDWK LQWHJUDO RQ WKH EDVLV RI WKH FDQRQLFDO IRUPDOLVP RI TXDQWXP PHFKDQLFV ZKLFK ZDV ILUVW SXEOLVKHG E\ 7R ERFPDQ >@ 7KH LGHD LV WR ILQG DQ DSSURSULDWH DSSUR[LPDWLRQ IRU WKH WLPH HYROXWLRQ RSHUDWRU 8W nf H[S?LKfW Lnfb@ LQWURGXFHG LQ FKDSWHU f DW VPDOO WLPHV DQG WKHQ WR FRQVWUXFW VWHS E\ VWHS WKH WLPH HYROXWLRQ RSHUDWRU DW ILQLWH WLPHV :H VWDUW IURP WKH LGHQWLW\ 8^W Wnf >8W Wnf1 ff@r ZKLFK KROGV IRU DQ\ 1 /HW XV QRZ FRQVLGHU WKH FDVH RI ODUJH 1 WKHQ WKH VWHS VL]H H W Wnf1 f LV VPDOO DQG ZH KDYH WKH IROORZLQJ DSSUR[LPDWH LGHQWLW\ WR ILUVW RUGHU LQ H mL 8Q Q 7R HQVXUH WKDW WKH TXDQWL]HG +DPLOWRQ RSHUDWRU b3 4f LV XQDPELJXRXV LH LQ RUGHU WR DYRLG RSHUDWRU RUGHULQJ SUREOHPV ZH FRQVLGHU WKH IROORZLQJ VLPSOH +DPLOWRQLDQ WIGSTf A3 9nTf f ZKHUH T T?TGf DQG S SL3Gf )XUWKHUPRUH ZH XVH WKH PL[HG STf PDWUL[ HOHPHQW RI WKH WLPH HYROXWLRQ RSHUDWRU 8Wf TrO8I Inf_Tf! \T_Sn!3n_WL 2OT: WR REWDLQ D VLPSOH H[SUHVVLRQ IRU WKH PDWUL[ HOHPHQWV RI WKH +DPLOWRQ RSHUDWRU 7 7KHQ IRU VPDOO F ZH KDYH S_WIHf_T! a S_-UHIWf_Tf

PAGE 24

YDOLG WR ILUVW RUGHU LQ H +HUH +S Tf LV GHILQHG DV SO034f_Tf S_Tf )RU WKH VLPSOH +DPLOWRQ RSHUDWRU A3M4f f3 94f ZH DUH FRQVLGHULQJ +STf FRLQFLGHV ZLWK WKH FODVVLFDO +DPLOWRQLDQ +GSTf 1RWH WKDW IRU PRUH FRPn SOLFDWHG +DPLOWRQ RSHUDWRUV WKLV KDV QR ORQJHU WR EH WUXH VHH EHORZf 8VLQJ f DQG WKH IDFW WKDW S_Tf UfBGH[S>LIWfST@ ZH ILQG WKDW -LP T_>LFfM 1f§!RR 9 OLP 1f§!RF OLP 1 RR f‘f 1 H[S 6 U A>3M f 4ML TMf H+GSMfLDTf@ 1 ; M 3M G \Uf f ZKHUH T Tn DQG TYL Tf ,W IROORZV IURP f WKDW WKH TVSDFH SURSDJDWRU f-T9T?Lnf VDWLVILHV WKH IROORZLQJ LQLWLDO FRQGLWLRQ OLP-TITnnf £TTnf DV LW VKRXOG E\ LWV YHU\ GHILQLWLRQ 2EVHUYH WKDW LQ WKH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ f WKHUH LV DOZD\V RQH PRUH LQWHJUDO RYHU WKH S WKDQ WKHUH LV RYHU WKH T 7KH VXP LQ WKH H[SRQHQW KDV D QDWXUDO LQWHUSUHWDWLRQ LW LV WKH ILQLWH VXP DSSUR[LPDWLRQ RI WKH FODVVLFDO DFWLRQ IXQFWLRQDO DORQJ D SDWK LQ SKDVH VSDFH ZLWK IL[HG HQGSRLQWV T DQG Tn 1RZ WDNLQJ DQ LPSURSHU OLPLW E\ LQWHUFKDQJLQJ WKH OLPLW

PAGE 25

ZLWK UHVSHFW WR 1 ZLWK WKH LQWHJUDOV ZH ILQG WKH IROORZLQJ IRUPDO VWDQGDUG SKDVHVSDFH SDWK LQWHJUDO Tnnf AH[S AGSfTff 3T;!S f ZKHUH -GSTrff O>SL >ST +UMS Tf?GW f 7KLV IRUPDO SKDVHVSDFH SDWK LQWHJUDO IRU WKH TVSDFH SURSDJDWRU -T W? Tn Wnf ZDV ILUVW ZULWWHQ E\ )H\QPDQ > $SSHQGL[ %@ DQG WKHQ ZDV VXEVHTXHQWO\ UHGLVFRYHUHG E\ RWKHU DXWKRUV VHH IRU LQVWDQFH 'DYLHV >@ DQG *DUURG >@f 7KH LQWHJUDWLRQ UDQJHV RYHU DOO SDWKV LQ GGLPHQVLRQDO SKDVHVSDFH ZKLFK DUH SLQQHG DW T Tn DQG T T" ZKLOH WKH LQWHJUDWLRQ RYHU WKH PRPHQWD LV XQUHVWULFWHG 7KH /DJUDQJLDQ IRUP RI WKH SDWK LQWHJUDO DV RULJLQDOO\ SURSRVHG E\ )H\QPDQ >@ FDQ EH REWDLQHG IRUP f E\ LQWHJUDWLQJ RXW WKH PRPHQWD 7KDW WKLV FDQ EH GRQH IROORZV IURP WKH IDFW WKDW WKH PRPHQWD HQWHU TXDGUDWLFO\ +HQFH LI ZH FDUU\ RXW WKH 1 )RXULHU WUDQVIRUPDWLRQV LQ f ZKLFK DUH RI WKH IRUP H[S K 3ML f T!L Tf 3M G3MO Af ? G QLKW H[S rT ML TMf f KH f WKHQ ZH ILQG WKH IROORZLQJ UHVXOW rT9nT? $I H[S ?,G^T^Wff !T AGT:f W Q 9 T YTf GW ZKHUH TWnf Tn TLZf TZ f 7KLV LV WKH IRUPDO )H\QPDQ SDWK LQWHJUDO RYHU SDWKV LQ FRQILJXUDWLRQ VSDFH SLQQHG DW Tn DQG T %HIRUH OHDYLQJ WKLV VXEVHFWLRQ ZH ZRXOG OLNH WR PDNH D QXPEHU RI UHPDUNV FRQFHUQLQJ WKH MXVW SUHVHQWHG GHULYDWLRQ RI WKH )H\QPDQ SDWK LQWHJUDO Lf &DQRQLFDO WUDQVIRUPDWLRQV 6LQFH WKH PHDVXUH LQ f LV D SURGXFW RI /LRXYLOOH PHDVXUHV GSGT RQH PD\ EH WHPSWHG WR DVVXPH WKDW WKH SKDVHVSDFH LQWHJUDO LV

PAGE 26

LQYDULDQW XQGHU JHQHUDO FDQRQLFDO WUDQVIRUPDWLRQV +RZHYHU WKLV LV QRW WKH FDVH $V VKRZQ E\ .ODXGHU > VHFWLRQ ,,@ WKH UHJXODUL]HG ODWWLFH SKDVHVSDFH SUHVFULSn WLRQ f IRU WKH TVSDFH SURSDJDWRU LV RQO\ LQYDULDQW RU EHWWHU FRYDULDQW XQGHU WKH VXEVHW RI SRLQW WUDQVIRUPDWLRQV DPRQJ DOO FDQRQLFDO WUDQVIRUPDWLRQV LLf 2SHUDWRU RUGHULQJ ,I WKH +DPLOWRQLDQ LV QR ORQJHU RI WKH VLPSOH IRUP ZH KDYH FRQVLGHUHG LQ f EXW KDV D PRUH FRPSOLFDWHG S TfGHSHQGHQFH WKHQ RQH KDV WR FRQIURQW WKH LVVXH RI RSHUDWRU RUGHULQJ LQ WKH +DPLOWRQLDQ )RU H[DPSOH WKLV LV WKH FDVH IRU D IUHH SDUWLFOH PRYLQJ RQ D 5LHPDQQLDQ PDQLIROG IRU ZKLFK f GSTf ATf3W3M 7KH EDVLF SULQFLSOHV RQH XVHV IRU WKH UHVROXWLRQ RI WKH RSHUDWRU RUGHULQJ SUREn OHP DUH Df WKH +DPLOWRQ RSHUDWRU KDV WR EH V\PPHWULF DQG Ef LI WKH FODVVLFDO V\VWHP KDV D V\PPHWU\ JURXS WKH FRUUHVSRQGLQJ TXDQWXP WKHRU\ PXVW KDYH WKLV V\PPHWU\ $V 0DULQRY UHPDUNV fWKH ILUVW RI WKHVH FRQGLWLRQV LV HYLGHQW ZKLOH WKH VHFRQG LV PRUH DUELWUDU\ DQG QRW DOZD\V FRQVWUXFWLYHf> S @ ,Q SDUWLFXODU FRQGLWLRQ Df LPSOLHV WKDW ZH VKRXOG DVVRFLDWH ZLWK WKH FODVVLn FDO +DPLOWRQLDQ +GSTf )TfS WKH IROORZLQJ TXDQWL]HG +DPLOWRQ RSHUDWRU A34f f>3)4f )4f3@ 8VLQJ WKH SULQFLSOHV Df DQG Ef LQ WKH UHVROXWLRQ RI WKH RSHUDWRU RUGHULQJ SUREOHP PLJKW OHDG WR DGGLWLRQDO FRUUHFWLRQ WHUPV SURSRUWLRQDO WR K LQ WKH DFWLRQ IXQFWLRQDO FI >@f LLLf ,QWHJUDO RYHU FRQILJXUDWLRQVSDFH WUDMHFWRULHV 7KH )H\QPDQ SDWK LQWHJUDO LQ f ZDV REWDLQHG IRU WKH +DPLOWRQLDQ f ,I WKH SGHSHQGHQFH RI WKH +DPLOn WRQLDQ LV QR ORQJHU VLPSO\ TXDGUDWLF EXW PRUH FRPSOLFDWHG WKHQ WKH LQWHJUDO LQ f LV QR ORQJHU D VLPSOH *DXVVLDQ LQWHJUDO DQG GRHV QRW UHVXOW LQ WKH FODVVLFDO /DJUDQJLDQ RI WKH IUHH SDUWLFOH ,Q WKLV FDVH WKH )H\QPDQ SDWK LQWHJUDO f FDQ QRW EH XVHG DV D VWDUWLQJ SRLQW IRU TXDQWXP WKHRU\

PAGE 27

7KH )H\QPDQ 3DWK ,QWHJUDO RQ *URXS 6SDFHV 7KH TXDQWL]DWLRQ RI D IUHH SDUWLFOH PRYLQJ RQ D JURXS PDQLIROG KDV EHHQ FRQn VLGHUHG LQ D QXPEHU RI ZRUNV > @ 6FKXOPDQ >@ LQWURGXFHG VWDUWLQJ IURP WKH NQRZQ VHPLFODVVLFDO DSSUR[LPDWLRQ D SURSDJDWRU IRU D IUHH SDUWLFOH PRYLQJ RQ WKH JURXS PDQLIROGV RI f DQG 68f +RZHYHU 6FKXOPDQ GLG QRW SUHVHQW D VLPSOH SDWK LQWHJUDO VROXWLRQ IRU WKH SUREOHP FI WKH UHPDUNV LQ 5HI FKDSWHU f 'RZNHU > @ H[WHQGHG 6FKXOPDQfV DSSURDFK WR VLPSOH /LH JURXSV FRQVLGHULQJ H[SOLFLWO\ WKH PRWLRQ RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI 68Qf ,W LV VKRZQ LQ 5HI WKDW WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV RQO\ H[DFW IRU WKH PRWLRQ RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI D VHPLVLPSOH /LH JURXS DQG WKDW LW FDQ LQ JHQHUDO QRW EH H[SHFWHG WKDW WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV H[DFW IRU DOO V\PPHWULF VSDFHV VLQFH LW LV QRW H[DFW IRU WKH QVSKHUH 62Q OfQf Q 7KH TXHVWLRQ DV WR ZKDW LV WKH ODUJHVW FODVV RI VSDFHV IRU ZKLFK WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV H[DFW VHHPV VWLOO WR EH DQ RSHQ RQH 7KH EHDXW\ RI WKH DERYH UHVXOW DV 'RZNHU SRLQWV RXW LV WKDW LQ WKH FDVHV IRU ZKLFK WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV H[DFW WKH SURSDJDWRU LV REWDLQHG E\ VXPPLQJ RQO\ RYHU FODVVLFDO SDWKV $ )H\QPDQ SDWK LQWHJUDO WUHDWPHQW RI WKH PRWLRQ RI D IUHH SDUWLFOH RQ FRPSDFW VLPSOH /LH JURXSV DQG VSKHUHV RI DUELWUDU\ GLPHQVLRQ KDV EHHQ SURSRVHG E\ 0DULQRY DQG 7HUHQW\HY > @ %HIRUH ZH FRQVLGHU WKHLU SURSRVDO ZH EULHIO\ RXWOLQH WKH FRQVWUXFWLRQ RI SDWK LQWHn JUDOV RQ 5LHPDQQLDQ PDQLIROGV 'H:LWW >@ REVHUYHG WKDW IRU D IUHH SK\VLFDO V\VWHP PRYLQJ RQ D GGLPHQVLRQDO XQERXQGHG 5LHPDQQLDQ PDQLIROG ZLWK FRQVWDQW VFDODU FXUYDWXUH 5 DQG PHWULF WHQVRU >SMTf@ WKH SURSDJDWRU IRU LQILQLWHVLPDO WLPH LV JLYHQ E\ WKH VHPLFODVVLFDO DSSUR[LPDWLRQ f

PAGE 28

ZKHUH $T Tn nf Q L5f9fTf : L Tn WnfDfTnf@f DQG L TnWnf GHW LV YDQ 9OHFNfV GHWHUPLQDQW +HUH JTf GHW>AMTf@_ DQG ,G -W JATnAGW LV WKH FODVVLFDO DFWLRQ IXQFWLRQDO $V REVHUYHG E\ 0DULQRY >@ WKLV VLPSOH IRUP RI WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV RQO\ YDOLG IRU XQERXQGHG 5LHPDQQLDQ PDQLIROGV VLQFH WKH SURRI RI WKH WKHRUHP WKDW WZR SRLQWV T DQG Tn DW IL[HG VPDOO W f§ Wn PD\ EH FRQQHFWHG E\ RQO\ RQH FODVVLFDO SDWK FI > SS @f XVHV WKH XQERXQGHGQHVV RI WKH PDQLIROG LQ DQ HVVHQWLDO ZD\ 2Q WKH RWKHU KDQG DV LV SRLQWHG RXW LQ 5HIV DQG LI RQH LV GHDOLQJ ZLWK ERXQGHG 5LHPDQQLDQ PDQLIROGV WKHUH PLJKW H[LVW D QXPEHU RI FODVVLFDO SDWKV FRQQHFWLQJ WZR SRLQWV RQ WKH PDQLIROG HDFK RI WKHVH SDWKV WKHQ HQWHUV LQWR f SRVVLEO\ ZLWK D SKDVH VHH DOVR LQ WKLV UHVSHFW WKH UHYLHZ DUWLFOH E\ %HUU\ DQG 0RXQW >@ $V DQ H[DPSOH ZH PHQWLRQ WKH FDVH ZKHQ WKH ERXQGHG PDQLIROG LV PXOWLSO\ FRQQHFWHG WKH FODVVLFDO SDWKV FRQQHFWLQJ WZR SRLQWV RQ WKH PDQLIROG WKHQ GLYLGH LQWR GLVWLQFW KRPRWRS\ FODVVHV VHH WKH H[DPSOH EHORZ RI D IUHH SDUWLFOH PRYLQJ RQ D FLUFOH DQG 6FKXOPDQ > @ IRU D GLVFXVVLRQ RI WKLV SRLQW )RU WKLV FDVH WKH VHPLFODVVLFDO DSSUR[LPDWLRQ WDNHV WKH IROORZLQJ IRUP ZKHUH WKH VXP LV RYHU DOO FODVVLFDO SDWKV FRQQHFWLQJ T DQG Tn ,r1 LV WKH FODVVLFDO DFWLRQ IXQFWLRQDO DORQJ WKH PWK SDWK DQG P LV DQ LQWHJHU WKDW GHSHQGV LQ JHQHUDO RQ DOO WKH DUJXPHQWV $OVR QRWH DV LV UHPDUNHG LQ 5HI WKDW WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV RQO\ DSSOLFDEOH LI WKH DFWLRQ IXQFWLRQDO ,G LV JHQHULFDOO\ GRPLQDWHG E\ D WHUP SURSRUWLRQDO WR W DV W JRHV WR ]HUR VR WKDW ,G EHFRPHV ODUJH LQ WKLV OLPLW DQG SXWV RQH LQWR WKH VHPLFODVVLFDO UHJLPH 7KLV LV RI FRXUVH WKH FDVH IRU WKH IUHH

PAGE 29

SDUWLFOH )RU WKH FDVH RI DQ XQERXQGHG 5LHPDQQLDQ PDQLIROG WKH SURSDJDWRU DW ILQLWH WLPHV LV FRQVWUXFWHG E\ IROGLQJ L9 SURSDJDWRUV RI WKH IRUP f 1 1 -T9TnWnf --GTrL rIFL 4N rNf --GTN f A r r ‘ f ZKHUH GTr \IJ Q L GMW 7DNLQJ WKH OLPLW 1 RR RQH REWDLQV D IXQFWLRQDO LQWHJUDO RYHU DOO LQWHUPHGLDWH FRRUGLQDWHV WKDW FDQ EH LQWHUSUHWHG DV WKH SDWK LQWHJUDO 7KH ILQDO UHVXOW LV D SDWK LQWHJUDO RI WKH IRUP f KRZHYHU WKH /DJUDQJLDQ QHHGV WR EH PRGLILHG E\ D WHUP SURSRUWLRQDO WR K5 'H:LWW >@ IRXQG WKLV WHUP WR EH K5f WKLV PRGLILFDWLRQ RI WKH /DJUDQJLDQ ZDV DOVR GLVFXVVHG E\ 0F/DXJKOLQ DQG 6FKXOPDQQ >@ ,Q WKH FRQWH[W RI FXUYOLQHDU FRRUGLQDWHV WKH UHDVRQ IRU PRGLI\LQJ WKH SDWK LQWHJUDO KDV EHHQ GLVFXVVHG E\ $UWKXUV > @ (GZDUGV DQG *XO\DHY >@ DQG LQ WKH FRQWH[W RI TXDQWL]DWLRQ RI QRQOLQHDU ILHOG WKHRULHV E\ *HUYDLV DQG -HYLFNL >@ DQG 6DORPRQVRQ >@ ,I RQ WKH RWKHU KDQG RQH DSSOLHV WKLV DSSURDFK WR D ERXQGHG 5LHPDQQLDQ PDQLn IROG DV LV WKH FDVH IRU FRPSDFW /LH JURXSV WKHQ WKH UHVXOWLQJ SDWK LQWHJUDO DV SRLQWHG RXW LQ 5HI LV IDU IURP VLPSOH 6LQFH RQH WKHQ KDV WR XVH WKH VHPLFODVVLFDO DSn SUR[LPDWLRQ SUHVHQWHG LQ f DQG LQ DGGLWLRQ WR LQWHJUDWLQJ RYHU DOO LQWHUPHGLDWH FRRUGLQDWHV RQH DOVR KDV WR VXP RYHU DOO WKH GLIIHUHQW FODVVLFDO SDWKV FRQQHFWLQJ T DQG Tn 1HYHUWKHOHVV LI WKH ERXQGHG PDQLIROG 0 LQ TXHVWLRQ LV LVRPRUSKLF WR D TXRWLHQW VSDFH $fU LH 0 $I7 ZKHUH 7 LV D WUDQVIRUPDWLRQ JURXS DFWLQJ RQ $I DQG $I LV DQ XQERXQGHG 5LHPDQQLDQ PDQLIROG WKHQ RQH FDQ DV SURSRVHG E\ 0DULQRY DQG 7HUHQW\HY >@ FRQVWUXFW D SURSDJDWRU RQ 0 E\ VXPPLQJ RYHU WKH JURXS 7 -PT I Tn Wnf e rT f Tn e f T Tn nf f HU HU SURYLGHG WKH SURSDJDWRU RQ $ LV NQRZQ $V SRLQWHG RXW DERYH VLQFH $I LV DQ XQn ERXQGHG 5LHPDQQLDQ PDQLIROG E\ DVVXPSWLRQ D SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU FDQ EH FRQVWUXFWHG DQG RQH VXPV RYHU 7 LQ WKH ODVW VWHS WR REWDLQ -P‘ ,W ,r EHHQ

PAGE 30

VKRZQ E\ 0DULQRY DQG 7HUHQW\HY >@ WKDW WKLV DSSURDFK LV YDOLG IRU DQ\ FRPSDFW /LH JURXS ,Q WKHLU ZRUN VHH 5HI 0DULQRY DQG 7HUHQW\HY WDNH IRU 0 WKH /LH DOJHEUD WKDW LV DVVRFLDWHG ZLWK WKH /LH JURXS WKH\ ZLVK WR FRQVLGHU DQG IRU 7 WKH FKDUDFWHULVWLF ODWWLFH RI WKH JURXS $V DQ DSSOLFDWLRQ RI WKLV JHQHUDO IRUPDOLVP RI 0DULQRY DQG 7HUHQW\HY ZH QRZ FRQVLGHU WKH IUHH PRWLRQ RI D SDUWLFOH RQ D FLUFOH :H ZLOO UHYLVLW WKLV SUREOHP LQ FKDSWHU ZKHUH ZH SUHVHQW DQ H[DFW SDWK LQWHJUDO WUHDWPHQW RI WKLV SUREOHP ZLWKRXW UHOLDQFH RQ WKH VHPLFODVVLFDO DSSUR[LPDWLRQ /HW XV FRQVLGHU D SDUWLFOH RI PDVV P FRQVWUDLQHG WR PRYH RQ D FLUFOH RI UDGLXV S ,I ZH FKRRVH WKH DUFOHQJWK WKH SDUWLFOH KDV WUDYHOHG DV RXU JHQHUDOL]HG FRRUGLQDWH WKH /DJUDQJLDQ LV JLYHQ E\ er Lf +HUH PS GHQRWHV WKH PRPHQW RI LQHUWLD RI WKH SDUWLFOH DQG WKH DQJXODU YDULDEOH If UDQJHV IRUP M! LU ZKHUH ZH LGHQWLI\ WKH SRLQWV I! DQG -! Q 7KH VROXWLRQ RI WKH HTXDWLRQV RI PRWLRQ LV IRXQG WR EH ZKHUH I! DQG X! DUH DUELWUDU\ LQWHJUDWLRQ FRQVWDQWV &RQVLGHULQJ D PRWLRQ VWDUWLQJ DW IW DQG HQGLQJ DW IWn ZH ILQG IRU WKH FODVVLFDO DFWLRQ IXQFWLRQDO L If f§ fn f§ UQf W 9f f ZKHUH Q s s 6R ZH ILQG WKDW WKH FODVVLFDO DFWLRQ IXQFWLRQDO GRHV QRW RQO\ GHSHQG RQ WKH LQLWLDO DQG ILQDO SRVLWLRQ EXW DOVR RQ WKH VRFDOOHG ZLQGLQJ QXPEHU Q WKH QXPEHU RI WLPHV WKH SDUWLFOH PRYHV FRXQWHUFORFNZLVH PLQXV WKH QXPEHU RI WLPHV LW PRYHV FORFNZLVH SDVW WKH SRLQW IW +HQFH WKH SDWKV EUHDN XS LQWR GLVWLQFW FODVVHV ODEHOHG E\ Q WKHVH FODVVHV DUH WKH VR FDOOHG KRPRWRS\ FODVVHV $Q\ WZR SDWKV LQ WKH VDPH FODVV ZLWK WKH VDPH EHJLQQLQJ DQG HQG SRLQW FDQ EH FRQWLQXRXVO\ GHIRUPHG LQWR HDFK RWKHU VHH > @f

PAGE 31

7KH FDQRQLFDO TXDQWL]DWLRQ IRU WKLV H[DPSOH LV VWUDLJKWIRUZDUG VLQFH GA/ ZH ILQG IRU WKH +DPLOWRQ RSHUDWRU + K GO ZKLFK KDV WKH IROORZLQJ QRUPDOL]HG HLJHQIXQFWLRQV DQG HLJHQYDOXHV Pf ?U H[SLPAf (P KPf ZKHUH P ss 7KH SURSDJDWRU LV JLYHQ LQ WHUPV RI WKH HLJHQIXQFWLRQV LSUQLAf E\ WKH IROORZLQJ VSHFWUDO H[SDQVLRQ n? W? W!? Wnf \ pS Q f§RR K (QW nf 7 22 \ H[S Q RR L LMf I!nfQ WnfQ 7KH VXP RYHU Q LV UHODWHG WR WKH -DFREL WKHWD IXQFWLRQ ^]Wf < H[SLQWQ LQ]f Q f§RR 7KHUHIRUH ZLWK WKH IROORZLQJ LGHQWLILFDWLRQV ZH FDQ ZULWH WKH SURSDJDWRU LQ FORVHG IRUP /HW W KW LIf QO a n WKHQ ZH ILQG -W?If $! K7 WW > f WW ZKHUH $ n DQG 7 W n 8VLQJ WKH IROORZLQJ SURSHUW\ RI ZKLFK IROORZV IURP WKH 3RLVVRQ VXPPDWLRQ IRUPXOD VHH > SS @f G]Wf LWf H[S WKH SURSDJDWRU FDQ DOVR EH ZULWWHQ DV D VXP RYHU FODVVLFDO SDWKV LH DV D VHPLFODVVLFDO VHQHV 2& Q f§RR W n L 7NW f§ Wnf H[S L f§ n f§ QQf K W nf f

PAGE 32

2EVHUYH WKDW HDFK RI WKH SURSDJDWRUV LQ WKH VHULHV f LV RI WKH VDPH IRUP DV WKH SURSDJDWRU RI D IUHH SDUWLFOH PRYLQJ RQ WKH UHDO OLQH ,5 DQG WKDW WKH VHULHV DV D ZKROH LV D IXQFWLRQ RI SHULRG U 7KH VHULHV f LV D SDUWLFXODU H[DPSOH RI WKH JHQHUDO SULQFLSOH f )ROGLQJ WKH SURSDJDWRU LQ f 1 WLPHV OHDGV WR WKH IROORZLQJ SDWK LQWHJUDO UHSUHVHQWDWLRQ ZKHUH c!Q? f§ W!n? R W!? DQG H 71f ,I ZH QRZ VKLIW WKH LQWHJUDWLRQ YDULDEOH DW HDFK VWHS ZH FDQ H[WHQG WKH 1 LQWHUPHGLDWH LQWHJUDOV WR WKH ZKROH UHDO OLQH LH rr !Q e f -QLr QM OfU $V D ILQDO UHVXOW ZH ILQG OLP 1f§rRR 1Of RR ULH 1 rr URR e B B f§ RF Q f§RR RR f§ [ H[S K L rLf M R H 1 QA f L ZKHUH AA W! DQG W!n UQ 1RWH WKDW WKH FLUFOH LV WKH JURXS PDQLIROG RI WKH VLPSOHVW FRPSDFW /LH JURXS 8 f ZKRVH IDLWKIXO LUUHGXFLEOH UHSUHVHQWDWLRQV DUH JLYHQ E\ H[S]Af DQG =!a A!f H[Sf§LI!f ,W LV ZHOO NQRZQ WKDW WKH RQHn GLPHQVLRQDO DEHOLDQ WUDQVODWLRQ JURXS ? RI WKH UHDO OLQH ,5 LV WKH XQLYHUVDO FRYHULQJ JURXS RI 8Of )XUWKHUPRUH WKH WUDQVODWLRQV E\ UQ Q ss IRUP WKH F\FOLF VXEJURXS Uf RI ? ZKLFK LV WKH NHUQHO RI WKH KRPRPRUSKLVP 7? [ f§! I^[f H[SL[f f f 7KHUHIRUH E\ WKH )XQGDPHQWDO +RPRPRUSKLVP 7KHRUHP ZH KDYH WKDW f 7LQf +HQFH DV VWDWHG LQ 5HI WKH SDWK LQWHJUDO UHSUHVHQWDWLRQ f LV D SDUWLFXODU H[DPSOH RI WKH JHQHUDO VWDWHPHQW f )RU PRUH FRPSOLFDWHG FDVHV RQH PLJKW H[SHFW QRW WR EH DEOH WR REWDLQ VXFK D VLPSOH UHSUHVHQWDWLRQ DV f

PAGE 33

IRU WKH SDWK LQWHJUDO EXW RQH ZKLFK LQYROYHV WKH VXPPDWLRQ RYHU WKH ODWWLFH JURXS DW HDFK LQILQLWHVLPDO VWHS 1HYHUWKHOHVV 0DULQRY DQG 7HUHQW\HY KDYH VKRZQ WKDW LQ WKH FDVH RI WKH PRWLRQ RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI D FRPSDFW VLPSOH /LH JURXS WKH UHVXOWLQJ SDWK LQWHJUDO UHSUHVHQWDWLRQ LV RI WKH IURP f ZLWK WKH RQO\ GLIIHUHQFH WKDW WKH /DJUDQJLDQ KDV WR EH PRGLILHG WR LQFOXGH D fTXDQWXPf SRWHQWLDO SURSRUWLRQDO WR K 2QH PLJKW DVN LI WKH DSSURDFK RI 0DULQRY DQG 7HUHQW\HY FRXOG EH H[WHQGHG WR PRUH JHQHUDO V\VWHPV WKDQ WKH IUHH SDUWLFOH" 7KH DQVZHU LV QR VLQFH DV ZH KDYH PHQWLRQHG DERYH WKH VHPLFODVVLFDO DSSUR[LPDWLRQ LV RQO\ H[DFW IRU WKH FDVH RI WKH IUHH SDUWLFOH PRYLQJ RQ WKH JURXS PDQLIROG RI D VHPLVLPSOH /LH JURXS 7KH )H\QPDQ 3DWK ,QWHJUDO RQ 6\PPHWULF 6SDFHV 0RUH UHFHQWO\ %RKP DQG -XQNHU KDYH XVHG ]RQDO VSKHULFDO IXQFWLRQV WR FRQVWUXFW SDWK LQWHJUDO UHSUHVHQWDWLRQV IRU D IUHH SDUWLFOH PRYLQJ RQ WKH JURXS PDQLIROGV RI FRPSDFW DQG QRQFRPSDFW URWDWLRQ JURXSV %RKP DQG -XQNHU > @f WKH (XFOLGLDQ JURXS %RKP DQG -XQNHU >@f DQG RQ V\PPHWULF VSDFHV -XQNHU >@f +RZHYHU D FDUHIXO DQDO\VLV RI WKH FRQVWUXFWLRQ SUHVHQWHG LQ >@ UHYHDOV WKDW LW DSSOLHV RQO\ WR WKH FDVH RI D FRPSDFW WUDQVIRUPDWLRQ JURXS DFWLQJ RQ D FRPSDFW V\PPHWULF VSDFH RI WKH IRUP *+ ZKHUH + LV D PDVVLYH VXEJURXS RI :H ZLOO H[WHQG WKLV FRQVWUXFWLRQ EHORZ WR D JHQHUDO XQLPRGXODU WUDQVIRUPDWLRQ JURXS DFWLQJ RQ D V\PPHWULF VSDFH 0 *+ ZKHUH + LV D PDVVLYH FRPSDFW VXEJURXS RI 7KLV ZLOO FRPSOHWH WKH DUJXPHQW RI -XQNHU >@ DQG DFKLHYH KLV SURSRVHG XQLILFDWLRQ RI WKH ZRUN r/HW 6 7f DQG 78f EH WZR WRSRORJLFDO VSDFHV $ FRQWLQXRXV RQHWRRQH PDS RI RQWR 7 LV FDOOHG D KRPHRPRUSKLVP LI LV FRQWLQXRXV $ WRSRORJLFDO VSDFH 67f LV FDOOHG KRPRJHQHRXV LI IRU DQ\ SDLU XY f 6 WKHUH H[LVWV D KRPHRPRUSKLVP RI 6 7f RQWR LWVHOI VXFK WKDW Xf Y /HW EH D FRQQHFWHG /LH JURXS DQG OHW D EH DQ LQYROXWLYH DXWRPRUSKLVP RI LH D DQG R A 'HQRWH E\ *D WKH FORVHG VXEJURXS RI FRQVLVWLQJ RI DOO HOHPHQWV WKDW DUH IL[HG SRLQWV RI LH RJf J DQG E\ *! WKH LGHQWLW\ FRPSRQHQW RI *f /HW LI EH D FORVHG VXEJURXS RI VXFK WKDW *J & + & *D WKHQ RQH FDOOV WKH TXRWLHQW VSDFH *+ D V\PPHWULF KRPRJHQHRXVf VSDFH GHILQHG E\ FUf 7KH QVSKHUH 6 LV DQ H[DPSOH RI D V\PPHWULF VSDFH /HW 7J EH DQ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH JURXS RQ WKH VSDFH $Q HOHPHQW D f 7= LV FDOOHG LQYDULDQW UHODWLYH WR WKH FORVHG VXEJURXS + LI IRU DOO K + RQH KDV 7D D $ UHSUHVHQWDWLRQ LV FDOOHG D UHSUHVHQWDWLRQ RI FODVV UHODWLYH WR + LI LWV UHSUHVHQWDWLRQ VSDFH FRQWDLQV HOHPHQWV WKDW DUH LQYDULDQW UHODWLYH WR + DQG LI WKH UHVWULFWLRQ RI 7J WR + LV XQLWDU\ LH 7KI!7K[Sf USf 9 K f + 2QH FDOOV + PDVVLYH LI WKHUH LV RQO\ RQH QRUPDOL]HG LQYDULDQW HOHPHQW D f LQ WKH UHSUHVHQWDWLRQ VSDFH RI DQ\ UHSUHVHQWDWLRQ RI FODVV UHODWLYH WR +

PAGE 34

3DJH 0LVVLQJ RU 8QDYDLODEOH

PAGE 35

YDOLG WR ILUVW RUGHU LQ H DQG G[M GHQRWHV WKH LQYDULDQW PHDVXUH RQ 0 1RWH WKDW IRU WKH FDVHV ZH DUH FRQVLGHULQJ ZKHUH LV D XQLPRGXODU /LH JURXS DQG + LV D PDVVLYH FRPSDFW VXEJURXS DQ LQYDULDQW PHDVXUH DOZD\V H[LVWV FI > &RUROODU\ @f ,Q ZKDW IROORZV ZH DVN WKDW WKH VKRUW WLPH SURSDJDWRU f EH LQYDULDQW XQGHU WKH WUDQVIRUPDWLRQ JURXS LH WKDW -J[MLJ[MHf -[ML;MHf 9 J f f IRU M 1 $V ZH ZLOO VHH EHORZ WKLV LV D FUXFLDO DVVXPSWLRQ VLQFH LW LPSOLHV WKDW $ LV DQ LQYDULDQW HOOLSWLF RSHUDWRU LQ WKH HQYHORSLQJ DOJHEUD RQ 7KLV FDQ EH VHHQ E\ XVLQJ WKH IRUP f RI WKH VKRUW WLPH SURSDJDWRU YDOLG WR ILUVW RUGHU LQ H LQ f )URP ZKLFK LW IROORZV WKDW WKH +DPLOWRQ RSHUDWRU + KDV WR EH DQ LQYDULDQW RSHUDWRU IRU LI f LV WR KROG WKLV LQ WXUQ LPSOLHV WKH DERYH VWDWHPHQW 'HQRWH E\ D DLDPf D PXOWLLQGH[ FRQVLVWLQJ RI P QRQQHJDWLYH LQWHJHUV 'HILQH WKH OHQJWK RI T E\ P : +DL M L )RU HYHU\ [ f ,5P OHW P L /HW 3 EH D SRO\QRPLDO RI P YDULDEOHV RI GHJUHH U ZKLFK KDV WKH IRUP 3^[f e F]4 ?D?U ZKHUH FD DUH DUELWUDU\ FRPSOH[ QXPEHUV DQG F4 IRU DW OHDVW RQH D ZLWK ?D? U 7KHQ ZH GHQRWH WKH IRUPDO GLIIHUHQWLDO RSHUDWRU JHQHUDWHG E\ 3 E\ IL9f e &Df§L9ff e FD+fnfnQA _D_U 0U M ZKHUH 9 ;O;Pf 7KH IRUPDO GLIIHUHQWLDO RSHUDWRU 3L9f LV FDOOHG HOOLSWLF LI WKHUH H[LVWV D & VXFK WKDW _3rf_ &O _[_fU 9 L f 5P )RU WKH GHILQLWLRQ RI WKH HQYHORSLQJ DOJHEUD VHH $SSHQGL[ $ ,I 0 LV D UDQN RQH V\PPHWULF VSDFH WKHQ HYHU\ LQYDULDQW GLIIHUHQWLDO RSHUDWRU & LV D SRO\QRPLDO LQ WKH VHFRQG RUGHU &DVLPLU RSHUDWRU RI ZKLFK LQ D SURSHU FRRUGLQDWH V\VWHP RQ 0 LV SURSRUWLRQDO WR WKH /DSODFH%HOWUDPL RSHUDWRU FI > 7KHRUHP @f

PAGE 36

/HW D EH D IL[HG SRLQW RI 0 ZKRVH VWDELOLW\ JURXS LV + LH RQH KDV KD D IRU DOO K f + 6LQFH DFWV WUDQVLWLYHO\ RQ $ ZH FDQ ZULWH HDFK ;M e ƒ DV [M JMD IRU VRPH JM f f +HQFH XVLQJ WKLV FRQVWUXFWLRQ RQH FDQ YLHZ WKH VKRUW WLPH SURSDJDWRU DV D IXQFWLRQ RQ WKH JURXS -[ML;MHf -JMXJM@Hf 8VLQJ WKH WUDQVODWLRQ LQYDULDQFH RI WKH VKRUW WLPH SURSDJDWRU LW IROORZV WKDW WKH VKRUW WLPH SURSDJDWRU FDQ RQO\ EH D IXQFWLRQ RI JMOJM KHQFH MnL -ML! M! -^M ML! ‘ f 6LQFH KD D IRU DQ\ K e + ZH VHH WKDW f LV LQYDULDQW ZLWK UHVSHFW WR ULJKW PXOWLSOLFDWLRQ ZLWK HOHPHQWV RI WKH VWDELOLW\ JURXS 7KLV LPSOLHV WKDW WKH VKRUW WLPH SURSDJDWRU LV LQYDULDQW ZLWK UHVSHFW WR ULJKW PXOWLSOLFDWLRQ ZLWK HOHPHQWV RI + )URP f ZH VHH WKDW WKH VKRUW WLPH SURSDJDWRU LV DOVR LQYDULDQW ZLWK UHVSHFW WR OHIW PXOWLSOLFDWLRQ ZLWK HOHPHQWV RI + +HQFH ZH FRQFOXGH WKDW WKH VKRUW WLPH SURSDJDWRU -JnHf LV D FRQVWDQW IXQFWLRQ RQ WKH WZR VLGHG FRVHWV +J+ ZLWK UHVSHFW WR WKH VXEJURXS + LH -KLJK@ Hf -J? Hf IRU DQ\ KXK f + /HW EH DQ XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RI FODVV RQ WKH +LOEHUW VSDFH 96 /HW XV FKRRVH DQ\ FRPSOHWH RUWKRQRUPDO V\VWHP LQ WKHQ ZH FDQ DVVRFLDWH ZLWK WKH IROORZLQJ PDWUL[ HOHPHQWV 'LMJf WL 8 Kf f 7KHVH PDWUL[ HOHPHQWV SOD\ D VSHFLDO UROH LQ WKH WKHRU\ RI UHSUHVHQWDWLRQV RI JURXSV 8QIRUWXQDWHO\ WKH\ DUH H[SOLFLWO\ NQRZQ IRU RQO\ D KDQGIXO RI FDVHV VHH > FKDSWHU @f 1HYHUWKHOHVV LW FDQ EH VKRZQ WKDW IRU VLPSOH /LH JURXSV WKH PDWUL[ HOHPHQWV

PAGE 37

'LMJf DUH WKH UHJXODU HLJHQIXQFWLRQV RI D PD[LPDO VHW RI FRPPXWLQJ RSHUDWRUV LQ WKH HQYHORSLQJ DOJHEUD LI WKLV PD[LPDO VHW RI FRPPXWLQJ RSHUDWRUV FRQWDLQV DQ HOOLSWLF RSHUDWRU FI > 3URSRVLWLRQ @f 7KLV SURSHUW\ LV RIWHQ WKH VWDUWLQJ SRLQW IRU DQ H[SOLFLW FDOFXODWLRQ RI WKH 'AJf LQ VHFWLRQ ZH FRQVLGHU VXFK D FDOFXODWLRQ LQ VRPH GHWDLO IRU WKH FDVH RI 68^f ,I WKH PD[LPDO VHW RI FRPPXWLQJ RSHUDWRUV GRHV QRW FRQWDLQ DQ HOOLSWLF RSHUDWRU WKHQ WKH PDWUL[ HOHPHQWV 'AJf DUH JHQHUDOL]HG IXQFWLRQV LH GLVWULEXWLRQV FI > 7KHRUHP @f ,Q FKDSWHU ZH ZLOO FRQVLGHU WKH FRQVWUXFWLRQ RI SDWK LQWHJUDOV IRU WKH FDVHV LQ ZKLFK WKH PDWUL[ HOHPHQWV 'DUH HLWKHU QRW H[SOLFLWO\ NQRZQ RU DUH JHQHUDOL]HG IXQFWLRQV 7KLV FRQVWUXFWLRQ ZLOO PDNH QR H[SOLFLW XVH RI WKH IXQFWLRQV 'AJf EXW ZLOO RQO\ XVH WKH IDFWV WKDW WKH\ H[LVW DQG IRUP D FRPSOHWH RUWKRQRUPDO VHW 1RWH WKDW IRU WKH FDVHV FRQVLGHUHG LQ WKLV FKDSWHU WKH VHW RI PD[LPDO FRPPXWLQJ RSHUDWRUV DOZD\V FRQWDLQV WKH /DSODFH%HOWUDPL RSHUDWRU $ ZKLFK DV ZH KDYH UHPDUNHG DERYH LV DQ HOOLSWLF RSHUDWRU LQ WKH FHQWHU RI WKH HQYHORSLQJ DOJHEUD RI +HQFH WKH PDWUL[ HOHPHQWV 'AJf DUH UHJXODU IXQFWLRQV RQ 7KLV VKRZV WKDW WKH DVVXPSWLRQ WKDW WKH VKRUW WLPH SURSDJDWRU VKRXOG EH LQYDULDQW XQGHU WKH WUDQVIRUPDWLRQ JURXS LV FUXFLDO DQG FDQ QRW EH UHOD[HG 6LQFH + LV D PDVVLYH VXEJURXS RI WKHUH H[LVWV D XQLTXH QRUPDOL]HG YHFWRU D f WKDW LV LQYDULDQW UHODWLYH WR + 8VLQJ WKH *UDP6FKPLGW RUWKRJRQDOL]DWLRQ SURFHGXUH ZH FDQ FKRRVH RXU FRPSOHWH RUWKRQRUPDO EDVLV LQ VXFK D ZD\ WKDW c!T D 2XU LQWHUHVW QRZf IRFXVHV RQ WKH 22fPDWUL[ HOHPHQWV rtrf :R f 2QH FDQ HDVLO\ FRQYLQFH RQHVHOI WKDW WKLV IXQFWLRQ LV FRQVWDQW RQ WKH WZRVLGHG FRVHWV +J+ ZLWK UHVSHFW WR + 7KH IXQFWLRQ GHILQHG LQ f LV FDOOHG WKH ]RQDO VSKHULFDO IXQFWLRQ RI WKH LUUHGXFLEOH UHSUHVHQWDWLRQ W UHODWLYH WR + ,I ZH WDNH f WKH JURXS RI URWDWLRQV RI L5 DQG + f WKH JURXS RI URWDWLRQV RI WKH SODQH WKHQ 0 WKH WZR VSKHUH DQG WKH ]RQDO VSKHULFDO IXQFWLRQV DUH JLYHQ E\ WKH /HJHQGUH SRO\QRPLDOV 3AFRVf

PAGE 38

$ /HW XV GHQRWH E\ WKH VHW RI DOO LQHTXLYDOHQW LUUHGXFLEOH XQLWDU\ FODVV UHSUHVHQn WDWLRQV RI UHODWLYH WR + 7KHQ LW LV NQRZQ VLQFH + LV D PDVVLYH VXEJURXS RI WKH XQLPRGXODU JURXS WKDW DQ\ IXQFWLRQ IJf WKDW LV FRQVWDQW RQ WKH WZRVLGHG FRVHWV +J+ ZLWK UHVSHFW WR + FDQ EH GHFRPSRVHG LQ ]RQDO VSKHULFDO IXQFWLRQV 'RJf e f RI XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQV RI FODVV VHH > SS@f F& 'b^JfI^JfGJ -J f +HUH VWDQGV IRU WKH GLVFUHWH RU FRQWLQXRXV RUWKRJRQDO VXP RI DOO LQHTXLYDOHQW &HF LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI FODVV RI ZLWK UHVSHFW WR + 7KH FRQVWDQW G DSSHDULQJ LQ f LV JLYHQ E\ I 9-Jf'8fGJ GA6f -J ZKHUH LQ VXLWDEOH FRRUGLQDWHV B An LI LV GLVFUHWH f ? & f§ &2 LI *LV FRQWLQXRXV )RU WKH FDVH RI FRPSDFW JURXSV WKH FRQVWDQW GA LV WKH GLPHQVLRQ RI WKH UHSUHVHQWDn WLRQ VSDFH 9-r RI WKH XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ /$ VHH DOVR LQ WKLV UHVSHFW UHPDUN :H KDYH QRZ FROOHFWHG DOO WKH WRROV ZH QHHG WR FRQVWUXFW WKH SDWK LQWHJUDO UHSUHn VHQWDWLRQ IRU D IUHH SDUWLFOH PRYLQJ RQ 0 :H KDYH VHHQ DERYH WKDW WKH VKRUW WLPH SURSDJDWRU LV D FRQVWDQW IXQFWLRQ RQ WKH WZRVLGHG FRVHWV +J+ ZLWK UHVSHFW WR + KHQFH XVLQJ f ZH FDQ GHFRPSRVH LW LQ ]RQDO VSKHULFDO IXQFWLRQV f

PAGE 39

0RUHRYHU OHW H /O*f ZKHUH /`*f LV WKH VSDFH RI DOO LQWHJUDEOH IXQFWLRQV RQ WKHQ RQH KDV FI > &RUURODU\ @f > I^fGJ I I IJKfGKG[ -0-+ ZKLFK UHGXFHV IRU H /O+?*+f WR > I^fGJ > IJfG[ > -J -P -K GK I I^JfG[ -P f VLQFH IKLJKf IJf 9LM K f + DQG ZKHUH ZH KDYH FKRVHQ -+ GK EHFDXVH + LV FRPSDFW 8VLQJ f DQG f LQ f RQH ILQGV -[ Wnf OLP Y $7RR ,A&MLF&ML FfARR M Mf /&MLH* 1 O?GJU f 8VLQJ WKH RUWKRJRQDOLW\ UHODWLRQV IRU WKH IXQFWLRQV \GA'A DQG WKH OHIW LQYDULDQFH RI GJ RQH FDQ HDVLO\ VKRZ WKDW WKH IROORZLQJ UHODWLRQ KROGV G 2L GT > 'T J` JMLf'A^J-nOOJMfGJM V&M&MLf'ZM?MLf -J f 8VLQJ f WKH 1 LQWHUPHGLDWH LQWHJUDWLRQV LQ f FDQ HDVLO\ EH SHUIRUPHG DQG RQH ILQGV DV D ILQDO UHVXOW WKDW .rU; ,nf <^ -WR 0mf@Z` '8VnnQ . f /HW XV QRZ HYDOXDWH WKH OLPLW 1 f§} RR LQ WKH DERYH H[SUHVVLRQ IRU ODUJH 1 RQH FDQ ZULWH &Hf DV F FFf FFfH YDOLG WR ILUVW RUGHU LQ H 7KH YDOXH RI FAf FDQ EH IRXQG IURP f XVLQJ WKH IDFW WKDW WKH VKRUW WLPH SURSDJDWRU VDWLVILHV WKH IROORZLQJ LQLWLDO FRQGLWLRQ OLP -M JMLHf GH^JM OJMf ff§2 +HQFH RQH ILQGV FAf e!RHf 7KHUHIRUH RQH FDQ ZULWH WKH OLPLW LQ f DV OLP 1g 22  Wn LY77r! 1O H[S> nfFrf@

PAGE 40

2U LI ZH VHW (^ LKFAf ZH ILQG -LP 0mf@ 1!2& 1O H[S ,W LV VKRZQ LQ 5HI WKDW WKH Af DUH WKH HLJHQYDOXHV RI WKH /DSODFH%HOWUDPL RSHUn DWRU $ RQ 0 6LQFH LQ WKH SURRI RI WKLV VWDWHPHQW QR XVH LV PDGH RI WKH FRPSDFWQHVV RI 0 LW DSSOLHV WR WKH SUHVHQW VLWXDWLRQ DV ZHOO )LQDOO\ XVLQJ WKH JURXS SURSHUW\ 7 9nf e} }eRmnfVf ZH FDQ ZULWH f LQ WKH PRUH IDPLOLDU IRUP ZKHUH
PAGE 41

DV ZH KDYH VHHQ LQ WKLV FKDSWHU DQG ZLOO VHH LQ FKDSWHU WKH VWXG\ RI TXDQWXP G\QDPLFV RQ JURXS PDQLIROGV XVHV LQWHUHVWLQJ DQG GHHS PDWKHPDWLFV ,W LV WKHUHIRUH RI FRQVLGHUDEOH PDWKHPDWLFDO LQWHUHVW 1HYHUWKHOHVV WKHUH DUH DOVR SK\VLFDO UHDVRQV ZK\ WKH VWXG\ RI TXDQWXP G\QDPLFV RQ JURXS PDQLIROGV LV RI LQWHUHVW IRU LQVWDQFH WKH G\QDPLFV RQ D JURXS PDQLIROG LV RI LQWHUHVW LQ VRPH PRGHUQ TXDQWXP ILHOG WKHRULHV VXFK DV DPRGHOV DQG QRQDEHOLDQ ODWWLFH JDXJH ILHOG WKHRULHV &RKHUHQW 6WDWHV DQG &RKHUHQW 6WDWH 3DWK ,QWHJUDOV ,QWURGXFWLRQ 7KH RULJLQ RI FRKHUHQW VWDWHV FDQ EH WUDFHG EDFN WR WKH EHJLQQLQJ RI PRGHUQ TXDQn WXP PHFKDQLFV 6FKUGLQJHU >@ LQWURGXFHG D VHW RI QRQRUWKRJRQDO ZDYH IXQFWLRQV WR GHVFULEH QRQVSUHDGLQJ ZDYH SDFNHWV IRU TXDQWXP RVFLOODWRUV ,Q YRQ 1HXn PDQQ >@ XVHG D VXEVHW RI WKHVH ZDYH IXQFWLRQV WR VWXG\ WKH SRVLWLRQ DQG PRPHQWXP PHDVXUHPHQW SURFHVV LQ TXDQWXP WKHRU\ ,W ZDV QRW XQWLO WKLUW\ IRXU \HDUV ODWHU WKDW WKH GHWDLOHG VWXG\ RI FRKHUHQW VWDWHV EHJDQ > @f .ODXGHU >@ LQWURGXFHG ERVRQ DQG IHUPLRQ FRKHUHQW VWDWHV DQG XVHG WKHP ERWK LQ WKH FRQVWUXFWLRQ RI SDWK LQWHJUDOV IRU ERVRQ DQG VSLQRU ILHOGV UHVSHFWLYHO\ ZKRVH DFWLRQ IXQFWLRQDO LQ HDFK FDVH LV JLYHQ E\ WKH IDPLOLDU FODVVLFDO FQXPEHU H[SUHVVLRQ ,Q *ODXEHU > @ QDPHG WKH VHW RI ZDYH IXQFWLRQV LQWURGXFHG E\ 6FKURGLQJHU fFRKHUHQW VWDWHVf DQG XVHG WKHP LQ WKH ILHOG RI TXDQWXP RSWLFV > @ IRU WKH TXDQWXP WKHRUHWLFDO GHVFULSWLRQ RI D FRKHUHQW ODVHU EHDP $W DERXW WKH VDPH WLPH .ODXGHU SXEOLVKHG WZR SDSHUV > @ GHDOLQJ ZLWK WKH IRUPXODWLRQ RI FRQWLQXRXV UHSUHVHQWDWLRQ WKHRU\ WKDW FRQWDLQ WKH VHPLQDO LGHDV IRU WKH FRQVWUXFWLRQ RI FRKHUHQW VWDWHV RQ JHQHUDO /LH JURXSV &RKHUHQW VWDWHV IRU WKH QRQFRPSDFW DIILQH JURXS RU D[ E JURXS DQG WKH FRQWLQXRXV UHSUHVHQn WDWLRQ WKHRU\ XVLQJ WKH DIILQH JURXS ZKHUH LQWURGXFHG E\ $VODNVHQ DQG .ODXGHU > @ LQ 5DGFOLII >@ FRQVWUXFWHG FRKHUHQW VWDWHV IRU WKH FRPSDFW JURXS 68f LQ ,Q 3HUHORPRY >@ JDYH D JHQHUDO FRQVWUXFWLRQ IRU FRKHUHQW VWDWHV IRU ERWK FRPSDFW DQG VXLWDEOH QRQFRPSDFW /LH JURXSV

PAGE 42

6HYHUDO ERRNV DQG UHYLHZ DUWLFOHV FRQVLGHU WKH GHILQLWLRQ DQG SURSHUWLHV RI FRKHUHQW VWDWHV > @f .ODXGHU DQG 6NDJHUVWDP >@ SURYLGH DQ LQWURGXFWLRQ WR WKH VXEMHFW RI FRKHUHQW VWDWHV LQ WKH IRUP RI D SULPHU DQG RIIHU D FRPSUHKHQVLYH RYHUYLHZ RI WKH OLWHUDWXUH XQWLO LQ WKH IRUP RI UHSULQWHG UHOHYDQW DUWLFOHV GHDOLQJ ZLWK WKH VXEMHFW RI FRKHUHQW VWDWHV 3HUHORPRY >@ FRQVLGHUV WKH XVHIXOQHVV RI FRKHUHQW VWDWHV LQ WKH VWXG\ RI XQLWDU\ UHSUHVHQWDWLRQV RI /LH JURXSV DQG FRQVLGHUV D QXPEHU RI DSSOLFDWLRQV 7KH UHYLHZ DUWLFOH E\ =KDQJ HW DO >@ DQG WKH UHFHQWO\ SXEOLVKHG SURFHHGLQJV RI WKH ,QWHUQDWLRQDO 6\PSRVLXP RQ &RKHUHQW 6WDWHV >@ DOVR GHVHUYH WR EH PHQWLRQHG &RKHUHQW 6WDWHV 0LQLPXP 5HTXLUHPHQWV /HW XV GHQRWH E\ + D FRPSOH[ VHSDUDEOH +LOEHUW VSDFH DQG E\ e D WRSRORJLFDO VSDFH ZKRVH ILQLWH GLPHQVLRQDO VXEVSDFHV DUH ORFDOO\ HXFOLGLDQ )RU D IDPLO\ RI YHFWRUV ^_O f`LHe RQ + WR EH D VHW RI FRKHUHQW VWDWHV LW PXVW IXOILOO WKH IROORZLQJ WZR FRQGLWLRQV 7KH ILUVW FRQGLWLRQ LV &RQWLQXLW\ 7KH YHFWRU ?Of LV D VWURQJO\ FRQWLQXRXV IXQFWLRQ RI WKH ODEHO O 7KDW LV IRUDOO H WKHUH H[LVWV D VXFK WKDW O f__ H IRU DOO On f e ZLWK _n f§ O? +HUH GHQRWHV WKH QRUP RQ + LQGXFHG E\ WKH LQQHU SURGXFW RQ + LH f f fA 2U VWDWHG GLIIHUHQWO\ WKH IDPLO\ RI YHFWRUV ^_= f`LHe RQ + IRUP D FRQWLQXRXV XVXDOO\ FRQQHFWHGf VXEPDQLIROG RI + :H DVVXPH WKDW O?Of IRU DOO O f e ,Q WKH DSSOLFDWLRQV ZH DUH FRQVLGHULQJ WKH FRQWLQXLW\ SURSHUW\ LV DOZD\V IXOILOOHG 7KH VHFRQG FRQGLWLRQ D VHW RI FRKHUHQW VWDWHV KDV WR IXOILOO LV &RPSOHWHQHVV 5HVROXWLRQ RI WKH ,GHQWLW\f 7KHUH H[LVWV D VLJPDILQLWH SRVLn WLYH PHDVXUH GSOf RQ e VXFK WKDW WKH LGHQWLW\ RSHUDWRU ,Q DGPLWV WKH IROORZLQJ $ 7RSRORJLFDO VSDFH LV FDOOHG VHSDUDEOH LI LW FRQWDLQV D FRXQWDEOH GHQVH VXEVHW

PAGE 43

UHVROXWLRQ RI LGHQWLW\ c+ -PLZLf f ,Q JHQHUDO DV SRLQWHG RXW LQ 5HI S fRQH KDV WR LQWHUSUHW WKLV IRUPDO UHVROXWLRQ RI LGHQWLW\ LQ WKH VHQVH RI ZHDN FRQYHUJHQFH QDPHO\ WKDW DUELWUDU\ PDWUL[ HOHPHQWV RI WKH LQGLFDWHG H[SUHVVLRQ FRQYHUJH DV GHVLUHGf *URXS &RKHUHQW 6WDWHV 7R DYRLG XQQHFHVVDU\ PDWKHPDWLFDO FRPSOLFDWLRQ DW WKLV SRLQW ZH UHVWULFW RXU GLVFXVVLRQ WR FRPSDFW /LH JURXSV +RZHYHU ZH ZRXOG OLNH WR SRLQW RXW WR WKH UHDGHU WKDW WKH GLVFXVVLRQ DSSOLHV WR D JHQHUDO /LH JURXS DV GHILQHG LQ FKDSWHU /HW XV GHQRWH E\ D FRPSDFW GGLPHQVLRQDO /LH JURXS ,W LV ZHOO NQRZQ WKDW IRU FRPSDFW JURXSV DOO UHSUHVHQWDWLRQV RI WKH JURXS DUH ERXQGHG DQG WKDW DOO LUUHGXFLEOH UHSUHn VHQWDWLRQV DUH ILQLWH GLPHQVLRQDO 0RUHRYHU RQH FDQ DOZD\V FKRRVH D VFDODU SURGXFW RQ WKH UHSUHVHQWDWLRQ VSDFH LQ VXFK D ZD\ WKDW HYHU\ UHSUHVHQWDWLRQ RI LV XQLWDU\ FI > 7KHRUHP @f 7KHUHIRUH ZLWKRXW ORVV LQ JHQHUDOLW\ ZH DVVXPH WKDW ZH DUH GHDOLQJ ZLWK D ILQLWH GLPHQVLRQDO VWURQJO\ FRQWLQXRXV LUUHGXFLEOH XQLWDU\ UHSUHVHQWDn WLRQ 8 RI RQ D AGLPHQVLRQDO UHSUHVHQWDWLRQ VSDFH +A /HW XV GHQRWH E\ ^;N`GN WKH VHW RI ILQLWH GLPHQVLRQDO VHOIDGMRLQW JHQHUDWRUV RI WKH UHSUHVHQWDWLRQ 8 7KH ;N N G IRUP DQ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD / DVVRFLDWHG ZLWK ZKRVH FRPPXWDWLRQ UHODWLRQV DUH JLYHQ E\ G ZKHUH &LN GHQRWH WKH VWUXFWXUH FRQVWDQWV 7KH SK\VLFDO RSHUDWRUV DUH GHILQHG E\ ;N K;N )RU GHILQLWHQHVV LW LV DVVXPHG WKDW WKHUH H[LVWV D SDUDPHWHUL]DWLRQ IRU VXFK WKDW LSMf H[Sf§LOO;?f H[Sf§LON;Nf XS WR VRPH RUGHULQJ DQG ZKHUH O ( & +HUH & GHQRWHV WKH FRPSDFW SDUDPHWHU VSDFH IRU )RU DOO O ( e DQG D IL[HG QRUPDOL]HG ILGXFLDO YHFWRU WM ( ZH GHILQH WKH

PAGE 44

IROORZLQJ VHW RI YHFWRUV RQ OLn OW IROORZV IURP WKH VWURQJ FRQWLQXLW\ RI 8Jcf WKDW WKH VHW RI YHFWRUV GHILQHG LQ f IRUPV D IDPLO\ RI VWURQJO\ FRQWLQXRXV YHFWRUV RQ +A )XUWKHUPRUH OHW XV FRQVLGHU WKH RSHUDWRU MJOnf:f ‘fGJOff f ZKHUH GJOf GHQRWHV WKH QRUPDOL]HG LQYDULDQW PHDVXUH RQ ,W LV QRW KDUG WR VKRZ XVLQJ WKH LQYDULDQFH RI GJ WKDW WKH RSHUDWRU 2 FRPPXWHV ZLWK DOO 8J\f O f & 6LQFH 8JLf LV D XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RQH KDV E\ 6FKXUfV /HPPD WKDW 2 $KF f 7DNLQJ WKH WUDFH RI ERWK VLGHV RI f ZH OHDUQ WKDW +HQFH WKH IDPLO\ RI YHFWRUV GHILQHG LQ f JLYHV ULVH WR WKH IROORZLQJ UHVROXWLRQ RI LGHQWLW\ ,K UfOf:ffGJOf f 7KHUHIRUH ZH ILQG WKDW WKH IDPLO\ RI YHFWRUV GHILQHG LQ f VDWLVILHV WKH UHTXLUHPHQWV VHW IRUWK LQ VXEVHFWLRQ IRU D VHW RI YHFWRUV WR EH D VHW RI FRKHUHQW VWDWHV 6R ZH FRQFOXGH WKDW WKH YHFWRUV GHILQHG LQ f IRUP D VHW RI FRKHUHQW VWDWHV IRU WKH FRPSDFW /LH JURXS FRUUHVSRQGLQJ WR WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ 8JLf &RQWLQXRXV 5HSUHVHQWDWLRQ $QDORJRXVO\ WR VWDQGDUG TXDQWXP PHFKDQLFV RQH FDQ XVH WKH VHW RI FRKHUHQW VWDWHV GHILQHG LQ f WR JLYH D IXQFWLRQDO UHSUHVHQWDWLRQ RI WKH VSDFH +A /HW XV GHILQH WKH PDS

PAGE 45

/r*GJf 0. L0 IDWI! 7KLV \LHOGV D UHSUHVHQWDWLRQ RI WKH VSDFH E\ ERXQGHG FRQWLQXRXV VTXDUH LQWHJUDEOH IXQFWLRQV RQ VRPH FORVHG VXEVSDFH /*f RI /*f /HW XV GHQRWH E\ % DQ\ ERXQGHG RSHUDWRU RQ +A WKHQ XVLQJ WKH PDS DQG WKH UHVROXWLRQ RI LGHQWLW\ ZH ILQG WKDW f KROGV &KRRVLQJ % KF ZH ILQG ZKHUH :f :2 !fn}f 2QH FDOOV f WKH UHSURGXFLQJ SURSHUW\ )XUWKHUPRUH DV VKRZQ LQ $SSHQGL[ % WKH NHUQHO enf LV DQ HOHPHQW RI /*f IRU IL[HG O & 7KHUHIRUH WKH NHUQHO enf LV D UHSURGXFLQJ NHUQHO DQG /^*f LV D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH FI $SSHQGL[ %f 1RWH WKDW D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH FDQ QHYHU KDYH PRUH WKDQ RQH UHSURGXFLQJ NHUQHO FI &ODLP %f 7KHUHIRUH VLQFH /*f LV D VSDFH RI FRQWLQXRXV IXQFWLRQV .YOnOf LV XQLTXH 0RUHRYHU VLQFH WKH FRKHUHQW VWDWHV DUH VWURQJO\ FRQWLQXRXV WKH UHSURGXFLQJ NHUQHO en Of LV D MRLQWO\ FRQWLQXRXV IXQFWLRQ QRQ]HUR IRU O On DQG WKHUHIRUH QRQ]HUR LQ D QHLJKERUKRRG RI O On 7KLV PHDQV WKDW f LV D UHDO UHVWULFWLRQ RQ WKH DGPLVVLEOH IXQFWLRQV LQ WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI +A 2I FRXUVH D VLPLODU HTXDWLRQ KROGV IRU WKH 6FKURGLQJHU UHSUHVHQWDWLRQ KRZHYHU WKHUH RQH KDV T?Tnf T f§ Tnf ZKLFK SRVHV QR UHVWULFWLRQ RQ WKH DOORZHG IXQFWLRQV ,Q IDFW WKH UHSURGXFLQJ NHUQHO .UfOn?Of LV WKH LQWHJUDO NHUQHO RI D SURMHFWLRQ RSHUDWRU 6HH $SSHQGL[ %O

PAGE 46

IURP /*f RQWR WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f FI &ODLP %f 7KLV HQGV RXU GLVFXVVLRQ RI WKH NLQHPDWLFV IUDPHZRUNf DQG EULQJV XV WR WKH VXEMHFW RI G\QDPLFV 7KH &RKHUHQW 6WDWH 3URSDJDWRU IRU *URXS &RKHUHQW 6WDWHV /HW +F DQG GHQRWH E\ L; ;Gf WKH ERXQGHG +DPLOWRQ RSHUDWRU RI WKH TXDQWXP V\VWHP XQGHU GLVFXVVLRQ WKHQ WKH 6FKURGLQJHU HTXDWLRQ RQ LV JLYHQ E\ LKGWLS +;L ;GfLS VLQFH + LV DVVXPHG WR EH VHOIDGMRLQW DQG GRHV QRW H[SOLFLWO\ GHSHQG RQ WLPH D VROXWLRQ WR 6FKURGLQJHUfV HTXDWLRQ LV JLYHQ E\ H[S 1RZ PDNLQJ XVH RI f ZH ILQG ZKHUH nf U@Of H[S 1RWH WKDW WKH FRKHUHQW VWDWH SURSDJDWRU .9^Wnf VDWLVILHV WKH IROORZLQJ LQLWLDO FRQGLWLRQ OLP .fO W On Wnf ;YO? Onf 9nWWn +HQFH DV W f§!‘ Wn ZH REWDLQ WKH UHSURGXFLQJ NHUQHO ;YO@Onf ZKLFK DV ZH KDYH UHPDUNHG DERYH LV WKH LQWHJUDO NHUQHO RI D SURMHFWLRQ RSHUDWRU IURP /*f RQWR /*f 0RUHRYHU VLQFH ;YOOnf LV XQLTXH ZH VHH WKDW LI ZH FKDQJH WKH ILGXFLDO YHFWRU IURP 9 WR Ufn VDYH IRU D FKDQJH RI SKDVH WKHQ WKH UHVXOWLQJ FRKHUHQW VWDWH SURSDJDWRU LV QR ORQJHU D SURSDJDWRU IRU WKH HOHPHQWV RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f EXW LV D SURSDJDWRU IRU WKH HOHPHQWV RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f +HQFH ZH VHH WKDW WKH FRKHUHQW VWDWH SURSDJDWRU .YO Wnf GHSHQGV VWURQJO\ RQ WKH ILGXFLDO YHFWRU

PAGE 47

)ROORZLQJ VWDQGDUG PHWKRGV LQ 5HIV DQG ZH QRZ GHULYH D FRKHUHQW VWDWH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH FRKHUHQW VWDWH SURSDJDWRU :H VWDUW DV LQ VHFWLRQ IURP WKH EDVLF LGHD 1 ZKHUH H W f§ Wnf1 f WKHUHIRUH ZH ILQG ,QVHUWLQJ WKH UHVROXWLRQ RI LGHQWLW\ f L9WLPHV WKLV EHFRPHV f ; 1 Y^OMLfH[S YOMff<>GJ^OMf ZKHUH =AL O DQG O4 On 7KLV H[SUHVVLRQ KROGV IRU DQ\ 1 DQG WKHUHIRUH LW KROGV DV ZHOO LQ WKH OLPLW 1 f§!‘ RR RU H f§! LH L ? 1 WOLOMLf H[S Y^OMff ,, 0Kf f +HQFH RQH KDV WR HYDOXDWH U@OMLf H[S AH.fMff IRU VPDOO H )RU VPDOO H RQH FDQ PDNH WKH DSSUR[LPDWLRQ f[f H[S e :MUW0 ZKHUH YLKL f0LMff

PAGE 48

,QVHUWLQJ f LQWR f \LHOGV 1 @4 GJ^OMf f L L 7KLV LV WKH IRUP RI WKH FRKHUHQW VWDWH SDWK LQWHJUDO RQH W\SLFDOO\ HQFRXQWHUV LQ WKH OLWHUDWXUH ,W LV ZRUWK UHHPSKDVLQJ WKDW WKH FRKHUHQW VWDWH SDWK LQWHJUDO UHSUHVHQWDWLRQ RI WKH FRKHUHQW VWDWH SURSDJDWRU f GHSHQGV VWURQJO\ RQ WKH ILGXFLDO YHFWRU )RUPDO &RKHUHQW 6WDWH 3DWK ,QWHJUDO (YHQ WKRXJK WKHUH H[LVWV QR PDWKHPDWLFDO MXVWLILFDWLRQ ZKDWVRHYHU ZH QRZ WDNH LQ DQDORJ\ WR ZKDW ZH KDYH GRQH LQ VHFWLRQV DQG DQ LPSURSHU OLPLW RI f E\ LQWHUFKDQJLQJ WKH RSHUDWLRQ RI LQWHJUDWLRQ ZLWK WKH OLPLW H f§! $V SRLQWHG RXW LQ 5HI S RQH FDQ LPDJLQH DV W f§} WKDW WKH VHW RI SRLQWV OM M GHILQHV LQ WKH OLPLW D SRVVLEO\ JHQHUDOL]HGf IXQFWLRQ OWf Wn W W )ROORZLQJ 5HI SS ZH QRZ GHULYH DQ H[SUHVVLRQ IRU WKH LQWHJUDQG LQ f YDOLG IRU FRQWLQXRXV DQG GLIIHUHQWLDEOH SDWKV OWf 1RWH WKDW WKH VHW RI FRKHUHQW VWDWHV WMf ZH KDYH GHILQHG LQ f LV QRW QRUPDOL]HG EXW LV RI FRQVWDQW QRUP JLYHQ E\ GA :H QRZ UHZULWH WKH UHSURGXFLQJ NHUQHO &QOMLOMf WM,Mf UMOMff LQ WKH IROORZLQJ ZD\ f! YLK0KLff f YLK2 YKff F G ^QLKLf0KLf a YAMff@ a GFH[3>UIF AML.AnLf WKLV DSSUR[LPDWLRQ LV YDOLG ZKHQHYHU __-Lf f§ U@OMf__ O M 9 +HQFH DV H WKH DSSUR[LPDWLRQ EHFRPHV LQFUHDVLQJO\ EHWWHU VLQFH WKH UMOf IRUP D FRQWLQXRXV IDPLO\ RI YHFWRUV 7KHUHIRUH RQH ILQGV IRU ??ULOMLf U@OMf __ & M 9 8VLQJ f LQ f DQG WDNLQJ WKH OLPLW H f§A WKH LQWHJUDQG LQ f WDNHV IRU FRQWLQXRXV DQG GLIIHUHQWLDEOH SDWKV WKH

PAGE 49

IROORZLQJ IRUP ZKHUH +Pf Zf Q[X ‘ ‘ ;0Off DQG ZKHUH ZH KDYH LQWURGXFHG WKH FRKHUHQW VWDWH GLIIHUHQWLDO G7@Of UMO GOf LLOf +HQFH ZH ILQG WKH IROORZLQJ IRUPDO FRKHUHQW VWDWH SDWK LQWHJUDO H[SUHVVLRQ IRU WKH FRKHUHQW VWDWH SURSDJDWRU ZKHUH $ GLVFXVVLRQ RI ZKDW LV ULJKW DQG ZKDW LV ZURQJ ZLWK f FDQ EH IRXQG LQ 5HI SS ZH RQO\ UHPDUN KHUH WKDW f GHSHQGV VWURQJO\ RQ WKH FKRLFH RI WKH ILGXFLDO YHFWRU DQG RQ WKH FKRLFH RI WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI +HQFH RQH KDV WR UHIRUPXODWH WKH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH FRKHUHQW VWDWH SURSDJDWRU HYHU\ WLPH RQH FKDQJHV WKH ILGXFLDO YHFWRU DQG NHHSV WKH LUUHGXFLEOH UHSUHVHQWDWLRQ WKH VDPH RU LI RQH FKDQJHV WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI 1RZ LQ PDQ\ DSSOLFDWLRQV LW LV RIWHQ FRQYHQLHQW WR FKRRVH WKH ILGXFLDO YHFWRU DV WKH JURXQG VWDWH RI WKH +DPLOWRQ RSHUDWRU n+ RI WKH TXDQWXP V\VWHP RQH FRQVLGHUV VHH IRU LQVWDQFH 7URXQJ > @ +HQFH RQH KDV WR IDFH WKH SUREOHP RI YDULRXV ILGXFLDO YHFWRUV ,Q FKDSWHU ZH GHYHORS D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ZKLFK QHYHUWKHOHVV SURSDJDWHV WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /r*f DVVRFLDWHG ZLWK DQ\ LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ RI +HQFH ZH FDQ RYHUFRPH WKH DERYH OLPLWDWLRQ

PAGE 50

$OVR QRWH WKDW FRKHUHQW VWDWH SDWK LQWHJUDOV DIIRUG DQ DOWHUQDWLYH ZD\ RI FRQn VWUXFWLQJ SDWK LQWHJUDOV IRU TXDQWXP V\VWHPV PRYLQJ RQ JURXS PDQLIROGV DQG RQ KRPRJHQHRXV VSDFHV )RU LQVWDQFH .ODXGHU KDV XVHG LQ 5HI WKH FRKHUHQW VWDWH SDWK LQWHJUDO WR GHVFULEH WKH PRWLRQ RI D TXDQWXP V\VWHP ZLWK VSLQ V PRYLQJ RQ WKH WZR VSKHUH 6 DQG LQ 5HI WR GHVFULEH WKH PRWLRQ RI D TXDQWXP V\VWHP RQ WKH /REDFKHYVN\ SODQH .ODXGHU KDV DOVR GLVFXVVHG D TXDQWL]DWLRQ SURFHGXUH IRU SK\Vn LFDO V\VWHPV PRYLQJ RQ JURXS PDQLIROGV DQG KRPRJHQHRXV VSDFHV XVLQJ WKH DFWLRQ IXQFWLRQDO LQ f VHH 5HIV DQG DQG KDV WKHUHIRUH SURYLGHG DQ DOWHUQDWLYH PHWKRG RI TXDQWL]DWLRQ WR WKH TXDQWL]DWLRQ PHWKRGV GLVFXVVHG LQ VXEVHFWLRQV DQG

PAGE 51

&+$37(5 127$7,216 $1' 35(/,0,1$5,(6 1RWDWLRQV ,Q WKLV FKDSWHU LV D UHDO VHSDUDEOH FRQQHFWHG DQG VLPSO\ FRQQHFWHG ORFDOO\ FRPSDFW /LH JURXS ZLWK IL[HG OHIW LQYDULDQW +DDU PHDVXUH GJ LH G>KJf GJ /HW $Jf EH WKH PRGXODU IXQFWLRQ IRU WKH JURXS *? LH G^JKf $^KfGJ ,I $Jf WKHQ WKH JURXS LV FDOOHG XQLPRGXODU ,W LV NQRZQ WKDW WKH IROORZLQJ /LH JURXSV DUH XQLPRGXODU FI > S @ DQG > FKDSWHU ; i@f Lf (YHU\ FRPSDFW /LH JURXS LLf (YHU\ VHPLVLPSOH /LH JURXS LLLf (YHU\ FRQQHFWHG QLOSRWHQW /LH JURXS 7KH DIILQH JURXS ZKLFK ZH ZLOO FRQVLGHU LQ FKDSWHU LV DQ H[DPSOH RI D QRQ XQLPRGXODU /LH JURXS /HW 9*f EH WKH VSDFH RI UHJXODU %UXKDW IXQFWLRQV ZLWK FRPSDFW VXSSRUW RQ FI >@ DQG > SS @f /HW 7 EH D FORVHDEOH RSHUDWRU RQ VRPH +LOEHUW VSDFH + WKHQ ZH GHQRWH LWV FORVXUH E\ 7 /HW / EH WKH /LH DOJHEUD FRUUHn VSRQGLQJ WR ZLWK EDVLV ;? [ 7KHQ ZH GHQRWH E\ ;? 8[Lf ; 8[If D UHSUHVHQWDWLRQ RI WKH EDVLV RI WKH /LH DOJHEUD / E\ V\PPHWULF RSHUDWRUV RQ VRPH +LOEHUW VSDFH + ZLWK FRPPRQ GHQVH LQYDULDQW GRPDLQ 7KH FRPPXWDWLRQ UHODWLRQV WDNH WKH IRUP >;;M@ L<"N L rLMN;N $ YHFWRU LS + LV FDOOHG DQ DQDO\WLF YHFWRU IRU D V\PPHWULF RSHUDWRU ; DFWLQJ RQ VRPH GHQVH GRPDLQ LQ + LI IRU VRPH V WKH VHULHV LV GHILQHG DQG f :H VD\ WKDW )RU D VXPPDU\ RI WKH EDVLF IDFWV RI WKH WKHRU\ RI OLQHDU RSHUDWRUV /LH DOJHEUDV /LH JURXSV DQG WKH UHSUHVHQWDWLRQ WKHRU\ RI /LH JURXSV VHH $SSHQGL[ $

PAGE 52

WKH UHSUHVHQWDWLRQ 8 RI WKH /LH DOJHEUD / VDWLVILHV +\SRWKHVLV $f LI DQG RQO\ LI 8 LV D UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD /RQD GHQVH LQYDULDQW GRPDLQ RI YHFWRUV WKDW DUH DQDO\WLF IRU DOO V\PPHWULF UHSUHVHQWDWLYHV ;N 8[Nf RI D EDVLV ,I +\SRWKHVLV $f LV VDWLVILHG WKHQ E\ 7KHRUHP RI )ODWR HW DO >@ WKH UHSUHVHQWDWLRQ ;? ;G RI WKH /LH DOJHEUD / RQ + LV LQWHJUDEOH WR D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ RI WKH FRUUHVSRQGLQJ FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS RQ + :H ZLOO DOZD\V DVVXPH WKDW D UHSUHVHQWDWLRQ RI / E\ V\PPHWULF RSHUDWRUV VDWLVILHV +\SRWKn HVLV $f 7KHUHIRUH WKH UHSUHVHQWDWLRQ RI / E\ V\PPHWULF RSHUDWRUV LV LQWHJUDEOH WR D XQLTXH JOREDO XQLWDU\ UHSUHVHQWDWLRQ RI WKH DVVRFLDWHG FRQQHFWHG DQG VLPSO\ FRQn QHFWHG /LH JURXS RQ + /HW WKHUH H[LVW D SDUDPHWHUL]DWLRQ RI VXFK WKDW WKH XQLWDU\ UHSUHVHQWDWLRQ 8 RI FDQ EH ZULWWHQ LQ WHUPV RI WKH ;N DV G -AH[Sf§L3;Mf H[Sf§LOO;LfH[LSf§LOG;Gf f M L G -H[SL9;Mf H[SLOG;Gf H[SLOO;Lf f M L IRU VRPH RUGHULQJ ZKHUH O LV DQ HOHPHQW RI D GGLPHQVLRQDO SDUDPHWHU VSDFH 4 7KH SDUDPHWHU VSDFH 4 LV DOO RI O5G LI WKH JURXS LV QRQFRPSDFW DQG D VXEVHW RI O5G LI WKH JURXS LV FRPSDFW RU KDV D FRPSDFW VXEJURXS 5HPDUN 1RWH WKDW RQH REWDLQV LQ WKLV ZD\ D UHSUHVHQWDWLRQ RI DOO HOHPHQWV RI WKDW DUH FRQQHFWHG WR WKH LGHQWLW\ HOHPHQW 6LQFH ZH DUH FRQVLGHULQJ D FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZH KDYH WKDW 8JT LV D UHSUHVHQWDWLRQ RI 6LQFH LV D PDQLIROG RQH QHHGV LQ JHQHUDO D FROOHFWLRQ RI SURSHU FRRUGLQDWH FKDUWV WKDW FRYHU VHH $SSHQGL[ $f ZH ZLOO UHODEHO WKH FRRUGLQDWHV LQ HDFK RI WKHVH FKDUWV E\ WKH GWXSOH O 1HYHUWKHOHVV LQ SUDFWLFH LW LV RIWHQ SRVVLEOH WR ZRUN ZLWK D VLQJOH SURSHU FRRUGLQDWH FKDUW SDUDPHWHUL]DWLRQf DV WKH IROORZLQJ H[DPSOH VKRZV +RZHYHU LW LV LPSRUWDQW WR QRWH WKDW RQH GRHV QRW REWDLQ DOO WKH JURXS HOHPHQWV ZKHQ RQH LV ZRUNLQJ ZLWK D VLQJOH SURSHU FRRUGLQDWH FKDUW /HW XV FRQVLGHU WKH WZRGLPHQVLRQDO XQLPRGXODU XQLWDU\ JURXS 68f 7KH JURXS JHQHUDWRUV RI 68f DUH JLYHQ E\ RQH

PAGE 53

KDOI WLPHV WKH 3DXOL PDWULFHV L L DQG VDWLVI\ WKH IROORZLQJ ZHOO NQRZQ FRPPXWDWLRQ UHODWLRQV ZKHUH IRU LMNf DQ HYHQ SHUPXWDWLRQ RI f f§ IRU LMNf DQ RGG SHUPXWDWLRQ RI f RWKHUZLVH 2QH SRVVLEOH SDUDPHWHUL]DWLRQ RI 68f LV JLYHQ LQ WHUPV RI WKH (XOHU DQJOHV E\ X4 !ef H[Sf§LI!;f H[Sf§L;f H[SLe;f HOAef FRVf f§ VLQf f§ O H!ef VLQf HO!ef &RVf ZKHUH Mf 7 7 7 I 7 1RWH WKDW WKH SRLQWV DQG Q KDYH WR EH H[FOXGHG VLQFH DW WKHVH SRLQWV RQO\ M! e DQG FMf f§ e DUH GHWHUPLQHG UHVSHFWLYHO\ 7KH (XOHU DQJOHV DUH DQDORJRXV WR JHRJUDSKLFDO FRRUGLQDWHV RQ WKH VSKHUH LQ 5 -XVW DV RQ 6 JHRJUDSKLFDO FRRUGLQDWHV DUH QRW XQLTXHO\ GHWHUPLQHG DW WKH QRUWK DQG VRXWK SROH WKH SDUDPHWHUV Mf e DUH QRW XQLTXHO\ GHWHUPLQHG DW WKH VLQJXODU SRLQWV DQG U +HQFH DW WKHVH VLQJXODU SRLQWV RI WKH SDUDPHWHU VSDFH Mf DQG I QR ORQJHU GHILQH D XQLPRGXODU XQLWDU\ PDWUL[ XQLTXHO\ 7KHUHIRUH WKH VHW RI PDWULFHV IRU ZKLFK WKH SDUDPHWHUL]DWLRQ LQWURGXFHG DERYH LV XQLTXH LV D SURSHU VXEVHW RI 68f +RZHYHU DV IDU DV LQWHJUDWLRQ RYHU WKH JURXS 68f LV FRQFHUQHG WKH DERYH SDUDPHWHUL]DWLRQ LV DGHTXDWH VLQFH WKH VHW RI VLQJXODU SRLQWV IRUPV D VHW RI PHDVXUH ]HUR $V SRLQWHG RXW E\ :\ERXUQH > SS @ D VXLWDEOH FKRLFH RI SDUDPHWHUn L]DWLRQ IRU WKH /LH JURXS RQH FRQVLGHUV FDQ JHQHUDOO\ EH PDGH DV IROORZV 2QH ILUVW REWDLQV D PDWUL[ UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD $GRfV 7KHRUHP > 7KHRUHP

PAGE 54

@f DVVRFLDWHG ZLWK WKH /LH JURXS RQH FRQVLGHUV WKHVH PDWULFHV DUH WKHQ WDNHQ DV WKH JURXS JHQHUDWRUV -XVW DV LQ WKH FDVH RI 68f FRQVLGHUHG DERYH RQH WKHQ GHWHUPLQHV D VXLWDEOH SDUDPHWHUL]DWLRQ DQG JHQHUDWHV WKH JURXS HOHPHQWV FRQQHFWHG WR WKH LGHQWLW\ HOHPHQW LQ SDUDPHWHUL]HG IRUP E\ H[SRQHQWLDWLQJ WKH JURXS JHQHUDn WRUV 1RWH WKDW WKH FKRLFH RI SDUDPHWHUL]DWLRQ RI FDQ EH PDGH LQ PDQ\ ZD\V DQG VKRXOG LGHDOO\ EH PDGH VXFK WKDW VLQJXODULWLHV LQ 4 DERXW WKH LGHQWLW\ HOHPHQW DUH DYRLGHG )LQDOO\ D UHSUHVHQWDWLRQ RI WKH IRUP f LV REWDLQHG E\ H[SRQHQWLDWLQJ WKH VHOIDGMRLQW UHSUHVHQWDWLYHV ^$nr` RI WKH EDVLV ^[r` RI WKH /LH DOJHEUD DVVRFLDWHG ZLWK XVLQJ WKH SDUDPHWHUV RQH KDV GHWHUPLQHG LQ WKH UHSUHVHQWDWLRQ RI WKH JURXS HOHPHQWV FRQQHFWHG WR WKH LGHQWLW\ HOHPHQW 2 /HW 8 +f DQG >n +nf EH XQLWDU\ UHSUHVHQWDWLRQV RI $ GHQVHO\ GHILQHG FORVHG RSHUDWRU 6 IURP + WR +n LV FDOOHG VHPLLQYDULDQW ZLWK ZHLJKW D LI 8n68 DJf6 9 H ,Q ZKDW IROORZV ZH VKDOO QHHG D FRPPRQ GHQVH LQYDULDQW GRPDLQ IRU ;? $ WKDW LV DOVR LQYDULDQW XQGHU WKH RQHSDUDPHWHU JURXSV H[SLW;Nf N G 'HILQH DV WKH LQWHUVHFWLRQ RI WKH GRPDLQV RI DOO PRQRPLDOV ;A ;LN IRU DOO L G %\ GHILQLWLRQ FRQWDLQV KHQFH LV GHQVH LQ + 7KHQ E\ /HPPD RI 5HI WKH UHVWULFWLRQ RI ; L ;D WR LV D UHSUHVHQWDWLRQ RI / DQG E\ /HPPD RI 5HI LV LQYDULDQW XQGHU DOO RQHSDUDPHWHU JURXSV H[SLL$Urf N ` ff f` G /HW $PNJ^Off DQG SPNJ^Off EH IXQFWLRQV VXFK WKDW RQ WKH IROORZLQJ UHODWLRQV KROG G G H[SLOD;Df ; P R PI PO Pf§ Pf§ H[S^LOD;Df ; P H[SLOE;Ef D O G H[SLOE;Wf ;O?PNJOff;N f IF O G 3UQ+JP[ f N 1RWH WKDW WKH SDUDPHWHUL]DWLRQ RI WKH /LH JURXS LV FKRVHQ LQ VXFK D ZD\ WKDW GHW>$Prff@ DQG GHW>SPNJOff@ A UHVSHFWLYHO\ 7KHUHIRUH WKH LQYHUVH PDWUL N

PAGE 55

FHV >$Prf@ DQG >SPrSf@ H[LVW )XUWKHUPRUH OHW 8Of EH WKH G [ G PDWUL[ ZKRVH PNHOHPHQW LV 8PNOf VXFK WKDW RQ G V6 ,, XPN9f[N N f 8JWQ;P8J: r r LL f KROGV 2QH FDQ HDVLO\ FKHFN WKDW 8Of LV JLYHQ E\ H[SRQHQWLDWLQJ WKH DGMRLQW UHSUHn VHQWDWLRQ RI / G 8Of --H[SIFFrf KHUH Fr GHQRWHV WKH PDWUL[ IRUPHG IURP WKH VWUXFWXUH FRQVWDQWV VXFK WKDW Fr 3UHOLPLQDULHV 7KHRUHP 2Q WKH FRPPRQ GHQVH LQYDULDQW GRPDLQ RI ;L;G WKH IROn ORZLQJ UHODWLRQV KROG ?PNJOffGU;N NP DQG /J^LRf;PNJ^Off ;PNJOff G 3URRI Lf /HW LS f EH DUELWUDU\ WKHQ VLQFH 8Jcf OHDYHV LQYDULDQW LH 8J>Lf' & ZH GHILQH WKH GLIIHUHQWLDO RI 8J>Lf DV IROORZV G8J^LfLS P O OLP $Pf§} 8J P$=P ,Gf9! 8J3 rf $ P GO P f 1RZ VLQFH 8JLf LV WKH SURGXFW RI RQHSDUDPHWHU XQLWDU\ JURXSV RQH ILQGV IRU WKH GLIIHUHQWLDO RI 8J>Lf P O D O E PO

PAGE 56

7KHUHIRUH G 8JOfG8JOfS H[SLOD;Df ; P H[Sf§LOE ; EfLSGO P P D P E PO 7 ;M JOffGOP ; PN 6LQFH nLS H ZDV DUELWUDU\ RQH ILQGV WKDW RQ & + WKH IROORZLQJ UHODWLRQ KROGV G f \ $PfVfG7;W f FP O 7R HVWDEOLVK WKH VHFRQG SDUW RI Lf OHW LS EH DUELWUDU\ WKHQ 8JLfG8JLfLS f§ 8J>Of8^LRf8J^ORfG8f§ 8JL\AJAG8JQ4JALS 7KHUHIRUH XVLQJ f DQG WKH IDFW WKDW ERWK ^;N`I DQG ^GP`A DUH OLQHDUO\ LQGHSHQGHQW IDPLOLHV RQH ILQGV e}P&f V .NJ 0P [PNJOff LLf 7KH ILUVW SDUW RI LLf LV VLPLODU WR WKH ILUVW SDUW RI Lf 7R SURYH WKH VHFRQG SDUW RI LLf RQH FDQ SURFHHG DV IROORZV OHW LS EH DUELWUDU\ WKHQ G8JLf8JcMLS f§ G8JLf8JAf8JA8JALOf G8JPLRf8JPLRfLS 7KHUHIRUH E\ WKH VDPH UHDVRQLQJ DV DERYH 5V03P+JGff 3PNJLfJORff S-:ff R 6LQFH WKH $PNJOff DUH OHIW LQYDULDQW IXQFWLRQV RQ WKH /LH JURXS WKH UHODWLRQ Lf FDQ EH YLHZHG DV DQ RSHUDWRU YHUVLRQ RI WKH JHQHUDOL]HG 0DXUHU&DUWDQ IRUP RQ FI > S @f &RUROODU\ 7KH IXQFWLRQV ;PNJOff DQG SPN^JOff DUH UHODWHG DV IROORZV f G &f§

PAGE 57

3URRI /HW LS e EH DUELWUDU\ WKHQ E\ 7KHRUHP LLf L 7 SPFJLffGU[FX FP 6LQFH 8JLf OHDYHV LQYDULDQW VHW S 8nALS f WKHQ PXOWLSO\LQJ WKH UHVXOWLQJ UHODWLRQ IURP WKH OHIW E\ \LHOGV G XPGYPW! L 7 3PFJLffGUXYf[MM FP 8VLQJ 7KHRUHP Lf DQG WKH GHILQLWLRQ RI 8PNOf WKH &RUROODU\ HDVLO\ IROORZV ’ &RUROODU\ 7KH IXQFWLRQV SPN^JOff DQG $PrSff VDWLVI\ WKH IROORZLQJ HTXDn N WLRQV G G G G Df \n^D>$fVf@A,LffDL>YLDVcff@$9ff` (F-r$n9Vnff G I LQf QVOffGL$??EJP <3PVJOffGLQ>SLJP W! ZKHUH &M\DUH WKH VWUXFWXUH FRQVWDQWV IRU 3URRI Lf /HW LS EH DUELWUDU\ WKHQ RQH HDVLO\ ILQGV XVLQJ f WKDW G>P G>Q f§ GOQGOP8JAnOS KROGV 1RZ SLFNLQJ RXW WKH WHUPV GLr18JLf DQG GLQ8JLf LQ 7KHRUHP LLf RQH ILQGV G G D O D O

PAGE 58

6LQFH 8JLf OHDYHV LQYDULDQW RQH FDQ VHW 8JLfLS DQG UHDUUDQJLQJ WKH WHUPV \LHOGV G G e ^f!,IWVO2f@ m>IWVf@` ;Or e 3QDOf:P;D;L`W I D O 1RZ PDNLQJ XVH RI WKH FRPPXWDWLRQ UHODWLRQV >$ ;E@ L L FD; WKLV HTXDWLRQ EHFRPHV S}rPfSOffF?[W O D )LQDOO\ XVLQJ WKH IDFW WKDW WKH RSHUDWRUV ^;r`r IRUP D EDVLV IRU J DQG WKDW I! H LV DUELWUDU\ RQH FRQFOXGHV G ^m>r}ff@ DNLff@` < Srf:f::?: ‘ f W 1RZ FRQWUDFWLQJ ERWK VLGHV RI f ZLWK S MDJOff \LHOGV e ^2UEn If:ff: :ff cf:ff: :ff` << IWrV0:fFY\ Rf 6W ZKHUH IWOIW}fVf@!f9L:f DOSfrmf@$}rf N IF O KDV EHHQ XVHG )LQDOO\ FRQWUDFW ERWK VLGHV ZLWK SBMWPSffSBBQSff WR REWDLQ WKH GHVLUHG UHODWLRQ ^VLELff@OffD}>rff@S}f` Q O ern}m :f O LLf 7KH SURRI RI LLf LV VLPLODU WR WKH SURRI RI Lf LLLf 8VLQJ &RUROODU\ LLLf FDQ EH UHZULWWHQ DV Ga>e9OfOLffO < 8??OfSnOnPf03PfPSnnnOff W L MH O

PAGE 59

7KLV HTXDWLRQ FDQ EH VLPSOLILHG DV IROORZV < 3QM^Off8MK^OfGOP>8KWOfSWEJ^Offf A!}>3PVVf`S??JOff KMW  8a?fOfGA?SMJOff8LnOf` GU^SMJP K 'LIIHUHQWLDWLQJ WKH SURGXFW DQG UHDUUDQJLQJ WKH WHUPV \LHOGV G G^S DP :ff` e 1H[W XVLQJ GLP8MKOf SPVJ^OffFMVQ8QKOf ZKLFK LV SURYHG DORQJ WKH VDPH OLQHV DV 7KHRUHP LLf ZH ILQG G GWP >SQIJOff? aa GOQ>SPA J^Off@ f§ f§ @ 3QA ^J^Off3P S fFMGA MVa ZKLFK LV HTXDWLRQ f DQG WKHUHIRUH HVWDEOLVKHV LLLf ’ 2QH FRXOG DVN LI LW LV UHDOO\ QHFHVVDU\ WR XVH XQERXQGHG V\PPHWULF RSHUDWRUV LQ WKH UHSUHVHQWDWLRQ WKHRU\ RI /LH DOJHEUDV RU VWDWHG GLIIHUHQWO\ FDQ RQH GHYHORS D UHSn UHVHQWDWLRQ WKHRU\ RI /LH DOJHEUDV XVLQJ RQO\ ERXQGHG V\PPHWULF RSHUDWRUV :H FRXOG WKHQ GLVFDUG DOPRVW DOO WKH WHFKQLFDO GLIILFXOWLHV ZH KDYH HQFRXQWHUHG LQ WKLV FKDSWHU 7KLV LQWHUHVWLQJ SUREOHP KDV EHHQ FRQVLGHUHG E\ 'RHEQHU DQG 0HOVKHLPHU >@ ZKR KDYH VKRZQ WKDW 7KHRUHP 'RHEQHU DQG 0HOVKHLPHU >@f $ QRQWULYLDO UHSUHVHQWDWLRQ RI D QRQFRPSDFW /LH DOJHEUD E\ V\PPHWULF RSHUDWRUV FRQWDLQV DW OHDVW RQH XQERXQGHG RSn HUDWRU 6LQFH ZH DUH LQWHUHVWHG LQ TXDQWXP SK\VLFV ZH KDYH WR UHSUHVHQW RXU EDVLF NLQH PDWLFDO YDULDEOHV E\ VHOIDGMRLQW RSHUDWRUV +HQFH ZH KDYH WR FKRRVH D UHSUHVHQWDWLRQ RI WKH EDVLV RI D JLYHQ /LH DOJHEUD E\ V\PPHWULF RSHUDWRUV VDWLVI\LQJ +\SRWKHVLV $f VR WKDW WKH FORVXUHV RI WKHVH RSHUDWRUV DUH VHOIDGMRLQW DQG WKH UHSUHVHQWDWLRQ LV LQWHn JUDEOH WR D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ RI WKH DVVRFLDWHG /LH JURXS 7KHUHIRUH LQ

PAGE 60

OLJKW RI WKH DERYH UHVXOW ZH FDQ QRW DYRLG WKH XVH RI XQERXQGHG V\PPHWULF RSHUDWRUV ZKHQ ZH DUH GHDOLQJ ZLWK QRQFRPSDFW /LH DOJHEUDV DQG /LH JURXSV

PAGE 61

&+$37(5 7+( 5(35(6(17$7,21 ,1'(3(1'(17 3523$*$725 )25 $ *(1(5$/ /,( *5283 &RKHUHQW 6WDWHV IRU *HQHUDO /LH *URXSV /HW 8 EH D IL[HG FRQWLQXRXV XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RI D GGLPHQVLRQDO UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS RQ WKH +LOEHUW VSDFH + /HW !ef + WKHQ WKH IXQFWLRQ J f§! ee!f LV FDOOHG D FRHIILFLHQW RI WKH UHSUHVHQWDWLRQ 8 'HILQLWLRQ $ FRQWLQXRXV XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ 8 LV FDOOHG VTXDUH LQWHJUDEOH LI LW KDV D QRQ]HUR VTXDUH LQWHJUDEOH FRHIILFLHQW LH LI WKHUH H[LVW YHFWRUV Mf e ( + VXFK WKDW 8Je W!f A DQG %\ D JHQHUDO /LH JURXS ZH PHDQ LQ WKH IROORZLQJ D UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK FRQWLQXRXV LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV )RU FRQWLQXRXV LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV RQH FDQ SURYH WKH IROORZLQJ 7KHRUHP 7KHRUHP 'XIOR DQG 0RRUH >@f /HW 8 EH D FRQWLQXRXV LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ RI WKHQ WKHUH H[LVWV D XQLTXH RSHUDWRU LQ + VHOIDGMRLQW SRVLWLYH VHPLLQYDULDQW ZLWK ZHLJKW $aJf DQG VDWLVI\LQJ WKH IROORZLQJ FRQGLWLRQV Lf /HW I! e f + Mf 7KHQ >Ve M!f LV VTXDUH LQWHJUDEOH LI DQG RQO\ LI e f ^.nf

PAGE 62

LLf /HW [ \I f + DQG IIn 7f. f 7KHQ RQH KDV M [8:Ln[nfG ^[[nf.nH.O f )RU WKH SURRI VHH 5HI 7KHRUHP f 5HPDUN &RQGLWLRQ Lf VKRZV WKDW LI D UHSUHVHQWDWLRQ LV VTXDUH LQWHJUDEOH WKHQ WKHUH H[LVWV D GHQVH VHW 6 RI YHFWRUV LQ + VXFK WKDW IRU e f 6 WKH IDFWRU 8JeMff LV VTXDUH LQWHJUDEOH IRU DOO S + 2QH UHIHUV WR FRQGLWLRQ LLf DV WKH RUWKRJRQDOLW\ UHODWLRQV IRU 8 $ UHVXOW VLPLODU WR LLf KDV EHHQ REWDLQHG E\ &DUH\ > 7KHRUHP @ E\ UHDOL]LQJ WKH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQ 8 LQ D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH )RU WKH +HLVHQEHUJ:H\O JURXS WKHVH RWKRJRQDOLW\ UHODWLRQV KDYH ILUVW EHHQ SURYHG E\ 0R\DO >@ 7KH RSHUDWRU LV FDOOHG WKH IRUPDO GHJUHH RI WKH UHSUHVHQWDWLRQ 8 :KHQ LV XQLPRGXODU LV D VFDODU PXOWLSOH RI WKH LGHQWLW\ RSHUDWRU ZKLFK LV WKH XVXDO IRUPDO GHJUHH 2 /HW ;L;G EH DQ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH EDVLV RI WKH /LH DOJHEUD / FRUUHVSRQGLQJ WR E\ V\PPHWULF RSHUDWRUV RQ + VDWLVI\LQJ +\SRWKHVLV $f WKHQ / LV LQWHJUDEOH WR D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ RI RQ + /HW WKHUH H[LVW D SDUDPHWHUL]DWLRQ RI VXFK WKDW G ZKHUH f 4 1RZ OHW 7@ f '$7f WKHQ ZH GHILQH WKH VHW RI FRKHUHQW VWDWHV IRU FRUUHVSRQGn LQJ WR WKH IL[HG FRQWLQXRXV LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ 8JAf DV Lf 9X.nSUL 7_ f '$f DQG __WM__ f ,W IROORZV GLUHFWO\ IURP f WKDW WKHVH VWDWHV JLYH ULVH WR D UHVROXWLRQ RI LGHQWLW\ RI WKH IRUP

PAGE 63

ZKHUH GJOf LV WKH OHIW LQYDULDQW +DDU PHDVXUH RI JLYHQ LQ WKH FKRVHQ SDUDPHWHULn ]DWLRQ E\ G m IO GLf! f N ZKHUH f GHW>$Pr\Lff@_ 5HPDUN ,W IROORZV IURP WKH VWURQJ FRQWLQXLW\ RI 8JA WKDW WKH IDPLO\ RI VWDWHV GHn ILQHG LQ f LV VWURQJO\ FRQWLQXRXV 0RUHRYHU WKHVH VWDWHV JLYH ULVH WR WKH UHVROXWLRQ RI LGHQWLW\ f +HQFH WKH IDPLO\ RI VWDWHV GHILQHG LQ f VDWLVILHV WKH UHTXLUHPHQWV VHW IRUWK LQ VXEVHFWLRQ IRU D IDPLO\ RI VWDWHV WR EH D IDPLO\ RI FRKHUHQW VWDWHV 7KH PDS &Y + f§! /*f GHILQHG IRU DQ\ LS + E\ 0.2 0 02 rf f \LHOGV D UHSUHVHQWDWLRQ RI WKH +LOEHUW VSDFH + E\ ERXQGHG FRQWLQXRXV VTXDUH LQn WHJUDEOH IXQFWLRQV RQ D SURSHU FORVHG VXEVSDFH /*f RI /*f VHH $SSHQGL[ %O 8VLQJ WKH UHVROXWLRQ RI LGHQWLW\ RQH ILQGV f ZKHUH :f 0202f 0.nQYU+PWf.nrUL! DQG .OO8J?LfJ>\f. GHQRWHV WKH FORVXUH RI WKH RSHUDWRU .nA8JPZLA. 2QH FDOOV f WKH UHSURGXFLQJ SURSHUW\ )XUWKHUPRUH DV VKRZQ LQ $SSHQGL[ % WKH NHUQHO Of LV DQ HOHPHQW RI /*f IRU IL[HG f 4 7KHUHIRUH WKH NHUQHO Of LV D UHSURGXFLQJ NHUQHO DQG /*f LV D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH VHH $SSHQGL[ % 2QH HDVLO\ YHULILHV VHH $SSHQGL[ %Of WKDW WKH PDS &U LV DQ LVRPHWULF LVRPRUSKLVP IURP + WR /*f 1RZ OHW WKH PDS $ J $ EH GHILQHG E\ OHIW WUDQVODWLRQ LH .PW!f02f +JJ2f YAHL*f YLfVIfH& f

PAGE 64

,W LV VWUDLJKWIRUZDUG WR VKRZ VHH $SSHQGL[ $f WKDW WKH PDS GHILQHG LQ f LV D FRQWLQXRXV XQLWDU\ UHSUHVHQWDWLRQ RI RQ /*f 7KLV UHSUHVHQWDWLRQ LV FDOOHG WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI /HPPD 7KH LVRPHWULF LVRPRUSKLVP LQWHUWZLQHV WKH UHSUHVHQWDWLRQ 8JAf RQ + ZLWK D VXEUHSUHVHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ $Jcf RQ /*f 3URRI /HW LS + EH DUELWUDU\ WKHQ ZH KDYH .8J^QL3`Of ^UMOf8J^QL3f 8+Q8J^Of.A9L3f $VQASf $Mnf>&ULn@f 6LQFH LS f + ZDV DUELWUDU\ DQG &Y LV ERXQGHG ZH FRQFOXGH WKDW &Uc8JOnf f§ $Snf&A KHQFH &A LQWHUWZLQHV WKH UHSUHVHQWDWLRQ 8 ZLWK D VXEUHSUHVHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ $ RQ /*f ’ 7KHUHIRUH 8 +f LV XQLWDULO\ HTXLYDOHQW WR D VXEUHSUHVHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ $ /*ff /HPPD 7KH XQLWDU\ UHSUHVHQWDWLRQ 8JLf LQWHUWZLQHV WKH RSHUDWRU UHSUHVHQWDn WLRQ RI / RQ + ZLWK WKH UHSUHVHQWDWLRQ RI / E\ ULJKW DQG OHIW LQYDULDQW GLIn IHUHQWLDO RSHUDWRUV RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /*f & /*f ,Q IDFW VHWWLQJ 9M GL GcGf WKH IROORZLQJ UHODWLRQV KROG G Lf /HW[N^L;LOf nASONPJOffLGOPf N OG WKHQ P [NLYKLfXZLS X^Of[NLS YAHG

PAGE 65

G LLf /HW rW9LOf A??PJOffLGLPf N WKHQ P 8JLf;NLS 9A' M FRPPRQ GHQVH LQYDULDQW GRPDLQ IRU WKHVH GLIIHUHQWLDO RSHUDWRUV RQ DQ\ RQH RI WKH /*f & /*f LV JLYHQ E\ WKH FRQWLQXRXV UHSUHVHQWDWLRQ R' LH &A'f 3URR Lf a8J^LfGLr18nJ^Of /HW US EH DUELWUDU\ WKHQ XVLQJ WKH IDFW WKDW LW IROORZV IURP 7KHRUHP LLf WKDW G $IWHU FRQWUDFWLQJ ERWK VLGHV ZLWK S L r1 N JOff RQH ILQGV G 7 SnU XP[NL! N P KHQFH eN^n9LOf8cLOfLS 8VLQJ &RUROODU\ Lf RQH REWDLQV PQ O P OQ N ? G N L 7KHUHIRUH WKH GLIIHUHQWLDO RSHUDWRUV ^erf§]9 f`cW ZLWK FRPPRQ GHQVH LQYDULDQW GRPDLQ IRUP D UHSUHVHQWDWLRQ RI / RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /*f LLf 7KH SURRI RI LLf LV VLPLODU WR SURRI RI Lf ’

PAGE 66

&RUROODU\ 7KH GLIIHUHQWLDO RSHUDWRUV ^IFf§9 Of`N L ^D7L9M `IF Lf DUH HVa VHQWLDOO\ VHOIDGMRLQW RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /*f DQG FDQ EH LGHQWLILHG ZLWK WKH JHQHUDWRUV ^$$7f`M ^3$7f`IF f rI D VXEUHSUHVHQWDWLRQ RI WKH OHIW ULJKWf UHJXODU UHSUHVHQWDWLRQ RI RQ /*f 3URRI /HW LIf WKHQ LW IROORZV IURP /HPPD WKDW IF9cfA=f >&9; NLc!?Of N A A G f 2Q WKH RWKHU KDQG OHW 8JNWf H[SaLW;Nf N OG EH RQHSDUDPHWHU VXEJURXSV RI 7KHQ >&Y;NLS?Of FDQ DOVR EH ZULWWHQ DV >&9; NLI?Of &Y OLP n W!R f 8N: a LW Of [ff 9!f@ ,f§79 &E Wf§\2 LW +PA: Wf§! [W $;NfU!-Of N ‘AX A A G ZKHUH WKH $;Nf Vf§OLP Wf§! $ N : LW N G DUH WKH JHQHUDWRUV RI D VXEUHSUHn VHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI RQ /*f +HQFH RQH FDQ LGHQWLI\ LIF=9f ZLWK $;Nf RQ LH MWr9L=f $$UIFf N m fmmm G! f &OHDUO\ WKH RSHUDWRUV [Nf§L;L Of N G DUH V\PPHWULF VLQFH WKH RSHUDWRUV ;N N G DUH V\PPHWULF RQ + DQG VLQFH &Y LV DQ LVRPHWULF LVRPRUSKLVP IURP + RQWR /*f 7KH HVVHQWLDO VHOIDGMRLQWQHVV RI WKH RSHUDWRUV [Nf§L9L Of N G RQ /*f LV HVWDEOLVKHG DV IROORZV 6LQFH HDFK RI WKH RSHUDWRUV $7 N G KDV D GHQVH VHW F + RI DQDO\WLF YHFWRUV VHH VHFWLRQ ZH KDYH E\ /HPPD LQ 5HI WKDW

PAGE 67

HDFK ;N N G LV VHOIDGMRLQW +HQFH WKH UHVWULFWLRQ RI HDFK ;N N G WR LV HVVHQWLDOO\ VHOIDGMRLQW 6LQFH &A LV DQ LVRPHWULF LVRPRUSKLVP IURP + RQWR /A*f ZH KDYH WKDW WKH FORVXUH RI HDFK [Wf§L9 f N G FRQWDLQV D GHQVH VHW RI DQDO\WLF YHFWRUV QDPHO\ &'f KHQFH LV E\ /HPPD LQ 5HI VHOIDGMRLQW ,Q SDUWLFXODU HDFK [rf§L9 Of N G LV HVVHQWLDOO\ VHOIDGMRLQW RQ 'Y 6LPLODUO\ RQH FDQ SURYH WKDW WKH RSHUDWRUV ^IFL9f`r DUH HVVHQWLDOO\ VHOI DGMRLQW DQG WKDW WKH\ FDQ EH LGHQWLILHG ZLWK WKH JHQHUDWRUV ^3$UIFf`r RI D VXEUHSn UHVHQWDWLRQ RI WKH ULJKW UHJXODU UHSUHVHQWDWLRQ RI RQ /A*f ’ &RUROODU\ 7KH IDPLO\ RI ULJKW LQYDULDQW GLIIHUHQWLDO RSHUDWRUV ^[N>f§L9M Of`N? FRPPXWHV ZLWK WKH IDPLO\ RI OHIW LQYDULDQW GLIIHUHQWLDO RSHUDWRUV =f`e 3URRI /HW DQG M9cf EH DUELWUDU\ WKHQ ZKHUH ZH KDYH XVHG &RUROODU\ LLLf LQ WKH IRXUWK OLQH 7KHUHIRUH >[f§L9_ =f [IIL9W f@ DQG VLQFH [f§]9=f DQG ;ML9cOf ZHUH DUELWUDU\ WKLV HVWDEOLVKHV WKH &RUROODU\ ’

PAGE 68

7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU &RPSDFW /LH *URXSV ,Q WKLV VHFWLRQ ZH IROORZ RXU SUHVHQWDWLRQ LQ 5HI /HW EH D GGLPHQVLRQDO FRQQHFWHG DQG VLPSO\ FRQQHFWHG UHDO FRPSDFW /LH JURXS )RU FRPSDFW /LH JURXSV DOO LUUHGXFLEOH UHSUHVHQWDWLRQV DUH ILQLWHO\ GLPHQVLRQDO FI > 7KHRUHP @f +HQFH OHW XV GHQRWH WKH ILQLWH GLPHQVLRQDO LUUHGXFLEOH UHSUHVHQWDWLRQV RI E\ 8r DQG WKHLU ILQLWH GLPHQVLRQDO UHSUHVHQWDWLRQ VSDFHV E\ +A :H GHQRWH WKH GLPHQVLRQ RI WKH UHSn UHVHQWDWLRQ VSDFH E\ GA 2QH FDOOV GA WKH GHJUHH RI WKH UHSUHVHQWDWLRQ W$ /HW ;L;G EH DQ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH EDVLV RI / E\ ERXQGHG V\PPHWULF RSHUDWRUV RQ +A 7KHQ +\SRWKHVLV $f LV WULYLDOO\ IXOILOOHG IRU WKLV IDPLO\ RI RSHUDWRUV VLQFH DOO YHFWRUV LQ DUH DQDO\WLF YHFWRUV IRU WKHVH RSHUDWRUV KHQFH WKLV UHSUHVHQWDn WLRQ RI WKH /LH DOJHEUD / LV LQWHJUDEOH WR D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ RI RQ +A /HW WKHUH H[LVW D SDUDPHWHUL]DWLRQ RI VXFK WKDW G H[Sf§] $fLf H[Sf§LOG;Gf ZKHUH O f 4 6LQFH LV FRPSDFW WKH SDUDPHWHU VSDFH 4 LV D ERXQGHG VHW WKHUHIRUH DOO LUUHGXFLEOH UHSUHVHQWDWLRQV DUH WULYLDOO\ VTXDUH LQWHJUDEOH 7KH SRVLWLYH VHOIDGMRLQW RSHUDWRU LV JLYHQ E\ GA, KHQFH ZH FDQ FKRRVH DQ\ QRUPDOL]HG YHFWRU DQG WKH FRKHUHQW VWDWHV IRU D FRPSDFW /LH JURXS FRUUHVSRQGLQJ WR D IL[HG LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ EHFRPH VHH HTXDWLRQ f $V ZH KDYH VHHQ LQ FKDSWHU WKH UHVROXWLRQ RI LGHQWLW\ KDV WKH IRUP KHUH GJOf LV JLYHQ E\

PAGE 69

6LQFH DOO RSHUDWRUV $r N OG DUH ERXQGHG ZH KDYH E\ /HPPD IRU DQ\ [S H +A XVLQJ WKH FRQWLQXRXV UHSUHVHQWDWLRQ &Y f§! /*f WKDW rrr" ]f>&A@ >FY[NUL!fLf N L 1RWH WKDW WKLV UHODWLRQ KROGV LQGHSHQGHQWO\ RI UM 6LQFH LV FRPSDFW WKH FHQWHU RI WKH YRQ 1HXPDQQ DOJHEUD $f JHQHUDWHG E\ WKH OHIW UHJXODU UHSUHVHQWDWLRQ $ RI FRQWDLQV D FRPSDFW VHOIDGMRLQW RSHUDWRU ZKRVH HLJHQVSDFHV DUH $LQYDULDQW FI > /HPPD ,9@f +HQFH $ FDQ EH GHFRPSRVHG LQWR D GLUHFW VXP RI LUUHGXFLEOH UHSUHVHQWDWLRQV ,Q IDFW $ LV FRPSOHWHO\ UHGXFLEOH LQWR D GLUHFW VXP RI DOO LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI ZKHUH HDFK 8RFFXUV ZLWK PXOWLSOLFLW\ GA VHH > 7KHRUHP @f LH $ p GFe &f* $ $ ZKHUH GHQRWHV WKH GXDO VSDFH RI * LV WKH VHW RI HTXLYDOHQFH FODVVHV RI DOO FRQn WLQXRXV LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI 'HQRWH E\ 7A$rf WKH VHOIDGMRLQW +DPLOWRQ RSHUDWRU RI D TXDQWXP PHFKDQLn FDO V\VWHP RQ +A 7KHQ IRU WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI WKH VROXWLRQ WR 6FKUGLQJHUfV HTXDWLRQ [SWf H[S>f§LW f§ Wnfn+;Nf@LS^Wnf ZKHUH K LV JLYHQ RQ /8*f E\ 00f .O I IfGJOnf ZKHUH .-OWOfWnf 0O8[SO+WWnP;0Onff >&H[S>f§cL2ZS\02.2 X W Wnf>&0fff:f 8W WnfLUL 8P8Q9f ZKHUH 8W f§ Wnf H[S >L f§ Wnfn+^[N^f§L9L ff@

PAGE 70

,Q WKLV FRQVWUXFWLRQ ZDV DUELWUDU\ KHQFH LW KROGV IRU DQ\ f +A 7KHUHIRUH RQH FDQ FKRRVH DQ\ RUWKRQRUPDO EDVLV 21%f ^ILMLQ DQG ZULWH GRZQ WKH IROORZLQJ JHQHUDOL]HG SURSDJDWRU G .K2WLnf ff mr 2ff@ ZW nfF;FIOBS2f f /HPPD 7KH SURSDJDWRU .Q Wnf JLYHQ LQ f FRUUHFWO\ SURSDJDWHV DOO HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /r*f DVVRFLDWHG ZLWK WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI WKH FRPSDFW /LH JURXS 7KHUHIRUH W00f 9W*+F LH WKH SURSDJDWRU .Q O W O Wnf SURSDJDWHV WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /r*f FRUUHFWO\ ’

PAGE 71

+HQFH ZH KDYH VXFFHHGHG LQ FRQVWUXFWLQJ IRU WKH LUUHGXFLEOH UHSUHVHQWDWLRQ D SURSDJDWRU .K WKDW FRUUHFWO\ SURSDJDWHV HDFK HOHPHQW RI DQ DUELWUDU\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f LH ZH KDYH VXFFHHGHG LQ FRQVWUXFWLQJ D ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU IRU D IL[HG LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI 8VLQJ WKH IDFW WKDW WKH VHW LV DQ 21% RQH FDQ UHZULWH WKH JURXS FKDUDFWHU ;F2f LQ WHUPV RI WKH PDWUL[ HOHPHQWV 'AOf ILW RI DV IROORZV m [GUnPQf e '8Of'8nf mf r7KHUHIRUH .K FDQ EH ZULWWHQ DOWHUQDWLYHO\ DV fN 8W e Af 'AWf f LM ,Q WKLV FRQVWUXFWLRQ WKH XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ eA ZDV DUELWUDU\ KHQFH RQH FDQ LQWURGXFH VXFK D SURSDJDWRU IRU HDFK LQHTXLYDOHQW XQLWDU\ UHSUHVHQn WDWLRQ RI LH RQH FDQ ZULWH GRZQ WKH IROORZLQJ SURSDJDWRU IRU WKH OHIW UHJXODU UHSUHVHQWDWLRQ $JA RI RQ /*f .O O?nf e r+ W If 8W mnf e e GF'fffe" nf F H FH rE L 1RZ LW LV ZHOO NQRZQ IURP WKH 3HWHU:H\O 7KHRUHP WKDW WKH IXQFWLRQV & e LM Ge IRUP D FRPSOHWH RUWKRQRUPDO V\VWHP 216f LQ /*f FI > 7KHRUHP @ 7KH FRPSOHWHQHVV UHODWLRQ RI WKLV 216 LV JLYHQ E\ G G'8Of'8Onf &H*OZKHUH WKH VXP KROGV DV D ZHDN VXP DQG HJ OfJOff LV GHILQHG DV 0 Wnnf /? QV f

PAGE 72

7KHUHIRUH ZH ILQG DV RXU ILQDO UHVXOW .O W Wnf H[S >rm WnfQ[NL9K ff@ 6HJ?OfJOnff f 7KLV SURSDJDWRU ZKLFK LV D WHPSHUHG GLVWULEXWLRQ LV FOHDUO\ LQGHSHQGHQW RI WKH ILGXn FLDO YHFWRU DQG WKH UHSUHVHQWDWLRQ FKRVHQ IRU WKH EDVLF NLQHPDWLFDO YDULDEOHV ^;r`e $ VXIILFLHQWO\ ODUJH VHW RI WHVW IXQFWLRQV IRU WKLV SURSDJDWRU LV JLYHQ E\ &*f WKH VHW RI DOO FRQWLQXRXV IXQFWLRQV RQ +HQFH ZH KDYH VKRZQ WKH ILUVW SDUW RI WKH IROORZLQJ 7KHRUHP 7KHRUHP 7KH SURSDJDWRU .O L n Wnf LQ f LV D SURSDJDWRU IRU WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI WKH FRPSDFW /LH JURXS RQ /*f ZKLFK FRUUHFWO\ SURSDn JDWHV DOO HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f DVVRFLDWHG ZLWK DQ DUELWUDU\ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ 8JA RI WKH FRPSDFW /LH JURXS e f 3URRI 7R SURYH WKH VHFRQG SDUW RI 7KHRUHP OHW DQG f EH DUELWUDU\ WKHQ IRU DQ\ LS7^Of LQ VRPH /*f DVVRFLDWHG ZLWK RQH FOHDUO\ KDV WKDW f &*f +HQFH RQH FDQ ZULWH 7KH VHFRQG HTXDOLW\ KROGV VLQFH WKH HOHPHQWV RI GLIIHUHQW UHSUHVHQWDWLRQ VSDFHV DUH PXWXDOO\ RUWKRJRQDO KHQFH RQO\ WKH AWHUP UHPDLQV ,Q WKH ODVW VWHS /HPPD KDV EHHQ XVHG Â’ +HQFH IRU DQ\ FRPSDFW /LH JURXS ZH KDYH FRQVWUXFWHG D SURSDJDWRU WKDW LV LQGHSHQGHQW RI WKH FKRVHQ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI :H FDOO WKLV SURSDJDWRU D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU :H ZLOO VHH LQ VHFWLRQ WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU FRPSDFW /LH JURXSV FDQ EH JLYHQ WKH IROORZLQJ GGLPHQVLRQDO ODWWLFH SKDVHVSDFH SDWK

PAGE 73

LQWHJUDO UHSUHVHQWDWLRQ VHH 3URSRVLWLRQ RU >@f .L[UWnf ZKHUH O O n*n ‘e 79 [ H[S ? L A>SM f ^OM Mf H:LIFS-L =M =Mff@ M 79 [77UI=@ GOM f M L n DQG f L Lnf$A f 7KH VXP A^S` DSSHDULQJ LQ WKH DERYH H[SUHVVLRQ LV GHILQHG DV ^S` O\LY A A 31 31 f§ << A A 3 3O WKH VXPV DUH RYHU WKH VSHFWUXP RI WKH RSHUDWRU f§9 GHILQHG LQ VHFWLRQ DQG ZKHUH LV WKH DSSURSULDWH QRUPDOL]DWLRQ FRQVWDQW VXFK WKDW _*_ $n 9::f = r ( H[S 3N G !6! QN LNf / N HJ?OfOnff 7KH DUJXPHQWV RI WKH +DPLOWRQLDQ LQ f DUH JLYHQ E\ WKH IROORZLQJ IXQFWLRQV bN3ML =MOL OMf G 3?P^JOMLff 3?P Kff P 3Prrr N @fff` G 5HPDUN 2EVHUYH WKDW WKH ODWWLFH H[SUHVVLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU H[KLELWV WKH FRUUHFW WLPH UHYHUVDO V\PPHWU\ ZKLFK PHDQV WKDW .^OW-?Wnf $OVR QRWH WKDW LQ WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU FRPSDFW /LH JURXSV DQG LWV SDWK LQWHJUDO UHSUHVHQWDWLRQ QR H[SOLFLW XVH LV PDGH RI WKH 216 & f DQG LM F=A LQ /*f ZKRVH H[LVWHQFH LV JXDUDQWHHG E\ WKH 3HWHU:H\O 7KHRUHP EXW PHUHO\ WKH IDFWV WKDW LW H[LVWV DQG LV FRPSOHWH DUH XVHG 0RUHRYHU ZH KDYH PDGH QR DVVXPSWLRQV DERXW WKH QDWXUH RI WKH SK\VLFDO V\VWHPV ZH DUH FRQVLGHULQJ RWKHU WKDQ WKDW LWV +DPLOWRQ RSHUDWRU EH VHOIDGMRLQW 7KHUHIRUH WKH

PAGE 74

SDWK LQWHJUDO UHSUHVHQWDWLRQ f FDQ EH XVHG WR GHVFULEH WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP QRW MXVW WKDW RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI DQ\ FRPSDFW /LH JURXS DQG LW GRHV QRW PDWWHU LI WKH 'M$Of DUH H[SOLFLWO\ NQRZQ RU QRW +HQFH f UHSUHVHQWV D FOHDU LPSURYHPHQW RYHU WKH SDWK LQWHJUDO IRUPXODWLRQV GHVFULELQJ WKH PRWLRQ RI D IUHH SDUWLFOH RQ D JURXS PDQLIROG SUHVHQWHG LQ FKDSWHU 2 ([DPSOH 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU 68f :KLOH WKH 3HWHU:H\O 7KHRUHP DVVXUHV WKDW WKH 216 \Gc'AOf f DQG LM GA H[LVWV DQG LV FRPSOHWH WKH FRQVWUXFWLRQ RI VXFK D VHW LV IUHTXHQWO\ D GLIILFXOW WDVN 7KH IXQFWLRQV \GA'ALOf DUH NQRZQ RQO\ IRU D OLPLWHG FODVV RI JURXSV DQG ZLOO QRZ EH FRQVWUXFWHG IRU 68f ,W WXUQV RXW WKDW WKLV LV DQ H[HUFLVH LQ KDUn PRQLF DQDO\VLV :H ZLOO QRZ H[SOLFLWO\ GHVFULEH WKH PD[LPDO VHW RI FRPPXWLQJ RSHUn DWRUV LQ /68ff :H ZLOO WDNH WKH VHW RI LQILQLWHO\ RIWHQ GLIIHUHQWLDEOH IXQFWLRQV &rr68ff DV WKHLU FRPPRQ GHQVH LQYDULDQW GRPDLQ 6LQFH 68f LV D UDQN RQH JURXS WKHUH H[LVWV RQH WZRVLGHG LQYDULDQW RSHUDWRU &? LQ WKH FHQWHU RI WKH HQYHORSLQJ DOJHEUD = RI 68f 0RUHRYHU VLQFH 68f LV FRPSDFW WKH PD[LPDO VHW RI FRPPXWLQJ ULJKW OHIWf LQYDULDQW GLIIHUHQWLDO RSHUDWRUV LQ WKH ULJKW OHIWf LQYDULDQW HQYHORSLQJ DOn JHEUD =5 =/f FDQ EH DVVRFLDWHG ZLWK WKH &DVLPLU RSHUDWRU RI WKH PD[LPDO VXEJURXS 8Of RI 68f /HW 6L 6 DQG 6 EH DQ DUELWUDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD VXf E\ VHOIDGMRLQW RSHUDWRUV VDWLVI\LQJ WKH FRPPXWDWLRQ UHODWLRQV >6L6M@ L HWMN6N N 6LQFH WKH &DVLPLU RSHUDWRU RI 68f &? -7 6 FRPPXWHV ZLWK DOO WKH JHQHUDWRUV RI WKH /LH DOJHEUD VXf LWV HLJHQVSDFHV DUH LQYDULDQW XQGHU WKH /LH DOJHEUD DQG DOO YHFWRUV RI DQ LUUHGXFLEOH UHSUHVHQWDWLRQ PXVW EH HLJHQYHFWRUV RI &? ZLWK D IL[HG HLJHQn YDOXH :H GHQRWH E\ WKH e OfGLPHQVLRQDO FRPSOH[ HLJHQVSDFH FRUUHVSRQGLQJ WR WKH HLJHQYDOXH fe :H GHQRWH WKH SDLUZLVH QRQHTXLYDOHQW

PAGE 75

LUUHGXFLEOH UHSUHVHQWDWLRQV RI f RQ DQ\ RI WKH E\ e$ 2QH FDQ VKRZ WKDW HYHU\ LUUHGXFLEOH UHSUHVHQWDWLRQ 8 RI f LV HTXLYDOHQW WR RQH RI WKH UHSUHVHQWDWLRQV $ & FI > 7KHRUHP ,,,@f )RU f LQ WKH (XOHU DQJOH SDUDPHWHUL]DWLRQ DQ DUELWUDU\ XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RI 68f LV JLYHQ E\ H[SLS6f H[SL26f H[S]f ZKHUH WKH GRPDLQ RI WKH SDUDPHWHUV I! DQG e LV JLYHQ E\ 7 I! W U I U :LWK WKLV FKRLFH RI SDUDPHWHUL]DWLRQ RI f WKH RSHUDWRUV ^Vr`MW L GHILQHG LQ /HPPD Lf DUH JLYHQ E\ LVLQSGH LFRWFRVA LFRVL!HVF2GA KLGm"LFA If LFRVIfGJ FRW VLQ L VLQ HVF A KLLGHLLGI !ef LG f %\ &RUROODU\ WKHVH RSHUDWRUV FDQ EH LGHQWLILHG ZLWK WKH JHQHUDWRUV RI D VXEUHSUHn VHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI 68f LH EHORQJ WR WKH ULJKW LQYDULDQW /LH DOJHEUD RI 68ff 6LPLODUO\ WKH RSHUDWRUV ^Vr`_ GHILQHG LQ /HPPD LLf DUH JLYHQ E\ ef LVLQA6IO L FVFFRVIG FRWFRVIG^ VALGJALGALGA2 eef LFRVAGJ I HVF VLQ I LFRWVLQeG^ K^LGHLGW!LGLOf=f LGc f DQG FDQ EH LGHQWLILHG ZLWK WKH JHQHUDWRUV RI D VXEUHSUHVHQWDWLRQ RI WKH ULJKW UHJXODU UHSUHVHQWDWLRQ LH EHORQJ WR WKH OHIW LQYDULDQW /LH DOJHEUD RI 68ff )URP f DQG f ZH HDVLO\ LGHQWLI\ WKH &DVLPLU RSHUDWRUV RI 8Of DV %? LGF f

PAGE 76

)RU WKH &DVLPLU RSHUDWRU RI 68f RQH ILQGV &? ]fG@ ]G] WA M ?]Gt Gcf f ] ZKHUH ] FRV DQG WKH LGHQWLW\ VLQG&6H GH KDV EHHQ XVHG 6LQFH &? FRPPXWHV ZLWK DOO HOHPHQWV RI WKH HQYHORSLQJ DOJHEUD & DQG LV LUUHGXFLEOH &? LV D PXOWLSOH RI WKH LGHQWLW\ RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /r68ff DVVRFLDWHG ZLWK WKH LUUHGXFLEOH UHSUHVHQWDWLRQ L LH &O &F OfA/6Lff f /HW ^LSQfQ EH DQ RUWKRQRUPDO EDVLV LQ +A WKHQ ZH FDQ DVVRFLDWH ZLWK HDFK LUUHGXFLEOH UHSUHVHQWDWLRQ ZKHUH e WKH IROORZLQJ PDWUL[ HOHn PHQWV APL 8JHW!fAQfn f§ PL7O f§ & :H VKDOO QRZ GHWHUPLQH WKH PDWUL[ HOHPHQWV 'AQ S ef DV WKH FRPPRQ HLJHQn IXQFWLRQV RI WKH RSHUDWRUV $? %L &? (TXDWLRQV f DQG f VXJJHVW WKDW WKH FRPPRQ HLJHQIXQFWLRQV RI WKH RSHUDWRUV $? %? DQG &? DUH RI WKH IRUP '8H r^f HPr}Lf Se f FRVf 8VLQJ WKLV IRUP RI e!A If ef LQ f RQH ILQGV =fA/=f 3r1f I=7"P A f P7O=f && Of3/=f 7KH IXQFWLRQV 3eQ]f ZKLFK DUH NQRZQ DV WKH :LJQHU IXQFWLRQV DUH JLYHQ E\ Pf§Q P & aPfe Pf &Qfe Qf rf P f§ Q L rf PBWfQ f§ Pf§QPQf S &P f ZKHUH 3er1QfPQA]f DUH -DFREL SRO\QRPLDOV VHH > S @f $OVR REVHUYH WKDW 3IKQ]f f§OfQBP3eQ]f 7KHUHIRUH RQH ILQGV IRU WKH PDWUL[ HOHPHQWV RI WKH LUUHn GXFLEOH UHSUHVHQWDWLRQ 8AJ A A WKH IROORZLQJ '/02 HLPrQLf3/FRVf

PAGE 77

DV SRLQWHG RXW DERYH WKHVH IXQFWLRQV IRUP D FRPSOHWH 216 RQ /68ff 7KH FRPn SOHWHQHVV UHODWLRQ IRU WKLV 216 WDNHV WKH IRUP VHH f ;  FfG8RUf'/ULnIf !UP mr" "nff 4(• PQ & %\ HTXDWLRQ f WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU 68f LV WKHQ IRXQG WR EH U H[S>LI Of V^LAL Of f@ [ VLQ H HnfU PH D ZKHUH O Mfef DQG 9c GJ G GAf %\ (TXDWLRQ WKH UHJXODUL]HG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDn WRU IRU 68f LV JLYHQ E\ MO!MO W!Mf MeM ZKHUH 6OL3MOn OMf OMf 63MOn ,Mf ,Mf K^3M?nOM?OMf VLQ IfML VLQ MfMfRLML FRW ML FRV I!M FRW M FRV f\LL FRV I!MO &6& M &26 IfM &6& GMfMML FRV !M FRV fMfDM FRW ML VLQ !ML FRW M VLQ FMfMfML HVF M VLQ IfML HVF VLQ cfMfn\M 3M $V DQ H[DPSOH OHW XV FDOFXODWH WKLV SURSDJDWRU IRU WKH IROORZLQJ WZR +DPLOWRQ RSHUDWRUV

PAGE 78

cf :6Lc9f69V9_cff -M6M 8f mVLL9_ f V9 2 V9 ff 6I c bf‘ 7KH +DPLOWRQ 2SHUDWRU bVL m} 6f V $V DQQRXQFHG LQ FKDSWHU ZH QRZ UHYLVLW WKH IUHH SDUWLFOH PRYLQJ RQ D FLUFOH DQG SUHVHQW LWV H[DFW SDWK LQWHJUDO WUHDWPHQW 7KH +DPLOWRQLDQ +V? 6 6f 3 GHVFULEHV D IUHH SDUWLFOH PRYLQJ RQ D FLUFOH ZLWK IL[HG D[LV OLNH D EHDG RQ D KRRS :H DQDO\]H WKLV SUREOHP LQ WZR VWHSV )LUVW ZH SURFHHG QDLYHO\ DVVXPLQJ WKDW WKH +DPLOWRQ RSHUDWRU LV VHOIDGMRLQW ,Q SDUWLFXODU ZH DVVXPH WKDW V f§ LGA LV VHOI DGMRLQW RQ />Uff DQG KDV D VSHFWUXP RI WKH IRUP Q Q s 7KHQ LQ D VHFRQG VWHS ZH UHH[DPLQH WKLV DVVXPSWLRQ DQG VKRZ WKDW V f§LG VHOIDGMRLQW ZLWK VSHFWUXP Q LV RQO\ RQH SDUWLFXODU FKRLFH RI XQFRXQWDEO\ PDQ\ :LWK WKLV FKRLFH RI +DPLOWRQ RSHUDWRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU WDNHV WKH IRUP W? n n Wnf KItL t ‘ H[S^L Hcf ^R` r W!Lf ^D$` 79 MLeML WMf 3M @` Q GG-GA-GA A nf nf OLP > 6LQ 9 1!RR Q 79 79 ; ( rL f§ A f§RF H;3 >AA f ^U3M O 79 M 7KLV ODVW LQWHJUDO FDQ EH HYDOXDWHG DV IROORZV OLP 79r 22 79 79 WW 1 frr L f§ 2& M H 79 A@` M L OLP 1f§WRF 7 79 1 f fff H[3::L

PAGE 79

1 1 1 ( AML3M 3Mf ( L L OLP f§ 1f§ 7 ( f f ( H[S ^ 1 A RUAfMO M L O @` Q GK 1 1 >3Q,! f§ 3?An U ,,3L IO3MO M R L L 7 U ( H[S^ f§ f§ 2& A 9 rnf 7 3 +HQFH ZH ILQG IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU 7 VLQ mm Hnf VU If ; ( H[S L L Q f§ A Wnf 7 Q 7KH VXP RYHU Q LV UHODWHG WR WKH -DFREL WKHWD IXQFWLRQ 22 ]Wf < H[SUQ LQ]f 7Of§ f§ 22 7KHUHIRUH ZLWK WKH IROORZLQJ LGHQWLILFDWLRQV ZH FDQ ZULWH WKH UHSUHVHQWDWLRQ LQGHSHQn GHQW SURSDJDWRU LQ FORVHG IRUP /HW W 7 WW, U W!nf WKHQ RXU ILQDO UHVXOW IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU EHFRPHV 7 VLQ nf & Hnf U  7 f N, 7KLV UHVXOW DJUHHV ZLWK WKH RQH IRXQG E\ 6FKXOPDQ >@ H[SHFW IRU DQ DUELWUDU\ SKDVH IDFWRU :H QRZ IROORZ RXU DQDO\VLV LQ 5HI VHFWLRQ ,,,F ,W LV ZHOO NQRZQ WKDW WKH V\PPHWULF RSHUDWRU f§LG RQ /> Uff ZLWK GRPDLQ WW 'LGf ^nLS ?[?] _9n_f RRAf LSLUf` KDV GHILFLHQF\ LQGLFHV f KHQFH LW FDQ EH H[WHQGHG WR D VHOIDGMRLQW RSHUDWRU EXW QRW XQLTXHO\ ,Q IDFW WKHUH H[LVWV D RQHSDUDPHWHU IDPLO\ RI VHOIDGMRLQW H[WHQVLRQV

PAGE 80

ZKLFK ZH GHQRWH E\ f§ LG f§LG ZLWK WKH GRPDLQ 'rMf ^LS I _9!_ :?fGIf RR 9!Wf Hf9f` -R ZKHUH f >f§U Wf VHH > SS @f 1RWH WKDW WKH FKRLFH FRUUHVSRQGV WR WKH FDVH RI SHULRGLF ERXQGDU\ FRQGLWLRQV ZKLFK ZH KDYH DVVXPHG DERYH 7KH VSHFWUXP RI HDFK f§LGA LV VWUDLJKWIRUZDUGO\ IRXQG DV IROORZV OHW $ f 5 WKHQ WKLV LPSOLHV WKDW WKH HLJHQIXQFWLRQV DUH JLYHQ E\ )LWWLQJ WKH ERXQGDU\ FRQGLWLRQV W!Uf HO9f \LHOGV WKH IROORZLQJ VHW RI HLJHQn YDOXHV $Q Q 7 Q f = ^ 7KHUHIRUH WKH VSHFWUXP RI f§ LG LV JLYHQ E\ +HQFH WKH FKRLFH RI SHULRGLF ERXQGDU\ FRQGLWLRQV LV RQO\ RQH RI XQFRXQWDEOH PDQ\ SRVVLELOLWLHV ,I ZH FKRRVH LQVWHDG WKH ERXQGDU\ FRQGLWLRQV LSLUf HW6LSf ZKHUH f >f§7 Uf LV DUELWUDU\ RXU H[SUHVVLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU EHFRPHV

PAGE 81

7KHUHIRUH ZLWK WKH IROORZLQJ LGHQWLILFDWLRQV ZH FDQ ZULWH WKH UHSUHVHQWDWLRQ LQGHSHQn GHQW SURSDJDWRU DJDLQ LQ FORVHG IRUP /HW ]7 n BB I cWf 7 WL, n = Uf WKHQ RXU ILQDO UHVXOW IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ZLWK DUELWUDU\ 6 EHFRPHV WU VLQ 6^ 2nf & R [ H[S If L76n H ?UG!nf 7V U WW !WW, $QOn QO 7KLV UHVXOW H[KLELWV WKH VDPH AGHSHQGHQFH ZKLFK DOVR HQFRPSDVVHV DOO VSLQV 7KH +DPLOWRQ 2SHUDWRU bVL  6f LWI = LLf 2XU VHFRQG H[DPSOH LV WKDW RI WKH +DPLOWRQ RSHUDWRU +VL 6 6f &?^ !ef ZKHUH &? I! ef LV WKH &DVLPLU RSHUDWRU RI 68f JLYHQ LQ f 1RWH WKDW WKH +DPLOWRQ RSHUDWRU V 6f &?^Mf4 LV HVVHQWLDOO\ VHOIDGMRLQW VLQFH &L A LV D V\PPHWULF DQG HOOLSWLF FHQWUDO HOHPHQW RI WKH HQYHORSLQJ DOJHEUD  RI 68f FI > &RUROODU\ 9,@f 7KLV +DPLOWRQLDQ GHVFULEHV WKH PRWLRQ RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI 68f :LWK WKLV FKRLFH RI WKH +DPLOWRQ RSHUDWRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU EHFRPHV ZKHUH 7 W f§ L DQG HTXDWLRQV f DQG f KDYH EHHQ XVHG +HUH ;FWIf GHQRWHV WKH FKDUDFWHU IRU WKH UHSUHVHQWDWLRQ LH LI RQH GHQRWHV WKH (XOHU DQJOHV RI

PAGE 82

WKH HOHPHQW J M! efJn M!n ef E\ ef RQH ILQGV & [FWHL0 f H[S>LP 2@APPFRV f P & 2EVHUYH WKDW WKH FKDUDFWHU RI WKH JURXS FDQ EH H[SUHVVHG DV D IXQFWLRQ RI D VLQJOH YDULDEOH DV IROORZV ,W LV ZHOO NQRZQ WKDW WKH FKDUDFWHU DV D IXQFWLRQ RI WKH JURXS LV FRQVWDQW RQ FRQMXJDF\ FODVVHV LH IRU DQ\ WZR HOHPHQWV J DQG J? RQH KDV ;F??rf [Gf 7KHUHIRUH WR VKRZ WKDW ;Ff rV D IXQFWLRQ RI RQH YDULDEOH LW LV VXIILFLHQW WR VKRZ WKDW WKH FRQMXJDF\ FODVVHV RI 68f FDQ EH ODEHOHG E\ D VLQJOH SDUDPHWHU $V LV ZHOO NQRZQ IURP OLQHDU DOJHEUD DQ\ XQLWDU\ XQLPRGXODU [ PDWUL[ J FDQ EH ZULWWHQ DV ??O ZKHUH J? f 68f DQG LV RI WKH IROORZLQJ GLDJRQDO PDWUL[ Uf H}Uf )XUWKHUPRUH DPRQJ DOO PDWULFHV HTXLYDOHQW WR J WKHUH H[LVWV RQO\ RQH RWKHU GLDJRQDO PDWUL[ n REWDLQHG IURP E\ FRPSOH[ FRQMXJDWLRQ 7KHUHIRUH HDFK FRQMXJDF\ FODVV RI HOHPHQWV RI 68f LV ODEHOHG E\ RQH SDUDPHWHU 7 UDQJLQJ IURP f§U 7 Q DQG ZKHUH 7 DQG f§7 JLYH WKH VDPH FODVV +HQFH WKH FKDUDFWHUV ;FSf FDQ EH UHJDUGHG DV IXQFWLRQV RI RQH YDULDEOH 7 WKDW YDULHV EHWZHHQ DQG Q 7KH JHRPHWULFDO PHDQLQJ RI WKH SDUDPHWHU 7 LV WKDW LW LV HTXDO WR WKH DQJOH RI URWDWLRQ FRUUHVSRQGLQJ WR WKH PDWUL[ J ,Q WHUPV RI WKH (XOHU DQJOHV f DQG 2n nenf 7 LV JLYHQ E\ U DUFFRV>FRV f§ 2nf FRVe f§ nf FRVe f§ enf f§ FRV 2nf VLQ f§ I!nf VLQe f§ enf@ f 2QH FDQ GHULYH DQ H[SOLFLW IRUPXOD IRU ;FSf DV D IXQFWLRQ RI 7 1RWH WKDW WKH PDWUL[ A U Rf IKDW FRUUHVSRQGV WR f 68f LV JLYHQ E\ WKH GLDJRQDO PDWUL[ RI UDQN KDYLQJ GLDJRQDO HOHPHQWV H rfU f§& m & 1RZ OHW J 3L3M ? WKHQ ;F f f§ WU>ARURf@ F RU D f§& VLQ& OfU VLQ U

PAGE 83

+HQFH WKH JURXS FKDUDFWHU FDQ EH ZULWWHQ DV [GJ ? U D Df VLQ& OfU VLQ 7 ZKHUH 7 LV JLYHQ LQ f 7KHUHIRUH RQH ILQGV IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU 1 MLeML IMf f§ H&LML 2M W!M LMf@` 77 GMGIfMGAM LU 9 f H[S A&& VLQ& OfU VLQ 7 7KLV UHVXOW DJUHHV ZLWK WKH RQH IRXQG E\ 6FKXOPDQ >@ ZKLFK ZDV REWDLQHG E\ WKH PHWKRGV PHQWLRQHG LQ FKDSWHU 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU *HQHUDO /LH *URXSV &RQVWUXFWLRQ RI WKH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU 1RZ OHW EH D JHQHUDO /LH JURXS /HW XV DJDLQ GHQRWH E\ 8 DQ DUELWUDU\ IL[HG VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ RI 7KHQ LW LV D GLUHFW FRQVHTXHQFH RI /HPPD Lf WKDW IRU DQ\ LS e IFr9I Of>&0Of >&f; NLS@Of N G KROGV LQGHSHQGHQWO\ RI Uc 7KHUHIRUH WKH LVRPHWULF LVRPRUSKLVP &Y LQWHUWZLQHV WKH UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD / RQ + ZLWK D VXEUHSUHVHQWDWLRQ RI / E\ ULJKW LQYDULDQW HVVHQWLDOO\ VHOIDGMRLQW GLIIHUHQWLDO RSHUDWRUV RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /A*f 7R VXPPDUL]H ZH IRXQG LQ VHFWLRQ WKDW DQ\ VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQ 8 RI LV XQLWDULO\ HTXLYDOHQW WR D VXEUHSUHVHQWDWLRQ RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ $ RQ /r*f )XUWKHUPRUH WKH JHQHUDWRUV RI DUH UHSUHVHQWHG E\ ULJKW LQYDULDQW HVVHQWLDOO\ VHOIDGMRLQW GLIIHUHQWLDO RSHUDWRUV RQ /r*f

PAGE 84

/HW U+f EH D UHSUHVHQWDWLRQ RI WKHQ ZH GHQRWH E\ $WWf WKH YRQ 1HXPDQQ DOJHEUD JHQHUDWHG E\ WKH RSHUDWRUV QJ J H FI $SSHQGL[ $f %\ 3URSRVLWLRQ LQ 5HI WKHUH H[LVWV D SURMHFWLRQ RSHUDWRU 3c LQ WKH FHQWHU RI WKH YRQ 1HXPDQQ DOJHEUD $f VXFK WKDW WKH UHVWULFWLRQ $ RI $ WR WKH FORVHG VXEVSDFH 3M>/*f? RI /^*f LV RI W\SH DQG VXFK WKDW WKH UHVWULFWLRQ RI $ WR WKH RUWKRJRQDO FRPSOHPHQW RI 3M>/*f? KDV QR W\SH SDUW 6LQFH LV VHSDUDEOH DQG ORFDOO\ FRPSDFW WKHUH H[LVWV E\ 7KHRUHP LQ 5HI D VWDQGDUG %RUHO PHDVXUH Y RQ WKH VHW RI DOO LQHTXLYDOHQW LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI DQG D LPPHDVXUDEOH ILHOG RI XQLWDU\ UHSUHVHQWDWLRQV RI VXFK WKDW WKH W\SH SDUW RI $ $ FDQ EH GHFRPSRVHG LQWR D GLUHFW LQWHJUDO $M > 8p,GY^&f -J ZKHUH W$ p A LV D UHSUHVHQWDWLRQ RI [ RQ p +A 'HQRWH E\ n:$nMWf WKH HVVHQWLDOO\ VHOIDGMRLQW +DPLOWRQ RSHUDWRU RI D TXDQWXP V\VWHP RQ +A 7KHQ WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI WKH VROXWLRQ WR 6FKUGLQJHUfV HTXDWLRQ LSWf H[S>]I WDNHV RQ /*f WKH IROORZLQJ IRUP rf .9W OnWnf: WnfGJ&f ZKHUH .U^O L Wnf W"f H[S>LL Wnf+; Nf@7@Onff >&UWH[S>LWWnfQ;N0OnffOf 8WWnf>&Y 9OnffOf 8W!f7K.:8U[PQ.:7Lf 8^W f ZKHUH 8^W Wf H[S>] Wnf:[Nf§9ff@ DQG .O8GHQRWHV WKH FORVXUH RI WKH RSHUDWRU .8JPfJLnf.

PAGE 85

1RWH WKDW IRU QRQFRPSDFW /LH JURXSV LW LV QRW WUXH WKDW HYHU\ V\PPHWULF +DPLOWRQ RSHUDWRU LV DOVR HVVHQWLDOO\ VHOIDGMRLQW DV ZDV WKH FDVH IRU FRPSDFW /LH JURXSV 7R LOOXVWUDWH WKLV LPSRUWDQW IDFW ZH FRQVLGHU WKH IROORZLQJ WZR H[DPSOHV ([DPSOH /HW EH WKH QRQFRPSDFW WZR SDUDPHWHU JURXS RI WUDQVIRUPDWLRQV [n SaO[ f§ T S RR f§RR T RR RI WKH UHDO OLQH 5 DQG OHW + /5f ZKHUH ,5 RRf $Q LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI RQ + LV JLYHQ E\ WKH IRUPXOD 8V0Pf SHn9SnLf f + 7KH JHQHUDWRUV RI WKH RQHSDUDPHWHU XQLWDU\ VXEJURXSV DUH JLYHQ E\ 8^;Lf N 9[f ONs sNf :H FKRRVH WKH VHW 6@5f DV WKH FRPPRQ GHQVH LQYDULDQW GRPDLQ IRU WKHVH RSHUDWRUV $V RXU ILUVW H[DPSOH ZH FRQVLGHU WKH RSHUDWRU 8^;? ;f NU &OHDUO\ WKH RSHUDWRU ;M LV V\PPHWULF 7R VKRZ WKDW M LV HVVHQWLDOO\ VHOIDGMRLQW LW LV QHFHVVDU\ DQG VXIILFLHQW WR VKRZ WKDW WKH NHUQHO RI WKH RSHUDWRU 7fr LO NHU7Mr LOf FRQVLVWV RQO\ RI WKH ]HUR YHFWRU LH NHU;Mr I LOf f§ ^` ,Q RWKHU ZRUGV ZH KDYH WR VKRZ WKDW WKH HTXDWLRQ 7@ sLIfs^Nf KDV QR VROXWLRQV LQ + RWKHU WKDQ W!sNf 2QH ILQGV WKH IROORZLQJ VROXWLRQ IRU WKH DERYH HTXDWLRQ

PAGE 86

%RWK RI WKHVH IXQFWLRQV DUH QRW LQ + VLQFH WKH\ DUH QRW VTXDUH LQWHJUDEOH 7KH IXQFWLRQ ?MfNf? GLYHUJHV DW LQILQLW\ DQG WKH IXQFWLRQ _!B$f_ GLYHUJHV DW WKH RULJLQ 7KHUHIRUH ZH FRQFOXGH WKDW 7? LV HVVHQWLDOO\ VHOIDGMRLQW $V RXU VHFRQG H[DPSOH ZH FRQVLGHU WKH RSHUDWRU 7KLV RSHUDWRU LV FOHDUO\ V\PPHWULF DQG RQH GHWHUPLQHV WKH IROORZLQJ VROXWLRQV IRU WKH HTXDWLRQ 7rsAf sLI!sNf 3Nf IFH[S f 0r IFfH[Sf &OHDUO\ cfNf LV QRW LQWHJUDEOH VLQFH LW KDV D QRQUHPRYDEOH VLQJXODULW\ DW WKH RULJLQ KRZHYHU !^Nf LV VTXDUH LQWHJUDEOH DQG KHQFH EHORQJV WR + 7KHUHIRUH HYHQ WKRXJK WKH RSHUDWRU 7 LV V\PPHWULF LW LV QRW HVVHQWLDOO\ VHOIDGMRLQW DQG FDQ DOVR QRW EH H[WHQGHG WR D VHOIDGMRLQW RSHUDWRU VLQFH LW KDV GHILFLHQF\ LQGLFHV f 2 :H QRZ SURFHHG ZLWK RXU FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDn JDWRU /HW D 3 e 7!*f WKHQ SXW 8Df DJOff8PGJ,f DrJOff $JaOffDJaOff DQG GHILQH WKH PDS 9*f [ 9*f D"f Dr ( 9*f DV IROORZV

PAGE 87

:LWK WKHVH GHILQLWLRQV ZH ILQG WKDW U@.n8DfrSf.nULf 1RWH WKDW .AD 3f LV D ELOLQHDU VHSDUDWHO\ FRQWLQXRXV IRUP RQ 9>*f [ 7!*f :H FDOO WKH ELOLQHDU VHSDUDWHO\ FRQWLQXRXV IRUPV RQ 9>*f [ 9*f NHUQHOV RQ $OVR REVHUYH WKDW .YD3f LV D OHIW LQYDULDQW NHUQHO WKDW LV .Y^/JD /JSf .YD f IRU HYHU\ S * D 9*f 7KHUHIRUH ZH FDQ ZULWH f DV .YDWSWnf 8Wf ,Q WKH DERYH FRQVWUXFWLRQ WM '.f ZDV DUELWUDU\ IXUWKHUPRUH DV VKRZQ HOVHn ZKHUH > &RUROODU\ @ IRU D 9^*f WKH RSHUDWRU .O8Df.A LV WUDFH FODVV 7KHUHIRUH ZH FDQ FKRRVH DQ\ 216 ^SM`MHL1 LQ '&f DQG ZULWH 22 .KR "f ( .r D f r +f.Af L 1RWH WKDW W&QD 3f LV D OHIW LQYDULDQW NHUQHO RQ VLQFH HDFK D 3f LV D OHIW LQYDULDQW NHUQHO RQ 7KHUHIRUH E\ 3URSRVLWLRQ 9, LQ 5HI WKHUH H[LVWV D XQLTXH GLVWULEXWLRQ 6 LQ 9n^*f VXFK WKDW &KFL 3f 6Dr 3f ,Q IDFW ZH VHH WKDW 6^J?OfJnff WY>.n8J +LfJLnf.@ 7KHUHIRUH ZH ILQG WKH IROORZLQJ SURSDJDWRU ZKLFK LV DQ HOHPHQW RI 9n*f .+Or Wnf 8W WnfW7>.n8J+OfJ^Q.n` f

PAGE 88

} 5HPDUN 7KLV SURSDJDWRU LV FOHDUO\ LQGHSHQGHQW RI WKH ILGXFLDO YHFWRU WKDW IL[HV D FRKHUHQW VWDWH UHSUHVHQWDWLRQ +RZHYHU WKLV SURSDJDWRU LV LQ JHQHUDO QR ORQJHU D FRQWLQXRXV IXQFWLRQ EXW D OLQHDU IXQFWLRQDO DFWLQJ RQ 9*f :H ZLOO VHH EHORZ WKDW WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH OLH LQ WKH VHW RI WHVW IXQFWLRQV IRU WKLV SURSDJDWRU 2 /HPPD 7KH SURSDJDWRU .Q^OW?9 If JLYHQ LQ f FRUUHFWO\ SURSDJDWHV DOO HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /A*f DVVRFLDWHG ZLWK WKH LUUHn GXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ 8JJf RI WKH JHQHUDO /LH JURXS 3URRI /HW '$nf EH DUELWUDU\ WKHQ IRU LIfYOnWnf /*f RQH FDQ ZULWH ZKHUH WKH IRXUWK HTXDOLW\ KROGV E\ 7KHRUHP 7KHUHIRUH 9 H '.On? LH WKH SURSDJDWRU SURSDJDWHV WKH HOHPHQWV RI DQ\ /A*f FRUUHFWO\ Â’ ,Q WKH DERYH FRQVWUXFWLRQ WKH XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ 8Jcf ZDV DUELn WUDU\ KHQFH ZH FDQ LQWURGXFH VXFK D SURSDJDWRU IRU HDFK LQHTXLYDOHQW XQLWDU\ UHSUHn VHQWDWLRQ RI %\ &RUROODU\ LQ 5HI WKHUH H[LWV D SRVLWLYH FUILQLWH VWDQGDUG %RUHO PHDVXUH X RQ D APHDVXUDEOH GHFRPSRVLWLRQ RI $ DQG D PHDVXUDEOH ILHOG RI QRQ]HUR SRVLWLYH VHOIDGMRLQW RSHUDWRUV VXFK WKDW LV

PAGE 89

UU D VHPLLQYDULDQW RSHUDWRU RI ZHLJKW $ J f LQ IRU ]DOPRVW DOO e * VXFK WKDW IRU DIH3'*f` H^\r r "f W[>.On8A^Dr r Sf.OFfGY4 F f LV ZHOO GHILQHG VHH $SSHQGL[ % +HUH 6ƒ6 PJOnffDJOffJOnffGJOfGJOnf DQG 6-JAII\JIOnff LV JLYHQ LQ WKH FKRVHQ SDUDPHWHUL]DWLRQ E\ -JnPJL2f G LHf /L ^ON ONf +HQFH ZH FDQ ZULWH GRZQ WKH IROORZLQJ SURSDJDWRU IRU $ RI RQ /*f .DW@SWnf .QUFLWSWnfGX&f 8WWnf .\O$RO IIfGY^&f 8W Wnf WU>.cPDr r f.c`GY 8W f§ Wnf6HDr r f 7KHUHIRUH ZH ILQG WKH IROORZLQJ SURSDJDWRU IRU WKH W\SH SDUW RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ $M H[S>aL^W Wnf8^[NL9KOff@H^J OfJOnff f 5HPDUN 2EVHUYH WKDW WKLV SURSDJDWRU LV FOHDUO\ LQGHSHQGHQW RI WKH ILGXFLDO YHFn WRU DQG WKH LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ RQH KDV FKRVHQ IRU $ VXIILFLHQWO\ ODUJH VHW RI WHVW IXQFWLRQV IRU WKLV SURSDJDWRU LV JLYHQ E\ &*f &?/*f ZKHUH &*f LV WKH VHW RI DOO FRQWLQXRXV IXQFWLRQV RQ +HQFH WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /*f DUH DOORZHG WHVW IXQFWLRQV IRU WKH SURSDJDWRU JLYHQ E\ f DQG WKHUHIRUH IRU WKH SURSDJDWRU JLYHQ E\ f 7KHUHIRUH ZH KDYH VKRZQ WKH ILUVW SDUW RI WKH IROORZLQJ 7KHRUHP

PAGE 90

7KHRUHP 7KH SURSDJDWRU .OW@OnWnf LQ f LV D SURSDJDWRU IRU WKH W\SH SDUW RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI WKH JHQHUDO /LH JURXS ZKLFK FRUUHFWO\ SURSn DJDWHV DOO HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /A*f DVVRFLDWHG ZLWK DQ DUELWUDU\ LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQ RI * 3URRI 7R SURYH WKH VHFRQG SDUW RI 7KHRUHP OHW DQG UMA '^.Af EH DUELWUDU\ )RU DQ\ /? *f DVVRFLDWHG ZLWK 8Q ZH FDQ ZULWH >&9, H[S>LL Wnf+^;Nf@[SnWnf@Of 7KHUHIRUH \8f IRU DOO WfT! 'ƒAf DQG DQ\ &n e LH WKLV SURSDJDWRU SURSDJDWHV DOO HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH *f DVVRFLDWHG ZLWK DQ DUELWUDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ FRUUHFWO\ ’ +HQFH ZH KDYH VXFFHHGHG LQ FRQVWUXFWLQJ D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQHUDO /LH JURXS 3DWK ,QWHJUDO )RUPXODWLRQ RI WKH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU )URP f LW LV HDVLO\ VHHQ WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LV D ZHDN VROXWLRQ WR 6FKURGLQJHUfV HTXDWLRQ LH LGW.O W Wnf mMW9 f [GL9K Off.^O W? On Wnf f 7DNLQJ LQ f WKH OLPLW W Wn \LHOGV WKH IROORZLQJ LQLWLDO YDOXH SUREOHP LGW.OW OnWnf IWL+9=f[GL9AffWI:n! OLP .^ W Wnf 6HJ?OfJOnff n f

PAGE 91

5HPDUN 2EVHUYH WKDW WKH FRKHUHQW VWDWH SURSDJDWRU JLYHQ LQ f LV DOVR D ZHDN VROXWLRQ WR WKH 6FKURGLQJHU HTXDWLRQ f +RZHYHU LW VDWLVILHV WKH LQLWLDO YDOXH SUREOHP OLP .YOW? efnf f 7KHUHIRUH ZH FDQ ZULWH LGW.^O Wn Wnf WWID+9 f [GL9K Off.O W 9 Wnf f ZKHUH GHQRWHV HLWKHU .Y RU 1RWH WKDW WKH LQLWLDO FRQGLWLRQV LH HLWKHU f RU f GHWHUPLQH ZKLFK IXQFWLRQ LV XQGHU FRQVLGHUDWLRQ 2 :H QRZ LQWHUSUHW WKH 6FKURGLQJHU HTXDWLRQ f ZLWK WKH LQLWLDO FRQGLWLRQ f DV D 6FKURGLQJHU HTXDWLRQ DSSURSULDWH WR G VHSDUDWH DQG LQGHSHQGHQW FDQRQLFDO GHn JUHHV RI IUHHGRP +HQFH =G DUH YLHZHG DV G fFRRUGLQDWHVf DQG ZH DUH ORRNLQJ DW WKH LUUHGXFLEOH 6FKURGLQJHU UHSUHVHQWDWLRQ RI D VSHFLDO FODVV RI GYDULDEOH +DPLOn WRQ RSHUDWRUV RQHV ZKHUH WKH FODVVLFDO +DPLOWRQLDQ LV UHVWULFWHG WR KDYH WKH IRUP =LLS f GSff LQVWHDG RI WKH PRVW JHQHUDO IRUP =SL SG O OGf ,Q IDFW WKH GLIIHUHQWLDO RSHUDWRUV JLYHQ LQ /HPPD Lf DUH HOHPHQWV RI WKH ULJKW LQYDULDQW HQYHORSLQJ DOJHEUD RI WKH GGLPHQVLRQDO 6FKURGLQJHU UHSUHVHQWDWLRQ RQ /*f %DVHG RQ WKLV LQWHUSUHWDWLRQ RQH FDQ JLYH WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU WKH IROn ORZLQJ VWDQGDUG IRUPDO SKDVHVSDFH SDWK LQWHJUDO IRUPXODWLRQ LQ ZKLFK WKH LQWHJUDQG DVVXPHV WKH IRUP DSSURSULDWH WR FRQWLQXRXV DQG GLIIHUHQWLDEOH SDWKV ZKHUH fSLffSGf GHQRWH fPRPHQWDf FRQMXJDWH WR WKH fFRRUGLQDWHVf 1RWH WKDW ZH KDYH XVHG WKH VSHFLDO IRUP RI +DPLOWRQLDQ DQG WKDW LWV DUJXPHQWV DUH

PAGE 92

3DJH 0LVVLQJ RU 8QDYDLODEOH

PAGE 93

QRUPDOL]HG VXFK WKDW ZKHUH :N0 Y\N ,I WKH VSHFWUXP RI 3&N LV GLVFUHWH Snf§ SnNf ,I WKH VSHFWUXP RI 3&N LV FRQWLQXRXV DQG JLYLQJ ULVH WR WKH UHVROXWLRQV RI LGHQWLW\ P?GJOf VSHFef[[VSHFeGf ?SfS?GS VSHF3eL f[[VSHF3eGf ZKHUH ?Of = =UIf DQG Sf ?SL3Gf 5HPDUN ,I WKH VSHFWUXP RI 3FW LV GLVFUHWH WKHQ GSN GHQRWHV D SXUH SRLQW PHDVXUH VXFK WKDW WKH LQWHJUDWLRQ RYHU SN UHGXFHV WR VXPPDWLRQ RYHU VSHF3&Nf 2 2Q /*f WKHVH RSHUDWRUV FDQ EH UHSUHVHQWHG DV ZKHUH 'V 6*f WKH VHW RI IXQFWLRQV RI UDSLG GHFUHDVH RQ LV FKRVHQ DV WKH FRPPRQ GHQVH LQYDULDQW GRPDLQ RI WKHVH RSHUDWRUV +HUH UDf LV GHILQHG DV UD=f D OQf DQG ZKHUH If LV JLYHQ LQ f ,W LV HDVLO\ VHHQ WKDW WKHVH RSHUDWRUV VDWLVI\ WKH &&5 DUH V\PPHWULF RQ /*f DQG WKDW f§9 KDV WKH IROORZLQJ JHQHUDOL]HG HLJHQIXQFWLRQV O?Sf fH[S ZKHUH 9 L f :H QRUPDOL]H WKHVH IXQFWLRQV VR WKDW -H[S>LASN^ON a OnNf@GSL GSG HVBfVf! ZKHUH GHQRWHV WKH QRUPDOL]DWLRQ FRQVWDQW 7KHUHIRUH ZH ILQG IRU WKH QRUPDOL]HG JHQHUDOL]HG HLJHQIXQFWLRQV RI f§9 f

PAGE 94

:H FDOO f D GGLPHQVLRQDO 6FKURGLQJHU UHSUHVHQWDWLRQ RQ /*f 0RUHRYHU WKH GLIIHUHQWLDO RSHUDWRUV ^[NL9L Of`N FDQ EH ZULWWHQ DV IROORZV /HPPD 8VLQJ WKH GLIIHUHQWLDO RSHUDWRUV ^f§`D L ZHQ bf WKH ULJKW LQYDULDQW GLIIHUHQWLDO RSHUDWRUV ^[NL9L f`G GHILQHG LQ /HPPD Lf FDQ EH ZULWWHQ DV ( KSnUZ0LGL0L6Lf P O ZKHUH 9M GSGcGf 3URRI 6LQFH LGS LGLr ]fUr=f D OG WKH GLIIHUHQWLDO RSHUDWRUV ^[Nf§9 =f`G EHFRPH DIWHU VXEVWLWXWLRQ RI WKLV H[SUHVVLRQ [NLGS ]fU=f LGS Lf7GOfO? OGf ( UPZ@ P O ( LVEnUIV:.L6Lf !nf}ff+f@ _SBrffIIfUfLf P 8VLQJ >SrP"f! LGLP@ LGLPS r1JOff DQG WKH GHILQLWLRQ RI 7POf \LHOGV [NLGS ]fUf LGWm IfUGf ] LGf P LGLPf P r "rff@ G ( Dfan P N PPf 6LQFH WKH RSHUDWRUV [Nf§L9LOf DUH HVVHQWLDOO\ VHOIDGMRLQW RQ DQ\ UHSURGXFLQJ NHUQHO +LOEHUWVSDFH /O*f FI &RUROODU\ f DQG VLQFH f A RQH FRQFOXGHV WKDW ‹ r ; f f f G P DQG WKHUHIRUH

PAGE 95

5HPDUN 7KLV /HPPD VKRZV WKDW WKH GLIIHUHQWLDO RSHUDWRUV ^[rf§]9M f`e DUH HOHPHQWV RI WKH ULJKW LQYDULDQW HQYHORSLQJ DOJHEUD RI WKH GGLPHQVLRQDO 6FKURGLQJHU UHSUHVHQWDWLRQ RQ /^*f 2 $GDSWLQJ PHWKRGV XVHG LQ 5HIV DQG ZH FDQ JLYH WKH UHSUHVHQWDWLRQ LQGHn SHQGHQW SURSDJDWRU WKH IROORZLQJ UHJXODUL]HG ODWWLFH SUHVFULSWLRQ 3URSRVLWLRQ /HW +, I H+f EH D VHTXHQFH RI UHJXODUL]HG +DPLOWRQ RSHUDWRUV RQ + ZKHUH H W Wnf1 f 7KHQ SURYLGHG WKH LQGLFDWHG LQWHJUDOV H[LVW VHH EHORZf WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LQ f FDQ EH JLYHQ WKH IROORZLQJ GGLPHQVLRQDO ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ .UWU`Wnf OLP ?O^OfO^Onf 1 [ H[S IAEM f ML Kf a M R 1 1 ; Q L M GS? GSDM? .aG f ZKHUH OAL O O R Of DQG WKH DUJXPHQWV RI WKH +DPLOWRQLDQ DUH JLYHQ E\ WKH IROORZLQJ IXQFWLRQV G S?PJOMOff SLP bN^3ML OMIOM OMf N Kff P N -O M A G 5HPDUN ,I SDUW RI WKH SDUDPHWHU VSDFH 4 LV FRPSDFW WKHQ ZH GHQRWH E\ + WKH FODVV RI PRPHQWD FRQMXJDWH WR WKH UHVWULFWHG UDQJH RU SHULRGLF fFRRUGLQDWHVf ,I 3N f + WKHQ GSN GHQRWHV D SXUH SRLQW PHDVXUH VXFK WKDW WKH LQWHJUDWLRQ RYHU Sr!L UHGXFHV WR VXPPDWLRQ RYHU WKH GLVFUHWH VSHFWUXP RI 3&N )RU WKH FDVH RI D FRPSDFW SDUDPHWHU VSDFH 4 f UHGXFHV WR f 2 3URRI 6LQFH WKH +DPLOWRQ RSHUDWRU + LV LQ JHQHUDO DQ XQERXQGHG RSHUDWRU ZH LQWURGXFH WKH IROORZLQJ VHTXHQFH RI UHJXODUL]HG +DPLOWRQ RSHUDWRUV RQ + + + f

PAGE 96

7KHQ LW LV VWUDLJKWIRUZDUG WR VKRZ E\ XVLQJ WKH 6SHFWUDO 7KHRUHP DQG WKH 0RQRWRQH &RQYHUJHQFH 7KHRUHP WKDW IRU DOO LS 'bf F + RQH KDV Vf§OLP 7V + !R DQG WKDW RQ DOO RI + RQH KDV Vf§OLP >, f§ LHn+W@1 H[S>f§LW f§ WnMn+@ 122 ZKHUH H W f§ Wnf1 f 1RZ LQ RUGHU WR REWDLQ WKH ODWWLFH SKDVHVSDFH SDWK LQWHJUDO LQ f RQH FDQ SURFHHG HOV IROORZV /HW ^SMEH DQ DUELWUDU\ 216 LQ &+ WKHQ ZKHUH O \YL On OR DQG f ff GHQRWHV WKH JHQHUDOL]HG LQQHU SURGXFW 1RWH WKDW WKH WKLUG OLQH KROGV WUXH VLQFH HDFK S JLYHV ULVH WR D OLQHDU IXQFWLRQDO DFWLQJ RQ LQ WKH IROORZLQJ PDQQHU /LSf S?LSf SLSf IRU DOO LS +HQFH RQH KDV WKDW SN?H[S>f§LW f§ Wnf+@?SMf /AH[S+f+@I!Mf SNH[S>L^WWnMQW\Mf 7KH IRXUWK OLQH IROORZV IURP WKH IDFW WKDW &+ DQG WKDW WKH DSSUR[LPDWLRQ ZH DUH XVLQJ KROGV IRU DOO HOHPHQWV RI + VHH DERYHf 7KDW ZH FDQ LQWHUFKDQJH WKH OLPLW ZLWK WKH LQILQLWH VXP DW WKH WKLUG VWHS DERYH IROORZV IURP 0RRUHfV ,QWHUFKDQJH RI

PAGE 97

/LPLWV 7KHRUHP VHH > /HPPD @f +HQFH ZH ILQG WKH IROORZLQJ H[SUHVVLRQ IRU f 7KHUHIRUH ZH KDYH WR HYDOXDWH ML_>O f§ LHn+F@?OMf 7KLV FDQ EH GRQH DV IROORZV ZKHUH G BL UUL ?? BL P bN^3MOL OMOL OMf f§ A S r SALff S N Eff P 3PMO} A G 6XEVWLWXWLQJ WKH ULJKW KDQG VLGH RI f LQWR WKH DERYH H[SUHVVLRQ \LHOGV OP?O LW?OMf 9W8K0, f§ Hr3!WO AO f§ f LH8L[NSM EX Eff@G3M[n f 1RZ LQVHUWLQJ f LQWR f \LHOGV 9LLKLnf OLP 12& ZOOIH a m.IFSML?EL!Eff? M 1 1 ; (. G GOM M L M GSLMO ‘ ‘ GSM .aG (TXDWLRQ f UHSUHVHQWV D YDOLG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ RI WKH SURSDJDWRU .OW@OnWnf 2QH FDQ QRZ LQWHUSUHW WKH WHUP f§ LW8ALNf DV WKH ILUVW RUGHU DSSUR[LPDWLRQ RI H[S?f§LF+W^[Nf? IRU VPDOO H +HQFH SURYLGHG WKH LQGLFDWHG LQWHJUDOV RU VXPV DV QHFHVVDU\f H[LVW RQH PD\ UHSODFH f E\ WKH PRUH VXJJHVWLYH

PAGE 98

H[SUHVVLRQ f§ OLP ?fnf .a!RF 1 [ H[S AEf ^OML a OMf a W:ƒ=N3ML?OMLOMff@ M 1 1 [ Q f f f Q L L  G3OO f GS O .aG ZKLFK LV WKH GHVLUHG H[SUHVVLRQ ’ 5HPDUN 2EVHUYH WKDW HYHQ WKRXJK WKH JURXS PDQLIROG LV D FXUYHG PDQLIROG WKH UHJXODUL]HG ODWWLFH H[SUHVVLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU VDYH IRU WKH SUHIDFWRU O?fnf KDV WKH FRQYHQWLRQDO IRUP RI D ODWWLFH SKDVHVSDFH SDWK LQWHJUDO RQ D GGLPHQVLRQDO IODW PDQLIROG $OVR QRWH WKDW WKH ODWWLFH H[SUHVVLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU H[KLELWV WKH FRUUHFW WLPH UHYHUVDO V\PPHWU\ )XUWKHUPRUH ZH KDYH PDGH QR DVVXPSWLRQV DERXW WKH QDWXUH RI WKH SK\VLFDO V\VWHPV ZH DUH FRQVLGHULQJ RWKHU WKDQ WKDW WKHLU +DPLOWRQ RSHUDWRUV EH HVVHQWLDOO\ VHOIDGMRLQW +HQFH RQH FDQ XVH f LQ SULQFLSOH WR GHVFULEH WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP QRW MXVW WKDW RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI D JHQHUDO /LH JURXS ,Q DGGLWLRQ WKHUH DUH QR K FRUUHFWLRQV SUHVHQW LQ WKH /DJUDQJLDQ 7KHUHIRUH ZH KDYH DUULYHG DW DQ H[WUHPHO\ QDWXUDO SDWK LQWHJUDO IRUPXODWLRQ IRU WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP RQ WKH JURXS PDQLIROG RI D JHQHUDO /LH JURXS WKDW LV Df PRUH JHQHUDO WKDQ Ef H[DFW DQG Ff IUHH IURP WKH OLPLWDWLRQV SUHVHQW LQ WKH SDWK LQWHJUDO IRUPXODWLRQV IRU WKH PRWLRQ RI D IUHH SK\VLFDO V\VWHP RQ WKH JURXS PDQLIROG RI D XQLPRGXODU JHQHUDO JURXS GLVFXVVHG LQ FKDSWHU 2 ([DPSOH $ 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU IRU WKH $IILQH *URXS :H QRZ LQWURGXFH D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS 7KH DIILQH JURXS LV WKH JURXS RI OLQHDU WUDQVIRUPDWLRQV ZLWKRXW UHIOHFWLRQV RQ WKH UHDO OLQH -5 % [ f§! SaO[ f§ T ZKHUH S RR DQG f§RR T RR 7KLV JURXS KDV EHHQ XVHG E\ .ODXGHU >@ IRU WKH FRKHUHQW VWDWH SDWK LQWHJUDO TXDQWL]DWLRQ RI

PAGE 99

RQHGLPHQVLRQDO V\VWHPV IRU ZKLFK WKH FDQRQLFDO PRPHQWXP S LV UHVWULFWHG WR EH SRVLWLYH IRU DOO WLPHV )RU IXUWKHU DSSOLFDWLRQV RI WKH DIILQH JURXS LQ TXDQWXP SK\VLFV WKH UHDGHU LV UHIHUUHG WR 5HI DQG UHIHUHQFHV WKHUH LQ 7KH DIILQH JURXS LV DOVR DQ H[DPSOH RI D ORFDOO\ FRPSDFW QRQXQLPRGXODU /LH JURXS LWV PRGXODU IXQFWLRQ LQ WKH DGRSWHG SDUDPHWHUL]DWLRQ LV JLYHQ E\ $SS Tff SB DQG LWV OHIW LQYDULDQW +DDU PHDVXUH LV JLYHQ E\ GJSTf GSGT $IILQH &RKHUHQW 6WDWHV /HW XV GHQRWH E\ $nL DQG ; D UHSUHVHQWDWLRQ RI WKH EDVLV RI WKH /LH DOJHEUD DVVRFLDWHG ZLWK WKH DIILQH JURXS E\ VHOIDGMRLQW RSHUDWRUV ZLWK FRPPRQ GHQVH LQYDULDQW GRPDLQ RQ VRPH +LOEHUW VSDFH + 6LQFH ;? DQG ; DUH D UHSUHVHQWDWLRQ RI WKH EDVLV RI WKH /LH DOJHEUD DVVRFLDWHG ZLWK WKH DIILQH JURXS LW IROORZV WKDW WKHVH RSHUDWRUV VDWLVI\ WKH FRPPXWDWLRQ UHODWLRQV >;X;O@ >;;` DQG >;[ ;? L;[ )IRP WKHVH FRPPXWDWLRQ UHODWLRQV LW LV HDVLO\ VHHQ WKDW WKH /LH DOJHEUD DVVRFLDWHG ZLWK WKH DIILQH JURXS LV VROYDEOH WKHUHIRUH WKH DIILQH JURXS LV D VROYDEOH /LH JURXS 6LQFH ;? DQG ; DUH FKRVHQ WR EH VHOIDGMRLQW WKH\ FDQ EH H[SRQHQWLDWHG WR RQHSDUDPHWHU XQLWDU\ VXEJURXSV RI WKH DIILQH JURXS FI H[DPSOH 6LQFH WKH DIILQH JURXS LV D FRQQHFWHG VROYDEOH /LH JURXS HYHU\ JURXS HOHPHQW FDQ EH ZULWWHQ DV WKH SURGXFW RI WKHVH RQHSDUDPHWHU XQLWDU\ VXEJURXSV FI > 7KHRUHP @f :LWK WKH DERYH SDUDPHWHUL]DWLRQ WKH PDS JSTf !‘ 8J0 H[S+J;2H[SAOQS$rf SURYLGHV D XQLWDU\ UHSUHVHQWDWLRQ RI WKH DIILQH JURXS RQ + IRU DOO S Tf f 3 ZKHUH 3 ^3f S RR f§RR T RR` 7KH XQLWDU\ UHSUHVHQWDWLRQV RI WKH DIILQH JURXS KDYH EHHQ VWXGLHG E\ $VODNVHQ DQG .ODXGHU >@ DQG *HOfIDQG DQG 1HXPDUN >@ DQG LW LV NQRZQ WKDW WKHUH H[LVW RQO\ WZR IDLWKIXOf LQHTXLYDOHQW LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV IRU WKLV JURXS RQH IRU ZKLFK ;? LV D SRVLWLYH VHOIDGMRLQW RSHUDWRU

PAGE 100

DQG RQH IRU ZKLFK ;? LV D QHJDWLYH VHOIDGMRLQW RSHUDWRU :H GHQRWH WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI WKH DIILQH JURXS FRUUHVSRQGLQJ WR $UL SRVLWLYH E\ DQG WR ;? QHJDWLYH E\ >Z UHVSHFWLYHO\ 7KH FRQWLQXRXV UHSUHVHQWDWLRQ WKHRU\ XVLQJ WKH DIILQH JURXS KDV EHHQ LQYHVWLJDWHG E\ $VODNVHQ DQG .ODXGHU >@ ZKHUH LW ZDV VKRZQ WKDW IRU I Mf + c! WKH IDFWRU mb}rfrf &  LV VTXDUH LQWHJUDEOH LI DQG RQO\ LI e & f ZKHUH WKH RSHUDWRU & LV JLYHQ E\ & A;? DQG ;? LV UHVWULFWHG WR EH SRVLWLYH +HQFH WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI WKH DIILQH JURXS DUH VTXDUH LQWHJUDEOH IRU D GHQVH VHW RI YHFWRUV LQ + 0RUHRYHU LQ 5HI WKH IROORZLQJ RUWKRJRQDOLW\ UHODWLRQV KDYH EHHQ HVWDEOLVKHG IRU WKH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI WKH DIILQH JURXS -nA9SGT [n[;&Qn&Af & ZKHUH [![n f + DQG een '&f +HQFH HDFK RI WKH LUUHGXFLEOH XQLWDU\ UHSUHn VHQWDWLRQV FDQ EH XVHG WR GHILQH D VHW RI FRKHUHQW VWDWHV Q0 Y/IOOUW ZKHUH '&f DQG __" 7KHVH VWDWHV JLYH ULVH WR D UHVROXWLRQ RI LGHQWLW\ DQG D FRQWLQXRXV UHSUHVHQWDWLRQ RI WKH +LOEHUW VSDFH + RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /3f & /3f 7KH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU 8VLQJ 7KHRUHP Kf ZH ILQG LG8/ >&B ;LGT ^;[ ;fGS & 3f 3f 3 3 IURP ZKLFK ZH LGHQWLI\ WKH IROORZLQJ [ FRHIILFLHQW PDWUL[ >SPNJS ff@ >SPrVSJff@ 9 9 ,QYHUWLQJ WKLV [ PDWUL[ ZH ILQG >3 L N P 33ff@ 4 3

PAGE 101

:LWK WKHVH FRHIILFLHQWV ZH ILQG E\ /HPPD IRU WKH GLIIHUHQWLDO RSHUDWRUV WKDW GHVFULEH WKH DFWLRQ RI WKH DIILQH RSHUDWRUV ;? DQG ; RQ DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH /r3f WKH IROORZLQJ ;? f§  LSGS f§ L4GT 7KXV LI ZH GHQRWH E\ +;?;f WKH HVVHQWLDOO\ VHOIDGMRLQW +DPLOWRQ RSHUDWRU RI D TXDQWXP PHFKDQLFDO V\VWHP RQ + FI H[DPSOH WKHQ E\ 7KHRUHP WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS LV JLYHQ E\ H[S>f§]W Wnfn+^[L[f?^S SnfT %\ 3URSRVLWLRQ ZH FDQ JLYH WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS WKH IROORZLQJ UHJXODUL]HG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQn WDWLRQ ^S T W? Sn Tn Wnf OLP 1f§! 22 1 M R H[SD A [ML3ML a 3Mf NMLTML TMf F NM >NMLTM? TMf ;MO3MO 3Mf@_ 1 1 [ -A> GSMGTM @A> GNMLG[ML Uf ZKHUH S1LT1Lf STf SRf ^SnTnf DQG H W Wnf1 f ,Q WKLV H[SUHVVLRQ RQH FDQ SUHIRUP WKH IROORZLQJ WKUHH FRQVHFXWLYH YDULDEOH FKDQJHV )RU DOO M RQH ILUVW OHWV [-L f§! ;MLMLMf$ML3ML3LMf IROORZHG E\ WKH VXEVWLWXWLRQ ;M [-SML 3Mf DQG ILQDOO\ RQH OHWV NM ?^SM SMfNML 7KHQ WKH UHVXOWLQJ UHJXODUL]HG SKDVHVSDFH SDWK LQWHJUDO LV JLYHQ E\

PAGE 102

[M 3ML f§ 3Mf 3ML 3Mf W+ 3MO 3MfAMOAMO $7 1 [ Q GSL GTM Q M L M GNML &;M WWf 7KHUHIRUH WDNLQJ DQ LPSURSHU OLPLW E\ LQWHUFKDQJLQJ WKH RSHUDWLRQ RI LQWHJUDWLRQ ZLWK WKH OLPLW ZLWK UHVSHFW WR 1 ZH ILQG WKH IROORZLQJ IRUPDO SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS ZKHUH ff GHQRWHV GGW f f 7KLV H[SUHVVLRQ DJUHHV ZLWK WKH RQH IRXQG LQ 5HI XS WR D QXPHULFDO IDFWRU 0 JLYHQ E\ 0 ZKLFK LV XVHG LQ WKH QRUPDOL]DWLRQ RI WKH UHVROXWLRQ RI LGHQWLW\ LQ WKH GHILQLWLRQ RI FRKHUHQW VWDWHV IRU WKH DIILQH JURXS GXH WR $VODNVHQ DQG .ODXGHU >@ :H QRZ IRUPDOO\ HYDOXDWH WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WZR VROXEOH H[DPSOHV )RU WKH H[DFW ODWWLFH FDOFXODWLRQ RI WKHVH WZR H[DPSOHV VHH $SSHQGL[ & 7KH )UHH 3DUWLFOH 2XU ILUVW H[DPSOH LV WKDW RI WKH IUHH SDUWLFOH ZKHUH +;;f ;?^Pf 6LQFH ;? LV VHOIDGMRLQW DQG J[f [ LV D UHDOYDOXHG %RUHO IXQFWLRQ RQ -5 S$7Lf ; LV VHOIDGMRLQW RQ 'V ^IL $ 3$OG$fAf RR` FI > 7KHRUHP 9,,,@f ,Q WKLV FDVH WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU EHFRPHV 0 H[S NSTf f§ MUOQSf P GW M 9S9T9N9[ 6L $7 [ LMA9[ S S S GW ^Sf9T9S &DUU\LQJ RXW WKH UHPDLQLQJ WZR LQWHJUDWLRQV ZH REWDLQ DV RXU ILQDO UHVXOW .STW@3nTnWf P U f§ Wnf 6S Snf H[S LP I? 9f nf

PAGE 103

2EVHUYH WKDW XS WR WKH SUHVHQFH RI WKH GHOWD IXQFWLRQ S f§ Snf WKLV UHVXOW LV LQ SHUIHFW DJUHHPHQW ZLWK WKH XVXDO UHVXOW IRU WKH IUHH SDUWLFOH HYHQ WKRXJK ZH RQO\ FRQVLGHU WKH SRVLWLYH RU QHJDWLYH KDOI RI SKDVHVSDFH LH S LV FRQVWUDLQHG WR EH HLWKHU SRVLWLYH RU QHJDWLYH 7KH +DPLOWRQ 2SHUDWRU +$7;f Ac;r XM; 7KH VHFRQG H[DPSOH ZH FRQVLGHU LV WKDW RI WKH +DPLOWRQ RSHUDWRU n+;?;f ;?P X!; :H KDYH VHHQ LQ H[DPSOH WKDW WKLV +DPLOWRQ RSHUDWRU LV HVn VHQWLDOO\ VHOIDGMRLQW 7KH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU WDNHV WKH IROORZLQJ IRUP 9S9T9N9[ ZKHUH 7 W f§ I 7KH ILQDO SDWK LQWHJUDO ZH KDYH WR VROYH LV D /DJUDQJLDQ SDWK LQWHJUDO IRU D TXDGUDWLF /DJUDQJLDQ ZKLFK FDQ EH GRQH XVLQJ H[WUHPDO PHWKRGV VHH 5HI 7KH DFWLRQ IRU WKLV /DJUDQJLDQ SDWK LQWHJUDO LV JLYHQ E\ G P 7 T f§ XMTf GW R YDULDWLRQ RI ZKLFK \LHOGV WKH HTXDWLRQ RI PRWLRQ T X T ZKLFK KDV WKH JHQHUDO VROXWLRQ TWf $ VLQKXf % FRVKDLf

PAGE 104

$IWHU LPSRVLQJ WKH SURSHU ERXQGDU\ FRQGLWLRQV RQH ILQGV WKH HYDOXDWHG FODVVLFDO DFWLRQ WR EH 6G PX ^>Tf TU`FRVKX7fTTn` ? VLQKX7f PX Q? >"f :ff 6R WKDW RXU ILQDO UHVXOW IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ZLWK WKLV /D JUDQJLDQ EHFRPHV PX W VLQKR7f HD7S HX7n [ H[S LPX ^>f m7@FRVK:Uf9` ? VLQKR7f LPX a7a 2EVHUYH WKDW WKH HYDOXDWHG DFWLRQ IXQFWLRQDO LQ WKH H[SRQHQW RI WKLV SURSDJDWRU VDYH IRU WKH WHUP PXf >^Tf nf@! DJUHHV ZLWK WKH HYDOXDWHG DFWLRQ IXQFWLRQDO RQH REWDLQV IRU WKH SURSDJDWRU RI WKH KDUPRQLF RVFLOODWRU LQ LPDJLQDU\ WLPH IRUPXODn WLRQ DOWKRXJK LW LV QRW RI WKH VDPH fSK\VLFDO RULJLQf

PAGE 105

&+$37(5 &/$66,&$/ /,0,7 2) 7+( 5(35(6(17$7,21 ,1'(3(1'(17 3523$*$725 (YHQ WKRXJK WKH UHJXODUL]HG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU KDV EHHQ FRQVWUXFWHG E\ LQWHUSUHWLQJ WKH DSSURSULDWH 6FKURGLQJHU HTXDWLRQ f DV D 6FKUGLQJHU HTXDWLRQ IRU G VHSDUDWH DQG LQGHSHQGHQW FDQRQLFDO GHJUHHV RI IUHHGRP LW VKRXOG QHYHUWKHOHVV EH WUXH WKDW WKH FODVVLFDO OLPLW IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU UHIHUV WR WKH GHJUHHVf RI IUHHGRP DVVRFLDWHG ZLWK WKH /LH JURXS ,Q SDUWLFXODU ZH ZLOO VKRZ WKDW WKLV LV WUXH IRU D JHQHUDO /LH JURXS VLQFH WKH FODVVLFDO HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH DFWLRQ IXQFWLRQDO IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LPSO\ WKH FODVVLFDO HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO FODVVLFDO DFWLRQ IXQFWLRQDO RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU :H ILUVW GLVFXVV WKH FODVVLFDO OLPLW IRU FRPSDFW UHDO /LH JURXSV DQG WKHQ WXUQ RXU DWWHQWLRQ WR WKH FODVVLFDO OLPLW IRU JHQHUDO QRQFRPSDFW f f UHDO /LH JURXSV &ODVVLFDO /LPLW IRU &RPSDFW /LH *URXSV ,W LV NQRZQ WKDW DQ\ FRPSDFW /LH JURXS LV WKH GLUHFW SURGXFW RI LWV FRQQHFWHG FHQWHU DQG D ILQLWH QXPEHU RI VLPSOH VXEJURXSV FI > 7KHRUHP @f DQG WKDW DOO LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI FRPSDFW /LH JURXSV DUH ILQLWH GLPHQVLRQDO FI > /HPPD ,9@f 6XEVHTXHQWO\ ZH FRQVLGHU WKH FODVVLFDO OLPLW RI VHPLVLPn SOH FRPSDFW /LH JURXSV LH FRPSDFW /LH JURXSV ZKLFK KDYH D GLVFUHWH FHQWHU 7KLV LQFOXGHV WKH SK\VLFDOO\ LPSRUWDQW H[DPSOHV RI f DQG 68f ZKRVH FHQWHUV DUH JLYHQ E\ & ^f§H H` DQG & ^f§H H[SA_LfH H` UHVSHFWLYHO\ 7KH SUREOHP RI WDNLQJ r%\ WKH FHQWHU RI D JURXS ZH PHDQ WKH VHW RI HOHPHQWV RI ZKLFK FRPPXWH ZLWK HYHU\ HOHPHQW RI WKDW LV & ^D f D[ [D 9 [ f *`

PAGE 106

WKH FODVVLFDO OLPLW RI VHPLVLPSOH FRPSDFW /LH JURXSV KDV EHHQ SUHYLRXVO\ FRQVLGHUHG E\ *LOPRUH >@ DQG 6LPRQ >@ ,Q 5HI WKH FODVVLFDO OLPLW RI TXDQWXP SDUWLWLRQ IXQFWLRQV LV GLVFXVVHG H[WHQGLQJ SUHYLRXV ZRUN E\ /LHE >@ WR DQ\ VHPLVLPSOH FRPn SDFW /LH JURXS 7KH FODVVLFDO OLPLW LV WDNHQ E\ XVLQJ FRKHUHQW VWDWHV EXLOW XS IURP D PD[LPDO ZHLJKW YHFWRU LQ DQ LUUHGXFLEOH UHSUHVHQWDWLRQ :KLOH LQ 5HIV DQG WKH JHQHUDO SUREOHP RI WDNLQJ WKH FODVVLFDO OLPLW RI RSHUDWRUV EHORQJLQJ WR D VHPLVLPSOH FRPSDFW /LH DOJHEUD LV FRQVLGHUHG ZH RQ WKH RWKHU KDQG FRQVLGHU WKH SUREOHP RI WDNLQJ WKH FODVVLFDO OLPLW RI WKH PRVW JHQHUDO DFWLRQ IXQFWLRQDO DSSURSULDWH WR WKH FRKHUHQW VWDWH SURSDJDWRU IRU D VHPLVLPSOH FRPSDFW /LH JURXS /HW XV GHQRWH E\ ;M K;M M OG WKH SK\VLFDO RSHUDWRUV 7KHQ WKH PRVW JHQHUDO DFWLRQ IXQFn WLRQDO DSSURSULDWH WR WKH GGLPHQVLRQDO VHPLVLPSOH FRPSDFW /LH JURXS LV JLYHQ E\ VHH &KDSWHU (T f ;0Off@WW f /HW XV DVVXPH WKDW WKH VHPLVLPSOH FRPSDFW /LH JURXS ZH DUH FRQVLGHULQJ KDV UDQN Q G LH WKHUH H[LVW Q VHOIFRPPXWLQJ RSHUDWRUV +7 U WKDW IRUP WKH &DULDQ VXEDOJHEUD + RI WKH /LH DOJHEUD / DVVRFLDWHG ZLWK WKH /LH JURXS 0RUHRYHU OHW XV GHQRWH E\ P PLPQf WKH KLJKHVW ZHLJKW RI WKH ILQLWH GLPHQVLRQDO LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ ^ +f RI 8VLQJ WKH QRQGHJHQHUDWH &DUWDQ PHWULF WHQVRU JX -MN L FLNM&VMN ZH FRQVWUXFW WKH &DVLPLU RSHUDWRU G & 2nrrn =6 ZKLFK VDWLVILHV G ^&[Wf e>et@f V G G G < Vf e &WNn;W; < FNf;;  ?W O M O

PAGE 107

VLQFH &UVW
PAGE 108

ZKHUH :H QRZ FRQVLGHU WKH FODVVLFDO OLPLW RI WKH DFWLRQ IXQFWLRQDO JLYHQ LQ f 6LQFH ZH ZDQW WR GHDO ZLWK JHQHUDO ILGXFLDO YHFWRUV ZH KDYH WR FRQVLGHU ^9L AN9f f§ A f§ G ZKHUH WKH ;IFf IF G DUH UHDO QXPEHUV JLYHQ E\ Y AN9f :H LQVLVW RQ YDQLVKLQJ GLVSHUVLRQ DV K f§! DQG P f§!f RR LH P7 f§! RR IRU HDFK Uf QDPHO\ WKDW G OLP 9W ;N UM ;IFUffUcf f IL /n P!RR Nf§? ZKHUH WKH OLPLW K f§! DQG P f§}‘ RR LV WDNHQ LQ VXFK D ZD\ WKDW WKH SURGXFW KP VWD\V ILQLWH :H GHQRWH WKH VHW RI ILGXFLDO YHFWRUV WKDW VDWLVI\ f E\ 7 ,I ZH FKRRVH IRU WKH ILGXFLDO YHFWRU WKH KLJKHVW ZHLJKW YHFWRU RI WKH LUUHGXFLEOH UHSUHVHQWDWLRQ 8 WKHQ ZH ILQG G G OLP A A LG $IF a OLP APM A f L! rf§n KR n PIRR -W O P!RR r Q Q OLP >IW AUD JUPUf f§ IW A P@ P[[! U O U O Q OLP IW JU Pf§RR Uf§ +HQFH WKH KLJKHVW ZHLJKW YHFWRU VDWLVILHV f DQG WKHUHIRUH WKH VHW 7 FRQWDLQV DW OHDVW RQH YHFWRU 6LQFH IRU IL[HG f e Sf LV D XQLWDU\ RSHUDWRU RQ + WKHUH H[LVWV D OY VXFK WKDW 9 8JOYf8P

PAGE 109

7KHUHIRUH ZH ILQG G ;N 9AN9f f§ ZPAJOYf;N9JLOAPf f§ 8N AUf ZP! ;WAPf W O 2QO\ WKH WHUPV IRU ZKLFK XP;WXMPf s FRQWULEXWH WR WKLV VXP KHQFH ZH ILQG ;N UYLL.L Uf ZKHUH ^U ( ^OG` ;U ( +` DQG PUf GHQRWHV WKH FRPSRQHQW RI WKH KLJKHVW ZHLJKW P IRU ZKLFK ;7 )RU ILQLWH K WKH WHUP WKDW UHSUHVHQWV WKH FODVVLFDO +DPLOWRQLDQ LQ WKH FRKHUHQW VWDWH SURSDJDWRU IRU WKH /LH JURXS LV JLYHQ E\ G +0 ULfQ[f[GfQLff ULQ n8NEOfYE K f§22 ZKHUH YN OLP Uc;NULf K! OLP K[N G PrRR f§ 22 UHO +HQFH WKH FODVVLFDO OLPLW RI WKH DFWLRQ IXQFWLRQDO JLYHQ LQ f EHFRPHV FO OLP >>LKUMOf Kf§r Pf§RR GB GW P A YOf0;X;GfUL^Off@GW G G G 9 DfrVLffU}W X
PAGE 110

&ODVVLFDO /LPLW RI 1RQ&RPSDFW /LH JURXSV 2XU GLVFXVVLRQ RI WKH FODVVLFDO OLPLW RI FRPSDFW VHPLVLPSOH /LH JURXSV FDQQRW EH JHQHUDOL]HG WR QRQFRPSDFW VHPLVLPSOH /LH JURXSV VLQFH WKH\ GR QRW DGPLW IDLWKIXO XQLWDU\ ILQLWHGLPHQVLRQDO UHSUHVHQWDWLRQV FI > &RUROODU\ @f +HQFH ZH PXVW IROORZ D GLIIHUHQW URXWH WR DFKLHYH D ZHOO GHILQHG FODVVLFDO OLPLW RI WKH PRVW JHQHUDO DFWLRQ IXQFWLRQDO DSSURSULDWH WR D JHQHUDO QRQFRPSDFW /LH JURXS JLYHQ E\ L LLWI^LU >}"f MWP PQ[L [Pf U ZKHUH ef 8JA.AA DQG LW LV DVVXPHG WKDW .Oe f :LWKRXW ORVV LQ JHQHUDOLW\ ZH FDQ VHW IWne__$ne__ WKHQ RXU PRVW JHQHUDO DFWLRQ IXQFWLRQDO EHFRPHV ZKHUH UcOf 8JAUM DQG ZKHUH LW LV DVVXPHG WKDW f Q '$nBf ,Q RXU GLVFXVVLRQ RI WKH FODVVLFDO OLPLW RI WKH DFWLRQ IXQFWLRQDO JLYHQ LQ f ZH XVH DQ DEVWUDFW IRUPDOLVP IRU WDNLQJ WKH K f§} OLPLW GHYHORSHG E\ @ @ FRQVLGHUV D IDPLO\ RI TXDQWXP WKHRULHV FKDUDFWHUL]HG E\ VRPH SDUDPHWHU [ VXFK DV K DQG VWXGLHV WKH OLPLW RI WKHVH WKHRULHV DV [ DSSURDFKHV ]HUR ,W LV DVVXPHG WKDW HDFK WKHRU\ LV GHILQHG RQ VRPH +LOEHUW VSDFH +[ ZLWK VRPH +DPLOWRQ RSHUDWRU 7/[ )XUWKHUPRUH LW LV DVVXPHG WKDW WKHUH H[LVWV D /LH JURXS ZLWK DVVRFLDWHG /LH DOJHEUD / WKDW KDV RQ HDFK +LOEHUW VSDFH +[ D XQLWDU\ UHSUHVHQWDWLRQ 8[ :H DVVXPH IRU GHILQLWHQHVV WKDW 8[ LV SDUDPHWHUL]HG DV b Q mS Af XS WR VRPH RUGHULQJ 7KHQ WKH ILUVW DVVXPSWLRQ ZKLFK UHVWULFWV WKH FKRLFH RI WKH JURXS LV $VVXPSWLRQ (DFK XQLWDU\ UHSUHVHQWDWLRQ RI RQ +[ LV LUUHGXFLEOH +HQFH RQ HDFK +LOEHUW VSDFH +[ RQH FDQ GHILQH D VHW RI FRKHUHQW VWDWHV UM[Of Wn6RfIF

PAGE 111

)RU DQ\ RSHUDWRU 2 DFWLQJ RQ +[ ZH GHILQH WKH XSSHU V\PERO Af E\ :[2}"[f IRU DOO O e LH WKH XSSHU V\PERO LV D VHW RI FRKHUHQW VWDWH H[SHFWDWLRQ YDOXHV 7KH VHFRQG DVVXPSWLRQ UHVWULFWV WKH SRVVLEOH ILGXFLDO YHFWRUV U@[ RQH FDQ FKRRVH )RU HDFK YDOXH RI [ ZH UHTXLUH $VVXPSWLRQ =HUR LV WKH RQO\ REVHUYDEOH ZKRVH XSSHU V\PERO LGHQWLFDOO\ YDQLVKHV %\ DQ REVHUYDEOH ZH PHDQ D IDPLO\ RI VHOIDGMRLQW RSHUDWRUV FRQVLVWLQJ RI RQH VHOI DGMRLQW RSHUDWRU DFWLQJ LQ HDFK +LOEHUW VSDFH +[ $Q H[DPSOH LQ ZKLFK DVVXPSWLRQ LV QRW YDOLG LV JLYHQ E\ 68 f FRKHUHQW VWDWHV EDVHG RQ D ILGXFLDO YHFWRU WKDW LV QRW WKH KLJKHVW RU ORZHVWf ZHLJKW YHFWRU LQ WKLV FDVH D XQLTXH VSHFLILFDWLRQ RI DQ\ REVHUYDEOH E\ LWV XSSHU V\PERO PD\ QRW EH SRVVLEOH FI > S @f 1RWH WKDW DVVXPSWLRQ LPSOLHV WKDW WZR GLIIHUHQW RSHUDWRUV FDQQRW KDYH WKH VDPH XSSHU V\PERO +HQFH RQH FDQ XQLTXHO\ UHFRYHU DQ\ RSHUDWRU IURP LWV V\PERO $V SRLQWHG RXW LQ 5HI S fWKLV PHDQV WKDW LW LV VXIILFLHQW WR VWXG\ WKH EHKDYLRU RI WKH V\PEROV RI YDULRXV RSHUDWRUV LQ RUGHU WR FKDUDFWHUL]H WKH WKHRU\ FRPSOHWHO\f 2EVHUYH WKDW WKH [ f§ OLPLW RI DQ DUELWUDU\ REVHUYDEOH GRHV QRW KDYH WR H[LVW ,Q RUGHU WR KDYH VRPH FRQWURO RYHU WKH [ a OLPLW RQH LQWURGXFHV WKH FRQFHSW RI D FODVVLFDO REVHUYDEOH $FFRUGLQJ WR @ DQ REVHUYDEOH 2 LV FDOOHG D FODVVLFDO REVHUYDEOH LI WKH OLPLWV RI LWV FRKHUHQW VWDWH PDWUL[ HOHPHQWV H[LVW 0O06 0fY$Qf DQG DUH ILQLWH IRU DOO n e & 7KH VHW RI DOO FODVVLFDO REVHUYDEOHV LV GHQRWHG E\ 2F &OHDUO\ WKH VHW 2F LV D VXEVHW RI DOO SRVVLEOH REVHUYDEOHV KHQFH LW LV SRVVLEOH WKDW PHDVXUHPHQWV XVLQJ RQO\ REVHUYDEOHV RI 2F PD\ IDLO WR GLVWLQJXLVK EHWZHHQ GLIIHUHQW FRKHUHQW VWDWHV 7KHUHIRUH WZR GLIIHUHQW FRKHUHQW VWDWHV U@[Of DQG U@[Onf DUH FDOOHG FODVVLFDOO\ HTXLYDOHQW LI IRU DOO 2 e 2F RQH KDV .r10Of2U`[Off OLPUf[Onf2U@[Onff ;

PAGE 112

7KH WKLUG DVVXPSWLRQ VWDWHV WKDW FODVVLFDOO\ LQHTXLYDOHQW FRKHUHQW VWDWHV EHFRPH RUn WKRJRQDO LQ WKH [ \ OLPLW ,Q SDUWLFXODU $VVXPSWLRQ 7KH OLPLW A>U@[OfU@[Onf@ f§ OLP[B![OQA[!"[Aff H[LVWV IRU DOO n e & DQG >U@[Of U@[Onf@ VDWLVILHV WKH FRQGLWLRQV Lf "H^>[f UM[Onf@` LI UM[Of DQG Uc[Onf DUH FODVVLFDOO\ LQHTXLYDOHQW LLf "5H^>U@[Of7L[Onf@` LI Uc[Of DQG Uc[Onf DUH FODVVLFDOO\ HTXLYDOHQW DQG GW^!>"[fH[S 0[MU@[^Of? A>UM[OfH[S^AW;f7@[^Onf@`?W 9, HO $V VKRZQ LQ 5HI DVVXPSWLRQ LPSOLHV WKDW FODVVLFDO REVHUYDEOHV FDQQRW fPRYHf WKH FRKHUHQW VWDWHV +HQFH DQ\ IL[HG FDQQRW EH D FODVVLFDO REVHUYn DEOH H[FHSW 8r K[ f +RZHYHU DV VKRZQ LQ 5HI DVVXPSWLRQ LPSOLHV WKDW DQ\ ; e / LV DQ DFFHSWDEOH FODVVLFDO REVHUYDEOH 0RUHRYHU DV SRLQWHG RXW LQ 5HI DVVXPSWLRQ LPSOLHV WKDW LI Uc[^Of DQG Uc[Onf DUH FODVVLFDOO\ HTXLYDOHQW WKHQ 0f2Uc[^9ff rr 0Of 9;nff OLP fYf IRU DOO 2 f 2F [!R $V VKRZQ LQ 5HI WKLV IDFW WRJHWKHU ZLWK DVVXPSWLRQ DOORZV RQH WR HVWDEOLVK WKH IROORZLQJ IDFWRUL]DWLRQ IRU DQ\ SDLU RI FODVVLFDO REVHUYDEOHV 2 DQG 2n OLP >? f f[ fn[f@ f :LWK WKHVH WKUHH DVVXPSWLRQV RQH JDLQV VRPH FRQWURO RYHU WKH [ OLPLW KRZHYHU WKH TXDQWXP G\QDPLFV LV OHIW FRPSOHWHO\ XQUHVWULFWHG ,Q RUGHU WR JDLQ FRPSOHWH FRQWURO RYHU WKH [ a} OLPLW RQH KDV WR UHTXLUH $VVXPSWLRQ 7O[ LV D FODVVLFDO REVHUYDEOH $V VKRZQ LQ 5HI WKLV VHW RI DVVXPSWLRQV LV VXIILFLHQW WR VKRZ WKDW D TXDQWXP WKHRU\ UHGXFHV WR D FODVVLFDO WKHRU\ DV [ :H QRZ GLVFXVV WKH FODVVLFDO OLPLW RI WKH DFWLRQ IXQFWLRQDO LQ f 6LQFH ZH DUH ZRUNLQJ ZLWK /LH JURXSV WKDW KDYH LUUHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV

PAGE 113

DVVXPSWLRQ LV DXWRPDWLFDOO\ VDWLVILHG :H DVVXPH WKDW ZH KDYH VHOHFWHG WKH ILGXFLDO YHFWRU VXFK WKDW DVVXPSWLRQ LV VDWLVILHG DQG ZH DOVR DVVXPH WKDW DVVXPSWLRQ LV VDWLVILHG 7R VDWLVI\ DVVXPSWLRQ ZH UHVWULFW RXUVHOYHV WR +DPLOWRQ RSHUDWRUV WKDW DUH DUELWUDU\ SRO\QRPLDOV RI WKH JHQHUDWRUV ^;NfN? 7KHQ WKH PRVW JHQHUDO FODVVLFDO DFWLRQ IXQFWLRQDO DSSURSULDWH WR WKH FRKHUHQW VWDWH SURSDJDWRU IRU LV JLYHQ E\ ZKHUH ZH KDYH XVHG f DQG f 7KH Yr OLPDR r! $nr""f N G DUH UHDO FRQVWDQWV ([WUHPDO YDULDWLRQ RI WKLV DFWLRQ IXQFWLRQDO ZLWK UHVSHFW WR WKH LQGHSHQGHQW ODEHOV OE KROGLQJ WKH HQG SRLQWV IL[HG \LHOGV WKH HTXDWLRQV RI PRWLRQ G G < } ^IW} 9f 9f` LO ( mf:n:On9 f D b ZKHUH ,D GHQRWHV WKH SDUWLDO GHULYDWLYH RI 9 ZLWK UHVSHFW WR WKH DWK DUJXPHQW D G f 5HPDUN *HQHUDOO\ WKH FRQVWDQWV Y? DUH QRQ]HUR DQG DUH WKH YHVWLJHV RI WKH FRKHUHQW VWDWH UHSUHVHQWDWLRQ LQGXFHG E\ Uc WKDW UHPDLQ HYHQ DIWHU WKH OLPLW K KDV EHHQ WDNHQ $ VLPLODU VWDWHPHQW DOVR DSSOLHV WR WKH FDVH ZKHQ LV FRPSDFW &ODVVLFDO /LPLW RI WKH 5HSUHVHQWDWLRQ ,QGHSHQGHQW 3URSDJDWRU ,Q WKH FDVH RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU RQH LGHQWLILHV WKH FODVn VLFDO DFWLRQ IXQFWLRQDO DV VHH 3URSRVLWLRQ f FO G f n+[^SOf[GSOff@GW M L

PAGE 114

3DJH 0LVVLQJ RU 8QDYDLODEOH

PAGE 115

7KHUHIRUH ZH FDQ FKRRVH D VHW RI LQWHJUDWLRQ FRQVWDQWV FLF VXFK WKDW G 3M ( $} f: f P O 6XEVWLWXWLRQ RI WKLV IRUP RI SM LQWR f DQG f \LHOGV WKH IROORZLQJ VHW RI G HTXDWLRQV Lf ((A:F! D O ?V D O MP ?V O $IWHU GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR WLPH WKHVH HTXDWLRQV WDNH WKH IRUP r f D O G G G ( >9Vff@OFV ( ( A‘>LU9VLff@9}fFP f D O MP O 1H[W FRQWUDFW f ZLWK @7A F >$A=ff@F DQG ILQG G G G ( :f@n9 m9 fMOffr>9LIOf@F G D O G ( !>9Vff@I9 ( ( mfVLnE L::IL:fr D O MP O f f 6XEWUDFWLQJ f IURP f \LHOGV G G ( ^f 9Lmf 9f` Mr ( :rDTWf@F f D O ZKHUH &RUROODU\ KDV EHHQ XVHG $PRQJ DOO SRVVLEOH DOORZHG YDOXHV RI &? F DUH WKRVH WKDW FRLQFLGH ZLWK 9L IRU DQ DUELWUDU\ ILGXFLDO YHFWRU +HQFH IRU WKLV FKRLFH RI &L &G WKH DERYH HTXDWLRQV FRLQFLGH ZLWK WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO FODVVLFDO DFWLRQ IXQFWLRQDO IRU WKH FRKHUHQW SURSDJDWRU IRU >VHH (Tf DQG (Tf@ 7KHUHIRUH WKH VHW RI FODVVLFDO HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH FODVVLFDO DFWLRQ IXQFWLRQDO RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU

PAGE 116

LPSOLHV WKH VHW RI FODVVLFDO HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO FODVVLFDO DFWLRQ IXQFWLRQDO RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU 7KXV ZH ILQG WKDW WKH VHW RI VROXWLRQV RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW FODVVLFDO HTXDWLRQV RI PRWLRQ DSSURSULDWH WR WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQHUDO /LH JURXS ZLWK VTXDUH LQWHJUDEOH LUUHGXFLEOH UHSUHVHQWDWLRQV LQFOXGHV HYHU\ SRVVLEOH VROXWLRQ RI WKH FODVVLFDO HTXDWLRQV RI PRWLRQ DSSURSULDWH WR WKH PRVW JHQHUDO FRKHUHQW VWDWH SURSDJDWRU IRU :H VXPPDUL]H DOO WKLV LQ WKH IROORZLQJ 3URSRVLWLRQ 3URSRVLWLRQ /HW EH D UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZKRVH XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQV DUH VTXDUH LQWHJUDEOH ,I WKH ILGXFLDO YHFWRU VDWLVILHV f ZKHQ LV FRPSDFW DQG $VVXPSWLRQ ZKHQ LV QRQFRPSDFW WKHQ WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH DFWLRQ IXQFWLRQDO RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LPSO\ WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO FODVVLFDO DFWLRQ IXQFWLRQDO IRU WKH FRKHUHQW VWDWH SURSDJDWRU IRU *

PAGE 117

&+$37(5 6800$5< $1' &21&/86,21 ,Q WKLV FKDSWHU DV EHIRUH ZH PHDQ E\ D JHQHUDO /LH JURXS D UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXS ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV XQOHVV ZH H[SOLFLWO\ VWDWH RWKHUZLVH :H KDYH VHHQ LQ FKDSWHU WKDW WKH TXDQWL]DWLRQ RI SK\VLFDO V\VWHPV PRYLQJ RQ JURXS DQG V\PPHWULF VSDFHV KDV EHHQ DQ DUHD RI DFWLYH DQG RQJRLQJ UHVHDUFK RYHU WKH SDVW WKUHH GHFDGHV VHH IRU LQVWDQFH 5HIV DQG ,Q SDUWLFXODU ZH KDYH UHYLHZHG LQ VXEVHFWLRQ LQ GHWDLO WKH DSSURDFK RI 0DUL QRY DQG 7HUHQW\HY > @ WR WKH FRQVWUXFWLRQ RI SDWK LQWHJUDO UHSUHVHQWDWLRQV IRU D IUHH SDUWLFOH PRYLQJ RQ JURXS PDQLIROGV RI FRPSDFW VLPSOH /LH JURXSV DQG VSKHUHV RI DUELWUDU\ GLPHQVLRQ $V ZH KDYH SRLQWHG RXW LQ VXEVHFWLRQ LQ WKLV DSSURDFK WKH /DJUDQJLDQ QHHGV WR EH PRGLILHG WR LQFOXGH D fTXDQWXPf SRWHQWLDO SURSRUWLRQDO WR K +RZHYHU WKH QHHG WR LQFOXGH D FRUUHFWLRQ WHUP RI RUGHU K LQWR WKH /DJUDQJLDQ KDV DOVR EHHQ IRXQG WR EH QHFHVVDU\ E\ RWKHU LQYHVWLJDWRUV ZKR KDYH VWDUWLQJ IRUP WKH VHPLFODVVLFDO DSSUR[LPDWLRQ FRQVWUXFWHG SDWK LQWHJUDO UHSUHVHQWDWLRQV RI WKH IUHH SDUWLFOH PRYLQJ RQ XQERXQGHG 5LHPDQLDQ PDQLIROGV VHH IRU LQVWDQFH 5HIV DQG 0RUH LPSRUWDQWO\ DV ZH KDYH SRLQWHG RXW LQ VXEVHFWLRQ WKLV DSSURDFK FDQQRW EH H[WHQGHG WR PRUH JHQHUDO SK\VLFDO V\VWHPV WKDQ WKH IUHH SDUWLFOH VLQFH WKH VHPLn FODVVLFDO DSSUR[LPDWLRQ ZKLFK KDV EHHQ XVHG LQ DQ HVVHQWLDO ZD\ E\ 0DULQRY DQG 7HUHQW\HY LV H[DFW RQO\ IRU WKH FDVH RI D IUHH SDUWLFOH PRYLQJ RQ WKH JURXS PDQLIROG RI D VHPLVLPSOH /LH JURXS :H DOVR H[WHQGHG LQ VXEVHFWLRQ D PHWKRG XVHG E\ -XQNHU >@ WR FRQVWUXFW

PAGE 118

SDWK LQWHJUDO UHSUHVHQWDWLRQV IRU D IUHH SDUWLFOH PRYLQJ RQ D FRPSDFW V\PPHWULF VSDFH WR V\PPHWULF VSDFHV RI WKH IRUP 0 *+ ZKHUH LV D JHQHUDO QRW QHFHVVDULO\ FRPSDFW XQLPRGXODU WUDQVIRUPDWLRQ JURXS DFWLQJ RQ 0 DQG + LV D PDVVLYH FRPn SDFW VXEJURXS RI $JDLQ ZH IRXQG WKDW WKLV PHWKRG FRXOG QRW EH H[WHQGHG WR PRUH JHQHUDO SK\VLFDO V\VWHPV PRYLQJ RQ 0 WKDQ WKH IUHH SDUWLFOH VLQFH ZH ZKHUH DVNLQJ WKDW WKH VKRUW WLPH SURSDJDWRU EH LQYDULDQW XQGHU WKH WUDQVIRUPDWLRQ JURXS :H IRXQG WKDW WKLV DVVXPSWLRQ LPSOLHG WKDW WKH /DSODFH %HOWUDPL RSHUDWRU ZDV DQ HOHPHQW RI WKH HQYHORSLQJ DOJHEUD RI WKH WUDQVIRUPDWLRQ JURXS 7KLV LQ WXUQ LPSOLHG WKDW WKH PDWUL[ HOHPHQWV 'A^Jf ZHUH UHJXODU IXQFWLRQV RQ 7KLV VKRZHG WKDW WKH DVVXPSWLRQ WKDW WKH VKRUW WLPH SURSDJDWRU VKRXOG EH LQYDULDQW XQGHU WKH WUDQVIRUPDWLRQ JURXS ZDV FUXFLDO DQG FRXOG QRW EH UHOD[HG 0RUHRYHU DV ZH KDYH UHPDUNHG DW WKH HQG RI VXEVHFWLRQ RQH FDQ FRQVWUXFW SDWK LQWHJUDOV WKLV ZD\ RQO\ IRU D KDQGIXO RI JURXSV VLQFH RQH QHHGV WR NQRZ WKH H[SOLFLW IRUP RI WKH VSKHULFDO ]RQDO IXQFWLRQV =ARRSf LQ RUGHU WR FDUU\ RXW WKH FRQVWUXFWLRQ VHH DOVR LQ WKLV UHVSHFW WKH UHPDUNV DIWHU HTXDWLRQ ,Q VXEVHFWLRQ ZH KDYH GLVFXVVHG WKH FRQVWUXFWLRQ RI FRKHUHQW VWDWH SDWK LQn WHJUDOV :H IRXQG WKDW WKH ILQDO SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH FRKHUHQW VWDWH SURSDJDWRU H[KLELWHG D VWURQJ GHSHQGHQFH RQ WKH FKRLFH RI WKH ILGXFLDO YHFWRU DQG RQ WKH FKRLFH RI WKH VTXDUH LQWHJUDEOH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI WKH JHQHUDO /LH JURXS XQGHU FRQVLGHUDWLRQ +HQFH RQH KDV WR UHIRUPXODWH WKH SDWK LQWHJUDO UHSUHVHQWDWLRQ IRU WKH FRKHUHQW VWDWH SURSDJDWRU HYHU\ WLPH RQH FKDQJHV WKH ILGXFLDO YHFWRU DQG NHHSV WKH LUUHGXFLEOH UHSUHVHQWDWLRQ WKH VDPH RU LI RQH FKDQJHV WKH LUn UHGXFLEOH UHSUHVHQWDWLRQ RI $V ZH KDYH SRLQWHG RXW LQ VXEVHFWLRQ LQ PDQ\ DSSOLFDWLRQV LW LV RIWHQ FRQYHQLHQW WR FKRRVH WKH ILGXFLDO YHFWRU DV WKH JURXQG VWDWH RI WKH +DPLOWRQ RSHUDWRU + RI WKH TXDQWXP V\VWHP RQH FRQVLGHUV VHH IRU LQVWDQFH 5HIV DQG +HQFH RQH KDV WR IDFH WKH SUREOHP RI YDULRXV ILGXFLDO YHFWRUV

PAGE 119

QR ,Q FKDSWHU ZH KDYH LQWURGXFHG WKH QRWDWLRQV DQG EDVLF GHILQLWLRQV XVHG WKURXJKn RXW WKH WKHVLV 7KH PDLQ UHVXOW RI WKLV FKDSWHU ZDV 7KHRUHP LQ ZnKLFK ZH GHULYHG DQ RSHUDWRU YHUVLRQ RI WKH JHQHUDOL]HG 0DXUHU&DUWDQ IRUP ,Q FKDSWHU ZH KDYH FRQVWUXFWHG WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ,Q VHFWLRQ ZH KDYH GHILQHG FRKHUHQW VWDWHV IRU D JHQHUDO /LH JURXS DQG KDYH SURYHG /HPPD DQG WKH &RUROODU\ ZKLFK ZH KDYH DSSOLHG LQ WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU DQG WKH FRQVWUXFWLRQ RI UHJXODUL]HG ODWWLFH SKDVHVSDFH SDWK LQWHJUDO UHSUHVHQWDWLRQV RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU 3ULRU WR WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQn HUDO /LH JURXS ZH KDYH FRQVWUXFWHG LQ VHFWLRQ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSn DJDWRU IRU DQ\ FRPSDFW /LH JURXS ,W KDV EHHQ VKRZQ LQ 7KHRUHP WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU DQ\ FRPSDFW JURXS FRUUHFWO\ SURSDJDWHV WKH HOHPHQWV RI DQ\ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH DVVRFLDWHG ZLWK DQ DUELWUDU\ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI +HQFH LW VROYHV WKH SUREOHP RI YDULRXV ILGXn FLDO YHFWRUV :H REVHUYHG WKDW LQ WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU FRPSDFW /LH JURXSV DQG LWV SDWK LQWHJUDO UHSUHVHQWDWLRQ QR H[SOLFLW XVH KDV EHHQ PDGH RI WKH 216 \GA'AOf f DQG LM A LQ /*f ZKRVH H[LVWHQFH LV JXDUDQWHHG E\ WKH 3HWHU:H\O 7KHRUHP EXW PHUHO\ WKH IDFWV WKDW LW H[LVWV DQG LV FRPSOHWH KDYH EHHQ XVHG 0RUHRYHU ZH KDYH PDGH QR DVVXPSWLRQV DERXW WKH QDWXUH RI WKH SK\VLFDO V\VWHPV ZH ZHUH FRQVLGHULQJ RWKHU WKDQ WKDW LWV +DPLOWRQ RSn HUDWRU EH VHOIDGMRLQW 7KHUHIRUH WKH SDWK LQWHJUDO UHSUHVHQWDWLRQ f FDQ EH XVHG LQ SULQFLSOH WR GHVFULEH WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP QRW MXVW WKDW RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI DQ\ FRPSDFW /LH JURXS DQG LW GRHV QRW PDWWHU LI WKH PDWUL[ HOHPHQWV 'AOf DUH H[SOLFLWO\ NQRZQ RU QRW +HQFH ZH IRXQG WKDW WKH SDWK LQWHJUDO TXDQWL]DWLRQ f UHSUHVHQWHG D FOHDU LPSURYHPHQW RYHU WKH SDWK LQWHJUDO TXDQWL]DWLRQV GHVFULELQJ WKH PRWLRQ RI D IUHH SDUWLFOH RQ D FRPSDFW JURXS PDQLIROG

PAGE 120

,OO SUHVHQWHG LQ FKDSWHU $V DQ H[DPSOH ZH KDYH WKHQ FRQVWUXFWHG WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU 68f DQG SUHVHQWHG WKH H[DFW SDWK LQWHJUDO WUHDWPHQW RI D IUHH SDUWLFOH PRYLQJ RQ D FLUFOH DQG RQ WKH JURXS PDQLIROG RI 68f ,Q VHFWLRQ WKLV FRQVWUXFWLRQ KDV WKHQ EHHQ VXLWDEO\ H[WHQGHG WR D JHQHUDO /LH JURXS DQG ZH KDYH VKRZQ LQ 7KHRUHP WKDW WKH UHVXOW REWDLQHG LQ 7KHRUHP KROGV DOVR IRU D JHQHUDO /LH JURXS ,Q 3URSRVLWLRQ ZH KDYH HVWDEOLVKHG WKDW LW LV SRVVLEOH WR FRQVWUXFW UHJXODUL]HG SKDVHVSDFH SDWK LQWHJUDOV IRU D JHQHUDO /LH JURXS (YHQ WKRXJK WKH JURXS VSDFH JHQHUDOO\ LV D PXOWLGLPHQVLRQDO FXUYHG PDQLIROG ZH KDYH VKRZQ WKDW WKH UHVXOWLQJ SKDVHVSDFH SDWK LQWHJUDO KDV WKH IRUP RI D ODWWLFH SKDVH VSDFH SDWK LQWHJUDO RQ D PXOWLGLPHQVLRQDO IODW PDQLIROG )XUWKHUPRUH VLQFH ZH KDYH PDGH QR DVVXPSWLRQV DERXW WKH QDWXUH RI WKH SK\VLFDO V\VWHPV ZH ZHUH FRQVLGHULQJ RWKHU WKDQ WKDW WKHLU +DPLOWRQ RSHUDWRUV EH HVVHQWLDOO\ VHOIDGMRLQW ZH IRXQG WKDW WKH SDWK LQWHJUDO UHSUHVHQWDWLRQ SUHVHQWHG LQ 3URSRVLWLRQ FDQ EH XVHG LQ SULQFLSOH WR GHVFULEH WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP QRW MXVW WKDW RI D IUHH SDUWLFOH RQ WKH JURXS PDQLIROG RI ,Q DGGLWLRQ ZH IRXQG WKDW WKHUH ZHUH QR K FRUUHFWLRQV SUHVHQW LQ WKH /DJUDQJLDQ 7KHUHIRUH ZH KDYH DUULYHG DW D QRYHO H[WUHPHO\ QDWXUDO SKDVHVSDFH SDWK LQWHJUDO TXDQWL]DWLRQ IRU WKH PRWLRQ RI D JHQHUDO SK\VLFDO V\VWHP RQ WKH JURXS PDQLIROG RI D JHQHUDO /LH JURXS WKDW LV Df PRUH JHQHUDO WKDQ Ef H[DFW DQG Ff IUHH IURP WKH OLPLWDWLRQV SUHVHQW LQ WKH SDWK LQWHJUDO TXDQWL]DWLRQV IRU WKH PRWLRQ RI D IUHH SK\VLFDO V\VWHP RQ WKH JURXS PDQLIROG RI D JHQHUDO XQLPRGXODU /LH JURXS GLVFXVVHG LQ FKDSWHU 7R LOOXVWUDWH WKH JHQHUDO WKHRU\ ZH KDYH WKHQ FRQVWUXFWHG WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS ,Q FKDSWHU ZH KDYH GLVFXVVHG WKH FODVVLFDO OLPLW RI WKH UHSUHVHQWDWLRQ LQGHSHQn GHQW SURSDJDWRU RI D JHQHUDO /LH JURXS DQG KDYH VKRZQ WKDW LWV FODVVLFDO OLPLW UHIHUV LQGHHG WR WKH GHJUHHV RI IUHHGRP DVVRFLDWHG ZLWK ,Q VHFWLRQV DQG ZH KDYH GLVFXVVHG LQ GHWDLO WKH FODVVLFDO OLPLW RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU FRPSDFW /LH JURXSV DQG QRQFRPSDFW /LH JURXSV ,Q VHFWLRQ ZH KDYH SURYHG WKDW

PAGE 121

WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH DFWLRQ IXQFWLRQDO RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU D JHQHUDO /LH JURXS LQGHHG LPSO\ WKH HTXDWLRQV RI PRWLRQ REWDLQHG IURP WKH PRVW JHQHUDO DFWLRQ IXQFWLRQDO RI WKH FRKHUHQW VWDWH SURSDJDWRU IRU D JHQHUDO /LH JURXS FI 3URSRVLWLRQ f :H KDYH IRFXVHG RXU DWWHQWLRQ LQ WKLV WKHVLV RQ JHQHUDO /LH JURXSV ZLWK VTXDUH LQWHJUDEOH LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV VLQFH IRU WKLV FDVH WKH H[LVWHQFH RI D UHVROXWLRQ RI LGHQWLW\ LV JXDUDQWLHG LQ JHQHUDO E\ 7KHRUHP DQG ZH ZHUH DEOH WR FRQVWUXFW D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ULJRURXVO\ ,W ZRXOG EH LQWHUn HVWLQJ WR VHH LI WKH FRQVWUXFWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU SUHn VHQWHG LQ VHFWLRQ FDQ EH H[WHQGHG WR /LH JURXSV WKDW GR QRW SRVVHV VTXDUH LQWHJUDEOH LUUHGXFLEOH UHSUHVHQWDWLRQV VXFK DV WKH (XFOLGLDQ JURXS 7KH REVWDFOH RQH KDV WR RYHUFRPH ZKHQ RQH FRQVLGHUV VXFK JURXSV LV WKH LQWURGXFWLRQ RI D UHVROXWLRQ RI LGHQWLW\ 7KLV SUREOHP KDV UHFHQWO\ EHHQ VROYHG E\ ,VKDP DQG .ODXGHU >@ IRU WKH QGLPHQVLRQDO (XFOLGLDQ JURXS (Qf ,Q 5HI DWWHQWLRQ LV IRFXVHG RQ UHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV RI (Qf ,Q WKLV FDVH LW EHFRPHV SRVVLEOH WR LQWURn GXFH D VHW RI FRKHUHQW VWDWHV LH WR HVWDEOLVK D UHVROXWLRQ RI LGHQWLW\ DQG WR LQWURGXFH D FRKHUHQW VWDWH SURSDJDWRU 7KHUHIRUH LI WKH SUREOHP RI LQWURGXFLQJ FRKHUHQW VWDWHV IRU WKHVH JURXSV FDQ EH VROYHG WKHQ RQH FDQ XVH WKH IROORZLQJ DUJXPHQW WR LQWURGXFH D ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU IRU WKHVH JURXSV 'HQRWH E\ 8 D JHQHULF FRQWLQXRXV XQLWDU\ UHSUHVHQWDWLRQ RI D /LH JURXS RQ VRPH +LOEHUW VSDFH + ZKLFK GRHV QRW QHHG WR EH D VTXDUH LQWHJUDEOH LUUHGXFLEOH UHSUHVHQWDWLRQ )RU GHILQLWHQHVV OHW XV DVVXPH WKDW ZH KDYH SDUDPHWHUL]HG WKH /LH JURXS VXFK WKDW WKH UHSUHVHQWDWLRQ 8 LV JLYHQ E\ 8JLf H[Sf§LOO;Lf H[Sf§LOG;Gf IRU VRPH RUGHULQJ ZKHUH WKH ;L;G IRUP DQ LQWHJUDEOH UHSUHVHQWDWLRQ RI WKH DVVRFLDWHG /LH DOJHEUD / RI E\ HVVHQWLDOO\ VHOIDGMRLQW RSHUDWRUV RQ VRPH FRPPRQ GHQVH LQYDULDQW GRPDLQ f + DQG ZKHUH O LV DQ HOHPHQW RI D GGLPHQVLRQDO SDUDPHWHU

PAGE 122

VSDFH 4 /HW XV GHQRWH E\ UMOf WKH FRKHUHQW VWDWHV DVVRFLDWHG ZLWK WKH UHSUHVHQWDWLRQ 8JLf RI ZKHUH f + LV WKH IL[HG QRUPDOL]HG ILGXFLDO YHFWRU /HW XV IXUWKHUPRUH DVVXPH WKDW WKHVH VWDWHV JLYH ULVH WR D UHVROXWLRQ RI LGHQWLW\ :2 ZKHUH GSOf GHQRWHV WKH QRUPDOL]HG OHIW LQYDULDQW JURXS PHDVXUH JLYHQ E\ ZKHUH ??*? GHQRWHV WKH QRUPDOL]DWLRQ IRU WKH GHILQLWLRQ RI GJOf VHH f :H FDQ QRZ XVH WKLV VHW RI FRKHUHQW VWDWHV WR JLYH D FRQWLQXRXV UHSUHVHQWDWLRQ RI + :H GHILQH WKH PDS &Y + f§! /*GS^Off ‘! >9@2 :f 02f :KLFK DV ZH NQRZ \LHOGV D UHSUHVHQWDWLRQ RI + E\ ERXQGHG FRQWLQXRXV VTXDUH LQWHJUDEOH IXQFWLRQV RQ WKH FORVHG VXEVSDFH /*GSOff RI /*GSOff :H QRZ LQWURGXFH WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU .QO W On Wnf DV IROORZV LW LV D VLQJOH SRVVLEO\ JHQHUDOL]HGf IXQFWLRQ WKDW LV LQGHSHQGHQW RI DQ\ SDUn WLFXODU FKRLFH RI WKH ILGXFLDO YHFWRU ZKLFK QHYHUWKHOHVV SURSDJDWHV WKH [SY FRUUHFWO\ LH  NK:fnnf:f f -J ,I HTXDWLRQ f LV WR KROG IRU DUELWUDU\ ZH PXVW UHTXLUH WKDW OLP $K n Wnf c*OHLJnPLnff f W!Wn ZKHUH H22f GHILQHG LQ f $Q DQDO\VLV RI RXU UHVXOWV SUHVHQWHG LQ FKDSWHU VKRZV WKDW /HPPD &RUROn ODU\ KROG IRU UHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV (YHQ WKRXJK ZH KDYH

PAGE 123

VWDWHG /HPPD DQG &RUROODU\ IRU LUUHGXFLEOH UHSUHVHQWDWLRQV WKLV SURSHUW\ RI WKH UHSUHVHQWDWLRQ LV QRW XVHG LQ WKH SURRIV RI WKHVH UHVXOWV KHQFH WKHVH UHVXOWV DOVR DSSO\ WR WKH FDVH ZKHQ RQH FRQVLGHUV UHGXFLEOH UHSUHVHQWDWLRQV 7KHUHIRUH LW LV D GLUHFW FRQVHTXHQFH RI /HPPD Lf WKDW IRU DQ\ LS [NL9LOf>&YLS@Of N OG KROGV LQGHSHQGHQWO\ RI Uc +HQFH ZH ILQG WKDW &Y LQWHUWZLQHV WKH UHSUHVHQWDWLRQ RI WKH /LH DOJHEUD / DVVRFLDWHG ZLWK RQ + ZLWK D VXEUHSUHVHQWDWLRQ RI / E\ ULJKW LQYDULDQW HVVHQWLDOO\ VHOIDGMRLQW GLIIHUHQWLDO RSHUDWRUV RQ DQ\ RQH RI WKH UHSURGXFLQJ NHUQHO +LOEHUW VSDFHV /A* GSff 'HQRWH E\ b$Urf WKH HVVHQWLDOO\ VHOIDGMRLQW +DPLOWRQ RSHUDWRU RI D TXDQWXP V\VWHP RQ + 7KHQ WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI 6FKURGLQJHUfV HTXDWLRQ RQ + LGWLSWf n+9fLf WDNHV RQ /A*GSff WKH IROORZLQJ IRUP r:8f >&UQ[NfLSPf n+[NL9LOffLSWOOWf 8VLQJ f ZH ILQG WKDW WKH ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU .X LV D VROXWLRQ WR WKLV 6FKUGLQJHU HTXDWLRQ LH LGW.XL W U R Q[N^LYK Lff.+L W U Wnf 7KHUHIRUH WRJHWKHU ZLWK HTXDWLRQ f ZH ILQG WKH IROORZLQJ LQLWLDO YDOXH SUREOHP LGW.+^: Wnf +[NL9L-ff.+OWOnWnf OLP .+ L I H If _*_LVfLOnff f W Wn ,W ZDV VXFK DQ LQLWLDO YDOXH SUREOHP WKDW ZH KDYH WDNHQ DV RXU VWDUWLQJ SRLQW IRU WKH SDWK LQWHJUDO IRUPXODWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU +HQFH ZH ILQG WKDW RQH FDQ XVLQJ 3URSRVLWLRQ LQWURGXFH SDWK LQWHJUDO UHSUHVHQWDWLRQV IRU JHQHUDO /LH JURXSV WKDW KDYH UHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQWDWLRQV +RZHYHU

PAGE 124

REVHUYH WKDW ZH FDQ RQO\ LQWURGXFH D ILGXFLDO YHFWRU LQGHSHQGHQW SURSDJDWRU LQ WKLV FDVH 7KLV SURJUDP RI KDV EHHQ H[SOLFLWO\ FDUULHG RXW IRU WKH FDVH RI eff E\ 7XOVLDQ DQG .ODXGHU >@ 2EVHUYH WKDW LI RQH FRQVLGHUV JURXSV ZLWK UHGXFLEOH VTXDUH LQWHJUDEOH UHSUHVHQn WDWLRQV RQH KDV WR SURFHHG RQ D FDVH E\ FDVH EDVLV VLQFH D JHQHUDO WKHRU\ LQ WKLV FDVH LV ODFNLQJ ,W ZRXOG WKHUHIRUH EH RI VRPH LQWHUHVW WR VHH LI WKH WKHRU\ GHYHORSHG E\ 'XIOR DQG 0RRUH >@ IRU ORFDOO\ FRPSDFW JURXSV ZLWK LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV FDQ EH H[WHQGHG WR ORFDOO\ FRPSDFW JURXSV ZLWK UHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV ,Q RXU RSLQLRQ DQRWKHU LQWHUHVWLQJ DYHQXH WR DFKLHYH WKH SDWK LQWHJUDO TXDQWL]DWLRQ RI WKH IRUP f IRU JHQHUDO /LH JURXSV WKDW GR QRW KDYH VTXDUH LQWHJUDEOH LUUHGXFLEOH UHSUHVHQWDWLRQV ZRXOG EH WR VWDUW IRUP WKH FODVVLFDO PHFKDQLFV DVVRFLDWHG ZLWK WKH SDUWLFXODU /LH JURXS RQH FRQVLGHUV DQG WR WU\ WR GHULYH WKH IRUP RI WKH DFWLRQ IXQFWLRQDO ZH KDYH DUULYHG DW LQ 3URSRVLWLRQ 7KH TXDQWL]DWLRQ ZRXOG WKHQ EH DFKLHYHG E\ SRVWXODWLQJ f DV WKH SDWK LQWHJUDO TXDQWL]DWLRQ IRU WKHVH NLQGV RI /LH JURXSV )XUWKHUPRUH ZH EHOLHYH WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU KROGV FRQVLGHUDEOH LQWHUHVW IRU TXDQWXP ILOHG WKHRU\ :H KDYH XVHG LQ WKLV WKHVLV WKH ZRUG UHSUHVHQWDWLRQ LQGHSHQGHQW LQ D GXDO PHDQLQJ LWV ILUVW PHDQLQJ SHUWDLQHG WR WKH IDFW WKDW WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LV LQGHSHQGHQW RI WKH FKRLFH RI WKH ILGXFLDO YHFWRU DQG LWV VHFRQG PHDQLQJ WR WKH IDFW WKDW WKLV SURSDJDWRU LV DOVR LQGHSHQGHQW RI WKH FKRLFH RI WKH XQLWDU\ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH /LH JURXS ,Q WKH FDVH RI TXDQWXP ILHOG WKHRU\ WKHVH WZR PHDQLQJV RI WKH ZRUG UHSUHVHQWDWLRQ LQGHSHQGHQW DUH LQH[WULFDEO\ UHODWHG VLQFH WKH G\QDPLFV FKRRVHV D UHSUHVHQWDWLRQ IRU WKH EDVLF NLQHPDWLFDO YDULDEOHV VHH IRU LQVWDQFH +DDJ > SS @ DQG .ODXGHU DQG 6NDJHUVWDP > SS @ :H WKHUHIRUH EHOLHYH WKDW LW ZRXOG EH D ZRUWKZKLOH WDVN WR H[WHQG RXU FRQFHSW RI D UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU LQWR WKH UHDOP RI TXDQWXP ILHOG WKHRU\

PAGE 125

$33(1',; $ $/*(%5$ )81&7,21$/ $1$/<6,6 $1' 5(35(6(17$7,21 7+(25< :H KDYH FROOHFWHG LQ WKLV DSSHQGL[ VRPH VWDQGDUG UHVXOWV IURP WKH ILHOGV RI $OJHn EUD )XQFWLRQDO $QDO\VLV DQG 5HSUHVHQWDWLRQ 7KHRU\ $O $OJHEUD /HW $ ^` EH D YHFWRU VSDFH RYHU WKH FRPSOH[ QXPEHUV & $ LV FDOOHG DQ DVVRFLDWLYH DOJHEUD ZLWK XQLW\ RYHU & LI D SURGXFW $ [ $ f§! $$%f $% LV GHILQHG RQ $ VXFK WKDW >$%f& $%&f $% &f $% $& $ %f& $& %& D$f% $D%f D$% IRU D f & DQG LI WKHUH H[LVWV DQ HOHPHQW f $ VXFK WKDW ,$ $, $ IRU DOO $ ( $ $ VHW 4 RI HOHPHQWV RI $ LV FDOOHG D V\VWHP RI JHQHUDWRUV RI $ LI WKH VPDOOHVW FORVHG VXEDOJHEUD ZLWK XQLW\ FRQWDLQLQJ 4 FRLQFLGHV ZLWK $ 7KH XQLW\ LV QRW LQFOXGHG LQ WKH V\VWHP RI JHQHUDWRUV /HW XV DVVXPH WKDW WKH DVVRFLDWLYH DOJHEUD ZLWK XQLW\ $ LV JHQHUDWHG E\ G HOHPHQWV ;? ;G LH 4 ^;M`ABM 7KHQ HDFK HOHPHQW RI $ FDQ EH ZULWWHQ DV G G $ D RL;L DLM;L;M $Of O Dr D Dr (&

PAGE 126

:H UHVWULFW WKH GLVFXVVLRQ WR WKH FDVH RI D ILQLWH QXPEHU RI JHQHUDWRUV DQG ZH ZLOO QRW GLVFXVV WRSRORJLHV RI $ LH LW LV DVVXPHG WKDW WKH DERYH VXPV IRU HYHU\ $ DUH DUELWUDULO\ ODUJH EXW ILQLWH 'HILQLQJ DOJHEUDLF UHODWLRQV DUH UHODWLRQV DPRQJ WKH JHQHUDWRUV 3;;Gf $f ZKHUH 3^[L ;Gf LV D SRO\QRPLDO RI G YDULDEOHV ZLWK FRPSOH[ FRHIILFLHQWV /HW % ( $ EH UHSUHVHQWHG E\ ,I RQH FDQ EULQJ $f LQWR WKH VDPH IRUP DV $Of ZLWK WKH VDPH FRHIILFLHQWV D D E\ XVLQJ WKH GHILQLQJ DOJHEUDLF UHODWLRQV $f WKHQ % LV HTXDO WR $ $ )XQFWLRQDO $QDO\VLV $ 2SHUDWRUV RQ +LOEHUW 6SDFH :H OLVW KHUH VRPH GHILQLWLRQV DQG SURSHUWLHV RI RSHUDWRUV RQ +LOEHUW VSDFHV ZKLFK DUH XVHG LQ WKH PDLQ ERG\ RI WKH WH[W $V LQ WKH SUHYLRXV VHFWLRQ ZH GHQRWH E\ & WKH VHW RI FRPSOH[ QXPEHUV 'HILQLWLRQ $ $ FRPSOH[ YHFWRU VSDFH + LV FDOOHG DQ LQQHU SURGXFW VSDFH LI WKHUH H[LVWV D FRPSOH[ YDOXHG IXQFWLRQ f ff RQ + [ + VDWLVI\LQJ IRU DOO S LS UM DQG DE ( & Lf FS DLS EUMf f§ DFS LSf ES UMf LLf SLSf LSSf +Lf S Sf DQG FS Sf LI DQG RQO\ LI S 7KH IXQFWLRQ f ff LV FDOOHG DQ LQQHU SURGXFW 2QH FDQ VKRZ WKDW HYHU\ LQQHU SURGXFW VSDFH LV D QRUPHG VSDFH ZLWK QRUP __ f ^f ‘ fA $ VHTXHQFH ^SQ` LQ + LV FDOOHG D &DXFK\ VHTXHQFH LI IRU HYHU\ H WKHUH b

PAGE 127

H[LVWV D 1Hf VXFK WKDW H IRU QP 1Hf $Q LQQHU SURGXFW VSDFH + LV FDOOHG FRPSOHWH LI HYHU\ &DXFK\ VHTXHQFH LQ + FRQYHUJHV WKDW LV KDV D OLPLW LQ +f $ FRPSOHWH LQQHU SURGXFW VSDFH LV FDOOHG D +LOEHUW VSDFH $ +LOEHUW VSDFH LV FDOOHG VHSDUDEOH LI LW FRQWDLQV D FRXQWDEOH GHQVH VXEVHW 2QH FDQ VKRZ WKDW D +LOEHUW VSDFH LV VHSDUDEOH LI DQG RQO\ LI LW KDV D FRXQWDEOH RUWKRQRUPDO EDVHV /HW + DQG +n EH +LOEHUW VSDFHV DQG OHW 7 EH D PDS IURP D OLQHDU VXEVSDFH '7f & + WR +n VXFK WKDW 7 DS ELSf D7S E7LS IRU DOO M!LS '7f DQG DOO DE & WKHQ 7 LV FDOOHG DQ RSHUDWRU IURP + WR +n 7KH OLQHDU VXEVSDFH '7f LV FDOOHG WKH GRPDLQ RI 7 7KH VHW 57f 7'7ff LV FDOOHG WKH UDQJH RI 7 $Q RSHUDWRU 7 + f§! +n LV FDOOHG ERXQGHG LI WKHUH H[LVWV VRPH b FRQVWDQW & VXFK WKDW __7!__+ &____+ IRU DOO + RWKHUZLVH LW LV FDOOHG XQERXQGHG 1RWH WKDW IRU ERXQGHG RSHUDWRUV RQH KDV '7f + KHQFH ERXQGHG RSHUDWRUV DUH GHILQHG RQ DOO RI + :H GHQRWH WKH VHW RI DOO ERXQGHG RSHUDWRUV IURP + WR +n E\ e+ +nf LI + +n ZH ZULWH e+f /HW 7 6 e+f WKHQ ZH GHILQH WKH SURGXFW RI 6 DQG 7 E\ 67fS 67I!f IRU DOO I! + 2QH FDQ HDVLO\ FKHFN WKDW WKH VHW RI DOO ERXQGHG RSHUDWRUV e+f IRUPV DQ DOJHEUD 1RZ OHW 7 ';ff f§} + EH D QRW QHFHVVDULO\ ERXQGHG RSHUDWRU IURP + WR + /HW 7L DQG 7 EH WZR RSHUDWRUV RQ + 7? LV FDOOHG DQ H[WHQVLRQ RI 7 LI DQG RQO\ LI '7f & '?f DQG 7?c! 7M! IRU DOO IL '7f ,I 7? LV DQ H[WHQVLRQ RI 7 ZH ZULWH 7 & 7? /HW 7 + f§ + EH D GHQVHO\ GHILQHG RSHUDWRU RQ + LH '7f LV D GHQVH VXEVHW RI + DQG OHW '7rf EH WKH VHW RI DOO LS f + IRU ZKLFK WKHUH LV DQ WM + ZLWK 7S[Sf I!U@f IRU DOO FS '7f

PAGE 128

)RU HDFK VXFK LS f '7rf ZH GHILQH 7rLS Uc 6LQFH '7f LV GHQVH LQ + WKH YHFWRU LV XQLTXHO\ GHWHUPLQHG 7r LV FDOOHG WKH DGMRLQW RI 7 ,I WKH GRPDLQ RI 7r LV GHQVH LQ + WKHQ ZH FDQ GHILQH 7rr rfr )RU WKH PRPHQW OHW XV FRQFHQWUDWH RQ ERXQGHG RSHUDWRUV RQ +LOEHUW VSDFHV $Q RSHUDWRU 7 f +f LV FDOOHG VHOIDGMRLQW LI 7 7r :H KDYH ^6 7< r 7? D6< D6r ^67< 7r6n 7rr 7 7KXV ZH VHH WKDW e+f FDQ EH UHJDUGHG DV DQ LQYROXWLYH rDOJHEUD (YHU\ VXEDOJHEUD RI e+f ZKLFK LV VWDEOH ZLWK UHVSHFW WR WKH DGMRLQW RSHUDWLRQ LV FDOOHG D rDOJHEUD /HW 3 f +f LI 3 3 DQG 3 3r WKHQ 3 LV FDOOHG DQ RUWKRJRQDO SURMHFWLRQ 7ZR RUWKRJRQDO SURMHFWLRQV DUH FDOOHG PXWXDOO\ RUWKRJRQDO LI 33 33 :H GHQRWH E\ U+f WKH VHW RI DOO RUWKRJRQDO SURMHFWLRQV $Q RSHUDWRU 8 IURP + RQWR +n LV FDOOHG XQLWDU\ LI 8S 8LSfA ^SLSf+ IRU DOO SLS ( + $ XQLWDU\ RSHUDWRU VDWLVILHV 8r8 88r 7ZR +LOEHUW VSDFHV +L DQG + DUH VDLG WR EH LVRPRUSKLF LI WKHUH H[LVWV D XQLWDU\ RSHUDWRU IURP +L RQWR + $Q RSHUDWRU 7 f e++nf LV FDOOHG FRPSDFW LI DQG RQO\ LI IRU HYHU\ ERXQGHG VHTXHQFH ^!f` & + WKH VHTXHQFH ^7SQ` & +n KDV D VXEVHTXHQFH WKDW FRQYHUJHV LQ +n /HW XV QRWH WKH IROORZLQJ IDFWV DERXW QRQ]HUR VHOIDGMRLQW FRPSDFW RSHUDWRUV LQ e+f Lf (YHU\ QRQ]HUR VHOIDGMRLQW FRPSDFW RSHUDWRU KDV DW OHDVW RQH HLJHQYHFWRU 3? ZKLFK EHORQJV WR D QRQ]HUR HLJHQYDOXH $ VHH > SS @f LLf )URP WKH 5HOOLFK+LOEHUW6FKPLGW 7KHRUHP > S @ ZH KDYH WKH IROORZLQJ VSHFWUDO UHVROXWLRQ IRU QRQ]HUR FRPSDFW VHOIDGMRLQW RSHUDWRUV 22 7 -;A $f r ZKHUH WKH 3r DUH PXWXDOO\ RUWKRJRQDO SURMHFWLRQV RQ WKH ILQLWH GLPHQVLRQDO HLJHQVSDFHV +r 3r+ DQG _$r_ f§ DV N f§ 0RUHRYHU RQH KDV WKDW

PAGE 129

+ eOM +IF NHU7f ZKHUH NHU7f ^! + 7M! f§ ` LV WKH NHUQHO RI 7 +HQFH WKH +LOEHUW VSDFH + GHFRPSRVHV LQWR D GLUHFW RUWKRJRQDO VXP RI PXWXDOO\ RUWKRJRQDO ILQLWH GLPHQVLRQDO VXEVSDFHV ,I 7 LV RQHWRRQH WKHQ NHU7f FRQVLVWV RQO\ RI WKH ]HUR HOHPHQW $Q RSHUDWRU 7 LV FDOOHG WUDFH FODVV LI DQG RQO\ LI WU\7r7f RR ,I 7 LV WUDFH FODVV DQG % f e+f WKHQ 7% DQG %7 DUH WUDFH FODVV IXUWKHUPRUH RQH KDV WU7%f WU %7f $Q RSHUDWRU LV FDOOHG +LOEHUW6FKPLGW LI DQG RQO\ LI WU7r7f RR 2QH FDQ VKRZ WKDW LI 7 LV WUDFH FODVV RU +LOEHUW6FKPLGW WKHQ 7 LV FRPSDFW :H ZLOO QRZ GLVFXVV XQERXQGHG RSHUDWRUV RQ + $Q RSHUDWRU 7 RQ + LV FDOOHG FORVHG LI WKH UHODWLRQV OLP MfQ f§ M! OLP 7M!Q LS ^"!f` & '7f Qf§} RR Qf§RR H 7f DQG 7 [E UM PHDQV VWURQJ FRQYHUJHQFH DQG LV VKRUWKDQG IRU )RU HYHU\ H WKHUH H[LVWV D -9Hf VXFK WKDW 9Q f§ Y: H IRU DOO Q 1Hf &ORVHGQHVV LV D ZHDNHU FRQGLWLRQ WKDQ FRQWLQXLW\ ,I 7 LV D FRQWLQXRXV RSHUDWRU RQ + WKHQ OLP f§! !Q Mf LPSOLHV WKDW WKH VHTXHQFH ^7!Q` FRQYHUJHV 2Q WKH RWKHU KDQG LI 7 LV RQO\ FORVHG WKHQ WKH FRQYHUJHQFH RI WKH VHTXHQFH ^!f` & '7f GRHV QRW LPSO\ WKH FRQYHUJHQFH RI WKH VHTXHQFH ^7-fQ` 1HYHUWKHOHVV LI 7 LV FORVHG DQG WKH VHTXHQFHV ^SQ` ^LSQ` & '7f KDYH WKH VDPH OLPLW WKHQ WKH ,W LV ZRUWK HPSKDVL]LQJ WKDW DQ RSHUDWRU LV FRQWLQXRXV LI DQG RQO\ LI LW LV ERXQGHG 7KHUHIRUH XQERXQGHG RSHUDWRUV RQ + FDQ QRW EH FRQWLQXRXV KRZHYHU WKH\ FDQ EH FORVHG ,I 7 LV QRW FORVHG RQH FDQ VRPHWLPHV ILQG D FORVHG H[WHQVLRQ RI 7 ,I D FORVHG H[WHQVLRQ RI 7 H[LVWV WKHQ 7 LV FDOOHG FORVHDEOH WKH VPDOOHVW FORVHG H[WHQVLRQ RI 7 LV FDOOHG LWV FORVXUH ZKLFK LV GHQRWHG E\ 7 $Q RSHUDWRU 7 + f§!f +n LV FORVHDEOH LI DQG RQO\ LI WKH IROORZLQJ KROGV ,I ^!Q` LV D VHTXHQFH LQ '7f ZLWK OLP Qf§N[f r9Q DQG

PAGE 130

^7I!f` & +n LV FRQYHUJHQW WKHQ OLPA 7ef ,I 7 LV FORVHDEOH WKHQ ^If f + WKHUH H[LVWV D ^ff` LQ 7f ZLWK OLPQAAQ I! VXFK WKDW ^7IfQ` LV FRQYHUJHQW` OLP 7IfQ IRU If f '7f Qf§!RR 7KHUH H[LVWV D VLPSOH UHODWLRQVKLS EHWZHHQ WKH QRWLRQV RI DGMRLQW DQG FORVXUH /HW 7 EH D GHQVHO\ GHILQHG RSHUDWRU RQ + 7KHQ Lf 7r LV FORVHG LLf 7 LV FORVHDEOH LI DQG RQO\ LI '7rf LV GHQVH LQ + LQ ZKLFK FDVH 7 7rr LLLf ,I 7 LV FORVHDEOH WKHQ 7fr 7r )RU D SURRI VHH 5HI S f ([DPSOH RI D QRQFORVHDEOH RSHUDWRU /HW + VXPPDEOH VHTXHQFHV LH + ^^RQ` RSHUDWRU e WKH VSDFH RI DOO DEVROXWHO\ VTXDUH D Q RR` &RQVLGHU WKH IROORZLQJ 7 '7f O 22 3 ^DQ` f! ^\AQDQ` 7/f§ 22 '7f ^^DQ` f W AQ_RQ_ RR` Q O 2QH FDQ HDVLO\ VHH WKDW '7f FRQWDLQV WKH GHQVH VXEVSDFH W RI e ZKHUH e ^^DQ` ^DL Df`` LV WKH VSDFH RI DOO ILQLWH VHTXHQFHV LH RQO\ ILQLWHO\ PDQ\ HQWULHV RI ^DQ` DUH QRQ]HUR +HQFH 7 LV GHQVHO\ GHILQHG EXW 7 LV QRQFORVHDEOH 7KLV FDQ EH VHHQ DV IROORZV 7KH DGMRLQW RI 7 LV JLYHQ E\ 7 ^R}L` f§ ^FLL FLL GL QR?` 1RZ IRU ^DQ` WR EH LQ '7rf ZH PXVW KDYH WKDW __7f^DQ`__ A?;=A/L Qf *O rr! ZKLFK LPSOLHV WKDW DM 7KHUHIRUH '7rf FRQVLVWV RI DOO HOHPHQWV RI  ZKRVH

PAGE 131

ILUVW HQWU\ LV ]HUR +HQFH WKH RQH GLPHQVLRQDO VXEVSDFH VSDQQHG E\ ^` LV RUWKRJRQDO WR '7rf ZKLFK LPSOLHV WKDW 7r LV QRW GHQVHO\ GHILQHG DQG WKHUHIRUH 7 LV QRW FORVHDEOH 2 $ GHQVHO\ GHILQHG RSHUDWRU 7 RQ D +LOEHUW VSDFH + LV FDOOHG V\PPHWULF LI 7 & 7r WKDW LV LI '7f & 'M7rf DQG 7S 7rM! IRU DOO I! f '7f (TXLYDOHQWO\ 7 LV V\PPHWULF LI DQG RQO\ LI 7If[Sf 7LSf IRU DOO I!LS f '7f $Q RSHUDWRU LV FDOOHG VHOIDGMRLQW LI DQG RQO\ LI 7 LV V\PPHWULF DQG '7f '7rf 1RWH WKDW V\PPHWULF RSHUDWRUV DUH DOZD\V FORVHDEOH VLQFH '7rf '7f LV GHQVH LQ + ,I 7 LV D V\PPHWULF RSHUDWRU WKHQ 7r LV DQ H[WHQVLRQ RI 7 VR WKH VPDOOHVW FORVHG H[WHQVLRQ 7rr RI 7 KDV WR EH FRQWDLQHG LQ 7r +HQFH RQH KDV IRU V\PPHWULF RSHUDWRUV 7 &7 rr )RU FORVHG V\PPHWULF RSHUDWRUV $QG IRU VHOIDGMRLQW RSHUDWRUV 7KH GLVWLQFWLRQ EHWZHHQ FORVHG V\PPHWULF RSHUDWRUV DQG VHOIDGMRLQW RSHUDWRUV LV YHU\ LPSRUWDQW 2QO\ VHOIDGMRLQW RSHUDWRUV KDYH D VSHFWUDO UHVROXWLRQ VHH EHORZf DQG RQO\ VHOIDGMRLQW RSHUDWRUV PD\ EH H[SRQHQWLDWHG WR JLYH RQHSDUDPHWHU XQLWDU\ JURXSV ZKLFK JLYH WKH G\QDPLFV RI D TXDQWXP V\VWHP $ V\PPHWULF RSHUDWRU LV FDOOHG HVVHQWLDOO\ VHOIDGMRLQW LI LWV FORVXUH 7 LV VHOIDGMRLQW 7R VKRZ WKDW DQ RSHUDWRU 7 LV HVVHQWLDOO\ VHOIDGMRLQW LW LV QHFHVVDU\ DQG VXIILFLHQW WR VKRZ WKDW NHU7r s LOf ^` ,Q RWKHU ZRUGV RQH KDV WR VKRZ WKDW WKH HTXDWLRQ 7rs sLMfs

PAGE 132

KDV QR VROXWLRQV LQ + RWKHU WKDQ M!s )RU VHOIDGMRLQW RSHUDWRUV RQH KDV WKH IROORZLQJ VSHFWUDO GHFRPSRVLWLRQ > S @ 7KHRUHP $ 6SHFWUDO 7KHRUHPf 7KHUH LV D RQHWRRQH FRUUHVSRQGHQFH EHWZHHQ VHOIDGMRLQW RSHUDWRUV 7 DQG WKH SURMHFWLRQ YDOXHG PHDVXUHV 37 ff RQ + 7KLV FRUUHn VSRQGHQFH LV JLYHQ E\ IRH ;37G;f f ZKHUH D SURMHFWLRQYDOXHGPHDVXUH LV D PDS IURP WKH %RUHO PHDVXUDEOH VHWV RI ,5 LQWR WKH VHW RI DOO RUWKRJRQDO SURMHFWLRQV U+f VDWLVI\LQJ WKH IROORZLQJ FRQGLWLRQV LfS7#f R DQG 37^5f LLf,I ^(L`LeZ L9 ^` LV D VHTXHQFH RI PXWXDOO\ GLVMRLQW UHDO %RUHO PHDn VXUDEOH VHWV WKHQ 3U8WH]Y (If -OLHL[ 37(Lf LLLf37(f37)f 37( + )f $ 'LUHFW ,QWHJUDOV $OO +LOEHUW VSDFHV LQ WKLV VHFWLRQ DUH VHSDUDEOH /HW ( EH D ORFDOO\ FRPSDFW VHSDn UDEOH VSDFH DQG OHW Y EH D SRVLWLYH PHDVXUH RQ ( )RU HYHU\ M f ( OHW WKHUH H[LVW D +LOEHUW VSDFH ZLWK LQQHU SURGXFW f f f $ YHFWRU ILHOG LV D PDS IURP ( WR VXFK f§ & A 9nF f +A $ FRXQWDEOH IDPLO\ RI YHFWRU ILHOGV ^9ff`fL9 LV FDOOHG D IXQGDPHQWDO IDPLO\ LI WKH IROORZLQJ WZR FRQGLWLRQV DUH IXOILOOHG $ Lf $OO IXQFWLRQV ( e f} DUH LPPHDVXUDEOH IRU LM L9 LLf )RU DOO e ( WKH IDPLO\ RI YHFWRUV V3DQV WKH VSDFH +A $ YHFWRU ILHOG A f LV FDOOHG PHDVXUDEOH LI DOO WKH IXQFWLRQV e r}‘ O f 9 DUH LPPHDVXUDEOH /HW XV QRWH WKH IROORZLQJ IDFWV DERXW PHDVXUDEOH YHFWRU ILHOGV FI > /HPPD @f Lf 7KH PHDVXUDEOH YHFWRU ILHOGV IRUP D OLQHDU VXEVSDFH RI Qm +F

PAGE 133

LLf ,I LV D PHDVXUDEOH YHFWRU ILHOG WKHQ __Af__A LV D LPPHDVXUDEOH IXQFWLRQ LLLf ,I LSf DQG A f DUH LPPHDVXUDEOH YHFWRU ILHOGV WKHQ LSA SAf LV D PHDVXUDEOH IXQFWLRQ 8VLQJ WKH *UDP6FKPLGW RWKRJRQDOL]DWLRQ SURFHGXUH RQH FDQ FRQVWUXFW D FRPn SOHWH RUWKRQRUPDO VHW RI YHFWRU ILHOGV LH D VHTXHQFH I! S RI PHDVXUDEOH YHFWRU ILHOGV VXFK WKDW Lf ,I GLP+A RR WKHQ WKH VHW VSDQV +L DQG !e SAfA 6LM ZKHUH M LI L M DQG LM LI L c M LLf ,I GLP+A f§ G RR WKHQ S`Sr IRUP DQ RUWKRQRUPDO EDVLV RI +A DQG IRU M G 2QH FDOOV D PHDVXUDEOH YHFWRU ILHOG !f VTXDUH LQWHJUDEOH LI 2QH FDOOV WZR PHDVXUDEOH YHFWRU ILHOGV HTXLYDOHQW LI WKH\ DUH HTXDO ]PDOPRVW HYHU\n ZKHUH RQ ( 'HILQLWLRQ $ 7KH VSDFH RI HTXLYDOHQFH FODVVHV RI PHDVXUDEOH VTXDUH LQWHJUDEOH YHFWRU ILHOGV SA HTXLSSHG ZLWK WKH LQQHUSURGXFW LV FDOOHG WKH GLUHFW LQWHJUDO RI WKH +LOEHUW VSDFHV +A :H GHQRWH WKLV VSDFH E\ WKH V\PERO *HQHUDOL]LQJ WKH DUJXPHQWV XVHG LQ WKH SURRI RI WKH 5LHV])LVFKHU 7KHRUHP FI > S @f RQH FDQ VKRZ WKDW B+LGA&f LV FRPSOHWH +HQFH I+GYf LV D +LOEHUW VSDFH ZKLFK ZH VLPSO\ GHQRWH E\ +

PAGE 134

([DPSOHV Lf OHW ( ,9 DQG OHW YQf IRU DOO Q e ,9 WKHQ HYHU\ YHFWRU ILHOG LV PHDVXUDEOH DQG + +AGY4 FDQ EH LGHQWLILHG ZLWK k+& rn & HZ +HQFH IRU WKLV FDVH WKH GLUHFW LQWHJUDO UHGXFHV WR WKH GLUHFW RUWKRJRQDO VXP LLf ,I GLP +F IRU DOO *( WKHQ RQH FDQ FKRRVH WKH IXQGDPHQWDO IDPLO\ LQ VXFK D ZD\ WKDW DOO YHFWRU ILHOGV DUH FRPSOH[ PHDVXUDEOH IXQFWLRQV +HQFH + +?GY4 FDQ EH LGHQWLILHG ZLWK /(GYf 2QH FDQ VKRZ WKDW + I +AGLVI£f LV VHSDUDEOH LI ( LV VHSDUDEOH FI > 3URSRVLWLRQ @f $ 'LDJRQDO DQG 'HFRPSRVDEOH 2SHUDWRUV :H FDOO WZR IXQFWLRQ DQG J HTXLYDOHQW LI J LnDOPRVW HYHU\ZKHUH :H GHQRWH E\ /rr( GYf WKH VSDFH RI DOO HTXLYDOHQFH FODVVHV RI PHDVXUDEOH IXQFWLRQV ZKLFK DUH ERXQGHG H[FHSW SRVVLEO\ RQ D VHW RI PHDVXUH ]HUR 7KHQ /rr(GYf LV D OLQHDU VSDFH DQG LW EHFRPHV D QRUPHG OLQHDU VSDFH LI ZH GHILQH 2& HVV VXS_&f_ ZKHUH HVV VXS&f LV WKH LQILPXP RI VXS J4 DV J UDQJHV RYHU DOO IXQFWLRQV ZKLFK DUH HTXDO WR LDOPRVW HYHU\ZKHUH 7KXV HVV VXS&f LQI ^$ L^& &f 0`f ` /HW f /rr( GYf DQG OHW A EH WKH LGHQWLW\ RSHUDWRU RQ +A WKHQ ZH FDOO WKH RSHUDWRU ILHOG ( A IL2K H +Hf D FRQWLQXRXVO\ GLDJRQDO RSHUDWRU LQ WKH +LOEHUW VSDFH + I+GYef 2QH FDQ DVVRFLDWH ZLWK WKH RSHUDWRU ILHOG & A I^2K WKH IROORZLQJ ERXQGHG RSHUDWRU LQ + 7IfS e + ZKHUH ^7IfSf &f &f IrU D8 & e ff

PAGE 135

2QH FDQ VKRZ WKDW __7f__ +RF FI > 3URSRVLWLRQ @f :H FDOO DQ RSHUDWRU ILHOG 7f 7 e+ f PHDVXUDEOH LI DOO IXQFWLRQV & r A7ZKHUH ^f` LV D IXQGDPHQWDO IDPLO\ RI YHFWRU ILHOGV DUH PHDVXUDEOH ,I ef LV D PHDVXUDEOH YHFWRU ILHOG DQG 7f LV D PHDVXUDEOH RSHUDWRU ILHOG WKHQ e LV D PHDVXUDEOH f f YHFWRU ILHOG 7KLV FDQ EH VHHQ DV IROORZV VLQFH K} ^!>LV PHDVXUDEOH WKH YHFWRU ILHOG LV PHDVXUDEOH IRU HYHU\ L f ,1 +HQFH L! F L9 VLQFH & r!‘ F PHDVXUDEOH LI c!A DQG 9nf DUH PHDVXUDEOH :H QRZ LQWURGXFH WKH FRQFHSW RI GHFRPSRVDEOH RSHUDWRUV /HW 7f EH D PHDVXUn DEOH RSHUDWRU ILHOG VXFK WKDW WKH IXQFWLRQ ??7>f?? & A OOAFOOFf f /rr(GYf 'HILQH & HVV VXS__f__ )RU HYHU\ !f f + WKH YHFWRU ILHOG & ! LV PHDVXUDEOH DQG RQH KDV ??70?L ,5,,G:,F &OOAOOW LnDOPRVW HYHU\ZKHUH 7KHUHIRUH ??70`G9^D FI P??LY4 FX?? ,I RQH GHQRWHV WKH YHFWRU ILHOG 4 E\ 7S WKHQ RQH KDV 7AJ+ DQG ??7If?? &____ 7KXV 7 LV D ERXQGHG RSHUDWRU RQ + 2QH FDOOV WKH RSHUDWRU 7 D GHFRPSRVDEOH RSHUDWRU DQG ZH VKDOO GHQRWH LW E\ (YHU\ GLDJRQDO RSHUDWRU LV D GHFRPSRVDEOH RSHUDWRU :H ZLOO UHPDUN EHORZ RQ WKH UHODWLRQVKLS EHWZHHQ WKHVH RSHUDWRUV 2QH FDQ VKRZ WKDW VHH > 3URSRVLWLRQ @f

PAGE 136

/HW XV QRWH WKH IROORZLQJ SURSHUWLHV RI GHFRPSRVDEOH RSHUDWRUV Lf I6 UFf0&f 60R 7FGYf LLf I D7AGX^&f D 7AGX^4 LLLf ^67Gnmf< ‘ LYf `6702 -602 r670 Yf ,I LnDOPRVW DOO 8A DUH XQLWDU\ WKHQ I 8AGYf LV DQ XQLWDU\ RSHUDWRU LQ + +HQFH WKH GHFRPSRVDEOH RSHUDWRUV IRUP D rDOJHEUD /HW $ & e+f EH D rDOJHEUD ZH GHQRWH E\ $n WKH VHW RI WKRVH HOHPHQWV RI e+f WKDW FRPPXWH ZLWK DOO HOHPHQWV RI $ $n LV FDOOHG WKH FRPPXWDQW RI $ DQG ^$nfn $ LV FDOOHG WKH ELFRPPXWDQW RI $ 2QH KDV WKDW $ & $ DQG WKDW $ & % LPSOLHV e!n & $n 'HILQLWLRQ $ $ YRQ 1HXPDQQ DOJHEUD LQ + LV D rVXEDOJHEUD $ RI e+f VXFK WKDW $ $ 6LQFH $ & $ LPSOLHV WKDW $f & $n DQG VLQFH ZH KDYH WKDW $n & ^$nf ZH FRQFOXGH WKDW $n ^$nf +HQFH WKH FRPPXWDQW RI HYHU\ rDOJHEUD LV D YRQ 1HXPDQQ DOJHEUD 2WKHU H[DPSOHV RI YRQ 1HXPDQQ DOJHEUDV DUH e+f DQG LWV FRPPXWDQW WKH VFDODU RSHUDWRUV &K 7KHUH H[LVWV WKH IROORZLQJ UHODWLRQVKLS EHWZHHQ GLDJRQDO DQG GHFRPSRVDEOH RSHUDWRUV 7KHRUHP $ YRQ 1HXPDQQf Lf 7KH DOJHEUD 9 RI GLDJRQDO RSHUDWRUV LV D FRPPXWDWLYH YRQ 1HXPDQQ DOJHEUD LLf 7KH FRPPXWDQW 9 RI 9 LV WKH YRQ 1HXPDQQ DOJHEUD 7= RI GHFRPSRVDEOH RSHUn DWRUV LQ + LH 9n n 9 )RU D SURRI VHH 5HI 7KHRUHP f

PAGE 137

/HW $ EH D YRQ 1HXPDQQ DOJHEUD WKH VXEDOJHEUD = f§ ^; ;< f§ <; IRU HYHU\ < e $` LV FDOOHG WKH FHQWHU RI $ 1RWH WKDW = $ $ 'HILQLWLRQ $ $ YRQ 1HXPDQQ DOJHEUD LV FDOOHG D IDFWRU LI DQG RQO\ LI LWV FHQWHU FRQWDLQV RQO\ WKH VFDODU RSHUDWRUV ([DPSOHV Lf 7KH VHW e+f RI DOO ERXQGHG RSHUDWRUV RQ D +LOEHUW VSDFH + LV D IDFWRU LLf $ YRQ 1HXPDQQ DOJHEUD $ ZKLFK LV LVRPRUSKLF WR e+nf IRU VRPH +LOEHUW VSDFH +n LV D IDFWRU 6XFK D IDFWRU LV VDLG WR EH RI W\SH %HORZ ZH VKDOO JLYH DQRWKHU GHILQLWLRQ RI IDFWRUV RI W\SH LLLf ,I 8 J 8J LV DQ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ RI D /LH JURXS FI VXEVHFWLRQ $f WKHQ WKH YRQ 1HXPDQQ DOJHEUD JHQHUDWHG E\ 8 LV D IDFWRU RI W\SH LYf ,I WKH YRQ 1HXPDQQ DOJHEUD $ LV D IDFWRU WKHQ LWV FRPPXWDQW $n LV DOVR D IDFWRU 'HILQLWLRQ $ $ YRQ 1HXPDQQ DOJHEUD LV RI W\SH LI LW LV LVRPRUSKLF WR D YRQ 1HXPDQQ DOJHEUD % ZKLFK KDV DQ DEHOLDQ FRPPXWDQW $ % DQG 6n LV FRPPXWDWLYH 'HILQLWLRQ $ /HW $ EH D YRQ 1HXPDQQ DOJHEUD DQG 3 D SURMHFWLRQ RI $ 2QH VD\V WKDW 3 LV PLQLPDO UHODWLYH WR $f LI 3 $ DQG HYHU\ SURMHFWLRQ RI $ PDMRUL]HG E\ 3 LV HTXDO WR RU WR 3 r 7KH IROORZLQJ 7KHRUHP JLYHV D FKDUDFWHUL]DWLRQ RI W\SH IDFWRUV 7KHRUHP $ /HW $ EH D IDFWRU LQ + 7KHQ WKH IROORZLQJ DUH HTXLYDOHQW Lf $ LV RI W\SH ,

PAGE 138

LLf $ LV RI W\SH LQf $ SRVVHVVHV PLQLPDO SURMHFWLRQV LYf $n SRVVHVVHV PLQLPDO SURMHFWLRQV Yf 7KHUH H[LVW +LOEHUW VSDFHV +n + DQG DQ LVRPRUSKLVP RI + RQWR +n J! + ZKLFK WUDQVIRUPV $ LQWR e+nf p&Z DQG $n LQWR &Kn p e+f )RU D SURRI VHH 5HI &RUROODU\ f 7KHUH DUH DOVR RWKHU W\SHV RI IDFWRUV VXFK DV IDFWRUV RI W\SH ,, DQG W\SH ,,, KRZHYHU ZH VKDOO QRW EH FRQFHUQHG ZLWK WKHP )RU YHU\ UHDGDEOH DFFRXQWV RI WKH FODVn VLILFDWLRQ RI YRQ 1HXPDQQ DOJHEUDV ZH UHIHU WKH LQWHUHVWHG UHDGHU WR WKH PRQRJUDSKV E\ (PFK >@ DQG *DDO >@ $ 7KH 1XFOHDU 6SHFWUDO 7KHRUHP 7KH 6SHFWUDO 7KHRUHP $ IRU VHOIDGMRLQW RSHUDWRUV LV DQ HVVHQWLDO WRRO LQ PDQ\ ILHOGV RI 0DWKHPDWLFV 1HYHUWKHOHVV 7KHRUHP $ GRHV QRW JLYH WKH PRVW FRQYHn QLHQW IRUP RI WKH VSHFWUDO UHVROXWLRQ RI D VHOIDGMRLQW RSHUDWRU LQ TXDQWXP PHFKDQLFV 7KHUH LV KRZHYHU D IRUP RI WKH VSHFWUDO WKHRUHP FDOOHG WKH 1XFOHDU 6SHFWUDO 7KHRn UHP FRQMHFWXUHG E\ 'LUDF ZKLFK LV HVSHFLDOO\ FRQYHQLHQW LQ TXDQWXP PHFKDQLFV 7KH 1XFOHDU 6SHFWUDO 7KHRUHP LV WKH DQDORJ WR WKH VSHFWUDO GHFRPSRVLWLRQ RI D FRPSDFW VHOIDGMRLQW RSHUDWRU IRU D JHQHUDO VHOIDGMRLQW RSHUDWRU GHILQHG RQ D QXFOHDUVSDFH 7R GR WKLV 7KHRUHP DQ\ MXVWLFH RQH ZRXOG KDYH WR GHYRWH D ZKROH FKDSWHU RU HYHQ DQ HQWLUH PRQRJUDSK WR LW :H UHIHU WKH LQWHUHVWHG UHDGHU WR WKH H[FHOOHQW PRQRJUDSK E\ 0DXULQ >@ ZKLFK GLVFXVVHV WKH 1XFOHDU 6SHFWUDO 7KHRUHP DQG PDQ\ RI LWV DSSOLFDn WLRQV LQ 0DWKHPDWLFV DQG 3K\VLFV DW OHQJWK )RU D PRUH 3K\VLFV RULHQWHG LQWURGXFWLRQ WR WKH 1XFOHDU 6SHFWUDO 7KHRUHP ZH UHIHU WKH UHDGHU WR %RKP >@ /HW XV LQWURGXFH VRPH WHUPLQRORJ\ DQG WKHQ VLPSO\ VWDWH WKH 1XFOHDU 6SHFWUDO 7KHRUHP LQ D SK\VLFV PLQGHG ZD\

PAGE 139

$ 6RPH 7RSRORJLFDO 1RWLRQV 'HILQLWLRQ $ /HW ; EH D VHW $ IDPLO\ RI VXEVHWV 7 RI ; LV FDOOHG D WRSRORJ\ RQ ; LI WKH IROORZLQJ D[LRPV KROG 7R3O 7 ; 7 7RS 2L 7 LPSOLHV WKDW ? Q 7 7RS] : & 7 LPSOLHV WKDW _A: 7 :(: 7KH SDLU $U 7f LV FDOOHG D WRSRORJLFDO VSDFH 7KH HOHPHQWV RI ; DUH FDOOHG SRLQWV RI WKH WRSRORJLFDO VSDFH 7KH HOHPHQWV RI 7 DUH FDOOHG RSHQ VHWV LQ ; 7f $ VXEVHW $ RI D WRSRORJLFDO VSDFH ; 7f LV FDOOHG FORVHG LI DQG RQO\ LI LWV UHODWLYH FRPSOHPHQW ; a $ LV RSHQ 7KH 7FORVXUH RI D VXEVHW $ RI D WRSRORJLFDO VSDFH ; 7f LV WKH LQWHUVHFWLRQ RI WKH PHPEHUV RI WKH IDPLO\ RI DOO FORVHG VHWV FRQWDLQLQJ $ :H GHQRWH WKH FORVXUH RI $ E\ $ 6LQFH $ LV WKH LQWHUVHFWLRQ RI FORVHG VHWV LW LV DOZD\V FORVHG )XUWKHUPRUH VLQFH $ LV FRQWDLQHG LQ HYHU\ FORVHG VHW FRQWDLQLQJ $ LW LV WKH VPDOOHVW FORVHG VHW FRQWDLQLQJ $ 7KLV \LHOGV DQ DOWHUQDWH GHILQLWLRQ RI FORVHGQHVV $ VHW $ LV FORVHG LI DQG RQO\ LI $ $ /HW ; EH D VHW DQG OHW 7 DQG 7! EH WRSRORJLHV RQ ,I & 7" WKHQ ZH VD\ LV D ZHDNHU WRSRORJ\ WKDQ 7 DQG 7 LV D VWURQJHU WRSRORJ\ WKDQ 7KLV WHUPLQRORJ\ GHULYHV IURP WKH IDFW WKDW IHZHU VHTXHQFHV FRQYHUJH LQ 7! WKDQ GR LQ VR AFRQYHUJHQFH LV D VWURQJHU QRWLRQ WKDQ FRQYHUJHQFH $ 1XFOHDU 6SDFH /HW ?) & + EH D GHQVH VHW RI DQDO\WLF YHFWRUV IRU DQ HVVHQWLDOO\ VHOIDGMRLQW SRVLWLYH GHILQLWH RSHUDWRU $ RQ + )RU WKH GHILQLWLRQ RI DQDO\WLF YHFWRUV VHH VXEVHFWLRQ :H GHQRWH E\ K WKH XVXDO WRSRORJ\ RQ + JHQHUDWHG E\ WKH QRUP RQ + 7KH RSHQ VHWV 2 RI WKLV WRSRORJ\ DUH WKRVH VHWV 2F+ ZLWK WKH SURSHUW\ WKDW IRU DOO Mf 2 WKHUH H[LVWV DQ U VXFK WKDW WKH VHW ^LS ??LS f§ !?? U` LV FRQWDLQHG LQ 2 7KH FORVXUH RI $W LQ WKH +WRSRORJ\ LV +

PAGE 140

/HW XV QRZ LQWURGXFH DQRWKHU WRSRORJ\ RQ ?) ZKLFK ZH FDOO 7DNH WKH LQQHU SURGXFW RQ + DQG GHILQH D IDPLO\ RI LQQHU SURGXFWV DQG QRUPV RQ 6,n /HW f f) WKHQ ZH GHILQH $ W fSf IRU S f6LQFH $ LV V\PPHWULF DQG SRVLWLYH GHILQLWH LW LV HDV\ WR VHH WKDW f ff IXOILOOV DOO WKH D[LRPV LQ 'HILQLWLRQ $ IRU DQ LQQHU SURGXFW IXUWKHUPRUH RQH KDV WKDW R L :H FDOO D VSDFH ZLWK D FRXQWDEOH QXPEHU RI LQQHU SURGXFWV QRUPVf D FRXQWDEO\ LQQHU SURGXFW FRXQWDEO\ QRUPHGf VSDFH :H QRZ GHILQH E\ 'HILQLWLRQ $ $ VHTXHQFH ^Q`A/ LQ 6/ FRQYHUJHV LQ WKH WRSRORJ\ WR I! LQ n) LI IRU HDFK S OLP __L __S Qf§}RF ,I D VHTXHQFH ^f` FRQYHUJHV WR LQ WKH WRSRORJ\ WKHQ ^Q` DOVR FRQYHUJHV LQ WKH WRSRORJ\ K WR EXW QRW YLFH YHUVD +HQFH LV D VWURQJHU WRSRORJ\ WKDQ 7Dn LQ DQDORJ\ WR WKH FDVH RI DQ RUGLQDU\ LQQHU SURGXFW VSDFH ZH FDOO D VHTXHQFH ^Q` D 7A&DXFK\ VHTXHQFH LI IRU HYHU\ S DQG HYHU\ H WKHUH H[LVWV DQ 1HSf VXFK WKDW __P Q__S H IRU DOO PQ 1^HSf :H QRZ FRPSOHWH WKH VSDFH ?) ZLWK UHVSHFW WR WKH WRSRORJ\ LH ZH DGG WKH OLPLWV RI WKH &DXFK\ VHTXHQFHV WR ?) :H FDOO WKH OLQHDU VSDFH ZH KDYH VR REWDLQHG 1RWH WKDW n) & LV GHQVH LQ ,! LQ WKH WRSRORJ\ :H FDOO } D FRXQWDEO\ +LOEHUW VSDFH ,Q 'LUDFfV WHUPLQRORJ\ WKH HOHPHQWV RI WKLV VSDFH DUH FDOOHG 9 NHW YHFWRUV )XUWKHUPRUH VLQFH LV VWURQJHU WKDQ K ZH KDYH WKDW n) & & + 7KHUHIRUH LV +GHQVH LQ + VLQFH f) LV DOUHDG\ QGHQVH LQ +

PAGE 141

/HW XV FRQVLGHU D /LH DOJHEUD / RI V\PPHWULF RSHUDWRUV RQ D +LOEHUW VSDFH + ZKLFK KDYH D FRPPRQ GHQVH LQYDULDQW GRPDLQ /HW $7 ; EH DQ RSHUDWRU EDVLV IRU / VXFK WKDW WKH 1HOVRQ RSHUDWRU $ -L L HVVHQWLDOO\ VHOIDGMRLQW ,W WKHQ IROORZV WKDW $7 ; DUH HVVHQWLDOO\ VHOIDGMRLQW FI > /HPPDV t @f 6LQFH WKH $r N G DUH V\PPHWULF $ LV D SRVLWLYH GHILQLWH RSHUDWRU )XUWKHUPRUH VLQFH $ LV HVVHQWLDOO\ VHOIDGMRLQW WKHUH H[LVWV RQ + E\ 7KHRUHP LQ 5HI D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ 8 RI WKH VLPSO\ FRQQHFWHG ORFDOO\ FRPSDFW /LH JURXS ZKLFK KDV / DV LWV /LH DOJHEUD VXFK WKDW IRU DOO ; LQ / 8;f ; 1RZ OHW XV GHQRWH E\ $L WKH GHQVH VHW RI DQDO\WLF YHFWRUV IRU WKH UHSUHVHQWDWLRQ 8 RI ,W LV VKRZQ LQ 5HI SS WKDW WKH GHQVH VHW $X & + RI DQDO\WLF YHFWRUV IRUPV D FRPPRQ GHQVH LQYDULDQW GRPDLQ IRU WKH EDVLV $ ;G RI / DQG LWV HQYHORSLQJ DOJHEUD = *f 7KHUHIRUH HYHU\ HOHPHQW RI $X LV LQ WKH VHW RI DQDO\WLF YHFWRUV IRU $ /HW ?) EH WKH GHQVH VHW RI DQDO\WLF YHFWRUV $Y IRU 8 WKHQ ZH FDQ DV RXWOLQHG DERYH FRQVWUXFW D FRXQWDEO\ +LOEHUW VSDFH ) :H QRZ VKRZ WKDW WKH HOHPHQWV RI WKH HQYHORSLQJ DOJHEUD e*f DUH FRQWLQXRXV ZLWK UHVSHFW WR DQG DUH WKHUHIRUH XQLTXHO\ GHILQHG RQ WKH ZKROH VSDFH ) 7R VKRZ WKLV LW LV VXIILFLHQW WR VKRZ WKDW WKH JHQHUDWRUV $7 ;G DUH FRQWLQXRXV VLQFH WKH VXP DQG SURGXFWV RI FRQWLQXRXV RSHUDWRUV DUH FRQWLQXRXV VHH > SS@f /HW XV FRQVLGHU ;? ;G RQ ?) :H XVH /HPPD LQ 5HI )RU HYHU\ Mf ?) RQH KDV W! ;L$ ,fY;Lcff NIf $ ,fS9f $f ZKHUH N RR LV VRPH FRQVWDQW DQG ;L L G LV RQH RI WKH JHQHUDWRUV /HW ^MfQ` EH D VHTXHQFH FRQYHUJLQJ WR ]HUR LQ WKH WRSRORJ\ LH OLPARR __f__S IRU HYHU\ S 7KLV LV HTXLYDOHQW WR OLP !Q $ ,fS!Qf f§ IRU HYHU\ S $f f§<2& r /HW ;W EH DUELWUDU\ WKHQ WR VKRZ WKDW ;L LV D FRQWLQXRXV RSHUDWRU LW LV VXIILFLHQW WR ARU WKH GHILQLWLRQ SI DQ HQYHORSLQJ DOJHEUD RI D /LH JURXS VHH $

PAGE 142

VKRZ WKDW OLP Qf§ RR ;LQ IRU HYHU\ T LH WKDW OLP ;LQ $ ,fT;LQf OLP Q ;W$ ,fT;WQf IRU HYHU\ T QWRF 7f§2& FI > 7KHRUHP @f %\ $f RQH KDV •Q;L$ ,fT;LQf NQ $ ,fnQf r__Q__fO KRZHYHU E\ $f WKH ULJKW KDQG VLGH FRQYHUJHV WR ]HUR DV Q f§! RR IRU HYHU\ T DQG WKHUHIRUH WKH OHIW KDQG VLGH DOVR FRQYHUJHV WR ]HUR IRU HYHU\ T WKLV HVWDEOLVKHV $f 6LQFH ;L ZDV DUELWUDU\ WKLV VKRZV WKDW DOO JHQHUDWRUV DUH FRQWLQXRXV RSHUDWRUV 6LQFH r LV D 7r GHQVH OLQHDU VXEVSDFH RI } ZH FDQ XVLQJ WKH %/7 7KHRUHP FI > 7KHRUHP @f XQLTXHO\ H[WHQG WKH OLQHDU RSHUDWRUV ;L L G RQ A WR RSHUDWRUV RQ WKH ZKROH VSDFH 1RWH WKDW VLQFH WKH RSHUDWRUV ;L L G DUH FRQWLQXRXV RQ WKH\ DUH GHILQHG HYHU\ZKHUH RQ KHQFH GRPDLQ TXHVWLRQV GR QRW DULVH :H DUH QRZ UHDG\ WR JLYH WKH GHILQLWLRQ RI D QXFOHDU VSDFH 'HILQLWLRQ $ LV D QXFOHDU VSDFH LI DQG RQO\ LI WKHUH H[LVWV DQ HVVHQWLDOO\ VHOI DGMRLQW 7AFRQWLQXRXV RSHUDWRU $ e e*f ZKRVH LQYHUVH LV +LOEHUW6FKPLGW 7KLV GHILQLWLRQ XVHV D 7KHRUHP RI 5REHUWV > 7KHRUHP @ ,W KDV EHHQ VKRZQ WKDW WKH HQYHORSLQJ DOJHEUD e^*f RI WKH IROORZLQJ JURXSV KDYH WKH SURSHUW\ RI QXFOHDULW\ Lf LV QLOSRWHQW FI >@f 7KLV LV WKH FDVH ZH DUH FRQVLGHULQJ LQ FKDSWHU LLf LV VHPLVLPSOH FI > $SSHQGL[ %@f 6XPPDUL]LQJ LI LV HLWKHU QLOSRWHQW RU VHPLVLPSOH WKHQ WKH VSDFH ZH KDYH FRQVWUXFWHG DERYH LV D OLQHDU QXFOHDU VSDFH RQ ZKLFK DOO HOHPHQWV RI WKH HQYHORSLQJ DOJHEUD e*f DUH FRQWLQXRXV RSHUDWRUV

PAGE 143

$ /LQHDU )XQFWLRQDOV $ OLQHDU IXQFWLRQDO / RQ D OLQHDU VSDFH ( LV D OLQHDU PDS IURP ( WR & VXFK WKDW /I!f /?W!f f & DQG /DFS ELSf D/Sf E/^[Sf IRU I! LS f 6 DQG D E f & :H FDOO f ff D JHQHUDOL]HG LQQHU SURGXFW $ OLQHDU IXQFWLRQDO LV FDOOHG 7FRQWLQXRXV LI DQG RQO\ LI IRU HYHU\ F WKHUH H[LVWV DQ LQWHJHU T DQG D 6 VXFK WKDW __! a LS??T  LPSOLHV /LSf? H $ VHFRQG DOWHUQDWLYH LV LI OLP ??SQ f§ S??T IRU DOO T Qf§!RF WKHQ OLP ?/SQf /Sf? Qf§ :H GHQRWH WKH VSDFH RI DOO FRQWLQXRXV OLQHDU IXQFWLRQDOV DFWLQJ RQ E\ (!n ,Q 'LUDFfV WHUPLQRORJ\ WKH HOHPHQWV RI WKLV VSDFH DUH FDOOHG EUD YHFWRUV 6LQFH &+ RQH ILQGV WKDW +n & 6LQFH + LV D +LOEHUW VSDFH RQH KDV WKDW + +n WKLV \LHOGV WKH IROORZLQJ VHTXHQFH RI LQFOXVLRQV & + + & 7KLV WULSOHW LV FDOOHG D *HOfIDQG WULSOHW RU D 5LJJHG +LOEHUW VSDFH 7KLV QRWLRQ HQDEOHV RQH WR JLYH D SUHFLVH PDWKHPDWLFDO PHDQLQJ WR 'LUDFfV EUD DQG NHW YHFWRU IRUPDOLVP 7KH EUD YHFWRUV DUH OLQHDU LLFRQWLQXRXV IXQFWLRQDOV DFWLQJ RQ WKH NHW YHFWRUV ZKLFK DUH WKH HOHPHQWV RI WKH QXFOHDU VSDFH 6LQFH I! & !n WKHUH DUH PRUH EUD YHFWRUV WKHQ WKHUH DUH NHW YHFWRUV )RU HYHU\ FRQWLQXRXV RSHUDWRU 7 RQ RQH FDQ GHILQH WKH DGMRLQW RSHUDWRU 7r RQ t E\ 7n/?f V 7n'0 /7Sf /?P

PAGE 144

IRU DOO / f !n If H I! ,I 7 LV D FRQWLQXRXV RSHUDWRU RQ DQG / LV D FRQWLQXRXV OLQHDU IXQFWLRQDO RQ WKHQ 7W LV D FRQWLQXRXV RSHUDWRU RQ I!n LH RQH KDV WKDW 7@/Q r 7A/ IRU DOO /Q / )RU HYHU\ FRQWLQXRXV HVVHQWLDOO\ VHOIDGMRLQW RSHUDWRU 7 ZH KDYH LQ FRUUHVSRQ GHQFH WR WKH UHODWLRQ &+ +n&n EHWZHHQ WKH VSDFHV WKH UHODWLRQ 7F7 U F7I EHWZHHQ WKH RSHUDWRUV $ *HQHUDOL]HG (LJHQYHFWRUV DQG WKH 1XFOHDU 6SHFWUDO 7KHRUHP :H KDYH QRZ FROOHFWHG DOO WKH WRROV ZH QHHG WR VWDWH WKH 1XFOHDU 6SHFWUDO 7KHRUHP 'HILQLWLRQ $ :H FDOO D IDPLO\ RI V\PPHWULF RSHUDWRUV ^$U`I D V\VWHP RI FRPn PXWLQJ RSHUDWRUV LI DQG RQO\ LI Lf >$U ;I? IRU DOO L M LLf $ - [ ;N LV HVVHQWLDOO\ VHOIDGMRLQW 7KH IDPLO\ RI RSHUDWRUV ^$U`I LV FDOOHG D FRPSOHWH FRPPXWLQJ V\VWHP RI RSHUDWRUV LI DQG RQO\ LI WKHUH H[LVWV D YHFWRU Mf f VXFK WKDW WKH OLQHDU VXEVSDFH $G! ^;W! ; e $ DOJHEUD JHQHUDWHG E\ WKH IDPLO\ ^$UM`IBM` LV GHQVH LQ 7KH YHFWRU c! f I! LV FDOOHG D F\FOLF YHFWRU IRU WKH rDOJHEUD $ 2QH FDQ VKRZ WKDW WKH rDOJHEUDV JHQHUDWHG E\ WKH WZR FRPPXWLQJ V\VWHPV DQG ^3&!f8 JLYHQ LQ FKDSWHU KDYH F\FOLF YHFWRUV FI > S @f KHQFH ^er`rB DQG ^3FA`GN ? IRUP WZR VHSDUDWH FRPSOHWH FRPPXWLQJ V\VWHPV RI RSn HUDWRUV UHVSHFWLYHO\

PAGE 145

'HILQLWLRQ $ /HW ^$MN`r EH D FRPSOHWH FRPPXWLQJ V\VWHP RI RSHUDWRUV RQ $ JHQHUDOL]HG HLJHQYHFWRU RI WKH FRPSOHWH FRPPXWLQJ V\VWHP ^$nW`e LV D OLQHDU IXQFn WLRQDO VXFK WKDW N:f $nU_! D/ : KROGV IRU HYHU\ If ZKLFK PD\ IRUPDOO\ EH ZULWWHQ DV Y ON DN 7KH GWXSHO RI QXPEHUV e &L f f f *f rV FROOHG D JHQHUDOL]HG HLJHQYDOXH FRUUHVSRQGLQJ WR WKH JHQHUDOL]HG HLJHQYHFWRU /A ^4 &HOO $FFRUGLQJ WR WKH QH[W WKHRUHP WKHUH H[LVWV D FRPSOHWH V\VWHP RI JHQHUDOL]HG HLJHQn YHFWRUV 7KHRUHP $ 1XFOHDU 6SHFWUDO 7KHRUHPf /HW ^$7`r EH D FRPSOHWH FRPPXWLQJ V\VWHP RI 7AFRQWLQXRXV RSHUDWRUV RQ WKH HOI DQG WULSOHW & + & 7KHQ WKHUH H[LVW JHQHUDOL]HG HLJHQYHFWRUV &L 4_ &O! f f f f 2U &Of f f f &G ,f ZKHUH &r VSHF$7f & ,5 VXFK WKDW IRU HYHU\ I! DQG VRPH XQLTXHO\ GHILQHG PHDVXUH Y RQ ( VSHF$fLf [ [ VSHF$nGf RQH KDV WKH IROORZLQJ VSHFWUDO V\QWKHVLV r f§ I &Lf f f f &Gf &Lf f f f !G?!nf GX ^A&If 7KH 1XFOHDU 6SHFWUDO 7KHRUHP FDQ DOVR EH VWDWHG LQ D PRUH JHQHUDO IRUP XVLQJ WKH GLUHFW LQWHJUDO FI > S @f KRZHYHU ZH KDYH PDGH XVH RI D 7KHRUHP RI YRQ 1HXPDQQ WKDW VWDWHV WKDW IRU WKH FDVH ZH DUH FRQVLGHULQJ WKH GLUHFW LQWHJUDO LV JLYHQ E\ /(GYf DQG WKDW WKH VSHFWUXP RI WKH FRPPXWDWLYH YRQ 1HXPDQQ DOJHEUD JHQHUDWHG E\ WKH FRPSOHWH FRPPXWLQJ V\VWHP RI RSHUDWRUV ^;IF`I LV PXOWLSOLFLW\ IUHH FI > S @ DQG > 7KHRUHP 9,,@f 7KH 1XFOHDU 6SHFWUDO 7KHRUHP JLYHV D PDWKHPDWLFDOO\ SUHFLVH IRUPXODWLRQ RI WKH IDPRXV 'LUDF FRQMHFWXUH

PAGE 146

$ /LH *URXSV DQG /LH $OJHEUDV %HIRUH ZH FDQ JLYH WKH GHILQLWLRQ RI /LH JURXSV ZH KDYH WR GHILQH WKH FRQFHSW RI D GLIIHUHQWLDEOH FRPSOH[f PDQLIROG 'HILQLWLRQ $ $ WRSRORJLFDO VSDFH ; LV FDOOHG +DXVGRUII LI DQG RQO\ LI IRU DOO [ DQG \ LQ ; [ A \ WKHUH DUH RSHQ VHWV 2? DQG 2 VXFK WKDW [ f ? \ f 2 DQG ? Q ? 'HILQLWLRQ $ /HW 0 EH D WRSRORJLFDO VSDFH DQG [ f 0 $ FRRUGLQDWH FKDUW DERXW [ RI GLPHQVLRQ G LV D QHLJKERUKRRG 8 RI [ DQG D RQHWRRQH FRQWLQXRXV IXQFWLRQ W! 8 RQWR DQ RSHQ VXEVHW RI -5G 7KH SDLU 8 !f LV FDOOHG D SURSHU FRRUGLQDWH FKDUW LI DQG RQO\ LI G! f§! 8 & 0 LV FRQWLQXRXV 'HILQLWLRQ $ $ WRSRORJLFDO VSDFH 0 LV FDOOHG D GGLPHQVLRQDOf GLIIHUHQWLDEOH PDQLIROG LI DQG RQO\ LI Lf 0 LV +DXVGRUII LLf 7KHUH LV D FROOHFWLRQ $ RI FRRUGLQDWH FKDUWV 8I!f FDOOHG WKH DWODV RI 0 VXFK WKDW Df )RU HYHU\ [ f 0 WKHUH H[LVWV D SURSHU FRRUGLQDWH FKDUW RI GLPHQVLRQ G ZLWK [ 8 Ef ,I8 !f 9LSf f $ ZLWK 8 Q9 WKHQ WKH PDSSLQJ LS R c!aO I!8'9f LS8 If 9f LV LQILQLWHO\ RIWHQ FRQWLQXRXVO\ GLIIHUHQWLDEOH DV D PDSSLQJ EHn WZHHQ RSHQ VXEVHWV RI O5Gf Ff $ LV PD[LPDO ZLWK UHVSHFW WR FRQGLWLRQV Df DQG Ef SRVVLEOH FKDUWV ZLWK WKHVH SURSHUWLHV FRQWDLQV ,I RQH UHSODFHV LQ WKLV GHILQLWLRQ 5G E\ &G DQG LQILQLWHO\ RIWHQ FRQWLQXRXVO\ GLIIHUHQn WLDEOH E\ KRORPRUSKLF RQH REWDLQV WKH FRQFHSW RI D GGLPHQVLRQDOf FRPSOH[ PDQLIROG ,Q SUDFWLFH RQH XVXDOO\ JLYHV D FROOHFWLRQ RI SURSHU FRRUGLQDWH FKDUWV 8MI!Mf ZKLFK

PAGE 147

FRYHU 0 LH 0 >f 8M 7KHQ WKHUH LV D XQLTXH DWODV GHWHUPLQHG ZKLFK LQFOXGHV WKH FROOHFWLRQ RI SURSHU FRRUGLQDWH FKDUWV 8MfMf 1RWH WKDW LW LV SRVVLEOH WR KDYH WZR GLIIHUHQW DWODVHV RQ D WRSRORJLFDO VSDFH 0 PDNLQJ 0 LQWR D PDQLIROG LQ GLIIHUHQW ZD\V KRZHYHU ZH VKDOO QRW FRQVLGHU VXFK SUREOHPV KHUH +DYLQJ LQWURGXFHG WKH FRQFHSW RI D FRPSOH[ PDQLIROG ZH DUH QRZ LQ D SRVLWLRQ WR GHILQH /LH JURXSV 'HILQLWLRQ $ $ /LH JURXS LV D JURXS ZKLFK LV DOVR D FRPSOH[ PDQLIROG VXFK WKDW WKH PDSSLQJ [ @ f r!‘ 2LJI A L KRORPRUSKLF :H VD\ WKDW D /LH JURXS KDV D WRSRORJLFDO SURSHUW\ LI WKH /LH JURXS KDV WKLV SURSHUW\ ZKHQ LW LV FRQVLGHUHG DV D WRSRORJLFDO VSDFH $ WRSRORJLFDO VSDFH ; 7f LV FDOOHG VHSDUDEOH LI DQG RQO\ LI WKHUH H[LVWV D FRXQWDEOH GHQVH VXEVHW $ & ; $ WRSRORJLFDO +DXVGRUII VSDFH $ 7f LV FDOOHG FRPSDFW LI DQG RQO\ LI HYHU\ IDPLO\ RI RSHQ VHWV ZKRVH XQLRQ FRYHUV ; FRQWDLQV D ILQLWH VXEIDPLO\ ZKRVH XQLRQ FRYHUV ; LH LI HYHU\ RSHQ FRYHU RI $n FRQWDLQV D ILQLWH VXEFRYHUf 7KH QVSKHUH 6Q Q LV D FRPSDFW VSDFH 0RUHRYHU D WRSRORJLFDO +DXVGRUII VSDFH ; 7f LV FDOOHG ORFDOO\ FRPSDFW LI HDFK SRLQW RI ; KDV D FRPSDFW QHLJKERUKRRG )URP WKLV GHILQLWLRQ RQH FOHDUO\ VHHV WKDW HYHU` FRPSDFW VSDFH LV ORFDOO\ FRPSDFW 7KH VWUDLJKW OLQH 5 LV ORFDOO\ FRPSDFW WKLV SURSHUW\ IROORZV IRUP WKH +HLQH%RUHO 7KHRUHP 7ZR VXEVHWV $ DQG % RI D WRSRORJLFDO VSDFH ; DUH FDOOHG VHSDUDWHG LI DQG RQO\ LI $ % DQG $ % DUH ERWK HPSW\ $ WRSRORJLFDO VSDFH ; LV FDOOHG FRQQHFWHG LI LW FDQ QRW EH UHSUHVHQWHG DV WKH XQLRQ RI WZR QRQHPSW\ VHSDUDWHG VXEVHWV $ WRSRORJLFDO VSDFH ; LV FDOOHG VLPSO\ FRQQHFWHG LI DQG RQO\ LI HYHU\ FORVHG SDWK LQ $n FDQ EH FRQWLQXRXVO\ GHIRUPHG LQ ; LQWR D SRLQW 2QH FDQ VKRZ WKDW HYHU\ /LH JURXS GHWHUPLQHV D /LH DOJHEUD / XS WR DQ LVRn PRUSKLVP FI > 7KHRUHP @f 'HILQLWLRQ $ /HW / EH D ILQLWH GLPHQVLRQDO YHFWRU VSDFH RYHU WKH ILHOG RI UHDO RU FRPSOH[ QXPEHUV 7KH YHFWRU VSDFH / LV FDOOHG D /LH DOJHEUD RYHU LI WKHUH H[LVWV

PAGE 148

D SURGXFW / [ / % $n $ \@ / RQ / VDWLVI\LQJ WKH IROORZLQJ D[LRPV Lf Df >D; E$n =@ E>< =@ IRU DE f Ef >; F< G=` F>; <@ G> ; =@ IRU FGH. ELOLQHDULW\f LLf >$7 \@ >\ ;f IRU DOO ;< H / DQWLV\PPHWU\f LLLf >; >\ =@@ >\ >= ;@` >= >;<@@ 2 IRU DOO ; \ = f / -DFREL ,GHQWLW\f ,I LV WKH ILHOG RI UHDO RU FRPSOH[ QXPEHUV WKHQ / LV FDOOHG D UHDO RU FRPSOH[ /LH DOJHEUD UHVSHFWLYHO\ /HW $ DQG % EH WZR OLQHDU VXEVSDFHV RI / 7KHQ >$ %@ GHQRWHV WKH OLQHDU VXEVSDFH VSDQQHG E\ WKH HOHPHQWV >$ff <@ ZKHUH $n f $ DQG < % $ VXEVSDFH % LV FDOOHG D VXEDOJHEUD RI / LI >%%@ & % DQG DQ LGHDO LI >/ %@ & % 7KH VHW & ^; H / >$0n@ IRU DOO < f /` LV FDOOHG WKH FHQWHU RI /? VLQFH >/ &@ & & WKH FHQWHU LV DQ LGHDO RI / $ /LH DOJHEUD / LV FDOOHG DEHOLDQ LI >/ /@ ^` LH LI WKH FHQWHU RI / LV DOO RI / $ 1LOSRWHQW VROYDEOH VHPLVLPSOH DQG VLPSOH /LH DOJHEUDV DQG /LH JURXSV 2QH FDQ VKRZ WKDW LI % LV DQ LGHDO WKHQ >% %@ LV DOVR DQ LGHDO 6LQFH >//@ & / ZH KDYH WKDW / LV DQ LGHDO RI / DQG WKHUHIRUH >//? LV DOVR DQ LGHDO RI / WKDW PD\ EH VPDOOHU WKDQ / 1RZ OHW XV GHILQH WKH IROORZLQJ VHTXHQFHV RI LGHDOV ,,, H >/r /@ /r -Ur -Ur LQ >AR" Ln/ f f f /N $ /LH DOJHEUD LV FDOOHG VROYDEOH LI /N ^` IRU VRPH ILQLWH N DQG QLOSRWHQW LI /r ^` IRU VRPH ILQLWH N 6LQFH /N & /N HYHU\ QLOSRWHQW /LH DOJHEUD LV VROYDEOH +RZHYHU WKH FRQYHUVH LV QRW WUXH ,I / LV VROYDEOH WKHQ /N ^` IRU VRPH ILQLWH N KHQFH >/rB /NaOf DQG WKHUHIRUH /NaO LV D FRPPXWDWLYH LGHDO RI / 2U HYHU\ VROYDEOH /LH DOJHEUD FRQWDLQV D FRPPXWDWLYH LGHDO 7KH /LH DOJHEUD RI WKH D[ E JURXS LV DQ H[DPSOH RI D VROYDEOH /LH DOJHEUD VLQFH >$nL$n@ f§L;? LPSOLHV WKDW / ^` +RZHYHU RQH FDQ HDVLO\ FKHFN WKH /LH DOJHEUD RI WKH D[ E JURXS LV QRW QLOSRWHQW

PAGE 149

7KH IDPLOLDU +HLVHQEHUJ DOJHEUD >3 4? f§ LO LV DQ H[DPSOH RI D QLOSRWHQW /LH DOJHEUD VLQFH / ^` DQG RQH HDVLO\ YHULILHV WKDW WKH +HLVHQEHUJ DOJHEUD LV DOVR VROYDEOH $ /LH JURXS LV FDOOHG LV FDOOHG VROYDEOH QLOSRWHQWf LI LWV /LH DOJHEUD LV VROYDEOH QLOSRWHQWf $ /LH DOJHEUD LV FDOOHG VHPLVLPSOH LI LW FRQWDLQV QR QRQ]HUR DEHOLDQ LGHDO $ /LH DOJHEUD LV FDOOHG VLPSOH LI LW GRHV QRW FRQWDLQ DQ\ LGHDO RWKHU WKDQ ^` DQG / DQG LI >/ /@ ^` (YHU\ VLPSOH /LH DOJHEUD LV VHPLVLPSOH KRZHYHU WKH FRQYHUVH GRHV QRW QHHG WR KROG 7KH FRQGLWLRQ >/ /@ ^` H[FOXGHV RQH GLPHQVLRQDO /LH DOJHEUDV ZKLFK ZRXOG EH VLPSOH EXW QRW VHPLVLPSOH 6HPLVLPSOH /LH DOJHEUDV DUH LQ VRPH VHQVH WKH RSSRVLWH WR VROYDEOH /LH DOJHEUDV ,Q IDFW RQH FDQ VKRZ WKDW HYHU\ /LH DOJHEUD / FDQ EH ZULWWHQ DV WKH VHPLGLUHFW VXP RI D PD[LPDO VROYDEOH LGHDO 1 DQG D VHPLVLPSOH VXEDOJHEUD 6 FI > 7KHRUHP @f $ /LH JURXS LV FDOOHG VHPLVLPSOH VLPSOHf LI LWV /LH DOJHEUD LV VHPLVLPSOH VLPSOHf ([DPSOHV RI /LH JURXSV WKDW DUH ERWK VLPSOH DQG VHPLVLPSOH DUH JLYHQ E\ 68f DQG 68f ZKLFK GR QRW FRQWDLQ DQ\ SURSHU LGHDOV 2QH FDQ VKRZ WKDW DQ\ VHPLVLPSOH /LH DOJHEUD FDQ EH ZULWWHQ DV WKH GLUHFW VXP RI VLPSOH RQHV FI > 7KHRUHP @f $ 7KH (QYHORSLQJ DOJHEUD RI D /LH DOJHEUD /HW / EH WKH /LH DOJHEUD RI D /LH JURXS DQG OHW ;L ; EH D ILQLWH GLPHQVLRQDO EDVLV RI / WKDW VDWLVILHV WKH IROORZLQJ FRPPXWDWLRQ UHODWLRQV G >-Ic $n@ brrr N ZKHUH FMr GHQRWH WKH VWUXFWXUH FRQVWDQWV 7KHQ RQH FDQ GHILQH WKH HQYHORSLQJ DOJHEUD RI / DV IROORZV 'HILQLWLRQ $ 7KH HQYHORSLQJ DOJHEUD 6*f RI D /LH DOJHEUD / LV WKH DVVRFLDWLYH DOJHEUD ZLWK JHQHUDWRUV ;? ; LQ ZKLFK PXOWLSOLFDWLRQ LV GHILQHG E\ UHODWLRQV RI WKH IRUP G

PAGE 150

$ 6RPH %DVLF 1RWLRQV RI WKH 7KHRU\ RI *URXS 5HSUHVHQWDWLRQ ,Q WKLV WKHVLV DWWHQWLRQ LV IRFXVHG RQ VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV RI UHDO VHSDUDEOH ORFDOO\ FRPSDFW FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXSV RQ D VHSDUDEOH +LOEHUW VSDFH /HW EH D ORFDOO\ FRPSDFW /LH JURXS DQG OHW + EH D VHSDUDEOH +LOEHUW VSDFH $ PDS 8 J Wf§! 8J e+f LV FDOOHG D FRQWLQXRXV UHSUHVHQWDWLRQ LI Lf 8JL 8JL8 8H LGHQWLW\f LLf IRU HYHU\ M! + WKH PDS J 8JIf + LV FRQWLQXRXV $ UHSUHVHQWDWLRQ LV FDOOHG XQLWDU\ LI HDFK 8J e+f LV D XQLWDU\ RSHUDWRU RQ + DQG WULYLDO LI 8J IRU DOO J * 2QH RI WKH PRVW LPSRUWDQW XQLWDU\ UHSUHVHQWDWLRQV RI LV WKH OHIW UHJXODU UHSUHVHQWDWLRQ $ RQ + /^* GJf ZKHUH GJ LV WKH OHIW LQYDULDQW PHDVXUH RI 7KH OHIW UHJXODU UHSUHVHQWDWLRQ $ J $ LV GHILQHG E\ PHDQV RI OHIW WUDQVODWLRQ LH $ff W!JLOJf Y!J/*f LV J* $f &ODLP $ 7KH OHIW UHJXODU UHSUHVHQWDWLRQ $ RI LV D FRQWLQXRXV XQLWDU\ UHSUHn VHQWDWLRQ RI RQ /^*f 3URRI ,Q RXU SURRI ZH IROORZ 5HI SS &OHDUO\ HYHU\ $J LV D OLQHDU RSHUDWRU )XUWKHUPRUH rt Yrf A>LfB@ $LOII}f LH $O $ M 7KHUHIRUH WKH PDS $f GHILQHV D UHSUHVHQWDWLRQ RI LQ /^*f )XUWKHUPRUH VLQFH GJ LV OHIW LQYDULDQW ZH KDYH ^$JIL$J[f !BLf[ -LfGL !rf

PAGE 151

KHQFH $ LV LVRPHWULF DQG VLQFH WKH UDQJH RI $ LV DOO RI /*f HYHU\ $J LV XQLWDU\ 6WURQJ FRQWLQXLW\ LV HVWDEOLVKHG DV IROORZV OHW [ f &*f ZKHUH &*f LV WKH VHW RI DOO FRQWLQXRXV IXQFWLRQV ZLWK FRPSDFW VXSSRUW RQ VLQFH HYHU\ FRPSDFWO\ VXSSRUWHG FRQWLQXRXV IXQFWLRQ RQ D /LH JURXS LV XQLIRUPO\ FRQWLQXRXV RQ LWV VXSSRUW FI > 3URSRVLWLRQ @f ZH KDYH VXS_[BSLf [^Lf? IRU J f 9 ZKHUH 9 LV D QHLJKERUKRRG RI WKH LGHQWLW\ H RI 0RUHRYHU VLQFH ; f &*f WKHUH H[LVWV D IL[HG FRPSDFW VHW VXSSRUWLQJ [ DQG $[ IRU J VXIILFLHQWO\ FORVH WR H VXFK WKDW ZKHUH 0 \MM.GJ[ 1RZ VLQFH &*f LV GHQVH LQ /*f WKHUH H[LVWV IRU HDFK Mf H /*f D [ e **f VXFK WKDW ??S [__ Hn +HQFH ??$Jf Mf?? __$IOfL! [f $6; ;f a [fOO ,,$JI! [fOO O_$V[ ;OO ,,W! a [OO XVLQJ WKH IDFW WKDW WKH +DDU PHDVXUH LV LQYDULDQW XQGHU OHIW WUDQVODWLRQV ZH ILQG O_$S !OO Fn __$V; ;OO 0fHn H +HQFH __$ A__ H IRU J 9 7KHUHIRUH ZH FRQFOXGH WKDW J L! $ LV FRQWLQXRXV LQ H 7R VKRZ WKDW J !! $ LV FRQWLQXRXV LQ HYHU\ SRLQW ZH KDYH WR VKRZ WKDW O_$OW! $J!?? H IRU JAJL f 9 8VLQJ DJDLQ WKH OHIW LQYDULDQFH RI WKH +DDU PHDVXUH ZH FRQFOXGH __$O! $__ ??$JLJLM! I!?? H IRU JOJL 9

PAGE 152

7KHUHIRUH J r! $J LV FRQWLQXRXV LQ HYHU\ SRLQW +HQFH $ LV D FRQWLQXRXV XQLWDU\ UHSUHVHQWDWLRQ RI RQ /*f ’ $ (TXLYDOHQFH RI 5HSUHVHQWDWLRQV /HW 8 DQG 8 EH WZR XQLWDU\ UHSUHVHQWDWLRQV RI WKH VDPH ORFDOO\ FRPSDFW /LH JURXS RQ WKH +LOEHUW VSDFHV +L DQG + UHVSHFWLYHO\ 7KHQ 8 LV XQLWDULO\ HTXLYDOHQW WR 8 LI WKHUH H[LVWV D XQLWDU\ RSHUDWRU 7 +L f§! + VXFK WKDW 78J 8J7 IRU HYHU\ J * $f ,I 8 LV XQLWDULO\ HTXLYDOHQW WR 8 WKHQ ZH ZULWH 8 8 $ ERXQGHG RSHUDWRU 7 IURP +L WR + LV FDOOHG DQ LQWHUWZLQLQJ RSHUDWRU IRU 8O DQG 8 LI 78J 87 IRU DOO J f 7KH VHW RI DOO LQWHUWZLQLQJ RSHUDWRUV IRUPV D OLQHDU VSDFH ZKLFK LV GHQRWHG E\ AIf +HQFH WZR XQLWDU\ UHSUHVHQWDWLRQV I DQG 8 DUH XQLWDULO\ HTXLYDOHQW LI 7O8O8f FRQWDLQV D XQLWDU\ RSHUDWRU IURP +c RQWR + 2EVHUYH WKDW IRU 8 8 +8O8Of LV WKH FRPPXWDQW RI WKH rDOJHEUD $8Of JHQHUDWHG E\ WKH UHSUHVHQWDWLRQ J Lr 8J +HQFH n5^8O8Of LV D YRQ 1HXPDQQ DOJHEUD $ ,UUHGXFLELOLW\ RI 5HSUHVHQWDWLRQV ‘‘‘ ‘ f§‘‘‘f§‘n ‘ ‘ f§‘ $ VXEVSDFH +L & + LV FDOOHG LQYDULDQW XQGHU D XQLWDU\ UHSUHVHQWDWLRQ J 8J LI DQG RQO\ LI 8J+L & +L IRU DOO J H $ XQLWDU\ UHSUHVHQWDWLRQ J W! 8J RI D ORFDOO\ FRPSDFW JURXS LV FDOOHG LUUHGXFLEOH LI 8 KDV QR LQYDULDQW VXEVSDFHV RWKHU WKDQ +L + DQG +L ^` $ XQLWDU\ UHSUHVHQWDWLRQ ZKLFK KDV SURSHU LQYDULDQW VXEVSDFHV LV FDOOHG UHGXFLEOH /HW +L EH D FORVHG VXEVSDFH RI + WKHQ RQH FDOOV WKH UHVWULFWLRQ RI 8 WR +L D XQLWDU\ VXEUHSUHVHQWDWLRQ RI 8 $ XQLWDU\ UHSUHVHQWDWLRQ LV FDOOHG FRPSOHWHO\ UHGXFLEOH LI LW FDQ EH H[SUHVVHG DV D GLUHFW VXP RI LUUHGXFLEOH XQLWDU\ VXEUHSUHVHQWDn WLRQV 2QH FDQ VKRZ WKDW HYHU\ ILQLWHGLPHQVLRQDO XQLWDU\ UHSUHVHQWDWLRQ RI DQ\ /LH JURXS LV FRPSOHWHO\ UHGXFLEOH FI > &RUROODU\ @f 7KH IROORZLQJ WKHRUHP LV RI IXQGDPHQWDO LPSRUWDQFH LQ WKH WKHRU\ RI JURXS UHSn UHVHQWDWLRQV

PAGE 153

7KHRUHP $ 6FKXUfV /HPPD XQLWDU\ FDVHf /HW 8 DQG 8 EH LUUHGXFLEOH XQLn WDU\ UHSUHVHQWDWLRQV RI D /LH JURXS RQ +L DQG + UHVSHFWLYHO\ ,I7H e+OI+f LV VXFK WKDW 78J 8J7 IRU DOO J ( WKHQ HLWKHU 7 LV DQ XQLWDU\ RSHUDWRU IURP +L RQWR + LH 8 8f RU 7 )RU D SURRI VHH 5HI SS f +HQFH WKH VHW RI DOO LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI D /LH JURXS FDQ EH $ SDUWLWLRQHG LQWR HTXLYDOHQFH FODVVHV :H GHQRWH E\ WKH VHW RI DOO HTXLYDOHQFH FODVVHV RI LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV RI D /LH JURXS 6FKXUfV /HPPD LPSOLHV WKH IROORZLQJ FULWHULRQ RI LUUHGXFLELOLW\ IRU XQLWDU\ UHSUHVHQWDWLRQV &RUROODU\ $ )RU D XQLWDU\ UHSUHVHQWDWLRQ 8 RI D /LH JURXS RQ D VHSDUDEOH +LOEHUW VSDFH + WR EH LUUHGXFLEOH LW LV QHFHVVDU\ DQG VXIILFLHQW WKDW WKH RQO\ RSHUDWRUV WKDW FRPPXWH ZLWK DOO WKH 8J DUH VFDODU PXOWLSOHV RI WKH LGHQWLW\ RSHUDWRU 2QH FDQ XVH &RUROODU\ $ WR JLYH D QHZ GHILQLWLRQ RI LUUHGXFLELOLW\ $ XQLWDU\ UHSUHVHQWDWLRQ 8 LV FDOOHG LUUHGXFLEOH LI WKH RQO\ RSHUDWRUV WKDW FRPPXWH ZLWK DOO WKH 8J DUH VFDODU PXOWLSOHV RI WKH LGHQWLW\ RSHUDWRU 2QH UHIHUV WR WKLV IRUPXODWLRQ RI LUUHGXFLELOLW\ DV RSHUDWRU LUUHGXFLELOLW\ RI 8 $ 5HGXFLEOH 5HSUHVHQWDWLRQV 2QH FDQ FODVVLI\ UHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQV 8 DFFRUGLQJ WR WKH SURSHUWLHV RI WKH RI WKH FHQWHU = RI WKH YRQ 1HXPDQQ DOJHEUD =8 8f RI LQWHUWZLQLQJ RSHUDWRUV /HW XV VWDUW ZLWK WKH FDVH ZKHQ 7=8 8f LV D IDFWRU 'HILQLWLRQ $ $ XQLWDU\ UHSUHVHQWDWLRQ 8 RI D /LH JURXS LV VDLG WR EH D IDFWRU UHSUHVHQWDWLRQ LI DQG RQO\ LI 7=8 8f LV D IDFWRU 5HSUHVHQWDWLRQV RI WKLV W\SH DUH FDOOHG SULPDU\ UHSUHVHQWDWLRQV &OHDUO\ E\ &RUROODU\ $ HYHU\ LUUHGXFLEOH XQLWDU\ UHSUHVHQWDWLRQ LV D IDFWRU UHSUHn VHQWDWLRQ

PAGE 154

3URSRVLWLRQ $ $ UHSUHVHQWDWLRQ 8 LV D IDFWRU UHSUHVHQWDWLRQ RI W\SH LI DQG RQO\ LI LW LV WKH GLVFUHWH RUWKRJRQDO VXP RI ILQLWHO\ RU FRXQWDEO\ PDQ\ HTXLYDOHQW LUUHn GXFLEOH UHSUHVHQWDWLRQV LH LI 8 LV WKH PXOWLSOH RI VRPH LUUHGXFLEOH UHSUHVHQWDWLRQ )RU D SURRI VHH 5HI 3URSRVLWLRQ 9f $QRWKHU LQWHUHVWLQJ FODVV RI XQLWDU\ UHSUHVHQWDWLRQV LV REWDLQHG LI WKH YRQ 1HXn PDQQ $OJHEUD =8 8f LV DEHOLDQ LH LI WKH FHQWHU = RI =8 8f FRLQFLGHV ZLWK QXXf 'HILQLWLRQ $ $ XQLWDU\ UHSUHVHQWDWLRQ 8 LV VDLG WR EH PXOWLSOLFLW\ IUHH LI DQG RQO\ LI =8 8f LV DEHOLDQ 2EVHUYH WKDW LI 8 LV ERWK D IDFWRU UHSUHVHQWDWLRQ DQG PXOWLSOLFLW\ IUHH WKHQ W 8f ^D` LH 8 LV LUUHGXFLEOH E\ WKH YLUWXH RI &RUROODU\ $ ,I 8 LV FRPSOHWHO\ UHGXFLEOH DQG PXOWLSOLFLW\ IUHH WKHQ 22 Y4LIL & ZKHUH DOO 8DUH PXWXDOO\ LQHTXLYDOHQW DQG LUUHGXFLEOH 0XOWLSOLFLW\ IUHH XQLWDU\ UHSn UHVHQWDWLRQV FDQ EH GHFRPSRVHG LQ DQ HVVHQWLDOO\ XQLTXH ZD\ LQWR LUUHGXFLEOH XQLWDU\ VXEUHSUHVHQWDWLRQV ,I LV D W\SH JURXS WKHQ RQH FDQ GHFRPSRVH HYHU\ XQLWDU\ UHSUHVHQWDWLRQ RI LQ DQ HVVHQWLDOO\ XQLTXH ZD\ LQWR LUUHGXFLEOH XQLWDU\ VXEUHSUHVHQn WDWLRQV DV WKH IROORZLQJ WKHRUHP VKRZV 7KHRUHP $ /HW 8 +f EH D XQLWDU\ W\SH UHSUHVHQWDWLRQ RI D /LH JURXS 7KHQ WKHUH H[LVWV D VWDQGDUG %RUHO PHDVXUH DQG D IXQFWLRQ f VXFK WKDW RQH KDV WKH GHFRPSRVLWLRQ RI WKH VSDFH + LQWR D GLUHFW LQWHJUDO + > +0202 9 I &FIW&f$!&f -* -J )RU D SURRI VHH 5HI 7KHRUHP 9f )RU WKH GHILQLWLRQ RI D VWDQGDUG %RUHO PHDVXUH VHH $SSHQGL[ % 1RWH WKDW RQH FDQ VKRZ WKDW DQ\ XQLWDU\ UHSUHVHQWDWLRQ FDQ EH ZULWWHQ DV D GLUHFW LQWHJUDO RI LUUHGXFLEOH

PAGE 155

UHSUHVHQWDWLRQV KRZHYHU RQO\ IRU XQLWDU\ W\SH UHSUHVHQWDWLRQV LV WKH GHFRPSRVLWLRQ HVVHQWLDOO\ XQLTXH )RU D GLVFXVVLRQ RI WKLV SRLQW VHH IRU H[DPSOH 0DFNH\ > SS @

PAGE 156

$33(1',; % &217,18286 5(35(6(17$7,21 7+(25< %O &RQWLQXRXV 5HSUHVHQWDWLRQ ,Q WKLV $SSHQGL[ ZH FRQILQH RXU DWWHQWLRQ WR UHDO ORFDOO\ FRPSDFW VHSDUDEOH FRQQHFWHG DQG VLPSO\ FRQQHFWHG /LH JURXSV WKDW KDYH LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV /HW XV GHQRWH E\ 8 D IL[HG FRQWLQXRXV LUUHGXFLEOH VTXDUH LQWHJUDEOH XQLWDU\ UHSUHVHQWDWLRQV RI RQ WKH +LOEHUW VSDFH + /HW EH DQ LUUHGXFLEOH UHSUHVHQWDWLRQ RI WKH EDVLV RI WKH /LH DOJHEUD / FRUUHVSRQGLQJ WR E\ V\PPHWULF RSHUDWRUV RQ + VDWLVI\LQJ +\SRWKHVLV $f VHH VHFWLRQ WKHQ / LV LQWHJUDEOH WR D XQLTXH XQLWDU\ UHSUHVHQWDWLRQ RI RQ + 6XSSRVH WKHUH H[LVWV D SDUDPHWHUL]DWLRQ RI VXFK WKDW G 8J^Lf A4H[S]r$_W ZKHUH LV WKH XQLTXH VHOIDGMRLQW SRVLWLYH VHPLLQYDULDQW RSHUDWRU ZLWK ZHLJKW $aJOff JLYHQ LQ 7KHRUHP &ODLP % 7KH PDS &M + f§ /*f GHILQHG IRU DQ\ WS f + E\ OFQPf 0 f }m!m %Lf PDSV WKH HOHPHQWV RI + LQWR FRPSOH[ ERXQGHG FRQWLQXRXV VTXDUH LQWHJUDEOH IXQFn WLRQV

PAGE 157

3URRI /HW LS f + EH DUELWUDU\ WKHQ K02O .n.2L:, 0 9 OHJ ZKHUH ZH KDYH XVHG WKH &DXFK\6FKZDU] LQHTXDOLW\ LQ WKH WKLUG VWHS DQG ZKHUH 0 0 :.A:8: 7KDW WKH IXQFWLRQV LScOf DUH FRQWLQXRXV IROORZV IURP WKH IDFW WKDW WKH XQLWDU\ UHSUHVHQWDWLRQ 8J^Lf LV VWURQJO\ FRQWLQXRXV DQG WKHUHIRUH ZHDNO\ FRQWLQXRXV 7R VHH WKDW WKH IXQFn WLRQV A DUH VTXDUH LQWHJUDEOH OHW LS + EH DUELWUDU\ WKHQ VLQFH e '.Ocf LW IROORZV WKDW .[AU? f 'LIf WKHUHIRUH E\ 7KHRUHP Lf WKH IXQFWLRQ 0f 8JLf.ULfWSf LV VTXDUH LQWHJUDEOH 6LQFH LS f + ZDV DUELWUDU\ LW IROORZV WKDW WKH IXQFWLRQV LSQOf DUH VTXDUH LQWHJUDEOH FI UHPDUN f Â’ :H GHQRWH E\ /*f WKH VSDFH VSDQQHG E\ WKH ERXQGHG FRQWLQXRXV VTXDUH LQn WHJUDEOH IXQFWLRQV LSYOf 7KH VSDFH /*f LV FOHDUO\ D VXEVSDFH RI /*f DQG LV WKHUHIRUH DQ LQQHU SURGXFW VSDFH 7KH LQQHU SURGXFW RQ /*f LV JLYHQ E\ WKH UHn VWULFWLRQ RI WKH LQQHU SURGXFW RQ /^*f WR / ^*f :H GHQRWH WKH LQQHU SURGXFW DQG WKH QRUP RQ /-*f E\ f ff DQG f fQf! UHVSHFWLYHO\ &ODLP % 7KH PDS &Y GHILQHG LQ %Of LV DQ LVRPHWULF LVRPRUSKLVP IURP WKH +LOEHUW VSDFH + RQWR WKH LQQHU SURGXFW VSDFH /*f 3URRI 7R VKRZ WKDW WKH PDS &Y LV DQ LVRPRUSKLVP IURP + WR /*f ZH KDYH WR VKRZ WKDW &Y LV OLQHDU RQH WR RQH RQWR DQG FRQWLQXRXV FI > ,,@f %\ GHILQLWLRQ WKH PDS &Q LV FOHDUO\ D OLQHDU RSHUDWRU IURP + RQWR /*f

PAGE 158

7R VHH WKDW &Y LV RQH WR RQH ZH KDYH WR VKRZ WKDW >&Y[S@f >&YS@Of 9 ( 4 LPSOLHV [S S 6LQFH &A LV OLQHDU ZH KDYH >&0Pf :83f 9LHV %f 6LQFH WKH XQLWDU\ UHSUHVHQWDWLRQ 8JA LV LUUHGXFLEOH WKH VHW 7 ^U@Of O ( *` LV D WRWDO VHW LQ + FI > 3URSRVLWLRQ @f 7KHUHIRUH %f LPSOLHV WKDW [S S +HQFH WKH PDS &Y LV RQH WR RQH :H VKRZ QH[W WKDW WKH OLQHDU RSHUDWRU &Y IURP + RQWR /*f LV FRQWLQXRXV 7R VKRZ WKDW &Y LV FRQWLQXRXV LW LV QHFHVVDU\ DQG VXIILFLHQW WR VKRZ WKDW &Y LV ERXQGHG FI > 7KHRUHP @f /HW [S ( + EH DUELWUDU\ WKHQ ZKHUH ZH KDYH XVHG f +HQFH &Y LV D FRQWLQXRXV OLQHDU RSHUDWRU :H WKHUHIRUH FRQFOXGH WKDW &Y LV DQ LVRPRUSKLVP IURP + RQWR /*f :H QRZ VKRZ WKDW &A LV LVRPHWULF /HW Ae+EH DUELWUDU\ WKHQ .3@^f >&U[S@OffY S ""ff ISfGJ^Of 3 ,Sf %f ZKHUH ZH KDYH XVHG f LQ WKH ODVW VWHS (TXDWLRQ %f VKRZV WKDW &Y LV LVRPHWULF 7KHUHIRUH ZH FRQFOXGH WKDW &A LV DQ LVRPHWULF LVRPRUSKLVP IURP + RQWR /*f Â’ &ODLP % VKRZV WKDW WKH +LOEHUW VSDFH + LV LVRPHWULFDOO\ LVRPRUSKLF WR WKH LQQHU SURGXFW VSDFH /*f DQG LW IROORZV IURP WKLV WKDW /*f LV D +LOEHUW VSDFH FI > 7KHRUHP @f :H FDOO /^*f WKH FRQWLQXRXV UHSUHVHQWDWLRQ RI +

PAGE 159

% 5HSURGXFLQJ .HUQHOV DQG 5HSURGXFLQJ .HUQHO +LOEHUW 6SDFHV $ UHSURGXFLQJ NHUQHO LV DEVWUDFWO\ GHILQHG DV IROORZV FI > SS@f 'HILQLWLRQ % /HW & EH D WRSRORJLFDO VSDFH DQG 5 EH D +LOEHUW VSDFH ZKRVH HOn HPHQWV DUH IXQFWLRQV IURP & WR & WKH VHW RI FRPSOH[ QXPEHUV :H VD\ WKDW WKH IXQFWLRQ e [ / f§! & n f &n f LV D UHSURGXFLQJ NHUQHO LI DQG RQO\ LI Lf -&OnOf EHORQJV WR 5 DV D IXQFWLRQ RI On IRU DOO O LLf I&On@Of KDV WKH UHSURGXFLQJ SURSHUW\ IRU DOO IL LQ 5 .n Of c!^b %f :H VD\ WKDW 5 LV D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH LI WKHUH LV D IXQFWLRQ VDWLVI\LQJ FRQGLWLRQV Lf DQG LLf LH LI LW KDV D UHSURGXFLQJ NHUQHO ,W IROORZV IURP WKLV GHILQLWLRQ WKDW WKH UHSURGXFLQJ NHUQHO KDV WKH IROORZLQJ SURSHUWLHV ef! .^OnOf .AM7f %f _&n=f_ &n Onf -&O Of %f 7R VHH WKDW WKH LQHTXDOLW\ %f KROGV ZH XVH WKH UHSURGXFLQJ NHUQHO SURSHUW\ %f VLQFH IRU IL[HG O ZH KDYH WKDW &=n=f f 5 RQH ILQGV ef enfen Offf __&n =f__ )URP &= Onf .^ OffY en Of & Of .^I? OnffY .O nf DQG LLf LQ 'HILQLWLRQ $ WKH VHFRQG VWDWHPHQW LQ %f HDVLO\ IROORZV %f LV HVWDEOLVKHG DV IROORZV

PAGE 160

ZKHUH ZH KDYH XVHG WKH &DXFK\ 6FKZDU] LQHTXDOLW\ LQ WKH WKLUG VWHS 2QH FDQ JHQn HUDOL]H WKH LQHTXDOLW\ %f DV IROORZV OHW $f Y Q EH DUELWUDU\ FRPSOH[ QXPEHUV WKHQ Q A $,$L&& Af Of f &f +Y ? 8VLQJ %f DQG WKH OLQHDULW\ RI WKH LQQHU SURGXFW ZH ILQG L O +HQFH WKH UHSURGXFLQJ NHUQHO LV D SRVLWLYH GHILQLWH IXQFWLRQ &ODLP % $ UHSURGXFLQJ NHUQHO +LOEHUW VSDFH FDQ QHYHU KDYH PRUH WKDQ RQH UHn SURGXFLQJ NHUQHO 3URRI ,Q RXU SURRI ZH IROORZ 5HI S VXSSRVH WKHUH H[LVWV DQRWKHU IXQFWLRQ &On@Of ZKLFK KDV WKH UHSURGXFLQJ SURSHUW\ %f WKHQ ??.9?Wf.nf__ ..n..f && f§ &nf &n &nf &f &nfef enf VLQFH ERWK NHUQHOV DUH fUHSURGXFLQJf ’ :H QRZ VKRZ WKDW WKH IXQFWLRQ .0n?Of GHILQHG LQ FKDSWHUV DQG DV .fncf Uf rff! LV D UHSURGXFLQJ NHUQHO 5HSHDWLQJ WKH SURRI RI FODLP % ZRUG E\ ZRUG VXEVWLWXWLQJ .IOn?Of ULOnf7fff ZLWK O DUELWUDU\ EXW IL[HG IRU LSQOf HYHU\ZKHUH ZH VHH WKDW O&UOn Of LV D FRQWLQXRXV ERXQGHG VTXDUH LQWHJUDEOH IXQFWLRQ RI O 7KHUHIRUH ,&AO Of EHORQJV WR /A*f DV D IXQFWLRQ RI n IRU DOO O )URP f ZH VHH WKDW WKH IXQFWLRQ enf VDWLVILHV WKH UHSURGXFLQJ SURSHUW\ +HQFH .YOnOf LV D UHSURGXFLQJ NHUQHO DQG WKHUHIRUH E\ 'HILQLWLRQ % /r*f ZKLFK LV D +LOEHUW VSDFH RI FRQWLQXRXV IXQFWLRQV LV D UHSURGXFLQJ NHUQHO +LOEHUW VSDFH

PAGE 161

&ODLP % ,I LV WKH UHSURGXFLQJ NHUQHO RI D SURSHU FORVHG VXEVSDFH 5n RI D +LOEHUW VSDFH + WKHQ nf en Of+OnffL LV WKH SURMHFWLRQ RI S f + RQWR 5n 3URRI ,Q RXU 3URRI ZH IROORZ 5HI SS E\ WKH 3URMHFWLRQ 7KHRUHP VHH 5HI 7KHRUHP ,, HYHU\ HOHPHQW RI + FDQ EH ZULWWHQ XQLTXHO\ DV P Zf[R ZKHUH M!n f 5n DQG S? [fU IrU e 5n 6LQFH enf EHORQJV WR 5n DV D IXQFWLRQ RI ZH KDYH enf rnf!r DQG KHQFH ZH VHH WKDW .Ln }nff .,n Of$nOnf ;!U f‘ 6LQFH .YOnOf LV WKH UHSURGXFLQJ NHUQHO RI WKH SURSHU FORVHG VXEVSDFH =A*f RI /*f LW LV WKH NHUQHO RI D SURMHFWLRQ RSHUDWRU IURP /*f RQWR /*f % 3URRI WKDW (TXDWLRQ f LV :HOO 'HILQHG $OO PHDVXUHV FRQVLGHUHG LQ WKLV VHFWLRQ DUH SRVLWLYH DQG DILQLWH $ PHDVXUH Y RQ ; LV FDOOHG DILQLWH LI WKHUH LV D VHTXHQFH RI PHDVXUDEOH VHWV LQ WKH DDOJHEUD % VXFK WKDW [ ?-[Q Q DQG Y;Qf RR 7KH /HEHVJXH PHDVXUH G[ RQ f§f LV DQ H[DPSOH RI D DILQLWH PHDVXUH

PAGE 162

'HILQLWLRQ % $ PHDVXUH Y RQ LV D VWDQGDUG %RUHO PHDVXUH LI WKHUH H[LVWV D $ BBBBB %RUHO VHW 6 VXFK WKDW Y6f DQG WKH VXEVSDFH f§ 6 LV D VWDQGDUG %RUHO VSDFH LW LV LVRPRUSKLF ZLWK D %RUHO VXEVHW RI VRPH FRPSOHWH PHWULF VSDFHf $ %\ &RUROODU\ LQ 5HI WKHUH H[LVWV D VWDQGDUG %RUHO PHDVXUH Y RQ D APHDVXUDEOH GHFRPSRVLWLRQ RI WKH W\SH SDUW RI WKH OHIW UHJXODU UHSn UHVHQWDWLRQ RI DQG D PHDVXUDEOH ILHOG QRQ]HUR! SRVLWLYH VHOIDGMRLQW RSHUDWRUV VXFK WKDW LV D VHPLLQYDULDQW RSHUDWRU RI ZHLJKW $Sf LQ IRU Y $r DOPRVW DOO e f VXFK WKDW Lf )RU D 3c>'*f@ WKH RSHUDWRU .A8ADf.A LV WUDFH FODVV LLf )RU D 3c>'*f@ RQH KDV FDrr"f L WU>WIF>&Dr rf.c@GY‘ %f &ODLP % 7KH HTXDWLRQ %f LV ZHOO GHILQHG 3URRI 6XSSRVH WKHUH H[LVWV DQRWKHU VWDQGDUG %RUHO PHDVXUH Yn DQG PHDVXUDEOH ILHOGV 8e DQG ZLWK WKH VDPH SURSHUWLHV DV DERYH WKHQ E\ 7KHRUHP LQ $ 5HI WKH PHDVXUHV Y DQG Yn DUH HTXLYDOHQW DQG RQH KDV IRU LPDOPRVW DOO e * Vp 9.9f Df ZKHUH LV IRU DOO & f DQ RSHUDWRU LQWHUWZLQLQJ 8 DQG LH 97-e 8nA9A DQG A 9U LV ERXQGHG IRUDOO * 7KHUHIRUH XVLQJ %f RQH FDQ ZULWH

PAGE 163

ZKHUH WKH IRXUWK HTXDOLW\ KROGV E\ W$%f WU="Mf IRU $ WUDFH FODVV DQG % ERXQGHG DQG WKH ODVW HTXDOLW\ KROGV E\ 7KHRUHP % LQ 5HI VLQFH Y DQG Yn DUH HTXLYDOHQW DQG DILQLWH +HQFH ZH KDYH VKRZQ WKDW WU>.n?:^Drr3f.n?@GL4 -A.A8ADn r 3f.c@GX IRU DQ\ WZR GHFRPSRVLWLRQV RI WKH W\SH SDUW RI WKH OHIW UHJXODU UHSUHVHQWDWLRQ RI 7KHUHIRUH HTXDWLRQ %f LV ZHOO GHILQHG Â’

PAGE 164

$33(1',; & (;$&7 /$77,&( &$/&8/$7,216 ,Q WKLV $SSHQGL[ ZH SUHVHQW WKH H[DFW ODWWLFH FDOFXODWLRQ RI WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS IRU WKH IROORZLQJ WZR +DPLOWRQ RSHUDWRUV WR Q[OW[f t[L LLf +;;f s;"X!; &O 7KH )UHH 3DUWLFOH 2XU ILUVW H[DPSOH LV WKDW RI WKH +DPLOWRQLDQ 7/SN[f SNfP +HUH S LV UHVWULFWHG WR EH SRVLWLYH DQG WKH YDULDEOHV N [ DUH XQUHVWULFWHG /HW SM MfML 3Mf $SM SML SM TM T-? TMf DQG $TM T-? f§ TM WKHQ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS EHFRPHV f 1 1 [ GNMLG[ML M L OLP 1f§!RR 7f 1 H[S L c; f3M f FMA$SM 3M$TMf P P ATM$SM3M$TMf A^TM$SM3M$TMf P HSM HSM $ 3M [ Q Q

PAGE 165

P A >T$3MS$TM f $ 3M 1 1 Q G3MQ GN G[ L MO8;MO WWf 1RZ IRU DOO M ZH OHW NM N-L AcTM$SM 3M$TMf DQG FDUU\LQJ RXW WKH LQWHJUDWLRQV RYHU e ZH ILQG [M $V D QH[W VWHS ZH FDUU\ RXW WKH LQWHJUDWLRQV RYHU WKH ;M DQG ILQG OLP 122 QP? N f 1f 1 H[S L P $SM B W ? 1 ; UU -V 3 ? 3 1 ,, G3 GTM P ?1f OLP f§f§ WYN[f ?7Lf ,, 1 H[S / P
PAGE 166

.STWSnTnWnf : a f IW P ?1Of f‘f H[S 1 LAnY6TL[ a / M 79 Q GTL M M L 7KLV ODVW LQWHJUDO FDQ EH VWUDLJKWIRUZDUGO\ HYDOXDWHG XVLQJ WKH IROORZLQJ GHILQLWH LQn WHJUDO 2& f§ f§ H[S>f§D[ f§ Xf@ -f§ H[S>f§EX f§ \fr@GX DE UR Ef H[S DE D E [Yf &Of IRU "HDf "Hf H[WHQGHG WR "HDf "Hf DV DQ LPSURSHU LQWHJUDO 7KLV LGHQWLW\ LV HDVLO\ SURYHG E\ FRPSOHWLQJ WKH VTXDUH LQ WKH H[SRQHQWLDO 8VLQJ &Of WKH LQWHJUDO RYHU T? LV JLYHQ E\ P 7 H[S LP < 4 Lf H[S LP < T Rf GL P ULHf H[S LP ? Lf nf ZKHUH ZH KDYH LQFOXGHG WZR RI WKH "QULHf IDFWRUV DQG KDYH LGHQWLILHG ZLWK Tn 7KH HIIHFW RI WKH mALQWHJUDWLRQ LV WR FKDQJH W WR H ERWK LQ WKH H[SRQHQWLDO DQG LQ WKH VTXDUH URRW DQG WR UHSODFH WKH H[SRQHQWLDOV E\ D VLQJOH H[SRQHQWLDO ZKLFK GHSHQGV RQO\ RQ f§ Tn 7KH GHSHQGHQFH KDV EHHQ LQWHJUDWHG RXW 3URFHHGLQJ LQ WKLV PDQQHU FDUU\LQJ RXW DOO WKH LQWHJUDWLRQV ZH ILQG DV RXU ILQDO UHVXOW .^S T Tn Wnf S A IW Y QL^1 OfH H[S LP W? >9 OfH T Tnf P U] f§ 9f S Snf H[S LP L? L 9f U0nTnf ZKHUH ZH KDYH PDGH XVH RI WKH IROORZLQJ LGHQWLWLHV TQL T DQG W f§ Wnf 1 OfH +HQFH RXU ILQDO UHVXOW LV JLYHQ E\ .S W?Sn T? Wnf P QL7 f§S Sf H[S LP I L? ‘T Tnf ZKHUH 7 W f§ W 2EVHUYH WKDW WKLV UHVXOW DJUHHV ZLWK WKH XVXDO UHVXOW IRU WKH IUHH SDUWLFOH H[FHSW WKDW KHUH S LV UHVWULFWHG WR EH SRVLWLYH LH S

PAGE 167

& 7KH +DPLOWRQ 2SHUDWRU n+;L;f X; /HW XV QRZ FRQVLGHU WKH +DPLOWRQLDQ L^SN[f SNfP X[ :LWK WKH QRWDWLRQV RI WKH SUHYLRXV VHFWLRQ WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU IRU WKH DIILQH JURXS WDNHV WKH IROORZLQJ IRUP .STWSnTnWnf OLP $ !RR 1 H[S NMO^TM;SM SM$TMf Mf§R ;Ma= $SM ^SMNMf 3M P f8f;ML 79 1 QG3M Q M L GNMLG[ML 0 OLP 1f§\RF ,, 79 H[S M R P HL3M Mf IFMM$SM 3M $ Tf P P M$3M 3M $ Tf f§ 4@ $3M IW$Jf HSM $SM =M H3M OLP 79f§! f 1 H[S 3M 79 $U Q G3M GY Q M GNMG[M WWf M P P I\ AA$SMSM$Af P AA$3M3O$Mf A HSM $3M 3L HR 79 79 [ Q GSM GT Q Lf§ -f§ GNMLG[-L WWf -XVW DV LQ WKH FDVH RI WKH SUHYLRXV VHFWLRQ LQWHJUDWLRQ RYHU IFM \LHOGV OLP 79f§! [MO 1H[W ZH FDUU\ RXW WKH LQWHJUDWLRQV RYHU WKH =M DQG ILQG

PAGE 168

1 1 GSM GTM M R M L r If [ M 2 1RZ XVLQJ WKH LGHQWLW\ D[ f§ E\fD\ E]fG\ 6D[ f§ E]f DQG FDUU\LQJ RXW WKH 3MLQWHJUDWLRQV ZH ILQG OLP 6 79f§ 22 [ OLP 1f§22 ZKHUH 7 W f§ Wn

PAGE 169

7KH ILQDO SDWKLQWHJUDO ZH KDYH WR VROYH LV D /DJUDQJLDQ SDWK LQWHJUDO IRU D TXDGUDWLF /DJUDQJLDQ 7KLV ILQDO /DJUDQJLDQ SDWK LQWHJUDO FDQ EH GRQH XVLQJ H[n WUHPDO WHFKQLTXHV ZKLFK DUH H[DFW LQ WKH FDVH RI D TXDGUDWLF /DJUDQJLDQ VHH 5HI 7KH DFWLRQ IRU WKLV /DJUDQJLDQ SDWK LQWHJUDO LV JLYHQ E\ G aAIR : f XTIGW YDULDWLRQ RI ZKLFK \LHOGV WKH HTXDWLRQ RI PRWLRQ ZKLFK KDV WKH JHQHUDO VROXWLRQ TWf $ VLQKRf % FRVKXLf ,PSRVLQJ WKH ERXQGDU\ FRQGLWLRQV T^f Tn DQG T7f T \LHOGV TLWf L VLQKA7f ^Tn VLQK>X7 f§ If@ JVLQKRLf` &f 7KHUHIRUH XVLQJ &f RQH ILQGV WKH HYDOXDWHG FODVVLFDO DFWLRQ WR EH 6G PX Q? ?L L BUU? U! P/8 8? L -? VLQKX7f ^>"f Tnf @FRVKA7f TTn` >"f WLQ 6R WKDW RXU ILQDO UHVXOW IRU WKH UHSUHVHQWDWLRQ LQGHSHQGHQW SURSDJDWRU ZLWK WKLV /Dn JUDQJLDQ EHFRPHV .STWSnT?Wnf QPX! ]VLQKX7f ^HX7 S Hf7n [ H[S LPX ^>Tf T\`FRVKX-7fTTn` ? VLQKX7f LPX Q? P ""@f ‘ &f

PAGE 170

%,%/,2*5$3+< 1, $NKLHVHU DQG ,0 *OD]PDQ f7KHRU\ RI /LQHDU 2SHUDWRUV LQ +LOEHUW 6SDFH ,f 8QJDU 3XEO &R 1HZ
PAGE 171

0 %KP DQG -XQNHU f*URXS WKHRUHWLFDO DSSURDFK WR SDWK LQWHJUDWLRQ RQ VSKHUHVf ,Q 6 /XQGTXLVW HW DO HGVf 3DWK 6XPPDWLRQ $FKLHYHPHQWV DQG *RDOV 3URFHHGLQJV 7ULHVWH ,WDO\ :RUOG 6FLHQWLILF 6LQJDSRUH ) %UXKDW 'LVWULEXWLRQV VXU XQ JURXSH ORFDOHPHQW FRPSDFW HW DSSOLFDWLRQV £ OfWXGH GHV UHSUHVHQWDWLRQV GHV JURXSHV SDGLTXHV %XOO 6RF 0DWK )UDQFH f $/ &DUH\ 6TXDUHLQWHJUDEOH UHSUHVHQWDWLRQV RI QRQXQLPRGXODU JURXSV %XOO $XVWUDO 0DWK 6RF f 3 &DUUXWKHUV DQG 00 1LHWR 3KDVH DQG DQJOH YDULDEOHV LQ TXDQWXP PHFKDQLFV 5HY 0RG 3K\V f 30 &RKQ f/LH *URXSVf &DPEULGJH 8QLYHUVLW\ 3UHVV /RQGRQ 5 &RXUDQW DQG +LOEHUW f0HWKRGHQ GHU 0DWKHPDWLVFKHQ 3K\VLN ,f 'ULWWH $XIODJH +HLGHOEHUJHU 7DVFKHQELLFKHU 6SULQJHU 9HUODJ %HUOLQ + 'DYLHV +DPLOWRQ DSSURDFK WR WKH PHWKRG RI VXPPDWLRQ RYHU )H\QPDQ KLVn WRULHV 3URF &DPE 3KLO 6RF f % 'DYLVRQ 2Q )H\QPDQfV LQWHJUDO RYHU DOO SDWKVf 3URF 5R\ 6RF /RQG $ f %6 'H:LWW '\QDPLFDO WKHRU\ LQ FXUYHG VSDFHV $ UHYLHZ RI WKH FODVVLFDO DQG TXDQWXP DFWLRQ SULQFLSOHV 5HY 0RG 3K\V f 3$0 'LUDF 7KH /DJUDQJLDQ LQ TXDQWXP PHFKDQLFV 3K\V =WVFKU GHU 6RXLMHW XQLRQ f 3$0 'LUDF f7KH 3ULQFLSOHV RI 4XDQWXP 0HFKDQLFVf IRXUWK UHYLVHG HGLWLRQ 2[IRUG 8QLY 3UHVV &ODUHQGRQf 2[IRUG 'L[PLHUf&r$OJHEUDVf 1RUWK +ROODQG $PVWHUGDP 'L[PLHU f9RQ 1HXPDQQ $OJHEUDVf 1RUWK +ROODQG $PVWHUGDP +' 'RHEQHU DQG 2 0HOVKHLPHU /LPLWDEOH G\QDPLFDO JURXSV LQ TXDQWXP PHn FKDQLFV 0DWK 3K\V f -6 'RZNHU :KHQ LV WKH fVXP RYHU FODVVLFDO SDWKVf H[DFW" 3K\V /RQGRQf $ f -6 'RZNHU 4XDQWXP PHFKDQLFV RQ JURXS VSDFH DQG +X\JHQVf 3ULQFLSOH $QQ 3K\V f

PAGE 172

0 'XIOR DQG && 0RRUH 2Q WKH UHJXODU UHSUHVHQWDWLRQ RI D QRQXQLPRGXODU ORFDOO\ FRPSDFW JURXS )XQG $QDO f 1 'XQIRUG DQG 6FKZDUW] f/LQHDU 2SHUDWRUVf 3DUW :LOH\ 1HZ UXVV@ 'RNODG\ $NDG 1DXN 6665 f -/ *HUYDLV DQG $ -HYLFNL 3RLQW FDQRQLFDO WUDQVIRUPDWLRQV LQ SDWK LQWHJUDO 1XF 3K\V % f 5 *LOPRUH 7KH FODVVLFDO OLPLW RI TXDQWXP QRQVSLQ V\VWHPV 0DWK 3K\V f 5*ODXEHU 3KRWRQ FRUUHODWLRQV 3K\V 5HY /HWW f 5*ODXEHU 7KH TXDQWXP WKHRU\ RI RSWLFDO FRKHUHQFH 3K\V 5HY f

PAGE 173

5*ODXEHU &RKHUHQW DQG LQFRKHUHQW VWDWHV RI WKH UDGLDWLRQ ILHOG 3K\V 5HY f *OHLFN f*HQLXVf 9LQWDJH %RRNV 1HZ
PAGE 174

-5 .ODXGHU 3DWK LQWHJUDOV DQG VWDWLRQDU\SKDVH DSSUR[LPDWLRQV 3K\V 5HY f -5 .ODXGHU 3DWK LQWHJUDOV $FWD 3K\V $XVWUDFD 6XSSO ;;,, f -5 .ODXGHU f3DWK ,QWHJUDOV IRU $IILQH 9DULDEOHVf ,Q -3 $QWRLQH DQG ( 7LUDSHTXL HGVf )XQFWLRQDO ,QWHJUDWLRQ 7KHRU\ DQG $SSOLFDWLRQV 3URFHHGn LQJV 3OHQXP 1HZ RU 68f@ FRKHUHQW VWDWHV 0DWK 3K\V f + .OHLQHUW 3DWK LQWHJUDO RQ VSKHULFDO VXUIDFHV LQ GGLPHQVLRQV DQG RQ JURXS VSDFHV 3K\VLFV /HWWHUV % f + .OHLQHUW f3IDGLQWHJUDOH ,Q GHU 4XDQWHQPHFKDQLN 6WDWLVWLN XQG 3RO\PHU SK\VLNf %O:LVVHQVFKDIWVYHUODJ 0DQQKHLP (+ /LHE 7KH FODVVLFDO OLPLW RI TXDQWXP VSLQ V\VWHPV &RPPXQ 0DWK 3K\V f ': 0F/DXJKOLQ DQG /6 6FKXOPDQ 3DWK LQWHJUDOV LQ FXUYHG VSDFHV 0DWK 3K\V f *: 0DFNH\ f8QLWDU\ *URXS 5HSHVHQWDWLRQV LQ 3K\VLFV 3UREDELOLW\ DQG 1XPn EHU 7KHRU\f $GYDQFHG %RRN &ODVVLFV $GGLVRQ:HVOH\ 5HDGLQJ 0DVVDFKXVHWWV 06 0DULQRY 3DWK LQWHJUDOV LQ TXDQWXP WKHRU\ $Q RXWORRN RI EDVLF FRQFHSWV 3K\V 5HS f 06 0DULQRY DQG 09 7HUHQW\HY $ IXQFWLRQDO LQWHJUDO RQ XQLWDU\ JURXSV 6RY 1XFO 3K\V f

PAGE 175

06 0DULQRY DQG 09 7HUHQW\HY '\QDPLFV RQ WKH JURXS PDQLIROG DQG SDWK LQWHJUDO )RUWVFKU 3K\VLN f 0DXULQ f*HQHUDO (LJHQIXQFWLRQ ([SDQVLRQV DQG 8QLWDU\ 5HSUHVHQWDWLRQV RI 7RSRORJLFDO *URXSVf 3:13ROLVK 6FLHQWLILF 3XEOLVKHUV :DUVDZ + 0HVFKNRZVNL f+LOEHUWVFKH 5DXPH PLW .HUQIXQNWLRQf 6SULQJHU 9HUODJ %HUOLQ & 0RUHWWH 2Q WKH GHILQLWLRQ DQG DSSUR[LPDWLRQ RI )H\QPDQfV SDWK LQWHJUDOV 3K\V 5HY f -( 0R\DO 4XDQWXP PHFKDQLFV DV D VWDWLVWLFDO WKHRU\ 3URF &DPE 3KLO 6RF f ( 1HOVRQ $QDO\WLF YHFWRUV $QQ RI 0DWK f +0 1XVVHQ]ZHLJ f,QWURGXFWLRQ WR 4XDQWXP 2SWLFVf *RUGRQ DQG %UHDFK 1HZ
PAGE 176

( 6FKUGLQJHU 'HU VWHWLJH 8EHUJDQJ YRQ GHU 0LNUR ]XU 0DNURPHFKDQLN 'LH 1DWXUZLVVHQVFKDIWHQ f /6 6FKXOPDQ $ SDWK LQWHJUDO IRU VSLQ 3K\V 5HY f /6 6FKXOPDQf7HFKQLTXHV DQG $SSOLFDWLRQV RI 3DWK ,QWHJUDWLRQf :LOH\ 1HZ RU 68f@ FRKHUHQW VWDWHV 0DWK 3K\V f 77 7URXQJ 1HZ LQWHJUDO HTXDWLRQV IRU WKH TXDUWLF DQKDUPRQLF RVFLOODWRU 1XRYR &LPHQWR /HWW f 77 7URXQJ :H\O TXDQWL]DWLRQ RI DQKDUPRQLF RVFLOODWRUV 0DWK 3K\V f 7XOVLDQ DQG -5 .ODXGHU 7KH XQLYHUVDO SURSDJDWRU IRU (f FRKHUHQW VWDWHV &RPPXQ 7KHRU 3K\V WR DSSHDUf 19LOHQNLQ f6SHFLDO )XQFWLRQV DQG WKH 7KHRU\ RI *URXS 5HSUHVHQWDWLRQVf $PHULFDQ 0DWKHPDWLFDO 6RFLHW\ 3URYLGHQFH 5, YRQ 1HXPDQQ f'LH PDWKHPDWLVFKHQ *UXQGODJHQ GHU 4XDQWHQPHFKDQLNf 6SULQJHU %HUOLQ :HLGPDQQ f/LQHDUH 2SHUDWRUHQ LQ +LOEHUWUDXPHQf 7HXEQHU 9HUODJ 6WXWWn JDUW *HUPDQ\ %* :\ERXUQH f&ODVVLFDO *URXSV IRU 3K\VLFLVWVf :LOH\ 1HZ
PAGE 177

%,2*5$3+,&$/ 6.(7&+ :ROIJDQJ 7RP ZDV ERUQ LQ /XGZLJVEXUJ *HUPDQ\ RQ 0D\ +H ZDV UDLVHG LQ 5HXWOLQJHQ *HUPDQ\ ZKHUH KH ILQLVKHG \HDUV RI HOHPHQWDU\ VFKRRO LQ VHUYHG DQ DSSUHQWLFHVKLS IURP DV D PHFKDQLFDO HQJLQHHU DW %XUNKDUG XQG :HEHU .* DWWHQGHG WKH %HUXIVDXIEDXVFKXOH IURP DQG WKH 7HFKQLVFKH *\PQDVLXP IURP ,Q 2FWREHU KH HQWHUHG WKH )DNXOW£W ILLU 3K\VLN DW WKH (EHUKDUG .DUOV 8QLYHU VLW£W LQ 7ELQJHQ ZKHUH KH UHFHLYHG KLV 9RUGLSORP LQ 3K\VLN ZLWK PDJQD FXP ODXGH LQ 2FWREHU 7KH SHULRG IURP 6HSWHPEHU WR $XJXVW KH VSHQW DW WKH 'HSDUWPHQWV RI 3K\VLFV DQG 0DWKHPDWLFV DW WKH 8QLYHUVLW\ RI 'HQYHU &RORUDGR RQ D IHOORZVKLS IURP WKH 6WXGLHQVWLIWXQJ GHV GHXWVFKHQ 9RONHV +H UHFHLYHG KLV 0DVWHU RI 6FLHQFH ZLWK WKHVLV LQ PDWKHPDWLFDO SK\VLFV LQ $XJXVW 6LQFH $XJXVW KH KDV EHHQ HQUROOHG LQ WKH 3K' SURJUDP RI WKH 'HSDUWPHQW RI 3K\VLFV DW WKH 8QLYHUVLW\ RI )ORULGD )URP 0DUFK WR $XJXVW KH UHFHLYHG D GRFWRUDO IHOORZVKLS IURP WKH 6WXGLHQVWLIWXQJ GHV GHXWVFKHQ 9RONHV +H KDV EHHQ PDUULHG WR 0DULH-DFTXHOLQH /DPRWK VLQFH $XJXVW RI 7KH\ DUH WKH SDUHQWV RI $QQH6RSKLH 7RP

PAGE 178

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3 I -RKe5 .ODXGHU &KDLUPDQ 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -DPHV : 'XIW\ f 3URIHVVRU RI 3K\VLFV Y FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ b & .KDQGNHU $ 0XWWDOLE $VVRFLDWH 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ Ur 6WHSKHQ 6XL+KLHUV $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %HUQDUG ) :KLWLQJ $VVRFLDWH 3URIHVVRU RI 3K\VLFV

PAGE 179

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI 3K\VLFV LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 180

/' 81,9(56,7< 2) )/25,'$ f mLW fffmr r 0 ‘ ,,r OLOLO ,,


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EI788OBKT_XT9KFU INGEST_TIME 2011-08-29T15:01:15Z PACKAGE AA00002050_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES